
N
w
e

I

w
p
s
n
s

s
o
n
T
s
d
t
f
u
t

w
n
o
i
k
o
L

a

JOURNAL OF MATHEMATICAL PHYSICS 47, 012101 �2006�

0

                        
on-Hermitian interactions between harmonic oscillators,
ith applications to stable, Lorentz-violating quantum
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We examine a new application of the Holstein-Primakoff realization of the simple
harmonic oscillator Hamiltonian. This involves the use of infinite-dimensional
representations of the Lie algebra su�2�. The representations contain nonstandard
raising and lowering operators, which are nonlinearly related to the standard a† and
a. The new operators also give rise to a natural family of two-oscillator couplings.
These nonlinear couplings are not generally self-adjoint, but their low-energy limits
are self-adjoint, exactly solvable, and stable. We discuss the structure of a theory
involving these couplings. Such a theory might have as its ultra-low-energy limit a
Lorentz-violating Abelian gauge theory, and we discuss the extremely strong
astrophysical constraints on such a model. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2159070�

. INTRODUCTION

The simple harmonic oscillator is one of the best understood systems in quantum mechanics,
ith applications in essentially all areas of physics. However, there may remain many interesting
roperties of this system that have not been fully understood or elucidated �see Ref. 1, for in-
tance�. In this paper, we present an example of this. This example provides a possible way for
onlocal interactions to stabilize a Lorentz-violating modification to the free photon sector of the
tandard model.

We shall show how the Holstein-Primakoff realization of the angular momentum Lie algebra
u�2� may be used in connection with the simple harmonic oscillator.2 We first review the free
scillator, considered using the infinite-dimensional representations of this algebra. This leads
aturally to a study of new nonlinear couplings between multiple identical harmonic oscillators.
hese couplings can be viewed in one of two ways. Taken at face value, the interactions are not
elf-adjoint, and the energy eigenvalues need not be real; however, the Hamiltonians in question
o possess low-energy limits which are self-adjoint. The second possible viewpoint would be to
ake the formula which defines the real eigenvalues in the low-energy regime and extend that
ormula to cover the full range of the quantum numbers. This has the advantage of ensuring
nitary evolution, but the additional complexity of the Hamiltonian is a corresponding disadvan-
age.

We shall describe how these new interactions may manifest themselves in a physical theory,
ith particular emphasis on couplings between the two polarization modes of the free electromag-
etic field. However they are interpreted, the interactions we shall discuss may be relevant as part
f a nonlocal, Lorentz-violating quantum field theory. Recently, there has been a great deal of
nterest in the possibility that Lorentz symmetry may not be exact in nature. A violation of this
ind of fundamental symmetry could arise as part of the novel physics of the Planck scale. Relics
f this violation would then persist even in the low-energy effective theory. The general local
orentz-violating standard model extension �SME� has been developed,3–5 and the stability6 and

�
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enormalizability7 of this extension have been studied. Lorentz violation is a very interesting area
f theoretical physics, because even superficially simple questions about its physics may have
ubtle and even ambiguous answers. For example, the study of the gauge invariance properties of
nd finite radiative corrections to Lorentz-violating field theories has proven to be a fruitful source
or new theoretical insights.8–13

One significant difficulty with Lorentz-violating quantum field theories is that they frequently
xhibit problems with stability.6,14 Yet it has been suggested that some form of nonlocality might
vercome this problem.6,15 The harmonic oscillator interactions we consider can provide a con-
rete example for how this stabilization might work, if we adopt the second interpretation of these
nteractions as described above. In the limit of very low energies, the nonlocal interactions may
ouple together the two polarization modes of a free photon in exactly the same way as would a
ocal, renormalizable operator from the SME.3,14 However, the nonlocality ensures that the theory
emains stable, even for very large photon numbers. Weak forms on nonlocality have also been
onsidered in other Lorentz-violating contexts.16

The kinds of infinite-dimensional representations of su�2� that we will consider have also been
ntroduced in the context of the Dirac Coulomb problem17,18 and in generalizations of the Dirac
onopole,19 where they provide useful insights. Moreover, other Lie algebras also possess

nfinite-dimensional representations that are not representations of any corresponding Lie group.
hese representations might be useful in the study of certain quantum-mechanical systems,

hrough a generalization of the techniques used in Refs. 17–19 or developed in this paper.

I. SINGLE-OSCILLATOR OPERATORS

We shall begin by reviewing the Holstein-Primakoff realization of the harmonic oscillator
aising and lowering algebra. Most frequently, when one studies the representations of su�2� in
onnection with quantum mechanics, one is interested only in the finite-dimensional representa-
ions, which are countable and parametrized by the total angular momentum �. One considers an

perator J� = �J1 ,J2 ,J3�= � 1
2J++ 1

2J− , �1/2i�J+− �1/2i�J− ,J3�, with standard commutation relations.
eginning from a highest weight state ���, with J+���=0, one constructs each of the 2�+1 states

�−s� by acting on ��� with J− s times and normalizing appropriately.
When 2� is a non-negative integer, there are only these 2�+1 states, because J−�−��=0.

owever, for more general values of the highest weight, the sequence of states does not terminate.
nstead, one constructs an infinite tower of equally spaced states. This tower of states has a
tructure which is identical to that of the simple harmonic oscillator.

In fact, if we begin with a highest weight state ���, with J3���=���� �where 2� is not a
on-negative integer�, we may construct states ��−n� for all non-negative integers n, using J−��
n�=����+1�− ��−n���−n−1���−n−1�. Then the Hamiltonian H�=−�J3+���+ 1

2
� has nonde-

enerate eigenvalues �n+ 1
2

��, which are precisely the energy eigenvalues of a harmonic oscillator
when we set �=1�. Since a quantum-mechanical system is entirely specified by its Hilbert space
nd the Hamiltonian acting on that space, this is equivalent to an alternate description of the
armonic oscillator. �Note that this description is completely distinct from Schwinger’s develop-
ent of the angular momentum algebra in terms of harmonic oscillator states.20�

We should point out that the state space is a representation only of the Lie algebra su�2�, not
f the Lie group SU�2�. That this is the case should be clear from an examination of the spectrum

f the Hamiltonian Hn̂=�n̂ ·J�. This would be a Zeeman effect Hamiltonian if the representation of
� were finite dimensional, with J� transforming in the adjoint representation of SU�2�. The SU�2�
ymmetry would then dictate that the eigenenergies should be independent of the direction of n̂.
owever, those energies are clearly not independent of n̂ for the infinite-dimensional representa-

ions we are now considering. Specifically, if n̂=−ê3, then we have a harmonic oscillator system,
ut if n̂= + ê3, then the energy is not bounded from below. Therefore, the infinite-dimensional
perators cannot form a representation of the group SU�2�.
We shall now relabel our states, so that they match the usual harmonic oscillator nomencla-
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ure. We make the replacement ��−n�→ �n�. Now, in addition to the standard harmonic oscillator
aising and lowering operators a† and a, we have a new set of raising and lowering operators J−

nd J+, given by

J−�n� = ���� + 1� − �� − n��� − n − 1��n + 1� , �1�

J+�n� = ���� + 1� − �� − n��� − n + 1��n − 1� , �2�

r

J− = a†�2� − a†a , �3�

J+ = a�2� − a†a + 1. �4�

he square root operators are to be interpreted as having eigenvalues equal to the square roots of
he eigenvalues of the operators inside, with the same eigenvectors. For a mechanical oscillator,
e may further express the J± in terms of the position and momentum operators x and p, using the
sual linear relations connecting x and p to a† and a; however, this substitution must be made with
he understanding that the proper interpretation of the J± operators requires the use of the discrete
number of quanta present” basis of states.

The J± give us a new family of raising and lowering operators, parametrized by �. These
perators are distinct from the a† and a for all finite �. This is clear from the differing commu-
ation relations �a ,a†�=1 and �J+ ,J−�=2J3. In general, for large n �large in comparison with � and
nity�, the matrix elements of J± are larger than those of a and a† by a factor of O��n�. However,
he new operators do include the a and a† as limiting cases. As �→�, �J+ /�2��→a and
J− /�2��→a†. �These limits are to be interpreted in terms of the matrix elements of the operators
nvolved, and all half-integral values of � must be avoided as the limit is taken.�

We can see from �3� and �4� that J+�J−
† for finite, non-half-integral �, because the square

oots in �3� and �4� may become imaginary. This means that J1 and J2 are not self-adjoint, a

ifficulty which we glossed over when we discussed the Hamiltonian Hn̂. The Casimir operator J�2

s self-adjoint, however. Moreover, in the basis of eigenstates of J3, J+=J−
T. Since the matrix

lements of J− and J+
† differ only by phase factors in the J3 basis, there is no ambiguity in defining

he entire state space starting from the ground state. Finally, we point out that if � is large and

ositive, then the non-self-adjoint character of J� does not become apparent unless n is at least
omparable to 2�. These facts will prove important when we discuss the coupling between two
armonic oscillators.

II. MULTIPLE COUPLED OSCILLATORS

We shall now consider a novel application of this description of the harmonic oscillator. We
ay determine the energy eigenvalues exactly for certain systems of coupled identical oscillators

n which the couplings are nonlinear. Let us consider the Hamiltonian

H = H� + H� + gHint �5�

H = �− �JA3 + 	� +
1

2

�� + �− �JB3 + 	� +

1

2

�� + gHint. �6�

�
A and J�B are two independent vectors of operators of the type we have been considering, corre-
ponding to the highest weights � and �, respectively. Hint is an interaction, whose form we shall
iscuss shortly. This Hamiltonian has three adjustable parameters. � and � determine the structure
f the harmonic oscillator representations that we are using. However, like g, they may be seen as

arameters describing the interaction, because we have shifted the total energy in such a way as to
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ake the spectrum of the free oscillators’ Hamiltonian H�+H� independent of both � and �.
hese two parameters may be chosen freely, subject to the condition that neither 2� nor 2� is a
on-negative integer.

We shall choose an interaction gHint that is similar in form to gJ�A ·J�B. If g�0, gJ�A ·J�B is not
elf-adjoint; however, if � and � are large and positive, this problem will not be apparent in the

icinity of the ground state. So we take Hint to agree with J�A ·J�B when nA+nB+1�min�2� ,2��,
here nA and nB are the principal quantum numbers of the two oscillators. We may then consider

he effects of this interaction within this restricted �“low-energy”� regime.
We may solve the restricted Hamiltonian using the ordinary techniques for the addition of

ngular momenta. The operator J� =J�A+J�B has highest weights of the form �+�− i for all non-
egative integers i, and each value of i corresponds to a single irreducible component of the
epresentation. The Clebsch-Gordon coefficients for these representations can be calculated by the
tandard method of applying lowering operators and using Gram-Schmidt orthonormalization.
owever, our primary interest is in the energy levels.

The eigenvalues of H�+H� are just �nA+nB+1��. When we change the basis, to use the “total

ngular momentum” J�, this part of the Hamiltonian becomes

H� + H� = − �J3 + �� + � + 1�� . �7�

he eigenstates of the system are parametrized by the highest weight �+�− i and by the “number
f quanta present” �that is, the number of applications of J− on the highest weight state required to
roduce a given state�, n. If we denote these states by �i ,n�, then it is clear that �H�+H���i ,n�
�i+n+1���i ,n�. Since i and n have the same range as nA and nB �all must be non-negative

ntegers�, this verifies that the free system has the same spectrum in each basis.

The coupling term must be calculated in the J� basis. This is easily done, using J�A ·J�B= 1
2 �J�2

J�A
2 −J�B

2�. For a state of specified i, J�A ·J�B has the eigenvalue ��− ��+�+ 1
2

�i+ 1
2 i2. So the total

nergy is

Ei,n = ��i + n + 1� + g��� − �� + � + 1
2�i + 1

2 i2� . �8�

his formula holds exactly in the entire low-energy subspace.
We must now turn our attention to the general definition of Hint. There are two natural ways

o define this interaction. The first possibility is that Hint=J�A ·J�B exactly, and the fundamental
amiltonian is not self-adjoint. The second possibility involves a less drastic modification of the

tructure of the theory. We simply take the exact Hamiltonian to be defined by its eigenvalues,
hich have the form �8�. There is a complete set of states ��i ,n� corresponding to these eigenen-

rgies, and for i+n+1�min�2� ,2��, these states agree with the ones found above. The new
ilbert space is not equivalent to the old, two-oscillator Hilbert space, but the restricted, low-

nergy subspaces of these two Hilbert spaces are isomorphic. We shall henceforth adopt this
econd definition of Hint �although most of our statements will concern only the low-energy
ubspace, where the two definitions are equivalent�.

A few words about the various parameters are now in order. Our coupled system is stable only
f g�0; if g�0, the energy is not bounded below. We also see that the structure of the energy
evels depends only on g and �+�; the separate values of � and � only affect the zero-point
nergy.

This is a strongly nonlinearly coupled system. We may recover the more usual result for the
pectrum in the presence of a linear coupling between the oscillators by setting �=� and express-
ng a† and a in terms of the �→� limits of J+ and J−. �Note that as �→�, there are no problems

ith the operators being self-adjoint.� The interaction g�aAaB
† +aA

†aB� is the limit of �g /���J�A ·J�B

JA3JB3� as � approaches infinity. The two terms �g /��J�A ·J�B and �g /��JA3JB3 each commute with
he noninteracting Hamiltonian; and, although they do not commute with each other for finite

alues of �, they do commute in the infinite limit. We may see this by evaluating the two operators

                                                                                                            



f
+
w
−
n
t
g
r

o
w
p
t

H
o
i

I

A
m
t
s
c
M
m
n
w
o
t

i
q
c
e
v
m
n
s
g

s
e
o
f
h
t
e

012101-5 Non-Hermitian interactions J. Math. Phys. 47, 012101 �2006�

                        
or finite � in different bases. In the J� basis, the first term is diagonal, with eigenvalues g��− �2
�1/2���i+ �1/2��i2, just as calculated above. The second term is diagonal in the JA, JB basis,
ith eigenvalues �g /����−nA���−nB�. As �→�, these eigenvalues become g��−2i� and g��
nA−nB�, respectively. However, as we saw when we discussed the noninteracting case, the total
umber operator nA+nB=n+ i is diagonal in both bases, so g��−nA−nB�=g��−n− i�. Then the
otal energy shift, which is now the difference between g��−2i� and g��−n− i�, becomes simply
�n− i�. That is, we have two decoupled oscillators with frequencies �±g, which is just the usual
esult.

More general interactions are also possible. We may replace gJ�A ·J�B with an arbitrary function

f J�A ·J�B. Any such interaction will still commute with H�+H�, and all the same considerations
ill still apply. Other generalizations are possible as well, through the use of other well-known
roperties of su�2�. For example, we may generalize to the coupling of N identical oscillators, with
he identity

�
1�C�D�N

J�C · J�D =
1

2�	�
C=1

N

J�C
2

− �
C=1

N

�J�C�2� . �9�

owever, it is important to keep in mind that many approximations that are typically used when
ne studies more than two interacting angular momenta will break down when working with
nfinite-dimensional representations of su�2�.

V. APPLICATION TO LORENTZ-VIOLATING QED

One of the simplest situations in which pairs of identical harmonic oscillators arise is in an
belian gauge theory in 3+1 dimensions. An interaction of the form �6� might be relevant as a
odification of the photon sector of quantum electrodynamics �QED�. For the gauge sector alone,

his interaction could be introduced separately at each value of the photon momentum. The
election of a specific basis of polarization states for each momentum, and the assignment of the
ouplings �, �, and g generally breaks Lorentz symmetry and may also break parity invariance.
oreover, the operators J± are nonlocal, since they involve the total energy present in a given
ode of the electromagnetic field, and it is not possible to express this sort of interaction conve-

iently in terms of the ordinary electromagnetic field operators A� and F�	. However, if we are
illing to allow these modifications to the structure of the theory, the interaction is �in the absence
f charges� exactly solvable. Since there is current interest in exotic modifications of QED, this
ype of interaction may be worthy of further investigation.

We must also say a word about the gauge invariance of this QED modification. The J�A ·J�B

nteraction is formulated in terms of creation and annihilation operators �i.e., in the canonical
uantization formalism�, and so any discussion of gauge invariance will necessarily be compli-
ated by the difficulties that are associated with the canonical quantization of gauge fields. How-
ver, at low energies, the interactions we have introduced are clearly consistent with gauge in-
ariance in the following sense. If we specialize to the Coulomb gauge and quantize the transverse
odes of the theory, then the low-energy interaction may be introduced without difficulty. It does

ot affect the number of polarization states �and is, in fact, strongly dependent upon this number�,
o it does not spoil gauge invariance in this fashion. However, it is possible that it may damage
auge invariance at higher energies or when interactions with matter are considered.

Although the interactions we are considering cannot be expressed simply in terms of the
tandard electromagnetic field operators, the ultra-low-energy limit of our theory could well be
xpressible in such a form. We shall shortly show that this is indeed the case for a particular class
f models. The embedding of a ultra-low-energy Lorentz-violating effective field theory within the
ramework of our fundamental theory is attractive for several reasons. First, the interactions we
ave considered have eigenenergies that are exactly known. Second, although Lorentz-violating
heories may exhibit stability problems, our theory does not; the i2 term in �8� ensures this. This

xample shows that there can exist stable nonlocal interactions which have local, Lorentz-
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iolating Lagrangian theories as their ultra-low-energy limits. Third, such an embedding demon-
trates the intriguing possibility that our conventional basis of polarization states may be inad-
quate for the description of the full Hilbert space of a more fundamental theory.

We shall therefore examine the ultra-low-energy behavior of our QED modification, to see to
hat sort of effective theory it may correspond. Since the energy-level differences depend only on
+�, we shall set �=�. We take � to be a very large number, large in comparison with any

elevant photon occupation number. �This is what we mean by “ultra-low-energy.”� We may then
eglect a†a compared to � in �3� and �4�. It immediately follows that the energy eigenstates are
pproximately given by

�i,n� �
�aA

† − aB
†�i�aA

† + aB
†�n

�2i+n�i!��n!�
�0,0� . �10�

eviations from this expression are suppressed by a factor of O��−1/2�. The corresponding ener-
ies, in the same approximation, are

Ei,n � �n + i�� + 2�gi , �11�

here we have dropped the zero-point energy.
These results imply that the polarization modes corresponding to a+

† ��1/�2��aA
† +aB

†� and

−
† ��1/�2��aA

† −aB
†� have different frequencies. The two frequencies are shifted from their mean

alue by ±
� /2� ±g�, and the effective Hamiltonian is

Heff = �� + 2�g�a−
†a− + �a+

†a+. �12�

his same effective Hamiltonian arises naturally in the context of a CPT-even, Lorentz-violating
odification of the photon sector. For a theory with Lagrange density

L = − 1
4F�	F�	 − 1

4k���	F��F�	 �13�

where k���	 has the symmetries of a Riemann tensor and is double traceless�, the expressions for
he photon modes’ frequencies are �to leading order in k���	�6,7,11

�± = �1 +  ± ���p� � . �14�

ere, p� is the photons’ 3-momentum, =− 1
2 k̃�

�, and �2= 1
2 k̃��k̃��−2, with k̃��=k���	p̂�p̂	 and

p̂�= �1, p� / �p� ��. The approximate frequencies given by �14� and �12� correspond if =�=g�. So
ny theory with =��0 for all p� will reproduce the entire low-energy behavior of our modified
heory. Theories with this property indeed exist; for example, if k���	 has the form

k���	 = �v�u� − v�u���v�u	 − v	u�� − 1
6 �v2u2 − �v · u�2��g��g�	 − g��g�	� + �� ↔ �� , �15�

hen =�=−w2, where w�=v��u · p̂�−u��v · p̂�. If v�= �V ,0�� and u�= �0,u��, with �u� �=1, then 
V2 sin2 �, where � is the angle between u� and p� . This particular model is parity-preserving, with

hree independent parameters.
Moreover, any theory with nonvanishing � will demonstrate a splitting between polarization

odes, as would arise in our su�2�-modified QED. There is therefore a large theoretical parameter
pace in which the theory given by �13� can be embedded in a su�2� coupling model.

These embeddings all require that, for a fixed direction p̂, the coupling g� must be propor-
ional to �p� �. It would seem most natural for �, which represents the number of photons that must
e present in a mode of the electromagnetic field in order for the failure of the polarization state
asis to be apparent, to remain large for all values of �p� �. We therefore speculate that � may be a
p� �-independent �or p�-independent� constant, while g scales with the magnitude of p� .

Based upon astrophysical experiments, the physical value of � is strongly constrained, to parts
31 21,22
n 10 or better. This represents an even stronger constraint on the su�2� model, because � is
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ecessarily very large. It follows that g=� /� is correspondingly smaller. Our modification of QED
s thus physically reasonable only in a very, very small region of parameter space.

However, the formalism we have developed could be useful for developing an effective model
n any situation in which there is a frequency splitting between polarization modes. For example,
hen the quantum corrections due to virtual electron exchange are considered, the effective
agrange density for the electromagnetic field acquires nonlinear terms and becomes23,24

L =
1

2
�E� 2 − B� 2� +

e4

360�2m4 ��E� 2 − B� 2� + 7�E� · B� �2� . �16�

n the presence of a large background magnetic field B� 0, the speed of light propagation will

ecome dependent on the polarization vector. Specifically, if we write the magnetic field as B�

B� 0+b� and keep only the relevant nonlinear terms with two powers of B� 0, then L becomes

L �
1

2
�E� 2 − b�2� +

e4B� 0
2

360�2m4 ��7 cos2 �E − 2�E� 2 + �4 cos2 �b + 2�b�2� , �17�

here �E and �b are the angles that B� 0 forms with E� and b� , respectively. Waves polarized in the

lane formed by the wave vector and B� 0 and those polarized normal to this plane propagate at
ifferent speeds. For a given direction, specified by �E and �b, the wave speed is

c = � 1 −
e4B� 0

2

180�2m4 �4 cos2 �b + 2�

1 +
e4B� 0

2

180�2m4 �7 cos2 �E − 2��
1/2

. �18�

ultiplying this by �p� � gives the frequency, which can be inserted into the formalism we have
eveloped.

. CONCLUSIONS

In summary, we have studied an application of the Holstein-Primakoff realization of the
imple harmonic oscillator operator algebra. This has involved the introduction of a set of raising
nd lowering operators that obey the angular momentum commutation relations. The properties of
hese operators allow us to solve exactly for the low-energy behavior of a theory with a particular
onlinear interaction. The high-energy extension of this model may involve either a non-self-
djoint Hamiltonian or a new basis of states.

This model has an interesting application in Lorentz-violating physics, where stability is
ypically a problem. The ultra-low-energy limit of the interaction we have considered resembles
he effect of a small Lorentz-violating correction to free QED. At higher energies, the nonlocality
f the special harmonic oscillator interactions we are considering can stabilize the Lorentz-
iolating theory. Physically, these kinds of effects are extremely strongly constrained by astro-
omical observations. However, this theory provides a useful insight into how nonlocality and
orentz violation may combine to form a well-behaved theory.
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The Holevo bound is a bound on the mutual information for a given quantum
encoding. In 1996 Schumacher, Westmoreland, and Wootters �Phys. Rev. Lett. 76,
3452 �1996�� derived a bound that reduces to the Holevo bound for complete
measurements, but that is tighter for incomplete measurements. The most general
quantum operations may be both incomplete and inefficient. Here we show that the
bound derived by SWW can be further extended to obtain one that is yet again
tighter for inefficient measurements. This allows us, in addition, to obtain a gener-
alization of a bound derived by Hall, and to show that the average reduction in the
von Neumann entropy during a quantum operation is concave in the initial state, for
all quantum operations. This is a quantum version of the concavity of the mutual
information. We also show that both this average entropy reduction and
the mutual information for pure state ensembles, are Schur concave for unitarily
covariant measurements; that is, for these measurements, information gain
increases with initial uncertainty. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2158433�

. INTRODUCTION

The celebrated Holevo bound, conjectured by Gordon1 and Levitin2 and proved by Holevo in
9733 gives a bound on the information that may be transmitted from A to B �strictly, the mutual
nformation, M, between A and B� when A encodes information in a quantum system using a set
f states ��i�, chosen with probabilities �P�i��, and B makes a subsequent measurement upon the
ystem. The Holevo bound is

M�I:J� � � � S��� − �
i

P�i�S��i� , �1�

here �=�iP�i��i �and which we will refer to as the ensemble state�. We write the mutual
nformation as M�I :J� to signify that it is the mutual information between the random variables I
nd J, whose values i and j label, respectively, the encoding used by A, and the outcome of the
easurement made by B. More recent proofs of the Holevo bound may be found in Refs. 4–6. The

ound is achieved if and only if the encoding states, �i, commute with each other, and the receiver,
, makes a von Neumann measurement in the basis in which they are diagonal. �A von Neumann
easurement is one that projects the system onto one of a complete set of mutually orthogonal

tates. In this case the set of states is chosen to be the basis in which the coding states are
iagonal.� With this choice of coding states and measurement the channel is classical, in that it can
e implemented with a classical system. The Holevo bound takes into account that the sender may
nly be able to send mixed states, and this mixing reduces the amount of information that can be
ransmitted. However, if the receiver is not able to perform measurements that always project the
ystem to a pure state �so-called complete measurements�, then, in general, the information will be

urther reduced. In 1996 Schumacher, Westmoreland, and Wootters showed that when the receiv-

47, 012102-1022-2488/2006/47�1�/012102/10/$23.00 © 2006 American Institute of Physics
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r’s measurement is incomplete, it is possible to take this into account and derive a more stringent
ound on the information. If the receiver’s measurement is the POVM described by the operators
Aj� �with � jAj

†Aj =1�, so that the measurement outcomes are labeled by the indexj, then the SWW
ound is6

M�I:J� � � − �
j

P�j�� j , �2�

here P�j� is the probability of outcome j,7 and � j is the Holevo quantity for the ensemble that the
ystem remains in �from the point of view of the receiver�, given outcome j. This bound can be at
east partially understood by noting that if the system still remains in some ensemble of possible
tates after the measurement, then future measurements can potentially extract further information
bout the encoding, and so the information obtained by the first measurement must therefore be
ess than the maximum possible at least by this amount. What the SWW bound tells us is that the
ound on the information is reduced not only by the amount of information that could be further
xtracted after outcome j has been obtained, but by the Holevo bound on this information, � j.

If the initial state of the system is �i, then after outcome j the final state of the system is given
y �̃ j	i=Aj�iAj

† /Tr�Aj
†Aj�i�. Thus the states that make up the final ensemble that remains after

utcome j, are ��̃ j	i�, and the probability of each state in the ensemble is P�i 	 j�= P�j 	 i�P�i� / P�j�,
ith P�j 	 i�=Tr�Aj

†Aj�i�. The Holevo quantity for ensemble j is thus

� j = S��̃ j� − �
i

P�i	j�S��̃ j	i� , �3�

here �̃ j =Aj�Aj
† /Tr�Aj

†Aj��. If at least one of the measurement operators Aj are higher than rank
, then the measurement is incomplete. If the measurement is complete, then for each j all the final
tates �̃ j	i are identical, � j is zero and the SWW bound reduces to the Holevo bound.

The most general kind of measurement can also be inefficient. A measurement is described as
nefficient if the observer does not have full information regarding which of the outcomes actually
ccurred. The name inefficient comes from that fact that the need to consider such measurements
rst arose in the study of inefficient photo-detectors.8 An inefficient measurement may be de-
cribed by labeling the measurement operators with two indices, so that we have Akj. The receiver
as complete information about one of the indices, j, but no information about the other, k.9 As a
esult, the final state for each j �given the value of i� is now

� j	i� = �
k

P�k	j�
Akj�iAkj

†

Tr�Akj
† Akj�i�

. �4�

ince inefficiency represents a loss of information, we wish to ask whether it is possible to take
his into account and obtain a more stringent bound on the mutual information. If we merely apply
he SWW bound to the measurement Akj, then the bound involves the Holevo quantities of the
nsembles that remain when both the values of k and j are known �the final ensembles that result
rom the efficient measurement�. That is

M�I:J� � � − �
kj

P�k, j��kj . �5�

ne therefore wishes to know whether it is possible to derive a bound that instead involves the
olevo quantities of the ensembles that remain after the inefficient measurement is made, that is,

or the receiver who only has access to j.
In the first part of this paper we answer this question in the affirmative—for an inefficient

easurement where the known outcomes are labeled by j, the bound given by Eq. �2� remains
rue, where now the � j are the Holevo quantities for the ensemble of states � j	i� that result from the

nefficient measurement.
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In the second part of the paper, we consider the average reduction in the von Neumann
ntropy induced by a measurement:


�S���� � S��� − �
i

P�j�S�� j�� . �6�

Here � j� is the state that results from outcome j, given that the initial state is �. Since the von
eumann entropy is a measure of how much we know about the state of the system, this is the
ifference between what we knew about the system state before we made the measurement, and
hat we know �on average� about the system state at the end of the measurement; it thus measures
ow much we learn about the final state of the system. Equivalently, it can be said to measure the
egree of “state-reduction” that the measurement induces.

While it is the mutual information that is important for communication, the reduction in the
on Neumann entropy is important for feedback control. Feedback control is the process of
erforming a sequence of measurements on a system, and applying unitary operations after each
easurement in order control the evolution of the system. Such a procedure is useful for control-

ing systems that are driven by noise. If the ability to perform unitary operations is unlimited, then
he von Neumann entropy provides a measure of the level of control that can be achieved: if the
ystem has maximal entropy then the unitary operations have no effect on the system state what-
oever; conversely, if the state is pure then the system can be controlled precisely - that is, any
ure state can be prepared. Thus the entropy measures the extent to which a pure state, or pure
volution can be obtained, and thus the level of predictability which can be achieved over the
uture behavior of the system.10 The primary role of measurement in feedback control is therefore
o reduce the entropy of the system. As such, the average reduction in von Neumann entropy
rovides a ranking of the effectiveness of different measurements for feedback control, other
hings being equal. Further details regarding quantum feedback control and von Neumann entropy
an be found in Ref. 11.

The entropy reduction is also relevant to the transformation of pure-state entanglement, since
he von Neumann entropy measures the entanglement of pure states. As a result this quantity gives
he amount by which pure-state entanglement is broken by a local measurement.

We give two corollaries of the general information bound derived in the first part that involve
�S����. The first is a generalization of a bound derived by Hall12,13 to inefficient measurements.
all’s bound states that for efficient measurements the mutual information is bounded by 
�S����.
e show that for inefficient measurements this becomes

M�I:J� � 
�S���� − �
i

P�i�
�S��i�� , �7�

here 
�S��i�� is the average entropy reduction that would have resulted if the initial state had
een �i, and as above �=�iP�i��i.

The second is the fundamental property that, for all quantum operations, the average reduction
n von Neumann entropy is concave in the initial state �. That is,


�S���� � �
i

P�i�
�S��i�� . �8�

Finally, in the third part of this paper, we use the above result to show that for measurements
hat are uniform in their sensitivity across state space �that is, measurements that are unitarily
ovariant�, the amount that one learns about the final state always increases with the initial
ncertainty, where this uncertainty is characterized by majorization. This is a quantum version of
he much simpler classical result �which we also show� that the mutual information always in-
reases with the initial uncertainty for classical measurements that are permutation symmetric. In
ddition, we show that, for unitarily covariant measurements, the mutual information for pure-

tate ensembles also has this property. One can sum up these results by saying that the statement
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hat information gain increases with initial uncertainty can fail to hold only if the measurement is
symmetric in its sensitivity.

I. AN INFORMATION BOUND FOR GENERAL QUANTUM OPERATIONS

We now show that the bound proved by SWW can be generalized to obtain a more stringent
ound for channels in which the receiver’s measurement is inefficient. To show this, it turns out
hat we can use the same method employed by SWW, but with the addition of an extra quantum
ystem, which allows us to include the inefficiency of the measurement.

Theorem 1: For a quantum channel in which the encoding ensemble is �= �P�i� ,�i�, and the
easurement performed by the receiver is described by operators Akj ��kjAkj

† Akj =1�, where the
easurement is, in general, inefficient so that the receiver knows j but not k; then the mutual

nformation, M�I :J�, is bounded such that

M�I:J� � � − �
j

P�j�� j , �9�

here P�j� is the overall probability for outcome j, �=S���−�iP�i�S��i� is the Holevo quantity for
he initial ensemble, and

� j = S�� j� − � P�i	j�S�� j	i� , �10�

s the Holevo quantity for the ensemble, � j, that remains (from the point of view of the receiver)
nce the measurement has been made, so that the receiver has learned the outcome j, but not the
alue of k. Here the receiver’s overall final state is

� j =
�k

Akj�Akj
†

P�j�
= �

ik

P�i,k	j��kj	i, �11�

here P�i ,k 	 j� is the probability for both i and outcome k given j, and �kj	i is the final state that
esults given the initial state �i, and both outcomes j and k. The remaining ensemble � j

�P�i 	 j� ,� j	i�, where

� j	i = �
k

P�k	j,i��kj	i =
�k

Akj�iAkj
†

P�j	i�
, �12�

nd where P�k 	 j , i� is the probability for outcome k given j and the initial state �i.
Proof: We begin by collecting various key facts. The first is that any efficient measurement on

system Q, described by N=N1N2 operators, Akj �j=1, . . . ,N1 and k=1, . . . ,N2� can be obtained
y bringing up an auxiliary system A of dimension N, performing a unitary operation involving Q
nd A, and then making a von Neumann measurement on A.14,15 If the initial state of Q is ��Q�,
hen the final joint state of A and Q after the von Neumann measurement is

��AQ� = 	kj�
kj	�A�
�

Akj�
�Q�Akj

†

P�k, j�
. �13�

here 	kj� is the state of A selected by the von Neumann measurement. The second fact is that the
tate that results from discarding all information about the measurement outcomes k and j can be
btained by performing a unitary operation between A and another system E that perfectly corre-
ates the states 	kj� of A with orthogonal states of E, and then tracing out E. The final key fact we
equire is a result proven by SWW,6 which is that the Holevo � quantity is nonincreasing under
artial trace. That is, if we have two quantum systems A and B, and an ensemble of states �i

�AB�
ith associated probabilities Pi, then
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��A� = S���A�� − �
i

S��i
�A�� � S���AB�� − �

i

S��i
�AB�� = ��AB�, �14�

here �i
�A�=TrB��i

�AB��. To prove this result SWW use strong subadditivity.16

We now encode information in system Q using the ensemble �, and consider the joint system
hat consists of the three systems Q, A, E and a forth system M, with dimension N1. We now start
ith A, E and M in pure states, so that the Holevo quantity for the joint system is ��QAEM�

��Q�. We then perform the required unitary operation between Q and A, and a unitary operation
etween A and E that perfectly correlates the states 	kj��A� of A with orthogonal states of E. Unitary
perations do not change the Holevo quantity. Then we trace over E, so that we are left with the
tate

	��
�	�M�
� �

jk

P�k, j�	k, j�
k, j	�A�
�

Akj�
�Q�Akj

†

P�k, j�
. �15�

fter the two unitaries and the partial trace over E, the Holevo quantity for the remaining systems,
hich we will denote by ���QAM�, satisfies ���QAM����QAEM�=��Q�. We now perform one more
nitary operation, this time between M and A, so that we correlate the states of M, which we
enote by 	j�
j	�M� with the second index of the states of A, giving

�
j

	j�
j	�M�
� �

k

P�k, j�	k, j�
k, j	�A�
� �kj

�Q� �16�

here �kj
�Q�=Akj�

�Q�Akj
† / P�k , j� is the final state resulting from knowing both outcomes k and j,

ith no knowledge of the initial choice of i. Finally we trace out A, leaving us with the state

��QM� = �
j

	j�
j	�M�
� �

k

P�k, j��kj
�Q�. �17�

fter this final unitary, and the partial trace over A, the Holevo quantity for the remaining systems
and M, which we will denote by ���QM�, satisfies ���QM�����QAM����Q�. We have gone through

he above process using the initial state �, but we could just as easily have started with any of the
nitial states, �i, in the ensemble, and we will denote the final states that we obtain using the initial
tate �i as �i

�QM�. Calculating ���QM�, we have

���QM� = S���QM�� − �
i

P�i�S��i
�QM�� = H�J� − �

i

P�i�H�J	i� + �
j

P�j��S�� j� − �
i

P�i	j�� j	i
�18�

=M�J:I� + �
j

P�j�� j
�Q� � ��Q�. �19�

earranging this expression gives the desired result. �

II. PROPERTIES OF ENTROPY REDUCTION

We now rewrite the above information bound using the fact that P�i 	 j�P�j�= P�j 	 i�P�i�. The
esult is

M�I:J� � 
�S���� − �
i

P�i�
�S��i�� , �20�

here �=�iPi�i. Ozawa has shown that for efficient measurements 
�S���� is always positive17

for more recent proofs of this result see Refs. 18 and 19�. For efficient measurements, Eq. �20� is
herefore in general stronger than, and gives immediately, Hall’s bound,12,13 which states that the
utual information is bounded by the reduction in the von Neumann entropy. The inequality in
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q. �20� is then a generalization of Hall’s bound to inefficient measurements. Since the mutual
nformation is always positive, but for inefficient measurements the reduction in the von Neumann
ntropy can be negative �that is, the entropy of the quantum state can increase as a result of the
easurement�, the relation

M�I:J� � 
�S���� �21�

s not necessarily satisfied for such measurements. However, Eq. �20� tells us that if the entropy of
he initial state, �, does increase, the average increase in the entropy for each of the coding states

i is always more than this by at least the mutual information.
The second result that we obtain from Eq. �20� is that, because the mutual information is

on-negative, we have


�S���� � �
i

P�i�
�S��i�� . �22�

hat is, the reduction in the von Neumann entropy is concave in the initial state. This parallels the
act that the mutual information is also concave in the initial state.

The fact that this is true for inefficient measurements means that once we have made an
fficient measurement, no matter what information we throw away regarding the final outcomes
i.e., which outcomes we average over�, 
�S���� is always greater than the average of the entropy
eductions that would have been obtained through measurement in each of the coding states, when
e throw away the same information regarding the measurement results.

V. INFORMATION GATHERING AND STATE-SPACE SYMMETRY

In this section we show that measurements whose ability to extract information is uniform
ver the available state space �that is, does not vary from point to point in the state-space� always
xtract more information �strictly, never extract less information� the less that is known before the
easurement is made. Thus, in this sense, one may regard “the more you know, the less you get”

s a fundamental property of measurement. We will show that this is true both for the information
btained regarding the final state �being 
�S�����, and the mutual information for a measurement
n an ensemble of pure states. Here we will consider efficient measurements only; no doubt
nefficient measurements will also have this property, but only if the information that is thrown
way is also uniform with respect to the state space, and we do not wish to burden the treatment
ith this additional complication.

To proceed, we must make precise the notion that the sensitivity of a measurement is uniform
ver state space. This is captured by stating that such a measurement should be invariant under
eversible transformations of the state space. For classical measurements �which are simply quan-
um measurements in which all operators and density matrices commute20� this means that the set
f measurement operators is invariant under all permutations of the classical states: we will refer
o these as completely symmetric measurements. Note that in this classical case, this is equivalent
o saying that the measurement distinguishes all states from all other states equally well. The
uantum generalization of this is invariance under all unitary transformations. Such measurements
re referred to as being unitarily covariant.21,22

We must also quantify what we mean by the observer’s lack of knowledge, or uncertainty,
efore the measurement is made. This is captured by the simple and elegant concept of
ajorization.23,24 If two sets of probabilities p��Pi� and q��Qi� satisfy the set of relations

�
i=1

k

Pi � �
i=1

k

Qi, ∀ k , �23�

here it is understood that the elements of both sets have been placed in decreasing order �e.g.,
Pi	 Pi+1 , ∀ i�, then p is said to majorize q, and this is written q� p. While at first Eq. �23� looks
little complicated, a few moments consideration reveals that it captures precisely what one
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eans by uncertainty—if p majorizes q, then p is more sharply peaked than q, and consequently
escribes a state of knowledge containing less uncertainty. What is more, majorization implies an
rdering with Shannon entropy H�·�. That is, if p majorizes q, then H�p��H�q�.23,24

In a sense, majorization is a more basic notion of uncertainty than entropy in that it captures
hat concept alone—the Shannon entropy, on the other hand, characterizes the more specific notion
f information. To characterize the uncertainty of a density matrix, we can apply majorization to
he vector consisting of its eigenvalues. If � and � are density matrices, then we will write �

� if �’s eigenvalues majorize �’s. Various applications have been found for majorization in
uantum information theory.18,19,25–28

We thus desire to show that for measurements with the specified symmetry, 
�S����

�S���� whenever ��� �and similarly for the mutual information�. Functions with this property

of which the von Neumann entropy, S���, is one example� are referred to as being Schur concave.
o show that a function is Schur concave, it is sufficient to show that it is concave, and symmetric

n its arguments,23,24 which in our case are the eigenvalues of the density matrix � �if our functions
id not depend only on the eigenvalues of �, then they could not be Schur concave, since the
ajorization condition only involves these eigenvalues�.

The desired result for classical completely symmetric measurements is now immediate. In the
lassical case the mutual information is the unique measure of information gain, and M�I :J�

�S����. The mutual information is concave in the initial classical probability vector P
�P1 , . . . , Pn� �being the vector of the eigenvalues of � in our quantum formalism�, as is indeed

mplied by the concavity of 
�S����. Since all operators commute with the density matrix, 
�S����
s only a function of the �Pi�. From the form of 
�S���� we see that a permutation of the elements
f P is equivalent to a permutation applied to the measurement operators, and since these are
nvariant under such an operation, 
�S����, and thus M�I :J�, is a symmetric function of its
rguments. Thus M�I :J� is Schur concave.

The Schur concavity of 
�S���� for unitarily covariant �UC� quantum measurements is just as
mmediate. Because of the unitary covariance of the measurement, we see from the form of
�S���� that it is invariant under a unitary transformation of �. As a result, it only depends upon
he eigenvalues of �. Since the permutations are a subgroup of the unitaries, it is also a symmetric
unction of its arguments �the eigenvalues�, and thus Schur concave.

We wish finally to show that the mutual information is also Schur concave in � for unitarily
ovariant measurements on ensembles of pure states. This requires a little more work. First, we
eed to show that once we have fixed a set of encoding states, the mutual information is concave
n the vector of the ensemble probabilities P�i�. This is straightforward if we first note that the

utual information, because it is, in fact, symmetric between i and j, can be written in the reverse
orm

M�I:J� = H�P�j�� − �
j

P�i�H�P�j	i�� . �24�

ince, for a fixed measurement, the mutual information is a function of the ensemble probabilities,
e will write it as M��P�i���. Denoting the pure states in the encoding ensemble as �i= 	�i�
�i	,

nd choosing the ensemble state �=�kPk�k, where the �k are built from the encoding states so that

k=�iPi	k 	�i�
�i	, then

M��P�i���=H��
k

P�k�P�j	k� − �
i

�
k

P�i	k�P�k�H�P�j	i��

��
k

P�k�H�P�j	k�� − �
k

P�k��
i

P�i	k�H�P�j	i��

=�
k

P�k�M��P�i	k��� , �25�
eing the desired concavity relation. The inequality in the third line is merely a result of the
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oncavity of the Shannon entropy. Note that while we have written the measurement’s outcomes
xplicitly as being discrete in the about derivation, the result also follows if they are a continuum
as in the case of UC measurements� by replacing the relevant sums with integrals.

Now we need to note some further points about UC measurements: A UC measurement may
e generated by taking all unitary transformations of any single operator A, and dividing them by
common normalization factor. The resulting measurement operators are thus AU
UAU†, where

ranges over all unitaries. The normalization for the AU comes from �UA†AU†d��U�
Tr�A†A�I, where d��U� is the �unitarily invariant� Haar measure22,29 over unitaries.

It is not hard to show that all UC measurements can be obtained by mixing different UC
easurements, each generated by a different operator. �Mixing a set of measurements means

ssigning to each a probability, and then making one measurement from the set at random based
n these probabilities30�.

Next, we need to show that for all UC measurements the mutual information depends only on
he eigenvalues of the ensemble density matrix, and we state this as the following lemma.

Lemma 1: The mutual information for a UC measurement on a pure-state ensemble, �
�P�i� , 	�i�� depends on the ensemble only through the eigenvalues of the density matrix �
�iP�i� 	�i�
�i	.

Proof: We first show this for UC measurements generated from a single operator. Writing the
utual information in the reverse form, one has

M�I:J� = H�P�U�� − �
i

PiH�P�U	i�� , �26�

here U is the continuum index for the measurement operators �and thus the measurement out-
omes� that are AU=UAU† for some appropriately normalized A. Naturally all this means is that

P�U 	 i� is a function of U, where U ranges over all unitaries. Since the measurement is unitarily
ovariant, H�P�U 	 i�� is the same for all initial states 	�i�, and therefore the second term is the
ame for all initial ensembles. Thus M depends only on the first term H�P�U��
H�Tr�UA†AU†���, which depends only on �, and is invariant under all unitary transformations of
. Thus M depends only on the eigenvalues of �. Since the mutual information for a mixture of
easurements is merely a function of the respective mutual informations for each measurement

in particular, it is a linear combination of them�, the result holds for all UC measurements. �

Since M depends only on �, in establishing the Schur concavity of M with respect to �, we
eed only consider one ensemble for each �. We therefore choose the eigenensemble ��i , 	i��,
here �i and 	i� are the eigenvalues and eigenvectors of �, respectively. We know that the mutual

nformation is concave in the vector of initial ensemble probabilities, and for the ensemble we
ave chosen, the initial probabilities are the eigenvalues of �. As a result, the mutual information
s concave in the eigenvalues of �. Since M is invariant under unitary transformations, and since
nitary transformations include permutations as a subgroup, it is also a symmetric function of the
igenvalues. Thus M is Schur concave.

. CONCLUSION

In using a quantum channel, if there are limitations on the completeness �or alternatively the
trength, in the terminology of Ref. 19� or efficiency of the measurements that the receiver can
erform, then it is possible to give a bound on the mutual information that is stronger than the
olevo bound. Further, this bound has a very simple form in terms of the Holevo � quantity, and

he � quantities of the ensembles, one of which remains after the measurement is made.
This bound also allows us to obtain a relationship between the mutual information and the

verage von Neumann entropy reduction induced by a measurement, and encompasses the fact
hat this von Neumann entropy reduction is concave in the initial state.

From the concavity of the mutual information and the von Neumann entropy reduction, it
ollows that these quantities are Schur concave �the former naturally for pure-state ensembles� for

ompletely symmetric classical measurements, and for unitarily covariant quantum measurements.
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hus, the possibility that either of these kinds of information gain decreases with increasing initial
ncertainty is associated with the asymmetry of the measurement in question.
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We construct entanglement monotones for multi-qubit states based on Plücker
coordinate equations of Grassmann variety, which are a central notion in geometric
invariant theory. As an illustrative example, we in detail investigate entanglement
monotones of a three-qubit state. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2162814�

. INTRODUCTION

The geometry of entanglement is a very interesting subject as much as quantification and
lassification of entanglement are.1–6 It is possible to derive geometrical measures of entanglement
nvariant under stochastic local quantum operation and classical communication �SLOCC�. All
omogeneous positive functions of pure states that are invariant under determinant-one SLOCC
perations are entanglement monotones.7 In this paper, we will derive entanglement monotones
ased on a branch of the algebraic geometry called geometric invariant theory. In particular, let G
e a group that acts on a set A, then the invariant theory is concerned with the study of the fixed
oints AG and the orbits A /G associated to this action. The geometric invariant theory deals with
he case where G is an algebraic group, e.g., a special linear group SL�r ,C�, that acts on a variety

via morphisms. Thus, based on the geometric invariant theory, we can construct a measure of
ntanglement that is invariant under action of SL�r ,C� by construction. It has a well-defined
eometrical structure called Grassmann variety or Grassmannian and it is generated by a quadratic
olynomials called the Plücker coordinate equations. We will discuss our construction in detail in
he following section. Recently, Lévay8 has constructed a class of multi-qubit entanglement mono-
ones, which was based on the construction of Emary.9 His construction based on bipartite parti-
ions of the Hilbert space and the invariants was expressed in terms of the Plücker coordinates of
he Grassmannian. However, we do have different approaches and construction to solve the prob-
em of quantifying multipartite states, but some of the results on entanglement monotones for

ulti-qubit states coincide. Now, let us start by denoting a general, pure, composite quantum
ystem with m subsystems Q=Qm

p �N1 ,N2 , . . . ,Nm�=Q1Q2¯Qm, consisting of the pure state
��=�k1=1

N1 �k2=1
N2

¯�km=1
Nm �k1,k2,. . .,km

�k1 ,k2 , . . . ,km� and corresponding to the Hilbert space HQ
HQ1

� HQ2
� ¯ � HQm

, where the dimension of the jth Hilbert space is given by Nj

dim�HQj
�. We are going to use this notation throughout this paper. In particular, we denote a

ure two-qubit state by Q2
p�2,2�. Next, let �Q denote a density operator acting on HQ. The density

perator �Q is said to be fully separable, which we will denote by �Q
sep, with respect to the Hilbert

pace decomposition, if it can be written as �Q
sep=�k=1

N pk� j=1
m �Qj

k , �k=1
N pk=1 for some positive

nteger N, where pk are positive real numbers and �Qj

k denotes a density operator on Hilbert space

Qj
. If �Q

p represents a pure state, then the quantum system is fully separable if �Q
p can be written

s �Q
sep= � j=1

m �Qj
, where �Qj

is the density operator on HQj
. If a state is not separable, then it is said

o be an entangled state.

�
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The general references for the complex projective space are Refs. 10 and 11. So, let
f1 , f2 , . . . , fq	 be continuous functions Kn→K, where K is the field of real R or complex numbers
. Then we define real �complex� space as the set of simultaneous zeroes of the functions

VK�f1, f2, . . . , fq� = ��z1,z2, . . . ,zn� � Kn:f i�z1,z2, . . . ,zn� = 0 ∀ 1 � i � q	 . �1�

hese real �complex� spaces become topological spaces by giving them the induced topology from
n. Now, if all f i are polynomial functions in coordinate functions, then the real �complex� space

s called a real �complex� affine variety. A complex projective space CPn is defined to be the set
f lines through the origin in Cn+1, that is, CPn= �Cn+1−0� /
, where 
 is an equivalence relation
efine by �x1 , . . . ,xn+1�
�y1 , . . . ,yn+1�⇔ ∃��C−0, such that �xi=yi∀0� i�n. For n=1 we
ave a one-dimensional complex manifold CP1, which is a very important one, since as a real
anifold it is homeomorphic to the two-sphere S2, e.g., the Bloch sphere. Moreover, every com-

lex compact manifold can be embedded in some CPn. In particular, we can embed a product of
wo projective spaces into the third one. Let �f1 , f2 , . . . , fq	 be a set of homogeneous polynomials
n the coordinates ��1 ,�2 , . . . ,�n+1	 of Cn+1. Then the projective variety is defined to be the subset

V�f1, f2, . . . , fq� = ���1, . . . ,�n+1� � CPn:f i��1, . . . ,�n+1� = 0 ∀ 1 � i � q	 . �2�

e can view the complex affine variety VC�f1 , f2 , . . . , fq��Cn+1 as a complex cone over the
rojective variety V�f1 , f2 , . . . , fq�. We can also view CPn as a quotient of the unit 2n+1 sphere in
n+1 under the action of U�1�=S1, that is CPn=S2n+1 /U�1�=S2n+1 /S1, since every line in Cn+1

ntersects the unit sphere in a circle.

I. GRASSMANN VARIETY

In this section, we will define the Grassmann variety. However, the standard reference on
eometric invariant theory is Ref. 12. Let Gr�r ,d� be the Grassmann variety of the
−1-dimensional linear projective subspaces of CPd−1. Now, we can embed Gr�r ,d� into

�∧r�Cd��=CPN, N= �dr �−1, by using the Plücker map L→∧r�L�, where the exterior product
r�Cd� for 1�r�d is a subspace of CN1 � ¯ � CNm, spanned by the antisymmetric tensors. The
lücker coordinates Pi1,i2,. . .,ir

,1� i1� ¯ � ir�d are the projective coordinates in this projective
pace. Next, let C���r ,d�� be a polynomial ring with the Plücker coordinatesPJ indexed by
lements of the set ��r ,d� of ordered r-tuples in �1,2 , . . .d	 as its variables. Then the image of the
ap � :C���r ,d��→Pol�Matr,d�, which assigns Pi1i2. . .ir

the bracket polynomial �i1 , i2 , . . . , ir� �the
racket function on the Matr,d, whose values on a given matrix is equal to the maximal minor
ormed by the columns from a set of �1,2 , . . . ,d	� is equal to the subring of the invariant of the
olynomials. Moreover, the kernel Ir,d of the map � is equal to the homogeneous ideal of the
rassmann in its Plücker embedding. Furthermore, the homogeneous ideal Ir,d defining Gr�r ,d� in

ts Plücker embedding is generated by the quadratic polynomials

PI,J = �
t=1

r+1

�− �tPi1,. . .,ir−1,jt
Pj1. . .jt−1jt+1,. . .,jr+1

, �3�

here I= �i1 . . . ir−1� ,1� i1� ¯ � ir−1� ji, and J= �j1 , . . . , jr+1� ,1� j1� ¯ � jr+1�d are two in-
reasing sequences of numbers from the set �1,2 , . . . ,d	. Note that the equations PI,J=0 define the
rassmannian Gr�r ,d� are called the Plücker coordinate equations. For example, for Gr�2,d� and
=2, we have

PI,J = �
t=1

4

�− �tPi1,jt
Pj1. . .jt−1jt+1,. . .,j3

= − Pi1,j1
Pj2,j3

+ Pi1,j2
Pj1,j3

− Pi1,j3
Pj1,j2

, �4�

here I= �i1�, and J= �j1 , j2 , j3�. Note that, by its construction, the Grassmannian Gr�2,d� is in-

ariant under SL�2,C�.
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II. PLÜCKER COORDINATES AND MULTIPARTITE ENTANGLEMENT

In this section, we will construct entanglement monotones based on Plücker coordinate equa-
ions of the Grassmannian. Let us consider a quantum system Qm

p �2,2 , . . . ,2� and let

EI,J�Matr,d
j � = �

t=1

r+2

�Pj
i1,. . .,ir−1,jtP̄i1,. . .,ir−1,jt

j + Pj
j1. . .jt−1jt+1,. . .,jr+1P̄j1. . .jt−1jt+1,. . .,jr+1

j � , �5�

here I= �i1 . . . ir−1� ,1� i1� ¯ � ir−1� ji, and J= �j1 , . . . , jr+1� ,1� j1� ¯ � jr+1�d are two in-
reasing sequences of numbers from the set �1,2 , . . . ,d	. For example, for Gr�2,d� and r=2, that
s invariant under SL�2,C�, we have

EI,J�Mat2,d
j � = �

t=1

4

�Pj
i1,jtP̄i1,jt

j + Pj
j1. . .jt−1jt+1,. . .,j3P̄j1. . .jt−1jt+1,. . .,j3

j � = Pj
i1,j1P̄i1,j1

j + Pj
j2,j3P̄j2,j3

j + Pj
i1,j2P̄i1,j2

j

+ Pj
j1,j3P̄j1,j3

j + Pj
i1,j3P̄i1,j3

j + Pj
j1,j2P̄j1,j2

j , �6�

here I= �i1�, and J= �j1 , j2 , j3�. Now, we can write the coefficient of a general multi-qubit state as
ollows:

Mat2,d
1 = ��1,1,. . .,1 �1,1,. . .,2 . . . �1,2,. . .,2

�2,1,. . .,1 �2,1,. . .,2 . . . �2,2,. . .,2
� ,

Mat2,d
2 = ��1,1,. . .,1 �1,1,. . .,2 . . . �2,1,. . .,2

�1,2,. . .,1 �1,2,. . .,2 . . . �2,2,. . .,2
� ,



Mat2,d
m = ��1,1,. . .,1 �1,1,. . .,1 . . . �2,2,. . .,1

�1,1,. . .,2 �1,1,. . .,2 . . . �2,2,. . .,2
� ,

�7�

here d=2m−1 and Mat2,d
j , which we get by permutation of j for 1� j�m. Moreover, we assume

hat the sequences I ,J denote the columns of the Mat2,d
j . Then we can define entanglement mono-

ones for the multi-qubit states by

E�Qm
p �2,2, . . . ,2�� = �N�

j=1

m

EI,J�Mat2,2m−1
j ��1/2

. �8�

s an example, let us consider the quantum system Q3
p�2,2 ,2�. For such three-qubit states, if e.g.,

he subsystem Q1 is unentangled with the Q2Q3 subsystems, then the separable set of this state is
enerated by the six 2-by-2 subdeterminants of

Mat2,4
1 = ��1,1,1 �1,1,2 �1,2,1 �1,2,2

�2,1,1 �2,1,2 �2,2,1 �2,2,2
� . �9�

at2,4
2 and Mat2,4

3 can be obtained in similar way. Then the partial entanglement monotones for
at2,4

1 is given by

EI,J�Mat2,d
1 � = P1

i1,j1P̄i1,j1
1 + P1

j2,j3P̄j2,j3
1 + P1

i1,j2P̄i1,j2
+ P1

j1,j3P̄j1,j3
1 + P1

i1,j3P̄i1,j3
1 + P1

j1,j2P̄j1,j2
1 ,

�10�

here the Plücker coordinates for Mat2,4
1 are given by

P1 = �1,1,1�2,1,2 − �1,1,2�2,1,1, P1 = �1,1,1�2,2,1 − �1,2,1�2,1,1,
1,2 1,3
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P1,4
1 = �1,1,1�2,2,2 − �1,2,2�2,1,1, P2,3

1 = �1,1,2�2,2,1 − �1,2,1�2,1,2,

P2,4
1 = �1,1,2�2,2,2 − �1,2,2�2,1,2, P3,4

1 = �1,2,1�2,2,2 − �1,2,2�2,2,1.

hus, entanglement monotones for three-qubit states are given by

E�Qm
p �2,2,2�� = �N�

j=1

3

EI,J�Mat2,4
j ��1/2

. �11�

oreover, for matrices Mat2,4
j , we have PI,J

j =−P1,2
j P3,4

j + P1,3
j P2,4

j − P1,4
j P2,3

j =0. For three-qubit
tates, this result coincides with construction of the Segre variety.6 However, multi-qubit states
eeds further investigation. Now, as an example, let us consider the state ��W�=�1,1,2 �1,1 ,2�
�1,2,1 �1,2 ,1�+�2,1,1 �2,1 ,1�. Then we have

C�Q3�2,2,2�� = �2N���1,2,1�2,1,1�2 + ��1,1,2�2,1,1�2 + ��1,1,2�1,2,1�2��1/2.

n particular, for �1,1,2=�1,2,1=�2,1,1=1/�3, we get C�Q3�2,2 ,2��= � 2
3N�1/2.

V. HYPERDETERMINANT AND PLÜCKER COORDINATE EQUATIONS

In this section, we will review some results of the construction of entanglement measure based
n the hyperdeterminant for three-qubit states and the relation between the Plücker coordinate
quations and the hyperdeterminant. We also discuss a generalization of this construction. The
yperdeterminant of the elements of CN1 � CN2 � ¯ � CNm was introduced by Gelfand, Kapranov,
nd Zelevinsky in Ref. 13. They proved that the dual variety of Segre product CPN1−1	CPN2−1

¯ 	CPNm−1 is a hypersurface if and only if Nj��i�jNi for j=1,2 , . . . ,m. Whenever the dual
ariety is a hypersurface its equation is called the hyperdeterminant of the format N1	N2	 ¯

Nm and denoted by Det. The hyperdeterminant is a homogeneous polynomial function over
N1 � CN2 � ¯ � CNm, so that the condition Det A�0 is meaningful for A�CPN1N2¯Nm−1. More-
ver, the hyperdeterminant Det is SL�N1 ,C�	SL�N2 ,C�� � ¯ � SL�Nm ,C�-invariant. For ex-
mple, for m=2 we have Det A=�1,1�2,2−�1,2�2,1 and for m=3, we have

Det A = �1,1,1
2 �2,2,2

2 + �1,1,2
2 �2,2,1

2 + �1,2,1
2 �2,1,2

2 + �2,1,1
2 �1,2,2

2

− 2��1,1,1�1,1,2�2,2,1�2,2,2 + �1,1,1�1,2,1�2,1,2�2,2,2 + �1,1,1�2,1,1�1,2,2�2,2,2

+ �1,1,2�1,2,1�2,1,2�2,2,1 + �1,1,2�2,1,1�1,2,2�2,2,1 + �1,2,1�2,1,1�1,2,2�2,1,2�

+ 4��1,1,1�2,2,1�2,1,2�1,2,2 + �2,2,2�2,1,1�1,2,1�1,1,2� . �12�

ow, let us introduce the Diophantine function. For any sequence of numbers 
1 ,
2 ,
3 ,
4, and

1 ,�2 ,�3 ,�4 we have

P�
1,
2,
3,
4,�1,�2,�3,�4� = �
1�1 + 
2�2 − 
3�3 − 
4�4�2 − 4�
1
2 + �3�4��
3
4 + �1�2� .

�13�

his equation is equal to the hyperdeterminant Det A. For the quantum system Q3
p�2,2 ,2� we

ave

Det A = P�− �1,1,1,�2,2,1,�2,1,2,�1,2,2,− �2,2,2,�1,1,2,�1,2,1,�2,1,1� . �14�

or the quantum system Q3
p�2,2 ,2 ,2�, one can wonder if it would be possible to find a generali-

ation of the polynomial P such that the hyperdeterminant Det A could be give by P. We can also
onstruct the hyperdeterminant in terms of the Plücker coordinates. For example, Lévay5 has
onstructed such Plücker coordinates for three-qubit states as follows. Let �p ,�q ,p ,q=1,2 ,3 ,4 be
wo-four component vectors defined as �1,k1,k2

= �1/�2��pp,k1,k2, and �2,k1,k2
= �1/�2��pp,k1,k2,

s 4
here  =−i�s ,s=1,2 ,3, and  = I2, where �p are Pauli matrices. Then the hyperdeterminant is
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iven by Det A=2Pp,qP
p,q, where the Plücker coordinates are given by Pp,q=�p�q−�q�p. Thus,

his construction can be at least extended into multi-qubit states following our definition of the
lücker coordinates for the multi-qubit states and further extending the definition of two 2m−1

omponents vectors �p ,�q ,p ,q=1,2 , . . . ,2m−1. For further progress in this direction see Ref. 8.

. CONCLUSION

In this paper, we have constructed entanglement monotones for multipartite states based on
he Grassmannian Gr�r ,d�, which was defined in terms of the Plücker coordinate equations. In
articular, we have given an explicit expression for entanglement monotones for multi-qubit
tates. Moreover, we have investigated entanglement monotones for three-qubit state as an illus-
rative example.
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nequivalent quantizations of the N=3 Calogero model
ith scale and mirror-S3 symmetry
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We study the inequivalent quantizations of the N=3 Calogero model by separation
of variables, in which the model decomposes into the angular and the radial parts.
Our inequivalent quantizations respect the “mirror-S3” invariance �which realizes
the symmetry under the cyclic permutations of the particles� and the scale invari-
ance in the limit of vanishing harmonic potential. We find a two-parameter family
of novel quantizations in the angular part and classify the eigenstates in terms of the
irreducible representations of the S3 group. The scale invariance restricts the quan-
tization in the radial part uniquely, except for the eigenstates coupled to the lowest
two angular levels for which two types of boundary conditions are allowed inde-
pendently from all upper levels. It is also found that the eigenvalues corresponding
to the singlet representations of the S3 are universal �parameter-independent� in the
family, whereas those corresponding to the doublets of the S3 are dependent on one
of the parameters. These properties are shown to be a consequence of the spectral
preserving SU�2� �or its subgroup U�1�� transformations allowed in the family of
inequivalent quantizations. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2162821�

. INTRODUCTION

The N-body Calogero model, which describes N particles interacting with each other by the
ombined inverse square and harmonic potential on a line, is exactly solvable and yet admits a
iversity of mathematical extensions and physical applications. For the mathematical side, Calog-
ro’s analysis1 for N=3 has been extended to general N2,3 as well as to models with modified
otentials4,5 and Lie-algebraic structures6 �see also Refs. 7–12, and references therein�. For the
hysical side, its relevance to high energy physics has been argued, albeit in specific circum-
tances, in various areas, e.g., in the Yang-Mills theory,13 two-dimensional QCD,14 superstrings,15

nd black holes.16 Moreover, its potential application has also been argued in condensed matter
hysics, e.g., for spin chains,17 quantum Hall effect,18 magnons,19 and the electron-hole
nteraction.20

In considering the application to particles with anyon statistics, Veigy21 made an important
bservation that, when the coupling constant of the interaction lies in a certain range, the Calogero
odel admits a wider class of solutions than those obtained by Calogero. Technically, the possi-

ility of the extension is found in the treatment of the singularities in the inverse square potential,
here a specific �the Dirichlet� boundary condition has conventionally been adopted, allowing for
nly bosons and fermions for the possible statistics of the particles. It is shown in Ref. 21 that, if
ne adopts a different boundary condition at the singularities in the angular part of the model,
hich arises after the separation of variables is implemented for the N=3 case, one indeed finds

xtra eigenstates that correspond neither to bosons nor fermions. More recently, it has also been
hown in Refs. 22–24 that the model admits novel solutions if we consider a general class of

�
Electronic mail: yonezawa@post.kek.jp
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oundary conditions for the radial part, even if the conventional boundary condition is adopted for
he angular part.

To explore a fuller class of solutions available in the Calogero model, which amounts to
xploring the possible inequivalent quantizations of the model, it is necessary to study the com-
ined extension in the boundary conditions both in the angular and radial parts in more general
erms, and this has been initiated in Ref. 25 for N=3. For the angular part, the class of boundary
onditions considered in Ref. 25 forms a two-parameter family �containing the cases treated by
alogero and Veigy earlier� and respects a dihedral D6 symmetry, which derives from the demand
f indistinguishability of the particles. We found that the model can still be solvable, but the
pectrum cannot be obtained explicitly except for a number of special cases such as the ones
onsidered earlier. The purpose of the present paper is to provide another class of solutions
llowed when we relax the demand from the D6 symmetry to its subgroup S3 and impose instead
cale symmetry in the vanishing harmonic potential limit. In physical terms, the S3 symmetry is
quivalent to the invariance under cyclic permutations of the particles, while the additional scale
ymmetry ensures the smooth limit to the pure inverse square potential system at the quantum
evel. For the angular part, this leads to a novel two-parameter family of inequivalent quantiza-
ions, where the spectra can be obtained in closed form as well as the explicit solutions classified
ccording to the irreducible representations of the group S3. For the radial part, on the other hand,
he scale symmetry specifies the quantization essentially uniquely to one obtained under the
irichlet boundary condition, except for the eigenstates coupled to the lowest two angular levels

or which the Neumann boundary condition is permitted as well. This allows us to have a number
f possible combinations of boundary conditions for the angular and radial parts. We also observe
hat the levels which are singlets of S3 are universal, i.e., independent of the parameters of the
amily, whereas the doublets of S3 are dependent on one of the parameters. This will be seen as a
onsequence of the spectral preserving SU�2� �or its subgroup U�1�� transformations allowed in
he family of inequivalent quantizations of the model.

The plan of the paper is as follows. We recapitulate in Sec. II the procedure of inequivalent
uantizations of the N=3 Calogero model by separation of variables and present the symmetries
e impose. We give a detailed discussion on the eigenstates and eigenvalues in the angular part in
ec. III. These results are then combined with the counterparts of the radial part discussed in Sec.
V to provide the solutions and the spectra of the entire system. Section V is devoted to the
iscussion of the universality of the S3-singlets based on the spectral preserving su�2� algebra
ound earlier.26 Finally, our conclusion is presented in Sec. V.

I. THE N=3 CALOGERO MODEL

In the following we provide a framework for quantizing the N=3 Calogero model based on
he separation of variables method, in which we split the model into the radial and angular parts.
oncerning this, there are two important issues that require particular care, one of which is the

reatment of the singularity in the potential and the other is the choice of the symmetry we shall
dopt for our inequivalent quantizations.

. Separation of variables

The N body Calogero model2,3 is a system of N particles governed by the Hamiltonian,

H = −
�2

2m
�
i=1

N
�2

�xi
2 + �

j=1

N

�
i=j+1

N � g

�xi − xj�2 +
1

4
m�2�xi − xj�2� , �2.1�

here xi, i=1, . . . ,N represent the positions of the particles under interaction. As is well known,
he system can be analyzed by the method of separation of variables �see, e.g., Ref. 25�, which for

he N=3 case begins with the use of the Jacobi coordinates,
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x =
x1 − x2

�2
, y =

x1 + x2 − 2x3

�6
, z =

x1 + x2 + x3

�3
, �2.2�

nd passes on to the polar coordinates �x ,y�= �r sin � ,r cos ��. In the unit 2m=1, �=1, this
rocedure brings the Hamiltonian to the separable form,

H = −
�2

�r2 −
1

r

�

�r
−

�2

�z2 +
3

8
�2r2 +

1

r2�−
�2

��2 +
g

2

9

sin2 3�
� . �2.3�

It is also known that, if g�− 1
2 , the model does not admit a ground state,27 and if 3

2�g, the
amiltonian H is essentially self-adjoint and leads to a unique quantization. In the present paper,
e consider the cases − 1

2�g� 3
2 , g�0, where H admits self-adjoint extensions allowing for

nequivalent quantizations. Here, the two particular points g=0 and g=− 1
2 are excluded because

he model becomes a harmonic oscillator in the former case while it requires an independent
reatment technically in the latter case. For our later convenience, instead of g we use � introduced
s

g = 2��� − 1�, 1
2 � ��

3
2 , �� 1. �2.4�

On account of the separable form �2.3�, we have the Hamiltonian H=H0+Hrel with H0 de-
cribing the center of mass system and Hrel the relative motion. The latter splits further into Hrel

Hr+H�, where Hr and H� are the Hamiltonians for the radial and angular parts, respectively.
onsider now the angular eigenvalue equation,

H��	��� = 	�	���, H� = −
d2

d�2 +
9��� − 1�
sin2 3�

, �2.5�

ith eigenvalue 	. To each 	, we further consider the effective radial Hamiltonian Hr,	=Hr

	 /r2 and its eigenvalue equation,

Hr,	�E�r;	� = E�E�r;	�, Hr,	 = −
d2

dr2 −
1

r

d

dr
+

3

8
�2r2 +

	

r2 . �2.6�

he eigenfunction for the entire system �apart from that for the center-of-mass system in the z
irection� with total energy E is obtained as �E�r ;	��	��� from the solutions of Eqs. �2.5� and
2.6�.

. Singularities and formal symmetries

In our quantization, an important point to note is that both the angular Hamiltonian H� and the
adial Hamiltonian Hr,	 are ill-defined at the singular points of the potentials, i.e., at � for which
in 3�=0 and at r=0. Thus, to quantize the model properly and solve the eigenvalue equations,
e need to consider self-adjoint extensions to each of the operators, that is, we provide an

ppropriate domain of definition in such a way that the entire Hamiltonian H be self-adjoint. In
ractice, this is accomplished by furnishing a set of connection conditions for the eigenfunctions
t these singular points according to the general scheme for singular Hamiltonians �2.6� and �2.5�,
nd in what follows we adopt the scheme presented in Ref. 28.

We start with the angular Hamiltonian, and for this we first note the formal symmetry of the
perator H� in �2.5�. From the potential, it is clear that H� is invariant under the reflections,

P3:�� − �, R3:��



3
− � , �2.7�

nd also under four other reflections Pi, Ri, i=1,2, analogously defined �see Fig. 1�. It follows that

he Hamiltonian is invariant under the rotation by angle 
 /3,
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R
/3 = R3 � P3:�� � +



3
, �2.8�

nd hence under the successive ones �R
/3� j, j=0,1 ,2 ,3 ,4 ,5, as well. Combining all these re-
ections and rotations, we obtain a D6 group as the group of the formal symmetry of H�. On the
ngular wave function ����, the action of the operation g�D6 is realized by

ĝ���� = ��g−1�� . �2.9�

t should be stressed, however, that the symmetry D6 is still formal and the actual symmetry at the
uantum level should be determined by taking account of the connection condition at the singu-
arities.

In order to provide the connection condition at the singular points �=�k,

�k =
k


3
, k = 0,1,2,3,4,5, �2.10�

e first focus on the singularity at �=�0=0 and introduce the boundary vectors

B0��� ª 	W��,�1
0�0+

W��,�1
0�0−


, B0���� ª 	 W��,�2
0�0+

− W��,�2
0�0−


 , �2.11�

here W��1 ,�2��±=lim�→±0W��1 ,�2���+�� are the limiting values of the Wronskian,

W��1,�2� = �1
d�2

d�
− �2

d�1

d�
. �2.12�

he functions �i
0 �i=1,2� appearing in �2.11� are real eigenfunctions of H� around �=0, called

he “reference modes,” which are normalized with respect to the Wronskian, W��1
0 ,�2

0�=1. The
ost general form of the connection condition at �=0, which ensures the local continuity of the

robability current there, is then given by

�U0 − 12�B0��� + i�U0 + 12�B0���� = 0, �2.13�

here U0�U�2� is an arbitrary unitary matrix characterizing the connection condition �hence the
ingularity�, and 12 is the identity matrix. In components, the condition �2.13� consists of two
quations linear in � and its derivative d� /d� at the singularity. The use of the Wronskians is to
ender the equations well-defined, since the quantities � and d� /d� may be divergent at the

IG. 1. Axes of reflections Pi, Ri, i=1,2 ,3, on the plane �x ,y�. The numbers k=1, . . . ,6 indicate the sectors sk

��k−1 ,�k� defined along the circle.
ingularity.
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To provide the connection conditions at other singularities with k=1, . . . ,5 in �2.10� analo-
ously to the case k=0, we need to choose the reference modes �i

k �i=1,2� around each of the
ingularities �k. On account of the formal invariance of the Hamiltonian under D6, these reference
odes may simply be provided by the translations,

�i
k��� ª �i

0�� − �k�, k = 1, . . . ,5. �2.14�

ote that, if we choose the reference modes for k=0 possessing the parity property,

�i
0��� = �− 1�i�i

0�− �� , �2.15�

hen �2.14� implies

�i
k���� = �− 1�i�i

k�Rl�� , �2.16�

hich are fulfilled by the pair of reference modes at the two singular points �k and �k� mapped
nder the reflection Rl as

�k� = Rl�k. �2.17�

ith this choice of the reference modes, following �2.11� we introduce the boundary vectors

Bk��� ª 	W��,�1
k��k+

W��,�1
k��k−


, Bk���� ª 	 W��,�2
k��k+

− W��,�2
k��k−


 , �2.18�

or k=even, and

Bk��� ª 	W��,�1
k��k−

W��,�1
k��k+


, Bk���� ª 	− W��,�2
k��k−

W��,�2
k��k+


 , �2.19�

or k=odd. As in �2.13�, the connection conditions at �=�k for all k are provided by

�Uk − 12�Bk��� + i�Uk + 12�Bk���� = 0, �2.20�

ith matrices Uk�U�2� characterizing the singularities at �=�k. We mention that �2.16� implies
hat these boundary vectors are related as

Bk�Rl�� = Bk����, Bk��Rl�� = Bk�
� ��� , �2.21�

or the two singular points connected by �2.17�.
Now, turning to the radial part, we introduce from the radial Hamiltonian Hr,	 the new

perator

Hr,	ª
�r � Hr,	 �

1
�r

= −
d2

dr2 +
3

8
�2r2 +

	 − 1
4

r2 . �2.22�

ote that the self-adjointness of Hr,	 with respect to the measure dr implies the self-adjointness of

r,	 with respect to the radial measure r dr. It is known �see, e.g., Ref. 25� that for 	1 the
perator Hr,	 is essentially self-adjoint, while for 	�1 it admits a U�1� family of self-adjoint
xtensions. The family can be specified by the boundary condition for the radial wave function
�r�, which is given, using the Wronskian in the radial part, by

W��,�1�0+

W��,�2�0+
= − ��	� . �2.23�
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ere, �i�r� �i=1,2� are the reference modes for the radial part which are eigenfunctions of Hr,	

nd normalized as W��1 ,�2�=1. Note that the real number ��	� �which includes ��	�=�� char-
cterizes the singularity at r=0 and is dependent on the angular eigenvalue 	 in general.

. Mirror-S3 and scale invariant quantizations

In our scheme of quantization, we have the set of parameters in Uk, k=0, . . . ,5 and ��	�
hich specify the connection/boundary conditions and thereby the self-adjoint extensions of the
amiltonian. These conditions are subjected to the symmetry we wish to bestow with the quan-

ized model. For the symmetry of the model, one may assume, for instance, that the three particles
re identical physically. Since the three possible exchanges of the particles are generated by the
eflections, Pi �i=1,2 ,3�, which form an S3 group, the invariance under the reflections implies the
exchange-S3” group as the symmetry of the model. One may further assume that the pairwise
ollision be physically independent of the position of the remaining spectator particle. This leads
o the D6 symmetry mentioned in Sec. I, and the quantizations with this symmetry have been
resented in Ref. 25.

In this paper, we relax our demand and assume only the symmetry under the “mirror-S3”
roup, which is generated by the reflections, Ri �i=1,2 ,3�, consisting of the elements
e ,Ri , �R
/3�±2� with e being the identity. In physical terms, this demand ensures the invariance of
he model under all cyclic permutations of the particles; for example, if x1�x2�x3, the interaction
n the limit x2→x1 is identical to that in the limit x2→x3 when the spectator particle is fixed. In
ur scheme, this is equivalent to the requirement that all Uk be identical, i.e.,

Uk = U, k = 0,1,2,3,4,5, �2.24�

or some U�SU�2�. Indeed, when combined with �2.21�, the property �2.24� ensures that the
oundary conditions are compatible with all the reflections in the mirror-S3 group. Once the
irror-S3 is installed as a symmetry in the angular part, we can classify the eigenstates of the

perator H� in �2.5� in terms of the representations of the group S3, which has two one-
imensional and one two-dimensional irreducible representations �see Table I�.

Another property we wish to have comes from the observation that the Hamiltonian �2.3�
cquires a formal scale invariance in the limit �→0. Namely, we demand that this scale symmetry
e maintained in the limit in our inequivalent quantizations, so that our quantized model is
moothly connected to the model with a pure inverse square potential. Roughly speaking, the scale
ymmetry breaks down at the quantum level when we allow the parameters of self-adjoint exten-
ions to bear nontrivial scale dimensions �see Ref. 28�. For the mirror-S3 invariant quantizations
e are considering, a sufficient condition prohibiting such scale parameters is that

U = ± 12, or U = V�3V
−1, V � SU�2� , �2.25�

or the angular part specified by �2.24�, and that

��	� = 0, or ��	� = � for each 	 , �2.26�

or the radial part �2.23�. In the present paper, we shall restrict ourselves to the class of inequiva-

TABLE I. Character table of mirror-S3.

Conjugacy class �e� �Ri� ��R
/3�±2�

Identity rep �+ 1 1 1
Signature rep �− 1 −1 1
2-dim rep ��2� 2 0 −1
ent quantizations fulfilling �2.24�–�2.26�.
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II. ANGULAR PART

We now discuss inequivalent quantizations for the angular part in detail. Among the scale
nvariant choices �2.25� the cases U= ±12, which are parity invariant, have already been treated in
ef. 25 and will not be discussed here. To analyze the remaining cases U=V�3V

−1, we consider V
or which U� ±�3 and U= ±�3, separately. This separate treatment is required since for the latter
ase the angular part breaks into six sectors sk= ��k−1 ,�k�, k=1, . . . ,6, which are physically
isconnected at the singular points �see Fig. 1�. The treatment is based on a set of basic solutions,
hich are used to analyze both the connected and the separated cases later.

. Basic solutions

For convenience, we first set 	=9�2 allowing for complex � for 	�0. The two independent
olutions for �2.6� are given25 by

v1,���� = sin 3��F	� + �

2
,
� − �

2
,� +

1

2
;sin2 3�
 , �3.1�

v2,���� = sin 3�1−�F	1 − � − �

2
,
1 − � + �

2
,
3

2
− �;sin2 3�
 , �3.2�

here F�� ,� ,� ;z� is the standard hypergeometric function. For the reference modes needed in the
onnection condition at the singularity �=�0, we choose

�1
0��� =

1
�3�2� − 1�

v1,�0
�������� −��− ��� , �3.3�

�2
0��� = −

1
�3�2� − 1�

v2,�0
��� , �3.4�

ith some real �0, where ���� is the Heaviside step function. The reference modes for the
onnection condition at the singularity �=�k are provided according to �2.14�. We introduce the
horthand,

a1��� = v1,�	
6 − 0
 =
��� + 1

2��� 1
2�

�� �+�+1
2 ��� �−�+1

2 � , �3.5�

a2��� = v2,�	
6 − 0
 =
�� 3

2 − ���� 1
2�

��1 − �+�
2 ���1 − �−�

2 � , �3.6�

b1��� = v1,�� 	

6

− 0
 =
6��� + 1

2��� 1
2�

�� �+�2 ��� �−�2 � , �3.7�

b2��� = v2,�� 	

6

− 0
 =
6�� 3

2 − ���� 1
2�

�� 1−�−�
2 ��� 1−�+�

2 � . �3.8�

nd

� =
a1a2

3�2� − 1�
, � =

b1b2

3�2� − 1�
, � =

a1b2 + a2b1

3�2� − 1�
= −

cos 
�

cos 
�
, �3.9�
hich fulfill the relation
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�� = 1
4 ��2 − 1� . �3.10�

In terms of these, as a set of basic solutions in sector s1, we furnish the symmetric and
ntisymmetric eigenfunctions,

�+,�
1 ��� =�

b2���v1,���� − b1���v2,���� 	0���



6



b2���v1,�	
3 − �
 − b1���v2,�	
3 − �
 	

6
���




3



0 	2
� ��



3

 ,

�3.11�

�−,�
1 ��� =�

a2���v1,���� − a1���v2,���� 	0���



6



− a2���v1,�	
3 − �
 + a1���v2,�	
3 − �
 	

6
���




3



0 	2
� ��



3

 .

�3.12�

ikewise, we also introduce the basic solutions in sector sk from these by translation,

�±,�
k ��� = �±,�

1 �� − �k−1�, k = 2, . . . ,6. �3.13�

he general solution is then given by a linear combination of these basic solutions with appropri-
te coefficients c±

k ,

����� = �
k=1

6

�c+
k�+,�

k ��� + c−
k�−,�

k ���� . �3.14�

ut of these basic solutions each having their support in one sector, we also introduce a set of
olutions having supports on the sectors sk with k odd or even only:

�+ = �
n=1

3

�+,�
2n−1, �̃+ = �

n=1

3

�+,�
2n , �3.15�

�− = �
n=1

3

�− 1�n�−,�
2n−1, �̃− = �

n=1

3

�− 1�n�−,�
2n . �3.16�

. Connected case

To analyze the connected case

U = V�3V
−1, U � ± �3, �3.17�

e parametrize the characteristic matrix, using a real � and a complex �, as

U = 	 � �

�* − �

, �2 + �2 = 1. �3.18�
n terms of the vectors defined from the coefficients in the general solutions �3.14�,
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Ck = 	c+
k

c−
k 
 , �3.19�

e find that the connection conditions �2.20� become the matrix equations,

C2n = T+C2n−1, C2n+1 = T−C2n, �3.20�

ith the transfer matrices defined at the singularities between odd-even and even-odd sectors,

T+ =
1

�
	− � + � − 2�

− 2� � + �

, T− =

1

�*	� + � − 2�

− 2� − � + �

 , �3.21�

here �, �, and � are given in �3.9�. These relations lead to the consistency condition,

TC1 = C1, T ª T−T+T−T+T−T+. �3.22�

rom this we find det�T− I�=0, which implies

�2 = 1 or �2 =
1 + 3�2

4
. �3.23�

hese determine the spectrum � in the angular part.
To examine the case �2=1 in �3.23�, we note from �3.10� that the condition implies that either

1, a2, b1 or b2 must vanish. None of these are compatible with each other, and we consider them
eparately. First, we find that a1=0 occurs when

� = � + 1 + 2m, m = 0,1, . . . . �3.24�

e then have

T = � 1 0

12�

1 − �
1 � , �3.25�

nd from this we find the coefficient vectors Ck to obtain, up to a constant, the corresponding
igenfunctions

�̃−��� =
1 − �

�* �−��� + �̃−��� . �3.26�

hese eigenfunctions belong to the signature representation �− of S3. Second, a2=0 occurs when

� = 2m + 2 − �, m = 0,1, . . . �3.27�

nd the transfer matrix is

T = � 1 0

−
12�

1 + �
1 � . �3.28�

he eigenfunctions are found to be

�−��� = �−��� −
1 − �

�
�̃−��� , �3.29�

−
hich again belong to the signature representation � of S3. Third, b1=0 occurs when
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� = � + 2m, m = 0,1, . . . . �3.30�

e then have

T = �1
12�

1 + �

0 1
� , �3.31�

nd the eigenfunctions

�̃+��� = −
1 − �

�* �+��� + �̃+��� , �3.32�

hich belong to the identity representation �+ of S3. Finally, if b2=0, we find

� = 1 − � + 2m, m = 0,1, . . . �3.33�

nd

T = �1 −
12�

1 − �

0 1
� . �3.34�

e obtain the eigenfunctions

�+��� = �+��� +
1 − �

�
�̃+��� , �3.35�

elonging to the identity representation �+ of S3.
When the second condition �2= �1+3�2� /4 in �3.23� holds, on the other hand, we have T

12 and hence C1 is left undetermined. For definiteness we may choose C1 as an eigenvector of
he rotation R
/3

2 . The transfer matrix that corresponds to R
/3
2 is

T−T+ =� −
1

2
−

4��� + ��
1 − �2

−
4��� − ��

1 − �2 −
1

2
� , �3.36�

hich has the eigenvectors

X± = 	 2�

±�3i�− � + ��

 . �3.37�

ith these eigenvectors, the vectors C±
k may be written as

C±
2n−1 = ��nX±, C±

2n = ��nT+X±, � ª

− 1 + i�3

2
. �3.38�

f we denote by �1
�±� the eigenfunction corresponding to C±

k with ��0, and similarly by �2
�±� the

igenfunction corresponding to C±
k with ��0, then

R
/3
2 �i

�±� = �±1�i
�±�, R2�i

�±� = �i
���, i = 1,2. �3.39�

To find the spectrum of these eigenstates, we combine �3.23� and the last equation of �3.9� to

btain
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cos 
� = � cos 
����, ���� ª
1



Arccos	�1 + 3�2

2
cos 
�
 . �3.40�

he solutions for � will furnish the eigenvalues, which occur periodically as displayed in Fig. 2.
e then see that the eigenvalues for ��0 are given by

� = �2m + 1 − ����
2m + 1 + ���� ,

�3.41�

hereas the eigenvalues for ��0 are

� = �2m + 2 − ����
2m + ���� ,

�3.42�

here m=0,1 , . . . . Since � �1, we find that ���� stays in the range,

��0���������1� = � . �3.43�

he eigenvalues and eigenfunctions are summarized in Table II.

. Separated case

Next we analyze the case

U = �3, �3.44�

nder which all the sectors sk are physically separated from each other. �The other separated case
=−�3 can be dealt with similarly and will not be discussed here.� To proceed, we note that under

he choice �3.44� the boundary condition �2.20� reads

IG. 2. Eigenvalues � arise at the intersections of cos 
� and the two lines ±cos ����, which are shown here for the values
=0.8 and �= 5

6 . Dashed lines represent the upper and the lower limits of the lines, and the shaded regions indicate the
llowed ranges of the eigenvalues.

TABLE II. Eigenvalues and eigenfunctions in the connected case.

Eigenvalue � Eigenfunction Rep of S3

2m+1+� �̃−
�−

2m+2−� �− �−

2m+� �̃+
�+

2m+1−� �+ �+

2m+1−���� �1
�+� ,�1

�−� ��2�

2m+1+����
2m+2−���� �2

�+� ,�2
�−� ��2�

2m+����
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b2C+
2n−1 = a2C−

2n−1 = b1C+
2n = a1C−

2n = 0. �3.45�

s before, the vanishing conditions of a1, a2, b1, and b2 are not compatible, and we consider them
eparately. Recall, first, that a1=0 is realized by � in �3.24�. The vectors Ck obtained in this case
ead to the eigenfunctions �̃− belonging to the signature representation �−, and also

�̃−
�±� = �

n=1

3

��n�−,�
2n , �3.46�

hich belong to the doublet representation ��2�. Second, a2=0 is realized by � in �3.27�, and the
orresponding eigenfunctions are given by �− belonging to �−, and

�−
�±� = �

n=1

3

��n�−,�
2n−1, �3.47�

hich belong to ��2�. Third, b1=0 occurs when � is given by �3.30�. The eigenfunctions are found
o be �̃+ belonging to �+, and

�̃+
�±� = �

n=1

3

��n�+,�
2n , �3.48�

hich belong to ��2�. Finally, b2=0 occurs when � is given by �3.33�. The eigenfunctions are �+

elonging to �+, and

�+
�±� = �

n=1

3

��n�+,�
2n−1, �3.49�

hich belong to ��2�. These eigenvalues and the eigenfunctions are summarized in Table III. The
pectral behavior of the two cases is shown in Fig. 3 �left�.

At this point, we mention that the connected case discussed earlier has a smooth limit to the
eparated case, that is, the eigenfunctions in the former case can be obtained formally from those
n the latter case by considering the limit U→�3, even though the two cases require distinctive
reatments. For the eigenstates which are singlets of the mirror-S3, this can be seen at once since
he eigenfunctions in the connected case reduce to

�+ → �+, �− → �−, �̃+ → �̃+, �̃− → �̃−, �3.50�

n the limit �→1, which is equivalent to U→�3; see �3.18�. To see that the same is true for the
oublets, consider the case a1=0 in which the eigenstates vanish �+

�±�→0 in the limit. Nonvan-

TABLE III. Eigenvalues and eigenfunctions in the separated case.

Eigenvalue � Eigenfunction Rep of S3

2m+1+� �̃− �−

�̃−
�+� , �̃−

�−� ��2�

2m+� �̃+ �+

�̃+
�+� , �̃+

�−� ��2�

2m+2−� �− �−

�−
�+� ,�−

�−� ��2�

2m+1−� �+ �+

�+
�+� ,�+

�−� ��2�
shing outcomes in the limit may be obtained, however, by rescaling them properly as
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− 8i

�*�3
�1

�±� → �̃−
�±�. �3.51�

imilarly, for a2=0, we find

i

2�3
�2

�±� → �−
�±�. �3.52�

he continuity in the remaining cases b1=0, b2=0 can also be argued analogously.

V. RADIAL PART AND THE TOTAL ENERGY SPECTRUM

. Radial part

The eigenfunctions for the radial part can be obtained immediately, since there remain only
wo choices �2.26� for the inequivalent quantizations under the scale invariance we have imposed.
ote that the radial Hamiltonian Hr,	 admits the two independent solutions,25

�E,1�r� = ��cr��	+1/2e−�1/2�cr2
�	1 + �	

−
E

,1 + �	;cr2
 , �4.1�

IG. 3. The spectra of � for various � �left�, and the total energy E for m=0,1 ,2 ,3 �right�. The spectra of � are plotted
or �=0, 1

3 , 2
3 ,1 under �=0.9, which interpolate between U=V−1�3V and U=�3. The energy spectrum of E �in units of 6c�

s obtained for �=0.9 and �= 5
6 . The signs inside the dashed squares for the lowest two levels to each m in the energy

pectrum of E represent the levels arising for ��	�=�, which is allowed only for these two levels. All other levels are
btained for the choice ��	�=0. Symbols used to plot the levels show the representations of the mirror-S3 group; the
ymbol � stands for the identity representation �+, � for the signature representation �−, and  for the two-dimensional
epresentation ��2�, respectively. �The superimposed symbols � and � indicate that the levels are degenerate by the
orresponding distinct representations.� The numbers 1 ,2 ,3 on the upper right of the symbols show the total multiplicities
f the levels.
2 4c
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�E,2�r� = ��cr�−�	+1/2e−�1/2�cr2
�	1 − �	

2
−

E

4c
,1 − �	;cr2
 , �4.2�

here ��a ,b ;z� is the confluent hypergeometric function and cª��3/8��. Since these two
olutions diverge generically as r→�, the square integrability requires that the eigenfunctions be
roportional to their linear combination,

�E�r� =
��1 − �	�

�	1 − �	
2

−
E

4c

�E,1�r� −

��1 + �	�

�	1 + �	
2

−
E

4c

�E,2�r� , �4.3�

hich vanishes as r→�.
To enforce �2.26�, we choose the reference modes as

�1�r� = �2�	c�−1/2�E,1�r�, �2�r� = − �2�	c�−1/2�E,2�r� . �4.4�

ith these the radial boundary condition �2.23� reads

��	� =

��1 + �	��	1 − �	
2

−
E

4c



��1 − �	��	1 + �	
2

−
E

4c

 . �4.5�

or the case ��	�=0, the solutions and the energy eigenvalues are

�E�r� = r�	+1/2e−�1/2�cr2
Lm

�	�cr2�, E = E�m,	� = 2c�2m + 1 + �	� , �4.6�

or m=0,1 , . . ., where Lm
�	 is the �generalized� Laguerre polynomial. Analogously, for the case

�	�=� we find

�E�r� = r−�	+1/2e−�1/2�cr2
Lm

−�	�cr2�, E = E�m,	� = 2c�2m + 1 − �	� , �4.7�

or m=0,1 , . . . . As noted earlier, these two types of solutions arise only for 	�1; otherwise only
he former solution �4.6� is allowed. This solution �4.6� is in fact the one used by Calogero1 and
lso conventionally adopted by others16,17,20 for all values of 	.

. Total energy spectra

Having obtained the solutions for both the radial and the angular parts, we now construct the
olutions for the entire �relative coordinates� system �2.5� by combining the solutions of the
espective parts as

�E�r;	� =
1
�r
�E�r������, E = E�m,	 = 9�2� , �4.8�

here we have denoted the angular solutions by ����� collectively. These solutions �E�r� and

���� are dependent on the parameters ��	� and � ,� that specify the inequivalent quantizations of
he respective part.

It is important, however, to note that not all combinations of them are allowed because the
hoice ��	�=� is available only if 	�1. In fact, one can readily see that ��	�=� is possible, at
ost, for the lowest two angular eigenvalues 	=	1 or 	=	2, where

	1 ª 9�1 − ��2, 	2 ª 9�1 − ��2, �4.9�

nd that ��	�=0 for all other 	 which are above the two. More explicitly, the case ��	�=� is

dmitted for 	1 if

                                                                                                            



a

S
t

t
�
f
C
c

V

t
d
=
t
h

O

i
w

o
t
b

f
i

I
b

012104-15 Inequivalent quantizations of the Calogero model J. Math. Phys. 47, 012104 �2006�

                        
2
3 � ��

4
3 , �4.10�

nd for 	2 if

1 − �0� �� 1 + �0, �0 =
1



arctan�3� . �4.11�

ince the condition �4.11� is stricter than �4.10�, available choices for the inequivalent quantiza-
ions depend on the value of �, as summarized in Table IV.

For illustration, we show in Fig. 3 the angular spectrum �left� for various values of �, and the
otal energy spectrum �right� for different choices of the ��	� parameters. We observe that if
�	�=0 for all 	 the energy levels are made of one single series, consisting of a regular pattern
ormed by four singlets and four doublets. The equispaced levels suggest that, for this case, the
alogero model may be solved by use of the ladder operator, as demonstrated for the special
ase7,8 which amounts to U=−I and ��	�=0 in our scheme.

. SPECTRAL PRESERVING SU„2… AND THE ANGULAR SPECTRUM

The angular spectrum obtained in Sec. III is independent of the phase of the parameter � even
hough the eigenfunctions are dependent on it. In particular, the levels of the mirror-S3 singlets
epend on neither of the parameters � and � and hence are independent of the choice of V in U
V�3V

−1. In fact, these are a consequence of the spectral preserving SU�2� �or its subgroup U�1��
ransformations29 which are found in the family of inequivalent quantizations we are considering
ere.

To see this, let us first consider the reflection transformation Q1 given by Q1ªP3 in �2.7�.
bserve that the action �2.9� on the states,

���� → �Q1����� = ��− �� , �5.1�

s spectrum-preserving in the sense that if �	 is an eigenstate of the angular operator H� as in �2.5�
ith eigenvalue 	, then

H��Q1�	���� = 	�Q1�	���� , �5.2�

n account of the formal invariance of the operator H� under Q1. Note that this does not imply
hat Q1 is a symmetry unless it is compatible with the boundary conditions specified by U. For the
oundary vectors, we find

Bk�Q1�� = �1B6−k���, Bk��Q1�� = �1B6−k� ��� , �5.3�

or k=0, . . . ,5, with the identification B0=B6 and B0�=B6�. Thus, in effect, the transformation Q1

nduces in the connection conditions �2.20� the change

U → �1U�1. �5.4�

t follows that the operator H� shares the same spectrum under the boundary conditions specified

TABLE IV. Possible choices of ��	1� and ��	2�.

Range of � ��	1� ��	2�

1
2���

2
3 0 0

2
3���1−�0 0 or � 0

1−�0���1+�0 0 or � 0 or �

1+�0���
4
3 0 or � 0

4
3���

3
2 0 0
y U and �1U�1.
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We next consider the “alternate reflection” defined by

��x� → �Q3����� ª ����� , �2k��� �2k+1

− ���� , �2k+1��� �2k+2.
�5.5�

vidently, this is also spectral-preserving, and on the boundary vectors we have

Bk�Q3�� = �3Bk���, Bk��Q3�� = �3Bk���� . �5.6�

ccordingly, we find that the alternate reflection �5.5� induces

U → �3U�3 �5.7�

n the connection conditions �2.20�. From Q1 and Q3 we further define the product transformation

2ª iQ1Q3 that yields

Bk�Q2�� = �2B6−k���, Bk��Q2�� = �2B6−k� ��� . �5.8�

y construction, Q2 is spectral-preserving and induces

U → �2U�2. �5.9�

onsequently, we see that the connection conditions by U and �iU�i for all i=1,2 ,3 give rise to
he same spectrum for the operator H�. Note that Qi’s form the su�2� algebra,

�Qi,Qj� = 2i�ijkQk. �5.10�

Suppose, now that the state � is in a singlet representation of the mirror-S3, i.e., it is an
igenstate of Ri with fixed eigenvalues ±1 for all i=1,2 ,3. The state � is then a periodic function
ith period 2
 /3, and hence we have Bk���=B−k��� and Bk����=B−k� ���. The three relations �5.3�,

5.6�, and �5.8� can then be combined as

Bk�Qi�� = �iBk���, Bk��Qi�� = �iBk����, i = 1,2,3. �5.11�

n account of the linearity of Bk and Bk� observed in �5.11� and the algebraic property �5.10�, we
nd that a linear combination of the Qi’s,

Q = �
i=1

3

ciQi, �
i=1

3

ci
2 = 1, �5.12�

ith arbitrary coefficients ci fulfills Q2= I and is also spectral-preserving for singlet states. On the
atrix U, this induces

U → �U�, � = �
i=1

3

ci�i. �5.13�

t can be shown29 that by choosing ci appropriately one finds � such that �U�=V−1UV for any
�SU�2�. In other words, the transformation generated by Q in �5.12� yields the change

U → V−1UV , �5.14�

ithout altering the spectrum. It then follows that, as far as the mirror-S3 singlets are concerned,
he operator H� shares the same spectrum under V−1UV for any V�SU�2�. From this we see that
or the scale invariant U=V�3V

−1 we are considering, the spectrum of the mirror-S3 singlets is
ndependent of V, as we have observed in the last section.

This SU�2�-independence does not hold for the eigenstates in the doublet representation ��2�

f the mirror-S3, because for them the transformations Q1 and Q2 interchange different boundary

ectors as seen in �5.3� and �5.8�. However, the transformation Q3 still maps the boundary vectors
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o themselves as �5.6� and can be used to provide a one-parameter family of spectral-preserving
ransformations ei!Q3 for any real !. On the matrix U, the transformations induce

U → e−i!�3Uei!�3, �5.15�

hich form a U�1� subgroup of the SU�2� transformations �5.14�. In parameters, this allows us to
lter the phase of � in U freely, which implies that the whole spectrum depends only on � or � as
een earlier.

Finally, we mention that the universality in the spectrum is a general feature of a circle system
ith even number 2N of singularities that appears when it is quantized under mirror symmetries
efined analogously to the present case 2N=6.

I. CONCLUSION

In the present paper we studied the inequivalent quantizations of the N=3 Calogero model
ased on the method of separation of variables. Our inequivalent quantizations respect both the
irror-S3 invariance and the scale invariance. These quantizations are, in a sense, supplemental to

he quantizations presented in Ref. 25 which respect the D6 invariance, in view of the fact that the

6 is restored when the scale invariance is exchanged for parity invariance in our case. Our
ymmetry requirement is that all the connection conditions at the singularities in the angular part
re specified by a single matrix U of the form �2.26�. For a system consisting of a line, this class
f singularities is known as the scale invariant family and is given, except for the cases U= ±12,
y an S2 parameter space �see �3.18��. We mention that the scale invariant family supports the
erry phase �or anholonomy� when the singularities are tuned along a cycle on the scale invariant

phere S2.30

In our inequivalent quantizations, we found the eigenstates and eigenvalues explicitly, both for
he angular and radial parts that arise after the separation of variables is made. These eigenstates
re classified in terms of the irreducible representations of the mirror-S3 group. We observed that
he eigenvalues corresponding to the singlets of the S3 are independent of the choice of U in the
amily, whereas those corresponding to the doublets of the S3 are dependent only on one parameter

which corresponds to the coordinate along a great circle on the S2. We showed that these
roperties are due to the spectral-preserving SU�2� transformations or U�1� transformations that
he scale invariant family possesses.

The scale invariance is strict enough to narrow the possible boundary conditions at r=0 in the
adial part down to just two types, one given by the Dirichlet condition and the other by the
eumann condition. The Neumann condition is possible if 	�1, which occurs only for the

igenstates coupled to the lowest two angular levels. The possibility of the Neumann condition
rings about a number of different spectra for the total energy, as we have seen in Fig. 3. When all
he radial eigenstates adopt the Dirichlet condition irrespective of the eigenvalue 	 of the radial
evel that couples to them, the energy spectrum exhibits a regular pattern consisting of a number
f distinct sets of levels which are equispaced from each other. This suggests that for these cases
e may also devise the method of the ladder operator to solve the model. In contrast, this seems

o be impossible when the Neumann condition is adopted for the lower levels, where the regular
attern is broken at the lowest end of the spectrum. The appearance of the intriguing combination
f inequivalent quantizations, which we found in the angular and radial parts in our model, is
erhaps a generic feature to be observed in quantizing models of more than two dimensions in
eneral frameworks.
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We discuss the �6 theory defined in D=2+1-dimensional space-time and assume
that the system is in equilibrium with a thermal bath at temperature �−1. We use the
1/N expansion and the method of the composite operator �Cornwall, Jackiw, and
Tomboulis� for summing a large set of Feynman graphs. We demonstrate explicitly
the Coleman-Mermin-Wagner theorem at finite temperature. © 2006 American In-
stitute of Physics. �DOI: 10.1063/1.2159068�

. INTRODUCTION

The conventional perturbation theory in the coupling constant or in �, i.e., the loop expansion
an only be used for the study of small quantum corrections to classical results. When discussing
uantum mechanical effects to any given order in such an expansion, one is not usually able to
ustify the neglect of yet higher order. In other words, for theories with a large N dimensional
nternal symmetry group, there exist another perturbation scheme, the 1/N expansion, which
ircumvents this criticism. Each term in the 1/N expansion contains an infinite subset of terms of
he loop expansion. The 1/N expansion has the nice property that the leading-order quantum
orrections are of the same order as the classical quantities. Consequently, the leading order which
dequately characterizes the theory in the large N limit preserves much of the nonlinear structure
f the full theory.

The scalar field ��4�D=4 theory at finite temperature is of great interest in the field of phase
ransitions in the early universe and heavy ion collisions. When used as a simple model for the
iggs particle in the standard model of electroweak interactions, it may allow the study of sym-
etry breaking phase transitions in the early universe. For N=4 scalar fields, it is also a model of

hiral symmetry breaking in QCD and hence is relevant for the theoretical study of heavy ion
ollisions. Moreover, this theory is an excellent theoretical laboratory in which analytic nonper-
urbative methods can be tested. Now for the case D=3 it has been shown that, in the large N
imit, the �6 theory has a UV fixed point and therefore must have a second IR fixed point1 and for
his we could say that at least for large N the ��6�D=3 theory is known to be qualitatively different
rom ��4�D=4 theory. For other ways, theories in less than four space-time dimensions can offer
nteresting and complex behavior as well as tractability, and, for example, the case of three
pace-time dimensions, they can even be directly physical, describing various planar condensed
atter systems. For example, the introduction of the �6 term generates a rich phase diagram, with

he possibility of second order, first order phase transitions or even both transitions occurring
imultaneously. This situation defines the tricritical phenomenon. For example, some systems such
ntiferromagnets in the presence of a strong external field or the He3-He4 mixture exhibits such
ehavior.

�
Electronic mail: gananos@ift.unesp.br
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I. THE EFFECTIVE POTENTIAL

The theory for which we are interested is given by the Lagrangian,

L��� =
1

2
�����2 −

1

2
m0

2�2 −
�0

4!N
�4 −

�0

6!N2�6, �1�

s a theory of N real scalar fields with O�N� symmetry.
For definiteness, we work at zero temperature; however, the finite temperature generalizations

an be easily obtained.2

In this section we are going to use the method of composite operator developed by Cornwall,
ackiw, and Tomboulis �CJT�3,4 in order to get the effective potential ���� at leading order in the
/N expansion. The composite operator formalism reduces the problem to summing two particle

rreducible �2PI� Feynman graphs by defining a generalized effective action ��� ,G� which is a
unctional not only of �a�x�, but also of the expectation values Gab�x ,y� of the time ordered
roduct of quantum fields �0�T���x���y���0�, i.e.,

���,G� = I��� +
i

2
Tr Ln G−1 +

i

2
Tr D−1���G + �2��,G� + ¯ , �2�

here I���=�dxD L���, G and D are matrices in both the functional and the internal space whose
lements are Gab�x ,y�, Dab�� ;x ,y�, respectively, and D is defined by

iD−1 =
	2I���

	��x�	��y�
. �3�

he quantity �2�� ,G� is computed as follows. In the classical action I��� we must shift the field
by �. The new action I��+�� possesses terms cubic and higher in �. This defines an interaction

art Iint�� ,�� where the vertices depend on �. �2�� ,G� is given by sum of all �2PI� vacuum
raphs in a theory with vertices determined by Iint�� ,�� and the propagators set equal to G�x ,y�.
he trace and logarithm in Eq. �2� are functional. After these procedures the interaction Lagrang-

an density becomes

Lint��,�� = −
1

2
	�0�a

3N
+

�0�2�a

30N2 
�a�2 − 	8�0�a�b�c

6N2 
�a�b�c −
1

4!N
	�0 +

�0�2

10N

�4

− 	12�0�a�b

6!N2 
�a�b�2 −
1

5!
	�0�a

N2 �a�4
 −
�0

6!N2�6. �4�

he effective action ���� is found by solving for Gab�x ,y� the equation

	���,G�
	Gab�x,y�

= 0, �5�

nd substituting the solution in the generalized effective action ��� ,G�. The vertices in the above
quation contain factors of 1 /N or 1/N2, but a � loop gives a factor of N provided the O�N�
sospin flows around it alone and not into another part of the graph. We usually call such loops
ubbles. Then at leading order in 1/N, the vacuum graphs are bubble trees with two or three

FIG. 1. The 2PI vacuum graphs.
ubbles at each vertex. The �2PI� graphs are shown in Fig. 1. It is straightforward to obtain
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�2��,G� =
− 1

4!N
� dDx	�0 +

�0�2

10N

�Gaa�x,x��2 −

�0

6!N2 � dDx�Gaa�x,x��3. �6�

Therefore Eq. �5� becomes

	���,G�
	Gab�x,y�

=
1

2
�G−1�ab�x,y� +

i

2
D−1��� −

1

12N
	�0 +

�0�2

10N

�	abGcc�x,x��	D�x − y�

−
3�0

6!N
	ab�Gcc�x,x��2	D�x − y� = 0. �7�

ewriting this equation, we obtain the gap equation

�G−1�ab�x,y� = Dab
−1��;x,y� +

i

6N
	�0 +

�0�2

10N

�	abGcc�x,x��	D�x − y�

+
i�0

5!N2	ab�Gcc�x,x��2	D�x − y� . �8�

ence

i

2
Tr D−1G =

1

12N
� dDx	�0 +

�0�2

10N

�Gaa�x,x��2 +

3�0

6!N2 � dDx�Gaa�x,x��3 + cte. �9�

sing Eqs. �8� and �9� in Eq. �6� we find the effective action

���� = I��� +
i

2
Tr�Ln G−1� +

1

4!N
� dDx	�0 +

�0�2

10N

�Gaa�x,x��2 +

2�0

6!N2 � dDx�Gaa�x,x��3,

�10�

here Gab is given implicitly by Eq. �8�. The trace in �10� are both the functional and the internal
pace. The last two terms on the right-hand side of Eq. �10� are the leading contribution to the
ffective action in the 1/N expansion. As usual we may simplify the situation by separating Gab

nto transverse and longitudinal components, so

Gab = 		ab −
�a�b

�2 
g +
�a�b

�2 g̃ , �11�

n this form we can invert Gab,

�G�ab
−1 = 		ab −

�a�b

�2 
g−1 +
�a�b

�2 g̃−1. �12�

Now we can take the trace with respect to the indices of the internal space,

Gaa = Ng + O�1�, �G�aa
−1 = Ng−1 + O�1� . �13�

rom this equation at leading order in 1/N, Gab is diagonal in a ,b. Substituting Eq. �13� into Eq.
10� and Eq. �8� and keeping only the leading order one finds that the daisy and superdaisy
esumed effective potential for the �6 theory is given by

���� = I��� +
iN

2
tr�ln g−1� +

N

4!
� dDx	�0 +

�0�2

10N

g2�x,x� +

2N�0

6!
� dDxg3�x,x� + O�1� ,

�14�
here the trace is only in the functional space, and the gap equation becomes
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g−1�x,y� = i�� + m0
2 +

�0

6
	�2

N
+ g�x,x�
 +

�0

5!
	�2

N
+ g�x,x�
2	D�x − y� + O	 1

N

 . �15�

t is important to point out that this calculation was done by Townsend.5

II. THE THEORY AT FINITE TEMPERATURE

In order to generalize these results to the case of finite temperature we are going to assume
hat the system is in equilibrium with a thermal bath a temperature T=�−1. Since we are interested
n the equilibrium situation it is convenient to use the Matsubara formalism �imaginary time�.
onsequently it is convenient to continue all momenta to Euclidean values �p0= ip4� and take the

ollowing Ansatz for g�x ,y�:

g�x,y� =� dDp

�2
�D

expi�x−y�p

p2 + M2���
. �16�

ubstituting Eq. �16� in Eq. �15� we get the expression for the gap equation,

M2��� = m0
2 +

�0

6
	�2

N
+ F���
 +

�0

5!
	�2

N
+ F���
2

, �17�

here F��� is given by

F��� =� dDp

�2
�D

1

p2 + M2���
, �18�

nd the effective potential in the D-dimensional Euclidean space can be written as

V��� = V0��� +
N

2
� dDp

�2
�D ln�p2 + M2���� −
N

4!
	�0 +

�0�2

10N

F���2 −

2N�0F���3

6!
, �19�

here V0��� is the tree approximation of the potential.
Replacing the continuous four momenta k4 by discrete �n and the integration by a summation

�=1/T�. The effective potential at finite temperature is

V���� = V0��� +
N

2�
�
n

� � dD−1

�2
�D−1 ln��n + p2 + M�
2���� −

N

4!
	�0 +

�0�2

10N

F����2 −

2N�F����3

6!
,

�20�

here the expression F���� is the finite temperature generalization of F���, and is given by

F���� =
1

�
�

n=−�

� � dD−1p

�2
�D−1

1

�n
2 + p2 + M�

2���
. �21�

he gap equation for this theory at finite temperature is

M�
2��� = m0

2 +
�0

6
	�2

N
+ F����
 +

�0

5!
	�2

N
+ F����
2

. �22�

n order to regularize F���� given by Eq. �21�, we use a mixing between dimensional regulariza-

ion and analytic regularization. For this purpose we define the following expression:
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I��D,s,m� =
1

�
�

n=−�

� � dD−1k

�2
�D−1

1

��n
2 + k2 + m2�s . �23�

he analytic extension of the inhomogeneous Epstein zeta function can be done and the corre-
ponding analytic extension of I��D ,s ,m� is

I��D,s,m� =
mD−2s

�2
1/2�D��s���	s −
D

2

 + 4�

n=1

� 	 2

mn�

D/2−s

KD/2−s�mn�� , �24�

here K��z� is the modified Bessel function of the third kind. Fortunately for D=2+1 the analytic
xtension of the function I��D ,s=1,m=M�����=F���� is finite and can be expressed in a closed
orm6

F���� = I��3,1,M����� = −
M����

4

	1 +

2 ln�1 − e−M������
M�����


 . �25�

e note that in D=2+1 we have no pole, at least in this approximation. To proceed to regularize
he second term of Eq. �20�, we define

LF���� =
1

�
�
n=1

� � dD−1p

�2
�D−1 ln��n + p2 + M�
2���� �26�

hen,

�LF����
�M�

= �2M��
1

�
�
n=1

� � dD−1p

�2
�D−1

1

�n + p2 + M�
2���

�27�

nd from Eq. �21�, we have that

�LF����
�M�

= �2M��F���� . �28�

or D=2+1, F���� is finite and is given by Eq. �29� �Ref. 6� and integrating the Eq. �28�, we
btain

LF����R = −
M����3

6

−

M����Li2�e−M������

�2 −

Li3�e−M������

�3 . �29�

The definition of general polylogarithm function Lin�z� can be found in Ref. 7.
The daisy and super daisy resummed effective potential at finite temperature for D=2+1 is

hen given by

V���� = V0��� +
N

2
LF����R −

N

4!
	�0 +

�0�2

10N

�F����R�2 −

2N��F����R�2

6!
�30�

nd the corresponding gap equation �see Eq. �22��

M�
2��� = m0

2 +
�0

6
	�2

N
−

M����
4


�1 +
2 ln�1 − e−M������

M����� 

+

�0

5!
	�2

N
−

M����
4


�1 +
2 ln�1 − e−M������

M����� 
2

. �31�

rom this expression we can deduce that there is no possible way to find a solution for M� going
o zero, because the terms in Eq. �31� containing the logarithm will not permit, and this situation

8
s similar to the scalar theory with O�N� symmetry in two dimensions �2D� at zero temperature.
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his result is in agreement with the the Coleman-Mermin-Wagner theorem,9 which statement is
elated to the fact that it is impossible to construct a consistent theory of massless scalar in 2D. If
spontaneous breaking of continuous symmetry were to happen at finite T, then one would be

aced with this problem at momentum scales below Tc, i.e., it would be impossible to construct an
ffective 2D theory of the Goldstone bosons zero modes.

V. CONCLUSIONS

In this paper we have found the daisy and super daisy effective potential for the theory �6 in
=2+1-dimensional Euclidean space at finite temperature. The form of effective potential have

een found explicitly using resummation method in the leading order 1 /N approximation
Hartree-Fock approximation�. We found that in this approximation there is no symmetry breaking
or any temperature and this is clearly a manifestation of the Coleman-Mermin-Wagner theorem
hich stipulates that the spontaneous symmetry breaking of continuous symmetry cannot happen

n D=2+1 at finite temperature.
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he Euclidean scalar Green function in the five-
imensional Kaluza-Klein magnetic monopole space-time
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In this paper we present, in a integral form, the Euclidean Green function
associated with a massless scalar field in the five-dimensional Kaluza-Klein mag-
netic monopole superposed to a global monopole, admitting a nontrivial coupling
between the field with the geometry. This Green function is expressed as the sum of
two contributions: the first one related with uncharged component of the field, is
similar to the Green function associated with a scalar field in a four-dimensional
global monopole space-time. The second contains the information of all the other
components. Using this Green function it is possible to study the vacuum
polarization effects on this space-time. Explicitly we calculate the renormalized
vacuum expectation value ��*�x���x��Ren, which by its turn is also expressed as the
sum of two contributions. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2159071�

. INTRODUCTION

A few years ago, Gross and Perry,1 and Sorkin2 presented a solitonlike solution of the five-
imensional Kaluza-Klein theory corresponding to an Abelian magnetic monopole. As the Dirac
olution, their solutions describe a gauge-dependent string singularity line, if the fifth coordinate is
onveniently compactified. Moreover, their solutions depend on the parameter m related with the
hysical magnetic charge g and the radius of the Kaluza-Klein circle R by

m = g��G = R/8, �1�

eing G the Newton’s constant. Also Gegenberg and Kunstatter3 found another magnetic mono-
ole solution. Their solutions were obtained by applying the static and Ricci-flat requirement on
he field equations.

A global monopole is a heavy topological object formed in the phase transition of a system
omposed by self-coupling isoscalar field �a, whose original global O�3� symmetry of the physical
ystem is spontaneously broken down to U�1�. The scalar matter field plays the role of an order
arameter which outside the monopole’s core, acquires a nonvanishing value. The simplest model
hich gives rise to a global monopole has been proposed by Barriola and Vilenkin,4 and is
escribed by the Lagrangian density below

L = − 1
2g�����a���a − 1

4���a�a − �2�2 �2�

ith a=1,2 ,3 and � being the scale energy where the symmetry is broken. The field configuration
hich describes a monopole is

�
Electronic mail: emello@fisica.ufpb.br
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�a�x� = �f�r�x̂a, �3�

here x̂ax̂a=1. Coupling this matter field with the Einstein equation, a spherically symmetric
egular metric tensor solution is obtained. Barriola and Vilenkin also show that for points outside
he global monopole’s core the geometry of the manifold can be approximately given by the line
lement

ds2 = − dt2 +
dr2

�2 + r2�d	2 + sin2 	 d�2� �4�

ith �2=1−8�G�2. This line element represents a three-geometry with a solid angle deficit and
nonvanishing scalar curvature.

Recently a new solution for the Kaluza-Klein magnetic monopole in a five-dimensional global
onopole space-time has been found.5 This solution corresponds to a composite topological

bject, i.e., an Abelian magnetic monopole superposed to a pointlike global monopole. It was
btained by coupling the energy-momentum tensor associated with the five-dimensional generali-
ation of the global monopole system, with the respective Einstein equation in the presence of an
belian magnetic monopole. Due to the presence of the matter source, the Ricci-flat condition is
o longer fulfilled. The solution can be expressed by the following line element in terms of the
ve-dimensional coordinates xA= �x� ,
�= �t ,r ,	 ,� ,
�,

dŝ2 = − dt2 + V�r��dr2

�2 + r2�d	2 + sin2 	 d�2�	 + V�r�−1�d
 + 4m�1 − cos 	�d��2 �5�

ith

V�r� = 1 +
4m

�r
. �6�

As has been pointed out by Gross and Perry,1 the gauge field associated with the magnetic
onopole

A� = 4m�1 − cos 	� , �7�

resents a singularity at 	=�. However, this singularity is gauge dependent if the period of the
ompactified coordinate 
 is equal to 16�m. This is the geometric description of the Dirac
uantization. Adopting this period for the extra coordinate, it is possible to provide the Wu and
ang formalism6 to describe the four-vector potential, A�, associated with the Abelian magnetic
onopole without line of singularity. In order to do that it is necessary to construct two overlap-

ing regions, Ra and Rb, which cover the whole space section of the manifold. Using spherical
oordinate system, with the monopole at origin the only nonvanishing components for the vector
otential are

�A��a = 4m�1 − cos 	�, Ra: 0 � 	 �
1
2� +  ,

�8�
�A��b = − 4m�1 + cos 	�, Rb: 1

2� −  � 	 � � ,

ith 0��� /2. In the overlapping region, Rab, the nonvanishing components are related by a
auge transformation. Using the appropriate normalization factor,1 one can rewrite the above

ph
ector potential in terms of the physical one, A� :

                                                                                                            



w
n
w

i

b

w

b

g
b
c

t
t
a
a
q
f

S
fi
i
K
t
s

f
b
n
s

n
�

w
f

012302-3 The Euclidean scalar Green function J. Math. Phys. 47, 012302 �2006�

                        
�16�G�A�
ph�a = �16�G
�A�

ph�b +
i

e
S��S−1� , �9�

here S=e2iq�, q=eg=n /2 in units �=c=1 and g being the monopole strength. In terms of
onphysical vector potential this gauge transformation corresponds to subtract the quantity 8m,
hich compensates the changing in the fifth coordinate 
�=
+8m�.

Here, we shall consider the quantum analysis of a massless five-dimensional scalar field ��x�
n the space-time described by �5�. This field can be expanded in a Fourier series

��x� = �
n=−�

�

ein
/8m��n��x�� = �
n=−�

�

ein
/8me−iEtRn�r�Ylm
q �	,�� , �10�

eing Ylm
q �	 ,��, with q=n /2, the monopole harmonic7 solution of the eigenvalue equations below

L�q
2Ylm

q = l�l + 1�Ylm
q and LzYlm

q = mYlm
q , �11�

ith l= q, q+1, q+2, . . ., and m=−l, −l+1, . . . , l. Where

L�q = r� � �p� − eA� � − qr̂ . �12�

The Green function associated with the massless scalar field in this space-time can be obtained
y solving the differential equation

�� + �R�G�x,x�� = − �5��x,x�� = −
�5��xA − x�A�

�− g�5�
, �13�

�5� being the determinant of the metric tensor. Here we have introduced a nonminimal coupling
etween the field with the geometry, �R, with � being an arbitrary constant and R the Ricci scalar
urvature.

Green functions in a four-dimensional pointlike global monopole space-time have been ob-
ained in Refs. 8 and 9 to massless scalar and fermionic fields, respectively. Also the effect of
emperature on these functions has been considered in Ref. 10 More recently the Green function
ssociated with a charged massless scalar field in the global monopole space-time superposed to
n Abelian magnetic monopole, has been calculated in Ref. 11 The Green function is an important
uantity to calculate vacuum polarization effects due to the presence of matter fields. Specifically
or scalar field, the vacuum expectation value of the square of this field is formally given by

��2�x�� = lim
x�→x

G�x�,x� . �14�

o the objective of this paper is to calculate the Green function associated with a massless scalar
eld in the five-dimensional space-time, which takes into account the presence of the magnetic

nteraction between the matter field and the magnetic monopole in the unified formalism of
aluza-Klein. Having this function, the next step is to calculate the vacuum polarization effect on

his manifold, trying to understand the consequence of considering an extra compactified dimen-
ion.

This paper is organized as follows. In Sec. II, we explicitly calculate the Euclidean Green
unction associated with this system. As we shall see, this Green function, as the scalar field, will
e expressed in terms of an infinite sum of all the Fourier components associated with the quantum
umber n. For the component n=0, the respective Green function, G�0��x ,x��, is similar to the
calar Green function in a four-dimensional global monopole space-time. As to the other compo-

ents, the respective Green function, Ḡ�x ,x��, will be expressed as the summation of all the n
0 components G�n��x ,x��. Although we have not found in the literature an explicit expression

hich provides to express Ḡ�x ,x�� in terms of any kind of special function, we were able to

urnish an integral representation to it. In Sec. II A we calculate the renormalized vacuum expec-
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ation value of the square of the scalar field, ���x�*��x��. We show that this expectation value can
e expressed as the sum of two contributions, the first, being given by the n=0 component of the
otal Green function, is associated with the uncharged component of the scalar field �10�. The
econd contribution takes into account all the other Fourier components. In Sec. II B, we present

formal expression to the renormalized vacuum expectation value of the energy-momentum
ensor, �TB

A�x��. In Sec. III, we present our conclusions and the most important remarks about this

ystem. In the Appendix we present the explicit calculation of the Green Ḡ�x� ,x� associated with
he uncharged components of the field.

I. EUCLIDEAN GREEN FUNCTION

The Euclidean Green function can be obtained by the Schwinger-DeWitt formalism as fol-
ows:

GE�x,x�� = �
0

�

ds K�x,x�;s� , �15�

here K�x ,x� ;s� is the heat kernel, which can be expressed in terms of the sum over the complete
ormalized set of eigenstates of the Klein-Gordon operator. For the massless scalar field this
perator reads

�� + �R����x� = − �2���x� . �16�

o

K�x,x�;s� = �
�2

��
*�x����x��e−s�2

. �17�

The covariant five-dimensional d’Alembertian operator

� =
1

�− g�5�
�A��− g�5�gAB�B� , �18�

n the space-time defined by �5� reads

� = − �t
2 +

1

V�r�
��2��r

2 +
2

r
�r	 −

L�2

r2 −
8m�1 − cos 	�

r2 sin2 	
���
 +

16m2�1 − cos 	�2

r2 sin2 	
�


2 � + V�r��

2 .

�19�

n the other hand, the Ricci scalar curvature is

R =
2�1 − �2�

V�r�r2 . �20�

dmitting to the eigenfunction ���x� the form

���x� = e−iEtein
/8mRl
n�r�Ylm

q �	,�� �21�

nd assuming q=n /2 it is possible to obtain the following differential equation:

�− E2 +
1

V�r�

�2��r

2 +
2

r
�r	 −

�L�q
2 − q2�
r2 � −

q2

16m2V�r� +
2���2 − 1�

V�r�r2 �Rl
n�r�Ylm

q �	,��

= − �2Rl
n�r�Ylm

q �	,�� , �22�
here we identify

                                                                                                            



A

w

w

t
i
f
w
v
c
fi
n
t
a

w

S

012302-5 The Euclidean scalar Green function J. Math. Phys. 47, 012302 �2006�

                        
L�q
2 = L�2 +

2iq�1 − cos 	�
sin2 	

�� + q2 �1 − cos 	�2

sin2 	
+ q2. �23�

dmitting

�2 = E2 + �2p2 +
q2

16m2 �24�

e find the differential equation obeyed by the unknown radial function R�r�,

d2R�r�
dr2 +

2

r

dR�r�
dr

−
�lq

r2 R�r� − �2V�r�2R�r� + �2V�r�R�r� + p2V�r�R�r� = 0, �25�

ith

� =
q

4m�
and �lq =

l�l + 1� − q2 − 2���2 − 1�
�2 . �26�

The solution to the above differential equation regular at origin is proportional to the Whit-
aker function12 M�,��2ipr� with � and � being given in terms of the parameters m and �, and also
n terms of the variable p. Unfortunately with this function it is not possible to present the Green
unction in a closed form. So at this point we should make an approximation in our calculations,
e shall discard the terms proportional to m /r in �25�. This means that we are considering points
ery far from the origin. �Discarding terms proportional to m /r does not reduce the system to a
harged particle in the presence of an Abelian magnetic monopole.11 Here the space-time remains
ve-dimensional, and this fact is present in the calculation of the heat kernel �17� where it is
ecessary to sum all the possible values for the parameter q=n /2.� In Ref. 1 an estimative value
o the radius of the Kaluza-Klein circle is given, R=3.7�10−32 cm. So we are considering points
t distance greater than 3.7�10−32 cm. Accepting this approximation �25� becomes

d2R�r�
dr2 +

2

r

dR�r�
dr

−
�lq

r2 R�r� + p2R�r� = 0. �27�

The solution to the above equation regular at the origin is

Rl
n�r� =

J�l,q
�pr�

�pr
, �28�

here J� is the Bessel function of order

�l
q =

1

�
��l + 1/2�2 − q2 − 2��2 − 1��� − 1/8� . �29�

o the normalized eigenstate of the Klein-Gordon operator �16� is

� �x� =
1 � �p

e−iEtein
/8mJ q�pr�Yq �	,�� . �30�
� 4� 2mr �l lm
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y making a Wick rotation, t→ i�, and according to �17� the Euclidean heat kernel is given by

K�x,x�;s� = �
−�

�

dE �
n=−�

� �
0

�

dp�
l,m

���x���
*�x��e−s�2

=
1

256�5/2m�

1
�rr�

e−����2+r2+r�2�/4�2s

s3/2 �
n=−�

�

e−sn2/64m2
ein��
−
��/8m�

� �
l=q

�

I�l
q� rr�

2�2s
	 �

m=−l

l

Ylm
q �	,���Ylm

q �	�,����*, �31�

� being the modified Bessel function. In Ref. 13, Wu and Yang have derived some properties of
he monopole harmonics, including the generalization of spherical harmonics addition theorem.
owever, because we are interested in calculating the renormalized value of the Green function in

he coincidence limit, a simpler expression is obtained by taking 	=	� and �=�� in �31�. In
ppendix A of Ref. 11 we have shown the simplified result to the sum of the product of monopole
armonics in coincidence limit in the angular variables,

�
m=−l

l

Ylm
q �	,���Ylm

q �	,���* =
�2l + 1�

4�
. �32�

oreover we shall take the coincidence limit in the fifth coordinate 
�=
 and the Euclidean
emporal coordinate ��=� in �31�. Doing this we get a simpler expression to the heat kernel which
epends on the quantum number n in its second power.

Now according to �15� we get

G�x,x�� =
1

256�5/2m�

1
�rr�

�
l=0

�

�2l + 1��
0

�

ds s−3/2e−�/4�2sI�l
0��/s�

+
1

128�5/2m�

1
�rr�

�
n=1

�

�
l=q

�

�2l + 1��
0

�

ds s−3/2e−�/4�2s

� I�l
q��/s�e−sn2/64m2

, �33�

here

� = r2 + r�2 and � =
rr�

2�2 . �34�

As we can see the above Green function is composed by two contributions, the first one, G�0�,

orresponds to the Fourier component n=0 of the scalar field operator, and the second, Ḡ to the
ther components. By using Ref. 12 it is possible to develop the integral in s for the first contri-
ution. So we get

G�0��r,r�� =
1

128�3m

1

rr�
�
l=0

�

�2l + 1�Q�l
0−1/2�cosh u� , �35�

ith cosh u= �r2+r�2� /2rr� and Q� being the Legendre function, whose integral representation is

Q�−1/2�cosh u� =
1
�2
�

u

�

dt
e−�t

�cosh t − cosh u
. �36�

This Green function is exactly 1 /16�m=1/2�R times the Green function obtained in a

our-dimensional space-time �see Ref. 8�.
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As to the second contribution of �33�, we did not find in the literature the explicit expression
o the integral in the variable s. In the Appendix we give the procedure adopted to provide a

impler and workable expression to Ḡ, which will be adopted by us in the analysis of the vacuum
olarization effect. The result to this contribution is

Ḡ�r,r�� = �
n=1

�

G�n��r,r�� �37�

ith

G�n��r,r�� =
1

128�5/2m�

1
�rr�

�
l=n/2

�

�2l + 1�In �38�

eing

In =
1

���
�

u

� dt e−�l
qt

�cosh t − cosh u
cos��n/4m����cosh t − cosh u�� . �39�

inally we can write

G�n��r,r�� =
1

64�2�3m

1

rr�
�

l=n/2

�

�2l + 1��
u

� dt e−�l
qt

�cosh t − cosh u
� cos��n/4m����cosh t − cosh u�� .

�40�

s the n=0 component of the Green function, Eq. �35�, it is not possible to develop the integral
bove and provide a closed expression to G�n�. The best we can do is to express it in an integral
epresentation. Moreover �40� is similar to the n=0 component; however its coefficient is two
imes bigger than the coefficient multiplying the uncharged sector.

Another point that should be mentioned is that because of the nontrivial dependence of the
arameter �l

q with � and q, it is not possible to develop exactly the sum in l in �40�. On the other
and, for �=1/8, the geometric series in �35� can be performed, providing a simpler expression to
�0�.

Having these Green functions, it is possible to calculate the vacuum polarization effect in the
ravitational background of the composite five-dimensional Kaluza-Klein magnetic and global
onopoles.

. Computation of Š�*
„x…�„x…‹Ren

In this section we discuss the calculation of the vacuum expectation value of the square of the
assless scalar field operator. This quantity is formally obtained by calculating the complete
reen function in the coincidence limit,

��*�x���x�� = lim
x�→x

G�x�,x� = lim
r�→r

�G�0��r�,r� + Ḡ�r�,r�� . �41�

owever, this procedure provides a divergent result. In order to obtain a finite and well-defined
esult it is necessary to introduce some renormalization procedure. In this paper we shall apply the
oint-splitting renormalization procedure. The basic idea of this method consists to examine the
ingular behavior of the above limit, identify the divergent terms and subtract them off.14 Let us
pply this method separately for each component of �41�.
We shall first start with the uncharged component of the vacuum expectation value,
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��2�x���0� = lim
x�→x

G�0��x�,x� . �42�

s we have already said G�0� is proportional to the Green function obtained by Mazzitelli and
ousto in Ref. 8. So the procedure to renormalize this component is by subtracting from G�0� the
adamard function below

GH�x�,x� =
1

16�m
� 1

16�2
 2

��x�,x�
+ �� −

1

6
	R ln��2��x�,x�

2
	�� , �43�

here � is an arbitrary cutoff energy scale, R=2�1−�2� /r2 the scalar curvature in the four-
imensional global monopole space-time, and ��x� ,x� one-half of the square of the geodesic
istance between x� and x. For the radial point splitting, in our approximation we have �= �r�
r�2 /2�2.

Because the calculation of the vacuum expectation value �VEV� of the square of the massless
calar field operator has been developed in Ref. 8 for an arbitrary value of the nonminimal
oupling �, up to the first order in the parameter �2=1−�2�1, and in an exact form for �=1/8,
e shall not develop here the calculation of the VEV below,

��2�x��Ren
�0� = lim

r�→r

�G�0��r,r�� − GH�r,r��� . �44�

e shall give only the result obtained for �=1/8,

��2�x�� =
1

512�3mr2�
0

� dt

sinh�t/2�
 cosh�t/2��
sinh2�t/2��

− �2 cosh�t/2�
sinh2�t/2�

+
��2 − 1�

6
e−t/2�

+
1

1536�3mr2 �1 − �2�ln��r/�� . �45�

The new calculation is to obtain the VEV associated with all charged components of the
reen function. In order to get some information on how we should proceed, we first analyze the

ingular behavior of each component G�n��r� ,r�. First of all, it is necessary to develop the sum-
ation on the angular quantum number l in �40�,

S = �
l=q

�

�2l + 1�e−�l
qt. �46�

nfortunately it is not possible to develop this summation in an exact way even for �=1/8. Here
t is necessary to adopt an approximation procedure, we shall develop an expansion of �l

q in
owers of q2 / �l+1/2�2�1. Moreover, developing an extra expansion in powers of parameter �2,
e get a very large expansion as shown in Ref. 11. So in order to obtain a more compact

xpression to the summation above, which allows us to proceed with the summation in the

uantum number n to get Ḡ�r� ,r�, we shall adopt �=1/8. So doing this we obtain, up to the first
rder in q2 / �l+1/2�2, the following expression:

S = e−qt/�
 q

sinh�t/2��
+

coth�t/2��
2 sinh2�t/2��

+
q2t

�

1

2 sinh�t/2��� , �47�

�n�
ith q=n /2. So G becomes
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G�n��r,r�� =
1

64�2�3m

1

rr�
�

u

� dt cos��q/2m����cosh t − cosh u��
�cosh t − cosh u

� e−qt/�
 q

sinh�t/2��
+

coth�t/2��
2 sinh2�t/2��

+
q2t

�

1

2 sinh�t/2��� . �48�

nalyzing G�n� in the limit r�→r, it is possible to observe that this Green function presents
ffectively a four-dimensional Hadamard singular structure. So to renormalize the VEV of the
quare of the n-component of the scalar field, we should take the following Hadamard function:

GH�x�,x� =
1

8�m
� 1

16�2
 2

��x�,x�
+ ā1 ln��2��x�,x�

2
	�� , �49�

here ā1= ��−1/6�R+ �2q /R�2, with �=1/8. R is the scalar curvature and R=8m is the radius of
he circle in the fifth dimension. So, although the singular structure of the Green function is of the
ame type as the four-dimensional Hadamard one, the coefficient ā1 in the above function presents
n extra contribution proportional to the inverse of the square of the radius when compared with
he expression given in the literature to this coefficient.15

After this discussion let us return to the VEV of the square of the n component of the scalar
eld,

��*�x���x��Ren
�n� = lim

r�→r

�G�n��r,r�� − GH�r,r��� =
1

128�3mr2�
0

� dt

sinh�t/2��cos� qr

2�m
sinh�t/2�	e−qt/�

� 
q +
coth�t/2��

2
+

q2t

2�
� 1

sinh�t/2��
−

�2 coth�t/2�
sinh2�t/2�

+ � qr

4m
	2

e−t/2 −
1 − �2

12
e−t/2�

−
q2

1024�3m3 ln��r

2
	 +

1 − �2

768�3m

1

r2 ln��r

2
	 , �50�

ith q=n /2, being n=1,2 ,3 , . . . . So the above result is valid only for charged Fourier compo-
ents of the scalar field.

Now let us return to the complete Green function. According to �37�, Ḡ is given by developing
he summation on the quantum number n in �48�. Doing this we found

Ḡ�r,r�� =
1

256�2�3m

1

r�r
�

u

� dt
�cosh t − cosh u

1

sinh�t/2��
1

cosh�t/2�� − cos �

� � cosh�t/2��cos � − 1

cosh�t/2�� − cos �
− cosh�t/2���e−t/2� − cos ��

+
t

8�

�cos � sinh�t/�� + cos�2��sinh�t/2�� − 3 sinh�t/2���
�cosh�t/2�� − cos ��2 � �51�

ith

� =
1

4�m
�r�r

2
�cosh t − cosh u and cosh u =

r2 + r�2

2rr�
. �52�

Now, at this point, we must analyze the singular behavior of Ḡ. Taking r�→r, we observe that
ts singular behavior becomes more severe than for G�n��r� ,r�. In fact it is possible to show that in

his limit we have
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Ḡ�r,r�� �
1

�3/2 +
1

�
+

1

�1/2 + ln��� , �53�

ith �= �r−r��2 /2�2. So it contains the structure of the five-dimensional Hadamard function

G�5��r,r�� �
1

�3/2 +
1

�1/2 , �54�

nd also the four-dimensional Hadamard function

G�4��r,r�� �
1

�
+ ln��� , �55�

t the same time. If we are inclined to provide a finite and well-defined vacuum expectation value
f the square of the sum of all charged components of the scalar field operator, we must extract all

he divergences of Ḡ. We shall do this by subtracting from this Green function the “Hadamard”
ne which presents the same kind of singularity as given in �53�. So we have

��*�x���x��Ren = lim
r�→r

�Ḡ�r�,r� − ḠH�r�,r�� , �56�

ith

ḠH�r�,r� =
c3

�r� − r�3 +
c2

�r� − r�2 +
c1

�r� − r�
+

c0

r2 ln��2�r� − r�2

4�2 	 . �57�

he coefficients above will be determined appropriately by imposing that �56� be finite. Express-
ng all the singular terms by using the identities

1

�r� − r�d =
�2��1 + 1 �d�

2d�r�r�d/2����d � 2��u

� dt
�cosh t − cosh u

cosh�t/2�
sinhd�t/2�

�58�

nd

ln��2�r� − r�2

4�2 	 = ln��2�r� + r�2

4�2 	 −
2
�2
�

u

� dt
�cosh t − cosh u

e−t/2, �59�

t is possible to obtain all coefficients of �57� according to our requirement. These coefficients are
ong ones; however, because of the approximation adopted in the beginning of the calculation,
hey can be written shortly as

c3 � −
m�3

4�2�r�r
,

c2 �
m�2

2�3r�r
,

c1 � −
7�

1536m�2�r�r
,

c0 � −
1

3 . �60�

3072m�
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At this point two important remarks should be mentioned, �i� we did not find in the literature
xpressions to the coefficients of the adiabatic expansion of the Hadamard function for this
ve-dimensional space-time, which presents a compactified dimension. �ii� Consequently we do
ot have any geometric explanation to them. They have been found to provide a finite result to
56�. The general structure to this VEV is

��*�x���x��Ren =
A

mr2 +
Bm

r4 +
1

1536m�3

1

r2 ln��r/�� . �61�

. Dimensional analysis of ŠTA
B
‹

The energy-momentum tensor associated with scalar field in an n-dimensional curved space-
ime is given in Ref. 16. For this five-dimensional space-time, considering a massless field and
=1/8 it reads

TAB�x� = 3
4�A��B� − 1

4gABgCD�C��B� − 1
4 ��A�B��� + 1

32gABR�2 − 1
8RAB�2, �62�

here RAB and R are the Ricci tensor and the scalar curvature, respectively.
The vacuum expectation value of the energy-momentum tensor operator is formally given by

�TAB�x�� = lim
x�→x

DAB��x,x��G�x�,x� . �63�

he nonlocal bivector differential operator, DAB��x� ,x�, for this case reads

DAB��x�,x� = 3
4�A�B� − 1

4gAB�x�gCD�x�,x��C�D� − 1
8 ��A�B + �A��B�� + 1

32gABR�x� − 1
8RAB�x� .

�64�

he primes denote the derivative acting at x� rather than at x.
The calculation of the VEV above provides a divergent result. So in order to obtain a finite

nd well-defined result we must apply some renormalization procedure. Adopting the point-
plitting renormalization one, we subtract from the Green function, G�x� ,x�, the Hadamard one,

H�x� ,x�,

�TAB�x��Ren = lim
x�→x

DAB��x,x���G�x�,x� − GH�x�,x�� . �65�

This quantity must be conserved,

�A�TB
A�x��Ren = 0. �66�

s to the trace anomaly, in principle it exists only for even-dimensional space-time. In fact, as has
een shown by Christensen17 the trace of the renormalized VEV of the energy-momentum tensor
s given by

�T�
��x��Ren =

1

�4��n/2an/2�x� , �67�

or an even n-dimensional space-time. �The analysis of the vacuum polarization associated with
assless scalar field in five- and six-dimensional global monopole space-time have been devel-

ped by us in Ref. 18. There it is explicitly written, up to the first order in the parameter �2=1
�2, the a3�x� coefficient, of the adiabatic expansion of the Hadamard function.� On the other
and, in our previous calculations, we have found that in this five-dimensional space-time, there
ppears a logarithmic term in the ��*�x���x��Ren, which should be absent in an odd-dimensional
pace. So we conclude that although being five dimensional, this space-time with the fifth coor-
inate compactified with period 16�m, and for distance r much greater than m, presents a four-

imensional characteristic. So it is expected to be a nonvanishing trace for this case, i.e.,
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�TA
A�x��Ren � 0. �68�

Another point that we want to mention is that �65� presents two contributions, the first one
oming from the uncharged component of the scalar field, �TAB�x��Ren

�0� , and the second coming

rom the other components, �T̄AB�x��Ren. The dimensional analysis of the renormalized vacuum
xpectation value of the energy-momentum tensor associated with a scalar field in a four-
imensional global monopole space-time has been developed in Ref. 8 considering this object as
pointlike one. Although the authors did not calculate explicitly this quantity, they present its

eneral structure.
Here in this paper we also shall not calculate explicitly �TAB�x��Ren. However we can say that

he general structure for this tensor is

�TA
B�x��Ren =

1

mr4 �FA
B�r/m,�� + GA

B�r/m,��ln��r/��� , �69�

here FA
B and GA

B are polynomials in the ratio r /m and depending on the parameter � which codify
he presence of the global monopole.

II. CONCLUDING REMARKS

In this paper we have explicitly calculated the complete Green function associated with a
assless scalar field in a five-dimensional Kaluza-Klein magnetic monopole superposed to a

lobal monopole, for points very far from the monopole’s center. This function is given in terms
f two distinct contributions, one coming from the uncharged component of the scalar field, and
he other from the other components,

G�x�,x� = G�0��x�,x� + �
n=1

�

G�n��x�,x� = G�0��x�,x� + Ḡ�x�,x� . �70�

aving this function, it was possible to analyze the vacuum polarization effects due to this field in
his gravitational background. Explicitly we analyzed the vacuum expectation value of the square
f the field. This quantity is formally given by

��*�x���x�� = lim
x�→x

G�x�,x� = lim
x�→x

�G�0��x�,x� + Ḡ�x�,x�� . �71�

owever because this quantity provides a divergent result, to obtain a finite and well-defined
esult, we must apply some renormalization procedure. We have applied the point-splitting renor-
alization procedure. As we have said before, the basic idea of this method consists to examine

he singular behavior and subtract the divergent terms off, getting a finite result. We did this in a
ystematic way, by subtracting from the Green function the “Hadamard” one. This procedure has
een developed separately for the two distinct contributions. For the first one, we observed that the
ingular behavior of G�0��x� ,x� is similar to the four-dimensional Green function. However for the

econd contribution, the singular behavior of Ḡ�x� ,x� contains structure of the five- and four-
imensional Green function.

The Hadamard function for the first contribution could be constructed by knowing the Had-
mard function for an ordinary four-dimensional space-time, GH

�4��x� ,x�; however the second case
resents a new structure. So we must construct the respective Hadamard function in an appropriate

ay, ḠH�x� ,x�. So the renormalized vacuum expectation value of the square of the scalar field

ecomes

                                                                                                            



B
t
d
t
t

e
i

i

A

f

A

w

b

w

U
t

012302-13 The Euclidean scalar Green function J. Math. Phys. 47, 012302 �2006�

                        
��*�x���x��Ren = lim
x�→x

�G�0��x�,x� − GH
�4��x�,x�� + lim

x�→x

�Ḡ�x�,x� − ḠH�x�,x�� . �72�

y these analyses we may conclude that although being five dimensional, because of the compac-
ification of the fifth coordinates, with period 16�m, and also because we are considering points at
istance to the monopole, r, much greater than m, this space presents four-dimensional behavior in
he singular behavior of the Green function. Consequently, there appears a logarithmic contribu-
ion in the above renormalized VEV, which presents an arbitrary energy scale �.

We also analyze the general structure of the renormalized vacuum expectation value of the
nergy-momentum tensor, �TAB�x��Ren. By dimensional arguments and also by the result obtained
n previous analysis, we infer that this quantity behaves as

�TA
B�x��Ren =

1

mr4 �FA
B�r/m,�� + GA

B�r/m,��ln��r/��� .

Unfortunately we did not calculate the explicit expressions to the two tensors above. By
nspection we can see that they present dependence on the ratio r /m up to second power.
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PPENDIX: CALCULATION OF THE SECOND CONTRIBUTION OF „33…

The second contribution to the Green function given by �33�, Ḡ�r ,r��, is given by

Ḡ�r,r�� = �
n=1

�

G�n��r,r�� �A1�

ith

G�n��r,r�� =
1

128�5/2m�

1
�rr�

�
l=q

�

�2l + 1�In �A2�

eing

In = �
0

�

ds s−3/2e−�/4�2sI�l
q��/s�e−sn2/64m2

�A3�

ith

� = r2 + r�2 and � =
rr�

2�2 . �A4�

Now let us first define a new variable y=� /s. So we obtain

In =
1

�1/2�
0

� dy
�y

e−y��/4�2��I�l
q�y�e−��/y��n/8m�2

. �A5�

nfortunately we did not find such integral in the literature. So in order to develop an expression
−�n2/64m2y
o the Green function we expand e in a series power getting
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In =
1

�1/2�
k=0

�
�− �n/8m�2��k

k!
�

0

�

dy y−k−1/2e−y��/4�2��I�l
q�y� . �A6�

n page 716 of Ref. 12, there is a similar formula for the above integral; however in that table
here is a condition on the order of the modified Bessel function and the power of the variable y,
hat is not satisfied by the integrand of �A6�, i.e., �l

q+1/2−k is not always a positive number.
owever adopting the correspondent formula, we obtain

In =� 2

��
�
k=0

�
��n/8m�2��k

k!
Q

�l
q−1/2

−k �cosh u�sinhk u . �A7�

ow substituting the integral representation below to the Legendre function12

Q�
��cosh u� =��

2

e��i sinh� u

��1/2 − �� �u

� dte−��+1/2�t

�cosh t − cosh u��+1/2 , �A8�

e get

In =
1

���
�
k=0

�
�− �n/4m�2��k

�2k�! �
u

� dt e−�l
qt

�cosh t − cosh u
�cosh t − cosh u�k. �A9�

lthough each integral of the series diverges for k��l
q+1/2, interchanging the sum with the

ntegral, we see that the total series obtained is the series of the cosine, so we finally get

In =
1

���
�

u

� dt e−�l
qt

�cosh t − cosh u
cos��n/4m����cosh t − cosh u�� . �A10�
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We investigate cohomological gauge theories in noncommutative R2D. We show
that vacuum expectation values of the theories do not depend on noncommutative
parameters, and the large noncommutative parameter limit is equivalent to the
dimensional reduction. As a result of these facts, we show that a partition function
of a cohomological theory defined in noncommutative R2D and a partition function
of a cohomological field theory in R2D+2 are equivalent if they are connected
through dimensional reduction. Therefore, we find several partition functions of
supersymmetric gauge theories in various dimensions are equivalent. Using this
technique, we determine the partition function of the N=4 U�1� gauge theory in
noncommutative R4, where its action does not include a topological term. The
result is common among �8-dim, N=2�, �6-dim, N=2�, �2-dim, N=8� and the
IKKT matrix model given by their dimensional reduction to 0-dim. © 2006 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2162127�

. INTRODUCTION

The first break through of the recent calculation technology for N=2 supersymmetric Yang-
ills theories is brought by Nekrasov.21,23 After Ref. 21, many kinds of developments appear in
�2 supersymmetric Yang-Mills theories and string theories corresponding to them. From those

nalysis, it is found that different dimension theories are related to each other.7,17,18,33,35 There are
ore examples that the different dimensional theories are connected to each other. For example,
ijkgraaf and Vafa show that some correlation functions in matrix theories and N=1 Yang-Mills

heories are equivalent.5 It goes on and on. These facts imply the existence of some kind of unified
erspectives. One of the ideas to explain the unification is the ’tHooft’s large N gauge theory and
tring correspondence. Until now, many investigations from this point of view are reported. Mean-
hile, the large N gauge theories are similar to noncommutative theories in the operator formalism

n some infinite-dimensional Hilbert space with discrete basis. In this paper, we suggest a simple
ay to understand the reason why partition functions of various dimensional supersymmetric
auge theories are given as the same form or have relations with each other. The basic idea of the
ay is given in Refs. 28, 29, and 27. Cohomological gauge theories in Euclidian spaces are

nvariant under the noncommutative parameter shifting, as we will see in the next section. When
e take the large noncommutative parameter limit, kinetic terms become irrelevant like dimen-

ional reduction, then the partition function is essentially computable by using lower dimensional
heories. From this fact, we will explain that partition functions in various dimensions are equiva-
ent.

�Electronic mail: sako@math.keio.ac.jp
�
Electronic mail: tsuzuki@phys.ocha.ac.jp

47, 012303-1022-2488/2006/47�1�/012303/36/$23.00 © 2006 American Institute of Physics
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Here is the organization of this paper. In Sec. II, invariance of cohomological field theories in
oncommutative R2D �NC R2D for short� under deformation of noncommutative parameters will
e proved formally. This invariance is not usual symmetry, because the action is deformed. Nev-
rtheless, expectation values and partition functions are invariant. Particularly, we will treat the
=2 and N=4 Yang-Mills theories in NC R4 as examples. In Sec. III, universality of the partition

unctions will be investigated. By using the result of Sec. II, we will show that the several partition
unctions in different dimensions are equivalent. �In Appendix B, concrete discussions for some
odels will be given again.� In Sec. IV, by the technique of Sec. II we will calculate the partition

unction of the N=4 U�1� gauge theory in NC R4 without the terms proportional to the instanton
umber �F∧F. This partition function is equal to partition functions of several dimensions. In Sec.
, the moduli space of N=4 U�1� gauge theory in NC R4 will be discussed. The partition function
f N=4 U�1� theory with �F∧F will be investigated, too. In Sec. VI, we will summarize this
aper.

I. NC COHOMOLOGICAL YANG-MILLS THEORY

In this section, we investigate some important properties of the cohomological Yang-Mills
heories in NC R2D whose noncommutativity is defined as

�x�,x�� = i���, �1�

here the ��� is an element of an antisymmetric matrix and called noncommutative parameter.
Since action functionals of cohomological field theories are defined by BRS-exact functionals

ike �̂���i�, where �̂ is a some BRS operator and ��i� represent all considered fields and � is a
ome fermionic functional, the partition function of the cohomological field theory is invariant
nder any infinitesimal variation �� which commutes �or anticommutes� with the BRS transfor-
ation,

�̂�� = ± ���̂ ,

��Z� =� 	
i

D�i ��
−� dx2D �̂��exp�− S�� = ±� 	
i

D�i �̂
−� dx2D����exp�− S�� = 0.

�2�

et �� be the infinitesimal deformation operator of the noncommutative parameter � which oper-
tes as

����� = ����, �3�

here ���� are some infinitesimal antisymmetric two form elements. If �� and BRS operator �̂
ommute each other, then the partition function is invariant. Indeed, there is some examples such

hat �̂��=���̂, and partition functions are calculated by using this property.28,29,27

In this paper, cohomological Yang-Mills theories in noncommutative Euclidian spaces are
iscussed. If there is a gauge symmetry, the BRS-like transformation is slightly different from the
ne of nongauge theory. The BRS-like symmetry is not nilpotent but

�̂2 = �g,�, �4�

here �g,� is a gauge transformation operator deformed by some noncommutative deformation
ethod like the star product ��. As occasion arises, the gauge transformation �g,� is defined as one

ncluding global symmetry transformations. The partition function of the noncommutative co-
omological field theory is invariant under changing noncommutative parameters when the BRS
ransformation does not depend on the noncommutative parameters, because the BRS transforma-

ˆ
ion � and the � deformation �� commute. Conversely, when the definition of the BRS-like
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perator �4� depends on the noncommutative parameter �, then �̂ and �� do not commute,

���̂ � �̂�� ⇒ ���̂ = �̂���, �5�

here �̂� is a BRS-like operator that generates the same transformations as the original BRS-like

perator �̂, except for the square. The square of �̂� is defined by

�̂�2 = �g,�+��. �6�

ince the gauge symmetry is defined by using noncommutative parameter ���+���� after the ��

peration, this difference arises. This fact makes a little complex problem to prove the �-shift
nvariance of noncommutative cohomological Yang-Mills theory in comparison with the case of
ongauge theory.

Note that the essential point of this problem is not nilpotent property changing, but � depen-
ence of the definition of the BRS operator. �In fact, we can construct the BRS operator for the
ohomological Yang-Mills theory as a nilpotent operator.3�

However, we can prove the invariance of the partition function of cohomological Yang-Mills
heory in NC R2D under the noncommutative parameter deformation. For simplicity, we take

����� = �
i

�2i−1,2i� = �
 0 1

− 1 0
� � ¯ � 
 0 1

− 1 0
� ,

here �2i−1,2i is an antisymmetric tensor such that �2i−1,2i=−�2i,2i−1=1, and we restrict the �
eformation to

� → � + �� .

In the following, we only use operator formalisms to describe the noncommutative field
heory, therefore the fields are operators acting on the Hilbert space H. Then differential operators

� are expressed by using commutation brackets −i���
−1�x� , � ����̂� , � � and �d2Dx is replaced with

et���1/2 TrH. Therefore the noncommutative parameter deformation is equivalent with replacing
i���

−1�x� , � and det���1/2 TrH by −i��+�����
−1�x� , � and det��+���1/2 TrH, respectively.

Let us consider Donaldson-Witten theory �topological twisted N=2 Yang-Mills theory� on NC
4.36 This theory is constructed by bosonic fields �A� ,H��

+ , �̄ ,�� and fermionic fields �	� ,
��
+ ,��,

here �A� ,H��
+ , �̄� and �	� ,
��

+ ,�� are supersymmetric �BRS� pairs,


��
+ ,H��

+ � �2,+�R4,ad P�, 	� � �1�R4,ad P� ,

�7�
�,�̄,� � �0�R4,ad P� .

heir ghost numbers are assigned as �A� ,
��
+ ,H��

+ ,	� ,� , �̄ ,��= �0,−1,0 ,1 ,−1 ,−2,2�. The BRS-
ike operator is defined by

�̂A� = 	�, �̂
��
+ = H��

+ ,

�̂	� = D��, �̂H��
+ = i�
��

+ ,�� ,

�̂� = 0, �̂�̄ = �, �̂� = i��̄,�� , �8�

here the covariant derivative is defined by D�� ª ��̂�+ iA� , � � with �̂�ª−i���
−1x�. When we

onsider only the case of NC R2D, field theories are expressed by the Fock space formalism �See

ppendix A�. In the Fock space representation, fields are expressed as A�
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A�m1m2

n1n2 �n1 ,n2��m1 ,m2�, 	�=	�m1m2

n1n2 �n1 ,n2��m1 ,m2�, etc. Therefore, the above BRS transforma-

ions are expressed as

�̂A�m1m2

n1n2 = 	�m1m2

n1n2 , . . . . �9�

et us define gauge fermions as

� = �2
��
+ �− iF+�� + 1

2H+���� ,

�10�
�proj = − ��̄D�	�� ,

hen the action functional is given by

S = TrH L�A�, . . . ; �̂zi
, �̂z̄i

� = TrH tr �̂�� + �proj�

= TrH tr�F+2 − 4i
+��D�	� − �D�	� + i��
��
+ ,
+��� − i�̄�	�,	�� − �̄D�D��� , �11�

here tr is trace for gauge group. In this paper, we omit to note det���1/2 that is an overall factor,
or economy of space. Let us change the dynamical variables as

A� →
1
��

Ã�, 	� →
1
��

	̃�, �̄ →
1

�
�̃̄, � →

1

�
�̃ ,

�12�


��
+ →

1

�

̃��

+ , H��
+ →

1

�
H̃��

+ , � → �̃ .

ote that this changing does not cause nontrivial Jacobian from the path integral measure because
f the BRS symmetry. Then, the action is rewritten as

S →
1

�2 S̃, L�A�, . . . ; �̂zi
, �̂z̄i

� →
1

�2L�Ã�, . . . ;− ai
†,ai� . �13�

ere the action on the left-hand side depends on � because the derivative is given by �zi
=

��−1�ai
† , � and so on. In contrast, the action S̃ on the right-hand side does not depend on �

ecause all � parameters are factorized out. Using the BRS symmetry or the fact of Eq. �2�, it is
roved that the partition function is invariant under the deformation of �, because ��Z=

2�����−3�S̃�=0. TrH2 dim
tr��F+ 1

2	∧	� and tr �n are known as observables of Donaldson-Witten

heory. They are rewritten as �1/��TrH tr��̃F̃+ 1
2 	̃∧ 	̃� and tr �̃n. We use O to represent such

bservables, then ���O�=0 are proved in a similar way to the proof of ��Z=0. Therefore, invari-
nce of Donaldson-Witten theory under �→�+�� is proved.

We can discuss the topological twisted N=4 Yang-Mills theory in noncommutative R4

imilarly.34 �There are many kinds of topological twisted theories of N=4 Yang-Mills theory. We
nly consider Vafa-Witten-type theory.� There are additional fields �B��

+ ,c ,H�� and �	��
+ , �̄ ,
��,

here �B��
+ ,c ,H�� are bosonic fields and �	��

+ , �̄ ,
�� are fermionic fields, where B��
+ ,	��

+

�2,+�R4 ,ad P�. They are supersymmetric partners, and the BRS multiplets are expressed by the

ollowing diagram:
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here are two BRS-like operators �̂+ and �̂− because of the R-symmetry of the N=4. The �̂+

ransformations are given by

�̂+B��
+ = 	��

+ , 	��
+ = i�B��

+ ,�� , �14�

�̂+
� = H�, �̂+H� = i�
�,��, �̂+c = �̄, �̂+�̄ = i�c,�� , �15�

nd the same transformations as �8� for other fields. The action of the topological twisted N=4
ang-Mills theory without the �F∧F is

S = TrH tr �̂+�
��
+ �H+�� − i�F+�� − i�B��

+ ,B��
+ ���� − i�B��

+ ,c���� + TrH tr �̂+�
��H� − i�− 2D�B��
+

− D�c��� + TrH tr �̂+�i��,�̄�� − i�̄�c,�̄� + i�B+��,�̄�	��
+ + �D��̄�	�� . �16�

or this action, we change the variables as

B��
+ →

1
��

B̃��
+ , 	��

+ →
1
��

	̃��
+ , c →

1
��

c̃, �̄ →
1
��

�̃̄ ,


� →
1

�

̃�, H� →

1

�
H̃�

ith �12�, then S→ �1/�2�S̃, and S̃ does not depend on �. At last, invariance of the N=4 topo-
ogical twisted theory under �→�+�� is proved as the same as the Donaldson-Witten theory.

It is worth commenting on the topological term �F∧F that exists in the usual Vafa-Witten
heory but now is removed. This term is not written by a BRS exact term, so we cannot adapt the
bove discussion to the topological term. But, it is natural that we expect that �F∧F is invariant
nder the � shift. Indeed, for instanton solutions constructed from noncommutative deformed
DHM data, we have proof of invariance of instanton number under � shift.14,26 This is why, we

xpect that the partition functions or vacuum expectation values are still invariants even if the
ction of the cohomological Yang-Mills theories include �F∧F �see also Sec. V�.

By applying these facts for several physical models, some interesting information can be
ound. For example, as we will see soon, we can show that the partition function of the noncom-
utative cohomological gauge theory and the partition function of the IKKT matrix model have a

orrespondence. This correspondence is not only for certain classical background theory as we
aw in Ref. 1. The reason is as follows. The IKKT matrix model is constructed as dimensional
eduction of the 10-dimensional super U�N� Yang-Mills theory with large N limit.2,12 This dimen-
ional reduction is regarded as the large noncommutative parameter limit ��→� in Sec. IV�.
aking the large N limit of the matrix model is similar to considering the Yang-Mills theories on
oncommutative Moyal space, i.e., matrices are regarded as linear operators acting on the Hilbert
pace caused from noncommutativity. By the way, the noncommutative cohomological Yang-Mills
odel on Moyal space in the large � limit is almost the same as the model of Moore, Nekrasov,

20
nd Shatashvili �MNS�. MNS show that the partition function is calculated by the cohomological
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atrix model in Ref. 20 and related works are seen in Refs. 4, 11, and 31. This cohomological
atrix model is almost equivalent to the IKKT matrix model. That is why we can produce similar

esult by using NC cohomological Yang-Mills theories. To show these facts concretely, we will
alculate the partition function of N=4, d=4 U�1� theory on NC R4 in Sec. IV by using the facts
iven in this section.

II. UNIVERSALITY OF PARTITION FUNCTIONS

In this section, we show that the large � limit is equivalent to dimensional reduction. From this
act, we find the universal perspective for the partition functions of supersymmetric Yang-Mills
heories in NC R2D.

In the preceding section, we consider the case of R4. There is two independent noncommu-
ative parameters �1 ,�2 for the NC R4, that is to say, after choosing proper coordinate noncom-

utative parameters are expressed as

����� =�
0 �1 0 0

− �1 0 0 0

0 0 0 �2

0 0 − �2 0
� . �17�

n the discussion of the preceding section, we take noncommutative parameter shift coincidently,
hat is �1=�2=�→�+��. However, we can shift �1 ,�2 independently without changing partition
unctions and vacuum expectations. Further, this discussion is extended to other dimensional
heories.

Let us consider more general cases than NC R4. Let noncommutative parameter matrix of NC
2D be �����= � �i�2i−1,2i. In the large �i limit, terms with derivative operators �x2i

ª

i��i�−1�x2i−1 , � � and −�x2i−1
ª−i��i�−1�x2i , � � become irrelevant in Lagrangians. If the partition

unction and the VEV of arbitrary observables of the cohomological field theory are well defined,
he terms including �x2i

or �x2i−1
are possible to be removed. �In Appendix B, concrete discussions

nd details are given.� In the complex coordinate expression, the terms including zi and z̄i deriva-
ives are omitted. Meanwhile, an arbitrary operator is expressed as

Ô = 
n1,m1

¯ 
nD,mD

Om1¯mD

n1¯nD �n1, . . . ,nD��m1, . . . ,mD� ,

y using fock space basis �see Appendix A�. We consider a quantum theory of infinite-dimensional
atrix model, and Om1¯mD

n1¯nD is a variable of path integration. Then we cannot distinguish dynamical
ariables

Om1¯mi−1mi+1¯mD

n1¯ni−1ni+1¯nD �n1, . . . ,ni−1,ni+1, . . . ,nD��m1, . . . ,mi−1,mi+1, . . . ,mD� �18�

rom Om1¯mD

n1¯nD �n1 , . . . ,nD��m1 , . . . ,mD� because both of them are infinite-dimensional matrices.
rom the facts that there is no �zi

or �z̄i
and it is impossible to distinguish dynamical variables

iving in R2D from variables in R2D−2, then we conclude that the large �i limit is equivalent to the
imensional reduction corresponding to x2i−1 and x2i directions.

We must note two points, here. The first point is that naive path integrals contain zero mode
ntegrals. To make the story precise, let us define the zero mode here. Let ��i� be a set of fields and
��i� be an action functional of a considered theory. Here, we define the zero mode �i

0 by
��i

0�=0. To make the partition functions be well defined, we manage the zero modes, in general.
ut it is difficult that the dealing with the zero modes is discussed in general terms. To avoid this
ifficulty, the discussion of the zero mode integrals are taken up in the individual cases. In Sec. IV,
e will closely study the handling of the zero modes for the case of N=4 U�1� gauge theory in

4
C R .
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The second point is that there might be BPS solutions that become singular at �i→� limit. To
he authors’ knowledge, such solutions have never been known until now, but we cannot deny their
xistence. Since we cannot estimate its contribution to the vacuum expectations when we calculate
hem at the large �i limit, we must rule out such singular configurations when we construct the
orrespondence between finite �i and infinite �i.

As a summary of these arguments, the following claim is obtained.
Claim: Let Z2D and �O�2D be a partition function and vacuum expectation value of O of a

ohomological field theory in NC R2D with D�1 such that ��Z2D=0 and ���O�2D=0. Here, zero
ode integrals and contributions from BPS solutions that become singular at large noncommu-

ative parameter limit are removed from the path integral of Z2D and �O�2D. Let Z2D−2 and �O�2D−2

e the partition function and vacuum expectation value of O of a noncommutative cohomological
eld theory in NC R2D−2, where they are given by dimensional reduction of Z2D and �O�2D. Then,

Z2D = Z2D−2, �O�2D = �O�2D−2, �19�

.e., the partition functions of such theories do not change under dimensional reduction from 2D
o 2D−2.

From this claim, we find that following partition functions of super Yang-Mills theories on NC
2D are equivalent:

ZN=2
8 dim = ZN=2

6 dim = ZN=4
4 dim = ZN=8

2 dim = Z***
0 dim, �20�

here ZN=J
I dim is a partition function of the N=J super Yang-Mills theory in noncommutative RI

ith arbitrary gauge group. They are obtained by dimensional reduction of the eight dimensional
=2 super Yang-Mills theory. Note that the topological terms in the actions of the above theories

hould be removed because the topological term is not universal between the different dimensional
heories. The proof of �20� is as follows. In the R2D, a topological twist exists at any time for

�2. Using the topological twist, the partition functions are described as the one of cohomo-
ogical field theories. Therefore, ZN=2

8 dim is invariant under �-shift and satisfies the condition of the
bove claim. After all, Eq. �20� is obtained. We will calculate the partition functions concretely in
he case of U�1� in the next section.

It is worth adding some comments about the above models. We consider noncommutative
uclidean spaces. N=4 super Yang-Mills theory in NC R4 is given as follows. At first, we
onstruct the four-dimensional N=4 super Yang-Mills theory by dimensional reduction of the
0-dimensional N=1 super Yang-Mills defined on Minkowski space with SO�9,1� symmetry. In
our dimensions, spinor in Euclidean space is defined as well as the spinor in Minkowski space.
herefore, we can construct the N=4 super Yang-Mills theory in R4 by formally replacing the
etric, gamma matrices and so on. Since the �-shift invariance of ZN=4

4 dim was shown explicitly in
ec. II �see also Appendix B�, theories connected to the N=4 d=4 super Yang-Mills theory

hrough the dimensional reduction appear in �20�.
This discussion is valid not only for the N=4 case. For example, we saw that the �-shift

nvariance of ZN=2
4 dim in Sec. II. Then, the similar relation should exist,

ZN=2
4 dim = ZN=4

2 dim = Z***
0 dim. �21�

Let us summarize this section. Universality of partition functions and vacuum expectation
alues of observables of NC cohomological field theories are discussed. From the claim, we found
hat N�2 supersymmetric models or cohomological field theories in NC R2D are invariant under
imensional reduction from 2D to 2D−2. In the following section, we will apply these facts to
oncrete calculations.

V. N=4 U„1… GAUGE THEORY IN NC R4

In this section, we calculate the partition function of the topological twisted N=4 U�1� gauge
4
heory in NC R , without the topological term �F∧F in its action.
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We perform the calculation in the �→� limit. The reason why we take this limit is as follows.
s explained in Sec. II, the partition function and other correlation functions of cohomological
eld theories on noncommutative spaces are invariant under the shift transformation of the non-
ommutative parameter �. So we obtain the exact result by taking �→� limit. Also this limit
akes the calculation executable.

In the operator formalism, field theories in NC R4 are expressed as infinite dimensional matrix
odels whose symmetry is U�N� �N→��. The size of matrices appearing in this model is infinite.
o perform the calculation, we introduce a cutoff for the matrix size. In addition, this matrix model
ontains trace parts which correspond to zero modes in �→�. Therefore we must carefully treat
he trace parts to make the path integral well defined.

In Sec. IV A, we give the action of the topological twisted N=4 U�1� gauge theory in NC R4

n the operator formalism, i.e., in terms of infinite-dimensional matrices. In Sec. IV B, we truncate
he size of the matrices into finite size, a finite integer N. In Sec. IV C, we explain that the
runcated N�N matrix model action obtained in the preceding section is equivalent to the dimen-
ion reduction of the 10 dimensional N=1 U�N� super Yang-Mills action to 0 dimensions. This
�N� matrix model contains traceless parts and trace parts. In Sec. IV D, we calculate the partition

unction of the traceless sector. The traceless sector is a SU�N� matrix model. The partition
unction of this SU�N� matrix model was obtained by MNS.20 By modifying their arguments, we
valuate the N→� limit of the partition function of the traceless sector. In Sec. IV E, we introduce
xtra parts into the matrices to handle the trace parts which are zero modes. The extra parts and
race parts are the next leading terms in the 1/�� expansion. In Sec. IV F, the calculation of the
race sector is performed. Our result is presented at the end of this section.

. Setting

In the Fock space formalism, i.e., in terms of �infinite-dimensional� matrices, the action of the
opological twisted N=4 U�1� gauge theory on NC R4 is expressed as

SN=4
4 dim = TrH �̂+�+ 
+���H��

+ − i�F��
+ − i�B��

+ ,B��
+ ���� − i�B��

+ ,c��� + 
��H� − i�− 2D�B��
+ − D�c��

+ i��,�̄�� − i�̄�c,�̄� + i�B+��,�̄�	��
+ + �D��̄�	�� . �22�

fter acting �̂+, �22� is rewritten as

SN=4
4 dim = TrH�H+���H��

+ − i�F��
+ − i�B��

+ ,B��
+ ���� − i�B��

+ ,c��� + 
+���− i�
��
+ ,�� + i�2D�	�

− 2i�B��
+ ,	��

+ ���� − i�	��
+ ,c� − i�B��

+ ,�̄��� + H��H� − i�− 2D�B��
+ − D�c�� + 
��− i�
�,��

− i�2D�	��
+ + 2i�	�,B��

+ � − D��̄ + i�	�,c��� + ��,�̄�2 + �c,���c,�̄� + �B+,��,�̄��B��
+ ,��

+ D��̄D�� + i��,��� + i�̄��̄,�̄� + i�̄�c,�� + i�	+��,�̄�	��
+ + i�B+��,��	��

+ + D��	�

+ i�	�,�̄�	�� . �23�

rom �22� or �23�, we find the BPS equations. For example,

F��
+ − i�B��

+ ,B��
+ ���� − i�B��

+ ,c� = 0,

− 2D�B��
+ − D�c = 0. �24�

In the following, we calculate the partition function ZN=4
4 dim formally defined as

Z4 dim =� Df e−SN=4
4 dim�f�, �25�
N=4
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here f represents all matrices A� ,	� , . . .. Also we use fboson and f fermion to denote bosonic
atrices A� ,H� , . . . and fermionic matrices 	� ,
� , . . ., respectively.

In usual commutative spaces, U�1� gauge theories are free if all matters belong to the adjoint
epresentation, because the gauge interactions between the fields belonging to the adjoint repre-
entation are described by commutators of matrices and all commutators vanish in the U�1� case.
owever, in noncommutative spaces, the noncommutativity of the multiplication induces the U�1�
auge theories to non-Abelian U�N� �N→�� like gauge theories. This U�N� �N→�� is identified
ith the unitary transformation group acting on state vectors of the Hilbert space H. �It is a
ell-known fact that the U��� is different from limN→� U�N�, in the meaning of the topology. In

his paper, we perform the calculation by using limN→� U�N�, and there is no denying that some
xtra collections appear from the difference. However, there is no doubt about validity of the
alculation of U�N� �N→�� as a good approximation even in this case.�

Let us consider to take the �→� limit in the calculation of the partition function ZN=4
4 dim. We

an evaluate the partition function exactly in this limit, as explained in Sec. II. In the �→� limit
e naively expect that all differential terms in the action vanish and dimensional reduction occurs

s we saw in Sec. III. Therefore, we can perform the calculation by using a matrix model in
-dimensional space whose symmetry is U�N� �N→��. We define the action in 0-dimensional
pace-time as

SMM
� = �SN=4

4 dim��→�: U�N��N → �� matrix model, �26�

hen, we find ZN=4
4 dim is equal to the partition function of the matrix model �26�,

ZN=4
4 dim =

1

Vol U�N��N → �� � Df e−SMM
�

. �27�

To calculate the partition function of this infinite-dimensional U�N� �N→�� matrix model
26�, we need to overcome the following problems.

i� The size of the matrices is infinite. To perform the calculation, we truncate the size of the
matrices into a finite integer N.

ii� The matrices contain trace parts. These trace parts play the role of zero modes. To make the
path integral well defined, we must carefully treat the trace parts.

In the rest of this section, we solve these problems and obtain the partition function �27�.

. Cutoff for matrix size

In this section we truncate the size of the matrices, to calculate the partition function.
The Hilbert space of the N=4 U�1� gauge theory on NC R4 is constructed by a Fock space

H = �
n1=0,n2=0

n1=�,n2=�

C�n1,n2� . �28�

We introduce a cutoff, a finite integer Nc, and truncate the Hilbert space into a finite-
imensional subspace HN whose dimension is N. We can perform such truncation in several ways.
or example, HN is defined by

HN = �
n1=0,n2=0

n1=Nc,n2=Nc

C�n1,n2� . �29�

or this case

dim HN = N = �Nc + 1�2, �30�
nd the unit matrix of HN is given as
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1N = �
n1=0,n2=0

n1=Nc,n2=Nc

�n1,n2��n1,n2� . �31�

he results and calculations do not depend on the definition of the cutoff in the following discus-
ion �see Appendix A�. Therefore we do not use concrete expression of the example �29�. By
efinition,

TrH 1N = dim HN = N . �32�

or later use, we define I as

I =
1

�N
1N, �33�

hich satisfies

TrH II = 1. �34�

We truncate the infinite-dimensional matrices appearing in �26� into finite-dimensional N
N matrices. We use the symbol fN to denote the N�N truncation of f . For example, of �29�, if

f = 
ni=0

�


mi=0

�

fm1m2

n1n2 �n1,n2��m1,m2� ,

hen

fN = 
ni=0

Nc


mi=0

Nc

fm1m2

n1n2 �n1,n2��m1,m2� .

Now we consider the finite-dimensional N�N matrix model SMM
N which is obtained by the

runcation from �26�

SMM
N = �SMM

� �N�N truncation. �35�

he partition function of the truncated matrix model �35� is defined by

�ZN=4
4 dim�N =

1

Vol U�N� � DfNe−SMM
N

. �36�

N�N matrix fN is decomposed into the traceless part and the trace part,

fN = fsu + f tr, �37�

here fsu is the traceless part and f tr is the trace part. The traceless part fsu is expanded by the
enerators of the Lie algebra su�N�,

fsu = 
a=1

N2−1

f �a�
a, a � su�N� , �38�

nd f tr is proportional to I,

f tr = f �1�I . �39�

he basis, a and I, satisfy the following orthonormal conditions:

TrHab = �ab, TrH II = 1, TrH aI = 0. �40�
tr
In the naive �→� limit �i.e., 0-dimension reduction�, Eq. �35� contains no trace part f ,
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ZMM
N = �ZMM

N �traceless� Df tr, �41�

here �ZMM
N �traceless is defined by

�ZMM
N �traceless =

1

Vol SU�N� � Dfsue−SMM
N �fsu�. �42�

Precisely speaking, the trace part of the auxiliary fields appear in �35�. After integrating out the
uxiliary fields, no trace part appears in �35�.� So the trace part f tr plays the role of the zero mode
uch that SMM

N �f tr�=0. To make the path integral well defined, we must carefully treat it. For other
andling the zero modes, see, for example, Ref. 32. However we postpone this task for the
oment. First, we concentrate on the traceless sector. Before the calculation of the traceless sector,
e explain the equivalence between �35� and the action considered in Ref. 20 in the next section.

. Relation to the work of MNS and IKKT

To explain that the equivalence between �35� and the action considered in Ref. 20, we first
ecall the fact that the dimensional reduction model from the D=10 N=1 super Yang-Mills theory
o 0 dimension can be reformulated into a cohomological matrix model.11,20 The 0-dimension

atrix model given by dimensional reduction from the D=10 N=1 super Yang-Mills theory is
xpressed as

SN=1
10→0 dim = tr
1

4
�AM,AN�2 +

i

2
�̄�M�AM,��� , �43�

here AM is the gauge vector fields and M ,N takes 1 , . . . ,10 for the 10-dimension Euclid space,
r 0 ,1 , . . . ,9 for the 10-dimension Minkowski space-time. � is a Majorana-Weyl spinor of the
0-dimension space-time. It contains real 16 components. �Note that there is no Majorana-Weyl
pinor in 10-dimension Euclidean space. So, if we consider the 10 dimensional model, we should
ake Minkowski space-time. To obtain the low-dimensional Euclidean model, we first perform
imensional reduction from 10 dimensions to lower dimensions, and then carry out Wick rotation.�

In Refs. 11 and 20, it is shown that �43� can be reformulated into a cohomological matrix
odel. The mapping rules between them are as follows.20 AM are arranged into complex matrices
and Bi �i=1, . . . ,4�,

Bi = A2i−1 + iA2i �for i = 1,2,3� ,

B4 = A9 + iA8, �44�

� = A7 + iA10,

nd � are arranged as

� → �	i,	i
†� � 
� � � , �45�

here 
� belongs to the 7 representation of Spin �7�. Introducing the bosonic auxiliary matrices H� ,
e can rewrite �43� into a cohomological form,

SMNS = tr �̂
 1

16
���,�̄� − i
� · E� + 
� · H� +

1

4
a=1

8

�a�Aa,�̄�� , �46�

�
here E is defined by
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E� = 
�Bi,Bj� +
1

2
�ijkl�Bk

†,Bl
†��i � j�,

i

�Bi,Bi
†�� . �47�

he BRS transformation rules are given as

�̂Aa = �a, �̂�a = ��,Aa� ,

�̂
� = H� , �̂H� = ��,
� � ,

�48�
�̂�̄ = �, �̂� = ��,�̄� ,

�̂� = 0.

rom �46� and �48�, the following BPS equations are obtained:

E� = 0, ��,�̄� = 0, �Aa,�� = 0. �49�

One can show that �46� is equivalent to �26�, by using the following correspondence rule:16

��,c,�̄� ⇔ 
�2�34,i
1
�2

��14 − �23�,�2�12� ,

�50�

�B��
+ �11

��,B��
+ �12

��,B��
+ �22

��� ⇔ 
�2�13,−
1
�2

��14 + �23�,�24� ,

here � is defined by

�k4 = − �4k =
1
�2

�Ak+4 + iAk+7�, �ij = ��ijk�k4�*, k = 1,2,3. �51�

Remark that the equivalence among �35�, �43�, and �46� holds for both U�N� group and SU�N�
roup.

By choosing gauge group SU�N� and setting N to be a finite integer, we obtain the equivalence
etween �35� and �46�,

�SMM
N �traceless = �SMNS�gauge group:SU�N�

N:finite . �52�

herefore

�ZMM
N �traceless = �ZMNS�gauge group:SU�N�

N:finite , �53�

here

�ZMNS�gauge group:SU�N�
N:finite =

1

Vol SU�N� � Dfsu exp�� − SMNS�fsu��gauge group:SU�N�
N:finite � . �54�

NS obtained the partition function �54�.20 �See also Ref. 6 where the partition function of the
-instanton model was calculated.�

On the other hand, by choosing gauge group U�N� and taking the N→� limit, the action �43�
ecomes the IKKT matrix model,12

SIKKT = � lim
N→�

SN=1
10→0 dim�gauge group:U�N�. �55�
o, we obtain the equivalence between �26� and �55�,
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SMM
� = SIKKT. �56�

. Calculation of traceless sector

As explained in the preceding section the partition function �42� is calculated in Ref. 20. Their
esult tells us that

�ZMM
N �traceless = 

d�N

1

d2 , �57�

here the summation is taken over all divisor d of the finite integer N.
One might expect that to obtain the contribution of the traceless part fsu to ZN=4

4 dim, one takes the
→� limit,

�ZMM
� �traceless = � lim

N→�
ZMM

N �traceless. �58�

owever N→� limit on the right-hand side of �57� is not well defined. The reason is as follows.
e see that the right-hand side of �57� is finite,


d�N

1

d2 � 
n=1

N
1

n2 � 1 + �
1

�

dx
1

x2 = 2. �59�

ut d�N�1/d2� is not a monotonically increasing function of N. So it does not converge. For
xample, if we constrain N to be prime numbers,

lim
N→�


d�N

1

d2 = lim
N→�

�1 + N−2� = 1. �60�

f we constrain N=2N�,

lim
N→�


d�N

1

d2 = lim
N→�


n=0

N�

2−2n =
4

3
. �61�

herefore, we must give the proper definition of N→� limit.
To find a prescription which leads the definite answer of the N=� case, let us recall the

rgument of Ref. 20 where the result �57� is concluded for a finite N.
�i� The authors of Ref. 20 separated the coupling constant g to g, g̃ and ĝ �on the right-hand

ide of �46�, we omitted the coupling constant g�,

SMNS → tr �̂
 1

16g̃
���,�̄� − i
� · E� + g
� · H� +

1

4ĝ

a=1

8

�a�Aa,�̄�� . �62�

�ii� They deformed the action by redefining Eij, the �6 � 6̄�r part of E� , as

Eij = �ij − 1
2�ijkl�kl

† ,

�63�
�ij = �Bi,Bj� − m�ijk4Bk,

here m is a mass parameter. This mass deformation corresponds to the supersymmetry breaking
rom N=4 to N=1 in the picture of four dimensional space.

ˆ
�iii� They again separated the coupling constants g and g as
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g
� · H� → g�
i�j


ijHij + g�
7H7,

�64�
1

4ĝ

a=1

8

�a�Aa,�̄� →
1

4ĝ�

a=1

6

�a�Aa,�̄� +
1

4ĝ�


a=7,8
�a�Aa,�̄� .

�iv� Then, they took the following limit:

g� → 0 and ĝ� → 0. �65�

otice that each term in the action is BRS exact. So the partition function is independent of
eparated coupling constants g� ,g� , . . . . By taking �65�, the partition function is dominated by
onfigurations around solutions of the following fixed point equations:

�Bi,Bj� = m�ijk4Bk, �B4,Bi� = 0, �B4,�� = 0, i = 1,2,3, �66�

here Bi, B4 and � are all N�N matrices.
�v� The solution of �66� is given by

�Bi�N�N = �Li�a�a � 1d�d,

�67�
�B4�N�N = 1a�a � �B4�d�d, ���N�N = 1a�a � �d�d,

here a is a divisor of N and d is the quotient of N by a, and �Li�a�a denotes the generator of the
U�2� group in the a�a representation. Of course, there are other solutions of �66�,

�68�

here N=l=1
k Nl, Nl=al�dl. However as mentioned in Ref. 20 these solutions do not contribute

o the partition function. The solutions �68� contain bosonic zero modes, corresponding to extra
�1� parts trNl

� , . . ., and they are accompanied by their fermionic partners. The fermionic partners
lay a role of fermionic zero modes, and they vanish the path integral. So the solutions �68� do not
ontribute to the partition function.

�vi� In the above coupling limit �65� the authors integrated out Bi and corresponding fermionic
artners around the solutions �67� by the Gaussian integral. The Gaussian integrals from bosons
nd the one from fermions cancel each other, so they produce no nontrivial factor. The resulting

ffective action is a matrix model of d�d matrices, B4, its fermionic partner and �.
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�vii� The partition function of this d�d matrix model, we call it Zd, is given by

Zd =
1

d2 , �69�

hich is another result obtained in the same paper.20 The partition function �ZMM
N �traceless is given

y the sum of the contributions from the solutions, Zd=1/d2, so they concluded �57�.
Now let us turn to the N→� case. Our basic strategy is that taking large N limit is done after

alculations with finite N. However, the result depends on the definition of the large N limit as
entioned above. To find the proper definition of the large N limit, we consider a naive N=� case.
hat is, we do not take the N→� limit after obtaining the result of the finite N case, but we take

he matrices as ��� from the starting point for a moment. For the case of ��� matrix, the steps
i�–�iv� need no change, but the step �v� should be reconsidered. In ��� matrix, we can embed

solution which has a direct product of an arbitrary finite-dimensional matrix and an infinite-
imensional matrix. Therefore we obtain solutions,

�Bi���� = �Li���� � 1d�d,

�70�
�B4���� = 1��� � �B4�d�d, ������ = 1��� � �d�d.

ow d takes all natural numbers, and �Li���� are the generator of the SU�2� group in the ���
epresentations. Solutions, like �68�, again do not contribute to the partition function. Moreover,
ne can construct other types of solutions,

�Bi���� = �Li�a�a � 1���,

�71�
�B4���� = 1a�a � �B4����, ������ = 1a�a � ����,

nd

�Bi���� = �Li���� � 1���,

�72�
�B4���� = 1��� � �B4����, ������ = 1��� � ����.

he step �vi�, integrating out of Bi and their fermionic partners, again produces no nontrivial
actor, because the cancellation of the Gaussian integrals between bosons and fermions holds for
he case of infinite-dimensional integral. Therefore the partition function ZMM

� is given by the sum
f contributions from the solutions �70� and �71�, and �72�,

ZMM
� = ZMM

���d� + ZMM
�a��� + ZMM

�����, �73�

here the first term on the right-hand side comes from �70�, the second from �71�, and the third
rom �72�. ZMM

���d� is still given by the sum of Zd=1/d2, as the step �vii�, but in this N=� case d
uns all natural numbers N. On the other hand, it is natural to expect that ZMM

�a��� and ZMM
����� vanish,

ecause

ZMM
�a��� �  lim

d→�

1

d2 = 0, ZMM
����� �  lim

d→�

1

d2 = 0, �74�

f �69� is valid for d=�. So we conclude

�ZMM
� �traceless = 

d�N

1

d2 = ��2� =
�2

6
. �75�

From these considerations, we propose the following definition of the large N limit. Let

�ni ,k� be
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N�ni,k� � 	
i=1

k

Pi
ni, �76�

here Pi are ordered prime numbers, i.e., P1=2� P2=3� ¯ � Pk, and k and ni are positive
ntegers. We define the large N limit by

lim
N→�

� lim
k→�

lim
ni→�

. �77�

sing this definition, we reproduce the same result as �75�,

�ZMM
� �traceless = lim

k→�
lim

ni→�

li=0

ni 1

�	i=1

k
Pi

li�2
= 	

i=1

�
1

1 − Pi
−2 = ��2� =

�2

6
. �78�

It is well known and will be seen in Sec. V that the partition function of this case is the sum of
he Euler number of the moduli space, 
�Mk� which takes a rational number in general. So one
ay expect that �ZMM

� �traceless is given by a rational number. However the summation is an infinite
ne, then it could take an irrational number, �2 /6.�

. Introduction of extra terms

In this section, we deal with the zero mode problem. The origin of this problem is the fact that
o trace part appears in �35�. The reason why all trace parts vanish in �35� is that we drop all
ifferential terms in the �→� limit. To solve the zero mode problem, we keep the next leading
erms including the trace parts in the 1/�� expansion.

Let us explain the outline of our calculation. To keep the next leading term, we bring back
ome extra part fex living in the outside of HN. The definition of fex is given later in this section.
oughly speaking, fex are matrices appearing in kinetic terms �1/��fex�f tr in �23�. By keeping fex,

he part of �22� or �23� which includes the trace part f tr does not vanish,

Str�ex�f tr, fex� = �SN=4
4 dim�trace part − O�1/�1+�� � 0, �79�

here � is an arbitrary positive real number. Then the partition function of �79� is well defined,

Ztr�ex =� Df trDfexe−Str�ex�f tr,fex�: well defined. �80�

We suppose fex has the following expansion form:

fex = 
�=1

4

f ���T�. �81�

� is essentially defined by the commutator of �̂� and 1N. The precise definition of T� is as
ollows. First of all, we define T� as the commutator of �̂� and 1N, i.e.,

T� = ��̂�,1N� . �82�

n the Fock space formalism, �̂� is given as

�̂1 =
1

�2�1
�a1 − a1

†�, �̂2 =
− i

�2�1
�a1 + a1

†� ,

�83�
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�̂3 =
1

�2�2
�a2 − a2

†�, �̂4 =
− i

�2�2
�a2 + a2

†� ,

here ai is the annihilation operator and ai
† is the creation operator. Given the definition of 1N, for

xample �31�, we obtain

T1 =
�N + 1
�2�1 
− 

n2=0

N

�N,n2��N + 1,n2� − 
n2=0

N

�N + 1,n2��N,n2�� ,

T2 =
− i�N + 1

�2�1 
− 
n2=0

N

�N,n2��N + 1,n2� + 
n2=0

N

�N + 1,n2��N,n2�� ,

�84�

T3 =
�N + 1
�2�2 
− 

n1=0

N

�n1,N��n1,N + 1� − 
n1=0

N

�n1,N + 1��n1,N�� ,

T4 =
− i�N + 1

�2�2 
− 
n1=0

N

�n1,N��n1,N + 1� + 
n1=0

N

�n1,N + 1��n1,N�� .

sing �84�, we can show

TrH T�T� =
N

�i������, �85�

here i���= ���+1� /2� with the symbol � � indicating a Gaussian symbol. T� is defined by

T� =
��i���

�N
T�, �86�

o satisfy

TrH T�T� = ���. �87�

Here we list some formulas about I and T�, which will be used in the calculation of the
artition function. They are

TrH II = 1, TrH T�T� = ���, TrH IT� = 0, �88�

TrH I��̂�,I� = 0, TrH I��̂�,T�� = −
1

��i���
���,

�89�

TrH T���̂�,I� = +
1

��i���
���, TrH T���̂�,T�� = 0,

nd

TrH I�I,I� = 0, TrH I�I,T�� = 0,

�90�

TrH I�T�,T�� = +
i�i���

�N
���

−1, TrH T��T�,T�� = 0.

or the proof of �88�–�90�, see Appendix A. Note that these formulas do not depend on the detail

f the definition of the cutoff or �31�.
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Remark that, in the N→� limit, TrH I�T� ,T�� vanishes,

lim
N→�

TrH I�T�,T�� = 0. �91�

e will use this N→� behavior to reduce the calculation of the partition function to the Gaussian
ntegral.

. Calculation of trace and extra sector

Now, let us calculate the partition function �80�. First of all, we list the quantities appearing in
he calculation. Because the model is constructed as a balanced topological field theory, it is
atural to classify them into the BRS multiplets. For �A� ,H� ,	� ,
� ,H��,

�92�

nd for �B��
+ ,	��

+ ,
��
+ ,H��

+ �,

�93�

ote that A��1� and A���� are coefficients of I and T�, i.e., A�=A��1�I+su�N�A��a�
a+A����T�,

nd other fields are noted by similar manner.
It is necessary to comment on the net components of �A���� ,	���� ,
���� ,H����� in �92� and

B�����
+ ,	�����

+ ,
�����
+ ,H�����

+ � in �93�. In the following, we use the term �� ,�� self-dual which

eans that A���� satisfies A����=
1
2�����A����.

�i� �A���� , . . . � have not 16 but four components. Three of them satisfy the self-dual relation
nd one is A����,

�A�����A���� = 1
2�����A������,�� self-dual� and �

�=1

4

A����� . �94�

�ii� �B�����
+ , . . . � have four components corresponding to B�����

+ ,

B�����
+ = 

�=1

4

B�����
+ . �95�

¯ ¯
On the other hand, �� ,c ,� ,� ,�� contain only trace parts
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��1�

�̂−↘
�̄�1�

�̂+↗
c�1�

�̂−↘
��1�

�̂+↗
�̄�1�

. �96�

Later we obtain the Gaussian action ��106�–�115�, �119�, and �120��. For example, in �106� we
nd a term proportional to


���1�
+ �A���� − A����� .

rom this and other terms in �106�–�115�, �119�, and �120�, we see that the net components
94�–�96� should be taken to remove the zero modes.

Taking the net components �94�–�96� and using �88�–�90�, we obtain

Str�ex = TrH �̂+�+ 
���
+��T��H�����

+ T� − ���̂�,A��1�I� − ��̂�,A��1�I��� + 
�1�
+��I�H���1�

+ I − ���̂�,A����T��

− ��̂�,A����T���� + 
���
� T��H����T� − �− 2��̂�,B���1�

+ I� − ��̂�,c�1�I��� + 
�1�
� I�H��1�I

− �− 2��̂�,B�����
+ T�� − ��̂�,c���T���� − ��̂�,�̄�1�I�	����T�� + O�N−1/2� . �97�

ote that B�����
+ may look like 12 components but only B�����

+ proportional terms survive in

rH 
�1�
� I��̂� ,B�����

+ T��. In the N→� limit, only quadratic terms survive,

Str�ex
� = lim

N→�
Str�ex:quadratic action. �98�

Alternatively, we can take the weak coupling limit in the calculation. In general, partition func-
ions of cohomological field theories are independent of coupling constants. So they can be
valuated exactly in the weak coupling limit.�

The action �98� has the following gauge symmetry:

�gaugeA���� =
1

��i���
�����1�. �99�

ote that the gauge parameter � contains only one component ��1�,

� = ��1�I . �100�

Now we give the BRS transformation rules for f �1� and f ���. Except for A���� ,	���� and

��1� ,	��1�,

�̂+B��� = F���, �̂+F��� = 0,

�101�
�̂+

2B��� = 0, �̂+
2F��� = 0,
nd
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�̂+B�1� = F�1�, �̂+F�1� = 0,

�102�
�̂+

2B�1� = 0, �̂+
2F�1� = 0,

here B denotes the bosonic matrix and F denotes the fermionic one.
For A���� ,	���� and A��1� ,	��1�,

�̂+A���� = 	����, �̂+	���� = +
1

��i���
�����1�,

�̂+
2A���� = +

1
��i���

�����1�, �̂+
2	���� = 0, �103�

nd

�̂+A��1� = 	��1�, �̂+	��1� = 0,

�104�
�̂+

2A��1� = 0, �̂+
2	��1� = 0.

For simplicity, in this section we set �1=�2=� in the following. Using �88�, �89�, �103�, �104�,
nd �98� is shown to be

Str�ex
� = Str�ex

� boson + Str�ex
� fermion, �105�

here

Str�ex
� boson = + H�1�

+���H���1�
+ +

i
��

�A���� − A������ �106�

+ H���
+���H�����

+ −
i

��
���

�A��1� − ��
�A��1��� �107�

+ H�1�
� �H��1� +

i
��

�− 2B�����
+ �� �108�

+ H���
� �H���� −

i
��

�− 2B���1�
+ + ���c�1��� �109�

+
4

�
�̄�1���1�, �110�

nd

Str�ex
� fermion = −

i

�1�

+���	���� − 	����� �111�
��
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−
2i
��


���
+��	��1� �112�

+
i

��

�1�

� �2	�����
+ � �113�

−
i

��

���

� �2	���1�
+ + ����̄�1�� �114�

+
i

��
��1�	���

� . �115�

Now we fix the gauge symmetry �99�. We introduce the ghost �, the antighost �̄ and the
akanishi-Lautrup field b. Their ghost numbers are assigned as �+1,−1,0� for �� , �̄ ,b�, respec-

ively. BRS transformations for ��̄ ,b ,�� are defined as

�̂+b = �, �̂+� = 0, �̂+�̄ = 0. �116�

ecause the gauge symmetry is given by �99�, ��̄ ,b ,�� contain only the trace parts.
Let us introduce a gauge fixing action by

Sgf = TrH �̂+��̄�1�I�b�1�I + ��̂�,A����T���� . �117�

o get the BRS exact action including the gauge fixing action, let us deform the BRS transfor-
ation rules for A���� ,	���� �103� as

�̂+A���� = 	���� +
1
��

�����1�,

�118�

�̂+	���� = +
1
��

�����1�.

117� is rewritten into

Sgf = + b�1�
b�1� −
1
��

A�,���� �119�

+
4

�
�̄�1���1� +

1
��

�̄�1�	����. �120�

We list degrees of the Gaussian integral in �106�–�115�, �119�, and �120�.

From bosons

degree
3+3 H���1�

+ , A���� �� ,�� self-dual in �106�
4+4 H���

+��, A��1� in �107�
4+4 H�1�

� , B���
+�� in �108�

+1+3+1 H���� �� ,�� self-dual, H����, B���1�
+ , c�1� in �109�

1+1 ��1�, �̄�1� in �110�
1+1 b�1�, A���� in �119� �121�
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From fermions

degree
3+3 
���1�

+ , 	���� �� ,�� self-dual in �111�
4+4 
���

+��, 	��1� in �112�
4+4 
�1�

� , 
���
+�� in �113�

+1+3+1 
���� �� ,�� self-dual, 
���
� , 
���1�

+ , �̄�1� in �114�
1+1 ��1�, 	���

� in �115�
1+1 ��1�, �̄�1� in �120� �122�
From �121� and �122�, we see that the path integral contains no zero mode, so we obtain a

efinite partition function. We adopt a standard path integral measure, which is largely expressed
y

Df = 	 dfboson

�2�
	 df fermion, �123�

here fboson denotes a bosonic field and f fermion denotes a fermionic field. For the precise definition
f Df and the validity of this choice, see the next section and Appendix C. Then Ztr�ex

� is
alculated as 1,

Ztr�ex
� =� Df e−�Str�ex

� +Sgf� = 1. �124�

. Results and remarks of this section

From �78� and �124�, we conclude that the partition function of the N=4 U�1� gauge theory
n NC R4 is given by

ZN=4
4 dim = ZMM

� = �ZMM
� �tracelessZtr�ex

� =
�2

6
. �125�

We comment on the universality of partition function �20�. Our calculation consists of largely
wo steps. In the first step the traceless part is treated, then in the second step the trace and extra
arts are managed. The first step is manifestly dimensionally independent, because after the
imensional reduction to 0 dimensions all actions of �8-dim, N=2�, �6-dim, N=2�, �4-dim, N
4�, and �2-dim, N=8� are the same as the IKKT matrix model action. On the other hand, the
alculations in the second step may seem to depend on the dimension of the model, since we keep
he derivatives, �̂�. However, the same result Ztr�ex

� =1 is expected to be universal. The reason is
s follows. The second step, introducing the extra part and fixing the gauge symmetry �99�, is a
ind of regularization of the zero mode integral. As expected from the other regularization method,
or example, naively dropping the trace part, equivalent to dividing the path integral measure by
he U�1� gauge volume, the regularization should produce a trivial factor 1. In our regularization
ethod, this is implemented by the supersymmetry. Also, as explained in Appendix C, our regu-

arization is valid for all of �8-dim, N=2�, �6-dim, N=2�, �4-dim, N=4�, and �2-dim, N=8�. Then
e conclude

ZN=2
8 dim = ZN=2

6 dim = ZN=4
4 dim = ZN=8

2 dim =
�2

6
. �126�

Finally, we make a remark relating the mathematical significance of �126�. In topological field
heories, the path integral can be decomposed into finite-dimensional integrals of the moduli space
efined by the BPS equations and infinite-dimensional integrals of fluctuations around each
acuum. The absolute value of the infinite-dimensional integrals of the fluctuations should be

ormalized to 1 to make the partition functions well defined, then only the integrals of the moduli
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pace remain �see also Appendix C�. If the moduli space is compact, the remained moduli integrals
roduce a definite number, which is the Euler number of some vector bundle over the moduli
pace. In the case of this section, each 1/d2 in �75� corresponds to the Euler number. In this light,
ur prescription above, adopting the measure �123� to obtain �124�, is an almost unique choice,
hough it may seem to be chosen by hand. Also, for the traceless part, the similar prescription is
erformed in Ref. 20. To conclude, the result �2 /6 is decided without ambiguity and has an
bsolute meaning as a topological invariant.

. MODULI SPACE AND INSTANTON NUMBER

In this section, we concentrate on the relation between the moduli space of the Monads and
he partition function of the N=4 supersymmetric Yang-Mills theory. The partition function of
afa-Witten theory is given by the generating function of the Euler number of some vector bundle
ver the moduli space with sign ±1,

Z = 
k=1

�k
�Mk�qk, �127�

qk = e2�ik, �k = ± 1. �128�

ere  is the complex coupling constant and Mk is the moduli space defined by

�A,B,c�F+�� − i�B��
+ ,B�

+�� − i�B��
+ ,c� = 0,2D�B+�� + D�c = 0�/G , �129�

here G is the gauge transformation group. In addition, if 
�� ,
� zero modes are sections of the
otangent bundle of Mk, then 
�Mk� is the Euler number of Mk. Particularly, the base four-fold
atisfies the vanishing theorem in Ref. 34, then the moduli space is identified with the instanton
oduli space with its instanton number k. Therefore, it is important to investigate the Mk.

It is natural to assume that the topology of the moduli space does not change under the �-shift.
fter dimensional reduction �large � limit�, let us replace variables as �44�, �50�, and �51�. As
perators, fields are infinite-dimensional matrices. If matrix size of these Bi is cut off at N, BPS
qs. �24� are replaced by hyper-Kähler momentum maps,

�C ª �Bi,Bj� + 1
2�ijkl�Bk

†,Bl
†� = 0,

�130�

�R ª 
i=1

4

�Bi,Bi
†� = 0,

hen the moduli space is determined by

MN = ��C
−1�0� � �R

−1�0��/U�N� . �131�

t is known that the solutions of Eqs. �130� include the solutions of simultaneous ADHM
quations.25 � deformation realizes the continuous connection between �129� and �131�. This is a
irect correspondence between BPS equations of noncommutative field theory and Monads by
eans of changing the noncommutative parameter.

Turning now to the next issue, let us study the partition function whose action functional
ncludes the topological term. In Sec. VI, we perform the calculation with the action functional
hich does not include the term of �F∧F �or  TrH F∧F�. In the MNS calculation, they use the
ass deformation to decompose the theory to more simple ones whose partition function is given

y 1/d2 in �57�. �See Sec. 7 in Ref. 20 and Sec. IV D in this paper.� This mass deformation causes
upersymmetry breaking from N=4 to N=1. B1 ,B2 ,B3 become massive, and B4 ,B4

† and � , �̄ are

eft for massless fields. If we consider this mass deformation in the finite � theory, we find that
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auge fields are given from B4 ,B4
† and � , �̄ as four-dimensional theory, because the massless

elds correspond to the unbroken gauge fields. In the reduced theory after integrating out B1 ,B2,
nd B3, fixed point loci are defined by

�B4,B4
†� = 0, ��,�̄� = 0, �B4,�� = 0, �132�

here B4 ,B4
† and � , �̄ are d�d matrices where d is a divisor of N and is appearing in the

rgument of �57�. Furthermore, contributions for the partition function are given by isolated fixed
oints, as MNS mentioned in the end of Sec. V in Ref. 20. At least one of B4 and � is the rank d,
hen B4 and � are solutions of the fixed point equations and the fixed points contribute to the path

ntegral. Because if rank �d then there are zero modes of the equations

��B4,B4
†� + �B4,�B4

†� = 0, ���,�̄� + ��,��̄� = 0, ��B4,�� + �B4,��� = 0, �133�

here these equations are given by variation of �132�. These zero modes mean that the fixed point
oci are nonzero dimension and path integrals vanish by the fermionic zero modes. With attention
o these points, if we specify the instanton numbers corresponding to solutions of �132� labeled by
, then we determine the partition function whose action functional includes the topological term.

A hint to speculate the instanton number is ADHM correspondence. The solution of �132� is
ncluded in the set of solutions of noncommutative deformed ADHM equations corresponding to

instanton, i.e.,

�B4,B4
†� + ��,�̄� + II† − J†J = 0, �B4,�� + IJ = 0, �134�

here I and J† are d-dimensional. vectors. This is ADHM equations of noncommutative U�1�
heories under the condition of noncommutativity �1=−�2.22,24 Here we must fix I and J† to
ompare �134� with �132� as

I = 0d, J† = 0d, �135�

here 0d is 0 vector of d-dimensions. Then, the solutions of �134� are given by the solutions of
132�. From this observation, we find that the moduli space of B4 ,B4

† and � , �̄, which are gauge
elds in this case, is the submanifold in instanton moduli space of instanton number d.

Therefore, someone might think it is not so strange to expect that the instanton number is
iven as −�det���1/2 /16�2�TrH F∧F=d, where the gauge fields correspond to B4 ,B4

† and � , �̄, and
e conjecture that the partition function of the N=4 U�1� gauge theory in noncommutative R4

ith the topological term �F∧F is given by Z̃N=4,
4 dim =d=0

� �1/d2�e2�id. However, It would still be

nwise to conclude Z̃N=4,
4 dim =d=0

� �1/d2�e2�id, because the direct corresponding with the instanton
umber and B4 ,B4

† and � , �̄ fixed point locus labeled by d is unknown. Meanwhile, it might be
ossible to investigate this conjecture from Montonen and Olive duality19,34 if such a duality of
oncommutative version exists �see also Ref. 8.� For example, if we assume that the partition
unction takes the form as

Z̃N=4,
4 dim = 

d=1

�
1

d2e2�ik�d�, �136�

here k�d� is a instanton number depending on d, restriction to the modular like form

Z̃N=4,1/
4 dim = ± 
 

i
�n

Z̃N=4,
4 dim �137�

ight determine k�d�, where n is some number. Unfortunately, we do not know how to choose a
˜ 4 dim � 2 2�id
uitable modularlike form, and the above naive conjecture ZN=4,=d=0�1/d �e does not sat-
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sfy this condition. Anyway, further investigations are necessary to determine the contribution of
he topological term.

At the end of this section, we consider the dimensional reduction of the theory with topologi-
al terms. In the discussions in Sec. III, we use cohomological field theory without topological
erms like �F∧F, and some of them are not supersymmetric gauge theories in the meaning of the
sual supersymmetry. Now, let us consider the case including topological terms. As an example,
et us consider the four-dimensional case whose action is given by cohomological terms and

nstanton number; S=�tr �̂�+ �i� /8�2�� tr F∧F. Let us consider perturbation around classical
ackground fixed by instanton number, i.e., A�=A�

�k�+�A�
�k�, �tr F�A�k��∧F�A�k��=8�2k. The par-

ition function is given by

Z4 dim = 
k

e2�ik� D� A�k�
¯ e−�tr �̂�k,

here D� A�k�
¯ is the path integral measure of the all fields and the functional �k depends on

oth A�
�k� and �A�

�k�. The BRS transformations are induced from �8� and so on as �̂��A�
�k��=	�

�k�, etc.
o we have

Z4 dim = 
k

e2�ikZk
4 dim,

here Zk
4 dim is the perturbative partition function of the four-dimension theory without the topo-

ogical term. The action �̂�k is still given by a BRS exact term. The arguments for the �-shift

nvariance of the path integral are valid for �D� A�k�
¯e−�tr �̂�k. Then the dimensional reduction of

he perturbative partition functions arises at the large � limit,

Zk
4 dim = Zk

2 dim = Zk
0 dim, �138�

here Zk
2 dim and Zk

0 dim are possible to be described by partition functions of two- and
-dimensional field theories, respectively. Therefore, we find that the universality of the perturba-
ive partition functions Zk

4 dim, Zk
2 dim, and Zk

0 dim, similar to the claim in Sec. III.
Now let us discuss the possibility that �138� means a universality of the partition functions of

he usual supersymmetric theories in various dimensions. Consider the weighted sum of Zk
4 dim,

k
2 dim, and Zk

0 dim with weight e2�ik,


k

e2�ikZk
4 dim = 

k

e2�ikZk
2 dim = 

k

e2�ikZk
0 dim. �139�

ke
2�ikZk

4 dim is equal to Z4 dim, the partition of the four-dimension supersymmetric theory includ-
ng the topological term. On the other hand, the meanings of the weighted sums ke

2�ikZk
2 dim and

ke
2�ikZk

0 dim are obscure. It is unclear that they have the meaning of the partition functions of
ome lower dimension theories. If they can be interpreted as the partition functions of some
upersymmetric theories in lower dimensions, �139� means a universality of the partition functions
f supersymmetric theories in various dimensions. To answer whether this statement is true or not,
e need to clarify the following questions.

i� Is the number k expressed in terms of lower dimension theories?
ii� Is the number k interpreted as a topological invariant? And does it characterize classical

solutions of the lower dimension theories?
iii� Is the total action, the sum of the action defining Zk

2 dim or Zk
0 dim and the action giving the

number k, equivalent to a supersymmetric action in lower dimension?

At this time, we can only make a few comments on question �i�. We calculated the large �2

imit of the elongated NC U�1� k-instanton, that is the reduction from four dimension to two
imension of the solution. �For construction of the elongated NC U�1� k-instanton, see Ref. 13.�

or this case, we can show that k is expressed in terms of two-dimension theories,
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�1 Tr Fz1,z̄1
= − k . �140�

t may be that this fact implies that the number k is expressed in terms of lower dimension
heories. However, we have no concrete answer to question �ii� and question �iii� at this time.

I. CONCLUSIONS AND DISCUSSIONS

We investigated cohomological gauge theories in NC R2D. We saw that vacuum expectation
alues of the theories do not depend on noncommutative parameters, and the large noncommuta-
ive parameter limit is equivalent to the dimensional reduction. As a result of these facts, we
howed that two types of cohomological theories defined in NC R2D and NC R2D+2 are equivalent,
f they are connected through dimensional reduction. Therefore, we found several partition func-
ions of noncommutative supersymmetric Yang-Mills theories in various dimensions are equiva-
ent, when they are connected by dimensional reduction from 2+2D to 2D. Using this technique
nd requiring some natural assumptions, we determine the partition function of the N=4 U�1�
auge theory in NC R4, where the action does not include the topological term �F∧F, and the
esult is equivalent to the partition function of �8-dim, N=2�, �6-dim, N=2�, �2-dim, N=8� and
he IKKT matrix model given by their dimensional reduction to 0 dimensions. The case including
he topological term was discussed, too.

Let us list some left over problems below. In this paper, concrete partition functions are given
or the N=4 U�1� gauge theory in NC R4 and the series connecting to it by dimensional reduction.
o, we are interested in the NC non-Abelian cases. To calculate them, we must find some new
ormulation like MNS, because we know the partition function concerning su�N� but we need it
or su�N��su�M� for U�M� theory.

Next, we had qualitative observation of N=2 four-dimensional case but we do not do the
uantitative approach. So, we must do the more detailed analysis for the N=2 super Yang-Mills
ases. We saw in Sec. V, after taking large � limit, moduli space is described by Monads in
=4 four-dimensional case. From the analogy with N=4 four-dimensional case, direct and

mooth connections between noncommutative instanton moduli spaces and ADHM spaces might
e given in the N=2 four-dimensional case.

Other important problems are applications to the various fuzzy spaces, T�
d, CPN

d , and so on.
ince these noncommutative spaces are expressed by finite-dimensional Hilbert spaces, the di-
ensional reduction will not occur at the large � limit despite omitting kinetic terms.

Wide spread applications of the technology of this paper are going to happen in many cases
ther than the above subjects. All of them are left for future works.
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PPENDIX A: FOCK SPACE

Let us consider NC R2D. First of all, we introduce the following operators:

ai �
zi

��2i−1,2i
, zi �

1
�2

�x2i−1 + ix2i� ,

ai
† �

z̄i

��2i−1,2i
, z̄i �

1
�2

�x2i−1 − ix2i� , �A1�

†
here i runs from 1 to D, and ai and ai satisfy
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�ai,aj
†� = �ij . �A2�

e often use the symbol �i defined as

�i = + �2i−1,2i = − �2i,2i−1. �A3�

The Hilbert space is constructed as the Fock space,

H = � C�n1, . . . ,nD� ,

�A4�

�n1, . . . ,nD� �
�a1

†�n1
¯ �aD

† �nD

�n1! ¯ nD!
�0, . . . ,0� .

i and ai
† operate on �n1 , . . . ,nD� as follows:

ai�n1, . . . ,nD� = �ni�n1, . . . ,ni − 1, . . . ,nD� ,

�A5�
ai

†�n1, . . . ,nD� = �ni + 1�n1, . . . ,ni + 1, . . . ,nD� .

n1 , . . . ,nD� are the eigenstates of the number operator n̂i�ai
†ai,

n̂i�n1, . . . ,nD� = ni�n1, . . . ,nD� . �A6�

he arbitrary operator has the following expression:

Ô = 
n1,m1

¯ 
nD,mD

Om1¯mD

n1¯nD �n1, . . . ,nD��m1, . . . ,mD� .

Let us consider 2D=4 case. The Hilbert space H is expanded by the Fock basis �n1 ,n2�,

H = � C�n1,n2� ,

�A7�

�n1,n2� =
�a1

†�n1�a2
†�n2

�n1!n2!
�0,0� .

i
† and ai are expressed as

a1
† = 

n1=0

�

�n1 + 1�n1 + 1,n2��n1,n2�, a2
† = 

n2=0

�

�n2 + 1�n1,n2 + 1��n1,n2� ,

�A8�

a1 = 
n1=0

�

�n1 + 1�n1,n2��n1 + 1,n2�, a2 = 
n2=0

�

�n2 + 1�n1,n2��n1,n2 + 1� .

The finite-dimensional truncation HN can be defined by several ways. One definition of HN is
iven by

HN = �
n1=0,n2=0

n1=Nc,n2=Nc

C�n1,n2� , �A9�

here Nc is a finite integer number. By the definition, we obtain

dim. of HN = �Nc + 1�2 = N �A10�
nd
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1N = 
n1=0,n2=0

n1=Nc,n2=Nc

�n1,n2��n1,n2� . �A11�

Another definition of HN is given by

HN = �
n1=0,n2=0

n1+n2=Nc

C�n1,n2� . �A12�

n this case,

dim. of HN =
�Nc + 1��Nc + 2�

2
= N �A13�

nd

1N = 
n1=0,n2=0

n1+n2=Nc

�n1,n2��n1,n2� . �A14�

By using the definition of 1N, �A11� or �A14�, and the following expressions of the differential
perators �̂� in terms of ai

† and ai:

�̂1 =
1

�2�1
�a1 − a1

†�, �̂2 =
− i

�2�1
�a1 + a1

†� ,

�A15�

�̂3 =
1

�2�2
�a2 − a2

†�, �̂4 =
− i

�2�2
�a2 + a2

†� ,

Given the definition of HN, for example, by �31�, we obtain

�a1,1N� = − �N + 1 
n2=0

N

�N,n2��N + 1,n2� ,

�a1
†,1N� = + �N + 1 

n2=0

N

�N + 1,n2��N,n2� ,

�A16�

�a2,1N� = − �N + 1 
n1=0

N

�n1,N��n1,N + 1� ,

�a2
†,1N� = + �N + 1 

n1=0

N

�n1,N + 1��n1,N� .

rom �A16� and �A15�, we obtain

T1 =
1

�2�1
− �N + 1 
n2=0

N

�N,n2��N + 1,n2� − �N + 1 
n2=0

N

�N + 1,n2��N,n2�� ,
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T2 =
− i

�2�1
− �N + 1 
n2=0

N

�N,n2��N + 1,n2� + �N + 1 
n2=0

N

�N + 1,n2��N,n2�� ,

T3 =
1

�2�2
− �N + 1 
n1=0

N

�n1,N��n1,N + 1� − �N + 1 
n1=0

N

�n1,N + 1��n1,N�� ,

T4 =
− i

�2�2
− �N + 1 
n1=0

N

�n1,N��n1,N + 1� + �N + 1 
n1=0

N

�n1,N + 1��n1,N�� . �A17�

sing �A11� and �A17�, we can show

TrH 1N1N = N, TrH T�T� = +
1

�iN���, TrH 1NT� = 0. �A18�

lso, we can obtain

TrH 1N��̂�,1N� = 0, TrH 1N��̂�,T�� = −
N

�i���,

�A19�

TrH T���̂�,1N� = +
N

�i���, TrH T���̂�,T�� = 0,

nd

TrH 1N�1N,1N� = 0, TrH 1N�1N,T�� = 0,

�A20�
TrH 1N�T�,T�� = + iN���

−1, TrH T��T�,T�� = 0.

Let us define I and T� as

I =
1

�N
1N, �A21�

nd

T� =
��i

�N
T�. �A22�

y definition,

T� = ��i��̂�,I� . �A23�

Using I and T�, �A18�–�A20� are rewritten into

TrH II = 1, TrH T�T� = ���, TrH IT� = 0, �A24�

TrH I��̂�,I� = 0, TrH I��̂�,T�� = −
1

��i
���,

�A25�

TrH T���̂�,I� = +
1

��i
���, TrH T���̂�,T�� = 0,
nd
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TrH I�I,I� = 0, TrH I�I,T�� = 0,

�A26�

TrH I�T�,T�� = +
i�i

�N
���

−1, TrH T��T�,T�� = 0.

The same formulas as �A24�–�A26� hold for the case of �A12�. The difference between the
efinitions of HN’s, �A9� and �A12�, are absorbed in dimensions of HN.

It is worthwhile to notice that the independence of the precise definitions of HN holds gener-
lly. The proof is done by using the discrete version of Stokes’s theorem for the boundary of the
nite truncated Fock space.14,26

PPENDIX B: LARGE � LIMIT

In this paper, we removed the terms including ��=−i���
−1�x� , � � in the Lagrangian when we

alculated the partition function without zero mode integrals in the large � limit. If we consider
ome specific fixed function f�x�, then expression of ��f�x�=−i���

−1�x� , f�x�� is not changed by
aking large � limit because �x� , f�x�� becomes large with �. Therefore, someone might think that
he process of removing terms including �� is not correct. However, we must recall that our
agrangian is changed by � variation and then the equations of motion and BPS equations, are
hanged. Then the solutions of the equations, which make much contribution to the partition
unctions and vacuum expectation values, are changed by � changing. It follows that the terms
ncluding derivatives become irrelevant. In this section, we show concretely the validity of taking
he terms including ��=−i���

−1�x� , � � away from Lagrangians at the large � limit.
The BPS equations in this paper are given by differential equations of first order,


i,I

ciI,k�zi
f I + Vk�fJ� = 0, �B1�

here f I are fields, Vk�f I� are some quadratic polynomial in f I and ciI,k are some constants. k
1, . . . ,n, where n is the number of elements of f I minus degree of gauge freedom. For example,
PS equations of N=4 four-dimensional gauge theory are

F+�� − i�B��
+ ,B�

+�� − i�B��
+ ,c� = 0, 2D�B��

+ + D�c = 0. �B2�

et us consider �B1� by using the Fock basis,

Bk� f̂ I,�� � ciI,k
+ 1

��i
�ai, f̂ I� + ciI,k

− 1
��i

�ai
†, f̂ I� + Vk� f̂ J� = di,k

1

�i . �B3�

ere di,k�1/�i� are constants derived from ��zi
,�z̄i

�. For example, equations of N=4 four-
imensional cases are given by

P���
+ �D̂�,D̂� + �B��

+ ,B�
+�� + �B��

+ ,c� = i�P���
+ ��−1��� , �B4�

2�D̂�,B+��� + �D̂�,c� = 0, �B5�

here P���
+ is the self-dual projection operator and D̂�= �̂�+ iA�. When we take ��� as �17�, the

ight-hand side of �B4� is rewritten as

P���
+ ��−1�� = −

���
 1
1 +

1
2� ,
2 � �
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����� � �
0 1

− 1 0

0 1

− 1 0
� .

f̂ I is a operator representation of f I, i.e., f̂ I=�f I�n1,. . .,nD

m1,. . .mD�n1 , . . . ,nD��m1 , . . . ,mD�. In this represen-
ation, the BPS equations are just simultaneous quadratic equations, and the noncommutative
arameters �i appear in only the first two terms and the right-hand side of �B3�. Note that solutions
f �B3� depend on �i but variables �f I�n1,. . .,nD

m1,. . .,mD themselves do not depend on �. For this reason, BPS
quations are truncated to

Bk� f̂ I,�� � Vk� f̂ J� = 0, �B6�

t the �→� limit. Such truncations have been discussed in many works, see for example, Refs.
0, 9, and 15. Thus, it becomes clear that terms including ��=−i���

−1�x� , � � in the Lagrangian
ecome irrelevant at the large � limit.

However, the above discussion is insufficient for the proof which justifies removing terms
ncluding ��. Because we assume the convergency of path integral which has not been confirmed
hen we formally prove that partition functions and vacuum expectation values of observables do
ot depend on �. Therefore, we must check our models satisfying the convergency conditions. To
nderstand this statement, let us consider the following example.

Let f i be dynamical variables and assume that action functional take the following form:

S��f� = S0 + �S1, �B7�

here � is a some constant, S0 and S� are BRS exact actions, and they do not depend on �. Let us
xpand the partition function as

Z� =� Df e−S� �B8�

=� Df e−S0
1 − �S1 +
1

2
�2S1

2 − ¯ � �B9�

nd introduce

Z0 �� Df e−S0. �B10�

f e−S0 damp the integrand, the integral

� Df e−S0�nS1
n for n � 1 �B11�

s well defined. Then, Z� does not depend on �, i.e.,

Z� = Z0,

ecause S1
n is a BRS exact term and

� Df e−S0�nS1
n = 0 for n � 1.

herefore, we found that we must verify that �B10� is well defined and e−S0 damp integrands for

roof of � independence.
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To get a feeling for how all of this should work out, consider simple toy models. At first, let
s consider the toy model given by Vafa and Witten in Sec. II of Ref. 34. Let x, y, H1 and H2 be
eal bosonic variables, and 	x, 	y, 
1 and 
2 be fermionic variables. We define BRS transforma-
ions by

�̂x = 	x, �̂y = 	y, �̂
1 = H1, �̂
2 = H2. �B12�

onsider the following action:

S�
toy1 = �̂�
1�H1 + 2i�x2 − � − y2�� + 
2�H2 + 2i�2xy��� = S0

toy1 + �S1
toy1, �B13�

here

S0
toy1 = �̂�
1�H1 + 2i�x2 − y2�� + 
2�H2 + 2i�2xy��� ,

S1
toy1 = �̂
1.

−S0
toy1

makes the integral

� Df e−S0
toy1

�n�S1
toy1�n for n � 1 �B14�

e well defined, and

Z�
toy1 = Z0

toy1 �� Df e−S0
toy1

. �B15�

ndeed, we can easily perform the direct calculations of the partition functions Z�
toy1 and Z0

toy1,
espectively, and their results reproduce �B15�. Note that degeneracy of the solutions does not
ffect the independence of �. In this case, when ��0 equations are given by x2−�−y2=0 and
xy=0, then the solutions are given as �x ,y�= �±�� ,0�. These two sets of solutions become
egenerate in �→0. Despite such singularities, path integrals moderate them, and the partition
unction is smooth at �=0.

As the second example, consider the following action:

S�
toy2 = �̂�
1�H1 + 2i�x2 − ��� + 
2�H2 + 2i�2xy��� = S0

toy2 + �S1
toy2, �B16�

here

S0
toy2 = �̂�
1�H1 + 2i�x2�� + 
2�H2 + 2i�2xy��� ,

S1
toy2 = �̂
1.

t first glance, the partition function Z�
toy2 looks independent of � from the formal discussion. But

−S0
toy2

does not damp the integrals in this case, then Z�
toy2 depends on �. Indeed,

Z�
toy2 =� dx

�2�

dy
�2�

dH1

�2�

dH2

�2�
d	x d	y d
1 d
2 exp�− S�

toy2� = 1 +
�

2
�−1/2 + O��2� . �B17�

hese observations show that we must check the convergency of e−S0 where the action S0 is the �
ndependent part of the total action, before removing terms including �−1 from action.

Let us now attempt to investigate the specific case of N=4 four dimensions. First we consider
he case of �1=−�2. This is a very special case and we can understand the validity of removing the
erms including �� not from the above discussions but from the following discussions. Using �1

2
−� , the BPS Eqs. �B4� and �B5� are replaced by
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P���
+ �D̂�,D̂� + �B��

+ ,B�
+�� + �B��

+ ,c� = 0, �B18�

2�D̂�,B+��� + �D̂�,c� = 0. �B19�

n the contrary, the BPS equations of the large � limit are given by

− P���
+ �A�,A� + �B��

+ ,B�
+ ��� + �B��

+ ,c� = 0, �B20�

2�A�,B��
+ � + �A�,c� = 0. �B21�

quations �B20� and �B21� are equivalent to �B18� and �B19� with 1/�=0. The correspondence of
hese and more general cases are already known in Refs. 1 and 30, that is, we can identify �B18�
nd �B19� with �B20� and �B21� by redefining

iA� = D̂�. �B22�

his is a trivial one-to-one correspondence between the large � limit and finite �1=−�2 case.
nder change of variables �B22�, the path integral measure does not cause nontrivial Jacobian, the

heory characterized �B18� and �B19� and the theory characterized �B20� and �B21� are equivalent
uantum theories. From this correspondence, it is clear that we can remove the terms including ��

rom its action without changing.
Before investigating �1�−�2 case, let us consider

S� = S0 + �S1,

S0 = TrH tr �̂+�
��
+ �H+�� − �P���

+ �D̂�,D̂� + �B��
+ ,B��

+ ���� + �B��
+ ,c���� + TrH tr �̂+�
��H� − i�

− 2�D̂�,B��
+ � − �D̂�,c���� + TrH tr �̂+�i��,�̄�� − i�̄�c,�̄� + i�B+��,�̄�	��

+ + ��D̂�,�̄��	�� ,

S1 = i
��
+ ���, �B23�

nd their partition functions

ZN=4,� =� Df e−S�, ZN=4,0 =� Df e−S0. �B24�

ote that S0 is equivalent to the action of the Yang-Mills theory of �1=−�2 and IKKT matrix
odel when its gauge group is U�1�. Therefore, it is natural to assume that exp�−S0� damp the path

ntegral of an arbitrary observable. Indeed, this assumption is required in MNS too.20 From the
bove discussion and this assumption, we can conclude that

ZN=4,� = ZN=4,0. �B25�

In the next step, we consider the �1�−�2 case. Its action is equivalent to �B23� if

� = −
1

2

 1

�1 +
1

�2� .

nder the above assumption that exp�−S0� damp integrands of path integrals, as we saw in �B25�,
N=4,� does not depend on �. Therefore, the partition function of �1�−�2 case is equal to the
artition function of �1=−�2 whose BPS equations are given by �B18� and �B19�, furthermore the
artition function is equal to the partition function whose action functional is given by removing
erivative terms and its BPS equations are given by �B20� and �B21�.

In the above discussion, we have closely studied the case of dimensional reduction from N

4 four dimensions to 0 dimensions. But it is clear that we can apply the above general discussion
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o other dimensional cases or the cases of the N=2 four-dimensional model and the series given
y its dimensional reduction. All these things make it clear that it is proper procedure to remove
he terms including ��=−i���

−1�x� , � � from Lagrangians at the large � limit, in the calculations of
his paper.

PPENDIX C: NORMALIZATION OF THE PARTITION FUNCTION

In this appendix, we give the precise definition of the path integral measure to decide the
artition function without ambiguity.

As mentioned in Sec. IVG, the absolute value of the infinite-dimensional integrals of fluctua-
ions around each vacuum should be normalized to be 1. This is implemented by virtue of the
upersymmetry.

When we normalize fields appropriately the action of topological field theory has the follow-
ng form:

STFT =� �̂+�
i�Hi − iMijAi�� , �C1�

ere we have omitted terms including fields like � , �̄ ,�, often called “Higgs sector,” for simplic-
ty. The normalization of the Higgs sector is possible to be managed similarly to other fields when
sual gauge fixing is done by using Nakanishi-Lautrup field, ghost and antighost fields. We can see
his fact in the latter half of this section devoted to trace and extra parts. Also we have kept only
uadratic terms of fluctuations, because the path integral of topological field theories is estimated
xactly in the weak coupling limit. Mij in �C1� depends on backgrounds and parameters in general,
ut as seen below, the Mij dependence does not appear in the result up to sign. The BRS trans-
ormation rules are given by

�̂+Ai = 	i, �̂+	i = 0,

�C2�
�̂+
i = Hi, �̂+Hi = 0.

or Ai , . . ., we adopt the following path integral measure:

	
i

dHi

�2�

dAi

�2�
d
i d	i, �C3�

hen we obtain

�� 	
i

dHi

�2�

dAi

�2�
d
i d	i e−STFT� = 1. �C4�

he Mij dependence does not appear due to the supersymmetry.
Now we give a detailed argument for calculations about the trace and extra parts of our model

s an example. The action including the trace and extra parts Str�ex
� +Sgf is decomposed into two

arts, S1 and S2. S1 consists of �106�–�109� and �111�–�114�, and also S2 consists of �110�, �115�,
119�, and �120�. S2 involves the Higgs sector and also includes the gauge fixing terms. S1 involves
ll the rest.

We start with the S1 part. S1 is represented in the same form as �C1�, therefore we obtain

� 	
i

dHi

�2�

dAi

�2�
d
i d	i e−S1 = 1. �C5�

s mentioned above, the �-dependence does not appear.

Let us turn to the S2 part. The action is given as
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S2 =
4

�
�̄�1���1� �C6�

+
i

��
��1�	���

� �C7�

+ b�1�
b�1� −
1
��

A����� �C8�

+
4

�
�̄�1���1� +

1
��

�̄�1�	����. �C9�

e adopt the following measure:

d�̄�1�

�2�

d��1�

�2�
d�̄�1� d��1�

db�1�

�2�

dA����

�2�
d��1� d	���

� , �C10�

hen we obtain

� d�̄�1�

�2�

d��1�

�2�
d�̄�1� d��1�

db�1�

�2�

dA����

�2�
d��1� d	���

� e−S2 = 1. �C11�

otice that the result �C11� is again a consequence of the supersymmetry.
As a result of these normalizations, partition functions of the cohomological field theories are

efined as well-defined functions or finite values without ambiguity from infinite-dimensional
ntegral.

At the end of this appendix, we should notice a fact relating the dimension-independence of
artition function, �20�. The gauge symmetry �99� and the gauge fixing term �117� are expected to
ave the same form for all cases of �8-dim, N=2�, �6-dim, N=2�, �4-dim, N=4� and �2-dim,
=8�. So we expect that the trace and extra sector produce a trivial factor 1 for all of those cases.
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We develop a gauged Wess–Zumino model in noncommutative Minkowski super-
space. This is the natural extension of the work of Carlson and Nazaryan, which
extended N=1/2 supersymmetry written over deformed Euclidean superspace to
Minkowski superspace. We investigate the coupling of the vector and chiral super-
fields. Noncommutativity is implemented by replacing products with star products.
Although, in general, our star product is nonassociative, we prove that it is asso-
ciative to the first order in the deformation parameter C. We show that our model
reproduces the N=1/2 theory in the appropriate limit, namely when the deforma-

tion parameters C̄�̇�̇=0. Essentially, we find the N=1/2 theory and a conjugate
copy. As in the N=1/2 theory, a reparametrization of the gauge parameter, vector
superfield, and chiral superfield are necessary to write standard C-independent
gauge theory. However, our choice of parametrization differs from that used in the
N=1/2 supersymmetry, which leads to some unexpected new terms. © 2006
American Institute of Physics. �DOI: 10.1063/1.2162330�

. INTRODUCTION

In the past several years there has been much discussion of noncommutative superspaces; see
efs. 1–13 for a partial account. Much recent discussion has been motivated by the observation

hat noncommutativity can result from certain string models. Of particular interest to this paper is
he deformed Euclidean superspace constructed by Seiberg in Ref. 8. Seiberg found a deformation
f Euclidean superspace that broke half the supersymmetry and yet preserved the usual superfield
onstructions. Because only half of the N=1 supersymmetry is found in Seiberg’s theory, it is
ommonly referred to as N= 1 � 2 supersymmetry. Generally, the literature following Seiberg has
ocused on superspace with a Euclidean signature. One reason for that is that it is not entirely
traightforward to modify the construction of N= 1 � 2 supersymmetry to the Minkowski case.
owever, Carlson and Nazaryan found in Ref. 11 how to construct a deformed Minkowski super-

pace very similar to Seiberg’s deformed Euclidean space. In particular, Ref. 11 deformed super-
pace so that

��̂�, �̂�� = C��, ��̄ˆ �̇, �̄
ˆ �̇� = C̄�̇�̇, �1�

here �C���*= C̄�̇�̇. In their paper, they implemented superspace noncommutativity with a star
roduct that was Hermitian, but not associative in general. Their star product reproduces the

eformation of N= 1 � 2 supersymmetry in the limit that C̄�̇�̇ is identically zero. Additionally, they
tudied the Wess–Zumino model �only chiral superfields, no gauge interactions� and found results
imilar to that of Seiberg in Ref. 8. Our goal here is to continue the work of Carlson and Nazaryan
y constructing the Wess–Zumino model with gauge interactions in the noncommutative
inkowski superspace they constructed. We will carefully study how the N= 1 � 2 theory must be
odified in the presence of the Minkowski metric. We will find the modification of the gauge
heory is not entirely straightforward; subtle superfield component redefinitions must be made for

47, 012304-1022-2488/2006/47�1�/012304/20/$23.00 © 2006 American Institute of Physics
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ertain components in order to maintain deformation-independent gauge transformations.
We mention that after the completion of this work, the author learned that Ref. 12 and Ref. 13

lso studied the Wess–Zumino model on deformed Minkowski superspaces in some detail. Both of
hese works employ a star product that is associative but not Hermitian. The star product studied
ere is Hermitian but not associative in general. We also note that Ref. 5 and Ref. 10 study some
eneral aspects of deformed Minkowski superspace that have relevance to this work.

. Deformed coordinate algebra

We begin by considering N=1 rigid Minkowski superspace where a typical point is

xm ,�� , �̄�̇�. In the commutative case, we have

�xm,xn� = 0 �xm,��� = 0,

���,��� = 0 �xm, �̄�̇� = 0,

��̄�̇, �̄�̇� = 0 ���, �̄�̇� = 0.

�2�

he coordinates xm are identified with spacetime coordinates, whereas the �� and �̄�̇ are Grassman
ariables. We then construct noncommutative Minkowski superspace by replacing coordinate

unctions �xm, ��, �̄�̇� with operators �x̂m, �̂�, �̄
ˆ �̇�. In particular, following the construction of Ref.

1, we deform N=1 rigid Minkowski superspace as follows:

��̂�, �̂�� = C��, �x̂m, �̂�� = iC���
��̇

m
�̄
ˆ �̇,

��̄ˆ �̇, �̄
ˆ �̇� = C̄�̇�̇, �x̂m, �̄

ˆ �̇� = iC̄�̇�̇�̂��
��̇

m
,

��̂�, �̄
ˆ �̇� = 0, �x̂m, x̂n� = �C���̄

ˆ �̇�̄
ˆ �̇ − C̄�̇�̇�̂��̂�����̇

m �
��̇

n
,

�3�

here �C���*= C̄�̇�̇. This algebra was constructed in Ref. 11 so that the deformed chiral coordi-

ates satisfy ŷm= x̂m+ i�̂�m�̄
ˆ

and ŷ̄m= x̂m− i�̂�m�̄
ˆ

satisfy

��̂�, �̂�� = C��, �ŷm, �̂�� = 0,

��̄ˆ �̇, �̄
ˆ �̇� = C̄�̇�̇, �ŷ̄m, �̄

ˆ �̇� = 0,

��̂�, �̄
ˆ �̇� = 0.

�4�

hese relations will allow us to develop chiral and antichiral superfields in much the same way as
n the commutative theory. In addition, we have

�ŷ̄m, �̂�� = 2iC���
��̇

m
�̄
ˆ �̇,

�ŷm, �̄
ˆ �̇� = 2iC̄�̇�̇�̂��

��̇

m
,

�ŷm, ŷn� = �4C̄�̇�̇�̂��̂� − 2C��C̄�̇�̇����̇
m �

��̇

n
,

�ŷ̄m, ŷ̄n� = �4C���̄
ˆ �̇�̄

ˆ �̇ − 2C��C̄�̇�̇����̇
m �

��̇

n
,

�ŷm, ŷ̄n� = 2C��C̄�̇�̇���̇
m �

��̇

n
. �5�

n this deformation, all of the fermionic dimensions of superspace are deformed. A consequence of
¯
his is that Q and Q are broken symmetries �see the next section�, so we say that this space has
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=0 supersymmetry. Despite this, the deformation still permits most of the usual superfield
onstructions just like the N= 1 � 2 case.

. Star product

The deformed coordinates have overcarets on them to emphasize that they are operators. The
sual model is then deformed by simply putting an overcaret on all of the objects in the standard
heory. In practice, we will not explicitly calculate anything in terms of these formal operators.
nstead, we will find it useful to make the usual exchange of the operator product for the star
roduct of ordinary functions of superspace;

F̂Ĝ � F * G . �6�

his correspondence allows us to work out the details of noncommutative theory using ordinary
alculus on superspace. In this sense we will obtain a noncommutative model by replacing ordi-
ary products with star products.

The star product for our deformed Minkowski superspace is defined by

F * G = F�1 + S�G , �7�

here S is formed using the supercharges Q� and Q̄�̇,

S = −
1

2
C��Q

←

�Q
→

� −
1

2
C̄�̇�̇Q̄

←

�̇Q̄

→

�̇

+
1

8
C��C��Q

←

�Q
←

�Q
→

�Q
→

� +
1

8
C̄�̇�̇C̄�̇�̇Q̄

←

�̇Q̄

←

�̇Q̄

→

�̇Q̄

→

�̇

+
1

4
C��C̄�̇�̇�Q̄

←

�̇Q
←

�Q̄

→

�̇Q
→

� − Q
←

�Q̄

←

�̇Q
→

�Q̄

→

�̇� .

t is straightforward to check that this star product does yield the deformed coordinate algebra of
he preceding section, provided we use star products in place of the usual products. We follow the
onventions of Wess and Bagger in Ref. 14 for supercharges. In the chiral coordinates ym=xm

i��m�̄, the supercharges have the following familiar forms. Note that the derivatives of �� and �̄�̇

re taken at fixed ym:

Q� = � �

����
y

,

�8�

Q̄�̇ = − � �

� �̄�̇
�

y

+ 2i�����̇
m �

�ym ,

hereas when the derivatives are taken at fixed antichiral coordinates ȳm=xm− i��m�̄, we have

Q� = � �

����
y

− 2i���̇
m �̄�̇ �

� ȳm ,

�9�
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Q̄�̇ = − � �

� �̄�̇
�

ȳ

.

e will not make explicit �y or �ȳ elsewhere, since they are to be understood implicitly. Many other
ormulas can be found in Ref. 11. Some properties of this star product on functions F, G, and H
re

F * G = G * F̄ , �F + G� * H = F * H + G * H ,

F * G � G * F , F * �G * H� � �F * G� * H .
�10�

The noncommutativity and nonassociativity will require some attention in general. However, to
the first order in the deformation parameter, we note that

F * �G * H� = �F * G� * H , �11�

the star product is associative. A proof is given in the Appendix .

. N=0 Supersymmetry

The formulas below are stated for the operators acting on functions of the deformed
inkowki superspace. In particular, they should be understood as statements about how the

perators act on star products of functions. We define the star brackets as

�A,B�* = A * B + B * A and �A,B�* = A * B − B * A . �12�

hen calculate

���,���* = �� * �� + �� * �� = C��,

�13�
��̄�̇, �̄�̇ �* = �̄�̇ * �̄�̇ + �̄�̇ * �̄�̇ = C̄�̇�̇.

t is important to note that products of both �� and �̄�̇ are deformed. This has the consequence of
reaking all of the supersymmetry. Starting with the canonical forms of the supercharges, we
btain

�Q�,Q��* = − 4C̄�̇�̇���̇
m �

��̇

n �2

� ȳm � ȳn ,

�Q̄�̇,Q̄�̇�* = − 4C�����̇
m �

��̇

n �2

�ym � yn , �14�

�Q�,Q̄�̇�* = 2i���̇
m �

�ym .

omparing this to Ref. 8, we note that when C̄�̇�̇=0, then Q� is an unbroken symmetry, hence the
abel N= 1 � 2 supersymmetry. The author proposes that we call the theory constructed by Carlson
nd Nazaryan N=0 supersymmetry to be consistent. Now, although the supercharges are broken,
e still have

�D ,Q � = �D̄ ˙ ,Q � = �D ,Q̄ ˙ � = �D̄ ˙ ,Q̄ ˙ � = 0,
� � * � � * � � * � � *
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�D�,D��* = �D̄�̇,D̄�̇�* = 0. �15�

hese relations are crucial. We can still define the chiral ��� and antichiral ��� superfields by the

onstraints D̄�̇*�=0 and D�*�=0 on noncommutative Minkowski superspace. Thus, most of the
sual techniques in Wess and Bagger, Ref. 14, still apply for our discussion. The primary differ-
nce is that products will be replaced with star products.

I. VECTOR SUPERFIELDS

Our goal in this section is to construct a non-Abelian gauge theory on deformed Minkowski
uperspace. Thus, we consider a vector superfield V that carries some matrix representation of the

auge group and is subject to the usual covariant constraint: V̄=V. In the standard super-Yang–
ills theory, it is convenient to use a reduced set of component fields called the Wess Zumino

auge. We will show in Section III A that the Wess Zumino gauge can be generalized to the
urrent discussion provided we make some C-dependent shifts. But, for now, we let V take the
anonical Wess–Zumino parametrization

V = − ��m�̄vm + i���̄	̄ − i�̄�̄�	 +
1

2
���̄�̄�D − i �mvm� , �16�

here the above is in chiral coordinates ym. Physically this is not quite the correct parametrization
ecause it does not naturally embed the usual gauge transformations on the component fields.
ater we will find the parametrization that allows for standard deformation-independent gauge

ransformations on the component fields. We abstain from introducing that reparametrization at
his point because it would only serve to complicate the expressions without need.

. Star exponential of vector superfield

We define the star exponential of the vector superfield in the natural way:

eV = 1 + V +
1

2
V * V +

1

3!
V * V * V + ¯ . �17�

ur notation for the usual exponential will be exp�V� and powers are to be understood as ordinary
owers—for example, V2=VV. In this paper, star products will be explicitly indicated.

The vector superfield is even, thus no new signs arise from pushing the Q� or Q̄�̇ past V in the
tar product. Thus,

V * V = V�1 + S�V

=V2 −
1

2
C���Q�V��Q�V� −

1

2
C̄�̇�̇�Q̄�̇V��Q̄�̇V�

+
1

8
C��C���Q�Q�V��Q�Q�V� +

1

8
C̄�̇�̇C̄�̇�̇�Q̄�̇Q̄�̇V��Q̄�̇Q̄�̇V�

+
1

4
C��C̄�̇�̇

„�Q̄�̇Q�V��Q̄�̇Q�V� − �Q�Q̄�̇V��Q�Q̄�̇V�… .

e will now calculate these terms in chiral coordinates, starting with

Q�V = ��	− ��m�̄vm + i���̄	̄ − i�̄�̄�	 +
1

2
���̄�̄�D − i�mvm�


= − ���̇
m �̄�̇vm + 2i���̄	̄ + �̄�̄„− i	� + ���D − i�mvm�… . �18�
ontinuing, we find that
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Q�Q�V = ���− ���̇
m �̄�̇vm + 2i���̄	̄ + �̄�̄„− i	� + ���D − i�mvm�…� = − 2i
���̄	̄ − 
���̄�̄�D − i�mvm� .

�19�

ext, we calculate Q̄�̇V,

Q̄�̇V = �− ��̇ + 2i�����̇
n �n�	− ��m�̄vm + i���̄	̄ − i�̄�̄�	 +

1

2
���̄�̄�D − i �mvm�


= − �����̇
m vm + �− 2i�̄�̇ + 2�̄�̄���̇

m ���m��	 + ��

�
„
i	̄�̇ + �̄�̇�D − i�mvm� + i
�����̇

m �
��̇

n
�̄�̇ �mvn… . �20�

he next calculation is a bit longer.

Q̄�̇Q̄�̇V = �− ��̇ + 2i�����̇
m �m��Q̄�̇V� = − 2i
�̇�̇�	 + ��„
�̇�̇�D − i�mvm�

+ i
����
��̇

m
���̇

n − ���̇
m �

��̇

n ��mvn + 2����̇
m �̄�̇ − �̄�̇�

��̇

m ��m	�
… . �21�

ow, for the mixed supercharges, using the previous results, we find that

Q�Q̄�̇V = ���Q̄�̇V� = − ���̇
m vm + 2i���	̄�̇ − �̄�̇	�� + ��„2�̄�̇�D − i�mvm�

+ 2i�̄�̇
�����̇
m �

��̇

n
�mvn + 2�̄�̄���̇

m �m	�
… . �22�

imilarly, we find that

Q̄�̇Q�V = �− ��̇ + 2i�����̇
m �m��Q�V�

= ���̇
m vm − 2i���	̄�̇ − �̄�̇	�� + 2���̄�̇�D − i �mvm� − 2i���̄�̇ ���̇

m �
��̇

n
�mvn

− 2�����̇
m �m��̄	̄� + �̄�̄„2�����̇

m �m	� + i�����̇
m �m�D − i �mvm�… . �23�

The next task is to calculate the products of the terms above. In the product below, we have

mitted from the beginning those terms with �̄�̄ because there is a �̄ in each term.

1

2
C��Q�VQ�V =

1

2
C��

„− ���̇
m �̄�̇vm + 2i����̄	̄�…„− �

��̇

n
�̄�̇vn + 2i����̄	̄�…

=
1

4
C��
�̇�̇���̇

m �
��̇

n
vmvn�̄�̄ +

i

2
C�������̇

m �vm,	̄�̇��̄�̄

= �1

2
Cmnvmvn −

i

2
C�����̇

m ���vm,	̄�̇���̄�̄ , �24�

here we have used the identity Cmn= 1 � 2C��
�̇�̇���̇
m �

��̇

n
, following the conventions of Ref. 8.

ontinuing to compute the products, since every term has a � this time, we can ignore the ��

erms from the outset:
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1

2
C̄�̇�̇Q̄�̇VQ̄�̇V =

1

2
C̄�̇�̇�− �����̇

m vm − 2i�̄�̇�	��− ���
��̇

n
vn − 2i�̄�̇�	�

= −
1

4
C̄�̇�̇
���

��̇

m
���̇

n vmvn�� −
i

2
C̄�̇�̇�̄�̇���̇

m �vm,	����

= �1

2
C̄mnvmvn +

i

2
C̄�̇�̇���̇

m �̄�̇�vm,	����� , �25�

here we identified C̄mn=−1 � 2 C̄�̇�̇
�����̇
m �

��̇

n
following Ref. 11. Next, consider the second order

n deformation parameter terms:

1

8
C��C���Q�Q�V��Q�Q�V� =

1

8
C��C��
��
���2i�̄	̄ + �̄�̄�D − i �mvm��2

=−
1

8
�C�2	̄	̄�̄�̄ ,

here we use �C�2=4C��C��
��
��. Similarly, we find that the next term is easily calculated due
o a sizable cancellation, since we may omit a �� term from the start:

1

8
C̄�̇�̇C̄�̇�̇�Q̄�̇Q̄�̇V��Q̄�̇Q̄�̇V� =

1

8
C̄�̇�̇C̄�̇�̇
�̇�̇
�̇�̇�− 2i�	�2

=−
1

8
�C̄�2		�� ,

here we use �C̄�2=4C̄�̇�̇C̄�̇�̇
�̇�̇
�̇�̇. The remaining term to consider in V*V is

1 � 4C��C̄�̇�̇��Q̄�̇Q�V��Q̄�̇Q�V�− �Q�Q̄�̇V��Q�Q̄�̇V��. We calculate

1

4
C��C̄�̇�̇

„�Q̄�̇Q�V��Q̄�̇Q�V� − �Q�Q̄�̇V��Q�Q̄�̇V�…

=
1

4
C��C̄�̇�̇����̇

m �vm,4i��̄�̇	� − ��	̄�̇�� − 2i���̇
m �vm,�lvk����

��̇

l
���̇

k �̄�̇ + ��
���
��̇

l
���̇

k �̄�̇��

+ 2���̇
m �̄�̄�

��̇

l �vm,�� �l	� − �� �l	
�� − 2���̇

m ���
��̇

l �vm,�l��̄	̄�� + i���̇
m ���̄�̄�

��̇

l �vm,�l�D

− i�mvm�� − 4�����
��̇

m
���̇

n �̄�̇�	̄�̇,�mvn� + 4�̄�̇���
��̇

m
���̇

n �̄�̇�	�,�mvn� + 4i���̄�̄���
��̇

m �	̄�̇,�m	��

+ 4i�������
��̇

m �	�,�m	̄�̇� − 4i���̄�̇���
��̇

m
���̇

n �̄�̇��D − i �mvm�,�mvn�

− 4���̄�̇���̄�̇���̇
k ���̇

l �
��̇

m
���̇

n �kvl�mvn� . �26�

e can see from the expression above the full second-order calculations will be lengthy. Addi-
ionally, we would have to deal with the nonassociativity of the star product. At present, the author
as only calculated portions of the theory to the second order, mostly for the purpose of comparing
he present work with Ref. 8. We leave the complete development of the second-order deformed
auge theory to a later paper.

We shall now find the correction to V*V*V to the first order in C��. First, recall first that in
he commutative theory, V3 is zero in the Wess–Zumino gauge. Thus, any nontrivial term in

*V*V must arise from the deformation
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V * �V * V� = V�V * V� −
1

2
C���Q�V�Q��V * V� −

1

2
C̄�̇�̇�Q̄�̇V�Q̄�̇�V * V� . �27�

e can replace V*V with V2 as we are looking for the first order in C�� terms:

V * �V * V� = V�V * V� −
1

2
C���Q�V�Q��V2� −

1

2
C̄�̇�̇�Q̄�̇V�Q̄�̇�V2� = V�V * V� . �28�

he two terms vanish because Q�V and Q̄�̇V have a �̄ and � in each term, respectively, while

��V2� and Q̄�̇�V2� are proportional to �̄�̄ and ��, respectively. To the first order, we have

V * �V * V� = 	− ��m�̄vm + i���̄	̄ − i�̄�̄�	 +
1

2
���̄�̄�D − i �mvm�
�V * V� . �29�

ow, if we examine the first-order terms in V*V, we notice that each term either has �� or �̄�̄;

hus, the product with V that is proportional to � and �̄ vanishes. Therefore, to the first order in the
eformation parameter,

V * �V * V� = 0. �30�

t is not hard to see that this extends to higher star products. Thus, �V�*
n=0 for n�3 to the first

rder in the deformation parameter. That is, to the first order in C, we have eV=1+V+ 1 � 2V*V.
his is nice but it will clearly be spoiled if we include the second-order terms. For example, if one

xamines the mixed second-order term, Eq. �26�, the first few lines have only � or �̄. Hence, in the
roduct with V they will not vanish like the first-order case, thus generating a nontrivial term in
* �V*V�. We will not complete the development of eV to the second order in this paper. Next, we

hall show that in the limit of C̄�̇�̇=0, we recover the terms found by Seiberg in Ref. 8.
Collecting the results of this section, we find that the star exponential of V in the canonical

ess–Zumino gauge is

eV = 1 + V +
1

2
V * V = 1 − ��m�̄vm + i���̄	̄ − i�̄�̄��	� +

1

2
���̄�̄�D − i �mvm�

− �1

4
Cmnvmvn +

i

4
C�������̇

m �	̄�̇,vm���̄�̄ − �1

4
C̄mnvmvn +

i

4
C̄�̇�̇�̄�̇���̇

m �vm,	�����

−
1

16
�C�2	̄	̄�̄�̄ −

1

16
�C̄�2		�� + other second-order terms containing C̄�̇�̇. �31�

. N=0 verses N= 1 2 star exponentials

To compare with the N= 1 � 2 construction, we make the following dictionary:

m � 

vm � A

	̄�̇ � 	̄�̇ �32�

	� � 	� +
1


��C�����̇
 �	̄�̇,A�
4
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�D − i �mvm� � D − i �A.

e use Greek indices for Euclidean spacetime and Latin indices for Minkowski spacetime. In Ref.
, only products of � were deformed. It is clear that we can recover this deformation by setting

¯ �̇�̇ to zero wherever it occurs. Using the dictionary and setting C̄�̇�̇=0, we have

eV = 1 + V +
1

2
V * V

= 1 − ���̄A + i���̄	̄ − i�̄�̄���	� +
1

4

��C�����̇

 �	̄�̇,A��
+

1

2
���̄�̄�D − i �A� −

1

4
C�AA��̄�̄ −

i

4
C�������̇

 �A,	̄�̇��̄�̄ −
1

16
�C�2	̄	̄�̄�̄ . �33�

his is precisely the exponential that Seiberg found on noncommutative Euclidean superspace in
ef. 8. This demonstrates again that the deformed Minkowski superspace of Ref. 11 truly is a
atural extension of the N= 1 � 2 theory to the Minkowski case.

II. GAUGE THEORY ON N=0 MINKOWSKI SUPERSPACE

In this section, we generalize super Yang–Mills theory to deformed Minkowski superspace.
ost of the usual constructions hold and the approach is similar to Seiberg’s N= 1 � 2 super-Yang
ills theory in Ref. 8. We simply replace products in Ref. 14 with star products. The main subtlety

s finding the correct parametrization of the vector superfield.

. Gauge transformations

Our goal is to find a way to embed the usual C-independent gauge transformations into
uperfield equations on noncommutative Minkowski superspace. Since our spinors are built on

inkowski space, we are forced to relate � and �̄ by conjugation. This means that we cannot

irectly follow the construction of Ref. 8. In Ref. 8, we can see that ��� �̄�̇, V̄�V, and �+�

�+ �̄. These relations are sensible for Seiberg, who wrote them in a Euclidean superspace. On
inkowski space, these inequalities must become equalities. We will find that these reality con-

itions and the requirement that we recover N= 1 � 2 theory in the C̄�̇�̇=0 limit almost uniquely
xes this construction.

Non-Abelian gauge transformations on the vector superfield are embedded into the following
uperfield equation on noncommutative Minkowski superspace:

eV � eV� = e−i�̄ * eV * ei�. �34�

his is the natural modification of the standard theory �see Ref. 14, for example�. Infinitesimally,
e have

�eV = − i�̄ * eV + ieV * � . �35�

he component fields of the vector superfield should transform in the adjoint representation of the
auge group as in the standard gauge theory. That is, under an infinitesimal gauge transformation,
e should have

�vm = − 2 �m� + i��,vm� ,
�	� = i��,	�� , �36�
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�D = i��,D� .

ur goal now is to find a suitable parametrization of the gauge parameter � and the vector
uperfield V such that Eq. �36� is embedded into Eq. �35�. It is not surprising that the canonical
ess–Zumino gauge �Eq. �31�� does not work in the N=0 case, since it was also necessary for
ef. 8 to shift the 	 component in the N= 1 � 2 case. The reality of V requires that we cannot shift

nly 	; we must also shift 	̄. To be precise, 	�	+A and 	̄� 	̄+B. We now determine what
hoice of A and B will preserve the reality of V while concurrently embedding Eq. �36�. To the
rst order in C, we find under the above redefinitions that Eq. �31� becomes

eV = 1 − ��m�̄vm −
1

4
C̄mnvmvn�� +

1

4
Cmnvmvn�̄�̄ +

1

2
�D − i �mvm����̄�̄

+ �̄�̄���− i	� − iA +
i

4

��C�����̇

m �vm,	̄�̇�� + ���̄�̇�− i	̄�̇ − iB −
i

4

�̇�̇C̄�̇�̇���̇

m �vm,	��� .

�37�

dditionally, we make a C-dependent shift of the gauge parameter � similar to that of Ref. 8. For
he moment, let us make a reasonably general ansatz for the gauge parameter in terms of a variable

p:

�p = − � + ip��m�̄ �m� +
i

2
��C̄mn�vn,�m�� − �p + 1����̄�̄ �2�

�38�
�̄p = − � + i�2 − p���m�̄ �m� −

i

2
�̄�̄Cmn��m�,vn� − �p + 1����̄�̄ �2� ,

here everything is a function of y in the above. Notice that modulo the higher � components in
, this reduces to the choice of gauge parameter in Ref. 8 when p=0. We now determine which

hoice of p will embed Eq. �36� in Eq. �35�. We calculate that the �̄�̄�� term on the rhs of Eq. �35�
s

��,	�� + ��,A� −
1

4

��C�����̇

m ���,�	̄�̇,vm�‡ − 2i„p	̄�̇ �m� + �2 − p��m� 	̄�̇
…� . �39�

imilarly, the ���̄�̇ term on the rhs of Eq. �35� is

��,	̄�̇� + ��,B� +
1

4

̄�̇�̇C̄�̇�̇���̇

m ���,�	�,vm�� + 2i„p	� �m� + �2 − p��m�	�
…� . �40�

he �̄�̄�� component of the lhs of Eq. �35� is

− i �	� − i �A +
i

4

��C�����̇

m ��	̄�̇,vm� . �41�

imilarly, the ���̄�̇ component of the lhs of Eq. �35� is

− i �	̄�̇ − i �B −
i

4

̄�̇�̇C̄�̇�̇���̇

m ��	�,vm� . �42�

t is not difficult to show �applying Eq. �36�� that

i��	�,vm� + ��,�	�,vm�� = − 2i�	�,�m�� ,

i��	̄�̇,vm� + ��,�	̄�̇,vm�� = 2i�	̄�̇,�m�� ,

¯ �̇ ¯ �̇ ¯ �̇
i��	 ,vm� + ��,�	 ,vm�� = 2i�	 ,�m�� , �43�
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i��vm	�� + ��,vm	�� = 2i�m�	�,

i��	̄�̇vm� + ��,	̄�̇vm� = 2i	̄�̇�m� .

ext, equate Eq. �41� and Eq. �39�. Then require that �	�= i�� ,	�� so that Eq. �43� holds. Some
erms cancel and we find that

− i �A − ��,A� =
i

2

��C�����̇

m ��p + 1�	̄�̇�m� + �1 − p��m� 	̄�̇� . �44�

ikewise, equate Eq. �42� and Eq. �40�. Then require that �	̄�̇= i�� , 	̄�̇� so that Eq. �43� holds.
ome terms cancel, and we find that

− i �B − ��,B� =
i

2

��C�����̇

m
„�p − 1�	� �m� + �3 − p��m� 	�

… . �45�

hen p=0, we find that Eq. �44� becomes

− i �A − ��,A� =
i

2

��C�����̇

m �	̄�̇,�m�� . �46�

ence, in view of Eq. �43�, we can see why Ref. 8 shifted the 	� component of the vector

ultiplet by A= 1 � 4
��C�����̇
m �	̄�̇ ,vm�. If we tried to use this choice of gauge parameter, we

ould destroy the reality of V because Eq. �45� would lead us to choose B= 1 � 4 
̄�̇�̇C̄�̇�̇���̇
m

−	�vm+3vm	��. The correct choice is p=1. With this choice of gauge parameter, we find the
ollowing conditions for A and B from Eq. �44� and Eq. �45�:

− i �A − ��,A� = i
��C�����̇
m 	̄�̇ �m�

�47�
− i �B − ��,B� = i
̄�̇�̇C̄�̇�̇���̇

m �m� 	�.

hese conditions are satisfied by

A =
1

2

��C�����̇

m 	̄�̇vm

�48�

B =
1

2

̄�̇�̇C̄�̇�̇���̇

m vm	�.

t is easy to see that Ā=B and B̄=A, which is necessary in order to preserve V̄=V. This is the only
arametrization of the vector superfield and gauge parameter for noncommutative Minkowski
uperspace if we wish to stay in a generalized Wess Zumino gauge. In principle, we could use the
ther lower � components of the vector superfield to do more complicated shifts. Fortunately, we
ill not need to do that. Define the vector superfield to be

V�y� = − ��m�̄vm + ���̄�̇�− i	̄�̇ +
i

2

̄�̇�̇C̄�̇�̇���̇

m vm	�� + �̄�̄���− i	� −
i

2

��C�����̇

m 	̄�̇vm�
+

1

2
���̄�̄�D − i �mvm� . �49�

t should be evident from the calculations in this section that this parametrization of V embeds Eq.
36� in Eq. �35� while maintaining the reality of V. This, of course, requires that we define the

auge parameters as functions of y to be
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��y� = − � + i��m�̄ �m� +
i

2
��C̄mn�vn,�m�� − 2���̄�̄ �2�

�̄�y� = − � + i��m�̄ �m� −
i

2
�̄�̄Cmn��m�,vn� − 2���̄�̄ �2� . �50�

or the remainder of this paper, we will assume that the vector superfield is parametrized as in Eq.
49� and that the gauge parameter is parametrized as in Eq. �50�. Explicitly in this parametrization,
o the first order in C, Eq. �31� becomes

eV = 1 − ��m�̄vm −
1

4
C̄mnvmvn�� +

1

4
Cmnvmvn�̄�̄ +

1

2
�D − i �mvm����̄�̄

+ �̄�̄���− i	� −
i

4

��C�����̇

m �	̄�̇,vm�� + ���̄�̇�− i	̄�̇ −
i

4

�̇�̇C̄�̇�̇���̇

m �	�,vm�� . �51�

he �̄�̄�� and ���̄�̇ components in the previous equation stand in contrast to what might be
aively expected from N= 1 � 2 theory.

. Spinor superfields

Again, we will construct these as in the commutative theory except that everywhere that we
ad a product in the commutative theory, we place a star product here. Define

W� = −
1

4
D̄�̇ * D̄�̇ * e−V * D� * eV. �52�

onveniently, in chiral coordinates ym=xm+ i��m�̄, several of the star products in the above are
rdinary products. Thus,

W� = −
1

4
D̄�̇D̄�̇e−V * D� * eV. �53�

ikewise, define

W̄�̇ = −
1

4
D� * D� * e−V * D̄�̇ * eV. �54�

imilarly, in antichiral coordinates ȳm=xm− i��m�̄, the above simplifies to

W̄�̇ = −
1

4
D�D�e−V * D̄�̇ * eV. �55�

e must determine the component field content of W� and W̄�̇. Referring to Eq. �51� and keeping
nly up to the first order in C, we obtain

W� = W��C = 0� + ���1

2
C̄mn�Fmn,	�� + C̄mn�vn,Dm	� −

i

4
�vm,	���� + C��
����	̄	̄ , �56�

here, following Wess and Bagger’s conventions in Ref. 14, the field strength and covariant
erivative of the gaugino are

Fmn = �mvn − �nvm +
i

2
�vm,vn�

�57�
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Dm	� = �m	� +
i

2
�vm,	�� .

dditionally, the spinor superfield of ordinary superspace is

W��C = 0� = − i	� + ��D − ��
mn���Fmn + ���

��̇

m Dm	̄�̇. �58�

otice that when we set C̄�̇�̇=0, we recover the result of Seiberg Ref. 8 for W�. Likewise, we find
hat

W̄�̇ = W̄�̇�C = 0� + �̄�̄�1

2
Cmn�Fmn,	̄�̇� + Cmn�vn,Dm	̄�̇ −

i

4
�vm,	̄�̇��� + C̄�̇�̇
�̇�̇�̄�̇		 , �59�

here

W̄�̇�C = 0� = i	̄�̇ + �̄�̇D − ��̇
mn�̇�̄�̇Fmn + �̄�̄�̄m�̇�Dm	�. �60�

gain, we reproduce the result of Ref. 8 upon setting C̄�̇�̇=0.
The spinor superfield transforms as in the commutative theory. From the non-Abelian gauge

ransformation �Eq. �34��, it follows that

W� � W�
� = e−i�̄ * W� * ei�. �61�

his can be shown by modifying the calculation used in the commutative theory. We simply
hange products to star products and utilize the algebra given in Eq. �15�.

V. CHIRAL AND ANTICHIRAL SUPERFIELDS

Chiral ��� and antichiral ��̄� superfields are defined as usual:

D̄�̇ * � = 0, D� * �̄ = 0. �62�

he stars deform any multiplications that result. However, as D�=�� in the chiral coordinates

y=x+ i��m�̄ and D̄�̇=��̇ in the antichiral coordinates ȳ=x− i��m�̄, we find that the star
roducts are ordinary products. Consequently, we find the well-known solutions,

��y,�� = A�y� + �2���y� + ��F�y� ,

�63�
�̄�ȳ, �̄� = Ā�ȳ� + �2�̄�̄�ȳ� + �̄�̄F̄�ȳ� .

hese solutions follow from the chain rule as in the standard commutative theory. This construc-
ion need not be modified on noncommutative Minkowski superspace because the anticommuta-
ion relations given in Eq. �15� are unspoiled by the deformation.

. Parametrizing the chiral and antichiral superfields

The matter fields in the Wess–Zumino model should transform in the fundamental and anti-
undamental representations of the gauge group. This is naturally embedded into the following
uperfield equation written on noncommutative Minkowski superspace �as Araki, Ito, and Ohtsuka
id for the Euclidean case in Ref. 15�,

� � �� = e−i� * � , �̄ � �̄� = �̄ * ei�̄. �64�
nfinitesimally, we have
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� � = − i� * � , � �̄ = i�̄ * �̄ . �65�

t the level of component fields, Eq. �65� should embed

�A�y� = i�A�y� , �Ā�ȳ� = − iĀ��ȳ�

���y� = i���y� , ��̄�ȳ� = − i�̄��ȳ�

�F�y� = i�F�y� , �F̄�ȳ� = − iF̄��ȳ� .

�66�

t was necessary for Ref. 15 to shift the F̄ term in �̄ to maintain the usual C-independent gauge

ransformations on the component fields. Similarly, we must modify both � and �̄ from the
anonical form given in Eq. �63�,

��y� = A + �2�� + ���F + �� ,

�67�
�̄�ȳ� = Ā + �2�̄�̄ + �̄�̄�F̄ + �� ,

here the shifts � and � must be chosen as to embed Eq. �66� in Eq. �65�. Now � and �̄ were

iven in Eq. �50�, however, it will be convenient to view �̄ as a function of ȳ for this section:

��y� = − � + i��m�̄ �m� +
i

2
��C̄mn�vn,�m�� − 2���̄�̄ �2� ,

�68�

�̄�ȳ� = − � − i��m�̄ �m� −
i

2
�̄�̄Cmn��m�,vn� − 2���̄�̄ �2� .

he �� coefficient in Eq. �65� yields

�F + �� = i�F + i�� − 2iC̄mn �m� �nA +
1

2
C̄mn�vn,�m��A . �69�

ikewise, the �̄�̄ coefficient in Eq. �65� yields

�F̄ + �� = − iF̄� − i�� − 2iCmn�nĀ �m� +
1

2
CmnĀ��m�,vn� . �70�

f we require that Eq. �66� holds, we then find that the following condition on � from Eq. �70� is

�� − i�� = − 2iCmn �n Ā�m� +
1

2
CmnĀ��m�,vm� . �71�

imilarly, we find that the following condition on � from Eq. �69� is

�� − i�� = − 2iC̄mn�m� �nA +
1

2
C̄mn�vn,�m��A . �72�

ollowing Ref. 15, we notice that

��iCmn�m�Āvn� −
1

4
CmnĀvmvn� + i�iCmn��mĀvn� −

1

4
CmnĀvmvn��

= − 2iCmn��mĀ���n�� +
1

2
CmnĀ��m�,vn� . �73�
dditionally, we note that
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��− iC̄mn�mvnA +
1

4
C̄mnvmvnA� − i��− iC̄mn�m�vnA� +

1

4
C̄mnvmvnA�

= 2iC̄mn��n����mA� +
1

2
C̄mn�vn,�m��A . �74�

hen, observe that Eq. �74� and Eq. �72� indicate that

� = − iC̄mn�m�vnA� +
1

4
C̄mnvmvnA . �75�

hen, observe that Eq. �73� and Eq. �71� indicate that

� = iCmn�m�Āvn� −
1

4
CmnĀvmvn. �76�

hus, we define the chiral and antichiral superfields with respect to Eq. �50� as

� = A + �2�� + ���F − iC̄mn�m�vnA� +
1

4
C̄mnvmvnA� ,

�77�

�̄ = Ā + �2�̄�̄ + �̄�̄�F̄ + iCmn�m�Āvn� −
1

4
CmnĀvmvn� .

t should be clear from this section that this is the correct parametrization of the anti-�chiral�
uperfields. This definition embeds Eq. �66� in Eq. �65�. This parametrization gives the component
elds the standard C-independent gauge transformations.

. GAUGED WESS–ZUMINO MODEL

We construct the gauge-invariant Lagrangian of the Wess–Zumino model on noncommutative
inkowski superspace:

L =
1

16kg2�� d2� tr W * W +� d2�̄ tr W̄ * W̄� +� d2� d2�̄ �̄ * eV * � . �78�

auge invariance of L follows directly from the cyclicity of the trace and equations, Eq. �34�, Eq.
61�, and Eq. �64�. Also, note that this Lagrangian is real as the star product has the property

*G= Ḡ* F̄. To first order in the deformation parameter, we can calculate

tr W * W��� = tr W * W�C = 0���� − iCmn tr Fmn	̄	̄ + iC̄mn tr 		Fmn,

�79�
tr W̄ * W̄��̄�̄ = tr W̄ * W̄�C = 0���̄�̄ − iCmn tr Fmn	̄	̄ + iC̄mn tr 		Fmn,

here

W * W�C = 0���� = − 2i	̄�̄mDm	 −
1

2
FmnFmn + D2 +

i

4
FmnFlk
mnlk,

�80�

W̄ * W̄�C = 0�� �̄�̄ = − 2i	̄�̄mDm	 −
1

2
FmnFmn + D2 −

i

4
FmnFlk
mnlk.

o first order, these terms match those found by Ref. 8 if we set C̄mn=0. Next, consider the

oupling of the vector and chiral multiplets. After some calculation, we find
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�̄ * eV * �����̄�̄ = F̄F + i���̇
m ��m�̄�̇��� +

1

2
�̄�̇���̇

m vm�� +
1

2
Ā�D − i �mvm�A −

1

4
ĀvmvmA + ��2Ā�A

− i��mĀ�vmA + i
�2

2
Ā	� − i

�2

2
�̄	̄A + iCmn�m�Āvn�F − iCmn��mĀ�vnF

− iC̄mnF̄�m�vnA� + iC̄mnF̄vn�mA −
1

2
CmnĀvmvnF +

1

2
C̄mnF̄vmvnA

− i
�2

8
C�����̇

m Ā�	̄�̇,vm��� − i
�2

8
C̄�̇�̇���̇

m �̄�̇�	�,vm�A −
�2

2
C�����̇

m ��mĀ�	̄�̇��

−
�2

2
C̄�̇�̇���̇

m �̄�̇	� �mA . �81�

e identify the terms without deformation parameters as the usual terms in the Wess Zumino
odel; that is, up to a total derivative we have

�̄ * eV * ��C = 0�����̄�̄ = F̄F − i�̄�̄mDm� − �DmĀ��DmA� +
1

2
ĀDA +

i
�2

�Ā	� − �̄	̄A� ,

�82�

here � and A are in the fundamental representation of the gauge group

Dm� = �m� +
i

2
vm�, DmA = �mA +

i

2
vmA . �83�

n Eq. �81�, we recover most of the terms found by Ref. 15 plus their conjugates. However, in

omparison to the N= 1 � 2 theory, terms that are linear in 	 and 	̄ are notably modified. The new

hifts in the gauge parameters, Eq. �50�, lead to the modification of the 	 and 	̄ components of the
ector superfield V, which, in turn, give rise to the following terms in the Lagrangian L:

− i
�2

8
C�����̇

m Ā�	̄�̇,vm��� −
�2

2
C�����̇

m ��mĀ�	̄�̇��

�84�

− i
�2

8
C̄�̇�̇���̇

m �̄�̇�	�,vm�A −
�2

2
C̄�̇�̇���̇

m �̄�̇	� �mA .

sing covariant derivatives, these terms become

− i
�2

8
C�����̇

m Ā�	̄�̇,vm��� −
�2

2
C�����̇

m �DmĀ�	̄�̇��

�85�

+ i
�2

8
C̄�̇�̇���̇

m �̄�̇�	�,vm�A −
�2

2
C̄�̇�̇���̇

m �̄�̇	�DmA .

he term −��2/2�C�����̇
m �DmĀ�	̄�̇�� was also found in Ref. 15. However, the commutator terms

esult from the choice of gauge parameter we made in Eq. �50�. We might naively have expected

nly the terms without the commutators. Let us summarize:
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L =
1

16kg2 tr�− 4i	̄�̄mDm	 − FmnFmn + 2D2� + F̄F − i�̄�̄mDm� − DmĀDmA +
1

2
ĀDA

+
i

�2
�Ā	� − �̄	̄A� +

1

16kg2 tr�− 2iCmnFmn		 + 2iC̄mn	̄	̄Fmn� +
i

2
CmnĀFmnF

−
i

2
C̄mnF̄FmnA − i

�2

8
C�����̇

m Ā�	̄�̇,vm��� −
�2

2
C�����̇

m �DmĀ�	̄�̇��

+ i
�2

8
C̄�̇�̇���̇

m �̄�̇�	�,vm�A −
�2

2
C̄�̇�̇���̇

m �̄�̇	�DmA . �86�

I. CONCLUSIONS

We have developed a non-Abelian gauge theory over deformed Minkowski superspace. In this
eformation, all of the fermionic dimensions are deformed and, as a result, all of the supersym-
etry is broken. To be consistent with the N= 1 � 2 terminology, we say that this deformed

uperspace has N=0 supersymmetry. Many of the results directly mirror the results of N= 1 � 2
rom Ref. 8 or Ref. 15. This is due to the fact that the deformation we consider in this paper

educes to the deformation of N=1/2 supersymmetry upon setting C̄�̇�̇=0. It is not surprising that

e recover almost the same gauge theoretic results as Ref. 8 in the limit C̄�̇�̇=0. The exception to
his rule is the choice of gauge parameter introduced by Seiberg in Ref. 8. We found that it was not
ossible to use the same construction because it violated the hermiticity of the vector superfield.
e fixed this by introducing a new gauge parameter that served to maintain both hermiticity and

he C-independent gauge transformations on the component fields.
Next, we introduced the chiral superfield �. Again, we found it necessary to modify the

anonical component field expansion in order to maintain the standard gauge transformations on
he component fields. The modification is similar in spirit to that of Ref. 15. Essentially, what we
ound is the N= 1 � 2 theory and conjugate copy, where all of the usual N= 1 � 2 terms are accom-
anied by their conjugates due to the hermiticity properties of the star product used in this
onstruction.

Finally, we constructed the Lagrangian that coupled the gauge and matter fields. The gauge
nvariance of L follows for reasons similar to the commutative theory. We simply modified the
tandard arguments for the gauged Wess–Zumino model by replacing products with star products.
he primary obstacle to this construction was the task of finding the correct parametrization for

he superfields. The Lagrangian is similar to that found by Ref. 15, however, there are several new

erms. Most new terms come directly from the added deformation ��̄�̇ , �̄�̇ �*= C̄�̇�̇ �which should
ave been expected from the outset�. However, the reparametrization of the gauge parameter also
ed us to some terms that were not immediately obvious from the N= 1 � 2 theory.

There is much work left to do. First, we should complete the program begun in this work to
he second order in the deformation parameter. Nonassociativity will have to be addressed. It is
ikely that the constructions of this paper will need modification at the second order. Second, there
re numerous papers, see Refs. 15–47, investigating N=1/2 supersymmetry. It would be interest-
ng to find complementary results for the N=0 case where possible. We could try to find the dual
esults for, instantons as in Refs. 16–21, or renormalization as in Refs. 22–29, or the possibility of
esidual supersymmetry as in Ref. 30, or the Seiberg Witten map as in Ref. 31. We do not attempt
o give a complete account of the N=1/2 developments; we just wish to point out the variety of
ovel directions future research might take. Finally, it would be interesting to derive the N=0

eformation from a string theoretical argument.
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PPENDIX: FIRST ORDER ASSOCIATIVITY OF STAR PRODUCT

Define the parity of F to be 
F. If F is even, then 
F=1. If F is odd, then 
F=−1. We can
xpress the star product to the first order as:

F * G = FG −
1

2
C��
F�Q�F��Q�G� −

1

2
C̄�̇�̇
F�Q̄�̇F��Q̄�̇G� .

et us then prove that the first order star product is associative. Consider:

�F * G� * H = �FG −
1

2
C��
F�Q�F��Q�G� −

1

2
C̄�̇�̇
F�Q̄�̇F��Q̄�̇G�� * H

=FGH −
1

2
C��
F�Q�F��Q�G�H −

1

2
C̄�̇�̇
F�Q̄�̇F��Q̄�̇G�H

−
1

2
C��
FG�Q�FG��Q�H� −

1

2
C̄�̇�̇
FG�Q̄�̇FG��Q̄�̇H�

=FGH −
1

2
C��
F�Q�F��Q�G�H −

1

2
C̄�̇�̇
F�Q̄�̇F��Q̄�̇G�H

−
1

2
C��
FG��Q�F�G + 
FF�Q�G��Q�H

−
1

2
C̄�̇�̇
FG��Q̄�̇F�G + 
FF�Q̄�̇G��Q̄�̇H

=FGH −
1

2
C��
F�Q�F��Q�G�H −

1

2
C̄�̇�̇
F�Q̄�̇F��Q̄�̇G�H

−
1

2
C���
F
G�Q�F�G�Q�H� + 
GF�Q�G��Q�H��

−
1

2
C̄�̇�̇�
F
G�Q̄�̇F�G�Q̄�̇H� + 
GF�Q�G��Q̄�̇H�� .

otice that we have used 
FG=
F
G and 
F
F=1 to complete the calculation above. Likewise,
onsider

F * �G * H� = F * �GH −
1

2
C��
G�Q�G��Q�H� −

1

2
C̄�̇�̇
G�Q̄�̇G��Q̄�̇H��

=FGH −
1

2
C��
GF�Q�G��Q�H� −

1

2
C̄�̇�̇
GF�Q̄�̇G��Q̄�̇H�

−
1

C��
F�Q�F��Q�GH� −
1

C̄�̇�̇
F�Q̄�̇F��Q̄�̇GH�

2 2
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=FGH −
1

2
C��
GF�Q�G��Q�H� −

1

2
C̄�̇�̇
GF�Q̄�̇G��Q̄�̇H�

−
1

2
C��
F�Q�F���Q�G�H + 
GG�Q�H��

−
1

2
C̄�̇�̇
F�Q̄�̇F���Q̄�̇G�H + 
GG�Q̄�̇H��

=FGH −
1

2
C��
GF�Q�G��Q�H� −

1

2
C̄�̇�̇
GF�Q̄�̇G��Q̄�̇H�

−
1

2
C���
F�Q�F��Q�G�H + 
F
G�Q�F�G�Q�H��

−
1

2
C̄�̇�̇�
F�Q̄�̇F��Q̄�̇G�H + 
F
G�Q�F�G�Q̄�̇H�� .

herefore, F* �G*H�= �F*G�*H to the first order in the deformation parameter.
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We quantize, within the Loop Representation formalism, the electromagnetic field
in the presence of a static magnetic pole. It is found that the loop-dependent physi-
cal wave functionals of the quantum Maxwell theory become multivalued, through
a topological phase factor depending on the solid angle subtended at the monopole
by a surface bounded by the loop. It is discussed how this fact generalizes what
occurs in ordinary quantum mechanics in multiply connected spaces. © 2006
American Institute of Physics. �DOI: 10.1063/1.2162333�

. INTRODUCTION

Dirac found that the mere existence of a single monopole would explain the quantized nature
f the electric charge.1,2 He discovered a relation between the unit of electric charge and that of the
agnetic pole, which is currently known as Dirac’s quantization condition. In rationalized units

c= � =1� it reads as

eg

4�
=

1

2
n , �1�

here n is an integer and e �g� is the unit of electric �magnetic� charge. Besides this remarkable
rediction, the Dirac theory of magnetic monopoles has been a source of inspiration for the
evelopment of new ideas in theoretical physics. Often, it occurs that different approaches to
nderstanding the formulation of Dirac bring out novelties or unexpected relationships between
ld things.

Being a gauge theory, the Dirac theory of magnetic poles should be a candidate to admit a
uantum geometric representation, such as the Loop Representation �LR� of Maxwell theory.3–5 In
his article we address this point to some extent. Concretely, we study the LR formulation of
uantum Maxwell theory in the presence of an external magnetic pole, taking as a starting point a
rst-order action of Schwinger,6 which is based on the earlier Dirac theory.1,2 We shall see that the
R formulation of the Maxwell theory with a static monopole corresponds to that of the free

heory, except by the fact that the loop-dependent wave functional acquires a topological depen-
ence on the manner that the loop “winds” around the monopole. This dependence is manifested
hrough a topological phase factor picked up by the wave functional when the loop undergoes an
diabatic excursion in the presence of the monopole. It could be said that loop-dependent wave
unctionals become multivalued in the presence of the monopole, in the same sense that in
rdinary quantum mechanics wave functions are allowed to be multivalued whenever the configu-

�Electronic mail: lleal@fisica.ciens.ucv.ve
�
Electronic mail: alopez@ivic.ve
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ation space is multiply connected.7–9 These results are also related with previous studies about the
uantum theory of strings in the presence of a Kalb–Ramond vortex,10,11 where a generalization of
he concept of anyons can be envisaged.

In the next section we present the model and discuss its quantization in the LR formulation. In
he last section we study in which sense the magnetic monopole turns Maxwell theory into a
oop-dependent theory with nontrivial boundary conditions in loop space.

I. QUANTIZATION AND LOOP REPRESENTATION

Electromagnetism with magnetic charges can be studied from the first-order Schwinger
ction,6

S =� dx4�A�Je
� + B�Jm

� −
1

2
F�����A� − ��A�� +

1

4
F��F��� , �2�

here B is given by

B��x� =� dy4 * F���y�f��y − x� + ����x� . �3�

ere, f obeys

��f��y� = �4�y� , �4�

nd � is an arbitrary function. The dual *F is given by

*F�� =
1

2
����	F�	, �5�

here ����	 is the completely antisymmetric symbol and Je �Jm� denote the electric �magnetic�
urrent density. The independent fields in �2� are A� and F��. Varying �2� with respect to A� gives

��F�� = Je
�, �6�

hereas variations with respect to F�� yield

F���x� = ��A��x� − ��A��x� −
1

2
����	� dy4 Jm

��y�f	�x − y� , �7�

hich, with the use of Eqs. �3� and �4�, implies

�� * F�� = Jm
� . �8�

hus, one obtains the Maxwell equations with both electric and magnetic currents. The duality
lectricity magnetism manifests through the invariance of the equations under the rotations

Je → cos 
Je + sin 
Jm, �9�

Jm → − sin 
Je + cos 
Jm, �10�

F → cos 
F + sin 
 * F . �11�

We are interested in studying how the presence of a magnetic monopole affects the loop-space
ormulation of the Maxwell field. Hence, we take Je=0 in Eq. �2� and restrict ourselves to consider

static monopole �we take it at the origin of space�, which forces the magnetic current to be

ritten as
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Jm
��x� = g�0

��3�x�� . �12�

convenient choice for f� �fulfilling Eq. �4�� is

f��y� = −
1

4�

yi

y�3�i
���y0� . �13�

he Hamiltonian formulation begins with the definition of the canonical momenta associated to

0, Fij, and Ai, which result to be

�0�x� � 0, �14�

�ij�x� � 0, �15�

�i�x� = − F0i�x� , �16�

espectively. Equations �14�, �15� are �primary� constraints in the sense of Dirac,12 and we have
ntroduced the weak equality symbol � to mean that these equalities should not be used until
oisson brackets are calculated. Since F0i is already a conjugate momentum, it is not necessary to

reat it as a coordinate and to define its own canonical momentum.13 Following Dirac’s method to
eal with constrained systems, one constructs the total Hamiltonian,12

H* = H +� dx�3 u�x��0�x� +� dx�3 uij�x��ij�x� , �17�

here u�x� and uij�x� are Lagrange multipliers and H is the canonical Hamiltonian,

H =� dx�3	1

2
�i

2 −
1

4
Fij

2 +
1

2
Fij�f ij − bij�
 +� dx�3 �i�

i A0. �18�

ere we have defined
f ij�x� = �iAj�x� − � jAi�x� , �19�

bij�x� = g�ijkfk�x�� . �20�

t is worth noticing that when the static monopole is absent, this Hamiltonian properly reduces to
hat of the conventional Maxwell theory, since in that case the magnetic field Fij and the curl of the
otential f ij coincide.

The nonvanishing equal time canonical Poisson brackets are given by

�Fij�x�,�kl�y�� =
1

2
��i

k� j
l − �i

l� j
k��3�x� − y�� , �21�

�A��x�,�	�y�� = ��
	�3�x� − y�� . �22�

ollowing Dirac,12 one must impose the time preservation of the constraints. From �14� one finds,
s a secondary constraint, the Gauss Law,

�i�
i�x� � 0. �23�

his constraint, in turn, has a vanishing Poisson bracket with the total Hamiltonian, hence, it does
ot produce further constraints. On the other hand, the time preservation of �15� gives the sec-
ndary constraint

Kij�x� = Fij�x� − f ij�x� + bij�x� � 0. �24�

inally, the preservation of constraint �24� allows us to obtain the Lagrange multipliers uij in terms
i
f the momenta � ,
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uij�x� = −
1

2
„�iF0j�x� − � jF0i�x�… , �25�

hich must be substituted into the expression for the total Hamiltonian.
It is found that constraints �23� and �14� are first class, while �15� and �24� are second class.

ollowing Dirac’s procedure, we must introduce Dirac brackets in order to obtain a quantum
heory consistent with these second class constraints. Though it is not difficult to carry out the
alculations of the matrix of the Poisson brackets between second class constraints and its inverse,
hich are the ingredients needed for building Dirac brackets, a simple argument suffices to obtain

he result. Since Dirac brackets are going to be consistent with second class constraints, these may
e put as strong equalities. Hence, we can write Fij and its momentum �ij in terms of the
emaining canonical variables, and substitute these expressions in the total Hamiltonian. Once this
s done, we have only to consider Dirac brackets between the canonical variables that remain,
hich are Ai, A0, and their canonical conjugates. But it is easy to see that these Dirac brackets just

oincide with the Poisson ones. The net result is that we can eliminate Fij and �ij using Eqs. �15�
nd �24�, and continue using the Poisson brackets for the remaining variables.

At this point, it is also convenient to “eliminate” the constraint �14� of the formalism. This can
e accomplished by fixing the temporal gauge A0=0 and treating this equation as a new constraint,
hich, together with �14�, can be considered as a pair of second class constraints. Then, we can
ut A0 and �0 as strongly vanishing. As before, it can be seen that the new Dirac brackets are
qual to the Poisson ones, as far as we consider only the remaining variables, namely Ai and their
anonical conjugates.

Now we are ready to quantize the theory. First, promote canonical variables to operators
beying equal time canonical commutators,

�Âi�x�,Âj�y�� = 0, �26�

��̂i�x�,�̂ j�y�� = 0, �27�

�Âi�x�,� jˆ �y�� = i�i
j�3�x� − y�� . �28�

he first class constraints define the physical states � as those that satisfy

�i�̂
i�x��  0. �29�

n the physical subspace, the dynamics is given by the Schrödinger equation

i�t�t  = Ĥ�t  , �30�

ith

Ĥ =� dx�3	1

2
�̂i

2 +
1

4
��iÂj − � jÂi − bij�2
 . �31�

hus, we obtain that the static monopole manifests in the theory just through the external field bij,
hich must be subtracted from the curl of the vector potential to give the magnetic field operator.

We are now prepared to discuss the LR of the model. We begin by recalling that the Abelian
ath space �PS� can be defined as the set of certain equivalence classes of curves � in �for our
urposes� R3.3–5,14 The equivalence relation is given by the so-called form factor Ti�x� ,�� of the

urve
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Ti�x�,�� = �
�

dyi ��x� − y�� , �32�

s follows: � and �� are said to be equivalent �i.e., represent the same path� if their form factors
oincide. Closed curves give rise to a subspace of the PS: the loop space. It can be seen that the
sual composition of curves translates into a composition of paths that endows the PS with a group
tructure.

The path representation arises when one considers path-dependent wave functionals ����, and
ealizes the canonical field operators by means of operations onto these wave functionals.3–5,14 We
efine the path and loop derivatives �i�x�� and �ij�x�� by

„1 + ui�x���i�x��…���� = ��� � u� , �33�

�1 +
1

2
�ij�x���ij�x������� = ��� � �c� , �34�

here � denotes the PS product.4 The derivative �i�x�� (�ij�x��) measures the change in the path-
ependent wave functional when an infinitesimal path �u �infinitesimal loop �c� is attached to its
rgument � at the point x�. It is understood that these changes are considered up to first order in the
nfinitesimal vector ui associated with the small path, or with the surface element,

�ij = uiv j − viuj , �35�

enerated by the infinitesimal vectors u� and v� that define the small loop �c. It can be shown that
oth derivatives are related by3–5,14

�i� j�x�� − � j�i�x�� = �ij�x�� . �36�

With these tools at hand we represent the canonical field as operators acting on path-
ependent wave functionals ���� by means of the prescriptions,

�̂i�x�� → eTi�x�,�� , �37�

Âj�x�� →
i

e
� j�x�� . �38�

t is readily seen that this realizes the algebra �26�–�28�. We see that in this representation the form
actor corresponds to Faraday lines of the electric field. The magnetic field operator, in turn,
ppends a small closed line of electric field to the argument of the wave functionals. The constant
is introduced to fix the scale of the Faradays lines of an electric field. In virtue of Gauss’ law, e

an at the same time be seen as the elementary unit of electric charge. In four dimensions �and
sing natural units� this constant is dimensionless �as well as the magnetic charge g�.

Since the divergence of the form factor Ti�x� ,�� vanishes when the path is closed, the Gauss
onstraint �29� is identically satisfied if we restrict ourselves to deal with loop-dependent wave
unctionals.3 Finally, the Schrödinger equation obeyed by the loop-dependent wave functional

��� that describes the Maxwell field quantized in the presence of the static external monopole
an be written down as

i �t���,t� =� dx�3	1

2
e2
„Ti�x�,��…2 −

1

4e2„i�ij�x�� − ebij�x��…2
���,t� . �39�

hen g=0, this equation reduces to that corresponding to free electromagnetism in the LR,3–5 as
t should be.

The above formulation is empty unless an appropriate scalar product in loop space is defined.

his is a rather subtle matter on which we shall just briefly comment. Nowadays it is known that
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here exits a suitable integration measure in the quantum configuration space of gauge potentials
see Ref. 18 for a recent reference about this matter� that allows us to define an inner product in
oop space for both Abelian and non-Abelian gauge theories. Moreover, it has also been under-
tood how to relate the loop representation of Maxwell theory with its Fock representation,19

hich allows us to make contact with the familiar particle interpretation of field theory. This
elationship between the “polymer-like” and photon-like representations heavily relies on the
ntroduction of “smeared” Wilson loop operators, which, unlike the unsmeared ones, are well
efined in Fock space. At last, it results that normalizable states in the Fock representation corre-
pond to linear combinations of non-normalizable or distributional states of the loop
epresentation.19

II. MULTIVALUED LOOP-DEPENDENT WAVE FUNCTIONALS

We have seen that introducing a static monopole in quantum Maxwell theory, in the LR,
mounts to replacing the loop derivative �ij�x�� by a kind of “covariant derivative,”

i�ij�x�� → i�ij�x�� − ebij�x�� . �40�

ow, we shall see that it is possible to recast the Schrödinger equation �39� as that corresponding
o a free theory, provided that we deal with multivalued loop-dependent wave functionals. It
hould be emphasized that this does not mean that the Maxwell field plus a monopole is the same
hing as that the Maxwell field alone. What this actually means is that one can convert the effect
f the monopole into unusual boundary conditions for the wave functional.

To see how this happens we find it convenient to employ the space of surfaces framework,15

hich we summarize following very closely Ref. 16. One starts with the space of piecewise
mooth oriented surfaces � in R3. We define two surfaces as equivalent if they share the same
surface form factor,”

Tij�x�,�� =� d�y
ij ��3��x� − y�� . �41�

ere d�y
ij is the surface element,

d�y
ij = � �yi

�s

�yj

�r
−

�yi

�r

�yj

�s
�ds dr , �42�

ith s ,r being surface parameters. Now we consider functionals ���� and introduce the surface
erivative �ij�x��, that measures the response of ���� when an element of surface whose infini-
esimal area is �ij is attached to the argument � of ���� at the point x, up to first order in �ij:

���� · �� = „1 + �ij�ij�x��…���� . �43�

he surface derivative �ij�x�� and the loop derivative �ij�x�� are different things. However, since in
3 loop dependence is a particular case of surface dependence �a loop is always the boundary of
n open surface in R3�, the loop derivative can be seen as the surface derivative restricted to
oop-dependent functionals. Hence it makes sense to surface derive loop-dependent quantities.
oon we shall make use of the surface derivative of the form factor,

�ij�x��Tkl�y�,�� =
1

2
��i

k� j
l − �i

l� j
k���3��x� − y�� . �44�

Turning back to our model, let us consider an open surface � whose boundary coincides with
�i.e., ��=��. Then define, from the path-dependent wave functional ����, the surface-
ependent one,
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���� � exp�ie� d�y�
km bkm�y������� = exp� ieg

4�
��������� , �45�

here ���� is the solid angle subtended by �, measured from the monopole. Using Eq. �44�, it is
asy to show that

�ij�x������ = exp� ieg

4�
�����„�ij�x�� + iebij�x��…���� . �46�

hen, the Schrödinger equation �39� of the model can also be written as

i �t���,t� =� dx�3	1

2
e2
„Ti�x�,���…2 −

1

4e2„�ij�x��…2
���,t� . �47�

Unlike the loop dependence in Eq. �39�, the surface dependence in Eq. �47� is not arbitrary: it is
recisely given by the phase factor exp(�ieg /4������) carried by the wave functional, which just
erves to compensate the contribution bij otherwise present in the Schrödinger equation. Hence,
espite the appearances, we are not introducing extra degrees of freedom into the theory when
orking with surfaces instead of loops.�

Due to definition �45�, we see that the properties of � that matter are the solid angle ����
ubtended at the monopole, and the boundary ��. This implies that the surface dependence of the
ave functional ��� , t� is topological: if we replace � by another surface �� that has the same
oundary �, the wave functional changes as

����� = exp�iegp����� , �48�

here p is the number of times that the closed surface S=�� � �−��, that results from the compo-
ition of �� and the surface opposite to �, wraps around the monopole. Therefore we can rewrite
q. �47� as the Schrödinger equation of the free Maxwell theory,

i �t���,t� =� dx�3	1

2
e2
„Ti�x�,��…2 −

1

4e2„�ij�x��…2
���,t� , �49�

rovided that simultaneously we deal with nontrivial boundary conditions for the loop-dependent
ave functionals: every time that the loop goes around a “closed trajectory” �i.e., a closed surface�

hat encloses p times the monopole, the wave function picks up the phase factor exp�iegp�,

�†�S� . �‡ = exp�iegp����� . �50�

n this equation, �S� .� means that the loop � has described a “closed trajectory” sweeping the
losed surface S and wrapping p times to the monopole. The loop-dependent wave functional
ecame multivalued due to the presence of the magnetic monopole.

This can be understood as a generalization of what occurs in ordinary quantum mechanics in
ultiply connected configuration spaces.7–9 In such cases, multivaluedness of the wave function is

llowed, being restricted to multiplication of the wave function by a phase factor carrying a
epresentation of the fundamental group of the configuration space. But this is precisely what we
ave found in our study: since the configuration space of our quantum formulation is the space of
oops in R3− �origin�, a “point” in the set is a loop, while the “closed curves” swept by loops will
e closed surfaces, whose properties of contractibility in R3− �origin� will define the fundamental
roup of the configuration space. Now, the phase factor exp�iegp� appearing in Eq. �48� just
orresponds to a one-dimensional representation of this fundamental group, since it classifies the
urfaces according to the manner in which they wrap the monopole.

Summarizing, we observe that there are three equivalent levels in the description of the
odel: �1� Eq. �39�, where the wave functionals are loop dependent and single valued, and the

nteraction of the field with the monopole appears explicitly in the Hamiltonian. �2� Eq. �47�, that

ses a wave functional with a prescribed surface-dependence �45� that encodes the effect of the

                                                                                                            



m
n
s
m

D
u
v
a
I
o
t
o

i
f
m
c

t
M
p
p
c

t

1

1

1

1

1

1

1

1

1

1

2

2

012305-8 L. Leal and A. Lopez J. Math. Phys. 47, 012305 �2006�

                        
onopole; and �3� the loop-dependent “free” equation �49�, where the wave-functional carries a
on trivial one-dimensional unitary representation of the fundamental group of the configuration
pace �which is the space of loops in R3− �origin�� that takes into account the effect of the
onopole.

To conclude, we should mention a feature that could look somewhat striking at first sight. If
irac’s quantization condition �1� holds, the topological phase factor appearing in �48� becomes
nity and the dependence on the surface vanishes. But then the wave functional becomes single
alued and the effect of the monopole seems to disappear at all!. What happens is that, in the
bsence of electrically charged particles, there is no need to quantize electric or magnetic charges.
n fact, recall that in the formulation of Dirac, charge quantization arises when the wave function
f the charged particle is asked to be single valued in the presence of the monopole. Or, alterna-
ively, when the action functional of the charge-field-monopole system is asked to be independent
f the string attached to the monopole �in our case, this corresponds to demanding that changing

f� �given in �13�� by any other vector field obeying Eq. �4� does not modify the action�. Yet, there
s another approach, which does not employ vector potentials, which derives charge quantization
rom the consistency of the Heisenberg equations of motion of a charged particle in the field of a
agnetic monopole.20 But in the absence of electric charges, all these requirements are automati-

ally guaranteed, and Dirac’s quantization condition is not required to have a consistent theory.
It would be interesting, in view of the above discussion, to study the LR formulation of the

heory in the case with both charges and monopoles. Based on previous results about the LR of the
axwell field coupled to dynamical point particles,21 it can be expected in this case that the

hysical sector of loop space corresponds to both loops and open paths emanating or ending at the
oints where charges are located. This change in the configuration space of the quantum theory
ould modify the “striking consequence” regarding Dirac quantization condition discussed above.

The present approach could also be applied to the study of higher-rank Abelian theories, with
heir corresponding extended objects generalizing electric and magnetic charges.17
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We construct explicit Bogomolnyi, Prasad, Sommerfeld �BPS� and non-BPS solu-
tions of the Yang-Mills equations on the noncommutative space R�

2n�S2 which
have manifest spherical symmetry. Using SU�2�-equivariant dimensional reduction
techniques, we show that the solutions imply an equivalence between instantons on
R�

2n�S2 and non-Abelian vortices on R�
2n, which can be interpreted as a

blowing-up of a chain of D0-branes on R�
2n into a chain of spherical D2-branes on

R�
2n�S2. The low-energy dynamics of these configurations is described by a quiver

gauge theory which can be formulated in terms of new geometrical objects gener-
alizing superconnections. This formalism enables the explicit assignment of
D0-brane charges in equivariant K-theory to the instanton solutions. © 2006
American Institute of Physics.
�DOI: 10.1063/1.2157005�

. INTRODUCTION AND SUMMARY

One of the most basic questions that arises in trying to understand the nonperturbative struc-
ure of string theory concerns the classification of vector bundles over real and complex manifolds.
n the presence of D-branes one encounters gauge theories in space-time dimensionalities up to 10.
lready more than 20 years ago, BPS-type equations in higher dimensions were proposed1,2 as a
eneralization of the self-duality equations in four dimensions. For non-Abelian gauge theory on

Kähler manifold the most natural BPS condition lies in the Donaldson-Uhlenbeck-Yau
quations,3 which arise, for instance, in compactifications down to four-dimensional Minkowski
pace-time as the condition for at least one unbroken supersymmetry.

While the criteria for solvability of these BPS equations are by now very well understood, in
ractice it is usually quite difficult to write down explicit solutions of them. One recent line of
ttack has been to consider noncommutative deformations of these field theories.4–6 In certain
nstances, D-branes can be realized as noncommutative solitons,7 which is a consequence8,9 of the
elationship between D-branes and K-theory.10–13 All celebrated BPS configurations in field theo-
ies, such as instantons,14 monopoles15 and vortices,16 have been generalized to the noncommuta-
ive case, originally in Ref. 17, in Refs. 18 and in Ref. 19, respectively �see Ref. 20 for reviews
nd further references�. Solution generating techniques such as the Atiyah, Drinfeld, Hitchin, and
anin �ADHM� construction,21 splitting,22 and dressing23 methods have also been generalized to

he noncommutative setting in Refs. 17,24 and in Ref. 25. Solutions of the generalized self-duality
quations1,2 were investigated in Refs. 2 and 26, for example. Noncommutative instantons in
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�
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igher dimensions and their interpretations as D-branes in string theory have been considered in
efs. 27–30. In all of these constructions the usual world volume description of D-branes emerges

rom the equivalence between analytic and topological formulations of K-homology.
In this paper we will complete the construction initiated in Refs. 29 and 30 of multi-instanton

olutions of the Yang-Mills equations on the manifold which is the product of noncommutative
uclidean space R�

2n with an ordinary two-sphere S2. We consider both BPS and non-BPS solu-
ions, and extend previous solutions to those which are explicitly SU�2�-equivariant for any value
f the Dirac monopole charge characterizing the gauge field components along the S2 directions.
imensional reduction techniques are used to establish an equivalence between multi-instantons
n R�

2n�S2 and non-Abelian vortices on R�
2n. The configurations can be interpreted in Type IIA

uperstring theory as chains of branes and antibranes with Higgs-type open string excitations
etween neighboring sets of D-branes. The equivalence between instantons and vortices may then
e attributed to the decay of an unstable configuration of D�2n�-branes into a state of D0-branes
there are no higher brane charges induced because R2n is equivariantly contractible�. The
0-brane charges are classified by SU�2�-equivariant K-theory and the low-energy dynamics may
e succinctly encoded into a simple quiver gauge theory. Unlike the standard brane-antibrane
ystems, the effective action cannot be recast using the formalism ofsuperconnections31 but re-
uires a more general formulation in terms of new geometrical entities that we call “graded
onnections.” This formalism makes manifest the interplay between the assignment of K-theory
lasses to the explicit instanton solutions and their realization in terms of a quiver gauge theory.

The organization of this paper is as follows. The material is naturally divided into two parts.
ections II–V deal with ordinary gauge theory on a generic Kähler manifold of the form M2n

CP1 in order to highlight the geometric structures that arise due to dimensional reduction and
hich play a prominent role throughout the paper. Sections VI–X are then concerned with the
oncommutative deformation R2n�CP1→R�

2n�CP1 and they construct explicit solutions of the
imensionally reduced Yang-Mills equations, emphasizing their interpretations in the context of
quivariant K-theory, quiver gauge theory, and ultimately as states of D-branes. In Sec. II we
ntroduce basic definitions and set some of our notation, and present the field equations that are to
e solved. In Section III we write down an explicit ansatz for the gauge field which is used in the
U�2�-equivariant dimensional reduction. In Sec. IV we describe three different interpretations of

he ansatz as configurations of D-branes, as charges in equivariant K-theory, and as field configu-
ations in a quiver gauge theory �later on these three descriptions are shown to be equivalent�. In
ec. V the dimensional reduction mechanism is explained in detail in the new language of graded
onnections and the resulting nonabelian vortex equations, arising from reduction of the
onaldson-Uhlenbeck-Yau equations, are written down. In Sec. VI we introduce the noncommu-

ative deformations of all these structures. In Sec. VII we find explicit BPS and non-BPS solutions
f the noncommutative Yang-Mills equations and show how they naturally realize representations
f the pertinent quiver. In Sec. VIII we develop an SU�2�-equivariant generalization of the �non-
ommutative� Atiyah-Bott-Shapiro construction, which provides an explicit and convenient repre-
entation of our solution in terms of K-homology classes. In Sec. IX we compute the topological
harge of our instanton solutions directly in the noncommutative gauge theory, and show that it
oincides with the corresponding K-theory charge, which then allows us to assign D0-brane
harges to the solutions from a world volume perspective. Finally, in Sec. X we construct some
PS solutions in the vacuum sectors of the noncommutative field theory and describe their relation

o stable states of brane-antibrane systems.

I. YANG-MILLS EQUATIONS

In this section we will introduce the basic definitions and notation that will be used throughout
his paper, as well as the pertinent field equations that we will solve.

The manifold Mq�S2: Let Mq be a real q-dimensional Lorentzian manifold with nondegen-
rate metric of signature �−+ ¯ + �, and S2�CP1 the standard two-sphere of constant radius R. We
hall consider the manifold Mq�S2 with local real coordinates x�= �x����Rq on Mq and coor-

2 2
inates �� �0,�� ,�� �0,2�� on S . In these coordinates the metric on Mq�S reads
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dŝ2 = g�̂�̂ dx�̂ dx�̂ = g���� dx�� dx�� + R2�d�2 + sin2 � d�2� , �2.1�

here hatted indices �̂ , �̂ , . . . run over 0 ,1 , . . . ,q+1 while primed indices �� ,�� , . . . run through
,1 , . . . ,q−1. We use the Einstein summation convention for repeated space-time indices.

The Kähler manifold M2n�CP1: As a special instance of the manifold Mq we shall consider
he product Mq=R1�M2n of dimension q=2n+1 with metric,

g���� dx�� d�� = − �dx0�2 + g�� dx� dx�. �2.2�

ere M2n is a Kähler manifold of real dimension 2n with local real coordinates x= �x���R2n,
here the indices � ,� , . . . run through 1, . . . ,2n. The Cartesian product M2n�CP1 is also a Kähler
anifold with local complex coordinates �z1 , . . . ,zn ,y��Cn+1 and their complex conjugates,
here

za = x2a−1 − ix2a and z̄ā = x2a−1 + ix2a with a = 1, . . . ,n �2.3�

hile

y =
R sin �

1 + cos �
exp�− i�� and ȳ =

R sin �

1 + cos �
exp�i�� �2.4�

re stereographic coordinates on the northern hemisphere of S2. In these coordinates the metric on
M2n�CP1 takes the form

ds2 = g�� dx� dx� + R2�d�2 + sin2 � d�2� = 2gab̄ dza dz̄b̄ +
4R4

�R2 + yȳ�2dy dȳ , �2.5�

hile the Kähler two-form � is given by

� = 1
2��� dx� ∧ dx� + R2 sin � d� ∧ d� = − 2igab̄ dza ∧ dz̄b̄ −

4iR4

�R2 + yȳ�2dy ∧ dȳ . �2.6�

Yang-Mills equations: Consider a rank k Hermitian vector bundle E→Mq�S2 with gauge
onnection A of curvature F=dA+A∧A. In local coordinates, wherein A=A�̂ dx�̂, the two-form

has components F�̂�̂=��̂A�̂−��̂A�̂+ �A�̂ ,A�̂�, where ��̂ª� /�x�̂. Both A�̂ and F�̂�̂ take values
n the Lie algebra u�k�. For the usual Yang-Mills Lagrangian �the Yang-Mills coupling constant

YM can be introduced via the redefinition A�gYMA�,

LYM = − 1
4
�g trk�k F�̂�̂F�̂�̂ �2.7�

he equations of motion are

1
�g

��̂��gF�̂�̂� + �A�̂,F�̂�̂� = 0, �2.8�

here g= �det�g�̂�̂��. The curvature two-form can be written in local coordinates on Mq�CP1 as

F = 1
2F���� dx�� ∧ dx�� + F��y dx�� ∧ dy + F��ȳ dx�� ∧ dȳ + Fyȳ dy ∧ dȳ �2.9�

nd the Yang-Mills Lagrangian becomes

LYM = − 1
4
�g trk�k�F����F

���� +
�R2 + yȳ�2

R4 g�����F��yF��ȳ + F��ȳF��y� −
1

2
	 �R2 + yȳ�2

R4 Fyȳ
2� .

�2.10�

Donaldson-Uhlenbeck-Yau equations: For static field configurations in the temporal gauge
1 1 1
0=0, the Yang-Mills equations �2.8� on R �M2n�CP reduce to equations on M2n�CP . Their
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table solutions are provided by solutions of the Donaldson-Uhlenbeck-Yau �DUY� equations
hich can be formulated on any Kähler manifold.3 The importance of these equations derives

rom the fact that they yield the BPS solutions of the full Yang-Mills equations.
The DUY equations on M2n�CP1 are

*� ∧ F = 0 and F0,2 = 0, �2.11�

here * is the Hodge duality operator and F=F 2,0+F1,1+F 0,2 is the Kähler decomposition of the
auge field strength. In the local complex coordinates �za ,y� these equations take the form

gab̄Fzaz̄b̄ +
�R2 + yȳ�2

2R4 Fyȳ = 0, �2.12�

Fz̄āz̄b̄ = 0 = Fzazb, �2.13�

Fz̄āȳ = 0 = Fzay , �2.14�

here the indices a ,b , . . . run through 1, . . . ,n. Equation �2.12� is a Hermitian condition on the
auge field strength tensor, while Eqs. �2.13� and �2.14� are integrability conditions implying that
he bundle E �and its connection A� is holomorphic. It is easy to show that any solution of these
�n+1�+1 equations also satisfies the full Yang-Mills equations.

II. INVARIANT GAUGE FIELDS

In this section we shall write down the fundamental form of the gauge field A on Mq

CP1 that will be used later on to dimensionally reduce the Yang-Mills equations for A to
quations on Mq. This will be achieved by prescribing a specific CP1 dependence for A, which
e proceed to describe first.

Monopole bundles: Consider the Hermitian line bundle Lm→CP1 over the sphere with Lm

�L��m and unique SU�2�-invariant unitary connection am having, in the local complex coordi-
ate y on CP1, the form

am =
m

2�R2 + yȳ�
�ȳ dy − y dȳ� , �3.1�

here m is an integer. The curvature of this connection is

fm = dam = −
mR2

�R2 + yȳ�2dy ∧ dȳ . �3.2�

he topological charge of this gauge field configuration is given by the first Chern number
equivalently the degree� of the associated complex line bundle as

deg Lm =
i

2�
�

CP1
fm = m . �3.3�

n terms of the spherical coordinates �� ,�� the configuration �3.1� and �3.2� has the form

am = −
im

2
�1 − cos ��d� and fm = dam = −

im

2
sin � d� ∧ d� . �3.4�

t describes �m� Dirac monopoles or antimonopoles sitting on top of each other.
The m-monopole bundle is classified by the Hopf fibration S1

�S3→S2. For each m�Z there
�m 1
s a one-dimensional representation �m= ��i� of the circle group U�1��S defined by
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�m:v � 	 · v = 	mv with 	 � S1 and v � C . �3.5�

e denote this irreducible U�1�-module by Sm�C. Regarding the sphere as the homogeneous
pace CP1�SU�2� /U�1�, the SU�2�-equivariant line bundle Lm→CP1 corresponds to the repre-
entation �m in the sense that it can be expressed as

Lm = SU�2��U�1�Sm, �3.6�

here the quotient on SU�2��Sm is by the U�1� action 	 · �g ,v�= �g	−1 ,	mv� for g�SU�2� ,v
Sm, and 	�U�1�. The action of SU�2� on SU�2��Sm given by g� · �g ,v�= �g�g ,v� descends to

n action on �3.6�. Any SU�2�-equivariant Hermitian vector bundle over the sphere is a Whitney
um of bundles �3.6�.

There is an alternative description in terms of the holomorphic line bundle O�m�→CP1

efined as the mth power of the tautological bundle over the complex projective line. The univer-
al complexification of the Lie group SU�2� is SL�2,C�, and we may regard the sphere as a
rojective variety through the natural diffeomorphism CP1�SU�2� /U�1��SL�2,C� /P, where P is
he parabolic subgroup of lower triangular matrices in SL�2,C�. The SU�2� action on �3.6� lifts to
smooth SL�2,C� action, and the complexification of �3.6� is realized as the SL�2,C�-equivariant

ine bundle

O�m� = SL�2,C��PSm �3.7�

ver CP1. Only the Cartan subgroup C�� P of nonzero complex numbers acts nontrivially on the
odules Sm, with the C� action defined analogously to �3.5�. The two descriptions are equivalent

fter the introduction of a Hermitian metric on the fibers of O�m�. This holomorphic line bundle
as transition function ym transforming sections from the northern hemisphere to the southern
emisphere of S2. However, the monopole connection �3.1� is transformed on the intersection of
he two patches covering CP1 via the transition function �y / ȳ�m/2, which is the unitary reduction of
he holomorphic transition function ym. Thus the bundle O�m� regarded as a Hermitian line bundle
as transition function �y / ȳ�m/2 and can be substituted for the monopole bundle Lm.

SU(2)-invariant gauge potential: The form of our ansatz for the gauge connection on Mq

CP1 is fixed by imposing invariance under the SU�2� isometry group of CP1 acting through rigid
otations of the sphere. Let E→Mq�CP1 be an SU�2�-equivariant U�k� bundle, with the group
U�2� acting trivially on Mq and in the standard way on CP1=SU�2� /U�1�. Let A be a connec-

ion on E. Imposing the condition of SU�2�-equivariance means that we should look for represen-
ations of the group SU�2� inside the U�k� structure group, i.e., for homomorphisms 
 :SU�2�

U�k�. The ansatz for A is thus given by k-dimensional representations of SU�2�. Up to isomor-
hism, for each positive integer d there is a unique irreducible SU�2�-module Vd�Cdof dimension
. Therefore, for each positive integer m, the module

V = �
i=0

m

Vki
, with 

i=0

m

ki = k �3.8�

ives a representation 
 of SU�2� inside U�k�. The total number of such homomorphisms is the
umber of partitions of the positive integer rank �E�=k into ��m+1� components. The original
�k� gauge symmetry is then broken down to the centralizer subgroup of 
�SU�2�� in U�k� as

U�k� → �
i=0

m

U�ki� . �3.9�

It is natural to allow for gauge transformations to accompany the SU�2� action,32 and so some
twisting” can occur in the reduction of the connection A on Mq�CP1. The CP1 dependence in
his case is uniquely determined by the above SU�2�-invariant Dirac monopole configurations.33,34

ij
he u�k�-valued gauge potential A thus splits into ki�kj blocks A ,
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A = �Aij� with Aij � Hom�Vkj
,Vki

� , �3.10�

here the indices i , j , . . . run over 0 ,1 , . . . ,m ,k0+k1+ ¯ +km=k and

Aii = Ai�x�� � 1 + 1ki
� am−2i�y� , �3.11�

Aii+1
¬�i+1 = i+1�x�� � �̄�y� , �3.12�

Ai+1i = − �Aii+1�† = − ��i+1�† = − i+1
† �x�� � ��y� , �3.13�

Aii+l = 0 = Ai+li for l� 2. �3.14�

ere

� =
R dy

R2 + yȳ
and �̄ =

R dȳ

R2 + yȳ
�3.15�

re the unique covariantly constant, SU�2�-invariant forms of type �1,0� and �0,1� such that the

ähler �1,l�-form on CP1 is 4R2�∧ �̄. They, respectively, take values in the bundles L2 and L−2.
It is easy to see that the gauge potential A given by �3.11�–�3.14� is anti-Hermitian and

U�2�-invariant. Note that we do not use the Einstein summation convention for the repeated
ndices i labelling the components of the irreducible representation Vm+1�Cm+1 of the group
U�2�. Thus the gauge potential A�u�k� decomposes into gauge potentials Ai�u�ki� with i
0,1 , . . . ,m and a multiplet of scalar fields i+1 with i=0,1 , . . . ,m−1 transforming in the bifun-
amental representations Vki

� Vki+1
∨ of the subgroup U�ki��U�ki+1� of the original U�k� gauge

roup. All fields �Ai ,i+1� depend only on the coordinates x��Mq. Every SU�2�-invariant unitary

onnection A on Mq�CP1 is of the form given in �3.10�–�3.14�,34 which follow from the fact that
he complexified cotangent bundle of CP1 is L2 � L−2. This ansatz amounts to an equivariant
ecomposition of the original rank k SU�2�-equivariant bundle E→Mq�CP1 in the form

E = �
i=0

m

Ei with Ei = Eki
� Lm−2i, �3.16�

here Eki→Mq is a Hermitian vector bundle of rank ki with typical fiber the module Vki, and

i→Mq�CP1 is the bundle with fibers �Ei��x�,y,ȳ�= �Eki
�x� � �Lm−2i��y,ȳ�. By regarding �i

Hom�Ei ,Ei−1��H0�Mq�CP1 ;Ei−1 � Ei
∨� for i=1, . . . ,m and defining �0ª0¬�m+1, we can

ummarize our ansatz through the following chain of bundles:

�3.17�

Field strength tensor: The calculation of the curvature �2.9� for A of the form �3.10�–�3.14�
ields,

F = �Fij� with Fij = dAij + 
m

Ail ∧ Alj , �3.18�

l=0
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here

Fii = Fi + fm−2i + �i+1i+1
† − i

†i�� ∧ �̄ , �3.19�

Fii+1 = Di+1 ∧ �̄ , �3.20�

Fi+1i = − �Fii+1�† = − �Di+1�† ∧ � , �3.21�

Fii+l = 0 = Fi+li for l� 2. �3.22�

ere we have defined Fi
ªdAi+Ai∧Ai= 1

2F����
i �x��dx��∧dx�� and introduced the bifundamental

ovariant derivatives,

Di+1 ª di+1 + Aii+1 − i+1A
i+1. �3.23�

rom �3.19�–�3.22� we find the nonvanishing field strength components

F����
ii = F����

i , �3.24�

F��ȳ
ii+1 =

R

R2 + yȳ
D��i+1 = − �F��y

i+1i�†, �3.25�

Fyȳ
ii = −

R2

�R2 + yȳ�2 �m − 2i + i
†i − i+1i+1

† � . �3.26�

V. DESCRIPTION OF THE ANSATZ

In this section we shall clarify some features of the ansatz constructed in the preceding section
rom three different points of view. To set the stage for the string theory interpretations of the
olutions that we will construct later on, we begin by indicating how the ansatz can be interpreted
n terms of configurations of D-branes in Type II superstring theory. This leads into a discussion
f how the ansatz is realized in topological K-theory, which classifies the Ramond-Ramond
harges of these brane systems, and we will derive the decomposition �3.16� directly within the
ramework of SU�2�-equivariant K-theory. We will then explain how seeking explicit realizations
f our ansatz is equivalent to finding representations of the Am+1 quiver. One of the goals of the
ubsequent sections will be to establish the precise link between these three descriptions, showing
hat they are all equivalent.

Physical interpretation: Before entering into the formal mathematical characterizations of the
nsatz of the preceding section, let us first explain the physical situation which they will describe.
ur ansatz implies an equivalence between brane-antibrane systems on Mq and wrapped branes
n Mq�CP1. In the standard D-brane interpretation, our initial rank k Hermitian vector bundle
→Mq�CP1 corresponds to k coincident D�q+1�-branes wrapping the world volume manifold

q�CP1. The condition of SU�2�-equivariance imposed on this bundle fixes the dependence on
he coordinates of CP1 and breaks the gauge group U�k� as in �3.9�. The rank ki sub-bundle Eki

Mq of this bundle is twisted by the Dirac multimonopole bundle Lm−2i→CP1. The system of
coincident D�q+1�-branes thereby splits into blocks of k0+k1+ ¯ +km=k coincident

�q+1�-branes, associated to irreducible representations of SU�2� and wrapping a common sphere
P1 with the monopole fields. This system is equivalent to a system of k0+k1+ ¯ +km=k D�q
1�-branes carrying different magnetic fluxes on their common world volume Mq. The
�q−1�-branes which carry negative magnetic flux have opposite orientation with respect to the

�q−1�-branes with positive magnetic flux, i.e., they are antibranes. This will become evident
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rom the K-theory formalism, which will eventually lead to an explicit world volume construction,
nd also from the explicit calculation of the topological charges of the instanton solutions. In
ddition to the usual Chan-Paton gauge field degrees of freedom Ai�End�Eki

� living on each
lock of branes, the field content on the brane configuration contains bifundamental scalar fields

i+1�Hom�Eki+1
,Eki

� corresponding to massless open string excitations between neighboring
locks of ki and ki+1 D�q−1�-branes. Other excitations are suppressed by the condition of SU�2�-
quivariance.

However, as we shall see explicitly in the following, the fields i+1 should not be regarded as
achyon fields, but rather only as �holomorphic� Higgs fields responsible for the symmetry break-
ng �3.9�. Only the brane-antibrane pairs whose constituents carry equal and opposite monopole
harges are neutral and can thus annihilate to the vacuum, which carries no monopole charge
although it can carry a K-theory charge from the virtual Chan-Paton bundles over Mq�. Other
rane pairs are stable because their overall nonvanishing Chern number over CP1 is an obstruction
o decay, and the monopole bundles thereby act as a source of flux stabilization for such brane
airs by giving them a conserved topological charge. In particular, neighboring blocks of D�q
1�-branes are marginally bound by the massless open strings stretching between them. In this

ense, the SU�2�-invariant reduction of D-branes on Mq�CP1 induces brane-antibrane systems
n Mq. Note that while the system on Mq is generically unstable, the original brane configuration
n Mq�CP1 can be nonetheless stable.

K-theory charges: Given that the charges of configurations of D-branes in string theory are
lassified topologically by K-theory,10,11,13 let us now seek the K-theory representation of the
bove physical situation. The one-monopole bundle L is a crucial object in establishing the Bott
eriodicity isomorphism

K�Mq � CP1� = K�Mq� �4.1�

n topological K-theory. The isomorphism is generated by taking the K-theory product of the
achyon field 1, Ek1

→Ek0
of a virtual bundle �Ek0

,Ek1
;1��K�Mq� with that of the class of the

ine bundle L which represents the Bott generator of K̃�CP1�=Z.11 The topological equivalence
4.1� then implies the equivalence of brane-antibrane systems on Mq�CP1 and Mq. with the
rane and antibrane systems each carrying a single unit of monopole charge. When they carry
�1 units of charge, the isomorphism breaks down, and it is necessary to introduce the notion of

D-operations” to establish the relationship.30 While these operations are natural, they are not
somorphisms and they reflect the fact that the explicit solutions in this setting are not SU�2�-
nvariant, so that the equivalence breaks downdue to spurious moduli dependences of the system
f branes on the CP1 factor. In what follows we will derive a modification of the relation �4.1� in
quivariant K-theory which will naturally give the desired isomorphism, reflecting the equivalence
f the brane-antibrane systems for arbitrary monopole charge, and bypass the need for introducing
-operations. This is only possible by augmenting the basic brane-antibrane system to a chain of

m+1� branes and antibranes with varying units of monopole charge as described above, and we
ill thereby arrive at an independent purely K-theoretic derivation of our ansatz.

The representation ring RG of a group G �Ref. 35� is the Grothendieck ring of the category of
nite-dimensional representations of G, with addition induced by direct sum of vector spaces,
V�+ �V��ª �V � V��, and multiplication induced by tensor product of modules, �V� · �V��ª �V

� V��. As an Abelian group it is generated by the irreducible representations of G. Alternatively,
ince the isomorphism class of a G-module V is completely determined by its character �V :G

C, the map V��V identifies RG as a subring of the ring of G-invariant functions on G. If Mq

s a G-space, then the Grothendieck group of G-equivariant bundles over Mq is called the
-equivariant K-theory group KG�Mq�. This group unifies ordinary K-theory with group repre-

entation theory, in the sense that for the trivial space KG�pt�=RG is the representation ring of G,

hile for the trivial group Kid�Mq�=K�Mq� is the ordinary K-theory of Mq. The former property
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mplies that KG�Mq� is an RG-module and the coefficient ring in equivariant K-theory is RG, rather
han just Z as in the ordinary case. If the G-action on Mq is trivial, then any G-equivariant bundle
→Mq may be decomposed as a finite Whitney sum

E = �
V�Rep�G�

HomG�1V,E� � 1V, �4.2�

here 1V=Mq�V is the trivial bundle over Mq with fiber the irreducible G-module V. It follows
hat for trivial G-actions the equivariant K-theory takes the simple form

KG�Mq� = K�Mq� � RG. �4.3�

he KG-functor behaves analogously to the ordinary K-functor, and in addition KG is functorial
ith respect to group homomorphisms. A useful computational tool is the equivariant excision

heorem. If F is a closed subgroup of G and Mq is an F-space, then the inclusion � :F�G induces
n isomorphism35

�*:KG�G�FMq�→
�

KF�Mq� , �4.4�

here the quotient on G�Mq is by the F-action f · �g ,x��= �gf−1 , f ·x�� for g�G ,x��Mq and
f �F. The G-action on G�FMq descends from that on G�Mq given by g� · �g ,x��= �g�g ,x��.

Let us specialize to our case of interest by taking G=SU�2�, F=U�1� and the trivial action of
U�2� on the space Mq. Using �4.3� and �4.4� we may then compute

KSU�2��Mq � CP1� = KSU�2��SU�2��U�1�Mq� = KU�1��Mq� = K�Mq� � RU�1�. �4.5�

his K-theoretic equality asserts a one-to-one correspondence between classes of SU�2�-
quivariant bundles over Mq�CP1 and classes of U�1�-equivariant bundles over Mq with U�1�
cting trivially on Mq. The isomorphism �4.5� of equivariant K-theory groups is constructed
xplicitly as follows.35 Given an SU�2�-equivariant bundle E→Mq�CP1, we can induce a U�1�-

quivariant bundle E= i*E→Mq by restriction to the slice Mq�Mq�U�1� /U�1��
�

Mq

SU�2� /U�1�. Conversely, if E→Mq is a U�1�-equivariant bundle, then E=SU�2��U�1�E
Mq�CP1 is an SU�2�-equivariant bundle, where the quotient on SU�2��E is by the action of

�1� on both factors, 	 · �g ,e�= �g	−l ,	 ·e� for g�SU�2� ,e�E ,	�U�1�, and the action of g�
SU�2� on SU�2��U�1�E descends from that on SU�2��E given by g� · �g ,e�= �g�g ,e�. This

onstruction defines equivalence functors between the categories of SU�2�-equivariant vector
undles over Mq�CP1 and U�1�-equivariant vector bundles over Mq, and hence the correspond-
ng Grothendieck groups coincide, as in �4.5�.

The role of the representation ring RU�1� is unveiled by setting Mq=pt in �4.5� to get

KSU�2��CP1� = RU�1�, �4.6�

hich establishes a one-to-one correspondence between classes of homogeneous vector bundles
ver the sphere CP1 and classes of finite-dimensional representations of U�1�. Since the corre-
ponding irreducible representations are the �m given by �3.5�, the representation ring of U�1� is
he ring of formal Laurent polynomials in the variable �1, RU�1�=Z��1 ,�1

−1�. Using �3.6� we can
ssociate the monopole bundle L to the generator �1, and thereby identify �4.6� as the Laurent
olynomial ring

KSU�2��CP1� = Z�L,L∨� . �4.7�
n particular, the relationship �4.5� can be expressed as
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KSU�2��Mq � CP1� = K�Mq� � Z�L,L∨� . �4.8�

his is the appropriate modification of the Bott periodicity isomorphism �4.1� to the present
etting. The crucial difference now is that virtual bundles over Mq are multiplied by arbitrary
owers of the one-monopole bundle, allowing us to extend the equivalence to arbitrary monopole
harges m�Z. In the equivariant setting, there is no need to use external twists of the monopole
undle, nor the ensuing K-theory product as done in Ref. 30. The monopole fluxes are now
aturally incorporated by the coefficient ring RU�1� of the U�1�-equivariant K-theory, superseding
he need for introducing D-operations.

It is instructive to see precisely how the correspondence �4.8� works. For this, it is convenient
o work instead in the category of holomorphic SL�2,C�-equivariant bundles.34 If E is an SU�2�-
quivariant vector bundle over Mq�CP1, then the action of SU�2� can be extended to an SL�2,C�
ction. Everything we have said above carries through by replacing the group SU�2� with its
omplexification SL�2,C� and the Cartan torus U�1��SU�2� with the subgroup P�SL�2,C� of
ower triangular matrices. We are then interested in P-equivariant bundles over Mq with P acting
rivially on Mq. The Lie algebra sl�2,C� is generated by the three Pauli matrices,

�3 = 	1 0

0 − 1

, �+ = 	0 1

0 0

, and �− = 	0 0

1 0

 �4.9�

ith the commutation relations

��3,�±� = ± 2�± and ��+,�−� = �3. �4.10�

he Lie algebra of the subgroup P is generated by the elements �3 and �−, while the Cartan
ubgroup C�� P is generated by the element �3 with the corresponding irreducible representa-
ions being the �m given by �3.5�.

Since the manifold Mq carries a trivial action of the subgroup C�, any C�-equivariant bundle
�→Mq can be written using �4.2� as a finite Whitney sum

E� = �

l���E��
El� � Sl, �4.11�

here ��E���Z is the set of eigenvalues for the C�-action on E� and El�→Mq are bundles
arrying the trivial C�-action. The rest of the P-equivariant structure is determined by the gen-
rator �−. Since ��3 ,�−�=−2�−, the action of �− on El� � Sl corresponds to holomorphic bundle
orphisms El�→El−2� and the trivial �−-action on the irreducible C�-modules Sl. Thus every

ndecomposable P-equivariant bundle E�→Mq has weight set of the form ��E��= �m0 ,m0

2 , . . . ,m1−2 ,m1� for some m0, m1�Z with m0�m1. After an appropriate twist by a C�-module
nd a relabelling, the �3-action is given by the C�-equivariant decomposition,

E = �
i=0

m

Eki
� Sm−2i �4.12�

hile the �−-action is determined by a chain

0 → Ekm
→
m

Ekm−1
→
m−1

¯ →
2

Ek1
→
1

Ek0
→ 0 �4.13�

f holomorphic bundle maps between consecutive Eki
’s. We can now consider the underlying

�1�-equivariant Hermitian vector bundle defined by the unitary U�k� reduction of the GL�k ,C�
tructure group of the holomorphic bundle �4.12�, after introducing a Hermitian metric on its

1
bers. Then the corresponding bundle E→Mq�CP is given by
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E = SU�2��U�1�E . �4.14�

sing �3.6� one finds that �4.14� coincides with the original equivariant decomposition �3.16�.
onversely, given an SU�2�-equivariant bundle E→Mq�CP1, its restriction E= �*E defines a
�l�-equivariant bundle over Mq which thereby admits an isotopical decomposition of the form

4.12� and E may be recovered from �4.14�.
Quiver gauge theory: The ansatz for the gauge potential on Mq�CP1, represented symboli-

ally by the bundle chain �3.17�, corresponds to the disjoint union of two copies of the quiver,

�4.15�

ith the second copy obtained from �4.15� by reversing the directions of the arrows and replacing

i with i
† for each i=1, . . . ,m. The vertices of the quiver are labelled by the degrees of the

onopole bundles Lm−2i, while the arrows correspond to module morphisms i :Vki
→Vki−1

�lo-
ally at each point x��Mq�. Equivalently, the vertices may be labelled by irreducible chiral
epresentations of the group P. Thus our ansatz determines a representation of the quiver Am+1 in
he category of complex vector bundles over the manifold Mq.36 Such a representation is called an

m+1-bundle. Many properties of the explicit solutions that we construct later on find their most
atural explanation in the context of such a quiver gauge theory, which provides a more refined
escription of the brane configurations than just their K-theory charges. This framework encom-
asses the algebraic and representation theoretic aspects of the problem.37

The quiver graph �4.15� is identical to the Dynkin diagram of the Lie algebra Am+1. The
djacency matrix of the quiver has matrix elements specifying the number of links between each
air of vertices m−2i, m−2j, and in the case �4.15� it is given by Adj�Am+1�= ��i,j−1�i,j=0,1,. . .,m. The
atrix elements Cij=2�ij−Adj�Am+1�ij are then identical to those of the Cartan matrix Cij=e�i ·e� j,
here e�i, i=0,1 , . . . ,m are the simple roots of Am+1. Corresponding to the gauge symmetry
reaking �3.9�, the dimension vector k�Vª �k0 ,k1 , . . . ,km� can be regarded as a positive root of Am+1

ssociated with the Cartan matrix C= �Cij� by writing it as

k�V = 
i=0

m

kie�i with �k�V� ª 
i=0

m

ki = k . �4.16�

y Kac’s theorem,37 there is a one-to-one correspondence between the isomorphism classes of
ndecomposable representations of the quiver Am+1 and the set of positive roots of the Lie algebra

m+1. This property is a consequence of the SU�2�-invariance of our ansatz.
Let us focus for a while on the case Mq=pt. In this case Eq. �3.16�, with the m-monopole

undles Lm substituted everywhere by the holomorphic line bundles �3.7�, gives a relation be-
ween the categories of homogeneous holomorphic vector bundles over CP1=SL�2,C� / P and of
nite-dimensional chiral representations of P, while the quiver representation further gives a
elation with the Abelian category of finite-dimensional representations of Am+1.36 To describe this
atter category, it is convenient to introduce the notion of a path P in Am+1, which is generally
efined as a sequence of arrows of the quiver which compose. In the present case any path is of
he form

�4.17�
with −m�m0�m1�m. We will denote it by the formal vector �m0 , . . . ,m1�. The non-negative
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nteger �P � ª 1 � 2 �m1−m0� is the length of the path �4.17�. The trivial path of length 0 based at a
ingle vertex m0 is denoted �m0�. The path algebra CAm+1 of the quiver �4.15� is then defined as the
lgebra generated by all paths P of Am+1, i.e., as the vector space

CAm+1 = �
m0,m1=−m

m0�m1

m

C�m0, . . . ,m1� �4.18�

ogether with the C-linear multiplication induced by �left� concatenation of paths where possible,

�m0, . . . ,m1� · �n0, . . . ,n1� = �m1n0
�m0, . . . ,n1� . �4.19�

his makes CAm+1 into a finite-dimensional quasifree algebra. The path algebra has a natural

m+1-grading by path length,

CAm+1 �
i=0

m

�CAm+1�i with �CAm+1�i �
m0=−m

m−2i

C�m0, . . . ,m0 + 2i� , �4.20�

nd can thereby be alternatively described as the tensor algebra over the ring

C0 = �
i=0

m

C�m − 2i� � Cm+1 �4.21�

f the C0-bimodule

C1 = �
i=0

m

C�m − 2i,m − 2i + 2� . �4.22�

The importance of the path algebra stems from the fact that the category of representations of
he quiver Am+1 is equivalent to the category of �left� CAm+1-modules.37 Given a representation

m−2i→�iWm−2i+2, i=1, . . . ,m, of Am+1, the associated CAm+1-module W is

W = �
i=0

m

Wm−2i �4.23�

ith multiplication extended C-linearly from the definitions

�m − 2i� · wj = �ijwj and �m − 2i,m − 2i + 2� · wj = �i,j+1� j�wj� �4.24�

or wj�Wm−2j. Conversely, given a left CAm+1-module W, we can set Wm−2iª �m−2i� ·W for i
0,1 , . . . ,m and define �i :Wm−2i→Wm−2i+2 for i=1, . . . ,m by

�i�wi� = �m − 2i,m − 2i + 2� · wi. �4.25�

ne can further show that morphisms of representations of Am+1 correspond to CAm+1-module
omomorphisms.37 Thus, the problem of determining finite-dimensional representations of the
uiver Am+1, or equivalently homogeneous vector bundles over CP1, is equivalent to finding
epresentations of its path algebra.

As an example, consider the A quiver,

�4.26�

t represents the standard brane-antibrane system, and as expected SU�2�-equivariance implies that
30
t can only carry m=1 unit of monopole charge. The corresponding path algebra is

                                                                                                            



R
fi
h
a
m

q
n
o
r
D
t
g
r
r
c
e

V

g
I
a
w
g
s
p

t
�
c

w
r
s

w

012306-13 Quiver gauge theory and noncommutative instantons J. Math. Phys. 47, 012306 �2006�

                        
CA2 = C�− 1� � C� + 1� � C�− 1, + 1� = 	C C

0 C

 . �4.27�

epresentations of this algebra yield the standard superconnections characterizing the low-energy
eld content on the world volume of a brane-antibrane system.31 In the next section we will show
ow to generalize the superconnection formalism to account for representations of generic path
lgebras �4.18�. Later on we shall write down explicit solutions with generic monopole charge
�Z that also correspond to the basic brane-antibrane system.

Our technique for generating D-branes from a quiver gauge theory on Mq arises via a
uotient with respect to a generalized SU�2�-action on Chan-Paton bundles over Mq�CP1. This
ew construction is rather different from the well-known quiver gauge theories that arise from
rbifolds with respect to the action of a discrete group G.38 In the latter case the nodes of a quiver
epresent the irreducible representation fractional branes into which a regular representation
-brane decays into when it is taken to an orbifold point of Mq /G, and they can be thought of in

erms of a projection of branes sitting on the leaves of the covering space Mq. While our quiver
auge theory is fundamentally different, it shares many of the physical features of orbifold theo-
ies of D-branes. For instance, the blowing up of vortices on Mq into instantons on Mq�CP1 is
eminescent of the blowing up of fractional D�q−1�-branes into D�q+1�-branes wrapping a non-
ontractible CP1that is used to resolve the orbifold singularity in Mq /G. Our solutions provide
xplicit realizations of this blowing up phenomenon, but in a completely smooth setting.

. DIMENSIONAL REDUCTION

The condition of SU�2�-equivariance uniquely prescribes a specific CP1 dependence for the
auge potential A and reduces the Yang-Mills equations �2.8� on Mq�CP1 to equations on Mq.
n this section we will formulate this reduction in detail and relate it to representations of the path
lgebra �4.18�. This will be done by developing a new formalism of Zm+1-graded connections
hich describes the field content corresponding to the bundle chains �3.17� and �4.13�, and which
eneralizes the standard superconnection field theories on the world volumes of brane-antibrane
ystems.31 This formalism will be the crux to merging together the three interpretations of the
receding section.

Reduction of the Yang-Mills functional: The dimensional reduction of the Yang-Mills equa-
ions can be seen at the level of the Yang-Mills Lagrangian �2.7�. Substituting �3.24�–�3.26� into
2.10� and performing the integral over CP1 we arrive at the action �a set of Yang-Mills coupling
onstants gYM

i , i=0,1 , . . . ,m can be introduced via the redefinitions Ai�gYM
i Ai�

SYM ª �
Mq�CP1

dq+2xLYM = �R2�
Mq

dqx��g�
i=0

m

trki�ki
	�F����

i �†�Fi����� +
1

R2 �D��i+1��D��i+1�†

+
1

R2 �D��i�†�D��i� +
1

2R4 �m − 2i + i
†i − i+1i+1

† �2
 , �5.1�

here g�= �det�g������. In the remainder of this paper we shall only consider static field configu-
ations on Mq=R1�M2n in the temporal gauge A0=0. In this case one can introduce the corre-
ponding energy functional,

EYM = �R2�
M2n

d2nx�gn
i=0

m

trki�ki
	�F��

i �†�Fi��� +
1

R2 �D�i+1��D�i+1�† +
1

R2 �D�i�†�D�i�

+
1

2R4 �m − 2i + i
†i − i+1i+1

† �2
 , �5.2�

here gn=det�g���. The functional �5.2� is non-negative.

Graded connections: The energy functional �5.2� is analyzed most efficiently by introducing a
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ramework specific to connections on the rank k Zm+1-graded vector bundle,

E ª �
i=0

m

Eki
�5.3�

ver M2n whose typical fiber is the module �3.8�. The endomorphism algebra bundle correspond-
ng to �5.3� is given by the direct sum decomposition,

End�E� = �
i=0

m

End�Eki
� � �

i,j=0
i�j

m

Hom�Eki
,Ekj

� . �5.4�

e may naturally associate to �5.4� a distinguished representation of the Am+1 quiver. For this, we
ote that the path algebra CAm+1 is itself a CAm+1-module, and that the elements �m−2i�
CAm+1 define a complete set of orthogonal projectors of the path algebra, i.e., �m−2i� · �m−2j�
�ij �m−2i� for i , j=0,1 , . . . ,m with i=0

m �m−2i�=1. Analogously to the construction of
4.23�–�4.25�, we may thereby define a projective CAm+1-module Piª �m−2i� ·CAm+1 for each i
0,1 , . . . ,m,37 which is the subspace of CAm+1 generated by all paths which start at the ith vertex
f the quiver Am+1. Then �Pi�m−2j�C is the vector space generated by the path from the ith vertex
o the jth vertex, and the corresponding dimension vector is

k�Pi
= 

j=i

m

e� j . �5.5�

he modules Pi, i=0,1 , . . . ,m are exactly the set of all indecomposable projective representations
f the Am+1 quiver,37 with

CAm+1 = �
i=0

m

Pi. �5.6�

The importance of this path algebra representation stems from the fact that, for any quiver
epresentation �3.8�, there is a natural isomorphism37

Hom�Pi,V� � Vki
. �5.7�

e may thereby identify Hom�Vkj
,Vki

� in terms of appropriate combinations of the spaces

Hom�P j,Pi� � �m − 2j� · CAm+1 · �m − 2i� � C . �5.8�

his is the vector space generated by the path from the ith vertex to the jth vertex of Am+1. A
atural representation of this path is by a matrix of dimension �m+1�� �m+1� with 1 in its �ij�th
ntry and 0’s everywhere else. The path algebra �5.6� is thereby identified with the algebra of
pper triangular �m+1�� �m+1� complex matrices.37 For a given quiver representation �3.8�, this
lgebra may be represented by assembling the chiral Higgs fields 1 , . . . ,m into the k�k matrix,

��m� ª�
0 1 0 . . . 0

0 0 2 . . . 0

� � � � �
0 0 0 . . . m

0 0 0 . . . 0
� , �5.9�

ith respect to the decomposition �5.3�. This object generates a representation of the path algebra
n the category of complex vector bundles over M2n, corresponding to the off-diagonal i� j
omponents of the decomposition �5.4�. The finite dimensionality of CAm+1 is reflected in the

roperty that generically
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��m�,���m��2, . . . ,���m��m � 0 but ���m��m+1 = 0. �5.10�

he field configuration �5.9� generates the basic zero-form component of a geometric object that
e shall refer to as a “Zm+1-graded connection” on M2n. For m=1 it corresponds to a standard

uperconnection,39 while for m�1 it is the appropriate entity that constructs representations cor-
esponding to the enlargement of the path algebra CAm+1. Its matrix form is similar to
3.10�–�3.14�, but without the one-forms on CP1.

To formulate the definition precisely, we note that the algebra ��M2n ,E� of differential forms
n M2n with values in the bundle �5.3� has a natural Z�Zm+1 grading, where the Z-grading is by
orm degree. We can thereby induce a total Zm+1-grading by the decomposition

�•�M2n,E� = �
p=0

m

��p��M2n,E� with ��p��M2n,E� = �
i+j�m+1p

�i�M2n,Ekj
� , �5.11�

here �m+1 denotes congruence modulo �m+1�. By using �5.4� and the usual tensor product
rading, this induces a Zm+1-grading on the corresponding endomorphism algebra as

�•�M2n,End E� = �
p=0

m

��p��M2n,End E� �5.12�

ith

��p��M2n,End E� = �
i=0

m

�
a=0

p

�
ia�m+1�p−a�

�ia�M2n� � Hom�Eki
,Eki+a

� . �5.13�

graded connection on �5.11� is defined to be a linear operator �•�M2n ,E�→�•+1�M2n ,E� which
hifts the total Zm+1-grading by 1 modulo �m+1�, i.e., an element of

��1��M2n,End E� = �
i=0

m

� �
i1�m+11

�i1�M2n� � End�Eki
�� �

i0�m+10
�i0�M2n� � Hom�Eki

,Eki+1
�� ,

�5.14�

nd which satisfies the usual Leibniz rule on ��M2n�. As in the standard cases, the Zm+1-graded
onnections form an affine space modelled on a set of local operators.

In our case we retain only the i0=0 and i1=1 components of �5.14� corresponding to the
owest lying massless degrees of freedom on the given configuration of D-branes. From the
eibniz rule it follows that the pertinent graded connections are then of the form �d+A�m�

���m��+ ���m��†�, where

A�m�
ª 

i=0

m

Ai
� �i �5.15�

nd �i :E→Eki
are the canonical orthogonal projections of rank 1,

�i� j = �ij�i, �5.16�

hich may be represented, with respect to the decomposition �5.3�, by diagonal matrices �i

�� ji�li� j,l=0,1,. . .,m of unit trace. In this geometric framework all i are assumed to anticommute
ith a given local basis dx� of the cotangent bundle of the Kähler manifold M2n, as if they were
basic odd complex elements of a superalgebra. This requisite property may be explicitly real-

zed by extending the graded connection formalism to M2n�CP1. For this, we rewrite the ansatz
3.10�–�3.15� in terms of the above field configurations as

�m�
A� = �A �� � 1, �5.17�
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Ay = 1k � �a�m��y − ���m��†
� �y , �5.18�

Aȳ = 1k � �a�m��ȳ + ���m�� � �̄ȳ , �5.19�

here

a�m�
ª 

i=0

m

am−2i � �i �5.20�

nd �i :E→Ei are the canonical projections on �3.16�. The coupling of ��m� to dȳ in �5.19� yields
he desired anticommutativity with dx�.

Alternatively, we may use the canonical isomorphism ��M2n�CP1��C� �M2n�CP1� to map
he cotangent basis dx�̂���̂ onto the generators of the Clifford algebra

��̂��̂ + ��̂��̂ = − 2g�̂�̂12n+1 with �̂, �̂ = 1, . . . ,2n + 2. �5.21�

he gamma matrices in �5.21� may be decomposed as

���̂� = ���,�y,�ȳ� with � � = �� � 12, �y = � � � y, and �ȳ = � � � ȳ , �5.22�

here the 2n�2n matrices � �=−�� ��† act on the spinor module ��M2n� over the Clifford algebra
� �M2n�,

� ��� + ��� � = − 2g��12n with �,� = 1, . . . ,2n , �5.23�

hile

� =
in

�2n� ! �gn

��1¯�2n
� �1

¯ � �2n with ���2 = 12n and �� � = − � �� �5.24�

s the corresponding chirality operator. Here ��1¯�2n
is the Levi-Civita symbol with �12¯2n= +1.

he action of the Clifford algebra C� �CP1� on the spinor module ��CP1� is generated by

� y =
1

R2 �R2 + yȳ�� y and � ȳ =
1

R2 �R2 + yȳ�� ȳ �5.25�

ith constant 2�2 Pauli matrices � ȳ =�− and � y =−�+ obeying ��y ,� ȳ�=−�3. The gauge poten-
ial �3.10�–�3.14� may then be written in an algebraic form as

Â ª ��̂A�̂ = � ��A�m��� � 12 + ���m��� � � ȳ�̄ȳ − ���m��†� � � y�y + � � �� y�a�m��y + yȳ�a�m��ȳ� ,

�5.26�

nd the coupling of �5.9� with the chirality operator �5.24� realizes the desired anticommutativity
ith the one-form representatives � �. Note that the products

���m��� � � ȳ�̄ȳ =
1

R
���m��� � � ȳ and ���m��†� � � y�y =

1

R
���m��†� � � y �5.27�

re independent of the coordinates �y , ȳ��CP1.
The curvature �d+A�m�+ ���m��+ ���m��†�2���2��M2n ,End E� of the graded connection is also

ost elegantly expressed through dimensional reduction from M2n�CP1. From �3.18�–�3.26� it is

iven by
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F̂ ª

1

4
���̂,��̂�F�̂�̂ =

1

4
�� �,����F�m���� � 12 −

1

R
��� �D���m��†

� � y −
1

R
��� �D���m�� � � ȳ

+
1

2R2 ���m� + ���m��†���m�� − ���m�����m��†�12n � �3, �5.28�

here F�m�
ªdA�m�+A�m�∧A�m� and

��m� ª 
i=0

m

�m − 2i��i. �5.29�

he contribution �5.29� is generated by the monopole connection on CP1 in �5.26�, while the
iggs potentials in �5.28� are produced by �5.27�. The graded curvature is independent of �y , ȳ�
CP1, and the standard gamma-matrix trace formulas,

TrC2n+1�� ��� � 12� = − 2n+1g��, �5.30�

TrC2n+1�� ���� �� 

� 12� = 2n+1�g��g�
 + g�
g�� − g��g�
� , �5.31�

TrC2n+1��� �,����� �,� 
� � 12� = 2n+3�g�
g�� − g��g�
� , �5.32�

TrC2n+1�� ����� � �ȳ�y� = − 2ng�� = TrC2n+1�� ����� � �y�ȳ� �5.33�

mply that the energy functional �5.2� can be compactly written in terms of �5.28� as

EYM =
�R2

2n �
M2n

d2nx�gn trk�k TrC2n+1 F̂2. �5.34�

on-Abelian coupled vortex equations: Let us now examine the reduction of the DUY equations
n M2n�CP1 for a gauge potential of the form proposed in Sec. III �with static configurations in
he gauge A0=0�. Substituting �3.19�–�3.22� into �2.12�–�2.14�, we obtain

gab̄F
ab̄

i
=

1

2R2 �m − 2i + i
†i − i+1i+1

† � , �5.35�

F
āb̄

i
= 0 = Fab

i , �5.36�

�̄ āi+1 + Aā
ii+1 − i+1Aā

i+1 = 0, �5.37�

or each i=0,1 , . . . ,m, where 0ª0¬m+1. Recall that there is no summation over i in these
quations. We have abbreviated Fab

i
ªFzazb

i , etc., and defined the derivatives �aª�za= 1
2 ��2a−1

i�2a� and �āª�z̄ā= 1
2 ��2a−1+ i�2a� with a ,b=1, . . . ,n. We shall call �5.35�–�5.37� the non-Abelian

oupled vortex equations.
Equation �5.36� implies that the vector bundles Eki

→M2n are holomorphic, while Eq. �5.37�
mplies that the Higgs fields i+1 :Eki+1

→Eki
are holomorphic maps. By using a Bogomolny-type

ransformation33 one can show that solutions to these equations realize absolute minima of the
nergy functional �5.2�. These field configurations describe supersymmetric BPS states of
-branes.

Seiberg-Witten monopole equations: For n=2, m=1, and k0=k1=1 �so that k=k0+k1=2�, the
quations �5.35�–�5.37� coincide with the perturbed Abelian Seiberg-Witten monopole equations

40
n a Kähler four-manifold M4. In this case we have
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A0 = − A1
¬ A � u�1�, F0 = − F1

¬ F and 1 ¬  � C , �5.38�

nd the equations �5.35�–�5.37� reduce to

gab̄Fab̄ =
1

2R2 �1 − ̄� , �5.39�

Fāb̄ = 0 = Fab, �5.40�

�̄ ā + 2Aā = 0. �5.41�

he perturbation, i.e., the term 1/2R2 in �5.39�, is needed whenever M4 has non-negative scalar
urvature in order to produce a nontrivial and nonsingular moduli space of finite energy L2

olutions. It is usually introduced into the Seiberg-Witten equations by hand. In the present con-
ext, it arises automatically from the extra space CP1 and the reduction from M4�CP1 to M4.

I. NONCOMMUTATIVE GAUGE THEORY

To build further on the interpretation of our ansatz in terms of configurations of D-branes as
escribed in Sec. IV, we should now proceed to construct explicit solutions of the reduced Yang-
ills equations on M2n. Unfortunately, even solutions of the vortex equations �5.35�–�5.37� are

ifficult to come by and there is no known general method for explicitly constructing the appro-
riate field configurations. As we will demonstrate in the following, explicit realizations of these
-brane states are possible in the context of noncommutative gauge theory, which can be mapped

fterwards onto commutative world volume configurations. For this, we will now specialize the
ähler manifold M2n�CP1 to be R2n�CP1 with metric tensor g��=��� on R2n and pass to a
oncommutative deformation of the flat part of the space, i.e., R2n�CP1→R�

2n�CP1. Note that
he CP1 factor remains a commutative space throughout this paper. Then we will deform the
ang-Mills, DUY and non-Abelian coupled vortex equations, and in the subsequent sections
onstruct various solutions of them.

Noncommutative deformation: Field theory on R�
2n may be realized in an operator formalism

hich turns Schwartz functions f on R2n into compact operators f̂ acting on the n-harmonic
scillator Fock space H.6 The noncommutative space R�

2n is then defined by declaring its coordi-
ate functions x̂1 , . . . , x̂2n to obey the Heisenberg algebra relations

�x̂�, x̂�� = i��� �6.1�

ith a constant real antisymmetric tensor ���. Via an orthogonal transformation of the coordinates,
he matrix �= ����� can be rotated into its canonical block-diagonal form with nonvanishing
omponents

�2a−1 2a = − �2a 2a−1
¬ �a �6.2�

or a=1, . . . ,n. We will assume for definiteness that all �a�0. The noncommutative version of the
omplex coordinates �2.3� has the nonvanishing commutators,

�ẑa, ẑ̄b̄� = − 2�ab̄�a
¬ �ab̄ = − �b̄a � 0. �6.3�

aking the product of R�
2n with the commutative sphere CP1 means extending the noncommuta-

ivity matrix � by vanishing entries along the two new directions.

The Fock space H may be realized as the linear span
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�H = �
r1,. . .,rn=0

�

C�r1, . . . ,rn� , �6.4�

here the orthonormal basis states

�r1, . . . ,rn� = �
a=1

n

�2�ara ! �−1/2�ẑa�ra�0, . . . ,0 �6.5�

re connected by the action of creation and annihilation operators subject to the commutation
elations

� ẑ̄b̄

�2�b
,

ẑa

�2�a� = �ab̄. �6.6�

n the Weyl operator realization f � f̂ , coordinate derivatives are given by inner derivations of the
oncommutative algebra according to

�za f̂ = �ab̄�ẑ̄b̄, f̂� ¬ �ẑa f̂ and �z̄ā f̂ = �āb�ẑb, f̂� ¬ �ẑ̄ā f̂ , �6.7�

here �ab̄ is defined via �bc̄�
c̄a=�b

a so that �ab̄=−�b̄a=�ab̄ /2�a. On the other hand, integrals are
iven by traces over the Fock space H as

�
R2n

d2nx f�x� = 	�
a=1

n

2��a
TrH f̂ . �6.8�

The transition to the noncommutative Yang-Mills and DUY equations is trivially achieved by
oing over to operator-valued objects everywhere. In particular, vector bundles E→R2n whose
ypical fibers are complex vector spaces V are replaced by the corresponding �trivial� projective
odules V � H over R�

2n. The field strength components along R�
2n in �2.8� and �2.12�–�2.14� read

ˆ
��=�x̂�Â�−�x̂�Â�+ �Â� ,Â��, where Â� are simultaneously u�k� and operator valued. To avoid a

luttered notation, we drop the hats over operators from now on. Thus all our equations have the
ame form as previously but are considered now as operator equations.

Noncommutative coupled vortex equations: By reducing the noncommutative version of the
UY equations on R�

2n�CP1 to R�
2n we obtain the noncommutative non-Abelian coupled vortex

quations. Instead of working with the gauge potentials A�
i we shall use the operators X�

i defined
y

Xa
i
ª Aa

i + �ab̄z̄
b̄ and Xā

i
ª Aā

i + �ābz
b. �6.9�

n terms of these operators the field strength tensor reads

F
ab̄

i
= �Xa

i ,X
b̄

i � + �ab̄, F
āb̄

i
= �Xā

i ,X
b̄

i � and Fab
i = �Xa

i ,Xb
i � , �6.10�

hile the bifundamental covariant derivatives become

Dāi+1 = Xā
ii+1 − i+1Xā

i+1 and Dai+1 = Xa
ii+1 − i+1Xa

i+1. �6.11�

The non-Abelian vortex equations �5.35�–�5.37� can then be rewritten as

�ab̄��Xa
i ,X

b̄

i � + �ab̄� =
1

4R2 �m − 2i + i
†i − i+1i+1

† � , �6.12�

�Xā
i ,X¯

i � = 0 = �Xa
i ,Xb

i � , �6.13�

b
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Xā
ii+1 − i+1Xā

i+1 = 0 �6.14�

or i=0,1 , . . . ,m. Note that for m=1 we obtain the equations

�ab̄F
ab̄

0
=

1

4R2 �1 − 11
†� and F

āb̄

0
= 0 = Fab

0 , �6.15�

�ab̄F
ab̄

1
= −

1

4R2 �1 − 1
†1� and F

āb̄

1
= 0 = Fab

1 , �6.16�

�̄ ā1 + Aā
01 − 1Aā

1 = 0 �6.17�

hich are considered in Refs. 29 and 30. In particular, for n=2 and k0=k1=1 the equations
6.15�–�6.17� coincide with the perturbed Seiberg-Witten U+�1��U−�1� monopole equations on

�
4 as considered in Ref. 41.

II. EXPLICIT SOLUTIONS OF THE NONCOMMUTATIVE YANG-MILLS EQUATIONS

We are now ready to construct solutions to the Yang-Mills equations on R�
2n�CP1. We shall

rst present the generic non-BPS solutions of the full Yang-Mills equations, and then proceed to
olve the non-Abelian coupled vortex equations �6.12�–�6.14�, and thus the DUY equations on

�
2n�CP1, which describe the stable BPS states. Our technique will make use of appropriate
artial isometry operators TNi

in the noncommutative space.
Ansatz for explicit solutions: Let us fix a monopole charge m�0 and an arbitrary integer 0

r�k. Consider the ansatz

Xa
i = �ab̄TNi

z̄b̄TNi

† and Xā
i = �ābTNi

zbTNi

† , �7.1�

i+1 =  i+1TNi
TNi+1

† and i+1
† =  ̄i+1TNi+1

TNi

† , �7.2�

or i=0,1 , . . . ,m, where  i�C are some constants with  0= m+1=0. Denoting by H the
-oscillator Fock space, the Toeplitz operators TNi

:Cr � H→Vki
� H are partial isometries de-

cribed by rectangular ki�r matrices �with operator entries acting on H� possessing the properties

TNi

† TNi
= 1r while TNi

TNi

† = 1ki
− PNi

, �7.3�

here PNi
is a Hermitian projector of finite rank Ni on the Fock space Vki

� H so that

PNi

2 = PNi
= PNi

† and TrVki
�H PNi

= Ni. �7.4�

rom �7.3� it follows that the operator TNi
has a trivial kernel, while the kernel of TNi

† is the

i-dimensional subspace of Vki
� H corresponding to the range of PNi

. Thus

dim ker TNi
= 0 but dim ker TNi

† = Ni. �7.5�

Substituted into �6.10� this ansatz yields the gauge field strength,

F
ab̄

i
= �ab̄PNi

=
1

2�a�ab̄PNi
and F

āb̄

i
= 0 = Fab

i , �7.6�

hile from �6.11� one finds the covariant derivatives

Dāi+1 = 0 = Dai+1. �7.7�
hus our ansatz describes holomorphic fields, and the projector PNi
defines a noncommutative
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auge field configuration of rank Ni and constant curvature in the subspace ker TNi

† �Vki
� H. In

articular, the Higgs fields i+1 are covariantly constant with

i
†i = � i�2�1ki

− PNi
� and i+1i+1

† = � i+1�2�1ki
− PNi

� . �7.8�

The ranks Ni are generically non-negative integers. If some Ni=0, then we should formally set
PNi

=0, TNi
=1, and i+1=0 in the ith component of the ansatz, so that the noncommutative version

f the bundle chain �4.13� collapses near the ith node to

¯→
i+2

Vki+1
� H → 0 → Vki−1

� H→
i−1

¯ . �7.9�

hen

Xa
i = �ab̄z̄

b̄ and Xā
i = �ābz

b �7.10�

hich leads to the vacuum gauge field configuration

Ai = 0 and Fi = 0. �7.11�

hese matter fields correspond to open strings with one end on a D-brane and the other end on the
losed string vacuum.

Our ansatz has a natural interpretation in quiver gauge theory. Consider the module

T ª �
i=0

m

ker TNi

† with k�T = 
i=0

m

Nie�i �7.12�

ver the quiver Am+1, which is a finite-dimensional submodule of the infinite-dimensional repre-
entation V � H of Am+1 given by the noncommutative quiver bundle. Let us fix an integer 0
s�m, and take Ni�0 for all i�s and Ni=0 for all i�s. The quiver representation �7.12� is a

ombination of the indecomposable projective representations Pi of Am+1 that we encountered in
ec. V. The Pi’s form a complete set of projective representations in the sense that any quiver
epresentation has a projective resolution in terms of sums of them.37 In particular, the canonical
ingel resolution of �7.12� is given by the exact sequence

0 → �
i=1

s

Pi−1 � ker TNi

† → �
i=0

s

Pi � ker TNi

† → T → 0. �7.13�

Solving the Yang-Mills equations: We shall now demonstrate that the field configurations
7.1�–�7.3� yield solutions of the full Yang-Mills equations on R�

2n�CP1 for any values of m,

0 ,N1 , . . . ,Nm and  1 , . . . , m. For this, we write the ansatz in the form

Aa − �ab̄z̄
b̄ = 

i=0

m

Xa
i

� �i = �ab̄
i=0

m

TNi
z̄b̄TNi

†
� �i, �7.14�

Aā − �ābz
b = 

i=0

m

Xā
i

� �i = �āb
i=0

m

TNi
zbTNi

†
� �i. �7.15�

e also have

Ay
ii =

�m − 2i�ȳ
2 ¯

1ki
, �7.16�
2�R + yy�
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Aȳ
ii = −

�m − 2i�y
2�R2 + yȳ�

1ki
, �7.17�

Aȳ
ii+1 =

R

R2 + yȳ
i+1 =

R i+1

R2 + yȳ
TNi

TNi+1

† , �7.18�

Ay
i+1i = −

R

R2 + yȳ
i+1

† = −
R ̄i+1

R2 + yȳ
TNi+1

TNi

† , �7.19�

ith

Aȳ
i j = 0 = Ay

i+1j for j � i,i + 1. �7.20�

hus for the ansatz �7.1�–�7.3� the field strength tensor is given by

Fab̄ = �ab̄
i=0

m

PNi
� �i, �7.21�

Fyȳ = −
R2

�R2 + yȳ�2
i=0

m

�m − 2i + �� i�2 − � i+1�2��1ki
− PNi

�� � �i, �7.22�

ith all other components of F�̂�̂ vanishing.
Let us now insert these expressions into the Yang-Mills equations �2.8� �for static configura-

ions with A0=0�. It is enough to consider the cases �̂=c and �̂= ȳ, since the cases �̂= c̄ and �̂
y can be obtained by Hermitian conjugation of �2.8� due to the anti-Hermiticity of A�̂ and F�̂�̂.
or �̂=c, Eq. �2.8� becomes

�c̄a�b̄c��c̄Fab̄ + �Ac̄,Fab̄�� = 0 �7.23�

hich is equivalent to

�c̄a�b̄c�Ac̄ − �c̄bz
b,Fab̄� = 0. �7.24�

ubstituting �7.15� and �7.21�, we see that �7.24� is satisfied due to the identities �5.16� and

TNi

† PNi
= PNi

TNi
= 0. �7.25�

n the case �̂= ȳ, Eq. �2.8� simplifies to

�y��gFyȳ� + �g�Ay,Fyȳ� = 0 �7.26�

ith �g=2R4 / �R2+yȳ�2. Substituting �7.16�, �7.19�, �7.20�, �7.21�, and �7.22�, we find that �7.26�
s also satisfied due to the identities �5.16� and �7.25�. Hence, the Yang-Mills equations on R�

2n

CP1 are solved by our choice of ansatz.
Finite-energy solutions: The arbitrary coefficients  i�C can be fixed �up to a phase� by

emanding that the solution �7.1�–�7.3� yield finite-energy field configurations. For this, we evalu-
te the energy functional �5.2� using �6.8�. From �7.6� we may compute

�F��
i �†�Fi��� = 8 �ac̄�db̄F

ab̄

i
Fdc̄

i = 2	
a=1

n
1

��a�2
PNi
, �7.27�
nd combining this with �7.7� and �7.8� we find the noncommutative Yang-Mills energy
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EYM = 2�R2	�
a=1

n

2��a

i=0

m

TrVki
�H�	

b=1

n
1

��b�2
PNi
+

1

4R4 �m − 2i + �� i�2 − � i+1�2��1ki
− PNi

��2� .

�7.28�

ecause of the trace over the infinite-dimensional Fock space H, the constant terms in �7.28�
hich are not proportional to the projectors PNi

must all vanish in order for the energy to be finite.
his leads to the finite-energy conditions

m − 2i + � i�2 − � i+1�2 = 0 �7.29�

or each i=0,1 , . . . ,m.
With  0= m+1=0, the constraints �7.29� are solved by

� i+1�2 = �i + 1�m − 2
j=0

i

j = �i + 1��m − i� �7.30�

nd the energy �7.28� can thereby be written as

EYM = 2�R2	
a=1

n

2� �a
 
i=0

�m/2�

�Ni + Nm−i��	
b=1

n
1

��b�2
 +
�m − 2i�2

4R4 � . �7.31�

e have naturally split the sum over nodes i into contributions from Dirac monopoles and anti-
onopoles, which for each i=0,1 , . . . ,m have the same Yang-Mills energy on the sphere CP1.
ater on we will see that this splitting corresponds to a Z2-grading of the chain of D-branes into
rane-antibrane pairs. The monopole independent terms in �7.31� can be interpreted as the tension
f i=0

m Ni D0-branes inside a D�2n�-brane42 in the Seiberg-Witten decoupling limit.5

BPS solutions: The solutions we have described generically yield non-BPS solutions of the
ull Yang-Mills equations on R�

2n�CP1. On the other hand, the DUY equations on R�
2n�CP1 are

PS conditions for the Yang-Mills equations. Inserting �7.1�–�7.3� and �7.6�–�7.8� into our non-
belian vortex equations �6.12�–�6.14�, we find that �6.13� and �6.14� are automatically satisfied.
he vanishing of the constant term �not proportional to PNi

� in �6.12� is precisely the finite-energy
onstraint �7.29�, whose solution is given in �7.30�. Equating the coefficients of PNi

in �6.12� for
ach Ni�0 leads to the additional constraints


a=1

n
1

�a =
m − 2i

2R2 with i = 0,1, . . . ,s . �7.32�

For s�0 the conditions �7.32� are incompatible with one another, implying that the ansatz
7.1�–�7.3� with s�0 does not allow for BPS configurations. For s=0, the equation �7.32� relates
he radius R of the sphere to the noncommutativity parameters �a of R�

2n. In this case we obtain the
xplicit solutions of the noncommutative vortex and DUY equations parametrized by the partial
sometry operators TN0

as

Xa
0 = �ab̄TN0

z̄b̄TN0

† and 1 =  1TN0
, �7.33�

Xa
i = �ab̄z̄

b̄ and i =  i1k1
for 0 � i� m . �7.34�

he BPS conditions �6.12�–�6.14� force us to take k1= ¯ =km corresponding to the gauge sym-
etry breaking U�k�→U�k0��U�k1�m, so that r=k1, k0+mk1=k with k0�0 and k1�0. The con-
gurations with i�0 correspond to the vacuum gauge fields �7.11� with trivial bundle maps i

iven as multiplication by the complex numbers  i satisfying �7.30�. Using �7.32� and �7.31� we

nd that the energies of these BPS states are given by
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EBPS = 2�2��n+1R2	 
b,c=1
b�c

n

�
a=1

a�b,c

n

�a
N0. �7.35�

These solutions have a natural physical interpretation along the lines described in Sec. IV. The
riginal noncommutative DUY equations are fixed by the positive integers n and k. Our ansatz
3.10�–�3.14� and �7.1�–�7.3� is labelled by the collection of positive integers �m ,ki ,Ni� with i
0,1 , . . . ,s. According to the standard identification of D-branes as noncommutative solitons,42

he configuration �7.33� and �7.34� with s=0 describes a collection of mN0 BPS D0-branes as a
table bound state �i.e., a vortexlike solution on R�

2n� in a system of k0+mk1=k D�2n� branes and
ntibranes. But from the point of view of the initial branes wrapped on R�

2n�CP1, they are
pherical mN0 D2-branes. This means that instantons on R�

2n�CP1 are the spherical extensions of
ortices which are points in R�

2n. For s�0 the configuration �7.1�–�7.3� describes an unstable
ystem of mN0+ �m−2 �N1+ ¯ + �m−2s �Ns D0-branes �vortices� in a D�2n� brane-antibrane sys-
em, because deg Lm−2i=m−2i for each i=0,1 , . . . ,s. Again they form a system of spherical
2-branes �i.e., an SU�2�-symmetric multi-instanton� in the initial brane-antibrane system on

�
2n�CP1. Their orientation depends on the sign of the magnetic charge m−2i for each i
0,1 , . . . ,s, which determines whether we have D2-branes or D2-antibranes. If more than one

i�0 then the ansatz either describes pairs of D0-branes with overall nonvanishing monopole
harges, or both D0-branes, and anti-D0-branes. Such systems cannot be stable, i.e., the corre-
ponding configuration �7.1�–�7.3� cannot satisfy the noncommutative vortex and DUY equations.

The distinction between BPS versus non-BPS solutions is very natural in quiver gauge theory.
he BPS configurations are described by the simple Schur representations Li, i=0,1 , . . . ,m of the

m+1 quiver given by a one-dimensional vector space at vertex i with all maps equal to 0, i.e., the

m+1-module with �Li�m−2j=�ij C and dimension vector k�Li
=e�i. The BPS states constructed above

hen correspond to the quiver representations �L0��N0. Together with the projective modules Pi, the
chur modules Li admit the projective resolutions

0 → P0 → L0 → 0, �7.36�

0 → Pi−1 → Pi → Li → 0 for i = 1, . . . ,s �7.37�

nd satisfy the relations37

Hom�Li,L j� = �ijC = Hom�Pi,L j� . �7.38�

he resolutions �7.13� and �7.36�, �7.37� exhibit a sharp homological distinction between BPS and
on-BPS solutions. The constituent D-branes at the vertices of the quiver Am+1 are associated with
he basic representations Li. Sums �Li��Ni for fixed i correspond to BPS states, associated generally
ith the symmetry breaking U�k�→U�ki��U�ki+1�m, which are constructed analogously to �7.33�,

7.34� but with the vacuum Higgs configurations  j= j 1ki
for j� i and  j= j 1ki+1

for j� i. A
eneric non-BPS state, associated to the quiver representation �7.12�, corresponds to the decay of
he original SU�2�-symmetric branes wrapped on R�

2n�CP1 into the collection of constituent
ranes �L0��N0 � �L1��N1 � ¯ � �Ls��Ns in R�

2n. For s�0 this collection is unstable. In the quiver
auge theory, we have thereby arrived at a natural construction of the unstable D-brane configu-
ations in terms of stable BPS states of D-branes, which may be succinctly summarized through
he sequence of distinguished triangles of quiver representations

�L0��N0= T0 → T1 → ¯ → Tm−1 → Tm = T
↖ ↙ ↖ ↙

�L1��N1
¯ �Lm��Nm

, �7.39�

here Tsª� i=0
s ker TNi

† =ker TNs

†
� Ts−1 and the horizontal maps are the canonical inclusions of
ubmodules. This exact sequence expresses the fact that, for each s=1, . . . ,m, the non-BPS mod-
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le Ts is an extension of the BPS module �Ls��Ns by the non-BPS module Ts−1.

III. GENERALIZED ATIYAH-BOTT-SHAPIRO CONSTRUCTION

In this section we shall construct an explicit realization of the basic partial isometry operators

Ni
which will be particularly useful for setting the D-brane interpretation of our noncommutative

ulti-instanton solutions on firmer ground. It is based on an SU�2�-equivariant generalization of
he �noncommutative� Atiyah-Bott-Shapiro �ABS� construction of tachyon field configurations.9–11

Equivariant ABS construction: If G is a group and C�2nªC� �R2n�, we denote by RspinG�2n�
he Grothendieck group of isomorphism classes of finite-dimensional Z2-graded G�C�2n mod-
les, i.e., Clifford modules possessing an even �Z2-degree preserving� G-action which commutes
ith the C�2n-action. More precisely, we consider representations of C�G� � C�2n with C�G� the
roup ring of G. The inclusion ��2n� :C�2n�C�2n+1 of Clifford algebras induces a restriction map

�G�2n�*:RSpinG�2n+1� → RSpinG�2n� �8.1�

n equivariant Clifford modules. Following the standard ABS construction,43 we may then obtain
he G-equivariant K-theory KG�R2n� �with compact support� through the descendent isomorphism

KG�R2n� = coker �G�2n�* = RSpinG�2n�/�G�2n�*RSpinG�2n+1�. �8.2�

he image of �G�2n�* in RSpinG�2n� contains classes of Clifford modules �V� which admit a G
C�2n-equivariant involution V�V∨, where V∨ is the Clifford module V with its Z2-parity re-

ersed.
In our case, we take G=U�1��SU�2� acting trivially on R2n, and thereby consider U�1�

C�2n-modules with the U�1�-action commuting with the Clifford action. Any such module is a
irect sum of tensor products of a U�1�-module and a spinor module, and hence

RSpinU�1��2n� = RSpin�2n� � RU�1� and �U�1��2n�* = ��2n�*
� 1 . �8.3�

ince from the standard ABS construction one has the isomorphism43

K�R2n� = coker ��2n�* = RSpin�2n�/��2n�*RSpin�2n+1� �8.4�

f Abelian groups, we can reduce �8.2� for G=U�1� to the isomorphism

KU�1��R2n� = K�R2n� � RU�1� �8.5�

f RU�1�-modules, where K�R2n��Z �note that the isomorphism KU�1��R2n��RU�1� also follows
rom the fact that R2n is equivariantly contractible to a point�. We may describe the isomorphism
8.5� along the lines explained in Sec. IV. In particular, the spinor module �2nª��R2n� admits the
sotopical decomposition

�2n = �
i=0

m

�i � Sm−2i with �i = HomU�1��Sm−2i,�2n� �8.6�

btained by restricting �2n to representations of U�1��Spin�2n��C�2n. The �i’s in �8.6� are the
orresponding multiplicity spaces.

The most instructive and useful way to explicitly realize the decomposition �8.6� is to use the
quivariant excision theorem �4.5� directly and consider the SU�2�-invariant dimensional reduc-
ion of spinors from R2n�CP1 to R2n. For this, we introduce the twisted Dirac operator on R2n

CP1 using the graded connection formalism of Sec. V to write the Zm+1-graded Clifford con-

ection
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D”
ˆ
ª ��̂D�̂ = � �D� � 12 + ���m��� � � ȳ�ȳ − ���m��†� � � y�y + � � D” CP1, �8.7�

here

D” CP1 ª � yDy + � ȳDȳ = � y��y + �y + �a�m��y� + � ȳ��ȳ + �ȳ + �a�m��ȳ� �8.8�

nd �y ,�ȳ are the components of the Levi-Civita spin connection on the tangent bundle of CP1.
rom �8.7� we see that the monopole charges m−2i in the Yang-Mills energy functional �5.2� can
e understood as originating from the Dirac operator �8.8� on CP1. The operator �8.7� acts on
pinors ! which are sections of the bundle

! = 	!+

!− 
 � �
i=0

m

�Eki
� �2n� � 	Lm−2i+1

Lm−2i−1
 �8.9�

ver R2n�CP1, where Lm−2i+1 � Lm−2i−1 are the twisted spinor bundles of rank 2 over the sphere
P1. We are therefore interested in the twisted spinor module �V�R2n�CP1� over the Clifford
lgebra C� �R2n�CP1� which is the product of the spinor module �2n ���CP1� with the funda-
ental representation �3.8� of the gauge group U�k� broken as in �3.9�.

The symmetric fermions on R2n that we are interested in correspond to SU�2�-invariant
pinors on R2n�CP1. They belong to the kernel of the Dirac operator �8.8� on CP1 and will be
assless on R2n. One can write

D” CP1 = �
i=0

m

D” m−2i = �
i=0

m 	 0 D” m−2i
−

D” m−2i
+ 0


 , �8.10�

here

D” m−2i
+ =

1

R2	�R2 + yȳ��ȳ −
1

2
�m − 2i + 1�y
 , �8.11�

D” m−2i
− = −

1

R2	�R2 + yȳ��y +
1

2
�m − 2i − 1�ȳ
 . �8.12�

he operator �8.10� acts on sections of the bundle �8.9� which we write with respect to this
ecomposition as

! = �
i=0

m 	"�m−2i�
+

"�m−2i�
− 
 , �8.13�

here "�m−2i�
± are sections of Lm−2i±1 taking values in �2n � Vki

with coefficients depending on x
R2n.

To describe the kernel of the Dirac operator �8.10�, we need to solve the differential equations

D” m−2i
+ "�m−2i�

+ = 0 and D” m−2i
− "�m−2i�

− = 0 �8.14�

or the positive and negative chirality spinors "�m−2i�
+ and "�m−2i�

− in ker D” m−2i
+ and ker D” m−2i

− . By
ecalling the form of the transition functions for the monopole bundles from Sec. III, one easily
ees that the only solutions of these equations which are regular on both the northern and southern
emispheres of S2 are of the form

"�m−2i�
+ =

1

�R2 + yȳ�ti/2

�=0

ti

"�m−2i��
+ �x�y� and "�m−2i�

− = 0 for m − 2i� 0 �8.15�
nd
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"�m−2i�
− =

1

�R2 + yȳ�ti/2

�=0

ti

"�m−2i��
− �x�ȳ� and "�m−2i�

+ = 0 for m − 2i� 0. �8.16�

ere ti= �m−2i �−1 and the component functions "�m−2i��
± �x� on R2n with �=0,1 , . . . , ti form the

rreducible representation Vti+1�C�m−2i� of the group SU�2�. Thus the chirality grading is by the
ign of the magnetic charges.

This analysis is valid when the monopole charge m is an even or odd integer. However, when
is even there is precisely one term in �8.9� with m=2i for which the sub-bundle Ek�m/2�→R2n is

wisted by the ordinary spinor bundle L � L∨→CP1 of vanishing magnetic charge. This bundle
dmits an infinite-dimensional vector space of symmetric L2-sections comprised of spinor harmon-
cs !lq�C2 with l�N0+ 1

2 , q� �−l ,−l+1, . . . , l−1, l� and D” 0!lq�0.44 The spectrum of the �un-
wisted� Dirac operator D” 0 consists of the eigenvalues ±�l+ 1

2
�, each of multiplicity p+1=2l+1.

fter dimensional reduction, this produces an infinite tower of massive spinors on R2n, and such
ermions of zero magnetic charge have no immediate interpretation in the present context. How-
ver, one has dim ker D” 0=0, and this will be enough for our purposes. We will therefore fix one of
hese vector spaces, such that after integration over CP1 it corresponds to the space

Hp � C2
� Cp+1 with p = 1,3,5, . . . . �8.17�

ll of our subsequent results will be independent of the particular choice of eigenspace �8.17�.
We have thereby shown that the SU�2�-equivariant reduction of the twisted spinor represen-

ation of C��R2n�CP1� decomposes as a Z2-graded bundle giving

�V�R2n � CP1�SU�2� = �2n � ��V
+

� �V
−� for m odd, �8.18�

here

�V
+ = �

i=m+

m

Vki
� V�m−2i� and �V

− = �
i=0

m−

Vki
� Vm−2i �8.19�

ith m+= ��m+1� /2� and m−= ��m−1� /2�. When m is an even integer, one should also couple the
igenspace �8.17� giving

�V�R2n � CP1�SU�2� = �2n � ��V
+

� �Vk m
2

� Hp� � �V
−� for m even �8.20�

ith m+= ��m+3� /2� and m−= ��m+1� /2�. It remains to work out the corresponding action of
lifford multiplication

�V:�V
− → �V

+ . �8.21�

or this, we recall from Sec. IV that the action of the generators of the parabolic subgroup
P�SL�2,C� on the equivariant decomposition �8.18�, �8.19� is given by �3�Vki

� V�m−2i��= �m
2i��Vki

� V�m−2i�� and �− :Vki
� V�m−2i�→Vki−1

� V�m−2i�. Since the Clifford action is required to
ommute with this action, the map �8.21� is thereby uniquely fixed on the isotopical components
n the form

�V � �i:Vki
� V�m−2i� → Vki+� m2 �+1

� V�m−2i� for i = 0,1, . . . ,m−. �8.22�

urthermore, since �3�Hp�=0 for all p, the space of spinor harmonics must lie in the kernel of the
lifford map and one has

� � � = 0 for m even. �8.23�
V m/2
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It is also illuminating to formulate this equivariant dimensional reduction from a dynamical
oint of view, as we did for the gauge fields in Sec. V. Using the gauged Dirac operator �8.7� we
ay define a fermionic energy functional on the space of sections of the bundle �8.9� by

ED ª �
R2n�CP1

d2n+2x�g!†D”
ˆ
! . �8.24�

ne has

!†�����m�� � �ȳ − ����m��†
� �y�! = ��!+�†�!−�†�	����m��†�!−�

����m���!+� 
 . �8.25�

ubstituting �8.10�–�8.16�, we see that �8.25� vanishes on symmetric spinors and after integration
ver CP1 the energy functional �8.24� for m odd becomes

D = 4�R2�
R2n

d2nx� 
i=m+

m


�=0

�m−2i�−1

�"�m−2i��
+ �†� �D��"�m−2i��

+ � + 
i=0

m−


�=0

m−2i−1

�"�m−2i��
− �†� �D��"�m−2i��

− �� .

�8.26�

he symmetric fermion energy functional for m even also contains mass terms for fermions of
anishing magnetic charge which are proportional to the multiplicity �p+1� of the spinor harmon-
cs.

Explicit form of the operators: TNi
: The operators TNi

parametrizing the solutions of the
receding section may be realized explicitly by appealing to a noncommutative version of the
bove construction. For this, we first note that the �trivial� action of U�1��SU�2� on R2n induces
n action on functions f on R2n by �	 · f��x�ª f�	 −1 ·x� for 	�U�1�. This in turn defines an action

f U�1� on the noncommutative space R�
2n through automorphisms f̂ �	 · f̂ of the Weyl operator

lgebra, i.e., a representation of U�1� in the automorphism group of the algebra. We will assume
hat the Fock space �6.4� carries a unitary representation of U�1�. We can then decompose it into
ts isotopical components in the usual way as

H = �
i=0

m

Hi � Sm−2i. �8.27�

or 	�U�1� we denote the corresponding unitary operator on H by 	̂. If we demand that the
epresentations of U�1� above are covariant with respect to each other,45

	̂ f̂ 	̂−1 = 	 · f̂ , �8.28�

hen they define a representation of the crossed-product of the algebra of Weyl operators with the
roup U�1�. This defines the �trivial� noncommutative U�1�-space R�

2n
’U�1�, and equivariant

eld configurations are operators belonging to the commutant of U�1� in the crossed-product
lgebra. In quiver gauge theory, the pertinent representation of Am+1 thus labels isotopical com-
onents of the Hilbert space of the noncommutative gauge theory. Since the U�1�-action is trivial
ere, the isotopical components of the Fock space �8.27� are given by Hi�H for each i
0,1 , . . . ,m. Note that one has an isomorphism �H���m+1��H by the usual Hilbert hotel argu-
ent.

We will now construct a representation on �8.27� of the partial isometry operators TNi
in

2n n−1 9

� ’U�1�. For this, let us set rª2 and consider the operators
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# = �� · x�† 1
��� · x��� · x�†

and #† =
1

��� · x��� · x�†
�� · x� , �8.29�

here � ·xª��x�, �, �=1, . . . ,2n and the r�r matrices �� are subject to the anticommutation
elations

��
†�� + ��

†�� = 2���1r = ����
† + ����

† . �8.30�

quation �8.30� implies that the matrices

�� = 	 0 ��
†

− �� 0

 with ���� + ���� = − 2���12r �8.31�

enerate the Clifford algebra C�2n. Note that for n=1 we have r=1, �1=1, and �2= i, which yields

#† =
1

�z̄1z1
z̄1 = 

�=1

�

� � − 1��� � �8.32�

nd we obtain the standard shift operator �#�N on the Fock space H in this case. Generally, the
perators �8.29� obey

�#†�Ni�#�Ni = 1r and �#�Ni�#†�Ni = 1r − PNi
, �8.33�

here PNi
is a projector of rank Ni on the vector space �2n

+
� H, and �2n

+ �Cr are the irreducible
hiral spinor modules of dimension r=2n−1 �with �2n=�2n

+
��2n

− � on which the matrices �� act.
The partial isometry operators �#�Ni in R�

2n do not act on the isotopical decomposition �8.27�
nd thus do not properly incorporate the SU�2�-equivariant reduction of the original system of
-branes. The desired operators TNi

in R�
2n
’U�1� are obtained by first projecting these partial

sometries onto constituent brane subspaces. With �i the rank 1 projector onto the ith isotopical
omponent in �8.27�, we thereby define the r�r matrices

TNi

�0� = 1r � �1 − �i� + �#�Ni � �i. �8.34�

he operator TNi

�0� acts as the shift operator �#�Ni on Hi and as the identity operator 1r on H j for all
j� i. It is easy to see that these matrices satisfy the equations

�TNi

�0��†�TNi

�0�� = 1r and �TNi

�0���TNi

�0��† = 1r − PNi

�0� �8.35�

ith

PNi

�0� = PNi
� �i �8.36�

projector of rank Ni on the Fock space �2n
+

� H. They also satisfy the algebra

�TNi

�0��N = TNiN
�0� and TNi

�0�TNj

�0� = TNi

�0� + TNj

�0� − 1r = TNj

�0�TNi

�0� for i � j . �8.37�

he operator �8.34� may be regarded as a linear map

TNi

�0�:�2n
−

� H → �2n
+

� H . �8.38�

n particular, the map �T1
�0�� has a trivial kernel, while �T1

�0��† has a one-dimensional kernel which
s spanned by the vector �"� � �0, . . . ,0� where �"� denotes the lowest-weight spinor of SO�2n�.

Finally, the desired rectangular ki�r Toeplitz operators TNi
may be realized in terms of the

artial isometries �8.34� by appealing to the Hilbert hotel argument. For this, we introduce a
exicographic ordering N0

n�N0 on the Fock space H so that �r1 , . . . ,rn�= �q� with q=0,1 ,2 , . . .,
� � � + r
nd fix an orthonormal basis 
0 ,
1 , . . . ,
r−1 of the chiral spinor representation space �2n�C .
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hen 
�a � �q�, a=0,1 , . . . ,r−1 is an orthonormal basis for �2n
+

� H and there is a one-to-one
orrespondence 
�a � �q�↔ �rq+a� of basis states. Similarly, by fixing an orthonormal basis

�
0
i ,��1

i , . . . ,�� ki−1
i of the SU�2� representation space Vki

�Cki, there is a one-to-one correspondence
�

ai

i
� �qi�↔ �kiqi+ai�, ai=0,1 , . . . ,ki−1 for the corresponding orthonormal basis of Vki

� H. Let us
ow introduce unitary isomorphisms Ui :�2n

+
� H→Vki

� H and Ui
† :Vki

� H→�2n
+

� H by the for-
ulas

Ui = 
a=0

r−1


ai=0

ki−1


q,qi=0

rq+a=kiqi+ai

�

�kiqi + ai��rq + a� = 
a=0

r−1


ai=0

ki−1


q,qi=0

rq+a=kiqi+ai

�

��ai

i 
�a
†

� �qi��q� , �8.39�

Ui
† = 

a=0

r−1


ai=0

ki−1


q,qi=0

rq+a=kiqi+ai

�

�rq + a��kiqi + ai� = 
a=0

r−1


ai=0

ki−1


q,qi=0

rq+a=kiqi+ai

�


�a�
�

ai

i†
� �q��qi� . �8.40�

y using the shift operators �8.34�, we then define the operators

TNi
= Ui�TNi

�0�� and TNi

† = �TNi

�0��†Ui
† �8.41�

n �2n
−

� H→Vki
� H and Vki

� H→�2n
−

� H. They satisfy the requisite equations �7.3�, with the

i�ki matrix

PNi
= Ui�PNi

� �i�Ui
† �8.42�

projector of rank Ni on the Fock space Vki
� H.

Notice that the rank r=2n−1 used in this construction is an even integer for n�2. To work with
dd ranks r one may introduce the �2n−1+1�� �2n−1+1� matrices

TNi

�0�� = 	TNi−1

�0� 0

0 #1�

 , �8.43�

here TNi−1
�0� is defined as above and

#1� = 
�=1

�

�0, . . . ,0, � ���− 1,0, . . . ,0� �8.44�

s a shift operator on the Fock space H. Then the operators �8.43� satisfy the equations �8.35� with

PNi

�0�� = 	PNi−1 � �i 0

0 �0, . . . ,0��0, . . . ,0�

 �8.45�

projector of rank Ni on the Fock space ��2n
+

� H� � H�Cr � H, where r=2n−1+1. In this case
he Toeplitz operators TNi

are obtained by substituting �8.43� into �8.41� with the replacement

2n
± →�2n

±
� C.

Note also that the partial isometry operator

T�0�
ª �

i=0

m

TNi

�0� = 1r + 
i=0

m

�TNi

�0� − 1r� = 1r + 
i=0

m

��#�Ni − 1r� , �8.46�

ogether with the above representations of the U�1� group on the Weyl operator algebra of R�
2n and

n the Fock space H, defines a cycle in the U�1�-equivariant analytic K-homology
a�R�

2n
’U�1���KU�1�

a �R2n�. After a twisting appropriate to the inclusion of the pertinent mag-

etic monopole bundles, it describes the SU�2�-invariant configurations of D-branes as branes on
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he �trivial� quotient space R2n /U�1�. The charge of this class is the same as that of the cocycle
�V

+ ,�V
− ;�V� built earlier in the topological K-theory �8.5� from the standard ABS brane-antibrane

lass ��2n
+ ,�2n

− ;�� which is the generator of �8.4�9–11,43. The computation of the topological
harge, as well as the equivalence between the commutative �topological� and noncommutative
analytic� K-homology descriptions of the D-brane configurations, will be presented in the next
ection.

Moduli space of solutions: The realization �8.34� can be generalized in order to introduce
ni=0

m Ni real moduli into the solution which specify the locations of the various noncommutative
olitons in R2n.45 For this, one first must introduce “shifted ground states” centered at �b�i

i��, �i

1, . . . ,Ni for each i=0,1 , . . . ,m. The operators �8.34� are rewritten as

TNi

�0� = 1r � �1 − �i� + �#1
i#2

i
¯ #Ni

i � � �i, �8.47�

here each #�i

i , �i=1, . . . ,Ni, i=0,1 , . . . ,m is of the form of the shift operator # in �8.29� but with
he coordinates x shifted to x�i

i
ªx−b�i

i . They behave just like # except that now the kernel of

#�i

i �† is spanned by the vector �"� � �b̄�i

i �, where �"� is the fermionic ground state and the shifted

round state �b̄�i

i � is a coherent state in the n-oscillator Fock space H, i.e., z̄� i

iā � b̄�i

i �=0. The states

"� � �b̄1
i � and #1

i
¯#�i−1

i ��"� � �b̄�i

i �� for �i=2, . . . ,Ni span the kernel of the operator �TNi

�0��† given

y �8.47�, and we find that the equations �8.35� are obeyed with PNi

�0� the orthogonal projection onto

er�TNi

�0��†.
The space of partial isometries �8.46� may thereby be described as the complex manifold

i=0
m �Cn�Ni. After a quotient by the appropriate discrete symmetry group, the moduli space for the

ull solution consisting of the rectangular Toeplitz operators �8.41� is given by

M�n;k�V,k�T� = Q�k�V� ��
i=0

m

HilbNi�Cn� , �8.48�

here HilbNi�Cn� is the moduli space of Ni noncommutative solitons on R�
2n �Ref. 46� which is

iven as the �singular� Hilbert scheme of Ni points in Cn, i.e., the set of ideals I of codimension

i in the polynomial ring C�b1
i , . . . ,bNi

i �. The factor Q�k�V� is the moduli space of isomorphism
lasses of quiver representations �3.8� of dimension37

dim Q�k�V� = 1 −
1

2
k�V · Ck�V = 1 + 

i=0

m

ki�ki+1 − ki� . �8.49�

ote that real roots �having k�V ·Ck�V=2� correspond to rigid representations of the quiver Am+1 with
o moduli, while imaginary roots �having k�V ·Ck�V�0� carry moduli associated to the gauge
ymmetry breaking �3.9�. The points of the moduli space �8.48� label the positions of well-
eparated D-branes, and it coincides in the low-energy limit with the moduli space of the com-
utative brane description.45

X. D-BRANE CHARGES

In this section we will compute the topological charge of our multi-instanton solutions in
ssentially two distinct ways. The first one is a direct field theoretic calculation of the �n+1�th
hern number of our gauge field configurations on R�

2n�S2, which can also be computed using
he Zm+1-graded connection formalism of Sec. V. The second one is a homological calculation of
he index class of our solutions in K-theory, which is also equivalent to the Euler-Ringel character
f the pertinent representations of the quiver Am+1. The equivalence of these two calculations will
hen lead us directly into a world volume description whereby we can interpret the topological

harge in terms of cycles in topological equivariant K-homology, yielding the claimed D-brane
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nterpretation of our solutions. The results of this section bridge together the descriptions pre-
ented in Sec. IV and justify the brane interpretations that have been given throughout this paper
hus far.

Field theory calculation: We will first compute the topological charge of the configurations
7.1�–�7.3�. For this, it is convenient to parametrize the two-sphere by the angular coordinates 0
��2� and 0���� defined in �2.4�. In these coordinates

Fyȳ = � ���,��
��y, ȳ�

�F�� =
1

2i

sin �

yȳ
F�� =

1

2i

�1 + cos ��2

R2sin �
F��, �9.1�

nd we have

F2a−1 2a = 2iFaā = −
i

�a
i=0

m

PNi
� �i, �9.2�

F�� = − i
sin �

2 
i=0

m

�m − 2i�PNi
� �i �9.3�

iving

F12F34 ¯ F2n−12nF�� = �− i�n+1 sin �

2�
a=1

n

�a

	
i=0

m

PNi
� �i
n	

j=0

m

�m − 2j�PNj
� � j


= �− i�n+1 sin �

2�
a=1

n

�a


i=0

m

�m − 2i�PNi
� �i, �9.4�

here we have used the definitions �7.4� and �5.16� of the projectors PNi
and �i.

The instanton charge is then given by the �n+1�th Chern number

�9.5�

fter splitting the sum over i into contributions from monopoles and antimonopoles analogously
o �7.31�, this becomes

Q = 
i=0

�m/2�

�m − 2i��Ni − Nm−i� , �9.6�

here we recall that Ni�0 for i=0,1 , . . . ,m. The formula �9.6� clarifies the D-brane interpretation
f the configuration �7.1�–�7.3�. It describes a collection of �m−2i�Ni D0-branes for 2i�m and

2n
2i−m�Ni anti-D0-branes for 2i�m as a bound state �i.e., a vortexlike configuration on R� � in a
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ystem of k0+k1+ ¯ +km=k D�2n� branes and antibranes. However, from the point of view of the
nitial brane-antibrane system on R�

2n�S2, they are spherical �m−2i �Ni D2-branes or
2-antibranes depending on the sign of the monopole charge m−2i. Note that the vortices with
i=m, which always exist for even m, have vanishing instanton charge since they couple with the
rivial line bundle L0=S2�C. Thus they are not extended to instantons on R�

2n�S2, but are rather
nstable and simply decay into the vacuum.

The topological charge can be alternatively computed within the graded connection formalism
f Sec. V. Recalling the equivariant ABS construction �8.18�–�8.20�, we note that the Zm+1-graded
ector space �3.8� �the fiber of the Zm+1-graded bundle �5.3�� also has a natural Z2-grading by the
ign of the magnetic charge, i.e., by the involution � :V→V defined by ��vi�ªsgn�m−2i� vi for

i�Vki
, where throughout we use the convention sgn�0�ª0. The corresponding supertrace is

iven by

strk�kX ª trk�k�� � X� = 
i=0

m

sgn�m − 2i� trki�ki
Xi �9.7�

or any linear operator X�End�V� with block-diagonal components Xi�End�Vki
�. This extends to

supertrace STrV�HªTrH strk�k which we may use to express the Chern number in terms of the
raded curvature �5.28� as

Q =
R2

2n�n + 1�!	 i

2�

n+1	�

a=1

n

2��a
STrV�HTrC2n+1��F̂n+1�asym, �9.8�

here �ª �2/�g��1
¯�2n+2=���3 and the antisymmetrized product of gamma matrices,

���̂1
¯ ��̂q�asym ª

1

q! 
��Sq

sgn�����̂��1�
¯ ��̂��q� �9.9�

imicks the algebraic structure of the exterior product of differential forms. The formula �9.6�
ollows from �9.8� upon repeated application of the Clifford algebra and the trace identities
5.30�–�5.33�, with the supertrace �9.7� giving the appropriate sign alternations.

K-theory calculation: The origin of the topological charge lies in the graded Chern character

h�V � H�ªstrk�k exp F̂ /2�i. Standard transgression arguments can be used to show that the
ohomology class defined by this closed differential form is independent of the choice of graded
onnection.39 In particular, we may either compute it by setting the off-diagonal Higgs fields i

0 or by setting the diagonal gauge fields Ai=0. It is instructive to recall how this works in the
ase m=1 corresponding to the basic brane-antibrane system represented by the chain �4.26�.8,31 In
he former case we would obtain the difference ch�Vk1

� H�−ch�Vk0
� H� of topological charges

n the branes and antibranes. In the latter case we would compute the index of the tachyon field

1, or equivalently the Euler characteristic of the two-term complex 0→Vk1
� H→

1

Vk0
� H→0.

he virtual Euler class generated by the cohomology of this complex is the analytic K-homology
lass �1��Ka�R2n� of the brane configuration. The equivalence of the two computations is
sserted by the index theorem.

The situation for m�1 is more subtle. The action of the graded connection zero-form �5.9� on
he bundle �5.3� produces the holomorphic chain �4.13�. In general this is not a complex because,
ccording to �5.10�, ���m��2�0 for m�1, i.e., ii+1�0. The only physical instance in which
uch a chain generates a complex is when it corresponds to an alternating sequence of branes and
ntibranes.47 But if one has a tachyon field which is a holomorphic map from an antibrane to a
rane, then the adjoint map is antiholomorphic. Recalling �5.37�, we see that in our chain �4.13� all
aps i are holomorphic and thus do not represent tachyon fields between pairs of branes and
ntibranes. Furthermore, the maps i obtained as solutions of the vortex equations, which can be
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ssociated with the Am+1 quiver and are obtained by SU�2�-invariant reduction, can never satisfy
he constraints ii+1=0.34,36

The solution to this problem is to fold the given holomorphic chain into maps between branes
nd antibranes. Let us first carry out the calculation in the case that the monopole Chern number

is an odd integer. By using the Z2-grading � :V→V introduced above, we explicitly decompose
3.8� as a Z2-graded module into the ±1 eigenspaces of the involution � giving

V = V+ � V− with V+ = �
i=0

m−

Vki
and V− = �

i=m+

m

Vki
. �9.10�

sing �5.9� and �5.10� we now introduce the operator

T�m� ª ��m���m/2�+1. �9.11�

ith respect to the Z2-grading �9.10�, it is an odd map

T�m�:V− � H → V+ � H with �T�m��2 = 0. �9.12�

hus the triple �V+ � H ,V− � H ;T�m�� defines a two-term complex and represents a brane-
ntibrane system with tachyon field given in terms of the graded connection by �9.11�. The
orresponding index class �T�m���Ka�R2n� is thus the analytic K-homology class of our configu-
ation of D-branes. In particular, on isotopical components one has

T�m� � �i+1+�m/2� = i+1 ¯ i+1+�m/2� = � i+1 ¯  i+1+�m/2��TNi
TNi+1+�m/2�

† �9.13�

hile T�m� ��i=0, where i=0,1 , . . . ,m−. The tachyon field is thus a holomorphic map between
ranes of equal and opposite magnetic charge,

T�m� � �i+�m/2�+1:Vki+�m/2�+1
� H → Vki

� H , �9.14�

nd from �7.5� it follows that it has a finite dimensional kernel and cokernel with

dim ker�T�m� � �i+�m/2�+1� = Ni+�m/2�+1 and dim ker�T�m� � �i+�m/2�+1�† = Ni. �9.15�

To incorporate the twistings by the magnetic monopole bundles, we use the ABS construction
8.18�–�8.23� to define the tachyon field

T�m� ª T�m� � 1:�V
+

� H → �V
−

� H . �9.16�

t behaves like a noncommutative version of Clifford multiplication �V
† in �8.21� and �8.22�. Since

im V�m−2i�= �m−2i�, from �9.15� it follows that the index of the tachyon field �9.16� is given by

index T�m� = dim ker�T�m�� − dim ker�T�m��† = 
i=m+

m

�m − 2i�Ni − 
i=0

m−

�m − 2i�Ni = − Q .

�9.17�

hus the K-theory charge of the noncommutative soliton configuration �7.1�–�7.3� coincides with
he Yang-Mills instanton charge �9.5�, �9.6� on R�

2n�S2.
When the monopole charge m is even, we introduce the tachyon field T�m� by the same

ormula �9.11�. The only difference now is that the subspace Vkm
2

� H is annihilated by both
perators �T�m�� and �T�m��† so that

Vkm
2

� H � ker�T�m�� � ker�T�m��†. �9.18�

ccording to �8.20�, this subspace should be coupled to the eigenspace �8.17� of spinor harmonics
1
n CP when defining the extended tachyon field �9.16�. Analogously to �8.23�, one then has
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ker�T�m� � �m/2� = ker�T�m� � �m/2�† = Vkm/2
� Hp � H . �9.19�

ith a suitable regularization of the infinite dimensions of the kernel and cokernel of the operator

�m� ��m/2, these subspaces will make no contribution to the index �9.17�. This statement will be
ustified below by the fact that index D” 0=0 and that the index class of the noncommutative
achyon field coincides with that of the twisted SU�2�-invariant Dirac operator on R2n�CP1.

We can give a more detailed picture of how the topological charge of the system of D-branes
rises by relating the index to a homological computation in the corresponding quiver gauge
heory, which shows precisely how the original brane configuration folds itself into branes and
ntibranes. Consider the Am+1-module �7.12� defined by a generic �non-BPS� solution of the
ang-Mills equations on R�

2n�CP1, and let

W = �
i=0

m

Wi with k�W = 
i=0

m

wie�i �9.20�

e any quiver representation. Applying the functor Hom�−,W� to the projective resolution �7.13�
ives a complex whose cohomology in the pth position defines the extension groups
xtp�T ,W��Hp�R�

2n ;W � T ∨�, with Ext0=Hom and Ext1=Ext. We may then define the relative
uler character between these two representations through the corresponding Euler form

��T,W� ª 
p�0

�− 1�p dim Extp�T,W� . �9.21�

ince the Am+1 quiver has no relations, one has Extp�T ,W�=0 for all p�2 in the present case.37

By using �5.7�, the resolution �7.13� induces an exact sequence of extension groups given by

0 → Hom�T,W� → �
i=0

s

Hom�ker TNi

† ,Wi� → �
i=0

s−1

Hom�ker TNi+1

† ,Wi� → Ext�T,W� → 0

�9.22�

rom which we may compute the Euler form �9.21� explicitly to get

��T,W� = dim Hom�T,W� − dim Ext�T,W� = 
i=0

s

dim Hom�ker TNi

† ,Wi�

− 
i=0

s−1

dim Hom�ker TNi+1

† ,Wi� = 
i=0

m

Niwi − 
i=0

m−1

Ni+1wi. �9.23�

hus the relative Euler character depends only on the dimension vectors of the corresponding
epresentations and coincides with the Ringel form �k�T ,k�W� on the representation ring RAm+1

of the

m+1 quiver.37 The map �W��k�W gives a linear map RAm+1
→Zm+1 which is an isomorphism of

belian groups since RAm+1
is generated by the Schur modules Li , i=0,1 , . . . ,m. By using �7.2�

nd �7.5� we can write this bilinear pairing in the suggestive form

��T,W� = − 
i=0

m

wi index�i+1� . �9.24�

The appropriate representation W to couple with in the present case is dictated by the correct
ncorporation of magnetic charges. As before, the fact that the Higgs fields i+1 in �9.24� them-
elves are not tachyonic, i.e., do not generate a complex, means that we must fold the SU�2�
epresentations V�m−2i� appearing in the ABS construction �8.19� appropriately. The correct folding
s expressed by the collection of distinguished triangles �7.39� which shows that we should couple
nd increasing sequence W0�W1� ¯ �Wm of representations as we move along the chain of

onstituent D-branes of the quiver, so that the SU�2�-module Wi gives an extension of the mono-
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ole field carried by the elementary brane state at vertex i by the SU�2�-module Wi−1. Thus we
ake Wi= � j=0

i V�m−2j�=V�m−2i� � Wi−1 and embed its class into the representation ring RAm+1
using the

2-grading above as the element

�Wi� = 
j=0

i

sgn�m − 2j��V�m−2j�� = sgn�m − 2i��V�m−2i�� + �Wi−1� �9.25�

f virtual dimension

wi = 
j=0

i

�m − 2j� = �i + 1��m − i� �9.26�

or each i=0,1 , . . . ,m. In this case the Euler-Ringel form �9.23� becomes

��T,W� = 
i=0

m

�i + 1��m − i��Ni − Ni+1� = 
i=0

m

�m − 2i�Ni = Q �9.27�

nd it also coincides with the instanton charge of the gauge field configurations on R�
2n�S2. The

quivalence of the relative Euler character with the index of the tachyon field above is a conse-
uence of the Grothendieck-Riemann-Roch theorem.

World volume construction: We can now present a very explicit geometric description of the
quivalence between the brane configurations on R2n�CP1 and on R2n. The crux of the formu-
ation is the well-known map in K-theory between analytic �noncommutative� and topological
commutative� descriptions.9,12,30,48 If D” ª−i� ·� :L2�R2n ,�2n

− �→L2�R2n ,�2n
+ � is the usual Dirac

perator on R2n, then its index coincides with that of the noncommutative ABS configuration
8.29� giving

index # = index D” . �9.28�

his coincides with the K-theory charge of the Bott class ��2n
+ ,�2n

− ;���K�R2n� given by the
rdinary ABS construction,43 where �x=� ·x / �x � :�2n

− →�2n
+ is Clifford multiplication by x�R2n.

n particular, the Dirac operator itself can be used to represent the analytic K-homology class
#�= �D” � described by the noncommutative ABS field.

Let us represent a system of k Type IIA D-branes wrapped on R2n�CP1 with virtual Chan-
aton bundle $�K�R2n�CP1� by the K-cycle �R2n�CP1 ,$ , id� in the topological K-homology
t�R2n�CP1�. Its equivalence class is invariant under the usual relations of bordism, direct sum

nd vector bundle modification.12,30,48 There is an isomorphism Kt�R2n�CP1��Ka�R2n�CP1� of

belian groups which sends this K-cycle to the analytic K-homology class �D”ˆ $� defined by the
orresponding twisted Dirac operator on R2n�CP1. Similarly, if %�K�R2n� and � :R2n

�R2n

CP1 is the slice induced by the inclusion U�1��SU�2� of groups, then the topological K-cycle
R2n ,% , ���Kt�R2n�CP1� corresponds to the analytic K-homology class �*�D” %��Ka�R2n�CP1�,
here D” % is the twisted Dirac operator on R2n.

Now consider the SU�2�-equivariant reduction of these cycles. From the construction of the
receding section with ��m�=0 and the equivariant excision theorem of Sec. IV we have the
quality

�D”ˆ $�SU�2� = �*�D” �*$�U�1� �9.29�

n KSU�2�
a �R2n�CP1� which leads to

�R2n,%,�� = �R2n � CP1,$, id� with $ = SU�2��U�1�% �9.30�

n KSU�2�
t �R2n�CP1�. The left-hand side of �9.30� corresponds to the class of D�2n� brane-

2n
ntibrane pairs wrapping R , while the right-hand side corresponds to D�2n+2� brane-antibrane
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airs wrapping R2n�CP1. This is just the equivalence between instantons on R2n�CP1 and
ortices on R2n. We note that in the case m=1, the monopole field is automatically spherically
ymmetric on CP1 and one can formulate the equivalence �9.30� using only the requirement of
ector bundle modification in ordinary topological K-homology,30 which is equivalent to Bott
eriodicity �4.1�. In contrast, for m�1 one must appeal to an SU�2�-equivariant framework and
he identification �9.30� of K-cycles is far more intricate. In this case it is a result of the equivariant
xcision theorem, and not of Bott periodicity in equivariant K-theory. It is this intricacy that leads
o a more complicated brane-antibrane system when m�1.

Using the equivariant ABS construction of the preceding section, the K-homology class of the
ulti-instanton solution �7.1�–�7.3� is given by the left-hand side of �9.30� with

% = ��E
+,�E

− ;�N0,N1,. . .,Nm
� , �9.31�

here

�E
+ = �

i=m+

m

Eki
� V�m−2i� and �E

− = �
i=0

m−

Eki
� Vm−2i �9.32�

hile

�N0,N1,. . .,Nm
= �

i=0

m−

��E � �i�Ni �
j=m+

m

��E
† � � j�Nj �9.33�

ith �E :�E
+ →�E

+ acting fiberwise as Clifford multiplication �8.21� and �8.22�. The class �9.31� is
he K-theory class of the noncommutative soliton field �8.46�. The relation �9.30� equates the
esulting K-homology class with that defined by

$ = �SU�2��U�1��E
+,SU�2��U�1��E

− ;�* � �N0,N1,. . .,Nm
� �*� , �9.34�

here the projection � :R2n�CP1→R2n is a left inverse to the inclusion �, i.e., � � �=id. Through
he standard process of tachyon condensation on the system of D�2n+2� branes and antibranes
rapping R2n, the right-hand side of �9.30� then describes 2i�m�m−2i�Ni D2-branes and

2i�m �m−2i �Ni D2-antibranes. On the left-hand side of �9.30�, these are instead D0-branes cor-
esponding to vortices left over from condensation in the transverse space R2n.

One can also compute the topological charge in this world volume picture and explicitly
emonstrate that the K-theory charges on both sides of �9.30� are the same. The natural charge of
ranes defined by elements of equivariant K-theory is given by the equivariant index indexSU�2�

�D”ˆ $��RSU�2�, which may be computed by using the SU�2�-index theorem,49

indexSU�2� D”
ˆ
$ = − �

R2n�CP1
chSU�2��$� ∧ Â�R2n � CP1� , �9.35�

here chSU�2� :KSU�2��R2n�CP1�→HSU�2�
• �R2n�CP1 ;Q� is the equivariant Chern character taking

alues in SU�2�-equivariant rational cohomology. Since this index depends only on the equivariant
-homology class of the Dirac operator on R2n�CP1, we may explicitly use �9.29� and perform

he dimensional reduction to write the index �9.35� as

indexSU�2� D”
ˆ
$ = − �

R2n
chSU�2��%� . �9.36�

Since the Chern character in �9.36� is a ring homomorphism between KSU�2��R2n��RSU�2� and
•�R2n ;Q� � RSU�2�, upon substitution of �9.31�, �9.32� we can use its additivity and multiplicativ-
ty to compute
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chSU�2��%� = chSU�2���E
+

� �E
−� = 

i=m+

m

ch�Eki
� � �V�m−2i�

− 
i=0

m−

ch�Eki
� � �V�m−2i�

, �9.37�

here �V�m−2i�
:SU�2�→C are the characters of the SU�2� representations V�m−2i��C�m−2i�. This

nables us to write the equivariant index on R2n�CP1 in terms of ordinary indices on R2n to get

indexSU�2� D”
ˆ
$ = 

i=0

m−

index�D” Eki
� � �V�m−2i�

− 
i=m+

m

index�D” Eki
� � �V�m−2i�

. �9.38�

e can turn �9.38� into a linear map KSU�2��R2n�CP1�→Z by composing it with the projection

0 :RSU�2�→Z onto the trivial representation. Acting on the character ring this gives

�0��V�m−2i�
� = �V�m−2i�

�id� = dim V�m−2i� = �m − 2i� �9.39�

nd one finally arrives at

�0�indexSU�2� D”
ˆ
$� = 

i=0

m−

�m − 2i�index�D” Eki
� − 

i=m+

m

�m − 2i�index�D” Eki
� . �9.40�

Alternatively, one may arrive at the same formula by directly computing the ordinary index of
he Dirac operator �8.7� with ��m�=0 using �8.10� and �8.14�–�8.16�. Since

index D” m−2i = dim ker D” m−2i
+ − dim ker D” m−2i

− = − �m − 2i� , �9.41�

he index of �8.7� acting on sections of the bundle �8.9� coincides with �9.40�. For a gauge field
onfiguration appropriate to the K-theory class defined by the tachyon field �9.33�, these topologi-
al charges coincide with �9.6�.

. VACUUM SOLUTIONS

The extremal cases for which the Higgs fields have the configurations �i+1=0, i
0,1 , . . . ,m−1� and ���i+1=0, i=0,1 , . . . ,m−1�, fall outside of the general scope of the previ-
us analysis and are worth special consideration. They correspond to vacuum sectors of the
oncommutative gauge theory and are associated with indecomposable representations of the
uiver Am+1 that have no arrows. Nevertheless, these vacuum sectors admit nontrivial BPS solu-
ions which signal the presence of stable D-branes attached to the closed string vacuum after
ondensation on the brane-antibrane system. We shall now study them in some detail.

Monopole vacuum: Let us first look at the case ��i+1=0, i=0,1 , . . . ,m−1. The non-Abelian
oupled vortex equations �6.12�–�6.14� then imply

A0 = A1 = ¯ = Am
¬ A and F0 = F1 = ¯ = Fm

¬ F , �10.1�

hich is only possible in the equal rank case r=k0=k1= ¯ =km corresponding to the gauge
ymmetry breaking pattern U�k�→U�r�m+1 with k= �m+1�r. Thus we take i+1= i+11r and i+1

†

 ̄i+11r with i=0,1 , . . . ,m−1, where  i+1 are given in �7.30�. In quiver gauge theory, the BPS
onditions in this sector thus correspond to the representation of Am+1 which is r copies of the
ndecomposable quiver representation L0 � L1 � ¯ � Lm. They also require

�ab̄Fab̄ = 0 and Fāb̄ = 0 = Fab, �10.2�

hich are simply the DUY equations on R�
2n. Note that �3.26� implies Fyȳ =0 in this case, giving

he trivial dimensional reduction to R�
2n. After switching to matrix form via �6.9�, we obtain

�ab̄�X ,X¯� + �ab̄� ¯ = 0 and �X¯,X¯� = 0 = �X ,X � . �10.3�
a b ab a b a b
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The obvious solution to �10.3� is the trivial one with Xa=�ab̄z̄
b̄, giving Fab̄=0. This sector can

e understood physically as the endpoint of tachyon condensation, wherein the Higgs fields i+1

ave rolled to their minima at i+1= i+11r and the fluxes have been radiated away to infinity. Here
he D0-branes have been completely dissolved into the D�2n�-branes.

However, nontrivial solutions of the equations �10.3� also exist. For this, let us restrict our-
elves to the Abelian case r=1 and simplify matters by taking �a=� for all a=1, . . . ,n. We fix an
nteger l�1 and consider the ansatz28

Xa = �ac̄#l
†f�N�z̄c̄#l and Xā = �āc#l

†zcf�N�#l, �10.4�

here f is a real function of the “total number operator”

N ª

1

2�
a=1

n

zaz̄ā �10.5�

ith the property that f�r�=0 for r� l−1. The shift operator #l in �10.4� is defined to obey

#l
†#l = 1 while #l#l

† = 1 − Pl �10.6�

ith

Pl ª 
�r���l−1

�r1, . . . ,rn��r1, . . . ,rn� , �10.7�

here r�= �r1 , . . . ,rn� with �r� � ªr1+ ¯ +rn. Note that

#l
†Pl = Pl#l = 0 and f�N�Pl = Pl f�N� = 0, �10.8�

nd #l
† projects all states with �r� �� l out of the Fock space H.

One easily sees that �10.4� fulfills the homogeneous equations in �10.3�. Remembering that

ab̄=−�b̄a= �1/2���ab̄, we also obtain

�Xa,Xb̄� = �ac̄�b̄d#l
†�f�N�z̄c̄�1 − Pl�zdf�N� − zdf�N��1 − Pl�f�N�z̄c̄�#l

= −
1

4�2�ac̄�db̄#l
†�f2�N�z̄c̄zd − f2�N − 1�zdz̄c̄�#l �10.9�

ith the help of the identities z̄c̄Pl= Pl−1z̄
c̄ where P0ª0. We have also used

z̄c̄ f�N� = f�N + 1�z̄c̄ and zdf�N� = f�N − 1�zd. �10.10�

ubstituting �10.9� into �10.3�, we employ

�c̄dz
dz̄c̄ = 2�N and �c̄dz̄

c̄zd = 2��N + n� �10.11�

o find the conditions

0 = �ab̄�Xa,Xb̄� + �ab̄�ab̄ = −
1

2�
#l

†�f2�N��N + n� − f2�N − 1�N�#l +
n

2�

=
1

2�
#l

†�Nf2�N − 1� − �N + n�f2�N� + n�#l �10.12�

n the operator f . With the initial conditions f�0�= f�1�= ¯ = f�l−1�=0 and the finite-energy

ondition f�r�→1 as r→�, these recursion relations are solved by
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f2�N� = 	1 −
Qn!

�N + 1� ¯ �N + n�
�1 − Pl� , �10.13�

here

Q ª

l�l + 1� ¯ �l + n − 1�
n!

�10.14�

s the number of states in H with N� l−1, i.e., the number of states removed by the operator #l
†.

We arrive finally at the nontrivial gauge field configuration given by

Xa =
1

2�
#l

†�1 −
Qn!

�N + 1� ¯ �N + n�
�1 − Pl��ac̄z̄

c̄#l. �10.15�

he field strength F on R�
2n obtained from �10.15� has finite nth Chern number Q.28 The topologi-

al charge Q given by �10.14� is calculated here via an integral over R�
2n. However, the �n+ l�th

hern number for this configuration considered as a gauge field on R�
2n�CP1 with Fyȳ =0=F��

anishes. Moreover, this configuration has finite energy �5.2� proportional to the topological
harge,28

EBPS = �2��n+1R2n�n − 1�Q , �10.16�

s usual for a BPS instanton solution.
Higgs vacuum: The choice i+1=0 for all i=0,1 , . . . ,m−1 is somewhat more interesting since

rom �3.26� and �5.29� we then have Fyȳ�0 with

Fyȳ = −
R2

�R2 + yȳ�2��m�. �10.17�

his configuration gives the local maximum of the Higgs potential corresponding to the open
tring vacuum containing D-branes. In this case the vortex equations �6.12�–�6.14� reduce to

�ab̄F
ab̄

i
=

m − 2i

4R2 and F
ab̄

i
= 0 = Fab

i . �10.18�

fter switching to matrix form via �6.9� we obtain

�ab̄�Xa
i ,X

b̄

i � + �ab̄	1 −
�m − 2i��

2nR2 
�ab̄ = 0 and �Xā
i ,X

b̄

i � = 0 = �Xa
i ,Xb

i � , �10.19�

here we have used the formula �ab̄= �1/2���ab̄. Recall that there is no summation over the index
=0,1 , . . . ,m in the equations �10.19�.

By comparing �10.19� and �10.3�, we conclude that �10.19� can be solved for each i by the
ame ansatz as for �10.3�. For this, let us restrict ourselves again to the Abelian case for all nodes
=0,1 , . . . ,m �so that k=m+1�, and fix m+1 positive integers l0 , l1 , . . . , lm. We take

Xa
i = �ac̄#li

† f i�N�z̄c̄#li
and Xā

i = �āc#li
†zcf i�N�#li

�10.20�

nalogously to �10.4�–�10.7�. Producing then the same calculations as before, we obtain the gauge
eld configuration

Xa
i =

1

2�i#li
†�1 −

Qin!

�N + 1� ¯ �N + n�
�1 − Pli

��ac̄z̄
c̄#li

, �10.21�
here
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�i
ª

�

�1 −
�m − 2i��

2nR2

�10.22�

nd

Qi =
li�li + 1� ¯ �li + n − 1�

n!
. �10.23�

e have chosen the radius R of the sphere so that R2�m� /2n.
The solutions �10.21� coincide with those given by �10.15� if one assigns different noncom-

utativity parameters �i to the world volumes of D�2n�-branes carrying different magnetic fluxes
roportional to m−2i. Then the field strength Fi��i� on R�i

2n obtained from �10.21� will have finite
opological charge Qi given by �10.23� and corresponding finite BPS energy analogous to �10.16�,
nd the configuration thus described extends to instantons on R�

2n�CP1. The interesting idea of
ntroducing distinct noncommutativity parameters on multiple coincident D-branes, generated by
ifferent magnetic fluxes on their world volumes,50 was discussed in Ref. 51 as a means �among
ther things� of stabilizing brane-antibrane systems. This proposal gains support from our Higgs
acuum BPS solutions �10.21� which carry different magnetic fluxes on different branes.
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A single Israel layer can be created when two metrics adjoin with no continuous
metric derivative across the boundary. The properties of the layer depend only on
the two metrics it separates. By using a fractional derivative match, a family of
Israel layers can be created between the same two metrics. The family is indexed
by the order of the fractional derivative. The method is applied to Tolman IV and V
interiors and a Schwarzschild vacuum exterior. The method creates new ranges of
modeling parameters for fluid spheres. A thin shell analysis clarifies pressure/
tension in the family of boundary layers. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2158436�

. INTRODUCTION

There is long-standing interest in fluid sphere solutions, largely because of their astrophysical
mplications. An astrophysical model is often an interior fluid sphere metric matched to a
chwarzschild vacuum or Kottler exterior across a bounding surface. The standard technique
atches metric functions and extrinsic curvatures on the boundary. When the extrinsic curvatures

o not match, an Israel boundary layer1,2 can be created. The layer depends only on the properties
f the two bounding metrics. Methods that will create a family of surface layers between the
ounds could prove useful in exploring models of spheres with variable crusts. One way of
reating variable surface layers is to modify the boundary conditions at the fluid–vacuum inter-
ace.

While an extrinsic curvature match is the boundary condition currently most used, there are
hree types of boundary conditions that have been used to match analytic solutions across non-null
oundaries. The three methods have been discussed by Bonnor and Vickers,3 and they all involve
erivatives of the metric functions. The boundary conditions can be generalized by broadening the
dea of derivatives to include fractional derivatives.4,5

There are two simple ways to proceed with the generalization. The first is to assume a straight
ractional derivative match on the boundary metrics and then to use the fractional relations in the
sual formalism for the boundary stress energy. This would be a generalization of the Lichnerow-
cz boundary condition. It would not generalize the extrinsic curvature to fractional values. The
econd would be to use fractional derivatives to define a fractional extrinsic curvature and then use
t to define a fractional boundary layer. This would be a generalization of the usual Lie derivative
o fractional values. The use of fractional calculus is motivated by the possible fractional nature of
he growth processes forming the boundary layer. Fractional transport processes are one of the
ain areas of application for fractional calculus, and boundary layers formed by these processes

ould reflect this fractional formation process.
Beyond the fractional generalizations of techniques and tensor functions, one must consider

he various definitions of fractional differentiation. Use of fractional calculus in diverse areas of
hysics has increased enormously since fractional derivatives were first considered by Leibnitz
nd L’Hospital4 in 1695. Many different definitions have been proposed for different applications.
n this article we use the Caputo form of the Riemann–Liouville and Weyl definitions. The Caputo

erivative is an integral transform of the regular partial derivative and preserves the zero fractional

47, 012501-1022-2488/2006/47�1�/012501/16/$23.00 © 2006 American Institute of Physics
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erivative of a constant. While considering generalizations of relativistic gravity to include frac-
ional calculus, the different definitions must be explored to determine their applicability.

This work has two goals: first to develop a variable layer model that could be applied to
strophysical problems, and second to better understand the role that fractional derivatives might
lay within a general relativistic framework. In this paper we will apply the first method and use
ractional derivatives to create a family of Israel boundary layers between two bounding metrics.
he family is parametrized by the order of the fractional derivative and may be used to model fluid
pheres with variable crusts. Even when a regular derivative match is possible, the fractional
atch will broaden the parameter ranges for the fluid interior.

In the next section we discuss the metrics and describe the boundary layer. In the third section
everal models are considered: the Misner–Zapolsky �MZ� solution,6,7 and Tolman’s solutions IV
nd V.8 The thin shell pressure balance is treated in the fourth section and some details of the
ractional match are discussed in Sec. V. Details of the fractional derivatives and the standard fluid
phere formalism are given in the Appendices.

I. THEORETICAL FRAMEWORK

. The space-time

The two regions to be considered are covered by an exterior Schwarzschild solution bounding
n interior spherical fluid. The metrics are, with functions �Sch=1−2m0 /y, ��r�, ��r�, H�r�:

Exterior: g��
Sch dx� dx� = − �Sch dt2 + �Sch

−1 dy2 + y2 d�2, �1�

Interior: g��
fluid dx� dx� = − e� d�2 + e� dr2 + H2 d�2. �2�

he bounding surface is located at y=y0 in the exterior and r=R0 in the interior. The correspond-
ng normals to the surface are

Exterior: n�
E dx� = �Sch

−1/2 dy , �3�

Interior: n�
I dx� = e�/2 dr . �4�

ractional derivatives leave these metrics unchanged. Our fractional extension provides a crust
ayer between the interior and exterior metrics.

. Matching conditions

On the boundary, the metric match conditions are

�1 − 2m0/R0� = e��R0�,

R0 = H�R0� . �5�

he second matching condition is the extrinsic curvature match, Kb
a, on the bounding surface. If

he curvatures do not match, an Israel boundary layer is created. The stress–energy content of the
srael layer is constructed from the mismatch in the extrinsic curvatures. The stress–energy of the
oundary layer is2

− 8	Sb
a = �Kb

a� − �K�gb
a. �6�

ere K=Ka
a. The stress–energy components on the boundary are

− 8	S0 = ��K0� − �K0 + 2K
�g0� = − 2�K
� ,
0 0 0 
 0 
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− 8	S


 = − 8	S�

� = ��K


� − �K0

0 + 2K


�g



� = − ��K


� + �K0

0�� ,

nd the stress–energy of the boundary is

8	S0
0 =

1

�gyy
E �1/2

g

,y
E

g


E −

1

�grr
I �1/2

g

,r
I

g


I

8	S


 = 8	S�

� =
1

2
� 1

�gyy
E �1/2

g

,y
E

g


E −

1

�grr
I �1/2

g

,r
I

g


I � +

1

2
� 1

�gyy
E �1/2

g00,y
E

g00
E −

1

�grr
I �1/2

g00,r
I

g00
I � . �7�

. Match of fractional derivatives

The stress–energy of the Israel layer is evaluated on the boundary between the interior and
xterior metrics. The actual finite thickness boundary layer is modeled by the single bounding
urface at r=R0. The stress–energy content is governed by regular derivatives of the metric
unctions. The metric match coupled with some derivative match of the metric on the layer, sets
elations between the parameters of the interior and exterior solutions. With the usual extrinsic
urvature or other derivative matches, the properties of the layer are set by the parameters of the
ounding metric. With a fractional match, the order of the fractional derivative enters along with
he other parameters and a family of fractional boundary layers is created. The fluid sphere
xamples considered in this paper have boundary metrics of the form

ds2 = − F�r�dt2 + r2 d�2.

he fractional match is applied only to the differing part of the Israel layer metric, the g00 metric
otential. The actual calculation of the fractional derivatives involves a choice of definition. We
se the Caputo definition �see Appendix A� with the �0�r�R0� Riemann–Liouville limits for the
nterior and the �R0�r�  � Weyl limits for the exterior. The limits themselves, as well as the
hoice of different limits for interior and exterior derivatives, reflect the nonlocality of the frac-
ional derivative operation. Nonlocality in fractional time derivatives is an expression of system

emory.9 It has proven especially useful in modeling jump processes with long wait times.10

imilarly, spatial nonlocality implies that the derivative on the boundary depends on values away
rom the boundary; fractional spatial derivatives have been useful in modeling processes with very
arge jump distances.11 When the jump distance depends on the jump time, fractional time and
patial derivatives enter into the transport equations.12 The examples discussed here are static, but
he structure of the boundary layer could reflect the transport process. The fractional matching
ondition is

1

��n − ��	0

R0 dnFI�x�/dxn

�r − x��−n+1 dx =
�− 1�n−1

��n − ��	R0

 dnFE�x�/dxn

�x − r��−n dx ,

nd is applied at r=R0. We note that the single layer at r=R0 only approximates a boundary of
nite thickness and that using a nonlocal operator might be a better approximation to the actual
atch over a finite thickness than the usual derivative match over a zero thickness surface.

In the next sections, we apply the formalism to Tolman IV and V solutions.

II. MODEL CALCULATIONS

. Tolman’s Solution V

. The solution

We consider a parametrization of Tolman’s Vth solution.8,13 The metric, with constants n and

, is
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ds2 = − �r/r0�N1 dt2 + a�1 − aCr2+b�−1 dr2 + r2 d�2. �8�

he parameters formed from n are

N1 = 4n/�1 + n�, N2 = 1 + 6n + n2,

a =
N2

�1 + n�2 , b =
N1�1 − n�
�1 + 3n�

.

he interior density and pressure for this solution are

8	� = 
4n

N2
� 1

r2 + C�3 + b�rb,

�9�

8	P = 
4n2

N2
� 1

r2 − C
�1 + 5n�

1 + n
rb.

For C=0, the solution reduces to the MZ solution.6,7,15 This solution was originally used to
escribe neutron star models with equation of state P=n�. The solution with C=0 does not admit
zero-pressure boundary; the C�0 solution does. Both solutions are singular at the origin and are
sed to represent an ultrahigh density core. The MZ solution, lacking a vacuum boundary, is
enerally matched to a gaseous envelope. It may be more realistic in some cases to match these
olutions to a crust with surface stresses.

For C�0, the zero-pressure boundary, Rz, relates constants C and n,

C =
4n2�1 + n�
�1 + 5n�N2

1

Rz
2+b . �10�

ubstituting for C, the pressure and density can be written as

8	PC�0 =
4n2

N2

 1

r2 −
rb

Rz
2+b� , �11�

8	�C�0 =
4n

N2

 1

r2� +
4n2

N2

�n + 3�
�1 + 3n�
 rb

Rz
2+b� . �12�

he condition PC�0�0 requires

R0 � Rz. �13�

Fractional matching will allow a broader family of sphere sizes. Below, we graph values for
he case n=1/3. For C=0, there is no zero-pressure boundary and no constraint.

. Matching conditions

The matching conditions are the same for any C value. Matching the interior metric to vacuum
chwarzschild, we find

1 − 2m0/R0 = �R0/r0�N1

recall N1=4n / �1+n��,

2m0

R0
1+���1 + �� = 
R0

r0
�N1
N1

R0
�� ��N1�

��N1 + 1 − ��
.

ombining the two relations, we find that the scaled radius of the interior is
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R0

2m0
= 1 +

��1 + ����N1 + 1 − ��
��1 + N1�

. �14�

ote that the boundary radius is always greater than 2m0. For ��1, there are no limits imposed
y Eq. �14�. For ��1 we require

1 + N1 � � .

he metric parameter r0 is described by


 r0

R0
�N1

= 1 +
��1 + N1�

��1 + ����N1 + 1 − ��
. �15�

he sizes of the fractional spheres are discussed in Sec. V.

. The crust stress–energy

The stress–energy of the crust for general C is, with �0ª
�1−2m0 /R0,

8	S0
0 =

2

R0
��0 − �1 + n�N2

−1/2�1 − aCR0
2+b�

8	S


 = 8	S�

� =
1

2R0
��0 + 1/�0 − �1 + n��2 + N1�N2

−1/2�1 − aCR0
2+b� .

or C�0, the boundary layer has a stress–energy content �recall N1=4n / �1+n�, N2=1+6n+n2�,

8	S0
0 =

2

R0
��0 − �1 + n�N2

−1/2�1 −
nN1

�1 + 5n�
�R0/Rz�2+b� ,

8	S


 = 8	S�

� =
1

2R0
��0 + 1/�0 − 2�1 + 3n�N2

−1/2�1 −
nN1

�1 + 5n�
�R0/Rz�2+b� . �16�

or C=0 the fluid energy density and stress are

8	S0
0 = �2/R0���0 − �1 + n�N2

−1/2�

=�2/R0���R0/r0�2n/�1+n� − �1 + n�N2
−1/2� , �17�

8	S


 = 8	S�

� = �1/R0���1 − m0/R0�/�0 − �1 + 3n�N2
−1/2� ,

nd describe a much richer modeling environment.

. Tolman’s Solution IV

. Metric and stress–energy

This solution describes an object with finite central presssure and density. A stiff fluid core is
ot possible in this model. The interior metric for this solution is, with constants A, B, and C,

ds2 = − B2�1 + r2/A2�dt2 +
1 + 2r2/A2

�1 − r2/C2��1 + r2/A2�
dr2 + r2 d�2. �18�

he interior density and pressure are

8	� =
1

2�1 + 3�A2/C2 + r2/C2�
2 2 + 2

1 − r2/C2

2 2 2� , �19�

A 1 + 2r /A �1 + 2r /A �
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8	P =
1

A2�1 − �A2/C2 + 3r2/C2�
1 + 2r2/A2 � . �20�

onstants A and C can be expressed in terms of the central fluid values. We have

8	�c =
3

A2�1 + A2/C2� ,

8	Pc =
1

A2�1 − A2/C2� ,

A2 =
2

8	��c/3 + Pc�
,

C2 =
2

8	��c/3 − Pc�
.

ote that the central fluid equation of state �EOS� is constrained: Pc��c /3. The zero-pressure
oundary that occurs in the regular derivative match has size

Rz
2 = C2/3 − A2/3. �21�

. Metric match

The match to vacuum Schwarzschild provides

B2�1 + R0
2/A2� = 1 − 2m0/R0. �22�

he fractional match is

B2

A2

1

R0
�−2

1

��3 − ��
=

m0

R0
1+���1 + �� ,

�23�
B2R0

3 = A2m0��3 − ����1 + �� .

ombining with the metric match, we obtain

A2 = R0
2 �R0/m0� − �2 + ��3 − ����1 + ���

��3 − ����1 + ��
,

B2 =
m0

R0
� R0

m0
− �2 + ��3 − ����1 + ���� , �24�

R0/m0 � 2 + ��3 − ����1 + �� .

he boundary size depends on the central EOS as well as the order of the fractional derivative:


 R0

m0
�3

− 
 R0

m0
�2

�2 + ��3 − ����1 + ��� −
��3 − ����1 + ��
4	m2�Pc + �c/3�

= 0. �25�

0
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. Crust stress–energy

We introduce scaled parameters rA
2 : =R0

2 /A2, rC
2 : =R0

2 /C2, and rz
2 : =Rz

2 /A2.

8	S0
0 =

1

�gyy
E �1/2

g

,y
E

g


E −

1

�grr
I �1/2

g

,r
I

g


I =

2

R0
��1 − 2m0/R0 −��1 − rC

2 ��1 + rA
2�

1 + 2rA
2 �

=
2

R0

�1 + rA
2�B −

A

C
�1 + 3rz

2 − rA
2

1 + 2rA
2 � , �26�

8	S


 = 8	S�

� =
1

2
� 1

�gyy
E �1/2

g

,y
E

g


E −

1

�grr
I �1/2

g

,r
I

g


I � +

1

2
� 1

�gyy
E �1/2

g00,y
E

g00
E −

1

�grr
I �1/2

g00,r
I

g00
I �

=
1

R0

�1 + rA
2�B −

A

C
�1 + 3rz

2 − rA
2

1 + 2rA
2 � +

1

R0
�1 + rA

2 �m0/R0

B
− �rA

2�� 1 − rC
2

1 + 2rA
2 � . �27�

ome examples of radius variation and crust stress energy are given in Sec. V.

V. EQUILIBRIUM IN THE PRESENCE OF SURFACE STRESSES

. Stress–energy

The Israel layer is the zero-thickness idealization of a bounding layer with finite thickness, d.
he physical crust runs from an outer boundary R0 to an interior fluid boundary Ri with d=R0

Ri. We know that the interior fluid solutions will satisfy the22 Tolman–Oppenheimer-Volkov
TOV� equation. The Israel layers generated in this work are obtained by introducing a disconti-
uity in the derivative of g00. The analog of the TOV equation for the layer, requiring that the
olutions remain static, will provide relations among the model parameters. To develop the TOV
nalog for the layer, consider the general static spherical metric for an interior fluid with pressure

P and density �,

ds2 = − e� dt2 + e� dr2 + r2 d�2. �28�

he details of the field equations are given in Appendix B. The covariant derivative of the general
nergy–momentum tensor provides the conservation equation

−
�Tr

r

�r
− 
��

2
+

2

r
�Tr

r + 
��

2
�T0

0 + 
2

r
�T



 = 0. �29�

or an isotropic fluid matched to vacuum, this is the usual TOV equation,

�P

�r
+

��

2
�P + �� = 0. �30�

t is the analog of this equation that we want for the Israel layer.

. The conservation equation over a limiting shell

Consider a bounding shell that will approximate a thin surface layer. The central radius of the
hell is R with the outer boundary R�+�=R+d /2, and the inner interior fluid boundary at R�−�=R
d /2. d is the coordinate shell thickness. In the d→0 limit, R→R0. A general stress-energy Tj

i can
e related to a surface stress–energy Sb

a by2

Tj
i = ��l�Sb

aea
i ej

b, �31�

here ea
i is a tangent vector to the shell, and l the proper distance along a radial geodesic, l

�/2
e d. The shell stress–energy has a perfect fluid analog,
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Sij = �UiUj + ��hij + UiUj� ,

hij = gij − ninj ,

ni = �0,e−�,0,0� ,

here S0
0 /c2=−��g/cm2� and S



= ±��dynes/cm�. Following Poisson2, we take l=0 on the hyper-
urface defined by R, with l negative for r�R and positive on the vacuum side, r�R. The Tr

r

ontent of the shell can be described using a Heaviside function, ��l�, as

Tr
r = ��l�Tr

�+�r + ��− l�Tr
�−�r + ��l�Sr

r. �32�

he last term will be zero for the 2+1 shell stress energy. Forming the derivative needed in the
onservation equation, we have

�Tr
r

�r
= ��l�

dl

dr
Tr

�+�r + ��l�
�Tr

�+�r

�r
− ��l�

dl

dr
Tr

�−�r + ��− l�
�Tr

�−�r

�r
.

n the l→0 limit we have

�Tr
r

�r
= − lim

l→0
���l�

dl

dr
Tr

�−�r� = − lim
l→0

���l�Pe�/2� , �33�

here the first term is zero with no radial pressure on the outer boundary. The stress–energy
unction evaluated at the inner boundary is P and ��−� is an interior metric function. Substituting
nto the conservation equation in the l→0 hypersurface limit, we have

Pe��−�/2 + ���/2�S0
0 + �2/R0�S



 = 0. �34�

. Evaluating �rg00

The derivative, ��, on the hypersurface, can be written as a difference equation,

���R� =
��R + d/2� − ��R − d/2�

�R + d/2� − �R − d/2�
=

��R + d/2� − ��R� + ��R� − ��R − d/2�
�R + d/2� − �R − d/2�

=
��R + d/2� − ��R�

d
+

��R� − ��R − d/2�
d

.

xpanding, we can write

��R ± d/2� = ��R� ± ���R�±��
d

2
+ ¯ .

ubstituting in the thin shell limit, we have

���R� 
���R�+�� + ���R�−��

2
.

he first term follows from the Schwarzschild metric match and the second is given in Appendix
. We have

���R�  �2m/R2 + 4	RP��1 − 2m/R�−1,

here we have identified the Schwarzschild mass parameter with the interior mass of the fluid.

ubstituting into Eq. �34�, we have
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− P�1 − 2m/R�−1/2 = �m/R2 + 2	RP��1 − 2m/R�−1S0
0 + �2/R�S



, �35�

hich describes the thin shell pressure balance. The classical limit of this equation follows from
→ and is

P − �
m

R2 = 
 2

R
��− �� .

f the fluid pressure at the interior boundary dominates, this can be interpreted as a tension in the
hell, balancing the outward interior fluid pressure at the boundary minus the inward pressure due
o the gravitational attraction of the shell by the interior fluid. If the shell mass term dominates, the
tress in the boundary layer will be a pressure. In the next section we explore the stress–energy
tructure of the boundary layer, and will see parameter ranges with both layer tension and pres-
ure.

. DETAILS OF THE FRACTIONAL MATCH

. Sphere radii

The sizes of the sphere are described by

TolmanV:
R0

2m0
= 1 +

��1 + ����4n/�1 + n� + 1 − ��
��1 + 4n/�1 + n��

, �36�

TolmanIV: 
 R0

m0
�3

− 
 R0

m0
�2

�2 + ��3 − ����1 + ��� −
��3 − ����1 + ��
4	m0

2�Pc + �c/3�
= 0. �37�

he scaled boundary radius, R0 /m0, for Tolman V is plotted as a function of alpha for various n in
ig. 1.

The overall effect of the fractional match is to increase the range of sphere sizes for a given
OS. The largest differences are for low- n fluids, where a very much smaller sphere radius is
ossible than for the zero-pressure match. The Buchdahl bound14 limits the ratio of 2m0 /R0 for
uid spheres whose g00 component is continuous across the boundary and whose density is
FIG. 1. Scaled radius versus fractional order.
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ecreasing outward. We have matched fractional derivatives rather than first derivatives and it is
ot clear that the conditions of the Buchdahl bound are satisfied, but from Fig. 1, it is seen that the
uchdahl bound, 2m0 /R0�8/9, is not violated.

The radius for Tolman IV is a cubic root of Eq. �37�, but some general description can be
iven. The modeling term in the equation is the denominator of the last term. Consider the factor

c1 � 4	m0
2�c/3

escribing an object with mass m0=Nm�=N�2�1030 kg�, and central density and pressure of
eutron star order, �c�1017 kg/m3, Pc�1033 Newton/m2. Numerical scaled radius values using
hese values are described in Table I for a range of N and alpha values. For N�100 or larger, the
ast term in the cubic is negligible and the radius is essentially given by the limiting value

R0/m0 � 2 + ��3 − ����1 + �� .

he masses for these radii are well out of the neutron star range. The reflection symmetry about
=1 is the result of a product equivalence of the two gamma functions for paired alpha values,

.e., �= �0.6,1.4� give the same gamma function product. From Table I, it is clear that the low N
alues have masses and radii of neutron star orders of magnitude.16 For example, for N=1, the
adii are approximately R0�11.44m0�17 km. Smaller central densities, describing more ordinary
uid objects, result in much larger fluid spheres. For a central density of �c�1010 kg/m3, the radii
or �=1, R0�N� are R0�1�=2228.33m0, R0�10�=480.87m0, R0�100�=104.39m0, R0�1000�
23.32m0, with the values for larger and smaller � paired and increasing, just as for the larger
entral density.

. Crust stress–energy

Figures 2 and 3 describe the variation of the boundary energy density and pressure, in Tolman
, n=1/3, as the size of the fluid sphere varies. Over a large part of the R0 /Rz range, a crust

ension contains the interior fluid, with the tension increasing in size as the fluid sphere becomes
maller, essentially acting to squeeze the fluid into smaller volumes. The results are similar for

TABLE I. R0 /M0—Tolman IV—�c�1017 kg/m3.

� N=1 N=10 N=100 N=1000

0.2 13.24 4.41 3.55 3.54
0.4 12.39 4.10 3.28 3.27
0.6 11.85 3.91 3.12 3.11
0.8 11.54 3.81 3.04 3.03
1 11.44 3.78 3.01 3
1.2 11.54 3.81 3.04 3.03
1.4 11.85 3.91 3.12 3.11
1.6 12.39 4.10 3.28 3.27
=0.
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For Tolman IV, the crust energy density is

8	� =
2

R0
�− �1 − 2m0/R0 +��1 − R0

2/C2��1 + R0
2/A2�

1 + 2R0
2/A2 �

=
2

R0
�− �1 − 2m0/R0 +��1 − 4	R0

2�c�1/3 − n���1 + 4	�cR0
2�1/3 + n��

1 + R0
28	�c�1/3 + n�

� .

he modeling factor of importance is the term

4	
R0

2

m0
2�cm0

2 = 3c1
R0

2

m0
2 .

or nuclear central densities, �c�1014 g /cm3, this is

FIG. 2. Ds=−8	m0S0
0 versus fractional order.

�
FIG. 3. Ps=8	m0S� versus fractional order.
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20.35N2 � 10−4 R0
2

m0
2 .

n order to have real values, we require

N = 1, R0 � 12m0, �0.293 � �1/3 − n�� � 1,

N = 10, R0 � 4m0, �3.26 � �1/3 − n�� � 1,

N = 100, R0 � 3m0, �183 � �1/3 − n�� � 1.

t is clear that the broadest range of central equations of state for nuclear central densities is for the
ower mass objects. Higher mass objects require a central EOS very close to the 1/3 limit. For
maller values of the central density, the central EOS range is much broader. For a central density
f �c�107 g/cm3, the modeling factor is

4	
R0

2

m0
2�cm0

2 = 20.35N2 � 10−11 R0
2

m0
2 ,

nd for real values require

N = 1, R0 � 2228m0, �0.10 � 10−2�1/3 − n�� � 1,

N = 10, R0 � 480m0, �0.47 � 10−2�1/3 − n�� � 1,

N = 100, R0 � 104m0, �0.022 � �1/3 − n�� � 1,

N = 1000, R0 � 23m0, �0.11 � �1/3 − n�� � 1.

I. CONCLUSION

In this work we have examined a family of boundary layers created by matching fractional
erivatives across a boundary.17,18 The boundary layers considered have structure that depends on
he order of the fractional derivative. One of the reasons that fractional calculus may be important
or boundary layers is the mechanism by which a boundary layer is formed. One of the possible
ays to build a variable density crust is by a diffusive process; a process whose underlying cause

s Brownian motion. This motion, as analyzed by statistical mechanics, involves diffusion, dissi-
ation, and the fluctuation-dissipation theorem. The dynamical model of Brownian motion was
rovided by Langevin in 1908 using a stochastic differential equation. It seems apparent from the
ature of randomness that such macroscopic stochastic equations are incompatible with the con-
inuous and differentiable character of microscopic Hamiltonian dynamics. �Think of the conven-
ional diffusion equation, with the diffusion process described by a second-order spatial deriva-
ive.� Therefore, the mathematical description rests on either ordinary analytical functions
escribing the dynamics, or on conventional differential operators describing the phase space
volution. The differentiable nature of the macroscopic picture is, in a sense, a natural conse-
uence of microscopic randomness. This means that use can be made of ordinary differential
alculations on the macroscopic scale, even if the microscopic dynamics are incompatible with
rdinary calculus methods. On the other hand, in the case where a time scale separation between
acroscopic and microscopic levels of description does not exist, the nondifferentiable nature of

he microscopic dynamics is transmitted to the macroscopic level. Since fractional calculus has
een shown to provide a good description for a range of diffusive processes,19 one might expect a

oundary condition based on fractional calculus would reflect the fractional growth process. An
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xample, given by Allegrini, Grigolini, and West,20 shows that a diffusion process generated by a
uctuation with no time scale at the macroscopic level generates a diffusion process well de-
cribed by a fractional Laplacian.

While diffusion is a possible mechanism for generating a layer with structure, the method of
enerating the fractional family of layers is independent of the production mechanism and gener-
tes a family whose stress–energy and size depends on the order of the fractional derivative. The
esult is a much broader range in fluid sphere properties. For example, in Tolman V, a much larger
ange of spheres sizes can be described with the fractional layer than without, with the energy
ensity of the layer decreasing as the size of the sphere increases. The C�0 Tolman V spheres
ave a zero-pressure boundary solution. For spheres smaller than the zero-pressure sphere, the
ayer has a tension, while for spheres larger than the zero-pressure sphere, the layer has positive
tress over much of the range of the fractional order. The fractional boundary could prove to be a
aluable modeling tool in more realistic neutron star models.

The range of stress–energy in the fractional boundary layers implies differences in structure as
function of the fractional order. The differences in density could be modeled in several ways: for

xample, with different crust materials or different incomplete fluid coverings �tilings�.21 The layer
tself is a model of a thin crust and there could be differences in the geometry of the 2�1 shells
hat fill the real crust. The interior fluid geometry and the exterior Schwarzschild vacuum do not
ave to match for a crust with finite thickness.

The models presented in this paper matched an integral transform of the regular derivative
cross a spatial boundary. It is not a fractional generalization of general relativity, but a fractional
eneralization of a boundary condition. The next step is to explore the range of fractional gener-
lizations of other sets of boundary conditions and other derivative definitions to applicable space-
imes.

PPENDIX A: DERIVATIVES

. Regular

For functions f and F continuous on �a ,b� � Reals,

F�x�: = 	
a

x

f�t�dt ,

�x� is differentiable such that dF /dx= f . The nth integer derivative is simply dnF /dxn. For
xample,

dn

dxnxk =
k!

�k − n�!
xk−n.

ith the gamma function this is

dn

dxnx� =
��� + 1�

��� − n + 1�
x�−n.

he gamma function, ��z�, is defined as

��z� = 	
0



e−ttz−1 dt, ��1/2� = �	, ��1� = 1,
��n + 1� = n��n� = n ! , for n � 0.
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. Fractional

. Riemann–Liouville

The Riemann-Liouville definition for the � fractional derivative of f�x� is, with ��0,

D�f�x� =
d�

dx� f�x�: =
1

��n − ��
dn

dxn	
c

x f�t�
�x − t��−n+1dt , �A1�

here n is the smallest integer larger than � when it is fractional, that is, n= ���+1. In the �=1
imit, the derivative produces the integer result. The constant c in the limit of the integral is usually
et to 0 �Riemann definition� or to − �Liouville definition�. For example, the Riemann–Liouville
erivative of xk for ��1 with n=1, we have

D�xk =
1

��1 − ��
d

dx
	

0

x

tk�x − t�−� dt

=
1

��1 − ��
d

dx
	

0

x

tkx−�
1 −
t

x
�−�

dt

=
1

��1 − ��
d

dx
	

0

1

wkx−�+1+k�1 − w�−� dw .

sing the definition of the beta function,

	
0

1

wp−1�1 − w�q−1 dw =
��p���q�
��p + q�

,

e have

D�xk =
1

��1 − ��
dx−�+1+k

dx

��k + 1���1 − ��
��k + 2 − ��

=�1 + k − ��xk−� ��k + 1�
��k + 2 − ��

=xk−� ��k + 1�
��k + 1 − ��

.

or �=1, this is the usual result D1xk=dxk−1. Note that, for k=−1, this operation fails. This is an
xample of one of the problems encountered in applying fractional derivatives to general relativity.
ot all definitions of fractional derivatives work for all functions. The fractional derivative of xk

or ��1 is identical to the fractional derivative for ��1. For this function, the derivative is
ontinuous across the �=1 boundary.

D�xk =
1

��2 − ��
d2

dx2	
0

x

tkx1−�
1 −
t

x
�1−�

dt

=
1

��2 − ��
d2

dx2	1

wkxk+2−��1 − w�1−� dw

0
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=xk−� ��1 + k�
��1 + k − ��

.

ne should note that the Riemann–Liouville fractional derivative of a constant is not zero.

. Caputo

The Caputo derivative is the integral transform of the regular derivative and is found by
oving the derivative in the Riemann–Liouville definition inside the integral to act on the func-

ion. We have

D�f�x� =
1

��n − ��	0

x

dn

dtn
f�t�

�x − t��−n+1dt . �A2�

xample: f�x�=xb, ��0,

D��x − a�k =
1

��n − ��	0

x

dn

dtn
tk

�x − t��−n+1dt .

or ��1, n=1 we have

D��x − a�k =
1

��1 − ��	0

x

ktk−1�x − t�−� dt =
kxk−�

��1 − ��	0

1

wk−1�1 − w�−� dw = kxk−� ��k�
��k + 1 − ��

,

�A3�

hich is identical to the Riemann–Liouville derivative for this function. This derivative also is not
efined for k=−1. In general relativity, one of the space-times one would like to treat is vacuum
chwarzschild, but the Riemann–Liouville derivative will not give finite answers for the 1/r
tructure. The derivative of 1 /r can be taken with the Weyl derivative.

. Weyl

The Weyl derivative differs from the Riemann–Liouville derivatives over the range of the
ractional transform. To take the fractional derivatives of 1 /r we use the Weyl derivative over the
ange �R0 ,  �. The Weyl derivative of f�r� can be written as

D�f�r� =
�− 1�n−1

��n − ��	r

 dnf�t�
dtn

�t − r�n−� dt ,

here n is the smallest integer above � when it is fractional. This paper is concerned with the
ractional derivative across the boundary and the phase �−1�n−1, was chosen to make D� continu-
us across �=1. Applying the derivative definition to 1/r for ��1 �n=1� we find

D�r−1 = − r−�1+����1 + ��, � � 1. �A4�

or �=1, this gives the usual first derivative of 1 /r. For ��1 �n=2� the derivative is the same.
ne should be careful not to interpret the derivative for �=2 as the second derivative. The second
erivative would follow from a double application of D�. For this function the single derivative at
=2 is not the same as the double application of the derivative operator.

PPENDIX B: FLUID SPHERE FORMALISM
Consider the general static spherical metric over the interior fluid with ��r� and ��r�,
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ds2 = − e� dt2 + e� dr2 + r2 d�2.

ith Einstein’s field equations as Gij=8	Tij, the energy–momentum components are

8	T0
0 = − e−����/r − 1/r2� − 1/r2,

8	Tr
r = e−����/r + 1/r2� − 1/r2,

8	T


 = 8	T�

� = �e−�/2������ + ���/2 + 1/r���� − ���� .

or the fluid interior, the energy–momentum, with four-velocity Ui= �e�/2 ,0 ,0 ,0�, is

Tij = �� + P�UiUj + Pgij .

n the comoving frame the fluid stress energy is

T0
0 = − �, Tr

r = T


 = T�

� = P .

t is common to use the function m�r� in grr with

e� = �1 − 2m�r�/r�−1,

o that

�� = 2�m�/r − m/r2��1 − 2m/r�−1.

rom the first field equation we have

m� = 4	r2� .

he second field equation provides a relation between the fluid pressure, P, and ��,

��/2 = �4	rP + m/r2��1 − 2m/r�−1
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olliding wave solutions from five-dimensional black
oles and black p-branes

E. Halilsoy,a� M. Halilsoy,b� and O. Unverc�

Physics Department, Eastern Mediterranean University, G.Magosa (N. Cyprus),
Mersin 10, Turkey
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We consider both the five-dimensional Myers-Perry and Reissner-Nordstrom black
holes �BHs� and black p-branes in �4+p�-dimensions. By employing the isometry
with the colliding plane waves �CPWs� we generate Cauchy-Horizon �CH� forming
CPW solutions. From the five-dimensional vacuum solution through the Kaluza-
Klein reduction the corresponding Einstein-Maxwell-dilaton solution is obtained.
This CH forming cross polarized solution with the dilaton turns out to be a rather
complicated nontype D metric. Since we restrict ourselves to the five-dimensional
BHs we obtain exact solutions for colliding 2- and 3-form fields in
�p+4�-dimensions for p�1. By dualizing these forms we can obtain also colliding
�p+1�- and �p+2�-forms which are important processes in the low energy limit of
the string theory. All solutions obtained are CH forming, implying that an analytic
extension beyond is possible. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2157051�

. INTRODUCTION

Black holes �BHs� are known to have region isometric to the space of colliding plane waves
CPW�.1,2 This may be either in between the two horizons �i.e., inner and outer� or given the case
ith single horizon the inner region of the event horizon. Such an isometry renders it possible to
enerate CPW solutions from known solutions of BHs. In a recent paper3 we gave a prescription
or generating CPW solutions from an Einstein-Maxwell-Dilaton-Axion �EMDA� theory. In this
heory the dilaton was linear and the BH was not asymptotically flat. In this solution the axion
rises as the cross polarizing agent for the CPWs. This means that the limit of linear polarization
emoves the axion leaving behind only the Einstein-Maxwell-Dilaton �EMD� theory. Another
olution with similar features but valid only in the zero dilaton limit was obtained previously.4

nteresting physical property shared by both of these solutions is that the space-time subsequent to
he collision of waves emerges free of physical singularities. Horizon forming CPW1,2,5–7 solutions
n the EMDA theory are naturally of utmost important to the string theory. Since the idea of higher
imensions has already gained enough momentum it is important to investigate the collision of
aves in higher dimensions.8,9 It is known already that the four-dimensional EMDA theory is

quivalent to the six-dimensional Ricci flat, vacuum solution.10,11

In this paper we restrict ourselves to the five- �and four-� dimensional space-times and their
xtension through the brane world. We consider first the five-dimensional collision of gravitational
impulse and shock� waves obtained from the isometry with the Myer-Perry black hole
MPBH�.12,13 This particular BH contains two rotation parameters in addition to the mass. For
implicity we make the special choice in which the two angular momenta are equal. Then we
dentify the �r ,�� sector of the BH at hand with the null coordinates sector �u ,v� of the colliding

�Electronic mail: elif.halilsoy@emu.edu.tr
�Electronic mail: mustafa.halilsoy@emu.edu.tr
�
Electronic mail: ozlem.unver@emu.ed

47, 012502-1022-2488/2006/47�1�/012502/20/$23.00 © 2006 American Institute of Physics
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aves and accompany this with the necessary coordinate transformation. Inclusion of the Heavi-
ide step functions along with the null coordinates must guarantee that no additional current sheets
re created at the boundaries. In the standard Einstein and Einstein-Maxwell �EM� theories these
re summarized in the O’Brian-Synge14 boundary conditions, respectively. Similar arguments
ightly follow in the higher dimensional space-times as well.

The static MPBH is transferred to the linearly polarized CPWs, which turns out to be a
onsingular type-D solution. The rotating MPBH transforms through the Kaluza-Klein �KK� re-
uction procedure to the CPW space-time with cross polarization in the four-dimensional EMD
heory. This space-time is also regular but it does not belong to the type-D class. As a matter of
act the dilaton involved cross polarization �instead of axion, as it arises in the above-mentioned
olutions� makes the space-time structure rather involved.

As a second example we consider the Reissner-Nordstrom �RN� BH15 in five dimensions from
hich we obtain CPW solution in the five-dimensional EM theory. Similar to the CPW solution
btained from the MPBH this one also is singularity free. Our examples of five-dimensional BHs
xclude the extremal limits because in such a limit which removes the isometric region of BHs
ith CPWs the equivalence fails to work. Under such circumstances an alternative transformation,

nalogous to the RN-Bertotti-Robinson equivalence, must be pursed which is out of our scope in
his paper.

As a third example we consider the black-branes in the �d+p�-dimensional brane world. We
nd regular CPW solutions to colliding 3-form fields in higher dimensions. Another solution that
e obtain from the same black-brane metric is colliding �EM� �2-form� fields in higher dimen-

ions.
Our study may lay the foundation for promoting the string theory in approximation in low

nergies from single plane wave background to the more realistic CPW background. The regular
nitial data of CPWs provides a natural choice among the nonunique Penrose limits of
pace-times.16–18 It is known that the incoming region of a CPW space-time admits automatically
Penrose limit of the interaction region. The advantage is that we have the double Penrose limits
hich are both well-defined initial data. Any Penrose limit does not qualify as an initial data

oward construction of the interaction region.
Finally we wish to express the view that our technique can be extrapolated to higher dimen-

ions provided some associated difficulties are overcome. The most important problem is the
nalytic integration of the radial coordinate �r� of BHs in terms of the prolate-type coordinate ���
f CPWs. And as the second major difficulty we cite of the necessary proper representation of the
igher dimensional spherical line element suitable for the ideals of the geometry of CPWs.

The organization of the paper is as follows. In Sec. II we obtain CPW solutions from the
ve-dimensional BHs, whose details are tabulated in Appendixes A, B, and C. Section III inves-

igates the physical properties of the metrics obtained in Sec. II. Section IV contains solutions for
olliding 3-form fields in higher dimensions and their KK reductions. Section V focuses attention
n a class of by-product solutions of colliding EM shock waves in higher dimensions. We dualize
ur 2-form fields of Sec. V in Sec. VI to obtain colliding �p+2�-form fields in �p+4�-dimensions.
ur conclusion and discussion is in Sec. VII.

I. CPW SOLUTIONS FROM FIVE-DIMENSIONAL BHs

In this section we concentrate on the two well-known types of BHs in five-dimensions. First
e consider the MPBH and then RNBH. Our analysis applies, however, to any five-dimensional
Hs that possesses two nonoverlapping horizons albeit the technical difficulties. We comment on

his point at the end of the section in concentration with the Schwarzschild-de�-anti� Sitter BH.
�A� The MPBH in five dimensions with two equal angular momenta is given

ds2 = g̃AB dxA dxB �A,B, . . . = 0, . . . 4� ,
5
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ds5
2 = dt2 −

�

�2�dt +
ā

2
�d� − cos � d���2

−
�4 d�2

�4 − ��2 + �ā2 − �2 d�3
2, �1�

here � and ā are, respectively, proportional to the mass and angular momentum of the BH. We
ote that five-dimensional suffices are denoted by capital italic letters while four dimensional ones
y greek letters. A tilde over specifies also the five-dimensional geometrical object. For the three-
imensional metric of S3 we choose the representation

d��3�
2 = 1

4 �d�2 + d�2 + d�2 − 2 cos � d� d�� , �2�

here 0	�	
, and the angles � and � are defined modulo 2
. The static MPBH corresponds to
=0, while the extreme case is defined by �=4ā2. The CPW form in five dimensions is obtained
y imposing the identification of the �� ,�� sector in the above metric with the �� ,�� sector of
PW as follows:3

� 4�2 d�2

��2 − �4 − �ā2 − d�2� = � d�2

1 − �2 −
d�2

1 − �2� . �3�

In the sequel, for simplicity we choose �=1 leading us to the solution

2�2 = 1 + 	1 − 4ā2� ,

�4�
cos � = �

mplying further that we impose 
ā 
 	
1
2 . Supplementing this transformation with the identifica-

ions

t → x ,

� → y ,

�5�
� → z ,

ao
2 = 2ā2

ollowed by an appropriate rescaling of coordinates we obtain the five-dimensional vacuum metric
pt for CPWs:

ds5
2 = F�d�2

�
−

d�2


� −

1

F
�Zo�dy − 2� dz�dy + Z dz2 + 4ao�dy − � dz�dx − �1 − k��dx2� . �6�

Our abbreviations in this metric stand as follows:

� = 1 − �2,

 = 1 − �2,

F = 1 + k� ,

Z = F2 + 2ao
2�2,

Zo = F2 + 2a2,
o
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k = 	1 − 2ao
2,

0 	 k � 1, �7�

here the coordinates �� ,�� are related to the null coordinates �u ,v� through

� = sin�au + bv� ,

� = sin�au − bv� , �8�

�a,b:constants� .

Now, the crucial point toward the interpretation of this metric as a CPW metric is by making
he substitutions

u → u��u� ,

�9�
v → v��v�

n the metric functions, where � stands for the Heaviside unit step function. This process must not
reate currents �sources� on the null boundaries u=0=v. Alternatively this implies that the five-
imensional Ricci terms all vanish globally

R̃AB = 0

�10�
�xA:u,v,x,y,z� .

The Riemann tensor components R̃ABCD, however, involve Dirac delta functions, indicative of
mpulsive gravitational waves in addition to the shock waves required commonly by the step
unctions. In Appendix A we tabulate all components exhaustively from which we can easily
dentify the nonvanishing ones in the incoming regions. By setting v	0�u	0� we restrict our-
elves to the incoming region II �III�, comprising of five-dimensional gravitational plane waves
lone. Obviously, for both u	0 and v	0 we obtain the region I which is a five-dimensional flat
pace-time given by

ds5
2 = 4ab du dv − �1 + ao

2�dy2 − dz2 − 4ao dx dy − dx2. �11�

The Kretschmann scalar in the interaction region �region IV, u�0,v�0� turns out to be

K = R̃ABCDR̃ABCD =
6

�1 + k��6 �4k2�k + ��2 − �1 + k��2� �12�

hich is free of singularities.
We wish now to apply the KK reduction procedure to our five-dimensional metric �6� in order

o obtain CPWs of the EMD theory in four dimensions. We follow the KK reduction procedure
hrough the identification

g̃AB = �−1/3�g�� + 4�A�A� 2�A�

2�A� − �
� . �13�

This makes it possible to read both the four-dimensional metric g��, as well as the dilaton �,
nd the EM potential A�. The results are as follows:

ds4
2 = �FZ�

1
2�d�2

−
d�2

−
1�L

dx2 + Zo dy2 − 4ao dx dy�� ,

�  Z F
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� = �Z

F
� 3

2
,

A� =
�

Z
�0,0,ao,

1

2
Zo� , �14�

here the notations are as in �7�, and in addition we have labelled L=2F−Z. The action of the
esulting four-dimensional EMD theory is

S =
1

16

� 
g


1
2 dx4�− R − �F��F

�� +
����2

6�2 � �15�

o that the dilaton and Maxwell equations take the respective forms

��ln �� = − 3�F��F
��, �16�

����F�
�� = 0, �17�

n which � stands for the covariant Laplacian. To complete the set of Einstein equations we need
lso the Ricci tensor which is given by

R�� =
1

6

�,��,�

�2 − 2��F��F�
� −

1

4
g��F��F��� . �18�

We note that this representation of dilaton is different from the standard one expressed as an
xponential function in the action. This more familiar latter form is related to the present one by
he substitution

� = e−2a� �19�

hich casts the action into

S =
1

16

� 
g


1
2 dx4�− R + 2����2 − e−2a�F��F

��� , �20�

here the dilatonic parameter is 	3. The physical properties of the EMD space-time obtained
itherto will be studied in the next section.

�B� The five-dimensional RNBH is given by

ds5
2 = �1 −

m

r2 +
q2

r4 �dt2 − �1 −
m

r2 +
q2

r4 �−1

dr2 − r2 d��3�
2 , �21�

here m and q are, respectively, related to the mass and charge of the BH. The EM vector
otential one-form is given by

A = A� dx� =
	3q

2r2 dt . �22�

Here also, similar to the MP case we choose the S3 line element as in �2�. The transition to the
PW metric is accomplished here by the identification

4 dr2

m − r2 −
q2

r2

− d�2 =
d�2

1 − �2 −
d�2

1 − �2 . �23�
A possible integral for r��� is readily available as
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r2 =
m

2
�1 + l�� , �24�

here

l =	1 −
4q2

m2 � 0.

y choosing m=1 in addition to the identifications

� = cos � = sin�au − bv� ,

t → x,� → y,� → z ,

� = sin�au + bv� ,

�a,b = constants� �25�

e obtain the metric �after rescaling of coordinates�

ds5
2 = �1 + l���4ab du dv − dy2 − dz2 − 2 sin�au − bv�dy dz� −

�

�1 + l��2dx2. �26�

The EM vector potential one-form takes the form under the above transformation

A =
	3q

2	2l�1 + l��
dx . �27�

The interpretation of this metric as a CPW is completed by inserting the step functions into the
ull coordinates u and v. This metric represents collision of EM plane waves in five dimensions.
or l=1 �or q=0� it reduces to the CPW metric of the five-dimensional pure gravity and coincides
ith the ao=0 case of the metric �6�. Thus, �26� is the EM extension while �6� was the rotational

xtension of the same CPW metric obtained from the five-dimensional Schwarzschild metric. The
iemann components of the metric �26� are given in Appendix B from which we compute the
retschmann scalar to find �for u�0 and v�0�.

K =
127l4 + 180l3� − 2l2 − 72�l2 + 19 − 36l�

4�1 + l��4 �28�

hich is also regular to the future of the collision point u=0=v.
Finally we wish to comment on other BHs and corresponding CPW solutions in five dimen-

ions. Although our method applies to any such BH that admits inner and outer horizons such that
he region in between possesses two spacelike Killing vectors technically some cases are not
ractable. As an example we cite the Schwarzschild-de�-anti� Sitter BH given by the line element

ds5
2 = h�r�dt2 − h�r�−1 dr2 − r2 d��3�

2 , �29�

here h�r�=k− �m /r2�± �r2 / l2�, in which k= ±1, m is related to mass and l to the cosmological

onstant. To obtain the associated CPW solution we demand now that
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� d�

	�	m − k� ±
�2

l2

= ± sin−1 � , �30�

here we have used �=r2. The inversion of such an elliptical integral seems to be beyond
nalytical calculation which must therefore be handled within the scope of numerical analysis.

II. PROPERTIES OF THE COLLIDING EMD SPACE-TIME

The linearly polarized CPW metric �14� is rather transparent so we restrict ourselves to the
ase ao=0, first. Upon rescaling of x and y we have the metric

ds2 = �1 + ��
3
2�2 du dv −

1 − �

�1 + ��2dx2 −  dy2� �31�

n which � and � are implied with the step functions. By the choice of Newman-Penrose �NP�
ull-tetrad basis one-forms,

l = �1 + ��
3
4 du ,

n = �1 + ��
3
4 dv ,

	2m = �1 − ��
1
2 �1 + ��−1/4 dx + i	�1 + ��

3
4 dy , �32�

e obtain all Ricci and Weyl components as tabulated in the Appendix C. It is observed by
tudying the Weyl scalars �o, �2, and �4 that the space-time is regular everywhere for �u

0,v�0�. On the boundaries, however, both �o and �4 suffer from singularities at �u=0,bv

 /2� and �v=0,au=
 /2�, respectively. These are the typical null singularities inherited from the
roblem of colliding EM shock waves, therefore such singularities in the present problem is not
nexpected at all. From the metric �31� we observe that �=1 and �=1 are spurious, removable
oordinate singularities since they do not show up in the Weyl scalars. In particular, �=1 is the
ocation of the horizon in the interaction region beyond which the metric can be extended ana-
ytically. The other coordinate singularity �=1 is out of question since it does not belong to the
nteraction region. The incoming EMD waves prior to the collision can also be easily identified
rom Appendix C. In the region II we have

�2 = −
3

8
a2��u�

�5 + sin�au��

�1 + sin�au��
5
2

,

�33�

�22 =
1

16
a2��u�

�7 + sin�au��

�1 + sin�au��
5
2

,

hile in the region III we must replace au↔bv to obtain �o and �oo. The incoming waves that
omprise Ricci components �22��oo� is obviously constructed from both the EM and the dilaton
arts. Inside the collision region we observe also that the condition

9�2
2 = �0�4 �34�

olds among the Weyl scalars, showing its type-D character. Direct choice of a Kinnersley type
etrad eliminates both �o and �4 components of the Weyl scalars.19 Such a tetrad is given by the

asis one-forms
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l =
	1 + �

1 − �
d� − dx ,

2n = d� +
1 − �

	1 + �
dx ,

	2m = �1 + ��
3
4� d�

	�
− i	 dy� . �35�

This choice gives now the only nonzero component

�2 = −
1

8

�5 + ��

�1 + ��
5
2

�36�

erifying its manifestly type-D character.
Now returning to the general CPW metric �14� with ao�0, we can discuss again the interac-

ion region alone. For this reason we omit all step functions and consider an NP tetrad basis
ne-form

	2l = �FZ�
1
4� d�

	�
+

d�

	
� ,

	2n = �FZ�
1
4� d�

	�
−

d�

	
� ,

	2m =
	L

�FZ�
1
4

�dx + �aoF

L
+ i	FZo

L
�dy� . �37�

The results are rather tedious so we shall refrain from tabulating the Ricci and Weyl compo-
ents. Instead, relying on a numerical computation we have verified that the condition �34� fails to
old in the present case. Thus, we have seen numerically at least that our space-time is not type-
. By the same numerical analysis we conclude that our space-time is not singular. Another

pproach to study this space-time is to search for a possible Kinnersley tetrad that serves to
eneralize �35�. To attain this goal we define the null vector l� out of the geodesics equation.
nfortunately, in contrast to the BH case the choice �=�o=constant which used to simplify the
roblem significantly, remains ineffective. By this analysis we obtain a set of Kinnersley-type
etrad as follows:

l� =
	F

�
�k�S,0,F,− ao ,

2n� =
1

k2F	ZS2
�k�S,0,− F,ao ,

	2m� =
F

1
4

	Z
3
4 S
�0,− S	Z

F
,− iao,i� , �38�

−1/2 2 1

here S=Z �F−ao�2 .
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In the limit ao=0, this tetrad reduces to �35�, as it should. This fact that our space-time is not
ype-D reflects in the computation of the spin coefficients since none turn out to vanish.

In conclusion, we state that colliding cross-polarized EMD space-time obtained from the
ve-dimensional MPBH through the KK reduction procedure turns out to be nonsingular in spite
f all its complication. This reflects the highly transcendental coupling between the dilaton and the
ther fields. Linear polarization limit removes all complication and we obtain a much simpler
pace-time structure.

V. CPW SOLUTIONS FROM BLACK p-BRANES

A class of black p-brane solutions in d-dimensions of the action

S =� d�d+p�x	− g�R −
2

�d − p�!
F�d−2�

2 � �39�

ith

F�d−2� =
1

�d − 2�!
F�1¯��d−2�

dx�1 ∧ ¯ ∧ dx�d−2

s given by the metric.20

ds�d+p�
2 = AdBd

�1−p�/�1+p�dt2 − �AdBd�−1 dr2 − Bd
2/�p+1�dy dy − r2 d��d−2�

2 �40�

n which

Ad = 1 − � r+

r
�d−3

,

Bd = 1 − � r−

r
�d−3

.

We consider here only the nonextremal case r+�r−, where the region r−	r	r+ enables us to
onstruct nonsingular CPW solutions. As examples we shall present solutions for p=1, p=6, and

p→�, however, our procedure applies for any p�1. In particular, the six-dimensional magneti-
ally charged metric �40� becomes

ds6
2 = A5 dt2 − �A5B5�−1 dr2 − B5 dy2 − r2 d��3�

2 ,

F�3� = Q�3, �41�

here �3 is the volume form on the 3-sphere and Q2=2�r+r−�2. By the KK reduction procedure the
ix-dimensional action is reduced to the five-dimensional one

S =� d5x	− g�R − 2����2 −
1

3
e−2c�F�3�

2 � , �42�

here c=	2
3 and the metric, dilaton and 3-form fields are

ds5
2 = B5

1
3 �A5 dt2 − �A5B5�−1 dr2 − B5 dy2 − r2 d��3�

2 � ,

ec� = B
− 1

3 ,
5
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F�3� = 	2�r+r−��3. �43�

he corresponding CPW solutions are obtained by the transformation

r2 = 1
2 �ao + bo�� ,

cos � = � ,

t = 2x ,

� = z ,

� = w , �44�

n which we have adopted the representation for d��3�
2 and introduced the abbreviations

ao = r+
2 + r−

2 ,

�45�
bo = r+

2 − r−
2 .

he resulting CPW metric, dilaton and the 3-form fields are

ds5
2 = �1 + �

k + �
�1/3��k + ���2 du dv − dz2 − dw2 + 2� dz dw −

1 − �

k + �
dx2�� ,

ec� = �1 + �

k + �
�−1/3

,

�46�
F�3�uzw = Qa��u�	 ,

F�3�vzw = − Qb��v�	 ,

here Q= �1/	2��k2−1� and k=ao /bo�1. Our notation for �, �, and  are as in the preceding
ections and in transforming �43� into �46� we used the freedom of rescaling of x and ds2. This
etric has the scalar curvature �for u�0, v�0�

R =
4

3

ab�k − 1�
�1 + ��4/3�k + ��5/3 �47�

hich is regular in the interaction region. The colliding 3-form metric corresponding to �41�
ecomes

ds6
2 = �k + ���2 du dv − dz2 − dw2 + 2� dz dw� −

1

k + �
��1 − ��dx2 + �1 + ��dy2� , �48�

hereas the 3-form field preserves its form. This metric represents the collision of 2-form fields in
at background. The 3-form field is obviously obtained from the 2-form potential by

F�3� = dA�2�, �49�

here

A = 1A dz ∧ dw ,
�2� 2 zw
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Azw = Q sin�au��u� − bv��v�� .

By a similar analysis we obtain the collision of these 3-form fields in 11-dimensional space.
he result is

ds11
2 = �k + ���2 du dv − dz2 − dw2 + 2� dz dw� − �1 + �

k + �
� 2

7 �
i=1

6

�dyi�2 − �1 − �

k + �
��1 + �

k + �
�−5/7

dx2

�50�

hich has the regular scalar curvature,

R = −
5

7

ab�k2 − 1�
�k + ��3 . �51�

he KK reduction of this 11-dimensional metric to the fifth dimension is expressed by

ds2 = �1 + �

k + �
� 4

7��k + ���2 du dv − dz2 − dw2 + 2� dz dw�

− �1 − �

k + �
��1 + �

k + �
� −5

7
dx2 � ,

�52�

ec� = �1 + �

k + �
�−4/7

,

nd F�3� components are as in �49�.

. COLLIDING EM WAVE SOLUTION IN ANY HIGHER DIMENSION

The action for the �4+p�-branes is given by

S =� d�4+p�x	− g�R − F�2�
2 � , �53�

n which F�2� stands for the EM 2-form.
Solution is given by20

ds4+p
2 = AB�1−p�/�1+p� dt2 − B2/�p+1�dy dy − �AB�−1 dr2 − r2 d��2�

2 , �54�

here

A = 1 −
r+

r
,

B = 1 −
r−

r
,

nd

F = Q�2.

ow, the transformation �with r+=ao+bo and r−=ao−bo�

r = ao + bo� ,
cos � = � ,
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� = z ,

t = x , �55�

ields the CPW metric,

ds4+p
2 = �k + ��2�2 du dv −  dz2� − �1 + �

k + �
�2/�p+1�

�
i=1

p

�dyi�2 − �1 − �

k + �
��1 + �

k + �
��1−p�/�1+p�

dx2

�56�

n which we have introduced k=ao /bo�1, and rescaled the coordinates. The EM potential 1-form
s given by

A = − Q sin�au��u� − bv��v��dz .

So that the nonzero field 2-form components are

Fuz = − Qa��u�	 ,

�57�
Fvz = Qb��v�	 .

It is observed now, that it is a simple matter to obtain the CPW metrics for an arbitrary p
1. In particular, for p=1 and p=7 we have

ds5
2 = �k + ��2�2 du dv −  dz2� −

1

k + �
��1 + ��dy2 + �1 − ��dx2� �58�

nd

ds11
2 = �k + ��2�2 du dv −  dz2� − �1 + �

k + �
� 1

4 �
i=1

7

�dyi�2 − �1 − �

k + �
��1 + �

k + �
�−3/4

dx2, �59�

espectively. By letting p→�, we can easily obtain also the colliding EM wave solutions in the
-brane world. The KK reduction to the fourth dimension for an arbitrary p-brane is

ds4
2 = �1 + �

k + �
�p/�p+1���k + ��2�2 du dv −  dz2� − �1 − �

k + �
��1 + �

k + �
��1−p�/�1+p�

dx2� �60�

ith

ec� = �1 + �

k + �
�−p/�2�p+1��

,

c =	 p

p + 2
,

	
Fuz = − Qa��u�  ,
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Fvz = Qb��v�	 ,

Q2 =
1

2
�k2 − 1�� p + 2

p + 1
� .

his metric describes the collision of dilaton coupled EM waves in four dimensions.

I. COLLIDING „p+2…-FORMS IN „p+4…-DIMENSION

In Sec. V we have constructed CPW solutions for the 2-form fields in �p+4�-dimension. By
pplying the duality principle we can obtain �p+2�-form fields and consider their collision at equal
ase. We define the duality

F̃�1¯�k =

g
−1/2

�n − k�!
��1¯�k�k+1¯�nF�k+1¯�n

, �61�

here �n�k� and F�k+1¯�n
is assumed known.

The permutation symbol ��1¯�n satisfies21

��1¯�n
��1¯�n = �− 1�ln ! , �62�

here l�number of minus signs in g��. Since we have readily available 2-form at hand we define
ts dual

F̃�1¯�p+2 =
1

2!

gp+4
−1/2��1¯�p+4F�p+3�p+4

�63�

n �p+4�-dimension. The action of �gravity +F̃p+2� is taken as

S =� d4+px	g�R −
2

�p + 2�!
F̃p+2

2 � �64�

ith the field equations

R�� =
2

�p + 2�!�F̃��1¯�p+1
F̃�

�p¯�p+1 −
�p + 1�
�p + 2�2g��F̃

2�
�65�

���
gp+4
1/2F̃��1¯�p+1� = 0,

here F̃2= F̃�1¯�p+2
F̃�p¯�p+2.

We proceed with two particular examples, p=1 and p=6.

�i� p=1 case. The 3-form field F̃3 is from the metric �58� and Fuz=−Qa��u�	, Fvz

=−Qb��v�	. It is given by

F̃3 =
Q	�

�k + ��2 �a��u�du + b��v�dv� ∧ dx ∧ dy �66�

hich can be associated through F̃3=dÃ2 to the 2-form potential

Ã2 = −
Q

�k + ��
dx ∧ dy . �67�

The incoming region �II� metric and 3-form fields can also be expressed in the Brinkmann
orm since they are given here in the Rosen form. For this we define new coordinates

U ,V ,X ,Y ,Z� as follows:
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U =� �k + sin au�2 du ,

X = A�u�x, Y = B�u�y, Z = C�u�z ,

V = v +
x2

2
AAu +

y2

2
BBu +

z2

2
CCu,

here

A2�u� =
1 − sin au�

k + sin au�
,

B2�u� =
1 + sin au�

k + sin au�
,

C = �k + sin au��cos au� . �68�

The relation between U and u can be chosen as

U =
3

2
u +

2

a
�1 − cos au� −

1

4a
sin 2au , �69�

o that u=0 and U=0 coincide. Further, the graph of U�u� reveals that in the interval 0	au

 /2, u�0 implies that U�0. However, as it is observed we cannot invert u in terms of U, and

his enforces us to keep the Brinkman form in an implicit form. We have ultimately

ds2 = 2 dU dV − dX2 − dY2 − dZ2 − 2H�u�U�,X,Y,Z�dU2,

here

H�u�U�,X,Y,Z� =
a

2
�U��Y2 − X2 +

1

k
�2Z2 − X2 − Y2�� +

a2��U�
4�k + sin au�2 ��k + 1��3 − k + 2 sin au�X2

− �k − 1��3 + k − 2 sin au�Y2 − �k + sin au��k + 4 sin au�Z2� . �70�

We recall that a general class of metrics given by

ds2 = 2 dU dV − ��
i,j

Aij�U�XiXj�du2 − �
i

�dXi�2,

here Aij=constant, is known as Cahen-Wallach space.22

It is clear that we have �2H�0 in our case, indicating the presence of energy momentum for
he 3-form field as it should. The 3-form field, in the Brinkman form for region II is

F̃3 =
aQ��U�

�k + sin au�3dU ∧ dX ∧ dY , �71�

here the inversion of the expression �69� is implied.

�ii� p=6 case. The 8-form field F̃8 is found from the metric �56�,

F̃8 = F̃uxy1
¯y6 du ∧ dx ∧ dy1 ∧ ¯ ∧ dy6 + F̃vxy1

¯y6 dv ∧ dx ∧ dy1 ∧ ¯ ∧ dy6, �72�
here
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F̃uxy1
¯y6

=
Qb��v�	


g10
1/2 ,

F̃vxy1
¯y6

=
Qa��u�	


g10
1/2

nd we have chosen �uvzxy1
¯y6

= +1. The corresponding 7-form potential is

Ã7 =
− Q

k + �
dx ∧ dy1 ∧ ¯ ∧ dy6 �73�

hich derives F̃8 through F̃8=dÃ7.
It is seen that the collision problem of these 8-form fields is automatically solved with well-

efined incoming states. The solutions, as we stated earlier are regular but our procedure does not
llow at the moment to obtain the collision problem of arbitrary n-form fields. Our procedure
imits itself only with the 2�3�-form fields and their duals. Different authors addressed themselves
o the more general problem but they obtained only perturbative and singular solutions.23,24

II. CONCLUSIONS

In this paper we have concentrated first on two five-dimensional BHs, namely Myers-Perry
MP� and Reissner-Nordstrom �RN�. These are both extensions of the five-dimensional Schwarzs-
hild BH, MP with rotation while RN with electric charge. The inherent isometry between the BHs
nd colliding plane waves �CPWs� yields regular, horizon forming solutions to the latter. By
egular, throughout the paper we imply a Cauchy-Horizon �CH� forming space-time with finite
urvature invariants. We have not attempted to extend our space-time beyond CH. Once this is
one by Chandrasekhar and Xanthopoulos,1 we may face various singularities ranging from time-
ike to spacelike ones or no singularities at all. Another issue that we have not addressed ourselves
n the paper is the stability of the CH formed in the collision. There are strong arguments that
nder certain perturbations the CHs of the CPWs transform into curvature singularities.25 Defi-
itely this matter is far from being conclusive and requires further investigation. We note also that
eside the BHs the more general Weyl solutions can be employed in the generating of CPWs.26

Our particular cross-polarized dilatonic non-type-D metric with CH provides an example to be
aken into account other than the singular ones used in string theory.27,28 Our procedure is extend-
ble to higher dimensional BHs provided technical matters are overcome. One such problem is to
nd representation for the n-dimensional spherical line element which admits �n−1�-dimensional
belian subspace. Equation �2� performs just this for the three-dimensional sphere. Although we
btain colliding 2�3�-form fields by our procedure through, employing five-dimensional BHs, we
an dualize our forms and obtain colliding �p+1�- and �p+2�-form fields in �p+4�-dimensions.
xtension of our work to arbitrary form fields will be the next stage of our study. Presumably all

hese metrics will find application in higher dimensional space-times and low energy limit of the
tring theory.

PPENDIX A

The nonzero components of the metric �6� are given below

R̃uvuv = − 2a2b2k2��u���v� ,

R̃uvyz = − 2abka2��u���v� ,
o
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R̃uvzx = 2abkao��u���v� ,

R̃uyvy = abk2ao
2��u���v� ,

R̃uyvx = abk2ao
2��u���v� = R̃uxvy ,

R̃uzvy = abkao
2��u���v� = − R̃uyvz,

R̃uzvz = − abao
2��u���v� ,

R̃uzvx = abkao��u���v� = − R̃uxvz,

R̃uxvx = abk2��u���v� ,

R̃yzyz = − � 1
2 + 2ao

4���u���v� ,

R̃yzzx = 2ao
3��u���v� ,

R̃yxyx = 1
2k2��u���v� ,

R̃zxzx = �k2 − 1
2���u���v� ,

R̃uyuy = − a2��u�Y1 + a�u�cos�bv��v��Y2,

R̃vyvy = − b2��v�Y1 + b�v�cos�au��u��Y2,

R̃uxux = − 2a2��u�Y3 −
2ak

D2 �u�cos�bv��v�� ,

R̃vxvx = − 2b2��v�Y3 −
2bk

D2 �v�cos�au��u�� ,

R̃uyux = − a2ao��u�Y4 −
2aaok

D2 �u�cos�bv��v�� ,

R̃vyvx = − b2ao��v�Y4 −
2baok

D2 �v�cos�au��u�� ,

R̃uzuz = a2��u�Y5 + a�u�cos�bv��v��Y6,

˜ 2
Rvzvz = b ��v�Y5 + b�v�cos�au��u��Y6,
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R̃uzux = − a2ao��u�Y7 − 2aao
�1 + 2k��

D2 �u�cos�bv��v�� ,

R̃vzvx = b2ao��v�Y7 + 2bao
�1 + 2k��

D2 �v�cos�au��u�� ,

R̃uyuz = − a2��u�Y8 − a�u�cos�bv��v��Y9,

R̃vyvz = b2��v�Y8 + b�v�cos�au��u��Y9,

here we have used the following abbreviations:

D = 1 + k� ,

Y1 =
1

D3 �4�1 + k� − ao
2� − k2��3�1 + ao

2� + k��� ,

Y2 =
k2

D3 ���k2 + 2� + k�1 + 3�2 + k�3�� ,

Y3 =
ao

2 − k2�

D3 ,

Y4 =
1

D3 �2�1 + k�� − 3k2�� ,

Y5 =
1

D3 �− 4�1 + k� − ao
2� + ��ao

2�11 + 12k2�2� + k��7 − 6k2� − 3�1 − 2k2�� ,

Y6 =
1

D3 �k + ��3 − 10ao
2� + k�2�3 − 16ao

2� + k2�3�1 − 8ao
2�� ,

Y7 =
1

D3 �2�k + �� − k��5 + 6k��� ,

Y8 =
1

D3 �4�k + ��1 − ao
2�� + k��k2� − 5 − ao

2 − 3k��1 + 2ao
2��� ,

Y9 =
1

D3 ��2 − k2��1 + 3k�� + k2�2�5 + k� − 2k2�� .

PPENDIX B

The nonzero Riemann components of the metric �26� are with the step functions inserted as

ollows:
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R̃uvuv =
− 2la2b2

C
�l + ����u���v� ,

R̃uxux = −
a2��u�

C4 �3l2 + 2l� − 1� −
2a

C3�u�cos�bv��v���l + �� ,

R̃uxvx =
ab

C4��u���v��2l2 + l� − 1� ,

R̃uyuy = −
a2��u�

4C
�3l2 + 4l� + 1� + a�u�l cos�bv��v�� ,

R̃uyuz = −
a2��u��

4C
�3l2 + 4l� + 1� + a�u�cos�bv��v�� ,

R̃uyvy =
ab

4C
�1 − l2���u���v� ,

R̃uyvz =
ab�

4C
�1 − l2���u���v� ,

R̃uzuz = −
a2��u�

4C
�3l2 + 4l� + 1� + a�u�l cos�bv��v�� ,

R̃uzvz =
ab

4C
�1 − l2���u���v� ,

R̃vxvx = −
b2��v�

C4 �3l2 + 2l� − 1� −
2b

C3�v� cos�au��u���1 + �� ,

R̃vyvy = −
b2��v�

4C
�3l2 + 4l� + 1� + b�v�l cos�au��u�� ,

R̃vyvz = −
b2��v��

4C
�3l2 + 4l� + 1� − b�v�cos�au��u�� ,

R̃vzvz = −
b2��v�

4C
�3l2 + 4l� + 1� + b�v�lcos�au��u�� ,

R̃xyxy =
l�

2C4��u���v��l + �� ,

R̃xyxz =
l��

4 ��u���v��l + �� ,

2C

                                                                                                            



w

A

1

1

1

1

1

1

1

1

012502-19 CPW solutions from 5D BHs and black p-branes J. Math. Phys. 47, 012502 �2006�

                        
R̃xzxz =
l�

2C4��u���v��l + �� ,

R̃yzyz =
− ��u���v�

4C
�1 + 2l� + l2� ,

here we have used C=1+ l�.

PPENDIX C

The nonzero NP quantities for the metric �31� are

�2 =
1

8
ab��u���v�

�5 + ��

�1 + ��
5
2

,

�4 = −
3

8
a2��u�

�5 + ��

�1 + ��
5
2

+
a

4

�u�
cos bv���v��

�3 + ��
�1 + ��3/2 ,

�0 = −
3

8
b2��v�

�5 + ��

�1 + ��
5
2

+
b

4

�v�
cos au���u��

�3 + ��
�1 + ��3/2 ,

�22 =
1

16
a2��u�

�7 + ��

�1 + ��
5
2

,

�00 =
1

16
b2��v�

�7 + ��

�1 + ��
5
2

,

�02 = −
1

4

ab��u���v�

�1 + ��
3
2

,

�11 =
3

32
ab��u���v�

�1 − ��

�1 + ��
5
2

= − 3� .
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Explicit solutions of the classical Calogero �rational with/without harmonic confin-
ing potential� and Sutherland �trigonometric potential� systems is obtained by
diagonalization of certain matrices of simple time evolution. The method works for
Calogero & Sutherland systems based on any root system. It generalizes the well-
known results by Olshanetsky and Perelomov for the A type root systems. Explicit
solutions of the �rational and trigonometric� higher Hamiltonian flows of the inte-
grable hierarchy can be readily obtained in a similar way for those based on the
classical root systems. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2162334�

. INTRODUCTION

The classical and quantum integrability/solvability of Calogero-Moser systems1–5 manifests
tself in many guises; the existence of Lax pairs and/or Dunkl operators, algebraic linearization,
uadratic algebras, associated integrable spin chains, “quantized” classical spectra, etc. Among
hem, a most intuitive understanding of solvability/integrability is provided by the fact that explicit
olutions of the classical equations of motion are obtained by diagonalization of certain matrices
aving trivial time evolution, as shown by Olshanetsky and Perelomov6 for the rational and
rigonometric potential cases.7 Their results are for the systems based on the A-type roots. Here we
ill show that the same results hold universally for systems based on any root system. To be more
recise, for the rational potential �without/with harmonic confining potential� cases, the diagonal-
zation method works for any root system, including the noncrystallographic ones. For the trigo-
ometric and hyperbolic potential cases, we show that the explicit diagonalization method holds
or any crystallographic root system based on the universal Lax pair.8 A simpler form of explicit
iagonalization is provided by the minimal Lax pair,9,8 which exists only for those based on the A,
, E6, and E7 root systems. The basic idea of the explicit solution method is very closely related

o the notion of algebraic linearization, proved universally for any root system by
aseiro–Françoise–Sasaki.10 We will follow the notation of Ref. 10 throughout this paper and Eq.

a.b� of this paper will be cited as �Ia.b�. Explicit solutions in terms of diagonalization is readily
btained for the higher �rational and trigonometric� Hamiltonian flows belonging to the integrable
ierarchy. This works, however, only for those based on the classical root systems, A, B, C, and D.
he conventional Lax pair in terms of the set of vector weights �A, C, and D� or the set of short

oots �B� is indispensable.
This paper is organized as follows. In Sec. II, the historical background and the logical

tructure of the Calogero–Moser systems necessary for the present paper are briefly reviewed. The
amiltonian and the universal Lax pair with rational potential are introduced. The explicit inte-
ration in terms of diagonalization is achieved by relating the Lax pair matrices L and M to a

atrix W of the same size with trivial time evolution, Ẅ=0. Section III is devoted to the explicit

olution of the systems with rational plus the harmonic confining potential. In Sec. IV, we show

47, 012701-1022-2488/2006/47�1�/012701/13/$23.00 © 2006 American Institute of Physics
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he explicit solutions of the Sutherland systems, which have trigonometric/hyperbolic potentials.
n Sec. IV A a simple form of explicit diagonalization is obtained by reinterpreting the formulas of
he algebraic linearization method developed by Caseiro–Françoise–Sasaki.10 This is based on the
inimal Lax pair, which exists for those based on A, D, E6, and E7 root systems. A general

reatment of explicit integration of the Sutherland systems in terms of the universal Lax pair is
rovided in Sec. IV B. This applies to any crystallographic root system. Sections V and VI are
evoted to the problem of explicit integration of the higher Hamiltonian flows of the integrable
ierarchy. The rational potential case is discussed in Sec. V and the trigonometric case in Sec. VI.
he final section is for a summary and comments.

I. RATIONAL POTENTIAL

The integrability of the Calogero–Moser systems has a long history. First, various types of the
ntegrable potentials are recognized; starting from the Calogero model1 with rational �1/q2� plus a
armonic confining �q2� potential followed by the Sutherland model2 with a trigonometric
1 /sin2 q� potential. Then the pure rational potential �1/q2�3 and the hyperbolic �1/sinh2 q�4 and
he elliptic ���q�� potentials5 are added to the list of the integrable potentials. As seen in many
ther subjects in mathematical physics, the quantum groups, the integrable spin chains, Yang–
axter equations, etc., the elliptic case is the generic one, giving all the rest in various degenera-

ions. However, each degenerate case, the rational, trigonometric, and the hyperbolic, has its own
pecial properties and merits not shared by the more generic ones; for example, the algebraic
inearization10 of the degenerate Calogero–Moser systems and the quadratic algebras11 for the
uantum systems with the superintegrable rational �1/q2� potential. In the present article we deal
ith one of such properties of the degenerate Calogero–Moser systems and it is in fact very

losely related to the algebraic linearization.10 Second, the nature of the multiparticle interactions
f the Calogero–Moser systems is recognized to be governed by the root systems associated with
nite reflection �Coxeter/Weyl� groups.12,13 The original models1–5are all based on the A-type root
ystem related to the symmetric group SN, with N being the number of the particles. The SN is also
he Weyl group of the special unitary group SU�N�. The integrability �the Lax pair� of the systems
ased on the classical root systems �A, B, C, and D� is noticed immediately by Olshanetsky and
erelomov,12,13 but the actual demonstration of the integrability of the Calogero–Moser systems
ased on the exceptional9,14 and noncrystallographic root systems8 took more years. The classical
niversal Lax pair applicable for all types of potentials and for any root system8 and the quantum
niversal Lax pair applicable for all degenerate potentials and for any root system15 have been
nown for some years.

Let us denote by � a root system of rank r. It is a finite set of Rr vectors that is invariant under
eflections in the hyperplane perpendicular to each vector in �. A reflection s� in terms of a root

is defined by

s��x� = x − ���∨ · x�, x � Rr, �2.1�

n which �∨=2� /�2. Thus � is characterized by

s���� � �, ∀ �,� � � . �2.2�

The dynamical variables are the coordinates qi�R, i=1, . . . ,r and their canonically conjugate
omenta pi�R, i=1, . . . ,r, except for the Ar case in the ordinary embedding, in which the

umber of particles is r+1. The Hamiltonian for the classical Calogero–Moser system with the
ational potential but without the harmonic confining potential is

H =
1

2
p2 +

1

2 �
���

g���
2 ���2

�� · q�2 , �2.3�

+
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n which the real and positive coupling constants g��� are defined on orbits of the corresponding
oxeter group. That is, for the simple Lie algebra cases g���=g for all roots in simply laced models
nd g���=gL for long roots and g���=gS for short roots in nonsimply laced models. In order to define
ax pair matrices L and M, let us choose a set of Rr vectors R= �� ,� , . . . , �, #R=D, permuting
nder the action of the reflection group:

s���� � R, ∀ � � R, ∀ � � � . �2.4�

e demand that it consists of a single orbit of the Coxeter group, for irreducibility. Then we define
�D matrices indexed by the elements of R:

p · Ĥ: �p · Ĥ��� = �p · �����, �2.5�

ŝ�: �ŝ���� = ��,s����. �2.6�

Introduce next the D�D matrices X, L, and M:9,8

X = i �
���+

g����� · Ĥ�
1

�� · q�
ŝ�, �2.7�

L = p · Ĥ + X , �2.8�

M = −
i

2 �
���+

g���
���2

�� · q�2 ŝ�, �2.9�

nd a diagonal matrix:

Q = q · Ĥ: �Q��� = �q · �����. �2.10�

ere L and Q are Hermitian L†=L, Q†=Q, and M is anti-Hermitian M†=−M.
As shown in Ref. 10, Eqs. �I2.7a�, �I2.7b� the time evolution of the matrix L along the flow of

he Hamiltonian �2.3� displays the following equations:

�L

�t
= �L,M� , �2.11�

�Q

�t
= �Q,M� + L . �2.12�

Next let us define another D�D unitary matrix U�t� by the linear equation and the initial
ondition:

�U

�t
= UM, U�0� = 1D, �2.13�

n which 1D is the D�D unit matrix. The final step is the introduction of W�t�:

W�t� 	 U�t�Q�t�U−1�t� , �2.14�
hich has a simple time evolution
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Ẇ = U�Q̇ − �Q,M��U−1 = ULU−1, �2.15�

Ẅ = U�L̇ − �L,M��U−1 = 0. �2.16�

he solution is

W�t� = W�0� + t Ẇ�0� , �2.17�

ith the initial values

W�0� = Q�0�, Ẇ�0� = L�0� , �2.18�

which are determined by the initial values of the canonical variables qj�0�, pj�0�, j=1, . . . ,r. Due
o the defining relation of W�t� in terms of the diagonal matrix Q�t� �2.14�, the solution �q�t�� of
he canonical equations of motion,

�qj

�t
=

�H
�pj

,
�pj

�t
= −

�H
�qj

, j = 1, . . . ,r , �2.19�

ith the above Hamiltonian �2.3�, is simply obtained by diagonalizing the above matrix solution
2.17�. The conjugate momenta �p�t�� are obtained by differentiation pj�t�=�qj�t� /�t.

As promised, this is the universal proof applicable for any root system including the noncrys-
allographic one. The spectrum of W�t� �2.17� is highly constrained, since its dimension D is
sually much greater than the degree of freedom r. The high symmetry of the spectrum is guar-
nteed by the Coxeter invariance of the theory:

H„s��p�,s��q�… = H�p,q�, ∀ � � � , �2.20�

L„s��p�,s��q�… = ŝ�L�p,q�ŝ�, M„s��q�… = ŝ�M�q�ŝ�. �2.21�

he original proof of the explicit integration of the A type systems by Olshanetsky and
erelomov6 is the very special case in which the spectrum of W�t� �2.17� is not constrained. Our
roof reduces to that of Ref. 6 when �=Ar and the set of vector weights is chosen as R=V,
R=D=r+1.

II. RATIONAL WITH HARMONIC CONFINING POTENTIAL

The Hamiltonian is now

H� =
1

2
p2 +

1

2
�2q2 +

1

2 �
���+

g���
2 ���2

�� · q�2 . �3.1�

ith the same matrices introduced above in the preceding section, the time evolution displays
I3.2a�, �I3.2b�:

L̇ = �L,M� − �2Q , �3.2�

Q̇ = �Q,M� + L . �3.3�

With the same definition of the unitary matrix U�t� as above �2.13�, the matrix

W�t� 	 U�t�Q�t�U−1�t� , �3.4�
volves harmonically in time:
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Ẇ = U�Q̇ − �Q,M��U−1 = ULU−1 �3.5�

Ẅ = U�L̇ − �L,M��U−1 = − �2W . �3.6�

he solution is

W�t� = cos �tW�0� + �−1 sin �tẆ�0� , �3.7�

ith the initial values

W�0� = Q�0�, Ẇ�0� = L�0� . �3.8�

Again the explicit solution �q�t�� is obtained by diagonalizing the above matrix W�t� �3.7� with the
harmonic time dependence.

V. TRIGONOMETRIC POTENTIAL

The Hamiltonian of the trigonometric �Sutherland� model2 is written as:

H =
1

2
p2 +

1

2 �
���+

g���
2 ���2

sin2�� · q�
. �4.1�

n order to get the hyperbolic case, it suffices to change sin into sinh. In the following, we only
emonstrate the explicit integration of the trigonometric case. The hyperbolic case can be deduced
asily by the above replacement.

Two types of Lax pairs are known9,8 for the trigonometric cases: the minimal and the universal
ax pairs. While the latter, the universal lax pair, applies to any crystallographic root system, the

ormer, the minimal Lax pair, requires R to be the set of minimal weights, which exists only for
he A, D, E6, and E7 root systems. Let us start with the minimal Lax pair, which has a simpler
tructure thanks to the restriction to the minimal weights, satisfying the condition

	: minimal weight ⇔ �∨ · 	 = 0, ± 1, ∀ � � � . �4.2�

. Minimal Lax pair

We consider the matrices9,8

L = p · Ĥ + X , �4.3�

X = i �
���+

g����� · Ĥ�
1

sin�� · q�
ŝ�, �4.4�

M = −
i

2 �
���+

g���
���2 cos�� · q�

sin2�� · q�
�ŝ� − 1D� + i �

���+

g���
�� · Ĥ�2

sin2�� · q�
, �4.5�

nd diagonal matrices:

Q = q · Ĥ: �Q��� = �q · �����, �4.6�

R = e2iQ. �4.7�
† † †
gain L and Q are Hermitian L =L, Q =Q and M is anti-Hermitian M =−M. Thus R is unitary.
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As shown in Ref. 10 �I5.3a�, �I5.3b�, when the root system admits a minimal representation,
nd R being the set of minimal weights, the time evolution along the flow of the Hamiltonian
4.1� displays

�L

�t
= �L,M� , �4.8�

�R

�t
= �R,M� + i�RL + LR� . �4.9�

With the same definition of the unitary matrix U�t� as above �2.13�,

�U

�t
= UM, U�0� = 1D, �4.10�

e introduce a matrix

W�t� = U�t�R�t�U�t�−1 = U�t�e2iQ�t�U�t�−1. �4.11�

t satisfies a simple first-order linear differential equation,

�W
�t

= U��R/�t − �R,M��U−1 = iU�RL + LR�U−1 �4.12�

=i�WULU−1 + ULU−1W� , �4.13�

ince as in �2.15�, �2.16�, ULU−1 is a constant matrix:

�

�t
�ULU−1� = U��L/�t − �L,M��U−1 = 0, �4.14�

U�t�L�t�U�t�−1 = L�0� . �4.15�

he solution is

W�t� = eitL�0�e2iQ�0�eitL�0�. �4.16�

y diagonalizing the above matrix solution, we obtain the explicit solution �q�t�� of the classical
utherland model �4.1�. One might naturally wonder if the coordinates �q�t�� could be determined
niquely from the unitary matrix �4.16�. The answer is affirmative since the motion is always
estricted to one of the Weyl alcoves due to the periodicity and singularity of the potential. Near
he boundary of a Weyl alcove, for example, at � ·q=0, ���, the singularity of the potential

1 / �� ·q�2 can never be surpassed classically. Therefore if �q�0�� is in the principal Weyl alcove,

PWT = �q � Rr�� · q
0, � � �, �h · q � � , �4.17�

q�t�� will always remain there. Here � is the set of the simple roots and �h is the highest weight.
his removes any ambiguity in determining �q�t�� from the eigenvalues of �4.16�. As in the

ational potential cases, the spectrum of W�t� is highly constrained as a consequence of the Weyl
nvariance �2.20�, �2.21�.

. Universal Lax pair

The universal Lax pair has cot�� ·q� function in L instead of 1 /sin�� ·q� in �4.4�,

ˆ
L = p · H + X , �4.18�
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X = i �
���+

g����� · Ĥ�cot�� · q�ŝ�, �4.19�

M = −
i

2 �
���+

g���
���2

sin2�� · q�
�ŝ� − 1D� , �4.20�

hich satisfy �L /�t= �L ,M� for the Hamiltonian flow, but the additional equation �4.9� takes a
ifferent form.

For R being the set of minimal weights, it reads as

�R

�t
= �R,M� + i„R�L + K� + �L − K�R… , �4.21�

n which K is a non-negative constant matrix commuting with M:

K 	 �
���+

g����� · Ĥ���∨ · Ĥ�ŝ�, �K,M� = 0. �4.22�

t is a very important quantity in Calogero–Moser systems appearing in many contexts. For
xample, it is a commutator of Q �2.10� and the rational Lax matrix L �2.8�, �2.7� �see �4.36� of
ef. 15 and �2.40� of Ref. 16�:

�Q,L� = iK . �4.23�

t should be noted that if K is defined as above, the expression �4.22� is universal, which is valid
or any root system � and any choice of R. Various properties of the K matrix, whose eigenvalues
re all “integers,” are discussed in detail by Corrigan-Sasaki, in the Appendix of Ref. 16.

For R being the set of all roots � �for the simply laced root systems� or the set of short roots

S �for nonsimply laced root systems� and also the set of vector weights �V� for the C, the relation
orresponding to �4.9� and �4.21� reads as

�R

�t
= �R,M� + i„R�L + K̃� + �L − K̃�R… , �4.24�

n which K̃ is another constant matrix commuting with M,

K̃ = �
���+

g����� · Ĥ�ŝ�, �K̃,M� = 0, �4.25�

ntroduced by Corrigan-Sasaki, as �5.32� of Ref. 16.
Now the explicit solution of the Sutherland system is achieved for any crystallographic root

ystem, since one can choose at least one Lax pair satisfying �4.24�. We proceed as before by
efining the unitary matrix U�t� by �4.10� and introduce a matrix

W�t� = U�t�R�t�U�t�−1 = U�t�e2iQ�t�U�t�−1. �4.26�

t satisfies a simple first-order linear differential equation,

�W
�t

= U��R/�t − �R,M��U−1 = iU„R�L + K̃� + �L − K̃�R…U−1, �4.27�

=i„WU�L + K̃�U−1 + U�L − K̃�U−1W… , �4.28�

˜ −1
ince as in �2.15�, �2.16�, U�L±K�U is a constant matrix:
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d

dt
„U�L ± K̃�U−1

… = U��L/�t − �L,M��U−1 = 0, �4.29�

U�t�„L�t� ± K̃…U�t�−1 = L�0� ± K̃ . �4.30�

he solution is

W�t� = eit„L�0�−K̃…e2iQ�0�eit„L�0�+K̃…. �4.31�

y diagonalizing the above matrix solution, we obtain the explicit solution �q�t�� of the classical
utherland system �4.1� for any root system.

The very fact that K̃ �K� commutes with M simply means that a spectral parameter � can be
ntroduced trivially into the Lax pair for degenerate potentials:8

L� 	 L + �K̃, L̇� = �L�,M� . �4.32�

. RATIONAL HIGHER FLOWS

The integrable hierarchy of the Calogero–Sutherland systems consists of Hamiltonians gen-
rated by higher conserved quantities, which are constructed, for example, from the trace of the
igher powers of the L matrix, Hn�Tr�L2n�. The method of explicit integration as described in the
receding sections applies also to these higher Hamiltonian flows, as shown by Suris7 for the
-type root systems with the conventional Lax pair, R=V. However, in contrast to the basic
alogero–Sutherland flows, it works only for those systems based on the classical root systems,

he A, B, C, and D. Let us denote by R the set of vector weights V, for the A, C, and D root
ystems and the set of short roots �S for the B root system. These particular sets R have a unique
rthogonality property,

if 	 � ± �, 	 · � = 0, ∀ 	,� � R , �5.1�

hich endows a very special structure to the Lax pair represented on R. The dimensions of the
orresponding Lax matrices are D=r+1 for the Ar and D=2r for the Br, Cr, and Dr. It is through
hese special Lax matrices that the explicit integration of the higher rational and trigonometric
ows is realized.

Let us start with the explicit forms of the rational L matrices:

�A�: L, Ljk = pj� jk + ig�1 − � jk�/�qj − qk� , �5.2�

�B�: L = � A B

− B − A
�, Ajk = pj� jk + igL�1 − � jk�/�qj − qk� ,

Bjk = i�gS/qj�� jk + igL�1 − � jk�/�qj + qk� . �5.3�

he rational C system will not be discussed since it is equivalent to the rational B system. The
ational D system is obtained by constraining gS=0 in the rational B system.

The higher Hamiltonians are

�A�: Hn = Tr�Ln+1�/�n + 1�, n � 1, �5.4�

�B,D�: Hn = Tr�L2n�/�4n�, n � 1. �5.5�
he lowest H1 is the original Hamiltonian �2.3�. The basic idea is to rewrite the Hamiltonian flow,
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�qj

�tn
=

�Hn

�pj
,

�pj

�tn
= −

�Hn

�qj
, �5.6�

nto equivalent matrix forms,

�L

�tn
= �L,Mn� , �5.7�

�Q

�tn
= �Q,Mn� + Ln �L2n−1� , �5.8�

s in the lowest flow �2.11�, �2.12�.
In contrast to the lowest flow case in which the explicit form of M is given �2.9�, we can

nterpret part of �5.7� and �5.8� as determining Mn. The diagonal part of the Q equation �5.8� is
quivalent to the first half of the canonical equations �5.6�. The off-diagonal part of the Q equation
5.8� determines the off-diagonal part of Mn completely:

�Mn�	� = − �Ln�	�/q · �	 − ��, „− �L2n−1�	�/q · �	 − ��…, 	 � � . �5.9�

hereas the diagonal part of Mn does not enter the Q equation �5.8�, it can be determined from the
ff-diagonal part of the Lax equation. The result is very simple:

�Mn�		 = − �
��	

�Mn��	 = − �
��	

�Mn�	�, Mn
† = − Mn. �5.10�

he proof that the diagonal part of the higher flow Lax equation �5.7� is equivalent to the second
alf of the canonical equations �5.6� goes almost parallel to that of the lowest flow.

After the equivalence of the canonical equations �5.6� with the two matrix equations �5.7� and
5.8� is established, the explicit integration by diagonalization is straightforward. Let us define a

�D unitary matrix Un�tn� by the linear equation and the initial condition:

�Un

�tn
= UnMn, Un�0� = 1D. �5.11�

hen a matrix function Wn�tn�, defined by

Wn�tn� 	 Un�tn�Q�tn�Un
−1�tn� , �5.12�

as a simple time evolution,

�Wn

�tn
= Un��Q/�tn − �Q,Mn��Un

−1 = �UnLUn
−1�n

„�UnLUn
−1�2n−1

… , �5.13�

�

�tn
�UnLUn

−1� = Un��L/�tn − �L,Mn��Un
−1 = 0, �5.14�

⇒Un�tn�L�tn�Un�tn�−1 = L�0� . �5.15�

he solution is

Wn�tn� = Wn�0� + tn � Wn�0�/�tn, �5.16�

ith the initial values

Wn�0� = Q�0�, � Wn�0�/�tn = L�0�n �L�0�2n−1� , �5.17�
hich are determined by the initial values of the canonical variables qj�0�, pj�0�, j=1, . . . ,r. Due
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o the defining relation of Wn�tn� in terms of the diagonal matrix Q�tn� �5.12�, the solution �q�tn��
f the canonical equations of motion �5.6� with the above Hamiltonian �5.4� or �5.5�, is simply
btained by diagonalizing the above matrix solution �5.16�. Determination of the conjugate mo-
enta �p�tn�� requires a solution of the second half of the canonical equations of motion �5.6�,
hich are now algebraic since ��q /�tn� are now known functions of time. An extension to the
eneric higher flows of the hierarchy

H = �
n

cnHn, cn: const, �5.18�

s straightforward since the matrix equations �5.7� and �5.8� are linear in Mn. However, some
igher flows cannot be treated this way. For example, in the Dr �r :odd� theory, there exists another
onserved quantity �Hamiltonian� of the form p1p2¯pr+¯, which cannot be written as �5.18�.

I. TRIGONOMETRIC HIGHER FLOWS

The basic logics of the explicit integration of the trigonometric higher flows is almost the
ame as that of the rational higher flows, except that we have to consider two different types of
ax pairs; the minimal and the universal. So we just write down the key formulas without a
etailed derivation.

. Minimal Lax pair

We discuss the explicit integration of the trigonometric higher flows of the A and D theory in
erms of the minimal Lax pair, although the formulation in terms of the universal Lax pair works
ell for them, too.

The explicit forms of the trigonometric minimal L matrices are

�A�: L, Ljk = pj� jk + ig�1 − � jk�/sin�qj − qk� , �6.1�

�D�: L = � A B

− B − A
�, Ajk = pj� jk + ig�1 − � jk�/sin�qj − qk� ,

Bjk = ig�1 − � jk�/sin�qj + qk� . �6.2�

he higher Hamiltonians take exactly the same form as �5.4� and �5.5�. The lowest H1 is the
riginal Hamiltonian �4.1�. We rewrite the higher Hamiltonian flow �5.6� into equivalent matrix
orms,

�L

�tn
= �L,Mn� , �6.3�

�R

�tn
= �R,Mn� + i�RLn + LnR� „i�RL2n−1 + L2n−1R�… , �6.4�

s in the lowest flow �4.8�, �4.9�. The off-diagonal part of Mn is

�Mn�	� = − �Ln�	� cot�q · �	 − ��� „− �L2n−1�	� cot�q · �	 − ���…, 	 � � . �6.5�

he diagonal part is

�Mn�		 = �
��	

�Ln��	/sin�q · �� − 	�� = �
��	

�Ln�	� /sin�q · �	 − ���, Mn
† = − Mn. �6.6�
he D�D matrix Wn�tn� obeys a simple time evolution:
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Wn�tn� = Un�t�R�tn�Un�tn�−1 = Un�tn�e2iQ�tn�Un�tn�−1, �6.7�

=eitnL�0�n
e2iQ�0�eitnL�0�n

�eitnL�0�2n−1
e2iQ�0�eitnL�0�2n−1

� . �6.8�

y diagonalizing the above matrix solution �6.8�, we obtain the explicit solution �q�tn�� of the
igher flows of the Sutherland system �5.4� and �5.5� for the A and D root systems.

. Universal Lax pair

The explicit integration of the higher flows of the B and C Sutherland systems is achieved in
erms of the universal Lax pairs based on the set of short roots �R=�S� for B and the set of vector
eights �R=V� for C. For the rank r system, both have D=2r.

The Lax matrix L and the constant matrix K̃ �4.25� are

L = � A B

− B − A
�, K̃ = �S T

T S
� , �6.9�

�B�:Ajk = pj� jk + igL�1 − � jk�cot�qj − qk�, Sjk = gL�1 − � jk� , �6.10�

Bjk = igS cot qj� jk + igL�1 − � jk�cot�qj + qk�, Tjk = gS� jk + gL�1 − � jk� , �6.11�

�C�:Ajk = pj� jk + igS�1 − � jk�cot�qj − qk�, Sjk = gS�1 − � jk� , �6.12�

Bjk = 2igL cot 2qj� jk + igS�1 − � jk�cot�qj + qk�, Tjk = 2gL� jk + gS�1 − � jk� . �6.13�

t is easy to see

eiQ�L + K̃�e−iQ = e−iQ�L − K̃�eiQ, �6.14�

⇒Tr�L + K̃�n = Tr�L − K̃�n, �6.15�

hich are conserved quantities of the Sutherland flow �4.1�. It differs from the usual one Tr�Ln� by
linear combination of lower-order conserved quantities. The canonical equations of the higher
ow Hamiltonian,

Hn = Tr„�L ± K̃�2n
…/�4n� �6.16�

re equivalent to the matrix equations

�L

�tn
= �L,Mn� , �6.17�

�R

�tn
= �R,Mn� + i„R�L + K̃�2n−1 + �L − K̃�2n−1R… . �6.18�

he off-diagonal part of Mn is

�Mn�	� = − �eiq·�	−���L + K̃�	�
n + e−iq·�	−���L − K̃�	�

n �/sin�q · �	 − ���, 	 � � . �6.19�
he diagonal part is
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�Mn�		 = − �
��	

�Mn��	 = − �
��	

�Mn�	�, Mn
† = − Mn. �6.20�

he D�D matrix Wn�tn� obeys simple time evolution:

Wn�tn� = Un�t�R�tn�Un�tn�−1 = Un�tn�e2iQ�tn�Un�tn�−1, �6.21�

=eitn�L�0� − K̃�2n−1
e2iQ�0�eitn�L�0� + K̃�2n−1

. �6.22�

y diagonalizing the above matrix solution �6.22�, we obtain the explicit solution �q�tn�� of the
igher flows of the Sutherland system �6.16� for the B and C root systems.

II. SUMMARY AND COMMENTS

Explicit integration of the Calogero and Sutherland systems by means of diagonalization is
emonstrated for any root system, the exceptional as well as the classical and the noncrystallo-
raphic. It is based on the universal Lax pair for the degenerate potentials, which is the rational
ith/without the harmonic confining potential and the trigonometric/hyperbolic potentials. As

mphasized in the text, it is very closely related to the concept of algebraic linearization by
aseiro–Françoise–Sasaki.10 The method is extended to the higher Hamiltonian flows of the ra-

ional and trigonometric/hyperbolic interactions. In contrast to the basic Calogero–Sutherland
ows, the applicability is limited to those systems based on the classical root systems, the A, B, C,
nd D root systems.

The theory of explicit integration of higher Hamiltonian flows is very closely related to the
ynamical r matrix7,17,18 and the Hamiltonian reduction.19,13 In the case of the most classical
ational potential of the A type, the method of Hamiltonian reduction starts from the large phase
pace of the matrix dynamical variable W and its conjugate momentum variable Z, which are both
ssumed to be Hermitian. The Hamiltonians,

Hn = Tr�Zn+1�/�n + 1� , �7.1�

enerate the flows

�W

�tn
= Zn,

�Z

�tn
= 0. �7.2�

his Hamiltonian system is invariant under the action �W ,Z�→ �UWU−1 ,UZU−1� of unitary ma-
rices U. The reduced phase space is obtained by imposing the constraint

�W,Z� = iK �7.3�

nd factoring out the constrained phase space by residual symmetries �i.e., by the group of unitary
atrices that commute with K�. The �Q ,L� pair �4.23� is nothing but a representative of a point of

he reduced phase space, which is connected with the point �W ,Z� of the large phase space by a
t-dependent� unitary matrix U as

Q = U−1WU, L = U−1ZU . �7.4�

he linear flows of �W ,Z� are thereby mapped to the Calogero flows of �Q ,L�. This is the way to
nderstand the rational Calogero system of the A type as a Hamiltonian reduction;19 a similar
nterpretation has been proposed for a few other cases.13 The dynamical r matrix has been con-
tructed in this framework of Hamiltonian reduction.7 We expect that all the cases discussed in this

aper can be treated in the same way.
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The parametric equations of the surfaces on which highly resonant quasiperiodic
motions develop �lower-dimensional tori� cannot be analytically continued, in gen-
eral, in the perturbation parameter �, i.e., they are not analytic functions of �.
However rather generally quasiperiodic motions whose frequencies satisfy only one
rational relation �“resonances of order 1”� admit formal perturbation expansions in
terms of a fractional power of � depending on the degeneration of the resonance.
We find conditions for this to happen, and in such a case we prove that the formal
expansion is convergent after suitable resummation. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2157052�

. INTRODUCTION

Resonances play an important role in the theory of dynamical systems. A possible application
s provided by problems of celestial mechanics, such as the phenomenon of resonance locking
etween rotation and orbital periods of the satellites.17 In fact, the presence of friction can select
esonant motions which remain stable when friction �on astronomical time scales� becomes neg-
igible. In such a case maximal KAM tori can be really observed only approximately and on very
hort time scale, whereas, on very large time scales one expects that only periodic motions
urvive. On intermediate time scales one can imagine that quasiperiodic motions, involving a
umber of frequencies less than the total number of degrees of freedom �and decreasing with
ime�, describe most of the observed dynamics. This makes interesting and important to study
uasiperiodic motions occurring on lower-dimensional tori for nearly integrable Hamiltonian sys-
ems. These quasiperiodic motions are characterized by frequencies satisfying s rational relations,
ith r=N−s ranging between 1 �periodic motions� and the number N of degrees of freedom

KAM tori�. The number s equals the number of normal frequencies appearing in the perturbed
otions, whereas r is the number of independent components of the rotation vector.

The analysis of such motions is simpler under some �generic� nondegeneracy assumptions on
he perturbations. On the contrary the situation becomes immediately very complicated if no
estriction at all is made on the perturbation. Situations of this kind arise also in similar contexts,
e can mention the conservation of KAM tori under perturbations for systems of N harmonic
scillators, proved for N=2 but conjectured to hold in general,18,24 and the stability of Hill’s
quation under quasiperiodic perturbations.14 In the case of lower-dimensional tori, the nondegen-
racy assumption is that the normal frequencies become different from zero when the perturbation
s switched on. If such an assumption is removed, then only partial results hold, and only in the
ase s=1, that is only in the case of one normal frequency.2,3

Starting from the work of Eliasson,6 a new approach to KAM theory of quasiintegrable

�
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amiltonian systems arose, based on the analysis of cancellations in the “Lindstedt series” for the
unctions mapping unperturbed motions �uniform rotations, in suitable coordinates� into corre-
ponding perturbed ones.

A convenient way to exploit cancellations to resolve apparent divergences in the Lindstedt
eries is through methods inspired by quantum field theory, consisting in graphical expansions,
ummation of classes of diverging subdiagrams, iterative study of the flow of the effective con-
tants and the possible introduction of counterterms. With these techniques and ideas, a number of
nown results have been reproduced and new ones have been obtained; see Refs. 7, 11, 13, and 9
or some reviews.

In this paper we follow the latter approach to investigate the conservation of
N−1�-dimensional tori for systems with N degrees of freedom. More precisely we consider N
egrees of freedom systems described by analytic Hamiltonians of the form

H�I,�� = H0�I� + �f�I,�� , �1.1�

ith �I ,���D�TN, where T=R \2�Z is the standard torus, D is an open subset of RN, � is a real
arameter, and the free Hamiltonian H0�I� is assumed to be uniformly convex, �I

2H0�I��C�0 for
ll I�D.

Definition 1 �simple resonance�: A simple Diophantine resonance for the unperturbed system
s a motion taking place on the torus �I0��TN with �0ª�IH0�I0� satisfying a rational relation

0 ·�0=0 for some �0�ZN and ��0 ·���C���−	 for suitable C ,	�0 and for all 0���ZN not
arallel to �0.

Thus, if �=0, the motions with rotation velocity �0 will foliate the torus �I0��TN into a one
arameter family of invariant tori of dimension N−1.

For ��0 invariant tori with dimension N−1 run by quasiperiodic motions with spectrum �0

ill, in general, only continue to exist “close” to some of the unperturbed tori �I0��TN. The
roblem is simpler under nondegeneracy assumptions on the average �f	 of the perturbing function

f on the torus �I0��TN; it has been studied in Refs. 10 and 15 with techniques employed, under
ifferent assumptions on the perturbation, in this paper. Define the average of f on �I0��TN as

�f���	 ª lim
T→


1

T



0

T

f�� + �0t�dt . �1.2�

t depends nontrivially on � in the sense that in general it is a nonconstant periodic function of �.
his is more easily visualized in coordinates adapted to the resonance: they are defined by a linear
anonical transformation �I ,��ª �I0+S−1�A ,B� ,ST�� ,���, with S a nonsingular integer compo-
ents N�N matrix with determinant det S=1 such that �0�ST�� ,0� with ��RN−1, �� ·��
C0���−	0 for all 0���ZN−1 and A�RN−1, B�R, ��TN−1, ��T.

In the coordinates �A ,B ,� ,�� the Hamiltonian becomes an analytic function of �A ,B�, in the
omain obtained from D under the transformation S, and �� ,���TN−1�T. It will be of the form
�A ,B ,� ,��=H0��A ,B�+�f�� ,��, where H0��A ,B�=� ·A+H0�A ,B�, with H0 vanishing to sec-
nd order at A=0, B=0 and uniformly convex in the domain where it is defined. Of course the
unctions H ,H0 , f have a different meaning with respect to those appearing in �1.1�, but we prefer
o use the same notation for simplicity. For the same reason we still shall use the notation �I ,�� to
enote the new action-angle variables, by setting I= �A ,B� and �= �� ,��.

So in the new coordinates the Hamiltonian H, the rotation vector ��RN−1 and the average
f0�A ,B ,�� of the perturbing function can be supposed to be such that

H = � · A + H0�A,B� + �f�A,B,�,��, �� · ���
C0

���	0
∀ 0 � � � ZN−1,

�1.3�

f0�A,B,�� ª
 d�

�2��N−1 f�A,B,�,�� if f�A,B,�,�� = �
N−1

ei�·�f��A,B,�� ,

��Z
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ear the unperturbed resonance and without any loss of generality. The corresponding equations of
otion for X�t���A�t� ,B�t� ,��t� ,��t�� are

Ȧ = − ���f ,

Ḃ = − ���f ,

�̇ = � + �AH0 + ��Af ,

�̇ = �BH0 + ��Bf ,

or Ẋ = E�XH�X�, with E = 0 − 1

1 0
� , �1.4�

here E is the standard 2N�2N symplectic matrix. We study the existence of motions which can
e described by a constant �0 and by functions A���, B���, a���, b��� of ��TN−1, which tend
o 0 as �→0, such that, by posing

A�t� = A�� + �t�, B�t� = B�� + �t� ,

�1.5�
��t� = � + �t + a�� + �t�, ��t� = �0 + b�� + �t� ,

ne obtains, for all ��TN−1, solutions to the equations of motion �1.4�. For brevity we shall
ometimes write X�t�, instead of X��+�t�, to indicate solutions of �1.4� of the form �1.5�.

Note that, for �=0, the motions �1.5� reduce to

A�0��t� = 0, B�0��t� = 0, ��0��t� = � + �t, ��0��t� = �0, �1.6�

here �TN−1 are arbitrary. The motions X�0��t�= �A�0��t� ,B�0��t� ,��0��t� ,��0��t�� represent the
nperturbed resonant motions filling a one parameter family of N−1 dimensional invariant tori
parametrized by �0�.

Given any function G�� ,�� we shall denote by G� the �th Fourier component of its Fourier
xpansion in � and we shall call �G�k the kth order term obtained by expanding in � the function
. Furthermore we shall denote by �G��

k the �th Fourier component of the Fourier expansion of
G�k and by G�0 the function G−G0.

A formal solution of �1.4� and �1.5�, as a power series in �, X���=X�0����+�X�1����+. . ., is
ell known to exist if �0�T is a stationarity point for the average f0�0 ,0 ,�� �i.e., a point such

hat ��f0�0 ,0 ,�0�=0� which is not degenerate �i.e., ��
2 f0�0 ,0 ,�0��0�; cf. for instance, Refs. 21,

9, and 10. Here we consider explicitly the case in which the nondegeneracy condition on

�
2 f0�0 ,0 ,�0� fails to hold. This is a case in which in general no formal solution in powers of � can
e constructed.

If �0 is such that ��f0��0�=0, then there exists a function X� such that X�0�+�X� solves �1.4�
p to terms of order �2 �excluded�. Namely X����= �A���� ,B���� ,a���� ,b����� is obtained by
pplying the operator �� ·���−1 to the vector

�− ��f�0,0,�,�0�,�If�0,0,�,�0� + �I
2H0�0,0��A����,B������ , �1.7�

here �� ,�I denote, respectively, the derivatives with respect to the angle and action variables.
his means that one first determines A���� and B���� by solving �� ·����A���� ,B�����

=−��f�0 ,0 ,� ,�0�; the �otherwise arbitrary� averages A0� ,B0� are fixed by requiring that the op-
rator �� ·���−1 can be applied to the vector formed by the last N components of �1.7�, i.e.,

If0�0 ,0 ,�0�+�I
2H0�0 ,0��A0� ,B0��=0. In this way also a���� and b���� can be obtained. The av-

rages of the angle variables will be chosen a0�=0 while we leave b0� as a free parameter �to be
uitably fixed at higher orders to make the equations �1.4� formally solvable�.

There are, however other solutions which are correct up to order �2 �excluded�. If

�
j f0�0 ,0 ,�0�=0 for all j�k0 and ��

k0+1f0�0 ,0 ,�0��0, one can imagine to add to the free param-
ter b0� any polynomial in powers of �= ���1/k0 of degree �k0. It can be checked �and it will be
xplicitly shown in next sections� that, for any choice of this polynomial, a solution of the

2
quation of motions correct up to terms of order � �excluded� exists. This is, ultimately, the
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eason why consistent expansions in powers of � cannot in general be continued beyond first
rder. The consistency condition of the equations of motion necessary to improve �to second order
ncluded� the solution fixes one coefficient of such �a priori arbitrary� polynomials in � and, in
eneral, this really forces the expansion to be an expansion in powers of � different from �k0

�.
The analysis below shows that an expansion in � is actually possible at all orders if the

ollowing assumptions are satisfied.
Assumptions:

a� The constant aª ���f�X�0�+�X0���0
1 is a�0.

b� The matrix �I
2H0�0 ,0� is positive definite.

c� There is k0�0 such that ��
j f0�0 ,0 ,�0�=0 for all j�k0 and cª �1/k0!���

k0+1f0�0 ,0 ,�0��0.

The constant a appearing in assumption �a�, written explicitly, is

a ª ���,�f�X�0����� · �� · ���−1��If�X�0����� + �I
2H0�0,0��A����,B�������0

− ��,If�X�0����� · �� · ���−1��f�X�0������0�0. �1.8�

or instance if f depends only on the angle variables � and �I
2H�0 ,0�=1 the constant a is

a = � 1

2
���

��0

���2�f�����2 + ���f�����2

�� · ��2 �
�=�0

. �1.9�

he number k0 appearing in assumption �c� is a measure of the “degeneration” of the resonance,
hile the order of the resonance is the number of rational relations between the unperturbed

requencies, which is 1 in our case as the unperturbed motions have N−1 independent frequencies.
he case k0=1 was considered in Ref. 15 and we will not consider it again here. We shall focus
n the case k0�2, in which case a formal power solution in � to �1.4� does not exist. In fact, one
hecks that, as a consequence of assumptions �a� and �c�, the average over � of the right-hand side
rhs� of the second equation in �1.4� is different from 0 at order �2, for any possible choice of the
ree parameter b0� introduced after �1.7�.

However, under the assumptions above, it is possible to find a formal solution to �1.4� such
hat the average of b is b0=O����1/k0�: the average of b will be fixed in terms of the constants a and
in such a way that the average over � of the rhs of the second equation in �1.4� is 0 at all orders

n ���1/k0.
The necessity of a fractional powers expansion can be seen by a heuristic argument sketched

n Appendix A, the argument also suggests, as a conjecture, the forthcoming Theorem 1 and
otivates the assumptions �a� to �c�.

In Appendix A it is in fact shown that, in the simple case H0�A ,B�= 1
2 �A2+B2� and f depend-

ng only on the angles, a canonical transformation �explicitly constructed in Appendix A�, defined
n a neighborhood of �0�� �0��TN−1� ��0�, maps � ·A+H0�A ,B�+�f�� ,�� into

� · A + H0�A,B� +
�c

k0 + 1
�� − �0�k0+1 + �2a�� − �0� + O���� − �0�k0+2� + O��2�� − �0�2� + O��I2�

+ O��3� . �1.10�

s discussed in Appendix A, the Hamiltonian equations corresponding to �1.10� can be consis-
ently solved to order �2. In particular, for some choices of the signs of � ,a ,c, the angle � admits
n approximate quadratic equilibrium point O����1/k0�, whose stability depends again on the rela-
ive signs of � ,a ,c. This second order computation suggests the conjecture that the unperturbed

otion X�0��t� can be continued at ��0, provided the average of � is chosen O����1/k0�. The
erturbed motion, if existing beyond second order, will take place on a torus �a small perturbation
f the free one� which we shall call elliptic or hyperbolic, depending on the stability of the

ehavior of the linearization of the motion of � in the vicinity of its equilibrium point: if the
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orresponding pair of nonzero Lyapunov exponents is imaginary then the torus will be said
lliptic, if it is real it will be said hyperbolic.

In the following a sparse Cantor set dense at 0 will mean a set E contained in an interval I
�−�0 ,0� or I= �0,�0� with an open dense complement in I and with 0 as a density point in the

ense of Lebesgue integration. In particular E will have positive measure.
Theorem 1: Consider the system described by the Hamiltonian (1.3), under the assumptions

a�, �b�, and �c�. There exists �0�0 such that for �����0 the following holds.
(i) If k0 is odd and c��0 there is at least one hyperbolic invariant torus of dimension N−1

ith rotation vector �. If c��0 there is a sparse Cantor set E� �−�0 ,0� with the property that for
�E there is at least one elliptic torus of dimension �N−1� with rotation vector �.

(ii) If k0 is even and �c has the same sign of −a, there is at least one hyperbolic invariant torus
f dimension N−1 with rotation vector �. Moreover, there is a sparse Cantor set E dense at 0 such
hat, if ��E and �c has the same sign of −a, there is at least one elliptic invariant torus of
imension N−1 with rotation vector �.

Remarks: �1� If assumption �c� is violated, since f is analytic in �, then f0�0 ,0 ,���0 as a
unction of �. In this case we can perform a canonical transformation removing the perturbation at
rder � and casting the Hamiltonian into the form H�=H0�+�2f�, for some new analytic functions

0� and f�. If f� satisfies the assumptions above we can apply Theorem 1 to H�. If H� satisfies
ssumption �c� and violates assumption �a� we cannot say much. If H� violates assumption �c� we
an again remove the perturbation at lowest order through a new canonical transformation and cast
he Hamiltonian into the new form H�=H0�+�4f� and hope to be able to apply Theorem 1 to H�.
nd so on.

�2� Assumption �a� is essential and, if it does not hold, our expansion may fail to be conver-
ent. In fact, in some cases �k0 even�, it is easy to show that if assumption �a� fails there cannot be
erturbed motions of the form �1.5�, see Appendix B for an example. If k0 is odd, Ref. 2 proved
xistence of hyperbolic tori even if assumption �a� fails; in these cases we expect that a new
erturbation parameter must be identified. The heuristic analysis in Appendix A concretely sug-
ests plausible results to be expected if a=0 �under alternative assumptions�.

�3� We expect that assumption �b� is not essential and that it could be weakened into the
equest that �I

2H0�0 ,0� is nondegenerate and that �BB
2 H0�0 ,0��0. Certainly the convexity assump-

ion simplifies some of the estimates �see Appendix F� and we did not attempt to eliminate it.
�4� The only known result on the problems considered here is in Ref. 2, where conservation of

N−1�-dimensional “hyperbolic tori” is proved under weaker assumptions, although we study
onservation of both hyperbolic and elliptic �N−1�-dimensional tori under assumptions �a� to �c�
bove.

�5� In principle one could proceed in a different way rather than following our approach. One
ould first perform the canonical transformation described in Appendix A and leading to the
amiltonian �1.10�, then study the system so obtained with other techniques, such as those in
efs. 5, 22, and 23 or 19. To this aim one should use that in the new coordinates the unperturbed
amiltonian contains terms of order �2k0−1, while the perturbation is of order �2k0, hence has a

urther �.
�6� The analysis via Lindstedt series and summations of classes of diagrams is the main aspect

f this work. Also the analyticity properties in � at � fixed are, to our knowledge, new.
�7� Technically the present work is strongly inspired by Refs. 10, 12, and 15. The proofs that

an be taken literally from Ref. 15 will not be repeated here, hence familiarity with the latter
eference is essential.

�8� The resummed series has manifest holomorphy properties which show that the set E is in
he boundary of a complex domain where the functions X��� are analytic in �, we do not discuss
he details �see Refs. 10 and 15�.

The paper is organized as follows. In Secs. II and III we prove formal solvability of the
quation of motion in power series in ���1/k0 and we describe a graphical representation of the
erms appearing in the formal power series. Such a representation involves labeled rooted trees,

nd is very similar to diagrammatic representations through Feynman diagrams arising in quantum
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eld theory. In Secs. IV–VI we describe an iterative resummation scheme which eliminates some
lasses of divergent subdiagrams and iteratively changes the power expansion, and we prove
onvergence of the resummed series. Some details of the proofs are deferred to the Appendixes.

I. LINDSTEDT SERIES

We define �=��k0, with �� �±1�, ��0, and look for a family of formal solutions of the
quations of motion in powers of � parametrized by ��TN−1, in the special form X�t�
�A�t� ,B�t� ,��t� ,��t��

A�t� = �
k=k0




�k �
��ZN−1

ei�·��+�t�A�
�k�,

B�t� = �
k=k0




�k �
��ZN−1

ei�·��+�t�B�
�k�,

��t� = � + �t + a�t�, a�t� = �
k=k0




�k �
��0

ei�·��+�t�a�
�k�,

��t� = �0 + b�t�, b�t� = �
k=k0




�k �
��0

ei�·��+�t�b�
�k� + �

k=1




�kb0
�k�, �2.1�

here all the involved functions have also a dependence on �0 which has not been made explicit.
he formal series �2.1� will be called Lindstedt series as it extends the corresponding notions
lready used in the theory of quasiperiodic motions on maximal tori.

In the following the average b0
�k� will be abbreviated as �k.

Remarks: �1� The functions A ,B ,a and b−b0 have been chosen as power series in � starting
ith the k0th order as the first nontrivial order; a has been chosen with zero average �this just

orresponds to a redefinition of the origin of TN−1�, while the average of b has been chosen as a
eries in � starting with the first order; the coefficients �kªb0

�k� will be chosen in such a way that
he Lindstedt series admits a formal solution.

�2� With the choices in �2.1�, Eqs. �1.4� are identically solved for any order k�k0 in �. The
arameters �k, k�k0, are left as free parameters, to be explicitly chosen below.

To write the generic kth order of �1.4� we introduce the following definitions: given any
unction �→F�X����, let �F��k� be the kth order in the Taylor expansion of F in � and let �F��

�k�

e the �th Fourier component of the Fourier expansion of �F��k�. Note that this notation concerns
xpansions in � and is different from the one introduced after �1.6� which dealt with expansions
n �, with the new notation the quantity denoted a= ���f�X�0��+�X���0

1 before �1.8� must be written
s a=����f�X�0�+��k0X���0

�k0� as the superscript k denotes kth order in � while �k� denotes kth
rder in �. Then, if ��0 and k�k0, the Eqs. �1.4� become

�i� · ��A�
�k� = − ����f��

�k−k0�,

�i� · ��B�
�k� = − ����f��

�k−k0�,

�2.2�
�i� · ��a�

�k� = ��AH0��
�k� + ���Af��

�k−k0�,

�i� · ��b�
�k� = ��BH0��

�k� + ���Bf��
�k−k0�,
nd, since � satisfies the Diophantine property, they can be solved provided
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0 = ���f�0
�k−k0�,

0 = ���f�0
�k−k0�,

�2.3�
0 = ��AH0�0

�k� + ���Af�0
�k−k0�,

0 = ��BH0�0
�k� + ���Bf�0

�k−k0�.

f assumptions �a�, �b�, and �c� in Sec. I are satisfied, such a formal solution can be shown to exist
rovided the formal series for the average b0 is suitably chosen.

Lemma 1: Under the assumptions �a�, �b�, and �c� if k0 is odd, a formal solution of (1.4) in the
orm (2.1) always exists; if k0 is even, a formal solution of (1.4) in the form (2.1) exists if �ac

0. When a formal solution exists, A�k� ,B�k� ,a�k� ,b�k� are uniquely fixed in the case k0 odd. If

0 is even, there are two possible such sequences corresponding to the choices �1�b0
�1�

= ± �−�a /c�1/k0.
Proof: Let X�0����= �0 ,0 ,� ,�0�, �=��k0 with �=sign��� and ��0, and look for a formal

olution t→ �A�t� ,B�t� ,��t� ,��t�� obtained by setting �=�+�t in

X��� = X�0���� + �
k=k0




�kX�k���� + �
k=1




�k��k�, �2.4�

here ��k�= �0 ,0 ,0 ,�k�. Set X�h��0 for 0�h�k0 and ��0�=0.
Suppose inductively that X�h� has been determined for h=0,1 , . . . ,k−1, for k�1. Consider a

eneric polynomial Y���ª�h=0
k−1�hY�h���� and suppose, inductively, that if Y�h�=X�h�+��h� the

unction Y��t� solves the equation of motion Ẋ=E�XH�X� up to order k−1. This is true for k
1. Let �ª �� ·��� and remark that the identities �� j=1

2N �i
Y j ·�Yj

H�Y�d�=0 and
� j=1

2N �i
Y j · �E�Y� j d�=0 are identities for all periodic functions Y���.

Then 0��� j�i
Y j · ��E�Y� j +�Yj

H�Y��d� and Ẏ =E�YH�Y�+O��k� imply �note that Y has de-
ree �k in �� ��i

Y j
�0� · ��Yj

H�Y���k� d�=0, i.e., ����H�Y���k� d�=0 or

���f�
h=0

k−1

�h�X�h� + ��h����
0

�k−k0�

= 0 , �2.5�

hich is the first of the compatibility conditions �2.3�. This leaves a0
�k� as an arbitrary parameter:

e can set a0
�k�=0. We also remark that, if I��A ,B�, the last two of the four equations in �2.3�

ave the form

�E����IH0�0,0�I0
�k� + F�k���X�h�,��h��0�h�k−1� = 0. �2.6�

y assumption �b� in Sec. I, �I
2H0�0 ,0���E����IH0�0 ,0� is invertible; hence to impose the last

wo compatibility conditions in �2.3�, it suffices to fix I0
�k�=−��I

2H0�0 ,0��−1F�k���X�h� ,��h��0�h�k−1�,
hich is a known function of �X�h� ,��h��0�h�k−1, for any possible choice of the functions
��h��0�h�k−1.

So, to fulfill the compatibility conditions �2.3� and to continue the inductive construction of
�k� ,��k�, we are left with imposing the second of �2.3�, which can only hold if �k−2k0+1 satisfies
ertain compatibility properties. In fact if k�2k0 there is no requirement because the necessary
ondition that ���f�0

�k−k0�=0 is automatically satisfied by assumption �c�.
For k=2k0 the condition ���f�0

�k0�=0 can be expressed as follows. Let c
�1/k0!���

k0+1f0�0 ,0 ,�0� and remark that with the notations leading to �1.8� it is X�k0���X�: then

he second of �2.3� becomes
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���Xf�X�0�� · X�k0� +
1

k0!
��

k0+1f�X�0����1�k0�
0

� �a + c�1
k0 = 0, �2.7�

hich means

�1 = ��− a�/c�1/k0 if k0 is odd,

±�− a�/c�1/k0 if k0 is even and a�c� 0,
� �2.8�

hich is the compatibility condition to which �1 must be subject.
For k�2k0 the second of �2.3� only involves a sum of quantities depending on X�h� with h

k−k0 and on ��h� with h�k−2k0 with the exception of a single term, proportional to
k0�1

k0−1�k−2k0+1, involving ��k−2k0+1�. Therefore the second compatibility condition in �2.3� can be
ulfilled by properly fixing �k−2k0+1 in terms of X�h� with h�k−k0 and of ��h� with h�k−2k0,
rovided �1 exists and �1�0, i.e. provided a�0 as assumed here.

This means that if k0 is odd all �k are uniquely determined while if k0 is even there are two
ossible sequences �k depending on the two choices for �1 in �2.8�. �

Remarks: �1� For k0 even the choice of �k will be possible only if � has sign � such that
�a /c�0.

�2� With the notation �2.1� one has X0
�k�= �A0

�k� ,B0
�k� ,0 ,0� as a0

�k�=0 and b0
�k�=��k�.

II. TREE FORMALISM AND FORMAL SERIES

Given that the formal Lindstedt series is well defined, by proceeding as in Ref. 8 a graphical
epresentation of the contributions to the perturbative series will be introduced. The idea to get the
ules explained below is to start by representing the rhs of �2.2� as a power series in � by simply
xpanding the functions ��f ,�IH in their arguments around X�0���� and then each argument again
n powers until one obtains a power series in �.

Since the arguments of f depend on the X�h� with h�k we obtain recursively a natural
epresentation in terms of trees. Consider �X�

�k��� where � ranges in the symbols list

A ª �A1, ¯ ,AN−1,B,�1, ¯ ,�N−1,�� . �3.1�

his notation is more convenient than the alternative one which would simply label the compo-
ents with a label �=1,2 , . . . ,N ,N+1, . . . ,2N because the first N−1 components play a very
ifferent role than the Nth or the remaining ones. It can be disturbing as the labels in �3.1� have the
eaning of canonical variables when they do not appear as labels: hence the reader should keep

his in mind in what follows. Occasionally, only in cases of possible confusion, we shall use the
abels 1 , . . . ,2N instead of �3.1�.

It will be convenient to call the first N labels action components and the last N angle com-
onents; the first N−1 of the two groups will be called, respectively, fast actions and fast angles
omponent labels while the last will be called a slow action or, respectively, slow angle component
abel. When, occasionally, it will turn out to be useful, we shall denote the N action labels simply
y I and the angle labels by �. If ��A and � is one of the first N labels �i.e., it is an action
omponent�, then �+N will indicate the corresponding label of the angle components and vice
ersa if ��A is an angle component then �−N will denote the corresponding label in the group
f action components. With a slight abuse of notation, given ��A, we shall write �� I if � is an
ction component and ��� if it is an angle component. If � ,���A then ���� denotes the
ronecker delta; we shall also use the notation

��� = �1 if �� � ,

0 if �� I ,
� ��I = �1 if �� I ,

0 if �� � .
� �3.2�
ooking at �2.2� we see that, for ��0 and k�k0, we can write it as
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�X�
�k��� =

����
i� · ����

p�1
�

�0+�1+¯+�p=�

k1+¯+kp=k−k0

1

p!
�E������1¯�p

f�0
�0,0,�0��

n=1

p

�X�n

�kn� + ��kn���n0��n

+ �
p�1

�
�1+¯+�p=�

k1+¯+kp=k

1

p!
�E������1¯�p

H0�0,0��
n=1

p

�X�n

�kn���n� . �3.3�

ere the symbols �� must be interpreted as derivatives of f� with respect to action arguments of f
f � is an action component, as derivatives with respect to � if �=� and as multiplications by i�i

f �=�i, i=1, . . . ,N−1. A summation convention is conveniently adopted for pairs of repeated
omponent labels. In the second line no ��kn� appears because ��h� has only angle components but

0 does not depend on the angles.
For �=0 and �� I �i.e., � an action component; cf. Remark �2� at the end of Sec. II�, we use

2.6� and write

�X0
�k��� = − ��I

2H0�0,0�−1��,��−N������p=2




�
k1+¯kp=k

�1+¯+�p=0

1

p!
�E������1¯�p

H0�0,0��
n=1

p

�X�n

�kn���n

+ ��
p=1




�
k1+¯kp=k−k0

�0+�1+¯+�p=0

1

p!
�E������1¯�p

f�0
�0,0,�0��

n=1

p

�X�n

�kn� + ��kn���n0��n� . �3.4�

For �=0 and � an angle label the �2.2� are identically satisfied if the ��h� are determined as
rescribed in Sec. II. The equation that fixes ��h� is again a relation of the type of �3.3� and �3.4�
s we shall discuss in detail later.

Proceeding as in Refs. 8 and 10 we represent �X�
�h��� as

nd ��h���0 ,0 ,0 ,��k�� as and we realize that �3.3� and �3.4� can be very

onveniently �as it turns out� represented by graphs of the type represented in Fig. 1.
The label �0=0 ,1, that we call the degree label of the node to which it is associated, identifies

he terms in �3.3� or �3.4� which contain inside the square brackets H0 �then �0=0� or f �then

0=1�. The other label attached to the first node indicates the harmonic �0 �mode label� selected
n the terms with f �i.e., with �0=1� and we take �0=0 if �0=0 �because H0 does not depend on
he angles�. A further component label �� is attached to the right extreme of the line exiting the
entral node in Fig. 1 and it indicates the derivative �E���� in �3.3� and �3.4�. We call a component
abel a “right” or “left” component label if it is attached at the beginning or at the end of the

IG. 1. Graphical representation of Eqs. �3.3� and �3.4�. For ��0 the graph represents �3.3�, while for �=0 it represents
3.4�.
oriented� line.
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The component labels attached to the first node determine the components of the tensors
efined by the derivatives of f�0

or of H0. The labels attached to the left extreme of each endline
to the right of the bifurcation point in the figure� determine which component of �X�n

�kn���n
is taken

n the products of X’s in �3.3� or �3.4�. Finally the root line symbolizes the factor that is outside the
quare brackets in the expression �3.3� or in the expression �3.4�: it will be called propagator of
he line . Hence the propagator of the line will be the matrix

g̃������ = ��i� · ��−1���� if � � 0 ,

− ��I
2H0�0,0�−1��,��−N��I���� if � = 0 ,

� �3.5�

nd � will be called the momentum of the line.
Finally the endpoints are divided into endpoints representing X�h� for some h, marked by

ullets, and others representing ��h� marked by white disks that we shall call leaves.
It follows from the analysis of Sec. II that, setting �1 equal to the constant in �2.8� and

eplacing 1/ �k0−1�!��
k0+1f0�0 ,0 ,�0� with k0c by the definition of c before �2.7�, the coefficients �h

ith h�2 can be derived in terms of �1 from the relation

�k−2k0+1 =
1

k0c�1
k0−1 �

s�1
�*

k1+¯+ks=k−k0

�0+�1+¯+�s=0

1

s!
�E��B��1¯�s

f�0 �
m=1

s

�X�m

�km� + ��km���m0��m
, �3.6�

here the derivatives of f�0
are, as above, evaluated at �0 ,0 ,�0� and the � on the sum recalls that

e are excluding from the sum the contribution equal to −k0c�1
k0−1�k−2k0+1.

At this point we can repeat the construction and replace each endpoint of Fig. 1 ending in a
ode or in a leaf with a node into which merge several lines each of which comes out of a node
r a leaf with some labels �h� ,� ,� representing �X�

�h��� for some h ,� ,� or, in the case of leaves,
��h���.

Using also the relations �3.4� and �3.6�, the construction can be iterated until we are left with
tree � whose endpoints either carry a degree label 1 or are leaves representing �1, we denote by
��� the set of endpoints representing such leaves. The constraint �3.6� can be automatically

mplied by imagining that the propagator of a line � with momentum � is

g������ = �
�i� · ��−1���� if � � 0 ,

���� if � = 0 , v � L��� ,

− ��I
2H0�0,0�−1��,��−N��I���� +

������B

��2k0−1k0c�1
k0−1 if � = 0 , v � L��� ,�

�3.7�

here v is the node preceding � on 	. We can write �X��� as a formal power series in �, whose
erms can be computed in terms of tree values. Let a tree � be a tree diagram with nodes which
ook like the node drawn in Fig. 1 and let V���, L���, and ���� denote the sets of nodes, leaves and
ines of �, respectively. The tree value Val��� will be a monomial in � obtained by multiplying

�1� a factor

�F��v����v
� ,��v� = ��k0�E����v

� ��v1¯�vpv

f�v
�0,0,�0� if �v = 1,

�3.8�
�F��v����v

� ,��v� = �E����v
� ��v1¯�vpv

H0�0,0� if �v = 0,

er each node v�V��� into which merge pv�1 lines carrying component labels ��v�

��v1¯�vpv

� and emerges a line �v carrying a label ��v
� ;
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�2� a factor ��k0�E����v
� f�v

�0 ,0 ,�0� per each endnode v�L��� �note that necessarily �v=1�;
�3� a factor ��1 per each leaf v�L��� �note that necessarily �v=0 and ��v

=B�; �4� a factor

�����
��� per line ������, given by �3.7�.

Note that the construction described above and in Sec. II forbids the presence in the tree
iagrams of some configurations of nodes. More precisely, calling trivial the nodes v with pv

1 and �v=0 and b-trivial the nodes v with pv=k0, �v=0, ��v
� =B and immediately preceded by

t least k0−1 leaves, the following configurations of nodes:

i� trivial nodes with �v=0 and the entering line with 0 momentum and
ii� b-trivial nodes with the exiting line with 0 momentum and all the entering lines with left

component labels equal to �.

re not allowed, in the sense that Val���=0 if � contains such configurations of nodes. The reason
hy the trees containing such configurations of nodes are forbidden is a consequence of the use of

he relations �3.4� and �3.6�. Trees with no forbidden node will be called allowed trees
The result is that the perturbed motion runs on a �n−1�-dimensional torus whose equations are

ormally written as a sum of values of �allowed� tree diagrams, computable by using rules very
imilar to those listed in Ref. 10, with the value of an allowed tree � defined as

Val��� =
1

������! �
v�V���

��v����1��L���� �
v�V���

Fv� �
������

G�� , �3.9�

here G�ªg�����
���� with ��=��v

=�w�v�v, while Fv is the node factor �a tensor� defined in
tems �1� and �2� above. In the product all the labels are summed over, except for the root label

�0
, where �0 is the line entering the root. We call �k,�,�

o the set of trees with degree �L����
k0�v�V����v− �2k0−1�����������0����

����B=k, ��0
=� and ��0

=� �these are trees whose value is
roportional to �k�. As in Ref. 15, we denote by �k,�,� the set of trees with k nodes, and with
abels ��0

=� and ��0
=� associated with the root line.

The definitions above are given so that the formal series for X� is given by the sum

X�
�0� + �

��ZN−1

ei�·��+�t��
k=1




�
���k,�,�

Val��� . �3.10�

The above rules give, order by order in powers of �, the solution of the perturbed equations
f motion. In particular one can check that the trees contributing a monomial in � of degree k
1 to the conjugating function have a number of lines that is bounded above and below propor-

ionally to k. This is a property extensively used in the convergence analysis, for instance to show
hat the number of non-numbered trees of degree k is bounded by a constant to the power k; cf.
ef. 15 for details. An explicit bound is �k /k0 and �3k0k, see Appendix C.

V. ELIMINATION OF THE TRIVIAL NODES

The problem of proving convergence of the series just defined is very similar to that treated in
ef. 15. As in Ref. 15 the difficulty is that even exploiting the cancellations analogous to those of

he maximal tori case, we are left with tree graphs containing chains of subdiagrams with one
ntering and one exiting lines, carrying the same momentum, that we call “self-energy �sub�dia-
rams.” Naively such subdiagrams are the source of bad bounds on the kth the contribution
roportional to �k to the series. Proceeding as in in Ref. 15 we iteratively resum such chains into
renormalized propagators” and change step by step the structure of the perturbation series. At
ach step we define different rules to compute the tree values: we assign at each line � a scale label
n��, with n��−1, depending on the size of its propagators, and, at the nth step �n=0,1 , . . . �, we
ill not allow trees containing chains of self-energy diagrams on scale�n−1; at the same time we
ill assign to each line a propagator different from that in �3.7�, depending on the value of its scale
abel, as explained below.
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The first step is the removal of the trivial nodes and of a class of few other subgraphs that can
e present in allowed trees, see Sec. III, whose value is not 0. Assign, in a way similar to that
escribed in Ref. 15, a scale label �−1� to the 0-momentum propagator and let Sk,−1

R be the set of
elf-energy clusters T on scale �−1� and degree k �i.e. such that k= �L�T��+�v�V�T��vk0− �2k0

1������T����0����
����B�, consistently with the notion of degree defined after �3.9�.

A cluster on scale �−1� is either a single node or a maximal connected set of nodes and lines,
uch that all the lines are on scale �−1�; the lines of nonzero momentum that enter or exit the nodes
f the cluster are called external lines. A self-energy cluster on scale �−1� is defined as a cluster on
cale �−1� such that there are only two external lines �one exiting and one entering�, and they are
onnected to the same node of the cluster. This means that a self-energy cluster is formed by a
ode v with 0-mode together with all lines �if any� of momentum 0, hence on scale �−1�, which
re linked to v by a path consisting of lines of momentum 0; see Fig. 2. A cluster on scale
−1� with only one exiting and one entering line, which are not connected to the same node, will
ot be considered a self-energy cluster on scale �−1�.

The self-energy value, i.e., the value VT��� of the self-energy cluster T on scale �−1�, is
efined, similarly to �3.9�, as

VT��� =
1

���T��! �
v�V�T�

��v����1��L�T�� �
v�V�T�

Fv� �
v���T�

G�� , �4.1�

here V�T�, L�T�, and ��T� are the set of nodes, leaves, and lines, respectively, contained inside
. Then we can define

M�0���� = �
k=k0




�
T�Sk,−1

R
VT��� , �4.2�

here the sum runs over all the self-energy clusters on scale �−1�.
Remarks: �1� The clusters T in �4.1� and �4.2� with k=k0 correspond to the trivial nodes

ppearing in the tree expansion of the preceding section. In the next section the general notion of
luster will be introduced.

�2� The clusters on scale �−1� must contain only lines on scale �−1� and there are infinitely
any of them and �4.2� can be illustrated by the two clusters in Fig. 2. The self-energy values

T��� corresponding to the graphs in Fig. 2 give the lowest order �in powers of �� contributions
o different entries of the matrix M�0�, as discussed in the caption of Fig. 2.

�3� Unlike the case in Ref. �15�, Eq. �4.1�, defining the matrix M�0����, is really an infinite
eries; but it is still convergent, if � is sufficiently small. Convergence of the series defining M�0�

s a straightforward consequence of the fact that a self-energy cluster of degree k has a number of

IG. 2. Examples of lowest order self-energy clusters on scale �−1�. In �a� one has �=B and ��� I or vice versa, while in
b� one has �=B and ��=�. The order label � in the first graph can be �=0,1. The leaves in the second graph represent
actors �1 so that they contribute to the order of the self-energy cluster with a power �k0−1.
ines bounded by constant times k, see Appendix C, and of the fact that the propagators of the lines
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ith 0-momentum can be bounded by an O�1� constant if the line is preceded by a leaf or if �
Ii ,��=� j and can be bounded by an O�1� constant times �−2k0+1 if the line is not preceded by a

eaf and �=� ,��=B.
By construction, M�0���� is real and has the following special structure:

M�0���� = �
k=k0




�
T�Sk,−1

R
VT = Q R

P − Q† � , �4.3�

here the superscript dagger denotes Hermitian conjugation and P ,Q ,R are N�N matrices which
o lowest order in � have the form �with a natural meaning of the symbols, in agreement with our
onvention on the component labels �3.1��

P = �I
2H0 + ��I

2f0, Q =  0

− ���If0
�, R = �0 0

0 −
��k0−1

�k0 − 1�!
��

k0+1f0�1
k0−1� , �4.4�

here f0 has �0 ,0 ,�0� as arguments. The complete expression, including the higher orders in �,
imply replaces the nonzero terms in �4.4� by convergent series that we can write

P = �I
2H0 + �M̄II, Q =  0

− �M̄�I
�, R = 0 0

0 − ��k0−1M̄��

� , �4.5�

here the entries M̄������ are bounded uniformly in �, for � small enough. They can be computed
rder by order using the rules of the last section. The vanishing entries of the matrix M�0����
emain zero to all orders: a property which simply follows from the definition of value of a
elf-energy cluster and from the remark that a derivative �� with �=� acting on f0 must be
nterpreted as a multiplication by 0. Note that, since P ,Q ,R are real and P ,R are symmetric,

�0���� satisfies the following symmetry properties:

EM�0����E = �M�0�����T, �M�0�����* = M�0���� , �4.6�

here � denotes complex conjugation and T transposition. A consequence of �4.6� is that M�0�E
s Hermitian.

Now, we formally resum the chains of self-energy clusters on scale �−1� into the new propa-
ator

g��0��x;�� =
1

ix − M�0����
, �4.7�

here x�0. This means that we modify the tree expansion described in the preceding section, the
ew expansion will involve only trees not containing self-energy graphs on scale �−1� �and in
articular containing neither trivial nor b-trivial nodes� and with the propagator of the lines with
onzero momentum replaced by �4.7�. It is not clear at all that the new resummed series is well
efined, on the contrary it will become clear that it is affected by divergence problems similar to
hose of the original series. In some sense, we just eliminated a few of the possible source of
roblems �that are actually an infinite class of divergent subdiagrams�. However, the idea is to
egin by eliminating this first few sources of problems and then, step by step, iteratively eliminate
ne after the other all possible sources of problems �first the less “dangerous” and then the more
nd more dangerous ones�.

Certainly we must at least suppose that ix−M�0���� can be inverted, otherwise the values of
he trees representing the new series might even be meaningless. To give a meaning to �ix

�0� −1 �0�
M ���� it is sufficient to impose det�ix−M �����0 for x�0, by eliminating a denumer-

                                                                                                            



a

d
i

f
u

e
−
w
w

t

p

w
(

�

w

t
m

c
h
�
b
h
�

V

l
v
f

c

w
a

012702-14 Gallavotti, Gentile, and Giuliani J. Math. Phys. 47, 012702 �2006�

                        
ble dense set of values of �. One can compute the determinant of �ix−M�0�����, finding

et�ix−M�0�����=−�ix�2�N−1� · �x2+��k0−1M̄����BB
2 H0+�M̄BB�+�2�M̄�B�2�, so that the condition of

nvertibility of �ix−M�0����� for x�0 becomes

x2 + ��k0−1M̄����BB
2 H0 + �M̄BB� + �2�M̄�B�2 � 0 �4.8�

or all x= � ·�, ��ZN−1. In computing det�ix−M�0����� the property M̄�B=−M̄B��R has been
sed.

If � is chosen according to �4.8�, we have that the norm of g��0��x ;�� is equal to the
igenvalue of �ix−M�0�����E with smallest absolute value, this is because �ix−M�0�����= ��ix
M�0�����E� and, as remarked after �4.6�, �ix−M�0�����E is Hermitian. Here and in the following
e use the uniform norm, given a 2N�2N complex matrix g, we define �g�=supz�C2N,�z�=1�gz�,
here �z�=�i=1

2N �zi�.
An approximate computation of the eigenvalues of �ix−M�0�����E, see Appendix D, implies

he following result.
Lemma 2: There exists an O�1� constant ��0 such that if x2���2k0−1 then the resummed

ropagator g��0��x ;�� in (4.7) can be bounded as

�g��0��x;����max�2�N
�0�

x2 ,
2

�1
�0�� , �4.9�

here �1
�0� and �N

�0� are, respectively, the minimum and maximum eigenvalues of P, see (4.3) and
4.5).

From now on we shall proceed following. Ref. �15�. First we assume that ��� is in an interval
�̄ /4 , �̄� such that, by setting �̄= �̄k0, we can define the integer n0 through

C0
22−2�n0+1�� ��̄�̄k0−1� C0

22−2n0, �4.10�

ith � as in Lemma 2.
In the first range of scales �in which x2�2C0

22−2n0� the small denominators can be bounded by
he “classical” small divisor x2 and we proceed as described in the section “Non-resonant resum-
ations” of Ref. �15�.

For smaller scales we shall see below that the small divisor will bounded below by an O�1�
onstant times min�x2 , �x2+��k0−1��n��x ;����, with ��n��x ;�� a suitable O�1� function. However
ere the distinction between the hyperbolic case ���k0−1��n��x ;���0� and the elliptic one
��k0−1��n��x ;���0� must be made, in the hyperbolic case the small divisors will be always
ounded by an O�1� constant times x2, even for x2�O���k0−1�, while in the elliptic case we will
ave to proceed differently, essentially as described in the section “Infrared resummations” of Ref.
15�.

. MULTISCALE ANALYSIS AND NONRESONANT RESUMMATION

The resummations will be defined via trees with no self-energy clusters on scale �−1� and with
ines bearing further labels. Moreover the definition of propagator will be changed, hence the
alues of the trees will be different from the ones in Sec. III, they are constructed recursively as
ollows.

We introduce a multiscale decomposition �see Ref. �15��, we call �D� a C
 nondecreasing
ompact support function defined for D�0,

�D� = 1 for D� C0
2, �D� = 0 for D� C0

2/4, �5.1�

here C0 is the Diophantine constant of �, and let ��D�=1−�D�. Define also n�D�=�22nD�
2n
nd �n�D�=��2 D� for all n�0. Hence 0= ,�0=� and
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1 � n�D�x�� + �n�D�x�� for all n� 0, �5.2�

or all choices of the function D�x��0, in particular for D�x�=x2, that we shall now use.
A simple way to represent the value of a tree as sum of many terms is to make use of the

dentity in �5.2�. The resummed propagator g��0��x ;��ª �ix−M�0�����−1 of each line with non-
ero momentum �hence with x�0� is written as

g��0��x;�� = 0�x2�g��0��x;�� + �0�x2�g��0��x;�� ª g�0��x;�� + g��1��x;�� , �5.3�

nd we note that g�0��x ;�� vanishes if x2 is smaller than �C0 /2�2.
If we replace each g��0��x ;�� with the sum in �5.3� then the value of each tree with k nodes

s split as a sum of up to 2k terms which can be identified by affixing on each line with momentum
Å0 a label �0� or ��1�. Further splittings of the tree values can be achieved as follows.

Definition 2 �Propagators�: Let n0 be an integer, and for 1�p�n0, give 2N�2N matrices
�p��x ;�� satisfying the symmetry properties,

EM�p��x;��E = �M�p��− x;���T, �M�p��x;���* = M�p��− x;�� . �5.4�

et M�0��x ;���M�0���� and M��n��x ;��=�p=0
n M�p��x ;��. Define for n0�n�1 the propagators

g�n−1��x;�� ª
n�x2��m=0

n−1
�m�x2�

ix − M��n−1��x;��
,

g��n��x;�� ª
�m=0

n−1
�m�x2�

ix − M��n−1��x;��
,

g��n��x;�� ª
�m=0

n−1
�m�x2�

ix − M��n��x;��
, �5.5�

nd g�0��x ;��=0�x2��ix−M�0�����−1. We call the labels �n� , ��n� , ��n� scale labels.
Remarks: �1� The matrices M�p��x ;�� will be defined recursively under the requirement that

he functions �A ,B ,a ,b� defining the parametric equations �2.1� of the invariant torus will be
xpressed in terms of trees whose lines carry scale labels indicating that their values are computed
ith the propagators in �5.5�.

�2� To have the propagators in �5.5� well defined, we must eliminate for each value of p a
enumerable set of �’s, by imposing that �ix−M��p��x ;��� be invertible, in analogy with �4.8�.

�3� So far n0 can be any integer number. It will be fixed as prescribed after Lemma 2, in such
way that a bound like �4.9� will hold for all propagators g�p� with p�n0.

To define recursively the matrices we introduce the notions of clusters and of self-energy
lusters of a tree whose lines and nodes carry the same labels introduced so far and in addition
ach line carries a scale label which can be either �−1�, if the momentum of the line is zero, or �p�,
ith 0�p�n0, or ��n0�, with n0 the same integer appearing in the statement of Definition 2 �still

o be suitably fixed�. Given a tree � decorated in this way we give the following definition, for
�n0.

Definition 3 �clusters�: (i) A cluster T on scale �n�, with 0�n, is a maximal set of nodes and
ines connecting them with propagators on scales �p�, p�n, one of which, at least, on scale
xactly �n�. We denote with V�T�, L�T�, and ��T� the set of nodes, the set of leaves and the set of
ines, respectively, contained in T. The number of nodes in T will be denoted by kT.

(ii) The mT�0 lines entering the cluster T and the possible line coming out of it (unique if
xisting at all) are called the external lines of the cluster T.

(iii) Given a cluster T on scale �n�, we shall call nT=n its scale.

Remarks: �1� The clusters on scale �−1� were defined before �4.1�, they can contain either only
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ines with scale �−1� or no line at all �i.e., they can contain just a single node�.
�2� Here n�n0. However the definition above is given in such a way that it will extend

nchanged when also scales equal to or larger than n0 will be introduced.
�3� The clusters of a tree can be regarded as sets of lines hierarchically ordered by inclusion

nd have hierarchically ordered scales.
�4� A cluster T is not a tree �in our sense�; however we can uniquely associate a tree with it by

dding the entering and the exiting lines and by imagining that the lower extreme of the exiting
ine is the root and that the highest extremes of the entering lines are nodes carrying a mode label
qual to the momentum flowing into them �cf. Ref. �15�, Fig. 3�.

Definition 4 �self-energy clusters�: A self-energy cluster on scale �n�, with n�0, of a tree �
ill be any cluster T on scale �n� with the following properties:

i� T has only one entering line �T
2 and one exiting line �T

1;
ii� �v�V�T��v=0;
iii� there is no line on scale �−1� along the path connecting �T

2 to �T
1.

We call kT the number of nodes in V�T�.
Remarks: �1� The essential property of a self-energy cluster is that it has necessarily just one

ntering line and one exiting line, and both have equal momentum �because �v�V�T��v=0�. Note
hat both scales of the external lines of a self-energy cluster T are strictly larger than the scale of

regarded as a cluster, but they can be different from each other by just one unit.
�2� The self-energy clusters on scale �−1� were defined before �4.1�.
�3� For n�0, the number of nodes of any self-energy cluster on scale �n� is �2, and the

orresponding degree is �2k0. This can be seen as follows. Call T0 the connected subset of T
ontaining no line on scale �−1� and containing the two nodes to which the external lines are
ttached. Then T0 must have at least two nodes with �=1, and T \T0 is the union of subtrees with
ositive degree.

�4� The clusters which satisfy properties �i� and �ii�, but not �iii� are not considered self-energy
lusters. The same happened for the self-energy clusters on scale �−1�. The reason for such a
efinition is that the cancellation mechanisms that will imply the bounds needed on the derivatives
f the self-energy values �see next definition and Lemma 3 below� can be derived only under such
n extra condition. On the other hand, the clusters which verify only the first two properties, but
ontain lines on scale �−1� along the path connecting the external lines, require no resummation,
nd can be dealt with in the same way as the other clusters which are not self-energy clusters. We
ote that in Ref. �15� property �iii� was explicitly required only for self-energy clusters on scale
−1� but it was not mentioned any more for the others, the proofs in Ref. �15� however, implicitly
sed property �iii� also for the self-energy clusters on scale �−1.

Definition 5 �renormalized trees�: Let �k,�,�
R be the set of trees with degree k [see comments

fter (3.9)], root line momentum � and root label � which contain no self-energy clusters. Such
rees will be called renormalized trees.

Definition 6 �self-energy matrices�: (i) We denote with Sk,n
R the set of self-energy clusters with

egree k and scale �n� which do not contain other self-energy clusters; we call them renormalized
elf-energy clusters on scale n.

(ii) Given a self-energy cluster T�Sk,n
R we shall define the self-energy value of T as the

atrix1

VT�� · �;�� =
1

���T��! �
v�V�T�

��v����1��L�T�� �
v�V�T�

Fv� �
����T�

g�
�n��� , �5.6�

here g�
�n��=g�n���� ·�� ;��. Note that, necessarily, n��n. The kT−1 lines of the self-energy cluster

will be imagined as distinct and to carry a number label ranging in �1, . . . ,kT−1�.

This is a matrix because the self-energy cluster inherits the labels � ,�� attached to the endnote of the entering line and to

he initial node of the existing line
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(iii) The self-energy matrices M�n��x ;��, n�1, will be defined recursively as

M�n��x;�� = �
p=0

n−1

�p�x2�� �
k=2k0




�
T�Sk,n−1

R
VT�x;�� ª �

p=0

n−1

�p�x2��M�n��x;�� , �5.7�

here the self-energy values are evaluated by means of the propagators on scales �p�, with
p=−1,0 , . . . ,n.

The definition �5.7� makes sense because we have already defined the propagators on scale �0�
nd the matrices M�0��x ;���M�0���� �cf. Definition 2�. Of course we must still check that the
eries converges.

With the above new definitions let h�,� with �=A ,B ,� ,� be the values of A� ,B� ,a� ,b�. We
ave the formal identities

h�,� = �
k=1




�
���k,�,�

R
Val��� , �5.8�

here we have redefined the value of a tree ���k,�,�
R as

Val��� =
1

������! �
v�V���

��v����1��L�T�� �
������

g�n���� · ��;��� �
v�V���

Fv� , �5.9�

ith �n��= �−1� , �0� , . . . , �n0−1� , ��n0�. Note that �5.8� is not a power series in �.
The statement in �5.8� is checked to be an identity between formal series �as in the corre-

ponding check in Ref. �15��.
As a first step to bypass the formal level, the series �5.7� defining M�n��x ;�� must be shown to

e really convergent. This will be true because in the evaluation of M�n��x ;�� the only involved
ropagators have scales �p� with p�n−1 so that, see the factors n�x2� ,�n�x2� in �5.5�, their
enominators not only do not vanish but have controlled sizes that can be bounded below propor-
ionally to x2 by �4.9�, i.e., simply by a constant times C0

2���−2	0. Using this fact one can actually
how that the matrices M�n��x ;�� are well defined and satisfy symmetry properties similar to �5.4�.

Furthermore cancellations similar to the maximal KAM tori cancellations hold even in this
ase so that M�n��x ;�� has a special structure, as described in the following Lemma �see Appen-
ixes E and F for a proof�.

Lemma 3: Let �̄��0 with �0 small enough, and �� I��̄�= ��̄ /4 , �̄�. Define also �̄ through
= �̄k0. If 1�n�n0, with n0 defined in (4.10), the following properties hold.

(i) The series defining the matrices M��n��x ;��, x=� ·�, converge and the matrices satisfy
he same symmetry properties noted for M�0�,

EM��n��x;��E = �M��n��− x;���T, �M��n��x;���* = M��n��− x;�� , �5.10�

here E is the 2N�2N symplectic matrix (1.4). Hence, by (5.10), �ix−M��n��E is Hermitian.
(ii) The matrix M��n��x ;�� can be written in the form

Q��n��x;�� R��n��x;��
P��n��x;�� − Q��n�†�x;��

� , �5.11�

here, if �n−1�x2��0,

P��n��x;�� = �AA
2 H0 + �M̄AA

��n��x;�� �AB
2 H0 + �M̄AB

��n��x;��

�2 H0 + �M̄��n��x;�� �2 H0 + �M̄��n��x;��
� = �P��n��x;���†,
BA BA BB BB
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Q��n��x;�� = ix�2M̄�A
��n��x;�� ix�2M̄�B

��n��x;��

�M̄�A
��n��x;�� �M̄�B

��n��x;��
� , �5.12�

R��n��x;�� =  x2�2M̄��
��n��x;�� ix�2M̄��

��n��x;��

− ix�2M̄��
��n��x;�� ��k0−1M̄��

��n��x;��
� = �R��n��x;���†.

(iii) The entries M̄
�,��
��n�

are such that the corrections M̄
�,��
�n� �x ;��=M̄

�,��
��n��x ;��−M̄

�,��
��n−1��x ;��

re bounded, uniformly in x and � for � small enough, by Be−�12n/	
for n�n0 and for suitable

0-independent constants B ,�1 ,	�0; one can take 	=	0.
(iv) One has

��xM��n��x,���� B�2, ����M��n��x,�� − M�0��x,����� B� , �5.13�

here the derivatives must be interpreted in the sense of Whitney and the constants B ,�1 ,	�0
an be taken the same as in item (iii).

Remarks: �1� The symmetry property �5.10� is proved in Appendix E. Note that at the first step
�0��x ;�� satisfies it, see �4.6�.
�2� The key property in �5.12� is that some entries of Q��n��x ;�� and R��n��x ;�� are propor-

ional to x or x2, this is proved by exploiting cancellations among families of self-energy clusters,
s described in detail in Appendix F; note that the single self-energy clusters contributing to

��n��x ;�� do not have in general the structure in �5.12� and only their sum has.
A crucial technical point in the proof of Lemma 3 is the fact that, if the scale n� of a line � is

maller than n0, as defined in �4.10�, then the corresponding propagator admits a bound that is
ualitatively the same as �4.9�. More precisely the following result holds.

Lemma 4: Let �� ��̄ /4 , �̄�. The propagator g�0��x ;�� admits the same bound as g��0��x ;�� in
4.9). For 1�n�n0, with n0 given by (4.10), the propagator on scale �n� can be bounded by

�g�n��x;����
C

x2 , �5.14�

or some positive constant C.
The proof of Lemma 4 proceeds as that of Lemma 2, in Appendix D, and we do not repeat it

ere. Once the bound �5.14� is established, the proof of convergence is the same as the one
iscussed in Appendix A3 of Ref. 15 and we do not repeat it here. Item �ii� of Lemma 3 simply
ollows from convergence and from the remark that M��n��x ;��−M�0��x ;�� is of order �2 �cf.
emark �3� after Definition 4�. The bounds in items �iii� and �iv� of Lemma 3 also follow from the
roof of convergence, see Appendix A3 of Ref. 15.

We have therefore constructed a new representation of the formal series for the parametric
quations for the invariant torus, in it only trees with lines carrying a scale label
−1� , �0� , . . . , �n0−1� or ��n0� and no self-energy clusters are present �note that, so far, self-energy
lusters may have only scales �n� with n�n0�. The above lemma will be the starting block of the
onstruction that follows.

I. RENORMALIZATION: THE INFRARED RESUMMATION

From the proof of Lemma 2 it is clear that for x2���2k0−1 and n�n0 it will not be possible
o bound g�n��x ;�� by a constant times x−2.

So, the first problem to face when reaching scales n�n0 is the computation of the eigenvalues
f �ix−M��n��x ;���E, in terms of which an estimate of the size of the propagator g�n� can be
educed.

If M��n��x ;�� does have the structure in �5.12� then an approximate computation of the
igenvalues of �ix−M��n��E leads to the following Lemma, proved in Appendix G.

��n�
Lemma 5: Let n�n0 and let us assign a matrix M �x ;�� satisfying the properties in (5.12)
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dmitting right and left derivatives with respect to x and �, bounded as the derivatives in (5.13),

nd having the structure described by (5.12), with the entries M̄
�,��
��n��x ;�� such that the corrections

M̄
�,��
�n� �x ;��=M̄

�,��
��n��x ;��−M̄

�,��
��n−1��x ;�� can be bounded [as in item (iii) of Lemma 3] by �M̄

�,��
�n�

x ;����Be−�12n/	1, for suitable constants B, �1, and 	1. Then the uniform norm of �ix−M��n�

x ;��� can be bounded below by

�ix − M��n��x;����
1

4�
min�x2, �x2 − ��n��x;���� , �6.1�

here �=�N
�0� is the largest eigenvalue of P�0� and ��n��x ;��=��n��x ;����k0−1 is a real function

ith ��n��x ;��=ck0�BB
2 H0�1

k0−1�1+O����. Furthermore ��n��x ;�� is right and left differentiable in
and x and the derivatives satisfy the following dimensional bounds:

C−1�k0−1� ���
±��n��x;���� C�k0−1, ��x

±��n��x;���� C�k0, �6.2�

or some positive constant C.
Remarks: �1� The bound �6.1� suggests to replace the classical small divisor x2 used in the

receding sections by the �n-dependent� quantity min�x2 , �x2−��n��x ;����, that is essentially what
e shall do below. In particular we shall replace the argument x2 of the support functions  ,� by
quantity ��n��x ;��, behaving like min�x2 , �x2−��n��x ;����, which will be the measure of the

trength of the resonance for scales larger than n0. With this choice we shall in general introduce
singularity in the definition of the propagators and self-energy matrices on scales n�n0, this is

ue to the presence of a minimum and of an absolute value in the definition of ��n��x ;��. This is
ltimately why in �6.2� the right and left derivatives appear, rather than the plain derivatives, as in
5.13� above. This could be avoided by using a smoothed version of the quantity ��n��x ;��
ntroduced below, but we shall not discuss it here.

�2� The bound on the derivatives of ��n��x ;�� with respect to � follows from the expression of
�0����, in �4.3�–�4.5�, and from the bounds �5.13�, which allow to control the corrections. On the

ontrary the bound on the derivatives of ��n��x ;�� with respect to x does not follow directly from
5.13�, and it is explained in Appendix G.

Depending on the sign of �, from now on, the analysis changes qualitatively. If � is such that
��1

k0−1�0 �so that ��n��x ;�� in �6.1� is negative�, the minimum in �6.1� is always realized by the
lassical small divisor x2. This implies that in this range of scales it is possible to proceed in the
ame way discussed above in Sec. V. We do not repeat the details, and we concentrate on the
pposite case, namely � with the sign such that ��n��x ;���0, which presents new difficulties.

In this case convergence problems can still arise from the propagators g��n0��x ;��, which
ecome uncontrollably large for x=� ·� close to the eigenvalue ��n��x ;�� in �6.1�.

We introduce a sequence of self-energies �� �n����, Ref. 15 representing the locations of the
ingularities of ix−M��n��x ;�� and, correspondingly, we introduce a sequence of propagator
ivisors ��n��x ;��, which will give a bound for the size of the propagator on scale n�n0. Then,
e modify the scale decomposition, measuring the strength of the singularity in terms of ��n��x ;��

ather than, as done in Sec. V, in terms of the classical small divisor x2.
The choice of the scale decomposition will be done in such a way that the dimensional bounds

or the propagators will be the same as for those with scales n�n0, this will reduce the analysis
f the infrared resummations to the same convergence proof discussed in Appendix C of Ref. 15.

We introduce the following definition.
Definition 7 �self-energies and propagator divisors�: Let the function ��n��x ;�� be as in

emma 5.
(i) The sequence of self-energies �� �n���� is defined for n�n0 by

�� �n���� ª ��n����� �n−1����,��, �� �n0���� ª ��n0��0;�� , �6.3�

rovided �� �n�����0, n�n0.

(ii) The propagator divisors are defined for n�n0 by
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��n��x;�� ª min�x2, �x2 − �� �n������ . �6.4�

By repeating the analysis of Sec. V we can represent the function X��� via sums of values of
rees whose lines can carry scale labels �−1� , �0� , . . . , �n0−1� , �n0� , �n0+1� , . . ., and which contain
o self-energy clusters �i.e., they are renormalized trees; see Definition 5 in Sec. V�. The new
ropagators will be defined by the same procedure used to eliminate the self-energy clusters on
cales �n� with n�n0−1. However for n�n0 the scale of a line will be determined in terms of the
ecursively defined ��n��x ;��, �6.4�, rather than in terms of x2, see �5.2�.

Set Xn0−1�x�ª�m=0
n0−1�m�x2�, Yn�x ;��ª�m=n0

n �m���m��x ;��� for n�n0 and Yn0−1�1. The defi-
ition of the new propagators will be

g�n0�
ª Xn0−1�x�n0

���n0��x;����x2 − M��n0��x;���−1,

g�n0+1�
ª Xn0−1�x��n0

���n0��x;���n0+1���n0+1��x;����x2 − M��n0+1��x;���−1,

�6.5�
. . . ,

g�n�
ª Xn0−1�x�Yn−1�x;��n���n��x;����x2 − M��n��x;���−1,

nd so on, using indefinitely the identity 1�n���n��x ;���+�n���n��x ;��� to generate the new
ropagators.

In this way we obtain a formal representation of X��� as a sum of tree values in which only
enormalized trees appear and in which each line � carries a scale label �n��. This means that we
an formally write X�� as in �5.8�, with Val��� defined according to �5.9�, but now the scale label
n�� is such that n� can assume all integer values �−1, and no line carries a scale label like
�n�: only scale labels �n� are possible.

We can summarize the discussion above in the following definition.
Definition 8 �propagators and self-energy matrices�: Given a sequence of 2N�2N matrices

��m��x ;��, m�1, let M�n��x ;��=M��n��x ;��−M��n−1��x ;�� with M��0��x ;���M�0����
see �4.2��, so that M��n��x ;��=�m=0

n M�m��x ;��. Setting ��n��x ;���x2 if n�n0, define for all
�0

g�n��x;�� =
n���n��x;����m�0

n−1
�m���m��x;���

x2 − M��n��x;��
. �6.6�

for n=0 this means 0�x2� �ix2−M�0�����−1�. We say that g�
�n�=g�n��� ·�� ;�� is a propagator on

cale �n�. The matrices M�m��x ;�� will be defined as in Sec. V for n�n0 and will be defined
ecursively also for n�n0 in terms of the self-energy clusters Sk,n−1

R introduced in Definition 4,
ec. V, setting for n�n0 [cf. (5.7)],

M�n��x;�� = �
m=0

n−1

�m���m��x;�����
k=2




�
T�Sk,n−1

R
VT�x;�� , �6.7�

here the self-energy values VT�x ;�� are evaluated by means of propagators on scales less than
n�. Note that we have already defined [consistently with (6.7)] the matrices M��n� with n�n0

nd the propagators on scale �−1� , �0� , . . . , �n0−1� [so that (6.6) defines also g�n0��x ;��].
Of course the above definition makes sense only if the series �6.7� can be shown to be

onvergent for all n. For this purpose an inductive assumption on the propagators on the scales
m�, 0�m�n is necessary.

Inductive assumption: Let n0 be fixed as in Lemma 3.
(i) For 0�m�n−1 the matrices M�m��x ;�� are defined by convergent series for all ���
¯ ¯ ¯
I���= �� /4 ,�� and, for all x, they satisfy the properties (i) and (iv) of Lemma 3. Moreover they
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an be represented as in (5.11), with P��n� ,Q��n� ,R��n� as in (5.12) and the entries M̄
���
��n�

bounded
s described after (5.12).

(ii) There exist K�0 and open sets Em
o , m=0, . . . ,n, with Em

o � I��̄�, such that, defining recur-
ively �� �m���� in terms of �� �m−1���� for m=n0 , . . . ,n−1 by (i) in Definition 7 above, while setting

� �m�����0 for m=0, . . . ,n0−1, and defining 	1ª	0�1+�1�+N, with �1�0, one has for ��Em
o ,

��m��x;�� ª ��x� − ��� �m������ 2−m/2 C0

���	1
,

�Em
o �� K2−m/2�̄�̄�1�k0−1/2�, �6.8�

ith �̄= �̄k0, for all m�n−1 and all x.
Remark: As in Ref. 15, a key point is checking that ��n��x ;�� can be used to bound below the

enominators of the nonvanishing propagators on scale �n�. If x has scale �n�, with n�n0, one has

�x2 − ��n��x;���� �x2 − �� �n����� − ��� �n���� − ��n��x;���

�
1

2
�x2 − �� �n����� + 2−�n+2�C0 − ���n����� �n−1����,�� − ��n��x;���

�
1

2
�x2 − �� �n����� ⇒ �x2 − M�n��x,����

1

8�
��n��x;�� , �6.9�

aving used the lower cutoff n���n��x ;��� in the propagator �see �6.5�� to obtain the first two
erms in the second line while the upper cutoff �n−1���n−1��x ;��� has been used to obtain positivity
f the difference between the second and third terms in the second line, after applying the second
nequality in �6.2�, so that the last term in the second line of �6.9� can be bounded above propor-
ionally to �2−nC0.

The inequality �6.9� allows us a complete word by word reduction of the proof of the induc-
ive assumption above to the corresponding inductive assumption of Ref. 15. The symbols here
nd in Ref. 15 have been chosen to coincide so that the analysis in Sec. VI and Appendix A3 of
ef. 15 can be taken over and reinterpreted, with no change, as proofs of the above inductive
ypothesis, apart for the check of the measure Em

0 in �6.8�, which in the present case is slightly
ifferent from the corresponding computation in Ref. 15. The estimate �6.8� of the measure of Em

0

s explicitly given in Appendix H.
We can summarize the previous discussion into the following lemma.
Lemma 6: There is �0 small enough such that for �̄��0 and �� I��̄�, if the inductive hypoth-

sis is assumed for 0�m�n−1 then it holds for m=n.
The series for X�� is now fully “renormalized” and its terms are well defined for � in a set

whose measure is large �near 0�. The series is expressed as a sum of renormalized tree values of
ree graphs without any self-energy graph. Therefore the series is convergent �by Siegel’s lemma�;
ee the corresponding discussion in Appendix A3 of Ref. 15.

In the derivation geometric series with ratio z�1 have been considered and the rule �k=0

 zk

�1−z�−1 has been repeatedly used, this is not mathematically rigorous and therefore an a poste-
iori check must be made that the function X���, via �1.5�, actually does satisfy the equations
1.4�. The check, however, is a repetition of the corresponding �essentially algebraic� check in
ppendix A5 of Ref. 15.

Therefore the proof of Theorem 1 is complete.

II. CONCLUSIONS
We conclude by mentioning some problems that seem to us of interest.
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�1� First we note that the proof of Theorem 1 also provided some information about the
nalyticity properties in �, hence in �, of the surviving lower-dimensional tori; cf. Refs. 10 and 15
or further details. As in the quoted papers, it can be interesting to further investigate such
roperties, and related ones, such as Borel summability.

�2� The uniqueness of the resonant tori appears to be a hard problem. Even a proof of Borel
ummability would not resolve the problem as there could be solutions which are not Borel
ummable. Just as in the maximal tori case analyticity is not sufficient to guarantee uniqueness.
he very recent Ref. 1 does not settle the question, as it proves uniqueness of the C
 diffeomor-
hism mapping the unperturbed invariant tori which are conserved into those which are explictly
onstructed, but it does not eliminate the possibility that other nearby quasiperiodic motions with
he same rotation vectors exist.

�3� Another open problem concerns the possibility of removing the assumptions we made in
his paper. We have been able to do this in several particular cases but we did not find a satisfac-
ory general formulation, for instance can something be said in general in the case in which the
verage of the perturbation vanishes identically?

�4� Finally, it would be interesting to understand what happens in the case of n-dimensional
ori, with n strictly less than N−1 �that is in the case of several normal frequencies�, by relaxing
he assumptions on the perturbing potential with respect the results existing in literature, as done
ere and in Cheng’s paper2,3 for n=N−1. This is a substantially more difficult endeavour with
espect to that considered here and in Cheng’s quoted papers.
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PPENDIX A: HEURISTIC ANALYSIS LEADING TO FRACTIONAL SERIES

Consider the simple case H�A ,B ,� ,��=� ·A+ 1
2 �A2+B2�+�f�� ,��, and let assumptions �a�

nd �c� in Sec. I be satisfied by f . Let us consider the generating function,

��A�,B�,�,�� = � · A� + �B� + ��1�A�,B�,�,�� + �2�2�A�,B�,�,�� + �2� · � + �2�� ,

�A1�

here, if �ª� ·��,

�1�A�,B�,�,�� ª − �−1�1 − �A� · �� + B�����−1�f�0��,�� , �A2�

nd, if  �A� ,B� ,� ,��= 1
2 �����1�2+ ����1�2�,

�2�A�,B�,�,�� ª − �−1�1 − �A� · �� + B�����−1���0�A�,B�,�,�� ,

�A3�
� = � − �A��0�A�,0,�0��A�=0, � = � − �B��0�0,B�,�0��B�=0.

he canonical map �A ,B ,� ,��↔ �A� ,B� ,�� ,��� generated by ��A� ,B� ,� ,�� transforms the
amiltonian H�A ,B ,� ,�� into

H��A�,B�,��,��� = � · A� + 1
2 �A�2 + B�2� + �f0���� − �2���f0���� · �−2���f�0���,���

+ �2�0�0,0,��� + O��I�2� + O��3� . �A4�

riting the Hamiltonian equations generated by �A4�, we realize that in a small neighborhood of
0 the evolution equation for �� takes the form
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�̈� = − c���� − �0�k0 − �2a + �2a��� − �0� + O����� − �0�k0+1� + O��2��� − �0�2� + O��3� ,

�A5�

here a=����0�0 ,0 ,�0� is the same constant defined in �1.9� and a� is a suitable constant.
Therefore, under the assumption that both a and c are nonzero, the perturbed equilibrium of

he angle �� is equal, up to high order corrections, to �0�=�0+��0, with

��0 = � �− a�/c�1/k0 if k0 is odd,

±�− a�/c�1/k0 if k0 is even and a�/c� 0.
� �A6�

f k0 is odd and c��0 the approximate perturbed equilibrium point �0� is quadratically stable,
hile if c��0 �0� is quadratically unstable: hence we shall say that the resonant invariant torus is

lliptic if c��0 and hyperbolic if c��0. The center of oscillations is displaced by O��1/k0� so that
fractional series in powers of �=�1/k0 has to be expected �at best�.

If k0 is even the unperturbed equilibrium point �0 can be continued into a perturbed equilib-
ium �0�=�0+��0 �with ��0 vanishing as �→0� only if a�c�0. In this case, if c���0�0 the
pproximate perturbed equilibrium point �0� is quadratically stable, while if c���0�0 �0� it is
uadratically unstable: hence we shall say that the resonant invariant torus is elliptic if c���0

0 and hyperbolic if c���0�0. Given the results known for elliptic and hyperbolic resonances
heorem 1 becomes a natural conjecture.

If c�0 and a=0 the theory depends on the corrections in �A5�, for instance if a��0 a natural
onjecture is that the new equilibrium point for �� is approximately �0�+��0, with ��0 satisfying
he equation ���0�k0−1=�a� /c, whenever this equation is solvable. The stability of this equilibrium
oint can be again analyzed in terms of the relative signs of � ,a ,c. If a�=0 one expects that the
igher order terms must be studied in details.

PPENDIX B: ON ASSUMPTION „a…

Here we want to show that assumption �a� is not a purely technical assumption; that is we
ant to show that generically a Hamiltonian of the form �1.3� violating assumption �a� cannot

dmit quasiperiodic motions of codimension 1 continuously connected to an unperturbed motion
f the form �1.6� in the limit �→0. We show this by producing an explicit example, given by a
amiltonian of the form �1.3�, satisfying assumptions �c� and �b� and violating assumption �a�, for
hich we can prove absence of quasiperiodic motions of codimension 1 tending to an unperturbed
otion of the form �1.6� as �→0.

The counterexample is given by the following Hamiltonian:

H = A +
1

2
A2 +

1

2
B2 + � sin3 �

3
+ sin � cos �� , �B1�

here A ,B�R1 and � ,��T1. If �=0 the Hamiltonian �B1� is strictly convex �then it satisfies
ssumption �b�� and it admits the unperturbed periodic motions

A�t� = 0, ��t� = t, B�t� = 0, ��t� = �0, �B2�

arametrized by the choice of �0�T1. Choosing �0=0, we see that f0�0�=��f0�0�=��
2 f0�0�=0 and

�
3 f0�0�=2�0 �so that assumption �c� is satisfied with k0=2�. Using the fact that f is independent
f the action variables and that f�� ,�=0�=��

2 f�� ,�=0��0, we see that the quantity a defined in
1.8� is identically 0: this means that assumption �a� is violated in the case under analysis.
We now investigate the possible existence of periodic motions of the form
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��t� = t + a�t;��, A�t� = ȧ�t;��, ��t� = ���� + b�t;��, B�t� = ḃ�t;�� , �B3�

here ���� is a continuous function of � such that lim�→0 ����=0 and a�t ;�� ,b�t ;�� are 0 average
eriodic functions of t of period 2�. We want to show that it is impossible that a motion of the
orm �B3� satisfies the Hamiltonian equations of motion

ä�t;�� = � sin�t + a�t;���sin�� + b�t;��� ,

�B4�
b̈�t;�� = − ��sin2�� + b�t;���cos�� + b�t;��� + cos�t + a�t;���cos�� + b�t;���� .

n fact a 0 average periodic solution to �B4� is necessarily of the form

a�t;�� = − �� sin t +
�

4
sin t cos t� + �2O��2 + �2� ,

b�t;�� = � cos t + �O��2 + �2� . �B5�

veraging over t the second of �B4� we find



0

2� dt

2�
�cos�t + a�t;���cos�� + b�t;��� + sin2�� + b�t;���cos�� + b�t;���� = 0. �B6�

ow, using the expressions �B5�, we see that �B6� is equal to �2+ ��2 /2�, plus terms of order at
east �4+�4, and this leads to a contradiction.

PPENDIX C: COUNTING THE NUMBER OF TREES LINES

We want to show that the number of lines of a tree contributing to A�k�, B�k�, a�k� or b�k� can be
ounded, above and below, by an O�1� constant times k. A lower bound k /k0 is an immediate
onsequence of the definitions.

We proceed by induction, using that

1� the trees contributing to A�k0� and B�k0� have one line �see �2.2��; those contributing to A�k0+1�

and B�k0+1� have two lines;
2� the trees contributing to a�

�k0� and b�
�k0�, with ��0, have at most two lines and those contrib-

uting to a�
�k0+1� and b�

�k0+1�, with ��0, have at most three lines;
3� b0

�1���1 is represented by a trivial tree �i.e., a tree with one line� and the trees contributing
to b0

�2���2 have at most k0+2 lines.

We introduce the following definitions:

k�I� is the maximum number of lines of the trees contributing to A�k�, B�k�,

k��� is the maximum number of lines of the trees contributing to a�
�k�, b�

�k�, ��0,

k�b0� is the maximum number of lines of the trees contributing to b0
�k���k.

We shall make the following inductive assumption:

Bk�I�� 3k0�k − k0 + 1� − 4k0 − 2, k� k0 + 1,

Bk���� 3k0�k − k0 + 1� − 4k0 − 1, k� k0 + 1,

Bk−k0+1�b0�� 3k0�k − k0 + 1� − 4k0, k� k0 + 1. �C1�

y the remarks above and the fact that k0�2 it follows that at the first step �that is k=k0+1� the

nequalities above are verified.

                                                                                                            



=
t
m
s
s
s
s
s
s
B

w
t
t
s
c
b
+

I
�
o
b
=
b

I
r
t
I
−
m

F
I
l

012702-25 Fractional Lindstedt series J. Math. Phys. 47, 012702 �2006�

                        
Assume inductively the inequalities in �C1� for k0+1�k�h−1 and let us prove them for k
h�k0+2. Let us start with the third inequality. We call v0 the first node preceding the root. By

he rules explained in Sec. III we have that the sum of the orders of the s=sv0
subtrees entering v0

ust be h. So, using the inductive assumptions, and calling �see Fig. 3�
I the number of subtrees of type I�k�, k�k0+1, entering v0,

I� the number of subtrees of type I�k0� entering v0,

� the number of subtrees of type ��
�k�, k�k0+1, ��0, entering v0,

�� the number of subtrees of type ��
�k0�, ��0, entering v0,

0 the number of subtrees of type b0
�k�, k�2, entering v0,

0� the number of subtrees of type b0
�1� entering v0,

h−k0+1�b0� can be bounded by the maximum over the choices of sI ,sI� ,s� ,s�� ,s0 ,s0� of

1 + 3k0h − ��3k0
2 + k0 + 2�sI + �3k0

2 − 1�sI� + �3k0
2 + k0 + 1�s� + �3k0

2 − 2�s�� + 4k0s0 + �3k0 − 1�s0�� .

�C2�

Let us first consider the case sI+sI�+s�+s���1.
In this case, if s=1, since h�k0+2, we must have that either s� or sI is =1, and, in both cases,

e can bound �C2� by 1+3k0h− �3k0
2+k0+1�, that is the desired bound; if, on the contrary, s�2,

hen �C2� can be bounded by 1+3k0h− �3k0
2−2�− �3k0−1��3k0h−3k0

2−k0. Let us now consider
he case sI+sI�+s�+s�� =0, in which case s=s0+s0� and necessarily s�k0 �note that in this case the
+1 derivatives in �3.6� must be derivatives with respect to � so that s�k0�. If s�k0+0, then �C2�
an be bounded by 1+3k0h− �k0+1��3k0−1��3k0h3k0

2−k0. If s=k0, by the rules in Sec. III it must
e s0��k0−2, so that �C2� can be bounded by 1+3h0h−4k0�k0−s0��− �3k0−1�s0��1+3k0h−4k0

2

�k0−2��k0+1� that implies the desired inductive bound.
Let us now consider the first of the three inequalities in �C1�. By the rules explained in Sec.

II we have that the sum of the degrees of the s subtrees entering v0 is h−k0 or h if, respectively,

v0
=1 ,0. If �v0

=1, Bh�I� can be bounded by the maximum over the choices of sI ,sI� ,s� ,s�� ,s0 ,s0�
f 1+3k0�h−k0�− �¯�, where the brackets include the same expression as in �C2�, and we can
ound this number by 1+3k0h−3k0

2− �3k0−1� that is even better than the desired bound. If �v0
0, one must have s=sI+sI��2 �as s=1 corresponds to a not allowed tree graph� and Bh�I� can be
ounded by 1+3k0h−2�3k0

2−1�, that is even better than the desired bound.
We finally consider the second of the three inequalities in �C1�. By the rules explained in Sec.

II we have that the sum of the orders of the s subtrees entering v0 must be h−k0 or h, if,
espectively, �v0

=1 ,0. If �v0
=1 the number of lines of the corresponding trees can be bounded in

he same way as we proceeded above for the first inequality in �C1�. If �v0
=0, only lines of type

can enter v0, and then the corresponding trees have a number of lines bounded by 1+3k0h
��3k0

2+k0+2�sI+ �3k0
2−1�sI��. So, if sI�1 the desired bound follows. If sI=0, since h�k0+2, we

IG. 3. The lines entering v0 represent symbolically the bundle of subtrees entering v0 and with root lines of types
�k� , I�k0� ,��

�k� ,��
�k0�, with k�k0+1, and �k ,�1, with k�2. The number of subtrees in each bundle is indicated by the right

abels.
ust have sI��2, and again the bound follows.
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PPENDIX D: PROOF OF LEMMA 2

To estimate the eigenvalues of �ix−M�0�����E, we start by rewriting �ix−M�0�����E in the
orm

�ix − M�0�����E =  − R − ix + Q

ix + Q† P
� . �D1�

ote that, by the strict convexity of the Hessian of H0 if � is small enough, P admits N positive
igenvalues 0��1

�0��¯��N
�0���. Let v��x ;��= � u

v
� be an eigenvector of �ix−M�0��E with

igenvalue � �here u and v are two column vectors of dimension N�,

 − R − ix + Q

ix + Q† P
�u

v
� = − Ru + �− ix + Q�v

�ix + Q†�u + Pv
� = �u

v
� . �D2�

ow, either �����1
�0� /2 or P /2�P−��3P /2. In the latter case �P−�� is invertible, 2 / �3�N

�0��
�P−��−1�2/�1

�0�, and we can rewrite �D2� as

v = − �P − ��−1�ix + Q†�u, − Ru − �− ix + Q��P − ��−1�ix + Q†�u = �u . �D3�

he second equation in �D3� is of the form

�− x2�P − ��−1 + O��x� + O���k0−1��u = �u , �D4�

o that ���� �2/3��x2+O��x�+O���k0−1�. If x2������k0−1, for � large enough, the latter estimate
mplies ���� �1/2��x2, and Lemma 2 is proven.

PPENDIX E: SYMMETRY PROPERTIES OF THE SELF-ENERGY MATRICES

In this section we discuss the symmetry properties �5.10� of M��n��x ;��.
We begin with proving �5.10� for M�n��x ;��. We inductively suppose that the same symmetry

roperties hold for both M�p��x ;�� and g�p��x ;��, for 0�p�n,

Eg�p��x;��E = �g�p��− x;���T, �g�p��x;���* = g�p��− x;�� , �E1�

here the � denotes complex conjugation and T transposition. Note that if p=0, M�0���� and
�0��x ;�� satisfy the desired symmetry properties, as discussed in Sec. IV.

Consider the representation of M�n��x ;�� given by �5.6� and �5.7� in the following confusion
etween T denoting transposition and T denoting a self-energy cluster will be avoided by renam-
ng the cluster T with a new symbol D. Note that F*��v�=F�−�v�, so that, using the second of
E1�, �VD�x ;���* can be written as2

�VD�x;���* =
���1��L�D��

���D��!  �
v�V�D�

��v� �
v�V�D�

F*��v�� �
����D�

�g�n���x�;���*�
=

���1��L�D��

���D��!  �
v�V�D�

��v� �
v�V�D�

F�− �v�� �
����D�

g�n���− x�;��� = VD*�− x;�� ,

�E2�

here D* is a cluster topologically equivalent to D, with opposite mode labels �clearly the corre-
pondence D↔D* is one-to-one�. Summing over the choices of D �see �5.7�� the second of �5.10�
ollows.

We stress that we use the convention that the internal � indices of D are summed over, while the momentum labels are not
ummed over; in this way the value VD explicitly depends only on the momenta of the internal nodes, the external

omentum, and the two � labels associated to the incoming and outcoming lines.
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To prove the first of �5.10�, it is convenient to shorten notations; see Fig. 4 for a pictorial
epresentation of the symbols. Given a self-energy cluster D, let us denote by v and v� the nodes
uch that the exiting line of D comes out from v� and the entering line of D enters v.

�1� Let v��v1 , . . . ,vn�v be the nodes on the path L�L�D� joining v to v�, and � j be their
ode labels; let also � j = �v j+1v j� be the line joining the two successive nodes v j+1 and v j in L; let

j�, � j be the component labels at the beginning of the line in L exiting from v j and at the end of
he line in L entering the node v j �they are, respectively, the lines � j−1 and � j�. Recall that, by
efinition of self-energy cluster, any propagator gj associated to the lines � j �L has a scale �n�j

�,
ith n�j

�0, i.e., there cannot be 0-momentum propagators along the path L.
�2� Let 	 j be the �possibly empty� family of subtrees of D with root in v j and with no line in

ommon with L �not represented in Fig. 4, 	 j can be imagined to be a set of trees with the root
ine ending in v j or, possibly, 	 j may consist just in v j�.

�3� Let Nj be the N�N symmetric matrix ��j��j f�j
��0 ,	 j�, where f�j

��0 ,	 j� is a function
epending only on the set of trees 	 j and on f�j

��� �it can be read off �5.6� and �5.7�� and ���, ��
ust be interpreted as explained after �3.2�.

�4� The momentum flowing in a generic line � of the graph D will be the sum of the
omentum ��

0 that would flow on the line if the entering line momentum � was 0 plus � if the line
s on the path L; then the propagator matrix gj associated to the line � j of L is equal to g�n� j

�

�xj
0+x ;��, where xj

0 is the scalar product of � ·��j

0 and x=� ·�.
Then the matrix VD�x ;��, see �E1�, can be concisely written as

�VD�x;������ = �EN1g1EN2g2 ¯ gn−2ENn−1gn−1ENn����. �E3�

nterchanging the external lines �i.e., having v� as entering node and v as exiting node� generates
new self-energy cluster D� in which the momenta flowing in the lines of the subtrees 	 j with

oots on the nodes v j �L are unchanged while the momentum on the line � j �L changes from

�j

0 +�, with ��j

0 equal to the momentum which would flow on � j if the external momentum � was
et equal to 0, to a new value −��j

0 +�.
The matrix VD��x ;�� can therefore be written as

�VD��x;������ = �ENngn−1� ENn−1gn−2� ¯ g2�EN2g1�EN1����, �E4�

here gj�=g�n� j
��−x�j

0 +x ;��. Inserting 1�ETE after Nn , . . . ,N2 and using the symmetry of

1 , . . . ,Nn, the inductive validity of the first of �E1� and the transposition rules for matrix prod-
cts, we get

�VD�
T �x;������ = �N1g1�EN2g2� ¯ gn−2� ENn−1gn−1� ENnET����, �E5�

here gj��g�n� j
��x�j

0 −x ;��. Hence EVD�
T �x ;��E�VD�−x ;�� completing the inductive proof of

E1�, because M�n��x ;�� is defined as a sum over D of the values VD �see �5.7��.
Remark: From �5.10� and �E1� follows that g��n��x ;�� satisfies the same symmetry properties

s M�n��x ;��,

��n� ��n� T ��n� * ��n�

IG. 4. A self-energy cluster D and the path L connecting its external lines. The subtrees internal to D with root on L are
ot drawn.
Eg �x;��E = �g �− x;��� , �g �x;��� = g �− x;�� . �E6�
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PPENDIX F: CANCELLATIONS

In this section we discuss the cancellations needed to show that M��n��x ;�� has the structure
escribed in �5.11� and �5.12�. In particular we want to show that the elements �M�n��x ;������
ith either ��=Ai or �=� j are proportional to x, while the elements with ��=Ai and �=� j are
roportional to x2, for x2���2k0−1.

As in, Ref. 15 the contributions to M�n��x ;�� coming from clusters such that

�
v�V�T�

��v�� �C0/26�x��1/	0 �F1�

equire no cancellations, in fact the exponential decay as �v→
 of the node functions implies that
he contributions coming from clusters satisfying �F1� are smaller than Cx2, for some constant
�0.

When �F1� does not hold we need to exploit cancellations, because a priori there is no reason
or some of the entries of M�n��x ;�� to be proportional to x or x2 for small x. Following the same
trategy used in Appendix A2 of Ref. 15 �and of Appendix A4 of Ref. 10�, the necessary cancel-
ations can be checked to occur by collecting clusters violating condition �F1� into families. Such
ancellations are due to the same mechanism pointed out first in Refs. 7, 8, and 4. The following
nalysis follows Ref. 16.

Given a self-energy cluster D on scale �n−1�, let us call D0 the connected subset of D
ontaining no line on scale �−1� and containing the nodes v and v� to which the entering and
xiting lines are attached. By definition �v�D0

�v=0. Note also that, if the path L connecting v and
� is nontrivial �i.e., v�v��, L is completely contained into D0; moreover, if D does not contain

ines on scale �−1�, then D0�D. We define the family F�FD as the set of self-energy clusters
btained from D by shifting the entering and exiting lines by reattaching them to the nodes of D0

n all possible ways. We then consider the sum

VF�x;�� = �
D�F

VD�x;�� , �F2�

ontributing to the rhs of �5.7�. When summing VF�x ;�� over all distinct families of clusters on
cale �n−1�, we recover the quantity M�n��x ;�� defined in �5.7�. To prove that M��n� has the
tructure described by �5.11� and �5.12�, we proceed in the following way. We first note that, by
he same analysis of Sec. VI of Ref. 15, VF�x ;�� is differentiable with respect to x in the sense of

hitney; then, we show that �VF�0;������=0 if ��=Ai or �=� j and ��xVF�0;������=0 if ��
Ai and �=� j.

Let us begin with proving that �VF�0;������=0 if ��=Ai or �=� j, and to be definite let us
ssume that �=� j for some j=1, . . . ,N−1. Recall that, employing the notation of Appendix E, we
an write each matrix VD�x ;�� appearing in the sum �F2� in the form �E3�. By the explicit
xpression of �E3� and of the matrices Nj, we see that, when computing VD�x ;�� in x=0, we find
VD�0;������j

=O�F ,v� ,������v� j for some function O�F ,v� ,���� independent of the choice of
he node v to which the entering line with label �=� j is attached to.

If we change D within F by attaching the entering line to all possible nodes in D0 �keeping v�
xed�, we see that the global contribution from such self-energy clusters is equal to
�F ,v� ,���� · ·�v�D0

��v� j, which is 0 by the property �v�D0
��v� j =0. So, if �=� j, the proof of

he fact that �VF�0;������=0 is complete. In the case that ��=Ai the proof is completely analogous
nd we do not repeat it here.

Let us now turn to the proof of the fact that, if ��=Ai and �=� j, then ��xVF�0;������=0. First
ote that, by the explicit form �E3� of the value VD�x ;�� and in particular by the fact that VD�x ;��
epends on x only through the propagators along the path L, we find that, when differentiating
D�x ;�� with respect to x, the effect of the derivative is as follows:
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�xVD�x;�� = �
i=1

n−1

�EN1g1 ¯ gi−1ENi��xgi�ENi+1gi+1 ¯ gn−1ENn� . �F3�

iven the line �i�D0, we call D1 and D2 the two connected distinct subsets of D0 obtained from

0 by detaching the line �i and such that D1 contains the node v� to which the line exiting from
is attached, while D2 contains the node v to which the line entering D is attached. D1 and D2

re two subgraphs of D with two external lines, one coinciding with one of the external lines of D,
he other coinciding with �i, see Fig. 5.

If we define the values of D1, D2 by formulas analogous to �E3�, we can rewrite each term
nder the sum in �F3� as VD1

�x ;���xg
�n�i

��xi
0+x ;��VD2

�x ;��, where, with the same notations of
ppendix E, we defined xi

0=	 ·��i

0 , with ��i

0 equal to the momentum which would flow on �i if the
xternal momentum � was set equal to 0.

In particular let us consider the value �VD1
�0;���xg

�n�i
��xi

0 ;��VD2
�0;���Ai�j

at x=0, that is one
f the contributions we are interested in, and again note that by the very definition of VD1

and VD2
,

t holds that �VD1
�0;���Ai�1

= ��v��i!�w��1
and �VD2

�0;����2�j
=!�w���2

��v� j, where w, w� are
he two nodes where �i enters into and exists from, see Fig. 5, and !�w��1

, !�w���2
are two

unctions depending on the structure of D1 and D2, but not on the choices of v�, v within D1, D2.
This implies that if we change D within F by attaching the entering line to all possible nodes

n D2
D0 and by attaching the exiting line to all possible nodes in D1
D0, keeping �i fixed, the
um of the contributions of the form �VD1

�0;���xg
�n�i

��xi
0 ;��VD2

�0;���Ai�j
from this class of

raphs is equal to

 �
v��D1
D0

��v��i�!�w��1
��xg

�n�i
��xi

0;����1�2
!�w���2 �

v�D2
D0

��v� j� . �F4�

ote that, given any graph D with the structure in Fig. 5, the graph D� in which the entering and
xiting lines are interchanged �so that the external lines enter in v� and exit from v, see Fig. 6� the
omentum through the line �i changes from ��i

0 +� to −��i
0 +�.

At x=0, if we change D into D�, the value VD1
�0;���xg

�n�i
��xi

0 ;��VD2
�0;�� is changed into

D2�
�0;���xg

�n�i
��−xi

0 ;��VD1�
�0;��. In analogy with the results of Appendix E, employing the sym-

etry relations �E1�, we find VD2�
�0;��=E�VD2

�0;���TE and VD1�
�0;��=E�VD1

�0;���TE. Using
lso the symmetry E�xg

�n�i
��−xi

0 ;��E=−�x�g�n�i
��T�xi

0 ;��, we find that the element �Ai ,� j� of the
ontribution corresponding to the graph in Fig. 6 can be written as

IG. 5. Subdiagrams D1 and D2 in a self-energy cluster D. The drawn lines connected to v and v� are the external lines of
.

IG. 6. The self-energy cluster D� obtained from D by interchanging the external lines of D, the exiting line is attached to

node v�D2� and the entering line is attached to a node v�D1�.
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�VD2�
�0;���xg

�n�i
��− xi

0;��VD1�
�0;���Ai�j

= − �E�VD2
�0;���T�x�g�n�i

��T�xi
0;��VD1

T �0;��E�Ai�j

= − �EVD1
�0;���xg

�n�i
��xi

0;��VD2
�0;��E��jAi

= − �VD1
�0;���xg

�n�i
��xi

0;��VD2
�0;���Aj�i

. �F5�

epeating the discussion leading to �F4� we see that, if we sum �F5� over the graphs obtained by
ttaching the entering line to all possible nodes v��D1�
D0 and attaching the exiting line to all
ossible nodes v�D2�
D0, we get

−  �
v��D1�
D0

��v�� j�!�w��1
��xg

�n�i
��xi

0;����1�2
!�w���2 �

v�D2�
D0

��v�i� . �F6�

ow, using the fact that �v�D0
�v=0 and that D1�, D2� and D1, D2 are topologically equivalent, we

lso find that

�
v��D1�
D0

��v�� j = − �
v�D2
D0

��v� j, �
v�D2�
D0

��v�i = − �
v��D1
D0

��v��i, �F7�

o that �F4� and �F6� sum up to 0.
This completes the proof of the fact that

�
D�F

VD��;0�Ai�j
= 0, �x �

D�F
�VD��;x�Ai�j

�x=0 = 0. �F8�

Remark: It can be checked that the symmetry �E1� “only” implies that, if we define Cij�x�
�D�FVD�� ;x�Ai�j

, it holds Cij�x�=Cji�−x�=Cji
* �x�: therefore the cancellation to second order �in

�, expressed by �F7�, is not a parity cancellation �unless i= j where by the self-adjointness of the
atrix C it follows that Cii�x� is real and, hence, even in x�. If the coefficients f���� are assumed

eal then the self-adjointness property �E1� implies that Cij�x� is even in x and the second order
ancellation at x=0 is an obvious parity cancellation and the proof above is greatly simplified, as
emarked in the simple cases considered in Refs. 7 and 8.

Having proved that �M�n��0;������=0 if either ��=Ai or �=� j and that ��xM�n��0;������
0 if ��=Ai and �=� j, it must still be shown that the elements �M�n��x ;������ �with the suitable
hoices of �� and �� satisfy appropriate bounds once the factors x determining the order of zero at
=0 are extracted. From convergence one expects that the bounds on the rests of the Taylor series

n x around x=0 should still be proportional to �2.
This is in fact true, under the condition that �F1� does not hold, if �F1� does not hold, then

hanging the nodes where the external lines are attached to does not change the scale of the
nternal lines. And this implies that the bounds on the derivatives with respect to x are qualitatively

he same as the bounds on M�n��x ;�� and boundedness of the entries of M̄��n� follows, see �5.12�.

PPENDIX G: BOUNDS ON THE PROPAGATOR

In this section we want to get a lower bound for the norm of �ix−M�n��x ;���E, by an
pproximate computation of its eigenvalue which is lowest in absolute value, for x2���2k0−1, with
the same constant appearing in Lemma 3. Moreover we want to prove dimensional bounds for

he derivatives in x and � of the approximate lowest eigenvalue.
Write �ix−M��n��x ;���E as

�ix − M��n��x;���E =  − R��n��x;�� − ix + Q��n��x;��
ix + Q��n�†�x;�� P��n��x;��

� ,

��n� ��n� ��n�
here P ,Q ,R are the matrices defined in �5.12�.
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The N eigenvalues of P��n��x ;�� are of order 1 and positive; call them �1
�n��¯��N

�n�. Since
P��n��x ;�� differs from P�0��x ;�� by O��2�, the eigenvalues �i

�n� can be written as �i
�n�=�i

�0��1
O��2��.

To estimate the smallest eigenvalue of �ix−M��n��x ;���E we can follow a strategy adapted
rom the proof of Lemma 2. Let v��x ;��= � u

v
� be an eigenvector of �ix−M��n��x ;���E with

igenvalue � �here u and v are two column vectors of dimension N�,

 − R��n��x;�� − ix + Q��n��x;��
ix + Q��n�†�x;�� P��n��x;��

�u

v
� = − R��n�u + �− ix + Q��n��v

�ix + Q��n�†�u + P��n�v
� = �u

v
� .

�G1�

o estimate the eigenvalue � with smallest absolute value, we restrict attention to the case
P��n�−��P��n� /2, as in the opposite case �����1

�n� /2. Then �P��n�−�� is invertible, �P��n�

��−1= �P��n��−1+O��� and we can rewrite �G1� as

v = − �P��n� − ��−1�ix + Q��n�†�u ,

�G2�
− R��n� − �− ix + Q��n���P��n� − ��−1�ix + Q��n�†�u = �u .

rom the second of �G2� we see that � must solve an equation of the form

det�N��n� − ��1 + O�x� + O����� = 0, �G3�

here we defined N��n�
ª−R��n�− �−ix+Q��n���P��n��−1�ix+Q��n�†� and we used that Q��n�

O���. This means that � is an eigenvalue of a Hermitian matrix of the form N��n��1+O�x�
O����, so that, calling �i

�n� the eigenvalues of N��n�, we have �see Ref. 20�

� = �i
�n��1 + O�x� + O���� , �G4�

or some i=1, . . . ,N. The conclusion of the previous discussion is that the problem of computing
he smallest eigenvalue of �ix−M�n��x ;���E is essentially equivalent to the problem of computing
he smallest eigenvalue of N��n�.

An explicit computation of N��n� shows that it can be written in the form

N��n� = − x2H0
−1 + �− R��n� + x2H0

−1 − �− ix + Q��n���P��n��−1�ix + Q��n�†��

= − x2H0
−1 +  0 i�xD���

− i�xD†��� − ��k0−1M̃�����
� + O��x2� , �G5�

here

H0 ª �AA
2 H0 �AB

2 H0

�BA
2 H0 �BB

2 H0
�, M̃����� = − ck0�1

k0−1�1 + O����, and D��� = D0 + O��� ,

ith

D0

0
�ª − 1 0

0 0
�H0

−1�A�
2 f0��0�

�B�
2 f0��0�

� . �G6�

he off-diagonal O��x� elements can be eliminated through a small rotation of N��n�. In fact,
efining the Hermitian matrix Z as

Z =  0 �M̃������−1D���

�M̃������−1D��� 0
� , �G7�
computation shows that
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eix�−k0+1ZN��n�e−ix�−k0+1Z � − x2H0
−1 + �N��n� = − x2H0

−1 + 0 0

0 − ��k0−1M̃�����
� + O��1/2x2� ,

�G8�

here we used the property x�−k0+1� ����1/2, if x2����k0−1. Multiplying the rhs of �G8� times

0
1/2 both from the left and from the right �remark that H0

1/2 is a well-defined positive O�1�
perator� we see that the norm of N��n� can be bounded above and below by an O�1� constant
imes the norm of

− x2 + H0
1/2�N��n�H0

1/2. �G9�

inally, using the explicit structure of �N��n�, see �G8�, N−1 of the eigenvalues of �G9� are equal

o −x2�1+O��1/2��, while the last one is −x2�1+O��1/2��−��k0−1M̃������B
2H0.

From this computation, the bound �6.1� of Lemma 5 follows. To address the differentiability
f ��n��x ;�� with respect to � and x, we note that H0

1/2�N��n�H0
1/2 is C
 in the sense of Whitney

because such is M��n�, see the corresponding discussion in Appendix A3 of Ref. 15� and its
erivatives admit the following dimensional bounds:

����H0
1/2�N��n�H0

1/2��� C�k0−1, ��x�H0
1/2�N��n�H0

1/2��� C�k0. �G10�

iven this and the fact that the last eigenvalue of H0
1/2�N��n�H0

1/2 is isolated �it is nondegenerate
nd its distance from the others is O���k0−1��, we can represent ��n��x ;�� in the form

��n��x;�� = − �2k0−1 Tr 1

2�i
�
�

z dz

z − �1−2k0H0
1/2�N��n�H0

1/2� , �G11�

here z is a complex variable independent of �, x, and � is a circle in the complex plane around

M̃������B
2H0 not surrounding the origin, with �-independent radius. The derivatives of ��n��x ;��

ith respect to � and x can be computed differentiating the rhs of �G11� and, using the dimen-
ional bounds �G10�, we find the same dimensional bounds for the derivatives of ��n��x ;��,

�����n��x;���� C�k0−1, ��x�
�n��x;���� C�k0. �G12�

he proof of Lemma 5 is concluded.

PPENDIX H: EXCLUDED VALUES OF THE PERTURBATION PARAMETER

In this section we want to check that, by imposing the first condition in �6.8�, the measure of
xcluded values of � can be bounded by the second of �6.8�. To estimate the measure of the
xcluded �’s we proceed as in Appendix A2 of Ref. 15. We present a proof valid for any n�n0.
he dimensional bounds �6.2� and the property ���n����−��n−1������Ce−�12n/	1 �see Lemma 5�

mplies the following dimensional bound for the derivative of ���n����:

������n������ C��−1/2. �H1�

hen the first condition in �6.8� excludes, for each �, a subinterval of I��̄� whose measure is
ounded by

C02−m/2�1/2

C����	1.
�H2�

he Diophantine condition on � implies that if the first condition in �6.8� is invalid then ��� cannot

e too small,
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C02−m/2

���	1
+ ���n����� �x�� C0���−	0. �H3�

herefore C0 /2���	0�C��k0−1/2, hence in this case we only have to consider the values of � such
hat ���	0� �C0 /2C���1/2−k0. Summing �H2� over the �’s satisfying this constraint, and using the
efinition 	1=	0�1+�1�+N we find that the total measure of excluded �’s can be bounded by

C02−m/2�1/2

C�
2C��k0−1/2

C0
�1+�1

�
����0

1

���N
� KC02−m/2�����1�k0−1/2�, �H4�

hich is in fact the second inequality in �6.8�.
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We present a new unified covariant description of electromagnetic field properties
for an arbitrary space-time. We derive a complete set of irreducible components
describing a six-dimensional electromagnetic field from the Maxwell and metric
tensors using the symmetry group SL�2,C�. For the special case of a flat space-time
metric the components are shown to correspond to the scalar invariants of the
electromagnetic field, the energy-momentum-stress tensor and in addition, three
new tensors expressing physical observables of rank two and four, respectively. We
make a physical interpretation of one of the new rank two tensor as describing a
classical intrinsic spin of the electromagnetic field. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2162107�

. INTRODUCTION

The electromagnetic field in Maxwells theory is since long known to satisfy important sym-
etries and consequently satisfy conservation laws. For example, the conservation law T��

,�=0
here T�� is the usual energy-momentum-stress tensor expresses the conservation of energy,
omentum �Poynting� and stress densities of the electromagnetic field in a �local� Minkowski

pace. However, these are not the only symmetries and conserved quantities of physical relevance.
n Minkowski space the Maxwell equations are invariant under the important inhomogeneous
orentz group, or as sometimes called, the Poincaré group. The flat space-time of Minkowski
pace exhibits the maximum degree of symmetry one can obtain.

Moving to the curved space-time of general relativity many of the symmetries are lost, and
onservation laws applies only locally. A group arising naturally in the study of general relativity
s the group SL�2,C�, the group of complex unimodular 2�2 matrices. There exist a homomor-
hism between SL�2,C� and the proper, orthochronous homogeneous Lorentz group L,

SL�2,C� → L, �1�

eflecting the fact that SL�2,C� is the covering group of L and indicating how local Lorentz
nvariance is retained.

In this paper we present a new unified treatment of the symmetries of the electromagnetic field
n a general Riemannian space-time by calculating the irreducible components of the covariant
pectral density tensor. By performing a Fourier transform in time and considering the complex
pectral densities we have further generalized to wave fields.

In Sec. II we define the problem of finding the irreducible components by expressing the
ossible bilinear forms of the electromagnetic field in terms of the covariant spectral density. We
hen translate this to an equivalent problem under the group SL�2,C� by transforming to the
angent spinor space. After decomposing the spectral density spinor into irreducible components
nder SL�2,C� we transform back to the equivalent tensors in Riemann space. In Sec. III we study
he important special case of a flat space-time and calculate the components explicitly. Some of

�
Now at Swedish Institute of Space Physics, Uppsala, Sweden. Electronic mail: davids@irfu.se
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hem are shown to correspond to well-known objects in Maxwells theory, while other components
btained have not previously been found in the literature. Finally, in Sec. IV we discuss our
onclusions and present ideas for future work.

I. SL„2,C… THEORY OF WAVE FIELD SPECTRAL DENSITIES

. Covariant spectral density tensor

The fundamental physical object describing the electromagnetic field is the electromagnetic
eld tensor f�� which is skew-symmetric in its two indices,

f�� = − f��. �2�

t is comprised of the six components of the electromagnetic field. We wish to categorize an
lectromagnetic wave field and therefore decompose the electric and magnetic fields in their
pectral components. Let f�t ,r� denote either the electric field E or magnetic field B at a point in
pace and time,

f�t,r� = � fx�t,r�
fy�t,r�
fz�t,r�

� . �3�

he Fourier transform in time, denoted by capital letters, is then given by

F��,r� = �
−�

�

f�t,r�ei�t. �4�

n the following we assume that the fields E, B, and hence the tensor F�� are Fourier transformed
ccording to �4�. This implies that the tensor F���� ,r� is now complex. We form all possible
ilinear forms of the electromagnetic field by constructing the outer product

S = F � F† �5�

hich in tensor notation becomes

S���	 = F��F	�, �6�

here the bar denotes complex conjugate. We call the complex tensor S���	 in Eq. �6� the
ovariant spectral density tensor. From its definition and the skew-symmetry of F��, Eq. �2�, the
ymmetries of S���	 follows as

S���	 = − S���	 = − S��	� = S��	�, �7a�

S���	 = S�	��. �7b�

ote that the decomposition in this section is not dependent on the particular transform used, but
ather on the local structure and symmetry of the tensor S���	. This tensor has 44=256 complex
omponents, but only 36 of these are independent due to the symmetries expressed in Eq. �7a�.
his number is further decreased to half by the symmetry in Eq. �7b�. Accordingly, we find that

���	 behaves as a six-dimensional Hermitian matrix and has 36 independent real valued compo-
ents. To find these we will find it convenient to reduce S���	 into its irreducible parts. This will
e done in the spinor formalism of SL�2,C�.

. Spinor representation of spectral density

Spinors arise in the representation theory of the group SL�2,C�. For a short review of the
heory of spinors, see the Appendix, or a general reference such as Ref. 1. According to Eq. �A7�

e find the spinor equivalent of the covariant spectral density tensor to be given by
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SAB�CD�EF�GH� = 
AB�
�


CD�
�


EF�
�


GH�
	 S���	, �8�

here the 
AB�
� matrices are the Infeld van der Waerden symbols, related to the metric tensor g��

y Eq. �A2�. We call the spinor SAB�CD�EF�GH� the spectral density spinor. The symmetry condition
q. �7a� and Eq. �8� implies

SAB�CD�EF�GH� = − SCD�AB�EF�GH� = − SAB�CD�GH�EF�. �9a�

ince S���	 is complex, the spectral density spinor is not Hermitian in its indices. To find how

AB�CD�EF�GH� transforms under complex conjugation we consider Eq. �8� and Eqs. �7� with the
esult

SAB�CD�EF�GH� = SHG�FE�DC�BA� = S̄H�GF�ED�CB�A. �9b�

To find the decomposition of the spectral density spinor we make the observation that the
quivalent spectral density tensor satisfies some of the same symmetries, Eq. �7a�, as the Riemann
ensor. We therefore let Refs. 1 and 2 inspire us in the decomposition and make use of the
dentities Eqs. �A11� and �A12�. Writing the spectral density spinor in a symmetric form

SAB�CD�EF�GH� = 1
2 �SAB�CD�EF�GH� − SCB�AD�EF�GH�� + 1

2 �SCB�AD�EF�GH� − SCD�AB�EF�GH��

�10�

nd applying Eq. �A12� gives

SAB�CD�EF�GH� = 1
2 ��ACSIB�

I
D�EF�GH�

+ SCJ�A
J�

EF�GH�
�B�D�� . �11�

riting Eq. �11� in symmetric form and using Eq. �A12� once more on each term results in

SAB�CD�EF�GH� = 1
4�AC�SIB�

I
D�JF�

J
H�

�EG + SIB�
I
D�EK�G

K��F�H��

+ 1
4 �SAI�C

I�
JF�

J
H�

�EG + SAI�C
I�

EK�G
K��F�H���B�D�. �12�

or the spinors in the last three terms in Eq. �12� we introduce the notation

�B�D�EG = 1
4SIB�

I
D�EK�G

K�, �13�

ACF�H� = 1
4SAI�C

I�
JF�

J
H�

, �14�

�ACEG = 1
4SAI�C

I�
EK�G

K�. �15�

rom Eq. �9a� and Eqs. �13�–�15� it follows that the symmetries of the decomposed spinors are

�B�D�EG = �D�B�EG = �B�D�GE, �16�

ACF�H� = CAF�H� = ACH�F�, �17�

�ACEG = �CAEG = �ACGE. �18�
or the first term in Eq. �12� we obtain
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1
4SIB�

I
D�JF�

J
H�

= 1
4SFJ�H

J�
BI�D

I� = �̄F�H�B�D�, �19�

here we have used Eqs. �9� and Eq. �15�. The � and  spinors in the second and third terms of
q. �12� both contain mixed indices and do not satisfy a relation similar to Eq. �19�. Instead they

ransform under complex conjugation as

�B�D�EG = �E�G�BD = �̄EGB�D�, �20�

ACF�H� = FHA�C� = ̄F�H�AC, �21�

here we have used Eqs. �9�. Hence, Eq. �12� can be written as

SAB�CD�EF�GH� = �AC��̄F�H�B�D��EG + �B�D�EG�F�H�� + �ACF�H��EG + �ACEG�F�H���B�D�.

�22�

. Number of independent parameters

From Eq. �22� we may find the number of independent parameters needed to fully describe an
lectromagnetic wave field. Introducing the notation �1,2 ,3�= �00,01=10,11� we can write the
omponents of the �ACEG spinor as �0000=�11, �1000=�0100=�21, �1100=�31, and similarily for
he other components. From the symmetries in Eq. �18� we can then view the components of

ACEG as a matrix � with nine independent complex components

� = ��11 �12 �13

�21 �22 �23

�31 �32 �33
� �23�

r equivalently 18 real independent components. The ACF�H� and �B�D�EG spinors in addition to
q. �16� and Eq. �17� also satisfies Eq. �21� and Eq. �20�. Hence the corresponding matrices

ehave like Hermitian 3�3 matrices ij= ̄ ji, �ij= �̄ ji where �i , j�� �1,2 ,3�, i.e., =†, �=�†.
herefore the spinor ACF�H� has three real components 11,22,33 and three complex compo-
ents 12,13,23, in total nine real independent components. The same applies to the �B�D�EG

pinor. In total we find 18+9+9=36 real independent components describing the wave electro-
agnetic field in the spinor formulation, in accordance with the discussion following Eq. �7�.

. Irreducible spinor representation

Equation �22� is still not on an irreducible form. To find the first irreducible component we
orm the contracted spinor

SAB�CD� = SEF�
AB�EF�CD�

= �AC�B�D�
1
2 �� + �*� − �B�D�AC − ACB�D�, �24�

here we have defined � as the trace of the � spinor,

� = �AE
AE �25�

nd used

�AE
E

C =
�

2
�AC, �26�

�̄D�F�
F�

B�
=

�*

�D�B�. �27�

2
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The trace S of the contracted spinor SAB�CD�,

S = SAB�
AB� = �AG�B�H�SAB�GH� = 2�� + �*� − �B�

B�
A

A − A
A

B�
B� = 2�� + �*� �28�

s thus real. We now form the spinor

MAB�CD� = SAB�CD� − 1
4gAB�CD�S �29�

hich is traceless by construction and hence irreducible. From its definition we find the relations

MAB�CD� = − �B�D�AC − ACB�D�, �30�

MAB�CD� = MCD�AB�, �31�

MAB�CD� = MBA�DC�. �32�

alculating the trace of the terms involving the � and  spinors in Eq. �22� we find

MAB�CD� = �EG�F�H���GA�F�D��H�B�EC + �EC�H�B�GAF�D�� . �33�

e therefore write these terms in a form symmetric and antisymmetric in exchange of the first and
econd against the third and fourth pair of indices with the result

�AC�F�H��B�D�EG + �EG�B�D�ACF�H�

= 1
2 ��EG�B�D�DAF�CH� − �AC�F�H�DEB�GD� − �AC�F�H�MEB�GD� − �EG�B�D�MAF�CH�� ,

�34�

here we have also defined

DAB�CD� = − �B�D�AC + ACB�D� �35�

hich has the same symmetries as MAB�CD� and is also traceless.
It remains to find the irreducible parts of the � spinors in Eq. �22�. To this end we write � in

form utilizing the symmetries expressed in Eq. �18�,

�ABCD = �ABCD +
1

3!
��ABCD − �DABC� +

1

3!
��ABCD − �CDAB� +

1

3!
��ABCD − �BCDA�

+
1

3!
��ABCD − �DBAC� +

1

3!
��ABCD − �ACDB� , �36�

here

�ABCD =
1

3!
��ABCD + �DABC + �CDAB + �BCDA + �DBAC + �ACDB� �37�

s a completely symmetric spinor,

�ABCD = �BACD = �ABDC = �ACBD. �38�

Using Eqs. �A12� and �26� on the remaining terms of Eq. �36� we find

�ABCD = �ABCD +
�

6
��AC�BD + �AD�BC� + �ABCD �39�
here we have defined the spinor
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�ABCD = 1
6 ��ABCD − �CDAB� �40�

atisfying the symmetries

�ABCD = �BACD = �ABDC = − �CDAB. �41�

nserting Eq. �39� and its complex conjugate equivalent into �22� and using �34� finally gives

SAB�CD�EF�GH� = CAB�CD�EF�GH� +
�

6
�B�D��F�H���AE�CG + �AG�CE� +

�*

6
�AC�EG��F�B��H�D�

+ �F�D��H�B�� +
1

2
��EG�B�D�DAF�CH� − �AC�F�H�DEB�GD� − �AC�F�H�MEB�GD�

− �EG�B�D�MAF�CH�� . �42�

he spinor CAB�CD�EF�GH� is defined by

CAB�CD�EF�GH� = AAB�CD�EF�GH� + BAB�CD�EF�GH�, �43�

here

AAB�CD�EF�GH� = �ACEG�F�H��B�D� + �̄F�H�B�D��AC�EG, �44�

nd

BAB�CD�EF�GH� = �ACEG�F�H��B�D� + �̄F�H�B�D��AC�EG. �45�

The decomposition of CAB�CD�EF�GH� into A and B is equivalent to a decomposition of the
pinor into real and imaginary parts, AAB�CD�EF�GH�=R�CAB�CD�EF�GH�� and BAB�CD�EF�GH�
I�CAB�CD�EF�GH��. The spinor AAB�CD�EF�GH� is identically zero when contracted over the first
nd third pair of indices,

AEF�
AB�EF�CD�

= 0, �46�

ue to its symmetries and real valuedness which is readily verified after some straightforward
lgebra. The spinor BAB�CD�EF�GH� can be contracted to form

�AB�CD� = BEF�
AB�EF�CD�

�47�

atisfying

�AB�CD� = − �CD�AB� = �̄CD�AB� �48�

nd which is traceless in turn

�AB�CD�
AB�CD�

= 0. �49�

Equations �42�–�47� is comprised only of scalars or traceless spinors and hence is the sought
rreducible representation of the spectral density spinor. In summary the decomposition is

SAB�CD�EF�GH� = AAB�CD�EF�GH� � �AB�CD� � MAB�CD� � DAB�CD� � � . �50�

ounting components we find that Eq. �43� has 5 plus 3 complex components from � and �,
espectively, which follows from the symmetries. From the discussion in Sec. II C we know that
he � and  spinors have nine real components each which implies that M and D have 18 real
omponents in total. Together with the complex invariant � it adds up to 36 independent real

omponents, in agreement with the above discussion.
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. Relation to the Riemann tensor

We may note that if the covariant spectral density tensor was real and satisfied S���	=S�	��

nstead of Eq. �7b� it would satisfy the same symmetries as the Riemann tensor, S���	=R���	.

ndeed in such a case DAB�CD�=0, �AB�CD�=0, �AB�CD�= ̄CD�AB� so that MAB�CD�=2AB�CD� would

e the traceless Ricci spinor, AAB�CD�EF�GH�=�ACEG�F�H��B�D�+�̄F�H�B�D��AC�EG the traceless
eyl spinor and �=�*=R would be the Ricci scalar curvature. Hence Eq. �42� would be com-

letely analogous to the irreducible spinor representation of the Riemann curvature tensor.

. Irreducible tensor representation

It is interesting to transform Eq. �42� to its tensor form, using the relation between a spinor
nd its equivalent tensor, given by Eq. �A9�. In summary, we can write this decomposition of the
ovariant spectral density tensor into its irreducible components symbolically as

S���	 = A���	 � ��� � M�� � D�� � � , �51�

ith the number of independent components 10+6+9+9+2=36. In connection to this it is worth-
hile noting that the complex scalar invariant �, the only quantity of the electromagnetic field
ifferent observers agree on, satisfies

R��� = 1
4F��F

��, �52�

I��� = − 1
8F��

*F��, �53�

here *F�� is the dual tensor

*F�� = 1
2����
F�
. �54�

ence, we recover the two scalar invariants of electromagnetic field theory as the real and imagi-
ary parts of the complex scalar invariant of the covariant spectral density tensor.

II. SPECIAL CASE: FLAT SPACE-TIME

In this section we treat the important special case of a flat space-time in the absence of
ravitation, with the prescribed metric given by

g�� =�
1 0 0 0

0 − 1 0 0

0 0 − 1 0

0 0 0 − 1
� . �55�

he electromagnetic field tensor is represented by

F�� =�
0 − Ex − Ey − Ez

Ex 0 Bz − By

Ey − Bz 0 Bx

Ez By − Bx 0
� �56�

n natural units where we have put c=1.
The solution to Eq. �A2� for the given Minkowskian metric Eq. �55� gives the Infeld van der
aerden symbols
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AB�
0 =

1
�2

	1 0

0 1

, 
AB�

1 =
1
�2

	0 1

1 0

 ,

�57�


AB�
2 =

1
�2

	 0 i

− i 0

, 
AB�

3 =
1
�2

	1 0

0 − 1



roportional to the Pauli matrices.1 We now follow the following scheme:

1� Form the spectral density tensor Eq. �6�.
2� Calculate the spectral density spinor Eq. �8� using Eq. �57�.
3� Calculate � ,� , using Eqs. �13�–�15�.
4� Calculate the irreducible spinor components � from Eq. �25�, MAB�CD� from Eq. �30�,

DAB�CD� from Eq. �35�, � from Eq. �37� and � using Eq. �40�.
5� Transform the spinors obtained to their irreducible tensor counterparts using Eq. �A9� and the

spinorally contravariant form of Eq. �57�.

. Fundamental objects as irreducible components

By following the above scheme we find the SL�2,C� irreducible tensor components that
omprise the spectral density tensor according to Eq. �51�. The first tensor, the complex scalar
nvariant � is found to be

� = 1
2 ��E�2 − �B�2� + iR�E · B*� . �58�

e identify the real and imaginary parts as the scalar Lagrangian invariant and the pseudoscalar
nvariant �here expressed in complex form since the fields are Fourier transformed�. As is well
nown, these are the only two invariants that exist in Maxwells theory. This is verified here by the
act that only scalars are true invariants under a general spin frame transformation.

Calculating the components of the first rank two tensor M�� we find

M�� =�

 Px Py Pz

Px Txx Txy Txz

Py Tyx Tyy Tyz

Pz Tzx Tzy Tzz

� , �59�

here we have used the notation


 = 1
2 ��E�2 + �B�2� , �60�

Px = 1
2 �R�EyBz

*� − R�By
*Ez�� , �61�

Py = 1
2 �R�EzBx

*� − R�Bz
*Ex�� , �62�

Pz = 1
2 �R�ExBy

*� − R�Bx
*Ey�� , �63�

Tij = − R�EiEj
* + BiBj

*� + 	ij
 . �64�

e immediately recognize Eq. �59� as the energy-momentum-stress tensor in Maxwells theory,
ere obtained as one of the irreducible components of the spectral density tensor under SL�2,C�.
e identify as usual 
 as the energy density of the electromagnetic field, �Px , Py , Pz�= 1

2R�E
*
B � as the complex Poynting vector and Tij as the three-dimensional Maxwell stress tensor.
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Turning our attention to the second rank two irreducible tensor D�� we find analogously

D�� =�
K Qx Qy Qz

Qx Uxx Uxy Uxz

Qy Uyx Uyy Uyz

Qz Uzx Uzy Uzz

� , �65�

here we have used the notation

K = − I�E · B*� , �66�

Q = −
i

2
�E � E* + B � B*� , �67�

Uij = − I�Ei
*Bj − Bi

*Ej� + 	ijK . �68�

e identify the D00 component as the imaginary part of the pseudoscalar invariant of the electro-
agnetic field. Since also, e.g., Qx=−I�EzEy

*+BzBy
*� we note that all components of the tensor D��

an be written as imaginary parts. In analogy with 
, the energy density Eq. �60�, we may denote
q. �66� the spin density of the electromagnetic field. This is because Q, Eq. �67�, is only different

rom zero in the case when the electromagnetic field is elliptically �i.e., not linearly� polarized. We
all Q the “spin flux density.”

Finally we calculate the components of the remaining rank four tensor C���	. Its real part

���	 is traceless

A�
��� = 0 �69�

hen contracted. This tensor has 10 independent components. In order to write this rank four
ensor on a compact form, we introduce the bijective mapping of the index pairs �1,0�↔ �1�,
2 ,0�↔ �2�, �3,0�↔ �3�, �3,2�↔ �4�, −�3,1�↔ �5�, �2,1�↔ �6�. We can then construct the col-

umn sixtors Ak, where, for example, the first vector is A1= �A1010,A1020,A1030,A1032,
A1031,A1021�T. The tensor A���	 is then equivalent to the 6�6 matrix Akl= �A1A2A3A4A5A6�. In

ndex notation it becomes

A���	 ↔ 	E F

F − E

 , �70�

here the two block matrices

E = Eij = − 1
2R�Ei

*Ej − Bi
*Bj� + 2

6R���	ij �71�

nd

F = Fij = − 1
2R�Ei

*Bj + Bi
*Ej� + 2

6I���	ij �72�

ach contains five independent components.
The contracted imaginary part of C���	 behaves as an antisymmetric Hermitian matrix and

ave the components

��� =�
0 · · ·

Sx 0 · ·

Sy Vyx 0 · � , �73�
Sz Vzx Vzy 0
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here

S = �Sx,Sy,Sz� = −
i

3
I�E � B*� �74�

s the imaginary part of the complex Poynting vector and

Vij = −
i

3
I�Ei

*Ej − Bi
*Bj� �75�

s a three-tensor.

. Physical interpretation

Interestingly, as we noted above, the real part of the scalar invariant Eq. �58� of the electro-
agnetic field would play the role of the Ricci scalar curvature in the case of real valued fields.
imilarly the energy-momentum-stress tensor M�� would play the role of the Ricci tensor, while

he rank four tensor A���	 would be analogous to the Weyl conformal tensor. While we could
roceed with the analogy of curvature of space-time to the “curvature” of the electromagnetic
eld, we will not pursue this topic further in the present paper.

The fact that the two possible true invariants of the electromagnetic field are found as the real
nd imaginary parts of the complex scalar invariant is natural, since all inertial observers should
gree upon their measured values. That the energy-momentum-stress tensor is found to be an
rreducible component under SL�2,C� is encouraging and stress its importance in Maxwells theory.

More surprising is the �pseudo-� tensor D�� found as the second irreducible rank two com-
onent. To the authors knowledge, this rank two tensor has not been written down explicitly in this
orm before.3 We stress that this tensor is obtained on equal footing and occur as naturally as the
nergy-momentum stress tensor in our analysis. The components of D�� represents observables,
ith a clear physical meaning of classical “spin”. The new rank four tensor C���	 is complex
alued. Although the contracted imaginary part ��� is containing the imaginary part of the com-
lex Poynting vector its physical interpretation is not yet clear and is left for a future study.

V. CONCLUSIONS AND OUTLOOK

We have considered all possible bilinear forms of the electromagnetic Fourier transformed
eld for an arbitrary time-independent metric in Riemannian space-time. The constructed spectral
ensity tensor was decomposed into irreducible components by considering the spectral density
pinor in the complex tangent space introduced under the group SL�2,C�. The spectral density was
ound to be comprised of the following irreducible components: a complex scalar invariant cor-
esponding to the two known invariants of the electromagnetic field, the rank two energy-
omentum-stress tensor, another new rank two tensor expressing the spin �polarization� properties

f the electromagnetic field, another rank two tensor, containing the imaginary part of the complex
oynting vector, and finally a new rank four tensor. This decomposition is expressed in Eqs �50�
nd �51�. While the first two tensors �scalar and stress tensor� are well-known important objects in
axwells theory, the new rank two and rank four tensors are very little or not at all previously

tudied. Since they are irreducible components under the group transformations we propose that
hey also are conserved quantities of the electromagnetic field. Considering how they arise as
aturally and inevitably as the ususal energy-momentum-stress tensor, they certainly deserve
urther study. We leave the detailed study of the discovered components and their conservation
aws to a future investigation.
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PPENDIX: SPINOR REPRESENTATION OF THE GROUP SL„2,C… IN CURVED
PACE-TIME

In this appendix we review the theory of spinors and how they are applied to general relativity.
n a Riemannian space one can to each point in space-time introduce a complex two-dimensional
angent space. For every tensor in Riemannian space there is then a corresponding complex spinor
n the tangent spinor space. For every tensor index labeled with greek letters running over 0, 1, 2,

there are then two spinor indices labeled with capital letters running over 0, 1. Primed spinor
ndices belong to the complex conjugate spinor space and and runs over 0� ,1�. Spinors originate
rom the representation theory of the group SL�2,C�. We use a matrix representation in which a
ypical element g of the group SL�2,C� is represented by the matrix

g = 	a b

c d

, ad − bc = 1 �A1�

ith determinant unity.
The correspondence between tensors and spinors are established by the Infeld van der Waer-

en symbols, a set of four 2�2 Hermitian matrices 
AB�
� �x��, which are functions of space-time.

hese objects transform as a tensor in greek indices, and as a spinor in italic indices. They satisfy
he relation

g��
AB�
�


CD�
� = �AC�B�D� �A2�

elating the Infeld van der Waerden symbols to the metric tensor of Riemannian space and the
evi-Cevita symbols, represented by

�AC = �B�D� = �AC = �B�D� = 	 0 1

− 1 0

 . �A3�

he Levi-Cevita symbols play the spinor role analog to the metric tensors. The operation of raising
nd lowering spinor indices are accomplished by

�A = �AB�B, �A = �B�BA �A4�

nd analogously for primed indices

�A� = �A�B��B�, �A� = �B��B�A�. �A5�

ne can easily check that the spinor of the metric tensor satisfies

gAB�CD� = �AC�B�D�. �A6�

The relation between a tensor T�� and the corresponding spinor is given by

TAB�CD� = 
AB�
�


CD�
� T�� �A7�

nd analogously for tensors with more indices. If the tensor is real valued, the spinor equivalent is
ermitian, e.g., the real valued vector A� has an equivalent Hermitian spinor

AAB� = ABA� = ĀB�A. �A8�

f the tensor is complex the hermicity condition of the spinor does not hold. This is the case for
ost spinors encountered in this paper. Finally, given a spinor TAB�CD� its tensor equivalent T�� is

iven by


AB�
CD�T = T . �A9�
� � AB�CD� ��
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We also list the following useful spinor relations:

�AB�CA = − 	C
B, �A10�

�AB − �BA = �C
C�AB = �CD�CD�AB, �A11�

�ABCD − �BACD = �F
F

CD�AB = �FG�FGCD�AB. �A12�

1 M. Carmeli, Classical Fields: General Relativity and Gauge Theory �Wiley, New York, 1982�.
2 L. Witten, Phys. Rev. 113, 357–362 �1959�.
3 The authors learned that the new rank two tensor has been found independently by T. D. Carozzi by another method.
Submitted to J. Math. Phys. �2005�.
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We consider a number of mathematical properties of Maxwell’s equations for linear
dispersive and absorptive dielectric media using the auxiliary field method devel-
oped earlier by the author �A. Tip, Phys. Rev. A 57, 4818 �1998��. Here the fields
are interpreted as square integrable functions of x�R3. In case the susceptibility
��x , t� is piecewise constant in x, we show rigorously that a decomposition into
independent equations for longitudinal and transverse fields can be made. We point
out its relevance for the study of spectral properties of photonic crystals. Again, for
the piecewise constant case we discuss the usual boundary conditions at interfaces
and discuss the different nature of those for the longitudinal and transverse fields.
Then we consider energy conservation for dispersive, nonabsorptive, media. We
show that additional contributions to the free field energy density, as given in the
literature, are associated with the energy stored in the auxiliary field modes. Finally,
we show that also for nonlinear dielectrics it is possible to obtain a conserved
energy by introducing auxiliary fields. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2158432�

. INTRODUCTION

In the present paper we discuss some mathematical properties of the classical phenomeno-
ogical Maxwell’s equations for linear dielectrics, considering the fields as square integrable func-
ions. Indeed, outside the realm of electrostatics, the propagation of electromagnetic waves is a
ajor issue and it can be advantageous to employ a Hilbert space formulation. Then concepts

nown from the Schrödinger case can be taken over, notably for scattering and spatially periodic
ystems. In the first Møller �wave� operators naturally appear, whereas in the second the Bloch–
loquet decomposition is a convenient tool to study the spectral band structure of photonic crystals
PCs�. A basic observation is here that the energy

Eem�t� =
1

2
� dx�E�x,t�2 + B�x,t�2� �1.1�

f an electromagnetic system in vacuum, is a conserved quantity, so Eq. �1.1� can be used to
ntroduce a norm and associated Hilbert space, leading to a unitary time evolution. However,

acroscopic dielectrics have a more complicated structure and the situation is not as straightfor-
ard. The main obstacle is the appearance of a time convolution in the constitutive equation

elating the displacement D�x , t� and electric field E�x , t�,

�
Electronic mail: tip@amolf.nl

47, 012902-1022-2488/2006/47�1�/012902/22/$23.00 © 2006 American Institute of Physics
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D�x,t� = E�x,t� + P�x,t�, P�x,t� =�
t0

t

ds ��x,t − s�E�x,s� . �1.2�

evertheless, as shown earlier by the author,1 it is possible, by introducing two auxiliary fields, to
btain once more a description as a unitary time evolution in an appropriate Hilbert space. In a
ubsequent paper, with Moroz and Combes,2 a mathematically precise theory of photonic crystals
ade up from general dispersive or absorptive dielectric material was given.

In the present work, after introducing the general formalism for macroscopic absorptive and
ispersive systems, the emphasis will be on systems where the electric susceptibility ��x , t� is
iecewise constant as a function of x, which is the typical situation for the scattering of electro-
agnetic waves from a homogeneous dielectric object and for PCs. For this case we show that an

xact decomposition into separate sets of equations of motion for the transverse and longitudinal
eld components is possible. Here we use the momentum space definition of longitudinal and

ransverse components, valid for general square integrable fields, which reduces to the usual
haracterizations �x · f=0 for transverse and �x� f=0 for longitudinal fields for sufficiently smooth
.

We then turn to the discussion of initial and boundary conditions. Although in electrostatics
he continuity across interfaces of the normal component of the displacement D and the tangential
omponents of the electric field E are often treated in a similar way, using Gauss’ and Stokes’
heorems, we show that they are of a different nature. The first is actually an initial condition on
he system, whereas the second is not required at all for the existence of a time evolution, but

akes its appearance in the differential form of Maxwell’s equations and in eigenvalue problems.
n this connection we note that we are dealing with elements of a Hilbert space, which are
quivalence classes of square integrable functions. Within this context, continuity means that the
quivalence class contains a continuous element.

Next we consider the conservation of energy for dispersive dielectrics. Although energy is
xpected to be conserved in the absence of absorption, it depends on which energy is actually
onsidered. We show that the existing approximate expressions for the conserved energy density in
act consist of the sum of the electromagnetic one and the part contained in the auxiliary field
odes.

Since the existence of a conserved energy plays an important role in the development of the
heory presented here, we finally show that it is also possible to define a conserved energy for
onlinear dielectrics. Here we take the opportunity to discuss an alternative, equivalent, method to
ntroduce auxiliary fields.

I. MAXWELL’S EQUATIONS AND THE LINEAR SUSCEPTIBILITY

. Maxwell’s equations

Here we summarize our earlier results1 and start off by proceeding formally, but in the next
ection will end up with a precise setting where Maxwell’s equations are recast as a unitary time
volution on a Hilbert space. As said this is a priori not evident in view of the time convolution
n Eq. �1.2�.

The macroscopic Maxwell’s equations pertaining to absorptive and dispersive dielectrics are
we set �0=�0=1 and, in quantum situations, also �=1�

�tD�x,t� = �x Ã B�x,t�, �tB�x,t� = − �x Ã E�x,t� ,

�x · D�x,t� = �x · B�x,t� = 0, D�x,t� = E�x,t� + P�x,t� , �2.1�

here, in the isotropic linear case considered here, the polarization field P�x , t� is related to the

lectric field according to
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P�x,t� = �
t0

t

ds ��x,t − s�E�x,s�, ��x,t� = 0, t � 0, �2.2�

ith ��x , t� the electric susceptibility, which we consider as a given quantity. We are primarily
oncerned with the situation where the dielectric of interest fills the part of space outside of which
e have a vacuum or an isotropic, spatially homogeneous, background medium, characterized by

he dielectric constant �bg, so D�x , t�=�bgE�x , t� for x in the background. By a simple rescaling,
oth cases can be treated in the same way. In Ref. 1 the situation where �bg depends on x was also
onsidered.

We assume that ��x , t� is measurable in x and differentiable in t �we denote �t��x , t�
���x , t��, satisfying

��x,t� = 0, t � 0, ��x,0� = 0, ����x,t�� � c� � �, ∀ x,t . �2.3�

he vanishing of ��x , t� for negative times is a consequence of causality, whereas its vanishing at
=0 excludes nonphysical initial surges in the current density J�x , t�=�tP�x , t�.

An important special case is the situation where the material is contained in a set A�R3,
urrounded by the background medium, where A may be made up from a collection of nonover-
apping subsets, A=� jA j, A j �Ah=�, j�h, with the boundaries of the subsets having certain
egularity properties �spheres, cubes, a set of parallel layers or a half-space�. In order to keep the
ookkeeping simple, we assume that the susceptibility is homogeneous over each A j, so

��x,t� = 	
j

IA j
�x�gj�t� , �2.4�

here IM�x� is the characteristic function for the set M, IM�x�=1, x�M, and vanishes other-
ise. For PCs �see Sec. IV� the A j’s are identical sets with identical positions in the unit cells with

he same g�t�.
Definition: We refer to the situation given by Eq. �2.4� as the piecewise constant case.

. The susceptibility

We now turn to the general properties of the electric susceptibility ��x , t�. First we recast the
rst of Eqs. �2.1� according to

�tE�x,t� = �x Ã B�x,t� − J�x,t�, J�x,t� =�
t0

t

ds ���x,t − s�E�x,s� . �2.5�

ith Eem�t� as given by Eq. �1.1�, we noted in Ref. 5 that, adapting to the present notation,

	Eem�t� 
 Eem�t� − Eem�t0� = −� dx�
t0

t

ds�
t0

t

du ���x,s − u�E�x,u� · E�x,s� . �2.6�

enoting Laplace transforms with an overcaret,

f̂�z� =�
0

�

dt exp�izt�f�t�, Im z 
 0, f�t� =
1

2�
� d� exp�− i�� + i�t� f̂�� + i�,  
 0,

�2.7�

e then have, since ��x ,0�=0,

ˆ ˆ
���x,z� = − iz��x,z� , �2.8�
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nd both �̂�x ,z� and �̂��x ,z� are analytic in the open upper complex half-plane C+. In addition, we
ote that, in view of Eqs. �2.3�, for y
0,

y��̂��x,iy�� � c�. �2.9�

e now write

	Eem�t� = −
1

2�
� dx� d� �̂��x,� + i���

t0

t

ds exp�− i�� + i�s�E�x,s��2

= −
1

2�
� dx� d� Re �̂��x,� + i���

t0

t

ds exp�− i�� + i�s�E�x,s��2

. �2.10�

Definition: We define the class of dispersive and absorptive systems as that for which 	Eem�t�
s nonincreasing.

For such systems Re �̂��x ,z��0, z�C+, and taking the other properties of �̂��x ,z� into ac-
ount, we conclude that i�̂��x ,z� is a Herglotz function �for a useful summary of the properties of
erglotz functions, see Ref. 4�. Hence, �̂��x ,z� can be represented as

�̂��x,z� = − i� ��x,d��
1

� − z
, �2.11�

here ��x ,d�� is a non-negative measure with finite total measure ��x ,R�. Then ���x , t�
���x ,d��exp�−i�t� and since ���x , t� is real, we can, without loss of generality, assume that
�x ,d�� is even in �. We discussed these matters before in Ref. 5, but in a more roundabout way.
e now decompose ��x ,d�� into parts that are absolutely continuous and singular continuous
ith respect to Lebesgue measure and a pure point �discrete� part,

��x,d�� = �ac�x,d�� + �sing�x,d�� + �p�x,d�� = ��x,��d� + �sing�x,d�� + 	
n

�n�x��� − �n�d� .

�2.12�

e shall dismiss �sing�x ,d�� since it has no apparent physical applications, and in the sequel we
hall absorb the point measure part in ��x ,��d�, so

���x,t� =� d� ��x,��cos �t, t � 0, ��x,�� =
1

�
�

0

�

dt ���x,t�cos �t ,

�̂�x,z� =� d� ��x,��
1

�2 − z2 , �̂��x,z� = − iz� d� ��x,��
1

�2 − z2 ,

Re �̂��x,� + i0� = � Im �̂�x,� + i0� = ���x,�� ,

	Eem�t� = −
1

2
� dx� d� ��x,����

t0

t

ds exp�i�s�E�x,s��2

. �2.13�

Definition: Absorptive systems are those for which ��x ,�� is absolutely continuous and dis-
ersive systems those for which it is a set of point measures. Obviously we can refine this to
bsorptive and dispersive intervals.

The general Drude–Lorentz susceptibility in a space region where ��x , t� does not depend on

, is

                                                                                                            



T
s

T
B

t

a
o

C

i

w

B
�
M

t

A
M

F

012902-5 Mathematical properties of dielectrics J. Math. Phys. 47, 012902 �2006�

                        
�̂�z� = −
�0

2

z2 + i�0z
− 	

n=1

�
�n

2

z2 + i�nz − �n
2 , �0,�n,�n,�n 
 0. �2.14�

he point measure case is then obtained by setting �n=0, i.e., the dispersive Drude–Lorentz
usceptibility is

�̂�z� = −
�0

2

z2 − 	
n=0

�
�n

2

z2 − �n
2 , ��t� = �0

2t + 	
n=1

�

�n
2sin �nt

�n
, ���t� = �0

2 + 	
n=1

�

�n
2 cos �nt, t � 0.

�2.15�

he dispersive Drude case, �̂�z�=−�0
2 /z2, is somewhat pathological, ��t� growing linearly in t.

ut it still fits into the formalism we are going to develop.
Returning to our original notation, it follows from

�z�z�̂�x,z�� =� d� ��x,��
�2 + z2

��2 − z2�2 , �2.16�

hat in the dispersive case, for real ���n,

�����̂�x,��� = 	
n

�n�x�
�2 + �n

2

��2 − �n
2�2 � 0, �2.17�

quantity that occurs in work concerning the energy of dispersive dielectrics,6,7 as discussed later
n.

. The Helmholtz equation

If t0=0, so D�x ,0�=E�x ,0�, we can Laplace transform Maxwell’s equations, resulting in the
nhomogeneous Helmholtz equation

�z2��x,z� − h� · Ê�x,z� = izE�x,0� − �x Ã B�x,0�, Im z 
 0, �2.18�

here

D̂�x,z� = ��x,z�Ê�x,z�, ��x,z� = 1 + �̂�x,z�, h = �x Ã ��x Ã ¯ � . �2.19�

ut if t0=−� this becomes problematic since then there is an additional term
ˆ �x ,z��−�

0 dt exp�izt�E�x , t�, which can be infinite. In this case we can try to Fourier transform
axwell’s equations. Proceeding formally, we find for

Ẽ�x,�� = �2��−1/2� dt exp�i�t�E�x,t� , �2.20�

hat ���x ,��=1+ �̂�x ,�+ i0�, so Im ���x ,��=���x ,���0�

��2��x,�� − h� · Ẽ�x,�� = 0. �2.21�

ssuming Ẽ�x ,�� to be locally square integrable in x, we have for a bounded measurable set
�R3,

Im �
M

dx���2��x,�� − h� · Ẽ�x,��� · Ẽ�x,�� = ���
M

dx ��x,���Ẽ�x,���2 = 0. �2.22�
or a dispersive system this becomes
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��	
n

�� − �n��
M

dx �n�x��Ẽ�x,�n��2 = 0, �2.23�

o Ẽ�x ,�n�=0, for all x for which �n�x��0, i.e., Eq. �2.20� has no solutions for �=�n. Then,
etting t0→−� and t→�,

	Eem = Eem��� − Eem�− �� = −
1

2
� dx� d� ��x,���Ẽ�x,���2 = −

1

2	
n
� dx �n�x��Ẽ�x,�n��2 = 0,

�2.24�

o 	Eem=0 for dispersive systems, justifying the above definition. Thus, although 	Eem�t� is time
ependent, asymptotically it turns back to its initial value. Note that the above manipulations are
f a formal nature. But, as shown later on for the PC case, the result can be rigorously justified.
or the absorptive PC case, as we showed in Ref. 2, Eq. �2.20� has no solutions for real � in
requency intervals, where Im ��x ,���0. This can also be obtained in a formal manner from Eq.
2.21�. It implies that the Fourier expansion, Eq. �2.20�, does not exist. This situation is rather
nsatisfactory, but it can be improved by using the auxiliary field formalism to which we turn now.

II. THE AUXILIARY FIELD FORMALISM

. Absorptive case

We define for the absorptive case, where we can write ��x ,��=��x ,��2, ��x ,���0,

F1�x,t� = E�x,t�, F3�x,t� = B�x,t� ,

F2�x,�,t� = ��x,���
t0

t

ds sin ��t − s�E�x,s� ,

F4�x,�,t� = ��x,���
t0

t

ds cos ��t − s�E�x,s� . �3.1�

hen, omitting x and � dependencies for brevity, denoting

F�t� = Fe�t�
Fm�t�

� =�
F1�t�
F2�t�
F3�t�
F4�t�

� , �3.2�

e have

�tF�t� = − iKF�t� , �3.3�

here ��= ��klm� is the Levi-Civita symbol, �123=1 and �klm changes sign under the interchange of
ach two subscripts, so �� ·a� ·b=−a�b, whereas p=−i�x is the generator of translations, i.e., the
omentum operator of quantum mechanics�,

K =  0 Kem

Kme 0
�, Kem = �� · p − i� d� ��x,�� . . .

0 i�
�, Kme =  − � · p 0

i��x,�� − i�
� . �3.4�
e note that Eq. �3.3� is equivalent to Maxwell’s equations, provided
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F2�x,t0� = F4�x,t0� = 0, �3.5�

here it is understood that the limits t0→−� are meant in case t0=−�. Let H= � j=1
4 H j, H1

H3=L2�R3 ,dx ;C3�, H2=H4=L2�R3 ,dx ;C3� � L2�R ,d��, so we have for the inner product and
orm squared,

�f,g� =� dx�f1�x� · g1�x� + f3�x� · g3�x� +� d��f2�x,�� · g2�x,�� + f4�x,�� · g4�x,����

= 	
j=1

4

�f j,g j� j ,

�f�2 = 	
j=1

4

�f j,f j� j = 	
j=1

4

�f j� j
2. �3.6�

s already noted in Ref. 7, K defines a self-adjoint operator in H. To see this we write K=K0

K1, with

K0 =  0 K0em

K0me 0
�, K0em = � · p 0

0 i�
�, K0me = − � · p 0

0 − i�
� . �3.7�

n Fourier �momentum� space K0 is a matrix multiplication operator, which is easily seen to have
unique self-adjoint extension, whereas a simple estimate, using ����x ,0���c�, shows that K1 is
bounded self-adjoint operator. We note further that

K2 = He 0

0 Hm
�, He = �h + ���x,0� −� d� ���x,�� . . .

− ���x,�� �2 � , �3.8�

Hm = � h i� · p� d� ��x,�� . . .

i��x,��� · p �2 � .

ere, in dyadic notation, with U the unit 3�3 matrix,

h = p2U − pp = p2�p, �p = U − epep, ep = p/�p� = p/p , �3.9�

o h · f�x�=�xÃ ��xÃ f�x�� for sufficiently smooth f�x�. Thus we have obtained a precise setting for
axwell’s equations for an absorptive dielectric as a unitary time evolution for a set of square

ntegrable functions in a Hilbert space H under the assumption F2�x ,� , t0�=F4�x ,� , t0�=0. We
ote in passing that it is an appropriate starting point for a quantized theory as discussed fully in
ef. 1. Since there the fields become operators the initial condition F2�x ,� , t0�=F4�x ,� , t0�=0

oses its meaning and is dropped.
K being self-adjoint, it has the spectral decompositions

K =� �E�d�� . �3.10�

hen, if K possesses an eigenfunction expansion �� labels a possible degeneracy�,

E�d�� = 	
�

�u����u���d�, �u���u��� = U�� − ��a�, �3.11�

˜
he Fourier transform F��� satisfies the eigenvalue equation
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KF̃��� = �F̃��� , �3.12�

r,

HeF̃e��� = �2F̃e��� , �3.13�

hich, in contrast to Eq. �2.21�, make sense for real �. Thus the problem noted at the end of Sec.
I can be circumvented. We shall not go into the proof of the existence of eigenfunction expan-
ions. In scattering situations He is not very different from the Schrödinger operator case with a
imple bounded potential, see Ref. 8, but here we also encounter the variable ��R. In the
ispersive case, see below, we deal with a discrete set of �n’s and for PCs the problem can be
educed by means of a Bloch–Floquet decomposition to one involving square integrable eigen-
unctions.

. Dispersive case

In the dispersive case we can no longer write ��x ,��=��x ,��2 and the formalism needs
odification. In Ref. 1 a general formulation was given, with ��x ,�� as a weight function in the

nner product. But we can also proceed by writing

J�x,t� = 	
n

�n�x��
t0

t

ds cos �n�t − s�E�x,s� = 	
n

�n�x�F4n�x,t�, �n�x� = �n�x�2, �n�x� � 0.

�3.14�

hus, with

F1�x,t� = E�x,t�, F3�x,t� = B�x,t� ,

F2n�x,t� = �n�x��
t0

t

ds sin �n�t − s�E�x,s� ,

F4n�x,t� = �n�x��
t0

t

ds cos �n�t − s�E�x,s� , �3.15�

e have

�tF1�x,t� = − i��� · p�F3�x,t� − i	
n

�n�x�F4n�x,t�� ,

�tF2n�x,t� = − i�i�nF4n�x,t�� ,

�tF3�x,t� = − i�− �� · p�F1�x,t�� ,

�tF4n�x,t� = − i�i�n�x�F1�x,t� − i�nF2n�x,t�� . �3.16�

e can now define K acting in H= � jH0, H0=L2�R3 ,dx ;C3�. Of particular interest is the case of
single n and �n�x�=�PA, where PA is the projector associated with IA�x�. Then, setting �n

�0,

K =  0 Kem �, Kem = � · p − i�PA �, Kme = − � · p 0 � ,

Kme 0 0 i�0 i�PA − i�0
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He = h + �2PA − �0�PA

− �0�PA �0
2 �, Hm =  h i� · p�PA

i�PA� · p �0
2 + �2PA

� . �3.17�

he Drude case is obtained by setting �0=0, leading to

He = h + �2PA 0

0 0
�, Hm =  h i� · p�PA

i�PA� · p �2PA
� . �3.18�

ere the properties of He are essentially those of h+�2PA, its transverse part �see below� p2

�2PA being the Schrödinger operator for a potential consisting of a number of humps. In the
iecewise constant case with randomly placed A j’s and �2 sufficiently large, it cannot be ruled out
hat spectral intervals showing Anderson localization exist.

V. PHOTONIC CRYSTALS

Three-dimensional photonic crystals are dielectrics with spatial periodicity,

��x,t� = �x + 	
j=1

3

nja j,t�, nj � Z , �4.1�

ith the a j’s three linearly independent real vectors �other cases are those with only two indepen-
ent a j’s or only a single one�. In practice, the dielectric fills an identical region A j in each unit
ell C j over which ��x , t� is homogeneous in x �piecewise constant case�. Then a Bloch–Floquet
ecomposition can be made, so that K is reduced to K��� on HC, where in the H j’s of Sec. III the
integration is restricted to the unit cell C�R3 containing the origin. The vector ��B, the first
rillouin zone, labels the �Bloch� boundary conditions on �C. For details, see Ref. 2. In this case

he operator h changes into h���, the closure of −�x
2U+�x�x with Bloch boundary conditions on

C. Instead of Eq. �2.21� we then have

��2��x,�� − h���� · Ẽ�x,�,�� = 0, �4.2�

n dispersive intervals, i.e., intervals over which ��x ,�� is real, the transverse parts of the corre-
ponding K��� and He��� have a discrete point spectrum, each eigenvalue having finite multiplic-
ty. As in the solid state case, band gaps �intervals containing no eigenvalues for any ��B� are
ossible. In the absorptive case there are resonances rather than eigenvalues, giving rise to a
omplex band spectrum.2 A practical consequence is that now Eq. �4.2� has solutions with com-
lex �=���� in the lower complex half-plane C−. After complex dilatation, letting � run through
, we obtain the spectrum of the complex dilated original operator K, a set of islands in C−. In Ref.
we calculated the latter for a two-dimensional case with dielectric cylinders. It is possible that in

ther cases the situation is similar but this may be hard to establish since here we could first deal
ith the situation for a single � and then reconstruct the full spectrum, which is not possible in
eneral. In the sequel, when referring to a photonic crystal, we mean the arrangement sketched
bove.

. DECOMPOSITION INTO LONGITUDINAL AND TRANSVERSE COMPONENTS

The piecewise constant case, Eq. �2.4�, is often encountered in practical situations, in particu-
ar PCs. In the absence of external charges and currents the Laplace transform,

D̂�x,z� = ��x,z�Ê�x,z� , �5.1�

ˆ ˆ
atisfies �x ·D�x ,z�=0, so D�x ,z� is transverse. Then
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��x,z��x · Ê�x,z� = − ��x��x,z�� · Ê�x,z� , �5.2�

hich is, in general, nonzero, so Ê�x ,z� can have both longitudinal and transverse components.
ut here �x��x ,z� is nonzero only on the boundary �A of A, where it is, in fact, singular. Thus

ˆ �x ,z� is transverse except on a set of measure zero in R3 and, since it is square integrable, we
xpect this to be irrelevant. But in order to proceed we first have to define the decomposition into
ongitudinal and transverse components for general square integrable fields. Thus let f�x�

L2�R3 ,dx ;C3� with Fourier transform f̃�k�. Then we can write, indicating longitudinal fields by
and transverse ones by �,

f̃�k� = ekek · f̃�k� + �k · f̃�k� = P�f̃�k� + P�f̃�k� = f̃��k� + f̃��k� , �5.3�

o f̃��k� is along k and f̃��k� orthogonal to k. This defines the corresponding decomposition in
oordinate space. It is easily verified that, for sufficiently smooth f�x�, indeed �x · f��x�=0 and

x� f��x�=0.
For a general absorptive dielectric,

��x,�� = 	
j

IA j
�x�sj��� = 	

j

Pjsj��� , �5.4�

here Pj = PA j
is the projector associated with IA j

�x�. Let the longitudinal and transverse projec-
ors on H be defined by

E� = P�V, E� = P�V, H� = E�H, H� = E�H , �5.5�

ith V the unit 4�4 matrix. We are interested in the commutation properties of E� and K. We first
onsider the commutation properties of P� and PA.

Lemma: On H0=L2�R3 ,dx ;C3� the operators PA and P� �and hence also PA and P�� com-
ute.

Proof: Let F�H0 be the dense subset of compactly supported smooth functions that vanish in
neighborhood of �A. Then G= �g=p2f � f�F� also has these properties. Now let g=p2f�G. Then

P�g��x�= �pp·f��x�=−�x�x · f�x� and noting that f�x� vanishes in a neighborhood of �A,

�PAP�g��x� = − IA�x��x�x · f�x� = − �x�x · IA�x�f�x� = �pp · PAf��x� = �P�p2PAf��x� . �5.6�

ut

�p2PAf��x� = − �x
2IA�x�f�x� = − IA�x��x

2f�x� = �PAp2f��x� = �PAg��x� , �5.7�

o �PAP�g��x�= �P�PAg��x�. Since G is dense in H0 and P� and PA are bounded operators, we
onclude that they commute and hence so do P� and PA. �

Remark: The above result sensitively depends on the topology. In the proof the existence of a
ense set of functions, vanishing in a neighborhood of �A is essential. The result is somewhat
urprising since, in contrast to PA, P� and P� are not obviously local operators in coordinate
pace.

We now turn to functions from the domain D�K� of K. Noting that D�K�=D�K0� and f
D�K0� can be written as

f = �z − K0�−1g = �z + K0��z2 − K0
2�−1g , �5.8�

here Im z�0 and g�H, we have, using �� ·p� · �z2−h�−1= �� ·p��z2−p2�−1= �z2−p2�−1�� ·p�,

f1 = z�z2 − h�−1g1 − �z2 − p2�−1�� · p� · g3, f2 = z�z2 − �2�−1g2 + i��z2 − �2�−1g4, �5.9�

nd similar for the other components. Since P�h= P�p2=p2P� and � ·p= P�� ·p=� ·pP�, we

ave
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P�f1 = P��z2 − p2�−1�zg1 − �� · p� · g3� , �5.10�

nd it follows that f1
� and f3

� are in D�� ·p�. Also, since P�� ·p=0, P�h=0,

P�f1 =
1

z
P�g1, P�f3 =

1

z
P�g3, �5.11�

o there are no restrictions on the longitudinal parts f1
� and f3

� . As to f2 and f4, we note that there
s only a square integrability requirement in �. Let now F�D�K�. Then, in view of the lemma and
he above remarks, we find that

E�KF = KE�F = K�E�F, E�KF = KE�F = K�E�F , �5.12�

here K� has the same form as K, but in K� the � ·p terms are missing, so it reduces to a
atrix-valued multiplication operator only depending on x. In summary:

Proposition: The operators E� and E� reduce K.
We note, furthermore, that there is a corresponding decomposition of He acting in He=H1

� H2=He
�

� He
� and similar for Hm. Thus

He
� = �p2 + PAg��0� − PA� d� �s��� . . .

− �s���PA �2 �, He
� = � PAg��0� − PA� d� �s��� . . .

− �s���PA �2 � .

�5.13�

e observe that He
� and Hm

� have empty null space �note that g��0�=�d�s���2 and consider the
nner product �H j

�f , f�=0�. In the same way we obtain the decomposition for the dispersive case.

I. INITIAL AND BOUNDARY CONDITIONS

Since we are dealing with a unitary time evolution any F�H is acceptable as an initial set of
elds. On the other hand, boundary conditions for normal and tangential field components often
ppear in piecewise constant situations. Here we shall discuss how this comes about. It turns out
hat the two types of conditions are of a different nature. As we show below, the first are basically
n initial condition, whereas the second type only comes into play if we require the fields to satisfy
axwell’s equations in the usual differential equation form.

We start with determining N�K�, the null space of K. Let f�N�K�, i.e., Kf=0. It then follows
n the absorptive case �the dispersive case goes similarly� that f4=0, �� ·p� · f3=0, implying that

3= P�g3, �� ·p� · f1=0, so f1= P�g1, and f2=�−1��x ,��P�g1 or

f =�
P�g1

��x,��
�

P�g1

P�g3

0
� , �6.1�

here g�H is arbitrary. Setting f=Mg, we have, for the projector E0 on N�K�, E0

M�M*M�−1M*. Working things out, using 1+�d����x ,��2 /�2�=1+ �̂�x ,0�=��x ,0�=�stat�x�, the
tatic permeability �we exclude Drude contributions for which �stat�x� does not exist and a slightly
ifferent approach is needed�,

E0 = E0e 0

0 E0m
�, E0e = � 1 0

��x,��
�

0 �P��P��stat�x�P��−1P��1 � d�
��x,��

�
. . . � , �6.2�
0 0
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E0m = P� 0

0 0
� .

Remark: We have N�K��H� but, in general, N�K��H�. Thus time-dependent longitudinal
olutions of Eqs. �2.1� can exist.

We note that E0F�t� is conserved in time, leading to the conservation of P��F1�t�
�d����x ,�� /��F2�� , t�� and P�F3�t�. Since

F1�x,t� +� d�
��x,��

�
F2�x,�,t� = D�x,t� , �6.3�

e see that D��x , t�=D��x� and B��x , t�=B��x� are time independent. Note that here no differen-
iability conditions are required but that continuity of the longitudinal fields at the initial time
mplies continuity for all later times, so continuity is basically an initial condition. The standard,
euristic, procedure to obtain such a result, follows from Maxwell’s equations,

�t�x · D�x,t� = 0, �t�x · B�x,t� = 0, �6.4�

o, formally,

�x · D�x,t� = �e�x�, �x · B�x,t� = �m�x� , �6.5�

here �m�x�
0 since magnetic charges are absent. Thus B��x�
0. In the absence of free electric
harges, also D��x�=0. In the literature �see, for instance, Ref. 3� Gauss’ theorem is sometimes
pplied to Eq. �6.5� to obtain the continuity of the normal component of D�x� across an interface
n electrostatics. Note that in more general situations, where transverse components are present, it
s a statement about D��x�. Also, since the procedure works for any surface and not only an
nterface between two regions with different electric permeability, the result is that D��x� is
ontinuous. But there seems to be some circularity in the argument since the starting point is a
elation for the divergence of D��x�, which already requires the existence of its space derivatives.

A similar matter is the application of Stokes’ theorem to the relation

�x Ã E�x,t� = �x Ã E��x,t� = − �tB�x,t� , �6.6�

o obtain the continuity of the tangential components of E��x , t� across an interface.
In our approach there are no conditions on E��x , t0� except its square integrability. This seems

o be different from what is commonly found in textbooks. However, if we consider the differen-
ial equation �tF�t�=−iKF�t�, we must have F�t��D�K�, which is true if F�t0��D�K� since
xp�−iKt�D�K�=D�K�. As we noted earlier, this requires E��t0��D�� ·p�. Thus, dropping t0,

E� = �1 + i� · p�−1f� = �1 + h�−1�1 − i� · p�f� = �1 + p2�−1�1 − i� · p�f�

= �i − p�−1�1 − i� · p��− i − p�−1f� = �i − p�−1g�, �6.7�

ith f� an arbitrary square integrable transverse function �note that �1− i� ·p��−i− p�−1 is a
ounded operator, so g� is square integrable�. Now

E��x� = ��i − p�−1g���x� = �2�i�−1� dy
exp�− y�

y
g��x + y� , �6.8�

nd Young’s inequality gives E��x��L2�R3 ,dx ;C3��L��R3 ,dx ;C3�. A further estimate results in

�E��x + a� − E��x�� � �2��1/2�2�g��2 − �exp�ip · a�g�,g�� − �g�,exp�ip · a�g��� , �6.9�

here the right-hand side tends to 0 with a, so E��x� is continuous. Obviously we have the same
esult for B��x�=B�x�. In eigenvalue problems, even stronger conditions hold. Thus, if H is a

n n n
elf-adjoint operator in a Hilbert space H and Hf =�f , then H f =� f so f �D�H �. This applies
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irectly to dispersive PC’s, where the Bloch-decomposed spectrum is discrete and the eigenvectors
t nonzero eigenvalues are transverse.

II. PHOTONIC CRYSTALS, THE PIECEWISE CONSTANT CASE

In Ref. 2 the presence of a nonempty null space of He gave rise to complications in applying
he analytic Fredholm theorem in a discussion of spectral properties. But in the piecewise constant
ase the present results allow us to concentrate directly on He

�, thus avoiding this problem. In the
loch-decomposed situation on the unit cell either the definitions of P� and P� must be modified2

r a direct Bloch decomposition of P� and P� can be made with the same result. An important
bservation is that the Bloch-decomposed projectors do not depend on �.

Let us now consider the transverse eigenvalue problem for the dispersive piecewise constant,
ase,

K���� · F = �F, He
���� · Fe = �2Fe. �7.1�

hen

�p2��� + 	
n

�n�x�2�F1 − 	
n

�n�n�x�F2n = �p2��� + ���x,0��F1 − 	
n

�n�n�x�F2n = �2F1,

− �n�n�x�F1 + �n
2F2n = �2F2n. �7.2�

e observed earlier that He
� has an empty null space, so ��0. Setting �=�n the second equation

mplies that F1=0 for x�A. Also, from the first, �n
2F1=p2���F1, x�A. Then the continuity

onditions on �A imply that F1 vanishes everywhere �see Ref. 2 Sec. IV�, i.e., �n is not an
igenvalue.

III. ENERGY CONSERVATION FOR DISPERSIVE SYSTEMS

. The conserved energy

Since we found that E=Eem+Eaux is conserved in time, this is the proper conserved energy
nd, in fact, becomes the Hamiltonian in a quantized theory.1 Also, in view of the above result that

n is not an eigenvalue of K� in the dispersive PC case, we rigorously have �see Eq. �2.23�� that
n this case 	Eem=0. But also in the general piecewise constant transverse case, provided an
igenfunction expansion exists, considering a single dispersive Lorentz term for simplicity, we
btain from

He
�F̃e��� = �2F̃e��� , �8.1�

hat

�p2 + �2PA�F̃1��� − �0�PAF̃2��� = �2F̃1��� ,

− �0�PAF̃1��� + �0
2F̃2��� = �2F̃2��� . �8.2�

o, once more,

p2F̃1�x,�0� = �0
2F̃1�x,�0�, x � A, F̃1�x,�0� = 0, x � A , �8.3�

nd again continuity across �A implies that F̃1�x ,�0� and hence F̃��0� vanishes everywhere. The
ituation remains the same in the general dispersive situation.

Next we consider, again for the piecewise constant case and transverse fields, the situation

here t0=−�, so, according to Eq. �3.15�,
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F0n�x,t� = F4n�x,t� + iF2n�x,t� = lim
↓0

�n�x��
−�

t

ds exp�− �s��exp�i�n�t − s��E�x,s� . �8.4�

n terms of Fourier transforms,

F�x,t� =� d� exp�− i�t�F̃�x,�� , �8.5�

e then obtain

F0n�x,t� = lim
↓0

�n�x�exp�i�nt� � d� i†��� + �n + i�−1 − �� + �n − i�−1� + i�� + �n − i�−1

� exp�− t�exp�− i�� + �n�t�‡Ẽ�x,�� . �8.6�

etting ↓0, the first term on the right gives the  function ��+�n�, which does not contribute

ince F̃�x , ±�n�=0. Next, we make the technical assumption that ��+�n− i�−1Ẽ�x ,��= ��+�n

i�−1�Ẽ�x ,��− Ẽ�x ,�n�� has an absolutely integrable limit as ↓0, denoted as ��
�n�−1Ẽ�x ,��. This is, for instance, trivially the case if we assume that Ẽ�x ,�� vanishes in a

eighborhood of each �n. Then, noting that Ẽ�x ,��= Ẽ�x ,−��,

F0n�x,t� = i�n�x� � d� exp�− i�t��� + �n�−1Ẽ�x,�� ,

F2n�x,t� = − �n�x� � d� �n exp�− i�t���2 − �n
2�−1Ẽ�x,�� ,

F4n�x,t� = �n�x� � d� i� exp�− i�t���2 − �n
2�−1Ẽ�x,�� . �8.7�

ccording to the above assumption, ��+�n�−1Ẽ�x ,�� is absolutely integrable and hence the
uxiliary fields vanish as t→ ±� by the Riemann–Lebesgue lemma �recall that t0=−��. This
pplies to the situation where an electromagnetic wave packet is scattered from a finite piece of
ielectric material. Then the wave packet is initially freely moving in the direction of the material
nd becomes free again as t→�.

For a monochromatic field,

E�x,t� = E0�x�cos �t, B�x,t� = B0�x�sin �t, 0 � � � �n, �8.8�

e obtain

F2n�x,t� = −
�n�n�x�
�2 − �n

2 E0�x�cos �t, F4n�x,t� =
��n�x�

ega2 − �n
2E0�x�sin �t . �8.9�

n this case, the energy E is infinite but the energy density,

U��x,t� =
1

2�F1�x,t�2 + F3�x,t�2 + 	
n

�F2n�x,t�2 + F4n�x,t�2�� , �8.10�

till makes sense. Taking the time average over a field period 2� /� �cycle averaging�, using some

esults from Sec. II, we arrive at
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U��x� = �U��x,t�� =
1

4
�������x,���E0�x�2 + B0�x�2� . �8.11�

e see by comparison with the vacuum case that the contribution to the energy density from the
uxiliary fields is given by

1

4
�������x,��� − 1�E0�x�2. �8.12�

owever, the use of monochromatic fields is somewhat unsatisfactory since the current density
�x , t� remains oscillating as t→−�, which is usually not the case for actual physical systems. To
emedy this, we have to use wave packets containing a continuous range of �’s, but then cycle

veraging loses its meaning. However, if Ẽ�x ,�� is strongly peaked around some value �0 and
�x ,�� has no sharp peaks in a neighborhood of �0, then U�0

�x� is approximately conserved.
For longitudinal fields the situation is quite different. As can be seen from Eq. �3.17�, which

efers to a single Lorentz contribution inside the dielectric material,

HeA
� =  �2 − �0�

− �0� �0
2 �PA, �8.13�

hich has the eigenvalues 0 and ±��2+�0
2. Thus FA

� �t� is a sum of constant and harmonic
unctions, which is also true in the general case. This means that we cannot set t0=−�. But t0

0 is a possible choice. In the above case we then obtain, for x�A, applying the inverse Laplace
ransform to the longitudinal component of Eq. �2.18�, the explicit expressions

E��x,t� = ��2 + �0
2�−1��0

2 + �2 cos ��2 + �0
2t�E��x,0� ,

F0
� �x,t� = ���2 + �0

2�−1�i�0�1 − cos ��2 + �0
2t� + ��2 + �0

2 sin ��2 + �0
2t�E��x,0� ,

�8.14�

esulting in U�x , t�= 1
2E��x ,0�2, which is time independent and differs in form from the expression

or the transverse fields. In fact, a difference is to be expected since longitudinal fields are not
ropagating waves. Note that the contributions of the auxiliary fields must be taken into account
o obtain the above result.

. Other approaches

Let us consider once more a situation where the material is confined to A�R3 over which
�x , t� is homogeneous in x and given by the absorptive Lorentz expression, Eq. �2.15�. Then, for
�A,

P�x,t� = 	
n

Pn�x,t�,Pn�x,t� = �
t0

t

ds �n�x,t − s�E�x,s� . �8.15�

little calculation then results in

�t
2Pn�x,t� + 2�n �tPn�x,t� + �n

2Pn�t� = �n
2E�x,t� . �8.16�

ote that this expression is similar to the one obtained by Loudon,6 who started from a damped
scillator model. He then went on by considering

− �x · S�x,t� = E�x,t� · �txD�x,t� + H�x,t� · �tB�x,t� , �8.17�

here S�x , t�=E�x , t��H�x , t� is the Poynting vector, a relation that is generally valid for suffi-
iently smooth fields. The aim is here to try to write the right-hand side as a time derivative so that

continuity equation is obtained. Note that in our case H�x , t�=B�x , t�. Next, we write
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E�x,t� · �tD�x,t� + H�x,t� · �tB�x,t� = �t
1

2
�E�x,t�2 + B�x,t�2� + E�x,t� · �tP�x,t�

= �tUem�x,t� + E�x,t� · �tP�x,t� , �8.18�

here Uem�x , t� is the electromagnetic energy density. Inside A,

E�t� · �tP�t� = 	
n

E�t� · �tPn�t� = 	
n

1

�n
2 ��t

2Pn�t� + �n �tPn�t� + �n
2Pn�t�� · �tPn�t�

= �t	
n

1

2�n
2 ��tPn�t�2 + �n

2Pn�t�2� + 	
n

�n

�n
2�tPn�t�2, �8.19�

o

− �x · S�x,t� = �t�Uem�x,t� + IA�x�	
n

1

2�n
2 ��tPn�x,t�2 + �n

2Pn�x,t�2�� + 	
n

�n

�n
2�tPn�x,t�2.

�8.20�

n the dispersive case, �n
0, so

�tU�x,t� + �x · S�x,t� = 0,

U�x,t� = Uem�x,t� + IA�x�	
n

1

2�n
2 ���tPn�x,t�2 + �n

2Pn�x,t�2�� . �8.21�

hen, for a harmonic field, as given by Eq. �8.8�, we have

Pn�x,t� = −
�n

2

�2 − �n
2E0�x�cos �t, B�x,t� = B0�x�sin �t , �8.22�

o

U��x,t� =
1

2�E0�x�2 cos2 �t + B0�x�2 sin2 �t + IA�x�	
n

�n
2

��2 − �n
2�2

� ��2 sin2 �t + �n
2 cos2 �t�E0�x�2� , �8.23�

nd upon cycle averaging we obtain ��tS�x , t��=0, whereas the averaged energy density is

U��x� = �U��x,t�� =
1

4��1 + IA�x�	
n

�n
2��2 + �n

2�
��2 − �n

2�2 �E0�x�2 + B0�x�2�
=

1

4
�������x,���E0�x�2 + B0�x�2� , �8.24�

result obtained earlier by various authors �see Ref. 6 and references cited� and that coincides
ith Eq. �8.11�. Since we used the general expression for the dispersive susceptibility �, this

xpression is generally valid. Thus we see that the contribution 1
4 �������x ,���−1�E0�x�2 is pre-

isely the energy stored in the auxiliary field modes.
Loudon also applies the averaging procedure to the absorptive situation but this does not seem

o be correct since then harmonic solutions of Maxwell’s equations with real � do not exist. The
ame issue is encountered in Ref. 10, where once more a harmonic dependence is assumed for the

bsorptive case. In Refs. 2 and 9 we found that for absorptive PC’s transverse solutions of the
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elmholtz equation generically exist only for a set of complex frequencies �=�− i�, �
0, con-
ained in the spectral islands in C−; see Sec. IV. Thus, for given �, there is, in general, a whole
nterval of allowed �’s. Then a specific solution has the form

E�x,t� = E0�x�exp�− �t�cos��t − �, t � 0, �8.25�

hich gives a significantly more complicated form for Pn�x , t�. In addition a cycle average over
he interval �t , t+2� /�� now depends on t. Actually it is rather obvious that a damping factor
hould be present in Eq. �8.25� since the field amplitudes will decrease in time due to absorption.

Landau and Lifshits,7 considering the dispersive case, took a slightly different approach. They
onsidered fields with Fourier components sharply peaked around a central frequency �0, E�t�
E0�t�cos �0t with E0�t� only slowly time dependent on the scale set by �0. A crucial point in

heir development is the expansion of �̂��0+�� to first order in �. But this is questionable if there
s a sharp peak in �̂��� in �1 close to �0. Here again an average over 2� /�0 is taken, once more
esulting in the contribution 1

4������x ,���E0�x�2 to the averaged energy density.
We note that cycle averaging can be relevant in experimental situations where the detection

ime interval extends over a large number of periods of the field. But in phase-sensitive cases, the
ituation may become different.

X. ENERGY CONSERVATION FOR NONLINEAR DIELECTRICS

In this section we consider the conserved energy for nonlinear systems. We use an alternative
ethod, also applicable to the linear case, featuring an additional time variable u rather than a

requency �.

. The conserved energy

We consider nonlinear dielectrics, characterized by a set of nonlinear susceptibilities
�n�x , t1 , . . . , tn��, where n�N but, in practice, only the first few n play a role. Thus �� indicates
n n-fold tensorial contraction with the object following it�

P�x,t� = 	
n=1

�

Pn�x,t� ,

Pn�x,t� = �
t0

t

ds1 . . . �
t0

t

dsn �n�x,t − s1, . . . ,t − sn��E�x,s1� . . . E�x,sn� . �9.1�

e make the following assumptions for the susceptibilities �n �see Ref. 11 for detailed informa-
ion about nonlinear susceptibilities�:

: �n�x , t1 , . . . , tn�=0 if at least one tj �0, which is a causality requirement.
: �n�x ,0 , t2 . . . , tn�=0, which excludes sudden surges in the current density at the initial time.
: The rank n+1 tensors �n�x , t1 , . . . , tn� possess the symmetry property �cf. Ref. 11�

��n�kk1. . .kn
�x,t1, . . . ,tn� = ��n�kk1�tskn�

�x,t1�, . . . ,tn�� , �9.2�

with ��k1� , t1�� , . . . �kn� , tn��� any permutation of ��k1 , t1� , . . . �kn , tn��, i.e., ��2�kk1k2
�x , t1 , t2�

= ��2�kk2k1
�x , t2 , t1�, etc.

: ��1�kl�x , t�= ��1�lk�x , t�.

These properties can be verified for material systems subject to a time-dependent external field
y expanding the expectation of the polarization in powers of the driving field. Property D holds
f the system Hamiltonian is real �time-reversal invariant�. Here we note that time reversal invari-
nce apparently does not lead to useful additional relations between the components of the higher-

rder �n’s.
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The polarization current density J�x , t� is now given by

J�x,t� = �tP�x,t� = 	
n=1

�

Jn�x,t� ,

Jn�x,t� = �
t0

t

ds1. . .�
t0

t

dsn �n��x,t − s1, . . . ,t − sn��E�x,s1� . . . E�x,sn� , �9.3�

here

�n��x,t1, . . . ,tn� = ��t1
+ . . . �tn

��n�x,t1, . . . ,tn� . �9.4�

e have

�tEem�t� = −� dx E�x,t� · J�x,t� = − 	
n=1

� � dxE�x,t� · Jn�x,t� �9.5�

nd we define

E�t� = Eem�t� + �
t0

t

ds� dx E�x,s� · J�x,s� = Eem�t� + Eaux�t� , �9.6�

here

Eaux�t� = 	
n=1

�

En�t�, En�t� = �
t0

t

ds� dx E�x,s� · Jn�x,s� . �9.7�

e shall refer to E�t� as the energy of the system. However, note that, as in the linear case, it does
ot depend on the fields at time t only. As before we remedy this by introducing auxiliary fields.
ropping x in the various objects for brevity, we have

En�t� =� dx�
t0

t

ds0 E�s0� · �
t0

s0

ds1 . . . dsn �n��s0 − s1, . . . ,s0 − sn��E�s1� . . . E�sn�

=� dx�
t0

t

ds0 . . . dsnE�s0� · �n��s0 − s1, . . . ,s0 − sn��E�s1� . . . E�sn� =� dx� ds0 . . . dsn

��t − s0���s0 − t0�E�s0� · �n��s0 − s1, . . . ,s0 − sn����s0 − s1���s1 − t0�E�s1� . . . ��s0 − sn�

��sn − t0�E�sn�, t 
 t0, �9.8�

r, with uj = t−sj,

En�t� =� dx� du0 . . . dun ��u0���t − t0 − u0�E�t − u0� · �n��u1 − u0, . . . ,un − u0����u1�

��t − t0 − u1�E�t − u1� . . . ��un���t − t0 − un�E�t − un� =� dx�
0

�

du0 . . . dun ��t − t0 − u0�

� E�t − u0� · �n��u1 − u0, . . . ,un − u0����t − t0 − u1�E�t − u1� . . . ��t − t0 − un�E�t − un� .

�9.9�
ow let
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F0�u,t� = ��u���t − t0 − u�E�t − u� . �9.10�

hen

En�t� =� dx� du0 . . . dun F0�u0,t� · �n��u1 − u0, . . . ,un − u0��F0�u1,t� . . . F0�un,t� .

�9.11�

imilarly, for the current density,

Jn�x,t� =� du1 . . . dun �n��u1, . . . ,un��F0�u1,t� . . . F0�un,t� . �9.12�

ote that

F0�u,t� = 0, t � t0,

F0�u,t0� = 0, u � 0,

F0�0,t� = ��t − t0�E�t��=E�t�,t � t0� , �9.13�

nd F0�u , t� satisfies the differential equation

�tF0�u,t� = − �uF0�u,t� + �u�E�t� . �9.14�

t is easily checked, using the equations of motion for the electromagnetic fields with Eq. �9.12�
or the current densities and Eq. �9.14� for F0�u , t� that indeed E, expressed in terms of the fields
t time t, is a constant of the motion.

. The equation of motion for F0„u , t…

We note that in the previous section only u�0 enter the formalism, so we consider Eq. �9.14�
s an equation of motion for F0�u , t� in the real Hilbert space H=Lr

2��0,�� ,du�, interpreting
�u�du as the unit point measure concentrated in 0� �0,��. In this space the operator −�u is
ntisymmetric when acting upon smooth functions with compact support avoiding zero. It has a
nique anti-self-adjoint extension L, with the property that the functions in its domain vanish in
=0 and

�exp�Lt�f��u� = � f�u − t� , u � t

0, u � t
� = ��u − t�f�u − t� , �9.15�

o Eq. �9.14� becomes

�tF0�u,t� = LF0�u,t� + �u���t − t0�E�t� . �9.16�

ts general solution for t
 t0 is

F0�u,t,t0� = exp�L�t − t0��F0
in�u,t0� + �

t0

t

ds exp�L�t − s���u���s − t0�E�s�

= ��u − t + t0�F0
in�u − t + t0,t0� + �

t0

t

ds �u − t + s���s − t0�E�s�

= ��u − t + t0�F0
in�u − t + t0,t0� + ��t − t0 − u�E�t − u� , �9.17�

here the initial field F0
in�u , t0� is arbitrary, square integrable in u. Note that this solution reduces

in
o the earlier one if we require F0�u , t0 , t0�=0 since then F0 �u , t0� must vanish.
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. Connection with earlier approach

The Fourier transform F̃0�� , t� of F0�u , t� is

F̃0��,t� = �
0

�

du exp�− i�u�F0�u,t� = exp�− i��t − t0���
0

�

du exp�− i�u�F0
in�u,t0�

+ �
t0

t

ds exp�− i��t − s��E�s� , �9.18�

hich reduces to

F̃0�x,�,t� =�
t0

t

ds exp�− i��t − s��E�x,s� = F̃4�x,�,t� + iF̃2�x,�,t� , �9.19�

n the Maxwell case, F0�u , t0�=0. Note that, apart from the factors ��x ,��, these are the fields

2,4�x ,� , t� introduced earlier in Eqs. �3.1�. Note also that ��x ,�� is specific for the absolutely
ontinuous linear case and it makes no sense to introduce it here. In our earlier discussion we
ould have dropped the condition �we omit the overtildes from now on for notational simplicity�
2,4�x ,� , t0�=0 leading to a term exp�−i��t− t0��F0�x ,� , t0� but here we have a bonus since it

ollows from Eq. �9.18� that F0�x ,� , t0� and F0�x ,� , t� are analytic upon continuation in C−, the
pen lower complex half-plane. This can be of importance in a quantization procedure since there
he initial fields can no longer be set equal to zero.

We can also express E in terms of the Fourier transformed fields. Setting (�= ��1 , . . .�n�, t
�t1, . . . tn�, �a

b dt means that each tj is integrated over �a ,b�)

�n��x,t� =� d� exp�− i� · t�	n�x,�� ,

	n�x,�� = �2��−n�
0

�

dt exp�i� · t��n��x,t� , �9.20�

e arrive at

En�t� =� dx� d� F̄0��1 + . . . �n,t� · 	n����F0��1,t� . . . F0��n,t� . �9.21�

e can once more check the time independence of E expressed in terms of the Fourier trans-
ormed fields by using the equations of motion. In doing so we also need

� d� j F̄0��1 + . . . + �n,t� · 	n��� = 0,

� d� j . . . d�r F̄0��1 + . . . + �n,t� · 	n���F̄0�� j,t� . . . F̄0��r,t� = 0, �9.22�

hich are a consequence of the analyticity properties of 	n��� and those of F0�x ,� , t� that follow
rom Eq. �9.18�. Note that, in particular, F0�x ,� , t0� has this analyticity property. Starting from the
ourier transformed formalism, this would not have followed.

It is interesting to note that if F0�� , t� has harmonic time dependence, F0�� , t�
=exp�−i�t�F0�� ,0� �which is true if we decouple the electromagnetic and auxiliary fields� that
ach En�t� is conserved in time, i.e., all En’s are constants of the motion. However, the construction
f a Lagrange–Hamilton setup and its quantization are at present open problems. Finding such a

ormalism is an important issue since nonlinear equations of motion are usually based on models
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tarting from an ad hoc Hamiltonian with the appropriate number of higher-order terms in creation
nd annihilation operators.

. DISCUSSION

. Summary of results

In the present work we discussed an number of issues connected with the macroscopic Max-
ell’s equations for dispersive and absorptive dielectrics with the emphasis on systems where the

lectric susceptibility ��x , t� is a piecewise constant function of x. This covers the important cases
f scattering from finite objects and photonic crystals. A complicating factor is here the time
onvolution in the relation

P�x,t� =�
t0

t

ds ��x,t − s�E�x,s� , �10.1�

etween the polarization and the electric field. However, the existence of an equivalent unitary
ime evolution in an enlarged Hilbert space made it possible to treat the problem by standard
ilbert space methods. We showed rigorously that in the piecewise constant case the equations of
otion for longitudinal and transverse field components decouple. This gives a significant simpli-
cation in the discussion of band structure of, in general absorptive, photonic crystals. In our
riginal setup2 quite a number of steps were necessary to remove an infinite-dimensional null
pace in an application of the analytic Fredholm theorem. With the present results we can directly
oncentrate on the transverse case where the null space is empty.

We then considered boundary and initial value problems, again for the piecewise constant
ase. We found that continuity of the longitudinal component of the displacement, in particular, the
ontinuity of the normal component across an interface, enters as a condition at the initial time t0.
ithout it the time evolution still exists for general square integrable fields. Since magnetic

harges are absent, B� =0, as is also the case for D� if there are no external electric charges. But if
static external charge distribution �e�x��L1�R3 ,dx��L6/5�R3 ,dx� is present, it is easily verified

hat D��x , t0� is continuous in x and then this is also true at all later times. We can also deal with
onstationary external charge and current distributions, but then a corresponding external current
ust be added in Eqs. �2.1�. There are no conditions on the initial transverse fields E��x , t0� and
��x , t0�=B�x , t0�, but in the usual differential form of Maxwell’s equations these fields must be

n the domain of the generator of the time evolution, and this implies their continuity in x, which
s then true for all times. This also applies to eigenvalue problems, thus recovering the usual
oundary conditions.

We also considered energy conservation for dispersive, nonabsorptive systems. It is expected
hat, since no absorption takes place, the electromagnetic energy Eem is conserved. This turns out
o be asymptotically true �t0=−�, t→��, implying conservation in scattering problems, but, in
eneral, Eem�t� oscillates for finite t. In the literature an approximate conserved energy is obtained
or harmonic motion by cycle averaging. In Sec. VIII we identified the excess energy associated
ith ������x ,���−1 as the energy stored in the auxiliary field modes. Somewhat surprisingly, the

nergy density associated with the longitudinal modes, including the auxiliary ones, is constant in
ime. This seems not to have been noted before. In this case, since there is no differential operator
n the relevant Helmholtz equation, everything is strictly local in x. Although oscillating modes
an exist inside dispersive dielectrics it is not obvious how to excite the latter since an external
urrent inside the dielectric is required.

A quite unexplored subject is the mathematical description of nonlinear dielectrics. We
howed that here once more a conserved energy exists. We took the opportunity to introduce an
lternative setup for the auxiliary fields, also applicable to the linear case, which involves an
dditional time variable rather than a frequency �.

In closing this part we note that the initial time t0 can be −� or a finite time. In the second case
here is no loss in generality in setting t0=0. In the first case, if the dielectric material is confined

3
o a bounded space region A�R or a half-space we can have a situation where the electromag-
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etic fields constitute a wave packet that is initially away from the material and propagates toward
t. Thus the front of the wave packet will reach the material at some finite time before which the
olarization vanishes. This is typical for a scattering situation, which was studied earlier by the
uthor.1 But in other cases, such as PCs, the material is spread out through all space and the above
rgument breaks down. Here we encounter a problem that is specific for infinite systems. Produc-
ion and detection apparatus must necessarily be embedded in the system, and this does not
orrespond to actual physical situations. In practice, a PC is a finite object and in usual experi-
ents radiation is produced and observed outside it. This can involve elastic scattering but also the

ncoming radiation can be absorbed and reemitted, possibly at a different frequency. However, it
s advantageous to consider infinite PCs since the spatial periodicity allows a Bloch–Floquet
ecomposition, reducing the spectral problem to that of an operator on the unit cell. For a suffi-
iently large PC the actual spectral properties will not deviate much from those of an infinite one.

. Related work

The construction of a formalism without time convolutions from one that has this property is
n itself an interesting issue. In a recent publication, Figotin and Schenker12 give a mathematical
nalysis of this matter. In particular, they addressed the matter of uniqueness of the auxiliary field
ormalism.

. Outlook

Most of the results obtained here were for the piecewise constant case. If ��x , t� is a smooth
unction of x, longitudinal and transverse modes become coupled and the situation changes. This
omplicates the eigenvalue problem for photonic crystals and also the approximate expressions for
nergy conservation need revision. A more challenging problem is the possible existence of a
amiltonian formulation for nonlinear systems. Although it is straightforward in the linear case,1

t is far from obvious that an affirmative result exists in case quadratic or cubic terms are added to
he polarization.
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In this paper we propose a model for a proper kinetic description of the Auger
effect as a generation/recombination mechanism for electrons and holes in a bipolar
device. Boltzmann-type equations for the two-species population in a phonon back-
ground are presented, and equilibria and their stability are investigated. Particles
and quasiparticles are allowed to obey generalized statistics, in order to possibly
include nonstandard or nonextensive effects. The macroscopic recombination/
generation rate is recovered as hydrodynamic limit. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2161020�

. INTRODUCTION

Analytical and numerical investigation of Boltzmann-type equations in semiconductors is a
ubject of growing interest in the scientific literature �see, for instance, Refs. 1 and 2�. On the other
and, it is well known that emission/absorption phenomena must be taken into account in the
nteraction of electrons and positively charged carriers �holes� with phonons in bipolar devices.3,4

nother important effect to be accounted for, essential in driving the process, is generation/
ecombination of a pair electron-hole, which may occur in several ways.5 On the other hand, as
ointed out by Koponen, fractal or inverse power law distributions are of interest in modelling
arious meaningful situations in solid state physics. An example, treated in Ref. 6, is the thermal-
zation of a nonequilibrium electron-phonon system. Until recently, however, there has been little
uidance on how to generalize the kinetic theory of electrons and phonons obeying non-Gibbsian
tatistics. An attempt in this direction has been performed in Refs. 7 and 8, where the kinetic
heory of electrons and phonons has been generalized in the sense that electrons and phonons do
ot obey necessarily Fermi-Dirac and Bose-Einstein, respectively, but also other, generalized,
tatistics are allowed to them. The case of electrons and holes interacting with a phonon back-
round has been treated in a generalized way and the band-trap capture and emission has been
ncluded in the model.9

Another important generation/recombination mechanism, that cannot be neglected when both
he electron and hole densities are not too small, is the Auger effect.5 This is what is dealt with in
his paper, which moves in the frame of the mathematical methods of kinetic theory,10 and follows
he lines of Ref. 9, so that proofs that are only slight modifications of those given there will be
kipped. In our opinion, in fact, a kinetic approach is needed in order to investigate rigorously the
hole process and to possibly deduce, in some continuum limit, the macroscopic implications of
ractical relevance. In the present work �necessarily confined to a formal level, at this stage� we
ntroduce Boltzmann-type equations for interacting populations of electrons �distribution function
fe� and holes �distribution function fh� in a phonon background in local thermodynamical equi-

�
Author to whom correspondence should be addressed. Electronic mail: giampiero.spiga@unipr.it
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ibrium, and include specific three-body collision terms for the Auger recombination/generation.
ollision integrals are represented in terms of suitable transition probabilities, and the investiga-

ion, based on their structure and general properties only, leads to the determination of collision
nvariants and collision equilibria, and to the proof of an H theorem.10 Hydrodynamic limit is
tudied by a preliminary asymptotic procedure with respect to the proper Knudsen numbers.

The Auger effect consists of two different processes and their inverse.
�a� Electron capture, an electron fills a hole. Its energy is transferred to another electron, and

ice versa,

e + e + h � e�,

here � means “more energetic.”
�b� Hole capture, a hole is filled by an electron. Its energy is transferred to another hole, and

ice versa,

h + h + e � h�.

he governing equations for the two interacting species in the phonon background are presented in
ec. II under general statistics. Mathematical results on equilibrium and stability are given in Sec.
II in terms of an appropriate Lyapunov functional. Finally, in Sec. IV, a very simple zero-order
ingular perturbation approach is employed for deriving, as hydrodynamic limit in the low density
pproximation, the macroscopic recombination/generation rate, recovering well-known classical
esults available in the literature.5

I. KINETIC EQUATIONS

Consider two populations, conduction band �CB� electrons �quasi-momentum �QM� p, energy

e�p�� and holes �QM k, energy �h�k��, in a phonon background �QM q, energy ��q�� in thermal
quilibrium at temperature T. The distribution functions are normalized in such a way that the
oncentrations and the energy densities are given by

n��x,t� =� f��p,x,t�2 dp, E��x,t� =� f��p,x,t����p�2 dp �1�

�=e ,h�, respectively �the factor 2 inside these integrals accounts for degeneracy�. Interaction
echanisms to be taken into account are the following:

�i� Absorption and emission of a phonon by a CB electron,
�ii� Absorption and emission of a phonon by a hole,
�iii� Auger recombination/generation.

All processes are assumed to satisfy microreversibility and to fulfill their specific laws of
ransformation between pre- and post-collision momenta and energies. For the sake of generality,
ll types of particles are allowed to obey a given statistics, defined by a pair of suitable smooth
unctions ��� ,���, �=e ,h, describing saturation or enhancement effects in the departure/arrival
tate, respectively. These functions depend on the relevant distribution functions, and appear in the
ollision terms given below, in the gain and loss terms. Specifically, fermions are characterized by
he option ���f��= f�, ���f��=1− f�, whereas the choice underlying the Bose-Einstein statistics
ould be ���f��= f�, ���f��=1+ f�. Other expressions �generalized or fractional statistics� have
een found recently to be in order for nonextensive systems with nonadditive entropies,11,12

ccurring for instance in electronic plasmas, anomalous diffusion, galaxy clusters, long-range
emory effects. Quantities like �e�fe�p�� will be written as �e�p� for brevity. By following Ref. 7,
e assume that �� /�� is monotonically increasing as a function of f�, as it occurs in all physical

ituations of interest. Phonons belong to the various branches g of the phonon spectrum, and their
tatistics is defined by the pair of functions �g and �g, functions of the distribution function fg.

* 9
heir equilibrium distribution fg �a star is meant to label equilibria throughout� is defined by
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ln
�g

*

�g
* = −

�g�q�
T

. �2�

or simplicity, only the space homogeneous version of the kinetic equations will be considered
ere, and dependence on t will not be explicitly shown, unless strictly necessary.

Taking into account the processes in which a specific species may be gained or lost, the kinetic
quations read as

� fe

�t
= � � fe

�t
�

ep

+ � � fe

�t
�

A

,
� fh

�t
= � � fh

�t
�

hp

+ � � fh

�t
�

A

, �3�

here subscripts �p and A are used to label interactions with phonons and Auger effect, respec-
ively. Like in Ref. 9 the collision terms relevant to phonons read as

� � f�

�t
�

�p

�p� = �
g
� � �G�p

g �p�,q;p� − G�p
g �p,q;p���dq dp�, �4�

here the kernels G are given by

G�p
g �p�,q;p� = V�p

g �p�,q;p���g
*�q����p�����p� − ���p����p���g

*�q�� �5�

n terms of the transition probabilities V. The latter must be understood in the sense of distribu-
ions, and account for momentum and energy balance. More precisely,

V�p
g �p�,q;p� = V�p

g �p�,q;p���p − p� − q + b�� ����p� − ���p�� − �g�q�� , �6�

here � denotes Dirac’s delta measure, b is a suitable vector of the reciprocal lattice, and V�p
g are

ositive smooth functions. Of course, delta functions are used to mean that integrations in �4�
ctually range only on the appropriate two-dimensional manifolds of the whole six-dimensional
omain.

In a similar fashion the Auger contributions can be written as

� � fe

�t
�

A

�p� =� � � Ge
A�k,p1,p2;p�dk dp1 dp2 − 2� � � Ge

A�k,p,p2;p1�dk dp1 dp2

−� � � Gh
A�p,k1,k2;k�dk dk1 dk2, �7�

� � fh

�t
�

A

�k� =� � � Gh
A�p,k1,k2;k�dp dk1 dk2 − 2� � � Gh

A�p,k,k2;k1�dp dk1 dk2

−� � � Ge
A�k,p1,p2;p�dp dp1 dp2, �8�

ith kernels

Ge
A�k,p1,p2;p� = W�k,p1,p2;p���h�k��e�p1��e�p2��e�p� − �h�k��e�p1��e�p2��e�p��

�9�
Gh

A�p,k1,k2;k� = U�p,k1,k2;k���e�p��h�k1��h�k2��h�k� − �e�p��h�k1��h�k2��h�k�� .

he Auger transition probabilities are once more distributions and account for momentum and
nergy balance,

W�k,p1,p2;p� = W�k,p1,p2;p���p − k − p1 − p2 + be�� ��e�p� − �h�k� − �e�p1� − �e�p2�� ,

�10�
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U�p,k1,k2;k� = U�p,k1,k2;k���k − p − k1 − k2 + bh�� ��h�k� − �e�p� − �h�k1� − �h�k2�� ,

here b� are appropriate vectors in the reciprocal lattice and W and U are smooth positive
unctions. Again, delta functions mean that ninefold integrations in �7� and �8� actually collapse to
vefold.

As usual in kinetic theory, the weak form of the kinetic equations �3� is essential for any
urther development. So, take a string of two smooth test functions �	e�p� ,	h�k�� and multiply
ach of them by the corresponding collision operator appearing in �3�. Then integrate each pair
ith respect to the relevant kinetic variable and sum them up �after multiplication by 2 because of
egeneracy�, to get, as usual, a functional F�	e ,	h�.

It is possible to prove, after suitable rearrangement and some algebra, not reported here since
hey follow closely similar steps in Ref. 9, the following important result.

Proposition 1: For any test function �	e�p� ,	h�k�� we have

F�	e,	h� =� � � � Ge
A�k,p1,p2;p��	e�p� − 	h�k� − 	e�p1� − 	e�p2��dk dp dp1 dp2

+� � � � Gh
A�p,k1,k2;k��	h�k� − 	e�p� − 	h�k1� − 	h�k2��dp dk dk1 dk2

+ �
�

�
g
� � � G�p

g �p�,q;p��	��p�� − 	��p��dq dp dp�. �11�

From a physical point of view, F represents the net production by collision of the molecular
roperty defined by the string 		�
. Collision invariants are determined by the condition of re-
aining constant through all possible collisions, and make then the functional F vanish. It is easily

een that this amounts to requiring that indeed all square brackets in �11� vanish identically with
espect to their independent variables. Such a strong constraint implies immediately that both 	�

ust be constant, and that they must take opposite values. Since the space of these invariants is
inear, we can conclude that it is one dimensional, and the unique independent collision invariant
ay be chosen as the string �−1,1�, representing electric charge. Notice that energy, namely the

tring ��e�p� ,�h�k��, would be conserved by the Auger collision integrals �first two addends in
11��, thanks to the � functions present in �10�. It is clear that it cannot be conserved in the whole
rocess, since it is actually exchanged with the lattice. In conclusion we may state the following.

Proposition 2: Collision invariants constitute a one-dimensional linear space, exhausted by
he strings of test functions proportional to

�− 1,1� , �12�

epresenting �dimensionless� electric charge.

II. EQUILIBRIUM AND STABILITY

The structure of �11� suggests that it is useful to introduce a new functional D as a suitable
pecialization of F,

D�fe, fh� = F�ln��e�p�
�e�p�

exp� �e�p�
T

��, ln��h�k�
�h�k�

exp� �h�k�
T

��� , �13�
ince we get, after some algebra,
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D�fe, fh� =� � � � Ge
A�k,p1,p2;p�ln

�h�k��e�p1��e�p2��e�p�
�h�k��e�p1��e�p2��e�p�

dk dp dp1 dp2

+� � � � Gh
A�p,k1,k2;k�ln

�e�p��h�k1��h�k2��h�k�
�e�p��h�k1��h�k2��h�k�

dp dk dk1 dk2

+ �
�

�
g
� � � G�p

g �p�,q;p�ln
���p����p���g

*�q�
���p����p���g

*�q�
dq dp dp�. �14�

n each logarithmic function of �14� numerator and denominator are exactly the two addends that
re subtracted in the square brackets of the corresponding kernels Ge

A, Gh
A, and G�p

g , respectively,
s given by �9� and �5�. Therefore, once the integrations are restricted to lower dimensional
mooth integrals by the delta measures, the usual convexity arguments of kinetic theory may be
pplied. In particular, all addends making up D turn out to be nonpositive and therefore D is
efinite in sign. Moreover, it vanishes if and only if all integrals in �14� vanish, and, since �1
x�ln x
0 with equal sign only for x=1, this occurs if and only if all arguments of the logarith-
ic functions are unity. In other words we have a sort of Boltzmann lemma.

Proposition 3: D
0 for any admissible distribution function �fe , fh�. In particular D=0 iff

�h�k��e�p1��e�p2��e�p� = �h�k��e�p1��e�p2��e�p� ,

�e�p��h�k1��h�k2��h�k� = �e�p��h�k1��h�k2��h�k� , �15�

���p����p���g
*�q� = ���p����p���g

*�q� ,

or all admissible values of the independent variables in each of the relevant collisions.
But now it is clear from �14� and from Proposition 3 that D=0 implies �and then is equivalent

o� vanishing of the whole collision operator in �3�. On the other hand, �15� may be reformulated
n terms of logarithms and, bearing in mind �9�, �5�, and �2�, this shows that the string

�ln
�e�p�
�e�p�

+
�e�p�

T
, ln

�h�k�
�h�k�

+
�h�k�

T
� �16�

ust be a collision invariant. We may state then a detailed balance principle.
Proposition 4: The collision equilibrium condition,

� � fe

�t
�

ep

+ � � fe

�t
�

A

= 0, � � fh

�t
�

hp

+ � � fh

�t
�

A

= 0, �17�

or all admissible distribution functions, is equivalent to the requirement that (16) be a collision
nvariant.

At this point, Proposition 2 applies, which means that there is exactly one one-parameter
amily of equilibria, given by

ln
�e

*

�e
* =

� − �e

T
, ln

�h
*

�h
* =

− � − �h

T
, �18�

or all real �. Solvability of the transcendental equations �18� is discussed in Ref. 9. Notice that,
n terms of the chemical potentials ��,5 equilibrium is characterized by

�e = − �h = � . �19�

Concerning stability of the above equilibria, it is possible to establish an H theorem, again

long the lines of kinetic theory. Introduce the functional
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H = He + Hh +� �e�p�fe�p� + �h�p�fh�p�
T

dp , �20�

here

H� =� H��f��p��dp,
dH��x�

dx
= 2 ln

���x�
���x�

. �21�

otice that in our assumptions all H� are convex functions of their argument because of the
onotonicity assumption on the ratios �� /��. The additional integral in �20� is due to the fact that

ur system is not closed, but interacts with the background lattice. We can then prove the H
heorem.

Proposition 5: H is a strict Lyapunov functional for the initial value problem (3).
For a sketch of the proof, which goes along the same lines as in Ref. 9, we first remark that,

ollowing a solution of �3�, the time derivative of H coincides exactly with D, and therefore it has
he required definiteness in sign. Then, the conclusion follows by usual convexity arguments
rovided we are able to show that

�
�
� � �H�

� f�
�*

�f� − f�
*��p�dp +� �e�fe − fe

*� + �h�fh − fh
*�

T
dp = 0, �22�

nd it is not difficult to verify that this is true thanks to the expressions of �ln��� /����* and to
harge conservation �see Proposition 2�.

V. RECOMBINATION/GENERATION RATE

In kinetic theory it is appropriate to introduce a convenient scaling in Eq. �3�, also in order to
erive, by a suitable asymptotic procedure, macroscopic equations at a hydrodynamic level. In our
ase, the most significant macroscopic quantity needed for practical applications is the Auger
ecombination/generation rate.5 We shall deduce a formula for such a rate in a very simple way
rom the kinetic level as a suitable asymptotic limit. We perform our scaling according to the fact
hat the microscopic relaxation times of the considered interaction mechanisms are typically much
horter than the pertinent macroscopic time. Upon adimensionalization, this leads to the appear-
nce of a small parameter �, ratio of the two time scales �the Knudsen number�, downstairs in
ront of the collision terms, making the initial value problem of singular perturbation type. The
imiting form when �→0 of the evolution equations �3� are just the equilibrium equations �17�. If
e then restrict ourselves to the low density limit of Gibbsian statistics ���f��= f� and ���f��
1, the limiting solution is the Maxwellian-type equilibrium,

fe
*�p� = exp�� − �e�p�

T
� = neMe�p�, fh

*�k� = exp�−
� + �h�k�

T
� = nhMh�k� , �23�

here the normalized shape functions M� are

Me�p� =
exp�− �e�p�/T�

� exp�− �e�p�/T�dp

, Mh�k� =
exp�− �h�k�/T�

� exp�− �h�k�/T�dk

. �24�

y multiplying the two equilibrium distributions in �23� and integrating then over both momenta
* *
and k, we see that the chemical equilibrium condition �e +�h=0 may be cast as
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ne
*nh

* =� exp�− �e�p�/T�dp� exp�− �h�k�/T�dk = K , �25�

where K is an intrinsic constant depending only on the energy functions � and on the lattice
emperature� which can be regarded as a sort of mass action law. For the general evolution
roblem, we see that, from Proposition 2, the only macroscopic conservation equation which is in
rder for �3� is charge conservation, obtained after integration over the kinetic variables and
ubtraction, which reads as

ne�t� − nh�t� = B , �26�

here B is a constant depending only on initial conditions. The only equilibrium which is com-
atible with given initial conditions is then easily obtained by combining Eqs. �25� and �26�,
hich leads to

ne
* =

B

2
+ �B2

4
+ K�1/2

, nh
* = −

B

2
+ �B2

4
+ K�1/2

. �27�

he most important physical information is constituted by the evolution equations for densities,
hich are obtained instead by simple separate integrations of �3�. They are of course exact but not

losed, and the simplest hydrodynamic closure is represented by the relevant Euler equations, zero
rder approximation of any asymptotic technique, which may be deduced by approximating the
istribution functions appearing in the collision terms by the equilibria �23�. We get in this way

ṅe = ṅh = − A21ne
2nh + A10ne − A12nenh

2 + A01nh, �28�

here

A21 =� � � � W�k,p1,p2;p�Mh�k�Me�p1�Me�p2�dk dp1 dp2 dp ,

A10 =� � � � W�k,p1,p2;p�Me�p�dk dp1 dp2 dp ,

�29�

A12 =� � � � U�p,k1,k2;k�Me�p�Mh�k1�Mh�k2�dk dk1 dk2 dp ,

A01 =� � � � U�p,k1,k2;k�Mh�k�dk dk1 dk2 dp .

aking explicit use of �24� and �25�, we can write now

A21K� exp�− �e�p�/T�dp =� � � � W�k,p1,p2;p�exp�− ��h�k� + �e�p1�

+ �e�p2��/T�dk dp1 dp2 dp ,

A10� exp�− �e�p�/T�dp =� � � � W�k,p1,p2;p�exp�− ��e�p�/T�dk dp1 dp2 dp , �30�

nd similarly for A12 and A01. Then, thanks to energy conservation in the Auger effect, accounted

or by the � functions in W and U, we finally end up with
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A10 = KA21, A01 = KA12. �31�

n conclusion, the macroscopic Auger generation/recombination rate5

ṅe = ṅh = − �Cene + Chnh��nenh − Ci
2� �32�

s recovered, as first approximation deduced from kinetic theory, by putting together �28� and �31�,
ith specification of coefficients as Ci

2=K, Ce=A21, and Ch=A12.
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With the help of the factorizing F-matrix, the scalar products of the Uq�gl�1 �1��
free fermion model are represented by determinants. By means of these results, we
obtain the determinant representations of correlation functions of the model.
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. INTRODUCTION

The computation of correlation functions is one of the challenging problems in the theory of
uantum integrable lattice models.1,2 In this paper, we compute the correlation functions of the
ree fermion model by means of the algebraic Bethe ansatz method.1–3 Our computations are based
n the recent progress on the Drinfeld twists. Working in the F-bases provided by the F-matrices
Drinfeld twists�, the authors in Refs. 4 and 5 managed to derive the determinant representations
f the form factors and correlation functions of the XXX and XXZ models in the framework of
lgebraic Bethe ansatz.

Recently we have constructed the Drinfeld twists for both the rational gl�m �n� and the quan-
um Uq�gl�m �n�� supersymmetric models and resolved the hierarchy of their nested Bethe vectors
n the F-basis.6–8 These results serve as the basis of our computation in this paper of the correla-
ion functions of the Uq�gl�1 �1�� free Fermion model.

Correlation functions of the free Fermion model based on the XX0 spin chain �XY model9�
ith periodic boundary condition were studied in Refs. 10–15. As is seen in Sec. VI, by using the

ordan-Wigner transform, our Uq�gl�1 �1�� free Fermion model is equivalent to a twisted XX0
odel, and the one-point functions we obtained �see Eqs. �5.5� and �5.7� below� give the m-point

orrelation functions of the twisted XX0 model �see e.g., Eq. �6.6��.
The present paper is organized as follows. In Sec. II, we review the background of the

q�gl�1 �1�� model and its algebraic Bethe ansatz. In Sec. III, we construct the Drinfeld twists for
he model. In Sec. IV, we obtain the determinant representation of the scalar products of the

q�gl�1 �1�� Bethe states. Then in Sec. V, we compute correlation functions of the local Fermionic
perators of the model. We conclude the paper by offering some discussions in Sec. VI.
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�
Electronic mail: yzz@maths.uq.edu.au
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I. Uq„gl„1 �1…… FREE FERMION MODEL

. The background of the model

Let V be the two-dimensional Uq�gl�1 �1��-module and R�End�V � V� the R-matrix associ-
ted with this module. V is Z2-graded, and in the following we choose the FB grading for V, i.e.,
1�=1, �2�=0. The R-matrix depends on the difference of two spectral parameters u1 and u2

ssociated with the two copies of V, and is, in the FB grading, given by

R12�u1,u2� = R12�u1 − u2� =�
c12 0 0 0

0 a12 b12
+ 0

0 b12
− a12 0

0 0 0 1
� , �2.1�

here

a12 = a�u1,u2� 	
sinh�u1 − u2�

sinh�u1 − u2 + ��
, b12

± = b±�u1,u2� 	
e±�u1−u2� sinh �

sinh�u1 − u2 + ��
,

c12 = c�u1,u2� 	
sinh�u1 − u2 − ��
sinh�u1 − u2 + ��

�2.2�

ith ��C being the crossing parameter. One can easily check that the R-matrix satisfies the
nitary relation

R21R12 = 1. �2.3�

ere and throughout Rij	Rij�ui ,uj�. The R-matrix satisfies the graded Yang-Baxter equation
GYBE�

R12R13R23 = R23R13R12. �2.4�

n terms of the matrix elements defined by

R�u��vi� � v j�� = 

i,j

R�u�ij
i�j��vi

� v j� , �2.5�

he GYBE reads



i�,j�,k�

R�u1 − u2�ij
i�j�R�u1 − u3�i�k

i�k�R�u2 − u3� j�k�
j�k��− 1��j����i��+�i���

= 

i�,j�,k�

R�u2 − u3� jk
j�k�R�u1 − u3�ik�

i�k�R�u1 − u2�i�j�
i�j��− 1��j����i�+�i���. �2.6�

The quantum monodromy matrix T�u� of the free Fermion model on a lattice of length N is
efined as

T0�u� = R0N�u,zN�R0N−1�u,zN−1� ¯ R01�u,z1� , �2.7�

here the index 0 refers to the auxiliary space and �zi� are arbitrary inhomogeneous parameters
epending on site i. T�u� can be represented in the auxiliary space as the 2�2 matrix whose
lements are operators acting on the quantum space V�N,

T0�u� = A�u� B�u�
C�u� D�u�

�
�0�

. �2.8�
y using the GYBE, one may prove that the monodromy matrix satisfies the GYBE,
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R12�u − v�T1�u�T2�v� = T2�v�T1�u�R12�u − v� �2.9�

r in matrix form



i�,j�

R�u − v�ij
i�j�T�u�i�

i�T�v� j�
j��− 1��j����i��+�i��� = 


i�,j�

T�v� j
j�T�u�i

i�R�u − v�i�j�
i�j��− 1��j����i�+�i���.

�2.10�

Define the transfer matrix t�u�

t�u� = str0 T0�u� , �2.11�

here str0 denotes the supertrace over the auxiliary space. With the help of the GYBE, one may
heck that the transfer matrix satisfies the commutation relation �t�u� , t�v��=0, ensuring the inte-
rability of the system. The transfer matrix gives the Hamiltonian of the system,

H = �d ln t�u�
du

�
u=0

=
1

sinh �


j=1

N

�E�j�
12E�j+1�

21 + E�j�
21E�j+1�

12 − 2 cosh �E�j�
11E�j+1�

11 − �e�E�j�
11E�j+1�

22 + e−�E�j�
22E�j+1�

11 �� ,

�2.12�

here E�k�
ij are generators, which act on the kth space, of the superalgebra Uq�gl�1 �1��.

Using the standard Fermionic representation

E�k�
12 = ck, E�k�

21 = ck
†, E�k�

11 = 1 − nk, E�k�
22 = nk, nk = ck

†ck, �2.13�

he Hamiltonian can be rewritten as

H =
1

sinh �


j=1

N

�cjcj+1
† + cj

†cj+1 − 2 cosh ��1 − nj�� . �2.14�

. Algebraic Bethe ansatz

The transfer matrix �2.11� can be diagonalized by using the algebra Bethe ansatz. Define the
ethe state of the system

�N�v1,v2, . . . ,vn� = �
i=1

n

C�vi��0� , �2.15�

here �0� is the pseudovacuum,

�0� = �
k=1

N 0

1
�

�k�
�2.16�

nd the index �k� indicates the kth space.
Applying the elements of the monodromy matrix �2.8� to the pseudovacuum �0� and its dual,

e easily obtain

B�u��0� = 0, �0�C�u� = 0, D�0� = �0�, �0�D�u� = �0� ,

A�u��0� = �
N

a�u,zi��0�, �0�A�u� = �
N

a�u,zi��0� . �2.17�

i=1 i=1
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With the help of the GYBE �2.9�, we obtain the commutation relations between the elements
f the monodromy matrix,

C�u�C�v� = − c�u,v�C�v�C�u� , �2.18�

D�u�D�v� = D�v�D�u� , �2.19�

A�u�C�v� =
c�u,v�
a�u,v�

C�v�A�u� +
b+�u,v�
a�u,v�

C�u�A�v� , �2.20�

D�u�C�v� =
1

a�v,u�
C�v�D�u� −

b−�v,u�
a�v,u�

C�u�D�v� , �2.21�

B�u�C�v� = − C�v�B�u� +
b+�u,v�
a�u,v�

�D�v�A�u� − D�u�A�v��

= − C�v�B�u� +
b+�u,v�
a�u,v�

�D�u�t�v� − D�v�t�u�� . �2.22�

Thus applying the transfer matrix t�u�=D�u�−A�u� to the Bethe state and using the commu-
ation relations repeatedly, we obtain the eigenvalues of t�u� as

t�u��N = ��u,�vk���N = ��
k=1

n
1

a�vk,u�
− �

j=1

N

a�u,zj��
k=1

n
c�u,vk�
a�u,vk�

��N �2.23�

roviding vk �k=1,2 , . . . ,n� satisfying the Bethe ansatz equations �BAE�,

�
j=1

N

a�vk,zj� = 1. �2.24�

For late use, we define the state of the free Fermion chain of length N,

�a1a2 ¯ aN� = �a1��1��a2��2� ¯ �aN��N� �2.25�

nd its dual

�a1a2 ¯ aN�† = �aN��N��aN−1��N−1� ¯ �a1��1� 	 �aNaN−1 ¯ a1� . �2.26�

II. DRINFELD TWISTS OF THE MODEL

. Factorizing F-matrix and its inverse

Following Ref. 4, we now introduce the notation R1,. . .,N
� , where � is any element of the

ermutation group SN. We note that we may rewrite the GYBE as

R23
�23T0,23 = T0,32R23

�23, �3.1�

here T0,23	R03R02 and �23 is the transposition of space labels �2,3�. It follows that R1,. . .,N
� is a

roduct of elementary R-matrices,4,6 corresponding to a decomposition of � into elementary trans-
ositions. With the help of the GYBE, one may generalize �3.1� to a N-fold tensor product of
paces,

R� T0,1,. . .,N = T0,��1,. . .,N�R
� , �3.2�
1,. . .,N 1,. . .,N
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here T0,1,. . .,N	R0N¯R01. This implies the “decomposition” law

R1,. . .,N
��� = R���1,. . .,N�

� R1,. . .,N
�� , �3.3�

or a product of two elements in SN. Note that R���1,. . .,N�
� satisfies the relation

R���1,. . .,N�
� T0,���1,. . .,N� = T0,����1,. . .,N�R���1,. . .,N�

� . �3.4�

et us write the elements of R1,. . .,N
� as

�R1,. . .,N
� ��N¯�1

���N�¯���1�, �3.5�

here the labels in the upper indices are permuted relative to the lower indices according to �.
We proved in Refs. 6–8 that for the R-matrix R1,. . .,N

� , there exists a nondegenerate lower-
iagonal F-matrix �the Drinfeld twist� satisfying the relation

F��1,. . .,N��z��1�, . . . ,z��N��R1,. . .,N
� �z1, . . . ,zN� = F1,. . .,N�z1, . . . ,zN� . �3.6�

xplicitly,

F1,. . .,N = 

��SN


*

���1�. . .���N�

�
j=1

N

P��j�
���j�S�c,�,���R1,. . .,N

� , �3.7�

here the sum 
* is over all nondecreasing sequences of the labels ���i�,

���i+1� � ���i�, if ��i + 1� 	 ��i� ,

���i+1� 	 ���i�, if ��i + 1� 
 ��i� , �3.8�

nd the c-number function S�c ,� ,��� is given by

S�c,�,��� 	 exp� 1

2 

l	k=1

N

�1 − �− 1�����k�������k�,���l�
ln�1 + c��k���l��� . �3.9�

he inverse of the F-matrix is given by

F1,. . .,N
−1 = F1,. . .,N

* �
i
j

�ij
−1 �3.10�

ith

�ij = diag��1 + cij��1 + cji�,aji,aij,1� �3.11�

nd

F1,. . .,N
* = 


��SN


**

���1�. . .���N�

S�c,�,���R��1,. . .,N�
�−1 �

j=1

N

P��j�
���j�, �3.12�

here the sum 
** is taken over all possible �i which satisfies the following nonincreasing
onstraints:

���i+1�  ���i� if ��i + 1� 
 ��i� ,

� 
 � if ��i + 1� 	 ��i� . �3.13�
��i+1� ��i�
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. Symmetric representation of the Bethe state

The nondegeneracy of the F-matrix means that its column vectors form a complete basis,
hich is called the F-basis. By the procedure in Ref. 8, we find that in the F-basis, the simple
enerators of the superalgebra Uq�gl�1 �1�� have the symmetric form,

Ẽ12 = F12,. . .,NE12F12,. . .,N
−1 = 


i=1

N

E�i�
12

� j�i diag�2e−� cosh �,e−���j�, �3.14�

Ẽ21 = F12,. . .,NE21F12,. . .,N
−1 = 


i=1

N

E�i�
12

� j�i diag�e��2aji cosh ��−1,e�aji
−1��j�. �3.15�

imilarly, the diagonal element D�u� of the monodromy matrix in the F-basis is given by

D̃�u� = F12,. . .,ND�u�F12,. . .,N
−1 = � j=1

N diag�a0j,1� , �3.16�

here a0j	a�u ,zj�.
Then, the creation and annihilation operators C�u� and B�u� read, in the F-basis,

C̃�u� = F12,. . .,NC�u�F12,. . .,N
−1 = �q−1Ẽ�i�

12D̃�u� − D̃�u�Ẽ�i�
12�q−
i=1

N h�i�

= 

i=1

N

b0i
− E�i�

12
� j�i diag�2a0j cosh �,1��j�, �3.17�

B̃�u� = F12,. . .,NB�u�F12,. . .,N
−1 = q
i=1

N h�i��Ẽ21D̃ − qD̃Ẽ21�

= − 

i=1

N

b0i
+ E�i�

21
� j�i diag�a0j�2aji cosh ��−1,aji

−1��j�, �3.18�

here b0j
± 	b±�u ,zj�, q=e�, and h	−E11−E22.

Acting the F-matrix �3.7� on the state �2.16�, one sees that the pseudovacuum is invariant.
herefore in the F-basis, the Bethe state �2.15� becomes

�̃N�v1,v2, . . . ,vn� 	 F1,. . .,N�N�v1, . . . ,vn� = �
i=1

n

C̃�vn��0� . �3.19�

ubstituting �3.17� into �3.19�, we obtain

�̃N�v1, . . . ,vn� = �2 cosh ���n�n−1��/2 

i1
¯
in

Bn
−�v1, . . . ,vn�zi1

, . . . ,zin
�E�i1�

12
¯ E�in�

12 �0� ,

�3.20�

here

Bn
±�v1, . . . ,vn�zi1

, . . . ,zin
� = 


��Sn

sign����
k=1

n

b±�vk,zi��k�
� �
l=k+1

n

a�vk,zi��l�
� = det B±��vk�,�zj��

�3.21�

ith B±��vi� , �zj�� being a n�n matrix with matrix elements,

B��
± = b±�v�,z���

�−1

a�v�,z�� . �3.22�

�=1

                                                                                                            



I
S

B
o

T

w
o
n

I

�

013302-7 Determinant representation of correlation function J. Math. Phys. 47, 013302 �2006�

                        
Similarly, acting B̃�un�¯ B̃�u1� on the dual pseudovacuum state, we have

�0�B̃�un� ¯ B̃�u1� = �− 1�n�2 cosh ���−n�n−1��/2 

i1
¯
in

�
l=1

n

�
k=1,�il

N

a−1�zk,zil
�

� det B+��vk�,�zij
���0�E�in�

21
¯ E�i1�

21 . �3.23�

V. DETERMINANT REPRESENTATION OF THE SCALAR PRODUCT OF THE BETHE
TATES

In Refs. 2 and 5 the authors gave the determinant representation of the scalar product of the
ethe state for the spin-1 /2 XXZ model. In this section, we derive the determinant representation
f the scalar product of the Uq�gl�1 �1�� Bethe states defined by

Sn��uj�,�vk�� = �0�B�un� ¯ B�u1�C�v1� ¯ C�vn��0� . �4.1�

he F-invariance of the pseudovacuum state �0� and its dual state �0� leads to

Sn��uj�,�vk�� = �0�B̃�un� ¯ B̃�u1�C̃�v1� ¯ C̃�vn��0� . �4.2�

Following Ref. 5, we define

G�m���vk�,u1, . . . ,um,im+1, . . . ,in� = �in, . . . ,im+1�B̃�um� ¯ B̃�u1�C̃�v1� ¯ C̃�vn��0� , �4.3�

here ik �k=m+1, . . . ,n�, ordered as im+1
 ¯ 
 in, indicate the positions having state � 1
0

�, and
ther positions have state � 0

1
�. One sees that when m=n, G�n�=Sn. Inserting a complete set and

oticing �3.18� and �4.3� becomes

G�m���vk�,u1, . . . ,um,im+1, . . . ,in� = 

j�im+1,. . .,in

N

�in, . . . ,im+1�B̃�um��im+1, . . . ,im+p, j,im+p+1, . . . ,in�

� G�m−1���vk�,u1, . . . ,um−1,im+1, . . . ,im+p, j,im+p+1, . . . ,in� .

�4.4�

n view of �3.18�, we have

�in, . . . ,im+1�B̃�um��im+1, . . . ,im+p, j,im+p+1, . . . ,in� = − �2 cosh ��−�n−m�

��− 1�pb+�um,zj��
k�j

N

a−1�zk,zj� �
l=m+1

n

a�um,zil
� .

�4.5�

With the help of �3.20�, we obtain G�0�,

G�0���vk�,i1, . . . ,in� = �in, . . . ,i1��
k=1

n

C̃�vk��0� = �2 cosh ���n�n−1��/2 det B−��vk�,�zil
�� . �4.6�

We now compute G�1� by using the recursion relation �4.4�. Substituting �4.5� and �4.6� into

4.4�, we obtain
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G�1���vk�,u1,i2, . . . ,in� = 

j�i2,. . .,in

N

�in, . . . ,i2�B̃�u1��i2, . . . ,ip+1, j,ip+2, . . . ,in�

� G�0���vk�,i2, . . . ,ip+1, j,ip+2, . . . ,in�

= − �2 cosh ����n−1��n−2��/2 

j�i2,. . .,in

N

�− 1�pb+�u1,zj��
k�j

N

a−1�zk,zj��
l=2

n

a�u1,zil
�

� det B−��vk�,zi2
, . . . ,zip+1

,zj,zip+2
, . . . ,zin

� �k = 1, ¯ ,n� . �4.7�

et vk �k=1, . . . ,n� label the row and zl �l= i2 , . . . , j , . . . , in� label the column of the matrix B−.
rom �4.6�, one sees that the column indices in �4.7� satisfy the sequence i2
 ¯ 
 j
 ¯ 
 in.
herefore, moving the column j in the matrix B− to the first column, we have

G�1���vk�,u1,i2, . . . ,in� = − �2 cosh ����n−1��n−2�/2� 

j�i1,. . .,in

N

b+�u1,zj��
k�j

N

a−1�zk,zj��
l=2

n

a�u1,zil
�

� det B��vk�,zj,zi2
, . . . ,zin

�

= − �2 cosh ����n−1��n−2�/2� det �B−��1���vk�,u1,zi2
, . . . ,zin

� , �4.8�

here the matrix �B−��1���vk� ,u1 ,zi2
, . . . ,zin

� is given by

�B��
− ��1� = a�u1,zi�

�B��
− for � � 2, �4.9�

�B�1
− ��1� = 


j�i2,. . .,in

N

b+�u1,zj�b−�v�,zj��
�=1

�−1

a�v�,zj� �
k=1,�j

N

a−1�zk,zj� . �4.10�

sing the properties of determinant, one finds that if j= i2 , . . . , in, the corresponding terms in �4.10�
ontribute zero to the determinant. Thus, we may rewrite �4.10� as

�B�1
− ��1� = 


j=1

N
eu1−v� sinh2 �

sinh�u1 − zj + ��sinh�v� − zj + �� ��=1

�−1
sinh�v� − zj�

sinh�v� − zj + �� �
k=1,�j

N
sinh�zk − zj + ��

sinh�zk − zj�

	 eu1f�u1� . �4.11�

hanks to the Bethe ansatz equation �2.24�, we may construct the function

M��
± = e�u�g�u�� =

e±�v�−u�� sinh �

sinh�v� − u�� �
�=1

�−1
sinh�v� − u� − ��

sinh�v� − u�� �1 − �
k=1

N
sinh�u� − zk�

sinh�u� − zk + ��� .

�4.12�

omparing f�u1� in �4.11� with g�u1� in �4.12�, one finds that as functions of u1, they have the
ame residues at the simple pole u1=zj−� mod�i��, and that when u1→�, they are bounded.

oreover, one may prove that the residues of g�u1� at u1=v� mod�i�� ��=1, . . . ,�� are zero
ecause v� are solutions of the Bethe ansatz equation �2.24�. Therefore, we have

�B�1
− ��1� = M�1

− =
b−�v�,u1�
a�v�,u1� �

�=1

�−1

a−1�u1,v��1 − �
k=1

N

a�u1,zk�� . �4.13�

Then, by using the function G�0�, G�1� and the intermediate function �4.4� repeatedly, we obtain
�m�
 as
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G�m���vk�,u1, . . . ,um,im+1, . . . ,in� = �− 1�m�2 cosh ���n�n−1�−m�2n−m−1��/2 �
1j
km

a−1�uk,uj�

� det �B−��m���vk�,u1, . . . ,um,im+1, . . . ,in� �4.14�

ith the matrix elements

�B��
− ��m� = �

k=1

m

a�uk,zi�
�B��

− , for � 	 m ,

�B��
− ��m� = M��

− for �  m . �4.15�

quation �4.14� can be proved by induction. First from �4.8�, �4.9�, �4.13�, and �4.14� is true for
=1. Assume �4.14� for G�m−1�. Let us show �4.14� for general m. Substituting G�m−1� and �4.5�

nto intermediate function �4.4�, we have

G�m���vk�,u1, . . . ,um,im+1, . . . ,in�

= 

j�im+1,. . .,in

N

�in, . . . ,im+1�B̃�um��im+1, . . . ,im+p, j,im+p+1, . . . ,in�

�G�m−1���vk�,u1, . . . ,um−1,im+1, . . . ,im+p, j,im+p+1, . . . ,in�

= − �2 cosh ��−�n−m� 

j�im+1,. . .,in

N

b+�um,zj��
k�j

N

a−1�zk,zj� �
l=m+1

n

a�um,zil
�

�G�m−1���vk�,u1, . . . ,um−1, j,im+1, . . . ,in�

= �− 1�m�2 cosh ���n�n−1�−m�2n−m−1��/2 �
1j
km−1

a−1�uk,uj�

�det B��m���vk�,u1, . . . ,um,im+1, . . . ,in� , �4.16�

here the matrix elements B��
��m� are given by

B����m� = �
k=1

m

a�uk,zi�
�B��

− for � 	 m ,

B����m� = M��
− for � 
 m ,

B�m��m� = �
i=1

m−1

a�ui,zj� 

j�im+1,. . .,in

b+�um,zj�b−�v�,zj��
�=1

�−1

a�v�,zj� �
k=1,�j

N

a−1�zk,zj� . �4.17�

hus, by the procedure leading to �B��
− ��1�, we can prove

B�m��m� = �
i=1

m−1

a−1�um,ui�M�m
− . �4.18�

hen one sees that B��
��m�=B��

�m�. Therefore we have proved that �4.14� holds for all m.
When m=n, we obtain the scalar product Sn��ui� , �v j��,

Sn��ui�,�v j�� = �− 1�n�
k	l

n

a−1�uk,ul�det M−��v j�,�ui�� , �4.19�

−
here the matrix elements of M are given by
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M��
± =

b±�v�,u��
a�v�,u�� �

�=1

�−1

a−1�u�,v��1 − �
k=1

N

a�u�,zk�� . �4.20�

y using the expression of the eigenvalues of the system �2.23�, the scalar product �4.19� can be
ewritten as

Sn��ui�,�v j�� = �− 1�n�
k	l

n

a−1�uk,ul�det M̂−��v j�,�ui�� �4.21�

ith the matrix M̂± being

M̂��
± = e±�v�−u�� sinh�u� − v�� �

���

a�v�,u���
�=1

�−1

a−1�u�,v��
���u�,�v���

�v�

. �4.22�

Remark: In the derivation of �4.19�, the parameters vi in the state C̃�v1�¯ C̃�vn��0� are re-
uired to satisfy the BAE �2.24�. However, the parameters uj �j=1, . . . ,n� in the dual state

0�B̃�un�¯ B̃�u1� do not need to satisfy the BAE.
On the other hand, if we compute the scalar product by starting from the dual state

0�B�vn�¯B�v1�, then by using the same procedure, we have

Sn��vi�,�uj�� = �0�B̃�vn� ¯ B̃�v1�C̃�u1� ¯ C̃�un��0� = �− 1�n�
k	l

n

a−1�uk,ul�det M+��vi�,�uj�� .

�4.23�

n the above equation, we have assumed that �vi� satisfy the BAE.
Noticing the BAE �2.24�, one sees that the scalar product Sn��ui� , �v j��=0 if both parameter

ets �ui� and �v j���v j�� �ui�i , j=1, . . . ,n� in �4.19� and �4.23� satisfy the BAE.
Let u�→v� ��=1, . . . ,n� in �4.19�, we obtain the Gaudin formula for the norm of the

q�gl�1 �1�� Bethe state,

Sn = Sn��v j�,�vk�� = �0�B�vn� ¯ B�v1�C�v1� ¯ C�vn��0�

= �− 1�n sinhn ��
k	j

n
sinh2�vk − v j + ��

sinh2�vk − v j�
��

�=1

n
1

v� − u�
1 − �

l=1

N
sinh�u� − zl�

sinh�u� − zl + ����
u�→v�

= �− 1�n sinhn ��
k	j

n
sinh2�vk − v j + ��

sinh2�vk − v j�
��

�=1

n
�

�u�

ln�
l=1

N
sinh�u� − zl�

sinh�u� − zl + ����
u�→v�

= �− 1�n sinh2n ��
k	j

n
sinh2�vk − v j + ��

sinh2�vk − v j�
�
�=1

n



l=1

N
1

sinh�v� − zl�sinh�v� − zl + ��
, �4.24�

here we have used the BAE �2.24�.

. CORRELATION FUNCTIONS

Having obtained the scalar product and the norm, we are now in the position to compute the
-point correlation functions of the model. In general, a k-point correlation function is defined by

Fn
�1,. . .,�k

= �0�B�un� ¯ B�u1��i1
1
¯ �ik

k C�v1� ¯ C�vn��0� , �5.1�

here �ij
j stand for the local Fermion operators cij

, cij
† or nij

, and the lower indices ij indicate the

ositions of the Fermion operators.
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The authors in Ref. 16 proved that the local spin and field operators of the fundamental graded
odels can be represented in terms of monodromy matrix. Specializing to the current system, we

btain

cj
† = �

k=1

j−1

�− A�zk� + D�zk�� · B�zj� · �
k=j+1

N

�− A�zk� + D�zk�� , �5.2�

cj = �
k=1

j−1

�− A�zk� + D�zk�� · C�zj� · �
k=j+1

N

�− A�zk� + D�zk�� , �5.3�

nj = �
k=1

j−1

�− A�zk� + D�zk�� · D�zj� · �
k=j+1

N

�− A�zk� + D�zk�� . �5.4�

. One-point functions

In this section, we compute the one-point functions for the local operators cm
† , cm, and nm,

espectively.
We first calculate cm

† . Noticing that the Bethe state and its dual are eigenstates of the transfer
atrix under the constraint of the BAE, we have, from �5.2�,

Fn
−��uj�,zm,�vk�� = �0�B�un� ¯ B�u1�cm

† C�v1� ¯ C�vn+1��0�

= �m−1��uj���m
−1��vk���0�B�un� ¯ B�u1�B�zm�C�v1� ¯ C�vn+1��0�

= �m−1��uj���m
−1��vk���0�B̃�un� ¯ B̃�u1�B̃�zm�C̃�v1� ¯ C̃�vn+1��0�

= �m−1��uj���m
−1��vk��Sn+1�un, . . . ,u1,zm,�v j��

= �− 1�n+1�m−1��uj���m
−1��vk���

k	j

n

a−1�uk,uj��
l=1

n

a−1�ul,zm�

� det M−��v j�,zm,u1, . . . ,vn� , �5.5�

here �i��uj��=�k=1
i �l=1

n a�ul ,uk�. As mentioned in the remark of the preceding section, Fn
−=0 if

he parameter set �ui� �i=1, . . . ,n� is not a subset of �v j� �j=1, . . . ,n+1�. When �ui�� �v j�, �5.5�
an be simplified to a simple function. For example, if ui=vi+1 �i=1, . . . ,n�, the one-point function
− becomes

Fn
−�vn+1, . . . ,v2,zm,v1, . . . ,vn+1�

= �− 1�n+1�m−1��uj��
�m��vk��

e−�v1−zm� sinh2n+1 �

sinh�v1 − zm� �
k	j=2

n+1
sinh2�vk − v j + ��

sinh2�vk − v j�

��
j=2

n+1
sinh�v j − zm + ��

sinh�v j − zm� �
j=2

n+1
sinh�v j − v1 + ��

sinh�v j − v1� �
�=2

n+1



l=1

N
1

sinh�v� − zl�sinh�v� − zl + ��
.

�5.6�
Similarly, when �ui�� �v j�, we obtain the one-point function involving the operator cm,
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Fn
+��vk�,zm,�uj�� = �0�B�vn+1� ¯ B�v1�cmC�u1� ¯ C�un��0�

= �m−1��v j���m
−1��uk��Sn+1��v j�,zm,u1, . . . ,un�

= �− 1�n+1�m−1��v j���m
−1��uk���

k	j

n

a−1�uk,uj��
l=1

n

a−1�ul,zm�

� det M+��v j�,zm,u1, . . . ,vn� . �5.7�

n
+ is nonvanishing if �ui�� �v j�. When �ui�� �v j�, �5.7� can also be simplified to a simple function.

n the case ui=vi+1 �i=1, . . . ,n�, the one-point function F+ becomes

Fn
+�vn+1, . . . ,v2,zm,v1, . . . ,vn+1�

= �− 1�n+1�m−1��v j��
�m��uk��

e�v1−zm� sinh2n+1 �

sinh�v1 − zm� �
k	j=2

n+1
sinh2�vk − v j + ��

sinh2�vk − v j�

��
j=2

n+1
sinh�v j − zm + ��

sinh�v j − zm� �
j=2

n+1
sinh�v j − v1 + ��

sinh�v j − v1� �
�=2

n+1



l=1

N
1

sinh�v� − zl�sinh�v� − zl + ��
.

�5.8�

The one-point function involving the operator nm is defined by

Fn
nm��uj�,zm,�vk�� = �0�B�un� ¯ B�u1�nmC�v1� ¯ C�vn��0� . �5.9�

ubstituting �5.4� into the above equation and considering the BAE, we have

Fn
nm��uj�,zm,�vk�� = �0�B�un� ¯ B�u1�nmC�v1� ¯ C�vn��0�

=
�m−1��uj��
�m−1��vk��

�0�B̃�un� ¯ B̃�u1�D̃�zm�C̃�v1� ¯ C̃�vn��0� . �5.10�

ith the help of �2.21�, we see

D�zm�C�v1� ¯ C�vn��0� = �
k=1

n

a−1�vk,zm�C�v1� ¯ C�vn��0�

− 

j=1

n
b−�v j,zm�
a�v j,zm� �

l=1

j−1
c�vl,v j�
c�vl,zm� �

k=1,�j

n

a−1�vk,v j�

� C�v1� ¯ C�v j−1�C�zm�C�v j+1� ¯ C�vn��0� . �5.11�

herefore, substituting �5.11� into �5.10�, we obtain

Fn
nm��uj�,zm,�vk�� =

�m−1��uj��
�m−1��vk��

�
k=1

n

a−1�vk,zm�Sn��ui�,�v j��

− 

j=1

n
b−�v j,zm�
a�v j,zm� �

l=1

j−1
c�vl,v j�
c�vl,zm� �

k=1,�j

n

a−1�vk,v j�Sn��ui�,v1, . . . ,v j−1,zm,v j+1, . . . ,vn�

= �− 1�n �m−1��uj��
�m−1��vk��

�
k=1

n

a−1�vk,zm��
k	j

a−1�vk,v j�det�M+��ui�,�v j��

− N��ui�,�v j�,zm�� , �5.12�
here N is a rank-one matrix with the following matrix elements:
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N����ui�,�v j�,zm� =
eu�−v� sinh2 �

sinh�u� − zm�sinh�v� − zm + �� �i=1

�−1
sinh�zm − ui + ��

sinh�zm − ui�
. �5.13�

n the above derivation, we have used the following property of determinant: If A is an arbitrary
�n matrix and B is a rank-one n�n matrix, then the determinant of A+B is given by

det�A + B� = det A + 

i=1

n

det A�i�, �5.14�

here

A��
�i� = A�� for � � i ,

A�i
�i� = B�i.

. Correlation function of two adjacent operators

In this section, we compute the correlation function of two adjacent operators cm and cm+1

efined by

Fn
−+��ui�,zm,zm+1,�v j�� = �0�B�un� ¯ B�u1�cmcm+1

† C�v1� ¯ C�vn��0� . �5.15�

ubstituting �5.3� and �5.2� into the above definition and considering the fact �k=1
N t�zk�=1, we have

Fn
−+��ui�,�v j�,zm,zm+1� =

�m−1��ui��
�m+1��v j��

�0�B̃�un� ¯ B̃�u1�C̃�zm�B̃�zm+1�C̃�v1� ¯ C̃�vn��0� .

�5.16�

y using the commutation relation �2.22�, we obtain

B�zm+1�C�v1� ¯ C�vn��0� = �− 1�nC�v1� ¯ C�vn�B�zm+1��0�

+ 

j=1

n

�− 1� j+1b+�zm+1,v j�
a�zm+1,v j�

C�v1� ¯ C�v j−1�D�zm+1�t�v j�C�v j+1�C�vn��0�

+ 

j=1

n

�− 1� j b
+�zm+1,v j�

a�zm+1,v j�
C�v1� ¯ C�v j−1�t�zm+1�D�v j�C�v j+1�C�vn��0� ,

�5.17�

here t̃�u�	F1¯Nt�u�F1¯N
−1 . On the right-hand side �rhs� of the above equation, one easily finds

hat the first term is zero. Using the BAE, one may check that the second term also equals zero.
herefore, only the third term survives on the rhs of the above equation and we have

B�zm+1�C�v1� ¯ C�vn��0�

= 

j=1

n

�− 1� j b
+�zm+1,v j�

a�zm+1,v j�
�

k=j+1

n

a−1�vk,zm+1� �
l=j+1

n

a−1�vl,v j�

�C�v1� ¯ C�v j−1�C�v j+1�C�vn��0�

+ 

n

�− 1� j+1b+�zm+1,v j�
a�zm+1,v j�

�
n

a−1�vk,zm+1�

j=1 k=j+1
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� 

l=j+1

n
b−�vl,v j�
a�vl,v j�

�
m=j+1

l−1
c�vm,vl�
c�vm,v j�

�
i=j+1,�l

n

a−1�vi,vl�

�C�v1� ¯ C�v j−1�C�v j+1� ¯ C�vl−1�C�v j�C�vl+1� ¯ C�vn��0�

	 

j=1

n

MjC�v1� ¯ C�v j−1�C�v j+1�C�vn��0�

+ 

j=1

n



l=j+1

n

Mj,lC�v1� ¯ C�v j−1�C�v j+1� ¯ C�vl−1�C�v j�C�vl+1� ¯ C�vn��0� . �5.18�

ubstituting �5.18� into �5.16�, we obtain two-point correlation function Fn
−+,

Fn
−+��ui�,zm,zm+1,�v j�� =

�m−1��ui��
�m+1��v j��

�

j=1

n

MjSn��ui�,zm,v1, . . . ,v j−1,v j+1,vn�

+ 

j=1

n



l=j+1

n

Mj,lSn��ui�,zm,v1, . . . ,v j−1,v j+1, . . . ,vl−1,v j,vl+1, . . . ,vn�� .

�5.19�

I. DISCUSSION

In this paper, with the help of the factorizing F-matrix �F-basis�, we have obtained the
eterminant representations of the scalar products and correlation functions of the Uq�gl�1 �1�� free
ermion model.

In Refs. 10–15, the authors studied the correlation Functions of the free Fermion model based
n the finite XX0 spin chain �XY model9� with periodic boundary condition

HXX0 = 

j=1

N

�� j
x� j+1

x + � j
y� j+1

y + h� j
z� , �6.1�

here �� ��=x ,y ,z� are the Pauli matrices and h is an external classical magnetic field. The
quivalence between the free Fermion model and the XX0 model can be proved by using the
ordan-Wigner transform

ck = exp�i�Qk−1��k
+, �6.2�

ck
† = �k

− exp�i�Qk−1� , �6.3�

here �±= 1
2 ��x±�y�, Qk=
 j=1

k 1
2 �1−�k

z�. Because of the periodic boundary condition of the finite
X0 spin chain, we have

�N+1
± = �1

±. �6.4�

ubstituting the Jordan-Wigner transforms into the above relation, we obtain

cN+1 = exp�i�QN�c1, cN+1
† = c1

† exp�i�QN� . �6.5�

hus, comparing the above boundary condition with that of the Uq�gl�1 �1�� free Fermion model
2.14�, we find that the free Fermion model arising from the XX0 model has a twisted boundary

z N z
ondition which depends on the operator � =
i=1�i .

                                                                                                            



m
g
�

A

�

1

1

1

1

1

1

1

013302-15 Determinant representation of correlation function J. Math. Phys. 47, 013302 �2006�

                        
On the other hand, by means of the Jordan-Wigner transform, the Uq�gl�1 �1�� free Fermion
odel is equivalent to a twisted XX0 model, and the one-point correlation functions �5.5� and �5.7�

ive rise to the m-point correlation functions of the twisted XX0 model. For example, substituting
6.3� into �5.5�, we obtain

Fn
−��uj�,zm,�vk�� = �0�B�un� ¯ B�u1�cm

† C�v1� ¯ C�vn+1��0�

= �0�B�un� ¯ B�u1��1
z
¯ �m−1

z �m
− C�v1� ¯ C�vn+1��0� . �6.6�
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In the present work we use the method of equivalence to determine necessary and
sufficient conditions for a general fourth order ordinary differential equation to be
equivalent to the flat model under a fiber preserving transformation. As a result,
explicit and simple conditions are obtained. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2157050�

. INTRODUCTION

Introduced and developed by Élie Cartan in the beginning of the 1920s, the method of
quivalence is a systematic procedure that allows one to decide whether two systems of differen-
ial equations can be mapped one to each other by a transformation taken in a given pseudogroup.
or instance, the method of equivalence answers questions like: find necessary and sufficient
onditions on f such that

y� = f�x,y,
dy

dx
�

an be mapped to

d2Y

dX
= 0

nder a point transformation X=X�x ,y�, Y =Y�x ,y�.
Thanks to C. Erhesmann and S. Chern who introduced two important concepts to the method

f equivalence: jets spaces and G-structures. Actually a G-structure on manifold is a G-subbundle
f the frame bundle. Applying the equivalence method leads to �e�-structure, which is invariantly
ssociated to the given equation.

In the 1960s, Singer, Sternberg, Guillemin, Kuranishi, Kodaira, and Spencer made major
ontributions making the equivalence method more rigorous. We refer the reader to Refs. 4,3 or
ven to Cartan paper1 for detailed exposition.

In recent years, with the help of algebraic computers, many authors have successfully used
he method of equivalence to many interesting problems: classifications of differential equations
Kamran, Olver and Fels�, holonomy groups �Bryant�, inverse variational problems �Fels�, general
elativity �Newman�.

In this paper we completely characterize the fourth order differential equations which are
quivalent to the flat model under fiber preserving transformations.

I. MAIN RESULT

Consider the fourth order equation

�Electronic mail: dridi@lifl.fr
�
Electronic mail: neut@lifl.fr

47, 013501-1022-2488/2006/47�1�/013501/6/$23.00 © 2006 American Institute of Physics
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y�4� = f�x,y,y�,y�,y�� �1�

nd let � be a fiber preserving transformation from J3 to J3 with xª �x ,y , p=y� ,q=y� ,r=y��
R5 as local coordinates. Recall that a map � is said to be fiber preserving if there exists a map
:R→R such that

� � �proj� = �proj� � � .

hus in terms of local coordinates on J0, we have

	 x̄ � � = ��x� ,

ȳ � � = ��x,y� .

 �2�

he main result of the paper is
Thorem 1: The following propositions for a fourth order ordinary differential equation y�4�

f�x ,y , p ,q ,r� are equivalent
�i� The equation is equivalent to the flat model y�4�=0 under a fiber preserving transformation.
�ii� The equation admits an eight dimensional symmetry group of fiber preserving transfor-

ations.
�iii� f satisfies

frr = 0, fqr = 0,

− fr
3 + 6Dxfrfr − 4fqfr − 8fp + 8Dxfq − 4Dx

2fr = 0,

1512Dxfrfr
2 − 1440frDx

2fr + 832fqDxfr + 2000Dxfqfr − 1600fpfr − 808fqfr
2 − 1120Dx

2fq

+ 480Dx
3fr + 1600Dxfp − 864�Dxfr�2 − 1600fy − 144fq

2 − 189fr
4 = 0, �3�

− 800Dx
2fr + 1600Dxfq − 200fr

3 − 1600fp + 1200Dxfrfr − 800fqfr = 0

here Dx=�x+ p�y +q�p+r�q+ f�x ,y , p ,q ,r��r is the total derivative.

II. PROBLEM FORMULATION

Any fiber preserving diffeomorphism has a standard lift to J3 �called the third prolongation�
hich preserves the Pfaffian system

�1 = − f�x,y,p,q,r�dx + dr, �2 = − pdx + dy, �3 = − qdx + dp, �4 = − rdx + dq . �4�

In local coordinates, the equivalence of y�4�= f�x ,y , p ,q ,r� and ȳ�4�= f̄�x̄ , ȳ , p̄ , q̄ , r̄� under fiber

reserving transformations is expressed as local equivalence problem for G-structures B and B̄
iven by

�5�
1 5 t 5
here �= �� , . . . ,� � and � =dx.
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V. SOLUTION

According to Cartan we take the lifts �=S�a�� and �̄=S�ā��̄. By differentiation we obtain the
ollowing structure equations

�
d�1

d�2

d�3

d�4

d�5
� =�

�1 �2 �3 �4 0

0 �5 0 0 0

0 �6 �7 0 0

0 �8 �9 �10 0

0 0 0 0 �11
� ∧�

�1

�2

�3

�4

�5
� �6�

+�
I1�1 ∧ �5 + I2�2 ∧ �5 + I3�3 ∧ �5 + I4�4 ∧ �5

I5�2 ∧ �5 + I6�3 ∧ �5

I7�2 ∧ �5 + I8�3 ∧ �5 + I9�4 ∧ �5

I10�
1 ∧ �5 + I11�

2 ∧ �5 + I12�
3 ∧ �5 + I13�

4 ∧ �5

0
� . �7�

The torsion of the pseudoconnection � is T�ªTjk
i vi � v j ∧vk���B ,V � ∧2V*� �here V=R5�

nd we are less interested in T� than in the intrinsic torsion which is independent of any choice of
. Recall that �see Ref. 2� the intrinsic torsion of a linear Pfaffian system with tableau A�W

� V* lies in H0,2�A�= �W � ∧2V*� /��A � V*�, where � is the skew-symmetrization map. In the
heory of the equivalence problems we have W=V and A=g the Lie algebra of G.

Lemma 1: H0,2�g��0. Indeed, the absorption of the apparent torsion �that is, factorizing the
bove structure equations according to the �� j� and renaming the new forms of the pseudocon-
ection such that �	

ª�	+
 j
	� j� yields

�
d�1

d�2

d�3

d�4

d�5
� =�

�1 �2 �3 �4 0

0 �5 0 0 0

0 �6 �7 0 0

0 �8 �9 �10 0

0 0 0 0 �11
� ∧�

�1

�2

�3

�4

�5
� +�

0

I1�3 ∧ �5

I2�4 ∧ �5

I3�1 ∧ �5

0
� . �8�

Now, define the structure map � :B→H0,2�g� such that for every p= �x ,u��B we have ��p�
�Tp�. The torsion lies in a single orbit of G in H0,2�g�. Thus we can can choose a normal form T0

n the image of the structure map so that B1ª �p�B :��p�=T0� and G1ª �g�G : ∀ p
B ,��p .g�=��p�� define a normalization of first order constant type, i.e., B1 is G1-structure. G1

s the matrix group defined by normalizing a5 ,a7 ,a10 in the following manner:

I1 = −
a5

a7a11
= − 1, I2 = −

a7

a10a11
= − 1, I3 = −

a10

a1a11
= − 1.

Let us denote by g1 the new Lie algebra and we continue to denote by � the pull back of the

seudoconnection. The calculations give
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�
d�1

d�2

d�3

d�4

d�5
� =�

�10 − �11 �2 �3 �4 0

0 �10 + 2�11 0 0 0

0 �6 �10 + �11 0 0

0 �8 �9 �10 0

0 0 0 0 �11
� ∧�

�1

�2

�3

�4

�5
�

+�
I1�1 ∧ �5 + I2�2 ∧ �5 + I3�3 ∧ �5 + I4�4 ∧ �5

I5�2 ∧ �5 − �3 ∧ �5

I6�2 ∧ �5 + I7�3 ∧ �5 − �4 ∧ �5

− �1 ∧ �5 + I8�2 ∧ �5 + I9�3 ∧ �5 + I10�
4 ∧ �5

0
� �9�

Lemma 2: H0,2�g1��0. Indeed since we can absorb the apparent torsion to obtain

�
d�1

d�2

d�3

d�4

d�5
� =�

�7 − �8 �1 �2 �3 0

0 �7 + 2�8 0 0 0

0 �4 �7 + �8 0 0

0 �5 �6 �7 0

0 0 0 0 �8
� ∧�

�1

�2

�3

�4

�5
� +�

0

I1�2 ∧ �5

− �4 ∧ �5

− �1 ∧ �5 + I2�4 ∧ �5

0
� .

gain the torsion lies in single orbit of G1 in H0,2�g1� thus we can define B2 by setting I1= I2

0 where

I1 = −
1

2

− 5a6 + 3a9a11 + a11
2fra1 + a11

2a4

a1a11
3

nd

I2 =
1

2

− 3a9a11 + 3a11
2a4 + a6 + a11

2fra1

a1a11
3 .

his normalizes �a6 ,a9� and gives a new Lie algebra g2.
Lemma 3: H0,2�g2��0. In the same manner as above the precesses of absorption of torsion

eads

�
d�1

d�2

d�3

d�4

d�5
� =�

pi6 + �5 �1 �2 3

4
�4 0

0 �5 + 2�6 0 0 0

0
3

4
�4 �5 + �6 0 0

0 �3 �4 �5 0

0 0 0 0 �6

� ∧�
�1

�2

�3

�4

�5
�

+�
I1�1 ∧ �4 + I2�4 ∧ �5

− �3 ∧ �5

I3�1 ∧ �2 + I4�2 ∧ �4 − �4 ∧ �5

− �1 ∧ �5

0
� .
ew normalization is possible:
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I2 =
�118a11a4fra1 − 48a11fqa1

2 − 84a3a1a11 + 32a11a4
2 + 18Dxfra1

2a11 + 36a8a1 − 9a11fr
2a1

2�
48a1

2a11
3 = 0,

I5 = −
�132a11a4

2 + 38a11a4fra1 − 84a8a1 + 6Dxfra1
2a11 + 9a11fr

2a1
2 + 36a3a1a11�

48a1
2a11

3 = 0.

he normalized parameters are �a8 ,a3� and Lie algebra is now reduced to g3. Thus the absorbed
tructure equations read

�
d�1

d�2

d�3

d�4

d�5
� =�

�3 − �4 �1 0
3

4
�2 0

0 �3 + 2�4 0 0 0

0
3

4
�2 �3 + �4 0 0

0 0 �2 �3 0

0 0 0 0 �4

� ∧�
�1

�2

�3

�4

�5
�

+�
I1�1 ∧ �4 + I2�3 ∧ �5

− �3 ∧ �5

I3�1 ∧ �2 + I4�2 ∧ �4 − �4 ∧ �5

I5�1 ∧ �2 − �1 ∧ �5 + I6�2 ∧ �5

I7�2 ∧ �5 + I8�3 ∧ �5
� .

his proves the following lemma
Lemma 4: H0,2�g3��0.

e arrive at the last normalization of the parameter a2 : I2= 1
720�54a1

2 fr
2a4−396 fq a1

3 f1

240a1 fr a4
2+432 fr a1

3Dx fr−81 fr
3a1

3−720 fp a1
3−216 fq a1

2a4−720a2a1
2+160a4

3

144a4Dxfra1
2−216a1

3Dx
2fr+504a1

3Dxfq� / �a11
3a1

3�=0 and just as before, g4 is the new lie alge-
ra.

We can absorb the torsion to get

�
d�1

d�2

d�3

d�4

d�5
� =�

�2 − �3 0 0
3

4
�1 0

0 �2 + 3�3 0 0 0

0
3

4
�1 �2 + �3 0 0

0 0 �1 �2 0

0 0 0 0 �3

� ∧�
�1

�2

�3

�4

�5
�

+�
I1�2 ∧ �3 + I2�2 ∧ �4 + I3�2 ∧ �5

− �3 ∧ �5

I4�1 ∧ �2 + I5�2 ∧ �4 + I6�3 ∧ �4 − �4 ∧ �5

I7�1 ∧ �2 − �1 ∧ �5 + I8�2 ∧ �4 + I9�2 ∧ �5

I10�
2 ∧ �5 + I11�

3 ∧ �5 + I12�
4 ∧ �5

� . �10�

he Cartan characters are s1=3, s2=0, s3=0 and the indetermination degree is 0 thus the involu-
ion test fails:

Lemma 5: The above system is not in involution.

In this circumstances we define V̂=g4 � V and g�1�= �g4 � V*�� �V � S2V*� the prolongation of
�1� j
4. In fact, g is just the Lie algebra of the Lie group formed by the 
	 remaining arbitrary after

                                                                                                            



t
m
t
h

N
t

d

v

w
�
a
s

013501-6 R. Dridi and S. Neut J. Math. Phys. 47, 013501 �2006�

                        
he last absorption. Since the indetermination degree is 0, g�1� is reduced to the identity which
eans that g is of finite type. Thus the necessary and sufficient condition for the G4-structure B4

o be locally flat is that the structure functions of all prolongations of g4 must vanish. On the other
and, the Cartan’s lemma applied to �10� gives


d�1 = I13�

1 ∧ �2 + I14�
1 ∧ �3 + I15�

1 ∧ �4 + I16�
1 ∧ �5 + I17�

2 ∧ �3

+ I18�
2 ∧ �4 + I19�

2 ∧ �5 + I20�
2 ∧ �1 + I21�

3 ∧ �4 + I22�
3 ∧ �5

+ I23�
4 ∧ �5 + I24�

4 ∧ �1 + �1 ∧ �3,

d�2 = I25�
1 ∧ �2 + I26�

1 ∧ �3 + I27�
1 ∧ �4 + I28�

1 ∧ �5 + I29�
2 ∧ �3

+ I30�
2 ∧ �4 + I31�

2 ∧ �5 + I32�
3 ∧ �4 + I33�

3 ∧ �5 + I34�
4 ∧ �5

−
1

4
�5 ∧ �1,

d�3 = I35�
1 ∧ �2 + I36�

1 ∧ �3 + I37�
1 ∧ �4 + I38�

1 ∧ �5 + I39�
2 ∧ �3

+ I40�
2 ∧ �4 + I41�

2 ∧ �5 + I42�
2 ∧ �1 + I43�

3 ∧ �4 + I44�
3 ∧ �5

+ I45�
4 ∧ �5 +

1

2
�5 ∧ �1

.� �11�

ow the degree of indetermination is 0 and the Cartan characters are s1=0, s2=0. Thus we obtain
he involution

Proposition 1: The system (10) and (11) is in involution.
Going back to our main result, the achievement of the proof is due to the fundamental identity

2=0. Indeed, we prove that
Proposition 2: All the structure functions vanish if and only if

I4 =
frr

a1a11
, I34 =

fqra1 − frra4

a11
2a1

2 ,

I9 = �− fr
3 + 6Dxfrfr − 4fqfr − 8fp + 8Dxfq − 4Dx

2fr�/a11
3,

I3 = ��1512Dxfrfr
2 − 1440frDx

2fr + 832fqDxfr + 2000Dxfqfr − 1600fpfr − 808fqfr
2 − 1120Dx

2fq

+ 480Dx
3fr + 1600Dxfp − 864�Dxfr�2 − 1600fy − 144fq

2 − 189fr
4�a1 + �− 800Dx

2fr + 1600Dxfq

− 200fr
3 − 1600fp + 1200Dxfrfr − 800fqfr�a4�/�a1a11

4�

anish.
Again d2=0 shows that if the invariants are constant then they must vanish. Combining this

ith the fact that the dimension of the symmetry group is equal to the dimension of the coframing
�i ,� j� minus the rank of the coframing �actually the number of functionally independent invari-
nts�, we prove the equivalence between (ii) and (iii). The equivalence between (i) and (iii) is
traightforward.

1 Cartan, E., Les Problèmes d’équivalence, Oeuvres Complètes Vol. 2 �Gauthiers-Villars, Paris, 1953�.
2 Ivey, T. A., and Landsberg, J. M., Cartan for Beginners: Differential Geometry via Moving Frames and Exterior
Differential Systems. Graduate Studies in Mathematics �American Mathematical Society, Providence, 2003�.

3 Neut, S., “Implantation et nouvelles applications de la méthode d’équivalence,” Ph.D. thesis, Univ. Lille I, Lille, 2003.
4 Olver, P. J., Equivalence, Invariants and Symmetry. Texts in Mathematics �Cambridge University Press, Cambridge,

1995�.
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The quantum group and space theory is reformulated from the standard skew-
symmetric basis to an arbitrary one. The N-dimensional quantum Cayley–Klein
spaces are described in Cartesian basis and the quantum analogs of
�N−1�-dimensional constant curvature spaces are introduced. Part of the four-
dimensional constant curvature spaces are interpreted as the noncommutative ana-
logs of �1+3� space-time models. As a result the quantum �anti� de Sitter,
Minkowski, Newton, Galilei, Carroll kinematics with the fundamental length and
the fundamental time are suggested. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2157093�

. INTRODUCTION

Space-time is a fundamental conception that underlines the most significant physical theories.
herefore the analysis of a possible space-time model �or kinematics� has the fundamental mean-

ng for physics. Space and time in nonrelativistic physics were regarded as independent what
athematically is connected with the fiber property of Galilei kinematics. In special relativity it
as determined that space and time depend on each other and must be regarded as an integrated
bject, namely flat Minkowski space-time with a pseudo-Euclidean metric. The notion of curva-
ure was introduced in physics by general relativity. Anti-de Sitter and de Sitter kinematics with
onstant positive and negative curvature, respectively, are the simplest relativistic space-time
odels with curvature. Possible kinematics, which satisfy the natural physical postulates: space is

sotropic and rotations in space-time planes form a noncompact subgroup, were described in Ref.
on the level of Lie algebras. From the point of view of geometry these kinematics are realized

s constant curvature spaces, which can be obtained from the spherical space by contractions and
nalytical continuations known as a Cayley–Klein �CK� scheme.2

The Snyder quantized space-time coordinates3 or, respectively, the curved momentum space,
re the oldest example of using the noncommutative geometry in physics. The simplest curved de
itter geometry with constant curvature was used instead of flat Minkowski space in different
eneralizations of quantum field theory4–7 as a momentum space model. The universal constant,
he fundamental length l, or fundamental mass M, related to l by l= � /Mc, where � is the Plank
onstant and c is the velocity of light, enters necessarily into the theory.4,6,7

A new possibility for construction of the noncommutative space-time models is provided by
uantum groups and quantum vector spaces.8 According to Dirac9 from the early 30s, “The most
owerful method of advance that can be suggested at present is to employ all the resources of pure
athematics in attempts to perfect and generalize the mathematical formalism that forms the

xisting basis of theoretical physics, and after each success in this direction, to try to interpret the
ew mathematical features in terms of physical entities.” Similar views were expressed by
addeev,10 where we found this cite. The quantum Poincaré group related to the �-Poincaré
lgebra as well as the �-Minkowski kinematics were suggested.11–13 A general formalism that
llows the construction of field theory in �-Minkowski space-time was developed.14

�
Electronic mail: gromov@dm.komisc.ru
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On the other hand, the quantum deformations can be useful in the large-scale limit, in par-
icular, for a dark matter problem. If one uses a so-called Maslanka mapping,15

P̃0 = 2� arcsinh
P0

2�
,

here P0 �P̃0� is the energy of the particle for Minkowski ��-Minkowski� kinematics, then, as it
as pointed out by Bacry,16 the energy of a system S composed of two subsystems, S�1� and S�2�,

eads as

2� sinh
P̃0

2�
= 2� sinh

P̃0�1�

2�
+ 2� sinh

P̃0�2�

2�
,

ather then P0= P0�1�+ P0�2�. Actually, the above implies that P̃0� P̃0�1�+ P̃0�2�. It means that the
otal energy of the universe is not proportional to the number of particles it contains. Hence there
s no need for dark matter due to the kinematical reason.

Our purpose in this paper is to obtain the noncommutative �quantum� analogs of the possible
inematics. It is made just in the same way as for the commutative case, with the exception of the
nitial Euclidean space, which is substituted by the quantum Euclidean space associated with the
uantum orthogonal group. The CK scheme of contractions and analytical continuations was
eveloped in the Cartesian basis, whereas the standard quantum group theory8 was formulated in
different skew-symmetric one. Therefore, first of all, this theory is reformulated in the Cartesian
asis; then the noncommutative analogs of constant curvature spaces �CCS� including fiber �or
ag� spaces are investigated and some of them are interpreted as noncommutative kinematics.

The paper is organized as follows. In Sec. II, we briefly recall the description of the classical
ommutative kinematics as spaces of constant curvature. In Sec. III, the general formalism of
uantum Cayley–Klein orthogonal groups and associated spaces is developed. Section IV is de-
oted to the investigation of noncommutative four-dimensional space-time models.

I. COMMUTATIVE KINEMATICS

Classical four-dimensional space-time models can be obtained2 by the physical interpretation
f the orthogonal coordinates of the most symmetric spaces, namely constant curvature spaces. All
N N-dimensional CCS are realized on the spheres,

SN�j� = ��1
2 + j1

2�2
2 + . . . + �1,N + 1�2�N+1

2 = 1� , �1�

here

�i,k� = �
l=min�i,k�

max�i,k�−1

jl, �k,k� � 1, �2�

nd each of parameters jk takes the values 1 , �k , i, k=1, . . . ,N. Here �k are nilpotent generators

k
2=0, with commutative law of multiplication �k�m= �m�k�0, k�m.

The intrinsic Beltrami coordinates xk=�k+1�1
−1, k=1,2 , . . . ,N present the coordinate system in

CS, which coordinate lines xk=const are geodesic. CCS has positive curvature for j1=1, negative
or j1= i, and it is flat for j1= �1. For a flat space the Beltrami coordinates coincide with the
artesian ones. Nilpotent values jk= �k , k�1 correspond to a fiber �flag� spaces and imaginary

alues jk= i correspond to pseudo-Riemannian spaces.
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Classical �1+3� kinematics1 are obtained from CCS for N=4, j1=1 , �1 , i, j2= �2 , i, j3= j4=1 if
ne interprets x1 as the time axis t=�2�1

−1 and the rest as the space axes rk=�k+2�1
−1, k=1,2 ,3.

The standard de Sitter kinematics S4
�−� with constant negative curvature is realized for j1= j2

i, anti-de Sitter kinematics S4
�+� with positive curvature—for j1=1, j2= i. Relativistic flat

inkowski kinematics M4 appears for j1= �1, j2= i. Nonrelativistic Newton N4
�±� and Galilei G4

inematics correspond to j2= �2, j1=1, i and j1= �1, respectively.
If one interprets three first Beltrami coordinates as space axes, while the last one as a time

xis, and puts j2= j3=1 , j4= �4, then three exotic Carroll kinematics1,17 are obtained, namely C4
0 for

j1= �1, with zero curvature, C4
± for j1=1 , i, with positive and negative curvature. The Carroll space

nd time have contrary properties as compared with those of Galilei kinematics. The Galilei time
s absolute, i.e., two events simultaneous in some reference frame remain simultaneous in any
eference frame that is obtained by Galilei boost �or space-time rotation� from the initial one. On
he contrary, in Carroll kinematics the space is absolute, i.e. two events with the equal spatial
oordinates in some reference frame have the same spatial coordinates in any reference frame that
s obtained from the initial one by space-time rotation.

II. QUANTUM ORTHOGONAL GROUPS AND QUANTUM CAYLEY–KLEIN SPACES

According to FRT theory,8 the algebra function on quantum orthogonal group Fun(SOq�N�)
or simply quantum orthogonal group SOq�N�� is the algebra of noncommutative polynomials of
2 variables tij , i , j=1, . . . ,n, that are the subject of commutation relations,

RqT1T2 = T2T1Rq, �3�

nd additional relations of q orthogonality,

TCT t = C, T tC−1T = C−1. �4�

ere T1=T � I, T2= I � T�Mn2�C	tij
�, T= �tij�i,j=1
n �Mn�C	tij
�, I is the unit matrix in Mn�C�, C

C0q�, �=diag��1 , . . . ,�N�, �C0�ij =�i�j, i�=N+1− i, i , j=1, . . . ,N, that is, �C�ij =q�i��i�j and C−1

C,

��1, . . . ,�N� = ��n −
1

2
,n −

3

2
, . . . ,

1

2
,0,−

1

2
, . . . ,− n +

1

2
 , N = 2n + 1,

�n − 1,n − 2, . . . ,1,0,0,− 1, . . . ,− n + 1� , N = 2n .

�5�

he numerical matrix Rq is the well-known solution8 of Yang–Baxter equation and its elements
ulfils the role of the structure constant of quantum group generators.

Let us remind the definition of the quantum vector space.8 An algebra Oq
N�C� with generators

1 , . . . ,xN and commutation relations

R̂q�x � x� = qx � x −
q − q−1

1 + qN−2xtCxWq, �6�

here R̂q= PRq, Pu � v=v � u, ∀u, v�Cn, Wq=�i=1
N q�i�ei � ei�,

xtCx = �
i,j=1

N

xiCijxj = 	xn+1
2 + �

k=1

n

�q−�kxkxk� + q�kxk�xk� , �7�

=1 for N=2n+1, 	=0 for N=2n and vector �ei�k=�ik, i ,k=1, . . . ,N is called the algebra of
unctions on N-dimensional quantum Euclidean space �or simply the quantum Euclidean space�

q
N�C�.

The coaction of the quantum group SOq�N� on the noncommutative vector space Oq
N�C� is
iven by
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��x� = T�̇ x, ��xi� = �
k=1

n

tik � xk, i = 1, . . . ,n , �8�

nd quadratic form �7� is invariant inv=xtCx with respect to this coaction.
The matrix C has nonzero elements only on the secondary diagonal. They are equal to unity

n the commutative limit q=1. Therefore the quantum group SOq�N� and the quantum vector space

q
N�C� are described by equations �3�, �4�, �6�, �7� in a skew-symmetric basis, where for q=1 the

nvariant form inv=xtC0x is given by the matrix C0 with the only nonzero elements on the
econdary diagonal that are all equal to real units.

New generators y=D−1x of the vector space Oq
N�C� in arbitrary basis are obtained18,19 with

he help of nondegenerate matrix D�MN and they are subject of the commutation relations,

R̂�y � y� = qy � y −



1 + qN−2 ytC�yW , �9�

here R̂= �D � D�−1R̂q�D � D�, W= �D � D�−1Wq, C�=DtCD. The corresponding quantum group
Oq�N� is generated in arbitrary basis by U= �uij�i,j=1

N , where U=D−1TD. The commutation rela-
ions of the new generators are

R̃U1U2 = U2U1R̃ �10�

nd q-orthogonality relations look as follows:

UC̃Ut = C̃, Ut�C̃�−1U = �C̃�−1, �11�

here R̃= �D � D�−1Rq�D � D�, C̃=D−1C�D−1�t.
In the case of kinematics, the most natural basis is the Cartesian basis, where the invariant

orm inv=yty is given by the unit matrix I. The transformation from the skew-symmetric basis x
o the Cartesian basis y is described by the matrix D, which is a solution of the following equation:

DtC0D = I . �12�

his equation has many solutions. Take one of these, namely

D =
1
�2� I 0 − iC̃0

0 �2 0

C̃0 0 iI
�, N = 2n + 1, �13�

here C̃0 is the n�n matrix with real units on the secondary diagonal. For N=2n the matrix D is
iven by �13� without the middle column and row. The matrix �13� provides one of the possible
ombinations of the quantum group structure and the CK scheme of group contractions. All other
imilar combinations are given by the matrices D�=DV�, obtained from �13� by the right multi-
lication on the matrix V��MN with elements �V��ik=��i,k

, where ��S�N� is a permutation of
he Nth order.20 The matrices D� are solutions of Eq. �12�.

We derive the quantum Cayley–Klein spaces with the same transformation of the Cartesian
enerators y=�, =diag�1, �1,2� , . . . , �1,N���MN, as in the commutative case.2,19 The transfor-
ation z=Jv of the deformation parameter q=ez should be added in the quantum case. The

ommutation relations of the Cartesian generators of the quantum N-dimensional Cayley–Klein
pace are given by the equations

R̂��j�� � � = eJv� � � −
2shJv

1 + eJv�N−2��
tC��j��W��j� ,
here
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R̂��j� = �−1R̂��, W��j� = �−1W�,

C��j� = D�
t CD� = V�

t DtCDV�, � =  �  , �14�

nd in explicit form are

��k
��m

= ��m
��k

cosh Jv − i��m
��k�

�1,�k���1,�k�−1 sinh Jv, k � m � k�, k � m�,

��k
��m

= ��m
��k

cosh Jv − i��m�
��k

�1,�m���1,�m�−1 sinh Jv, m� � k � m, k � m�,

���k
,��k�

� = 2i	 sinh� Jv
2
�cosh Jv�n−k��n+1

2 �1,�n+1�2

�1,�k��1,�k��

+ i
sinh�Jv�

�cosh Jv�k+1�1,�k��1,�k��
�

m=k+1

n

�cosh Jv�m��1,�m�2��m

2 + �1,�m��
2��m�

2 � ,

�15�

here k ,m=1,2 , . . . ,n. The invariant form of the Cayley–Klein space Ov
N�j ;� ;C� is written as

inv�j� = cosh�Jv�1��	�1,�n+1�2��n+1

2 �cosh Jv�n

cosh�Jv/2�
+ �

k=1

n

��1,�k�2��k

2 + �1,�k��
2��k�

2 ��cosh Jv�k−1 .

�16�

he multiplier J in the transformation z=Jv of the deformation parameter is chosen as J
�k=1

n ��k ,�k��. This is the minimal multiplier, which guarantees the existence of the Hopf algebra
tructure for the associated quantum group SOv�N ; j ;��. The “union” ��k ,�p�� ��m ,�r� is under-
tood as the first power multiplication of all parameters jk, which occur at least in one multiplier
�k ,�p� or ��m ,�r�, for example, �j1j2�� �j2j3�= j1j2j3.

The quantum orthogonal Cayley–Klein sphere Sv
�N−1��j ;�� is obtained as the quotient of

v
N�j ;�� by inv�j�=1. The quantum analogs of the intrinsic Beltrami coordinates on this sphere are
iven by the sets of independent right or left generators,

r�i−1 = ��i
�1

−1, r̂�i−1 = �1
−1��i

, i = 1, . . . ,N, i � k, �k = 1. �17�

In the case of quantum Euclidean spaces Oq
N�C�, the use of different D� for ��S�N� makes

o sense, because all similarly obtained quantum spaces are isomorphic. However, the situation is
adically different for the quantum Cayley–Klein spaces. In this case the Cartesian generators �k

re multiplied by �1,k� and for nilpotent values of all or some parameters jk this isomorphism of
uantum vector spaces is destroyed. The necessity of using different D� arises as well if there is
ome physical interpretation of generators. In this case physically different generators may be
onfused by permutations �, for example, time and space generators of kinematics. Mathemati-
ally isomorphic kinematics may be physically nonequivalent.

V. QUANTUM KINEMATICS

For N=5 the thorough analysis of the multiplier J= ��1 ,�5�� ��2 ,�4�, which appears in the
ransformation of the deformation parameter z=Jv, and commutation relations �15� of the quan-
um space generators for different permutations allowed to find three permutations giving different

and a physically nonequivalent kinematics, namely �0= �1,2 ,3 ,4 ,5�, ��= �1,4 ,3 ,5 ,2�, �̃
�2,3 ,1 ,4 ,5�.

In order to clarify the relation with the standard Inonu–Wigner contraction procedure,21 the
˜ −1
athematical parameter j1 is replaced by the physical one j1T , and the parameter j2 is replaced
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y ic−1, where j̃1=1 , i. The limit T→� corresponds to the contraction j1= �1, and the limit c
� corresponds to j2= �2. The parameter T is interpreted as the curvature radius and has the

hysical dimension of time �T�= �time�, the parameter c is the light velocity �c�= �length�
�time�−1.

As far as the generator �1 does not commute with others, it is convenient to introduce right
nd left time t=�2�1

−1, t̂=�1
−1�2 and space rk=�k+2�1

−1, r̂k=�1
−1�k+2 , k=1,2 ,3, generators. The reason

or this definition is the simplification of expressions for commutation relations of quantum kine-
atics. It is possible to use only, say, right generators, but its commutators are cumbersome in the

ase of the �anti-�de Sitter kinematics. The commutation relations of the independent generators
re obtained �see Ref. 22 for details� in the form

Sv
4�±���0� = �t,r�t̂r1 = r̂1t cos

j̃1v
cT

+ ir̂1r2
1

c
sin

j̃1v
cT

, t̂r2 − r̂2t = − 2ir̂1r1
1

c
sin

j̃1v
2cT

, t̂r3 = r̂3t cos
j̃1v
cT

− it
cT

j̃1

sin
j̃1v
cT

, r̂1r2 = r̂2r1 cos
j̃1v
cT

− it̂r1c sin
j̃1v
cT

, r̂pr3 = r̂3rp cos
j̃1v
cT

− irp
cT

j̃1

sin
j̃1v
cT � ,

�18�

here the right and left generators are connected as follows:

r3 − r̂3 = 2i
j̃1

cT
�� t̂t −

1

c2 r̂2r2cos
j̃1v
2cT

− i
1

c2 r̂1r1 cos
j̃1v
cT
sin

j̃1v
2cT

,

r̂p = rp cos
j̃1v
cT

− ir̂3rp
j̃1

cT
sin

j̃1v
cT

, p = 1,2, �19�

t̂ = t cos
j̃1v
cT

− ir̂2t
j̃1

cT
sin

j̃1v
cT

.

Sv
4�±����� = �t,r�r̂kt = t̂rk cosh

j̃1v
T

− irk
T

j̃1

sinh
j̃1v
T

, r̂2r1 = r̂1r2 cosh
j̃1v
T

− ir̂1r3 sinh
j̃1v
T

, r̂1r3

= r̂3r1 cosh
j̃1v
T

− ir̂2r1 sinh
j̃1v
T

, r̂2r3 − r̂3r2 = 2ir̂1r1 sinh
j̃1v
2T� , �20�

here the right and left generators are connected as

r̂k = rk cosh
j̃1v
T

+ it̂rk
j̃1

T
sinh

j̃1v
T

,

t̂ = t + 2i
j̃1

c2T
�r̂1r1 cosh

j̃1v
T

+ �r̂2r2 + r̂3r3�cosh
j̃1v
2T

sinh
j̃1v
2T

, �21�

v
4�±���̃� =�t,r�t̂rp = r̂pt cos

v
c

+ ir̂pr3
1

c
sin

v
c

, t̂r3 − r̂3t = 2i
cT2

j̃2
�cos

v
c

−
j̃1
2

c2T2 �r̂1r1 + r̂2r2�cos
v
2c


1
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� � sin
v
2c

, r̂pr3 = r̂3rp cos
v
c

− it̂rpc sin
v
c

, r̂1r2 − r̂2r1 = 2
c2T2

j̃1
2

sin
v
2c � �22�

here k=1,2 ,3, p=1,2, and the left and right generators are connected by the following relations:

t̂ = t cos
v
c

+ ir3
1

c
sin

v
c

, r̂1 = r1 cos
v
c

+ r2 sin
v
c

,

�23�

r̂2 = r2 cos
v
c

− r1 sin
v
c

, r̂3 = r3 cos
v
c

+ itc sin
v
c

.

In the case of the identical permutation �0, deformation parameter v for the system units,
here �=1, has the physical dimension of length �v�= �cT�= �length� and may be interpreted as

he fundamental length. For the permutation ��, the quantum �anti-� de Sitter kinematics �20� are
haracterized by the fundamental time �v�= �time� and for the permutation �̃ are characterized by
he fundamental velocity �v�= �velocity�. Recall that the same physical dimensions of the defor-

ation parameter have been obtained for the quantum algebras sov�3; j ;�� and corresponding
1+1� kinematics for different permutations.23

As it follows from �22�, �23�, both contractions T→�, c→� are not permitted, therefore the
uantum �anti-� de Sitter kinematics Sv

4�±���̃� do not have Minkowski, Newton, and Galilei kine-
atics as limiting cases.

In the zero curvature limit T→� two quantum Minkowski kinematics are obtained,

Mv
4��0� = �t,r��t,rp� = 0, �r3,t� = ivt, �r2,r1� = 0, �r3,rp� = ivrp, p = 1,2,� ,

�24�
Mv

4���� = �t,r��t,rk� = ivrk, �ri,rk� = 0, i,k = 1,2,3� .

he first one is isomorphic to the tachyonic �-Minkowski kinematics, the second one to the
tandard �-deformation.11–13 For both �-Minkowski kinematics in the system units �=c=1, the
eformation parameter �=�−1 has the physical dimension of length and is interpreted as the
undamental length. But in the system units �=1 the deformation parameter has different dimen-
ions, namely v is the fundamental length for Mv

4��0� and v is the fundamental time for Mv
4����.

As far as the commutation relations �24� do not depend on c, they do not change in the limit
→�, therefore the generators of the quantum Galilei kinematics Gv

4��0� and Gv
4���� are the

ubject of the same commutation relations. The only difference consists in the following state-
ent: for the Galilei kinematics there are two invariants inv1= t2, inv2=r1

2+r2
2+r3

2 with respect to
he coaction of the corresponding quantum groups, whereas for the Minkowski kinematics there is
nly one invariant inv= t2− �r1

2+r2
2+r3

2�. Thereby the quantum deformations of the flat kinematics
re identical up to the coaction of the corresponding quantum groups for both relativistic and
onrelativistic kinematics.

In the nonrelativistic limit c→� there are two noncommutative analogs of the Newton kine-
atics:

Nv
4�±���0� = �t,r��t,rp� = 0, �r3,t� = ivt�1 + j̃1

2 t2

T2, �r1,r2� = 0, �r3,rp� = ivrp�1 + j̃1
2 t2

T2, p = 1,2� ,

Nv
4�±����� =�t,r��t,rk� = i�rk +

j̃1
2

T2 trkt T

j̃1

tanh
j̃1v
T

, r2r1 = r1r2 cosh
j̃1v
T

− ir1r3 sinh
j̃1v
T

, r1r3

= r3r1 cosh
j̃1v
T

− ir2r1 sinh
j̃1v
T

, �r2,r3� = 2ir1
2 sinh

j̃1v
2T� , �25�
here in the last case the deformation parameter is not transformed under contraction. The mul-
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iplier T−1 appears as the result of the physical interpretation of the quantum space generators. For
onzero curvature kinematics commutation relations of generators depend on c and are different
or relativistic and nonrelativistic cases, unlike Minkowski and Galilei kinematics.

The exotic Carroll kinematics are also realized as constant curvature spaces, but with different
nterpretation of the Beltrami coordinates, namely rk=�k+1�1

−1 , k=1,2 ,3 are the space generators
nd t=�5�1

−1 is the time generator. Due to this interpretation the new physical dimensions of the
ontraction parameters appear: the parameter j1 is replaced by j̃1R−1, where R→� corresponds to

j1= �1 and �R�= �length�; the parameter j4 is replaced by c, where c→0 corresponds to j4= �4 and
c�= �velocity�. There are three noncommutative analogs of the exotic nonzero curvature Carroll
inematics:

Cv
4�±���0� = �t,r��t,rk� = ivrk�1 +

j̃1
2

R2r2, �ri,rk� = 0,� ,

Cv
4�±����� = �t,r��t,r1� = 0, �t,r2� = iv

j̃1

R
r3r2, �r3,t� = iv

j̃1

R
r1

2, �ri,rk� = 0,� , �26�

Cv
4�±���̃� = �t,r��t,rp� = 0, �ri,rk� = 0, �r1,t� = iv�R2

j1
2̃

+ r2� .

wo quantum analogs of the zero curvature Carroll kinematics are achieved in the limit R→� and
re as follows:

Cv
4�0���0� = �t,r��t,rk� = ivrk, �ri,rk� = 0, i,k = 1,2,3� ,

�27�
Cv

4�0����� = �t,r��t,rk� = 0, �ri,rk� = 0, i,k = 1,2,3� .

or the permutations �0, �� the deformation parameter v=Rc−1 has the physical dimension of time
v�= �time� and is interpreted as the fundamental time. For the permutation �̃ the deformation
arameter v=c−1 has the dimension of inverse velocity �v�= �velocity�−1 and may be interpreted as
he fundamental velocity.

. CONCLUSION

We have reformulated the quantum orthogonal group SOq�N� and the corresponding
-Euclidean space Oq

N in Cartesian coordinates and then used the standard trick with real, com-
lex, and dual numbers in order to define the quantum Cayley–Klein spaces of constant curvature

q
N�j ;�� uniformly, using a q analog of Beltrami coordinates. The different combinations of
uantum structure and CK scheme of contractions and analytical continuations are described with
he help of permutations �. As a result, for N=5, the quantum deformations of �anti-� de Sitter,

inkowski, Newton, Galilei, and Carroll kinematics are obtained.
We have found two types of the noncommutative realistic space-time models with fundamen-

al length and fundamental time, which admit nonrelativistic and zero curvature limits and one
ype of the �anti-� de Sitter kinematics with fundamental velocity, where both limits are forbidden.
or the exotic Carroll kinematics there are two types with fundamental time, which admit zero
urvature limit and one type with fundamental velocity, where this limit is forbidden.

The quantum Galilei kinematics Gv
4��0� and Gv

4���� have the same commutation relations �24�
s the quantum Minkowski kinematics Mv

4��0� and Mv
4����. In other words, the quantum defor-

ations of the flat kinematics are identical up to the coaction of the corresponding quantum
roups, whereas for nonzero curvature kinematics commutation relations of generators are differ-

nt for relativistic and nonrelativistic cases.
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In spite of the fact that the commutation relations of generators of Carroll Cv
4�0���0� �27� and

inkowski Mv
4���� �24� kinematics are identical, both kinematics are physically different. Math-

matically isomorphic kinematics may be physically nonequivalent.
Noncommutative kinematics are obtained by the interpretation of some mathematical con-

tructions associated with quantum groups and quantum spaces. The deformation parameter is free
arameter of these models. Which type of model is more appropriate and what is the value of
eformation parameter are questions of experimental study.
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he equation for time-like extremal surfaces in Minkowski
pace R2+n
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In this paper we investigate the equation for time-like extremal surfaces in the
Minkowski space R2+n, and show that this kind of equation enjoys many interesting
properties nonstrict hyperbolicity, constant multiplicity of eigenvalues, bounded-
ness of characteristic propagation speeds, linear degeneracy of all characteristic
fields, richness, etc. Without any smallness assumption of initial data, we give the
necessary and sufficient condition on the global existence of classical solutions of
the Cauchy problem. Based on this, we prove some global existence theorems on
classical solutions of the Dirichlet problem and Neumann problem for this kind
of equation. Finally, we present an explicit exact representation, involving two
independent arbitrary functions of general solution. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2158435�

. INTRODUCTION AND MAIN RESULTS

Let �t ,x ,y� be points in the �1+2�-dimensional Minkowski space. A time-like surface takes
he form

y = ��t,x� . �1.1�

his surface is called to be extremal surface if � is the critical point of the area functional,

I1 =� � �1 + �x
2 − �t

2dx dt . �1.2�

he corresponding Euler–Lagrange equation is

� �t

�1 + �x
2 − �t

2�
t

− � �x

�1 + �x
2 − �t

2�
x

= 0. �1.3�

Recently, Brenier1 discussed an equation for generalized extremal surfaces in the five-
imensional Minkowski space, from which the Vlasov-Maxwell system of classical electrodynam-
cs can be formlly derived. Similar to the geometric ideas of the Born-Infeld nonlinear theory of
he electromagnetic field �see Ref. 2�, Brenier3 tried to design a nonlinearly cutoff theory for
lassical electrodynamics, instead of considering springs linking two particles of opposite charges,
e considered surfaces �t ,s�→X�t ,s� spanning curves t→X−�t� and t→X+�t� followed by two
articles of opposite charge, so that X�s=−1, t�=X−�t� and X�s=1, t�=X+�t�, s� �−1,1� standing
or the interpolation parameter between the two trajectories. Just by prescribing �t ,s�

�
Corresponding author.

47, 013503-1022-2488/2006/47�1�/013503/16/$23.00 © 2006 American Institute of Physics
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(t ,s ,X�t ,s�) to be an extremal surface in the five-dimensional Minkowski space �t ,s ,x1 ,x2 ,x3�
ith the signature ��, �, �, �, ��, he got the building block of the model: the individual action
f each surface is

I3 =� � �1 + 	�sX	2 − 	�tX	2 − 	�sX � �tX	2ds dt , �1.4�

hich is basically the Nambu–Goto action of classical string theory. The Euler–Lagrange equation
orresponding to the functional �1.4� is

� �t

�1 + 	�x	2 − 	�t	2 − 	�t � �x	2
�

t

− � �x

�1 + 	�x	2 − 	�t	2 − 	�t � �x	2
�

x

+ � �x � ��t � �x�
�1 + 	�x	2 − 	�t	2 − 	�t � �x	2

�
t

− � �t � ��t � �x�
�1 + 	�x	2 − 	�t	2 − 	�t � �x	2

�
x

= 0, �1.5�

here x stands for s in �1.4� and �= ��1 ,�2 ,�3�T represents X in �1.4�.
More generally, we consider a vector function �= ��1 , . . . ,�n�T, which is the critical point of

he area functional,

In =� � �1 + 	�x	2 − 	�t	2 − 	�t	2	�x	2 + 
�t,�x�2dx dt , �1.6�

here 
·, ·� stands for the inner product. The Euler–Lagrange equation is

� �t + 	�x	2�t − 
�t,�x��x

�1 + 	�x	2 − 	�t	2 − 	�t	2	�x	2 + 
�t,�x�2�
t

− � �x + 
�t,�x��t − 	�t	2�x

�1 + 	�x	2 − 	�t	2 − 	�t	2	�x	2 + 
�t,�x�2�
x

= 0.

�1.7�

Remark 1.1: When n=1, the equation (1.7) is nothing but the equation (1.3); moreover, if

1 + �x
2 − �t

2 � 0, �1.8�

.e., the surface is time-like, then (1.3) is just the Born–Infeld equation (see Ref. 2). The Born–
nfeld as well as the hydrodynamic version of the equation has been considered by Arik et al.4 On
he other hand, when n=3, the equation (1.7) goes back to the equation (1.5).

�1.7� is the equation for time-like extremal surfaces in the Minkowski space R2+n. The ex-
remal surfaces in the Minkowski space are C2 surfaces with vanishing mean curvature. The
ime-like case have been investigated by several authors �e.g., Refs. 5 and 6�. Barbashov, Nester-
nko, and Chervyakov5 studied the nonlinear differential equations describing in differential ge-
metry the minimal surfaces in the pseudo-Euclidean space. The geometric nature of these equa-
ions allows one to obtain explicitly their general solutions. Milnor6 described all entire time-like

inimal surfaces in the three-Minkowski space via a kind of Weierstrass representation. Gu7–10

tudied the extremal surfaces of mixed type in the n-dimensional Minkowski space � Refs. 11, 7,
nd 9 for the case n=3�. Under the assumptions that the surfaces is C3 �C2 for the case n=3�, and
he gradient of the square of the area density does not vanish on the light-like points of the surface,
y linearizing the equation via the Legendre transformation or the generalized isothermal coordi-
ates, Gu obtained the general explicit expression of the surface and proved that �i� the time-like
art and space-like part are separated by a null curve; �ii� the surface is analytic not only on the
pace-like part but also in some mixed region. Moreover, many complete extremal surfaces of
ixed type in the three-Minkowski space are constructed with explicit expressions �see Ref. 10�.

n addition, the multidimensional versions of the system �1.7� has been addressed recently and
uccessfully by Lindblad12 and, later, by Chae and Huh13 in a more general framework. They
roved the existence of global smooth solutions for small initial data, using the null forms in the

tyle of Christodoulou and Klainerman style �see Refs. 14 and 15�.
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In the present paper, we study the equation �1.7� using a different method and obtain a
omplete result on global classical solutions of the Cauchy problem, Dirichlet problem, and
eumann problem for this kind of equation. Moreover, we also present an explicit exact repre-

entation, involving two independent arbitrary functions, of a general solution of the equation
1.7�. Here we particularly emphasize that, in our arguments, we do not require the smallness of
he initial data.

Let

u = �x, v = �t, �1.9�

here u= �u1 , . . . ,un�T and v= �v1 , . . . ,vn�T. Then �1.7� can be equivalently rewritten as

ut − vx = 0,

� v + 	u	2v − 
u,v�u
�1 + 	u	2 − 	v	2 − 	v	2	u	2 + 
u,v�2�

t

− � u + 
u,v�v − 	v	2u

�1 + 	u	2 − 	v	2 − 	v	2	u	2 + 
u,v�2�
x

= 0, �1.10�

or classical solutions. In this paper, we investigate many interesting properties enjoyed by the
ystem �1.10� such as nonstrict hyperbolicity, constant multiplicity of eigenvalues, boundedness of
haracteristic propagation speeds, linear degeneracy of all characteristic fields, richness, etc. Based
n this, we prove some global existence theorems on classical solutions of the Cauchy problem,
irichlet problem, and Neumann problem for the equation �1.7�, and present an explicit exact

epresentation, involving two independent arbitrary functions, of the general solution of �1.7�.
Let

��u,v� = 1 + 	u	2 − 	v	2 − 	v	2	u	2 + 
u,v�2. �1.11�

ur main results are the following Theorem 1.1 and Theorem 1.2.
Theorem 1.1: Suppose n�2 and suppose furthermore that on the domain under consider-

tion,

��u,v� � 0, �1.12�

olds, then (1.10) is a nonstrictly hyperbolic system with two n-constant multiple eigenvalues;
oreover, the characteristic propagation speeds are bounded (not larger than the light speed), all

haracteristic fields are linearly degenerate in the sense of Lax (see Ref. 16) and the system (1.10)
s rich in the sense of Serre (see Ref. 17).

Remark 1.2: For the case n=1, if (1.8) is satisfied, then as pointed out in Remark 1.1, (1.7) is
othing but the Born–Infeld equation. In this case, it is easy to verify that the system (1.10) is a
�2 strictly hyperbolic system, and both characteristic fields are linearly degenerate. Moreover,

he richness of the system (1.10) becomes trivial in the present situation.
Remark 1.3: In fact, the assumption (1.12) is nothing but the condition which guarantees that

he surface is timelike. When n=1, (1.12) is just (1.8). Thus, for every timelike surface the
onclusion of Theorem 1.1 is always true.

We next consider the Cauchy problem for Eq. �1.7� with the initial data

��0,x� = f�x�, �t�0,x� = g�x� , �1.13�

here f is a given C2 vector-valued function and g is a given C1 vector-valued function. Define

�±�x� =
1

1 + 	f��x�	2
�− 
f��x�,g�x�� ± ���f��x�,g�x��� . �1.14�
e assume that
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�+�x� � �−�y�, ∀ x,y � R . �1.15�

n Sec. III, we shall prove the following global existence theorem.
Theorem 1.2: The Cauchy problem [(1.7) and (1.13)] admits a unique global C2 solution

=��t ,x� on R+�R if and only if �1.15� is satisfied. Moreover, if the global classical solution
=��t ,x� exists, then it satisfies

�„�x�t,x�,�t�t,x�… � 0, ∀ �t,x� � R+ � R . �1.16�

Remark 1.4: The assumption (1.15) guarantees the validity of the hypothesis (1.12). That is,
nder the assumption (1.15) the surface is timelike. If (1.15) is not satisfied, then the solution may
nlarge in finite time and singularities will appear. In this case, Eq. (1.7) loses the hyperbolicity at
he points where the fast characteristic meets the slow characteristic. In geometry, this corre-
ponds to the fact that the surface is no longer timelike at these points.

Remark 1.5: Theorem 1.2 solves an open problem of Brenier (see [6]).
The paper is organized as follows. In Sec. II, we first simplify the system �1.10� and then give

he eigenvalues, the left and right eigenvectors of the system �1.10�; based on this, we investigate
any interesting properties enjoyed by the system �1.10� and then prove Theorem 1.1. Section III

s devoted to the proof of Theorem 1.2. Based on Theorem 1.2, in Sec. IV, we study the global
xistence of the classical C2 solutions of the Dirichlet and Neumann problems for Eq. �1.7�. In
ec. V, we present an explicit exact representation, involving two independent arbitrary functions,
f general solution of Eq. �1.7�. Finally, the global existence of the classical solutions is discussed
n Sec. VI for the inhomogeneous Dirichlet problem for �1.7�.

I. PROPERTIES ENJOYED BY THE SYSTEM „1.10…—PROOF OF THEOREM 1.1

This section is devoted to the study on many interesting properties enjoyed by the system
1.10�.

To do so, we first simplify �1.10�. Let

	 = �1 + 	u	2�v − 
u,v�u, 
 = �1 − 	v	2�u + 
u,v�v . �2.1�

he second equation in �1.10� can be rewritten as

� 	

���u,v�
�

t

− � 


���u,v�
�

x

= 0, �2.2�

amely,

	
���u,v�

�t
− 


���u,v�
�x

+ 2��u,v��
x − 	t� = 0. �2.3�

ubstituting �1.11� and �2.1� into �2.3� gives

�1 + 	u	2�O − 2
u,v�P − �1 − 	v	2�Q = 0, �2.4�

here

O = ��u,v�vt + �1 + 	u	2�
v,vt�v − 
u,v�
u,vt�v − 
u,v�
v,vt�u − �1 − 	v	2�
u,vt�u ,

P = ��u,v�vx + �1 + 	u	2�
v,vx�v − 
u,v�
u,vx�v − 
u,v�
v,vx�u − �1 − 	v	2�
u,vx�u ,

Q = ��u,v�ux + �1 + 	u	2�
v,ux�v − 
u,v�
u,ux�v − 
u,v�
v,ux�u − �1 − 	v	2�
u,ux�u . �2.5�
e can write the system �2.4� as the following matrix equation:

                                                                                                            



w

T

m
t

t

O

w

N

L

013503-5 The equation for time-like extremal surfaces J. Math. Phys. 47, 013503 �2006�

                        
Mvt −
2
u,v�
1 + 	u	2

Mvx −
1 − 	v	2

1 + 	u	2
Mux = 0, �2.6�

here

M = ��u,v�In�n + �1 + 	u	2�vvT − 
u,v�vuT − 
u,v�uvT − �1 − 	v	2�uuT, �2.7�

v = �
v1 0 ¯ 0 0

0 v2 ¯ 0 0

] ] � ] ]

0 0 ¯ vn−1 0

0 0 ¯ 0 vn

, u = �
u1 0 ¯ 0 0

0 u2 ¯ 0 0

] ] � ] ]

0 0 ¯ un−1 0

0 0 ¯ 0 un

 . �2.8�

herefore, the system �1.10� can be equivalently rewritten as

ut − vx = 0,

Mvt −
2
u,v�
1 + 	u	2

Mvx −
1 − 	v	2

1 + 	u	2
Mux = 0. �2.9�

Lemma 2.1: If A is a nonsingular m1�m1 square matrix, D is a nonsingular m2�m2 square
atrix, B is a m1�m2 matrix, and C is a m2�m1 matrix, where m1 ,m2 are two positive integers,

hen it holds that

	A	 · 	D − CA−1B	 = 	D	 · 	A − BD−1C	 . �2.10�

Proof: In fact, �2.10� follows from the following identities directly:

�A B

C D
� = �A B

0 D − CA−1B
� = �A − BD−1C B

0 D
� .

�

Lemma 2.2: If

��u,v� � 0, �2.11�

hen

	M	 = „��u,v�…n−1 � 0. �2.12�

Proof: By �1.11�, we have

��u,v� = �1 + 	u	2��1 − 	v	2� + 
u,v�2. �2.13�

n the other hand, it follows from �2.7� that

M = ��u,v�In�n + �u,v��a b

c d
��uT

vT� , �2.14�

here

a = − �1 − 	v	2�, b = c = − 
u,v�, d = 1 + 	u	2. �2.15�

oting �2.13� and �2.15� gives

��u,v� = bc − ad . �2.16�
et
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A = ��u,v�In�n, B = �u,v�, C = �uT

vT�, D = − �a b

c d
�−1

. �2.17�

y �2.11� and �2.16�, we find that A is a nonsingular n�n matrix, D is a nonsingular 2�2 matrix.
n the other hand, it follows from �2.14� that

	M	 = 	A + B�− D�−1C	 = 	A − BD−1C	 =
1

	D	
· 	D	 · 	A − BD−1C	 . �2.18�

e now apply Lemma 2.1 and obtain

	M	 =
1

	D	
· 	A	 · 	D − CA−1B	 . �2.19�

ubstituting �2.17� into �2.19� and noting �2.15� yields

	M	 =
	��u,v�In�n	

�− �a b

c d
�−1��− �a b

c d
�−1

− �uT

vT����u,v�In�n�−1�u,v��

=
���u,v��n

�− ��u,v��−1� 1

��u,v�� d − b

− c a
� −

1

��u,v��uTu uTv

vTu vTv
��

= − ���u,v��n−1� d − uTu − b − uTv

− c − vTu a − vTv
� = − ���u,v��n−1�1 0

0 − 1
� = „��u,v�…n−1 � 0.

�2.20�

hus, the proof of Lemma 2.2 is completed. �

Remark 2.1: In particular, when n=1, we have 	M	=1.
Throughout this section, we always assume that �2.11� is satisfied. Thus, by Lemma 2.2, the

ystem �2.9� can be simplified as

ut − vx = 0,

vt −
2
u,v�
1 + 	u	2

vx −
1 − 	v	2

1 + 	u	2
ux = 0. �2.21�

Let

U = �u1, . . . ,un,v1, . . . ,vn�T. �2.22�

hen, we can rewrite �2.21� as

�U

�t
+ A�U�

�U

�x
= 0, �2.23�

here

A�U� = � 0 − In�n

−
1 − 	v	2

1 + 	u	2
In�n −

2
u,v�
1 + 	u	2

In�n  . �2.24�

y a direct calculation, the eigenvalues of A�U� are

�1 � ¯ � �n = �−, �n+1 � ¯ � �2n = �+, �2.25�
here
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�± =
1

1 + 	u	2
�− 
u,v� ± �1 + 	u	2 − 	v	2 − 	v	2	u	2 + 
u,v�2� . �2.26�

he right eigenvector corresponding to �i�i=1, . . . ,2n� can be chosen as

ri = �ei
T,− �−ei

T�T �i = 1, . . . ,n�, ri = �ei−n
T ,− �+ei−n

T �T �i = n + 1, . . . ,2n� , �2.27�

here

e� = �0, . . . ,0, 1
���

,0, . . . ,0�T �� = 1, . . . ,n�; �2.28�

hile the left eigenvector corresponding to �i�i=1, . . . ,2n� can be taken as

li = ��+ei
T,ei

T� �i = 1, . . . ,n�, li = ��−ei−n
T ,ei−n

T � �i = n + 1, . . . ,2n� . �2.29�

hus we have proved the following Property 2.1.
Property 2.1: Under the assumption of Theorem 1.1, (1.10) is a nonstrictly hyperbolic system

ith two n-constant multiple eigenvalues [see (2.25)], and the right (resp., left) eigenvectors can
e chosen as (2.27) [resp., (2.29)].

Property 2.2: Under the assumption (1.12), the characteristic propagation speeds �± satisfy

�+ � �− 1,1�, �− � �− 1,1� . �2.30�

Proof: Let

r = 	u	, s = 	v	 . �2.31�

hen


u,v� = rs cos  , �2.32�

here � �0,�� is the angle between vectors u and v. Thus, we have

�± =
1

1 + r2 �− rs cos  ± �1 + r2 − s2 − r2s2 sin2 � , �2.33�

here

 � �0,��, 1 + r2 − s2 − r2s2 sin2  � 0. �2.34�

e only prove the first part in �2.30�. The proof of the second part in �2.30� is similar. Noting
2.33�, we have

�1 + r2��+ = − rs cos  + �1 + r2 − s2 − r2s2 sin2  , �2.35�

hat is,

�1 + r2��+ + rs cos  = �1 + r2 − s2 − r2s2 sin2  . �2.36�

quaring both sides of �2.36� yields

�1 + r2�2�+
2 + 2�1 + r2��+rs cos  + r2s2 cos2  = 1 + r2 − s2 − r2s2 sin2  . �2.37�

ividing �2.37� by 1+r2 leads to

��+r cos  + s�2 + �+
2r2 sin2  = 1 − �+

2 . �2.38�

his implies

�2 � 1. �2.39�
+
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We now claim that �+�−1.
In fact, if �+=−1, then it follows from �2.38� that

r sin  = 0, s − r cos  = 0. �2.40�

Case I: If r=0, then it follows from the second equation in �2.40� that s=0. In this case, noting
2.33�, we have

�+ = 1. �2.41�

This contradicts the assumption that �+=−1.
Case II: If r�0, then =0,�, and then s= ±r. In the present situation, by �2.33� we have

�+ =
1 ± r2

1 + r2 � − 1. �2.42�

his also contradicts the assumption that �+=−1.
Therefore, noting �2.39�, we obtain the first part in �2.30�. Thus, the proof of Property 2.2 is

ompleted. �

Property 2.3: Under the assumption (1.12), the characteristic fields �± are linearly degenerate
n the sense of Lax, that is, the system (1.10) is linearly degenerate in the sense of Lax.

Proof: We calculate the invariants ��− ·r���=1, . . . ,n� and ��+ ·r���=n+1, . . . ,2n�.
For every �� �1, . . . ,n�, by a direct calculation, we have

��− · r� = � ��−

�u
,
��−

�v
� · �e�

T,− �−e�
T�T = � ��−

�u
− �−

��−

�v
� · e� = 0. �2.43�

imilarly, we can prove

��+ · r� � 0, ∀ � � �n + 1, . . . ,2n� . �2.44�

hus, the proof of Property 2.3 is finished. �

Remark 2.2: When n�2, the linear degeneracy of �± follows from Boillat18 and Freistühler11

irectly.
Property 2.4: Under the assumption (1.12), the system (1.10) is rich in the sense of Serre.
Remark 2.3: The rich systems (see page 144 in Ref. 17 for the definition) generalize the class

f 2�2 systems while preserving their essential properties:

1� diagonalization with the help of the strict Riemann invariants;
2� the infinite dimension of the entropy space.

Proof of Property 2.4: On the domain under consideration, we consider the following linear
ystem:

�w · r� = 0 �� = 1, . . . ,n� , �2.45�

here w=w�u ,v� is the unknown function of �u ,v�; r� are given by �2.27�. In the 2n-dimensional
space, the system �2.45� has n linearly independent solutions denoted by R�=R��U���

1, . . . ,n�. Similarly, let R�=R��U���=n+1, . . . ,2n� be the linearly independent solutions of the
ollowing linear system:

�w · r� = 0 �� = n + 1, . . . ,2n� , �2.46�
here r� are defined by �2.27�. Noting �2.27� and �2.29�, we have
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�R� = �
�=n+1

2n

c�,�l� �� = 1, . . . ,n�, � R� = �
�=1

n

c�,�l� �� = n + 1, . . . ,2n� , �2.47�

ith

det�c�,�� � 0 and det�c�,�� � 0, �2.48�

here c�,�=c�,��U�, c�,�=c�,��U� are smooth functions of U, and li�i=1, . . . ,2n� are given by
2.29�. Notice that

l�� �U

�t
+ �−

�U

�x
� = 0 �� = 1, . . . ,n� . �2.49�

ultiplying �2.49� by c�,� and summing up them with respect to � gives

�R�� �U

�t
+ �−

�U

�x
� = 0 �� = n + 1, . . . ,2n� ,

hat is,

�R�

�t
+ �−

�R�

�x
= 0 �� = n + 1, . . . ,2n� . �2.50�

imilarly, we have

�R�

�t
+ �+

�R�

�x
= 0 �� = 1, . . . ,n� . �2.51�

ake Ri=Ri�U��i=1, . . . ,2n� as the new unknown functions. Then, �2.50� and �2.51� show that the
ystem �1.10� can be diagonalized �at least in a local domain�. On the other hand, since the system
1.10� is in a conservative form, it follows from Ref. 17 that it is rich. Thus, the proof of Property
.4 is completed. �

Remark 2.4: The system (2.50) and (2.51) is called the Riemann-invariant representation of
he system (1.10).

Introduce

Ri = vi + �−ui, Ri+n = vi + �+ui �i = 1, . . . ,n� . �2.52�

t is easy to verify that Ri �resp., Ri+n� are Riemann invariants corresponding to �+ �resp., �−�, and
hen they satisfy

�Ri

�t
+ �+

�Ri

�x
= 0,

�Ri+n

�t
+ �−

�Ri+n

�x
= 0 �i = 1, . . . ,n� . �2.53�

n the other hand, �− �resp., �+� is also a Riemann invariant corresponding to �+ �resp., �−�, and

± satisfy

��−

�t
+ �+

��−

�x
= 0,

��+

�t
+ �−

��+

�x
= 0. �2.54�

he systems �2.53� and �2.54� play an important role in the proof of Theorem 1.2.

Proof of Theorem 1.1: Theorem 1.1 follows from Properties �2.1�–�2.4� directly. �
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II. GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS OF THE CAUCHY PROBLEM—
ROOF OF THEOREM 1.2

In this section, we prove Theorem 1.2.
Proof of Theorem 1.2: By �2.54�, the necessity comes from Theorem 2.1 in Kong and Tsuji19

irectly. �Here we have made use of Property 2.2.�
In what follows, we prove the sufficiency and �1.16�.
As a matter of fact, the C2 solution of the Cauchy problem �1.7� and �1.13� is equivalent to the

1 solution of the Cauchy problem for the system �1.10� with the following initial data:

t = 0:u = f��x�, v = g�x� . �3.1�

herefore, in order to prove Theorem 1.2, it suffices to prove that, under the assumption of
heorem 1.2, the Cauchy problem �1.10� and �3.1� has a unique global C1 solution U= �uT ,vT�T on
+�R; moreover, it holds that

��u�t,x�,v�t,x�� � 0, ∀ �t,x� � R+ � R . �3.2�

For any given interval I= �x1 ,x2��R, define the strong determinate region,

�I = ��t,x�	t � 0,x1 + t � x � x2 − t� , �3.3�

here x1 ,x2 are arbitrary given real numbers with x1�x2. Thus, in order to prove that the Cauchy
roblem �1.10� and �3.1� has a unique global C1 solution U= �uT ,vT�T with �3.2� on R+�R; it
uffices to prove that, under the assumption of Theorem 1.2, for any given interval I�R the
auchy problem for the system �1.10� with the initial data

t = 0:u = f��x�, v = g�x�, ∀ x � I �3.1a�

as a unique C1 solution U= �uT ,vT�T on the domain �I; moreover, it holds that

�„u�t,x�,v�t,x�… � 0, ∀ �t,x� � �I. �3.4�

To do so, we first consider the Cauchy problem for the system �2.54� with the initial data

t = 0:�± = �±�x�, ∀ x � I , �3.5�

n the domain �I.
In the present situation, noting the assumption �1.15�, we have

��±�x��C1�I� � cI, inf
x�I

�+�x� − sup
x�I

�−�x� � �I � 0, �3.6�

here cI, �I are two positive constants. Under the condition �3.6�, by the existence and uniqueness
f local C1 solution of Cauchy problem for quasilinear hyperbolic system �see Ref. 20�, there
xists a positive number � such that the Cauchy problem �2.54� and �3.5� has a unique C1 solution,
enoted by ��− ,�+�= ��−

I �t ,x� ,�+
I �t ,x��, on the domain

�I��� = ��t,x�	0 � t � �,x1 + t � x � x2 − t� . �3.7�

t is easy to see that, on the existence domain of the classical solution of the Cauchy problem
2.54� and �3.5�,

sup �± = sup
x�I

�±�x�, inf �± = inf
x�I

�±�x� , �3.8�
nd then by �3.6�,
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�+�t,x� − �−�t�,x�� � �I � 0, �3.9�

here �t ,x� �t� ,x�� stand for two arbitrary points in the existence domain of classical solution.
hus, by Ref. 21, the Cauchy problem �2.54� and �3.5� has a unique global C1 solution, still
enoted by ��− ,�+�= ��−

I �t ,x� ,�+
I �t ,x��, on the domain �I; moreover it holds that

sup
�t,x���I

�±
I �t,x� = sup

x�I
�±�x�, inf

�t,x���I

�±
I �t,x� = inf

x�I
�±�x� �3.10�

nd

�+
I �t,x� − �−

I �t�,x�� � �I � 0, ∀ �t,x�,�t�,x�� � �I. �3.11�

We next consider the Cauchy problem for the following linear system:

�Ri

�t
+ �+

I �t,x�
�Ri

�x
= 0,

�Ri+n

�t
+ �−

I �t,x�
�Ri+n

�x
= 0 �i = 1, . . . ,n� , �3.12�

ith the initial data

t = 0:�Ri = gi�x� + �−�x�f i��x� � Ri
0�x�

Ri+n = gi�x� + �+�x�f i��x� � Ri+n
0 �x� � �i = 1, . . . ,n�, ∀ x � I , �3.13�

n the domain �I, where f i �resp., gi� is the ith component of f �resp., g�.
Noting the assumptions on f�x� and g�x�, we have

�Rj
0�x��C1�I� � cI� �j = 1, . . . ,2n� , �3.14�

here cI� is a positive constant. On the other hand, noting �1.14� and �3.10�, and using �2.30�, we
ave

− 1 � �±
I �t,x� � 1, ∀ �t,x� � �I. �3.15�

hus, noting �3.14� and �3.15� and using the method of characteristics, we can easily prove that the
auchy problem �3.12� and �3.13� has a unique global C1 solution, denoted by �R1 , . . . ,R2n�T

�R1
I �t ,x� , . . . ,R2n

I �t ,x��T, on the domain �I.
By �2.52�, the C1 solution of the Cauchy problem �1.10� and �3.1a� on the domain �I is

niquely determined by

ui =
Ri+n

I �t,x� − Ri
I�t,x�

�+
I �t,x� − �−

I �t,x�
, vi =

�+
I �t,x�Ri

I�t,x� − �−
I �t,x�Ri+n

I �t,x�
�+

I �t,x� − �−
I �t,x�

�i = 1, . . . ,n� . �3.16�

oreover, �3.4� comes from �3.11� directly. Thus, the proof of Theorem 1.2 is completed. �

Remark 3.1: If (1.15) is not satisfied, then the solution must blow up in finite time and
ingularities will appear. In this case, the equation (1.7) loses the hyperbolicity at the points where

+=�−. In geometry, this corresponds to the fact that the surface is no longer time-like at these
oints. In the forthcoming paper, we shall investigate the blowup phenomena of the solution.

V. GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS OF THE DIRICHLET
ND NEUMANN PROBLEMS

Here, we study the global existence of the classical C2 solutions, �=��t ,x�, satisfying �1.7�
n a time–space region of the form �0,��� �0,L� and obeying either the Dirichlet boundary
ondition

��t,x��x=0

x=L
	 = 0, for t � 0, �4.1�
r the Neumann boundary condition
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��

�x
�t,x��x=0

x=L
	 = 0, for t � 0, �4.2�

n the sidewalls, together with the initial conditions

��0,x� = f�x�, �t�0,x� = g�x� , �4.3�

here �f ,g��C2��0,L���C1��0,L��. In order for � to belong to C2��0,��� �0,L�� for arbitrarily
mall ��0, the initial data f and g must necessarily satisfy the compatibility conditions

f�x��x=0

x=L
	 = f��x��x=0

x=L
	 = 0, g�x��x=0

x=L
	 = 0, for the Dirichlet conditions; �4.4�

�f

�x
�t,x��x=0

x=L
	 = 0,

�g

�x
�t,x��x=0

x=L
	 = 0, for the Neumann conditions. �4.5�

e have the following consequences of Theorem 1.2.
Theorem 4.1: �I� Suppose that the compatibility conditions in (4.4) are satisfied and suppose

urthermore that

min� inf
x��0,L�

�+„± f�x�,g�x�…� � max� sup
x��0,L�

�−„± f�x�,g�x�…� , �4.6�

here �± are defined by

�±��„x�,��x�… =
1

1 + 	���x�	2
�− 
���x�,��x�� ± ��„���x�,��x�…� . �4.7�

hen the Dirichlet problem for (1.7) with the initial data (4.3) admits a unique global C2 solution
=��t ,x� on �0,��� �0,L�; moreover, it holds that

���x�t,x�,�t�t,x�� � 0, ∀ �t,x� � �0,�� � �0,L� . �4.8�

�II� Suppose that the compatibility conditions in (4.5) are satisfied and suppose furthermore
hat (4.6) holds. Then the Neumann problem for (1.7) with the initial data (4.3) admits a unique
lobal C2 solution �=��t ,x� on �0,��� �0,L�; moreover, (4.8) still holds.

Remark 4.1: As a special case, if

�+„f�x�,g�x�… � 0 � �−„f�y�,g�y�…, ∀ x,y � �0,L� , �4.6a�

hen the hypothesis �4.6� is satisfied, and then the conclusions of Theorem 4.1 hold.
Proof of Theorem 4.1. For the Dirichlet problem for �1.7�, we extend any C2 solution �

��t ,x� to the interval �−L ,L� by

��t,x� = − ��t,− x�, for x � �− L,0� , �4.9�

nd then extend ��t ,x� to be 2L periodic. One easily checks that if the given initial data has the
orm in �4.3�, the extended initial data is 2L periodic and given by

f̃ � ��0,x� = � − f�− x� , for x � �− L,0� ,

f�x� , for x � �0,L� ,
� g̃ � �t�0,x� = � − g�− x� , for x � �− L,0� ,

g�x� , for x � �0,L� .
�

�4.10�

hen the compatibility conditions in �4.4� are satisfied, this extended � is a C2 solution of �1.7�
ith the initial data � f̃ , g̃�. Therefore, under the assumptions of Theorem 4.1�I�, we may make use
f Theorem 1.2 and obtain the following lemma.

Lemma 4.1: Under the assumptions of Theorem 4.1(I), the Cauchy problem for (1.7) with the

ollowing 2L-periodic initial data:
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��0,x� = f̃�x�, �t�0,x� = g̃�x� �4.11�

dmits a unique global C2 solution �= �̃�t ,x� on R+�R; moreover, it holds that

�„�̃x�t,x�,�̃t�t,x�… � 0, ∀ �t,x� � R+ � R . �4.12�

Let ��t ,x� be the restriction of �̃�t ,x� on the region �0,��� �0,L�. It is obvious that ��t ,x� is
he unique global C2 solution of the Dirichlet problem for �1.7� with the initial data �4.3�. On the
ther hand, �4.8� comes from �4.12� directly. This proves Theorem 4.1�I�.

Similarly, for the Neumann problem, we extend � by

��t,x� = ��t,− x�, for x � �− L,0� . �4.13�

hen, ��t ,x� can be extended to be a classical 2L-periodic C2 solution of the equation �1.7� with
L-periodic initial data given by

f̃ � ��0,x� = � f�− x� , for x � �− L,0� ,

f�x� , for x � �0,L� ,
� g̃ � �t�0,x� = � g�− x� , for x � �− L,0� ,

g�x� , for x � �0,L� .
�

�4.14�

hen the compatibility conditions in �4.5� are satisfied, by a similar argument as used above, we
an prove Theorem 4.1�II�. Thus, the proof of Theorem 4.1 is completed. �

. EXPLICIT EXACT REPRESENTATION OF GENERAL SOLUTIONS

In this section we present an explicit exact representation, involving two independent arbitrary
unctions, of general solution of the equation �1.7�.

To do so, we consider the global C2 solution of the Cauchy problem �1.7� and �1.13�. As
ointed out in Sec. III, the C2 solution of the Cauchy problem �1.7� and �1.13� is equivalent to the
1 solution of the Cauchy problem �1.10� and �3.1�. Thus, it suffices to give an explicit exact

epresentation of the C1 solution of the Cauchy problem �1.10� and �3.1�.
As before, throughout this section we assume that the condition �1.15� is satisfied.
We now solve the Cauchy problem for the system �2.54� with the following initial data:

t = 0:�± = �±�x� . �5.1�

ollowing Peng,22 we define

Y0�x� = �
0

x 2

�+��� − �−���
d� �5.2�

nd let x=X0�y� be the inverse function of y=Y0�x�. Similarly, define

X�t,y� =
1

2
�

0

y+t

�+�X0����d� −
1

2
�

0

y−t

�−„X0���…d� �5.3�

nd let y=Y�t ,x� be the inverse function of x=X�t ,y�. Similar to Ref. 22, the solution of the
auchy problem �2.54� and �5.1� can be explicitly given by

�±�t,x� = �±�X0„Y�t,x� ± t…� , �5.4�

rovided that the hypothesis �1.15� is satisfied.

We next solve the Cauchy problem for the following linear system:
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�Ri

�t
+ �+�t,x�

�Ri

�x
= 0,

�Ri+n

�t
+ �−�t,x�

�Ri+n

�x
= 0 �i = 1, . . . ,n� , �5.5�

ith the initial data

t = 0:�Ri = gi�x� + �−�x�f i��x� � Ri
0�x� ,

Ri+n = gi�x� + �+�x�f i��x� � Ri+n
0 �x� � �i = 1, . . . ,n� , �5.6�

here �±�t ,x� are given by �5.4�, and f i and gi are the ith component of f and g, respectively.
Consider the following initial value problems for ODEs:

d�±

d�
= �±„�,�±���…, �±�t� = x . �5.7�

et �±=�±�� ; t ,x� be the solutions of the above initial value problems and define

�±�t,x� = �±�0;t,x� . �5.8�

oting �5.4� and using �2.54� yields

�±�t,x� = X0„Y�t,x� � t… . �5.9�

y the method of characteristics, the solution of the Cauchy problem �5.5� and �5.6� is given by

Ri�t,x� = Ri
0��+�t,x��, Ri+n�t,x� = Ri+n

0
„�−�t,x�… �i = 1, . . . ,n� , �5.10�

hat is,

Ri�t,x� = Ri
0�X0„Y�t,x� − t…�, Ri+n�t,x� = Ri+n

0 �X0„Y�t,x� + t…� �i = 1, . . . ,n� . �5.11�

Noting �1.15� and using �2.52�, we obtain the solution of the Cauchy problem �1.10� and �3.1�

ui =
Ri+n�t,x� − Ri�t,x�
�+�t,x� − �−�t,x�

, vi =
�+�t,x�Ri�t,x� − �−�t,x�Ri+n�t,x�

�+�t,x� − �−�t,x�
�i = 1, . . . ,n� , �5.12�

here �±�t ,x� and Rj�t ,x��j=1, . . . ,2n� are given by �5.4� and �5.11�, respectively. Therefore, the
olution of the Cauchy problem �1.7� and �1.13� is

��t,x� = f�x� +�
0

t

v�s,x�ds , �5.13�

here v= �v1 , . . . ,vn�T in which vi are defined in �5.12�. By the assumption �1.15�, ��t ,x� is well
efined for all �t ,x��R�R.

�5.13� gives an explicit exact representation, involving two independent arbitrary functions
f�x� and g�x�, of general solution of the equation �1.7�, where f�x� and g�x� are chosen such that
the condition �1.15� is satisfied.

Remark 5.1: The referee kindly points out that, using the hodograph transform, Barbashov
and Chernikov23 derived the solution representation.

I. INHOMOGENEOUS DIRICHLET PROBLEM

Inhomogeneous Dirichlet problem for the equation �1.7� plays an important role in the Breni-
r’s theory �see Ref. 1� and other physical problems. In this section, we investigate the global
xistence of the classical C2 solutions, �=��t ,x�, satisfying �1.7� on a time-space region of the
orm �0,��� �0,L� and obeying inhomogeneous Dirichlet boundary conditions,

��t,0� = �0�t�, ��t,L� = �L�t�, for t � 0 �6.1�
n the sidewalls together with the initial conditions

                                                                                                            



w
t
t

w

D

w
t
b

t

w

i
o

r
h
f

b

n

A

a
s
s
p
E

013503-15 The equation for time-like extremal surfaces J. Math. Phys. 47, 013503 �2006�

                        
��0,x� = F�x�, �t�0,x� = G�x�, ∀ x � �0,L� , �6.2�

here F�C2��0,L�� and G�C1��0,L��. In order for � to belong to C2��0,��� �0,L�� for arbi-
rarily small ��0, the initial data F and G must necessarily satisfy certain compatibility condi-
ions �here we omit them�.

Stimulated by �1.15�, we assume that

min
x��0,L�

�̃+�x� � max
x��0,L�

�̃−�x� , �6.3�

here

�̃±�x� =
1

1 + 	F��x�	2
�− 
F��x�,G�x�� ± ��„F��x�,G�x�…� . �6.4�

efine two functions on R, still denoted by f and g, which satisfy the following:

�i� f � C2, g � C1;

�ii� f�x� = F�x�, on �0,L�; g�x� = G�x�, on �0,L�;

�iii� �+�x� � �−�y�, ∀ x,y � R ,

here �±�x� are defined by �1.14�. Noting the condition �iii�, for such functions f ,g, we know that
he Cauchy problem �1.7� and �1.13� has a unique global C2 solution, moreover this solution can
e explicitly exactly given by �5.13�.

Definition 6.1: The boundary conditions ��0 ,�L� are said to be globally solvable if there exist
wo functions f and g satisfying (i)–(iii), such that

��t,0� = �0�t�, ��t,L� = �L�t�, for t � 0, �6.5�

here ��t ,x� is defined by (5.13).
Theorem 6.1: Suppose that certain compatibility conditions and (6.3) are satisfied. Then the

nhomogeneous Dirichlet problem (1.7), (6.1), and (6.2) has a unique global C2 solution if and
nly if the boundary condition ��0 ,�L� is globally solvable.

Proof: The sufficiency is obvious. In order to prove the necessity, it suffices to interchange the
ole of t and x variables, then solve two Cauchy problems that initial data are given on two
alf-lines, x=0 and x=L with t�0, respectively. After that, we can easily construct the desired
unctions f and g. Thus, the proof is completed. �

Remark 6.1: For globally solvable boundary conditions ��0 ,�L�, the functions �f ,g� may not
e unique.

Remark 6.2: It follows from Sec. IV that, under the hypotheses (4.4) and (4.6), the homoge-
eous boundary conditions (0,0) are globally solvable.
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In this paper, we mainly study several problems on the weakly dissipative periodic
Camassa-Holm equation. At first, the local well-posedness of the equation is
obtained by Kato’s theorem, a necessary and sufficient condition of the blow-up of
the solution and some criteria guaranteeing the blow-up of the solution are estab-
lished. Then, the blow-up rate of the solution is discussed. Moreover, we prove that
the equation has global solutions and these global solutions decay to zero as time
goes to infinite provided the potentials associated to their initial date are of one
sign. © 2006 American Institute of Physics. �DOI: 10.1063/1.2158437�

. INTRODUCTION

The Camassa-Holm equation

ut − utxx + 3uux = 2uxuxx + uuxxx, t � 0, x � R

s a model for wave motion on shallow water, where u�t ,x� represents the fluid’s free surface
bove a flat bottom �or equivalently, the fluid velocity at time t�0 in the spatial x direction�.

Since the equation was derived physically by Camassa and Holm �see Refs. 3 and 4�, many
esearchers have paid extensive attention to it. The equation has a bi-Hamiltonian structure15 and
s completely integrable �see Refs. 1, 4, 6, and 16�. Its solitary waves are peaked,6 and they are
rbitally stable and interact like solitons �see Refs. 2, 13, and 14�. There are also numerous papers
evoted recently to study this equation on the other issues, such as local well-posedness, global
xistence and blow-up of strong solutions, the existence and uniqueness of global weak solutions
see Refs. 5, 7–12, 18, 20, 21, 23–25, and 28, etc.�.

In Ref. 11, Constantin and Escher give a quite detailed description of the blow-up phenom-
non for the periodic Camassa-Holm equation. They find that the equation offers a very nice
icture of the wave-breaking phenomena. Namely, if the maximal existence time T��, they have

lim
t→T�min

x�S
�ux�t,x��� = − �

nd the exact blow-up rate is

�Electronic mail: isswsy@zsu.edu.cn
�Electronic mail: mcsyzy@zsu.edu.cn
�
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lim
t→T��T − t�min

x�S
�ux�t,x��� = − 2.

urthermore, the authors show that for a large class of odd initial data the waves break at a
iscrete set of points and anything “bad” at breaking time is not observed elsewhere.

In general, it is difficult to avoid energy dissipation mechanisms in a real world. For example,
tt and Sudan22 investigated how KdV equation was modified by the presence of dissipation and

he effect of such dissipation on the solitary solution of KdV equation, and Ghidaglia17 investi-
ated the long time behavior of solutions to the weakly dissipative KdV equation as a finite-
imensional dynamical system.

Similarly, we would like to consider the dissipative Camassa-Holm equation,

ut − utxx + 3uux + L�u� = 2uxuxx + uuxxx, t � 0, x � R ,

here L�u� is a dissipative term, L can be a differential operator or a quasidifferential operator
ccording to different physical situations. We are interested in the effect of the weakly dissipative
erm on the Camassa-Holm equation. In the paper, we mainly consider the following weakly
issipative periodic Camassa-Holm equation:

yt + uyx + 2uxy + �y = 0, t � 0, x � R ,

y = u − uxx, t � 0, x � R ,

u�0,x� = u0�x�, x � R ,

u�t,x + 1� = u�t,x�, t � 0, x � R , �1.1�

here �y=��I−�xx�u is the weakly dissipative term, ��0 is a constant, u0 is a given periodic
nitial value.

We find that the behaviors of the equation �1.1� are similar to the Camassa-Holm equation in
finite interval of time, such as, the local well-posedness and the blow-up phenomena. But there

re considerable differences between the equation �1.1� and the Camassa-Holm equation in their
ong time behaviors. Global solution of the equation �1.1� decays to zero as time goes to infinite
rovided the potential y0= �I−�xx�u0 is of one sign. This long time behavior is an important feature
hat the Camassa-Holm equation does not possess. It is well known that the Camassa-Holm
quation has peaked traveling wave solutions. Lemma 2.2 in the sequel shows that any global
olution decays in the H1 norm. This means that there are no traveling wave solutions of the
quation �1.1�. This is also another considerable difference between the equation �1.1� and the
amassa-Holm equation in their long time behaviors.

It is very interesting that the equation �1.1� has the same blow-up rate as the Camassa-Holm
quation does when the blow-up occurs. This fact shows that the blow-up rate of the Camassa-
olm equation are not affected by the weakly dissipative term. But the occurrence of blow-up of

he equation �1.1� is affected by the dissipative parameter.
It should be noticed that the equation �1.1� does not have the conservation laws

I1 = �
S

u dx, I2 = �
S

�u2 + ux
2�dx ,

hich play an important role in the study of the Camassa-Holm equation.

I. LOCAL WELL-POSEDNESS AND BLOW-UP

We first state Kato’s theorem so as to obtain the local well-posedness of the equation �1.1�.

onsider the abstract quasilinear evolution equation,
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dv
dt

+ A�v�v = f�v�, t � 0, v�0� = v0. �2.1�

Let X and Y be Hilbert spaces such that Y is continuously and densely embedded in X and let
:Y →X be a topological isomorphism. L�Y ,X� denotes the space of all bounded linear operators

rom Y to X �L�X�, if X=Y�. Assume that

�i� A�y��L�Y ,X� for y�X with

��A�y� − A�z��w�X � �1�y − z�X�w�Y, y,z,w � Y ,

and A�y��G�X ,1 ,�� �i.e., A�y� is quasi-m-accretive�, uniformly on bounded sets in Y.
�ii� QA�y�Q−1=A�y�+B�y�, where B�y��L�X� is bounded, uniformly on bounded sets in Y.

Moreover,

��B�y� − B�z��w�X � �2�y − z�Y�w�X, y,z � Y, w � X .

�iii� f :Y →Y and extends also to a map from X into X. f is bounded on bounded sets in Y,
and

�f�y� − f�z��Y � �3�y − z�Y, y,z � Y ,

�f�y� − f�z��X � �4�y − z�X, y,z � Y .

Here �1, �2, �3, and �4 depend only on max��y�Y , �z�Y�.

Theorem 2.1 �Kato’s theorem19�: Assume that �i�, �ii�, and �iii� hold. Given v0�Y, there is a
aximal T�0 depending only on �v0�Y and a unique solution v to Eq. (2.1) such that

v = v�· ,v0� � C��0,T�;Y� � C1��0,T�;X� .

oreover, the map v0�v�· ,v0� is continuous from Y to C��0,T� ;Y��C1��0,T� ;X�.
In order to apply Kato’s theorem, we reformulate now Eq. �1.1�.
First, we identify all spaces of periodic functions with function spaces over the unit circle S in

, where S=R /Z; for simplicity, we drop S from our notation. Additionally, we denote by � · �r the
orm in the Sobolev spaces Hr, r�0.

We note that if

G�x� =
cosh�x − �x� − 1

2�
2 sinh� 1

2� ,

ere �x� stands for the integer part of x�R, then �1−�x
2�−1f =G* f for all f �L2�S� and G*y=u,

e denote by * the convolution. Using this identity, we can rewrite the equation �1.1� as follows:

ut + uux = − �x�G * �u2 − �ux + 1
2ux

2�� − �G * u, t � 0, x � R ,

u�0,x� = u0�x�, x � R ,

u�t,x + 1� = u�t,x�, t � 0, x � R , �2.2�

r the equivalent form:

ut + uux = − �x�1 − �x
2�−1�u2 − �ux + 1

2ux
2� − ��1 − �x

2�−1u, t � 0, x � R ,
u�0,x� = u0�x�, x � R ,
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u�t,x + 1� = u�t,x�, t � 0, x � R . �2.3�

Set A�u�=u�x, f�u�=−�x�1−�x
2�−1�u2−�ux+ 1

2ux
2�−��1−�x

2�−1u, Y =Hr, X=Hr−1, r�
3
2 , and Q

�1−�x
2�

1
2 . Obviously, Q is an isomorphism of Y onto X. Analogous to the proofs in Ref. 26 or

ef. 27, we can prove that A�u� and f�u� satisfy the conditions �i�–�iii�. Hence, we obtain the
ollowing theorem for the local well-posedness of Eq. �1.1� �or Eq. �2.3��.

Theorem 2.2: Given u0�Hr, r�
3
2 , there exist a maximal T=T�� , �u0�r��0, and a unique

olution u to Eq. (1.1) �or Eq. (2.3)�, such that

u = u�· ,u0� � C��0,T�;Hr� � C1��0,T�;Hr−1� ,

nd the solution depends continuously on the initial data, i.e., the mapping u→u�· ,u0� :Hr

C��0,T� ;Hr��C1��0,T� ;Hr−1� is continuous. Moreover, T may be chosen independent of r in
he following sense: if

u = u�· ,u0� � C��0,T�;Hr� � C1��0,T�;Hr−1�

o Eq. (1.1), and if u0�Hr� for some r��r, r��
3
2 , then

u � C��0,T�;Hr�� � C1��0,T�;Hr�−1�

ith the same T.
The following results are only proved with regard to r=3, since we can obtain the same

onclusion for general case r�
3
2 by using denseness.

We prove now a necessary and sufficient condition of the blow-up of the solution for Eq.
1.1�.

Theorem 2.3: Given u0�H3, the solution of Eq. (1.1) blows up in a finite time T�0 if and
nly if

lim
t↑T

inf� inf
x�S

�ux�t,x��� = − � .

Proof: Notice that

�
S

uyyx dx = −
1

2
�

S
uxy

2 dx, �
S

uyxyxx dx = −
1

2
�

S
uxyx

2 dx ,

�
S

uxxyyx dx = −
1

2
�

S
uxy

2 dx .

hen, we have by Eq. �1.1�,

d

dt
�

S
y2 dx = 2�

S
yyt dx = − 4�

S
uxy

2 dx − 2�
S

uyyx dx − 2��
S

y2 dx = − 3�
S

uxy
2 dx − 2��

S
y2 dx .

�2.4�

f u0�H4, we can obtain by Eq. �1.1�

d

dt
�

S
yx

2 dx = 2�
S

yxyxt dx = − 4�
S

uxxyyx dx − 6�
S

uxyx
2 dx − 2�

S
uyxyxx dx − 2��

S
yx

2 dx

= − 5� uxyx
2 dx + 2� uxy

2 dx − 2�� yx
2 dx . �2.5�
S S S
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s for u0�H3, we will show that �2.5� still holds. In fact, we can approximate u0 in H3 by
unction u0

n�H4. Moreover, we write un=un�· ,u0
n� for the solution of Eq. �1.1� with initial data u0

n.
By Theorem 2.2, we know that

un � C��0,Tn�;H4� � C1��0,Tn�;H3�, n � 1,

yn = un − uxx
n � C��0,Tn�;H2� � C1��0,Tn�;H1�, n � 1,

n→u in H3 and Tn→T as n→�.
Due to u0

n�H4, we have by �2.5�

d

dt
�

S
�yx

n�2 dx = − 5�
S

ux
n�yx

n�2 dx + 2�
S

ux
n�yn�2 dx − 2��

S
�yx

n�2 dx .

ince un→u in H3 as n→�, it follows that ux
n→ux in L� as n→�. Note also that yn→y in H1 and

yx
n→yx in L2 as n→�. Letting n go to infinity in the above equation, we can easily deduce that
2.5� holds for u0�H3.

Adding �2.4� and �2.5�, we get

d

dt	�S
y2 dx + �

S
yx

2 dx
 = − 5�
S

uxyx
2 dx − �

S
uxy

2 dx − 2�	�
S

y2 dx + �
S

yx
2 dx
 . �2.6�

If ux is bounded from below on �0,T�, for example, ux�−k, k is a positive constant, we get by
2.6� and Gronwall’s inequality

�y�1
2 � e�5k−2��t�y�0��1

2,

t means that the H3-norm of the solution u of Eq. �1.1� does not blow up in finite time. �

In the following, we provide two blow-up criteria for Eq. �1.1� guaranteeing the occurrence of
his phenomenon.

Let us first introduce the following two useful lemmas:
Lemma 2.1 (Ref. 8): Let T�0 and v�C1��0,T� ;H2�, then for every t� �0,T� there exists at

east one point 	�t��S with

m�t� ª inf
x�S

�vx�t,x�� = vx�t,	�t�� .

he function m�t� is almost everywhere differentiable on �0,T� with

dm

dt
= vtx�t,	�t��, a . e . on �0,T� .

Lemma 2.2: Let u0�H1, then, as long as the solution u�t� given by Theorem 2.2 exists, we
ave

�u�1
2 = e−2�t�u0�1

2, ∀ t � �0,T� .

Proof: Taking the scalar product of Eq. �1.1� with u in L2�S�, and noting that

�
S

u2yx dx + 2�
S

uuxy dx = 0,
e obtain
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1

2

d

dt
�

S
�u2 + ux

2�dx + ��
S

�u2 + ux
2�dx = 0,

r

d

dt
�u�1

2 + 2��u�1
2 = 0.

y integration between 0 and t, we have

�u�1
2 = e−2�t�u0�1

2, ∀ t � �0,T� .

ence, the lemma is proved. �

Theorem 2.4: Let u0�H3, and assume that there exists x0�S such that

u0��x0� � − � − ��2 + �u0�1
2.

hen the corresponding solution of Eq. (1.1) blows up in finite time.
Proof: Let T�0 be the existence time of the solution u�t , · � of Eq. �1.1� �or Eq. �2.2�� with the

nitial data u0. Differentiating Eq. �2.2� with respect to x, we get

utx = − ux
2 − uuxx − �x

2G * �u2 + 1
2ux

2� − ��xG * �u − uxx� .

ote that

�x
2G * �u2 + 1

2ux
2� = G * �u2 + 1

2ux
2� − �u2 + 1

2ux
2�, G * �u − uxx� = u .

hus, we have

utx = − 1
2ux

2 − uuxx + u2 − G * �u2 + 1
2ux

2� − �ux. �2.7�

We infer from Theorem 2.2 and Lemma 2.1 that for every t� �0,T�, there exists at least one
oint 	�t��S with ux�t ,	�t��=infx�S�ux�t ,x��. Let m�t�=ux�t ,	�t��=infx�S�ux�t ,x��, then

xx�t ,	�t��=0, ∀t� �0,T�. Hence we have from �2.7�

dm

dt
= −

1

2
m2�t� + u2�t,	�t�� − �G * 	u2 +

1

2
ux

2
�t,	�t�� − �m�t� a . e . on �0,T� . �2.8�

ote that G* �u2+ 1
2ux

2��0, t� �0,T�, and �by the Sobolev imbedding theorem and Lemma 2.2�

�u�t, · ��L�
2

�
1
2 �u�t, · ��1

2 �
1
2 �u0�1

2. �2.9�

hen, we obtain

dm

dt
� −

1

2
�m2�t� + 2�m�t� − �u0�1

2�

=−
1

2
�m�t� + � − ��2 + �u0�1

2��m�t� + � + ��2 + �u0�1
2� .

rom the hypothesis, we have m�0��−�−��2+ �u0�1
2, thus dm /dt�t=0�0. By continuity with

espect to t of m�t�, we have dm /dt�0, ∀t� �0,T�. Therefore, m�t��−�−��2+ �u0�1
2, ∀t
�0,T�. So, we can solve the above inequality to obtain
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m�0� + � + ��2 + �u0�1
2

m�0� + � − ��2 + �u0�1
2
e���2+�u0�1

2t� − 1 �
2��2 + �u0�1

2

m�t� + � − ��2 + �u0�1
2

� 0.

ince

0 �
m�0� + � + ��2 + �u0�1

2

m�0� + � − ��2 + �u0�1
2

� 1,

here exists T,

T �
1

��2 + �u0�1
2

ln	m�0� + � − ��2 + �u0�1
2

m�0� + � + ��2 + �u0�1
2
 ,

uch that limt↑T m�t�=−�. Hence, the above theorem is proved according to Theorem 2.3. �

Theorem 2.5: Assume that u0�H3 is odd, u0��0��−2�. Then the corresponding solution of
q. �1.1� blows up infinite time.

Proof: Let T�0 be the existence time of the solution u�t , · � of Eq. �1.1� �or Eq. �2.2�� with the
nitial data u0. AS one can check, the function

v�t,x� ª − u�t,− x�, t � �0,T�, x � R ,

s also a solution of Eq. �1.1� in C��0,T� ;H3���C1��0,T� ;H2� with initial data u0. By uniqueness
e conclude that v�u and therefore u�t , · � is odd for any t� �0,T�. In particular, by continuity
ith respect to the spatial variable of u and uxx, we get

u�t,0� = uxx�t,0� = 0, t � �0,T� . �2.10�

Define g�t�ªux�t ,0� for t� �0,T� and note that g�C1��0,T� ,R�. From �2.7� and �2.10�, we
et

dg

dt
�t� = −

1

2
g2�t� − �g�t� −�

S
G�x − 
�	u2 +

1

2
ux

2
d


�−
1

2
�g�t� + 2��g�t�, t � �0,T� .

rom the hypothesis, we have g�0��−2�. Therefore, g�t��−2�, ∀t� �0,T�. Solving the above
inequality, we get

1 −
g�0�

g�0� + 2�
e−�t �

2�

g�t� + 2�
� 0.

ince

g�0�
g�0� + 2�

� 1,

e conclude that there exists T,

T � −
1

�
ln

g�0� + 2�

g�0�
,

uch that limt↑T g�t�=−�. We complete the proof of the above theorem by Theorem 2.3. �
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II. BLOW-UP RATE

In this section, we give more insight into the blow-up mechanism for the wave-breaking
olutions to Eq. �1.1�.

Theorem 3.1: Let u0�H3, and let T�0 be the maximal existence time of the corresponding
olution to Eq. (1.1). If T is finite, we have

lim
t→T

�T − t�min
x�S

ux�t,x� = − 2.

Proof: We already know by Theorem 2.3 that

lim
t→T

inf min
x�S

ux�t,x� = − � . �3.1�

Define now m�t�ªminx�S�ux�t ,x��, t� �0,T�, and let 	�t��S be a point where this minimum
s attained. Clearly uxx�t ,	�t��=0 since u�t , · ��H3�C2. From �2.8� we have

dm

dt
+

1

2
m2�t� + �m�t� = u2�t,	�t�� − �G * 	u2 +

1

2
ux

2
�t,	�t�� a . e . on �0,T� . �3.2�

By Young’s inequality and Lemma 2.2, we have for t� �0,T� that

�G * 	u2 +
1

2
ux

2
�t, · ��
L�

� �G�L��u2 +
1

2
ux

2�
L1

�
cosh� 1

2�
2 sinh� 1

2� �u�t, · ��1
2 �

cosh� 1
2�

2 sinh� 1
2� �u0�1

2.

�3.3�

hen, we infer from �2.9� and �3.3� that

�u2�t,	�t�� − �G * 	u2 +
1

2
ux

2
�t,	�t��� � 	1

2
+

cosh� 1
2�

2 sinh� 1
2�
�u0�1

2.

et

K = 	1

2
+

cosh� 1
2�

2 sinh� 1
2�
�u0�1

2.

e infer from �3.2� that

− K �
dm

dt
+

1

2
m2�t� + �m�t� � K a . e . on �0,T� .

ence,

− K −
1

2
�2 �

dm

dt
+

1

2
�m�t� + ��2 � K +

1

2
�2 a . e . on �0,T� . �3.4�

Let �� �0, 1
2

�. Since limt→T inf�m�t�+��=−� �by �3.1��, there is some t0� �0,T� with m�t0�
��0 and

�m�t0� + ��2 �
1

�
	K +

1

2
�2
 .
e claim that
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�m�t� + ��2 �
1

�
	K +

1

2
�2
, t � �t0,T� . �3.5�

n fact, since m�t� is locally Lipschitz �it belongs to Wloc
1,��R� by Lemma 2.1� there is some �

0 such that

�m�t� + ��2 �
1

�
	K +

1

2
�2
, t � �t0,t0 + �� .

rom �3.4�, we have

dm

dt
� 	� −

1

2

�m�t� + ��2 � 0 a . e . on �t0,t0 + �� .

eing locally Lipschitz, the function m�t� is absolutely continuous. Therefore, by integrating the
bove relation on �t0 , t0+��, we obtain that m�t0+���m�t0�. Thus,

m�t0 + �� + � � m�t0� + � � 0.

y the above inequality, we have

�m�t0 + �� + ��2 � �m�t0� + ��2 �
1

�
	K +

1

2
�2
 .

he relation �3.5� is proved by continuous extension.
A combination of �3.4� and �3.5� enables us to infer

−
1

2
− � �

dm
dt

�m�t� + ��2 � −
1

2
+ � a . e . on �t0,T� . �3.6�

or t� �t0 ,T�, integrating �3.6� on �t ,T�, we obtain

−
1

2
− � �

1

�m�t� + ���T − t�
� −

1

2
+ �, t � �t0,T� .

etting � goes to zero, we obtain

lim
t→T

�m�t��T − t� + ��T − t�� = − 2,

hat is

lim
t→T

�T − t�m�t� = − 2.

o, the proof of the above theorem is completed. �

Remark 3.1: Although the occurrence of blow-up of strong solutions to Eq. (1.1) is affected by
he dissipative parameter �see Theorems 2.4 and 2.5�, Theorem 3.1 shows that the blow-up rate of
trong solutions to the Camassa-Holm equation is not affected by the weakly dissipative term.

V. GLOBAL SOLUTION AND ITS DECAY

In this section we will show that there exist global strong solutions to the equation �1.1�
rovided the initial data u0 satisfying certain sign conditions and some global solutions decay to
ero at time goes to infinite provided the dissipative parameter being in a certain range.

Given a strong solution u to Eq. �1.1� with initial data u0�H3 and with maximal existence
ime T�0, we can associate it with the differential equation
qt = u�t,q�, t � �0,T� ,
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q�0,x� = x, x � R . �4.1�

Lemma 4.1: Let u0�H3 and let T�0 be the maximal existence time of the corresponding
olution u to Eq. �1.1�. Then Eq. �4.1� has a unique solution q�C1��0,T�R ,R�. Moreover, for
ach fixed t� �0,T�, the map q�t , · � in an increasing diffeomorphism of R with qx�t ,x��0 for
t ,x�� �0,T�R.

The proof of the above lemma is similar to the proof of Lemma 2 in Ref. 11, so we omit it.�
Lemma 4.2: Let u0�H3 and let T�0 be the maximal existence time of the corresponding

olution u to �1.1�. Then we have

y�t,q�t,x��qx
2�t,x� = y0�x�e−�t,

here y0=u0−�x
2u0.

Proof: Differentiation of the system �4.1� with respect to x yields

d

dt
qx = ux�t,q�qx, t � �0,T� ,

qx�0,x� = 1, x � R . �4.2�

et p�t ,x�=y�t ,q�t ,x��qx
2�t ,x�, and we infer from �1.1� and �4.1� and �4.2� that

d

dt
p�t,x� = − �p�t,x� ,

e integrate the above relation between 0 and t and complete the proof. �

Theorem 4.1: Assume that u0�H3 does not change sign �y0�0 or y0�0 on S�, then the
orresponding solution u to (1.1) exists globally. Moreover, the global solution decays to 0 as time
oes to infinite.

Proof: We consider first the case when y0�x��0, x�S. Let T�0 be the existence time of the
olution u with initial data u0 given by Theorem 2.2. By Lemma 4.2, we obtain for t� �0,T� that

y�t ,x��0, x�S.
From Sec. II we know that

u�t,x� =�
S

G�x − 
�y�t,
�d
, �t,x� � �0,T�  S ,

here G�x�ªcosh�x− �x� 1
2

� /2 sinh� 1
2

�, x�S.
Fix �t ,x�� �0,T�S and let �ª1/4 sinh� 1

2
�. We have

u�t,x� = �ex�
0

x

e−
−1 � 2y�t,
�d
 + �e−x�
0

x

e
+1 � 2y�t,
�d
 + �ex�
x

1

e−
+1 � 2y�t,
�d


+ �e−x�
x

1

e
−1 � 2y�t,
�d
 . �4.3�

ifferentiation with respect to x yields for �t ,x�� �0,T�S,

ux�t,x� = �ex�
0

x

e−
−1 � 2y�t,
�d
 − �e−x�
0

x

e
+1 � 2y�t,
�d
 + �ex�
x

1

e−
+1 � 2y�t,
�d


− �e−x�
x

1

e
−1 � 2y�t,
�d
 . �4.4�
rom �4.3� and �4.4�, �2.9� and Lemma 2.2, we infer that
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− ux�t,x� � u�t,x� � �u�L� �
e−�t

�2
�u0�1. �4.5�

o, by Theorem 2.3 we know that T=�.
By �4.5�, we obtain that −ux�� /5 for sufficiently large t. This yields in combination with

2.6� and Gronwall’s inequality,

�y�1
2 � Ce−�t

or large t, where C is a positive constant. Hence, the second conclusion of the above theorem is
roved.

For the case when y0�x��0, x�S, we can repeat the above proof to get the desired result.�
Remark 4.1: Note that the global solution to the Camassa-Holm equation does not generally

ecay to zero as time goes to infinite. Theorem 4.1 shows that there is a considerable difference
etween the equation (1.1) and the Camassa-Holm equation in their long time behaviors. More
recisely, the energy dissipation will affect the long time behavior of global solutions to the
amassa-Holm equation.

Remark 4.2: It is well-known the Camassa-Holm equation has peaked traveling wave solu-
ions. Theorem 4.1 shows that global H3 solutions with y0 of one sign decay in the H3 norm.
emma 2.2 shows that any global solution decays in the H1 norm. This means that there are no

raveling wave solutions of the dissipative equation (1.1) . This is also another considerable
ifference between the equation (1.1) and the Camassa-Holm equation in their long time behav-
ors.
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The transformation operator plays an important role in the direct and inverse spec-
tral theory of Sturm-Liouville operators. In this paper we would like to approximate
the kernel of the transformation operator used in the Gelfand-Levitan theory. The
analytic properties of the solution allows for its representation by either a Taylor
series about the diagonal or a Fourier cosine series. Example illustrating how the
coefficients can be computed are provided. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2159067�

. INTRODUCTION

We are concerned with the approximation of the kernel K�x , t� appearing in the transformation
perator2–4,6,7

y�x,�� = cos�x�� +�
0

x

K�x,t�cos�t��dt , �1.1�

here y is the eigensolution of the singular Sturm-Liouville operator L,

L�y� ª − y��x,�� + q�x�y�x,�� = �2y�x,��, x � �0, � � ,

�1.2�
hy�0,�� − y��0,�� = 0.

he transformation operator 1+K in �1.1� links the eigensolutions of �1.2� to cos�x�� which are
lso eigensolutions of �1.2� when q=h=0. Its kernel K stores all the spectral information of the
perator L �1.2� and consequently plays a fundamental role in the direct and inverse spectral
heory of L.6 For example, the Gelfand-Levitan theory is based on the solution of the linear
ntegral equation which is defined by

F�x,t� +�
0

x

K�x,s�F�s,t�ds = − K�x,t� , �1.3�

here

F�x,t� =�
0

�

cos�x��cos�t��d���2� + �
−�

0

cosh�x��cosh�t��d��− �2� �1.4�

nd ����=����− �2/����+. In �1.4�, the measure � is the spectral function of the operator L in
1.2�, and its support is the spectrum of the operator. If � is absolutely continuous and
upp �� �0, � � then

�
Electronic mail: boumenir@westga.edu

47, 013505-1022-2488/2006/47�1�/013505/9/$23.00 © 2006 American Institute of Physics
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�2�����2� −
2

�
�cos�t�� =

2

�
�

0

�

F�x,t�cos�x��dx �1.5�

nd letting t→0, formally yields

������ =
1

�
+

1

�
�

0

�

F�x,0�cos�x��dx . �1.6�

more direct method using operational calculus and the kernel of the inverse transmutation can
e found in Ref. 1. Thus the first step towards computing the function F, � or the solution y�x ,��
s obviously to start with the kernel K, which is the main objective of this paper.

Another possible application of �1.1� is to express the solution of a singular Sturm-Liouville
perator,

− ���x� + q�x���x� = f�x�, where x � 0,

�1.7�
��0� = 1 and ���0� = h .

ince �1+K� is a transmutation,3 we have

�− D2 + q�x���1 + K� = �1 + K��− D2�

nd the solution of �1.7� is then given by ��x�= �1+K�s�x� where −s��x�= �1+K�−1 f . Once the
perators �1+K� and its inverse are known, the solution � can be computed symbollically.

The Fourier transform provides yet another way for �1.7�. Define ��x�
	0

��1/�� f̂���y�x ,��d����, where f̂���=	0
�f�x�y�x ,��dx, y�x ,�� is given by �1.1� and � by �1.5�.

hus there are many ways where the kernel K can be used to solve computational problems related
o the Sturm-Liouville theory.

Recall that Povzner and Marchenko,7 to prove the existence of the kernel K, used a fixed point
rgument, since the kernel K solves a hyperbolic equation,

�2

�x2K�x,t� −
�2

�t2K�x,t� = q�x�K�x,t�, 0 � t � x ,

d

dx
K�x,x� =

1

2
q�x� ,

�

�t
K�x,0� = 0.

nfortunately, the idea of successive approximations cannot easily be implemented numerically,
ince the iterates involve two-dimensional integrals. Finite differences also are difficult to use
ince the domain is a sector.

We briefly mention a different numerical method of approximating � directly by Fulton and
ruess.5 Their algorithm approximates � by step functions by computing the integral

0
N 
y�x ,��
2 dx for large values of N. For example, if � belongs to the continuous spectrum then
e know that limN→�	0

N 
y�x ,��
2 dx=� and so ���+ �−���− �= �limN→�	0
N 
y�x ,��
2 dx�−1=0, i.e.,

is continuous. On the other hand, if � is an eigenvalue then ���+ �−���− �
�limN→�	0

N 
y�x ,��
2 dx�−1�0 and so � has a jump at �. This idea can also be implemented by
ur method since we approximate symbollically the solution y�x ,�� when ��0.

I. PRELIMINARIES
We first prove the following.

�m� loc
Proposition 1: Assume that q �L �0, � � for m�1, then there exists 	k and 
k such that

                                                                                                            



w

�
m

C

F
d

t

f
�
h

B

t
t
s
e

I

c

t

013505-3 The approximation of the transmutation kernel J. Math. Phys. 47, 013505 �2006�

                        
y�x,�� = cos�x�� �
k=0

�m/2�
	k�x�
�2k + sin�x�� �

k=0

��m−1�/2�

k�x�
�2k+1 +

1

�m+1��x,m + 1,�� , �2.1�

here 	k
�m+2−2k�, 
k

�m+1−2k��Lloc�0, � � and ��x ,m+1,��=o�1� as �→�.
Proof: From the Gelfand-Levitan-Gasymov theorem we recall that,6 if q�m��Lloc�0, � � then

t
m+1K�x , . ��L�0,x�. Thus for each fixed x, we can integrate by parts at least m times in t, say
=2n+1 is odd,

�
0

x

K�x,t�cos�t��dt = K�x,x�
1

�
sin�x�� − Kt�x,x�

1

�2 cos�x�� + Kt�x,0�
1

�2 − �
0

x

Ktt�x,t�d
1

�3 sin�t��

= cos�x���
k=0

2n
	k�x�
�2k + sin�x���

k=1

2n

k�x�
�2k+1 + �

k=1

2n
�k�x�
�2k

+
1

�2n+2�
0

x �2n+2

�t2n+2K�x,t�cos�t��dt . �2.2�

learly, by Riemann-Lebesgue’s theorem, we have

��x,m + 1,�� =�
0

x �m+1

�tm+1K�x,t�cos�t��dt = o�1� as � → � . �2.3�

rom �2.2�, sin�x�� appears with odd powers of 1 /� while cos�x�� with even powers of 1 /�. If we
enote by


k�x� = �− 1�k �2k

�t2kK�x,x� and 	k�x� = �− 1�k �2k−1

�t2k−1K�x,x� �2.4�

hen 	k
�m+2−2k�, 
k

�m+1−2k��Lloc�0, � �. The next step we need to show that in �2.2�,

�2k�x� =
�2k−1

�t2k−1K�x,0� = 0

or k=0, . . . ,m. This can be done directly by looking at the linear integral equation �1.3�. Since
�2k+1 /�t2k+1�F�x , t�= �−1�k�2k+1	cos�x��sin�t��d��±�2� we have ��2k+1 /�t2k+1�F�x ,0�=0 and
ence �1.3� implies

�2k+1

�t2k+1K�x,0� = 0 ⇒ �2k�x� = 0. �2.5�

y checking �2.2� when m is even, we deduce the upper bounds of the sum in �2.1�. �

Remark: In Ref. 8, Sec. 2.8, Olver works out a formal infinite series solution, which is similar
o �2.1�, with exp�x�� instead of sin�x�� and cos�x��. However the Gelfand-Levitan theory makes
he argument plain and explains how the number of terms in the expansion depends on the
moothness of q, and thus cannot in general be an infinite series; moreover it yields an explicit
rror term.

II. COMPUTING THE COEFFICIENTS �k, �k

Equation �2.4� shows that we can recover the partial derivative of K, if we can compute the
oefficients 	k, 
k. To this end use the fact that

L�fg� = − f�g − 2f�g� + fLg
o obtain
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L�cos�x��	n� = �2 cos�x��	n + 2� sin�x��	n� + cos�x��L	n,

L�sin�x��
n� = �2 sin�x��
n − 2� cos�x��
n� + sin�x��L
n.

hus from �2.1�, it follows

Ly = cos�x���
n=0

N � 	n

�2n−2 +
L	n − 2
n�

�2n � + sin�x���
n=0

N �
n + 2	n�

�2n−1 +
L
n

�2n+1�
= cos�x���

n=0

N �	n − 2
n−1� + L	n−1

�2n−2 � + sin�x���
n=0

N �
n + 2	n� + L
n−1

�2n−1 � �3.1�

ith the understanding that 	−1=
−1=0. Since

Ly = �2y = cos�x���
n=0

N−2
	n

�2n−2 + sin�x���
n=0

N−2

n

�2n−1 �3.2�

y identifying the different coefficients in �3.1� and �3.2�, we end up with for n�1,

− 2
n−1� + L	n−1 = 0

2	n� + L
n−1 = 0

r


n−1�x� = 
n−1�0� +
1

2
�

0

x

L	n−1�t�dt ,

	n�x� = 	n�0� −
1

2
�

0

x

L
n−1�t�dt .

The constants 	n�0� and 
n�0� are obtained from the asymptotic behavior of y �1.2�,

y�x,�� = 1 + xh + o�x2� as x → 0

hile the representation �2.1� as x→0, reduces to

y�x,�� � �
n=0

	n�0�
�2n + x�

n=0


n�0�
�2n ,

	0�0� = 1, 
0�0� = h , �3.3�

	n�0� = 0 and 
n�0� = 0 for n � 1.

he algorithm is easy to see, taking into account that 	−1=
−1=0,

	0�x� = 1


0�x� = h +
1

2
�

0

x

q�x�dt
⇒

	1�x� = −
1

2
�

0

x

L
0�t�dt


1�x� =
1

2
�

0

x

L	1�t�dt

⇒

	2�x� = −
1

2
�

0

x

L
1�t�dt


2�x� =
1

2
�

0

x

L	2�t�dt

�3.4�
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n�x� =
1

2�	n��0� − 	n��x� + �
0

x

q�t�	n�t�dt� .

	n�x� =
− 1

2 �
n−1� �0� − 
n−1� �x� + �
0

x

q�t�
n−1�t�dt� ,

n this case we need only one derivation and a simple integration that could be performed sym-
olically. For a faster algorithm, we can combine both sequences �	n� and �
n� into one

	0 → 
0 → 	1 → 
1 → 	2 → 
2 → ¯ → 	n → 
n → 	n+1 → ¯ .

et cn� be a new sequence defined by

c2n�x� = 	n�x� while c2n+1�x� = 
n�x�

hen it can be defined recursively for n�3 by

cn�x� =
�− 1�n−1

2
�

0

x

Lcn−1�t�dt . �3.5�

roposition 1 reduces to the following.
Proposition 2: Assume that q�m��Lloc�0, � � for m�1, then

y�x,�� = cos�x�� �
k=0

�m/2�
c2k�x�

�2k + sin�x�� �
k=0

��m−1�/2�
c2k+1�x�

�2k+1 +
1

�m+1��x,m + 1,�� , �3.6�

here ��x ,m+1,��=o�1� as �→� and the sequence cn can be computed iteratively by �3.5�.
Since our solution starts with cos�x��, we have c0�x�=1 while c1�x�=h+	0

xq�t�dt. The second
ndependent solution, can be generated by

��0,�� = 0 and ���0,�� = 1

epresented by6

��x,�� =
sin�x��

�
+ �

0

x

L�x,t�
sin�t��

�
dt ,

nd so by comparing with �2.1�, we see that it starts with sin�x�� /�, which means c0�x�=0 and

1�x�=1.
Having the coefficients ck we now show how to approximate the kernel K�x , t� close to the

egion x= t.
Proposition 3: Assume that q�m��Lloc�0, � �, then the kernel K can be approximated by

K�x,t� = �
n=0

m

an�x�
1

n!
�x − t�+

n + �m�x,t� ,

here

	2k�x� = �− 1�kc2k+1�x�, 	2k−1�x� = �− 1�kc2k�x� ,

nd the remainder

�m�x,t� = �1/m ! ��t

�t
m+1K�x,n��t − �md .
x
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Proof: Since �t
m+1K�x ,��L�0,x�, for any fixed x�0, its Taylor expansion yields for 0� t

x,

K�x,t� = �
n=0

m

�t
nK�x,x�

1

n!
�x − t�+

n + �m�x,t� .

he functions �t
nK�x ,x� were already found in terms of 	k and 
k �2.4�. �

V. THE COSINE SERIES

For any fixed x�0, we can recover K�x , t�, which is continuous for t� �0,x�, by a cosine
eries expansion

K�x,t� =
1

2
K̂�x,0� + �

n�1
K̂�x,n�cos�nt

�

x
� for t � �0,x� ,

here the Fourier coefficients are readily available when n�0,

K̂�x,n� =
2

x
�

0

x

K�x,t�cos�tn
�

x
�dt =

2

x
�y�x,n

�

x
� − cos�n��� =

2

x
cos�n�� �

j=1

�m/2�
c2j�x�

�n�
x �2j

+
2

x

xm+1

�n��m+1��x,m + 1,n
�

x
� = �− 1�n2 �

j=1

�m/2�
c2j�x�
�n��2j x

2j−1 +
2xm

nm+1�m+1��x,m + 1,n
�

x
� ,

�4.1�

here ��x ,m+1,n�� /x��=o�1� as n→� is the truncation error defined by �2.3�. For the remaining
oefficient n=0, use

1

2
K̂�x,0� =

1

x
�y�x,0� − 1�

hich can be easily computed independently since it does not contain the parameter �. For
xample, successive approximations to solve

y�x,0� = 1 + xh + �
0

x

�x − t�q�t�y�t,0�dt �4.2�

ields �4.2�, y�x ,0�=1+xh+	0
x�x− t�q�t��1+ th�dt+ ¯ .

Proposition 4: If q�m��Lloc�0, � �, then the kernel K can be approximated for t� �0,x�, x
0 by

K�x,t� =
1

x
�y�x,0� − 1� + �

n�1
�− 1�n2 �

j=1

�m/2�
c2j�x�
�n��2j x

2j−1 cos�nt
�

x
� + C�m� ,

here

C�m� = �
n�1

2xm

nm+1�m+1��x,m + 1,n
�

x
�cos�nt

�

x
� → 0 as m → � .
The kernel can then be approximated by combining �4.1� and a solution of �4.2�,
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K�x,t� =
1

2
K̂�x,0� + �

n�0
K̂�x,n�cos�nt

�

x
� .

bserve that a simple formula can be obtained from the convergence of the Fourier series at the
ndpoint t=x.

Corollary 1: We have

K�x,0� = − h − 1 −
1

2
�

0

x

q��d + y�x,0� +
4

x
�
n�0

�− 1�n�y�x,n
�

x
� − cos�xn�� .

. EXAMPLES

It is enough to see that the true solution y�x ,�� and its approximation are close for ��0.
Example 1: Consider −y�+cos�x�y=�2y, where y�0,��=1 and y��0,��=−2. The exact solu-

ion is

ye�x,�� = MathieuC�4�2,2,1/2x� − 4MathieuS�4�2,2,1/2x� .

The coefficients are easily computed,

a�0� = 1,

a�1� = − 2 + 1/2 sin�x� ,

a�2� = 1/4 cos�x� + sin�x� − 1/8 sin�x�2 − 1/4,

a�3� = − 1/2 cos�x� + 3/16 cos�x�sin�x� + 1/16x − 1/4 cos�x�2 − 1/48 sin�x�3 + 1/2 + 1/4 + 1/48,

a�4� = − 1/24 sin�x� − 3/16 sin�x�2 + 3/8 cos�x�sin�x� + 1/8x − 1/96 cos�x�sin�x�2

− 5/96 cos�x� + 5/96 cos�x�3 − 1/32 sin�x�x + 1/24 cos�x�2 sin�x� + 1/384 sin�x�4

+ 5/96 − 5/96.

ere we compare few values from y�3,n�, n=1, . . . ,36,

0.748 175 9807 1.163 419 958 −1.142 541 067 1.083 920 209 −0.999 452 0843
0.894 915 0519 −0.774 048 1629 0.639 976 5749 −0.495 688 4404 0.3441844722
0.188 508 0895 0.317 272 989e−1 0.123 104 5542 −0.272 997 4445 0.415 076 9273
0.546 636 6709 0.6651 890 699 −0.768 512 3266 0.854 692 7372 −0.922 161 1523
0.969 722 7807 −0.996 579 6800 1.002 345 451 −0.987 051 8211 0.951 146 9772
0.895 485 6744 0.821 311 3179 −0.730 230 3749 0.624 179 6300 −0.505 386 9379

nd their approximations

0.167 443 0785e14 −18.635 141 80 −1.125 120 026 1.074 961 786 −0.994 041 1660
0.891 348 4130 −0.771 566 0093 0.638 186 0079 −0.494 365 0076 0.343 190 2959
0.187 753 6293 0.311 517 829e−1 0.123 543 8801 −0.273 331 5660 0.415 328 8682
0.546 823 9036 0.665 325 0926 −0.768 607 7264 0.854 755 9242 −0.922 198 8779
0.969 740 5119 −0.996 581 8730 1.002 3357 56 −0.987 033 2372 0.951 121 9718
0.895 456 2764 0.821 279 1906 −0.730 196 8755 0.624 145 8567 −0.505 353 7692

2
Example 2: Consider −y�+xy=� y, with y�0,��=1 and y��0,��=3. The exact solution is

                                                                                                            



−
−

−

a

−
−
−

−

.

w
M

013505-8 Amin Boumenir J. Math. Phys. 47, 013505 �2006�

                        
y�x,�� = c���Airy Ai�x − �2� + d���Airy Bi�x − �2� ,

c��� =
− �3 Airy Bi�− �2� − Airy Bi�1,− �2��

�− Airy Bi�− �2�Airy Ai�1,− �2� + Airy Bi�1,− �2�Airy Ai�− �2��
,

d��� =
�3Airy Ai�− �2� − Airy Ai�1,− �2��

�− Airy Bi�− �2�Airy Ai�1,− �2� + Airy Bi�1,− �2�Airy Ai�− �2��
,

a�0� = 1,

a�1� = 3 + 1/4x2,

a�2� = 1/4x − 1/32x4 − 3/4x2,

a�3� = 5/48x3 + 3/4x − 1/384x6 − 3/32x4,

a�4� = 5/32x2 − 7/384x5 − 5/16x3 + 1/6144x8 + 1/128x6.

We can compare few values between y�4,n�, n=1, . . . ,35,

−121.675 2146 −1.542 623 760 −0.232 618 3437 1.190 754 717 −0.746 224 3562
0.341 321 5597 1.043 099 355 −0.835 041 5628 −0.037 893 0074 0.854 225 5264
0.992 844 0701 0.375 265 9630 0.514 655 7178 −1.012 088 021 0.759 688 2042
0.046 090 2340 −0.812 971 6401 0.987 483 9651 −0.449 896 0328 −0.408 335 0581
0.971 349 3754 −0.839 583 4697 0.110 615 7287 0.695 147 8309 −1.006 400 897
0.604 834 8112 0.223 439 5774 −0.892 768 4890 0.931 937 0240 −0.314 938 7262
0.522 867 2854 0.992 396 1517 −0.764 716 4534 0.000 729 6130 0.763 166 2083

nd its approximation ya�4,n�, n=1, . . .35,

0.322 422 204 −1.532 733 809 −0.235 509 6315 1.190 079 810 −0.745 065 2802
0.341 883 1913 1.043 060 296 −0.834 750 3038 −0.038 132 2011 0.854 290 1206
0.992 769 0014 0.375 152 6849 0.514 723 6304 −1.012 084 876 0.759 639 5448
0.046 140 0680 −0.812 991 4709 0.987 470 0399 −0.449 866 2059 −0.408 358 0246
0.971 352 8141 −0.839 569 9001 0.110 597 6148 0.695 158 0462 −1.006 398 438
0.604 823 8579 0.223 450 3635 −0.892 772 2668 0.931 932 6936 −0.314 930 5316
0.522 873 4089 0.992 396 6261 −0.764 711 9144 0.000 723 7982 0.763 169 3436

Example 3: Consider −y�+sin�x�y=�2y, y�0,��=1, and y��0,��=6,

ye�x,y� =
− �12MS�4�2,2,�/4� + MSP�4�2,2,�/4��MC�4�2,2,arccos�1/2�2sin�x� + 2��

�MS�4�2,2,�/4�MCP�4�2,2,�/4� − MSP�4�2,2,�/4�MC�4�2,2,�/4��

+
�12MC�4�2,2,�/4� + MCP�4�2,2,�/4��MS�4�2,2,arccos�1/2�2sin�x� + 2��

�MSS�4�2,2,�/4�MCP�4�2,2,�/4� − MSP�4�2,2,�/4�MC�4�2,2,�/4��
,

here the functions MS is MathieuS, MSP is MathieuSprime, MC is MathieuC, MCP is
athieuCprime, the sequence cn�x� is given by
c0�x� = 1,
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c1�x� = 6 − 1/2 cos�x� + 1/2,

c2�x� = 1/4 sin�x� + 13/4 cos�x� − 1/8 cos�x�2 − 13/4 + 1/8,

c3�x� = 23/16 cos�x� + 13/8 sin�x� − 3/16 sin�x�cos�x� − 13/16 cos�x�2

+ 1/48 cos�x�3 + 1/16x − 23/16 + 13/16 − 1/48,

Here are few values. y�1,n�, n=1, . . . ,30,

6.154 887 033 2.686 340 637 −0.552 612 7710 −1.794 216 234 −0.932 806 7024
0.636 401 0418 1.321 948 590 0.629 621 7057 −0.611 762 7914 −1.168 450 847
0.562 712 0822 0.557 951 1189 1.102 551 938 0.577 070 0830 −0.485 371 8233
1.065 348 923 −0.626 533 2182 0.397 830 3214 1.034 591 044 0.691 350 0662
0.297 928 7750 −0.999 996 1806 −0.760 924 1610 0.188 149 2214 0.956 313 8733
0.828 544 8431 −0.070 929 5701 −0.900 846 9644 −0.889 590 9568 −0.051 175 2417

nd their corresponding approximations

1.359 708 560 10 12.009 765 65 −0.550 356 7325 −1.797 145 576 −0.934 797 8934
0.636 028 9944 1.322 414 114 0.630 110 6212 −0.611 612 5445 −1.168 582 633
0.562 900 6564 0.557 870 8830 1.102 598 044 0.577 160 3441 −0.485 322 6859
1.065 365 683 −0.626 582 0311 0.397 797 7152 1.034 596 076 0.691 378 4867
0.297 951 5535 −0.999 996 2206 −0.760 906 8620 0.188 165 6944 0.956 316 1424
0.828 534 0647 −0.070 941 7673 −0.900 850 1472 −0.889 584 2056 −0.051 166 0655

s expected, apart from the first two, all the other values agree.

1 Boumenir, A., “Direct computation of the spectral function,” Proc. Am. Math. Soc. 123, 3431–3436 �1995�.
2 Carroll, R. W., Transmutation and Operator Differential Equations �North-Holland, Amsterdam, 1979�.
3 Carroll, R. W., Transmutation Theory and Applications �North-Holland, Amsterdam, 1985�.
4 Chadan, K. and Sabatier, P. C., Inverse Problems in Quantum Scattering Theory �Springer-Verlag, New York, 1989�.
5 Fulton, C. T. and Pruess, S., “The computation of spectral density functions for singular Sturm-Liouville problems
involving simple continuous spectra,” ACM Trans. Math. Softw. 24, 107–129 �1998�.

6 Levitan, B. M., Inverse Sturm-Liouville Problems �VNU Science Press, Utrech, 1987�.
7 Marchenko, V. A., Sturm-Liouville Operators and Applications, Operator Theory: Advances and Applications, 22
�Birkhäuser, Boston, 1986�.

8 Olver, F. W. Asymptotics and Special Functions, Computer Science and Applied Mathematics �Academic, New York,
1974�.
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For the direct sum of several copies of sln, a family of Lie brackets compatible with
the initial one is constructed. The structure constants of these brackets are ex-
pressed in terms of � functions associated with an elliptic curve. The structure of
Casimir elements for these brackets is investigated. A generalization of this con-
struction to the case of vector-valued �-functions is presented. A different proce-
dure for constructing compatible Lie brackets based on the argument shift method
for quadratic Poisson brackets is discussed. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2158434�

. INTRODUCTION

Two Lie brackets �· , · �1 and �· , · �2, defined on the same finite-dimensional vector space V, are
aid to be compatible if

�· , · �u = �· , · �1 + u�· , · �2 �1.1�

s a Lie bracket for any constant u. As a matter of fact, this notion coincides with the concept of
wo compatible linear Poisson structures �see Ref. 1�. Indeed, the formula

�xi, xj� = cij
k xk, i, j = 1, . . . ,N �1.2�

efines a Poisson bracket iff cij
k are structural constants of a Lie algebra and the compatibility of

wo Poisson brackets of this form is equivalent to the compatibility of the two corresponding Lie
tructures.

The Casimir functions of the Poisson bracket �· , · �u corresponding to �1.1� are polynomials in
, whose coefficients commute with respect to both Poisson brackets. This way for constructing
ompletely integrable Hamiltonian dynamical systems of compatible Poisson brackets is called the
enard–Magri scheme.1,2 Pairs of compatible Lie brackets have been considered in this context in
efs. 3 and 4.

However, possible applications of compatible pairs of Lie algebras in the integrability theory
re not exhausted by this construction. For example, it was shown in Ref. 5 that the system of
onlinear hyperbolic equations,

Ux = �U,V�1, Vy = �V,U�2, U,V � V ,

s integrable for compatible Lie brackets. If the brackets �· , · �1,2 coincide, this system is just the
rincipal chiral model.

�Present address: Landau Institute for Theoretical Physics, Kosygina 2, 119334, Moscow, Russia.

Electronic mail: odesskii@itp.ac.ru

47, 013506-1022-2488/2006/47�1�/013506/14/$23.00 © 2006 American Institute of Physics
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Compatible Lie brackets also are closely related to decompositions of infinite-dimensional Lie
lgebras into a vector direct sum of two subalgebras.6–8 Furthermore, it was shown in Ref. 9 that
ny pair of compatible Lie brackets having a common quadratic Casimir function produces a
nonconstant� solution of the classical Yang–Baxter equation.

The following classification problem arises: to describe all possible brackets �· , · �2 on a vector
pace V, compatible with a given semisimple bracket �· , · �1. Since any semisimple Lie algebra is
igid, the bracket �1.1� is isomorphic to �· , · �1 for almost all values of the parameter u. It is well
nown that for the semisimple case the second bracket �· , · �2 is given by the formula

�X,Y�2 = �R�X�,Y�1 + �X,R�Y��1 − R��X,Y�1� ,

here R is a linear operator on V.
Some examples of compatible brackets are known �see Refs. 4 and 5�. Similar to solutions of

lassical Yang–Baxter equations �Ref. 10�, these examples are �in some sense� rational, trigono-
etric, or elliptic.

In this paper, we construct a class of compatible semisimple Lie brackets related to an elliptic
urve. By analogy with other “elliptic” models in integrability theory, one can expect that a very
ide class of compatible Lie brackets can be obtained by different degenerations of these basic

elliptic” pairs and by deformations of degenerate pairs, which are usually not as rigid as the
lliptic models.

The paper is organized as follows. In Sec. II we present a construction of compatible elliptic
� i=1

m sln-Lie brackets. The initial date for our construction is a pair of � functions of order m
ithout common zeros on an elliptic curve E. To demonstrate the main idea, let us consider a

lightly different situation of two compatible associative structures.
Let V be the k-dimensional vector space of all polynomials of degree �k−1 in one variable,

et �1 and �2 be given polynomials of degree k without common roots. It is clear that any
olynomial Z, where deg Z�2k−1, can be uniquely represented in the form Z=�1P+�2Q, where

P ,Q�V. The explicit form of P and Q can be found with the help of the Lagrange interpolation
ormula. Let us define two multiplications � and � on V by the formula

XY = �1�X � Y� + �2�X � Y�, X,Y � V .

t can be checked that any linear combination of these two products is associative. We consider an
nalog of this construction for Lie algebras replacing polynomials by � functions on E with values
n sln.

In Sec. III we investigate properties of the Lie algebra Gu with the bracket �1.1� constructed in
ec. II. Since for generic u the Lie algebra Gu is isomorphic to � i=1

m sln, we know that the center of
he universal enveloping algebra U�Gu� is generated by m�n−1� elements of U�Gu�. More pre-
isely, we have m generators of degree p, where p=2,3 , . . . ,n. Usually the elements of the center
re called the Casimir elements.

Since �1.1� is linear in u, the Casimir elements can be chosen to be polynomial in u. It turns
ut that for each p there exists one Casimir element Kp,1 of degree p−2 in u, m−2 Casimir
lements Kp,2 , . . . ,Kp,m−1 of degree p−1 and one element Kp,m of degree p. In particular, there
xists one quadratic Casimir element, which does not depend on u. This element can be regarded
s an invariant bilinear form, common for both brackets �· , · �1,2.

This picture is in accordance with general results and conjectures by Gelfand and
akharevich11 about “good” bi-Hamiltonian structures that in our case states, in particular, that

i,j�2 degu Kij +1� should be equal to dim Gu=m�n2−1�.
In Sec. III we find explicit formulas for of all these Casimir elements Kij.
In Sec. IV we generalize the results of Sec. II to the case of vector-valued � functions or,

hich is the same, to the case of l-dimensional indecomposable holomorphic vector bundles over
he elliptic curve. As the result, we get an �l+1�-dimensional vector space of pairwise compatible

11
ie brackets.
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In Sec. V we discuss a different way for constructing compatible linear Poisson brackets
tarting with a quadratic Poisson bracket of Sklyanin type. This construction is based on the
rgument shift method. We conjecture that the family of compatible brackets thus obtained coin-
ides with the brackets constructed in Sec. IV.

I. COMPATIBLE LIE BRACKETS RELATED TO SCALAR �-FUNCTIONS

Let ��C be a lattice generated by 1 and �, where Im ��0. Let m�N. We denote by �m���
he vector space of holomorphic functions � :C→C, such that

��z + 1� = ��z�, ��z + �� = �− 1�m exp�− 2	imz���z� .

lements of this vector space are called � functions of order m. Properties of � functions are
escribed, for example, in the Appendix to the review.12 In particular, the dimension of �m��� is
qual to m. We fix a generator of �1��� and denote it by ��z�. It is known that any element f

�m��� has m roots modulo � and the sum of these roots is equal to zero modulo �. In particular,
�z� has only one root modulo � at z=0. If x1 , . . . ,xm are all roots of f ��m���, then f�z�=c��z
x1�¯��z−xm�, where c is a constant.

Let us fix relatively prime natural numbers k and n such that 1�k
n. Let a and b be n
n matrices, such that

an = bn = 1, ba = exp�2	ik

n
	ab. �2.1�

ote that such a pair of matrices �a ,b� is a necessary ingredient of several “elliptic” constructions
elated to sln �see Refs. 10, 13, and 14�. It is clear that the matrices a�b, where � ,=0, . . . ,n
1, �� ,�� �0,0�, form a basis in sln. The commutator relations between these matrices are given
y

�a�1b1, a�2b2� = 
exp�2	ik1�2

n
	 − exp�2	ik2�1

n
	�a�1+�2b1+2. �2.2�

We denote by Vm the vector space of holomorphic functions f :C→sln satisfying the following
uasiperiodic conditions:

f�z + 1� = af�z�a−1, f�z + �� = �− 1�m exp�− 2	imz�bf�z�b−1. �2.3�

ote that if f1�Vm1
and f2�Vm2

, then f1f2�Vm1+m2
. It follows from �2.3� that if

f�z� = � f�,�z�a�b,

hen

f�,�z + 1� = exp�−
2	ik

n
	 f�,�z� ,

f�,�z + �� = �− 1�m exp�− 2	imz +
2	ik�

n
	 f�,�z� . �2.4�

hese identities imply that

f�,�z� = exp�−
2	ik

n
z	g�,�z −

k�

mn
−

k

mn
�	 , �2.5�

here g�,�z� belongs to �m���.
Lemma 1: Let �1 ,�2��m��� be a pair of � functions that have no common zeros. Then any
lement Z�V2m can be uniquely represented in the form
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Z = �1P + �2Q, P,Q � Vm.

Proof: Consider a linear mapping L :Vm � Vm→V2m given by the formula

L�P,Q� = �1P + �2Q .

e should prove that L is an isomorphism. Since dim�Vm � Vm�=dim V2m=2m�n2−1�, it suffices
o prove that Ker L=0. Substituting

P = � P�,�z�a�b, Q = � Q�,�z�a�b

nto L�P ,Q�=0, we find that �1�z�P�,�z�+�2�z�Q�,�z�=0 for all �� ,��0. Since �1�z� and

2�z� have no common roots, we see that any root of �1�z� is a root of Q�,�z�. We know that

1�z���m��� has exactly m zeros modulo � and the sum of all these zeros equals 0. It follows
rom �2.5� that if Q�,�z��0, then Q�,�z� also has exactly m zeros, but their sum is equal to
� /n+ �k /n��. Hence Q�,�z�0, which implies that Q P0. �

Using Lemma 1, for any f1 , f2�Vm, we define �f1 , f2�1 and �f1 , f2�2 by the formula

�f1, f2� = �1�f1, f2�1 + �2�f1, f2�2. �2.6�

Proposition 1: The bilinear operations �f1 , f2�1 and �f1 , f2�2 are compatible Lie brackets on

m.
Proof: It is clear that the standard bracket �f1 , f2�= f1f2− f2f1 is a Lie bracket on the vector

pace � p�0Vp. Lemma 1 shows that �· , · �1,2 are well-defined brackets on Vm. Substituting �2.6�
nto the antisymmetricity condition �f1 , f2�+ �f2 , f1�=0 for the standard bracket, we get

1��f1 , f2�1+ �f2 , f1�1�+�2��f1 , f2�2+ �f2 , f1�2�=0. It follows from Lemma 1 that �f1 , f2�i+ �f2 , f1�i

0 for i=1,2. Substituting �2.6� into the Jacobi identity for the standard bracket, we obtain an
dentity of the form �1

2P+�1�2Q+�2
2R=0 for some P ,Q ,R�Vm. Using the same argument as in

he proof of Lemma 1, one can prove that PQR0. It is easy to verify that the identities P=0
nd R=0 coincide with the Jacobi identity for the brackets �· , · �1 and �· , · �2, respectively. The
dentity Q=0 is equivalent to the compatibility of the brackets �· , · �1,2. �

Let xi�u� be all roots of �2�z�−u�1�z�:

�2�z� − u�1�z� = c�u��„z − x1�u�… ¯ �„z − xm�u�… .

f x1�u� , . . . ,xm�u� are distinct modulo �, we say that u is regular. For brevity, we use the notation

j instead of xj�u�.
Now we are going to prove that the linear combination,

�f1, f2�u = �f1, f2�1 + u�f1, f2�2, �2.7�

f brackets �2.6� is isomorphic to � i=1
m sln for all regular values of u.

Consider the following elements v�,,��u ,z��Vm, defined by

v�,,��u,z� = P�,,��u�g�,,��u,z� , �2.8�

here

P�,,��u� =
�1�x��

��x� − x1� ¯ �̂ ¯ ��x� − xm���−
k�

n
−

k

n
�	 �2.9�
nd

                                                                                                            



H
w

f

m
e

=
p
t

s

U

w

f
t

f
s

p
i

013506-5 Compatible Lie brackets J. Math. Phys. 47, 013506 �2006�

                        
g�,,��u,z� = exp�−
2	ik

n
z	��z − x1� ¯ �̂ ¯ ��z − xm� � ��z − x� −

k�

n
−

k

n
�	a�b.

�2.10�

ere the symbol �̂ means that the factor ��z−x�� is omitted in the product, � ,=0, . . . ,n−1,
here �� ,�� �0,0� and �=1, . . . ,m.

Theorem 1: The elements v�,,��u� satisfy the following commutator relations;

�v�1,1,�1
,v�2,2,�2

�u = 0, �2.11�

or �1��2 and �cf. �2.2��

�v�1,1,�,v�2,2,��u = 
exp�2	ik1�2

n
	 − exp�2	ik2�1

n
	�v�1+�2,1+2,�. �2.12�

The proof of Theorem 1 is based on the following.
Lemma 2: Suppose x1 , . . . ,xm�C are distinct modulo � and x1+ ¯ +xm�k� /n+ �k /n��

odulo � for 0�� ,
n, �� ,�� �0,0�. Then for any �1 , . . . ,�m�sln there exists a unique
lement f �Vm such that f�x��=�� for �=1, . . . ,m.

Proof of Lemma 2: Consider a linear mapping M :Vm→ � i=1
m sln given by the formula M�f�

(f�x1� , . . . , f�xm�). Since dim Vm=dim � i=1
m sln=m�n2−1�, it suffices to prove that Ker M =0. Sup-

ose M�f�=0, where f =��,f�,�z�a�b. Then f�,�x��=0 for all � , ,�. But it follows from �2.5�
hat if f�,�0, then the sum of all zeros for f�, is equal to k� /n+ �k /n��. �

Proof of Theorem 1: The basic idea is to verify that the identities �2.11�, �2.12� hold if we
ubstitute z=x�, �=1, . . . ,m. Then Lemma 2 concludes the proof. It is easy to check that

�g�1,1,�1
,g�2,2,�2

� = exp�−
2	ik�1 + 2�

n
z	��z − x1� ¯ �̂1 ¯ ��z − xm�

���z − x1� ¯ �̂2 ¯ ��z − xm� � ��z − x�1
−

k�1

n
−

k1

n
�	

� ��z − x�2
−

k�2

n
−

k2

n
�	
exp�2	ik1�2

n
	 − exp�2	ik2�1

n
	�

�a�1+�2b1+2. �2.13�

sing the formula

�· , · � = �1�· , · �u + ��2 − u�1��· , · �2, �2.14�

e find that

�g�1,1,�1
,g�2,2,�2

�u�x�� = 0,

or �1��2, which implies �2.11� by Lemma 2. If �1=�2=�, then it follows from �2.13�, �2.14�
hat

�g�1,1,�, g�2,2,��u�x�� = 0,

or ���. This proves that �2.12� holds for z=x�, ���. A simple straightforward computation
hows that �2.12� also holds for z=x�. �

Remark 1: Suppose the functions �1�z� and �2�z� have distinct roots modulo �; then the
oints u=0 and u=� are regular and the brackets �· , · �1 and �· , · �2 correspond to the Lie algebra
somorphic to � i=1

m sln.

Remark 2: It is possible to construct “trigonometric” and “rational” degenerations of the

                                                                                                            



e
1

s

w
a
w

i

H

o

I

I

A

i

w
o

013506-6 A. V. Odesskii and V. V. Sokolov J. Math. Phys. 47, 013506 �2006�

                        
lliptic brackets described above. Namely, in the trigonometric case one should replace ��z� by
−exp�2	iz�, the space �m��� by the space of functions of the form

a0 + a1 exp�2	iz� + ¯ + am exp�2	imz� ,

uch that am= �−1�ma0, and the space Vm by the space of sl�n�-valued functions of the form

� c�, exp�2	i


n
z	a�b, 0 � � � n, 0 �  � mn ,

here c�,0= �−1�mc�,mn. In this formula we assume that an=bn=1, ba=exp�2	i /n�ab. We should
lso modify the definitions of P�,,��u� and g�,,��u� given by �2.9� and �2.10� in the following
ay:

P�,,��u� =
�1�x��

�t�x� − x1� ¯ �̂ ¯ �t�x� − xm��t�−
�

n
	 ,

g�,,��u,z� = exp�−
2	i

n
z	�t�z − x1� ¯ �̂ ¯ �t�z − xm�

��t�z − x� −
�

n
	a�b,

f ��0 and

P0,,��u� =
�1�x��

�t�x� − x1� ¯ �̂ ¯ �t�x� − xm�
,

g0,,��u,z� = exp�−
2	i

n
z	�t�z − x1� ¯ �̂ ¯ �t�z − xm�b.

ere �t�z�=1−exp�2	iz�.
In the rational case ��z� has to be replaced by z, the space �m��� by the space of polynomials

f the form �i=0
m c�z�, cm−1=0, and Vm by the space of polynomials �i=0

m−1g�z�, g��sln. In this case

P�,,��u� =
�1�x��

�x� − x1� ¯ �̂ ¯ �x� − xm�
,

g�,,��u,z� = �z − x1� ¯ �̂ ¯ �z − xm� Ã a�b.

n both cases v�,,��u ,z� is defined by �2.8�.

II. STRUCTURE OF CASIMIR ELEMENTS

. Casimir elements for sln

Let e�, �=1, . . . ,n2−1, be a basis in sln, and let e� be the dual basis with respect to the
nvariant form 
X ,Y � =tr�XY�. Then the Casimir elements,

Cp = �
1��1,. . .�p�n2−1

tr�e�1
¯ e�p�e�1

� ¯ � e�p
, p = 2, . . . ,n ,

here � denotes the multiplication in the universal enveloping algebra U�sln�, generate the center

f U�sln�.
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Let us take t�,=a�b for a basis in sln, where a ,b are defined by �2.1�, 0�� ,
n, and
� ,�� �0,0�. Then, up to a common multiplicative constant, the dual basis is given by

t�, = exp�2	ik�

n
	t−�,−.

n this basis the Casimir elements have the form

Cp = �
Dp

exp�2	ik

n
�

1�j1�j2�p

� j1
 j2	t�1,1

� ¯ � t�p,p
,

here

Dp = ���1, . . . ,�p,1, . . . p�� 0 � �i, j 
 n, �� j, j� � �0,0�, �1 + ¯ + �p  0 mod n,

1 + ¯ + p  0 mod n� .

n particular, the quadratic Casimir element is given by

C2 = �
�,

exp�2	ik�

n
	t�, � t−�,−.

. Polynomial Casimir elements for Gu

In the previous section, we have equipped the vector space Vm with the Lie bracket �2.7�. For
eneric u the corresponding Lie algebra Gu is isomorphic to � i=1

m sln.
It was shown that the vector space Vm is isomorphic to ��,F�,, where F�, is the vector

pace of holomorphic functions satisfying �2.4�. Denote by F�1,1,. . .,�p,p
the vector space of

olomorphic functions of variables z1 , . . . ,zp satisfying the conditions

f�z1, . . . ,zj + 1, . . . ,zp� = exp�−
2	ik j

n
	 f�z1, . . . ,zp� ,

�3.1�

f�z1, . . . ,zj + �, . . . ,zp� = �− 1�m exp�− 2	imzj +
2	ik� j

n
	 f�z1, . . . ,zp� .

alculating the number of free coefficients in the Fourier decomposition of a function satisfying
3.1�, we find that dim F�1,1,. . .,�p,p

=mp. In particular, dim F�,=m. Hence, the vector space

�1,1,. . .,�p,p
is spanned by the products f1�z1�¯ fp�zp�, where f i�z��F�i,i

. In other words,

�1,1,. . .,�p,p
is isomorphic to F�1,1

� ¯ � F�p,p
.

We use functions from F�1,1,. . .,�p,p
to represent elements of the universal enveloping algebra

�Gu�. Namely, to the product f1�z1�¯ fp�zp��F�1,1,. . .,�p,p
we assign the element

f1�z�t�1,1
• ¯ • fp�z�t�p,p

�U�Gu�, where • is the multiplication in U�Gu�. Denote the correspond-
ng linear mapping from �Dp

F�1,1,. . .,�p,p
to U�Gu� by �p.

Suppose u is regular, that is, all roots x1 , . . . ,xm of the function �2�z�−u�1�z� are distinct. Let

�,,��u ,z�=s�,,��u ,z�t�, be the basis of Vm given by �2.8�–�2.10�.
By Theorem 1, for each � the elements of this basis satisfy the same commutator relations as
�,. Hence, the center of U�Gu� is generated by
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C�,p = �
Dp

exp�2	ik

n
�

1�j1�j2�p

� j1
 j2	�p�f�1,1,. . .,�p,p,�� , �3.2�

here f�1,1,. . .,�p,p,��z1 , . . . ,zp�=s�1,1,��u ,z1�¯s�p,p,��u ,zp�.
Now our goal is to find linear combinations of generators �3.2� that are polynomial in u. Let

�1,1,. . .,�p,p
�F�1,1,. . .,�p,p

be the vector subspace spanned by f�1,1,. . .,�p,p,�, where �
1, . . . ,m. The following statement gives us an inner description of this subspace.

Lemma 3: The vector space W�1,1,. . .,�p,p
consists of holomorphic functions f�z1 , . . . ,zp� sat-

sfying �3.1� and vanishing on the surfaces �zj1
=x�1

and zj2
=x�2

� for all j1� j2 and �1��2.
Proof: It is clear that the functions f�1,1,. . .,�p,p,��z1 , . . . ,zp� enjoy these properties. On the

ther hand, since �s�,,��z�, �=1, . . . ,m� is a basis in F�,, the products s�1,1,�1
�z1�¯s�p,p,�p

�zp�,
here � j =1, . . . ,m, j=1, . . . , p, form a basis in F�1,1,. . .,�p,p

. Suppose a function

f�z1, . . . ,zp� = � a�1,. . .,�p
s�1,1,�1

�z1� ¯ s�p,p,�p
�zp� �3.3�

atisfies the conditions of Lemma 3. We have to prove that a�1,. . .,�p
=0 if � j1

�� j2
. To show this,

t suffices to substitute x�j1
and x�j2

for zj1
and zj2

in �3.3� and to take into account formulas

2.8�–�2.10�. �

Let Wp� �Dp
W�1,1,. . .,�p,p

be the vector space spanned by ��Dp
f�1,1,. . .,�p,p,�, �=1, . . . ,m�.

imilar to the proof of Lemma 3, one can prove the following.
Lemma 4: The vector space Wp consists of elements of the form �Dp

g�1,1,. . .,�p,p
, where

�1,1,. . .,�p,p
�z1 , . . . ,zp� satisfies the conditions of Lemma 3 and, in addition,

exp�2	ik

n
x��1 + ¯ + p�	g�1,1,. . .,�p,p

�x�, . . . ,x��

=exp�2	ik

n
x��1� + ¯ + p��	g�1�,1�,. . .,�p�,p�

�x�, . . . ,x�� ,

or any �1 ,1 , . . . ,�p ,p, �1� ,1� , . . . ,�p� ,p� and �=1, . . . ,m.
Using Lemmas 3,4, we construct polynomials in u that span Wp for generic u.
Theorem 2: For arbitrary g�z���m���, put

f�1,1,. . .,�p,p
�z1, . . . ,zp� = exp
−

2	ik

n
�1z1 + ¯ + pzp�� �

1�t�p

g�zt��� k�t

n
+

kt

n
�	

� �
1�j�p,j�t

��zt − zj +
k� j

n
+

k j

n
�	

��zt − zj�
�

1�j�p,j�t

„�2�zj� − u�1�zj�… .

�3.4�

hen �Dp
f�1,1,. . .,�p,p

belongs to Wp and, therefore, the formula

�
Dp

exp�2	ik

n
�

1�j1�j2�p

� j1
 j2	�p�f�1,1,. . .,�p,p

�

efines a Casimir element in U�Gu�.
Proof: We must prove that f�1,1,. . .,�p,p

satisfies the assumptions of Lemmas 3,4. Using the
uasiperiodic properties of the functions �1�z� ,�2�z���m��� and ��z���1���, one can verify
ondition �3.1� by a simple computation. To prove that f�1,1,. . .,�p,p

is holomorphic, one can check
hat the only possible pole at zt=zj is cancelled after summation. It is clear that if we put zj1

x�1

and zj2
=x�2

, where �1��2, then all summands in �3.4� vanish. Thus the assumptions of
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emma 3 hold. The assumption of Lemma 4 can be checked by a straightforward computation.�
Remark 3: If g�z���m��� does not depend on u, then the function �3.4� is polynomial in u, of

egree p−1.
Remark 4: Since the Casimir function given by �3.4� is linear in g�z�, we have constructed a

inear map T :�m���→center of U�Gu�.
Lemma 5: The kernel of T is generated by the element g�z�=�2�z�−u�1�z� and, therefore,

im Ker T=1.
Proof: It follows from �3.4� that

T„�2�z� − u�1�z�… = �
1�j�p

„�2�zj� − u�1�zj�…exp
−
2	ik

n
�1z1 + ¯ + pzp��

� �
1�t�p

�� k�t

n
+

kt

n
�	 �

1�j�p,j�t

��zt − zj +
k� j

n
+

k j

n
�	

��zt − zj�
.

onsider the function

T„�2�z� − u�1�z�…

�1�j�p
„�2�zj� − u�1�zj�…

.

t can be checked that this function is holomorphic and satisfies �3.1� with m=0. Analyzing its
ourier decomposition, we see that such a function is identically zero. Hence T(�2�z�−u�1�z�)
0. Suppose now that T(g�z�)=0. Substituting a root x of �2�z�−u�1�z� for z in �3.4�, we see that
�x�=0. Since g�z� has exactly m zeros mod �, the function g�z� is proportional to �2�z�
u�1�z�. �

It follows from Lemma 5 that T��2� is a polynomial of degree p−2 in u. Therefore, formula
3.4� yields an �m−1�-dimensional subspace in the m-dimensional vector space Wp such that one
enerator of this subspace is the polynomial T��2� of degree p−2 and m−2 generators are
olynomials of degree p−1 in u.

In the following statement we construct a remaining generator of Wp.
Theorem 3: Let

h�1,1,. . .,�p,p
�z1, . . . ,zp� = �

1�t�p

At � „�2��zt� − u�2��zt�… �
1�j�p,j�t

„�2�zj� − u�1�zj�…

− B � �
1�j�p

„�2�zj� − u�1�zj�… ,

here At is given by

At = exp
−
2	ik

n
�1z1 + ¯ + pzp���� k�t

n
+

kt

n
�	 �

1�j�p,j�t

��zt − zj +
k� j

n
+

k j

n
�	

��zt − zj�

nd B is defined by the formula

B =
m

n
exp
−

2	ik

n
�1z1 + ¯ + pzp���B1 + B2� ,
here

                                                                                                            



T

d

d

s
k
a
d

I
F

v

d
s
f

w

013506-10 A. V. Odesskii and V. V. Sokolov J. Math. Phys. 47, 013506 �2006�

                        
B1 = �
1�t�p,1�j�p,j�t

�� k�t

n
+

kt

n
�	���zt − zj +

k� j

n
+

k j

n
�	

��zt − zj�

� �
1�l�p,l�j,t

��zt − zl +
k�l

n
+

kl

n
�	

��zt − zl�

B2 = �
1�t�p

��� k�t

n
+

kt

n
�	 �

1�l�p,l�t

��zt − zl +
k�l

n
+

kl

n
�	

��zt − zl�
.

hen the formula

�
Dp

exp�2	ik

n
�

1�j1�j2�p

� j1
 j2	�p�h�1,1,. . .,�p,p

�

efines a Casimir element in U�Gu�.
The proof is similar to the proof of Theorem 2.
Remark 5: It is clear that the Casimir element constructed in Theorem 3 is polynomial in u, of

egree p.
Remark 6: We have constructed the Casimir elements for U�Gu�, whereas in the Lenard–Magri

cheme Casimir functions of the corresponding Poisson algebra are needed. However, these two
inds of Casimirs are given by the same formulas. Indeed, if a Casimir element is written in such
way that it is homogeneous with respect to elements of Lie algebra, then the same formula

efines also a Casimir function of the corresponding Poisson algebra.

V. FAMILIES OF COMPATIBLE LIE BRACKETS ASSOCIATED WITH VECTOR �
UNCTIONS

In this section we generalize the construction in Sec. II replacing the usual � functions by
ector-valued � functions. All proofs are similar to those in Sec. II.

Let ��C be a lattice spanned by 1 and �, where Im ��0. Our general construction will
epend on d , l ,m�N, such that 1� l
m and m, l are relatively prime. Denote by V�m/l

d the vector
pace consisting of holomorphic functions f :Cl+1→C of variables z, x0 , . . . ,xl−1, possessing the
ollowing properties:

• f�z ,x0 , . . . ,xl−1� is a homogeneous polynomial of degree d in variables x0 , . . . ,xl−1,
•

f�z + 1,x0, . . . ,xl−1� = f„z,p�x0�, . . . ,p�xl−1�… ,

•

f�z + �,x0, . . . ,xl−1� = exp
− 2	i�m

l
z +

m − l − 1

2l
	d� f„z,q�x0�, . . . ,q�xl−1�… ,

here

p�x�� = exp�− 2	i
m

l
�	x�, q�x�� = x�+1, � � Z/lZ .
Lemma 6:
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dim V�m/l
d = m

�l + 1� ¯ �l + d − 1�
�d − 1�!

.

It follows from this formula that in the case d=1, which is of most importance for us,
im V�m/l

1 =m.
Remark 7: Our space V�m/l

d is a space of holomorphic sections of an indecomposable vector
undle of degree m and rank l on the elliptic curve. The classification of holomorphic vector
undles on elliptic curves was obtained in the paper of Ref. 15.

Let 1�k
n and let k ,n be relatively prime. Denote by Vm,l
d the vector space of all holomor-

hic functions f :Cl+1→sln such that we have the following.

• f�z ,x0 , . . . ,xl−1� is a homogeneous polynomial of degree d in variables x0 , . . . ,xl−1,
•

f�z + 1,x0, . . . ,xl−1� = af„z,p�x0�, . . . ,p�xl−1�…a−1

•

f�z + �,x0, . . . ,xl−1� = exp
− 2	i�m

l
z +

m − l − 1

2l
	d�bf„z,q�x0�, . . . ,q�xl−1�…b−1,

here a and b satisfy �2.1�.
Lemma 7: Suppose �1 , . . . ,�l+1�V�m/l

1 have no common zeros for �x0 , . . . ,xl−1��0. Then any
lement Z�Vm,l

2 can be uniquely represented in the form

Z = �1P1 + ¯ + �l+1Pl+1, Pi � Vm,l
1 .

It is clear that if f ,g�Vm,l
1 , then fg−gf belongs to Vm,l

2 . Using Lemma 7, we define
· , · �1 , . . . , �· , · �l+1 by the formula

f1f2 − f2f1 = �1�f1, f2�1 + ¯ + �l+1�f1, f2�l+1, f1, f2 � Vm,l
1 .

Proposition 2: The bilinear operations �· , · �1 , . . . , �· , · �l+1 are Lie brackets on the
-dimensional vector space Vm,l

1 . All these Lie brackets are pairwise compatible.
It is clear that any linear combination of brackets from Proposition 2 is a Lie bracket. We call

d-dimensional vector space of pairwise compatible Lie brackets a d-Lie structure.
Remark 8: Suppose that one of the sections �1 , . . . ,�l+1�V�m/l

1 , say, �l+1, is nonzero for each
. In this case the subbundle generated by �l+1 is trivial. Consider the quotient bundle modulo this
ubbundle. It has degree m and rank l−1. It is clear that the l-Lie structure obtained from this
uotient bundle is a substructure of our �l+1�-Lie structure. The counting of parameters shows
hat any generic l-Lie structure is obtained in this way. Therefore, any �l+1�-Lie structure con-
tructed in this section is embedded into an m-Lie structure corresponding to l=m−1.

Remark 9: Any l-Lie structure yields a family of l compatible linear Poisson brackets. We
on’t know whether the Lenard–Magri scheme can be generalized to the case l�2. However,
pplying the Lenard–Magri scheme to two generic Poisson brackets from the family, we get an
ntegrable system containing 2l parameters. It is clear that we can reduce the number of param-
ters to l, bringing one of the brackets to a canonical form. But the remaining l parameters turn out

to be essential parameters of the model.

. ARGUMENT SHIFT METHOD FOR QUADRATIC POISSON BRACKETS

The standard argument shift method allows one to get a family of constant Poisson brackets
ompatible with any linear Poisson bracket �1.2�. Namely, if we perform a shift of coordinates

i�xi+uai, where ai are arbitrary constants, we will have as the result an inhomogeneous linear
racket of the form �· , · �u= �· , · �+u�· , · �1, where the operation �· , · �1 is a constant Poisson bracket

epending on the shift vector a= �a1 , . . . ,aN�. Moreover, since the shift vector a is arbitrary, we
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ave got an N-dimensional vector space of constant Poisson brackets such that each of these
rackets is compatible with �1.2� and any two of them are pairwise compatible.

Consider now the case of a finite-dimensional quadratic Poisson bracket. Suppose we have a
oisson bracket of the form

�xi,xj� = �i,j
p,qxpxq, i, j = 1, . . . ,N . �5.1�

he shift xi→xi+uai yields a Poisson bracket of the form �· , · �u= �· , · �+u�· , · �1+u2�· , · �2. If the
oefficient of u2 is equal to zero, then this formula defines a compatible pair consisting of the
uadratic bracket �5.1� and a linear Poisson bracket. This means that the shift vector a is not
rbitrary one but satisfies the following overdetermined system of algebraic equations:

�i,j
p,qapaq = 0, i, j = 1, . . . ,N . �5.2�

uch a vector is said to be admissible. It is clear that the set of admissible vectors coincides with
he set of zero-dimensional symplectic leaves of the Poisson structure �5.1�. Note that if the set of
dmissible vectors contains a p-dimensional vector space, then shifting by vectors from this space
e obtain p compatible linear brackets, and each of them is compatible with the quadratic bracket

5.1�.
Let us apply this construction to quadratic elliptic Poisson structures �see Ref. 12�. For most

f these brackets, the system of equations �5.2� has no nontrivial solutions. Nevertheless, for some
mportant brackets of Sklyanin type non-trivial admissible vectors exist.

Example: Consider the following quadratic Poisson brackets between variables x0 , . . . ,x7 �sub-
cripts are taken modulo 8�:

�xi,xi+1� = p1xixi+1 + k1xi+2xi+7 − 2k2xi+3xi+6 + p2xi+4xi+5,

�xi,xi+2� = p3�xi+1
2 − xi+5

2 � ,

�5.3�
�xi,xi+3� = p1xixi+3 + k1xi+5xi+6 − 2k2xi+1xi+2 + p2xi+4xi+7,

�xi,xi+4� = p4�xi+1xi+3 − xi+5xi+7� ,

here

p1 = −
1

2
k1

1/2k2
−1/2�4k2

2 + k1
2�1/2, p2 = k2

1/2k1
−1/2�4k2

2 + k1
2�1/2,

p3 = k2
1/4k1

1/4�4k2
2 + k1

2�1/4, p4 = k2
−1/4k1

−1/4�4k2
2 + k1

2�3/4;

1 ,k2 are arbitrary parameters. These brackets depend on the only essential parameter k1 /k2.
Brackets �5.3� possess the following four Casimir functions:

Ci = k2�xi
2 + xi+4

2 � + p3�xi+3xi+5 + xi+1xi+7� + k1xi+2xi+6, i = 0,1,2,3.

he admissible vectors are given by

a± = �t1,0,t2,0, ± t1,0, ± t2,0�, b± = �0,t1,0,t2,0, ± t1,0, ± t2� ,

here t1 , t2 are arbitrary parameters. We see that the admissible vectors form four two-dimensional
ector spaces such that R8 is their direct sum.

Consider the shift of coordinates defined by a+. As the result, we get a linear bracket �· , · �a

t1�· , · �1+ t2�· , · �2. Hence, we obtain a pair of compatible linear Poisson brackets �· , · �1,2. For
eneric t1 , t2, the bracket �· , · �a is isomorphic to gl2 � gl2. It is easy to verify that the bracket �· , · �a

as two linear Casimir functions K1=x0+x4 and K2=x2+x6. After reducting the linear brackets to

he surface K1=K2=0, we get a pair of compatible sl2 � sl2 brackets. It is important to mention
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hat the initial quadratic bracket �5.3� cannot be restricted to the surface K1=K2=0 since Ki are not
asimir functions for �5.3�. One can check that the Lenard–Magri scheme applied to the reduced
rackets �· , · �1,2 produces the so�4� Schottky–Manakov top.

In the paper,12 the Poisson algebra �5.3� is denoted by q8,3. It turns out that the situation is the
ame for a wide class of quadratic elliptic Poisson algebras. Namely, let n and k be coprime
ositive integers such that 1�k
n. Let ��C, where Im ��0. Let us define a Poisson algebra

n,k��� on the space of polynomials in xi, i�Z /nZ as follows:

�xi,xj� = �� j−i� �0�
� j−i�0�

+
�k�j−i�� �0�

�k�j−i��0�
− 2	in	xixj + �0��0� �

r�Z/nZ,r�0,j−i

� j−i+r�k−1��0�

�kr�0�� j−i−r�0�
xj−rxi+r.

ere ���z� are defined by

���z� = ��z +
�

n
�	��z +

1

n
+

�

n
�	¯ ��z +

n − 1

n
+

�

n
�	e2	i��z+���−n�/2n�+�/2n�.

t can be readily seen that ��+n�z�=���z�, ���−z�=−e−2	i�nz−�/n��−��z�, and

���z +
1

n
	 = e2	i�/n���z�, ���z +

1

n
�	 = e−2	i„z+1/2n−�n−1�/2n�…��+1�z� .

sing these relations, one can check that the bracket described above satisfies the Jacobi identity
see Refs. 12 and 16 for details�.

Theorem 4: For the quadratic Poisson algebras qmn2,kmn−1���, the set of admissible vectors is
union of n2 components which are m-dimensional vector spaces. The space of generators of the

lgebra is the direct sum of these spaces.
Theorem 4 can be proved using the so-called functional realization of these Poisson algebras

see Refs. 16 and 12�. The proof will be given in another publication. The case m=1 was consid-
red in detail in Refs. 17–19.

It is clear that for any m-dimensional vector space of admissible vectors for the quadratic
oisson algebra qmn2,kmn−1��� we obtain m compatible linear Poisson structures shifting the qua-
ratic bracket by these vectors.

Conjecture 1: Each of the corresponding Lie algebras is isomorphic to � i=1
m gln. Moreover, all

hese Lie algebras have a common center. After factorization with respect to the center, one
btains m compatible � i=1

m sln brackets. These m-Lie structures are isomorphic to the one con-
tructed in Sec. IV, where l=m−1.

Conjecture 2: Each of the �l+1�-Lie structures constructed in Sec. III is a substructure of this
-Lie structure.

Remark 10: The Lenard–Magri scheme applied to the pair of compatible linear brackets
escribed in Secs. II and III gives rise to an integrable model with the � i=1

m sln Poisson brackets.
robably this integrable system is nothing but the elliptic Gaudin model.17,18 However, the family
f integrals for the � i=1

m sl2-Gaudin model considered in Ref. 18 contains one parameter related to
he elliptic curve plus m−1 additional constant parameters. In our construction, we have 2m−2
dditional parameters. But if Conjectures 1 and 2 are true, then all these additional parameters are
nessential in the following sense. The complete set of integrals is given by the Casimir functions
f the quadratic brackets. These integrals depend on the elliptic curve only. Furthermore, there
xist linear brackets �· , · �1 , . . . , �· , · �m that depend on the elliptic curve only such that any linear
ombination of these brackets is a Poisson bracket as well. The integrals commute with respect to

he whole family of these brackets. If we choose two generic brackets,
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�
i=1

m

ci�· , · �i and �
i=1

m

c̄i�· , · �i,

nd bring the first one to the canonical form � i=1
m sln by a linear transformation, then the coeffi-

ients ci appear as parameters in the integrals and the second bracket becomes dependent on
arameters ci , c̄i.

Remark 11: One more construction of families of compatible linear Poisson brackets is
nown.6 It would be interesting to understand whether these families coincide with those de-
cribed in our paper or not.
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We present further properties of a previously proposed recursive scheme for pa-
rametrization of n-by-n unitary matrices. We show that the factors in the recursive
formula may be introduced in any desired order. The method is used to study the
invariant phases of unitary matrices. The case of four-by-four unitary matrices is
investigated in detail. We also address the question of how to construct symmetric
unitary matrices �i.e., unitary matrices U that satisfy the condition Uij =Uji� using
the recursive approach. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2159069�

. INTRODUCTION

Unitary matrices play a central role in physics. For example, the standard model of particle
hysics is defined by a SU�3��SU�2��U�1� symmetry group and many popular grand unified
odels are again based on unitary symmetries. Indeed explicit representations of unitary matrices

re often so badly needed that there is already a vast literature on the subject �see, for example,
ef. 1 and references therein�.

Recently we have presented a simple-looking recursive parametrization of general n-by-n
nitary matrices,2 applicable also, of course, to subcategories such as special unitary matrices and
rthogonal matrices which are of great importance in physics.

In recent publications Fujii and his collaborators3 have found that the parametrization in Ref.
looks interesting for constructing unitary gates for quantum computation but for that purpose
ore study is needed. In this paper we present further results on the structure of the recursive

arametrization hoping that it will be useful for future applications. You use the method to study
he “invariant phases” �to be defined below� of unitary matrices, by considering the symmetries of
he recursive parametrization. Subsequently, we give detailed attention to the case of four-by-four
nitary matrices.

It should be emphasized that all parametrization of a general n-by-n unitary matrix are equiva-
ent to each another. However, for a specific application a certain parametrization may be more
onvenient than others. Therefore, it is important to provide new parametrizations, a topic which
as been addressed by other authors as well. See, for example, Ref. 4, a paper which contains an
xtended list of references and presents yet another representation of unitary matrices.

I. THE PARAMETRIZATION

A general n-by-n unitary matrix X�n� may be expressed as a product of three unitary matrices,

X�n� = ��n���� �V�n���n���� � , �1�

here the matrices � are diagonal unitary matrices,

��n���� � = diag�ei�1,ei�2, . . . ,ei�n� �2�

��� � is defined analogously, the �’s and �’s being real. We shall refer to �’s as external �pure

hase� matrices.

47, 013507-1022-2488/2006/47�1�/013507/13/$23.00 © 2006 American Institute of Physics
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The matrix X�n� has n2 real parameters. The quantities �� and �� take care of 2n−1 of these
arameters because only the sums �i+� j enter, where i and j run from 1 to n. The remaining
n−1�2 real parameters reside in the nontrivial matrix V�n� which was the subject of the study
resented in Ref. 2 and will be further investigated in this paper. For simplicity, whenever no
onfusion may arise, we refer to V�n� as the most general n-by-n unitary matrix leaving out the

ualifying statement that this is only true modulo the external matrices ���� � and ���� �. In Ref. 2
t was shown that the matrix V�n� may be written in the form �note that the notations in this paper
re a simplified version of that in Ref. 2�

V�n� = An,2An,3 . . . An,n−1An,n, �3�

here the An,k are unitary matrices defined by

An,k = �A�k� 0

0 In−k
� . �4�

ere In−k is the unit matrix of order n−k. For k=n this unit matrix is absent. A�k� is a k-by-k
nitary matrix,

A�k� � �Ik−1 − �1 − ck��A�k�	
A�k�� sk�A�k�	
− sk
A�k�� ck

� . �5�

ere ck and sk stand for cosine and sine of an angle denoted by �k. Furthermore, �A�k�	 is a k−1
imensional complex vector normalized to one,

�A�k�	 =�
a1

�k�

a2
�k�

¯

¯

ak−1
�k�
� , 
Ak��Ak�	 = 1 �6�

nd ��A�k�	
A�k���ij =ai
�k�aj

�k��. We shall refer to �A�k�	 as the characteristic vector of order k.
The parameter counting was presented in Ref. 2 where it was shown that V�n�, thus obtained,

s the most general n-by-n unitary matrix, again modulo the external matrices �. The essential
oint is that �A�k�	 introduces 2�k−2� real parameters and not 2�k−1�, the reason being that it is
ormalized and its overall phase can be absorbed into the definition of the external matrices �.

To summarize, in this recursive parametrization the n-by-n unitary matrix is represented by a
roduct of n−1 unitary matrices, each with its own angle � and characteristic vector �A	 while, for
xample, in the conventional approach in particle physics one would write the matrix as a product
f at least n�n−1� /2 matrices, these being Euler rotation matrices, �n−1��n−2� /2 of them modi-
ed by phases �see, for example, Ref. 5 and references therein�. Note also that in Ref. 4 the matrix

s parametrized by a product of n diagonal unitary matrices interlaced with n−1 orthogonal
atrices.

. Reordering of the factors

At the first sight, the recursive parametrization appears highly ordered and rigid. In Eq. �3�,
he two-by-two structure is immediately followed by the three-by-three and so on. Actually, we

ay write these factors in any order we wish by observing that the order of factors in a given
roduct, An,rAn,s, may be flipped as follows. For r�s we have

An,rAn,s = �An,rAn,sAn,r
† �An,r � An,s� An,r, �7�

here An,s� has the same form as An,s. The two characteristic vectors appearing in these matrices

re related by a unitary rotation,
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�A��s�	 = Â�r��A�s�	 , �8�

Â�r� = �A�r� 0

0 Is−1−r
� . �9�

or the case s�r we have

An,rAn,s = An,s�An,s
† An,rAn,s� � An,sAn,r� , �10�

here now the two characteristic vectors are related by

�A��r�	 = Â†�s��A�r�	 . �11�

bviously, by inserting as many factors An,j
† An,j =1 as needed in the recursion formula, Eq. �3�, one

ay move the factors around as one wishes. The upshot is that in the reordering process a factor
f lower rank simply “tunnels” through that of a higher rank without being affected but induces a
nitary rotation of the characteristic vector of the latter. Thus the ensuing parametrization remains
he most general one. Note that the angles �k remain invariant under reordering.

The recursive parametrization looks highly asymmetric. However, using the above reordering
rocedure, one may construct manifestly symmetric unitary matrices �see the Appendix�.

. Further properties of the recursive parametrization

We wish to study, in more detail, the properties of the matrices A�k� in Eq. �5� as these are the
uilding blocks of the recursive parametrization.

To begin with we simplify the notation, to avoid indices, and introduce a generic matrix A
efined by

A � �I − �1 − c��A	
A� s�A	
− s
A� c

� . �12�

ere, as usual, I denotes the appropriate unit matrix and c and s stand for cosine and sine of an
ngle, respectively. The angle itself will be denoted by �. Defining

Y � �A	
A� �13�

e have that Y is Hermitian and satisfies

Y�A	 = �A	, Y2 = Y, tr Y = 1, det Y = 0, �14�

here the vanishing of the determinant is, of course, only valid when Y is a matrix and not just a
umber as is the case when �A	 is one dimensional. Following Fujii,3 we introduce a matrix G
hich generates A,

G � � 0 − i�A	
i
A� 0

� . �15�

his matrix is hermitian and satisfies G3=G. A simple computation, using Eqs. �14�, yields

A = ei�G = I + isG − �1 − c�G2. �16�

his relation is reminiscent of the expansion of exponentials containing Pauli matrices � �in a
hort-hand notation, ei��=c+ is��. The essential point here is that the series expansion of ei�G, for
rbitrarily G, terminates rapidly and does not continue for ever as the exponentials often tend to

o. Furthermore we have

                                                                                                            



N

a

T
t

w
t

I

t
p
v

c

w
c
i
t
i
t
p
s

w

T
w
m

013507-4 C. Jarlskog J. Math. Phys. 47, 013507 �2006�

                        
tr G = 0, tr G2 = 2, det A = 1. �17�

ote also that, for a fixed G, the matrix A is Abelian with respect to �,

A��i�A�� j� = A��i + � j� �18�

nd

A−1��� = A�− �� . �19�

o rewrite the recursion formula, Eq. �3�, in terms of G and A we must attach appropriate indices
o our generic G �or A� to distinguish the relevant factors. We introduce

Gn,k = �� 0 − i�A�k�	
i
A�k�� 0

� 0

0 0
� , �20�

here the required number of zeros have been added to make Gn,k an n-by-n matrix. This yields
hat the factor An,k in the recursion formula Eq. �3� is given by

An,k � ei�kGn,k = In + iskGn,k − �1 − ck�Gn,k
2 . �21�

II. INVARIANT PHASES OF UNITARY MATRICES

The invariant phases of a unitary n-by-n matrix Vn are defined as those phases of the matrix
hat cannot be “removed” with any choice of the external phase matrices � in Eq. �1�. These
hases play an important role in particle physics as they are measurable quantities related to CP
iolation �for a review see, for example, Ref. 6�.

Given a unitary matrix, the simplest way to detect the presence of invariant phases in it is to
onstruct

���; jk� � Im�V�jV�kV�k
� V�j

� � , �22�

here we have suppressed the superscript n. The symbols � ,� and j ,k now refer to rows and
olumns of the matrix and the indices are not summed. These imaginary parts are manifestly
nvariant under multiplication by the external phase matrices. Therefore if any of them is nonzero
hat would be a signal of the presence of a nonremovable phase in the matrix. We refer to these
maginary parts as invariant phases of the matrix instead of calling them invariants of the matrix
hat contain nonremovable phases. One may easily construct higher order invariants, containing
roperly chosen, six or more, elements of the matrix but these are in general reducible to the above
et unless the matrix would have vanishing elements. For example, for V�j�0,

Im�V�jV�kV�lV�k
� V�l

� V�j
� � =

1

�V�j�2
Im�V�jV�kV�k

� V�j
� ��V�jV�lV�l

� V�j
� �� �23�

=
1

�V�j�2
���, jk�
��, jl	 + 
��, jk	���, jl�� , �24�

here none of the indices is summed and


��; jk	 � Re�V�jV�kV�k
� V�j

� � . �25�

hese real parts are also invariant under the action of the external matrices. The above reduction
ould not work if V�j =0 but then the analysis is much simpler to begin with �see below� as the

atrix contains fewer invariant phases.
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Returning to the simplest invariant phases, there are altogether �n�n−1� /2�2 quantities
�� ; jk�, because these are antisymmetric under the interchange of the row indices, �↔�, as well
s under the interchange of the column indices, j↔k. However, we know that the most general
�n� has “only” �n−1��n−2� /2 independent invariant phases. One may therefore look for �n−1�
�n−2� /2 independent ��� ; jk�’s and use them as a basis for expressing the remaining ones.

As mentioned above, the invariants in Eq. �22� play an essential role in the n-family version
f the standard model of particle physics as they are measurable quantities related to CP violation.
or the case of n=3 there is only one such quantity

���; jk� � J�
�,i

	���	ijk. �26�

he row and column unitarity conditions for a three-by-three unitary matrix define six triangles.
ne may show that7 all these triangles have the same area and this unique area equals J /2.

For n=4 there are 36 possible invariants ��� ; jk� but only three independent ones. In Ref. 8
n attempt was made to find an appropriate basis and carry through the above program. The
reatment of this issue is much simpler in the recursive parametrization, as will be shown in the
ext section.

. Invariant phases of four-by-four unitary matrices

For n=4 we have from Eq. �3�

V�4� = A4,2A4,3A4,4, �27�

here each factor comes with its own � and characteristic vector �A	. We denote the latter by

�A�2�	 = 1, �A�3�	 = �x1

x2
�, �A�4�	 = �y1

y2

y3
� �28�

emembering that x’s and y’s are complex numbers and 
A�k� �A�k�	=1, k=2,3 ,4. We shall now
pell out this four-by-four matrix in order to exhibit its symmetries in a manifest fashion. This will
lso enable us to understand the general case of n-by-n matrices. Equation �3� yields

V�4� =�
c2 s2 0 0

− s2 c2 0 0

0 0 1 0

0 0 0 1
��

1 − �1 − c3�x1x1
� − �1 − c3�x1x2

� s3x1 0

− �1 − c3�x2x1
� 1 − �1 − c3�x2x2

� s3x2 0

− s3x1
� − s3x2

� c3 0

0 0 0 1
�

��
1 − �1 − c4�y1y1

� − �1 − c4�y1y2
� − �1 − c4�y1y3

� s4y1

− �1 − c4�y2y1
� 1 − �1 − c4�y2y2

� − �1 − c4�y2y3
� s4y2

− �1 − c4�y3y1
� − �1 − c4�y3y2

� 1 − �1 − c4�y3y3
� s4y3

− s4y1
� − s4y2

� − s4y3
� c4

� . �29�

e now focus on the symmetries of this matrix. By symmetries we mean transformations that
eave V�4� invariant modulo the external matrices � in Eq. �1�. A simple inspection shows that this
atrix has two such symmetries, denoted by S1 and S2 and defined by

S1, �x1 � → ei
2�x1 �, y3 → e−i
2y3, �30�

x2 x2
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S2, �y1

y2

y3
� → ei
3�y1

y2

y3
� , �31�

here 
2 and 
3 are arbitrary phases. The indices are to remind us of the dimension of the
orresponding vector. Therefore the three independent phases in V�4� can be chosen to be

�1 = 
�x2� − 
�x1� ,

�2 = 
�y2� − 
�y1� , �32�

�3 = 
�x2� + 
�y3� − 
�y2� .

ere 
�xj� and 
�yk� denote the phases of the corresponding parameters. These phases are not
nvariant under the above symmetries and thus cannot appear as independent entities in compu-
ations of invariants of V�4�. Allowed to appear are the �’s or any combination of them because
hese are invariant under the action of both S1 and S2. We may, if we so wish, use the symmetry

1 to rotate the phase of x2 to zero, and then employ the symmetry S2 to do the same with the
nsuing y3 whereby x2 and y3 may be taken to be real and say positive. The invariant phases in this
frame” are then 
�x1�, 
�y1�, and 
�y2�. These constitute the maximum number of independent
hases that V�4� can possess. By imposing further relations on the angles or the x’s and y’s this
umber could be smaller as shall be considered further below.

. Generalization to larger n

Going one order higher to n=5, we must introduce the relevant characteristic vector

�A�5�	 � �
z1

z2

z3

z4

� . �33�

he corresponding matrix V�5� has three symmetries given by

S1, �x1

x2
� → ei
2�x1

x2
�, y3 → e−i
2y3, z3 → e−i
2z3, �34�

S2, �y1

y2

y3
� → ei
3�y1

y2

y3
�, z4 → e−i
3, �35�

S3, �
z1

z2

z3

z4

�→ ei
4�
z1

z2

z3

z4

� . �36�

n this case there are six invariant phases. These may be chosen as

�1 = 
�x2� − 
�x1� ,
�2 = 
�y2� − 
�y1� ,
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�3 = 
�z2� − 
�z1� ,

�4 = 
�x2� + 
�y3� − 
�y2� , �37�

�5 = 
�x2� + 
�z3� − 
�z2� ,

�6 = 
�y3� + 
�z4� − 
�z3� .

s before, we may use S1 to remove the phase of x2 followed by S2 and S3 to rotate the ensuing
y3 and z4 to be real and say positive. The invariant phases are then the phases of x1, y1, y2, z1, z2,
nd z3. Note that, from the very beginning we chose the angle �2 not to be accompanied by a
hase, i.e., �A�2�	=1. One can, of course, leave the phase of �A�2�	 arbitrary. This will introduce an
xtra symmetry which we have not bothered to write down as it is trivial.

The above procedure may be generalized to arbitrary order n. Without loss of generality, we
ay take, for example, the last component of all the characteristic vectors �A�k�	 to be real. The

nvariant phases are then the phases of the remaining components. For an n-by-n matrix there are
hen 1+2+ ¯ + �n−2�= �n−1��n−2� /2 such independent phases as expected.

. The “panel” approach to invariant phases

Another approach to constructing the invariant phases of a matrix is to consider the latter as
lattice. For the case of n=4, considered from now on, the matrix can be visualized as shown

• • • •

P11 P12 P13

• • • •

P21 P22 P23

• • • •

P31 P32 P33

• • • •

. �38�

he bullets denote the sites where the matrix elements are situated. For example, the bullets on the
rst row stand for V11, V12, V13, and V14 and so on. The P’s denote minipanels of the matrix, to be
escribed here below. The invariants of interest to us are again

���; jk� � Im�V�jV�kV�k
� V�j

� � , �39�


��; jk	 � Re�V�jV�kV�k
� V�j

� � . �40�

s mentioned before, there are 36 quantities ��� ; jk� �six possible combinations of � ,� multiplied
y as many combinations of j ,k� and we are looking for a set of three of them such that all the
thers can be expressed as functions of them and the real parts 
�� ; jk	. This problem was treated
ong time ago8 and was found to be rather involved. Here we provide some simplification. Nine of
hese invariants �the nearest neighbors� are explicitly exhibited on our lattice. Their analytic form

ay easily be read off from their locations. For example,

P11 � V11V22V12
� V21

� ,

P12 � V12V23V13
� V22

� ,

P22 � V22V33V
� V� ,
23 32
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P32 � V32V43V33
� V42

� ,

nd so on. Furthermore

Pab = Rab + iJab, �41�

here R and J denote the real and imaginary parts of the corresponding P. Thus the imaginary
arts, in the notation employed earlier, are given by

J11 = �12;12�, J12 = �12;23�, J22 = �23;23�, J32 = �34;23� �42�

nd so forth. Similar expressions may be written down for the real parts.
Suppose that none of the matrix elements vanishes. Using unitarity conditions we then find

J13 − �1 +
R11

�V12V22�2
�J12 =

R12

�V12V22�2
J11,

J13 − �1 +
R33

�V33V34�2
�J23 =

R23

�V33V34�2
J33,

J31 − �1 +
R11

�V21V22�2
�J21 =

R21

�V21V22�2
J11,

�43�

J31 − �1 +
R33

�V33V43�2
�J32 =

R32

�V33V43�2
J33,

J12 −
R22

�V32V33�2
J32 = �1 +

R32

�V32V33�2
�J22,

J21 −
R22

�V23V33�2
J23 = �1 +

R23

�V23V33�2
�J22.

n principle, we may take the set J11, J22, J33 to constitute a basis and determine the remaining six
’s in terms of them. These equations are rather complicated and need further thought concerning
pecial cases. For example, if the matrix is symmetric we only have three equations but, of course,
lso only three unknown, say J12, J13, and J23. We are not allowed to divide by vanishing matrix
lements and so forth. Here below, we shall consider a simple and yet nontrivial example to
emonstrate the technique and to compare it with the recursive approach which is much simpler
nd does not require thinking about the possible pitfalls.

. A simple example

For simplicity we consider the case where two of the elements of the four-by-four matrix are
ero, and where these elements are neither on the same row nor on the same column. All other
lements of the matrix are assumed to be nonzero. Without loss of generality we may take the two
anishing elements to be V14 and V41 which in particle physics would correspond to the case where
he mixing of the first and the fourth families is negligible. Our lattice, with its nine minipanels,

ow looks as follows:
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• • • �

J J 0

• • • •

J J + J� J�

• • • •

0 J� J�

� • • •

. �44�

ere the �’s indicate where the vanishing matrix elements are situated and we have defined

J = J11 � �12,12�, J� = J33 � �34,34� . �45�

simple computation, using unitarity relations, gives the imaginary parts of the minipanels as
arked in the lattice. Computing all the imaginary parts, we find that 19 of the 36 invariants

�� , jk� vanish. The nonvanishing ones, in addition to J and J� defined in Eq. �45�, are

− �12,13� = �12,23� = − �13,12� = �13,13� = − �13,23� = �23,12� = − �23,13� = J ,

�46�
− �23,24� = �23,34� = − �24,23� = �24,24� = − �24,34� = �34,23� = − �34,24� = J�,

nd

�23,23� = J + J� �47�

s exhibited in the corresponding panel. Moreover, we find

J�2

J2 = �V24V34

V21V31
�2

= �V42V43

V12V13
�2

= � �V24�2 + �V34�2

�V12�2 + �V13�2
�2

= � �V42�2 + �V43�2

�V21�2 + �V31�2
�2

. �48�

t is amusing to note that the unitarity relations for the above matrix define eight triangles. Using
he method in Ref. 7 one finds that four of these have each an area equal to J /2 while the area of
he other four is J� /2.

We would now like to compute J and J�. For this purpose we turn to the recursive parametri-
ation. It turns out that the calculations are simpler if we take V34=V43=0 instead of the above
hoice V14=V41=0. The two choices are equivalent as they are related to one another by inter-
hanges in rows and columns. This amounts to a relabeling of the matrix elements which obvi-
usly cannot affect the results. After finishing the computations we can simply revert to the former
ase by interchanging rows one and three as well as columns one and three.

In the recursive parametrization, Eq. �29�, the conditions V34=V43=0 give

y3 = x1y1
� + x2y2

� = 0. �49�

hese conditions tell us that �y1�= �x2�, �y2�= �x1� and that x1 and y1 are relatively real in the frame
here x2 and y2 are taken to be real. Therefore, there is only one invariant phase, in this example.

e introduce the lattice again
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• • • •

Ĵ Ĵ 0

• • • •

Ĵ Ĵ 0

• • • �

0 0 0

• • � •

. �50�

’s indicate where the vanishing matrix elements are situated. Furthermore, we have exhibited the
maginary parts of the minipanels starting with the definition

Ĵ = �12,12� . �51�

aking into account the permutations, we find that Ĵ here is identical with our previous J that we
anted to compute. Using the recursive parametrization we find

J = c2c3c4s2s3
2 Im�x1

�x2� ,

�52�
J� = − c2c3c4s2s4

2 Im�x1
�x2� .

hus

J�

J
= −

s4
2

s3
2 . �53�

or comparison, note that for a general three-by-three matrix �which we may obtain from Eq. �29�
y setting �4=0� the unique invariant is given by J�3−fam�=c2c3s2s3

2 Im�x1
�x2�.

The recursive parametrization allows us to compute all the imaginary parts for the most
eneral case, i.e., irrespectively of whether the matrix has zeros or not. We find, for the general
our-by-four matrix, parametrized as in Eq. �29�,

�34,34� = c3c4s3s4
2�y3��x2y2�sin �3 + �x1y1�sin��3 + �2 − �1�� ,

�54�
�34,24� = c4s3s4

2�x2y2�s3�x1y1�sin��1 − �2� − c3�y3�sin �3� ,

here the angles � j are as defined in Eq. �32�. We thus see that, as expected, only the invariant
hases appear in these relations. We do not quote the remaining imaginary parts ��� , jk�. The
mportant point is that all of them are functions of �xj�, �yj� and the three �’s, as expected.

V. CONCLUSIONS

In this paper, we have presented further properties of the recursive parametrization of unitary
atrices proposed in Ref. 2, where the matrix is written as a product of n−1 matrices each with

ts own angle � and characteristic vector �A	. We have found that the factors in the recursive
ormula may be introduced in any desired order.

Encouraged by the convenience of the recursive method, we have taken a fresh look at the
ssue of invariant phases of unitary matrices. After having exhibited the symmetries of the param-
trization, we have shown how the invariant phases of n-by-n matrices can be identified. Subse-
uently, we have paid particular attention to the case n=4 and have compared the results with
hose of an earlier approach based on “panels” of the matrix.

The recursive parametrization has some really nice features because in some cases it allows
he “new physics” to be introduced in a gentle manner through the last factor in the recursion

ormula, a topic which we are currently studying.
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In an earlier study,9 we found that there is a parametrization that allows one to introduce, in a
imple way, any desired angle of any of the so-called unitarity triangles as one of the parameters
n the quark mixing matrix for three families in the standard model of particle physics. The same
arametrization allowed us to choose the expansion parameter in this matrix to be �2 instead of �
hat one usually uses.5 Indeed � is not so small ��=0.2�. Therefore, the recursive parametrization

ay be convenient whenever expansion in the above parameter is required, for example, in model
uilding or for construction of quark and lepton mass matrices. It turned out that the parametri-
ation found in Ref. 9, with the above nice features, is indeed nothing but the order n=3 version
f the recursive parametrization discussed in this paper and in Ref. 2.

Finally, in the Appendix of this paper, we deal with the question of how to construct mani-
estly symmetric unitary matrices in the recursive framework.

PPENDIX: SYMMETRIC UNITARY MATRICES

A matrix X is defined to be symmetric if Xij =Xji. We write the symmetric unitary matrix in the
orm

X�n�sym = ��n���� �V�n�sym��n���� � �A1�

equiring V�n�sym to be symmetric, as indicated by its superscript, and that the external matrices be
he same �see Eq. �1��. A general symmetric unitary matrix has n�n+1� /2 real parameters. The
xternal matrix � takes care of n of them. Thus n�n−1� /2 real parameters reside in V�n�sym.

For a general V�n�, we have �see Sec. II B� that the factors in the recursion formula Eq. �3� may
e written as

An,k = ei�kGn,k, �A2�

here the generating matrix Gn,k is Hermitian. In order to obtain a symmetric An,k we must impose
he additional requirement that the generating matrix be symmetric. This means that the corre-
ponding characteristic vector is purely imaginary. For example, for k=2 we obtain

V�2�sym � An,2
sym = � c2 is2 0

is2 c2 0

0 0 In−2
� �A3�

nd for k=3,

An,3
sym�

1 − �1 − c3�x1
2 − �1 − c3�x1x2 is3x1 0

− �1 − c3�x1x21 1 − �1 − c3�x2
2 is3x2 0

is3x1 is3x2 c3 0

0 0 0 In−3

� . �A4�

e have set �A	= i�x	, where the x’s are real. Thus, the construction of symmetric factors in the
ecursion formula is a trivial task. But, of course, the product of these factors will not be sym-
etric. This defect is easily remedied by invoking the reordering procedure described in Sec. II A

n which we showed that the reordering of the factors in the recursion formula only amounts to a
edefinition of the characteristic vectors. Therefore, we may write

V�n�sym = An,2
symAn,3

sym
¯ An,n−1

sym An,n
symAn,n−1

sym
¯ An,3

symAn,2
sym, �A5�

�n�sym thus obtained is manifestly unitary and symmetric. We must now count the number of its
ndependent parameters. Each order k introduces k−1 real parameters, these being the angle �k and
−2 components of the corresponding characteristic vector �one component being redundant

�n�sym
ecause the vector is normalized�. Therefore the total number of parameters in V is
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�
k=2

n

�k − 1� = n�n − 1�/2 �A6�

s expected. Adding into this number the n parameters coming from the external matrices amounts
o the total of n�n+1� /2 real parameters, as required.

Note that it would be somewhat more elegant to call the angles in the above factors �k /2
nstead of �k, except the angle �n of the factor An,n

sym. The reason being that An,n
sym appears only once

hile the others appear twice.
The chain in Eq. �A5� looks long and perhaps a bit frightening. However, if needed for

ractical applications, it can be somewhat simplified as we shall now describe.
Consider the case n=3, where we introduce

V�3�sym � V�2�sym��2/2�A�3�symV�2�sym��2/2� , �A7�

here V�2�sym is as defined in Eq. �A3�, for n=3. Multiplying the factors, we find

V�3�sym = � c2 − �1 − c3�u1
2 is2 − �1 − c3�u1u2 is3u1

is2 − �1 − c3�u1u2 c2 − �1 − c3�u2
2 is3u2

is3u1 is3u2 c3
� . �A8�

ere

u1 = c2�x1 + is2�x2, u2 = c2�x2 + is2�x1 �A9�

2�=cos��2 /2� and s2�=sin��2 /2�. Moreover, the x’s are as introduced in Eq. �A4�.
The essential point is that we may set aside the question of the origin of the u’s and their

elationship with the x’s and simply consider them as our new variables, as two complex numbers
hat satisfy

�u1�2 + �u2�2 = 1 �A10�

nd, of course, c2�u1− is2�u2 as well as c2�u2− is2�u1 must be real as these are x1 and x2 in the above
quations. Going to the next order, n=4, we may use the identity

A2
symA3

symA4
symA3

symA2
sym = A2

symA3
symA2

sym��A2
sym�−1A4

sym�A2
sym�−1�A2

symA3
symA2

sym = V�3�sym�A4�
sym�V�3�sym,

A4�
sym � �A2

sym�−1A4
sym�A2

sym�−1. �A11�

ere V�3�sym is as found in Eq. �A8�. From our earlier results, we have

A4
sym =�

1 − �1 − c4�y1
2 − �1 − c4�y1y2 − �1 − c4�y1y3 is4y1

− �1 − c4�y1y2 1 − �1 − c4�y2
2 − �1 − c4�y2y3 is4y2

− �1 − c4�y1y3 − �1 − c4�y2y3 1 − �1 − c4�y3
2 is4y3

is4y1 is4y2 is4y3 c4

� , �A12�

here y’s are real. Therefore, we may immediately write down the factor A4�
sym, without having to

o any calculations. The first two components of the vector y get “rotated” but y3 is untouched. We
nd

A4
sym� =�

c2 − �1 − c4�v1
2 − is2 − �1 − c4�v1v2 − �1 − c4�v1v3 is4v1

− is2 − �1 − c4�v1v2 c2 − �1 − c4�v2
2 − �1 − c4�v2v3 is4v2

− �1 − c4�v1v3 − �1 − c4�v2v3 1 − �1 − c4�v3
2 is4v3

is4v1 is4v2 is4v3 c4

� , �A13�
here
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v1 = c2�y1 − is2�y2, v2 = c2�y2 − is2�y1, v3 = y3. �A14�

gain the vector v has unit norm and we may, as before, forget about the y’s and just use v’s,
eeping in mind that v1 and v2 are complex numbers.

As a final example, we wish to compute the quantity J for the case of a three-by-three
ymmetric matrix, where

���; jk� � J�
�,i

	���	ijk �A15�

nd V�3�sym is as given in Eq. �A8�. A glance at this matrix yields

J = c2c3s3
2 Im �u2�2 = c2c3s2s3

2x1x2. �A16�

his resembles our earlier result in Sec. III D where we found J�3−fam�=c2c3s2s3
2 Im�x1

�x2�. The
eaning of the x’s in the two cases are, of course, different. Note that a general V�3� has four

arameters while V�3�sym has one less. Equation �A16� is telling us that the symmetry requirement
oes not remove the invariant phase of the matrix. In the language of Euler rotations, where V�3�

ould be parametrized with three rotation angles and one phase, the requirement that the matrix be
ymmetric keeps the phase but removes one of the rotation angles. Note that the new phase and
ngles will be functions of the former phase and angles.
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Karabulut and Sibert �J. Math. Phys. 38, 4815 �1997�� have constructed an
orthogonal set of functions from linear combinations of equally spaced Gaussians.
In this paper we show that they are actually eigenfunctions of a q-oscillator in
coordinate representation. We also reinterpret the coordinate representation ex-
ample of q-oscillator given by Macfarlane as the functions orthogonal with respect
to an unusual inner product definition. It is shown that the eigenfunctions in both
q-oscillator examples are infinitely degenerate. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2161022�

. INTRODUCTION

Distributed Gaussians are a set of equally spaced Gaussians, gn�x�=e−c2�x − n�2
where �n=

� , . . . ,��. A finite chain of them is often used in variational calculations as a basis set. They are
very flexible and efficient basis set often yielding very accurate variational results. Calculating

he potential matrix elements are often the most difficult part of a variational calculation. Because
f their compactness it is very easy to calculate potential energy matrix elements with a few point
auss-Hermite quadrature very accurately which is a major advantage of using this basis.

We need orthogonal functions for variational calculations and the distributed Gaussians are
ot orthogonal. In a 1997 paper Karabulut and Sibert1 constructed a set of orthogonal functions
rom distributed Gaussians and they studied the underlying Gaussian quadrature. They called these
unctions distributed Gaussian polynomials �DG polynomials briefly�. Their motivation was en-
irely practical and they were not looking for an algebraic structure behind these functions. Later
arabulut2 showed how to normalize them and used these functions to construct a Wannier

unction set from distributed Gaussians.
While searching for an operator that admits the DG polynomials as eigenfunctions the author

ame across a seminal paper by Macfarlane3 in which he constructed a coordinate representation
f his q-oscillator algebra �the same q-oscillator was also studied by Biederharn4 but he did not
ave the explicit coordinate representation example that Macfarlene gave�. Eigenfunctions of
acfarlene were a linear combination of distributed Gaussians and it involved the q-binomial

oefficients just like the DG polynomials. They looked similar to the DG polynomials but they
ere not the same. Following his example, the author constructed another coordinate representa-

ion of the q-oscillator algebra that yields the DG polynomials as eigenfunctions. The q-oscillator
urns out to be a coordinate representation example of the Arik-Coon oscillator.5 Macfarlane gave
n inner product definition for his functions in term of Rogers-Szegö polynomials. The author of
his paper also found a simpler inner product definition for the Macfarlane functions and reinter-
reted his results.

The outline of the paper is the following. Section II gives a summary of the basic results about
he DG polynomials and discusses its links to Rogers-Szegö polynomials. Section III derives the
G polynomials from the q-oscillator algebra. Section IV discusses Macfarlane’s example to his

-oscillator and reinterprets its eigenfunctions. Finally, Sec. V gives a summary and discussion.
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I. DISTRIBUTED GAUSSIAN POLYNOMIALS AND THEIR PROPERTIES

We will mostly denote the Gaussians e−c2x2
as qx2

where q=e−c2
and c−1 is related to the width

f the Gaussians. DG polynomials are defined as

�n�x� = �
k=0

n

Ck
n�− 1�kq−k/2q�x − k�2

. �1�

he Ck
n are the well-known q-binomial coefficients

Ck
n =

�q,q�n

�q,q�k�q,q�n−k
, �2�

here �q ,q�n is defined as

�q,q�n = �1 − q��1 − q2� ¯ �1 − qn� , �3�

nd �q ,q�0=1. They satisfy the following orthogonality relation:2

�
−�

�

�n�x��m�x�dx = ��n�x��2�nm, �4�

here the norm ��n�x�� is given as

��n�x�� = � �

2c2	1/4

q−n/2
�q,q�n. �5�

e will denote the normalized functions with lowercase �,

�n =
�n�x�

��n�x��
=

�


�q,q�n
�
k=0

n

Ck
n�− 1�kq�n−k�/2q�x − k�2

, �6�

here

� = ��
−�

�

q2x2
dx	−1/2

= �2c2

�
	1/4

. �7�

e defined � this way for later convenience.
Karabulut and Sibert1 also found that the DG polynomials yield harmonic oscillator eigen-

unctions in a particular limit as

lim
c→0

�n�s/
2c�
�− c/
2�n

= e−s2/2hn�s� , �8�

here hn�s� are the standard Hermite polynomials. We will refer to this limit later.
DG polynomials are related Stieltjes-Wigert polynomials. Let us write the orthogonality rela-

ion as follows:

�
−�

�

�n�x − s��m�x − s�dx = 0, �n � m� . �9�

f we denote u=q−2x then �n�x−s� is written as

�n�x − s� = e−�ln u�2/�−4 ln q�usPn�u;s� , �10�
here the polynomials Pn�u ;s� are
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Pn�u;s� = �
k=0

n

Ck
n�− 1�kq�k + s�2−k/2uk. �11�

hen the orthogonality relation becomes

�
−�

�

e−�ln u�2/�−2 ln q�u2s−1Pn�u;s�Pm�u;s�dx = 0, �n � m� . �12�

vidently the polynomials Pn�u ;s� are orthogonal with respect to the weight function

W�u� = e−�ln u�2/�−2 ln q�u2s−1. �13�

or s=1/2 the weight function is the lognormal distribution and the corresponding polynomials
re known as the Stieltjes-Wigert polynomials. So the Pn�u ;1 /2� are proportional to Stieltjes-
igert polynomials.

The above connection to the Stieltjes Wigert polynomials were noted in Karabulut and Sibert.1

ater Atakishiyev and Nagiyev6 found a connection between the Stieltjes-Wigert polynomials and
ogers-Szegö polynomials through the Fourier transform which implied that DG polynomials are
lso connected to the Rogers-Szegö polynomials. Here we note this connection.

We take the convention for the Fourier transform as

f��� = �
−�

�

ei2��xf�x�dx . �14�

sing the Parseval relation of the Fourier transforms

�
−�

�

F*�x�G�x�dx = �
−�

�

F*���G���d� , �15�

e write Eq. �4� as

�
−�

�

�n
*����m���d� = � �

2c2	1/2

q−n�q,q�n�nm, �16�

here �n��� is the Fourier transform of �n�x� given as

�n��� = � �

c2	1/2

e−��/c�2�2�
k=0

n

Ck
n�− q−1/2ei2���k. �17�

he polynomials

Hn�x� = �
k=0

n

Ck
nxk �18�

re known as Rogers-Szegö polynomials.6–8 Using them the orthogonality relation is written as

�
−�

�

Hn�− q−1/2e−i2���Hn�− q−1/2ei2���e−2��/c�2�2
d� = � c2

2�
	1/2

q−n�q,q�n�nm. �19�

form of the Poisson summation formula reads

��

f�x�dx = �1 � �
�

f�x + k�	dx , �20�

−� 0 k=−�
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hich is valid when �k=−�
� f�x+k� exists �in our case it does�. Using this, Eq. �19� is expressed as

�
0

1

Hn�− q−1/2e−i2���Hn�− q−1/2ei2���� �
k=−�

�

e−2��/c�2�� + k�2	d� = � c2

2�
	1/2

q−n�q,q�n�nm. �21�

he sum in parentheses is periodic with period unity and it is a form of theta function. We can
xpand it in Fourier series. The Fourier coefficients can be calculated using the Poisson summa-
ion formula as

�
k=−�

�

e−2��/c�2�� + k�2
=
 c2

2�
�

k=−�

�

qn2/2ei2�n�. �22�

sing the Jacobi �3 function9 defined as

�3��;q� = �
n=−�

�

qn2/2ein�, �23�

he orthogonality is written as follows:

�
0

1

Hn�− q−1/2e−i2���Hm�− q−1/2ei2����3�2��;q�d� = q−n�q,q�n�nm. �24�

his relation is the well-known orthogonality of the Rogers-Szegö polynomials on the unit circle.
learly it is the same thing as the orthogonality of the DG polynomials and one can be expressed

n terms of the other. This is also of interest because Macfarlane3 expressed orthogonality of his
-oscillator eigenfunctions in terms of orthogonality of Rogers-Szegö polynomials on the unit
ircle.

II. DG POLYNOMIALS AS A q-OSCILLATOR EIGENFUNCTIONS

. Algebraic derivation of DG polynomials

Let us define the translation operator Ts as Ts=es��/�x�. It has the effect of shifting a function to
he left by s, Tsf�x�= f�x+s�. We define the creation and destruction operators â and â† as

â =
1


1 − q
T1/2�qx+1/4 − T1/2� , �25�

â† =
1


1 − q
�qx+1/4 − T−1/2�T−1/2. �26�

ur inner product is the usual one

�f ,g� = �
−�

�

f*�x�g�x�dx , �27�

nd the conjugate operator is defined as �f , Ôg�= �Ô†f ,g�. According to this �qx�†=qx and
� /�x�†=−�� /�x� and â† given above is the right one. The â and â† satisfy the commutation
elation

ââ† − qâ†â = 1. �28�

his is the commutation relation satisfied by the Arik-Coon oscillator.5

ˆ†ˆ
We look for the eigenstates of the a a,
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â†âAn�x� = 	nAn�x� . �29�

e start from a ground state A0�x� that satisfies âA0�x�=0 which yields the functional equation,

A0�x + 1/2� = q�x+1/4�A0�x� . �30�

f we set A0�x�= �const�w�x�qx2
in this equation we get w�x+1/2�=w�x�. Therefore the normalized

round state is

A0�x� = �ww�x�qx2
, �31�

here w�x� is any �in general complex� function satisfying w�x+1/2�=w�x� periodicity condition
nd �w is the normalization coefficient,

�w = ��
−�

�

�w�x��2q2x2
dx	−1/2

. �32�

or w�x�=1 we denote �w as just � whose value is given in Eq. �7�. We choose normalization of
ur eigenfunctions as �An ,An�=1 and taking w�x�=1 with this normalization will lead us to the
ormalized DG polynomials.

Next we build the states �â†�nA0�x�. Using the commutation relation one can easily show that
f �â†�nA0�x� is an eigenfunction of â†â with the eigenvalue 	n then the �â†�n+1A0�x� is an eigen-
unction of the â†â with eigenvalue 	n+1 and one obtains a recursion relation for the eigenvalues

	n+1 = q	n + 1. �33�

ince âA0�x�=0, then A0�x� is an eigenfunction of â†â with the eigenvalue 	0=0 and by induction
t follows that all �a†�nA0�x� are eigenfunctions. Using the recursion relation in Eq. �33� and 	0

0 we get the eigenvalues as

	n =
1 − qn

1 − q
. �34�

In exactly the same way that we do in solving the harmonic oscillator algebraically, we can
asily obtain the following relations:

âAn�x� = 
	nAn−1�x� , �35�

â†An�x� = 
	n+1An+1�x� . �36�

hen An�x� can be written as

An�x� =
�1 − q�n

�q,q�n
�â†�nA0�x� . �37�

nstead of applying â† n times, the following recursive relation is easier. Define An�x� as

An�x� =
�ww�x�

�q,q�n

�
k=0

n

Dk
n�− 1�kq�n−k�/2q�x − k�2

. �38�

hen if we apply â† /
	n+1 to obtain An+1�x� and compare the coefficients we get the recursion
elation for the Dk

n coefficients. In this process w�x� completely commutes with â† because of
−1/2
eriodicity, T w�x�=w�x−1/2�=w�x�. The recursion relation we obtain is
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Dk
n+1 = qkDk

n + Dk−1
n . �39�

ogether with the conditions D0
0=1 and D−1

n =Dn+1
n =0 this completely determines the Dk

n. As can
e shown easily, the q-binomial coefficients Ck

n satisfy this recursion relation and the boundary
onditions and therefore

Dk
n = Ck

n =
�q,q�n

�q,q�k�q,q�n−k
. �40�

his shows that

An�x� =
�ww�x�

�q,q�n

�
k=0

n

Ck
n�− 1�kq�n−k�/2q�x − k�2

, �41�

re the normalized eigenfunctions and they reduce to the normalized DG polynomials �n�x� when
�x�=1.

Now let us see how the q-oscillator algebra reduces to harmonic oscillator algebra in the limit
→0�c→0�. The limit in Eq. �8� shows us how to do it. First define the new variable z=cx. With

his variable, the â will look like

â =
1


1 − e−c2
e�c/2���/�z��e−c2/4e−cz − e�c/2���/�z�� , �42�

nd in the limit c→0 this reduces to

â → −
1

2

�

�z
− z . �43�

imilarly, â† reduces to

â† →
1

2

�

�z
− z , �44�

hich, together with â, are the destruction and creation operators for the harmonic oscillator
roblem

�−
1

4

�

�z2 + z2	
�z� = E
�z� . �45�

. Further discussion on w„x… degeneracy

Although the algebraic solution seems flawless, it is still very surprising that the An�x� are
rthogonal for all the functions w�x� satisfying w�x+1/2�=w�x�. Here we give a separate proof of
t.

When we multiply two of our parent Gaussians gn�x�=q�x − n�2
we get daughter Gaussians

n�x�=q2�x − n / 2�2
as

gn�x�gm�x� = q�n − m�2/2Gn+m�x� . �46�

he parent Gaussians are centered at integers whereas the daughter Gaussians are centered at both

ntegers and half-integers. Therefore the �n�x��m�x� product of the normalized DG polynomials
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�n�x� =
�


�q,q�n
�
k=0

n

Ck
n�− 1�kq�n−k�/2q�x − k�2

, �47�

an be written as a linear combination of daughter polynomials as

�n
*�x��m�x� = �2�

k=0

n+m

dk
nmq2�x − k/2�2

. �48�

f we integrate this we should get �nm due to the orthogonality of normalized DG polynomials. The
ntegrals �−�

� q2�x − k / 2�2
dx are independent of k �just shift the integral by k /2� and have the value

/�2. Therefore we get the relation

�
k=0

n+m

dk
nm = �nm. �49�

Now, the An
*�x�Am�x� product of the An�x� functions

An�x� =
�ww�x�

�q,q�n

�
k=0

n

Ck
n�− 1�kq�n−k�/2q�x − k�2

, �50�

an be expressed as

An
*�x�Am�x� = ��w�2�

k=0

n+m

dk
nm��w�x��2q2�x − k/2�2

� . �51�

f we integrate this we get

�
−�

�

An
*�x�Am�x�dx = �

k=0

n+m

dk
nm���w�2�

−�

�

�w�x��2q2�x − k/2�2
dx	 . �52�

he integral in parentheses can be shifted by k /2 as

�
−�

�

�w�x��2q2�x − k/2�2
dx = �

−�

�

�w�x + k/2��2q2x2
dx . �53�

ecause of the periodicity of w�x�, we have w�x+k /2�=w�x� and all the integrals are independent
f k and they have the value 1/ ��w�2. This yields

�
−�

�

An
*�x�Am�x�dx = �

k=0

n+m

dk
nm = �nm, �54�

hich follows from Eq. �49�. Therefore the orthogonality holds for any w�x� satisfying the peri-
dicity requirement.

We actually found more than the DG polynomials from the algebraic treatment. We found an
nfinite set of orthogonal functions.

V. A DIFFERENT INTERPRETATION OF q-OSCILLATOR EXAMPLE OF MACFARLANE

In a seminal and widely cited paper Macfarlane constructed a different coordinate represen-
ation of the q-oscillator. His definition of the creation and destruction operators are

ˆ 2x x s��/�x�
b = e − e e , �55�
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b̂† = e−2x − es��/�x�e−x. �56�

bviously, according to the usual definition of the inner product in Eq. �27� the b̂† is not right.

acfarlane himself goes on to construct eigenstates of b̂†b̂ without discussing the inner product
nd orthogonality relation first. After finding the eigenfunctions he states inner product and or-
hogonality relations in terms of orthogonality of Rogers-Szegö polynomials on the unit circle.
he functions we find do not agree with the functions he found and apparently his formula for the
igenfunctions contains some error. Therefore we redo the problem with a different inner product
efinition here.

We define the inner product as

�f ,g� = �
−�

�

�P̂f*�x��g�x�dx . �57�

=�
−�

�

f*�− x�g�x�dx , �58�

here P̂ is the usual parity operator. For an operator Ô, its conjugate Ô† is defined by the relation

�f ,Ôg� = �Ô†f ,g� , �59�

he b̂† expression in Eq. �56� is right if one defines the inner product this way because �ex�†

e−x and �d /dx�†=d /dx. Notice that this definition of the inner product does not satisfy �f , f�
0 condition. But we will not use this property of the inner product in our development. We will

se the conjugacy definition in Eq. �59� in a few places.
In order to obtain functions as a linear combination of the Gaussians centered at non-negative

ntegers we change the variable x=−c2�y+1/4� and s=−c2 /2 and we take q=e−c2
as before. We

ill also divide b̂ and b̂† by 
q�1−q� which does not change the eigenfunctions �only eigenval-

es�, but in the limit of the harmonic oscillator �q→1� it helps to get the right results. The new b̂

nd b̂† are

b̂ = �q2y+1/2 − qy+1/4T1/2�/
q�1 − q� , �60�

b̂† = �q−2y+1/2 − T1/2q−y+1/4�/
q�1 − q� , �61�

here T1/2=e
1
2

��/�y�. They satisfy the commutation relation

b̂†b̂ − qb̂b̂† = 1. �62�

ote that this is somewhat different than the commutation relation in Eq. �28�.
Again we want to find the eigenfunctions of the operator b̂†b̂,

b̂†b̂Bn�y� = 	nBn�y� . �63�

e again start from a ground state that satisfies b̂B0�y�=0 �hence 	0=0�. b̂B0�y�=0 yields the
ame functional equation that A0�x� satisfy

B0�y + 1/2� = qy+1/4B0�y� , �64�

hich we already know has the solution B0�y�=�ww�y�qy2
where w�y� satisfies the w�y+1/2�

w�y� periodicity condition. The infinite degeneracy of the states appear here too. Note that this

ime �w is defined as
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�w = ��
�

−�

w*�− y�w�y�q2y2
dy	−1/2

. �65�

Next we build the unnormalized states �b̂†�nB0�y�. Using the commutation relation we can

asily show that if the �b̂†�nB0 is an eigenfunction of b̂†b̂ with an eigenvalue 	n then �b̂†�n+1B0 is
n eigenfunction with the eigenvalue 	n+1 where 	n+1 is related to the 	n as

q	n+1 = 	n − 1. �66�

ince B0�y� is an eigenfunction, by induction all �b̂†�nB0 are eigenfunctions too. Starting from

0=0, this recursion relation yields

	n = − q−n�1 − qn

1 − q
	 . �67�

otice that the eigenvalues are negative.
To obtain relations similar to Eqs. �35� and �36�. We form the inner product

	n�Bn,Bn� = �Bn, b̂†b̂Bn� = �b̂Bn, b̂Bn� . �68�

aking b̂Bn=�nBn−1 we get

	n = ��n�2
�Bn−1,Bn−1�

�Bn,Bn�
. �69�

ince ��n�2 is positive and 	n is negative, the �Bn−1 ,Bn−1� and �Bn ,Bn� must have opposite signs.
his looks surprising but we should remember that in our definition of the inner product the �f , f�
an be negative. Therefore we will take our normalization as

�Bn,Bn� = �− 1�n. �70�

ith this normalization we obtain �n=
−	n,

b̂Bn = 
− 	nBn−1. �71�

tarting from

	n+1Bn+1 = b̂†b̂Bn+1 = 
− 	n+1b̂
†Bn, �72�

e also obtain

b̂†Bn = − 
− 	n+1Bn+1. �73�

his result is also a little unusual because of the sign in front. It is a consequence of negative 	n

igenvalues.
Since we started from an unusual inner product definition there might be doubts on orthogo-

ality of the Bn. Consider the inner product

�Bm, b̂†b̂Bn� = �b̂†b̂Bm,Bn� . �74�

sing b̂†b̂Bk=	kBk we get

�	n − 	m��Bm,Bn� = 0, �75�

hich yields �Bm ,Bn�=0 when m�n. We added this common proof to emphasize that the or-
hogonality does not depend on the �f , f��0 property of the usual inner products. We just used the

onjugacy relation Eq. �59� in this proof of orthogonality. But unlike the case of usual definition
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nner product given in Eq. �27�, �f , f�=0 does not imply f =0 when we do not have �f , f��0
roperty.

To complete the discussion we obtain the eigenfunctions Bn�y�. It makes things easier to figure

ut the coefficient of Gaussian centered at zero �qy2
� first. The b̂†

b̂† = �q−2y+1/2 − T1/2q−y+1/4�/
q�1 − q� , �76�

as two parts that do different things. When q−2y+1/2 acts on q�y − k�2
it produces the next Gaussian

�y − k − 1�2
and multiplies it with a constant. When T1/2q−y+1/4 act on q�y − k�2

it gives q�y − k�2
back and

ultiplies with a constant. Here are the precise relations

q−2y+1/2q�y − k�2
= q−2k−1/2q�y − k − 1�2

, �77�

T1/2q−y+1/4q�y − k�2
= q−kq�y − k�2

. �78�

rom the second relation we have T1/2q−y+1/4qy2
=qy2

which means this operator leaves qy2
as it is.

he other operator q−2y+1/2 creates k=1 Gaussian �q�y − 1�2
� from it. Since we produce higher

igenfunctions by applying −b̂† /
−	n successively, after each application the coefficient of k=0

aussian changes by a factor 1 /
q�1−q��−	n�. We denote the coefficient of k=0 Gaussian in

n�y� by n and it should be

n = �w
1


qn�1 − q�n

1

�− 	1��− 	2� ¯ �− 	n�

= �w
qn�n−1�/4


�q,q�n

. �79�

Now let us take the Bn�y� of the form

Bn�y� = w�x�n�
k=0

n

Ek
nq�y − k�2

, �80�

here E0
n=1 by construction. We can use Eq. �72� to generate a recursion relation for Ek

n as before.

o show a different and easier way of doing things we will use Eq. �70� relation this time. The b̂
as the effect of shifting each Gaussian to the left by one unit

b̂q�y − k�2
= −

qk−1/2�1 − qk�

q�1 − q�

q�y − k + 1�2
, �81�

nd it also destroys the leftmost Gaussian �the k=0 Gaussian centered at zero�. Therefore the
quality

b̂��nEk
n�q�y − k�2

� = 
− 	n��n−1Ek−1
n−1�q�y − k + 1�2

� �82�

hould hold for each Gaussian. This yields the recursion relation for the Ek
n as

Ek
n = − Ek−1

n−1�1 − qn

1 − qk	q−n−k+3/2. �83�

ogether with the condition E0
n=1 this is enough information to solve the Ek

n. The quotient in
arentheses tells us that the q binomial coefficients Ck

n are involved. If we set Ek
n= �−1�kCk

nqu�n,k�

e get the recursion relation for u�n ,k� as

u�n,k� − u�n − 1,k − 1� = − n − k + 3/2. �84�

ogether with the condition u�n ,0�=0 �which follows from E0
n=1� this is uniquely solved as
�n ,k�=−nk+k /2. Therefore the Bn�y� should be

                                                                                                            



=
n

T
p

c

T

T
h
s

a

o
a

w

H
E

S

013508-11 DG polynomials as q-oscillator eigenfunctions J. Math. Phys. 47, 013508 �2006�

                        
Bn�y� = �ww�x�
qn�n−1�/4


�q,q�n
�
k=0

n

Ck
n�− 1�kq−�n−1/2�kq�y − k�2

. �85�

This formula does not agree with the result of Macfarlane even after setting c2=−2s and y
−1/4+x /2s back in Bn�y� above. To be sure that we have the right formula we have checked
umerically if the Bn�y� satisfy the orthogonality relation

�
−�

�

Bn�− y�Bm�y�dy = �− 1�n�nm. �86�

hey satisfy it perfectly and we are sure that we have the right formula. Apparently Macfarlane’s
aper contains an error.

The harmonic oscillator limit is as straightforward as it is in the DG polynomials case. We
hange variable y=z /c and take the limit c→0 which yields

b̂ → z −
1

2

�

�z
, �87�

b̂† → − z −
1

2

�

�z
. �88�

hen b̂†b̂Bn=	nBn reduces to �	n→−n in this limit�

�−
1

4

�2

�z2 + z2	�n = �n + 1/2��n. �89�

he fact that the inner product is defined differently makes no difference in this limit because the
armonic oscillator eigenfunctions are either even or odd. The harmonic oscillator eigenfunctions
atisfy the normalization condition

� �n
*�− y��m�y�dy = �− 1�n�nm �90�

s can be verified easily using parity of the wave functions.
Now, just as the DG polynomials, the orthogonality of the Bn�y� can be expressed as an

rthogonality relation of the Rogers-Szegö polynomials on the unit circle. We will take w�x�=1
nd �w=� for this. By Fourier transforming the orthogonality relation Eq. �85� we get the relation

�
−�

�

Bn
*�− ��Bm���d� = �− 1�n�nm, �91�

here Bn��� is the Fourier transform of the Bn�y�,

Bn��� = � �

c2	1/2

ne
−��/c�2�2�

k=0

n

Ck
n�− q−�n−1/2�ei2���k. �92�

ere � is the Fourier transform variable just as before. Using the Poisson summation formula in
q. �20� the orthogonality relation can be expressed as

�
0

1

Hn�− q−�n−1/2�ei2���Hm�− q−�m−1/2�ei2���� �
k=−�

�

e−2��/c�2�� + k�2	d� =
c2

�

�− 1�n

n
2 �nm. �93�
etting the sum in parentheses from Eqs. �22� and �23� we obtain
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�
0

1

Hn�− q−�n−1/2�ei2���Hm�− q−�m−1/2�ei2����3�2��;q�d� = q−n�n−1�/2�q,q�n�− 1�n�nm. �94�

his is again some form of the orthogonality relation of the Rogers-Szegö polynomials on the
ircle. This is a new set of orthogonality relations and we are not aware of its existence in
athematical literature.

. SUMMARY

In this study we found that the DG polynomials that Karabulut and Sibert discovered before
re actually eigenfunctions of coordinate representation of the Arik-Coon q-oscillator. We derived
he DG polynomials from q-oscillator algebra. We also indicated that orthogonality of the DG
olynomials can be cast into orthogonality of the Rogers-Szegö polynomials on the unit circle and
he two are equivalent.

We showed that the example given by Macfarlane can be interpreted with an unusual inner
roduct definition and we constructed the corresponding orthogonal functions. Their orthogonality
an be recast into a form of orthogonality relation for the Rogers-Szegö polynomials on the unit
ircle. We were not able to find this result in mathematical literature and it is probably a new
esult.

A very interesting result of this work is that the eigenstates of the q-oscillators we solved
urned out to be infinitely degenerate. We know that algebraic solution of the one dimensional
armonic oscillator is nondegenerate. In the usual algebraic solution of the harmonic oscillator we
ase our arguments on the commutation relations and the algebra has nothing in it that implies
ondegenerate states. But the ground state â�0=0 yields a unique solution for the harmonic
scillator because it is a differential equation and nondegeneracy of the excited states follows from
his. For our q-oscillator examples we have a first order difference equation for the â�0=0 and
uch equations together with the boundary conditions do not uniquely define a function. It defines
function on all real axis if its values in a 1/2 wide interval are known.

Finally, the freedom to choose w�x� arbitrarily gives us possibility of constructing orthogonal
unction sets more general than the DG polynomials. Consider a set of functions

0�x� ,w1�x� ,w2�x� ,…. satisfying the periodicity condition wn�x+1/2�=wn�x��n=0,1 ,2 , . . . � and
he orthogonality relation

�
−�

�

wn
*�x�wm�x�q2x2

dx = �nm. �95�

hen the set of functions

�nm�x� =
��wn�

�
wn�x��m�x� �96�

ill satisfy an orthogonality relation of the form

�
−�

�

�nm
* �x��ij�x�dx = �ni�mj . �97�

ere ��wn� is the �w for w=wn�x� given in Eq. �32� and � is given in Eq. �7�. This gives us much
reedom to construct orthogonal function sets useful as basis sets in variational calculations. This
ossibility should be investigated in future research.
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In this work, an algorithm to decompose a given orthogonal transformation as a
product of reflections through hyperplanes is presented. This in fact constitutes a
constructive proof of a Cartan theorem, valid over any field K=Q, R or C. Clifford
algebras are used to explicitly calculate the reflections that decompose a given
orthogonal transformation. Our algorithm may have application in fields such as
computer graphics or crystallography, and can also play an important role in
orthogonal elimination and the solution of equations systems. An explicit example
is provided and we apply our results to the crystallographic problem of coincidence
lattices. © 2006 American Institute of Physics. �DOI: 10.1063/1.2161072�

. INTRODUCTION

This work is concerning the decomposition of a given orthogonal transformation in Rn as a
roduct of simple reflections �reflections by hyperplanes�. This problem is directly related to a
artan theorem,1 which asserts that every orthogonal transformation can be written as the product
f at most n reflections with respect to hyperplanes. The original proofs of this theorem, of around
0 years ago, were nonconstructive; for a given orthogonal transformation the existence of such
eflections was demonstrated. In Ref. 2, for instance, a proof based on the Raleigh quotient is
resented. Constructive ways by the induction method have been given in different contexts; when
omputing over R or C, and by using Householder matrices, it was proved that any real �or
omplex� orthogonal �or unitary� matrix can be written as the product of at most n Householder
atrices, derived constructively from the original matrix.3 The importance of this proof relies in

he fact that Householder matrices are relevant in numerical linear algebra.3,4 Also, there exists a
onstructive derivation of the analog of the Cartan theorem for symplectic matrices.5

Here, we present a constructive proof of the Cartan theorem, valid for n-dimensional linear
paces with inner product over any field K=Q, R or C, which produces an algorithm for the
actorization of a given orthogonal transformation into a product of simple reflections. We have
ound that this factorization is greatly simplified by using Clifford algebras, where reflections and
otations are handled in a convenient way. These algebras have proved to be a powerful math-
matical language for expressing geometric ideas and have been relevant not only in several
athematical areas but also in physics, engineering and computer science �see, for example, Ref.
and references therein�. The use of Clifford algebras to prove the Cartan theorem do not obscure
ut enhances the geometrical meaning, yielding an algorithm which can be relevant in several

47, 013509-1022-2488/2006/47�1�/013509/10/$23.00 © 2006 American Institute of Physics
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elds since it offers a simple way to decompose any arbitrary orthogonal transformation as a
roduct of simple reflections. In particular, we have shown that Clifford algebras are suitable for
alculations in n-dimensional crystallographic lattices.7,8 In these works, it was conjectured that
ny coincidence transformation of the lattice Zn �see Sec. V� can be written as the product of
oincidence reflections. The conjecture was proved in two dimensions8 and here, as an application
f our results, we prove the conjecture for Zn �Sec. V, Theorem 20�.

This paper is organized as follows. In Sec. II we provide a brief introduction to real orthogo-
al spaces and Clifford algebras. In Sec. III, we present a constructive proof of the Cartan theorem
hat produces an algorithm to calculate the simple reflections that decompose a given orthogonal
ransformation. An explicit example is given in Sec. IV and applications to coincidence transfor-

ation are presented in Sec. V. Section VI is devoted to conclusions and discussions.

I. REAL ORTHOGONAL SPACES AND CLIFFORD ALGEBRAS

To set the background and fix notation, in this section we first introduce several basic concepts
nd the basis of Clifford algebras. Most of the results are presented without proofs, and interested
eaders are referred to Refs. 9 and 10.

Definition 1: The pair �X ,B� is called a n-dimensional real orthogonal space if X is a
-dimensional vector space and B: X�X→R is an inner product.

If W�X is a vector subspace of X �W�X�, the orthogonal complement of W in X is the set

W� = �u � X�B�v,u� = 0, for all v � W� .

learly W��X. Furthermore, we have the following.
Proposition 2: Let �X ,B� be a n-dimensional real orthogonal space and let W�X. Then X

W � W�.
In particular, for a given a�X such that B�a ,a��0 we have that X=Ra � �Ra��, and the

lement a�X is called invertible. Moreover,

a−1 =
a

a2 =
a

B�a,a�
.

he �n−1�-dimensional subspace Ha= �Ra���X is called the hyperplane associated with the
nvertible element a�X. Now, since each v�X allows a unique decomposition v=�a+b, where
�R and b� �Ra��=Ha, then the map �a�v�=−�a+b is orthogonal. Thus �a represents a reflec-

ion with respect to the hyperplane Ha, which is called a simple reflection.
To end this brief section, we introduce some basic concepts of Clifford algebra. It is important

o remark that there are several constructions of Clifford algebras11–14 and here we choose the
pproach by Porteous.10

Definition 3: Let �X ,B� be a n-dimensional real orthogonal space and let A be a real
ssociative algebra with identity 1 such that

�C1� A contains copies of R and X as linear subspaces.
�C2� For all v�X we have that v2=B�v ,v�.
�C3� A is generated as a ring by the copies of R and X or, equivalently as a real algebra by

1� and X.
Then A is said to be a real Clifford algebra for �X ,B� and it is denoted by A=C�X�.
Axiom �C2� contains the relationship between Clifford algebras and bilinear forms thus hold-

ng, as we shall see below, the geometrical interpretation of the Clifford algebra.
If e= �e1 ,e2 , . . . ,en� is an orthonormal basis of �X ,B�, from the condition �C2� it follows that

ei
2 = 1, i = 1,2, . . . ,n

eiej + ejei = 0, i � j .
n general, for all v, w�X we have that
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B�v,w� = 1
2 �vw + wv� , �1�

s it is inferred from B�v+w ,v+w�= �v+w�2. Notice that from �1� it readily follows that two
ectors u, v�X anticommute if and only if they are orthogonal.

If u, v�X, then we have

uv = 1
2 �uv + vu� + 1

2 �uv − vu� = B�u,v� + u ∧ v ,

here

u ∧ v = 1
2 �uv − vu�

s called the exterior product. Moreover, it turns out that u∧v=0 if and only if u, v are parallel or
inearly dependent vectors.

Notice that since C�X� is generated by �1� and X then, in terms of the orthonormal basis e, a
ypical element a of C is

a = �
A

�Ae�1

n1e�2

n2
¯ e�s

ns ,

here �A�R and nj =1,0.
There is an obvious upper bound to the linear dimension of a Clifford algebra for a

-dimensional real orthogonal space. More specifically, dim C�X�=2n−1 or dim C�X�=2n. In this
ork, we shall restrict ourselves to Clifford algebras of dimension 2n, which are called universal
lifford algebras.

II. THE CARTAN THEOREM

Before formulating the Cartan theorem, it is useful to first briefly discuss how the algebraic
roperties of Clifford algebra provide us with a convenient framework for representing orthogonal
ransformations �linear transformations that preserve the bilinear form�.

Suppose a�X is a nonzero vector and let Ha be its orthogonal complement.
Lemma 4: Let C�X� be a Clifford algebra for a n-dimensional real orthogonal space �X ,B�.

f a�X is invertible, then the map Ta :X→X, defined by

Ta�x� = − axa−1,

s an orthogonal transformation. Moreover, T is a simple reflection.
Proof: Ta is linear, as a consequence of the distributive property of the algebra. To see that Ta

s a reflection by the hyperplane Ha it is enough to prove that Ta�a�=−a and Ta�w�=w for all w
Ha. Indeed,

Ta�a� = − aaa−1 = − a ,

Ta�w� = − awa−1 = − �− wa�a−1 = w ,

here we use the fact that aw=−wa since B�a ,w�=0. Ta is an orthogonal transformation since

a�v�2=v2 for all v�X.
�

Clearly the inverse of a simple reflection is a simple reflection itself

Ta�x� = − axa−1 = − ax
a

a2 = −
a

a2xa = a−1x�a−1�−1 = Ta−1�x� .

The following Lemma not only displays a simple geometrical fact discussed below, but turns
ut to be fundamental for the proof of the Cartan theorem proposed here �cf. with Ref. 10, p. 34�.
Lemma 5: Let C�X� be a Clifford algebra for a n-dimensional real orthogonal space �X ,B�.
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f a ,b�X are invertible vectors and a2=b2�0, then there exists a simple reflection � :X→X
uch that

��a� = b .

Proof: For the trivial case a=b, it is enough to take �= I, where I :X→X is the identity
ransformation. If a�b we shall first prove that the vectors a−b and a+b are orthogonal. Indeed,

2B�a − b,a + b� = �a − b��a + b� + �b + a��a − b� = �a2 − ba + ab − b2� + �ba + a2 − ab − b2� = 0.

ow, since

�a + b�2 + �a − b�2 = �a2 + ab + ba + b2� + �a2 − ab − ba + b2� = 4a2 � 0,

e conclude that a−b is invertible. We can thus define the following orthogonal transformation:

�a−b�x� = − �a − b�x�a − b�−1,

hich satisfies �a−b�a�=b, as it can be easily verified:

�a−b�a� = − �a − b�	1

2
�a − b� +

1

2
�a + b�
�a − b�−1

= −
1

2
�a − b��a − b��a − b�−1 −

1

2
�a − b��a + b��a − b�−1 = −

1

2
�a − b� +

1

2
�a + b� = b .

Thus, ��x� can be expressed as

��x� = � I if a = b ,

�a−b�x� if a � b .
�

�

The geometric meaning of the previous lemma can be explained if we consider two vectors,
and b, such that a2=b2�0. The diagonals of the rhombuses �a+b and a−b� are perpendicular

nd thus the orthogonal complement of a−b is a+b and vice versa. Consequently, if we construct
he reflection by using the vector a−b, the operation �a−b�a� produces the reflection of a through
he hyperplane Ha−b, which obviously gives b. The recurrent application of Lemma 5 produces an
lgorithm to decompose any given orthogonal transformation as the composition of simple reflec-
ions. For this goal, it is enough to adequately choose the vectors a and b at each step of the
lgorithm. This constitutes the Cartan theorem and therefore a constructive proof can now be
iven.

Theorem 6 (Cartan): Any orthogonal transformation, in a n-dimensional real orthogonal
pace �X ,B�, can be written as the product of at most n simple reflections.

Proof: Let T :X→X be an orthogonal transformation in a n-dimensional real orthogonal space
X ,B�, and assume that �w1 , . . . ,wn� is an orthogonal basis of �X ,B� such that wi

2�0 for i
1, . . . ,n.

Consider w1, T�w1� �which play the role of a and b, respectively, in the proof of Lemma 5�
nd the transformation �1 :X→X defined by

�1�x� = �I if T�w1� = w1,

− c1xc1
−1 if T�w1� � w1,

�
here c1=T�w1�−w1. As it follows from Lemma 5, �1�x� has the following properties:

�1T�w1� = w1,
�1T�wl� � Span�w2, . . . ,wn� for l = 2, . . . ,n .
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Now, consider w2, �1T�w2� and the transformation �2 :X→X defined by

�2�x� = �I if �1T�w2� = w2,

− c2xc2
−1 if �1T�w2� � w2,

�
here c2=�2T�w2�−w2. We already know that �2�1T�w2�=w2, and since c1

Span�w2 ,w3 , . . . ,wn�, it can be verified that �2�1T�w1�=w1. Then we have that

�2�1T�wi� = wi for i = 1,2,

�2�1T�wl� � Span�w3,w4, . . . ,wn�, for l = 3,4, . . . ,n .

Accordingly, now consider w3, �2�1T�w3� and �3 :X→X defined by

�3�x� = �I if �2�1T�w3� = w3,

− c3xc3
−1 if �2�1T�w3� � w3,

�
here c3=�2�1T�w3�−w3. We also already know that �3�2�1T�w2�=w2, and since c3

Span�w3 , . . . ,wn�, it follows that �2�1T�wi�=wi, i=1,2. Thus we have that

�3�2�1T�wi� = wi for i = 1,2,3,

�3�2�1T�wl� � Span�w4, . . . ,wn� for l = 4, . . . ,n .

This procedure can be straightforwardly continued up to n steps, to obtain �1 ,�2 , . . . ,�n

rthogonal transformations such that

�n�n−1 ¯ �1T�wi� = wi for i = 1, . . . ,n , �2�

here

�k+1�x� = �I if �k�k−1 ¯ �1T�wk+1� = wk+1,

− ck+1xck+1
−1 if �k�k−1 . . . �1T�wk+1� � wk+1,

�
nd

ck+1 = �k�k−1 ¯ �1T�wk+1� − wk+1.

Notice that

�k+1
−1 �x� = �I if �k�k−1 ¯ �1T�wk+1� = wk+1,

− ck+1xck+1
−1 if �k�k−1 . . . �1T�wk+1� � wk+1.

�
By �2� we obtain

T�x� = �1
−1
¯ �n

−1�x� ,

nd since each �k
−1�x� is a simple refelction, then the orthogonal transformation T is written as the

roduct of at most n reflections by hyperplanes. Moreover, we can find a1 ,a2 , . . . ,as�X such that

T�x� = �− 1�sa1a2 ¯ asxas
−1
¯ a2

−1a1
−1,

here s�n.

�
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V. EXAMPLE

The following example illustrates the procedure to decompose a particular orthogonal trans-
ormation in R3 as a product of simple reflections. The computations were done with a Math-
matica Clifford algebra package.15

Let T :R3→R3 be an orthogonal transformation with the following associated matrix, with
espect to the canonical basis �e1 ,e2 ,e3�:

T = 
6
7

2
7

3
7

2
7

3
7 − 6

7

− 3
7

6
7

2
7

� .

y following step by step the procedure used in the proof of the Cartan theorem �Theorem 6�, we
ave that

c1 = T�e1� − e1 = − 1
7

2
7

− 3
7

� ,

nd thus �1�x�=−c1xc1
−1. Now

c2 = �1�T�e2�� − e2 = − c1T�e2�c1
−1 − e2 = 0,

hat is, �2�x�=x, the identity. Finally

c3 = �2��1�T�e3��� − e3 = − c1T�e3�c1
−1 − e3 =  0

0

− 2
� ,

nd �3�x�=−c3xc3
−1. Consequently, T is decomposed as

T�x� = �1��2��3�x��� = a1a3xa3
−1a1.

f �i denotes the matrix associated to �i, with respect to the canonical basis, these are given by

�1 =
1

7− 6 − 2 3

− 2 − 3 − 6

3 − 6 2
�, �2 = 1 0 0

0 1 0

0 0 1
�, �3 = − 1 0 0

0 − 1 0

0 0 1
� ,

nd we can easily verify that T=�1�2�3.

. AN APPLICATION TO THE COINCIDENCE SITE LATTICE THEORY

Coincidence site lattice theory has provided partial answers to the complex problems that arise
n the description of grain and twin boundaries.16 Mathematically, the problem can be stated as
ollows:

Let 	 be a lattice in Rn and let T�O�Rn�, T is called a coincidence transformation if 	�T	
s a sublattice of 	. The problem is therefore to identify and characterize coincidence transforma-
ions of a given lattice 	.

Here, by considering simple reflections as primitive transformation, we analyze this problem
y finding conditions under which a given transformation is of coincidence. In a previous work,7

t was conjectured that any arbitrary coincidence transformation can be decomposed as product of
oincidence reflections by vectors of the lattice 	. This conjecture was proved in two dimensions8

n
nd here, as an application of our results, we prove the conjecture for Z �Theorem 20�.
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We first introduce the basic concepts related to lattices and coincidence lattices, by following
he formalization of the coincidence problem given by Baake.17 Henceforth B�x ,y� represents the
anonical scalar product in Rn, denoted by x ·y.

Definition 7: A discrete subset 	�Rn is called a lattice, of dimension n, if it is spanned as
= � i=1

n Zai, with �a1 , . . . ,a1� a set linearly independent vectors of Rn. These vectors form a basis
f the lattice.

The lattice 	 is isomorphic to the free Abelian group of order n. It allows us to define the
oncept of sublattice.

Definition 8: Let 	�Rn be a lattice. A subset 	1�	 is called a sublattice of 	 if it is a
ubgroup of finite order, i.e., �	 ,	1��
 �the number of the right cosets is finite�.

The following two definitions are central for the coincidence problem.
Definition 9: Two lattices 	1 and 	2 are called commensurate, denoted by 	1�	2 if and only

f 	1�	2 is a sublattice of both 	1 and 	2.
Definition 10: An orthogonal transformation T�O�Rn� is called a coincidence transformation

f and only if T	�	. The integer ��T�= �	 :T	�	� is called the coincidence index of T with
espect to 	. If T is not a coincidence transformation then ��T�ª
. Two useful sets are also
efined,

OC�	� ª �T � O�n��� �T� � 
� ,

SOC�	� ª �T � O�n��det T = 1� .

Coincidence transformations are usually worked out using matrices. In what follows, we recall
his approach in order to state a result that will be used later.

Definition 11: Let 	 be a lattice in Rn with basis �a1 , . . . ,an�. The structure matrix N of 	 is
efined through the relation ai=Nei=� j=1

n Njiej, where �e1 , . . . ,en� is the canonical basis of Rn.
Theorem 12 (Grimmer): Let 	1 and 	2 be two lattices in Rn, with structure matrices N1 and

2, respectively. Then, 	1�	2 if and only if N1
−1N2 has rational entries.

Theorem 13: Let 	�Rn be a lattice and let T be an orthogonal transformation. Then, T
OC�	� if and only if its associated matrix, with respect to the basis of the lattice, has rational

ntries.
A consequence of this theorem is the following.
Proposition 14: Let 	= � i=1

n Zai and T be a lattice and an orthogonal transformation in Rn,
espectively. Then T�OC�	� if and only if for any ai there exists mi�N such that miai�T�	�.

With this background, we can formulate the problem of coincidences between two lattices by
sing the language of Clifford algebras. By simplicity, in some cases we restrict our treatment to
he case of hypercubic lattices Zn.

Let Zn= � i=1
n Zei be a n-dimensional hypercubic lattice equipped with a canonical basis

e1 , . . . ,en�. As we have seen, the simple reflection R of a vector x can be written as

R�x� = − sxs−1 = − �sx��s�−1,

here ��0 and the reflection hyperplane is Hs=�s��. We shall find conditions under which R is
coincidence reflection.

Proposition 15: Let 	= � i=1
n Zai be a lattice in Rn and consider a vector s�Rn. If the trans-

ormation R�x�=−sxs−1 is a coincidence reflection, i.e., R�x��OC�	�, then there exists a vector
�	 such that R�x�=−sxs−1=−txt−1.

Proof: Let R be a reflection and assume R�OC�	�. Given this last assumption, for a given
�	 we can always find m�N such that mR�a�=R�ma��	. Thus, for a given x�	 the vector

y=R�x� belongs to the lattice 	, that is, for some s�Rn we have that

y = − sxs−1 � 	 .
ow, since ys=−sx,
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y · s = − s · x

y ∧ s = − s ∧ x = x ∧ s ,

nd therefore

�y − x� ∧ s = 0.

onsequently, since x ,y�	, there exists ��R such that y−x=�s�	. By taking t=�s�	, we
conclude that R�x�−sxs−1=−txt−1.

�

The contrary is true for hypercubic lattices 	=Zn.
Proposition 16: Consider c�Zn with c�0. Then R�x�=−cxc−1�OC�Zn�.
Proof: If c ,x�Zn then

R�x� = − cxc−1 = − 2
x · c

c2 c + x ,

ince B�x ,c� /c2�Q. Then by taking m=c2�N we obtain

mR�x� = − 2�x · c�c + mx ,

hich belongs to Zn and thus R�x��OC�Zn�.
�

Consequently, for hypercubic lattices the previous results can be summarized as follows.
Theorem 17: Let R be a reflection by a hyperplane in Rn. Then R�OC�Zn� if and only if it

an be written as

R�x� = − cxc−1,

here c�Zn.
Now, we are interested in decomposing any arbitrary coincidence orthogonal transformation

nto a product of coincidence reflections. First consider the following.
Lemma 18: Let T�OC�Zn� be a coincidence orthogonal transformation. Let also a�Zn and

�T�Zn� be two lattice vectors of the same length, that is a2=b2. Then, there exists a map S
OC�Zn� such that S�a�=b.

Proof: Let a�Zn be a lattice vector and let T�OC�Zn� be a coincidence orthogonal transfor-
ation. If b�T�Zn� is a vector in the transformed lattice, then there exists an integer m such that
�a−b��Zn. Thus, the reflection defined by

S�x� = − �ma − mb�x�ma − mb�−1 = − �a − b�x�a − b�−1,

elongs to OC�Zn�, and then it follows that

S�a� = b .

�

An immediate consequence is the following.
Corollary 19: Consider the hypercubic lattice Zn and let T�OC�Zn� be a coincidence or-

hogonal transformation. Let also a�Zn and b�T�Zn� be vectors of the same length �a2=b2�
elonging to the lattice and to the transformed lattice, respectively. Then there exists c�Zn such
hat S�a�=b, where S�x�=−cxc−1.

The following theorem allows us to formulate our main result, namely that any arbitrary
oincidence transformation can be written as product of coincidence reflections by vectors of the
attice Zn.

n n
Theorem 20: Let Z be a hypercubic lattice, and consider T�OC�Z �. Then, for some integer
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, 0� l�n, there exist reflections R1 ,R2 , . . . ,Rl�OC�Zn� such that T can be written as T
R1R2¯Rl.

Proof: We will proceed by induction by first considering n=1. In this case, the only available
rthogonal transformations in Z are I�x�=x and S�x�=−x. If b�Z and b�0, we have that S�x�

=−bxb−1 and I�x�=S2�x�. These transformations belong to OC�Z�, as follows from Theorem 16,
nd thus the theorem is valid for n=1.

Assume now that the theorem is valid for n=k. Let Zk be a k-dimensional hypercubic lattice
nd let T�OC�Zk+1� be an orthogonal coincidence transformation. Suppose that �e1 , . . . ,en� is an
rthonormal basis of Zn and consider the vectors T�ek+1� and ek+1. According to Lemma 18, there
xists a reflection S�OC�Zk+1�, such that S�T�ek+1��=ek+1. Clearly ST�OC�Zk+1� but �ST�Zk

OC�Zn�. Then, for some integer l�0, by the induction hypothesis we have that ST
R1R2¯Rl, where R1 ,R2 , . . . ,Rl�OC�Zk� are reflections. Consequently

T = S−1R1R2 ¯ Rl.

�

Theorem 21: Let Zn= � i=1
n Zei be a hypercubic lattice. Then an orthogonal transformation T is

f coincidence, i.e., T�OC�Zn�, if and only if there exist lattice vectors c1 ,c2 , . . . ,ck�Zn such that

T�x� = �− 1�k�c1c2 ¯ ck�x�c1c2 ¯ ck�−1,

here k�n.

I. CONCLUSIONS

In this work we provide a simple algorithm to explicitly calculate the reflections in which a
articular orthogonal transformation is decomposed. This algorithm constitutes a constructive
roof of the Cartan theorem. Albeit we have assumed that the underlying field is R, the proofs of
nd theorems are also valid for Q or C.

The approach given here can also be useful for solving equations systems and orthogonal
limination. In this case, Householder matrices replaces the reflections through hyperplanes de-
ived from the Cartan theorem here presented. Also we can generalize the proof of this theorem to
he Cartan-Dieudonné theorem.18 This work is under way.

As an application, the crystallographic problem of coincidence lattices is formulated in terms
f reflections. We show that any arbitrary coincidence transformation for the lattice Zn can be
ritten as product of coincidence reflections in vectors of the lattice.
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he generalized Davey-Stewartson equations,
ts Kac-Moody-Virasoro symmetry algebra and relation
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We compute the Lie symmetry algebra of the generalized Davey-Stewartson �GDS�
equations and show that under certain conditions imposed on parameters in the
system it is infinite-dimensional and isomorphic to that of the standard integrable
Davey-Stewartson equations which is known to have a very specific Kac-Moody-
Virasoro loop algebra structure. We discuss how the Virasoro part of this symmetry
algebra can be used to construct new solutions, which are of vital importance in
demonstrating existence of blow-up profiles, from known ones using Lie subgroup
of transformations generated by three-dimensional subalgebras, namely sl�2,R�.
We further discuss integrability aspects of GDS equations. © 2006 American In-
stitute of Physics. �DOI: 10.1063/1.2162147�

. INTRODUCTION

A system of nonlinear partial differential equations in 2+1 dimensions as a model of wave
ropagation in a bulk medium composed of an elastic material with couple stresses has recently
een derived in Ref. 1, namely

i�t + ��xx + �yy = ����2� + ��wx + �y�� ,

wxx + n�xy + m2wyy = ����2�x, �1.1�

nwxy + ��xx + m1�yy = ����2�y ,

ith the condition ��−1��m1−m2�=n2. Here ��t ,x ,y� is a complex function, w�t ,x ,y� and
�t ,x ,y� are real functions and � ,n ,m1 ,m2 ,� ,� ,� are real constants. The authors of Ref. 1

howed that if the parameters are related by

n = 1 − � = m1 − m2, �1.2�

hen �1.1� can be reduced to the standard Davey-Stewartson �DS� equations �in general not inte-
rable� by a noninvertible point transformation of dependent variables. Therefore, they called �1.1�
he generalized Davey-Stewartson �GDS� equations. Below, we justify this naming from a group-
heoretical point of view. Also, in Ref. 1 some travelling type solutions of �1.1� in terms of
lementary and elliptic functions are obtained. Based on some physically obvious Noetherian
ymmetries �time-space translations and constant change of phase�, global existence and nonex-
stence results are given in Ref. 2. In another recent work,3 under some constraints on the physical
arameters, the so-called hyperbolic-elliptic-elliptic case of the system �1.1� �in Ref. 3 the system
s classified into different types according to the signs of parameters �� ,m1 ,m2 ,��� was shown to

�Electronic mail: gungorf@itu.edu.tr
�
Electronic mail: aykanato@itu.edu.tr
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dmit singular solutions that blow up in a finite time. To do this, inspired by the �pseudo� confor-
al invariance of the DS system, they used the fact that time-dependent SL�2,R� invariant

olutions can be generated from stationary radial solutions for an appropriate choice of coeffi-
ients.

The purpose of this paper is to study GDS equations from a group theoretical point of view.
or our purposes, we find it more convenient to consider the differentiated form of �1.1�. Thus,
ifferentiating the last two equations of �1.1� with respect to x and y, respectively, and then
aking the substitution wx→w, �y→� and rewriting the corresponding system in a real form by

eparating �=u+ iv into real and imaginary parts, we obtain a system of four real partial differ-
ntial equations,

ut + �vxx + vyy = �v�u2 + v2� + �v�w + �� ,

− vt + �uxx + uyy = �u�u2 + v2� + �u�w + �� ,

�1.3�
wxx + n�xx + m2wyy = 2�ux

2 + uuxx + vx
2 + vvxx� ,

nwyy + ��xx + m1�yy = 2�uy
2 + uuyy + vy

2 + vvyy� .

n the sequel, we shall call �1.3� the GDS equations.
The main result of the paper is to show that, when some conditions on physical parameters

,n ,m1 ,m2 ,� are imposed, the Lie algebra of the symmetry group of the GDS system has a
ac-Moody-Virasoro �KMV� loop structure which is shared by the symmetry algebras of all
nown integrable equations in 2+1 dimensions such as the Kadomtsev-Petviashvilli �KP�
quation4,5 and the usual integrable DS equations.6 The corresponding special case is a candidate
or being integrable. Moreover, we show that this algebra is isomorphic to that of DS equations6

i�t + �1�xx + �yy = �2���2� + w� ,

�1.4�
�1wxx + wyy = �2����2�yy ,

ith �1= ±1, �2= ±1. In the special case when �1+�1=0, this system which is one of the rare
ystems in more than 1+1 dimensions for which the Cauchy initial value problem is solvable by
he inverse spectral transform �IST� technique becomes completely integrable. The Lie algebra of
he symmetry group of the integrable DS system is referred to as the DS algebra. This isomor-
hism �a necessary condition for two different systems to be transformable into each other� should
otivate one to look for point transformations taking the Lie algebras into each other. We expect

uch transformations to transform the systems into each other as well.
In Sec. II we compute the Lie symmetry algebra of �1.3� and identify its structure. In particu-

ar, we show that for a special choice of parameters it is a centerless Kac-Moody-Virasoro algebra.

I. THE SYMMETRY GROUP OF THE GDS EQUATIONS AND STRUCTURE OF ITS LIE
LGEBRA

We apply the standard infinitesimal procedure7 to find the symmetry algebra L and hence the
ymmetry group G of �1.3�. We write the GDS equations as a system �i�t ,x ,y ,u ,v ,w ,��=0, i
1,2 ,3 ,4. A general element of the algebra is represented by a vector field

V = 	�t + 
�x + ��y + �1�u + �2�v + �3�w + �4��, �2.1�

here the coefficients 	 ,
 ,� ,�i , i=1,2 ,3 ,4 are functions of t ,x ,y ,u ,v ,w ,�. According to the
eneral theory for symmetries of differential equations, to find these functions we prolong the
ector field �2.1� to second order derivatives and require that the second prolonged vector field

nnihilates �i on the solution manifold of the system, namely
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�pr�2� V��i�t,x,y,u,v,w,�����i=0 = 0, i = 1,2,3,4, �2.2�

here pr�2� V is the second prolongation of the vector field V. This condition provides us with a
uite complicated system of determining equations �a system of linear partial differential equa-
ions� for the coefficients. This step is entirely algorithmic and is implemented on several com-
uter algebra packages like REDUCE, MATHEMATICA, MAPLE �see Ref. 8 for a survey of symbolic
oftwares for symmetry�. The final step of integrating the determining equations is less algorith-
ic. Solving these huge numbers of determining equations we find that the general element can be
ritten as

V = T�f� + X�g� + Y�h� + W�m� , �2.3�

here

T�f� = f�t��t +
1

2
f��t��x�x + y�y − u�u − v�v − 2w�w − 2����

−
�x2 + �y2�

8�
� f��t��v�u − u�v� +

f��t�
2�

��w + ���� ,

X�g� = g�t��x −
x

2�
�g��t��v�u − u�v� +

g��t�
2�

��w + ���� ,

�2.4�

Y�h� = h�t��y −
y

2
�h��t��v�u − u�v� +

h��t�
2�

��w + ���� ,

W�m� = m�t��v�u − u�v� +
m��t�

2�
��w + ��� .

he functions g�t�, h�t�, and m�t� are arbitrary functions of class C�I�, I�R. The function f�t� is
rbitrary if

m2� + n + 1 = 0, m1� + n� + � = 0, �2.5�

therwise f�t�=c2t2+c1t+c0. We mention that these conditions come from the fact that two of the
etermining equations are

�m2� + n + 1�f��t� = 0, �m1� + n� + ��f��t� = 0,

hereas the remaining ones are solved without any constraints on g, h, and m.
We mainly focus on the case when f�t� is allowed to be arbitrary. The symmetry algebra

ealized by the vector fields �2.3� and �2.4� is then infinite dimensional and more important has the
tructure of a Kac-Moody-Virasoro algebra as we shall see below. More interestingly, it is generic
mong the symmetry algebras of a few 2+1-dimensional integrable partial differential equations
the KP equation, the modified KP equation, the potential KP equation, the integrable three-wave
esonant equations and the integrable DS equations�. Henceforth, we shall call this the GDS
ymmetry algebra and the corresponding system the GDS system.

Note that sometimes it is more convenient to use the polar decomposition u+ iv=Rei� so that
n �2.4� we can write

u�u + v�v = R�R, − �v�u − u�v� = ��.

The commutation relations for the GDS algebra are easily obtained as follows:

�T�f1�,T�f2�� = T�f1f� − f�f2� ,
2 1
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�T�f�,X�g�� = X� fg� − 1
2 f�g� ,

�T�f�,Y�h�� = Y� fh� − 1
2 f�h� ,

�T�f�,W�m�� = W�fm�� , �2.6�

�X�g1�,X�g2�� = −
1

2�
W�g1g2� − g1�g2� ,

�Y�h1�,Y�h2�� = − 1
2W�h1h2� − h1�h2� ,

�X�g�,Y�h�� = �X�g�,W�m�� = �Y�h�,W�m�� = �W�m1�,W�m2�� = 0.

rom �2.6� we see that the GDS system has a Lie symmetry algebra L isomorphic to that of the DS
ymmetry algebra.6 Indeed, it allows a Levi decomposition

L = S* N , �2.7�

here S= �T�f�	 is a simple infinite-dimensional Lie algebra and

N = �X�g�,Y�h�,W�m�	

s a nilpotent ideal �nilradical�. Here, * denotes a semidirect sum. The algebra �T�f�	 is isomor-
phic to the Lie algebra corresponding to the Lie group of diffeomorphisms of a real line.

We remark that a similar isomorphism between the symmetry algebras of a class of �inte-
grable� generalized cylindrical KP �GCKP� equation and of the KP equation was pointed out in
Ref. 9.

Expanding the arbitrary functions f , g, h, and m into Laurent polynomials and considering
each monomial tn �n not necessarily positive integer� separately, we obtain a realization of a KMV
lgebra without central extension. Here the factor subalgebra S is the Virasoro part, the nilpotent
ubalgebra N is the Kac-Moody part of the GDS algebra.10 We refer for different realizations of
he Virasoro algebras to Ref. 11. Furthermore, just as the DS algebra6 it can be shown that the
DS algebra with �2.5� can be imbedded into a Kac-Moody-type loop algebra.

Theorem 2.1: The system �1.3� is invariant under an infinite-dimensional Lie point symmetry
roup, the Lie algebra of which has a Kac-Moody-Virasoro structure isomorphic to the DS alge-
ra if and only if the conditions �2.5� hold.

Let us mention that the GDS equations are also invariant under a group of discrete transfor-
ations generated by

t → t, x → − x, y → y, � → �, w → w, � → � ,

t → t, x → x, y → − y, � → �, w → w, � → � ,

t → t, x → x, y → y, � → − �, w → w, � → � ,

t → − t, x → x, y → y, � → �*, w → w, � → � . �2.8�

The obvious physical symmetries Lp of the GDS equations are obtained by restricting all the

unctions f , g, h, and m to be first order polynomials. Indeed, we have
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T = T�1� = �t, P1 = X�1� = �x, P2 = Y�1� = �y ,

W0 = W�1� = v�u − u�v,

D = T�t� = t�t + 1
2 �x�x + y�y − u�u − v�v − 2w�w − 2���� , �2.9�

B1 = X�t� = t�x −
x

2�
�v�u − u�v�, B2 = Y�t� = t�y −

y

2
�v�u − u�v� ,

W1 = W�t� = t�v�u − u�v� +
1

2�
��w + ��� .

e see that T , P1 , P2 generate translations, D dilations, B1 and B2 Galilei boosts in the x and y
irections, respectively. Finally, W0 and W1 generate a constant change of phase of � and a change
f phase of �, linear in t, plus constant shifts in w and �, respectively.

The generators �2.9� form a basis of an eight-dimensional solvable Lie algebra Lp

�D ,T , P1 , P2 ,B1 ,B2 ,W0 ,W1	. It has a seven-dimensional nilpotent ideal �the nilradical� N
�T , P1 , P2 ,B1 ,B2 ,W0 ,W1	.

Another finite-dimensional algebra, not contained in Lp is obtained by restricting f�t� to
uadratic polynomials. We obtain T=T�1�, D=T�t� as in �2.9�, and in addition

C = T�t2� = t2�t + tD −
�x2 + �y2�

4�
�v�u − u�v� . �2.10�

he commutation relations are

�T,D� = T, �T,C� = 2D, �D,C� = C ,

o that we have obtained the algebra sl�2,R� with C generating conformal type of transformations

t̃ =
t

1 − pt
, x̃ =

x

1 − pt
, ỹ =

y

1 − pt
,

R̃ = �1 − pt�R, �̃ =
p�x2 + �y2�
4��1 − pt�

+ � , �2.11�

w̃ = �1 − pt�2w, �̃ = �1 − pt�2� ,

here p is the group parameter. Further, composing �2.11� with time translations generated by T
nd dilations generated by D we obtain the SL�2,R� group generated by actions on the space of
ndependent and depend variables. It should be mentioned that any finite-dimensional subalgebra
f the Virasoro algebra of 2+1 dimensional integrable equations is isomorphic to sl�2,R� or one
f its subalgebras. The transformed variables and the new solution in terms of the original ones are
iven by the formulas

t̃ =
c + dt

a + bt
, x̃ =

x

a + bt
, ỹ =

y

a + bt
, ad − bc = 1,

�̃ = �a + bt�−1 exp
 ib�x2 + �y2�
4��a + bt� ���t̃, x̃, ỹ� ,

˜ −2 ˜ ˜ ˜
w = �a + bt� w�t,x,y� ,
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�̃ = �a + bt�−2��t̃, x̃, ỹ� . �2.12�

ere a ,b ,c are the group parameters of SL�2,R�. These are exactly the formulas which played an
ssential role in the construction of analytic blow-up profiles3 in which the authors made use of

tationary radial solutions �� ,w ,�� to generate new solutions �time dependent� ��̃ , w̃ , �̃� of the
DS equations. More generally, the elements of the connected part of the full symmetry group of

he GDS equations can be obtained by integrating the vector fields �2.3� and �2.4�. We refer the
eader to Ref. 6 for the general Lie group of transformations of DS algebra.

Let us now return to the isomorphic GDS and DS symmetry algebras, and transform the GDS
ector fields �2.1� by the point transformation q=w+�− ���2. It is easy to see that the component

1
2 ��w+��� transforms to �q, and D→x�x+y�y −u�u−v�v−2q�q, and the rest remains unaltered,
amely the DS symmetry algebra is obtained. This means that the functions �� ,q� satisfy the DS
quations whenever �� ,w ,�� satisfy the GDS equations, but not vice versa. At this time, it
emains open whether it is possible to construct an invertible point transformation relating these
wo systems.

We conclude by making several comments. As is well illustrated by the results of this paper,
nowing that a nonlinear partial differential equation �or system� admits a KMV algebra as a
ymmetry algebra can serve as a useful criterion of identifying integrable equations. In particular,
his fact can be used to pick out an integrable equation from a class of generically nonintegrable
nes. For instance, for all values of parameters not satisfying �2.5�, the Virasoro part T�f� of the
DS algebra is not present. The first author of the present paper and Winternitz12 used the same

pproach to identify all subclasses invariant under a KMV algebra and its subalgebras containing
p to three arbitrary functions of time from a rather general class of KP-type equations involving
ine arbitrary functions of one or two variables. On the other hand, a classification of all one- and
wo-dimensional subalgebras of the DS algebra into conjugacy classes under the adjoint action of
he DS group �including the discrete transformations� is performed in Ref. 6. The GDS algebra
ill have the same conjugacy classes of subalgebras as the DS algebra. Depending on which of the

unctions g�t�, h�t�, and m�t� are nonzero, precisely six conjugacy classes of one-dimensional
ubalgebras exist,

L1,1 = �T�1�	, L1,2
a = �X�1� + aY�1�	, L1,3�h� = �X�1� + Y�h�	, a � 0,

L1,4 = �Y�1�	, L1,5 = �W�t�	, L1,6 = �W�1�	 .

hey can be used to reduce the integrable GDS system to integrable one in two variables and thus
o obtain subgroup invariant solutions. There will be four type of reductions since only the first
our subgroups corresponding to �L1,1 ,L1,2

a ,L1,3�h� ,L1,4� will generate actions on the coordinate
pace �t ,x ,y�. The remaining two �L1,5 ,L1,6� generate purely vertical �or gauge� transformations
hanging phases only and thus lead to no reductions. For example, one can show that all the
ravelling wave solutions obtained in Ref. 1 can be extracted from those of representative reduced
quations by applying appropriate symmetry group transformations. We note that these types of
hysically important solutions are invariant under translational subgroups alone.
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This paper is the first in a series revisiting the Faraday effect, or more generally, the
theory of electronic quantum transport/optical response in bulk media in the pres-
ence of a constant magnetic field. The independent electron approximation is as-
sumed. At zero temperature and zero frequency, if the Fermi energy lies in a
spectral gap, we rigorously prove the Widom-Streda formula. For free electrons, the
transverse conductivity can be explicitly computed and coincides with the classical
result. In the general case, using magnetic perturbation theory, the conductivity
tensor is expanded in powers of the strength of the magnetic field B. Then the linear
term in B of this expansion is written down in terms of the zero magnetic field
Green function and the zero field current operator. In the periodic case, the linear
term in B of the conductivity tensor is expressed in terms of zero magnetic field
Bloch functions and energies. No derivatives with respect to the quasimomentum
appear and thereby all ambiguities are removed, in contrast to earlier work. © 2006
American Institute of Physics. �DOI: 10.1063/1.2162148�

. INTRODUCTION

In sharp contrast with the zero magnetic field case, the analysis of properties of electrons in
eriodic or random potentials subjected to external magnetic fields is a very challenging problem.
he difficulty is rooted in the singular nature of the magnetic interaction: due to a linear increase
f the magnetic vector potential, the naive perturbation theory breaks down even at arbitrarily
mall fields.

To our best knowledge, only the periodic case has been considered in connection with the
araday effect for bulk systems. The first full scale quantum computation was done by Roth30 �for
review of earlier attempts4–6 we direct the reader to this paper�. The physical experiment starts

y sending a monochromatic light wave, parallel to the 0z direction and linearly polarized in the
lane x0z. When the light enters the material, the polarization plane can change; in fact, there
xists a linear relation between the angle � of rotation of the plane of polarization per unit length
nd the transverse component of the conductivity tensor �xy �see formula �1� in Ref. 30�. The
aterial is chosen in such a way that when the magnetic field is zero, this transverse component
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�
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anishes. When the magnetic field B is turned on, the transverse component is no longer zero. For
eak fields one expands the conductivity tensor to first order in B and obtains a formula for the
erdet constant.

Therefore the central object is �xy�B�, which depends among other things on temperature,
ensity of the material, and frequency of light. Using a modified Bloch representation, Roth was
ble to obtain a formula for �d�xy /dB��0�, and studied how this first order term behaves as a
unction of frequency, both for metals and semiconductors.

However, the theory in Ref. 30 is not free of difficulties. First, it seems almost hopeless to
stimate errors or to push the computation to higher orders in B. Second, even the first order
ormula contains terms which are singular at the crossings of the Bloch bands. Accordingly, at the
ractical level this theory only met a moderate success and alternative formalisms have been used,
s for example the celebrated Kohn-Luttinger effective many band Hamiltonian �see Refs. 17, 31,
nd 28 and references therein�, or tight-binding models.25 Since all these methods have limited
pplicability, a more flexible approach was still needed.

In the zero magnetic field case, a very successful formalism �see, e.g., Refs. 2, 9, 16, and 27
nd references therein� is to use the Green function method. This is based on the fact that the
races involved in computing various physical quantities can be written as integrals involving
reen functions. The main aim of our paper is to develop a Green function approach to the
araday effect, i.e., for the conductivity tensor when a magnetic field is present. Let us point out

hat the use of Green functions �albeit different from the ones used below� goes back at least to
ondheimer and Wilson33 in their theory of diamagnetism of Bloch electrons. Aside from the fact

hat the Green function �i.e., the integral kernel of the resolvent or the semigroup� is easier to
ompute and control, the main point is that by factorizing out the so-called nonintegrable phase
actor �or magnetic holonomy� from the Green function, one can cope with the singularities
ntroduced by the increase at infinity of the magnetic vector potentials. In addition �as it has
lready been observed by Schwinger32 in a QED context�, after factorizing out the magnetic
olonomy one remains with a gauge invariant quantity which makes the problem of gauge fixing
rrelevant. The observation �going back at least to Peierls26� that one can use these magnetic
hases in order to control the singularity of the magnetic perturbation has been used many times
n various contexts �see, e.g., Refs. 19 and 33�. We highlight here the results of Nedoluha20 where

Green function approach for the magneto-optical phenomena at zero temperature and with the
ermi level in a gap has been investigated.

But the power of this method has only recently been fully exploited in Refs. 11 and 12 and
eveloped as a general gauge invariant magnetic perturbation theory in Ref. 22. Applied to the
ase at hand, this theory gives an expansion of the conductivity tensor in terms of the zero
agnetic field Green functions. Moreover, it is free of any divergences. A key ingredient in

ontrolling divergences is the exponential decrease of the Green functions with the distance
etween the arguments, for energies outside the spectrum.10,21 We stress the fact that since no basis
s involved, periodicity is not needed and the theory can also be applied to random systems. Finite
ystems and/or special geometries �layers� are also allowed. The content of the paper is as follows.

In Sec. II we give a derivation of the conductivity tensor from first principles in the linear
esponse theory. We include it to point out that it coincides with various formulas used before.
lthough in physics establishing the Kubo formula is considered somehow a triviality, from a
athematical point of view it remains a serious challenge �see Ref. 7�.

Section III contains the precise formulation of the thermodynamic limit, stated in Theorem
.1. We do not give its proof here, but we try to explain why it is true.

Section IV shows that at the thermodynamic limit, at zero temperature, zero frequency, and for
he Fermi energy in a spectral gap, we reobtain a formula of Streda34 for the transverse component
f the conductivity tensor, known from the integral quantum Hall effect �IQHE�. A precise state-
ent and its proof are contained in Theorem 4.1. Moreover, under the proviso that exponentially

ocalized Wannier function exist �see Theorem 4.2�, this transverse component vanishes �see also

efs. 35 and 3 for related results�. We stress that this result holds for the whole �xy�B� as long as
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he magnetic field is not too large, not just for �d�xy /dB��0�. The vanishing of its first order
orrection was in fact claimed in formula �50� in Ref. 30.

Section V contains the exact quantum computation of �xy�B� for free electrons; in spite of the
act that such a result might be known �and it is known at zero frequency�, we were not able to
nd it in the literature. Interestingly enough, the quantum computation gives the same result as the
ell-known classical computation �when the relaxation time is infinite�.

Section VI contains the core of the paper, which includes the derivation of �d�xy /dB��0� for
eneral Bloch electrons. As in the zero magnetic field case, its formula only contains zero mag-
etic field Green functions and current operators.

Section VII deals with periodic systems, and the result of the preceding section is written
own in terms of zero magnetic field Bloch functions and bands.

At the end we have some conclusions.
The main goal of this paper is to present the strategy, state the results concerning the Verdet

onstant, and to outline future theoretical and practical problems. Detailed proofs of the thermo-
ynamic limit and of other technical estimates will be given elsewhere.

I. PRELIMINARIES: THE CONDUCTIVITY TENSOR IN THE LINEAR RESPONSE
EGIME

We begin by fixing the notation used in the description of independent electrons subjected to
constant magnetic field. The units are chosen so that �=1. Since we consider spin 1/2 particles,

he one particle Hilbert space for a nonconfined particle is

H� = L2�R3� � L2�R3�

ith the standard scalar product. Accordingly, all operators below and their integral kernels are
�2 matrices in the spin variable. We choose the constant magnetic field of strength B to be
riented along the z axis. Then the one particle Hamiltonian with the spin-orbit coupling included
s �see, e.g., Ref. 30�

H��B� =
1

2m
P�B�2 + V + g�bB�3, �2.1�

ith

P�B� = − i � − ba +
1

2mc2s ∧ ��V� = P�0� − ba , �2.2�

here

b = −
e

c
B

nd a�x� is an arbitrary smooth magnetic vector potential which generates a magnetic field of
ntensity B=1, i.e., �∧a�x�= �0,0 ,1�. The most frequently used magnetic vector potential is the
ymmetric gauge,

a0�x� = 1
2n3 ∧ x , �2.3�

here n3 is the unit vector along z axis.
In the periodic case we denote by L the underlying Bravais lattice, by � its elementary cell

nd by �* the corresponding Brillouin zone. ��� and ��*� stand for the volumes of the elementary
ell and Brillouin zone, respectively. In the absence of the magnetic field one has the well-known

loch representation in terms of Bloch functions,
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� j�x,k� =
1

���*�
eik·xuj�x,k�, x � R3, �2.4�

here uj�x ,k� are the normalized to one eigenfunctions of the operator

h�k�uj�x,k� = 	 j�k�uj�x,k� , �2.5�

h�k� =
1

2m
�− i�p +

1

2mc2s ∧ ��V� + k�2

+ V =
1

2m
�p + k�2 + V, k � �*,

p = − i�p +
1

2mc2s ∧ ��V� , �2.6�

efined in L2��� � L2��� with periodic boundary conditions. We label 	 j�k� in increasing order.
e have to remember that, as functions of k, 	 j�k�, and uj�x ,k� are not differentiable at the

rossing points. Since the � j�x ,k�’s form a basis of generalized eigenfunctions, the Green func-
ion �i.e., the integral kernel of the resolvent� writes as

G�
�0��x,y;z� = 	

�*


j
1

�� j�x,k���� j�y,k��
	 j�k� − z

dk , �2.7�

nd it is seen as a matrix in the spin variables. The above formula must be understood in the
ormal sense since the series on the right-hand side is typically not absolutely convergent, and care
s to be taken when interchanging the sum with the integral. Notice however that G�

�0��x ,x� ;z� is
well behaved matrix valued function.

We consider a system of noninteracting electrons in the grand-canonical ensemble. More
recisely, we consider a box �1�R3, which contains the origin, and a family of scaled boxes

�L = x � R3:x/L � �1� . �2.8�

he thermodynamic limit will mean L→�, that is when �L tends to fill out the whole space. The
ne particle Hilbert space is HLªL2��L� � L2��L�. The one particle Hamiltonian is denoted by

L�B� and is given by �2.1� with Dirichlet boundary conditions �i.e., the wave functions in the
omain of HL�B� vanish at the surface ��L�. More precisely, we first define it on C0

���L�
� C0

���L�, and then HL�B� will be the Friedrichs extension of this minimal operator. This is indeed
ossible, because our operator can be written as �up to some irrelevant constants� −�DI2+W,
here �D is the Dirichlet Laplacian and W is a first order differential operator, relatively bounded

o −�DI2 �remember that L�� with relative bound zero. The form domain of HL�B� is the
obolev space H0

1��L� � H0
1��L�, while the operator domain is

Dom�HL�B�� = DL � DL, DL ª H2��L� � H0
1��L� . �2.9�

oreover, HL�B� is essentially self-adjoint on C�0�
� ��L�, i.e., functions with support in �L and

ndefinitely differentiable in �L up to the boundary.
We assume that the temperature T=1/ �k�� and the chemical potential � are fixed by a

eservoir of energy and particles. We work in a second quantized setting with an antisymmetric
ock space denoted by FL. Denote the operators in the Fock space with a hat and borrow some
otation from the book of Bratelli and Robinson,8 if A is an operator defined in HL, we denote by

ˆ =d��A� its second quantization in the Fock space. At t=−� the system is supposed to be in the
rand-canonical equilibrium state of temperature T and chemical potential �, i.e., the density

atrix is
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�̂e =
1

Tr�e−�K̂��
e−�K̂�, �2.10�

here

K̂� = d��HL�B� − � · Id� �2.11�

s the “grand-canonical Hamiltonian.”
The interaction with a classical electromagnetic field is described by a time-dependent electric

otential

V�x,t� ª �ei�t + e−i�̄t�eE · x, t � 0, x � �L. �2.12�

o the total time-dependent one-particle Hamiltonian is

H�t� = HL�B� + V�t� . �2.13�

otice that e near E is the positive elementary charge. Here we take Im �0 which plays the role
f an adiabatic parameter, and insures that there is no interaction in the remote past. Finally, the
ne-particle current operator is as usual

J = − ei�HL�B�,X� = −
e

m
P�B� , �2.14�

here X is the multiplication by x. Note that J is a well-defined operator on the domain of HL�B�,
ecause multiplication by any component of X leaves this domain invariant �see �2.9��. Moreover,
ince L�, X is a bounded operator. In fact, X is the true physical self-adjoint observable, while
�B� �or J� appear when one differentiates the map t�eitHL�B�Xe−itHL�B� in the strong sense on the
omain of HL�B�.

We assume that the state of our system is now described by a time-dependent density matrix,
ˆ �t�, obtained by evolving �̂e from −� up to the given time, i.e.,

i�t�̂�t� = �Ĥ�t�, �̂�t��, �̂�− �� = �̂e. �2.15�

oing to the interaction picture and using the Dyson expansion up to the first order, one gets

�̂�t = 0� = �̂e − i	
−�

0

�d��Ṽ�s�, �̂e��ds + O�E2� , �2.16�

here

Ṽ�s� ª eisHL�B�V�s�e−isHL�B�. �2.17�

he current density flowing through our system at t=0 is given by �see �2.16��:

j =
1

��L�
TrFL

��̂�0�Ĵ� =
1

��L�
TrFL

��̂eĴ� −
i

��L�
TrFL�	

−�

0

�d��Ṽ�s��, �̂e�Ĵ ds� + O�E2� .

�2.18�

n evaluating the right-hand side �rhs� of �2.18� we use the well-known fact that traces over the
ock space can be computed in the one-particle space �see Proposition 5.2.23 in Ref. 8�,

TrFL
�̂e d��A�� = TrHL

fFD�HL�B��A� , �2.19�
here fFD is the Fermi-Dirac one-particle distribution function,
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fFD�x� ª
1

e��x−�� + 1
, x � R, � � 0, � � R . �2.20�

lugging �2.19� into �2.18�, the identity �d��A� ,d��B��=d���A ,B��, the invariance of trace under
yclic permutations and ignoring the quadratic correction in E one arrives at

j =
1

��L�
TrHL

fFD�HL�B��J� −
i

��L�
e

m
TrHL�	

−�

0

�Ṽ�s�,P�B��fFD�HL�B��ds� . �2.21�

he first term in �2.21� is always zero because of the identity �trace cyclicity again�

TrHL
�HL�B�,X�fFD�HL�B��� = TrHL

�fFD�HL�B��,HL�B��X� = 0 �2.22�

hich is nothing but the fact that the current vanishes on an equilibrium state. Note that these
perations under the trace sign are quite delicate, since unbounded operators are involved. Let us
or once give a complete proof to �2.22�. We have the identity between bounded operators �con-
ider the first component X1�,

�HL�B�,X1�fFD�HL�B�� = HL�B�X1fFD�HL�B�� − X1HL�B�fFD�HL�B�� . �2.23�

emember that X1 is a bounded operator in the box, and preserves the domain of HL�B�. This
eans that the operator OL= �HL�B�+ i�X1�HL�B�+ i�−1 is bounded. Hence we can write

HL�B�X1fFD�HL�B�� = �1 − i�HL�B� + i�−1�OL�HL�B� + i�fFD�HL�B�� .

ow the operator �HL�B�+ i�fFD�HL�B�� still is trace class due to the exponential decay of fFD,
hile �1− i�HL�B�+ i�−1� and OL are bounded. Thus HL�B�X1fFD�HL�B�� is trace class and we can

ompute its trace using the complete eigenbasis of HL�B�, which gives the same result as for the
ther operator X1HL�B�fFD�HL�B��. Thus �2.22� is proved.

Using �2.12� and �2.17� one can write

j� = 

�=1

3

������ + ����− �̄��E�, � � 1,2,3�, I���  0, �2.24�

here the conductivity tensor is given by

����B,�� = −
i

��L�
e2

m
TrHL	

−�

0

�eisHL�B�x�e−isHL�B�,P��B��fFD�HL�B��eis� ds . �2.25�

erforming an integration by parts, using the formulas i�HL�B� ,x��= P��B� /m and i�P��B� ,x��
��� one arrives at

����B,�� =
1

��L�
e2

im����� Tr�fFD�HL�B��� +
i

m
Tr	

−�

0

eis��+HL�B��P��B�e−isHL�B�

��P��B�, fFD�HL�B���ds� , �2.26�

nd this coincides �at least at the formal level� with formula �5� in Ref. 30. Notice that from now
n, we write just Tr when we perform the trace, since we only work in the one-particle space.

Since we are interested in the Faraday effect, and we assume that the magnetic field B is
arallel with the z axis, we will only consider the transverse conductivity �12�B ,��. Hence the first
erm vanishes. We now perform the integral over s with the help of Stone’s formula followed by
deformation of the contour �paying attention not to hit the singularities of fFD�z� or to make the
ntegral over s divergent�

                                                                                                            



w

w

a

w
i
r

I

e
i
t
s
r
z
i
t
C

c
v
n
k
b
2
o
p
t
s

fi
n
g
v

m
G

013511-7 The Faraday effect revisited: General theory J. Math. Phys. 47, 013511 �2006�

                        
fFD�HL�B��eis�HL�B�+�� =
i

2�
	

��

fFD�z�eis�z+���HL�B� − z�−1 dz , �2.27�

here � is either 0 or �, the contour is counter-clockwise oriented and given by

�� = x ± id:a � x  �� � a + iy:− d � y � d� �2.28�

ith

d = min� �

2�
,
�Im ��

2
� , �2.29�

nd a+1 lies below the spectrum of HL�B�. As a final result one gets

�12�B,�� = −
e2

2�m2���L
Tr	

��

fFD�z�P1�B��HL�B� − z�−1P2�B��HL�B� − z − ��−1

+ z → z − ��dz ¬
e2

m2�
aL�B,�� , �2.30�

here “z→z−�” means a similar term where we exchange z with z−�. Now one can see that by
nserting the eigenbasis of HL�B� one obtains the well-known formula derived from semiclassical
adiation theory �see, e.g., formula �4� in Ref. 30�.

II. GAUGE INVARIANCE AND EXISTENCE OF THE THERMODYNAMIC LIMIT

Up to now the system was confined in a box �L. As is well known �see, e.g., Ref. 30� a direct
valuation of �2.30� �or previous formulas equivalent to it including formula �4� in Roth’s paper�
s out of reach: the eigenvalues and eigenstates of H�B� are rather complicated �even in the
hermodynamic limit �L→R3� and at the same time the Bloch representation is plagued by
ingular matrix elements of the magnetic vector potential. Roth used a modified magnetic Bloch
epresentation in Ref. 29 and derived a formula for the linear term in B of �2.30� in terms of the
ero magnetic field Bloch representation. Still, her procedure is not free of difficulties since it
nvolves �kuj�x ,k� which might not exist at crossing points. In addition, it seems almost hopeless
o control the errors or to push computations to the second order in B which would describe the
otton-Mouton effect for example.

In what follows, we shall outline another route of evaluating �2.30� which is mathematically
orrect, systematic, and completely free of the above difficulties. There are two basic ideas in-
olved. The first one �going back at least to Sondheimer and Wilson33 in their theory of diamag-
etism� consists in writing the trace in �2.30� as integrals over �L of corresponding integral
ernels. This is nothing but the well-known Green function approach �see, e.g., Ref. 15� which has
een very successful in computing optical and magneto-optical properties of solids �see, e.g., Refs.
, 16, and 27� in the absence of an external magnetic field. The point is that the integral kernels are
n the one hand easier to control and compute, and on the other hand they do not require
eriodicity. Moreover, this approach proved to be essential in deriving rigorous results concerning
he diamagnetism of free electrons1,11 and actually we expect the methods of the present paper to
implify the theory of diamagnetism of Bloch electrons as well.

However, when applying Green function approach in the presence of an external magnetic
eld one hits again the divergences caused by the linear increase of the magnetic vector potential:
aively, at the first sight aL�B ,�� is not bounded in the thermodynamic limit L→� but instead
rows like the second power of L. It was already observed in Ref. 1 that these divergent terms
anish identically due to some identities coming from gauge invariance.

This is indeed the case and the main point of this paper is to show, following the develop-
ents in Refs. 11, 12, and 22 that factorizing the so-called nonintegrable phase factor from the

−1
reen function �the integral kernel of �HL�B�−�� � allows, at the same time, to eliminate the
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ivergences coming from the increase of the magnetic vector potential and to obtain a controlled
xpansion in powers of B. In addition, this leads to expressions of aL�B ,�� which are manifestly
auge invariant.

For an arbitrary pair of points x, y��L consider the “magnetic phase” associated with the
agnetic vector potential a�u� defined as the path integral on the line linking y and x,

�a�x,y� = 	
y

x

a�u� · du . �3.1�

he magnetic phase satisfies the following crucial identity: for every fixed c,

e−ib�a�x,c�P�B�eib�a�x,c� = P�0� − bA�x − c� , �3.2�

here A�x�= 1
2n3∧x, i.e., irrespective of the choice of a�x�,

A�x − c� = 1
2n3 ∧ �x − c� �3.3�

s the symmetric �transverse, Poincaré� gauge with respect to c.
Write now the Green function �as a 2�2 matrix in the spin space�

GL�x,y;�� = �HL − ��−1�x,y� �3.4�

n the factorized form

GL�x,y;�� = eib�a�x,y�KL�x,y;�� . �3.5�

t is easy to check that while GL�x ,y ;�� is gauge dependent, KL�x ,y ;�� is gauge independent, i.e.,
he whole gauge dependence of GL�x ,y ;�� is contained in the phase factor eib�a�x,y�. Plugging the
actorization �3.5� into the integrand of the rhs of �2.30�, using �3.2� and �3.3�, one obtains that its
ntegral kernel writes as

As,s�
L �x,x�� = eib�a�x,x��	

��

dz fFD�z�

�=1

2 	
�L

dy eib��x,y,x����P1,x�0� − bA1�x − y��KL�x,y;z��s,�

� ��P2,y�0� − bA2�x − y��KL�y,x�;z + ����,s� + z → z − �� , �3.6�

here

��x,y,x�� = �a�x,y� + �a�y,x�� + �a�x�,x�

s the flux of the magnetic field �0, 0, 1� through the triangle ��x ,y ,x��. Now the fact that there
re no long range divergences in the formula for As,s��x ,x�� follows from the exponential decay
f Green functions10 �see also Ref. 21�: for � outside the spectrum of H there exists m����0 such
hat as �x−y�→�

�KL�x,y;��� = �GL�x,y;��� � e−m����x−y�. �3.7�

t can be proved �the technical details which are far from being simple will be given elsewhere�
hat As,s�

L �x ,x�� is jointly continuous and moreover outside a thin region near the surface of �L

ne can replace it by the integral kernel As,s�
� �x ,x�� of the corresponding operator on the whole R3.

ccordingly, up to surface corrections,

aL�B,�� � −
1

2���L�
s=1

2 	
�L

As,s
� �x,x�dx . �3.8�

otice that due to the fact that ��x ,y ,x�=�a�x ,x�=0 the phase factors appearing in �3.6� reduce

o unity in �3.8�.
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In the periodic case, from the fact that in the symmetric gauge the Hamiltonian H��B� com-
utes with the magnetic translations �actually one can define magnetic translations for an arbitrary

auge, just first make the gauge transformation relating a�x� to A�x�� generated by L, it follows
hat for �� �L we have

K��x + �� ,y + �� ;�� = K��x,y;�� ,

hich implies that

As,s
� �x + �� ,x + �� � = As,s

� �x,x�

s periodic with respect to L, hence up to surface corrections

aL�B,�� � a�B,�� = −
1

2����
s=1

2 	
�

As,s
� �x,x�dx . �3.9�

herefore, the transverse conductivity writes as

�12�B,�� =
e2

m2�
a�B,�� �3.10�

ith a�B ,�� given by the rhs of �3.9�.
A precise formulation of this result is contained in the following theorem.
Theorem 3.1: Assume for simplicity that � is the unit cube in R3. The above defined trans-

erse component of the conductivity tensor admits the thermodynamic limit; more precisely as
ollows.

�i� The following operator defined by a B�L2 � L2�-norm convergent Riemann integral,

FL ª −
1

2�
	

��

fFD�z�P1�B��HL�B� − z�−1P2�B��HL�B� − z − ��−1 + z → z − ��dz ,

�3.11�

s in fact trace-class, and �12
�L��B ,��= �e2 /m2���L��Tr�FL�.

�ii� Consider the operator F� defined by the same integral but with H��B� instead of HL�B�,
nd defined on the whole space. Then F� is an integral operator, with a kernel As,s�

� �x ,x�� jointly
ontinuous on its spatial variables. Moreover, the function defined by R3�x→sB�x�


s=1
2 As,s

� �x ,x��C is continuous and periodic with respect to Z3.
�iii� The thermodynamic limit exists,

�12
����B,�� ª lim

L→�
�12

�L��B,�� =
e2

m2����	�

sB�x�dx . �3.12�

he proof of this theorem will be given elsewhere.13

V. THE ZERO FREQUENCY LIMIT AT T=0: A RIGOROUS PROOF OF THE WIDOM-
TREDA FORMULA FOR SEMICONDUCTORS

Doing some very formal computations one can show that at T=0 and �=0, �12�B ,�� as given
y �3.9� and �3.10� coincide with the formula for the quantized Hall conductivity �see, e.g.,
ormulas �5� and �6� in Ref. 34� which in turn gives �again at the heuristic level� the well-known

idom-Streda formula. The original derivation has little mathematical rigor, in particular because
t assumes some very strong assumptions on the existence and regularity of �H��B�−	+ i0�−1 as a
unction of 	�R. These assumptions are clearly not true in many situations.

Here we will show how the Widom-Streda formula can be rigorously obtained when the Fermi

nergy lies in a spectral gap. The problem in which the Fermi energy is in the spectrum, remains
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pen. Now assume that for some B, the chemical potential � lies in a spectral gap of H��B�. More
recisely, throughout this section we suppose that �d1 ,d2����H��B�� with d1d2, and take �
�d1 ,d2�. For simplicity, assume that �= �d1+d2� /2. This is the typical situation for semiconduc-

ors and/or isolators. In the absence of spin, the Widom-Streda formula roughly states that

�12�B,T = 0,� = 0� = ec� �N�B,E�
�B

�
E=�

, �4.1�

here N�B ,E� is the integrated density of states up to the energy E. When the spin is present �this
as not considered by Streda�, this formula is slightly changed. If we denote by B1 the B multi-
lying the spin matrix �3 in our Hamiltonian �2.1�, and with B2 the B near A, then in fact we have

�12�B,T = 0,� = 0� = ec� �N�B1,B2,E�
�B2

�
E=�,B1=B2=B

. �4.2�

In the rest of this section we give a rigorous �but still not fully technical� proof of �4.2�.
Theorem 4.1: Consider the conductivity at the thermodynamic limit given in �3.12�, and drop

he superscript �. Then if we first take the limit T↘0, and after that �→0, we get

lim
�→0

lim
T→0

�12�B,T,�� = ec
�

�B2
� 1

���
s=1

2 	
�

�s,s
B �x,x�dx�

B1=B2=B

, �4.3�

here

�B =
i

2�
	

�

1

H��B� − z
dz �4.4�

ith a positively oriented contour � enclosing the spectrum of H��B� below �, i.e., �B is the
ermi projection onto the subspace of “occupied” states at T=0.

Remarks:

1� Streda did not consider spin in his work34 and in this case the derivative with respect to the
magnetic field appears on the rhs of �4.3�.

2� While it is not clear that �B�x ,x� is well defined ��H��B�−z�−1�x ,x� does not exist� this can
be seen by writing for some a���H��B��,

�B =
1

2�
	

�

��H��B� − z�−1� − �H��B� − a�−1 dz

=
1

2�
	

�

�z − a��H��B� − z�−1�H��B� − a�−1 dz . �4.5�

Each resolvent has a polar integral kernel with a 1/ �x−x�� singularity, and the product of two
resolvents will have a continuous kernel. In fact we can repeat this trick and obtain products
of as many resolvents as we want, thus further improving the regularity of the integral
kernel. Technical details will be given elsewhere. Actually this kind of argument can be used
to show that all operators defined by integrals over complex contours have jointly continuous
integral kernels.

3� Although the order of limits in �4.3� is important for the argument below, it might be possible
�at least under additional conditions on the spectrum of H��B�� to interchange the order of
limits. The important fact is that the thermodynamic limit must be taken first: great care is to
be taken when defining currents in the static limit for finite systems �for a discussion of this

point in a related context see Ref. 24�.
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4� The result is valid for arbitrary magnetic field B and establishes the connection between the
Hall conductivity and the Faraday effect. However, the quantum Hall effect requires high
magnetic fields while the Faraday effect is usually considered at low magnetic fields.

Proof: We start from the conductivity in the thermodynamic limit as given by Theorem 3.1,

�12�B,T,�� = −
e2

2�m2����
s=1

2 	
�
�	

��,�

fFD�z���z,��dz�
s,s

�x,x�dx , �4.6�

here

��z,�� ª P1�B��H��B� − z�−1P2�B��H��B� − z − ��−1 + �z → z − �� . �4.7�

Since we made the assumption that �d1 ,d2����H��B��, then for ��� �d2−d1� /4 the integral
ver z on the contour ��,� can be replaced with the integral on the contour ��,�

1 ���,�
2 where �see

lso �2.28� and �2.29��,

��,�
1 = �x ± id:a � x � d1 +

d2 − d1

4
� � a + iy:− d � y � d� � �d1 +

d2 − d1

4
+ iy:− d � y � d�

�4.8�

nd

��,�
2 = �x ± id:x 
 d2 −

d2 − d1

4
� � �d2 −

d2 − d1

4
+ iy:− d � y � d� . �4.9�

ccordingly, one can rewrite �12�B ,T ,�� as

�12�B,T,�� = −
e2

2�m2����
s=1

2 	
�
�	

��,�
1

��z,��dz + 	
��,�

1
�fFD�z� − 1���z,��dz

+ 	
��,�

2
fFD�z���z,��dz�

s,s

�x,x�dx . �4.10�

ote that since the singularities of fFD�z� lie on �c+d� /2+ iy ,y� �−� ,��, one can take ��,�
j

ndependent of �, i.e., one can take d= �I���� /2 in �2.29�. At this point we take the limit �→�.
ince on ��

2 we have �fFD�z���2 exp�−��x− �d1+d2� /2��, and on ��
1 we have that �fFD�z�−1�

2 exp�−���d1+d2� /2−x��, the last two terms in �4.10� vanish in the zero temperature limit �full
etails about the control of various integral kernels will be given elsewhere�. Hence we get

�12�B,T = 0,�� = −
e2

2�m2����
s=1

2 	
�
�	

��
1

��z,��dz�
s,s

�x,x�dx . �4.11�

n application of the Cauchy residue theorem shows that the two terms of ��z ,�� �see �4.7�� will
ombine in the above integral and give

�12�B,T = 0,�� = −
e2

2�m2�

1

���
s=1

2 	
�
�	

�

P1�B��H��B�

− z + �/2�−1P2�B��H��B� − z − �/2�−1�
s,s

�x,x�dx , �4.12�

here � is any finite contour such that ����H��B�+�� for all ��� �d2−d1� /4 and only enclosing
he spectrum of H��B� below �d1+d2� /2. Now the integrand in �4.12� is analytic in � in a

eighborhood of the origin. By expanding the resolvents one obtains
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�12�B,T = 0,�� = −
e2

2�m2

1

���
s=1

2 	
�
�	

�

1

�
P1�B��H��B� − z�−1P2�B��H��B� − z�−1

+
1

2
�P1�B��H��B� − z�−1P2�B��H��B� − z�−2

− P1�B��H��B� − z�−2P2�B��H��B� − z�−1��
s,s

�x,x�dx + O��� . �4.13�

pparently we have a first order pole at �=0. But we now prove that the singular term on the rhs
f �4.13� is identically zero. Namely �when no spin variables appear the integral kernels below
ust be understood as matrices in the spin space�:

�	
�

P1�B��H��B� − z�−1P2�B��H��B� − z�−1 dz��x,x� = 0. �4.14�

sing the magnetic perturbation theory and the trick from �4.5� one can prove that even though the
ntegrand in �4.14� has a quite singular kernel, after integration with respect to z one gets a smooth
ernel, exponentially localized near the diagonal �details will be given elsewhere�.

Let us notice an operator equality which makes sense on compactly supported functions,

1

m
�H��B� − z�−1P2�B��H��B� − z�−1 = i�X2,�H��B� − z�−1� , �4.15�

ecause the resolvent �H��B�−z�−1 sends compactly supported functions into exponentially de-
aying functions �see �3.7��, which are in the domain of X2. In fact, the operator on the right-hand
ide has a nice integral kernel, given by

i�X2,�H��B� − z�−1���x,y� = i�x2 − y2�G��x,y;z� , �4.16�

hich is no longer singular at the diagonal and still exponentially localized near the diagonal, thus
efining a bounded operator on the whole Hilbert space. After integration we get

i

2�
	

�

P1�B��H��B� − z�−1P2�B��H��B� − z�−1 dz =
im

2�
	

�

P1�B���H��B� − z�−1,X2�dz

= m�P1�B��B,X2� , �4.17�

here we used that P1�B� and X2 commute. Note that the magnetic perturbation theory states that
he integral kernel of P1�B��B is smooth and exponentially localized near the diagonal. Therefore
P1�B��B ,X2� will have the integral kernel

�P1�B��B,X2���x,y� = �y2 − x2�P1�B��B��x,y� �4.18�

hich is identically zero at the diagonal and proves �4.14�. We can conclude at this point that

lim
�→0

�12�B,T = 0,�� = −
e2

4�m2

1

���
s=1

2 	
�

P1�B��H��B� − z�−1P2�B��H��B� − z�−2

− P1�B��H��B� − z�−2P2�B��H��B� − z�−1�s,s�x,x�dx . �4.19�

Now consider the rhs of �4.3�. Since the magnetic field multiplying the spin will not change,
ur notation will only refer to B2. Due to the stability of the spectrum against small variations of

B2+�B
he magnetic field, for sufficiently small �B, � still exists and
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�B2+�B − �B2 =
i

2�
	

�

��H��B2 + �B� − z�−1 − �H��B2� − z�−1�dz . �4.20�

y using the magnetic perturbation theory22 with respect to �B �see also the discussion around
6.2�� one obtains

��B2+�B − �B2��x,x� =
ie�B

2�mc
	

�
�	

R3
dy�H��B2� − z�−1�x,y�

��Py�B2� · A�y − x���H��B2� − z�−1�y,x��dz + O���B�2� . �4.21�

ow a very important identity is �see �3.3�, �4.15�, and �4.16��

A�y − x��H��B2� − z�−1�y,x� = −
i

2m
n3 ∧ ��H��B2� − z�−1P�B2��H��B2� − z�−1��y,x� .

�4.22�

he remainder in ��B�2 will have a smooth integral kernel after the integration with respect to z,
ence we obtain

�

�B2

1

���	�

�B�x,x�dx = −
e

4�m2c

� 	
�
�	

�

��H��B� − z�−1P1�B��H��B� − z�−1P2�B��H��B� − z�−1

− �H��B� − z�−1P2�B��H��B� − z�−1P1�B���H��B� − z�−1�dz���x,x� .

�4.23�

rom �4.23� and �4.19� we see that �4.3� follows if we can prove that one can circularly permute
he operators under the integral sign in �4.23�. One can prove this by interpreting �4.23� as the
hermodynamic limit of the corresponding expression on finite volume and then using the invari-
nce of the trace under cyclic permutations. Alternatively one can prove it directly and in what
ollows we outline the proof.

Due to the smoothing effect of the integral with respect to z, we can always restrict ourselves
o considering a product of only two integral operators which commute with the discrete magnetic
ranslations, and have kernels eib�a�x,y�K1�x ,y� and eib�a�y,x��K2�y ,x��. We therefore look at an
bsolutely convergent integral of the form �the antisymmetric magnetic phases disappear when we
ook at the diagonal, see �3.1��

	
�

dx	
R3

dy K1�x,y�K2�y,x� �4.24�

ith

K1,2�x,y� = K1,2�x + �� ,y + �� � .
hen
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�

dx	
R3

dy K1�x,y�K2�y,x� = 

���L

	
�

dx	
�

dy K1�x,y + �� �K2�y + �� ,x�

= 

���L

	
�

dx	
�

dy K1�x − �� ,y�K2�y,x − �� �

= 	
�

dy	
R3

dx	
R3

K2�y,x�K1�x,y� �4.25�

hich gives the needed “trace cyclicity” and the theorem is proved. �

We now turn to the question whether the limit in �4.3� actually vanishes as is suggested by
ome heuristic arguments �see, e.g., Ref. 30�. We start by recalling some results about Wannier
unctions. Let �0�B0� be an isolated part of the spectrum of H��B0� and �0

B0 the corresponding
pectral projection. We say that �0

B0 has a basis of exponentially localized �magnetic� Wannier
unctions if there exist ��0, wj �L2�R3� � L2�R3�, j=1,2 , . . . , p� satisfying �we denote by

j�x ,s��C the values of wj in x�R3 and s� 1,2��



s=1

2 	
R3

�wj�x,s��2e2��x� dx � M  � , �4.26�

uch that the set of functions wj,��� j=1,2,. . .,p,���L with

wj,���x,s� = eib�a�x,�� �wj�x − �� ,s�

s a basis in the range of the projection �0
B0�L2�R3� � L2�R3��. If the spin is neglected, it has been

roved in Ref. 21 that the existence of bases of exponentially localized Wannier functions is stable
gainst small values of the magnetic field �i.e., B0=0�. More precisely, if �0 is an isolated part of
he spectrum of −�+V and the corresponding subspace has a basis of exponentially localized

annier functions then, for sufficiently small B, �0�B� is still isolated and the corresponding
pectral subspace has a basis of exponentially localized magnetic Wannier functions. The methods
n Ref. 23 together with the magnetic perturbation theory11,12,22 allow one to generalize the above
esult to arbitrary B0 and presence of the spin �as far as the spin-orbit term is sufficiently small�.14

ow the existence of exponentially localized magnetic Wannier functions for an isolated part of
he spectrum and for the value of the magnetic field B2 in an interval around B0 allows one to write



s=1

2 	
�

�0;s,s
B �x,x�dx = 	

�


j,��



s=1

2

�wj,���x,s��2 dx

= 

j,��



s=1

2 	
�

dx�wj�x − �� ,s��2 = 

j=1

p



s=1

2 	
R3

dx�wj�x,s��2 = p . �4.27�

hus the integrated density of states corresponding to the Fermi projection is constant in B2 in a
mall interval around B0, hence this band gives no contribution on the rhs of �4.3�.

For small fields, the above discussion can be summarized in the following.
Theorem 4.2: Suppose �d1 ,d2����−�+V�, d2�d1, and that the spectral subspace corre-

ponding to �−� ,d1� admits a basis of exponentially localized Wannier functions. Suppose that the
pin-orbit interaction �see �2.2�� is small enough such that as c2 decreases from � to its actual
alue, we have that �d1+d2� /2���H��0��. Then for sufficiently small B,

lim
�→0

lim
T→0

�12�B,T,�� = 0. �4.28�

In particular all the derivatives of �12�B ,0� vanish for B=0, and this substantiates Roth’s

esult �formula �50� in Ref. 30� for the first-order correction in B at zero frequency.
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. A CLOSED FORMULA FOR FREE ELECTRONS

If V=0 it turns out that the conductivity tensor can be explicitly computed for all values of B
nd �. The formula does not depend on whether we work in two or three dimensions. More
recisely, we will show in this section that

�12�B,�� =
e3n

m2c

B

�2 −
B2e2

m2c2

, �5.1�

here n=n�T ,� ,B� is the grand-canonical density. The formula �5.1� is well known in classical
hysics and goes back at least to Drude but we are not aware of a known fully quantum derivation.
he coincidence of classical and quantum formulas can be understood taking into account that the
amiltonians involved �choose the symmetric gauge� are quadratic and it is known that for this

lass of operators classical and quantum computations coincide in many instances. While it is
ossible to derive �5.1� by using the explicit form of the Green function or alternatively of
igenvalues and eigenprojections for the Landau Hamiltonian �see, e.g., Ref. 18� we shall obtain
t below only using resolvent and commutation identities.

Let us only notice that when �=0 we reobtain formula �18� in Ref. 34, while for a fixed
requency we get

��12

�B
�0,�� =

e3n

m2c�2

hich is “the high frequency limit” or what Roth also calls “the free electron Faraday effect” in
ormula �51� from Ref. 30.

We begin by listing a few identities which are valid for a free electron on the entire space,

i�P1�B�,P2�B�� =
Be

c
,

i�H��B�,P1�B�� = −
Be

mc
P2�B� ,

i�H��B�,P2�B�� =
Be

mc
P1�B� , �5.2�

�H��B�,�H��B�,P1�B��� =
B2e2

m2c2 P1�B� ,

�H��B�,�H��B�,P2�B��� =
B2e2

m2c2 P2�B� .

ext, since in this case As,s
� �x ,x� does not depend upon x one has

a�B,�� = −
1

2�


s=1

2 �	
��

dz fFD�z��P1�B��H��B� − z�−1P2�B��H��B� − z − ��−1 + z → z − ���
��0� ,s;0� ,s� . �5.3�

ommuting �H��B�−z−��−1 with P2�B� in the first term, and P1�B� with �H��B�−z+��−1 in the

econd one, we obtain
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a�B,�� = −
1

2����
s=1

2 �	
��

dz fFD�z��P1�B��H��B� − z�−1�H��B� − z − ��−1P2�B� + P1�B�

� �H��B� − z�−1�H��B� − z − ��−1�H��B�,P2�B���H��B� − z − ��−1 + �H��B�

− z + ��−1P1�B�P2�B��H��B� − z�−1 + �H��B� − z + ��−1�H��B�,P1�B��

� �H��B� − z + ��−1P2�B��H��B� − z�−1���0� ,s;0� ,s� = I + II + III + IV. �5.4�

ow I+III can easily be computed. Indeed, by cyclic permutations �see �4.25�� one can cluster the
wo resolvents and then by the resolvent identity

�A − z1�−1�A − z2�−1 = �z1 − z2�−1��A − z1�−1 − �A − z2�−1� , �5.5�

ne obtains four terms. Two of them vanish after the integration over z due to the analyticity of the
ntegrand while the other two give

I + III =
1

2�


s=1

2 �	
��

dz fFD�z�
1

�
�P2�B�,P1�B���H��B� − z�−1��0� ,s;0� ,s� �5.6�

=
Be

�


s=1

2

fFD�H��B����0� ,s;0� ,s� ¬
Be

�
n�T,�,B� . �5.7�

n an analogous manner

III + IV =
1

2��


s=1

2 �	
��

dz fFD�z��H��B� − z�−1�H��B�,P2�B���H��B� − z − ��−1P1�B�

− �H��B� − z�−1�H��B�,P1�B���H��B� − z + ��−1P2�B����0� ,s;0� ,s� . �5.8�

t this point we commute �H��B� , P2�B�� with �H��B�−z−��−1 in the first term, and
H��B� , P1�B�� with �H��B�−z+��−1 in the second term and use �3.3� again. Some of the terms
anish after performing the integration over z and the remaining ones write as

−
1

�
�H��B� − z�−1�H��B�,P2�B��P1�B� −

1

�
�H��B� − z�−1�H��B�,�H��B�,P2�B����H��B�

− z − ��−1P1�B� −
1

�
�H��B� − z�−1�H��B�,P1�B��P2�B�

−
1

�
�H��B� − z�−1�H��B�,�H��B�,P1�B����H��B� − z + ��−1P2�B� . �5.9�

aking into account �5.2� the first and the third terms in �5.9� combine to

−
1

�
�H��B� − z�−1�H��B�,P1�B�P2�B��
hich after integration over z is proportional to
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fFD�H��B��i�H��B�,P1�B�P2�B�� =
Be

mc
fFD�H��B��P1�B�2 − fFD�H��B��P2�B�2� , �5.10�

here we used the second and third identities in �5.2�. Consider the unitary operator U which
mplements the coordinate change �Uf��x1 ,x2 ,x3�= f�x2 ,−x1 ,x3�. Then one can prove that
P1�B�U*=−P2�B�, UP2�B�U*= P1�B�, and UH��B�U*=H��B�. This implies that

UfFD�H��B��P1�B�2U* = fFD�H��B��P2�B�2.

ince both operators have a smooth integral kernel, and because the rotation with U does not
hange the diagonal value of the integral kernel on the left-hand side, it means that the contribu-
ion given by �5.10� is zero.

Therefore we only remain with the second and fourth terms in �5.9�. Using �5.2�, they become

−
B2e2

m2c2�
�H��B� − z�−1P2�B��H��B� − z − ��−1P1�B� ,

�5.11�

−
B2e2

m2c2�
�H��B� − z�−1P1�B��H��B� − z + ��−1P2�B� .

sing once more the cyclicity of the trace and comparing with the starting point �5.3�, we obtain
he remarkable identity

II + IV =
B2e2

m2c2�2a�B,�� . �5.12�

etting together �5.4�, �5.6�, and �5.12�, we obtain the equation

a�B,�� =
Be

c�
n +

B2e2

m2c2�2a�B,�� ,

hich gives �5.1� �see �3.10��.

I. MAGNETIC PERTURBATION THEORY AND THE LINEAR TERM IN B

When V�0 it is no longer possible to obtain a closed formula for �12�B ,��. Since in most
hysical applications the external magnetic field can be considered weak, an expansion in B up to
he first or second order would be sufficient. In this section we show that aL�B ,�� has an expan-
ion in B to any order and write down the expressions of the first two terms. The first one gives the
ransverse conductivity at zero magnetic field and the second which is linear in B provides the
erdet constant. From �3.6� and �3.8� �in what follows by tr we mean the trace over the spin
ariable�,

aL�B,�� = −
1

2���L�	�L

dx��tr	
��

dz fFD�z�	
�L

du��Px,1�0� − bA1�x − u��KL�x,u;z��

� ��Pu,2�0� − bA2�u − x���KL�u,x�;z + ��� + ��Px,1�0� − bA1�x − u��KL�x,u;z − ���

� ��Pu,2�0� − bA2�u − x���KL�u,x�;z�����
x=x�

. �6.1�

Let us mention here that one cannot interchange the order of the above integrals. First one
erforms the integral with respect to u, then the integral in z, then we can set x=x� since the

esulting kernel is smooth, and finally one integrates with respect to x over �L.
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When considering the expansion in b of aL�B ,�� we are left with the problem of the expan-
ion of K�L

�x ,y ;��. This expansion is provided by the magnetic perturbation theory as developed
n Ref. 22. Following the steps in Ref. 22 in the case at hand one obtains

KL�x,y;z� = GL
�0��x,y;z� +

b

m
	

�L

GL
�0��x,u;z��Pu�0�A�u − y�GL

�0��u,y;z��du

+ b
gc�b

e
	

�L

GL
�0��x,u;z��3GL

�0��u,y;z�du + O�b2�

= GL
�0��x,y;z� + bGL

�orbit��x,y;z� + bGL
�spin��x,y;z� + O�b2� . �6.2�

he above integrands are matrices in the spin variable, that is why the spin does not appear
xplicitly. The error term O�b2� can also be fully controlled with the magnetic perturbation theory
actually arbitrary order terms can be computed; see Ref. 22 for details�. Plugging the expansion
nto �6.2� and collecting the terms of zero and first order one obtains

aL�B,�� = aL�0,�� + baL,1��� + O�b2� , �6.3�

here the zeroth order term is

aL�0,�� = −
1

2���L�	�L

dx��tr	
��

dz fFD�z�P1�0��HL�0� − z�−1P2�0��HL�0� − z + ��−1

+ �z → z − �����
x=x�

, �6.4�

hile the first order correction reads as

aL,1��� = aL,1
orbit��� + aL,1

spin��� , �6.5�

here

aL,1
orbit��� = −

1

2���L�	�L

dx��tr	
��

dz fFD�z�	
�L

du− �A1�x − u�GL
�0��x,u;z��

� �Pu,2�0�GL
�0��u,x�;z + ��� − �Px,1�0�GL

�0��x,u;z���A2�u − x��GL
�0��u,x�;z + ���

+ �Px,1�0�GL
�orbit��x,u;z���Pu,2�0�GL

�0��u,x�;z + ��� + �Px,1�0�GL
�0��x,u;z��

� �Pu,2�0�GL
�orbit��u,x�;z + ��� + �z → z − �����

x=x�

, �6.6�

aL,1
spin��� = −

1

2���L�	�L

dx��tr	
��

dz fFD�z�	
�L

du�Px,1�0�GL
�spin��x,u;z���Pu,2�0�GL

�0��u,x�;z

+ ��� + �Px,1�0�GL
�0��x,u;z���Pu,2�0�GL

�spin��u,x�;z + ��� + �z → z − �����
x=x�

. �6.7�

ow consider the expression A�x−y�GL
�0��x ,y ;z� appearing in the formula for aL,1���. Observing
hat it represents a commutator �see �3.3�� one has the identity
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A�x − y�GL
�0��x,y;z� = �1

2
n3 ∧ �x − y��GL

�0��x,y;z�

= �1

2
n3 ∧ �X,�HL�0� − z�−1���x,y�

= −
i

2m
�HL�0� − z�−1�n3 ∧ P��HL�0� − z�−1��x,y� , �6.8�

here X denotes the multiplication operator with x. By a straightforward �but somewhat tedious�
omputation one arrives at

aL,1��� = aL,1
orbit,1��� + aL,1

orbit,2��� + aL,1
spin��� , �6.9�

here

aL,1
orbit,1��� =

i

4m����L�	�L

dx�tr	
��

dz fFD�z��

�=1

2

P��0��HL�0� − z�−1P��0��HL�0� − z − ��−1

+ 

�=1

2

P��0��HL�0� − z�−1P��0��HL�0� − z + ��−1

− 

�=1

2

P��0��HL�0� − z�−1P��0��HL�0� − z�−1���x,x� , �6.10�

aL,1
orbit,2��� =

i

4�m2��L�	�L

dx�tr	
��

dz fFD�z�− P1�0��HL�0� − z�−1P1�0��HL�0� − z�−1

� P2�0��HL�0� − z�−1P2�0��HL�0� − z − ��−1 + P1�0��HL�0� − z�−1P2�0��HL�0� − z�−1

� P1�0��HL�0� − z�−1P2�0��HL�0� − z − ��−1 − P1�0��HL�0� − z + ��−1P1�0�

� �HL�0� − z + ��−1P2�0��HL�0� − z + ��−1P2�0��HL�0� − z�−1

+ P1�0��HL�0� − z + ��−1P2�0��HL�0� − z + ��−1P1�0��HL�0� − z + ��−1P2�0��HL�0�

− z�−1 − P1�0��HL�0� − z�−1P2�0��HL�0� − z − ��−1P1�0��HL�0� − z − ��−1P2�0��HL�0�

− z − ��−1 + P1�0��HL�0� − z�−1P2�0��HL�0� − z − ��−1P2�0��HL�0� − z − ��−1P1�0�

��HL�0� − z − ��−1 − P1�0��HL�0� − z + ��−1P2�0��HL�0� − z�−1

� P1�0��HL�0� − z�−1P2�0��HL�0� − z�−1 + P1�0��HL�0� − z + ��−1

� P2�0��HL�0� − z�−1P2�0��HL�0� − z�−1P1�0��HL�0� − z�−1���x,x� , �6.11�

nd
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aL,1
spin��� = −

gc�b

2e���L�	�L

dx�tr	
��

dz fFD�z��P1�0��HL�0� − z�−1�3�HL�0� − z�−1P2�0��HL�0� − z

− ��−1� + �P1�0��HL�0� − z�−1P2�0��HL�0� − z − ��−1�3�HL�0� − z − ��−1�

+ �P1�0��HL�0� − z + ��−1�3�HL�0� − z + ��−1P2�0��HL�0� − z�−1� + �P1�0��HL�0�

− z + ��−1P2�0��HL�0� − z�−1�3�HL�0� − z�−1����x,x� . �6.12�

II. THE PERIODIC CASE

Now consider the case when V is periodic. In this case, after taking the thermodynamic limit
ne can replace �see �3.9�� �1/ ��L����L

with �1/ ������ and rewrite �6.10�–�6.12� as integrals over
he Brillouin zone,

a�,1
orbit,1��� =

i

4m�����	�*
dk	

�

dx�tr	
��

dz fFD�z�

� 

�=1

2

�p� + k���h�k� − z�−1�p� + k���h�k� − z − ��−1

+ 

�=1

2

�p� + k���h�k� − z�−1�p� + k���h�k� − z + ��−1

− 

�=1

2

�p� + k���h�k� − z�−1P��0��h�k� − z�−1��x,x� , �7.1�

�,1
orbit,2��� =

i

4�m2���	�*
dk	

�

dx�tr	
��

dz fFD�z�

� − �p1 + k1��h�k� − z�−1�p1 + k1��h�k� − z�−1 � �p2 + k2��h�k� − z�−1

� �p2 + k2��h�k� − z − ��−1 + �p1 + k1��h�k� − z�−1�p2 + k2��h�k� − z�−1

� �p1 + k1��h�k� − z�−1�p2 + k2��h�k� − z − ��−1 − �p1 + k1��h�k� − z + ��−1�p1 + k1�

��h�k� − z + ��−1�p2 + k2��h�k� − z + ��−1�p2 + k2��h�k� − z�−1 + �p1 + k1��h�k� − z

+ ��−1�p2 + k2��h�k� − z + ��−1�p1 + k1��h�k� − z + ��−1�p2 + k2��h�k� − z�−1 − �p1 + k1�

��h�k� − z�−1�p2 + k2��h�k� − z − ��−1�p1 + k1��h�k� − z − ��−1

� �p2 + k2��h�k� − z − ��−1 + �p1 + k1��h�k� − z�−1�p2 + k2��h�k� − z − ��−1�p2 + k2�

� �h�k� − z − ��−1�p1 + k1��h�k� − z − ��−1 − �p1 + k1��h�k� − z + ��−1�p2 + k2�

� �h�k� − z�−1�p1 + k1��h�k� − z�−1�p2 + k2��h�k� − z�−1 + �p1 + k1��h�k� − z + ��−1

� �p2 + k2��h�k� − z�−1�p2 + k2��h�k� − z�−1�p1 + k1��h�k� − z�−1���x,x� , �7.2�
nd
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a�,1
spin��� = −

gc�b

2e����	�*
dk	

�

dx�tr	
��

dz fFD�z���p1 + k1��h�k� − z�−1�3�h�k� − z�−1�p2 + k2�

��h�k� − z − ��−1� + ��p1 + k1��h�k� − z�−1�p2 + k2��h�k� − z − ��−1�3�h�k� − z − ��−1�

+ ��p1 + k1��h�k� − z + ��−1�3�h�k� − z + ��−1�p2 + k2��h�k� − z�−1�

+ ��p1 + k1��h�k� − z + ��−1�p2 + k2��h�k� − z�−1�3�h�k� − z�−1����x,x� . �7.3�

Finally, for the convenience of the reader only interested in applying the theory to the case
hen one assumes that the Bloch bands and functions are known �as, for example, from Kohn-
uttinger type models�, we write �7.1�–�7.3� in terms of Bloch functions and energies. The im-
ortant thing here is that no derivatives with respect to the quasimomentum appear. With the usual
otation �here �,� denotes the scalar product over the spin variables�

�̂ij��,k� = 	
�

�ui�x,k�,�p� + k��uj�x,k��dx , �7.4�

nd after some rearrangements, the terms coming from the orbital magnetism are

a�,1
orbit,1��� =

1

2m��2��3 

�=1

2 	
�*

dk�

j
1

��̂ j j��,k��2fFD� �	 j�k��

− �2

j�l

��̂lj��,k��2
fFD�	 j�k�� − fFD�	l�k��

��	 j�k� − 	l�k��2 − �2��	 j�k� − 	l�k��� , �7.5�

a�,1
orbit,2��� =

1

2m2�2��3	
�*

dk 

n1,n2,n3,n4
1

1

2�i
	

��

dz fFD�z�

� � �̂n4n1
�1,k��̂n1n2

�1,k��̂n2n3
�2,k��̂n3n4

�2,k�

�z − 	n1
�k���z − 	n2

�k���z − 	n3
�k���z + � − 	n4

�k��

−
�̂n4n1

�1,k��̂n1n2
�2,k��̂n2n3

�1,k��̂n3n4
�2,k�

�z − 	n1
�k���z − 	n2

�k���z − 	n3
�k���z + � − 	n4

�k��

+
�̂n4n1

�1,k��̂n1n2
�1,k��̂n2n3

�2,k��̂n3n4
�2,k�

�z − � − 	n1
�k���z − � − 	n2

�k���z − � − 	n3
�k���z − 	n4

�k��

−
�̂n4n1

�1,k��̂n1n2
�2,k��̂n2n3

�1,k��̂n3n4
�2,k�

�z − � − 	n1
�k���z − � − 	n2

�k���z − � − 	n3
�k���z − 	n4

�k��

+
�̂n4n1

�1,k��̂n1n2
�2,k��̂n2n3

�1,k��̂n3n4
�2,k�

�z − 	n1
�k���z + � − 	n2

�k���z + � − 	n3
�k���z + � − 	n4

�k��

−
�̂n4n1

�1,k��̂n1n2
�2,k��̂n2n3

�2,k��̂n3n4
�1,k�

�z − 	n1
�k���z + � − 	n2

�k���z + � − 	n3
�k���z + � − 	n4

�k��

+
�̂n4n1

�1,k��̂n1n2
�2,k��̂n2n3

�1,k��̂n3n4
�2,k�

�z − � − 	n �k���z − 	n �k���z − 	n �k���z − 	n �k��

1 2 3 4
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−
�̂n4n1

�1,k��̂n1n2
�2,k��̂n2n3

�2,k��̂n3n4
�1,k�

�z − � − 	n1
�k���z − 	n2

�k���z − 	n3
�k���z − 	n4

�k��� . �7.6�

As for the spin contribution, with the notation

ŝij�k� ª 	
�

�ui�x,k�,�3uj�x,k��dx , �7.7�

ne has

a�,1
spin��� = −

gc�b

�2��4e
	

�*
dk 


n1,n2,n3
1

1

2�i
	

��

dz fFD�z�

� � �̂n1n2
�1,k�ŝn2n3

�k��̂n3n1
�2,k�

�	n2
�k� − z��	n3

�k� − z��	n1
�k� − z − ��

+
�̂n1n2

�1,k��̂n2n3
�2,k�ŝn3n1

�k�

�	n2
�k� − z��	n3

�k� − z − ���	n1
�k� − z − ��

+
�̂n1n2

�1,k�ŝn2n3
�k��̂n3n1

�2,k�

�	n2
�k� − z + ���	n3

�k� − z + ���	n1
�k� − z�

+
�̂n1n2

�1,k��̂n2n3
�2,k�ŝn3n1

�k�

�	n2
�k� − z + ���	n3

�k� − z��	n1
�k� − z�� . �7.8�

III. CONCLUSIONS

We presented in the present paper a method which shed new light on the quantum dynamics/
ptical response in bulk media in the presence of a constant magnetic field. We applied the gauge
nvariant magnetic perturbation theory and gave a clear and very general way of dealing with long
ange magnetic perturbations.

The formal connection with the integer quantum Hall effect was established in �4.2�. Equa-
ions �6.9�–�6.12� and �7.4�–�7.8� contain our main result concerning the Verdet constant and the
araday effect: it gives the linear term in B of the transverse conductivity in terms of the zero
agnetic field Green function. They open the way of using the recently developed Green function

echniques for the calculation of optical and magneto-optical properties of solids, to the case when
n external magnetic field is present. Our method can be applied to ordered, as well as to random
ystems �with the appropriate average over configurations�. Of course, in the last case one must
ssume ergodicity properties in order to insure convergence of results in the thermodynamic limit.
ayers or other geometries can also be considered.

There are many subtle and difficult mathematical questions left aside in this paper, as those
elated to the thermodynamic limit, the convergence of infinite series over Bloch bands, and the
ow frequency limit when the Fermi energy lies in the spectrum. Another open problem is to
onsider self-interacting electrons and to investigate the exciton influence on the Faraday effect.
hese questions will be addressed elsewhere.

Our results are not only theoretical. In a future presentation we will use the residue theorem in
qs. �7.4�–�7.8� to calculate the Verdet constant for various finite band models, and compare our

esults with the existing experimental data. Moreover, our results will be shown to imply those of
30 20
oth and Nedoluha.
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Study of the normalizer of the MAD-group corresponding to a fine grading offers
the most important tool for describing symmetries in the system of nonlinear equa-
tions connected with contraction of a Lie algebra. One fine grading that is always
present in any Lie algebra sl�n ,C� is the Pauli grading. The MAD-group corre-
sponding to it is generated by generalized Pauli matrices. For such MAD-group, we
already know its normalizer; its quotient group is isomorphic to the Lie group
SL�2,Zn��Z2. In this paper, we deal with a more complicated situation, namely
that the fine grading of sl�p2 ,C� is given by a tensor product of the Pauli matrices
of the same order p, p being a prime. We describe the normalizer of the corre-
sponding MAD-group and we show that its quotient group is isomorphic to
Sp�4,Fp��Z2, where Fp is the finite field with p elements. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2162149�

. INTRODUCTION

A grading � of a Lie algebra L is a decomposition � :L= � i�JLi into nontrivial subspaces Li

uch that, for each pair of indices i , j�J, there exists an index k�J fulfilling the property
Li ,Lj��Lk. Among all the gradings of a Lie algebra, the most important ones are fine gradings,
ince any grading is created from some fine grading.

It was shown in Ref. 10 that there is a one-to-one correspondence between fine gradings of a
imple Lie algebra over C and maximal Abelian groups of diagonalizable automorphisms �so-
alled MAD-groups� in Aut L. Each fine grading of a simple Lie algebra over C is obtained as a
ecomposition of L into eigensubspaces of automorphisms from a MAD group. In Ref. 4, all
AD-groups of Aut sl�n ,C� were described.

Let us recall that the Lie algebra sl�n ,C� has inner and outer automorphisms. An inner auto-
orphism is given by a nonsingular matrix A of order n by the prescription

AdA X ª A−1XA for X � sl�n,C� .

n outer automorphism is connected with a nonsingular matrix A of order n as well, and it is
iven by the prescription

OutA X ª − �A−1XA�T for X � sl�n,C� ,

here AT denotes the transposed matrix.
An important role in the description of MAD-groups without outer automorphism is played by

eneralized Pauli matrices. They were introduced in Ref. 11.
Definition 1.1: For a given n�N, set �=�n=e2�i/n. A group of matrices

j k l
Pn ª �� PnQn�j,k,l � �0,1, . . . ,n − 1��, where

47, 013512-1022-2488/2006/47�1�/013512/18/$23.00 © 2006 American Institute of Physics
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Pn =�
1 0 0 . . . 0

0 � 0 . . . 0

0 0 �2 . . . 0

] �

0 0 0 . . . �n−1
	 � Cn�n and Qn =�

0 1 0 . . . 0

0 0 1 . . . 0

] �

0 0 0 . . . 1

1 0 0 . . . 0
	 � Cn�n,

s called the Pauli group of order n; Pn and Qn are the generalized Pauli matrices of order n.
Let us note that the matrices Pn and Qn do not commute, since QnPn=�PnQn. Nevertheless,

he inner automorphisms corresponding to these matrices do commute, AdQn
AdPn

=AdPn
AdQn

.
In order to describe MAD-groups of the algebra sl�n ,C�, we need further notation:
The group of nonsingular diagonal matrices of order n will be denoted by Dn, i.e.,

Dn = �diag��1,�2, . . . ,�n���1,�2, . . . ,�n � C \ �0�� .

f G1 and G2 are groups of matrices, then G1 � G2 denotes the group of all tensor products A
� B, where A�G1 and B�G2. �If A�Cn�n and B�Cm�m, then the tensor product A � B

Cnm�nm is defined by �A � B�IJ=Ai1i2
Bj1j2

, where i1 , i2� �0,1 , . . . ,n−1�, j1 , j2� �0,1 , . . . ,m
1�, I ,J� �0,1 , . . . ,mn−1� and I= i1m+ j1, J= i2m+ j2.�

The MAD-groups of Aut sl�n ,C� can be divided into two classes, depending whether or not
hey contain an outer automorphism. It is proved in Ref. 4 that any MAD-group in the automor-
hism group Aut sl�n ,C� containing only inner automorphisms is isomorphic to a group of the
ollowing form:

G = �AdA�A � Pn1
� Pn2

� ¯ � Pnr−1
� Dnr

� ,

here n1n2¯nr=n and ni−1 divides ni for any i=2,3 , . . . ,r−1.
A grading � :L= � i�JLi of a Lie algebra L is a starting point for searching for graded con-

ractions of the Lie algebra. This method for finding contractions of Lie algebras was used by
everal authors.1,3,7 In this type of contraction, we define new Lie brackets by prescription

�x,y�new ª � jk�x,y�, where x � Lj, y � Lk.

he complex or real parameters � jk, for j ,k�J, must be determined in such way that the vector
pace L with the binary operation �. , . �new forms again a Lie algebra. Antisymmetry of Lie brack-
ts demands that � jk=�kj. Compliance with the Jacobi identity, however, already implies that the
oefficients � jk fulfill a complicated system of quadratic equations, which is in general difficult to
olve. For description of symmetries of this system, it is important to know the symmetries of the
riginal grading �. By a symmetry of a grading of the Lie algebra L we mean such an automor-
hism g�Aut L that

for each j � J there exists k � J fulfilling gLj = Lk. �1�

et us suppose that a fine grading � : sl�n ,C�= � j�JLj corresponds to a MAD-group
�Aut sl�n ,C�. It means that

hLk = Lk for all h � G and k � J . �2�

ombining �2� and �1�, we obtain

ghg−1Lj = Lj for any j � J .

he maximality of G implies that ghg−1�G for any h�G. This means, in other words, that the

ymmetries of the grading � corresponding to the MAD-group G form a group
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N�G� = �g � Aut sl�n,C��gGg−1 � G� .

his group is usually called the normalizer of the subgroup G in Aut sl�n ,C�.
The definition of the normalizer N�G� implies that G�N�G�. Moreover, G is a normal sub-

roup of N�G�. Thus, when describing N�G�, it is sufficient to inspect the quotient group N�G� /G.
Reference 5 shows the study of the normalizer of one MAD-group of sl�n ,C�, namely

G = �AdA�A � Pn� .

t was shown that N�G� /G is isomorphic to the matrix group �A�Zn
2�2 �det A= ±1�, Zn being a

yclic group of order n. This result was used for obtaining all the graded contractions �see Ref. 6�
f Lie algebra sl�3,C� that arise from the Pauli grading

sl�3,C� = � �j,k��J�P3
j Q3

k�lin, J = Z3 � Z3 \ ��0,0�� .

In this paper, we are going to study the symmetries of the grading corresponding to the
AD-group,

G = �AdA�A � Pn � Pn� � Aut sl�n2,C�, n prime. �3�

n the sequel we will use notation P and Q instead of Pn and Qn, and by the letter G we will denote
nly the group given by �3�.

If n and m are coprime integers, then the tensor product Pn � Pm of the Pauli groups Pn and

m is isomorphic to the Pauli group Pnm, therefore it is a natural step in investigation of symme-
ries of gradings to devote attention to the MAD-group given by Pn � Pn.

I. THE NORMALIZER OF THE MAD-GROUP CORRESPONDING TO THE TENSOR
RODUCT Pn‹Pn

If �gi�i�I is a set of generators of a group H�Aut L, then ��Aut L belongs to the normalizer
�H� if and only if �gi�

−1�H for all the generators gi. Since Pn � Pn= �PiQj � PkQl�, our
AD-group

G = �AdPiQj�PkQl�i, j,k,l � Zn�

as four generators �we use the letter I for unit matrix of order n�,

AdA1
, where A1 = P � I ,

AdA2
, where A2 = Q � I ,

AdA3
, where A3 = I � P ,

AdA4
, where A4 = I � Q .

ny element of the MAD-group G is characterized by a quadruple of indices in Zn. We know that
n automorphism ��Aut sl�n2 ,C� belongs to N�G� if and only if �AdAi

�−1�G for i=1,2 ,3 ,4.
hus each ��N�G� is characterized by a set of 16 coefficients �aij�i,j=1

4 such that

� AdAj
�−1 = AdPa1jQa2j�Pa3jQa4j = AdA

1
a1jA

2
a2jA

3
a3jA

4
a4j for j = 1,2,3,4.

4�4
e order these 16 parameters into a matrix C����Zn as follows:
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� � C��� =�
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

	 . �4�

Remark 2.1: Obviously, the assignment ��C��� implies that C���= I4 if and only if �
ommutes with each generator of the MAD-group G, and thus with the whole MAD-group. This
eans that � necessarily belongs to G �due to the maximality of G�. Shortly, we have

C��� = I4 ⇔ � � G . �5�

The advantage of such ordering of the 16 coefficients corresponding to ��N�G� is obvious
rom the following statement.

Proposition 2.2: Let � ,��N�G�. Then C����=C���C���.
Proof: We denote the coefficient matrices by C���= �aij�i,j=1

4 , and C���= �bij�i,j=1
4 . Let us apply

he automorphism �� on an element AdAp
�G as follows:

���AdAp
����−1 = ��� AdAp

�−1��−1 = ��AdA
1
b1pA

2
b2pA

3
b3pA

4
b4p��−1

= �� AdA4
�−1�b4p�� AdA3

�−1�b3p�� AdA2
�−1�b2p�� AdA1

�−1�b1p

= �AdA
1
a14A

2
a24A

3
a34A

4
a44�b4p�AdA

1
a13A

2
a23A

3
a33A

4
a43�b3p�AdA

1
a12A

2
a22A

3
a32A

4
a42�b2p�AdA

1
a11A

2
a21A

3
a31A

4
a41�b1p.

ince AjAk=const AkAj, we have AdAjAk
=AdAkAj

for any j ,k=1,2 ,3 ,4. Therefore

����AdAp
����−1 = AdA

1
c1pA

2
c2pA

3
c3pA

4
c4p,

here

c1p = a11b1p + a12b2p + a13b3p + a14b4p,

c2p = a21b1p + a22b2p + a23b3p + a24b4p,

c3p = a31b1p + a32b2p + a33b3p + a34b4p,

c4p = a41b1p + a42b2p + a43b3p + a44b4p.

his means, in brief notation, that C����=C���C���. �

We prove below that the matrix C��� assigned to the element � of the normalizer N�G�
haracterizes a coset belonging to the quotient group N�G� /G.

Proposition 2.3: Let � ,� belong to the normalizer N�G� of the MAD-group G. Then C���
C��� if and only if there exists h�G such that �=h�.

Proof: Let � ,��N�G� such that C���=C���. Since �−1�N�G� as well, we obtain from
roposition 2.2,

C���−1� = C���C��−1� = C���C��−1� = C���−1� = C�Id� = I4.

y Remark 2.1, ��−1 commutes with all elements of G, which is only possible when ��−1�G.
The opposite implication follows directly from Remark 2.1. �

Lemma 2.4: The outer automorphism OutI belongs to the normalizer N�G�, and

C�OutI� = diag�− 1,1,− 1,1� .

Proof: Let us denote �0=OutI. As �0 is given by the prescription �0X=−XT, clearly �0
−1
�0. We can derive for any inner automorphism AdA that
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��0 AdA �0
−1��X� = ��0 AdA��− XT� = �0�− A−1XTA�

= �A−1XTA�T = ATXA−T = �A−T�−1XA−T = AdA−T�X� ,

here we used abbreviated notation A−T instead of �A−1�T. This notation is used in the sequel as
ell.

Thus we have shown that the action of OutI on any inner automorphism AdA is

OutI AdA OutI
−1 = AdA−T. �6�

ow, for each generator AdAj
, j=1,2 ,3 ,4, of the MAD-group G, we prove that �0 AdAj

�0
−1

elongs to G:
Let us recall the following trivial properties of matrices P and Q and the properties of tensor

roduct:

i� �A � B�−1=A−1 � B−1;
ii� �A � B�T=AT � BT;
iii� PT= P, as P is diagonal;
iv� Q−1=QT, as Q is a permutation matrix.

Using these relations, we obtain

1� A1
−T= �P � I�−T= P−T � I= P−1 � I= �P � I�−1=A1

−1;
2� A2

−T= �Q � I�−T=Q−T � I=Q � I=A2;
3� A3

−T= �I � P�−T= I � P−T= I � P−1= �I � P�−1=A3
−1;

4� A4
−T= �I � Q�−T= I � Q−T= I � Q=A4.

Statements �1�–�4� together with Eq. �6� already prove the lemma. �

Remark 2.5: Product of two outer automorphisms is an inner automorphism. Thus, when
escribing the set of all automorphisms in N�G�, we can focus on the subgroup Nin�G� containing
ll the inner automorphisms in N�G�. The whole N�G� can then be described as

N�G� = Nin�G� � OutINin�G� .

The following theorem shows the connection between normalizers of these MAD-groups and
he symplectic groups over finite field which were introduced in Ref. 2.

Theorem 2.6: Let AdA be an inner automorphism contained in the normalizer N�G� of the
AD-group G, and let C�AdA� be the coefficient matrix corresponding to AdA. Then

C�AdA� � Sp�4,Zn� ª �X � Zn
4�4�XTJX = J� , �7�

here

J =�
0 1 0 0

− 1 0 0 0

0 0 0 1

0 0 − 1 0
	 = I2 � 
 0 1

− 1 0
� .

Proof: Let us denote C�AdA�= �aij�i,j=1
4 . The definition of the matrix C�AdA� implies that

AdA AdAp
�AdA�−1 = AdA−1ApA = AdA

1
a1pA

2
a2pA

3
a3pA

4
a4p for p = 1,2,3,4. �8�

s AdK=AdH if and only if K=�H for some ��C− �0�, we obtain from �8� existence of four
onzero constants �p , p=1,2 ,3 ,4, such that

Ap = �pAA1
a1pA2

a2pA3
a3pA4

a4pA−1. �9�
e derive easily from the basic relation QP=�PQ that
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A1A2 = �−1A2A1, �10�

A3A4 = �−1A4A3. �11�

he remaining pairs Ai ,Aj commute

A1A3 = A3A1, �12�

A1A4 = A4A1, �13�

A2A3 = A3A2, �14�

A2A4 = A4A2. �15�

y inputting A1 ,A2 expressed in the form �9� into the relation �10�, we obtain

�1AA1
a11A2

a21A3
a31A4

a41A−1�2AA1
a12A2

a22A3
a32A4

a42A−1

= �−1�2AA1
a12A2

a22A3
a32A4

a42A−1�1AA1
a11A2

a21A3
a31A4

a41A−1,

nd, after simplification and using relations �10�–�15�,

�a21a12+a41a32A1
a11+a12A2

a21+a22A3
a31+a32A4

a41+a42 = �−1+a22a11+a42a31A1
a11+a12A2

a21+a22A3
a31+a32A4

a41+a42.

his implies that �a21a12+a41a32=�−1+a22a11+a42a31, and therefore

1 = a11a22 − a21a12 + a31a42 − a41a32 �mod n� . �16�

nalogously, the equations �11�–�15� result in

1 = a13a24 − a14a23 + a33a44 − a34a43 �mod n� , �17�

0 = a11a23 − a13a21 + a31a43 − a33a41 �mod n� , �18�

0 = a11a24 − a14a21 + a31a44 − a34a41 �mod n� , �19�

0 = a12a23 − a13a22 + a32a43 − a33a42 �mod n� , �20�

0 = a12a24 − a14a22 + a32a44 − a34a42 �mod n� . �21�

It can be easily verified �by a direct calculation� that the matrix �aij�i,j=1
4 belongs to the group

p�4,Zn� if and only if the matrix elements aij fulfill equations �16�–�21�. �

Remark 2.7: We were notified9 that the set Sp�4,Zn� defined analogously to �7� is a group even
n the case when Zn is not a field. All our previous considerations hold therefore for any positive
nteger n. But our deductions in the sequel already need n to be a prime number.

We are going to prove that the mapping given by �4� is in fact the mapping on the whole
ymplectic group Sp�4,Fn�. To show it we need to find for any element of Sp�4,Fn� its preimage,
r equivalently for any generator of Sp�4,Fn� its preimage.

To simplify the proof we need to find the smallest possible set of generators of Sp�4,Fn�. In
ef. 8 a set of generators of the group Sp�2m ,K� over a finite field K is described. In case m
2, the set of generators contains n4−n2+n+1 elements, where n is the cardinality of K. As we

how in Appendix B, it is possible to reduce the number of generators of the group Sp�4,Fn� to

our matrices. In formal notation
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Sp�4,Fn� = �D1,D2,D3,D4 ,

here

D1 =�
1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1
	, D2 =�

0 1 0 0

− 1 0 0 0

0 0 1 0

0 0 0 1
	 ,

D3 =�
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0
	, and D4 =�

1 0 0 0

0 1 0 − 1

1 0 1 0

0 0 0 1
	 . �22�

We recall that for elements k1 ,k2 , . . . ,ks of a group G, the notation �k1 ,k2 , . . . ,ks means the
mallest subgroup of the group G containing k1 ,k2 , . . . ,ks.� We show that these four matrices are
mages of inner automorphisms which belong to the normalizer of the group G.

Proposition 2.8: Let n be a prime. Then for the four matrices Dj as introduced in (22), there
xist inner automorphisms � j =AdBj

�Nin�G� such that Dj =C�� j�=C�AdBj
�.

The proof is postponed to the Appendix A since it is rather technical and we do not want to
nterrupt coherency in the content of the paper.

The immediate consequence of the previous proposition is the following main result of the
aper.

Theorem 2.9: Let n be a prime. The mapping ��C��� defined in (4) is an isomorphism
etween groups

Nin�G�/G � Sp�4,Fn� = �X � Zn
4�4�XTJX = J� ,

nd

N�G�/G � �X � Zn
4�4�XTJX = ± J� ,

here

J =�
0 1 0 0

− 1 0 0 0

0 0 0 1

0 0 − 1 0
	 = I2 � 
 0 1

− 1 0
� .

Proof:

i� The mapping ��C��� from Nin�G� /G to Sp�4,Fn� is a homomorphism, as C����
=C���C���, which was proved in Proposition 2.2.

ii� The mapping ��C��� from Nin�G� /G to Sp�4,Fn� is injective, as shown in Proposition
2.3.

iii� The group Sp�4,Fn� is generated by four matrices D1 ,D2 ,D3 ,D4 �see Theorem 3.1 in
Appendix B�.

iv� All the matrices Dj, j=1,2 ,3 ,4, have their inverse images � j �Nin�G� /G, such that
C�� j�=Dj �see Proposition 2.8�. This implies that the mapping ��C��� is also surjective.

In total, we see that the mapping ��C��� is an isomorphism from Nin�G� /G onto Sp�4,Fn�.
To show isomorphism between N�G� /G and Sp�4,Fn� � Z2, it is enough to use Remark 2.5 and

he fact that the matrix MªC�OutI�=diag�−1,1 ,−1 ,1� corresponding to the outer automorphisms
T
utI�N�G� satisfies the equality M JM =−J. �
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II. CONCLUSIONS

Let us summarize the content of the paper:

1� The normalizer N�G� of the MAD-group G= �AdPiQj�PkQl � i , j ,k , l�Zn��Aut sl�n2 ,C� con-
sists of two subsets,

Nin�G� the group of all inner automorphisms in N�G� ,

OutINin�G� the set of all outer automorphisms in N�G� .

2� We provide an explicit expression of the four generators of Nin�G� /G, namely the inner
automorphisms AdBj

, j=1,2 ,3 ,4 �see Proposition 2.8�.
3� Altogether, we can write the set of generators

G = �AdP�I,AdQ�I,AdI�P,AdI�Q ,

Nin�G�/G = �AdB1
,AdB2

,AdB3
,AdB4

 ,

N�G� = Nin�G� � OutINin�G� .

4� Thus, one can generate each element of the normalizer from the set
�AdB1

,AdB2
,AdB3

,AdB4
,OutI ,AdP�I ,AdQ�I ,AdI�P ,AdI�Q�. In formal notation,

N�G� = �AdB1
,AdB2

,AdB3
,AdB4

,OutI,AdP�I,AdQ�I,AdI�P,AdI�Q ,

where the matrices Bj were defined in the proof of Proposition 2.8.

The description of the normalizer as done in this article was only possible for n prime. For n
onprime, the problem is still open.

It was shown previously that for the Pauli grading, the normalizer of the respective MAD-
roup is isomorphic to SL�2,Zn�, which is isomorphic to Sp�2,Zn�, for any positive integer n
1. This suggests that in the case of a MAD-group formed by inner automorphisms generated by

he normalizer may be isomorphic to Sp�2k ,Zn�.
Let us mention that the normalizer has not yet been described for any MAD-group containing

uter automorphisms.
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PPENDIX A

This section contains a proof of Proposition 2.8. The matrices Dj’s considered in the proof are
efined by �22�.

Proof: In order to prove that an automorphism � j =AdBj
is an inverse image of Dj, we must

xpress the action of � j on the basis elements P � I ,Q � I , I � P , I � Q of G again in terms of
P � I ,Q � I , I � P , I � Q. The coefficients akl describing the action of � j �as introduced in �4�� then
orm the matrix Dj. In the following we set the four matrices Bj, and verify that each satisfies the

quation Dj =C�AdBj

�.

                                                                                                            



o

w

A

w

d

W

=
t

013512-9 Fine grading of sl�p2 ,C� J. Math. Phys. 47, 013512 �2006�

                        
Throughout the proof, we use the coefficient �, which is, as defined previously, the nth root
f unity, �=�n=e2�i/n. We also shorten the notation of In to I.

And, finally, the elements of matrices P ,Q �whose indices are also counted modulo n� can be
ritten in terms of the Kronecker symbol as

Pij = 
ij�
j, Qij = 
i�j−1�, Qij

T = 
i�j+1�. �A1�

�1� We define �1=AdB1
, where

B1 = B̃1 � I, B̃1 = diag�b0,b1, . . . ,b�n−1��, bj = � j� j�j−1�/2, � = �−�n−1�/2.

s B̃1, B̃1
−1, and P are diagonal, they all mutually commute, and thus B1

−1�P � I�B1= �B̃1 � I�−1�P

� I��B̃1 � I�= �B̃1
−1

� I��PB̃1 � I�= �B̃1
−1PB̃1� � I= �B̃1

−1B̃1P� � I= P � I. In other words,

�1 AdP�I �1
−1 = AdB1

AdP�I AdB1
−1 = AdB1

−1�P�I�B1
= AdP�I,

hich means, according to the definition of C��1�, that the first column of the matrix C��1� is

�a11,a21,a31,a41�T = �1,0,0,0�T.

Now we apply �1 on the second generator of the group G, which is the inner automorphism
efined by the matrix Q � I. In fact, we need to express B1

−1�Q � I�B1 in terms of the basis matrices
P � I ,Q � I , I � P , I � Q. Using the notation of elements of P and Q introduced in �A1�, we obtain

�B̃1
−1QB̃1�ij = �

k=0

n−1

�
l=0

n−1

�B̃1
−1�ikQkl�B̃1�lj

= �
k=0

n−1

�
l=0

n−1


ik�
−k�−k�k−1�/2
k�l−1�
lj�

j� j�j−1�/2

= �
k=0

n−1


ik�
j−k��j�j−1�−k�k−1��/2
k�j−1�

= �
i�j−1��
j−1

�PQ�ij = �
k=0

n−1

PikQkj = �
k=0

n−1


ik�
k
k�j−1� = 
i�j−1��

j−1.

e see that the matrix B1
−1�Q � I�B1 is just an � multiple of PQ, and it follows that

�1 AdQ�I �1
−1 = AdB1

AdQ�I AdB1
−1 = AdB1

−1�Q�I�B1
= Ad�B̃1

−1QB̃1��I = Ad��PQ��I = AdPQ�I.

The second column of the matrix C��1� is thus equal to

�a12,a22,a32,a42�T = �1,1,0,0�T.

By simple matrix multiplication, we see that B1
−1�I � P�B1= �B̃1

−1
� I��I � P��B̃1 � I�= �B̃1

−1B̃1�
� P= I � P; which means �1 AdI�P �1

−1=AdB1
AdI�P AdB1

−1 =AdB1
−1�I�P�B1

=AdI�P, and therefore

�a13,a23,a33,a43�T = �0,0,1,0�T.

Analogously, setting Q on the place of P, we have B1
−1�I � Q�B1= �B̃1

−1
� I��I � Q��B̃1 � I�

�B̃1
−1B̃1� � Q= I � Q; which means �1 AdI�Q �1

−1=AdB1
AdI�Q AdB1

−1 =AdB1
−1�I�Q�B1

=AdI�Q, and

herefore
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�a14,a24,a34,a44�T = �0,0,0,1�T.

Thus, we have shown that

C��1� = D1 =�
1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1
	 .

�2� We define �2=AdB2
, where

B2 = B̃2 � I, �B̃2�ij = �ij, i, j = 0,1, . . . ,n − 1.

Note that B̃2 is the famous Sylvester matrix.

In preparation for describing the action of AdB2
, we apply the matrix B̃2 on P, Q, and QT from

oth right and left,

�PB̃2�ij = �
k=0

n−1

Pik�B̃2�kj = �
k=0

n−1


ik�
k�kj = �i�ij = �i�j+1�,

�B̃2QT�ij = �
k=0

n−1

�B̃2�ik�QT�kj = �
k=0

n−1

�ik
k�j+1� = �i�j+1�,

�QB̃2�ij = �
k=0

n−1

Qik�B̃2�kj = �
k=0

n−1


i�k−1��
kj = ��i+1�j ,

�B̃2P�ij = �
k=0

n−1

�B̃2�ikPkj = �
k=0

n−1

�ik
kj�
j = �ij� j = ��i+1�j .

e easily conclude that

PB̃2 = B̃2QT ⇒ B̃2
−1PB̃2 = QT = Q−1,

QB̃2 = B̃2P ⇒ B̃2
−1QB̃2 = P .

sing these relations, the way to find the coefficients of C��2�=C�AdB2
� is quite straightforward

s follows:

B2
−1�P � I�B2 = �B̃2 � I�−1�P � I��B̃2 � I� = �B̃2

−1
� I��PB̃2 � I� = �B̃2

−1PB̃2� � I = Q−1
� I .

herefore, �2 AdP�I �2
−1=AdB2

−1�P�I�B2
=Ad�Q � I�−1, and we have found the coefficients

�a11,a21,a31,a41�T = �0,− 1,0,0�T;

B−1�Q � I�B2 = �B̃2 � I�−1�Q � I��B̃2 � I� = �B̃−1
� I��QB̃2 � I� = �B̃−1QB̃2� � I = P � I .
2 2 2
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herefore, �2 AdQ�I �2
−1=AdB2

−1�Q�I�B2
=Ad�P�I�, and the respective coefficients of D2 are

�a12,a22,a32,a42�T = �1,0,0,0�T;

2
−1�I � P�B2= �B̃2 � I�−1�I � P��B̃2 � I�= �B̃2

−1
� I��B̃2 � P�= �B̃2

−1B̃2� � P= I � P. In this case,

2 AdI�P �2
−1=AdB2

−1�I�P�B2
=Ad�I�P�, and the respective coefficients of D2 are

�a13,a23,a33,a43�T = �0,0,1,0�T;

2
−1�I � Q�B2= �B̃2 � I�−1�I � Q��B̃2 � I�= �B̃2

−1
� I��B̃2 � Q�= �B̃2

−1B̃2� � Q= I � Q. So lastly, we ob-
ain �2 AdI�Q �2

−1=AdB2
−1�I�Q�B2

=Ad�I�Q�, and obviously,

�a14,a24,a34,a44�T = �0,0,0,1�T.

Thus, the matrix C��2� is equal to

C��2� = D2 =�
0 1 0 0

− 1 0 0 0

0 0 1 0

0 0 0 1
	 .

�3� We define �3=AdB3
, where

�B3�pq = 
p1q2

p2q1

, p = p1n + p2, q = q1n + q2, p1,p2,q1,q2 � �0,1, . . . ,n − 1� .

One can easily verify by a direct calculation that B3
−1=B3.�

In order to satisfy the relation C��3�=C�AdB3
�=D3, it is sufficient to show that the matrix B3

ulfills the following equations:

B3
−1�P � I�B3 = I � P, B3

−1�I � P�B3 = P � I ,

B3
−1�Q � I�B3 = I � Q, B3

−1�I � Q�B3 = Q � I .

In fact, we have found B3 such that even a more general relation is satisfied,

B3
−1�K � L�B3 = L � K for any matrices K,L � Cn�n. �A2�

he matrix elements of B3 are 
p1q2

p2q1

as introduced above. In order to prove Eq. �A2�, it is
ufficient to express the �pq�th element of the tensor product K � L as �K � L�pq=Kp1q1

Lp2q2
, and

roceed by

�B3
−1�K � L�B3�pq = �B3

−1�K � L�B3��p1n+p2��q1n+q2�

= �
r1,r2=0

n−1

�B3
−1��p1n+p2��r1n+r2���K � L�B3��r1n+r2��q1n+q2�

= �
r1,r2=0

n−1

�
s1,s2=0

n−1

�B3
−1��p1n+p2��r1n+r2��K � L��r1n+r2��s1n+s2��B3��s1n+s2��q1n+q2�

= �
r1,r2=0

n−1

�
s1,s2=0

n−1


p1r2

p2r1

Kr1s1
Lr2s2


s1q2

s2q1

= Kp2q2
Lp1q1

= Lp1q1
Kp2q2

= �L � K�pq.
�4� We define �4=AdB4
, where
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�B4�pq = 
�p1−p2�q1

p2q2

, p = p1n + p2, q = q1n + q2, p1,p2,q1,q2 � �0,1, . . . ,n − 1� .

emember that, with the matrix coefficients p1 , p2 ,q1 ,q2, we count modulo n.
We first express the matrices relevant for the proof by means of their pqth elements,

�P � I�pq = �p1
p1q1

p2q2

,

�P � P�pq = �p1+p2
p1q1

p2q2

,

�I � P�pq = �p2
p1q1

p2q2

,

�Q � I�pq = 
�p1+1�q1

p2q2

,

�Q−1
� Q�pq = 
p1�q1+1�
�p2+1�q2

,

�I � Q�pq = 
p1q1

�p2+1�q2

.

Then, we proceed by showing that the elements of matrix D4 indeed reflect the action of the
utomorphism �4=AdB4

,

��P � I�B4�pq = �
r1,r2=0

n−1

�P � I��p1n+p2��r1n+r2��B4��r1n+r2��q1n+q2�

= �
r1,r2=0

n−1

�p1
p1r1

p2r2


�r1−r2�q1

r2q2

= �p1
�p1−p2�q1

p2q2

,

�B4�P � P��pq = �
r1,r2=0

n−1

�B4��p1n+p2��r1n+r2��P � P��r1n+r2��q1n+q2�

= �
r1,r2=0

n−1


�p1−p2�r1

p2r2

�r1+r2
r1q1

r2q2

= 
�p1−p2�q1

p2q2

�q1+q2 = �p1
�p1−p2�q1

p2q2

.

hus we have shown that �P � I�B4=B4�P � P�, and consequently, B4
−1�P � I�B4= P � P, which

ives the coefficients

�a11,a21,a31,a41�T = �1,0,1,0�T,

��Q � I�B4�pq = �
r1,r2=0

n−1

�Q � I��p1n+p2��r1n+r2��B4��r1n+r2��q1n+q2�

= �
r1,r2=0

n−1


�p1+1�r1

p2r2


�r1−r2�q1

r2q2

= 
p q 
�p +1��q +q �,
2 2 1 1 2
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�B4�Q � I��pq = �
r1,r2=0

n−1

�B4��p1n+p2��r1n+r2��Q � I��r1n+r2��q1n+q2�

= �
r1,r2=0

n−1


�p1−p2�r1

p2r2


�r1+1�q1

r2q2

= 
p2q2

�p1−p2��q1−1� = 
p2q2


�p1+1��q1+q2�.

ombining the two equations, we obtain �Q � I�B4=B4�Q � I�, and B4
−1�Q � I�B4. In terms of the

atrix coefficients of D4, it writes as

�a12,a22,a32,a42�T = �0,1,0,0�T,

��I � P�B4�pq = �
r1,r2=0

n−1

�I � P��p1n+p2��r1n+r2��B4��r1n+r2��q1n+q2�

= �
r1,r2=0

n−1

�p2
p1r1

p2r2


�r1−r2�q1

r2q2

= �p2
�p1−p2�q1

p2q2

,

�B4�I � P��pq = �
r1,r2=0

n−1

�B4��p1n+p2��r1n+r2��I � P��r1n+r2��q1n+q2�

= �
r1,r2=0

n−1


�p1−p2�r1

p2r2

�r2
r1q1

r2q2

= �p2
�p1−p2�q1

p2q2

.

rom �I � P�B4=B4�I � P� we obtain B4
−1�I � P�B4= I � P, i.e., the matrix I � P remains intact by

he action of AdB4
, which means that

�a13,a23,a33,a43�T = �0,0,1,0�T,

��I � Q�B4�pq = �
r1,r2=0

n−1

�I � Q��p1n+p2��r1n+r2��B4��r1n+r2��q1n+q2�

= �
r1,r2=0

n−1


p1r1

�p2+1�r2


�r1−r2�q1

r2q2

= 
�p2+1�q2

p1�q1+q2�,

�B4�Q−1
� Q��pq = �

r1,r2=0

n−1

�B4��p1n+p2��r1n+r2��Q−1
� Q��r1n+r2��q1n+q2�

= �
r1,r2=0

n−1


�p1−p2�r1

p2r2


r1�q1+1�
�r2+1�q2

= 
�p +1�q 
�p −p ��q +1�
2 2 1 2 1

                                                                                                            



H
=

A

g

w

s

g

s

s

t

013512-14 Pelantova, Svobodova, and Tremblay J. Math. Phys. 47, 013512 �2006�

                        
= 
�p2+1�q2

p1�q1+q2�.

ere, we see the action of AdB4
on the last of the four matrices generating G: �I � Q�B4

B4�Q−1 � Q� is equivalent to B4
−1�I � Q�B4=Q−1 � Q. As a result,

�a14,a24,a34,a44�T = �0,− 1,0,1�T.

Thus, we have shown that

C��4� = D4 =�
1 0 0 0

0 1 0 − 1

1 0 1 0

0 0 0 1
	 .

�

PPENDIX B

Theorem 3.1: Let n be a prime. Then the four matrices

D1 =�
1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1
	, D2 =�

0 1 0 0

− 1 0 0 0

0 0 1 0

0 0 0 1
	 ,

D3 =�
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0
	, and D4 =�

1 0 0 0

0 1 0 − 1

1 0 1 0

0 0 0 1
	

enerate the group Sp�4,Fn�.
For a better overview, we first sketch the main framework of the proof, and only afterwards

e prove the individual steps in detail.
Remark 3.2: The fact that n is a prime ensures that Zn is a field Fn, and consequently that the

et Sp�4,Fn�= �X�Zn
4�4 �XTJX=J�, where J= � 0 1

−1 0
� � � 0 1

−1 0
�, is a group.

Remark 3.3: It is a well known fact that, for any integer n, the two matrices � 1 1
0 1

� and � 0 1
−1 0

�
enerate the group SL�2,Zn�= �A�Zn

2�2 �det A=1� �see Ref. 5�.
Remark 3.4: It is easy to verify that D1, D2, D3, and D4 belong to Sp�4,Fn�.
For a group K and any group elements k1 ,k2 , . . . ,kr�K, we denote by �k1 , . . . ,kr the smallest

ubgroup of K containing k1 , . . . ,kr.
Under the framework of this notation and Remark 3.3, we have

�D1,D2 = �
A 0

0 I2
��A � Sl�2,Zn�� ,

�D1,D2,D3 = �
A 0

0 B
�,
0 A

B 0
��A,B � Sl�2,Zn�� .

Our aim is to prove that �D1 ,D2 ,D3 ,D4=Sp�4,Zn�. For this purpose, it is enough to verify
tatements of the next two steps.

Step 1: Let us note Hª �D1 ,D2 ,D3 and M �Sp�4,Fn�, M �H. There exist k�Zn and ma-

rices G1 ,G2�H such that G1MG2=S�k�, where
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S�k� ª�
1 0 1 0

0 k 0 1 − k

k − 1 0 k 0

0 − 1 0 1
	 .

Step 2: The matrix S�k� belongs to �D1 ,D2 ,D3 ,D4 for any k�Zn.
Lemma 3.5: Let n be a prime and A= � a b

c d
��Zn

2�2, A� � 0 0
0 0

�. Then there exist

i� matrices B ,C�SL�2,Zn� such that BAC= � 1 0
0 k

�, where k=det A;
ii� matrices D ,E�SL�2,Zn� such that DAE= � k 0

0 1
�, where k=det A.

Moreover, if det A=k�0, then we have C=E= I2.
Proof: �a� First, we consider the case det A=k�0.

i� We assume, without loss of generality, that a�0 �otherwise, we would consider matrix
A� 0 1

−1 0
�= � −b a

−d c
�= � −b 0

−d c
�, as b�0 when a=0�. The desired matrices B and C are as follows:

B = B3B2B1 = 
1 − ba−1k−1

0 1
�
 1 0

− ac 1
�
a−1 0

0 a
� ,

C = I2,

BAC = B3B2
a−1 0

0 a
�
a b

c d
� = B3
 1 0

− ac 1
�
 1 a−1b

ac ad
�

= 
1 − ba−1k−1

0 1
�
1 a−1b

0 k
� = 
1 0

0 k
� .

ii� Alternatively, we multiply the result by one more matrix, in order to obtain the desired
matrix � k 0

0 1
�,

D = 
k 0

0 k−1 �B ,

E = C = I2,

DAE = 
k 0

0 k−1 �BAC = 
k 0

0 k−1 �
1 0

0 k
� = 
k 0

0 1
� .

�b� Second, we have the situation det A=k=0, but still A�0.

i� If a�0, we set

B = B2B1,

C = 
1 − a−1b � ,

0 1

                                                                                                            



�

T
d

�

013512-16 Pelantova, Svobodova, and Tremblay J. Math. Phys. 47, 013512 �2006�

                        
BAC = B2
a−1 0

0 a
�
a b

c d
�C = 
 1 0

− ac 1
�
 1 a−1b

ac ad
�C

= 
1 a−1b

0 k
�
1 − a−1b

0 1
� = 
1 0

0 k
� = 
1 0

0 0
� .

If a=0, then at least one of the remaining three matrix elements is nonzero. Thus, we can
analogously work with one of the matrices

A
 0 1

− 1 0
�, 
 0 1

− 1 0
�A, 
 0 1

− 1 0
�A
 0 1

− 1 0
� , �B1�

namely with the one whose element in the first row and first column is nonzero.
ii� Again, without loss of generality, we assume that d�0 �otherwise we would transform A

into one of the three matrices given in �B1�; one of which would have a nonzero element
in its second row and second column�. We set

D = D2D1 = 
1 − bd

0 1
�
d 0

0 d−1 � ,

E = 
 1 0

− cd−1 1
� ,

DAE = D2
d 0

0 d−1 �
a b

c d
�E = 
1 − bd

0 1
�
 da db

d−1c 1
�E

= 
 k 0

d−1c 1
�
 1 0

− cd−1 1
� = 
k 0

0 1
� = 
0 0

0 1
� .

�
Proof of Step 1: Let us express a matrix M �Sp�4,Fn� in blocks:

M = 
M11 M12

M21 M22
�, where Mij � Zn

2�2.

he equality �17� means that det M12+det M22=1. We denote det M22=k, and consequently
et M12=1−k.

i� Let us assume that k�0. We take matrices B ,C�SL�2,Zn� as described in Lemma 3.5, so
as to obtain BM12C= � 1 0

0 1−k
�. Afterwards, we apply Lemma 3.5 on matrix M22C, whose

determinant is det�M22C�= �det M22��det C�=k ·1=k�0. Thus, we find D�SL�2,Zn� such
that DM22C= � k 0

0 1
�. At this moment, we are able to transform M by means of matrices F1

= � B 0
0 D

�, F2= � I2 0
0 C

� into the following:

F1MF2 = 
B 0

0 D
�
M11 M12

M21 M22
�
I2 0

0 C
� = 
BM11 BM12

DM21 DM22
�
I2 0

0 C
�

= 
BM11 BM12C

DM21 DM22C
� =�

m̃11 m̃12 1 0

m̃21 m̃22 0 1 − k

m̃31 m̃32 k 0

˜ ˜ 0 1
	 = M̃ ,
m41 m42
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where we denote matrices BM11= � m̃11 m̃12

m̃21 m̃22
� and DM21= � m̃31 m̃32

m̃41 m̃42
� by M̃11,M̃21, respectively.

As the matrix M̃ is a multiple of F1, F2, and M, which all belong to Sp�4,Fn�, then also M̃
is an element of Sp�4,Fn�, and so its elements fulfill equations �18�–�21�,

0 = − m̃21 − km̃41 �mod n� ,

0 = �1 − k�m̃11 + m̃31 �mod n� ,

0 = − m̃22 − km̃42 �mod n� ,

0 = �1 − k�m̃12 + m̃32 �mod n� .

These relations ensure that we can transform M̃ into S�k� by means of matrix N

= � m̃11 m̃12

−m̃41 −m̃42
�,


1 0

0 k
�N = 
 m̃11 m̃12

− km̃41 − km̃42
� = 
m̃11 m̃12

m̃21 m̃22
� = M̃11,


k − 1 0

0 − 1
�N = 
�k − 1�m̃11 �k − 1�m̃12

m̃41 m̃42
� = 
m̃31 m̃32

m̃41 m̃42
� = M̃21.

Therefore, M̃11N
−1= � 1 0

0 k
�, M̃21N

−1= � k−1 0
0 −1

�, and consequently

M̃
N−1 0

0 I2
� =�

m̃11 m̃12 1 0

m̃21 m̃22 0 1 − k

m̃31 m̃32 k 0

m̃41 m̃42 0 1
	
N−1 0

0 I2
� = S�k� .

As an element of Sp�4,Fn�, the matrix M̃ also fulfills Eq. �16�, which implies that

det M̃11+det M̃21=1=k det N+ �1−k�det N=det N, and thus N�SL�2,Zn�. Hence, we
have found the desired matrices G1=F1=B � D, G2=F2�N−1 � I2�=N−1 � C, transforming
M into G1MG2=S�k�.

ii� The case when k=0, we treat as follows. First, we find D, E�SL�2,Zn� such that
DM22E= � k 0

0 1
� and B�SL�2,Zn� such that BM21E= � 1 0

0 1−k
�, according to Lemma 3.5. Analo-

gously to the case k�0, we set G1=F1=B � D ,G2=F2�N−1 � I2�=N−1 � E, and we reach
the result G1MG2=S�k�.

Proof of Step 2: We need to express each matrix S�k� as an element of �D1 ,D2 ,D3 ,D4. We
egin by showing �by induction� that

D4
j =�

1 0 0 0

0 1 0 − j

j 0 1 0

0 0 0 1
	 =�

1 0 0 0

0 1 0 − 1

1 0 1 0

0 0 0 1
	�

1 0 0 0

0 1 0 − j + 1

j − 1 0 1 0

0 0 0 1
	 = D4D4

j−1.

e make use of the fact that J= � 0 1
−1 0

� � � 0 1
−1 0

��H, JT�H, and D4
T=D3D4D3�Sp�4,Fn� �this can

e verified by a simple matrix multiplication�; and we generate S�k� from D4 and elements from

,
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JT�D4
1−k�TJD4

T =�
0 − 1 0 0

1 0 0 0

0 0 0 − 1

0 0 1 0
	�

1 0 1 − k 0

0 1 0 0

0 0 1 0

0 k − 1 0 1
	�

0 1 0 0

− 1 0 0 0

0 0 0 1

0 0 − 1 0
	�

1 0 1 0

0 1 0 0

0 0 1 0

0 − 1 0 1
	

=�
0 − 1 0 0

1 0 1 − k 0

0 1 − k 0 − 1

0 0 1 0
	�

0 1 0 0

− 1 0 − 1 0

0 − 1 0 1

0 0 − 1 0
	 =�

1 0 1 0

0 k 0 1 − k

k − 1 0 k 0

0 − 1 0 1
	 = S�k� .
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tandard and nonstandard extensions of Lie algebras
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We study the problem of quadruple extensions of simple Lie algebras. We find that,
adding a new simple root �+4, it is not possible to have an extended Kac-Moody
algebra described by a Dynkin-Kac diagram with simple links and no loops
between the dots, while it is possible if �+4 is a Borcherds imaginary simple root.
We also comment on the root lattices of these new algebras. The folding procedure
is applied to the simply laced triple extended Lie algebras, obtaining all the non-
simply laced ones. Nonstandard extension procedures for a class of Lie algebras are
proposed. It is shown that the two-extensions of E8, with a dot simply linked to the
Dynkin-Kac diagram of E9, are rank 10 subalgebras of E10. Finally the simple root
systems of a set of rank 11 subalgebras of E11, containing as sub-algebra E10, are
explicitly written. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2162128�

. INTRODUCTION

It has been conjectured by Peter West1 that the still elusive M-Theory possesses a rank 11
ac-Moody symmetry algebra, called E11, that is the triple extended or very extended E8 algebra.
ery extended algebras can be defined for any finite-dimensional Lie algebra G.2 So it is tempting

o argue that other theories, which are associated with other triple extensions of Lie algebras, may
xist. Indeed the same analysis was applied to a conjectured extension of the eleven dimensional
upergravity.3,4 More generally, it has been proposed that the closed bosonic string in D dimen-
ions and type I supergravity and pure gravity theories exhibit a Kac-Moody symmetry algebra,
espectively, identified as the triple extensions of the D and A series.5–7 This conjecture is sup-
orted by dimensional reduction and by the so-called cosmological billiards.8–10 Then it is natural
o look for a more general symmetry algebra which can include all these Kac-Moody algebras as
articular cases. So we address the question of how to go beyond G+++ algebras; we find that the
djoint of a new simple root �+4 introduces multiple links and loops in the structure of the
-extended algebra, if �+4 is an ordinary Kac-Moody simple root, while the “simple-links” struc-
ure is preserved if we allow �+4 is a Borcherds �imaginary� simple root.

The �first� extension of a finite-dimensional Lie algebra is the construction of �untwisted�
ffine Kac-Moody algebras, which are obtained adding to the simple roots of any finite-
imensional Lie algebra G a root �0 that is the opposite of the highest root �h.r.� plus a light-like
ector k+, in order to make �0 linearly independent from the system of the simple roots of G,

eeping unchanged its length, and are denoted as G+ or Ĝ or G1. This procedure for the simply
aced algebras of the DN and EN series can be formulated as the addition to the simple root system
f G of another root �0, that is the opposite of the unique fundamental weight of length 2, which
s in the root lattice of the algebra, plus a light-like vector k+. The light-like vector can be
onsidered to belong to a 2-dim. Lorentzian lattice, usually denoted II1,1, and the double extension
r overextension of G, denoted G++, is obtained by adding a new simple root, of length 2, which

�Electronic mail: forte@na.infn.it
�
Electronic mail: sciarrino@na.infn.it

47, 013513-1022-2488/2006/47�1�/013513/22/$23.00 © 2006 American Institute of Physics
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s formed by the sum of the two light like vectors k±, �k+ ,k−�=1, spanning II1,1. The triple
xtended or very extended G, denoted G+++, is obtained adding a new simple root of length 2,
hich belongs to a new copy of the lattice II1,1, plus k+. In this way, an indefinite Kac-Moody or
orentzian algebra of rank r+3 is obtained whose roots belong to a Lorentzian lattice of dimen-
ion r+4, so it is natural to wonder if an indefinite Kac-Moody algebra of rank r+4 can be
btained by a further extension. Moreover, let us notice that in the lattice II1,1 vectors of negative
ength do exist �see Appendix A�. From this remark one can make an extension of G adding a new
oot, that is the opposite of any fundamental weight, that can be written as linear combination with
nteger coefficients of the simple roots of the algebra, plus a suitable element of the lattice II1,1 in
rder to have an independent new simple root of length 2. This construction will be discussed in
he following. It has been pointed out in Ref. 11 that the structure of subalgebras of hyperbolic
ac-Moody, in general of two-extended �overextended� Lie algebras, is very rich and surprising.
ome of the results of that paper can be generalized to more general extensions and we comment
n this point in the following. This paper is organized as follows. In Sec. II, to make the paper
elf-contained, we recall the well-known construction of the three-extended Lie algebras. We show
hat the four-extended algebras are described by Dynkin-Kac diagrams with loops and multiple
inks �so their structure is quite different from that of the one-, two-, and three-extended algebras�.
n particular, we show that we cannot have a situation in which the new �fourth� simple root �+4

s simply linked to �+3, unless we let �+4 be a Borcherds simple root �with squared norm zero or
egative�. So we also study the possibility to have a Borcherds extension of the G+++ algebras, but
his extension has sense only when the algebra G is simply-laced �see Appendix B for the defini-
ion of a Borcherds algebra12�. In Sec. III, we show that all the nonsimply laced three-extended Lie
lgebras can be obtained by folding the simply-laced ones. In Sec. IV, we discuss nonstandard
xtension procedures, discussing in detail a few examples which may be of physical interest. In
ec. V, we show that the algebras obtained by some general nonstandard procedure, but not for all

he procedures, are indeed subalgebras, of the same rank, of the standard triple extended algebras.
n particular we prove that any nonstandard one-extension of E9, with a root simply linked to a
imple roots of E9, is a subalgebra of E10. The simple root systems of a set of rank 11 subalgebras
f E11, containing as subalgebra E10, are explicitly written. Finally we present a few conclusions
nd perspectives. To make the paper self-contained two very short Appendices are added to recall
he main features of the 2-dim Lorentzian lattice II1,1 and of Borcherds algebras.

I. ON EXTENSIONS OF G+++ ALGEBRAS

An excellent discussion of the mechanism of standard extensions of Lie algebras can be found
n Ref. 2, here we briefly recall the essential points, mainly to introduce the notation and to make
he paper self-consistent. �Let us remember that the standard extension for G2 does not work,
ecause G2 is the only finite Lie algebra for which it is not possible to normalize the highest root
such that �� ,��=2. However, it’s possible to extend G2 with the following choice of the ex-

ended roots: �+1=k+−�, �+2=−�k++3k−� and �+3=−�l++3l−�+k+. Anyway, G2
+++ can be obtained

y folding D4
+++ �see Sec. III�.� Let G be a simple Lie algebra of rank r, with simple root system

i �i=1, . . . ,r� and root lattice �G= � i=1
r Z�i �for the roots and fundamental weights we use the

otation of Ref. 13�. Let us consider also two copies of the lattice II1,1, which we indicate with
Ik±

1,1 and IIl±
1,1. In the following, we consider indefinite Kac-Moody algebras with root lattice

ncluded in the direct sum �G � IIk±

1,1
� IIl±

1,1.
Let G+ be the extended Lie algebra �or affine Kac-Moody algebra�, with simple root system

�i ,�0��r+1��+1=−h.r.+k+� �i=1, . . . ,r�, where h.r. denotes the highest root of G �which is �
h.r.=�i=1

r ai�i where ai are Kac marks, see Ref. 13�, and

�k+,k+� = �k+,�i� = 0. �1�

et G++ be the double extended or overextended Lie algebra �actually a Lorentzian Kac-Moody

lgebra�, with simple root system �� j ,�r+2��+2=−�k++k−�� �j=1, . . . ,r+1�, where
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�k+,k−� = 1, �k−,k−� = �k−,�i� = 0. �2�

et us note that the root lattice of G+ is properly contained in the direct sum �G � IIk±

1,1, whereas the
oot lattice of G++ coincides with the direct sum. To see this, it is enough to obtain k+ and k− from
he other roots � j �j=1, . . . ,r+2�. In fact,

k+ = � + �+1 = �
i=1

r

ai�i + �+1, �3�

k− = − k+ − �+2 = − � − �+1 − �+2 �4�

o k+ and k− are linear combinations �with integer coefficients� of the r+2 simple roots of the G++

lgebra. This means that with a change of basis �in the lattice�, we can pass from �� j �j
1, . . . ,r+2�� to ��i �i=1, . . . ,r� ;k+ ,k−�, that is the lattice �G � Z�+1 � Z�+2 coincides with �G

� IIk±

1,1.
Now, let G+++ be the triple extended Lie algebra �still a Lorentzian Kac-Moody algebra�, with

imple root system ��k ,�r+3��+3=−�l++ l−�+k+� �k=1, . . . ,r+2�, where

��i,l±� = �k±,l±� = �k�,l±� = �l±,l±� = 0, �l�,l±� = 1. �5�

n this way starting from the r-dim. Euclidean lattice �G, we have build up a �r+4�-dim. Lorent-
ian lattice ���G � IIk±

1,1
� IIl±

1,1, with signature �…��� �r+2 plus signs�. The simple root
ystem of G+++ clearly spans a �r+3�-dim sublattice of � �because �+3 only takes the direction

++ l− in the second lattice II1,1, so the orthogonal direction is lacking�, so it is natural to wonder
f it is possible to extend further the G+++ algebra and fill in �.

Motivated by the previous steps, one would just add another node at the Dynkin diagram of a
+++ algebra, with a simple link to the root �+3; in this way, as it happens in the case of the G++

lgebra, one would expect that this construction fills the root lattice �G � IIk±

1,1
� IIl±

1,1. In the fol-
owing, we show that actually this is not the case. �Our discussion does not account for the
ntroduction of another lattice II1,1, which solves the question only partially, because it moves the
roblem to fill this new lattice.�

As we already mentioned, the simple root �+3 contains only the combination l++ l−, so if we
ant to span completely also the second lattice II1,1, we need a new simple root �+4 which allows
s to obtain l+ and l− separately. In this way, we are guaranteed that the root lattice of the new
lgebra also contains all vectors which are integer multiples of l+ or l−, so this lattice coincides
ith �. In the following, let us choose for �+4 the more general form:

�+4 � al+ + bl− + ck+ + dk−, �6�

hich allows us to make many considerations about the possible extensions of the G+++ algebras.
As it happens also for �+2 and �+3, here we do not consider the situation in which �+4 is also
inked with the simple roots �i of G. However this simple choice does not really change the
onclusions of our analysis.� First of all, let us obtain the expression for l+ and l− using the
efinition of �+3 and �+4:

�a − b�l+ = �d − b − c�� + �d − b − c��+1 + d�+2 + b�+3 + �+4, �7�

�b − a�l− = �d − a − c�� + �d − a − c��+1 + d�+2 + a�+3 + �+4. �8�

e see then that it is possible to obtain l+ and l− as linear combinations �over Z� of the simple
oots if and only if 	a−b	=1. Only in this case we are guaranteed that we actually catch all the
ectors in the lattice IIl±

1,1. With this in mind, let us find the other relations a ,b ,c ,d have to satisfy,
hat is let us compute the norm of �+4 and the scalar products with the other simple roots �here we

rite only the relevant elements aij of the generalized Cartan matrix�:
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��+4�2 = 2�ab + cd� , �9�

a+4,+1 � 2
��+4,�+1�
��+4,�+4�

=
d

ab + cd
, a+4,+2 � 2

��+4,�+2�
��+4,�+4�

=
− c − d

ab + cd
, �10�

a+4,+3 � 2
��+4,�+3�
��+4,�+4�

=
d − a − b

ab + cd
. �11�

et us limit ourselves to consider the case ��+4�2=2 �to look for a “natural extension”� and let all
our coefficients be different from zero; we must have

ab + cd = 1, �12�

d � 0, c � − d 	 0, d 
 a + b , �13�

ecause only with these constraints �+4 is an acceptable simple root �à la Kac-Moody�. In par-
icular, the product cd must be negative, and as Eq. �12� holds, the product ab must be positive
actually, it must be at least 2�, that is a and b must have the same sign. A simple solution, pointed
ut to us by C. Helfgott, to Eqs. �12� and �13� is the following:

a = 2, b = 1, c = 1, d = − 1, �14�

here �+4 has norm 2 and the scalar products are ��+4 ,�+1�=−1, ��+4 ,�+2�=0 and ��+4 ,�+3�
=−4. Furthermore, this solution verifies also the condition a−b=1, so its root lattice is precisely

, but it presents one loop and a multiple link with the �last� root �+3, so its structure is very
ifferent from the other previous extensions. �A. Kleinschmidt suggested another solution to us

+4=�+3k+−2k−−2l+−3l− in which �+4 is also linked to the only simple root � of su�2�; this
olution too presents loops and multiple links.� This situation is common to all solutions of Eqs.
12� and �13�: it is not possible �we stress: without adding any II1,1 or different lattice� to have a
imple link with �+4 and no loops �for example the equation d−a−b=−1 is never satisfied if a and
are both positive, because d is at least −1, and goes in contradiction with the other relations if
and b are both negative�. In this sense, the procedure of standard extension stops at the third step

G+++�.
It is clear that there exist infinite solutions to Eqs. �12� and �13� �for example, it is enough to

ake a ,b both positive, d=−1 and an opportune value of c to satisfy Eq. �12� and the second
quation of Eq. �13��, but only those with 	a−b	=1 have the property that their root lattice
oincides with �. We can also try �in �+4� to put one coefficient equal to zero and to explore more
pecific cases. An investigation, case by case, shows that:

• d=0: the scalar products imply ab=1 and a+b	0, that is a=b=1, but the case a=b is not
acceptable because, in this case, �+4 is a linear combination of the other simple roots.

• c=0: the scalar products with �+1 and �+2 are, respectively, proportional to d and −d, so one
of the two is positive and has the wrong sign, or d=0 and then �+4 is a linear combination of
the other simple roots.

• a=0: this case implies c=−1, but then d=−1 too and the scalar product with �+2 is positive.
• b=0: it has the same problem as the case a=0.

If we put equal to zero two coefficients, the only possibility is to have c=d=0 �we cannot take
qual to zero a coefficient of l+ or l− and a coefficient of k+ or k−, because �+4 would have
anishing norm�, but in this case, as already discussed, we have problems.

So far, we have seen that it is never possible to add a �Kac-Moody� simple root in order to

ave a simple link with �+3; besides this, the possible solutions which span the whole lattice � are
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estricted to the condition 	a−b	=1. Yet, if we abandon the condition that �+4 is a Kac-Moody
imple root and let it be a Borcherds �imaginary� simple root, the situation changes. In fact, we can
asily find an imaginary root of the kind:

�+4 = al+ + bl−, �15�

hich has scalar product equal to −1 with �+3: it is only necessary that b=1−a, that is �+4

al++ �1−a�l−, with norm 2a�1−a�. Then if a=0 or a=1, �+4 has norm zero, in all the other cases
ts norm is negative, that is �+4 is a good Borcherds simple root. If we want to fill in � with the
ntroduction of a Borcherds simple root, we have always to fulfill the condition 	a−b	=1 �this
ondition is independent from the norm of �+4�, but now it is possible to have both ��+4 ,�+3�

=−1 and, at the same time, to span the whole lattice �. In fact the values a=1, b=0 �and vice
ersa a=0, b=1�, which correspond to �+4= l+ ��+4= l−�, are the only ones which allow one to
ave

�roots�BG+++� � �roots�G++� � IIl±
1,1 = � , �16�

��+4,�+3� = − 1, �17�

s opposite to the Kac-Moody case, where, as we already said, it is never possible to satisfy Eq.
17� and only some solutions allow one to fill in � �we have called BG+++ the Borcherds extension
f G+++ corresponding to �+4= l+ or �+4= l−�. Denoting by a crossed dot the Borcherds simple root

+4, we can draw the Dynkin diagram of this Borcherds algebra in the following way:

ctually, this construction makes sense if G is simply laced, because otherwise the Cartan matrix
s not well-defined. In fact, if �+4 is an imaginary �isotropic� root, we cannot define the extended
artan matrix as 2��i ,� j� / ��i ,�i� for all �i because �+4

2 =0. We have the same problem if we add
n imaginary simple root with negative squared norm �as previously recalled, in II1,1 there are
nfinite vectors whose squared norm is negative�, because we shall have positive elements out of
he principal diagonal. The solution is then to consider a G simply laced and define the extended
artan matrix by the scalar products between all the simple roots: bi,jª ��i ,� j�. So, while the
xtension of G is possible up to G+++ for any finite G, in the case of a Borcherds extension it is
ecessary to choose for G a simply laced algebra �in fact, a Borcherds algebra is defined only on
symmetric Cartan matrix�. To summarize our result, we have proven the following.

Proposition 1: The extension of G+++ algebra, whose simple root system spans completely �
nd whose Dynkin-Kac diagram has no loops and only simple links between the dots, is the
orcherds algebra BG+++ (with G simply laced).

The particular solution a=1, b=0 �or vice versa� looks like the same construction of G+ and
++, as the role of k± is now played by l±, with the difference that �+1 contains also a root of a
imple Lie algebra, while �+4 does not. This observation suggests that it is possible to fuse
ogether two �finite� simple Lie algebras, let’s say G and G�, adding the highest root �� of G� to

+4. In this way, �+4� ��+4−�� is again a Kac-Moody simple root, indeed the affine root of G�+.
nyway, we do not insist on this point, because there are many possible ways to fuse together two

or more� finite dimensional simple Lie algebras �with or without the introduction of intermediate
ac-Moody or Borcherds algebras�.

Remark: In this section, we have seen that triple extended Lie algebras G+++ have their root
attice properly included in �=�G � II1,1 � II1,1 �in particular, their root lattice is Lorentzian with
ust one negative eigenvalue�. Among the four-extensions we considered in this section, we have

hown that there are many algebras �of Kac-Moody or generalized Kac-Moody type� whose root
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attice coincides with �, which is Lorentzian in a more general sense �it has two negative eigen-
alues�. These seem to be the first algebras obtained in literature with this kind of lattice, together
ith some similar algebras studied by Harvey and Moore in Refs. 14 and 15 �strictly speaking,

heir algebras are not Borcherds algebras, because they could not satisfy some grading conditions
n the characterization of generalized Kac-Moody algebras, while our Borcherds algebras are true
orcherds algebras because we have constructed them from an acceptable generalized Cartan
atrix�. Our result is not in contrast with the statement of Ref. 16, according to which algebras of

hysical states, whose root lattices are of the kind �p,q, i.e., with a signature with more than one
egative sign �obtained through a vertex operator construction� cannot be described in terms of
enerators and relations of Kac-Moody or Borcherds algebras and belong to a new class of Lie
lgebras. Indeed our algebras are defined by a Cartan matrix and do not satisfy the root structure
nd multiplicities of the physical state algebra; this last condition seems, indeed, too strong and
ncompatible with the algebras constructed by us.

II. FOLDING OF TRIPLE EXTENDED LIE ALGEBRAS

The folding technique is a simple and powerful method to find class of singular subalgebras of
nite Lie algebras as well as of affine or indefinite Kac-Moody algebras. The starting point is to
se the symmetry � of the Dynkin diagram, corresponding to an exterior automorphism of the
lgebra G. In the finite case all the Dynkin diagrams of simply laced algebras show an automor-
hism of order k=2, except the case of D4 where the order is 3. Let �i be a simple root of G. Using
he automorphism � of order k, we obtain

i ª �i + ���i� + ¯ + �k−1��i� , �18�

hich form the simple root system of a singular subalgebra H of G. The generators of G, corre-
ponding to the simple roots �i, left unchanged by �, become generators of H, while the other ones
ransform according to a relation analogous to Eq. �18�. In the following we apply the folding
ethod to the triple extended Lie algebras, obtaining all the nonsimply laced triple extended

lgebras, as in the finite case. The automorphism of the three-extended Dynkin diagram acts on the
tandard way upon the roots of the finite classical subalgebras and trivially on the extended roots

+1 ,�+2 ,�+3. This property has to hold if we want to preserve the structure of the triple extension
f the nonsimply laced algebras. �Indeed, also the nonsimply laced G++ algebras can be obtained
ith the same folding technique from the simply laced G++, while a different kind of folding

pplied to the G+ algebras allows one to get all the twisted affine algebras.� Let us enumerate all
he cases.

. A2N−1
+++ \CN

+++

+++
he Cartan matrix of A2N−1 can be written, in block form, as
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A = �aij� = ��i,� j� =

− 1 0 0

AA2N−1
] ] ]

− 1 0 0

− 1 ¯ − 1 2 − 1 0

0 ¯ 0 − 1 2 − 1

0 ¯ 0 0 − 1 2

� . �19�

he not trivial action of � on the simple roots gives

1 ª �1 + ���1� = �1 + �2N−1, �20�

2 ª �2 + ���2� = �2 + �2N−2 . . . , �21�

N−1 ª �N−1 + ���N−1� = �N−1 + �N+1, �22�

N ª �N + ���N� = 2�N, �23�

+1 ª �+1 + ���+1� = 2�+1, �24�

+2 ª �+2 + ���+2� = 2�+2, �25�

+3 ª �+3 + ���+3� = 2�+3, �26�

he length of the simple roots is

1
2 = . . . = N−1

2 = 4, �27�

+3
2 = +2

2 = +1
2 = N

2 = 8. �28�

The corresponding Cartan matrix is

B = �bij�i,j = 2
�i, j�
�i,i�

=

− 2 0 0

ACN
] ] ]

0 0 0

− 1 ¯ 0 2 − 1 0

0 ¯ 0 − 1 2 − 1

0 ¯ 0 0 − 1 2

� . �29�

o we get the three-extended Lie algebra CN
+++ with Dynkin diagram
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The Cartan matrix can be written as

A = �aij�i,j = ��i,� j� =

0 0 0

− 1 ] ]

ADN
] ] ]

0 0 0

0 − 1 ¯ 0 2 − 1 0

0 ¯ ¯ 0 − 1 2 − 1

0 ¯ ¯ 0 0 − 1 2

� . �30�

he nontrivial action of � is

���N−1� = �N, ���N� = �N−1. �31�

he new simple roots are

N−1 ª �N−1 + ���N−1� = �N−1 + �N, �32�

N−2 ª �N−2 + ���N−2� = 2�N−2 . . . , �33�

1 ª �1 + ���1� = 2�1, �34�

+1 ª �+1 + ���+1� = 2�+1, �35�

+2 ª �+2 + ���+2� = 2�+2, �36�

+3 ª �+3 + ���+3� = 2�+3, �37�

here

N−1
2 = 4, +3

2 = +2
2 = . . . = N−2

2 = 8. �38�

he Cartan matrix and the corresponding Dynkin diagram of BN−1
+++ are

B = �bij�i,j = 2
�i, j�
�i,i�

=

0 0 0

− 1 ] ]

ABN−1
] ] ]

0 0 0

0 − 1 ¯ 0 2 − 1 0

0 ¯ ¯ 0 − 1 2 − 1� . �39�
0 ¯ ¯ 0 0 − 1 2
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The Cartan matrix of E6
+++ is

A = �aij�i,j = ��i,� j� =

0 0 0

AE6
] ] ]

− 1 0 0

0 ¯ − 1 2 − 1 0

0 ¯ 0 − 1 2 − 1

0 ¯ 0 0 − 1 2

� . �40�

he simple roots are given by

1 ª �1 + ���1� = �1 + �5, �41�

2 ª �2 + ���2� = �2 + �4, �42�

3 ª �3 + ���3� = 2�3, �43�

4 ª �6 + ���6� = 2�6 �44�

+1 ª 2�+1, +2 ª 2�+2 �45�

+3 ª 2�+3, �46�

nd

1
2 = 2

2 = 4, +3
2 = +2

2 = . . . = 3
2 = 8. �47�

+++
One gets the three-extended algebra F4 , with Cartan matrix and Dynkin diagram
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B = �bij�i,j = 2
�i, j�
�i,i�

=

0 0 0

AF4
] ] ]

− 1 0 0

0 ¯ − 1 2 − 1 0

0 ¯ 0 − 1 2 − 1

0 ¯ 0 0 − 1 2

� . �48�

The Cartan matrix of D4
+++ is

A = �aij�i,j = ��i,� j� =

2 − 1 0 0 0 0 0

− 1 2 − 1 − 1 − 1 0 0

0 − 1 2 0 0 0 0

0 − 1 0 2 0 0 0

0 − 1 0 0 2 − 1 0

0 0 0 0 − 1 2 − 1

0 0 0 0 0 − 1 2

� . �49�

he action of � on the simple roots gives

1 ª �1 + ���1� + �2��1� = �1 + �3 + �4, �50�

2 ª 3�2, �51�

+1 ª 3�+1, +2 ª 3�+2, �52�

+3 ª 3�+3 �53�

nd

1
2 = 6, +3

2 = . . . = 2
2 = 18. �54�

One gets the extended algebra G2
+++ with Cartan matrix and Dynkin diagram:

B = �bij�i,j = 2
�i, j�
�i,i�

=

2 − 3 0 0 0

− 1 2 − 1 0 0

0 − 1 2 − 1 0

0 0 − 1 2 − 1� . �55�
0 0 0 − 1 2
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et us remark that, in general, by applying the folding procedure to an algebra G, defined by the
artan matrix A and Dynkin diagram S�A�, we obtain the Cartan matrix B and the corresponding
ynkin diagram S�B� of another algebra H. However we have to check that the new generators,
efined in function of the generators of G satisfy all the defining relations of the algebra H. Let us
ee how the new generators are obtained. Let �i be a simple root of G and hi ,ei , f i the associated
enerators. Let us denote by i, respectively, hi� ,ei� , f i�, the roots and the associated generators
ransformed under the action of �, which we identify, respectively, as the simple roots and the
ssociated generators of H. If the action of � is trivial, that is i=k�i �where k is the order of the
utomorphism �, �k=1� then the generators are not transformed hi�=hi, ei�=ei and f i�= f i. If the
ction of � is not trivial, that is i=�i+���i�+ . . . +�k−1��i�, we obtain hi�=hi+h���i�

+ . . .
h�k−1��i�

, ei�=ei+e���i�
+ . . . +e�k−1��i�

and f i�= f i+ f���i�
+ . . . + f�k−1��i�

. We have to verify that the
enerators hi� ,ei� , f i� satisfy the defining relations

�ei�, f j�� = �ijhj�,

�hi�,ej�� = bijej�, �hi�, f j�� = − bijf j�,

�hi�,hj�� = 0,

�ad ei��
1−bijej� = 0, �ad f i��

1−bij f j� = 0, �i � j� .

e do not report here the explicit calculations, but everything works nicely. Finally it should be
emarked that the folding procedure for indefinite Kac-Moody algebra, when applicable, always
ives rise to indefinite Kac-Moody algebra, as it happens for the finite, affine, hyperbolic Kac-
oody algebras. On the contrary other reduction procedures, as the orbifolding, do not preserve

he kind of algebras. Indeed as remarked in Ref. 17, the orbifolding of E10, to which the folding
rocedure cannot be applied, gives rise to non Kac-Moody algebras.

V. NONSTANDARD EXTENSIONS OF LIE ALGEBRAS

In this section we present a nonstandard construction of extended Lie algebras; as stated in
ec. I, the idea of the nonstandard extension is to add to the simple root system ��i� of a simple
ie algebra G new roots, which are formed by those fundamental weights of the algebra that are

inear combinations with integer coefficients of �i, plus a suitable combination of vectors belong-
ng to the Lorentzian lattice IIk±

1,1 and/or IIl±
1,1. The new roots have to satisfy the requirements that

heir squared norms are equal to 2 and that are suitably linked with the previous ones. Let us
emark that the roots of the nonstandard extension do not generally span the whole lattice �
�G � IIk±

1,1
� IIl±

1,1 and that, moreover, the structure of the added simple root is, by no way, unique.
f course one can add more than two 2-dim. Lorentzian lattices, but these extensions will not be

onsidered in the present paper, where we add at most three new roots. Also we shall not discuss
he case where the squared norm of the added roots is not equal to 2. So, given a simple Lie
lgebra G, we add to the root lattice �G a new simple root �r+1��+1, which is formed by the
pposite of a fundamental weight −�i and by a suitable linear combination, with integer coeffi-
ients, of the vectors k±, in order to have �+1

2 =2, as �i
2 is not necessarily 2. Let us remember that

he fundamental weights have the property 2��i ,� j� / �� j ,� j�=�i,j; they span the weight lattice
P= � i=1

r Z�i, which is dual to the coroot lattice �G
∨= � i=1

r Z�i
∨ where �i

∨=2�i / ��i ,�i� are the
oroots. So while it is always true that P= ��G

∨�*, in general we have �G� P. This means that for
ach G, only some �i belong to the root lattice; so, in defining �+1 we choose the �i��G. Since

i is only linked with the simple root �i, we have ��+1 ,� j�=−�+1,i. So the first extension is made
2 2
y adding the root �r+1��+1� ª−�i+k+−ak−, where a�Z+ is fixed by the condition �+1=�i
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2a=2. At this point, we add the simple root �r+2��+2ª−�+bk−− l−, where � is the highest root
f G and b�Z is a coefficient chosen in order to have ��+2 ,�+1�= ��i ,��−b=0. In this way, we
ave �+2

2 =2 and �+2 behaves like an affine root �that is, it is linked with the simple roots of G in

way completely analogous as the affine root of the algebras Ĝ�. At the end, we add the third
imple root �r+3��+3ª l++ l− with the property that ��+3 ,�+2�=−1 and ��+3 ,�i�=0 for i
1, . . . ,r ,r+1. As ��i ,� j��Z	 for the Lie algebra G below considered, this procedure is com-
letely general and the extended algebra contains as subalgebra the affine extension of G �so
ometimes we shall call this a nonstandard affine extension�. Clearly the lightlike vector l− can be
anged up to any other simple root, producing another indefinite Kac-Moody. We shall comment
n this point in Sec. V. This construction leads to indefinite Kac-Moody algebras, one-, two-, and
hree-extended, whose �symmetric� Cartan matrix 2��i ,� j� / ��i ,�i� �for i , j=1, . . . ,r+3� has
orentzian signature ��…��� with r+2 plus signs and 1 minus sign. The root lattice of the

hree-extended algebra is properly contained in �G � IIk±

1,1
� IIl±

1,1. For these algebras, one can make
imilar discussions as those in Sec. II on eventual further extensions. Now we want to discuss
nother possible extension, which cannot be performed for any fundamental weight �i belonging
o the root lattice of G. The first extension is performed as before, but as second extension we add
he root �+2ª−� j +k+−bk−− l− �i� j�, where b�Z+ is such that �+2

2 =2 and ��+1 ,�+2�
��i ,� j�−a−b=0. In the following we shall show that, for G�E6, for any i ��i���, at least one

j exists which satisfies the above condition. In the following, we discuss only some examples of
he general construction, we called affine extension; in particular we concentrate on the simply
aced algebras, but it is possible to consider also the other cases paying attention at the choice of
he fundamental weight.

Looking at the fundamental weights of simply laced-Lie algebras, see Ref. 13, one realizes
hat the fundamental weights which can be written as

�i = �
n

cn�n, cn � Z �56�

re

. for DN=so�2N� �N�4�, the weights �i with i even number �N−2� i�2�,

. for E6, only the weights �i �i=3,6�,

. for E7, only the weights �i �i=1,2 ,3 ,5�,

. for E8, all the weights �i, which is just a consequence of the E8-lattice being a self-dual one.

In the following we discuss some of the possible nonstandard extensions, with the aim to
llustrate the procedure in a few examples which may be relevant for their subalgebras content. Let
s emphasize that the discussed extensions as well their subalgebras content are not at all exhaus-
ive, being the choice of the extended simple roots not unique, in general.

. DN=so„2N…

In order to illustrate the general procedure, we discuss in some detail the case of D6

so�12�, which is the first algebra of the even orthogonal series which admits a nonstandard
xtension. We add the simple root

�+1 ª − �4 + k+ − k−, �+1
2 = 2, �57�

here �4 is the fundamental weight �the �i are unit ortho-normal vectors in R6�

�4 = �1 + �2 + �3 + �4, �3
2 = 4, �58�

learly we have

��+1,�i� = − �4,i. �59�
e add now the root
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�+2 ª − h.r. − 2k− − l− = − ��1 + �2� − 2k− − l−, �60�

��+2,� j� = − �2,j , �61�

nd

�+3 ª l+ + l−, �62�

��+3,�k� = − �+2,k, �63�

ith Dynkin diagram:

et’s observe that the first extension of D6 is the same algebra as D4
+++, so folding �+1, �5, and �6

e re-obtain G2
+++. Clearly the choice of the extended simple roots is not unique. One can easily

ee that:

• A nonstandard extension of so�4N� admits as subalgebra the affine extension of so�4N� and
so�4�N−1��. Indeed one adds to the roots of so�4N� the root of the affine extension

�+1 ª − �2 + k+ �64�

and the new nonstandard root

�+2 ª − �4 + l+ − l−. �65�

Taking away the roots �+1 ,� j �j=1,2� one gets the algebra so�4�N−1���1�. Let us remark that
if we add the root

�+2 ª − �6 + l+ − 2l− �66�

and then we take away the roots �+1 ,� j �j=1, . . . ,4� one gets the algebra so�4�N−2���1�.
• The nonstandard extension of so�24� is the smallest extension of the orthogonal series which

contains as subalgebra E11. Indeed adding to the roots of so�24� the nonstandard root

�+1 ª − �8 + k+ − 3k− �67�

and deleting �11,�12 one gets E11.

Let us call �̂2n=−�2n+k+− �n−1�k−, where n�Z+ and �2n=�i=1
2n �i is a fundamental weight.

learly we have

�̂2n
2 = 2 ��̂2n,�̂2n+2� = 0. �68�

. E6
Let us add to the simple root system of E6 the root
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�+1 ª − �3 + k+ − 2k−, �+1
2 = 2, �69�

here �3 is the fundamental weight

�3 = �3 + �4 + �5 + �8 − �7 − �6, �3
2 = 6. �70�

learly we have

��+1,�i� = − �3,i. �71�

e add now the root

�+2 ª − h.r. − 3k− − l− = − 1
2 ��1 + �2 + �3 + �4 + �5 − �6 − �7 + �8� − 3k− − l−, �72�

��+2,� j� = − �6,j , �73�

nd

�+3 ª l+ + l−, ��+3,�k� = − �+2,k. �74�

lternatively we can add the roots

�+2 ª k− + k+ − l−, ��+2,� j� = − �+1,j , �75�

�+3 ª l+ + l−, ��+3,�k� = − �+2,k, �76�

nd we obtain the same Dynkin diagram:

here in the second construction the roles of �+1 and �6 are exchanged. Let’s observe that many
onstandard �simply laced� Dynkin diagrams can be folded to obtain other �nonsimply laced�
ynkin diagrams. For example, in the case of E6, we can identify the roots �1 and �2 with �5 and

4, respectively �so the new simple roots are 1=�1+�5, 2=�2+�4 and i=2�i for i=3, +1,

2, +3�, obtaining the following folded Dynkin diagram:
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ctually, if we consider only the first extension of E6, then we can identify also �+1 with �6 and
e obtain:

. E7

In this case we could use the fundamental weights �1, �2, �3, and �5. To illustrate the
rocedure, let’s consider the weight �5 ���5 ,�5�=4� and add the simple roots:

�+1 ª − �5 + k+ − k−, �+1
2 = 2, ��+1,�i� = − �5,i, �77�

ith

�5 = �5 + �6 − �7 + �8, �5
2 = 4. �78�

hen

�+2 ª − h.r. − 2k− − l− = �7 − �8 − 2k− − l−, �+3 = l+ + l−, �79�

ith ��+2 ,�k�=−�k,1 and ��+3 ,� j�=−� j,+2. In this way we obtain the Dynkin diagram:

et us call �̂iª−�i+k+−ak−, where a�Z+ and �i, i=1,2 ,3 ,5, is a fundamental weight. We have

�̂i
2 = 2 ��̂3,�̂5� = 0. �80�

. E8

E8 root lattice is self-dual, so it coincides with the weight lattice. The nonstandard extension
an be made adding to the simple root system a root equal to the opposite of any weight �i �i
1, . . . ,8� plus some combination of k+ and k−. In this way we have eight different extensions of

8, with the nodes +2, +3 always in the same position �that is ��+2 ,�7�=−1 and ��+3 ,�+2�=−1�,
hile the node +1 moves from the node 1 to the node 8, when i runs from 1 to 8, respectively.

ctually, this situation is general for the nonstandard extensions.
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Let us emphasize again that the choice of the extended simple roots is not unique at all.
otivated by this consideration, we observe that classically we have E6�E7�E8, while this

nclusion is lost when we consider the corresponding affine algebras �and the same thing is true for
he double and the triple extensions�. So we look for an algebra that may contain all the E series
nd the E�1� series. This is possible considering the following nonstandard extension of E8 �in
hich the new simple roots are linked to those of E8 using different fundamental weights�. We add

he new simple root:

�+1 ª − h.r. + k+ + l+ = − ��7 + �8� + k+ + l+, �+1
2 = 2, �81�

hen we add the two simple roots:

�1 = 2�8, �8 =
1

2
��

i=1

7

�i + 5�8 , �82�

�+2 ª − �1 − k− + l+ − l−, �+1
2 = 2, �83�

nd

�+3 ª − �8 + k+ + l+ − 3l−, �+3
2 = 2, �84�

o that the only nonzero scalar products are: ��+1 ,�7�=−1, ��+2 ,�1�=−1 and ��+3 ,�8�=−1 and
e have the following Dynkin diagram:

his algebra contains E8 �then also E7 and E6� and all the affinizations E6,7,8
�1� , so it seems to be

nteresting for its content in subalgebras. Let us call �̂i=−�i+k+−ak−, where a�Z+ and �i, is any

undamental weight. We have ��̂i
2=2�

��̂1,�̂2� = ��̂1,�̂5� = 0,

��̂4,�̂8� = 0��̂2,�̂3� = ��̂2,�̂4� = ��̂2,�̂5� = ��̂2,�̂6� = 0,

��̂2,�̂3� = ��̂2,�̂4� = ��̂2,�̂5� = ��̂2,�̂6� = 0. �85�

e have proposed a procedure to build nonstandard triple extended Lie algebras, which we have
llustrated with a number of relevant examples. As already recalled, Kac-Moody or Borcherds
xtensions can be defined for these Lie algebras too. On the light of the remarks of Ref. 11, it is
atural to wonder if these or some of these algebras are not really subalgebras of the standard
riple extended Lie algebras. This point will be discussed in the next section, where we discuss
lso a few examples of subalgebras which point out the intriguing and surprising structure of the

ubalgebras.
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. SUBALGEBRAS OF EXTENDED LIE ALGEBRAS

First of all, let us discuss another nonstandard procedure to extend a Lie algebras of rank r. If
ne adds to the simple roots of G the opposite of the h.r. �0��r+1 and, to recover the linear
ndependence of the simple root system, one glues the light like vector k+ to a simple root �i

1
 i
r�, one gets exactly the affine G. As next step one adds the new root, which belongs to
Ik
1,1, �r+2=−�k++k−�. From the Feingold-Nicolai theorem,11 it is easy to realize that in this way
ne obtains a generalized Kac-Moody algebra which is really a subalgebra of the standard over-
xtended Lie algebra G++. Things may be different if one considers simple root systems, obtained
y analogous procedure, in the lattice �G � IIk

1,1
� IIl

1,1. Indeed indefinite Kac-Moody algebras are
btained which, in general, are described by Dynkin-Kac diagrams not equivalent to the ones
btained by the standard and not standard procedure described in the previous section. A general
iscussion of these algebras is beyond the aim of this paper and we limit ourselves to state a few
roperties and to present some examples. Let us start with the following

Proposition 2: The roots �̂i defined in Sec. IV are roots of the standard overextended G++.

Proof: We shall explicitly write �̂i in terms of the simple roots of G++. Let us remark that, by
onstruction, G++ contains two affine G, i.e., G+, whose real root system is formed by the roots of

plus nk+, respectively, nk−, �n�Z�. Clearly the following decomposition in roots is not all
nique.

. so�2N�

�̂2m = − �− �1 − �2 + k+� + �− �3 − �4 − k−� + . . . + �− �2m−1 − �2m − k−�

= − �2m + k+ − �m − 1�k−. �86�

. E6

�̂3 =
1

2�− �
i�6,7

�i + �6 + �7 + k+� +
1

2
��1 + �2 − �3 − �4 − �5 + �6 + �7 − �8 − 2k−�

= − �3 + k+ − 2k−. �87�

. E7

�̂2 =
1

2
��1 − �2 − �3 − �4 − �5 − �6 + �7 − �8 + k+� + ��7 − �8 − 2k−� = − �2 + k+ − 2k−,

�88�

�̂3 = �− �3 + �7 + k+� + �− �4 + �7 − 2k−� + �− �5 − �8 − k−� + �− �6 − �8 − 2k−�

= − �3 + k+ − 5k−, �89�

�̂5 = �− �3 − �6 + k+� + �− �7 + �8 − k−� = − �5 + k+ − k−. �90�

. E8

�̂1 = �− �i − �8 + k+� + ��i − �8 − k−� = − �1 + k+ − k− �i � 8� ,

�̂2 =
1

2
���1 + �2 + �3 + �4 − �5 − �6 − �7 − �8� + k+� + �− �3 − �8 − k−� + �− �4 − �8 − 2k−�
+ �− �5 − �8 − 3k−� = − �2 + k+ − 6k−,
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�̂3 = �− �3 − �8 + k+� + �− �4 − �8 − 2k−� + �− �5 − �8 − 3k−� + �− �6 − �8 − 4k−�

+ �− �7 − �8 − 5k−� = − �3 + k+ − 14k−,

�̂4 = �− �4 − �8 + k+� + �− �5 − �8 − 2k−� + �− �6 − �8 − 3k−� + �− �7 − �8 − 4k−�

= − �4 + k+ − 9k−,

�̂5 = �− �5 − �8 + k+� + �− �6 − �8 − 2k−� + �− �7 − �8 − 3k−� = − �5 + k+ − 5k−,

�̂6 = �− �6 − �8 + k+� + �− �7 − �8 − 2k−� = − �6 + k+ − 2k−,

�̂8 =
1

2
��− �1 − �2 − �3 − �4 − �5 − �6 + �7 + �8� + k+� + �− �6 − �8 − k−� + �− �7 − �8 − 2k−�

= − �8 + k+ − 3k−. �91�

herefore, the considered combinations of the fundamental weights with the vectors of the Lorent-
ian lattices IIk

1,1 do belong to the root system of the overextended Lie algebras, even if the
onsidered fundamental weights do not belong to the root system of the native Lie algebra. �One
an recover the generators by the change �→E� and �+→ �E� ,E�.� It follows that the double
onstandard extensions �called previously affine extensions� are all subalgebras, of the same rank,
f G++. Indeed it is easy to verify that the differences i− j �∀i , j ; i� j� of the simple roots i of
he nonstandard double extension of G do not belong to the root system, therefore satisfying the
onditions of the Feingold-Nicolai theorem. In particular we have

Proposition 3: The indefinite Kac-Moody algebras of rank 10 described by the Dynkin-Kac
iagrams, obtained by adding to the diagram of the affine algebra E8, i.e., E9, a dot, connected
ith a simple link to the jth dot of E9 �1
 j
9�, is a subalgebra of E10.

The simple root systems of these subalgebras is formed by the simple roots of E8, by a root �̂i

iven by Eq. �91� and by the root −�+ak− where a is a positive integer such that ��̂i ,−�+ak−�
0.

One can naturally ask if an analogous theorem holds for E11, that is if the triple nonstandard
xtensions of E8 form Lorentzian algebras of rank 11, subalgebra of E11. We have:

Proposition 4: The indefinite Kac-Moody algebras of rank 11 obtained by adding to the simple

oot system of the algebra E8 three roots: �+1= �̂ j, connected with a simple link to the jth dot of

8 �1
 j
8, j�7�; �+2=−�−ak−, where a is a positive integer such that ��+2�+1�=0 and �+3

l++ l−−k−, simply linked with �+1, is a subalgebra of E11.

The proof is straightforward using the explicit expressions of �̂ j, given in Eq. �91�. Let us
emark that these subalgebras do not have as subalgebra E10. In the following we give the simple
oots systems of a set �not exhaustive� of rank eleven subalgebra E11, which contains as subalgebra

10. Let us consider the following simple root system of E11: �i �1
 i
8� are the simple roots of

8, �9=−�0−k+, �10=k++k− and �11= �l++ l−�−k+. We follow the convention of Ref. 13 and, for
he reader convenience, we explicitly write here the E8 simple root system and the root system �:

�1 =
1

2
��1 + �8 − �

j=2

7

� j, �i = �i − �i−1 i = 2, . . . ,7
�8 = �1 + �2, h.r. ª �0 = �7 + �8, �92�
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� = � 1
2 �±�1 ± �2 ± �3 ± �4 ± �5 ± �6 ± �7 ± �8�, ± �i ± � j� , �93�

here the total number of � signs �or � signs� in the first expression is an even number. Let us
onsider the E10 Dynkin-Kac diagram obtained by the E11 diagram, deleting the dot corresponding
o 11th simple root. Let us denote by E10

�j� the algebra of rank 11 whose Dynkin-Kac diagram is
btained by the E10 diagram adding a dot �in the following denoted by +1� with a simple link to
he jth dot �1
 j
10� and by i

�j� �i=1, . . . ,10, +1� the simple roots of E10
�j�. In the following we

o not explicitly write the upper label j in the roots. Clearly E10
�10�=E11 and, in this case, +1

�11. We make the following �not unique� choice for the simple root system of E10
�j� �1
 j
9�:

• j=9�

1 = �1 − k+, i = �i, i = 2, . . . ,7,8,

9 = − �7 + �8 + k−, 10 = − �0 − k+, +1 = �11. �94�

• j=7�

i = �i, i = 1, . . . ,6,8, 7 = �7 − k+,

9 = �10, 10 = �11, +1 = − �0. �95�

• j=6�

i = �i, i = 1, . . . ,5,7,8, 6 = �6 + k−,

9 = − �0, 10 = �7 + �6 − k+, +1 = �11. �96�

• j=5�

i = �i, i = 1,2,3,4,6,7,8, 5 = �5 + k−,

9 = − �0, 10 = �5 + �8 − k+, +1 = �11. �97�

• j=4�

i = �i, i = 1,2,3,5,6,7,8, 4 = �4 + k−,

9 = − �0, 10 = �4 + �8 − k+, +1 = �11. �98�

• j=3�

i = �i, i = 1,2, . . . ,7,8, 3 = �3 + k−,

9 = − �0, 10 = �3 + �8 − k+, +1 = �11. �99�

• j=2�

i = �i, i = 1,3, . . . ,7,8, 2 = �2 + k−,

9 = − �0, 10 = − �1 + �8 − k+, +1 = �11. �100�

• j=1�

1 = −
1

2�
8

�i + k−, 2 = �8, i = �i, i = 3, . . . ,6, 8 = �2,

i=i
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7 = �7, 9 = − �7 + �8, 10 = − �1 + k+, +1 = �11. �101�

• j=8�

i = �i, i = 1, . . . ,7, 8 = �8 + k−,

9 = − �0, 10 =
1

2�
i=1

8

�i − k+, +1 = �11. �102�

t is easy to verify that the roots i belong to the roots systems of E11. Actually they belong, except
or �11, to the root system of affine E8=E9 which is a regular subalgebra of E11—while the
ifferences i− j �∀i , j ; i� j� �	i− j	2�4� do not belong, therefore satisfying the conditions of
he Feingold-Nicolai theorem. The Dynkin-Kac diagrams describing these algebras contain loops
xcept for j=7. This algebra has been considered in Ref. 14, where it has been denoted EE11, and
t has been shown to be a subalgebra of E11 by explicitly constructing the generators by commu-
ation of the E11 generators. The Dynkin-Kac diagrams for these algebras are easily drawn by
dding to the E10 diagram a dot simply connected with the jth dot and then connecting, with a
imple link, the following dots: j=9� 7–10; j=6� 1–10; j=5� 6–10; j=4� 5–10; j=3� 4–10; j
2� 8–10; j=1� 7–10, 8–10; j=8� 1–10. Of course, these subalgebras do not exhaust the set of 11
imensional indefinite Kac-Moody subalgebras of E11. In particular we have not considered the
ubalgebras which do appear as invariant algebras with respect to an involution of the generators
f E11, see Refs. 18 and 19.

I. CONCLUSIONS AND FUTURE DEVELOPMENTS

In studying four-extended Lie algebras, we have seen that Borcherds algebras seem to emerge
aturally. This remark raises the question: which are the fingerprints of a theory which exhibits a
ymmetry under a Borcherds algebra? This question is indeed interesting on the light of the
emark that many dualities have a group-theoretical origin in the Weyl group of the algebra. The

eyl group of the Borcherds algebra has peculiar properties as the reflection with respect to the
maginary vanishing roots is not defined. Some particular properties related to this kind of algebras
ave already been discussed in Ref. 20. The nonstandard extension introduced in this paper has
eculiar features, which deserve further investigation, on both their mathematical structure and
heir possible physical relevance. A classification of these algebras is beyond the aim of this paper,
here we present only a few representative examples. As, however, very little is known on
orentzian Kac-Moody algebras, we believe that any new information is interesting. In the cited

iterature on the physical role of the very extended Lie algebras, nonlinear realizations of the
ndefinite Kac-Moody algebras are used. How does a Chevalley realization of this algebra look
ike? In Ref. 21 a procedure to build up vertex realization of Lorentzian algebra with only a lattice
I1,1 has been proposed and applied to the very simple case of the overextended A1 algebra. It
eems possible to generalize that procedure to the triple extended Lie algebras. Moreover, it has
lso been argued by West22 that sl�32� is contained in the Cartan invariant subalgebra of E11. At
rst sight the rank of sl�32� is too large to be a subalgebra, so it seems that very extended algebras,
t least in the nonlinear realization, admit finite dimensional subalgebras which naively could not
e there. The investigation of the finite Lie subalgebras of the indefinite Kac-Moody algebras
equires new methods beyond the very familiar ones used in the case of finite Lie algebra, which
re essentially based on the Dynkin methods. This feature is not completely unrelated with the
roperty, noted in Ref. 11, that the set of infinite dimensional subalgebras of Lorentzian algebras
s quite rich and surprising. We have illustrated this feature in Sec. V iscussing a class of subal-
ebras of E11, but it would be useful to dispose of techniques to build up explicitly or to identify

lasses of these subalgebras or to dispose of further examples.
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PPENDIX A: SOME FACTS ABOUT THE LATTICE II1,1

We review some basic facts about the lattice II1,1, which is the only Lorentzian even self-dual
attice in dimension two. The points in this lattice can be described as the vectors:

�n,m� �A1�

ith n ,m�Z and Gram matrix � 0 −1
−1 0

�, with eigenvalues ±1. In this way, the scalar product between
wo vectors a= �a+ ,a−� and b= �b+ ,b−� can be written as: a ·b=−a+b−−a−b+. We can take k+

�1,0� and k−��0,−1� as basis vectors in II1,1; with this choice, we have

k± · k± = 0, k± · k� = 1. �A2�

ll the vectors in II1,1 can be written as v= pk++qk− �with p ,q�Z�; in particular there are only
wo vectors of squared norm 2, ±�k++k−�, but infinite vectors of positive ��4� and negative �

2� squared norm, being v2=2pq.

PPENDIX B: DEFINITION OF BORCHERDS ALGEBRAS

The best way to think of a Borcherds algebra is to consider it as a generalization of a
nite-dimensional simple Lie algebra. The definition is based on the Serre-Chevalley construction
f finite-dimensional algebras; we follow Ref. 12. These algebras always have a symmetric matrix
nd their structure is very similar to that of ordinary Kac-Moody algebras, the only major differ-
nce is that generalized Kac-Moody algebras allow the presence of imaginary simple roots. Let
= �ai,j� a n�n �real� symmetric matrix satisfying the following properties:

• aii=2 or aii
0,
• aij 
0 if i� j,
• aij �Z if aii=2.

hen the Borcherds algebra G�A� associated with the Cartan matrix A is the Lie algebra given by
he following generators and relations.

3n Generators: ei, f i and hi

Relations:

• �hi ,hj�=0,
• �ei , f j�=�ijhi,
• �hi ,ej�=aijej, �hi , f j�=−aijej,
• eijª �adei�1−aijej =0, f ijª �adf i�1−aij f j =0 if aii=2 and i� j,
• eijª �ei ,ej�=0, f ijª �f i , f j�=0 if aii
0, ajj 
0 and aij =0.

he elements hi form a basis for an abelian subalgebra of G�A�, called Cartan subalgebra H�A�; as
t happens for Kac-Moody algebras, G�A� has the triangular decomposition:

G�A� = N− � H�A� � N+ �B1�

nd has many of the properties of the usual Kac-Moody algebras �real and imaginary roots, etc.�.
n particular, in this paper, we have considered Borcherds algebras with just one imaginary simple
oot �with squared norm 0�, which we have added by hand. A rank 2 Borcherds algebra in the

1,1
attice II can be constructed as follows: the Cartan matrix is given by
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A = � 0 − 1

− 1 2
 . �B2�

possible choice for the simple roots is

�1 = k+, �2 = − �k+ + k−� , �B3�

ith Weyl vector �=−k+ �defined by �� ,�i�=1/2��i ,�i��.
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ingular solutions to the Seiberg-Witten and Freund
quations on flat space from an iterative method
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Although it is well known that the Seiberg-Witten equations do not admit nontrivial
L2 solutions in flat space, singular solutions to them have been previously
exhibited—either in R3 or in the dimensionally reduced spaces R2 and R1—which
have physical interest. In this work, we employ an extension of the Hopf fibration
to obtain an iterative procedure to generate particular singular solutions to the
Seiberg-Witten and Freund equations on flat space. Examples of solutions obtained
by such method are presented and briefly discussed. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2162823�

. INTRODUCTION

Given a physical system defined on a configuration space M, there are various instances where
t is useful to employ �extensions of� fibrations P→M to lift the corresponding equations of
otion from M to P. For instance, the natural extension of the Hopf fibration S3→S2 to R4

R3 �defining the so-called Kustaanheimo-Stiefel transformation1,2� can be used to map the
epler problem in R3 to a harmonic oscillator problem in R4. This construction has been recur-

ently employed to regularize and calculate orbits of celestial objects, besides giving rise to
arious applications in atomic physics �see, e.g., Ref. 3, and references therein�. In this work, we
pply this idea to the case when M, instead of representing the configuration space of a particle,
s the target space of a given field theory. Specifically, we show that by lifting the equations of

agnetostatics �in the sense above�, it is possible to obtain the Seiberg-Witten equations �SWE� on
3 provided that a certain constraint is imposed on the resulting fields. Moreover, we show that

uch constraint naturally gives rise to an iterative method to generate particular solutions to the
WE and Freund equations on R3 and its dimensionally reduced spaces.

It should be kept in mind that the SWE do not admit nontrivial L2 solutions in flat space4 �the
ame is not true for the Freund equations5�. However, singular solutions to the SWE in flat space
o exist,5,6 with physical interest. Another point to be emphasized is that the lifting procedure
onsidered here �Sec. II� is not new since it is implicit in the pioneer work of Loss and Yau on zero
odes of the three-dimensional Dirac operator7 �it is also known that, by applying the
ustaanheimo-Stiefel transformation to the vector potential coupled to a Dirac spinor, one recov-

rs the ansatz of Loss and Yau8�. In fact, our formulas for the relevant Abelian potential Ak and
ave function ��� are the same as those of Ref. 7, where Ak and ��� are given in terms of a
enerating vector field, but with the differences that, in our case, such generating vector field
atisfies a certain constraint and that, due to the singular nature of the present problem, we do not
emand that the associated fields be square integrable.

It is precisely such constraint that gives rise, in our approach, to the aforementioned iterative
ethod to the SWE and Freund equations on R3. This is considered in Sec. III, where we also

how that application of such method recovers some known solutions to the SWE and Freund

�
Electronic mail: mosna@ime.unicamp.br
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quations and yields, to the best of our knowledge, previously unnoticed solutions to the SWE. In
articular, we obtain an axisymmetric singular solution to the SWE on R3. We conclude by
resenting some final remarks in Sec. IV.

I. LIFTING THE MAGNETOSTATICS EQUATIONS

We start from the equations of magnetostatics,

� · H = 0, �1a�

� � H = J , �1b�

here J is the steady current associated with the magnetic field H �we use Heaviside-Lorentz units
ith c=1�. Let ��� be a two-component spinor such that

Hk = ����k���, k = 1,2,3, �2�

here �1 ,�2 ,�3 are the Pauli matrices. For each r�R3, H�r� can be formally regarded as the
polarization vector” or “spin density” associated with ���r���C2, as in quantum mechanics
extbooks.9 The general solution of Eq. �2� for ��� in terms of H is given by

��� = e−i� 1
�2�H + H3�

	 H + H3

H1 + iH2 
 , �3�

here H= �H� and e−i� is an arbitrary phase factor. In spherical coordinates, Eq. �3� assumes the
amiliar form

��� = e−i��H	 cos��/2�
ei� sin��/2�


 ,

here H=H�sin � cos � , sin � sin � , cos ��. It is interesting to note that this is a �trivial� applica-
ion of what has been termed the inversion theorem,11 an useful result �especially in four
imensions12,13� when one wants to reconstruct a given spinor, apart from arbitrary phases, from
ts bilinear covariants.

Before transferring the dynamics �Eq. �1�� from H to ���, we briefly consider the geometry
nderlying Eqs. �2� and �3�. Let Sa

n denote the n-sphere of radius a in Rn+1, and consider the map

a :Sa
3→Sa2

2 taking a two-component spinor ����Sa
3�C2 into the vector s�Sa2

2 with components
k= �� ��k ���. Here ���= � z1

z2
��Sa

3�C2 means that �z1�2+ �z2�2=a2. This defines a principal fiber
undle U�1�¯Sa

3→Sa2
2 which is essentially the first Hopf bundle �where one usually takes a=1�.10

ore generally, one can drop the requirement that ��� belongs to a sphere of fixed radius and
onsider the map � :R4→R3 taking ����C2�R4 into sk= �� ��k ���. In this way, � is a natural
xtension of the Hopf map S3→S2 to R4→R3, in which each sphere of radius a	0 in R4 is
apped into the sphere Sa2

2 �R3, and the origin of R4 is mapped into the origin of R3. Such map
efines the so-called Kustaanheimo-Stiefel transformation1,2 �this no longer gives rise to a princi-
al fiber bundle, since the fiber over the origin is just a point�. Note that, in our case, Eq. �2�
efines a Kustaanheimo-Stiefel transformation on the corresponding target spaces, relating, for
ach r, the vector H�r��R3 to the spinor ���r���C2�R4. We also note that Eq. �3� yields, for
ach fixed r, a local section of the bundle U�1�¯SH

3 →SH2
2 over SH2

2 \ south pole�. A related local
ection over SH2

2 \ north pole� can be similarly obtained.

Going back to Eq. �3�, it is easy to see that the density matrix associated with ��� is given by
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������ = 1
2 �H1 + Hk�k� , �4�

here 1 is the identity 2�2 matrix �notice that we are working with Cartesian coordinates in
uclidean flat space, so that indices can be freely raised and lowered�. For what follows, it is
seful to define the following matrix-valued functions:

H�r� = Hk�r��k, �5a�

J�r� = Jk�r��k. �5b�

hen, it is easily seen that Eq. �1� can be equivalently written, in terms of H and J, as

�H = iJ , �6�

here �=�k�k �this follows at once from the relationship �i� j =
ij1+ i�ijk�k satisfied by the Pauli
atrices, where �ijk is the totally antisymmetric symbol with �123=1�.

We now transfer the dynamics defined by Eq. �1� from H to ���. From Eq. �4�:

H = 2�� � ���− H1 ,

hich leads, upon substitution into Eq. �6�, to

�k��k������ + ����k���−
1

2
�kH −

i

2
Jk� = 0.

ur aim is to obtain a differential equation governing the dynamics of ���. To that end, we
ight-multiply the above equation by ��� and use the fact that �� ���=H. This yields

�k��k +
1

2H
�kH −

1

H
����k��� −

i

2H
Jk��� � = 0. �7�

he term �� ��k ��� can be computed by a straightforward calculation; it follows from Eq. �2� that

����k��� =
1

2
�kH +

i

2�H + H3�
�H1�kH

2 − H2�kH
1� − iH�k� .

pon substitution into Eq. �7�, this leads to

�k��k + i	�k� −
1

2H�H + H3�
�H1�kH

2 − H2�kH
1� −

1

2H
Jk
��� � = 0.

efining

Ak ª −
1

2H�H + H3�
�H1�kH

2 − H2�kH
1� −

1

2H
Jk, �8�

hich can be fully expressed in terms of H �through Eq. �1b�� as

Ak = −
1

2H�H + H3�
�H1�kH

2 − H2�kH
1� −

1

2H
�� � H�k, �9�

e finally get

i�k��k + iAk + i�k���� � = 0. �10�

herefore, ��� satisfies the Weyl equation with the Abelian potential Ak �i.e., the massless Dirac
quation for two-component spinors representing states of definite chirality�. Note that � enters

qs. �3� and �9� simply as a gauge parameter.

                                                                                                            



d
t
d

d

I

e
d
o

w
F
E

y
B

f
e

i

A
i
o

013514-4 Ricardo A. Mosna J. Math. Phys. 47, 013514 �2006�

                        
It is interesting to note that Eq. �1b� enters the derivation above merely as a bookkeeping
evice. In fact, Eq. �10� follows as long as H satisfies Eq. �1a�, regardless of any interpretation of
he right-hand side of Eq. �1b� as an external current. In any case, it should be noted that Eq. �1b�
oes affect the form of Eq. �10� through Ak.

An important observation for what follows is that the field strength Bk associated with Ak,

B ª � � A , �11�

oes not have to bear any relation to the magnetic field H we started with.

II. SEIBERG-WITTEN AND FREUND EQUATIONS

Let us summarize what has been done above. We started from the equations of magnetostatics,
xpressed the magnetic field H in terms of the associated spinor field ���, and then lifted the
ynamics from H to ���. As a result, the following set of equations �Eqs. �2�, �10�, and �11�� was
btained:

����k��� = Hk, �12a�

i�k��k + iAk��� � = 0, �12b�

�ijk�iAj = Bk, �12c�

here we chose to suppress the terms associated with the gauge parameter �. The SWE and
reund equations in three dimensions have been discussed in detail in Ref. 5 �see especially its
qs. �3.5� and �3.6�� from where we note a remarkable similarity with Eq. �12�. More precisely:

1. Eqs. �12a�–�12c� are the Seiberg-Witten equations on R3 provided that Hk= +Bk;
2. Eqs. �12a�–�12c� are the Freund equations on R3 provided that Hk=−Bk.

Therefore, the constraint

H = ± B �13�

ields a natural ansatz for obtaining solutions to the Seiberg-Witten and Freund equations for A,
, and ��� on R3. Using Eq. �9�, this amounts to solving

H = ± � � 	−
1

2H�H + H3�
�H1 � H2 − H2 � H1� −

1

2H
� � H
 �14�

or H. This equation has been recently studied from a group-theoretical perspective in Ref. 14 to
xamine the Lie symmetries of the SWE and Freund equations on R3.

It is interesting to note that, given a solution of Eq. �14�, with the + or − sign, respectively, one
mmediately obtains ���, Ak, and Bk from Eqs. �3�, �9�, and �13�:

��� =
1

�2�H + H3�
	 H + H3

H1 + iH2 
 , �15a�

A = −
1

2H�H + H3�
�H1 � H2 − H2 � H1� −

1

2H
� � H , �15b�

B = ± H . �15c�

s noted in Sec. I, the above expressions for ��� and A in terms of a generating vector field �which
s given, in this case, by H� were first obtained in the study of zero modes of the massless Dirac

perator in Ref. 7.
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. An iterative procedure.

We now show how Eq. �14� can serve as a basis for an iterative procedure for obtaining H,
nd thus ���, A and B satisfying the SWE or Freund equations on flat space. The procedure goes
s follows. Choose an initial guess H�0� for H; substitute H�0� into the right-hand side of Eq. �14�
nd consider the result as a second estimate H�1� for H; then substitute H�1� into the right-hand side
f Eq. �14�, and so on. If the sequence H�k� converges, its limit is a solution to Eq. �14�. It is
mportant to note that this procedure does fail in most cases, either by computational or math-
matical difficulties �we come back to this point in Sec. IV�. Nevertheless, when it succeeds, we
nd up with a solution to the Seiberg-Witten or Freund equations. In the remainder of this section,
e show representative results of a limited experiment in algebraic computation, performed with

he software MATHEMATICA, implementing such iterative procedure.
Example 1: Starting with H�0�= ± �x ,y ,z�, we obtain the solution

B = �
1

2r3 �x,y,z� , �16a�

A =
1

2r�r ± z�
�y,− x,0� , �16b�

��� =
1

2r�r�r ± z�
	 r ± z

±�x + iy�

 �16c�

o the Freund equations, where r=�x2+y2+z2. A monopole solution of this kind was first obtained
n Ref. 15 �see also Ref. 5, where the authors discuss in detail how the Freund equations are
elated to the SWE on R3�.

Example 2: Starting with H�0�= ± �sinh y ,0 ,0�, we obtain the solution

B = �
2

sinh2 y
ex, �17a�

A = ±  coth yez, �17b�

��� =


�2sinh y
	 1

�1

 �17c�

o the Seiberg-Witten equations �in order to avoid dealing with the absolute value function in the
lgebraic computation procedure of Examples 2 and 3, it is useful to first restrict attention to the
omain given by x	0, y	0, and z	0, and later extend the obtained solution to any nonzero x,

y, and z�. This solution is essentially the same as the effectively one-dimensional solution to the
WE found in Ref. 6. On the other hand, if we start with H�0�= ± �cosh y ,0 ,0�, we obtain the
olution

B = ±
2

cosh2 y
ex,
A = ±  tanh yez,
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��� =


�2 cosh y
	 1

�1



o the Freund equations. We note that similar expressions were also obtained in Ref. 6 through
nalytic continuation of the aforementioned one-dimensional solution to the SWE.

Example 3: Starting with H�0�= ± �xyz ,0 ,0�, we obtain the solution

B = � 	 1

y2 +
1

z2 ,0,0
 , �18a�

A = ±
1

y2 + z2	0,−
y2

z
,
z2

y

 , �18b�

��� =� 1

2y2 +
1

2z2	 1

�1

 �18c�

o the Seiberg-Witten equations.
For solutions of this kind, in which B�r� is always parallel to some fixed vector n and only

epends on coordinates �u ,v� of a plane orthogonal to n, the quantity �= 1
2 ln B is known6 to

atisfy the Liouville equation 4�z�z̄�=e2�, where z now denotes the complex coordinate z=u
iv and B= �B� �it should be clear from the context when z refers to the complex coordinate z
u+ iv or to the Cartesian coordinate in �x ,y ,z��. Using the ansatz

� =
1

2
ln

4�dg/dz��dḡ/dz̄�
�1 − gḡ�2 , �19�

ith g�z� an arbitrary analytic function, the authors of Ref. 6 construct a family of effectively
wo-dimensional solutions to the SWE with interesting properties. We note, however, that the
bove solution �18a� apparently does not belong to such family, obtained via ansatz �19�. In any
ase, we show in the Appendix that the alternative ansatz

� =
1

2
ln

�dg/dz��dḡ/dz̄�
�I�g��2 , �20�

here I�g� denotes the imaginary part of g, does yield the above solution. In fact, as discussed in
he Appendix, �18a� is the n=2 case of a family of two-dimensional singular solutions generated
y the choice g�z�=zn in �20�, with n= 1

2 ,1 , 3
2 , . . . �it should be noted that both �19� and �20� are

articular cases of the well-known general solution of the Liouville equation16 �see Appendix��.
Example 4: Starting with H�0�= ± �y ,−x ,0�, we obtain the axisymmetric solution

B = ±
1

2�2e�, �21a�

A = −
1

2�
e� ±

1

2�
ez, �21b�

��� =
1

2�
	 1

±iei� 
 �21c�

o the Seiberg-Witten equations, where cylindrical coordinates � ,� ,z, with �=�x2+y2 and �
arctan�y /x�, were used. Such B is similar �but different in the �-dependence� to the magnetic

eld B� �1/��e� produced by a steady current along the z axis. The integral curves of A are
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elices of constant � going upward �downward� with respect to the z axis. We note that the first
erm AAB=−�1/2��e� of A is in fact an Aharonov-Bohm potential, with holonomy given by

�
�

AAB�r� · dr = − � , �22�

here � is any loop winding once around the z axis. Note that the Aharonov-Bohm term AAB is
ctually implied by B �through Eq. �15b�� even though B in Eq. �21a� does not receive any
ontribution from the curl of AAB �which is actually zero for ��0�. In this way, the purely
zimuthal magnetic field of Eq. �21a�, defined away from the z axis, unavoidably gives rise,
hrough AAB, to the “additional” singular magnetic field −�
�x�
�y�ez along the z axis �which is
he same as the magnetic field of an infinitely long and infinitesimally thin solenoid at the z axis�.

It is also interesting to note that, although the two solutions to the SWE in Eq. �21a� �given,
espectively, by its plus and minus signs� wind in opposite directions with respect to the xy plane,
heir associated potentials both wind clockwise, with identical Aharonov-Bohm terms, the only
ifference residing in their z components.

V. CLOSING REMARKS

In all the examples above, the final solution for H is obtained in exact form after very few
terations. On the other hand, some experience with the above computational experiment shows
hat a generic initial condition for H typically leads to an increasingly complicated algebraic
xpression at each iteration, thereby requiring further investigation on convergence issues related
o such method. A natural question to ask is what are the initial conditions under which the
equence H�k� may be guaranteed to converge since, under such circumstances, the approach
resented here could be used to define classes of solutions to the SWE and Freund equations
teratively.

Finally, we note that the approach presented here suggests a natural generalization to the
our-dimensional case, where one may try to lift the whole set of �Euclidean� Maxwell equations
o obtain �singular� solutions to the SWE on R4. This is the subject of work in progress.
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PPENDIX

The general solution to the Liouville equation,

4�z�z̄� = e2�,

as first given by Liouville in Ref. 16 �where the author considers, in fact, the corresponding
quation for �=e2�, and with real variables�. It is given by

��z, z̄� =
1

2
ln

4�dg�z�/dz��dh�z̄�/dz̄�
�1 − g�z�h�z̄��2 , �A1�

here g�z� and h�z̄� are arbitrary analytic and antianalytic functions, respectively. The ansatz of
ef. 6, given by Eq. �19�, is recovered from Eq. �A1� if the natural choice h�z̄�=g�z� is made.
owever, as mentioned in Example 3 of Sec. III, the solution given by B=1/u2+1/v2 is appar-

ntly not recovered by such ansatz �recall that B is related to � by B=e2�, where B= �B� and now
denotes the complex coordinate z=u+ iv�. This motivates the search for an alternative ansatz for

¯ �
uch B. Generalizing the above choice of h in terms of g to h�z�=g�z� , it is not hard to show that,
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n general, the requirement that � be real restricts � to +1 or −1, which yield Eq. �19� and Eq. �20�,
espectively. Therefore, the alternative ansatz �20� is given by the choice h�z̄�=1/g�z� in �A1�. The
olution of Example 3 is recovered from such ansatz for g�z�=z2, as a direct calculation shows.

More generally, choosing g�z�=zn in Eq. �20� leads to the solution B=n2 / ��2 sin2 n��, where
olar coordinates z=�ei� were used. The requirement that B be single-valued restricts n to n
1
2 ,1 , 3

2 , . . . �note that B is insensitive to the change n→−n�. In this way, the solution of Example
is the n=2 case of such family of two-dimensional singular solutions. Note that the solution

orresponding to a given n is singular along 2n lines starting at the origin and passing through the
oots of unity of order 2n.
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This paper sets out to study the spectral minimum for an operator belonging to the
family of random Schrödinger operators of the form H�,�=−�+Wper+�V�, where
we suppose that V� is of Anderson type and the single site is assumed to be with an
indefinite sign. Under some assumptions we prove that there exists �0�0 such that
for any �� �0,�0�, the minimum of the spectrum of H�,� is obtained by a given
realization of the random variables. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2162825�

. INTRODUCTION

Among the most investigated and dealt with operators in the field of mathematical physics
roblems are random Schrödinger operators of the form

H� = − � + Wper + V� = H0 + V�, �1.1�

here Wper is a Zd-periodic function and V� is a random potential having the Anderson form, i.e.,

��·�=���Zd��f�·−��. See Refs. 2 and 12 for the physical motivations.
Here we consider H� as a family of self-adjoint operators in L2�Rd� with some appropriate

omain. In fact, we are not dealing with a single Schrödinger operator, but with rather large family
f operators H�, indexed by the random parameter ���. Nevertheless, from the general theory
f ergodic operators, which applies to H�, it is known9 that the spectrum of H� is almost surely
eterministic, i.e., there exists a set ��R such that the spectrum ��H�� coincides with � for
-almost every ���. �Here P is the probability measure on the probability space �.�

The study of the spectral theory of operators of the form �1.1� has drawn the attention of many
esearchers for the importance of the related results. In fact, it is linked to the systems evolutions
or which the Hamiltonian is described by �1.1�. The goal of this paper is to discuss one of the
roblems that remain unsolved: the spectrum location of H�, precisely the spectrum infimum. This
ill be carried out in the case when the single site f does not have a definite sign.

As the main object is to study the location of the spectrum, let us recall the following basic
esults already known on this subject and stated by Kirsch and Martinelli:2,3

Theorem 1.1:

��H�� = �
������Zd�P

��− � + Wper + �
��Zd

��f�x − ��� . �1.2�

ere P is the set of all periodic sequences ���	��Zd, with an arbitrary period such that �� is in the
upport of 	 for all � and ��H� is the spectrum of H.

As has been said above the proof of Theorem 1.1 exists in Refs. 2 and 3 and is based on Weyl
equences and probabilistic arguments. Notice that this theorem reduces the determination of the

�
Electronic mail: hatem.najar@ipeim.rnu.tn
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pectra of random Schrödinger operators for the case of periodic Schrödinger operators. As it is
ell known10 that the spectrum of periodic operators have a band structure, this will be the case

or ��H�� with the possibility to close gaps.
Under additional assumptions on f more is known:
Theorem 1.2: If f has a fixed sign, i.e., f 
0 or f �0 and if 	 is supported in ��− ,�+�, then

��H�� = �
����−,�+�

��− � + Wper + � �
��Zd

f�x − ��� . �1.3�

n particular,

inf ��H�� = 
inf ��− � + Wper + �+ �
��Zd

f�x − ��� if f 
 0

inf ��− � + Wper + �− �
��Zd

f�x − ��� if f � 0.

�1.4�

Theorem 1.2 is a simple consequence of Theorem 1.1. Indeed, using �1.2� and the fact that
onstant sequences ���=��supp 		�P, we get that the right-hand side of �1.3� is naturally
ontained in ��H��. For the inverse inclusion, let ������Zd �P be k-periodic and let �a ,b� be the
th band of the k periodic operator H�,k=−�+Wper+���Zd��f�x−��. Let �a1 ,b2� and �a2 ,b2� be
he nth bands of, respectively, −�+Wper+�−���Zdf�x−�� and −�+Wper+�+���Zdf�x−�� �both
een as k-periodic operators�. By the min-max principle we have a1
a
a2 and b1
b
b2. As
he bands of −�+Wper+����Zdf�x−�� depend continuously on �, we deduce that ��−�+Wper

���Zd��f�x−��� is contained in the r.h.s of �1.3�. The proof of �1.3� is ended by taking into
ccount the fact that these sets are closed.

For �1.4� it is a simple consequence of monotonicity of the model, it is increasing when f
0 and decreasing when f 
0. indeed if f 
0, and �̃�
�̂� for any ��Zd then in the sense form
e have

− � + Wper + �
��Zd

�̂�f�x − �� 
 − � + Wper + �
��Zd

�̃�f�x − �� .

The situation is more complicated and different when the single site f changes the sign, as the
onotonicity property is not true in this case. We notice that recently Lott and Stolz have

onjectured6 that in dimension one, the spectral minimum of random displacement models is
ealized through the pair formation of the single site.

. The model

Our basic object of study is the so-called Anderson model, a random Schrödinger operator of
he form

H�,� = − �
i=1

d
�2

�xi
2 + Wper + � �

��Zd

��f�x − �� , �1.5�

here

• Wper is a Zd-periodic and bounded function.
• � is a positive parameter
• ������Zd is a family of independent, identically distributed random variables taking values

in ��− ,�+�. We denote by 	 the probability distribution.
• For C0=�− 1

2 , 1
2
�d, the single site potential f �C0

��C0� such that f � l1�Lp�Rd��, with p=2 if
+ − + − + −
d
3, p�2 if d=4 and p=d /2 if d�5 and f = f + f , with f �0, f 
0, and f · f =0.
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By Refs. 2 and 9, we know that H�,� is an essentially self-adjoint operator on L2�Rd� with the
omain C0

��Rd�, we denote by H�,� its self-adjoint extension.
It is an ergodic operator so, according to Refs. 2 and 9, we know that there exist

� ,��,pp ,��,ac, and ��,sc closed and nonrandom sets of R such that �� is the spectrum of H�,�

ith probability one and such that if �pp �respectively, �ac and �sc� design the pure point spectrum
the absolutely continuous and singular continuous spectrum, respectively� of H�,�, then ��,pp

�pp,��,ac=�ac and ��,sc=�sc with probability one.

. The result

Let us introduce the following operators:

H�,�− = − �
i=1

d
�2

�xi
2 + Wper + � �

��Zd

�−f�x − �� ,

nd

H�,�+ = − �
i=1

d
�2

�xi
2 + Wper + � �

��Zd

�+f�x − �� .

e denote by ��,�− and ��,�+ the spectrum of H�,�− and H�,�+, respectively.
As we will see �Sec. II A� H�,� can be considered as a perturbation of the periodic operator

�,�−. Let �,1�x ,����� be the Floquet eigenfunction associated to the first Floquet eigenvalue

1�� ,�� of H�,�−. Let ��k����1
k
m be the points where E1�� ,�� attains its minimum. We set

A�0� = ��f0,1�· ,�k�0��,0,1�· ,�k��0���L2�C0��1
k,k�
m.

e prove that
Theorem 1.3: Let H�,� be the operator defined by �1.5�.
If the matrix A�0� is positive-definite, then there exists �0�0 such that for any �� �0,�0� we

ave

inf���� = inf���,�−� .

f the matrix A�0� is negative-definite, then there exists �0�0 such that for any �� �0,�0� we have

inf���� = inf���,�+� .

Remark 1.4: Theorem 1.3 is stated for the infimum of the spectrum. Under some additional
ssumptions the same result is still true for the internal edges of the spectrum.

The result remains true if we replace Zd by any nondegenerate d-dimensional lattice �=
� i=1

d Zei, with �e1 , . . . ,ed� some basis of Rd.
The analogous problem for the random magnetic Schrödinger operator is considered and

tudied in Ref. 1.
Theorem 1.3 can be considered as a first step toward the physically motivated applications.

ne of them is the study of the so-called Lifshitz tails of the integrated density of states. This could
e done under some additional assumptions on the behavior of the random variables in the
icinity of �− or �+.4,7,8 Another one is the spectral localization.12,13

The proof of Theorem 1.3, is given in Sec. III. It is based on the reduction procedure. This
owerful technique was predicted by Klopp4 and used in several works.1,7,8

As stated the proof of Theorem 1.3 can be divided naturally into two parts, we shall discuss
hem separately.

Indeed, if A�0� is positive-definite we will conjugate H� with ��,0, the spectral projection for
�,�− on the first band. Then we prove that
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��,0H�,���,0 � E�,�−��,0.

ere E�,�− is the bottom of the spectrum of the periodic operator H�,�−.
If A�0� is negative-definite we will conjugate H� with ��,0, the spectral projection for H�,�+

n the first band. Then we prove

��,0H�,���,0 � E�,�+��,0.

ere E�,�+ is the bottom of the spectrum of the periodic operator H�,�+.

I. PRELIMINARY

Let us consider the following periodic operator:

H�,�− = − � + Wper + � �
��Zd

�−f�·− �� . �2.1�

or this, it is convenient to consider H�,� as a perturbation of H�,�−. Indeed, we have

H�,� = H�,�− + � �
��Zd

��� − �−�f�·− �� .

or this for ��Zd, we set �̃�=��−�− and V�̃�·�=���Zd�̃�f�·−��. We notice that according to the
efinition of ������Zd we get that ��̃����Zd is a family of random positive and bounded variables.

. Some Floquet theory

For ��Zd, we denote by �� the translation by � operator, i.e., �����x�=�x−��. We have, for
ny ��Zd,

��H�,�−��
* = ��

*H�,�−�� = H�,�−.

hen the so-called Floquet Theory can be used to study H�,�−. For this, we review some standard
acts from the Floquet theory for periodic operators. Basic references for this material are Refs. 5,
0, and 11. Let T*=Rd / �2�Zd�. We define H by

H = �u�x,�� � Lloc
2 �Rd� � L2�T*�; ∀ �x,�,�� � Rd � T* � Zd;u�x + �,�� = ei��u�x,��	 .

is equipped with the norm

1

vol�T*�T*
�u�x,���L2�C0�

2 d� .

or ��Rd and u�S�Rd�; the Schwartz space of rapidly decreasing functions we define

�Uu��x,�� = �
��Zd

ei�·�u�x − �� .

can be extended as a unitary isometry from L2�Rd� to H. Its inverse is given by the formula,

for u � H, �U*u��x� =
1

vol�T*�T*
u�x,��d� .

2 d 5,11
is a unitary isometry from L �R � to H and H�,� admits the Floquet decomposition
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UH�,�−U* = 
T*

�

H�,�−���d� .

ere H�,�−��� is the operator H�,�− acting on H�, defined by

H� = �u � Lloc
2 �Rd�; ∀ � � Zd,u�x + �� = ei��u�x�	 .

As H�,�− is elliptic, we know that, H�,�−��� has a compact resolvent; hence its spectrum is
iscrete.10 We denote its eigenvalues, called Floquet eigenvalues of H�,�−, by

E1��,�� 
 E2��,�� 
 ¯ 
 En��,�� 
 ¯ .

he corresponding Floquet eigenfunctions are denoted by ��,j�x , · �� j�N*. The functions ��
En�� ,���n�N* are Lipshitz-continuous, and we have

En��,�� → + � as n → + � uniformly in � .

he spectrum ��,�− of H�,�− is made of bands �i.e., ��,�− =�n�N*En�� ,T*�.�
Let us note by E�,�− the bottom of the spectrum of ��,�−, i.e., E�,�− = inf��TdE1�� ,��.
It is a well-known fact that, in any dimension, the bottom �the first band� of the spectrum of

eriodic Schrödinger operators is given by a simple Floquet eigenvalue and that the minimum of
his Floquet eigenvalue is nondegenerate and quadratic. More precisely let ���� be an element of

Z� = �� � T*; E1��,�� = E�,�−	 .

hen there exist C�0 and ��0 such that

∀ �� − ����� 
 �,
1

C
�� − �����2 
 E1��,�� − E�,�− 
 C�� − �����2.

ence, the points where E1�� ,�� reaches E�,�− are isolated and as T* is compact, one concludes
hat Z� contains only finitely many of the elements. Let m be the cardinal of Z� and let us denote
hem by ��k����1
k
m. One can check that �k��� depends continuously on �. For the sake of
revity, we use the notation �k=�k���.

For 1
k
m and ��T*, we set

�k,���� = �
1
i
d

��i − �k,i�2. �2.2�

e notice that for any 1
k
m,

� � �,1�x,��

s analytic in a neighborhood of �k.

. Wannier basis

We recall concepts used in Ref. 4. Let E�L2�Rd� be a closed subspace invariant by the
d-translations, i.e., such that �E, the orthogonal projection on E, satisfies

∀� � Zd, �E = �−��E��.

ollowing the computations done in Sec. I B of Ref. 4, we see that there exists an orthonormal
ystem of vectors �̃ j,0� j�N such that for ̃ j,�=���̃ j,0�; �̃ j,���j�N;��Zd� is an orthonormal basis of
. Such a system is called the Wannier basis of E. The vectors �̃n,0�n�N are called Wannier
enerators of E.

Let E�L2�Rd� be a space which is translation-invariant. E is said to be of finite energy for
E E
�,� if � H�,�� is a bounded operator. In this case, E admits a finite set of Wannier generators.
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Let ��,0��� �respectively, ��,+���� be the orthogonal projection in H� on the vector space
enerated by �,1�· ,�� �respectively by ��,j�· ,��� j�2�. These projections are two-by-two orthogo-
al and their sum is the identity for all ��T*. One defines

��,� = U−1�
T*

��,����d��U:L2�Rd� → L2�Rd� ,

here �� �0, + 	. ��,� is an orthogonal projection on L2�Rd� and for all ��Zd, we have

�
*��,���=��,�.

For �� �0, + 	, we set E�,�=��,��L2�Rd��. These spaces are translation-invariant. Moreover

�,0 is of finished energies for H�,�−. The reduction procedure consists in decomposing the opera-
or H�,�− according to various translation-invariants subspaces. The random operators thus ob-
ained are reference operators.

II. THE PROOF OF THEOREM 1.3

As we have indicated, our aim in this section is to prove Theorem 1.3, but first, let us
ntroduce some notations and useful lemma.

For u�L2�T*�, let

T�,1
�u� = U*�u�,1�x,��� = 

T*
u����,1�x,��d� . �3.1�

o, T�,1
define a unitary transformation from L2�T*� to E�,0 and if to simplify the computation we

et vol�T*�=1, then for v�E�,0 we have

T�,1

* �v� = ��Uv��· ,��,�,1�· ,��� .

or 1
k
m and �x ,���Rd�T*, let

̃�,1,k�x,�� = �,1��k���,x�e��−�k�·x.

e set,

��,1,k�x,�� =
1

��k,����
��,1 − ̃�,1,k�x,��� .

y this, for any u�L2�T*�, we have

T�,1
�u� = T̃�,1,k

�u� + T��,1,k
���k,�u� . �3.2�

or v�H�
2= �v�Hloc

2 �Rd� ;v�·−��=e−i�·�u�·�	 one defines the following norms:

sup
��T*

��v�· ,���L2�C0�
2 	 = �v�1,�

2 ,

nd

sup
��T*

��H�,�−���u�· ,���L2�C0�
2 + �v�· ,���L2�C0�

2 � = �v�H�,�−,�.

Remark 3.1: The functions ̃�,1,k and ��,1,k are well defined and

�̃�,1,k�1,�, �̃�,1,k�H�,�−,���̃�,1,k�1,�, and ��̃�,1,k�H�,�−,�

re finished �see Ref. 4�.
The following Lemma is of use. It will be proven at the end of this section.

* 2 * 2 i��−�k�x i��−�k��x
Lemma 3.2: For �k ,�k��T and �L �T ,H � let k=e �x ,�k�, k�=e
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�x ,�k��, and a,k,k��x�= f�x��x ,�k��x ,�k��. If ��1,��� �respectively, ��H�,�−,���� then T

L�L2�T*� ,L2�Rd�� �respectively, V�̃ ·T�L�L2�T*� ,L2�Rd��� and there exist C ,��0 such that
or all u ,v�L2�T*�, we have

��V�̃Tk
�u�,Tk�

�v�� − �
C0

a,k,k��x�dx� · �
��Zd

�̃�û���v̂���� 
 C� �
��Zd

�̃���û����2 + �v̂����2�

+ C�1 + 1/�����k,�u,u�L2�T*� + ��k�,�v,v�L2�T*�� , �3.3�

�V�̃Tk
�u��L2�Rd�

2

 C� �

��Zd

�̃��û����2 + ��k,�u,u�L2�T*�� . �3.4�

. If A„0… is positive-definite

We set

H�,�
0 = ��,0H�,�̃��,0 = ��,0H�,�−��,0 + ��,0V�̃��,0.

Theorem 3.3: Assume that the matrix A�0� is positive-definite. Then there exists �0�0 such
hat for any �� �0,�0� we have

��,0�H�,� − E�,�−���,0 is a positive operator .

he proof of Theorem 3.3 is the object of the following section.

. The proof of Theorem 3.3

Using �3.1�, we get that H�,�
0 is unitarily equivalent to the operator

h�,�
0 = T�,1

* H�,�
0 T�,1

,

cting on L2�T*� and written as

h�,�
0 = h�,�−

0 + �V�,�̃
0 .

�,�−
0 is the multiplication operator by E1�� ,�� and V�,�̃

0 is an integral operator with the kernel

V�,�̃��,��� = �V�̃�,1�· ,��,�,1�· ,���� .

et Vk be a neighborhood of �k, such that if �k��Z and k�k� then ��Vk and Vk�Vk�=�. As T*

s compact, one can cover it by �Vk�1
k
m �i.e., �1
k
mVk=T*�. For 1
k
m let �k be the
haracteristic function of Vk.

For simplicity for u�L2�T*�, we will denote �ku as uk in the following. We consider u as a
ystem of m columns denoted by �uk�1
k
m. We endow L2�T*� � Cm with the scalar product
enerating the following Euclidean norm:

�u�L2�T*��Cm
2 = �

k=1
�uk�L2�T*�

2 .

. The lower bound of h
�,�−
0

Proposition 3.4: There exists C�0 such that for any u�L2�T*�, we have

�h�,�−
0 u,u� � � E1��,�k�����uk�L2�T*�

2 +
1

C
� ��k,�uk,uk�L2�T*�. �3.5�
1
k
m 1
k
m
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Proof: For u�L2�T*�, one computes

�h�,�−
0 u,u� = 

T*
E1��,���u����2d� = �

1
k
m


T*
E1��,���k����u����2d� .

s for any � in Vk the support of �k, there exists C�0 such that we have

E1��,�k���� +
1

C
�k,���� 
 E1��,�� ,

e get the result. �

. The lower bound of V�,�̃
0

Proposition 3.5: There exists C1 ,C2�0, and �0 such that for all �� �0,�0� and u�L2�T*� we
ave

�V�,�̃
0 u,u� � C1 �

1
k
m,��Zd

�̃���uk̂�����2 − C2 �
1
k
m

��k,�uk,uk�L2�T*�. �3.6�

Proof of Theorem 3.3: Let us notice that, by combining the results of Propositions 3.4 and 3.5,
ne gets that there exists �0�0 such that for any �� �0,�0� and for any u�L2�T*� we have

�h�,�
0 u,u� � �

1
k
m

E1��,�k�����uk�L2�T*�
2 +

1

C� �
1
k
m

��k,�uk,uk�L2�T*� + � �
1
k
m

�
��Zd

�̃��uk̂����2�
�E�,�−�u�L2�T*�

2 +
1

C� �
1
k
m

��k,�uk,uk�L2�T*� + � �
1
k
m

�
��Zd

�̃��uk̂����2� .

his gives that

��h�,�̃
0 − E�,�−�u,u� �

1

C� �
1
k
m

��k,�uk,uk�L2�T*� + � �
1
k
m

�
��Zd

�̃��uk̂����2� . �3.7�

his ends the proof of Theorem 3.3. �

Remark 3.6: We notice that even if we know that the bottom of the spectrum of H� coincides
ith the bottom of the spectrum of H�,�− we cannot consider ��,0�H�,�−H�,�−���,0 as a positive
perator.

Proof of Proposition 3.5: Let us start by expanding �V�,�̃
0 u ,u�,

�V�,�̃
0 u,u� = �

1
k,k�
m

�V�,�̃
0 T̃�,1,k

�uk�,T̃�,1,k�
�uk���L2�Rd�

+ �
1
k,k�
m

�V�,�̃
0 T�̃�,1,k

���k,�uk�,T�̃�,1,k�
���k�,�uk���L2�Rd�

+ 2 �
1
k,k�
m

R��V�,�̃
0 T̃�,1,k

�uk�,T�̃�,1,k�
���k�,�uk���L2�Rd�� .

e start by estimating the three sums of the last equation.
For the second sum, using Cauchy Schwartz inequality and Lemma 3.2, we get that for any

k ,k�
m, there exists C�0 such that we have
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��V�,�̃
0 T�̃�,1,k

���k,�uk�,T�̃�,1,k�
���k�,�uk���L2�Rd�� 


1
2 ��V�,�̃

0 T�̃�,1,k
���k,�uk��L2�Rd�

2

+ �T�̃�,1,k�
���k�,�uk���L2�Rd�

2 �


 C · ���k,�uk,uk�L2�T*� + ��k�,�uk�,uk��L2�T*�� .

o there exists C�0 such that we have

�
1
k,k�
m

��V�,�̃
0 T�̃�,1,k

���k,�uk�,T�̃�,1,k�
���k�,�uk���L2�Rd�� 
 C �

1
k
m

��k,�uk,uk�L2�T*�. �3.8�

or the third sum, using the Cauchy-Schwartz inequality once more, we get that for 1
k
m
here exists ��0 such that we have

��V�,�̃
0 T̃�,1,k

�uk�,T�̃�,1,k�
���k�,�uk���L2�Rd�� 
 ��V�̃

0 T̃�,1,k
�uk��L2�Rd�

2 + 1/�4���T�̃�,1,k�
���k,�uk���L2�Rd�

2 .

�3.9�

sing Eq. �3.4�, one gets that there exist C˜1 ,C˜2 ,��0 such that

�
1
k,k�
m

��V�,�̃
0 T̃�,1,k

�uk�,T�̃�,1,k�
���k�,�uk���L2�Rd��


 C˜1� �
1
k
m

�
��Zd

�̃��uk̂����2 + C˜2�� + 1/�� �
1
k
m

��k,�uk,uk�L2�T*�. �3.10�

or the first sum, using �3.3�, we get that there exist C1� ,C2� ,��0 such that

� �
1
k,k�
m

�V�̃
0 T̃�,1,k

�uk�,T̃�,1,k�
�uk���L2�Rd� − �

1
k,k�
m

�
��Zd

�̃��
C0

a�,1,k,k��x�dx��uk̂�����uk�
ˆ �����


 C1�� �
1
k
m

�
��Zd

�̃��uk̂����2 + C2��1 + 1/�� �
1
k
m

��k,�uk,uk�L2�T*�. �3.11�

ow Eqs. �3.8�, �3.10�, and �3.11� give that there exist K1 ,K2 ,��0 such that

��V�,�̃
0 u,u� − �

1
k,k�
m

�
��Zd

�̃��
C0

a�,1,k,k��x�dx��uk̂�����uk�
ˆ ����� 
 K1� �

1
k
m
�

��Zd

�̃���uk̂�����2

+ K2�1 + 1/�� �
1
k
m

��k,�uk,uk�L2�T*�. �3.12�

ow, if the matrix

A�0� = �
C0

a0,1,k,k��x�dx�
1
k,k�
m

s positive-definite, one gets that inf ��A�0��=C�0 satisfies

CIm 
 A .

et A��� be the matrix,

�
C0

a�,1,k,k��x�dx�
1
k,k�
m

.

otice that for any 1
k ,k�
m, the functions
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fk,k�:� → 
C0

a�,1,�k���,�k�����x�dx

re continuous in �. So there exists �0�0 such that for any �� �0,�0�,

C

2
Im 
 A��� .

his gives that for any u�L2�T*�,

C

2 �
1
k
m

�
��Zd

�̃���uk̂�����2 
 �
1
k,k�
m

�
��Zd

�̃��
C0

a�,1,k,k��x�dx��uk̂�����uk�
ˆ ���� . �3.13�

ow using the expanation of �V�,�̃
0 u ,u� and Eq. �3.12�, we get that there exist K1 ,K2�0 and �

0 such that

�V�,�̃
0 u,u� � �C1�

2
− K1�� �

1
k
m;��Zd

�̃���uk̂�����2 − K2�1 + 1/�� �
1
k
m

��k,�uk,uk�L2�T*�.

�3.14�

o, for ��0 well chosen we get that there exist constants C1 ,C2�0 such that

�V�,�̃
0 u,u� �

C1

3 �
1
k
m;��Zd

�̃���uk̂�����2 − C2 �
1
k
m

��k,�uk,uk�L2�T*�. �3.15�

his ends the proof of Proposition 3.5. �

. If A„0… is negative-definite

We recall that H�,�+ is the following operator:

H�,�+ = − � + Wper + � �
��Zd

�+f�·− �� .

s H�,�+ is a Zd-periodic operator, the analysis given in Sec. II A for H�,�− is still true in the
resent case. For �Ej�� ,��� j�N*, the Floquet eigenvalue of H�,�+ let us set E�,�+ = inf��T*E1�� ,��.

Theorem 3.7: Assume that the matrix A�0� is negative-definite. Then there exists �0�0 such
hat for any �� �0,�0� we have

��,0�H�,� − E�,�+���,0 is a positive operator .

he result of Theorem 3.7 can be proved in the same way as we did for Theorem 3.3 in the
revious section. Indeed, H�,� can be seen as a perturbation of H�,�+ as follows:

H�,� = H�,�+ + V�̄.

ith V�̄�·�=���Zd�̄�f�·−�� and for any ��Zd, �̄�=��−�+. Notice that in this case ��̄����Zd is a
amily of bounded and negative random variables. Using an analogous unitary transformation to
3.1�, one gets that H�,�

0 is unitarily equivalent to

h�,�
0 = h�,�+

0 + V�,�̄
0 .

he lower bound of h�,�+ can be derived easily. As all arguments used to lower bound V�̃
0 remain

alid, we lower bound V�,�̄
0 using the same computation done in Sec. III A.
So we get that there exist K1 ,K2 ,��0 such that
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��V�,�̄
0 u,u� − �

1
k,k�
m

�
��Zd

�̄��
C0

a�,1,k,k��x�dx��uk̂�����uk�
ˆ �����


 K1���+ − �−� �
1
k
m

�
��Zd

��uk̂�����2 + K2�1 + 1/�� �
1
k
m

��k,�uk,uk�L2�T*�. �3.16�

hen A�0� is negative-definite, there exists C�0 and �0�0 such that for any �� �0,�0�, we have

A��� 
 CIm.

s the random variables ��̄����Zd are negative, we get that

C �
1
k
m

�
��Zd

�̄���uk̂�����2 
 �
1
k,k�
m

�
��Zd

�̄��
C0

a�,1,k,k��x�dx��uk̂�����uk�
ˆ ���� . �3.17�

his and Eq. �3.16� give the desired result on the lower bound of V�̄. This ends the proof of
heorem 3.7. �

Proof of Lemma 3.2: As V�̃ is H�,�−-relatively bound uniformly on �̃�, there exists c�0 such
hat for any u�L2�T*� we have

�V�̃T�u�� 
 c��H�,�−T�u��2 + �T�u��2�


c
T*

��H�,�−����· ,���L2�C0�
2 + ��· ,���L2�C0�

2 ��u����2d�


c��H�,�−,�
2 · �u�L2�T*�

2 .

ne computes

�V�̃
0 Tk

�u�,Tk�
�v��L2�Rd�

= 
Rd

V�̃�x�k�x,�k�k��x,�k�� · �
T*

e��−�k�xu���d� · 
T*

e��−�k��xv���d��dx

= �
��Zd

�̃�
C0

f�x�k�x,�k�k��x,�k�� · �
T*

e��−�k�xei�·�u���d� · 
T*

e��−�k��xei�·�v���d��dx .

et

û��� = 
T*

ei�·�u���d� .

or any �x ,���Rd�T* and 1
k
m, we set

gk�x,�� =
ei��−�k�·x − 1

��k,����
. �3.18�

s �k��� is the only zero of �k,� and as it is nondegenerate, there exist C�0 such that, for
x ,���Rd�T*, and 1
k
m, we have
�gk�x,��� 
 C�1 + �x�� . �3.19�
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e have ei��−�k�x=��k,�gk�x ,��+1. So using this and expanding �V�̃Tk
�u� ,Tk�

�v��L2�Rd�, we get

�V�̃Tk
�u�,Tk�

�v��L2�Rd� − �
��Zd

�̃��
C0

a,k,k��x�dx� · u��� · v���

= �
��Zd

�̃�
C0

a,k,k��x� · �
T*

ei�·�gk�x,����k,����u���d� · 
T*

ei�·�gk��x,����k�,����v���d��dx

+ �
��Zd

�̃�û���
C0

a,k,k��x� · �
T*

ei�·�gk��x,����k�,����v���d��dx

+ �
��Zd

�̃�v̂���
C0

a,k,k��x� · �
T*

ei�·�gk�x,����k,����u���d��dx . �3.20�

ow using the fact that the family ��̃����Zd is bounded, Cauchy-Schwartz inequality and Perseval
dentity and Eq. �3.19�, we get that there exists C ,��0 such that

�
��Zd

�̃�
C0

a,k,k��x� · �
T*

ei�·�gk�x,����k,����u���d� · 
T*

ei�·�gk��x,����k�,����v���d��dx


 C��k,�u,u�L2�T*� + ��k�,�v,v�L2�T*�, �3.21�

nd

�
��Zd

�̃�û���
C0

a,k,k��x� ·
T*

ei�·�gk��x,����k�,����v���d�dx 
 C� �
��Zd

�̃��û����2

+
C

4�
��k�,�v,v�L2�T*�. �3.22�

he same argument gives

�
��Zd

�̃�v̂���
C0

a,k,k��x� · 
T*

ei�·�gk�x,����k,����u���d� dx 
 C� �
��Zd

�̃��v̂����2

+
C

4�
��k,�u,u�L2�T*�. �3.23�

o from �3.20�–�3.23� we get �3.3�.
The proof of �3.4� follows by changing T�,1

�u� using �3.2� and following the same steps as
3.3�.

This ends the proof of Lemma 3.2. �
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We present remarkable functional identities related to the elliptic Calogero-
Sutherland �eCS� system. We derive them from a second quantization of the eCS
model within a quantum field theory model of anyons on a circle and at finite
temperature. The identities involve two eCS Hamiltonians with arbitrary and, in
general, different particle numbers N and M, and a particular function of N+M
variables arising as anyon correlation function of N particles and M antiparticles. In
addition to identities obtained from anyons with the same statistics parameter �, we
also obtain “dual” relations involving “mixed” correlation functions of anyons with
two different statistics parameters � and 1/�. We also give alternative, elementary
proofs of these identities by direct computations. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2167807�

. BACKGROUND AND RESULT

The elliptic Calogero-Sutherland �eCS� system is a quantum mechanical model of an arbitrary
umber, N, of particles moving on a circle of length 2� and interacting with two-body potentials
iven by the Weierstrass elliptic functions �.2,15,13 More specifically, this model is defined by the
ifferential operator

H = − �
j=1

N
�2

�xj
2 + 2��� − 1� �

1�j�k�N

V�xj − xk� , �1�

here −��xj �� are coordinates on the circle, ��0 is a real parameter determining the coupling
trength, and

V�r� = �
m�Z

1

4 sin2��r + i�m�/2�
, � � 0 �2�

s essentially the Weierstrass elliptic function � with periods 2� and i�,

V�z� = ��z� + c0, c0 =
1

12
− �

m=1

�
1

2 sinh2���m�/2�
�3�

see Appendix A 1. in Ref. 12, for example�.
In this paper we obtain and prove various remarkable identities involving eCS Hamiltonians

nd special functions of many variables constructed from the following building block:

��z� = sin�z/2��
n=1

�

�1 − 2q2n cos�z� + q4n�, q = e−�/2, �4�
hich is essentially the Jacobi theta function 	1,
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��z� =
1

2q1/4�n=1

�
�1 − q2n�

	1�1

2
z� �5�

see Sec. 21.3 in Ref. 17, for example�. We derive these results from the quantum field theory
onstruction in Ref. 11 We collect all these identities in the following theorem.

Theorem: Let

FN,M�x;y� =
�1�j�k�N

��xk − xj���1�j�k�M
��yj − yk��

� j=1

N �k=1

M
��xj − yk��

�6�

ith x�CN and y�CM and ��z� defined in Eq. (4). This function obeys the identity

	H�,N�x� − H�,M�y� + 2�N − M��
�

��
− cN,M
FN,M�x;y� = 0 �7�

ith H=H�,N�x� the eCS Hamiltonian in Eq. (1) and the constant

cN,M = �2�N�N − 1� − M�M − 1��c0 + �N − M��2�N�N − 1� + M�M − 1� − 2NM�c1, �8�

here

c0 =
1

12
− �

n=1

�
2q2n

�1 − q2n�2 , c1 =
1

12
. �9�

oreover, a similar identity holds true for the function

F̃N,M�x;y� = �
1�j�k�N

��xk − xj�� �
1�j�k�M

��yj − yk�1/��
j=1

N

�
k=1

M

��xj − yk� , �10�

amely

	H�,N�x� + �H1/�,M�y� + 2��N + M�
�

��
− c̃N,M
F̃N,M�x;y� = 0 �11�

ith

c̃N,M = ��2N�N − 1� + M�M − 1�/� + �1 + ��NM�c0

+ ��N + M���N�N − 1� + M�M − 1�/� + 2NM�c1. �12�

It is interesting to note that there are corresponding identities for the first order differential
perators

PN�x� = �
j=1

N

i
�

�xj
�13�

qual to the total momentum operator for the eCS system, namely

�PN�x� + PM�y��FN,M�x;y� = 0 �14�

this is easily proven by observing that FN,M�x ;y� is invariant under common shifts �xj ,yk�

�xj +a ,yk+a� for arbitrary real a�, and similarly
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�PN�x� + PM�y��F̃N,M�x;y� = 0. �15�

t is natural to conjecture that similar identities hold true for all commuting differential operators
�j�=HN

�j��x�, j=1,2 , , . . ., which are known to exist for the eCS model13 �since H�j� for j=1 and 2
re equal to the total momentum operator and the Hamiltonian of the eCS system, respectively�.

Remark 1.1: Note that the constant c0 in Eq. �9� is identical to the one in Eq. �3�. Moreover,
he constant c1 appears in the following from:

c1 =
1

8
− �

n=1

�
nq2n

1 − q2n −
c0

2
,

ut due to the identity

�
n=1

�
nq2n

1 − q2n = �
m=1

�
q2m

�1 − q2m�2 �16�

ne gets c1=1/12.
Remark 1.2: It is interesting to note that by redefining the elliptic functions by �-dependent

onstants as follows:

V�r� → V�r� + b0,

��r� → B1��r� with
� ln�B1�

��
= b1,

he constants in our identities are changed as follows:

cN,M → cN,M − ��� − 1��N�N − 1� − M�M − 1��b0 − �N − M��2�N�N − 1� + M�M − 1� − 2NM�b1

nd

c̃N,M → c̃N,M − ���� − 1�N�N − 1� + �1/� − 1�M�M − 1��b0 + ��N + M���N�N − 1� + M�M − 1�/�

+ 2NM�b1.

n particular, choosing b0=c0 and b1=c1 we can simplify these constants significantly,

cN,M → ��N�N − 1� − M�M − 1��c0,

�17�
c̃N,M → ��N�N − 1� + M�M − 1� + �1 + ��MN�c0.

his latter simple choice amounts to replacing

V�r� → ��r� ,

�18�
��r� → 	1� 1

2r� .

his shows that if one uses the standard elliptic functions one gets somewhat simpler formulas.
owever, our choice has the advantage that the trigonometric limit q=0 is not singular. Moreover,

t removes a trivial contribution from the eigenvalues of the eCS model.12
�

It is useful to write the constants above as follows:

cN,M = 1
12�2�N − M���N − M�2 − 1� + 2�2�N − M��N + M − 1�c2 �19�
nd

                                                                                                            



w

q
t
s
1
f
n
V

s

w

a

w
1

�
a
r

w

I
e
e

022101-4 Edwin Langmann J. Math. Phys. 47, 022101 �2006�

                        
c̃N,M = 1
12��2N3 + M3/� + 3NM��N + M� − ��2N + M/���

− 2��2N2 + M2/� − ��2N + M/�� + �� + 1�MN�c2 �20�

ith

c2 = �
n=1

�
nq2n

1 − q2n . �21�

In Refs. 9 and 11 we obtained the special case N=M of the identity in Eq. �7� using a second
uantization of the eCS model in a quantum field theory �QFT� of anyons on a circle and at finite
emperature 1/�, and in Ref. 12, Appendix A 3, we gave an alternative, elementary proof by
traightforward but rather tedious computations. In this paper we show that the QFT results in Ref.
1 naturally imply all the identities in the theorem above. To be convincing also for readers not
amiliar with QFT we will also give elementary proofs by direct computations which are, however,
ot so illuminating. These direct proofs are based on three functional identities of the functions
�r� and ��r� introduced above: First,

V�r� = −
d2

dr2 ln ��r� , �22�

econd,


�x�
�y� + 
�x�
�z� + 
�y�
�z� = f�x� + f�y� + f�z� if x + y + z = 0, �23�

here


�x� =
d

dx
ln ��x�, f�x� =

1

2
�V�x� − 
�x�2 − c0� , �24�

nd third,

f�x� = −
�

��
ln ��x� + c1 �25�

ith the constants c0 and c1 in Eq. �9�. The �elementary� proofs �22� and �23� can be found in Ref.
2, Appendix A 1 and A 2, respectively; �25� follows readily from

	1�x/2� = �
n=1

�

�− 1�n−1q�n − 1/2�2
sin��n − 1/2�x�

see Section 21.22 in Ref. 17, for example� and Eq. �5�, using the observation made in Remark 1.1
bove. To avoid misunderstanding we stress that the functional identities needed to prove our
esults are classical and known for a long time.

An interesting special case of our result is for M =0 in which case the identities reduce to

H�,N�x��0�x� = 	cN,0 − 2N�
�

��

�0�x� , �26�

here �0�x�=FN,0�x ,y�, i.e.,

�0�x� = �
1�j�k�N

��xk − xj��. �27�

n the limiting case �→� the �-derivative term disappears, and we recover the well-known
igenvalue equation for the ground state of the Sutherland model. It is interesting to note that the

lliptic generalization of this identity which we find here does not give the ground state of the eCS
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odel, which is why Sutherland’s solution15 of the Sutherland model does not generalize to the
lliptic case. For N=2, M =0 our identities reduce to

	− 2
�2

�x2 + 4�
�

��
− c2,0
��x�� = 0,

hich for �=1 is �essentially� the heat equation obeyed by 	1 �x=x1−x2�. Other interesting
pecial cases will be discussed in Sec. III.

It is worth noting that original motivation to study the QFT model of anyons in Ref. 3 was its
elation to the fractional quantum Hall effect,16 and it is remarkable that this physics relation
roved to be helpful for finding the generalization in Refs. 9 and 11. However, one can regard this
onstruction also pragmatically as a useful generating function technique for deriving interesting
dentities which, once found, can also be proven by direct computations. Since we believe that
here are other identities to be found along similar lines, we hope it is nevertheless of some interest
o not only give the direct proof but also the detailed QFT derivation.

We also mention that the QFT construction in Ref. 11 seems closely related to earlier work on
onformal field theory on the torus1,5,4,6,7 also finding and exploiting interesting relations to the
CS model. The approach in Ref. 11 and here is, however, rather different in spirit and technique.

The plan of this paper is as follows. In Sec. II we give an outline of how to derive our
dentities from the QFT results in Refs. 9 and 11, emphasizing the physical interpretation and
eferring computational details to Appendix A. In this discussion we clarify this QFT construc-
ion, in particular the interpretation of the representation we use as finite temperature representa-
ion �which, since not needed there, was only discussed in an Appendix in Ref. 11�. Section III
ontains our conclusions, including a comparison with previous results and a short discussion of
ossible applications of our identities. The elementary, alternative proofs can be found in Appen-
ix B.

I. QUANTUM FIELD THEORY DERIVATION

In this section we explain how the identities in our theorem are obtained from our results in
efs. 9 and 11. Some computational details are deferred to Appendix A.

. Second quantization of the eCS model

We first briefly summarize the construction of anyons.11

Anyons �for us� are operator valued distributions 
��x� parametrized by a coordinate on the
nit circle, −��x��, and depending on a real parameter � determining their commutator rela-
ions as follows:


��x�
��y� = e±i��2

��y�
��x� for x � y �28�

see the Definition in Sec. 2.2 in Ref. 11; note that what we denote as 
��x� here is identical with
im↓ 


1�x� there; we ignore the regularization parameter  here but indicate the parameter �
etermining the statistics instead: see also Remark 2.1 below�. We constructed a particular repre-
entation of these anyons on a Fock space F generated from a “vacuum” � such that

��,
��x�*
��y��� = const ��x − y�−�2
�29�

here ��r� is the elliptic function in Eq. �4�; �·,·� is the Hilbert space inner product and � the
ilbert space adjoint. This representation is characterized by a parameter ��0 which determines

he modulus of the elliptic functions as q=exp�−� /2� and which, as we showed, has a natural
hysical interpretation as inverse temperature. We then constructed a self-adjoint operator H in F
hich has remarkable commutator relations with products of an arbitrary number N of anyon

elds
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��
N�x� ª 
��x1� ¯ 
��xN� , �30�

amely

�H,��
N�x��� = HN,��x���

N�x�� , �31�

here H=H�,N�x� is the eCS Hamiltonian given in Eq. �1� with the coupling determined by the
tatistic parameter as follows:

� = �2. �32�

hese relations suggest to regard H as a second quantization of the eCS Hamiltonian. Another
mportant property of H is the following:

��,�A,H��� = 0, �33�

hich is true for a large class of operators A on F �see Lemma 4 in Ref. 11 for the precise
tatement�, including arbitrary products of anyons.

Remark 2.1: A main technical point in Ref. 11 was to give precise mathematical meaning to
his operator valued distributions 
��x� by introducing approximate anyons depending on a regu-
arization parameter �0 such that, for �0, they are well-defined operator, and the anyons are
btained as a limit ↓0 �see Sec. 2.2 in Ref. 11�. This is a useful method to treat QFT divergences.
owever, in the present paper we can ignore this technicality except for one instance in Appendix
.

Remark 2.2: It is worth noting that, at zero temperature, the “vacuum” is a highest weight
tate annihilated by H, but this property is lost at finite temperature. The relation in Eq. �33� is a
eaker substitute for this highest weight conditions which holds true also at finite temperature. A

imilar remark applies to the operator W̆2 discussed below.

. Identities: a special case

In Refs. 9 and 11 we observed that the relations above imply that the anyon correlation
unction

GN,N�x,y�  ��,��
N�x�*��

N�y��� �34�

atisfies the following remarkable identity:

�H�,N�x� − H�,N�y��GN,N�x,y� = 0. �35�

he argument is simple: using Eq. �33� for A=��
N�x�*��

N�y� we get

��H,��
N�x���,��

N�y��� − ��,��
N�x�*�H,��

N�y���� = 0, �36�

here we used ���
N�x�* ,H�= �H ,��

N�x��* which holds true since H is self-adjoint. Inserting Eq.
31� twice, moving the eCS Hamiltonians in front of the Hilbert inner product, and using �34� we
et Eq. �35�. Computing GN,N�x ,y� one finds that it is equal to FN,N�x ,y� in Eq. �6� �see Propo-
ition 1 in Ref. 11 or Eqs. �42� and �43� below�, and we thus obtain the special case N=M of the
dentity in Eq. �7�.

. Other correlation functions

It is natural to try to generalize this identity by considering generalized anyon correlation

unctions which are vacuum expectation values of
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��
N�x�*��

M�y� ,

llowing also for different particle numbers in x and y and/or different anyon parameters � and �.
o construct and compute nontrivial such functions we need to recall a few more details of the
nyon construction in Ref. 11

The explicit form of the anyons is


��x� = ×
×R exp�− i�2Qx − ��

n�0

1

n
��n�einx� ×

× , �37�

here the ��n�, n�Z, and R are generators of the Heisenberg algebra defined by the following
elations:

���n�,��m�� = n�n,−m, ���n�,R� = �n,0R �38�

nd

��n�* = ��− n�, R* = R−1, �39�

here

��0� = Q �40�

as the physical interpretation of a charge operator. A important point here is the definition of
ormal ordering ×

× · ×
× which is not the standard one; see Lemma 1 in Ref. 11 for a detailed

haracterization. The operator Q satisfies, by definition,

Q� = 0, �41�

nd this has important consequences: we say that an operator A on F has charge q iff �Q ,A�
qA, and the definitions above imply that only operators A with charge zero can have a nonzero
acuum expectation value, and that R±1 changes the charge by ±1. We therefore need to insert an
ppropriate power of R to get a nontrivial vacuum expectation value, and the natural correlation
unction to consider is

G�,�;N,M�x;y� = ��,��
N�x�*RN−M��

M�y��� . �42�

y straightforward computations we obtain �for details see Appendix A 1�

G�,�;N,M�x;y� = ei�p1X−p2Y�
�1�j�k�N

��xj − xk��2�1�j�k�M
��yk − yj��2

� j=1

N �k=1

M
��xj − yk���

, �43�

here the exponential factor gives the dependence of the center-of-mass coordinates,

X = �
j=1

N

xj, Y = �
j=1

M

yj , �44�

nd the center-of-mass momenta are determined by the statistics parameters of the anyons as
ollows:

p1 = 1
2 ��2N − ��M�, p2 = 1

2 ��2M − ��N� . �45�

ote that, up to the exponential factors, these correlation functions for �=�=�� and �=−1/�
�
� are equal to the functions in Eq. �6� and �10�, respectively.
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In the following we give a simplified derivation of Eqs. �7� and �11�, ignoring less interesting
erms which only contribute to the constants cN,M and c̃N,M, respectively, and which we indicate by
ots. This simplifies the argument considerably. The complete equations including all terms are
iven in Appendix A 3 and A 4, respectively.

. Derivation of the identity in Eq. „7…

We now consider the function

GN,M�x;y�  G�,�;N,M�x;y�, � = �� �46�

nd try to use a similar argument as above. If we now use the identity in Eq. �33� for A
��

N�x�*RN−M��
M�y� and use Eq. �31� twice we obtain

�H�,N�x� − H�,M�y��GN,M�x,y� = ��,��
N�x�*�H,RN−M���

M�y��� , �47�

here we now get an additional term. It is a rather surprising that it is possible to compute this
erm in a simple manner: this is due to a “miracle” which we now describe.

For that we need to recall the explicit form of the second quantized eCS Hamiltonian H,

H = �W̆3 + �1 − �2�C + 2�2W̆2Q + 1
3�4Q3 − �4c0Q , �48�

ith the constant c0 in Eq. �9�,

W̆s =
1

s
�

0

2� dx

2�
×
×��

n�0
��n�einx�s ×

× for s = 2,3, �49�

nd C is some �known� operator satisfying

�C,R� = 0, C� = 0 �50�

see Proposition 2 in Ref. 11; the formula given there looks different but is equivalent, as is seen
y a simple computation and the identity in Eq. �16��.

Remark 2.3: The charge operator Q �equal to the zero mode ��0�� plays an even more
mportant role here than in Ref. 11, and it is therefore more natural now to write H in terms of the

perators W̆s with all zero modes removed: since these operators obviously commute with the
harge-rising operator R,

W̆2 =
1

2�
n

�
×
×��n���− n� ×

× ,

W̆3 =
1

3�
n,m

�
×
×��n���m���− n − m� ×

× �51�

ith the prime on the sums indicating that all terms with at least one factor ��0� are left out, it thus
ecomes easier to compute the commutator of H with R. It is gratifying to see that this also
implifies the formula for H �compare Eq. �48� above with Eq. �57� in Ref. 11�.

We thus get

�H,RN−M� = 2�N − M��RN−MW̆2 + ¯ , �52�

ith the dots less interesting terms which we ignore for simplicity �they are given in Appendix

.3�. The “miracle” is that this commutator is proportional to the operator W̆2 which plays an

mportant twofold role in the anyon QFT: first, W̆2 is �essentially� the second quantization of the

otal momentum operator,

                                                                                                            



w

s
p

R
�
t
t

a

F
d

t
t
v

A

5

p
e
r

w
g

d

022101-9 Elliptic Calogero-Sutherland model J. Math. Phys. 47, 022101 �2006�

                        
�W̆2,��
N�x�� = PN�x���

N�x� + ¯ �53�

ith PN�x� defined in Eq. �13� is the generator of translations �see Eq. �68� in Ref. 11�, and

econd, W̆2 is �essentially� identical with the many-body Hamiltonian used to construct the tem-
erature representation �see Proposition 4 in Appendix B.2 of Ref. 11� which implies

��,AW̆2�� = −
�

��
��,A�� + ¯ . �54�

emark 2.4: Equation �54� is the key to our identities. While the first term on the right-hand-side
rhs� is easy to understand from what we said above, the computation of the terms “¯” propor-
ional to �A� is somewhat subtle. This computation clarifies some interesting aspects of our finite
emperature representation not mentioned in Ref. 11. They are discussed in Appendix A 2.

Using Eqs. �53� and �54� we can compute

��,��
N�x�*�H,RN−M���

M�y��� = 2��N − M���,��
N�x�*RN−M��W̆2,��

M�y�� + ��
M�y�W̆2��� + ¯

= 2��N − M��PM�y� −
�

��
�GN,M�x;y� + ¯ ,

nd inserting this in Eq. �47� we obtain

�H�,N�x� − H�,M�y��GN,M�x,y� = 2��N − M��PM�y� −
�

��
�GN,M�x;y� + ¯ . �55�

rom Eqs. �46�, �43�, and �6� we see that GN,M�x ;y� is equal to FN,M�x ;y� up to a phase factor
epending only on center-of-mass coordinates X and Y, and using

e−ipXHN�x�eipX = HN�x� + Np2 − 2pPN�x�

e−ipXPN�x�eipX = PN�x� − Np �56�

he identity in Eq. �55� turns into a similar identity for FN,M�x ;y�. Remarkably we can use Eq. �14�
o cancel all terms involving PN�x� and PM�y�. This proves the identity in Eq. �7� up to the precise
alue of the constant cN,M.

As mentioned, the missing details to also compute the constant cN,M are given in Appendices
2 and A 3.

. Derivation of the identity in Eq. „11…

In general, the argument above does not work for correlation functions in Eq. �42� if the anyon
arameters � and � are different. However, there is one such case where it does work: from the
xplicit formula for the second quantization of the eCS Hamiltonian in Eq. �48� we observe that
eplacing � by −1/� gives back essentially the same operator up to a constant factor,

H��� = − �H�−1/�� + 2�� + 1�W̆2Q + ��2 + 1/��� 1
3Q3 − c0Q�, � = �2, �57�

here we now indicate also the anyon parameter �. This suggests that we should be able to also
et an identity for the correlation functions

G̃N,M�x;y�  G�,−1/�;N,M�x;y�, � = �� �58�
efined in Eq. �42�. Indeed, by a similar computation as above we obtain
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0 = ��,���
N�x�*RN−M�−1/�

M �y�,H������ = �H�,N�x� + �H1/�,M�y��G̃N,M

− ��,��
N�x�*��H���,RN−M� − 2�� + 1�MRN−MW̆2��−1/�

M �y��� + ¯ ,

here we used Eqs. �33� and �57� and twice Eq. �31�. As mentioned, the dots indicate less
nteresting terms specified in Appendix A 4. Inserting Eqs. �52� and �53� we get, similarly as
bove,

�H�,N�x� + �H1/�,M�y��G̃N,M�x;y� = �2�N − M�PM�y� − 2��N + M�
�

��
�G̃N,M�x;y� + ¯ .

�59�

ince G̃N,M�x ;y� is equal to F̃N,M�x ;y� up to the center-of-mass phase factor �cf. Eqs. �58�, �43�,
nd �10�� we can use Eq. �56� to obtain a similar identity for F̃N,M�x ;y�. Again all terms involving

PN�x� and PM�y� cancel due to Eq. �15�, and we obtain the identity in Eq. �11� up to the value of
he constant c̃N,M.

The details of this computation can be found in Appendix A 4.

II. CONCLUSIONS

It is interesting to note that by introducing the operators

LN,��x� = 2�N
�

��
+ HN,��x� �60�

ne can write the identities in Eqs. �7� and �11� as follows:

�L�,N�x� − LM,��y� − cN,M�FN,M�x;y� = 0 �61�

nd

�L�,N�x� + �L1/�,M�y� − c̃N,M�F̃N,M�x;y� = 0, �62�

espectively. The operator LN seems to be a special case of one introduced by Bernard;1 see Eq.
6.1� in Ref. 5. The results in Ref. 1 suggests that it should be possible to interpret Eqs. �61� and
62� as Ward identities of some conformal field theory on the torus; see Refs. 6 and 7. We also note
hat the special case M =0 of Eq. �7� seems to be identical with an identity given in the Remark
fter Theorem 4.1 in Ref. 7.

We finally discuss possible applications of these identities. We first discuss the trigonometric
imit �→� in which case the derivative terms proportional to � /�� in Eqs. �7� and �11� are absent.
n particular, for M =0 we recover the well-known eigenvalue equation for the ground state of the
utherland model which is the starting point of Sutherland’s solution of this model,15 as already
entioned in Sec. I. Another interesting special case is the identity in Eq. �7� for N=M: it seems

o give an alternative construction of the Q-operator playing a central role in Ref. 8 deriving
nteresting explicit results for the solution of the Sutherland system. Moreover, this very identity
s also the starting point of an alternative solution algorithm for the Sutherland model.10 Our
eneralization of this identity to M �N might allow to construct a generalized Q-operator relating
igenfunctions of the Sutherland model for different particle numbers and/or different coupling
arameters � and 1/�. For the general elliptic case ��� the identity N=M in Eq. �7� was used
s a starting point for a perturbative algorithm to solve the eCS model as a formal power series in
2.12 We speculate that it might be possible to also find elliptic generalizations of the results in
ef. 8 using our identities �this is suggested to us by the interesting results on the 3-particle eCS
ystem in Sec. 7 of Ref. 14�.
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PPENDIX A: QFT DERIVATION. DETAILS

In this Appendix we provide the details of the quantum field theory derivation of the identities
ummarized in our theorem.

. Computation of the anyon correlation functions

Here we give more details of how to compute G�,�;N,M�x ;y� defined in Eq. �42� and obtain Eq.
43�.

We know that

��
N�y� = bN�x��2 ×

×��
N�x� ×

× , bN�x� = �
1�j�k�N

��xj − xk� �A1�

nd thus

��, ×
×��

N�x�* ×
×RN−M ×

×��
M�y� ×

×�� = ��,ei�2X/2R−Nei�2X/2RNR−Me−i�2Y/2RMe−i�2Y/2�����

= ei�N�2X−M�2Y�/2��� �A2�

see Eqs. �50�, �16�, and �17� and in Ref. 11 we also used R−1QR=Q+1 following from Eqs. �11�
n Ref. 11� where

��� = �
j,k

e��C�xj−yk� = �
j,k

��xj − xk�−��e−i���xj−yk�/2 = e−i���MX−NY�/2�
j,k

��xj − xk�−��

re the other contributions �see Eq. �44� in Ref. 11�. By simple computations this yields Eq. �43�.

. Finite temperature correlations functions

Equation �54� is a crucial step in the QFT derivation of our identities. As discussed in the main

ext, it is a consequence of � being equal to the inverse temperature and W̆2 being �essentially� the
amiltonian used to construct the finite temperature representation of our QFT model. We now
iscuss this relation in more detail.

In Ref. 11 Appendix B.1, we proved that the vacuum expectation value of �essentially� any
perator A is equal to its thermal expectation as follows:

��,A�� =
1

Z
lim
a→�

Tr�e−�H0A0� , �A3�

here

H0 = aQ0
2 + �

n=1

�

�0�n��0�− n� �A4�

nd the subscripts 0 are to indicate that these operators are in the standard �=zero temperature�
epresentation;

Z = �
n=1

�
1

�1 − q2n�
, q = e−�/2 �A5�

s the partition function �see Proposition 4 and Eq. �B16� in Ref. 11�. Remarkably,

1

Z
�Z
��

= − c2 �A6�
ith c2 the constant in Eq. �21�, and thus Eq. �A3� implies
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��,AH�� = − � �

��
− c2���,A�� �A7�

ith H=aQ2+�n=1
� ��−n���n�. Since H is �essentially� equal to aQ2+W̆2 this implies Eq. �54�.

However, there is a subtle point we need to take into account to make this relation precise: the

ormal ordering prescription used in Ref. 11 is �-dependent, and aQ2+W̆2 is therefore not equal
o H �which is defined by zero temperature normal ordering� but differs from it by a constant. This
ifference can be computed as follows: by definition of the normal ordering in the thermal state

see Eq. �25� in Ref. 11�, �� ,W̆2��=0, whereas Eq. �A7� for A=1 gives �� ,H��=c2. We con-

lude that W̆2=H−aQ2−c2, and thus

��,AW̆2�� = −
�

��
��,A�� �A8�

ith the normal ordering difference taking away precisely the constant c2 in Eq. �A7�.
It is also important to note that also the anyon operators are defined using normal ordering.

ore explicitly, as explained in Remark 2.6 after Eq. �46� in Ref. 11, normal ordering of the anyon
eld 
��x� amounts to a multiplication with the constant

	�1 − e−2��
m=1

�

�1 − q2me−2�2
−�2/2

n the limit ↓0 �see Eq. �A4� in Ref. 11�; since the divergent factor is � independent, the factor
ccounting for the difference in normal ordering has a finite limit as ↓0 which is identical with
�2

. Thus

��,��
N�x�*RN−M��

M�y��� = ZN�2+M�2−1 lim
a→�

Tr�e−�H0��,0
N �x�*R0

N−M��,0
M �y�� . �A9�

e conclude that

��,��
N�x�*RN−M��

M�y�W̆2�� = − � �

��
+ �N�2 + M�2�c2�G�,�;N,M�x;y� �A10�

we used Eq. �42�� which is the equation we need.

. Detailed derivation of Eq. „7…

In our derivation of Eq. �7� in the main text we ignored terms proportional to GN,M�x ;y�
indicated by dots�, to simplify the argument. Here we give the full derivation, with all terms
ncluded.

Using Eq. �48� we obtain

�H,RN−M� = �2�W̆2 − c0�2��N − M�RN−M + 1
3�2�Q3,RN−M� , �A11�

mplying

��,��
N�x�*�H,RN−M���

M�y��� = 2��N − M���,��
N�x�*W̆2RN−M��

M�y���

+ �2� 1
3 �N3 − M3� − c0�N − M��GN,M�x,y� . �A12�
We now use
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�W̆2 + 1
2�Q2,��

N�x�� = PN�x���
N�x� �A13�

ith PN�x� defined in Eq. �13� �see Eqs. �68� in Ref. 11; there is an error in this latter formula:
�−1���−3� should be replaced by ��2−1��. Using that and �A10� for �=� �recall Eq. �49�� we
btain

��,��
N�x�*W̆2RN−M��

M�y��� = �PM�y� − 1
2�M2 −

�

��
− ��N + M�c2�GN,M�x,y� . �A14�

utting the equations above together we obtain

	H�,N�x� − H�,M�y� + 2��N − M�
�

��

GN,M�x,y� = ��2� 1

3 �N3 − M3� − c0�N − M�� + 2��N − M�

��PM�y� − 1
2�M2 − ��N + M�c2��GN,M�x,y� .

�A15�

o get from this an identity for FN,M�x ,y� we recall Eqs. �42�, �43�, �46�, and �6�, implying

GN,M�x,y� = eip�X+Y�FN,M�x,y�, p = 1
2 �N − M�� . �A16�

sing the identities in Eq. �56� this gives

	H�,N�x� − H�,M�y� + 2��N − M�
�

��

FN,M�x,y� = ��2� 1

3 �N3 − M3� − c0�N − M�� + 2��N − M�

��PM�y� − Mp − 1
2�M2 − ��N + M�c2� − �N − M�p2 + 2p�PN�x� − PM�y���FN,M�x,y� .

nserting p= 1
2��N−M� and using Eq. �15� we see that all terms involving PN�x� and PM�y� on the

hs cancel, and we obtain the identity in Eq. �7� with

cN,M = �2� 1
3 �N3 − M3� − c0�N − M�� − ��N − M��M��N − M�

+ �M2 + 2��N + M�c2� − 1
4 �N − M�3�2, �A17�

dentical with the constant in Eq. �8�.

. Detailed derivation of Eq. „11…

We now consider the functions defined in Eq. �58�. Equations �42�, �43�, and �10� imply

G̃N,M�x,y� = ei�p1X−p2Y�G̃N,M�x,y�, p1 = 1
2 ��N + M�, p2 = 1

2 �N + M/�� . �A18�

sing Eq. �57� we can compute

0 = ��,���
N�x�*RN−M�−1/�

M �y�,H������ = ��H���,��
N�x��*�,RN−M�M

−1/��y���

+ ��,��,N�x�*�RN−M,H�����M
−1/��y��� + ��,��,N�x�*RN−M��H�−1/�� − 2�� + 1�W̆2Q

− ��2 + 1/��� 1
3Q3 − c0Q�,�M

−1/��y��� = �H�,N�x� + �H1/�,M�y� − ��2 + 1/��� 1
3 M3 − Mc0��G̃N,M

− ��,��,N�x�*�H���,RN−M��M
−1/��y��� − 2�� + 1�M��,��,N�x�*W̆2RN−M�M

−1/��y��� .
s above,

                                                                                                            



w

M

a

o

w
i

i

A

a

w
t
=

022101-14 Edwin Langmann J. Math. Phys. 47, 022101 �2006�

                        
��,��
N�x�*�H���,RN−M��−1/�

M �y��� = 2��N − M���,��
N�x�*RN−MW̆2�−1/�

M �y���

+ �2� 1
3 �N3 − M3� − c0�N − M��G̃N,M�x,y�

hich yields

�H�,N�x� + �H1/�,M�y� − �2� 1
3N3 − Nc0� − � 1

3 M3 − Mc0�/��G̃N,M�x,y�

= 2��N + M���,��
N�x�*W̆2RN−M�−1/�

M �y��� . �A19�

oreover, Eq. �A10� gives

��,��
N�x�*W̆2RN−M�−1/�

M �y��� = �PM�y� − 1
2 M2/� −

�

��
− ��N + M/��c2�G̃N,M�x,y� ,

�A20�

nd with that we obtain

	H�,N�x� + �H1/�,M�y� + 2�N� + M�
�

��

G̃N,M�x,y� = ��2� 1

3N3 − c0N� + � 1
3 M3 − Mc0�/�

+ 2�N� + M��PM�y� − 1
2 M2/� − ��N + M/��c2��G̃N,M�x,y� ,

r equivalently

	H�,N�x� + �H1/�,M�y� + 2�N� + M�
�

��

F̃N,M�x,y� = ��2� 1

3N3 − c0N� + � 1
3 M3 − Mc0�/�

+ 2�N� + M��PM�y� + Mp2 − 1
2 M2/� − ��N + M/��c2� − Np1

2 + 2p1PN�x� − �Mp2
2

− 2�p2PM�y��F̃N,M�x,y� , �A21�

here we used Eqs. �A18� and �56�. Using Eq. �15� we see that, again, all derivative terms
nvolving PN�x� and PM�y� cancel, and we obtain the identity in Eq. �11� with

c̃N,M = �2� 1
3N3 − c0N� + � 1

3 M3 − Mc0�/� + �N� + M��M�N + M/�� − M2/� − 2��N + M/��c2�

− 1
4N�N� + M�2 − 1

4�M�N + M/��2 �A22�

dentical with the constant in Eq. �12�.

PPENDIX B: ELEMENTARY PROOFS OF THE IDENTITIES

We define the function

G�x;y� =
�1�j�k�N

��xk − xj��1�1�J�K�M
��yJ − yK��2

� j=1

N �K=1

M
��xj − yK��3

�B1�

nd compute

W ª

1

G
��

j=1

N
�2

�xj
2 − A�

J=1

M
�2

�yJ
2�G �B2�

ith parameters �1, �2, �3, and A to be determined. We find it convenient to use in this appendix
wo different kinds of indices: small letters j ,k ,�=1,2 , . . . ,N and capital letters J ,K ,L

1,2 , . . . ,M. Obviously,
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�G

�xj
= 	�

j�k

�1
�xj − xk� − �
K

�3
�xj − yK�
G �B3�

nd

1

G

�2

�xj
2G = �

k�j

�1
��xj − xk� + �
k,��j

�1
2
�xj − xk�
�xj − x�� − �

K

�3
��xj − yK�

+ �
K,L

�3
2
�xj − yK�
�xj − yL� − 2 �

k�j,K
�1�3
�xj − xk�
�xj − yK� , �B4�

nd similarly for the yJ-derivatives. We collect the terms in eight different groups as follows:

W = W1 + W2 + W3 + W4, Ws = Ws
�1� − Ws

�2� �B5�

ith

W1
�1� = �

j,k�j

��1
��xj − xk� + �1
2
�xj − xk�2� , �B6�

W1
�2� = A �

J,K�J

��2
��yJ − yK� + �2
2
�yJ − yK�2� , �B7�

W2
�1� = �

j�k��

�1
2
�xj − xk�
�xj − x�� , �B8�

here � j�k�� is short for the sum over all j ,k ,� with the constraints j�k and j�� and k��,

W2
�2� = A �

J�K�L

�2
2
�yJ − yK�
�yJ − yL� , �B9�

W3 = �1 − A��
j,K

�− �3
��xj − yK� + �3
2
�xj − yK�2� , �B10�

ince obviously W3
�2�=−AW3

�1�, and the rest

W4 = �
j,K�L

�3
2
�xj − yK�
�xj − yL� − A �

J,k��

�3
2
�yJ − xk�
�yJ − x��

− �
j,k�j,K

2�1�3
�xj − xk�
�xj − yK� + A �
J,K�J,k

2�2�3
�yJ − yK�
�yJ − xk� . �B11�

We insert 
��x�=−V�x� and 
�x�2=V�x�−c0−2f�x� �see Eqs. �23� and �24�� in Eq. �B6� and
btain

W1
�1� = �

j,k�j

��1��1 − 1�V�xj − xk� − �1
2c0 − 2�1

2f�xj − xk��

= − N�N − 1��1
2c0 + �

j�k

�2�1��1 − 1�V�xj − xk� − 4�1
2f�xj − xk�� ,

here we used that the functions V and f are even, and similarly

W1
�2� = − AM�M − 1��2

2c0 + A �
J�K

�2�2��2 − 1�V�yJ − yK� − 4�2
2f�yJ − yK�� .
enaming summation indices and using that 
 is odd we then write
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W2
�1� = �

j�k��

1

3
�− �1

2��
�xk − xj�
�xj − x�� + 
�xj − x��
�x� − xk� + 
�x� − xk�
�xk − xj�� .

nserting the identity in Eq. �23� with x=xk−xj, y=xj −x�, and z=x�−xk gives

W2
�1� = �

j�k��

1

3
�− �1

2��f�xk − xj� + f�xj − x�� + f�x� − xk�� = − 2�1
2�N − 2��

j�k

f�xj − xk� ,

here we again renamed summation indices and used that f is even. Similarly,

W2
�2� = − 2A�2

2�M − 2� �
J�K

f�yJ − yK� .

nserting Eq. �23� in Eq. �B10� we obtain

W3 = �1 − A��3��3 + 1��
j,K

V�xj − yK� − �1 − A��3
2�NMc0 + 2�

j,K
f�xj − yK�� .

he first term in this expression mixes x and y in a intolerable way, and in order to get a useful
elation it must disappear. This leads to the following important restriction on parameters:

�1 − A��3��3 + 1� = 0. �B12�

ext we try to simplify W4. We write W4=W4
�1�−W4

�2� with

W4
�1� = �

j,K�L

�− �3
2
�yK − xj�
�xj − yL� − A�2�3
�yK − yJ�
�yJ − xj� − A�2�3
�yJ − yK�
�yK − xj�� ,

here we used that 
 is odd and wrote the same term in two different ways renaming summation
ndices. Similarly,

W4
�2� = �

J,k��

�− A�3
2
�xk − yJ�
�yJ − x�� − �1�3
�xk − xj�
�xj − yK� − �1�3
�xj − xk�
�xk − yK�� .

e now see that we can use the identity in Eq. �23� to simplify W4 provided the parameters obey
he following conditions:

�3 = A�2 and A�3 = �1, �B13�

nd this is another important restriction on parameters. If and only if this holds true we get

W4
�1� = �

j,K�L

�− �3
2��f�yK − xj� + f�yJ − yK� + f�xj − yJ��

= − 2�M − 1��3
2�

j,K
f�yK − xj� − 2N�3

2 �
J�K

f�yJ − yK� ,

nd similarly

W4
�2� = − 2A�N − 1��3

2�
J,k

f�xk − yJ� − 2MA�3
2�

j�k

f�xj − xk� .
ssuming the conditions in Eqs. �B12� and �B13� hold true we thus obtain
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W = 2�1��1 − 1��
j�k

V�xj − xk� − A2�2��2 − 1� �
J�K

V�yJ − yK� − �N�N − 1��1
2 − AM�M − 1��2

2

+ �1 − A��3
2NM�c0 + 2�− N�1

2 + AM�3
2��

j�k

f�xj − xk� + 2�AM�2
2 − N�3

2� �
J�K

f�yJ − yK�

+ 2�− �1 − A� − �M − 1� + A�N − 1���3
2�

j,K
f�xj − yK� , �B14�

r equivalently,

	H�1,N�x� − AH�2,M�x� − C0 − C1�
j�k

f�xj − xk� − C2 �
J�K

f�xJ − xK� + C3�
j,K

f�xj − yK�
G = 0

�B15�

ith

C1 = 2�N�1
2 − AM�3

2�, C2 = 2�N�3
2 − AM�2

2�, C3 = 2�AN − M� �B16�

nd

C0 = �N�N − 1��1
2 − AM�M − 1��2

2 + �1 − A��3
2NM�c0. �B17�

sing the identity in �25� we now compute

1

G

�G

��
= �1�

j�k

�c1 − f�xj − xk�� + �2 �
J�K

�c1 − f�yJ − yK�� − �3�
j,K

�c1 − f�xj − yK�� =
1

2
�N�N − 1��1

+ M�M − 1��2 − 2NM�3�c1 − �1�
j�k

f�yJ − yK� − �2 �
J�K

f�yJ − yK� + �3�
j,K

f�xj − yK� .

�B18�

e thus see that we can write Eq. �B15� in the following form:

	H�1,N�x� − AH�2,M�y� − C̃0 + C
�

��

G = 0 �B19�

rovided that

Ci = C�i for i = 1,2,3. �B20�

n this case

C̃0 = C0 + C 1
2 �N�N − 1��1 + M�M − 1��2 − 2NM�3�c1. �B21�

nterestingly, the conditions in �B12�, �B13�, and �B20� have two nontrivial solutions. First,

A = 1, �1 = �2 = �3  � , �B22�

ith C=2�N−M�� and C̃0=cN,M given in Eq. �8�, and second,

A = − �, �1 = �, �2 = 1/�, �3 = − 1 �B23�

ith C=2��N+M� and C̃0= c̃N,M in Eq. �12�. Obviously these two cases correspond to the iden-

ities given in Eqs. �6�–�11�, and we have completed our proof. �
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We consider the problem of estimating the ensemble average of an observable on
an ensemble of equally prepared identical quantum systems. We show that, among
all kinds of measurements performed jointly on the copies, the optimal unbiased
estimation is achieved by the usual procedure that consists in performing indepen-
dent measurements of the observable on each system and averaging the measure-
ment outcomes. © 2006 American Institute of Physics. �DOI: 10.1063/1.2168122�

. INTRODUCTION

The astonishing precision of measurements currently available in quantum optics1 along with
he growing demand of quantum devices of the new information technology2,3 have revived the
nterest in the theory of quantum measurements.4 The outcome statistics of a quantum measure-

ent for all possible input states is described by a positive operator valued measure �POVM�. The
eneral optimization approach of quantum estimation theory5 is to maximize over all possible
OVM’s an appropriate cost function, which depends on the context and on the specific use of the
easurement. The output statistics can then be improved by using multiple copies of the same

uantum system, all prepared in the same state, and performing a suitable ensemble measurement
ver the copies.

The experimental complexity of ensemble measurements is roughly classified by dividing
hem into three main categories: �a� independent, �b� separable, and �c� entangled measurements.
ategory �a� is described by tensor products of independent POVM’s; �b� by POVM’s with

eparable elements only; �c� by POVM’s where some elements are entangled. Notice that the
eparability of POVM’s generally does not correspond to a physical separability of measuring
pparatuses �there exist separable measurements that cannot be performed by separate measuring
pparatuses, i.e., by local operations and classical communication �LOCC��, and this classification
emains essentially mathematical in nature. However, at least one can say that category �b� con-
ains all adaptive measurements �in which the choice of the measuring apparatus on the nth copy
epends on the outcomes of previous measurements�, whereas category �c� contains those mea-
urements that need quantum interactions between copies, implying that all copies during the
easuring time must be at the same physical location, or, otherwise, that a “quantum memory” is

vailable.
Among the three categories of ensemble measurements, the category �c� of entangled POVM’s

iscloses the full exponential growth of the Hilbert space dimension versus the number of copies
for a virtually unlimited optimization of the statistical efficiency of the measurement, with the

�Electronic mail: dariano@unipv.it
�Electronic mail: v.giovannetti@sns.it
�
Electronic mail: perinotti@fisicavolta.unipv.it
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ossibility of largely surpassing the performance of categories �a� and �b�.6–9 Indeed, over the last
ew years, it has been recognized that entangled measurements are usually more efficient than
ndependent measurements, and the optimal measurement scheme is almost always entangled.10–13

owever, in some situations it has been also shown that asymptotically for N→� an equivalently
ptimal estimation may be achieved using just independent measurements over the copies.14–17

In the above scenario it is natural to ask if the canonical procedure of averaging the outcomes
f repeated measurements of an observable A over equally prepared systems is the best way of
stimating the ensemble average �A� of A, or, instead, if a joint entangled measurement over the
opies can improve the estimation. As we will see it turns out that the canonical procedure is
ndeed optimal, however, the derivation of this result is nontrivial, and offers a general warning
gainst easy assumptions and generalizations when evaluating statistical efficiencies of ensemble
easurements.

Let us be more precise, and fix precisely the scenario of the quantum estimation. Suppose one
as a finite number N of equally prepared distinguishable identical d-dimensional quantum sys-
ems, which are described by the state ��N, and one wants to estimate the ensemble average
A���Tr��A� of the observable A. Suppose now that one has unlimited technology at one’s
isposal, including measuring apparatus that can achieve any desired entangled POVM on all N
ystems jointly. The question is which is the best measuring apparatus to choose in order to
stimate �A�� with the minimum statistical error? What we will prove in the present paper is that
he best estimation strategy is just the canonical procedure, which consists in averaging the
utcomes of repeated measurements of the observable A over the equally prepared quantum
ystems.

I. PERMUTATIONALLY INVARIANT POLARIZATION IDENTITIES

In the derivation of our main result the following lemma will play a crucial role.
Lemma 1: Any permutationally invariant operator X on H�N is completely determined by all

nsemble averages Tr�X��N� on identical equally prepared systems.
Proof: The statement of the lemma is equivalent to the following logical implication:

X � PN�H�, " � � S�H�, Tr�X��N� = 0 Þ X = 0, �1�

here S�H� denotes the set of states on H, and PN�H� the algebra of permutationally invariant
perators on H�N. Indeed, statement �1� is equivalent to the statement that if Tr�X��N�
Tr�Y��N� for all states �, then X�Y.

Consider the following special states of the form

�� = �
j=1

N

� j	� j��� j	, � j � 0,� j � �i,i � j , �2�

ith 
� j�N any set of N unequal states �not necessarily orthogonal�. The trace Tr�X��
�N� is a

olynomial in � j=1
N � j

xj, with � j=1
N xj=N and xj�0 integers. Now, in order to have Tr�X��

�N�=0 for
rbitrary ��, all coefficients of the polynomial must vanish. In particular, the coefficient of � j=1

N � j

s given by

�
�

��1	 . . . ��N	�� X��
† 	�1� . . . 	�N� � 0, �3�

here �� are the permutations of the N systems. By hypothesis we have �� X��
† =X, then the

anishing of Tr�X��
�N� for all states �� implies

��1	 . . . ��N	X	�1� . . . 	�N� = 0, �4�
or all sets 
� j�N. If we take 	�k�=		
�+�	
��, by arbitrariness of 	 and � we have
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��1	 ¯ �
	 ¯ ��N	X	�1� ¯ 	
� ¯ 	�N� = ��1	 ¯ �
	 ¯ ��N	X	�1� ¯ 	
�� ¯ 	�N�

= ��1	 ¯ �
�	 ¯ ��N	X	�1� ¯ 	
� ¯ 	�N�

= ��1	 ¯ �
�	 ¯ ��N	X	�1� ¯ 	
�� ¯ 	�N� = 0. �5�

y repeating the same argument for different values of k and choosing 
 and 
� as all possible
lements of an orthonormal basis 

 j� we get

�
 j1
	 ¯ �
 jN

	X	
k1
� ¯ 	
kN

� = 0, " 
ji�,
ki� . �6�

ince all the matrix elements of X on an orthonormal basis are null, one has that X�0. �

Notice that the proof of the previous lemma contains the following interesting corollary.
Corollary 1: For any operator X on H�N the diagonal elements on factorized states com-

letely determine X.
This is a kind of factorized polarization identity for permutation invariant operators.

II. THE MAIN RESULT

Let us now come back to the original problem of determining the optimal measurement for
stimating the ensemble average of an observable. Consider a generic joint POVM P�r� on H�N,
ith outcome r providing an estimate of the expectation �A�� of the observable A on N identical

ystems all in the same state �. Clearly, one has �m�r��M, with �m and �M minimum and
aximum eigenvalues of A, respectively. The POVM P�r� provides an estimate of the expectation

A�� if the conditional probability p�r 	�� of estimating expectation value r for actual value Tr�A��
s expressed via the Born rule as follows:

p�r	��dr = Tr�P�r���N�dr . �7�

ince the state ��N is permutation invariant, we can consider permutation invariant POVM’s.
ndeed, using invariance of ��N under permutations, one has

p�r	��dr =
1

N!��

Tr�����N��
† P�r��dr = Tr��N 1

N!��

���
† P�r�����dr = Tr����r���N�dr ,

�8�

here the POVM

P��r� �
1

N!��

��
† P�r��� �9�

s permutation invariant by construction. This means that for any POVM there is a permutation
nvariant one giving the same probability distributions for all states ��N. Therefore, without loss of
enerality, in the following we can assume that P�r� is permutation invariant. We will consider
ow the case in which the POVM is unbiased, that is the averaging over r coincides with the value
o be estimated. Mathematically this means that for all states � the following identity holds:

�
�m

�M

dr rp�r	�� = Tr�A�� . �10�

he statistical error in the estimate is given by the rms of the probability distribution

N�A� � �
�m

�M

dr�r − �A���2p�r	���1/2

, �11�
hich for unbiased estimation equals
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N�A� � �
�m

�M

dr�r2p�r	��� − �A��
2�1/2

. �12�

ince the only part which depends on the POVM is the conditional probability p�r 	��, the opti-
ization of the error resorts to minimize the quantity

�
�m

�M

dr r2 Tr�P�r���N� , �13�

ith the constraints

�
�m

�M

dr P�r� = I , �14�

�
�m

�M

dr r Tr�P�r���N� = �A��. �15�

sing the following identity:

�A�� = Tr��N 1

N!��

���A � I��N−1����
†� = Tr��N 1

N�
k=1

N

A�k�� �16�

ith A�k�� I��k−1� � A � I�N−k, by virtue of Lemma 1 we can recast Eq. �15� as follows:

�
�m

�M

dr rP�r� =
1

N
�
k=1

N

A�k� � � . �17�

he operator ��0 defined as

� � �
�m

�M

dr r2P�r� , �18�

llows to reexpress the statistical error as follows:

N�A�2 = Tr����N� − �A��
2. �19�

n the representation in which � is diagonal, the constraints �14� and �15� become

�
�m

�M

dr P�r�lk = �lk, �20�

�
�m

�M

dr rP�r�lk = �lk, �21�

hereas the error �12� becomes

N�A�2 = �
n

���N�nn�
�m

�M

dr r2P�r�nn − �A��
2. �22�

rom Eqs. �20� and �21� it follows that the diagonal elements P�r�nn are probability densities in r
2
ver ��m ,�M�, with average �nn. Denoting the variance of P�r�nn by �n, we can write
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N�A�2 = �
n

���N�nn��n
2 + �nn

2 � − �A��
2. �23�

herefore, N�A�2 is minimized by taking �n
2=0, corresponding to P�r�nn����nn−r�. This implies

hat the outcomes of the optimal POVM are actually discrete, corresponding to rn=�nn. In this
iscrete version, the POVM has P�rn�nm=�nm �which also implies that �nm=�nm�nn via Eq. �21��,
hat is P�rn� is projection valued on the nth eigenvector of � �when it happens that �nn=�mm for
ome m�n, then the projector has rank equal to the number of equal diagonal elements�. We have
nally

N�A�2 = �
n

���N�nn�nn
2 − �A��

2. �24�

oreover, we have

I = �
n

P�rn� , �25�

� = �
n

�nnP�rn� , �26�

� = �
n

�nn
2 P�rn� . �27�

ince optimization makes � and � jointly diagonal, one has �n�nn
2 ���N�nn=Tr��2��N�, and using

qs. �17� and �24� we can write the following expression for the minimal error:

N�A�2 =
1

N2 �
i,j=1

N

Tr�A�i�A�j���N� − �A��
2. �28�

otice that the sum in the first term contains N terms with i= j equal to Tr�A2�� and N�N−1� with
� j equal to �A��

2, resulting in

N�A� =��A2�� − �A��
2

N
, �29�

hat is the optimal error equals the statistical error occurring when measuring A separately on all
he identical quantum systems in the state �, and then averaging. Indeed, the optimal POVM
oincides with the spectral resolution of �= �1/N��nA

�n� on H�N.
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egge trajectories of the Coulomb potential in the space
f constant negative curvature 1S3
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Analytic properties of the scattering amplitude for Coulomb potential on the back-
ground of the space of constant negative curvature are studied. Special attention is
given to the comparison of the Regge trajectories for curved and flat spaces. We
show that there exist considerably differences in the behavior of the Regge trajec-
tories in these spaces. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2167810�

. INTRODUCTION

As is well known one of the central roles in high energy physics plays Regge concept1–4 based
n the analytical extension of the scattering amplitudes in the complex angular momentum plane.
ne of the most distinctive features of this technique are the Regge trajectories. Regge trajectories

re very generic in hadronic physics. For example, they are well established for mesons, baryons,
nd soft Pomeron.5–8 Recently a lot of activity has been dedicated to various studies of the Regge
rajectories.7,9,10

In recent years a revival interest to the Regge approach in the high energy physics is seen.11,12

t present time, Regge approach is applied with success for description of the hadrons at high
nergies.13–15 We note that, in the series of the works the idea of the generalized Pomeron �vacuum
egge trajectory which determine asymptotic behavior of the scattering amplitudes at high
nergies�—the BFKL �Balitsky-Fadin-Kuraev-Lipatov� Pomeron is applied with success for de-
cription of the processes at high energy.16 Recently, the Regge concept is applied to astrophysics
roblems.17,18 For example, in cosmology it is demonstrated17 that the use of the Regge trajecto-
ies makes it possible to explain the problem of the rotation of cosmic objects.19,20

Also in recent years the quantum-mechanical models based on the geometry of spaces of
onstant curvature have attracted considerable attention due to their interesting mathematical
eatures21–24 as well as the possibility of applications to physical problems.25 For example, these
odels are used for the description of the bound states in nuclear and elementary particle physics24

hus, Kepler problem on the sphere S3 has been used as a model for description of quarkonium
pectrum,26 also it was used as a model for description of the spectra electrons, holes, and excitons
onfined in semiconductor quantum dots.27,28 Also, integrable models on a sphere S3 are used for
onstruction of model potential for quantum dots.29

In this paper we apply the Regge analysis to the Coulomb scattering problem in the space of
onstant negative curvature 1S3. The analytic properties of the scattering amplitude for Coulomb
otential in the complex angular momentum plane in the three-dimensional space of constant
egative curvature 1S3 are discussed. In Refs. 4 and 30 the analytic properties of the Coulomb
cattering amplitude in the complex angular momentum plane for flat space are discussed. Special
ttention is given to the comparison of the Regge trajectories for curved and flat spaces.

�
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I. REGGE ANALYSIS OF THE COULOMB PROBLEM IN THE SPACE OF CONSTANT
EGATIVE CURVATURE

As is known in the case of space of constant negative curvature, both finite and infinite
otions of a particle are possible. The corresponding Schrödinger equation has both discrete and

ontinuous spectra. Therefore it is possible to formulate the Coulomb scattering problem.
We use embedding of the space of constant negative curvature in four-dimensional pseudo-

uclidean space with coordinates x� ,�=1,2 ,3 ,4, given by the formulas

x�x� = x2 + x4
2 = x2 − x0

2 = − �2,

�1�
x = �x1,x2,x3�, x4 = ix0.

he Coulomb potential in the 1S3 space reads

U = −
�

�

x0

�x�
, �2�

here ��0 for the attractive potential.
The Schrödinger equation for the attractive Coulomb potential �2� is

H� = E�, H =
1

4�2 M��M�� −
�

�

x0

�x�
,

�3�
M�� = x��� − x���.

e use the system of units such that �=m=1.
The exact solution of the Coulomb scattering problem in the space of constant negative

urvature was found in the work.31 The S-matrix element for energy E, angular momentum l and
urvature � in the 1S3 space is given by

S�E,l,�� =
��1 − i	+ + i	− + l�
��1 + i	+ − i	− + l�

, �4�

here

	± =��E�2 ± ���
2

−
1

4
. �5�

he S-matrix element for the Coulomb problem in the flat space is

S�E,l� =

�	1 + l −
i

�2E



�	1 + l +
i

�2E

 . �6�

e note that in the limit of the flat space, i.e., when �→
 we have

lim
�→


�	+ − 	−� =
�

�2E
, �7�

nd expression for the S matrix in the 1S3 space �4� transforms to �6�.
It is well known from quantum mechanics that the scattering amplitude may be expanded in

egendre polynomials. This is called partial wave expansion. In our case partial wave expansion
31
f the scattering amplitude is given by
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f��,�� =
�

2i�	+ + 	−�

� �
l

�2l + 1�
��1 − i	+ + i	− + l�
��1 + i	+ − i	− + l�

Pl�cos �� , �8�

here � is the scattering angle.
As is known, the Regge poles are determined by the position of singularities of the scattering

mplitude at complex plane of angular momentum. Since ��z� is a meromorphic function in the
nite z plane with poles at z=0,−1,−2, . . ., therefore the Regge poles are the poles of the gamma
unction ��1− i	++ i	−+ l�.

Thus, the position of kth Regge pole l=�k�E ,�� is given by

�k�E,�� = − k + �0�E,�� �for k = 0,1,2, . . . � , �9�

here

�0�E,�� = − 1 + i	+ − i	−. �10�

hen we vary the energy, the poles �k�E� move in the l plane along Regge trajectories. The first
hree Regge trajectories are shown in Fig. 1.

We see from Figs. 2 and 3 there exist differences in the Regge trajectories for curved and flat
paces. From these figures it follows that there are such values of the angular momentum l and
uantum number k for which no differences exist. But with the increase of l and k considerable
ifferences in the Regge trajectories appear.

The plot of the dependence Im��k�E ,��� on Re��k�E ,��� is also called Regge trajectory. We
an now trace the Regge trajectory of that type in the l plane as we vary the energy along the real
xis �see Figs. 4 and 5�. Also from these figures we can observe that with the growth of the radius
f curvature � we have the plane case.

IG. 1. The first three Regge trajectories in the space of constant negative curvature. The symbols on the plot correspond
o bound states of the system.
The energy at which the kth Regge pole crosses a physical l value is given by
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FIG. 2. The comparison of the Regge trajectories for k=0.
FIG. 3. The comparison of the Regge trajectories for k=2.
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E = −
1

2
� �2

�k + l + 1�2 +
�k + l + 1�2 − 1

�2  . �11�

hese values are just the energies of the bound states for the attractive Coulomb field in the 1S3
pace.

As is known, the function �k�E�= l+1− i /�2E in the flat space is a real analytical in E with a
ranch point at E=0. From �9� it follows

�m�0,�� = − k − 1 + i	���

2
−

1

4
−�− ��

2
−

1

4

 ,

hat is in the space of constant negative curvature the function �k�E ,�� has not a branch point at
=0. Instead, in the space of constant negative curvature the function �k�E ,�� has two branch
oints in E,

E1��� =
1 − 2��

2�2 and E2��� =
1 + 2��

2�2 . �12�

he branch points move as the curvature � varies. For any � the value E2����0, if �1/2� then

1����0 too. When �− →
 the branch points E1��� and E2��� transform to E=0−� and E=0
�, respectively.

In Ref. 31 the explicit expression for the scattering amplitude

IG. 4. The trajectory with energy �real� of the kth Regge pole for attractive Coulomb potential in the space of constant
egative curvature for �=1.

IG. 5. The trajectory with energy �real� of the kth Regge pole for attractive Coulomb potential in the space of constant

egative curvature for �=1000.

                                                                                                            



w

�

W

E

W
m

T
p

I

g

l
n
q

p
E
a

s
t
u
I

022103-6 Y. Kurochkin and D. Shoukavy J. Math. Phys. 47, 022103 �2006�

                        
f��,�� =
��	+ − 	−�
�	+ + 	−�

��1 − i	+ + i	−�
��1 + i	+ − i	−�

� 2−i�	+−	−��1 − cos ��i	+−i	−−1 �13�

as found.
Using the recurrence formula ��1+z�=z��z� and �10� we may rewrite the scattering amplitude

13� in the Regge representation

f��,�� =
�

2i�	+ + 	−�
��− �0�E,���

��1 + �0�E,���

� 	1 − cos �

2

�0�E,��

. �14�

ith the use of the variable

t = − 2E�1 − cos �� , �15�

q. �14� can be written as

f�t,E,�� =
�

2i�	+ + 	−�
��− �0�E,���

��1 + �0�E,���

� 	−
t

4E

�0�E�

. �16�

e see from �16� that the asymptotic of the scattering amplitude f�t ,E ,�� when t→
 is deter-
ined of the poles �9� and has behavior of the Regge type

f�t,E,���t→
 � g�E,��t�0�E,��. �17�

hus, at the very high energies the scattering amplitude is determined mainly by the zero Regge
ole.

II. CONCLUSION

The Regge analysis for Coulomb problem in the space of constant negative curvature has been
iven. We have the following results:

�a� As in the case of the three-dimensional Euclidean space for the Coulomb scattering prob-
em in the space of constant negative curvature to each value of energy corresponds to the finite
umber of the Regge trajectories. This fact is underlaid by the existence of additional conserved
uantity, the Runge-Lentz vector.

�b� The Regge poles considered as a function of energy E in the 1S3 space has two branch
oints and are directly proportional to the square from the energy. While in the three-dimensional
uclidean space the Regge trajectories are inversely proportional to the square from the energy
nd has a branch point at E=0.

In conclusion, we note that the Regge trajectories are nonlinear trajectories for potential
cattering in the flat space. At that time, when we vary the radius of curvature � the Regge
rajectories may be a straight line in the entire energy interval in the curved space. This fact can be
sed for description of the bound states in particle physics and will be a subject of further study.
n this approach the radius of curvature � will be connected with the size of particles.32,33
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The two principal/immediate influences—which we seek to interrelate here—upon
the undertaking of this study are papers of Życzkowski and Słomczyński �J. Phys.
A 34, 6689 �2001�� and of Petz and Sudár �J. Math. Phys. 37, 2262 �1996��. In the
former work, a metric �the Monge one, specifically� over generalized Husimi dis-
tributions was employed to define a distance between two arbitrary density matri-
ces. In the Petz-Sudár work �completing a program of Chentsov�, the quantum
analog of the �classically unique� Fisher information �monotone� metric of a prob-
ability simplex was extended to define an uncountable infinitude of Riemannian
�also monotone� metrics on the set of positive definite density matrices. We pose
here the questions of what is the specific/unique Fisher information metric for the
�classically defined� Husimi distributions and how does it relate to the infinitude of
�quantum� metrics over the density matrices of Petz and Sudár? We find a highly
proximate �small relative entropy� relationship between the probability distribution
�the quantum Jeffreys’ prior� that yields quantum universal data compression, and
that which �following Clarke and Barron� gives its classical counterpart. We also
investigate the Fisher information metrics corresponding to the escort Husimi,
positive-P and certain Gaussian probability distributions, as well as, in some sense,
the discrete Wigner pseudoprobability. The comparative noninformativity of prior
probability distributions—recently studied by Srednicki �Phys. Rev. A 71, 052107
�2005��—formed by normalizing the volume elements of the various information
metrics, is also discussed in our context. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2168125�

. INTRODUCTION

The two-level quantum systems �TLQS� are describable �nonclassically� in terms of 2�2
ensity matrices ���—Hermitian non-negative definite matrices of trace unity. These matrices can
e parametrized by points in the unit ball �Bloch ball/sphere �Ref. 1, p. 10244�� in Euclidean
-space. On the other hand, the TLQS can be described in a classical manner using a generaliza-
ion of the Husimi distribution2 �Ref. 3, Sec. 4.1� �cf. Refs. 4–9�. “The Husimi function is a
unction on phase space, and takes only non-negative values while the Wigner function can be
egative and is usually violently oscillating. Hence the Husimi function can be regarded as a
robability distribution in phase space, and its order of delocalization can be a measure of chao-
icity of quantum states.”10 �Note that the original Husimi distribution was defined only for density
perators in separable Hilbert space—one which admits a countable orthonormal basis—while the
istribution studied here is defined over a finite-dimensional Hilbert space.�

There is an �uncountable� infinitude �Ref. 11, Sec. 16.7� of �quantum monotone� Riemannian
etrics that can be attached to the Bloch ball of TLQS. Contrastingly, in the classical context of

he Husimi distribution, there is not an infinitude, but rather a single distinguished �up to a
onstant multiple� monotone Riemannian metric—the Fisher information metric.12–14 �“In the

�
Electronic mail: slater@kitp.ucsb.edu

47, 022104-1022-2488/2006/47�2�/022104/17/$23.00 © 2006 American Institute of Physics
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lassical case, decision theory provides a unique monotone metric, namely, the Fisher information.
n the quantum case, there are infinitely many monotone metrics on the state space” �Ref. 15, p.
672�.� So, it appears to be an question of obvious interest—which we seek to address here—of
ow one reconciles/deals with this phenomenon of classical uniqueness and quantum nonunique-
ess, as applied to essentially the same objects �that is, the TLQS�.

I. MONOTONE METRICS

The monotone metrics are all stochastically monotone.15 That is, geodesic distances �as well
s relative entropies� between density matrices decrease under coarse-grainings �completely posi-
ive trace-preserving maps, satisfying the Schwarz inequality: T�a*a��T�a�*T�a��. These metrics
an be used for purposes of statistical distinguishability.15 The monotone metrics for the TLQS
ave been found to be rotationally invariant over the Bloch ball, depending only on the radial
oordinate r, that is the distance of the state in question from the origin �0,0,0�—corresponding to
he fully mixed state. They are splittable into radial and tangential components of the form �Ref.
5, Eq. �3.17�,

dsmonotone
2 =

1

1 − r2dr2 + ��1 + r�f�1 − r

1 + r
��−1

dn2. �1�

ere, using spherical coordinates �r ,�1 ,�2�, one has dn2=r2 d�1
2+r2 sin2 �1 d�2

2. Further, f :R+

R+ is an operator monotone function such that f�t�= tf�t−1� for every t�0. �A function is
perator monotone if the relation 0�K�H, meaning that H−K is nonnegative definite, implies
� f�K�� f�H� for any such matrices K and H of any order.� The radial component is independent
f the function f , and in the case of the Bures �minimal monotone� metric �corresponding to the
articular choice fBures�t�= �1+ t� /2�, the tangential component is independent of r.16

In the classical context of the Husimi distribution, there is not an infinitude, but rather a single
istinguished �to a constant multiple� monotone metric—the Fisher information metric.12–14 �The
ounterpart here to stochastic mappings—which are the appropriate morphisms in the category of
uantum state spaces—are stochastic matrices.15� The ij entry of the Fisher information matrix
tensor� is the expected value with respect to the probability distribution in question of the product
f the first derivative of the logarithm of the probability with respect to its ith parameter times the
nalogous first derivative with respect to its jth parameter. �Under certain regularity conditions,
he Fisher information matrix is equal to the “second derivative matrix for the informational
ivergence �relative entropy�” �Ref. 17, pp. 455–456, Ref. 18, p. 43�.� The volume element of the
isher information metric can be considered—in the framework of Bayesian theory—as a prior
istribution �Jeffreys’ prior17,19,20� over, for our purposes here, the Bloch ball of TLQS.

Fisher information metric for the Husimi distribution: We have found �having to make use of
umerical, as well as symbolic MATHEMATICA procedures in our quest� that for the Husimi distri-
ution over the TLQS, the Fisher information metric takes the specific form �cf. �2��,

dsFisherHus

2 =

− 2r − ln�1 − r

1 + r
�

2r3 dr2 + ��1 + r�fHus�1 − r

1 + r
��−1

dn2. �2�

ere,

fHus�t� =
�t − 1�3

t2 − 2t ln t − 1
. �3�

ow, a plot �Fig. 1� shows fHus�t� to be, in fact, a monotone function. �fHus�t� is “almost” equal to
t−1�3 / �t2−2t−1�= t−1.� It has a singularity at t=1, corresponding to the fully mixed state �r
0�, where fHus�1+�t��3+3�t /2, though we have not attempted to confirm its operator mono-

onicity. Also, fHus�t� fulfills the self-adjointness condition f�t�= tf�t−1� of Petz and Sudár �Ref. 15,

. 2667�, at least at t�1. For the pure states, that is t=0, r=1, we have limt→0 fHus�t�=1.
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We further have the relation,

cHus�p,q� =
1

qfHus� p

q
� =

q2 − p2 − 2pq ln
q

p

�q − p�3 , �4�

here cHus�p ,q� is a specific “Morozova-Chentsov” function. There exist one-to-one correspon-
ences between Morozova-Chentsov functions, monotone metrics and operator means �Ref. 21,
orollary 6�. “Operator means are binary operations on positive operators which fulfill the main

equirements of monotonicity and the transformer inequality.”21

We can write �1� more explicitly as

dsFisherHus

2 =

− 2r − ln�1 − r

1 + r
�

2r3 dr2 +

2r + �1 − r2�ln�1 − r

1 + r
�

4r3 dn2. �5�

ertainly, dsFisherHus

2 does not have—in terms of the radial component—the specific form �1�
equired of a monotone metric �cf. Ref. 22�. In Fig. 2 we show both the radial components of
any� dsmonotone

2 and of dsFisherHus

2 . Petz �Ref. 23, p. 934� attributes the unvarying nature �1/ �1
r2�� of the radial component of the �quantum� monotone metrics to the �classical� Chentsov
niqueness �of Fisher information� theorem.12,13 “Loosely speaking, the unicity �sic� result in the
probability� simplex case survives along the diagonal and the off-diagonal provides new possi-
ilities for the definition of a stochastically invariant metric” �Ref. 15, p. 2664�.

If we �counterfactually� equate the volume element of dsFisherHus

2 to that of a generic monotone

IG. 1. The monotone function fHus�t� that yields the tangential component of the Fisher information metric over the
rivariate Husimi probability distributions for the two-level quantum systems.

IG. 2. The radial components of any monotone metric and that of the Fisher information metric derived from the family
f trivariate Husimi distributions over the TLQS. The one for the �nondenumerably infinite� class dsmonotone

2 dominates that
2
or dsFisherHus

.
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etric �1�, and solve for f�t�, we obtain a monotonically decreasing function �Fig. 3� �cf. Ref. 22�,

fcounter factual�t� =
�2�− 1 + t�9/2

t�1 + t���− 1 + t2 − 2t ln�t��2�2 − 2t + �1 + t�ln�t��
. �6�

Converting to �Cartesian coordinates �x ,y ,z�, the trace of dsFisherHus

2 can be simply expressed
s −ln��1−R� / �1+R�� / �2R�, where R=�x2+y2+z2 �cf. Refs. 14 and 24�. Also, at the fully mixed
tate �x=y=z=0�, the metric is simply flat, that is

dsFisherHus

2 = 1
3 �dx2 + dy2 + dz2� . �7�

The Riemann and Ricci tensors evaluated at the fully mixed state have no nonzero entries.�
Numerical evidence indicates that the Fisher information matrix for the Husimi distribution

ver the TLQS is bounded by the corresponding information matrices for the �quantum� monotone
etrics, in the sense that the monotone metric tensors minus the Fisher-Husimi information tensor

re positive definite.
We can normalize the volume element of dsFisherHus

2 to a probability distribution pHus by
ividing by the Fisher information metric volume�1.393 509 893 676 60. If we generate a
hybridized-Husimi” �quantum15� monotone metric, dsHYBHus

2 , via the formula �1�, using fHus�t�,
hen the volume of the Bloch ball of TLQS in terms of this newly generated monotone metric is

1
2�2�4−���4.236 07�1.393 51. Using this as a normalization factor, we obtain a probability
istribution �pHYBHus

� of interest over the TLQS.

II. COMPARATIVE NONINFORMATIVITIES

Let us compare pHus—in the manner employed in Refs. 25 and 26 �cf. Refs. 27 and 28, Sec.
I�—with the prior probability distribution �pBures�. The latter is obtained by normalizing the
olume element of the well-studied minimal monotone �Bures� metric �Ref. 29, Eq. �7�� �Ref. 30,
q. �16��, that is,

pBures =
r2 sin �1

�2�1 − r2
, �8�

enerated from �1� using the operator monotone function fBures�t�= �1+ t� /2. �We avoid the specific
esignations fmin�t� and fmax�t� because these are usually, confusingly, considered to generate the
aximal and minimal monotone metrics, respectively �Ref. 15, Eq. �3.21��. Our integrations of

robability distributions are conducted over r� �0,1�, �1� �0,�� and �2� �0,2��.�
The relative entropy �Kullback-Leibler distance� of pBures with respect to pHus �which we

enote SKL�pBures , pHus��—that is, the expected value with respect to pBures of lnpBures / pHus—is

IG. 3. Monotonically decreasing function fcounter factual obtained by equating the volume element of dsFisherHus

2 to that of a
eneric monotone metric �1�.
.130 845 “nats” of information. �We use the natural logarithm, and not 2 as a base, with one nat
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qualling 0.531 bits.� Let us note that the Shannon entropy �SShannon� of the Husimi distribution is
he Wehrl entropy �SWehrl� of the corresponding quantum state. Explicitly implementing �Ref. 31,
q. �6��, we have for the TLQS,

SWehrl =
1

4r
�2r + 4r ln 2 + �1 + r2�ln�1 − r

1 + r
� − 2r ln�1 − r2�� . �9�

Wehrl is always greater than the von Neumann entropy, SvN=−Tr � ln �, which for the TLQS is
xpressible as

SvN =
1

2
�2 ln 2 + r ln�1 − r

1 + r
� − ln�1 − r2�� . �10�

We, of course, notice the omnipresence in these last two formulas, as well as in �5� and further
ormulas below of the term W	 ln��1−r� / �1+r��. The two eigenvalues �	1 ,	2=1−	1� of � are
1±r� /2, so W is expressible as ln�	1 /	2�.� Each monotone metric can be obtained in the form of
“contrast functional” for a certain convex subset of relative entropies.32,33

. Bures prior

Now, let us convert pBures to a posterior probability distribution �postBures� by assuming the
erformance of six measurements, two �with one outcome “up” and the other “down”� in each of
he x, y, and z directions. Normalizing the product of the prior pBures and the likelihood function
orresponding to the six measurement outcomes �Ref. 25, p. 3�,

postBures =
192pBures�1 − x2��1 − y2��1 − z2�

71
, �11�

e find SKL�postBures , pHus�=0.091 2313
0.130 845. �The Cartesian coordinates in �11� are trans-
ormed to the spherical ones employed in our analysis.� So, in this sense pBures is more noninfor-
ative than pHus, the relative entropy being reduced by adding information to pBures. On the other

and, pBures—corresponding to the minimal monotone metric—is itself the least noninformative of
he monotone-metric priors �pmonotone�.

25 �Luo has established an inequality between the �mono-
one metric� Wigner-Yanase skew information and its minimal monotone counterpart.34�

Reversing the arguments of the relative entropy functional, we obtain SKL�pHus, pBures�
0.081 8197. But now, following the same form of posterior construction, we find

KL�postHus , pBures�=0.290 405�0.081 8197, further supportive of the conclusion that pBures is
ore noninformative than pHus. In some sense, then, pBures assumes less about the data than pHus.
ut this diminishability of the relative entropy is limited. If we convert pBures to a new posterior
ostBures using the square of the likelihood function above—that is, assuming 12 measurements,

our �with two outcomes “up” and the other two “down”� in each of the x, y, and z directions,
iving

PostBures =
21 504pBures��1 − x2��1 − y2��1 − z2��m

3793
, m = 2, �12�

hen SKL�PostBures , pHus�=0.292 596�0.130 845. To much the same effect, if we use a likelihood
ased on the optimal/nonseparable set of measurements for two qubits, consisting of five possible
easurement outcomes, given in Ref. 35, Eq. �8�, to convert pBures to a new posterior, then the

elative entropy reaches higher still, that is from 0.130 845 to 0.623 855. �Employing a likelihood
ased on the optimal/nonseparable set of measurements for three qubits, consisting of eight pos-
ible measurement outcomes �Ref. 35, Eq. �9��, the relative entropy with respect to pHus increases
urther to 1.513 65.� Actually, if we formally take m= 1

2 in Eq. �12�, and renormalize to a new
osterior, we obtain a superior reduction, that is, to 0.071 67
0.091 2313. �Further, with m= 5

8 , we
3
et 0.070 2389 and 0.073 2039, with m= 4.�
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. Morozova-Chentsov prior

In Ref. 25, it was found that the �“Morozova-Chentsov”� prior distribution,

pMC =

0.005 132 99
ln�1 − r

1 + r
��2

sin �1

�1 − r2
, �13�

hat is, the normalized volume element of the monotone metric �1� based on the operator mono-
one function,

fMC�t� =
2�t − 1�2

�1 + t��ln t�2 , �14�

as apparently the most noninformative of those �normalizable� priors based on the operator
onotone functions that had been explicitly discussed in the literature. Now, SKL�pMC, pHus�
1.379 91, that is, quite large. This can be reduced to 0.893 996 if, into pMC, one incorporates
=6 measurements of the type described above; diminished further to 0.561 901 with m=12; and

urther still to 0.471 852—the greatest reduction of this type—with m=18. �For m=24, it starts to
ise to 0.652 441.�

But, if we again use the likelihood based on the optimal nonseparable measurement of two
ubits �Ref. 25, Eq. �8��, with just five measurements, the relative entropy of the corresponding
osterior form of pMC with respect to pHus is reduced to 0.342 124, which is the smallest we have
chieved so far along these lines. �For the mentioned optimal nonseparable measurement scheme
or three qubits, the reduction is quite minor, only to 1.334 92 nats.� We obtained intermediate-
ized reductions to 0.455 24 and 0.492 979, respectively, by using for our measurements, 20
rojectors oriented to the vertices �Ref. 36, Secs. 9 and 10� of a dodecahedron and of an icosa-
edron. �The primary measurement scheme used above, and in Ref. 25, with six measurements
riented along three orthogonal directions, is tantamount to the use of an octahedron.�

. Hilbert-Schmidt prior

The prior distribution generated by normalizing the volume element of the Hilbert-Schmidt
etric over the Bloch sphere is �Ref. 25, Eq. �10�� �Ref. 16, Eq. �31��

pHS = 3
r2 sin �1

4�
, �15�

hich is simply the uniform distribution over the unit ball. The Hilbert-Schmidt volume element
an be reproduced using the formula �1� for a quantum monotone metric, making use of fHS

�1+ t�2 /�t, but this function is neither monotone increasing nor decreasing over t� �0,1� �cf.
ef. 37�.

We have that SKL�pHus, pHS�=0.057 9239 and SKL�pHS, pHus�=0.054 43. Now, in terms of our
sual posterior distributions based on six measurements, SKL�postHus , pHS�=0.023 6596 and

KL�postHS, pHus�=0.278 953, so we can conclude that the Husimi prior pHus is more noninforma-
ive than the Hilbert-Schmidt prior pHS.

V. UNIVERSAL DATA COMPRESSION

Employing pHus as a prior distribution �Jeffreys’ prior� over the family �Riemannian manifold�
f Husimi qubit probability distributions, the �classical� asymptotic minimax/maximin redundancy

17
f universal data compression is equal to �Ref. 18, Eq. �2.4��,
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3

2
ln

n

2�e
+ ln 1.393 509 893 676 60 =

3

2
ln

n

2�e
+ 0.331 826 =

3

2
ln n − 3.924 99, �16�

here n is the sample size �the number of qubits �TLQS�� and we used the before-mentioned
olume of dsFisherHus

2 . �“Suppose that X is a discrete random variable whose distribution is in the
arametric family �P� :��� and we want to encode a block of data for transmission. It is known
hat a lower bound on the expected codeword length is the entropy of the distribution. Moreover,
his entropy bound can be achieved, within one bit, when the distribution is known. Universal
odes have expected length near the entropy no matter which member of the parametric family is
rue. The redundancy of a code is defined to be the difference between its expected length and its
ntropy” �Ref. 17, p. 459�.�

For the quantum/nonclassical counterpart38 �cf. Refs. 39–41�, let us consider the use of the
Grosse-Krattenthaler-Slater” �“quasi-Bures”� probability distribution �Ref. 35, Eq. �33��,

pGKS =
0.083 2258e

1 − r2 �1 − r

1 + r
�1/2r

r2 sin �1. �17�

his is the normalized form of the monotone metric �1� associated with the �presumably operator�
onotone function,

fGKS�t� =
tt/�t−1�

e
. �18�

Taking limits, we have for the fully mixed state, fGKS�1�=1 and for the pure states, fGKS�0�
e−1.� It appears42 �though not yet fully rigorously established� that the �quantum� asymptotic
inimax/maximin redundancy, employing pGKS as a prior probability distribution over the 2�2

ensity matrices �and their n-fold tensor products �cf. Ref. 43��, is 3
2 ln n−1.770 62. This is greater

han the classical �Husimi-Fisher-information-based� analog �16� by 2.200 95 nats of information.
t would seem that this difference is attributable to the greater dimensionality �2n� of an n-qubit
ilbert space, as opposed to a dimensionality of 3n for n trivariate Husimi probability distribu-

ions over the TLQS.
We further note that SKL�pBures , pHYBHus

�=0.006 360 46 and SKL�pHYBHus
, pBures�=0.006 2714,

oth being very small. Smaller still, SKL�pBures , pGKS�=0.003 590 93 and SKL�pGKS, pBures�
0.003 545 79—whence the designation pquasi-Bures	 pGKS. But then, even more strikingly, we
omputed that SKL�pGKS, pHYBHus

�=0.000 397 852 and SKL�pHYBHus
, pGKS�=0.000 396 915. In Fig.

we show the one-dimensional marginal probability distributions over the radial coordinate r of
he five distributions pBures, pHYBHus

, pHus, pGKS, and pMC, with those for pHYBHus
and pGKS

eing—as indicated—particularly proximate.
Substitution of pHYBHus

for pGKS into the quantum asymptotic �maximin� redundancy formula

IG. 4. Plots of one-dimensional marginal probability distributions over the radial coordinate r of pBures, pHYBHus
, pGKS,

pHus, and pMC. The order of dominance of the curves is pHus� pBures� pGKS� pHYBHus
� pMC. The marginal distributions of

pHYBHus
and pGKS are quite close, as reflected in their small relative entropy ��0.0004�.
hat has to be maximized over all possible prior probability distributions �Ref. 42, Eq. �4.3��,
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3

2
ln n −

1

2
−

3

2
ln 2 −

3

2
ln � + 4��

0

1 �− ln�1 − r2� +
1

2r
ln�1 − r

1 + r
� − ln w�r��r2w�r�dr ,

�19�

eads to a very slightly decreased �and hence suboptimal� redundancy, 3
2 ln n−1.771 01 vs 3

2 ln n
1.770 62. �Use of pBures as a quantum prior over the 2�2 density matrices gives us a constant

erm of −1.774 21, use of pHus, −1.882 79 and use of pMC, −2.156 67.� To obtain the appropriate
orm of w�r� to use in �19�, we take our probability distributions �such as �8� and �13��, divide
hem by 4�r2 and integrate the results over �1� �0,�� and �2� �0,2��. �Thus, we must have
��0

1w�r�r2 dr=1.� The minimax objective function is

min
w

max
0�r�1

�3

2
ln n −

1

2
−

3

2
ln 2 −

3

2
ln � − ln�1 − r2� +

1

2r
ln�1 − r

1 + r
� − ln w�r�� . �20�

he minimax is also achieved using the w�r� formed from pGKS.
We can, additionally, achieve an extremely good fit to pHus by proceeding in somewhat an

pposite fashion to that above—reversing our hybridization procedure. Employing fGKS�t�, rather
han fHus�t� in the expression �2� for dsFisherHus

2 and obtaining the corresponding normalized �di-
iding by 4.002 77� volume element �pHỸBGKS

�, we find SKL�pHỸBGKS
, pHus�=0.000 316 927. �In-

erchanging the arguments of the relative entropy functional, we get 0.000 317 754.� It is quite
urprising, then, that a joint plot of fGKS�t� and fHus�t� readily shows them to be substantially
ifferent in character �for example, fHus�50�=55.8161 and fGKS�50�=19.9227�, since they have
een shown here to generate two pairs of such highly similar probability distributions, one pair
omposed of �quantum� monotone �pGKS and pHYBHus

�, and the other pair of �quantum� nonmono-
one metrics �ppHỸBGKS

and pHus�.

. ESCORT-HUSIMI DISTRIBUTIONS

For the escort-Husimi distributions,44 we raise the probability element of the Husimi distri-
ution to the qth power, and renormalize to a new probability distribution. �Of course, the Husimi
istribution itself corresponds to q=1. If we set �=2q−1, we recover the �-family of
mari.33,45,46� To normalize the qth power of the Husimi distribution, one must divide by

2−q�− �1 − r�1+q + �1 + r�1+q�
r + qr

. �21�

. The case q=2

For �entropic index� q=2, the Fisher information metric takes the form

dsFisherq=2

2 =
2

�3 + r2�2dr2 + ��1 + r�fq=2�1 − r

1 + r
��dn2, �22�

here

fq=2�t� =
t2 + t + 1

2�t + 1�
. �23�

e have fq=2�1�= 3
4 and fq=2�0�= 1

2 .
Relative entropies: Further, the relative entropies SKL�pHus, pEscq=2

�=0.011 4308 and

KL�pBures , pEscq=2
�=0.429 64, So, it appears that pEscq=2

is even less noninformative than pHus

recalling that SKL�pBures , pHus�=0.130 845
0.429 64�, which in turn we found above was less
oninformative than the prior probabilities formed from any of the �quantum� monotone metrics.

2
e also note that SKL�postBures , pEscq=2
�=0.125 159
0.429 64. If we “hybridize” dsFisherq=2

by
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odifying its radial component into that required of a �quantum� monotone metric, then we find
hat SKL�pBures , pHYBq=2

�=0.002 460 31�
�SKL�pBures , pHYBHus
��=0.006 360 46� is quite small.

. The cases q>2

For the escort-Husimi probability distribution with q=3, the Fisher information metric takes
he form

dsFisherq=3

2 =
3 − r2

�1 + r2�2dr2 + ��1 + r�fq=3�1 − r

1 + r
��dn2, �24�

here

fq=3�t� =
t2 + 1

3�t + 1�
. �25�

ow, fq=3�1�= fq=3�0�= 1
3 and a plot of fq=3�t� clearly manifests monotonic behavior also. �The

onotonically decreasing scalar curvature of dsFisherq=3

2 equals 4
3 at r=0.� We have that

KL�pBures , pEscq=3
�=0.637 05�SKL�pBures , pEscq=2

�=0.429 64, so the informativity �noninformativ-
ty� of the escort-Husimi prior probabilities appears to increase �decrease� with q.

For q=4,

dsFisherq=4

2 =
80�5 − 2r2 + r4�
3�5 + 10r2 + r4�2dr2 + ��1 + r�fq=4�1 − r

1 + r
��−1

dn2, �26�

here

fq=4�t� =
3�t4 + t3 + t2 + t + 1�
4�t + 1��3t2 + 4t + 3�

. �27�

For q=5,

dsFisherq=5

2 =
3�5 − r2��5 + 3r4�
�3 + 10r2 + 3r4�2 dr2 + ��1 + r�fq=5�1 − r

1 + r
��−1

dn2, �28�

here

fq=5�t� =
2�t4 + t2 + 1�

5�t + + 1��2t2 + t + 2�
. �29�

e have �as found by Krattenthaler, making use of explicit MATHEMATICA computations of ours
or q=2,3 , . . . ,40� �cf. Ref. 47, Sec. 3.2, Ref. 48�,

fq�t� =
�q − 1��i=0

q
ti

q�t + 1��i=0

q−1
i�q − i�ti−1

. �30�

For odd q some simplification in the resulting expression occurs due to cancellation by a factor of
t+1�.�

In Fig. 5 we plot fq=i�t�, i=1, . . . ,30, revealing their common monotonically increasing be-
avior. �Of course, we have fq=1�t�	 fHus�t�, shown already in Fig. 1. The steepness of the curves
ecreases with increasing q.�

Let us further note that in addition to SKL�pBures , pHYBHus
�=0.006 360 46 and

KL�pBures , pHYBq=2
�=0.002 460 43, we have SKL�pBures , pHYBq=3

�=0.013 2258, SKL�pBures , pHYBq=4
�

0.023 8858 and SKL�pBures , pHYBq=5
�=0.032 7578. �We have also been able to compute that
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KL�pBures , pHYBq=1000
�=0.096 9315 and SKL�pGKS, pHYBq=1000

�=0.127 027.� So, the best of these fits
f pBures to the prior probabilities for the hybridized-escort-Husimi probability distributions is for
=2.

. Tangential components

Now, we can reexpress the formula �30� without summations, making use of the binomial
heorem, as

fq�t� =
�− 1 + q��− 1 + t�2�− 1 + t1+q�

q�1 + t��1 − q + t + qt − tq − qtq − t1+q + qt1+q�
. �31�

o, we could study hybridized escort-Husimi metrics based on nonintegral q using this formula.
We note that �31�, in fact, yields limq→1 fq�t�	 fHus�t�.� For example,

fq=1/2�t� = 6 + 6�t + 2t −
4

1 + t
. �32�

hus, �31� gives us �following the formulation �1�� the tangential components of the escort-Husimi
isher information metrics for arbitrary q. �Pennini and Plastino44 have argued, though, that in a
uantal regime, q can be no less than 1. Tsallis statistics with an entropic index of q= 3

2 , Beck has
ontended, correctly describes the small-scale statistics of Lagrangian turbulence.49�

. Radial components

We do not have, at this point, a comparable complete formula for the radial components.
owever, Krattenthaler has shown—making use of explicit computations of ours for the cases
=2,3 , . . . ,18—that the denominators of the functions giving the radial components are simply
roportional to

u�q� = ��
i=0

q
Pochhammer�q − 2i + 1,2i + 1�r2i

2�2i + 1�! �2

. �33�

The Pochhammer symbol is synonymous with the rising or ascending factorial. The obtaining of
omparable formulas for the numerators of the radial components might be possible using the
Rate.m” program available from the website of Krattenthaler �http://www.mat.univie.ac.at/kratt/�,
f we had available additional explicit computations beyond the q=18.� As way of illustration, the
adial component of dsFisherq=8

2 is expressible as

144�21 + 42r2 + 135r4 + 28r6 + 35r8 − 6r10 + r12�
. �34�

IG. 5. The monotone functions fq=i�t�, i=1, . . . ,30 that yield the tangential components of the Fisher information metric
ver the escort-Husimi �q= i� probability distributions. The steepness of the graphs decreases as q increases.
7u�8�
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I. POSITIVE P-REPRESENTATION FOR TLQS

Braunstein, Caves, and Milburn focused on a specific choice of positive P-representation
hich they called the canonical form and which is always well defined �Ref. 50, Eq. �3.3�� �cf.
ef. 51, Sec. 6.4�:

Pcan��,*� 	
1

4�2 exp�−
1

4
�� + �2�� 1

2
�� + ���̂�1

2
�� + ��

=
1

4�2 exp�−
1

4
�� − �2�Q�1

2
�� + �� . �35�

The canonical form is clearly positive, and¼it is essentially the Q-function �Husimi
istribution�.”50

We sought to implement this model, choosing for � and  independent two-dimensional
epresentations of the spin-1

2 coherent states �while for the Husimi distribution or Q-function, only,
ay �, need be employed�. �The “positive P representation achieves �its� considerable success by
oubling the number of degrees of freedom of the system, i.e., doubling the number of dimensions
f the phase space” �Ref. 50, p. 1153�. More typically, in the positive P representation, � and  are
llowed to vary independently over the entire complex plane.� However, then our result—using
his choice of � and —was not normalized to a probability distribution in the manner indicated
n �35�.

We noted that Braunstein, Caves, and Milburn had commented that a “positive P representa-
ion can be defined for a large class of operators. We restrict ourselves here to those that are built
p from the standard annihilation and creation operators of a harmonic oscillator. In particular, our
ork does not apply to generalizations of the positive P representation that include spin or
seudospin operators often used to describe a two-level atom” �Ref. 50, p. 1155�. �We are not
ware, however, of any specific applications reported in the literature of the positive P represen-
ation to n-level �finite-dimensional� quantum systems.�

We did not perceive how to exactly �re�normalize the distribution �35� for our particular
hoices of � and . So, we expanded just the exponential term of �35� into a power series in third
rder in the four phase variables and exactly normalized the product of this series with the
emaining unmodified factor �the Q-function or Husimi distribution� to obtain a new �presumed�
robability distribution. We then fit �numerically� the resultant tangential component of the asso-
iated Fisher information metric to the form �1� required of a monotone metric. In Fig. 6 we show
hat we �gratifyingly� obtained in this manner for fP�t�. In Fig. 7 we show an approximation to

he radial component of dsFisherP

2 , similarly obtained. �The positive P function “seems to possess
ome interesting properties and may deserve close inspection” �Ref. 52, p. 175�.� It would be of
nterest to see how near the associated probability distributions �pP and pHYBP

� would be to the
˜

IG. 6. Approximation to the presumed operator monotone function fP�t� yielding the tangential component of dsFisherP

2 for
he positive P representation over the two-level quantum systems.
robability distributions �already discussed above� pGKS, pHus, pHYBHus
, and pHYBGKS

. Most press-
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ng, though, is the question of whether or not the concept of a positive P representation does, in
act, have a meaningful and natural theoretical application to the n-level quantum systems.

II. GAUSSIAN DISTRIBUTION

An approach quite distinct from that of the Husimi probability distributions, but still classical
n nature, to modeling quantum systems has been presented in Refs. 4–8 �cf. Ref. 9�. Here the
amily of probability distributions is taken as that of the Gaussian �complex multivariate normal
istributions� having covariance matrix equal to the density matrix. For the TLQS, Slater �Ref. 53,
q. �13�� �Ref. 54, Eq. �16�� derived the corresponding Fisher information metric. This is repre-
entable as

dsFisherGauss

2 =
2�1 + r2�
�1 − r2�2 dr2 +

2

1 − r2dn2. �36�

he tangential component can be reproduced, following the basic formula �1�, by choosing
fGauss�t�= t / �1+ t�. This is simply one-half of that—fYL�t�=2fGauss�t�=2t / �1+ t�—associated with
he maximal monotone �Yuen-Lax� metric.55 Like that metric, the metric �36� yields a non-
ormalizable volume element �so one cannot immediately apply—without some preliminary
runcation—the comparative noninformativity/relative entropy test we have used above25,26�. Of
ourse, the radial component of �36� is also not consistent with the requirement for a monotone
etric. In fact, it rises much more steeply than 1/ �1−r2�, in opposite behavior to that for dsFisherHus

2 .
n Fig. 8 we show this phenomenon.

III. DISCRETE WIGNER FUNCTION FOR A QUBIT

The discrete Wigner function �pseudoprobability� W, in the simplest case of a qubit, is defined
n a 2�2 array, with four components Wi,j, i, j=1,2 �Ref. 56, Eqs. �14�–�17��. The sum of Wij in
ach “line” 	 is the probability pij of projecting the state onto the basis vector ��ij�, where i

IG. 7. Approximation to the radial component of dsFisherP

2 for the positive P-representation over the two-level quantum
ystems.

2 2
FIG. 8. Radial components of dsmonotone and dsFisherGauss
. The latter dominates the former.
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�1,2 ,3 indexes a set of three mutually unbiased bases �MUB� for a qubit and j� �1,2 indexes
he basis vector in each MUB. Choosing the MUB to be the eigenstates of the three Pauli
perators, and using our cartesian coordinates, one can obtain three one-dimensional marginal
binomial� probability distributions over the x, y, and z axes, of the form
�1+x� /2 , �1−x� /2�,¼�cf. Refs. 57 and 58�. Now, the corresponding Jeffreys’ prior for the one-
imensional family of such binomial distribution is simply the beta distribution p�x�
1/��1−x2. �Let us note that the one-dimensional marginal distributions obtained for pBures are of
nother form, that is, 2�1−x2 /�.�

Let us take the product of p�x�, p�y�, and p�z�, which naturally forms a �prior� probability
istribution,

pproduct =
1

�3��1 − x2��1 − y2��1 − z2�
, �37�

ver the hypercube with vertices �±1, ±1, ±1� and renormalize/truncate it to a probability distri-
ution over the Bloch sphere,

pWigner =
1

6.614 555 161 01��1 − x2��1 − y2��1 − z2�
. �38�

Thus, the quantum-mechanically inaccessible region lying outside the Bloch ball, but within the
ypercube is disregarded—assigned null measure—in the new normalization.�

Now, we found—strictly following the notation, formulas and line of argument above in Sec.
II—that SKL�pWigner , pHus�=0.014 9831 and SKL�pHus, pWigner�=0.015 6225, so these two distribu-
ions are rather close in nature. Of course, pHus is rotationally symmetric over the Bloch sphere,
hile pWigner is not, so it seems to make little sense to try to compute some function fWigner�t� to
enerate the tangential component. We found it problematical, using our usual �relative entropy�
pproach, to designate either pHus or pWigner as more or less noninformative. �The “Husimi func-
ion is a kind of...coarse-grained Wigner function” �Ref. 48, p. 3�.�

X. SCALAR CURVATURE

In Fig. 9, we plot the scalar curvature of dsFisherHus

2 . The formula for this scalar curvature is

KHus
n=2 =

r�− 6r + W�− 3 + r2���− 4r2�− 3 + r2� + 6Wr�2 − 3r2 + r4� + W2�3 − 8r2 + 5r4��
�W + 2r�2�− 1 + r2��− 2r + W�− 1 + r2��2 ,

�39�

here W=ln�1−r� / �1+r�. Also, expanding about r=0,

KHus
n=2 �

− 6r2

−
138r4

−
32 094r6

−
154 474r8

−
57 710 054r10

. �40�

FIG. 9. Scalar curvature of the Fisher information metric for the family of Husimi distributions.
5 125 30 625 153 125 58 953 125
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he nonpositive monotonically decreasing scalar curvature �Fig. 9� has its maximum at r=0,
orresponding to the fully mixed state, indicative of a flat metric there �cf. �7�� �and is −� at the
ure states, r=1�. For the minimal monotone �Bures� metric, the non-negative scalar curvature is
onstant, that is Kmin

n=2=6, over the Bloch ball, and for the �n2−1�-dimensional convex set of n
n density matrices, n�2, achieves its minimum of Kmin

n = �5n2−4��n2−1� /8 at the fully mixed
tate ��= �1/n�I�.59 �In Ref. 59, the metric used is one-quarter of that corresponding to �1�, used
ere, so the results we compute here differ from those there by such a factor. For the maximal
onotone metric, Kmax

n=2 =8�r2−6� / �1−r2�, which is monotonically decreasing as r increases, as is

Hus
n=2.�

For the two-level quantum systems, Andai60 has constructed a family of monotone metrics
ith nonmonotone scalar curvature, and given a condition for a monotone metric to have a local
inimum at the maximally mixed state.

Metrics of constant scalar curvature: The metric dsFisherq=2

2 has constant scalar curvature,

q=2
n=2= 3

2 while, as previously noted, Kmin
n=2=6. Let us note that KWY

n = 1
4 �n2−1��n2−2�, which is also

3
2 for n=2. Here, WY denotes the Wigner-Yanase metric—the only pull-back metric among the
uantum monotone metrics—and fWY�t�= 1

4 ��t+1�2, which is the only self-dual operator mono-
one function.61 “It is not known at the moment if there are other monotone metrics of constant
ectional and scalar curvature” �Ref. 61, p. 3760�. It is a theorem that the “set of two-dimensional
ormalized density matrices equipped with the Bures metric is isometric to one closed-half of the
hree-sphere with radius 1

2 .”62 The WY-metric “looks locally like a sphere of radius 2 of dimension
n2−1�” �Ref. 61, p. 3759�. If we transform to spherical coordinates on the 3-sphere, then, the
etric tensor for dsmin

2 is diagonal in character, while the two other �constant scalar curvature�
etrics are not �cf. Ref. 63�.

The three metrics dsmin
2 , dsWY

2 , and dsFisherq=2

2 are Einstein. If we scale these metrics so that
hey are all of unit volume,64 then Kmin/scaled

n=2 =6�2�59.2176, KWY/scaled
n=2 =6���−2��21.5185 and

q=2/scaled
n=2 =4�2−6�3��6.830 03. The constant scalar curvatures of �unit-volume� Yamabe met-

ics are bounded above, and their least upper bound is a real number equal to n�n−1�Vn
2/n, where

n is the volume of the standard metric on Sn, and in our �Bloch sphere� case, n=3, so the bound
s 2421/3�4/3�139.13.64

. DISCUSSION

Luo24 �cf. Ref. 44, Sec. 2.4 and Refs. 19, 20, and 65� has calculated the Fisher information
atrix of the Husimi distribution in the Fock-Bargmann representation of the quantum harmonic

scillator with one degree of freedom. He found that the Fisher information of the position and
hat of the momentum move in opposite directions, and that a weighted trace of the Fisher
nformation matrix is a constant independent of the wave function, and thus has an upper bound.
Luo did not consider the possibility of generating prior probability distributions by normalizing
he volume element of the Fisher information metric.�

Gnutzmann and Życzkowski noted that one “is tempted to think of the Husimi function as a
robability density on the phase space. However, the rules for calculating expectation values of
ome observable using the Husimi function are nonclassical” �Ref. 47, Sec. 2.1� �cf. Ref. 66, p.
48�. Gardiner and Zoller remarked that the “main problem of the Q-function is that not all
ositive normalizable Q-functions correspond to positive normalizable density operators” �Ref. 51,
. 109�.

Further, the comparison of distances between Husimi distributions for arbitrary quantum states
ased on the Fisher information metric with those employing the Monge distance,3 might be
nvestigated. For the TLQS studied here, the Monge distance is, in fact, “consistent with the
eometry of the Bloch ball induced by the Hilbert-Schmidt or the trace distance” �Ref. 3, p. 6716�.
The trace distance is monotone, but not Riemannian, while the Hilbert-Schmidt distance, con-
rastingly, is Riemannian, but not monotone �Ref. 67, p. 10083�.37� For n-dimensional quantum
ystems �n�2�, unlike the trace, Hilbert-Schmidt or Bures distance, the Monge distance of � to

he fully mixed state—which provides information concerning the localization of � in the classical
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hase space—is not the same for all pure states.3 The only monotone metrics for which explicit
istance formulas are so-far available are the Bures �minimal monotone� and Wigner-Yanase
nes.61

In Fig. 10 we show how the distance from the fully mixed state �r=0� increases as r increases,
or any monotone metric and for dsFisherHus

2 , and �linearly� for the Monge �or Hilbert-Schmidt�
etric. The first-mentioned distance—taking the functional form arcsin r �equalling � /2 for r
1�—dominates the second-mentioned distance �equalling � /4.555 153 216 7057 for r=1�, which

n turns dominates the third �Ref. 3, Eq. �4.10��, which takes the value � /8 for r=1.
Let us bring to the attention of the reader, a recent preprint, which introduces a concept of

scort density operators and a related one of generalized Fisher information68 �cf. Refs. 46 and
9�.

We have been consistently able above to find �apparently operator� monotone functions to
enerate the tangential components of �classical� Fisher information metrics for �rotationally sym-
etric� probability distributions over the TLQS. We suspect the existence of some �yet not for-
ally demonstrated� theorem to this effect. Also, it would be of interest to formally test the

arious monotone functions presented above for the property �requisite for a quantum monotone
etric15,21 of operator monotonicity.

We have “hybridized” dsFisherHus

2 above to a �quantum� monotone metric dsHYBHus

2 by replacing
ts radial component by that required �1/ �1−r2�� while retaining its tangential component �formed
rom fHus�t��. But it appears that we could also convert it by appropriately scaling �a conformal
ransformation� the entire metric �tangential and radial components� by some suitable function. If
e do so, we find that—by explicit construction—the new metric �dsconformalHus

2 � has the required
adial component, while the tangential component is generated by a function

fconformalHus
�t� = fHus�t� − t − 1, �41�

hich also appears to be operator monotone. �We note that fconformalHus
�1�=1 and

imt→0 fconformalHus
�t�=0.� But now, we have the large relative entropies SKL�pGKS, pconformalHus

�
50.4636 and SKL�pconformalHus

, pGKS�=54.2601. At r=0, dsconformalHus

2 is not flat, as is dsFisherHus

2 , but
as a �limiting� scalar curvature of − 24

5 .
Further questions: Motivated by the analyses above, we would like to pose the question of

hether there exists a family of trivariate probability distributions parametrized by the points of
he Bloch ball, for which the associated �classically unique �up to a constant multiple�� Fisher
nformation metric fully—both in terms of tangential and radial components—has the requisite
orm �1� for a monotone metric. Also, the volume elements �and hence associated prior probabili-
ies� of the monotone metrics are expressible as the product of Haar measure and measures over
he eigenvalues.16 To what extent, if any, does this hold true for prior probabilities not arising from

onotone metrics? Are there any nonmonotone metrics which give rise to prior probabilities more

IG. 10. Statistical distance as a function of distance from the origin of the Bloch ball—corresponding to the fully mixed
tate—for any monotone metric, for dsFisherHus

2 , and for the Monge �or equivalently, for n=2, Hilbert-Schmidt� metric. The
onotone-metric curve dominates that for dsFisherHus

2 , which dominates the linear curve for the Monge metric.
oninformative than �at the very least� the minimal monotone �Bures� one? What are suitable
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ounterparts to formula �1� for n-level quantum systems �n�2�? Are there any monotone metrics
hich are flat at the fully mixed state, as is dsFisherHus

2 �7�?

I. SUMMARY

In a classical context, for the family of Husimi probability distributions over the three-
imensional Bloch ball of two-level quantum systems �TLQS�, we derived the �flat-at-the-fully-
ixed-state� Fisher information metric �dsFisherHus

2 , given by �2��. Its tangential—but not its radial
r�—component conformed to that of one of the �uncountably� infinite class of �quantum� mono-
one metrics. The prior probability distribution �pHus� formed by normalizing the volume element
f dsFisherHus

2 was found �Sec. III� to be considerably less noninformative than the priors formed
rom any of the �quantum� monotone metrics, even that �pBures� based on the �relatively informa-
ive� minimal monotone �Bures� metric. However, if we replaced the radial component of
sFisherHus

2 by that required �1/ �1−r2�� of all �quantum� monotone metrics, the resultant
hybridized-Husimi” prior probability �pHYBHus

� became very close �in the sense of relative en-
ropy �0.006 “nats”� to pBures, and thus comparably informative in nature, but even nearer
�0.0004� to another quantum-monotone-metric-based �“Grosse-Krattenthaler-Slater” or “quasi-
ures”� probability distribution �pGKS� that has been conjectured to yield the asymptotic minimax/
aximin redundancy for universal quantum coding. The analogous �Bayesian� role in universal

classical� coding—by a well-known result of Clarke and Barron17,18—is played by Jeffreys’ prior
cf. Refs. 19 and 20�. This takes the specific �original, nonhybridized� form pHus for the family
manifold� of trivariate Husimi qubit probability distributions under study. We also studied the
isher information metric for the escort-Husimi �Sec. V�, positive-P �Sec. VI� and certain Gauss-

an probability distributions �Sec. VII�, as well as, in some sense, the discrete Wigner pseudoprob-
bility �Sec. VIII�. Additionally, we applied the Clarke comparative noninformativity test25,26 to
uantum priors �Sec. III�. Evidence that this test is consistent with the recently stated criterion of
biasedness to pure states” of Srednicki27 has been presented.28
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igorous bra-ket formalism and wave function operator
or one particle quantum mechanics
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Following previous works dedicated to the mathematical meaning of the “bra-ket”
formalism �I. M. Gel’fand and G. E. Shilov, Generalized Functions �Academic,
New York, 1964�, Vol. I; J. P. Antoine, J. Math. Phys. 10, 53 �1969�; Yu. M.
Berezanskii, Expansions of Self-adjoint Operators �American Mathematical Soci-
ety, Providence, RI 1968�; E. Prugovečki, J. Math. Phys. 14, 1410 �1973�; J. P.
Antoine and A. Grossmann, J. Funct. Anal. 23, 369 �1976�; 23, 379 �1976��, we
develop a new rigorous mathematical approach, based on an operator representa-
tion of bras and kets. This leads to a formalism very similar to second quantization.
Well-defined operators associated with local observables can be exhibited, inti-
mately related to previous works of E. Prugovečki �Stochastic Quantum Mechanics
and Quantum Space-Time �Reidel, Dordrecht, 1986��. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2157053�

. INTRODUCTION

Since the early years of quantum mechanics, different mathematical studies have been led to
ive a rigorous meaning to the symbolic “bra-ket” formalism used in most quantum mechanical
apers. Quantum mechanics �for a spinless particle� is mathematically represented on the Hilbert
pace H=L2�R3� over position space equipped with the inner product �� ���=�R3d3q� �*�q����q��;
ut most of quantum mechanics books also introduce “the states �q��, �p��,” the “inner product”
q� ��� or use the formula ���=�R3d3q� ��q�� �q��, while “the vectors �q��” do not belong to H. So
ifferent structures have been developed to give a right mathematical meaning to these objects. We
an quote two different procedures. The first one is based on the construction of “super-Hilbert”
paces, such as the rigged,1,2 equipped,3 extended,4 or nested5 Hilbert spaces. The second approach
s essentially the reverse of the previous ones and is based on the definition of a new mathematical
tructure: the partial inner product spaces,6 that unifies the previous constructions.

In this paper we study how the symbolic expressions and calculations of the bra-ket formalism
re justified, if we represent bras and kets by operators. Our approach is practical: we do not start
rom a general abstract structure, and we study the concrete case of a spinless particle in standard
onrelativistic quantum mechanics. Of course our construction crosses the previous works by
everal ways.

First of all, we focus on the “basis” 	�q��
 and then we assign a special role to the position
perator. In the abstract context of previous works, this means that the position coordinates
orrespond to labeled observables.2,7 To give a right mathematical meaning to the vectors �q��, we
ap them into bounded operators �q� on H, and the symbolic integral �R3d3q���q�� �q�� over R3

ecomes a true �operator valued� integral �Sec. II�. The �q� are obtained thanks to the introduction
f a C� function � of compact support that we call the dressing function: it plays a central role in
ur procedure. Then we show that bounded bras and kets are realized as Hilbert-Schmidt opera-
ors, and the standard inner product is mapped into the Hilbert-Schmidt inner product �Secs. III
nd IV�. Moreover this bra-ket representation can be extended to a large family of “unbounded”

�
Electronic mail: herve.bergeron@lure.u-psud.fr
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ras and kets corresponding to possibly unbounded operators �Sec. V�. The representation of all
bjects in terms of operators is an old idea that can be found in Foias’s papers.8 More precisely, he
efined the concept of an integral decomposition of some vector space in terms of eigenoperators
ssociated with a self-adjoint operator. In the symbolic language of the bra-ket formalism, these
igenoperators correspond to distributions as ��P− p�= �p���p� �. We recover this formalism with the
epresentation of unbounded bra-kets and the properties of the momentum observable �Secs. V and
�. Moreover the definition of a generalized inner product for unbounded bras and kets leads us to

he definition of a partial inner product �Sec. V�.
Then we look at how to represent observables and symmetries with our formalism �Secs.

I–XI�. In fact quantum observables are represented as self-adjoint operators acting on the stan-
ard Hilbert space H or as superoperators acting on the Hilbert space LHS of Hilbert-Schmidt
perators. This representation gives a right mathematical representation for the symbolic objects

q�1��q�2�. We analyze in Sec. VIII the physical meaning of these representations and the role of the
ressing function �.

Furthermore, we find that the operator �q� can be interpreted as a “wave function operator,”
nd the quantum mechanical observables �for one particle� are expressed in a very similar way to
econd quantization. Nevertheless we do not think that this similarity hides some deeper direct
onnection, but rather that it is a consequence of the common mathematical structure shared by
oth formalisms, kets �creating operators�, bras �annihilating operators�, and observables �one
article observables� are elements of the same algebra, moreover in both cases we have a linear
apping from the initial Hilbert space into some algebra.

Finally the “wave function operator” allows us to define local observables, and we show that
hese operators are intimately related to previous works of Prugovečki9 �positive operator valued
easures�. We also recover “the proper wave function” of a particle that cannot be pointlike. This

pecial point was also derived in our previous paper.10

In the remainder we call the H Hilbert space L2�R3� over position space, LH the set of
ounded operators on H, and LHS the Hilbert space of Hilbert-Schmidt operators and the paper is
rganized as follows:

�i� First, we define the “wave function operator” �q� and the representation of H into LH,
allowing us to give a precise mathematical definition of “kets” in the q-basis �Sec. II�.
Then we show that “bounded kets” are in fact represented by Hilbert-Schmidt operators
and we show that the representation of H into LHS is in fact an isometry �Sec. III�. This
allows us to give the representation of “bras.” We also study the reverse mapping from
LHS onto H �Sec. IV�. In Sec. V, we generalize the previous definitions to “unbounded
kets and bras.”

�ii� We continue with the representation of symmetries and quantum observables in this new
framework �Secs. VI and VII�.

�iii� In Sec. VIII, we summarize the mathematical results and their physical meanings.
�iv� Then we study in details different observables, the position �Sec. IX�, the momentum

�Sec. X�, and local observables �Sec. XI�. Section XII is devoted to the Schrödinger
equation.

�v� Finally we conclude this paper by Sec. XIII.

Remark: We specify that operator valued integrals are defined in the weak operator topology
nd bold letters stand for operators.

I. MAPPING H INTO LH

In this section we introduce the operators �q� that allow us to map H into LH. We call �q� the
wave function operator.”

. Definition of the wave function operator and first properties
We define the operators �q� on H as
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"� � H, " q� ,x� � R3, �q�����x�� = ��x� − q����x� − q�� , �1�

here � is a given radial real function ��x��=F��x� � �; and we assume � to be a C� function with
ompact support.

Moreover � is normalized as

�
R3

d3x� ��x��2 = 1. �2�

If we introduce the quantum operators Q� and P� =−i��q�, the operators �q� can be written

�q� = exp�− �i/ � �P� · q���Q� � , �3�

o

��q��� � ����. �4�

e deduce that the adjoint �q�
† verifies

"� � H, " q� ,x� � R3, �q�
†����x�� = ��x����x� + q�� ,

�q�
† = ��Q� �exp��i/ � �P · q�� . �5�

inally, we conclude this part with the following important property.
Theorem: For any vectors � and � of H, the functions q� → ��q�

†����H and q� → �� ��q���
elong to H.

Proof: We have

��q�
†����H2 = �

R3
d3x� ��x��2���x� + q���2, �6�

o

�
R3

d3q���q�
†����H2 = ���H2 �

R3
d3x� ��x��2 = ���H2 . �7�

Moreover we can write �� ��q��� as being �� ��q�
†��*, then using the Schwarz inequality and

he previous result we find

�
R3

d3q� �����q����2 � ���H2 ���H2 . �8�

. The representation of kets in the q-basis

The previous theorem shows that for any f �H, the quantity Bf�� ,��=�R3d3q� f�q���� ��q���
efines a continuous sesquilinear form on H, so we know11 that there exists some bounded

perator f̂ on H such that Bf�� ,��= �� � f̂��. By construction f̂ is the operator valued integral,

f̂ = �
R3

d3q� f�q���q� . �9�

ˆ
f is a bounded operator, moreover we find
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�f̂†����H � �
R3

d3q� �f�q�����q�
†����H � �f�H���H, �10�

o

�f̂�� = �f̂†�� � �f�H. �11�

We deduce that the mapping U : f → f̂ from H into the set LH of bounded operators on H is a
ontinuous linear mapping.

Then we have the following correspondence between the ket formalism and its operator
epresentation on LH:

for f � H, 	
�q�� � �q� ,

�f = �R3d3q� f�q���q� � f̂ = �R3d3q� f�q���q� . �12�

The same correspondence is formally used in second quantization �up to the replacement

q� →�q�
†�. So we can think that �q� �or �q�

†� represents in our formalism some analogous of the
wave function operator,” but in the unusual framework of one particle equations. This idea is
onfirmed by our first theorem, since the expectation value f�q��= �� ��q��� defines a vector of H.
e will see in the following that a great number of results agrees with this interpretation of �q�.

II. INNER PRODUCT AND BRAS

We call LHS the Hilbert space of Hilbert-Schmidt operators on H equipped with the inner
roduct �A �B�HS=Tr�A†B�.

. Isometric mapping from H into LHS

We have the following theorem that specifies the isometry.

Theorem: For any ��H, �̂�LHS, and ��̂�HS= ���H. So ��̂ � �̂�HS=Tr��̂†�̂�= �� ���H.
Proof: First we remark from Eq. �5� that �̂ is defined by a kernel K�,

"� � H, " x� � R3, �̂����x�� = �
R3

d3q� ��q����x� − q����x� − q�� , �13�

hen

�̂����x�� = �
R3

d3q� K��x�,q����q�� ,

K��x�,q�� = ��x� − q����q�� . �14�

Moreover K��L2�R6� since

�
R3	R3

d3x� d3q� �K��x�,q���2 = ���H
2 , �15�

here we use the condition of normalization on the field �.
This shows that �̂ is a Hilbert-Schmidt operator and

��̂�HS = ���H. �16�
hen, from the polarization identity we deduce that
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"�, � � H, ��̂��̂�HS = Tr��̂†�̂� = �����H. �17�

We have shown that the linear mapping U : �→�̂ is an isometry from the Hilbert space H
nto a closed subspace Ĥ=U�H� of LHS.

. The bra representation in the q-basis

From the relation Tr��̂†�̂�= �� ���H, we deduce that we have the following correspondence
etween the bra formalism and its operator representation on LH:

for f � H, �q� � � �q�
†

�f � = �
R3

d3q� f�q��*�q� � � f̂† = �
R3

d3q� f�q��*�q�
†.

�18�

hen the set of bras and the set of kets are represented as two different subspaces of bounded �or
ilbert-Schmidt� operators and the symmetry bra-ket is given by the conjugate antilinear mapping
→A†. So, in this formalism bras and kets are elements of a same space of operators.

V. REVERSE MAPPING FROM LHS ONTO H

Since Ĥ=U�H� is a closed subspace of the Hilbert space LHS, we can formally define the

uperprojector 
 from LHS onto Ĥ as 
: K�LHS→
�K�=�R3d3q� �q�Tr��q�
†K�, where it is

ssumed that Tr��q�
†�̂�=��q�� and then 
��̂�=�̂. Unfortunately �q�

†K for K�LHS is not always
for any q�� a trace class operator, so Tr��q�

†K� is not a well-defined mathematical quantity. Nev-
rtheless, we will see with the following theorem that the kernel integral deduced from the
ymbolic expression of Tr��q�

†K� is almost everywhere defined.
Theorem: For K�LHS represented by its kernel K�x� ,y��, we define the function K :q�

�R3d3x� ��x��K�x� +q� ,x�� �corresponding to the symbolic expression Tr��q�K��. K̆ is an almost

verywhere defined function that belongs to H, and K→K̆ corresponds to a continuous linear

xtension to LHS of the reverse mapping U−1 from Ĥ onto H.

Proof: So let us prove that K̆ is an almost everywhere defined square integrable function.
rom the Scharwz inequality and the normalization of � we have

�
R3

d3q���
R3

d3x����x���K�x� + q� ,x����2

� �K�HS
2 . �19�

his shows that K̆�q�� is almost everywhere defined and that K̆�H. Moreover

�K̆�H � �K�HS, �20�

hen K→K̆ is continuous.

Finally, the kernel K� corresponding to �̂�Ĥ is given by

K��x�,y�� = ��x� − y����y�� , �21�

o

�̂
ˇ = � . �22�

Conclusion: We deduce that the superprojector 
 previously mentioned from LHS onto Ĥ

ossesses the well-defined expression
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"K � LHS, 
�K� = �
R3

d3q� K̆�q���q� . �23�

. GENERALIZED BRAS, KETS AND THEIR INNER PRODUCT

In this section we extend the definition of bras and kets to be able to define the kets �p��, for
xample.

. Generalized bras and kets

The previous representation of bounded kets and bras suggests that we can define generalized

bjects by relaxing the condition on f in the operator valued integral f̂=�R3d3q� f�q���q�. The
implest way is to use a complex Baire measure � and to define �̂=�R3d��q���q�. Generally �̂ is
n unbounded operator on H.

We introduce the Gel’fand triplet H+�H�H−, where H+= 	f �L��R3� with a compact sup-
ort
 and H− is the Frechet space of locally summable functions on R3 with its directed family of
eminorms �f�n=��q���nd3q� � f�q���. H+ is a dense subset of H and is related to H− by the duality

−
* =H+.

Theorem: For any Baire measure �, the operator valued integral �̂=�R3d��q���q� is a con-
inuous linear mapping from H into H−. Moreover, the operator �̂† defined as �̂†

�R3d�*�q���q�
† is a linear mapping from H+ into H. Then �̂ and �̂† are special cases of mappings

rom H+ into H−.
Proof: Since any complex measure � can be split into �=�1+ i�2 where �1 and �2 are real,

nd since any real measure � can be written as �=�+−�− where �+ and �− are positive, we only
eed to analyze the case of positive Baire measures. So, let � be a positive measure and ��H.
e study the function ��x��= �̂����x��=�R3d��q���q�����x��.

From the Eq. �5� we have

��x�� = �
R3

d��q����x� − q����x� − q�� . �24�

et us prove that � is an almost everywhere defined, locally summable function.
We call Kn the compact set Kn= 	q� / �q� � �n
; using the Schwarz inequality we have

�
Kn

d3x��
R3

d��q�����x� − q����x� − q��� � Cn���H �25�

ith

Cn = �
R3

d��q����
Kn

d3x� ��x� − q��2�1/2

. �26�

Since � is a C� function with a compact support, F�q��=�Kn
d3x� ��x� −q��2 is a continuous

unction with compact support, then �R3d��q���F�q�� is finite �� is a Baire measure�. This shows
hat � is a locally summable function, and

��̂����n � Cn��� . �27�

o �̂ is a continuous linear mapping from H into H−.
Moreover, since functions of H+ define continuous linear functionals on H−, we have for any

�H+ and any ��H,

�*,�̂��� � = �
3

d3x� �*�x���̂����x�� = �
3

d�q�����q���H. �28�

R R
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By duality, we deduce that the operator �̂†=�R3d�*�q���q�
† is a well-defined linear mapping

rom H+=H−
* into H=H*, and

"� � H+, �̂†����x�� = ��x���
R3

d�*�q����x� + q�� ,

"� � H+, " � � H, ����̂†��H = �
R3

d�*�q������q�
†��H. �29�

. Generalized inner product

For any complex Baire measures � and �, the above paragraph shows that �̂ · �̂† is a well-
efined operator from H+ into H−; but �̂† · �̂ is generally undefined. So, if M is the set of complex
aire measures, we define the subset � of M 	M as being the set of pairs �� ,�� such that �̂† · �̂

s a well-defined trace class operator on H. We define a generalized inner product on � as

"��,�� � �, ��̂�̂� = Tr��̂† · �̂� . �30�

y construction, this definition generalized the Hilbert-Schmidt inner product ��̂ � �̂�HS previously
efined and this structure corresponds to a partial inner product.6

. Practical examples

We introduce the Dirac measure �q� and the Fourier measure �k� such that d�k��x��=�k��x��d3x�

ith �k��x��=exp�ik� ·x��; we also define the correspondent operators �̂q� and �̂k�. Obviously we have

�̂q� = �q� and �̂q�
† = �q�

† �31�

hen �̂q� and �̂q�
† define bounded operators on H. Moreover

"� � H, �̂k�����x�� = �
R3

d3q� exp�ik� · q����x� − q����x� − q�� , �32�

o

"� � H, �̂k�����x�� = F�k���k��x�� ,

F�k�� = �
R3

d3q� exp�− ik� · q����q����q�� .
�33�

But x�→�q���k���x��=exp�ik� ·q����x��exp�ik� ·x�� is a well-defined function of H, then the operator
ˆ

q�
† · �̂k� is a bounded operator on H defined by the kernel K,

K�x�,y�� = exp�ik� · q���*�x����y�� ,

��y�� = ��y��exp�− ik� · y�� . �34�

his corresponds to a trace class operator and we have the generalized inner product,

��̂q���̂k�� = �
R3

d3x� K�x�,x�� = exp�ik� · q�� . �35�

ˆ † ˆ
We can easily check that �k� ·�q� also is a trace class operator and
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��̂k���̂q�� = exp�− ik� · q�� . �36�

This reasoning can be extended to any f̂ where f is a bounded continuous function,

��̂q��f̂� = f�q�� and �f̂��̂q�� = f�q��*. �37�

urthermore, let us assume � to be a C� function of rapid decrease, then �̂q�
† ·�̂ and �̂k�

† ·�̂ are trace
lass operators and

��̂q���̂� = ��q�� ,

��̂k���̂� = �
R3

d3x� exp�− ik� · x����x�� . �38�

After this study on the representation of bras and kets, we can look for the representation of
perators used in the bra-ket formalism.

I. LOWERING AND RAISING THE BRA-KET FORMALISM

The bra-ket formalism used on H can be also employed on LHS. Let us analyze in this section
he symbolic expressions resulting from this simultaneous utilization.

We write down ��� for the kets of H and ��̂� for the kets of Ĥ. This notation extends to
perators from H to H− and the formula,

��̂� = �
R3

d3q� ��q����q� �39�

ecomes meaningful. Moreover we have seen that ��q� � �̂�=Tr��q�
†�̂� is an almost everywhere

efined function and ��q� � �̂�=��q�� �almost everywhere� then the symbolic closure relation

R3d3q� ��q����q� � =1 is justified. Now let us investigate more symbolic expressions.
We can write ��̂�=�R3d3q��q� ��� ��q��, then our mapping U is U=�R3d3q� ��q���q� � and U−1

�R3d3q� �q����q��. If we are interested in the representation of operators different possibilities
ppear.

Let us assume that A is an operator, given in the bra-ket formalism of H by A
�d3q� d3q���q� �A �q��� �q���q���.

We can first lift up A in a superoperator

A�S� = UAU−1 =� d3q� d3q���q� �A�q�����q����q��� . �40�

his corresponds to the isometric representation. But this is not the unique solution.

A possesses a natural action on the operators �̂�Ĥ by �̂→A · �̂, but A · �̂ is not an element

f Ĥ. If we remark that the matrix elements ��̂ �A · �̂�HS are the only important quantities, we find
nother �nonequivalent� representation of A as a new superoperator,

Â =� d3q� d3q�� Tr��q�
†A�q�����q����q��� . �41�

he interesting point of this representation is the relation

��̂�Â��̂� = Tr��̂†A�̂� �42�
hat reproduces the symmetric notation of the bra-ket formalism.
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Finally we have a third representation. The symbolic expression �q���q��� represents an operator
y some “tensorial product,” but if we do the substitutions �q��→�q� and �q�� � →�q��

† the quantity

q��q��
† is well defined as a product of operators. Then we deduce a new representation on H by

Ã =� d3q�� d3q��q� �A�q����q� �q��
† . �43�

he interest of this representation is the substitution of the ket-bra tensorial product by the usual

perator product ����� � → �̂�̂†.

In the following we study in details the representations Â and Ã.

II. BOUNDED OPERATORS IN THE NEW REPRESENTATION

. Representation of symmetries

. Definition

Symmetries on H are given by unitary operators U and they represent, either a change of
athematical basis, or the change of state associated with a physical change of frame. So it is

atural to lift up directly the action of U on H into an unitary superoperator U�S� acting on Ĥ
U�H� as

U�S� = UUU−1. �44�

hen

"� � H, U�S���̂� = U���̂ . �45�

oreover,

"�, � � H, ��̂�U�S���̂��HS = ���U����H. �46�

nother equivalent definition is obtained by postulating that symmetries are superunitary opera-

ors on LHS that have Ĥ invariant.

. Geometrical symmetries: Rotations, translations, and parity

The unitary transforms R�� ,Ta�, and KP of rotation, translation, and parity are defined on H as

R�� ����x�� = ��R��
−1�x��� ,

Ta�����x�� = ��x� − a�� ,

KP����x�� = ��− x�� , �47�

here R�� is a geometric rotation.
Since the function � is radial, we find

R�� �q�R��
† = �R�� �q��,

Ta� �q� = �q�−a� ,

K ��K = � � . �48�
P q P −q
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rom the expression �̂=�R3d3q� ��q���q�, we deduce that for any ��H, we have

R�� ���̂ = R�� · �̂ · R��
† ,

Ta����̂ = Ta� · �̂ ,

KP���̂ = KP · �̂ · KP. �49�

o, the superunitary operators R
��
�S� , Ta�

�S�, and KP
�S� on Ĥ are defined as

R��
�S���̂� = R�� · �̂ · R��

† ,

Ta�
�S���̂� = Ta� · �̂ ,

KP
�S���̂� = KP · �̂ · KP. �50�

. Kinematical symmetry: Galilei boost

This symmetry Gk� is defined on H as

Gk�����x�� = exp�ik� · x����x�� , �51�

o

Gk� �q�Gk�
† = exp�ik� · q���q� . �52�

rom the expression �̂=�R3d3q� ��q���q�, we deduce that for any ��H, we have

Gk����̂ = Gk� · �̂ · Gk�
†. �53�

o the superunitary operator G
k�
�S�

is defined as

Gk�
�S���̂� = Gk� · �̂ · Gk�

†. �54�

. The special case of antiunitary transform: Time reversal

This antiunitary symmetry KT is defined on H as

KT����x�� = ��x��*. �55�

ince � is real, we find

KT · �q� · KT = �q� ,

KT · �q�
† · KT = �q�

†. �56�

rom the expression �̂=�R3d3q� ��q���q�, we deduce that for any ��H, we have

KT���̂ = KT · �̂ · KT. �57�

We deduce that KT can be lifted into an antiunitary superoperator KT
�S� acting on Ĥ as

K�S���̂� = KT · �̂ · KT. �58�
T
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. Representation of observables

. Definition and first properties

Since LHS is an ideal of LH, we have a natural representation of LH, on LHS, as LA :B
LHS→A ·B�LHS for bounded operator A. Moreover if 
 is the superprojector on the closed

ubspace Ĥ=U�H� of LHS, we can define the superoperator Â on LHS that maps Ĥinto Ĥ as

Â = 
LA
 . �59�

bviously

�Â�† = A†̂ ,

A � 0 Þ Â � 0. �60�

oreover we have the following relation for inner product:

"�,� � H, ��̂�Â��̂��HS = ��̂�A�̂�HS = Tr��̂†A�̂� . �61�

Since results of experiments are given by expectation values, the previous equation gives a
ery natural way to represent observables in the new representation. Moreover we recover in

r��̂†A�̂� the complete symmetric expression �� �A ��� used in the bra-ket formalism.
Furthermore, we can build the sesquilinear form BA on H as

"�, � � H, BA��,�� = ��̂�Â��̂��HS = Tr��̂†A�̂� . �62�

A is continuous since

BA��,�� � �A�����H���H. �63�

So for any operator A�LH, there exists some bounded operator Ã on H such that

��̂�A�̂�HS = Tr��̂†A�̂� = ���Ã��H. �64�

This shows that

Â��̂� = Ã���ˆ. �65�

Since we know that

�Ã�� = sup�,��H
����Ã��H�
���H���H

�66�

nd

���̂�A�̂�HS� � �A����̂�HS��̂�HS, �67�

e find

�Ã�� � �A��. �68�

˜
We deduce a new continuous mapping V :A→A from LH into itself. Moreover,
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�Ã�† = A†̃ ,

A � 0 Þ Ã � 0. �69�

Finally, using the functional calculus, the Eq. �65� implies that for any bounded Borel function
f , we have

f�Â���̂� = f�Ã����ˆ. �70�

. Analytical expression of Ã for Hilbert-Schmidt operators

(a) Kernel representation: Let us assume that A�LHS is represented by its kernel

�x� ,y�� , �A�x� ,y���L2�R6��, and that �̂ , �̂† are defined by their kernels K� and K�†,

K��x�,y�� = ��y����x� − y�� ,

K�†�x�,y�� = ��x���*�y� − x�� . �71�

Then �̂†A�̂ is given by the kernel K,

K�x�,y�� = ��x����y���
R3	R3

d3q� d3q�1 �*�q� − x��A�q� ,q�1���q�1 − y�� , �72�

r

K�x�,y�� = ��x����y���
R3	R3

d3q� d3q�1 �*�q����q�1�A�q� + x�,q�1 + y�� . �73�

So

���Ã��H = Tr��̂†A�̂� = �
R3

d3x� K�x�,x�� . �74�

From Eqs. �73� and �74�, we find that Ã is given by a kernel Ã�x� ,y��,

Ã�x�,y�� = �
R3

d3q� ��q��2A�q� + x�,q� + y�� . �75�

If A is a trace class operator, then

Ã�x�,y�� = Tr��x�
†A�y�� . �76�

The previous expression cannot be defined for any x� and y� if A is only a Hilbert-Schmidt
perator.�

Remark: Using the Schwarz inequality and the normalization of � we have

�
R3	R3

d3x� d3y��Ã�x�,y���2 � �A�HS
2 . �77�

This shows that V :A→ Ã maps LHS into LHS.

(b) Explicit formula with operator valued integral: We notice that
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����x� �y�
†��H = �

R3
d3q� ��q��2�*�q� + x����q� + y�� , �78�

nd since � is radial, we have ��q��=��−q��, so

����x� �y�
†��H = �

R3
d3q� ��q��2�*�x� − q����y� − q�� . �79�

oreover using the Scharwz inequality we find

�
R3	R3

d3x� d3y������x� �y�
†���2 � ���H

2 ���H
2 . �80�

o the function �x� ,y��→ �� ��x� �y�
†�� belongs to L2�R6�.

From Eqs. �72�, �74�, and �79� we find

���Ã�� = �
R3	R3

d3x� d3y� A�x�,y������x� �y�
†�� . �81�

e deduce that the operator Ã is given by the following operator valued integral �well-defined for
ilbert-Schmidt operators�

Ã = �
R3	R3

d3x� d3y� A�x�,y���x� �y�
†. �82�

(c) Correspondence with the bra-ket formalism: When A belongs to LHS ,A allows to define
correspondence between the bra-ket symbolic formula and its well-defined mathematical repre-

entation,

�x���y�� � �x� �y�
†,

�
R3	R3

d3x� d3y� A�x�,y���x���y�� � Ã = �
R3	R3

d3x� d3y� A�x�,y���x� �y�
†. �83�

Moreover if A is a trace class operator, we have the correspondence

�x��A�y�� → Ã�x�,y�� = Tr��x�
†A�y�� . �84�

Finally we notice

A = “������” � Ã = �̂ · �̂†. �85�

e will see in the next section how to generalize Eq. �83�.

. The representation of bounded operators and the closure relation

We start from the preceding section with A�LHS. The kernel representation of Eq. �75� gives
he following relation for any � ,��H:

���Ã�� = �
R3

d3q� ��q��2���exp��i/ � �P� · q��A exp�− �i/ � �P� · q���� . �86�
e deduce that for any A�LHS,
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Ã = �
R3

d3q� ��q��2 exp��i/ � �P� · q��A exp�− �i/ � �P� · q�� . �87�

Since � is square integrable, this relation can be extended to all bounded operators A�LH.

oreover Ã→A if �2→�.
Remark: � is a radial function, then ��q��=��−q�� and the previous equation becomes

Ã = �
R3

d3q� ��q��2 exp�− �i/ � �P� · q��A exp��i/ � �P� · q�� . �88�

Now we can explain the relation Tr��̂†A�̂�= �� � Ã��H. From Eqs. �87� and �88�, we find

r�ÃB�=Tr�AB̃�. If we choose B=“ ������,” taking into account Eq. �85�, we recover

r��̂†A�̂�= �� � Ã��H.
Now, if 	�n
 is an orthonormal basis of H, and if we call �n the orthogonal projector

��n���n�,” we have the closure relation on H,

�
n=0

�

�n = 1H, �89�

here the limit holds in the weak operator topology.

The mapping A→ Ã is continuous, so

�
n=0

�

�̃n = 1̃H = 1H �90�

n the weak operator topology.
From Eq. �85� we deduce

�
n=0

�

�̂n�̂n
† = 1H. �91�

We recover the symbolic notation �n=0
� ��n���n � =1H.

This reasoning naturally extends to bounded self-adjoint operators A=�n=0
� an�n where 	an


re the �bounded� eigenvalues,

Ã = �
n=0

�

an�̂n�̂n
†. �92�

But generally Ã�A, and the eigenvalues �eigenvectors� of Ã are not an ��n�.
The physical meaning of this last result seems obscure, so let us return to quantum axiomatic.

III. QUANTUM AXIOMATIC IN THE NEW FRAMEWORK

We summarize in this paragraph the results previously obtained and their connection with
uantum axiomatic:

�i� From the usual quantum framework on H, we have developed a new mathematical
framework that supports the symbolic manipulations of bras and kets as elements of an
algebra of operators.

�ii� A particle must be associated with ��H or with �̂�Ĥ, and the bra-ket formalism on

Ĥ possesses a well-defined mathematical representation as seen above �Eqs. �12� and
ˆ
�18��. Unbounded states are realized as operators that do not belong to H.
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�iii� Symmetries are represented by unitary operators on H or by superunitary operators on

Ĥ �Eq. �45�� and the practical cases of geometrical symmetries and Galilei boosts are
given in Eqs. �50� and �54�.

�iv� We have a natural method to lift up observables A as superoperators Â �Eq. �59�� such
that the symmetric bra-ket notation �� �A ��� can be mapped into the well-defined sym-

metric expression Tr��̂†A�̂�. Furthermore this procedure leads to the definition of a new

operator Ã on H such that Tr��̂†A�̂�= �� � Ã��H, where Ã possesses a well-defined
integral representation �Eqs. �82� and �87�� very similar to the bra-ket expression of A
�Eqs. �83��. But the eigenvalues and eigenvectors of A are not those of Ã.

The physical interpretation: A simple picture of these results can be given if we introduce the
dea of two categories of objects in our quantum formalism: “the bare objects” and “the dressed
nes.” Usual objects introduced by the bra-ket formalism of quantum mechanics are in fact “bare

bjects” that have to be dressed. A state ��H is a bare wave function, while �̂�Ĥ is its dressed
ersion. In the same way, we must think about the definition of all usual quantum observables A
n the bra-ket formalism as being “bare objects” that have to be dressed into new observables Ã
cting on H �or superoperators Â acting on Ĥ�.

In fact we have a duality of frameworks for physical calculations �expectation values�:

�i� On Ĥ we must use dressed wave functions �̂ to represent states and standard self-adjoint
operators A �bare� for observables, �A�=Tr��̂†A�̂�. This corresponds to the rigorous
form of the symmetric bra-ket notation.

�ii� On H we must use standard wave functions � �bare� and dressed observables Ã : �A�
= �� � Ã��H.

This reasoning implies that the physical eigenvalues and eigenvectors are those of Ã on H �or
ˆ on Ĥ�.

We obtain the same result differently from the relation Tr�ÃB�=Tr�AB̃� �Sec. VI�. Let us
ssume that 	 is any statistical density operator and A an observable, usual quantum mechanics
ays that the expectation value of A is �A�=Tr�	A�. Our formalism says that we must modify this

ormula according to �A�=Tr�	Ã�=Tr�	̃A�. Moreover 	̃ also is a density operator �for a pure state

, 	̃= �̂�̂†� and Ã is an observable. So, with purely mathematical arguments, we cannot choose
etween the modification of 	 and the modification of A. But this is not true on the physical level,
ecause the mapping 	→ 	̃ is not “onto:” 	̃ cannot be a pure state ��̂�̂† is not a projector�. If we
ay that the physical observable is A, then the particle can never be in a pure state: this is a too

trong modification. If we say that the physical observable is Ã, of course the “bare” observable
is possibly modified, but all statistical properties of usual quantum mechanics are preserved.

The physical meaning of the dressing function: Let us start with an observable A and a density
perator 	 defined with the bra-ket formalism. From the previous paragraph the usual formula for

xpectation value must be modified according to �A�=Tr�	Ã�=Tr�	̃A�, and the symmetry

r�	Ã�=Tr�	̃A� allows us to preserve the set of all possible densities �and then the Hilbert space

tructure� by choosing to change A in Ã. However, this choice could be a simple technical trick
hat allows us to bypass a supplementary difficulty �the disappearance of pure states�, while
reventing us to see the real physical meaning of the transformation 	→ 	̃. So let us analyze what
ind of physical process can produce this modification. In fact since 	̃ is a true density operator,
here exists a unique well-known process: a decoherence one. Furthermore if the transformation
→ 	̃ is real, it must be applied in all circumstances; this means that we are looking for an

ntrinsic decoherence process. Of course we cannot find the origin of such a phenomenon in the
ramework of nonrelativistic quantum mechanics, but an explanation exists in the framework of

uantum field theory.
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We know that any particle �quantum field� possesses at least one way to interact with other
nes and this interaction is described by a coupling with another quantum field. So the complete
uantum description of a free particle is in fact some intricate state that describes the degrees of
reedom of the particle and the vacuum of some associated quantum field. Looking at the degrees
f freedom of the particle �and only them� is obtained by some partial trace on the degrees of
reedom of the quantum field, and this corresponds to a decoherence process. The decoherence is
ntrinsic in the sense that the coupling with an external quantum field is intrinsic. Moreover since
eld interactions always take place in space-time �and not in momentum space�, we can under-
tand that this decoherence effect essentially acts on the position operator and then on the states
q��. Of course this effect cannot be measured in the framework of nonrelativistic quantum me-
hanics, but this does not mean that the mathematical structure of the theory is not sensitive to this
ffect. This is exactly what we find through the dressing function � that introduces some length
cale �: � can be as small as you want but it cannot be removed everywhere in the formalism. In
act the limit �→0 is only possible for the computation of expectation values, because these
uantities are in fact weighted integrals depending on the function �2 ��2 is similar to a point
pread function�. The limit �→0 corresponds to �2→�.

In conclusion, the dressing function � can be related to some decoherence effect that trans-

orms bare operators into dressed ones; but thanks to the symmetry �A�=Tr�	Ã�=Tr�	̃A� we can
reserve the Hilbert space structure by modifying observables �dressed observables� rather than
ensities.

The following section analyzes the effect of the dressing function on the position operator.

X. THE POSITION OPERATOR

. The projection valued measure

The projection valued measure �pvm� associated with the quantum operator Q� of position is

iven by the family of orthogonal projectors 	�A�Q� �
A�B�R3� �where B�R3� is the family of Borel
ets and �A is characteristic function of A�.

Computing ��̂ ��A�Q� ��̂�HS=Tr��̂†�A�Q� ��̂� with the kernel method previously seen, we ob-
ain

��̂��A�Q� ��̂�HS = �
R3

d3q� �*�q����q���
R3

d3x� �A�x����q� − x��2. �93�

e deduce that the operator �A�Q� �˜

is given by

�A�Q� �˜

= FA�Q� � ,

FA�q�� = �
A

d3x� ��q� − x��2. �94�

But using Eqs. �93� and �79� we also find

��̂��A�Q� ��̂�HS = �
R3

d3x� �A�x������x� �x�
†��H. �95�
So
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�A�Q� �˜

= �
A

d3x� �x��x�
†. �96�

oreover �R3�Q� �=1 and ��̂ � �̂�HS= �� ���H, so

1̃H = 1H = �
R3

d3x� �x� �x�
†. �97�

e deduce that the family of operators 	�A�Q� �˜
A�B�R3� corresponds to a positive operator valued
easure �pov�. This pov is used in different works of Prugovečki.9,12 Moreover these studies show

hat the mathematical field � must be interpreted as the “proper wave function” of the particle �the
article cannot be pointlike�. This idea was previously introduced by Landé13 and Born.14

. Related operators

From functional calculus, we can generalize the previous result to a real bounded or un-

ounded function of Q� as

F�Q� �˜

= �
R3

d3x� F�x���x� �x�
†,

F�Q� �˜

= F̃�Q� � ,

F̃�q�� = �
R3

d3x� ��q� − x��2F�x�� . �98�

In the particular case F�x��=x�, we have

F̃�q�� = �
R3

d3x� ��x��2�x� + q�� . �99�

Since � is a �normalized� radial function, � is even, so

F̃�q�� = q� . �100�

e deduce

Q�̃ = Q� = �
R3

d3x� x��x� �x�
†. �101�

e see that the well-defined bounded operator �x� �x�
†=��Q� −x��2 represents the symbolic expres-

ion �x�� �x�� used in the bra-ket formalism. Moreover the Eq. �101� shows that the observable Q� is
nchanged in our framework.

Furthermore, the expression �x���x� � =��Q� −x�� corresponds to the “density operator” �or the

robability density�. So we find that �x� �x�
†=�x��Q� � is the mathematically well-defined observable

dressed operator� associated with the probability density. This interpretation is consistent with the
act that �R3d3x��� ��x� �x�

†��H=1 if � is a normalized vector of H. Moreover since
� ��x� �x�

†��H= ���x�
†��� � �H

2 � ��� � ��
2 �Eq. �4��, we see that the probability density is always

ounded; then the particle cannot be localized “at the point x�.” A punctual localization corresponds
� 2 �
o the limit ��x� →��x�.
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Finally, if �� ��x� �x�
†��H is the effective probability density, it is natural to say that �� ��x���H

s the “wave function expectation value,” and then we recover that �x� is the “wave function
perator.” We also remark that the expression of the density operator is formally the same in
econd quantization. Of course all this reasoning cannot be induced from usual quantum mechani-
al axioms.

. THE MOMENTUM OPERATOR

We are interested in the family of operators 	�A�P� �
A�B�R3�. Using Eq. �87� and the normal-
zation of � we find

�A�P� �˜

= �A�P� � . �102�

y extension, this equation remains valid for any Borel function f ,

f�P� �˜

= f�P� � . �103�

his last result can be reformulated on Ĥ as

"� � H, f�P� �ˆ��̂� = f�P� � · �̂ . �104�

Now using Eq. �33�, we find that the unbounded kets �̂k� are the eigenstates of P� ,

P� �̂k� = � k��̂k� . �105�

oreover if � and � are two C� functions of rapid decrease �� ��̂k��̂k�
†
�� is well-defined and we

ave

�
R3

d3k�

�2��3 ����̂k��̂k�
†
�� = ����� �106�

nd

�
R3

d3k�

�2��3 � k�����̂k��̂k�
†
�� = ���P� �� . �107�

In fact �̂k��̂k�
† is the distribution 2����P� − �k� � corresponding to �k���k��. In Foias’s approach8

hese distributions are the eigenoperators of P� and Eq. �106� represents the spectral decomposition
f the space of C� functions of rapid decrease. But in our formalism the true eigenoperators
eigenstates� are the �̂k� in agreement with the bra-ket formalism. The dressing function � explains

his difference. In terms of distributions, we can write �̂k� =2����P� − �k� ���Q� � or �̂k�

�k���k� ���Q� � and then �̂k��̂k�
†=2����P� − �k� �F�k� � with F�k� �= �k� ���Q� �2 �k��. But the normalization

f � gives F�k� �=1 and then �̂k��̂k�
†=2����P� − �k� �. So the dressing function allows us to define

ome “square root” of the distribution ��P� − �k� � that gives the true eigenstates of P� corresponding
o the bra-ket formula.

I. LOCAL OBSERVABLES

We have shown that the probability density is 	q� =�q� �q�
†. Now we are interested in the current
ensity.
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Let us call S the dense subset of H of C� functions of rapid decrease. The operators �q� and

q�
† map S into S, and the unbounded operators �q� �q� and �q� �q�

† are defined on S,

− i � �q� �q�
† = �q�

†P� ,

i � �q� �q� = P��q� . �108�

sing Eq. �97� we deduce that

P� = �
R3

d3q� �q��− i � �q� �q�
†� = �

R3
d3q��i � �q� �q���q�

†. �109�

The same arguments show that

P� 2 = �
R3

d3q� �q��− �2�q��q�
†� = �

R3
d3q��− �2�q� �q���q�

† . �110�

where �q� is the Laplacian�, or in a symmetric form

P� 2 = �
R3

d3q� �2��q� �q�� · ��q� �q�
†� . �111�

Moreover, starting from Eq. �109� and if we call m the mass of the particle, we can define the

ocal �unbounded� observable of current density J��q�� as

J��q�� =
i�

2m
���q� �q���q�

† − �q���q� �q�
†�� . �112�

rom Eq. �108� we find

J��q�� =
1

2m
��q� �q�

†P� + P� �q� �q�
†� �113�

nd

P� = m�
R3

d3q� J��q�� . �114�

e recover in formula �109� and �112� the expressions used in second quantization, �q�
† being the

ave function operator. This parallel leads us to study the integral m�d3q� q� ÙJ��q�� that usually
ives the field angular momentum. Using Eqs. �113� and �101� we find

m�
R3

d3q� q� Ù J� ·� q�� = Q� Ù P� = L� . �115�

o the observable of angular momentum L� is really obtained as in second quantization. Moreover

e can verify that L� =L� .
These definitions of local observables for one particle can be also found in Prugovečki’s

9
onograph, but they are not build with this formalism.
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II. THE SCHRÖDINGER EQUATION

. The evolution operator

The evolution with time of a vector ��H is given by ��t�=Ut��0� where Ut is the unitary
perator Ut=exp�−�i / � �Ht�, where H is the standard quantum Hamiltonian. So the evolution on

is naturally defined as �̂�t�=��t�̂. This implies that Ut must be lifted up into the superunitary

perator Ut
�S� acting on Ĥ as defined in Sec. VII A 1

�̂�t� = Ut
�S���̂0� = Ut��0�̂ . �116�

urthermore, the standard quantum Hamiltonian H is a physical observable, so following our

eneral point of view H “has to be dressed” into H̃ that represents the “true” physical observable

n H. Consequently, if the true physical observable is H̃, we must use H̃ and not H into the
efinition of Ut, so we define in fact

Ut = exp�− �i/ � �H̃t� , �117�

here H is the standard Hamiltonian; �̂�t� is defined as in Eq. �116�. Now, from Eq. �70�, we
educe that

Ut
�S� = exp�− �i/ � �Ĥt� . �118�

. The Schrödinger equation

On the dense subset S of functions of rapid decrease, Eqs. �116� and �118� lead to the
chrödinger equation,

i �
��̂

�t
= Ĥ��̂� = H��� �˜

. �119�

. The free particle

The standard Hamiltonian is H0=P� 2 /2m and from Eq. �103� we know that H̃0=H0 because

0 only depends on P� . Moreover using Eqs. �110� and �111� we find

H̃0 = H0 = �
R3

d3q� �q��−
�2

2m
�q� �q�

†� =
�2

2m
�

R3
d3q���q� �q�� · ��q� �q�

†� , �120�

nd we formally recover the expression used in second quantization.

Furthermore, always from Eq. �103�, the superunitary operator Ut
�S� acts on Ĥ as

Ut
�S���̂� = Ut�̂ ,

Ut = exp��− i/ � �H0t� . �121�

Remark: The observables that generate the Galilei group �Q� ,P� ,L� ,H0� verify A=A. Then the
ressing function � introduces no modification of quantum equations for the natural observables of
he free particle.

III. CONCLUSION

This procedure shows how the definition of a dressing function � for a particle and the
ssociated wave function operator �q�, can be related to a rigorous development of the bra-ket

ormalism. Moreover we show that the new quantum framework contains “bare” and “dressed”
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uantities and we find that local observables are now well defined, while these objects are singular
n the usual quantum context. Finally the function � can be seen as a perturbative effect that
regularizes” the bra-ket formalism in such a way that all standard formula correspond to the limit
2→�.
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arge-order behavior of the perturbation energies
or the hydrogen atom in magnetic field
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Large-order behavior for the perturbation energies of the hydrogen atom in mag-
netic field is derived. By means of the dispersion relations, the large-order behavior
of the series is determined by calculating the lifetime of the quasistationary states in
an imaginary magnetic field. This problem is treated by means of the modified
multidimensional WKB method. The asymptotic formula for the perturbation ener-
gies derived by Avron is generalized to the states with an arbitrary degeneracy. The
first order correction to the resulting formula is also found. Thus, the multidimen-
sional WKB method is for the first time explicitly carried out beyond the leading
approximation. The analytical results are verified numerically and an excellent
agreement between the two is found. The connection between our and conventional
semiclassical approximation is also briefly discussed. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2168689�

. INTRODUCTION

The problem of the hydrogen atom in the magnetic field is elementary but difficult and great
eal of effort has been devoted to its solution over the years �see, e.g., Refs. 1–21and references
iven therein�. Except for its own importance, it has been used as a relatively simple problem to
nswer some more general questions, as for example determination of the large-order behavior of
he perturbation energies and related problem of the multidimensional WKB approximation,1,3,4

ummation of the divergent perturbation series,2,7,21 application of the perturbation theory in the
egenerate case,8 determination of the lower bounds to the eigenvalues9,14 and so on.

In this paper, we are interested in the problem of the hydrogen atom in magnetic field mainly
rom the point of view of the multidimensional WKB approximation and related problem of the
symptotic behavior of the corresponding divergent perturbation series. The multidimensional

KB method is important in many areas of physics ranging from the theory of chemical reactions
o cosmology, for review see Ref. 22. Knowledge of the large-order behavior of the divergent
erturbation series can be used in the summation of the series1,2,21,23 and checking correctness of
alculated perturbation energies. The latter application is especially important when treating the
egenerate states where the perturbation theory is difficult to apply.

Schrödinger equation for the hydrogen atom in a constant magnetic field B� = �0,0 ,B� with
xed nucleus and neglecting the spin effects reads

�−
�2

2
−

1

r
+

BLz

2
+

B2

8
�x2 + y2��� = E� , �1�

here the atomic units are used. The Hamiltonian commutes with the projection of the angular

omentum operator L� onto the direction of the magnetic field and with the parity operator. In the
ollowing, we shall restrict ourselves to the states of the zero projection of the angular momentum

nto the z axis and even parity.

47, 022106-1022-2488/2006/47�2�/022106/16/$23.00 © 2006 American Institute of Physics
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The energy E has the following perturbation expansion:

E = �
n=0

�

En�B2

8
	n

. �2�

his perturbation series is divergent. The reason is that the energy E is not an analytic function in
he vicinity of point B=0. This can be understood as follows. We consider analytic continuation of
he energy E for complex magnetic fields E=E�B2�. In the upper half of the complex plane we
ake B2= 
B2 
ei arg�B2� and in the lower half of the complex plane we take B2= 
B2 
e−i arg�B2�,
rg�B2�� �0,��. For real magnetic fields, Eq. �1� is solved with the boundary condition ���

� �→e−�B2/8�1/2�2
, where �2=x2+y2. For complex magnetic fields, Eq. �1� is solved with the

nalytic continuation of this boundary condition. Now, approaching the value −
B2
 from the upper
alf of the complex plane leads to the boundary condition ���→ � �→e−i
B2/8
1/2�2

,while approach-
ng this value from the lower half of the complex plane leads to the boundary condition ���

� �→e+i
B2/8
1/2�2
. These different boundary conditions yield different signs of the imaginary

art of the energy I�E�B2��. Therefore, the energy E has for real negative values of B2 the
iscontinuity 2iI�E�−
B2 
 + i���, ��0. Using Cauchy theorem one can show that the perturbation
nergies En are related to the imaginary part of the energy for the imaginary values of the magnetic
elds via the dispersion relation1,24–26

En =
�− 1�n+1�2N2�n

�
�

0

�

d�
I�E����

�n+1 , �3�

here a new coupling constant � has been introduced via equation

B2

8
= −

�

2N2 . �4�

ere, N=1,2 ,3 , . . . denotes the principal quantum number of the hydrogen atom. The imaginary
art of the energy is one-half of the inverse lifetime of the quasistationary states in the potential in
q. �1� with the imaginary magnetic field B.

It is seen from Eq. �3� that the behavior of the perturbation energies En for very large n is
iven by the lifetime of the quasistationary states for small values of the coupling constant �.
hus, provided we are able to calculate this lifetime, Eq. �3� enables precise determination of the
egree of the divergence of the series �2�.

Expression for the imaginary part of the energy can be derived as follows. First, since Eq. �1�
as an axial symmetry we introduce the cylindric coordinates x=� cos �, y=� sin �, z=z. Since
he states with the zero projection of the angular momentum are independent of the coordinate �,
q. �1� reads

� �2

��2 +
1

�

�

��
+

�2

�z2�� = �V��,z� − 2E�� , �5�

here

V��,z� = −
2

��2 + z2�1/2 −
�

N2�2. �6�

quation �5� is solved with the boundary condition ���→ � �→e−i�1/2�2/N. Further, we multiply
q. �5� by ��*. We take complex conjugate of Eq. �5� and multiply it by ��. Then we subtract the

wo equations and integrate the resulting equation over the whole space, i.e., over z from −� to �
nd over � from 0 to �. Finally, we integrate this equation by parts and obtain the time-

ndependent version of the continuity equation for the probability density

                                                                                                            



w

a

p
b
i
f
a
S
f
s
m

W
l

p
t
f
i
2
o
s
t
b

fl
h
s

s
�
t
t
p
a
p
t

022106-3 Large-order behavior of the perturbation energies J. Math. Phys. 47, 022106 �2006�

                        
I�E� =
J

2��
�
, �7�

here the probability flux J in the � direction equals

J = −
1

2i
�

−�

�

dz lim
�→�

���* �

��
� − �

�

��
�*� �8�

nd the norm of the wave function reads

��
� = �
0

�

d��
−�

�

dz �
�
2. �9�

To calculate the imaginary part of the energy from Eq. �7� we proceed as follows.24 Inside the
otential well, we approximate the wave function by means of the Rayleigh-Schrödinger pertur-
ation theory �RSPT�. Since the dominant contribution to the norm of the wave function describ-
ng the quasistationary state comes from the interior of the well we replace the exact wave
unction in the denominator of Eq. �7� by the perturbation wave function. In the tunneling region
nd outside the potential well we approximate the wave function by the WKB wave function.
ince the dominant contribution to the probability current comes from the tunneling, classically
orbidden region we replace the exact wave function in Eq. �8� by the WKB wave function. The
ame normalization of the RSPT and the WKB wave functions is guaranteed by the asymptotic
atching of these functions in the overlap region of their mutual validity.

The main obstacle in carrying out the program described above is the construction of the
KB wave function. The standard formulation of the WKB approximation as applied to Eq. �5�

eads to the nonseparable nonlinear partial differential equation that is difficult to solve.
The simplification of the problem used here comes out from the fact that the tunneling of the

article takes place in the neighborhood of the line z=0, see Eq. �5�. Consequently, we do not need
o know the wave function in all space, but only in the neighborhood of this line. The situation is
urther greatly simplified by the fact that the minimum of the potential is the straight line �compare
t with the case of the curved lines27,28�. This simplification was for the first time realized in Ref.
9 for the problem of the coupled oscillators and later used in Ref. 1 to derive the imaginary part
f the energy in Eq. �5� at the leading approximation. However, it seems that the full content of the
implification was not appreciated so far. Indeed, none from the multidimensional WKB calcula-
ions for the straight escape paths performed so far1,4,29,30 shows how to extend the calculation
eyond the leading approximation.

In this paper we show how the WKB wave function for Eq. �5� and the outgoing probability
ux can be obtained to the desired accuracy. Our method is not bound to the problem considered
ere and with appropriate modifications it can be extended to all problems involving multidimen-
ional tunneling along the straight escape paths.

The paper is organized as follows. In Sec. II the modified multidimensional WKB method is
uggested and used to calculate the outgoing probability flux, Eq. �8�, with accuracy to the order
1/2. In Sec. III the calculation of the perturbation energies in Eq. �2� is described. The perturba-

ion wave function is used to calculate the norm of the wave function �9�. In Sec. IV the results of
he preceding two sections are put together and inserted into Eq. �3� to get the asymptotics of the
erturbation energies. Numerical verification of the derived formula is made and an excellent
greement between the analytical and numerical calculation is found. In the Conclusions the
erspectives of further applications of the proposed WKB approximation are briefly outlined. In

he Appendix the connection between the suggested and conventional WKB method is discussed.
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I. WKB METHOD

There are two facts stressed in the next two paragraphs that simplify the calculations enor-
ously and that were not explicitly realized so far. The first one is the approximation of the wave

unction in the coordinate z by the wave function of the anharmonic oscillator, Eq. �11�. The
econd one is the scaling in the coordinate �, Eq. �15�.

. Approximation of the wave function in the transversal direction

First, in the vicinity of the � axis the potential V�� ,z� given by Eq. �6� can be expanded as

V��,z� = V0��� + V2���z2 + V4���z4 + ¯ . �10�

hen, the wave function of the particle in the direction transversal to tunneling can be written as

���,z� = ef���+h���z2+q���z4+¯ . �11�

hysically, this says nothing else than close to the minimum of the potential in the direction
erpendicular to tunneling we can approximate the exact wave function by the wave function of
he harmonic oscillator. This approximation can be further improved by considering anharmonic
erms.

Inserting the expansions �10� and �11� into Eq. �5� and comparing the terms of the same order
f z we get

f����2 + f���� +
f����

�
+ 2h��� = − 2E −

�

N2�2 −
2

�
�12�

t the zeroth order,

2f����h���� + h���� +
h����

�
+ 4h���2 + 12q��� =

1

�3 �13�

t the second order and

2f����q���� + h����2 + q���� +
q����

�
+ 16h���q��� = −

3

4�5 �14�

t the fourth order of z. Here, the prime denotes the differentiation with respect to �.

. Approximation of the wave function in the longitudinal direction

Second, in the direction of the tunneling we approximate the wave function as follows. In the
lassically forbidden region the terms −2E0 and −�� /N2��2 are of the same order of magnitude.31

o make these terms of the same order in � we make the scaling in the coordinate �,

� = �−1/2u , �15�

nd expand the real part of the energy in the series �2�. Equations �12�–�14� then read

�� f��u�2 + f��u� +
f��u�

u
	 + 2h =

1 − u2

N2 −
2�1/2

u
− 2�

n=1

�

En�−
�

2N2	n

, �16�

��2f��u�h��u� + h��u� +
h��u�

u
	 + 4h�u�2 + 12q�u� =

�3/2

u3 �17�
nd
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��2f��u�q��u� + h��u�2 + q��u� +
q��u�

u
	 + 16h�u�q�u� = −

3�5/2

4u5 , �18�

here the prime denotes now differentiation with respect to u. To get a clue how to expand the
unctions f�u�, h�u�, and q�u� in the powers of �1/2 we use the fact that for u→0 we must recover
he wave function of the hydrogen atom. For example, it reads for the ground state

�1s = e−r = e−��2+z2
= e−�−z2/�2��−z4/�8�3�+¯ = e−u/�1/2−�1/2z2/�2u�−�3/2z4/�8u3�+¯ . �19�

herefore we expand the functions f�u�, h�u�, and q�u� as follows:

f�u� =
f0�u�
�1/2 + f1�u� + f2�u��1/2 + ¯ , �20�

h�u� = h0�u��1/2 + h1�u�� + ¯ , �21�

nd

q�u� = q0�u��3/2 + ¯ . �22�

. Equations for the WKB wave function

Comparing the terms of the order �0 in Eq. �16�, of the order � in Eq. �17� and of the order
1/2 in Eq. �16� we get equations for the functions f0�u�, h0�u�, and f1�u�,

f0��u� =
±�1 − u2

N
, �23�

2f0��u�h0��u� + 4�h0�u��2 = 0 �24�

nd

2f0��u�f1��u� + f0��u� +
1

u
f0��u� + 2h0�u� = −

2

u
, �25�

espectively. Since we want to calculate the imaginary part of the energy beyond the leading
pproximation, we have to determine also the functions q0�u�, h1�u�, and f2�u�. Comparing the
erms of the order �2 in Eq. �18�, of the order �3/2 in Eq. �17� and of the order � in Eq. �16� we
et equations for the functions q0�u�, h1�u�, and f2�u�,

2f0��u�q0��u� + �h0��u��2 + 16h0�u�q0�u� = 0, �26�

2f0��u�h1��u� + 2f1��u�h0��u� + h0��u� +
1

u
h0��u� + 8h0�u�h1�u� + 12q0�u� =

1

u3 , �27�

nd

2f0��u�f2��u� + �f1��u��2 + f1��u� +
1

u
f1��u� + 2h1�u� =

E1

N2 , �28�

espectively. The solution of the above equations is determined uniquely by requirement that for u
oing to zero, the WKB wave function must match the bound state function. This will be dis-
ussed in detail below. Before actual solution of the equations given above, let us show that the
roposed approximation to the wave function yields systematic approximation to the outgoing

robability flux.
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. Approximation to the outgoing probability flux

To calculate the outgoing probability flux from Eq. �8� we need to know the behavior of the
ave function for large �. Integration of Eq. �25� yields

f1�u� = − 1
2 ln�uf0��u�� + F1�u� , �29�

here the second term is given as

F1�u� = −
N

2
ln

1 + �1 − u2�1/2

1 − �1 − u2�1/2 +
1

2
ln�h0�u�� − A1. �30�

he integration constant A1 is determined from the requirement of the matching of the WKB and
ound state functions. Here, we took the solution of Eq. �23� with the minus sign, see discussion
fter Eq. �37� below.

Thus, the behavior of the wave function �11� for large � is given as

���,z� =
exp�f0���/�1/2 + F1��� + �1/2f2��� + ¯ + h���z2 + q���z4 + ¯ �

��f0�����1/2 , �31�

here we inserted the expansion �20�. Differentiation of the function �31� with respect to � yields

����,z�
��

�
�f0�����1/2

����1/2 exp� f0���
�1/2 + F1��� + �1/2f2��� + + h���z2 + q���z4 + ¯ � . �32�

ifferentiation of the terms F1���, ��1/2�f2��� and so on yields the contribution to the probability
ux that vanishes for � approaching infinity. For large � the particle moves in the classically
llowed region and f0���� is purely imaginary, see Eq. �23�. Thus it follows from Eqs. �8�, �31�, and
32� that the nonvanishing contribution to the probability flux for � going to infinity is given as29,30

J =
1

�1/2 exp�2R�f0�u → � �/�1/2 + F1�u → � � + �1/2f2�u → � � + ¯ ��

	 �
−�

�

dz exp�2z2R��1/2h0�u → � � + �h1�u → � �� + 2z4R��3/2q0�u → � �� + ¯ � ,

�33�

here R denotes the real part. Here we inserted the expansions �21� and �22� and made the
ubstitution �15�. This can be done since the real parts of the functions f i�u�, hi�u� and so on, goes
o the constants for u going to infinity. Therefore, it does not matter if we calculate it in the
ariable u or �.

The integration over the transversal direction can be performed easily. Expanding the above
quation in the powers of �1/2 as

J =
1

�1/2 exp�2R�f0�u → � �/�1/2 + F1�u → � ����1 + 2�1/2R�f2�u → � �� + ¯ �

	 �
−�

�

dz exp�2z2R��1/2h0�u → � ����1 + 2z2�R�h1�u → � �� + 2z4�3/2R�q0�u → � �� + ¯ �

�34�

e are left with the Gaussian integrals. The outgoing probability flux accurate up to the first order
1/2
f � then reads
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J = exp�2R�f0�u → � �/�1/2 + F1�u → � ���
��

�3/4�R�− 2h0�u → � ���1/2 �1 + �1/2R1 + �R2 + ¯ � ,

�35�

here the first correction coefficient R1 equals

R1 = 2R�f2�u → � �� +
R�h1�u → � ��

R�− 2h0�u → � ��
+

3R�q0�u → � ��
2�R�− 2h0�u → � ���2 . �36�

It is clear from the above equations that the suggested approximation of the wave function
rovides systematic approximation to the outgoing probability flux in the form of the series in
owers of �1/2. It is well known that the WKB approximation fails in the vicinity of the turning
oint corresponding here to u=1, see Eq. �23�. There is a number of papers dealing with the
pproximation of the wave function in the neighborhood of the turning points, see, e.g., Refs.
2–36. It is clear from the above equations that what we actually need is the behavior of the WKB
pproximation for u going to infinity. The proper normalization of the WKB wave function is
uaranteed by matching it to the bound state function for u going to zero. In this region the WKB
ave function is valid as an asymptotic expansion. Therefore, we do not have to care at all about

he divergence of the WKB approximation at the turning point, see also Ref. 31.

. Solution of equations

. Boundary conditions

As becomes apparent during the calculation it is possible and advantageous to normalize the
ound state wave function in such a way that it behaves in the overlap region as

�0�� → � ,z → 0� � e−�/N−z2/�2N��−z4/�8N�3�−. . .�N−1�1 +
Cz2

�2 + ¯ 	 , �37�

here C is a constant depending on the form of the bound state wave function and it will be
recisely determined in Sec. III. It is seen from Eq. �19� that for the ground state

C1s = 0. �38�

he solution of Eqs. �23�–�28� is determined uniquely by the requirement that the WKB wave
unction has this behavior for small u.

. Calculation of the first approximation

Since for u�1 the integrand in Eq. �23� is purely imaginary we can stop the integration at the
urning point u=1. We start the integration at the point u=0 and take the minus sign in Eq. �23�
o get the first term in the argument of exponential function on the right-hand side of Eq. �37� for
mall u

R�f0�u → � �� = − �
0

1

du
�1 − u2

N
= −

�

4N
. �39�

Equation �24� is nonlinear first order differential equation whose solution reads

h0�u� = −
1

2N arcsin u
, �40�

here the integration constant was set to zero to get the second term in the argument of exponen-
ial function on the right-hand side of Eq. �37� for small u. We note that for u�1, the function

rcsin�u� is complex and two-valued with the branch point at u=1,
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arcsin�u� =
�

2
+ i ln�u ± �u2 − 1� . �41�

hese two values correspond to the incoming �+� and outgoing �−� waves. Taking the solution
ith the minus sign we get

R�h0�u → � �� = h0�u = 1� = −
1

N�
. �42�

For u going to zero the function f1�u� given by Eq. �29� behaves as

f1�u → 0� → −
2N + 1

2
ln 2 + �N − 1�ln�u� − A1 = −

2N + 1

2
ln 2 +

N − 1

2
ln � + �N − 1�ln � − A1,

�43�

here we substituted for u from Eq. �15�. To get the leading power term in Eq. �37� we obviously
ust set

A1 = −
2N + 1

2
ln 2 +

N − 1

2
ln � . �44�

sing Eqs. �40� and �41� in Eq. �30� we get

R�F1�u → � �� = −
1

2
ln N� − A1 = −

1

2
ln N� −

N − 1

2
ln � +

2N + 1

2
ln 2. �45�

Now we are ready to calculate the outgoing probability flux at the leading order of �1/2 from
q. �35�. By inserting Eqs. �39�, �42�, and �45� into Eq. �35� we obtain

J =
22N+1

�N−1/4�2N�1/2e−�/�2N�1/2��1 + R1�1/2 + ¯ � . �46�

. Calculation of the second approximation

To calculate the coefficient R1 we must determine the functions q0�u�, h1�u�, and f2�u�.
Equation �26� is inhomogenous linear differential equation for q0�u�. We first solve the ho-

ogenous part and then use the variation of a constant. We obtain the function q0�u� as

q0�u� = �h0�u��4Q0�u� , �47�

here

Q0�u� = N3 2u

�1 − u2�1/2 . �48�

he integration constant was set to zero to get the third term in the argument of the exponential
unction on the right-hand side of Eq. �37�. By virtue of Eqs. �42� and �48� the real part of the
unction q0�u� vanishes for u going to infinity

R�q0�u → � �� = R�Q0�u → � �� = 0. �49�

The function h1�u� is obtained similarly as the function q0�u�,

h1�u� = �h0�u��2H1�u� , �50�
here for the function H1�u� we obtain using Eqs. �24�, �25�, �47�, �48� and integrating by parts
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H1��u� = −
2

�f0��u��3 +
1

2u3f0��u��h0�u��2 + �3Q0�u�h0�u� +
1

�f0��u��2	�
. �51�

nserting now the explicit form of the functions f0��u� and h0�u�, Eqs. �23� and �40�, the integration
f the last equation yields

H1�u� = 3Q0�u�h0�u� +
1

�f0��u��2 + 2N3� 1

�1 − u2�1/2 +
�1 − u2�1/2

2u2 arcsin2�u� +
arcsin�u�

u

− �
0

u arcsin2�t�
t�1 − t2�1/2dt� − A2. �52�

o determine the integration constant A2 we note that for u going to zero we get from Eqs. �48�,
50�, and �52�,

�h1�u → 0� →
�

�2N�2u2 �5N3 − 2N2 − A2� =
1

�2N�2�2 �5N3 − 2N2 − A2� , �53�

here we substituted for u from Eq. �15�. To get the last term on the right-hand side of Eq. �37�,
e obviously must set

A2 = 4N2�5N − 2

4
− C	 . �54�

he real part of the asymptotics of the function h1�u� is by virtue of Eqs. �42� and �48� given as

R�h1�u → � �� = h0�u = 1�R�H1�u → � �� = h0�u = 1��− A2 − 2N3R��
0

u arcsin2�t�
t�1 − t2�1/2dt�� .

�55�

Finally, the integration of Eq. �28� is substantially simplified by the identity

f1��u�
2f0��u�

= � f1��u�
2f0��u�

	�
+

f1��u�f0��u�
2�f0��u��2 . �56�

e note that this identity substantially simplifies the calculation of the higher orders of the WKB
pproximation in general. Further, it is useful to separate the part of f2�u� denoted as F2�u� that
epends on the function h0�u� and the part denoted as 
2�u� that is independent of it,

f2�u� = F2�u� + 
2�u� . �57�

he function 
2�u� is integrated easily without any tricks. The real part of its asymptotics is given
s

R�
2�u → � �� = −
E1�

4N
. �58�

or the part F2�u� we find using Eqs. �24�, �25�, and �51� and integrating by parts

F2��u� = −
1

4u3f0��u�h0�u�
+ �H1�u�h0�u�

2
−

3Q0�u�h0�u�2

4
	�

. �59�

he real part of the asymptotics of the function F2�u� is by virtue of Eqs. �23�, �40�, and �48� given

s
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R�F2�u → � �� = h0�u = 1�
H1�u → � �

2
+ lim

u→�

N2

4 ��1 − u2�1/2 arcsin�u�
u2 +

1

u

− R��
0

u dt arcsin�t�
t�1 − t2�1/2 �� . �60�

By inserting Eqs. �49�, �54�, �55�, �57�, �58�, and �60� into Eq. �36� we obtain

R1 = −
E1�

2N
+

A2

2N�
+

N2

2�
�

0

1 arcsin2�u� − � arcsin�u�
u�1 − u2�1/2 du = −

E1�

2N
+

2N

�
�5N − 2

4
− C	 − N27��3�

4�
,

�61�

here ��z� denotes Riemann zeta function. The first order perturbation energy E1 as well as the
onstant C will be determined in the next section.

II. PERTURBATION METHOD

To calculate the norm of the wave function in Eq. �9� accurate up to the first order in �1/2 it is
ufficient to take the wave function of the unperturbed hydrogen atom. For the excited states, the
nperturbed wave function is degenerate and we must use the first order perturbation theory to
etermine the correct linear combination of the unperturbed functions. Since we need to calculate
he perturbation energies up to the large order for numerical verification of the analytic formulas
e describe the application of the perturbation method to Eq. �1� in greater detail.

The method described here is an extension of the method suggested in Ref. 29 for the coupled
scillators. The alternative way of calculation of the perturbation energies for the problem con-
idered here is described for example in Ref. 10 for the ground state energy and in Refs. 8 and 37
or the excited states.

. Derivation of difference equations

We transform Eq. �1� into the spherical coordinates, x=r sin � cos �, y=r sin � sin � and z
r cos �, multiply it by r, write the wave function in the form

��r,�� = e−r/n�
k=0

�k�r,���B2

8
	k

, �62�

nsert the expansion �2� for the energy and compare the terms of the same order of �B2 /8�.
quation �1� then reads

�−
r

2
� �2

�r2 +
2

r

�

�r
+

1

r2� cos �

sin �

�

��
+

�2

��2	� +
r

N

�

�r
+

1 − N

N
��k + r3 sin2 ��k−1 = r�

l=1

k

El�k−l.

�63�

urther, we expand the perturbation functions �k in the form of the double series

�k = �
i=0

�
j=0

gi,j
�k�ri sin2j � , �64�

here the upper bounds of the summations will be determined later, insert it into Eq. �63� and
ompare the terms of the same order of r and sin2 �. As a result we get the difference equations for

�k�
he coefficients gi,j ,
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−
1

2
gi+1,j

�k� ��i + 1��i + 2� − 2j�j + 1�� − 2�j + 1�2gi+1,j+1
�k� +

i + 1 − N

N
gi,j

�k� + gi−3,j−1
�k−1� = �

l=1

k

Elgi−1,j
�k−l�.

�65�

These equations can be used for the calculation of the perturbation energies as follows. The
alculation for the ground state is not difficult and does not differ from that described in Refs. 2
nd 29. In the first order of the perturbation theory we get

E1
1s = 2. �66�

or the excited states, the situation is a bit more complicated because the unperturbed state is
egenerate. We describe calculation of the perturbation energies for the 3s-3d state in detail.

. Solution of equations for the 3s-3d state

The unperturbed wave function of the 3s-3d state reads

�3s-3d = s�3s + d�3d, �67�

here s and d denotes the coefficients of the linear combination and the unperturbed wave
unctions of 3s and 3d states read

�3s = e−r/3�1 −
2r

3
+

2r2

27
	 �68�

nd

�3d = e−r/3r2�1 − 3 cos2 �� , �69�

espectively. Thus, we set g0,0
�0� =s, g1,0

�0� =−2s /3, g2,0
�0� = �2s /27�−2d, g2,1

�0� =3d, and gi,j
�0�=0 otherwise.

e express the third term in Eq. �65�, gi,j
�k�, set gi,k+2

�k� =0, g3k+3,j
�k� =0 and solve Eq. �65� with N=3 for

starting from 1. For given k we solve Eq. �65� for j descending from k+1 to 0 and for i
escending from 3k+2 to 3. For i=2 the third term in Eq. �65� vanishes. Therefore, for i=2 we
olve Eq. �65� for j descending from k to 1 to get equations for the coefficients g2,k−1

�k� . For i=2 and
j=0 we get the equation for the perturbation energies Ek. Finally, for i descending from 1 to 0 we
gain express gi,j

�k� and solve Eqs. �65� for j descending from k+1 to 0. The perturbation coeffi-
ients calculated in this way agree with those given in Ref. 8.

For the sake of transparency we illustrate this procedure of solving Eqs. �65� for i=2 on the
rst two orders of the perturbation theory. In the first order, k=1, we get for j=1,

30s + �1620 − 27E1�d = 0 �70�

nd for j=0

�72 − 2E1/3�s + 18E1d = 0. �71�

rom Eq. �70� we get

d =
10s

9�E1 − 60�
. �72�

y inserting this value into Eq. �71� we obtain a quadratic equation for E1. Two roots of this
quation equal

�E1
3s-3d�1,2 = 99 ± 9�41. �73�
In the second order of the perturbation theory, k=2, we get for j=2,
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g2,2
�1� = 0, �74�

or j=1,

766 908s + 15 549 570d − �5616s + 167 670d�E1 + 1701/2E1
2d − 405g2,0

�1� + �9E1 − 810�g2,1
�1�

+ 27E2d = 0 �75�

nd finally for j=0,

1 308 798s + 1 296 4536d − �14 310s + 29 160d�E1 + �57s − 567d�E1
2 + �9E1 − 972�g2,0

�1� − 648g2,1
�1�

+ �2s/3 − 18d�E2 = 0. �76�

e solve Eq. �75� to get the coefficient g2,1
�1� and insert it into Eq. �76� to get E2. We note that the

alues of the coefficients s and g2,0
�1� are not given by the perturbation theory. We also note that Eq.

76� for E2 is linear. It means that after splitting of the degenerate energy level at the first order,
here is only one solution for given E1 for higher order perturbation energies E2, E3, and so on.

Since the coefficient s is not given by the perturbation theory, it can be used to normalize the
ound state function to behave as in Eq. �37� for large � and small z. The function �67� behaves in
his region as

�3s-3d � e−�/3−z2/�6���2� 2s

27
+ d +

z2

�2� 2s

27
− 2d	 + ¯ � . �77�

t is seen that to get required behavior �37� we must set

2s

27
+ d = 1 �78�

nd that the constant C in Eq. �37� equals

C3s-3d =
2s

27
− 2d . �79�

. Solution of equations for the state 5s-5d-5g

Only slight modifications of the above procedure are necessary for the 5s-5d-5g state. The
nperturbed wave function in this case equals

�5s-5d-5g = s�5s + d�5d + g�5g, �80�

here the wave functions of the 5s, 5d, and 5g states read

�5s = e−r/5�1 −
4r

5
+

4r2

25
−

4r3

375
+

2r4

9375
	 , �81�

�5d = e−r/5r2�1 −
2r

15
+

2r2

525
	�1 − 3 cos2 �� �82�

nd

�5g = e−r/5r4�1 − 10 cos2 � +
35

3
cos4 �	 , �83�

espectively.

In the first order of the perturbation theory we get from Eqs. �65� the following three energies:
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�E1
5s-5d-5g�1,2,3 = 550,775 ± 25�481. �84�

urther we get the expression for the coefficients d and g,

d =
2s�7E1 − 2850�

�E1 − 300��E1 − 750�
�85�

nd

g =
12s

7�E1 − 300��E1 − 750�
. �86�

o get required behavior �37� we set

2s

9375
+

2d

525
+ g = 1 �87�

nd the constant C equals

C5s-5d-5g =
4s

9375
−

2d

525
− 8g . �88�

. Calculation of the norm of the wave function

The norm of the function �19� is calculated from Eq. �9�:

��1s
�1s = �
0

�

dr�
0

�

d�r2 sin �
�1s
2 = 1/2, �89�

here we made change of the variables �=r sin � and z=r cos �. Further, the norm of the wave
unctions �67� and �80� equals

��3s-3d
�3s-3d = 19 683d2 +
27s2

2
�90�

nd

��5s-5d-5g
�5s-5d-5g =
125s2

2
+

390 625d2

7
+ 136 718 750 000g2, �91�

espectively.

V. LARGE-ORDER BEHAVIOR OF THE PERTURBATION SERIES

By inserting Eq. �46� into Eq. �7� and the latter equation into Eq. �3� we obtain the large-order
ehavior of the perturbation energies,

En = En
asy�1 +

R1�

2N�2n + 2N −
3

2
	 + ¯ � , �92�
here the leading term of the large-order behavior reads
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En
asy =

24NN2N−1

�2N+1/2��
�
�− 1�n+1�23/2N2

�
	n

�2n + 2N −
1

2
	 . �93�

ere, the norm of the wave function �� 
� is given by Eqs. �89�–�91� for 1s, 3s-3d, and 5s-5d
5g states, respectively. The coefficients s and d in Eq. �90� are given by Eqs. �72� and �78�,
espectively. The coefficients s, d, and g in Eq. �91� are given by Eqs. �85�–�87�, respectively.

The coefficient R1 in Eq. �92� is given by Eq. �61�. The first order perturbation energies in this
quation are given by Eqs. �66�, �73�, and �84� for 1s, 3s-3d, and 5s-5d-5g states, respectively.
he constant C in Eq. �61� is given by Eqs. �38�, �79�, and �88� for 1s, 3s-3d, and 5s-5d-5g states,

espectively.
Formula �93� for N=1 and N=3 was for the first time given in Ref. 1 and for N=1 rederived

n Refs. 3 and 4. The first correction �61� is given here for the first time. To check its correctness
e calculated numerically

R1 = � En

En
asy − 1	2N�2n + 2N −

3

2
	

�
, �94�

here En are the exact perturbation energies calculated from Eqs. �65� by means of the language
APLE and En

asy is the leading term of the large-order behavior given by Eq. �93�. For 1s state we
alculated first 80 perturbation coefficients in the rational form. Numerical values in Eq. �94� were
xtrapolated by means of the Thiele-Padé extrapolation from the interval n=70–80 to infinity. For
s-3d and 5s-5d-5g states we calculated first 100 coefficients in 200 digits accuracy for both
nergies in Eq. �73� and all three energies in Eq. �84�. Numerical values were extrapolated from
he interval n=90–100 to infinity. The extrapolated values are compared with the values given by
q. �61� in Table I. Agreement between numerical and WKB results is excellent and confirms
oundness of both the perturbation and WKB methods suggested in this paper.

. CONCLUSIONS

In this paper the large-order behavior of the perturbation series for the energy of the hydrogen
tom in the magnetic field was derived by means of the modified WKB approximation. The
symptotic formula derived by Avron in Ref. 1 was generalized to describe the states of higher
han twofold degeneracies. On the other hand, we restricted ourselves to the states of zero pro-
ection of the angular momentum and even parity, while in Ref. 1 this restriction was not done.
he first correction to the asymptotic formula was given here for the first time. The analytic results
ere compared with numerical ones and an excellent agreement between the two was found. The

alculation of further terms in the expansions �35� and �92�, though straightforward in principle, is
ery tedious. We note that in this case we must take also the correction to the norm of the wave
unction.24,31,33,34 On the basis of the experience with one-dimensional problems33,34 we expect

TABLE I. Comparison of the numerical and analytical values of the coef-
ficient R1. See the text after Eq. �94� for details.

State E1 R1, Eq. �94� R1, Eq. �61�

1s 2 −3.333 724 367 368 66 −3.333 724 367 368 65
3s-3d 99+9�41 −82.969 565 723 945 −82.969 565 723 942

3s-3d 99−9�41 −47.079 674 497 78 −47.079 674 497 77

5s-5d-5g 550 −273.083 854 65 −273.083 854 64
5s-5d-5g 775+25�481 −417.562 256 273 −417.562 256 272

5s-5d-5g 775−25�481 −212.681 342 928 −212.681 342 920
hat the series �35� and �92� are only asymptotic, i.e., hold for sufficiently small � and large n only.
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The most immediate further application of the WKB method suggested in this paper is the
alculation of the ionization rate of the atoms in the weak electric field. The standard calculation
f this rate for the many-electron atoms is based on the calculation for the hydrogen atom.38 The
atter is based on the separability of the Schrödinger equation in the parabolic coordinates.33,35,36,39

owever, the separation of the Schrödinger equation for the motion of the electron in the binding
otential and applied electric field holds only in the case of a purely Coulombic binding potential.
rbitrarily small perturbation from the other electrons destroys the separability of Schrödinger

quation. Even for the hydrogen atom, the separability is lost once the relativistic effects are
onsidered. Only slight modifications of the procedure described here are necessary to derive the
onization rate of the hydrogen atom in the weak electric field without invoking the separability of
he Schrödinger equation.

Finally, we note that the WKB approximation suggested here is not bound to the problem of
he calculation of the lifetime of quasistationary states. It is a local approximation of the wave
unction and it can be used, for example, to describe motion of the bound electron in the intense
aser field or to estimate forward scattering amplitude for the elastic scattering of the electrons on
he atoms.
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PPENDIX

In this Appendix we discuss the relation between the WKB method suggested in Sec. II and
he usual semiclassical approximation.

Let us consider the Schrödinger equation where we included the reduced Planck constant �,

�2� �2

��2 +
�2

�z2�� = �V��,z� − E�� , �A1�

nd let us assume that the potential behaves in the vicinity of � axis as in Eq. �10�. Then we can
rite the wave function of the particle in the vicinity of � axis in the form of Eq. �11�. In general

ase there is no parameter � associated with the external field driving the particle out of the
otential well. Nevertheless, by the scaling

z = � � �A2�

he WKB approximation, very similar to that suggested for Eq. �5�, can be obtained. Physically,
he scaling �A2� implies that while the longitudinal motion is treated semiclassicaly, the transver-
al motion is treated in fully quantum manner. Proceeding then in accordance with the consider-
tions leading to Eq. �35�, it can be shown that the expansion of Eq. �A1� in the powers of � and
provides systematic approximations to the probability flux in the � direction in form of the series

n the reduced Planck constant �.
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Bohr proposed in 1913 a model for atoms and molecules by synthesizing Planck’s
quantum hypothesis with classical mechanics. When the atom number Z is small,
his model provides good accuracy for the ground-state energy. When Z is large, his
model is not as accurate in comparison with the experimental data but still provides
a good trend agreeing with the experimental values of the ground-state energy of
atoms. The main objective of this paper is to provide a rigorous mathematical
analysis for the Bohr atom model. We have established the following: �1� An
existence proof of the global minimizer of the ground-state energy through scaling.
�2� A careful study of the critical points of the energy function. Such critical points
include both the stable steady-state electron configurations as well as unstable
saddle-type configurations. �3� Coplanarity of certain electron configurations. Nu-
merical examples and graphics are also illustrated. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2168396�

. INTRODUCTION

In 1913, Bohr presented a series of three papers1–3 describing his approach for modeling
toms and molecules by synthesizing Planck’s quantum hypothesis with classical mechanics. Bohr
ried to explain the hydrogen spectral lines with a radical “planetary” model of electrons orbiting
round a nucleus. He made a set of assumptions to quantify his model, leading to the existence in
he atom a discrete set of stable, stationary orbits for electrons:

1� The dynamical equilibrium of the stationary orbits is achieved by balancing the electrostatic
Coulomb forces of attraction against the centrifugal effect and the interelectronic repelling of
the orbital motion in classical mechanics.

2� Stationary states satisfy the quantization condition that the ratio of the total kinetic energy of
the electron to its orbital frequency be an integral multiple of ��. For circular orbits, this
signifies that the angular momentum of the electron is restricted to integral multiples of �.

�Work completed while on sabbatical leave from National Tsing Hua University. Supported in part by an NSC grant of

Republic of China.

47, 022107-1022-2488/2006/47�2�/022107/23/$23.00 © 2006 American Institute of Physics
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3� Energy is emitted only when an electron makes a “jump” �i.e., noncontinuous� transition
between two stationary orbits, and the frequency of such a radiation emission is determined
by �E /2��, where �E is the energy difference between the two orbits where the transition
occurs.

From now on, vectors will be denoted by bold letters. For the hydrogen atom, Bohr’s assump-
ions work as follows. The total energy of the electron on a circular orbit with radius r and velocity

is

E = kinetic energy + potential energy =
mev

2

2
−

Ze2

r
, �1.1�

here

me = the mass of the electron,

e = the charge of the electron,

Ze = the positive charge of the nucleus.

ince

L = the angular momentum = r � p �p � the linear momentum = mev� ,

�L� = L = mevr , �1.2�

hich, in turn, by Bohr’s quantization assumption, satisfies

L = n� . �1.3�

rom �1.1�–�1.3�, we now have

E =
me

2v2r2

2mer
2 −

Ze2

r
=

L2

2mer
2 −

Ze2

r
=

n2�2

2mer
2 −

Ze2

r
=

1

2

n2

r2 −
Z

r
, �1.4�

n atomic units �by setting e=1, �2 /me=1�.
Minimizing E=E�r ,n ,Z� with respect to r for n=1,2 ,3 , . . ., for fixed Z, we obtain

Ên � min
r�0

E�r,n,Z� = −
1

2

Z2

n2 , n = 1,2,3, . . . . �1.5�

hese values and their differences totally determine the hydrogen atom’s spectral lines.
Sommerfeld later in 1916 generalized Bohr’s theory by allowing noncircular orbits and by

ncorporating relativistic effects, leading to the Bohr-Sommerfeld �old� quantum theory of the
ydrogen atom. However, for other atoms, including the simple helium, there are difficulties
naccountable by the Bohr-Sommerfeld theory; see, e.g., Refs. 6 and 7. Heisenberg worked under
oth Bohr and Sommerfeld trying to resolve such difficulties, eventually he gave up but in the
rocess invented the matrix mechanics during the 1920s.

The objective of the present paper is to analyze, mathematically, a Bohr atom model for the
round states of general atoms. Such a general Bohr model seems to be well understood by atomic
hysicists �see, e.g., the pictorials on the website of Patton11� but we could not provide an exact
itation. The model that we are going to describe below is communicated to us by our colleague,
r. S. A. Chin.4 Consider a neutral atom with atom number Z. There are Z electrons. The kinetic

nergy of an electron i moving around a circular orbit of radius ri on the nth shell, ni
1,2 ,3 , . . ., is
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Ti = − 1
2ni

2/ri
2 �ri = �ri�,ri = �xi,yi,zi� � R3 is the position vector of electron i� . �1.6�

or a heuristic derivation of �1.6�, see Ref. 6, Appendix. The potential energy is attributed to the
oulomb interactions of electron j with the nucleus and electrons j for j� i,

Pi = −
Z

ri
+ �

j�i

j=1

Z
1

rij
�rij = �ri − r j�� . �1.7�

hus the total energy of the atom is

E = E�r1,r2, . . . ,rZ� = �
j=1

Z

�Tj + Pj� = �
i=1

Z � ni
2

2ri
2 −

Z

ri
	 + �

i,j=1

i�j

Z
1

2rij
. �1.8�

e now pack these Z electrons into the various “electron shells” by the Aufbau principle by
ssigning the values of ni according to Table I. �The packing of electrons into electron shells by
he Aufbau principle involves also subshells p, d, f , etc. Since here we are only dealing with
round states of atoms, we pack electrons only into the principal s shells.� These designated
ntegral values of ni give us the Bohr atom model in this paper.

The stable stationary orbit or electron configuration, denoted as �r1
* ,r2

* , . . . ,rZ
*�, and the asso-

iated ground state energy E�r1
* ,r2

* , . . . ,rZ
*�, can now be obtained by

min
R�R3Z

E�R� � E�R*�, R* � �r1
*,r2

*, . . . ,rZ
*� . �1.9�

n Table II, we have listed the ground-state energy of all the atoms calculated from �1.9� as well
s the known �“exact”� experimental values. The reader may find some agreement between these
wo sets of values, especially when Z is small.

The Bohr model of atoms was derived by Bohr in an ad hoc way at first. The rigorous,
ave-mechanical model is the following Schrödinger-Born-Oppenheimer equation describing the
any-particle quantum-mechanical behavior


−
1

2�
k=1

Z

�k
2 +

1

2 �
k,k�=1

k�k�

Z
1

rkk�
− �

k=1

Z
Z

rk���R� = E��R� . �1.10�

s Bohr’s model appears to be something of the history, why does it still warrant any attention?
he reasons that motivate our study here are threefold:

9

TABLE I. Assignment of quantum numbers ni for the ground state of an atom with atom number Z from Z
=1 to 108.

Electron numbers i Electron shells names Assigned quantum numbers ni

1� i�2 K 1

3� i�8 L 2

9� i�18 M 3

19� i�36 N 4

37� i�54 O 5

55� i�86 P 6

87� i�108 Q 7
i� Recently, through the dimensional scaling �D-scaling� method, Svidzinsky, Scully, and
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Hershbach12,13 have arrived at Bohr’s model from the totally quantum-mechanical
�Schrödinger-Born-Oppenheimer� model via asymptotics. This has stirred surprise, excite-
ment, and interests,15 especially among the researchers in the Institute for Quantum Studies
at Texas A&M and has rekindled efforts in trying to understand the synergism between
D-scaling, the Schrödinger-Born-Oppenheimer model and the Bohr model for atoms and
molecules.

ii� The Schrödinger-Born-Oppenheimer model �1.10� involves large-scale numerical compu-
tation and is rather theoretically intractable, while the Bohr model �1.8� and �1.9� requires
only desk-top computing, producing outcomes of electron configurations highly valuable
and intuitive for atomic experiments and molecular modeling, especially with the incorpo-
ration of the Hartree-Fock and other refinement techniques �e.g., Refs. 6, 7, 5, 8, and 14�.

iii� Mathematically speaking, even though Bohr’s atom model is nearly 90 years old, histori-
cally it has not attracted due attention in the mathematics community and, thus, has not
undergone rigorous mathematical analysis it rightfully deserves. Many relevant interesting
mathematical problems are worth investigation. We hope our mathematical analysis carried

TABLE II. Comparison of ground-state energies of atoms’ ground-state energies in hartrees �htr� with atom
number Z: 2�Z�30, between experimental values and Bohr’s energies. When Z is small, there is a better
agreement, and the trend is basically sound. But none of Bohr’s energies are within the chemical accuracy of
five decimal places.

Z Experiment Bohr

2.0 −2.903 −3.0615

3.0 −7.478 −7.6889

4.0 −14.667 −14.8377

5.0 −24.652 −24.7906

6.0 −37.842 −37.8128

7.0 −54.584 −54.1540

8.0 −75.059 −74.1726

9.0 −99.719 −97.9746

10.0 −128.919 −125.5152

11.0 −162.233 −156.9173

12.0 −200.026 −192.3112

13.0 −242.315 −231.7757

14.0 −289.322 −275.4952

15.0 −341.208 −323.5122

16.0 −398.601 −376.0176

17.0 −460.102 −433.0846

18.0 −527.494 −494.9136

19.0 −599.924 −561.4195

20.0 −677.558 −632.8097

21.0 −760.575 −709.3828

22.0 −849.285 −791.0756

23.0 −943.804 −878.0731

24.0 −1044.315 −970.5907

25.0 −1150.866 −1068.6207

26.0 −1263.483 −1172.1997

27.0 −1382.494 −1281.5093

28.0 −1507.990 −1396.5737

29.0 −1640.123 −1517.7809

30.0 −1779.048 −1644.9630
out here will improve the understanding of Bohr’s atomic model and that of atoms in
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general at a more fundamental level, with an ultimate goal of improving the modeling and
compution of molecules or even building new molecular models.

I. EXISTENCE AND ALGORITHM FOR THE GLOBAL MINIMIZER

The following problems are of significant mathematical interests, which also have physical
mportance:

i� a rigorous existence proof of ground-state energies;
ii� stable as well as unstable electron steady-state orbits;
iii� geometric configurations: coplanarity and symmetries of electron locations.

We discuss them through a sequence of lemmas and theorems.
From now on, to simplify notation, we often write

�
i=1

n

as �
i

, �
i,j=1

i�j

n

as �
i�j

,

nless more clarity of the summation index is deemed necessary.
We begin by letting Z be a positive number and n be a positive integer; n=1,2 ,3 , . . ., define

1� For n=1,

E1
Z:R3 → R, E1

Z�r1� =
n1

2

2r1
2 −

Z

r1
, r1 � R3.

2� For n�2 and Z�n, En
Z :R3n→R,

En
Z�R� = �

i=1

n � ni
2

2ri
2 −

Z

ri
	 + �

i,j=1

i�j

n
1

2rij
, �2.1�

where R= �r1 , . . . ,rn�, ri�R3, ri and rij are defined as in �1.6� and �1.7�. The domain of En
Z

is then given by R3n \Sn, where Sn is the singularity manifold of En
Z given by

Sn = �R = �r1, . . . ,rn� � R3n�r j = 0 or r j − rk = 0, for some j,k,1 � j,k � n, j � k .

En
Z is obviously in C	�R3n \Sn�. We are interested in the existence of R*�R3n \Sn such that

En
Z�R*� = inf

R�R3n\Sn

En
Z�R�, for n � 2.

Note that the case of n=1 is already solved in �1.6�. From now on, we will abbreviate En
Z as

E if no ambiguities should arise. Throughout the rest of the section, the reader may find that
in all of the proofs given, as long as ni�0 for i=1,2 , . . . ,n, the proofs go through without
any problem, i.e., ni’s do not have to follow the designated values as in Table I. We further
define

SZ
n = �R � R3n \ Sn��

i

Z

ri
− �

i�j

1

2rij
� 0� .

Lemma 1 (scaling along a ray): Let R�SZ
n. The function g :R+��0,	�→R, g�t��E�tR� has

unique global minimum at

t* = t*�R� = arg min E�tR� , �2.2�

t�0,t�R
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here

t* � 0,g��t*� = 0, g��t*� � 0, �2.3�

E�t*R� = −
1

2�
i

ni
2

ri
2

1

t*2 = −
1

2��i

Z

ri
− �

i�j

1

rij
	2���

i

ni
2

ri
2	 
 0. �2.4�

Proof: First, we note that SZ
n is a nonempty unbounded open set of R3Z. It is easy to see that

f R�SZ
n, then tR�SZ

n for any t�0, i.e., SZ
n is star shaped. For t�0, we have

g�t� =
1

t2�
i
� ni

2

2ri
2	 +

1

t �− �
i

Z

ri
+ �

i�j

1

2rij
	 , �2.5�

g��t� = −
2

t3�
i

ni
2

2ri
2 +

1

t2��
i

Z

ri
− �

i�j

1

2rij
	 . �2.6�

et g��t*�=0 to get the only zero of g� at

t* =
�i

ni
2 � ri

2

�i
Z � ri − �i�j

1 � 2rij

. �2.7�

ote that the denominator in �2.7� is positive since R�SZ
n. So t* is well defined. Next, we have

g��t� =
6

t4�
i

ni
2

2ri
2 −

2

t3��
i

Z

ri
− �

i�j

1

2rij
	 ,

g��t*� =
1

t*4�
i

ni
2

ri
2 � 0.

herefore g�t� has only a global minimum at t*�0, and ��t*�=E�t*R� is given as in �2.4�. �

Remark 1: If R�Sn�SZ
n, then for t�0,

g�t� = E�tR� =
1

t2�
i

ni
2

ri
2 +

1

t �− �
i

Z

ri
+ �

i�j

1

2rij
	 .

his function g�t� is always positive and monotonic for t� �0,	� such that g��t�=0 has no solution
�R+. In fact, g��t�
0 on R+, i.e., g is strictly decreasing. Since g�t� is smooth on R+,
imt→0 g�t�= +	 and limt→	 g�t�=0, we have g�t��0 for any t�R+. �

From �2.1�, by completing the square we have

E�R� = �
i
� ni

�2ri

−
�2Z

ni
	2

+ �
i�j

1

2rij
− �

i

2Z2

ni
2 � − �

i

2Z2

ni
2 ,

herefore E�R� is bounded from below, its infimum exists and we have

�n
Z
ª inf

R�R3n\Sn

En
Z�R� = inf

R�SZ
n

En
Z�R� 
 0. �2.8�

We introduce the following gradient notation: Let f�x1 ,x2 , . . . ,xn� be any scalar valued func-
ion of n variables. For any variables xi1

xi2
, . . . ,xik

, where 1� i1
 i2
 ¯ 
 ik�n, we denote the

radient of f with respect to these variables as
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D�xi1
xi2

,. . .,xik
�f�x1,x2, . . . ,xn� = � �f

�xi1

�x1,x2, . . . ,xn�,
�f

�xi2

�x1,x2, . . . ,xn�, . . . ,
�f

�xik

�x1,x2, . . . ,xn��T

,

where T means transpose� which is regarded as a column vector. If �xi1
,xi2

, . . . ,xik
�

�x1 ,x2 , . . . ,xn�, i.e., all the variables x1 ,x2 , . . . ,xn are included, then we simply write the above as
f , i.e.,

Df = ��f/�x1 �f/�x2 ¯ �f/�xn�T.

point y�Rn is said to be a critical point of f if Df�y�=0. Obviously, any local maximum or
inimum of E is a critical point, but many critical points of E may be of the saddle type which are

hysically unstable.
Later, we will also need to utilize the Hessian matrix of f ,

D2f = � �2f

�xi�xj
�

1�i,j�n
. �2.9�

A critical point R†�R3Z of E�R� is defined by DE�R†�=0. Thus, at a critical point we obtain
he set of gradient �vector� equations

Drj
E�R†� = 0 for j = 1,2, . . . ,n , �2.10�

.e.,

� nj
2

rj
†4 −

Z

rj
†3	r j

† + �
k=1

k�j

n
1

2rkj
†3rkj

† = 0 � R3, j = 1,2, . . . ,n . �2.11�

Using rkj
† =rk

†−r j
†, we can write �2.11� alternatively as


 nj
2

rj
†4 −

Z

rj
†3 + �

k=1

k�j

n
1

2rkj
†3�r j

† − �
k=1

k�j

n
1

2rkj
†3rk

† = 0, j = 1,2, . . . ,n . �2.12�

hese constitute the equations for the steady states of electron orbits, based on the Bohr model. In
articular, if R* is a global minimum of E established in the preceding section, then R* is
ecessarily a critical point and so the equations in �2.11� or �2.12� hold, with the “†” signs therein
eplaced by “*.”

Theorem 1 (Virial): Let R†= �r1
† ,r2

† , . . . ,rn
†� be a critical point of E satisfying DE�R†�=0

R3n, then so is RR† for any 3D rotation R, and R†�SZ
n. The ground-state energy value is given

y

E�R†� = − �
i=1

n
ni

2

2ri
†2 
 0. �2.13�

n addition, along the ray tR† for t�0, E�tR†� attains its global minimum at t=1.
Proof: The energy E�R� is invariant under any 3D rotation R, where for R= �r1 ,r2 , . . . ,rn�,

R= �Rr1 ,Rr2 , . . . ,Rrn�. Thus, if R† is a critical point, so is RR†.
Consider, for t�0,

E�tR†� = �
i=1

n � ni
2

2t2ri
†2 −

Z

tri
†	 + �

i,j=1

i�j

2
1

2trij
† .

†
hen, because DE�R �=0, we have
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d

dt
�E�tR†��t=1 = DE�R†� · R† = 0,

.e.,

�
i
�−

ni
2

ri
†2 +

Z

ri
†	 − �

i�j

1

2rij
† = 0, �2.14�

nd

�
i

Z

ri
† − �

i�j

1

2rij
† = �

i

ni
2

ri
†2 � 0,

nd, hence, R†�SZ
n. Therefore

E�R†� = �
i
� ni

2

2ri
†2 −

Z

ri
†	 + �

i�j

1

2rij
† = ��

i
� ni

2

ri
†2 −

Z

ri
†	 + �

i�j

1

2rij
� − �

i

ni
2

2ri
†2 = − �

i=1

Z
ni

2

2ri
†2 .

But from the proof of Lemma 1, the derivative of function g�t�=E�tR†�, g��t�, has only one
ero t* satisfying g��t*�=0. Thus t*=1, and t*=1 necessarily corresponds to the global minimum
f g�t�.

The proof is complete. �

Corollary 1: Let R†= �r1
† , . . . ,rn

†� be a critical point of E satisfying Theorem 1. Define an n
n matrix M† whose �j ,k�-entries Mjk are given by

Mjk
† =�−

1

2rkj
†3 , k � j ,

nk
2

rk
†4 −

Z

rk
†3 + �

i=1

i�k

Z
1

2rki
†3 , j = k . � �2.15�

hen det M†=0.
Proof: Note that these Mjk

† ’s are the coefficients appearing in �2.12�. As the matrix equation
M†�=0�Rn has at least a nontrivial solution ��Rn, ��0, where � is a vector formed by all of
he ith components of the vectors in �r1

† ,r2
† , . . . ,rn

†�, with i=1, or 2, or 3, we must have the
eterminant of M† equal to 0. �

From �2.14�, we obtain that the set

NZ
n = �R = �r1, . . . ,rn� � R3n \ Sn��

k=1

n � Z

rk
−

ni
2

rk
2� = �

j,k=1

j�k

n
1

2rjk� , �2.16�

ontains all critical points of En
Z. NZ

n is a closed nonempty subset of R3n, and NZ
n �SZ

n. We then
ave

inf
R�SZ

n
En

Z�R� = inf
R�NZ

n
En

Z�R� . �2.17�

urthermore, we obtain from �2.4�

En
Z�R� = −

1

2�
i=1

n
ni

2

ri
2 
 0, " R = �r1, . . . ,rn� � NZ

n . �2.18�

1 3 2 1
hen n=1, define NZ= �r1�R �r1=n1 /Z. For any r�NZ,
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E1
Z�r� = −

Z2

2n1
2 = inf

r1�R3\S1

E1
Z�r1� .

emma 2: Let n�2 and Z=n, then

�n
Z � �k

Z, " k: 1 � k � n − 1.

f �k
Z=Ek

Z�r1
* , . . . ,rk

*� for some �r1
* , . . . ,rk

*�� �R3�k, then

�n
Z 
 �k

Z, " 1 � k � n − 1.

roof: For any �r1 , . . . ,rk��SZ
k and �rk+1 , . . . ,rn��SZ−k

n−k, we have

En
Z�r1, . . . ,rk,trk+1, . . . ,trn� = ��j=1

k � nj
2

2rj
2 −

Z

rj
� + �

j,i=1

j�i

k
1

2rij�
+ � �

j=k+1

n � nj
2

2t2rj
2 −

Z

trj
� + �

j,i=k+1

j�i

n
1

2trij
+ �

j=k+1

n

�
i=1

k
1

�tr j − ri��
� �1 +

1

t
�2.

ote that

lim
t→	

�2 = lim
t→	� �

j=k+1

n � nj
2

2trj
2 −

Z

rj
� + �

j,i=k+1

j�i

n
1

2rij
+ �

j=k+1

n

�
i=1

k
t

�tr j − ri�� = − 
 �
j=k+1

n
Z − k

rj
− �

j,i=k+1

j�i

n
1

2rij� .

n the special case when k=n−1, we have rn�SZ−n+1
1 and then

lim
t→	

�2 = −
Z − n + 1

rn

 0;

ut if 1�k�n−2, which occurs only when n�3, then �rk+1 , . . . ,rn��SZ−k
n−k implies

lim
t→	

�2 = − 
 �
j=k+1

n
Z − k

rj
− �

j,i=k+1

j�i

n
1

2rij� 
 0. �2.19�

hus we obtain, for any �rk+1 , . . . ,rn��SZ−k
n−k,

1

t
�2 
 0, for t sufficiently large.

ence, we have for any �r1 , . . . ,rk��SZ
k , for t sufficiently large,

�n
Z � En

Z�r1, . . . ,rk,trk+1, . . . ,trn� 
 
�j=1

k � nj
2

2rj
2 −

Z

rj
� + �

j,i=1

j�i

k
1

2rij� . �2.20�

hus

�n
Z � �k

Z.

Z Z * * * * 3 k
f �k =Ek�r1 , . . . ,rk� for some �r1 , . . . ,rk�� �R � , then �2.19� and �2.20� leads to
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�n
Z 
 �k

Z.

�

Theorem 2: Let Z=n. There exists an R*= �r1
* , . . . ,rn

*��R3n such that

En
Z�R*� = inf

R�R3n\Sn

En
Z�R� .

Proof: Since the case of n=1 is trivial, we assume n�2. From �2.8� and �2.17�, we only need
o prove that there exists an R*= �r1

* , . . . ,rn
*��NZ

n such that

En
Z�R*� = inf

R�NZ
n

En
Z�R� = �n

Z.

et �Rm�NZ
n be a minimizing sequence such that En

Z�Rm�→�n
Z as m→	. We first show that

Rm is bounded.
Suppose �Rm is unbounded. Let Rm= �r1

m , . . . ,rn
m�. By replacing �Rm with its subsequence, if

ecessary, essentially two cases need to be considered:

a� �rk
m�→ +	, 1�k�n; and

b� there exist M �0 and k0: 1�k0�n−1, such that

rk
m → + 	, 1 � k � k0,

rk
m � M, k0 + 1 � k � n .

In general, the index set �1,2 , . . . ,n has two disjoint subsets such that rk
m→	 and rk

m
M,
espectively, as m→	 for k in each of these two index subsets. But the proof is the same.

For case �a�, since �Rm�NZ
n and �2.18�, we have

�n
Z = lim

m→	
En

Z�Rm� = lim
m→	

�−
1

2�
i=1

n
ni

2

ri
m� = 0.

his contradicts �n
Z
0 from �2.8�. Thus, case �a� is impossible.

For case �b�, we can further assume that rk
m→rk

* for k0+1�k�n. Then we have

�n
Z = lim

m→	
En

n�Rm� = lim
m→	��i=1

n � ni
2

2�ri
m�2 −

Z

ri
m	 + �

i,j=1

i�j

n
1

2rij
m�

= � �
k=k0+1

n � nk
2

2�rk
*�2 −

Z

rk
*� + �

j,k=k0+1

j�k

n
1

2rjk
* � + lim

m→	
�

j,k=1

j�k

k0 1

2rjk
m � �n−k0

Z + lim
m→	

�
j,k=1

j�k

k0 1

2rjk
m � �n−k0

Z .

y applying the first part of Lemma 2, we must have

lim
m→	

�
j,k=1

j�k

k0 1

rjk
m = 0
nd
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�n
Z = �n−k0

Z = �
k=k0+1

n � ni
2

2�rk
*�2 −

Z

rk
*� + �

j,k=k0+1

j�k

n
1

2rjk
* ,

hich contradicts the second part of Lemma 2. Thus, case �b� is also impossible.
Therefore �Rm is bounded and contains a convergent subsequence, denoted by �Rm again,

uch that Rm→R*�R3n. Since NZ
n is a closed subset of R3n, we have R*�NZ

n, and

En
n�R*� = �n

Z = inf
R�R3n\Sn

En
Z�R� .

�

Corollary 2: Let Z=n. For any nontrivial subspace V of R3, the energy function En
Z defined in

2.1) attains a minimum in Vn. �

II. CRITICAL POINTS OF THE ENERGY E: STABLE AND UNSTABLE ELECTRON
ONFIGURATIONS

From here throughout the rest of the paper for all practical interest we assume n=Z for En
Z,

hich will be written simply as E.
In order to distinguish any global �or, possibly local� minimizer R* from a saddle-type critical

oint RÙ of E, we need to examine whether the �3Z�� �3Z� Hessian matrix D2E �cf. �2.9�� is
semi-� positive-definite at R*, as the second order Taylor approximation gives

E�R� = E�R*� + DE�R*� · �R − R*� +
1

2
�R − R*�T · D2E�R*� · �R − R*� + O��R − R*�3�

= E�R*� +
1

2
�R − R*�T · D2E�R*� · �R − R*� + O��R − R*�3�, for �R − R*� small,

equiring that

RT · D2E�R*� · R � 0 for any R � R3Z,

for R* to be a local or global minimum.

ollowing the terminology of calculus of variations, we say that a critical point RÙ is nondegen-
rate if DR

2 E�RÙ� is an invertible �i.e., nonsingular� �3Z�� �3Z� matrix. Otherwise, RÙ is said to be
degenerate critical point. Thus, a critical point is degenerate if and only if DR

2 E�RÙ� has 0 as its
igenvalue. Here all the critical points are degenerate according to the following, due to the
otational invariance of the critical points �Theorem 1�.

Theorem 3 (degeneracy of critical points): Any critical point RÙ of E�R� is degenerate. The
imension of degeneracy is at least 2.

Proof: Any critical point R0
Ù satisfies �2.10� and, according to Theorem 1, RRÙ is also a

ritical point for any 3D rotation R,

DE�RR0
Ù� = 0 � R3Z. �3.1�

rom the theory of Lie groups in R3, we know that the rotation group SO�3� �i.e., the special
rthogonal group� in R3 can be �essentially� parametrized by two independent parameters �1 ,2�.
o we may write R=R�1 ,2� and define

RÙ�1,2� � R�1,2�R0
Ù. �3.2�
hen by �3.1�,
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DE�RÙ�1,2�� = 0 for all 1 and 2. �3.3�

hus, by the chain rule,

�

� j
DE�RÙ�1,2�� = D2E�RÙ�1,2�� · � �

� j
RÙ�1,2�� = 0, j = 1,2. �3.4�

ince

�

� j
RÙ�1,2� � 0 for j = 1,2, �3.5�

nd �� /�1�RÙ�1 ,2� and �� /�2�RÙ�1 ,2� are linearly independent, because by holding 1=1
0

nd 2=2
0, RÙ�1 ,2

0� and RÙ�1
0 ,2� form two independent trajectories when only one of 1 and

2 is allowed to vary, and �� /�1�RÙ�1 ,2
0� and �� /�2�RÙ�1

0 ,2� are the tangent vectors along
hese two independent trajectories. We conclude from �3.4� that the Hessian matrix D2E�RÙ� has
wo linearly independent eigenvectors corresponding to the eigenvalue 0. The proof
s complete. �

The determination of all critical point R† from either �2.11� or analytically is no easy task. The
ollowing two theorems provide a systematic way to construct �unstable� saddle-type critical
oints which are not global minima.

Define a subset Rx
3Z of R3Z by

Rx
3Z = �R = �r1,r2, . . . ,rZ� � R3Z�r j = �xj,yj,zj�T = �xj,0,0�, for j = 1,2, . . . ,Z;xj � R .

�3.6�

o Rx
3Z is a Z-dimensional subspace of R3D. The subspaces Ry

3Z and Rz
3Z can be defined likewise.

Theorem 4: The minimization problem

min
R�Rx

3Z
E�R� �3.7�

as at least a (global) minimizer Rx
*�Rx

3Z. This Rx
* is also a critical point of E in R3Z, i.e.,

E�Rx
*�=0. In fact, any critical point Rx

† of E�R� in Rx
3Z is also a critical point of E in R3Z, i.e.,

E�Rx
†�=0. The same is true if Rx

3Z is replaced by Ry
3Z or Rz

3Z.
Proof: Because Rx

3Z is a closed subspace of R3Z, we can establish that �3.7� has a minimizer Rx
*

n Rx
3Z by Corollary 2. The same conclusion follows for Ry

3Z and Ry
3Z.

We now show how Rx
* satisfies DE�Rx

*�=0. Since Rx
* solves �3.7�, we have the gradient

quations

�

�xj
�E�R��R=Rx

* = 0, for j = 1,2, . . . ,Z; cf. �3.6� for xj .

he above gives


 nj
2

xj
*4 −

Z

xj
*3 + �

k=1

k�j

Z
1

2�xk
* − xj

*�3�xj
* − � 1

2�xk
* − xj

*�3
xk

* = 0, j = 1,2, . . . ,Z , �3.8�

here xj
*’s are the first components of r j

*, with Rx
*= �r1

* ,r2
* , . . . ,rZ

*�. Note that �3.8� just represents
he first component �i.e., related to x� of the vector equations �2.12�, with “†” therein replaced by

*.” But the second and third components �related to y and z� are automatically satisfied because
yj =zj =0 for j=1,2 , . . . ,Z. �

Next, define the following subsets of R3Z:

3Z 3Z
Rx,y = �R = �r1,r2, . . . ,rZ� � R �r j = �xj,yj,zj� = �xj,yj,0�, for j = 1,2, . . . ,Z;xj,yj � R ,
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Rx,z
3Z = �R = �r1,r2, . . . ,rz� � R3Z�r j = �xj,yj,zj� = �xj,0,zj�, for j = 1,2, . . . ,Z;xj,zj � R ,

Ry,z
3Z = �R = �r1,r2, . . . ,rZ� � R3Z�r j = �xj,yj,zj� = �0,yj,zj�, for j = 1,2, . . . ,Z;yj,zj � R .

heorem 5: The minimization problem

min
R�Rx,y

3Z
E�R�

as at least a (global) minimizer Rx,y
* �Rx,y

3Z . This Rx,y
* is a critical point of E�R� in R3Z, i.e.,

E�Rx,y
* �=0. In fact, any critical point Rx,y

† of E�R� in Rx,y
3Z is also a critical point of E�R� in R3Z,

.e., DE�Rx,y
† �=0. The same theorem holds if we replace Rx,y

3D above by Rx,z
3D or Ry,z

3D.
Proof: Same as that for Theorem 4. �

Corollary 3: Let V be a (coordinate) subspace of R3 with dimension 1 or 2. Then any critical
oint of E on VZ is a critical point of E on R3Z.

Proof: Any such V can be obtained by a rotation from Rx
3Z or Rx,y

3Z , respectively, if V has
imension of, respectively, 1 and 2. The corollary follows because E is rotationally invariant. �

Remark 2:

i� Due to the rotational invariance of the critical points, there is nonuniqueness of the global
minimum of E�R�. Thus, a quotient space needs to be used �or considered� if one wishes to
have any uniqueness of the global minimum of E. Computationally, this 3D rotational
congruence is avoided by setting up a coordinate frame using �5.1� in Sec. V.

ii� According to Lemma 1, for any critical point RÙ, the direction along the ray RÙ is a
direction of increase for E. Therefore, DR

2 E�RÙ� has at least one positive eigenvalue.
iii� According to the numerical computation in Examples 2 and 3 in Sec. V, critical points

computed by utilizing Theorems 4 and 5 and Corollary 3 all have some negative eigenval-
ues for the Hessian DR

2�E� at those critical points. Thus, in view of �ii� above, those critical
points are all saddle-type unstable critical points. �

We conjecture that the energy function E as defined in Table I and �1.6� and �1.9� has only
nitely many critical points R† satisfying DE�R†�=0, which are not rotationally equivalent. But
e do not yet have a proof.

V. COPLANARITY OF STABLE OR UNSTABLE ELECTRON CONFIGURATIONS

Numerical results �see Example in Sec. V� indicate that for Z=3 and 4, the stable electron
onfiguration �corresponding to a global minimizer of E� has all electrons coplanar with the origin.
or Z=1 and 2, the coplanarity is trivial. For Z�5, numerical evidence suggests that coplanarity
o longer holds.

Theorem 6 (co-planarity of the electrons with the origin, Z=3�: Let Z=3. If R†

�r1
† ,r2

† ,r3
†� is a critical point of E�R� �including the global minimizer R*�, then r1

† ,r2
† ,r3

†, and 0
re coplanar in R3.

Proof: For clarity, we write out the system of equations �2.12�,

� 1

r1
†4 −

3

r1
†3 +

1

r12
†3 +

1

r13
†3	r1

† −
1

r12
†3r2

† −
1

r13
†3r3

† = 0 ,

� 1

r†4 −
3

r†3 +
1

r†3 +
1

r†3	r2
† −

1

r†3r1 −
1

r†3r3
† = 0 ,
2 2 12 23 12 23
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� 4

r3
†4 −

3

r3
†3 +

1

r13
†3 +

1

r23
†3	r3

† −
1

r13
3 r1

† −
1

r23
†3r2

† = 0 . �4.1�

f any single equation in �4.1� has all three coefficients of r1
†, r2

†, and r3
† to be nonzero, then any

ne vector in �r1
† ,r2

† ,r3
† can be expressed as a linear combination of the other two vectors, and

IG. 1. For lithium �Li�, Z=3. The electron configuration is shown. We have r1=r2=0.363 806, r3=3.848 951, 2

1.605 660=91.997 541 43° �� /2, 3=1.605 660=91.997 541 31° �� /2, �3=�, E=−7.690 46�htr�; htr=hartree.

IG. 2. �Color online� For beryllium �Be�, Z=4. We have r1=r2=0.266 90, 2=3.141 59=�, r3=r4=2.231 96, 3=4
1.570 80=� /2, �3=�4=3.141 59=�, E=−14.840 35�htr�.
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hus the proof follows. Therefore, the only possibility that r1
†, r2

†, r3
† and 0 are not coplanar is when

ni
2

ri
†4 −

3

ri
†3 − �

j�i

j=1

3
1

rij
† = 0 for i = 1,2,3. �4.2�

ut the above implies, from �4.2�, that

IG. 3. �Color online� For boron �B�, Z=5. We have r1=r2=0.210 81, r3=r4=r5=1.617 77, 2=2.094 40=2� /3, 3

2.094 40=2� /3, �3=3.141 59=�, 4=1.570 80=� /2, �4=1.570 80=� /2, 5=1.570 80=� /2, �5=−1.570 80=−� /2,
=−24.793 58�htr�.

IG. 4. �Color online� For carbon �C�, Z=6. We have r1=r2=0.173 98, r3=r4=r5=r6=1.293 53, 2=3.141 59=�, 3

2.106 38, �3=−0.224 66, 4=1.035 22, �4=1.346 14, 5=2.106 38, �5=2.916 93, 6=1.035 22, �6=−1.795 46, E=

37.816 80�htr�.
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1

r12
†3r2

† +
1

r13
†3r3

† = 0,
1

r12
†3r1

† +
1

r23
†3r3

† = 0,
1

r12
†3r1

† +
1

r23
†3r2

† = 0 .

dding up the three equations in �4.2�, we have

IG. 5. �Color online� For nitrogen �N�, Z=7. We have r1=r2=0.148 22, r3=r6=1.060 95, r4=r5=1.051 75, r7=1.158 87,

2=3.141 59=�, 3=−6=1.218 01, �3=�6=−0.195 28, 4=5=1.474 08, �4=1.375 51, �5=−1.766 08, 7=3.141 59=�,

7=0.328 85, E=−54.160 99�htr�.

IG. 6. �Color online� For oxygen �O�, Z=8. We have r1=r2=0.129 10, r3=r4=r5=r6=0.877 70, r7=r8=1.026 74, 2

8=�, 3=4=5=6=� /2, 7=0, �3=−0.197 20, �4=1.373 60, �5=2.944 40, �6=−1.768 00, �7=−0.482 03, �8=

0.737 23, E=−74.177 99�htr�.
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�
i=

3


�
j=1

j�i

3
1

rij
†3�ri

† = 0 .

nce again, any ri
† can be expressed as a linear combination of r j

† for j� i. Therefore, r1
†, r2

†, r3
†

nd 0 are coplanar. �

IG. 7. �Color online� For fluorine �F�, Z=9. We have r1=r2=0.114 35, r3=r4=r5=r6=r7=0.78 23, r8=r9=0.865 58, 2

9=�, 3=4=5=6=7=� /2, 8=0, �3=−0.261 52, �4=0.995 12, �5=2.251 76, �6=3.508 39, �7=4.765 03, �8=
0.213 56, �9=−0.021 96, E=−97.904 90�htr�.

IG. 8. �Color online� For neon �NE�, Z=10. We have r1=r2=0.102 63, r3=2.146 17, r4=0.637 26, r5=0.632 88, r6

0.633 87, r7=0.633 55, r8=0.630 08, r9=0.624 96, r10=1.870 83, 2=3.139 87����, 3=−0.063 17, 4=0.990 93, 5

1.069 46, 6=0.985 91, 7=2.138 22, 8=2.114 86, 9=2.040 94, 10=3.016 75, �3=−0.168 95, �4=0.141 27, �5
2.172 93, �6=4.253 46, �7=1.110 58, �8=3.258 05, �9=−0.948 26, �10=−1.325 32, E=−125.992 87�htr�.
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At this time, we are not yet able to prove the coplanarity property for the case Z=4, which as
ig. 2 in the next section indicates, is true from numerical computation.

. NUMERICAL EXAMPLES AND DATA

We first list in Table II the comparison between the experimental values of atoms’ ground-
tate energies and those of the Bohr energies, for atom numbers between 2 and 30. There is a
easonable agreement between these values when Z is small. When the value of Z increases, the
eviations also grow. Nevertheless, the trend of Bohr’s atom energies look good.

We now provide several examples to illustrate stable as well as unstable electron configura-
ions according to Bohr’s model, by utilizing Theorems 4 and 5 and Corollary 3.

Example 1 �stable electron configurations for the ground state of the Bohr atom model, with
:3�Z�10�: We set up the problem as follows. In order to avoid the 3D rotational congruence
s stated in Theorem 1, we fix the direction of r1 along the positive z axis and that of r2 on the
x ,z�-plane, as follows:10

r1 = r1k ,

r2 = r2 sin 2i + r2 cos 2k ,

ri = ri sin i cos �ii + ri sin i sin �ij + ri cos ik, i � 3,

0 � i � �, 0 � �i � 2�, i � 2. �5.1�

hen the relative distances become

r1i = �r1
2 − ri

2 − 2r1ri cos i�1/2, 2 � i � Z ,

r2i = �r2
2 + ri

2 − 2r2ri�sin 2 sin i cos �i + cos 2 cos �i��1/2, 3 � i � Z ,

TABLE III. Locations of four critical points of problem �5.4�. Note that only R2
† and R3

† are true minimizers for
�5.4�, while R1

†, R4
†, and R5

† are just local minima for �5.4�.

Critical points

Coordinates �cf. �5.3�� �set �2=��

Energiesr1 r2 r3 1 2

R1
† 1.0334 0.3133 7.2778 0 0 −5.5985

R2
† 0.3622 0.3647 4.1865 0 � −7.6837

R3
† 0.3647 0.3622 4.1865 � 0 −7.6837

R4
† 1.0967 0.3174 2.2462 � � −5.7752

R5
† 0.3174 1.0967 2.2462 � � −5.7752

TABLE IV. Eigenvalues of the Hessian with respect to the angular variables 1 and 2.

Point Two eigenvalues of Hessian ��2E /�i� j� Eigenvectors

R1
† −1.7530, −0.0187 �−0.7120,−0.7022�T, �0.7022,−0.7120�T

R2
† −0.0061, 0.6831 �−0.7290,0.685�T, �0.6845,0.7290�T

R3
† −0.0061, 0.6831 �0.6845,−0.7290�T, �−0.7290,−0.6845�T

R4
† −1.4170, 0.0542 �0.7014,0.7128�T, �−0.7128,0.7014�T

R5
† −1.4170, 0.0542 �0.7014,0.7128�T, �−0.7128,0.7014�
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rij = �ri
2 + rj

2 − 2rirj�sin i sin  j cos��i − � j� + cos i cos  j��1/2, 3 � i 
 j 
 Z . �5.2�

he stable electron configurations corresponding to minimal ground-state energy are shown in
igs. 1–8, along with the data given in the captions.

Example 2 �saddle-type unstable colinear electron configurations, Z=3�: Consider the case of

FIG. 9. �Color online� The energy surface E plotted against the angular variables 1 and 2 �cf. �5.3�� near the critical
oints Ri

†, i=1,2 ,3 ,4 ,5 �cf. Table III� in sequential order, whose locations are pin-pointed by an arrow. These surfaces are
ll of the saddle type.
i, Z=3. Write
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r3 = r3k,r1 = r1 sin 1i + r1 cos 1k ,

r2 = r2 cos 2k + r2 sin 2 cos �2i + r2 sin 2 sin �2j . �5.3�

FIG. 9. �Continued�.
e consider
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min
R�Rz

9
E�R�, R = �r1,r2,r3� = 
� 0

0

r1
�,� 0

0

r2
�,� 0

0

r3
�� , �5.4�

.e., all three vectors r1, r2, and r3 are required to be colinear on the z axis. This can be done by
etting �2=� and by requiring 1 and 2 to be equal to either 0 or � in �5.3�.

For problem �5.4�, we have found five critical points Ri
†, i=1,2 ,3 ,4 ,5, with respect to the

hree scalar variables r1, r2, and r3. See Table III.
Note that by Theorem 4, all these points Ri

†, i=1,2 ,3 ,4 ,5, are critical points of E on R3Z. On
he other hand, fix �2=� only. Then r1, r2, and r3 are coplanar and

E�r1,r2,r3� =
1

2r1
+

1

2r2
+

4

2r3
− �

i=1

3
3

ri
+ � 1

�r1 − r2�
+

1

�r1 − r3�
+

1

�r2 − r3�	 � E�r1,r2,r3,1,2� .

�5.5�

Numerical computations of the Hessian matrix H= ��2E /�i� j�1�i,j�2 and Lemma 1 show
hat, indeed, these Ri

† are saddle-type critical points. See Table IV.
In Fig. 9, we plot the energy surfaces of E with respect to the angular variables 1 and 2 in

neighborhood of these critical points Ri
†.

It is quite interesting to note from Fig. 1 earlier that the global minimum value of E on R9 is
7.690 46 htr, while the global minimum value of E in �5.4� by restricting all ri, i=1,2 ,3, to lie
n the z axis is −7.6837 htr �cf. Table III�, which differs from −7.690 46 by less than 0.1%. �

Example 3 �saddle type unstable coplanar electron configurations, Z=5�: In order to find
nstable coplanar electron configurations, Z must be greater than or equal to 5, as Sec. IV has
roved that Z=3 can only have stable configurations and Fig. 1 has provided a numerical evidence

FIG. 9. �Continued�.
hat Z=4 also has stable coplanar electron configurations. For Z=5, we apply Theorem 6 to find
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oplanar configurations, which must be of the saddle type and unstable, as Fig. 3 shows that a
table configuration cannot be coplanar. Several unstable configurations can be seen in Fig. 10.

I. CONCLUSIONS

In this paper, we have conducted basic mathematical analysis for existence of minimal energy
onfigurations and certain properties of critical points for the Bohr energy function. Relevant
umerical results are also developed and presented.

There are still interesting problems remaining open. One among them is the coplanarity of the
table electron configuration for Z=4, which we have not yet been able to prove in Sec. IV. Also,
he determination of the many symmetries manifested in Figs. 1–8 has not been achieved.

3

FIG. 10. For Z=5 �boron�, the above three configurations are obtained according to Theorem 6 by finding critical points
f E on the �x ,y�-plane numerically. They should be contrasted with the one in Fig. 3. Coordinates of the five vectors, as
ell as the corresponding energy values, given from top to bottom for these three configurations, are �−0.2045,
0.0156,0�, �0.2050, 0.0014, 0�, �0.8625, 0.6741, 0�, �−0.8524,0.6777,0�, �0.,−1.0604,0� with Emin=−28.9146;
−0.3532,0 ,0�, �−0.1808,0.0011,0�, �0.9884,−0.0419,0�, �0.1128, 1.0034, 0�, �0.,−1.0610,0� with Emin=−24.9439;
0.0661, 0.1942, 0�, �0.0628,−0.1781,0�, �−6.4876,0.3784,0�, �−0.9024,0.2594,0�, �0.,−1.5647,0� with Emin=
27.5713.
Bohr’s original model for molecules �which generalized the atomic case studied here� had
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ome difficulties which has recently been improved by Svidzinsky, Scully, and Hershbach.13 It has
any interesting mathematical features therein worth investigation and we hope to be able to do

t in the near future.
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In the present paper we study the following problem: how to construct a coherent
orthoalgebra which has only a finite number of elements, but at the same time does
not admit a bivaluation �i.e., a morphism with a codomain being an orthoalgebra
with just two elements�. This problem is important in the perspective of Bell-
Kochen-Specker theory, since one can associate such an orthoalgebra to every
saturated noncolorable finite configuration of projective lines. The first result ob-
tained in this paper provides a general method for constructing finite orthoalgebras.
This method is then applied to obtain a new infinite family of finite coherent
orthoalgebras that do not admit bivaluations. The corresponding proof is combina-
torial and yields a description of the groups of symmetries for these
orthoalgebras. © 2006 American Institute of Physics. �DOI: 10.1063/1.2171691�

. INTRODUCTION

Mackey formulated in his book7 the axiomatics of nonrelativistic quantum mechanics based
n the notion of an orthomodular poset. That is just a partially ordered set equipped with an
nvolution, such that certain axioms hold. These axioms are chosen such that the elements of this
oset may be identified with binary observables of a quantum system. Compared to the traditional
xiomatics in terms of linear operators on Hilbert spaces,11 this system focuses on the logical
spects of quantum theory. In fact, the Hilbert space is introduced only at the final stage in a
ompletely ad hoc manner.

In alternative terminology, an orthomodular poset is called a coherent orthoalgebra, and an
rthoalgebra is a particular case of an effect algebra. Let us provide some motivation for the
ntroduction of these notions. Consider a Hilbert space H over C, and denote by L�H� a collection
f closed linear manifolds in it. For every U�L�H�, we have an orthogonal projector �̂U on U,
hich represents an observable with two possible values, 0 and 1. Two observables represented by

ˆ U and �̂U1
, U ,U1�L�H�, are compatible iff their commutator ��̂U , �̂U1

�=0. The first step to-
ards the notion of an effect algebra is based on the following remark. The mentioned commu-

ator vanishes iff H splits into an orthogonal sum H=Z � V � V1 � W, such that Z � V=U and Z
� V1=U1. The idea is to reformulate everything in terms of orthogonal decomposition.

Consider · � · as a partially defined binary operation on L�H� with domain of definition
onsisting of all pairs �U ,U1� such that U1�U�. Note that U1�U� is equivalent to U�U1

�.
onsider L�H� as a partially ordered set with respect to inclusion �. Then the map U�U� is an

nvolution on L�H�, since U��=U and for all U and U1 we have U�U1ÛU��U1
�. Note, that

t is possible to express the partial order � in terms of the · � · operation: U�U1 iff $V :V � U
U1. The involution �·�� :L�H�→L�H�, admits a similar characterization. For every U, there
xists a unique U1, such that U1 � U=H; this U1 is precisely U�.

Take any U ,U1�L�H�. If the corresponding two observables are compatible, then the fol-

owing formulas are valid:

47, 022108-1022-2488/2006/47�2�/022108/32/$23.00 © 2006 American Institute of Physics
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inf�U,U1� � U� = U1 � sup�U,U1��,

�1�
inf�U,U1� � U1

� = U � sup�U,U1��.

oreover, it is not difficult to prove that �̂U and �̂U1
are compatible exactly when these two

qualities �1� are valid. Which properties of · � · are actually needed in this proof? It turns out that
t is convenient to capture these properties within the notion of an effect algebra.

Let S be a set, and R�S�S a relation on S. Let · � · :R→S, �x ,y��x � y, be a map. Let 0
nd 1 be two elements in S, such that 1�0. The algebraic structure �S , � ,0 ,1� is called an effect
lgebra if for all x ,y ,z�S the following conditions are satisfied:

1� if x � y is defined, then y � x is defined and y � x=x � y;
2� if �x � y� � z is defined, then x � �y � z� is defined and x � �y � z�= �x � y� � z;
3� x � 0=x;
4� if x � y=x � z, then y=z;
5� there exists x*�S, such that x* � x=1;
6� if x � 1 is defined, then x=0.

Note that for each x, the element x* is uniquely defined. Hence, to every effect algebra X
�S , � ,0 ,1� one associates a map �·�* :S→S, x�x*. The set S is termed the ground set of X.

An effect algebra is called an orthoalgebra, if for any element x of the ground set, such that
� x is defined, we have x=0. Note that this property together with the first five axioms, implies

he sixth axiom. An othoalgebra is called coherent if for all x, y, and z in the ground set, such that
� y, y � z, and z � x are defined, the x � y � z is defined.

The basic example of an effect algebra is, of course, the following: S=L�H�, � is the or-
hogonal sum defined for all �U ,U1� such that U1�U�, 0=�H is the trivial subspace of H, and
=H. Denote this effect algebra by L�H�. In fact, it is a coherent orthoalgebra. Just as for L�H�,
ne can define for every effect algebra X= �S , � ,0 ,1� a partial order � on the ground set S
termed the standard partial order�: "x ,y�S :x�y : Û $x1 :x1 � x=y. The map �·�* is an involu-
ion with respect to �. It is possible to imitate the notion of compatibility on any effect algebra as
ollows: call two elements U ,U1�S compatible, if the set �U ,U1� has infimum and supremum
with respect to the standard partial order�, and the formulas of the form �1� �with � replaced by
*� are valid. Such a definition of compatibility, is additionally justified by the following fact: for
ny compatible U and U1, there exists a decomposition of 1 of the form 1=Z � V � V1 � W, such
hat Z � V=U and Z � V1=U1.

Since the notion of a coherent orthoalgebra captures up to certain extent the essential prop-
rties of L�H�, it presents special interest to investigate the case when the ground set is finite. By
hat one may try to imitate quantum mechanics on a finite set. The latter is not only conceptually
nteresting, but also can be important for the computational methods. Of course, it is necessary to
ave a “complicated enough” example for this case.

It is natural to introduce a category of effect algebras E with morphisms f : �S , � ,0 ,1�
�S� , �� ,0� ,1�� being the maps f̄ :S→S� such that f̄�0�=0�, f̄�1�=1�, and f̄�x � y�= f̄�x��� f̄�y�,

henever x � y is defined. The composition of morphisms is defined by the composition of the
orresponding maps. Consider the most simple effect algebra that can be—the effect algebra with
nly two elements—0 and 1. This is an initial object in the category of effect algebras. There is
nly one way to define � in this case 0 � 0ª0, 0 � 1=1 � 0ª1, and 1 � 1—undefined. Denote
his object by B and call it the minimal Boolean effect algebra. The other example of an effect
lgebra that has been described above is L�H�. Call it the Hilbert effect algebra. Is it possible to
ave an arrow from L�H� to B in the category E? The answer is well known from functional
nalysis �Gleason’s theorem� and is negative. At the same time there is another important example
f an effect algebra �S , � ,0 ,1�, for which such an arrow exists. Let S=F, where F is some
-algebra of subsets of a set �. Define U � U1 as U�U1 for all disjoint U ,U1�F. Set 0=� and

=�. This defines an effect algebra, denoted by W�F� and called Kolmogorov effect algebra. Any
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�F� admits a morphism f to B: one may fix any ��� and for each U�F set f̄�U�=1 if U
�, and 0—otherwise.

The Kolmogorov and Hilbert effect algebras, W�F� and L�H�, are different, and this is clear
f one looks at all morphisms ending in the minimal Boolean effect algebra B. This motivates the
ollowing mathematical problem. For any X�E, let us call an arrow f :X→B �if it exists� a
ivaluation. Denote by for the forgetful functor from E to the category of sets, for :E→Sets. One
s required to find in E such objects X, which do not admit a bivaluation, but have a finite ground
et for �X�. In the present paper an infinite family of such objects is constructed.

Let us make several bibliographical remarks to conclude the introduction. The analysis of
ogical foundations of quantum mechanics has been initiated in the famous paper by Birkhoff and
on Neumann.1 The new wave of interest to this subject is motivated by the recent developments
n quantum computing technology. For an up to date discussion of effect algebras, orthoalgebras,
nd similar structures, one should refer to the monograph.2 The terms effect algebra and orthoal-
ebra were suggested in Refs. 3 and 4, respectively. The importance of orthoalgebras is also clear
n the perspective of the consistent histories approach to quantum theory.5

The results obtained in the present paper are related to the results of Refs. 10 and 11, and may
e viewed as their generalization. The orthoalgebras described below yield a family of “indeter-
inistic objects” in the terminology of Ref. 9. Every saturated �in the sense of Ref. 10� Kochen-
pecker-type configuration of projective lines naturally yields a finite orthoalgebra not admitting a
ivaluation.

I. GENERAL CONSTRUCTION

How to construct a finite orthoalgebra, which will look “similar” to the Hilbert orthoalgebra?
he starting point can be the following. Consider a Hilbert space H over C of finite dimension d.
et P�H� denote the set of projective lines in H. Consider the set P��P�H�� consisting of all
ubsets U�P�H� satisfying the condition "l , l1�U : l1� lÞ l� l1. Note, that the empty set and
ny subset with only one element, belong to P��P�H��. There is a natural equivalence relation �
n this set: U�U1 : Ûspan U1=span U �the span of the empty set is �H by definition�. It is clear,
hat the set L�H�ªP��P�H�� /� is in natural bijection with L�H�. Hence, the structure of orthoal-
ebra on L�H� induces a structure of orthoalgebra on L�H�. For �U� , �U1��L�H� ��·� denotes the
quivalence class with respect to ��, the value of �U� � �U1� is defined iff U�U1=� and
�U1�P��P�H��, and it is equal to �U�U1�.

This leads to the first �naive� idea of how to construct examples of finite orthoalgebras. Take
finite set A equipped with some relation T�A�A, which is thought to imitate the orthogonality

elation �. In analogy with L�H�, consider the set

PT�A� ª �U � A� " l,l1 � U:l1 � l Þ �l,l1� � T� ,

nd try to find an equivalence relation � on it, such that the formula �U� � �U1�ª�U�U1� yields
he structure of an orthoalgebra. It is necessary to describe this equivalence relation in terms of T.
fter that one faces the difficulty to find some reasonable conditions on T, entailing the axioms of

n effect algebra.
It turns out that there is a better idea. For any B�A, denote

BT
ª �l � A� " l1 � A:l1 � B Þ �l1,l� � T� .

onsider a map � :PT�A�→P�A�, U�UT, and look at the image of this map,

PT�A� ª Im�PT�A� � U � UT� . �2�

ake it as a ground set for the future orthoalgebra. Note, that if one specializes A to P�H�, and T
o the orthogonality relation �, then for U ,U1�PT�A� one has ��U�=��U1�, whenever span U1
span U. It is natural to try to define the � operation by the formula
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Q � Q1 ª �Q � Q1�TT, �3�

or all Q ,Q1�PT�A�, such that Q1�QT. Of course, it is necessary to impose some conditions on
, which ensure that � is well defined, since the right-hand side is not a priori in PT�A�. The
xioms of an orthoalgebra will induce the other conditions on T.

First, since T is supposed to imitate the orthogonality relation �, one needs to require for all
, l1�A, l1� l, the following:

�l,l1� � T Û �l1,l� � T , �4�

�l,l� � T . �5�

mpose one more condition,

"M � Max�PT�A�; � � " B � M:BT = �M \ B�TT, �6�

here Max�−� means taking the set of all maximal subsets of the partially ordered set. Note that
his condition is valid for the case A=P�H� and T=�. Let us say that T is saturated if it satisfies
6�.

Theorem 1: Let A be a finite nonempty set and T be a relation on A. Let PT�A� be defined by
2�. If T satisfies the three conditions �4�–�6�, then

1� A and � belong to PT�A�;
2� � is well-defined by the formula �3�;
3� �PT�A� , � , � ,A� is a coherent orthoalgebra.

Proof: �1� Since ��PT�A�, and �T=A, one has A�PT�A�. Now, take any M
Max�PT�A� ; � �, set B=M, and apply the third condition on T above. This yields MT

�M \M�TT=�TT=AT. If AT is not empty, then one can take any l�AT and applying the definition
f �·�T claim, that �l , l��T. But this contradicts the first condition on T above. Hence, AT=�.
herefore, �=MT�PT�A�.

�2� Take any Q ,Q1�PT�A�, such that Q1�QT. It is necessary to show that �Q�Q1�TT

PT�A�. Invoking the main condition on T, represent Q and Q1 in the form Q=UT= �M \U�TT, and

1=U1
T= �M1 \U1�TT, where U ,U1�PT�A�, M ,M1�Max�PT�A� ; � �, and M �U, M1�U1. Since

1�QT, for any l� �M \U�TT and any l1� �M1 \U1�TT, one has �l , l1��T. Note, that due to the
ymmetry of T, for all B�A there is an inclusion BTT�B. Indeed, take any �0�B. In order to
how, that �0�BTT, one must show that "�1�BT : ��1 ,�0��T. But the definition of BT implies
hat "��B"�1�BT : �� ,�1��T. Since T is symmetric, the order of appearance of � and �1 in
� ,�1��T is unimportant, and one obtains B�BTT. Now, return to Q and Q1. One has Q=UT

�M \U�TT, and Q1=U1
T= �M1 \U1�TT. Take any l�M \U, and any l1�M1 \U1. Since

M \U� �M \U�TT, and M1 \U1� �M1 \U1�TT, the elements l and l1 are in Q and Q1, respectively.
rom Q1�QT, one obtains �l , l1��T. Therefore, �M \U�� �M1 \U1��PT�A�. Now note, that for
ny B ,B1�A, the definition of �·�T, without any assumptions on T, implies �B�B1�T=BT�B1

T.
his together with the main condition, yields

�Q � Q1�TT = �QT � Q1
T�T = �UTT � U1

TT�T = ��M \ U�T � �M1 \ U1�T�T = ��M \ U� � �M1 \ U1��TT.

Before proceeding further, let us prove two simple auxiliary facts. Recall, that A , �
PT�A�, and we have �T=A, AT=�. Therefore �TT=�, ATT=A. Let us show that for any Q0

PT�A�, the element Q0
T�PT�A�, and Q0

TT=Q0. Indeed, take any Q0 and represent it in the form

0=U0
T, U0�PT�A�. For any M0�U0, M0�Max�PT�A� ; � �, the main condition implies Q0

T

U0
TT= �M0 \U0�T. Since M0 \U0�PT�A�, one has Q0

T�PT�A�. Now, for Q0
TT, we have Q0

TT

�U0
TT�T= ��M0 \U0�T�T= �M0 \U0�TT=U0

T=Q0 �we have used the main condition once more�.
Specializing Q0�PT�A� to ��M \U�� �M1 \U1��T= �M \U�T� �M1 \U1�T=UTT�U1

TT

T T T T T T TT
�U �U1� = �Q�Q1� , we obtain P �A��Q0 = �Q�Q1� , i.e., � is well defined.
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�3� Let us start with the axioms of an effect algebra. Consider the first axiom. Take any
,Q1�PT�A� such that Q1�QT. The latter inclusion means, that for any l�Q and any l1�Q1,

he pair �l , l1��T. Since T is symmetric, �l1 , l��T. Hence, Q1�QT is equivalent to Q�Q1
T, i.e.,

� Q1 is defined iff Q1 � Q is defined. We have Q � Q1= �Q�Q1�TT= �Q1�Q�TT=Q1 � Q.
Next, let us verify the second axiom. Take any Q ,Q1 ,Q2�PT�A�, and assume that �Q

� Q1� � Q2 is defined. We have

�Q � Q1� � Q2 = ��Q � Q1�TT � Q2�TT = ��Q � Q1�TTT � Q2
T�T = ��Q � Q1�T � Q2

T�T

= �QT � Q1
T � Q2

T�T = �Q � Q1 � Q2�TT.

ence, if we can prove that Q � �Q1 � Q2� is defined as well, then Q � �Q1 � Q2�= �Q1 � Q2�
� Q= �Q1�Q2�Q�TT, and then the second axiom is established. So, we assume Q1�QT and

2� �Q � Q1�T, and need to verify two inclusions, Q2�Q1
T and Q� �Q1 � Q2�T. Recall that when-

ver Q � Q1 is defined, we know that �Q�Q1�T�PT�A�. Derive, Q2� �Q � Q1�T= ��Q�Q1�TT�T

�Q�Q1�T=QT�Q1
T. In particular QT�Q1

T�Q1
T and therefore Q2�Q1

T, i.e., the first inclusion is
alid, i.e., Q1 � Q2 is defined. Note, that we also have Q2�QT, or, what is the same, Q�Q2

T. Now,
nvoke the assumption Q1�QT, or, equivalently, Q�Q1

T. Combining this with the previous fact,
e obtain Q�Q1

T�Q2
T= �Q1�Q2�T= �Q1�Q2�TTT= �Q1 � Q2�T. Hence, the second inclusion is

alid and by that the second axiom is established.
Consider the third axiom. The candidate for 0 is �. For any Q�PT�A�, Q � 0 is defined, since

�QT. We have Q � 0= �Q� � �TT=QTT=Q. The third axiom is established.
Before considering the fourth axiom, let us prove another general auxiliary fact. We know,

hat any Q�PT�A� can be represented in the form Q=VTT, where V�PT�A� �take U�PT�A� and
M �Max�PT�A� ; � � such that M �U, and set V=M \U�. The element QT is in PT�A� as well.

ence, QT=WTT, for some W�PT�A�. Claim, that V�W�Max�PT�A� ; � �. Indeed, since QTT

Q, we have, in particular, Q� �QT�T, and so Q � QT is defined. Next, Q � QT= �VTT�WTT�TT

�VTTT�WTTT�T= �VT�WT�T= �V�W�TT. If V�W is not maximal, then there exists l0

�V�W�T. At the same time, �V�W�T= �V�W�TTT= �Q � QT�T= �Q�QT�TTT= �Q�QT�TT. But
�QT=�, due to the first condition on T. Therefore, we continue, �Q�QT�TT=�TT=�. Hence,

0 cannot exist, and V�W is maximal. Note, that we also have �Q � QT�T=�, and as a corollary
� QT= �Q � QT�TT=�T=A.

Now for the fourth axiom, take any Q ,Q1 ,Q2�PT�A�, and assume that Q � Q1=Q � Q2. It is
ecessary to show, that Q1=Q2. Represent Q, Q1, and Q2 in the form Q=VTT, Q1=V1

TT, and Q2

V2
TT, where V ,V1 ,V2�PT�A�. Denote Q0ªQ � Q1=Q � Q2, and write it in the form Q0=U0

T,
here U0�PT�A�. Hence, Q0

T=U0
TT. We claim that both �V�V1��U0 and �V�V2��U0 are in

ax�PT�A� ; � �. Since V�VTT=Q�Q1
T=V1

TTT=V1
T, due to the first condition, the sets V and V1

re disjoint. Similarly, V�V2=�. We also have Q0=Q � Q1= �VTT�V1
TT�TT= �VTTT�V1

TTT�T

�VT�V1
T�T= �V�V1�TT, and Q0

T=U0
TT. Since Q0 � Q0

T is defined, we similarly conclude that V�V1

nd U0 are disjoint. Moreover, we already know, that in this case �V�V1��U0 is maximal.
imilarly, �V�V2��U0 is maximal. Applying the main condition, one obtains V1

TT= �V�U0�T

V2
TT, i.e., Q1=Q2. Hence the fourth axiom is established.
Consider the fifth axiom. The candidate for 1 is A. It is easy to guess, that for Q�PT�A� it is

ecessary to set Q*
ªQT. We already know, that QT � Q=A, and since A plays the role of 1, we

btain Q* � Q=1. The fifth axiom is established.
Finally, it remains to consider the sixth axiom. Note, that since 1=A, 0=�, and A is not

mpty, one has 1�0. Take any Q�PT�A�, and assume that Q � 1 is defined. This implies, that
�1T=AT=�. Hence, Q=�, i.e., Q=0. The last axiom is established, and we have an effect

lgebra.
It is not difficult to verify, that in fact this effect algebra is an orthoalgebra, and, moreover, a

oherent orthoalgebra. Indeed, if we take any Q�PT�A�, and assume, that Q � Q is defined, then
his implies Q�QT. Hence, Q=Q�QT. But Q�QT=� due to the first condition. Therefore Q
0 �0ª � �, i.e., our effect algebra is an orthoalgebra. Now, consider Q ,Q1 ,Q2�PT�A�, and

T T
ssume, that Q � Q1, Q1 � Q2, and Q2 � Q are defined. We have Q�Q1 and Q�Q2. Hence,
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�Q1
T�Q2

T. Apply the �·�T operation, QT� �Q1
T�Q2

T�T= �Q1�Q2�TT=Q1 � Q2. Therefore Q
� �Q1 � Q2� is defined. The orthoalgebra is coherent. �

II. THE GROUP OF SYMMETRY

We have just three conditions on T�A�A, which, when valid, allow to construct a coherent
rthoalgebra. The first two are very simple, but the verification of the third one �the main condi-
ion�, may be nontrivial. The main problem is, that there can be many elements in

ax�PT�A� ; � �. First, it is necessary to characterize them all, and then, for every M
Max�PT�A� ; � � and every B�M verify the property BT= �M \B�TT. A straightforward compu-

ation can become very complicated.
The general approach to deal with this problem is to find some group of symmetry of A. Look

t all bijections 	 :A→̃A, which respect the T relation on A, i.e., "l , l1�A : �l1 , l�
TÞ �	�l1� ,	�l���T. Denote the group of all such bijections as BijT�A�. Every 	�BijT�A�

nduces a bijective map from Max�PT�A� ; � � to itself. Suppose, we are able to describe some
ubgroup G�BijT�A�, such that its natural action on Max�PT�A� ; � � has “large” orbits. Since it
uffices to pick from each orbit just one representative, and verify the main condition on T only for
hese, the verification of the main condition becomes more feasible.

Let us now describe A, T, and G for the examples given below. Note, that these constructions
larify the combinatorics of the formulas present in Ref. 10. Let V be a finite set, such that N

#V is divisible by 4. Our construction will involve two collections of parameters with values in
/2. The first collection is indexed by U�P�V� and the corresponding parameters are denoted as

U�Z /2. The second collection is indexed by U ,U1�P�V�, U�U1, and the parameters are
enoted by cU,U1

. It is assumed that cU,U1
=cU1,U. Look at all maps V→Z /2, and for every U

P�V� denote

Lb�U� ª 	
:V → Z/2� 

v�V


�v� = bU�� , �7�

here the index b in the notation Lb�·� stands for bª �bU�U. Set

Ab ª �
U�P�V�

Lb�U� . �8�

enote by iU
b :Lb�U��Ab, U�P�V�, the canonical injections. Now define some relation Tc on Ab,

aking use of the second collection of parameters cª �cU,U1
�U,U1

. For any U ,U1�P�V�, U
U1, and any 
 ,
��L�U� and 
1�L�U1�, set

�iU
b �
�,iU

b �
��� � Tc: Û 
 � 
�,

�9�
�
,
1� � Tc: Û 


s�U�U1

�
�z� + 
1�z�� � cU,U1
,

here � denotes the symmetric difference of two subsets.
We are going to apply with respect to �Ab ,Tc� the general construction of the preceding

ection, i.e., substitute A=Ab, T=Tc, and try to adjust the parameters bU and cU,U1
in order to

atisfy the three conditions. The main result of the present paper can now be outlined as follows:
f the number of points N in V is divisible by 4, then it is possible to choose the parameters bU and

U,U1
in such a way, that the assumptions of the proposition above are satisfied. Hence a new

amily of orthoalgebras is constructed. Moreover, it is possible to choose cU,U1
and bU in such a

ay, that the corresponding orthoalgebras do not admit bivaluations. It is interesting to stress the
bserved periodicity by 4. Without 4 �N, the construction does not work.

Let us describe the group G. Note, that the set of functions from V to Z /2 may be viewed as
N-dimensional vector space over a field with two elements F2. Denote this vector space by F2

N.
N N
he number of elements in F2 is 2 . The sum of two vectors corresponds to a symmetric differ-
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nce of two subsets. Look at the group of all automorphisms of this vector space, i.e., the general
inear group GL�N ,F2� of N�N matrices with coefficients in F2. Let us describe a system of
enerators of this group �not a minimal one�. For every S�P�V�, define a map TS :P�V�
P�V�,

TS�U� ª 	U if #�U � S� is even,

U�S if #�U � S� is odd,
� �10�

here U varies over P�V�. Note, that these maps in the case of N=4 have been introduced in Ref.
0. Hence, in order to compute TS�U�, one needs to look at S�U. Observe, that S�TS�U�
S�U. This implies, that TS

2=id. In particular, TS is a bijection. Moreover, for all S ,U ,U1

P�V�, we have

TS�U�U1� = TS�U��TS�U1� .

n order to prove the latter formula, note, that

#�S � �U�U1�� = #�S � U� + #�S � U1� − 2#�S � U � U1� .

herefore #2�S� �U�U1�� �#2 denotes the cardinality of a set viewed in Z /2� is determined by

2�S�U� and #2�S�U1�. Hence the TS correspond to linear bijective maps of F2
N, i.e., TS corre-

ponds to an element T̂S�GL�N ,F2�. The range of possible values of S—the set P�V�—may be
dentified with F2

N. We denote by �S� an element of F2
N corresponding to S. Note, that there exists

formula T̂S�U�= �TS�U��, where U ,S�P�V�.
Proposition 1: Let TS, �S��F2

N, be the set of reflections defined by the formula �10�. Then �T̂S�S

enerates the whole group GL�N ,F2�.
Proof: For particular N small enough it is easy to verify the statement on computer in GAP.

et us provide a proof for all N. Note, that T�=TV=id. Take any S�P�V�, S� � ,V, and select

� S̄ªV \S. There is a useful formula:

�TSTS��w�TS���v�� = 	�v� if v � w ,

S̄ if v � w .� �11�

t allows to prove �by induction� that the standard basis in F2
N transforms into any other basis by

sequence of T̂S. Hence, the group is indeed GL�N ,F2�. �

Note, that the fact that T̂S are reflections, and the fact that they generate the whole general
inear group, is obtained without using the assumption 4 �N.

We shall describe some bijections Ab→̃Ab, which respect the relation Tc�Ab�Ab. The group
will be generated by these bijections. Before considering the general case, first look at the case
here all the parameters bU and cU,U1

are set to 0�Z /2. Write A0 and T0 in this case instead of Ab

nd Tc, respectively. For every S�P�V�, define the maps �S :Maps�V ,Z /2�→Maps�V ,Z /2� by the
ormulas,

�S����v� ª ��v� if v � S̄ ,

��v� + 

w�S̄

��w� if v � S , � �12�

here � :V→Z /2, S̄ªV \S. The latter can be expressed more compactly by �S����v�

z�TS��v����z�. A straightforward computation shows, that

�S
2 = id,
nd that for any S ,U�P�V�, and any � :V→Z /2, the following formula is valid:
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v�TS�U�

�S����v� = 

v�U

��v� . �13�

his implies for any U ,S�P�V�, that ��L0�U� yields �S����L0�TS�U��. It means that there
xist induced maps

�S,U:L0�U� → L0�TS�U�� .

or every S�P�V�, the collection ��S,U�U, U�P�V�, defines a bijective map

�̂S:A0→
�

A0,

recall, A0=�U�P�V�L0�U��. The bijectivity follows from �S
2=id. Of course, �̂S

2=id itself as well.
nvoking that for any S ,U ,U1�P�V�, we have TS�U�U1�=TS�U��TS�U1�, it is not difficult to

erify that all �̂S respect the relation T0�A0�A0, or, equivalently, the relation �A0�A0� \T0.
onsider U ,U1�P�V� and ��L0�U�, �1�L0�U1�, such that �iU

0 ��� , iU1

0 ��1���T0 �iU
0 and iU1

0

enote the canonical injections into A0�. If U1=U, then the fact mentioned is implied by the

ijectivity of �̂S. If U�U1, then we have 
v�U�U1
���v�+�1�v��=0. Therefore, 
v�TS�U�U1�

��S����v�+�S��1��v��=0. Since TS�U�U1�=TS�U��TS�U1�, the pair of elements in A0 that cor-
espond to �S����L0�TS�U�� and �S��1��L0�TS�U1��, is in relation �A0�A0� \T0.

Now let us generalize the construction of the maps �̂S. We have the collections of parameters
= �bU�U, and c= �cU,U1

�U,U1
. For every U ,S�P�V�, we need to describe some maps Lb�U�

Lb�TS�U��. In the case considered above, these were the maps �S,U. For every fixed S, the whole
ollection ��S,U�U stemmed just from one “global” function �S. Now, let us not assume this
roperty. Take an arbitrary collection of Z /2-valued parameters �aS,U�v��S,U,v, S ,U�P�V�, v�V,
nd try to define some maps �S,U

�a� :Lb�U�→Lb�TS�U�� by the formula

�S,U
�a� ����v� ª �S����v� + aS,U�v� , �14�

here ��Lb�U�, v�V. The case considered above corresponds to all aS,U�v�=0. It is necessary
o ensure, that �S,U

�a� ����v��Lb�TS�U��. This yields a condition on aS,U�v�,



v�U

�S,U
�a� ����v� = bTS�U�,

here ��Lb�U�. Expanding the definitions of Lb�U� and �S,U
�a� , one reduces this equality just to

=bTS�U�, if #�S�U� is even, and to bU+
v�U�SaS,U�v�=bTS�U�, if #�S�U� is odd. Both cases are
aptured by one formula,



v�TS�U�

aS,U�v� = bTS�U� + bU, �15�

here S and U vary over P�V�. Assume, that this condition is satisfied. Hence, we have well-
efined maps �S,U

�a� :Lb�U�→Lb�TS�U��. Since �S,U are bijections, so are �S,U
�a� . For every fixed S

P�V�, the collection ��S,U
�a� �U defines a bijective map

�̂S
�a�:Ab→

�

Ab.

mpose a requirement, that �̂S
�a� respects the relation Tc�Ab�Ab. This yields another condition on

he parameters aS,U�v�. Take any U ,U1�P�V�. Since �̂S
�a� is bijective, the requirement is satisfied

f U1=U. Let U1�U. Take any ��Lb�U�, �1�Lb�U1�, and assume that 
v�U�U1
���v�+�1�v��

cU,U1
. This should imply 
v�TS�U��TS�U1���S,U

�a� ����v�+�S,U1

�a� ��1��v��=cTS�U�,TS�U1�. Taking into ac-

ount, that TS�U��TS�U1�=TS�U�U1�, expanding the definitions �14� of �S,U
�a� and �S,U1

�a� , and taking

nto account the mentioned formula �13� for �S, one reduces this requirement to the form
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v�TS�U�U1�

�aS,U�v� + aS,U1
�v�� = cU,U1

+ cTS�U�,TS�U1�, �16�

here S, U, and U1 vary over P�V�, and U1�U.
We have an overdetermined system of linear equations �15� and �16�, with respect to the

ndeterminates aS,U�v��Z /2. The quantities bU and cU,U1
are parameters. It is necessary to solve

his system of equations, and then obtain a condition of solvability in terms of bU and cU,U1
. After

hat bU and cU,U1
become indeterminates themselves, and one needs to find at least some solutions

f the solvability equations. Assume all this is accomplished. Then we obtain a collection of

ijective maps �̂S
�a� :Ab→

�
Ab, which respect the relation Tc. They generate some group

a�BijTc
�Ab�. In what follows, it is this group that will be used to establish the main condition on

c, that allows to construct the orthoalgebra. Moreover, that parameters bU and cU,U1
can be

hosen in such a way, that the corresponding orthoalgebra does not admit a bivaluation �this is the
asy part�.

V. THE SOLUTIONS

Let us rewrite Eq. �16� as follows. This equation contains a sum over v�TS�U�U1�. This is
he same as the sum over v�TS�U��TS�U1�. Since the terms in this sum are Z /2-valued, it can be
plit as 
v�TS�U�+
v�TS�U1�. Perform this action upon Eq. �16�, and then use twice Eqs. �15�
orresponding to U0=U and U0=U1. It is convenient to denote

cU,U1

�S�
ª cU,U1

+ bU + bU1
+ cTS�U�,TS�U1� + bTS�U� + bTS�U1�,

bU0

�S�
ª bU0

+ bTS�U0�.

he system of Eqs. �15� and �16�, is equivalent to



v�TS�U1�

aS,U�v� + 

v�TS�U�

aS,U1
�v� = cU,U1

�S� , �17�



v�TS�U0�

aS,U0
�v� = bU0

�S�. �18�

Let us express all aS,Q�v� with #Q2 via the indeterminates of the form aS,�z��v�. Let Q

P�V� be any subset such that #Q2, and u�S and w� S̄ be any points. Look at the equation
17�. Set U=Q and U1= �w�. This allows to find aS,Q�w�,

aS,Q�w� = 

v�TS�Q�

aS,�w��v� + cQ,�w�
�S� , w � S̄ .

ext, set U=Q and U1= �u�. Since TS��u��= �u�� S̄, the resulting expression on the left-hand side

ill contain a sum of aS,Q�v� over v� �u�� S̄. For all values of v, except v=u, we already can
xpress aS,Q�v�. Hence, it is possible to find aS,Q�u�,

aS,Q�u� = 

w��S̄

aS,Q�w�� + 

v�TS�Q��u��

aS,�u��v� + cQ,�u�
�S� , u � S .

Now consider the case where the sets U0, U, and U1, are singletons. Let u ,u1�S and w ,w1

S̄ be any points. Equations �18� corresponding to U0= �w� and U0= �u�, respectively, yield

a �w� = 0,
S,�w�
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aS,�u��u� = b�u�
�S� + 


w��S̄

aS,�u��w�� .

or the c-equations, it is necessary to consider the following three cases: �1� U= �w�, U1= �w1�; �2�
= �u�, U1= �w�; �3� U= �u�, U1= �u1�. They yield

aS,�w��w1� + aS,�w1��w� = 0,

aS,�u��w� + aS,�w��u� = c�u�,�u1�
�S� + 


w��S̄

aS,�w��w�� ,

aS,�u��u1� + aS,�u1��u� = c�u�,�u1�
�S� + 


w��S̄

�aS,�u��w�� + aS,�u1��w��� .

or every fixed S�P�V�, one may view the latter five equalities as a system of linear equations
ith respect to aS,�z��v��Z /2, v ,z�V. It is not difficult to verify, that the corresponding homo-
eneous system of equations has many solutions. Redenote the indeterminates in this system as

S,�z��v�, v ,z�V. Denote E�V�ª �U�V � #U=2�. Write vz instead of �v ,z� for the elements of
�V�. Take any function � :E�V�→Z /2, and denote

��
Q�v� ª 


z�Q\�v�
��vz� ,

here Q�P�V�, v�V. It is not difficult to verify in a straightforward manner, that ��z��v�
��

TS��z���v� defines a solution of the homogeneous system. We just remark, that ��
TS��w���v�

��vw� for w� S̄, ��
TS��u���v�=��uv�+
w��S̄��vw�� for u�S, and it is convenient to accept a

ormal agreement ��vv�=0 in order to perform this computation.

We need a solution of the nonhomogeneous system. Let u ,u1�S and w ,w1� S̄ be any points.
et

āS,�w��w1� ª 0 if w � w1,

c�w�,�w1�
�S� if w1 � w ,

b�w�
�S� if w1 = w;

�
āS,�u��u1� ª 0 if u � u1,

c�u�,�u1�
�S� if u1 � u ,

b�u�
�S� if u1 = u;

�
āS,�w��u� ª b�w�

�S� + c�u�,�w�
�S� + 


w��S̄,

w��w

c�w��,�w�
�S� ,

ās,�u��w� ª 0.

straightforward computation shows that aS,�z��v�= āS,�z��v� is a solution. Moreover, any other
ˆ
olution aS,�z��v�=aS,�z��v� can be represented in the form
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âS,�z��v� = āS,�z��v� + ��̂
TS��z���v� ,

or some �̂ :E�V�→Z /2. For any u ,u�S, u�u1, and w ,w1� S̄, w�w1, the values of �̂�ww1�,
ˆ �uu1�, and �̂�uw� are given by the formulas

�̂�ww1� ª	âS,�w��w1� if w � w1,

âS,�w1��w� if w1 � w ,
�

�̂�uu1� ª âS,�u��u1� if u � u1,

âS,�u1��u� + 

w��S̄

âS,�u��w�� if u1 � u , �
nd

�̂�uw� ª âS,�u��w� + 

w��S̄,

w��w

âS,�w���w� + 

w��S̄,

w��w

âS,�w��w�� .

he verification is straightforward. Therefore, any solution of the homogeneous system is of the
orm �S,�z��v�=��

TS��z���v�, � is some function. One can now take a solution for aS,�z��v�, and
ompute the rest of the aS,Q�v� according to the formulas derived above. Note, that the transfor-
ation ��z��v�=��

TS��z���v�→��z��v�=��
TS��z���v�+��

TS��z���v� induces the transformation of aS,Q�v� of
he form aS,Q�v�→aS,Q�v�+��

TS�Q��v�, i.e., there is a gauge symmetry group of transformations for
he system of equations for aS,Q�v�.

We have the expressions for all aS,Q�v�, but we did not use all the equations of the system.
ake any S�P�V�, and any Q ,Q1�P�V�, Q1�Q. Substituting these expressions into the equa-

ions, one obtains the conditions,

cQ,Q1

�S� + 

z1�Q1

cQ,�z1�
�S� + 


z�Q

c�z�,Q1

�S� = 

z1�Q1



v�TS�Q�

aS,�z1��v� + 

z�Q



v1�TS�Q1�

aS,�z��v1�

nd

bQ
�S� + 


z�Q

cQ,�z�
�S� = 


z�Q



v�TS�Q�
aS,�z��v� .

enote the right-hand sides of these equalities by Xa�S ,Q ,Q1� and Ya�S ,Q ,Q1�, respectively.
ote, that these two quantities are invariant under the gauge transformation aS,�z��v�→aS,�z��v�
��

TS��z���v�, �� is any function�. It remains to substitute aS,�z��v�= āS,�z��v� and compute the corre-
ponding Xā and Yā.

In order to compute Yā it is necessary to consider two cases, #�Q�S� is even, and #�Q�S� is
dd. The computation in the first case is a little bit easier, but it turns out, that in both cases the
esult is the same

Yā�S,Q,Q1� = 

z�Q

b�z�
�S� + 


z,z��Q,

z�z�

c�z�,�z��
�S� .

he value of the sum on the right-hand side does not depend on �, due to the symmetry cU,U1

�S�

cU1,U
�S� , which is implied by the assumption cU,U1

=cU1,U.
In order to compute Xā�S ,Q ,Q1�, it is necessary to investigate the following three cases: �1�

oth #�Q�S� and #�Q1�S� are even; �2� #�Q�S� is odd, and #�Q1�S� is even; �3� both

�Q�S� and #�Q1�S� are odd. In all three cases, one obtains the same expression,
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Xā�S,Q,Q1� = 

z�Q,z1�Q1,

z�z1

c�z�,�z1�
�S� .

herefore, we obtain the following conditions:

cQ,Q1

�S� + 

z1�Q1

cQ,�z1�
�S� + 


z�Q

c�z�,Q1

�S� + 

z�Q,z1�Q1,

z�z1

c�z�,�z1�
�S� = 0 �19�

nd



z�Q

cQ,�z�
�S� + 


z,z��Q,

z�z�

c�z��,�z�
�S� = bQ

�S� + 

z�Q

b�z�
�S�. �20�

ecall that S, Q, and Q1 vary over P�V�, Q1�Q. By definition, we set formally cQ,Q
�S� =0. Note, that

f #Q=1, then the second condition �20� turns into an identity. Similarly, if at least one of the sets
or Q1 has cardinality 1, then the first condition �19� trivializes as well. These two conditions are

he conditions of the solvability of the system of equations for �aS,U�v��v,U,S.

. PERIODICITY BY FOUR

Is it possible to satisfy the obtained solvability conditions �20� and �19�? We shall not try to
escribe all the solutions, but construct some. The crucial assumption is the following. Let us
earch for cU,U1

and bU in the form

cU,U1
= c�#4�U�U1�� ,

�21�
bU = b�#4U� ,

here U ,U1�P�V�, U1�U, #4�·� denotes the cardinality of the subset viewed in Z /4, and
�·� :Z /4→Z /2 and b�·� :Z /4→Z /2 are unknown functions. A not quite trivial property of the
olvability system of equations �19� and �20�, is that it admits such an anzats if the number of

points N in V is divisible by 4.
Take any S, and look at the quantity b�z�

�S�, z�V. Observe, that since bU=b�#4U�, its value

epends only on whether z�S or z�S. In other words, one may take any u0�S and w0� S̄, and

laim that b�z�
�S�=b�u0�

�S� , if z�S, and b�z�
�S�=b�w0�

�S� , if z� S̄. Similar statements may be made about the

uantities of the form cQ,�z1�
�S� , c�z�,Q1

S , and c�z�,�z1�
�S� .

Choose any S, and Q, Q1 such that Q1�Q. Look at the set S. It gets partitioned into four
ubsets,

S = �S � Q � Q1� � �S � Q̄ � Q1� � �S � Q � Q̄1� � �S � Q̄ � Q̄1� .

n each of the subsets, if nonempty, choose a point �it does not matter which one�: �0

S�Q�Q1, �1�S� Q̄�Q1, �2�S�Q� Q̄1, and �3�S� Q̄� Q̄1. Denote the cardinalities of
hese four subsets by m0, m1, m2, and m3, respectively. Next, perform a similar process with

espect to S̄, i.e., choose arbitrary four points �0, �1, �2, and �3, such that �0� S̄�Q�Q1, �1

S̄� Q̄�Q1, �2� S̄�Q� Q̄1, and �3� S̄� Q̄� Q̄1. �If a set is empty, the corresponding point
ill not be needed.� Denote the cardinalities of these subsets as n0, n1, n2, and n3, respectively.

ote, that c�z�,�z1�
�S� =0, if both z and z1 are in S, or both are in S̄. With this remark, the solvability
quation �19� after the described anzats, acquires the form,
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cQ,Q1

�S� + �m0cQ,��0�
�S� + n0cQ,��0�

�S� + m1cQ,��1�
�S� + n1cQ,��1�

�S� � + �m0cQ1,��0�
�S� + n0cQ1,��0�

�S� + m2cQ1,��2�
�S� + n2cQ1,��2�

�S� �

+ �m0n1 + n0m1 + m0n2 + n0m2 + m1n2 + n1m2�c��3�,��3�
�S� = 0.

ote, that the values of mi and ni �i=0,1 ,2 ,3� depend on the sets S, Q, and Q1. Of course,

i=0
3 �mi+ni�=N. Note, that it suffices to know only the images of mi and ni �i=0,1 ,2 ,3� in Z /2.

The solvability condition �20� is reduced in a similar way. This time we do not need the set

1. Take any S and Q, choose any points ��Q�S, ��Q� S̄, and then any ���Q�S, ����,

nd ���Q� S̄, ���� �if some of these points cannot be chosen, they are not needed�. Denote

ª # �Q�S� and lª # �Q� S̄�. The condition reduces to the form

kcQ,���
�S� + lcQ,���

�S� +
k�k − 1�

2
c���,����

�S� +
l�l − 1�

2
c���,����

�S� + klc���,���
�S� = bQ

�S� + kb���
�S� + lb���

�S� .

ote, that each time, when the corresponding points cannot be chosen, the term that contains this
oint contains a factor equal to zero. The values of k and l depend on the sets S and Q. Note that
t suffices to know only the image of l in Z /2, and the image of k in Z /4 �not Z /2�!

It remains to perform the mentioned anzats in these equations and simplify them. It is con-
enient to use the following formulas:

#4�U�U1� = #4U + #4U1 − 2#4�U � U1� ,

"i � Z/4:�i�2 = 0 Þ 2i = 0,

"i � Z/4:�i�2 = 1 Þ 2i = 2,

here �i�2 denotes the canonical image of i in Z /2, U and U1 are any subsets of V. We shall also
eed the assumption that the number N of points in V is divisible by 4. In this case, for all U
P�V�, the following formula is valid:

#4Ū = − #4U .

First look at Eq. �20�. Recall, that ��S�Q, and �� S̄�Q. We have

bQ
�S� = b�#4Q� + b�#4TS�Q�� ,

b���
�S� = b�#4���� + b�#4TS������ = b�1� + b�− #4S + 1� ,

b���
�S� = b�#4���� + b�#4TS������ = 0.

imilar computations yield

cQ,���
�S� = bQ

�S� + b���
�S� + c�#4Q − 1� + c�#4TS�Q������ ,

cQ,���
�S� = bQ

�S� + b���
�S� + c�#4Q − 1� + c�#4TS�Q������ ,

c���,����
�S� = 0,

c�S� = b�1� + b�− #4S + 1� + c�2� + c�− #4S� ,
���,���
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c���,����
�S� = 0.

e need to compute #4TS�Q�, #4TS�Q�����, and #4TS�Q�����. Set

s ª #4S, q ª #4Q, t ª #4�Q � S� .

f #�Q�S� is even, �i.e., t=0,2�, then

#4TS�Q� = q ,

#4TS�Q����� = − s − q − 1,

#4TS�Q����� = q − 1.

f #�Q�S� is odd, �i.e., t=1,3�, then

#4TS�Q� = − s − q + 2,

#4TS�Q����� = q − 1,

#4TS�Q����� = − s − q − 1.

ence, it suffices to know the values of these parameters s ,q , t�Z /4 in order to compute the
eft-hand and right-hand expressions of Eq. �20�. �Of course, �k�4= t, and �l�4=q− t.� It turns out
this can be easily verified on a computer in Maple, or by a straightforward computation�, that for
ach of the 43 possible variants of �s ,q , t�, the reduced equation acquires only one of the following
ypes: either it becomes an identity 0=0, or one of the two equations,

c�0� + c�2� = b�0� + b�2� ,

�22�
c�1� + c�3� = b�1� + b�3� ,

or their sum 
i=0
3 �c�i�+b�i��=0. One may assign arbitrary values, say to all c�i� and to b�0�, b�1�,

nd then determine b�2� and b�3�.
Equations �19� are reduced in a similar way, and in the final stage it is best to compute in

aple. Let us describe all the preparatory work. Look at cQ,Q1

�S� . We have cQ,Q1

�S� =bQ
�S�+bQ1

�S�

c�#4�Q�Q1��+c�#4TS�Q�Q1��. In particular, it is necessary to know #2S� �Q�Q1�. Since
S� �Q�Q1�= # �S�Q�+ # �S�Q1�−2# �S�Q�Q1�, and the latter term is even, one has

#2S � �Q�Q1� = #2�S � Q� + #2�S � Q1� .

enote

s ª #4S, q ª #4Q, q1 ª #4Q1,

t ª #4�S � Q�, t1 ª #4�S � Q1� ,

p ª #4�Q � Q1�, r ª #4�S � Q � Q1� .
ith this notation, #2S� �Q�Q1�= �t+ t1�2. Therefore #4�Q�Q1�=q+q1−2p, and
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#4TS�Q�Q1� = 	 q + q1 − 2p if �t + t1�2 = 0,

− s − �q + q1 − 2p� + 2 if �t + t1�2 = 1.
�

aking into account these formulas, one can reduce cQ,Q1

�S� to the following form. If �t�2=0 and

t1�2=0, then cQ,Q1

�S� =0. If �t�2=1 and �t1�2=0, then cQ,Q1

�S� =b�q�+b�−q−s+2t�+c�q+q1−2p�+c�
s− �q+q1−2p�+2�. Similarly, if �t�2=0 and �t1�2=1, then cQ,Q1

�S� =b�q1�+b�−q1−s+2t1�+c�q+q1

2p�+c�−s− �q+q1−2p�+2�. Finally, if �t�2=1 and �t1�2=1, then cQ,Q1

�S� =b�q�+b�−q−s+2t�
b�q1�+b�−q1−s+2t1�. The other computations are easier.

If #�Q�S� is even, i.e., t=0,2, then

cQ,��0�
�S� = b�1� + b�− s + 1� + c�q − 1� + c�− s − q + 2t − 1� ,

cQ,��0�
�S� = 0,

cQ,��1�
�S� = b�1� + b�− s + 1� + c�q + 1� + c�− s − q + 2t + 1� ,

cQ,��1�
�S� = 0.

f t=1,3, then

cQ,��0�
�S� = b�q� + b�− s − q + 2t� + b�1� + b�− s + 1� ,

cQ,��0�
�S� = b�q� + b�− s − q + 2t� + c�q − 1� + c�− s − q + 2t + 1� ,

cQ,��1�
�S� = b�q� + b�− s − q + 2t� + b�1� + b�− s + 1� ,

cQ,��1�
�S� = b�q� + b�− s − q + 2t� + c�q + 1� + c�− s − q + 2t − 1� .

There are similar expressions corresponding to Q1. If #�Q1�S� is even, i.e., t1=0 ,2, then

cQ1,��0�
�S� = b�1� + b�− s + 1� + c�q1 − 1� + c�− s − q1 + 2t1 − 1� ,

cQ1,��0�
�S� = 0,

cQ1,��2�
�S� = b�1� + b�− s + 1� + c�q1 + 1� + c�− s − q1 + 2t1 + 1� ,

cQ1,��2�
�S� = 0.

f t1=1 ,3, then

cQ1,��0�
�S� = b�q1� + b�− s − q1 + 2t1� + b�1� + b�− s + 1� ,

cQ1,��0�
�S� = b�q1� + b�− s − q1 + 2t1� + c�q1 − 1� + c�− s − q1 + 2t1 + 1� ,

cQ ,��2�
�S� = b�q1� + b�− s − q1 + 2t1� + b�1� + b�− s + 1� ,
1
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cQ1,��2�
�S� = b�q1� + b�− s − q1 + 2t1� + c�q1 + 1� + c�− s − q1 + 2t1 − 1� .

inally, c��3�,��3�
�S� reduces to the form

c��3�,��3�
�S� = b�1� + b�− s + 1� + c�2� + c�− s� .

or the cardinalities m0, m1, m2, and m3, we have

�m0�4 = r, �m1�4 = t1 − r, �m2�4 = t − r, �m3�4 = s − t − t1 + r ,

here �·�4 denotes the canonical image of an integer number in Z /4. Similarly, for the cardinalities

0, n1, n2, and n3, we have

�n0�4 = p − r, �n1�4 = �q1 − t1� − �p − r�, �n2�4 = �q − t� − �p − r� ,

�n3�4 = �− s� − �q − t� − �q1 − t1� + �p − r� .

herefore it remains to investigate what happens to Eq. �19� as the parameters s, q, q1, t, t1, p, and
, vary over Z /4. There are finitely many options, and the corresponding computation is easily
mplemented in Maple. In fact, it is possible to perform it manually, if one uses some symmetry of
q. �19�. The result is similar to the case of Eq. �20�, i.e., every variant reduces to a linear
ombination of the simple equalities �22� mentioned above. It means, that we have established the
act that the solvability system of Eqs. �19� and �20�, has solutions, and we have identified at least
ome of them �21�.

I. THE ORBITS

We are able to construct the group Ga in two steps. First, verify the main condition on Tc for
ome of the elements of Max�PTc

�Ab� , � �, and then compute the orbits of these elements under
he action of Ga. One needs enough such elements, so that the orbits cover the whole set

ax�PTc
�Ab� , � �. The proof is essentially combinatorial.

Recall, that for every U ,S�P�V� we have defined the maps �S
U :Lb�U�→Lb�TS�U��:

�S
U����v� = 


z�TS��v��
��z� + aS

U�v� ,

here ��Lb�U�, v�V. There is also a collection of maps I�
U :Lb�U�→Lb�U�, U�P�V�, corre-

ponding to the gauge transformation with function � :E�V�→Z /2, defined by the formula

I�
U����v� ª ��v� + ��

U�v� ,

here ��Lb�U�, v�V, and ��
U�·� is as in the preceding section.

Look at the diagram �in Sets�,

t turns out, that for every U ,S�P�V� and every � :E�V�→Z /2, there exists a unique � :E�V�
Z /2, rendering this diagram commutative. Denote this � by �S���. We have

I�
TS�U� � �S

U = �S
U � I�S���

U ,
here
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�S����vv1� ª ��vv1� + 

z�TS��v��

��zv1� + 

z1�TS��v1��

��vz1� ,

or vv1 varying over E�V�.
Now select some sets in Max�PTc

�Ab� , � �, and verify the main condition for them. The most
imple case is M = �iU

b ������Lb�U�. It is almost obvious, that M �Max�PTc
�Ab� , � �. Choose any

oint in V and denote it by e, e�V. Set U= �e�. Take any B�M, and write it as B= �i�e�
b ������S,

is some subset of Lb��e��. For CªM \B we have C= �i�e�
b ������S�, where S�=Lb��e�� \S. It is

ecessary to show, that if l�BTc and l1�CTc, then �l , l1��Tc. We have, BTc =C� �BTc \C� and
Tc =B� �CTc \B�. If l�C or l1�B, then the requirement is satisfied. The nontrivial case is l
BTc \C and l1�CTc \B. Assume, that such l and l1 exist, and let l= iU

b ���, ��Lb�U�, and l1

iU1

b ��1�, �1�Lb�U1�. Note, that U ,U1� �e�. Invoking the explicit description �9� of the relation

c, we conclude, that such l and l1 exist iff

$� � Z/2 " � � S: 

v��e��U

��v� = � ,

$�� � Z/2 " � � S�: 

v��e��U1

��v� = ��.

here exist two possibilities �1� U=U1; �2� U�U1. Consider the possibility U=U1. In this case
ne must have

S = 	� � Lb��e��� 

v��e��U

��v� = ��,

ince otherwise S� cannot satisfy the condition above. The parameter �� corresponding to S� is, of
ourse, ��=1+�. For l= iU

b ���, using the description of Tc, we obtain, ��e�=�+b�#U�
c�#��e��U��+1. Similarly, for l1 we have �1�e�=��+b�#U1�+c�#��e��U1��+1=1+��e�. Hence,

1�·����·�, and �l , l1��Tc. Now look at the possibility U1�U. This implies that the sets �e��U
nd �e��U1 are also different. Hence, there exists a point z, belonging to one of these sets, and not
elonging to the other. Without loss of generality, let z� �e��U1 and z� �e��U. First, assume, that
t is possible to choose them so that z�e. In this case, take any � such that 
v��e��U1

��v�=1
��. Look at 
v��e��U��v�. If it is equal to �, then modify the value of ��·� in the point z by
dding 1. This does not change the sum with U1, and we obtain 
v��e��U��v�=1+�. This �

elongs neither to S, nor to S�. But this is a contradiction, since S and S� partition the set Lb��e��
f all possible �. Therefore, the pair �l , l1� cannot exist. It remains to consider the case when the
nly option for z is z=e. We have U�e and U1= �e��U. Then the parameters � and �� associated
o S and S� may be written as �=b�1�+
v�U��v�, �—any element of S, and ��=
v�U���v�,
�—any element of S�. Since S and S� partition L��e��, S� must coincide with the set of all �� such

hat 
v�U���v�=�� �otherwise it is impossible to define � for S�. Therefore, for every ��S we
ave 
v�U��v�=1+��, and one obtains �=b�1�+1+��. Since l= iU

b ��� is in relation Tc with every

�e�
v ���, invoking the definition of L�U� and the description of Tc, it follows that ��e�+b�#4U�
�=c�#4U+1�+1. Similarly, for �1�L��e��U�, we arrive at �1�e�+b�#4U+1�+ �1+�+b�1��
c�#4U�+1. Hence,

��e� + �1�e� = 1 + b�1� + b�#4U� + b�#4U + 1� + c�#4U� + c�#4U + 1� .

n the other hand, the requirement �iU
b ��� , iU1

b ��1�� implies, that ��e�+�1�e�=1+c�1�. Therefore,
ne obtains a condition

b�1� + c�1� + b�#4U� + c�#4U� + b�#4U + 1� + c�#4U + 1� = 0.
ince this must be valid for generic U, we obtain
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b�0� + c�0� = 0, b�2� + c�2� = 0,

�23�
b�1� + c�1� + b�3� + c�3� = 0.

The latter is the equation we already have, and the first two imply the other equation, but are not
equivalent to it. Hence, under these conditions, the main property of Tc for the set M

�i�e�
b ������Lb��e�� is established.
Let us consider some other subsets M �Max�PTc

�Ab� , � �. There exists a natural map � :Ab

P�V�, iU
b ����U. For every B�Ab, call the set ���l��l�B the shadow of B. Take any nonempty

ubset ��V. Under some additional assumptions on b�·� and c�·�, it will be shown that there exist
ets M �Max�PTc

�Ab� , � � of the form

M = �
U�Podd���

�iU
b ������QU

,

here QU are some subsets of Lb�U�, and

Podd��� ª �U � ��#U is odd� .

imilarly, one may introduce the set Peven��� consisting of all subsets of � of even cardinality. We
ill impose such conditions of b�·� and c�·�, that the following statement will be true: if B�Ab has
shadow which contains a subset being an element of Peven���, then it does not belong to

Tc
�Ab�.
More precisely, take any ��V, such that #� is even. Assume that b�·� and c�·� satisfy the

onditions �23�. Is it possible to have a set B�PTc
�Ab� consisting of #�+1 elements, such that #�

f them are of the form i�v�
b ��v�, �v�Lb��v��, v��, and the other element is of the form i�

b ���,
�Lb���? Denote E���ª �U�� � #U=2�. Assume that i�v�

b ��v�, �v�Lb��v��, v��, are pair-
ise in relation Tc. For z�v we have �z�v�+�v�z�=1+c�2�. Choose and fix any order � on V and

ssociate to this collection of elements a function � :E���→Z /2, ��zw�ª�v�z�, v�z. Hence, for
ny vv1�E���,

�v�v1� = 	��vv1� if v � v1,

��vv1� + 1 + c�2� if v � v1.
�

ow investigate what this means for �. For every v��, the definition of Tc yields,



z��v���

��v�z� + ��z�� = c�#4� − 1� + 1.

he fact 
z����z�=b�#4�� yields

��v� = 

z��\�v�

�v�z� + b�#4�� + c�#4� − 1� + 1,

here v��. Apply summation over v�� and invoke once more the mentioned fact to obtain

m�m − 1�
2

�c�2� + 1� + m�b�m� + c�m − 1� + 1� = b�m� ,

here mª#4�. If this were true for generic �, one would have the following four equalities
orresponding to m=0,1 ,2 ,3, respectively, b�0�=0, c�0�+1=0, �c�2�+1�+b�2�=0, and �c�2�
1�+c�2�+1=0. The latter is just an identity. The third one is not valid, since we already have a

condition b�2�+c�2�=0. Moreover, since b�0�+c�0�=0, either the first or the second equality is
not valid as well. Set b�0�=c�0�=1. Hence, m cannot be 0 or 2, i.e., #� cannot be even. We have
b�0� = 1, c�0� = 1,
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b�2� + c�2� = 0, �24�

b�1� + c�1� + b�3� + c�3� = 0.

It is impossible to have a collection consisting of elements of Ab of the form iv
b��v�, v��, and

�
b ���, if #� is even. In case #� is odd, the values of ��·� are determined by the function
:E���→Z /2, associated to �v�·�, v��. The values on the points of V \� can be chosen arbi-

rary.
Now suppose one has a collection of elements l1 , l2 , . . . , ln�Ab which are pairwise in relation

c. Denote Uiª��li�, i=1,2 , . . . ,m, where � :Ab→P�V� is the natural map mentioned above.
ome of these sets may have cardinality 1, and some may contain more points. Denote by � the
nion of all Ui such that #Ui=1. Note, that it is possible that � is empty. There exists a bijection

b→̃Ab which respects the relation Tc, which transforms this collection into a collection with the

ollowing property: every Ui is a subset of �. Indeed, we have constructed the maps �̂S
�ā�. These

aps respect the relation Tc on Ab. If l�Ab satisfies ��l�=U, then l�= �̂S
�ā��l� satisfies ��l��

TS�U�. Let l1 , l2 , . . . , ln�Ab be as above. Denote Uiª��li�, i=1,2 , . . . ,n, and construct the
orresponding �. If there exists Ui0

, which is not a subset of �, then one can take a point v0

U0 \�. Look at the composition TŪi0
�TŪi0

��v0� �TŪi0
. This map transfers Ui0

into a one-point set

v0�, and at the same time leaves all the one point-sets �v�, v��, fixed. Therefore, if one applies

composition �̂
Ūi0

�a�
� �̂

Ūi0
��v0�

�a�
� �̂

Ūi0

�a�
to each l1 , l2 , . . . , ln, one increases the number of points in � by

. Proceeding this way we arrive at the situation where all Ui are subsets of the corresponding �.
f course, in this case, all Ui will have odd cardinalities. Note, that the cardinality of � need not
e odd.

Take any l1 , l2 , . . . , ln, such that ��li�= �ei�, i=1,2 , . . . ,n, ei�V some points, such that ei

ej for i� j. Assume that �li , lj��Tc, i� j. Hence �= �e1 ,e2 , . . . ,en�. Take any U�� and try to
onstruct l�Ab of the form l= iU

b ���, ��Lb�U�, such that for all i, �l , li��Tc. The cardinality #U
eeds to be odd. Let U= �ei�i�I, where I� �1,2 , . . . ,n�, #I is odd. The elements lk, k=1,2 , . . . ,n,
re of the form lk= i�ek�

b ��k�, the �k element of Lb��ek��. The requirement that �li , l��Tc for every
� I, yields

��ei� = 

i��I\�i�

�i�ei�� + b�#4I� + c�#4I − 1� + 1.

imilarly, the requirement that for every q� �1,2 , . . . ,n� \ I, the pair �lq , l��Tc, yields,

��eq� = 

i�I

�q�ei� + b�1� + b�#4I� + c�#4I + 1� + 1.

herefore, the values of ��·� on the points of � are determined, and on the points of V \� remain
rbitrary. Now take any W��, W�U, #W is odd. Let W= �ej� j�J, J� �1,2 , . . . ,n�. There exists
��Ab of the form l�= iW

b ���, ��Lb�W�, which is in relation Tc with every l1 , l2 , . . . , ln. The values
f the function ��·� on the points of � are given by formulas similar to the ones above, and on
\� can be assigned in an arbitrary way. Is it possible to have �l� , l��Tc? It turns out, that l and

� are always in Tc. Note, that the condition for �l , l���Tc involves only the values of ��·� and ��·�
n the points of � �more precisely, only in es, s� I�J�. For these values one has the corresponding
xpressions via �k�·�, k=1,2 , . . . ,n. Substitute them into the mentioned condition and take into

ccount, that �k�ek��+�k��ek�=c�2�+1. After simplification, the expression reduces to
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#�I�J��#�I�J� − 1�
2

�c�2� + 1� + c�#4�I�J�� + 1 + #�I � J̄��c�#4I − 1� + c�#4J + 1��

+ #�J � Ī��c�#4J − 1� + c�#4I + 1�� + #�I�J��b�1� + b�#4I� + b�#4J�� = 0.

n order to compute the value of the left-hand side it suffices to know #4I, #4J, and #4�I�J�.
ecall, that #I and #J are odd. Hence, it remains to run through all the 2�2�4=16 �in fact, even
, due to the symmetry with respect to permutation of I and J� possibilities and look at what
appens to the equation above. A straightforward �Maple� computation shows that each time one
btains either an identity 0�0, or an equality c�0�=1. The latter is already present in the list of
ssumptions �24� concerning b�·� and c�·� above. Therefore, indeed �l , l���Tc.

Associate to the set l1 , l2 , . . . , ln the function � :E���→Z /2 as explained above. One may write
ll formulas in terms of this function. Construct from it a function �̂ :���→Z /2 of two argu-
ents,

�̂�v,v1� ª ��vv1� if v � v1,

b�1� if v = v1,

��vv1� + c�2� + 1 if v � v1.
� �25�

ote, that for v�v1, one has �̂�v ,v1�= �̂�v1 ,v�+c�2�+1. Next, construct a function �̃ :Podd���
�→Z /2, as follows. Set �̃��v� ,v�ª �̂�v ,v�=b�1�, and for U� �v� set

�̃�U,v� ª 

z�U

�̂�v,z� + b�#4U� + b�1� + c�#4�U��v��� + 1. �26�

t is convenient to rewrite the formulas obtained above using this notation. For li= i�ei�
b ��i�, i

1,2 , . . . ,n, we have

"z � �:�i�z� = �̃��ei�,z� .

or an element l of the form l= iU
b ���, ��Lb�U�, U��, #U is odd, which is in relation Tc with

very li, we have

"z � �:��z� = �̃�U,z� .

he values of �i�w� and ��w� in w�V \� remain arbitrary.
Now, take any nonempty ��V, and take any function � :E���→Z /2. Define �̃ corresponding

o � by the formulas �25� and �26�. For every U�Podd���, denote

QU ª �� � Lb�U�� " z � �:��z� = �̃�U,z�� . �27�

ote, that every ��QU should satisfy 
z�U�̃�U ,z�=b�#4U�. This yields the following condition:

#U�#U − 1�
2

�c�2� − 1� + #Uc�#4U − 1� − 1 = 0.

he value of the left-hand side is determined by #4U. Since #U is odd, it is necessary to consider
ust two cases, #4U=1 and #4U=3. In the first case one obtains c�0�=1, i.e., the condition we
lready have above, and the second case reduces to 0�0.

Consider now the following set �for some � and ��:

M ª �
U�Podd���

�iU
b ������QU

. �28�

he elements of M are pairwise in relation Tc. The cardinality of � is n, and the cardinality of V
s N. On the points of V \� a function ��QU may take any value. In total there are 2N−n

ossibilities for that. The number of all subsets of � is 2n, and among them the number of those
n−1 n−1 N−n N−1
ith odd cardinality is 2 . Hence #M =2 �2 =2 . This number coincides with #Lb�W�
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or every nonempty W�V. It is not difficult to show that M �Max�PTc
�Ab� , � �. Indeed, if �

V, then it is impossible to have an element of the form iW
b ��� which is in relation Tc with every

lement of M, since if #W is odd, then such element is already in M, and the case #W being even
s excluded due to conditions above. Consider a proper nonempty �. For the same reasons, W

annot be a subset of �. Hence, there exists a point w�W \�. Consider ��ª�
W̄

�ā�
��

W̄��w�

�ā�
��

W̄

�ā�
.

pply �� to every element of M and to iW
b ���. The set M will still be of the form as above, but,

erhaps, corresponding to a different �, and the image of iW
b ��� after �� is projected by the natural

ap � :Ab→P�V� into the point �w�. Therefore, it suffices to consider just the case W= �w�. Take
ny z�� and look at �i�z�

b ������Q�z�
. As � varies over Q�z�, its value in w sweeps up the whole Z /2.

herefore, it is impossible to satisfy �i�z�
b ��� , i�w�

b �����Tc simultaneously for all �. Hence, M is
aximal.

Choose and fix any B�M. One has

B = �
U�Podd���

�iU
b ������SU

, �29�

here SU�QU are subsets �some of SU, or even all, may be empty�. Take any iW
b ���, W�P�V�,

�Lb�W�, and look at what the condition iW
b ����BTc means. It is necessary to consider different

ossibilities for W. Start with the case where W is a subset of �, and the number of elements in
t is even. For any U�Podd��� and any ��SU, one must have 
z�U�W���z�+��z��
c�#4�U�W��+1. This is equivalent to



z�U

��z� = 

z�W

��z� + b�#4W� + b�#4U� + c�#4�U�W�� + 1.

ince W��, the values of ��z� are known, ��z�= �̃�U ,z�. Therefore, in the case W�Peven���, the
equirement iW

b ����BTc is rewritten as follows:

�iW
b ��� � BTc� = Ù

U�Podd����SU = � or 

z�U

��z� = 

z�W

�̃�U,z� + b�#4W�

+ b�#4U� + c�#4�U�W�� + 1� . �30�

here is a similar expression in case W�Podd���, but special care is needed for the variant U
W,

�iW
b ��� � BTc� = �� � SW� and Ù

U�Podd���
U�W ,

�SU = � or 

z�U

��z�

= 

z�W

�̃�U,z� + b�#4W� + b�#4U� + c�#4�U�W�� + 1� . �31�

inally, there is a more complicated case, when W contains a part outside �, i.e., W��̄��. In
his case we must deal with the sum 
z�W��z�, but only part of ��z� are known, i.e., those that
orrespond to z�W��, can be expressed as �̃�U ,z�. Instead of the equality above, we obtain

�iW
b ��� � BTc� = Ù

U�Podd����SU = � or 

z�U

��z� = 

z�W��

�̃�U,z� + 

z�W��̄

�any � � SU��z�

+ b�#4W� + b�#4U� + c�#4�U�W�� + 1� . �32�

he sum on the right-hand side containing � should not depend on the choice of ��SU, so we
b Tc
ave a condition on SU ensuring the existence of iW����B with such W.
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First, consider in more detail the term ��SW, W�Podd��� in the formula �31�. Since

W�QW, it splits into a disjunction ���QW \SW�Ú ���QW�. The case that is described by the
econd term means that there exists a nontrivial � :�→Z /2, such that ��z�= �̃�W ,z�+��z�, z

�. Since ��Lb�W�, � must satisfy 
z�W��z�=0. It is convenient to view � as an indicator
unction �Z of some nonempty subset Z�P����

ªP��� \ ���. Therefore, we have

�� � SW� = �� � QW \ SW� Ú �� � QW� ,

hile

�� � QW� = Ú
Z�P���x,

#2�Z�W�=0

���z � �� = �̃�W,z� + �Z�z�� .

ote that the cardinality of Z need not be odd.
The expression for iW

b ����BTc, W�Podd���, reduces to

�iW
b ��� � BTc� = �� � QW \ SW� or Ú

Z�P���x,
#2�Z�W�=0

	���z � �� = �̃�W,z� + �Z�z�� and

Ù
U�Podd���,
#2�U�Z�=1

�SU = � �� . �33�

ote, that for the conjunction on the right-hand side of the formula one first obtains the range of
ossible values of U in the form U�Podd���, #2��U�W��Z�=1, but since #2�Z�W�=0, one has

2��U�W��Z�=#2�U�Z�.
Now one needs to consider arbitrary iW

b ����BTc and iW1

b ��1�� �M \B�Tc, and then verify that

W1

b ��1� is in relation Tc with iW
b ���. The formulas for iW1

b ��1� are similar, except that it is necessary
o replace all SU with QU \SU. We must establish the following implication:

�iW
b ��� � BTc� and �iW1

b ��1� � �M \ B�Tc� Þ �iW
b ���,iW1

b ��1�� � Tc. �34�

here are three possibilities for W and three possibilities for W1 described above. In total, due to
he symmetry of Tc, this yields 3+3�3−1� /2=6 combinations. Each needs to be investigated
eparately verifying whether a strengthening of the conditions on b�·� and c�·� results. The result
s the following.

Theorem 2: Assume that the number N of points in V is divisible by 4. Let b ,c :Z /4→Z /2 be
wo functions, such that b�0�=c�0�=1, b�2�+c�2�=0, and 
i=1,3�b�i�+c�i��=0. Define the finite
et Ab and the relation Tc on Ab by (8) and (9) using (21). Then the relation Tc is saturated.

Proof: The aim is to establish the implication �34�. The proof splits naturally into six parts,
orresponding to the six combinations mentioned above.

�1� The case W ,W1�Podd���. We have a formula �31� for W, and there exists a similar
ormula for W1 obtained after replacing SU by QU \SU. If W=W1, then one needs to show that
�·���1�·�. In this case, for some Z�P����, ��z���= �̃�W ,z�+�Z�z�, and for all U
Podd��� such that #��U�W��Z� is odd, SU=�. Similarly, for some Z1�P����, �1�z���

�̃�W ,z�+�Z1
�z�, and for all U1�Podd��� such that #��U1�W��Z1� is odd, QU1

\SU1
=�. If Z

Z1, then ��·���1�·�, since �Z�·���Z1
�·�. Hence, the implication holds. If Z=Z1, then for every

f the mentioned U, we have SU=� and QU \SU=�. Since QU is not empty, this possibility cannot
ccur. So the implication is established for W=W1. Now assume, that W�W1. One needs to verify
hat 
z�W�W1

���z�+�1�z��=c�#4�W�W1��+1. Observe that from the definition of M, and the
˜
roperty that relates QU and ��U ,z�, for any U ,U1�Podd���, we have
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z�U�U1

��̃�U,z� + �̃�U1,z�� = c�#4�U�U1�� + 1.

ence, if ��QW \SW�QW and �1�SW1
�QW1

, the requirement is satisfied. Now let ��QW, but

1�SW1
. For ��·� we have a nonempty Z��, such that ��z���= �̃�W ,z�+�Z�z�. Moreover,

henever U�Podd��� and #��U�W��Z� is odd, one has SU=�. For �1�·� we have �1�z���
�̃�W ,z�. Therefore, the required equality holds iff 
z�W�W1

�Z�z�=0, i.e., #��W�W1��Z� is even.
ut #��W�W1��Z� cannot be odd, since then �specializing U to W1� one obtains SW1

=�, i.e.,

1�·� does not exist. Hence, in this case the implication is established. The dual case, i.e., �
QW \SW and �1�QW1

, is completely similar. It remains to investigate the possibility ��QW and

1�QW1
. For some nonempty Z��, #�Z�W� even, one has ��z���= �̃�W ,z�+�Z�z�. Similarly,

or some nonempty Z1��, #�Z1�W1� even, one has �1�z���= �̃�W1 ,z�+�Z1
�z�. One needs an

quality 
z�W�W1
��Z�z�+�Z1

�z��=0, i.e., #��W�W1��Z� and #��W�W1��Z1� are either both odd,
r both even. To establish it, use the conjunctions over U and U1 present in the corresponding
ormulas. Note, that Z�Z1 needs to be empty. Indeed, otherwise one may take any v�Z�Z1 and
et U=U1= �v�. Since for these U and U1, #2�U�Z�=#2�U1�Z1�=1, we have S�v�=� and S�v�
Q�v�, this contradicts Q�v���. Hence, Z�Z1=�. Moreover, Z and Z1 should partition �, since
therwise one can set U=U1= �v ,v1 ,w�, where v�Z, v1�Z1, and w�� \ �Z�Z1�. For these, U
nd U1 again have intersections with Z and Z1, respectively, of odd cardinalities, and one obtains

contradiction between S�v,v1,w�=� and S�v,v1,w�=Q�v,v1,w� results. Now, we obtain

z�W�W1
��Z�z�+�Z1

�z��=
z�W�W1
���z�=#2�W�W1�=#2W+#2W1. Since #2W=#2W1=1, this sum

anishes. This completes the proof of the implication �34� for W ,W1�Podd���.
�2� Now consider the case where both W ,W1�Peven���. First look at the expression �30�

orresponding to iW
b ����BTc. We have a conjunction over U�Podd��� on the right-hand side. In

articular, U can be equal to �v�, where v�W. Is it possible to have "v�W :S�v���? We claim
hat the answer is no. Indeed, if S�v� is not empty, then we have 
z��v��W���z�+ �̃��v� ,z��
c�#4W−1�+1. Apply summation over v�W and infer that �̃��v� ,z�= �̂�v ,z� and �̂�v ,z�
�̂�z ,w�=c�2�+1. This yields �#W−1�b�#4W�+ �#4W�#4W−1� /2��c�2�+1�=0. If #4W=0, then
ne obtains b�0�=0, which is impossible, since we already have a condition b�0�=1. If #4W=2,
hen b�2�+c�2�+1=0, again contradicting the earlier assumption b�2�+c�2�=0. Therefore, there
lways exists v�W, such that S�v�=�. Similarly, we may analyze the expression for iW1

b ��1�
�M \B�Tc, and conclude that there exists v1�W1, such that S�v1�=W�v1�. Start with the case W1

W. Is it possible to have ��·�=�1�·�? Suppose that � and �1 coincide. For every v�W, if S�v�
�, then we have ��v�=
z�W�̂�v ,z�+b�#4W�+b�1�+c�#4W−1�+1. If S�v�=�, then S�v��Q�v�,

nd this implies �1�v�=
z�W�̂�v ,z�+b�#4W�+b�1�+c�#4W−1�+1. But �1�v�=��v�, so we have
he same expression for ��v� in all v�W. For the same reasons as mentioned above, the condition

v�W��b�=b�#4W� yields a contradiction. Therefore, ��·� and �1�·� cannot be equal, and the
mplication of the form �34� for W=W1 is established. Now assume, that W1�W. It is necessary
o show, that 
z�W�W1

���z�+�1�z��=c�#4�W�W1��+1, whenever iW
b ����BTc and iW1

b ��1�
�M \B�Tc exist. Look at the expression �30� for iW

b ����BTc. Specialize U to a one-point set U
�u�, u��. If S�u���, then the value of ��u� is known. How do we find the values of ��·� in
ther points of �? Actually, we do not need to know the value of ��z� for each z��, but just the
um 
z�W�W1

��z�.
Let us establish an auxiliary fact first. We have W�Peven���. Take any U�Podd���. Then

�W is a subset of �, and, moreover, U�W�Podd���, since #2U�W=#2U+#2W. Suppose, that

U��. Is it possible to have SU�W�� as well? Suppose, that it is. For U� ,U��P�V�, denote

gb,c�U�,U�� ª b�#4U�� + b�#4U�� + c�#4�U��U��� + 1.

ne has


 ��z� = 
 �̃�W,z� + gb,c�U,W� ,

z�U z�W
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b�#4W� + 

z�U

��z� = 

z�W

�̃�U�W,z� + gb,c�U�W,W� .

um the two equations and regroup the terms



z�W

��̃�U,v� + �̃�U�W,v�� = b�#4W� + gb,c�U,W� + gb,c�U�W,W� .

ince �̃�U ,v�=
z�U�̂�v ,z�+gb,c�U , �v��, and, similarly, �̃�U�W ,v�=
z�U�W�̂�v ,z�
gb,c�U�W , �v��, we obtain

�̃�U,v� + �̃�U�W,v� = 

z�W

�̂�v,z� + b�#4U� + b�#4�U�W�� + c�#4�U��v��� + c�#4�U�W��v��� .

t remains to sum over v�W, and reduce the sum with �̂�v ,z� on the right-hand side, taking into
ccount that �̂�v ,v��b�1�, and �̂�v ,z�+ �̂�z ,v�=c�2�+1, z�v. Since #W is even, expressing
�U�W� in terms of #U, #W, and #�U�W�, yields

m�m − 1�
2

�c�2� + 1� + t�c�n − 1� + c�n + m − 2t + 1� + c�n + 1� + c�n + m − 2t − 1�� + c�n�

+ c�n + m − 2t� = b�n� + b�m� + b�n + m − 2t� ,

where mª#4W, nª#4U, and tª#4�U�W�. This equation should be valid for generic W and U.
he value of m can be 0 or 2, the value of n can be 1 or 3, and the value of t can be 0, 2, or 3. In

otal this yields 2�2�4=16 variants. A straightforward �Maple� computation shows, that each of
he variants reduces to one of the following four equations: either b�0�=0, or 1+b�2�+c�2�=0, or
�0�+
i=1,3�b�i�+c�i��=0, or 1+
i=1,2,3�b�i�+c�i��=0. Each of the four equations contradicts the
lready imposed assumptions on b�·� and c�·�. Therefore, the following fact is established �recall,
hat #W is even�:

"U � Podd���:�SU or SU�W� = � .

n a similar way �recall, that #W1 is also even�, one obtains

"U � Podd���:SU = QU or SU�W1
= QU�W1

.

ince W�W1, there exists e�W�W1. Take such e. Observe, that #��e��W� and #��e��W1� are
dd. Specializing U to �e��W, one obtains two facts: �1� S�e��W=� or S�e�=�; �2� S�e��W

Q�e��W or S�e��W�W1
=Q�e��W�W1

. Similarly, specializing U to �e��W1, one obtains two more facts:
3� S�e��W1

=� or S�e��W�W1
=�; �4� S�e��W1

=Q�e��W1
or S�e�=Q�e�. Look at the set S�e�. It is either

mpty, or nonempty. If S�e�=�, then, due to the fourth fact, S�e��W1
=Q�e��W1

. This, together with
he third fact, implies S�e��W�W1

=�. From the second fact, S�e��W=Q�e��W. Now consider the
econd possibility, S�e���. The first fact then implies S�e��W=�. Hence, due to the second fact,

�e��W�W1
=Q�e��W�W1

. From the third fact, S�e��W1
=�. Then the fourth fact yields S�e�=Q�e�.

herefore, we have an alternative, either

S�e� = � , S�e��W�W1
= � ,

S�e��W = Q�e��W, S�e��W1
= Q�e��W1

,

r

S�e� = Q�e�, S�e��W�W = Q�e��W�W ,

1 1
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S�e��W = � , S�e��W1
= � .

n both cases there is a way to compute the sums 
z�W�W1
��z� and 
z�W�W1

�1�z�. In the first case,
he values of 
z��e��W�W1

�1�z� and �1�e� are known. Their sum yields 
z�W�W1
�1�z�. The sum

z�W�W1
��z� should be computed as the sum of 
z��e��W��z� and 
z��e��W1

��z�. The second case
s dual to the first one �the roles of � and �1 must be interchanged�. So we always know

z�W�W1
���z�+�1�z��. It remains to compute this value, and then, using the assumptions about

�·� and c�·�, verify that it reduces to c�#4�W�W1��+1. This is done by a straightforward compu-
ation. Consider, for example, the first option. One has



z��e��W

��z� = 

v�W

�̃��e��W,v� + gb,c��e�,W� ,



z��e��W1

��z� = 

v�W

�̃��e��W1,v� + gb,c��e��W1,W� .

his yields



z�W�W1

��z� = 

v�W

��̃��e��W,v� + �̃��e��W1,v�� + c�1� + c�#4�W�W1� − 1� + b�#4��e��W��

+ b�#4��e��W1�� .

xpanding the definitions of �̃�· , · � in the square brackets, and then taking into account that #W is
ven, we obtain



z�W�W1

��z� = 

v�W



z�W�W1

�̂�v,z� + b�#4��e��W�� + b�#4��e��W1�� + c�1� + c�#4�W�W1� − 1�

+ 

v�W

�c�#4��e��W��v��� + c�#4��e��W1��v���� .

similar computation yields



z�W�W1

�1�z� = 

v�W1



z�W�W1

�̂�v,z� + c�#4��e��W�� + c�#4��e��W1�� + b�1� + b�#4�W�W1� − 1�

+ 

v�W1

�c�#4��e���v��� + c�#4��e��W�W1��v���� .

ow, sum these equalities. On the right-hand side a sum of the form 
z,v�W�W1
�̂�v ,z� appears; it

s easily computed using �̂�v ,v��b�1�, and for z�v, �̂�v ,z�+ �̂�z ,v�=c�2�+1. Hence an expres-
ion for 
z�W�W1

���z�+�1�z�� in terms of b�·� and c�·� is obtained. On the other hand, we must
erify that it is equal to c�#4�W�W1��+1. Denote mª#4W, m1ª#4W1, and tª#4�W�W1�.
quate the two expressions mentioned and simplify the result taking into account, that #W and
W1 are even. It is necessary to consider the cases, e�W \W1 and e�W1 \W, but in the end the
esult is the same,

m + m1 − 2t

2
�c�2� + 1� + c�m� + c�m1� + c�m + 2� + c�m1 + 2� + t�c�m1� + c�m1 + 2�

+ c�m + m1 − 2t� + c�m + m1 − 2t + 2�� + b�m − 1� + b�m1 + 1� + b�1� + b�m + m1 − 2t − 1�

+ c�m − 1� + c�m1 + 1� + c�1� + c�m + m1 − 2t − 1� = c�m + m1 − 2t� + 1.

t is straightforward to verify �best of all in Maple�, that for all m ,m1=0 ,2 and all t=0,1 ,2 ,3, this
quation reduces to one of the following: 1+c�0�=0, of 
i=1,3�b�i�+c�i��=0, or 1+c�0�


i=1,3�b�i�+c�i��=0, or 0=0. Due to the assumptions above, this always holds. Hence, it is
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stablished that if W ,W1�Peven���, then any iW
b ����BTc is in relation Tc with any iW1

b ��1�
�M \B�Tc.

�3� Now consider the third possibility: let W and W1 both contain points outside �, i.e.,

��̄�� and W1��̄��. Take any iW
b ����BTc and iW1

b ��1�� �M \B�Tc. Then we need to show,
hat �1�·����·�. There is an expression �32� for � and the expression for �1 is similar. For every

�Podd���, such that SU��, the following quantity needs to be well defined: �U


z�W��̄��z�, where � is an element of SU. Similarly, if SU�QU, then the following quantity is
ell defined: �Uª
z�W1��̄�1�z�, where �1 is an element of QU \SU. Let us start with the case

1=W. Note, that the set of values of 
z�U��̄
�z� as 
 varies over the entire QU is Z /2.
herefore, if SU�� and SU�QU, then one has �U=1+�U. Is it possible to have SU=� or SU

QU at all? If SU=�, then, in particular, SU�QU, and, �U needs to be well defined. At the same
ime, the corresponding sum 
z�W1��̄�1 ranges over Z /2 as �1 varies over QU \SU=QU. Hence,

U is not defined, and therefore, SU cannot be empty. For similar reasons, SU cannot be equal to

U. So, we have "U�Podd��� :SU� � ,QU. If W1=W, we must show, that ��·���1�·�. This
ollows from the fact, that 
z�U��z�+
z�W�̃�U ,z�+gb,c�U ,W� should be equal to �U and �U=1
�U at the same time, a contradiction! Now let W1�W. One needs to compute the sum

z�W�W1
���z�+�1�z��. We can say nothing about the values of ��z� and �1�z� in the points z��.

et us show, that these values are not needed, i.e., we show, that W�W1��. The latter is

quivalent to the statement, that the sets KªW��̄ and K1ªW1��̄ coincide. Indeed, for every
�Podd��� the quantities �U=
z�K��z� and �U=
z�K1

�1�z� are defined ���SU, �1�QU \SU�.
he definition �27� of QU implies, that the values of 
�QU in the points outside � are not

estricted by any condition. Hence, if K�K1, there exists 
�QU, such that 
z�K
�z�=1+�U and

z�K1

�z�=1+�U. But such 
�SU, QU \SU, a contradiction! Hence, K=K1, and W�W1��.

ince K=K1, it follows that �U=1+�U, U�Podd���. Take any u��, and specialize U to �u�.
his yields

��u� = 

v�W��

�̃�û,v� + �û + gb,c��u�,W� ,

�1�u� = 

v�W1��

�̃�û,v� + �1 + �û� + gb,c��u�,W1� .

um these two equalities, and then preform summation over u�W�W1. The result should be
�#4�W�W1��+1. Note, that on the other hand, the terms with �̃�û ,v� on the right-hand side are of
he form 
u,v�W�W1

�̃�û ,v�, and this sum can be expressed in terms of b�·� and c�·� as above.
enote mª#4W, m1ª#4W1, and tª#4�W�W1�. After simplifications, the result can be written

n the form,

q�q − 1�
2

�c�2� + 1� + q�1 + b�1� + b�m� + b�m1�� + �m − t��c�m − 1� + c�m1 + 1�� + �m1 − t�

��c�m + 1� + c�m1 − 1�� + c�q� + 1 = 0,

here qªm+m1−2t. The variables m, m1, and t, vary over Z /4. It remains to verify �easiest in
aple� that for each of the possible 4�4�4=64 variants this equality is true. Each time the

eft-hand side reduces to one of the following variants: 1+c�0�, 1+b�0�, b�2�+c�2�, b�1�+b�3�
c�1�+c�3�, or a linear combination of the mentioned ones. Hence, due to the imposed conditions,

the equality is always valid. This means, that �iW
b ��� , iW1

b ��1���Tc in case W��̄�� and

1��̄��.
�4� Now it is necessary to consider three mixed cases. Start with W�Peven��� and W1

Podd���. Assume, that iW
b ����BTc and iW1

b ��1�� �M \B�Tc. For �1 there are two possibilities.
he first one is that �1�SW, and hence �1�z�= �̃�W1 ,z�, z��. The other is that �1�·� in the points

˜
�� is of the form �1�z�=��W1 ,z�+�Z�z�, where Z is some nonempty subset of �, such that
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�Z�W� is even. In the latter case, for all U�Podd��� such that #�U�Z� is odd, SU=QU.
oncerning ��·� one can say, that for all U�Podd���, either SU=�, or 
z�U��z�=
z�W�̃�U ,z�
gb,c�U ,W�. Consider the first possibility for �1. In particular this implies that SW1

��. Hence the
um 
z�W1

��z� is known. On the other hand, since �1�SW�QW, one has �1�z���= �̃�W1 ,z�.
rom this 
z�W1

��z�=
z�W�1�z�+gb,c�W ,W1�, i.e., �iW
b ��� , iW1

b ��1���Tc follows. Now consider
he second possibility for �1 �the one with Z�. Observe, that #2�W�W1�=#2W+#2W1=1, i.e.,

�W1�Podd���. Look at �W�W1��Z. We have #2�W�W1��Z=#2��W�Z���W1�Z��
#2�W�Z�. Therefore, if #�W�Z� is odd, take U=W�W1 and obtain SW�W1

=QW�W1
. In particu-

ar, SW�W1
��, leading to the expression for 
z�W�W1

��z�. The values of �1�z� are known at all
oints z��, so there is no problem to compute 
z�W�W1

�1�z�. Taking into account, that

v�W�W1
�Z�v�= # ��W�W1��Z�=1, and then expressing �̃ via �̂ and gb,c, we obtain



z�W�W1

���z� + �1�z�� = 1 + 

v,z�W

�̂�v,z� + 

v,z�W1

�̂�v,z� + 

v�W

gb,c��v�,W�W1�

+ 

v�W�W1

gb,c��v�,W1� + gb,c�W�W1,W� .

n the other hand, this sum should be equal to c�#4�W�W1��+1. Expressing the sums with �̂�v ,z�
n terms of b�·� and c�·�, one obtains the following equality:

�m + m1�b�1� + �m�m − 1�
2

+
m1�m1 − 1�

2
��c�2� + 1� + �m − t�c�q − 1� + tc�q + 1�

+ m�b�1� + b�q� + 1� + �m − t�c�m1 + 1� + �m1 − t�c�m1 − 1� + q�b�1� + b�m1� + 1� + b�q�

+ b�m� + c�m1� + c�q� + 1 = 0,

here mª#4W, m1ª#4W1, tª#4�W�W1�, qªm+m1−2t. It is necessary to verify that this
quality is true for every m=0,2, every m1=1 ,3, and t=0,1 ,2 ,3. This is done by a straightfor-
ard computation �in Maple�. In each variant, the left-hand side reduces to a linear combination of

he expressions 1+b�0�, 1+c�0�, b�2�+c�2�, and 
i=1,3�b�i�+c�i��. Due to the conditions on b�·�
nd c�·� imposed above, the equality is always true, so one has �iW

b ��� , iW1

b ��1���Tc for W
Peven���, W1�Podd���.

�5� Now consider the next case. Suppose that there exist iW
b ����BTc, iW1

b ��1�� �M \B�Tc,

here W1��̄�� and W�Peven���. Take any U�Podd���. For � we have SU=� or

z�U��z�=
v�W�̃�U ,v�+gb,c�U ,W�. For �1 we have SU=QU or 
z�U�1�z�=
v�W1���̃�U ,v�
�U+gb,c�U ,W1�, where �U=
z�W1��̄��z�, � being an element of QU \SU. Observe, that SU

annot be empty, since either SU=QU, or �U is defined. Therefore, we always know the sum

z�U��z�. In particular, U can be of the form �w�, where w�W, then ��w�=
v�W�̃�w ,v�
b�#4W�+b�1�+c�#4�W��w���+1. Sum over all w�W, and use the fact that #W is even. This
ields 
w�W��w�=
v,w�W�̃�w ,v�. On the other hand, this sum should be equal to b�#4W�. Hence
ne derives b�m�= �m�m−1� /2��c�2�+1�, mª#4W. If m=0, one obtains b�0�=0, and if m=2, one
btains b�2�=c�2�+1. In both cases this contradicts the assumptions on b�·� and c�·�. This means,
hat the pair �iW

b ��� , iW1

b ��1�� cannot exist.
�6� It remains to investigate just the case where one of the sets W or W1 is an odd subset of �,

nd the other contains at least one point outside �. Let W�Podd��� and W1��̄��. Suppose,
hat iW

b ����BTc and iW1

b ��1�� �M \B�Tc. First look at the condition for �1. For any U�Podd���,
he set SU cannot be empty, since one has either SU=QU or the quantity �Uª
z�W1��̄��z� needs
o be defined �� is an element of QU \SU; if � varies over the entire QU, the sum ranges over the
ntire Z /2 and �U is undefined�. Now look at the condition for �. First investigate the possibility
�z�= �̃�W ,z�+�Z�z�, z��, for some nonempty Z��, with #�Z�W� even. If #Z is odd, then take
=Z. This yields SZ=�, contradicting the previous fact. If #Z is even, then since #W is odd, there
lways exist a point e�W \Z. �This is implied by the facts that #W is odd and #�W�Z� is even,
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nd therefore #�W \Z� is odd.� Set U= �e��Z. This yields S�e��Z=�, again a contradiction. Hence
he only possibility that remains for � is ��QW \SW. For this case the values of ��·� are known in
very point of �. Since such � is assumed to exist, SW�QW. Now, set U=W in the condition for

1 �one can do it since W�Podd����. This yields 
z�W�1�z�=
z�W1���̃�W ,z�+�U+gb,c�W ,W1�.
ut �̃�W ,z� is just the value of ��z�. Recall, that the definition of �U contains an arbitrary function
�QU \SU. Take �=�. In the result, one obtains 
z�W�1�z�=
z�W1

��z�+gb,c�W ,W1�, i.e.,
iW
b ��� , iW1

b ��1���Tc. This completes the proof that Tc satisfies the main condition �6�. Applying
he described construction to the set Ab and relation Tc, one obtains a coherent orthoalgebra. �

II. ABSENSE OF BIVALUATIONS

Recall, that we have made the following assumptions in order to construct an orthoalgebra: N
s divisible by 4, b�0�=1, c�0�=1, b�2�+c�2�=0, and 
i=1,3�b�i�+c�i��=0. Let us show that such
rthoalgebra cannot admit bivaluations. Take N+1 elements of Max�PTc

�Ab� , � �: N elements

vª �i�v�
b ������Lb��v��, v�V, and an element B̂ª �iV

b������Lb�V�. Note, that B̂ is transformed into Bv

f one applies �̂�v�
�ā�

�̂V
�ā��̂�v�

�ā� to each of its elements. Recall, that the ground set of our orthoalgebra is
Tc�Ab�. Every singleton �l�, where l� ��v�VBv�� B̂ is in this ground set, �l��PTc�Ab�. For every
�V the sum � l�Bv

�l� is defined and equals Ab, i.e., the 1 of the orthoalgebra. Also, � l�B̂�l�
1. Assume that there exists a bivaluation f :Xb,c→B, where Xb,c denotes the constructed orthoal-
ebra. One has the following equalities in B : � l�Bv

f��l��=1, v�V, and � l�B̂ f��l��=1. Since � in
is defined just in three cases, 0 � 0, 1 � 0, and 0 � 1, one derives two statements: �1� "v
V$ !l�Bv : f�l�=1; �2� $!l� B̂ : f�l�=1. Denote these uniquely defined elements by lv�Bv, v
V, and l̂� B̂, respectively. Any pair �l , l��, l�� l, of these elements cannot be in Tc. Indeed, then

� l� would have been defined. Applying to it f , f�l� � f�l��=1 � 1, follows a contradiction. Write

v= i�v�
b ��v�, �v�Lb��v��, and l̂= iV

b��̂�, �̂�Lb�V�. The definition of Tc yields, for any v ,v1�V,
�v1, that

�v�v1� + �v1
�v� = c�2� ,



z�V\�v�

���z� + �v�z�� = c�3� .

ake the sum over v�V for the second equality. Using the definition of Lb�V� one obtains

�N − 1�b�0� + 

z,v�V,

z�v

��z�v� + �v�z�� = Nc�3� ,

here � is any order on V. Now, using the first equality, and then the fact that N is divisible by
, one arrives at b�0�=0. This contradicts the assumption b�0�=1. Therefore, a bivaluation of Xb,c

annot exist.

III. ISOMORPHIC ORTHOALGEBRAS

There are several options for the choice of b�·� and c�·� satisfying the conditions of the
heorem. Let us derive a sufficient condition for two orthoalgebras of the form Xb,c to be isomor-
hic. Select any �b ,c� satisfying the conditions of the theorem, and any �b� ,c�� satisfying the same
onditions. Construct Abª�U�P���Lb�U� and Ab�ª�U�P���Lb��U�, and define the relations Tc

nd Tc� on Ab and Ab�, respectively. Denote by iU
b :Lb�U��Ab and iU

b� :Lb��U��Ab� the canonical

njections. Suppose that there exists a bijective map t̂ :Ab→̃Ab�, such that �l , l1��Tc implies

t̂�l� , t̂�l1���Tc�. Then this map induces a bijection PTc�Ab�→̃PTc��Ab��, which establishes an iso-
orphism of the orthoalgebras Xb,c and Xb�,c�. Let us try to construct such a map and investigate

hat kind of relations between b, c, b�, and c�, emerge.
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The map t̂ is defined by a collection of bijections �tU�U�P�V�, where tU :Lb�U�→̃Lb��U�. Let us
earch for tU in the form

tU����v� = ��v� + �U�v� ,

here �U�v� are some Z /2-valued parameters, U�P�V�, v�V. Denote

b̃U ª b�#4U� + b��#4U� ,

c̃U,U1
ª c�#4�U�U1�� + c��#4�U�U1�� + b̃U + b̃U.

he requirement that 
v�U��v�=b�#4U�Þ
v�UtU����v�=b��#4U�, yields for every U�P�V� an
quation on �U�·�,



v�U

�U�v� = b̃U.

imilarly, for every U ,U1�P�V�, U�U1, the requirement that for any ��Lb�U�, �1�Lb�U1�,
v�U�U1

���v�+�1�v��=c�#4�U�U1��+1Þ
v�U�U1
�tU����v�+ tU��1��v��=c��#4�U�U1��+1,

ields an equation



v1�U1

�U�v1� + 

v�U

�U1
�v� = c̃U,U1

.

hese equations are similar to Eqs. �17� and �18�, for aS,U�v� derived above. It is not difficult to
olve them. First consider the case, #U=1 and #U1=1. From this it follows, that ��v��z� is a
olution of the corresponding system iff it is of the form ��v��z�=��v�

����z�, where

��v�
����z� ª ��zv� if z � v ,

b̃�v� if z = v ,

��zv� + c̃�z�,�v� if z � v ,
�

here � :E�V�→Z /2 is an arbitrary function, and � is some chosen and fixed order on V. The
ther �Q�v�, #Q2, may be found from the specialization U= �v�, U1=Q, in the equation with

U,U1
. This yields �Q�v�=�Q

����v�, where

�Q
����v� = c̃�v�,Q + 


z�Q

��v�
����z� .

ow consider the equations with b̃U, corresponding to U=Q, #Q2, and the equations with c̃U,U1
,

orresponding to U=Q, U1=Q1, with #Q , #Q12. This leads to the following solvability condi-
ions:

c̃Q,Q1
+ 


z�Q

c̃�z�,Q1
+ 


z1�Q1

c̃Q,�z1� + 

z�Q,

z1�Q1

c̃�z�,�z1� = 0, �35�



v�Q

c̃�v�,Q + 

v,z�Q,

z�v

c̃�v�,�z� = b̃Q + 

v�Q

b̃�v�. �36�

ote that if one formally takes Q or Q1 of cardinality 1, the corresponding equality trivializes.
ote also that this system of equations becomes the system of equations �19� and �20�, for cQ,Q1

�S�

�S� ˜ �S� ˜ �S�
nd bQ investigated above, if one formally replaces cQ,Q1
with cQ,Q1

, and bQ with bQ . From the
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efinition of b̃U, it is clear that its value is determined by #4U, i.e., b̃U=	�#4U�, where 	 :Z /4
Z /2 is some function. Similarly, c̃U,U1

can be written as c̃U,U1
=��#4�U�U1��+	�#4U�

	�#4U1�, where � :Z /4→Z /2 is some function. It is necessary to substitute these expressions
nto the solvability conditions �35� and �36�, above. The values of the resulting expressions are
etermined by mª#4Q, m1ª#4Q1, and tª#4�Q�Q1�. Analyzing the 4�4�4=64 correspond-
ng variants, we should discover which assumptions on 	�·� and ��·� emerge. The equation with
our c̃ yields

���m + m1 − 2t� + 	�m� + 	�m1�� + �m − t���m1 + 1� + t��m1� + m�	�1� + 	�m1�� + �m1 − t���m

+ 1� + t��m� + m1�	�1� + 	�m�� + � t�t − 1�
2

+ �m − t�t + �m1 − t�t + �m − t��m1 − t����2� = 0.

he equation with b̃ yields

m���m − 1� + 	�1� + 	�m�� +
m�m − 1�

2
��2� = 	�m� + m	�1� .

straightforward �Maple� computation shows, that all these equalities hold iff

��0� = 0, ��2� = 0, ��1� + ��3� = 0,

	�0� = 0, 	�2� = 0, 	�1� + 	�3� = 0.

ecall that b��i�=b�i�+	�i�, c��i�=c�i�+��i�, i�Z /4. Hence, if the additions 	�·� and ��·� satisfy
hese conditions, the corresponding orthoalgebras are isomorphic.

X. THE PROJECTIVE LINES

Let N=4. Set b�0�=c�0�=1 and the other b�i�=c�i�=0, i=1,2 ,3. We have the set Ab and the
elation Tc�Ab�Ab. Let us write just A and T in this case. Let us show how �only in this
articular case� the main condition on T may be established in a different way �not combinatorial,
ut geometric�.

Take a Hilbert space H of finite dimension d=2N−1=8 over C. Consider P�H� equipped with
he orthogonality relation �. Suppose, that there exists an injective map � :A�P�H�, such that
x ,x1�A : �x ,x1��TÛ��x����x1�. Then the main property for T can be easily established.

ndeed, take any M �Max�PT�A� , � �, and then any B�M. The map � sends M into a set of d
airwise orthogonal projective lines. An element x�A falls into BT iff its image ��x� is orthogonal
o every ��y�, y�B. The latter is equivalent to ��x�� �span���y� �y�B���

¬P1. Similarly, x
A falls into �M \B�T iff ��x�� �span���y� �y�M \B���

¬P2. Since ��y�, y�M, are pairwise
rthogonal and the span over them is the whole space H, the subspaces P1 and P2 have trivial
ntersection and are mutually orthogonal. For any x1�B and any x2�M \B, we have ��x1�� P1

nd ��x2�� P2. Hence ��x2����x1�, and this is equivalent to �x1 ,x2��T. So the main property of
is established.

In case N=4 the map � mentioned can be constructed. This fact relies on the results of Ref.
0. Set H= �C2��3. Take any orthonormal basis ����� in C2 indexed by ��Z /2. Define a map
: �Z /2�2→R as follows: u�1,1�ª−1 and u�i , j�ª1 for �i , j�� �1,1�. Construct another ortho-
ormal basis ��	�	�Z/2 in C2 by defining �	ª �1/�2�
�u�� ,	���. Recall that A=�U�P�V�L�U�,
here L�U� consists of all functions 
 :V→Z /2, such that 
z�U
�z�=b�#4U�. Note that since we
ave b�0�=1, the set L��� is empty. Hence the latter disjoint union can be viewed as being taken
ver U�P�V��

ªP�V� \ ���. Denote by iU :L�U��A the canonical injections. The elements
�iU�
���P�H�, U�P�V��, 
�L�U�, are defined as follows. In Ref. 10 there were defined 120
rojective lines in H denoted by ��

v , X�
vw, ��

v, and F�, where v ,w�V, w�v, and the indices �,

, �, and � vary over the sets Sv, Kvw, Rv, and �, respectively, defined as follows:
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Sv ª Maps���v,z��z � V \ �v�� → Z/2� ,

Kvw ª Maps���v,w�� � �V \ �v,w�� → Z/2� ,

Rv ª Maps���z,w��z,w � V \ �v�,z � w� → Z/2� ,

� ª 	� � Maps�V → Z/2��

z�V

��z� = 1�� .

he corresponding formulas for the projective lines are given in terms of ��, �	, and u�� ,	�
� ,	�Z /2�, and discussed in more detail in that paper. Note that the index sets Sv, Kvw, Rv, and
, all have cardinality 23=8.

Let us establish bijections �v :L��v��→̃Sv, 	vw :L��v ,w��→̃Kvw, �v :L�V \ �v��→̃Rv, and

:L�V�→̃�. For v�V and 
�L��v��, set

�v�
��vz� ª 
�z�, z � V \ �v� .

or v ,w�V, w�v, and 
�L��v ,w��, set

	vw�
��vw� ª 
�v� = 
�w� ,

	vw�
��z� ª 
�t�, 	vw�
��t� ª 
�z� ,

here z and t are the two different elements of V \ �v ,w�. �Note, that 
�v�=
�w�, since b�2�=0.�
or every v�V and 
�L�V \ �v��, set

�v�
��V \ �v,z�� ª 1 + 
�v� + 
�z�, z � V \ �v� .

inally, for every 
�L�V�, set

��
��v� ª 1 + 
�v�, v � V .

The collection of bijections �v, 	vw, �v, and �, define an injective map � :A�P�H� by the
ormulas i�v��
1����v�
1�

v , i�v,w��
2��X	vw�
2�
vw , iV\�v��
3����v�
3�

v , and iV�
0��F��
0�, where

1�L��v��, 
2�L��v ,w��, 
3�L�V \ �v��, and 
0�L�V�. It is straightforward to verify that it
ransforms a pair �iU�
� , iW�
����T �
�L�U� ,
��L�W� ,U ,W�P�V���, into a pair of orthogo-
al projective lines. Note, that the only facts needed in order to prove this, are the following four
roperties of u�· , · �: �1� u�� ,	�=u�	 ,��; �2� u�� ,	+��=u�� ,	�u�� ,��; �3�
	�Z/2u�� ,	�u�	 ,��=2��,�; �4� u�� ,1+���1. Therefore T satisfies the main condition.

Let us mention, how to obtain in principle the formulas for the projective lines �for N=4�. The
esult will be just the 120 projective lines constructed in Ref. 10. The configuration of these lines
s saturated �i.e., every subset of pairwise orthogonal lines is contained in a set of eight pairwise
rthogonal lines� and has a Kochen-Specker-type property.6 More precisely, this set contains a
ubset of 40=5�8 projective lines, which are implicitly present in the no-hidden-variables argu-
ent due to Mermin.8 Denote the lines as l


U, U�P�V��, 
�L�U�. It is convenient to view the set
f four points V as a disjoint union of the ground set of Z /3 and a singleton ���, where � is a
ormal symbol. Write Z /3 additively, and denote its elements as 0, 1, and 2. For ��L�����, set

l�
�*�

ª C �
i�Z/3

�
2i

��i�,

here the upper indices denote the ordering of the factors in the tensor product. Let ����� and
2
�	�	 be the orthonormal bases in C as above. For k�Z /3 and ��L��k��, set
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l�
�k�

ª C	�
2k

��*� � �
j��Z/3�\�k�

�
k+j

��j�� .

or any U�P�V�, #U2, one can search for the projective line corresponding to ��L�U� in the
orm

l�
U
ª 


��L��*��
B�

U��� �
i�Z/3

�
2i

��i�,

here B�
U����C are some coefficients. The conditions



z�U��v�

���z� + ��z�� = c�#4�U��v��� + 1 Þ l�
�v� � l�

U,

here v varies over V, and � varies over L��v��, yield �for every U and �� a system of equations
n �B�

U�����. This system is homogeneous and linear, but overdetermined. Nevertheless, it turns out
hat it has nontrivial solutions. Moreover, for every U�P�V�, the obtained projective lines
l�
U���L�U� are pairwise orthogonal, and for every U ,U1�P�V�, if U�U1, then l�

U� l�1

U1, where
�L�U�, �1�L�U1�. A straightforward computation shows, that the orthogonality relation be-

ween the lines corresponding to different U ,U1�P�V��, U�U1, is described by the formula

l�
U � l�1

U1 Û 

z�U�U1

���z� + ��z1�� = c�#4�U�U1�� + 1,

here ��L�U�, �1�L�U1�. It remains to define the injection � :A�P�H� by the formula
�iU�
��ª l


U, U�P�V��, 
�L�U�.
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When an eigenvector of a semibounded operator is positive, we show that a re-
markably simple argument allows to obtain upper and lower bounds for its associ-
ated eigenvalue. This theorem is a substantial generalization of Barta-type inequali-
ties and can be applied to non-necessarily purely quadratic Hamiltonians. An
application for a magnetic Hamiltonian is given and the case of a discrete
Schrödinger operator is also discussed. It is shown how this approach leads to some
explicit bounds on the ground-state energy of a system made of an arbitrary number
of attractive Coulombian particles. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2168124�

. INTRODUCTION

In most situations, the principal eigenvalue of a semibounded operator cannot be obtained
xplicitly whereas it plays a crucial role in physics: the smallest vibration frequency of an elastic
ystem, the fundamental mode of an electromagnetic cavity, the ground-state energy of a quantum
ystem with a finite number of degrees of freedom, the energy of the vacuum in a quantum field
heory, the equilibrium state at zero temperature in statistical physics, etc. There are actually very
ew ways—which are usually specific to a restricted class of systems1—to obtain accurate ap-
roximations of an eigenvalue with a rigorous control on the errors and a reasonable amount of
umerical computations. For instance, in a typical Dirichlet-Laplacian problem defined for an
pen connected set Q�Rd; d�N; Barta’s inequalities �Barta, 1937� allow to bound to the lowest
igenvalue e0: The determination of a lower �respectively, upper� bound requires the finding of the
bsolute minimum �respectively, maximum� of a smooth function defined on Q. Compared to the
eneral and traditional methods like the Rayleigh-Schrödinger perturbative series and the
ayleigh-Ritz or Temple variational methods, an advantage of Barta’s approach is not only to
aturally provide both an upper and a lower bound, but also does not involve the calculation of
ny integral. Therefore, generalizations of Barta’s inequalities can lead to interesting spectral
nformation. This generalization has been carried out in two directions:

�i� For Laplacian operators acting on square integrable functions defined on a Riemannian
anifold �for a recent work on this subject, see Bessa and Montenegro, 2004�.

�ii� For Schrödinger operators of the form −�+V acting on square integrable functions defined
n an open set of Rd �Barnsley, 1978; Baumgartner, 1979; Thirring, 1979; Crandall and Reno,
982; Schmutz, 1985� or more generally second order elliptic operators �Protter and Weinberger,
966; Berestycki et al., 1994; Harrell II, 2005�.

�mouchet@phys.univ-tours.fr

Finding lower bounds for the smallest eigenvalue of a typical Hamiltonian is far more difficult than finding upper bounds.
or successful attempts, see for instance the moment method proposed by Handy and Bessis, 1985, the Riccati-Padé

ethod proposed in Fernández et al., 1989 and the lower bounds obtained for few-body systems by Benslama et al., 1998.
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In both cases, the proofs of Barta’s inequalities involve the use of a Kato-type inequality and
herefore rely extensively on the somehow specific properties of the purely quadratic differential
perator. In this paper, we propose a significant extension of Barta’s inequalities that will rely on
he properties of one eigenvector only. More precisely, with a remarkably simple argument, we
ill show that we can obtain upper and lower bounds for the eigenvalue e0 associated with the

igenvector �0 of an operator, under the only hypothesis that �0 is real and non-negative. This
esult includes cases �i� and �ii� because the Krein-Rutman theorem guarantees the positivity of �0

Reed and Simon, 1978a, Sec. XIII.12� for the smallest eigenvalue e0,2 but also applies for a much
ider class of operators including the following.

�iii� the Schrödinger operators involving a magnetic field, e.g., the hydrogen atom in a Zee-
an configuration;

�iv� discrete Hamiltonians, e.g., the one occurring in the Harper model;3

�v� some integral or pseudodifferentiable operators, e.g., the Klein-Gordon or spinless Salpeter
amiltonians.

The next section fixes the notations, proves the main general results �theorems 1 and 2�.
ection III shows how the original argument given in Sec. II actually embraces and generalizes the
arta-type inequalities that have been already obtained in the literature and furnishes guidelines to
umerically improve the bounds on e0. Sections IV and V provide two applications in the differ-
ntiable case �many-body problem� and in the discrete case, respectively.

I. BOUNDING THE PRINCIPAL EIGENVALUE WITH THE LOCAL ENERGY

. General inequalities

In the following, Q will be a locally compact space endowed with a positive Radon measure
. �� ��� will denote the scalar product between two elements � and � belonging to the Hilbert

pace of the square integrable complex functions L2�Q ,��,

����� = �
Q

�̄�q���q�d��q� .

D�H� will denote the domain of the operator H acting on L2�Q ,d��. The crucial hypothesis on
is the following.

Hypothesis 1: The operator H is symmetric and has one real eigenvector �0�D�H� such that

0�0 �almost everywhere with respect to �� on Q.
If e0 stands for the eigenvalue of H associated with �0, the symmetry of H implies that, for

ll ��D�H�, we have ��0 � �H−e0���=0 that is

"� � D�H�, �
Q

�0�q��H − e0���q�d��q� = 0.

Taking the real part of the integral, we can see that the support of q�Re��0�q��H
e0���q�� either is empty, either contains two disjoints open sets Q± such that Re��0�H−e0���
0 and ��Q±��0. The hypothesis of positivity of �0 implies that on Q±, we have Re��H

e0����0. The last results motivates the following definition.

Definition 1 �local energy): For any � in D�H�, the local energy is the function E� :Q→ R̄
efined by

The positivity of �0 is also required for the traditional proofs of Barta’s inequalities; this explains why, in case �i� and �ii�,
hey concern the lowest eigenvalue only.

After the first version of this paper was written, the author became aware of the paper by Barnsley and Duffin, 1980 where

similar argument as the one presented here was proposed �Theorem 7� for the bounds on an eigenvalue of a finite matrix.
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E��q� =
Re�H��q��
Re���q��

. �1�

Therefore from what precedes, we have obtained the main theorem.
Theorem 1: For any symmetric operator H on L2�Q ,�� having an eigenvalue e0 whose

orresponding eigenfunction is non-negative almost everywhere on Q, we have

"� � D�H� such that Re��� � 0, infQ�E�� 	 e0 	 sup
Q

�E�� . �2�

Actually, for a nonsymmetric operator K, we can keep working with its adjoint K* and easily
eneralize the above argument.

Theorem 2: Let K being an operator on L2�Q ,�� having an eigenvalue k0 whose correspond-
ng eigenfunction is real and non-negative almost everywhere on Q, we have "�

D�K*� such that ��0,

inf
Q
	Re�K*��

�

 	 Re�k0� 	 sup

Q
	Re�K*��

�

 , �3a�

inf
Q
	−

Im�K*��
�


 	 Im�k0� 	 sup
Q
	−

Im�K*��
�


 . �3b�

his generalization may be of physical relevance. There are some models �e.g., the so-called
kicked” systems, or quantized maps� where the dynamics are described “stroboscobically”, i.e.,
mplemented by a unitary operator �the Floquet evolution operator� that cannot be constructed
rom a smooth Hamiltonian. However, we will not consider this possibility here, and up to the end
f this paper, H will denote a symmetric operator.

. Optimization strategy

Since generally, the eigenfunction �0 is not known exactly, it will be approximated with the
elp of test functions that belong to a trial space T�H��D�H�, very much like the variational
ethod. Since we want a test function to mimic �0 at best, we will restrict T�H� to functions that

espect the a priori known properties of �0: its positivity, its boundary conditions and its sym-
etries if there are any. For each test function the error on e0 is controlled by inequalities �2�.
herefore, the strategy for obtaining reasonable approximations is clear: First, we must choose or
onstruct � to eliminate all the singularities of the local energy in order to work with a bounded
unction and second, perturb the test function in the neighborhood of the absolute minimum
respectively, maximum� of the local energy in order to increase �respectively, decrease� its value.
or practical and numerical computations, this perturbation will be implemented by constructing a
iffeomorphism 
→T�H� ,���� from a finite dimensional differentiable real manifold 
 of
ontrol parameters � and the optimized bounds for e0 will be

sup



inf
Q

�E��
� 	 e0 	 inf



sup
Q

�E��
� . �4�

II. INEQUALITIES IN THE DIFFERENTIABLE CASE: OLD AND NEW

. General considerations

When H is a local differential operator, i.e., involves a finite number of derivatives in an
ppropriate representation �for instance in position or in momentum representation�, one can
herefore construct an algorithm that does not require any integration but differential calculus only.

n an analytic and in a numerical perspective, this may be a significant advantage on the pertur-
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ative or variational methods even though it is immediate to see4 that the upper bound given by �2�
s always larger than �� �H�� / �� ���. The global analysis appears only through the determination
f the singularities and the absolute extrema of the local energy that may have bifurcated when the
ontrol parameter � varies smoothly. For a Schrödinger operator, the possible singularities of the

otential on Q̄ like a Coulombian divergence or an unbounded behavior at infinite distances may
urnish a strong guideline for constructing relevant test functions �see Sec. III D below�. We have
iven in Mouchet, 2005, some heuristic and numerical arguments to show how this strategy can be
ruitful. In the present paper, the main focus will concern rigorous results and will explain how
ome of them can be obtained with great simplicity even for systems as complex as those involved
n the many-body problem.

. Case „i… Barta’s inequalities

They immediately appear as a particular case of Theorem 1.
Theorem 3 (Barta, 1937�: Let Q be a connected bounded Riemannian manifold endowed

ith the metric g and H, the opposite of the Laplacian �g acting on the functions in L2�Q ,�� that
atisfy Dirichlet boundary conditions on the boundary �Q. The lowest eigenvalue e0 of H is such
hat, for all positive ��C2�Q�,

inf
Q
�−

�g�

�
� 	 e0 	 sup

Q
�−

�g�

�
� . �5�

Proof: It follows directly from Theorem 1, with the local energy given by E�=−�g� /�: The
pectrum of H is discrete and the Krein-Rutman theorem assures that Hypothesis 1 is fulfilled for

0 being the lowest �and simple� eigenvalue. �

Remark 1: The Dirichlet boundary conditions are not essential and can be replaced by any
ther type of boundary conditions provided that Hypothesis 1 remains fulfilled. However, as
xplained in Sec. II B, for obtaining interesting bounds on e0 extending T�H� to test functions that
o not fulfill the boundary conditions �as proposed by Duffin, 1947) seems not appropriate.

. Case „ii… Duffin-Barnsley-Thirring inequalities

Extensions of Barta’s inequalities for Schrödinger operators have been obtained partially by
uffin �Duffin, 1947� and Barnsley �Barnsley, 1978� �for the lower bound only� and completely

lower and upper bound� by Thirring �Thirring, 1979� using Kato’s inequalities �see also Schmutz,
985�.

Theorem 4 (Duffin, 1947; Barnsley, 1978; Thirring, 1979): Let H=−�+V be a Schrödinger
perator acting on L2�Rd� having an eigenvalue below the essential spectrum. Then the lowest
igenvalue e0 of H is such that for any strictly positive ��D�H�,

inf
Rd
�V −

��

�
� 	 e0 	 sup

Rd
�V −

��

�
� . �6�

he proof is similar to the one presented above with the local energy being now E�=V−�� /�.
his argument has the advantage on the existing ones that it does not involve the specific prop-
rties of the Laplacian and can be immediately transposed to the larger class of the differential
perators �not necessarily of second order� that fulfill Hypothesis 1.

. Case „iii… magnetic Schrödinger operators

In the presence of a magnetic field, Schrödinger operators take the form H= �i�q+A�q��2

V�q� with A :Q→Rd being a smooth magnetic potential vector and V :Q→R a smooth scalar

For each positive �, it follows from �� �H��=Re��� �H���=Q��q�Re�H��q��d��q�=Q�2�q�E��q�d��q�

�� ���sup

Q
�E��q��.
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otential. The Krein-Rutman theorem may not apply whereas there still exists a non-negative real
igenfunction �e0 may be not simple nor the lowest eigenvalue� �Helffer et al., 1999�.

In the particular case of the hydrogen atom in a constant and uniform magnetic field, Hypoth-
sis 1 is fulfilled for all values of the magnetic field �Avron et al., 1977; Avron et al., 1978� and
ndeed concerns the lowest eigenvalue. Therefore Theorem 1 applies and furnishes relevant ana-
ytical bounds that can be improved numerically as shown in �Mouchet, 2005�.

Proposition 1: The smallest eigenvalue e0 of the (3d-)Zeeman Hamiltonian

H =
1

2
�− i�� +

1

2
r� � B��2

−
1

r
�7�

s such that

"B � 0, e0 	 − 1/2 + B/2. �8�

Proof: In cylindrical coordinates �, �, z� where the magnetic field is B� =Bu�z, the test function
f the form �=exp�−�2+z2−B2 /4� is constructed, according to the strategy explained in Sec.
I B, in order to respect the rotational invariance of the ground state �Avron et al., 1977� and
liminate both singularities at r→0 and at →�. Indeed such a choice leads straightforwardly to
he bounded local energy

E� = − 1/2 + B/2 −
2B

2�2 + z2
. �9�

he upper bound follows. �

V. APPLICATION TO THE MANY-BODY PROBLEM

. Expression of the local energy in terms of two-body functions

We will consider in this section a N-body nonrelativistic bosonic system in d dimensions;
d ,N�� �N \ �0,1��2; whose Hamiltonian is given by

H̃ = �
i=0

N−1

−
1

2mi
�i + V�r�0, . . . ,r�N−1� �10�

cting on L2�RNd�, endowed with the canonical Lebesgue measure, and where "i� �0, . . . ,N
1�, r�i�Rd. �i is the Laplacian in the r�i variables and mi�R+ \ �0� the mass of the ith particle. The

pinless bosons interact only by the two-body radial potentials vij =v ji :R→R, i.e., V is given by

V = �
i,j=0
i�j

N−1

vij�rij� , �11�

here rij =rji= �r� j −r�i�. Once the center of mass is removed, the Hamiltonian H̃ leads to a reduced
amiltonian H acting on L2�R�N−1�d� �see for instance Sec. XI.5 of �Reed and Simon, 1978b�� and
e will suppose in the following that H has at least one eigenvector.5 Therefore, Hypothesis 1 is

ulfilled for e0 being the lowest �and simple� eigenvalue. A natural choice for test functions is to
onsider factorized ones of the form

Physically, this can be achieved with a confining external potential �a “trap” is currently used in experiments involving
old atoms�. Formally, this can be obtained in the limit of one mass, say m0, being much larger than the others. The
xternal potential appears to be the v0,i’s, created by such an infinitely massive motionless device. It will trap the remaining

−1 particles in some bounded states if the v0,i’s increase sufficiently rapidly with the r0,i’s.
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��r�0, . . . ,r�N−1� = �
i,j=0
i�j

N−1

�ij�rij� , �12�

here �ij �L2�R+� and � ji=�ij �0. One can check easily that the total momentum of such a test
unction vanishes. The corresponding local energy �1� is given by

E��qN� = �
i,j=0
i�j

N−1 	 − 1

2mij�ij�rij�
��ij� �rij� +

d − 1

rij
�ij� �rij�� + vij�rij�
 − �

�j, i, k̂�

1

mi
Sij� �rij�Sik� �rik�cos�j,i, k̂� ,

�13�

here qN�QN=R�N−1�d stands for the �N−1�d relative coordinates �r�1−r�0 , . . . ,r�N−1−r�0�, mij for
he reduced masses mimj / �mi+mj�, Sij� is the derivative of Sij =ln��ij�. The last sum involves all

he N�N−1��N−2� /2 angles �j , i , k̂� between r� j −r�i and r�k−r�i that can be formed with all the
riangles made of three distinct particles.

Whenever each vij allows for a two-body bounded state, we can choose �ij to be the eigen-
ector of −�2mij�−1�+vij having the smallest eigenvalue �ij

�2�. Moreover, if vij�r� is bounded when
→�, from an elementary semiclassical analysis �see for instance �Maslov and Fedoriuk, 1981��
t follows that Sij� is also bounded since asymptotically we have Sij� �r��r→�−�2mij�vij�r�−�ij

�2��. It
ollows that the local energy is also bounded and finite lower and upper bounds on e0 can be
ound. For instance, directly from expression �13�, we have the following.

Proposition 2: If, for all �i , j�� �0, . . . ,N−1�2, i� j, vij�r� is bounded when r→� and
�2mij�−1�+vij has a smallest eigenvalue �ij

�2� obtained for �ij =exp Sij, then the smallest eigen-
alue e0 of the N-body Hamiltonian in the center-of-mass frame is bounded by

�
i,j=0
i�j

N−1

�ij
�2� −

s2

2m
N�N − 1��N − 2� 	 e0 	 �

i,j=0
i�j

N−1

�ij
�2� +

s2

2m
N�N − 1��N − 2� , �14�

here m=mini mi and s=maxi,j supR+ �Sij� �.
For potentials that are relevant in physics �see for instance the effective power-law potentials

f the form vij�r�=sign���r�; ��R; between massive quarks as studied by Benslama et al., 1998�,
he analytic form of the two-body eigenvector is not known in general and some numerical
omputations are required to obtain the absolute maximum and minimum of the local energy �13�.

. The local energy for a general Coulombian problem

When N is large, the estimation �14� is quite rough, in particular it does not take into account
he constraints between the several angles. More precise results are obtained for the Coulombian
roblem where vij�r�=eij /r with eij �R and d�1. In that case, provided a bounded state exists
nd that we keep the test function �12� in L2�R�N−1�d�, we choose a constant derivative Sij�
2eijmij / �d−1� in order to get rid of the Coulombian singularities of V. We obtain a bounded local
nergy given by

E��qN� = �
i,j=0
i�j

N−1

−
2mijeij

2

�d − 1�2 −
4

�d − 1�2 �
�j, i, k̂�

mijmikeijeik

mi
cos�j,i, k̂� . �15�

. Identical purely attractive Coulombian particles

The case where all the N particles are identical and attract each other, i.e., when "�i , j�
�0, . . . ,N−1�2, i� j, mi=1 and eij =−1, has been extensively studied in the literature, in particu-
ar the asymptotic behavior of e0 with large N may have some dramatic consequences on the
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hermodynamical limit �Fisher and Ruelle, 1966; Lenard and Dyson, 1967; Lévy-Leblond, 1969;
ieb, 2005�. The local energy method allows to obtain in a much simpler way energy bounds that
re comparable to those already obtained by other methods. Actually, �15� simplifies to

E��qN� = −
1

�d − 1�2� 1
2N�N − 1� + FN�qN�� �16�

ith F2�0 and for N�3,

FN�qN� = �
�j, i, k̂�

cos�j,i, k̂� . �17�

he angular function FN depends only on the geometrical configuration of the N vertices
r�0 , . . . ,r�N−1�, i.e., it is invariant under the group of Euclidean isometries and the scale invariance
f the Coulombian interaction makes it invariant under dilations as well.

Lemma 1: infQ3
F3=1 is obtained when the three points are aligned. supQ3

F3=3/2 is ob-
ained when the three points make an equilateral triangle.

Proof: The extrema of F3 correspond to the extrema of the function defined by
�0 ,�1 ,�2��cos �0+cos �1+cos �2 under the constraint �0+�1+�2=� for ��0 ,�1 ,�2� being the

hree angles �1,0 , 2̂�, �0,1 , 2̂�, �0,2 , 1̂�, respectively. The Lagrange multiplier method leads to the
etermination of the extrema of the function �0;��3→R defined by ��0 ,�1 ,�2��cos �0+cos �1

cos �2+ l��0+�1+�2−��; l�R. We immediately obtain that the extremal points are located at
�0 ,�1 ,�2�= �� /3 ,� /3 ,� /3� and ��0 ,�1 ,�2�= �0,0 ,�� together with the solutions that are ob-
ained by circular permutations. It is easy to check that the first solution provides an absolute

aximum for F3 and the second ones an absolute minimum. �

An immediate consequence of the preceding lemma is the following.
Proposition 3: The lowest energy e0 of N�2 identical attractive Coulombian spinless par-

icles in d�1 dimensions is such that

e0 	 −
1

�d − 1�2

1

6
N�N − 1��N + 1� �18�

hen the individual masses equal to unity and the attractive potential is −1/r.
Proof: The sum on the angles that defines FN in �17� can be written as a sum of N�N−1��N

2� /6 F3-terms calculated for all the triangles that belong to the N-uplet made of the N vertices.
ince, from Lemma 1 the absolute minimum of F3 is obtained for a flat configuration, when all the
points are aligned all the F3-terms reach their absolute minimum simultaneously and the abso-

ute minimum of FN is obtained. We have
Lemma 2: infQN

FN= 1
6N�N−1��N−2� is obtained when all the N points are aligned.

The upper bound �18� follows from �16�. �

More generally, for a given N-uplet �i.e., a set of exactly N points�, clustering the sum �17� in
M-uplets �N�M �3� allows to find bounds on FN from bounds on FM. Indeed, we can write

FN�qN� = �
qM

�M − 3� ! �N − M�!
�N − 3�!

FM�qM� , �19�

here the sum is taken on all the M-uplets, labeled by the coordinates qM, that belong to the given
-uplet. This sum involves exactly N ! / �M ! �N−M� ! � terms and we have, therefore,

Lemma 3: "�N ,M��N2 such that N�M �3,

sup
QN

FN 	
N�N − 1��N − 2�

M�M − 1��M − 2�
sup
QM

FM . �20�
or a given N, supQN
FN is not known exactly but the ordered sequence
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supQN
FN

N�N − 1��N − 2�
	

supQN−1
FN−1

�N − 1��N − 2��N − 3�
	 ¯ 	

supQM
FM

M�M − 1��M − 2�
	 ¯ 	

supQ3
F3

3.2.1
=

1

4

�21�

hows that in order to improve the lower bounds on �16�, we must try to find supQM
FM with M

eing the largest as possible. However, when considering identity �19� for N=4 and M =3 together
ith Lemma 1 we have the following.

Lemma 4: supQ4
F4=6 is obtained when the four points make a regular tetrahedron.

Then supQ4
F4 / �4.3.2�=supQ3

F3 / �3.2.1�=1/4 and no better estimate is obtained when con-
idering M =4 rather than M =3. Numerical investigations lead to the following conjectures.

Conjecture 1: �C5� When d=3,

sup
Q5

F5 =
9

2
+

6�h0 + 1�
�h0

2 + 1
3

−
1

h0
2 + 1

3

� 14.591 594

ith

6h0 = 1 +�− 1 + �3 7 + 4�3 +
1

�3 7 + 4�3

+�− 2 − �3 7 + 4�3 −
1

�3 7 + 4�3
+ 8

1

�− 1 + �7 + 4�3�1/3 + �7 + 4�3�−1/3
�22�

s obtained when the five points make two mirror-symmetric tetrahedrons sharing one common
quilateral basis, their other faces being six isosceles identical triangles.

Remark 2: The only free parameter of the specific configuration can be chosen to be the height
of one tetrahedron (the length of the edges of the common equilateral basis being fixed to one).

he maximum of h�F5 is reached for h0 being the greatest solution of 9h4−6h3+3h2−2h+1/3
hat is precisely given by �22�.

Remark 3: The pyramidal configurations with a squared basis leads to a local maximum that
ives F5=15/2+5�2�14.57.

Conjecture 2: �C6� When d=3, supQ6
F6=12�1+�2� is obtained when the six points make a

egular octahedron.
Conjecture 3: �C8� When d=3,

sup
Q8

F8 = 16	4

5
+

1
�2

+
1
�5

+
4�1 + �2�

�5�5 + 4�2
+

3 + 2�2

�5 + 4�2
−

1

5 + 4�2

 � 79.501

s obtained when the eight points make two identical squares (whose edges have length one) lying
n two parallel planes separated by a distance h=�1+2�2/2. The axis joining the centers of the
wo squares is perpendicular to the squares and the two squares are twisted one from the other by

relative angle of � /4.
Remark 4: The cube corresponds to F8=8�3�2+�3+3/2+�6��79.393.
Conjecture 4: �C�� When d=3 and N→�, the configuration that maximizes FN corresponds to

points uniformly distributed on a sphere and supQN
FN� 2

9N3+o�N3�.
Remark 5: The ambiguity of distributing N points uniformly on a sphere (Saff and Kuijlaars,

997 and references therein) vanishes for large N as far as a uniform density is obtained. Assum-
ng such a uniform density, the continuous limit of FN /N3 is a triple integral on the sphere than
an be computed exactly to 2/9.

The upper bound �18� for d=3 is slightly above the one obtained by Lévy-Leblond, 1969, Eq.
17�, p. 807, namely −�5/8�2N�N−1�2 /8, and the numerical estimate −0.0542N�N−1�2 by Basde-
ant et al., 1990, Eq. �16�, p. 63. For the lower bounds, from Lemmas 1 or 4, we have obtained the

ollowing.
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Proposition 4: The lowest energy e0 of N�2 identical attractive Coulombian spinless par-
icles in d�1 dimensions is such that

−
1

�d − 1�2

1

4
N2�N − 1� 	 e0 �23�

hen the individual masses equal to unity and the attractive potential is −1/r.
The same result has been obtained for d=3 by Basdevant et al., 1990, Eq. �11�, p. 62 and is

lightly better than −N�N−1�2 /8 given by Lévy-Leblond, 1969 Eq. �13�, p. 807. For N�M �4,
his lower bound can be improved to

−
1

�d − 1�2N�N − 1��1

2
+ �M�N − 2�� 	 e0 �24�

ith

�M =
supQM

FM

M�M − 1��M − 2�
	

1

4
. �25�

f conjecture �C5� �respectively �C6�, �C8�, and �C��� is correct we get, when d=3, �5�0.2432
respectively, �6�0.2414, �8�0.2366, and ���2/9� and the lower bounds are, therefore, im-
roved.

Some numerical investigations, in particular a systematic comparison with the lower bounds
btained with variational methods in �Benslama et al., 1998� for N=3 and N=4 Coulombian
articles will be given elsewhere �Mouchet, 2006�.

. APPLICATION TO DISCRETE HAMILTONIANS

Where q�Zd; d�N; the discretized analog of a local differential operator corresponds to a
amiltonian that couples at most a finite number of basis vectors �e.g., the nearest neighbors on

he lattice Zd�. For instance, when d=1, it can be seen as a Hermitian band matrix �finite or
nfinite� of finite half-width in an appropriate basis. Possibly with renumbering the q’s, on �2�Zd�

has the form:

�H��q = �
��Zd

����	Nb

Hq,q+��q+�, �26�

here Nb�N, "�q ,q���Zd�Zd, Hq�,q= H̄q,q��C and ���� stands for max���1 � , . . . , ��d � �. � will
e taken as a discrete set of real strictly positive numbers, and the local energy E��q� is computed,
or a given q, with elementary algebraic operations whose number is finite and all the smaller than

b are small: its value at a given q depends on �2Nb�d+1 components of � at most. Under
ypothesis 1,6 if, say, for a given test vector �, the absolute maximum of E� occurs only at a
nique finite qm, one can immediately improve the upper bound by a finite amount, for instance
ust by varying �qm

only, until E��qm� is not an absolute maximum anymore. Only �2Nb�d+1
alues of the local energy will be affected by the variation of just one component of �. One can
ee easily that this approach leads to a wide variety of algorithms where a sequence of optimiza-
ion steps is constructed; each step involves a number of optimization parameters and functions
hat is usually much smaller �of order �2Nb�d or less� than the dimension of the original matrix.

Discrete Schrödinger operators are important particular cases of Hamiltonians �26� with Nb

1. They are relevant models for the description of quantum �quasi-� particles evolving in periodic
rystals. For d=1, they can be written as
We have seen at the end of Sec. II A that the symmetry hypothesis can be relaxed.
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�H��q = − �q+1 − �q−1 + V�q��q, �27�

here the potential V is a real bounded function on Z. By possibly subtracting a constant positive
eal number to V, the bounded operator −H can be made positive and ergodic: First, for
ny positive and non-identically vanishing � and �� in �2�Z�, −H� remains positive. Second,
�� � �−H��q�−q���=�q�

� �q+ �positive terms��0 for any given pair of strictly positive components

q�
� and �q with q��q. �In the marginal case where � and �� both vanish everywhere but on the
ame point, we have ��� � �−H�����0. Therefore Theorem XIII.43 of �Reed and Simon, 1978a�
pplies: if H has indeed one eigenvalue, hypothesis 1 is fulfilled for e0 being the smallest eigen-
alue of H. In that case, inequalities �2� takes the following form:

Proposition 5: When the discrete Schrödinger operator �27� admits at least one eigenvalue
nd when V is bounded, then the smallest eigenvalue e0 is such that, "���2�Z� such that �
0,

inf
q�Z

�−
�q+1 + �q−1

�q
+ V�q�� 	 e0 	 sup

q�Z
�−

�q+1 + �q−1

�q
+ V�q�� . �28�

When V is actually a N-periodic real function, the spectral problem �see Reed and Simon,
978a for instance� leads to the search of complex series �uq�q�Z such that

"� = ��1,�2� � �0;1�2 �− uq+1 − uq−1 + V�q + �2�uq = e���uq,

uq+N = ei2��1uq.
�29�

The spectrum of H is the bounded set ��H�= �e��� ��� �0;1�2��R. It is given by the reunion
or all �’s of the N eigenvalues of finite N�N Hermitian matrices H��� obtained after transforming
29� with the one-to-one mapping uq�uq exp�−i2�q�1 /N�. As far as positive solutions of �29�
re concerned, we will take �1=0 and will look for the smallest eigenvalue e0��2� of

H�0,�2� =�
V��2� − 1 0 ¯ 0 − 1

− 1 V�1 + �2� − 1 0 ¯ 0

0 − 1 V�2 + �2� − 1 ¯ ¯

0 ¯ ¯ ¯ ¯

− 1 0 ¯ 0 − 1 V�N − 1 + �2�
� . �30�

Remark 6: The (rational) Harper model (Harper, 1955b; Harper, 1955a) �also called
he almost Mathieu equation (Bellissard and Simon, 1982)� corresponds to V�q�=
V0 cos�2�qM /N� where V0�0, �M ,N� being strictly positive coprimes integers. For a given N
nd M, ��H� appears to be made of N bands. The union of these bands for each rational number

M /N between 0 and 1 produces the so-called Hofstadter butterfly (Hofstadter, 1976).
We are therefore able to produce two nontrivial bounds on the lowest eigenvalue e0��2�

ithout any diagonalization:
Proposition 6: When V is N-periodic, "�2� �0;1�, the smallest eigenvalue e0��2� of �30� is

uch that "�� �R+ \ �0��N,

min
q��0,. . .,N−1�

�−
�q+1 + �q−1

�q
+ V�q + �2�� 	 e0��2� �31a�

nd

e0��2� 	 max
q��0,. . .,N−1�

�−
�q+1 + �q−1

�q
+ V�q + �2�� �31b�
the indices labeling the components of � are taken modulo N).
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Therefore, we can bound the bottom of the Hofstadter butterfly with the help of any test
unction.

Corollary 1: For the rational Harper Hamiltonian

H�q = − �q+1 − �q−1 − V0 cos�2�q
M

N
��q, �32�

e have "�� �R+ \ �0��N

min
q��0,. . .,N−1�

	−
�q+1 + �q−1

�q
− V0 cos�2�q

M

N
�
 	 inf ���H�� �33a�

nd

inf ���H�� 	 max
q��0,. . .,N−1�

	−
�q+1 + �q−1

�q
− V0 cos�2�q

M

N
�
 . �33b�

Proof: In the Harper model, for each rational number M /N, the lowest eigenvalue is obtained
or �= �0,0�. It is a direct application of Reed and Simon, 1978a, Theorem XIII.89�e� and thus
nequalities �33� follow directly from �31�. �

Choosing for �, at first guess, semiclassical approximations �i.e., corresponding to large N�
onstructed from Mathieu functions are therefore expected to provide numerical reasonable
ounds.

I. CONCLUSION

It has been shown on various examples how theorem 1 can be used to obtain rigorous
stimates on the principal value of any symmetric operator. Its simplicity, its low cost in compu-
ations and its wide domain of applications make the method presented in this article a powerful
ool for controlling bounds. In many situations, it provides nontrivial complementary information
o those obtained by traditional or more system-dependent methods. Unfortunately, this paper does
ot extend the method to fermionic systems �see for instance, Sigal, 1995 and references therein�
here the spatial wave function of the ground state has generically nontrivial nodes �Ceperley,
991� that cannot be known a priori even with some considerations on symmetries.

This paper presents some clues for further developments of optimization algorithms. However
t remains an open question whether such algorithms really bear the potential of an efficient
reatment and will overcome the possible difficulties one may face in realistic problems.
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The covariant canonical formalism for four-dimensional BF theory is performed.
The aim of the paper is to understand in the context of the covariant canonical
formalism both the reducibility that some first class constraints have in Dirac’s
canonical analysis and also the role that topological terms play. The analysis in-
cludes also the cases when both a cosmological constant and the second Chern
character are added to the pure BF action. In the case of the BF theory supple-
mented with the second Chern character, the presymplectic 3-form is different to
the one of the BF theory in spite of the fact both theories have the same equations
of motion while on the space of solutions they both agree to each other. Moreover,
the analysis of the degenerate directions shows some differences between diffeo-
morphisms and internal gauge symmetries. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2161805�

. INTRODUCTION

In the path integral quantization of a given field theory one needs to sum the exponential of
he classical action weighted with a suitable factor over all possible configurations of the fields
nder consideration. If the theory under study is a gauge theory one needs, in addition, to factor
ut the gauge transformations in such a way that the sum includes only equivalence classes of
auge transformed fields. So, intuitively, it is expected that any change in the action principle,
ielding the same classical equations of motion, provides a completely different quantum theory.
or instance, if the Yang-Mills Lagrangian density tr F∧ �F is modified adding the term � tr F∧F

he resulting quantum theory is sensitive to this contribution even when it does not modify the
lassical equations of motion.1 One way to understand, at the classical level, the cause of having
different quantum theory for the Yang-Mills field is to realize that, in the generic case, the

pecification of the Lagrangian density is equivalent to specify the symplectic geometry in the
arious phase spaces associated with the classical theory. Thus, if the Lagrangian density changes,
he symplectic geometry also does generically. If one accepts that what defines a dynamical
ystem is its equations of motion then this knowledge is not enough to specify the symplectic
eometry on the various phase spaces involved. If, on the other hand, one accepts that what
efines a dynamical system is its equations of motion plus an action principle �which provides its
quations of motion�, then one is in a different situation. The difference is that, as we have already
entioned, the specification of the Lagrangian density provides a symplectic structure. Thus, an

ction principle plays a double role: �1� it provides the equations of motion and also �2� provides
he symplectic geometry. Before going into the analysis of the BF theory, which is the subject of
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his paper, let us emphasize this point with a very simple example borrowed from dynamical
ystems with a finite number of degrees of freedom. The equations of motion for the two-
imensional isotropic harmonic oscillator ẍ+�2x=0 and ÿ+�2y=0 can be obtained from the
agrangian L�x ,y , ẋ , ẏ�=m�ẋẏ−�2xy� or from Lusual�x ,y , ẋ , ẏ�= 1

2m�ẋ2+ ẏ2−�2x2−�2y2�. More-
ver, L�Lusual+dF�x ,y , t� /dt. Note also that we are not making a change of coordinates, which
re the same for both cases. The symplectic structures coming from these Lagrangians are very
istinct to each other even when they both provide the same equations of motion.2 Coming back
o field theory, it has been shown, in the context of Dirac’s canonical analysis, that the symplectic
otential changes if one adds topological terms to the Lagrangian density of tetrad gravity.3 On the
ther hand, using the covariant canonical formalism, it has been shown that the inclusion of
opological terms in Lagrangians for string theory also modifies the original symplectic
otential.4,5

In this paper, in the context of the covariant canonical formalism,6–9 we perform the covariant
anonical analysis of four-dimensional BF theory, BF theory plus a cosmological constant �, and
F plus the second Chern character FIJ∧FIJ. These theories are topological in the sense that there

s no fixed background metric g on the four-dimensional manifold M in which they are defined.
n addition, they are topological in the sense that they have no local degrees of freedom. A more
etailed analysis of the covariant canonical formalism for BF theory can be found in Ref. 10. Of
ourse, the inclusion of the second Chern character does not modify the equations of motion while
he cosmological constant does. However, the aim of the paper is to study the symplectic geometry
nvolved. It must be emphasized that Dirac’s canonical analysis for BF theory has been already

one11,12 �see also the Appendix�. In Ref. 12 it is shown that the first class constraints �̃a
IJ

1
2 �̃abcFbcIJ�A��0 are reducible. Dirac’s canonical analysis for BF theory with a cosmological

onstant is reported in the Appendix, where it is shown that now the reducibility equations involve

oth the Gauss constraints �̃IJ and the other set of first class constraints �̃a
IJª

1
2 �̃abcFbcIJ

��IJKL�̃aKL�0. This is so because of the cosmological constant �. In both cases, the reducibil-
ty equations in Dirac’s canonical analysis come from the Bianchi identities DFIJ=0. So, the
ovariant canonical formalism is an opportunity to understand the role these identities play on this
ormalism.

I. BF THEORY

The four-dimensional BF theory with SO�3,1� as the internal relevant group is defined by the
quations of motion

FIJ = 0, DBIJ = 0, �1�

here FIJ�A�=dAIJ+AIK∧AK
J is the curvature of the Lorentz connection 1-form AIJ, BIJ

1
2B�	

IJ dx�∧dx	 is a set of six 2-forms, DBIJ
ªdBIJ+AI

K∧BKJ+AJ
K∧BIK is the covariant deriva-

ive of BIJ ; I ,J=0,1 ,2 ,3 are Lorentz indexes which are raised and lowered with the Minkowski
etric �IJ. Even though the analysis will be restricted to a Lorentz BF theory, the results are

eneric in the sense that hold for any BF theory in 4-space-time dimensions. The choice of the
orentz group is only to fix the notation that might be used for the case of BF gravity.

In the context of the covariant canonical formalism, the kinematical phase space F of the
heory is defined as the space formed by all smooth Lorentz connections AIJ and BIJ fields. Any
eneric point of F is not required to satisfy the equations of motion of the BF theory. The space

f solutions to the equations of motion F̄ is considered as submanifold of F and is formed by all
oints of F that satisfy the equations of motion of Eq. �1�. The reduced �or physical� phase space

or the theory is reached by making the quotient of F̄ by the gauge transformations of the theory.6,7

ven though the term “phase space” has been used to name these different manifolds, it must be

mphasized that, at this stage, F, F̄, and the reduced phase space carry no intrinsic symplectic

eometry. Thus, although the equations of motion of Eq. �1� are used to define F̄, they are not

nough to uniquely endow the various phase spaces for the theory already mentioned with sym-
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lectic geometry. Where does symplectic geometry come from then? One possibility is from
ction principles, specifying the Lagrangian density.13 The equations of motion of Eq. �1� are
sually obtained from the action11

S�A,B� = �
M

BIJ ∧ FIJ�A� �2�

see also Refs. 14 and 15 for alternative choices of the action�. To get the geometry, one needs to
roceed along the following lines. The first order variation of the Lagrangian 4-form L�A ,B�
BIJ∧FIJ�A� is


L�A,B� = �
BIJ� ∧ FIJ − �DBIJ� ∧ 
AIJ + d��B,
A� , �3�

rom which the presymplectic potential 3-form

��B,
A� ª BIJ ∧ 
AIJ, �4�

s read off. Now, by taking into account an arbitrary smooth two-parameter family of field con-
gurations and computing the antisymmetric combination of the variations in
�A ,B� , �
1 ,
2�L�A ,B�=0 yields8

d��
1A,
1B,
2A,
2B� = �
1BIJ� ∧ 
2FIJ − �
2DBIJ� ∧ 
1AIJ − �
1 ↔ 
2� , �5�

here

��
1A,
1B,
2A,
2B� = �
1BIJ ∧ 
2AIJ − 
2BIJ ∧ 
1AIJ� �6�

s the presymplectic 3-form.16

. “Fundamental” set of local gauge transformations

�i� Local Lorentz transformations: The action is fully gauge invariant under any arbitrary finite
ocal Lorentz transformation. The infinitesimal version of this transformation is


�AIJ = D�IJ,


�B
IJ = − �I

KBKJ − �J
KBIK, �7�

here �IJ are the infinitesimal gauge parameters. The change of the Lagrangian L�A ,B� induced
y the infinitesimal variation of the fields, given in Eq. �7�, is


�L�A,B� = 
�B
IJ ∧ FIJ + BIJ ∧ 
�FIJ = 0. �8�

herefore, from Eqs. �3� and �8� the Noether current 3-form JN�A ,B ,�� �Ref. 8� associated with
he symmetry �7� is17

JN�A,B,�� = ��B,D�IJ� = BIJ ∧ D�IJ, �9�

hich can be rewritten as

JN�A,B,�� = dQ�B,�� − �IJ ∧ DBIJ, �10�

ith

Q�B,�� ª �IJB
IJ, �11�

he corresponding Noether current potential 2-form. Equation �10� has the same structure that
ppears in the Noether current associated with infinitesimal diffeomorphisms in theories with
ynamical background metric in the sense that the right-hand side of Eq. �10� is the exterior

erivative of the Noether current potential 2-form Q�B ,�� plus a term proportional to �one set of�
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he equations of motion.18 There is a priori no reason for an internal symmetry, like �7�, behaves
n the same manner as diffeomorphisms.

Degenerate directions: These can be obtained from the symplectic inner product between the
auge transformation 
� and an arbitrary variation 
 by taking 
1�
 and 
2=
�. From Eqs. �6�
nd �7�,

��
A,
B,
�A,
�B� = d��IJ
BIJ� − �IJ
�DBIJ� = d�
Q�B,��� − �IJ
�DBIJ� . �12�

ote that on the right-hand side of Eq. �12� appears one term involving the linearized Eulerian
erivative, 
�DBIJ�, but no terms proportional to Eulerian derivatives themselves appear explicitly.
s it will be seen, later on, this is a difference with respect to infinitesimal diffeomorphisms �see
ec. II B�. Thus, we have

���
A,
B,
�A,
�B� ª �
�

��
A,
B,
�A,
�B� = − �
�

�IJ
DBIJ + �

�

��IJ
BIJ� . �13�

he integral over � depends on the gauge parameters �IJ, the fields �AIJ ,BKL� and their variations
hile the integral over 
� depends only on the gauge parameters �IJ and the variation of the BIJ

elds, 
BIJ. Both integrals, in general, do not vanish and therefore the gauge transformation of Eq.
7� does not qualify as a degenerate direction unless additional assumptions are imposed. In
articular, one has the following.

Proposition: If the linearized Eulerian derivative 
�DBIJ� vanishes, 
�DBIJ�=0, and the arbi-
rary variations 
BIJ have compact support in the interior of �, 
BIJ�
�=0, then

���
A,
B,
�A,
�B� = 0, �14�

ithout imposing any additional restrictions on the gauge parameters �IJ. Note that �AIJ ,BKL� need

ot be a point of the space of solutions to the equations of motion F̄ in order for Eq. �14� to hold

see also Ref. 19�. Nevertheless, it is a common fact to restrict the analysis to F̄ and also to take


AIJ ,
BKL� as tangent vectors to F̄. Of course, the integral over �� in Eq. �13� also vanishes if
he gauge parameters �IJ vanish at ��, i.e., if the infinitesimal gauge transformation of Eq. �7� is
he identity at ��.

Canonical transformations:
Proposition: The infinitesimal gauge transformation of Eq. �7� is a canonical transformation.
Proof: From the gauge transformation of Eq. �7�,

AIJ� = AIJ + D�IJ,

B�IJ = BIJ − �I
KBKJ − �J

KBIK, �15�

e can compute two arbitrary variations of the gauge-transformed fields of Eq. �15� �Ref. 7�,


iAIJ� = 
iAIJ − 
iA
K

I�KJ − 
iA
K

J�IK,


iB�IJ = 
iB
IJ − �I

K
iB
KJ − �J

K
iB
IK. �16�

o,

�� ª �
1B�IJ ∧ 
2AIJ� − 
2B�IJ ∧ 
1AIJ� � = �
1BIJ − �I
K
1BKJ − �J

K
1BIK� ∧ �
2AIJ − 
2AK
I�KJ

− 
2AK
J�IK� − �
2BIJ − �I

K
2BKJ − �J
K
2BIK� ∧ �
1AIJ − 
1AK

I�KJ − 
1AK
J�IK� = � , �17�

xactly, i.e., without using any additional conditions. Therefore,

��� ª � ��
1A�,
1B�,
2A�,
2B�� = � ��
1A,
1B,
2A,
2B� = ��. �18�

� �
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�ii� B’s transform like connections: The infinitesimal version of this gauge transformation is


AIJ = 0,


BIJ = DIJ, �19�

here the gauge parameters IJ are 1-forms. However, this symmetry is peculiar in the sense that
t does not satisfy the definition of symmetry in a strict sense.8 To see this, the variation of the
agrangian L�A ,B� induced by the variation of the fields is computed


L�A,B� = DIJ ∧ FIJ, �20�

hich has not the desired form in the sense that the right-hand side of Eq. �20� is not of the form
�. To continue, we must rewrite the right-hand side of the last equation,


L�A,B� = d�IJ ∧ FIJ� + IJ ∧ DFIJ. �21�

hus, the right-hand side of Eq. �21� is not, in a strict sense, of the form d�. It acquires this form
ust if the Bianchi identities DFIJ=0 are used. However, when computing the transformation of the
agrangian L�A ,B� induced by the transformation of the fields it is not allowed to use the
quations of motion in order to check if the transformation of the fields does �or does not� qualify
s a gauge symmetry. A purist might say that the second term on the right-hand side of Eq. �21�
nvolves no equations of motion simply because the Bianchi identities do not qualify as equations
f motion in the sense that they do not appear when the first order variation of the Lagrangian is
omputed �see Eq. �3��.

Therefore, from Eqs. �3� and �21�,

d�IJ ∧ FIJ� + IJ ∧ DFIJ = �DIJ� ∧ FIJ, �22�

nd so

dJN�A,� = − IJ ∧ DFIJ + �DIJ� ∧ FIJ, �23�

ith17

JN�A,� ª IJ ∧ FIJ, �24�

he Noether current associated with the local symmetry �19�. Note that JN�A ,� is proportional to
he Eulerian derivative FIJ. Note that if the equations of motion hold �i.e., if FIJ=0 hold� and the
ianchi identities hold �i.e., if DFIJ=0 hold� then the Noether current is identically conserved.
oreover, note that JN�A ,� identically vanishes on-shell, i.e., JN=0 if FIJ=0.

Degenerate directions: Again, from the symplectic inner product between the gauge transfor-
ation 
 and an arbitrary variation 
 and Eqs. �6� and �19�,

��
A,
B,
A,
B� = d�
�− IJ ∧ AIJ�� − IJ ∧ 
FIJ. �25�

ote that on the right-hand side of Eq. �25� appears the linearized Eulerian derivative 
FIJ but not
he Eulerian derivatives themselves in contrast to what happens with diffeomorphisms �see Sec.
I B�. Thus, we have

���
A,
B,
A,
B� ª �
�

��
A,
B,
A,
B� = − �
�

IJ ∧ 
FIJ − �
��

�IJ ∧ 
AIJ� . �26�

gain, the integral over � depends on the gauge parameters IJ, the field AIJ and its first order
ariations 
AIJ while the integral over �� depends only on the gauge parameters IJ and the
ariations of the field AIJ, 
AIJ. Both integrals, in general, do not vanish and therefore the gauge
ransformation of Eq. �19� does not qualify as a degenerate direction unless additional assumptions

re imposed. In particular, one has the following.
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Proposition: If the linearized Eulerian derivative 
FIJ vanishes, 
FIJ=0, and the arbitrary
ariations 
AIJ have compact support in the interior of �, 
AIJ���=0, then

���
A,
B,
A,
B� = 0, �27�

ithout imposing any additional conditions on the gauge parameters IJ. Note also that in order
or Eq. �27� to hold it is not necessary that the point �AIJ ,BKL� belongs to the space of solutions to

he equations of motion F̄. Nevertheless, it is a common fact to restrict the analysis to this case

nd also to take �
AIJ ,
BKL� as tangent vectors to F̄. Of course, the integral over �� in Eq. �26�
lso vanishes if the gauge parameters IJ vanish at ��, i.e., if the infinitesimal gauge transforma-
ion of Eq. �19� is the identity at ��.

Canonical transformations:
Proposition: The transformation induced by the gauge symmetry of Eq. �19� is an infinitesimal

anonical transformation.
Proof: In fact, from Eq. �19�,

AIJ� = AIJ,

B�IJ = BIJ + DIJ, �28�

e can compute two arbitrary variations of the gauge-transformed fields7


iAIJ� = 
iAIJ,


iB�IJ = 
iB
IJ + 
iA

I
K ∧ KJ + 
iA

J
K ∧ IK, i = 1,2. �29�

o,

�� ª �
1B�IJ ∧ 
2AIJ� − 
2B�IJ ∧ 
1AIJ� � = �
1BIJ + 
1AI
K ∧ KJ + 
1AJ

K ∧ IK� ∧ 
2AIJ − �
2BIJ

+ 
2AI
K ∧ KJ + 
2AJ

K ∧ IK� ∧ 
1AIJ = � , �30�

xactly, i.e., without using any additional conditions. Therefore,

��� ª �
�

��
1A�,
1B�,
2A�,
2B�� = �
�

��
1A,
1B,
2A,
2B� = ��, �31�

nder the infinitesimal gauge transformation of Eq. �19�.

. Diffeomorphisms

The gauge symmetries discussed in Sec. II A can also be obtained by using Dirac’s canonical
nalysis. In addition, Dirac’s canonical analysis shows that the full set of constraints are first class.

here are no second class constraints in the theory. However, the first class constraints �̃a
IJ �which

enerate the 
 symmetry� are reducible on account of the Bianchi identities DFIJ=0 which imply

he reducibility equation Da�̃a
IJ=0. Once reducibility is taken into account the counting of the

ocal degrees of freedom is zero, showing that the theory has only global degrees of freedom �see,
or instance, Ref. 12 and the Appendix �. Moreover, it is also known that the theory is diffeomor-
hism covariant. Therefore, the transformation of the fields induced by diffeomorphisms must be
uilt from the “fundamental” set of gauge transformations �7� and �19�. �The quotation marks in
he word “fundamental” emphasize the fact that the gauge transformations are not independent on
ccount of the reducibility of the constraints.� In fact, a diffeomorphism induces a change in the

elds AIJ given by
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�AIJ = L�AIJ = � · FIJ + D�IJ = � · FIJ + 
�AIJ, �32�

s well as in the fields BIJ,


�B
IJ = L�B

IJ = � · DBIJ − �I
KBKJ − �J

KBIK + DIJ = � · DBIJ + 
�B
IJ + 
BIJ, �33�

here �IJª� ·AIJ is a set of 0-forms and IJ
ª� ·BIJ is a set of 1-forms.

Noether current: The Noether current 3-form associated with diffeomorphisms is17

JN�A,B,�� = ��B,L�A� − � · L = dQ�A,B,�� − �� · AIJ�DBIJ − �� · BIJ� ∧ FIJ, �34�

here

Q�A,B,�� = �� · AIJ�BIJ, �35�

s the Noether current potential 2-form. If �AIJ ,BIJ� is a point of the space of solutions to the

quations of motion F̄ then JN�A ,B ,�� can be obtained from the Noether current potential

N�A ,B ,��=dQ�A ,B ,��. The Noether charge Q���� associated with infinitesimal diffeomor-
hisms is given by the integral of JN�A ,B ,�� over �,

Q���� ª �
�

JN�A,B,�� = �
��

Q�A,B,�� − �
�

��� · AIJ�DBIJ + �� · BIJ� ∧ FIJ� . �36�

Proposition: If �AIJ ,BIJ� is a point in F̄ then the Noether charge just has a contribution from
he boundary of �,

Q���� = �
��

Q�A,B,�� = �
��

�� · AIJ�BIJ. �37�

Canonical transformation induced by diffeomorphisms: The transformation of the fields in-
uced by a diffeomorphism is

AIJ� = AIJ + L�AIJ,

B�IJ = BIJ + L�B
IJ, �38�

nd so7


iAIJ� = 
iAIJ + 
i�L�AIJ� = 
iAIJ + L��
iAIJ� ,


iB�IJ = 
iB
IJ + 
i�L�B

IJ� = 
iB
IJ + L��
iB

IJ� . �39�

herefore, at first order in the gauge parameters,

�� ª �
1B�IJ ∧ 
2AIJ� − 
2B�IJ ∧ 
1AIJ� � = � + L�� . �40�

inally,

��� ª �
�

�� = �
�

� + �
�

�� · d� + d�� · ��� = �� + �
�

�� · d� + d�� · ��� . �41�

f the linearized Eulerian derivatives vanish, i.e., if 
i�FIJ�=0 and 
i�DBIJ�=0, i=1,2 then d�
0, and so

��� = �� + � d�� · �� = �� + � � · � . �42�

� ��
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ote that AIJ and BIJ in 
i�FIJ�=0 and 
i�DBIJ�=0 are not required to be solutions to the equations

f motion FIJ=0 and DBIJ=0, i.e., 
iAIJ and 
iB
IJ are tangent to F but not to F̄. Thus, if

�
��

� · � = 0, �43�

hen

��� = ��. �44�

his result can be summarized in the following:
Proposition: If the linearized Eulerian derivatives 
i�FIJ�=0 and 
i�DBIJ�=0 hold then Eq.

43� is a necessary and sufficient condition for �� be invariant under the transformation associated
ith infinitesimal diffeomorphisms, i.e., if the linearized Eulerian derivatives 
i�FIJ�=0 and

i�DBIJ�=0 hold then Eq. �43� is a necessary and sufficient condition for infinitesimal diffeomor-
hisms to be canonical transformations.

It is clear that in the particular case when � has no boundary, i.e., ��=0” then Eq. �43� holds
ithout any additional restrictions on �.

Degenerate directions: The starting point is the expression for the presymplectic 3-form with

1=
 an arbitrary variation and 
2 is taken as the variation induced by the Lie derivative on the
ynamical fields. From Eqs. �6� and �38�,

��
A,
B,L�A,L�B� = �
BIJ ∧ L�AIJ − L��BIJ ∧ 
AIJ� + BIJ ∧ 
�L�AIJ�� . �45�

ow, by taking 
=L� in the expression for the presymplectic current potential 3-form of Eq. �4�
nd computing its variation one has


��B,L�A� = 
BIJ ∧ L�AIJ + BIJ ∧ 
�L�AIJ� . �46�

nserting the right-hand side of Eq. �46� into the right-hand side of Eq. �45� one gets

��
A,
B,L�A,L�B� = 
��B,L�A� − L��BIJ ∧ 
AIJ� = 
��B,L�A� − L���B,
A� . �47�

n the other hand, the variation of the Noether current 3-form is


JN�A,B,�� = 
��B,L�A� − � · 
L = 
��B,L�A� − � · ��
BIJ� ∧ FIJ − �DBIJ� ∧ 
AIJ + d��B,
A��

= ��
A,
B,L�A,L�B� + L���B,
A� − � · ��
BIJ� ∧ FIJ − �DBIJ� ∧ 
AIJ�

− � · d��B,
A� = ��
A,
B,L�A,L�B� − � · ��
BIJ� ∧ FIJ − �DBIJ� ∧ 
AIJ�

+ d�� · ��B,
A�� . �48�

o get the second line on the right-hand side, Eq. �3� was used while Eq. �47� was used to get the
hird line. Inserting the explicit expression for 
JN�A ,B ,�� given in Eq. �34� into the left-hand side
f Eq. �48� one has

��
A,
B,L�A,L�B� = d�
QN�A,B,�� − � · ��B,
A�� − �� · AIJ�
DBIJ − �� · BIJ� ∧ 
FIJ

+ �
BIJ� ∧ �� · FIJ� − �� · DBIJ� ∧ 
AIJ. �49�

ote that, in contrast to Eqs. �12� and �25�, in the case of diffeomorphisms the symplectic inner
roduct between 
� and an arbitrary variation 
 involves both Eulerian derivatives and the linear-
zed Eulerian derivatives. One has the following:

Proposition: Let �AIJ ,BIJ� be a point in F̄; let �
AIJ ,
BIJ� be a solution to the linearized
ulerian derivatives at �AIJ ,BIJ� �i.e., �
AIJ ,
BIJ� are such that 
�DBIJ�=0 and 
FIJ=0 and are

¯ IJ
angent to F at �AIJ ,B ��. Then, we have
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��
A,
B,L�A,L�B� = d�
QN�A,B,�� − � · ��B,
A�� , �50�

nd thus, integrating on �,

���
A,
B,L�A,L�B� ª �
�

��
A,
B,L�A,L�B� = 	
��

�
QN�A,B,�� − � · ��B,
A�� . �51�

nserting the explicit expressions for QN�A ,B ,�� and ��B ,
A� one has

���
A,
B,L�A,L�B� = 	
��

�
��� · AIJ�BIJ� − � · �BIJ ∧ 
AIJ�� = 	
��

��� · AIJ�
BIJ − �� · BIJ� ∧ 
AIJ� .

�52�

ome remarks follow: �1� first of all, Eq. �52� tells us that, in the context of the covariant canonical
ormalism, not all diffeomorphisms are to be regarded as gauge because the right-hand side of �52�
ill not vanish for any �, �2� note that if �AIJ ,BIJ�� F̄ then � ·AIJ�0 and � ·BIJ�0 in the generic

ase. Moreover, note that the right-hand side of �52� vanishes for all �AIJ ,BIJ� of F̄ and for all

angent variation �
AIJ ,
BIJ� to F̄ in �AIJ ,BIJ� if and only if � vanishes at the boundary ��,
���=0. Thus, just those diffeomorphisms which are the identity at �� must be regarded as gauge.
ne could say that the gauge transformation is broken at �� in the sense that ����=0. However,

rom that perspective one would be a priori assuming that all diffeomorphisms are gauge which as
he previous analysis shows is not the case. Let � be a diffeomorphism such that it does not vanish
t ��. The full set of these �’s span the boundary symmetry group. Thus, the covariant canonical
ormalism tells us boundary symmetry group is not a gauge group �see also Ref. 9 understand the
ole of diffeomorphisms in the case of general relativity�.

Existence of a Hamiltonian: For variations 
AIJ with compact support in the interior of �, i.e.,
AIJ���=0,

�� = 
	
��

�� · AIJ�BIJ = 
	
��

Q�A,B,�� , �53�

hich means that a Hamiltonian conjugate to � on � exists and that its Hamiltonian density is
recisely the Noether potential Q�A ,B ,��. We have assumed that � does not vanish at �� and thus,
y definition, � is not a degenerate direction.

On the other hand, for variations 
BIJ with compact support in the interior of �, i.e.,
BIJ���=0,

�� = 
	
��

− �� · BIJ� ∧ AIJ, �54�

o there exists a Hamiltonian conjugate to � on �.
Relationship between the Noether currents: It is possible to compare the Noether current

ssociated with diffeomorphisms, JN�A ,B ,��, with the currents associated to the fundamental set
f gauge symmetries

JN�A,B,�� = BIJ ∧ L�AIJ − � · �BIJ ∧ FIJ� = BIJ ∧ �� · FIJ + D�IJ� − �� · BIJ� ∧ FIJ − BIJ ∧ �� · FIJ�

= BIJ ∧ D�IJ − IJ ∧ FIJ = JN�A,B,�� − JN�A,� . �55�

n a more appropriate notation

JN�A,B,�� = �JN�A,B,�� − JN�A,����IJ=�·AIJ,IJ=�·BIJ. �56�

ote also that JN�A ,B ,��=JN�A ,B ,�� because JN�A ,�=0 on shell �i.e., if FIJ=0�. Moreover, note

hat
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Q�A,B,�� = �� · AIJ�BIJ = �IJB
IJ = Q�B,�� . �57�

II. BF THEORY PLUS A COSMOLOGICAL CONSTANT

The four-dimensional BF theory with SO�3,1� as the internal group and supplemented with a
osmological constant � is defined by the equations of motion

FIJ = 2� * BIJ, DBIJ = 0, �58�

here *BIJ= 1
2�IJKLBKL is the dual of BIJ. If SO�4� were taken as the internal group then �IJ


IJ, the connection were valued in the Lie algebra of SO�4� and *2= +1. Equations �58� can be
btained from the action principle11,20

S�A,B� = �
M

BIJ ∧ FIJ�A� − ��
M

BIJ ∧ * BIJ. �59�

hus, in contrast to BF theory, the space of solutions to the equations of motion F̄BF+� is now
efined by Eq. �58�. To get the geometry, one needs to compute the first order variation of the
agrangian 4-form L�A ,B�=BIJ∧FIJ�A�−�BIJ∧ *BIJ,


L�A,B� = �
BIJ� ∧ �FIJ − 2� * BIJ� − �DBIJ� ∧ 
AIJ + d��B,
,A� , �60�

rom which the presymplectic potential 3-form

��B,
A� ª BIJ ∧ 
AIJ, �61�

s read off. Therefore, the presymplectic 3-form � is the same of the BF theory. The symplectic

tructure induced on F̄BF+� is simply the pullback to F̄BF+� of the curl of � on the kinematical
hase space.

Degenerate directions:

�1� The symplectic inner product between 
1=
 and 
2=
�, ��
A ,
B ,
�A ,
�B�, has the
same analytical form of the BF theory.

�2� The symplectic inner product between 
1=
 and 
2=
 where 
AIJ=��IJKLKL and

BIJ=DIJ �Ref. 17� is now

��
A,
B,
A,
B� = d�
�− IJ ∧ AIJ�� − IJ ∧ 
�FIJ − 2� * BIJ� . �62�

�3� The Noether current associated with diffeomorphisms acquires the form17

JN�A,B,�� = dQN�A,B,�� − �� · AIJ�DBIJ − �� · BIJ� ∧ �FIJ − 2� * BIJ� , �63�

with the Noether current potential 2-form QN�A ,B ,�� having the same analytical form
than the one of the BF theory. Due to the fact that ��
A ,
B ,L�A ,L�B�
=d�
QN�A ,B ,��−� ·��B ,
A�� if the equations of motion and the linearized Eulerian
derivatives hold and because QN�A ,B ,�� and ��B ,
A� have the same form of the BF
theory, then analysis of the degenerate directions is the same of the BF theory. Finally,
note that now 
� ,
�, and 
 are not related by �32� but by 
�AIJ=� · �FIJ−2�*BIJ�
+
�AIJ+
AIJ while 
�B

IJ=� ·DBIJ+
�B
IJ+
BIJ retains his form with �IJ=� ·AIJ ,IJ

=� ·BIJ.

V. BF THEORY PLUS THE SECOND CHERN CHARACTER

Now, the action we consider is the action for BF theory supplemented with the second Chern

haracter
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S�A,B� = �
M

BIJ ∧ FIJ�A� + ��
M

FIJ�A� ∧ FIJ�A� , �64�

ith � a parameter. The first order variation of the Lagrangian 4-form L�A ,B�=BIJ∧FIJ

�FIJ∧FIJ is


L�A,B� = 
BIJ ∧ FIJ − �DBIJ + 2�DFIJ� ∧ 
AIJ + d� , �65�

here

� = �BIJ + 2�FIJ� ∧ 
AIJ, �66�

s the presymplectic potential 3-form �cf. Eq. �4��. From Eq. �65�, it is clear that the equations of
otion FIJ=0 and DBIJ+2�DFIJ=0 coming from Eq. �64� reduce to those of the BF theory

ecause the Bianchi identities DFIJ=0 always hold. Thus, the inclusion of the second Chern
haracter does not modify the classical dynamics of the BF theory, as expected. This means that

he space of solutions to the equations of motion F̄ is the same for both theories. Nevertheless, in
pite of the fact that the equations of motion are the same, the presymplectic 3-form changes. For
he present case one has

� = 
1�BIJ + 2�FIJ� ∧ 
2AIJ − 
2�BIJ + 2�FIJ� ∧ 
1AIJ �67�

cf. Eq. �6��. Therefore, the presymplectic 3-forms coming from Eqs. �2� and �64� are distinct. On

he space of solutions F̄, the symplectic structure of Eq. �67� is the same as the symplectic
tructure of Eq. �6�, of course �see also Ref. 15�.

Degenerate directions:

�1� The symplectic inner product between 
1=
 and 
2=
� is now

��
A,
B,
�A,
�B� = d��IJ
BIJ + 2�
AIJ ∧ D�IJ� − �IJ
�DBIJ� �68�

and so

���
A,
B,
�A,
�B� = − �
�

�IJ
DBIJ + �

�

��IJ
BIJ + 2�
AIJ ∧ D�IJ� . �69�

Therefore, if the linearized Eulerian derivative 
�DBIJ� vanishes, 
�DBIJ�=0, and the
arbitrary variations �
AIJ ,
BIJ� have compact support in the interior of �, 
AIJ���=0 and

BIJ���=0, then

���
A,
B,
�A,
�B� = 0, �70�

without imposing any additional restrictions on the gauge parameters �IJ. The integral
over �� in Eq. �69� also vanishes if both the gauge parameters �IJ vanish and satisfy
D�IJ=0 at ��.

�2� The symplectic inner product between 
1=
 and 
2=
 is the same as the one of the BF
theory.

�3� Now, we consider diffeomorphisms. The Noether current associated with diffeomor-
phisms acquires the form

JN�A,B,�� = dQN�A,B,�� − �� · AIJ��DBIJ + 2�DFIJ� − �� · BIJ� ∧ FIJ, �71�

where

QN�A,B,�� = �� · AIJ��BIJ + 2�FIJ� , �72�

is the Noether current potential 2-form. Therefore, the Noether charge is the same as in

the BF theory if the equations of motion are satisfied. Moreover, if both the equations of
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motion and the linearized equations of motion hold, then symplectic inner product be-
tween 
1=
 and 
2=
� becomes

���
A,
B,L�A,L�B� = 	
��

�
QN�A,B,�� − � · ��B,
A�� . �73�

Inserting the explicit expressions for QN�A ,B ,�� and ��B ,
A� one has

���
A,
B,L�A,L�B� = 	
��

�
�� · AIJ�BIJ + 2�FIJ�� − � · ��BIJ + 2�FIJ� ∧ 
AIJ��

= 	
��

��� · AIJ�
BIJ − �� · BIJ� ∧ 
AIJ� , �74�

because FIJ=0 and 
FIJ=0, by hypothesis. Last equation has the same analytical form as
the one of the BF theory. Therefore, the inclusion of the second Chern character does not
modify the degenerate directions in the case of diffeomorphisms.

. CONCLUSIONS AND PERSPECTIVES

To conclude, we emphasize the role that the Bianchi identities DFIJ=0 play in four-
imensional BF theories. On the one hand, they are the cause of having the symmetry 
 in the
arious four-dimensional BF theories already discussed. On the other hand, in the case of the BF
heory with a nonvanishing cosmological constant � the combination of the Bianchi identities
ogether with the equation of motion FIJ=2�*BIJ “generates” dynamics for the BIJ fields in the
ense that they imply DBIJ=0. This fact is the origin of the reducibility of the corresponding first
lass constraints of the theory in Dirac’s canonical analysis. This same phenomenon appears, in
ssence, in the action17

S�A,B,�� = �
M

BIJ ∧ FIJ −
1

2
�IJKLBIJ ∧ BKL, �75�

ith �IJKL=−�JIKL=−�IJLK=�KLIJ where the combination of the Bianchi identities and the equa-
ions of motion FIJ=�IJKLBKL and DBIJ=0 generates dynamics for the �IJKL fields in the sense
hat these equations imply �D�IJKL�∧BKL=0. From the lesson learned from the case of the BF
heory plus a cosmological constant �, we would expect that the theory defined by Eq. �75� has
lso reducibility in the constraints in the context of Dirac’s analysis. We consider the present
nalysis as a first step towards the covariant canonical analysis of BF gravity.21
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PPENDIX: REVIEW OF DIRAC’S CANONICAL ANALYSIS FOR FOUR-DIMENSIONAL
F THEORY

To compare some results of this Appendix with some results of the covariant canonical
ormalism one must make the changes �IJ→−�IJ and �a

IJ→−a
IJ in this Appendix.

�1� BF theory: By making the 3+1 decomposition, a straightforward computation shows that

he action �2� acquires the form
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S�AaIJ,�̃
aIJ,�IJ,�a

IJ� = �
M

d4x
ȦaIJ�̃
aIJ − �IJDa�̃aIJ − �a

IJ�1

2
�̃abcFbcIJ� + �

M
d4x�a��IJ�̃

aIJ� ,

�A1�

here the phase space variables �AaIJ ,�̃bKL� and Lagrange multipliers �IJ and �a
IJ are defined in

erms of the initial configuration variables as �̃aIJ
ª

1
2 �̃abcBbc

IJ, �IJª−A0IJ, �a
IJ
ª−B0a

IJ,

a�̃aIJ
ª�a�̃aIJ+Aa

I
K�̃aKJ+Aa

J
K�̃aIK. If the space-time M has the topology M=��R and �

as no boundary the second integral on the right-hand side of �A1� can be neglected. The lower-
ase letters a ,b are space ones and run from 1 to 3. Notice that the Lorentz indices I ,J are not split
olding in this way the full Lorentz group. The variation of Eq. �A1� with respect to the phase
pace variables yields the equations of motion

ȦaIJ = − Da�IJ,

�̃
˙ aIJ = 2��IK�̃aKJ� − �̃abcDb�c

IJ, �A2�

ith Da�IJ=�a�IJ−Aa
K

I�KJ−Aa
K

J�IK. The variation with respect to the Lagrange multipliers gives
he constraints

�̃IJ
ª Da�̃aIJ � 0, �̃a

IJ ª
1
2 �̃abcFbcIJ�A� � 0, �A3�

hich are first class. The infinitesimal gauge transformation generated by the Gauss constraint �̃IJ

s

AaIJ� = AaIJ − Da�IJ, ��˜aIJ = �̃aIJ + �IM�̃a
M

J − �JM − �̃a
M

I, �A4�

nd

AaIJ� = AaIJ, ��˜aIJ = �̃aIJ − �̃abcDb�IJ
c, �A5�

s the gauge transformation generated by the constraint �̃a
IJ. However, even though the constraints

˜ IJ are irreducible the constraints �̃a
IJ are not, i.e., they are reducible. This is so because the

ianchi identities DFIJ=0 imply the relationship among the �̃a
IJ’s,

�̃IJ ª Da�̃a
IJ = 0. �A6�

he counting of physical degrees of freedom is as follows. There are 3�6=18 configuration
ariables AaIJ and 6+ ��3�6�−6�=18 independent first class constraints. Therefore, the system
as no local degrees of freedom.12 Alternatively, the independent number of gauge parameters is
8=6 �the �IJ’s� +12 �=18−6 independent gauge parameters from �a

IJ�.
�2� BF theory plus a cosmological constant: By performing the 3+1 decomposition the action

59� can be written as

S�AaIJ,�̃
aIJ,�IJ,�a

IJ� =� d4x�ȦaIJ�̃
aIJ − �IJDa�̃aIJ − �a

IJ� 1
2 �̃abcFbcIJ − ��IJKL�̃aKL�� .

�A7�

he equations of motion are

˙ KL
AaIJ = − Da�IJ − ��IJKL�a ,
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�̃
˙ aIJ = 2��IK�̃aKJ� − �̃abcDb�c

IJ. �A8�

he constraints are

�̃IJ
ª Da�̃aIJ, �̃a

IJ ª
1
2 �̃abcFbcIJ − ��IJKL�̃aKL. �A9�

he evolution of the constraints provides no more constraints. To compute the algebra of con-
traints it is convenient to smear them

��u� ª� d3xuIJ�̃
IJ, ��N� ª� d3xNIJ

a�̃IJ
a . �A10�

he constraint algebra is

���u�,��v�� = ���u,v��, ���u�,��N�� = ���u,N��, ���N�,��M�� = 0, �A11�

ith �u ,v�IJªuI
MvMJ−uJ

MvMI, �u ,N�IJ
a=uI

KNKJ
a−uJ

KNKI
a. The infinitesimal gauge transforma-

ion generated by the Gauss constraint �̃IJ is

AaIJ� = AaIJ − Da�IJ, �̃�aIJ = �̃aIJ + �IM�̃a
M

J − �JM�̃a
M

I, �A12�

nd

AaIJ� = AaIJ − ��IJKL�KL
a, �̃�aIJ = �̃�aIJ = �̃aIJ − �̃abcDb�IJ

c, �A13�

s the infinitesimal gauge transformation generated by the constraint �̃a
IJ. Again, the Bianchi

dentities imply that the constraints are reducible

Da�̃a
IJ + ��IJKL�̃KL = 0. �A14�

ike in pure BF gravity the system has 3�6=18 configuration variables and 6+ ��3�6�−6�
18 independent first class constraints. Therefore, the system has no local degrees of freedom, as
xpected because the addition of a cosmological constant does not add local degrees of freedom.
owever, a key difference with respect to the case without cosmological constant � is that there

he constraints �̃a
IJ and �̃IJ are independent while in the present case they are related through the

educibility equation given in Eq. �A14�. Moreover, due to the fact the reducibility equation
nvolves now the Gauss constraints too, there are 18 independent gauge parameters among the 6
f �IJ’s and the 18 of �a

IJ’s. One can take these independent number of gauge parameters as the 18
f the �a

IJ’s. By doing this, one might say that the local Lorentz transformation is redundant if a
osmological constant is present.
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We investigate stability of both localized time-periodic coherent states �pulsons�
and uniformly distributed coherent states �oscillating condensate� of a real scalar
field satisfying the Klein-Gordon equation with a logarithmic nonlinearity. The
linear analysis of time-dependent parts of perturbations leads to the Hill equation
with a singular coefficient. To evaluate the characteristic exponent we extend the
Lindemann-Stieltjes method, usually applied to the Mathieu and Lamé equations,
to the case that the periodic coefficient in the general Hill equation is an unbounded
function of time. As a result, we derive the formula for the characteristic exponent
and calculate the stability-instability chart. Then we analyze the spatial structure of
the perturbations. Using these results we show that the pulsons of any amplitudes,
remaining well-localized objects, lose their coherence with time. This means that,
strictly speaking, all pulsons of the model considered are unstable. Nevertheless,
for the nodeless pulsons the rate of the coherence breaking in narrow ranges of
amplitudes is found to be very small, so that such pulsons can be long-lived.
Further, we use the obtained stability-instability chart to examine the Affleck-Dine-
type condensate. We conclude the oscillating condensate can decay into an en-
semble of the nodeless pulsons. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2167918�

. INTRODUCTION

Nonlinear localized field configurations, nontopological solitons, are currently considered as
odels of various physical objects, from elementary particles to giant lumps of dark matter in the

orm of soliton stars and galactic halos.1–3 Stability properties of solitons were investigated by
any authors, and a number of important results has been obtained �see, e.g., Ref. 4 and refer-

nces therein�. In particular, Hobart5 and Derrick6 have proved that static multidimensional scalar
olitons are energetically unstable, and, hence, these objects cannot last in a real world for a long
ime. One way to avoid this theorem is to invoke time dependence. Along this line main efforts
ere focused on the stability analysis of the stationary states, i.e., coherent states of a complex

calar field oscillating harmonically in time. It turned out, however, that for a wide class of
elativistic models these states can be only conditionally stable, i.e., stable with respect to a certain
ype of perturbations �e.g., conserving the scalar charge�.4 As to the time-periodic states of a more
eneral form, both complex and real, there are presently no strong analytical results on their
tability.

In this paper we examine stability of time-periodic configurations of the form

� = �0�t,r� = a�t�u�r� �1�

atisfying the nonlinear Klein-Gordon equation

�tt − �� + U���� = 0. �2�

hese are coherent states in the sense the field oscillates synchronously at all spatial points. It is

ecessary to stress that we consider real solutions, so that the energy density oscillates as well �in

47, 022302-1022-2488/2006/47�2�/022302/17/$23.00 © 2006 American Institute of Physics
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ontrast to the stationary states for which a�t��ei�t�. Solitons with oscillating energy density are
sually called pulsons.

It turns out that for real � the ansatz �1� determines uniquely the potential U��� in Eq. �2�.
amely, if neither a�t� nor u�r� are constants, the only potential admitting such solutions will have

he form7

U��� = 1
2�

2�m2 + ��1 − ln �2�� , �3�

here m2 and � are arbitrary constants.
Originally, the Klein-Gordon equation with a logarithmic potential of this type has been

ntroduced in the quantum field theory by Rosen.8 Later on Bialynicki-Birula and Mycielski9 have
ediscovered this equation and also considered its nonrelativistic version, the nonlinear
chrödinger equation.10

In inflationary cosmology and in modern supersymmetric field theories the logarithmic non-
inearities appear naturally when quantum corrections to effective potentials are allowed for.11–14

n this context the expression in the square brackets of Eq. �3� can be treated as a dynamic inflaton
ass term mS

2 that is the bare inflaton mass term m2 plus the logarithmic correction. It can be
epresented in the commonly considered form14–21 by the substitution ln �2=1+ln�� /M�2,
/m2=−K, where � is an inflaton scalar field, M is a large mass scale, K is a constant �usually
egative and small�. Thus our consideration is also relevant to dynamics of the pulson exitations
f a real inflaton field oscillating around a vacuum value.

Note that the multidimensional pulsons probably exist in other scalar models as well. Thus the
ong-living oscillating spherically symmetric localized states were numerically found in the sine-
ordon, �4, and �3−�4 models22–26 �see Ref. 27 for a review�. Unfortunately, the analytic form of

hese solutions is so far unknown.
The model �2� and �3� is unique in the sense it has a whole family of exact pulson solutions

f the form �1�, all existing in any number of spatial dimensions.7 This is also true for complex
ersion of the model.28,29 The real pulsons we are dealing with are the limiting states of the
omplex ones, when the scalar charge tends to zero. Other limiting states are Q-balls15,16 for which
�t��ei�t. It is believed that Q-balls can arise due to fragmentation of the Affleck-Dine
ondensate.18–21 We will see below that the parametric instability of the oscillating condensate
eads to the resonant fragmentation that can give rise to the pulson formation at the nonlinear
tage. Like Q-balls,17 pulsons interact elastically or inelastically in collisions depending on their
elative velocities, phases, and rest masses.30,31 Thus, in model �2� and �3� the light pulsons with
iven relative velocities interact always elastically, independently of their phases. In contrast, the
ollisions of heavy pulsons can result in formation of the so-called explosons, localized states with
xponentially growing amplitude.30 For the intermediate masses the picture depends essentially on
he phases of the colliding pulsons and impact velocity determining the duration of the
nteraction.31

The above results suggest that there is a domain of parameters where pulsons are stable, at
east in short time interactions. But in what sense? How long a pulson conserves its characteristic
eatures once interaction ends? If pulsons are long-lived objects they will be interesting candidates
or the dark matter constituents having time-dependent density. What is known about stability of
n isolated pulson at the long time scale? Surprisingly, but very few. In Ref. 29 it was argued in
avor of its perfect stability. No deviations from the exact solution �1� were found after about 1000
scillations. However, our preliminary numerical experiments32,33 have shown that the pulsons of
ertain amplitudes, even perturbed by computer round-off errors only, gradually lose their coher-
ncy, remaining well-localized oscillating objects. This has motivated the closer examination.

In the present paper we clarify how long the pulsons can conserve the coherency depending on
heir parameters. For this purpose we investigate stability of the spherically symmetric pulson
olutions �1� with respect to small initial perturbations of an arbitrary form.

The paper is organized as follows. In Sec. II the main properties of the real pulsons of the
odel considered are reviewed. Section III is wholly devoted to the linear stability analysis. We
rrive at the singular Hill equation and generalize the Lindemann-Stieltjes method to evaluate the
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haracteristic exponent. On this basis we examine stability of the pulsons and discuss fragmenta-
ion of the oscillating Affleck-Dine-type condensate. In Sec. IV we make some remarks concern-
ng the complex pulsons and summarize the main results.

I. PULSONS AS COHERENT STATES

Assuming � positive, let us first eliminate the constants m2 and � from consideration by the
caling t→�−1/2t, r→�−1/2r, �→� exp�m2 /2��. In the new variables the field � may be thought
f as satisfying Eq. �2� with the potential

U��� = 1
2�

2�1 − ln �2� . �4�

t is the potential we will deal with. It has local minimum at �=0 and two maxima at �= ±1, at
he minimum the potential having the singularity: its second derivative tends to infinity as �

0.
The substitution of the ansatz �1� into Eq. �2� leads then to two independent equations,

att = −
d

da
�1

2
a2�1 − ln a2�� , �5�

�u = −
d

du
�1

2
u2�ln u2 − 1�� . �6�

ote that the potentials in the square brackets of Eqs. �5� and �6� have the same form as the
otential �4� taken with plus and minus signs, respectively. The existence of the oscillating local-
zed solutions �1� is thus apparent from consideration of motion of a mechanical particle in these
otentials.

Let us consider in more detail the oscillatory solutions of Eq. �5�. Using the Hamiltonian and
enoting �=a /amax �0�amax�1, −1	�	1�, we obtain

�t
2 = �0

2�1 − �2� + �2 ln �2, �7�

here

�0
2 = 1 − ln amax

2 
 1. �8�

n the case of small amplitudes, amax
2 �1, �0

2�1, Eq. �7� gives

��t� � cos �0t . �9�

hus, we have quasiharmonic high-frequency oscillations which are however nonlinear since their
eriod,

T �
2

�ln amax
2 �1/2 , �10�

epends on the amplitude.33 In the next approximation from Eq. �7� we find

T =
2

�0
�1 +

0.307

�0
2 + O	 1

�0
4
� . �11�

n the case of near-critical amplitudes, when amax
2 →1, the oscillations become almost rectangular
nd have the period
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T � 2�2 ln
1

1 − amax
2 . �12�

xamples of solutions of Eq. �5� are shown in Fig. 1.
The spatial structure of a pulson is determined by Eq. �6�. In the spherically symmetric case

his equation has a discrete spectrum of localized N-nodal solutions uN�r� with the first derivatives
anishing at the origin34 �see Fig. 2�. The simplest of them, the nodeless solution, has a Gaussian-
ype shape,

u0�r� = e�3−r2�/2, �13�

nd is usually called gausson.8–10 It is agreed that its effective radius equals �2. In the multinodal
olutions, as r increases, the field undergoes spatial oscillations of the half-wavelength L�2�2
nd then decays as

FIG. 1. Oscillatory solutions of Eq. �5� for amax=0.1, amax=0.7, and amax=0.9999.

IG. 2. Spectrum of the spherically symmetric N-nodal solutions uN�r� of Eq. �6�: u0�0�=e3/2, u1�0�=9.726, u2�0�

15.084, u3�0�=20.526, . . . .
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uN�r� � CNe−�r − �N�2/2 �r� r − �N, N� 1� , �14�

here CN is the value of the last extremum of uN�r� attained at r=�N, CN→ �−1�Ne1/2�N→��,
N�NL. Thus, the pulsons of the model �2� and �4� are well-localized states of the inhomogeneity
ength L, at all points the field oscillating coherently with the period T. �To return to the physical
nits these scales should be multiplied by �−1/2.� In our dimensionless variables the pulsons are
haracterized by two parameters only: the amplitude amax and the number of the nodes N �or T and

N�0�, respectively�.
It should be stressed that, due to nonanalyticity of U��� at �=0, the right-hand sides of Eqs.

5� and �6� are nonanalytic when a and u become zero. Hence, the solutions a�t� and u�r�
hemselves become nonanalytic at those points t and r where they pass through zero. Thus in the
olution �9� we have dropped the terms which are small �of the order of �0

−2� but nonanalytic when
�t�=0. In the general case from Eq. �7� it follows that ��t� passes through zero at t= tm as

��t�
t→tm

= ± �0�t − tm��1 + 1
6 �t − tm�2 ln�t − tm�2 + O��t − tm�2�� , �15�

here � sign is taken for �t�tm��0. It is seen that �ttt becomes infinite as t→ tm. Similarly, one can
how that in the vicinity of the nth node �n=1, . . . ,N�,

u�r�
r→rn

= ur�rn��r − rn��1 −
r − rn

rn
−

1

6
�r − rn�2 ln�r − rn�2 + O��r − rn�2�� . �16�

s we will see below, the nonanalyticity of U��� gives rise to some specific features of the
tability analysis.

II. THE LINEAR STABILITY ANALYSIS

Consider a small fluctuation ��t ,r� around the spherically symmetric pulson �1�, �=�0�t ,r�
��t ,r�. In the linear approximation the equation for � reads

�tt − �� − �2 + ln �0
2�� = 0. �17�

eeking a solution in the form ��t ,r��X�t���r� we arrive at the equations

Xtt + �E − 2 − ln a2�X = 0, �18�

�� + �E + ln u2�� = 0, �19�

here E is some constant.
The expression in the parentheses of Eq. �17� is −U���0�. It becomes infinite, as well as the

xpressions in the parentheses of Eqs. �18� and �19�, at the points tm and rn where a�t� and u�r�
ecome zero. Thus we need to analyze the second order differential equations with singular
oefficients. We begin with Eq. �18� which has the periodic singular coefficient ln a2�t� and hence
elongs to the class of Hill equations.

. Singular Hill equation and generalized Lindemann-Stieltjes method

It turns out to be very useful to look at the problem as a whole, considering first the Hill
quation of a general form

Xtt + h�z�t��X = 0. �20�

e will assume that h�z� is an integral function of z, while z�t� is a real-valued periodic �of a
eriod �� even function of t, having, in general, singularities, but such, that h�z�t�� remains still

ntegrable.
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It is well known that the Hill equation describes the physical systems in which the parametric
esonance can occur. In the context of our stability analysis we will be interested in real resonant
olutions of Eq. �20�. In accordance with the Floquet theory �see, e.g., Ref. 35�, any one of these
olutions can be represented as a linear combination of the fundamental solutions

X+�t� = ��t�e�t, X−�t� = ��− t�e−�t, �21�

here ��t� is a �-periodic or �-antiperiodic real function, �
0 is the characteristic exponent. In
he case that z�t� is unbounded it is impossible to obtain the solutions and evaluate � by expan-
ions in Fourier series, following the standard Hill approach. Another way is to apply the
indemann-Stieltjes method.36 In some cases it allows one to obtain the results in a closed ana-

ytical form.37–40 We first outline this method in the context of the general Hill equation �20� with
n extension to the case that the periodic function z�t� is unbounded. In doing so we follow Ref.
9 where the method was used to construct the resonant solutions of the Lamé equation.

The main idea is as follows. Let us treate z as a new “time” variable instead of t. In each
nterval of monotonicity of z�t� we define

y�z� = X�t� . �22�

ssume that the periodic function z�t� satisfies the equation

zt
2 = g�z� , �23�

here g�z� is an integral function of z. Equation �20� then becomes

g�z�y� + 1
2g��z�y� + h�z�y = 0 �24�

hereinafter the prime denotes d /dz�.
Let us first suppose z�t� is bounded. Equation �23� then shows that it is differentiable. Zeros of

he function g�z� on the complex z plane, taken to be isolated, are singular points of Eq. �24�.
ince z�t� is periodic and real-valued, among singular points there are two, �1 and �2, lying on the
eal axis and being minimal and maximal values which z�t� acquires at the endpoints of the
ntervals of monotonicity. Also, it follows that g���1,2��0. Physically, this is well understood,
ince �1 and �2 can be treated as turning points in periodic motion of a mechanical particle, e.g.,
f a nonlinear oscillator, under the action of the force g� /2. From Eq. �23� it is clear that the
nterval ��1 ,�2� does not contain other singular points of Eq. �24�.

For example, in the case of the Mathieu equation we have z�t�=cos2 t, g�z�=4z�1−z�, so that
q. �24� has the regular singular points z=�1=0, z=�2=1, both being the turning points. In
ddition, the equation has an irregular singularity at infinity. For the Lamé equation z�t�
sn2�t ,��, g�z�=4z�1−z��1−�2z�. Equation �24� then has the regular singular points z=�1=0, z
�2=1, z=�−2
1, first two of them being the turning points, and a regular singularity at infinity.

In general, it is easy to verify that the turning points �1,2 are regular singular points of Eq.
24�, the exponents at each being 0 and 1/2. This implies that in the vicinity of each turning point
there exist two independent solutions of Eq. �24�, y�0��z ;�� and y�1/2��z ;��, having asymptotics
+O�z−�� and �z−��1/2�1+O�z−���, correspondingly.

Now let us consider any one interval of monotonicity of the �-periodic even function z�t�.
enote as y1�z� and y2�z� those two linearly independent solutions of Eq. �24� one of which

oinsides, by Eq. �22�, with the increasing solution �21�, X+�t�, and another with the decreasing
ne, X−�t�, on the interval chosen. Since ��t� is either �-periodic or �-antiperiodic, the product
�t���−t�=X+X−=y1y2=w�z� is always �-periodic even function defined on the whole t axis.
ence, at the endpoints of the intervals of monotonicity of z�t�, i.e., at tm=m� /2�m=0, ±1, . . . �,
he derivative ��X+X−�t�t=tm
=0 or, what is the same,
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�w��g�z=�1,2
= 0. �25�

n the vicinity of a turning point � the solutions y1 and y2 can be represented as linear combina-
ions of the solutions y�0� and y�1/2�. Consequently, the singularity �z−��1/2 is the only one which
he function w�z�=y1y2 might have. But its existence is in contradiction with Eq. �25�, because
�����0 and, hence, g�z�z→��g�����z−��. Therefore, the product y1y2 is analytic at z=�1,2. Re-
all now that the interval ��1 ,�2� does not contain other singular points of Eq. �24� and the singular
oints are assumed to be isolated. We thus conclude that on the complex z plane there exists a
icinity of the interval ��1 ,�2�, i.e., an open domain D� ��1 ,�2�, in which y1y2 is an analytic
unction of z. In addition, it follows that y1

2 and y2
2 of necessity have singularities of the type �z

��1/2 and, thus, cannot satisfy Eq. �25�.
Now consider the case that one of the turning points or both are at infinity. This implies that

t the corresponding instants tm the functions z�t� and zt�t� become unbounded, the latter changing
he sign. Nevertheless, we assume that in the vicinities of tm the function h�z�t�� in Eq. �20� is
ntegrable and X is continuous, whence it follows that Xt and, therefore, wt are also continuous.
ence, as before, �wt�t=tm

=0 due to evenness and periodicity, so that we arrive at Eq. �25� again,
here �1=−� and/or �2= +�.

It is easy to verify that the bilinear combinations y1
2, y1y2, and y2

2 constitute the fundamental
ystem of solutions of the third-order differential equation

g�z�w� + 3
2g��z�w� + � 1

2g��z� + 4h�z��w� + 2h��z�w = 0. �26�

quation �25� is thus a common criterion for selection of the solution

w = y1y2 �27�

rom the set of solutions of Eq. �26�. In the case that z�t� is bounded, Eq. �25� is the equivalent to
he requirement that a solution of Eq. �26� be analytic in D. If z�t� is unbounded, Eq. �25� will give
he boundary conditions at infinity which must be satisfied in solving Eq. �26�. In this case w�z�
ill be analytic in a vicinity D of one of the intervals �−� ,�2�, ��1 ,��, �−� ,��.

Thus, in a neighborhood of any one point ��D we can write the expansions

w�z�
g�z�
h�z�

� = �
n=0

� wn

gn

hn
��z − ��n. �28�

ubstitution of �28� into Eq. �26� leads to the following set of equations for the coefficients:

m�
n=1

m+2

n�m + n�gm−n+2wn + 4�
n=0

m

�m + n�hm−nwn = 0 �29�

m=1,2 , . . . �. Thus for m=1 we have

6g0w3 + 3g1w2 + �g2 + 4h0�w1 + 2h1w0 = 0. �30�

ssuming w����0, we normalize w�z� by w0=1. Then, at given w1 and w2 the remaining coef-
cients wn are determined from Eqs. �29�. The choice of w1 and w2 is not arbitrary but determined
y Eq. �25�. Thus, setting �=�1 and, hence, g0=0, we must choose w1 in such a way that the series
28� for w �or its continuation� converges at the second turning point �2, or satisfies the boundary
ondition at infinity �25� if �2= +�. For the Mathieu and Lamé equations this leads to the function
�z� which is an integral one, for the latter it is a polynomial.36 In these cases the domain D is
vidently the z plane with �z���.

Let us suppose the function w�z� �27� is found. Return now to Eqs. �20�–�24�. Denote as W the

ronskian of the solutions �21�,
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X+X−t − X+tX− = W = const. �31�

etting

y1 = X+, y2 = X− �zt� 0� ,

�32�
y1 = X−, y2 = X+ �zt	 0� ,

e then obtain

y1y2� − y1�y2 = W/�g , �33�

here �g�0 is assumed. The system of equations �27� and �33� can be easily solved, which gives

y1,2
2 = exp � f�

w�g
dz , �34�

here

f± = w��g ± W . �35�

Now let us insert y1,2 �34� back into Eq. �24�. We obtain

2gww� + g�ww� − gw�2 + 4hw2 + W2 = 0. �36�

y this formula one can find the constant W2 from a knowledge of w�z� in a vicinity of any point
. Thus, calculating �36� at any one finite turning point � we obtain �in terms of expansions �28�
ith normalization w0=1�

W2 = − 4h0 − g1w1. �37�

lternatively, one can take zeros zi of w�z�. �The functions g�z� and w�z� do not have common
eros because otherwise the Wronskian �31� would be zero.� Then we find

W2 = g�zi�w�2�zi� . �38�

he requirement for positivity of W2 determines the values of parameters of Eq. �20� �resonance
ones� for which the resonant solutions exist.

Let us construct these solutions. Consider the intervals of monotonicity t1	 t	 t2�zt�0�, t2

t	 t3�zt	0�, etc. According to �32� and �34� we can write

X±
2�t�

t1	t	t2

= X±
2�t1�exp �

�1

z f�
w�g

dz ,

�39�

X±
2�t�

t2	t	t3

= X±
2�t2�exp �

�2

z f±

w�g
dz,etc.

o find the characteristic exponent � consider, e.g., the growing solution X+�t�. Setting t= t2,
�t2�=�2 in the first equation of �39� and t= t3, z�t3�=�1 in the second one, we can express X+

2�t3�
hrough X+

2�t1�. Using Eq. �21� and taking into account that t3= t1+�, ��t+��= ±��t�, we thus
btain

� = −
W

�
�
�1

�2 dz

w�g
. �40�

ecall that � is the period of z�t�, the constant W is determined from Eq. �37� or Eq. �38�, its sign

eing taken opposite to that of the integral in �40� to provide for positivity of �. Since w�z� has
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eros, the integrals in Eqs. �39� and �40� are understood as their principal values. Formula �40� is
simple generalization of the ones used previously in Refs. 37–40.

. Evaluation of the characteristic exponent

Let us return to Eq. �18�. It can be written in the form of Eq. �20� if we set

z�t� = − ln�a/amax�2, z�0� = 0, �41�

h�z� = E − 3 + �0
2 + z . �42�

quation �7� then immediately gives

g�z� = 4��0
2�ez − 1� − z� . �43�

eros of this function are shown in Fig. 3. Since ��t�=a /amax oscillates with the period T in the
nterval −1	�	1 �see Eqs. �7�–�12��, the function z�t� �41� oscillates with the period �=T /2
etween the turning points �1=0 and �2= +�. To calculate the characteristic exponent by the
ormula �40� we need to know the function w�z� which is the solution of Eq. �26� with boundary
onditions �25�. Unfortunately, for given h�z� �42� and g�z� �43�, Eq. �26� cannot be solved
nalytically. We solve it numerically33 for various values of the parameters E and �0

2=1
ln amax

2 . Doing so, we use the conditions �25� in the following way. As discussed above, the
ulfillment of �25� at a finite turning point means analyticity of w�z� in some vicinity of this point.
herefore, we can use the expansions �28� setting there �=�1=0, g0=0, g1=4��0

2−1�, gn

4�0
2 /n!�n=2,3 , . . . �, h0=E+�0

2−3, h1=1. Equation �30� then gives

w2 = −
1 + �2E + 3�0

2 − 6�w1

6��0
2 − 1�

. �44�

e thus solve Eq. �26� with the following conditions at z=0: w�0�=1, w��0�=w1, w��0�=2w2.
iven values of E and �0

2, we choose w1 so as to satisfy the condition �25� at infinity,

�w��g�z→+�→ 0. �45�

t the same time, since � is assumed to be real, the values of E, �0
2, and w1 must provide for

2

IG. 3. The layout of zeros of g�z� �43� on the complex z plane. The vicinity D �shaded� of the interval �0,�� belongs to
he domain of analyticity of w�z�.
ositivity of W ,
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W2 = 4�3 − E − �0
2 − ��0

2 − 1�w1�
 0 �46�

see Eqs. �37� and �40��. Conditions �45� and �46� determine the resonance zones in the space of
arameters E and �0

2 �or amax
2 �. Hereinafter the zones will be referred to as Zj and numbered

equentially as E grows �with amax
2 fixed� starting with j=−1 in the region E�0. Figure 4 shows

he solutions w�z� for zones Z1, Z2, and Z3 lying in the region E
2. Now, knowing w�z�, we can
alculate the integral in �40�. Because w�z� has zeros, we first transform the integrand with the
elp of Eq. �36� extracting the total derivative. Owing to the condition �45�, the latter does not
ontribute to the principal value of the integral, while the remaining terms give

�
0

� dz

w�g
= −

1

2W2�
0

�

��g�w��g�� ln w2 + 8hw�
dz
�g

. �47�

he integrand on the right-hand side of Eq. �47� is more convenient for numerical integration
ecause its singularities are all integrable. We perform the integration in �47�, calculate W2 by the
ormula �46�, and find the period T=2� by integration of Eq. �7�. These procedures are carried out
umerically for a set of grid points in every resonance zone. In this way from �40� we obtain the
haracteristic exponent � as a function of E and amax

2 .
To check this result we derive ��E ,amax

2 � directly from analysis of numerical solutions of Eq.
18�. Examples of these solutions for resonance zones Z1, Z2, and Z3 are shown in Fig. 5. The
rowth of the amplitude with time is clearly seen. The function ��E ,amax

2 � so derived is found to
e fully coincident with the one obtained by the formula �40�.

The resulting stability-instability chart is presented in Fig. 6. Figure 6�a� shows the region

2. There is an infinite series of narrow resonance zones Z1 ,Z2 ,Z3 , . . ., the first one having the
ighest magnitude ��0.08 at the maximum�. All these zones originate from the point E=2, amax

2

1 at which �=0 �see Eqs. �40� and �46��. In the region E	2 we have two zones, Z0 and Z−1,
ying in the ranges 0�E�2 and E�0, correspondingly. Since in these zones the values of �
roved to be much greater than in Z1 ,Z2 , . . ., we depict the surface ��E ,amax

2 � for this region
eparately, in Fig. 6�b�.

. Spatial structure of the perturbation

Consider now Eq. �19�. It has the form of the Schrödinger equation for a quantum particle of
2 2

IG. 4. Behavior of w�z� for E=4 in the different resonance zones: �a� zone Z1, amax
2 =0.5625, �b� zone Z2, amax

2

0.9025, �c� zone Z3, amax
2 =0.9598. The values of amax

2 chosen correspond to the centers of zones where � achieves its
axima. One can see that the number of zeros of w�z� is unit above the number of a zone.
he energy E moving in the potential −ln u . Since the potential tends to +� with growing r �as r ,
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ee Eqs. �13� and �14��, the energy spectrum is discrete, E=En, and the corresponding eigenfunc-
ions �n�r� are all localized. In the case of the nodeless pulson �13� we have the isotropic
armonic oscillator. Its eigenfunctions are well known �see, e.g., Ref. 41�. We write them as
ollows:

�n�r� = �
l=0

n

�1 + �− 1�n−l�Rnl�r�Yl��,�� , �48�

Rnl�r� = rle−r2/2�	−
n − l

,l +
3

,r2
 , �49�

IG. 5. Resonant solutions of Eq. �18�, X�t��X+�t�=��t�e�t, �solid lines� and the function z�t�=−ln�a /amax�2 �dashed
ines�: �a� zone Z1, �b� zone Z2, �c� zone Z3. The initial conditions are: a�0�=amax, at�0�=0, Xt�0�=0, X�t� is normalized in

proper way. The values of E and amax
2 in each zone are the same as in Fig. 4. It is seen that ��t� is �-periodic in Z1,

-antiperiodic in Z2, �-periodic in Z3, and so on, in accordance with the solutions �39� �see Eqs. �35� and �38� and Fig. 4�.
2 2
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Yl��,�� = �
m=−l

l

cl,mPl
�m��cos ��eim�. �50�

ere ��� ,� ,x� is the Kummer function, P�
��x� are the associated Legendre functions, cl,m are

onstants, cl,−m=cl,m
* . The energy spectrum is given by

E = En = 2n �n = 0,1,2, . . . � . �51�

Our energy levels are shifted with respect to the conventional ones since the minimum of the
otential −ln u0

2 is −3.�
In the case of the nodal pulsons the picture becomes more complicated due to the loss of the

rbital degeneracy. The corresponding eigenfunctions and eigenvalues can be calculated only
umerically. As an example, in Fig. 7 is shown the energy spectrum for perturbations of the
ne-nodal pulson.

Note that there always exist the eigenvalues E=0, l=0 and the corresponding eigenfunction

0�r��u�r�. This fact immediately follows from the comparison of Eqs. �6� and �19�. The corre-
ponding X0�t� in ��t ,r� is an oscillating function with the amplitude growing linearly with time.
t is easy to see, however, that this mode is physically meaningless. Indeed, it will formally appear
f we perturb the pulson by a small variation of its amplitude amax but not the form u�r�. Due to
onlinearity, this results in a pulson with slightly shifted frequency. Then the difference of the
erturbed and unperturbed pulsons, i.e., ��t ,r�, will have the form of beats generated by two
scillations with close frequencies and the same profile u�r�. The function X0�t� approximates the
nitial, linearly growing part of a beat. We exclude this mode from the subsequent consideration,
ince it belongs to the class of perturbations that conserve a pulson as a whole. Next, for the nodal
ulsons only, there is a mode with E=0, l=1 �see Fig. 7�. Since this mode cannot grow faster than

FIG. 6. The stability-instability chart: �a� E
2, first 10 zones are shown, �b� E	2.
inearly in time, we also do not take it into account. Further, we should exclude the mode resulting
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rom a small translation of the pulson. The corresponding eigenfunction is proportional to n�u,
here n is a displacement vector. Using Eqs. �6� and �19� one can easily show that this mode

orresponds to E=2, l=1. Thus the resulting perturbation is written as

��t,r� = �
n

Xn�t��n�r� , �52�

here Xn is a solution of Eq. �18� with E=En, En�0,2. If En and amax
2 are in a resonance zone,

n�t� will be represented as a linear combination of the solutions �21� and, hence, will grow with

ime as e��En,amax
2 �t.

. Instability of the pulsons

The arrangement of the resonance zones on the �E ,amax
2 � plane indicates that for any spectrum

n there always exist the ranges of amax
2 where pulsons are unstable. But do the values of amax

2 exist
or which the pulsons are stable? To answer this question let us return to the surface ��E ,amax

2 �
epicted in Fig. 6. Take, at first, the spectrum for the nodeless pulson. We choose the sections

n�amax
2 � of the surface ��E ,amax

2 � by E=2n and project them on the �� ,amax
2 � plane. As a result,

he pattern shown in Fig. 8�a� emerges. It is clearly seen the tendency to the total filling of the
nterval 0�amax

2 �1 by the resonant peaks as the successively higher energy levels are accounted
or. This implies that for any given amax

2 there always exists an unstable mode with �=�n�amax
2 �,

.e., strictly speaking, all nodeless pulsons are unstable. On the other hand, the figure shows that
here are domains of amax

2 where the peaks are very small. These domains are the gaps between the
ain peaks originated from the low-energy cross sections of the surface ��E ,amax

2 � over a few first
ones. In the gaps the exponent � is small, so that the corresponding pulsons are long-lived. For
xample, in Ref. 33 we observed numerically the nodeless pulson with amax

2 =0.49 that conserved
ts coherency against the radially symmetric perturbations over the course of several hundreds of
eriods.

Further, the above projective procedure is performed using the spectrum of the one-nodal
ulson �Fig. 7�. The main contribution here is made by the sections with the energies En=
0.7142 �l=0�, 0.4833 �l=2�, 1.1222 �l=3�, and 1.8996 �l=4� falling into zones Z−1 and Z0, the
rojections of the first and the third sections overlapping the other ones. The result is presented in
ig. 8�b�. We see that amax

2 axis is totally full. Thus, the one-nodal pulson has neither stability nor
ven quasistability domains. It seems likely that things will get worse, not better, if one goes to the
ultinodal pulsons. We thus conclude that, strictly speaking, all pulsons of the model considered

FIG. 7. The energy levels for the perturbations with different orbital numbers l. The case of the one-nodal pulson.
re unstable. But nodeless pulsons can be quasistable in narrow ranges of amplitudes. It is the
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ong-lived pulsons that can be of astrophysical and cosmological interest. If the dark matter
onsists of scalar particles, such pulsons will be realistic candidates for the dark matter objects
aving oscillating density.42

. On the instability of the Affleck-Dine-type condensate

The obtained stability-instability chart turns out to be appropriate for the stability analysis of
he nonlocalized coherent states as well. As an example, we consider a uniformly distributed
ackground �0�t�, a scalar condensate, oscillating around the minimum of the potential �4� at �
0. This state can be formally obtained from Eq. �1� if we set there u�r��1. We thus assume that

0�t� obeys Eq. �5�. Taking the perturbed state �=�0�t�+��t ,r�, in the linear approximation from
qs. �2� and �4� we readily obtain

Att + �k2 − 2 − ln �0
2�A = 0, �53�

here A�t ,k� is the Fourier amplitude of the perturbation, and k= �k�. It is seen that the real and
maginary parts of this equation have the form of Eq. �20� with h�z� given by Eq. �42�, z=
ln��0 /�0 max�2, �0

2=1−ln �0max
2 , and E=k2. Returning to the stability-instability chart �Fig. 6� we

ote that in the region E�0 maximal values of � are attained in the zone Z0 for which 0�E
2. Interestingly, this band exactly coincides with the one obtained in Ref. 20 for the power-law

otential approximating �3� when ��1. In the interior of Z0 the exponent � depends almost not
t all on the amplitude of the condensate oscillations and is a sufficiently smooth function of k2

ith a maximum at k2=k0
2�1 where ��0.5. Therefore, if the initial power spectrum �A�0,k��2

ies in the region 0� �k���2 and, in addition, its characteristic width along k is small, �k��2,
hen the growth of the perturbation amplitude will not be accompanied by significant changes in
he structure of the perturbation. The limiting case of such perturbations is a harmonic wave.
therwise, if �k �2, the shape of the power spectrum will vary with time so that a maximum
ill appear at k0�1. As a result, the effective width of the spectrum will become smaller, �k
1. In this case, if the initial spectrum is sufficiently isotropic in k space, the parametric ampli-

cation of the perturbations will result in the emergence of the localized field configurations of the
haracteristic size �r�1/�k 1 that agrees with the radius of the gausson �see Sec. II�. At this

IG. 8. Superposition of the sections �n�amax
2 � of the surface ��E ,amax

2 �: �a� the nodeless pulson, En=4,6 ,8 , . . . ,50, �n
2,3 ,4 , . . . ,25�, �b� the one-nodal pulson, En=−0.7142,0.4833,1.1222,1.8996, . . ..
cale the field practically does not undergo spatial oscillations since the corresponding wavelength

                                                                                                            



2
n
t
t
d
s
t

h
T
b
c
i

w
b
p
t
t
r
�
S

I

t
t
i
d

f
fi
c
�
w
w

w
o
a
l
t
s
m
�
e
m
s
t

022302-15 Instability of coherent states of a scalar field J. Math. Phys. 47, 022302 �2006�

                        
 /k0 1. We thus expect that at the nonlinear stage these configurations will turn into the
odeless pulsons. Their period will be equal to the period of the condensate oscillations since in
he zone Z0 the parametric amplification proceeds at the basic frequency. Gradually, the energy of
he oscillating condensate will go to ensemble of the arising pulsons, this process resulting in the
amping of the background oscillations. As to the pulsons themselves, they can be long-lived or
hort-lived depending on their amplitudes, in accordance with the results of the preceding subsec-
ion.

Note, that numerical simulations performed for the complex version of the model �2� and �3�
ave shown the fragmentation of both the rotating18,19 and oscillating20 Affleck-Dine condensate.
he localized configurations arising in the condensate have been identified with Q-balls. We
elive, however, that the configurations observed in the oscillating condensate are in fact the
omplex pulsons �see Sec. IV�, rather than the usual Q-balls. This possibility was early discussed
n Ref. 15 where an attempt to simulate the complex pulson has been made.

The resonant exitation of the pulsons was also observed in the two-vacuum �4−�6 model
ithin a regularly oscillating background39 and in the �4 model within an initially thermalized
ackground.43 Note that in two-vacuum models the pulsons can play the role of nuclei of a new
hase. In Ref. 39 the general suggestion has been made that the parametric resonance can underlie
he mechanism responsible for the first-order phase transitions in nonlinear nondissipative sys-
ems. This conjecture turns out to be in agreement with recent results of Ref. 44 where the
esonant nucleation within the thermalized background have been numerically observed in the

3−�4 model. Note, in addition, that the dynamical nucleation can also take place in the nonlinear
chrödinger equation.45

V. CONCLUDING REMARKS

In this paper we have examined only the linear stage of instability at which small deforma-
ions of the pulson’s shape result in loss of the coherence. There is numerical evidence that in time
he growth of the perturbations becomes saturated due to nonlinear effects.33 We thus suggest that
n the model considered the pulsons, while unstable, remain well localized objects with no ten-
ency for spreading or collapsing.

Further, we dealt with a real scalar field. It would be interesting to perform the similar analysis
or a complex scalar field too. It is believed that the existence of the scalar charge can stabilize a
eld lump. For Q-balls this fact is well established �so-called Q-theorem2,4,27�. In contrast, for the
omplex pulsons this is an open question. As it was shown in Refs. 28 and 29, the field equation
2� with U�=−� ln���*� admits the exact pulson solutions of the form �0�t ,r�=a�t�u�r�ei��t�,
here a�t�, u�r�, and ��t� are real. The function u�r� satisfies Eq. �6� as before, while a�t� oscillates
ith a period T in accordance with the equation

att = −
d

da
�1

2
a2�1 − ln a2� +

q2

2a2� , �54�

here q is a real constant, q2� �2e�−1, and �t=qa−2. The constant q is proportional to the charge
f the scalar field. In contrast to Eq. �5�, the potential in the square brackets of Eq. �54� prevents
�t� from being zero. Without loss of generality one may assume a�t� positive, so that the oscil-
ations occur arround the minimum of the potential at a=a0, where a0 is the least positive root of
he equation a4 ln a2=−q2. If a is at rest in this minimum, then ��t�=qa0

−2t+��0�, and we have the
tandard Q-ball. Physically, Eq. �54� describes the motion of a mechanical particle with an angular
omentum q in the potential �a2 /2��1−ln a2�. The condition for its trajectory to be closed is

�T�−��0�=2m /n, where m and n are arbitrary integers �see, e.g., Ref. 46�. In fact, it relates the
nergy of the particle and its angular momentum whereby such trajectories exist. In our case this
eans periodicity of the solution �0�t ,r� with the period nT. Obviously, there is an infinity of such

olutions. Taking �0�t ,r� and considering the partial perturbation ��X�t���r� one can find that

he function ��r�, assumed to be real, satisfies Eq. �19� as before, while X�t� obeys the equation
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Xtt + �E − 1 − ln a2�X = e2i�X*, �55�

here E is a real constant. This equation can be represented as a system of four real first-order
quations with periodic coefficients of the periods T and nT. It is significant that, since a�t��0,
hese coefficients are bounded in time, so that one can attempt to estimate the characteristic
xponent of the system using the standard methods.47

Also, it would be interesting to examine stability of a self-gravitating pulson. Hopefully,
ravitation can expand the domains of �quasi�stability, as it is the case for Q-balls.4 These are
ossible subjects of our future work.

In the present paper we have investigated stability of both the coherent localized states �pul-
ons� and nonlocalized states �uniformly oscillating scalar condensate� of the real scalar field. Our
ain analytical result is the generalization of the Lindemann-Stieltjes method to the case that the

eriodic coefficient in the Hill equation is unbounded in time. Our main numerical result is the
tability-instability chart with the values of characteristic exponent calculated in the resonance
ones. Using this chart we have found the gaps in the set of the pulson amplitude values in which
he real nodeless pulsons conserve the coherency for an extremely long time. Also, considering the
scillating scalar condensate, we have detemined the wavelength of the most unstable mode. This
avelength turned out to be equal to the characteristic size of the nodeless pulson. We thus suggest

he pulsons can be formed due to resonant fragmentation of the scalar condensate. These are our
ain physical results.
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It has been known for some time that for a large class of nonlinear field theories in
Minkowski space with two-dimensional target space the complex eikonal equation
defines integrable submodels with infinitely many conservation laws. These con-
servation laws are related to the area-preserving diffeomorphisms on target space.
Here we demonstrate that for all these theories there exists, in fact, a weaker
integrability condition which again defines submodels with infinitely many conser-
vation laws. These conservation laws will be related to an Abelian subgroup of the
group of area-preserving diffeomorphisms. As this weaker integrability condition is
much easier to fulfill, it should be useful in the study of those nonlinear field
theories. © 2006 American Institute of Physics. �DOI: 10.1063/1.2168400�

. INTRODUCTION

Recently there has been rising interest in nonlinear field theories which allow for the existence
f knotlike solitons. The probably best known of these models, the Faddeev-Niemi model,1,2 for
xample, finds some applications in condensed matter physics.3,4 Further, some versions of it are
iscussed as possible candidates for a low-energy effective theory of Yang-Mills theory.5,6 In
ddition, there is some intrinsical mathematical interest in theories with knot solitons. Generally,
hese models are described by a complex field u :R3�R→M : �x� , t�→u�x� , t� where M is a
wo-dimensional target space manifold and u plays the role of a complex coordinate on this

anifold.
The Faddeev-Niemi model has the two-sphere as target space and is given by the Lagrangian

ensity

LFN = L2 − �L4, �1�

here � is a dimensionful coupling constant, L2 is

L2 = 4
��u��ū

�1 + uū�2 , �2�

nd L4 is

�Electronic mail: adam@fpaxp1.usc.es
�Electronic mail: joaquin@fpaxp1.usc.es
�
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L4 = 4
���u��ū�2 − ���u��u����ū��ū�

�1 + uū�4 . �3�

wo more models which support solitons and can be constructed from the two Lagrangian den-
ities L2 and L4 separately, are the AFZ �Aratyn, Ferreira, and Zimerman� model7,8

LAFZ = − �L4�
3
4 �4�

nd the Nicole model9

LNi = �L2�
3
2 . �5�

ere the noninteger powers for the Lagrangian densities have been chosen appropriately to avoid
errick’s theorem. More models together with some explicit soliton solutions have been con-

tructed, e.g., in Refs. 10 and 11.
Among these models the AFZ model is special, because it has infinitely many symmetries and,

s a consequence, infinitely many conservation laws.12,13 Further, infinitely many soliton solutions
an be found by an explicit integration for a special ansatz �separation of variables in toroidal
oordinates�, which realizes the concept of integrability in a rather explicit way. The other models
o not have infinitely many symmetries, but, nevertheless, “integrable” subsectors with infinitely
any conserved currents can be defined.14,15 The condition which defines these integrable sub-

ectors is the complex eikonal equation

u�u� = 0, �6�

here u����u. The infinitely many conserved currents J�
G �defined in Sec. III� for these submod-

ls are parametrized by an arbitrary, real function G�u , ū� and are, in fact, just the Noether currents
or the area-preserving diffeomorphisms on target space.12,16 �Some more �“generalized”� integra-
ility conditions, which, however, depend on the Lagrangian, have been introduced in Refs. 17
nd 16.�

Here we want to demonstrate that there exists, instead of the complex eikonal equation, a
eaker condition which again defines submodels with infinitely many conservation laws. Further,

hese integrable submodels can be defined for all Lagrangians for which the complex eikonal
quation defines integrable submodels. Explicitly this condition reads

ū2u�
2 − u2ū�

2 = 0. �7�

he infinitely many conserved currents J�
G for these submodels are as above, but with the addi-

ional restriction that now G=G�uū�. They are the Noether currents for an Abelian subgroup of the
roup of area-preserving diffeomorphisms on target space.

The meaning of condition �7� becomes especially transparent when we reexpress u in terms of
ts modulus and phase like

u = exp�� + i�� . �8�

hen the complex eikonal equation is equivalent to the two real equations

��
2 = ��

2 �9�

nd

���� = 0, �10�

hereas the weaker condition �7� becomes Eq. �10� alone or, for time-independent u,
���� · ���� = 0. �11�
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The integrability condition �7� might be quite useful, for instance, in the case of the Faddeev-
iemi model. For the Faddeev-Niemi model soliton solutions are only known numerically up to
ow.2,18–21 No solutions which solve the complex eikonal equation, as well, are known and there
re even arguments against the existence of such solutions. On the other hand, it is perfectly
ossible that there exist solutions which solve the weaker integrability condition �7� and that this
ondition helps in the search for analytic solutions.

The condition �7� is in fact quite weak, i.e., quite easy to fulfill. For instance, many commonly
sed separation-of-variable ansätze, like the ansatz u=��r ,��eim	 in spherical polar coordinates, or
he ansatz u=��
�ei�m	+n�� in toroidal coordinates �both � are real�, identically obey condition �7�
ue to the orthogonality of the corresponding basis vectors. On the other hand, for the eikonal
quation these ansätze lead to a differential equation for the profile function � which only allows
or very specific solutions, therefore providing a much stronger restriction, see, e.g., Refs. 22 and
3. In short, condition �7� applies to a rather large class of field configurations and, therefore, we
elieve that it will be useful for the study of nonlinear field theories with a two-dimensional target
pace, like the Faddeev-Niemi or the Nicole model, or the other models mentioned above.

In Sec. II we discuss the algebra of generators of area-preserving diffeomorphisms and their
belian subalgebra on a two-dimensional manifold. Further we define the Noether charges corre-

ponding to these generators. In Sec. III we show that condition �7� defines subsectors with
nfinitely many conservation laws for a very general class of Lagrangians �which cover all
agrangians given above�. Further we demonstrate that the corresponding conserved currents are

ndeed the Noether currents of the Abelian area-preserving diffeomorphisms.

I. ABELIAN AREA-PRESERVING DIFFEOMORPHISMS

Here we describe area-preserving diffeomorphisms and an Abelian subgroup contained within
hem for a two-dimensional manifold M which later on will be identified with the target space of
he nonlinear field theories which we want to study. Concretely, we choose real coordinates ��1 ,�2�
r the complex coordinate u=�1+ i�2 and allow for the class of metrics

ds2 = g�a���d�1�2 + �d�2�2� = g�a�du dū , �12�

here

a = ��1�2 + ��2�2 = uū �13�

nd

du dū � 1
2 �du � dū + dū � du� , �14�

du Ù dū � 1
2 �du � dū − dū � du� . �15�

he corresponding area two-form is

� � g�a�d�1 Ù d�2 =
g�a�
2i

dū Ù du . �16�

he choice of conformally flat metrics does not mean a restriction in two dimensions, because any
etric on a two-dimensional manifold may be chosen conformally flat by an appropriate choice of

oordinates. On the other hand, the functional dependence for the metric function g=g�a� is a
estriction, which is however sufficiently general for our purposes. In principle, one could skip this
estriction, which would just complicate the subsequent discussion without adding substantial new
tructures �see the remark at the end of Sec. III�.

An area-preserving diffeomorphism is a transformation u→v�u , ū� such that the area form

16� remains invariant �see also Refs. 12, 13, and 15�,
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� �
1

2i
g�uū�dū Ù du =

1

2i
g�vv̄�dv̄ Ù dv . �17�

or infinitesimal transformations v=u+ it is easy to see that the condition of invariance of the
rea form leads to

u + ̄ū = −
g�

g
�ū + ū� , �18�

here u��u and g���ag�a�. Defining

 = g−1�, � = Fū �19�

he above equation for  simplifies to

�u�ū�F + F̄� = 0. �20�

he general solution to this equation is

F + F̄ = ��u� + �̄�ū� �21�

ut for our purposes an imaginary F,

F + F̄ = 0, �22�

erves as a general solution, because for any F which solves �21� there exists a F̃=F−��u� which

s imaginary and leads to the same �=Fū= F̃ū, i.e., to the same area-preserving diffeomorphism.
Introducing the real function G via F= iG, the area-preserving diffeomorphisms are therefore

enerated by the vector fields

vG = ig−1�Gū�u − Gu�ū� �23�

hich obey the Lie algebra

�vG1,vG2� = vG3, G3 = ig−1�G1,ūG2,u − G1,uG2,ū� . �24�

ow we want to find an Abelian subalgebra of this Lie algebra of vector fields. It is easy to see
hat the commutator �24� vanishes if both Gi , i=1,2 are of the form

G = G�uū� . �25�

n addition, this gives a maximal Abelian subalgebra in the sense that if G1=G1�uū� then G3

0ÛG2=G2�uū�. These issues may be seen especially easily by introducing the modulus and
hase of u, u=�aei�. Then the vector field vG for G=G�a� is

vG = H�a���, H�a� � g−1G� �26�

nd the above statements follow immediately. In short, the G of the form G=G�uū� generate a
aximal Abelian subgroup of the group of area-preserving diffeomorphisms.

Due to the Abelian nature of this subgroup it is trivial to integrate the infinitesimal transfor-
ations to reach finite ones. The result is that the transformations

u → ei��uū�u �27�

orm a subgroup of Abelian area-preserving diffeomorphisms, where �=��a� is an arbitrary
unction of its argument. In fact, these transformations leave invariant the two terms g�a� and
¯
uÙdu separately.
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Finally, let us describe how these transformations are implemented for field theories. For fields
:Rd�R→M : �x� , t�→u�x� , t� the generators of area-preserving diffeomorphisms are given by
oether charges which are constructed with the help of the canonical momenta �, �̄ of the fields
and ū. Concretely, they read

QG = i� ddxg−1��̄Gu − �Gū� �28�

nd act on functions of u , ū ,� , �̄ via the Poisson bracket, where the fundamental Poisson bracket
s �with x0=y0�

�u�x�,��y�	 = �ū�x�,�̄�y�	 = �d�x − y� �29�

s usual. The generators QGi close under the Poisson bracket, �QG1 ,QG2	=QG3 where G3 is as in
24�. Specifically, for G=G�a� they generate the Abelian area-preserving diffeomorphisms, as
bove.

II. INTEGRABLE SUBSECTORS

In this section we want to show that for a wide class of Lagrangian densities integrable
ubsectors can be defined which have infinitely many conserved Noether currents which may be
elated to the Abelian diffeomorphisms of the above section. The discussion in this section in some
espect resembles the discussion in Ref. 16. However, the integrability condition which we shall
erive here has not been discussed in that reference. We introduce the class of Lagrangian densi-
ies

L�u, ū,u�, ū�� = F�a,b,c� , �30�

here

a = uū, b = u�ū�, c = �u�ū��2 − u�
2 ū�

2 �31�

nd F is at this moment an arbitrary real function of its arguments. That is to say, we allow for
agrangian densities which depend on the fields and on their first derivatives, are Lorentz invari-
nt, real, and obey the phase symmetry u→ei�u for a constant ��R. We could relax the last
ondition and allow for real Lagrangian densities which depend on u and ū independently, but this
ould just complicate the subsequent discussion without adding anything substantial. Further, all
odels we want to cover fit into the general framework provided by the class of Lagrangian

ensities �30�, therefore we restrict our discussion to this class.
The canonical four-momentum for this class of models is

�� � Lu� = ū�Fb + 2�u�ū�ū� − ū�
2u��Fc �32�

nd the equation of motion reads

���� = Lu = ūFa �33�

ogether with its complex conjugate.
We introduce the infinitely many currents

J�
G = if�a��Gu�̄� − Gū��� , �34�

here f�a� is an arbitrary but fixed real function of its argument. Further, G is an arbitrary real
unction of u and ū, and Gu��uG. Comparing with the Noether charge �28� it is tempting to
dentify f =g−1 and J�

G with the Noether currents of area-preserving diffeomorphisms, and we will
ee in a moment that for a large subclass of Lagrangian densities this identification can be made,

ndeed.
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In a first step, let us investigate which conditions make the divergence of the above current
anish, ��J�

G=0. We find after a simple calculation

��J�
G = if���M�ūGu + Guu�u�

2 − �M�uGū + Gūū�ū�
2 �Fb + �uGu − ūGū��M��bFb + 2cFc� + Fa�� ,

�35�

here

M � ln f �36�

nd the prime denotes the derivative with respect to a.
The condition that the second term on the right-hand side �rhs� of Eq. �35� vanishes requires

hat either

uGu − ūGū = 0 �37�

r

M��bFb + 2cFc� + Fa = 0. �38�

ssuming condition �37� we find the general solution

G�u, ū� = G�uū� � G�a� �39�

hich is exactly equal to the condition �25� which restricts the generators of area-preserving
iffeomorphisms to the Abelian subalgebra.

The condition that the first term on the rhs of Eq. �35� vanishes requires that either

Fb = 0 �40�

r that

��M�ūGu + Guu�u�
2 − �M�uGū + Gūū�ū�

2 � = 0. �41�

ondition �40� may, e.g., be satisfied by assuming Fb�0ÞF=F�a ,c�. It follows that theories
ith Lagrangians L=F�a ,c� have infinitely many conserved currents �34�, where G is restricted to

39�. Of the models mentioned in the Introduction, only the AFZ model falls into this class.
owever, the AFZ model also obeys condition �38�, therefore the restriction �39� is unnecessary

nd the J�
G are conserved for all G.

Alternatively we may make the first term on the rhs of Eq. �35� vanish by imposing Eq. �41�.
or an unrestricted G this leads to a condition on the field u,

u�
2 = 0, �42�

.e., the complex eikonal equation, which, therefore, defines a submodel for which there exist
nfinitely many conserved currents provided that one of the two conditions �37� or �38� is imposed,
n addition.

However, by invoking condition �39� we may reexpress condition �41� like

�M�G� + G��Fb�ū2u�
2 − u2ū�

2 � �43�

nd, therefore, we find, instead of the complex eikonal equation, the weaker integrability condition

ū2u�
2 − u2ū�

2 = 0, �44�

.e., Eq. �7�. Therefore, for all Lagrangians L=F�a ,b ,c� condition �44� defines submodels which
ave infinitely many conserved currents �34�, where G is restricted to �39�, again. All models

entioned in the Introduction belong to this class.
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Finally, we want to investigate what happens if we impose condition �38�, either alternatively
r in addition to condition �39� �we want to remark that condition �38� is fulfilled by all models
entioned in the Introduction�. Equation �38� can be solved easily by the method of characteristics

nd has the general solution

F�a,b,c� = F
b

f
,

c

f2� . �45�

his solution allows us to interpret the Lagrangian in terms of the target space geometry and to
dentify the currents �34� with the Noether currents of the area-preserving diffeomorphisms of Sec.
I, as we want to demonstrate briefly. Indeed, trading the complex u field for two real target space
oordinates ��, u→ ��1 ,�2�, the expressions on which F may depend can be expressed as follows.
he first term is

b

f
=

u�ū�

f
= g�������������, �46�

here �=1,2, etc., and the target space metric g�� is diagonal and conformally flat for the
oordinate choice �1=Re u, �2=Im u, i.e.,

g�� = g�a���� � f−1���. �47�

or the second term we get

c

f2 = ̃��̃���
���������������, �48�

here

̃�� = g��, g = f−1 = det1/2�g��� �49�

nd �� is the usual antisymmetric symbol in two dimensions. We remark that the two terms are
ifferent in that the first one, b / f , depends on the target space metric, whereas the second one only
epends on the determinant of the target space metric. For this class of Lagrangians the currents
34� are the Noether currents of area-preserving diffeomorphisms on target space, and the condi-
ion G=G�a� defines these Noether currents for the subgroup of Abelian area-preserving diffeo-

orphisms defined in Sec. II, as announced.
Remark: The Abelian subalgebra spanned by generators of the form G=G�uū� is by no way

he only Abelian subalgebra that exists for the algebra of vector fields vG of Eq. �24�. In fact, any

ubset of G of the form G�u , ū�= G̃i�h�u , ū�� where h is an arbitrary but fixed function forms an

belian subalgebra, i.e., �vG̃1 ,vG̃2�=0. This follows from the fact that for an area-preserving

iffeomorphism the vector field vG̃ must be perpendicular to the �target space� gradient of h, i.e.,
t must point into the direction h=const. Indeed,

vG̃h = iG̃��hū�u − hu�ū�h = iG̃��hūhu − huhū� = 0. �50�

owever, these Abelian subalgebras for h�uū do not play a special role in our discussion, i.e.,
hey do not produce new integrability conditions. The reason why h=uū plays a special role lies
n the fact that our metric function �Weyl factor� g depends on it, g=g�uū�. Had we chosen a
ifferent functional dependence g=g�h�u , ū�� for the metric function, then the corresponding

enerators G̃i�h�u , ū�� of an Abelian subalgebra would define a nontrivial new integrability con-
1 ¯
ition. For example, in the case g=g�� ��g��u+u� /2� we find the integrability condition
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u�
2 − ū�

2 = 0 or ��1����2�� = 0. �51�

target space with a metric of the form g=g��1�, however, does not have the topology of the
wo-sphere �but rather the topology of R2 or of a cylinder�. Therefore, the corresponding field
heory does not have a nontrivial Hopf index and, consequently, does not give rise to knot solitons.
n this sense it is, therefore, less interesting.
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Global visibility of naked singularities is analyzed here for a class of spherically
symmetric spacetimes, extending previous studies—limited to inhomogeneous dust
cloud collapse—to more physical valid situations in which pressures are non-
vanishing. Existence of nonradial geodesics escaping from the singularity is shown,
and the observability of the singularity from far-away observers is discussed.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2167919�

. INTRODUCTION

The study of gravitational collapse of spherically symmetric solutions in general relativity led
o many examples of locally naked singularities, starting from pioneering works in the early
980’s—a quite exhaustive and updated list of references can be found in Refs. 1 and 2. Most of
hese papers concentrate on the aim to find photons emanated from the singularity and escaping
he Schwarzschildian trapped region at least locally. Moreover, the analysis has been always
imited to the study of radial null geodesics, quite simplifying then the system to study, which
emains not defined at the singular point, but fully decouples.

However, in order to study the effects of these photons for a distant observer, global behavior
f null geodesics must be studied in full generality, since nonradial geodesics, with nonzero
ngular momentum, determine the angular diameter of the central naked singularity as seen by the
bservers, giving the measure of the “size” of the singularity. In this direction there are in litera-
ure quite detailed studies of Tolman-Bondi self-similar dust cloud collapse. In Refs. 3 and 4
ecessary conditions—which actually turn out to be sufficient—for nonradial geodesics existence
re derived, and behavior at infinity of these photons is numerically studied for some particular
ase. Further, a complete result of nonradial geodesic existence but under the assumption of
elf-similarity of the dust solution is fully proved in Ref. 5, and considerations about topology of
he singularity are derived.

Of course, the dust model cannot be considered as a good physical model of singularity
ormation, because pressures are expected to occur during the collapse. In this paper we extend the
esults on dust models to a wide class of solutions, found in Ref. 6, for which local nakedness
esults from a suitable choice of initial data. This class represents the wider set found so far of
ocally naked singularities in the gravitational collapse of elastic materials. Since these models are
ot pressureless, and in particular radial pressure does not generally vanish along a timelike
ypersurface, a junction between a solution from this class and a anisotropic generalization of de
itter space-time discussed in Ref. 7 is performed to construct a global model. It is found that
roperties satisfied by dust solution and showed in previously cited works remains qualitatively
alid for this wider class of collapsing space-times.

The paper is organized as follows. Interior and exterior solutions are described in Sec. II, and
ocal existence of nonradial geodesic—which are continued in the exterior space-time using junc-

�
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ion conditions—is derived in Sec. III. The resulting behavior for a distant observer is analyzed in
ec. IV, together with some remarks about photons with infinite redshift. Last, Sec. V is devoted

o overall conclusions.

I. COLLAPSE OF SPHERICAL ANISOTROPIC MATTER

In this part we briefly review the model we will deal with for the rest of the paper. The
pace-time will be made by two different solutions to Einstein field equations: an interior part, that
ollapses until singularity forms, and an exterior part, that is matched with the former at a timelike
ypersurface in order to satisfy Israel-Darmois conditions;8 it amounts to say that both first and
econd fundamental forms induced by the two solutions on this hypersurface, respectively, coin-
ide. The interior part is described by the collapsing anisotropic solutions found in Ref. 6, which
ill be matched with the de Sitter generalizations discussed in Ref. 7 �see also references therein�.

. Interior region

The interior region is provided by a class of anisotropic collapsing matter. To describe it, the
se of area-radius coordinates, first introduced by Ori,9 turns out to be more useful than the usual
omoving reference frame

ds2 = − e2�dt2 +
1

�
dr2 + R2�d�2 + sin2 � d�2� . �2.1�

ndeed, as well known,10 the general spherical matter distribution can be given assigning energy
ensity � and pressures pr and pt as suitable functions of the triple �r ,R ,��. Under the assumption
pr /��=0, in Ref. 6 it is shown that the metric takes the form

ds2 = − A�r,R�dr2 − 2B�r,R�dR dr − C�r,R�dR2 + R2�d�2 + sin2 � d�2� , �2.2a�

here

A = �1 −
2�

R
�G2, B = − G

Y

u
, C =

1

u2 . �2.2b�

n �2.2b�, the two functions ��r ,R� and Y�r ,R� are arbitrary �positive� functions while

u2 = Y2 +
2�

R
− 1, �2.2c�

nd the function G is given in terms of a quadrature,

G�r,R� = �
R

r 1

Y�r,��
��1/u�

�r
�r,�� d� +

1

Y�r,r�u�r,r�
. �2.2d�

n particular, the function � represents Misner–Sharp mass. Conditions on Taylor developments of
he above quantities may be given to characterize complete collapse and naked singularity forma-
ion, that we summarize in the following theorem.

Theorem 2.1 �Ref. 6�:

�1� In the space-time described by the metric �2.2a�, �2.2b�, �2.2c�, and �2.2d�, the singularity
forms at the center r=0 in a finite amount of comoving time if Taylor development of the
function Ru2 is as follows:

Ru2 = �r3 + 	r2R + 
rR2 + �R3 + o�r2 + R2�3/2 �� � 0� . �2.3�

�2� Under the above condition, and introduced the Taylor development of the �regular� func-

tion G�r ,0�
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G�r,0� = rn−1 + o�rn−1� , �2.4�

then the central singularity is �locally� naked if, n=1, n=2, or n=3 and ���crit where
�crit= �26+15	3� /2.

We also remark that this model possesses nonvanishing anisotropic pressures, which are given
y6

pr = −
1

4�R2

��

�R
, �2.5�

pt = −
1

8�uRG
� 1

Y

�2�

�r � R
−

1

Y2

��

�r

�Y

�R
+ u G

�2�

�R2 � , �2.6�

nd in this sense the model can be considered physically more reasonable than Tolman-Bondi dust
ollapsing sphere, where the space-time is ruled by the pressureless equation of state pr= pt=0.

. Exterior region

In our model, since the internal source is given by �2.2a�, one cannot hope, in general, that
adial pressure vanishes at some timelike hypersurface �= 
�t ,r ,� ,�� :r=rb�. This is a quite re-
trictive feature of dust cloud collapsing model11 or also nonvanishing radial pressure models,10

hat here arise only as very special cases, that happen when �=��r�. Therefore, it cannot be
ossible to consider Schwarzschild vacuum solution as external region, if we want Israel–Darmois
ondition to be satisfied.

Hence, we perform a junction between the internal source satisfying conditions stated in
heorem 2.1, and the anisotropic generalization of de Sitter space-time, which are a class of
pherically symmetric solutions of Einstein equation satisfying the condition �+ pr=0 and admit-
ing a particular G4 group of motions �see Ref. 7�. A coordinate transformation exists, that brings
he line element in the form

ds2 = − ��R�dT2 + ��R�−1 dR2 + R2 d�2, ��R� = 1 −
2M�R�

R
, �2.7�

hereby obtaining a family of solutions as Misner-Sharp mass M�R� varies. In Ref. 12 it is shown
hat, actually, any spherically symmetric line element �2.1� can be matched with a metric of this
amily at a timelike hypersurface � as before, under the condition of continuity of mass only.
herefore, it suffices to choose

M�R� = ��rb,R�, " R � �0,rb�

nd junction conditions will be certainly satisfied for all �comoving� times t�0. The value of the
xternal mass for bigger values of R depends on the internal space-time at comoving times prior
o observation starting, and we will suppose that it is chosen such that

lim sup
R→+�

M�R� � + � . �2.8�

. Energy condition

In order to deal with a physically reasonable class of solutions, we impose the weak energy
ondition �WEC� on the energy-momentum tensor T of the space-time. Basically, this means
�v ,v��0 for all timelike vectors v, and it is easily seen6 that it holds in the internal region if, for

ach r� �0,rb�, the two functions of the variable R only
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R �
1

Y�r,R�
��

�r
�r,R�, R �

��

�R
�r,R� �2.9�

re non-negative subsolutions of the same ODE,

dF

dR
�

2

R
F�R� �2.10�

or R�0. In particular, for r=rb, the above condition ensures WEC in the external region also �see
ef. 12, Eq. �4.6��.

Models of internal solutions satisfying �2.3�, �2.8� and WEC can be easily found: for instance,
he choice

��r,R� = �
0

r


�s�s2 ds + �
0

R

�����2 d�, Y = Y�r� , �2.11�

ith 
�s� and ���� positive and not increasing in �0, + � �, allows for �2.3� and the weak energy
ondition to be satisfied. As an example, one may take

���� =
1

�1 + R3�4

n order to satisfy also �2.8�. Note that, with the choice of �=constant, the space-time coincides
ith the so-called Tolman-Bondi-de Sitter �TBdS�, and that is the reason why, in Ref. 6, the
odels arising from the above choice �2.11� are termed anisotropysations of TBdS space-time.

II. NULL GEODESICS FROM THE SINGULARITY

. Geodesic equations

As stated in Theorem 2.1, conditions on the metric functions allow to determine when the
entral singularity is locally naked. This is made by showing the existence of a future pointing
adial null geodesic which lies in the region R�2� and may be traced back to the central
ingularity. In Ref. 6 it is shown that, to obtain violations of cosmic censorship in spherical
ymmetry, one may restrict oneself in looking for null geodesic which are radial only. In other
ords, if a singularity is radially censored, it is censored all the way. Nevertheless, if one wants to

tudy visibility under a more general point of view, also nonradial light rays should be taken into
ccount.

Let � be the affine parameter of the null geodesic. Without loss of generality, we will suppose
hat the geodesic lies in the hypersurface �=� /2, and then the angular components of tangent
ector along the geodesic read

��
ª

d�

d�
= 0, ��

ª

d�

d�
=

�

R2 , �3.1�

here � is the �conserved� angular momentum. Let us also introduce a function q such that

�r
ª

dr

d�
=

1

qRG
. �3.2�

hen, expressing R, �, and � as functions of r instead of �, the equations for null geodesics can
e given in the following form:

dR
= uG�Y − u	1 + ��q�2 , �3.3a�
dr u
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d�

dr
= 0,

d�

dr
=

�qG

R
, �3.3b�

nd

−
1

q

dq

dr
−

1

G

dG

dr
−

1

R

dR

dr
−

CA,r + B�A,R − 2B,r�
2G2 −

CA,R − BC,r

G2

dR

dr
+

BC,R + C�C,r − 2B,R�
2G2 �dR

dr
�2

+ �2q2B

R
= 0, �3.3c�

nd A ,B ,C are given in �2.2b�. Dealing with radial geodesics results in vanishing of �, and so
3.3a�, which is found imposing that the geodesic is null, becomes an ODE in the R function only,
hich is enough to study at least the existence of corresponding pregeodesics. On the other side,
hen ��0, also �3.3c� must be studied.

Before to state and show results, we restrict the analysis hereafter to the case when n in �2.4�
s equal to 3. As it will be cleared in Remark 3.4, this particular situation—that, as seen in the
tatement of Theorem 2.1, has a sort of “endstate transition”—corresponds to a so–called strong
urvature singularity, unlike n=1,2 cases—at least along null radial geodesics. We refer the reader
o Remark 3.4 below and, for instance, to Refs. 13–15 for a general insight about strong curvature
onditions.

. Null geodesics existence

Existence of null radial geodesics has already been proved in Ref. 6, using comparison
rguments in ODE. We here complete the analysis about the asymptotic behavior of the geodesics
nding also an existence result for nonradial geodesics.

Remark 3.1: In the forthcoming Proposition it will be shown that the null geodesic equation
an be put in the form

dy

dr
=

1

r
f�y� + g�r,y� , �3.4�

here y�r��Rn and f :Rn→R, g :Rn+1→R are C1 functions; introducing a new independent
ariable s such that dr /ds=−r�s� then, from �3.4�, we obtain the system

dy

ds
= − f�y�s�� − r�s�g�r�s�,y�s�� ,

�3.5�
dr

ds
= − r�s� ,

hose solutions describe parametrizations of solutions of �3.4� by the parameter s. Equilibria of
he above system �as s→ +�� are given by points �y0 ,0� where y0 is a root of f�y�=0, and
earching for these equilibria amounts to search for admissible solutions of the so-called root
quation, first introduced in Ref. 16 for the study of radial light rays.

The key point is that these equilibria for the null geodesic equation will be shown to be
yperbolic—see, e.g., Ref. 17 for basic concepts about hyperbolic dynamical systems—and that is
he reason why the root equation solution’s existence is a necessary but also sufficient condition
or light rays existence.

Proposition 3.2: Under the hypotheses of Theorem 2.1, when, with reference to equation �2.4�,
=3 and ���crit, there exists infinite null geodesics emanating from the central singularity and
scaping from the trapped region 
R�2��. In particular, there exists three numbers x1, x2, xc,
epending on � and , with xc�x2�x1��, such that these geodesics can be divided in the

ollowing classes:
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�1� infinite radial and nonradial geodesics such that R�r�=x1r3+o�r3�,
�2� infinite nonradial null geodesic such that R�r�=x2r3+o�r3�, and
�3� a radial geodesic (Cauchy horizon) such that Rc�r�=xcr

3+o�r3�, which bounds from
above any geodesic in classes �1� and �2�, in the sense that Rc�r��Rg�r� , "r�0, for any
other geodesic Rg�r�.

oreover, the nonradial geodesic of case �1� have finite limr→0+ ��r�, whereas nonradial geode-
ics of case �2� are such that limr→0+ ��r�=−�.

Proof: Let us consider system �3.3a�, �3.3b�, and �3.3c�. We are interested in determining
xistence of solutions such that R�r� lies above the apparent horizon Rh�r�, which is known �see
ef. 6 for details� to have the behavior Rh�r�=�r3+o�r3�. Then, we first introduce a new unknown

unction z�r� in place of R, which is defined as

z�r� =	R�r�
�r3 , �3.6�

nd we will study the system made by the first and the last equation above, in the unknown
unctions �z�r� ,q�r��—with q�r� given by �3.2�—since the equation for � can be decoupled from
hese. Moreover, note that since � appears in �3.3a�, �3.3b�, and �3.3c� as a factor of the quantity
q only, we will consider �q�r� instead of q�r� as variable.

We first observe that z�r� and q�r� must be bounded from below by 1 and 0, respectively, in
rder for the solution to be physically acceptable. Then, estimates of terms involved in �3.3a� will
e performed, under the additional hypothesis that z�r� is also bounded from below, and Eqs.
3.3a� and �3.3c� become, with the further position

� =


�
,

dz

dr
=

1

r
w�z, � q� + g1�r,z, � q� , �3.7a�

�
dq

dr
=

1

r
��q�k�z� − ��q�2h�z� + w�z, � q�k̃�z��� + � qg2�r,z, � q� , �3.7b�

here

w�z, � q� = −
2z4 + 	1 + ��q�2z2z3 − �z + 	1 + ��q�2z2�

2z3 , �3.7c�

k�z� =
�2 − 10z3� − 2z6

2z3�� + z3�
, �3.7d�

h�z� =
� + z3

z
, �3.7e�

k̃�z� = −
z3 + 4�

z�� + z3�
, �3.7f�

nd gi�r ,z , �q�, i=1,2 are continuous functions.
Let us check equilibria of �3.7a� and �3.7b�, using the idea from Remark 3.1. The following
ases happen:
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�a� �q=0,z such that w�z ,0�=0;

�b� �q=	k�z�� h�z� ,z such that w�z ,	k�z� /h�z��=0.

First, in both cases it can be seen that �g1�r ,z , �q� , �qg2�r ,z , �q�� is regular in a neighbor-
ood of �0,z , �q� where �z , �q� is an equilibrium as above. Let us now discuss the character of
hese equilibria.

In case �a�, the situation goes as follows. With reference to the notation of Remark 3.1, the
acobian computed in the equilibrium �z ,0� is given by

J�z,0�f = � �w

�z
�z,0�

�w

�q
�z,0�

0 k�z� ,
� , �3.8�

nd one finds that there exists a root function

��z� =
2z4 + z3

z − 1
, �3.9�

uch that

w�z,0� = 0 Û ��z� = � , �3.10a�

�w

�z
�z,0� = −

1

2z2���z� . �3.10b�

oreover, k�z��0 if and only if ����z�ª �5+	27�z3. The curves ��z� and ��z� are depicted in
ig. 1. For the acceptable range of �, that is ���crit �see Theorem 2.1�, there exists a unique
alue z1 that satisfies �3.10a� and such that k�z0��0. From �3.10b�, we have that also ��w /�z�
�z1 ,0��0. This means that the Jacobian �3.8� has two positive eigenvalues and therefore we

ave part �1� of the claim, with an infinite number of radial geodesics tending to this equilibrium
oint, for every ��0. Note that this situation �1� covers also radial geodesic existence, that is
hen �=0. Using �3.6�, the curves R�r� behaves like R�r�=�z1

2r3+o�r3�.
If ���crit, from Fig. 1 we see that there exists another value of z=zc satisfying ��zc�=�. In

his case we have two negative eigenvalues of �3.8�. With reference to the system put in the form
3.5�, the equilibrium is again hyperbolic, but the stable manifold has dimension 1, and therefore
single null geodesic tending to the equilibrium exists. Actually, it can be shown that this geodesic

IG. 1. �Color online� The curves ��z� �3.9�, ��z� �3.12�, and ��z� intersect each other at the local minimum of ��z�,
ttained for z= �1+	3� /2, ��z�=�crit �see Theorem 2.1�.
s radial, since it can be seen that at least a radial null geodesic tending to the equilibrium exists.
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ndeed, radial geodesics are solutions of the ODE �3.7a� under the assumption �=0. We can easily
ee that z=zc is an equilibrium of �3.7a�, such that there exist a unique solution tending to this
quilibrium. Since radial geodesics are solutions of �3.7a� and �3.7b� with �q�0, we conclude that
he �unique� solution of �3.7a� and �3.7b� must be radial. The corresponding x=�zc

2 represents
auchy horizon direction.

We also note that the corresponding function Rc�r� must bound from above any other geodesic

g�r�. Of course, this must be true for any other radial geodesic near r=0, and therefore for any
ther value of r by uniqueness of Cauchy problem solution. Let us show that this also holds true
or nonradial geodesic. By contradiction, let Rg�r� be a nonradial geodesic, such that its projection
n the �r ,R� plane bounds from above Rc�r� for some r*, that is Rg�r*��Rc�r*�. Since Rg�r� is a
ubsolution of radial null geodesic equation, and Rc�r� is a solution of the same ODE, therefore we
an find a radial null geodesic Rn�r� with initial data Rn�r*�� �Rc�r*� ,Rg�r*��, and trace it back
ntil Rn�0�=0, obtaining a radial geodesic Rn�r��Rc�r� in a right neighborhood of r=0, which as
aid before is absurd, and claim �3� is complete.

Let us now discuss case �b� to get claim �2� of the Proposition.
We first observe that this time it must be k�z��0 otherwise we have no equilibria. Arguing as

n the previous case, we find that the determinant of the Jacobian in the equilibrium—say
z2 ,	k�z2� /h�z2��—is given by

− 2k�z2�
dw�z,	k�z�/h�z��

dz
�z=z2

� . �3.11�

he root function in this case is given by

��z� =
4z5

2z2 − 3
, �3.12�

hich has the properties

w�z2,	k�z2�
h�z2�

� = 0 Û ��z2� = � , �3.13a�

�w

�z
�z2,	k�z2�

h�z2�
� = − 
2���z2� , �3.13b�

here 
 is some nonvanishing constant. The situation is depicted in Fig. 1. For any ���crit there
xists a unique value of z2 satisfying �3.13a� with k�z2��0. Using �3.13b�, we get that the quantity
3.11� is negative and then there exists one and only one positive eigenvalue of the Jacobian,
hich results in the existence of infinite nonradial null geodesic such that the corresponding R�r�
ehaves like R�r�=�z2

2r3+o�r3�. Indeed, the stable manifold of the system put in the form �3.5� has
imension 2.

Notice that, in this case, there are no other choices available since the other root of the
quation ��z�=� lies in the 
k�0� region.

To complete the proof, let us now analyze the behavior of the angular function ��r�. Using
3.3b�, and the above estimates,

d�

dr
� � �h�z�

z
�q

r
. �3.14�

or a nonradial geodesic from case �1�, q→0 as r→0+, and then, from �3.7b�, dq /dr�k�z1�
�q /r�, from which q�r��rk�z1�, and then, using �3.14�, ��r� has a finite limit as r→0+.

For a nonradial geodesic from case �2� conversely, q tends to a finite positive value and then
he function ��r� goes like kr−1, which determines a negative diverging behavior of the function

�r�. �
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Remark 3.3: These results are completely consistent with the analysis carried out in Refs. 4
nd 5, which have established a double topological nature of the naked singularity in the particular
ase of dust solution under self-similarity assumption. In particular, case �1� corresponds to a
egion of the singularity foliated by a 2-sphere, whereas case �2� corresponds to a topologically
ointwise singular region.

Remark 3.4: If we look at the behavior of the quantity k2R�	K�K	 along null radial geodesics,
here R�	 is Ricci tensor, K�=dx� /dk is the tangent vector of the geodesic with parameter k, we
et

k2R�	K�K	 =
k2�,r

4�R2u3GY
�KR�2. �3.15�

n view of the above theorem, Eqs. �3.2� and �3.3a� ensure that there exists limk→0+ KR, then
k /R�KR tends to a finite nonzero limit value. Since both G and �,r goes like r2, and Y ,u tends to
finite nonzero limit along the geodesics, the quantity in �3.15� goes to a finite nonzero value. It

ollows that these null geodesics terminate in a strong curvature singularity in the sense of
ipler14.

V. FARAWAY VISIBILITY OF THE SINGULARITY

. Size of the singularity

In the following, we will study the behavior at infinity of null geodesics emanating from the
ingularity. We have already seen that there exists an infinite number of light rays escaping from
he trapped region; these geodesics arrives at the boundary of the collapsing sphere of anisotropic
atter with some value R�rb�, and they must be continued by studying the behavior of null

eodesics in the external region �2.7� escaping from the boundary and such that R=R�rb�.
The equation for null geodesics—that, without loss of generality, we will suppose to lie in the

ubspace 
�=� /2�—is given by

dT

d�
=

�

��R�
,

dR

d�
= �	1 −

��R�
R2 � �

�
�2

,
d�

d�
= 0,

d�

d�
=

�

R2 , �4.1�

here � denotes as usual the affine parameter and � and � are constant of motion.
As explained in Ref. 4, since the metric �2.7� does not depend on T we can uniquely associate

o an observer R=R0 an orthonormal basis of the tangent space to a point �T ,R0 ,� ,�� of the outer
egion �i.e., such that R0�2M�R0��, which will be denoted by


e�T� = ��R0�−1/2�T,e�R� = ��R0�1/2�R,e��� = R0
−1��,e��� = �R0 sin ��−1��� .

hen, if we consider a null geodesic with affine parameter � emanating from the singularity
assing for R=R0, and denote by ��=dX� /d� its tangent vector, this observer measures an angle
between the light ray and the radial direction equal to

� = arctan�g��e���
� ��

g��e�R�
� ��� =

�

�
	 ��R0�

R0
2 − ��/��2��R0�

. �4.2�

he above quantity depends on the geodesic, and therefore the supremum made among the set S

f all singular geodesics detected at R=R0 gives a measure of the singularity detected by the
bserver. One can conceive the right-hand side above, fixing R0, as a function in �� /�� which
esults to be increasing. Therefore, the “size” of the singularity detected by the faraway observer
s related to the quantity

b ª sup
�

�
,

S
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hich can be regarded4 as a sort of impact parameter.
Using this definition, it is not hard to prove an extension of the result already proved for the

articular case studied in Ref. 4.
Proposition 4.1: If the boundary of the interior region r=rb is sufficiently small, then the

onradial geodesics of largest impact parameters emanating from the singularity are such that the
ngular function �→−� in the approach to the singularity �case �2� of Proposition 3.2, see also
emark 3.3�.

Proof: Of course, we will consider only nonradial geodesics, when ��0.
Using continuity of the metric along the junction hypersurface, one gets

dT

d�
=

dT

dR

dR

d�
+

dT

dr

dr

d�
= �−

Y

� u

dR

dr
+ G dr

d�
, �4.3�

nd using �4.1�, together with �3.2�, �3.3a�, and �3.3b� one finds the angular frequency � and
herefore the impact parameter b, which is given by

b = sup
S
� R�r� � q�r�

Y�r,R�r��	u2�r,R�r�� + ��q�r��2 − u2�r,R�r��
��r=rb

� . �4.4�

ith reference to the cases listed in Proposition 3.2, let R1�r� be a nonradial geodesic from case
1�, and let R2�r� a �necessarily nonradial� geodesic from case �2�. It is easy to verify that, as r

0+, the quantity in round brackets in �4.4� tends to 0 along R1�r� and tends to a finite nonzero
alue along R2�r�. Then, if rb is sufficiently small, we can suppose that this quantity, along R2,
ounds from above the same quantity computed along R1 until r=rb. �

. Redshift

Following Ref. 18, the frequency shift z between a source and an observer, respectively,
ocated at events P1 and P2, connected by a null geodesic with tangent vector �� with respect to the
ffine parameter, is defined as

1 + z =
gP1

���,u�s��

gP2
���,u�o��

. �4.5�

here u�s� and u�o� are the 4-velocities of the source and the observer, respectively.
To determine the redshift associated to the singular geodesics, the numerator above will be

eplaced by a limit expression as P1 approaches the central singularity. Let us therefore consider
singular geodesic passing at event P2 in the exterior space such that R�P2�=R0. Using the basis

4.3�, together with �4.1�, it is easy to see that the denominator in �4.5� is given by −��R0�1/2�,
hich under the hypothesis �2.8� is always finite also if R0 tends to infinity. On the other side, the
elocity field in the interior space-time is given by −u�r ,R��R, and using �3.2� and �3.3a� one finds
hat the absolute value of the numerator in �4.5� is given by

lim
r→0+

1

R�r���u�r,R�r��
q�r�

�2

+ �21/2

= + � , �4.6�

hich results in an infinite frequency shift. Actually we can observe that calculation of �4.6� above
eems a feature of all singular spherically symmetric models, at least for nonradial geodesics,
hen ��0. In the case under our study, moreover, �4.6� holds also for radial geodesic since, using
roposition 3.2 and Eq. �2.2c�, u�r ,R�r���u0�0, and both R�r� and q�r� are infinitesimal. It
ppears also to be possible the study of the limit in �4.6� in a even more general framework, and
ork in this direction is in progress.

All in all, these models show the same feature described in Ref. 18 for dust solutions: in the
ase corresponding to a strong naked singularity �along radial geodesic�, null geodesics are infi-

itely redshifted. �As pointed out in Ref. 18, it can be possible that the strength of the singularity
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ay have a directional behavior, that is the singularity is weak—in the sense explained in Remark
.4—along some geodesics, and strong among others.� Therefore, it can be said that there exists a
orm of weak censorship for such class of solutions, at least at the classical level. Of course
owever, quantum phenomena might change this scenario, as suggested by some authors �see
efs. 4 and 11�.

. DISCUSSION AND CONCLUSIONS

In this paper we have studied visibility of the naked singularity for a faraway observer,
nvestigating global behavior of null �radial and nonradial� geodesics in a class of spherically
ymmetric singular space-times. The interior part belongs to a wide class of anisotropic solutions;
s known from the analysis carried out in Ref. 6, the end state of the central singularity is
etermined by the lower order term n of Taylor development of a quantity determined by the
etric. In this paper we considered the case n=3, which has a special interest since �i� the end

tate is determined by the value of a certain parameter  /�, that causes a sort of “phase transition”
etween naked singularity and black hole situations, and �ii� radial geodesics terminates into a
trong curvature singularity, as observed in Remark 3.4.

The exterior part belongs to the class of anisotropic generalization of de Sitter solution dis-
ussed in Ref. 7. The form of the metric closely resembles the Schwarzschild line element, but the
ass here depends on the areal coordinate R since a constant mass would not properly match an

nterior solution with nonvanishing radial pressures. Indeed, if Misner-Sharp masses for both
olutions �interior and exterior� coincide at a hypersurface r=const, this ensures Darmois junction
onditions to hold along this hypersurface.

Existence of nonradial geodesics is crucial to investigate global visibility. The system of ODE
atisfied by the nonradial geodesics does not decouple and the most suitable way seems to study
quilibrium points of this system. It turns out that there are two values x1�x2, depending on the
ata of the space-time, such that there is an infinite number of nonradial geodesic R�r� emanating
ith “direction” x1 �i.e., such that limr→0 R�r� /r3=x1� and infinite nonradial geodesics with direc-

ion x2. This result is not in contrast with previous results regarding self-similar collapse5 where
ne has infinite geodesic with direction x1 vs only one geodesic with direction x2. Indeed, as the
roof of Proposition 3.2 points out, the stable manifold of the equilibrium has dimension 3 in the
rst case and 2 in the second one. Self-similarity assumption simplifies the geometry of these
table manifolds, shrinking them by one dimension.

It must be remarked that a crucial fact is that ODE system can be brought in the form �3.4�,
here the equilibria are all hyperbolic. This is a feature of all collapsing matter models known in

iterature, which excluded pathological situations such as the ones outlined in Ref. 11, and ex-
lains why the so-called root equation method repeatedly exploited in previous works—based on
he existence of a certain limit which in principle cannot be taken for granted �see for instance
efs. 3, 16, and 4�—leads all the same to the conclusions one would expect.

The analysis of the ODE system allowed us to determine a sort of “impact parameter” that
haracterizes the “size” of the singularity as it is seen by a faraway observer. It turns out that
hotons emanated by the naked singularity are infinitely redshifted also when pressures are
resent, as has been already shown �see Ref. 18� for the pressureless Tolman-Bondi collapse.

1 F. Giannoni, On Gravitational Collapse in Spherical Symmetry, Proceedings of Workshop “Dynamics and Thermody-
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We show that the borderline cases in the proof of the positive energy theorem for
initial data sets, on spin manifolds, in dimensions n�3, are only possible for initial
data arising from embeddings in Minkowski space-time. © 2006 American Insti-
tute of Physics. �DOI: 10.1063/1.2167809�

. INTRODUCTION

Witten’s proof of the positive energy theorem10 shows that, under appropriate conditions, the
ime-component of the energy-momentum vector p is non-negative. For various reasons it is of
nterest to understand precisely the borderline cases, with a vanishing, or perhaps lightlike, p. In
he context of initial data sets this has been done in detail in an accompanying paper5 in space-
imension three. It is the purpose of this work to generalize the results proved there to all spin
nitial data manifolds of dimension n�3.

The argument presented in Ref. 5 proceeds as follows: in the borderline cases, Witten’s proof
rovides one or more covariantly constant “KIDs” �by definition, those are the initial data coun-
erparts of space-time Killing vectors�.4 A careful study of such KIDs shows that their existence
mplies the vanishing of mass, and then flatness of space-time along the initial data. One then
oncludes by showing that the Killing development of the initial data set is flat.

Not unexpectedly, all those arguments can be extended to higher dimensions, after adjustment
f the rates of decay of the fields. The only part of the proof where essential work is needed is the
lgebra proving existence of KIDs. This is based on Ref. 8, and presented in Sec. III. On the other
and, the analysis of the KIDs is essentially identical to that in Ref. 5, so we will �mainly� only
resent the statements of the results needed for the positive energy theorem here.

The notation and conventions of Ref. 5 are used throughout. We assume that the space-
imension n is larger than or equal to three.

Our main results can be summarized as follows.
Theorem 1.1: Let �M ,g��� be an �n+1�-dimensional space-time, n�3, with a Killing vector

eld which is asymptotically null along an (appropriately regular, see Sec. II below) asymptoti-
ally flat spacelike hypersurface J. Then the ADM energy-momentum vector of J vanishes.

The precise hypotheses needed for Theorem 1.1 are the conditions on the asymptotic behavior
f �g ,K� in �2.18� and �2.19� below, together with the matter decay conditions �2.20� and �2.22�.
heorem 1.1 is a special case of Theorem 2.5 below.

Theorem 1.2 �Timelike “future-pointing” energy-momentum theorem�: Under natural regu-

�Partially supported by a Polish Research Committee grant 2 P03B 073 24. Electronic mail: piotr.chrusciel@lmpt.univ-
tours.fr �URL www.phys.univ-tours.fr/�piotr�.

�
Electronic mail: maerten@math.univ-montp2.fr
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arity and matter-energy conditions (see the conditions of Theorem 3.2 below), the ADM energy-
omentum vector p� of a spin initial-data manifold J satisfies

p0 ���
i=1

n

�pi�2,

nless �J ,gij ,Kij� are initial data for Minkowski space-time.
Theorem 1.1 is a loose rephrasing of Theorem 3.2 below.
There are well-known counterparts of this with trapped boundaries, which are of no concern

o us here because they always lead to a strict inequality.
It would be natural to extend the result to cover the Bondi mass, both in three and higher

imensions. The starting point of the calculations of the proof of Theorem 3.2 is the existence of
parallel spinor, which follows from the analysis in Ref. 7 when the Bondi mass is null in

pace-dimension three. The calculations that follow apply without modifications, yielding a par-
llel isotropic KID. One expects that this is incompatible with a nonvanishing Trautman-Bondi
ass, but a complete analysis of this has not been carried out so far.

I. KIDs IN n-DIMENSIONAL ASYMPTOTICALLY FLAT INITIAL DATA SETS, nÐ3

We have the following string of propositions, which are the building stones of the proof of
heorem 2.5 below.

Proposition 2.1: Let R�0 and let �gij ,Kij� be initial data on JR�Rn \B�R� satisfying

gij − �ij = Ok�r−��, Kij = Ok−1�r−1−�� , �2.1�

ith some k�1 and some ��0. Let N be a C2 scalar field and Yi a C2 vector field on JR such that

2NKij + LYgij = 0. �2.2�

efine �, Ji, and �ij by the equations

2� = nR + �Ki
i�

2 − KijKij , �2.3�

Ji = Dj�Kij − Kk
kg

ij� , �2.4�

�ij − 1
2gk��k�gij = nRik + Kk

kKij − 2KikK
k

j − N−1�LYKij + DiDjN� − �
2gij , �2.5�

nd assume that � and �ij satisfy

� = Ok−2�r−2−��, �ij = Ok−2�r−2−�� . �2.6�

hen there exists numbers 	��=	���� such that we have, for r large,

DiY j − 	ij = Ok−1�r−��, Yi − 	ijx
j = �O�r1−�� , � � 1,

O�ln r� , � = 1,
	 �2.7�

DiN − 	i0 = Ok−1�r−��, N − 	i0xi = �O�r1−�� , � � 1,

O�ln r� , � = 1.
	 �2.8�

f 	��=0, then there exist numbers A� such that we have

Yi − Ai = Ok�r−��, N − A0 = Ok�r−�� . �2.9�

f 	��=A�=0, then Yi�N�0.

Proof: See Sec. II and Appendix C of Ref. 5.
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Proposition 2.2: Let R�0 and let �gij ,Kij� be initial data on JR satisfying

gij − �ij = O2�r−��, Kij = O1�r−1−��, � � �n − 2�/2, �2.10�

Ji = O�r−n−
�, � = O�r−n−
�, 
 � 0. �2.11�

et N be a C1 scalar field and Yi a C1 vector field on JR such that

N − A0 = O1�r−��, Yi→r→�Ai, �2.12�

or some set of constants �A��
0, satisfying

2NKij + LYgij = O1�r−�n−1�−
� . �2.13�

et p� be the ADM energy-momentum of JR. Then

1� If A0=0, then p0=0.
2� If A0�0, then p� is proportional to A�.

Proof: See the proof of Proposition 3.1 in Ref. 5. �

Proposition 2.3: Under the hypotheses of Proposition 2.2, suppose further that N is C2 and
hat

�ij = O�r−n−
� . �2.14�

f

�A0�2 � �
i

AiAi, �2.15�

hen p� vanishes.
Proof: See the proof of Proposition 3.2 in Ref. 5. �

Proposition 2.4: Under the hypotheses of Proposition 2.2, assume moreover that N is C2, that
2.14) holds and that

NKij + DiY j = O1�r−�n−1�−
� , �2.16�

KijY
j + DiN = O1�r−�n−1�−
� , �2.17�

A�A� � 0.

hen the ADM energy-momentum p� vanishes.
Proof: See the proof of Proposition 3.3 in Ref. 5. Note that the proof in Ref. 5 uses the

quality of the Komar and the ADM masses for translational, asymptotically timelike Killing
ectors, while Proposition 2.3 shows that one only needs to consider timelike A�’s to complete the
roof. The equality of those masses, which is well known in space-dimension three,3 can also be
stablished in higher dimensions by an asymptotic analysis of the stationary Einstein equations
hen the sources decay sufficiently fast. �

The notation used in the next theorem is explained in the Appendix.
Theorem 2.5: Let R�0 and let �gij ,Kij� be initial data on JR=Rn \B�R� satisfying

gij − �ij = O3+�r−��, Kij = O2+�r−1−�� , �2.18�

� � �1/2, n = 3, 	 
 � 0, 0 �  � 1. �2.19�

n − 3, n � 4,

                                                                                                            



L

f

T

r

S

F
c

w
t
b
i
�
d

I

t

a
J
c

f
q

022502-4 P. T. Chrusciel and D. Maerten J. Math. Phys. 47, 022502 �2006�

                        
Ji = O1+�r−n−
�, � = O1+�r−n−
� . �2.20�

et N be a scalar field and Yi a vector field on JR such that

N→r→�A0, Yi→r→�Ai, A�A� = 0,

or some constants A�
0. Suppose further that

2NKij + LYgij = O3+�r−�n−1�−
� , �2.21�

�ij = O1+�r−n−
� , �2.22�

hen the ADM energy-momentum of JR vanishes.
Proof: See the proof of Theorem 3.4 in Ref. 5. We note that in our context, Ref. 5, Eq. �3.40�

eads as follows:

gnA = �CAB�xn��B ln � + O�1���−1−
 ln �� , n = 3,

CAB�xn��B
1

�n−3 + O�1���−�n−2�−
� , n � 4. � �2.23�

imilarly instead of Ref. 5, Eq. �3.47� we have

�gAB

�xn = �DABCD�C�D ln � + O�1���−2−
 ln �� , n = 3,

DABCD�C�D
1

�n−3 + O�1���−�n−1�−
� , n � 4. � �2.24�

inally, there are misprints in the definitions of the quantities � and �� in the proof there; the
orrect definitions, in all dimensions, are

� = lim
�→�

�
C


Sn−2��,xn�
�xA�CgnA − gnC�dSC,

�� = lim
�→�


Sn−2��,xn�

��n − 1��xAxB�C�ngAB − 2xB�ngCB� − xAxA�C�ngBB + 2xC�ngAB�dSC,

here summation over every repeated occurrence of indices is implicitly understood, regardless of
heir positions. �We take this opportunity to point out that Eq. �2.20� of Ref. 5 should be replaced
y �=Ok−2�r−2−��, �ij =Ok−2�r−2−��. Furthermore, Eqs. �2.15� and �3.34� of Ref. 5 are mutually
ncompatible; the correct one is �2.15�.� Here �2= �x1�2+ ¯ + �xn−1�2, while Sn−2�� ,a� is a sphere
or circle, when n=3� of radius � centered at x1= ¯ =xn−1=0 lying in the plane xn=a. Finally the
SC’s are the usual surface forms dSC=�C��dx1Ù ¯ Ùdxn−1�, and � denotes contraction. �

II. THE RIGID POSITIVE ENERGY THEOREM

The following strengthens somewhat Theorem 4.1 of Ref. 5 in the case n=3, and generalizes
hat theorem to higher dimensions; the calculations here are closely related to those in Ref. 8.

Theorem 3.1 ��rigid� positive energy theorem�: Consider a data set �J ,gij ,Kij�, with �J ,gij�
complete Riemannian spin manifold of dimension n�3, and with gij �C2, Kij �C1. Suppose that
contains an asymptotically flat end JR diffeomorphic to Rn \B�R� for some R�0, with B�R�—a

oordinate ball of radius R, where the fields �g ,K� satisfy

�gij − �ij� + �r�kgij� + �rKij� � Cr−�, �3.1�

or some constants C�0 and ��max�1/2 ,n−3�, with r=��i=1
n �xi�2. Suppose moreover that the
uantities � and J,
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2� ª

3R + �Kk
k�

2 − KijKij , �3.2�

Jk
ª Dl�Kkl − Kk

kg
kl� , �3.3�

atisfy

�gijJ
iJj � � � C�1 + r�−n−
, 
 � 0. �3.4�

hen the ADM energy-momentum �m , pi� of any of the asymptotic ends of J satisfies

m � �pip
i. �3.5�

f m=0, then ��Ji�0, and there exists an isometric embedding i of J into Minkowski space-time
Rn+1 ,���� such that Kij represents the extrinsic curvature tensor of i�J� in �M ,����. Moreover
�J� is an asymptotically flat Cauchy surface in �Rn+1 ,����.

Theorem 3.1 has been formulated under differentiability requirements which are stronger than
ecessary, compare Refs. 2 and 9. Unfortunately our proof that ADM energy-momentum cannot
e null requires even more differentiability and asymptotic decay conditions.

Theorem 3.2: Under the hypotheses of Theorem 3.1, suppose moreover that

gij − �ij = O3+�r−��, Kij = O2+�r−1−�� , �3.6�

� = O1+�r−n−
� , �3.7�

ith some 0��1. Then the ADM energy-momentum cannot be null.
Proofs of Theorems 3.1 and 3.2: We use a Witten-type argument, as follows. Let �G , �· , · �� be

ny Riemannian bundle of real spinors over �M ,g� with scalar product �·,·�, such that Clifford
ultiplication �which we denote by X·� is antisymmetric. We suppose that there exists a bundle

somorphism �0 :G→G with the following properties:

�0
2 = 1, �3.8a�

"X � TM, �0X · = − X · �0, �3.8b�

t�0 = �0, �3.8c�

D�0 = �0D , �3.8d�

here t�0 denotes the transpose of �0 with respect to �·,·�, and D is the usual Riemannian spinorial
onnection associated with the metric g.

�Such a map always exists if G is obtained by pulling-back a space-time spinor bundle, using
n externally oriented isometric embedding of �M ,g� in a Lorentzian space-time. Then the Clif-
ord product n·, where n is the field of Lorentzian unit normals to the image of M, has the required
roperties. If, however, such a map does not exist, we proceed as follows: let G�=G � G be the
irect sum of two copies of G, equipped with the direct sum metric �· , · ��:

���1,�2�,��1,�2��� ª ��1,�1� + ��2,�2� . �3.9�

e set, for X�TM,

�0��1,�2� ª ��2,�1� , �3.10a�

X · ��1,�2� ª �X · �1,− X · �2� , �3.10b�
DX��1,�2� ª �DX�1,DX�2� . �3.10c�
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ne readily verifies that �3.10b� defines a representation of the Clifford algebra on G�, and that
3.8� holds.�

Given an initial data set �M ,g ,K�, a vector field X, and a spinor field � we set

K�X� ª Ki
jXiej · , �3.11�

�X� ª DX� + 1
2K�X��0� . �3.12�

ere ei is a local orthonormal basis of TM; it is straightforward to check that �3.11� does not
epend upon the choice of this basis. �To make things clear, �3.12� defines � in terms of the
iemannian spin connection D and of the extrinsic curvature tensor Kij. If the spin bundle arises

rom a space-time bundle, then � coincides with the canonical space-time spinorial derivative,
hen restricted to space directions.�

We will need an explicit expression for the curvature of �.
Proposition 3.3: For every X ,Y ���TJ� we have

RX,Y = nRX,Y + 1
2dDK�X,Y��0 − 1

4 �K�X�K�Y� − K�Y�K�X�� , �3.13�

here R is the curvature of �, nR is that of D, and

dDK�ei,ej� = �Kk
j;i − Kk

i;j�ek·

Proof: We have

�X�Y� = �DX + 1
2K�X��0��DY� + 1

2K�Y��0��
= DXDY� + 1

2K�X��0DY� + 1
2 ��DXK��Y��0� + K�DXY��0� + K�Y��0DX��

+ 1
4K�X��0K�Y��0�

= DXDY� + 1
2 �K�X��0DY� + K�Y��0DX�� + 1

2 ��DXK��Y��0� + K�DXY��0��

− 1
4K�X�K�Y�� ,

o that

RX,Y� = �X�Y� − �Y�X� − ��X,Y��

= DXDY� − DYDX� − D�X,Y�� − 1
2K��X,Y���0�

+ 1
2 ���DXK��Y� − �DYK��X���0� + K�DXY − DYX��0��

− 1
4 �K�X�K�Y� − K�Y�K�X��� ,

nd the vanishing of the torsion of the Levi-Civita connection gives the result. �

We now run the usual Witten argument �see, e.g., Ref. 2� using the connection � and the
ssociated Dirac operator D=ei ·�i. Under the current conditions the ADM energy-momentum of

is finite and well defined,1,6 and the Witten boundary integral reproduces the ADM energy-
omentum. The arguments in Ref. 2 shows that, again under the current conditions, for every

pinor field �̊, with constant entries in the natural spin frame in the asymptotic region, one can find

solution � to the Witten equation which asymptotes to �̊. Witten’s identity subsequently implies
hat

��̊,p · �̊� � 0, �3.14�
here
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p · ª m�0 + piei · ,

nd p= �m , pi� is the ADM momentum. This gives �3.5�.
The equality case, which is the main interest here, is only possible if p is lightlike or vanishes.

n either case one obtains a spinor field ����G� which is asymptotic to �̊, and satisfies

�� = 0, �3.15�

��,R�� = 0. �3.16�

ere

R ª

1
2 �� + Jiei · �0�

s the �non-negative� spinorial endomorphism which appears in the identity

D*D = �* � + R .

The idea of the calculations that follow is to show, roughly speaking, that the space-time is a
pp-wave space-time, perhaps with matter decaying at infinity, with a null Killing vector, which by
he results in the preceding section is only possible if we are in Minkowski space-time. We start
ith an analysis of the curvature tensor.

As � is �-parallel we have RXY�=0, and from Proposition 3.3 one finds, for all X ,Y �TJ,

�nRX,Y�,�� − 1
2 �dDK�X,Y� · �0�,�� − 1

4 ��K�X�K�Y� − K�Y�K�X���,�� = 0.

oth the first and third term vanish since the spinorial curvature can be written as

nRXY� = −
1

2�
i�j

nR�X,Y,ei,ej�ei · ej · � ,

nd since the Clifford product of two distinct elements of an ON basis is antisymmetric. �We use
he conventions

nR�ei,ej�ek = Dei
Dej

ek − Dej
Dei

ek − D�ei,ej�
ek = nRs

kijes = nR�em,ek,ei,ej�gsmes,

nRij = nRk
ikj ,

here nRij is the Ricci tensor of g.� Thus we obtain

�dDK�X,Y��0�,�� = 0. �3.17�

et us denote by N the function

N = ��,�� , �3.18�

nd by Y the real 1-form defined as

Y�X� = − ��0X · �,�� . �3.19�

sing this notation, �3.17� can be rewritten as

Kki;jY
k = Kkj;iY

k. �3.20�
e continue with the following calculation:
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�
k=1

n

ek · Res,ek
= �

k=1

n

ek · �nRes,ek
−

1

4
�K�es�K�ek� − K�ek�K�es�� +

1

2
dDK�es,ek��0�

= −
1

4
�nRs

kij + Ks
iKkj − KkiKs

j�ek · ei · ej · +
1

2
�Kmk

;k − Km
s
;k�ek · em · �0.

�3.21�

n order to analyze the curvature terms in the before-last line of �3.21�, recall the convenient
dentity �to prove �3.22�, note first that the result is clearly true if all indices are distinct or equal;
he final formula follows by inspection of the remaining possibilities�.

ek · ei · ej · = e�k� · ei · e�j� · − gkiej · + gijek · − gkjei · . �3.22�

Square brackets around indices denote antisymmetrization, and parentheses denote symmetriza-
ion.� The Bianchi identity nRs

�kij�=0 immediately implies

nRs
kijek · ei · ej · = 2nRs

iei · .

ext, the undifferentiated extrinsic curvature terms in next-to-last line of �3.21� can be manipu-
ated as

hich results in

�nRs
kij + Ks

iKkj − KkiKs
j�ek · ei · ej · = 2�nRs

i + Kk
kKs

i − KkiKsk�ei · ¬ 2Es
iei · ¬ 2E�es� .

�3.23�

sing again that � is �-parallel we have �k=1
n ek ·Res,ek

�=0. Equations �3.21� and �3.23� show that

�E�es� − �Kmk
;s − Km

s
;k�ek · em · �0�� = 0.

ultiplying by er· and taking a scalar product with � we obtain

�3.24�

here we have used the fact that the products er ·em· and er ·ek ·em ·�0 are antisymmetric when all
ndices are distinct, and therefore give no contribution in �3.24�. Hence

N�nRij + Kk
kKij − KikK

k
j� = �Kij;k − Kkj;i�Yk − JjYi. �3.25�

aking a trace implies

N� = − JiYi. �3.26�

ntisymmetrizing �3.25� in i and j and using �3.20� one finds

Ji = �Yi �3.27�
or some function �.
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We wish, now, to show that the pair �N ,Yi� defined by �3.18� and �3.19� satisfies �2.2�. It is
onvenient to choose an ON basis �ei�i=1

n which satisfies ei=�i and Dei
ej =0 at the point under

onsideration, then

s desired.
Next,

DiN = �i��,�� = 2��,Di�� = − ��,Ki
kek�0�� = − KikY

k

compare �2.17��. For further use we note that d�N2− �Y�2�=0, and as N2− �Y�2→r→�0 �since
quality is attained in �3.14�� we conclude that

N2 = �Y�2.

urther differentiation yields

DiDjN = N�K � K�ij − DiKjkY
k.

nserting this into �2.5� and using the relations above leads to our key formula

N2�ij = �YiY j . �3.28�

ote that N→r→� 0 implies Y→r→� 0. The last part of Proposition 2.1 gives then N�0, hence
=0, contradicting the fact that we have a nontrivial solution of the Witten equation. Thus N

pproaches a nonzero constant at infinity by �2.9�, and our hypothesis on the decay of � provides
ecay of �ij. We can therefore apply Proposition 2.4 and Theorem 2.5 to conclude that the ADM

omentum vanishes. But then for any �̊ there exists an associated �-parallel �. Let �̊a, a

1, . . . ,m, form a basis and let �a be the parallel spinor that asymptotes to �̊a. Now,

���a,�b� = 0,

hich implies that the �a’s form a basis of Gp at every p�J. It follows that RXY�a=0 for a
ollection of spinors forming a basis at each point, hence

RXY = 0. �3.29�

Choose �̊ so that N→1 and Y →0. �If no such �̊ exists, we pass to G� with the structures

efined by �3.9� and �3.10�, choose any �̊ with norm one-half, then �̊= ��̊ , �̊� will have the desired

roperty.� Let J̃ be the universal covering space of J with corresponding data �J̃ , g̃ij , K̃ij , Ñ , Ỹ j�,
nd consider the Killing development thereof: by definition, this is M̃=R� J̃ endowed with the

etric
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g̃�� = − Ñ2 du2 + g̃ij�dxi + Ỹi du��dxj + Ỹ j du� ,

here Ñ�u ,x�= Ñ�x�, g̃ij�u ,x�= g̃ij�x�, Ỹ j�u ,x�= Ỹ j�x�. Similarly let �M ,g��� be the Killing devel-

pment of �J ,gij ,Kij ,N ,Yj�. It should be clear that �M̃ , g̃��� is the universal pseudo-Riemannian
overing of �M ,g���.

Equations �3.26�–�3.29� and the Codazzi-Mainardi embedding equations �compare �3.13��
how then that both �M̃ , g̃��� and �M ,g��� are flat. The remaining arguments of the proof of Ref.

Theorem 4.1 apply to show that �M̃ , g̃���= �M ,g���= �Rn+1 ,����, as desired. �
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PPENDIX: WEIGHTED HÖLDER SPACES

Consider a function f defined on JR�Rn \B�R�, where B�R� is a closed ball of radius R�0.
e shall write f =Ok�r�� if there exists a constant C such that we have

0 � i � k, ��i f � � Cr�−i.

or �� �0,1� we shall write f =Ok+��r�� if f =Ok�r�� and if there exists a constant C such that we
ave

�y − x� � r�x�/2 Þ ��kf�x� − �kf�y�� � C�x − y��r�−k−�.

et us note that f =Ok+1�r�� implies f =Ok+��r�� for all �� �0,1�, so that the reader unfamiliar
ith Hölder type spaces might wish to simply replace, in the hypotheses of our theorems, the k
� by k+1 wherever convenient.
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systematic derivation of the Riemannian Barrett-Crane
ntertwiner

Suresh K. Maran
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The Barrett-Crane intertwiner for the Riemannian general relativity is systemati-
cally derived by solving the quantum Barrett-Crane constraints corresponding to a
tetrahedron �except for the nondegeneracy condition�. It was shown by Reisen-
berger that the Barrett-Crane intertwiner is the unique solution. The systematic
derivation can be considered as an alternative proof of the uniqueness. The new
element in the derivation is the rigorous imposition of the cross-simplicity
constraint. © 2006 American Institute of Physics. �DOI: 10.1063/1.2168397�

. INTRODUCTION

A quantization of a four-simplex for the Riemannian general relativity was proposed by
arrett and Crane.1 It was built on the idea of the Barrett-Crane intertwiner. It was shown by
eisenberger2 that the Barrett-Crane intertwiner is the unique solution to the Barrett-Crane con-

traints corresponding a tetrahedron �except for the nondegeneracy condition�. Here we present an
lternative proof of uniqueness by systematically deriving the Barrett-Crane intertwiner by impos-
ng the Barrett-Crane constraints.

I. REVIEW

The bivectors Bi associated with the 10 triangles of a four-simplex in a flat Riemannian space
atisfy the following properties called the Barrett-Crane constraints:1

�1� The bivector changes sign if the orientation of the triangle is changed.
�2� Each bivector is simple.
�3� If two triangles share a common edge, then the sum of the bivectors is also simple.
�4� The sum of the bivectors corresponding to the edges of any tetrahedron is zero. This sum

is calculated taking into account the orientations of the bivectors with respect to the
tetrahedron.

�5� The six bivectors of a four-simplex sharing the same vertex are linearly independent.
�6� The volume of a tetrahedron calculated from the bivectors is real and non-zero.

The items two and three can be summarized as follows:

Bi Ù Bj = 0 " i, j ,

here AÙB=�IJKLAIJBKL and the i , j represents the triangles of a tetrahedron. If i= j, it is referred
o as the simplicity constraint. If i� j it is referred as the cross-simplicity constraints.

Barrett and Crane have shown1 that these constraints are sufficient to restrict a general set of
0 bivectors Eb so that they correspond to the triangles of a geometric four-simplex up to trans-
ations and rotations in a four dimensional flat Riemannian space.

A quantum four-simplex for Riemannian general relativity is defined by quantizing the

arrett-Crane constraints.1 The bivectors Bi are promoted to the Lie operators B̂i on the represen-
ation space of the relevant group and the Barrett-Crane constraints are imposed at the quantum

evel. The last two constraints are inequalities and they are difficult to impose. For these reasons

47, 022503-1022-2488/2006/47�2�/022503/7/$23.00 © 2006 American Institute of Physics
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ere after we refer to a state sum model that satisfies only the first four constraints as an essential
arrett-Crane model, while a state sum model that satisfies all the six constraints as a rigorous
arrett-Crane model. The Barrett-Crane intertwiner corresponds to essential Barrett-Crane model
nly. We will do a systematic derivation of the essential Barrett-Crane model here.

. The simplicity constraint

Our treatment of the simplicity constraints is basically a review of work done before.1,3 The
roup SO�4,R� is isomorphic to SU�2��SU�2� /Z2. An element B of the Lie algebra of SO�4� can
e split into the left-handed and the right-handed SU�2� components,

B = BL + BR. �1�

here are two Casimir operators for SO�4� which are

�IJKLBIJBKL

nd

�IK�JLBIJBKL,

here �IK is the flat Euclidean metric. In terms of the left- and right-handed split we can expand
he Casimir operators as

�IJKLBIJBKL = BL · BL − BR · BR

nd

�IK�JLBIJBKL = BL · BL + BR · BR,

here the dot products are the trace in the SU�2� Lie algebra coordinates.
The bivectors are to be quantized by promoting the Lie algebra vectors to Lie operators on the

nitary representation space of SO�4��SU�2��SU�2� /Z2. The relevant unitary representations of
O�4� are labeled by a pair �JL ,JR� of unitary representations of SU�2�. The elements of the
epresentation space DJL

� DJR
are the eigenstates of the Casimirs and on them the operators

educe to the following:

�IJKLB̂IJB̂KL =
JL�JL + 1� − JR�JR + 1�

2
Î �2�

nd

�IK�JLB̂IJB̂KL =
JL�JL + 1� + JR�JR + 1�

2
Î . �3�

he equation �2� implies that on DJL
� DJR

the simplicity constraint BÙB=0 is equivalent to the
ondition JL=JR. We would like to find a representation space on which the representations of
O�4� are restricted precisely by JL = JR.

In Ref. 3 it has been shown for SO�N ,R� that the simplicity constraint reduces the Hilbert
pace associated to a triangle to that of the L2 functions on SN−1. Consider a square integrable
unction f�x� on the sphere S3 defined by

x · x = 1, " x � R4.

t can be Fourier expanded in the representation matrices of SU�2� using the isomorphism S3
SU�2�,
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f�x� = �
J

dJ Tr�FJTJ�g�x�−1�� , �4�

here g :S3→SU�2� is an isomorphism from S3 to SU�2� ,Fm2J
m1 the Fourier coefficients, Tm2J

m1 �g�
re the matrix elements of spin J representation of an element g�SU�2� and dJ the dimension of
he J representation. The group action of g= �gL ,gR��SO�4� on x �S3 is given by

g�gx� = gL
−1

g�x�gR. �5�

sing Eq. �4� we can consider the TJ�g�x���m1 ,m2� as the basis functions of L2 functions on S3.
he matrix elements of the action of g on S3 is given by

� T̄
ḿ2J́

ḿ1 �g�x��Tm2J
m1 �g�gx��dx =

1

dJ
T̄

m1J́

ḿ1 �gL�Tm2J
ḿ2 �gR���J́ − J� .

he representation matrices are precisely those of SO�4� only restricted by the constraint JL=JR.
ince we have all the simple representations included in the representation, the simplicity con-
traint effectively reduces the Hilbert space H to the space of L2 functions on S3.

. The cross-simplicity constraints

Next we quantize the cross-simplicity constraint part of the Barrett-Crane constraint. Consider
he quantum state space associated with a pair of triangles 1 and 2 of a tetrahedron. A general
uantum state that just satisfies the simplicity constraints B1ÙB1=0 and B2ÙB2=0 is of the form

f�x1 ,x2� �L2�S3�S3�, x1 ,x2�S3.
On the elements of L2�S3�S3� the action B1ÙB2 is equivalent to the action of �B1

B2�Ù �B1+B2�. �Please notice that �B̂1+ B̂2�Ù �B̂1+ B̂2�= B̂1Ù B̂1+ B̂2Ù B̂2+2B1Ù B̂2. But since
ˆ

1Ù B̂1= B̂2Ù B̂2=0 on f�x1 ,x2� we have �B̂1+ B̂2�Ù �B̂1+ B̂2�f�x1 ,x2�= B̂1Ù B̂2f�x1 ,x2�.� This im-
lies that the cross-simplicity constraint B1ÙB2=0 requires the simultaneous rotation of x1 ,x2

nvolve only the JL=JR representations. The simultaneous action of g= �gL ,gR� on the arguments
f f�x1 ,x2� is

gf�x1,x2� = f�gL
−1x1gR,gL

−1x2gR� . �6�

he harmonic expansion of f�x1 ,x2� in terms of the basis function TJ�g�x���m1 ,m2� is

f�x1,x2� = �
J

Fm1m2J1J2

ḿ1ḿ2 Tḿ1J1

m1 �g�x1��Tḿ2J2

m2 �g�x2�� .

he rest of the calculations can be understood graphically. The last equation can be graphically
ritten as follows:

ḿ1ḿ2
here the box F represents the Fourier coefficient Fm1m2J1J2
. The action of g�SO�4� on f is
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�7�

ow for any h�SU�2�,

Ta1J1

b1 �h�Ta2J1

b2 �h� = �
J3

CJ1J2b3

b1b2J3C̄a1a2J3

J1J2a3Ta3J3

b3 �h� ,

here C’s are the Clebsch-Gordan coefficients of SU�2�.4 We have assumed all the repeated
ndices are either integrated or summed over for the previous and the next two equations. Using
his we can rewrite the gL and gR parts of the result �7� as follows:

Ta1J1

m1 �gL
−1�Ta2J2

m2 �gL
−1� = �

JL

CJ1J2m3

m1m2JLC̄a1a2JL

J1J2a3Ta3JL

m3 �gL
−1� �8�

nd

Tḿ1J1

b1 �gR�Tḿ2J2

b2 �gR� = �
JL

CJ1J2b3

b1b2JRC̄ḿ1ḿ2JR

J1J2ḿ3 Tḿ3JR

b3 �gR� . �9�

ow we have

To satisfy the cross-simplicity constraint the expansion of gf�x1 ,x2� must have contribution
nly from the terms with JL=JR. Let me remove all the terms which do not satisfy JL=JR. Also let

e set g= I. Now we can deduce that the functions denoted by f̃�x1 ,x2� obtained by reducing
f�x1 ,x2� using the cross-simplicity constraints must have the expansion,

�10�

here the coefficients cJ introduced depends on the precise definition of the cross-simplicity
rojector. But as we will see, the final answer does not depend on the cJ’s. Now the Clebsch-
ordan coefficient terms in the expansion can be reexpressed using the following equation:

CJ1J2m3

m1m2J C̄ḿ1ḿ2J
J1J2ḿ3 =

1

dJ
�

SU�2�
Tḿ1J1

m1 �h�Tḿ2J2

m2 �h�T̄m3J
ḿ3 �h�dh , �11�

here h, h̃ � SU�2� and dh the bi-invariant measure on SU�2�. Using this in the two middle
˜
lebsch-Gordan coefficients of f�x1 ,x2� we get
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his result can be rewritten for clarity as

nce again applying Eq. �11� to the remaining two Clebsch-Gordan coefficients we get

By rewriting the above expression, we deduce that a general function f̃�x1 ,x2� that satisfies the
ross-simplicity constraint must be of the form

here FJ1J2
�h� is arbitrary.

If ��x1 ,x2 ,x3 ,x4� is the quantum state of a tetrahedron that satisfies all of the simplicity
onstraints and the cross-simplicity constraints, it must be of the form

��x1,x2,x3,x4� �12�

= �
J1J2J3J4

FJ1J2J3J4
�h�tr�TJ1

�g�x1�h�tr�TJ2
�g�x2�h�

tr�TJ3
�g�x3�h�tr�TJ4

�g�x4�h�dh .

his general form is deduced by requiring that for every pair of variables with the other two fixed,

he function must be the form of the right-hand side of Eq. �12�
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. The SO„4… Barrett-Crane intertwiner

Now the quantization of the fourth Barrett-Crane constraint demands that � is invariant under
he simultaneous rotation of its variables. This is achieved if FJ1J2J3J4

�h� is a constant function of
. Therefore the quantum state of a tetrahedron is spanned by

�J1J2J3J4
�x1,x2,x3,x4� = �

n�S3
�

i

TJi
�g�xi�g�n��dn , �13�

here the measure dn on S3 is derived from the bi-invariant measure on SU�2�.
The quantum state can be diagrammatically represented as follows:

unitary representation TJ of SU�2� can be considered as an element of DJ � DJ
* where DJ

* is the
ual representation of DJ. So using this the Barrett-Crane intertwiner can be written as an element

�J1J2J3J4

� �

i

DJi
� DJi

* as follows:

ince SU�2��S3, using the following graphical identity:

he Barrett-Crane solution can be rewritten as

hich emerges as an intertwiner in the familiar form in which Barrett and Crane proposed it for

he Riemannian general relativity.
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We present a derivation of a formula that gives dynamics of an integrable cellular
automation associated with crystal bases. This automaton is related to type D affine
Lie algebra and contains usual box-ball systems as a special case. The dynamics is
described by means of such objects as carriers, particles, and antiparticles. We
derive it from an analysis of a recently obtained formula of the combinatorial R �an
intertwiner between tensor products of crystals� that was found in a study of geo-
metric crystals. © 2006 American Institute of Physics. �DOI: 10.1063/1.2161390�

. INTRODUCTION

The crystal basis theory10,11 has played an important role in studies of solvable lattice models
nd integrable systems since more than a decade. In this context Ref. 9 by Kang, Kashiwara, and
isra has provided useful families of crystal bases associated with affine Lie algebras An

�1�, Bn
�1�,

n
�1�, Dn

�1�, A2n−1
�2� , A2n

�2�, and Dn+1
�2� . We call the first algebra type A and the fourth one type D. In Ref.

we have obtained a formula of the combinatorial R �an intertwiner of the crystals� associated
ith the type A algebra. From the viewpoint of integrable systems an intriguing fact in Ref. 3 is

hat this formula has been derived from a discrete soliton equation �the nonautonomous discrete
P equation� by a procedure known as the ultradiscretization. Since then there has been progress
hich goes beyond the type A case. In a study of geometric crystals associated with the type D

lgebra we have obtained an explicit formula of a tropical R, an intertwiner of geometric
rystals.13 The tropical R is a birational map between totally positive rational functions, while the
ombinatorial R is a bijective map between finite sets. Further analysis of this tropical R and the
ombinatorial R derived from it should be an important task in studies of integrable systems, since
hey are connected with discrete and ultradiscrete soliton equations of type D Lie algebra
ymmetry.14

The purpose of this paper is to investigate a piecewise linear formula of the above-mentioned
ombinatorial R for the type D crystals in Ref. 13. Our main result is the derivation of the limit of
he formula that leads to the particle antiparticle description of an integrable cellular automaton
Theorem 13�. This description was recently obtained15 by using a factorization of the combina-
orial R into Weyl group operators, a property that had been found and proved in Ref. 7. We
mphasize that the result proves a nontrivial fact that the factorization of the combinatorial R can
e conducted in two different ways, via the Weyl operator description and via the piecewise linear
ormula. This point is new even in the type A case �Theorem 3�.

We briefly explain the background to our problem. There were studies on one dimensional
ellular automata known as the box-ball systems.17–21 It was found that dynamics in these au-
omata was controlled by the combinatorial R of the type A crystals.2,3 Based on the families of
rystals in Ref. 9 integrable cellular automata associated with crystals of the other types were also
onstructed.5,6 A question about such generalized automata arose as to whether we could give a
escription of their dynamics as box-ball-like systems. To answer this question the particle anti-
article description was found.8,15
In Ref. 15 it was found that the automata associated with crystal bases of any types of affine

47, 022701-1022-2488/2006/47�2�/022701/18/$23.00 © 2006 American Institute of Physics
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ie algebra in Ref. 9 can be embedded into the type D case. Thus one can obtain the particle
ntiparticle description of these automata from that of the type D case. This is the reason why we
evote ourselves into this particular case.

The plan of this paper is as follows. In Sec. II the automaton associated with the type A
rystals is reviewed. The piecewise linear formula of the combinatorial R is presented. The particle
escription of the automaton is proved in terms of the piecewise linear formula. In Sec. III we
iscuss the piecewise linear formula of the combinatorial R of the type D crystals. Its reduction to
he type A case is also shown. The automaton associated with the type D crystals is explained in
ec. IV. The formula of a factorized dynamics of an inhomogeneous automaton �Theorem 13� is
eviewed. This formula is proved in Sec. V using the piecewise linear formula of the combinatorial
. Proofs of several lemmas are given in the Appendix.

I. An−1
„1… CASE

. Combinatorial R

We begin with type A case. Instead of An
�1� we adopt An−1

�1� crystals because it enables us to
ompare the results with those in the Dn

�1� crystals. For the notation we use overlines to distinguish

he symbols from those in the type D case, writing B̄ for a crystal, R̄ for the combinatorial R and
o on.

As a set the An−1
�1� crystal B̄l �l is any positive integer� is given by

�B̄l = ��x1, . . . ,xn� � Z�0
n ��

i=1

n

xi = l � . �1�

he other properties of this crystal are available in Ref. 9. In this paper we use no other property

f B̄l. We will write simply B̄ or B̄� for B̄l with arbitrary l.

Definition 1: Given a pair of variables x= �x1 , . . . ,xn�� B̄, y= �y1 , . . . ,yn�� B̄�, let

: �x ,y�� �x� ,y�� be the piecewise linear map defined by x�= �x1� , . . . ,xn��, y�= �y1� , . . . ,yn�� where

xi� = yi + Pi+1 − Pi,

yi� = xi + Pi − Pi+1.

ere Pi is given by

Pi = max
1�j�n

	�
k=1

j−1

�yk+i−1 − xk+i−1� + yj+i−1
 . �2�

he indices herein involved are interpreted in modulo n.
Except for the notation this formula is the same one as defined in Proposition 4.1 of Ref. 3.

he normalization of �2� is so chosen as the P1 to take the same expression as the formula in

heorem 5.1 of Ref. 9. The property of R̄ to intertwine the actions of Kashiwara operators in the
rystal basis theory was essentially proved in Sec. I of Ref. 13. It ensures that the �x� ,y�� falls into

�� B̄.
We note that there exist other ways to present the combinatorial R �e.g., Refs. 4 and 16� but

hich are not used in this paper.

. Automaton

Now we consider the automaton. In Ref. 3 the space of automaton extends infinitely towards

oth ends
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¯ � B̄li−1
� B̄li

� B̄li+1
� ¯ .

or our purposes it is sufficient to consider a finite size system like

B̄l1
� ¯ � B̄lN

. �3�

et L���i=1
N li� be an integer. We call a particular letter for the ground state of the automaton a

acuum. We can use any letter in �1, . . . ,n� as a vacuum of the automaton.15 Throughout this paper
e adopt n as the letter for the vacuum. As in Ref. 7 we define

B̄L�n� = ��x1, . . . ,xn� � B̄Lxn � xa for any a � n� .

e write B̄� B̄�� B̄�� B̄ for correspondence by R̄. Take any x� B̄L�n�. Applying R̄ successively
e have

B̄L�n� � �B̄l1
� ¯ � B̄lN

� � �B̄l1
� ¯ � B̄lN

� � B̄L�n� ,

x � Y � X� � y�, �4�

hat gives the following.

Definition 2: The time evolution operator T̄ of the automaton is given by

T̄:Y � X�.

It means that we regard Y and X� in �4� as two automaton states before and after the time

volution. We note that the operator T̄ actually depends on x.

. Particle description

There is an interpretation of the automaton that we call a particle description. It is the de-
cription of the box-ball systems in Refs. 17–20. Suppose we have balls with index a�1�a�n

1� that we call a-balls. For x= �x1 , . . . ,xn�� B̄li
we associate a box of capacity li that has xa

-balls �1�a�n−1� in it. Then an element of B̄l1
� ¯ � B̄lN

is regarded as a one dimensional
rray of boxes of capacities l1 , . . . , lN with these balls. For any a�1�a�n−1� we consider a
arrier of a-balls that we call an a-carrier. We assume that the a-carrier has a sufficiently large
apacity, so that it can carry arbitrary number of a-balls at a time.

First we suppose li=1 for all i. We call the associated automaton basic.15 In this case the x
epresents a box with an a-ball if xa=1 for a�n. It represents an empty box if xn=1. For any a we
rite a□ for x with xa=1. The carrier goes along the array of boxes. Then there are four actions in

he loading-unloading process by the a-carrier:

1� If the carrier has at least one ball and meets an empty box, we unload a ball from the carrier
and put it into the box.

2� If the carrier meets a box with an a-ball, we pick up the ball and load it into the carrier.
3� If the carrier meets a box with a b-ball �b�a�, we do nothing.
4� If the carrier has no ball and meets an empty box, we do nothing.

hese actions are depicted by the left four pictures in Fig. 1. For any a�1�a�n−1� let Ka be a
article motion operator that acts on the space of automaton �array of boxes� and does the actions
n the loading-unloading process explained above. We assume that the Ka depends on x in �4� in
uch a way that the a-carrier has xa balls in it at the beginning where xa is the ath element of the
. Then for the basic automaton we have2,3

¯
T = K1K2 ¯ Kn−1.
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Now we consider a not necessarily basic case which we call inhomogeneous.15 We denote by
the operator that reduces the automaton into a basic one, and by Q the operator that makes a

earrangement of balls.15 To explain them we first let N=1 in �4�,

B̄L�n� � B̄l � B̄l � B̄L�n� .

hen let

e the operator which sends y= �y1 , . . . ,yn�� B̄l into

ts inverse P−1 can be defined only on such arrays in which the letters are arranged in decreasing
rder. Let

e the operator which packs n□’s into the left end. Next we consider the case N�1. We insert

alls between the B̄li
’s in �3� to mark their positions. Then by P we denote the operator that

pplies the above P on each B̄li
, and by Q or P−1 those that applies the above Q or P−1 on each

1� ¯ � B̄1 between the walls. Now we have1,15 the following.
Theorem 3: The time evolution operator of the inhomogeneous automaton is given by

T̄ = P−1QK1K2 ¯ Kn−1P . �5�

This theorem means that the time evolution of the inhomogeneous automaton can be reduced

IG. 1. The loading and unloading process by the carrier of balls with index a. A gray ball represents the bound state of
particle and an antiparticle. It is assumed that b�a , ā.
nto that of the basic one only by inserting a simple rearrangement.
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. Proof of the particle description

The reduction of an inhomogeneous automaton to a basic one �Theorem 3� was first presented
y Fukuda.1 We gave another proof of this theorem �and its generalization to type D case� in Ref.
5. Here we show still another proof of this theorem that uses the piecewise linear formula in
efinition 1. This is the proof that was inferred in Sec. II D of Ref. 3 but was not explicitly given

here. Let pi=limxn→� Pi. Then by �2� we have

pi = max
1�j�n+1−i

	�
k=1

j−1

�yk+i−1 − xk+i−1� + yj+i−1
 . �6�

rom Definition 1 and �6� we obtain pn=yn and

pi = max�yi,yi − xi + pi+1� , �7�

xi� = min�pi+1,xi� . �8�

ote that the relation �7� is a descending recursion formula for pi’s on i. Let x� B̄L�n� and y

B̄l be a pair of variables. Let Ka be the particle motion operator introduced in Section II C. Then
t is easy to see that the pi’s �respectively, xi�’s� for 1� i�n−1 obtained by �7� �respectively by
8�� denote the number of empty boxes �respectively, the number of boxes with balls with index i�
n the automaton state Ki¯Kn−1Py. We also see that the a-carrier finally has ya�=xa+ya−xa� balls

n it. This proves the factorization of T̄ in �5� for the case N=1 in �4�. The assertion of the theorem
or the case N�1 follows immediately by repeated use of this case, where we adopt the final

tates of the carriers for B̄li
in �3� as their initial states for B̄li+1

.

II. Dn
„1… COMBINATORIAL R

. Piecewise linear formula

As a set the Dn
�1� crystal Bl �l is any positive integer� is given by

�Bl = ��x1, . . . ,xn, x̄n, . . . , x̄1� � Z�0
2n xnx̄n = 0,�

i=1

n

�xi + x̄i� = l� . �9�

he other properties of this crystal are available in a preprint version of Ref. 11 �Kyoto Univ.,
IMS-887, 1992� or in, e.g., Ref. 12. In this paper we use no other property of Bl. We will write

imply B or B� for Bl with arbitrary l.
Definition 4: Let x= �x1 , . . . , x̄1��B, y= �y1 , . . . , ȳ1��B� be a pair of variables. The involutive

utomorphisms �, �1, �n, on x ,y are defined by

�:xi ↔ ȳi, x̄i ↔ yi �1 � i � n� ,

�1:x1 ↔ x̄1,y1 ↔ ȳ1,

�n:xn ↔ x̄n,yn ↔ ȳn.

or any function F=F�x ,y� we denote by Fa the function obtained from F by applying a
�� ,�1 ,�a� to it. For x�Bl we write ��x� for l.

Definition 5: Given a pair of variables x= �x1 , . . . , x̄1��B, y= �y1 , . . . , ȳ1��B�, let
: �x ,y�� �x� ,y�� be the piecewise linear map defined by x�= �x1� , . . . , x̄1��, y�= �y1� , . . . , ȳ1�� where

x� = y1 + V�1 − V1,
1 0
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xi� = yi + Vi−1 − Vi + Wi − Wi−1 �2 � i � n − 1� ,

xn� = yn + Vn−1 − Vn
�n,

x̄i� = ȳi + Vi−1 − Vi �1 � i � n� ,

yi� = xi + Vi−1
* − Vi

* �1 � i � n� ,

ȳ1� = x̄1 + V0
�1 − V1

*,

ȳi� = x̄i + Vi−1
* − Vi

* + Wi − Wi−1 �2 � i � n − 1� ,

ȳn� = x̄n + Vn−1
* − Vn

�n. �10�

ere Vi and Wi are given by

Vi = max
1�j�n−1

��i,j,�i,j� � , �11�

Wi = max�Vi + Vi−1
* − yi,Vi−1 + Vi

* − x̄i� + min�xi, ȳi� �1 � i � n − 2� , �12�

Wn−1 = Vn + Vn
�n. �13�

he functions �i,j =�i,j�x ,y� and �i,j� =�i,j� �x ,y� in �11� are given by

�i,j�x,y� = max�	 j,n−1
i, ȳ j − xj� + ���x� + �
k=j+1

i

�ȳk − x̄k� for j � i ,

��y� + �
k=i+1

j

�x̄k − ȳk� for j � i ,� �14�

�i,j� �x,y� = max�	 j,n−1
i�,xj − ȳ j� + ��x� + �
k=1

i

�ȳk − x̄k� + �
k=1

j

�yk − xk� , �15�

here


i = �xn − ȳn for i � n − 1,n ,

0 for i = n − 1,

x̄n − yn for i = n ,
�


i� = �ȳn − xn for i � n − 1,n ,

max�yn − 2x̄n, ȳn − 2xn� for i = n − 1,

yn − x̄n for i = n .
�

The map R is the combinatorial R for the Dn
�1� crystals. The property of R to intertwine the

ctions of Kashiwara operators in the crystal basis theory was proved in Theorem 4.28 of Ref. 13.
t ensures that the �x� ,y�� falls into B��B.

Remark 6: We have changed the notation from Ref. 13 since our present formalism uses both
¯
n and xn. The changes are listed in Table I.
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According to the correspondence in Table I one of the formulas in Eq. �4.66� of Ref. 13 is now
ranslated into

xn� = yn + max�Vn − ȳn,Vn
�n − yn� − Vn

�n,

x̄n� = ȳn + max�Vn − ȳn,Vn
�n − yn� − Vn.

n order to make them coincide with the relations in �10� we should define the Vn−1 as max�Vn

ȳn ,Vn
�n −yn�. Actually the above definition of Vn−1 is equivalent to this. In other words we have

he following.
Lemma 7: The following relation holds:

Vn−1 = max�Vn − ȳn,Vn
�n − yn� . �16�

roof: We have

�n−1,j = max��n,j − ȳn,�n,j
�n − yn� ,

�n−1,j� = max��n,j� − ȳn,��n,j� ��n − yn� ,

or 1� j�n−1. In order to check these relations we can use max�−xn ,−x̄n�=max�−yn ,−ȳn�=0.
he claim of the lemma follows immediately from these relations. �

Remark 8: The transformation properties of the piecewise linear functions Vi and Wi under the
utomorphisms �1, �, and �n will be used afterwards, so we list them in Table II. It was quoted
rom Ref. 13 and adjusted by the correspondence in Table I.

Some more relations on the piecewise linear functions will be used later. We give them at the
eginning of the Appendix.

. Reduction of the An−1
„1… case

We realize that the piecewise linear formula in type D case has a rather bulky expression in
ontrast with its type A counterpart: See Definitions 1 and 5. In order to understand its structure it

TABLE I. The correspondence of the notation between this paper and in Ref. 13 for the piecewise linear
formula of the Dn

�1� combinatorial R. The z in the first column denotes x, y, x�, or y�. It is assumed that i�n
−1, n in the last two columns.

This paper Reference 13 This paper Reference 13 This paper Reference 13

zn max�zn ,0� Vn Vn−1 �i,j��n−1� max��i,j ,�i,j�
z̄n max�−zn ,0� Vn

�n Vn−1
* �i,j��n−1�� max��i,j� ,�i,j� �

zn−1 zn−1+min�zn ,0� Vn−1, Vn−1
* �i,n−1 max��i,n−1 ,�i,n�

z̄n−1 z̄n−1+min�zn ,0� � � o�n �i,n−1� max��i,n−1� ,�i,n� �

TABLE II. The transformation of the piecewise linear functions Vi and Wi in Definition 5 by the automorphisms
�1, �, and �n in Definition 4.

V0 Vi�1� i�n−1� Vn Wi�1� i�n−1�

�1 V0
�1 vi Vn Wi

� V0 Vi
* Vn Wi

�n V0 Vi Vn
�n Wi
                                                                                                            



i
t
b

T

w

t
i

I

A

t

L

T

t

022701-8 T. Takagi J. Math. Phys. 47, 022701 �2006�

                        
s worth trying to study some special limits of the formula. Here we consider a reduction to the
ype A case. We observe that the piecewise linear map R in Definition 5 for the Dn

�1� crystals
ecomes the intertwiner of the An−1

�1� crystals under the reduction.
Theorem 9: Set

x̄i = yi = 0 for 1 � i � n . �17�

hen the map R : �x ,y�� �x� ,y�� in Definition 5 reduces to

xi� = yi + Pi+1 − Pi,

yi� = xi + Pi − Pi+1,

x̄i� = 0,

ȳi� = 0,

here Pi was defined by (2).
This theorem follows from Lemma 10 below.
Lemma 10: Under the specialization (17) the following relations hold:

Vi = ��x� + P1, Vi
* = ��x� + Pi+1 �0 � i � n� ,

V0
�1 = ��x� + P2, Vn

�n = ��x� + Pn,

Wi = 2��x� + P1 + Pi+1 �1 � i � n − 1� .

We shall give a proof of this lemma in the Appendix.
We note that the reduction from type D to type A �Theorem 9� itself can also be obtained from

he description of the combinatorial R in Ref. 4 since the insertion algorithms for types A and D
n Ref. 4 coincide under the condition �17�.

V. Dn
„1… AUTOMATON

. Definition

We now present a brief definition of the Dn
�1� automaton using the crystals and the combina-

orial R. For a more complete definition, see Refs. 5 and 6. We consider a finite size system like

Bl1
� ¯ � BlN

.

et L���i=1
N li� be an integer. We define

BL�n� = ��x1, . . . ,xn, x̄n, . . . , x̄1� � BLxn � xa for any a � n� . �18�

ake any x�BL�n�. Applying the combinatorial R successively we have

BL�n� � �Bl1
� ¯ � BlN

� � �Bl1
� ¯ � BlN

� � BL�n� ,

x � Y � X� � y�, �19�
hat gives the following.
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Definition 11: The time evolution operator T of the automaton is given by

T:Y � X�.

Remarks similar to those after Definition 2 also apply here.

. Particle antiparticle description

We consider a particle antiparticle description of this automation.8,15 This is a generalization
f the particle description in Sec. III C. Suppose we have balls with index a and ā, �1�a�n
1� that we call an a-ball and an ā-ball respectively. The a-ball and the ā-ball are regarded as a
article and an antiparticle one another. We introduce a pair annihilation process in which a pair of
article and antiparticle makes a bound state, and a pair creation process where the bound state
reaks up into a pair of particle and antiparticle of another kind. To each x
�x1 , . . . ,xn , x̄n , . . . , x̄1��Bli

we associate a box of capacity li that has xa a-balls, x̄a ā-balls �1
a�n−1�, and x̄n bound states in it. Then any element of Bl1

� ¯ �BlN
can be regarded as a one

imensional array of boxes of capacities l1 , . . . , lN with the balls and the bound states. For any
�1�a�n−1� we introduce the notion of an a-carrier as in Sec. III C, and that of a carrier for
-balls that we call an ā-carrier. Assume that their capacities are sufficiently large.

First we consider a basic case, i.e., we suppose li=1 for all i. In this case the x represents a box
ith an a-ball if xa=1 and a box with an ā-ball if x̄a=1 for a�n. It represents an empty box if

n=1 and a box with a bound state if x̄n=1. We write a□ for x with xa=1 and write for x with

a=1.
Remark 12: In what follows we write a also for a number with an overline as well as that

ithout an overline. We interpret a� =a and xā= x̄a. We call x̄a the āth element of x.
Besides the four actions in the loading-unloading process in Sec. III C we have three addi-

ional actions by the a-carrier:

5� If the carrier has at least one ball and meets a box with an ā-ball, we unload a ball from the
carrier and make a bound state in the box.

6� If the carrier meets a box with a bound state, we extract an a-ball from the bound state, load
it into the carrier, and leave an ā-ball in the box.

7� If the carrier has no ball and meets a box with an ā-ball, we do nothing.

These actions are depicted by the right three pictures in Fig. 1.

For any a� �1, . . . ,n−1�� �n−1, . . . , 1̄� �see Remark 12� let Ka be a particle motion
perator8,15 that acts on the space of automaton and does the actions in the loading-unloading
rocess explained above. We assume that the Ka depends on x in �19� in such a way that the
-carrier has xa balls in it at the beginning, where xa is the ath element of x. Then for the basic
utomaton we have8

T = Kn − 1 ¯ K2̄K1̄K1K2 ¯ Kn−1.

Now we consider an inhomogeneous case. We define the operators P and Q as in Sec. III C
ut modify them to be suitable for the type D case.15 To define them we first set N=1 in �19�,

BL�n� � Bl � Bl � BL�n� . �20�

hen let

¯ ¯
e the operator which sends y= �y1 , . . . ,yn ,yn , . . . ,y1��Bl into
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�21�

ts inverse P−1 can be defined only on such arrays in which the letters are arranged as in �21�. Let

e the operator which packs n□’s into the left end and into the right end. For the case N
1 we generalize the definitions of these operators in the same way as in Sec. III C. Now we have

he following.
Theorem 13: The time evolution operator of the inhomogeneous automaton is given by

T = P−1Kn − 1 ¯ K2̄K1̄QK1K2 ¯ Kn−1P . �22�

In Ref. 15 a proof of this theorem was given by means of the factorization of the combina-
orial R in Ref. 7. In the remaining part of this paper we give another proof of this theorem that
ses the piecewise linear formula of the combinatorial R in Definition 5.

. PROOF OF THE PARTICLE ANTIPARTICLE DESCRIPTION

. Limit of the piecewise linear formula

We study a limit of the piecewise linear formula of the map R in Definition 5. Let F
F�x ,y� be any function of �x ,y��B�B�. The limit we consider here is to adopt the BL�n� in �18�
s the B. We introduce the following normalized limits:

lim� F = lim
xn→�,x̄n→0

�F�x,y� − ��x�� , �23�

lim�� F = lim
xn→�,x̄n→0

�F�x,y� − 2��x�� . �24�

irst we consider the limit �23� of Vi. For the sake of notational simplicity we denote lim� Vi by

i. For a=�1, �n or � we denote lim� Vi
a by vi

a. Note that if a=�n or � the vi
a is not necessarily

qual to the function that is obtained from vi by applying a to it, whereas if a=�1 it is. Next we
onsider the limit �24� of Wi. We shall denote lim�� Wi by wi.

The relations in Lemma 23 in the Appendix become recursion relations in the limit �23�. We
et �x�+ denote max�x ,0�.

Lemma 14: For F=Vi, Vi
*, V0

�1 or Vn
�n the limit lim� F exists. Moreover the following relations

old:

vn
�n = vn−1

* = yn − ȳn, �25�

vn−1
* = yi − xi + max�vi

*,�xi − ȳi�+� �1 � i � n − 1� , �26�

vi = max�ȳi − x̄i + vi−1,�ȳi − xi�+� �1 � i � n − 1� , �27�

vn = ȳn − yn + max�yn + ȳn−1 − x̄n−1 + vn−2,�yn + ȳn−1 − xn−1�+� . �28�

We consider the limit �24� of the defining relations of Wi ��12� and �13��.
Lemma 15: The following relation holds:

wi = vi + vi
* − min�vi

* − vi−1
* + yi,vi − vi−1 + x̄i� + min�xi, ȳi� �1 � i � n − 1� . �29�

These lemmas will be used in proofs of Lemmas 20 and 21. We shall give their proofs in the

ppendix.
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. Analysis of the particle antiparticle description

We now consider a recursion formula satisfied by the numbers of items in the particle anti-
article description. For this purpose we introduce the following.

Definition 16: For any non-negative integers A ,B ,C ,D ,E, define the piecewise linear map

:�A,B,C,D,E� � �F,G,H,I,J�

y

F = min�A,E� ,

G = B + �A − E�+,

H = min�C,B + �E − A�+� ,

I = D + �C − B − �E − A�+�+,

J = D + �B − C + �E − A�+�+.

The identities F+G=A+B, H+ I=C+D, and F+H+J=B+D+E can be checked easily and
will be used afterwards. We give an interpretation of the map  in the particle antiparticle descrip-
ion that is illustrated in Fig. 2. Recall the seven actions in the loading-unloading process by the
-carrier �Fig. 1� that were explained in Secs. II C and IV B. We write act-i for the action with
umber i in the lists. Note that the a can represent an overlined number in Fig. 1. In Fig. 2 the
oxes with b-balls �b�a , ā� have been omitted because of act-3. In the upper picture of Fig. 2 we
re applying act-5 �or act-7 if E=0�, act-6, act-1 �or act-4 if B+ �E−A�+=0�, and act-2 from left to
ight. In the lower picture we are applying act-1 �or act-4 if E=0�, act-2, act-5 �or act-7 if B
�E−A�+=0�, and act-6.

In what follows we always assume

xn � 0 and x̄n = 0. �30�

et B and B� be the Dn
�1� crystals.

Definition 17: For each pair of variables x= �x1 , . . . , x̄1��B, y= �y1 , . . . , ȳ1��B�, define the set
f variables z�i� , z̄�i��0� i�2n−2�, yi

� , ȳi
��1� i�n−1�, xi� , x̄i� ,yi� , ȳi��1� i�n� as follows.

1� Set

¯�0� ¯ �0�

FIG. 2. The meaning of the map  in Definition 16 by the particle antiparticle description of the automaton.
z = yn, z = yn. �31�
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2� Define z�n−i� , z̄�n−i� ,yi
� , ȳi

�yi��1� i�n−1� as

�ȳi, z̄�n−1−i�, z�n−1−i�, yi, xi� = �z̄�n−i�, ȳi
�, yi

�, z�n−i�, yi�� , �32�

by descending recursion on i. Here the function  is given by Definition 16.
3� Define z�n−1+i� , z̄�n−1+i� ,xi� , x̄i� , ȳi��1� i�n−1� as

�z�n−2+i�, ȳi
�, yi

�, z̄�n−2+i�, x̄i� = �x̄i�, z�n−1+i�, z̄�n−1+i�, xi�, ȳi�� , �33�

by recursion on i.
4� Set

xn� = z�2n−2�, x̄n� = z̄�2n−2�, yn� = ��x� − �
i=1

n−1

�yi� + ȳi��, ȳi� = 0. �34�

Remark 18: Let us consider the case when x�BL�n� and y�Bl. Then the numbers represented
y the variables z�i�, etc., in Definition 17 are equal to the numbers of items in the particle
ntiparticle description in Sec. IV B. More precisely these items appear within the time evolution
rocess by T in Theorem 13 for the case N=1. See Table III. In the table ti and t̄i are defined as
ollows: For 1� i�n−1 we let ti �respectively, t̄i� denote the time just after the i-carrier �respec-

ively, ī-carrier� has passed, where the automaton state is given by Ki¯Kn−1Py �respectively,

ī¯K1̄QK1¯Kn−1Py�.

. Proof

We now give the proof of Theorem 13 that we have promised at the end of Sec. IV. It is
btained from the following.

Theorem 19: Let x= �x1 , . . . , x̄1��B, y= �y1 , . . . , ȳ1��B� be a pair of variables, and suppose
he condition �30� on x. Let vi ,wi ,vi

* ,v0
�1 ,vn

�n be the functions defined in Sec. V A, and let

i� , x̄i� ,yi� , ȳi��1� i�n� be the variables given by Definition 17. Then the following relations hold:

x1� = y1 + v0
�1 − v1,

xi� = yi + vi−1 − vi + wi − wi−1 �2 � i � n − 1� ,

xn� = yn + vn−1 − vn
�n,

x̄i� = ȳi + vi−1 − vi �1 � i � n� ,

y� = xi + v* − v* �1 � i � n� ,

TABLE III. The correspondence between the variables in Definition 17 and the items in the particle antiparticle
description.

Variables Items at time ti Variables Items at time t̄i

z�n−i� Empty boxes z�n−1+i� Empty boxes

z̄�n−i� Boxes with bound states z̄�n−1+i� Boxes with bound states

yi
� Boxes with i-balls xi� Boxes with i-balls

ȳi
�

Boxes with ī-balls x̄i� Boxes with ī-balls

yi� Balls in the i-carrier ȳi� Balls in the ī-carrier
i i−1 i
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ȳi� = x̄1 + v0
�1 − v1

*,

ȳi� = x̄i + vi−1
* − vi

* + wi − wi−1, �2 � i � n − 1� ,

ȳn� = x̄n + vn−1
* − vn

�n. �35�

proof of Theorem 19 will be given after the following two lemmas.
Lemma 20: Let A= ȳi, B=min�xi+1 , ȳi+1�, C=vi

*+min�xi+1 , ȳi+1�, D=yi and E=xi in
: �A ,B ,C ,D ,E�� �F ,G ,H , I ,J�. Then

F = min�xi, ȳi� ,

G = ȳi − min�xi, ȳi� + min�xi+1, ȳi+1� ,

H = − min�xi, ȳi� + min�xi+1, ȳi+1� + yi + vi
* − vi−1

* ,

I = vi−1
* + min�xi, ȳi� ,

J = xi + vi−1
* − vi

*,

or 1� i�n−1.
In what follows we set w0=2v0. Note that we have v0

*=v0 from Table II and w1=v0+v0
�1 from

emma 22 in the Appendix.
Lemma 21: Let A=vi−1+min�xi , ȳi�, B= ȳi−min�xi , ȳi�+min�xi+1 , ȳi+1�, C=−min�xi , ȳi�

min�xi+1 , ȳi+1�+yi+vi
*−vi−1

* , D=min�xi , ȳi�+vi−1+vi−1
* −wi−1, and E= x̄i in

: �A ,B ,C ,D ,E�� �F ,G ,H , I ,J�. Then

F = ȳi + vi−1 − vi,

G = vi + min�xi+1, ȳi+1� ,

H = min�xi+1, ȳi+1� + vi + vi
* − wi,

I = yi + wi − wi−1 − vi + vi−1,

J = x̄i + wi − wi−1 − vi
* + vi−1

* ,

or 1� i�n−1.
We shall give proofs of these lemmas in the Appendix.
Proof of Theorem 19: Suppose i=n−1 in Lemma 20. Then we have B= ȳn= z̄�0� and C=yn

z�0� because of �25�, �30�, and �31�. Then by comparing �32� with Lemma 20 we see that z̄�1�,
yn−1

� , yn−1
� , z�1�, and yn−1� in �32� should be equal to F, G, H, I, and J. Thus the expression for yn−1�

as obtained. The expressions for yi��1� i�n−2�, as well as those for z̄�n−i�, ȳi
�, yi

�, z�n−i� will be
btained by descending recursion on i, where one uses F and I as B and C in the next step.

Since B and C in Lemma 21 are equal to G and H in Lemma 20, we have B= ȳi
� and C

yi
� in Lemma 21. We also see that when i=1 we have A=z�n−1� and D=min�x1 , ȳ1�= z̄�n−1� in

emma 21, from the result obtained in the preceding paragraph. Then by comparing �33� with
emma 21 we see that x̄1�, z�n�, z̄�n�, x1�, and ȳ1� in �33� are equal to F, G, H, I, and J in Lemma 21

f i=1. Thus the expressions for x1� , x̄1� ,y1� were obtained. The expressions for xi� , x̄i� ,yi��2� i�n

2� will be obtained by recursion on i, where one uses G and H as A and D in the next step.
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Then from �34� we can obtain the expressions for xn� and x̄n� in �35� since we have �30� and
25�. It is clear that the relation ȳn�=0= x̄n+vn−1

* −vn
�n holds. Then the expression for yn� in �35� is

btained from the condition ��y��=��x�. The proof is completed. �

Finally we give the proof of Theorem 13.
Proof of Theorem 13: If we impose the condition �30� on the defining relations �10� in

efinition 5 then their right-hand sides become those of �35� because of the existence of the
imiting functions defined in the Appendix. Then Theorem 19 tells that the numbers represented by

i� , x̄i� ,yi� , ȳi� in Definition 5 are equal to those by the same symbols in Definition 17 under this
ondition. Then according to Remark 18 we see that the time evolution T by Definition 11 is
dentical to the T in Theorem 13 for the case N=1. The assertion for the case N�1 follows
mmediately by repeated use of this case, where we adopt the final states of the carriers for Bli

in
19� as their initial states for Bli+1

. �
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PPENDIX: PROOFS OF THE LEMMAS

Before giving the proofs we present some relations between piecewise linear functions. They
re used in the main text and in this Appendix. These relations have been essentially obtained in
ef. 13.

Ultradiscretization18,20,21 is a procedure to derive an equation of piecewise linear functions
rom an equation of totally positive �i.e., having no minus sign� rational functions. It is realized as
transformation that replaces �, �, and / by max�min�, � and �, respectively. As the ultradis-

retization of Lemma 4.12 of Ref. 13 we have the following.
Lemma 22: The following relation holds:

W1 = V0 + V0
�1. �A1�

This lemma is used just above Lemma 21. The next lemma is obtained from the formulas
4.23�*, �4.23�, and �4.24� of Ref. 13 by the ultradiscretization.

Lemma 23: The following relations hold:

max�Vi
*,��x�,��x� + xi − ȳi� = max�xi − yi + Vi−1

* ,��y�,��y� + xi − ȳi� , �A2�

max�Vi,��y�,��y� + ȳi − xi� = max�ȳi − x̄i + Vi−1,��x�,��x� + ȳi − xi� , �A3�

max�Vn,��y� + X� = max�ȳn−1 + ȳn − x̄n−1 − x̄n + Vn−2,��x� + X� , �A4�

here 1� i�n−2 and X= ȳn−yn+ �ȳn−1+yn−xn−1− x̄n�+.
Here we write �x�+ for max�x ,0�. This lemma will be used in the proof of Lemma 14.

roof of Lemma 10

Proof: We derive the expression for Vi. First we suppose i�n−1,n. Then under the special-
zation �17� we have Vi=max1�j�n−1��i,j ,�i,j� � with

�i,j = xn	 j,n−1 + ���x� for j � i ,�

��y� for j � i ,
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�i,j� = ��x� + �
k=1

j−1

�yk − xk� + yj .

ince �i,j��i���i,1� and �i,j��i���i,n−1, we can drop off �i,j��n−1� in the max. Thus we obtain the
esired result from �2� with i=1. Now we suppose i=n−1 or n. Then we have

�i,j = ��x� + �0 for i = n − 1,

max�− yn,− xn−1� for i = n ,
�

�i,j� = ��x� + �
k=1

j−1

�yk − xk� + yj + 	 j,n−1 max�yn − xn−1,0� .

ince �i,j ��i,1� , we can drop off �i,j in the max and obtain the desired result.
We derive the expression for Vi

*. Note that if i=0,n it has already been proved since Vi
*=Vi for

=0,n. Suppose i�0,n. Then under the specialization �17� we have Vi
*=max1�j�n−1��i,j

* , ��i,j� �*�
ith

�i,j
* = xj + ���y� + �

k=j+1

i

�xk − yk� for j � i ,

��x� + �
k=i+1

j

�yk − xk� for j � i ,�
��ij� �* = 	 j,n−1xn + ��y� + �

k=1

i

�xk − yk� .

ince ��i,j��n−1�� �*��i,1� , we can drop off ��i,j��n−1��* in the max. The remaining candidates are

�i,i+1
* = ��x� + yi+1,

�i,i+2
* = �i,i+1

* − xi+1 + yi+2,

¯ ,

�i,n−1
* = �i,n−2

* − xn−2 + yn−1,

��i,n−1� �* = �i,n−1
* − xn−1 + yn,

�i,1
* = ��i,n−1� �* − xn + y1,

�i,2
* = �i,1

* − x1 + y2,

¯ ,

�i,i
* = �i,i−1

* − xi−1 + yi.

hus we obtain the desired result.
We derive the expression for V0

�1. Under the specialization �17� we have V0
�1

�1 �1
max1�j�n−1��0,j , ��0,j� � � with
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�0,j
�1 = ��y� + x1 − �1 − 	 j,1�y1 + 	 j,n−1xn,

��0,j� ��1 = ��x� + �
k=2

j

�yk − xk� + �1 − 	 j,1�xj .

ince �0,j��n−1�
�1 ��0,1

�1 and ��0,1� ��1 � ��0,2� ��1, we can drop off �0,j��1,n−1�
�1 and ��0,1� ��1 in the max

nd obtain the desired result.
We derive the expression for Vn

�n. Under the specialization �17� we have Vn
�n

max1�j�n−1��n,j
�n , ��n,j� ��n� with

�n,j
�n = ��x� + yn − �1 − 	 j,n−1�xn,

��n,j� ��n = ��x� + yn − xn + �
k=1

j−1

�yk − xk� + yj .

ince �n,j��n−1�
�n � ��n,1� ��n, we can drop off �n,j��n−1�

�n in the max and obtain the desired result.
The expression for Wn−1 is derived from �13�, and that for Wi��n−1� is from �12� and the

ollowing lemma. �

Lemma 24: Let Pi be the function that was defined by (2). Then

Pi+1 � Pi − yi.

Proof: It is easy to see that

Pi − yi = max
1�j�n

�Aj�, Pi+1 = max
2�j�n+1

�xi + Aj� ,

here

Aj = �
k=1

j−1

�yi+k − xi+k−1� .

he claim of the lemma holds since we have xi�0 and xi+A2=yi+1�0=A1. �

roof of Lemma 14

Proof: By definition we have Vn
�n =max1�j�n−1��n,j

�n , ��n,j� ��n�, where

��n,j��n = max�	 j,n−1�xn − ȳn�, ȳ j − xj� + ��x� + �
k=j+1

n−1

�ȳk − x̄k� + yn − xn,

��n,j� ��n = max�	 j,n−1�ȳn − xn�,xj − ȳ j� + ��x� + �
k=1

n−1

�ȳk − x̄k� + �
k=1

j

�yk − xk� + yn − xn.

n the limit lim� the only element that survives in the max is ��n,n−1��n, which yields vn
�n =yn

ȳn. In the same way the relation

vn−2
* = yn−1 + yn − xn−1 + �xn−1 − ȳn−1 + yn�+, �A5�

an be obtained by a direct calculation. Then from �A2� we see that the vi
*’s exist and the relation

26� holds for 1� i�n−2 by descending induction on i. Since V0=V0
* �Table II� we have v0

v0
*. Then from �A3� and �A4� we see that vi’s exist for i�n−1, and that the relations �27� for

� i�n−2 and �28� hold, by induction on i. Since vn and vn
�n exist, we see by �16� that the

¯ ¯
unction vn−1 also exists and equals to max�vn−yn ,−yn�. Substituting �28� into vn−1=max�vn
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ȳn ,−ȳn� we obtain �27� for i=n−1. From � of �16� we obtain vn−1
* =yn− ȳn. Then from �A5� and

ax�−yn ,−ȳn�=0 we obtain �26� for i=n−1. From �1 of �A2� the existence of v0
�1 can be verified.

he proof is completed. �

roof of Lemma 15

Proof: For 1� i�n−2 the relations follow immediately from �12�. We consider the case i
n−1. We obtain wn−1=vn+vn

�n from �13�. First we suppose xn−1� ȳn−1. Then from Lemma 14 we
btain vn−1= ȳn−1+max�−x̄n−1+vn−2 ,−xn−1�. It yields the relations vn+vn

�n =vn−1+yn and

RHS of �29� = vn−1 + yn − ȳn + xn−1 − min�xn−1 − ȳn, x̄n−1 − vn−2 − vn−1� = vn−1 + yn − min�0, ȳn

+ �ȳn−1 − xn−1� + �x̄n−1 − xn−1 − vn−2�+� = vn−1 + yn.

hus the assertion of the lemma was proved in this case. Now we suppose xn−1� ȳn−1. Then

RHS of �29� = vn−1 + yn − ȳn + ȳn−1 − min�xn−1 − �xn−1 − ȳn−1 − yn�+ − ȳn, x̄n−1 − vn−2 − vn−1�

= max��yn + ȳn−1 − xn−1�+ + vn−1,vn−2 + ȳn−1 − x̄n−1 + yn − ȳn� .

rom Lemma 14 we have vn−1= �ȳn−1− x̄n−1+vn−2�+. Therefore

RHS of �29� = max��yn + ȳn−1 − xn−1�+, ȳn−1 − x̄n−1 + yn + vn−2 + max�− yn,− ȳn, ȳn−1 − xn−1�� .

he last expression gives vn+vn
�n since the inner max vanishes. The proof is completed. �

roof of Lemma 20

Proof: The expressions for F and G are given by definition. The expression for I is given by
=C+D−H, and that for J is by J= I+B−C+E−F. Thus it suffices to prove H. We have

H = min�C,B + E − F� = min�xi+1, ȳi+1� + min�vi
*,− min�xi, ȳi� + xi� = min�xi+1, ȳi+1� + vi

*

− min�xi, ȳi� + xi − max�vi
*,− min�xi, ȳi� + xi� .

hen by �26� we obtain the desired result. �

roof of Lemma 21

Proof: The expression for G is given by G=A+B−F, that for I is by I=C+D−H, and that for
is by J= I+B−C+E−F. Thus it suffices to prove F and H. For F we have

F = min�A,E� = ȳi + vi−1 + min�min�xi, ȳi� − ȳi, x̄i − ȳi − vi−1� = ȳi + vi−1 − max�− min�xi, ȳi� + ȳi,− x̄i

+ ȳi + vi−1� .

hen by �27� we obtain the desired result. For H we have

H = min�C,B + E − F� = min�xi+1, ȳi+1� − min�xi, ȳi� + min�vi
* − vi−1

* + yi,vi − vi−1 + x̄i� .

hen by �29� we obtain the desired result. �

1 Fukuda, K., “Box-ball systems and Robinson-Schensted-Knuth correspondence,” J. Algebr. Comb. 19, 67–89 �2004�.
2 Fukuda, K., Okado, M., and Yamada, Y., “Energy functions in box ball systems,” Int. J. Mod. Phys. A 15, 1379–1392
�2000�.

3 Hatayama, G., Hikami, K., Inoue, R., Kuniba, A., Takagi, T., and Tokihiro, T., “The AM
�1� Automata related to crystals of

symmetric tensors,” J. Math. Phys. 42, 274–308 �2001�.
4 Hatayama, G., Kuniba, A., Okado, M., and Takagi, T., “Combinatorial R matrices for a family of crystals: Bn

�1�, Dn
�1�, A2n

�2�,
and Dn+1

�2� cases,” J. Algebra 247, 577–615 �2002�.
5 Hatayama, G., Kuniba, A., Okado, M., Takagi, T., and Yamada, Y., “Scattering rules in soliton cellular automata
associated with crystal bases,” in Recent Developments in Infinite-Dimensional Lie Algebras and Conformal Field
Theory, edited by S. Berman, P. Fendley, Y-Z. Huang, K. Misra, and B. Parshall, Contemp. Math. 297, �American

Mathematical Society, Providence, RI, 2002�, pp. 151–182.

                                                                                                            



1

1

1

1

1

1

1

1

1

1

2

2

022701-18 T. Takagi J. Math. Phys. 47, 022701 �2006�

                        
6 Hatayama, G., Kuniba, A., and Takagi, T., “Soliton cellular automata associated with crystal bases,” Nucl. Phys. B 577,
619–645 �2000�.

7 Hatayama, G., Kuniba, A., and Takagi, T., “Factorization of combinatorial R matrices and associated cellular automata,”
J. Stat. Phys. 102, 843–863 �2001�.

8 Hatayama, G., Kuniba, A., and Takagi, T., “Simple algorithm for factorized dynamics of gn-Automaton,” J. Phys. A 34,
10697–10705 �2001�.

9 Kang, S.-J., Kashiwara, M., and Misra, K. C., “Crystal bases of Verma modules for quantum affine Lie algebras,”
Compos. Math. 92, 299–325 �1994�.

0 Kashiwara, M., “Crystallizing the q-analogue of universal enveloping algebras,” Commun. Math. Phys. 133, 249–260
�1990�.

1 Kashiwara, M., “Crystal bases of modified quantized enveloping algebra,” Duke Math. J. 73, 383–413 �1994�.
2 Kuniba, A., Misra, K. C., Okado, M., Takagi, T., and Uchiyama, J., “Crystals for demazure modules of classical affine
Lie algebras,” J. Algebra 208, 185–215 �1998�.

3 Kuniba, A., Okado, M., Takagi, T., and Yamada, Y., “Geometric crystal and tropical R for Dn
�1�,” Int. Math. Res. Notices

2003-48, 2565–2620 �2003�.
4 Kuniba, A., Okado, M., Takagi, T., and Yamada, Y., “Tropical R and tau functions,” Commun. Math. Phys. 245,
491–517 �2004�.

5 Kuniba, A., Takagi, T., and Takenouchi, A., “Factorization, reduction and embedding in integrable cellular automata,” J.
Phys. A 37, 1691–1709 �2004�.

6 Nakayashiki, A. and Yamada, Y., “Kostka polynomials and energy functions in solvable lattice models,” Selecta Math.,
New Ser. 3, 547–599 �1997�.

7 Takahashi, D., “On some soliton systems defined by using boxes and balls,” Proceedings of the International Symposium
on nonlinear theory and its applications �NOLTA ’93�, 1993, pp. 555–558.

8 Takahashi, D. and Matsukidaira, J., “Box and ball system with a carrier and ultra-discrete modified KdV equation,” J.
Phys. A 30, L733–L739 �1997�.

9 Takahashi, D. and Satsuma, J., “A soliton cellular automaton,” J. Phys. Soc. Jpn. 59, 3514–3519 �1990�.
0 Tokihiro, T., Takahashi, D., and Matsukidaira, J., “Box and ball system as a realization of ultradiscrete nonautonomous
KP equation,” J. Phys. A 33, 607–619 �2000�.

1 Tokihiro, T., Takahashi, D., Matsukidaira, J., and Satsuma, J., “From soliton equations to integrable cellular automata
through a limiting procedure,” Phys. Rev. Lett. 76, 3247–3250 �1996�.
                                                                                                            



P
S

I

p

H
m
s

f
s
t
w

w
i

W

=

�

f

a

JOURNAL OF MATHEMATICAL PHYSICS 47, 022702 �2006�

0

                        
ositive Lyapunov exponents for continuous quasiperiodic
chrödinger equations

Kristian Bjerklöva�

Department of Mathematics, University of Toronto, Toronto Ontario, Canada M5S 3G3

�Received 6 July 2005; accepted 19 December 2005; published online 15 February 2006;
publisher error corrected 23 February 2006�

We prove that the continuous one-dimensional Schrödinger equation with an
analytic quasi-periodic potential has positive Lyapunov exponents in the bottom of
the spectrum for large couplings. © 2006 American Institute of Physics.
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. INTRODUCTION

In this short paper we study the one-dimensional Schrödinger equation with a quasi-periodic
otential:

�H�u��t� � − u��t� + �V�t,� + �t�u�t� = Eu�t� . �1.1�

ere V :T�Td→R �T=R /Z ,d�1� is assumed to be a real-analytic function which attains its
inimum value at most finitely many points in Td+1. Moreover, the frequency vector ��Rd

atisfies the Diophantine condition �DC��,�,

�� · n� �
�

�n��
" n � Zd \ �0	

or some constants ��0,��d. The coupling constant � is positive and the phase � is in Td. We
hall study the behavior of the solutions to �1.1� for energies E in the bottom of the spectrum of
he operator H� in the regime of large coupling constants �. Recall that the spectrum of H�, which
e denote by 	�H��, as a set, is independent of the phase �.

Writing �1.1� as the system

X��t� = 
 0 1

�V�t,� + �t� − E 0
�X�t�, X�t� = 
 u�t�

u��t�
� , �1.2�

e denote by Mt�� ,E� its fundamental solution. Since the above matrix lies in sl�2,R� for all t, it
s clear that Mt�� ,E��SL�2,R� for all t. The Lyapunov exponent is defined as

L�E� = lim
t→


1

t
�

Td
ln�Mt��,E��d� � 0.

e leave the dependence on � implicit.
By adding a constant to V if needed, we can without loss of generality assume that min V

0.
Our main result is the following.
Theorem 1: There is a constant c0=c0�V��0 and a �0=�0�V ,� ,���0 such that for all �

�0,

L�E� � c0
� ,

or all E� �0,�2/3�.

�
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This theorem generalizes the Sorets-Spencer result.4 It is likely that the spectrum of H� in
0 ,�2/3� is pure-point �for a.e. �� with exponentially decaying eigenfunctions, i.e., there is a
ituation of Anderson localization. See Ref. 2 for an example when this is the case.

It is well known that min�E :E�	�H��	�const �, where the constant depends on the shape
f the minimum of V and the modulus of the frequency vector � �recall that we have assumed that
in V=0�. Hence our result indeed covers energies in the spectrum, provided that � is sufficiently

arge.
From Eliasson’s result1 we know that there is an E0�0 such that the spectrum in

�H��� �E0 , 
 � is purely absolutely continuous, and L�E�=0 on the spectrum. Hence, as the
nergy increases, the dynamics undergo a dramatic change. It is still unknown what is happening
n the transition region, i.e., for energies �2/3�E�E0.

For a more detailed introduction to the subject, we refer to Refs. 1–4, and the references
herein.

I. PROOF OF THEOREM 1

The proof of Theorem 1 is based on a method developed by Goldstein and Schlag in Ref. 3,
here they, among many other things, prove an analog of Theorem 1 for the discrete Schrödinger

quation. This method relies on two tools: a large deviation estimate and the so-called avalanche
rinciple. Below we will apply this method to the present problem.

We assume that the frequency vector ��Rd satisfies the Diophantine condition �DC��,� for
ome � ,��0. Moreover, the energy E is always assumed to be in the interval �0,�2/3�, and �
hould be sufficiently large, depending on V and the Diophantine condition.

As above, we let Mt�� ,E� denote the fundamental solution to �1.2�. We introduce the matrix

A��,E� = M1��,E� � SL�2,R�, � � Td,

.e., we integrate time-one. In view of system �1.2�, we have the relation

Mn��,E� = A�� + �n − 1��,E� ¯ A�� + �,E�A��,E�

or n=1,2 ,3 , . . . .
Let

Ln�E� =
1

n
�

Td
ln�Mn��,E��d�

e the approximated Lyapunov exponents. By definition

L�E� = lim
n→


Ln�E� .

Since V is analytic, it is clear that A�· ,E� is analytic in some complex neighborhood of Td.
onsequently,

fn��� =
1

n
ln�Mn��,E��

s a bounded plurisubharmonic function in some neighborhood of Td.
We note that we have the following upper bound:

sup
��Td

�A��,E�� � exp�c2
�� ,

here the constant c2�0 only depends on V. This follows easily from �1.1�: if ��u�0� ,u��0�� �
1, then ��u�1� ,u��1��� cannot be larger than exp�c2

��. In particular, this implies that we have

he upper bounds
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�fn���� � c2
� and Ln�E� � c2

� for n = 1,2,3, . . . . �2.1�

From the fact that Mn��+��=A��+n��Mn���A���−1 we deduce that

sup
��Td

�fn�� + �� − fn���� �
const

n
,

here the constant only depends on the norm of A���. By applying Proposition 9.1 in Ref. 3, Sec.
we obtain the large deviation estimate

�
Td
�1

n
ln�Mn��,E�� − Ln�E�� � c0

�n−	,

here the constants c0�0 and 	�0 only depend on V, �, and �. Combining this estimate with the
valanche principle �Ref. 3, Proposition 2.2� one gets the following �see Lemma 11.1 in Ref. 3�:
here is an integer l0= l0�c0 ,	��0 such that if

Ll�E� � �l−	/4 and Ll�E� − L2l�E� �
Ll�E�

8
�2.2�

or some l� l0, then L�E��Ll�E� /2.
Thus, to prove the statement of Theorem 1, i.e., that L�E��c0

�, we only have to establish

l�E��2c0
� and �2.2� for some l� l0. The main tool is the following lemma.

Lemma 2.1: There exists a constant c1=c1�V��0 such that for any integer n�0 there is a

1=�1�V ,d ,n��0 such that

Ln�E� � c1
�

or all E� �0,�2/3� and for all ���1.
Proof: For simplicity we assume that V has a unique minimum. The case with finitely many

inimum points is treated similarly. Below we always assume that ��0 is sufficiently large,
epending only on n, d, and V. Since V :T�Td→R has the unique minimum 0, at �x0 ,y0��T
Td say, there exists a �0 such that V�x ,y��3 for all �x−x0 � �1/100 and all y�Td.

Define

Gn = �� � Td: inf
0�t�n

�V�t,� + t�� − �2/3 � 0	 .

learly mes�Gn�→1 as �→
, so for large � we have

mes�Gn� � 1/2. �2.3�

For any ��Gn and any E� �0,�2/3� it now follows from the above definitions that for 0� t
n,

�V�t,� + t�� − E � �2� if infp�Z�t − x0 − p� � 1/100,

0 otherwise.
.

hus one verifies easily that the solution u�t� to the equation

− u��t� + ��V�t,� + t�� − E�u�t� = 0, u�0� = 1, u��0� = 0

atisfies u�n��exp�n��. Since u�n� is one of the entries of the matrix Mn�� ,E�, this implies that

�Mn��,E�� � exp�n��, � � Gn,E � �0,�2/3� .
rom this, �2.3� and the fact that Mn is in SL�2,R�, so �Mn�� ,E� � �1, we get
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Ln�E� =
1

n
�

Td
ln�Mn��,E��d� �

1

n
�

Gn

ln�Mn��,E��d� � �/2.

his ends the proof of the lemma. �

We now have all the pieces to complete the proof of Theorem 1. As above we assume that

�0 is sufficiently large, depending on V, �, and �. Take l̃� l0, where l0= l0�c0 ,	��0 is as above,
o large that c1� l−	/4. Let

k = � ln�c2/c1�
ln�8/7� � + 1.

n application of Lemma 2.1 with n=2kl̃ yields

L2kl̃ � c1
� .

hen there is an integer j� �0,2 , . . . ,k� such that L2j+1l̃�
7
8L2jl̃, i.e., such that

L2j+1l̃ − L2jl̃ �
L2jl̃

8
. �2.4�

ndeed, since if L2j+1l̃�
7
8L2jl̃ for all j=0,1 , . . . ,k, then we would have, making use of the trivial

pper bound �2.1�,

c1
� � L2kl̃ � 
7

8
�k

Ll̃ � 
7

8
�k

c2
� ,

ontradicting the definition of k.
Finally, since the sequence �nLn	 is subadditive, we also have the following estimate �since

� j�:

L2jl̃ � L2j+1l̃ � ¯ � L2kl̃ � c1
� � l̃−	/4� � �2 jl̃�−	/4� . �2.5�

hus, �2.4� and �2.5� show that condition �2.2� holds with l=2jl̃� l0.
Consequently,

L �
Ll

2
=

L2jl̃

2
�

L2kl̃

2
�

c1

2
� .

etting c0=c1 /2 finishes the proof of Theorem 1.
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A recent technique to identify solvable many-body problems in two-dimensional
space yields, via a new twist, new many-body problems of “goldfish” type. Some of
these models are isochronous, namely their generic solutions are completely peri-
odic with a fixed period �independent of the initial data�. The investigation of the
behavior of some of these isochronous systems in the vicinity of their equilibrium
configurations yields some amusing diophantine relations. © 2006 American Insti-
tute of Physics. �DOI: 10.1063/1.2167917�

. INTRODUCTION AND MAIN RESULTS

Recently a novel technique to manufacture solvable many-body problems has been intro-
uced, and some many-body problems obtained in this manner have been investigated.5–8,10 The
olvable character of these N-body models is manifested by the possibility to reduce the solution
f their initial-value problem to algebraic operations, indeed generally just to finding the N eigen-
alues of an N � N matrix whose time evolution is explicitly known. Some of these models are
xtensions of the so-called “goldfish” many-body problem, a particularly neat �hence its name�3

amiltonian model interpretable as a �rotation- and translation-invariant� many-body problem in
he horizontal plane. In this paper we take advantage of a new twist of this technique to manu-
acture a novel solvable model, that provides a one-parameter extension of that treated in Ref. 10,
tself a one-parameter extension of the goldfish model. A further extension is also outlined, but it
s also noted that it is relatively trivial, inasmuch as it is reducible to just a simple variant of the
receding treatment.

The main idea of this approach is to take as starting point a solvable N � N matrix evolution
quation, and to then focus on the time evolution of the N eigenvalues of the matrix whose explicit
ime dependence is obtained by solving the initial-value problem for this matrix evolution equa-
ion. One often finds that this time evolution of the N eigenvalues is naturally interpretable as a
ewtonian N-body problem: indeed this evolution is generally determined by a system of N

econd-order ODEs in which the “accelerations” of these N moving points �thereby interpreted as
he coordinates of N “point particles”� are proportional to “one- and two-body forces.” However,
he two-body forces generally feature time-dependent “coupling constants,” whose time evolution
s determined by an additional system of first-order ODEs. One can interpret these “coupling
onstants” as additional degrees of freedom of the problem: indeed in some cases it is possible to
ttribute also to them a “physical” interpretation as internal degrees of freedom of the moving
articles, possibly associated with “spin” variables. Another possibility, which however emerges
nly exceptionally, is to find some appropriate ansatz for the “coupling constants,” whereby a
ubclass of solutions of the equations of motion can be identified for which the time dependence
f these quantities can be gotten rid of, obtaining thereby a more standard N-body problem
nvolving only the coordinates of the N moving particles. All the models previously treated by this

�Electronic mail: mario.bruschi@roma1.infn.it
�
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pproach5–8,10 were characterized by the occurrence of such a “miracle,” which is as well featured
y the models introduced and discussed in this paper.

But before describing our new findings let us review tersely previous results, thereby also
ntroducing our notation. We do not however elaborate here on the previous history of this ap-
roach, nor report the relevant references, since this has already been done in preceding papers of
his series.5–8,10

The “goldfish” N-body problem is characterized by the Newtonian equations of motion

z̈n = 2 �
m=1,m�n

N
żnżm

zn − zm
. �1�

Notation: here and throughout this paper N is an arbitrary positive integer �generally N�2�,
nd indices such as n ,m ,� are understood to run from 1 to N unless otherwise indicated; t is the
ndependent variable, and superimposed dots denote differentiations with respect to this, generally
eal, variable �“time”�; the dependent variables zn�zn�t� are instead generally complex numbers.
n the case of this model, �1�, the dependent variables zn�t� could be real, namely the motion could
ake place along the real axis in the complex z-plane; in some of the models considered below this
s not possible; but in any case the motions in the complex z-plane are much more interesting than
hose restricted to the real axis, not only because for motions in the complex z-plane particle
ollisions are not generic �they only occur for a lower-dimensional set of initial data�, but also
ecause it is often possible to identify the complex z-plane with a real �say, horizontal� plane and
o thereby reformulate the models under consideration as “physical” many-body problems char-
cterized by real �and rotation-invariant� Newtonian equations determining the motion of N
physical” point particles moving in the real horizontal plane.2,4 Such a reformulation is indeed
ossible in all the models reported and introduced in this paper and it contributes nontrivially to
heir interest; but we forsake to exhibit the relevant “physical” equations of motion, since obtain-
ng them is a simple task well explained in the literature2,4 that can therefore be left as an exercise
or the diligent reader.

An interesting solvable variant4 of the goldfish N-body problem �1� is characterized by the
ollowing Newtonian equations of motion:

z̈n − �2� + 1�i�żn − ��� + 1��2zn = 2 �
m=1,m�n

N
�żn − i��zn��żm − i��zm�

zn − zm
. �2�

Notation: here and hereafter i denotes the imaginary unit �i2=−1�, � is a positive constant
hich could be rescaled away but that we prefer to keep in evidence and to which we associate the
asic period

T =
2�

�
, �3�

nd � is a arbitrary dimensionless number. However we hereafter generally assume � to be real
nd rational, these restrictions being sufficient to guarantee that all the nonsingular solutions of
his N-body problem, �2�, are isochronous, namely completely periodic with a period that is a
ational multiple of the basic period �3�. Note that the motions take now necessarily place in the
omplex z-plane and that the singular solutions are not generic, being characterized by the occur-
ence of a collision of two or more of the point particles zn�t� �they correspond to sets of initial
ata having lower dimensionality than the full �4N�-dimensional real phase space�. The Hamil-
onian character of this model, and of other many-body isochronous problems, will be discussed in
separate paper by one of us �F.C.� and François Leyvraz.11

This isochronous model, �2�, is related to the standard goldfish model �1�, via the following
1 4–10
imple change of dependent and independent variables �generally referred to as “the trick”�:
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zn�t� = exp�i��t��n���, � =
exp�i�t� − 1

i�
. �4�

ndeed, this change of variables clearly implies that if the N �complex� coordinates zn�t� satisfy the
ystem of N ODEs �2�, then the N �complex� coordinates �n��� satisfy the system of N ODEs,

�n� = 2 �
m=1,m�n

N
�n��m�

�n − �m
, �5�

nd vice versa. And it is plain that this system of N ODEs, �5�, coincides with the standard goldfish
odel �1�, up to a trivial, now merely notational, change of variables �here and hereafter appended

rimes denote of course derivation with respect to the argument of the functions they are appended
o�.

Note that, as the real time variable t evolves, the corresponding complex variable �, see �4�,
ravels round and round on the circle whose diameter, of length 2/�, lies on the upper imaginary
xis in the complex �-plane, with its lower end at the origin ��=0� and its upper end at �=2i /�;
learly this fact is at the origin of the isochronous character of the many-body �2� �for more details
ee for instance Ref. 4�.

The Newtonian equations of motion of the main solvable many-body problem introduced and
iscussed in Ref. 10 read as follows:

z̈n = 2ażnzn + 2 �
m=1,m�n

N �żn − azn
2��żm − azm

2 �
zn − zm

, �6�

nd their isochronous variant, obtained by first rewriting these equations of motion via the merely
otational change of variables consisting in the replacement of the independent variable t with �
nd of the dependent variables zn�t� with �n��� and by then applying the trick �4� with �=1, read10

z̈n − 3i�żn − 2�2zn = 2a�żn − i�zn�zn + 2 �
m=1,m�n

N �żn − i�zn − azn
2��żm − i�zm − azm

2 �
zn − zm

. �7�

Notation: here and hereafter a denotes an arbitrary constant, that could generally be rescaled
way but that we prefer to keep in evidence. Of course for a=0 these two models, �6�, respec-
ively, �7�, reduce to the standard goldfish model and to its isochronous variant, �1�, respectively,
2� �with �=1�.

The �autonomous� Newtonian equations of motion of the first one of the solvable many-body
roblems introduced and discussed in this paper read as follows:

z̈n = 2ażnzn + b�żn − azn
2� + 2 �

m=1,m�n

N �żn − azn
2��żm − azm

2 �
zn − zm

. �8�

ere b is an arbitrary constant; clearly for b=0 this model reduces to �6�. The solution of this
odel is given in Sec. III �see in particular Proposition 1 and Sec. III A�.

Another solvable N-body problem, the solution of which is provided in Sec. IV �see in
articular Proposition 2 in Sec. IV A�, is characterized by the following equations of motion:

z̈n − �3 + k�i�żn − �2 + k��2zn = a�2żn − �2 + k�i�zn�zn

+ 2 �
m=1,m�n

N �żn − i�zn − azn
2��żm − i�zm − azm

2 �
zn − zm

. �9�

ere k is also an arbitrary constant, but our main interest is in the case when k is a �positive or

egative� integer, since this model is then isochronous, with the single exception of the case k=
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2, when the solutions are instead multiply periodic �and note that this model reduces to �7� for
=0�.

Alternative formulations of these solvable models, �8� and �9�, are provided and discussed in
ec. V. The corresponding solvable systems of ODEs read as follows:

c̈m − 2amċm+1 + �2ac1 − b�ċm + a2�m + 2��m − 1�cm+2 + a�b − m�2ac1 − b��cm+1

+ a�2ac2 − bc1�cm = 0, �10�

¨m − 2maċm+1 + �2ac1 − �2m + k + 1�i��ċm + �m + 2��m − 1�a2cm+2

+ �− 2ma2c1 + �m + 1��2m + k�i�a�cm+1 + �2a2c2 − �2m + k�i�ac1 − m�m + k + 1��2�cm = 0.

�11�

Notation: in each of these two dynamical systems the N dependent variables are denoted as

m�cm�t�, and the rest of the notation is, we trust, self-explanatory. The index m ranges as usual
rom 1 to N, while the quantities cN+1 and cN+2 by definition vanish,

cN+1 = cN+2 = 0. �12�

t can be moreover noted that, for each of these systems, the equation with m=0 is identically
atisfied, provided one sets c0=1. These systems look superficially linear; but they are in fact
onlinear, due to the presence of the dependent variables c1�t� and c2�t� in the equations of motion
or the dependent variable cm�t�. The second of these models, �11�, is isochronous, namely its
eneric solutions are completely periodic with period T �see �3��,

cm�t + T� = cm�t� , �13�

rovided k is an integer different from −2.
In Sec. VI we discuss the behavior of some of these systems in the neighborhood of their

quilibrium configurations, focusing of course on those that do possess such �nontrivial� configu-
ations and which are moreover isochronous: then the requirement that these behaviors be con-
istent with the isochronous character of these models entails some amusing diophantine relations,
or instance determinantal formulas such as

�
�̃2 + 3�̃ − 4 2�̃ + 8 0 0 0

40� �̃2 + �̃ − 6 4�̃ + 6 4 0

− 90� − 20� �̃2 − �̃ − 6 6�̃ 10

78� 30� 0 �̃2 − 3�̃ − 4 8�̃ − 10

− 24� − 12� 0 0 �̃2 − 5�̃
� = �

j=−4

5

��̃ − j� . �14�

ere � is an arbitrary number, and there are such formulas for determinants of arbitrary order, see
ec. V �see in particular Theorem 2 and Conjecture 2�.

In Sec. VII we tersely outline a generalization of the models treated in the preceding sections,
ut we also point out that in fact it does not represent a really substantial extension of them.

The paper is completed by two Appendixes that contain some developments, and report some
ormulas, whose inclusion in the main text of the paper would have disrupted the flow of the
resentation.

I. A MATRIX ODE AND ITS SOLUTION

The starting point of our treatment is the following simple system of two coupled matrix
DEs:

˙ 2 ˙
U�t� = a�U�t�� + V�t�, V�t� = b�t�V�t� . �15�
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Notation: the dependent variables U�t� and V�t� are N � N matrices, the independent variable
s the scalar t �“time,” but occasionally we will replace below t with the complex variable ��,
uperimposed dots indicate time-differentiations, a is an arbitrary scalar constant �that could be
escaled away, but we prefer to keep it; note that throughout this paper we assume that a does not
anish, a�0, because the results for the a=0 case are not new�, and b�t� is a scalar function of
ime which we reserve to assign later.

The second of these two matrix ODEs can of course be easily solved,

V�t� = 	�t�C , �16a�

	�t� = exp	

0

t

dt� b�t��� , �16b�

C = V�0� , �16c�

nd the system of two matrix ODEs �15� can thereby be rewritten as the single N � N matrix ODE,

U̇�t� = a�U�t��2 + 	�t�C . �17�

he reason for writing the system first in the form �15� will become clear later. Note that for
�t�=0, 	���=1, this matrix evolution equation, �17�, reduces to the matrix evolution equation that
rovided the starting point for the treatment given in Ref. 10.

To solve the matrix ODE �17� we set

U�t� = − a−1Ẇ�t��W�t��−1, �18�

nd we thereby obtain for the N � N matrix W�t� the following linear second-order ODE:

Ẅ�t� + a	�t�CW�t� = 0. �19�

We now introduce the scalar second-order ODE,

ẅ�
;t� + 
	�t�w�
;t� = 0, �20�

here 
 is a scalar constant, and we denote with w±�
 ; t� the two independent solutions of this
DE characterized by the initial conditions

w+�
;0� = 1, ẇ+�
;0� = 0, �21a�

w−�
;0� = 0, ẇ−�
;0� = 1. �21b�

et us note for future reference that as a consequence of �20� and �21� there holds the Wronskian
elation

w+�
;t�ẇ−�
;t� − ẇ+�
;t�w−�
;t� = 1. �22�

It is now clear that the solution of the initial-value problem for the matrix ODE �19� is
rovided by the formula

W�t� = w+�aC;t�W�0� + w−�aC;t�Ẇ�0� . �23�

ote that there is no ordering ambiguity in the definition of the two N � N matrices w±�aC ; t�,
ince each of them only depends on the single matrix C, that of course commutes with itself �while

t need not commute with W�0� or Ẇ�0��.
The insertion of this expression of the N � N matrix W�t� in �18� yields, after a bit of elemen-
ary matrix algebra, the following solution of the original ODE �15�:
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U�t� = �ẇ−�aC;t�U�0� − a−1ẇ+�aC;t���w+�aC;t� − aw−�aC;t�U�0��−1, �24a�

ith the constant matrix C defined as follows �see �15� and �16c��:

C = U̇�0� − a�U�0��2. �24b�

The matrix system �15� is considered solvable inasmuch as the explicit solution of the initial-
alue problem for it is given by these formulas, �24�, that require of course knowledge of the two
calar solutions w±�
 ; t� of the scalar second-order ODE �20�. In the following we will consider
pecific cases in which this scalar ODE �20� can be explicitly solved in terms of standard special
unctions �such as, say, Bessel functions, see below�.

But before ending this section let us also report the more explicit form that the solution �24�
akes in the special case �that will be of interest to us, see below� in which the N � N matrix C is
yadic indeed proportional to an N � N projection matrix P,

C = cP, Pnm = pnpm, �
n=1

N

pn
2 = 1, P2 = P . �25�

hen, after a considerable amount of tedious if trivial algebra, the solution formula �24a� with �25�
an be rewritten as follows:

U�t� = �U�0� + �v�t��−1�f�t�P + g�t�PU�0� + U�0��1 − atU�0��−1P�1 − w+�ac;t�

+ a�w−�ac;t� − t�U�0���1 − atU�0��−1, �26a�

f�t� = − a−1ẇ+�ac;t�v�t� + �w+�ac;t� − 1�u�t� , �26b�

g�t� = �ẇ−�ac;t� − 1�v�t� − a�w−�ac;t� − t�u�t� , �26c�

v�t� = �
n,m=1

N

pn��w+�ac;t� − aw−�ac;t�U�0���1 − atU�0��−1nmpm, �26d�

u�t� = �
n,m=1

N

pn��a−1ẇ+�ac;t� + �1 − ẇ−�ac;t��U�0���1 − atU�0��−1nmpm. �26e�

ote that the only matrices appearing on the right-hand sides of these formulas, �26�, are U�0� and
P: the functions w±�ac ; t� are now scalars, in contrast to the N � N matrices w±�aC ; t� appearing
n the right-hand side of �24a�. Moreover, an additional simplification will be entailed below by
he fact that, in the cases of interest to us, the matrix U�0� will be diagonal, entailing that the

atrix inversions involving only this matrix can be performed trivially �in contrast to what is the
ase for the matrix inversion on the right-hand side of �24a��. To obtain this simplified version of
he solution we took advantage of the following standard identity valid for any projection matrix

P, see �25�:

h�XPY� = h�0� +
h�z� − h�0�

z
XPY , �27a�

ith

PYXP = zP, z = �
N

pnYnmXm�p�. �27b�

n,m,�=1
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his identity holds for any two matrices X and Y and for any scalar function h�z� for which these
ormulas make good sense.

Remark: The expression �26� of the solution of the matrix evolution equation �17� is valid
rovided the formulas �25� hold with a finite �nonvanishing� value of the constant c. This is not the
ase if the N � N matrix C is nilpotent, Cp=0 for some positive integer value of p. The treatment
f this special case is left as an instructive exercise for the diligent reader.

�

II. A NEW GOLDFISH MANY-BODY PROBLEM

To derive new solvable many-body problems of goldfish type from the solvable system of two
� N matrix ODEs �15� we use a �minor modification of a� by now standard technique.5–8,10

ence we set

U�t� = R�t�Z�t��R�t��−1, Z�t� = diag�zn�t�� , �28a�

V�t� = R�t�G�t��R�t��−1, �G�t��nm = �nmgn�t� + �1 − �nm�gnm�t� , �28b�

o that

U̇�t� = R�t��Ż�t� + �M�t�,Z�t���R�t��−1, �29a�

V̇�t� = R�t��Ġ�t� + �M�t�,G�t���R�t��−1, �29b�

here

M�t� = �R�t��−1Ṙ�t� , �29c�

�M�t��nm = �1 − �nm��nm�t� . �29d�

ote that the formulas �28a� imply that the N �generally complex� numbers zn�t� are the N
igenvalues of the N � N matrix U�t�, and that the N � N matrix R�t� is the matrix that diagonalizes
he N � N matrix U�t�. Moreover, for simplicity, we are assuming here �see �29d�� that the diag-
nal elements of the N � N matrix M�t�, defined in terms of R�t� by �29c�, all vanish: the legiti-
acy of such a choice is a well-known fact.5–8,10

Insertion of these formulas in �15� yields the following two N � N matrix ODEs:

Ż�t� + �M�t�,Z�t�� = a�Z�t��2 + G�t� , �30a�

Ġ�t� + �M�t�,G�t�� = b�t�G�t� . �30b�

By writing out separately the diagonal and off-diagonal parts of these matrix equations we get the
ollowing equations:

żn�t� = azn
2�t� + gn�t� , �31a�

ġn�t� + �
m=1,m�n

N

��nm�t�gmn�t� − gnm�t��mn�t�� = b�t�gn�t� , �31b�
�nm�t��zn�t� − zm�t�� = − gnm�t�, n � m , �31c�
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ġnm�t� = �nm�t��gn�t� − gm�t�� + b�t�gnm�t� − �
�=1;��n,m

N

��n��t�g�m�t� − gn��t���m�t��, n � m .

�31d�

y solving the first of these equations for gn�t� and the third for �nm�t� and by then inserting the
esults in the second and the fourth we get

z̈n�t� = 2ażn�t�zn�t� + b�t��żn�t� − azn
2�t�� + 2 �

m=1,m�n

N
gnm�t�gmn�t�
zn�t� − zm�t�

, �32a�

ġnm�t�
gnm�t�

= −
�żn�t� − azn

2�t�� − �żm�t� − azm
2 �t��

zn�t� − zm�t�
+ b�t�

+ �
�=1;��n,m

N �gn��t�g�m�t�
gnm�t� 	 1

zn�t� − z��t�
+

1

zm�t� − z��t���, n � m . �32b�

We now take advantage of the following miraculous fact: as the diligent reader will easily
erify,

gnm�t� = �żn�t� − azn
2�t��1/2�żm�t� − azm

2 �t��1/2 �33�

rovides a solution to �32b� �which has been written above in a format appropriate to facilitate
hecking that this is indeed true: differentiate logarithmically this formula, �33� and use �32a��.
ence the insertion of this expression of gnm�t� in �32a� entails that the N-body problem charac-

erized by the following system of N coupled Newtonian equations of motion:

z̈n�t� = 2ażn�t�zn�t� + b�t��żn�t� − azn
2�t�� + 2 �

m=1,m�n

N �żn�t� − azn
2�t���żm�t� − azm

2 �t��
zn�t� − zm�t�

, �34�

s solvable, to the extent the N � N matrix ODE �15� is itself solvable �as discussed in the preced-
ng Sec. II�. It is moreover clear that the substantial simplification, see above, associated with the
yadic nature of the constant matrix C is applicable in this case, since this N � N matrix is now
iven by the simple dyadic expression

Cnm = �żn�0� − azn
2�0��1/2�żm�0� − azm

2 �0��1/2. �35�

his formula, �35�, follows from �16�, �33�, and �31a� via �28b� with R�0�=1, this last assignment
eing a permissible one; a different assignment would cause a unitary transformation of the
atrices U�t� and V�t�, with no effect on the eigenvalues zn�t� of U�t�. Note that this assignment,
�0�=1, also implies via �28a� that the N � N matrix U�0� is diagonal,

U�0� = diag�zn�0�� . �36�

The fact that the matrix C is dyadic, see �35�, entails the validity of �25� with the quantities pn

nd c given now in terms of the initial data zn�0�, żn�0� as follows:

pn = 	 żn�0� − azn
2�0�

c
�1/2

, c = �
n=1

N

�żn�0� − azn
2�0��; �37�

nd moreover �36� entails that the scalars v�t� and u�t�, see �26d� and �26e�, are now given in

erms of the initial data as follows:
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v�t� = �
n=1

N

pn
2w+�ac;t� − aw−�ac;t�zn�0�

1 − atzn�0�
, �38a�

u�t� = �
n=1

N

pn
2a−1ẇ+�ac;t� + �1 − ẇ−�ac;t��zn�0�

1 − atzn�0�
. �38b�

t is also easily seen, using �22�, that some additional simplifications occur in the expressions of
f�t� and g�t�, see �26b� and �26c�, that may now be rewritten as follows:

f�t� = �
n=1

N

pn
2− a−1ẇ+�ac;t� + �w+�ac;t� + ẇ−�ac;t� − 2�zn�0�

1 − atzn�0�
, �38c�

g�t� = �
n=1

N

pn
21 − w+�ac;t� + tẇ+�ac;t� + �1 − ẇ−�ac;t��atzn�0�

1 − atzn�0�
. �38d�

In conclusion there holds the following
Proposition 1: The solution zn�t� of the initial-value problem for the system of N ODEs �34�

s given by the following prescription:

zn�t� = eigenvalues of U�t� , �39�

see �28a��, where the N � N matrix U�t� is given by the formula �26a� with the constant N � N
atrix U�0�, the projection matrix Pnm= pnpm, as well as the scalar constant c, respectively, the

calar functions f�t�, g�t�, and v�t� defined in terms of the initial data by �36� and �37�, respec-
ively, �38�, and with the scalar functions w±�
 ; t� defined as the solutions characterized by the
nitial conditions �21� of the second-order ODE �20� with �16b�. �

This proposition demonstrates the solvability of the system of N ODEs �34� for the N depen-
ent variables zn�t� by reducing its initial-value problem to the purely algebraic task of finding the

eigenvalues zn�t� of an N � N matrix U�t� given in terms of the initial data by a quite explicit
ormula, see �26� with �38� and �37�, the time dependence of which is encoded in the solutions of
he scalar ODE �20� with �16b�. This is a linear second-order ODE, generally simple enough to be
xplicitly solvable in terms of well-known special functions, see below.

The system of N ODEs �34� for the N dependent variables zn�t� is generally nonautonomous
ue to the explicit time dependence of the function b�t�, which we are still free to assign. In the
ollowing section we focus on the autonomous case that obtains by assuming this function b�t� to
e just a constant. In the sequent Sec. IV, by assigning a specific time dependence to the function
�t�, we obtain, via an appropriate change of dependent and independent variables, another au-
onomous version of the goldfish system which, for appropriate values of the arbitrary constants it
eatures, has the property to be isochronous.

. Autonomous case

The many-body model �34� contains the scalar function b�t�, which we are still free to assign.
f course if one sets b�t�=0 one gets back to the model treated in Ref. 10. In this section we treat

he case in which

b�t� = b �40�

s an arbitrary �of course scalar� constant, entailing that the equations of motion �34� become

utonomous �see �8��,
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z̈n�t� = 2ażn�t�zn�t� + b�żn�t� − azn
2�t�� + 2 �

m=1,m�n

N �żn�t� − azn
2�t���żm�t� − azm

2 �t��
zn�t� − zm�t�

. �41�

he treatment given above entails that the solution zn�t� of the initial-value problem for this
roblem is given by Proposition 1, with the following specific assignment of the two scalar
unctions w±�
 ; t�:

w+�
;t� =
Y0��x�0��J0�x�t�� − J0��x�0��Y0�x�t��
Y0��x�0��J0�x�0�� − J0��x�0��Y0�x�0��

, �42a�

w−�
;t� =
4�− Y0�x�0��J0�x�t�� + J0�x�t��Y0�x�t��


1/2�Y0��x�0��J0�x�0�� − J0��x�0��Y0�x�0��
, �42b�

here

x�t� =

1/2

2b
exp	bt

2
� �42c�

nd J0�x� and Y0�x� are the standard Bessel functions of order zero �see for instance Ref. 12�.
ndeed these two functions, see �42�, are the solutions characterized by the initial conditions �21�
f the second-order ODE,

ẅ�
;t� + 
 exp�bt�w�
;t� = 0, �43�

hat clearly corresponds to �20� with �16b� and �40�. An explicit expression of the time dependence
f these two functions is provided by the following two formulas:

J0�x�t�� = �
k=0

�
1

�k!�2	− 
 exp�bt�
16

�k

, �44a�

Y0�x�t�� = � 2

�
��

k=0

�
1

�k!�2	− 
 exp�bt�
16

�k	bt +
1

2
ln� 


4b2� + k� , �44b�

k = − �
�=1

k

ln�1 + �

�
� + �

�=k+1

k 	1

�
− ln�1 + �

�
�� . �44c�

hese expressions clearly entail that, if Re�b��0, in the remote future �t→ +��

J0�x�t�� = 1 + O�exp�bt�� , �45a�

Y0�x�t�� = � 2

�
�	bt +

1

2
ln� 


4b2� + � + O�t exp�bt�� , �45b�

 = 0 = �
�=1

� 	1

�
− ln�1 + �

�
�� . �45c�

Using these formulas it is easily shown that, if Re�b��0, in the remote future all the particles
end to the origin,

zn�t� → 0 as t → + � . �46�
his outcome obtains for generic initial data: note that the asymptotic configuration with all
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articles sitting at the origin is an equilibrium configuration, albeit not a genuine one �see below�.
he exceptional �i.e., nongeneric� case is when the particles are in equilibrium, which can only
appen for N=2 and N=3 and entails that the constant c, see �37�, vanishes, see the next section.

If Re�b��0 the asymptotic behavior as t→� is somewhat less trivial, and we just mention
ualitatively the generic outcome here, which obtains because asymptotically the matrix U�t�
quals—up to a time-dependent factor—the projection operator P �the diligent reader will verify�.
hen all particles but one converge to the origin, while if Re�b�=0 that one approaches a limit
ycle trajectory which circles around the origin with period T=4� / �b� �we are of course assuming
�0, the b=0 having being treated in Ref. 10�, while if Re�b��0 it spirals exponentially towards

nfinity.

. Equilibrium configuration

It is easy to show �see Appendix A� that this N-body problem, �41�, has no genuine equilib-
ium configuration for N�3 �here and hereafter we denote as genuine the equilibrium configura-
ions in which no two particles sit at the same position, namely such that zn�zm for n�m�. For
=2 the equilibrium configuration is unique �up to permutations; this obvious caveat applies of

ourse to all equilibrium configurations, and will not be repeated below�:

z1 = −
�1 + i�b

2a
, z2 = −

�1 − i�b
2a

. �47�

or N=3 the configuration, again unique, is the same, see �47�, complemented by z3=0.
Note that in both these cases the constant c, see �37�, vanishes �see the Remark at the end of

ec. II�.

V. NEW ISOCHRONOUS GOLDFISH MODEL

To manufacture another solvable and autonomous variant of the goldfish many-body problem
e take as starting point the model �34� with

b�t� =
ik�

1 + i�t
�48a�

ntailing �see �28b��

	�t� = �1 + i�t�k. �48b�

ere and throughout � is a positive constant that sets the time scale via the associated period �3�;
nd k is an arbitrary dimensionless constant, but we shall see below that it is convenient, in order
o obtain isochronous models, to assume that k is an integer �but different from −2; and note that,
s already mentioned above, for k=0, i.e., b���=0, one obtains again the model treated in Ref. 10�.
hint of the reason why such values have a special significance is provided by �20� with �48�; but
e will return to this question below, so for the moment k can be considered just an arbitrary
umber.

With this assignment �48� the equations of motion �34� become

�n���� = 2a�n�����n��� +
ik�

1 + i��
��n���� − a�n

2���� + 2 �
m=1,m�n

N ��n���� − a�n
2������m� ��� − a�m

2 ����
�n��� − �m���

.

�49�

ote that we made �for reasons that will be immediately clear� a trivial, merely notational, change
we wrote the independent variable as � rather than t, and the dependent variables as �n��� rather
han zn�t��: accordingly appended primes indicate here differentiations of the dependent variables
n��� with respect to the independent variable �.
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. An isochronous model

We now make the following change of dependent and independent variables:

zn�t� = exp�i�t��n��� , �50a�

� =
exp�i�t� − 1

i�
, exp�i�t� = 1 + i�� , �50b�

ntailing the relation

żn�t� − i�zn�t� = exp�i�t��n���� , �50c�

ence as well

żn�0� = − i�zn�0� = �n��0� . �50d�

ote that this coincides with the trick �4�, with the specific assignment �=1.
It is thereby easily seen that the �nonautonomous� system �49� becomes via �50� the following

utonomous system, that we hereafter interpret as a many-body problem describing the motion in
he complex z-plane of the N points zn�t� evolving as functions of the �real� variable t �“time”�:

z̈n�t� − �3 + k�i�żn�t� − �2 + k��2zn�t� = a�2żn�t� − �2 + k�i�zn�t��zn�t�

+ 2 �
m=1,m�n

N �żn�t� − i�zn�t� − azn
2�t���żm�t� − i�zm�t� − azm

2 �t��
zn�t� − zm�t�

. �51�

or k=0 this system reduces of course to �7�, while for k�0 it coincides with �9�.
The solution of the initial-value problem for this system is then given, via �50� and �48b�, by

he following
Proposition 2: The solution zn�t� of the initial-value problem for this N-body problem, �51�,

s given by the following prescription:

zn�t� = eigenvalues of Ũ�t� , �52a�

Ũ�t� = exp�i�t��Ũ�0� + �ṽ����−1� f̃���P̃ + g̃���P̃Ũ�0� + Ũ�0��1 − a�Ũ�0��−1P̃�1 − w̃+�ac;k;��

+ a�w̃−�ac;k;�� − ��Ũ�0���1 − a�Ũ�0��−1, �52b�

Ũ�0� = diag�zn�0�� . �52c�

ṽ��� = �
n,m=1

N

p̃n
2 w̃+�ac;k;�� − aw̃−�ac;k;��zn�0�

1 − a�zn�0�
, �52d�

f̃�t� = �
n,m=1

N

p̃n
2− a−1w̃+��ac;k;�� + �w̃+�ac;k;�� + w̃−��ac;k;�� − 2�zn�0�

1 − a�zn�0�
, �52e�

g̃�t� = �
N

p̃n
21 − w̃+�ac;k;�� + �w̃+��ac;k;�� + �1 − w̃−��ac;k;���a�zn�0�

1 − a�zn�0�
, �52f�
n,m=1
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p̃n = 	 żn�0� − i�zn�0� − azn
2�0�

c̃
�1/2

, �52g�

c̃ = �
n=1

N

�żn�0� − i�zn�0� − azn
2�0�� . �52h�

he two scalar functions w̃±�
 ;k ;�� that characterize the time dependence of the N � N matrix
˜ �t� are the two solutions of the second-order ODE,

w̃��
;k;�� + 
�1 + i���kw̃�
;k;�� = 0, �53a�

see �20� with �48b�� characterized by the initial conditions

w̃+�
;k;0� = 1, w̃+��
;k;0� = 0, �53b�

w̃−�
;k;0� = 0, w̃−��
;k;0� = 1 �53c�

see �21��; and the variable � appearing in these equations, see �52� and �53�, is related to the
ndependent variable t �“time”� by �50b�. �

The solvability of this model is underscored by the possibility to write in explicit form the
unctions w̃±�
 ;k ;��,

w̃+�
;k;�� = 	 ����
��0��� I1−����0��I������� − I�−1���0��I−�������

I1−����0��I����0�� − I�−1���0��I−����0��
, �54a�

w̃−�
;k;�� = �− 
�−1/2	 ����
��0��� − I−����0��I������� + I����0��I−�������

I1−����0��I����0�� − I�−1���0��I−����0��
, �54b�

��t� = 2�� 


�2�1/2

�1 + i���1/�2�� =
2
1/2�1 + i���1+�k/2�

��2 + k�
, �54c�

� =
1

2 + k
, �54d�

here I���� is the Bessel functions of the second kind �see, for instance, Ref. 12�. Note that these
ormulas, which are valid for any value of the parameter k except k=−2, imply

	 ����
��0���

= �1 + i���1/2, �55�

nd, more importantly for the following, that the functions w̃±�
 ;k ;�� are entire functions of the
complex� variable � if k is an integer larger than −2, and that they are as well singularity free in
he entire complex �-plane if k is a negative integer smaller than −2 except for an essential
ingularity at �= i /�. The more direct way to verify the validity of these assertions is to note that
he formulas �54c� with �54d�, as well as the definition of the Bessel functions I±����,12 entail

�������I������� = 	 2


�2 + k�2�2��

�
j=0

�
1 + i��

j!��j + 1 + ��	
�1 + i���2+k

�2 + k�2�2 � j

, �56a�

�������I−������� = 	 


2�2 + k�2�2��

�
�

1

j!��j + 1 − ��	
�1 + i���2+k

�2 + k�2�2 � j

. �56b�

j=0
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t is therefore clear that if k is a arbitrary integer �different from −2�, the N � N matrix Ũ�t� is
eriodic in t with period T, see �50b� and �3�,

Ũ�t + T� = Ũ�t� , �57�

nd therefore its eigenvalues zn�t� are as well periodic functions of t with a period which is a finite

nteger multiple J of T �due to the possibility that the eigenvalues of Ũ�t� exchange their roles
hrough the motion; but of course J cannot exceed N!, indeed it is generally much smaller�.13 The
onclusions reported above about the isochronicity of the N-body problem �51� are therefore
onfirmed for all integer values of the parameter k, be they positive or negative, with the single
xception of the value k=−2.

In the exceptional case k=−2 clearly �see �53��

w̃+�
;− 2;�� = 1
2 �1 + i���1/2��1 + i���� + �1 + i���−�� , �58a�

w̃−�
;− 2;�� =
1

2i��
�1 + i���1/2��1 + i���� − �1 + i���−�� , �58b�

� =
1

2
�1 +

4


�2 �1/2

, �58c�

ntailing that the functions w̃±�
 ;−2;�� have a branch point at �= i /�. Hence in this case the
eneric solution of the many-body model �51� is not completely periodic: it is multiply periodic,
ts time evolution being a nonlinear superposition of two periodic time evolutions with two periods
hich are integer multiples, respectively, of T /2 and of

T̃ =
T

�
= 2T�1 +

4ac̃

w2 �−1/2

= 4���2 + 4ac̃�−1/2. �59�

ote that, in contrast to the period T, see �3�, this second period T̃ does depend on the initial data,

ee �59� with �52h�; of course the solution is completely periodic whenever T̃ and T are congruent.
The formulas written above remain valid for arbitrary �even complex� values of the parameter

, but in this paper we do not discuss such cases.

. Equilibrium configurations

In this section we report tersely some simple results for the equilibrium configurations of the
olvable isochronous system defined above. An outline of the derivation of these simple findings
s provided in Appendix A. More information on the equilibrium configurations �when they exist
or the N-body problem with arbitrary N� are provided in Sec. VI.

For N=2 the only genuine equilibrium configuration of the model �51� is z1=0 and z2

� / ia; this equilibrium configuration exists for all values of the parameter k. For N�2 there exist
enuine equilibrium configurations in which none of the coordinates zn takes one of these two
alues �namely such that zn�0 and zn�� / ia� only if k=−�N+1� or k=N−3. The first case is
haracterized by the relations

�
N

zn = 0, �60a�

n=1
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�
n=1

N

zn
2 = 0; �60b�

he second is instead characterized by the relations

�
n=1

N

zn =
N�

ia
, �

n=1

N

zn
2 = − N��

a
�2

. �61�

oreover there are two corresponding genuine equilibrium configurations of the �N+1�-body
roblem with the same values of the N coordinates zn and with zN+1=0 �provided zn�0�, respec-
ively, zN+1=� / ia �provided zn�� / ia�; and there is a corresponding genuine equilibrium configu-
ation of the �N+2�-body problem with the same values of the coordinates zn and with zN+1=0,

N+2=� / ia �provided zn�0 and zn�� / ia�.

. ALTERNATIVE FORMULATIONS

Alternative formulations of the solvable many-body problems reported above can be obtained
y introducing the time-dependent monic polynomial ��z , t�, of degree N in z, whose N zeros zn�t�
volve according to the solvable models described above,

��z,t� = �
n=1

N

�z − zn�t�� = zN + �
m=1

N

cm�t�zN−m �62a�

= �
m=0

N

cm�t�zN−m, c0 = 1, �62b�

nd by then considering the systems of ODEs characterizing the time evolution of the N coeffi-
ients cm�t� of this polynomial. These systems of N ODEs for the N coefficients cm�t� constitute
hen new, and clearly no less solvable, dynamical systems. To obtain these results the formulas
ollected in Appendix B are quite useful, and they allow us to report without further ado the
elevant results.

Remark: Clearly whenever the N numbers zn�t� are identified as the N eigenvalues of an N
� N matrix U�t�, the polynomial ��z , t� is given by the formula

��z,t� = det�z − U�t�� . �63�

�

It is now easily seen that, if the N zeros zn�t� evolve according to the Newtonian equations of
otion �8�, the polynomial ��z , t� satisfies the PDE,

�tt + 2az2�zt + a2z4�zz + �2ac1�t� − b − 2�N − 1�az��t + az2�2ac1�t� − b − 2�N − 2�az��z

+ a�2ac2�t� − bc1�t� + �bN − 2�N − 1�ac1�t��z + N�N − 3�az2� = 0, �64�

nd this clearly entails that the coefficients cm�t� evolve according to the following system of N
DEs:

c̈m − 2maċm+1 + �2ac1 − b�ċm + �m + 2��m − 1�a2cm+2 + �b − m�2ac1 − b��acm+1 + �2ac2 − bc1�acm

= 0. �65�

he special case of this system with b=0 �as well as its isochronous version� have been already
iscussed in Ref. 10.

Likewise, if the N zeros zn�t� evolve according to the Newtonian equations of motion �9�, the

olynomial ��z , t� satisfies the PDE,
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�tt + 2�i� + az�z�zt + �i� + az�2z2�zz + �2ac1�t� − �2N + k + 1�i� − 2�N − 1�az��t + ��2N + k��2

+ 2i�ac1�t� + �2a2c1�t� − �4N + k − 4�i�a�z − 2�N − 2�a2z2z�z + �2a2c2�t� − �2N + k�i�ac1�t�

− N�N + k + 1��2�− 2�N − 1�a2c1�t� + N�2N + k − 2�i�a�z + N�N − 3�a2z2� = 0, �66�

nd this clearly entails that the coefficients cm�t� evolve according to the following system of N
DEs:

c̈m − 2maċm+1 + �2ac1 − �2m + k + 1�i��ċm + �m + 2��m − 1�a2cm+2

+ �− 2ma2c1 + �m + 1��2m + k�i�a�cm+1 + �2a2c2 − �2m + k�i�ac1 − m�m + k + 1��2�cm = 0.

�67�

Note that, in writing these two systems of ODEs �65� and �67� satisfied by the dependent
ariables cm�t�, we always assume, consistently with our notational prescriptions, that the index m
anges from 1 to N, with the “boundary conditions”

cN+1 = cN+2 = 0; �68�

ut in fact in both these two cases the equations of motion are also identically satisfied for m
0 with c0=1, consistently with �62b�.

Consistently with the rescaled notation of Appendix A we now set

cm�t� = � �

ia
�m

m�t� , �69�

nd we thereby rewrite the system of ODEs �67� as follows:

̈m + 2mi�̇m+1 − �21 + 2m + k + 1�i�̇m − �m + 2��m − 1��2m+2

+ �2m1 + �m + 1��2m + k���2m+1 − �22 + �2m + k�1 + m�m + k + 1���2m = 0,

�70a�

N+1 = N+2 = 0. �70b�

I. EQUILIBRIUM CONFIGURATIONS, BEHAVIOR IN THEIR VICINITY, DIOPHANTINE
ELATIONS

The results of Appendix A entail that, via the rescaled definition

zn =
�un

ia
, �71�

he N equilibrium positions of the model characterized by the Newtonian equations of motion �9�
which is isochronous for all integer values of k except k=−2� are characterized as the solutions of
he two sets of N algebraic equations

s�N − 1� = 2 �
m=1,m�n

N
um

�s��1 − um
�s��

un
�s� − um

�s� , s = ± �72�

see �A7b� and �A10��. We moreover know that these two sets of equilibrium configurations,
orresponding to the two signs of the parameter s, are characterized by the values of the param-
ters k respectively �1 and �2 �see �9�, respectively, �A8�� related to N by the simple expressions
A10�. �Other equilibrium configurations of the N-body problem can be obtained from the solu-
ions of �72� with N replaced by N−1 and either uN

�s�=0 or uN
�s�=1, or from �72� with N replaced by

�s� �s�
−2 and uN−1=0, uN =1; as explained in Sec. IV C.�
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Remark 6.1: The solutions of these two systems of algebraic equations, �72�, are clearly
elated by the simple formula

un
�s� = 1 − un

�−s�. �73�

�

Hence we can hereafter restrict consideration to the simpler case with s=−1, setting for
otational convenience un

�−�=un. This entails �1=�2=0, see �A8� and �A10�, as well as

k = − �N + 1� �74�

nd

1 − N = 2 �
m=1,m�n

N
um�1 − um�

un − um
. �75a�

�

By replacing the numbers um with �um−un�+un in the numerator on the right-hand side of this
ystem we rewrite, after some elementary algebra, this system of N algebraic equations as follows:

N − 1 − 2�N − 2�un = 2 �
m=1,m�n

N
un�1 − un�

un − um
. �75b�

t is now convenient to introduce the polynomial 	�u�, of degree N in the variable u, that has the
numbers un, solutions of this system of N algebraic equations, �75�, as its N zeros,

	�u� = �
n=1

N

�u − un� = �
m=0

N


muN−m, 
0 = 1. �76�

t is then easy, using the formulas of Appendix B �see in particular �B2a�, �B2b�, �B2f�, and
B2h��, to conclude from �75b� that the polynomial 	�u� is characterized by the second-order
inear differential ODE,

u2	� − 2�N − 2�u	� + N�N − 3�	 = u	� − �N − 1�	�. �77�

Remark 6.2: This ODE coincides with that characterizing the Jacobi polynomial PN
�
,���2u

1� via the identification 
=−N+2, �=−N. But this observation is somewhat misleading because
he Jacobi polynomial PN

�
,�� �see Ref. 12� is not properly defined when its parameters 
 and � are
egative integers, as it is indeed the case here. �

Remarkably �as the diligent reader will verify�, the general solution of the ODE �77� is the
ollowing polynomial:

	�u� = �1 − ��uN + ���u − 1�N + N�u − 1�N−1 + 1
2N�N − 1��u − 1�N−2� , �78�

here � is an arbitrary constants �and we adjusted the second arbitrary constant featured by the
eneral solution of the second-order ODE �77� by imposing that the polynomial 	�u� be monic,
ee �76��. Note that, with this choice, the coefficients 
m, see �76�, are defined by the following
ormula:


0 = 1, 
m = �− �m��m − 1��m − 2�N!

2�m!�N − m�!�
, m = 1, . . . ,N . �79�

ote that these formulas entail


1 = 
2 = 0. �80�
Correspondingly the numbers un are the N zeros of this polynomial �78�,
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	�un� = 0, �81�

ee �76�.

. Behavior near equilibrium

Let us now consider the behavior of the isochronous system �51�, respectively, �11� in the
eighborhood of their equilibrium configurations, see Appendix A, respectively, just above.

We treat first the system �51�. Consistently with the notation of Appendix A �see �A6�� we
ow set

zn�t� = � �

ia
�un + �wN�t� , �82�

nd by treating � as a small parameter we obtain for the N-vector w� ��w1 , . . . ,wN� the system of
linear ODEs,

w�̈ + i�A� w�̇ + �2B� w� = 0, �83�

ith the two N � N matrices A� and B� defined as follows:

Anm = �nm�2un − 1� + 2�1 − �nm�
un�1 − un�

un − um
, �84a�

Bnm = − 2�nm �
m=1,m�n

N
unum�1 − un��1 − um�

�un − um�2 + 2�1 − �nm�
un�1 − un��um

2 − 2unum + un�
�un − um�2 .

�84b�

ote that in this section we denote N-vectors, respectively, N � N matrices by underlined lower-
ase, respectively, upper-case �italic� letters. To obtain these expressions of the matrices A� and B�
e also used the formula �A7b�. Remarkably, the number N does not appear explicitly in the
efinitions of these two matrices, except to the extent of defining their rank and the upper limit of
he sum in �84b�; but its value does of course influence the values of the N numbers un, see above.

Clearly the general solution of the N-vector second-order ODE �83� reads

w� �t� = �
j=1

2N

�� j exp�i� j�t�w� �j�� , �85a�

here the 2N constants � j are arbitrary, while the 2N numbers � j, respectively, the 2N �time-
ndependent� N-vectors w� �j� are the eigenvalues, respectively, the eigenvectors of the �generalized�
igenvalue equation

�� j
2 + � jA� − B� �w� �j� = 0, j = 1,2, . . . ,2N . �85b�

But we know that the system �51� is isochronous, namely its generic solution is completely
eriodic with period T, see �3�. Hence the solution �85� must also possess this property, and this
learly entails the following diophantine

Theorem 1: Let the N numbers un�un��� be the N zeros of the polynomial 	�u� �see �78�,
nd note the arbitrariness of the constant ��, and let the two N � N matrices A� and B� be defined in
erms of these N numbers by the formulas �84�; then the 2N eigenvalues � j of the generalized
igenvalue equation �85b� are all integers. �

We have verified this finding by performing some numerical computations, and we are thereby
ed to proffer the following �more specific� diophantine
Conjecture 1: Let the N numbers un�un��� be the N zeros of the polynomial 	�u� �see �78�,
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nd note the arbitrariness of the constant ��, and let the two N � N matrices A� and B� be defined in
erms of these N numbers by the formulas �84�; then

det��2 + �A� − B� � = �
j=1−N

N

�� − j� . �86�

�

Let us now proceed and treat analogously the isochronous system �11�, or rather its rescaled
ersion �70a�. Hence we set

m = 
m + ��m�t� , �87�

here the numbers 
m characterize the equilibrium configuration and we will treat again � as a
mall parameter. Clearly the numbers 
m satisfy the linear recursion relations

− �m + 2��m − 1�
m+2 − �m + 1��N + 1 − 2m�
m+1 + m�N − m�
m = 0, �88a�

ith the additional conditions


N+1 = 
N+2 = 0, �88b�

hich obtain, to the lowest order in �, by inserting �87� in the system of ODEs �70� satisfied by
he dependent variables m�t�. Note that, to simplify these equations, �88a�, we also used the fact
hat 
1 and 
2 vanish, see �80�, as well of course as the fact that we are restricting attention to the
alue k=−�N+1�, see �74�. As implied by their definition and by the treatment given above these
umbers 
m are given by the explicit formulas �79�, as the diligent reader will verify

To the next order in � we get the linearized system of ODEs,

�̈m + 2mi��̇m+1 + �N − 2m�i��̇m − �m + 2��m − 1��2�m+2 − �m + 1��N + 1 − 2m��2�m+1

+ 2m
m+1�2�1 + m�N − m��2�m − 2
m�2�2 + �N + 1 − 2m�
m�2�1 = 0, �89a�

hich has again been simplified by taking advantage of �80� and �74�. We now rewrite this system
n more compact form as follows:

�̈� + i�A�̃ ��̇ − �2B�̃ �� = 0, �89b�

here the N-vector �� ��� �t� has of course the components �m��m�t� and the two N � N matrices

� and B̃� are defined �componentwise� as follows:

Ãm,n = �N − 2m��m,n + 2m�m+1,n, �90�

B̃m,n = m�N − m��m,n − �m + 1��N + 1 − 2m��m+1,n − �m + 2��m − 1��m+2,n

+ �2m
m+1 + �N + 1 − 2m�
m��1,n − 2
m�2,n, �91a�

here the numbers 
m are of course defined by �79� with �88b�. Hence, proceeding in close
nalogy with the treatment given above we arrive at the following findings.

Theorem 2: Let the two N � N matrices Ã� and B̃� be defined by �90� and �91a� with �79� and
88b�. Then the 2N eigenvalues �̃ j of the generalized eigenvalue equation

��̃ j
2 + �̃ jA� − B� �w�̃ �j� = 0, j = 1,2, . . . ,2N �91b�

re all integer numbers. �

Conjecture 2: Let the two N � N matrices Ã� and B̃� be defined by �90� and �91a� with �79� and

88b�. Then
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det��̃2 + �̃A�̃ − B�̃ � = �
j=1−N

N

��̃ − j� . �92�

�

For small values of N this conjecture can of course be easily verified by explicit computation.
or instance for N=5 it yields the result �14�.

II. A FURTHER EXTENSION

A further extension of our results obtains if we take as starting point of our treatment, instead
f the solvable matrix evolution equation �15�, the following �more general, but still solvable�
atrix evolution equation:

U̇�t� = a�U�t��2 + V�t�, V̇�t� = b�t�V�t� + f�t��V�t��2. �93�

ere f�t� is an arbitrary �scalar� function. Of course this equation reduces back to �15� for f�t�
0.

The developments of Secs. II and III can then be repeated and they lead to the following,
pparently more general, variant of �34�:

z̈n�t� = 2ażn�t�zn�t� + b�t��żn�t� − azn
2�t�� + f�t��żn�t� − azn

2�t��2

+ �
m=1,m�n

N

��żn�t� − azn
2�t���żm�t� − azm

2 �t���f�t� + 2�zn�t� − zm�t��−1� , �94�

hich can however clearly be rewritten in the following equivalent form:

z̈n�t� = 2ażn�t�zn�t� + b̃�t��żn�t� − azn
2�t�� + 2 �

m=1,m�n

N �żn�t� − azn
2�t���żm�t� − azm

2 �t��
zn�t� − zm�t�

, �95a�

ith

b̃�t� = b�t� + f�t��
n=1

N

�żn�t� − azn
2�t�� . �95b�

t is thereby clear that the system of N Newtonian equations of motion �94� is identical to the

ystem �34�, up to the replacement of the arbitrary �scalar� function b�t� with the function b̃�t�,
ee �95b�. Moreover, by summing �95a� over n from 1 to N one notes that

d

dt
�
n=1

N

�żn�t� − azn
2�t�� = b̃�t��

n=1

N

�żn�t� − azn
2�t�� �96�

ntailing

�
n=1

N

�żn�t� − azn
2�t�� = c exp	


0

t

dt� b̃�t��� �97a�

ith

c = �
n=1

N

�żn�0� − azn
2�0�� �97b�

see, incidentally, �37��, so that the function b̃�t� turns out, see �95b�, to be related to the �a priori

rbitrary� function b�t� by the formula
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b̃�t� = b�t� + cf�t�exp	

0

t

dt� b̃�t��� , �98a�

hich is easily inverted to read

b̃�t� = b�t� + �b̃�0� − b�0��
f�t�
f�0�

exp	

0

t

dt� b�t��� . �98b�

One therefore concludes that, in spite of the additional generality of the matrix evolution
quation �93� with respect to the matrix evolution �15�, the solvable Newtonian system one finally
rrives at starting from �93� is not really more general than that, see �34�, obtained in Secs. II and
II starting from �15�. Hence we do not pursue this generalization in this paper.

PPENDIX A: EQUILIBRIUM CONFIGURATIONS

In this appendix we outline the calculations that yield the results about the equilibrium con-
gurations of the many-body problems �41� and �51�, as reported above.

To treat the first case, �41�, we set, for notational convenience,

Z � �
n=1

N

zn, S � �
n=1

N

zn
2. �A1�

The equilibrium configuration of this system �41� is clearly characterized by the following set
f N algebraic equations:

bazn
2 = 2a2 �

m=1,m�n

N
zn

2zm
2

zn − zm
. �A2a�

ere we assume a�0, and as well zn�0, hence we replace the above system with the following
ne:

b = 2a �
m=1,m�n

N
zm

2

zn − zm
. �A2b�

ote that the structure of the above equations, see �A2�, entails that, to every genuine equilibrium
onfiguration of N points zn satisfying �A2b� and such that zn�0, there also corresponds a genuine
quilibrium configuration of N+1 points with the same N values zn and with zN+1=0.

Summing �A2a� over n from 1 to N we clearly get

S = 0, �A3�

ince the sum on the right-hand side vanishes due to the antisymmetry of the summand under the
xchange of the two dummy indices n and m. Likewise, summing �A2b� over n from 1 to N and
aking advantage of the possibility to exchange in the double sum on the right-hand side the two
ummy indices n and m we easily get

Z = −
Nb

2�N − 1�a
. �A4�

Finally, multiplying �A2b� by zn and then summing over n from 1 to N, taking again advan-
age of the possibility to exchange in the double sum on the right-hand side the two dummy

ndices n and m and using �A3� we easily get
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bZ = − aZ2, �A5�

nd it is then immediately seen, via �A4�, that this yield N=2 �in addition to the unacceptable
esult N=0�.

To analyze the equilibrium configuration of the second system, �51�, it is convenient to rescale
he dependent variables by setting

zn =
�un

ia
, �A6�

ssuming hereafter that neither one of the two constants a, � vanish. The equilibrium configura-
ion is then clearly characterized by the following set of N algebraic equations:

�2 + k�un�un − 1� = − 2un�un − 1� �
m=1,m�n

N
um�um − 1�

un − um
. �A7a�

e now restrict consideration to equilibrium configurations of N points zn such that un�0 and

n�1: note that the structure of these algebraic equations implies then the possibility to extend
ur findings for the N-body system �51� to analogous �N+1�-body and �N+2�-body systems, as
eported in Sec. IV C. We therefore rewrite these algebraic equations as follows:

2 + k = 2 �
m=1,m�n

N
um�1 − um�

un − um
. �A7b�

It is now convenient, proceeding in close analogy to what we did just above, to introduce the
wo quantities

�1 = �
n=1

N

un, �2 = �
n=1

N

un
2, �A8�

nd to thereby obtain �by summing �A7b� over n from 1 to N after multiplying it, respectively, by

n �1−un�, by 1, and by un� the three relations

�1 = �2, �A9a�

2�N − 1��1 = N�N + k + 1� , �A9b�

�2 + k��1 = �1
2 − �2. �A9c�

t is then a matter of trivial algebra to obtain the formulas

k = s�N − 1� − 2, �1 = �2 =
N�1 + s�

2
, s = ± 1, �A10�

hich entail the results reported in Sec. IV C, and are the basis for the further developments
eported in Sec. VI.

PPENDIX B: SOME USEFUL POLYNOMIAL IDENTITIES

We report here some useful identities: several of them are copied from Sec. 2.3.2 of Ref. 4, a
ew are analogous to those explicitly given there �and their proofs are sufficiently standard to be
orsaken�.

Let ��z , t� be a monic polynomial of degree N in z, and let us denote with cm�t� its N

oefficients and with zn�t� its N zeros,
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��z,t� = zN + �
m=1

N

cm�t�zN−m = �
n=1

N

�z − zm�t�� , �B1a�

o that clearly

�
n=1

N

zn�t� = − c1�t�, �
n=1

N

�zn�t��2 = �c1�t��2 − 2c2�t� , �B1b�

nd so on. Then clearly

z�z�z,t� = NzN + �
m=1

N

�N − m�cm�t�zN−m, �B1c�

z2�zz�z,t� = N�N − 1�zN + �
m=1

N

�N − m��N − m − 1�cm�t�zN−m, �B1d�

nd so on;

�t�z,t� = �
m=1

N

ċm�t�zN−m, �B1e�

�tt�z,t� = �
m=1

N

c̈m�t�zN−m, �B1f�

nd so on.
Likewise,

�z�z,t� = ��z,t��
n=1

N

�z − zn�t��−1, �B2a�

z�z�z,t� − N��z,t� = ��z,t��
n=1

N

�z − zn�t��−1�zn�t� , �B2b�

z2�z�z,t� + �c1�t� − Nz���z,t� = ��z,t��
n=1

N

�z − zn�t��−1��zn�t��2 , �B2c�

�t�z,t� = ��z,t��
n=1

N

�z − zn�t��−1�− żn�t� , �B2d�

z�t�z,t� − ċ1�t���t� = ��z,t��
n=1

N

�z − zn�t��−1�− żn�t�zn�t� , �B2e�

�zz�z,t� = ��z,t��
N

�z − zn�t��−1� �
N

2

zn�t� − zm�t�� , �B2f�

n=1 m=1,m�n
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z�zz�z,t� = ��z,t��
n=1

N

�z − zn�t��−1� �
m=1,m�n

N
2zn�t�

zn�t� − zm�t�� , �B2g�

z2�zz�z,t� − N�N − 1���z,t� = ��z,t��
n=1

N

�z − zn�t��−1� �
m=1,m�n

N
2zn

2�t�
zn�t� − zm�t�� , �B2h�

z2�zz�z,t� − 2�N − 1�z�z�z,t� + N�N − 1���z,t� = ��z,t��
n=1

N

�z − zn�t��−1� �
m=1,m�n

N
2zn�t�zm�t�
zn�t� − zm�t�� ,

�B2i�

z3�zz�z,t� − Z�N − 1�z��z,t� + 2�N − 1�c1�t���z,t� = ��z,t��
n=1

N

�z − zn�t��−1� �
m=1,m�n

N
2zn

3�t�
zn�t� − zm�t�� ,

�B2j�

z�z2�zz�z,t� − 2�N − 1�z�z�z,t� + N�N − 1���z,t�� = ��z,t��
n=1

N

�z − zn�t��−1� �
m=1,m�n

N
2�zn�t��2zm�t�
zn�t� − zm�t� � ,

�B2k�

z3�zz�z,t� − 2�N − 2�z2�z�z,t� + 2c1�t�z�z�z,t� + N�N + 1�z��z,t� − 2�N − 1�c1�t���z,t�

= ��z,t��
n=1

N

�z − zn�t��−1� �
m=1;m�n

N
2zn�t�zm

2 �t�
zn�t� − zm�t�� , �B2l�

z4�zz�z,t� − N�N − 1�z2��z,t� + 2�N − 1�c1�t�z��z,t� − 2�N − 1��c1�t��2��z,t� + 2�2N − 3�c2�t���z,t�

= ��z,t��
n=1

N

�z − zn�t��−1� �
m=1,m�n

N
2zn

4�t�
zn�t� − zm�t�� , �B2m�

z4�zz�z,t� − 2�N − 2�z3�z�z,t� + 2c1�t�z2�z�z,t� + �N�N − 3�z2 − 2�N − 1�c1�t�z + 2c2�t����t�

= ��z,t��
n=1

N

�z − zn�t��−1� �
m=1,m�n

N
2�zn�t��2�zm�t��2

zn�t� − zm�t� � , �B2n�

�zt�z,t� = ��z,t��
n=1

N

�z − zn�t��−1�− �
m=1,m�n

N
żn�t� + żm�t�
zn�t� − zm�t�� , �B2o�

z�zt�z,t� = ��z,t��
n=1

N

�z − zn�t��−1�− �
m=1,m�n

N
zn�t��żn�t� + żm�t��

zn�t� − zm�t� � , �B2p�

z2�zt�z,t� + �c1�t� − �N − 2�z��t�z,t� − ċ1�t���z,t�

= ��z,t��
N

�z − zn�t��−1�− �
N

żn�t�zm
2 �t� + żm�t�zn

2�t�
zn�t� − zm�t� � , �B2q�
n=1 m=1,m�n
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�tt�z,t� = ��z,t��
n=1

N

�z − zn�t��−1�− z̈n�t� + �
m=1,m�n

N
2żn�t�żm�t�
zn�t� − zm�t�� . �B2r�
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In this paper we provide a complete description of the first integrals of the classical
Bianchi IX system that can be described by a general class of formal power series.
As a corollary we also obtain a complete description of some of its analytic first
integrals in a neighborhood of the origin. In particular, we prove that the system is
not completely integrable by analytic first integrals. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2168123�

. INTRODUCTION TO THE PROBLEM

The Bianchi IX model can be written as the Hamiltonian system �see Ref. 4�:

q̇1 = F1�q,p� = 12q1�p1q1 − p2q2 − p3q3� ,

q̇2 = F2�q,p� = 12q2�− p1q1 + p2q2 − p3q3� ,

q̇3 = F3�q,p� = 12q3�− p1q1 − p2q2 + p3q3� ,

�1�
ṗ1 = F4�q,p� = − 12p1�p1q1 − p2q2 − p3q3� − 1

3 �q1 − q2 − q3� ,

ṗ2 = F5�q,p� = − 12p2�− p1q1 + p2q2 − p3q3� − 1
3 �− q1 + q2 − q3� ,

ṗ3 = F6�q,p� = − 12p3�− p1q1 − p2q2 + p3q3� − 1
3 �− q1 − q2 + q3� ,

ith the Hamiltonian

H = 6�p1
2q1

2 + p2
2q2

2 + p3
2q3

2 − 2p1q1p2q2 − 2p1q1p3q3 − 2p2q2p3q3�

+ 1
6 �q1

2 + q2
2 + q3

2 − 2q1q2 − 2q1q3 − 2q2q3� .

f course, here �q , p� denotes �q1 ,q2 ,q3 , p1 , p2 , p3�.
The solutions which lie in the zero level set of the Hamiltonian H, provide a model for

escribing the evolution of the universe, see for instance, Ref. 6. Furthermore, the set defined as

�Electronic mail: jllibre@mat.uab.es
�
Electronic mail: cvalls@math.ist.utl.pt

47, 022704-1022-2488/2006/47�2�/022704/15/$23.00 © 2006 American Institute of Physics

                                                                                                            

http://dx.doi.org/10.1063/1.2168123
http://dx.doi.org/10.1063/1.2168123
http://dx.doi.org/10.1063/1.2168123


i
fl
W
m

b
a
c
c
i
s
i
n
t
c
D

d
f
f
i
s
s
s
u

s

i
i
p

v

w
s

o

o
�

022704-2 J. Llibre and C. Valls J. Math. Phys. 47, 022704 �2006�

                        
C = ��q,p� � R6�qi � 0,i = 1,2,3, q1q2q3 = 0� ,

s the phase space gravitational collapse set. It should noted that since qi=0 are invariant under the
ow of �1�, the phase space gravitational collapse set C is invariant under the flow given by �1�.
e note that in our study of the first integrals of system �1�, the invariant sets qi=0, will play a
ain role.

Recently, this system has been intensively investigated from the point of view of integrability
y using different methods. One of these methods is the Painlevé test �see, for instance, Refs. 7
nd 3� where the authors prove that the solutions of the equation of motion do not have movable
ritical points and conjecture that system �1� is not integrable. Another method is the numerical
omputation of the Lyapunov exponents �see Ref. 2�, where the authors also conjecture the non-
ntegrability of system �1�. In Ref. 4 the authors, by means of symplectic geometrical techniques,
tudy the local integrability of system �1�. In Ref. 11 it is shown that system �1� is not completely
ntegrable in the Birkhoff sense. In Ref. 12 the author proves that the Hamiltonian system �1� is
ot completely integrable with rational first integrals using techniques from the differential Galois
heory. Moreover, in Ref. 10, the authors, applying the Darboux theory of integrability, provide a
omplete description of the Darboux polynomials, exponential factors, rational first integrals and
arbouxian first integrals for this model.

The aim of this paper is to study the existence of first integrals of system �1� that can be
escribed by formal series. We use these tools for proving similar results to the ones of this paper
or the Lorenz system and for the Einstein-Yang-Mills system, see Refs. 8 and 9. But the use of
ormal series in the study of differential equations and, in particular, in the existence of their first
ntegrals is a classical tool. Indeed, for instance, solutions described by formal series around
ingularities have been studied by Seidenberg,15 the existence of first integrals given by formal
eries have been studied by Nemytskii and Stepanov,14 Moussu.13 etc. However, the greatest
uccess in using formal series to study differential equations has been achieved by Écalle5 who
sed them to prove the Dulac’s conjecture.

In this paper we say that a formal first integral f = f�q , p� of system �1� is a formal power
eries in the variables q and p such that

�
k=1

3 	 �f

�qi
Fi�q,p� +

�f

�pi
Fi+3�q,p�
 = 0,

s different from a polynomial. In Ref. 10 the authors have proved that all polynomial first
ntegrals of system �1� are polynomial functions in the variable H. The first main result of this
aper is the following.

Theorem 1: All formal first integrals of the Bianchi IX model �1� are formal series in the
ariable H.

Here an analytic first integral of system �1� is an analytic function in the variables q and p
hich is constant over the trajectories of system �1� and it is different from a polynomial. The

econd main result of this paper is the following.
Theorem 2: All analytic first integrals of the Bianchi IX model �1� in a neighborhood of the

rigin are analytic functions in the variable H.
Theorems 1 and 2 are an immediate consequence of Theorems 3 and 4 stated below. We first

bserve that since Ḣ=0, we can rewrite system �1� as the following system in the seven variables
q1 ,q2 ,q3 , p1 , p2 , p3 ,H�:

q̇1 = F1�q,p� = 12q1�p1q1 − p2q2 − p3q3� ,

q̇2 = F2�q,p� = 12q2�− p1q1 + p2q2 − p3q3� ,

˙
q3 = F3�q,p� = 12q3�− p1q1 − p2q2 + p3q3� ,
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ṗ1 = F4�q,p� = − 12p1�p1q1 − p2q2 − p3q3� − 1
3 �q1 − q2 − q3� ,

ṗ2 = F5�q,p� = − 12p2�− p1q1 + p2q2 − p3q3� − 1
3 �− q1 + q2 − q3� ,

ṗ3 = F6�q,p� = − 12p3�− p1q1 − p2q2 + p3q3� − 1
3 �− q1 − q2 + q3� ,

Ḣ = F7�q,p� = 0. �2�

We say that a formal first integral f = f�q1 ,q2 ,q3 , p1 , p2 , p3 ,H� of system �2� is a formal power
eries in the variables q, p, and H such that

�
k=1

3 	 �f

�qi
Fi�q,p� +

�f

�pi
Fi+3�q,p�
 +

�f

�H
F7�q,p� = 0.

Theorem 3: All formal first integrals of system �2� are formal series in the variable H.
Here an analytic first integral of system �2� is an analytic function in the variables q, p, and

which is constant over the trajectories of system �2�.
Theorem 4: All analytic first integrals of system �2� in a neighborhood of the origin are

nalytic functions in the variable H.
The proofs of Theorems 3 and 4 are given in Sec. III.
We say that the functions F1 , . . . ,Fn are in involution if �Fi ,Fj�=0 for all i� j, where �·, ·�

enotes the Poisson bracket. Moreover, they are independent if the one-forms dF1 , . . . ,dFn are
inearly independent over a full Lebesgue measure subset of the common definition domain of Fj

or j=1, . . . ,n. By definition, a Hamiltonian system with n degrees of freedom having n indepen-
ent first integrals in involution is completely integrable, see for more details Ref. 1.

As a direct consequence of Theorem 2, we have the next result.
Corollary 5: The Bianchi IX model �1� is not completely integrable by analytic first integrals.
The paper is organized as follows. In Sec. II we provide some auxiliary results that will be

sed all through the paper and will be crucial to prove Theorem 3. Finally, in Sec. III we provide
he proofs of Theorems 3 and 4.

I. AUXILIARY RESULTS

In this section we provide some auxiliary results that will be used along the paper.
Lemma 6: Let x and y be one-dimensional variables. Given a formal power series f�x�, there

xists a formal power series g�x ,y� such that

f�x� + f�y� = f�x + y� + f�0� − xyg�x,y� .

Proof: We write f�z�= f�0�+�j=1
� f jz

j. Then, using Newton’s binomial formula,

f�x + y� + f�0� = 2f�0� + �
j=1

�

f j�x + y� j = 2f�0� + �
j=1

�

f j�
k=0

j 	 j

k

xkyj−k = f�x� + f�y�

+ xy�
j=2

�

f j�
k=0

j−2 	 j

k + 1

xkyj−2−k = f�x� + f�y� + xyg�x,y� .

�

Lemma 7: Let xk be one-dimensional variables for k=1, . . . ,n with n�1. Let f

f�x1 , . . . ,xn� be a formal power series such that in xl=c0, f ��x1 , . . . ,xn��xl=c0
= f̄ , where c0 is a

onstant, f is a formal power series in the variables x1 , . . . ,xl−1, xl+1 , . . . ,xn and l� �1, . . . ,n�.
hen, there exists a formal series g=g�x1 , . . . ,xn� such that f = f̄ + �xl−c0�g.

+
Proof: We denote by Z the set of all non-negative integers. We write
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f = �
�k1,. . .,kn���Z+�n

fk1,. . .,kn
x1

k1
¯ xn

kn.

ithout loss of generality we can assume l=1. Then, writing x1=c0+ �x1−c0�, we have

f = �
�k1,. . .,kn���Z+�n

fk1,. . .,kn
�c0 + �x1 − c0��k1x2

k2
¯ xn

kn.

ow, by the Newton’s binomial formula we have

f = �
�k1,. . .,kn���Z+�n

fk1,. . .,kn�
j=0

k1 	k1

j

c0

j �x1 − c0�k1−jx2
k2
¯ xn

kn

= �
�k1,. . .,kn���Z+�n

fk1,. . .,kn
c0

k1x2
k2 . . . xn

kn

+ �x1 − c0� �
�k1,. . .,kn���Z+�n

fk1,. . .,kn �
j=0

k1−1 	k1

j

c0

j �x1 − c0�k1−j−1x2
k2
¯ xn

kn

= f�c0,x2, . . . ,xn� + �x1 − c0�g�x1, . . . xn� = f̄ + �x1 − c0�g ,

hich finishes the proof of the lemma. �

The following lemmas are auxiliary results, that will be used in the proof of Proposition 13,
roposition 15, and Theorem 1.

Proposition 8: Any analytic first integral f of the differential system

ẋ = 12xu, ẏ = 12yu + 1
3 , ż = 12zu + 1

3 , u̇ = − 12u2 − 1
3 , �3�

n R4 is an analytic function f = f�F1�x ,u� ,F2�y ,u� ,F3�z ,u�� in the variables
F1�x ,u� ,F2�u ,y� ,F3�u ,z��, where

F1�x,u� = x2�1 + 36u2�, F2�y,u� = 6�1 + 36u2y + arcsin�6u� �4�

nd

F3�z,u� = 6�1 + 36u2z + arcsinh�6u� . �5�

Proof: Since F1�x ,u�, F2�y ,u�, and F3�z ,u� are three functionally independent analytical first
ntegrals of the four-dimensional system �3�, any other analytical first integral must be an analytic
unction of them. �

From Proposition 8 it follows the next result.
Corollary 9: Any formal first integral f of system �3� is a formal power series in the variables

1�x ,u�, f2�y ,u�, and f3�u ,z�, where f2�y ,u� and f3�u ,z� are, respectively, the power series of

2�y ,u� and F3�u ,z� in a neighborhood of the origin.
We observe that since

�1 + 36u2 = 1 + 18u2 + O�u4�, arcsinh�u� = u�1 −
u2

6
+ O�u4�

e get

f2�y,u� = 6y�1 + 18u2 + O�u4�� + 6u�1 − 6u2 + O�u4�� ,

�6�
f3�z,u� = 6z�1 + 18u2 + O�u4�� + 6u�1 − 6u2 + O�u4�� .
Proposition 10: Any analytic first integral f of the differential system
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ẋ = 12xu, ẏ = 12yu, ż = 12zu + 1
3 , u̇ = − 12u2 − 1

3 , �7�

n R4 is an analytic function f = f�F1�x ,u� ,F3�y ,u� ,F4�z ,u�� in the variables
F1�x ,u� ,F3�y ,u� ,F4�z ,u��, where F1�x ,u� was introduced in �4�, F3�z ,u� was introduced in �5�
nd F4�y ,u�=y2�1+36u2�.

Proof: Since F1�x ,u�, F3�y ,u�, and F4�z ,u� are three functionally independent analytical first
ntegrals of the four-dimensional system �7�, any other analytical first integral must be an analytic
unction of them. �

From Proposition 10 it follows the next result.
Lemma 11: Any analytic first integral f of system �7� in x�0 of the form f =g /x2m, where m

s a positive integer and g is a formal power series, can be written in the form

f =
y2m

x2m �
k,l,n�0

fk,m+l,nF1�x,u�kF4�y,u�l f3�z,u�n.

Proof: Since f is an analytic first integral of system �7� in x�0, we have from Proposition 10
hat in x�0, f = f�F1�x ,u� ,F3�z ,u� ,F4�y ,u��. Since f is of the form f =g /x2m with g being a formal
eries, and only F1�x ,u� depends on x �in the form x2�, we obtain

f =
1

F1�x,u�m �
k,l,n�0

fk,l,nF1�x,u�kF4�y,u�l f3�z,u�n.

sing that F1=x2F4 /y2 we get

f =
y2m

x2mF4�y,u�m �
k,l,n�0

fk,l,nF1�x,u�kF4�y,u�l f3�z,u�n, �8�

nd since f must be analytic in x�0, we have that the sum in �8� with l=0,1 , . . . ,m−1 must be
ero, i.e.,

�
k,n�0

�
l=0

m−1

fk,l,nF1�x,u�kF4�y,u�l f3�z,u�n = 0,

nd thus, �8� becomes

f =
y2m

x2m �
k,l,n�0

fk,m+l,nF1�x,u�kF4�y,u�l f3�z,u�n,

hich finishes the proof of the lemma. �

Let � ,� :C�q1 ,q2 ,q3 , p1 , p2 , p3 ,H�→C�q1 ,q2 ,q3 , p1 , p2 , p3 ,H� be the automorphism

��qi� = − qi, ��pi� = − pi, i = 1,2,3, ��H� = H;

��q1� = q2,��q2� = q3,���3� = q1,��p1� = p2,��p2� = p3,��p3� = p1,��H� = H .

hen, the following proposition holds.
Proposition 12: Let g be a formal first integral of system �2�.

a� Then f = �g ·�g ·�2g� ·��g ·�g ·�2g� is another formal first integral of system �2� invariant by
� and �. Here · denotes multiplication.

b� Moreover, the monomials of f are of the form q1
j1q2

j2q3
j3p1

l1p2
l2p3

l3Hm with j1+ j2+ j3+ l1+ l2+ l3
even.

Proof: Statement �a� of the proposition follows taking into account that system �2� is invariant
2
nder �, �, and � . To prove statement �b� we write f in formal power series of its variables as
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f = �
�j1,j2,j3,l1,l2,l3,m���Z+�7

f j1,j2,j3,l1,l2,l3,mq1
j1q2

j2q3
j3p1

l1p2
l2p3

l3Hm.

hen, since f is invariant by �, it must hold that f −��f�=0. That is, the formal power series

�
�j1,j2,j3,l1,l2,l3,m���Z+�7

�1 − �− 1� j1+j2+j3+l1+l2+l3�f j1,j2,j3,l1,l2,l3,mq1
j1q2

j2q3
j3p1

l1p2
l2p3

l3Hm

ust be zero. This implies that j1+ j2+ j3+ l1+ l2+ l3 must be even. �

Proposition 13: Let n� �1,2 ,3�. System �2� restricted to qn=0 has the two first integrals

H2n−1 = 6�pmqm − prqr�2 + 1
6 �qm − qr�2, H2n = qmqr,

here �m ,n ,r�= �1,2 ,3�. If g is a formal first integral of system �2� invariant by � and �, then
f =g�qn=0� is a formal power series in the variables H2n−1 and H2n.

Proof: We shall prove only the case n=1 since the other two cases can be proved in the same
ay. In this case, we can consider m=2 and r=3. It is easy to check that H1 and H2 are first

ntegrals of system �2� restricted to q1=0.
Let f = f�q2 ,q3 , p1 , p2 , p3 ,H1� be the restriction of g to q1=0. Then, f is a formal first integral

f system �2� restricted to q1=0. We write f as

f = �
k�0

fkH1
k, fk = fk�q2,q3,p1,p2,p3� , �9�

here fk are formal series in their variables. From the fact that f is a formal first integral of system
2� restricted to q1=0, it satisfies

12q2�p2q2 − p3q3�
�f

�q2
− 12q3�p2q2 − p3q3�

�f

�q3
+ 	12p1�p2q2 + p3q3� +

1

3
�q2 + q3�
 �f

�p1

− 	12p2�p2q2 − p3q3� +
1

3
�q2 − q3�
 �f

�p2
+ 	12p3�p2q2 − p3q3� +

1

3
�q2 − q3�
 �f

�p3
= 0.

e denote by f̄ the restriction of f to the set

F = �q2 = 0, H1 = 0� = �q2 = 0,q3
2�p3

2 + 1/36� = 0� .

e note that on q2=q3=0 all the points �0,0 , p1 , p2 , p3� are singular points of system �2� restricted

o q1=0, and thus we do not obtain any information on f̄ by restricting f to the subset q2=q3

0 of F. We shall compute the restriction f̂ of f to q2=0 q3�0. In this case, f̂ is a formal power
eries that satisfy, after dividing by q3,

12q3p3
� f̂

�q3
+ 	12p1p3 +

1

3

 � f̂

�p1
+ 	12p2p3 +

1

3

 � f̂

�p2
− 	12p3

2 +
1

3

 � f̂

�p3
= 0.

hen, f̂ is a formal first integral of system �3� �setting x=q3, u= p3, y= p1 and z= p2� and from
orollary 9 we get

f̂ = �
k,l,n�0

f̂ k,l,nF1�q3,p3�kf2�p1,p3�l f3�p2,p3�n �10�

ith F1�q3 , p3� introduced in �4� and f2�p1 , p3�, f3�p2 , p3� were introduced in Corollary 9. Now, by
¯ ˆ
efinition f is the restriction of f to F1�q3 , p3�=0. Thus, from �10�, we have
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f̄ = �
l,n�0

f̂0,l,nf2�p1,p3�l f3�p2,p3�n = �
l,n�0

f̄ l,nf2�p1,p3�l f3�p2,p3�n.

ow, let f* be the restriction of g to H=0. Then, f* is a formal power series and since g and H are
nvariant by �, ��f*�= f*. Furthermore, if we denote by f1

* the restriction of f* to q1=q2=q3=0, we

ave that f1
* is equal to the restriction of f̄ to q3=0, and since f̄ does not depend on q3, f̄ is

nvariant by �. So, �� f̄�= f̄ and �2� f̄�= f̄ . This implies that

f̄ = �
l,n�0

f̄ l,nf2�p1,p3�l f3�p2,p3�n = �
l,n�0

f̄ l,nf2�p2,p1�l f3�p3,p1�n = �
l,n�0

f̄ l,nf2�p3,p2�l f3�p1,p2�n.

�11�

ow, we will prove by induction that

f̄ l,n = 0 for l,n � 0, �l,n� � �0,0� . �12�

etting p3=0 in the three equalities of �11� and using the form of f2 and f3 in �6� we get

�
l,n�0

f̄ l,n�6p1�l�6p2�n = �
l,n�0

f̄ l,n�6p1 + 6p2 + O�p2p1
2� + O�p1

3��l�6p1 + O�p1
3��n

= �
l,n�0

f̄ l,n�6p2 + O�p2
3��l�6p1 + 6p2 + O�p1p2

2� + O�p2
3��n. �13�

e first compute in �13� the terms of degree 1 and we get, after dividing by 6,

f̄1,0p1 + f̄0,1p2 = f̄1,0�p1 + p2� + f̄0,1p1 = f̄1,0p2 + f̄0,1�p1 + p2� ,

hich clearly implies f̄1,0= f̄0,1=0. This proves �12� for l ,n�0 with l+n=1.
Now we proceed by induction over the degree l+n=k. We assume �12� is true for k

1, . . . ,N−1 and we will prove it for k=N. By induction hypothesis, the terms of degree N in �13�
are, after dividing by 6N,

�
l=0

N

f̄ l,N−lp1
l p2

N−l = �
l=0

N

f̄ l,N−l�p1 + p2�lp1
N−l = �

l=0

N

f̄ l,N−lp2
l �p1 + p2�N−l. �14�

sing the Newton’s Binomial formula we can rewrite �14� as

�
l=0

N

f̄ l,N−lp1
l p2

N−l = �
l=0

N

f̄ l,N−l�
j=0

l 	 l

j

p2

j p1
N−j = �

l=0

N

f̄ l,N−l�
j=0

N−l 	N − l

j

p1

j p2
N−j . �15�

e will prove by induction that

f̄ l,N−1 = fN−l,l = 0 for l = 0, . . . ,�N/2� ,

�16�
f̄ l+1,N−1 = fN−l−1,l+1 for l = 0, . . . ,��N − 2�/2� ,

here �·� denotes the integer part function. To prove �16� for l=0 we first observe that if we set

p1=0 in the first equality of �15� we obtain f̄0,Np2
N= f̄N,0p2

N, i.e., f̄0,N= f̄N,0. Furthermore, if we
ompute in the first equality of �15� the coefficient of p1p2

N−1 we get

f̄1,N−1 = f̄N−1,1 + Nf̄N,0, �17�
N−1
nd if we compute in the first and third terms of identity �15� the coefficient of p1 p2 we get
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f̄N−1,1 = f̄1,N−1 + Nf̄0,N. �18�

quations �17� and �18� together with the fact that f̄0,N= f̄N,0 imply that f̄0,N= f̄N,0=0 and f̄1,N−1

f̄N−1,1. This finishes the proof of �16� for l=0.
Now, we assume that �16� is true for l=0, . . . ,m−1 �m� ��N−2� /2�� and we will prove it for

=m. By induction hypothesis we can write �15� as

�
l=m

N

f̄ l,N−lp1
l p2

N−l = �
l=m

N

f̄ l,N−l�
j=0

l 	 l

j

p2

j p1
N−j = �

l=m

N

f̄ l,N−l�
j=0

N−l 	N − l

j

p1

j p2
N−j , �19�

nd we also have that f̄m,N−m= f̄N−m,m. Now, computing in the first equality of �19� the coefficients
f p1

m+1p2
N−m−1 we get

f̄m+1,N−m−1 = f̄N−m,m+1 + �N − m� f̄N−m,m,

nd computing in the first and third terms of equality �19� the coefficients of p1
N−m−1p2

m+1 we get

f̄N−m−1,m+1 = f̄m+1,N−m−1 + �N − m� f̄m,N−m.

hese two equalities imply, taking into account that f̄m,N−m= f̄N−m,m, that f̄N−m,m= fm,N−m=0 and

fm+1,N−m−1= f̄N−m−1,m+1. Thus, �16� is proved for l=0, . . . , ��N−2� /2�.
Now, by induction hypothesis, for l= �N /2� we have the following.
Case 1: if N is even then, from �14� we get

f̄N/2,N/2p1
N/2p2

N/2 = f̄N/2,N/2�p1 + p2�N/2p1
N/2 = f̄N/2,N/2p2

N/2�p1 + p2�N/2,

hich clearly implies f̄N/2,N/2=0. Thus, �16� is true in this case.
Case 2: if N is odd then, again from �14� we obtain

f̄ �N−1�/2,�N+1�/2�p1
�N−1�/2p2

�N+1�/2 + p1
�N+1�/2p2

�N−1�/2�

= f̄ �N−1�/2,�N+1�/2��p1 + p2��N−1�/2p1
�N+1�/2 + �p1 + p2��N+1�/2p1

�N−1�/2�

= f̄ �N−1�/2,�N+1�/2�p2
�N+1�/2�p1 + p2��N−1�/2 + p2

�N−1�/2�p1 + p2��N+1�/2� ,

hich clearly implies f̄ �N−1�/2,�N+1�/2=0. Thus, �16� is true. Consequently, �12� holds. Therefore,

rom �11� we get that f̄ = f̄0,0ªd0, being d0 is a constant.
Therefore, if we denote by g1 the restriction of f to H1=0, then g1 is a formal power series and

ince f̄ is the restriction of g1 to q2=0, from Lemma 7, we get that g1=d0+q2h3 where h3

h3�q2 ,q3 , p1 , p2 , p3� is a formal power series in its variables.
Now, making the restriction of f to H1=0, q3=0, and proceeding as for the restriction of f to

1=0, q2=0, we get that g1 can also be written as g1=c0+q3h4, where c0 is a constant and h4

h4�q2 ,q3 , p1 , p2 , p3� is a formal power series in its variables.
Equating the two expressions for g1, we get that d0=c0 and there exists a formal power series

5 such that h3=q3h5 and h4=q2h5. Thus, g1 can be written as g1=c0+q2q3h5. Since g1 and q2q3

re formal first integrals of system �2� restricted to q1=0 and H1=0, we get that h5 is also a formal
rst integral of system �2� restricted to q1=0 and H1=0. Then, proceeding as we did for g1 we get

hat h5=c1+q2q3h6, for some formal power series h6. Since this argument can be repeated infi-
itely many times, we get that g1 is a formal power series in H2=q2q3 and thus g1=g1�H2�. Then,
rom �9� we have that f0=g1�H2� and thus, f =g1�H2�+H1g2, with g2=�k�1fkH1

k−1. Thus, since f ,

2, and H1 are formal first integrals of system �2� restricted to q1=0, g2 is also a formal first
ntegral of system �2� restricted to q1=0. Repeating the argument that we did for f0 infinitely many

imes, the proposition follows. �
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Proposition 14: Any formal first integral f = f�q1 ,q2 ,q3 , p1 , p2 , p3� of system �2� invariant by �
nd � can be written as

f = f1�H� + H2f2�H,H2� + H4f2�H,H4� + H6f2�H,H6� + q1q2q3f3�q1,q2,q3,p1,p2,p3� , �20�

here f1, f2, and f3 are formal power series in their variables, H2=q2q3, H4=q1q3, and H6

q1q2. Furthermore, f3=��f3� and f3=−��f3�.
Proof: From Proposition 13 and Lemma 7, there exists nine formal power series g1 , . . . ,g9

uch that f can be written in the following three forms:

f = g1�H1� + H2g2�H1,H2� + q1q3,

f = g4�H3� + H4g5�H3,H4� + q2g6,

f = g7�H5� + H6g8�H5,H6� + q3g9.

ince

H = H1 + 6�p1
2q1

2 − 2p1q1p2q2 − 2p1q1p3q3� + 1
6 �q1

2 − 2q1q2 − 2q1q3� = H1 + q1h1,

y Lemma 6, there exist formal power series T, T0, and T1 such that

g1�H1� = g1�H� − g1�q1h1� + g1�0� − H1q1h1T�H1,q1h1� = g1�H� + q1h1T0�H1,q1,h1� = g1�H� + q1T1.

sing the same arguments for g4�H3� and g7�H5�, we get that f can be written as

f = g1�H� + H2g2�H1,H2� + q1T̄1,

f = g4�H� + H4g5�H3,H4� + q2T̄2, �21�

f = g7�H� + H6g8�H5,H6� + q3T̄3.

he three equations of �21� must be equal. Thus, restricting the first and second equations of �21�
o q1=q2=0 and equating them, we have that g1�Ĥ�=g4�Ĥ�, where Ĥ is the restriction of H to

1=q2=0. Thus, g4=g1. In the same way, restricting the first and third equations of �21� to q1

q3=0, we obtain that g7=g1. Since f is invariant by �, f =��f�, and then the first expression of
f in �21� can be written as

f = g1�H� + H4g2�H3,H4� + q2��T1� .

his relation for f must coincide with the second expression of f in �21� and thus,

0 = H4�g2�H3,H4� − g5�H3,H4�� + q2���T̄1� − T̄2� .

aking q2=0 in the above equation we obtain that g5=g2. In a similar way, since f =�2�f�,
roceeding as above for �, we get that g8=g2.

Restricting the first and second equations of �21� to q2=0, and decomposing T̄1 as T̄1=T1,0

q2T1,1, with T1,0, T1,1 formal power series and T1,0 not depending on q2 �see Lemma 7�, we get
hat q1T1,0=H4g2�H3 ,H4� and thus, the first relation of �21� can be written as

f = g1�H� + H2g2�H1,H2� + H4g2�H3,H4� + q1q2T1,1. �22�

ow, writing T1,1=T1,1,0+q3T1,1,1 with T1,1,0, T1,1,1 formal series and T1,1,0 not depending on q3,
e get that restricting the third relation of �21� to q3=0 and restricting �22� to q3=0, we obtain that
1q2T1,1,0=H6g2�H5 ,H6�. Thus, f can be written as
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f = g1�H� + H2g2�H1,H2� + H4g2�H3,H4� + H6g2�H5,H6� + q1q2q3T1,1,1. �23�

ow, using Lemma 7, we decompose g2=g2�H1 ,H2� as

g2�H1,H2� = �
k�0

ck�H1�H2
k , �24�

here ck are formal power series in the variable H1. Then, since H1=H−q1h1, from �24� and
emma 6, we have

g2�H1,H2� = �
k�0

ck�H − q1h1�H2
k = �

k�0
ck�H�H2

k + q1�
k�0

c̃k�q1,q2,q3,p1,p2,p3�H2
k

= g2�H,H2� + q1g̃2�q1,q2,q3,p1,p2,p3� ,

here g̃2 is a formal power series in its variables. Doing the same with g2�H3 ,H4� and g2�H5 ,H6�,
e get that

g2�H3,H4� = g2�H,H4� + q2g̃5�q1,q2,q3,p1,p2,p3� ,

g2�H5,H6� = g2�H,H6� + q3g̃8�q1,q2,q3,p1,p2,p3� ,

eing g̃5 and g̃8 formal series in their variables. Therefore, those relations together with �23� imply
hat f can be written as in �20� if one takes f1=g1, f2=g2, and f3=T1,1,1+ g̃2+ g̃5+ g̃8.

From �20� and using that f is invariant by �, we get that

��f� = f1�H� + H2f2�H,H2� + H4f2�H,H4� + H6f2�H,H6� + q1q2q3��f3� .

ince this equation must coincide with �20� we get that f3=��f3�. Furthermore, using that f is
nvariant by �, we get that

��f� = f1�H� + H2f2�H,H2� + H4f2�H,H4� + H6f2�H,H6� − q1q2q3��f3� .

ince this equation must coincide with �20� we get that f3=−��f3�. �

Proposition 15: Let f be a formal power series restricted to H=0 satisfying f =��f�, f
= �−1�m��f� for a positive integer m such that

df

dt
= 12m�p1q1 + p2q2 + p3q3�f , �25�

here the derivatives are evaluated along a solution of system �2� restricted to H=0. Then, f
q1q2q3f1, for some formal power series f1 restricted to H=0.

Proof: Note that from hypothesis, f only contains monomials q1
j1q2

j2q3
j3p1

l1p2
l2p3

l3 such that the
arity of l1+ l2+ l3+ j1+ j2+ j3 is equal to the parity of m. Note that since f =��f�, if q1 divides f ,
hen, q2 and q3 must divide f and thus, it is enough to prove that the restriction of f to q1=0 is
qual to zero. We will prove it by contradiction. We denote by g1 the restriction of f to q1=0.
hen, g1 is a formal power series satisfying

dg1

dt
= 12m�p2q2 + p3q3�g1, �26�

here the derivatives are evaluated along a solution of system �2� restricted to q1=H1=0. We
ssume that g1�0 and we consider two different cases.

Case 1: g1 is not divisible by q2q3. We introduce the formal power series g2=g1q2
m. Then, g2
s a formal power series satisfying
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dg2

dt
= 24mp2q2g2, �27�

here the derivatives are evaluated along a solution of system �2� restricted to q1=H=0.
Now, we restrict �27� to q3=0 and denote by g2

* the restriction of g2 to q3=0. We consider

2
*�0 and we will reach a contradiction. If g2

*�0, then g2
* satisfies �27� restricted to q3=0 and

ince for system �2� restricted to q1=q3=H=0 and q2�0 we have 12p2q2= �dq2 /dt� /q2, then, on

2�0, we have that �27� restricted to q3=0 is equivalent to dg2
* /g2

*=2m dq2 /q2. That is, g2
*

q2
2mg3

* where g3
* is a first integral of system �2� restricted to q1=q3=H=0, q2�0, i.e., of system

q̇2 = 12p2q2, ṗ1 = 12p1p2 + 1
3 , ṗ2 = − 12p2

2 − 1
3 , ṗ3 = 12p3p2 + 1

3 ,

fter dividing by q2. Furthermore, g3
*=g2

* /q2
2m where g2

* is a formal power series. Introducing the
hange of variables

x = q2, y = p1 − p3, z = p3, u = p2, �28�

e have that g3
*�q2 , p1 , p2 , p3�=h�x ,y ,z ,u�, where h is a first integral of system �7�. Furthermore

ith this change of variables g2
*�q2 , p1 , p2 , p3�=h*�x ,y ,z ,u�. Then, h*�x ,y ,z ,u� is a formal power

eries and h=h* /x2m. Therefore, h satisfies the hypothesis of Lemma 11 and thus, from Lemma 11
nd the change of variables �28� we have

g3
* =

�p1 − p3�2m

q2
2m �

k,l,n�0
g3,k,m+l,n

* �q2
2�36p2

2 + 1��k��p1 − p3�2�36p2
2 + 1��l f3�p3,p2�n

hich yields

g2
* = �p1 − p3�2m �

k,l,n�0
g3,k,m+l,n

* �q2
2�36p2

2 + 1�k��p1 − p3�2�36p2
2 + 1��l f3�p3,p2�n� . �29�

owever, we already know that g2
* is also restricted to q2

2�36p2
2+1�=0 and then, from �29� we get

g2
* = �p1 − p3�2m �

l,n�0
g3,0,m+l,n

* ��p1 − p3�2�36p2
2 + 1��l f3�p3,p2�n

= �p1 − p3�2m �
l,n�0

g2,l,n
* ��p1 − p3�2�36p2

2 + 1��l f3�p3,p2�n, �30�

hich clearly is a formal power series.
By �30� we have that the restriction of g2

* to q2=0 is equal to g2
*. Furthermore, the restriction

f g2
* to q2=0 is also equal to the restriction of g2 to q3=q2=0 and by definition it is equal to zero.

sing �30� this implies that g2,l,n
* =0 for l ,n�0 and thus g2

*=0, a contradiction.
Then, g2

*=0 and since g2
* is the restriction of g2 to q3=0, by Lemma 7, we get that g2=q3h2 for

ome formal power series h2=h2�q2 ,q3 , p1 , p2 , p3�. Furthermore, since g2 has q2
m as a factor, it

olds that h2=q2
mh3 for some formal power series h3=h3�q2 ,q3 , p1 , p2 , p3�. Then, using that g1

g2 /q2
m, we obtain

g1 = q3h3. �31�

ow, if we introduce the formal power series g3=g1q3
m, we get that g3 satisfies

dg3

dt
= 24mp3q3g3,

here the derivative is evaluated along a solution of system �2� restricted to q1=H=0. Then,

epeating the same arguments for g3 as we did for g2, we obtain that g1 can be written as
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g1 = q2h4, �32�

or some formal power series h4=h4�q2 ,q3 , p1 , p2 , p3�.
Finally, equating the expressions �31� and �32� for g1 we obtain that there exists a formal

ower series h5=h5�q2 ,q3 , p1 , p2 , p3� such that h3=q2h5 and h4=q3h5. Then, g1 can be written as

1=q2q3h5, a contradiction with the fact that g1 was not divisible by q2q3.
Case 2: g1 is divisible by q2q3. In this case, we write g1= �q2q3� jh1, where j�1 and h1 is a

ormal power series which is not divisible by q2q3. Furthermore, since q2q3 is a first integral of
ystem �2� restricted to q1=0, we get that h1 also satisfies �26�. Then, the same arguments used in
ase 1 for g1 can be applied to h1 and we shall obtain a contradiction. Hence, the proposition is
roved. �

II. PROOF OF THE THEOREMS

Now we prove Theorems 3 and 4.
Proof of Theorem 3: Let g be a formal first integral of system �2�. If g is a formal first integral

n the variable H the theorem is proved. So, we can assume that g is not a formal power series in
he variable H. Moreover, without loss of generality the formal power series g has no independent
erm. We also can assume that g is not divisible by any formal power series T�H� depending on H;
therwise if T�H� divides g, then we can take g /T�H� instead of g as a new formal first integral.
y Proposition 12, we have that

f = �g · �g · �2g� · ��g · �g · �2g� �33�

s invariant by � and � and thus, f has all its monomials q1
j1q2

j2q3
j3p1

l1p2
l2p3

l3Hm satisfying that j1

j2+ j3+ l1+ l2+ l3 is even. Moreover, from Proposition 14, we have that f can be written as in �20�.
e write

f = �
l�0

f l�q1,q2,q3,p1,p2,p3�Hl,

f1�H� = �
l�0

f l
1Hl,

�34�
f2�H,Hj� = �

k,l�0
fk,l

2 Hj
kHl, j = 2,4,6,

f3 = �
l�0

gl�q1,q2,q3,p1,p2,p3�Hl,

here f l and gl are formal power series in their variables not divisible by H, for l�0, k�0, f l
1, fk,l

2

re constants. Then, from �20�, we have

f0 = f �H=0� = f0
1 + �

k�0
fk,0

2 �H2
k+1 + H4

k+1 + H6
k+1� + q1q2q3g0. �35�

ote that since f3 satisfies f3=��f3� and we get that g0 satisfies g0=��g0�. Furthermore, f3

=−��f3� and thus g0=−��g0�.
Taking into account that the derivatives of H2, H4, and H6 evaluated along a solution of

ystem �2� satisfy

dH2

dt
= − 24p1q1H2,

dH4

dt
= − 24p2q2H4,

dH6

dt
= − 24p3q3H6,
hen, after dividing by q1q2q3, the derivative of f0 along a solution of system �2� is given by
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24�
k�0

�1 + k�fk,0
2 �p1H2

k + p2H4
k + p3H6

k� + 12�p1q1 + p2q2 + p3q3�g0 =
dg0

dt
, �36�

here the derivatives are taken along a solution of system �2� and relation �36� is taken restricted
o H=0.

Now, restricting �36� to q1=q2=q3=0 �note that then H=0�, and taking into account that this
s a singular point of system �2�, we obtain that f0,0

2 �p1+ p2+ p3�=0 and thus, f0,0
2 =0. Then, �36�

an be written as

24�
k�1

�1 + k�fk,0
2 �p1H2

k + p2H4
k + p3H6

k� + 12�p1q1 + p2q2 + p3q3�g0 =
dg0

dt
, �37�

here the derivatives are evaluated along a solution of system �2� and this relation is restricted to
=0.

Now, we denote by ḡ1 the restriction of g0 to q1=0. Then, ḡ1 satisfies

24p1�
k�1

�1 + k�fk,0
2 H2

k + 12�p2q2 + p3q3�ḡ1 =
dḡ1

dt
, �38�

here the derivatives are evaluated along a solution of system �2� and this relation is restricted to

1=H=0.
Now, taking into account that on q1=q2=0 or q1=q3=0 we have H2=0, we can proceed

xactly in the same way as in the proof of Case 1 in Proposition 15 and we get that ḡ1 must be
ivisible by q2q3, i.e., ḡ1=q2q3h for some formal series h. Furthermore, from �38� and since H2

q2q3 is a first integral of system �2� restricted to q1=0 and H=0, we get that, after dividing by

2q3, h satisfies

24p1�
k�1

�1 + k�fk,0
2 H2

k−1 + 12�p2q2 + p3q3�h =
dh

dt
, �39�

ith this equation restricted to H=0. Evaluating �39� on q2=q3=0, taking into account that those
re singular points of the system �2� restricted to q1=0, we obtain that −48p1f1,0

2 =0, which clearly
mplies f1,0

2 =0. Hence, �39� becomes

24p1H2�
k�2

�1 + k�fk,0
2 H2

k−2 + 12�p2q2 + p3q3�h =
dh

dt

hich is of the same kind as �38�. Now, repeating the reasoning we did for ḡ1 infinitely many
imes, we have that fk,0

2 =0 for all k�0. Therefore, �37� becomes

dg0

dt
= 12�p1q1 + p2q2 + p3q3�g0,

here the derivative is evaluated along a solution of system �2� restricted to H=0. We want to
rove that g0=0. We will proceed by contradiction. We assume g0�0 and consider two different
ases.

Case 1: g0 is not divisible by q1q2q3. It is clear that g0 satisfies g0=��g0�=�2�g0� and
�g0�=−g0, then from Proposition 15 with m=1, we get that g0=q1q2q3h5 for some formal series

5, a contradiction with the fact that g0 was not divisible by q1q2q3.
Case 2: g0 is divisible by q1q2q3. In this case we write g0= �q1q2q3� jhj with j�1, hj�0 is not
ivisible by q1q2q3. Furthermore, hj satisfies
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dhj

dt
= 12�j + 1��p1q1 + p2q2 + p3q3�hj ,

here the derivative is evaluated along a solution of system �2� restricted to H=0. Furthermore,

j =��hj� and since ��g0�=−g0 we get that ��hj�= �−1� j+1hj. Then, applying Proposition 15 with
= j+1, we get that hj =q1q2q3hj+1 with hj+1 a formal series, a contradiction with the fact that hj

s not divisible by q1q2q3.
Hence, g0=0 and from �35�, we have obtained that f0= f0

1, a constant and thus, from the first
elation in �34� we have that

f = f0
1 + H�

l�1
f l�q1,q2,q3,p1,p2,p3�Hl−1.

ince H is a first integral of system �2�, we get that �l�1f l�q1 ,q2 ,q3 , p1 , p2 , p3�Hl−1 is also a first
ntegral of system �2�. Then, the same arguments used for f0 imply that f1= f1

1, a constant since this
rgument can be repeated infinitely many times, we get that for all k�0, fk= fk

1, constants, and
hus, the first equation in �34� implies that f = f�H�=�l�0f l

1Hl= f�H�.
Hence, from �33� we get that f must be reducible, that is, there exist formal series T=T�H� and

1=T1�H� such that f =T�H�T1�H�. Furthermore, we can assume that T is irreducible. Then, from
33� we get that T�H� divides g ·�g ·�2g or ��g ·�g ·�2g�. In the first case, we also can assume that
ivides �g or �2g; otherwise we reach a contradiction with the assumptions on g. Thus, if T�H�
ivides �g then �g=T�H�T2 for some formal series T2=T2�q1 ,q2 ,q3 , p1 , p2 , p3� and thus

g = �3g = �2T�H� · �2T2

contradiction with the assumptions on g. Now, we can assume that T�H� divides �2g. With
imilar arguments to those used for the case in which T�H� divides �g we reach a contradiction
ith the assumptions on g.

Now, we assume that T�H� divides ��g ·�g ·�2g�. With similar arguments to those used for the
ase in which T�H� divides g ·�g ·�2g we reach a contradiction with the assumptions on g. Thus,
heorem 3 is proved. �

Proof of Theorem 4: Since H is an analytic first integral of system �2�, it is clear that any
nalytic function in a neighborhood of zero in the variable H is an analytic first integral of system
2� in a neighborhood of zero. To prove that these are the only ones, we proceed by contradiction.
ssume that g is an analytic first integral of system �2� which is not a function of H. Then, there

xists a neighborhood U�R6 of the origin such that g�U� is an analytic first integral of system �2�
hich is not a series in H. Clearly, g�U� can be written as a formal power series which turns out to
e convergent. Hence, in U, g is a formal first integral which is not a series in H, a contradiction
ith Theorem 3. Thus, Theorem 4 is proved. �
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While the notion of chaos is well established for dynamical systems on manifolds,
it is not so for dynamical systems over discrete spaces with N variables, as binary
neural networks and cellular automata. The main difficulty is the choice of a suit-
able topology to study the limit N→�. By embedding the discrete phase space into
a Cantor set we provided a natural setting to define topological entropy and
Lyapunov exponents through the concept of error profile. We made explicit calcu-
lations both numerical and analytic for well-known discrete dynamical models.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2171518�

. INTRODUCTION

For motions on differentiable manifolds, the commonly accepted notion of chaos identifies it
ith the so-called sensitive dependence on initial conditions and the latter with the existence of
ositive Lyapunov exponents signaling exponential separation of initially close trajectories.1 In
his sense, chaotic motion means unstable behavior; there is, however, an equivalent interpretation
f chaos in terms of information production.2 This is due to a celebrated theorem by Pesin which
ays that, for sufficiently regular ergodic systems, the sum of the positive Lyapunov exponents
oincides with the Kolmogorov-Sinai dynamical (KS-)entropy associated with the dynamics. The
S-entropy measures the long run unpredictability of the motion with respect to an invariant state.
urther, a variational principle states that the maximal KS-entropy with respect to all possible

nvariant states of a homeomorphism on a compact metric space is Bowen’s topological entropy
hich gives a state-independent description of the degree of chaos based on how open sets change
uring the motion.

Roughly speaking, in standard dynamical system contexts, chaos reveals itself through the
xponential increase of errors or, equivalently, via not-less-than linear information production.

On the contrary, there is no definite agreement about what chaos should mean in discrete
ynamical systems, such as binary neural networks or cellular automata, where one cannot directly
ppeal to differentiability and thus to the standard definition of Lyapunov exponents.

However, inspired by the equivalent manifestations of chaos, briefly sketched above, one may
ry to overcome the lack of differentiable structures by looking at entropylike quantities.

In the following, we shall investigate how far chaos in discrete system can be identified with
he exponential increase of initial errors or with �topological� information production.

Discrete, deterministic dynamical systems, consisting of N binary variables, have finite, even
hough very large �2N�, number of states.3–9 This means that their dynamics is eventually going to
nd up in a periodic cycle. Due to this fact, there is no room for chaotic behavior as it is usually
ntended, unless the number of states N→�.
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In numerical studies of continuous systems one needs to discretize the manifold in order to
olve physical models based on differential equations.10 Once the space has been discretized, the
umber of available states is finite and one has no longer a chaotic system since the motion
ventually becomes periodic. However the discretized systems inherit the natural distance of their
ontinuous limit, so that, if the number of states goes to infinity, one expects to smoothly retrieve
he continuous structure with all its dynamical properties. The problem with discrete dynamical
ystems is that the “natural” distance, the so-called Hamming distance is ill-defined in the limit
→�.9

To overcome these difficulties in this work we try to resort to topological techniques. On
ompact sets, one may define the concept of sensitive dependence on initial conditions �together
ith topological transitivity� by only topological means and no differentiable structure. So, we
efine the topology of a Cantor set and endow it with compatible metrics that remain well defined
n the limit of infinitely many states.9 Then we look at the various dynamical patterns that appear
nd try to characterize them by adapting standard tools from ergodic theory as, Lyapunov expo-
ents and topological entropy.1,11–14

In Sec. II, we review the concept of sensitive dependence on initial conditions formulated in
topological way. We endow the space with the topology of a Cantor set and introduce metrics

ompatible with it. In Sec. III, Lyapunov exponents in discrete systems are defined by means of
etrics and also in terms of the derivative of suitable embedding homeomorphisms into the reals.

n Sec. IV, the topological entropy is formulated in terms of spanning sets; while in Sec. V,
yapunov exponents and topological entropy are related to an appropriate indicator of error propa-
ation, that we call error profile. In Sec. VI, some concrete calculations are presented and in Sec.
II conclusions are drawn and future directions of investigation briefly mentioned.

I. DEFINING CHAOS ON DISCRETE SYSTEMS

We shall study discrete systems described in the following way:3–9 a phase space is defined by
set � of states S consisting of N bits Si= �0,1�; i=1, . . . ,N, which evolve according to binary

unctions f :�→�,

Si�n + 1� = f i�S�n�� , �1�

hat update each bit Si�n� at each stroke of time n.
In neural networks and cellular automata, in general, all bits have an equally important role in

he development of the system with time. When the number N of bits is finite, the metric most
uited to this state of affairs is the Hamming distance4,5,9 given by

dH�S,S�� = �
i=1

N

�Si − Si�� , �2�

or any two states S ,S���. Note that Hamming distance counts the number of different bits
etween S and S�, but it is not sensitive to where the differences occur.

The usual way of identifying chaos in the evolution law �1� is to study the so-called damage
preading.5–7,15 One follows the dynamical development of two states with initial Hamming dis-
ance equal to one and studies how it increases with time n. The speed of damage spreading is then
efined by15

v�S,S�� = lim
n→�

dH�S�n�,S��n��
n

. �3�

Two observations are necessary at this point. The first is that the above definition does not
orrespond to the identification of an exponential increase of an initial small error, but only
iscriminates between sublinear, linear, and superlinear increase of the Hamming distance.

The second is that, in the definition, it is implicit that the number N of binary variables is

nfinite, otherwise there will be recurrences and the limit in �3� would automatically vanish.
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owever, when N→�, the Hamming distance makes no sense since there are infinitely many
tates with infinite dH, and then it fails to be a properly defined distance function.

Remark 2.1: We stress that if one wants to think of binary systems as discretizations of
ontinuous ones, so that asymptotic quantities like �3� make sense, then the metric of the space
hould be well defined when N→�. There are two alternatives: either binary systems are taken as
ntrinsically discrete, in such a case formula �3� is to be investigated as a possible behavior over
nite time scales.16 Or the number of states is allowed to go to infinity, in such a case, appropriate
etrics that are well defined for N→� must be chosen in order to look at the dynamics from a

opological point of view.
In this paper we are going to explore the topological point of view. Let us take N→� and

ntroduce the base of open sets17

N�S,q� = �S� � ��Sk = Sk�,1 � k � q� . �4�

t is well known that they generate the topology of a Cantor set on �.9,11,12

Definition 2.1: A Cantor set is a topological space such that11

i� it is totally disconnected;
ii� perfect, that is, it is closed and all its points are accumulation points;
iii� compact.

The main issue in what follows is the identification of chaotic behaviors in discrete systems
ith a Cantor structure. As observed in the introduction, the lack of differentiability excludes that
ne may recognize any exponential separation of trajectories from the analysis of the tangent map.

Before trying to explore the possible existence of an exponential increase of initial small
rrors, one may start from a weaker form of instability than the usual one and identify a minimal
egree of chaoticity with the following topological definition.9

Definition 2.2: Let f :�→� be a continuous map; we say that it shows weak sensitive
ependence on initial conditions �WSDIC� if there exists a p�N such that for any S and any
�S ,q�, there exists a S��N�S ,q� and a k�N such that fk�S���N�fk�S� , p�.

Remark 2.2: Note that the only requisite to define WSDIC is to have a topology on �. Which
ne? It depends not on mathematical arguments, but on physical considerations. That is, which
roperties do we want to measure and with how much accuracy? As extreme examples, in the
rivial topology �given by �� ,��� the dynamics is going to be trivial; while, in the discrete
opology �where any subset of � is an open set� all systems show WSDIC.

There are several metrics compatible with the topology generated by the base �4�, the more
opular is11,12

d̃�S,S�� = �
i=1

�
1

2i−1 �Si − Si�� .

owever, for the purpose of this work we are going to use, for any 0���1, the following ones:

d��S,S�� = �m if Sk = Sk� " 1 � k � m and Sm � Sm� , �5�

n terms of which the base �4� can be expressed as

q
N�S,q� = �S� � ��d��S,S�� � � � . �6�
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Remarks 2.3:

i� We can view the embedding process of a finite discrete system into the Cantor set as
follows: Let F be the set of all the continuous functions f :�→� on the Cantor set. Then
any finite discrete dynamical system with N bits described by equations �1� is an element of
the set

FN = �f � F� " S � �f�N�S,N�� = N�f�S�,N�� .

ii� There is a price to pay for working with the base �4� and their associated metrics �5�.
Indeed, some of the binary variables contribute more than others. At first sight, this looks as
a major problem since typical binary systems such as the ones constructed with random
couplings8,18,19 evolve through functions f i’s where all the variables contribute on an equal
footing to the dynamics and so, apparently, there is no reason to “dismiss” some and
“privilege” others as the distances �5� do. However, if we make a permutation � :N→N of
the automata’s indexes, and thus reenumerate them, the induced mapping �̂ :�→�, such
that

�̂�S1,S2, . . . � = �S�−1�1�,S�−1�2�, . . . � , �7�

is, as we show below, an homeomorphism and so the Cantor topology is preserved despite
the fact that the new metrics are not going to be Lipschitz equivalent.13 From this it follows
that, since WSDIC is a topological property, it does not depend in which way we have
numerated the automata.

Let us now show that �̂ is an homeomorphism: By construction the function is a bijection so
e only need to show that it is continuous. Given ��0 choose M �N such that �M ��. Now take
�N such that �−1�i��m for any 1� i�M. Then,

d��S,S�� � �m Þ d���̂�S�,�̂�S��� � �M � � ,

ence continuity.
Remarks 2.4:

i� The metrics �5� seem to establish a preferred direction along the network. However, one
can always reverse it by means of the permutation

�̂�S1,S2, . . . ,SN� = �SN,SN−1, . . . ,S2,S1�

and, then, take the limit N→� in the metrics �5�.
ii� The metrics �5� are suited to semi-infinite networks. However, when expanding to infinity

finite networks with periodic boundary conditions, as we will see in the examples, more
symmetric metrics are preferable. These are achieved by means of two-sided sequences
S= �. . . ,S−2 ,S−1 ,S0 ,S1 ,S2 , . . . � and using the metrics

d̂��S,S�� = �m if Sk = Sk� " �k� � m

with Sm � Sm� or S−m � S−m�

which also define a Cantor topology.

II. LYAPUNOV EXPONENTS

Since Definition 2.2 is a topological one, and the metrics �5� all define the same topology, we
an use any of them �by fixing a �� to check if there is WSDIC or not.

However, in continuous dynamics there is a definition of sensitive dependence on initial
onditions, which we shall refer to as strong �SSDIC� in comparison with the previous one

WSDIC�, which is based on the concept of positive Lyapunov exponents; that is, on the expo-
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ential separation of initially close trajectories.1,11,13 Such a behavior is usually associated with
xponential increase of initial small errors. We propose two different natural definitions of
yapunov exponents. The first one is based on the metrics �5�, the second one is via an embedding
f � into the continuum, where the notion of derivative can be used.

The metrics �5� offer a natural means to measure the increase of errors in Cantor sets. In fact,
iven d�, one can define Lyapunov exponents as follows:

	M�S� = lim sup
n→�

lim
d��S,S��→0

1

n
log�−1

d��fn�S�, fn�S���
d��S,S��

. �8�

he quantity 	M�S� depends in general on S, it amounts to identify separation of trajectories with
he following behavior:

d��fn�S�, fn�S��� 	 �−n	M�S�d��S,S�� .

Remarks 3.1:

i� In �8�, we have used lim sup as we do not know whether the limit for n→� exist as it is the
case for smooth dynamical systems by Oseledec’s multiplicative theorem.2 Also, the limit
when d��S ,S��→0 may very well diverge as is the case when discrete dynamical systems
exhibit nearly stochastic behavior such as random Boolean networks or binary neural
networks with long range connections among the variables.8,9,15,18

ii� Since the distances depend on �, we use a logarithm base �−1 to make 	M�S� � indepen-
dent.

iii� Due to the presence of a positive 	M because of the exponential separation of trajectories,
however close to each other initially, it turns out that the SSDIC property implies the
weaker WSDIC property.

One may also try a kind of differential approach to the notion of exponential instability which
s based on an appropriate embedding of the Cantor set � into the reals �compare, the abstract
athematical approach in Ref. 20�. Let us consider the following commutative diagram:

�→
f

�


↓ ↓
 �9�

�→
f̃

�

hich defines the function f̃ , by means of a homeomorphism 
, with � being a Cantor set
mbedded in the reals ���R�. It is important to observe that due to the commutativity of the

iagram �9�, the dynamics generated by f and f̃ are intrinsically the same because of topological
onjugacy.11,12 Since � is an uncountable compact Abelian topological group, there are uncount-
bly many ways of constructing a homeomorphism 
 :�→� �for instance, by suitable
ranslations�.21 We will consider a 
 that is suited to the metrics �5�. Explicitly, let


�S� = �
k=1

�

�kSk, �10a�

here

�k = hk�h−1 − 1� = 
1 − 

2
�k1 + 

1 − 
, �10b�
ith
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h =
1 − 

2
and 0 �  � 1,

ets the scale of the Cantor set by suppressing intervals in the proportion  �the standard choice
eing =1/3�. Figure 1 explains the idea of the construction of the Cantor set in a graphical way.
ote that the self-similar nature of the Cantor set is reflected by the fact that the coefficients �k

atisfy the following recursion relation:

�k+m = hm�k. �11�

ow, given any continuous function f :�→�, we define the function �hf :�→R by

�hf�S� = lim
S�→S


 � f�S�� − 
 � f�S�

�S�� − 
�S�

, �12�

hich has the typical properties of a derivative. In particular it maps to the vector space R. Indeed,

12� is nothing but the derivative of the conjugate map f̃ . Of course the actual value of �hf�S� is
-dependent, for if one wants to give the instantaneous rate of change of a function, one needs a
cale. Similarly, if one wants to speak about the Hausdorff dimension of a Cantor set, one needs
o embed it into R and the result is going to be scale dependent.

From �12�, there naturally comes the following proposal of Lyapunov exponent associated
ith the derivative

	D�S� = lim sup
n→�

1

n
logh−1��hfn�S�� . �13�

V. ENTROPY

In ergodic theory, one approaches the notion of entropy from two different perspectives: the
rst one is statistical and based on the presence of an invariant measure, the other is topological.
e shall consider the latter point of view which leads to the notion of topological entropy.1,13,14

Topological entropy: In the topological case, the fundamental objects are the open sets �4�. We
hall calculate htop�f� following standard techniques,1,13 namely the so-called �n ,��-spanning set.
or this we need the dynamics-dependent distances

d�,n�S,S�� = max
0�k�n

d��fk�S�, fk�S��� ,

nd the corresponding open balls

B��S,�,n� = �S� � ��d�,n�S,S�� � �� . �14�

FIG. 1. Some steps in the construction of the Cantor set, with h= �1−� /2.
subset E�n ,���� is called �n ,��-spanning if
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� = �
S�E�n,��

B��S,�,n� . �15�

hat is, any �n ,��-spanning set corresponds to an open cover of �. Because of the compactness of
, there will always be an �n ,��-spanning set containing finitely many states S; therefore, the
inimal cardinality

S��,n� = min
E�n,��

# E�n,��

f �n ,��-spanning sets is finite.
The topological entropy htop�f� is defined by

htop�f� = lim
�→0

lim sup
n→�

1

n
ln S��,n� , �16�

here the logarithm is in base 2.
Since the topological entropy htop�f� reflects the way open sets change in time under f :�

� given by �1�, htop�f� will not depend on �. This is Bowen’s definition and is based on using
etrics.13 The intrinsically topological nature of the notion rests on the fact that Bowen’s formu-

ation is equivalent to the one of Adler, Konheim, and McAndrew based on open covers.1,13,14

Remark 4.1: The topological entropy htop�f� is related by a variational principle to the metric
r dynamical entropy of Kolmogorov, h��f�,

htop�f� = sup
��M��,f�

h��f� , �17�

here M�� , f� is the space of invariant measures in � under the dynamics f . To establish �17�
ne needs a measurable structure to be defined on �, which is easily achieved by considering the
-algebra generated by the open sets �4�. What is more difficult to obtain is a measure � on the
-algebra being invariant under the dynamics: ��f−1�C��=��C� for all measurable subsets C��.
his is the meaning of the request ��M�� , f�. Such a problem will be a matter of further

nvestigation and will not be of concern in this work.

. ERROR PROFILE AND CHAOTIC BEHAVIOR

Now we are going to study how Lyapunov exponents �8� and �13� and the topological entropy
16� are related to error propagation along the ordering defined by the metrics �5� over the
etwork.

Let us take two near states S and S� with initial distance

d��S,S�� = �q. �18a�

heir evolution in time can always be written as

d��fn�S�, fn�S��� = �q−Ln�S,S��, �18b�

here Ln�S ,S���Z measures the length traveled to the left �Ln�0�, or to the right �Ln�0�, by the
rrors at the nth time step. The behavior of Ln�S ,S��, numerically measurable, reflects the prop-
rties of the network dynamics and is not necessarily monotonically increasing with time.

Remark 5.1: It is to be emphasized that Ln�S ,S�� does not correspond to the Hamming
istance, since q−Ln�S ,S�� locates the first error that appears in the automaton ordering associated
ith the metrics �5�. Such an error may very well be the only one, in such a case,

H�fn�S� , fn�S���=1.
Thus, the picture we have in mind is as follows. Let us assume Ln�0, at time n=0, take two
tates S, S� which agree upon the first q−1 bits, at time n=1 they agree upon the first
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−L1�S ,S��−1 bits, at time n=2 upon the first q−L2�S ,S��−1 bits, and so on. In this way, after
iterations of the dynamics �1�, the first error will have propagated from position q to position

−1−Ln�S ,S��.
Remark 5.2: If Ln�0, then the initial error moves further and further away to the right with

wo consequences: first, it need not be the first error and thus need not appear at the exponent in
18b�; second, it may become smaller and smaller contrary to the expectation that instability
hould amplify initial small errors. However, this is due to a preferred direction inherent in the
hoice of the metrics �5� as discussed in Remark 2.4�i�. This also means that we can always
onsider Ln�0 in �18b� up to a reflection: this argument particularly applies to the behavior of the
ule 30 in Wolfram’s classification �see the examples� which seems otherwise to contradict insta-
ility.

Definition 5.1: We define the S error profile by the following limit:

�n�S� = lim sup
d��S,S��→0

Ln�S,S�� , �19�

easures the length traveled by the errors at the nth time step due to two infinitesimally closed
nitial states.

Remark 5.3: The idea behind the previous definition is that, in physical instances, Ln�S ,S��
�n�S� once spurious boundary effects are eliminated by S�→S in the Cantor topology defined

y the metrics �5�. Numerically, the limit in �19�, will be later handled by considering S and S�
ith d��S ,S�� sufficiently small.

We are now going to see how the error profile is related with the concepts introduced in the
receding sections. First, we deal with the Lyapunov exponents introduced in Sec. III.

. Lyapunov exponents

Concerning metric-based Lyapunov exponents 	M defined in �8�, Eqs. �18� and �19� yield

	M�S� = lim sup
n→�

�n�S�
n

. �20�

Concerning derivative-based Lyapunov exponents 	D defined in �13�, we first calculate the
erivative of a generic continuous function f :�→�.

Consider two closed points S ,S��� with distance �m, they are of the form �see Eq. �5��

S = �S1S2S3 ¯ Sm−1SmSm+1 ¯ � �21a�

nd

S� = �S1S2S3 ¯ Sm−1Sm� Sm+1� ¯ � , �21b�

here Sm�Sm� . Applying the homeomorphism �10a�, we get

�S  
�S�� − 
�S� = �
k=m

�

�k�Sk� − Sk� . �21c�

he images of S and S� after the nth time-step fn :��� are, in a short-hand notation,

fn�S� = ��1�2�3 ¯ �pn−1�pn
�pn+1 ¯ �

nd

fn�S�� = ��1�2�3 ¯ �pn−1�pn
� �pn+1� ¯ � ,

here �pn
��pn

� , with pn= pn�m� being a function, of the initial error position m in �21�. From �21c�,

e have that
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�S = �m�m + Rm,

here �mS�m−Sm= ±1 and Rm�k=m+1
� �k�k. Now, by means of �10b� and �11� follows that

Rm���k=m+1
� �k=hm. So that Rm�O�hm� which gives

�S = hm�h−1 − 1��m�1 + O�h�� .

n analogous expression is obtained for �fn fn�S�− fn�S�� giving

�fn = hpn�m��h−1 − 1��pn�m��1 + O�h�� .

herefore,

�hfn�S� = lim
m→�

�fn

�S
= lim

m→�
�m�pn�m�h

pn�m�−m�1 + O�h�� .

f the limit exists; we obtain

�hfn�S� = ± h−�n�S��1 + O�h�� ,

here

�n�S�  lim
m→�

�m − pn�m�� ,

hich, if exists, it is the error propagation at time n as seen through the embedding �9�.
Inserting the above result into �13� yields

	D�S� = lim
n→�

�n�S�
n

, �22�

hich, if it exists, equals �20�.
Remark 5.4: As observed in Remark 3.1�ii�, the metric and derivative definitions of Lyapunov

xponents do not depend on the specific scale used. The velocity of leftward propagation of errors
hould be a dynamical effect independent of the scale, which is exactly what turns out from above,
hence the coincidence of �20� and �22�.

. Topological entropy

Consider Eqs. �18� and let us define

Ln
*�S,S��  max

0�k�n
Lk�S,S�� . �23�

rom �14� it follows that

B��S,�,n� = �S� � ���q−Ln
*�S,S�� � �� .

n the particular case where the dynamics �1� is such that Ln
* is independent of S and S� let us

efine

�n  Ln
*�S,S�� �24�

nd take �=�p. From �6� and �14� it follows that

B��S,�p,n� = �S� � ���q � �p+�n� = �S� � ��d��S,S�� � �p+�n+1� = N�S,rn,p� ,
here
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rn,p = p + �n + 1.

ince N�S ,rn,p� are elements of the base �4�, it follows that

E�n,�p� = �S � ��Sk = 0 " k � rn,p�

s an �n ,�p�-spanning set with cardinality 2rn,p; which, by construction, is minimal. From �16� we
btain

htop�f� = lim
p→�

lim sup
n→�

rn,p

n
.

o that,

htop�f� = lim sup
n→�

�n

n
. �25�

In the general case �24� is not valid and the behavior of Ln
*�S ,S�� depends on the fine details

f the dynamics �1�. In such cases, it is still possible to set an upper bound to the value of the
opological entropy. Let us define

��n�  max
S,S�

Ln
*�S,S�� ,

ith S and S� subject to the constraint �18a�. Then �using �6� and �14��,

B��S,�p,n� = �S� � ���q−Ln
*�S,S�� � �p� � �S� � ���q−��n� � �p� � �S� � ��d��S,S��

� �p+��n�+1� � N�S,tn,p� ,

here

tn,p = p + ��n� + 1.

ow

E�n,�p� = �S � ��Sk = 0 " k � tn,p� ,

s again an �n ,�p�-spanning set with cardinality 2tn,p, but we cannot assure that it is minimal. So,
rom �16� we obtain

htop�f� � lim sup
n→�

��n�
n

,

hich assures that, if ��n� does not increase as n or faster, the topological entropy vanishes.

I. EXAMPLES

. The shift map

We begin applying the ideas developed so far to the v-shift map �v defined by

�v�S1S2S3 ¯ � = �S1+vS2+vS3+v ¯ � .

onsider two points S ,S��� with distance d��S ,S��=�q. Applying �v
n we obtain

d��S�n�,S��n�� = �q−vn.
ccording to �18�, �23� and �24�, we see that �n=vn; thus, from �25� we have
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htop�f� = v � 0.

t is also evident that the topological entropy coincides with the Lyapunov exponents 	M =	D �see
qs. �20� and �22��.

. Networks with three inputs

We study now the evolution rule �1� in the case of interactions involving three nearest neigh-
ors and impose periodic boundary conditions; specifically

Si�n + 1� = f�Si−1�n�,Si�n�,Si+1�n�� for i = 2,3, . . . ,N − 1, �26a�

S1�n + 1� = f�SN�n�,S1�n�,S2�n�� , �26b�

nd

SN�n + 1� = f�SN−1�n�,SN�n�,S1�n�� , �26c�

here the transfer function f is the same for all the bits.
Due to the periodic boundary conditions, the infinite limit of these networks requires the

ymmetric metrics discussed in Remark 2.4�ii�: this context accommodates errors propagating
oth to the left and to the right.

We are going to study the Boolean rules numbered 30, 73, 90, and 167 according to Wolfram’s
hich5–7 which we explicitly list in Table I. The first three columns give the values of three

djacent bits and the remaining columns show the corresponding bits for the two rules. We stress
hat the rule 90 is the XOR rule in the two adjacent bits and it is well known as “chaotic” in

olfram’s terminology.
We have considered an automaton consisting of N=1000 bits and start with a random initial

tate. After a transient of length N2 we let the dynamics reach a state S. Then we choose a state S�
hich differs from S in the 499, 500, and 501 bits, and start to measure the speed of error profile

n /n and the speed of damage spreading dH�S�n� ,S��n�� /n. The main results are plotted in Figs.
–4.

Figure 2 shows the spread of errors as the states S, S� evolve in time, each cross correspond-
ng to a different bit in the two configurations.

Figure 3 shows the speed of error profile as a function of time. According to �20� and �22�,
hey exhibit, for n�1 a Lyapunov exponent 	=1 for all the rules but the rule 73 which shows
=0. The same conclusions can be extracted from the topological entropy.

Figure 4 shows the evolution in time of the speed of damage spreading. One can see that no
lear behavior emerges for n�1 that may help evaluate the damage spreading according to �3�;
oreover, even when, according to the Lyapunov and entropic analysis, the behavior is complex

TABLE I. Boolean rules.

Si−1 Si Si+1 30 73 90 167

0 0 0 0 1 0 1

0 0 1 1 0 1 1

0 1 0 1 0 0 1

0 1 1 1 1 1 0

1 0 0 1 0 1 0

1 0 1 0 0 0 1

1 1 0 0 1 1 0

1 1 1 0 0 0 1
s is the case with rule 90, there is instead a clear tendency of the damage spreading to go to zero.
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It is important to observe from Fig. 2�b� that rule 73 shows a complex behavior. However it
s localized in the sense that it does not grow with N, so for N→�, S and S� are on a periodic
ttractor and so the dynamics is not chaotic. In contrast the other rules, which are chaotic, spread

FIG. 2. �a� Spread of errors for rule 30. Starting from two states S, S� which differ in the 499, 500, and 501 bits. A cross
s plotted when the bits are different. Time goes from top to bottom for 100 iterations. �b� Spread of errors for rule 73.
tarting from two states S, S� which differ in the 499, 500, and 501 bits. A cross is plotted when the bits are different. Time
oes from top to bottom for 100 iterations. �c� Spread of errors for rule 90. Starting from two states S, S� which differ in
he 499, 500, and 501 bits. A cross is plotted when the bits are different. Time goes from top to bottom for 100 iterations.
d� Spread of errors for rule 167. Starting from two states S, S� which differ in the 499, 500, and 501 bits. A cross is plotted
hen the bits are different. Time goes from top to bottom for 100 iterations.
he errors along all the bits.
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II. CONCLUSIONS

We have endowed the phase space of binary variables with the topology of the Cantor set in
he limit when the number of variables N goes to infinity. This embedding of the phase space
ermits us to understand the dynamical behavior of binary dynamical systems, much on the same
ooting as the ones over differentiable manifolds providing a mathematically solid framework for

FIG. 2. �Continued�.
iscrete systems. One of the advantages of this approach is the fact that the distance function �5�
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s well defined for finite or infinite N. Despite being the Hamming distance �2�, the most natural
istance function over the space of binary variables �, it has the disadvantage of being divergent

FIG. 3. �a� Evolution of the speed of error profile �n /n in function of time for rule 30 showing for n�1 a Lyapunov
xponent 	=1. �b� Evolution of the speed of error profile �n /n in function of time for rule 73 showing for n�1 a
yapunov exponent 	=0. �c� Evolution of the speed of error profile �n /n in function of time for rule 90 showing for n
1 a Lyapunov exponent 	=1. �d� Evolution of the speed of error profile �n /n in function of time for rule 167 showing

or n�1 a Lyapunov exponent 	=1.
s N→� on states differing on an infinite number of binary variables.
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We have formalized the notion of Lyapunov exponents for discrete systems in two related
ays: by resorting to metrics compatible with the Cantor topology and by suitably embedding the
antor structure into a differentiable one.

Guided by the connections between Lyapunov exponents and topological entropy in continu-
us system, we have also computed the topological entropy and compared it with the Lyapunov

FIG. 3. �Continued�.
xponents calculated according to the given prescriptions. This has been done in Sec. V where we
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elated both notions to the concept of error profile which is a phenomenological quantity that can
e accessed numerically and has a self-evident physical interpretation. We have illustrated all

FIG. 4. �a� Evolution of the speed of damage spreading dH�S�n� ,S��n�� /n in function of time for rule 30. There is not
clear behavior for n�1 which help to make an evaluation of the damage spreading. �b� Evolution of the speed of damage

preading dH�S�n� ,S��n�� /n in function of time for rule 73. There is not a clear behavior for n�1 which help to make an
valuation of the damage spreading. �c� Evolution of the speed of damage spreading dH�S�n� ,S��n�� /n in function of time
or rule 90. There is not a clear behavior for n�1 which help to make an evaluation of the damage spreading and is tending
o zero for a complex rule. �d� Evolution of the speed of damage spreading dH�S�n� ,S��n�� /n in function of time for rule
67. There is not a clear behavior for n�1 which help to make an evaluation of the damage spreading and is tending to
ero for a rule which has a positive Lyapunov exponent in our scheme.
hese concepts by examples in Sec. VI.
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Further points that deserve to be studied are

i� The problem of the concept of a derivative. Here we have introduced it with the aid of the
homeomorphism �10� which is compatible with the metrics �5�. However, from the math-
ematical point of view it would be better if one could construct a meaningful “discrete
derivative” which is homeomorphism free.

ii� The construction of an invariant measure for the definition of the metric entropy �17�, as

FIG. 4. �Continued�.
sketched in Remark 4.1.
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iii� The application of the methods presented above to the treatment of Kauffman’s models of
cellular automata with connectivity K and random couplings which show a transition from
an ordered phase for K�2 where the length of the attractors grows as �N, to a disordered
one, termed chaotic, for K�2 with lengths growing as eN.3,5,18
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A four-dimensional family of skew-symmetric solutions of the Jacobi equations for
Poisson structures is characterized. As a consequence, previously known types of
Poisson structures found in a diversity of physical situations appear to be obtainable
as particular cases of new family of solutions. Additionally, it is possible to apply
constructive methods for the explicit determination of fundamental properties of
those solutions, such as their Casimir invariants, symplectic structure and the algo-
rithm for the reduction to the Darboux canonical form, which have been reported
only for a limited sample of known finite-dimensional Poisson structures. More-
over, the results developed are valid globally in phase space, thus ameliorating the
usual scope of Darboux theorem which is of local nature. © 2006 American Insti-
tute of Physics. �DOI: 10.1063/1.2161804�

. INTRODUCTION

Poisson structures1,2 are present in many different domains of mathematical physics, such as
uid dynamics,3 plasma physics,4 field theory,5 continuous media,6 etc. In particular, finite-
imensional Poisson structures �to which this work is devoted� are relevant in the study of very
ifferent kinds of nonlinear systems, including population dynamics,7–12 mechanics,13–16

lectromagnetism,17 optics,18 or plasma physics,19 to cite a sample. The association of a finite-
imensional Poisson structure to a differential system �which is still an open problem16,20–22� is not
nly mathematically appealing, but also very useful through the use of a plethora of specialized
echniques which include the development of perturbative solutions,17 numerical algorithms,23

tability analysis by means of the energy-Casimir24 and energy-momentum25 methods, character-
zation of invariants,26 reductions,2,27 analysis of integrability properties,28 establishment of varia-
ional principles,29 study of bifurcation properties and chaotic behavior,18,30 etc.

When expressed in terms of a system of local coordinates on an n-dimensional manifold,
nite-dimensional Poisson structures take the form

ẋi = �
j=1

n

Jij� jH, i = 1, . . . ,n . �1�

ere and in what follows � j �� /�xj. The C1 real-valued function H�x� in �1� is a constant of
otion of the system playing the role of Hamiltonian. The Jij�x�, called structure functions, are

lso C1 and real valued and constitute the entries of an n�n structure matrix J. The Jij�x� are
haracterized by two properties. The first one is that they are skew-symmetric,

�
Electronic mail: benito.hernandez@urjc.es

47, 022901-1022-2488/2006/47�2�/022901/13/$23.00 © 2006 American Institute of Physics
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Jij = − Jji for all i, j . �2�

nd second, they are solutions of the Jacobi equations,

�
l=1

n

�Jil�lJjk + Jkl�lJij + Jjl�lJki� = 0, �3�

here indices i , j, k run from 1 to n in Eqs. �2� and �3�.
One of the reasons justifying the importance of the Poisson representation is the local equiva-

ence between Poisson systems and classical Hamiltonian systems, as stated by Darboux
heorem1,2 which demonstrates that if an n-dimensional Poisson manifold has constant rank of
alue 2r everywhere, then at each point of the manifold there exist local coordinates
p1 , . . . , pr ,q1 , . . . ,qr ,z1 , . . . ,zn−2r� in terms of which the equations of motion become

q̇i =
�H

�pi
, ṗi = −

�H

�qi
, i = 1, . . . ,r ,

ż j = 0, j = 1, . . . ,n − 2r .

As mentioned above, the problem of recasting a given vector field not explicitly written in the
orm �1� in terms of a finite-dimensional Poisson system is an open issue of fundamental impor-
ance in this context to which important efforts have been devoted in past years in a variety of
pproaches and situations.7–22 This explains, together with the intrinsic mathematical interest of
he problem, the permanent attention deserved in the literature by the obtainment and classification
f skew-symmetric solutions of the Jacobi equations.7–22,31–38 Given that Eqs. �3� constitute a set
f coupled nonlinear partial differential equations, the characterization of solutions of �2� and �3�
as proceeded by means of either suitable ansatzs7–11,32,37 or through a diversity of other
pproaches.12–16,20–22,31,38 These efforts have led to the determination of certain families of solu-
ions of increasing nonlinearity such as the constant ones �of which the symplectic matrices are
ust a particular case�, as well as linear2,33 �i.e., Lie-Poisson�, affine-linear,34 quadratic,7–11,15,35,36

nd cubic37 structures, together with solutions which comprise arbitrary
unctions.12–14,16,20–22,31,32,38 Simultaneously, the growing complexity of the Jacobi equations �3� as
he dimension n increases has determined that the analysis is often focused on three-dimensional
olutions,9,10,12,20,21,32,37,38 while the characterization of families of dimensions four,13 five,14 six,17

tc., is less frequent. In addition, some wide families of n-dimensional solutions have also been
nalyzed in the literature.8,11,31,33–36

In this work a four-dimensional family of solutions of the Jacobi equations �3� is character-
zed. This contribution presents several interesting features. First, it is worth noting that previously
nown types of Poisson structures appearing in a diversity of physical situations and systems can
e seen to be obtainable as particular cases of the family of solutions, as it will be seen in the
xamples section. Second, in spite of their generality the solutions to be considered in what
ollows are amenable to explicit and detailed analysis, since it is possible to characterize globally
heir Casimir invariants and symplectic structure, as well as to globally provide the reduction to
he Darboux canonical form. This constitutes a significant amelioration of the usual scope of
arboux theorem, which does only guarantee in principle a local reduction.1,2 In addition, the

chievement of such reduction is relevant as far as the explicit determination of the Darboux
oordinates is often a complicated task, only known for a limited sample of finite-dimensional
oisson structures.2,8,27,31,38

The structure of the paper is as follows. In Sec. II the solutions are characterized. The
ymplectic structure and the constructive reduction to the Darboux canonical form are investigated
n Sec. III. Examples and comments on the relationship with some previously known results are

rovided in Sec. IV. The work concludes in Sec. V with some final remarks.
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I. CHARACTERIZATION OF THE FAMILY OF SOLUTIONS

We begin with one of the main results.
Theorem 2.1: Consider the family of functions of the form

Jij�x� = �ij��x��i�xi�� j�xj� �
k,l=1

4

�ijkl�l�xl�, i, j = 1, . . . ,4 �4�

efined in an open domain ��R4, where �ijkl denotes the Levi-Civita symbol and such that

�a� Constants �ij �R are defined for every pair �i , j�, i� j.
�b� �ij =� ji for every pair �i , j�, i� j.
�c� �ij�0 for at least one pair �i , j�, i� j.
�d� ��x�, �i�xi�, and �i�xi� are C1��� functions of their respective arguments for every i.
�e� ��x� and �i�xi� are nonvanishing in � for every i.
�f� The differences ��i�xi�−� j�xj�� are nonvanishing in � for every pair �i , j�, i� j.

hen the set of functions Jij�x� defined in �4� constitutes a skew-symmetric solution of the four-
imensional Jacobi identities

�
l=1

4

�Jil�lJjk + Jkl�lJij + Jjl�lJki� = 0, i, j,k = 1, . . . ,4 �5�

nd therefore J= �Jij� is a four-dimensional structure matrix, if and only if

�12�34 = �13�24 = �14�23. �6�

Proof: Consider first functions �4� in the case �=1. Substitution of �4� in Eq. �5� of indexes
i , j ,k� leads after some algebra to

�
l=1

4

�Jil�lJjk + Jkl�lJij + Jjl�lJki� = �i� j�k �
r1,r2,s1,s2=1

4

���ij� jk�ijr1r2
� jks1s2

+ �kj�ij�kjr1r2
�ijs1s2

�

��� j� j��r2
�s2

+ ��ki�ij�kir1r2
�ijs1s2

+ � ji�ki� jir1r2
�kis1s2

���i�i��r2
�s2

+ ��ik� jk�ikr1r2
� jks1s2

+ � jk�ki� jkr1r2
�kis1s2

���k�k��r2
�s2

+ ��is2
� jk�is2r1r2

� jks1s2
+ �ks2

�ij�ks2r1r2
�ijs1s2

+ � js2
�ki� js2r1r2

�kis1s2
��s2

�r2
��s2

�s2
��

= �i� j�k �
r1,r2,s1,s2=1

4

���is2
� jk� jks1s2

is2r1r2 + �ks2
�ij�ijs1s2

ks2r1r2

+ � js2
�ki�kis1s2

js2r1r2��s2
�r2

��s2
�s2

�� �7�

here the � symbol denotes the generalized Kronecker delta according to its standard definition,
amely, given q superindexes �i1 , . . . , iq� and q subindexes �j1 , . . . , jq� all of them taking values in
he range �1, . . . ,n�, then � j1¯jq

i1¯iq is defined by the properties: �a� it is totally antisymmetric in the
uperindexes; �b� it is totally antisymmetric in the subindexes; �c� if the superindexes are all
ifferent �this is, ia1

� ia2
if a1�a2� and the subindexes are a permutation of the superindexes, then

j1¯jq
i1¯iq takes the value +1 �respectively, −1� if �i1 , . . . , iq� and �j1 , . . . , jq� are permutations of the
ame �of different� sign; �d� the value of � j1¯jq

i1¯iq is zero otherwise. Consequently, it can be verified
hat the expression in �7� vanishes if two of the three indexes �i , j ,k� are equal. Consider then the
ase in which i, j, and k are different. If m is the integer, 1	m	4, such that �i , j ,k ,m� is a

ermutation of �1,2 ,3 ,4�, we arrive at
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�
l=1

4

�Jil�lJjk + Jkl�lJij + Jjl�lJki�

= �i� j�k�m��m�m���im� jk��k − � j� + �km�ij�� j − �i� + � jm�ki��i − �k��

= �i� j�k�m��m�m���� jm�ki − �km�ij��i + ��km�ij − �im� jk�� j + ��im� jk − � jm�ki��k� .

�8�

ow let p, where 0	 p	4, be the number of functions �i which have constant value everywhere
n �. Taking into account hypothesis �f� of the theorem, there are five different possibilities to be
xamined for Eq. �8�.

p=0, in this case it is straightforward that �8� vanishes if and only if �6� holds.
p=1, the analysis and the result are similar to those of the case p=0.
p=2, assume without loss of generality that �k and �m are constant in � while �i and � j are

ot. Then expression �8� vanishes if and only if

�im� jk − � jm�ik = ��im� jk − �ij�km��k + ��ij�km − �im� jk��m = 0.

Given that �k��m, these equations are equivalent to �6�.
p=3, suppose without loss of generality that �i, � j, and �k are constant in �, while �m is not.

hen expression �8� is equal to zero if and only if

��� jm�ki − �km�ij��i + ��km�ij − �im� jk�� j + ��im� jk − � jm�ki��k��m�m = 0.

Taking into account that �m�m does not vanish everywhere in �, and that �i, � j, and �k are
rbitrary �as far as hypothesis �f� of the theorem is respected� the outcome is again that �6� is
ecessary and sufficient for the vanishing of �8�.

p=4, Eqs. �8� vanish because �m�m=0 for all possible values of m. This is to be expected
ecause in this case we are dealing with a separable structure.31

Then conditions �6� are necessary and sufficient for the vanishing of �8� when 0	 p	3. For
p=4 expression �8� is always zero. This concludes the analysis of the case �=1. Let us now turn
o the general form �4� of the solution, namely to general �. To analyze this case, consider an
rbitrary four-dimensional skew-symmetric solution Jij�x� of the Jacobi equations. If such solution
s multiplied by a C1��� function ��x� the resulting set of functions Jij

* �x�=��x�Jij�x� will be a
kew-symmetric solution of �5� if and only if � verifies

�JimJjk + JkmJij + JjmJki��m� = 0, �9�

here again �i , j ,k ,m� denotes every permutation of �1,2 ,3 ,4�. We now apply condition �9� to the
unctions Jij in �4� for which �=1, just considered in the first part of this proof. It can thus be seen
hat

JimJjk + JkmJij + JjmJki = �i� j�k�m �
p,q,r,s=1

4

�q�s��im� jk�impq
jkrs + �ij�km�kmpq

ijrs + � jm�ki� jmpq
kirs � .

�10�

o evaluate this expression, consider first the cases 0	 p	3, which are verified if and only if �6�
s valid. In such situations Eq. �10� becomes

JimJjk + JkmJij + JjmJki = �i� j�k�m�im� jk �
p,q,r,s=1

4

�q�s��impq
jkrs + �kmpq

ijrs + � jmpq
kirs � = 0

nd the result is demonstrated. For the remaining case p=4 it can be seen after some algebra that

10� amounts to
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JimJjk + JkmJij + JjmJki = �i� j�k�m���im� jk − � jm�ki���i� j + �k�m�

+ ��ij�km − �im� jk���i�k + � j�m� + �� jm�ki − �ij�km���i�m + � j�k�� .

�11�

his expression must vanish everywhere in � if �4� is to be a solution for arbitrary � in this case.
ince p=4 �namely all �i are constant in �� then hypothesis �f� implies that there are two
ossibilities: either �i�0 for every i=1, . . . ,4; or �i=0 for just one value of i. It can be shown in
oth situations that �11� vanishes if and only if �6� is verified. Consequently, the inclusion of
unction � implies that conditions �6� are also necessary and sufficient in the case p=4. This
ompletes the proof of Theorem 2.1. Q.E.D.

Therefore the family of Poisson structures just characterized has the matrix form

J = � ·	
0 �12�1�2��4 − �3� �13�1�3��2 − �4� �14�1�4��3 − �2�

�12�1�2��3 − �4� 0 �23�2�3��4 − �1� �24�2�4��1 − �3�
�13�1�3��4 − �2� �23�2�3��1 − �4� 0 �34�3�4��2 − �1�
�14�1�4��2 − �3� �24�2�4��3 − �1� �34�3�4��1 − �2� 0



�12�

here additionally �12�34=�13�24=�14�23. For what is to follow, the next definition will be
ecessary.

Definition 2.2: For every open domain ��R4, the set of Poisson structures defined in � and
f the kind �4� characterized in Theorem 2.1 will be denoted 
���.

To provide the basis for the analysis of the symplectic structure and Darboux reduction in Sec.
II and also in order to complete the description of these structures, the following result is impor-
ant.

Proposition 2.3: Let ��R4 be an open set, then every Poisson structure J�
��� has
onstant rank of value 2 everywhere in �.

Proof: The determinant of J in �12� is

�J� = ���1�2�3�4�2���14�23 − �13�24���1�2 + �3�4� + ��12�34 − �14�23���1�3 + �2�4�

+ ��13�24 − �12�34���1�4 + �2�3��2.

ue to identities �6� the result is that �J � =0. Therefore the rank cannot be 4, but only 2 or 0. The
act that the rank is 2 everywhere in � is implied by conditions �c�, �e�, and �f� of Theorem
.1. Q.E.D.

Proposition 2.3 provides the basis for the explicit determination of the symplectic structure
nd Darboux reduction of these structures. This is the purpose of the next section.

II. SYMPLECTIC STRUCTURE AND DARBOUX CANONICAL FORM

Before developing the main issues of this section it is necessary to recall a known definition38

hat will be needed for their establishment.
Definition 3.1: Let ��R4 be an open set. A reparametrization of time is defined as a trans-

ormation of the form

d� =
1

��x�
dt , �13�

here t is the initial time variable, � is the new time and ��x� :�→R is a C1��� function which
oes not vanish in �.
The sense of this definition is the following: let
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dx

dt
= J · �H �14�

e an arbitrary four-dimensional Poisson structure defined in an open domain ��R4. Then, every
eparametrization of time of the form �13� leads from �14� to the differential system,

dx

d�
= �J · �H . �15�

ote however that such transformation often destroys the Poisson structure for systems of dimen-
ion higher than three,38 because for a given J which is a structure matrix, �J is not necessarily
solution of �2� and �3� as it has been discussed in the proof of Theorem 2.1 in connection with

he four-dimensional case.
The main purpose of this section is the investigation of the symplectic structure of family

���. The central result in this sense corresponds to the next theorem, for which the proof is
onstructive and completely classifies the different cases arising in the explicit determination of
he Casimir invariants and the global reduction to the Darboux canonical form for the members of

���.
Theorem 3.2: For every four-dimensional Poisson system

dx

dt
= J · �H

efined in an open domain ��R4 and such that J�
���, both a complete set of C2��� inde-
endent Casimir invariants as well as the reduction to the Darboux canonical form, can be globally
onstructed in �.

Proof: The proof begins with an auxiliary result.
Lemma 3.3: Let ��R4 be an open set, then every J�
��� is equivalent to a Poisson

tructure J� defined in a domain ��, of rank constant and equal to 2 in �� and components of the
orm

Jij� �y� = �ij���y� �
k,l=1

4

�ijkl�l��yl�, i, j = 1, . . . ,4. �16�

oreover, J� is obtained through the change of variables globally diffeomorphic in �,

yi�xi� =� dxi

�i�xi�
, i = 1, . . . ,4 �17�

nd ��=y��� is the diffeomorphic image of � through transformation �17�.
Proof of Lemma 3.3: Recall that after a general diffeomorphism y=y�x�, a given structure

atrix J�x� is transformed into another one J��y� according to the rule

Jij� �y� = �
k,l=1

n
�yi

�xk
Jkl�x�

�yj

�xl
. �18�

he use of �18� with transformation �17� on J leads to �16� with ���y�=��x�y�� and �i��y�
�i�x�y�� for i=1, . . . ,4. The fact that the rank of �16� is constant and of value 2 everywhere in
� is a direct consequence of Proposition 2.3 and identity �18�. Q.E.D.

The Poisson structure �16� will be the starting point for the rest of the proof. Now two
omplementary cases are to be distinguished.

Case I: �ij�0 for all pairs �i , j�, i� j. The analysis of this case must begin with a definition
nd some preliminary results.

Definition 3.4: Given an open set ��R4, a Poisson structure belonging to 
��� is said to be

-positive if all its constants �ij can be chosen to be positive, where i , j=1, . . . ,4 and i� j.
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Lemma 3.5: Let ��R4 be an open set, and let J�
��� be a Poisson structure for which

ij�0 for every pair i� j, where i , j=1, . . . ,4. Then J is �-positive and can be expressed in terms
f the set of constants �̃ij = ��ij�.

Proof of Lemma 3.5: From now on, we define ���12�34=�13�24=�14�23 �recall Eq. �6��.
our main cases can be distinguished.

Case 1: �ij 0 for all i� j. The matrix is already in �-positive form.
Case 2: �ij �0 for all i� j. This is reduced to Case 1 by redefining �i�xi� as �̃i�xi�=−�i�xi� for

very i.
Case 3: �0 with constants �ij both positive and negative. There are two subcases.

Case 3.1: There are two negative and four positive constants �ij with i� j.
Case 3.1.1: �12�0 and �34�0.
Case 3.1.2: �13�0 and �24�0.
Case 3.1.3: �14�0 and �23�0.

The three subcases 3.1.x are reduced in two steps.
Step 1: redefine �i�xi� as �̃i�xi�=−�i�xi� for every i.

Step 2: redefine �i�xi� as �̃i�xi�=−�i�xi� for i=3,4 in subcase 3.1.1, for i=1,3 in subcase 3.1.2
nd for i=1,4 in subcase 3.1.3.

Case 3.2: There are two positive and four negative constants �ij with i� j. These are three
ossible cases that coincide with the ones appearing after step 1 of items 3.1.1, 3.1.2, and 3.1.3
nd therefore their reduction corresponds to the transformations indicated in step 2 of those three
ubcases.

Case 4: ��0. Clearly it can be assumed without loss of generality that �12�0. Then there are
our possibilities.

Case 4.1: �13�0 and �14�0. Redefining �̃1�x1�=−�1�x1� it is reduced to Case 1.

Case 4.2: �130 and �140. Redefining �̃2�x2�=−�2�x2� it is reduced to Case 1.

Case 4.3: �130 and �14�0. Redefining �̃3�x3�=−�3�x3� it is reduced to Case 2.

Case 4.4: �13�0 and �140. Redefining �̃4�x4�=−�4�x4� it is reduced to Case 2.
This completes the proof of Lemma 3.5. Q.E.D.
A result that complements the last lemma is the next one.
Lemma 3.6: For every set of positive real constants ��12,�13,�14,�23,�24,�34� verifying

onditions �6� there exists a unique set of positive real constants ��1 ,�2 ,�3 ,�4� such that the
qualities �ij =�i� j are satisfied for every pair �i , j�, with i� j, 1	 i	3, 2	 j	4.

Proof of Lemma 3.6: The existence of the constants �i can be seen on their explicit expres-
ions

�1 = �12�13�14

�
�1/2

, �2 =  ��12

�13�14
�1/2

, �3 =  ��13

�12�14
�1/2

, �4 =  ��14

�12�13
�1/2

,

here now �0. To prove uniqueness, taking logarithms of equalities �ij =�i� j allows reducing
he problem to the investigation of the following linear system:

	
1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1


 ·	
ln �1

ln �2

ln �3

ln �4


 =	
ln �12

ln �13

ln �14

ln � − ln �14

ln � − ln �13

ln � − ln �12


 . �19�

hen the application of the Rouché-Fröbenius theorem shows that system �19� has a unique

olution for ��1 ,�2 ,�3 ,�4� and the result is demonstrated. Q.E.D.
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Therefore notice that in Case I, Lemma 3.5 can be used to assume that all the �ij 0.
oreover, Lemma 3.6 can also be employed to write �ij =�i� j in every case. Then from �16� we

ave the following type of Poisson matrix:

Jij� �y� = �i� j���y� �
k,l=1

4

�ijkl�l��yl�, i, j = 1, . . . ,4 �20�

ith �i0 for i=1, . . . ,4. We can now state.
Lemma 3.7: For an open set ��R4, assume that J�
��� is equivalent after transformation

17� to a Poisson structure J� of the form �20� defined in y���=���R4 and such that �i0 for
=1, . . . ,4. Then a complete set of independent Casimir invariants of such Poisson structure J�
hich are globally defined in �� and C2���� is given by

C1�y� = �2�3�4y1 + �1�3�4y2 + �1�2�4y3 + �1�2�3y4, �21�

C2�y� = �1�2�3�4�
i=1

4 � �i�yi�
�i

dyi. �22�

Proof of Lemma 3.7: It is an application of the Pfaffian method.26 Q.E.D.
We can then proceed to the reduction to the Darboux canonical form in Case I. For this,

onsider the following change of variables globally diffeomorphic in ��:

�z1 = y1, z2 = y2, z3 = C1�y�, z4 = C2�y�� , �23�

here C1�y� and C2�y� are those in �21� and �22�. When the transformation rule �18� is applied for
23� to matrix �20� the result is

J��z� = ���z� ·	
0 1 0 0

− 1 0 0 0

0 0 0 0

0 0 0 0

 �24�

hich is defined in ��=z����, and where ���z�=�1�2���y�z����4��y�z��−�3��y�z���. To conclude,
he reduction to the Darboux canonical form is achieved making use of Definition 3.1 to perform
time reparametrization of the form �13�, namely d�=���z�dt, where � is the new time and ���z�

s clearly nonvanishing in �� and C1����. According to �14� and �15� the result is a new Poisson
ystem with Darboux-type structure matrix,

JD =	
0 1 0 0

− 1 0 0 0

0 0 0 0

0 0 0 0

 . �25�

he reduction is thus globally completed in Case I.
Case II: �ij =0 for some pair �i , j�, i� j. Again matrix �16� is our starting point. Now notice

hat �=0 and as a consequence of conditions �6� we actually have �ij =0 for at least three of the
ix pairs �i , j�, with i� j, 1	 i	3, 2	 j	4. This leads to eight possible subcases,

��II.A.1: �14 = �24 = �34 = 0�, �II.A.2: �12 = �13 = �14 = 0� ,

�II.A.3: �12 = �23 = �24 = 0�, �II.A.4: �13 = �23 = �34 = 0� ,
�II.B.1: �13 = �14 = �34 = 0�, �II.B.2: �12 = �13 = �23 = 0� ,
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�II.B.3: �12 = �14 = �24 = 0�, �II.B.4: �23 = �24 = �34 = 0� . �26�

s it can be seen, these subcases are grouped in two different four-member sets �II.A and II.B�.
he four members of each set present analogous symplectic structures and similar reduction
rocedures to Darboux form. Let us start with the II.A possibilities:

Lemma 3.8: For an open set ��R4, assume that J�
��� is equivalent after transformation
17� to a Poisson structure J� of the form �16� defined in y���=���R4 and corresponding to one
f the subcases II.A.1 to II.A.4 in �26�. Then a complete set of independent Casimir invariants of
uch Poisson structure J� which are globally defined in �� and C2���� is, respectively,

II.A.1: C1�y� = y4

C2�y� = �23� �1�y1�dy1 + �13� �2�y2�dy2 + �12� �3�y3�dy3

− ��23y1 + �13y2 + �12y3��4�y4�;

II.A.2: C1�y� = y1,

C2�y� = �34� �2�y2�dy2 + �24� �3�y3�dy3 + �23� �4�y4�dy4

− ��34y2 + �24y3 + �23y4��1�y1�;

II.A.3: C1�y� = y2,

C2�y� = �34� �1�y1�dy1 + �14� �3�y3�dy3 + �13� �4�y4�dy4

− ��34y1 + �14y3 + �13y4��2�y2�;

II.A.4: C1�y� = y3,

C2�y� = �24� �1�y1�dy1 + �14� �2�y2�dy2 + �12� �4�y4�dy4

− ��24y1 + �14y2 + �12y4��3�y3� .

Proof of Lemma 3.8: It is similar to the one of Lemma 3.7. Q.E.D.
We carry out now the reduction to the Darboux canonical form for subcase II.A. For the sake

f conciseness this will be done for the first possibility II.A.1, since the procedure is entirely
nalogous for the remaining situations II.A.2 to II.A.4. Thus for II.A.1 the following change of
ariables globally diffeomorphic in �� is defined

�v1 = y1, v2 = y2, v3 = C2�y�, v4 = C1�y�� , �27�

here C1�y� and C2�y� are those in Lemma 3.8 for subcase II.A.l and according to hypothesis �c�
f Theorem 2.1 it is assumed �12�0 without loss of generality. Applying �18� and �27� to such
tructure matrix it is again obtained a Poisson structure of the form J��v�=���v�. JD defined in

����, where now ���v�=�12���y�v����4��y�v��−�3��y�v��� and JD is given in �25�. The reduction
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s concluded by means of a time reparametrization �13� of the form d�=���v�dt, where ���v� is
onvanishing in v���� and C1�v�����. The result is thus a Poisson system with structure matrix
25� and the reduction is globally completed.

Consider the next subcases II.B in �26�. For each of them both generic and nongeneric
ossibilities must be distinguished, according to the following definition.

Definition 3.9: Given a Poisson structure of the kind �16� characterized in Lemma 3.3 and
orresponding to one of the subcases II.B.l to II.B.4 in �26�, such structure will be called generic
f only three of the six constants �ij vanish, for i� j, 1	 i	3, 2	 j	4, while if four or five of
uch constants are zero the same type of structures will be termed nongeneric.

Obviously the case in which all constants �ij vanish is excluded due to condition �c� of
heorem 2.1. Now the generic II.B subcases will be treated first. For them we have the following

esult.
Lemma 3.10: For an open set ��R4, assume that J�
��� is equivalent after transformation

17� to a Poisson structure J� of the form �16� defined in y���=���R4 and corresponding to one
f the generic subcases II.B.l to II.B.4 in �26�. Then a complete set of independent Casimir
nvariants of such Poisson structure J� which are globally defined in �� and C2���� is, respec-
ively,

II.B.1: C1�y� = �23�24y1 + �12�24y3 + �12�23y4,

C2�y� = �23�24� �1�y1�dy1 + �12�24� �3�y3�dy3 + �12�23� �4�y4�dy4;

II.B.2: C1�y� = �24�34y1 + �14�34y2 + �14�24y3,

C2�y� = �24�34� �1�y1�dy1 + �14�34� �2�y2�dy2 + �14�24� �3�y3�dy3;

II.B.3: C1�y� = �23�34y1 + �13�34y2 + �13�23y4,

C2�y� = �23�34� �1�y1�dy1 + �13�34� �2�y2�dy2 + �13�23� �4�y4�dy4;

II.B.4: C1�y� = �13�14y2 + �12�14y3 + �12�13y4,

C2�y� = �13�14� �2�y2�dy2 + �12�14� �3�y3�dy3 + �12�13� �4�y4�dy4.

Proof of Lemma 3.10: It is similar to the one of Lemma 3.7. Q.E.D.
Regarding the reduction to the Darboux canonical form for the generic II.B subcases, possi-

ility II.B.1 will be the only one explicitly considered, since again the procedure is completely
nalogous for the other cases II.B.2 to II.B.4. Then for II.B.1 �generic� the transformation globally
iffeomorphic in �� to be performed is

�w1 = y1, w2 = y2, w3 = C1�y�, w4 = C2�y�� , �28�

here C1�y� and C2�y� are those in Lemma 3.10 for II.B.1. Once �28� is defined, the rest of the

eduction for the generic II.B.1 case is entirely similar to that of subcase II.A.1.
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The only remaining situations are the nongeneric II.B subcases. The results to be presented are
ompletely analogous for the four possibilities II.B.1 to II.B.4, and consequently we shall only
eal explicitly with II.B.1 for the sake of brevity. For this, notice that there are two possible
ongeneric situations for II.B.1.

II.B.1.a: One of ��12,�23,�24� vanishes. These three subcases are retrieved as particular
nstances of the II.A cases already analyzed, in such a way that the complete set of independent
asimir invariants and the reduction to the Darboux canonical form are also obtained as particular

esults of the ones given for II.A. Specifically, we may have

�i� �12=0: Such matrix is a particular case of II.A.2 in which �34=0.
�ii� �23=0: This is a particular case of II.A.4 with �14=0.
�iii� �24=0: It is a particular case of II.A.1 with �13=0.

II.B.1.b: Two of ��12,�23,�24� vanish. Then the Casimir invariants are apparent and only a
ime reparametrization remains in order to reduce the Poisson system to Darboux form.

The classification is similar for the nongeneric II.B.2 to II.B.4 possibilities. Case II is thus
oncluded.

The demonstration of Theorem 3.2 is therefore complete. Q.E.D.
Thus not only the Poisson structures considered but also their possible kinds of Casimir

nvariants and global reductions to the Darboux canonical form are completely characterized after
he previous results. Once the main properties have been considered in detail, it is interesting to
ut in perspective the family just analyzed, as far as it is closely related to other Poisson structures
eported in the literature. This is the aim of the next part of the work.

V. EXAMPLES AND RELATIONSHIP WITH OTHER SOLUTIONS

In this section the relationship of the family of solutions investigated with some other well-
nown Poisson structures is briefly explored. This is useful not only because the family of form
4� characterized in Theorem 2.1 provides a generalization of other structures or families of
tructures to be mentioned, but also because pointing up the intersections among different families
hould be helpful for future investigations regarding the Jacobi equations. Additionally, such
llustrations provide interesting examples of the solutions analyzed throughout the paper.

Consider first the particular case of members of 
��� for which functions ��x� and �i�xi�
i=1, . . . ,4� have constant values. The result is always a separable Poisson structure,31 namely a
tructure matrix of the form Jij =aij�i�xi�� j�xj�, where the aij are real constants that constitute the
ntries of a skew-symmetric matrix A= �aij�, and the �i�xi� are nonvanishing C1��� functions.
ecall that separable matrices are always solutions of the Jacobi equations �2� and �3� indepen-
ently of the dimension of the Poisson manifold.31 There are several interesting kinds of Poisson
ystems for which separable structures are natural in general dimension n, and consequently in the
pecific case of dimension n=4. This is the case of Poisson models arising in the domain of
opulation dynamics �for either Lotka-Volterra11 or generalized Lotka-Volterra8 systems�, plasma
odels19 and systems such as the Toda and relativistic Toda lattices.15 The interested reader is

eferred to the primary reference for further examples and the full details regarding issues such as
he determination of the Casimir invariants and the reduction to the Darboux canonical form for
eparable Poisson structures.31 Note in addition that according to Proposition 2.3 the structures
elonging to 
��� have constant rank of value 2 everywhere in �, while the rank of a separable
atrix is the rank of A. Then it is interesting to remark that the particular case in which � and �i

i=1, . . . ,4� are constant does not comprise all possible four-dimensional separable matrices but
nly separable structures of rank two, thus illustrating an intersection between two known families
f Poisson structures.

As a second example, consider the limit case in which the functions �4�x4�=�4�x4�=0 are
onsidered in �12�. In the resulting Poisson structure, it is clear that x4 is a Casimir function. Then
f a reduction is carried out to the symplectic leaf x4=c, the outcome is the 3d Poisson structure of
atrix:
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J�3d� = �̃ · 	 0 �1�2�̃3 − �1�3�̃2

− �1�2�̃3 0 �2�3�̃1

�1�3�̃2 − �2�3�̃1 0

 , �29�

here �̃�x1 ,x2 ,x3�=��x1 ,x2 ,x3 ,c� and �̃i=� jk�i for i=1,2 ,3, where �i , j ,k� denotes an arbitrary
ermutation of �1,2 ,3�. Dropping the tildes for the sake of clarity, the resulting structures can also
e expressed as

�J�3d��ij�x1,x2,x3� = ��x1,x2,x3��i�xi�� j�xj��
k=1

3

�ijk�k�xk�, i, j = 1,2,3. �30�

oisson structures of the form �29� and �30� have been studied in detail in the literature,38 and
ctually they comprise as particular cases very different Poisson matrices employed before in
everal domains, including the Euler top,2 the Kermack-McKendrick model,10,37 certain integrable
ases of the Lorenz system,20 population models such as those of Lotka-Volterra9,11,37 and gener-
lized Lotka-Volterra8 types, the Maxwell-Bloch equations,27 the Rabinovich system,20 or the
TW interaction equations.20 A discussion of these particular instances as well as an analysis of
tructures �29� and �30� including their symplectic structure, Casimir invariants and construction
f the Darboux coordinates are present in the aforementioned reference.38 Such family is also
nteresting from the point of view of the separable structures considered in the first part of this
ection, since it is evident that all three-dimensional separable structures are particular cases of
30�.

It can be thus appreciated how the identification of the solutions characterized in Theorem 2.1
eads to the establishment of some new links among different families of Poisson structures.

. FINAL REMARKS

Every new contribution to the study of skew-symmetric solutions of the Jacobi equations
ends to provide a more general perspective of the field of finite-dimensional Poisson structures.
ypical features of this fact can be appreciated in the previous analysis. Not only the identification
f finite-dimensional Poisson structures constitutes in itself a relevant problem from the point of
iew of mathematical physics, but in addition this knowledge provides a richer framework for the
undamental problem of recasting a given differential flow into a Poisson system, whenever
ossible. Additionally, it is worth noting that the characterization of a sufficiently general solution
amily often allows the conceptual and operational unification of diverse Poisson structures and
ystems previously well-known but unrelated, which can hereafter be regarded from a more
eneral and economic standpoint. Examples of this have been given in Sec. IV. In particular, in
uch sense it is physically interesting to identify the Casimir invariants and to develop the reduc-
ion procedure to the Darboux canonical form for the solution families. These are features of
pecial relevance when they can be globally achieved, thus providing an additional instance of a
esult that goes beyond the a priori scope of Darboux theorem and has been reported only in a
imited number of cases. This kind of results suggests that the direct investigation of the Jacobi
quations constitutes a fruitful line of research not only for classification purposes but also for the
etailed analysis of Poisson structures, not to mention its mathematical interest as an example of
onlinear system of PDEs. Additionally to these considerations, it is worth recalling that dimen-
ion three is the simplest nontrivial case for the analysis of the Jacobi equations and has conse-
uently been studied in much more detail than higher dimensions, as discussed in the Introduction.
n the other hand, Jacobi equations �3� become increasingly complicated as dimension grows.
his explains the relative scarcity of results for dimensions four and higher. Certainly, a complete
nowledge of the skew-symmetric solutions of the Jacobi equations is still far, but nevertheless the
nvestigation of the problem seems to be a unavoidable issue for a better understanding of finite-

imensional Poisson structures, and therefore of the scope of Hamiltonian dynamics.
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It is well known that nonholonomic systems obeying D’Alembert’s principle are
described on the Hamiltonian side, after using the Legendre transformation, by the
so-called almost-Poisson brackets. In this paper we define the Lagrangian and
Hamiltonian sides of a class of generalized nonholonomic systems �GNHS�, obey-
ing a generalized version of D’Alembert’s principle, such as rubber wheels �like
some simplified models of pneumatic tires� and certain servomechanisms �like the
controlled inverted pendulum�, and show that corresponding equations of motion
can also be described in terms of a bracket. We present essentially all possible
brackets in terms of which the mentioned equations can be written down, which
include the brackets that appear in the literature, and point out those �if any� that are
naturally related to each system. In particular, we show there always exists a
Leibniz bracket related to a GNHS, and conversely, that every Leibniz system is a
GNHS. The control of the inverted pendulum on a cart is studied as an illustrative
example. © 2006 American Institute of Physics. �DOI: 10.1063/1.2165797�

. INTRODUCTION

In the framework of constrained mechanical systems, recent works1–3 have pointed out �in a
ore or less independent way� that, in order to find the trajectories of the system, kinematic

onstraints itself do not provide �in general� all the needed information, but, in addition, the space
f possible values of the constraint forces �or some equivalent information� must also be specified.
he problem has been analyzed from a Hamiltonian point of view in Refs. 1 and 2, and from a
agrangian one in Ref. 3. The last reference has adopted a variational-like formulation, where
uch an additional information is given in terms of the space of possible values of variations. The
atter is defined, essentially, by a distribution on the configuration space of the system: the so-
alled variational constraints. Possible values of constraint forces correspond to the annihilator of
uch a distribution, given rise in this way to a generalized version of the Principle of Virtual
orks.

For systems with linear nonholonomic �and even with affine� constraints in the velocities, the
bove-mentioned additional data is usually supplied by the D’Alembert’s principle, which has
een the purpose of an extensive research for more than a century.4–19 In such cases, kinematic
onstraints are determined by a distribution on the configuration space Q, and D’Alembert’s
rinciple says that variational constraints are given precisely by the same distribution. In other
ords, we can derive variational constrains from the kinematic ones by using this principle.
ccordingly, in some sense, no additional information is needed in that situation. For general
onlinear constraints in the velocities,20 given by submanifolds of TQ, and also for higher order
onstraints,21,22 defined by submanifolds of higher order tangent bundles T�k�Q,23,24 the “natural”

25–27
eneralization of D’Alembert’s principle is the so-called Chetaev’s rule or principle.

47, 022902-1022-2488/2006/47�2�/022902/29/$23.00 © 2006 American Institute of Physics
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Unfortunately, as it has been shown in Marle’s work2 for servomechanisms, and in the work
f Cendra et al.3 for some simplified models of pneumatic tires28–30 �which include, in some cases,
igher order constraints�, these principles do not always lead us to the correct equations of motion.
hat is to say, variational constraints derived from kinematic ones by using D’Alembert’s or
hetaev’s principle �depending on the form of involved kinematic constraints� give rise, in gen-
ral, to wrong equations. In these cases we say the system does not satisfy D’Alembert’s or
hetaev’s principle. As a conclusion, kinematic and variational constraints must be taken as

ndependent notions, and one should not attempt to derive, for instance, variational from kinematic
onstraints by a universal procedure.

It is worth mentioning that applicability of the above principles does not depend on the form
f kinematic constraints alone, but on the way they are implemented by the constraint forces in
ach case: different procedures to realize the same kinematic constraints give rise to different
ynamical systems.

One of the aims of the present work is to define and study a subclass of the systems presented
n Ref. 3, which we shall call generalized nonholonomic systems �GNHS�, and propose, by using
he Legendre transformation, a Hamiltonian description of them. Such systems are essentially
onholonomic systems that do not necessarily satisfy D’Alembert’s or Chetaev’s principle. In this
ay, we compare the Lagrangian approach of Ref. 3 and the Hamiltonian one developed in Ref.
. All that is contained in Sec. II.

We also start on the Hamiltonian side and define a generalized notion of a constrained Hamil-
onian system �which we also call GNHS�, following Marle’s work, going beyond the case of
amiltonian systems obtained by a Legendre transformation. We study existence and uniqueness

onditions for related equations of motion. We define in this scenario the D’Alembert’s and
hetaev’s distributions, in order to introduce there the notions of D’Alembert’s and Chetaev’s
rinciples, respectively. This is done in Sec. III.

In Sec. IV we develop the main aim of the paper: to obtain a bracket description of GNHS.
ore precisely, we write the equations of motion for such systems in terms of a bracket defined on

he constraints submanifold. We present, in essence, all possible brackets that can be used to
escribe dynamic of each GNHS, which includes the brackets that appear in the literature, and
oint out those that are naturally related to such systems. In some cases these brackets turn out to
e Leibniz brackets31,32 and even almost-Poisson brackets.2,8,9,33 However, we also consider cases
n which the resulting brackets are nonlinear in one of its arguments. We give a local procedure to
uild up such brackets in the linear and affine cases.

On the other hand, we show that there always exists a Leibniz bracket in terms of which
quations of motion can be written down. Conversely, we show that every Leibniz system can be
escribed as the Hamiltonian formulation of a GNHS.

An interesting example from control theory, that we study all along the paper, is the inverted
endulum on a cart. We give the Lagrangian and Hamiltonian formulations, and built up the
elated bracket, for the control strategies developed in Refs. 2 and 34. In particular, we show how
he idea of virtual constraints, presented in Ref. 34, can be naturally described in terms of GNHS.

I. GENERALIZED NONHOLONOMIC SYSTEMS

Let Q be an n-dimensional manifold, the configuration space. As usual, let us indicate by qi a
ocal coordinate system of Q, and by �qi , q̇i� �or �qi ,�qi�� the induced one on TQ. We shall often
mit indices.

Let us consider a triple �L ,CK ,CV� with

�i� L :TQ→R a function: the Lagrangian function.
�ii� CK�TQ a submanifold: the kinematic constraints. We shall often assume that the equal-

ity ��CK�=Q holds, being � :TQ�Q the canonical projection of the tangent bundle.
�iii� CV another submanifold: the variational constraints. Its elements will be called varia-

tions or virtual displacements. We consider two kinds of CV:
CV � TQ or CV � CK�QTQ .
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In the first case we ask CV to be a distribution. For the second case we ask, for each q
��CK�,

�i� the subsets

CV�v� = CV � ��v� � TqQ�

should be nonvoid for all v�CK such that ��v�=q,
�ii� identifying in a natural way CV�v� with a subset of TqQ, as we will do from now on, we

also ask CV�v� to be a linear subspace with the same dimension for all v�CK.

We can think of CK and CV, at least locally, as being subsets

CK = ��q, q̇�:RK�q, q̇� = 0�

nd �sum over repeated indices convention is assumed from now on�

CV = ��q,�q�:RV,i�q��qi = 0� , �1�

r

CV = ��q, q̇,�q�:RK�q, q̇� = 0 and RV,i�q, q̇��qi = 0� , �2�

eing RK and each RV,i vector valued differentiable functions. If CK is given by a family RK
a of real

alued functions, the condition ��CK�=Q is equivalent to the condition that the matrix �RK
a /�q̇j has

aximal rank.
Definition 1: We call a triple �L ,CK ,CV� a generalized nonholonomic system �GNHS�, and we

ay that a curve q : �t1 , t2�→Q is a trajectory of the system if its velocity belongs to CK and if, in
ddition, it is a critical point of the action, i.e.,

��
t1

t2

L dt = 0,

or variations restricted to CV.
In other words, q�t� is a trajectory of �L ,CK ,CV� if �q�t� , q̇�t���CK, and for all variations

q�t� such that, depending on the case,

�q�t�,�q�t�� or �q�t�, q̇�t�,�q�t��

elongs to CV, we have

� d

dt
� �L�q�t�, q̇�t��

� q̇i 	 −
�L�q�t�, q̇�t��

�qi 	�qi�t� = 0. �3�

n abbreviated form, equations of motions can be written

� d

dt
� �L

� q̇i	 −
�L

�qi	�qi = 0, �q, q̇� � CK, 
�q,�q� � CV,

�q, q̇,�q� � CV.
�4�

Now it is clear why CK and CV are called kinematic and variational constraints, respectively.
Remark 2: It is easy to prove that, a GNHS �L ,CK ,CV� with CV�TQ and the related system

ith triple �L ,CK ,CK�QCV� �corresponding to the second kind� are equivalent, in the sense that
hey have the same set of trajectories. This would enable us to describe all GNHS as belonging to
he second kind. However, we prefer to deal with these two kinds of variational constraints
eparately, in order to appreciate the particular formulas that appears in each situation.

Remark 3: We may consider a given CV of the second kind as being a submanifold of the
hitney sum TQ � TQ instead of CK�QTQ. But, as it can be easily shown, only the part included
n CK�QTQ would be relevant to describe the dynamic of the system.
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Constraint forces: Related to CV we have a submanifold FV, the constraint forces space:

�1� For a constraint CV�TQ of the first kind we define FV�T*Q as being the codistribution
given by the annihilator of CV, i.e., FV=CV

o .
�2� For a constraint of the second kind CV�CK�QTQ we define

FV � CK�QT*Q

such that subsets

FV�v� = FV � ��v� � Tq
*Q�

are given by the annihilator of CV�v� for all v�CK.

For short, we shall say that FV is the annihilator of CV, and write FV=CV
o and FV

o =CV. In local
erms �see Eqs. �1� and �2��

FV = ��q, f�:f i = �aRV,i
a �q�;� � R�

r

FV = ��q, q̇, f�:RK�q, q̇� = 0 and fi = �aRV,i
a �q, q̇�;� � R� .

In order to clarify the meaning of FV, let us rewrite Eq. �3� as

�f ,�q� = f i�qi = 0 �5�

or quantities

f i =
d

dt
� �L

� q̇i	 −
�L

�qi .

hen, f i must define a covector f that belongs to the annihilator of CV, i.e.,

�q�t�, q̇�t�, f�t�� � CV
o = FV.

ince in the Lagrangian formalism f represents constraint forces, the meaning of the submanifold

V is now clear. Going back to Eq. �5�, we have a generalized version of the Principle of Virtual
ork: constraint forces f do not realize work along virtual displacements �q. The generalization
ere corresponds to the fact that the mentioned virtual displacements have nothing to do, in
rinciple, with kinematic constraints. According to what has been said above, every GNHS can be
escribed in terms of data �L ,CK ,CV� or, alternatively, in terms of its related triple �L ,CK ,FV�.

Linear and affine constraints: When CK is a distribution on Q �respectively, an affine sub-
undle of TQ� we say the system has linear �respectively, affine� kinematic constraints. In these
ases we can write CK=CK

vec+�, being CK
vec�TQ a distribution and ��TQ a section. Such sub-

anifolds can be locally described by a set of equations for q̇,

�i
a�q�q̇i = �a�q�, 1 � a � k ,

or each q�Q. Of course, linear constraints correspond to the �a=0, or equivalently, to the �
0 case. D’Alembert’s principle holds when CV=CK

vec, i.e., when virtual displacements �q satisfy

�i
a�q��qi = 0, 1 � a � k ,

r equivalently, when FV= �CK
vec�o, which means that constraint forces do not realize work along

tandard virtual displacements: the standard Principle of Virtual Works.
Systems with higher order constraints: Systems defined above are a subclass of those pre-

ented in Ref. 3. There, a class of dynamical systems with higher order constraints were defined,
	
n a manifold Q, as triples �L ,CK ,CV� with L�C �TQ�,
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CK � T�k�Q and CV � T�l�Q�QTQ ,

or some k , l
0. Symbol T�n�Q denotes the nth order tangent bundle of the manifold Q.23,24 In
articular, T�0�Q=Q and T�1�Q=TQ. By definition, a curve q : �t1 , t2�→Q is a trajectory of the
ystem if its k-lift

�q��k��t� � CK,

nd Eq. �3� is fulfilled for all �q�t� such that

��q��l��t�,�q�t�� � CV.

It is clear that GNHS correspond to the k=1 and l=0,1 cases. Note that cases with k=0 can
e easily included in the class of GNHS. In fact, if we have constraints CK�Q, then we can
eplace them by TCK, obtaining in this way a system which is equivalent to the original one.

From now on, we shall refer to the cases CV�TQ and CV�CK�QTQ as the l=0 and l=1
ases, respectively.

We shall show in a forthcoming paper that any triple �L ,CK ,CV� with higher order constraints
s equivalent to a GNHS. This is one of the reasons why we focus on such a subclass.

. Application to servomechanisms

The inverted pendulum on a cart: In the scenario of automatic control, a widely studied
echanical system is the so-called inverted pendulum on a cart. It consists in a straight rod which

emains in a vertical plane, such that one of its tips, say O, can move only along a straight
orizontal line contained in that plane. The configuration space for this system is Q=R�S1. Given
x ,���R�S1, x represents the position of the point O and � represents the angle of rotation of the
od with respect to the horizontal line, measured in the counter-clockwise sense.

The Lagrangian of the system is �neglecting friction�

L�x,�, ẋ, �̇� = 1
2mẋ2 − ml�̇ẋ sin � + 1

2 I�̇2 − mgl sin � , �6�

here m is the mass of the rod, l is the distance from O to its center of mass, I is its moment of
nertia with respect to O, and g is the acceleration of gravity. It is worth remarking that the system
as an unstable fixed point at �=� /2.

A classical control problem is to take the rod from any position to the upright position, which
hould be converted into a stable fixed point. In order to do that, Marle suggest,2 as a control

trategy, to impose a value of ẋ as a function of x ,� , �̇. In other words, to impose a kinematic
onstraint CK�TQ of the form

CK = ��x,�, ẋ, �̇�:ẋ − f�x,�, �̇� = 0� . �7�

or instance, one can choose CK to be an affine subbundle given by

ẋ − ����̇ = ���� , �8�

ith ���=−b and ����=a cos �, taking a�0 and b� I /ml. This constraint is different from that
ppearing in Ref. 2, but it has the same effect, i.e., the upright position is effectively converted into
stable point.

Another control problem is the orbital stabilization, i.e., to make some periodic orbit of the
ystem asymptotically stable. To this end, in Ref. 34 the method of virtual constraints were
roposed and applied to the inverted pendulum on a cart. There, in order to make the pendulum
scillate around the upright position on an asymptotically stable orbit, they impose a kinematic
onstraint as in Eq. �8�, with ���=−L cos � and ����=0.

Note this constraint can be integrated to x+L sin �=c, for some constant c depending on the

nitial conditions. This is actually the form in which appears in Ref. 34.
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In both cases, constraints are realized by means of a servomechanism, which apply a hori-
ontal force at the point O. �This force is precisely the control law that the constraints gives rise.�
his means that constraint forces define a codistribution FV�T*Q with elements of the form � dx.
ccordingly, variational constraints define a one-dimensional distribution CV=FV

o generated by ��,
hat is, �x=0 and �� arbitrary. Explicitly,

CV = ��x,�,�x,���:�x = 0� . �9�

learly, D’Alembert’s principle is not valid, that is to say CV�CK
vec, unless ���=����=0.

Equations of motion of �L ,CK ,CV�, given by �6�, �7�, and �9� are

� d

dt
� �L

� ẋ
	 −

�L

�x
	�x + � d

dt� �L

� �̇
	 −

�L

��	�� = 0,

ẋ = f�x,�, �̇�, �x = 0;

hich, using the explicit form of the Lagrangian, reduce to

I�̈ − mlẍ sin � + mgl cos � = 0, ẋ = f�x,�, �̇� .

Geometric formulation of the method of virtual constraints: We have just seen how the idea of
irtual constraints, in the case of the inverted pendulum, fits into the scenario of GNHS. Let us
riefly comment how it fits in general �as developed in Ref. 34�. Given a Lagrangian system with
degrees of freedom, such a method consists in using n−1 independent actuators to implement

−1 independent constraints, the virtual constraints themselves, chosen in such a way that the
esulting underactuated mechanical system �the so-called zero dynamics� has some periodic orbit
hich is asymptotically stable. The name “virtual” for the involved constraints corresponds to the

act that the actuators, i.e., constraint forces, do not satisfy D’Alembert’s principle in general.
Suppose we have a mechanical system defined on an n-dimensional manifold Q and with

agrangian function L. Following Ref. 34, it can be shown �as we have done for the inverted
endulum� that, by applying the method of virtual constraints, the resulting dynamical system can
e described as a GNHS �L ,CK ,CV� with CK ,CV�TQ given by one-dimensional distributions.
ote that FV�T*Q has dimension n−1, corresponding to the n−1 independent actuators. Thus,

K represents virtual constraints and CV the space annihilated by the actuators.

. Legendre transformation and the Hamiltonian side

As usual, let us denote by �qi , pi� the local coordinate system of T*Q, and by �qi , pi , q̇
i , ṗi� �or

qi , pi ,�qi ,�pi�� the one induced by �qi , pi� on TT*Q.
In local terms, the Legendre transformation FL :TQ→T*Q reads

FL�q, q̇� = �q,p�, with pi =
�L

� q̇i �q, q̇� .

n what follows, we are going to assume that L is hyperregular. The energy function E :T*Q
� TQ→R is given by

E��q,vq� = ��q,vq� − L�vq� , �10�

r in coordinates,

E�q,p, q̇� = i=1

n
piq̇

i − L�q, q̇� ,

*
nd the Hamiltonian H :T Q→R is given by
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H��q� = E��q,FL−1��q�� . �11�

e will need the function F :T*Q � TQ→R, such that

F��q,vq� = ��q,vq� − H��q� . �12�

ow define a submanifold D�T*Q by

D = FL�CK� . �13�

he latter represents the phase space constraints associated to the kinematic constraints CK. Note
hat, whenever the equality ��CK�=Q holds, we have ��D�=Q, being � :T*Q�Q the canonical
rojection of the cotangent bundle.

Associated to CV we shall define a distribution V�TDT*Q along D. In order to do that, denote
y �* :TT*Q�TQ the differential of �, and consider the natural surjection

s:TT*Q � T*Q � TQ:V�q
� �q � �*�V�q

� .

n coordinates, s�q , p ,�q ,�p�= �q , p ,�q�. Now, we define

V = s−1�D�QCV�, l = 0,

�14�
V = s−1��FL�QidTQ��CV��, l = 1.

ote that for l=0 the distribution V can be described alternatively as

V = �*
−1�CV��D. �15�

n fact,

V = s−1�D�QCV� = �*
−1�CV� � TDT*Q = �*

−1�CV��D.

hus, for l=0,

V = �V�q
� TT*Q:�q � D,�*�V�q

� � CV� ,

nd in coordinates,

V = ��q,p,�q,�p�:�q,p� � D,�q,�q� � CV� .

or l=1, we can write V=s−1�V1�, with V1�T*Q � TQ given by

V1 = ��q � vq � T*Q � TQ:�q � D,�FL−1��q�,vq� � CV� .

n local coordinates, using that the inverse Legendre transformation FH=FL−1 is given by

FH�q,p� = �q, q̇�, with q̇i =
�H

�pi
�q,p� ,

e have

V1 = 
�q,p,�q�:�q,p� � D,�q,
�H

�p
�q,p�,�q	 � CV� . �16�

ccordingly, for l=1,

V = �V�q
� TT*Q:�q � D,s�V�q

� = �q � �*�V�q
� � V1�
r �see �16��
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V = ��q,p,�q,�p�:�q,p,�q� � V1� .

t is worth mentioning that the distributions V�TDT*Q above satisfy

s−1s�V� = V , �17�

hat implies that variations �p’s are arbitrary. A direct consequence of �17� is that such distribu-
ions are coisotropic, i.e., V��V, where � denotes the symplectic orthogonal with respect to the
anonical 2-form � of T*Q.

Now, in terms of a triple �H ,D ,V� as given above, we shall derive a set of equations equiva-
ent to those coming from related Lagrangian system. This will enable us to identify the Hamil-
onian side of a GNHS.

Proposition 4: Equations of motion �4�, defined by �L ,CK ,CV� with L hyperregular, are
quivalent to

�q̇i −
�H

�pi
	�pi + �ṗi +

�H

�qi	�qi = 0, �q,p,�q,�p� � V , �18�

efined by the data �H ,D ,V� �see Eqs. �11�, �13�, and �14��. They can be derived from a varia-
ional principle

��
t1

t2

F dt = 0, with variations restricted to V .

n turn, Eqs. �18� can be intrinsically described by each one of the following equivalent equations
or a vector field X�TD:

�D�X,Y� − dH�D�Y� = 0 for all Y � V ,

�D
��X� − dH�D � Vo,

X − �D
��dH�D� � V�,

here �D and dH�D are the canonical 2-form of T*Q and the differential dH restricted to

DT*Q�TDT*Q and TDT*Q, respectively.
Proof: Equations �4� for l=0 are

� d

dt
� �L

� q̇i	 −
�L

�qi	�qi = 0, �q, q̇� � CK, �q,�q� � CV. �19�

aving in mind that pi=�L/� q̇i and q̇i=�H/�pi, and the fact that

�H

�qj = −
�L

�qj ,

qs. �19� are equivalent to

q̇i − �H/�pi = 0, �ṗi +
�H

�qj	�qi = 0, �q,p� � D, �q,�q� � CV.

rom definition of V, since �p’s are arbitrary, equivalence of the last equations and Eq. �18�
ollows immediately. For l=1 we must proceed similarly. We leave to the reader to show the
quivalence with the phase space variational principle.
In order to show that Eq. �18� is equivalent to
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�D�X,Y� − dH�D�Y� = 0 for all Y � V ,

et us write X�TD and Y �V as Xq,p= �q̇ , ṗ� and Yq,p= ��q ,�p�. Then

��D�X,Y��q,p = q̇i�pi − ṗi�qi, �dH�D�Y��q,p =
�H

�qi �qi +
�H

�pi
�pi,

nd as a consequence

��D�X,Y� − dH�D�Y��q,p = �q̇i −
�H

�pi
	�pi + �ṗi +

�H

�qi	�qi,

s we wanted to show. �

Summing up, related to a triple �L ,CK ,CV� we have defined another one �H ,D ,V�, given by
qs. �11�, �13�, and �14�, which gives rise to a dynamical system equivalent to the original one.
hen, we can talk about �L ,CK ,CV� and �H ,D ,V� as the Lagrangian and Hamiltonian data, or
agrangian and Hamiltonian side, of a GNHS.

The inverted pendulum revisited: Let us continue with the inverted pendulum on a cart.
onsider the case of affine kinematic constraints implemented by constraint forces as described
bove. Then,

CK = ��x,�, ẋ, �̇�:ẋ = ����̇ + �����

nd

CV = ��x,�,�x,���:�x = 0� .

pplying Legendre transformation, we have

px = mẋ − v�̇, p� = − vẋ + I�̇ ,

eing v=ml sin �, and the Hamiltonian function is

H�x,�,px,p�� =
Ipx

2 + mp�
2 + 2vpxp�

2�mI − v2�
+ vg . �20�

he submanifold D=FL�CK� is given by points of T*Q with px , p� obeying

�H

�px
�x,�,px,p�� − ���

�H

�p�

�x,�,px,p�� = ���� �21�

or all x ,�, or equivalently,

px − ����p� = ���� �22�

ith

���� =
m��� − v
I − v���

and ���� =
�����mI − v2�

I − v���
. �23�

n the other hand, the distribution V can be described as

V = ��x,�,px,p�,�x,��,�px,�p��:px = ����p� + ����;�x = 0� .

hen, using �18� for V given above, equations of motions are

ẋ =
Ipx + vp�

2 , �̇ =
mp� + vpx

2 ,

mI − v mI − v
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ṗ� =
wpxp�

mI − v2 + vw
Ipx

2 + mp�
2 + 2vpxp�

�mI − v2�2 + wg ,

px = ����p� + ���� ,

eing w=ml cos �.

II. CONSTRAINED HAMILTONIAN SYSTEMS

The inverse Legendre transformation: Consider �H ,D ,V� with

�1� H�C	�T*Q�,
�2� D�T*Q an embedded submanifold,
�3� and V�TDT*Q a distribution such that s−1s�V�=V �recall Eq. �17��.

Suppose H is hyperregular, i.e., FH :T*Q→TQ is a diffeomorphism. Then,

�i� L�C	�TQ� such that �see Eq. �12��

L�vq� = F�FH−1�vq�,vq� , �24�

�ii� CK�TQ the submanifold of TQ defined by

CK = FH�D� , �25�

�iii� and CV given by the distribution

CV = �*�V� � TQ , �26�

if for each q we have ��*��q
�V�= ��*��q

�V� for all �q ,�q�D, or by

CV = �FH�QidTQ��s�V�� � CK�QTQ, otherwise , �27�

efines a GNHS �L ,CK ,CV�. Note that �26� and �27� correspond to the l=0 and l=1 cases,
espectively. It can be shown that Eqs. �18� defined by the given triple �H ,D ,V� �as well as their
quivalent forms appearing in the last proposition� are equivalent to Eqs. �4� related to the asso-
iated Lagrangian system �L ,CK ,CV�. With all that, we conclude that the Hamiltonian side of a
NHS is given by triples �H ,D ,V� detailed in points �1�, �2�, �3� above. Nevertheless, we shall

onsider the following definition, inspired in Marle’s work.2

Hamiltonian formulation of GNHS:
Definition 5: We shall also call GNHS a triple �H ,D ,V� with H an element of C	�T*Q�,

�T*Q a submanifold, and V�TDT*Q a distribution along D, whose equations of motion are

X � TD, X − �D
��dH�D� � V�. �28�

ast equations mean that a curve � : �t1 , t2�→T*Q is a trajectory of the system if its velocity �̇
atisfies

�̇�t� � TD, �̇�t� − ���dH���t�� � V�,

or all t� �t1 , t2�.
Remark 6: We will be mainly interested in the cases in which D is a closed embedded

ubmanifold of T*Q.
Remark 7: Note that systems defined above give a generalization of the Hamiltonian side of a

riple �L ,CK ,CV�, since we are not asking for condition

−1
s s�V� = V .
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Up to now, regarding the relation between Lagrangian and Hamiltonian formulation of GNHS,
e have proved the following results.

Theorem 8: Every GNHS given by �L ,CK ,CV�, with L a hyperregular Lagrangian, defines,
hrough Eqs. �11�, �13�, and �14�, a GNHS �H ,D ,V�.

A GNHS given by �H ,D ,V�, with H hyperregular Hamiltonian, defines, through Eqs. �24� to
27�, a GNHS �L ,CK ,CV� iff s−1s�V�=V.

In both cases, �L ,CK ,CV� and �H ,D ,V� give rise to equivalent dynamical systems.
Marle2 has defined a class of constrained Hamiltonian systems given by multiplets

P ,� ,H ,D ,W�, being P a Poisson manifold with Poisson bivector �, H a function on P, D a
ubmanifold of P and W�TDT*Q a distribution along D that represents the space where con-
traint forces live in Hamiltonian formalism. Of course, we can extend Definition 5 to arbitrary
oisson manifolds, but we shall restrict ourselves only to cotangent bundles, i.e., P=T*Q and �
iven by the canonical 2-form �. In these cases the above multiplets can be described simply as
riples �H ,D ,W�. Then, it is easy to see that the distribution W corresponds exactly to V�, in the
ense that the dynamical system�H ,D ,W� defined by Marle and the GNHS �H ,D ,V� with V
W� are equivalent. This enables us to describe a GNHS indistinctly in terms of V or W. This

ituation is similar to what we have on the Lagrangian side, where systems can be described by
riple �L ,CK ,CV� as well as �L ,CK ,FV�.

It is worth mentioning that a particular subclass of equations of the form �28� appears, fol-
owing Dirac’s procedure, in the Hamiltonian description of singular Lagrangian systems.14 Then,
NHS include singular systems as a special case.

. Existence and uniqueness conditions

Now, let us study intrinsic conditions for existence and uniqueness of solutions of Eq. �28�. In
rder to do that, let us consider a complement U� of TD inside TDT*Q, i.e., let us write TDT*Q
TD � U� for some appropriate U� �we take the orthogonal instead of the direct space for later
onvenience�. In other words,

dim TD = dim U and TD � U� = 0.

ere 0 means the null section of TDT*Q. Let us call pU� the projection with range TD related to
he decomposition above. Note the same can be done on an open set of D. The following result is
mmediate.

Proposition 9: Equation �28� related to data �H ,D ,V� has one and only one solution passing
hrough a point x�D if decomposition TDT*Q=TD � V� holds in an open neighborhood U of x.
n this case the equation in that neighborhood reduces to the form

X = pV��D
��dH�D� , �29�

eing pV� the projection with range TUD related to mentioned decomposition.
The hypothesis of the preceding proposition has been previously studied in Ref. 2, replacing

� by W, under the name of regular systems; and also in Ref. 14 within the context of singular
agrangian systems.

Let us translate the above conditions to the Lagrangian side. Observe first that for triples
H ,D ,V� such that s−1s�V�=V, in order to have equality TDT*Q=TD � V�, which is equivalent to
onditions

dim TD = dim V and TD� � V = 0,

e can ask that ��D�=Q. For instance, if ��D� is a closed submanifold of Q, it can be shown that
D��ker �*�0, and accordingly, since ker �*�V for every V such that s−1s�V�=V, we have
D��V�0. Thus, on the Lagrangian side, in order to use the result above we shall impose the

ondition ��CK�=Q �which corresponds to ��D�=Q under Legendre transformation�.
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Proposition 10: For a GNHS given by �L ,CK ,CV� such that ��CK�=Q, existence and unique-
ess of solutions passing through a point v�TQ is ensured by regularity of the Lagrangian at v
nd conditions

for l = 0: dim CK = dim CV, CK
�0� � CV = 0,

for l = 1: dim CK = 1
2 dim CV, CK

�1� � CV = 0, �30�

n a neighborhood of v, being

CK
�0� = �*��FL*TCK���, CK

�1� = �FL−1�QidTQ� � s��FL*TCK��� .

Proof: Consider the l=0 case. Everything must be understood locally. For

D = FL�CK� and V = �*
−1�CV��D

e have dim TD=2 dim D=2 dim CK on a neighborhood of v �since L is regular there�, and
im V=dim D+dim CV. Assuming that dim CK=dim CV, the last equations ensure dim TD
dim V. Now suppose

�*��FL*TCK��� � CV = 0.

ince

�*��FL*TCK��� = �*�T�FL�CK���� = �*�TD��

nd CV=�*��*
−1�CV��, then

0 = �*�TD�� � �*��*
−1�CV�� � �*�TD� � �*

−1�CV��

=�*�TD� � �*
−1�CV� � TDT*Q� = �*�TD� � V� ,

nd therefore �*�TD��V�=0. On the other hand, since ��CK�=Q, and accordingly ��D�=Q, we
ave that TD��ker �*=0 �see the comments before the proposition�. As a direct consequence
D��V=0, and using equality dim TD=dim V we finally have TDT*Q=TD � V�. Thus, our
tatement follows from previous proposition and Proposition 4. We leave to the reader the l=1
ase. �

For completeness, we briefly study what conditions �30� mean in local terms. We focus on the
ase in which CK and CV are distributions on Q, i.e., they are given by points �q , q̇� and �q ,�q�
uch that

�i
a�q�q̇i = 0 and vi

b�q��qi = 0, 1 � a � k, 1 � b � l ,

espectively. We assume each set of equations is linearly independent. Then, condition dim CK

dim CV is equivalent to equality k= l. Let us build up the distribution CK
�0�. First note that

L�CK�=D is given by �q , p��T*Q satisfying

�i
a�q�

�H

�pi
�q,p� = 0, a = 1, . . . ,k .

ccordingly, FL*TCK=T�FL�CK��=TD is defined by points �q , p , q̇ , ṗ� obeying for all �q , p� in D,

�ij
a �q,p�q̇j + �i

a�q�
�H

�pi � pj
�q,p�ṗj = 0, a = 1, . . . ,k ,
eing
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�ij
a �q,p� =

�

�qj��i
a�q�

�H

�pi
	�q,p� .

ts symplectic orthogonal is generated, for each �q , p��D, by vectors

Va = �i
a�q�

�H

�pi � pj
�q,p�

�

�qj − �ij
a �q,p�

�

�pj
.

pplying �*, we see that CK
�0� is given by elements �q , q̇��TQ such that

q̇j = ca�i
a�q�

�H

�pi � pj
�q,p� ,

ith ca arbitrary and �q , p��D. Therefore, the condition CK
�0��CV=0 means that

�ab = �i
a�q�

�H

�pi � pj
�q,p�v j

b�q� �31�

efines a nonsingular matrix for all �q , p��D. It is easy to see that, on the Hamiltonian side, the
ast statement about �ab is equivalent to validity of the decomposition TDT*Q=TD � V�.

. D’Alembert’s and Chetaev’s distributions

Let us study two particular situations where variational constraints are related to kinematic
nes. Consider an arbitrary triple �L ,CK ,CV�. Let us define the submanifold

K = s−1�FL�QidTQ��CK�QCK� , �32�

nd its diagonal part

diag�K� = s−1�FL�QidTQ��diag�CK�QCK�� . �33�

he elements of diag�CK�QCK� are of the form �q ,v ,w� with v=w�CK. Note that K is a
ubmanifold of TDT*Q, with D=FL�CK�, and it can also be described as

K = s−1�D�QCK� = �*
−1�CK��D. �34�

f CK is a distribution on Q, then K is a distribution along D. It is the analogue of V for l=0 �see
qs. �14� and �15��. If CK=CK

vec+v, i.e., it is an affine subbundle of TQ, we define the distribution

Kvec = s−1�D�QCK
vec� = �*

−1�CK
vec��D.

or CK described by equations

�i
a�q�q̇i = �a�q�, 1 � a � k, q � Q ,

he related distribution Kvec is given by �q , p ,�q ,�p��TDT*Q such that

�i
a�q��qi = 0, 1 � a � k, q � Q .

n these terms, for linear �respectively, affine� constraints, D’Alembert’s principle holds if and
nly if V=Kvec.

Now, consider a GNHS �H ,D ,V�, and define

K = s−1�idT*Q�QFH��D�QD� = �*
−1�FH�D���D �35�
nd
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diag�K� = s−1�idT*Q�QFH��diag�D�QD��; �36�

nd for D such that FH�D� is an affine subbundle, i.e., FH�D�=FH�D�vec+v, define

Kvec = �*
−1�FH�D�vec��D.

ote that the above definitions are given in purely Hamiltonian terms.
Definition 11: We shall say that D’Alembert’s principle holds for �H ,D ,V� if FH�D� is a

istribution �respectively, an affine subbundle� and V=K �respectively, Kvec�. This is why, for
inear �respectively, affine� constraints, we shall call K �respectively, Kvec� the D’Alembert’s
istribution.

Let us come back to an arbitrary triple �L ,CK ,CV�. When constraints are not linear or affine,
he natural generalization of D’Alembert’s principle is Chetaev’s one, which involves the fiber
undle

C̃K = s�S−1�TCK�� � CK�QTQ .

ere, S denotes the canonical endomorphism S :TTQ→TTQ, which in coordinates reads

S�q, q̇,�q,�q̇� = �q, q̇,0,�q� .

hetaev’s principle says CV= C̃K. In local coordinates, if CK is given by

�a�q, q̇� = 0, 1 � a � k, q � Q ,

or certain functions �a on TQ, then C̃K is given by points �q , q̇ ,�q��CK�QTQ such that,

��a

� q̇i �q, q̇��qi = 0, 1 � a � k, �q, q̇� � CK. �37�

hen �a�q , q̇�=�i
a�q�q̇i−�a�q�, i.e., when CK is an affine subbundle of TQ, we have

C̃K = CK�QCK
vec.

There is a particularly interesting subclass of constraints CK containing the linear ones, called
omogeneous, given by functions �a�q , q̇� such that

��a

� q̇i �q, q̇�q̇i = 0, 1 � a � k, �q, q̇� � CK.

hey can be characterized by the fact that

diag�CK�QCK� � C̃K.

Now, for later convenience, let us define with C̃K a distribution

L = s−1�FL�QidTQ�C̃K

long D=FL�CK�. Elements of L are points �q , p ,�q ,�p��TDT*Q such that �see Eq. �37��

�̃i
a�q,

�H

�p
�q,p�	�qi = 0, 1 � a � k, �q,p� � D ,

ith �̃i
a=��a /�q̇i. Note if C̃K=CK�QCK

vec, then L=Kvec. Accordingly, for the linear and affine
onstraints, L coincide with the related D’Alembert’s distribution. On the other hand, homoge-

eous constraints can be characterized as those such that diag�K��L.
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In Hamiltonian language, for a hyperregular Hamiltonian function H and a submanifold
�T*Q, we define

L = s−1�FH−1�QidTQ�FH�D�˜ , �38�

ith �in the regular situation L can only be locally defined�

FH�D�˜ = s�S−1�FH*�TD��� .

Definition 12: We shall say that �H ,D ,V� satisfies Chetaev’s principle if V=L, and call L the
hetaev’s distribution. Also, we will say that �H ,D ,V� has homogeneous constraints if
iag�K��L, where diag�K� and L are given by �36� and �38�, respectively.

Note that Kvec and L �since �p’s are arbitrary� satisfy Eq. �17� and in consequence they are
oisotropic.

The following result, which has been previously demonstrated,35 ensures existence and
niqueness for equations of motion associated to constrained Hamiltonian systems satisfying
’Alembert’s or Chetaev’s principle. We include a proof here only for completeness.

Proposition 13: Equation �28� related to the data �H ,D ,V� has one and only one solution
assing through a point x�D provided H is normal at x �i.e., �2H /�pi�pj is a positive or negative
efined matrix at x�, ��D�=Q and D’Alembert’s or Chetaev’s principle is fulfilled in a neighbor-
ood of x. In this case, Eq. �28� reduces near x to the form

X = pV��D
��dH�D�, with V = K, Kvec or L .

To prove the last result it is enough to use Proposition 9 and the lemma below.
Remark 14: Normality of H is ensured for Hamiltonian functions of the type H=T+V ��,

eing V :Q→R the potential energy, and T :T*Q→R the kinetic energy, given by one-half of the
uadratic form of a Riemannian metric on Q.

Lemma 15: Given a submanifold D�T*Q such that ��D�=Q, and a normal �ipso facto
egular� Hamiltonian function H�C	�T*Q� in x�D, then L can be defined in a neighborhood of
and there we have

TDT*Q = TD � L� = TD�
� L .

f FH�D� is a linear �respectively, affine� subbundle of TQ, the same decomposition holds for K
respectively, Kvec�.

Proof: Since H is regular in x and ��D�=Q, submanifold D can be locally described in terms
f k equations �being k�n�

�a�q,
�H

�p
�q,p�	 = 0, 1 � a � k ,

here functions �a�q , q̇� are such that matrix

�̃i
a = ��a/� q̇i

as rank k. It easily follows that TD is given by elements �q , p , q̇ , ṗ��TDT*Q obeying, for each
q , p��D,

�i
a�q,p�q̇i + �̃i

a�q,
�H

�p
�q,p�	 �2H

�pl � pi
�q,p�ṗl = 0,
ith
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�i
a�q,p� =

�

�qi��a�q,
�H

�p
�q,p�		 .

n particular �using regularity of H and the fact that �̃i
a has rank k�, TD has dimension 2n−k. On

he other hand, Chetaev’s distribution L is locally defined and given by �q , p ,�q ,�p��TDT*Q
uch that

�̃i
a�q,

�H

�p
�q,p�	�qi = 0, 1 � a � k .

s a consequence, the elements of L� are generated by vectors with coordinates �̃i
a �omitting

rguments� with respect to � /�pi, and null coordinates with respect to � /�qi. This implies L� has
imension k. To show decomposition in question holds, we must see that TD�L�=0. But, if an
lement of L� also belongs to TD, then �omitting arguments of all involved functions�

�̃i
a �2H

�pl � pi
�̃l

b = 0, for all a,b .

his is not possible, because H is normal. �

V. BRACKETS FOR GNHS

We want to describe the equations of motion for a system �H ,D ,V� in terms of a bracket on
. In order to do that, it would be desirable to have an expression of X as a function of HD :
H�D, or more precisely, as a function of the differential dHD�T*D. In fact, if we could write
=���dHD�, with �� :T*D→TD, then the related map � :T*D�T*D→R given by ��� ,�
�� ,�����, would define a bracket

�· , · �:C	�D� � C	�D� → C	�D�:�f ,g� � �f ,g� = ��df ,dg�

uch that

ḟ = �f ,HD�, for all f � C	�D� .

he last statement follows from the chain of equalities

ḟ = X · f = �df ,X� = �df ,���dHD�� = ��df ,dHD� = �f ,HD� .

ote that �· , · � is always a derivation, in particular linear, with respect to the first argument. We
hall see that nonlinearity with respect to the second argument can naturally appear in the presence
f nonlinear kinematic constraints.

. Intrinsic formulation

Looking at Eq. �29�, it is clear that we just need to write dH�D as a function of dHD. Using the
mbedding i :D�T*Q, since HD=H � i, we have

dHD = d�H � i� = i*�dH�D� ,

eing i* :TD
* T*Q�T*D the pull-back of i. Thus, we essentially need to invert map i*, in a certain

ay.

. Linear and homogeneous constraints

We shall first study the case of linear kinematic constraints. Let us begin with the following
eneral result.

Lemma 16: Let H be a Hamiltonian function for a manifold Q, and D a submanifold of T*Q.
� �
hen dH�D�diag�K� �see Eq. �36��. In particular, dH�D�K .
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Proof: The submanifold diag�K��TDT*Q is given locally by

diag�K� = 
�q,p,
�H

�p
�q,p�, ṗ	:�q,p� � D�

ith ṗ arbitrary. Accordingly diag�K�� is given by covectors with arbitrary coordinates with
espect to dqi’s and coordinates �H /�pi with respect to dpi’s. From this we obtain

dH�x = � �H

�qi�
x

dqi + � �H

�pi
�

x

dpi � diag�K��, " x � D .

inally, since diag�K��K, the last statement follows. �

Recall from the preceding section that when FH�D� is a distribution on Q, then K is a
istribution too. As we have seen in Lemma 15, the distribution K� often gives a complement of
D in TDT*Q. Having this in mind, let us make some observations.

Consider again a complement U� of TD inside TDT*Q, and the related projection pU�. Asso-
iated to U� we also have a decomposition

TD
* T*Q = TDo

� U�.

t is clear that i* :TD
* T*Q�T*D, or more precisely the restriction i*�U�, defines a bijection from U�

o T*D �note that ker�i*�=TDo�. From the latter we have an injective vector bundle morphism

jU�:T*D � TD
* T*Q ,

ith range equal to U�, such that jU��x�= �i*�U��−1�x�, for all x�T*D. Accordingly,

i*jU� = idT*D and jU�i*�U� = idU�. �39�

n addition, we can write pU� = i*jU�
* , being jU�

* the transpose of jU�.
Let us assume, from now on, the validity of the decomposition TDT*Q=TD � V�. Then, we

an set U=V in formulas above.
Theorem 17: Let �H ,D ,V� be a GNHS such that FH�D� is a distribution on Q, and TDT*Q

TD � K� is fulfilled. Then, its equations of motion can be written X=���dHD�, with

��:T*D → TD given by �� = jV�
*

�D
�
jK�.

s a consequence, related to �H ,D ,V� we have a bracket on D,

�f ,g� = ��df ,dg� = �D�jV��df�,jK��dg�� , �40�

here � :T*T*Q�T*T*Q→R is the Poisson bivector associated to �, and �D its restriction to D.
Proof: Consider the decomposition TDT*Q=TD � K� and related injection jK� :T*D�TD

* T*Q.
ince dH�D�K� �by previous lemma�, and recalling that dHD= i*�dH�D�, we have �using Eq. �39�
or U=K�, that

dH�D = �jK�i*�K��dH�D = jK��i*�dH�D�� = jK��dHD� .

hen, from Eq. �29�,

X = pV��D
��dH�D� = pV��D

��jK��dHD�� = pV��D
�
jK��dHD� .

sing now that pV� = i*jV�
* , and identifying X and i*X, the first statement of theorem follows. For

	 �
he second one, we just must define for all f ,g�C �D� the bilinear �f ,g�= �df ,� �dg��. Then,
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�f ,g� = �df ,jV�
*

�D
�
jK��dg�� = �jV��df�,�D

�
jK��dg��

=�D�jV��df�,jK��dg�� ,

nd the theorem is proved. �

Remark 18: Note that the bracket given in theorem above is bilinear, and moreover a deri-
ation with respect to both arguments. But it fails to be antisymmetric and Jacobi, in general. The
ntisymmetry property is explicitly broken by the presence of two different distributions V and K.
his makes the bracket to have a symmetric part, which implies

H
.

D = �HD,HD� � 0,

n general. In other words, the described constrained systems are generically nonconservative,
nless V=K, which holds in the D’Alembert’s case.

When V=K, the bracket we have obtained is an almost-Poisson bracket, and coincides exactly
ith that constructed by van der Schaft and Maschke9 �as it will become clear later, when the local

ormulation is analyzed�. Also, it gives rise on H=K�TD to the symplectic fibration defined by
ates and Sniatycki,8 and to a Poisson bracket on D if and only if H is involutive, as we show
elow.

Proposition 19: Under conditions of the theorem above, suppose V=K. Then � is antisym-
etric, and we can write

���,�� = �̃������,������, for �,� � T*D ,

eing �̃ :TD�TD→R the closed 2-form �̃= i*�D. Defining Xf =���df�, for every function f
C	�D�, the related bracket adopts the form

�f ,g� = ��df ,dg� = �̃�Xf,Xg� .

n addition, �,� is Jacobi if and only if K�TD is involutive.
Proof: First note that ��= jK�

* �D
�
jK�, and accordingly

���,�� = ��,jK�
*

�D
�
jK����� = �jK����,�D

�
jK�����

=��D
��D

�
jK����,�D

�
jK����� = �D��D

�
jK����,�D

�
jK����� . �41�

n the other hand, since K is coisotropic �i.e., K��K�, we have

K = K � �TD � K�� = �K � TD� � K�,

r equivalently, identifying TD and i*�TD�,

jK�
* �K� = pK��K� = K � TD .

hen, given X and Y in K,

�D�X,Y� = �D�pK��X�,pK��Y�� = �D�jK�
* �X�,jK�

* �Y�� .

ince range of �D
�
jK� is K, we can use the last result in Eq. �41�, obtaining

���,�� = �D�jK�
*

�D
�
jK����,jK�

*
�D

�
jK����� ,

rom which the first part of the proposition easily follows.
For the second part, suppose �,� is Jacobi. Then, the related Hamiltonian vector fields Xf

�
� �df� define an involutive distribution. Since
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���T*D� = jK�
*

�D
�
jK��T*D� = jK�

* �K� = K � TD = H , �42�

hen H is involutive. On the other hand, if H is involutive, it can be easily shown that �through
sual calculations of symplectic geometry�

�̃��Xf,Xg�,Xh� = − �̃�X�f ,g�,Xh�

or all functions f ,g ,h�C	�D�. Using the last equation,

d�̃�Xf,Xg,Xh� = 2��f ,�g,h�� + �h,�f ,g�� + �g,�h, f��� ,

nd since d�̃=0, the bracket �,� is Jacobi. �

Remark 20: If �H ,D ,V� is the Hamiltonian side of a triple �L ,CK ,CK�, the related bracket �,�
s Jacobi if and only if CK is involutive, as it is well known.

Let us consider general homogeneous constraints. Recall that, given a GNHS �H ,D ,V� with H
yperregular, we say that D is defined by homogeneous constraints if diag�K� is contained in L
the Chetaev’s distribution related to the system�. From Lemma 16, these systems satisfy dH�D
L�. As a consequence we have the following result, similar to the theorem and proposition

bove, but changing K by L.
Theorem 21: Let �H ,D ,V� be a GNHS with homogeneous constraints, i.e., diag�K��L, and

such that TDT*Q=TD � L�. Then, its equations of motion can be written X=���dHD�, with

��:T*D → TD given by �� = jV�
*

�D
�
jL�. �43�

ts related bracket reads �f ,g�=�D�jV��df� , jL��dg��. If in addition V=L, that is to say Chetaev’s
rinciple holds, then � is antisymmetric and the system is conservative. In such a case �,� is
acobi if and only if L�TD is involutive.

Brackets above are examples of the so-called Leibniz brackets.31,32 Given a manifold D, a
eibniz bracket on D is a bilinear map

�,�:C	�D� � C	�D� → C	�D�

uch that

�f · g,h� = f · �g,h� + �f ,h� · g and �f ,h · g� = h · �f ,g� + �f ,h� · g ,

i.e., �,� is a derivation with respect to both arguments. In such a case we say the pair �D , �,�� is a
Leibniz manifold. Note that giving �,� is the same as giving a bilinear � :T*D�T*D→R, being
f ,g�=��df ,dg�. So, we can see a Leibniz manifold as a couple �D ,��. Given a function h :D

R, a dynamical system can be defined on D with equation of motion given by a vector field
=���dh�. The triple �h ,D ,�� is called a Leibniz system. The following result is immediate.

Proposition 22: Given a Hamiltonian system �H ,D ,V� as in theorem above �in particular,
ith homogeneous constraints�, the triple �HD ,D ,��, with � given by �43�, is a Leibniz system.

. The general case: linear and nonlinear brackets

In the preceding section, in order to build maps � giving rise to the dynamic of the involved
ystems, the only properties we needed from D’Alembert’s and Chetaev’s distributions were that
hey are submanifolds N�TDT*Q such that

�a� i*�N� :N�→T*D is a bijection
�b� and dH�D�N�.

In fact, given a triple �H ,D ,V�, and a submanifold N�TDT*Q satisfying �a� and �b�, that we
* −1
ill call an admissible submanifold, we can define the map jN�= �i �N�� and a bracket
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�f ,g� = �D�jV��df�,jN��dg��

hich reproduces on D equations of motion of the system, i.e., ḟ = �f ,HD�. To prove this we can
imply repeat the proof of Theorem 17. Note that if N� is not a distribution, then the bracket above
s not linear, in general, with respect to the second argument. In other words,

�� = jV�
*

�D
�
jN�:T*D → TD

s no longer a vector bundle morphism, and consequently it does not define a Leibniz bracket. Let
s investigate how admissible submanifolds can be characterized.

Admissible submanifolds and pairs: Given again a decomposition TD
* T*Q=TDo � U�, the ele-

ents of any submanifold N��TD
* T*Q can be written as a sum x+u, with x�TDo and u�U�. If

*�N� is a surjection, since i*�x+u�= i*�u�, then given u�U� there must exists x�TDo such that
+x�N�. If i*�N� is an injection, equality i*�x+u�= i*�x�+u� implies x�=d. Thus, for each u
U� there is only one x�TDo such that x+u�N�. Accordingly, bijectivity of i*�N� ensures

xistence of a function � :U�→TD
* T*Q, with range inside TDo, given by

��u� = x if u + x � N�.

n these terms N� can be written as N�= ��+incU���U��, being incU� the inclusion of U� inside

D
* T*Q, or alternatively,

N� = �� + jU���T*D�, with � = �jU�:T*D → TD
* T*Q .

t is clear that jN�=�+ jU�. The other property that N� must satisfy is dH�D�N�. This is equiva-
ent to the condition

��dHD� = dH�D − jU��dHD� . �44�

umming up, related to an admissible submanifold N� we have

�c� a distribution U, such that U� is a complement of TDo,
�d� and a map � :T*D→TD

* T*Q with range inside TDo and satisfying �44�.

Conversely, let us fix a pair �U ,�� satisfying �c� and �d�. Then, following the same steps as
bove, �U ,�� gives rise to a submanifold N�= ��+ jU���T*D� satisfying conditions �a� and �b�. We
an call such pairs �U ,�� admissible pairs related to �H ,D ,V�.

Theorem 23: The set of admissible pairs associated to an arbitrary system �H ,D ,V� is never
mpty, and for each element �U ,�� of this set the related bracket

�f ,g�� = �D�jV��df�,jU��dg�� + �D�jV��df�,��dg�� �45�

escribes the dynamic of the system.
Proof: Given an arbitrary distribution U as above, we can define �, for each x�D, equal to

H�D− jU��dHD� for all elements of Tx
*D. �

If � is a vector bundle morphism, then bracket �,�� is a Leibniz bracket on the manifold D.
oreover,

Theorem 24: Let �H ,D ,V� be a GNHS such that dH�x�TxD
o �or equivalently, dHD�x=0� only

f dH�x=0. Then, �H ,D ,V� defines a Leibniz system on D with bracket ��= jV�
* �D

�
jN�, being N an

dmissible distribution.
Proof: We must prove that for every Hamiltonian function H�C	�T*Q�, and every submani-

old D�T*Q, there exists, fixing again a distribution U as above, a vector bundle morphism
:T*D→TD

* T*Q with range inside TDo and satisfying ��dHD�=dH�D− jU��dHD�. In this way we
re showing that the submanifold N�= ��+ jU���T*D� is admissible. But this is always possible, in
act, we only need to consider a metric � on T*D, and define � in dHD equal to dH�D

jU��dHD�, and equal to zero on the �-orthogonal complement of dHD. The map � is well
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efined, since, by hypothesis of the theorem, when dHD�x=0 then dH�x=0. �

If we choose U=V in �45�, we have a family of brackets ��=�+��,

���,�� = �D�jV����,jV�����, ����,�� = �D�jV����,����� .

ote that � defines an almost-Poisson bracket. Writing W=V�, and recalling that pV� = jV�
* , or

quivalently pW
* = jV�, we have

���,�� = �D�pW
* ���,pW

* ���� .

his kind of brackets were first introduced by Marle,2 and called pseudo-Poisson brackets. In Ref.
3 they were denoted �,�nh. The latter describes dynamic for related systems only if dH�D
jV��dHD�, as happens for systems with linear constraints and obeying D’Alembert’s principle,
nd for systems with homogeneous constraints and obeying Chetaev’s principle �see Theorems 17
nd 21�. The term we must add to describe the dynamics correctly

���df ,dHD� = �D�jV��df�,��dHD�� = �D�jV��df�,dH�D − jV��dHD�� ,

as called RH�f� in Ref. 33.
We want to emphasize that, given an arbitrary triple �H ,D ,V�, there is not in general a

aturally related admissible pair �U ,��. Nevertheless, as we have seen in the preceding section,
or linear and homogeneous constraints we do have natural pairs �K ,0� and �L ,0�, denoting by 0
he null function. In these cases, as we have seen before, such pairs give rise to Leibniz brackets.
n the following section we shall see that systems with affine constraints also have a naturally
elated admissible pair, but the bracket it defines is not a Leibniz one.

Leibniz systems and GNHS: We have seen in the last theorem that �under a technical assump-
ion� every GNHS is a Leibniz system. Now, we shall prove the converse statement.

Theorem 25: Let �h ,D ,�� be a Leibniz system. Then, there exists a manifold Q, an embed-
ing i :D�T*Q, a function H�C	�T*Q� and a distribution V�TDT*Q, satisfying

�i� H � i=h,
�ii� the decomposition TDT*Q=TD � V� holds,
�iii� there exists a distribution N along D such that

TDT*Q = TD � N�, dH�D � N�, and �� = jV�
*

�D
�
jN�.

In other words, every Leibniz system is defined by a GNHS �H ,D ,V� and a convenient
admissible submanifold. Moreover, H can be chosen to be hyperregular and V such that
s−1s�V�=V �recall Eq. �17��. Accordingly, �h ,D ,�� can be derived as being the Hamil-
tonian side of a triple �L ,CK ,CV�.

Proof: Consider a Leibniz system �h ,D ,��. Let us define Q=D, and let us see D as the null
ection i :D�T*Q of the cotangent bundle T*Q. In these terms, D is given in coordinates by
oints �q , p� such that p=0. Define V=ker��*��D, being � :T*Q→Q the canonical projection. Note
hat TD ,V�TD

* T*Q are Lagrangian distributions along D, with respect to the canonical 2-form �
f T*Q. In coordinates we have

TD = TD� = ��q,p, q̇, ṗ�:p = 0 and ṗ = 0� , �46�

nd

V = V� = ��q,p, q̇, ṗ�:p = 0 and q̇ = 0� . �47�

t is clear that TDT*Q=TD � V� and also s−1s�V�=V.

Now, let us consider the map
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� = �D
�i*��:T*D → TD

* T*Q ,

nd a related distribution

N� = ��D
�i*�� + jV���T*D� � TD

* T*Q .

ote that range of �D
�i*�� is TDo, since TD�= �TD��o=TDo. Then, i*�N� is a bijection between

*D and its range, in fact

i*�N���D
�i*�� + jV�� = i*jV� = idT*D,

nd for all ��N�, since �= ��D
�i*��+ jV���d� for some d�T*D,

��D
�i*�� + jV��i*�N���� = ��D

�i*�� + jV��i*��D
�i*�� + jV���d�

=��D
�i*�� + jV���d� = � .

s a consequence, decomposition TDT*Q=TD � N� holds, and the related map jN�= �i*�N��−1 is
iven by

jN� = �D
�i*�� + jV�.

oreover, since range of �D
�
jV� is V=V� �and consequently jV�

* =pV� is null there�, and jV�
* i*

pV�i*=idTD, it follows that

jV�
*

�D
�
jN� = jV�

*
�D

���D
�i*�� + jV�� = jV�

* �i*�� + �D
�
jV��

=jV�
* i*�� + jV�

*
�D

�
jV� = ��.

Let us see that a hyperregular Hamiltonian H such that H � i=h and dH�D�N� can be con-
tructed. Consider a metric � on T*Q, and define the Hamiltonian function

H��q� = 1
2���q,�q� + ���q,dhq� + h � ���q�, �q � T*Q .

n coordinates,

H�q,p� =
1

2
pi�

ij�q�pj + pi�
ij�q�

�h

�qj �q� + h�q� ,

eing �ij�q� and �ij�q� the matrix elements on a point q of the bilinear maps � and �. It is clear
hat H � i=h, and it can be shown that

dH�D = �D
�i*���dh� + jV��dh� = jN��dh� .

his easily follows from Eqs. �46� and �47�, and the fact that

�H

�qi �q,0� =
�h

�qi �q� and
�H

�pi
�q,0� = �ij�q�

�h

�qj �q� .

umming up, from �h ,D ,�� we have constructed a GNHS �H ,D ,V� and a related admissible pair
V ,��, such that H � i=h and the derived bracket coincides exactly with �. The fact that H is

hyperregular and s−1s�V�=V ensures that �H ,D ,V� has a Lagrangian counterpart. �

. Local construction for the linear and affine cases
When FH�D� is an affine subbundle of TQ, then
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K = �*
−1�FH�D���D = �*

−1�FH�D�vec + ���D = Kvec + � ,

ith � a fixed section of TDT*Q such that �*���−v�FH�D�vec. Let us suppose Kvec is a comple-
ent of TD� in TDT*Q �e.g., if H is normal, as follows from Lemma 15�. Then, there exists a

nique section � inside TD� such that K=Kvec+�. In what follows, � will always denote such a
ection. We know from Lemma 16 that �dH�D�K�. On the other hand, K�=Kvec

� +�� with ��

TDo.Accordingly we can write

K� = jK��T*D�, jK� = � + jKvec
� ,

eing � :T*D→TD
* T*Q :�� ����x for all x�D and ��Tx

*D. Thus, K satisfies admissibility con-
itions �a� and �b�. Note also �from �44��

� = ��dHD� = �D
��dH�D − jKvec

� �dHD�� . �48�

sing all that, the next result follows straightforwardly.
Proposition 26: Given a triple �H ,D ,V� such that FH�D� is an affine subbundle of TQ, and

DT*Q=TD � Kvec
� , the dynamics of the system is described in terms of the bracket

�f ,g� = �D�jV��df�,jK��dg��

=�D�jV��df�,jKvec
� �dg�� + �D�jV��df�,��� ,

r equivalently

�f ,g� = �f ,g�bilin + �df ,jV�
* ����, �f ,g�bilin = �df ,jV�

*
�D

�
jKvec

� �dg�� , �49�

eing � the section of TD� that enables us to write K=Kvec+�.
Remark 27: Note that, if D is coisotropic, i.e., TD��TD, then ��TD and consequently

�f ,g� = �f ,g�bilin + �df ,�� .

The bracket above is related to the admissible pair �Kvec ,�� and, clearly, it is naturally
ssociated to �H ,D ,V�. Of course, we can define a Leibniz bracket to describe the dynamic of
hese systems, as we have shown in Theorem 25.

Local procedure: In order to give an explicit description of brackets �49�, we shall build in
ocal coordinates the maps pV� = jV�

* and jKvec
� . We focus on systems with variational constraints

hat do not depend on momenta �l=0 case�. In the D’Alembert’s linear case V=Kvec=K, we obtain
he bracket of van der Schaft and Maschke.9 It is worth mentioning that this procedure represents
n alternative to that introduced in Ref. 33, to describe equations of motion for systems with affine
inematic constraints.

Let us consider a triple �L ,CK ,CV�, such that CK=CK
vec+v, being v a section, and CK

vec and CV

istributions on Q. We shall assume dim CK=dim CV. Then, in coordinates, CK and CV are given
y equations of the form

wi
a�q�q̇i = �a�q� and vi

a�q��qi = 0, a = 1, . . . ,k ,

espectively. Of course, CK
vec is given by wi

a�q�q̇i=0. On the Hamiltonian side we have the sub-
anifold D=FL�CK� given in coordinates by points �q , p� such that

wi
a�H

�pi
�q,p� = �a, a = 1, . . . ,k . �50�
elated distributions Kvec and V read
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Kvec = ��q,p,x,y�:�q,p� � D,wi
axi = 0� �51�

nd

V = ��q,p,x,y�:�q,p� � D,vi
axi = 0� . �52�

We shall assume H is normal and TD�V�=0, or equivalently CK
�0��CV=0 �recall Eq. �30��.

hese facts ensure that there exist

va
i and Y�

i , a = 1, . . . ,k and � = 1, . . . ,n − k , �53�

uch that

vi
avb

i = �b
a, vi

aY�
i = 0, and wi

avb
i = �b

a is invertible. �54�

he last property is a direct consequence of Eq. �31�. Moreover, if we define

p̃� = Y�
i pi and p̂a = va

i pi, �55�

hen Eqs. �50� can be solved in terms of p̃’s, i.e., we can write

p̂a = p̂a�qi, p̃��, a = 1, . . . ,k .

t follows from the last assertion that we can choose local coordinates �q , p̃� for D such that the
mbedding i :D�T*Q is given by i�q , p̃�= �q , p̃ , p̂�q , p̃��. Given an arbitrary element

X = �i �

�qi + ��

�

� p̃�

+ �a
�

� p̂a

�56�

f TDT*Q, since elements of V� are of the form Y =�a� /�p̂a, it follows that

pV��X� = jV�
* �X� = �i �

�qi + ��

�

� p̃�

, �57�

eeing pV� as a map onto TD. Then, jV�
* :TDT*Q→TD is locally given by a �2n−k��2n matrix

V = �I2n−k O�2n−k��k � , �58�

here Ir denotes the r�r identity matrix, and Or�s the r�s null matrix. On the other hand, in the
ame coordinates, �� :T*T*Q→TT*Q is given by the 2n�2n matrix

J = ��q,q�o �q, p̃�o �q, p̂�o

�p̃,q�o �p̃, p̃�o �p̃, p̂�o

�p̂,q�o �p̂, p̃�o �p̂, p̂�o
� , �59�

here �,�o denotes the canonical Poisson bracket. Of course, to obtain �D
� , we only need to

onsider the restriction J�D of J to D. Now, let us derive local expressions for jKvec
� :T*D

TD
* T*Q and the section �. We can do that simultaneously by using Eq. �48�. The idea is to

alculate dHD in terms of dH�D, for generic H, and then invert the relation to obtain

dH�D = jKvec
� �dHD� + ��.

riting

˜ ˜ ˆ ˜ ˆ
H�q,p,p� = H�q,p�q,p,p�� ,
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his will give us

��
�H̃

�qj

�H̃

� p̃�

�H̃

� p̂b

��
D

= K ·�
�HD

�qj

�HD

� p̃�

� + � si

s�

sa � , �60�

eing K a 2n� �2n−k� rectangular matrix representing jKvec
� , and si ,s

� ,sa the coordinates of ��

ith respect to such coordinates. Accordingly, the section � can be obtained as

� = ��i

��

�a
� = J�D · � si

s�

sa � . �61�

Now let us start calculating. First, writing �50� in terms of H̃ we have

wi
a�� �H̃

� p̃�

�
D

Y�
i + � �H̃

� p̂b

�
D

vb
i	 = �a. �62�

ince wi
avb

i =�b
a is invertible �by construction�, we can write

� �H̃

� p̂a

�
D

= �b��−1�b
a − l�

a� �H̃

� p̃�

�
D

, being l�
a = ��−1�b

awi
bY�

i . �63�

sing that, we have

�HD

�qi = � �H̃

�qi�
D

+ � �H̃

� p̂a

�
D

� p̂a

�qi

=� �H̃

�qi�
D

− l�
a � p̂a

�qi � �H̃

� p̃�

�
D

+ �b��−1�b
a� p̂a

�qi

nd

�HD

� p̃�

= � �H̃

� p̃�

�
D

+ � �H̃

� p̂a

�
D

� p̂a

� p̃�

=���
� − l�

a � p̂a

� p̃�
	� �H̃

� p̃�

�
D

+ �b��−1�b
a � p̂a

� p̃�

.

ince decomposition TD
* T*Q=TDo � Kvec

� holds �which in the present case follows from normality
f H�, it can be shown that the matrix

��
� = ��

� − l�
a � p̂a

˜
�64�
�p�
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s invertible. Then, we can write derivatives of H̃ restricted to D in terms of those of HD as �i.e.,
H�D as a function of dHD�

� �H̃

�qi�
D

=
�HD

�qi + ��1�i�
�HD

� p̃�

+ si,

� �H̃

� p̃�

�
D

= ��2��
��HD

� p̃�

+ s�,

� �H̃

� p̂a

�
D

= ��3��
a �HD

� p̃�

+ sa,

eing

��1�i� = ��−1��
�l�

a � p̂a

�qi , ��2��
� = ��−1��

�,

��3��
a = − ��−1��

�l�
a , �65�

nd

si = − �b��−1�b
a���1�i�

� p̂a

� p̃�

+
� p̂a

�qi 	 ,

s� = − �b��−1�b
a��2��

� � p̂a

� p̃�

,

sa = − �b��−1�b
c���3��

a � p̂c

� p̃�

− �c
a	 . �66�

ccordingly, having Eq. �60� in mind, the matrix K is given by

K = � In �1

O�n−k��n �2

Ok�n �3
� , �67�

nd components �i ,�� ,�a follows from �61�.
With all that, the bilinear part of bracket �49�, given by jV�

* �D
�
jKvec

� , is

�f ,g�bilin = � � f

�q

� f

� p̃
	 · V · J�D · K ·�

�g

�q

�g

� p̃
� . �68�

n the D’Alembertian case, i.e., when V=Kvec, or equivalently CV=CK
vec, since we can take vi

a

wi
a, we have �recall �54��

�a = �a, la = 0 and �� = ��.
b b � � �
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hus,

K = � In On��n−k�

O�n−k��n In−k

Ok�n Ok��n−k�
� = � I2n−k

Ok��2n−k�
	 = Vt,

nd

V · J�D · K = V · J�D · Vt

ives exactly the antisymmetric matrix appearing in Ref. 9.
Finally, adding the term containing the section �, since

Vt · ��i

��

�a
� = ��i

��
	 ,

he total bracket becomes �see Eq. �49��

�f ,g� = �f ,g�bilin + � � f

�qi

� f

� p̃�
	 · ��i

��
	 ,

nd equations of motion read

q̇i = �qi,HD�bilin + �i, ṗ̃� = �p̃�,HD�bilin + ��.

Summing up, given a GNHS �H ,D ,V� such that H is normal and TDT*Q=TD � V� holds, in
rder to write down the bracket �49� we must

�1� define va
i and Y�

i obeying �54�, and coordinates �q , p̃ , p̂� given in �55�;
�2� construct the function p̂= p̂�q , p̃� �using �62� to set p̂ as a function of q , p̃�,
�3� calculate matrices V, J and J�D �see �58� and �59��,
�4� calculate matrix K in terms of �, l, and � �see �54�, �63�–�65�, and �67��;
�5� construct the section’s components �i ,�� from �61� and �66�.

Note that all above objects only depend on data wi
a, �a, and vi

a.
Brackets for the inverted pendulum: Let us come back to the inverted pendulum. Suppose

gain that we have affine kinematic constraints given by ẋ−����̇=����, and variational con-
traints �x=0. Then, the number of equations is k=1, and vectors wi

a and vi
a are w= �1,−� and

= �1,0�, respectively. From steps �1� and �2� we have

p̃ = p�, p̂ = px, p̂�x,�, p̃� = ����p̃ + ����

see �22� and �23��, and matrices V, J, and J�D of step �3� are given by

V = �1 0 0 0

0 1 0 0

0 0 1 0
� and J = J�D =�

0 0 0 1

0 0 1 0

0 − 1 0 0

− 1 0 0 0
� .

ince �, l, and � are in this case

� = 1, l = − , � = 1 + � ,
t follows that
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��1�i = −


1 + �

� p̂

�qi , �2 =
1

1 + �
, �3 =



1 + �

nd accordingly �see step �4��

K =�
1 0 0

0 1 −
�

1 + �

0 0
1

1 + �

0 0


1 + �

� ,

eing

� = p̃
d�

d�
+

d�

d�
. �69�

hus,

V · J�D · K =�
0 0



1 + �

0 0
1

1 + �

0 − 1
�

1 + �

� .

ow, following step �5�, we have

si = −
�

1 + �

� p̂

�qi , s̃ = −
��

1 + �
, ŝ =

�

1 + �
,

nd so

� =
�

1 + �� 1

− �

�
� .

n conclusion, the natural bracket related to the inverted pendulum with affine constraints is

�f ,g� =
� f

�x



1 + �

�g

� p̃
+

� f

��

1

1 + �

�g

� p̃
−

� f

� p̃
� �g

��
−

�

1 + �

�g

� p̃
	

+
�

1 + �
� � f

�x
− �

� f

��
+ �

� f

� p̃
	 .

Note that for virtual constraints, where ���=−L cos � and ����=0, we have a Leibniz
racket. In such a case, it follows from Eq. �23� that

���� =
m�l sin � + L cos ��
mLl cos � sin � − I

, ���� = 0,
nd accordingly �see �69��
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���, p̃� = p̃
��� − �/2��mLl cos � sin � + I� − ����mLl cos 2�

mLl cos � sin � − I
.
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Killing tensors give polynomial constants of the geodesic motion. The trajectories
of a conservative mechanical system correspond to geodesics when the kinetic
energy metric is conformally scaled to the Jacobi metric. Alternatively, the trajec-
tories may be related to geodesics of some higher-dimensional warped product
manifold. These two different ways of relating mechanical trajectories to geodesics
are reviewed and compared. It is shown how a relation between Killing tensors on
configuration space and the potential gives rise to Killing tensors on both the Jacobi
and warped product manifolds. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2168121�

. INTRODUCTION

The simplest mechanical system is that of a free point particle. That is, a particle whose
otion in a �pseudo�-Riemannian configuration space is determined by the kinetic energy La-

rangian T, which is essentially the metric tensor. The trajectories in configuration space are just
eodesics.

More general than the free mechanical systems are the conservative ones, where the kinetic
nergy Lagrangian is modified by the addition of a potential, L=T−V. Whereas the trajectories are
learly not geodesics of the kinetic energy metric, they are geodesics �or more accurately may be
eparametrized to be geodesics� of a conformally related metric, the Jacobi metric.1 The Jacobi
etric is obtained by a scaling that not only involves the potential V, but the total energy E=T
V, so that the geodesics of a given metric describe only the trajectories of a fixed energy.

There is another, less well known, way of representing the trajectories of a conservative
echanical system as geodesics. The configuration space may be extended in dimension, and the

inetic energy metric and potential used to construct a warped �pseudo�-Riemannian product
tructure, in such a way that geodesics on this warped product project to trajectories on configu-
ation space. This approach was introduced by Eisenhart2 who added an extra dimension to
onfiguration space to represent trajectories as geodesics.

There are several reasons why it may be useful to recognize trajectories of a mechanical
ystem as geodesics. One is related to the matter of stability. The behavior of nearby geodesics is
overned by the curvature, through the Jacobi equation. Thus the stability of any mechanical
ystem that can be formulated as a geodesic one is amenable to examination by computing the
urvature tensor. This has been the motivation of Refs. 3–5. Arnold6 has shown how one can
pproach the hydrodynamics of an ideal fluid by recognizing the motion as geodesic for an
ppropriate metric.

Another reason why it is useful to recognize a mechanical system as a geodesic one is related
o Killing tensors. For a geodesic system polynomial constants of the motion are given by Killing
ensors. Thus the observation that many mechanical systems can be formulated as geodesic ones
ives Killing tensors a wider range of applicability than might be immediately obvious. This

�
Electronic mail: ian.benn@newcastle.edu.au
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bservation is made in �for example� Ref. 7. One approach then, to finding integrable systems, is
o find manifolds admitting nontrivial Killing tensors. This approach has been followed, in two
imensions, by Rosquist and Pucacco.8

As well as leading to constants of the geodesic motion, Killing tensors are also related to
igher-order symmetries of the Laplacian.9 In order to have a higher-order symmetry it is certainly
ecessary to have a Killing tensor, but it is not clear that this is sufficient.10 To clarify this matter
t is useful to look at examples. However, in general, nontrivial Killing tensors are hard to come
y. In this regard it is useful to observe that, formulated as geodesic systems, known examples of
uperintegrable systems provide us with a source of examples of manifolds with nontrivial Killing
ensors.

In this paper a condition is established that enables Killing tensors to be constructed on a
arped product manifold from Killing tensors on the base. Since geodesics on warped products
roject to curves on the base that can be interpreted as Newtonian curves, this condition on Killing
ensors can be interpreted as a �generalized� Bertrand-Darboux equation relating the Killing tensor
o the potential. Recently Jelonek11 has shown how Killing tensors can arise naturally on Rie-
annian warped products, and so it is interesting to see how the geometry of warped products

rovides a link to classical mechanics and integrable systems.
Since Killing tensors are totally symmetric tensors, we begin in Sec. II by introducing nec-

ssary notation and conventions for the totally symmetric tensor algebra. In Sec. III we review
ome properties of Killing tensors that we will need later. Here conformal Killing tensors are also
entioned, anticipating the conformal scaling in mechanics that gives the Jacobi metric. We

xamine conditions relating Killing tensors and the conformal factor that enable Killing tensors to
e constructed on the conformally related manifold.

In Sec. IV we use the preceding formalism to show how Killing tensors on configuration
pace can give rise to Killing tensors with respect to the Jacobi geometry. The previously estab-
ished condition for this is, in the mechanical context, a relation between the Killing tensor and the
otential that can be recognized as a generalized Bertrand-Darboux equation.

Section V reviews some properties of warped products. In Sec. VI it is shown how Killing
ensors on the base can lead to Killing tensors on the warped product. The necessary condition,
elating the Killing tensor on the base and the warping function, can be recognized as the gener-
lized Bertrand-Darboux equation if we choose to identify the projection of geodesics onto the
ase with Newtonian curves. The Eisenhart geometry is just a special case of a warped product
ith one-dimensional fiber.

Sections V and VI can be read independent of Secs. III and IV: we present some results on
illing tensors on warped products that can be taken without any mention of mechanics. Clearly
owever, the results presented in Sec. VI parallel those presented for conformally related metrics
n Sec. III. In the final section we discuss the exact relation between the results of these different
ections.

I. THE TOTALLY SYMMETRIC TENSOR ALGEBRA

We are going to consider Killing tensors, which are totally symmetric tensors. Thus some
onventions for the totally symmetric tensor algebra are introduced here first. �It can be noted by
nyone more familiar with the exterior algebra that all the conventions and notation here have
xterior analogues, only there an extra sign comes from the sign of the permutation.�

The symmetrizing map S maps any tensor to a totally symmetric one,

�SS��X1,X2, . . . ,Xp� =
1

p!��

S�X��1�,X��2�, . . . ,X��p�� , �1�
here � is an element of the permutation group. The map S is a projection operator,
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S � S = Id. �2�

e can define a multiplication on symmetric tensors by taking the tensor product and then
ymmetrizing

S�T = S�S � T� . �3�

his symmetric tensor product makes the totally symmetric tensors into a commutative associative
lgebra.

If X is some vector field then the contraction map CX just maps a 1-form A to A�X�. The
ontraction map can be extended to a map on covariant tensors by requiring it to act as a deriva-
ion on tensor products. It then follows that SCX=CXS and so CX maps totally symmetric tensors
o totally symmetric tensors of one lower degree. We have

CX�S�T� = CXS�T + S�CXT , �4�

CXCY = CYCX, �5�

�CX1
S��X2,X3, . . . ,Xp� = pS�X1,X2, . . . ,Xp� , �6�

�a�CXa
S = pS , �7�

here p is the degree of S, and ��a� is dual to �Xa�.
When we have a metric g �and we always will have when considering Killing tensors� we can

efine a trace by an invariant double contraction,

Tr S = gabCXa
CXb

S = CXaCXa
S . �8�

The covariant derivative operator, with respect to a vector field X, �X, acts as a derivation on
he tensor algebra. Since �X commutes with S then it is also a derivation on the symmetric tensor
lgebra. We may define the divergence of a symmetric tensor by following differentiation with
ontraction:

div S = CXa�Xa
S . �9�

The covariant derivative of a tensor S, �S, is a tensor of one higher covariant degree. The
ymmetrized covariant derivative of a symmetric tensor may be defined by

��S = S��S� . �10�

f ��a� is dual to �Xa� then

��S = S��Xa
S � �a� = �Xa

S��a. �11�

t then follows that �� acts as a derivation on the symmetric tensor algebra.

II. KILLING TENSORS

Killing vectors generate isometries. So if K is a Killing vector of the metric g then the Lie
erivative of g with respect to K must vanish, LKg=0. This can be recast as a differential equation
or K; Killing’s equation,

g��XK,Y� + g��YK,X� = 0, �12�

here � is the �pseudo�-Riemannian connection of g. If K� is the 1-form metrically related to K
�
hen Killing’s equation requires the symmetrized derivative of K to vanish,
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�XK��Y� + �YK��X� = 0, �13�

or � �K� = 0. �13��

Killing tensor obeys a generalization of Killing’s equation. It is a totally symmetric �covariant�
ensor whose symmetrized covariant derivative vanishes. That is,

��S = 0. �14�

In generalizing Killing’s equation from an equation for a vector field to one for a tensor, the
lear geometrical interpretation is lost. However, one immediate consequence is that Killing ten-
ors give constants of the geodesic motion. If C is geodesic, and S is Killing, then it immediately

ollows from �14� that S�Ċ , Ċ , . . . , Ċ� is constant along C,

Ċ�S�Ċ,Ċ, . . . ,Ċ�� = 0. �15�

It is important to note here that a geodesic is a curve that parallel transports its tangent vector,

ĊĊ=0. A curve satisfying �ĊĊ= fĊ for some function f may be reparameterized to become
eodesic. Such a curve will be called pregeodesic. Although this terminology is usual it is not
niversal, with some authors calling geodesic that which is here called pregeodesic.�

The space of Killing tensors is closed under the symmetrized tensor product. Since Killing
ectors, and the metric tensor, are certainly Killing tensors, we can always form higher degree
illing tensors from sums of their symmetrized tensor products. Such Killing tensors are called

rivial, or reducible. Killing tensors are also closed under a nonassociative product, the Schouten
racket �or symmetric Schouten concomitant�, as will be discussed below.

So far we have taken Killing tensors to be covariant, for then it makes sense to symmetrize the
ovariant derivative. However, since the notion of Killing tensor relies upon the existence of a
etric, we can always use that metric to type change tensors. �The connection in Killing’s equa-

ion is the �pseudo� Riemannian one, and here only torsion-free metric compatible connections
ill be considered.� The totally symmetric contravariant tensors on M naturally correspond to

unctions on T*M that are polynomial in the fiber coordinate. That is, in the context of mechanics,
olynomial in the momenta. Thus the symmetric contravariant tensor S corresponds to the func-
ion FS defined by FS���=S�� ,� , . . . ,��. In local coordinates, FS=Sab¯papb¯.

In particular, the kinetic energy Hamiltonian, T, is �up to a factor of 2� the function corre-
ponding to the metric tensor g,

T = 1
2gabpapb. �16�

he associative algebra of symmetric tensors on M, under the symmetrized tensor product, is
somorphic to the algebra of polynomial functions on T*M under multiplication. The canonical
ymplectic structure of T*M defines a Poisson bracket on functions. Functions on T*M that are
olynomial in the momenta are closed under the Poisson bracket. The natural correspondence
etween polynomial functions and symmetric tensors then enables a bracket to be induced on
ymmetric tensors. This is the Schouten bracket. That is, the Lie algebra of polynomial functions
n T*M, under the Poisson bracket, is isomorphic to the Lie algebra of symmetric contravariant
ensors on M under the Schouten bracket.

The condition that a contravariant tensor S is Killing can be expressed in the following
quivalent ways:

�S,g� = 0, �17�
�FS,T� = 0, �18�
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XTFS = 0. �19�

n �17� � , � denotes the Schouten bracket,12 with �, � denoting the Poisson bracket in �18�. The
quivalence of �17� and �18� is just the stated isomorphism between symmetric tensors, under the
chouten bracket, and polynomial functions, under the Poisson bracket. In �19� XT is the Hamil-

onian vector field of the kinetic energy Hamiltonian. Equation �19� gives perhaps the clearest
eometrical interpretation of Killing tensors: they are tensors that correspond to polynomial func-
ions that are invariant under the geodesic flow.

A conformal Killing tensor satisfies a conformally covariant generalization of �14�. Namely,
or a degree-p tensor S,

��S = ��g , �20�

here � is some totally symmetric tensor of degree p−1. In fact � can be expressed in terms of
and its derivatives by �repeatedly� taking the trace of �20�. For example, if S is of degree 2 then
e get, in n-dimensions,

�n + 4�� = ��Tr S + 2 div S . �21�

or S of degree 3, for example, we arrive at a similar expression by taking another trace of �20�.
Sometimes a definition of conformal Killing tensors is taken that further requires them to be

race-free �as discussed in Ref. 13, for example�. The reason for this is that �20� is satisfied by any
ultiple of the metric tensor. In fact if S is any solution to �20� �with the degree of S two or more�

hen, for an arbitrary symmetric tensor �, so is

S� = S + ��g �22�

ith

�� = � + ��� . �23�

his arbitrariness in solutions to �20� can be removed by requiring the trace to vanish. Here the
race-free requirement will not be imposed on conformal Killing tensors, since it is useful to have
he conformal Killing tensors include all the Killing ones �and these are not all trace-free�.

It has already been stated that �20� is a conformally covariant generalization of �14�. This will
ow be demonstrated. If ĝ is a conformally related to g then the respective Riemannian connec-
ions are related by

ĝ = e2�g , �24�

�̂XY = �XY + �X��Y + �Y��X − g�X,Y�grad � �25�

=�XY + �X��Y + �Y��X − ĝ�X,Y�grad̂ � . �25��

Then for � a 1-form

�̂�� = ��� + Cgrad ��g − 2 d��� ,

rom which it follows, from induction, that for S of degree p,

�̂�S = ��S + Cgrad �S�g − 2p d��S . �26�

From this it follows that, if the metric is scaled as in �24�, and S is of degree p, then �20� is
ovariant under the following transformations:

ˆ 2p�
S = e S , �27�
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�̂ = e2�p−1���� + Cgrad �S� . �28�

Now if K is a Killing vector of the metric g, then it will also be a Killing vector of a
onformally related metric ĝ only if the scale function is invariant under K. More generally, if S is
ny �covariant� Killing tensor of the metric g, then it is also Killing for the metric ĝ=s2�g if

grad �S=0. However, there is a more general way in which we can obtain Killing tensors on
M , ĝ� from those on �M ,g�.

Proposition 1: Suppose that S is a degree p Killing tensor with respect to g, with p�2, that
dditionally satisfies

e2�p−1��Cgrad �S = − �̂�� �29�

or some symmetric tensor �. Then Ŝ=e2p�S+��ĝ is a Killing tensor with respect to ĝ=e2�g.
Proof: Since S is Killing with respect to g it is certainly conformal Killing. Then, from �27�

nd �28� e2p�S is conformal Killing with respect to ĝ=e2�g with �̂=e2�p−1��Cgrad �S. If we then
ssume the extra condition �29�, then it follows from �22� and �23� that we can add a multiple of
he metric to absorb this term. We thus arrive at a conformal Killing tensor with the �p−1�-tensor

vanishing; that is, we get a Killing tensor.
The Proposition becomes simpler in the case of p=2. The tensor � in �29� is then just a

unction and �̂��=���=d�. So if S is a degree 2 Killing tensor with respect to g that satisfies

Cgrad e2�S = − 2 d� �30�

hen

Ŝ = e4�S + �ĝ �31�

s Killing with respect to ĝ=e2�g. The function � in �30� is clearly only defined up to a constant.

his arbitrariness results in the Killing tensor Ŝ only being defined up to the addition of a multiple
f the metric.

Now we look at the more general case in which p	2. Equation �29� involves a Killing tensor
ith respect to g, and the connection with respect to ĝ. We can alternatively express �29� in terms
f g and its connection as

Cgrad ��S + �̂�g� = − ���̂ , �32�

here

�̂ = e−2�p−1��� . �33�

earranging things in terms of the scaling function e2� we get

Cgrad e2�S = − 2 � ��e2��̂� − Cgrad e2��̂�g . �34�

ote that whereas �30� only involves the gradient of e2�, both e2� and its gradient enter into �34�.
his will be of significance when we consider the Jacobi geometry, where solutions to �29� will,

n general, only give constants of the motion for some fixed energy. To find constants of the
otion for arbitrary energy we can restrict the solutions to �29� by imposing a further condition.
o see how this can be done we consider the case in which S is of degree four. �It turns out that

he results for even and odd degrees are slightly different, and so the case of p=3 will be covered
fterwards.� Suppose that we have a degree-4 Killing tensor S satisfying �34� for some degree-2
ˆ
 . Suppose that in addition we have
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Cgrad e2��̂ = − 2 d


or some function 
. We then have

Cgrad e2�S = − 2 � ��e2��̂ − 
g� = − 2 � �� ,

here

� = e2��̂ − 
g .

ontracting on � gives

Cgrad e2�� = − 2e2� d
 − 2
 de2� = − 2d�
e2�� = − 2 d�

here

� = 
e2�.

ince we have assumed a solution to �29� we can construct a Killing tensor with respect to ĝ. It
ollows that this can be written in terms of � and � as

Ŝ = e8�S + e6���g + e4��g�g .

ow it becomes clear how this result can be generalized to arbitrary even degree.
Proposition 2: If S is a Killing tensor of even degree p, and there exist symmetric tensors

�1 ,�2 , . . . ,�p/2� such that

Cgrad e2�S = − 2 � ��1,

Cgrad e2��i = − 2 � ��i+1, i = 1, . . . ,p/2 − 1

hen

�35�

s Killing with respect to ĝ.
The proof follows from �26�. Note that the conditions of Proposition 2 are a special case of

hose of Proposition 1, and that in Proposition 2 only the gradient of the scale function enters.
There is a similar result for Killing tensors of odd degree.
Proposition 3: If S is a Killing tensor of odd degree p, and there exist symmetric tensors

�1 ,�2 , . . . ,��p−1�/2� such that

Cgrad e2�S = − 2 � ��1,

Cgrad e2��i = − 2 � ��i+1, i = 1, . . . ,�p − 3�/2,

Cgrad e2���p−1�/2 = 0,

hen

�36�

ˆ
s Killing with respect to g.
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Note that the last equation, Cgrad e2���p−1�/2=��p−1�/2�grad e2��=0, says that the 1-form ��p−1�/2
s metrically related to a vector field whose flows leave the conformal factor invariant.

V. KILLING TENSORS IN THE JACOBI GEOMETRY

Suppose that C : I�R→ �M ,g� is some Newtonian curve, satisfying

�ĊĊ = − grad V �37�

or some potential V.
Then the total energy E is a constant of the motion,

E = T + V ,

here T= 1
2g�Ċ , Ċ�. Then the Jacobi metric ĝ is obtained by conformally scaling g,

ĝ = e2�g , �38�

here

e2� = E − V . �39�

Clearly we could include an overall constant in the scaling and not change the connection.� We
hen have, from �25�,

�̂ĊĊ = 2Ċ�Ċ . �40�

hus C is pregeodesic with respect to ĝ: that is, a reparametrization makes it geodesic. Since
eodesics remain geodesic under an affine reparameterization, there is no unique parametrization
hat makes C geodesic. These affine reparametrizations of C correspond to a change in the strength
f the potential in �37�. Thus this way �or indeed any other way� of putting Newtonian curves into
orrespondence with geodesics is insensitive to any coupling constant that scales the strength of
he potential.

If we have Killing tensors, with respect to ĝ, then we have polynomial constants of the
otion. The precise relation is as follows.

Proposition 4: If Ŝ is a degree p Killing tensor with respect to the Jacobi metric ĝ, then
−2p�Ŝ�Ċ , . . . , Ċ� is constant along C.

Proof: We have

Ċ�e−2p�Ŝ�Ċ, . . . ,Ċ�� = − 2pĊ�e−2p�Ŝ�Ċ, . . . ,Ċ� + pe−2p�Ŝ��̂ĊĊ, . . . ,Ċ� = 0 by �40� .

Now we can apply the results of the preceding section to the particular case of the Jacobi
etric where we have ĝ= �E−V�g. A Killing tensor on M that satisfies the conditions of Proposi-

ion 1 will give a polynomial constant of the motion. Since the Jacobi metric is obtained by scaling
ith an energy-dependent conformal factor, this constant will, in general, depend upon the energy.
hen we have a Killing tensor on M satisfying the more restrictive conditions of Propositions 2

r 3, then we have a Killing tensor for each Jacobi metric, that is, a constant of the motion for any
nergy. So, for example, taking Propositions 2 and 4 together we see that if S is a Killing tensor
n M of even degree p that satisfies

Cgrad VS = 2 � ��1,

�41�
Cgrad V�i = 2 � ��i+1, i = 1, . . . ,p/2 − 1,
hen
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� = S�Ċ,Ċ, . . . ,Ċ� + 2�1�Ċ,Ċ, . . . ,Ċ� + ¯ + 2p/2�p/2. �42�

s a constant of the motion. Here we arrived at this expression by examining conformal scaling of

illing tensors. Of course it can be verified directly from �37� and �41� �using �6�� that Ċ�=0.
Unfortunately its not easy to see how to find Killing tensors satisfying �41�. There is always

ne trivial solution. We always have the trivial Killing tensor g, and for any V,

Cgrad Vg = 2dV , �43�

hus for any potential �41� is satisfied by taking S=g. In this case the constant of the motion given
n �42� is just �twice� the total energy.

Things become a little simpler when p=2, for then �41� reduces to

Cgrad VS = 2d� �44�

hich is locally equivalent to

d�Cgrad VS� = 0, �45�

hich, for any given S, is a second-order PDE for V. In the case of Rn, with the standard metric,
e know what all the Killing tensors look like: they are all trivial, being made from the Killing
ectors and the metric. For example, in R2 the Killing algebra consists of two translations and a
otation. By choosing a suitable basis for this Killing algebra, �T1 ,T2 ,R�, any Killing tensor can be
ritten as

S = R�
� R� + aT1

�
� T1

� + bg �46�

or constants a and b �where we assume S nonparallel�. If we adapt coordinates �x ,y� such that

T1 = �x, �47�

T2 = �y , �48�

R = x�y − y�x, �49�

hen �45� becomes

3�yVx − xVy� + �y2 − x2 + a�Vxy + xy�Vxx − Vyy� = 0. �50�

his is the Bertrand-Darboux equation.14 Thus we refer to �41� as the �generalized� Bertrand-
arboux equation.

As an illustration of how �44� relates to known systems admitting quadratic constants of the
otion we consider the Kepler problem. The Kepler problem has three nontrivial quadratic con-

tants of the motion, forming the Runge-Lenz vector.15,16 These constants correspond to three
illing tensors. Consider a Killing tensor such as

S12 = R1
��T2

� − R2
��T1

�, �51�

here Ri generates rotations about the i axis and Ti generates translations along the i axis. Then we
ook for spherically symmetric solutions to �45�,

C�r
S = rdx3 − x3dr ,

nd so

d�Cf�r��r
S� = ��rf�� + f�dr Ù dx3,

−2
nd so we have a solution to �45� if f =Ar which corresponds to the Kepler potential V=C /r.
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Note that the first-order constants of the motion correspond to Killing symmetries that leave
he potential invariant. That is, we have a vector field K such that

LKg = KV = 0. �52�

iven such a first-order symmetry then for any solution to �44�, for some S and �, then we have
nother solution for LKS and LK�. In the case of the Coulomb-Kepler potential, which has
pherical symmetry, the three Killing tensors of the form given in �51� are related in this way,

LR1
S12 = − S13,

LR3
S12 = 0, etc.

he constants corresponding to these three Killing tensors form the components of the Runge-
enz vector.

. GEODESICS AND WARPED PRODUCTS

Eisenhart2 showed how Newtonian curves on configuration space corresponded to geodesics
n a warped product manifold with one more dimension. We here briefly review some properties
f warped product geometries. We consider the general case, rather than restricting the fiber to be
ne dimensional. First, this is no harder; indeed it can be easier to see what is going on by
onsidering the more general setting. Second, it may be useful to regard the phase trajectories as
eodesics with respect to some metric. �We will return to this point later.� Finally, Killing tensors
n warped products are of interest irrespective of any connection with mechanics. �We refer again
o Ref. 11.�

In this section notation and conventions will generally follow O’Neill.17 Suppose that �B ,gB�
nd �F ,gF� are pseudo-Riemannian manifolds. Then if f is some function on B the warped product
anifold M =B� fF is the product manifold endowed with metric

G = *gB + �f � �2�*gF, �53�

here  and � are the projections,

:B� fF → B , �54�

�:B� fF → F . �55�

Let L�B� denote the space of vector fields lifted from B to M, with L�F� denoting lifts from
. The connection on M, which will be denoted by D, can be related to those on B and F. If
,Y �L�B� and U ,W�L�F� then

DXY = �XY , �56�

DUX = DXU = X�ln f�U , �57�

DUW = �UW − 1
2 grad�f2�gF�U,W� . �58�

To simplify notation lifts are implied in several places in the above formulas. For example, in �56�
e mean of course that the derivative of one lift with respect to another is the lift of the deriva-

ive.� Note that a warped product is conformally related to a Riemannian product. Thus one way
f obtaining these connection relations is to use connection relations for conformally related
etrics given in Eqs. �24� and �25�.
Any curve � : I→M can be decomposed into curves on B and F,
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��s� = �
�s�,��s�� . �59�

e can then use �56�–�58� to relate the acceleration of � to those of 
 and �. In particular, � is
eodesic if

�
̇
̇ − 1
2 grad�f2�gF��̇,�̇� = 0, �60�

��̇�̇ + 2
̇�ln f��̇ = 0. �61�

It follows that �again following O’Neill17�

�̇�f4gF��̇,�̇�� = 0, �62�

o if

f4gF��̇,�̇� = A �63�

hen A is constant along �. �The existence of this quadratic constant of the geodesic motion
orresponds to a Killing tensor of course. We will return to this in the following section where
illing tensors in this geometry will be discussed.� So if we set

V =
A

2f2 �64�

hen the geodesic equations on M are equivalent to the projected equations


̈ = − grad V , �65�

�̈ = �
̇ ln ���̇ . �66�

hat is, the projection onto B corresponds to the motion of a particle moving in a potential, while
he projection onto the fiber is a pregeodesic. For geodesic motion we always have the energy
onstant, and this can be related to the total energy of the curve projected onto the base:

G��̇,�̇� = 2E = gB�
̇,
̇� + f2gF��̇,�̇� = gB�
̇,
̇� +
A

f2 = 2�T + V� . �67�

ote that the potential V occurring in Newton’s equations is of course only defined up to a
onstant. Changing this constant is equivalent to fixing the zero point of the total energy. We can
nly identify the natural geodesic energy with that of a Newtonian system when the potential is
iven by �64� �there being no freedom to add an arbitrary constant�.

So far we have merely used some mechanical terminology as a convenience in discussing
eodesics on warped products. Suppose now that we start with some Newtonian system, and ask
o what extent the curves correspond to geodesics of some warped product. First, the potential

ust be of definite sign. So long as the potential is bounded this can always be achieved by the
ddition of a suitable constant. If that is the case then a warped product can be constructed, for any
hoice of fiber. Whatever the fiber all the Newtonian curves will be projections of geodesics.
owever, whatever the fiber, there will always be geodesics on the warped product that project to
eodesics on configuration space. Moreover, whatever the fiber, there will always be infinitely
any geodesics that project to the same Newtonian curve: there will always be at least one

eodesic that projects to a given Newtonian curve whatever the starting point on the fiber.
The special case of a one-dimensional fiber corresponds to the metric originally considered by

isenhart.2 As noted in the preceding paragraph, the correspondence between geodesics and New-

onian curves is not one to one. This is at variance with statements made in Ref. 18.
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Suppose that the configuration space has a positive definite metric �the prime example being
n of course� and that the potential is negative definite �for example, the Newtonian gravitational
otential�. Then the Eisenhart metric is Lorentzian. The timelike geodesics project to negative
nergy elliptical orbits, the null geodesics project to parabolic orbits with the spacelike geodesics
rojecting to hyperbolic scattering orbits. Thus to describe all the Newtonian curves we need to
onsider timelike geodesics as well as spacelike and null ones, again contrary to what is stated in
ef. 18.

I. KILLING TENSORS ON WARPED PRODUCTS

When examining the geodesic equations in the preceding section we noted that there was
lways a quadratic constant of the geodesic motion �in addition to the energy� and hence we
lways had a nontrivial Killing tensor. This is a special case of the following.

Proposition 5: If R is a degree-p Killing tensor on F then, for any warping function f , S
�f ��2p�*R is a Killing tensor on M.

It follows from the connection relations �56�–�58� that

D���f � �2p�*R� = �f � �2p�* � �R . �68�

he proposition is an immediate consequence.
In particular, since F always has the trivial Killing tensor gF, we always have the Killing

ensor �f ��4�*gF on M. We have already essentially noted this when we observed the geodesic
onstant in �63�.

Clearly Killing vectors on B are not necessarily Killing on M. For the lift of a Killing vector
on B to be Killing on M the warping function f must be invariant under the flow of K. More

enerally, the pullback of a Killing tensor from B to M is not in general Killing, there being an
dditional requirement relating the Killing tensor to the warping function. However, there is a
ore general way in which Killing tensors on M can arise from those on B.

Proposition 6: If S is a Killing tensor on B of even degree p, and there exist symmetric tensors
�1 ,�2 , . . . ,�p/2� such that

Cgrad f−2S = 2 � ��1,

Cgrad f−2�i = 2 � ��i+1, i = 1, . . . ,p/2 − 1,

hen

s a Killing tensor on M.
There is a similar result for Killing tensors of odd degree.
Proposition 7: If S is a Killing tensor on B of odd degree p, and there exist symmetric tensors

�1 ,�2 , . . . ,��p−1�/2� such that

Cgrad f−2S = 2 � ��1,

Cgrad f−2�i = 2 � ��i+1, i = 1, . . . ,�p − 3�/2,

Cgrad f−2��p−1�/2 = 0,
hen
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s a Killing tensor on M.
It follows from �56�–�58� that if S is a totally symmetric tensor on B then

D�*S = * � �S − 1
2*�Cgrad f−2S���f � �4�*gf . �69�

ince we have already shown that �f ��4�*gF is Killing, repeated use of �69� establishes the truth
f both propositions.

We have seen, from Proposition 5, that the trivial Killing tensor gF on F always leads to a
nontrivial� Killing tensor on M. In a similar way Proposition 6 shows how gB always gives a
illing tensor on M. Since

Cgrad f−2gB = 2df−2

or any warping function f , Proposition 6 enables a Killing tensor on M to be constructed. What
e get is nothing other than G, the metric on M.

Any Killing tensor on M constructed from one on B, as in Propositions 6 or 7, gives a
olynomial constant of the geodesic motion. This constant can be expressed in terms of the
rojection of the geodesic onto B, which we know can be interpreted as a Newtonian curve. Thus
e arrive at the same constant as we previously obtained via the Jacobi geometry. For example,

uppose that S is a Killing tensor of even degree satisfying the conditions of Proposition 6. Then
f a geodesic � is projected as in �59�, then � is constant along � where

here

�i = �A/2�i�i, �70�

here A is defined by �63�. This is the same expression given in �42�. Note that �64� and �70�
nsure that the conditions of Proposition 6 can be written as �41�.

II. DISCUSSION AND CONCLUSIONS

Sections V and VI have been written to be largely independent of Secs. III and IV. However,
ropositions 6 and 7 are clearly related to Propositions 2 and 3. Since a Killing tensor on the
acobi manifold, or one on the warped product, gives a polynomial constant of the Newtonian
otion, any condition that enables a Killing tensor to be constructed on one space must enable a
illing tensor to be constructed on the other. However, there is a more direct way of seeing why

hese Propositions are related.
As was noted in Sec. V, a warped product is conformally related to a Riemannian product, and

hus we can use the conformal scaling of the connections to establish the connection on a warped
roduct. In a similar way we can use Proposition 2 �for example� to directly prove Proposition 6,
s we will now show.

First suppose that we have a Killing tensor S on �B ,g� satisfying the conditions of Proposition

, so that we can construct the Killing tensor Ŝ on �B , ĝ�. Then Ŝ also satisfies the conditions of

roposition 2 so that we can invert the relation between S and Ŝ. Specifically we have the
ollowing:

Cˆ −2�Ŝ = − 2�̂��̂ ,
grad e 1
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Cgrad̂ e−2��̂i = − 2�̂��̂i+1,

here

nd

S = e−2p�Ŝ + e−2�p−1���̂1�ĝ + e−2�p−2���̂2�ĝ�ĝ + ¯ .

Clearly the relation between the ��i� and the ��̂i� is irritatingly complex.�
Second we note that any Killing tensor satisfying the conditions of Proposition 2 may be

ulled back to one satisfying the conditions on a Riemannian �unwarped� product manifold. That
s, if S is a Killing tensor on �B ,g� satisfying the conditions of Proposition 2 for some ��i� and
ome function �, then *S is a Killing tensor on �B�F ,*g+�*gF� satisfying the same conditions
or �*�i ,� ��.

Now we can establish Proposition 6 directly from Proposition 2. Suppose that S is a Killing

ensor on �B ,g� satisfying Proposition 2 for some function e2�= f−2. Then we can construct Ŝ that

s Killing on �B , ĝ= f−2g�. Then, for any �F ,gF� we can pull back to get *Ŝ which is Killing on

B�F , Ĝ= �f ��−2*g+�*gF�. Finally we may scale with the inverse scaling relations given
bove to produce a Killing tensor T on the warped product �B�F ,G=*g+ �f ��2�*gF�. What
e get is

T = *S − �1��f � �4�*gF + �2��f � �4�*gF��f � �4�*gF + ¯ .

his is exactly what is given by Proposition 6 when we relate the definition of the ��i� to the ��i�.
Propositions 2 and 3 �or equivalently 6 and 7� give conditions for Killing tensors �possibly

rivial� on one space, to give Killing tensors �not necessarily trivial� on another. However, unfor-
unately we do not know how to find such Killing tensors. In particular, whereas the propositions
efer to Killing tensors of arbitrary degree, the complexity of actually finding such nontrivial
ensors increases with the degree. Of course, as can readily be checked, if we have any tensors
atisfying these conditions then we can form symmetrized tensor products that also satisfy the
onditions.

In our discussions of warped products the details of the fiber have never played a role. The
etric originally introduced by Eisenhart takes a one-dimensional fiber which is obviously mini-
al dimensionally, but in this context dimensions do not cost anything. Clearly the details of the
ber were irrelevant in our construction of Killing tensors from those on the base, in that we only
ssumed relations between tensors on the base and a function on the base. The recognition that the
ber is arbitrary suggests new possibilities. Perhaps, for a conservative mechanical system, one
an construct a metric on phase space in such a way that the phase curves are geodesic. Presum-
bly such a metric would make the phase space �at least locally� a pseudo-Riemannian warped
roduct.

Because we have here looked at constants of the geodesic motion we have considered gener-
lizations of Killing’s equation to totally symmetric tensors. The totally antisymmetric generali-
ations, Killing-Yano tensors, have been much studied. They lead, for example, to symmetry
perators for the Dirac equation. Given a Killing-Yano tensor one can construct a �symmetric�
illing tensor. �The Killing tensor of the Kerr geometry is related to a Killing-Yano tensor in this
ay.� It would be interesting to explore relations between Killing-Yano tensors and Killing tensors
n this fruitful arena of warped products.
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The main results presented here concern how Killing tensors on one manifold can give rise to
illing tensors on another; either conformally related, or equivalently a warped product. Mechan-

cs need not have been mentioned. However, placing these geometrical constructions in the me-
hanical context offers the possibility of further symbiotic developments.
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We consider a classical test particle subject to electromagnetic and gravitational
fields, described by a Lagrangian depending on the acceleration and on a funda-
mental length. We associate to the particle a moving local reference frame and we
study its trajectory in the principal fiber bundle of all the Lorentz frames. We
discuss in this framework the general form of the Lagrange equations and the
connection between symmetries and conservation laws �the Noether theorem�. We
apply these results to a model, already discussed by other authors, which implies an
upper bound to the proper acceleration and to another new model in which a similar
quantity, called “pseudoacceleration,” is bounded. With some simple choices of the
fields, we illustrate some other interesting properties of the models and we show
that unwanted features may appear, as unstable run-away solutions and unphysical
values of the energy momentum or of the velocity. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2170486�

. INTRODUCTION

At present, the only well established long range relativistic fields, that allow a classical
nonquantum� treatment, are the Maxwell electromagnetic field and the Einstein gravitational
eld. However, the existence of new long range fields, or of modifications of the above-mentioned
nes is often suggested on the basis of theoretical speculations or of not yet well confirmed
xperimental results. Many crucial problems of present day physics and cosmology can be for-
ulated in terms of long range fields, for instance a possible failure of the Lorentz symmetry can

e attributed to a long range nonscalar field.
A long range field can be defined in terms of well chosen test particles. For instance, charged

articles are needed to define the electromagnetic field and only spinning particles are affected by
torsion field.1 We see that the investigations of long range classical fields and of test particles are

ntimately related. The aim of the present article is to give a contribution to this problem by
iscussing new kinds of test particles.

By definition, in a test particle model one disregards the influence of the particle on the field,
amely several important effects, as the radiated energy, the radiation damping, the electromag-
etic contribution to the mass, etc. However, these models are much simpler and permit a better
ndertanding of some general features of the theory, in particular its symmetry properties.

The test particle models may also suggest a way to introduce in the theory a fundamental
ength � of the order of the Planck length with the aim of taking into account approximately some
ffect of quantum gravity. For instance, as it has been proposed by several authors,2–10 an effect of
uantum gravity should be an upper bound of the order of �−1 to the proper acceleration of
articles �we use the convention c=1�. Note that the gravitational acceleration vanishes in a local
nertial frame and a discussion of the maximal acceleration principle requires the presence of an
lectromagnetic field. More references are given in the report,11 dedicated to a discussion and a

�
Electronic mail: toller@iol.it
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omparison of various geometric descriptions of the maximal acceleration principle. Another
ffect of the fundamental length is the appearance of new degrees of freedom and of excited states
f the particle.

In order to study the motion of a test particle, it is useful to associate to every point of its
orld line, parametrized by the variable �, a moving local Lorentz frame �a tetrad� s��� and to

onsider the motion of the point s��� in the principal bundle S of all the local Lorentz frames. This
oint of view has been adopted in Refs. 12 and 13 in the framework of presymplectic dynamics14

nd in Refs. 15–17 starting from the balance equations of a field theory and following the ideas of
ef. 18.

The method of moving rest frames has been applied in Refs. 19–22 to Lagrangians depending
n the acceleration and also on higher derivatives of the velocity. In the following we develop a
ore general formalism which is not restricted to rest moving frames.

The geometry based on the space S of the local Lorentz frames permits a formulation of a
ide class of �possibly nonlocal� field theories23 and particle theories. In the present article we

oncentrate our attention on the innovative particle models, without a specific consideration of
elds different from classical electromagnetism and Einstein’s gravitation. The general formalism,
owever, is ready for the introduction of more general classical fields. It has been remarked24,25

hat this geometry permits an elegant treatment of the upper bounds to the acceleration and the
ngular velocity of the frames and of the �possibly extended� associated particles.

An important issue is the description of the motion of a maximally accelerated particle in a
agrangian or Hamiltonian formalism, since it is necessary for the construction of a quantum

heory. It has been treated in Refs. 21 and 22 by means of the idea, already mentioned previously,
f associating to the particle a moving local Lorentz frame. As it looks natural, rest frames of the
article were chosen, but we shall see in the following that this choice is too restrictive.

The report26 contains a treatment of various kinds of test particles by means of Lagrangians
hat depend on the acceleration and on the angular velocity and, for dimensional reasons, must
ontain a parameter � that can be interpreted as a fundamental length. This report also contains a
reatment of a presymplectic formalism, which is more powerful for the treatment of some models.
n the present article we concentrate our attention on Lagrangians not depending on the angular
elocity of the moving frame.

In Sec. II we summarize the relevant aspects of the geometry of the fiber bundle S and of its
eneralizations. In Sec. III we develop a general Lagrangian dynamics for a point moving in this
pace. In Sec. IV we introduce the additional assumptions concerning a test particle subject to an
instein-Maxwell field. In Sec. V we use the Noether theorem to find the conserved quantities
orresponding to various kinds of symmetry properties of the system.

In Sec. VI we give a detailed discussion of the relation between the particle and the local
eference frames associated to it. We show that, if the Lagrangian depends on the acceleration, the
enter of mass cannot coincide with the origin of the local frame, where the electric charge is
ssumed to be concentrated. In this situation, the concept of acceleration is ambiguous and,
esides the proper acceleration of the point charge, we define a new different quantity, called
seudoacceleration.

As a first example, in Sec. VII we give two equivalent treatments of the ordinary spinless
harged masssive particle. In Sec. VIII we apply the general methods developed in the preceding
ections to the model treated in Refs. 21 and 22, based on rest frames. The model has upper
ounds to the velocity and to the proper acceleration of the charge, but the energy-momentum
our-vector may be spacelike. Moreover, even in the absence of external fields, the solutions
resent an unstable behavior �run-away solutions� when the initial conditions are slightly modi-
ed.

In Sec. IX we introduce a different model based on zero-momentum frames. It has the correct
nergy-momentum spectrum and an upper bound, which does not concern the acceleration, but the
seudoacceleration, requiring a slight reformulation of the maximal acceleration principle.

In Secs. X and XI we study further this new model by considering a particle in a constant

lectromagnetic field and we show that the solutions have good stability properties. In some
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ircumstances, the velocity of the charge may exceed the velocity light, but, since it rotates with
very large frequency, this effect is hardly observable. In Sec. XII we consider a particle in a

imple curved space and, even if the curvature is small, we find a serious form of instability.
In Sec. XIII we analyze another model, with a physical energy-momentum spectrum, and the

harge moving slower than light. However, the acceleration and the pseudoacceleration have no
pper bounds. In Sec. XIV we draw some general conclusions and we suggest some remarks on
he quantization.

I. THE BUNDLE OF LORENTZ FRAMES

In the absence of an electromagnetic field, a powerful method to treat the dynamics of a
possibly extended� particle is to consider, for each value of the parameter �, a local Lorentz frame
tetrad� s��� in such a way that a “distinguished point” of the particle �not necessarily the center of
ass� coincides with the origin of the frame �sometimes called a moving frame�. We indicate by
the ten-dimensional bundle of the Lorentz frames of the space-time and we describe the motion

f the particle by means of the line �→s����S.
Particle dynamics in this space has been introduced by Künzle12 �see also Ref. 13� in the

ramework of the presymplectic formalism.14 A treatment based on the balance equations for the
ensities of energy, momentum and relativistic angular momentum, strongly influenced by Dix-
n’s work,18 is given in Refs. 15–17. In the next section we develop a geometric Lagrangian
ormalism which avoids the introduction of coordinate systems in the space S. It is more general
han the Lagrangian formalism used in Ref. 21, because s��� is not assumed to be a rest frame.

The elements of S are orthonormal tetrads �e0 , . . . ,e3� of four vectors in the pseudo-
iemannian space-time manifold M. We assume that M is time oriented and e0 belongs to the

uture cone. We consider ten vector fields A0 , . . . ,A9 in the manifold S. The fields A0 , . . . ,A3

enerate parallel displacements of the tetrads along the directions of the tetrad vectors, A4=A�23�,

5=A�31�, A6=A�12� generate rotations around the spatial vectors of the tetrad and A7=A�10�, A8

A�20�, A9=A�30� generate Lorentz boosts along the same spatial vectors. The latin indices
,k , j , l ,m ,n take the values 0,¼,3 and the greek indices � ,� ,� take the values 0,¼,9. We assume

�ik�=A�ki� and, when necessary, we use the square brackets to indicate that an antisymmetric pair
f Latin indices stands for a greek index.

The vector fields A� can also be considered as first order differential operators and their
ommutators �Lie brackets� can be written in the form

�A�,A�� = F��
� A�. �1�

he quantities F��
� =−F��

� , are called structure coefficients and in the absence of gravitation they
re the structure constants of the Poincaré group. In the presence of gravitation, Fik

�jl� are the
omponents of the curvature tensor and Fik

j are the components of the torsion tensor, which
anishes in Einstein’s theory.

The ten dimensional manifold S has a structure of principal fiber bundle27 with base M and
tructural group SO↑�1,3�, but the details of this structure are not needed in the next section. The
nly relevant feature is that S is a n-dimensional differentiable manifold in which n differentiable
ector fields A� are defined and that, for each point s�S, the vectors A��s� form a basis of the
angent space TsS. As a consequence, we can identify all the tangent spaces with a single
-dimensional vector space T, which, in the absence of gravitation and other external fields, is the
ie algebra of the Poincaré group.

In the absence of gravitational field, S is the bundle of the Lorentz frames of the Minkowski
pace-time and the orthochronous Poincaré group P acts freely and transitively on S. We choose
fixed frame ŝ and represent univocally all the other frames in the form s=gŝ with g�P. In this
ay we may identify S and P. The vector fields A� generate the left translations of P.

�
We shall also use the differential 1-forms � defined by
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���A�� = ��
�. �2�

he vectors ���s� provide a basis in the cotangent space Ts
*S.

More details on this kind of geometry can be found in Ref. 23. In this way we can also treat
large class of external fields, including torsion fields,1 and, for n�10, gauge fields,28 including

lectromagnetic fields,29 as it is explained in Sec. IV.

II. THE LAGRANGE EQUATIONS

We write the tangent vectors of the curve �→s����S, which describes the motion of the
rame, in the form

ds���
d�

= b�A��s���� � T �3�

nd we consider the action principle

��
�1

�2

L�b�,s�d� = 0, �4�

here the Lagrangian L is a homogeneous function of degree one of the “velocities” b�.
In order to derive the dynamical equations, we consider a family, parametrized by 	, of varied

rajectories �	 ,��→s�	 ,�� with the usual properties

s�0,�� = s���, s�	,�1� = s��1�, s�	,�2� = s��2� . �5�

e put

�s�	,��
�	

= a�A�. �6�

If 
�s� is a differentiable auxiliary function, we have

�
�s�
�	

= a�A�
,
�
�s�

��
= b�A�
 , �7�

�2
�s�
�	��

= a�A��b�A�
� = b�A��a�A�
� . �8�

rom the last equality we obtain

��a�A�b��A� − �b�A�a��A� + a�b��A�,A���
 = 0, �9�

amely

� �b�

�	
−

�a�

��
+ a�b�F��

� 	A�
 = 0, �10�

nd, since 
 is arbitrary,

�b�

�	
=

�a�

��
− a�b�F��

� �11�

nd finally �disregarding higher order terms in 	�

�b� = 	� �b�

�	
	 = 	�da�

d�
− a�b�F��

� 	 = 	b��A�a� − a�F��
� �	=0. �12�
	=0 	=0
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By means of the last formula, one can write, performing a partial integration,

��
�1

�2

Ld� = 	�
�1

�2 � �L

�b��da�

d�
− a�b�F��

� 	 + a�A�L	d�

= 	�
�1

�2 �−
d

d�

�L

�b� −
�L

�b�b�F��
� + A�L	a�d� + 	
 �L

�b�a��
�1

�2

. �13�

he last term vanishes as a consequence of the conditions �5� and, considering that a� is an
rbitrary function of �, we obtain the Euler-Lagrange dynamical equations

ṗ� =
dp�

d�
= b�p�F��

� − A�L , �14�

here

p� = −
�L

�b� . �15�

If we assume that L does not depend directly on s, the last term in Eq. �14� is not present and
his equation is exactly the one obtained in Ref. 16 in the pole approximation by integrating the
alance equations �the quantities F��

� are defined there with a different sign�.
The momenta p� defined by Eq. �15� are homogeneous functions of degree zero of the

elocities b�, namely they depend only on the ratios �b0�−1b� �and possibly on s�. It follows that
hey must satisfy at least a primary constraint.30 Other primary constraints may exist and we write
hem in the form

���p�,s� = 0, � = 0, . . . ,m − 1. �16�

Since L is a homogeneous function, the Euler theorem gives, taking Eq. �15� into account,

L + p�b� = 0 �17�

nd by differentiation we obtain

b�dp� + �A�L��� = 0. �18�

he differentials dp� and the forms �� are arbitrary, apart from the constraints

���

�p�

dp� + �A������ = 0, � = 0, . . . ,m − 1 �19�

nd from Eq. �18� we have

b� = �
�

�����

�p�

, �20�

A�L = �
�

��A���. �21�

Equation �20� inverts, as far as possible, Eq. �15�. At this level, the functions ����� are
rbitrary and, if they are not determined by the dynamical equations, they parametrize the gauge
ransformations of the system. There is at least one kind of gauge transformation, namely a
edefinition of the parameter �.

If, according to the dynamical equations �14�, the quantities �� are not conserved, the con-

itions �̇�=0 determine partially the functions �� or give rise to secondary constraints. Some

implification can be obtained from the following consequence of the above-derived equations:

                                                                                                            



I
c
s

s
t
s
f

I

e
i
s
m
A
t

T
g
W

T

W

=

w

022904-6 M. Toller J. Math. Phys. 47, 022904 �2006�

                        
�
�

���̇� = �
�

��� ���

�p�

ṗ� + A���b�	 = b��ṗ� + A�L� = b�b�p�F��
� = 0. �22�

t follows that if �0�0 and the secondary constraints �̇�=0 for �=1, . . . ,m−1 are satisfied, �0 is
onserved. In particular, if there is only one primary constraint, it is conserved and there are no
econdary constraints.

If one is able to express all the quantities b� and ṗ� as smooth functions of s and p� �satisfying
ome constraints�, we say that the equations of motion are in normal form and one can apply the
heorems on the �local� existence and uniqueness of the solutions. In fact, if one introduces a local
ystem of coordinates q� in the space S, it follows from Eq. �3� that the quantities q̇� are smooth
unctions of the quantities b�.

V. EINSTEIN-MAXWELL FIELDS

Now we consider a test particle moving in an Einstein gravitational field and a Maxwell
lectromagnetic field. In order to describe the electromagnetic field, we adopt the procedure
ndicated in Refs. 16, 28, and 29, namely we introduce a principal fiber bundle S with base M and
tructural group SO↑�1,3�U�1� which includes the electromagnetic gauge group. Then the
anifold S has dimension n=11 and we have to introduce a new vector field, that we indicate by

• �in order to avoid a two-digit index �=10�, which generates the global electromagnetic gauge
ransformations. We use the notation

b�A� = biAi + 1
2b�ik�A�ik� + b•A•, b�ik� = − b�ki�. �23�

he 11-dimensional manifold S can also be considered as a principal fiber bundle with structural
roup U�1� and base S0, the 10-dimensional bundle of the Lorentz frames considered up to now.
e shall consider later the projection S→S0 along the fibers generated by the vector field A•.

The structure coefficients F�ik��
� coincide with the structure constants of the Poincaré algebra.

hey can be written in the form

F�ik��jl�
�mn� = �i

mgkj�l
n − �k

mgij�l
n − �i

mgkl� j
n + �k

mgil� j
n − �i

ngkj�l
m + �k

ngij�l
m + �i

ngkl� j
m − �k

ngil� j
m,

�24�

F�ik�j
l = �i

lgkj − �k
l gij , �25�

F�ik��jl�
m = 0, F�ik�j

�mn� = 0. �26�

e also assume that the torsion Fik
j vanishes.

The structure coefficients Fik
• =Fik represent the electromagnetic field strength and F�•

�

F�ik��
• =0. The electromagnetic interaction Lagrangian is

LI = eb•, �27�

here e is the electric charge.
By means of these equations, we can write Eq. �14� in the more explicit form

ṗi = − bi
kpk + Fi, Fi = bkGik − AiL, Gik = 1

2 p�jl�Fki
�jl� + eFik, �28�

ṗ = b p − b p − b jp − b jp − A L , �29�
�ik� i k k i i jk k ij �ik�
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ṗ• = 0, p• = − e , �30�

here Fki
�jl� is the Riemann curvature tensor which describes the gravitational field. As we discuss

n the next section, the quantities pi and −pik are interpreted as the energy, the momentum and the
elativistic angular momentum of the particle, measured in the local reference frame s. The quan-
ity −p• is the conserved electric charge.

It is often convenient to use a three-dimensional vector formalism. We introduce the vectors

b = �b1,b2,b3�, b� = �b�23�,b�31�,b�12��, b� = �b�10�,b�20�,b�30�� , �31�

p = − �p1,p2,p3�, p� = − �p�23�,p�31�,p�12��, p� = − �p�10�,p�20�,p�30�� , �32�

f = − �b0�−1�F1,F2,F3� , �33�

E = �F01,F02,F03�, B = �F32,F13,F21� , �34�

Ê = �G01,G02,G03�, B̂ = �G32,G13,G21� , �35�

nd we obtain, if L does not depend on s,

ṗ0 = − b� · p + b · f , �36�

ṗ = − b�  p − p0b� + b0f , �37�

ṗ� = − b  p − b�  p� − b�  p�, �38�

ṗ� = p0b − b0p − b�  p� + b�  p�, �39�

f = Ê + �b0�−1b  B̂ . �40�

The dimension of the phase space, namely the number of parameters necessary to define the
nitial conditions, is given by 2n=22 minus the number of primary and secondary constraints
including the constraint �30�� minus the number of the arbitrary gauge parameters �including the
sual electromagnetic gauge transformations�.

It is instructive to consider, besides the flat Minkowski space time, the spaces of constant
urvature

Fik
�jl� = ���i

j�k
l − �k

j�i
l� . �41�

is a de Sitter space time if ��0, and an anti-de Sitter space time for ��0. From Eq. �28� we
btain

Gik = − �p�ik� + eFik, �42�

r, in the vector notation,

Ê = − �p� + eE, B̂ = − �p� + eB . �43�

. NOETHER’S THEOREM

In order to treat the connection between symmetries and conservation laws �Noether’s theo-

em�, we consider a vector field
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Y�s� = a��s�A��s� �44�

nd the corresponding one-parameter diffeomorphism group exp�	Y�, which transforms the tra-
ectory s��� into the trajectories s�	 ,��. If this transformation does not change the action, the
xpression �13� vanishes and, taking the dynamical equations into account, we obtain the conser-
ation law

a�p� = constant. �45�

We assume that L does not depend on s and consider two kinds of applications of this general
heorem, which use two different kinds of symmetry properties. In the first case we require

�Y,A�� = �a�F��
� − A�a��A� = 0 �46�

nd from Eq. �12� we see that �b�=0, and therefore �L=0. Note that the validity of the conser-
ation law �45� does not depend on the form of the function L�b��.

In a second case we assume Eqs. �24�–�26� and consider the infinitesimal Lorentz transfor-
ation generated by A�ik�. From Eq. �12� we obtain

�b� = − 	F�ik��
� b�, �47�

amely an infinitesimal Lorentz transformation of the quantities b�. If the Lagrangian is invariant
nder this transformation, the quantity p�ik� is conserved. In particular, if the Lagrangian is a
orentz scalar function of b� all the six quantities p�ik� are conserved. If the Lagrangian is only a

otational scalar, only the three quantities p�rs� with r ,s=1,2 ,3 are conserved. These conservation
aws depend on the invariance properties of the Lagrangian and on the form of the structure
oefficients F�ik��

� . They are also valid in the presence of arbitrary gravitational and electromag-
etic fields.

Now we consider the simplest application of the first kind. As we have seen in Sec. II, in the
bsence of gravitational and electromagnetic fields, S is the bundle of the Lorentz frames of the
inkowski space time and choosing a fixed frame ŝ, can be identified with the orthochronous

oincaré group P. The vector fields A� generate the left translations of P, but one can also

ntroduce the vector fields Â�, which generate the right translations, interpreted as Poincaré trans-
ormations of the fixed frame ŝ. They commute with A� and are given by

Y = Â��g� = D�
��g�A��g� , �48�

here D�g� is the adjoint representation of P, which has the property

A�D�
��g� = − F��

� D�
��g� . �49�

It follows from the Noether theorem that the quantities

p̂� = D�
��g����p���� �50�

re conserved. Since they are defined starting from the symmetry under spacetime translations and
nfinitesimal Lorentz transformations of ŝ, they have to be interpreted as the components of the
nergy momentum and the relativistic angular momentum measured in the fixed frame ŝ.

We indicate an element of P by �� ,x�= �� ,0��1,x�, where x is the translation four vector and
is the Lorentz matrix acting on the contravariant components of the four vectors. If we use the

xplicit form of the adjoint representation, we obtain the equations

p̂i = �k
ipk, p̂�ik� = � j

i�
l
kp�jl� − xip̂k + xkp̂i, �51�

hich show that the quantities p���� are correctly interpreted as the components of the energy
omentum and the relativistic angular momentum measured in the moving frame s���, as we
nticipated in the preceding section. The mass � and the spin � of the particle are given by the
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amiliar Poincaré invariant expressions and take the same form when written as functions of p̂����
r of p����. In particular we have

�2 = pipi, �2�2 = − SkSk, Sk = 2−1	kijlp�ij�pl. �52�

This interpretation is also valid if an electromagnetic field is present. In fact, from Eqs.
31�–�40� we see that the influence of the electromagnetic field on the derivatives ṗ� is just the one
xpected for a point charge centered at the origin, if the quantities p� represent the components of
he kinetic energy momentum and relativistic angular momentum. This problem is also discussed
n Ref. 20.

The exact definition of the energy momentum and of the relativistic angular momentum of an
xtended particle in a curved space time is somehow ambiguous16,18 and in this case the interpre-
ation of p� can be considered as a definition.

I. FRAMES AND PARTICLES

In order to interpret the solutions of the dynamical equations, we have to clarify the connec-
ion between the Lorentz frames s��� and the physical particle. We indicate by � :S→M the
rojection which associates to the tetrad s�S its origin x=��s��M. The projection of the curve
→s��� is the world line �→��s����=x��� in the space-time manifold M. From Eq. �3�, remem-
ering that the vector fields Ai generate the parallel displacements along the four vectors ei��� of
he tetrad s���, we have

ẋ��� =
dx���

d�
= bi���ei��� . �53�

f � is the proper time, namely if bib
i=1, the quantities bi are the components of the four velocity

f the origin of s���, with respect to the same frame.
The tetrad s��+d�� differs from the parallel transported tetrad by an infinitesimal Lorentz

ransformation with parameters b�ik�d�. This means that the covariant derivatives of the tetrad four
ectors are given by

Dei���
d�

= − bi
k���ek��� , �54�

nd we obtain the formula

a��� =
Dẋ���

d�
= ḃiei − bibi

kek = �ḃi + bi
kb

k�ei. �55�

If � is the proper time, a is the covariant acceleration four vector and its components in the
oving frame s��� are given by

ai = ḃi + bi
kb

k. �56�

A rest frame is defined by the condition b=0 and the four velocity of the origin of the frame
s equal to the tetrad vector e0, which is time-like by definition. If � is the proper time, we also
ave b0=1, and d� is a time measured in the rest frame. We have

a =
De0

d�
= b�r0�er, a0 = 0, a = b�. �57�

he vector a represents the acceleration of the origin of a rest frame measured in the same frame.
f the parameter � is arbitrary, we can write the more general formula

0 −1
a = �b � b�. �58�
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We can introduce more specific moving frames by requiring the stronger conditions

b = 0, b�20� = b�30� = b�31� = 0. �59�

n a Lagrangian model they can be imposed by introducing six Lagrangian multipliers. In this case
��� is a Frenet frame and the quantities k1=b�01�, k2=b�12�, k3=b�23� are the geometric invariants of
he world line, which depend on the acceleration and its first and second derivatives.19,21 The
agrangian depends on these invariants as in the models considered in Ref. 19.

Now we consider frames defined by nonpurely geometric, but dynamical requirements. The
ondition p=0 defines a zero-momentum frame. It implies that the energy momentum is a timelike
our vector. In the case of a free particle, the center of mass is at rest in this frame, but this is not
rue in general. In a zero-momentum frame p� represents by definition the spin of the particle. One
an still consider the vector �58� but it does not represent the acceleration of the origin x��� and
ot even the acceleration of the center of mass. We call it the pseudoacceleration. From Eq. �37�
e have

a = p0
−1f . �60�

ote that p0 in a zero-momentum frame is the invariant mass and this formula coincides with the
ewton formula, valid for a point particle. If the particle is extended, this formula remains valid

f we replace the acceleration by the pseudoacceleration. This may be considered as the physical
eaning of the pseudoacceleration.

In order to describe the position of the center of mass, we have to introduce for each tetrad a
ystem of coordinates in a suitable open set of M, for instance a system of normal coordinates. In
he absence of gravitation, namely in special relativity theory, one can associate to every local
rame s a Lorentzian coordinate system in the flat Minkowski spacetime and the space coordinates
f the center of mass at zero time in this frame can be written in the form31

y = − p0
−1p�. �61�

he condition p�=0 means that the trajectory of the center of mass crosses the origin. A frame
ith this property is called a central frame. This definition can be extended to the case in which
ravitation is present. From Eq. �39� we see that, if the spin is zero, a zero-momentum central
rame is also a rest frame.

The definition p�=0 is not Lorentz invariant and it is often replaced by the condition

p�ik�p
k = 0, �62�

roposed by Dixon.18 A frame with this property is called a Dixon frame. It can always be
btained from a central zero-momentum frame by means of a Lorentz transformation.

The models treated in the following sections concern extended particles which contain a point
harge. In this case, instead of working with central or Dixon frames, it is convenient to assume
hat the charge lies at the origin of s���. More in general, if the charge is not pointlike, one can
equire that the electric dipole moment with repect to the frame s��� vanishes.

II. AN ORDINARY SPINLESS PARTICLE

It is instructive to consider first some Lagrangians that do not contain b� and b� and describe
pointlike spinless particle with mass m and charge e. The simplest Lagrangian of this kind is

L = − mb0 + eb•. �63�

ince it is linear in the “velocities” b�, all the momenta p� are fixed by 11 primary constraints,
amely we have p0=m, p•=−e and the other momenta vanish. As a consequence, the spin vanishes
nd the center of mass coincides with the charge. From the dynamical equations �36�–�39� we

btain
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b = 0, ma = m�b0�−1b� = f = eE . �64�

We see that the frames s��� are zero-momentum rest central frames and that the acceleration
s given by the usual formula. The time evolution of the quantities b0, b�, and b• is not determined
y the dynamical equations, the model has gauge invariances described by five parameters and the
hase space has dimension six. If we impose the gauge fixing condition b�=0, the frame is
ermi-Walker transported and if we assume b0=1 the parameter � is the usual relativistic proper

ime. If E=0, the frame is parallel transported and the world line of the particle is a geodesic.
In view of the following developments, it is interesting to treat with more detail a charged

article in a constant electromagnetic field in the absence of gravitation. The field is invariant
nder spacetime translations, but it changes if a Lorentz transformation is applied to the frame. If
0=1, we have

Ė = b�  B − b�  E, Ḃ = − b�  E − b�  B . �65�

f course, the Lorentz invariants

I = E2 − B2, J = E · B �66�

re constant.
The derivatives �65� vanish if we choose the gauge fixing condition

b� = − em−1B . �67�

he components of the field and all the quantities b� are constant and we say that this is a
stationary” solution. It follows that the projection of the trajectory on the ten-dimensional space

0, identified with the Poincaré group P, is given by a one-parameter subgroup, namely

g��� = exp��b�Ã��g�0� , �68�

here Ã� form a basis in the Lie algebra of P and exp�·� is the exponential mapping of the
roup.32

We also consider the Lorentz invariant Lagrangian

L = − m��b0�2 − b2�1/2 + eb•. �69�

e obtain

p0 = mb0��b0�2 − b2�−1/2, p = m��b0�2 − b2�−1/2b , �70�

p� = p� = 0, p• = − e �71�

nd the constraint

p0
2 − p2 = m2. �72�

It is sufficient to consider the dynamical equations �37�, since Eqs. �36�, �38�, and �39� are
onsequences of the other equations. We see that the quantities b0, b�, b�, and b• are not deter-
ined and they are gauge parameters. In particular, the Lorentz transformations assume the char-

cter of gauge transformations. We may fix the gauge partially by assuming that p=0 and we
btain exactly the equations of the preceding model. The dynamics of the particle is the same, but
n the second model there is more freedom in the choice of the moving frame.

Alternatively, we may require b�=b�=0, namely that the moving frame is parallel transported,
nd, also assuming b0=1, Eq. �37� takes the familiar form

˙
p = f . �73�
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III. A MODEL WITH A MAXIMAL ACCELERATION

For dimensional reasons, a Lagrangian which is a homogeneous function of degree one of the
elocities b� and contains a fundamental length � must contain, besides b0 and b, some of the
uantities �b� or �b�. In the following we consider Lagrangians that depend on b�, but not on b�,
nd we treat first a model with a maximal proper acceleration equivalent to the one treated in Ref.
1.

It is easy to obtain an upper limit for the quantity �b0�−1b�, but, as we have seen in Sec. VI,
his quantity coincides with the proper acceleration only if s��� are rest frames, namely if b=0.
his constraint is implicit in the formalism of Ref. 21, but in the framework of the preceding
ections we have to enforce it by means of the Lagrange multipliers �. A simple Lagrangian of
his kind, that does not contain b�, is given by

L = − m��b0�2 − �2b�2�1/2 + � · b + eb•. �74�

We obtain the equations

b = 0, p = �, p� = 0, p• = − e . �75�

he first equality means that we are dealing with rest frames and the second shows that p can be
hosen freely in the initial conditions, even in contrast with the usual requirements on the energy-
omentum spectrum. The third formula does not imply that the spin vanishes, because the spin is

efined as the angular momentum in a zero-momentum frame, that in general is not a rest frame.
The other momenta are given by

p0 = mb0��b0�2 − �2b�2�−1/2,

�76�
p� = m�2��b0�2 − �2b�2�−1/2b�

nd satisfy the scalar primary constraint

p0
2 − �−2p�2 = m2, �77�

hich, in agreement with Eq. �22�, is conserved and does not give rise to secondary constraints.
e consider only solutions with p0�m and, as a consequence, b0�0. From the preceding for-
ulas one obtains the relations

a = �b0�−1b� = �−2p0
−1p� = − �−2y = �−1�p�2 + �2m2�−1/2p�, �78�

hich show that the acceleration a has the upper bound �−1 and the distance y of the center of
ass from the origin has the upper bound �.

The dynamical equation �36� follows from Eq. �39� and the scalar constraint �77�. Equation
38� is automatically satisfied and from Eqs. �37� and �39� we obtain

ṗ = − p0b� + b0f − b�  p, ṗ� = − b0p − b�  p�. �79�

here are no secondary constraints.
As in the simple model considered in the preceding section, the time evolution of the quan-

ities b0, b�, and b• is not determined by the dynamical equations and the model has gauge
nvariances. Since there are five primary constraints and five arbitrary gauge variables, the phase
pace has dimension twelve. We can impose the gauge fixing conditions b0=1, b�=0 and we get
he simpler dynamical equations

ṗ = − �−2p� + f, ṗ� = − p . �80�

his system is in normal form.

We obtain
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d

d�
�p0

2 − p2� = − 2f · p . �81�

ven if initially the four momentum is time-like, by applying a suitable force f, it may become
pace-like. This means that one cannot simply discard as unphysical the states with space-like four
omentum.

We see from Eqs. �28�, �35�, and �40�, that, when the particle is subject to gravitational fields
nly, if p�=p�=0 we have f=0. It follows that p�=b�=p=0 is a solution which describes an
rdinary spinless particle with mass p0=m moving according to the laws of general relativity. We
how in the following that, even in the absence of external fields, there are many other solutions,
s it is expected, since the phase space has dimension larger than six.

It is shown in Refs. 21 and 22 that, in space times of constant curvature and in the absence of
ther external fields, the dynamical equations can be solved exactly. In fact, from Eqs. �43� and
80� we obtain

p̈� = �� + �−2�p�. �82�

or ��−�−2 it has exponential solutions and for ��−�−2 it has periodic solutions. Considering
ith more detail the case �=0, namely a flat spacetime, the general solution has the form

p� = u exp��−1�� + v exp�− �−1�� . �83�

The acceleration a and the distance y of the center of mass from the origin of the moving
rame are given by Eq. �78�. For generic initial conditions, they approach their maximum values
hen time increases or decreases, in particular

lim
�→�

a = �−1u−1u, u � 0. �84�

or u=v=0, we obtain p�=a=0, namely the uniform motion that is expected for an ordinary
article in the absence of external forces. This solution, however, is unstable, since small changes
f the initial conditions lead to solutions with a large acceleration in the past or in the future. We
ave

p0
2 − p2 = m2 + 4�−2u · v �85�

nd we see that for some solutions the energy-momentum four vector is spacelike. The accelerated
olutions recall the run-away solutions of the Lorentz-Dirac equation,33 with the important differ-
nce that in our case we are considering test particles and disregarding the radiated energy.

In a flat spacetime one can easily compute the motion of the origin of s���, namely of the point
harge associated with the extended particle. In the generic case, it approaches soon the velocity
f light with respect to a fixed frame. Of course, the center of mass follows a linear world line and
ts distance from the charge becomes large in the fixed frame. In the moving frame, however, as an
ffect of the Lorentz transformation, it remains small.

If, instead of considering a test particle, we take into account effects depending on higher
owers of the charge e, it is possible that the radiated energy �bremsstrahlung� prevents the
nstable behavior described previously. In the following sections, however, we try a different
olution of this problem.

X. A MODEL WITH A MAXIMAL PSEUDOACCELERATION

In order to avoid the unphysical energy-momentum spectrum and the unstable behavior of the
odel described in the preceding section, a reasonable attempt is to consider zero-momentum

rames instead of rest frames. This can be obtained by dropping the Lagrange multipliers from Eq.

74� namely by assuming
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L = − m��b0�2 − �2b�2�1/2 + eb•. �86�

esides Eq. �30� we obtain the vector constraints

p = 0, p� = 0, �87�

howing that s��� is a zero-momentum frame and the particle is spinless. It is clear that the
our-momentum p is necessarily timelike. Equation �76�, the scalar constraint �77� and Eq. �78� of
he preceding section are still valid and, in this case too, we consider only solutions with p0

m and, as a consequence, b0�0. Equation �78�, however, does not give an upper bound to the
cceleration, but to the pseudoacceleration a defined in Sec. VI.

The relation

p0 = m�1 − �−2y2�−1/2 �88�

hows that p0 can be interpreted as a confining potential that binds the charge to the center of
ass. When a force is applied to the charge, y and p0 increase and this explains intuitively why

he pseudoacceleration remains bounded.
As in the model of the preceding section, the dynamical equation �36� follows from Eq. �39�

nd the scalar constraint �77�, Eq. �38� is automatically satisfied and from Eqs. �37� and �39� we
btain

p0b� = b0f, ṗ� = p0b − b�  p�. �89�

In this case too we have gauge symmetries. If we impose the gauge fixing conditions b0=1
nd b�=0, we get the simplified equations

p� = �2p0b� = �2f = �2�Ê + b  B̂� , �90�

ṗ� = p0b . �91�

ote that the four-vector �b0 ,b�, proportional to the four-velocity of the charge measured in the
rame s���, is not necessarily time-like and in Sec. X we find examples in which it is actually
pace-like. It follows that its time component in some other fixed reference frame ŝ may vanish or
ven become negative. This means that the charge “moves backwards in time,” namely, more
xactly, the time coordinate with respect to the frame ŝ is a decreasing function of the parameter
. A further discussion will be given in Sec. XIV.

As we have remarked in the preceding section, if there is only a gravitational field, but no
ther external fields, the equalities p�=p�=0 imply that f=0. It follows that the equalities f=p�
b�=b�=b=0 define solutions in which s��� is a parallel transported rest frame. These solutions
escribe an ordinary spinless particle with mass p0=m moving according to the laws of general
elativity, but in general there are other different solutions with p��0. In a space of constant
urvature �, as we see from Eq. �43�, we have f=−�p� and if ��−�−2, we have necessarily f
p�=0 and the only solutions are the ones described previously. In this case, the phase space has
imension six.

If B̂�0, from Eq. �90� we obtain the secondary constraint

�Ê − �−2p�� · B̂ = 0. �92�

e have eight primary constraints, one secondary constraint and five arbitrary gauge variables. It

ollows that, if there are no tertiary constraints, the dimension of the phase space is eight. If B̂
0 in the whole space S, as in the constant curvature models treated previously, Eq. �90� gives the
hree secondary constraints
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p� = �2Ê �93�

nd the phase space has dimension six, as in the free case.

. A PARTICLE IN A CONSTANT ELECTROMAGNETIC FIELD

It is useful to consider, as in Sec. VII, a particle in a flat space time with a constant electro-
agnetic field. Some results will be approximately valid for slowly varying fields. We consider
rst the case in which the invariants �66� have the properties I�0, J=0 and in the frame s�0� we

ave B=0. If we choose the gauge b�=0, we see from Eqs. �65� and �90� that Ė= Ḃ=0. It follows
hat along the whole trajectory E, p�, and b� are constant, B=0 and b=0. The frame s��� is a rest
rame that moves with a constant acceleration given by

b� = �m2 + �2eE2�−1/2eE . �94�

e see that, in this case, the singular manifold defined by B=0 is invariant, namely all the
rajectories crossing it are completely contained in it. The acceleration remains bounded even if
he electric field is very large. As in the case of Sec. VII, s�0� determines the initial conditions
ompletely and the solution is stationary.

If in the frame s�0� we have B�0, we must also specify two components of p� in order to
escribe the initial condition completely. We show, however, that there is a finite number of
tationary solutions starting from s�0� in which all the components of the field and all the quan-
ities b� and p� are constant and s��� is given by the exponential formula �68�. The other, non-
tationary, solutions will be treated perturbatively in the next section.

We assume first that EB�0, since the case in which this vector vanishes needs a separate
reatment. If we require that the derivatives in Eqs. �65� and �89� vanish, we obtain after some
alculation,

b = aE  B ,

b� = p0
−1e�− �1 − aB2�B + a�B · E�E� ,

b� = p0
−1e��1 − aB2�E + a�B · E�B� , �95�

p0
2 = m2 + �2e2��1 − aB2�2E2 + a�2 − aB2��E · B�2� .

he second Eq. �89� is satisfied if

ap0
2 = �2e2��1 − aB2�2 + a2�B · E�2� , �96�

amely, by substituting the expression for p0
2,

f�a� = �1 − aB2���1 − aB2��1 − aE2� − a2�E · B�2� − �−2e−2m2a

= �1 − aB2��1 − aB2 − aE2 + a2E  B2� − �−2e−2m2a = 0. �97�

This is, in general, a third degree algebraic equation in the variable a, that has one or three real
olutions. The polynomial function f�a� has the following properties:

f�a� � 0 for a � 0, f�0� = 1,

f�a� � 0 for E−2 � a � B−2,

−2 −2 −2 −2 2 2 2 −1
f�a� � 0 for B � a � B �1 + � e m �E + B � � ,

                                                                                                            



I

a

t
a

c
o
v

p
w
s

U

N
c
V

t

w
�

→

a

I
t

w

T

022904-16 M. Toller J. Math. Phys. 47, 022904 �2006�

                        
f��a� � − �−2e−2m2 for 0 � a � min�E−2,B−2� . �98�

t follows that f�a� has only one zero in the interval

0 � a � min��2e2m−2,E−2,B−2� �99�

nd, possibly, two zeros in the half line

a � B−2�1 + �−2e−2m2�E2 + B2�−1� . �100�

If a lies in the interval, �99� we have b2�1, namely the velocity of the charge is smaller
han the velocity of light. We see in the following that, for some values of the fields, if we choose

solution in the half line �100�, the charge may move faster than light. Note that if b2=�2b�
b�2�1, since �b��1, we have �b��1, namely the frame s��� rotates, with all the dynami-

al vector variables, with an angular velocity larger than �−1. If � is very small, one can only
bserve an average value of the velocity b, that is negligible, since b is orthogonal to the angular
elocity b�.

Note that the fields E and B are measured with respect to the moving frame s��� and if the
article is very fast can be much larger than the fields measured in the laboratory frame. Even if
e take this remark into account, if � is of the order of Planck’s length, in all the experimental

ituations we have

E,B � �−1e−1m . �101�

nder these conditions, the smallest solution of Eq. �97� is given by the approximate formula

a1 � �2e2m−2. �102�

ote that when �→0, this solution tends to zero and the other two solutions either become
omplex or tend to infinity. In this limit we obtain, as it is expected, the ordinary model of Sec.
II.

We have to consider the special case in which B�0 and EB=0, namely E=kB. We obtain
he following conditions for the stationary solutions

b = 0, b� = hB−1B, p0b� = eE, p0
2 = m2 + �2eE2, �103�

here h is an arbitrary constant that describes just a choice of the rotational gauge. Note that Eq.
94� is also valid in this more general situation.

It is interesting to see if these equations can be obtained as a limit of Eqs. �95� for EB
0. Equation �97� tends to the second degree equation

�1 − aB2��1 − aE2 − aB2� − �−2e−2m2a = 0 �104�

nd one of the three solutions of Eq. �97� tends to infinity, more exactly we have

a3 � �E2 + B2�E  B−2. �105�

t follows that for this solution we have b→�, showing that there are stationary solutions with
he charge moving faster than light. The other two �necessarily positive� solutions are given by

a1,2 = �2B2�E2 + B2��−1�E2 + 2B2 + �−2e−2m2 ± �1/2� , �106�

here

� = �E2 + �−2e−2m2�2 + 4�−2e−2m2B2 � 0. �107�
he corresponding values of the parameter h are
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h1,2 = p0
−1eB�a±�E2 + B2� − 1� = e�2p0B�−1�E2 + �−2e−2m2 ± �1/2� . �108�

nly for these values of the gauge parameter h the solutions �103� can be obtained as limits of the
olutions �95�.

I. PERTURBATIONS AND STABILITY

The next step is to study perturbatively trajectories slightly different from the stationary ones
escribed previously. Since the infinitesimal perturbations satisfy linear differential equations with
onstant coefficients, we look for complex exponential solutions, namely we write

b� → b� + R��b� exp�z��� , �109�

here the constant quantities z and �b� are complex. A similar notation is used for the other
ariables. The derivatives with respect to � can be replaced by the factor z. We are not interested
n perturbations with z=0, which give other already known stationary solutions. For z�0 we
btain new nonstationary solutions, but also stationary solutions, modified by an infinitesimal
ime-dependent gauge transformation.

From Eq. �65� we obtain

z�E = b�  �B − B  �b� − b�  �E + E  �b�,

�110�
z�B = − b�  �E + E  �b� − b�  �B + B  �b�.

ince the invariants �66� are not affected by the perturbation, we also require the relations

E · �E = B · �B, E · �B = − B · �E , �111�

hich, however, are not independent from Eqs. �110�.
From the other dynamical equations we have

�p� = �2e��E + b  �B − B  �b� ,

z�p� = p0�b + b�p0 − b�  �p� + p�  �b�,

�112�
�p� = �2b��p0 + �2p0�b�,

�p0 = �2p0
3m−2b� · �b�.

fter the elimination of the variables �p0, �p�, and �b, we obtain a system of nine homogeneous
inear equations in the twelve unknown variables �E, �B, �b�, and �b�.

For all the values of z this system has three linearly independent solutions which represent
otational gauge transformations. They are given by

�E = E  r, �B = B  r, �b� = b�  r, �b� = b�  r + zr , �113�

here r is an arbitrary infinitesimal complex vector. Note that unless

z2 = − b�2, �114�

he vector �b� can take arbitrary values and when we look for physically relevant perturbations we
an choose the gauge �b�=0. We obtain in this way a homogeneous linear system of nine equation
n nine unknowns, which has nonvanishing solutions only if its determinant det M�z� vanishes. If

satisfies Eq. �114�, there is a pure gauge perturbation with �b�=0, and this implies that
et M�±ib��=0. If we disregard this uninteresting solution, the other nonvanishing solutions of

he algebraic equation det M�z�=0 correspond to physically relevant perturbations.
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If EB�0, it is convenient to use the projections of all the vectors on the basis formed by
he vectors E, B, and EB. Equation �111� permits the elimination of two unknowns and we have
o calculate the determinant of a 77 matrix. It has almost thousand terms and one has to use a
omputer algebra program.34 We find that the determinant det M�z� contains only the powers z6,
4, and z2, and, since we know that it vanshes for z2=−b�2, we can find the other, physically
elevant, solution of the equation det M�z�=0 by means of Ruffini’s rule. With an appropriate
hoice of the variables, the computer calculation gives the unexpectedly simple result

− z2 = �2 = �−4p0
2eB−2 + 4�−2m2p0

−2 � 0, �115�

here p0
2 is given by Eq. �95�. We see that z= ± i� is pure imaginary and this means that the

tationary solutions are stable with respect to linear perturbations. The perturbations have a fre-
uency � /2�, that when eB→0, tends to infinity explaining why a degree of freedom disap-
ears for eB=0. If we use Eq. �101�, we see that the frequency � /2� is much larger than the
lanck frequency �−1.

In order to extend our results to the case in which EB=0 a separate discussion, that does
ot require computer algebra, is needed. From Eqs. �103�, �111�, and �112� we find

B · �E = B · �B = B · �p� = B · �b = 0, �p0 = 0. �116�

s in the general case, we choose �b�=0.
After some calculations we obtain

z��B − �2kep0
−1B2�p�� = − b�  ��B − �2kep0

−1B2�p�� �117�

nd if z2�−b�2 we have

�p� = �−2�ke�−1p0B−2�B . �118�

By substituting this formula and Eq. �103� into Eq. �110�, we obtain a linear homogeneous
ystem of the form

z��E

�B
	 = B−1A�B  �E

B  �B
	 , �119�

here the matrix A is given by

A = � − h �−2m2p0
−1eE−1

− p0
−1eE − h + �−2p0eB−1 	 . �120�

ince the vectors �E and �B must be perpendicular to B, by iterating this formula we obtain

z2��E

�B
	 = − A2��E

�B
	 . �121�

One can easily show that this linear system has nonvanishing solutions if

z2 = − �h1,2 − h�2, �122�

here the quantities h1,2 are given by Eq. �108�. From the same equation and Eq. �115� we obtain
he identity

h2 − h1 = � . �123�

We see that, in this case too, the stationary trajectories are stable, but the frequency of the
erturbations depends on the gauge parameter h. There are two independent perturbations with

ifferent angular velocities and only their difference is invariant under the rotational gauge and
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hysically relevant. If we choose h=h1,2, in both cases we obtain the solution z2=0 and the
olutions given by Eq. �115�, namely the limits of the solutions found for EB�0.

II. A PARTICLE IN A SIMPLE GRAVITATIONAL FIELD

In order to understand the properties of the model in a gravitational field, it is instructive to
onsider, besides the spacetimes with constant curvature we have already examined in Sec. IX,
nother simple model, namely the stationary Einstein cosmological model35 with spatial curvature
. The curvature tensor in the frame s��� takes the form

Fik
�jl� = ���i

j�k
l − �k

j�i
l − �i

jvkv
l + �k

jviv
l + �i

lvkv
j − �k

l viv
j�, vkv

k = 1, � � 0, �124�

here, in a cosmological interpretation, v= �v0 ,v� is the four velocity with respect to the frame
�S of a privileged frame in which the matter and radiation distribution is isotropic.

From Eq. �28� we obtain

Gik = − ��p�ik� + v jp�ji�vk − v jp�jk�vi� , �125�

r, in the vector notation,

Ê = ��v2p� − �v · p��v�, B̂ = �v0v  p�. �126�

Equations �90� and �91� give the result

��−2�−1 − v2�p� + �v · p��v = p0
−1v0ṗ�  �v  p�� , �127�

nd constraint �92� is identically satisfied. We assume that v2��−2�−1. If vp�=0 we must
ave p�=0, otherwise we obtain

v · ṗ� = − p0v0
−1��−2�−1 − v2�, ṗ0 = �−2v0

−1�v · p�� . �128�

he component of ṗ� normal to the vectors v and p� is not determined by the dynamical equations,
amely there is a gauge symmetry. We fix the gauge by means of the condition

ṗ� · v  p� = 0. �129�

One can show that the covariant space-time derivatives Aivk vanish and it follows that the
erivatives of vk with respect to the parameter � are given only by the boost of the Lorentz frame,
amely

v̇ = − v0b� = − �−2p0
−1v0p�, v̇0 = − �v · b�� = − �−2p0

−1�v · p�� . �130�

From the preceding equations it follows

0 � v  p�2 = �2�p0
2 − m2�v2 − �4v0

2�ṗ0�2, �131�

dw

d�
= 0, w = p0v0 � m . �132�

he conserved quantity w is the energy measured in a privileged frame. We also obtain

d2

d�2 log p0 = − �−2v0
−2��−2�−1 + 1 − w2m2p0

−4� . �133�

f w is not extremely large, the right-hand side is negative, p0��� has a maximum for �= �̃ and
iolates the inequality p0�m outside a given interval. A stronger limitation is given by Eq. �131�.

t is clear that � cannot vary in the whole real line.
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For a detailed discussion, it is convenient to introduce some simplifications. We disregard
igher powers of the adimensional quantity �2�0, which is extremely small in all the interesting
ases and we also disregard higher powers of �− �̃. We put p0��̃�= p̃0, v0��̃�= ṽ0, v��̃�= ṽ and we
btain the approximate solution

p0��� � p̃0�1 − 2−1�−4�−1ṽ0
−2�� − �̃�2� , �134�

ṗ0��� � − p̃0�−4�−1ṽ0
−2�� − �̃� . �135�

From Eq. �131� we see that � must belong to the interval

�� − �̃� � 2−1�� � �1 − m2p̃0
−2�1/2�3�ṽ0ṽ . �136�

his inequality shows that it was consistent to disregard higher powers of �−�0 together with
igher powers of �2�. In this interval we have

0 � p̃0 − p0��� � 2−1�2�p̃0�1 − m2p̃0
−2�ṽ2 �137�

nd the quantities p0, p�, v0, and v can be considered as constant.
It follows from Eq. �131� that at the end points of the interval �136� p� is parallel to v and by

aking Eq. �129� into account, we see that the vector p� moves approximately on a half circum-
erence in a plane containig the vector v. From Eq. �128� we see that the projection of ṗ� in the
irection of v is constant and it follows that the component of ṗ� normal to v tends to infinity at
he end points.

The connection between � and the “cosmic” time t, measured in the privileged rest frames
efined by v=0, is

dt

d�
= vib

i = v0 − v · b = ��−2�−1 + 1�v0
−1 �138�

nd it follows that the interval �136� measured in terms of the time t is

�t � 2��1 − m2p0
−2�1/2v , �139�

amely it is, in general, very small. Note that it does not depend on the curvature �, but only on
he four-vector v that defines the privileged frames.

The singularities at the end points of the interval �136� can be avoided by using, instead of the
arameter � defined by the condition b0=1, another parameter and we can also try to extend the
olution outside the interval. This is possible only if, generalizing our Lagrangian formalism, we
ccept negative values of b0, namely negative values of the square root in Eq. �76�. We do not try
o give in this article a physical meaning to this extension, for instance in terms of antiparticles.

In any case, we have shown that, in the presence of an arbitrarily small gravitational field, the
eodisic world lines, corresponding to the initial condition p�=0, are badly unstable, since an
rbitrarily small change of p� leads to completely different, physicaly unacceptable, solutions.

III. ANOTHER MODEL

In the preceding sections we have examined two models that imply an upper bound to accel-
ration or to pseudoacceleration. However, these models have unwanted properties, in particular
he energy momentum or the four velocity of the charge may become spacelike and unstable
olutions may appear. In order to show that it is not easy to avoid all these problems, we consider

model containing a fundamental length, in which both the energy momentum and the four
elocity are necessarily timelike, as in the ordinary model of Sec. VII. A simple and natural
agrangian with these properties is

0 2 2 2 2 1/2 •
L = − m��b � − b − � b� � + eb . �140�
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The canonical momenta are given by

p� = 0, p• = − e , �141�

p0 = mb0��b0�2 − b2 − �2b�2�−1/2,

p = m��b0�2 − b2 − �2b�2�−1/2b , �142�

p� = m�2��b0�2 − b2 − �2b�2�−1/2b�,

nd satisfy the scalar primary constraint

�p0�2 − p2 − �−2p�2 = m2, �143�

hich assures that the energy momentum is timelike.
We adopt the gauge fixing conditions b0=1 and b�=0 and we obtain the formulas

b = p0
−1p = ��−2p�2 + p2 + m2�−1/2p , �144�

b� = �−2p0
−1p� = �−1�p�2 + �2p2 + �2m2�−1/2p�, �145�

hich assure that b�1 and b���−1. Note, however, that s��� is neither a rest frame nor a
ero-momentum frame and b� cannot be interpreted as the acceleration or the pseudoacceleration
f the particle.

The dynamical equation �36� follows from Eq. �39� and the scalar constraint �143�. Equation
38� is automatically satisfied and from Eqs. �37� and �39� we obtain

ṗ = − p0b� + f = − �−2p� + f, ṗ� = p0b − p = 0. �146�

e see that p� is conserved. If it vanishes, the dynamical equations coincide exactly with the
quations of the ordinary model of Sec. VII in its last version and there is no upper bound to the
cceleration or to the pseudoacceleration.

IV. CONCLUSIONS

We have developed a general Lagrangian formalism for the description of test particles in
ravitational and electromagnetic fields. It is based on a moving Lorentz frame associated to the
article and it is useful for the introduction of Lagrangians that depend on a fundamental length �
nd to discuss a possible upper bound to the proper acceleration. Other interesting effects may be
uggested by a detailed discussion of suitable models.

The test particles introduced in this way present some features characteristic of extended
bjects, in particular, additional degrees of freedom are present, the charge, assumed to be con-
entrated at the origin of the moving frame, does not necessarily coincide with the center of mass,
he energy-momentum four-vector is not necessarily parallel to the four-velocity and the definition
f the acceleration is somehow ambiguous.

We have considered with more detail three Lagrangians depending on the acceleration of the
rame, but not on its angular velocity, discussing, in particular, the following requirements.

1� The energy momentum four vector lies in the future cone;
2� The velocity of the point charge is smaller than the velocity of light, namely the four velocity

is time-like;
3� The solutions have good stability properties; and
4� There is an upper bound to the acceleration or to some related quantity as the pseudoaccel-
eration defined in Sec. VI.
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We have not been able to find a model that satisfies all these requirements and it is reasonable
o conjecture that such a model does not exist within the formalism we have considered. Perhaps
ne should introduce new degrees of freedom that have not a geometric interpretation in terms of
moving frame.

The model described in Sec. VIII, based on rest frames, has an unphysical energy-momentum
pectrum and has unstable run-away solutions even in the absence of external fields.

The model introduced in Sec. IX, based on the zero-momentum frames, has unstable solutions
hen a nonconstant curvature is present and, under some circumstances, the velocity of the charge
ay become arbitrarily large. Nevertheless, it has some interesting properties. It always has a

ime-like energy momentum four vector and it has good stability properties if only a slowly
arying electromagnetic field is present.

An electric charge faster than light may be embarrassing, but does not seem to contradict the
eneral principles of Maxwell’s theory. The charge describes a singular distribution inside the
article of the electric current four vector, that is not required to be time-like. Moreover, in the
bsence of curvature, the velocity vector rotates very fast and one can only observe its average
alue.

In a constant electromagnetic field the second model has “stationary” solutions, similar to the
rajectories of an ordinary point particle with some small corrections, but, since the model has
dditional degrees of freedom, more complicated solutions exist, obtained by adding to a station-
ry solution a periodic perturbation with a frequency � /2� much larger than �−1.

In a quantized version of the model, according to Bohr’s correspondence principle, this fre-
uency is approximately interpreted as the frequency of the radiation emitted when an excited
tate of the particle decays. Since the frequency is defined in the zero momentum frame, the
nergy �� has to be interpreted as the additional mass of the excited state. This mass is very large
nd in ordinary conditions there is not enough energy to excite the periodic degrees of freedom
nd they are “frozen,” as it happens, for instance, to the nuclear degrees of freedom in low-energy
tomic physics. These features of the quantized model may provide some very simplified insights
nto the connection between ordinary and “transplanckian” physics.

The model presented in Sec. XIII has no problem with the properties of the energy momentum
nd of the four velocity, but the presence of the fundamental length � in the Lagrangian does not
mpose any limitation to the acceleration.

Of course, a more precise physical discussion requires a formal quantization procedure of the
odels, based on Dirac’s treatment of constrained systems. In particular, the ground state energy

orresponding to the additional �internal� degrees of freedom, which cannot be evaluated by means
f the correspondence principle, could give an unacceptably large contribution to the mass. The
reatment of many particle states should be given in terms of free quantum fields. For the model
f Sec. VIII these problems are treated in Ref. 36 and we shall discuss some other models
lsewhere.
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In a recent study we have obtained correction terms to the large N asymptotic
expansions of the eigenvalue density for the Gaussian unitary and Laguerre unitary
ensembles of random N�N matrices, both in the bulk and at the soft edge of the
spectrum. In the present study these results are used to similarly analyze the eigen-
value density for Gaussian and Laguerre random matrix ensembles with orthogonal
and symplectic symmetry. As in the case of unitary symmetry, a matching is
exhibited between the asymptotic expansion of the bulk density, expanded about
the edge, and the asymptotic expansion of the edge density, expanded into the bulk.
In addition, aspects of the asymptotic expansion of the smoothed density, which
involves delta functions at the endpoints of the support, are interpreted
microscopically. © 2006 American Institute of Physics. �DOI: 10.1063/1.2165254�

. INTRODUCTION

Perhaps the best known result in random matrix theory is the Wigner semicircle law �see e.g.,
ef. 17�. Consider a real symmetric matrix, with elements on the diagonal i.i.d. random variables
aving finite variance and similarly the elements above the diagonal. The Wigner semicircle law
ells us that after appropriate scaling, the limiting eigenvalue density is given by the semicircle
unctional form

�W��� = � 2

�
�1 − �2�1/2, ��� � 1,

0, ��� � 1.

�1.1�

s a concrete example, the Gaussian orthogonal ensemble �GOE� of real symmetric matrices is
pecified by its diagonal entries being distributed according to the normal distribution N�0,1� and
ts upper triangular entries according to N�0,1 /�2�. Let ��N���� denote the eigenvalue density for
�N matrices from the GOE. After the scaling �2N��N���2N���N���� the N→� limiting form

f ��N���� is given by �1.1�.
The functional form �1.1� has implications with respect to averaging a so-called linear statistic

=� j=1
N a�� j� over the spectrum of random real symmetric matrices. Thus, if the N→� scaling is

�N� ˜
uch that ��N /N�� ��N��→�W���, a��N��→a��� for some �N then

47, 023301-1022-2488/2006/47�2�/023301/26/$23.00 © 2006 American Institute of Physics
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	A
 ª �
−�

�

��N����a��� d� � N�
−1

1

�W���ã��� d� . �1.2�

he result �1.2� immediately draws attention to corrections to the Wigner semicircle law. Indeed in
tudies of the full distribution of linear statistics averaged over the GOE and certain of its gener-
lizations, it is necessary to compute the O�1� term in the asymptotic expansion of �1.2�.8 For this
ne seeks the asymptotic expansion of �̄�N����, where �̄�N���� is the signed measure �smoothed
ensity� such that

�
−�

�

��N����a��� d� =�
−�

�

�̄�N����a��� d�

o all orders in the corresponding asymptotic expansions. In the case of the GOE itself the O�1�
erm is known,16,2,8 and one has

�2N

N
�̄�N���2N�� � �W��� +

1

N
1

4
�	�� − 1� + 	�� + 1�� −

1

2�

1
�1 − �2


����1� �1.3�

here 
T=1 if T is true and 
T=0 otherwise.
The correction term in �1.3� exhibits a most remarkable feature, namely delta functions at the

dge of the support of the spectrum. The appearance of the delta functions at a microscopic level,
hen one seeks directly the asymptotic expansion of ��2N /N���N���2N�� rather than the asymp-

otics of the smoothed quantity �̄�N���� has not, to the best of our knowledge, been previously
tudied. One of the purposes of this paper is to undertake such a study for the Gaussian and
aguerre ensembles in random matrix theory. Each of the three symmetry classes, orthogonal

�=1�, unitary ��=2�, and symplectic ��=4� will be considered. For the Gaussian ensemble it is
nown8 that �1.3� then generalizes to read

�2N

N
�̄�N���2N�� � �W��� +

1

N
 1

�
−

1

2
�1

2
�	�� − 1� + 	�� + 1�� −

1

�

1
�1 − �2


����1� .

�1.4�

ur task is to relate this expansion to the asymptotic expansion of the density itself.
The expansion �1.4� clearly shows both a bulk effect and an edge effect. This is in keeping

ith there being both a �global� bulk regime, and an edge regime which must be treated separately
n the asymptotic analysis. As these expansions relate to the same quantity, one would expect there
o be a matching in an appropriate limit. This topic, initiated in Ref. 7 for the GUE and LUE, is
nother main theme of the present work.

We begin in Sec. II by recalling the results from Ref. 7 relating to the asymptotic expansions
f the global bulk density, and the soft edge density, in the GUE and LUE. We then proceed to
rite down higher order terms in these asymptotic expansions �obtained from the method of Ref.
�. These higher order terms are then used to further investigate the matching phenomenon alluded
o above.

In Sec. III formulas required in the study of the asymptotics of the density in the Gaussian and
aguerre ensembles with orthogonal and symplectic symmetry are gathered. These formulas are
sed in Sec. IV to study the corresponding global density asymptotic expansions, and in Sec. V to
tudy the soft edge density asymptotic expansions. In Sec. VI we use the results of Secs. II, IV and

to study our main topics of interest, namely the matching between the bulk and edge asymptotic

xpansions, and the microscopic origin of the delta functions in �1.4� and its Laguerre analogue.
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I. THE GAUSSIAN AND LAGUERRE ENSEMBLES WITH UNITARY SYMMETRY

. Definitions and summary of known results

The Gaussian unitary ensemble consists of the set of Hermitian matrices with diagonal entries
istributed according to the normal distribution N�0,1 /�2� and with upper triangular entries
istributed according to N�0,1 /2�+ iN�0,1 /2�. The corresponding eigenvalue pdf is given by

1

C
�
l=1

N

e−xl
2 �
1�j�k�N

�xk − xj�2, �2.1�

here here and below C denotes some normalization constant.
The Laguerre unitary ensemble can be specified by matrices X=A†A where A is a n�m �n

m� complex Gaussian matrix with entries distributed according to N�0,1 /�2�+ iN�0,1 /�2�. All
he eigenvalues are non-negative and have the joint distribution

1

C
�
l=1

m

xl
�e−xl �

1�j�k�m

�xk − xj�2, �2.2�

here �=n−m.
The eigenvalue pdf’s �2.1� and �2.2� are special cases of the functional form

UEN�g2� ª
1

C
�
l=1

N

g2�xl� �
1�j�k�N

�xk − xj�2 �2.3�

efining a general matrix ensemble with unitary symmetry in terms of its eigenvalue pdf. Thus

Ev�GUEN� = UEN�e−x2
�, Ev�LUEN� = UEN�x�e−x� ,

here Ev�M� denotes the eigenvalue pdf of the matrix ensemble M.
It is a basic result in random matrix theory �see, e.g., Ref. 4� that the eigenvalue density for the

nsemble �2.3� can be written in terms of the monic polynomials �pn�x�� orthogonal with respect
o the weight g2�x�. Thus with �pn , pn�2 denoting the corresponding normalizations we have

��x;UEN�g2�� = g2�x��
j=0

N−1
�pj�x��2

�pj,pj�2
. �2.4�

In a recent study Kalisch and Braak9 have obtained the leading correction term to the Wigner
emicircle law for the asymptotic expansion of �2.4� in the case of the GUE.

Proposition 1: Let −1�X�1 be fixed. One has

1

N
��X;UEN�e−2Nx2

�� � �W�X� −
2 cos�2N�PW�X��

�3�W
2 �X�

1

N
+ O 1

N2� , �2.5�

here �W�x� is given by �1.1� and

PW�x� = 1 +
x

2
�W�x� −

1

�
Arccos x . �2.6�

The methods in Ref. 9 are particular to the Gaussian ensembles, relying on an integral formula
oming from the supersymmetry method. Subsequently the present authors7 have introduced a
ifferent strategy which reclaims �2.5�, and furthermore applies equally well to the Laguerre case,
or which the following result was obtained.
Proposition 2: Let 0�X�1 be fixed. We have
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1

N
��X;UEN�x�e−4Nx�� � �MP�X� −  cos��2N + ���PMP�X� − ���1 + X�MP�X���

�3X2�MP
2 �X�

−
�

�2X�MP�X�� 1

N

+ O 1

N2� , �2.7�

here

�MP�x� ª
2

�
�1

x
− 1, PMP�x� = 1 + x�MP�x� −

2

�
Arccos�x �2.8�

the subscript MP denotes Marčenko-Pastur, who first derived the limit law giving the leading
erm in this expression�.

The strategy of Ref. 7 was to use integral representations of the product of orthogonal poly-
omials which result from the Christoffel-Darboux summation of �2.4�. In addition to yielding the
symptotics of the global bulk density, it also gave asymptotics of the density at the so-called soft
dge. This is the name given to the boundary of the support at leading order, with the feature that
he density, appropriately scaled, is nonzero on both sides of this boundary.

Proposition 3: Let  be fixed. For the GUE

1

2N2/3�1 +


2N2/3 ;UEN�e−2Nx2
�� = �Ai����2 − �Ai���2

−
1

20
�32�Ai���2 − 2�Ai����2 − 3Ai��Ai����

1

N2/3 + O 1

N
� , �2.9�

hile for the LUE

1

�2N�2/3�1 +


�2N�2/3 ;UEN�x�e−4Nx��
= ��Ai����2 − �Ai���2� +

�

21/3 �Ai���2 1

N1/3

+
21/3

10
�32�Ai���2 − 2�Ai����2 + �2 − 5�2�Ai��Ai����

1

N2/3 + O 1

N
� . �2.10�

. Matching of the bulk and edge expansions

We pursue the matching phenomenon observed in Ref. 7 between the asymptotic expansion of
he bulk density, expanded about the soft edge, and the asymptotic expansion of the edge density,
xpanded into the bulk. Explicitly, it was found that setting

X = 1 + /2N2/3 � � 0� �2.11�

n the asymptotic expansion �2.5� multiplied by N2/3 /2, and then expanding in N, a matching is
btained with the →−� asymptotic expansion on the right-hand side of �2.9�. This was checked
n terms in  in the latter accessible by expanding the former; on this point we note that terms of
ll orders in inverse powers of N in �2.5�, will after substitution of �2.11� contribute to each term
n the expansion of �2.9�. A similar matching was observed between the bulk LUE density ex-
anded with the substitution �2.11�, and the →−� asymptotic expansion of the O�1� and
�N−1/3� terms of the edge density �2.10�.

Based on this evidence, the hypothesis was put forward in Ref. 7 that the matching persists

etween all terms in , and at all orders in inverse �fractional� powers of N. Here we probe this
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ypothesis further by extending the asymptotic expansions �2.5�, �2.7�, �2.9�, and �2.10�. As
xplained in Ref. 7, the orthogonal polynomial method readily allows for the computation of
igher order terms, which we compute to be given as follows.

Proposition 4: The O�1/N2� term in �2.5� is

 1

16��1 − X2�5/2 +
X�15 + 2X2�sin�2N�PW�X��

48��1 − X2�5/2 � 1

N2 ; �2.12�

he O�1/N3� term in �2.5� is

180 + 981X2 + 60X4 + 4X6

2304��1 − X2�4 cos�2N�PW�X��
1

N3 ; �2.13�

he oscillatory O�1/N4� term in �2.5� is

− X
323 190 + 647 055X2 + 20 358X4 + 6084X6 − 1112X8

829 440��1 − X2�11/2 sin�2N�PW�X��
1

N4 ; �2.14�

he O�1/N2� term in �2.7� is

 �

8��1 − X�2�cos�2N�PMP�X� − 2� Arccos�X�

+ − 3 + 12X + 8X2 + 12�− 1 + X��− 1 + 2X��2

192��1 − X�5/2X3/2 �sin�2N�PMP�X� − 2� Arccos�X�

+
1 + 4�− 1 + X��2

64��1 − X�5/2X3/2� 1

N2 ; �2.15�

he O�1/N� term in �2.9� is

−


12
+

34

40
+

7

48
��Ai���2 −

32

40
Ai��Ai��� +  1

12
−

3

20
−

6

48
��Ai����2� 1

N
; �2.16�

he O�1/N� term in �2.10� is

�−
7

15
+

�2

6
��Ai���2 −

2

5
Ai��Ai��� + −

1

6
+

�2

6
��Ai����2� 1

N
. �2.17�

Considering first the GUE, we now substitute �2.11� in �2.5� extended by �2.12�, �2.13�, �2.14�.
xpanding the asymptotic series �an operation we denote by �̇� gives the new asymptotic series

n N,

1

N2/3�1 +


2N2/3 ;UEN�e−2Nx2
��

�̇2���
�

+
1

16���5/2 + −
1

2���
+

1225

2304�4�cos�4��3/2/3� −
17 sin�4��3/2/3�

48���5/2 �
+ −

��3/2

4�
+

5

128���3/2 + −
43

480�
−

23 695

331 776���3�cos�4��3/2/3�

+  233

4608
−

��3

20
� sin�4��3/2/3�

���3/2 � 1

N2/3 + O 1

N4/3� . �2.18�

12
n the other hand, making use of the asymptotic series
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Ai�− z� � �−1/2z−1/4sin�� + �/4��
k=0

�

�− 1�kc2k�
−2k − cos�� + �/4��

k=0

�

�− 1�kc2k+1�−2k−1� ,

�2.19�

here

� =
2

3
z3/2, c0 = 1, ck =

�2k + 1��2k + 3� ¯ �6k − 1�
�216�kk!

�k � 1� ,

he →−� expansion of the O�1� and O�1/N2/3� terms in �2.9� can readily be computed. Agree-
ent is found with all terms in �2.18� except the one involving the fraction 23 695/331 776. Thus,

ven though no terms O�1/N� have yet appeared, whereas �2.16� has a term at this order, the
vidence is still in favor of a matching between all terms in , and at all orders in inverse powers
f N. However this matching cannot be fully exhibited at any order in N in the expansion of �2.9�
ithout knowledge of all terms in the asymptotic expansion of �2.5�.

As already mentioned, a similar matching phenomenon was observed in Ref. 7 in the case of
he LUE, and conjectured to hold at general orders as for the GUE. Further evidence for this
onjecture can be obtained by substituting �2.11� in �2.7� extended by �2.15�, expanding as a series
n inverse powers of N, and comparing against the →−� expansion of �2.10�. The former
peration gives

1

N2/3�1 +


2N2/3 ;UEN�x�e−4Nx��
�̇22/3��1/2

�
−

cos�4��3/2/3�
24/3��� � +

��1 + sin�4��3/2/3��
22/3���1/2N1/3

+
1

160���3/2N2/3�5 − 20�2 + 80��3 + 40�− 1 + 2�2���3/2 cos�4��3/2/3�

+ �5 − 20�2 + 16��3�sin�4��3/2/3�� + O 1

N
� . �2.20�

he latter operation gives agreement with this expansion at O�1�, O�1/N1/3� and for the terms
nvolving factors of ��3 at O�1/N2/3�. This is consistent with the matching hypothesis.

II. THE GAUSSIAN AND LAGUERRE ENSEMBLES WITH ORTHOGONAL
ND SYMPLECTIC SYMMETRY—GENERAL FORMULAS

The Gaussian orthogonal ensemble has already been defined in the Introduction. At the level
f an eigenvalue pdf, the GOE can be defined by the joint distribution

1

C
�
l=1

N

e−xl
2/2 �

1�j�k�N

�xk − xj� .

ikewise the Gaussian symplectic ensemble, Laguerre orthogonal ensemble and Laguerre sym-
lectic ensemble can be specified either in terms of the distribution of certain classes of random
atrices �real symmetric matrices in the cases of orthogonal symmetry, and Hermitian matrices
ith real quaternion elements in the cases of symplectic symmetry�, or in terms of the functional

orm of the eigenvalue pdf �see, e.g., Ref. 4�. Here we will note only the latter, which in the case

f the GSE reads
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1

C
�
l=1

N

e−2xl
2 �
1�j�k�N

�xk − xj�4;

or the LOE reads

1

C
�
l=1

N

xl
�/2e−xl/2 �

1�j�k�N

�xk − xj�;

nd for the LSE reads

1

C
�
l=1

N

xl
2�e−2xl �

1�j�k�N

�xk − xj�4.

or the Laguerre ensembles one requires the eigenvalues to be positive and thus xl�0 �l
1, . . . ,N�. Thus we see that if we define a matrix ensemble with orthogonal and symplectic

ymmetry by the eigenvalue pdf’s,

OEN�g1� ª
1

C
�
l=1

N

g1�xl� �
1�j�k�N

�xk − xj�

nd

SEN�g4� ª
1

C
�
l=1

N

g4�xl� �
1�j�k�N

�xk − xj�4,

espectively, then we have

Ev�GOEN� = OEN�e−x2/2�, Ev�LOEN� = OEN�x�/2e−x/2� ,

Ev�GSEN� = SEN�e−2x2
�, Ev�LSEN� = SEN�x2�e−x� . �3.1�

In Ref. 1, the eigenvalue densities for the ensembles OE�g1� and SE�g4� were computed for all
he so-called classical weights

g1�x� =�e−x2/2, Gaussian,

x��−1�/2e−x/2 �x � 0�, Laguerre,

�1 − x��a−1�/2�1 + x��b−1�/2�− 1 � x � 1�, Jacobi,

�1 + x2�−��+1�/2, Cauchy,

�3.2�

g4�x� =�e−x2
, Hermite,

x�+1e−x, Laguerre,

�1 − x�a+1�1 + x�b+1, Jacobi,

�1 + x2�−��−1�, Cauchy

�3.3�

n terms of a formula depending on the symmetry class only. Thus for ensembles OEN�g1� with

lassical weights �3.2� one has
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��x;OEN�g1�x��� = ��x;UEN−1�g2�x���

+
cN−2

�pN−2,pN−2�2�pN−1,pN−1�2
g1�x�pN−1�x�

1

2
�

−�

�

sgn�x − t�pN−2�t�g1�t� dt , �3.4�

hile for ensembles SEN�g4� with classical weights �3.3� one has

��x;SEN�g4�x��� =
1

2
��x;UE2N�g2�� − g1�x�

c2N−1p2N�x�
2�p2N,p2N�2�p2N−1,p2N−1�2

�
x

�

g1�t�p2N−1�t� dt .

�3.5�

n �3.4� and �3.5�,

g2�x� =�e−x2
, Hermite,

x�e−x, Laguerre,

�1 − x�a�1 + x�b, Jacobi,

�1 + x2�−�, Cauchy

�3.6�

hile

cj

�pj,pj�2
= �1, Hermite,

1
2 , Laguerre.

�3.7�

he quantities �pn�x�� are the monic classical orthogonal polynomials with respect to the weights
3.6�, and �pn , pn�2 the corresponding normalizations. Thus in the Gaussian case

pn�x� = 2−nHn�x�, �pn,pn�2 = �1/22−nn! �3.8�

hile in the Laguerre case

pn�x� = �− 1�nn ! Ln
��x�, �pn,pn�2 = ��n + 1���� + n + 1� . �3.9�

Essential tools in our subsequent analysis of the asymptotic forms of �3.4� and �3.5� are
articular asymptotic formulas for the Hermite and Laguerre polynomials. Consider first the bulk
egion. In the case of the Hermite polynomials, the formula is due to Plancherel and Rotach.13 It
ells us that with

x = �2n + 1�1/2 cos �, � � � � � − � ,

e have

e−x2/2Hn�x� = 2n/2+1/4�n ! �1/2��n�−1/4�sin ��−1/2�sin��n/2 + 1/4��sin 2� − 2�� + 3�/4� + O�n−1�� .

etting

�2NX = �2�N + m� + 1�1/2 cos �

ith −1�X�1 fixed we deduce from this that for m fixed

HN+m��2NX� =  2

�
�1/4 2m/2+N/2

�1 − X2�1/4Nm/2−1/4�N ! �1/2eNX2
gm,N

�H� �X�1 + O 1

N
�� , �3.10�

here

gm,N
�H� �x� ª cos�Nx�1 − x2 + �N + 1/2�Arcsin x − N�/2 − m Arccos x� . �3.11�

The Plancherel-Rotach formula �3.10� was extended by Moecklin to the Laguerre
10
olynomials. With
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x = �4n + 2� + 2�cos2 �, � � � � �/2 − �n−1/2

t reads

e−x/2Ln
����x� = �− 1�n�� sin ��−1/2x−�/2−1/4n�/2−1/4

��sin��n + �� + 1�/2��sin 2� − 2�� + 3�/4� + �nx�−1/2O�1�� .

etting

4nX = �4�n + m� + 2� + 2�cos2 �

ith m fixed and � /n�X�1 we deduce from this that

�x�/2e−x/2Ln+m
��� �x��x=4nX = �− 1�n+m�2��X�1 − X��−1/2n�/2−1/2gm,n

�L� �X� + O1

n
�� , �3.12�

here

gm,n
�L� �X� ª sin�2n��X�1 − X� − Arccos�X� − �2m + � + 1�Arccos�X + 3�/4� . �3.13�

We turn our attention now to the �soft� spectrum edge. In the Hermite case, the formula of
lancherel and Rotach tells us that with

x = �2N�1/2 + 2−1/2N−1/6t �3.14�

e have

exp�− x2/2�HN�x� = �1/42N/2+1/4�N ! �1/2N−1/12�Ai�t� + O�N−2/3�� ,

here Ai�t� denotes the Airy function. It follows from this that with x again related to t by �3.14�,

exp�− x2/2�HN+m�x� = �2N�m/2�1/42N/2+1/4�N ! �1/2N−1/12�Ai�t� −
m

N1/3Ai��t� + O�N−2/3�� .

�3.15�

n the Laguerre case, Szegö15 gives that with

x = 4N + 2� + 2 + 2�2N�1/3t �3.16�

e have

e−x/2LN
��x� = �− 1�N2−�−1/3N−1/3�Ai�t� + O�N−2/3�� .

t then follows that for fixed p,

�e−x/2LN+p
� �x��x=4N+2�2N�1/3 = �− 1�N+p2−�−1/3N−1/3Ai�� −

2p + � + 1

�2N�1/3 Ai��� + O�N−2/3�� .

�3.17�

V. ASYMPTOTIC EXPANSIONS IN THE BULK

. GOE and GSE in the bulk

As with the GUE, the asymptotic expansion of the bulk density for the GOE and GSE has
een carried out by Kalisch and Braak.9 But as their method is particular to the Gaussian case, we
ive an alternative method which can be extended to the Laguerre case.

Consider first the GOE. Substituting the appropriate formula from �3.7� and �3.8�, in �3.4� we

ee after minor manipulation that
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��x;OEN�e−x2/2�� = ��x;UEN−1�e−x2
�� +

e−x2/2HN−1�x�
2N−1�1/2�N − 2�!�0

x

e−t2/2HN−2�t� dt . �4.1�

lso, making use of �2.4� shows

��x;UEN−1�e−x2
�� = ��x;UEN�e−x2

�� −
2−�N−1�e−x2

�1/2�N − 1�!
�HN−1�x��2. �4.2�

rom �4.1� and �4.2� the following asymptotic formula for the bulk eigenvalue density is obtained.
Proposition 5: Let −1�X�1 be fixed. We have

1

N
��X;OEN�e−Nx2

�� �
2

�
�1 − X2 −

1

2�N�1 − X2
+ O 1

N2� . �4.3�

Proof: First we note that

��X;OEN�e−Nx2
�� = �2N���2NX;OEN�e−x2/2�� , �4.4�

nd we proceed to analyze the large N form of the right-hand side using �4.1�. In relation to the
atter, by a simple change of variables,

�
0

�2NX

e−t2/2HN−2�t� dt = ��2N�
0

X

e−t2/2HN−2�t��
t=�2NT

dT ,

hile making use of �3.10� shows

��2N�
0

X

e−t2/2HN−2�t��
t=�2NT

dT��2N 2

�
�1/4 2−1+N/2

�1 − T2�1/4N−5/4�N ! �1/2�
0

X g−2,N
�H� �T�

�1 − T2�1/4dT .

�4.5�

he leading contribution to the integral for large N comes from the neighborhood of the endpoints
=0 and T=X. About T=0

gm,N
�H� �T� � cos�2NT − �N + m��/2 + O�T2�� ,

hile about T=X,

gm,N
�H� �T� � cos�NX�1 − X2 + �N + 1/2�Arcsin X − N�/2 − m Arccos X

+ 2N�1 − X2�T − X� + O��T − X�2�� .

hus we have

�
0

X g−2,N
�H� �T�

�1 − T2�1/4dT �
1

2N�1 − X2�3/4 g̃−2,N
�H� �X� , �4.6�

here

g̃m,N
�H� �x� ª sin�Nx�1 − x2 + �N + 1/2�Arcsin x − N�/2 − m Arccos x� �4.7�

nd use has been made of the fact that N is assumed even in �3.4�.
We read off from �3.10� that

�e−x2
HN−1�x��x=�2NX =  2

�
�1/4 2−1/2+N/2

�1 − X2�1/4N−3/4�N ! �1/2g−1,N
�H� �X�1 + O 1

N
�� . �4.8�
aking use of this together with �4.5�, �4.6� and Stirling’s formula we deduce
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e−x2/2HN−1�x�
2N−1�1/2�N − 2�!�0

�2NX

e−t2/2HN−2�t�dt

�
1

��2N

g−1,N
�H� �X�g̃−2,N

�H� �X�
�1 − X2� 1 + O 1

N
��

=
1

��2N

g−1,N
�H� �X�

�1 − X2�
�Xg̃−1,N

�H� �X� + �1 − X2g−1,N
�H� �X��1 + O 1

N
�� , �4.9�

here the equality follows from simple trigonometric identities.
For the second term in �4.2�, use of �4.8� shows

� −
2−�N−1�e−x2

�1/2�N − 1�!
�HN−1�x��2�

x=�2NX

� −
1

�
� 2

N

�g−1,N
�H� �X��2

�1 − X2 1 + O 1

N
�� . �4.10�

nd for the first term in �4.2� we know from �2.5� that

���2NX;UEN�e−x2
�� �

�2N

�
�1 − X2 −� 2

N

cos�2NX�1 − X2 + 2N Arcsin X − N��
2��1 − X2�

+ O 1

N3/2� .

�4.11�

ut

cos�2NX�1 − X2 + 2N Arcsin X − N�� = �1 − X2�2�g̃−1,N
�H� �X��2 − 1� − 2Xg̃−1,N

�H� �X�g−1,N
�H� �X� .

�4.12�

ubstituting �4.12� in �4.11�, then adding this, �4.9� and �4.10�, and recalling �4.4� gives �4.3�. �

The result �4.3� agrees with that computed by Kalisch and Braak in Ref. 9 and is also
onsistent with �1.3�. We remark that in Ref. 9 the O�1/N2� term is also given, being equal to

3 + 4X2

16��1 − X2�5/2N2 −
cos��2N − 1�Arcsin X + 2NX�1 − X2�

8��1 − X2�5/2N2 . �4.13�

n principle the present method offers a systematic approach to all correction terms. For this we
eed the explicit form of the higher order terms in �3.10�, and these can in fact be calculated from
he results in Ref. 13. However we have not pursued such calculations. We remark too that a
alculation of the nonoscillatory portion of �4.13� is undertaken in Ref. 2; however the result
btained does not agree with �4.13�.

We turn our attention now to the GSE. First we note that

��X;SEN�e−4Nx2
�� = 2�N��2�NX;SEN�e−x2

�� . �4.14�

egarding the right-hand side, making use of �3.7�, �3.8� as well as the integral evaluation �see,
.g., Ref. 1�

2−N�
0

�

e−t2/2HN�t�dt =��

2

N!

2N�N/2�!
�4.15�
ives
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��x;SEN�e−x2
�� =

1

2
��x;UE2N�e−x2

�� −
e−x2/2H2N�x�

4�1/2�2N − 1�!��

2

�2N − 1�!
22N−1�N − 1/2�!

− 2−�2N−1��
0

x

e−t2/2H2N−1�t�dt� . �4.16�

he asymptotic form of �4.16� can be calculated according to the strategy of the proof of Propo-
ition 5 to give the following result for the bulk scaled density in the GSE.

Proposition 6: Let −1�X�1 be fixed, and g0,2N
�H� �X� be given according to �3.11�. We have

1

N
��X;SEN�e−4Nx2

�� �
2

�
�1 − X2 −  1

�2�N
+

�− 1�N

2�N � g0,2N
�H� �X�

�1 − X2�1/4 +
1

4�N

1
�1 − X2

+ O 1

N3/2� .

�4.17�

Proof: Analogous to �4.5�, it follows from �3.10� that

�
0

2�NX

e−t2/2H2N−1�t�dt � 2�N 2N−1

�1/4N3/4 ��2N� ! �1/2��
0

X g−1,2N
�H� �t�

�1 − t2�1/4dt ,

hile proceeding as in the derivation of �4.6� shows

�
0

X g−1,2N
�H� �t�

�1 − t2�1/4dt �
1

4N

1

�1 − X2�3/4 g̃−1,2N
�H� �X� −

�− 1�N

4N
.

hus, after making use too of Stirling’s formula,

��

2

�2N − 1�!
22N−1�N − 1/2�!

− 2−�2N−1��
0

�2NX

e−t2/2H2N−1�t�dt�
��N − 1/2� !  1

�2N
−

2
��

 1

4N

1

�1 − X2�3/4 g̃−1,2N
�H� �X� −

�− 1�N

4N
�� .

ince �3.10� gives

�e−x2/2H2N�x��x=2�NX = �−1/4 2NN−1/4

�1 − X2�1/4 ��2N� ! �1/2g0,2N
�H� �X� + O 1

N
��

e thus have that with x=2�NX the final line in �4.16� has the asymptotic behavior

−
1

4��

g0,2N
�H� �X�

�1 − X2�1/4�2 −
1

��N
 1

�1 − X2�3/4 �Xg̃0,2N
�H� �X� + �1 − X2g0,2N

�H� �X�� − �− 1�N�� .

urther, we see from �2.5� and �3.11� that

1

2
��2�NX;UE2N�e−x2

�� �
�N

�
�1 − X2 −

�1 − X2�2�g0,2N
�H� �X��2 − 1� + 2Xg̃0,2N

�H� �X�g0,2N
�H� �X�

8��N�1 − X2�

+ O 1

N3/2� .

dding these last two results, and recalling �4.16� and �4.14� gives the stated formula. �

In Ref. 9, at O�1/N� only the nonoscillatory term is reported. We note too that the nonoscil-

atory term at O�1/N� in �4.17� is consistent with �1.4� in the case �=4.
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. The LOE and LSE in the bulk

We now apply the same strategy to the Laguerre case. For the LOE, substituting the appro-
riate formula from �3.7� and �3.9�, into �3.4� shows

��x;OEN�x��−1�/2e−x/2�� = ��x;UEN−1�x�e−x�� +
�N − 1�!

4�� + N − 2�!
x��−1�/2e−x/2LN−1

� �x�

� �
0

�

LN−2
� �t�t��−1�/2e−t/2 dt − 2�

0

x

LN−2
� �t�t��−1�/2e−t/2 dt�

�4.18�

hile

��x;UEN−1�x�e−x�� = ��x;UEN�x�e−x�� −
�N − 1�!
��N + ��

�x�/2e−x/2LN−1
� �x��2. �4.19�

Proposition 7: Let 0�X�1. We have

1

N
��X;OEN�x��−1�/2e−2Nx�� � �MP�X� −

1

2�N

1 − �

�X�1 − X�
+ o�N−1� . �4.20�

Proof: By a change of variables

��X;OEN�x��−1�/2e−2Nx�� = 4N��4NX;OEN�x��−1�/2e−x/2�� , �4.21�

o the task is to analyze the N→� asymptotics of the right-hand side of �4.18� with x replaced by
NX.

We know from Refs. 11 and 1 that

�
0

�

LN−2
a �t�t�a−1�/2e−t/2 dt =

���N + 1�/2���a + N − 1�
2a/2−3/2��N����a + N�/2�

� 2N�a−1�/2. �4.22�

egarding the second integral in �4.18�, we first write

�
0

4NX

LN−2
a �t�t�a−1�/2e−t/2 dt = �

0

4�

+ �
4�

4NX �LN−2
a �t�t�a−1�/2e−t/2 dt ,

here 0���1. In relation to the region �4� ,4NX�, �3.12� tells us that for N even

�LN−2
� �t�ta/2e−t/2�t�4NT = �2��T�1 − T��−1/2N��−1�/2g−2,N

�L� �T� + O 1

N
�� .

ubstituting in the integral and changing variables T=s2 shows

�
4�

4NX

LN−2
� �t�t��−1�/2e−t/2 dt � �4N�1/2N��−1�/2 2

�
�1/2�

��/N

�X 1
�s�1 − s2�1/4

g−2,N
�L� �s2�ds .

�4.23�

n relation to the interval t� �0,4��, we know that for N→� �Ref. 15�,

LN−2
� �t�t�/2e−t/2 � N�/2J��2�Nt�1/2� ,

here Jn�z� denotes the Bessel function, and thus

�4�

LN−2
a �t�t�a−1�/2e−t/2 dt � Na/2�4�

J��2�Nt�1/2�
dt
�t

. �4.24�

0 0

                                                                                                            



=
t

w

w

A

s

R
d

a

N

w

N

w

023301-14 Forrester, Frankel, and Garoni J. Math. Phys. 47, 023301 �2006�

                        
We expect the leading contributions to come from the neighborhood of the upper terminal s
�X in �4.23�, and the lower terminal t=0 in �4.24� �the integrands should connect smoothly from

he lower terminal of �4.23� to the upper terminal of �4.24��. Since about s=�X,

g−2,N
�L� �s2� � sin�2N��X�1 − X� − Arcos�X� − �� − 3�Arcos�X + 3�/4 + 4N�1 − X�s − �X��

e have

��X g−2,N
�L� �s2�

�s�1 − s2�1/4
ds � −

1

4N�1 − X

g̃−2,N
�L� �X�

X1/4�1 − X�1/4 ,

here

g̃m,N
�L� �x� ª cos�2N��x�1 − x� − Arcos�x� − �� + 1 + 2m�Arcos�x + 3�/4� .

lso

�
0

�

J��t�dt = 1,

o we have

�
0

J��2�Nt�1/2�
dt
�t

� N−1/2.

eading off the asymptotic form of the factor xa/2e−x/2LN−1
a �x��x=4NX in �4.18� from �3.12� we

educe from this that

��4NX;OEN�x��−1�/2e−x/2�� � ��4NX;UEN−1�x�e−x�� −
g−1,N

�L� �X�g̃−2,N
�L� �X�

8�NX�1 − X�
.

It remains to determine the asymptotic form of �4.19�. For this we use the analogue of �4.21�
nd �3.12�, to obtain

��4NX;UEN−1�x�e−x�� �
1

4N
��X;UEN�x�e−2Nx�� −

1

2�
� 1

X�1 − X�
�g−1,N�X��2.

oting from the definitions and by a simple trigonometric identity that

g̃−2,N
�L� �X� = �2X − 1�g̃−1,N

�L� �X� − 2��1 − X�Xg−1,N
�L� �X� ,

g̃0,N
�L� �X� = �2X − 1�g̃−1,N

�L� �X� + 2��1 − X�Xg−1,N
�L� �X� ,

e therefore have

��4NX;OEN�x��−1�/2e−x/2�� �
1

4N
��X;UEN�x�e−4Nx�� −

1

8�N

g−1,N
�L� �X�g̃0,N

�L� �X�
X�1 − X�

. �4.25�

ow, with

AN,��X� ª 2N��X�1 − X� − Arccos�X� − � Arccos�X �4.26�

e have that

g�L� �X� = sin�AN,��X� + Arccos�X + 3�/4� ,
−1,N
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g̃0,N
�L� �X� = cos�AN,��X� − Arccos�X + 3�/4� ,

nd thus

g−1,N
�L� �X�g̃0,N

�L� �X� = 1
2 �− cos�2AN,��X�� + 2�X�1 − X�� . �4.27�

ubstituting �4.27� in �4.25� and noting from �2.7� that

1

4N
��X;UEN�x�e−4Nx�� �

1

4
�MP�X� −

cos 2AN,��X�
16�X�1 − X�N

+
�

8��X�1 − X�N
�4.28�

e obtain �4.20�.
�

Consider now the LSE. Analogous to �4.21�, by a change of variables

��X;SEN�x�+1e−8Nx�� = 8N��8NX;SEN�x�+1e−x�� ,

hile �3.5� together with the fact11,1

�
0

�

e−t/2t��−1�/2L2N−1
� �t�dt = 0 �4.29�

hows that

��x;SEN�x�+1e−x�� =
1

2
��x;UE2N�x�e−x�� −

��1 + 2N�
4��� + 2N�

e−x/2x��−1�/2L2N
� �x��

0

x

e−t/2t��−1�/2L2N−1
� �t�dt .

�4.30�

Proposition 8: Let 0�X�1. In terms of the notation �3.13� and �4.26� we have

1

N
��X;SEN�x�+1e−8Nx�� � �MP�X� −

1

2��N�1/2

g0,2N
�L� �X�

X3/4�1 − X�1/4 +
� + 1

4�N�X�1 − X�
+ o�N−1� .

�4.31�

Proof: Following the strategy of the proof of Proposition 7 we find

�
0

8NX

e−t/2t��−1�/2L2N−1
� �t�dt � �2N���−1�/2 +

�2N��/2

�2��1/2

g̃−1,2N
�L� �X�

2NX1/4�1 − X�3/4 .

lso, �3.12� and Stirling’s formula show

�
��1 + 2N�

4��� + 2N�
e−x/2x��−1�/2L2N

� �x��x=8NX �
1

16��N�1/2�2N���−1�/2
g0,2N

�L� �X�
X3/4�1 − X�1/4 .

ubstituting in �4.30� gives

��8NX;SEN�x�+1e−x�� �
1

16N
��X;UE2N�x�e−8Nx�� −

1

16��N�1/2

g0,2N
�L� �X�

X3/4�1 − X�1/4 −
g0,2N

�L� �X�g̃−1,2N
�L� �X�

32�NX�1 − X�
.

�4.32�

nalogous to �4.27� we have

g0,2N
�L� �X�g̃−1,2N

�L� �X� = −
1

2
�cos 2A2N,��X� + 2�X�1 − X�� .

ubstituting this together with �4.28� in �4.32� gives �4.31�.

�
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. ASYMPTOTIC EXPANSIONS AT THE EDGE

. The GOE and GSE

The scaled densities ��X ;OEN�e−NX2
�� and ��X ;SEN�e−4NX2

�� have to leading order their sup-
ort on �−1,1�. We know from previous studies5,6 that setting X as specified by �2.11� �with the
estriction �0 removed� and multiplying by N1/3, the limit N→� exists and can be computed
xplicitly. Here we are interested in computing the first correction, as in the soft edge formula
2.9� for the GUE.

In the case of the GOE, we see from �4.4�, �4.1�, and �4.2� that in addition to the knowledge
f �2.9�, an asymptotic formula for ��1+ /2N2/3 ;OEN�e−Nx2

�� can be obtained by making use of
3.15�.

Proposition 9: We have

1

2N2/3�1 +


2N2/3 ;OEN�e−Nx2
�� = �Ai����2 − �Ai���2 +

1

2
Ai��1 − �



�

Ai�t�dt� +
1

2N1/3Ai���

�1 − �


�

Ai�t�dt� + O 1

N2/3� . �5.1�

Proof: Consider the integral in �4.1�. We know from Ref. 1 that

�
0

x

e−t2/2HN�t�dt =��

2

N!

�N/2�!
− �

x

�

e−t2/2HN�t�dt .

eplacing N by N−2, setting x= �2N�1/2+2−1/2N−1/6, making use of �3.15� and simplifying shows
hat

�
0

�2N�1/2+2−1/2N−1/6

e−t2/2HN−2�t�dt =��

2

�N − 2�!
�N/2 − 1�!1 − �



�

Ai�y�dy +
2

N1/3Ai�� + O 1

N2/3�� .

�5.2�

ow using �3.15� with m=−1, and multiplying with the result �5.2� as required by �4.1� we obtain

� e−x2/2HN−1�x�
2N−1�1/2�N − 2�!�0

x

e−t2/2HN−2�t�dt��
x=�2N�1/2+2−1/2N−1/6

�
N1/6

21/2 Ai�� +
1

N1/3Ai����1 − �


�

Ai�y�dy +
2

N1/3Ai��� .

ccording to �4.2�, we also require the asymptotic formula

� −
2−N+1

�1/2�N − 1�!
�e−x2/2HN−1�x��2�

x=�2N�1/2+2−1/2N−1/6

� −
�2

N1/6 �Ai����2,

hich follows from �3.15�. Further

���2N�1/2 + 2−1/2N−1/6;UEN�e−x2
�� =

1

�2N�1/2��1 + /2N2/3;UEN�e−2Nx2
��

cf. �4.4�� so the asymptotic form of the first term on the right-hand side of �4.2� can be read off
rom �2.9�. Doing this, and recalling �4.4�, we deduce �5.1�.
We turn our attention now to the GSE. We will analyze �4.16� rewritten to read
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��x;SEN�e−x2
�� =

1

2
��x;UE2N�e−x2

�� −
e−x2/2H2N�x�

22N+1�1/2�2N − 1�!�x

�

e−t2/2H2N−1�t�dt . �5.3�

Proposition 10: We have

1

�2N�2/3�1 +


2�2N�2/3 ;SEN�e−4Nx2
��

� �Ai����2 − �Ai���2 −
1

2
Ai���



�

Ai�t�dt −
1

�2N�1/3Ai�� + O�N−2/3�� . �5.4�

Proof: By a simple change of variables

�1 +


2�2N�2/3 ;SEN�e−4Nx2
�� = 2�N���4N�1/2 + 2−1/2�2N�−1/6;SEN�e−x2

�� , �5.5�

o we seek the large N asymptotic form of �3.15� with x� �4N�1/2+2−1/2�2N�−1/6. Making use of
3.15� shows

� e−x2/2H2N�x�
22N+1�1/2�2N − 1�!�x

�

e−t2/2H2N−1�t�dt��
x=�4N�1/2+2−1/2�2N�−1/6

�
N1/6

24/3 Ai����


�

Ai�t�dt −
1

�2N�1/3Ai�X� + O�N−2/3�� , �5.6�

hile it follows from �2.9� that

1

2
���4N�1/2 + 2−1/2�2N�−1/6;UE2N�e−x2

�� �
�2N�1/6

�2
�Ai����2 − �Ai���2 + O 1

N2/3�� .

�5.7�

ubstituting �5.7� and �5.6� in �5.3� and recalling �5.5� gives the stated result. �

. The LOE and LSE

The soft edge scaling variables for the LOE and LSE are the same as those for the LUE,
xhibited in �2.10�. The leading correction term to the corresponding soft edge densities are given
y the following result.

Proposition 11: We have

1

�2N�2/3�1 +


�2N�2/3 ;OEN�x��−1�/2e−2Nx�� � �Ai����2 − �Ai���2 +
1

2
Ai��1 − �



�

Ai�s�ds�
−

�� − 1�
2�2N�1/3�Ai���1 − �



�

Ai�s�ds� − �Ai���2�
+ O�N−2/3� �5.8�
nd
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2

�4N�2/3�1 +


�4N�2/3 ;SEN�x�+1e−8Nx�� � �Ai����2 − �Ai���2 −
1

2
Ai���



�

Ai�s�ds

+
� + 1

2�4N�1/3�Ai���2 + Ai����


�

Ai�t�dt� + O�N−2/3� .

�5.9�

Proof: Consider first the LOE. We rewrite �4.18� as

��x;OEN�x��−1�/2e−x/2�� = ��x;UEN−1�x�e−x�� +
�N − 1�!

4�� + N − 2�!
x��−1�/2e−x/2LN−1

� �x�

� 2�
x

�

LN−2
� �t�t��−1�/2e−t/2 dt − �

0

�

LN−2
� �t�t��−1�/2e−t/2 dt� .

�5.10�

he asymptotic form of the final integral in �5.9� is known from �4.22�. According to �4.21�, we
eek the asymptotic form of the remaining terms with

x = 4N + 2�2N�1/3 .

or the first integral, use of �3.17� gives

�
4N+2�2N�1/3

�

LN−2
� �t�t��−1�/2e−t/2 dt�N��−1�/2�



�

Ai�s�ds −
3 − �

�2N�1/3Ai�� + O�N−2/3�� .

he asymptotic form of the term outside the parenthetical integrals is given by �3.17� with
p=−1. For the first term on the right-hand side of �5.10�, use of �4.19�, the analogue of �4.21�, and
2.10� shows

��4N + 2�2N�1/3;UEN−1�x�e−x�� �
1

2�2N�1/3�Ai����2 − �Ai���2 +
�

21/3 �Ai���2 1

N1/3�
− 2−2/3N−2/3�Ai���2.

he asymptotic form of all terms have now been determined, and �5.8� follows.
In relation to the LSE, we use �4.29� to rewrite �4.30� to read

��x;SEN�x�+1e−x�� =
1

2
��x;UE2N�x�e−x�� +

��1 + 2N�
4��� + 2N�

e−x/2x��−1�/2L2N
� �x��

x

�

e−t/2t��−1�/2L2N−1
� �t�dt .

�5.11�

simple change of variables gives

�1 +


�4N�2/3 ;SEN�x�+1e−8Nx�� = 8N��8N + 2�4N�1/3;SEN�x�+1e−x�� , �5.12�

o we seek the asymptotic form of �5.11� with

x = 8N + 2�4N�1/3 .
or this, we make use of �3.17� to deduce
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��1 + 2N�
4��� + 2N�

e−x/2x��−1�/2L2N
� �x��

x

�

e−t/2t��−1�/2L2N−1
� �t�dt � −

1

8
2−2/3N−1/3Ai�� −

� + 1

�4N�1/3Ai����
��



�

Ai�s�ds +
� − 1

�4N�1/3Ai�� + O�N−2/3�� .

urther, making use of the analogue of �5.12� and recalling �2.10� shows

1

2
��8N + 2�4N�1/3;UE2N�x�e−x�� �

1

4�4N�1/3�Ai����2 − �Ai���2 +
�

21/3�2N�1/3 �Ai���2

+ O�N−2/3�� .

he asymptotic form of all terms in �5.11� are now determined. After use of �5.12�, �5.9� follows.
�

Figure 1 provides a numerical comparison of the asymptotic expansion given by �5.9� with the
xact result for the LSE density given by �5.11� and �5.12�.

I. CONSEQUENCES

. Matching the bulk and edge expansions

. The GOE and GSE

In Sec. II B the conjectured matching between the bulk asymptotic expansion expanded about
he soft edge, and the asymptotic expansion of the edge density expanded into the bulk, for both

IG. 1. Numerical comparison of the asymptotic expansion �5.9�, shown as the dashed line, and the exact result for the
SE density given by �5.11� and �5.12�, shown as the solid line, for the eigenvalue density near the soft edge of the LSE
ith N=20 and �=1/2.
he GUE and LUE was given further credence by its confirmation on further terms in the
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symptotic expansion. To study the matching in the case of orthogonal and symplectic symmetry,
t is therefore convenient to express the corresponding asymptotic expansions in terms of the
nitary symmetry expansions. We will consider first the Gaussian cases.

According to �4.3�, �4.13�, �2.5�, �2.12�,

1

N
��X;OEN�e−Nx2

�� �
1

N
��X;UEN�e−Nx2

�� +  cos�2N�PW�X��
4��1 − X2�

−
1

2��1 − X2� 1

N

+  1 + 2X2

8��1 − X2�5/2 −
X�21 + 2X2�sin�2N�PW�X��

48��1 − X2�5/2 −
cos�2N�PW�X��

8��1 − X2�2 � 1

N2 ; �6.1�

ccording to �5.1� and �2.9�

1

2N2/3�1 +


2N2/3 ;OEN�e−Nx2
�� �

1

2N2/3�1 +


2N2/3 ;UEN�e−2Nx2
�� +

1

2
Ai��1 − �



�

Ai�t�dt�
+

1

2N1/3Ai���1 − �


�

Ai�t�dt� + O 1

N2/3�; �6.2�

ccording to �4.17� and �2.5�

1

N
��X;SEN�e−4Nx2

�� �
1

2N
��X;UE2N�e−2Nx2

�� +
cos�4N�PW�X��

8��1 − X2�N

�
1

4�N�1 − X2
−  1

�2�N
+

1

2�N� cos�2N�PW�X� + 1
2Arcsin X�

�1 − X2�1/4

+ O�N−3/2�; �6.3�

ccording to �5.4� and �2.9�,

1

�2N�2/3�1 +


2�2N�2/3 ;SEN�e−4Nx2
�� �

1

2�2N�2/3�1 +


2�2N�2/3 ;UE2N�e−4Nx2
��

−
1

2
Ai���



�

Ai�t�dt +
�Ai���2

2�2N�1/3 + O 1

N2/3�;

�6.4�

ubstituting �2.11� in �6.1� and �6.3� and expanding as in �2.18� gives

1

2N2/3�1 +


2N2/3 ;OEN�e−Nx2
���̇

1

2N2/3�1 +


2N2/3 ;UEN�e−2Nx2
�� +

3

16���5/2 +
23 sin�4��3/2/3�

96���5/2

+
cos�4��3/2/3�

8���
−  1

4���1/2 +
cos�4��3/2/3�

16���2 � 1

N1/3 �6.5�
nd
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1

�2N�2/3�1 +


2�2N�2/3 ;SEN�e−4Nx2
���̇

1

2�2N�2/3�1 +


2�2N�2/3 ;UE2N�e−4Nx2
��

−
1

2

1
��

sin2

3
��3/2 + �/4�
��1/4 +

cos4

3
��3/2�

8���

+ � 1

4���1/2 +

��1/4 sin2

3
��3/2 − �/4�

4��
� 1

�2N�1/3 + O�N−1/2� . �6.6�

We now compare �6.5� and �6.6� to the →−� expansion of �6.2� and �6.4�, respectively. In
elation to the latter, a straightforward calculation using the leading two terms of �2.19� shows that
or � � →�,

�
��

�

Ai�− t�dt �
1

��
 1

��3/4cos2

3
��3/2 + �/4� +

41

48

1

��9/4sin2

3
��3/2 + �/4�� .

sing this, together with �2.19� itself, we find that �6.5� agrees with the →−� expansion of �6.2�
or the first two terms of the O�1� part in �6.5�, but the rational factor of 1

8 should be 1
4 for the third

erm. At O�N−1/3� agreement is obtained with the first term. Similarly, we find that the first term at
ach order in �6.6� agrees with the →−� expansion of �6.6�. These results are all consistent with
he matching hypothesis.

. The LOE and LSE

As in the Gaussian cases, we begin by expressing the densities for the LOE and LSE in terms
f the corresponding densities for the LUE.

According to �4.20� and �2.7�,

1

N
��X;OEN�x��−1�/2e−2Nx�� �

1

N
��X;UEN�x�e−4Nx�� +  cos2AN,��X�

4�X�1 − X�
−

1

2��X�1 − X��1/2� 1

N
;

�6.7�

ccording to �5.8� and �2.10�,

1

�2N�2/3�1 +


�2N�2/3 ;OEN�x��−1�/2e−2Nx�� �
1

�2N�2/3�1 +


�2N�2/3 ;UEN�x�e−4Nx��
+

1

2
Ai��1 − �



�

Ai�s�ds� −
�� − 1�

2�2N�1/3Ai���1 − �


�

Ai�s�ds� −
�� + 1�

2�2N�1/3 �Ai���2;

�6.8�

ccording to �4.31� and �2.7�,

1

N
��X;SEN�x�+1e−8Nx�� �

1

2N
��X;UE2N�x�e−8Nx�� −

1

2��N�1/2

g0,2N
�L� �X�

X3/4�1 − X�1/4 +
cos 2A2N,��X�
8�NX�1 − X�

+
1

4�N�X�1 − X�
; �6.9�
ccording to �5.9� and �2.10�,
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2

�4N�2/3�1 +


�4N�2/3 ;SEN�x�+1e−8Nx�� �
1

�4N�2/3�1 +


�4N�2/3 ;UE2N�x�e−8Nx��
−

1

2
Ai���



�

Ai�s�ds +
�� + 1�

2�4N�1/3Ai����


�

Ai�t�dt

−
�� − 1�

2�4N�1/3 �Ai����2. �6.10�

Substituting �2.11� in �6.7� and �6.9� and expanding gives

1

�2N�2/3�1 +


�2N�2/3 ;OEN�x��−1�/2e−2Nx���̇
1

�2N�2/3�1 +


�2N�2/3 ;UEN�x�e−4Nx�� +
cos�4��3/2/3�

4���

−
�1 + � sin�4��3/2/3��

2����
1

�2N�1/3 �6.11�

nd

2

�4N�2/3�1 +


�4N�2/3 ;SEN�x�+1e−8Nx���̇
1

�4N�2/3�1 +


�4N�2/3 ;UE2N�x�e−8Nx��
+

sin�2��3/2/3 − 3�/4�

2����1/4
+

cos�4��3/2/3�
4���

+
1

2�4N�1/3����
1 + �1 + ������3/4 cos�2��3/2 − 3�/4�

−
�

21/3sin�4��3/2/3�� . �6.12�

On the other hand, let us expand �6.8� and �6.10� for →−�. Doing so we find agreement with
he first term at each order in �6.11� and �6.12�, respectively, as consistent with the matching
ypothesis.

. Microscopic delta functions

The results of Secs. IV and V tell us the asymptotic expansion of the global density, and the
oft edge density. Here we would like to relate these expansions to the result �1.4� and its Laguerre
nalogue.

Consider first the Gaussian cases. For �� large but otherwise arbitrary, we write

�
−�

�

��x;MEN�e−�x2/2��a�x�dx = �
R1

+ �
R2

���X;MEN�e−N�x2
��ã�X�dX

= �
R1

��X;MEN�e−N�x2
��ã�X�dX

+
1

2N2/3�
−��

�

��1 + y/2N2/3;MEN�e−�Nx2
��ã�1 + y/2N2/3�dy

+ �
−�

��

��1 − y/2N2/3;MEN�e−�Nx2
��ã�− 1 − y/2N2/3�dy� , �6.13�

here MEN=OEN, UEN, SEN, respectively, R1= �−1+ � � /2N2/3 ,1− � � /2N2/3� and R2
˜
= �−� , � � \R1, a�x�=a�Nx� and we have used the fact that � is even. Because
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�soft�y ;MEN�e−�Nx2
�� ª lim

N→�

1

2N2/3��1 + y/2N2/3;MEN�e−�Nx2
�� �6.14�

s an O�1� quantity, we see that to leading order the second and third integrals in �6.13� contribute

�ã�1� + ã�− 1���
−��

�

�soft�y ;MEN�e−�Nx2
��dy . �6.15�

owever, in relation to the first integral on the right-hand side of �6.13�, we know that terms
hich are different order in N in the asymptotic expansion of ��X ;MEN�e−N�x2

�� can contribute at
he same order upon the substitution �2.11�. Unlike the situation at the edge, the asymptotic
xpansion of this integral does not therefore correspond directly to the asymptotic of the integrand,
eaving us without a method of analysis. Nonetheless some insight into the microscopic origin of
he delta functions in �1.4� can be obtained as a consequence of the functional form of �6.14� for
=1,4.

For �=2 we read off from �2.9�,

�soft�y ;UEN�e−2Nx2
�� = �Ai��y��2 − y�Ai�y��2,

hile �2.18� tells us that the leading y→−� behavior is 2��y� /� so �6.15� diverges for � � →�.
ecause of the result �1.4� it must be that this is exactly canceled by a contribution from the bulk,
nd thus the edge terms �6.15� cancel.

For �=1 and 4 we observe from �5.1� and �5.4� that �soft�y ;UEN�e−2Nx2
�� appears as an

dditive component in the scaled soft edge density, together with a further term in both cases. The
urther term has the property that it is integrable for y→−�. Thinking then of the decomposition
6.13� for �� large, and ignoring the contribution from the nonintegrable additive component, this
hen suggests that

�
−�

�

��x;OEN�e−x2/2��a�x�dx � N�
−1

1

�W�X�ã�X�dX −
1

2�
�

−1

1 ã�X�
�1 − X2

dX

+ �ã�1� + ã�− 1��
1

2
�

−�

�

Ai�y�1 − �
y

�

Ai�t�dt�dy , �6.16�

�
−�

�

��x;SEN�e−2x2
��a�x�dx � N�

−1

1

�W�X�ã�X�dX +
1

4�
�

−1

1 ã�X�
�1 − X2

dX

− �ã�1� + ã�− 1��
1

4
�

−�

�

Ai�y��
y

�

Ai�t�dt�dy . �6.17�

ere the bulk contributions are the leading two nonoscillatory terms exhibited in �4.3� and �4.17�,
espectively, and the edge contributions are the leading terms in �5.1� and �5.4�, respectively, with
he component corresponding to the �=2 edge deleted. Since

Ai�y�1 − �
y

�

Ai�t�dt� =
1

2

d

dy1 − �
y

�

Ai�t�dt�2

, �6.18�

Ai�y��
y

�

Ai�t�dt = −
1

2

d

dy�y

�

Ai�t�dt�2

�6.19�

e see from �−�
� Ai�t�dt=1 that the final integrals in �6.16� and �6.17� are both equal to 1/2, thus
eclaiming �1.4�.
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We consider now the Laguerre analogue of �1.4�. Let us introduce the so-called chiral matrix
nsembles chMEN�g�x�� by the eigenvalue pdf,

1

C
�
l=1

N

g�xl�xl
�/2 �

1�j�k�N

�xk
2 − xj

2�� �xl � 0� . �6.20�

he simple change of variables xj
2�xj shows

1
2��X;chMEN�x2�a+�2−��/4�e−2N�x2

�� = X��X2;MEN�xae−2N�x�� , �6.21�

nd thus that the Laguerre ensembles can be viewed as a Gaussian version of the chiral ensemble,
eneralized by the factor x2�a+�2−��/4�. We see from �6.21�, �4.20�, �2.7�, and �4.31� that

��X;chOEN�xa/2e−2Nx2
�� � 2�W�X� +

1

�N

a − 1/2
�1 − X2

,

��X;chUEN�xae−4Nx2
�� � 2�W�X� +

a

�N�1 − X2
,

��X;chSEN�x2ae−8Nx2
�� � 2�W�X� +

a + 1/4

�N�1 − X2
,

here only nonoscillatory terms are included. In the case a=0 these expansions are precisely the
ame as for the corresponding Gaussian ensembles �the leading term in the chiral ensembles is
�W�X� rather than �W�X� because X� �0,1� rather than �−1,1��.

At the soft edge X=1 of the chiral ensembles, the fact that the scaled densities are the same as
or the Gaussian ensembles tells us that there is a contribution

1

2N
 1

�
−

1

2
�	�X − 1�

o the smoothed density. And, although not the focus of attention of the present work, for the
aguerre and thus chiral ensembles there is an edge effect at X=0 �the so-called hard edge5� which
ne expects to give a microscopic contribution

−
a

2N
	+�X�

see the next section�, where �0
�f�X�	+�X�dX= f�0�. Consequently we expect the Laguerre ana-

ogue of �1.4� to be

��X;chMEN�x�a/2e−2�Nx2
�� � 2�W�X� +

a

�N�1 − X2
−

a

2N
	+�X�

+
1

N
 1

�
−

1

2
�	�X − 1� −

1

�

1
�1 − X2� . �6.22�

. Macroscopic balance

In this final section, we will show that the results �1.4�, �6.22� are consistent with macroscopic
onsiderations.

In a one-component log-gas, to leading order in N the electrostatic potential created by the

article density ��x� must balance the background potential u�x�, and thus the equation
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u�x� + C = �
−c

c

��y�log�x − y�dy, x � �− c,c� , �6.23�

here C is some constant, must hold. This is to be solved subject to the particle conservation
onstraint

�
−c

c

��y�dy = 1. �6.24�

or example, with u�x�=x2, �6.23� and �6.24� are satisfied with

��y� = �W�y� �6.25�

see, e.g., Ref. 4�. To the next order in N, fluctuations in the particle density create an electric field
nd thus a force density which must be balanced for the system to be stable. The balancing force
s provided by the gradient of the pressure fluctuation, and leads to the refinement of �6.23� �Ref.
�,

u�x� + C =�
−c

c

��y�log�x − y�dy +
1

N
1

2
−

1

�
�log ��x�, x � �− c,c� �6.26�

hich again is subject to �6.24�. With u�x�=x2, setting

��y� = �W�y� +
��y�

N
�6.27�

e see that

C = �
−c

c

��y�log�x − y�dy + 1

2
−

1

�
�log �W�x�, x � �− c,c� �6.28�

hich must be solved subject to the constraint

�
−c

c

��y�dy = 0. �6.29�

ifferentiating �6.28� gives

0 = PV�
−1

1 ��y�
x − y

dy − 1

2
−

1

�
� x

1 − x2 , �6.30�

here PV denotes the principal value. Making use of the fact that

PV�
−1

1 1

x − y

1
�1 − y2

dy = 0, x � �− 1,1�

see, e.g., Ref. 14�, we see that �6.30�, �6.29� is solved by

��y� =  1

�
−

1

2
�1

2
�	�y − 1� + 	�y + 1�� −

1

�

1
�1 − y2�

n agreement with �1.4�.
The chiral ensemble �6.20� is a log-gas confined to x�0 with image charges in x�0. At
eading order in N balance of the electric field requires
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u�x� + C = �
0

c

��y�log�x2 − y2�dy, x � �− c,c� , �6.31�

ubject to the constraint

�
0

c

��y�dy = 0.

ut �6.31� can be written

u�x� + C =�
−c

c

��y�log�x − y�dy

o we have essentially the previous situation. In particular, with u�x�=2x2, this shows �6.31� is
atisfied with

��y� = 2�W�y� . �6.32�

o next order in N the chiral ensembles in �6.22� have u�x�=2x2− �a /2N�log x, and the generali-
ation of �6.28� reads

−
a

2
log x + C =�

−1

1

��y�log�x − y�dy + 1

2
−

1

�
�log �W�x� .

ith ��y����y�− �a /2�	�x� this is in fact identical to �6.28� and we thus reclaim �6.22�.
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A chain rule and a subadditivity for the entropy of type �, which is one of the
nonadditive entropies, were derived by Daróczy. In this paper, we study the further
relations among Tsallis type entropies which are typical nonadditive entropies. The
chain rule is generalized by showing it for Tsallis relative entropy and the nonad-
ditive entropy. We show some inequalities related to Tsallis entropies, especially the
strong subadditivity for Tsallis type entropies and the subadditivity for the nonad-
ditive entropies. The subadditivity and the strong subadditivity naturally lead to
define Tsallis mutual entropy and Tsallis conditional mutual entropy, respectively,
and then we show again chain rules for Tsallis mutual entropies. We give properties
of entropic distances in terms of Tsallis entropies. Finally we show parametrically
extended results based on information theory. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2165744�

. INTRODUCTION

For the probability distribution p�x�� p�X=x� of the random variable X, Tsallis entropy was
efined in Ref. 1,

Sq�X� � − �
x

p�x�q lnq p�x� �q � 1� �1�

ith one parameter q as an extension of Shannon entropy, where q-logarithm function is defined
y lnq�x���x1−q−1� / �1−q� for any non-negative real number x and q. Tsallis entropy plays an
ssential role in nonextensive statistics so that many important results have been presented in
ainly statistical physics.2 In particular, see Refs. 3 and 4 for the recent results on Tsallis entro-

ies. The field of the study on Tsallis entropy and related fields in statistical physics are often
alled Tsallis statistics or nonextensive statistical physics due to the nonextensivity Eq. �3� below.
e easily find that limq→1 Sq�X�=S1�X��−�xp�x�log p�x�, since q-logarithm converges to natural

ogarithm as q→1. After the celebrated discover by Tsallis, it was shown that Tsallis entropy can
e uniquely formulated by the generalized Shannon-Khinchin’s axioms in Refs. 5–7. The axiom-
tical characterization of Tsallis entropy was improved and that of Tsallis relative entropy was
ormulated in Ref. 8. It is a crucial difference of the fundamental property between Shannon
ntropy and Tsallis entropy that for two independent random variables X and Y, Shannon entropy

1�X� has an additivity,

S1�X � Y� = S1�X� + S1�Y� , �2�

owever, Tsallis entropy Sq�X� , �q�1� has a pseudoadditivity,

�
Electronic mail: furuichi@ed.yama.tus.ac.jp
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Sq�X � Y� = Sq�X� + Sq�Y� + �1 − q�Sq�X�Sq�Y� , �3�

here Sq�X�Y� is Tsallis joint entropy, which will be defined below, for the direct product X
Y of two independent random variables X and Y. The independence between X and Y physically
eans that there is no interaction between two systems X and Y. This pseudoadditivity of Tsallis

ntropy in Eq. �3� originally comes from that of q-logarithm function lnq�x�. We pay attention to
hether an additivity �such as Eq. �2�� of entropies for two independent random variables holds or
ot �such as Eq. �3��. An entropy is called a nonadditive entropy if it does not satisfy the additivity
uch as Eq. �2�, while an entropy is called an additive entropy if it satisfies the additivity specified
n Eq. �2�. The entropy of type � introduced by Daróczy in Ref. 9 �also called the structural
-entropy introduced by Havrda and Charvát in Ref. 10�,

H��X� �
�x

�p�x�� − p�x��

21−� − 1
�� � 0,� � 1�

s a nonadditive entropy.
We are now interested in Tsallis entropy which is a typical nonadditive entropy. From Eq. �3�,

e easily find that we have a subadditivity of Tsallis entropies for two independent random
ariables X and Y in the case of q�1 since Tsallis entropy is nonnegative. In the first of the
ection III, we will review a subadditivity of Tsallis entropies for general random variables X and

in the case of q�1.
From the entropy theoretical point of view, for the related entropies such as Tsallis conditional

ntropy and Tsallis joint entropy were introduced in Refs. 11–13 and then some interesting rela-
ions between them were derived. In this paper, in order to derive the relation between them, we
dopt the following definition of Tsallis conditional entropy and Tsallis joint entropy.

Definition 1.1: For the conditional probability p�x �y�� p�X=x �Y =y� and the joint probability
p�x ,y�� p�X=x ,Y =y�, we define Tsallis conditional entropy and Tsallis joint entropy by

Sq�X�Y� � − �
x,y

p�x,y�q lnq p�x�y� �q � 1� �4�

nd

Sq�X,Y� � − �
x,y

p�x,y�q lnq p�x,y� �q � 1� . �5�

e note that the above definitions were essentially introduced in Ref. 9 by

H��X,Y� �
�x,y

�p�x,y�� − p�x,y��

21−� − 1
�� � 0, � � 1� ,

H��X�Y� � �
y

p�y��H��X�y� �� � 0, � � 1� ,

xcept for the difference of the multiplicative function. And then a chain rule and a subadditivity,

H��X,Y� = H��X� + H��Y�X� ,

H��Y�X� � H��Y�, � � 1,

ere shown in Theorem 8 of Ref. 9. In this paper, we call the entropy defined by Eq. �1�, Eq. �4�

r Eq. �5� Tsallis type entropy. It is remarkable that Eq. �4� can be easily deformed by
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Sq�X�Y� = �
y

p�y�qSq�X�y� . �6�

ote that for q�1 we have Sq�X �Y�=�yp�y�qSq�X��Sq�X� when X and Y are indepentent each
ther �i.e., p�x �y�= p�x� for all x and y�. Eq. �6� can be further regarded that the following
xpectation value:

Eq�X� � �
i

pi
qxi

epending on the parameter q is adopted. Since the expectation value Eq�X� has a crucial lack that
t does not hold Eq�1�=1 for q�1 in general, a slightly modified definition, the normalized Tsallis
ntropies such as

Sq
nor�X� �

− �x
p�x�q lnq p�x�

�x
p�x�q

�q � 1� �7�

re sometimes used,12,13 and then important and meaningful results in physics are derived for the
ormalized nonadditive conditional entropy defined in Refs. 6 and 12. However, as pointed out in
ef. 14, the normalized Tsallis entropies are not stable, but the original Tsallis entropies are stable
s experimental quantities so that it is meaningful to study the original Tsallis entropies from the
hysical point of view. Inspired by these pioneering works,6,12,14 we therefore study the informa-
ion theoretical properties of the original Tsallis type entropies without normalization in this paper.
s advantages in information theoretical study, our approach shows chain rules and subadditivities
f the Tsallis entropies and then naturally leads to define the Tsallis mutual entropy. Finally the
ough meaning of the parameter q of the Tsallis entropy is given from the information theoretical
iewpoint. Both entropies defined in Eq. �4� and Eq. �5� recover the usual Shannon entropies as
→1.

In the past, some parametrically extended entropies were introduced in the mathematical point
f view. Especially, the Rényi entropy15,16 �see also Ref. 17�,

Rq�X� =
1

1 − q
log �

x

p�x�q �q � 1� �8�

s famous. For Tsallis entropy and Rényi entropy, we have the following relation:

Rq�X� =
1

1 − q
log�1 + �1 − q�Sq�X�	 �q � 1� . �9�

t is notable that Rényi entropy has an additivity,

Rq�X � Y� = Rq�X� + Rq�Y� , �10�

or two independent random variables X and Y. Although there exsits a simple transformation
etween Tsallis entropy and Rényi entropy, they have a different structure in regards to the matter
f their additivities.

This paper is organized as follows. In Sec. II, we review a chain rule given in Ref. 9 and give
ts generalized results. We also give the chain rule for Tsallis relative entropy. In Sec. III, we
eview a subadditivity given in Ref. 9 and give its generalized results. In addition, we show
everal inequalities related to Tsallis entropies. In Sec. IV, we introduce Tsallis mutual entropy and
hen give its fundamental properties. In Sec. V, we discuss entropic distances and correlation
oefficients due to Tsallis entropies. In Sec. VI, we give some applications of Tsallis entropies in

he context of information theory. Related remarks and discussions are given in Sec. VII.
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I. CHAIN RULES FOR TSALLIS ENTROPIES

It is important to study the so-called chain rule which gives the relation between a conditional
ntropy and a joint entropy in not only information theory18 but also statistical physics. For these
sallis entropies, the following chain rule holds as similar as the chain rule holds for the joint
ntropy of type � and the conditional entropy of type �.

Proposition 2.1 (Ref. 9):

Sq�X,Y� = Sq�X� + Sq�Y�X� . �11�

Therefore immediately Sq�X��Sq�X ,Y�.�
Proof: From the formulas lnq�xy�=lnq x+x1−q lnq y and lnq�1/x�=−xq−1 lnq x, we have

Sq�X,Y� = �
x

�
y

p�x,y�lnq
1

p�x,y�
= �

x
�

y

p�x,y�lnq
1

p�x�p�y�x�

= �
x

p�x�lnq
1

p�x�
+ �

x
�

y

p�x,y�p�x�q−1 lnq
1

p�y�x�

= − �
x

p�x�q lnq p�x� − �
x

p�x�q�
y

p�y�x�q lnq p�y�x�

= Sq�X� + Sq�Y�X� .

�

From the process of the proof of Proposition 2.1, we can easily find that if X and Y are
ndependent �i.e., p�y �x�= p�y� for all x and y�, then Eq. �11� recovers the pseudoadditivity Eq. �3�,

Sq�X,Y� = − �
x

p�x�q lnq p�x� − �
x

p�x�q�
y

p�y�q lnq p�y�

= Sq�X� + �
x

p�x�qSq�Y� = Sq�X� + Sq�Y� + �1 − q�Sq�X�Sq�Y� .

As a corollary of the above Proposition 2.1, we have the following lemma.
Lemma 2.2: The following chain rules hold:

1� Sq�X ,Y ,Z�=Sq�X ,Y �Z�+Sq�Z�,
2� Sq�X ,Y �Z�=Sq�X �Z�+Sq�Y �X ,Z�.

Proof: By using lnq�y /x�=lnq y+y1−q lnq�1/x�, we have

Sq�X,Y�Z� = Sq�X,Y,Z� − Sq�Z� .

n the similar way, we have

Sq�Y�X,Z� = Sq�X,Y,Z� − Sq�X,Z� .

lso from the Proposition 2.1, we have

Sq�X,Y� = Sq�X� + Sq�Y�X� .

herefore we have

Sq�Y�X,Z� = Sq�X,Y,Z� − Sq�X,Z� = Sq�X,Y�Z� + Sq�Z� − �Sq�X�Z� + Sq�Z�	 = Sq�X,Y�Z� − Sq�X�Z� .

�

From �2� of Lemma 2.2, we have
Sq�X�Z� � Sq�X,Y�Z� . �12�
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Remark 2.3: �2� of Lemma 2.2 can be generalized in the following formula:

Sq�X1, . . . ,Xn�Y� = �
i=1

n

Sq�Xi�Xi−1, . . . ,X1,Y� . �13�

Theorem 2.4: Let X1 ,X2 , . . . ,Xn be the random variables obeying the probability distribution
p�x1 ,x2 , . . . ,xn�. Then we have the following chain rule:

Sq�X1,X2, . . . ,Xn� = �
i=1

n

Sq�Xi�Xi−1, . . . ,X1� . �14�

Proof: We prove the theorem by induction on n. From Proposition 2.1, we have

Sq�X1,X2� = Sq�X1� + Sq�X2�X1� .

ssuming that Eq. �14� holds for some n, from Eq. �11� we have

Sq�X1, . . . ,Xn+1� = Sq�X1, . . . ,Xn� + Sq�Xn+1�X1, . . . ,Xn�

= �
i=1

n

Sq�Xi�Xi−1, . . . ,X1� + Sq�Xn+1�Xn, . . . ,X1� ,

hich means Eq. �14� holds for n+1. �

In the rest of this section, we discuss the chain rule for Tsallis relative entropy. To do so, we
se Tsallis relative entropy

Dq�U�V� � − �
x

u�x�lnq
v�x�
u�x�

, �15�

efined for two probability distributions u�x� and v�x�, and q�0. See Refs. 19–22 for details of
sallis relative entropy. Equation �15� is equivalent to the following forms:

Dq�U�V� =
�x

�u�x� − u�x�qv�x�1−q�

1 − q
�16�

=�
x

u�x�qv�x�1−q lnq
u�x�
v�x�

. �17�

Along the line of the definition of Tsallis conditional entropy Eq. �4�, we naturally define
sallis conditional relative entropy such as

Dq�u�y�x��v�y�x�� � �
x,y

u�x,y�qv�x,y�1−q lnq

u�y�x�
v�y�x�

�18�

=�
x

u�x�qv�x�1−q�
y

u�y�x�qv�y�x�1−q lnq

u�y�x�
v�y�x�

�19�

or two joint probability distributions u�x ,y� and v�x ,y�, and two conditional probability distribu-
ions u�y �x� and v�y �x�, based on the view of Eq. �17�, neither Eq. �15� nor Eq. �16�. Taking the
imit as q→1, Eq. �18� recovers the usual conditional relative entropy. Then we have the follow-
ng chain rule of Tsallis relative entropy for general �possibly not independent� case.

Theorem 2.5 (chain rule for Tsallis relative entropy):
Dq�u�x,y��v�x,y�� = Dq�u�x��v�x�� + Dq�u�y�x��v�y�x�� . �20�
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Proof: The proof follows by the direct calculations:

Dq�u�x,y��v�x,y�� = − �
x,y

u�x,y�lnq
v�x,y�
u�x,y�

= − �
x,y

u�x,y�lnq
v�x�v�y�x�
u�x�u�y�x�

= − �
x,y

u�x,y�
lnq
v�x�
u�x�

+ lnq
v�y�x�
u�y�x�

+ �1 − q�lnq
v�x�
u�x�

lnq
v�y�x�
u�y�x��

= − �
x,y

u�x,y�
lnq
v�x�
u�x�

+ 
u�x�
v�x��q−1

lnq
v�y�x�
u�y�x��

= Dq�u�x��v�x�� − �
x,y

u�x�

v�x��q−1

u�x,y�lnq
v�y�x�
u�y�x�

.

=Dq�u�x��v�x�� + Dq�u�y�x��v�y�x�� .

�

Taking the limit as q→1, Theorem 2.5 recovers Theorem 2.5.3 in Ref. 18. It is known that for
�y �x�=u�y� and v�y �x�=v�y�, Tsallis relative entropy has a pseudoadditivity,

Dq�u�x�u�y��v�x�v�y�� = Dq�u�x��v�x�� + Dq�u�y��v�y�� + �q − 1�Dq�u�x��v�x��Dq�u�y��v�y�� .

�21�

rom the process of the above proof, we find that the chain rule Eq. �20� recovers the pseudoad-
itivity Eq. �21� when u�y �x�=u�y� and v�y �x�=v�y�.

II. SUBADDITIVITIES FOR TSALLIS ENTROPIES

From Eq. �3�, for q�1 and two independent random variables X and Y, the subadditivity
olds,

Sq�X � Y� � Sq�X� + Sq�Y� .

t is known that the subadditivity for general random variables X and Y holds in the case of q
1, thanks to the following proposition.

Proposition 3.1 (Ref. 9): The following inequality holds for two random variables X and Y,
nd q�1,

Sq�X�Y� � Sq�X� , �22�

ith equality if and only if q=1 and p�x �y�= p�x� for all x and y.
Proof: We give the similar proof given in Ref. 9 as a version of Tsallis type entropies for the

onvenience of the reader. We define the function Lnq�x���xq−x� / �1−q� for q�0, q�1, and x
0. Then the function Lnq is non-negative for 0�x�1,q�1 and concave in x for q�0,q�1.

y the concavity of Lnq, we have

�
y

p�y�Lnq�p�x�y�� � Lnq��
y

p�y�p�x�y� .

aking the summation of both sides on the above inequality on x, we have

�
y

p�y��
x

Lnq�p�x�y�� � �
x

Lnq�p�x�� . �23�

q
ince p�y� � p�y� for any y and q�1, and Lnq�t��0 for any t�0 and q�1, we have
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p�y�q�
x

Lnq�p�x�y�� � p�y��
x

Lnq�p�x�y�� .

aking the summation of both sides on the above inequality on y, we have

�
y

p�y�q�
x

Lnq�p�x�y�� � �
y

p�y��
x

Lnq�p�x�y�� . �24�

y Eq. �23� and Eq. �24�, we have

�
y

p�y�q�
x

Lnq�p�x�y�� � �
x

Lnq�p�x�� .

herefore we have Sq�X �Y��Sq�X�. The equality holds when q=1 and p�x �y�= p�x�, which means
and Y are independent from each other. Thus the proof of the proposition was completed. �

Equations �22� and �11� imply the subadditivity of Tsallis entropies.
Theorem 3.2 (Ref. 9): For q�1, we have

Sq�X,Y� � Sq�X� + Sq�Y� . �25�

From Eq. �22� and Theorem 2.4, we have the following extended relation which is often called
ndependence bound on entropy in information theory.

Theorem 3.3: Let X1 ,X2 , . . . ,Xn be the random variables obeying the probability distribution
p�x1 ,x2 , . . . ,xn�. Then for q�1, we have

Sq�X1, . . . ,Xn� � �
i=1

n

Sq�Xi� �26�

ith equality if and only if q=1 the random variables are independent from each other.
On the other hand, we easily find that for two independent random variables X and Y, and

�q�1, the superadditivity holds,

Sq�X � Y� � Sq�X� + Sq�Y� .

owever, in general the superadditivity for two correlated random variables X and Y, and 0�q
1 does not hold. Because we can show many counterexamples. For example, we consider the

ollowing joint distribution of X and Y:

p�x1,y1� = p�1 − x�, p�x1,y2� = �1 − p�y, p�x2,y1� = px, p�x2,y2� = �1 − p��1 − y� ,

�27�

here 0� p ,x ,y�1. Then each marginal distribution can be computed by

p�x1� = p�1 − x� + �1 − p�y, p�x2� = px + �1 − p��1 − y�, p�y1� = p, p�y2� = 1 − p .

�28�

n general, we clearly see X and Y are not independent from each other for the above example.
hen the value of ��Sq�X ,Y�−Sq�X�−Sq�Y� takes both positive and negative so that there does
ot exist the complete ordering between Sq�X ,Y� and Sq�X�+Sq�Y� for correlated X and Y in the
ase of 0�q�1. Indeed, �=−0.287 089 when q=0.8, p=0.6, x=0.1, y=0.1, while �
0.056 2961 when q=0.8, p=0.6, x=0.1, y=0.9.

Up to the above discussions, we have the possibility that the strong subadditivity holds in the
ase of q�1. Indeed we can prove the following strong subadditivity for Tsallis type entropies.
Theorem 3.4: For q�1, the strong subadditivity
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Sq�X,Y,Z� + Sq�Z� � Sq�X,Z� + Sq�Y,Z� �29�

olds with equality if and only if q=1 and, random variables X and Y are independent for a given
andom variable Z.

Proof: Theorem is proven by the similar way of Proposition 3.1. By the concavity of Lnq, we
ave

�
y

p�y�z�Lnq�p�x�y,z�� � Lnq��
y

p�y�z�p�x�y,z� .

ultiplying p�z�q to the both sides of the above inequality and then taking the summation on z and
, we have

�
y,z

p�z�qp�y�z��
x

Lnq�p�x�y,z�� � �
z

p�z�q�
x

Lnq�p�x�z�� �30�

ince �yp�y �z�p�x �y ,z�= p�x �z�.
For any y, z and q�1, we have p�y �z�q� p�y �z�. Then by the non-negativity of the function

nq, we have

p�y�x�q�
x

Lnq�p�x�y,z�� � p�y�z��
x

Lnq�p�x�y,z�� .

ultiplying p�z�q to both sides of the above inequality and then taking the summation on y and z,
e have

�
y,z

p�z�qp�y�x�q�
x

Lnq�p�x�y,z�� � �
y,z

p�z�qp�y�z��
x

Lnq�p�x�y,z�� . �31�

rom Eq. �30� and Eq. �31�, we have

�
y,z

p�y,z�q�
x

Lnq�p�x�y,z�� � �
z

p�z�q�
x

Lnq�p�x�z�� .

hus we have

Sq�X�Y,Z� � Sq�X�Z� , �32�

hich implies

Sq�X,Y,Z� − Sq�Y,Z� � Sq�X,Z� − Sq�Z� ,

y chain rules. The equality holds when q=1 and p�x �y ,z�= p�x �z�, which means X and Y are
ndependent from each other for a given Z. �

We find that Eq. �29� recovers Eq. �25�, by taking the random variable Z as a trivial one. This
eans that Eq. �29� is a generalization of Eq. �25�. We have the further generalized inequality by

he similar way of the proof of Theorem 3.4.
Theorem 3.5: Let X1 , . . . ,Xn+1 be the random variables. For q�1, we have

Sq�Xn+1�X1, . . . ,Xn� � Sq�Xn+1�X2, . . . ,Xn� . �33�

The subadditivity for Tsallis entropies conditioned by Z holds.
Proposition 3.6: For q�1, we have

Sq�X,Y�Z� � Sq�X�Z� + Sq�Y�Z� . �34�
Proof: Summing −2Sq�Z� to both sides in Eq. �29�, we have
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Sq�X,Y,Z� − Sq�Z� � Sq�X,Z� − Sq�Z� + Sq�Y,Z� − Sq�Z� .

y chain rules, we have the proposition. �

Proposition 3.6 can be generalized in the following.
Theorem 3.7: For q�1, we have

Sq�X1, . . . ,Xn�Z� � Sq�X1�Z� + ¯ + Sq�Xn�Z� . �35�

In addition, we have the following propositions.
Proposition 3.8: For q�1, we have

2Sq�X,Y,Z� � Sq�X,Y� + Sq�Y,Z� + Sq�Z,X� .

Proof: For Eq. �22� and Eq. �32�, we have

Sq�X�Y,Z� � Sq�X� ,

nd

Sq�Z�X,Y� � Sq�Z�X� .

hus we have

Sq�X�Y,Z� + Sq�Z�X,Y� � Sq�X� + Sq�Z�X� .

y chain rules, we have

Sq�X,Y,Z� − Sq�X,Y� + Sq�X,Y,Z� − Sq�Y,Z� � Sq�Z,X� ,

hich implies the proposition. �

Proposition 3.9: For q�1, we have

Sq�Xn�X1� � Sq�X2�X1� + ¯ + Sq�Xn�Xn−1� .

Proof: From Eq. �14� and Eq. �32�, we have

Sq�X1, . . . ,Xn� � Sq�X1� + Sq�X2�X1� + ¯ Sq�Xn�Xn−1� .

herefore we have

Sq�Xn�X1� � Sq�X2, . . . ,Xn�X1� = Sq�X1, . . . ,Xn� − Sq�X1� � Sq�X2�X1� + ¯ + Sq�Xn�Xn−1� ,

y Eq. �11� and Eq. �12�.

V. TSALLIS MUTUAL ENTROPY

For normalized Tsallis entropies, the mutual information was defined in Ref. 13 with the
ssumption of its non-negativity. We define the Tsallis mutual entropy in terms of the original �not
ormalized� Tsallis type entropies. The inequality Eq. �22� naturally leads us to define Tsallis
utual entropy without the assumption of its non-negativity.

Definition 4.1: For two random variables X and Y, and q�1, we define the Tsallis mutual
ntropy as the difference between Tsallis entropy and Tsallis conditional entropy such that

Iq�X;Y� � Sq�X� − Sq�X�Y� . �36�

ote that we never use the term mutual information but use mutual entropy through this paper,
ince a proper evidence of channel coding theorem for information transmission has not ever been
hown in the context of Tsallis statistics. From Eq. �11�, Eq. �25�, and Eq. �22�, we easily find that

q�X ;Y� has the following fundamental properties.
Proposition 4.2: �1� 0� Iq�X ;Y��min�Sq�X� ,Sq�Y�	.

�2� Iq�X ;Y�=Sq�X�+Sq�Y�−Sq�X ,Y�= Iq�Y ;X�.
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Note that we have

Sq�X� � Sq�Y� ⇔ Sq�X�Y� � Sq�Y�X� �37�

rom the symmetry of Tsallis mutual entropy. We also define the Tsallis conditional mutual entropy

Iq�X;Y�Z� � Sq�X�Z� − Sq�X�Y,Z� �38�

or three random variables X, Y, and Z, and q�1.
In addition, Iq�X ;Y �Z� is non-negative, thanks to Eq. �32�. For these quantities, we have the

ollowing chain rules.
Theorem 4.3: �1� For three random variables X, Y, and Z, and q�1, the chain rule holds,

Iq�X;Y,Z� = Iq�X;Z� + Iq�X;Y�Z� . �39�

2� For random variables X1 , . . . ,Xn and Y, the chain rule holds,

Iq�X1, . . . ,Xn;Y� = �
i=1

n

Iq�Xi;Y�X1, . . . ,Xi−1� . �40�

Proof: �1� follows from the chain rules of Tsallis entropy,

Iq�X;Y�Z� = Sq�X�Z� − Sq�X�Y,Z� = Sq�X�Z� − Sq�X� + Sq�X� − Sq�X�Y,Z� = − Iq�X;Z� + Iq�X;Y,Z� .

2� follows from the application of Eq. �14� and Eq. �13�,

Iq�X1, . . . ,Xn;Y� = Sq�X1, . . . ,Xn� − Sq�X1, . . . ,Xn�Y�

= �
i=1

n

Sq�Xi�Xi−1, . . . ,X1� − �
i=1

n

Sq�Xi�Xi−1, . . . ,X1,Y�

= �
i=1

n

Iq�Xi;Y�X1, . . . ,Xi−1� .

�

We have the following inequality for Tsallis mutual entropies by the strong subadditivity.
Proposition 4.4: For q�1, we have

IQ�X;Z� � IQ�X,Y ;Z� .

. CORRELATION COEFFICIENTS AND DISTANCES FOR TSALLIS ENTROPIES

We discuss on the entropic distance between X and Y by means of Tsallis conditional entropy

q�X �Y�. If Sq�X �Y�=0=Sq�Y �X�, then X and Y are called equivalence and denoted by X�Y.
efining an entropic distance between X and Y as

dq�X,Y� � Sq�X�Y� + Sq�Y�X� , �41�

e have the following proposition.
Proposition 5.1: For q�1, dq satisfies

i� dq�X ,Y�=0 if and only if X�Y,
ii� dq�X ,Y�=dq�Y ,X�,
iii� dq�X ,Z��dq�X ,Y�+dq�Y ,Z�.

Proof: �i� and �ii� are clear from the definition of dq. In the case of n=3 in Proposition 3.9, we

ave the triangle inequality:
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Sq�X3�X1� � Sq�X2�X1� + Sq�X3�X2� .

etting X1=Z, X2=Y and X3=X in the above inequality, we have

Sq�X�Z� � Sq�Y�Z� + Sq�X�Y� . �42�

n addition, exchanging X and Z in the above inequality, we have

Sq�Z�X� � Sq�Y�X� + Sq�Z�Y� .

umming both sides of the two above inequalities, we have the proposition. �

Iq�X ;Y� represents a kind of correlation between X and Y. Following Ref. 23, we define a
arametrically extended correlation coefficient in terms of Tsallis mutual entropy such that

�q�X,Y� �
Iq�X;Y�
Sq�X,Y�

�43�

or Sq�X��0, Sq�Y��0, and q�1. Then we have the following proposition.
Proposition 5.2: For q�1, Sq�X��0, and Sq�Y��0, we have the following properties:

i� �q�X ,Y�=�q�Y ,X�,
ii� 0��q�X ,Y��1,
iii� �q�X ,Y�=0 if and only if X and Y are independent of each other and q=1,
iv� �q�X ,Y�=1 if and only if X�Y.

Proof: �i� is clear from the definition of �q. �ii� follows from 0� Iq�X ;Y��Sq�X��Sq�X ,Y�.
iii� follows from Proposition 3.1. �iv� follows from Iq�X ;Y�=Sq�X ,Y�⇔Sq�X �Y�=Sq�Y �X�=0.

�

Again, we define an entropic distance between X and Y by

d̃q�X,Y� � 1 − �q�X,Y� . �44�

hen we have the following proposition.
Proposition 5.3: For q�1, Sq�X��0, Sq�Y��0, and Sq�Z��0, we have the following prop-

rties:

i� d̃q�X ,Y�=0 if and only if X�Y,

ii� d̃q�X ,Y�= d̃q�Y ,X�,
iii� d̃q�X ,Z�� d̃q�X ,Y�+ d̃q�Y ,Z�.

Proof: �i� and �ii� follows from �iv� and �i� of Proposition 5.2, respectively. From chain rules
nd Eq. �42�, we have

Sq�X�Z�
Sq�X,Z�

=
Sq�X�Z�

Sq�X�Z� + Sq�Z�
�

Sq�X�Y� + Sq�Y�Z�
Sq�X�Y� + Sq�Y�Z� + Sq�Z�

=
Sq�X�Y�

Sq�X�Y� + Sq�Y�Z� + Sq�Z�
+

Sq�Y�Z�
Sq�X�Y� + Sq�Y�Z� + Sq�Z�

�
Sq�X�Y�

Sq�X�Y� + Sq�Z�
+

Sq�Y�Z�
Sq�Y�Z� + Sq�Z�

=
Sq�X�Y�
Sq�X,Y�

+
Sq�Y�Z�
Sq�Y,Z�

. �45�
xchanging X and Z, we have

                                                                                                            



S
e

f

�
�
�
�

T

e

�
�
�

I
i

�

�
�

023302-12 Shigeru Furuichi J. Math. Phys. 47, 023302 �2006�

                        
Sq�Z�X�
Sq�Z,X�

�
Sq�Z�Y�
Sq�Z,Y�

+
Sq�Y�X�
Sq�Y,X�

. �46�

umming both sides of two inequalities Eq. �45� and Eq. �46�, we have �iii�, since Tsallis joint
ntropy is symmetry. �

We also define another correlation coefficient in terms of Tsallis mutual entropy by

�̂q�X,Y� �
Iq�X;Y�

max�Sq�X�,Sq�Y�	
�47�

or Sq�X��0, Sq�Y��0, and q�1. See Ref. 24. Then we have the following proposition.
Proposition 5.4: For q�1, Sq�X��0, and Sq�Y��0, we have the following properties:

i� �̂q�X ,Y�= �̂q�Y ,X�,
ii� 0��̂q�X ,Y��1,
iii� �̂q�X ,Y�=0 if and only if X and Y are independent each other and q=1,
iv� �̂q�X ,Y�=1 if and only if X�Y.

Proof: �i�–�iv� follow straightforwardly. �

We also define an entropic distance between X and Y by

d̂q�X,Y� � 1 − �̂q�X,Y� . �48�

hen we have the following proposition.
Proposition 5.5: For q�1, Sq�X��0, Sq�Y��0, and Sq�Z��0, we have the following prop-

rties:

i� d̂q�X ,Y�=0 if and only if X�Y,

ii� d̂q�X ,Y�= d̂q�Y ,X�,
iii� d̂q�X ,Z�� d̂q�X ,Y�+ d̂q�Y ,Z�.

Proof: �i� and �ii� follows from Proposition 5.4. �iii� is proven by the similar way in Ref. 24.
n order to show �iii�, we can assume Sq�Z��Sq�X� without loss of generality. Then we prove �iii�
n the following three cases.

a� Sq�Y��Sq�Z��Sq�X�: From Eq. �37� and Eq. �42� we have

d̂q�X,Z� =
Sq�X�Z�
Sq�X�

�
Sq�X�Y�
Sq�X�

+
Sq�Y�Z�
Sq�X�

�
Sq�X�Y�
Sq�X�

+
Sq�Y�Z�
Sq�Z�

�
Sq�X�Y�
Sq�X�

+
Sq�Z�Y�
Sq�Z�

= d̂q�X,Y� + d̂q�Y,Z� .

b� Sq�Z��Sq�X��Sq�Y�: It is shown as similar as �a�.
c� Sq�Y��Sq�Z��Sq�X�: From Eq. �42�, we have

d̂q�X,Z� =
Sq�X�Z�
Sq�X�

= 1 − �1 −
Sq�X�Z�
Sq�X�

 � 1 −
Sq�X�
Sq�Y�

�1 −
Sq�X�Z�
Sq�X�


=

Sq�Y� − Sq�X� + Sq�X�Z�
Sq�Y�

�
Sq�Y� − Sq�X� + Sq�X�Y� + Sq�Y�Z�

Sq�Y�

= d̂q�X,Y� + d̂q�Y,Z� .
�
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I. APPLICATIONS OF TSALLIS ENTROPIES

. Generalized Fano’s inequality

As an application of Tsallis conditional entropy, we give a generalized Fano’s inequality.
Theorem 6.1: For q�1 and two random variables taking values in the finite �alphabet� set X,

he following inequality holds:

Sq�X�Y� � P�X � Y�lnq��X� − 1� + sq�P�X � Y�� ,

here sq represents the Tsallis binary entropy,

sq�p� � − pq lnq p − �1 − p�q lnq�1 − p� .

Proof: Define the random variables Z by

Z = 
0 if X = Y ,

1 if X � Y .
�

y chain rules, S�Z �X ,Y�=0 and Sq�Z �Y��Sq�Z�=sq�P�X�Y��, we then have

Sq�X�Y� = Sq�X�Y� + Sq�Z�X,Y� = Sq�X,Z�Y� = Sq�X�Y,Z� + Sq�Z�Y� � Sq�X�Y,Z� + Sq�Z�

= Sq�X�Y = y,Z = 0� + Sq�X�Y = y,Z = 1� + sq�P�X � Y��

= Sq�X�Y = y,Z = 1� + sq�P�X � Y�� � lnq�X � Y� + sq�P�X � Y�� ,

ince the non-negativity of Tsallis relative entropy implies −�i=1
n pi

q lnq pi� lnq n. �

. Entropy rate for Tsallis entropy

Moreover, we discuss on the Tsallis entropy rate.
Definition 6.2: The Tsallis entropy rate of a stochastic process X��Xi	 is defined by

Sq�X� � lim
n→	

Sq�X1, . . . ,Xn�
n

f the limit exists.
Sq�X� can be considered as Tsallis entropy per a symbol in the limit.
Theorem 6.3: For q�1 and a stationary stochastic process, the Tsallis entropy rate exists and

s expressed by

Sq�X� = lim
n→	

Sq�Xn�X1, . . . ,Xn−1� .

Proof: By the stationary process and the inequality Eq. �33�, we have

Sq�Xn�X1, . . . ,Xn−1� = Sq�Xn+1�X2, . . . ,Xn� � Sq�Xn+1�X1,X2, . . . ,Xn� .

Thus Sq�Xn �X1 , . . . ,Xn−1� converges to a certain value s, since it is a monotone decreasing
equence with respect to n. That is,

lim
n→	

Sq�Xn�X1, . . . ,Xn−1� = s .

oreover by the chain rule and Cesáro’s theorem �e.g., see p. 64 of Ref. 18�, we have

Sq�X� � lim
n→	

Sq�X1, . . . ,Xn�
n

= lim
n→	

�
i=1

n
Sq�Xi�X1, . . . ,Xi−1�

n
= s .
�
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. Generalized data processing inequality

Finally we prove the data processing inequality for Tsallis mutual entropy. Let X, Y, and Z be
andom variables. If the conditional probability distribution of the random variable Z depends only
n the random variable Y, namely the random variable Z is independent of the random variable X,
hen it is called that X, Y, and Z form a simple Markov chain, and denoted by X→Y →Z.

Theorem 6.4: If X→Y →Z, then we have the inequality

Iq�X;Z� � Iq�X;Y� �49�

or q�1, with equality if and only if X→Z→Y.
Proof: From Eq. �39�, Iq�X ;Y , �Z� can be expanded in the following two ways:

Iq�X;Y� + Iq�X;Z�Y� = Iq�X;Y,Z� = Iq�X;Z� + Iq�X;Y�Z� . �50�

ince the non-negativity Iq�X ;Y �Z� and Iq�X ;Z �Y�=0 because of the Markovity, we have

q�X ;Z�� Iq�X ;Y�. If Iq�X ;Y �Z�=0, namely X→Z→Y, then we have Iq�X ;Z�= Iq�X ;Y�. �

We easily find that the following corollary holds.
Corollary 6.5: �1� If Z= f�Y� with a certain mapping f , then Iq�X ; f�Y��� Iq�X ;Y�, with equal-

ty if and only if f is a one-to-one mapping. �2� If X→Y →Z, then Iq�X ;Y �Z�� Iq�X ;Y�.

II. REMARKS AND DISCUSSIONS

. Chain rule and subadditivity for nonadditive entropies

In Ref. 7, the nonadditive entropies including Tsallis entropy and the entropy of type � was
xiomatically characterized by the generalized Shannon-Khinchin axiom in the following manner.

he function S̃q�x1 , . . . ,xn� is assumed to be defined for the n-tuple �x1 , . . . ,xn� belonging to

�n �
�p1, . . . ,pn���
i=1

n

pi = 1,pi � 0�i = 1,2, . . . ,n��
nd to take a value in R+��0,	�. Then it was shown in Ref. 7 that four conditions continuity,
aximality, generalized Shannon additivity, and expandability in Ref. 7 determine the function

q :�n→R+ such that

S̃q�x1, . . . ,xn� =
�i=1

n
�xi

q − xi�


�q�
, �51�

here 
�q� is characterized by the following conditions:

i� 
�q� is continuous and 
�q��1−q��0 for q�1,
ii� limq→1 
�q�=0 and 
�q��0 for q�1,
iii� there exists �a ,b��R+ such that a�1�b and 
�q� is differentiable on �a ,1� and �1,b�,
iv� there exists a positive constant number k such that limq→1�d
�q� /dq�=−1/k.

Simple calculations show the nonextensivity

S̃q�X � Y� = S̃q�X� + S̃q�Y� + 
�q�S̃q�X�S̃q�Y�

or the nonadditive entropy S̃q. From the view of the generalization Eq. �51�, we have the follow-
ng chain rule.
Lemma 7.1: For the nonadditive entropy
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S̃q�X� �
�x

�p�x�q − p�x��


�q�

nd any continuous function 
�q�, we have the chain rule

S̃q�X,Y� = S̃q�X� + S̃q�Y�X� ,

here the nonadditive joint entropy and the nonadditive conditional entropy are defined by

S̃q�X,Y� �
�x,y

�p�x,y�q − p�x,y��


�q�

nd

S̃q�X�Y� � �
y

p�y�qS̃q�X�y� = �
y

p�y�q
�x
�p�x�y�q − p�x�y��


�q�
� ,

espectively.
Proof: It follows immediately,

S̃q�Y�X� =
�y,x

p�x�qp�y�x�q − �x
p�x�q


�q�
=

�x,y
�p�x,y�q − p�x,y��


�q�
−

�x
�p�x�q − p�x��


�q�

= S̃q�X,Y� − S̃q�X� .

�

From the view of the generalization Eq. �51�, Proposition 3.1 also generalized as follows.

Lemma 7.2: For the nonadditive entropy S̃q�X� where 
�q� is continuous and 
�q��1−q�
0 for q�1, we have the inequality

S̃q�X�Y� � S̃q�X� .

Proof: Since the function Lñq�x���xq−x� /
�q�, �q�0,q�1,x�0� is non-negative for 0
x�1,q�1 and concave in x for q�0,q�1, the theorem follows as similar as the proof of

roposition 3.1. �

Form Lemma 7.1 and Lemma 7.2, we have the subadditivity for nonadditive entropy.

Theorem 7.3. (Subadditivity for nonadditive entropy): For the nonadditive entropy S̃q�X�
here 
�q� is continuous and 
�q��1−q��0 for q�1, we have the subadditivity

S̃q�X,Y� � S̃q�X� + S̃q�Y� .

We note that we need the condition that 
�q��1−q��0 for q�1 to prove Lemma 7.2, while
e do not need any condition to prove Lemma 7.1.

. Inequalities on pseudoadditivity

The pseudoadditivity Eq. �3� for independent random variables X and Y gives rise to the
athematical interest whether we have the complete ordering between the left-hand side and the

ight-hand side in Eq. �3� for two general random variables X and Y. Such a kind of problem was
aken in the paper25 for the normalized Tsallis type entropies which are different from the defini-
ions of the Tsallis type entropies in the present paper. However, its inequality appeared in �3.5� of
ef. 25 was not true as we found the counter example in Ref. 26.

Unfortunately, in the present case, we also find the counter example for the inequalities

etween Sq�X ,Y� and Sq�X�+Sq�Y�+ �1−q�Sq�X�Sq�Y�. In the same setting of Eq. �27� and Eq.

                                                                                                            



�
b
�
x

−

C

f
�

I

f

D

o
a

H

w
T
o
I
i
S

E

l

023302-16 Shigeru Furuichi J. Math. Phys. 47, 023302 �2006�

                        
28�, ��Sq�X ,Y�− �Sq�X�+Sq�Y�+ �1−q�Sq�X�Sq�Y�	 takes both positive and negative values for
oth cases 0�q�1 and q�1. Indeed, �=0.008 466 51 when q=1.8, p=0.1, x=0.1, y=0.8, while
=−0.011 8812 when q=1.8, p=0.1, x=0.8, y=0.1. Also, �=0.003 990 69 when q=0.8, p=0.1,
=0.8, y=0.1, while �=−0.012 8179 when q=0.8, p=0.1, x=0.1, y=0.8.

Therefore there does not exist the complete ordering between Sq�X ,Y� and Sq�X�+Sq�Y�+ �1
q�Sq�X�Sq�Y� for both cases 0�q�1 and q�1.

. A remarkable inequality derived from subadditivity for Tsallis entropies

From Eq. �25�, we have the following inequality:

�
i=1

n ��
j=1

m

pijr

+ �
j=1

m ��
i=1

n

pijr

� �
i=1

n

�
j=1

m

pij
r + ��

i=1

n

�
j=1

m

pijr

�52�

or r�1 and pij satisfying 0� pij �1 and �i=1
n � j=1

m pij =1. By setting pij =aij /�i=1
n � j=1

m aij in Eq.
52�, we have the following inequality as a corollary of Theorem 3.2.

Corollary 7.4: For r�1 and aij �0,

�
i=1

n ��
j=1

m

aijr

+ �
j=1

m ��
i=1

n

aijr

� �
i=1

n

�
j=1

m

aij
r + ��

i=1

n

�
j=1

m

aijr

. �53�

t is remarkable that the following inequality holds:27

�
i=1

n ��
j=1

m

aijr

� �
i=1

n

�
j=1

m

aij
r �54�

or r�1 and aij �0.

. Difference between Tsallis entropy and Shannon entropy

We point out the difference between Tsallis entropy and Shannon entropy from the viewpoint
f mutual entropy. In the case of q=1, the relative entropy between the joint probability p�x ,y�
nd the direct probability p�x�p�y� is equal to the mutual entropy,

D1��X,Y��X � Y� = S1�X� − S1�X�Y� .

owever, in the general case �q�1�, there exists the following relation:

Dq��X,Y��X � Y� = Sq�X� − Sq�X�Y� + �
i,j

p�xi,yj��p�xi�q−1 lnq p�xi� + p�yj�q−1 lnq p�yj�

− p�xi,yj�q−1 lnq p�xi�p�yj�	 , �55�

hich gives the crucial difference between the special case �q=1� and the general case �q�1�.
he third term on the right-hand side of Eq. �55� vanishes if q=1. The existence of the third term
f Eq. �55� means that we have two possibilities of the definition of Tsallis mutual entropy, that is,

q�X ;Y��Sq�X�−Sq�X �Y� or Iq�X ;Y��Dq��X ,Y� �X�Y�. We have adopted the former definition
n the present paper, along with the definition of the capacity in the origin of information theory by
hannon.28

. Another candidate of Tsallis conditional entropy

It is remarkable that Tsallis entropy Sq�X� can be regarded as the expected value of
1−q
nq�1/ p�x��, that is, since lnq�x�=−x lnq�1/x�, it is expressed by
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Sq�X� = �
x

p�x�lnq
1

p�x�
�q � 1� , �56�

here the convention 0 lnq�·�=0 is set. Along with the view of Eq. �56�, we may define Tsallis
onditional entropy and Tsallis joint entropy in the following.

Definition 7.5: For the conditional probability p�x �y� and the joint probability p�x ,y�, we
efine Tsallis conditional entropy and Tsallis joint entropy by

Ŝq�X�Y� � �
x,y

p�x,y�lnq
1

p�x�y�
�q � 1� �57�

nd

Sq�X,Y� � �
x,y

p�x,y�lnq
1

p�x,y�
�q � 1� . �58�

e should note that Tsallis conditional entropy defined in Eq. �57� is not equal to that defined in
q. �4�, while Tsallis joint entropy defined in Eq. �58� is equal to that defined in Eq. �5�. If we
dopt the above definitions Eq. �57� instead of Eq. �4�, we have the following inequality.

Proposition 7.6: For q�1, we have

Sq�X,Y� � Sq�X� + Ŝq�Y�X� .

or 0�q�1, we have

Sq�X,Y� � Sq�X� + Ŝq�Y�X� .

herefore we do not have the chain rule for Ŝq�Y �X� in general, namely we are not able to
onstruct a parametrically extended information theory in this case.

III. CONCLUSION

As we have seen, we have found that the chain rules for the Tsallis type entropies hold as
imilar way of the proofs of the entropy of type �. This result was generalized from a few insights.
lso we have proved the strong subadditivity of the Tsallis type entropies for the general two

andom variables in the case of q�1. Moreover it has been shown that in general the superaddi-
ivity of Tsallis entropies does not hold in the case of 0�q�1. Thus we could give important
esults for Tsallis entropies in the case of q�1 from the information theoretical point of view.
herefore we have the possibility that the parametrically extended information theory will be
onstructed by starting from Tsallis entropy for q�1. In other words, there is less possibility of
uch a construction in the case of 0�q�1 if our stage is still in the usual probability theory,
ecause the relation which should be satisfied in contrast to the usual information theory does not
old in the case of 0�q�1. This gives us the rough meaning of the parameter q. That is, we
ound the crucial different results between Sq�X� for q�1 and Sq�X� for 0�q�1 from the
nformation theoretical point of view. For q�1, we showed that the Tsallis type entropies have the
imilar results to Shannon entropies. In other words, it has been shown that the definition of Tsallis
onditional entropy Eq. �4� and Tsallis mutual entropy Eq. �36� have a possibility to be a pioneer
o construct a nonadditive information theory.

Our results in the present paper are fundamental so that we are convinced that these results
ill help the progresses of nonextensive statistical physics and information theory. We are now

tudying the coding problem in nonadditive information theory and searching for the precise

eaning of the parameter q.
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A manifest covariant equilibrium statistical mechanics is constructed starting with a
8N dimensional extended phase space which is reduced to the 6N physical degrees
of freedom using the Poincaré-invariant constrained Hamiltonian dynamics describ-
ing the microdynamics of the system. The reduction of the extended phase space is
initiated forcing the particles on energy shell and fixing their individual time coor-
dinates with help of invariant time constraints. The Liouville equation and the
equilibrium condition are formulated in respect to the scalar global evolution pa-
rameter which is introduced by the time fixation conditions. The applicability of the
developed approach is shown for both, the perfect gas as well as the real gas. As a
simple application the canonical partition integral of the monatomic perfect gas is
calculated and compared with other approaches. Furthermore, thermodynamical
quantities are derived. All considerations are shrinked on the classical Boltzmann
gas composed of massive particles and hence quantum effects are discarded.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2165771�

. INTRODUCTION AND MOTIVATION

The motivation to investigate relativistic equilibrium statistical mechanics is given by theo-
etical reasons as well as by practical reasons. From the theoretical point of view equilibrium
tatistical mechanics must be brought into accordance with the principles of relativity like all other
ranches of physics. From the practical point of view there might be important relativistic effects
t �very� high temperatures. Those effects may play a major role within cosmological problems.
ence, equilibrium statistical mechanics is also interesting in the framework of general relativity

nd as a proper base a manifest covariant approach of a special relativistic equilibrium statistical
echanics is demanded.

While the covariant generalization of kinetic equations as a major application of nonequilib-
ium statistical mechanics can be studied since many years with help of textbooks �see e.g., Ref.
� the relativistic equilibrium statistical mechanics has not reached such stable states. �The interest
n covariant kinetic equations was mainly driven by practical reasons, i.e., by applications in
arious fields like plasma physics, astrophysics, heavy ion reactions, etc.�.

Although Jüttner presented already 1911 relativistic calculations concerning the perfect gas2

note, Jüttners calculations are relativistic but not covariant� the manifest covariant description of
quilibrium statistical mechanics is still under consideration and a lot of attempts have been
erformed already to tackle the related problems. An overview about such problems may be
tudied in older papers and reviews like the ones of Hakim3 and the one of Havas4 as well as
eferences therein.

In this paper we mainly focus on the problem that the phase space �d� must be conceived in
n invariant fashion demanded, e.g., by the invariance of the entropy �i.e., S=k ln ��. ter Haar and
ergeland5 have summarized very clearly the two possibilities which intuitively offer themselves:

�1� “Either one makes � explicitly invariant extending it from 6N to 8N dimensions. That

�
Electronic mail: lehmann.ewald@t-online.de
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implies a many-time formulation of the underlying dynamics. For equilibrium theory, at
any rate, this does not seem to be a suitable approach.

�2� Or, one retains �in the classical limit case� the usual phase space and considers the Lorentz
transformations as canonical. This will certainly accomplish the desired invariance, but
requires certain auxiliary reinterpretations.”

The work of Balescu et al.6 strongly enforces possibility �2� but applying the method on
onequilibrium statistical mechanics only.

The refusing statement of ter Haar and Wergeland concerning possibility �1� was certainly
otivated by the fact that any straightforward attempt to formulate classical dynamics in a cova-

iant fashion runs automatically into conflicts defined by the famous no-interaction theorem.7 This
heorem states that only a collection of noninteracting particles can be described within a Poincaré
nvariant fashion if a straightforward generalization of the usual dynamical description is applied.
ut the conflicts with the no-interaction theorem can be avoided within the framework of con-

trained Hamiltonian dynamics. This formalism is based on an algorithm which was introduced by
irac8 and Bergmann9 in order to express a theory based on a singular Lagrangian in a generalized
hase space approach with help of constraints. �A general and introductional overview about this
ormalism can be found in monographs and textbooks �see Ref. 10�.� In this context the original
N dimensional extended phase space given by N interacting relativistic particles can be reduced
o 6N dimensions with the help of 2N constraints fixing the energies and the time coordinates of
hese N particles. Doing this a 6N dimensional hypersurface in the original 8N dimensional phase
pace is defined on which the system is allowed to move during its evolution. The evolution of the
ystem is described in respect to a global scalar evolution parameter which is introduced by the
ime constraints relating the individual time coordinates to this parameter. This formalism is not
hanging the notion of simultaneity by a change of the frame of reference, means one gets an
nvariant notion of simultaneity as well as invariant world lines. This method has been success-
ully applied already in complicated non-equilibrium situations namely, in order to calculate heavy
on reactions at intermediate and high energies �Refs. 11 and 12�.

Hence we do not agree that possibility �1� is not a suitable way and we propose in this paper
n approach which uses the formalism of constrained Hamiltonian dynamics to describe the
icrodynamics of the system and which develops on this base an equilibrium statistical mechanics

n a manifest covariant fashion.
A similar approach has been presented already by Hsu.13 But this approach is based on the

o-called common relativity �developed by the same author� which is a rather special formulation
nd interpretation of relativity. In contradiction to the work of Hsu we prefer in this paper to apply
he usual framework and interpretion of relativity.

Another interesting approach following possibility �1� is the one of Horwitz et al.14 which is
ased on the many-body theory of the relativistic mechanics proposed by Stückelberg.15 The main
haracteristics of this method are the separation of the center of mass motion in the same way as
n the nonrelativistic theory and the allowance of the particles being off-shell resulting finally in a
ew potential corresponding to the mass degree of freedom of the relativistic system. However, in
ur opinion, the extended phase space is not reduced in a satisfying way within this approach:
hase space integrations are only performed keeping a common time interval �t because no
pecific time fixations have been incorporated in this model �see, e.g., Eq. �3.25� in Ref. 14�.

Furthermore, we would like to mention the paper of Tretyak.16 This author used the front form
f dynamics to investigate relativistic equilibrium statistical mechanics. But shrinking the phase
pace ad hoc to 6N dimensions this approach, although very elegant and useful, cannot be re-
arded to be manifest covariant.

The presentation of our approach in this paper is organized as follows.
In Sec. II we give a brief overview on the constrained Hamiltonian dynamics in a represen-

ation which is suitable for our purpose. In Sec. III we propose the formulation of a covariant
quilibrium statistical mechanics using the framework explained in Sec. II. In Sec. IV we apply
he developed approach to the canonical ensemble of the monatomic perfect gas. The obtained

esults are compared with other approaches. Finally, Sec. V contains some concluding remarks.
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Some remarks on the used notation are at order.
Throughout the paper relativistic units are used, i.e., �=c=1. The diagonal metric tensor has

een chosen to be �1,−1,−1,−1�. The usual summation convention �i.e., summation of repeated
ndices in the same expression� is applied in the case with greek indices �representing tensor
ndices� which are running from 0 to 3. Italic indices indicate the particle index. Capital letters are
sed for quantities characterizing the complete system while lower case letters are used for quan-
ities related to properties of single particles. The complete set of 8N phase space coordinates will
e abbreviated by �q� ,p��= �q1

� , . . . ,qN
� ,p1

� , . . . ,pN
��. A contravariant 4-vector a� is defined as a�

�a0 ,a�. For the Poisson bracket of two dynamical phase space variables A�q� ,p�� and B�q� ,p��
he convention

�A,B� = �
i
	 �A

�pi
�

�B

�qi�
−

�A

�qi
�

�B

�pi�

 �1�

s used. As common within constrained Hamiltonian dynamics we also distinguish between weak
quations and strong equations, assigned by � and =, respectively. While strong equations hold
hroughout the extended phase space weak equations are demanded to be valid on the submanifold
efined by the constraints. Note, weak equations should not be used before all interesting Poisson
rackets have been worked out.

I. CONSTRAINED HAMILTONIAN DYNAMICS

The nonrelativistic equilibrium statistical mechanics contains as an essential part the descrip-
ion of the microdynamics using Hamiltonian dynamics, i.e., by classical propagation of particles
nder mutual interactions “at-a-distance.” The generalization of this nonrelativistic particle dy-
amics to a manifest covariant particle dynamics is not trivial because, one must know how to
reat action-at-a-distance in a covariant fashion. The conceptual problems in this field are formu-
ated in the no-interaction theorem,7 which states that only a collection of free particles can fulfill
he following requirements:

i� The many particle system is described in a Hamiltonian formulation with a canonical
representation of the Poincaré group.

ii� The world lines are invariant �World line condition�.
iii� The physical coordinates are identified with the canonical coordinates.

At least one of these requirements must be violated if one is going to allow an interaction
etween the particles which depends only on the trajectories of the particles.

In the 1970s three possibilities have been worked out to avoid this negative statement of the
o-interaction theorem �an overview about the various attempts are collected in Ref. 17�. The
redictive relativistic mechanics, the singular Lagrange formalism and the constrained Hamil-
onian dynamics. All these formalisms have in common that constraints are used to reduce the
riginal 8N-dimensional phase space, which is given by the space and time coordinates, the
omenta and the energies of the N particles involved. The advantage of the constrained Hamil-

onian dynamics is that one can choose these constraints more freely as in the other methods.
urthermore, one can define 2N constraints in a way obtaining the usual 6N dimensional phase
pace in the nonrelativistic limit, containing the physical dynamical degrees of freedom. The
onstrained Hamiltonian dynamics for particles under interaction was developed by Bergmann,
nderson, Goldberg,9 Todorov,18 Rohrlich,19 Komar,20 Sudarshan, Mokunda, Goldberg,21 and
amuel.22 These authors picked up the idea of Dirac8 who has realized for the first time that
onstraints are not only reducing the degrees of freedom but can also determine the dynamics.

The model of Samuel contains as an important feature the cluster decomposition in a satisfy-
ng way for our purpose. The cluster decomposition, also called cluster separability, makes sure
hat when a system of interacting particles breaks into dynamical independent clusters, then the set
f constraints must break into these dynamical independent clusters as well. The disadvantage of

he model of Samuel is that it is not quantizable. But this is playing no role for our purpose
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ecause, shrinking the considerations on the classical Boltzmann gas, we need only a classical
oincaré invariant description of particle dynamics in the framework of an action-at-a-distance

heory which respects the cluster separability and the principle of causality.
In the following we demonstrate the concrete usage of this formalism to describe the micro-

ynamics of the perfect gas as well as of the real gas composed of massive particles.

. Microdynamics of the perfect gas

Modeling the microdynamics of the perfect relativistic gas a system of N noninteracting
articles can be considered. The singular Lagrangian of such systems leads directly to N on-shell
onstraints �see, e.g., Ref. 23�

�i =
1

2mi
�pi

2 − mi
2� � 0, i = 1, . . . ,N , �2�

ith pi
� being the 4-momentum of particle i and mi being its rest mass. In contradiction to an

arlier work12 and the common usage10 the mass-shell constraints have been modified by the
calar factor 1 /2mi. This modification provides several advantages.

First, the transition to the nonrelativistic limit is simplified and needs no further manipula-
ions.

Second, this factor regulates the dimensions of the mass-shell constraints to be the one of an
nergy instead of an energy squared.

Third, and this is our major motivation, a straightforward performance of phase space inte-
rals is guaranteed by this modification.

Since these primary constraints are first class, i.e., ��i ,� j��0, no secondary constraints exist
n this case. Nevertheless, the �i must be supplemented by N time fixation conditions which gauge
he individual time coordinates parametrizing the world lines. Because noninteracting particles

ust not be correlated one often uses the simple gauging conditions

�i = qi
0 − � � 0, i = 1, . . . ,N , �3�

hich force the time coordinates of the particles to be equal to the global scalar evolution param-
ter � in any inertial system. These constraints are obviously not covariant.

But our aim in this paper is a manifest covariant reduction of the extended phase space and
ence the constraints �3� are not satisfying in order to treat the relativistic perfect gas. Therefore,
e define here another set of time fixations

�i =
pi

�qi�

mi
− � � 0, i = 1, . . . ,N , �4�

hich are covariant and also do not create any correlation among the particles under consider-
tion. The acting of these gauging conditions is easily recognized when considering it in the rest
rame of a particle i: In this particular frame of reference pi

�= �mi ,0� and �i reduces to

�i = qi0 − � � 0, �5�

.e., the time coordinates of the particles equal the global evolution parameter � in their rest frame.
n other words, using �4� the proper times of the particles are synchronized to � within this
ovariant treatment. Note, both time fixations, �3� and �4� are first class, i.e., ��i ,� j��0, but the
omplete set of 2N constraints is second class since ��i ,� j��” 0.

Because the canonical Hamiltonian derived by a Legendre transformation from the singular
agrangian of a system of relativistic particles is identical vanishing23 the Dirac Hamiltonian can

e constructed by a linear combination of the �-independent constraints,
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H = �
i=1

N

�i�i. �6�

his Hamiltonian generates the equations of motion with respect to � to be

dqi
�

d�
= �H,qi

�� � �
j=1

N

� j
�� j

�pi�
, �7�

dpi
�

d�
= �H,pi

�� � − �
j=1

N

� j
�� j

�qi�
. �8�

he Lagrange multipliers �i can be determined with the help of the consistency conditions

d	 j

d�
=

�	 j

��
+ �H,	 j� �

�	 j

��
+ �

i=1

N

�i��i,	 j� � 0, j = 1, . . . ,2N; �9�

hich guarantee the validity of the constraints during the complete evolution of the system and
hich must be valid for the complete set of 2N constraints

	 j = �� j , 0 
 j � N ,

� j−N, N 
 j � 2N .
�10�

ntroducing the invertible N�N-matrix C with elements Cij= ��i ,� j� the Lagrange multipliers are
niquely determined by

�i � − �
j=1

N
�� j

��
Cij

−1 �11�

o be �i=mi /pi
0 if using �3� and �i=mi

2 /pi
2 if using �4�.

In the following we will use the term semicovariant approach whenever the set of 2N con-
traints is assumed to consist of the N on-shell constraints �2� and the simple time fixations �3�
ecause N covariant constraints are supplemented by N noncovariant constraints. Furthermore, we
ill use the term full covariant approach whenever the on-shell constraints �2� are combined with

he covariant time fixations �4� to build the complete set of 2N constraints.
Using pi

0=i+mi the on-shell constraints reduce in the nonrelativistic limit �i�mi� to

�i = i −
pi

2

2mi
� 0. �12�

urthermore, the covariant time fixations �4� reduce to the simple time fixations �3� in the non-
elativistic limit and the global evolution parameter � is identified with the absolute time t.
onsequently, the usual nonrelativistic Hamiltonian dynamics is obtained as generated by the
onrelativistic Hamiltonian,

H�nr� = �
i=1

N
pi

2

2mi
. �13�

. Microdynamics of the real gas

In contradiction to ideal systems like the perfect gas real systems can only be understood if the
ntermolecular interactions are taken into account when describing the related microdynamics.
pplying the formalism of the constrained Hamiltonian dynamics to the microdynamics of the real

as we therefore must consider a system of N particles in mutual interaction. In this case we prefer
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o use a set of constraints quite similar to the constraints which have been successfully applied
lready within nonequilibrium situations when simulating heavy ion reactions �see Refs. 11 and
2�. The first N constraints are chosen as on-shell constraints

�i =
1

2mi
�pi

2 − mi
2 − Ṽi� � 0, i = 1, . . . ,N . �14�

ote, as already discussed in Sec. II A, the on-shell constraints have been modified by the scalar

actor 1 /2mi. Regarding the potential part Ṽi this choice of the constraints requires that Ṽi should
e a Lorentz scalar and therefore a function of Lorentz scalars. Defining a system with mutual

wo-body interactions, Ṽi should be given by a sum of these two-body interactions

Ṽi = �
j�i

Ṽij�qTij
2 � . �15�

sing Eq. �15� we assume that the two-body interactions depend only on the Lorentz invariant
quared transverse distance

qTij
2 = qij

2 −
�qij

�pij��2

pij
2 , �16�

ith qij
�=qi

�−qj
� being the four-dimensional distance and pij

�=pi
�+pj

� the sum of the momenta of
he two interacting particles i and j. This particular choice has two advantages.

First, in the common CMS of two interacting particles CMSij qTij
2 reduces to −qij

2 which is
uite natural since only in the CMSij particle i and particle j can be treated on the same footing.

n addition, in the nonrelativistic limit the potential part Ṽi can be connected with the correspond-
ng potential Vi used in the nonrelativistic theory: Using pi

0=i+mi and regarding the nonrelativ-
stic limit �i�mi� the on-shell constraints reduce to

�i = i −
pi

2

2mi
−

Ṽi

2mi
� 0. �17�

he comparison of �17� with the usual expression of the nonrelativistic energy suggests

Ṽi = 2miVi, �18�

nd the two-body potential acting among two particles i and j felt by particle i reads in the
ommon CMSij,

Ṽij�− qij
2 � = 2miVij�− qij

2 � , �19�

.e., a nonrelativistic two-body potential can be generalized to be used in the relativistic theory. For
nstance, the widely used Lennard-Jones potential can be generalized replacing the squared dis-
ance qij

2 by the Lorentz invariant squared transverse distance qTij
2 obtaining

Ṽij
�LJ��qTij

2 � = 2mi�	 �

�qTij
2 
12

− 	 �

�qTij
2 
6� �20�

ith the two tuning parameters � and � having the dimensions of an energy and a length,
espectively. Note, due to the second term on the right-hand side of Eq. �16� this generalized
nteraction is slightly implicit momentum dependent. Because of this term, which gives the lon-
itudinal squared distance, the interaction depends not only on the distance of the two interacting

articles but also on the direction of their center of mass motion in the rest frame of the real gas.
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Since the on-shell constraints alone do not specify the world lines one needs additional N
onstraints which are fixing the relative times of the particles. Like in the model of Samuel22 this
econd set of N constraints should fulfill the following conditions:

1� N−1 of them should be Poincaré invariant in order to fulfill the required world line invari-
ance.

2� Causality must be respected.
3� One must be consistent with cluster separability.
4� A global evolution parameter must be defined.

These conditions can be fulfilled by defining the following set of N time fixations:

�i =
1

mi
�
j��i�

�ijpij
�qij� � 0, i = 1, . . . ,�N − 1� , �21�

�N = P�Q� − � � 0 �22�

ith P�= P� /�P2, P�=�ipi
�, Q�= �1/N��iqi

� and the dimensionless scalar weighting function

�ij =
1

qij
2 /�2e�qij

2 /�2� �23�

ith � being a characteristic interaction distance of the modeled interaction. Note, the scalar factor
/mi regulates the dimension of the time fixations to be the one of a length. The conditions �21�
re motivated by studies in the framework of singular Lagrangians.24 Using this methods one gets
p to the weighting functions wij the same conditions as secondary constraints and the on-shell
onditions as primary constraints in a natural way. The important fact for using the expression �23�
s weighting function is that this scalar function respects the principle of causality, while the ones
sed in the singular Lagrangian theories and in the model of Samuel can violate this important
hysical restriction �see Ref. 11�.

The constraints �21� take care that the times of interacting particles are not dispersed to much
n their common CMSij. Furthermore, they specify the dynamics by fixing the times at which the
orces must be calculated but they do not specify the global evolution parameter �. This evolution
arameter must be defined to be determined dynamically since the no-interaction theorem can only
e avoided in this way and is defined by the gauging condition �22� in a way, that the individual
imes are increasing with increasing �.

In the CMS of all particles involved � is simply given by the average of all time coordinates

� = P�Q� →
CMS 1

N
�
i=1

N

qi
0. �24�

This set of 2N constraints given by �14�, �21�, and �22� determines covariant world lines
arametrized by the initial data at equal �.

A linear combination of the 2N−1 �-independent constraints

	i = ��i, 0 
 i � N ,

�i−N, N 
 i � 2N − 1
�25�

onstructs the Dirac Hamiltonian

H = �
i=1

2N−1

�i	i �26�
hich generates the equations of motion with respect to � to be
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dqi
�

d�
� �

j=1

2N−1

� j
�	 j

�pi�
, �27�

dpi
�

d�
� − �

j=1

2N−1

� j
�	 j

�qi�
. �28�

he Lagrange multipliers �i can be determined with the help of the consistency conditions

d	 j

d�
=

�	 j

��
+ �H,	 j� �

�	 j

��
+ �

i=1

2N−1

�i�	i,	 j� � 0, j = 1, . . . ,2N; �29�

nd are finally given by

�i � −
��N

��
Ci2N

−1 �30�

ith C being the invertible 2N�2N matrix with elements Cij= �	i ,	 j�.
The whole formalism has a well defined nonrelativistic limit as has been shown by Sorge.11 In

eading order of 1 /c one gets for the first 2N−1 constraints

�i = i −
pi

2

2mi
−

Ṽi

2mi
� 0, i = 1, . . . ,N , �31�

�i = qi
0 − qN

0 � 0, i = 1, . . . ,N − 1 �32�

hich generate the same dynamics as the nonrelativistic many-body Hamiltonian

H�nr� = �
i=1

N 	 pi
2

2mi
+ Vi
 . �33�

II. COVARIANT STATISTICAL MECHANICS IN THE FRAMEWORK OF CONSTRAINED
AMILTONIAN DYNAMICS

Regarding the constrained Hamiltonian dynamics as a proper formalism to describe a system
f interacting particles in a covariant fashion we are to develop a manifest covariant statistical
echanics on its base. We start this development considering the extended phase space. In case of
system involving N particles this invariant phase space has 8N dimensions given by the N

-momenta pi
� and the N 4-position-vectors qi

��i=1, . . . ,N�.
The phase space distribution function D�q� ,p� ,�� representing the statistical ensemble is

ssumed to depend on the complete set of 8N phase space coordinates and, in general, on the
lobal evolution parameter � which is introduced by certain time fixation conditions �compare Sec.
I�. Consequently, the Liouville equation and the equilibrium conditions must be discussed with
espect to �.

The Liouville equation is thus given by

dD�q�,p�,��
d�

= 0 ⇔
�D�q�,p�,��

��
= �D�q�,p�,��,H� . �34�
he microdynamics of the system is generated by the Hamiltonian
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H = �
i=1

M

�i	i, �35�

here M =N in the case of the perfect gas and M =2N−1 in the case of the real gas using the
onstraints as introduced in Sec. II.

Hence we get

�D�q�,p�,��
��

� �
i=1

M

�i�D�q�,p�,��,	i� . �36�

The reduction of the invariant phase space volume element of the extended phase space

d�e = �
i=1

N

d4qid
4pi. �37�

s performed incorporating all 2N constraints by means of �-functions, i.e.,

d� = �
i=1

N

d4qid
4pi��pi

0����i����i� . �38�

he Heaviside-�-function has been added in order to shrink on particles with positive energy
hich is useful if classical particles are considered only.

Equilibrium distribution functions are � independent solutions of �34� and hence must fulfill
he condition

�
i=1

M

�i�D�q�,p��,	i� � 0. �39�

sing �38� the ensemble average �i.e., the classical expectation value� of a measurable quantity
�p� ,q�� at equilibrium is given by

�A� =
� �i=1

N
d4qid

4pi��pi
0����i����i�A�p�,q��D�q�,p��

� �i=1

N
d4qid

4pi��pi
0����i����i�D�q�,p��

. �40�

e mention two simple �and widely used� possibilities to construct solutions of the Liouville
quation fulfilling the equilibrium condition:

i� Constant phase space distributions D=const.
ii� Phase space distributions depending on quantities Xj which are conserved during the evo-

lution in respect to �, i.e., dXj /d�=0.

Assuming Xj�Xj��� the condition

�
i=1

M

�i�Xj,	i� � 0 �41�

ust be valid in the case of such conserved quantities.
Beside the trivial uniform ensemble the microcanonical ensemble can be regarded to be the

ost typical example for the former case while the canonical as well as the grand canonical
nsembles are examples of the latter case.

In the nonrelativistic theory the energy is playing a prominent role as the most important

onserved quantity. In a relativistic generalization the energy must be replaced by the
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-momentum P� or even by the energy-momentum tensor T�� of the system. A fruitful alternate is
he invariant energy E=U�P� with U� being the 4-velocity of the system. In the comoving frame
f reference �i.e., the rest frame of the system� we get E=U0P

0= P0, i.e., the invariant energy is
othing but the total �internal� energy of the system measured in its rest frame. We will use this
nvariant energy when generalizing the concepts of nonrelativistic statistical mechanics.

In the following we consider briefly the main equilibrium distributions.

�i� Microcanonical ensemble: Considering the classical �i.e., nonquantum mechanical� case
nly and applying our concept of the invariant energy E we can write the distribution function of
he microcanonical ensemble using the �-function �compare, e.g., Ref. 25� as

DM =
1

ZM
��E − E0� �42�

ith E0 being the invariant energy of the closed system. The microcanonical partition integral ZM

which is nothing but the phase space volume �� must be determined via

ZM =
1

N!
� �

i=1

N

d4qid
4pi��pi

0����i����i���E − E0� . �43�

he factor 1 /N! respects the fact that the particles cannot be distinguished.
�ii� Canonical ensemble: Considering the canonical ensemble the condition

�
i=1

M

�i�E,	i� = �
i=1

M

�i�U�P�,	i� � 0 �44�

s to be proved in order to use the ansatz

DC�E� =
1

ZC
e−�U�P�

�45�

or the canonical distribution function with the canonical partition integral

ZC =
1

N!
� �

i=1

N

d4qid
4pi��pi

0����i����i�e−�U�P�
. �46�

�iii� Grand canonical ensemble: The grand canonical ensemble is characterized by another
onserved quantity beside the energy namely, the particle number N. Hence, generalizing the
anonical ensemble accordingly leads to

DG�E,N� =
1

ZG
e−�U�P�−�N �47�

or the grand canonical distribution function with the grand canonical partition integral

ZG =
1

N!
� �

i=1

N

d4qid
4pi��pi

0����i����i�e−�U�P�−�N. �48�

�iv� Related thermodynamics: Let us briefly discuss the corresponding thermodynamics gen-
rated by our approach. Like in the next section, we shrink on the canonical ensemble. The formal
roperties of the thermodynamics are dominated by the introduction of the invariant energy E. As
n the nonrelativistic theory the free energy can be determined with the help of the canonical

artition integral ZC by
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F = − kT ln ZC. �49�

ike the invariant energy E the free energy F �as all other thermodynamical potentials� is defined
o be a scalar. Furthermore, the temperature T introduced by the parameter �=1/kT �k being the
oltzmann constant� is a scalar quantity and the introduction of a heat vector26 is superfluous. �Of
ourse, formally we get the same exponential factor �see Eq. �45�� but the 4-velocity of the system

� is now defining the invariant energy E=U�P� and not used to define the heat vector ��

U� /T like in other approaches.26 One can argue about this interpretation but the advantage
efining an invariant energy is that this scalar quantity of the exponent can be demanded to be
onserved during evolution in respect to �, i.e., to fulfill Eq. �41�.) Considering the usual relations
efining other macroscopic state variables like the entropy

S = k ln ZC −
1

T

� ln ZC

��
�50�

nd the pressure

P = − 	 �F

�V



T

�51�

e stress that both, the macroscopic state variables as well as the thermodynamical potentials are
efined to be scalar quantities in our approach. Hence, an artifical extension of those quantities to
igher rank tensors as often done when formulating relativistic thermodynamics �compare, e.g.,
ef. 26� is not needed.

The average energy is given by

�E� = −
� ln ZC

��
, �52�

nd the specific heat can be determined with the help of it

cV = 	 ��E�
�T



V

. �53�

Looking to the grand canonical ensemble we note that the chemical potential M introduced by
he parameter �=�M =M /kT is a scalar as well in the approach considered.

V. THE CANONICAL ENSEMBLE OF THE MONATOMIC PERFECT GAS

In this section we want to apply the formalism developed in the preceding sections. Unfortu-
ately, concrete calculations �e.g., determining the canonical partition integral via Eq. �46�� are not
asy to be performed due to the structure of the phase space volume element. �Especially, as in the
onrelativistic theory, calculations considering the real gas turn out to be complicated depending
n the underlying model of intermolecular interactions.� Hence, as an example, we just apply the
ormalism to the canonical ensemble of the monatomic perfect gas. In order to determine the
anonical partition integral using formula �46� we must prove the validity of condition �44�.

By definition, the perfect gas is a system of noninteracting particles and as a consequence the
amiltonian contains the simple mass shell constraints �2�. Hence, the partial derivatives of �i

ith respect to qj� are vanishing and condition �44� is fulfilled in the case of the perfect gas.
Unfortunately, no analytical solution of the canonical partition integral �46� can be achieved

ithin the full covariant approach. Hence, numerical solutions have been worked out as will be
xplained in Sec. IV B.

But before discussing these numerical results let us first present another approach, namely the
emicovariant approach which provides analytical results and hence can be easily compared with

2
ther approaches known from the literature, e.g., the noncovariant Jüttner approach.
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. Semicovariant approach

In the semicovariant approach the simple time fixation conditions �3� are used and the parti-
ion integral reads

ZC =
1

N!
� �

i=1

N

d4qid
4pi��pi

0��	 1

2mi
�pi

2 − mi
2�
��qi

0 − ��e−�U�P�
. �54�

sing the properties

��ax� =
1

�a�
��x� �55�

nd

��x2 − a2� =
1

2a
���x − a� − ��x + a�� �56�

f the �-function we get

ZC =
!

N!
� �

i=1

N

d4qid
4pi

mi

pi
0 ��pi

0 − �pi
2 + mi

2���qi
0 − ��e−�U�P�

. �57�

or the further concrete calculation we assume a comoving frame of reference �i.e., the rest frame
f the gas�. In this frame of reference we get

E = U�P� = U��
i=1

N

pi
� = �

i=1

N

pi
0 �58�

nd integrating the 0-components gives, according to the �-functions,

ZC =
1

N!
� �

i=1

N

d3qid
3pi

mi

�pi
2 + mi

2
e−��pi

2+mi
2

=
VN

N!
� �

i=1

N

d3pi
mi

�pi
2 + mi

2
e−��pi

2+mi
2
, �59�

here V represents the volume measured in the rest frame of the gas. The integral factorizes using
pherical coordinates in momentum space and performing the angle integration gives

ZC =
VN

N!4�m�
0

�

d�
�2

��2 + m2
e−���2+m2�N

�60�

ith �=�p2. Note, the particle index becomes superfluous considering a monatomic gas of par-
icles with mass mi=m. The integral in this expression can be solved applying the transformation
=m sinh � �see, e.g., Ref. 27�,

�
0

�

d�
�2

��2 + m2
e−���2+m2

= �
0

�

d� m2 sinh2 �e−�m cosh � =
m2

�m
K1��m� �61�

ith K1 being the modified Bessel function of first order.
Finally, the canonical partition integral within this semicovariant approach is given by

ZC =
VN

N!
4�m3

�m
K1��m��N

. �62�
ow we are able to list the analytical results of three different approaches,
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ZC =�
VN

N!
4�m3

�m
K1��m��N

, semicovariant,

VN

N!
4�m3

�m
K2��m��N

, Jüttner approach,

VN

N!
	2�m2

�m

3/2�N

, nonrelativistic �see e.g. Ref. 28� .

�63�

Comparing �62� with the result of Jüttner we realize that the only difference is the order of the
odified Bessel function occurring in ZC: Jüttner’s approach contains K2��m� instead of K1��m�.

We note further that this result is naturally quite similar to the one derived by Horwitz et al.
compare Eq. �3.25� in Ref. 14�, especially regarding the functional dependence on �. But we
tress that the phase space reduction regarding the time constraints in our semicovariant approach
s already more satisfying and as a consequence, in contradiction to Ref. 14, no common time
nterval is remaining in the final result when applying the formalism of constrained Hamiltonian
ynamics.

. Full covariant approach

Evaluating the partition integral within the full covariant approach we apply the covariant
ime constraints �4� as specified in Sec. II A for a system of noninteracting particles and Eq. �46�
eads

ZC =
1

N!
� �

i=1

N

d4qid
4pi��pi

0��	 1

2mi
�pi

2 − mi
2�
�	 1

mi
qi

�pi� − �
e−�U�P�
. �64�

sing the properties �55� and �56� of the �-function we get

ZC =
1

N!
� �

i=1

N

d4qid
4pi

mi
2

pi
02 ��pi

0 − �pi
2 + mi

2��	qi
0 −

1

pi
0 �qp − m��
e−�U�P�

. �65�

Until now we have kept strictly the covariant fashion during the calculation. For the further
oncrete calculation the fixation of a defined frame of reference is demanded. Hence, for simplic-
ty, we choose the rest frame of the gas to determine the invariant energy E as already applied
ithin the semicovariant approach �see Eq. �58�� and get integrating the 0-components according

o the �-functions

ZC =
1

N!
� �

i=1

N

d3qid
3pi

mi
2

�pi
2 + mi

2�
e−��pi

2+mi
2

=
VN

N!
� �

i=1

N

d3pi

mi
2

�pi
2 + mi

2�
e−��pi

2+mi
2
. �66�

he integral factorizes using spherical coordinates in momentum space and performing the angle
ntegration gives

ZC =
VN

N!4�m2�
0

�

d�
�2

�2 + m2e−���2+m2�N

�67�

ith �=�p2. Note, as in Eq. �60�, mi=m has been used again.
Unfortunately, no analytical solution of the integral in Eq. �67� is available. Hence, numerical

olutions have been worked out for various monatomic gases.
In order to compare this numerical results obtained by the full covariant approach with the

esults of other approaches as listed in Eq. �63� we write the canonical partition integral of the

onatomic gas in a generic representation:
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ZC =
VN

N!
�e−�mY�N. �68�

The relativistic renormalization factor e−�m has been extracted explicitly in �68� for two
easons:

1� This factor does not occur in the nonrelativistic partition integral.
2� The numerical integration is simplified if this factor is extracted explicitly.

The nonanalytical integral occurring in the full covariant approach �see Eq. �67�� has been
etermined numerically using the Gauss-Laguerre method of 15th order. The results of the two
ther relativistic approaches �i.e., the Jüttner approach and the semicovariant approach� have been
etermined using the analytical expressions �i.e., evaluating the related modified Bessel functions

1 and K2� as well as using the same numerical integration method in order to justify the accuracy
f the applied numerical method.

Figure 1 summarizes the results of calculations for different monatomic perfect gases namely,
ydrogen, helium, neon, and argon. The comparison is focused on the quantity Y which deter-
ines the canonical partition integral via Eq. �68�. As expected, the qualitative behavior is the

ame for all gases.
At low temperatures �nonrelativistic limit� all approaches give the same result as it should be.

ven at higher temperatures �T�1012 K� �e.g., T=1012 K corresponds roughly to �m�10 in case
f hydrogen� no difference is visible among the various calculations. At extremely high tempera-
ures �T�1012 K� relativistic effects are dominating the behavior. Compared to the nonrelativistic
esult the noncovariant Jüttner approach is showing a strong enhancement of the quantity Y in this

FIG. 1. Quantity Y as a function of �m for various approaches and different monatomic perfect gases.
egime. The semicovariant approach reduces this enhancement and the full covariant approach
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urns the enhancement to a reduction even. Therefore, we conclude that a controlled manifest
ovariant reduction of the extended phase space reduces the value of the quantity Y and hence of
he canonical partition integral.

In order to give an overview on the related thermodynamics of the monatomic perfect gas we
nally list in dependence of the quantity Y the free energy

F = − kT ln ZC = − NkT	ln
V

N
+ ln Y − �m + 1
 , �69�

he entropy

S = − 	 �F

�T



V

= k ln ZC + kT
� ln ZC

�T
= Nk	ln

V

N
+ ln Y − �

� ln Y

��
+ 1
 , �70�

he pressure

P = − 	 �F

�V



T

= kT
� ln ZC

�V
=

NkT

V
, �71�

he average energy

�E� = N	m −
� ln Y

�B

 , �72�

nd the specific heat

cV = 	 ��E�
�T



V

=
N�

T

�2 ln Y

��2 . �73�

Note, since the pressure turns out to be independent of Y all approaches give the same
quation of state, namely the one of the nonrelativistic perfect gas,

PV = NkT . �74�

Since the main differences among the various approaches are showing up at very high tem-
eratures it is very useful to consider explicitly the following.

. Ultrarelativistic limit

Since in the ultrarelativistic limit the rest mass is neglected in respect to the momentum and
n respect to the energy it can be evaluated using �pi

2+mi
2→ �pi� when deriving the integrals in

qs. �67� and �60�. Hence, it is even possible to derive analytical results in case of the full
ovariant approach since the partition integral simplifies drastically and we get in this limit ��
�p � � for the various approaches,

ZC
�ur� =�

VN

N!4�m2�
0

�

d� e−���N

, full covariant,

VN

N!4�m�
0

�

d� �e−���N

, semicovariant,

VN

N!4��
0

�

d� �2e−���N

, noncovariant �Jüttner� .

�75�
he integrals in �75� are easily determined with the help of the �-function according to
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�
0

�

d� �ne−a� =
��n + 1�

an+1 . �76�

Table I summarizes these results as well as some derived thermodynamical quantities in the
ase of the ultrarelativistic limit. Progressing from the noncovariant approach towards the full
ovariant approach via the semicovariant approach at a fixed � the canonical partition integral is
ecreasing as already mentioned when discussing Fig. 1. This behavior as well as the derivatives
n respect to � are fixing the differences in the thermodynamical quantities, e.g., the entropy is
educing when progressing towards the full covariant approach. Especially, we want to focus on
he average energy.

While Jüttners noncovariant calculations at the ultrarelativistic limit lead to 3NkT the semi-
ovariant approach �as well as the method used in Ref. 14� leads to 2NkT and the full covariant
reatment gives NkT. Thus, a controlled manifest covariant reduction of the extended phase space
y N on-shell constraints reduces the average energy by a factor NkT and the final reduction by N
ime fixations by another factor NkT. Consequently, the specific heat is showing similar differ-
nces. As already mentioned by Horowitz et al.14 no empirical evidence distinguishing between
hese results is available at the present time.

The following should be noted: Usually the noncovariant Jüttner approach in the ultrarelativ-
stic limit is regarded to represent the classical photon gas. This approximate interpretation is not
ossible within our approach because the applied classical constrained Hamiltonian dynamics of
assive particles cannot be used in the ultrarelativistic limit to approximate massless classical

article dynamics. This fact is showing up in the results and can be recognized inspecting ZC
�ur�

see Table I�: In contradiction to the Jüttner approach ZC
�ur� remains mass dependant in the ul-

ABLE I. Thermodynamical quantities for the perfect gas in the ultrarelativistic limit.

hermodynamical
uantity Full covariant Semicovariant

Noncovariant
�Jüttner approach�

C
�ur�

VN

N!
4�m3

��m� �N VN

N!
 4�m3

��m�2�N VN

N!
 8�m3

��m�3�N

=−kT ln ZC

− NkTln
V

N
+ ln�4�m3�

− ln��m� + 1�
− NkTln

V

N
+ ln�4�m3�

− 2 ln��m� + 1�
− NkTln

V

N
+ ln�8�m3�

− 3 ln��m� + 1�

= k ln ZC −
1

T
� ln ZC/��

Nkln
V

N
+ ln�4�m3�

− ln��m� + 2�
Nkln

V

N
+ ln�4�m3�

− 2 ln��m� + 3�
Nkln

V

N
+ ln�8�m3�

− 3 ln��m� + 4�
E�=−� ln ZC /�� NkT 2NkT 3NkT

V=��E� /�T Nk 2Nk 3Nk

P=−�F /�V NkT /V NkT /V NkT /V
rarelativistic limit in case of the semicovariant and the full covariant approach.
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. Nonrelativistic limit

Finally, we examine the nonrelativistic limit of our approach. Since the covariant time fixa-
ions �4� reduce to the simple time fixations �3� in this limit the canonical partition integral within
oth approaches, semicovariant and full covariant, coincide according to Eq. �12� to be

ZC
�ur� =

1

N!
� �

i=1

N

d4qid
4pie

−�E�	i −
pi

2

2mi

��qi

0 − �� . �77�

pecial care must be taken regarding the invariant energy E. In order to get a fair comparison in
he nonrelativistic limit the rest masses of the particles must be subtracted from their energies
etting in the comoving frame of reference

E = �
i

N

�pi
0 − mi� . �78�

sing further pi
0=i+mi Eq. �77� simplifies to

ZC
�nr� =

VN

N!
� �

i=1

N

d3pie
−��pi

2/2mi� =
VN

N!
	2�m2

�m

3/2�N

, �79�

.e., the nonrelativistic canonical partition integral.
Note, the same result can be achieved starting with the analytical result as obtained by the

emicovariant approach. Supplementing Eq. �62� by a factor e�Nm which covers the effect of the
eduction of the energies by the rest masses �compare Eq. �78��, Eq. �62� transforms to

ZC =
VN

N!
e�Nm4�m3

�m
K1��m��N

. �80�

n the nonrelativistic limit �m�kT� the asymptotic form of the modified Bessel function ��m
� �

Kn��m� �� �

2�m
e−�m	1 +

4n2 − 1

8�m
+ ¯ 
 �81�

an be applied. Since K1 and K2 coincide in the leading order the semicovariant approach and the
oncovariant Jüttner approach provide the same result in the nonrelativistic limit namely, the
onrelativistic canonical partition integral �79� within this treatment.

. SUMMARY AND CONCLUSION

A covariant equilibrium statistical mechanics has been formulated on the base of constrained
amiltonian dynamics. The usage of this formalism to describe the microdynamics of the en-

embles guarantees the manifest covariance of the developed approach.
Unfortunately, concrete calculations are not easily performed within this approach. As a

imple application the canonical partition integral of the monatomic perfect gas has been evaluated
umerically. Relativistic effects at very high temperatures have been observed.

The comparison of the obtained results with the results of the nonrelativistic theory show a
ecreasing partition integral at very high temperatures. In contradiction to this findings other
elativistic approaches like the noncovariant calculations of Jüttner are showing an increased
artition integral at these temperatures. It has been demonstrated that the full covariant treatment
f the phase space is responsible for this significant difference. Considering the ultrarelativistic
imit the same behavior is visible on a full analytical base. In the nonrelativistic limit the results

oincide with the results obtained within the nonrelativistic theory.
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As in the nonrelativistic theory the link to thermodynamics has been performed via the free
nergy. All thermodynamical potentials �like the internal energy, the free energy,…� as well as the
hermodynamical state variables �like temperature, entropy, pressure,…� have been defined to be
orentz scalars. This was achieved introducing the invariant internal energy E=U�P� in the
anonical distribution function. Regarding the ultrarelativistic limit the entropy, the average en-
rgy, and the specific heat are decreased in comparison to other approaches in this limit.

Unfortunately, the temperature regime which shows significant differences among the various
pproaches �T�1012 K� cannot be reached in experiments but may exist in cosmological events.
ence, it may be interesting to use the presented special relativistic approach as a base to develop
general relativistic equilibrium statistical mechanics being manifest covariant from first prin-

iple.
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For reaction-diffusion processes without exclusion, in which the particles can exist
in the same site of a one-dimensional lattice, we study all the integrable models
which can be obtained by imposing a boundary condition on the master equation of
the asymmetric diffusion process. The annihilation process is also added. The Bethe
ansatz solution and the exact N-particle conditional probabilities are obtained.
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. INTRODUCTION

There are a variety of phenomena that can be explained by stochastic models, and their
onequilibrium behaviors can be understood by rather simple rules.1–3 One of the important
xamples of these models are the reaction-diffusion processes on a one-dimensional lattice for
hich their dynamics are fully specified by their master equation.4,5 A simple example of reaction-
iffusion process is asymmetric simple exclusion process �ASEP�,2,6,7 which is known to be
elevant to various fields of science like the kinetics of biopolymerization,8,9 traffic models,10

olymers in random media, dynamical models of interface growth,11,12 noisy Burgers equation,13

tudy of shocks,14,15 sequence alignment,16 and molecular motors.17 For recent reviews, see for
nstance.18–20

The ASEP is a lattice model in which each particle hops to its right �left� nearest-neighboring
ite with a probability DR dt�DL dt� in an infinitesimal interval dt. In addition, particles are subject
o hard-core exclusion: each site is either occupied only by one particle or empty. ASEP has been
tudied in Ref. 21 by introducing a master equation which describes the time evolution of prob-
bilities P�x1 , . . . ,xN ; t�, when the particles are not in neighboring sites, and a so-called boundary
ondition, which specifies the situations in which the probabilities go outside the physical region

1�x2� ¯ �xN. These happen when some of the particles are in adjacent sites and the master
quation can not be applied to them. It has been shown that the model is integrable in the sense
hat the N-particle S-matrix is factorized into a product of two-particle S-matrices. The coordinate
ethe ansatz has been used in this proof. Note that the S-matrix can completely determine the
ynamics of a Markovian process, i.e., the N-particle probabilities of a model.

By choosing other suitable boundary conditions, without changing the master equation, one
ay study the more complicated reaction-diffusion processes, even with long-range interaction. In
ef. 22, the so-called drop-push model has been studied by this method. In this model the particle
ops to the next right site even if it is occupied. The particle hops to this site by pushing all the
eighboring particles to their next right sites, with a rate depending on the number of right
eighboring particles. The generalization of this model, by considering both the right and left
opping, has been done in Ref. 23. This method has been also applied to more-than-one-species
ituations, which become more complicated. The complexity arises from the above-mentioned
actorization of N-particle scattering matrix. In these cases, the factorization demands the two-

�
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article S-matrices to satisfy the spectral Yang-Baxter equation. Various solvable multispecies
odels have been studied in this way, of which the most recent general cases have been discussed

n Refs. 24 and 25.
All of the above studies have been restricted to interactions which include the hard-core

xclusion. This made some simplification. In Refs. 26 and 27, an asymmetric diffusion model
ithout exclusion has been shown to be integrable and to have the same R-matrix as that of the
SEP. In Ref. 28, it has been shown that the processes

mn → m − l,n + l with rate
DR

�l�
,

mn → m + l,n − l with rate
DR� l

�l�
, �1�

s integrable, in the sense of the above-mentioned two-particle factorization. The numbers “m,”
n,”. . . indicate the particle numbers on a site, �=DL /DR, and

�l� =
1 − � l

1 − �
. �2�

ote that in Ref. 28, the reaction rates of Eq. �1� are scaled by DR. These processes are obtained
y imposing the boundary condition

PN�. . . ,xj,xj − 1, . . . ;t� = DRPN�. . . ,xj − 1,xj − 1, . . . ;t� + DLPN�. . . ,xj,xj, . . . ;t��j = 1, . . . ,N − 1� ,

�3�

n the master equation of ASEP,

�

�t
P�x1, . . . ,xj, . . . ,xN;t� = �

j=1

N

DRP�x1, . . . ,xj−1,xj − 1,xj+1, . . . ,xN;t� + �
j=1

N

DLP�x1, . . . ,xj−1,xj

+ 1,xj+1, . . . ,xN;t� − NP�x1, . . . ,xj, . . . ,xN;t� , �4�

n which we have used a time scale so that DR+DL=1. In the above equation, P�x1 , . . . ,xN ; t� is the
robability for finding at time t the particles at sites x1 , . . . ,xN. We take these functions to define
robabilities only in the physical region x1�x2� ¯ �xN. In fact, in the domain �N=x1�x2

¯ �xN�ZN, the function P is the probability defined above, whereas in ZN /�N it is defined by
he master equation �4�, but it is not a probability. The master equation �4� is only valid for

xi � xi+1, �5�

ince for xi=xi+1, there will be terms with xi=xi+1+1 on the right-hand side of Eq. �4�, which is out
f the physical region. One can, however, assume that �4� is valid for all physical region xi

xi+1, and impose a certain boundary condition for xi=xi+1. The boundary condition �3� leads to
nteractions �1�.

In this paper we want to study all possible boundary conditions for single-species systems and
erive all the integrable one-dimensional reaction-diffusion processes without exclusion which can
e obtained by this method. The scheme of the paper is the following. In Sec. II, we show that
here are two types of boundary conditions when DR�0 and DL�0. The first is one considered in
ef. 28, i.e., Eq. �3�, which we call the type 1 model, and the second one is

DRP�x,x − 1� + DLP�x + 1,x� = P�x,x� . �6�

ere we have suppressed all the other coordinates for simplicity. We show that the interactions of

his type 2 model are
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mn → m − 1,n + 1 with rate DR,

mn → m + 1,n − 1 with rate DL. �7�

his is the reactions �1�, restricted to l=1. In other words, to have an integrable model, it is not
ecessary to have the simultaneous hoppings of any number of particles from a common site to the
eighboring site �as indicated in �1��, but the one particle hoppings can also lead to integrable
odels. Note that the reactions �7� is not a subset of processes �1�.

In the totally asymmetric case with DL=0, we show in Sec. III that there is a new boundary
ondition which is a linear combination of boundary conditions �3� and �6�, i.e.,

P�x,x − 1� = �P�x,x� + �P�x − 1,x − 1� . �8�

t is shown that this type 3 model contains the reactions

mn → m − l,n + l , �9�

ith rates

rl =
1

1 +
�

�
+ ¯ + � �

�
�l−1 . �10�

his is an interesting one-parameter family of interactions.
In Sec. IV, we generalize the boundary conditions �3�, �6�, and �8� to include annihilation to

he processes �1�, �7�, and �9�, respectively. The resulting models are rather involved. To be
pecific, we consider DL=0 case of �3�, and show that the boundary condition

P�x,x − 1� = �P�x − 1,x − 1� �� � 1� �11�

escribes the reactions

mn → m − l,n + l with rate �l−1,

n → �n − 1

n − 2

¯

. with total rates n − �
l=0

n−1

�l. �12�

he second reactions are the annihilation processes. We call this model the type 4 model. It must
e mentioned that we cannot extend our investigation to include the creation processes. The main
eason is that if we do so, the evolution equation of n-particle sector will not become closed and
ill depend on the more-than-n-particle configurations.

The Bethe ansatz solution for different models is discussed in Sec. V and the exact N-point
onditional probabilities of type 4 model is obtained in Sec. VI. Some interesting physical quan-
ities are also obtained. Finally we discuss the multispecies extension of these processes in the last
ection and show that this generalization is not possible for the reactions without exclusion.

I. REACTIONS WITH DLÅ0 AND DRÅ0

Consider the master equation �4� for the two particle sector, when the particles are at site

1=x2=x,

Ṗ�x,x� = DRP�x − 1,x� + DRP�x,x − 1� + DLP�x + 1,x� + DLP�x,x + 1� − 2P�x,x� . �13�

he second and third probabilities on the right-hand side of the above equation are out of the

hysical region, and must be defined through some boundary conditions. There are only two
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ossibilities which are consistent in more-than-two-particle sectors. The first one is

��P�x,x − 1� = DRP�x − 1,x − 1� + DLP�x,x� , �14�

nd the second one is

DRP�x,x − 1� + DLP�x + 1,x� = ��P�x,x� . �15�

n the first choice, we take any unphysical terms of Eq. �13� as a linear combination of physical
unctions, and in the second choice, we take the whole unphysical terms as a linear combination
f the physical probabilities. The right-hand sides of Eqs. �14� and �15� are the only allowed
ombinations which one can write. This was discussed in Ref. 25 for ASEP cases. In fact, one can
se any other parameters � and � instead of DR and DL in Eq. �14�, with condition �+�=1. Also
ne can add two other terms �P�x−1,x−1� and 	P�x+1,x+1� to the right-hand side of Eq. �15�,
ut it can be shown that for obtaining a consistent description in more-than-two-particle sectors,
ne must take �=	=0 �see Sec. III of Ref. 25 for more details in the ASEP case�.

To obtain the range of parameters �� and ��, one can use Eq. �4� to show that

�

�t
�
x2

�
x1�x2

P�x1,x2;t� = − �
x

P�x,x;t� + DR�
x

P�x,x − 1;t� + DL�
x

P�x + 1,x;t�

= − �
x

P�x,x;t� + �
x

P�x,x − 1;t� . �16�

or boundary condition �14�, Eq. �16� results in

�

�t
�
x2

�
x1�x2

P�x1,x2;t� = � 1

��
− 1��

x

P�x,x;t� , �17�

nd for boundary condition �15�, it results in

�

�t
�
x2

�
x1�x2

P�x1,x2;t� = ��� − 1��
x

P�x,x;t� . �18�

n the first step, let us exclude the annihilation processes and therefore it is assumed that the
umber of particles is constant in time. In this way, the Eqs. �17� and �18� lead to

�� = 1 �for boundary condition �14�� ,

�� = 1 �for boundary condition �15�� . �19�

quation �14� exactly becomes the one studied in Ref. 28, i.e., Eq. �3�, and it induces the reactions
1�, but the second one, Eq. �15�, is new. To obtain the reaction introduced by this boundary

ondition, with ��=1, we first consider Ṗ�x ,x� in Eq. �13�. Using Eqs. �15� and �19�, one finds

Ṗ�x,x� = DRP�x − 1,x� + DLP�x,x + 1� − P�x,x� , �20�

hich is the evolution equation of the following two-particle reactions:

10 → 01 with rate DR,

01 → 10 with rate DL. �21�
emember DR+DL=1. Generally, for n particles existing at a common site x, one finds from �4�,
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�22�

hich is obviously the evolution equation of reactions �7�.

II. TOTALLY ASYMMETRIC DIFFUSION WITH DL=0

In DL=0, the boundary condition �3� and �6� becomes

P�x,x − 1� = P�x − 1,x − 1� ,

P�x,x − 1� = P�x,x� , �23�

espectively, which describe the interactions

mn → m − l,n + l with rate 1 �24�

nd

mn → m − 1,n + 1 with rate 1, �25�

espectively. But as was first noted in Ref. 22 for ASEP, the linear combination of these two
oundary conditions may result in a integrable model. So we consider

P�x,x − 1� = �P�x,x� + �P�x − 1,x − 1� , �26�

s the boundary condition for the following master equation:

�

�t
P�x1, . . . ,xN;t� = �

j=1

N

�P�x1, . . . ,xj−1,xj − 1,xj+1 . . . ,xN;t� − P�x1, . . . ,xN;t�� . �27�

irst we note that

�

�t
�
x2

�
x1�x2

P�x1,x2;t� = �� + � − 1��
x

P�x,x;t� , �28�

rom which the conservation of number of particles results

� + � = 1. �29�

o obtain the resulting reactions, besides the diffusion 10→01 with rate 1, we first consider

Ṗ�x ,x�. Using �26� and �27�, it is found that

Ṗ�x,x� = P�x − 1,x� + �P�x − 1,x − 1� − �2 − ��P�x,x� , �30�

hich represents the reaction 20→02, with rate �=1−�, as the source and sink of this state. To
nd the reactions in the general case, we first prove a lemma.
Lemma: Equation �26� implies, for arbitrary n, the following:
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�31�

ith rn defined through �10�.
Proof: We proceed by induction. For n=1, �31� reduces to �26�. Assuming �31� is correct for

−1, then using �26�, we have

�32�

o

�33�

here

rn+1 =
�rn

1 − ��1 − rn�
, sn+1 =

�

1 − ��1 − rn�
. �34�

t is seen that rn+1+sn+1=1. The value of rn can be found by solving the first equation of �34�,
hich can be written as

rn+1
−1 = 1 +

�

�
rn

−1. �35�

sing r2
−1= �1/��=1+ �� /��, �35� leads to Eq. �10� for rn’s. This proves the lemma. �

We now consider the evolution of
sing �27� and �31�, we find

�36�

his equation shows that a collection of j particles hops from site x−1 to site x with rate rj, and
his proves that the induced reactions of the boundary condition �8� are those indicated in �9�.

At �=1 ��=0�, Eq. �10� results in rl=
l1. So the reactions are

mn → m − 1,n + 1, with rate 1. �37�

his is nothing but Eq. �25�. At �=0 ��=1�, Eq. �10� gives rl=1 for all l’s. So the reactions are
hose shown in �24�. In fact, at �=0, all the multiparticle hoppings occur with equal rate 1. By
ncreasing �, the greater number of simultaneous hoppings happen with lower rates, until at �

1, in which only the one-particle hopping is allowed.
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V. ANNIHILATION-DIFFUSION PROCESSES

Adding annihilation to the preceding reactions, results in the decreasing of the number of
articles with time. Therefore the parameters ��, ��, and �� ,�� in Eqs. �14�, �15�, and �26�
ecome

�� � 1 �for boundary condition �14�� ,

�� � 1 �for boundary condition �15�� ,

� + � � 1 �for boundary condition �26�� . �38�

hese are obtained from Eqs. �17�, �18�, and �28�, respectively. Note that the annihilation inter-
ctions only appear in sink terms of the master equation, since if we consider an initial state with
particles, no annihilation process can lead to a n-particle state at any later time t.

To obtain the corresponding interactions of either of boundary conditions, we begin with �15�
ith ���1. Considering Ṗ�x ,x�, one finds

Ṗ�x,x� = DRP�x − 1,x� + DLP�x,x + 1� − �2 − ���P�x,x� , �39�

hich shows the annihilation rate 1−�� for the state of two particle at a common site. In general
ase, one finds, similar to Eq. �22�,

�40�

hich is the evolution equation of the following reactions:

mn → m − 1,n + 1 with rate DR,

mn → m + 1,n − 1 with rate DL,

n → �n − 1

n − 2

¯

. with total rates �n − 1��1 − ��� . �41�

n the case of boundary condition �26� with �+��1, it is not easy to obtain a compact form for
nteraction rates in the general case. For example, in two- and three-particle sectors, considering

Ṗ�x ,x� and Ṗ�x ,x ,x�, one finds

mn → m − 1,n + 1 with rate 1,

mn → m − 2,n + 2 with rate � ,

mn → m − 3,n + 3 with rate
�2

1 − ��
,

2 → 1 with rate � = 1 − �� + �� ,

3 → 	2

1
with total rates

���2 + �� + 2�
1 − ��

. �42�
n this case, we have a two-parameter family of interactions.

                                                                                                            



p
D

a

T
f
r
p

V

f

w

T
e

T
m

a



E

w

023304-8 Masoud Alimohammadi J. Math. Phys. 47, 023304 �2006�

                        
When we consider the boundary condition �14� with ���1, again we can not find the com-
act relations and it is better to restrict ourselves to the subset of totally asymmetric reactions with

L=0. This means that we take

P�x,x − 1� = �P�x − 1,x − 1� �� � 1� �43�

s the boundary condition ��=1/���. Considering the general case P�x , . . . ,x�, results in

�44�

his equation shows that the sources are the simultaneous hoppings of j particles �j=1, . . . ,n�
rom the common site x−1 to x, with rates � j−1. So the sinks are also these hoppings and the
emaining rate of the sink terms in Eq. �44�, i.e., n−� j=0

n−1� j, is due to the annihilations of these n
articles at site x. So, it is proved that the boundary condition �43� induces the reactions �12�.

. BETHE ANSATZ SOLUTION

Now we try to solve the resulting evolution equations, in all the discussed cases, by the
ollowing Bethe ansatz:

P�x;t� = e−ENt��x� , �45�

here x= �x1 , . . . ,xN�, and

��x� = �


Aei�p�·x. �46�

he summation runs over the elements of permutation group of N object. Inserting �46� in master
quation �4�, results in

EN = �
k=1

N

�1 − DRe−ipk − DLeipk� . �47�

o determine A, we must insert the expression �46� in the boundary conditions. For the type 2
odel, for instance, we must use Eq. �6�, which results in

DR��. . . ,xi = x,xi+1 = x − 1, . . . � + DL��. . . ,xi = x + 1,xi+1 = x, . . . � = ��. . . ,xi = x,xi+1 = x, . . . � ,

�48�

nd using �46�, gives

�DRe−i�pk+1� + DLei�pk� − 1�A + �DRe−i�pk� + DLei�pk+1� − 1�Ak
= 0. �49�

k is an element of permutation group which only interchanges pk and pk+1,

k:�p1, . . . ,pk,pk+1, . . . ,pN� → �p1, . . . ,pk+1,pk, . . . ,pN� . �50�

quation �49� gives Ak
in terms of A as follows:

Ak
= S�2���pk�,�pk+1��A, �51�
here
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S�2��z1,z2� = −
DRz2 + DLz1

−1 − 1

DRz1 + DLz2
−1 − 1

, �52�

here zk=e−ipk. Equation �51� allows one to compute all A’s in terms of A1, which is set to unity.
The same procedure can be applied to other boundary conditions. For example for type 3

odel, boundary condition �8�, one finds

S�3��z1,z2� = −
� + ��z1 + z2� − z2

� + ��z1 + z2� − z1
, �53�

nd for boundary condition �15�, with ���1,

S�z1,z2� = −
DRz2 + DLz1

−1 − ��

DRz1 + DLz2
−1 − ��

. �54�

hese solutions can be used, in principle, to calculate the conditional probabilities
P�x1 , . . . ,xN ; t 
y1 , . . . ,yN ;0�. This is the probability of finding the particles at time t at sites

1 , . . . ,xN, if at t=0, they were at sites y1 , . . . ,yN, respectively. But unfortunately, the standard
ethod, used for example, in Refs. 21–25, cannot be used here. This is because the initial condi-

ion

P�x;0
y;0� = 
x,y �55�

s satisfied by the standard expression

P�x;t
y;0� =� dNp

�2��Ne−ENte−ip·y��x� , �56�

nly when yi�yi+1 and xi�xi+1. This condition is only satisfied by exclusion processes and for
rocesses without exclusion, we must look for other methods.

I. N-PARTICLE CONDITIONAL PROBABILITIES

In some special cases, it is possible to calculate the conditional probabilities in terms of a
pecific determinant. This was first proved in Ref. 21, and then used for other cases in Refs. 22 and
3. Now we want to check that this method does work here, and as a specific example, we
onsider the type 4 model with the boundary condition �11�.

We set the following ansatz for N-particle conditional probabilities:

P�x;t
y;0� = e−Nt det�G�x;t
y;0�� , �57�

here G is a N�N matrix with elements

Gij�x;t
y;0� = gi−j�xi − yj;t� . �58�

nserting �57� in Eqs. �27� and �11�, results in

�

�t
Gi�x;t� = Gi�x − 1;t� ,

Gi−1�x;t� = �Gi−1�x − 1;t� + �Gi�x − 1;t� , �59�

here Gi denotes the ith row of matrix G, and � is an arbitrary constant. In terms of functions

p�n ; t�, �59� becomes

�
gp�n;t� = gp�n − 1;t� ,
�t
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gp�n;t� = �gp�n − 1;t� + �gp+1�n − 1;t� . �60�

ntroducing the z-transform

g̃p�z,t� = �
n=−�

�

zngp�n;t� , �61�

e find

�

�t
g̃p�z,t� = zg̃p�z,t� Þ g̃p�z,t� = eztg̃p�z,0� ,

g̃p+1�z,t� =
1 − �z

�z
g̃p�z,t� . �62�

he second equation yields

g̃p�z,0� = �1 − �z

�z
�p

g̃0�z,0� . �63�

sing P�x ;0 
y ;0�=g0�x−y ;0�=
x,y, one finds g̃0�z ,0�=1. Finally

g̃p�z,t� = ezt�1 − �z

z
�p

, �64�

n which we choose �=1. The functions gp�n ; t� can be obtained by expanding the generating
unctions g̃p�z , t�. For p�0, the expansion yields

gp�n;t� = �
m=0

p � p

m
��− ��m tn+p−m

�n + p − m�!
, �65�

nd for negative p, it yields

g−
p
�n;t� = �
m=0

n−
p
 �
p
 + m − 1

m
��m tn−
p
−m

�n − 
p
 − m�!
. �66�

e have thus obtained the explicit relation for conditional probabilities.
It can be checked that the resulting function satisfies the desired initial condition. At t=0,

here xi=yi, we have g−
p
�0; t�=0 and g0�n ;0�=
n,0, which result P�x ;0 
x ;0�=1. Also it may be
nteresting to obtain the rate of decay of a delta function distribution. Suppose at t=0, there are N
articles at the same site y. We want to obtain the probability of finding all the particles at their
nitial positions at later time t, i.e., P�y ; t 
y ;0�, where y= �y , . . . ,y�. Using g−
p
�0; t�=0 and

0�0; t�=1, we obtain

P�y;t
y;0� = e−Nt det�G�y;t
y;0�� = e−Nt, �67�

hich is independent of �! It is an interesting result. At �=1, where there is no annihilation, the
ate of simultaneous hoppings of particles are all 1, irrespective of the number of particles. By
ecreasing �, the rates of simultaneous hoppings decrease with increasing the number of particles
see Eq. �12��. At the same time, the rate of annihilation increases in such a way that the total
ecaying rate remains constant.

The above determinant method can be applied to any model which its boundary condition
quation contains only two terms. Otherwise it does not lead to the consistent relations for matrix

lements gp�n ; t�’s. So for DR=0 or DL=0 cases of boundary conditions �3� and �6�, and �=0 or
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=0 cases of boundary condition �8�, this method leads to explicit expressions for N-particle
onditional probabilities.

II. CONCLUSION

In the preceding sections, we use all the allowed generalizations of the boundary condition in
he asymmetric reaction-diffusion processes without exclusion, to obtain several integrable models
or one-species cases. The further natural generalization, which has been discussed in many papers
or the ASEP case, is the multispecies extensions of these models. In multispecies studies, one
onsiders a p-species system with particles A1 , . . . ,Ap. The basic objects are the probabilities

P�1. . .�N
�x1 , . . . ,xN ; t� for finding at time t the particles of type �1 at x1, particle of type �2 at x2, etc.

he master equation, instead of �4�, is Ref. 25,

�

�t
P�1. . .�N

�x1, . . . ,xj, . . . ,xN;t� = �
j=1

N

DRP�1. . .�N
�x1, . . . ,xj−1,xj − 1,xj+1, . . . ,xN;t�

+ �
j=1

N

DLP�1. . .�N
�x1, . . . ,xj−1,xj + 1,xj+1, . . . ,xN;t�

− NP�1. . .�N
�x1, . . . ,xj, . . . ,xN;t� . �68�

ow if we want to use this equation for reactions without exclusion, the problem will arise when
ome of the particles are in the same position. Consider, for example, the two-species case

P�1�2
�x ,x�. It is seen that Eq. �68� has the term P�1�2

�x−1,x�, as the source term of the desired
tate, but does not contain P�2�1

�x−1,x�, which is as important as the first term. In fact, this is the
ource of many difficulties that arise in multispecies extension of reaction-diffusion processes
hich have no exclusion. So it seems that the integrable models discussed in the preceding

ections are all that one can obtain in this context.
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Noncommutative differential calculus on quantum Minkowski space is not sepa-
rated with respect to the standard generators, in the sense that partial derivatives of
functions of a single generator can depend on all other generators. It is shown that
this problem can be overcome by a separation of variables. We study the action of
the universal L-matrix, appearing in the coproduct of partial derivatives, on gen-
erators. Powers of the resulting quantum Minkowski algebra valued matrices are
calculated. This leads to a nonlinear coordinate transformation which essentially
separates the calculus. A compact formula for general derivatives is obtained in
form of a chain rule with partial Jackson derivatives. It is applied to the massive
quantum Klein-Gordon equation by reducing it to an ordinary q-difference equa-
tion. The rest state solution can be expressed in terms of a product of q-exponential
functions in the separated variables. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2165793�

. INTRODUCTION

. Quantum theory on noncommutative space-time

Much of the development of quantum theories on noncommutative space-times was and still
s driven by the question whether noncommutative geometry might lead to an ultraviolet regular-
zation of quantum field theory, as it was suggested by Heisenberg as early as 1938.1 For the
implest conceivable examples of noncommutative geometries, where the commutator of the
oordinates is constant, these hopes for regularization were met with disappointment. Such theo-
ies exhibit a mixing of ultraviolet and infrared cutoff scales,2,3 which has been understood re-
ently on the level of renormalization.4 For that reason these simple noncommutative spaces,
hile interesting objects on their own, hardly seem to improve the divergent behavior of quantum
eld theory at all. The natural next step is to turn again to more complicated noncommutative
paces, such as quantum spaces with Lie type or homogeneous commutation relations.

Quantum Minkowski space is one of the most realistic examples of a quantum deformation of
pace-time5 with a rich and fairly well understood mathematical structure: It is four dimensional in
he sense that it is generated as algebra by four coordinates such that the ordered monomials are

Poincaré-Birkhoff-Witt basis. The time coordinate is central, which is important for a causal
nterpretation of quantum theory.6 By construction, it is a module algebra with respect to the
uantum Poincaré algebra,7 so it has a well-defined quantum symmetry structure.8 The action of
he generators of the inhomogeneous part of the quantum Poincaré algebra, the momenta, on
uantum Minkowski space induces a first order covariant differential calculus9.

With these key mathematical structures present, it was possible to mimic much of the con-
truction of quantum theory on commutative space-time within an algebraic and representation

heoretic approach. Sections of noncommutative space-time were studied by spectral theory of

47, 023501-1022-2488/2006/47�2�/023501/22/$23.00 © 2006 American Institute of Physics
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oncommutative coordinates, yielding discrete space-time lattices.10 Free elementary particles
ere constructed as irreducible representations of the quantum Poincaré algebra, including Wigner

epresentations of spin.11 The free particles were shown to obey quantum wave equations which
roject reducible quantum Lorentz spinor representations on their irreducible subrepresentations.12

he coupling of free fields to gauge fields was studied systematically within noncommutative
auge theory.13–17 Quantum statistics of the tensor representation of a second quantized free theory
as studied within the framework of braided tensor categories18 using Drinfeld twists.19 Only a

mall selection of the numerous contributions to this program can be cited here. At the time of this
riting, many mathematical aspects of free quantum theory on quantum Minkowski space are
nderstood, and the construction of interaction terms on the level of single particle field equations
s known. What is not known is how to solve these field equations by noncommutative wave
unctions, not even for the free case. However, this will be indispensable if free particles are to be
oupled by multiplying their noncommutative wave functions within the algebra of quantum
pace-time, in order to modify the concept of locality on a fundamental level.

We remark, that there are other approaches involving wave equations on noncommutative
pace-time which are inequivalent to the ones considered here: In Ref. 20 a q-deformed relativistic
ave equation was constructed using a q-deformation of the Clifford algebra. This approach yields
-wave equations which are similar to the ones considered here. However, in Ref. 12 it was shown
hat, from a representation theoretic viewpoint, an additional twisting of the �-matrices by the
niversal R-matrix is needed if the q-partial derivatives are to be identified with the q-momenta.
n Ref. 21 the construction of deformed wave equations also relied on covariance arguments. But
here, a certain deformation of the conformal symmetry algebra was considered which does not
ontain the standard q-Poincaré algebra as subalgebra. For this reason the wave equations derived
n Ref. 21 are different from the ones considered here. In Ref. 22 q-deformed cospinors were used
n order to construct q-deformed wave equations. However, these are really cowave equations
hich are mathematically quite different objects. Finally, a number of authors has used various

bstract differential calculi on quantum spaces23–25 in order to construct q-differential equations. In
hese cases covariance with respect to the full q-Poincaré algebra, which determined the q-wave
quations of Ref. 12 uniquely, was not the guiding principle and is, therefore, not satisfied in
eneral.

. Noncommutative differential calculus

The free wave equations on quantum Minkowski space can be determined uniquely on a
urely representation theoretic level. To give the simplest example, just as in the undeformed case,
he momentum square p�p� is central within the quantum Poincaré algebra. Therefore, it must be
epresented within the irreducible representation corresponding to a free particle by a multiple of
he identity operator,

p�p� = m2, �1�
2 being the square of the particle’s mass. This line of reasoning does not depend in any way on
ow the momenta act on noncommutative wave functions, that is, on elements of quantum
inkowski space.

In order to interpret Eq. �1� as Klein-Gordon equation on noncommutative space-time we
ust let the momenta act on noncommutative wave functions. Momenta then correspond to partial

erivatives, p�= i��, defined by the noncommutative first order differential calculus. This yields a
ave equation given by a noncommutative partial differential equation,

������ = − m2� , �2�

here � is an element of the algebra of quantum Minkowski space. The triangle notation is used
o distinguish the action from the multiplication in the quantum Heisenberg algebra. There is a
onsiderable amount of literature on first order differential calculi on noncommutative algebras,

26 27,28
ostly on quantum groups and to some extent on homogeneous quantum spaces. Most
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athematical work has concentrated on the construction, structural analysis, and classification of
ifferential calculi. However, hardly any literature on the subject has dealt with concrete calcula-
ions within these differential calculi. On quantum Minkowski space a differential calculus has
een known for some time, and can be deduced most elegantly from the coproduct of momenta.9

he coproduct defines the action of partial derivatives on noncommutative functions, recursively.
hile the recursion relations can be used to expand the derivatives in terms of nested summations

nd partition functions, as it was carried out in a very detailed manner in Ref. 29, this does not
olve the main computational problem which arises with wave equations like Eq. �2�.

Trying to solve Eq. �2� by a brute force calculation with a general ansatz for the wave function
hould work in principle, but turns out to run into considerable computational complexity. More-
ver, the solutions thus obtained in terms of recursion relations do not give much structural insight
n the solutions which, after all, are the noncommutative counterpart of something as simple and
asic as plane waves. Why is this computation so difficult? It can be shown that just as in the
ommutative case the space of solutions of the massive Klein-Gordon Eq. �2� is generated, as
epresentation of the quantum Poincaré algebra, by a rest state, which satisfies12

�0�� = im�, �A�� = 0, �3�

here A is a three vector index of spatial coordinates. In the commutative case we could now infer
hat � is a function of the time coordinate x0 alone, thus reducing Eq. �3� to an ordinary differential
quation in one coordinate x0. Not so in the noncommutative case, where the partial derivatives of
function in x0 depend on all coordinates x�, which makes the solution of Eq. �3� so involved. In

nalogy to partial differential equations in non-Cartesian coordinates we will describe this mixing
f dependencies by saying that within the noncommutative calculus the standard variables are not
eparated.

It is now obvious to ask, whether new variables can be found which separate the differential
alculus, such that Eq. �3� becomes easily solvable. The main purpose of this paper is to show that
his question has a positive answer.

. Structure, main results, notation

The paper is organized as follows: In Sec. II the structure of the differential calculus on
uantum Minkowski space is reviewed. We recall the commutation relations, general structure of
he quantum Lorentz algebra, universal R-matrix, and the definition of the coproduct of momenta
n order to make this paper self-contained and fix conventions and notation unambiguously.

Section III contains the bulk of the paper: the computation of derivatives of arbitrary elements
n the quantum Minkowski algebra. We first develop a notation and calculus in order to deal with
unctions of the algebra valued 4�4 matrices which come from the action of the universal
-matrices appearing in the definition of the coproduct of momenta. The computation problem is

he calculation of powers of algebra valued matrices, which can then be used to calculate the
erivatives of arbitrary functions of the noncommutative coordinates. We do this calculation in
wo steps: In the first step we deal with polynomials of the noncentral variables. The main result
s Proposition 1, Eqs. �69� and can be written in the concise form of a chain rule, where the outer
erivatives are partial Jackson derivatives. In the second step we calculate derivatives of functions
f the central coordinates, time and four length. The partial derivatives of functions in the time
enerator are complicated and depend on all other generators. However, we are able to give a
oncommutative coordinate transformation such that the derivatives of functions in the central
enerators are disentangled and take the form of a chain rule, too. This is the main result of the
aper, presented in Proposition 3, Eq. �97�. The results of these two steps can be combined to yield
compact formula for the derivatives of arbitrary elements of the algebra, given in Eq. �101�.

In Sec. IV we apply the formulas for the derivations to the initial problem of finding the
omentum eigenstate solutions of the massless and massive quantum Klein-Gordon equation,

iewed as differential equations within the noncommutative differential calculus. We show that the

eparation of variables of the preceding section separates the differential equations completely.
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his reduces the partial differential equations to single variable equations involving Jackson de-
ivatives, which are easily solved. The solutions are given in Eqs. �110� and �117� in terms of
-exponential functions.

Following the conlusion in Sec. V, the appendix finally contains a few more technical results
hich are used in the paper. This makes this paper reasonably self-contained and will be useful for
reader who wishes to reproduce the calculations in detail.

Notation: Throughout the paper q denotes a real positive deformation parameter, such that for
→1 we retrieve the undeformed, commutative limit. We will often use the abbreviations �ªq
q−1 and symmetrized and standard quantum numbers,

�n� =
qn − q−n

q − q−1 , �n�q2 =
q2n − 1

q2 − 1
, �4�

here n is a natural number. Repeated upper and lower indices are summed over x�x�

��x�x�.

I. DIFFERENTIAL CALCULUS ON QUANTUM MINKOWSKI SPACE

. Quantum Minkowski space

Quantum Minkowski space has first been constructed as braided product of two copies of the
uantum plane.5 We will need the definition in terms of generators which are decomposed into the
calar time coordinate and the three vector of space coordinates.

Definition 1: The algebra generated by the four generators x0, x−, x+, and x3, divided by the
elations

x−x0 = x0x−, x+x0 = x0x+, x3x0 = x0x3,

q−1x−x3 − qx3x− = − �x−x0, q−1x3x+ − qx+x3 = − �x+x0, �5�

x−x+ − x+x− − �x3x3 = − �x3x0,

s called the algebra of quantum Minkowski space, denoted by X.
Here, x0 is the time coordinate, while x−, x+, and x3 are the space coordinates with su2-weight

ndices �−,3 , + ���−1,0 ,1�. The commutation relations �5� can be written in more sophisticated
orms, e.g., in terms of q-Clebsch-Gordon coefficients or in terms of an R-matrix as we will recall
n the next section.

The center of X is generated by x0 and the four-square

x2
ª �x0�2 + q−1x−x+ + qx+x− − �x3�2. �6�

ince we will not use 2 as index, x2 cannot be confused with any one of the coordinates. The
our-square can also be written as

x2 = x�x���� �7�

n terms of the q-Minkowski metric defined by

�00 = 1, �−+ = q−1, �−+ = q, �33 = − 1, �8�

ll other components vanishing. The metric defines upper four-vector indices by

x�
ª ���x�. �9�

2 � 2 � ��
ote, that x =x�x but x �x x� because � is not symmetric.
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. Quantum Lorentz algebra

By construction X is a module algebra with respect to the quantum Lorentz algebra Uq�sl2�C��.
here are several essentially isomorphic forms of Uq�sl2�C�� in use.30,9,31,32 In the chiral decom-
osition form Uq�sl2�C�� is given, as algebra, by the tensor square of quantum U�su2�,

Uq�sl2�C�� = Uq�su2� � Uq�su2� . �10�

he definition of Uq�su2� is recalled in the appendix. The chiral decomposition implies that the
rreducible representations of Uq�sl2�C�� can be labelled by the highest weights of the two tensor
actors. For example, the structure morphism of the four-vector representation is given on this
hiral form by

��1/2,1/2�
ª �1/2

� �1/2, �11�

here �1/2 is the fundamental representation of Uq�su2� with highest weight or spin j= 1
2 .

The quantum Lorentz algebra is quasitriangular. In the chiral form �10� the universal R-matrix
f Uq�sl2�C�� can be expressed in terms of the well-known universal R-matrix of Uq�su2�. There
re two inequivalent universal R-matrices,18

RI = R41
−1R31

−1R24R23, RII = R41
−1R13R24R23, �12�

here R is the universal R-matrix of Uq�su2� given in Eq. �A6�, and where we have used the
ensor leg notation R23=1 � R � 1, etc. The four-vector representations of the universal

-matrices are denoted by

RI 	

��

ª ���1/2,1/2�
� ��1/2,1/2���RI�

��
	
,

�13�
RII 	


��
ª ���1/2,1/2�

� ��1/2,1/2���RII�
��

	
.

ith the R-matrices the commutation relations �5� can be written in the compact form

x	x
 = x�x�RI 
	
�� . �14�

his implies that the X-algebra has the Poincaré-Birkhoff-Witt property, because the R-matrices
atisfy the Yang-Baxter equation. From the decomposition of the R-matrices into eigenspaces we
an, furthermore, derive the relation

�1 + qR̂II��1 − R̂I� = 0, �15�

here the hat denotes swapping the two upper indices R̂��

	=R��


	. We will need this formula
ater.

The disadvantage of the chiral form �10� is that the inner tensor factors of the coproduct are
wisted with the R-matrix of Uq�su2�. Since the R-matrix is given by an infinite series, which
xists only as formal power series, some of the generators of Uq�sl2�C�� have a complicated
oproduct which then exists only as formal power series, too. Therefore, it is also convenient to
se the Drinfeld double form,33 where Uq�sl2�C�� is represented as Drinfeld double of the Hopf-
ually paired Uq�su2� and SUq�2�op.

. Noncommutative differential calculus

The generators of q-momenta are required to transform as four-vector with respect to
-Lorentz transformations. The fact that q-momenta transform in the same way as the coordinate
enerators of q-Minkowski space implies that they must satisfy the same commutation relations as
ell. This leads to the definition of the q-momentum algebra as the algebra generated by

p0 , p− , p+ , p3 with commutation relations �5�, replacing x with p everywhere.

Noncommutative partial derivatives
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�� ª ip� �16�

re defined by the action of the momentum generators on the q-Minkowski algebra of space
unctions. Partial derivatives of the coordinates must be dimensionless numbers from the base field
f complex numbers �including the deformation parameter q�. Just as in the undeformed case the
nly tensor in the base field with two four-vector indices is the metric. We conclude that the action
f partial derivatives on coordinates is given by

���x� = ��� ⇔ ���x� = ��
�. �17�

his action on the generators extends to the entire algebra of q-Minkowski space by the coproduct
f momenta,9

��p�� ª p�
� 1 + � � 1�RII

−1�1 � p��RII = p�
� 1 + L�

� � p�. �18�

ere RII is the second of the universal R-matrices of the q-Lorentz algebra given in Eq. �12�. The
-matrix is the four-vector half-representation of this R-matrix

L�
� ª RII�1��

�1/2,1/2��RII�2��
�

�, �19�

here we have used a Sweedler-type notation for RII=RII�1� � RII�2�. Finally,  is a grouplike
caling operator,

p� = qp�, x� = q−1x�, ��� =  �  . �20�

The action �17� of partial q-derivatives together with the coproduct �18� defines a
-Lorentz-covariant differential calculus on q-Minkowski space. Letting p� act on x�f , f �X, we
btain

p���x�f� = − i��
�f + qRII ���

��� x���p
���f� , �21�

rom which we can deduce the q-deformed Heisenberg commutation relations

p�x� − qRII ���
��� x��p

�� = − i��
�, �22�

hich are of the type originally introduced by Wess and Zumino.28

In order to show that Eqs. �17� and �18� define a differential calculus which is well defined on
he algebra X, that is, which does not depend on the ordering of the coordinate generators, we

ust check if the action of the momenta is consistent with commutation relations �5� defining X.
his is best done using the R-matrix form �14�,

p���x	x
 − x�x�RI 
	
�� � = �p��x�x����


��	
� − R̂I 
	

�� � = x��� �
�� �

� + qR̂II ��
�� ���


��	
� − R̂I 
	

�� � = 0,

�23�

here in the last step we have used Eq. �15�.
In principle, the action �17� of the partial derivatives on generators together with the coprod-

ct �18� of momenta defines the action of partial derivatives on arbitrary elements of quantum
inkowski space. Note, however, that this definition is recursive. It does not yield formulas for

he partial derivatives of a basis of the noncommutative space algebra, such as the Poincaré-
irkhoff-Witt basis of ordered monomials,

BPBW ª ��x0�n0�x−�n−�x+�n+�x3�n3	n0,n−,n+,n3 � N0� . �24�
o derive such a formula is one of the goals of the next section.
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II. COMPUTATION IN NONCOMMUTATIVE CALCULUS

. L-matrix calculus

Let us first consider the simple case of a power of one single generator, f =x�
n , �� �0,

, + ,3�, n�N. Using the coproduct �18� we get by induction

���x�
n = �

k=0

n−1

qk�L�
��x�

k �����x��x�
n−k−1, �25�

here the factor qk comes from the action of the scaling operator �20�,

�x�
k = �1�x�

k S��2�� = x�
k −1 = qkx�

k . �26�

y construction, the L-matrix is a comultiplicative quantum matrix, ��L�
��=L�

	 � L	
�. So we get

or the action of L on a power

L�
��x�

k = �L�
	1

�x���L	1
	2

�x�� ¯ �L	k−1
��x�� . �27�

ince each L	k
	k+1

�x� are X-valued 4�4-matrices, the right-hand side is the matrix product of
uch matrices. This suggests to introduce an index-free notation.

Definition 2: Let L�
� be the L-matrix defined in Eq. �19�, �� the partial derivatives defined in

16�, f �X an element of the algebra of quantum Minkowski space. Then we denote by Lf the
-valued 4�4-matrix and by �f the X-valued four-vector with entries

�Lf�
�

� ª L�
��f and ��f��

ª ���f , �28�

espectively.
To illustrate this, we have, for example,

�Lf
2 � f�� = �L�

��f��L�
	�f���	 �f� . �29�

n this index-free notation Eq. �27� is written as L�x�
k =Lx�

k , such that Eq. �25� becomes

�x�
n = �

k=0

n−1

qkLx�

k ��x��x�
n−k−1. �30�

e recall that by definition �17� of the action of partial derivatives on the generators we have for
he components of the gradient

��x��� = ���x� = ��
�, �31�

here � ,�� �0,− , + ,3�.
The computationally difficult part of �30� is the evaluation of powers of the algebra-valued

atrices Lx�
. For example, for �Lx0

��
� we get with respect to four-vector indices � ,�� �0,
, + ,3�,
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Lx0
=

1

�2�

�4�
�2�

x0 q�x− q�x+ q�x3

−
�

q2x+
�4�
�2�

x0 −
�2

q
x3 0 �x+

�x− 0
�4�
�2�

x0 − q�2x3 − �x−

�

q
x3 − q�x−

�

q
x+

�4�
�2�

x0 − �2x3

� . �32�

brute force calculation of the powers Lx0

n of this algebra valued matrix is not feasible as it would
equire a reordering of an exponentially increasing number of terms to the Poincaré-Birkhoff-Witt
asis �or any other ordering�. Similar matrices and their eigenvalues have been studied
lsewhere34,35 but it can be seen that L0 is not of the exact type considered there so the results do
ot carry over easily.

. Block decomposition of L-matrices

The computational problem of computing the powers of the X-valued Lx�
-matrices can be

implified by considering the L-matrix �19� not with respect to four-vector indices running through
0, �, �, 3� as in Eq. �32�, but with respect to pairs of indices of the two spin-1

2 representations
f the chiral decomposition Uq�sl2�C��=Uq�su2� � Uq�su2� of the q-Lorentz algebra, each labelled
y the weights �− 1

2 , + 1
2
�= �−, + �. We recall that the generators of quantum Minkowski space in

his � 1
2 , 1

2
�-spinor basis labelled by indices ���, ��, ��, ��� are related to those in the

our-vector basis by

x−− = �2�1/2x−,

x−+ = q1/2�x3 − x0� ,

�33�
x+− = q−1/2x3 + q3/2x0,

x++ = �2�1/2x+.

sing formula �12� for the universal RII-matrix in terms of the R-matrix of Uq�su2� and definition
19� of the L-matrix, we calculate the L-matrix with respect to the spinor basis,

�L�ij
kl = �id � id � �1/2

� �1/2��RII�
ij

kl = �L−
1/2� j

j�
�L+

1/2�i
i�

� �L+
1/2� j�

l�L+
1/2�i�

k = Bj
l�L+

1/2�i
k,

�34�

here all indices run through �− 1
2 , + 1

2
�= �−, + �. Here B= �Bj

l� is the matrix of “boosts” which
enerate the SUq�2�op Hopf subalgebra of the Drinfeld double form of the q-Lorentz algebra,33 and

+
1/2 the L+-matrix27 of the Uq�su2� subalgebra of rotations,

B = �a b

c d
, L+

1/2 = �K−1/2 q−1/2�K−1/2E

0 K1/2  , �35�

ith respect to the ��, �� basis. The explicit form of the boosts in the chiral decomposition of the
-Lorentz algebra is given in Eq. �A7�.

The decomposition �34� of the L-matrix into boosts and rotations yields a natural block matrix
ecomposition of the X-valued 4�4-matrices Lx�

as defined in Eq. �28�. For the four-vector index

it turns out to be convenient to use instead of x3 the light cone coordinate
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x3\0 ª x3 − x0, �36�

hich is essentially the x−+-coordinate in the spinor basis �33� of quantum Minkowski space. And
or the block decomposition it is convenient to define X-valued 2�2-matrices by the action of the
oosts

�Bf�
i
j ª Bi

j�f , f � X , �37�

sing the same index-free notation as introduced in Eq. �28�. Since Bi
j is a comultiplicative

uantum matrix, ��Bi
j�=Bi

k � Bk
j, the matrices Bx�

satisfy the same commutation relations �5� as

�. Explicitly, the Bx�
-matrices can be computed to

Bx0
=


�4�
�2�2x0 +

�

q�2�
x3 q−1/2��2�−1/2x+

− q1/2��2�−1/2x−
�4�
�2�2x0 −

q�

�2�
x3
� ,

Bx−
= �x− q−1/2��2�−1/2x3\0

0 x−
 ,

�38�

Bx+
= � x+ 0

− q1/2��2�−1/2x3\0 x+
 ,

Bx3\0
= �q−1x3\0 0

0 qx3\0
 ,

ith respect to spin-1
2 indices running through ��, ��. In terms of these matrices the Lx�

-matrices
an be expressed as

Lx0
= �Bx0

0

0 Bx0

 ,

Lx−
= �qBx−

q−1/2��2�1/2Bx3

0 q−1Bx−

 ,

�39�

Lx+
= �q−1Bx+

0

0 qBx+

 ,

Lx3\0
= �Bx3\0

q−1/2��2�1/2Bx+

0 Bx3\0

 ,

ith respect to the index structure ���, ��, ��, ���.

. Calculating powers of L-matrices

In the form of Eq. �39� the Lx�
matrices are upper block triangular. This makes the computa-
ion of their powers a lot easier. Lx0
and Lx+

are even block diagonal, so we immediately get
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Lx0

n = �Bx0

n 0

0 Bx0

n , Lx+

n = �q−nBx+

n 0

0 qnBx+

n  . �40�

or the calculation of Lx−

n and Lx3\0

n we must use the commutation relations �5� for the Bx�
matrices.

e thus get by induction

Lx−

n = 
qnBx−

n
q−1/2��2�1/2�qn−1 �2n�

�2�
Bx3\0

+ �n�Bx0
Bx−

n−1

0 q−nBx−

n � ,

�41�

Lx3\0

n = �Bx3\0

n q−1/2��2�1/2qn−1�n�Bx+
Bx3\0

n−1

0 Bx3\0

n  .

ow we have expressed the powers of Lx�
matrices in terms of powers of the Bx�

matrices. It
emains to calculate the powers of the Bx�

-matrices. Since Bx3\0
is diagonal we immediately get

Bx3\0

n = �q−nx3\0
n 0

0 qnx3\0
n  . �42�

or the powers of the matrices Bx±
, which are block triangular, we use again the commutation

elations �5� to obtain by induction

Bx−

n = �x−
n q−1/2��2�−1/2qn−1�n�x3\0x−

n−1

0 x−
n  ,

�43�

Bx+

n = � x+
n 0

− q1/2��2�−1/2q1−n�n�x3\0x+
n−1 x+

n  .

he calculation of the powers of Bx0
is more difficult because it is not triangular. Using q-Pauli

atrices �A5�, Bx0
of Eqs. �38� can be written more compactly as

Bx0
ª

�4�
�2�2x0 −

�

�2�
	̃AxA, �44�

here the index A is summed over ��, 3, ��. The q-Pauli matrices satisfy the relation

	̃A	̃B = gBA − 	̃C�B
C

A, �45�

here the quantum metric and epsilon tensor are defined by quantum Clebsch-Gordon coefficients
s

gAB
ª − ��3�Cq�1,1,0;A,B,0� ,

�46�

�AB
C ª −��4�

�2�
Cq�1,1,1;A,B,C� .

ontracting Eq. �45� with xAxB and using the commutation relations �5� of the coordinates, which
an be written as xAxB�AB

C=−�xCx0, we derive

	̃A	̃BxAxB = �gBA − 	̃C�B
C

A�xAxB = xAxA + �x0	̃AxA. �47�
his can be used to compute the square of Eq. �44�,
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Bx0

2 =
�4�2

�2�2 �x0�2 − 2
��4�
�2�3 x0	̃AxA +

�2

�2�2 	̃A	̃BxAxB

=
�4�2

�2�4 �x0�2 − 2
��4�
�2�3 x0	̃AxA +

�2

�2�2 �xAxA + �x0	̃AxA� = �2�x0Bx0
− �x0�2 −

�2

�2�2x2. �48�

ogether with Eq. �40� we conclude that Lx0
satisfies the polynomial equation

0 = Lx0

2 − �2�x0Lx0
+ ��x0�2 +

�2

�2�2x2 = Lx0

2 − 2bLx0
+ c , �49�

here we have introduced the abbreviations

b ª

�2�
2

x0, c ª �x0�2 +
�2

�2�2x2, �50�

hich are both in the center of X. Equation �49� enables us to derive formulas for arbitrary powers
f Lx0

. This is most elegantly done by considering the generating function of the powers �1
Lx0

z�−1=1+Lx0
z+Lx0

2 z2+ . . . , where z is a formal parameter. First we rewrite �49� as

�1 − Lx0

2 z2� − 2bz�1 − Lx0
z� − �1 − 2bz + cz2� = 0 �51�

nd divide it by �1−Lx0
z� and �1−2bz+cz2�, yielding

1

1 − Lx0
z

=
1 + �Lx0

− 2b�z

1 − 2bz + cz2 . �52�

he right-hand side can be expanded in powers of z, observing that it contains the generating
unction for Chebyshev polynomials of the second kind,

1

1 − 2yt + t2 = �
n=0

�

Un�y�tn, �53�

here we must set y=b /�c and t=�cz. We thus obtain

Lx0

n = Un�b/�c�cn/2 + Un−1�b/�c�c�n−1�/2�Lx0
− 2b� = − Un−2�b/�c�cn/2 + Un−1�b/�c�c�n−1�/2Lx0

�54�

or n�2. The fact that Un�y� is a polynomial of degree n which contains either only even or only
dd powers of y implies that Un�1/y�yn is a quadratic polynomial in y. Therefore, the right-hand
ide of Eq. �54� contains only even positive powers of �c, that is, does not contain inverses or
quare roots of c and, hence, yields well-defined elements of the algebra X. Together with Eqs.
40�–�43� this completes our calculation of powers of the Lx�

matrices.

. Calculating derivatives

. Choice of basis and partial Jackson derivatives

With the formulas for the powers of the L� matrices the derivatives of arbitrary elements
f �X could be computed by calculating the derivatives of the Poincaré-Birkhoff-Witt basis of X.

owever, it turns out to be more convenient to work in a slightly different basis. Observe that
rom definition �7� of the q-Lorentz invariant length and the commutation relations �5� we can

educe the relation
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�2�x−x+ = x2 + q2�x3\0�2 + q�x0x3\0. �55�

sing this relation, all products of equal powers of x− and x+ in the Poincaré-Birkhoff-Witt basis
an be substituted by powers of x2. We thus obtain a basis of ordered monomials which contains
owers of x2 and either powers of x− or x+. To be more precise, we have a basis of X,

B = B− � B+, �56�

here

B− ª ��x�x��i�x0� j�x3\0�k�x−�l	i, j,k,l � N0� ,

�57�
B+ ª ��x�x��i�x0� j�x+�l�x3\0�k	i, j,k,l � N0� .

ote, that B− and B+ have a nonempty intersection, the monomials for which l=0. But this will
ot be a problem here. Let us introduce a more suggestive notation for sums of monomials in a
articular order.

Definition 3: Let x1 , . . . ,xn�X be elements of the algebra of quantum Minkowski space. Then
e will denote by f�x1 , . . . ,xn� linear combinations of ordered products of monomials in

1 , . . . ,xn�X. That is,

f�x1, . . . ,xn� � Span��x1�k1
¯ �xn�kn	k1, . . . ,kn � N0� . �58�

With this notation the statement that B−�B+ is a basis of quantum Minkowski space can be
ritten as

f�x0,x+,x3\0,x−� = f−�x2,x0,x3\0,x−� + f+�x2,x0,x+,x3\0� , �59�

ecomposing an arbitrary element of X into two parts containing powers in either x− or x+.
It is important to have a notation which keeps track of the ordering of generators because the

ormulas for derivatives are most elegantly expressed in terms of partial Jackson derivatives which
epend on the ordering. Recall, that the Jackson derivative or q-derivative of a function f
f�x�� in a single variable x� is defined as difference quotient,

�q2f

�q2x�

ª

f�q2x�� − f�x��
q2x� − x�

. �60�

or monomials f�x��= �x��k, this yields

�q2�x��k

�q2x�

= �k�q2�x��k−1, �61�

here �k�q2 is the usual q-number defined in Eq. �4�. This formula naturally generalizes to a partial
ackson derivative on monomials of several noncommutative variables.

Definition 4: Let x1 , . . . ,xn�X be elements of the algebra of quantum Minkowski space (or
ny other algebra). We define the partial Jackson derivative with respect to one of these elements

� on ordered monomials by

�q2

�q2x�

��x1�k1
¯ �xn�kn� ª �k��q2�x1�k1

¯ �x��k�−1
¯ �xn�kn, �62�

nd extend it linearly to arbitrary linear combinations of such monomials. This defines partial
ackson derivatives on general functions f = f�x1 , . . . ,xn� in the sense of Definition 3.

It must be emphasized that the partial Jackson derivatives depend on the particular order and
re not well defined on the algebra. For example, within the algebra we have the commutation

2
elation x3\0x+−q x+x3\0=0, but
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�q2

�q2x+
�x3\0x+ − q2x+x3\0� = x3\0 − q2x3\0 � 0. �63�

his is why we have defined the notation f = f�x+ ,x3\0� to not just denote elements of the algebra
ut to denote in addition a specific ordering of the variables. With this notation the action of partial
ackson derivatives is defined unambiguously.

We break up the calculation of derivatives in two steps. First, we calculate the derivatives of
oncentral variables, x−, x3\0, x+. Working within the basis B we can limit the considerations in this
rst step to polynomial functions f = f�x3\0 ,x−� and f = f�x+ ,x3\0� which depend either on x− or on

+. This calculation is rather straightforward. In a second step we consider polynomial functions
f = f�x2 ,x0� of the center of X. This calculation is much more involved.

. Functions of noncentral coordinates

We begin the calculation of the derivatives of the basis B by reading off Eqs. �38� and �39�
hat the L� matrices possess some algebra valued eigenvalues,

LxA
� xA = qxA � xA,

Lx3\0
� x− = q−1x3\0 � x−, �64�

Lx+
� x3\0 = q−1x+ � x3\0,

or A� �−, + ,3 \0� �no summation over A�. We recall that �x� is the index free notation for
�x���=���x�=��

�.
Inserting the first of these eigenvalue equations into Eq. �30� we obtain for powers of the

enerators

�xA
n = �

k=0

n

q2kxA
k ��xA�xA

n−k−1 = �n�q2xA
n−1 � xA, �65�

or A� �−, + ,3 \0�, where �n�q2 denotes the quantum number �4�. From Eq. �65� we can deduce
hat the derivative of any polynomial f = f�xA� in a single one of the generators xA can be expressed
n terms of the Jackson derivative by

�f�xA� =
�q2f

�q2xA
� xA ⇔ ���f�xA� =

�q2f

�q2xA
�A

�. �66�

sing the second of Eqs. �64� we get

��x3\0
k x−

n� = ��x3\0
k �x−

n + qkL3\0
k ��x−

n� = �k�q2x3\0
k−1x−

n � x3\0 + x3\0
k �n�q2x−

n−1 � x−, �67�

nd analogously for the derivative of x+
kx3\0

n ,

��x+
kx3\0

n � = �k�q2x+
k−1x3\0

n � x+ + x+
k�n�q2x3\0

n−1 � x3\0. �68�

rom Eqs. �67� and �68� we can deduce the following result.
Proposition 1: Let f = f�x3\0 ,x−� and f = f�x+ ,x3\0� be ordered polynomials in the notation of

efinition 3. Then their partial derivatives are expressed in terms of partial Jackson derivatives as

�f�x3\0,x−� =
�q2f

� 2x
� x3\0 +

�q2f

� 2x
� x−, �69a�
q 3\0 q −
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�f�x+,x3\0� =
�q2f

�q2x+
� x+ +

�q2f

�q2x3\0
� x3\0. �69b�

. Functions of four-length

Next, we calculate the derivative of powers of the coordinate four-square x2. Since x2 is a
orentz scalar the L-matrix acts with the counit �,

L�
��x2 = ��L�

��x2 = � �
�x2. �70�

y the same reasoning which led to Eq. �30� we obtain for powers of the four-square

��x2�n = �
k=0

n−1

q2k�x2�n−1 � x2 = �n�q2�x2�n−1 � x2. �71�

gain, for a general function f = f�x2� this can be written in terms of a Jackson derivative by

�f�x2� =
�q2f

�q2�x2�
� x2. �72�

t remains to compute the derivative of x2, which for representation theoretic reasons we expect to
e proportional to the coordinate four vector x�. After straightforward calculations we, indeed, find

��x2�� = q−1�2�x�. �73�

. Functions of time

Like the calculation of powers of Lx0
, the calculation of derivatives of powers of the time

oordinate is more difficult. In order to calculate the derivative of �x0�n we first observe that, since

0 is central in the space algebra we can write Eq. �30� in the form

�x0
n =

�qLx0
�n − �x0�n

qLx0
− x0

� x0, �74�

hich is similar to a q-difference quotient. We can get rid of the matrix in the denominator,

�qLx0
�n − �x0�n

qLx0
− x0

=
�qnLx0

n − x0
n��q−1Lx0

− x0�

�qLx0
− x0��q−1Lx0

− x0�
= −

�2��qn−1Lx0

n+1 − qnLx0

n x0 − q−1Lx0
x0

n − x0
n+1�

�2x2 ,

�75�

here in the second step we have used Eq. �49�. The powers of Lx0
in the numerator have been

alculated in Eq. �54�. From explicit expression �32� of Lx0
we deduce

�Lx0
� x0�� = qx0�0

� −
�

q�2�
x�. �76�

utting things together we obtain

��x0
n�� =

�2�
�
�Uncn/2qn−2 − Un−1c�n−1�/2qn−1x0 − x0

n

x2 x� + Un−1c�n−1�/2qn−1�0
�, �77�

here Un=Un�b /�c� denotes the Chebyshev polynomials of the second kind with the same argu-
ent as in Eq. �54�.

In order to generalize the formulas to general functions f = f�x0� we first note that we can

educe from Eq. �74�,
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�f�x0� =
f�qLx0

� − f�x0�

qLx0
− x0

� x0, �78�

hich could be viewed as matrix valued generalization of the Jackson derivative. In order to
ompute this expression we need to generalize formula �54� for the powers of Lx0

to general
unctions. The result is given by the following.

Proposition 2: Let Lx0
be the X-valued 4�4-matrix given by Eq. (32). Let b and c be defined

s in Eq. �50�. Define


± ª b ± �b2 − c =
1

2
��2�x0 ± ���x0�2 −

4

�2�2 �x2� , �79�

nd

�± ª
1

2
�1 ±

Lx0
− b

�b2 − c
 . �80�

hen for any polynomial function f in one variable we have

f�Lx0
� = f�
+��+ + f�
−��−. �81�

roof: First, we note that Chebyshev polynomials of the second kind can be written as

Un−1�x� =
�x + �x2 − 1�n − �x − �x2 − 1�n

2�x2 − 1
. �82�

or x=b /�c this identity takes the form

Un−1�b/�c�c�n−1�/2 =

+

n − 
−
n


+ − 
−
, �83�

ith 
± defined as in the proposition. Inserting �83� into �54� yields for an arbitrary function

f�Lx0
� =

f�
+� − f�
−�

+ − 
−

�Lx0
− b� +

1

2
�f�
+� + f�
−�� , �84�

hich can be written using �± in the form of Eq. �81�. �

The X-valued matrices �± arise here naturally because they are orthogonal, complementary
dempotents,

�±
2 = �±, �+�− = 0 = �−�+, �+ + �− = 1. �85�

his property ensures that Eq. �81� is consistent with the algebra structure of functions, because it
an be immediately verified that �fg��Lx0

�= f�Lx0
�g�Lx0

�.
We can now insert Eq. �84� into Eq. �78� to obtain

�f�x0� =
f�q
+� − f�x0�

q
+ − x0
�+ � x0 +

f�q
−� − f�x0�
q
− − x0

�− � x0 �86�

or the derivative of an arbitrary function of the time coordinate. For this formula to be explicit it

emains to calculate
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��± � x0�� =

1

2
�±x0 +��x0�2 −

4

�2�2 �x2��0
� �

1

q�2�
x�

��x0�2 −
4

�2�2 �x2�
. �87�

Finally, we can combine the previous result �72� for the derivative of functions of the four-
ength x2=x�x� and �86� for the derivative of functions of the time coordinate x0 into a formula for
unctions f = f�x2 ,x0� of both variables,

�f�x2,x0� =
f�q2x2,x0� − f�x2,x0�

q2x2 − x2 � x2 +
f�q2x2,q
+� − f�q2x2,x0�

q
+ − x0
�+ � x0

+
f�q2x2,q
−� − f�q2x2,x0�

q
− − x0
�− � x0. �88�

his formula can be further simplified to

�f�x2,x0� =
f�q2x2,q
+� − f�x2,x0�

q
+ − x0
�+ � x0 +

f�q2x2,q
−� − f�x2,x0�
q
− − x0

�− � x0. �89�

. Separation of variables

We have seen that the derivatives of functions of x±, x3\0, and x2 can be written in terms of
ackson q-derivatives. Derivatives of functions of the time coordinate, however, do not have this
roperty but depend on the four-length x2, as well. In the language of partial differential equations,
he partial derivative �� is not separated with respect to the standard time coordinate of quantum

inkowski space. We will now show that there is a nonlinear transformation of coordinates such
hat the partial derivatives are separated in the new coordinates.

These new coordinates �±=�±�x2 ,x0� are given by

�± =
1

2
�x0 ±��x0�2 −

4

�2�2 �x2� . �90�

n terms of the new variables 
± is expressed as


+ = q�+ + q−1�−,

�91�

− = q−1�+ + q�−.

he back transform is given by

x0 = �+ + �−,

�92�
x2 = �2�2�+�−.

function f = f�x2 ,x0� is expressed in terms of the new variables by the transformed function

f̃��+,�−� ª f�x2��+,�−�,x0��+,�−�� = f��2�2�+�−,�+ + �−� , �93�
or which the quotients of Eq. �89� take the form of Jackson derivatives
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f�q2x2,q
+� − f�x2,x0�
q
+ − x0

=
f̃�q2�+,�−� − f̃��+,�−�

q2�+ − �+
,

�94�
f�q2x2,q
+� − f�x2,x0�

q
+ − x0
=

f̃��+,q2�−� − f̃��+,�−�
q2�− − �−

.

n order to completely rewrite Eq. �89� in q-derivative form we still must rewrite the expressions

±�x0. Towards this end, we must understand on what the projection operators �± actually
roject.

Key to understanding the operators �± is the calculation of the derivatives of the new coor-
inates viewed as functions of x2 and x0. Inserting these functions �±=�±�x2 ,x0� into formula �89�
nd using the formula

�
±
2 −

4

�2�2 �x2� =
1

2
�±�x0 + �2���x0�2 −

4

�2�2 �x2� , �95�

e obtain after long calculations the compact result

��± = �± � x0. �96�

n this sense �± can be viewed as generalized Jacobian of the coordinate transformation �90�. We
hus arrive at the main result of this paper:

Proposition 3: Let f = f��+ ,�−� be a general polynomial function in �±. Then

�f��+,�−� =
�q2f

�q2�+
� �+ +

�q2f

�q2�−
� �−. �97�

. General functions

Finally, we can combine this result with formulas �69� for derivations of functions of the
oncentral variables. A general polynomial in X can be written as a sum of products of functions
= f��+ ,�−� and h=h+�x+ ,x3\0�+h�x3\0 ,x−�. Using the coproduct �18� we obtain for the derivative
f the product

��fg� = ��f�g + �L�f� � g , �98�

here we can derive from Proposition 2 the formula

L�g��+,�−� = �+g�q2�+,�−� + �−g��+,q2�−� . �99�

nserting Eq. �99� into �98� we must observe that �± does not commute with the noncentral
bservables. In order to write down the end result, we first define for a general linear combination
f the basis B the matrix valued object

�f ª �+�	f 	�+�q2�+
− f� + �−�	f 	�−�q2�−

− f� . �100�

his definition does not depend on the ordering because �+ and �− are both central. Putting things
ogether we obtain for a general f �Span B

�f =
�q2f

�q2�+
� �+ +

�q2f

�q2�−
� �− +

�q2f

�q2x+
� x+ +

�q2f

�q2x3\0
� x3\0 +

�q2f

�q2x−
� x− +

�q2��f�

�q2x+
� x+

+
�q2��f�

�q2x3\0
� x3\0 +

�q2��f�

�q2x−
� x−. �101�
he first two lines look like a generalized chain rule with partial Jackson derivatives as outer
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erivatives. The partial Jackson derivatives in the last line are to be understood not to act on the
rojections �± contained in �f . By definition of �f the last line vanishes for q→1 and the first two
ines reproduce the usual chain rule.

V. SOLUTIONS OF QUANTUM WAVE EQUATIONS

In order to give an application of the separation of variables and the formulas for derivations,
et us now come back to the initial problem of calculating solutions of the quantum Klein-Gordon
quation �2�. It can be shown that, just as in the commutative case, the space of solutions is
enerated as representation of the quantum algebra by a momentum eigenstate.12 However, unlike
n the commutative case, there is only a finite number of such momentum eigenstates. In the

assless case it is the light cone state, defined by

p0�� = k�, p3�� = k�, p±�� = 0, �102�

here k�R is related to helicity. In the massive case it is the rest state

p0�� = m�, p3�� = 0, p±�� = 0, �103�

here m�R is the mass. The difficult part is to calculate these states within the noncommutative
ifferential calculus as solutions of quantum differential equations. All other solutions of the
uantum Klein-Gordon equation can then be obtained by quantum Lorentz transformations, which
re well known and straightforward to calculate.

. The massless case

Let us start with the massless case which turns out to be quite simple. As q-differential
quation Eq. �102� reads

�0�� = ik�, �3�� = − ik�, �±�� = 0, �104�

here we have raised the indices with the q-Minkowski metric, e.g., �3=−�3. Using the coordinate
ree notation and the lightcone coordinate x3\0 to be a function of the light cone coordinate x3\0

x3−x0, we can write Eq. �104� as

�� = − ik� � x3\0. �105�

ince x3\0 is one of the variables separating the noncommutative differential calculus, we can
onclude that �105� can be solved by a function �=��x3\0� of x3\0 alone. Using the formulas �69�
or the derivatives we obtain

���x3\0� =
�q2�

�q2x3\0
� x3\0 = − ik� � x3\0, �106�

hich is equivalent to

�q2�

�q2x3\0
= − ik��x3\0� . �107�

his equation is solved by the well-known q-exponential function

expq�z� � eq
z
ª �

n=1

�
zn

�n�q2!
, �108�
here the q-factorial is defined in the obvious way as
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�n�q2! = �n�q2�n − 1�q2 ¯ �1�q2. �109�

ith the q-exponential the general solution of Eq. �107� and, hence, of Eq. �104� can be written as

� = Ceq
−ik�x3−x0�, �110�

here C is a normalization constant.

. The massive case

Let us now turn to the massive case where the calculation of the rest state is more involved.
s q-differential function the defining eigenvalue equation �103� reads

�0�� = im�, �A�� = 0, �111�

here the index runs through A=−,3 ,+. In index free notation we can write this as

�� = im� � x0. �112�

ince the time coordinate x0 is not one of the variables which separates the noncommutative
ifferential calculus, we cannot conclude that Eq. �112� can be solved by a function in x0 alone.
ince the eigenvalue equation is invariant with respect to quantum rotations we can conclude,

hough, that � must be a function of the scalars with respect to quantum rotations x0 and x2. In
rder to solve Eq. �112� we must separate it with the separating coordinates �− and �+. Using Eq.
97� and x0=�−+�− we obtain

����+,�−� =
�q2�

�q2�+
� �+ +

�q2�

�q2�−
� �− = im�� � �+ + � � �−� , �113�

hich can be rewritten as

� �q2�

�q2�+
− im� � �+ + � �q2�

�q2�−
− im� � �− = 0. �114�

he differential equation is now separated so we can make the ansatz

���+,�−� = �+��+��−��−� , �115�

hich solves Eq. �114� if

�q2�+

�q2�+
= im�+,

�q2�−

�q2�−
= im�−. �116�

e see that the separation of variables of the differential calculus by the new coordinates �± leads
o a complete separation of the wave equation. Equations �116� are again solved by the
-exponential function �108�. As end result we obtain

� = Ceq
im�+eq

im�− = Ceq
�im/2��x0+��x0�2−�4/�2�2��x2��eq

�im/2��x0−��x0�2−�4/�2�2��x2��, �117�

here C is a normalization constant. This rest state is a solution of the massive quantum Klein-
ordon equation �2�. All other solutions can be obtained from this one by quantum Lorentz

ransformations.36

. CONCLUSION

The separation of variables �97� by a nonlinear coordinate transformation �90� seems to be the

ost intriguing result presented in this paper. We do not yet understand on a fundamental level
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hat property of quantum Minkowski space is responsible for the existence of such a transforma-
ion. Nor do we know if and how this can be generalized to other quantum spaces.

In definition �90� of the separating variables a square root expression appears which, strictly
peaking, is not an element of the algebra of Minkowski space proper. In order to make all
tatements completely rigorous we have to enlarge X by a central square root element � satisfying

�2 = �2�2�x0�2 − 4�x2� . �118�

lternatively, one could think of the coordinates being represented by operators on a Hilbert space
s in Ref. 10. In this case the square root would be defined through functional calculus for normal
perators. In the expansion of solution �117� of the quantum Klein-Gordon equation the square
oot drops out. There, it can be seen as an auxiliary object which makes the notation of a certain
enerating function more compact. Anyway, it is clear that this mathematical subtlety does not
ffect the results of this paper.

Finally, we would like to note that expressions for derivatives within the noncommutative
alculus can also be derived in a straightforward manner using the recursion relations defined by
he commutation relations of momenta and coordinates. While this approach circumvents to some
egree the mathematical machinery we have introduced here, it produces lengthy formulas which
o not give the structural insight desirable for solving noncommutative differential equations.
ven when free field equation can be solved by brute force, using computer algebra, for example,

he results turn to be quite complicated. But if already something as basic as the wave function of
free particle were described by complicated expressions, some fundamental questions of quan-

um field theory, such as independence of in and out states, would become very hard to tackle. In
his respect we believe results of the type presented here to be not just a matter of computational
onvenience but an indispensable requirement for the further development of quantum theory on
uantum Minkowski space.
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PPENDIX

Definition 5: The Hopf �-algebra generated by E, F, K, and K−1 with relations

KK−1 = 1 = K−1K, KEK−1 = q2E ,

�A1�
KFK−1 = q−2F, �E,F� = �−1�K − K−1� ,

opf structure

��E� = E � K + 1 � E, ��F� = F � 1 + K−1
� F ,

��K� = K � K, ��E� = 0 = ��F�, ��K� = 1, �A2�

S�E� = − EK−1, S�F� = − KF, S�K� = K−1,

nd �-structure

E* = FK, F* = K−1E, K* = K �A3�

s called Uq�su2�, the q-deformation of the enveloping algebra U�su2�.37,38

Another useful set of generators is given by angular momentum three-vector �JA�
12
�J− ,J3 ,J+� which is a vector operator with respect to the Hopf adjoint action of U�su2� on itself,
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J− ª q�2�−1/2KF ,

J3 ª �2�−1�q−1EF − qFE� , �A4�

J+ ª − �2�−1/2E .

he spin-1
2 representation of the antipode of this vector operator yields by 	̃Aª−�2��

1
2 �SJA� a

ariant of the q-Pauli matrices which we will need here. Explicitly, we obtain

	̃− = �2�1/2�0 q1/2

0 0
, 	̃+ = �2�1/2� 0 0

− q−1/2 0
, 	̃3 = �− q−1 0

0 q
 �A5�

ith respect to the ��, �� basis. Uq�su2� is quasitriangular with universal R-matrix39

R = e��H�H�/2�
n=0

�

e�n�n−1�/2 �e� − e−��n

�n�!
�En

� Fn� , �A6�

here �ª ln q. The quantum Lorentz algebra contains a SUq�2�op Hopf subalgebra,33 the genera-
ors of which are given explicitly by

a ª K1/2
� K−1/2,

b ª q−1/2�K1/2
� K−1/2E ,

�A7�
c ª − q1/2�FK1/2

� K−1/2,

d ª K−1/2
� K1/2 − �2FK1/2

� K−1/2E .
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The generalized quantum entropies are introduced in this paper. Some important
properties such as nonnegativity, continuity, and concavity are proved. But different
from the Von Neumann entropy, the subadditivity and additivity fail for the quan-
tum unified �r ,s�-entropy in general. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2165794�

. INTRODUCTION

The successful application of Shannon’s information quantities in information theory and
oding theory has stimulated the investigation of more information measures. People have made
uch efforts in applying information theory to other fields and further extended Shannon’s infor-
ation measures in variable senses. There are various generalizations of Shannon’s entropy.

For a discrete probability distribution P= �p1 ,p2 , . . . ,pd� with 0�pj�1 and � j=1
d pj=1. Let us

onsider the following generalized entropies:
Rényi entropy of order r,1

Hr�P� = �1 − r�−1log��
j=1

d

pj
r�, r � 0, r � 1. �1�

Entropy of degree r �Tsallis entropy�,2

Hr�P� = �1 − r�−1��
j=1

d

pj
r − 1�, r � 0, r � 1. �2�

Entropy of type r,3

rH�P� = �r − 1�−1���
j=1

d

pj
1/r�r

− 1	, r � 0, r � 1. �3�

It is easy to verify that

lim
r→1

Hr�P� = lim
r→1

Hr�P� = lim
r→1

rH�P� = H�P� ,

here

H�P� = − �
j=1

d

pj log pj �4�

s the well-known Shannon entropy.

�Electronic mail: hxh@sjtu.edu.cn
�
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Among multitude of information entropies, Shannon entropy, Rényi entropy and Tsallis en-
ropy have found utility in a wide range of physical problems. Shannon entropy is well known to
e successfully applied to modern information theory, and is frequently used in such areas as
conomics, geophysics, biology, medical diagnosis, and astronomy;4 Rényi entropy is routinely
easured in numerous situations ranging from coding theory and cryptography;5 a possible gen-

ralization of Boltzmann-Gibbs statistical mechanics was proposed on the basis of Tsallis entropy,
nd Tsallis nonextensive formalism of statistical mechanics has been designed to treat those
ystems which cannot be treated within Boltzmann-Gibbs formalism owing to the presence of
ong-range interactions, spatio-temporal complexity, fractal dynamics and so on.6

However the above four entropies can be obtained easily as limiting or particular cases from
he following entropy which is called �r ,s�-entropy7,8 involving two real parameters r and s:

Hr
s�P� = ��1 − r�s�−1���

j=1

d

pj
r�s

− 1	, r � 0, r � 1, s � 0. �5�

hen r=�, s= ��−1� / ��−1�, ��0, ��0, ��1, ��1, then this reduces to Sharma and Mittal’s
ntropy of order � and degree �.9 The �r ,s�-entropy �5� includes the entropies �1� and �4� as
imiting cases. The entropies �2� and �3� are particular cases of �5�. This can be written in
omposite form with the entropy of order r as follows:

Hr
s�P� = ��1 − r�s�−1�e�1−r�s·Hr�P� − 1�, r � 0, r � 1, s � 0. �6�

Let us write the continuous version of the above five entropies with respect to the parameters
,s as follows:

Er
s�P� =


Hr
s�P� if r � 1, s � 0,

Hr�P� if r � 1, s = 0,

Hr�P� if r � 1, s = 1,

rH�P� if r � 1, s = 1/r ,

H�P� if r = 1.

�7�

or all r�0 and for any s. Er
s�P�is called the unified �r ,s�-entropy.7,8

The Von Neumann entropy is the quantum version of the Shannon entropy. In Sec. II we
eview the definition of the Von Neumann entropy and define its various generalizations. The main
esults of this paper are presented in Sec. III. Some important properties of quantum unified
r ,s�-entropy are proved.

I. QUANTUM ENTROPY

Von Neumann defined the entropy of a quantum state � by the formula10,11

S��� = − tr�� log �� , �8�

here � is any density operator, i.e., positive operator on a complex separable Hilbert space H
aving a unit trace. The generalized entropies also have their quantum versions as follows.

Quantum Rényi entropy of order r,

Sr��� = �1 − r�−1 log�tr��r��, r � 0, r � 1. �9�

Quantum entropy of degree r �quantum Tsallis entropy�,

Sr��� = �1 − r�−1�tr��r� − 1�, r � 0, r � 1. �10�

Quantum entropy of type r,

S��� = �r − 1�−1��tr��1/r��r − 1�, r � 0, r � 1. �11�
r
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Quantum �r ,s�-entropy,

Sr
s��� = ��1 − r�s�−1��tr��r��s − 1�, r � 0, r � 1. �12�

Quantum unified �r ,s�-entropy,

Er
s��� =


Sr
s��� if r � 1, s � 0,

Sr��� if r � 1, s = 0,

Sr��� if r � 1, s = 1,

rS��� if r � 1, s = 1/r ,

S��� if r = 1.

�13�

or all r�0 and for any s.
Using the spectral decomposition theorem and noting tr�U�U†�= tr���, where U is unitary, we

an easily verify that

lim
r→1

Sr��� = lim
r→1

Sr��� = lim
r→1

rS�P� = S��� .

II. PROPERTIES OF THE QUANTUM UNIFIED „r ,s…-ENTROPY

Proposition 1: The quantum unified �r ,s�-entropy is non-negative, i.e., Er
s����0, where � is

ny density operator. The equality holds if and only if the state is pure.
Proof: The Von Neumann entropy S����0 �Refs. 10 and 11� and the quantum Rényi entropy

r����0 �Ref. 12� are well known. Now we prove Sr
s����0. One has xr� �resp. � �x for x

�0,1� with equality iff x=0 or x=1 when r�1�resp.0�r�1�. Since the eigenvalues pj of � lie
n �0,1�, we conclude the operator inequality �r� �resp. � ��, where equality holds iff � is pure,
.e., a one-dimensional projection. It then follows that tr��r�� �resp. � �1 with equality iff � is
ure. Noting the sign of �1−r�s in different cases, we complete the proof.

Proposition 2: In a finite dimension d, Er
s��� is bounded, i.e.,

Er
s��� � 
log�rank �� if r = 1,

�1 − r�−1log�rank �� if r � 1, s = 0,

��1 − r�s�−1��rank ���1−r�s − 1� if r � 1, s � 0.

�14�

quality holds in the inequality if and only if � is an equidistribution of order rank �.
Proof: To prove the upper bounds of �14� we use Hölder’s inequality. For 0�r�1,

tr��r� = �
j=1

rank �

pj
r � � �

j=1

rank �

�pj
r�1/r�r� �

j=1

rank �

11/�1−r��1−r

= �rank ��1−r, �15�

here pj is the eigenvalue of �, Equality holds iff pj is constant for j=1,2 , . . . , rank �, i.e., pj

�rank ��−1. When s�0 or s�0, we have the same result as follows:

Sr
s��� � ��1 − r�s�−1��rank ���1−r�s − 1� , �16�

hich is the third inequality in �14�. For r�1, the inequality in �15� is reversed but the conditions
or equality are the same. When s�0, the proof is similar. From �6� and �16�, we have Sr���
��1−r�s�−1 log��1−r�s ·Sr

s���+1� and thus Sr���� log�rank ��. For r=1, Von Neumann entropy is
t most log�rank ��.10,11 This completes the proof.

Noting that rank����d and letting d→�, we have the following conclusions.
Corollary 1: In an infinite dimension

�i� for 0�r�1,s�0 or r�1,s�0, 0�Er
s���� ��r−1�s�−1;
s
�ii� for 0�r�1,s�0 or r�1,s�0, 0�Er�����.
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Concavity is another important property of Er
s��� similar to the Von Neumann entropy. To

rove this property, we have the following lemma.
Lemma 1: Let Gr

s���= �tr��r��s , r�0,s�0, then

�i� Gr
s��� is a concave function of the density operator � for 0�r�1, s�0, rs�1;

�ii� Gr
s��� is a convex function of the density operator � for r�1, rs�1 or 0�r�1,s�0.

Proof: We apply Minkowski’s inequality to positive operators: Let � ,	 be positive operators,
nd 1�r��, then

�tr�� + 	�r�1/r � �tr���r�1/r + �tr�	�r�1/r. �17�

Case 1: when r�1, from �17�, we have

�tr�
� + �	�r�1/r � 
�tr���r�1/r + ��tr�	�r�1/r,

here 
�0, ��0, 
+�=1. If rs�1, we have

�tr�
� + �	�r�s � �
�tr���r�1/r + ��tr�	�r�1/r�rs � 
�tr���r�s + ��tr�	�r�s. �18�

quation �18� is obtained from the convexity of the function y=xrs, rs�1. Therefore Gr
s��� is a

onvex function for r�1 with rs�1.
Case 2: when 0�r�1, the inequality in �17� is reversed,

�tr�� + 	�r�1/r � �tr���r�1/r + �tr�	�r�1/r,

here 
�0,��0,
+�=1. We consider the following two cases:

�a� when 0�rs�1, we have

�tr�
� + �	�r�s � �
�tr���r�1/r + ��tr�	�r�1/r�rs � 
�tr���r�s + ��tr�	�r�s.

o Gr
s��� is a concave function for 0�r�1, 0�rs�1.

�b� When rs�0, i.e., s�0, �18� is also true. Therefore Gr
s��� is a convex function for 0

�r�1 with rs�0. This complete the proof.

Concavity of Er
s��� follows from Lemma 1 and the sign of �1−r�s.

Proposition 3: Suppose � and 	 are density operators and 0�
�1. Then

Er
s�
� + �1 − 
�	� � 
Er

s��� + �1 − 
�Er
s�	� , �19�

or all r and s satisfying either 0�r�1,rs�1 or r�1,rs�1.
Remarks:

�i� For r=1, the Von Neumann entropy is a concave function.10

�ii� For r�0,r�1,s=0, the quantum Rényi entropy fails for concavity.12

�iii� For r�0,r�1,s=1, the quantum Tsallis entropy is a concave function.13

There is an upper bound for the convex combination.
Proposition 4: Setting Fr

s�
�= ��1−r�s�−1�
rs+ �1−
�rs−1�, 0�
�1, we have the following:

�i� For r�1, s�1 or 0�r�1, 0�s�1 or r�1, s�0,

Er
s�
� + �1 − 
�	� � 
rsEr

s��� + �1 − 
�rsEr
s�	� + Fr

s�
� . �20�

�ii� In particular, for r�1, s�1,

Er
s�
� + �1 − 
�	� � 
Er

s��� + �1 − 
�Er
s�	� + Fr

s�
� . �21�
Proof: It is clear that for positive numbers a and b,
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�a + b�s � as + bs if s � 1, �a + b�s � as + bs if 0 � s � 1 or s � 0.

y using the trace inequalities:14 for positive operators � and 	,

tr��� + 	�r� � �resp . � �tr��r� + tr�	r�, for r � 1�resp.0 � r � 1� .

oting the sign of �1−r�s, we can complete the proof.
Remarks: From Corollary 1, some properties of Fr

s�
� follow:

�i� �
−
rs�Er
s���+ ��1−
�− �1−
�rs�Er

s�	��Fr
s�
� for r�1, s�1,

�ii� �
−
rs�Er
s���+ ��1−
�− �1−
�rs�Er

s�	��Fr
s�
� for 0�r�1, s�0,

here � and 	 are arbitrary density operators.
Using the method of mathematical induction, we obtain the following.
Corollary 2: Suppose �=�i=1

n pi�i, where �pi ,1� i�n� is a probability distribution, and �i are
ensity operators. If r�1, s�1 then

�
i=1

n

piEr
s��i� � Er

s��� � �
i=1

n

piEr
s��i� + Fr

s�p1,p2, . . . ,pn� , �22�

here Fr
s�p1 ,p2 , . . . ,pn�= ��1−r�s�−1�p1

rs+p2
rs+ ¯ +pn

rs−1�.
We can define the generalized Holevo bound denoted by � and

� = Er
s��

i=1

n

pi�i� − �
i=1

n

piEr
s��i� . �23�

he Holevo � quantity is very useful in quantum information.10

Let � and 	 be density operators, we say � majorizes 	 and write it as ��	 which means that
he spectrum of the operator � majorizes the spectrum of the operator 	. That is, if � and 	 have
igenvalues 
1�
2� ¯ �
d and �1��2� ¯ ��d, respectively, then � j=1

l 
 j�� j=1
l � j for all

� l�d. If ��	 then Er
s����Er

s�	� which is called Schur concavity.
Proposition 5: The quantum unified �r ,s�-entropy does not satisfy Schur concavity, moreover,

f � majorizes 	, i.e., ��	 then Er
s����Er

s�	�.
To prove this proposition, we need a lemma.
Lemma 2: If 
i��i�0, i=1,2 , . . . ,d, then for r�1 or r�0,

��
i=1

d


i�r

− �
i=1

d


i
r � ��

i=1

d

�i�r

− �
i=1

d

�i
r. �24�

or 0�r�1, the inequality in �24� is reversed.
Proof: See Ref. 8.
Proof of Proposition 5: If 
i and �i are eigenvalues of density operators � and 	, respectively,

hen by Lemma 2 we obtain that if ��	 then tr��r�� tr�	r� for r�1 and tr��r�� tr�	r� for 0
r�1. For quantum �r ,s�-entropy�r�0,r�1,s�1�, it is easy to verify Sr

s����Sr
s�	�. For the

uantum Rényi entropy, the quantum Tsallis entropy and the quantum entropy of type r, the proof
s similar by Lemma 2. For the Von Neumann entropy, Wehrl11 gave the proof. This completes the
roof of Proposition 5.

Suppose we vary the density operator � by a small amount. How much does Er
s��� change? We

now the Von Neumann entropy satisfies Fannes’s inequality.15 With respect to the trace distance
�−	  = 1

2 tr ��−	�, Er
s�·� is Lipschitz under certain conditions.

Proposition 6 �Lipschitz continuity�: For r�1 and s�1

�Er
s��� − Er

s�	�� � r�r − 1�−1� − 	 . �25�
16
Proof: Applying the generalized Klein’s inequality, we obtain, for ��	,
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tr��� − 	�f��	�� � tr�f��� − f�	�� � tr��� − 	�f����� ,

here f�x�=xr, r�1, x� �0,1� is a convex function. So

�tr��r� − tr�	r�� � r · max��tr��� − 	��r−1�, �tr��� − 	�	r−1�� .

By the spectral decomposition, we may decompose �−	=Q−R, where Q and R are positive
perators with orthogonal support, �−	  =tr�Q�+tr�R�, so

�tr��� − 	��r−1� = �tr��Q − R��r−1� � tr�Q�r−1� + tr�R�r−1� � tr�Q + R� = � − 	 .

y symmetry between density operators � and 	, we also have �tr���−	�	r−1 � � �−	.
Therefore

�tr��r� − tr�	r�� � r · � − 	 �r � 1� .

The derivative sxs−1 of the map x→xs is bounded on �0,1�, so that this map is Lipschitz with
onstant s�1. Hence

��tr��r��s − �tr�	r��s� � s · �tr��r� − tr�	r�� � sr · � − 	 .

The Lipschitz continuity of Er
s��� follows from the above inequalities.

We now turn to properties of the quantum unified �r ,s�-entropy for composite system. We
ecall that the familiar Von Neumann entropy S��� satisfies �see, e.g., Refs. 10 and 11�,

S��AB� � S��A � �B� = S��A� + S��B� , �26�

or any state �AB on HA � HB, where �A=trB��AB� and �B=trA��AB�.
The inequality in �26� is known as the subadditivity property of entropy; it is customarily

araphrased by saying that since all correlations between the subsystems present in �AB are lost in
he state �A � �B �when �AB is not a product state� the entropy should increase. The equality holds
ff �AB=�A � �B. Unfortunately, subadditivity of the form S��AB��S��A�+S��B� and additivity of
he form S��AB�=S��A�+S��B� fail for quantum unified �r ,s�-entropy in general.

Proposition 7: Suppose � and 	 are density operators, and � � 	 is a product state, then

Er
s�� � 	� = Er

s��� + Er
s�	� + �1 − r�sEr

s���Er
s�	� , �27�

Er
s�� � 	� � Er

s��� + Er
s�	�, 0 � r � 1, s � 0 or r � 1, s � 0, �28�

Er
s�� � 	� � Er

s��� + Er
s�	�, r � 1, s � 0 or 0 � r � 1, s � 0. �29�

ith equalities if and only if either of the states � ,	 is pure.
Proof: When r�1, s�0, Direct computation gives �27�

Sr
s�� � 	� − Sr

s��� − Sr
s�	� = ��1 − r�s�−1��tr�� � 	�r�s − �tr���r�s − �tr�	�r�s + 1�

=��1 − r�s�−1��tr��r��s − 1���tr�	r��s − 1�

=�1 − r�s · Sr
s���Sr

s�	� ,

When r�1, s=0 and r=1, the quantum Rényi entropy and the Von Neumann entropy, respec-
ively, satisfy the additivity property.10–12 The inequalities in �28� and �29� are clear. This com-
letes the proof.

Due to �27�, one has in general Er
s��AB��Er

s��A�+Er
s��B�, moreover subadditivity of the form

s s s

r��AB��Er��A�+Er��B� fails due to �29�. However under certain conditions, the subadditivity
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nequality is true. For example, for r�1, the quantum Tsallis entropy satisfies the subadditivity
roperty.13 Because of the generality of quantum unified �r ,s�-entropy, it is hard to obtain the
ubadditivity property.17–19

Proposition 8: If a composite system HA � HB is in a pure state �AB, then

Er
s��A� = Er

s��B� . �30�

Proof: From the Schmidt decomposition we know that eigenvalues of density operators of
ystems HA and HB are the same. The entropy is determined by the eigenvalues, so Er

s��A�
Er

s��B�.
It is clear in this case, 0=Er

s��AB��Er
s��A�+Er

s��B�.
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We study the geometrical optics generated by a refractive index of the form
n�x ,y�=1/y �y�0�, where y is the coordinate of the vertical axis in an orthogonal
reference frame in R2. We thus obtain what we call “hyperbolic geometrical optics”
since the ray trajectories are geodesics in the Poincaré-Lobachevsky half-plane H2.
Then we prove that the constant phase surface are horocycles and obtain the horo-
cyclic waves, which are closely related to the classical Poisson kernel and are the
analogs of the Euclidean plane waves. By studying the transport equation in the
Beltrami pseudosphere, we prove �i� the conservation of the flow in the entire strip
0�y�1 in H2, which is the limited region of physical interest where the ray
trajectories lie; �ii� the nonuniform distribution of the density of trajectories: the
rays are indeed focused toward the horizontal x axis, which is the boundary of H2.
Finally the process of ray focusing and defocusing is analyzed in detail by means of
the sine-Gordon equation. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2165796�

. INTRODUCTION

It is well known that the geometrical optics approximation of the wave equation is related to
he asymptotic form of the integral representation of the field �if such exists�, which is an exact
olution of the wave problem. Suppose, for instance, that the field in a uniform medium can be
ritten as an expansion in plane waves; the evaluation of this integral by the stationary phase
ethod yields an asymptotic series. Then the leading term of this asymptotic expansion, which is

omposed by an amplitude and a phase, can be extracted to yield the approximation. The ray
rajectories are the lines orthogonal to the constant phase surface and are described by the eikonal
quation; the amplitude satisfies the transport equation, whose physical meaning is related to the
onservation of the flow. In the simplest case of uniform medium, whose refractive index n is a
eal constant, the rays are straight lines which are characterized by the following properties:

�i� They are geodesics of the Euclidean space.
�ii� Phase and amplitude are real-valued functions.
�iii� They can be derived by the Fermat’s principle.

Constrained by these properties the methods of geometrical optics are rather limited and fail
o explain several phenomena as, for instance, the diffraction by a compact and opaque obstacle,
hat is the existence of non-null field in the geometrical shadow which, for this reason, is usually
eferred to as the classically �or geometrically� forbidden region.

In the decade 1950–1960 Keller1–3 wrote several papers where he introduced the so-called
eometrical theory of diffraction �GTD�. The latter can be regarded as an extension of geometrical

ptics, which accounts for diffraction by introducing the diffracted rays in addition to the usual

47, 023503-1022-2488/2006/47�2�/023503/18/$23.00 © 2006 American Institute of Physics

                                                                                                            

http://dx.doi.org/10.1063/1.2165796
http://dx.doi.org/10.1063/1.2165796


r
a
e
a
p
w
w
r
s
k
i
p
t

E
p
r
m
t
o
R
t
=
t

o

w

m
c
r
f
p
t
T
p

i
o
r
c
L
p
o
a
s

023503-2 De Micheli, Scorza, and Viano J. Math. Phys. 47, 023503 �2006�

                        
ays of geometrical optics. After these seminal works there has been a steady flow of papers
ddressing various aspects of the theory. On the one hand papers oriented to pure and applied
lectromagnetic theory, like radiation and scattering of waves, antenna design, waveguide theory
nd so on;3 on the other hand, a highly theoretical and mathematically sophisticated theory of
ropagation of singularities and diffraction of waves on manifolds.4 In spite of these efforts and a
ide literature on these topics, not all the cases of interest have been studied. An example is what
e could call the “hyperbolic geometrical optics,” that is the geometrical optics generated by the

ays in the specific case of a refractive index of the form n�x ,y�=1/y �y�0�, where y denotes a
patial coordinate, say vertical, in an appropriate orthogonal reference frame in R2. As far as we
now, this problem has never been treated, except for some very marginal remarks �see, for
nstance, Ref. 5�, in spite of its intrinsic geometrical interest and some possible applications to the
hysics of nonuniform optical fibers. It is precisely the main purpose of the present paper to fill
his gap.

Let us return to the Keller’s program of widening, from a geometrical viewpoint, the arena of
uclidean geometrical optics. With this in mind we adopt, first of all, the Jacobi’s form of the
rinciple of least action �instead of Fermat’s�, which concerns with the path of the system point
ather than with its time evolution.6 More precisely, the Jacobi’s principle �generally applied in
echanics� can be formulated as follows: If there are no forces acting on the body, then the system

ravels along the shortest path length in the configuration space. Here we assume a wide extension
f the Jacobi’s principle, which can be formulated as follows: the geodesics associated with the
iemannian metric n�x ,y��dx2+dy2, i.e., the paths making the functional �n�x ,y��dx2+dy2 sta-

ionary, are nicknamed rays. In other words, in place of Fermat’s principle which reads ��P0

P1dt
0, where dt is the travel time measure, and P0 and P1 are prescribed starting and end points of

he path, we write

��
P0

P1

n�x,y��dx2 + dy2 = 0, �1�

r, equivalently,

��
x0

x1

F�x,y,y��dx = 0, �F�x,y,y�� = n�x,y��1 + y�2� , �2�

here y�=tan �, � being the angle that the tangent to the curve y=y�x� forms with the x axis.
The simplest realization of this Jacobi’s principle consists in identifying n2 with the Riemann

etric tensor gij, whenever this identification is admissible. This identification requires great
aution, indeed; the form gij dxi dxj must be symmetric and positive definite, and this poses a strict
estriction. For instance, consider a refractive index �or, in mechanics, a potential� of the following
orm: n2=1−V /E, where E is the energy of the incoming particle and V is the height of the
otential, with V�E as in the case of the tunnel effect. In this situation the geometric interpreta-
ion of the trajectory as a real-valued geodesic in a Riemannian manifold is no longer possible.
he only chance remains to extend the admissible values of the phase to imaginary and/or com-
lex values and, consequently, to speak of complex rays in the sense of Landau.7

But let us return to the cases where this identification is admissible. As we already mentioned,
t is obviously possible in the case of a uniform nonabsorbing medium: in this case we simply
btain a physical realization of Euclidean geometry. But it is also certainly admissible when the
efractive index is of the form introduced above, i.e., n�x ,y�=1/y �y�0�, where y denotes the
oordinate of the vertical axis in an orthogonal reference frame in R2. In this case we are led to the
obachevskian metric: ds2= �dx2+dy2� /y2. Then the rays are geodesics in the hyperbolic half-
lane �Poincaré half-plane�, i.e., Euclidean half-circles with centers on the x axis �horizontal axis�,
r Euclidean straight lines normal to the x axis. Let us recall that the refractive index n is defined
s n=c /vph, where c is the light speed in vacuum, and vph is the phase velocity of radiation of a

pecific frequency in a specific material. Therefore n�1, and in the case n�x ,y�=1/y only the
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trip 0�y�1 has physical interest; hence the actual rays will lie necessarily in this band. Ac-
ordingly, hereafter, the only optical paths considered will be the Euclidean half-circles with
enters on the x axis and radius R bounded by 0�R�1.

The subsequent step in developing an optical geometry consists in finding the constant phase
urfaces and, accordingly, describing the analog of the Euclidean plane wave. This problem will be
olved in Sec. II, studying some geometrical properties of horocycles and introducing what we call
orocyclic waves, which play in hyperbolic geometrical optics the same role as the plane waves do
n the Euclidean one. At this point we have the main ingredients needed for writing the geometri-
al approximation of the wave function; what it is still missing is an analysis of the amplitude and
f the related flux density. This latter problem can be analyzed at two different levels. First we
rove that the flow of rays is conserved: once a pointlike source is fixed, no ray will be absorbed
r created. This result will be proved in Sec. II. A more subtle question is the following: Is the flow
f the ray trajectories homogeneous or do the rays focus? This issue, besides its intrinsic geo-
etrical interest, could in our opinion be of some interest in possible applications to the propa-

ation in optical fibers with nonuniform refractive index.8 This problem will be analyzed in detail
n Sec. III. First we study the transport equation in the Beltrami pseudosphere, and prove that the
ow of ray trajectories is not homogeneous, but there is a focusing of rays on the horizontal x axis.
lancing to possible applications to propagation in optical fibers this result suggests a conjecture

ndicating a strong ray focusing along the fiber axis, when the refractive index profile in the fiber
s of hyperbolic type, instead of paraboliclike, as is customary. Next, this problem will be recon-
idered by studying the variation of the angle that the tangent to the meridian of the Beltrami
seudosphere makes with the rotation axis of this surface, which can be indeed represented as a
urface of revolution generated by a curve in R3. This leads to the sine-Gordon equation and
rovides a more precise description of the ray focusing and defocusing processes. This analysis is
ecessarily local, since the problem is worked out inside each horocycle; at the end of Sec. III, we
how how to pass from a local description of the flow inside each horocycle to a global one.

Finally, in the Appendix , the geometric and algebraic ingredients which occur in Secs. II and
II will be given. This appendix is split in three parts: the first part is devoted to the various models
f hyperbolic geometry and to the conformal maps which allows the transformation between them;
n the second part we study the group SU�1,1�, which acts transitively on the non-Euclidean disk,
nd prove some relationships connecting the spherical functions to the horocyclic waves; the last
art is devoted to the Beltrami pseudosphere.

I. THE FLOW IN THE STRIP 0<yÏ1

. Variational minimization of the Jacobi’s functional and the rays in hyperbolic
eometrical optics

Let us consider the upper half-plane model of the hyperbolic two-dimensional space H2: i.e.,
= �z=x+ iy :y�0	 equipped with the metric d derived from the differential ds= 
dz 
 / Im z �see the
ppendix�. Then we apply the typical methods of variational calculus to the Jacobi functional

J =�
P0

P1 ��dx�2 + �dy�2

y

r, equivalently,

J = �
x0

x1 �1 + �y��2

y
dx

P0 and P1 denote two points of the ambient space where light propagates�. First we prove the
ollowing proposition, which refers to the whole upper half plane U.
Proposition 1: �i� Let J be the following functional:
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J = �
x0

x1 �1 + �y��2

y
dx , �3�

nd let F denote the integrand of �3�. The Euler-Lagrange equation for this functional reads

yy� + y�2 + 1 = 0. �4�

�ii� The extremals of functional �3� are Euclidean half-circles with centers on the x axis, or
uclidean straight lines normal to the x axis lying in the half plane y�0. These are the geodesics

n the hyperbolic geometry realized in the half plane y�0.
�iii� The Weierstrass condition for the functional �3� reads

Fy�y� =
1

y�1 + y�2�3/2 � 0 �y � 0� , �5�

nd it is satisfied for any y�.
�iv� There exists a field of extremals of functional �3�, and the transversality condition be-

omes an orthogonality condition of these extremals to the curve ��x ,y�=const �constant phase
urve�, which satisfies the following equation �eikonal equation�:

gij��

�xi

��

�xj
= 1, �6�

here x1=x, x2=y, and gij is the metric tensor.
Proof: The proof makes use of standard procedures and can be found, for instance, in Ref. 5.�
Remark: Let us recall once again that the domain of physical interest where the optical paths

ecessarily lie �in view of the fact that n�1� is the strip 0�y�1; therefore we shall consider only
subclass of the extremals of functional �3�: i.e., the half-circles with centers on the x axis and

adius bounded by 0�R�1.

. Poisson kernel and horocyclic waves

Let us now give a more precise formulation of the physical problem. Suppose that a pointlike
ource of light is pushed to −� on the �x ,y� plane. For the sake of simplicity, here we limit
urselves to the scalar representation of light, and phenomena associated with polarization will not
e considered. From Proposition 1 it follows that light rays are half-circles with centers on the x
xis. For several reasons which will appear clear in what follows, it is convenient to map confor-
ally the half-plane y�0 into the unit disk 
	 
 �1, which amounts to pass from the Poincaré

alf-plane model U to the Poincaré disk model D �see the Appendix and Fig. 1�. The appropriate
onformal mapping is given by 	= i�z− i� / �z+ i� �z=x+ iy; 	=
+ i��.

In the unit disk the light source will be located at 	= i. The band y�1 will be mapped, in the
-plane, into the disk tangent to the boundary B of D in i with Euclidean radius 1

2 , and represents
he forbidden region for the light rays. The circular arcs lying in the half-plane y�0 and normal
o the x axis will be mapped, in the unit disk, into circular arcs perpendicular to the boundary
	 
 =1, which are precisely the geodesics of the hyperbolic geometry in the unit disk model.

From the transversality condition �see statement �iv� of Proposition 1�, it follows that the
onstant phase curve is the curve that intersects orthogonally the extremals of functional �3�: i.e.,
he geodesics. In the unit disk, parallel geodesics are geodesics corresponding to the same point
=ei� on the boundary B of D. Therefore, in the physical problem being treated, the circles

angent to the unit circle at the point b, which intersects orthogonally the pencil of parallel straight
ines �i.e., arcs of circle orthogonal to B� are the constant phase curves, they are a family of
orocycles, and are denoted by Hb.

We can now state the following proposition.

Proposition 2: �i� The Poisson kernel
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P�	,b� =
1 − 
	
2

1 + 
	
2 − 2
	
cos� − ��
�	 = 
	
ei;b = ei�� , �7�

s constant on each horocycle Hb with normal b.
�ii� The function

�P�	,b��� = � 1 − 
	
2

1 + 
	
2 − 2
	
cos� − ����

�� � C� , �8�

s an eigenfunction of the Laplace-Beltrami operator on the hyperbolic disk D corresponding to
he eigenvalue ���−1�.

�iii� The hyperbolic waves �horocyclic waves� are represented by the following expression:

e�	,b� = � 1 − 
	
2

1 + 
	
2 − 2
	
cos� − ����

�� � C� , �9�

here 	 ,b� is the hyperbolic distance between the origin of D and the horocycle of normal b
assing through 	�D.

�iv� The conical functions P− 1 � 2 +i��cosh r� �i.e., the first kind Legendre functions of index
− 1

2 + i�� ���R�� can be represented by

P− 1
2

+i��cosh r� = �
B

e�1
2

−i��	,b� db �� � R,B = �	:
	
 = 1	� , �10�

nd correspond to the fundamental series of the irreducible unitary representation of the group
U�1,1�, which acts transitively on the hyperbolic disk D.

�v� The following equality holds:

P− 1
2

+i��cosh r� = P− 1
2

−i��cosh r� �� � R� . �11�

Proof: �i� The level lines of the Poisson kernel P�	 ,b� are the circles tangent to the unit circle
t the point b=ei�: i.e., the images of the horocycles Hb with normal b �see Ref. 9�.

10

FIG. 1. Horocyclic flow outside the forbidden region in the Poincaré disk D.
�ii� The Laplace-Beltrami operator �D on the hyperbolic unit disk D is given by
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�D =
1

4
�1 − �
2 + �2��2� �2

�
2 +
�2

��2� . �12�

f ��C is any complex number, a direct computation gives10

�DP��	,b� = ��� − 1�P��	,b� . �13�

�iii� In the Euclidean case the function x→eik�x,��, where k�R, ��S�n−1�, x�Rn, represents
plane wave with normal �. It is indeed constant on each hyperplane perpendicular to �, and

urthermore is an eigenfunction of the Laplacian on Rn. The geometric analog of the plane wave
n the case of the hyperbolic disk D is the function represented by the equality �9� �see Ref. 11�.
n fact, it is an eigenfunction of the Laplace-Beltrami operator on D, as proved by statement �ii�
see Eq. �13��. Further, setting =� in formulas �7� and �8�, we have

ln
1 − 
	
2

1 + 
	
2 − 2
	

= ln

1 + 
	

1 − 
	


= d�0,	� = 
	
ei�,ei�� = 	,b� , �14�

here d�0,	�=ln��1+ 
	 
 � / �1− 
	 
 �� is the hyperbolic distance between the origin and the point
�D �see the Appendix �. Therefore, 	 ,b� is the hyperbolic analog of �x ,��. In fact, in view of
tatement �i�, 	 ,b� is the distance between the origin and the horocycle of normal b passing
hrough 	�D, assuming that the origin falls outside the horocycle; 	 ,b� is positive if the origin
s external to the horocycle, while it is negative �	 ,b�=ln��1− 
	 
 � / �1+ 
	 
 ��� if the origin is
nternal to the horocycle.

�iv� If we set 
=tanh�r /2�cos , �=tanh�r /2�sin , then 
	 
 =tanh�r /2�. The Riemannian met-
ic ds2= 4�d
2+d�2�� �1−
2−�2�2 becomes ds2=dr2+sinh2 r d2. By the use of this substitution
n the expression of the Poisson kernel �7� or �8�, we have

� 1 − 
	
2

1 + 
	
2 − 2
	
cos� − ����

=
1

�cosh r − sinh r cos� − ���� �� � C� , �15�

nd the integral sum of horocyclic waves �see statement �iii�� gives �see Ref. 11 and Proposition 6
n the Appendix �:

�
B

e�	,b� db =
1

2�
�

0

2� � 1

cosh r + sinh r cos �
��

d� = P−��cosh r� �� � C� , �16�

here B is the boundary of the hyperbolic disk D, and P−��cosh r� are the first kind Legendre
unctions.12 Finally, setting �= 1

2 − i� ���R� we obtain the conical functions P− 1 � 2 +i��cosh r�,
hich correspond to the fundamental series of the irreducible unitary representation of the group

U�1,1�: i.e., the group of the matrices of the form13 �a c

c̄ ā �, 
a
2− 
c
2=1; a ,c�C, which acts as

group of isometries of the hyperbolic disk D by means of the map

g�	� =
a	 + c

c̄	 + ā
�	 � D� . �17�

�v� Equality �11� is proved in the Appendix �see Proposition 6�. �

Remark: It is well known that the classical Fourier transform refers to the decomposition of a
unction, belonging to an appropriate space, into exponentials of the form eikx �k real�, which can
lso be viewed as the irreducible unitary representation of the additive group of real numbers.
nalogously, the exponentials ei�k,x� are characters of the group R2. But the hyperbolic disk is not
group. Therefore a straightforward generalization of the exponential for D is not possible.
evertheless, in view of the fact that the function P−��cosh r� corresponds to the fundamental

1
eries of the irreducible unitary representation of the group SU�1,1� for �= 2 − i�, the exponential
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� 1 � 2 −i��	,b� ���R� represents the analog of the Euclidean exponential, and plays the same role in
he hyperbolic Fourier analysis.11

. Conservation of the flow

As already said in the Introduction, the ray trajectories are the lines orthogonal to the constant
hase surface, and are described by the eikonal equation; moreover, 	 ,b� is the hyperbolic
istance between the origin and the horocycle Hb of normal b passing through 	. Therefore, in
lose analogy with the Euclidean optical geometry, and recalling that P− 1 � 2 +i��cosh r�
P− 1 � 2 −i��cosh r� ���R� �see statement �v� of Proposition 2�, the expression of the analog of the
uclidean plane wave eikx �k�R� can be written as follows: e� 1 � 2 −i��	,b� ���R�. Thus the geo-
etrical approximation of the wave function � can be obtained by multiplying e� 1 � 2 −i��	,b�times a

unction which represents the amplitude. Then we can state the following proposition.
Proposition 3: The geometrical approximation of the wave function � reads:

��	,�,b� = A���e�1
2

−i��	,b� �� � R,	 � D,b � B� , �18�

nd the flow in the entire strip 0�y�1 is conserved.
Proof: Let � be the conformal map

z = ��	� = − i
	 + i

	 − i
, �19�

efined in the Appendix, that transfers the geometry of D into U. Since ��0�= i and ��i�=�, then

he image by � of the horocycle Hi passing through 	=0 is the horizontal line H˜�= �x+ iy :y=1	 in

�the horocycles in the Poincaré half-plane will be hereafter denoted by H˜b�. The image by � of

he horocycle H�−1�b� tangent to Hi in D is the horocycle H˜b of radius 1 � 2 through b�R and

angent to the horizontal line H˜� �in order to avoid proliferation of notations, we denote by the
ame letter b both the points on the boundary B of D and the corresponding points belonging to
he boundary of H2, i.e., belonging to R�.

We already saw that the horocycle H˜b of normal b is perpendicular to each geodesic starting
rom b. To calculate the amplitude of the wave function, we must see how many geodesics

erpendicular to H˜b intersect H˜b, with the additional condition that these geodesics belong to the

and 0�y�1. This corresponds to find the amount of normal vectors at H˜b, with unit norm, that
re tangent vectors of geodesics in the band 0�y�1.

In general, if b is a point in R� ��	 and T1U is the unit tangent bundle of U, then the

orocycle flow hj,b :T1U→T1U is the flow which slides the inward normal vectors to each H˜b to

he right along H˜b at unit speed. To find the equation of the flow hj,b, first we consider the flow hj,�

f geodesics perpendicular to the horocycle H˜� of normal �. Then we choose a transformation Mb

hich maps the horocycle H˜� into the horocycle H˜b. In particular, the map Mb transfers the flow

j,� into the flow hj,b.
From the definition,

hj,��vi� = �1 j

0 1
�vi, �20�

here vi denotes the unit vector vertically upwards based at i�U. This is because in the simplest

ase of horocycle flow hj,�, the geodesics perpendicular to H˜� are vertical lines and the isometry
ending one vertical line into another vertical line is the horizontal translation. Therefore, the

orocycle flow along H˜� is simply the horizontal translation.
Let us now consider the transformation Mb such that Mb���=b. Then, the horocycle flow hj,b

˜
long Hb is the image of hj,� by Mb, hence
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hj,b�v� = Mb�1 j

0 1
�v . �21�

t is clear from the definition that the amount of geodesics in the flow hj,b does not depend on the
adius of the horocycle. Given two different points b1 and b2 in the boundary of the hyperbolic
lane, then the composition of Mb1

and Mb2

−1 sends the point b2 in b1. Moreover, Mb1
�Mb2

−1 sends
he horocycle flow hj,b2

into the horocycle flow hj,b1
. This proves that the amplitude of the wave

oes not depend on b and 	.
Using Proposition 2, we obtain that there exists a function A��� independent of 	 and b such

hat Eq. �18� is satisfied, and the conservation of the flow along the entire strip 0�y�1 is
roved. �

Remark: It is interesting to compare the propagation of light in vacuum with that within the
trip 0�y�1 belonging to H2. In vacuum each ray cuts orthogonally all the constant phase
lanes: i.e., each ray emerging from a plane cuts orthogonally all the other parallel planes. In H2

ropagation proceeds in a completely different form. Take two horocycles lying in the strip 0

y�1, and tangent at the point z= �1+ i� /2: the first horocycle, denoted by H˜0, has normal b0

0; the second one, denoted by H˜1, has normal b1=1. Only one geodesic, denoted �t, lying in H˜0,

uts orthogonally H˜1; it emerges from b0=0 and ends at b1=1. All the geodesics ��, emerging

rom b0=0 and lying in H˜0 above �t, cut orthogonally horocycles H˜b with b�1; the geodesics ��,

merging from b0=0 and lying in H˜0 below �t, cut orthogonally horocycles H˜b with b�1. How-
ver, the density of the flow of geodesics entering orthogonally each horocycle equals the density
f the flow of geodesics exiting orthogonally the same horocycle.

II. TRANSPORT EQUATION AND DISTRIBUTION OF THE DENSITY OF TRAJECTORIES

. Transport equation in the Beltrami pseudosphere

Working out the problem in the space H2 allows us to describe each trajectory as a geodesic
n the Poincaré plane �or disk�, but this setting is not appropriate for describing the evolution of a
unch of trajectories. Hereafter we will switch to a representation more suitable for an effective
haracterization of the amplitude factor in the geometrical approximation of the field. To this aim,
et us first recall the following well-known negative result due to Hilbert: there is no regular
mooth isometric immersion X :H2→R3. However, one can look for a local immersion X :U

R3, where X is a continuous differentiable function, and U�H2 is an open subset. We keep for
an open horocycle based at b. This local immersion can be realized by means of the Beltrami

seudosphere, denoted hereafter by Pb �see the Appendix and Fig. 2�. In fact, let us consider in the
yperbolic disk D an infinite strip lying between two parallel straight lines emerging from the
ource point located on the absolute at 	=−i. Then we take on these parallel geodesics a pair of
oints A0 and B0, lying on a horocycle of normal b0=e−i�/2=−i and cutting orthogonally these
traight lines; A0 and B0 are spaced at distance of 2�. One is then led to consider the domain
−i ,A0 ,B0�. The Beltrami surface cut along any of its generators can be isometrically mapped into
he domain �−i ,A0 ,B0� �see Ref. 14�. On a Lobachevskian plane there always exists reflection �i.e.,

hyperbolic isometry� about an arbitrary straight line; in particular, reflecting the strip
−i ,A0 ,B0� about the straight line �−i ,A0� we obtain a new strip isometric to the initial one and
ealized as a cut of the Beltrami surface in R3. Reflecting then this new strip �−i ,A1 ,A0� �the
egment A1A0 has length 2�� about the straight line �−i ,A1� we obtain the strip �−i ,A2 ,A1� with
he same properties. Exactly the same procedure can be repeated on the other side of
−i ,A0 ,B0�, leading to �−i ,B2 ,B1�. We thus obtain strips of the form �−i ,Ak ,Ak−1� and
−i ,Bk ,Bk−1� �1�k� � �; all segments �Ak ,Ak−1� and �Bk ,Bk−1� have the same length 2�. Working
ith the same procedure we can now construct the map of the open horocycle Hb0

, tangent at the
oundary to the forbidden region �this latter represented by the horocycle Hi of normal i and
assing through the origin�, into a Beltrami funnel, such that each strip of the type �−i ,Ak ,Ak−1�,

−i ,A0 ,B0�, and �−i ,Bk ,Bk−1�, �1�k� � � �referred, now, to the horocycle Hb0

�, is mapped iso-
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etrically into the Beltrami surface, the horocycle Hb0
being wound infinitely many times into the

eltrami surface14 �see Fig. 2�. We can repeat the same procedure for each point b�B, since there
s a rotation �i.e., a hyperbolic isometry� sending each b�B onto b0.

For an explicit equation of the immersion X, the reader is referred to Ref. 15.
In general, the Laplace-Beltrami operator �M on a two-dimensional Riemannian manifold M

ith metric tensor gij �g= 
det�gij�
, gij =gij
−1� is defined as follows:

�M =
1
�g
��

i=1

2
�

�xi
��

j=1

2

gij�g
�

�xj
�� . �22�

n the specific case of the hyperbolic metric associated with the refractive index n�y�=1/y �see the
ppendix�, the Laplace-Beltrami operator reads

�H =
1

n2� �2

�x2 +
�2

�y2� = y2� �2

�x2 +
�2

�y2� . �23�

e then have the following proposition.

FIG. 2. Mapping of a horocycle in the disk D into a Beltrami pseudosphere.
Proposition 4: �i� The Helmholtz equation reads

                                                                                                            



w

t

P
w
P
m

w
E

c
s
t
�

A
t

w
t
�
a
h
p
w
d
n

W
c
i
n

w
d

023503-10 De Micheli, Scorza, and Viano J. Math. Phys. 47, 023503 �2006�

                        
�H� + kH
2 � = 0, �24�

here kH
2 =�2+ 1

4 ���R�.
�ii� The geometrical approximation of the wave function � �for 
� 
 →��, written in terms of

he Beltrami coordinates �see the Appendix�, reads

�±��,u� = C���eu/2 e�i�u �� � R;u � 0� . �25�

Proof: �i� Let us consider the horocyclic waves which generate the conical functions

− 1 � 2 ±i��cosh r�, corresponding to the irreducible unitary representation of the SU�1,1� group,
hich acts transitively on the hyperbolic disk D. This amounts to put in the exponent ��C of the
oisson kernel, �= 1

2 ± i� ���R�. Accordingly, the horocyclic waves read e� 1 � 2 ±i��	,b� �see state-
ents �iv� and �v� of Proposition 2�. From statement �ii� of Proposition 2 and Eq. �13� we get

�He�1
2

±i��	,b� = − ��2 + 1
4�e�1

2
±i��	,b� = − kH

2 e�1
2

±i��	,b�, �26�

here kH
2 =�2+ 1

4 ���R�. Next, proceeding in close analogy with the Euclidean case, where the
uclidean plane wave plays the role of the horocyclic wave, we obtain Eq. �24�.

�ii� Let us now go back to the mapping of the horocycle into the Beltrami funnel �without a
ut� in R3, illustrated above. Next, we apply the Laplace-Beltrami operator to the wave function �,
upposed to belong to C��B� �B denoting the Beltrami pseudosphere�; in �22� xi �i=1,2� stand for
he Beltrami coordinates u ,v. Recall that the first fundamental form in Beltrami coordinates reads
see part �C� of the Appendix�:

I = du2 + e−2u dv2 �u � 0� . �27�

ccordingly, we have g11=1, g22=e−2u, g12=g21=0, g= 
det�gij� 
 =e−2u, gij =gij
−1. Thus, we are led

o the following equation:

�B� + kH
2 � = 0, �28�

here �B is the Laplace-Beltrami operator, referred to the Beltrami pseudosphere. In this equa-
ion, we pass from the coordinates �
 ,�� of the hyperbolic disk D to the Beltrami coordinates
u ,v� of the Beltrami pseudosphere. We illustrate with more details this passage. First we embed
n open horocycle Hb of normal b and tangent to the forbidden region �represented by the
orocycle Hi passing through the origin of D and with normal i; see Fig. 1� into a Beltrami
seudosphere. Notice that in the present analysis, as well as in Proposition 3, and in strict analogy
ith the classical Euclidean procedure, we consider the distance from the origin of the hyperbolic
isk D �rather than from the point source located at 	= i� to the horocycle H	,b �inside Hb� of
ormal b passing through a point 	. Thus we have

	,b� = d�0,Hb� + d�Hb,H	,b� ª db + d�Hb,H	,b� . �29�

hen we embed Hb into a Beltrami pseudosphere, the distance d�Hb ,H	,b� between horocycles
orresponds to the distance between different parallels u=const inside the pseudosphere. Since Hb

s fixed, then db is fixed too. Then, following the standard method of stationary phase, we look
ow for a solution of Eq. �28�, of the following form:

���,x� =� A�x, � �e�1
2

−i��	,b� d � = e�1
2

−i��db� A�x, � �e�1
2

−i��d�Hb,H	,b� d �

= C��� � A�x, � �e�1
2

−i����x,�� d � , �30�

here x= �x1 ,x2�, x1=u, x2=v; � is the pathlength inside the pseudosphere to the point of coor-

inate x, ��x , � � denotes the phase �recall the statements of Proposition 2�.
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The right-hand side �rhs� of equality �30� is an integral of oscillating type. The principal
ontribution to ��� ,x�, as 
� 
 → +�, corresponds to the stationary point of �, in the neighborhood
f which the exponential ceases to oscillate rapidly. These stationary points can be obtained from
he equation �� /�� =0 �provided that �2� /��2�0�. If the condition �� /�� =0 is satisfied by a
nique value �0 of �, corresponding to the unique ray trajectory �geodesic� passing across the
oint of coordinates �u ,v�, we say that � has a critical nondegenerate point at �=�0. Moreover,
ecalling that the manifolds with nonpositive curvature do not have conjugate points, we can state
hat all the critical points of � are nondegenerate. Then, by applying the Morse lemma on the
epresentation of the functions all of whose critical points are nondegenerate, we obtain the
ollowing asymptotic evaluation of integral �30�:

���,x� = C���e
1
2

��x,�0�e−i���x,�0��
m=0

�
Am�x�
�i��m . �31�

he leading term of expansion �31� reads

���,x� = C���A0�x�e
1
2

��x,�0�e−i���x,�0�, �32�

here

A0�x� = A�x,�0��� �2�

��2 �−1/2�
�=�0

exp�i
�

4
sgn� �2�

��2 ��
�=�0

. �33�

or simplicity, in the following we shall write the leading term of expansion �31� as
���A�x�e� 1 � 2 −i����x�, dropping the zero subscripts. Substituting this expression into Eq. �28�,
ollecting powers of �i�� and, finally, equating to zero their coefficients, two equations are ob-
ained: the eikonal �or Hamilton-Jacobi� equation

gij��

�xi

��

�xj
= 1, �34�

nd the transport equation

1
�g

�
i=1

2
�

�xi
��gA2e��

j=1

2

gij��

�xj
� = 0. �35�

et us note that in the present problem the wave functions are radial, in view of the fact that we
re considering a family of horocycles having all the same normal b. Therefore, ��� ,x� �where
��u ,v�, u ,v being the Beltrami coordinates, see the Appendix� does not depend on v. Then, Eq.

34� becomes

�d�

du
�2

= 1, �36�

hich gives the following expression of the phase: ��±�= ±u+c �c=const�. Proceeding analo-
ously with Eq. �35�, we have

d

du
�A2e±ue−ud��±�

du
� = 0. �37�

ubstituting in the leading term �32� the expressions of � and A, which derive from �36� and �37�,

he rhs of �25� follows. �
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. Sine-Gordon equation and the flow of trajectories

The analysis of propagation in the Beltrami pseudosphere has allowed us to study the distri-
ution of the density of trajectories and, accordingly, the ray focusing along the horizontal axis.
nother parameter, related once again to the Beltrami pseudosphere, and whose characterization is

elevant in our description of the flow of trajectories, is the angle � that the tangent to the meridian
in the Beltrami pseudosphere� makes with the z axis �see section �C� of the Appendix�.

In the Appendix, the Beltrami pseudosphere is described in terms of the Beltrami coordinates
and v. Here we choose another parametrization �p ,q� by setting

dp = − csc � d� , �38a�

dq = − dv . �38b�

ntegrating �38a�, we obtain

� = 2 tan−1�e−p� , �39�

nd

d�

dp
= − sin � =

1

cosh p
. �40�

ext, substituting in formula �A31� of the Appendix �with �=−1� � and v in terms of the
arameters p and q, the position vector r of the pseudosphere can be rewritten as follows:

r�p,q� =�−
1

cosh p
cos q

1

cosh p
sin q

p − tanh p
� , �41�

here the downward vertex of the pseudosphere corresponds to p→−�, while the rim corre-
ponds to p=0. The parameters �p ,q� can be related to the arc lengths �� ,�� along asymptotic
ines as follows:

p = � + � ,

q = � − � . �42�

etting �=2�, the first fundamental form reads

I = d�2 + 2 cos � d� d� + d�2, �43�

hich can be easily derived from the expression �A32� of the Appendix through the formulas
38a� and �42� �recalling that �2=1�. Moreover, from Gauss’ and Weingarten’s equations, it fol-
ows that �, which is the angle between the asymptotic lines, satisfies the classical sine-Gordon
quation, which reads

�2�

�� � �
= sin � . �44�
his latter equation rewritten in terms of the coordinates p ,q becomes
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�2�

�p2 −
�2�

�q2 = sin � cos � . �45�

e can finally state the following proposition.
Proposition 5: �i� The angle �, that the tangent to the meridian of the pseudosphere makes

ith the z axis �i.e., the rotation axis�, is represented by the following formula:

� = 2 tan−1�e−p� , �46�

hich is the so-called “one-soliton” solution of the sine-Gordon equation �45�.
�ii� The angle � varies from �=� /2 to �=� in the process of focusing, and from �=� to

=� /2 in the process of defocusing.
Proof: �i� The proof of this statement follows easily by direct calculation.
�ii� The downward vertical z axis of the pseudosphere we are considering is negatively ori-

nted; then varying p from 0 to −� �in Eq. �46��, � varies from �=� /2 to �=� �focusing�. Next
arying p from −� to 0, � varies from �=� to �=� /2 �defocusing�. �

So far in this section we have considered a local description of the flow in order to show that
he density of the flow is not homogeneously distributed. We now want to recover a global
escription in the entire strip 0�y�1. But we have already remarked that the map of a horocycle
nto a pseudosphere excludes the boundary of the horocycle. Therefore this global description
annot be reached by considering only horocycles lying in the strip 0�y�1 and tangent to the
ine y=1. Recall, however, that while the physical geodesics, which lie within the strip 0�y

1 in H2, cannot enter the forbidden region y�1, this is not the case for horocycles, provided we
imit ourselves to consider in these horocycles �i.e., those entering the forbidden region� those
egments of geodesics which lie in the strip 0�y�1. In view of these considerations it is

ufficient to consider horocycles H˜b��H˜b �H˜b� entering the forbidden region�, and, accordingly, the

aps Xb� embedding H˜b� into a Beltrami pseudosphere Pb�. We can thus obtain a sequence of
eltrami pseudospheres Pb� which, by varying b, allows us to connect in R3 the geodesics lying in

he strip 0�y�1. We thus pass from a local to a global description.

V. CONCLUSIONS AND DISCUSSION

In this paper we have presented the geometrical optics generated by a refractive index of
yperbolic type. The ray trajectories are geodesics in the Poincaré-Lobachevsky half-plane, and
he horocyclic waves, which are related to the Poisson kernel, represent the analogs of the Eu-
lidean plane waves. We thus obtain two main results.

�a� The flow in the entire strip 0�y�1 is conserved �see Proposition 3�;
�b� inside each horocycle �by embedding horocycles in Beltrami pseudospheres� the ray

focusing on each point b of the horizontal x axis: i.e., toward the boundary of H2, is
shown.

The connection between hyperbolic geometry and optics of spatially nonuniform media can be
ade even tighter. In fact, it can be shown that the transfer matrix associated with lossless layered

ptical media is an element of the group SU�1,1�, no matter how complicated the stepwise profile
f the refractive index might be.16–18 Therefore, the action of any lossless optical multilayer can be
egarded as a Möbius transformation on the unit disk,16 and therefore the natural geometric
nvironment for these physical systems is the hyperbolic one. From this point of view, the geo-
etrical optics description of light propagation in the “hyperbolic glass” discussed so far can be

egarded as the study �in a spatially continuum setting� of the particular case of special interest, in
hich only motions along hyperbolic geodesics are allowed.

PPENDIX

(A) Let us consider the upper half-plane model of the hyperbolic two-dimensional space U

�z=x+ iy :y�0	. Then the boundary �U of U is the real axis and infinity. On U we can define a
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etric d derived from the differential ds= 
dz 
 /Iz where dz is the standard Euclidean metric. The
eodesics of U are vertical half-lines and Euclidean semicircles with center on the real axis. The
roup of the orientation preserving isometries of �U ,d� is the Möbius group PSL2�R�, that is the
roup of the 2�2 matrices of real coefficients with determinant 1. The action on U��U is

efined as ��z�= �az+b� / �cz+d�, where �a b

c d ��PSL2�R�.

Another model of the hyperbolic two-dimensional space is the Poincaré disk D= �	=

i� :
2+�2�1	. The map

	 = i
z − i

z + i
�A1�

with inverse z=−i��	+ i� / �	− i��	 transfers the geometry of U into the geometry of D. In particu-
ar, the metric on D is given by the differential

d	 =
2

1 − 
	
2
dE	 , �A2�

here dE is the standard Euclidean metric. In this model, the geodesics are circular arcs perpen-
icular to the boundary 
	 
 =1. Moreover, the group of the orientation preserving isometries of the
oincaré disk D is the group SU�1,1� of the maps of the following form:

�a	 + c̄

c	 + ā
:
a
2 − 
c
2 = 1� . �A3�

(B) The group G=SU�1,1� admits two subgroups relevant for our analysis:

�1� The subgroup K of rotations

k = � ei

2 0

0 e−i

2
� ,

with 0��4�.
�2� The subgroup A of matrices

ar =�cosh
r

2
sinh

r

2

sinh
r

2
cosh

r

2
� ,

with r�R.

Let A+ denote the set ar with r�0. Then the following decomposition holds.
Cartan decomposition:10 Any element g�G can be decomposed as follows:

g = kark� �r � 0,0 �  � 4�,0 � � � 2�� , �A4�

.e., G=KA+K. The decomposition is unique if g�K.
We now introduce the so-called spherical functions ���g� on G /K �g�G=SU�1,1� ,��C�,

hich are defined as follows.19

Definition 1: The spherical functions on G /K �G=SU�1,1� ,K=SO�2�� are defined as follows:

���g� = �
B
�d�g−1 · b�

db
��

db �g � SU�1,1�,� � C� , �A5�
here B is the boundary of the hyperbolic disk D �i.e., B= �	 : 
	 
 =1	�.
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We can then prove the following proposition.
Proposition 6: The functions ���g� satisfy the following properties:

�i�

���g� = P−��cosh r�, �g � SU�1,1�,� � C� , �A6�

where P−��·� are the first kind Legendre functions.
�ii�

�D���g� = ��� − 1����g�, �g � SU�1,1�,� � C� , �A7�

where �D is the hyperbolic Laplace-Beltrami operator.
�iii�

P− 1
2

+i��cosh r� = P− 1
2

−i��cosh r� �� � R� . �A8�

Proof: Let us consider the following integral �1/2���0
2�f�ei��d� �f �L1�B��, and evaluate

ow the Lebesgue measure �1/2��d� changes when an element g�SU�1,1� acts on B �boundary
f D�. Recalling that the action of g is g ·	= �a	+c� / �c̄	+ ā� �	�D� �see Proposition 2�, we have
·ei�=ei�= �aei�+c� / �c̄ei�+ ā�. We thus have19

�d�

d�
� = 
c̄ei� − a
−2 = 
a
−2� c̄

a
ei� − 1�−2

= �1 −

c
2


a
2�� c̄

a
ei� − 1�−2

, �A9�

ince 
a
2− 
c
2=1. Let us now note that g ·0=c / ā; on the other hand, in view of the Cartan
ecomposition, we have

g · 0 = kar · 0 = ei tanh� r

2
� = 
	
ei. �A10�

herefore �1− 
c
2 / 
a
2�=1− 
	
2, and

� c̄

a
ei� − 1�−2

=
1


1 − 
	
ei��−�
2
=

1

1 + 
	
2 − 2
	
cos�� − �
. �A11�

e thus have

1

2�
�

0

2�

f�g · ei��d� =
1

2�
�

0

2�

f�ei���d�

d�
�d� , �A12�

nd, in view of formulas �A9�, �A10�, �A11�, �A12�, we get

P�g · 0,b� =
1 − 
	
2

1 + 
	
2 − 2
	
cos�� − �
= �d�g−1 · b�

db
� . �A13�

ecalling Definition 1 we can write

���g� = �
B
�d�g−1 · b�

db
��

db =
1

2�
�

0

2� � 1 − 
	
2

1 + 
	
2 − 2
	
cos �
��

d� . �A14�

inally, writing tanh�r /2� in place of 
	
 �see formula �A10��, we obtain

���g� =
1

2�
�

0

2� 1

�cosh r + sinh r cos ���d� = P−��cosh r� , �A15�

here the last equality follows from the integral representation of the first kind Legendre
12
unctions. Formula �A15� proves statement �i�.
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From formula �A15� it follows that the spherical functions ���g� are bi-k-invariant; indeed,
sing the Cartan decomposition, we have

���g� = ���kark�� = ���ar� = P−��cosh r� . �A16�

urthermore, we can prove that �see formulas �A13� and �A14��

���E� = �
B

�P�E · 0,b��� db = 1 = P−��1� . �A17�

et us now return to statement �ii� of Proposition 2, and recall that P��	 ,b� is an eigenfunction of
he hyperbolic Laplace-Beltrami operator with eigenvalue ���−1�. We then consider an integral of
he following form:

�
B

�P�g · 0,b��� db = ���g� . �A18�

t can be proved that this integral superposition is still an eigenfunction of the hyperbolic Laplace-
eltrami operator �D, having ���−1� as eigenvalue.19 In particular, it follows that ���g� and

1−��g� �g�SU�1,1�� are both eigenfunctions of �D with the same eigenvalue, and therefore they
oincide. We can thus state that P− 1 � 2 +i��cosh r�=P− 1 � 2 −i��cosh r�; statements �ii� and �iii� are
hus proved.

Finally, from the representation of the Poisson kernel in terms of horocyclic waves, we have

P− 1
2

+i��cosh r� =
1

2�
�

0

2� � 1

cosh r + sinh r cos �
�1/2−i�

d�

=
1

2�
�

0

2� � 1 − 
	
2

1 + 
	
2 − 2
	
cos �
�1/2−i�

d� = �
B

e�1
2

−i��	,b� db �� � R,	 � D� .

�A19�

�

(C) In Sec. III, we have seen that it is possible to have a local isometric immersion from an
orocycle to R3. The image of this immersion is a Beltrami pseudosphere. Now, we describe in
ore details the equation of the pseudosphere and its coordinates.

First, we want to recover the pseudosphere as a surface of revolution of a curve in R3. Let us
ecall that, in general, the position vector r of the surface of revolution generated by the rotation
f a plane curve z=��r� about the z axis is given by

r = �r cos v

r sin v

��r�
� , �A20�

here v varies between 0 and 2�. Here the circles r=const are the parallels and the curves v
const are the meridians. The first fundamental form associated with the surface �A20� is given by

I = �1 + ����r��2	dr2 + r2 dv2. �A21�

e now rewrite the form �A21� as follows:

I = du2 + r2 dv2, �A22�
here
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du = �1 + ����r��2dr, r = r�u� . �A23�

rom the general Gauss’ theory of surfaces, we have that the total curvature is given by20

K = −
1

r

d2r

du2 , �A24�

hence the general pseudospherical surface of revolution with K=−1/�2 adopts the form20

r�u� = c1 cosh
u

�
+ c2 sinh

u

�
. �A25�

n the case c1=c2=c, which corresponds to a parabolic pseudospherical surface of revolution, the
eridians are given by

r�u� = ceu/�, �A26�

hile

z = ��r� =��1 − � c

�
�2

e2u/� du . �A27�

hen, the first fundamental form, with c=1, has the following expression:

I = du2 + e2u/� dv2. �A28�

he coordinates u ,v are called Beltrami coordinates.
The substitution

sin � =
c

�
eu/� �A29�

n �A27� yields

z = ��cos � + ln�tan
�

2
�� . �A30�

rom formulas �A20�, �A26�, �A29�, and �A30� we obtain

r =�
� sin � cos v

� sin � sin v

��cos � + ln
tan
�

2

� � , �A31�

nd the first fundamental form �in terms of � and v� is

I = �2 cot2 � d�2 + �2 sin2 � dv2. �A32�

Equation �A31� is the parametric form of the parabolic pseudosphere, seen as surface of
evolution about the z axis of the curve called tractrix, which satisfies the following property: the
ength of the tangent from the point where it touches the curve to the point where it intersects the
axis is constant and equal to 
�
; � is the angle that the tangent to the meridian makes with the
axis. The angle � varies between 0 and � so that, keeping �=1, the related parabolic pseudo-

phere has vertices at z= +� �corresponding to �=�� and at z=−� �corresponding to �=0� and
im at z=0 �corresponding to �=� /2�. The curve is continuous and regular except at the point
=0, which is a cusp point. Choosing �=−1 and varying � from 0 to �, we shall have the upward
ertical z axis positively oriented �� varying from 0 to � /2�, and the downward vertical z axis

egatively oriented �� varying from � /2 to ��. In accordance with the Hilbert’s theorem, for
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hich it is impossible to embed the entire hyperbolic disk onto R3, and since we want the
mmersion from the horocycle to the pseudosphere to be regular, then the image must be contained
ither in the downward component or in the upward component of the pseudosphere; thus it does
ot contain the cuspidal rim. Accordingly, taking �=−1 once and for all, the first form, written in
eltrami coordinates, reads

I = du2 + �e−u dv�2 �u � 0� , �A33�

nd the tractrix is

x = − sin � ,

z = − �cos � + ln�tan
�

2
�� . �A34�

hen, in Sec. III A we use the form �A33� with u�0, varying � from � /2 to 0 and, accordingly,
�0 �see Fig. 2�. In Sec. III B, where the coordinate u does not enter the game and we have
hosen the coordinates p and q, it is convenient to vary � from � /2 to � and, in accordance,
aking the downward vertical axis negatively oriented, i.e., z�0.
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The necessary conditions are derived for existence of a bi-Hamiltonian structure for
a given hydrodynamic type system. One of the conditions is the vanishing of its
Haantjes tensor. A theorem is proved on the canonical forms of the generic bi-
Hamiltonian systems. The Schouten �2,1�-tensor Si

jk is connected with any Hamil-
tonian system of hydrodynamic type. The complete symmetry of the �3,0�-tensor
Sijk is demonstrated. The necessary conditions for existence of a single nondegen-
erate Hamiltonian structure are obtained in terms of the special differential k-forms
�p1¯pk

�u1 , . . . ,uk�. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2167920�

. INTRODUCTION

We present new applications of the Schouten �2,1�-tensor Si
jk �Ref. 1� that exists for any

2,0�-tensor gij and any �1,1�-tensor Ak
j satisfying the equation

gi�A�
j = A�

i g�j . �1.1�

quation �1.1� naturally arises in the theory of bi-Hamiltonian dynamical systems2–8

ẋi = P1
i��H1�x�

�x� = P2
i��H2�x�

�x� �1.2�

nd in the theory of Hamiltonian systems of hydrodynamic type9–11

�ui

�t
= �

j=1

n

Aj
i�u1, . . . ,un�

�uj

�x
. �1.3�

or systems �1.3�, ui=ui�t ,x� are unknown functions and Aj
i�u� form a �1,1�-tensor on a manifold

Mn with charts of local coordinates u1 , . . . ,un.
For a bi-Hamiltonian dynamical system �1.2�, the �2,0�-tensor gij is one of the Poisson struc-

ures P1
ij or P2

ij and the �1,1�-tensor Ak
j is the recursion operator Ak

j = P1
j��P2

−1��k provided that the
oisson structure P2

ij is nondegenerate.
For the Hamiltonian systems �1.3� with a local or nonlocal structure of Poisson brackets, the

1,1�-tensor Aj
i�u� is given by the formula

Aj
i�u� = gi��u�

�2f�u�
�u� � uj + bj

i��u�
� f�u�
�u� + Kf�u�� j

i , �1.4�

here symmetric �2,0�-tensor gij�u� and coefficients bj
ik�u� are connected by certain nonlinear

quations that follow from the Jacobi identity;9–11 f�u� is the density of the Hamiltonian func-
ional. Equation �1.1� holds for all Hamiltonian system �1.3� and �1.4� and thus allows to relate

jk 12
ith them the Schouten �2,1�-tensor Si .

47, 023504-1022-2488/2006/47�2�/023504/14/$23.00 © 2006 American Institute of Physics
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In the paper, we show that for any Hamiltonian system �1.3� and �1.4� the corresponding
chouten �3,0�-tensor Sijk=gi�S�

jk is completely symmetric, even when the �2,0�-tensor gjk is de-
enerate and the Hamiltonian structure is nonlocal, K�0. In Ref. 12, we proved the symmetry of
ijk for some special cases. The symmetry implies certain algebraic identities for the Nijenhuis and
aantjes tensors of the �1,1�-tensor Aj

i�u�.
We derive necessary conditions for existence of bi-Hamiltonian structures �1.4� having two

ifferent �2,0�-tensors g1
jk and g2

jk. Since the tensors g1
ij�u� and g2

ij�u� are not given a priori, the
ecessary conditions are formulated for the �1,1�-tensor Aj

i�u� only, namely in terms of its Nijen-
uis and Haantjes tensors13,14 and in terms of the special differential k-forms �p1¯pk

�u1 , . . . ,uk�
ntroduced in this paper.

For the bi-Hamiltonian systems �1.3� and �1.4� with nondegenerate �2,0�-tensor g2
jk and the

1,1�-tensor Bj
i =g1

i��g2
−1��j having distinct eigenvalues we prove that the Haantjes �1,2�-tensor Hjk

i

ecessarily vanishes. For hyperbolic systems �1.3� with real and distinct eigenvalues of the �1,1�-
ensor Aj

i�u�, this implies the existence of Riemann invariants for the system �1.3� and �1.4� and
ence its integrability by the generalized hodograph transform.15 For the generic bi-Hamiltonian
ystems with complex eigenvalues of Aj

i�u�, we prove a theorem on their canonical forms.

I. SCHOUTEN TENSORS FOR BI-HAMILTONIAN SYSTEMS

For any �1,1�-tensor Ak
i and the �2,0�-tensor gjk on the manifold Mn satisfying Eq. �1.1�,

chouten introduced the �2,1�-tensor,

Si
jk = Ai

��gjk

�x� − gj��Ai
k

�x� − g�k�Ai
j

�x� + gj��A�
k

�xi − A�
j �g�k

�xi . �2.1�

n Ref. 12, we show that the Schouten tensor has the following invariant meaning: for any vector
eld u�x�=ui�x� on the manifold Mn the �2,0�-tensor �Su� jk=Si

jkui has the form

Su = LAug − ALug + gLuA , �2.2�

here Lu is the Lie derivative operator with respect to the vector field u�x�.
Suppose a system �1.3� has two Hamiltonian structures �1.4� with two different �2,0�-tensors

1
jk and g2

jk. Then two equations �1.1� hold,

g1
i�A�

j = A�
i g1

�j, g2
i�A�

j = A�
i g2

�j . �2.3�

ence for any parameter � we have

g�
i�A�

j = A�
i g�

�j , �2.4�

here g�=�g1+g2. Suppose that for some � the �2,0�-tensor g� is nondegenerate and define the
1,1�-tensor B�j

i =g1
i��g�

−1��j. As is known, Eqs. �2.3� and �2.4� imply that the operators Aj
i and B�k

j

ommute,

AB� = B�A . �2.5�

vidently we have g1=B�g�. Hence for the corresponding Schouten tensor S1u �2.2� we get

S1u = LAu�B�g�� − ALu�B�g�� + B�g�LuA .

pplying the Leibniz formula and Eq. �2.5�, we find

S1u = B��LAug� − ALug� + g�LuA� + �LAuB� − ALuB��g�. �2.6�
he first parentheses here evidently is the Schouten tensor
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S�u = LAug� − ALug� + g�LuA = �S1u + S2u.

he second parentheses for the two commuting operators A and B� is the Nijenhuis tensor.13

ndeed, for any two vector fields U and V and �1,1�-tensor A we have �LUA�V= �U ,AV�
A�U ,V�. Hence we have

�LAuB� − ALuB��v = �Au,B�v� − B��Au,v� − A�u,B�v� + AB��u,v� , �2.7�

�LB�vA − B�LvA�u = �B�v,Au� − A�B�v,u� − B��v,Au� + B�A�v,u� . �2.8�

ormula �2.7� does not depend on a smooth continuation of vector v, and formula �2.8� does not
epend on a continuation of vector u. Since AB�=B�A, these formulas differ only by sign. There-

ore Ñ�u=LAuB�−ALuB� is a tensor; its components are

Ñ�jk
i = Aj

��B�k
i

�x� − B�k
� �Aj

i

�x� + B��
i �Aj

�

�xk − A�
i �B�k

�

�xj . �2.9�

hus Eq. �2.6� has the form

S1i
jk = B��

j S�i
�k + Ñ�i�

j g�
�k,

hat gives the following relation between the two Schouten tensors:

S1i
jk = B��

j ��S1i
�k + S2i

�k� + Ñ�i�
j ��g1

�k + g2
�k� . �2.10�

quation �2.10� depends on an arbitrary parameter �.

II. SHOUTEN TENSOR Sijk FOR ANY HAMILTONIAN SYSTEM „1.3… IS COMPLETELY
YMMETRIC

�i� It is evident that the Schouten tensor �2.1� has also the form

Si
jk = Ai

��gjk

�x� −
��A�

k gj��
�xi + gj�� �A�

k

�xi −
�Ai

k

�x�� + � �A�
j

�xi −
�Ai

j

�x��g�k. �3.1�

herefore for any symmetric �2,0�-tensor gij the Schouten tensor �3.1� has the following symme-
ry:

Si
jk = Si

kj . �3.2�

ence the Schouten �3,0�-tensor Sijk=gi�S�
jk possesses the partial symmetry, Sijk=Sikj.

Let us consider a nonlinear system of hydrodynamic type

ut
i = �

j=1

n

Aj
i�u1, . . . ,un�ux

j , �3.3�

here ui�t ,x� are unknown functions. Note that for the systems of hydrodynamic type �3.3� the
ariables u1 , . . . ,un play the role of the coordinates x1 , . . . ,xn of Sec. II.

The Poisson brackets structure for the Hamiltonian systems �3.3� is defined by the operator
ij�u� for the local9 and nonlocal case K�0,10,11

Iij�u� = gij�u�
�

�x
+ bk

ij�u�ux
k + Kux

i� �

�x
�−1

ux
j . �3.4�
he corresponding Hamiltonian systems �3.3� have the form
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ut
i = Ii��u�

� f�u�
�u� = Aj

i�u1, . . . ,un�ux
j , �3.5�

ith the following �1,1�-tensors Aj
i�u�:

Aj
i�u� = gi��u�

�2f�u�
�u� � uj + bj

i��u�
� f�u�
�u� + Kf�u�� j

i , �3.6�

here f�u� is the density of the Hamiltonian functional.
�ii� First we study the Hamiltonian systems �3.5� and �3.6� with the nondegenerate �2,0�-tensor

jk. As is known,9–11 such �2,0�-tensor gij�u� corresponds to a metric gij�u� of constant curvature K.
he corresponding �1,1�-tensor Aj

i�u� �3.6� has the invariant form

Aj
i�u� = gi�f�u�;�;j + Kf�u�� j

i , �3.7�

here �;�� means the gij-covariant derivative with respect to variable u�.
Proposition 1: For the �1,1�-tensor Aj

i �3.7� and nondegenerate �2,0�-tensor gij, the Schouten
3,0�-tensor Sijk is completely symmetric.

Proof: For K=0, the metric gij�u� is flat and hence is constant and diagonal in some coordi-
ates v1 , . . . ,vn, gij�v�=qi� j

i. The corresponding �1,1�-tensor �3.7� takes the form9

Aj
i�v� = qi �2f�v�

�vi � v j . �3.8�

ence the definition �2.1� yields the following formula for the Schouten �3,0�-tensor:

Sijk = − qiqjqk �3f�v�
�vi � v j � vk . �3.9�

ensor �3.9� is evidently symmetric in the coordinates v1 , . . . ,vn, hence it is completely symmetric
n any coordinates u1 , . . . ,un.

For K�0, the proof is presented in paper.12
�

Remark 1: Formulas �3.8� and �3.9� yield that if the Schouten �2,1�-tensor Si
jk is zero for a

ondegenerate Hamiltonian system �1.3� and �1.4� with K=0 then the system is linearizable in
ome coordinates v1 , . . . ,vn.

Remark 2: Let us consider the invariant function h�u�=Aj
i�u�Ai

j�u�=Tr A2�u�. Formula �3.8�
mplies

h�v� = �
i,j

qiqj� �2f�v�
�vi � v j�2

. �3.10�

ence if a system �1.3� has a Hamiltonian structure �1.4� with positive �or negative� definite
etric gjk and K=0 then necessarily h�u��0. Thus if h�u��0 then the metric gjk must be

ndefinite.
�iii� The operator Iij�u� �3.4� defines a structure of Poisson brackets

�F̂1�u�,F̂2�u�	 = 

−�

� �F1�u�
�ui�x�

Iij�u�
�F2�u�
�uj�x�

dx �3.11�
or the local functionals
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F̂� = 

−�

�

F��u,ux,uxx, . . . �dx .

he coefficients gij�u� and bk
ij�u� �3.4� satisfy certain equations9,11 that follow from the conditions

hat the Poisson brackets �3.11� are skew and the Jacobi identity holds. The skew-symmetricity
ondition for the Poisson brackets �3.11� is equivalent to the equations

gij = gji, �3.12�

�gij

�uk = bk
ij + bk

ji. �3.13�

he Jacobi identity for the Poisson brackets �3.11� is equivalent to the relations11

b�
ikg�j = b�

jkg�i, �3.14�

� �b�
jr

�uk −
�bk

jr

�u��g�i + b�
ijbk

�r − b�
irbk

�j + K�gij� k
r − gir� k

j� = 0, �3.15�

�
	,

� �b
�k�

	�i�	�j�

�u� −
�b�

	�i�	�j�

�u
�k� �b
�s�
�	�m� + K�b
�k�

	�m�	�i� − b
�k�
	�i�	�m���
�s�

	�j� = 0. �3.16�

ere summation is taken with respect to index � and in �3.16� with respect to the three cyclic
ermutations 	 of indices i , j ,m and two transpositions 
 of indices k and s.

For the �1,1�-tensor Aj
i�u� �3.6�, we have

A�
i g�j − gi�A�

j = �gi�gj� − gi�gj��
�2f�u�

�u� � u� + �b�
i�g�j − b�

j�g�i�
� f�u�
�u� .

his expression is zero in view of Eqs. �3.12� and �3.14�. Hence the �1,1�-tensor Aj
i�u� �3.6�

atisfies the equation9 gi�A�
j =A�

i g�j �1.1� and therefore the corresponding Schouten �2,1�-tensor

i
jk �3.1� does exist and satisfies Eq. �3.2�, Si

jk=Si
kj.

Theorem 1: For any Hamiltonian system of hydrodynamic type �3.5� and �3.6�, the Schouten
3,0)-tensor Sijk is completely symmetric.

Proof: In view of Eq. �1.1�, formula �3.1� implies

Sijk = gi�S�
jk = A�

i �gjk

�u� g�� + A�
j � �gi�

�u� g�k −
�g�k

�u� g�i� + � �A�
k

�u� −
�A�

k

�u� �g�jg�i −
��gi�A�

j �
�u� g�k.

�3.17�

n view of �1.1�, the last term in �3.17� is symmetric with respect to the indices i , j. Hence formula
3.17� yields

Sijk − Sjik = A�
i � �gjk

�u� g�� −
�gj�

�u� g�k +
�g�k

�u� g�j� − A�
j � �gik

�u� g�� −
�gi�

�u� g�k +
�g�k

�u� g�i�
+ 2� �A�

k

�u� −
�A�

k

�u� �g�jg�i. �3.18�
et us prove that the expression �3.18� vanishes. Using formulas �3.13� and �3.14�, we find
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�gjk

�u� g�� −
�gj�

�u� g�k +
�g�k

�u� g�j = 2b�
jkg��. �3.19�

he formulas �3.6� and �3.13� imply

�A�
k

�u� = gk� �3f�u�
�u� � u� � u� + b�

k� �2f�u�
�u� � u� + b�

k� �2f�u�
�u� � u� + b�

�k �2f�u�
�u� � u� +

�b�
k�

�u�

� f�u�
�u� + K

� f�u�
�u� � �

k .

�3.20�

ere the sum of the first three terms is evidently symmetric with respect to the indices � ,�; hence
hese summands can be cancelled in the last term of �3.18�. Substituting the formulas �3.19� and
3.20� into �3.18�, we find

Sijk − Sjik = 2�A�
i b�

jk − A�
j b�

ik�g�� + 2� �2f�u�
�u� � u�b�

�k −
�2f�u�

�u� � u�b�
�k�g�jg�i

+ 2
� f�u�
�u� � �b�

k�

�u� −
�b�

k�

�u� �g�jg�i + 2K� � f�u�
�u� ��

k −
� f�u�
�u� � �

k�g�jg�i.

ubstituting here expressions �3.6� and using Eqs. �3.14�, we obtain

Sijk − Sjik = 2
�2f�u�

�u� � u� ��gi�b�
�k − gi�b�

�k�g�j + �gj�b�
�k − gj�b�

�k�g�i� + 2
� f�u�
�u� gi��� �b�

k�

�u� −
�b�

k�

�u� �g�j

+ b�
jkb�

�� − b�
j�b�

�k + K�gkj��
� − g�j� �

k �� + 2Kf�u��b�
jkg�i − b�

ikg�j� . �3.21�

he first square brackets in �3.21� vanishes in view of the equality of the mixed derivatives,
f ,�,�= f ,�,�. The second square bracket is zero because it coincides with Eq. �3.15� after changing
he indices k ,� ,� , j into j ,r ,k , i, respectively. Finally the last bracket is zero in view of Eq. �3.14�.
hus the equality Sijk=Sjik is proven. Together with the equality �3.2� this implies that the
chouten �3,0�-tensor Sijk is completely symmetric. �

V. TENSOR M ik
j AND DIFFERENTIAL k-FORMS �p1. . .pk

�i� The Haantjes �1,2�-tensor14 is defined by the formula

H�u,v� = A2N�u,v� + N�Au,Av� − AN�Au,v� − AN�u,Av� . �4.1�

ere N�u ,v� is the Nijenhuis �1,2�-tensor13

N�u,v� = A2�u,v� + �Au,Av� − A�Au,v� − A�u,Av� , �4.2�

here �u ,v� is the commutator of any two vector fields that continually extend the given tangent
ectors. The Nijenhuis tensor �4.2� has the following components:

Njk
i = Aj

��Ak
i

�x� − Ak
��Aj

i

�x� + A�
i �Aj

�

�xk − A�
i �Ak

�

�xj . �4.3�

he components of the Haantjes tensor are

Hjk
i = A�

i A�
�Njk

� + N��
i Aj

�Ak
� − A�

i N�k
� Aj

� − A�
i Nj�

� Ak
�. �4.4�

he skew-symmetricity of the Nijenhuis �1,2�-tensor, Njk
i =−Nkj

i , evidently yields Hjk
i =−Hkj

i . Rais-
ng up indices j and k in �4.4� by contractions with the �2,0�-tensor g�� and using Eq. �1.1�, we
btain for the Haantjes �3,0�-tensor Hijk=H��

i g�jg�k,

Hijk = Ai A�N�jk + Ni��Aj Ak − Ai N��kAj − Ai N�j�Ak .
� � � � � � � �
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�ii� Let us consider the �1,2�-tensor16

M�u,v� = N�Au,v� − AN�u,v� , �4.5�

hat has the following components:

Mik
j = N�k

j Ai
� − A�

j Nik
� . �4.6�

ontracting �4.6� with any tangent vector Vi�Tx�Mn�, we obtain the operator

MV = NAV − ANV. �4.7�

or the operator HV corresponding to the Haantjes tensor �4.1�, �4.4�, we find

HV = NAVA − ANVA − ANAV + A2NV = MVA − AMV. �4.8�

Definition 1: For any two non-negative integers p and q, we define the differential 2-form

�pq�u,v� = Tr�MuApMvAq − MvApMuAq� , �4.9�

here u ,v are tangent vectors u ,v�Tx�Mn�. For any non-negative integers p1 , . . . , pk and tangent
ectors u1 , . . . ,uk, we introduce the differential k-form

�p1. . .pk
�u1, . . . ,uk� = �




sign�
�Tr�M
�u1�A
p1, . . . ,M
�uk�A

pk� , �4.10�

here summation is taken over all permutations 
 of k symbols.
It is evident that the forms �4.9� and �4.10� are skew-symmetric.
Definition 2: For any non-negative integer p we introduce a �1,3�-tensor Lp that defines for

ny three vectors v j, wk, um a vector

Lp�v,w,u� = M�v,ApM�w,u�� − M�w,ApM�v,u��

= N�Av,ApN�Aw,u�� − N�Aw,ApN�Av,u�� + N�Aw,Ap+1N�v,u��

− N�Av,Ap+1N�w,u�� + AN�w,ApN�Av,u�� − AN�v,ApN�Aw,u��

+ AN�v,Ap+1N�w,u�� − AN�w,Ap+1N�v,u�� . �4.11�

It is evident that

Lp�v,w,u� = �MvApMw − MwApMv�u . �4.12�

�iii� The �1,2�-tensor Mik
j �4.6� leads to the following �3,0�-tensor

Mjik = M��
j g�ig�k = N��

j A�
�g�ig�k − A�

j N��
� g�ig�k,

hat in view of Eq. �1.1� has the form

Mjik = Nj�kA�
i − A�

j N�ik, �4.13�

here Nijk=N��
i g�jg�k. The skew-symmetricity of the Nijenhuis �1,2�-tensor Njk

i yields Nijk

−Nikj.
Lemma 1: The �3,0�-tensor Mjik possesses the partial symmetry,

Mjik = Mkij , �4.14�

rovided that the Schouten �3,0�-tensor Sijk is completely symmetric.
Proof: In Ref. 12, we prove that the Schouten �2,1�-tensor Si

jk �3.1� and the Nijenhuis �1,2�-
j
ensor Nik �4.3� satisfy the identity
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SuA − ASu = Nug − gNu,

hat has the following form in the components:

Si
j�A�

k − A�
j Si

�k = Ni�
j g�k − gj�Ni�

k . �4.15�

s is shown in Ref. 12, for the completely symmetric Schouten tensor Sijk identity �4.15� implies

Nijk = Sij�A�
k − Sik�A�

j . �4.16�

quations �4.13� and �4.16� yield

Mjik = A�
i �Sj��A�

k + S�k�A�
j � − Sjk�A�

i A�
� − S�i�A�

j A�
k .

his expression obviously possesses symmetry �4.14�. �

Remark 3: It is evident that Eq. �4.14� has the form

�M��
j g�k − M��

k g�j�g�i = 0.

ence for any tangent vector V of the form V�=g�i�i we find for the operator MV �4.7�,
MV�

j g�k=MV�
k g�j. This equality has the following matrix form:

MVg = gMV
t . �4.17�

e denote Lkx a linear subspace Lkx�Tx�Mn� consisting of all vectors Vi=gk
i��� where �� are

rbitrary covectors, and k=1,2.
Lemma 2: Suppose that a hydrodynamic type system �1.3� is bi-Hamiltonian, so it has two

amiltonian forms �1.4� with two �2,0�-tensors g1
jk and g2

jk. Assume that tensor g�
jk=�g1

jk+g2
jk is

ondegenerate. Then the �1,1�-tensor B�k
j =g1

j��g�
−1��k commutes with all �1,1�-tensors MV and A

here V�L1x�L2x, or Vi=g1
i���=g2

i��.
Proof: For the two Hamiltonian structures �1.4�, the commutativity equation �2.5� holds. For

he two �2,0�-tensors g1 and g2 equations �4.17� yield

g1MV
t = MVg1, g2MV

t = MVg2,

or vectors V�L1x�L2x. Hence we find g�MV
t =MVg� and the commutativity equation

B�MV = MVB� �4.18�

ollows. �

. NECESSARY CONDITIONS FOR EXISTENCE OF A NONDEGENERATE
AMILTONIAN STRUCTURE

Theorem 2: For existence of a nondegenerate Hamiltonian structure �1.3� and �1.4� the
ollowing necessary conditions must hold:

(a) the differential 2-forms �pq�u ,v� (4.9) vanish for all p and q;
(b) the differential k-forms �p1. . .pk

�u1 , . . . ,uk� (4.10) vanish if (1) pi= pk−i for k=4m+2, and
k=4m+3 or if (2) pi= pk−i+1 for k=4m, and k=4m+3.

Proof: �a� If a Hamiltonian structure �1.3� and �1.4� exists and has a nondegenerate �2,0�-
ensor gjk, then Eq. �4.17� holds for all vectors V�Tx�Mn�. Hence for any two tangent vectors u
nd v we have

Mu
t = g−1Mug, Mv

t = g−1Mvg, At = g−1Ag . �5.1�
sing these equalities, we obtain for the 2-form �pq�u ,v� �4.9�,
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�pq�u,v� = Tr�MuApMvAq − MvApMuAq�t

= Tr�AqtMv
t AptMu

t − AqtMu
t AptMv

t �

= Tr�g−1�AqMvApMu − AqMuApMv�g� = �pq�v,u� = − �pq�u,v� . �5.2�

ence �pq�u ,v�0.
�b� At the same assumptions, applying equalities �5.1� we find for the k-form �4.10�,

�p1. . .pk
�u1, . . . ,uk� = �




sign�
�Tr�M
�u1�A
p1
¯ M
�uk�A

pk�t

= �



sign�
�Tr�ApktM
�uk�
t

¯ Ap1tM
�u1�
t �

= �



sign�
�Tr�g−1�ApkM
�uk� ¯ Ap1M
�u1��g�

= �



sign�
�Tr�M
�uk�A
pk−1

¯ Ap1M
�u1�A
pk�

= �



sign�
�Tr�M
�u1�A
pkM
�uk� ¯ M
�u2�A

p1� . �5.3�

�1� Suppose that pi= pk−i. Then we get from �5.3�,

�p1. . .pk
�u1, . . . ,uk� = �




sign�
�Tr�M
�uk�A
pk−1

¯ Ap1M
�u1�A
pk� = sign�	1��p1. . .pk

�u1, . . . ,uk� ,

�5.4�

here 	1 is the permutation 	1�j�= p− j+1. It is evident that sign�	1�= �−1�k�k−1�/2. Hence for k
4m+2 and k=4m+3 we have sign�	1�=−1 and the equality �5.4� yields �p1. . .pk

�u1 , . . . ,uk�0.
his case is realized for the 2-forms �pq�u ,v� above.

�2� Suppose that pi= pk−i+1. Then we get from the last equality �5.3�,

�p1. . .pk
�u1, . . . ,uk� = �




sign�
�Tr�M
�u1�A
pkM
�uk� ¯ M
�u2�A

p1� = sign�	2��p1. . .pk
�u1, . . . ,uk� ,

�5.5�

here 	2 is the permutation 	2�1�=1, 	2�j�=k− j+2. Hence sign�	2�= �−1��k−1��k−2�/2 and for k
4m and k=4m+3 we get sign�	2�=−1 and the equality �5.5� implies �p1. . .pk

�u1 , . . . ,uk�0. �

I. NECESSARY CONDITIONS FOR EXISTENCE OF BI-HAMILTONIAN STRUCTURES

Theorem 3: Suppose that for a bi-Hamiltonian system �1.3� and �1.4� the �2,0�-tensor g�

�g1+g2 is nondegenerate for some �, and the �1,1�-tensor B�k
j �u�=g1

j��g�
−1��k has distinct eigen-

alues. Then the following necessary conditions hold:

(a) the Haantjes tensor H�V ,W� (4.1), (4.4) vanishes for all tangent vectors V�Lx

=L1x�L2x;
(b) the (1,3)-tensors Lp�v ,w ,u� (4.11) vanish for all vectors v ,w�Lx;
(c) the differential k-forms �p1. . .pk

�u1 , . . . ,uk� (4.9), (4.10) vanish for all k�2 and all tangent
vectors u1 , . . . ,uk�Lx and all non-negative integers p1 , . . . , pk;

(d) If in addition rank g2=n then H�U ,W�=0 for all U ,W�Tx�Mn�. If the eigenvalues of the
(1,1)-tensor Aj

i�u� are real and distinct, then the system (1.3) possesses Riemann invari-
ants: there exist local coordinates v1 , . . . ,vn where tensor Aj

i�v� is diagonal Aj
i�v�

=Ai�v�� j
i and the system has the form

vi = Ai�v1, . . . ,vn�vi . �6.1�
t x
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In these local coordinates both �2,0�-tensors g1
ij�v� and g2

ij�v� are diagonal.

Proof: �a� Since the �1,1�-tensor B�k
j has distinct eigenvalues, it can have only one zero

igenvalue. Hence the �2,0�-tensor g1
jk has rank �n−1. Equations �2.5� and �4.18� imply that the

perators A and MV are diagonal in the basis of eigenvectors of the operators B�k
j . Hence operator

and all operators MV1
,MV2

commute with each other for V1 ,V2�Lx. Hence the commutators

V=MVA−AMV vanish for all vectors V�Lx and the Haantjes tensor H�V ,U�=0 for all V�Lx.
�b�,�c� The commutativity of the operators A, Mv, Mw for v ,w�Lx implies that the �1,3�-

ensors Lp�v ,w ,u� �4.11� and �4.12� vanish for v ,w�Lx. Analogously, all operators in the defini-
ions of the k-forms �4.9�, �4.10� commute, hence due to their skew-symmetricity the forms vanish
or all p1 , . . . , pk.

�d� If rank g2=n, then Lx=L1x. Since the Haantjes �1,2�-tensor H�U ,W� is skew and
im�L1x��n−1, we obtain that the Haantjes �1,2�-tensor H�U ,W� vanishes. If the �1,1�-tensor

k
j�u� has real and distinct eigenvalues then the Nijenhuis-Haantjes theorem13,14 for H�U ,W�=0
ields that there are some local coordinates v1 , . . . ,vn where the �1,1�-tensor Aj

i�v� is diagonal. In
hese coordinates the system �1.3� has diagonal form �6.1� with Riemann invariants Ai�v1 , . . . ,vn�.
n the coordinates v1 , . . . ,vn, Eqs. �2.3� imply that both �2,0�-tensors g1

jk�v� and g2
jk�v�are diagonal.

�

Proposition 2: For the existence of two Hamiltonian structures �1.3� and �1.4� with two
egenerate �2,0�-tensors g1

jk, rank g1=m1, and g2
jk, rank g2=m2, provided that for some � the

ensor g�=�g1+g2 is nondegenerate, the following necessary condition must hold for tangent
ectors u1 , . . . ,uk of some subspace Lx�Tx�Mn� of dimension m1+m2−n:

The differential k-forms �p1,. . .,pk
�u1 , . . . ,uk� �4.10� vanish if �1� pi= pk−i for k=4m+2, and k

4m+3 or if (2) pi= pk−i+1 for k=4m, and k=4m+3.
Proof: Applying Lemma 2 of Sec. IV, we find that equations

MV
t = g�

−1MVg�, At = g�
−1Ag�

old for all tangent vectors V�Lx=L1x�L2x. It is evident that dim Lx�dim L1x+dim L2x−n
m1+m2−n. Hence the same proof as in Theorem 2 gives the necessary condition for u1 , . . . ,uk

Lx. �

Remark 4: Theorem 3 implies that the necessary condition for the existence of two Hamil-
onian structures in general position �when tensor B�u�=g1�u�g2

−1�u� has n distinct eigenvalues� for
system �1.3� is the vanishing of the Haantjes �1,2�-tensor H�U ,W� for the �1,1�-tensor Aj

i�u�.
nother necessary condition is the vanishing of the �1,3�-tensor L�V ,W ,U� �4.11� and the skew-

ymmetric k-forms �p1. . .pk
�u1 , . . . ,uk� �4.9�, �4.10� for any non-negative integers p1 , . . . , pk.

II. CANONICAL FORMS OF THE GENERIC BI-HAMILTONIAN SYSTEMS

Let Aj
i�u� be a smooth real �1,1�-tensor on a smooth real manifold Mn.

Theorem 4: Assume that for the �1,1�-tensor Aj
i�u� its Haantjes �1,2�-tensor �4.4� vanishes.

hen if the eigenvalues of the operators Aj
i�u� are all distinct in some open domain Dn�Mn then

here exist local coordinates x1 , . . . ,xn in Dn in which the tensor Aj
i�u� has block-diagonal form

ith k nonzero 2�2 blocks and n−2k nonzero 1�1 blocks, where 2k is the number of complex
igenvalues and n−2k is the number of real eigenvalues of operator Aj

i�u�.
Proof: Let �1�u� , . . . ,�2k�u� be the complex eigenvalues of Aj

i�u� and �2k+1�u� , . . . ,�n�u� be
he real ones. Since complex eigenvalues appear in conjugate pairs, we reorder them so that

2m�u�=�2m−1�u� for m=1, . . . ,k. Let e2m−1�u� and e2m�u� be the corresponding smooth complex-
alued eigenvector fields. The vectors e2m−1�u� and e2m�u� belong to the complexification of the
angent spaces Tu�Dn�. It is evident that we can assume that they also are complex conjugates,

2m�u�=e2m−1�u�. Let

e2m−1�u� = vm�u� + iwm�u� , �7.1�
n
here vm�u� ,wm�u��Tu�D � are real-valued tangent vector fields. Then
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e2m�u� = e2m−1�u� = vm�u� − iwm�u� . �7.2�

or �2m−1�u�=�m�u�+ i�m�u�, the two complex equations A�e2m−1�=�2m−1e2m−1 and A�e2m�
�2m−1e2m are equivalent to the two real equations

A�vm� = �mvm − �mwm, A�wm� = �mvm + �mwm. �7.3�

For the n−2k real eigenvalues � j�u� we define smooth real eigenvector fields ej�u� where j
2k+1, . . . ,n. It is evident that the vectors vm�u� ,wm�u� ,ej�u� form a basis in each tangent space

u�Dn�. Here m=1, . . . ,k and j=2k+1, . . . ,n.
For any two eigenvector fields ep�u�, eq�u�, complex or real, Eqs. �4.1�, �4.2� lead to the

ollowing formula:16

H�ep,eq� = �A − �p�2�A − �q�2�ep,eq� , �7.4�

here �ep ,eq� is the commutator of the vector fields and p ,q=1, . . . ,n. For the vanishing Haantjes
ensor, the equations

�A − �p�2�A − �q�2�ep,eq� = 0 �7.5�

old for all pairs of eigenvector fields ep�u�, eq�u�. For the real ones, equation H�ep ,eq�=0
mplies13,14

�ej�u�,e��u�� = aj��u�ej�u� + bj��u�e��u� , �7.6�

ith some real-valued functions aj��u� and bj��u�. Hence the two-dimensional distribution gener-
ted by vector fields ej�u�, e��u� is involutive.17

For the generic case of distinct complex eigenvalues, Eq. �7.5� evidently yields

�ep�u�,eq�u�� = gpq�u�ep�u� + hpq�u�eq�u� , �7.7�

here gpq�u� and hpq�u� are some smooth complex-valued functions. Let us consider three differ-
nt cases.

�1� Two complex conjugate eigenvalues �2m−1�u�, �2m�u�. For the corresponding eigenvector
elds �7.1� and �7.2�, we find

�e2m−1�u�, e2m�u�� = − 2i�vm�u�, wm�u�� . �7.8�

ence applying Eq. �7.7�, we obtain

�vm�u�,wm�u�� = am�u�vm�u� + bm�u�wm�u� , �7.9�

ith some real-valued functions am�u� and bm�u�. Hence the two-dimensional distribution in

u�Dn� generated by the tangent vector fields vm�u� and wm�u� is involutive.
�2� One real, � j�u�, and one complex, �2m−1�u� or �2m�u�, eigenvalues. Equation �7.7� together

ith Eq. �7.9� imply that the three-dimensional distribution in Tu�Dn� generated by ej�u�, vm�u�,
nd wm�u� is involutive.

�3� Two pairs of complex conjugate eigenvalues, �2m−1�u�, �2m�u�, and �2s−1�u� or �2s�u�.
quations �7.7� along with two equations �7.9� for the indices m and s yield that the four-
imensional distribution in Tu�Dn� generated by the tangent vector fields vm�u�, wm�u�, vs�u�, and

s�u� is involutive.
For every real eigenvalue � j�u�, j=2k+1, . . . ,n, we consider the �n−1�-dimensional distribu-

ion in Tu�Dn� generated by the vector fields e��u� and vm�u�, wm�u� corresponding to all other
igenvalues �p�u��� j�u�. The above results �1�–�3� show that the distribution is involutive. Ap-
lying Frobenius theorem,17 we obtain that the distribution is integrable and hence there exists a
mooth nondegenerate function xj�u� that is constant on the �n−1�-dimensional integral submani-

olds of the distribution. Hence we get

                                                                                                            



w
T

i
=

�
e
i
i
d

w
n

E

a

�
e
v

l
E
o
A
c

t

a
t
C

f
C

o
b
1

023504-12 Oleg I. Bogoyavlenskij J. Math. Phys. 47, 023504 �2006�

                        
dxj�ep�u�� = f j�u�� p
j , f j�u� � 0, �7.10�

here f j�u� is some nonzero smooth function. Therefore the �n−1�-dimensional linear subspace in

u�Dn� defined by

dxj�V� = 0, V � Tu�Dn� �7.11�

s generated by the tangent vectors e��u�, �� j, and vm�u�, wm�u�. Hence the subspaces dxj�V�
0 are invariant under the operators Aj

i�u�, in view of A�e��=��e� and Eqs. �7.3�.
For any pair of complex conjugate eigenvalues �2m�u�=�2m−1�u�, we consider the

n−2�-dimensional distribution in Tu�Dn� generated by the tangent vectors vs�u�, ws�u�, s�m, and

j�u� corresponding to all other eigenvalues. The above results �1�–�3� prove that this distribution
s involutive. Hence by Frobenius theorem it is integrable and there exist two smooth functionally
ndependent functions x2m−1�u� and x2m�u� that are constant on the integral submanifolds for this
istribution. Hence we have

dx2m−1�vs�u�� = am�u�� s
m, dx2m−1�ws�u�� = bm�u�� s

m,

dx2m�vs�u�� = cm�u�� s
m, dx2m�ws�u�� = dm�u�� s

m, �7.12�

dx2m−1�ej�u�� = 0, dx2m�ej�u�� = 0,

here am�u�, bm�u�, cm�u�, dm�u� are some smooth functions and the corresponding 2�2 matrix is
ondegenerate,

am�u�dm�u� − bm�u�cm�u� � 0. �7.13�

quations �7.12� imply that the �n−2�-dimensional linear subspaces defined by the two equations

dx2m−1�V� = 0, dx2m�V� = 0, V � Tu�Dn� �7.14�

re invariant under the linear operators Aj
i�u�.

Thus we have constructed n smooth functions x1 , . . . ,xn on the domain Dn. Equations �7.10�,
7.12�, and �7.13� prove that the functions are functionally independent and hence can be consid-
red as a system of local coordinates in Dn. In the coordinates x1 , . . . ,xn, we define the unit tangent
ector fields e1 , . . . ,en: dxp�eq�=� q

p.
For �=2k+1, . . . ,n, the vector e� generates the subspace Ce� that is the intersection of the

inear subspaces dxj�V�=0 �7.10�, dx2m−1�V�=0, dx2m�V�=0 �7.14�, for all j�� and m=1, . . . ,k.
ach of these subspaces is invariant under the operator Aj

i�u�. Hence their intersection that is the
ne-dimensional subspace Ce� is also invariant. Hence the e� is an eigenvector of the operator

j
i�u� and defines an invariant diagonal 1�1 block of Aj

i�u�. Formulas �7.10� imply that the
orresponding eigenvalue is ���x�.

For s=1, . . . ,k, the two tangent vectors e2s−1 and e2s generate the space C1e2s−1+C2e2s that is
he intersection of the linear subspaces dxj�V�=0 �7.10�, dx2m−1�V�=0, dx2m�V�=0 �7.14�, for all
j=2k+1, . . . ,n and m�s. Since each of these subspaces is invariant under Aj

i�u�, their intersection
lso is invariant. Hence the subspace C1e2s−1+C2e2s defines an invariant diagonal 2�2 block of
he operator Aj

i�u� in the coordinates x1 , . . . ,xn. Formula �7.12� yields that the invariant subspace

1e2s−1+C2e2s corresponds to the pair of complex eigenvalues �2s−1�x� and �2s�x�=�2s−1�x�.
Hence the �1,1�-tensor Aj

i�u� in the local coordinates x1 , . . . ,xn has canonical block-diagonal
orm with k 2�2 blocks in the subspaces C1e2s−1+C2e2s and n−2k 1�1 blocks in the subspaces
e�. �

Theorem 5: A generic bi-Hamiltonian system �1.3� with nondegenerate �2,0�-tensor g2
jk and

perators Bk
j�u�=g1

j��g2
−1��k and Ak

j�u� having distinct eigenvalues, complex or real, has canonical
lock diagonal form in some coordinates v1 , . . . ,vn with k nonzero 2�2 blocks and n−2k nonzero

j
�1 blocks where 2k is the number of complex eigenvalues of the �1,1�-tensor Ak�u�.
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Theorem 5 follows from Theorems 3 and 4. Indeed, since operators Bk
j�u� have distinct

igenvalues, Theorem 3 implies that the Haantjes tensor Hjk
i vanishes. Applying Theorem 4 to the

1,1�-tensor Aj
i�u� with distinct eigenvalues and Hjk

i =0, we obtain that tensor Aj
i�v� has the block

iagonal form in some coordinates v1 , . . . ,vn �denoted above as x1 , . . . ,xn�. Hence the bi-
amiltonian system �1.3� has the canonical block diagonal form in the coordinates v1 , . . . ,vn.

Remark 5: Theorem 4 contains as a special case �for k=0� the classical Nijenhuis–Haantjes
heorem that was proved in Refs. 13 and 14 for the case of real and distinct eigenvalues of Aj

i�u�.
ijenhuis and Haantjes did not study the generic case of complex eigenvalues because they were

oncerned with a pure geometric problem on “Xn−1-forming sets of eigenvectors.” For the bi-
amiltonian systems �1.3�, the generic case of complex eigenvalues of Aj

i�u� is as important as the
eal case.

III. ALGEBRAIC IDENTITIES FOR THE BI-HAMILTONIAN SYSTEMS „1.3…

In Ref. 12, we prove that if the Schouten �3,0�-tensor Sijk is completely symmetric, then the
ijenhuis �3,0�-tensor Nijk satisfies the identities

Nikj + Nkji + Njik = 0, �8.1�

A�
i N�jk + A�

j N�ki + A�
k N�ij = 0. �8.2�

he corresponding Haantjes �3,0�-tensor Hijk obeys the identity

Hijk = A�
i A�

�N�jk + A�
j A�

�N�ki + A�
k A�

�N�ij �8.3�

nd is completely skew-symmetric.
In Sec. III, we have shown that the Schouten �3,0�-tensor Sijk is completely symmetric for all

amiltonian systems of hydrodynamic type �1.3� and �1.4�. Therefore the identities �8.1�–�8.3�
old for an arbitrary Hamiltonian system of hydrodynamics type with degenerate or nondegenerate
ymmetric �2,0�-tensor gij.

For a bi-Hamiltonian system �1.3� and �1.4�, there are two sets of identities �8.1�–�8.3� for the
wo tensors N1

ijk=N��
i g1

�jg1
�k and N2

ijk=N��
i g2

�jg2
�k. Suppose the �2,0�-tensor g2

jk is nondegenerate
nd define Bj

i =g1
i��g2

−1��j.
Proposition 3: For the bi-Hamiltonian system �1.3� and �1.4�, tensor N1

ijk satisfies the addi-
ional identities

B�
i N1

�kj + B�
kN1

�ji + B�
j N1

�ik = 0, �8.4�

B�
i A�

�N1
�jk + B�

j A�
�N1

�ki + B�
kA�

�N1
�ij = 0, �8.5�

B�
i H1

�jk = B�
i A�

�A�
�N1

�jk + B�
j A�

�A�
�N1

�ki + B�
kA�

�A�
�N1

�ij . �8.6�

Proof: Let us contract the identity �8.1�,

N2
ikj + N2

kji + N2
jik = 0,

or the tensor N2
ijk with the tensor �g2

−1��i�g2
−1��k�g2

−1��j. After changing the indices we get the
dentity for the Nijenhuis tensor Njk

i ,

�g2
−1�i�Nkj

� + �g2
−1�k�Nji

� + �g2
−1� j�Nik

� = 0. �8.7�

ontracting this identity with the tensor g1
�ig1

�kg1
�j and again changing notations, we arrive at the

dentity �8.4�. The identities �8.5� and �8.6� follow in an analogous way. �

Identity �8.6� implies that along with the �3,0�-tensors H1
ijk and H2

ijk also the �3,0�-tensor
i �jk

�H1 is completely skew-symmetric.
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realization of the Lie algebra associated to a Kantor
riple system
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We present a nonlinear realization of the 5-graded Lie algebra associated to a
Kantor triple system. Any simple Lie algebra can be realized in this way, starting
from an arbitrary 5-grading. In particular, we get a unified realization of the excep-
tional Lie algebras f4 ,e6 ,e7 ,e8, in which they are respectively related to the division
algebras R ,C ,H ,O. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2168690�

. INTRODUCTION

The product in an associative but noncommutative algebra can be decomposed into one
ymmetric part, leading to a Jordan algebra, and one antisymmetric part, leading to a Lie algebra.

deeper relationship between these two important kinds of algebras is suggested by the Kantor-
oecher-Tits construction,1–3 which associates a Lie algebra to any Jordan algebra, and it becomes
ore evident when generalizing Jordan algebras to Jordan triple systems �JTS�. These can further

e generalized to Kantor triple systems �KTS�.
The Lie algebra associated to a Jordan algebra or a JTS is 3-graded, written g−1+g0+g1 as a

irect sum of subspaces, while the Lie algebra associated to a KTS is 5-graded, written g−2

g−1+g0+g1+g2. We will discuss graded Lie algebras more in the following section. In Sec. III
e will describe how triple systems may be obtained from graded Lie algebras and conversely

onstruct the graded Lie algebras associated to these triple systems. Under certain conditions, we
et back the original algebra, together with a nonlinear realization.

In Sec. III A we will consider Jordan triple systems and the associated 3-graded Lie algebras.
n this case, the realization of the Lie algebra is said to be conformal. The operators act on g−1 and
re each either constant, linear or quadratic, according to the 3-grading. In the case of so�2,d� we
et the well-known realization of the conformal algebra in d dimensions, where the elements in
he algebra are regarded as generators of translations �constant�, Lorentz transformations together
ith dilatations �linear� and special conformal transformations �quadratic�.

The main result of this paper, to be presented in Sec. III B, is a corresponding realization of
he 5-graded Lie algebra associated to a Kantor triple system. This Lie algebra has earlier been
efined as a special case of a Kantor algebra,4 using a functor that associates a Lie algebra to any
eneralized Jordan triple system.5 It has also been defined in a simpler but rather abstract way, as
direct sum of vector spaces together with the appropriate commutation relations.6

In our construction, the Lie algebra associated to a KTS consists of nonlinear operators acting
n an extension of the KTS. The bracket arises naturally when we regard the operators as vector
elds, which we will explain in Sec. II B. To our knowledge, such a construction has not appeared
efore. However, the concomitant realization of any simple 5-graded Lie algebra on its subspace

−2+g−1 has been obtained in Ref. 7, using a general formula for the Lie algebra of a homoge-
eous space.

�
Electronic mail: jakob.palmkvist@aei.mpg.de

47, 023505-1022-2488/2006/47�2�/023505/9/$23.00 © 2006 American Institute of Physics
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The corresponding realization of the Lie algebra associated to a Freudenthal triple system
FTS� was given in Ref. 8, called quasiconformal, and led us to the present work. The difference
s that our realization is based on an arbitrary 5-grading, while in Ref. 8 the subspaces g±2 must be
ne dimensional. The connection between these two realizations will be clarified in Sec. III C. As
n example of interesting cases where the subspaces g±2 are not one dimensional, we will in Sec.
V show how the exceptional Lie algebras f4 ,e6 ,e7 ,e8 can be given 5-gradings related to the
ivision algebras R ,C ,H ,O, respectively. This construction, given in Ref. 6, together with our
ain result, leads to a unified realization of these exceptional Lie algebras.

I. GRADED LIE ALGEBRAS

We start with some definitions concerning graded Lie algebras in general, after which we will
onsider the cases of semisimple and simple algebras.

A Lie algebra g is graded if it is the direct sum of subspaces gk�g for all integers k, such that

�gi,g j� � gi+j

or all integers i , j. It is �2�+1�-graded for some integer ��1 if g±��0 and

�k� � � Þ gk = 0.

If gk=0 for all k�0, then g will not be regarded as a graded Lie algebra.� The grade k of an
lement x�gk may be measured by a characteristic element Z�g, satisfying

x � gk Þ �Z,x� = kx

or all integers k. A graded involution � on g is an automorphism of g such that ����x��=x for all
�g and ��gk�=g−k for all integers k. If we instead of the last condition have ��gk�= �−1�kg−k, then
will be called a graded pseudoinvolution.

. Semisimple algebras

Let the graded Lie algebra g be semisimple, complex, and finite dimensional. Then g has a
nique characteristic element Z that belongs to a Cartan subalgebra of g contained in g0. With
espect to this Cartan subalgebra, the subspaces gk with k�0 are spanned by step operators E�

orresponding to roots � such that

E� � gk Û E−� � g−k,

hile g0 is spanned by the Cartan elements Hi and the remaining step operators. It follows that g

s �2�+1�-graded for some integer ��1 and the Chevalley involution

E±� � − E��, Hi � − Hi

s a graded involution on g. Not all real forms of g inherit the grading, since these are spanned by
omplex linear combinations of the step operators and the Cartan elements. In particular, the
ompact form of g cannot be graded.

If we expand a root � in the basis of simple roots � j as �=� j� j, then any set of simple roots

i1
,�i2

, . . . ,�in
generates a grading of g where gk is spanned by all step operators E� such that

i1 +�i2 + ¯ +�in =k and, if k=0, the Cartan elements. Any 3-grading or 5-grading of a simple Lie
lgebra can be obtained in this way �possibly after an automorphism�. If g is simple and 3-graded
r 5-graded, we also have �gi ,g j�=gi+j for i , j= ±1 and �up to an automorphism� there is a unique
-grading with one dimensional subspaces g±2, except for g=a1. On the other hand, e8 , f4 ,g2

annot be 3-graded. A table of all simple 3-graded and 5-graded Lie algebras can be found in

ef. 9.
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. Algebras of operators

We will now describe how any vector space U or pair of vector spaces V ,W gives rise to an
nfinite dimensional graded Lie algebra T�U� or T�V ,W� consisting of operators acting on U or

� W.
With an operator f on a vector space U we mean a map U→U. It is of order p�1 if there is

symmetric p-linear map F :Up→U such that

f�u� = F�u, . . . ,u�

or all u�U, and of order 0 if there is a vector v�U such that f�u�=v for all u�U. We define the
omposition of f and another operator g on U by

�f � g��u� = pF�g�u�,u, . . . ,u�

r f �g=0 if f is of order 0.
For any integer k�−1, let Tk�U� be the vector space consisting of all operators on U of order

+1. Furthermore, set Tk�U�=0 for all integers k�−2 and let T�U� be the direct sum of all these
ector spaces. Now T�U�, together with the bracket

�f ,g� = f � g − g � f ,

is a graded Lie algebra, isomorphic to the algebra of all vector fields f i�i on U such that f
T�U�. The isomorphism is given by f �−f i�i.

Similarly, for any pair of vector spaces V ,W, we can define a graded Lie algebra T�V ,W� of
perators on V � W, isomorphic to the algebra of all vector fields f i�i on V � W such that f
T�V ,W�. As a graded Lie algebra, T�V ,W� is the direct sum of subspaces Tk�V ,W� for all

ntegers k, where Tk�V ,W�=0 for k�−3.
With a realization of a Lie algebra g on U or V � W we mean a homomorphism from g to

�U� or T�V ,W�. If all elements are mapped on linear operators, it reduces to a linear represen-
ation. In the following section, we will see that any simple 3-graded or 5-graded Lie algebra g can
e described as a subalgebra of T�g−1� or T�g−1 ,g−2� and this description will thus give us a
ealization of the algebra.

II. TRIPLE SYSTEMS

In this section, we will clarify the connection between graded Lie algebras and triple systems.
ordan triple systems and Kantor triple systems correspond to general 3-graded and 5-graded
lgebras, respectively, while Freudenthal triple systems correspond to 5-graded algebras with one
imensional subspaces g±2.

A triple system �or ternary algebra� is a vector space U together with a linear map

U 	 U 	 U → U, �x,y,z� � �xyz�

alled triple product. For any two elements u ,v in a triple system U, we define the linear operator
u ,v� on U by

�u,v��z� = �uzv� − �vzu� .

et g be a graded Lie algebra with a graded involution �. Then the vector space g−1 together with
he triple product

�xyz� = ��x,��y��,z�

s a triple system, which will be called the triple system derived from g. We have the identity

�uv�xyz�� − �xy�uvz�� = ��uvx�yz� − �x�vuy�z� �3.1�
rom the fact that � is an involution and from the Jacobi identity, which also gives us
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�u,v��z� = ��u,v�,��z��

or all u ,v ,z�g−1.

. Jordan triple systems

Let g be a 3-graded Lie algebra with a graded involution. Since �u ,v�=0 for any u ,v�g−1 we
ave

�u,v��z� = 0 �3.2�

n the triple system derived from g, which means that the triple product �uzv� is symmetric in u
nd v.

We define a Jordan triple system �JTS�10 as a triple system where the identities �3.1� and �3.2�
old. Thus the triple system derived from a 3-graded Lie algebra with a graded involution is a JTS.
onversely, any Jordan triple system J gives rise to a 3-graded subalgebra of T�J�, spanned by the
perators

ua�x� = a ,

sab�x� = �abx� ,

ũa�x� = − 1
2 �xax� ,

here a ,b ,x�J. This is the Lie algebra L�J� associated to the Jordan triple system J. From �3.1�
nd �3.2� we get the commutation relations

�sab,scd� = s�abc�d − sc�bad�, �sab,uc� = u�abc�,

�sab, ũc� = − ũ�bac�, �ua, ũb� = sab,

nd �ũa , ũb�=0. �We also have �ua ,ub�=0 already from the definition of T�J�.� It follows that if J
s derived from a simple 3-graded Lie algebra g with a graded involution �, then g is isomorphic
o L�J� with the isomorphism

+ 1

0

− 1
� ��a� � ũa

�a,��b�� � �ua, ũb�
a � ua

� �3.3�

here a ,b�g−1. This is the conformal realization of g on g−1.

. Kantor triple systems

If g is a 5-graded Lie algebra with a graded involution, then the identity

�uv�xyz�� − �xy�uvz�� = ��uvx�yz� − �x�vuy�z� �3.4�

till holds in the triple system derived from g but instead of �u ,v�=0 we now have the identity

��u,v��x�,y� = ��yxu�,v� − ��yxv�,u� . �3.5�

e define a Kantor triple system �KTS�,11 or a JTS of second order5 as a triple system such that
3.4� and �3.5� hold. Thus the triple system derived from a 5-graded Lie algebra with a graded
nvolution is a KTS, and so is any JTS.

Let K be a KTS and let L be the vector space spanned by all linear operators �u ,v� on K,

here u ,v�K. If K is derived from a simple 5-graded Lie algebra g with a graded involution �,
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hen we can identify not only K with g−1, but also L with g−2 by �u ,v�= �u ,v�. In analogy with the
onstruction of L�J� in the preceding section we can now construct a 5-graded subalgebra of
�K ,L� spanned by the operators

Kab�z + Z� = 2�a,b� ,

Ua�z + Z� = a + �a,z� ,

Sab�z + Z� = �abz� − �a,Z�b�� ,

Ũa�z + Z� = − 1
2 �zaz� − 1

2Z�a� + 1
6 ��zaz�,z� − 1

2 �Z�a�,z� ,

K̃ab�z + Z� = − 1
6 �z�a,b��z�z� − 1

2Z��a,b��z�� + 1
12��z�a,b��z�z�,z� + 1

2 �Z�a�,Z�b�� , �3.6�

here a ,b ,z�K and Z�L. This is the Lie algebra L�K� associated to the Kantor triple system K.
e get the commutation relations

�Sab,Scd� = S�abc�d − Sc�bad�, �Sab,Uc� = U�abc�,

�Sab,Kcd� = K�c,d��b�a, �Ua,Ub� = Kab,

�Sab,Ũc� = − Ũ�bac�, �Sab,K̃cd� = − K̃�c,d��a�b,

�Ua,Ũb� = Sab, �Ua,K̃cd� = − Ũ�c,d��a�,

�Kab,Ũc� = U�a,b��c�, �Kab,K̃cd� = S�a,b��c�d − S�a,b��d�c,

�Ũa,Ũb� = K̃ab, �K̃ab,K̃cd� = �K̃ab,Ũc� = 0.

t follows that if K is derived from a simple 5-graded Lie algebra g with a graded involution �,
hen g is isomorphic to L�K� with the isomorphism

+ 2

+ 1

0

− 1

− 2
�

���a�,��b�� � �Ũa,Ũb� = K̃ab

��a� � Ũa

�a,��b�� � �Ua,Ũb� = Sab

a � Ua

�a,b� � �Ua,Ub� = Kab

� �3.7�

here a ,b�g−1. Then this isomorphism will be a realization of g on its subspace g−2+g−1. The
ie algebra associated to a Kantor triple system can also be defined by the commutation relations
bove, and this is partly the definition given in Refs. 6 and 12, but it does not directly lead to a
ealization like �3.6�. On the other hand, with our construction, we have to derive the commutation
elations from the definition of the operators and the defining properties of a Kantor triple system.
his requires long calculations and we will only give a few of them here. The full expressions are

ritten out in Ref. 13. As an example, we have
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�Ua,Ũb��z + Z� = �a,− 1
2 �zbz� − 1

2Z�b��
+ 1

2 �abz� + 1
2 �zba� + 1

2 �a,z��b�

− 1
6 ��abz�,z� − 1

6 ��zba�,z� − 1
6 ��zbz�,a�

+ 1
2 ��a,z��b�,z� + 1

2 �Z�b�,a�

=�abz� + �Z�b�,a� + 3
6 ��a,z��b�,z�

− 1
6 ��zba�,z� − 1

6 ��abz�,z� + 2
6 ��zbz�,a�

=�abz� + �Z�b�,a� = Sab�z + Z� ,

here we have used

3��a,z��b�,z� = 2��a,z��b�,z� + ��a,z��b�,z�

=2���zba�,z� − 2��zbz�,a��

+ ��abz�,z� − ��zba�,z�

=��zba�,z� + ��abz�,z� − 2��zbz�,a� .

Among the other commutators, �Ua ,Ub� and �Sab ,Uc� are easy to calculate, while �Ũa , Ũb� and

Sab , Ũc� are much harder. It is convenient to first verify the identities

	��zbz�az� + 2�za�zbz��
ab = �z�b,a��z�z� , �3.8�

	��x,y��b�az�
ab = �x�a,b��y�z� − �y�a,b��x�z� , �3.9�

here we denote antisymmetrization by curly brackets, 	f�a ,b�
ab= f�a ,b�− f�b ,a� for any func-

ion f . We can also use �3.9� to rewrite the last term in K̃ab�z+Z� and show that the map �3.7� is

ell defined in the sense that K̃ab= K̃cd if �a ,b�= �c ,d�. It turns out that

2��u,v��a�,�x,y��b�� = ��x�a,b��y�u�,v� − ��y�a,b��x�u�,v�

+ ��y�a,b��x�v�,u� − ��x�a,b��y�v�,u� .

he remaining nonzero commutation relations follow from the Jacobi identity. Finally, we can
how that

��K̃ab,Ũc�,Kxy� = ��K̃ab,Ũc�,Uz� = 0

hich gives us

�K̃ab,Ũc� = �K̃ab,K̃cd� = 0.

. Freudenthal triple systems

Let g be a 5-graded Lie algebra and let T be an element in g2. Then g−1 together with the triple
roduct

�xyz� = ��x,�T,y��,z�

s a triple system satisfying

�x,y��z� = �yxz� − �xyz� . �3.10�
uppose now that the subspaces g±2 are one dimensional. If we extend the map
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g−1 → g1, x � �T,x�

o a graded pseudoinvolution � on g, then for any x ,y�g−1 there is a scalar � such that �x ,y�
�z�=�z. Thus we can identify the vector space spanned by all operators �x ,y� where x ,y�g−1

ith the field over which the Lie algebra is defined, writing

�x,y��z� = �x,y�z �3.11�

nd we can regard �x ,y� as an antisymmetric bilinear form on the triple system rather than an
perator. Since � is not an involution but a pseudoinvolution, we now have the identity

�uv�xyz�� − �xy�uvz�� = ��uvx�yz� + �x�vuy�z� �3.12�

ith a changed sign of the last term, in comparison to �3.4�. However, �3.5� still holds. We define
Freudenthal triple system �FTS� as a triple system with an antisymmetric bilinear form satisfying

3.5�, �3.10�, and �3.12�. To sum up, we have

�uv�xyz�� = ��uvx�yz� + �x�vuy�z� + �xy�uvz�� , �3.13�

�x,y�z = �xzy� − �yzx� = �yxz� − �xyz� , �3.14�

�u,v��x,y� = ��yxu�,v� − ��yxv�,u� . �3.15�

e note that �3.13� cannot be replaced by �3.4� or, in other words, that a KTS cannot satisfy �3.14�
nd �3.15� for some antisymmetric bilinear form �unless this is identically equal to zero, in which
ase the KTS reduces to a JTS�.

Let F be a FTS and let L be the vector space spanned by all operators �u ,v� on F where

,v�F. If we change some of the signs in the definition of K̃ab in �3.6�, keep the definitions of all
he other operators and simplify the expressions by �3.10�–�3.12�, then we get

Kab�z + 
� = 2�a,b� ,

Ua�z + 
� = a + �a,z� ,

Sab�z + 
� = �abz� − 
�a,b� , �3.16�

Ũa�z + 
� = − 1
2 �zaz� − 1

2
a + 1
6 ��zzz�,a� − 1

2
�a,z� ,

K̃ab�z + 
� = 1
6 �a,b��zzz� + 1

2
�a,b�z − 1
12�a,b���zzz�,z� + 1

2
2�a,b� ,

here a ,b ,z�F and 
�L. These operators span a subalgebra of T�F ,L� with the commutation
elations

�Sab,Scd� = S�abc�d + Sc�bad�, �Sab,Uc� = U�abc�,

�Sab,Kcd� = �c,d�Kba, �Ua,Ub� = Kab,

�Sab,Ũc� = Ũ�bac�, �Sab,K̃cd� = �c,d�K̃ab,

˜ ˜ ˜
�Ua,Ub� = Sab, �Ua,Kcd� = �c,d�Ua,
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�Kab,Ũc� = �a,b�Uc, �Kab,K̃cd� = �a,b��Scd − Sdc�,

�Ũa,Ũb� = K̃ab, �K̃ab,K̃cd� = �K̃ab,Ũc� = 0.

t follows that if F is derived from a simple 5-graded Lie algebra g with one dimensional sub-
paces g±2 and a graded pseudoinvolution as described above, then the map �3.7� is again an
somorphism. This is the quasiconformal realization of g on g−2+g−1, given in Ref. 8 �where the
actor of −2 in �17� and the opposite sign of the bracket lead to different coefficients in �29��.

Freudenthal triple systems where the antisymmetric bilinear form is nondegenerate are in a
ne-to-one correspondence to simple, complex, and finite-dimensional Lie algebras.14 Since such
Lie algebra is also associated to a KTS, it follows that any nondegenerate FTS can be obtained

rom a KTS. Although Freudenthal triple systems are sufficient to obtain all simple finite-
imensional Lie algebras, the result in the following section shows that also Kantor triple systems
ay be useful.

V. EXCEPTIONAL LIE ALGEBRAS

We end this paper with some comments on the exceptional Lie algebras f4 ,e6 ,e7 ,e8. These are
ssociated to Kantor triple systems which in turn can be defined using the division algebras
,C ,H ,O. We will briefly describe this construction, given in Ref. 6 and extended in Ref. 12.

Let K be one of the division algebras R ,C ,H ,O, consisting of real and complex numbers,
uaternions and octonions,15 respectively. Then the tensor product algebra K � O is a KTS with the
riple product

�xyz� = x�y*z� + z�y*x� − y�x*z� ,

here the conjugation in K � O is given from the conjugations in K and O simply by

�a,b�* = �a*,b*� .

he complex Lie algebras L�K � O� associated to these triple systems are

L�R � O� = f4,

L�C � O� = e6,

L�H � O� = e7,

L�O � O� = e8.

hus we obtain 5-gradings of these algebras, but the subspaces g±2 are not one dimensional. If we
nclude also the split forms of C ,H ,O in a similar way and consider the real Lie algebras, we get
ll noncompact forms of f4 ,e6 ,e7 ,e8.12

The construction �3.6� of L�K� for any Kantor triple system K now leads to a unified realiza-
ion of the exceptional Lie algebras f4 ,e6 ,e7 ,e8. This would be an interesting subject of further
tudies.
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In this paper we discuss various aspects of open-closed homotopy algebras
�OCHAs� presented in our previous paper, inspired by Zwiebach’s open-closed
string field theory, but that first paper concentrated on the mathematical aspects.
Here we show how an OCHA is obtained by extracting the tree part of Zwiebach’s
quantum open-closed string field theory. We clarify the explicit relation of an
OCHA with Kontsevich’s deformation quantization and with the B-models of ho-
mological mirror symmetry. An explicit form of the minimal model for an OCHA
is given as well as its relation to the perturbative expansion of open-closed string
field theory. We show that our open-closed homotopy algebra gives us a general
scheme for deformation of open string structures �A� algebras� by closed strings
�L� algebras�. © 2006 American Institute of Physics. �DOI: 10.1063/1.2171524�

. INTRODUCTION

In this paper we discuss various aspects of open-closed homotopy algebras �OCHAs� defined
n our previous paper.35 They are a kind of homotopy algebra inspired by Zwiebach’s classical
pen-closed string field theory74 and also related to the deformation quantization setup by
ontsevich.40 In Ref. 35 we showed that an OCHA actually defines a homotopy invariant alge-
raic structure and also it gives us a general scheme for deformation of open string structures �A�

lgebras� by closed strings �L� algebras�.
As tree closed strings and open strings are related to the conformal plane C with punctures and

he upper half plane H with punctures on the boundary, respectively, tree open-closed strings are
elated to the upper half plane H with punctures both in the bulk and on the boundary, which
ppears recently in the context of deformation quantization.40 In operad theory �see Ref. 53�, the
elevance of the little disk operad to closed string theory is known. The little interval operad and
ssociahedra are relevant to open string theory. The Swiss-cheese operad,69 that combines the little
isk operad with the little interval operad, also is inspired by Kontsevich’s approach to deforma-
ion quantization. Our OCHA should be homotopy equivalent to a part of an algebra over the
wiss-cheese operad. It should be very interesting to investigate the remaining structures �see Ref.
3, which is related to this direction�.

We first present the definition of OCHAs together with recalling two typical homotopy alge-
ras, A� algebras and L� algebras, in Sec. II.

In Sec. III, we give an alternate interpretation in terms of odd formal vector fields �often called
omological vector fields� on a supermanifold, which we believe is a more acceptable description
or physicists.

�Electronic mail: kajiura@yukawa.kyoto-u.ac.jp
�
Electronic mail: jds@math.upenn.edu

47, 023506-1022-2488/2006/47�2�/023506/28/$23.00 © 2006 American Institute of Physics
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The connection to classical open-closed string field theory by Zwiebach74 is given in Sec. IV.
t is known that classical closed string field theory has an L� structure,73,66,38 and classical open
tring field theory has an A� structure.11,74,55,31 We show that an OCHA is obtained by extracting
he tree part of Zwiebach’s quantum open-closed string field theory. Since in general homotopy
lgebras are something whose structures are governed by the underlying tree graph �operad�
tructure, the structures of quantum string field theories are something beyond the ordinary ho-
otopy algebra �see loop homotopy algebras50 for quantum closed string field theories�. Thus, we

an say that OCHAs are the maximal homotopy algebraic structures which string field theories
hould have. Namely,

Quantum open-closed SFT � OCHA � L� � A�.

One of the key theorems in homotopy algebra is the minimal model theorem which was
roven for A� algebras by Kadeishvili.30 It holds true also for L� algebras in a similar way, and in
ur previous paper35 we stated the minimal model theorem holds for OCHAs, too. In Sec. V we
resent an explicit way of constructing a minimal model for an OCHA, and explain its relation to
he perturbative expansion of classical open-closed string field theory.

Section VI is devoted to explaining some deformation theory aspect of OCHAs. An open-
losed homotopy algebra consists of a direct sum of graded vector spaces H=Hc � Ho. It has an

� structure on Hc and reduces to an A� algebra if we set Hc=0. From such a viewpoint, an
pen-closed homotopy algebra gives a general scheme of deformation of the A� algebra by Hc,
here the deformation space is parametrized by a moduli space of the L� algebra on Hc.

35 In Sec.
I A we recall this fact in a more explicit way than Ref. 35. After that, we explain the relation of

his viewpoint to various aspects of string theory; Kontsevich’s deformation quantization40 in Sec.
I B, and open-closed B-models �cf. Ref. 26� in Sec. VI C.

I. OPEN-CLOSED HOMOTOPY ALGEBRA

An open-closed homotopy algebra, as we proposed in our previous paper,35 is a homotopy
lgebra which combines two typical homotopy algebras, an A� algebra and an L� algebra. There
re various equivalent ways of defining and/or describing strong homotopy algebras. In this paper,
e shall present them in terms of multivariable operations in this section, and in Sec. III we shall

einterpret them in terms of the supermanifold description. For the equivalent coalgebra descrip-
ion and tree graph description, see Ref. 35. Here we recall just enough so that this paper can be
ead without having to read Ref. 35. The reader familiar with A� algebras and L� algebras can go
irectly to Definition 2.8.

We first begin with recalling A� algebras and L� algebras in Sec. II A. The definition of
pen-closed homotopy algebras are given in Sec. II B. In Sec. II C we define cyclic structures in
pen-closed homotopy algebras together with explaining some background of such structures.

We restrict our arguments to the case that the characteristic of the field k is zero. We further
et k=C for simplicity.

. A� algebras and L� algebras

Definition 2.1 �A� algebra �strong homotopy associative algebra�64�: Let Ho be a Z-graded
ector space Ho= � r�ZHo

r and suppose that there exists a collection of degree one multilinear
aps

m ª �mk:�Ho��k → Ho�k�1.

Ho ,m� is called an A� algebra when the multilinear maps mk satisfy the following relations:

�
k+l=n+1

�
j=0

k−1

�− 1�o1+¯+ojmk�o1, . . . ,oj,ml�oj+1, . . . ,oj+l�,oj+l+1, . . . ,on� = 0 �2.1�
or n�1, where oi on �−1� denotes the degree of oi. A weak A� algebra �Ho ,m� consists of a
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ollection of degree one multilinear maps mª �mk : �Ho��k→Ho�k�0 satisfying the corresponding
elations

�
k+l=n+1

�
j=0

k−1

�− 1�o1+¯+ojmk�o1, . . . ,oj,ml�oj+1, . . . ,oj+l�,oj+l+1, . . . ,on� = 0

or n�0.
Remark 2.2: The definition above is different from the original one64 in the definition of the

egree of the multilinear maps mk. Both are in fact equivalent and related by suspension.15,53 In
ef. 64, the mk are multilinear maps on ↓Ho where �↓Ho�r+1=Ho

r ; in algebraic topology the
esuspension is denoted by ↓, which is equivalent to �−1� in the algebraic geometry tradition:
Ho=Ho�−1�. Since it might be more familiar also in mathematical physics as in Sec. VI, in this
aper we denote the suspension and desuspension by �1� and �−1�, respectively.

For an A� algebra �Ho ,m� �in the case m0=0�, the first three relations of the A� condition
2.1� are

0 = m1
2,

0 = m1�m2�o1,o2�� + m2�m1�o1�,o2� + �− 1�o1m2�o1,m1�o2�� ,

0 = m1�m3�o1,o2,o3�� + m3�m1�o1�,o2,o3� + �− 1�o1m3�o1,m1�o2�,o3� + �− 1�o1+o2m3�o1,o2,m1�o3��

+ m2�m2�o1,o2�,o3� + �− 1�o1m2�o1,m2�o2,o3�� .

he first equation, in the physics terminology, says m1 is nilpotent; �Ho ,m1� defines a complex on
he Z-graded vector space Ho. The second equation says the differential m1 satisfies the Leibniz
ule for the product m2. The third equation means the product m2 is associative up to the term
ncluding m3. Thus, a differential graded algebra �DGA� is described as an A� algebra on ↓Ho

Ho�−1� with a differential m1, a product m2, and m3=m4= ¯ =0.
Definition 2.3 �A� morphism�: For two A� algebras �Ho ,m� and �Ho� ,m��, suppose that there

xists a collection of degree zero �degree preserving� multilinear maps

fk:Ho
�k → Ho�, k � 1.

he collection �fk�k�1 : �Ho ,m�→ �Ho� ,m�� is called an A� morphism iff it satisfies the following
elations:

�
1�k1�k2...�ki=n

mi��fk1
�o1, . . . ,ok1

�, fk2−k1
�ok1+1, . . . ,ok2

� ¯ fn−ki−1
�oki−1+1, . . . ,on��

= �
k+l=n+1

�
j=0

k−1

�− 1�o1+¯+ojfk�o1, . . . ,oj,ml�oj+1, . . . ,oj+l�,oj+l+1, . . . ,on� �2.2�

or n�1. If �Ho ,m� and �Ho� ,m�� are weak A� algebras, then a weak A� morphism consists of
ultilinear maps �fk�k�0, where f0 :C→A�, satisfying the above conditions and in addition

f1 � m0 = � mk��f0, . . . , f0� .

As an A� algebra can be thought of as a generalization of a differential graded algebra �DGA�,
n L� algebra is a generalization of a differential graded Lie algebra �DGLA�. As ordinary asso-
iative and Lie algebras are related by skew-symmetrization and the universal enveloping con-
truction, there are corresponding relations for A� algebras and L� algebras.42
Definition 2.4 �graded symmetry�: A graded symmetric multilinear map of a graded vector
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pace V to itself is a linear map f :V�n→V such that, for any ci�V 1� i�n and any ��Sn �the
ermutation group of n elements�, the relation

f�c1, . . . ,cn� = �− 1�����f�c��1�, . . . ,c��n�� �2.3�

olds, where the sign �−1����� is the Koszul sign of the permutation �.
Also we adopt the convention that tensor products of functions or operators have the signs

uilt in; e.g., �f � g��x � y�= �−1�g·xf�x� � g�y�.
Definition 2.5 �L� algebra �strong homotopy Lie algebra�43�: Let Hc be a graded vector space

nd suppose that a collection of degree one graded symmetric multilinear maps lª �lk :Hc
�k

Hc�l�0 is given. �Hc , l� is called a weak L� algebra iff the multilinear maps satisfy the follow-
ng relations:

�
k+l=n+1

�
��Sn

�− 1�����

l ! �n − l�!
lk�ll�c��1�, . . . ,c��l��,c��l+1�, . . . ,c��n�� = 0 �2.4�

or n�0. If the relation is satisfied for n�1 without the additional map l0 :C→Hc
1�Hc, then

Hc , l� is called an L� algebra.
Remark 2.6: L� algebras are usually defined in a similar but different fashion, where the

ummation for the permutation Sn in Eq. �2.4� is replaced by the summation over the unshuffle
ermutations �2.3�. This unshuffled description would enable us to drop all the symmetrization
actors in this paper. However, we take the one with all the permutations since it fits the dual
escription in the next section.

For an L� algebra �Hc , l�, the first three relations of the L� condition �2.4� are

0 = �l1�2,

0 = l1�l2�c1,c2�� + l2�l1�c1�,c2� + �− 1�c1l2�c1,l1�c2�� ,

0 = l1�l3�c1,c2,c3�� + l3�l1�c1�,c2,c3� + �− 1�c1l3�c1,l1�c2�,c3� + �− 1�c1+c2l3�c1,c2,l1�c3��

+ l2�l2�c1,c2�,c3� + �− 1�c1�c2+c3�l2�l2�c2,c3�,c1� + �− 1�c3�c1+c2�l2�l2�c3,c1�,c2� .

s in the case of an A� algebra, the first equation indicates that �Hc , l1� defines a complex, while,
fter a shift in grading, the second equation implies the differential l1 satisfies a Leibniz rule with
espect to the Lie bracket l2, and the third equation means the bracket l2 satisfies the Jacobi
dentity up to the terms including l3. Thus, a differential graded Lie algebra is described as an L�

lgebra on ↓Hc=Hc�−1� with a differential l1, a Lie bracket l2, and l3= l4= ¯ =0.
Definition 2.7 �L� morphism�: For two weak L� algebras �Hc , l� and �Hc� , l��, suppose that

here exists a collection of degree zero �degree preserving� graded symmetric multilinear maps

fk:Hc
�k → Hc�, l � 0.

ere f0 is a map from C to a degree zero subvector space of Hc. The collection �fk�k�0 : �Hc , l�
�Hc� , l�� is called a weak L� morphism iff it satisfies the following relations:

�
k+l=n+1

�
��Sn

�− 1�����

l ! �n − l�!
fk�ll � 1c

�n−l��c��1�, . . . ,c��n�� = �
k1+¯+kj=n

�
��Sn

�− 1�����

k1 ! k2 ! ¯ kj ! · j!
lj��fk1

� fk2

� ¯ � fkj
��c��1�, . . . ,c��n�� �2.5�

or n�0. In particular, when �Hc , l� and �Hc� , l�� are L� algebras, a weak L� morphism

fk�k�0 : �Hc , l�→ �Hc� , l�� is called an L� morphism if in addition f0=0.
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. Open-closed homotopy algebra

Definition 2.8 �open-closed homotopy algebra35�: Let H=Hc � Ho be a graded vector space
nd �Hc , l� be a weak L� algebra. Consider a collection of multilinear maps

n ª �nk,l:�Hc��k
� �Ho�� l → Ho�k,l�0

ach of which is graded symmetric on �Hc�� l. We call �H , l ,n� a weak open-closed homotopy
lgebra �weak OCHA� when n satisfies the following relations:

0 = �
p+r=n

�
��Sn

�− 1�����

p ! r!
n1+r,m�lp�c��1�, . . . ,c��p��,c��p+1�, . . . ,c��n�;o1, . . . ,om�

+ �
p+r=n

�
i+s+j=m

�
��Sn

�− 1��p,i���

p ! r!

�np,i+1+j�c��1�, . . . ,c��p�;o1, . . . ,oi,nr,s�c��p+1�, . . . ,c��n�;oi+1, . . . ,oi+s�,oi+s+1, . . . ,om� .

�2.6�

ere the sign exponent �p,i��� is given explicitly by

�p,i��� = ���� + �c��1� + ¯ + c��p�� + �o1 + ¯ + oi� + �o1 + ¯ + oi��c��p+1� + ¯ + c��n�� ,

�2.7�

orresponding to the signs effected by the interchanges. In particular, if l0=n0,0=0, we call
H , l ,n� an open-closed homotopy algebra. We can also write the defining equation �2.6� in the
ollowing shorthand expression:

0 = �
p+r=n

�
��Sn

�− 1�����

p ! r!
�− 1�����n1+r,m��lp � 1c

�r
� 1o

�m��c��1�, . . . ,c��n�;o1, . . . ,om��

+ �
p+r=n

�
i+s+j=m

�
��Sn

�− 1�����

p ! r!
np,i+1+j��1c

�p
� 1o

� i
� nr,s � 1o

� j��c��1�, . . . ,c��n�;o1, . . . ,om�� ,

here the complicated sign is absorbed into this expression.
Remark 2.9: For an OCHA �H , l ,n�, the substructure �Hc , l� is by definition an L� algebra and

Ho , �n0,k�� forms an A� algebra. Furthermore, the substructure �H , �n1,q�q�0� forms an A� module
ver the A� algebra �Ho ,m� in the sense of Refs. 49 and 67. Also, if np,0=0 for all p�1, the
ubstructure �H , �np,1�� makes Ho an L� module over �Hc , l�.42

Now, let us denote l1=dc and n0,1=do. The first few relations which do not appear as A� or L�

onditions are

0 = don1,0 + n1,0dc, �2.8�

0 = don1,1�c;o� + n1,1�c;do�o�� + n1,1�dc�c�;o� + n0,2�n1,0�c�,o� + �− 1�c�o+1�n0,2�o,n1,0�c�� ,

�2.9�

0 = don2,0�c1,c2� + n2,0�dc�c1�,c2� + �− 1�c1c2n2,0�dc�c2�,c1� + n1,0l2�c1,c2� + �− 1�c1n1,1�c1,n1,0�c2��
c2�1+c1�
+ �− 1� n1,1�c2,n1,0�c1�� , �2.10�
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0 = don1,2�c;o1,o2� + n1,2�dc�c�;o1,o2� + �− 1�cn1,2�c;do�o1�,o2� + �− 1�c+o1n1,2�c;o1,do�o2��

+ n1,1�c,n0,2�o1,o2�� + n0,2�n1,1�c;o1�,o2� + �− 1�o1�1+c�n0,2�o1,n1,1�c,o2�� + n0,3�n1,0�c�,o1,o2�

+ �− 1�o1�1+c�n0,3�o1,n1,0�c�,o2� + �− 1��o1+o2��1+c�n0,3�o1,o2,n1,0�c�� , �2.11�

0 = don2,1�c1,c2;o� + n2,1�dc�c1�,c2;o� + �− 1�c1n2,1�c1,dc�c2�;o� + �− 1�c1+c2n2,1�c1,c2;do�o��

+ n1,1�l2�c1,c2�;o� + + �− 1�c1n1,1�c1;n1,1�c2;o�� + �− 1�c2�c1+1�n1,1�c2;n1,1�c1;o��

+ n0,2�n2,0�c1,c2�,o� + �− 1�o�1+c1+c2�n0,2�o,n2,0�c1,c2�� + �− 1�c2�1+c1�n1,2�c2;n1,0�c1�,o�

+ �− 1��c2+o��1+c1�n1,2�c2;o,n1,0�c1�� + �− 1�c1n1,2�c1;n1,0�c2�,o�

+ �− 1�c1+o�1+c2�n1,2�c1;o,n1,0�c2��, . . . . �2.12�

quation �2.8� implies n1,0 is a chain map by an appropriate relative shift of the grading. On the
ther hand, in the case n0,1=0, Eq. �2.9� is an extended Leibniz rule. Suppose that we have an
CHA with only nonzero structures dc ,do , l2 ,n1,1 ,m2ªn0,2. In Eq. �2.11� only the second line

urvives, which means that Hc acts on an algebra �Ho ,m2� by n1,1 as derivations. Furthermore, in
q. �2.12� only the second line survives, which implies that Ho represents a Lie algebra �Hc , l2�.
hen �H ,dc ,do , l2 ,n1,1 ,m2� forms what is called a g algebra or Leibniz pair �see Ref. 35 and

eferences there�.
Definition 2.10 �open-closed homotopy algebra morphism�: For two weak OCHAs �H , l ,n�

nd �H� , l� ,n��, consider a collection f of degree zero �degree preserving� multilinear maps

fk:�Hc��k → Hc� for k � 0,

fk,l:�Hc��k
� �Ho�� l → Ho� for k,l � 0,

here fk and fk,l are graded symmetric with respect to �Hc��k. We call f : �H , l ,n�→ �H� , l� ,n�� a
eak OCHA morphism when �fk�k�0 : �Hc , l�→ �Hc� , l�� is a weak L� morphism and �fk,l�k,l�0

urther satisfies the following relations:

�
p+r=n

�
��Sn

�− 1�����

p ! r!
f1+r,m��lp � 1c

�r
� 1o

�m��c��1�, . . . ,c��n�;o1, . . . ,om��

+ �
p+r=n

�
i+s+j=m

�
��Sn

�− 1�����

p ! r!
fp,i+1+j��1c

�p
� 1o

� i
� nr,s � 1o

� j��c��1�, . . . ,c��n�;o1, . . . ,om��

= �
�r1+¯+ri�+�p1+¯+pj�=n

�q1+¯+qj�=m

�
��Sn

�− 1�����

i ! �r1 ! ¯ ri ! ��p1 ! ¯ pj ! �
ni,j� ��fr1

� ¯ � fri
� fp1,q1

� ¯ � fpj,qj
��c��1�, . . . ,c��n�;o1, . . . ,om�� . �2.13�

he right-hand side is written explicitly as

ni,j� ��fr1
� ¯ � fri

� fp1,q1
� ¯ � fpj,qj

��c��1�, . . . ,c��n�;o1, . . . ,om��

=�− 1�	p�,q����ni,j� �fr1
�c��1�, . . . ,c��r1��, . . . , fri

�c��r̄i−1+1�, . . . ,c��r̄i�
�;

�fp1,q1
�c��r̄i+1�, . . . ,c��p̄1�;o1, . . . ,oq1

�, . . . , fpj,qj
�c��p̄j−1+1�, . . . ,c��p̄j�

;oq̄j−1+1, . . . ,oq̄j
�� ,

here r̄kªr1+ ¯ +rk, p̄kª r̄i+ p1+ ¯ + pk, q̄kªq1+ ¯ +qk and 	p�,q���� is given by

	p�,q���� = �
j−1

�c��p̄k+1� + ¯ + c��p̄k+1���o1 + ¯ + oq̄k
� .
k=1
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n particular, if �H , l ,n� and �H� , l� ,n�� are OCHAs and if f0= f0,0=0, we call it an OCHA
orphism.

Definition 2.11 �quasi-isomorphism�: Suppose that two OCHAs �H , l ,n�, �H� , l� ,n�� and an
CHA morphism f : �H , l ,n�→ �H� , l� ,n�� are given. f is called an open-closed homotopy algebra
uasi-isomorphism if f1 :Hc→Hc� induces an isomorphism between the cohomology spaces of the
omplexes �Hc , l1� and �Hc� , l1��, and further f0,1 :Ho→Ho� induces an isomorphism between the
ohomology spaces of the complexes �Ho ,n0,1� and �Ho� ,n0,1� �. In particular, if f1and f0,1 are
somorphisms, we call f an open-closed homotopy algebra isomorphism.

. Cyclic structures in OCHAs

Now we consider an additional structure, cyclicity, �cf. Ref. 16� on open-closed homotopy
lgebras. It is defined in terms of constant symplectic inner products. The string theory motivation
or this additional structure is that punctures on the boundary of the disk inherit a cyclic order
rom the orientation of the disk and the operations are to respect this cyclic structure, just as the

� structure reflects the symmetry of the punctures in the interior of the disk or on the sphere.
lternatively, a typical Lagrangian of a �quantum� field theory originally has such structure and in
articular in the Batalin-Vilkovisky �BV� formalism,3,4 such structure is defined in terms of an odd
degree minus one� symplectic structure on the corresponding supermanifold.3,62,1,33 Both pictures
re then combined with each other in string field theory as discussed in Sec. IV.

From such background, in Ref. 33 a “cyclicity” is defined for A� algebras in terms of a degree
inus one constant symplectic inner product, and it is shown that homotopy invariant properties

f A� algebras hold true also in the category of cyclic A� algebras. However, in string theory or in
articular topological string theory, there often exist cyclic structures defined by inner products
aving some different degree. For the arguments on homotopy invariant properties in Ref. 33, the
egree of the inner product is not essential. Thus, we define cyclic structures with constant
ymplectic inner products of arbitrary fixed integer degrees.

Definition 2.12 �constant symplectic structure�: Bilinear maps, 
c :Hc � Hc→C and 
o :Ho

� Ho→C, are called constant symplectic structures when they have fixed integer degrees

c � , �
o � �Z and are nondegenerate and skew-symmetric. Here skew-symmetric indicates that


c�c2,c1� = − �− 1�c1c2
c�c1,c2�, 
o�o2,o1� = − �− 1�o1o2
o�o1,o2�

or any c1 ,c2�Hc, o1 ,o2�Ho, and the degree of 
c ,
o implies that 
c�c1 ,c2�=0 except for
eg�c1�+deg�c2�+ �
c � =0 and 
o�o1 ,o2�=0 except for deg�o1�+deg�o2�+ �
o � =0. We further de-
ote the constant symplectic structure on H=Hc � Ho by 
ª
c � 
o.

Suppose that an open-closed homotopy algebra �H , l ,n� is equipped with constant symplectic
tructures 
c :Hc � Hc→C and 
o :Ho � Ho→C as in Definition 2.12.

For �lk�k�1 and �np,q�p+q�1, let us define two kinds of multilinear maps by

Vk+1 = 
c�lk � 1c�:�Hc���k+1� → C, Vp,q+1 = 
o�np,q � 1o�:�Hc��p
� �Ho���q+1� → C

r more explicitly

Vk+1�c1, . . . ,ck+1� = 
c�lk�c1, . . . ,ck�,ck+1�

nd

Vp,q+1�c1, . . . ,cp;o1, . . . ,oq+1� = 
o�np,q�c1, . . . ,cp;o1, . . . ,oq�,oq+1� .

he degree of Vk+1 and Vp,q+1 are �
c � +1 and �
o � +1. Note that the degrees of Vk+1 and Vp,q+1 are
ero when they come from odd constant symplectic structures �
c � = �
o � =−1.

Definition 2.13 �cyclic open-closed homotopy algebra�: An open-closed homotopy algebra
H ,
 , l ,n� is called a cyclic open-closed homotopy algebra �COCHA� when Vk+1 is graded
ymmetric with respect to any permutation of �Hc���k+1� and Vp,q+1 has cyclic symmetry with

��q+1�
espect to cyclic permutations of �Ho� , that is, if
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Vk+1�c1, . . . ,ck+1� = �− 1�����Vk+1�c��1�, . . . ,c��k+1��, � � Sk+1

nd

Vp,q+1�c1, . . . ,cp;o1, . . . ,oq+1� = �− 1�o1�o2+¯+oq+1�Vk+1,l�c1, . . . ,cp;o2, . . . ,oq+1,o1� .

he graded commutativity of Vp,q+1 with respect to permutations of �Hc��p, that is,

Vp,q+1�c1, . . . ,cp;o1, . . . ,oq+1� = �− 1�����Vp,q+1�c��1�, . . . ,c��p�;o1, . . . ,oq+1�, � � Sp

utomatically holds by the definition of n.
Note also that there are many situations where the inner products exist only for open strings.

his is the case for the topological string situation in the B-model we will discuss later in Sec.
I C. For instance, on the topological open string side, there often exists a natural inner product

oming essentially from an integral �trace� of products of two differential forms. The inner prod-
cts of this kind in fact turn out to be skew-symmetric �symplectic� in our suspended notation �see
ef. 34�. See also Ref. 57 for more general cyclic structures including nonskew inner products.

On the other hand, if we have 
c and 
o, nondegenerate inner products in both open and
losed string sides, we can identify H with its linear dual, then reverse the process and define
urther maps

rp−1,q+1:�Hc���p−1�
� �Ho���q+1� → Hc

ith relations amongst themselves and with the operations already defined, which can easily be
educed from their definition. In particular, for n1,0 :Hc→Ho we have r0,1 :Ho→Hc. Namely, for
he cyclic case the fundamental object is the multilinear map Vp,q+1 where np,q and rp−1,q+1 are
quivalent under the relation above.

Physically, the multilinear map Vp,q+1 is related to the �scattering� amplitudes of a disk with p
losed strings and �q+1� open strings insertions. Choosing an open string state as a root edge
nstead of a closed string state, that is, taking np,q instead of rp−1,q+1, for defining an OCHA is
elated to a standard compactification of the moduli spaces of the corresponding Riemann surface
a disk with p points interior and �q+1� points on the boundary�. Also, in the next section we shall
ee that, due to this choice of the root edge, the OCHA structure �l ,n� can be singled out to be an
dd vector field on the appropriate supermanifold.

Remark 2.14�Category version�: As an A� category is defined as a straightforward extension
f an A� algebra,9 one can extend our open-closed homotopy algebra to its category version by
eplacing Ho by the space of morphisms of a category. This category extension corresponds to
onsidering many D-branes on which open strings end. This is important for applying OCHAs to
opological string theory, see Sec. VI C.

II. THE DUAL SUPERMANIFOLD DESCRIPTION

. OCHAs and odd formal vector fields

For a graded vector space H=Hc � Ho, denote by �ec,i� a basis of Hc and by �eo,i� a basis of

o. For each ec,i�Hc represent the dual base as �i and similarly the dual base of eo,i�Ho as �i.
e set the degree of the dual basis by deg��i�=−deg�ec,i� and deg��i�=−deg�eo,i�. We consider

he formal power series ring in the variables ��i�, ��i�, and ��i�� ��i�, and denote them by C���,
���, and C�� ,��, respectively. We define ��i� to be associative and graded commutative and ��i�

o be associative but noncommutative. More precisely, in the space of the formal power series of
ssociative fields ��i�� ��i�, an element in ��i� is graded commutative with respect to all ele-
ents. Therefore, any element in C�� ,�� is represented as

a��,�� = �
k,l

ai1¯ik;j1¯jl
�� jl

¯ � j1���ik
¯ �i1� , �3.1�
here the coefficient ai1¯ik;j1¯jl
�C is graded symmetric with respect to i1¯ ik. We can call
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H ,C�� ,��� the formal supermanifold1,40 corresponding to an OCHA �H , l ,n�. Though usually
he term super indicates Z2 graded, we use it for Z graded objects. On the other hand, an A�

lgebra is described on a formal noncommutative supermanifold �Ho ,C����,31,33 and an L� alge-
ra is described on a formal graded commutative supermanifold �Hc ,C����.

For a weak OCHA �H , l ,n�, express the collection of multilinear maps

lk:�Hc��k → Hc, nk,l:�Hc��k
� �Ho�� l → Ho,

n terms of the bases,

lk�ec,i1
, . . . ,ec,ik

� = ec,jci1¯ik
j , ci1¯ik

j � C ,

nk,l�ec,i1
, . . . ,ec,ik

;eo,j1
, . . . ,eo,jl

� = eo,jci1¯ik;j1¯jl
j , ci1¯ik;j1¯jl

j � C .

orrespondingly, let us define an odd formal vector field ªS+D :C�� ,��→C�� ,��, where

S =
��

�� j c
j��� = �

k�0

1

k!

��

�� j ci1¯ik
j �ik

¯ �i1, cj��� � C���,

D =
��

�� j c
j��,�� = �

k+l�0

1

k!

��

�� j ci1¯ik;j1¯jl
j �� jl

¯ � j1���ik
¯ �i1�, cj��,�� � C��,�� .

�3.2�

e use right derivatives just for the sign problem; it is easy to relate this dual supermanifold
escription to the convention in the preceding section. Since l and n have degree one,  also has
egree one.

It acts on C�� ,�� as follows:

�a��,��� = �
k,l

ai1¯ik;j1¯jl�
s=1

k

�− 1��S�s−1��� jl
¯ � j1���ik

¯ S��is� ¯ �i1�

+ �
k,l

ai1¯ik;j1¯jl�
t=1

l

�− 1��D�t−1��� jl
¯ D�� jt� ¯ � j1���ik

¯ �i1� , �3.3�

here D�� jt�=cjt�� ,�� and S��is�=cis���. Then, �S�s−1� �respectively, �D�t−1�� is the sign
rising when S �respectively, D� acts from the right and passes the corresponding superfields and
s given explicitly by

�S�s − 1� = ec,i1
+ ¯ + ec,is−1

, �D�t − 1� = �ec,i1
+ ¯ + ec,ik

� + eo,j1
+ ¯ + eo,jt−1

.

he above �a�� ,��� is further rewritten; in the first line �’s in D�� jt� are brought to the right of
’s, and �’s on each line of Eq. �3.3� are treated as graded symmetric. The �a�� ,��� is expressed

n the form in Eq. �3.1� again but with a different coefficient. In the supermanifold language,  is
alled an �odd� formal vector field on the formal supermanifold. A formal manifold with such a 
s called a Q-manifold in Ref. 1 if Q= with Q2=0.

Lemma 3.1: The condition that �H , l ,n� is a weak OCHA is equivalent to

��2 = 0. �3.4�

n particular,  defines an OCHA if the k=0 part of S and k= l=0 part of D in Eq. �3.2� are

bsent or zero.
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The equation above can be expanded as �S�2+ �S ,D�+ �D�2=0, where �S ,D�=S�D�
D�S�, S�D�= ��� /�� j��S�cj�� ,����. Note that D�S� vanishes since S does not include �.
urthermore, one can see that

�S�2 = 0, S�D� + �D�2 = 0

old independently. The first one is just the dual of the L� condition �2.4�, and the second one is
he dual description of the OCHA condition �2.6�. The pair of the equations above can also be
hought of as a deformation of S by S+D, though we do not discuss this type of deformation in
his paper.

A �weak� OCHA morphism in Definition 2.10 can also be rewritten in the same way. For the
ollection f of degree zero multilinear maps,

f l:�Hc�� l → Hc�, fk,l:�Hc��k
� �Ho�� l → Ho�,

et us now express fk and fk,l as

fk�ec,i1
, . . . ,ec,ik

� = ec,j�f i1¯ik
j� , f i1¯ik

j� � C ,

fk,l�ec,i1
, . . . ,ec,ik

;eo,j1
, . . . ,eo,jl

� = eo,j�f i1¯ik;j1¯jl
j� , f i1¯ik;j1¯jl

j� � C . �3.5�

hey define the following coordinate transformation between the two supermanifolds �H , l ,n� and
H� , l� ,n��:

� j� = f*
j���� = f j� + f i

j��i + f i1i2
j� �i2�i1 + ¯ + f i1¯in

j� �in
¯ �i1 + ¯ ,

� j� = f*
j���,�� = �

k,l�0
f i1¯ik;j1¯jl

j� �� jl
¯ � j1���ik

¯ �i1� . �3.6�

his induces a pullback from C��� ,��� to C�� ,��,

f*�a���,���� = a�f*��,��,f*���� ,

here ��i� and ��i�� are the coordinates on H and H�, respectively.
Lemma 3.2: The condition that this f is a weak OCHA morphism is then that the map between

wo formal supermanifolds f* is compatible with the actions of  and � on both sides, that is,

f*��a���,���� = f*a���,��� �3.7�

olds for any a��� ,����C��� ,���. In other words, f* is a morphism between Q manifolds. If in

ddition f j�= f�;�
j� =0, f* preserves the origin of the formal supermanifolds. f* is then an OCHA

orphism in the situation that both  and � define OCHAs.
All these structures in the supermanifold description are dual to the coalgebra description

xplained in Ref. 35 in the following sense �see Ref. 33 for the A� case�. Let us introduce natural
airings

	�i�ec,j
 =  j
i, 	�i�eo,j
 =  j

i

nd also the extended pairings

	�� jl
¯ � j1���ik

¯ �i1���ec,i1�
¯ ec,ik�

� � �eo,j1�
¯ eo,jl�

�
 = �i1�¯ik�
i1¯ik j1�

j1
¯  jk�

jk

or k+ l�1, where �i1�¯ik�
i1¯ik : =���Sk

����
i1�

i��1�
¯

ik�

i��k�. We set the pairing to be zero if the number of

lements � /� and ec /eo does not coincide. The space spanned by �ec,i1
¯ec,ik

� � �eo,j1
¯eo,jl

�, k
c
l�1, is what is denoted C�Hc� � T �Ho� in Ref. 35. As the adjoint of the product on C�� ,��, a
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oproduct � :C�Hc� � Tc�Ho�→ �C�Hc� � Tc�Ho�� � �C�Hc� � Tc�Ho�� is defined; for a ,b
C�� ,�� and x�C�Hc� � Tc�Ho�,

	b · a�x
 = �
i

	a�xi
+
 · 	b�xi

−
, � ª �
i

�xi
+

� xi
−� .

hus, C�Hc� � Tc�Ho� forms a coalgebra. Then, a codifferential l+n :C�Hc� � Tc�Ho�→C�Hc�
� Tc�Ho� is given as the adjoint of =S+D,

	a��l + n��x�
 ª 	�a��x
 .

n a similar way, a coalgebra homomorphism f :C�Hc� � Tc�Ho�→C�Hc�� � Tc�Ho�� is obtained as
he adjoint of the pullback f* :C��� ,���→C�� ,��. Thus, the coalgebra description given in Ref.
5 is obtained as the dual of the algebra description in terms of formal power series on super-
anifolds.

. Cyclicity and constant symplectic and/or Poisson structures

Next, we discuss the cyclicity �Definition 2.13�. If cyclicity is imposed on the �i’s, we
ndicate that by C���cyc or C�� ,��cyc. Any element of C�� ,��cyc�C�� ,�� is represented in the
orm in Eq. �3.1� but the coefficient ai1¯ik;j1¯jl

is in addition graded cyclic symmetric with respect
o the indices j1¯ jl. On this algebra, a constant Poisson structure is introduced naturally by
ualizing the constant symplectic structures in Definition 2.12.

Definition 3.3 �constant Poisson structure�: Suppose Hc and Ho have constant symplectic
tructures 
c :Hc � Hc→C and 
o :Ho � Ho→C �Definition 2.12�. The corresponding Poisson
rackets are denoted by

� , �c =
��

��i
c
ij ��

�� j , � , �o =
��

��i
o
ij ��

�� j .

ere 
c
ij �C and 
o

ij �C are the inverse matrices of 
c,ijª
c�ec,i ,ec,j� and 
o,ijª
o�eo,i ,eo,j�.
hat is, 
c,ij
c

jk=
c
kj
c,ji=i

k and 
o,ij
o
jk=
o

kj
o,ji=i
k hold. Thus � , �c is a graded Poisson

racket for a graded commutative algebra and � , �o is a Poisson bracket for the cyclic algebra as
n Ref. 31. C���cyc and C���cyc form graded Poisson algebras with Poisson brackets � , �c and
, �o, respectively. Furthermore, these two Poisson brackets can be combined naturally and ex-

ended to one on C�� ,��cyc.
A COCHA �Definition 2.13� is dualized as follows. For the collection of multilinear maps Vk

nd Vk,l, let us define their coefficients by

Vk�ec,i1
, . . . ,ec,ik

� ª Vi1¯ik
� C, Vk,l�ec,i1

, . . . ,ec,ik
;eo,j1

, . . . ,eo,jl
� ª Vi1¯ik;j1¯jl

� C .

ote that they are graded symmetric with respect to the indices i1¯ ik and cyclic with respect to
he indices j1¯ jl. Consider further a formal sum of polynomial functions S,

S��,�� = SS��� + SD��,��, SS��� � C���, SD��,�� � C��,��cyc, �3.8�

here SS and SD are defined by

SS��� = �
l�2

1

l!
Vi1¯il

�il
¯ �i1, Vi1¯il

� C ,

SD��,�� = �
k�0,l�1,k+l�2

1

k ! l
Vi1¯ik;j1¯jl

�� jl
¯ � j1���ik

¯ �i1�, Vi1¯ik;j1¯jl
� C . �3.9�
hen one can define the formal vector field  acting on C�� ,��cyc as follows:
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 ª S + D, S = � ,SS�c, D = � ,SD�o. �3.10�

he condition ��2=0 coincides with the condition that �H , l ,n� is a COCHA.

V. ZWIEBACH’S OPEN-CLOSED STRING FIELD THEORY

String field theory is defined on a fixed conformal background of a space-time �target space�
M to which world sheets of strings �Riemann surfaces� are mapped, where the conformal back-
round is a background �metric, etc., of M� in which string world sheet theory has conformal
ymmetry. There exist several classes of string field theories corresponding to the classes of
iemann surfaces. The most general one is quantum open-closed string field theory,74 which is
ssociated to the most general class of Riemann surfaces: Riemann surfaces of arbitrary genus,
ossibly with boundaries and punctures.

It includes various substring field theories: classical open string field theories—associated to
isks �one boundary and zero genus� with punctures only on the boundary, classical closed string
eld theories—associated to spheres �no boundary and genus zero� with punctures, quantum
losed string field theories—associated to Riemann surfaces with punctures �and various genera�
nd without boundary, and so on. Genera and multiboundaries relate to closed and open string
oops �in the sense of Feynman diagrams�, respectively. We use the term classical �respectively,
uantum� for theory without loops �respectively, with loops�. In this section we shall explain that,
xtracting the tree open-closed part from Zwiebach’s quantum open-closed string field theory,74

ne obtains an OCHA. Namely, an OCHA is a general homotopy algebraic structure for tree
pen-closed string field theory as L� algebras �respectively, A� algebras� are for tree closed
respectively, open� string field theories.

The quantum open-closed string field theory discussed by Zwiebach74 is defined by all pos-
ible open-closed interaction vertices together with closed and open string kinetic terms satisfying
he quantum BV master equation. The interaction term is expressed formally in the following form
Eq. �5.7� of Ref. 74�:

�4.1�

ere the kets ��
�Hc and ��
�Ho are the closed string fields and the open string fields,

espectively. Vb,m
g,n �M̄b,m

g,n is the appropriate subspace of the compactified moduli space of Rie-
ann surfaces with genus g, n-interior punctures and b boundaries S1 having m1 , . . . ,mb punctures

n them. Equivalently, it has n-closed string punctures and mi-open string insertions on the cor-

esponding boundary S1. The bra 	�� denotes a differential form on M̄b,m
g,n which takes its value in

Hc
*��n � �Ho

*��m1 � ¯ � �Ho
*��mb. This data is determined by the conformal field theory for a

xed conformal background. Then, the combination �Vb,m
g,n 	�� defines a map

�
Vb,m

g,n
	��:�Hc��n

� �Ho��m1 � ¯ � �Ho��mb → C . �4.2�

n terms of bases ec,i and eo,j of the spaces of states Hc and Ho, the kets can be expressed as
�
ª�iec,i�

i and ��
ª� jeo,j�
j, and the coordinates �i and �i play the role of fields. The degree

f each basis element ec,i or eo,j is determined by the corresponding conformal field theory on the
tring world sheet and is related to the degree of field �i or � j through the relations deg��i�

=−deg�ec,i� and deg��i�=−deg�eo,i�. The degrees deg��i� and deg��i� in turn denote the ghost
umbers in the sense of the BV-formalism for the target space field theory. The map �4.2� is
efined to be of degree zero because of a ghost number preserving condition on the string world
heets, naturally extended to the polynomials of �i and � j. Then f�Vb,m

g,n � in Eq. �4.1�, which is the
mage of ��
�n � k=1

b ��
�mk by the map �4.2�, belongs to a subspace of C�� ,�� whose elements

re expressed in general in the form
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a��,�� = �
k,l

1

k ! l ! �J1� ¯ �Jl�
ai1¯ik;J1,. . .,Jl

��Jl
¯ �J1���ik

¯ �i1� .

or the interaction terms, �Ji � =mi in the notation in Eq. �4.1�. Here J= �j1 , . . . , j�J�� is the multi-
ndex, �J=� j�J�

¯� j1. The coefficient ai1¯ik;J1,. . .,Jl
�C is then graded symmetric with respect to the

yclic permutations of each multi-index J= �j1 , . . . , j�J��, all the permutations of i1¯ ik, and those of

1 , . . . ,Jl. We denote the corresponding subspace by C�� ,��qocªCsym���
� Csym�C���cyc��C�� ,��, where qoc indicates quantum open-closed. Note that, by construction,
he degree of f�Vb,m

g,n � is zero. The closed string kinetic term and the open string kinetic term are
xpressed as follows:

1
2 	�,Qc�
c,

1
2 	�,Qo�
o �4.3�

hich also belong to C�� ,��qoc and have degree zero. In our notation, Qc= l1 :Hc→Hc and Qo

n0,1 :Ho→Ho. Physically, Qc �respectively, Qo� is called the BRST operator for closed �respec-
ively, open� strings, where BRST is taken in the sense of the conformal field theory on the string
orld sheet. Their cohomologies then define the physical state spaces of strings. Also, the brackets

re just the constant symplectic structures in Definition 2.12,

	 , 
c = 
c:Hc � Hc → C, 	 , 
o = 
o:Ho � Ho → C .

ince these constant symplectic structures come from the BV formalism3,4 in which string field
heories are described, the degrees of 
c and 
o are set to be minus one. In such a superfield
escription of the BV formalism, they are called odd symplectic structures62,1 since degree minus
ne implies odd in Z2 grading. The corresponding odd Poisson brackets

� , � = � , �c + � , �o, � , �c =
��

��i
c
ij ��

�� j , � , �o =
��

��i
o
ij ��

�� j

re what are called the BV brackets. Since they have degree one, ��i ,� j�c=
c
ij�0 only when the

um of the degree of �i and the degree of � j is equal to minus one. In the BV formalism,3,4 two
elds �i and � j having nonzero 
c

ij make a pair of a field and an antifield. Of course these facts
old true similarly for open string fields �see Refs. 31 and 33�. Both Poisson brackets are naturally
ombined and extended to � , � on C�� ,��qoc. Also, define second order operators as

� = �c + �o, �c =
1

2
�− 1�ec,i
c

ij ��

��i

��

�� j , �o =
1

2
�− 1�eo,i
o

ij ��

��i

��

�� j . �4.4�

ince the BV brackets have degree one, we have deg���=1, while �C��� ,�c , • , � , �c� and
C���cyc ,�o , • , � , �o� form BV algebras �see Refs. 3, 4, and 14�.

Further �C�� ,��qoc ,� , • , � , �� forms a BV algebra, where • :C�� ,��qoc � C�� ,��qoc

C�� ,��qoc is the associative product, symmetric in the �’s. We shall soon reduce them to the
ree open-closed structures, so do not stress to explain the detail of the structure on the whole
�� ,��qoc in this paper.

The action of quantum open-closed string field theory is then given by summing up the kinetic
erms �4.3� and all the interaction terms �vertices� in Eq. �4.1�,

Sqoc��,�� = � 1

n ! b ! �J1� ¯ �Jb�
Vi1¯in;J1,. . .,Jb

g ��Jb
¯ �J1���in

¯ �i1� ,

g,b,n
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Vi1¯in;J1,. . .,Jb

g
ª �

Vb,m
g,n

	���ec,i1
, . . . ,ec,in

;eo,J1
, . . . ,eo,Jb

� , �4.5�

here eo,J=eo,j1
¯eo,j�J�

for J= �j1 , . . . , j�J��, and the summation �g,b,n is taken for all g�0, b�0
nd n�0 except for the cases �g ,b�= �0,0� ,n�1, �g ,n ,b�= �0,0 ,1� , �J1 � �1 and �g ,n ,b�
�1,0 ,0�. In particular, the terms with �g ,n ,b�= �0,2 ,0� and �g ,n ,b�= �0,0 ,1� with �J1 � =2 are

he kinetic terms of closed strings and open strings, respectively.
A quantum open-closed string field theory Sqoc�� ,�� is defined so that it satisfies the quantum

aster equation

1
2 �Sqoc,Sqoc� + �Sqoc = 0. �4.6�

ote that �Sqoc is the term peculiar to the quantum string field theory. �c increases g by one and

o increases b by one for b�0. The quantum master equation splits into separate equations for
ach genus g and number of boundaries b. When we concentrate on the equations for g=0 and
=0 or 1, we get

�g,b� = �0,0�, 0 = �SS,SS�c, �4.7�

�g,b� = �0,1�, 0 = �S̃D,SS�c + 1
2 �S̃D, S̃D�o, �4.8�

here SS and S̃D consist of the corresponding terms in Sqoc in Eq. �4.5�; explicitly, SS is of the same

orm as SS in Eq. �3.9� and S̃D consists of SD in Eq. �3.9� with additional terms corresponding to
k , l�= �k ,0� below,

SS��� = �
l�2

1

l!
Vi1¯il

�il
¯ �i1 � C��� ,

S̃D��,�� = �
k�0,l�0,2k+l�2

1

k ! l
Vi1¯ik;j1¯jl

�� jl
¯ � j1���ik

¯ �i1� � C��,��cyc. �4.9�

ere we dropped the index g used in Eq. �4.5� since g=0. Namely, we denote

Vi1¯il;�
g=0 = :Vi1¯il

, Vi1¯il;J=�j1,. . .,jl�
g=0 = :Vi1¯il;j1¯jl

.

he action SS corresponds to punctured spheres �since the corresponding Riemann surfaces have

o boundary ����, whereas S̃D corresponds to disks with punctures both in the disks and on the
oundary of the disks. Equation �4.8� is often called a Maurer-Cartan equation.

A classical �tree� open-closed string field theory74 is then given by the action Stoc�� ,��
SS���+ S̃D�� ,�� satisfying Eqs. �4.7� and �4.8�, the Batalin-Vilkovisky3,4 classical open-closed
aster equations. The identity �4.7� implies that SS is just the action of the classical closed string
eld theory.73 Namely, SS has a cyclic L� structure. For the operadic construction of the classical
losed string field theory, see Ref. 38. The relevant operad is the L� operad of nonplanar trees,
here the composition of the trees corresponds to the twist-sewing of two S1’s parametrizing two

losed strings and/or boundaries in a Riemann surface picture.73,38

Just in the same way as for Eq. �3.10�, one can define the following formal vector fields acting
n C�� ,��cyc:

 ª S + D, S = � ,SS�c, D = � , S̃D�o. �4.10�

he condition ��2=0 that �H , l ,n� is a cyclic OCHA is equivalent to the derivatives of the master

quations �4.7� and �4.8�,
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0 = � ,�SS,SS�c�c,

0 = � ,�S̃D,SS�c + 1
2 �S̃D, S̃D�o�o.

ere note that, as has been explained in Eq. �4.9�, S̃D consists of SD with the following additional
erms:

1

l!
V j1¯jl;J=��� jl

¯ � j1� �4.11�

ach of which corresponds to a disk with punctures only in the bulk �the interior of the disk� and
o punctures J=� on the boundary. However, one can see that these terms drop out in Eq. �4.10�:
, S̃D�o= � ,SD�o, since no open string field �i is included in Eq. �4.11�. This is why we do not

nclude the corresponding terms in the definition of �cyclic� OCHAs. Thus, a classical open-closed
tring field theory is a cyclic OCHA with the additional terms �4.11�.

Of course, there exist situations in which these terms �4.11� are also important physically. For
xample, the terms �4.11� contribute to a constant term for open string field theory in discussing its
eformation as in Sec. VI, and the constant term is relevant to D-brane mass, since the value of the
ction is believed to correspond to D-brane mass in open string field theory. But, it is enough to
onsider a cyclic OCHA structure in a classical open-closed string field theory at present if we
xamine its homotopy algebraic structures in the sense of the next section.

. MAURER-CARTAN EQUATION, MINIMAL MODEL, AND TREE OPEN-CLOSED
TRING AMPLITUDES

Homotopy algebras should have some homotopical properties.7,51 One of the key theorems in
omotopy algebra is the minimal model theorem. The minimal model theorem for A� algebras was
roved by Kadeishvili.30 For the construction of minimal models of A� structures, homological
erturbation theory was developed by Refs. 17, 28, 18, 21, 19, and 20, for instance, and the form
f a minimal model is then given explicitly in Refs. 54 and 41. Also, the existence of a stronger
heorem, called the decomposition theorem in Refs. 33 and 36, is mentioned in Ref. 40 and proven
y employing a kind of homological perturbation theory in Refs. 33 and 36 �see also Ref. 47�. It
s clear that the same arguments hold true for L� algebras, and in our previous paper35 we stated
hat they hold also for OCHAs.

In this section, we present the explicit form of a minimal model for an OCHA, which in the
yclic case can be thought of as the perturbative expansion of a classical open-closed string field
heory.

Definition 5.1 �minimal open-closed homotopy algebra�: An OCHA �H=Hc � Ho , l ,n� is
alled minimal if l1=0 on Hc and n0,1=0 on Ho.

Theorem 5.2 �Minimal model theorem for open-closed homotopy algebras35�: For any
CHA, there exists a minimal OCHA and an OCHA quasi-isomorphism from the minimal OCHA

o the original OCHA.
The minimal model theorem holds also for COCHAs. Namely, for any COCHA, there exists

minimal COCHA and a COCHA quasi-isomorphism from the minimal COCHA to the original
OCHA. This fact also follows from the explicit minimal model we shall construct here.

First of all, we fix a Hodge decomposition of the complex �H ,d= l1+n0,1�. Namely, for dc

l1 and do=n0,1, we give Hodge decompositions of the complexes �Hc ,dc� and �Ho ,do� sepa-
ately, by fixing degree minus one �homotopy� operators hc :Hc→Hc and ho :Ho→Ho,

dchc + hcdc + �c � �c = 1c, doho + hodo + �o � �o = 1o. �5.1�

ere, � and � indicate the projection to and the inclusion into the corresponding cohomologies.
hus, these data give a contraction �deformation retract� of H=Hc � Ho as a graded vector space
see Ref. 35�,
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�H�H��
�

�

H,h� , �5.2�

here �ª �c+ �o, �ª�c+�o and h=hc+ho.
We would like to follow the arguments in Refs. 31 and 33, where a minimal model is obtained

y a process of solving the Maurer-Cartan equation for an A� algebra. For OCHAs, the Maurer-
artan equations are defined as follows.35

Definition 5.3 �Maurer-Cartan equation�: For an OCHA �H , l ,n� and degree zero elements
�Hc and ō�Ho, we call the following pair of equations

0 = �
k

1

k!
lk�c̄, . . . , c̄�, 0 = �

k,l

1

k!
nk,l�c̄, . . . , c̄; ō, . . . , ō� �5.3�

he Maurer-Cartan equations for the OCHA �H , l ,n�.
Remark 5.4: Recall that, for the cyclic A� or L� case, the Maurer-Cartan equations are just the

quations of motions for the action �of the corresponding string field theory�.31,33 In field theory,
he equations of motions are defined by the derivatives of the action with respect to the fields. For
nstance, for classical closed string field theory with the action SS, the equations of motions are
= ��� /��i�SS for each i. Here, since the BV bracket � , �cª ��� /��i�
c

ij��� /�� j� is nondegenerate,
he equations of motions are equivalent to 0= � ,SS� �=S�. Usually, we set degree nonzero fields
o be zero and concentrate on the solutions for the fields of degree zero. Then, further identifying
/��i with ec

i in 0=S, one obtains the Maurer-Cartan equations for the L� algebra, which is the
rst equation in Eq. �5.3�. However, note that, for a COCHA �H ,
 , l ,n�, the zeroes of the
orresponding odd formal vector field =S+D are not the same as solutions to the equations of
otions 0= � ,S�= � ,S�c+ � ,S�o, or separately

0 =
��

��i
c
ij ��

�� j �SS + SD� = 0, 0 =
��

��i
o
ij ��

�� j SD = 0,

or the COCHA. Namely, the first equation above includes the term � ,SD�c, the corresponding
erm of which is absent in the Maurer-Cartan equations �5.3� for the COCHA.

One can see that, if one solves the equations of motions, instead of solving the Maurer-Cartan
quations, the resulting structure includes terms corresponding to b�1.

If we apply the arguments in Refs. 31 and 33 to an OCHA, the Maurer-Cartan equations for
n OCHA should be considered formally for the pair of string fields �� ,��� �Hc � Hc

* ,Ho

� Ho
*� instead of their degree zero parts �c̄ , ō�� �Hc

0 ,Ho
0�.

Then, for instance for the L� part, solving the Maurer-Cartan equation recursively one gets
rst an L� quasi-isomorphism �fk�k�1 : �H�Hc���k→Hc. This somewhat physical procedure is
losely related to the homological perturbation theory developed earlier, and in particular, fª

�kfk� �k Hom��H�Hc���k ,Hc� is just what is called a twisting cochain 	 �see Ref. 29 for the
GLA case�. Then, substituting f instead of � into the initial Maurer-Cartan equation, one obtains

n equation on H�Hc�, which is in fact the Maurer-Cartan equation for the corresponding minimal

� algebra, so one can read the minimal L� structure from the Maurer-Cartan equation. For the
ase of an OCHA, its minimal model is obtained by first considering the Maurer-Cartan equation
or the L� algebra as above and, after that, considering the Maurer-Cartan equation for n.

For an L� algebra �Hc , l�, a minimal L� algebra and an L� quasi-isomorphism
f l�l�1 : �H�Hc� , l��→ �Hc , l� are constructed as follows.

We set f1= �c :H�Hc�→Hc, and assume that we have �f l : �H�Hc��� l→Hc�l�1 for l�n−1.
hen, for c1� , . . . ,cn��H�Hc�, fn is defined by

fn�c1�, . . . ,cn�� = − hc �
k1+¯+kj=n

�
��Sn

�− 1�����

k1 ! k2 ! ¯ kj ! · j!
lj�fk1

� fk2
� ¯ � fkj

��c��1�� , . . . ,c��n�� � .
he minimal L� structure is then determined by
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ln��c1�, . . . ,cn�� = �c �
k1+¯+kj=n

�
��Sn

�− 1�����

k1 ! k2 ! ¯ kj ! · j!
lj�fk1

� fk2
� ¯ � fkj

��c��1�� , . . . ,c��n�� � ,

n particular, for l=2 one gets l2�=H�l2�ª�c � l2 � ��c��2.
Once the L� quasi-isomorphism �f l�l�1 is given, we have an OCHA �H�Hc� � Ho , l� ,n�� for

ome n�. Next we should construct �fk,l : �H�Hc���k � �H�Ho��� l→H�Ho��k+l�1 and n�
�nk,l� : �H�Hc���k � �H�Ho��� l→H�Ho��2k+l�2; these are obtained in a similar way as follows. f0,1

s given as inclusion f0,1= �o :H�Ho�→Ho. fr,s and fp,q are ordered as fr,s� fp,q if r+s� p+q or
� p for r+s= p+q. Then, a similar recursive procedure as above can be carried out also here. For

1� , . . . ,cn��H�Hc� and o1� , . . . ,om� �H�Ho�, fn,m is determined by

fn,m�c1�, . . . ,cn�;o1�, . . . ,om� �

=− ho � �− 1�����

i ! �r1 ! ¯ ri ! ��p1 ! ¯ pj ! �
ni,j�fr1

� ¯ � fri
� fp1,q1

� ¯ � fpj,qj
�

�c��1�� , . . . ,c��n�� ;o1�, . . . ,om� � ,

here the summation � runs over all r1 , . . . ,ri , p1 , . . . , pj ,q1 , . . . ,qj such that �r1+ ¯ +ri�+ �p1

¯ + pj�=n, �q1+ ¯ +qj�=m, and also all ��Sn.
Then n�= �nk,l� �2k+l�2 is obtained by replacing −ho above with �o,

nn,m� �c1�, . . . ,cn�;o1�, . . . ,om� �

= �o � �− 1�����

i ! �r1 ! ¯ ri ! ��p1 ! ¯ pj ! �
ni,j�fr1

� ¯ � fri
� fp1,q1

� ¯ � fpj,qj
�

�c��1�� , . . . ,c��n�� ;o1�, . . . ,om� � ,

here the summation � stands for the same one as above. In particular, for 2k+ l=2 one gets

0,2� =H�n0,2�ª�o �n0,2 � ��o��2 and n1,0� =H�n1,0�ª�o �n1,0 � �c. In the equation above, we used the
onvention presented in Definition 2.10.

For a COCHA �H ,
 , l ,n�, we do this construction by starting with an orthogonal Hodge
ecomposition with respect to the symplectic form 
. Namely, we give a decomposition

�H�H��
�

�

H,h�

f H in Eq. �5.2� with a homotopy h :H→H satisfying 
�1 � h�=
�h � 1�, where 1ª1c � 1o. The
xistence of such a homotopy h follows from the nondegeneracy of 
 and the cyclicity for the
erms 
c�l1 � 1c� and 
o�n0,1 � 1o�, and then 
�1 � �� ����=
��� ��� � 1� also holds. Then, for the
OCHA �H ,
 , l ,n�, forgetting the cyclic structure 
 having already used it to fix the contraction

5.2�, one can obtain a minimal model �H�H� , l� ,n�� as an OCHA by the construction we have
een above. The resulting minimal OCHA �H�H� , l� ,n�� is in fact cyclic with respect to the
nduced inner product 
�ª
�� � �� and the OCHA quasi-isomorphism a COCHA quasi-
somorphism.

To summarize we give the following.
Theorem 5.5: �H�H� , l� ,n�� forms a minimal OCHA and fª ��f l�l�1 , �fk,l�k+l�1� is an OCHA

uasi-isomorphism f : �H�H� , l� ,n��→ �H , l ,n�.
Theorem 5.6: For a COCHA �H ,
 , l ,n� and an orthogonal Hodge decomposition with

espect to 
, �H�H� ,
� , l� ,n�� forms a minimal COCHA and fª ��f l�l�1 , �fk,l�k+l�1� is a COCHA
uasi-isomorphism f : �H�H� ,
� , l� ,n��→ �H ,
 , l ,n�.

Since the explicit forms are given, one can check the cyclicity directly in a similar way to that
n the A� case �see Ref. 33�.
Remark 5.7 �rooted planar tree graphs�: One can also present an alternate description of this
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inimal model in terms of rooted planar trees in a similar way as for A� algebras �see Refs. 41,
1, 33, 52, 7, 11, 15, 16, 27, 36, 47, 51, and 60, etc.�. This is related to Feynman graphs in field
heory. For an A� algebra �Ho , �n0,k��, it is convenient to associate n0,k to the k-corolla of planar
ooted trees. An L� algebra also has such a description, where the L� structure lk is associated with
he k-corolla of nonplanar rooted trees �Fig. 1�. In our OCHA, we need to introduce also nk,l, to
hich we associate a mixed corolla as in Fig. 2. As stated previously, from a string theory
iewpoint, lk corresponds to the sphere with �k+1�-�closed string� punctures and nk,l corresponds
o the disk with �k+1�-�open string� punctures on the boundary and l-�closed string� punctures in
he bulk �interior� of the disk. In fact, one may think of the tubular neighborhood of these tree
raphs as the corresponding world sheet, where we take strips and cylinders for the neighborhood
f the straight lines and meandering lines, respectively. The minimal OCHA structure lk� and nk,l�
re then obtained by grafting corollas in all possible ways such that straight lines are grafted to
traight and wiggly to wiggly �Fig. 3�, where we assign to corollas the corresponding multilinear
aps lk ,np,q, and to internal edges hc, ho, and so on. Physically, hc and ho are the propagators for

losed string and open string, respectively.
Remark 5.8 �string amplitude�: For a classical open-closed string field theory S=SS+SD, the

tring amplitudes are obtained as follows. Let �H ,
 , l ,n� be the corresponding COCHA, and
uppose that its minimal COCHA �H�H� ,
� , l� ,n�� is constructed as above.

By definition, string field theory is constructed so that its perturbative expansion reproduces
he corresponding world sheet string amplitudes. Thus,

Vk+1� ª 
c��lk� � 1c�, Vk,l+1� = 
o��nk,l� � 1o� �5.4�

ust define the on-shell �k+1�-closed strings sphere amplitudes and k-closed �l+1�-open string
isk amplitudes, respectively. Moreover, the n-closed string disk amplitude, which we denote Vn,0� ,
s given by composing the L� quasi-isomorphism with Vk,0 as follows:

Vn,0� = �
i=1

n

�
k1+¯+ki=n

1

k1 ! ¯ ki!
Vi,0�fk1

� ¯ � fki
�

or f= �fk�k�1, the L� quasi-isomorphism.

IG. 1. �a� The k-corolla, the planar tree corresponding to the A� structure mk=n0,k. �b� The k-corolla, the nonplanar tree
orresponding to the L� structure lk.

IG. 2. �a� The �k , l�-corolla corresponding to nk,l. �b� For the open-closed case, the �k , l�-corollas include the �1,0�-corolla

orresponding to n1,0.
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Note also that we can prove the decomposition theorem for a �cyclic� OCHA,35 which implies
hat all classical open-closed string field theories constructed on a fixed conformal background
the data of the conformal field theory on the Riemann surfaces� are isomorphic. From the field
heory viewpoint, an OCHA morphism is a field transformation and in particular an OCHA
somorphism is a field redefinition. Since field theory actions related by a field redefinition are
hysically equivalent, one can say the decomposition theorem can prove the equivalence of all
lassical open-closed string field theories constructed on a fixed conformal background. �See Ref.
3 for the A� case.�

I. DEFORMATION OF A� STRUCTURES AND THE FORMALITY THEOREM

For an L� algebra �Hc , l� and an A� algebra �Ho ,m�, if there exists an OCHA �H=Hc

� Ho , l ,n� whose subalgebra �Ho , �n0,k�k�1� coincides with �Ho , �mk�k�1�, one obtains deforma-
ions of the A� algebra �Ho , �mk�k�1� parametrized by the L� algebra �Hc , l�. On the other hand,
he whole deformation space of the A� algebra is also described by a moduli space of the L�

lgebra�Coder�TcHo� ,m , � , ���, which we denote by �Hc� , l��. The maps �nk,l� for k�1 define an

� morphism from �Hc , l� to �Hc� , l��. The defining equation for an OCHA �2.6� just converts to
he defining equation for an L� morphism �2.5�.35 In Sec. VI A we reexplain this in a more explicit
ay. Such structure appears in various aspects of mathematical physics; the relation to deforma-

ion quantization by Kontsevich40 is explained in Sec. VI B, and the application to the open-closed
opological B-model26 from the viewpoint of the homological mirror symmetry setup39 is dis-
ussed in Sec. VI C. Note also that, in string field theory, this picture is related to the arguments
n Sec. 8 of Ref. 74.

. Deformations of A� structures from open-closed homotopy algebras

Definition 6.1 ��graded� Gerstenhaber bracket12�: For Ho a Z-graded vector space, let Homk
r

Homr�Ho
�k ,Ho� be the space of degree r k-linear maps, and

Hom ª � r Homr, Homr
ª �k�0 Homk

r .

t is known that Hom is in one-to-one correspondence with the space of coderivations on Tc�Ho�,
oder�Tc�Ho��.65 For two elements in Coder�Tc�Ho��, the commutator of any two elements in fact
elongs to Coder�Tc�Ho��, and further satisfies the Jacobi identity. After a shift in degree, this
nduces a graded Lie bracket on Hom, which is the Gerstenhaber bracket. For m�Homk

r, m�

Homk�
r� and o1 , . . . ,ok+k�−1�Ho, the graded Lie bracket �m ,m���Homk+k�−1

r+r� is defined by

�m,m�� = m � m� − �− 1�r·r�m� � m ,

m � m��o1, . . . ,ok+k�−1� = �
i=0

k−1

�− 1�l��o1+¯+oi�m�o1, . . . ,oi,m��oi+1, . . . ,oi+k��,oi+k�+1, . . . ,ok+k�−1� .

hus, �Hom, � , �� forms a graded Lie algebra.12,65

In the supermanifold description in Sec. III, this Gerstenhaber bracket corresponds to the

FIG. 3. Grafting of corollas. �a� Wiggly to wiggly. �b� Straight to straight.
raded Lie bracket of formal vector fields on the corresponding formal supermanifold.
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Furthermore, let us denote by m̄�Hom1 the degree one element corresponding to a degree
ne coderivation in �Hc� , l��=Coder�T�Ho��, that is, an A� structure on Ho. Then, it is clear that
m̄ , m̄�=0 holds and �Hom,d , � , �� forms a DGLA with d= �m̄ , �.

Remark 6.2 �suspension�: A DGLA is described as an L� algebra through the suspension s. For
he DGLA �Hom,d , � , ��, the suspension is a degree shifting operator

s:Hom → Hom�1� = :Hc�.

y this, a degree r element m�Homr is mapped to be a degree �r−1� element s�m�
Hom�1�r−1=Hc�

r−1. This actually converts the degree preserving bracket � , � :Hom � Hom
Hom into a degree one bilinear map l2� :Hc� � Hc�→Hc� defined by

l2��s�m�,s�m��� ª s��− 1�r�m,m���, m � Homr, m� � Homr�.

ne can see that the graded anticommutativity �m� ,m�=−�−1�rr��m ,m�� is in fact replaced by the
raded commutativity in Eq. �2.3�, l2��s�m�� ,s�m��= �−1��r−1��r�−1�l2��s�m� ,s�m���, where l1� is given
imply by l1�=s ds−1=d. Then �Hc� , l�= �l1� , l2� , l3�= l4�= ¯ =0�� forms an L� algebra.

Now, let us express the open-closed multilinear maps as

nk,l�c1, . . . ,ck;o1, . . . ,ol� ¬ �nl
*�c1, . . . ,ck���o1, . . . ,ol� ,

here nl
*�c1 , . . . ,ck� belongs to Homk

deg�c1�+¯+deg�ck�+1. By this, the second term of the OCHA
elation �2.6� can be rewritten as

− �− 1��c��1�+¯+c��l�+1�1

2
�nm+1−k

* �c��1�, . . . ,c��l��,nk
*�c��l+1�, . . . ,c��n����o1, . . . ,om� ,

hich, acting further with the suspension s on the equation above, yields

− 1
2 l2��s�nm+1−k

* ��c��1�, . . . ,c��l��,s�nk
*��c��l+1�, . . . ,c��n����o1, . . . ,om� .

hus, one obtains

�
k,l�0

�
p=0

m−k

�
��Sn

1

2

�− 1�����

l ! �n − l�!
l2��s�nm+1−k

* ��c��1�, . . . ,c��l��,s�nk
*��c��l+1�, . . . ,c��n���

= �
��Sn

�
l=1

n
�− 1�����

l ! �n − l�!
s�nm

* ��ll�c��1�, . . . ,c��l��,c��l+1� . . . ,c��n�� . �6.1�

hese are just the defining equations for an L� morphism �2.5�. By treating the l=0 and l=n cases
eparately in the first line of the equation above, it becomes just the condition that the collection
f multilinear maps s�nk

*� : �Hc��*→Homk�1� forms an L� morphism from �Hc , l� to �Hc� , l��.
ere, note that l1�= �m̄ , � and m̄=�l�0mk, the A� structure included in �H , l ,n� as mlªn0,l. From

hese arguments, it is clear that the converse also holds.
Theorem 6.3 �Ref. 35�: For an OCHA �H , l ,n�, let �Hc� , l�� denote the DGLA Coder�TcHo�.

he OCHA structure gives an L� morphism from �Hc , l� to �Hc� , l��. Conversely, if there exists an

� algebra �Hc , l� and an L� morphism from it to the DGLA �Hc� , l�� of an A� algebra �Ho ,m�,
hen one obtains an OCHA.

For an L� algebra �Hc , l�, let us denote by MC�Hc , l� the solution space of the Maurer-Cartan
quation

MC�Hc,l� = �c̄ � Hc
0�0 = �

k�1
�1
k!

lk�c̄, . . . , c̄�� ,

here Hc
0 is the degree zero subvector space of Hc. In addition, we have an equivalence relation
called gauge equivalence between the solutions of the Maurer-Cartan equation. The moduli
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pace of the solution space of the Maurer-Cartan equation for �Hc , l� is defined by

M�Hc,l� = MC�Hc,l�/ � . �6.2�

uppose that we have an L� morphism f : �Hc , l�→ �Hc� , l�� between two L� algebras. Then it is
nown that the L� morphism f induces a map f :M�Hc , l�→M�Hc� , l��, and furthermore it is an
somorphism if f is an L� quasi-isomorphism �cf. Ref. 40�. Similar facts hold also for A� algebras
nd also for OCHAs,35 but what is relevant here is just the L� case.

Note that, for an L� algebra �DGLA� �Hc� , l��=Coder�TcHo� as above, its moduli space
�Hc� , l�� is the moduli space of deformations of the A� algebra in the space of weak A� algebras.

hus, we have the following.
Corollary 6.4 �A� structure parameterized by the moduli space of L� structures35�: For an L�

lgebra �Hc , l� and an A� algebra �Ho ,m�, suppose there exists an OCHA �H=Hc � Ho , l ,n�
uch that �Ho , �n0,k��= �Ho ,m�. Then, for each element c�M�Hc , l�, we have a weak A� algebra
hich is a deformation of the original A� algebra �Ho ,m�. If �n1,k�k�0 :Hc→Hc� gives a quasi-

somorphism of complexes �Hc , l1�→ �Hc� , l1��, then all the equivalence classes of deformations of
H ,m� as weak A� algebras, described by M�Hc� , l1��, are in one-to-one correspondence with the
pace M�Hc , l�.

. The construction of deformation quantization by Kontsevich

The deformation quantization problem is to construct a star product corresponding to the
oisson algebra on a manifold M. Namely, for a formal �deformation� parameter � and a given
oisson algebra �A=C��M� , · , � , ��, a bilinear, bidifferential �-linear map *:A����� � A�����
A�����,

f * g = �
r=0

�

mr�f ,g��r, f ,g � A����� �6.3�

s called a deformation quantization of M if m0�f ,g�= f ·g, the usual commutative product on
��M�, m1�f ,g�= 1

2 �f ,g� and the star product * is associative.5 �Notice here mr is still a function
f two variables and should not be confused with the ml of an A� algebra.� In Ref. 40, Kontsevich
eformulated this problem in a homotopy algebraic setup. For any associative algebra A, defor-
ations as associative multiplications are controlled by the Hochschild complex, which is essen-

ially Coder�TcA� and hence a DGLA.12 In fact, control is equally well exercised by any quasi-
somorphic DGLA or even L� algebra.60 The obstructions to existence and to equivalence are
dentified by the quasi-isomorphism. For the special case of A=C��M�, the deformations relevant
o deformation quantization are controlled by the subcomplex of multidifferential Hochschild
ochains, which we denote Dpoly�M� �Definition 6.5� and which is quasi-isomorphic to the full
ochschild complex. The smooth analog of the Hochschild-Kostant-Rosenberg theorem.25 �an

xplicit proof can be found in Ref. 22� equates the Hochschild cohomology with Tpoly�M�, the
pace of polyvector fields, which possesses a DGLA structures with d=0 and the Schouten-
ijenhuis bracket.

Kontsevich treated these DGLAs as L� algebras and obtained the existence and the classifi-
ation of deformation quantizations by constructing an L� morphism between Tpoly�M� and

poly�M�, which is in a sense a nonlinear generalization of a DGLA map. Moreover, the specific

� morphism provides a specific star product. In this setting, the space of Poisson structures and
he space of star products given by bidifferential operators are then described by the Maurer-
artan equations of the corresponding DGLAs.

In this section, we shall first present these tools and then relate them to an OCHA.
Definition 6.5 �DGLA of multidifferential operators for C��M��: For A=C��M�, denote by

poly
k �M� the space of multilinear maps from A��k+1� to A of multidifferential operators. Then

k
efine Dpoly= �k�ZDpoly by
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Dpoly
k = Dpoly

k �M��k � − 1�, Dpoly
k = 0�k � − 1� .

or d, we take the Hochschild coboundary operator. Namely, for any C�Dpoly
k , d is given by

�dC��g0, . . . ,gk+1� = g0C�g1, . . . ,gk+1� − �
r=0

k

�− 1�rC�g0, . . . ,grgr+1, . . . ,gk+1�

+ �− 1�kC�g0, . . . ,gk�gk+1.

e take for � , � the Gerstenhaber bracket.12 Namely, for C�Dpoly
k , C��Dpoly

k� , it is defined by

�C,C�� = C � C� − �− 1�kk�C� � C ,

C � C��g0, . . . ,gk+k�� = �
r=0

k

�− 1�rk�C�g0, . . . ,gr−1,C��gr, . . . ,gr+k��,gr+k�+1, . . . ,gk+k�� .

hen �Dpoly , � , � ,d� forms a DGLA.
One can see that d can be written as

�− 1�k�dC��g0, . . . ,gk+1� = �m̄,C�, C � Dpoly
k ,

here m̄ is the usual commutative product of functions m̄�f ,g�= f ·g. Though the operation �m̄ , �
s different in sign from the original d, �m̄ , � also forms a DGLA on Dpoly with � , �. So, we take
his as d. This DGLA is described as a sub-DGLA of �Hom,d , � , ��. First, set Ho

−1=A and Ho
k

0 otherwise. Then C :A��k+1�→A has degree k as defined above. Namely, Dpoly�M� is included
n the restricted subvector space Homsub= �k Homk

k−1 of Hom.
Let us state the necessary condition for the existence of a deformation quantization in the

anguage of DGLAs here. If we write the star product �6.3� as f *g=m�f ,g�, m�Hom2
1, the

ssociativity condition �f *g�*h= f * �g*h� is expressed algebraically as �m ,m�=0. This just indi-
ates that m defines a codifferential on Tc�A� as previously or, equivalently, that m is associative.
ince m should be obtained as a deformation of m̄, writing m= m̄+�, ���Dpoly�����, one gets a
aurer-Cartan equation in the DGLA ��Dpoly����� ,d , � , ��,

d� + 1
2 ��,�� = 0. �6.4�

Definition 6.6 �DGLA of polyvector fields�: For k�−1, set Tpoly
k �M�ª��M ,Ùk+1TM�, and

efine Tpoly= �kTpoly
k by

Tpoly
k = Tpoly

k �M��k � − 1�, Tpoly
k = 0�k � − 1� .

ere, when k=−1 we set Tpoly
−1 =Tpoly

−1 �M�=C��M�. The differential d is defined by d=0. Therefore,
he cohomology of the complex of Tpoly

n with respect to d coincides with Tpoly
n itself. � , � is taken

o be the Schouten-Nijenhuis bracket.61,56 For �s ,�t�Tpoly
0 =��M ,TM�, the bracket of

0Ù ¯ Ù�k , �Tpoly
k with �0Ù ¯ Ù�l�Tpoly

l , k , l�0, is defined by

��0 Ù ¯ Ù �k,�0 Ù ¯ Ù �l�

=�
i=0

k

�
j=0

l

�− 1�s+t��s,�t� Ù �0 Ù ¯ Ù �s−1 Ù �s+1 Ù ¯ Ù �k Ù �0 Ù ¯ Ù �t−1 Ù �t+1 Ù ¯ Ù �l,

−1 �
nd for k�0, h�Tpoly=C �M�, the bracket is
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��0 Ù ¯ Ù �k,h� = �
r=0

k

�− 1�r�r�h���0 Ù ¯ Ù �r−1 Ù �r+1 Ù ¯ Ù �k� .

e can define Hc
k−1

ªTpoly
k with this Schouten-Nijenhuis bracket.

Now, a bivector �=�i,j�
ij�� /�xi�Ù �� /�xj��Tpoly

1 in the local expression represents the Pois-
on bracket by �f ,g�=�i,j�

ij��f /�xi���g /�xj�, where �x1 , . . . ,xn� are local coordinates of M. This
racket by definition satisfies all the axioms of a Poisson algebra except the Jacobi identity. The
acobi identity is then described by

��,�� = 0. �6.5�

ince d=0, Eq. �6.5� is also the Maurer-Cartan equation. A bivector satisfying �6.5� is called a
oisson bivector. Similarly, a quantum deformation of the Poisson bivector is defined by ����
�Tpoly

1 ����� satisfying

�����,����� = 0. �6.6�

n the expansion ����=��1+�2�2+ ¯ , the original classical Poisson bivector � is �1. In fact,
xpanding �6.6� in terms of powers of �, one can see that the lowest identity reads ��1 ,�1�=0.

Thus, the conditions that an element in �Tpoly
1 ����� is a Poisson bracket and that an associative

roduct on C��M������ as an element in �Dpoly
1 ����� are both described by Maurer-Cartan equa-

ions for DGLAs. Let us set two L� algebras �Hc , l� and �Hc� , l�� as the suspension of DGLAs Tpoly

nd Dpoly, respectively. Namely, we have Hc
k=Tpoly

k+1 and Hc�
k=Dpoly

k+1 . The Maurer-Cartan equations
or DGLAs �6.6�, �6.4� are of course rewritten as the Maurer-Cartan equations for L� algebras
hrough the suspension in Remark 6.2.

The existence and the classification of the deformation quantization follows from the formal-
ty theorem,40 which claims the existence of an L� quasi-isomorphism f : �Hc , l�→ �Hc� , l��. Note
hat this fact implies that the DGLA of Hochschild cochains is �homotopically� formal; in particu-
ar, the higher L� structures vanish on its cohomologies. In order that f is an L� quasi-
somorphism, the chain map f1 : �Hc ,dc=0�→ �Hc� ,dc�� must be a quasi-isomorphism, that is, f1

ust induce an isomorphism on cohomologies. One may set

�f1��i1
Ù ¯ Ù �ik

���g1, . . . ,gk� =
1

k! �
��S

�− 1�������i��1�
g1� ¯ ��i��k�

gk� .

ontsevich constructs all the higher multilinear maps fk explicitly as local expressions on M
Rn in terms of Feynman graphs, which are just those derived from a certain topological open-
losed string theory as revealed explicitly by Cattaneo-Felder8 �see for review Ref. 48�.

When an L� quasi-isomorphism f= �f1 , f2 , . . . � is given, it preserves the Maurer-Cartan equa-
ions, and the deformed Poisson bivector is given by the following nonlinear map:

� = �
k=1

�
1

k!
fk�����, . . . ,����� , �6.7�

or �����M�Hc , l� and ��M�Hc� , l��. Here the L� quasi-isomorphism f : �Hc , l�→ �Hc� , l�� has
een extended by tensoring with the formal power series �C�����. If we expand the deformation
= m̄+� ,���Dpoly����� as in Eq. �6.3�:

m = m̄ + �m1 + �2m2 + ¯

ith m1= �1/2��1, Kontsevich’s quasi-isomorphism of L� algebras then provides a choice for m2

nd in fact for all the mi.
Now, let us summarize Kontsevich’s deformation quantization in terms of OCHAs. First, we

et Hc
r−2

ª��M ,ÙrTM�. It forms a formal L� algebra with l2 the Schouten-Nijenhuis bracket, and
−1 � k ¯
1= l3= ¯ =0. For Ho, we take Ho ªC �M� and Ho=0 for k�−1. The A� structure is n0,2=m,
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he usual commutative product of functions C��M�, and n0,l=0 except for l=2. The multilinear
aps of the L� quasi-isomorphism are then identified as the adjoints�nk,l : �Hc��k � �Ho�� l→Ho�
ith k�1. In particular, n1,2����� ; f ,g�= �1/2��f ,g�, and n1,k��i1

Ù ¯ Ù�ik
;g1 , . . . ,gk�

�1/k ! ����S�−1�������i��1�
g1�¯ ��i��k�

gk�. These structures form a minimal OCHA on cohomol-

gy. Corollary 6.4 then implies that, for a fixed element of MC�Hc , l�, an A� structure is obtained.
owever, in this situation, since Hom is restricted to Homsub= � Homr

r−1 and the elements of
aurer-Cartan equations, especially M�Hc� , l��are degree zero, the deformed A� structure also has

2� �Hom2�1��0 only, i.e., m1 and higher product m3 ,m4 , . . . are absent. Equivalently, when Hc is
estricted to its degree zero part Hc

0, nk,l vanishes except for �k , l�= �k ,2�. This m2 is just the star
roduct, an associative but noncommutative product C��M� � C��M�→C��M� of a deformation
uantization. The next example below is a natural extension of this situation, but in the case that
om is not restricted to Homsub.

. Open-closed B-model

A natural extension of Kontsevich’s deformation quantization setup is to the B-model side of
omological mirror symmetry.39

The mirror symmetry, a symmetry between Calabi-Yau manifolds, can be interpreted as to-
ological closed string physics. There are two types of topological string theories whose target
paces are Calabi-Yau manifolds. One is called the A-model, which depends only on the com-
lexified symplectic structure and is independent of the complex structure of the Calabi-Yau
anifold. Another one, the B-model in contrast depends only on the complex structure. For a

iven Calabi-Yau manifold M, the mirror symmetry conjecture is the existence of a mirror Calabi-

au manifold M̂ such that the A-model closed string on M̂ is equivalent to the B-model closed
tring on M and vice versa.71 Homological mirror symmetry is thought of as an open string
ersion72 of the mirror symmetry conjecture. open string theory in general includes some kind of
-branes, which form a D-brane category �see Ref. 45�; the D-branes and open strings are iden-

ified with objects and morphisms between the objects. For the tree open string A-model, the
orresponding category is Fukaya’s A� category,9 which depends only on the complexified sym-
lectic structure. On the other hand, what is constructed on the B-model side is a category of
olomorphic vector bundles or coherent sheaves more generally. The homological mirror symme-
ry conjecture39 then states that the Fukaya category on a Calabi-Yau manifold M is in some sense

quivalent to the category of coherent sheaves on the mirror dual Calabi-Yau manifold M̂. Now,
he conjecture is checked successfully in the case M is an elliptic curve,39,59,57 an Abelian
ariety,10,41 a quartic surface,63 and so on. For noncommutative two-tori, see Refs. 32, 37, and 34
nd a related work.58

One of the original motivations to argue for this homological mirror symmetry conjecture39 is
hat it might explain the �tree closed string parts of� mirror symmetry: the family �deformations� of
ree open string A- �respectively, B-� models should be in one-to-one correspondence with that of
ree closed string A-�respectively, B-� model, and the tree closed string structure should follow
rom the corresponding family of the tree open string structures. These concepts have their back-
round in the open-closed string physics in our sense. Since the A side and B side should be mirror
ual, they should have isomorphic structures in some sense. However, that which is directly
elated to us is the B-model side, since there the classical solution of string world sheet theory is
nly a constant map �no world sheet instanton� and the corresponding moduli spaces are just the
sual ones of Riemann surfaces with boundaries and punctures.71

One can see that the tree open-closed B-model is just a particular example of the arguments in
ec. VI A, and gives a natural extension of that in the preceding section. However, the mathemati-
al formulation of the tree open-closed B-model is not yet established completely, nor is there
nown the explicit formula as in the case of deformation quantization in the preceding section.

An interesting attempt and a partial result can be found in Hofman’s work.26 We can identify
ome set of multilinear maps �lk ,np,q� on open and closed string observables for this situation. Of

ourse we could have an infinite number of homotopy equivalent open-closed homotopy struc-
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ures. For instance, for the tree closed string part, the world sheet action of the B-twisted topo-
ogical string theory as given in Ref. 71 has the space of observables which is identified with the
ohomology of � p,q��M ,ÙpTM � ÙqT*M� with respect to the Dolbeault operator �̄ and hence, in
rinciple, one can compute closed string �k+1�-point functions �=scattering amplitudes� related to

k. However, in general this is complicated; it is better if one can find a corresponding string field
heory in a simple form. Such a string field theory is given by Ref. 6, where the B-twisted
opological closed string field theory action consists of the kinetic term and a three point vertex
nly, and so a DGLA structure is associated to it. Note that the equations of motions are just the
aurer-Cartan equations defining deformations of the complex structures, with additional ex-

ended directions mentioned below. The string field theory gives, at least for tree level �genus
ero�, a simple way of calculating �k+1�-point functions in terms of Feynman rules, and this
rocedure just coincides with taking a minimal model of the DGLA from a homotopy algebraic
oint of view. �However, for the action given in Ref. 6, they use an inner product which is not
ondegenerate in our sense. In particular, it vanishes on the cohomology. Together with an addi-
ional structure called a differential Gerstenhaber structure, the pull-back of this action with
espect to the L� quasi-isomorphism, or equivalently the superpotential or the collection of tree
losed string amplitudes, has a Frobenius structure,6,2 even though the minimal L� structure is
rivial, all lk=0. We do not deal with this Frobenius structure in this paper.�

In a similar way, one can also consider open strings in the B-twisted topological string theory,
nd, in a similar spirit, one can construct a particular open string topological string field theory
ction,72,6 called a holomorphic Chern-Simons action, a holomorphic version of the usual Chern-
imons action or Witten’s bosonic open string field theory.70 Thus, it has a structure of a differ-
ntial graded associative algebra �DGA� with cyclicity, a cyclic A� structure. Again, tree open
tring world sheet scattering amplitudes are obtained by taking the minimal model of the DGA.

Although the B-twisted topological string is controlled by such a simple DGLA or DGA for
he closed or open string case, respectively, it is known that the same story does not hold for tree
pen-closed string in general.74 Therefore, we consider here a minimal OCHA structure whose
urely closed string part �lk� and purely open string part �mk=n0,k� are given by taking the minimal
odels of the DGLA and DGA, respectively. For the closed string side, the corresponding DGLA

tructure is ���M ,Ù�TM � Ù�T*M� , �̄ , � , ��, where � , � is the Schouten-Nijenhuis bracket, the
ne in Definition 6.6 extended to T*M naturally. However, for closed strings, the ��̄ lemma and the
ian-Todorovs lemma lead to the corresponding minimal L� structure, given by the procedure in
ec. V, being trivial �see Refs. 6 and 2�. Thus, we have lk=0 fork�1 for Hc

k=
� p+q−2=kH

q�ÙpTM�, and the corresponding moduli space is itself,

M�Hc,l� = Hc
0.

ere, we restrict Hc to its degree zero part only. It might be reasonable to think that one can
eform in these Hc

0 directions finitely in principle and that the other Hc
k directions provide fibers

f an infinitesimal neighborhood. In fact, the whole deformation space Hc is called the extended
oduli space in Barannikov-Kontsevich.2 Note that H1�Ù1TM��Hc

0 describes the complex struc-
ure deformations. This is the original deformation theory of complex structures, and the
arannikov-Kontsevich’s setup can be thought of as an extension of it.

Next, for pure open string structure, we should stress what is taken for Ho. The open string
heory forms a D-brane category, which should be treated as an A� category in our context. The
bjects, B-type D-branes, are the coherent sheaves on M. Thus, Ho is identified with the space of
orphisms between them. A general construction of a minimal model in this situation is found in
efs. 44, 46, 68, and 45, and See Ref. 34 for an explicit construction in the noncommutative

wo-tori case. However, for simplicity, here we consider the case that the object is only the
tructure sheaf O�M�. One can see that this simplified situation is enough for our purpose here
nder some appropriate assumptions. The differential is then simply �̄, and one obtains a minimal
odel of DGA �O0,*�M� , �̄ , Ù �, which we denote by �Ho , m̄= �n0,k�k�2�, where Ho

k−1

k 0,*
H �O �M��.

                                                                                                            



A
R

a
c
s
o
l
b

l

w
s
c
t

=
�
l

d
p
t
B
f
a
s

t
f
A

h
d
c

A

O
C
M

023506-26 H. Kajiura and J. Stasheff J. Math. Phys. 47, 023506 �2006�

                        
For this particular choice of Ho, let us consider the space of multilinear maps Homª

� Homk
r,

Homk
r = Homr�Ho

�k,Ho� .

gain, the result of Gerstenhaber-Schack,13 in a similar way as the Hochschild-Konstant-
osenberg theorem does in the preceding section, implies that the cohomology of Hom=

�k,r Homk
r coincides with Hc itself �see Ref. 39�.

Alternatively, the existence of an L� quasi-isomorphism from �Hc , l� to �Hc� , l�� is guaranteed
t least physically, since �nk,l� can be constructed as open-closed disk amplitudes of the open-
losed B-model, where the string world sheet action is of the same form as the one for pure closed
trings, and the space of observables are just those used in separate open-closed B-model. An
pen-closed disk amplitude is then obtained by the integral of a disk correlation function, calcu-
ated in the usual way in physics, over the moduli space of the corresponding disk with punctures,
oth in the interior and on the boundary.

Moreover, it was checked in Ref. 26 that n1,q given by this physical argument in fact gives the
inear part of the L� quasi-isomorphism f1,

n1,k��i1
Ù ¯ Ù �ik

, f1, . . . , fk� =
1

k! �
��S

�− 1�������i��1�
f1� ¯ ��i��k�

fk� ,

here �i�TM acts on f i�Ho as the Lie derivative. Also, in the spirit of homological mirror
ymmetry, since the collection �nk,l� gives an L� quasi-isomorphism even with the restriction to the
ategory of coherent sheaves to O�M�, it does also in case the full category would be treated for
he open string side.

To summarize, we set Hc
k= � p+q−2=kH

q�ÙpTM�, Ho
k−1=Hk�O0,*�M��, and Homk

r

Homr�Ho
�k ,Ho�. Then we have lk=0 on Hc and n0,q is the minimal A� structure of DGA

O0,*�M� , �̄ , Ù �. The operation l� is defined as in Sec. VI A, that is, l1�= �m̄ , � with m̄=�0,qn0,qand

2� is related to the commutator � , � through the suspension.
The corresponding OCHA structure in this case reduces to the generalized WDVV relation

iscussed in Ref. 24. Namely, it corresponds to a minimal OCHA with trivial L� structure. At
resent, the explicit form of multilinear maps np,q of p�2 and q�0 are not known in general,
hough physically existence is guaranteed by the open-closed scattering amplitudes of disks in
-twisted topological string theory. There is an interesting restriction where we can understand the

orm of nk,l. Hofman discussed in Ref. 26 that if we restrict Hc to ÙpTM, the situation reduces to
complex version of Kontsevich’s deformation quantization and hence np,q are obtained in a

imilar way.
An interesting difference from the deformation quantization setup in the preceding section is

hat, since Hom= � Homk
r is not restricted to Homsub, even if r=1 we can have nontrivial de-

ormed mk. In particular, we could in general obtain a deformation of the A� structure m̄ to a weak

� structure, which should be one of the interesting future directions to be investigated.
In this case, for the closed string part, the L� structure is trivial, including the bracket, and

ence the obstructions vanish. In a more general model, however, it should not be trivial, as
iscussed by Huebschmann-Stasheff.29 It should be interesting to find such models which can be
alculated explicitly.
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For applications of group theory in quantum mechanics, one generally needs
explicit matrix representations of the spectrum generating algebras that arise in
bases that reduce the symmetry group of some Hamiltonian of interest. Here we use
vector coherent state techniques to develop an algorithm for constructing the ma-
trices for arbitrary finite-dimensional irreps of the SO�5� Lie algebra in an SO�3�
basis. The SO�3� subgroup of SO�5� is defined by regarding SO�5� as linear trans-
formations of the five-dimensional space of an SO�3� irrep of angular momentum
two. A need for such irreps arises in the nuclear collective model of quadrupole
vibrations and rotations. The algorithm has been implemented in MAPLE, and some
tables of results are presented. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2162332�

. INTRODUCTION

A vector coherent state �VCS� representation is a representation of a group �or Lie algebra� on
space of vector-valued functions. It is a representation induced from a multidimensional repre-

entation of a subgroup. Such representations have been used widely in the construction of explicit
epresentations of Lie algebras and Lie groups,1–6 in the construction of shift tensors,7 and for the
omputation of Clebsch–Gordan coefficients for reducing tensor product representations.8,9

The VCS construction for a representation of a group G involves two subgroups that play
uite different roles. A so-called “intrinsic” subgroup �sometimes called the “core” subgroup� acts
n a known way on a subspace of the representation of interest. A second “orbiter” subgroup acts
pon this subspace to generate the larger representation of the group G. A prototypical example of
he construction is that for the dynamical group of the rigid rotor given by the semidirect product

=R5
›SO�3� of an intrinsic R5 subgroup, which describes the quadrupole moments �hence the

hape� of an object, and an orbiter group SO�3�, corresponding to physical rotations of the object,
hich describes its possible orientations. The quantum mechanics of such a rotor are then de-

cribed by the unitary irreducible representations �irreps� of G.10

The key requirement is that the Lie algebras of the intrinsic and orbiter groups, together with
hose elements of the complexified Lie algebra gC of G that leave the intrinsic space invariant,
pan the complex extension of the Lie algebra. Finding such groups is often easier in the complex
xtension of G. In many cases there are then mathematically naturally choices of intrinsic and
rbiter subgroups for which the VCS construction of an induced representation is straightforward.
nfortunately a mathematically natural choice often produces a representation in a basis that is not

dapted to the symmetries of a physical problem. A goal of this paper is to show how to construct
epresentations of so�5� in a basis that reduces a physically relevant so�3��so�5� subalgebra.

�
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The group SO�5� and its Lie algebra so�5� arise in many physical contexts. For example, they
re needed for the classification of states in the Bohr–Mottelson model11 and Interacting Boson
odel12 of nuclear collective states. They arise in a charge-independent pairing theory and in the

se of isospin for the classification of nuclear shell model basis states.13,14 They have also been
sed for the study of algebraic many-body equations of motion methods15 and high-temperature
uperconductivity.16 Depending on the context, so�5� irreps may be required in an su�2� �e.g.,
sospin� or an so�3� �angular momentum� basis. The isospin su�2� algebra is embedded in so�5� as

subalgebra su�2��su�2��su�2��so�4��so�5�. Thus, the required so�5��su�2� irreps are
iven in a basis that reduces the Gel’fand chain SO�5��SO�4��SO�3��SO�2�.17 Such irreps
ere constructed years ago14,18 and reconstructed more simply by VCS methods in Refs. 3 and 19.
ote, however, that the so�3��so�4� subalgebra of the SO�3� group in the Gel’fand chain is not

he same as the above-mentioned angular momentum algebra that generates a “geometrical”
O�3��SO�5� subgroup of rotations of an associated three-dimensional space; as a result the
onstruction of so�5� irreps in an angular-momentum basis is more challenging.

The so-called one-rowed representations that occur in the decomposition of the Hilbert space
f the five-dimensional harmonic oscillator can be inferred in an so�3� basis from the results of
haćon, Moshinsky, and others20–22 or from the SO�5� hyperspherical harmonics and Clebsch–
ordan coefficients given in Ref. 21. An explicit VCS �vector coherent state� construction of

rreps with highest weights of the type �v ,0� and �0, f� �this notation is explained below� was
iven by Rowe and Hecht.22

In this paper we give a systematic construction of the generic �v , f� irreps in an so�3� basis. In
ddition to its obvious relevance to the representation theory of so�5�, the construction is a
rototype for a relatively sophisticated application of VCS theory.

I. VECTOR COHERENT STATE REPRESENTATIONS

Vector coherent state (VCS) theory is a generalization of standard �scalar� coherent state
heory.23 It was introduced1 for the purpose of providing an explicit systematic construction of the
rreducible unitary representations of the compact and noncompact symplectic Lie algebras. Sim-
licity and efficiency were achieved in the construction by making use of the already well-known
epresentation theory of the unitary subalgebras. Important aspects of the theory were also intro-
uced independently by Deenen and Quesne in their partial coherent state representations.24

ubsequently, VCS has been used to construct representations of a large number of Lie algebras,
roups, and superalgebras �cf. Ref. 6 for a review�. Early applications of VCS theory gave real-
zations of the so-called holomorphic representations �reviewed by Hecht25�. A more general class
f VCS representations was later used in the construction of su�3� irreps in an so�3� basis.26 It has
lso been shown that VCS theory is compatible with the theory of induced representations6 and the
heory of geometric quantization.27 A more general perspective on the theory was given in Ref. 28.

The construction of the finite-dimensional irreps of so�5� in an so�3� basis has much in
ommon with the construction of irreps of su�3� in an so�3� basis. The su�3� Lie algebra is
panned by the components of so�3� tensors of angular momentum L=1 and L=2, while the so�5�
ie algebra is spanned by so�3� tensors of angular momentum L=1 and L=3. However, whereas

or su�3� it was possible to use scalar coherent state wave functions, a special case of VCS
unctions, it proves to be essential to use vector-valued wave functions for so�5�.

The VCS theory of su�3� relies on the fact that the carrier space for an su�3� irrep is spanned
y the set of states generated by SO�3� rotations of a highest weight state. The carrier space for a
eneric irrep of so�5� is generated by SO�3� rotations of a set of highest grade states.

. Highest grade states for an so„5… irrep

The so�5� Lie algebra is semisimple, of rank 2, and has the root diagram shown in Fig. 1. It
s conventional to separate the roots of a semisimple Lie algebra into positive and negative roots
nd to regard the corresponding root vectors as raising and lowering operators, respectively. Every

rrep is then characterized by a highest weight state.
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Let �1 be the root corresponding to the vector T+ and �2 be that corresponding to F+. Then in
he standard labeling scheme, the highest weight � for an irrep is given by two integers �1 and �2

uch that �= ��1+ 1
2�2��1+ ��1+�2��2. In keeping with the nuclear structure notation, we use the

abel v=�1 �the “seniority”�, and find it convenient to introduce the half-integer f = 1
2�2 since it

lso labels a u�2� irrep, as is shown below. Thus, we label an so�5� irrep �vf�; the highest weight
s then given by �= �v+ f���1+�2�+ f�2.

For present purposes, we separate the root vectors into grade raising, grade conserving, and
rade lowering operators, as shown in Fig. 2. The horizontal grade-conserving root vectors
F± ,F0 ,X0� then define what we shall refer to as an intrinsic or core u�2� subalgebra. This grading
f the so�5� Lie algebra generates a grading of any irrep. Each irrep has a set of highest grade

tates ���vf�m	� that are annihilated by the grade-raising operators T̂+, X̂+, and Ŝ+, and carry an
rrep of the above-mentioned intrinsic u�2� algebra; the highest grade states satisfy the equations

Ŝ+��vf�m	 = X̂+��vf�m	 = T̂+��vf�m	 = 0, �1�

X̂0��vf�m	 = �v + f���vf�m	, F̂0��vf�m	 = m��vf�m	 , �2�

F̂±��vf�m	 = 
�f � m��f ± m + 1���vf�m ± 1	 . �3�

The weights for the highest grade states of a generic irrep of so�5� are as illustrated in Fig. 2.
set of wave functions ��m

�vf� ;m=−f , . . . , f� for these highest grade states are regarded as intrinsic
ave functions in the VCS construction—it is in the Hilbert space of these intrinsic functions that

he VCS wave functions take their vector values.

FIG. 1. Root diagram for the so�5� Lie algebra.

IG. 2. The u�2� intrinsic subalgebra and grade raising/lowering operators. The highest grade and highest weight of a

eneric so�5� irrep are shown in the second digram.
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. Holomorphic VCS wave representations

Let ��	 be a state in the carrier space of an so�5� irrep �vf�. Then a holomorphic VCS wave
unction is defined for this state by

��z� = �
m

�m
�vf���vf�m�eẑ��	 , �4�

here

ẑ = z1Ŝ+ + z2X̂+ + z3T̂+ �5�

nd z= �z1 ,z2 ,z3� is a set of complex numbers. The corresponding VCS representation 	 of the
o�5� Lie algebra is defined by

�	�X����z� = �
m

�m
�vf���vf�m�eẑX̂��	, X � so�5� . �6�

uch holomorphic representations are natural generalizations of the familiar Bargmann–Segal
epresentations29 of the Heisenberg–Weyl algebras. They were the first to be considered in the
ormulation of VCS theory.1 However, in practical applications they are not always the most
seful. In particular, they do not reduce the so�3��so�5� angular momentum subalgebra.

. VCS wave functions in an SO„3…-coupled basis

The group SO�3� can be embedded as a subgroup in SO�5� in many ways. We consider the
O�3� subgroup defined up to conjugation by regarding SO�5� as a group of orthogonal transfor-
ations of the five-dimensional carrier space for an L=2 irrep of SO�3�. This embedding is
otivated by the rotational properties of the five quadrupole degrees of freedom in the nuclear

ollective model. The construction of an SO�3�-coupled basis for a VCS irrep of so�5� then
arallels a similar construction of an SO�3�-coupled basis for a VCS irrep of su�3�.26 The so�5�
onstruction makes use of the following theorem, which constrains the choice of the SO�3�
ubgroup.

Theorem 1: Provided no so�3� angular momentum operator lies within the u�2� intrinsic

ubalgebra, the set of states �R̂�
� � �vf�m	 ;m=−f , . . . , f ;
�SO�3�� obtained by all SO�3� rota-
ions of an orthonormal basis for the highest grade subspace spans the Hilbert space for the so�5�
rrep �vf�.

Proof: The set of states generated by repeated application of the lowering operators

Ŝ− , X̂− , T̂−� to the highest grade states spans the Hilbert space of the irrep. Now, if �L̂i ; i

1,2 ,3� is a Hermitian basis for the so�3��so�5� subalgebra, then each L̂i can be expanded L̂i

L̂i
−+ L̂i

0+ L̂i
+, where L̂i

− is a grade lowering operator, L̂i
0 is of grade zero, and L̂i

+is a grade raising

perator. By hermiticity, if L̂i has a nonzero component L̂i
+, it must also have a nonzero L̂i

−

omponent. Thus, if no L̂i lies in the zero grade u�2� subalgebra, then each L̂i must have a nonzero
ˆ

i
− component. By linear independence, it must be that the span of �L̂i

−� equals the span of

Ŝ− , X̂− , T̂−�. QED
This theorem means that an arbitrary state ��	 in an irrep �vf� is defined by the set of overlaps

��vf�m � R̂�
� ��	 ;m=−f , . . . , + f ;
�SO�3��, provided that the SO�3� subgroup is chosen as re-
uired by the theorem, which we assume from now on. It also means that, if ���vf��LM	� is an
O�3�-coupled basis for an so�5� irrep and ���vf�m	�, with wave functions ��m

�vf��, is an orthonor-
al u�2� basis of highest grade states for this irrep, then the basis states ���vf��LM	� have VCS

ave functions given as vector-valued functions over SO�3� by
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��LM
�vf� �
� = �

m

�m
�vf���vf�m�R̂�
���vf��LM	 . �7�

hese wave functions are very much like rotor-model wave functions.11 Indeed, with basis states
hosen to have good SO�3� transformation properties, they can be expanded

��LM
�vf� �
� = �

mK

�m
�vf���vf�m��vf��LK	DKM

L �
� , �8�

here DL�
� is a Wigner rotation matrix. It follows that a basis state ��vf��LM	 is characterized
y the set of expansion coefficients,

bmK
�vf���L� = ��vf�m��vf��LK	 . �9�

The following gives a systematic procedure for determining these coefficients and for deriving
he transformations of these coefficients by elements of the so�5� Lie algebra as defined by the
CS representation

�	�X���LM
�vf� ��
� = �

m

�m
�vf���vf�m�R̂�
�X̂��vf��LM	, X � so�5� . �10�

II. REPRESENTATION SPACES FOR so„5…

. A subspace of harmonic oscillator states

Irreps of so�5� can be built up from its two fundamental irreps with highest weights �10� and
0 1

2
�. The former is the fundamental five-dimensional irrep; the latter is the fundamental four-

imensional irrep. Both weight diagrams are shown in Fig. 3. These fundamental irreps are carried
y the spaces generated by the raising operators ��

† ;�=0, ±1, ±2� of a five-dimensional harmonic
scillator with symmetry group U�5� and by the raising operators ��m

† ;m= ± 1
2 , ± 3

2
� of a four-

imensional harmonic oscillator with symmetry group U�4�, respectively. The operators ��
†� and

�m
† �, together with the corresponding lowering operators, satisfy the usual boson commutation

elations,

��,�
†� = ���Î, ��,�� = ��

† ,�
†� = 0, �11�

��m,�n
†� = �mnÎ, ��m,�n� = ��m

† ,�n
†� = 0, �12�

here we use the notation �= ��
†�† and �m= ��m

† �†.
The invariants of U�5� and U�4� are given by their respective number operators,

n̂ = † ·  = �
�

�
†�, n̂� = �† · � = �

m

�m
† �m. �13�

or the natural SO�3� embedding �defined to within conjugation�, we can regard these number

FIG. 3. The weight diagrams for the fundamental irreps �10� and �0 1
2

� with highest grade states labeled ��vf�m	
perators as coupled products, e.g.,
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n̂� = 2�
m

� 3
2 ,− m, 3

2 ,m�0,0��m
† �−m = �

m

�− 1�3/2+m�m
† �−m, �14�

here

�−m = �− 1�3/2+m�m.

imilarly, we can define

−� = �− 1���. �15�

The fundamental five-dimensional irrep of the group SO�5� can be realized as the group of
pecial orthogonal transformations of the creation operators ��

† ;�=0, ±1, ±2� that leave invariant
he quantity † ·†=���−1���

†−�
† . This realization exhibits SO�5� as a subgroup of U�5�. The

our-dimensional fundamental irrep is a spinor irrep of SO�5�. It can be realized as the group of
pecial orthogonal transformations of the �boson� creation operators ��m

† ;m= ± 1
2 , ± 3

2
� that leave

nvariant the quantity �† ·�†=�m�−1�3/2+m�m
† �−m

† . This realization exhibits USp�4�, the two-fold
over of SO�5�, as a subgroup of U�4�. Because every irrep of a group is contained in a tensor
roduct of copies of its fundamental irreps, it follows that every irrep of so�5� can be realized on

subspace of the tensor product H=H�5� � H�4�, where H�n� is the Hilbert space of an
-dimensional harmonic oscillator. Highest grade states for an so�5� irrep in H are given by

��vf�m	 =
��3/2

† � f+m��1/2
† � f−m�2

†�v


�f + m� ! �f − m� ! v!
�0	, m = − f , . . . , f . �16�

. A model space of VCS wave functions

A model space for a compact Lie group G is a representation of G that is a direct sum of irreps
omprising precisely one copy from each equivalence class of irreps.30 As emphasized by Bieden-
arn and Flath,31 a model space provides a valuable framework for a realization of the tensor
lgebra of the group. We now show that a Hilbert space of VCS wave functions for the states of

provides a model space with very useful properties.
It follows from Eq. �7� that, provided the conditions of Theorem 1 are satisfied, any state ��	

n H has VCS wave function � given by

��
� = �
vfm

�m
�vf���vf�m�R̂�
���	 . �17�

ow observe that, if the wave functions ��m
�vf�� of the highest grade states are expressed in

argmann form as the holomorphic functions,

�m
�vf��x,y� =

x1
f+mx2

f−myv


�f + m� ! �f − m� ! v!
, �18�

hen, using Eq. �16�, the u�2�-intertwining operator �vfm�m
�vf���vf�m� can be expressed as

�
vfm

�m
�vf���vf�m� = �0�eX̂, �19�

here

X̂ = x1�3/2 + x2�1/2 + y2. �20�

hus, any state ��	 in H has VCS wave function defined by

X̂ ˆ
��
� = �0�e R�
���	 . �21�
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Let F�vf� denote the Hilbert space of VCS wave functions for an so�5� irrep of highest weight
vf�, relative to the inner product inherited from that of H. The space of all VCS wave functions
or states in H is then the direct sum

F = �
�vf�

F�vf�, �22�

f all such Hilbert spaces. Hence, by construction, it is a model space for so�5�. The following
heorem, which generalizes a theorem of Rowe and Hecht,22 shows that F is also a ring and that
t can be generated from the VCS wave functions of the fundamental irreps �1,0� and �0, 1

2
�.

Theorem 2: If �=�1��2 is the model product of VCS wave functions defined by

��x,y,
� = �1�x,y,
��2�x,y,
� , �23�

hen, if �1 is in F�v1f1� and �2 is in F�v2f2�, the product � is in F�v1+v2,f1+f2�. Moreover, if
�v1f1��F�v2f2� denotes the linear span of model products of the functions of F�v1f1� with the

unctions of F�v2f2�, then

F�v1f1� � F�v2f2� = F�v1+v2,f1+f2�. �24�

Proof: Let Ẑ1
�v1f1� be a homogeneous polynomial of degree v1 in the ��

†� raising operators and
egree 2f1 in the ��m

† � raising operators, which creates a state with a VCS wave function,

��v1f1��
� = �0�eX̂R̂�
�Ẑ1
�v1f1��0	 . �25�

et

Ẑ1
�v1f1��
� = R̂�
�Ẑ1

�v1f1�R̂�
−1� �26�

enote the corresponding rotated operator. Then

��v1f1��
� = �0�eX̂Ẑ1
�v1f1��
�e−X̂�0	

= �0�Ẑ1
�v1f1��
� + �X̂,Ẑ1

�v1f1��
�� +
1

2!
†X̂,�X̂,Ẑ1

�v1f1��
��‡ + ¯ ��0	 . �27�

he successive terms in the sequence of multiple commutators inside the brackets are homogenous
olynomials of decreasing degree in the raising operators. This sequence terminates with a poly-
omial of degree zero �a number� at the �v1+2f1�th term. Moreover, this last term is the only term
n the sequence with a nonvanishing vacuum expectation value. It follows that

�28�

f Z2
�v2f2� is similarly defined for the wave function �2

�v2f2�, then the wave function �

�1
�v1f1�

��2
�v2f2� has values given by

��
� = �0�„eX̂Ẑ1
�v1f1��
�e−X̂

…„eX̂Ẑ2
�v2f2��
�e−X̂

…�0	 = �0�eX̂R̂�
�Ẑ1
�v1f1�Ẑ2

�v2f2��0	 . �29�

he state Ẑ1
�v1f1�Ẑ2

�v2f2� �0	 does not necessarily belong to an irreducible so�5� subspace. However,
t is of degree �v1+v2� and 2�f1+ f2� in the ��

†� and ��m
† � operators, respectively, and, therefore,

nly the component of the state Ẑ1
�v1f1�Ẑ2

�v2f2� �0	 that does lie within the irreducible SO�5� subspace

f highest weight �v1+v2 , f1+ f2� will have nonzero overlap with �0 �eX̂R̂�
�.Thus, � is a VCS
ave function for a state belonging to an SO�5� irrep of highest weight �v1+v2 , f1+ f2�, as claimed

ˆ �vf�
y the theorem. The second part of the theorem follows from the observation that, if �Z� � is a
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asis for the linear space P�vf� of homogeneous polynomials of degree v in ��
†� and degree 2f in

�m
† �, then the space P�v1+v2,f1+f2� is spanned by the products �Ẑ�1

�v1f1�Ẑ�2

�v2f2��. QED
The theorem shows that F can be constructed from the two fundamental irreps, and that this

rocess will generate all the irreps of so�5�. The importance of a model space is that, since it is
ultiplicity free, calculations performed in F are not complicated by any need to keep track of

quivalent copies of the same so�5� irreps.

V. BASES FOR THE so„5… LIE ALGEBRA

The VCS representations of so�5� in an SO�3�-coupled basis make use of two bases for the
o�5� Lie algebra: a Cartan basis of root vectors and a basis of components of SO�3� tensors.

. A Cartan basis

Starting from two copies of the �10� irrep, one spanned by the creation operators ��
†� and one

panned by the annihilation operators ���, one can construct a realization of the so�5� Lie algebra,
hich carries a �01� irrep, by taking an antisymmetric tensor product of the two. This gives the
o�5� root vectors of Fig. 1 as a subset of u�5� operators,

Ŝ+ = 1
†2 − 2

†1 = 1
†−2 + 2

†−1, �30�

T̂+ = −1
† 2 − 2

†−1 = −1
† −2 + 2

†1, �31�

X̂+ = 
2�2
†0 − 0

†2� = 
2�2
†0 − 0

†−2� , �32�

F̂+ = 
2�1
†0 − 0

†1� = 
2�1
†0 + 0

†−1� , �33�

Ŝ− = �Ŝ+�†, T̂− = �T̂+�†, �34�

X̂− = �X̂+�†, F̂− = �F̂+�†. �35�

A basis for the Cartan subalgebra is given by

X̂0 = 1
2 �X̂+,X̂−� = 2

†2 − −2
† −2, �36�

F̂0 = 1
2 �F̂+,F̂−� = 1

†1 − −1
† −1. �37�

A realization of the so�5� algebra as a subalgebra of u�4� is similarly obtained from the
ymmetric tensor product of two copies of the �0, 1

2
� irrep:

Ŝ+ = − �3/2
† �−3/2, T̂+ = �1/2

† �−1/2, �38�

X̂+ = �1/2
† �−3/2 − �3/2

† �−1/2, �39�

F̂+ = �3/2
† �1/2 + �−1/2

† �−3/2, �40�

X̂0 = 1 ��3/2
† �3/2 + �1/2

† �1/2 − �−1/2
† �−1/2 − �−3/2

† �−3/2� , �41�
2
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F̂0 = 1
2 ��3/2

† �3/2 − �1/2
† �1/2 + �−1/2

† �−1/2 − �−3/2
† �−3/2� . �42�

. An SO„3… tensor basis

Let �L̂k� denote a set of angular momentum operators for the so�3� subalgebra of so�5� and let
dM

† ;M =0, ±1, ±2� and �pM
† ;M = ± 1

2 , ± 3
2
� denote linear combinations of the ��

†� and ��m
† � opera-

ors, respectively, which satisfy the commutation relations

�L̂0,dM
† � = MdM

† , �L̂±,dM
† � = 
�2 � M��3 ± M�dM±1

† , �43�

�L̂0,pM
† � = MpM

† , �L̂±,pM
† � = 
� 3

2 � M�� 5
2 ± M�pM±1

† . �44�

basis for a realization of the so�5� Lie algebra on the combined �tensor product� Hilbert spaces
f the four- and five-dimensional harmonic oscillators is then provided by the �L=1�- and �L
3�-coupled operators,

L̂k = − 
10�d†
� d�1k − 
5�p†

� p�1k, �45�

Ô� = − 
10�d†
� d�3� + 
5�p†

� p�3�, �46�

here �d† � d�1k signifies the SU�2�-coupled product,

�d†
� d�1k = �

mn

�2,n,2,m�1,k�dm
† dn. �47�

These operators satisfy the commutation relations

�L̂k,L̂l� = 
2�1l,1k�1k + l�L̂k+l, �48�

�L̂k,Ô�� = 2
3�3�,1k�3k + ��Ôk+�, �49�

�Ô�,Ô�� = 2
7�3�,3��1� + ��L̂�+� − 
6�3�,3��3� + ��Ô�+�. �50�

Specification of the �dM
† � and �pM

† � operators in terms of the ��
†� and ��m

† � operators then
efines the embedding of SO�3��SO�5� as the subgroup with Lie algebra so�3� spanned by the

L̂k� angular momentum operators. From now on, all references to SO�3� or so�3� will mean this
ubgroup or its Lie algebra.

. Relationships between the two bases

Many choices of relationship are possible. However, the simple relationship defined by dM
†

M
† and pM

† =�M
† is unsatisfactory because, for this choice, it is found that L̂0=2X̂0+ F̂0; this

eans that L̂0 lies in the intrinsic u�2� subalgebra and the conditions for Theorem 1 are violated.
satisfactory relationship is given by setting

dM
† = e��/4��Ŝ+−Ŝ−�M

† e−��/4��Ŝ+−Ŝ−�, �51�

pM
† = e��/4��Ŝ+−Ŝ−��M

† e−��/4��Ŝ+−Ŝ−�. �52�

his relationship gives

† 1 † † † 1 † †
2 = 

2 �d2 + d−1�, −2 = 


2 �d−2 − d1� , �53�
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0
† = d0

†, �54�

1
† = 
1

2 �d1
† + d−2

† �, −1
† =
1

2
�d−1

† − d2
†� , �55�

nd

�3
2

†
= 
1

2 �p3/2
† − p−3/2

† �, �−3/2
† = 
1

2 �p−3/2
† + p3/2

† � , �56�

�1/2
† = p1/2

† , �−1/2
† = p−1/2

† . �57�

he relationship between the two bases for so�5� is then given by

L̂0 = 1
2 �X̂0 − F̂0� − 3

2 �Ŝ+ + Ŝ−� , �58�

L̂± = 2T̂± + 
3
2 �F̂± + X̂�� , �59�

Ô0 = 3
2 �X̂0 − F̂0� + 1

2 �Ŝ+ + Ŝ−� , �60�

Ô±1 = � 
3T̂± ± 
1
2 �F̂± + X̂�� , �61�

Ô±2 =

5
2 �X̂± − F̂�� , �62�

Ô±3 =

5
2 ��X̂0 � F̂0 − Ŝ+ + Ŝ−� , �63�

here L̂±= �
2L̂±1.

. CONSTRUCTION OF VCS BASIS WAVE FUNCTIONS

Orthonormal basis states ���vf��LM	� for the �10� and �0 1
2

� irreps, for which the multiplicity
ndex � is redundant, are given by

��10�2M	 = dM
† �0	, M = 0, ± 1, ± 2, �64�

��0 1
2� 3

2 M	 = pM
† �0	, M = ± 1

2 , ± 3
2 . �65�

hus, from the definitions �18�–�21�, the corresponding VCS wave functions are given by

�2M
�10��
� = �0

�10��0�2R̂�
�dM
† �0	 = �

K

�0
�10��0�2dK

† �0	DKM
2 �
� = 1


2
�0

�10��D2M
2 �
� + D−1,M

2 �
�� ,

�66�

nd

�3
2

M

�0 1
2��
� = �1

2

�0 1
2��0��3/2R̂�
�pM

† �0	 + �−1/2
�01/2��0��1/2R̂�
�pM

† �0	

= 1

2

�1/2
�01/2��D3/2M

3/2 �
� − D−3/2,M
3/2 �
�� + �−1/2

�01/2�D1/2M
3/2 �
� . �67�
rom Eq. �18�, it follows that
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�m1

�v1f1� � �m2

�v2f2� =
 �f + m� ! �f − m� ! v!

�f1 + m1� ! �f1 − m1� ! �f2 + m2� ! �f2 − m2� ! v1 ! v2!
�m

�vf�, �68�

here

v = v1 + v2, f = f1 + f2, m = m1 + m2. �69�

rom the properties of the Wigner rotation matrices, it also follows that

DK1M1

L1 � DK2M2

L2 = �
L=�L1−L2�

L1+L2

�L2M2,L1M1�LM��L2K2,L1K1�LK�DKM
L , �70�

here

K = K1 + K2, M = M1 + M2. �71�

hus, Theorem 2 and these expressions lead naturally to an algorithm for constructing �nonor-
honormal� basis wave functions for an arbitrary so�5� irrep.

It is convenient to start by constructing a nonorthonormal basis of VCS wave functions of the
orm

��LM
�vf� = �

mK

�m
�vf�bmK

�vf���L�DKM
L , �72�

ith bmK
�vf���L� coefficients conveniently chosen to be real and normalized such that

�
mK

bmK
�vf���L�bmK

�vf���L� = ���. �73�

he functions � so normalized will be related to the orthonormal so�5� functions � in Sec. VII.
In order to carry out this basis construction efficiently, it is useful to know the values of the

ngular momentum and the multiplicity of their occurrence in any given irrep. In other words, we
eed to know the so�5�↓so�3� branching rules that give the so�3� irreps contained in any given
o�5� irrep. The so�5�↓so�3� branching rules for irreps of the type �v0� were conveniently sum-
arized by Williams and Pursey32 in the form

L = 2K, 2K − 2, 2K − 3, . . . ,K

K = v, v − 3, v − 6, . . . ,Kmin, �74�

here Kmin=0, 1, or 2. The branching rules for the irreps of type �0f� are given33 by

L = 3K, 3K − 2, 3K − 3, . . . ,K

K = f , f − 2, f − 4, . . . ,Kmin, �75�

here Kmin=0 or 1. The branching rules for a generic irrep can be inferred by use of character
heory34 or by a simple “peeling-off” program35 that uses knowledge of the number of eigenvalues

f the L̂0 operator. The so�3� content of some low-dimensional so�5� irreps is given in Table I.
A basis for any irrep of highest weight �vf� can now be built up by taking coupled products

f the above basic wave functions. For example, for the �20� irrep,

�LM
�20� � ��2

�10� � �2
�10��LM, L = 2,4, �76�
ives
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�LM
�20� � �0

�20� �
K1K2

b0K1

�10��2�b0K2

�10��2��2K1,2K2�L,K1 + K2�DK1+K2,M
L

� �0
�20���22,22�L4�D4M

L + 2�22,2,− 1�L1�D1M
L + �2,− 1,2,− 1�L,− 2�D−2,M

L � . �77�

hus, we obtain the results shown in Table II. Similarly, we have for the �01� irrep

�LM
�01� � �1

�01� �
K1K2

b1/2K1

�01/2�� 3
2�b1/2K2

�01/2�� 3
2�� 3

2K1, 3
2K2�L,K1 + K2�DK1+K2,M

L

+ 
2 �0
�01� �

K1K2

b−1/2K1

�01/2� � 3
2�b1/2K2

�01/2�� 3
2�� 3

2K1, 3
2K2�L,K1 + K2�DK1+K2,M

L

+ �−1
�01� �

K1K2

b−1/2K1

�01/2� � 3
2�b−1/2K2

�01/2� � 3
2�� 3

2K1, 3
2K2�L,K1 + K2�DK1+K2,M

L , �78�

hich leads to a set of coefficients given in Table III.

ABLE I. The so�3� content of some low-dimensional so�5� irreps; note that the spinor irreps are labeled in the table by
L for convenience.

enuine irreps Spinor irreps

v , f� L �v , f� 2L

1,0� 2 �0,1 /2� 3

0,1� 1,3 �1,1 /2� 1,5 ,7

2 ,0� 2,4 �0,3 /2� 3,5 ,9

1 ,1� 1,2 ,3 ,4 ,5 �1,3 /2� 1,3 ,5 ,7 ,7 ,9 ,11,13

0,2� 0,2 ,3 ,4 ,6 �2,1 /2� 3,5 ,7 ,9 ,11

3 ,0� 0,3 ,4 ,6 �0,5 /2� 3,5 ,7 ,9 ,11,15

2,1� 1,2 ,3 ,3 ,4 ,5 ,5 ,6 ,7 �1,5 /2� 1,3 ,5 ,5 ,7 ,7 ,9 ,9 ,11,11,13,13,15,17,19

1,2� 1,2 ,2 ,3 ,4 ,4 ,5 ,5 ,6 ,7 ,8 �2,3 /2� 1,3 ,5 ,5 ,7 ,7 ,9 ,9 ,11,11,13,13,15,17

0,3� 1,3 ,3 ,4 ,5 ,6 ,7 ,9 �3,1 /2� 3,5 ,7 ,9 ,9 ,11,13,15

4,0� 2,4 ,5 ,6 ,8 �0,7 /2� 3,5 ,7 ,9 ,9 ,11,13,15,17,21

TABLE II. The b0K
�v0���L� coefficients for some irreps of type �v0�. Note

that here and in the following tables the coefficients are normalized ac-
cording to Eq. �73� and their phases are chosen so that the leading nonzero
coefficient for each �L ,�� is positive.
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In general, we can form basis states for an irrep �vf� from the coupled products

���2L2

�v0� � ��1L1

�0f� �LM = �
m

�0
�v0� � �m

�f0� �
K1K2

b0K2

�v0���2L2�bmK1

�0f� ��1L1��L1K1,L2K2�L,K1 + K2�DK1+K2,M
L .

�79�

ome examples are given in Table IV.
It is important to recognize that the basis ���LM

�vf� � is not orthonormal relative to the appropriate
nner product for VCS wave functions. An orthonormal basis is one relative to which the VCS
epresentations are unitary; i.e., for which the elements of the so�5� Lie algebra are represented by
ermitian operators.

I. VCS REPRESENTATION OF THE so„5… ALGEBRA

According to Eq. �10�, the action of the angular momentum operators on any SO�3�-coupled

TABLE III. The bmK
�0f���L� coefficients for some irreps of type �0f�. Note

that for an so�5� irrep �vf� the coefficients among different so�3� irreps
can all be indexed by the same values of K−m, hence, this is used to label
columns.
CS wave functions of the form
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��LM
�vf� �
� = �

mK

�m
�vf���vf�m��vf��LK	DKM

L �
� = �
mK

�m
�vf�bmK

�vf���L�DKM
L �
� �80�

s given by the standard action

�	�L0���LM
�vf� ��
� = M��LM

�vf� �
� , �81�

�	�L±���LM
�vf� ��
� = 
�L � M��L ± M + 1���L,M±1

�vf� �
� . �82�

he action of the octupole operators is given by

�	�O����LM
�vf� ��
� = �

mK�

�m
�vf���vf�m�Ô���vf��LK	D��

3 �
�DKM
L �
� , �83�

r, in coupled form,

�	�O� � ��L
�vf��L�M = �

mK�

�m
�vf���vf�m�Ô���vf��LK	�LK,3��L�,K + ��DK+�,M

L� . �84�

hus, it remains to determine the matrix elements ���vf�m � Ô� � �vf��LK	� to define an so�5� irrep
vf�. From the definition of the states ���vf�m	� as highest grade states, cf. Eqs. �1�–�3�, we have
he identities

ˆ ˆ ˆ

TABLE IV. The bmK
�vf���L� coefficients for some generic irreps.
��vf�m�S−��vf��LK	 = ��vf�m�X−��vf��LK	 = ��vf�m�T−��vf��LK	 = 0, �85�
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��vf�m�X̂0��vf��LK	 = �v + f���vf�m��vf��LK	, ��vf�m�F̂0��vf��LK	 = m�vfm��vf��LK	 ,

�86�

��vf�m�F̂±��vf��LK	 = 
�f ± m��f � m + 1���vf�m � 1��vf��LK	 , �87�

nd from the standard action of the angular momentum operators on the states ���vf��LK	�, we
ave

��vf�m�L̂0��vf��LK	 = K��vf�m��vf��LK	 , �88�

��vf�m�L̂±��vf��LK	 = 
�L � K��L ± K + 1���vf�m��vf��L,K ± 1	 . �89�

quations �58� and �59� give the relationships

Ŝ+ =
1

3
�X̂0 − F̂0� − Ŝ− −

2

3
L̂0, �90�

X̂+ =
2

3
L̂− − 2
2

3
T̂− − F̂−, �91�

T̂+ =
1

2
L̂+ −

1

2

3

2
�F̂+ + X̂−� , �92�

hich makes it possible to rewrite Eqs. �60�–�63� in the form

Ô0 =
5

3
�X̂0 − F̂0� −

1

3
L̂0, �93�

Ô1 = −

3

2
L̂+ +

5

2
2
�F̂+ + X̂−� , �94�

Ô−1 = −
1

3

L̂− +
5

3

T̂−, �95�

Ô2 =
5

6
L̂− −
10

3
T̂− − 
5F̂−, �96�

O−2 =

5

2
X̂− −


5

2
F̂+, �97�

O3 = −
2
5

3
X̂0 −


5

3
F̂0 + 
5Ŝ− +


5

3
L̂0, �98�

O−3 =

5

3
X̂0 +

2
5

3
F̂0 + 
5Ŝ− +


5

3
L̂0. �99�

e now have all of the so�5� operators in terms of the basis operators

S− ,T− ,X− ,X0 ,F0 ,F± ,L0 ,L±� with known algebraic actions on either the highest grade states or on
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he so�3�-coupled states. Note that Theorem 1 ensures that this set is linearly independent and
pans so�5�. This is a general feature of a useful VCS construction.

We obtain

��vf�m�Ô0��vf��LK	 =
1

3
�5v + 5f − 5m − K�bmK

�vf���L� , �100�

��vf�m�Ô1��vf��LK	 = 5
2

1

2 �f + m��f − m + 1�bm−1,K
�vf� ��L� − 1

2

3�L − K��L + K + 1�bm,K+1

�vf� ��L� ,

�101�

��vf�m�Ô−1��vf��LK	 = − 
1
3 �L + K��L − K + 1�bm,K−1

�vf� ��L� , �102�

��vf�m�Ô2��vf��LK	 = 
5
6 �L + K��L − K + 1�bm,K−1

�vf� ��L� − 
5�f − m��f + m + 1�bm+1,K
�vf� ��L� ,

�103�

��vf�m�Ô−2��vf��LK	 = − 1
2

5�f + m��f − m + 1�bm−1,K

�vf� ��L� , �104�

��vf�m�Ô3��vf��LK	 = −

5
3 �2v + 2f + m − K�bmK

�vf���L� , �105�

��vf�m�Ô−3��vf��LK	 =

5
3 �v + f + 2m + K�bmK

�vf���L� . �106�

t follows that Eq. �84� has the explicit expansion given by

�	�O� � ��L
�vf��L�M = �

mKm�K�

bmK
�vf���L�MmKL,m�K�L�

�vf�
�m�

�vf�DK�M
L� , �107�

here M�vf� is a matrix with nonzero entries,

MmKL,mKL�
�vf� = 1

3 �5v + 5f − 5m − K��LK, 30�L�K� − 1
2

3�L + K��L − K + 1��LK − 1,3 1�L�K�

− 
1
3 �L − K��L + K + 1��LK + 1,3 − 1�L�K�,

MmKL,m+1K+1L�
�vf� = 5

2

1

2 �f − m��f + m + 1��LK,3 1�L�K + 1�,

MmKL,m−1K+2L�
�vf� = − 
5�f + m��f − m + 1��LK,3 2�L�K + 2�,

MmKL,mK+3L�
�vf� = 
5

6 �L − K��L + K + 1��LK + 1,3 2�L�K + 3� −

5

3
�2v + 2f + m − K��LK,3 3�L�K + 3�,

MmKL,m+1K−2L�
�vf� = − 1

2

5�f − m��f + m + 1��LK,3 − 2�L�K − 2�,

MmKL,mK−3L�
�vf� =


5
3 �v + f + 2m + K��LK,3 − 3�L�K − 3� . �108�

ow, if the basis wave functions ���LM
�vf� � are chosen, as defined in Sec. V, with �bmK

�vf���L�� coeffi-

ients that are real and satisfy Eq. �73�, it follows that Eq. �107� can be expressed as
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�	�O� � ��L
�vf��L�M = �

�

��L�M
�vf� O�L�,�L

�vf� , �109�

here

O�L�,�L
�vf� = �

mKm�K�

bmK
�vf���L�MmKL,m�K�L�

�vf� bm�K�
�vf� ��L�� . �110�

hus, together with Eqs. �81� and �82�, these equations give the explicit transformations of the
��LM

�vf� � basis wave functions for any so�5� irrep.
Unfortunately, these matrices do not satisfy the hermiticity conditions required of a unitary

epresentation. This is because the ���LM
�vf� � basis is not orthonormal relative to the appropriate VCS

nner product.

II. THE MATRICES OF UNITARY IRREPS

We now suppose that ���vf��LM	� is an orthonormal basis for an irrep �vf� and that the
orresponding VCS wave functions have expansions

��LM
�vf� = �

mK

�m
�vf���vf�m��vf��LK	DKM

L = �
mK

�m
�vf�amK

�vf���L�DKM
L . �111�

ote that for an orthonormal basis we have called the expansion coefficients of the VCS wave
unctions amK

�vf� in order to distinguish them from the bmK
�vf� coefficients of the nonorthonormal ��LM

�vf�

asis. The Wigner–Eckart theorem for matrix elements in an orthonormal basis,

��vf��L�M��Ô���vf��LM	 =
1


2L� + 1
�LM,3��L�M����vf��L��Ô��vf��L	 �112�

hen implies that

�	�O� � ��L
�vf��L�M� =

1

2L� + 1

�
�

��L�
�vf���vf��L��Ô��vf��L	 . �113�

t follows from Eq. �110� that if the orthornormal basis wave functions are expanded as

��LM
�vf� = �

�

��LM
�vf� K��

�vf��L�; �114�

hen the desired reduced matrix elements, relative to the orthonormal basis, are given by

��vf��L��Ô��vf��L	 = 
2L� + 1�
��

K̄��
�vf�O�L�,�L

�vf� K��
�vf�, �115�

here K̄�vf� is the inverse of the matrix K�vf�, i.e., it is defined such that

�
�

K̄��
�vf�K��

�vf� = ���. �116�

he K�vf��L� matrices are chosen in VCS theory1 such that the reduced matrix elements satisfy the
ermiticity condition

��vf��L��Ô��vf��L	* = �− 1�L−L���vf��L�Ô��vf��L�	 , �117�

equired of a unitary representation. Such a transformation is found in two steps.36
First observe that the submatrices O�L� with elements
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O���L� = O�L,�L
�vf� �118�

re real and symmetric. Thus, we first make an orthogonal transformation

�̃�LM
�vf� = �

�

��LM
�vf� K��

�vf��L� , �119�

hich diagonalizes the O�L� matrices. The transformed matrix,

Õ�L�,�L
�vf� = �

��

K��
�vf��L��O�L�,�L

�vf� K��
�vf��L� , �120�

hen satisfies the equality

Õ�L,�L
�vf� = ���O�L,�L

�vf� . �121�

efore proceeding, it is important to note that states of different L and M are automatically
rthogonal by virtue of their transformation properties under SO�3�. Moreover, if the reduced
atrices for L=L� are diagonal, this subset of matrices automatically satisfies the hermiticity

ondition �117�.
Thus, in general, it only remains to apply suitable scale factors to the basis vectors ��̃�LM

�vf� � to
btain an orthonormal basis. The required scale factors �k�L

�vf�� must be such that

�k�L
�vf��−1Õ�L,�L�

�vf� k�L�
�vf� = �− 1�L−L��k�L�

�vf��−1Õ�L�,�L
�vf� k�L

�vf�. �122�

he desired K�vf� matrices are then given by

K��
�vf��L� = K��

�vf��L�k�L
�vf�, �123�

ith

� k�L
�vf�

k�L�
�vf��2

= �− 1�L−L�
Õ�L,�L�

�vf�

Õ�L�,�L
�vf�

. �124�

Special consideration must be given to the relatively few irreps for which there is a multi-
licity of states of L=0, 1

2 , or 1. This is because the O�L� matrices are identically zero for these
values. However, to ensure the orthogonality and correct normalization of, for example, the L
0 states it is sufficient to determine linear combinations of these states that satisfy the equations

��vf��0�Ô��vf��L	 = �− 1�L��vf��L�Ô��vf��0	 , �125�

here ���vf��LM	� is a small subset of states that have already been orthonormalized.

III. SAMPLE RESULTS

In this section we tabulate the a coefficients amK
�vf���L� of the unitary basis wave functions and

he unitary SO�3�-reduced so�5� matrix elements of the Ô operator for the simplest generic so�5�
rreps as well as the table for the first irrep with a multiplicity, namely �1 3

2
� �we index the multiple

o�3� irreps as L��. Because of the SO�3� reduction, we need only provide values between states of
ifferent L, since the Wigner–Ekart theorem provides the rest. Note that the matrix elements of the

ˆ operator are easily computed using Eqs. �81� and �82�, and so they are not included in the tables.
ince the diagonalization of Eq. �119� must be done numerically, the values are given in floating

oint form. �See Tables V–VIII.�
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X. CONCLUDING REMARKS

As mentioned in the Introduction, the group SO�5� and its Lie algebra so�5� arise in many
hysical contexts and, depending on the situation, their irreps are needed in different bases. In
articular, they are needed in bases that reduce one of the following: �i� the U�2� subgroup whose
ie algebra is the grade-conserving intrinsic subalgebra shown in Fig. 2; �ii� the SO�4� subgroup
enerated by the S and T root vectors shown in Fig. 2; and �iii� the geometric SO�3� subgroup
onsidered in this paper. VCS theory1 has now been used in systematic ways to construct SO�5�
rreps in all of these bases.

VCS theory was originally formulated to construct the holomorphic representations of the
ompact and noncompact discrete-series representations of the symplectic algebras. A first appli-
ation constructed the irreps of the noncompact sp�6,R� algebra �also called sp�3,R�� in a U�3�
oupled basis. A next application, by Hecht and Elliott,19 derived similar results for the compact
p�4� algebra �isomorphic to so�5�� in a U�2�-coupled basis.

The common feature of the holomorphic VCS representations, which makes them particularly
imple,25 is their use of Abelian orbiter groups with Lie algebras spanned by commuting sets of
rade-lowering �or grade-raising� operators to complement the grade-conserving intrinsic sub-
roups that generate highest- �or lowest-� grade intrinsic vectors for a VCS representation. A
roblem is that Abelian orbiter groups cannot be found in many important situations. For example,
n constructing irreps of so�5� in an so�4�-coupled basis, it is natural to use SO�4� as the intrinsic
ubgroup. However, the complementary so�5� lowering operators �i.e., the operators F− and X− of
ig. 2� do not then commute. Fortunately, it was possible to extend the VCS construction37 to
ccommodate this situation. It was also discovered26 that VCS theory could be extended to give
he much needed irreps of, for example, su�3� in an so�3� basis by using SO�3� itself as an orbiter
roup to complement an intrinsic U�2� group. This method was subsequently used22 to construct
he so-called one-rowed irreps of so�5� �the irreps of type �v ,0� in the notation of this paper� for
hich only scalar-valued VCS wave functions are needed. The techniques have been further
eveloped in this paper to give the generic so�5� irreps in what is the most sophisticated explicit
CS construction of irreps to date.

Some novel features that considerably simplify the construction of VCS representations were
ntroduced in Ref. 22 and further developed here. In particular, we have found that the Hilbert
pace H of all SO�5� VCS wave functions is a model space for SO�5�, in the sense that it contains
recisely one copy of every irrep. A particularly valuable feature of this model space is that it is
ring in as much as the product of any two VCS wave functions is another VCS wave function in
. This observation greatly facilitates the construction of an SO�5��SO�3�-coupled basis for H;

ne has simply to construct multiple SO�3�-coupled products of the generating functions given by
he VCS wave functions for the fundamental �1,0� and �0, 1

2
� irreps. As a result, it is very easy to

onstruct �nonorthonormal� basis wave functions for any so�5� irrep. It is also shown that, once a

TABLE V. Expansion coefficients and reduced matrix elements for so�5� irrep �1, 1
2

�.

a coefficients Reduced Ô matrix elements

K−m

m 3 0 −3 L 1
2

5
2

7
2

1
2 0 0.474 341 0 1

2 0 6.123 724 5.999 999

− 1
2 0 �0.387 298 0

1
2 0 0.517 549 0.327 326 5

2 6.123 724 2.535 462 11.338 934

− 1
2 �0.534 522 0.422 577 0

1
2 0.499 999 0.084 515 �0.377 964 7

2 �5.999 999 �11.338 934 3.070 597

− 1
2 0.462 910 0.414 039 0
asis has been determined, the matrices of the so�5� Lie algebra in this basis can be determined

                                                                                                            



TABLE VI. Expansion coefficients an

a

m 5 2

1
2 0 0

− 1
2 0 0.414 03

1
2 0 0.365 14

− 1
2 0 �0.158 11

1
2 0 0.365 14

− 1
2 0 0.516 39

1
2 0 0.217 59

− 1
2 �0.426 401 0.023 26

1
2 0.353 553 0.082 57

− 1
2 0.261 116 0.190 69

                                
d reduced matrix elements for so�5� irrep �2, 1
2

�.

coefficients Reduced Ô matrix elements

K−m

−1 −4 L 3
2

5
2

7
2

9
2

11
2

0.439 155 0 3
2 4.225 771 9.486 832 10.954 451 �6.866 065 0

9 0.207 019 0

8 �0.204 124 0.241 522 5
2 �9.486 832 11.409 582 �1.380 131 8.391 463 9.486 832

3 �0.316 227 0

8 �0.204 124 0.241 522 7
2 10.954 451 1.380 131 �11.258 858 �8.164 965 11.775 681

7 �0.129 099 0

7 0.255 883 0.174 077 9
2 6.866 065 8.391 463 8.164 965 12.465 753 11.742 179

2 0.232 621 0

2 0 �0.190 692 11
2 0 �9.486 832 11.775 681 �11.742 179 8.628 704

2 0.190 692 0
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TABLE

m

1

0

�1

1

0

�1

1

0
0

�1 0

1

0 �

�1 �

1 0

0 0

�1 0

                     
VII. Expansion coefficients and reduced matrix elements for so�5� irrep �1,1�.

a coefficients Reduced Ô matrix elements

K−m

4 1 −2 −5 L 1 2 3 4 5

0 0 0.380 319 0 1 0 9.258 201 �1.224 744 9.315 885 0

0 �0.439 155 0 0

0 �0.358 568 0 0

0 0.462 910 �0.231 455 0 2 �9.258 201 �3.585 685 �8.660 254 1.463 850 9.710 083

0 0.267 261 0.267 261 0

0 �0.377 964 0 0

0 0.306 186 0.387 298 0 3 �1.224 744 8.660 254 9.721 111 9.082 951 9.082 951

0.111 803 0.353 553 0

.499 999 0.223 606 0 0

0 0.258 774 �0.146 385 �0.273 861 4 �9.315 885 1.463 850 �9.082 951 �5.946 187 12.377 975
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0.316 227 0.464 834 �0.059 761 0

0.387 298 0.327 326 0 0

.353 553 0 �0.073 192 �0.223 606 5 0 �9.710 083 9.082 951 �12.377 975 0

.387 298 0.084 515 �0.223 606 0

.316 227 0.267 261 0 0
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TABLE VIII. Expansion coefficients and reduced matrix elements for so�5� irrep �1, 3
2

�.

d Ô matrix elements

m 5 1
7
2 2

9
2

11
2

13
2

3
2

98 895 �5.949 760 0 0 0
1
2

− 1
2

− 3
2

3
2

94 126 4.038 603 6.866 065 0 0
1
2

− 1
2

− 3
2

3
2

10 670 �2.843 828 �5.163 977 12.928 374 0
1
2

− 1
2

− 3
2

3
2

34 212 �10.096 484 3.705 020 �1.797 956 �13.815 832
1
2

− 1
2

− 3
2

0.20
3
2

96 484 6.403 215 17.274 085 8.534 437 0.178 497
1
2

− 1
2

− 3
2

�0.72
3
2

05 020 �17.274 085 0.530 457 8.616 404 12.924 606
1
2

− 1
2

0.45

− 3
2

0.64
3
2

97 956 8.534 437 �8.616 404 �11.283 690 13.274 930
1
2

�0.31

− 1
2

�0.46

− 3
2

�0.44
3
2

0.40 5 832 �0.178 497 12.924 606 �13.274 930 �2.884 731
1
2

0.47

− 1
2

0.47

− 3
2

0.35
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a coefficients Reduce
K−m

2 �1 �4 �7 L 1
2

3
2

5
2

7
2

0 0 0.396 130 0 0 1
2

0 0 �8.964 214 �7.5

0 0 0.560 213 0 0

0 0 0 0 0

0 0.431 252 0 0 0

0 0 0.662 853 0 0 3
2

0 �4.225 771 9.486 832 �12.7

0 0 0 0 0

0 0.441 902 �0.441 902 0 0

0 �0.360 811 0 0 0

0 0 0.177 154 �0.560 213 0 5
2

�8.964 214 �9.486 832 �7.606 388 �6.5

0 �0.528 173 0.417 558 0 0

0 �0.771 447 0.192 861 0 0

0 �0.578 585 0 0 0

0 �0.666 136 0.063 536 �0.324 072 0 7
2 1

7.598 895 �12.794 126 6.510 670 �0.6

0 �0.525 280 0.059 902 0.223 850 0

0 �0.216 048 �0.432 096 0 0

8 236 0.463 617 0 0 0

0 0.008 606 0.559 438 0.254 742 0 7
2 2

5.949 760 4.038 603 2.843 828 �10.0

0 �0.229 439 0.527 444 0.309 605 0

0 0.169 828 0.339 656 0 0

4 373 0.298 976 0 0 0

0 0.394 124 0.105 334 �0.394 124 0 9
2

0 �6.866 065 �5.163 977 �3.7

0 0.371 584 0.347 585 �0.371 584 0

5 096 0.198 620 0.198 620 0 0

3 602 0.344 020 0 0 0

0 0.226 294 �0.140 542 �0.078 390 0.335 648 11
2

0 0 �12.928 374 �1.7

6 452 0.480 398 �0.265 008 �0.021 335 0

7 431 0.618 721 �0.149 346 0 0

3 444 0.382 507 0 0 0

3 399 �0.023 853 �0.029 214 0.075 431 �0.223 765 13
2

0 0 0 13.81

4 678 0 �0.123 946 0.202 403 0

4 678 0.116 857 �0.233 715 0 0

0 573 0.286 242 0 0 0
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lgebraically; cf. Eqs. �107� and �108�. These results are remarkable in view of the fact that there
s generally a multiplicity in the SO�5��SO�3� reduction of the representation space.

An important component of VCS theory is its incorporation of algorithms that go under the
ame of K-matrix theory,36 whose purpose is to determine the inner product of a Hilbert space,
ransform a nonorthonormal basis into an orthonormal basis, and a nonunitary VCS irrep into a
nitary representation whenever it is equivalent to a unitary irrep �or more generally to an iso-
etric irrep when it is equivalent to an isometric irrep�. For the irreps considered in this paper, a

articularly simple version of the K-matrix transformation is given36 by first finding an orthogonal
asis in which off-diagonal matrix elements of the SO�5� octupole operator are zero between states
f the same SO�3� angular momentum. This is simply achieved by diagonalization of subblocks of
he octupole matrices. The renormalization factors needed to give an orthonormal basis can then
e read off, as shown in Sec. VII. Unfortunately, this simple method does not work for states of
ngular momentum L=0, 1

2 , or 1, when there are multiple states of these L values. One must then
esort to less simple K-matrix methods.

To summarize, the construction of the SO�3�-reduced matrices of the octupole operators in a
eneric so�5� irrep is achieved in three simple steps: �i� the construction of basis wave functions
ith good SO�3� angular momentum quantum numbers; �ii� a calculation of the reduced matrix

lements of the so�5� octupole operators in this basis; and �iii� transforming these matrices to those
f a unitary representation in an orthonormal basis.

Step �i� is simply achieved for a �vf� irrep by first computing the basis wave functions for the
v0� and �0f� irreps and then taking their SO�3�-coupled products, as indicated in Sec. V. Step �ii�
s achieved by use of the analytical expressions given in Sec. VI in terms of SU�2� Clebsch–
ordan coefficients and the coefficients of the wave functions of step �i�. Finally, step �iii� is

chieved by the unitarization process described above and in Sec. VII. The routine has been coded
n MAPLE, which is amenable to both algebraic and numeric computations. Steps �i� and �ii� are
arried out algebraically; thus, the results in Tables II–IV are given in exact arithmetic. Step �iii�,
n which diagonalizations are used to orthogonalize states of a common angular momentum, is
one numerically; thus the results given in Sec. VIII are floating point numbers. The current code
as not been designed to handle large-dimensional irreps. However, should large irreps be of
nterest, the routine could be coded entirely in a numerical language such as FORTRAN, MATLAB, or

++.
The representations of so�5� in an SO�3�-coupled basis are of interest for several reasons. The

o-called one-row irreps of type �v0� feature in the Bohr–Mottelson and IBM-1 collective models
nd, consequently, have received much attention.20–22 The generic irreps, constructed in this paper,
how up in these collective models whenever the neutron and proton degrees of freedom are
onsidered independently. They could also prove useful in the classification of shell-model states
f fermions in an angular momentum l=2 orbital. Generic so�5� irreps also show up in supersym-
etric boson–fermion models.38,39 For example, the irreps of the orthosymplectic osp�5/4� supe-

algebra of Iachello’s model contain irreps of the sō�5� subalgebra in the chain:

osp�5/4� � so�5� � sp�4� � sp�4� � so�5� , �126�

here sō�5� here signifies the subalgebra of so�5� � sp�4� obtained by adding the corresponding
nfinitesimal generators of the isomorphic so�5� and sp�4� algebras. The construction of VCS
epresentations of orthosymplectic superalgebras was considered by LeBlanc and Rowe40 in a
atural extension of the holomorphic representations to include representations over Grassmann as
ell as complex variables. Thus, it would be useful for the development of supersymmetric
odels of coupled boson–fermion systems to extend the construction given in this paper for

o�5��usp�4� irreps in an SO�3� basis to the irreps of the orthosymplectic algebras.
It is interesting to note that, in the present construction of so�5� irreps, the so�5� algebra has

een realized as a combination of L=2 and L= 3 � 2 boson operators. The use of bosons of
alf-odd integer angular momentum is admittedly unusual in physics. But, in spite of the spin-
tatistics theorem, there is no algebraic reason forbidding their use in this way. The fact is that

ilinear products of either boson or fermion operators of any given angular momentum obey
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recisely the same commutation relations. However, the number of so�5� irreps that can be built
p with fermions is severely limited by the Pauli principle whereas with bosons there is no such
imitation.

A major motivation for the present study was that the methods developed for so�5� would
erve as prototype examples of what can be done in more general situations. Constructing the
rreps of a Lie algebra �or a Lie group� in a basis that reduces a noncanonical subgroup chain is
enerally much more challenging than in a basis that reduces a canonical subgroup chain. Thus, it
s an order of magnitude simpler to construct so�5� irreps in a canonical SO�5��SO�4��SO�3�
asis than in the geometrical SO�3� basis considered in this paper. For example, analytical expres-
ions are readily derived for the irreps of su�3� in the canonical SU�3��SU�2� basis. But, prior to
he development of apposite VCS techniques,26 special ad hoc methods were needed to obtain
hese irreps in SU�3��SO�3� bases. A possible application of the methods developed in this paper

ight be to construct irreps of the exceptional Lie algebra g2 in an SU�3��SO�3�-coupled basis.
his would appear to be possible by choosing intrinsic states that carry an irrep of a u�2� subal-
ebra, corresponding to a pair of short g2 roots, and employing SU�3� as the orbiter group. The
onstruction of such irreps of g2 is of physical interest as a step toward the construction of so�7�
rreps in a G2�SO�3�-coupled basis. The need for such irreps would surface if it were considered
esirable to formulate a collective model of octupole dynamics analogous to Bohr’s quadrupole
odel or to classify shell-model states of fermions in an angular momentum l=3 orbital.
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In this paper, we consider a generalized second-order nonlinear ordinary differen-
tial equation �ODE� of the form ẍ+ �k1xq+k2�ẋ+k3x2q+1+k4xq+1+�1x=0, where ki’s,
i=1,2 ,3 ,4, �1, and q are arbitrary parameters, which includes several physically
important nonlinear oscillators such as the simple harmonic oscillator, anharmonic
oscillator, force-free Helmholtz oscillator, force-free Duffing and Duffing–van der
Pol oscillators, modified Emden-type equation and its hierarchy, generalized
Duffing–van der Pol oscillator equation hierarchy, and so on, and investigate the
integrability properties of this rather general equation. We identify several new
integrable cases for arbitrary value of the exponent q ,q�R. The q=1 and q=2
cases are analyzed in detail and the results are generalized to arbitrary q. Our
results show that many classical integrable nonlinear oscillators can be derived as
subcases of our results and significantly enlarge the list of integrable equations that
exists in the contemporary literature. To explore the above underlying results we
use the recently introduced generalized extended Prelle-Singer procedure appli-
cable to second-order ODEs. As an added advantage of the method, we not only
identify integrable regimes but also construct integrating factors, integrals of mo-
tion, and general solutions for the integrable cases, wherever possible, and bring
out the mathematical structures associated with each of the integrable cases.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2171520�

. INTRODUCTION

. Overview of the problem

In a recent paper1 we have shown that the force-free Duffing–van der Pol �DVP� oscillator,

ẍ + �� + �x2�ẋ − �x + x3 = 0, �1�

s integrable for the parametric restriction �=4/� and �=−3/�2. In Eq. �1� the overdot denotes
ifferentiation with respect to t and �, � and � are arbitrary parameters. Under the transformation

w = − xe�1/��t, z = e−�2/��t, �2�
2
q. �1� with restriction �=4/� and �=−3/� was shown to be transformable to the form

47, 023508-1022-2488/2006/47�2�/023508/37/$23.00 © 2006 American Institute of Physics
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w� −
�2

2
w2w� = 0, �3�

hich can then be integrated.1

In a parallel direction, while performing the invariance analysis of a similar kind of problem,
e find that not only the Eq. �1� but also its generalized version,

ẍ + � 4

�
+ �x2�ẋ +

3

�2x + x3 + �x5 = 0, � = arbitrary parameter, �4�

s invariant under the same set of Lie point symmetries.2 As a consequence one can use the same
ransformation �2� to integrate Eq. �4�. The transformation �2� modifies Eq. �4� to the form

w� −
�2

2
w2w� + �w5 = 0, �5�

hich is not so simple to integrate straightforwardly. However, we observe that this equation
oincides with the second equation in the so-called modified Emden equation �MEE� hierarchy,
nvestigated by Feix et al.,3

ẍ + xlẋ + gx2l+1 = 0, l = 1,2, . . . ,n , �6�

here g is an arbitrary parameter.
In fact, Feix et al.3 have shown that through a direct transformation to a third-order equation

he above Eq. �6� can be integrated to obtain the general solution for the specific choice of the
arameter g, namely, for g=1/ �l+2�2. For this choice of g, the general solution of �6� can be
ritten as

x�t� = � �2 + 3l + l2��t + I1�l

l�t + I1�l+1 + �2 + 3l + l2�I2
�1/l

, I1,I2 = arbitrary constants. �7�

Consequently, Eq. �4� can be integrated under the specific parametric choice �=1/16, and it
elongs to the l=2 case of the MEE hierarchy �6� with g=1/16. Now the question arises as to
hether there exist other new integrable second-order nonlinear differential equations which are

inear in ẋ and contain fifth and other powers of nonlinearity. As far as our knowledge goes, only
ew equations in this class have been shown to be integrable. For example, Smith had investigated
class of nonlinear equations coming under the category

ẍ + f�x�ẋ + g�x� = 0, �8�

ith f�x�= �n+2�bxn−2a and g�x�=x�c+ �bxn−a�2�, where a, b, c, and n are arbitrary parameters.
e had shown that Eq. �8� with this specific form of f and g admits explicit oscillatory solutions.
owever, one can also expect that there should be a number of integrable equations which also

dmit solutions which are both oscillatory and nonoscillatory types in the class

ẍ + �k1xq + k2�ẋ + k3x2q+1 + k4xq+1 + �1x = 0, q � R , �9�

here ki’s, i=1,2 ,3 ,4, and �1 are arbitrary parameters. When q=1, Eq. �9� becomes the gener-
lized MEE

ẍ + �k1x + k2�ẋ + k3x3 + k4x2 + �1x = 0, �10�

nd for q=2 it becomes

ẍ + �k1x2 + k2�ẋ + k3x5 + k4x3 + �1x = 0. �11�
e note that Eq. �4� is a special case of �11�.
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Needless to say, Eq. �9� is a unified model for several ground-breaking physical systems
hich includes simple harmonic oscillator, anharmonic oscillator, force-free Helmholtz oscillator,

orce-free Duffing oscillator, MEE hierarchy, generalized DVP hierarchy, and so on.
As noted earlier, there exists no rigorous mathematical analysis in the literature for the

econd-order nonlinear differential equations which contain fifth or higher degree nonlinearity in
and linearity in ẋ, and the results are very scarce on integrability or exact solutions. Our
otivation to analyze this problem is not only to explore new integrable cases/systems of Eq. �9�

ut also to synthesize all earlier results under one approach.
Having described the problem and motivation, now we can start analyzing the integrability

roperties of Eq. �9�. To identify the integrable regimes we employ the recently introduced ex-
ended Prelle-Singer procedure applicable to second-order ordinary differential equations
ODEs�.5–11 Through this method we not only identify integrable regimes but also construct
ntegrating factors, integrals of motion, and general solution for the integrable cases, wherever
ossible.

. Results

We unearth several new integrable equations for any real value of the exponent q in Eq. �9�.
n the following we summarize the results for the case q=arbitrary only and discuss in detail the
=1, q=2, and q=arbitrary cases separately in the following sections.

For the choice q=arbitrary we find that the following equations are completely integrable
after suitable reparametrizations�, all of which appear to be new to the literature:

ẍ + �k1xq + �q + 2�k2�ẋ + k1k2xq+1 + �q + 1�k2
2x = 0, �12�

ẍ + ��q + 2�k1xq + k2�ẋ + k1
2x2q+1 + k1k2xq+1 + �1x = 0, �13�

ẍ + �q + 4�k2ẋ + k4xq+1 + 2�q + 2�k2
2x = 0, �14�

ẍ + ��q + 1�k1xq + k2�ẋ +
�r − 1�

r2 ��q + 1�k1
2x2q+1 + �q + 2�k1k2xq+1 + k2

2x� = 0, r � 0, �15�

ẍ + ��q + 1�k1xq + �q + 2�k2�ẋ + �q + 1�� �r − 1�
r2 k1

2x2q+1 + k1k2xq+1 + k2
2x� = 0, r � 0, �16�

here k1, k2, k4, �1, and r are arbitrary parameters. We stress that the above results are true for any
rbitrary values of q. We discuss the special cases, namely, q=1 and q=2 separately in detail in
ecs. III and IV in order to put the results of q arbitrary case in proper perspective.

We show that the Eq. �12� is nothing but a generalization of the Duffing–van der Pol oscillator
q. �1�. In a recent work1,9 three of the present authors have established the integrability of Eq.

12� with q=2. However, in this work we show that the generalized Eq. �12� itself is integrable.
quation �13� is nothing but the generalized MEE among which the hierarchy of Eq. �6�, studied
y Feix et al.,3 can be identified as a subcase. In fact, the general solution constructed by Feix et
l., Eq. �7�, can be derived straightforwardly as a subcase. Equation �13� also contains the family
f equations studied by Smith.4 In particular, the latter author has derived a general solution for the
ase k2

2�4�1, which turns out to be an oscillatory one. However, in this work, we show that even
or arbitrary values of k2 and �1 one can construct the general solution. Interestingly, the system
14� generalizes several physically important nonlinear oscillators. For example, in the case q
1 and 2, Eq. �14� provides us the force-free Helmholtz and Duffing oscillators, respectively,
hose nonlinear dynamics is well documented in the literature.12–17 Here, we present certain

ntegrable generalizations of these nonlinear oscillators. Equation �15� admits a conservative
amiltonian for all values of the parameters r, k1, and k2 and any integer value of q. We also

rovide the explicit form of the Hamiltonian for all values of q. As a result we conclude that it is
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Liouville integrable system. As far as Eq. �16� is concerned we construct a time-dependent
ntegral of motion and transform the latter to a time-independent Hamiltonian one, thereby ensur-
ng its Liouville integrability.

The plan of the paper is as follows. In the following section we briefly describe the extended
relle-Singer procedure applicable to second-order ODEs. In Sec. III, we consider the case q=1 in
9� and identify the integrable parametric choices of this equation through the extended PS pro-
edure. To do so, first we identify the integrable cases where the system admits time-independent
ntegrals and construct explicit conservative Hamiltonians for the respective parametric choices.

e then identify the cases which admit explicit time-dependent integrals of motion. To establish
he complete integrability of these cases we use our own procedure and transform the time-
ependent integrals of motion into time-independent integrals of motion and integrate the latter
nd derive the general solution. In Sec. IV, we repeat the procedure for the case q=2 in Eq. �9� and
dentify the integrable systems. In Sec. V, we consider the case q=arbitrary in �9� and unearth
everal new integrable equations and their associated mathematical structures. Finally, we present
ur conclusions in Sec. VI.

I. GENERALIZED EXTENDED PRELLE-SINGER „PS… PROCEDURE

In this section we briefly recall the generalized extended or modified PS procedure before
pplying it to the specific problem in hand. Some time ago, Prelle and Singer5 proposed a proce-
ure for solving first-order ODEs that admits solutions in terms of elementary functions if such
olutions exist. The attractiveness of the PS method is that if the given system of first-order ODEs
as a solution in terms of elementary functions, then the method guarantees that this solution will
e found. Very recently Duarte et al.7,8 modified the technique developed by Prelle and Singer5,6

nd applied it to second-order ODEs. Their approach was based on the conjecture that if an
lementary solution exists for the given second-order ODE then there exists at least one elemen-
ary first integral I�t ,x , ẋ� whose derivatives are all rational functions of t, x, and ẋ. For a class of
ystems these authors have deduced first integrals and in some cases for the first time through their
rocedure.7 Recently the present authors generalized the theory of Duarte et al.7 in different
irections and showed that for the second-order ODEs one can isolate even two independent
ntegrals of motion9–11 and obtain general solutions explicitly without any integration. This theory
as also been illustrated for a class of problems.1,9–11 The authors have also generalized the theory
uccessfully to higher order ODEs.10,18 For example, in the case of third-order ODEs the theory
as been appropriately generalized to yield three independent integrals of motion unambiguously
o that the general solution follows immediately from these integrals of motion.18

We stress that the PS procedure has many advantages over other methods. To name a few, we
ite: �1� For a given problem if the solution exists it has been conjectured that the PS method
uarantees to provide first integrals. �2� The PS method not only gives the first integrals but also
he underlying integrating factors, that is, multiplying the equation with these functions we can
ewrite the equation as a perfect differentiable function which upon integration gives the first
ntegrals directly. �3� The PS method can be used to solve nonlinear as well as linear second-order
DEs. �4� As the PS method is based on the equations of motion rather than on Lagrangian or
amiltonian description, the analysis is applicable to deal with both Hamiltonian and non-
amiltonian systems.

. PS method

Let us rewrite Eq. �9� in the form

ẍ = − ��k1xq + k2�ẋ + k3x2q+1 + k4xq+1 + �1x� 	 ��x, ẋ� . �17�

In fact the method is applicable to a general situation where � can be a rational function of the
ariables x, ẋ, and t; for details see for example Ref. 9 and for a related approach see Ref. 15.�
urther, we assume that the ODE �17� admits a first integral I�t ,x , ẋ�=C, with C constant on the

olutions, so that the total differential becomes
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dI = It dt + Ix dx + Iẋ dẋ = 0, �18�

here each subscript denotes partial differentiation with respect to that variable. Rewriting Eq.
17� in the form �dt−dẋ=0 and adding a null term S�t ,x , ẋ�ẋdt−S�t ,x , ẋ�dx to the latter, we obtain
hat on the solutions the 1-form

�� + Sẋ�dt − S dx − dẋ = 0. �19�

ence, on the solutions, the 1-forms �18� and �19� must be proportional. Multiplying �19� by the
actor R�t ,x , ẋ� which acts as the integrating factors for �19�, we have on the solutions that

dI = R�� + Sẋ�dt − RS dx − R dẋ = 0. �20�

omparing Eq. �18� with �20� we have, on the solutions, the relations

It = R�� + ẋS�, Ix = − RS, Iẋ = − R . �21�

hen, the compatibility conditions, Itx= Ixt, Itẋ= Iẋt, Ixẋ= Iẋx, between Eqs. �21� provide us

St + ẋSx + �Sẋ = − �x + �ẋS + S2, �22�

Rt + ẋRx + �Rẋ = − ��ẋ + S�R , �23�

Rx − SRẋ − RSẋ = 0. �24�

Solving Eqs. �22�–�24�, one can obtain expressions for S and R. It may be noted that any set
f special solutions �S ,R� is sufficient for our purpose. Once these forms are determined the
ntegral of motion I�t ,x , ẋ� can be deduced from the relation

I = r1 − r2 −
 �R +
d

dẋ
�r1 − r2��dẋ , �25�

here

r1 =
 R�� + ẋS�dt, r2 =
 �RS +
d

dx
r1�dx .

quation �25� can be derived straightforwardly by integrating the Eq. �21�.
The crux of the problem lies in finding the explicit solutions satisfying all three determining

quations �22�–�24�, since once a particular solution is known the integral of motion can be readily
onstructed. The difficulties in constructing admissible set of solutions �S ,R� satisfying all three
quations �22�–�24� and possible ways of obtaining the solutions have been discussed in detail in
ef. 9. In this context we wish to point out that our above method of finding solutions using Eqs.

22�–�25� is closely related to the integrating factor/first integral method of Bluman and Anco.15 In
act in Refs. 15 and 16 effective Ansätze for solving the integrating factor determining equations
re treated and the present method can also be considered as a generalization of the method
eveloped in Refs. 15 and 16.

II. APPLICATION OF PS PROCEDURE TO EQ. „10…

Let us first consider the case q=1 in Eq. �9� or equivalently �10�,

ẍ + �k1x + k2�ẋ + k3x3 + k4x2 + �1x = 0 . �Eq. �10��

quation �10� itself includes several physically important models. For example, choosing ki=0,
=1, . . . ,4, we get the simple harmonic oscillator equation and the choice k1, k2=0 gives us the

nharmonic oscillator equation. When k1, k4=0 Eq. �10� becomes the force-free Duffing oscillator
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quation.12 The choice k2, k4, �1=0 provides us the MEE.19 In the limit k3=k1
2 /9, k4=k1k2 /3, Eq.

10� becomes MEE with linear term which is another linearizable equation which we have studied
xtensively in Refs. 9 and 20. The restriction k1, k3=0 leads us to the force-free Helmhotz
scillator.12,13 In the following we investigate whether the system �10� admits any other integrable
ase besides the above.

We solve Eq. �10� through the extended PS procedure in the following way. For a given
econd-order equation �10�, the first integral I should be either a time-independent or time-
ependent one. In the former case, it is a conservative system and we have It=0 and in the latter
ase we have It�0. So, let us first consider the case It=0 and determine the null forms and the
orresponding integrating factors, and from these we construct the integrals of motion and then we
o extend the analysis for the case It�0.

. The case It=0

. Null forms

In this case one can easily fix the null form S from the first equation in �21� as

S =
− �

ẋ
= −

��k1x + k2�ẋ + k3x3 + k4x2 + �1x�
ẋ

. �26�

. Integrating factors

Substituting this form of S, given in �26�, into �23�, we get

ẋRx − ��k1x + k2�ẋ + k3x3 + k4x2 + �1x�Rẋ = ��k1x + k2� +
��k1x + k2�ẋ + k3x3 + k4x2 + �1x�

ẋ
�R .

�27�

Equation �27� is a first-order linear partial differential equation with variable coefficients. As
e noted earlier any particular solution is sufficient to construct an integral of motion �along with

he function S�. To seek a particular solution for R one can make a suitable Ansatz instead of
ooking for the general solution. We assume R to be of the form

R =
ẋ

�A�x� + B�x�ẋ�r , �28�

here A and B are functions of their arguments, and r is a constant which are all to be determined.
e demand the above form of Ansatz �28�, due to the following reason. To deduce the first

ntegral I we assume a rational form for I, that is, I= �f�x , ẋ�� / �g�x , ẋ��, where f and g are arbitrary
functions of x and ẋ and are independent of t. Since we already assumed that I is independent of
t, we have Ix= �fxg− fgx� /g2 and Iẋ= �f ẋg− fgẋ� /g2. From �21� one can see that R= Iẋ= �f ẋg

fgẋ� /g2, S= Ix / Iẋ= �fxg− fgx� / �f ẋg− fgẋ�, and RS= Ix, so that the denominator of the function S
hould be the numerator of the function R. Since the denominater of S is ẋ �vide Eq. �26�� we fixed
he numerator of R as ẋ. To seek a suitable function in the denominator initially one can consider
n arbitrary form R= ẋ / �h�x , ẋ��. However, it is difficult to proceed with this choice of h. So, let us
ssume that h�x , ẋ� is a function which is polynomial in ẋ. To begin with let us consider the case
here h is linear in ẋ, that is, h=A�x�+B�x�ẋ. Since R is in rational form while taking differen-

tiation or integration the form of the denominator remains the same but the power of the denomi-
nator decreases or increases by a unit order from that of the initial one. So, instead of considering
h to be of the form h=A�x�+B�x�ẋ, one may consider a more general form h= �A�x�+B�x�ẋ�r,

here r is a constant to be determined. Such a generalized form of h and so R leads to several new
ntegrable cases as we see below.
Substituting �28� into �27� and solving the resultant equations, we arrive at the relation
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r�ẋ�Ax + Bxẋ� + �B� = �A + Bẋ��ẋ. �29�

olving Eq. �29� with �=−��k1x+k2�ẋ+k3x3+k4x2+�1x�, we find nontrivial forms for the func-
ions A and B for two choices, namely �i� k1, k2 arbitrary and �ii� k1=arbitrary, k2=0 with
estrictions on other parameters as given below. The respective forms of the functions and the
estriction on the parameters are

i� k1, k2: arbitrary

A�x� =
�r − 1�b0

r
� k1

2
x2 + k2x�, B�x� = b0 = constant, r = constant,

k3 =
b0�r − 1�

2r2 k1
2, k4 =

3b0�r − 1�
2r2 k1k2, �1 =

b0�r − 1�k2
2

r2 , �30a�

ii� k1=arbitrary, k2=0

A�x� =
�r − 1�b0

2r
k1x2 +

r�1

k1
, B�x� = b0,

k3 =
b0�r − 1�

2r2 k1
2, k4 = 0, �1 = arbitrary parameter �here� . �30b�

e note that the case �ii� cannot be derived from case �i� by taking k2=0. For example, choosing
2=0 in �30a� we get not only k4=0 but also �1=0, whereas in the case �ii� we have the freedom
1=arbitrary, so the cases �30a� and �30b� are to be treated as separate. Making use of the forms
f A and B from Eqs. �30a� and �30b� into �28�, the integrating factor, “R,” for the two cases can
e obtained as

i� k1, k2: arbitrary

R =
ẋ

� �r − 1�
r

� k1

2
x2 + k2x� + ẋ�r , r � 0 �31a�

ii� k1=arbitrary, k2=0

R =
ẋ

� �r − 1�
2r

k1x2 +
r�1

k1
+ ẋ�r , r � 0. �31b�

We note that b0 is a common parameter in the above and it is absorbed in the definition of
R; see Eqs. �23� and �24�. While deriving the above forms of R �Eqs. �31a� and �31b�� we
assumed that r�0 and for the choice r=0 we obtain a consistent solution only if both the
parameters k1 and k2 become zero. Of course, this subcase can be treated as a trivial one
since when k1 ,k2=0 the damping term in Eq. �10� vanishes and the system becomes an
integrable anharmonic oscillator. In this trivial case we have the integrating factor of the
form

iii� k1, k2=0

R = ẋ, r = 0. �31c�

Finally, one has to check the compatibility of forms S and R with the third Eq. �24�. We indeed

erified that the sets
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i� S = −
��k1x + k2�ẋ +

�r − 1�
r2 � k1

3

2
x2 +

3k1k2

2
x2 + k2

2x��
ẋ

,

R =
ẋ

� �r − 1�
r

� k1

2
x2 + k2x� + ẋ�r , k1,k2 = arbitrary, r � 0 �32a�

ii� S = −
�k1xẋ +

�r − 1�
2r2 k1

2x3 + �1x�
ẋ

,

R =
ẋ

� �r − 1�
2r

k1x2 +
r�1

k1
+ ẋ�r , k1 = arbitrary, k2 = 0, r � 0 �32b�

nd

iii� S = −
�k3x3 + k4x2 + �1x�

ẋ
, R = ẋ, k1,k2 = 0, �32c�

atisfy Eq. �24� individually. As a consequence all three pairs form compatible sets of solution for
he equations �22�–�24�.

. Integrals of motion

Having determined the explicit forms of S and R, one can proceed to construct integrals of
otion using the expressions �25�. The parametric restrictions �30a� and �30b� fix the equation of
otion �10� to the following specific forms:

�i� ẍ + �k1x + k2�ẋ +
�r − 1�

2r2 �k1
2x3 + 3k1k2x2 + 2k2

2x� = 0, r � 0, �33a�

�ii� ẍ + k1xẋ +
�r − 1�k1

2

2r2 x3 + �1x = 0, r � 0, �33b�

�iii� ẍ + k3x3 + k4x2 + �1x = 0, r = 0. �33c�

n the above k1, k2, k3, k4, �1, and r are arbitrary parameters.
We note that the transformation x=y−k2 /k1 transforms Eq. �33a� to the form

ÿ + k1yẏ +
�r − 1�k1

2

2r2 y3 −
�r − 1�k2

2

2r2 y = 0, r � 0. �34�

quation �34� is obtained from Eq. �33b� by fixing �1=−��r−1�k2
2� /2r2. So, hereafter, we consider

q. �33a� as a special case of Eq. �33b� and so discuss only Eq. �33b� as the general one. It may
e noted that Eq. �33b� includes several known integrable cases. For example, the choice r=3 and

1=0 in Eq. �33b� yields the MEE.19 On the other hand the choice r=−1 leads us to the equation
¨ +k1xẋ−k1

2x3+�1x=0, which can be solved in terms of Weierstrass elliptic function.21 The other

hoices of r lead to new integrable cases as we see below.
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Substituting the forms of S and R �vide Eqs. �32b� and �32c�� into the general form of the
ntegral of motion �25� and evaluating the resultant integrals, we obtain the following time inde-
endent first integrals for the cases �33b� and �33c�:

�iia� I1 = �ẋ +
�r − 1�

2r
k1x2 +

r�1

k1
�−r�ẋ�ẋ +

k1

2
x2 +

r2�1

�r − 1�k1
�

+
�r − 1�

r2 � k1

2
x2 +

r2�1

�r − 1�k1
�2�, r � 0,1,2, �35a�

�iib� I1 =
4k1ẋ

k1
2x2 + 4k1ẋ + 8�1

− log�k1
2x2 + 4k1ẋ + 8�1�, r = 2, �35b�

�iic� I1 = ẋ +
k1

2
x2 −

�1

k1
log�k1ẋ + �1�, r = 1, �35c�

�iii� I1 =
ẋ2

2
+

k3

4
x4 +

k4

3
x3 +

�1

2
x2, r = 0. �35d�

ote that in Eq. �35a�, r can take any real value, except 0, 1, 2. In the above integrals I1 given by
qs. �35a�–�35c� correspond to the ODE �33b�, while �35d� corresponds to Eq. �33c�.

Due to the fact that the integrals of motion �35� are time independent, one can look for a
amiltonian description for the respective equations of motion. In fact, we obtain the explicit
amiltonian forms for all the above cases.

. Hamiltonian description of „35…

Assuming the existence of a Hamiltonian

I�x, ẋ� = H�x,p� = pẋ − L�x, ẋ� , �36�

here L�x , ẋ� is the Lagrangian and p is the canonically conjugate momentum, we have

�I

�ẋ
=

�H

�ẋ
=

�p

�ẋ
ẋ + p −

�L

�ẋ
=

�p

�ẋ
ẋ ,

�I

�x
=

�H

�x
=

�p

�x
ẋ −

�L

�x
. �37�

rom �37� we identify

p =
 Iẋ

ẋ
dẋ ,

L =
 �pxẋ − Ix�dx +
 �p −
d

dẋ

 �pxẋ − Ix�dx�dẋ . �38�

Plugging the expressions �36� into �38�, one can evaluate the canonically conjugate momen-
um and the associated Lagrangian as well as the Hamiltonian. They read as follows:

a� The canonical momenta:

�iia,b� p =
1 �ẋ +

�r − 1� k1x2 +
r�1�1−r

, r � 0,1 �39a�

r − 1 r 2 k1
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�iic� p = log�k1ẋ + �1�, r = 1 �39b�

�iii� p = ẋ, r = 0. �39c�

�Note in the above r=2 is included in Eq. �39a� itself.�
b� The Lagrangian:

�iia� L =
1

�2 − r��r − 1�
�ẋ +

�r − 1�
r

k1x2

2
+

r�1

k1
�2−r

, r � 0,1,2 �40a�

�iib� L = log�4k1ẋ + 8�1 + k1
2x2�, r = 2 �40b�

�iic� L =
�1

k1
log�k1ẋ + �1� + ẋ�log�k1ẋ + �1� − 1� −

1

2
k1x2, r = 1 �40c�

�iii� L =
ẋ2

2
−

k3

4
x4 −

k4

3
x3 −

�1

2
x2, r = 0. �40d�

c� The Hamiltonian:

�iia� H = � ��r − 1�p��r−2�/�r−1�

�r − 2�
− p� �r − 1�

2r
k1x2 +

r�1

k1
��, r � 0,1,2 �41a�

�iib� H =
2�1

k1
p +

k1

4
x2p + log�4k1

p
�, r = 2 �41b�

�iic� H =
1

k1
�ep − �1p +

k1
2

2
x2 − �1�, r = 1 �41c�

�iii� H =
p2

2
+

k3

4
x4 +

k4

3
x3 +

�1

2
x2, r = 0. �41d�

ne can check that the Hamilton’s equations of motion are indeed equivalent to the appropriate
quation �10�.

Since Eqs. �33b� and �33c� admit time-independent Hamiltonians, they can be classified as
iouville integrable systems. The important fact we want to stress here is that for arbitrary values
f r, including fractional values, Eq. (33b) is integrable.

. Canonical transformation for the Hamiltonian Eqs. „41…

Interestingly, we also identified suitable canonical transformation to standard particle in a
otential description for the Hamiltonians �41�. Now, introducing the canonical transformations

x =
2rP

k1U
, p = −

k1U2

4r
, r � 0,1, �42�

x =
P

k1
, p = − k1U, r = 1 �43�
he Hamiltonian H in Eq. �41� can be recast in the standard form �after rescaling�
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H =�
1

2
P2 +

�1 − r�
�r − 2�� �r − 1�k1U2

4r
��r−2�/�r−1�

+
�r − 1��1

4
U2, r � 0,1,2

1

2
P2 +

�1

4
U2 + log� 32

U2� , r = 2

1

2
P2 + e−k1U + �1k1U , r = 1

1

2
P2 +

k3

4
U4 +

�1

2
U2, r = 0.

� �44�

t is straightforward to check that when U and P are canonical so are x and p �and vice versa�, and
he corresponding equations of motion turn out to be

Ü − 2� �r − 1�k1

4r
��2−r�/�1−r�

U�3−r�/�1−r� +
�r − 1��1

2
U = 0, r � 0,1 �45a�

Ü − k1e−U + k1�1 = 0, r = 1 �45b�

Ü + k3U3 + �1U = 0, r = 0. �45c�

ne may note that the equations of motion now become standard-type anharmonic oscillator
quations.

. The case ItÅ0

In the previous subsection we considered the case It=0. As a consequence S turns out to be
� / ẋ. However, in the case It=0, the function S has to be determined from Eq. �22�, that is,

St + ẋSx − ��k1x + k2�ẋ + k3x3 + k4x2 + �1x�Sẋ = �k1ẋ + 3k3x2 + 2k4x + �1� − �k1x + k2�S + S2.

�46�

ince it is too difficult to solve Eq. �46� for its general solution, we seek a particular solution for
, which is sufficient for our purpose. In particular, we seek a simple rational expression for S in
he form

S =
a�t,x� + b�t,x�ẋ
c�t,x� + d�t,x�ẋ

, �47�

here a, b, c, and d are arbitrary functions of t and x which are to be determined. Of course, the
nalysis of this form alone does not exhaust all possible cases of interest. We hope to make a more
xhaustive study of Eq. �46� separately. Substituting �47� into �46� and equating the coefficients of
ifferent powers of ẋ to zero, we get

dbx − bdx − k1d2 = 0,

dbt − bdt + cbx − bcx + axd − adx − 2k1cd − �3k3x2 + 2k4x + �1�d2 + �k1x + k2�bd − b2 = 0,

2 2
cbt − bct + dat − adt + cax − acx − k1c − 2�3k3x + 2k4x + �1�cd + 2�k1x + k2�ad − 2ab = 0,
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cat − act − �k3x3 + k4x2 + �1x��bc − ad� − �3k3x2 + 2k4x + �1�c2 + �k1x + k2�ac − a2 = 0.

�48�

he determining equation for the functions a, b, c, and d have now turn out to be nonlinear. To
olve these equations we further assume that the functions a, b, c, and d are polynomials in x with
oefficients which are arbitrary functions in t. Substituting these forms into Eqs. �48� we obtain
nother enlarged set of determining equations for the unknowns and solving the latter consistently
e obtain nontrivial solutions for the functions a, b, c, and d for four sets of parametric choices.
e present the explicit forms of the associated null function S given by �47� and the parametric

estrictions in Table I.
Now substituting the forms of S into Eq. �23� and solving the resultant equation, we obtain the

orresponding forms of R. To solve the determining equation for R we again seek the same form
f Ansatz �28� but with explicit t dependence on the coefficient functions, that is, R
Sd / ��A�t ,x�+B�t ,x�ẋ�r�, where Sd is the denominator of S. We report the resultant forms of R in
able I. Once S and R are determined then one has to verify the compatibility of this set �S ,R�
ith the extra constraint Eq. �24�. We find that the forms S and R given in Table I do satisfy the

xtra constraint equation and form a compatible solution. Now substituting Si’s and Ri’s into Eq.
25� one can construct the associated integrals of motion. We report the integrals of motion �I� in
able I along with the forms S and R.

At this stage, we note that the first integral for the case �i� with k2 ,�1=0 has been derived in
ef. 19 through Lie symmetry analysis. However, recently, we have derived9 the first integral for
rbitrary values of k2 and �1. Case �ii� is new to the literature. The first integral for case �iii� was
eported recently in Refs. 9, 12, and 13. The first integral for the case �iva� is new to the literature.
he case r=0 discussed as �ivb� is nothing but the force-free Duffing oscillator whose integrability
as been discussed in Refs. 12 and 14.

Since we obtained only one integral in each case �except case �i�, where we have found a
econd explicit time-dependent integral; see Ref. 9�, which are also time-dependent ones, we need
o integrate them further to obtain the second integration constant and prove the complete inte-
rability of the respective systems, which is indeed a difficult task.

In this connection we have introduced a new method1,9 which can be effectively used to
ransform the time-dependent integral into a time-independent one, for a class of problems, so that
he latter can be integrated easily. We invoke this procedure here in order to integrate the time-
ependent first integrals and obtain the general solution for all the cases in Table I �except case
iv�, see below�. For case �iv�, we prove the Liouville integrability of it.

. Method of transforming time-dependent first integral to time-independent one

Let us assume that there exists a first integral for Eq. �10� of the form

I = F1�t,x, ẋ� + F2�t,x� . �49�

ow let us split the function F1 further in terms of two functions such that F1 itself is a function
f the product of the two functions, say, a perfect differentiable function �d/dt�G1�t ,x� and another
unction G2�t ,x , ẋ�, that is,

I = F1� 1

G2�t,x, ẋ�
d

dt
G1�t,x�� + F2�G1�t,x�� , �50�

here F1 is a function which involves the variables t, x, and ẋ, whereas F2 should involve only the
ariable t and x. We note that while rewriting Eq. �49� in the form �50�, we demand the function

2�t ,x� in �49� automatically to be a function of G1�t ,x�. Now identifying the function G1 as the

ew dependent variable and the integral of G2 over time as the new independent variable, that is,
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BLE I. Parametric restrictions, null forms �S�, integrating factors �R� and time dependent integrals of motion �I� of ẍ+ �k1x+k2�ẋ+k3x3+k4x2+�1x=0 �identified with the assumed
nsatz form of S and R�.

Cases Parametric restrictions Null form �S� Integrating factor �R� Integrals of motion �I�

� k3 =
k1

2

9
, k4 =

k1k2

3

�k1 ,k2 ,�1: arbitrary�

� k1

3
x2 − ẋ�
x

xe�	t

�ẋ −
�k2 ± 	�

2
x +

k1

3
x2�2

�a� I = e�	t 3ẋ −
3�− k2 � 	�

2
x + k1x2

3ẋ −
3�− k2 ± 	�

2
x + k1x2 � ,

k2 ,�1�0, 	= �k2
2−4�1�1/2

�b� I = − t +
x

� k2

2
x +

k1

3
x2 + ẋ� , k2

2 = 4�1

i� k3 = 0,k4 =
k1

4
�k2 ± 	� ,

�k1 ,k2 ,�1: arbitrary�

1

2
�k2 � 	� + k1x , e��k2±	�/2�t

I = �ẋ +
k2 � 	

2
x +

k1

2
x2�e��k2±	�/2�t,

	= �k2
2−4�1�1/2

ii� k1,k3 = 0, �1 =
6k2

2

25

�k2 ,k4: arbitrary�

�2k2ẋ

5
+

4k2
2x

25
+ k4x2�

�ẋ +
2k2

5
x�

�ẋ +
2k2

5
x�e�6/5�k2t I = e�6/5�k2t� ẋ2

2
+

2k2

5
xẋ +

2k2
2

25
x2 +

k4

3
x3�
023508
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TABLE I. �Continued.�

Cases Parametric restrictions Null form �S� Integrating factor �R� Integrals of motion �I�

va� k3 =
�r − 1�k1

2

2r2 , k4 =
k1k2

3
,

�1 =
2k2

2

9
, r � 0

�k1 ,k2 ,r: arbitrary�

k2

3
+ k1x +

3k3x3

�3ẋ + k2x�
�k2x + 3ẋ�e�2�2−r�k2/3�t

� k2

3
x + rk3x2 + ẋ�r

I = � k3

2
x4 + �ẋ +

k2

3
x��ẋ +

k2

3
x +

k1

2
x2��


�ẋ +
k2

3
x + rk3x2�−r

e��2�2−r��/3�k2t, r � 2

I =
2

3
k2t + log�4k2x + 3k1x2 + 12ẋ�

−
4�k2x + 3ẋ�

�4k2x + 3k1x2 + 12ẋ�
, r = 2

vb� k1=0 , k4=0,

�1 =
2k2

2

9
, r = 0

�k2 ,k3: arbitrary�

� k2

3
ẋ +

k2
2

9
x + k3x3�

�ẋ +
k2x

3
�

e�4/3�k2t�ẋ +
k2x

3
� I = e�4/3�k2t� ẋ2

2
+

k2

3
xẋ +

k2
2

18
x2 +

k3

4
x4�
023508
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w = G1�t,x�, z =

o

t

G2�t�,x, ẋ�dt�, �51�

ne indeed obtains an explicit transformation to remove the time-dependent part in the first
ntegral. We note here that the integration on the right-hand side of �51� leading to z can be
erformed provided the function G2 is an exact derivative of t, that is, G2= �d/dt�z�t ,x�= ẋzx+zt, so
hat z turns out to be a function t and x alone. In terms of the new variables, Eq. �50� can be
odified to the form

I = F1�dw

dz
� + F2�w� . �52�

n other words,

F1�dw

dz
� = I − F2�w� . �53�

Now rewriting Eq. �52�, one obtains a separable equation

dw

dz
= f�w� , �54�

hich can lead to the solution after an integration. Now rewriting the solution in terms of the
riginal variables one obtains a general solution for the given equation.

In the following, using the above idea we integrate the first integrals given in Table I and
educe the second integration constant and general solution.

. Application

Case (ia): k3=k1
2 /9, k4=k1k2 /3, k1, k2 and �1: arbitrary.

The parametric restrictions given above fix the equation of motion �10� in the form

ẍ + �k1x + k2�ẋ +
k1

2

9
x3 +

k1k2

3
x2 + �1x = 0. �55�

et us rewrite the first integral associated for this case �vide case �i� in Table I� in the form

I1 = −
k1e��k2�	�/2�tx2

�3ẋ − ��− k2 ± 	�/2�3x + k1x2�
� d

dt
��− 3

k1x
+

− k2 ± 	

2�1
�e��−k2�	�/2�t�� , �56�

here 	=�k2
2−4�1. Comparing this with Eq. �50�, and using �51�, we obtain

w = �− 3

k1x
+

− k2 ± 	

2�1
�e��−k2���/2�t, z = �− 3

k1x
+

− k2 � 	

2�1
�e��−k2±	�/2�t. �57�

ubstituting �57� into Eq. �55�, the latter becomes the free particle equation, namely, d2w /dz2

0, whose general solution is w= I1z+ I2, where I1 and I2 are integration constants. Rewriting w
nd z in terms of x and t, one gets

x�t� = � 6�1�1 − I1e	t�
k1	�1 + I1e	t� − �k2 ± 	�I2e��k2±	�/2�t − k1k2�1 − I1e	t�� , �58�

here 	=�k2
2−4�1.

Interestingly one can consider several subcases. In the following we discuss some important

nes which are being widely discussed in the current literature. In particular, the difference in
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ynamics arises mainly depending on the sign of the parameter � �=�k2
2−4�1�. We consider the

ases �i� k2
2�4�1; �ii� k2

2�4�1; and �iii� k2
2=4�1 separately. The restriction k2

2�4�1 reduces the
olution �58� to the form4

x�t� =
A cos�	0t + ��

�e�k2/2�t +
2k1A

3�k2
2 + 4	0

2�
�2	0 sin�	0t + �� − k2 cos�	0t + ���� , �59�

here 	0=�4�1−k2
2/2 and �, A are arbitrary constants. A further restriction k2=0 gives us the

urely sinusoidally oscillating solution20

x�t� =
A sin�	0t + ��

1 − � k

3	0
�A cos�	0t + ��

, 0 � A �
3	0

k
, 	0 = ��1, �60�

here A and � are arbitrary constants. The associated equation of motion, namely ẍ+k1xẋ
�k1

2 /9�x3+�1x=0, admits very interesting nonlinear dynamics; see for example in Ref. 20.
On the other hand, in the limit k2

2�4�1 the solution looks like a dissipative/frontlike one.19 A
urther restriction �1=0 takes us to the solution of the form11

x�t� = � 3k2�I1ek2t − 1�
k1 + k2�3I2 + k1I1t�ek2t� . �61�

Case (ib): k3=k1
2 /9, k4=k1k2 /3, k2

2=4�1, k1 and k2: arbitrary.
The third choice k2

2=4�1 in �58� leads us to the solution

x�t� =  3�I1 + t�

3I2e�k2/2�t −
2k1

k2
2 �2 + I1k2 + k2t�� . �62�

urther parametric restriction k2, �1=0 provides us the general solution of the form

x�t� = � 6�I1 + t�
k1�I1 + t�2 + 6I2

� . �63�

he underlying equation, that is, ẍ+k1xẋ+ �k1
2 /9�x3=0, is the l=1 integrable case of Eq. �6� with

he solution �7� �see for example in Refs. 19 and 20�.
Case (ii): k3=0, k4= �k1 /4��k2±�k2

2−4�1�, k1, k2, and �1: arbitrary.
In this case we have the equation of the form

ẍ + �k1x + k2�ẋ +
k1

4
�k2 ± �k2

2 − 4�1�x2 + �1x = 0. �64�

he associated first integral reads �vide case �ii� in Table I�

I = �ẋ +
k2 � �k2

2 − 4�1

2
x +

k1

2
x2�e��k2±�k2

2−4�1�/2�t. �65�

ote that Eq. �65� can be rewritten as a Riccati equation of the form22

ẋ = Ie��−k2��k2
2−4�1�/2�t − � k2 � �k2

2 − 4�1

2
�x −

k1

2
x2. �66�

he general solution of the Riccati equation is known to be free from movable critical points and
atisfies the Painlevé property. In this sense Eq. �64� can be considered as integrable in the

ainlevé criteria sense. However, in the general case �66�, it is not clear whether it can be
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xplicitly integrated further. However, for the special case �1=2k2
2 /9 it can be integrated as

ollows.
The restriction �1=2k2

2 /9 fixes the equation of motion �64� and the first integral �65� in the
orms

ẍ + �k1x + k2�ẋ +
k1k2

3
x2 +

2k2
2

9
x = 0, �67�

nd

I = �ẋ +
k2

3
x +

k1

2
x2�e�2k2/3�t, �68�

espectively. Now rewriting �68� in the form �50�, we get

I = e�k2/3�t� d

dt
�xe�k2/3t��� +

k1

2
�xe�k2/3�t�2. �69�

dentifying the dependent and independent variables from �69� and using the identities �51�, we
btain the transformation

w = xe�k2/3�t, z = −
3

k2
e−�k2/3�t. �70�

sing the transformation �70�, the first integral �68� can be rewritten in the form

Î = w� +
k1

2
w2, �71�

hich in turn leads to the solution by an integration, that is,

w�z� =�2I

k1
tanh��k1I

2
�z − z0�� , �72�

here z0 is arbitrary constant. Rewriting �72� in terms of old variables we get

x�t� =�2I

k1
e−�k2/3�t tanh� 3

k2
��k1I

2
��e−�k2/3�t0 − e−�k2/3�t�� , �73�

here t0 is the second integration constant.
Case (iii): k1, k3=0, �1=6k2

2 /25, k2 and k4: arbitrary.
The corresponding equation of motion is

ẍ + k2ẋ + k4x2 +
6k2

2

25
x = 0. �74�

ewriting the associated first integral I1, given in case �iii� in Table I, in the form �49�, we get

I =
1

2
�ẋ +

2k2

5
x�2

e�6/5�k2t +
k4

3
x3e�6/5�k2t. �75�
ow splitting the first term in Eq. �75� further in the form �50�, we obtain
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I = e2k2t/5� d

dt
� 1

�2
xe2k2t/5��2

+
k4

3
�xe�2/5�k2t�3. �76�

dentifying the dependent and independent variables from �76� and using the relations �51�, we
btain the transformation

w =
1
�2

xe2k2t/5, z = −
5

k2
e−�k2t/5�. �77�

sing this transformation �77�, the first integral �75� can be rewritten in the form

Î = w�2 +
k4̂

3
w3, �78�

here k̂4=2�2k4, which in turn leads to

w�2 = 4w3 − g3, �79�

here z=2�3/ k̂4ẑ and g3=−12I1 / k̂4. The solution of this differential equation can be represented
n terms of the Weierstrass function12,13 ��ẑ ;0 ,g3�.

Case (iv): k3= ��r−1� /2r2�k1
2, k4=k1k2 /3, �1=2k2

2 /9, k1, k2, and r: arbitrary �but not zero�.
The above parameters fix the equation of motion �10� in the form

ẍ + �k1x + k2�ẋ +
�r − 1�k1

2

2r2 x3 +
k1k2

3
x2 +

2k2
2

9
x = 0, r � 0. �80�

he associated first integral reads �vide case �iva� in Table I�

I = ��
�r − 1�

4r2 k1
2x4 + �ẋ +

k2

3
x��ẋ +

k2

3
x +

k1

2
x2���ẋ +

k2

3
x +

�r − 1�
2r

k1x2�−r

e�2�2−r�/3�k2t, r � 0,2

2

3
k2t + log�4k2x + 3k1x2 + 12ẋ� −

4�k2x + 3ẋ�
�4k2x + 3k1x2 + 12ẋ�

, r = 2. �
�81�

ewriting Eq. �81� in the form �50�, we get

I =�
��r − 1�k1

2

4r2 �xe�k2/3�t�4 +
d

dt
�xe�k2/3�t�� d

dt
�xe�k2/3�t�e�k2/3�t +

k1

2
�xe�k2/3�t�2�e�k2/3�t�


 � d

dt
�xe�k2/3�t�e�k2/3�t +

k1�r − 1�
2r

�xe�k2/3�t�2�−r

, r � 0,2

4
d

dt
�xe�k2/3�t�e�k2/3�t

k1�xe�k2/3�t�2 + 4
d

dt
�xe�k2/3�t�e�k2/3�t

− log�k1�xe�k2/3�t�2 + 4
d

dt
�xe�k2/3�t�e�k2/3�t� , r = 2. �

�82�

dentifying the dependent and independent variables from �82� and the relations �51�, we obtain

he transformation
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w = xe�k2/3�t, z = −
3

k2
e−�k2/3�t. �83�

n terms of the new variables �83�, the first integral I given above �82�, can be written as

I = ��w� +
�r − 1�

2r
k1w2�−r� �r − 1�

4r2 k1
2w4 + w��w� +

k1

2
w2�� , r � 0,2

4w�

k1w2 + 4w�
− log�k1w2 + 4w�� , r = 2. � �84�

n the other hand the transformation �83� modifies the equation �80� to the form

w� + k1ww� +
�r − 1�k1

2

2r2 w3 = 0, r � 0, and � =
d

dz
. �85�

Finally, for the case r=0, we have an equation of the form �vide case �ivb� in Table I�, ẍ
k2ẋ+k3x3+ �2/9�k2

2x=0, which is nothing but the force-free Duffing oscillator equation. Again
sing the transformation �83�, the associated time-dependent integral given in Table I can be
ewritten as

I =
w�2

2
+

k3

4
w4, r = 0. �86�

Though it is difficult to integrate the above time-independent first integrals �84�, as they are in
omplicated forms, one can easily check that Eq. �86� �r=0� can be integrated in terms of Jacobian
lliptic function14 and the case r=1 is already discussed as case �ii� in this section. For the other
ases one can give a Hamiltonian formulation as in Sec. III A 4 and write the corresponding
amiltonian as

H =�
���r − 1�p��r−2�/�r−1�

�r − 2�
− p� �r − 1�

2r
k1w2�� , r � 0,1,2

k1

4
w2p + log�4k1

p
� , r = 2

ep +
k1

2
w2, r = 1

p2

2
+

k3

4
w4, r = 0,

� �87�

here

p = �
1

r − 1
� �r − 1�

2r
k1w2 + w��1−r

, r � 0,1

log�w�� , r = 1

w�, r = 0.
� �88�

hus one is ensured of Liouville integrability of system �85� and so �80� for all values of r.
urther, following the analysis in the above Sec. III A 5, one can make a canonical transformation
vide Eqs. �42�–�44�� to standard nonlinear oscillator equations.

. Summary of results for the q=1 case

To summarize the results obtained in this section, we have identified six integrable cases in
q. �10�, among which four of them were already known in the literature and the remaining two

re new. In the following, we tabulate all of them for convenience.
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. Integrable equations already known in the literature

1� ẍ + �k1x + k2�ẋ +
k1

2

9
x3 +

k1k2

3
x2 + �1x = 0 �Eq. �55�� ,

2� ẍ + �k1x + k2�ẋ +
k1k2

3
x3 +

2k2
2

9
x = 0 �Eq. �67�� ,

3� ẍ + k2ẋ + k4x2 +
6k2

2

25
x = 0 �Eq. �74�� ,

4� ẍ + k3x3 + k4x2 + �1x = 0 �Eq. �33c�� ,

e note that the dynamics and certain transformation properties of Eq. �55� have been studied in
etail recently by three of the present authors in Refs. 9 and 11. In particular, we have shown that
his equation admits certain unusual nonlinear dynamics.20 The dynamics of Eqs. �67�, �74�, and
33c� can be found in Ref. 12.

. New integrable equations

1� ẍ + k1xẋ + k3x3 + �1x = 0 �Eq. �33b�� ,

2� ẍ + �k1x + k2�ẋ + k3x3 +
k1k2

3
x2 +

2k2
2

9
x = 0 �Eq. �80�� ,

here r2k3= ��r−1�k1
2� /2 and k1, k2, �1, and r are arbitrary parameters. We note that �33b� includes

he first equation of MEE hierarchy �6� as a subcase. Importantly, we showed that �33b� is a
amiltonian system �see Eq. �41�� and so it is Liouville integrable. Equation �80� can be trans-

ormed to the integrable Eq. �85�. Explicit general solution of certain special cases, namely, r
3 or 3

2 and r=−1 or 1
2 are reported in Ref. 21.

V. GENERALIZED FORCE FREE DVP FORM OF EQUATIONS

Let us now consider the case q=2 in Eq. �9� or equivalently �11�, that is,

ẍ = − ��k1x2 + k2�ẋ + k3x5 + k4x3 + �1x� 	 ��x, ẋ� �Eq. �11�� .

nterestingly, Eq. �11� includes another class of physically important nonlinear oscillators. For
xample, choosing k3=0 one can get the force-free Duffing-van der Pol oscillator equation. With
he choice k2, k4, �1=0, it coincides with the second equation in the MEE hierarchy equation.
quation �11� with the restriction k3=k1

2 /16, k4=k1k2 /4, and �1= �	0
2+ �k2

2 /4��, has been investi-
ated in a different perspective in Ref. 4. However, the general equation of the form �11� has never
een considered for an integrability test and so we perform the same here.

To identify integrals of motion and the general solution of Eq. �11� we again seek the PS
rocedure. As the calculations are similar to the q=1 case of Eq. �9� which was carried out in the
revious section, in the following we give only the important steps.

. The case It=0

By considering the same arguments given in Sec. III A 1, the null form S can be fixed easily

n the form
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S = −
��k1x2 + k2�ẋ + k3x5 + k4x3 + �1x�

ẋ
. �89�

he respective R equation becomes

ẋRx − ��k1x2 + k2�ẋ + k3x5 + k4x3 + �1x�Rẋ = ��k1x2 + k2� +
��k1x2 + k2�ẋ + k3x5 + k4x3 + �1x�

ẋ
�R .

�90�

o seek a particular form for R one may seek a suitable Ansatz. We assume R to be of the form
28� and investigate the system �90� as before. Following a similar procedure we find that a
ontrivial particular solution for �90� exists in the form

R =
ẋ

� �r − 1�
r

� k1

3
x3 + k2x� + ẋ�r , �91�

here r, k1, and k2 are arbitrary parameters and the remaining parameters, k3, k4, and �1, are fixed
y the relations

k3 =
�r − 1�

3r2 k1
2, k4 =

4�r − 1�
3r2 k1k2, �1 =

�r − 1�
r2 k2

2. �92�

urther, we confirmed the compatibility of the functions S and R with the extra constraint �24�
lso. We note that, unlike the earlier case, q=1, we do not get a nontrivial solution for the
arametric restriction k2, k4=0. The above restrictions fix Eq. �11� to the following specific forms:

�ia� ẍ + �k1x2 + k2�ẋ +
�r − 1�

3r2 k1
2x5 +

4�r − 1�k1k2

3r2 x3 +
�r − 1�k2

2

r2 x = 0, r � 0 �93a�

�ib� ẍ + k3x5 + k4x3 + �1x = 0, r = 0. �93b�

ow substituting �89� and �91� into �25� and evaluating the integrals, we obtain the first integrals
n the form

�ia� I1 = �ẋ +
�r − 1�

r
� k1

3
x3 + k2x��−r�ẋ�ẋ +

k1

3
x3 + k2x� +

�r − 1�
r2 � k1

3
x3 + k2x�2�, r � 0,2,

�94a�

�ib� I1 =
6ẋ

�6ẋ + 3k2x + k1x3�
− log�6ẋ + 3k2x + k1x3�, r = 2, �94b�

�ii� I1 =
ẋ2

2
+

k3

6
x6 +

k4

4
x4 +

�1

2
x2, r = 0. �94c�

Further, as in the q=1 case in Sec. III A 4, the integrals �94� can be recast into the Hamil-
onian form

�ia� H = � ��r − 1�p��r−2�/�r−1�

−
�r − 1�

p� k1x3 + k2x��, r � 0,1,2, �95a�

�r − 2� r 3
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�ib� H =
k2

2
xp +

k1

6
x3p + log�6

p
�, r = 2, �95b�

�ic� H = ep +
k1

3
x3 + k2x, r = 1, �95c�

�ii� H =
p2

2
+

k3

6
x6 +

k4

4
x4 +

�1

2
x2, r = 0, �95d�

here the corresponding canonical momenta, respectively, are

�ia,b� p =
1

�r − 1�
�ẋ +

�r − 1�
r

� k1

3
x3 + k2x���1−r�

, r � 0,1, �96a�

�ic� p = log ẋ, r = 1, �96b�

�ii� p = ẋ, r = 0. �96c�

ote that in the above the parameters r, k1, k2, k3, and �1 are all arbitrary. We also note here that
nlike the q=1 case discussed in Sec. III, so far we have been unable to find suitable canonical
ransformations for the above Hamiltonian systems so that the standard “potential” equation re-
ults. The problem is being further investigated.

. The case ItÅ0

Now let us study the case It�0. In this case S has to be determined from Eq. �22�, that is,

St + ẋSx − ��k1x2 + k2�ẋ + k3x5 + k4x3 + �1x�Sẋ = �2k1xẋ + 5k3x4 + 3k4x2 + �1� − �k1x2 + k2�S + S2.

�97�

s we did in the q=1 case of Eq. �9� we proceed to solve Eq. �97� with the same form of Ansatz
47�. Doing so we find that Eq. �97� admits nontrivial forms of solutions for certain specific
arametric restrictions. We report both the parametric values and their respective forms of S in
able II.

Now substituting the forms of S into Eq. �23� and solving the resultant equation we obtain the
orresponding forms of R. Once S and R are determined then one has to verify the compatibility
f this solution with the extra constraint �24�. Then, one can substitute the null forms and inte-
rating factors into �25� and construct the associated integrals of motion. We report the integrating
actors �R� and time-dependent integrals of motion �I� in Table II.

The remaining task is to derive the general solution and establish the complete integrability of
q. �11� for each parametric restriction. We again adopt the procedure given in Sec. III C and

ransform the time-dependent integrals into time-independent ones and integrate the latter and
educe the general solution. As the procedure is exactly the same we provide only the results in
he following.

Case (ia): k3=k1
2 /16, k4=k1k2 /4, k1, k2, and �1: arbitrary.

Substituting the parametric restrictions given above in Eq. �11�, we get

ẍ + �k1x2 + k2�ẋ +
k1

2

16
x5 +

k1k2

4
x3 + �1x = 0. �98�

e observed that the first integral of this case �i� �see Table II�, when rewritten, is nothing but the
ernoulli equation which can be integrated strightforwardly22 and leads to the general solution of
he form
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BLE II. Parametric restrictions, null forms �S�, integrating factors �R�, and time-dependent integrals of motion �I� of ẍ+ �k1x2+k2�ẋ+k3x5+k4x3+�1x=0 �identified with the assumed
nsatz form of S and R�.

Cases Parametric restrictions Null form �S� Integrating factor �R� Integrals of motion �I�

� k3 =
k1

2

16
, k4 =

k1k2

4

�k1, k2, �1: arbitrary�

k1

2
x3 − ẋ

x

xe�	t

�ẋ −
�k2 ± 	�

2
x +

k1

4
x3�2 �a� I = e�	t� 4ẋ + 2�k2 ± 	�x + k1x3

4ẋ + 2�k2 � 	�x + k1x3� ,

k2 ,�1�0, 	= �k2
2−4�1�1/2

�b� I = − t +
x

� k2

2
x +

k1x3

4
+ ẋ� , k2

2 = 4�1

i� k3 = 0, k4 =
k1

6
�k2 ± 	� ,

�k1, k2, �1: arbitrary�

1

2
�k2 � 	� + k1x2 e��k2±	�/2�t

I = �ẋ +
k2 � 	

2
x +

k1

3
x3�e��k2±	�/2�t,

	= �k2
2−4�1�1/2

ii� k1, k3 = 0, �1 =
2k2

2

9

�k2, k4: arbitrary� 
k2

3
ẋ +

k2
2

9
x + k4x3

ẋ +
k2

3
x � �ẋ +

k2

3
x�e�4/3�k2t I = e�4/3�k2t� ẋ2

2
+

k2

3
xẋ +

k2
2

18
x2 +

k4

4
x4�
023508
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TABLE II. �Continued.�

Cases Parametric restrictions Null form �S� Integrating factor �R� Integrals of motion �I�

va� k3 =
�r − 1�k1

2

3r2 , k4 =
k1k2

4
,

�1 =
3k2

2

16
, r � 0

�k1, k2, r: arbitrary�

k2

4
+ k1x2 +

4k3x5

�4ẋ + k2x�
�k2x + 4ẋ�e��3�2−r��/4�k2t

� k2

4
x + rk3x3 + ẋ�r

I = � k3

3
x6 + �ẋ +

k2

4
x��ẋ +

k2

4
x +

k1

3
x3��


�ẋ +
k2

4
x + rk3x3�−r

e��3�2−r��/4�k2t, r � 2

I =
3

4
k2t + log�6k2x + 4k1x3 + 24ẋ�

−
6�k2x + 4ẋ�

�6k2x + 4k1x3 + 24ẋ�
, r = 2

vb� k1=0 , k4=0,

�1 =
3k2

2

16
, r = 0

�k2, k3: arbitrary�


k2

4
ẋ +

k2
2

16
x + k3x5

ẋ +
k2

4
x � e�3k2/2�t�ẋ +

k2

4
x� I = e�3k2/2�t� ẋ2

2
+

k2

4
xẋ +

k2
2

32
x2 +

k3

6
x6�
023508
�2006

�
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x�t� = � 8k2�1�e	t − I1�2

I1
2k1k2�− k2 + 	� − e2	tk1k2�k2 + 	� + 8I2k2�1e�k2+	�t + 8I1k1�1e	t�1/2

, �99�

here 	=�k2
2−4�1. A subcase of Eq. �98�, namely, k2

2�4�1 has been studied by Smith4,23 who
howed that the corresponding equation of motion admits a damped oscillatory form of solution,
amely,

x�t� =
A cos�	0t + ��

�ek2t −
k1A

4k2
+

k1A

4�k2
2 + 4	0

2�
�2	0 sin 2�	0t + �� − k2 cos 2�	0t + ����1/2 , �100�

here 	0= 1
2
�4�1+k2

2 and �, A are arbitrary constants.
On the other hand for k2

2�4�1, the solution �99� becomes of dissipative type, having a
rontlike structure. In particular, for �1=0 we get a solution of the form

x�t� = � 2�k2�I1ek2t − 1�
�− k1 + 2k1I1ek2t�2 + k2I1tek2t� + 4k2I2e2k2t�1/2� . �101�

Case (ib): k3=k1
2 /16, k4=k1k2 /4, k2

2=4�1, k1 and k2: arbitrary.
In this case we get the general solution of the form from �101� as

x�t� =  2�I1 + t�2

2ek2tI2 −
k1

k2
3 �2 + I1

2k2
2 + 2k2t + k2

2t2 + 2I1k2�1 + k2t���
1/2

. �102�

ne may note that a subcase of this equation, namely, k2=�1=0, leads us to the second equation
n the MEE hierarchy �6� and the corresponding solution follows from Eq. �102� as

x�t� = �6� �I1 + t�2

6I2 + k1t�3I1
2 + 3I1t + t2�

�1/2

. �103�

his form exactly coincides with the solution �7� for l=2.
Case (ii): k3=0, k4= �k1 /6��k2±�k2

2−4�1�, k1, k2 and �1: arbitrary.
The repective equation of motion and the first integral are �see Table II�

ẍ + �k1x2 + k2�ẋ +
k1

6
�k2 ± �k2

2 − 4�1�x3 + �1x = 0, �104�

nd

I = �ẋ +
k2 � �k2

2 − 4�1

2
x +

k1

3
x3�e��k2±�k2

2−4�1�/2�t. �105�

quation �105� can be rewritten as an Abel’s equation in the form

ẋ = Ie��−k2��k2
2−4�1�/2�t − � k2 � �k2

2 − 4�1

2
�x −

k1

3
x3. �106�

t is not clear whether Eq. �106� can be explicitly integrated in general. However, for the special
ase �1= 3

16k2
2 it can be integrated as follows.

The restriction �1= 3
16k2

2 fixes the equation of motion �104� and the first integral �105� in the

orms
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ẍ + �k1x2 + k2�ẋ +
k1k2

4
x3 +

3k2
2

16
x = 0, �107�

nd

I = �ẋ +
k2

4
x +

k1

3
x3�e�3k2/4�t, �108�

espectively.
Now following our procedure given in Sec. III C one arrives at the general solution1 as

z + z0 = −
a

3I
�1

2
log� �w − a�2

w2 + aw + a2� + �3 arctan� − w�3

2a + w
�� , �109�

ith w=xe�k2/4�t, z=−�2/k2�e−k2/2t, and a=�3 3I /k1 and z0 is the second integration constant. Re-
riting w and z in terms of old variables one can get the explicit solution.

Case (iii): k1, k3=0, �1=2k2
2 /9, k2 and k4: arbitrary.

The parametric restrictions given above fix the equation of motion �11� to the force-free
uffing oscillator, namely, ẍ+k2ẋ+k4x3+ �2k2

2 /9�x=0. We have already discussed the general so-
ution of this equation in Sec. III �vide case �iv��.

Case (iv): k3= ��r−1�k1
2� /3r3, k4=k1k2 /4, �1=3k2

2 /16, k1, k2, and r: arbitrary.
The equation of motion turns out to be

ẍ + �k1x2 + k2�ẋ +
�r − 1�k1

2

3r2 x5 +
k1k2

4
x3 +

3k2
2

16
x = 0, r � 0. �110�

ewriting the associated first integral I, given in case �iv� in Table II, in the form �50�, we get

I =�
��r − 1�k1

2

9r2 �xe�k2/4�t�6 +
d

dt
�xe�k2/4�t�� d

dt
�xe�k2/4�t�e�k2/2�t +

k1

3
�xe�k2/4�t�3�e�k2/2�t�


 � d

dt
�xe�k2/4�t�e�k2/2�t +

k1�r − 1�
3r

�xe�k2/4�t�3�−r

, r � 0,2,

6
d

dt
�xe�k2/4�t�e�k2/2�t

k1�xe�k2/4�t�3 + 6
d

dt
�xe�k2/4�t�e�k2/2�t

− log�k1�xe�k2/4�t�3 + 6
d

dt
�xe�k2/4�t�e�k2/2�t� , r = 2

1

2
� d

dt
�xe�k2/4�t��2

ek2t +
k3

6
�xe�k2/4�t�6, r = 0

�
�111�

nd identifying the dependent and independent variables from �111� and the relations �51�, we
btain the transformation

w = xe�k2/4�t, z = −
2

k2
e−�k2/2�t. �112�
n terms of the new variables �112� the first integral I given above �111�, can be written as
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I =��
w� +

�r − 1�
3r

k1w3�−r�w��w� +
k1

3
w3� +

�r − 1�
9r2 k1

2w6� , r � 0,2

6w�

k1w3 + 6w�
− log�k1w3 + 6w�� , r = 2,

w�2

2
+

k3

6
w6, r = 0.

� �113�

On the other hand substituting the transformation �112� into the equation of motion �110�, we
et

w� + k1w2w� +
�r − 1�k1

2

3r2 w5 = 0, r � 0, � =
d

dz
. �114�

n the case r=0, we have an equation of the form �vide case �ivb� in Table II�

ẍ + k2ẋ + k3x5 +
3k2

2

16
x = 0. �115�

e note that Eq. �114� is the l=2 case of Eq. �6�. As we mentioned in the Introduction, the general
olution of this equation can be obtained only for certain specific choices, namely, ��r
1�k1

2� /3r2=1/16. This in turn gives r=4k1 or 4
3k1. The respective solutions for these values of r

f Eq. �114� can be fixed from Eq. �7� with l=2. The other cases do not seem to be amenable to
xplicit integration. However, all of them can be recast in the Hamiltonian form as we see below.

As the first integrals �113� are now “time” independent ones, one can give a Hamiltonian
ormalism for all the integrals �113� by following the ideas given in Sec. III A 4. Doing so we
btain

H =�
���r − 1�p��r−2�/�r−1�

�r − 2�
−

�r − 1�
3r

k1w3p� , r � 0,1,2,

k1

6
w3p + log�6

p
� , r = 2

ep +
k1

3
w3, r = 1

p2

2
+

k3

6
w6, r = 0

� �116�

here

p =�
1

�r − 1��w� +
�r − 1�

3r
k1w3��1−r�

, r � 0,1

log w�, r = 1

p2

2
+

k3

6
w6, r = 0. � �117�

n this sense these cases may be considered as Liouville integrable systems. Finally, the r=0 case
n Eq. �113� can be integrated in terms of Jacobian elliptic function �see for example in Ref. 24�.
gain, here, we have not been able to identify canonical transformations which can lead to the
dentification of suitable potential equations.
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. Summary of results in q=2 case

To summarize the results obtained for the q=2 case, we have identified six integrable cases in
q. �11�, among which three of them were already known in the literature and the remaining three
re new. In the following, we tabulate both of them.

. Integrable equations already known in the literature

1� ẍ + �k1x2 + k2�ẋ +
k1k2

4
x3 +

3k2
2

16
x = 0 �Eq. �107�� ,

2� ẍ + k2ẋ + k3x3 +
2k2

2

9
x = 0, �118�

3� ẍ + k3x5 + k4x3 + �1x = 0 �Eq. �93b�� .

e mention that Eq. �107� is nothing but the force-free DVP whose integrability is established in
ef. 1 and Eq. �118� is nothing but the force-free Duffing oscillator.12,14

. New integrable equations

1� ẍ + �k1x2 + k2�ẋ + k3x5 +
4�r − 1�k1k2

3r2 x3 +
�r − 1�k2

2

r2 x = 0, r � 0 �Eq. �93a�� ,

2� ẍ + �k1x2 + k2�ẋ +
k1

2

16
x5 +

k1k2

4
x3 + �1x = 0 �Eq. �98�� ,

3� ẍ + �k1x2 + k2�ẋ + k3x5 +
k1k2

4
x3 +

3k2
2

16
x = 0 �Eq. �110�� ,

here r2k3= ��r−1�k1
2� /3 and k1, k2, �1, and r are arbitrary parameters. We proved that Eq. �93a�

s a Liouville integrable one. As far as Eq. �98� is concerned we derived the general solution for
rbitrary values of k1, k2, and �1. Finally, for Eq. �110�, though we identified only one time-
ependent integral, we have demonstrated that it can be transformed into a time-independent
amiltonian, thereby ensuring its Liouville integrability.

. EXTENDED PRELLE-SINGER METHOD TO GENERALIZED EQ. „9…

One can investigate the integrability properties of Eq. �9� by considering the cases q
3,4 ,5 , . . ., one by one and classifying the integrable equations. Since the procedure and the
athematical techniques in exploring the integrating factors �R�, null forms �S�, first integrals �I�,

nd general solution are the same in each case we do not consider each case in detail. We
traightaway move to the case q=arbitrary, that is, q�R and not necessarily an integer, and
resent the outcome of our investigations.

As we did earlier, we consider the cases It=0 and It�0 separately for the choice q
arbitrary also. First let us consider the case It=0.

. The case It=0

By considering the same arguments given in Sec. III A 1, the null form S and the integrating
actor R can be fixed easily in the form

S = −
��k1xq + k2�ẋ + k3x2q+1 + k4x1+q + �1x�

˙
,

x
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R =
ẋ

� �r − 1�
r

� k1

�q + 1�
xq+1 + k2x� + ẋ�r , �119�

here k1 and k2 are arbitrary and the remaining parameters, k3, k4, and �1, are related to the
arameters k1 and k2 through the relations

k3 =
�r − 1�

r2 �q + 1�k̂1
2, k4 =

�r − 1�
r2 �q + 2�k̂1k2, �1 =

�r − 1�
r2 k2

2, �120�

here k̂1=k1 / �q+1�. The above restrictions fix Eq. �9� to the following specific forms:

�ia� ẍ + ��q + 1�k̂1xq + k2�ẋ +
�r − 1�

r2 ��q + 1�k̂1
2x2q+1

+ �q + 2�k̂1k2xq+1 + k2
2x� = 0, r � 0 �Eq. �15�� ,

�ib� ẍ + k3x2q+1 + k4xq+1 + �1x = 0, r = 0. �121�

ow substituting �119� into �25� and evaluating the integrals, we obtain the first integrals of the
orm

�ia� I1 = �ẋ +
�r − 1�

r
�k̂1xq+1 + k2x��−r�ẋ�ẋ + k̂1xq+1 + k2x� +

�r − 1�
r2 �k̂1xq+1 + k2x�2�, r � 0,2,

�122a�

�ib� I1 =
ẋ

�ẋ +
k2

2
x +

k̂1

2
xq+1� − log�ẋ +

k2

2
x +

k̂1

2
xq+1�, r = 2, �122b�

�ii� I1 =
ẋ2

2
+

k3

2�q + 1�
x2�q+1� +

k4

�q + 2�
xq+2 +

�1

2
x2, r = 0. �122c�

Further, using the above forms of the first integrals, one can show that the equation of motion
9�, with the parametric restrictions �120�, can also be derived from the Hamiltonians

�ia� H = � ��r − 1�p��r−2�/�r−1�

�r − 2�
−

�r − 1�
r

p�k̂1xq+1 + k2x��, r � 0,1,2, �123a�

�ib� H =
k2

2
xp +

k̂1

2
xq+1p + log�2�q + 1�

p
�, r = 2 �123b�

�ic� H = ep + k̂1xq+1 + k2x, r = 1, �123c�

�ii� H =
p2

2
+

k3

2�q + 1�
x2�q+1� +

k4

�q + 1�
xq+1 +

�1

2
x2, r = 0, �123d�

here the corresponding canonical momenta, respectively, are

�ia,b� p =
1 �ẋ +

�r − 1�
�k̂1xq+1 + k2x���1−r�

, r � 0,1, �124a�

�r − 1� r
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�ic� p = log ẋ, r = 1, �124b�

�ii� p = ẋ, r = 0. �124c�

With the above Hamiltonian formulation, for the parametric set �120�, the integrability of the
ssociated equation of motion is assured for these parametric cases through Liouville theorem.

. The case ItÅ0

We use the same Ansatz and ideas which we followed for the q=1 and q=2 cases to determine
he forms of S and R. As the procedure is exactly the same as in the earlier cases, we present the
arametric restrictions and the respective form of expressions of the integrating factors, null
orms, and integrals of motions in Table III without further discussion.

Since we derived only one integral, which is also a time-dependent one for each parametric
estriction, we need to integrate each one of them further and obtain the second integration
onstant in order to prove the complete integrability of each of the cases reported in Table III. In
he following we deduce the second integral and general solution by utilizing the procedure given
n Sec. III C.

Case (ia): k3=k1
2 / �q+2�2, k4=k1k2 / �q+2�, k1, k2, and �1: arbitrary.

We have an equation of the form

ẍ + ��q + 2�k̂1xq + k2�ẋ + k̂1
2x2q+1 + k̂1k2xq+1 + �1x = 0 �Eq. �13�� ,

here k1= �q+2�k̂1. The corresponding first integral given in Table III is nothing but the Bernoulli
quation which can be solved using the standard method.22 The general solution turns out to be

x�t� = �e	t − I1��e�q/2��k2+	�t�I2 + k̂1q
 � e	t − I1

e�1/2��k2+	�t�q

dt��−1/q

, �125�

here 	=�k2
2−4�1. We note here that a subcase of the above, namely, k2

2�4�1, has been studied
y Smith,4 who had shown that the corresponding system admits the general solution of the form

x�t� = A cos�	0t + ��e−�k2/2�t�1 + qk̂1A
 e�−qk2/2�t cosq�	0t + ��dt�−1/q

, �126�

here 	0= 1
2
�4�1+k2

2 and �, A are arbitrary constants. For k2
2�4�1, the solution become a dissi-

ative type/frontlike structure. In particular, for �1=0 the general solution takes the form

x�t� = �ek2tI1 − 1��eqk2t�I2 + k̂1q
 �I1 − e−k2t�qdt��−1/q

. �127�

Case (ib): k3=k1
2 /16, k4=k1k2 /4, k2=4�1, k1 and k2: arbitrary.

A general solution for this case can be fixed from �127� as

x�t� = �I1 + t�e−�k2/2�t�I2 + qk̂1
 e−�qk2/2�t�I1 + t�qdt�−1/q

. �128�

n the other hand the general solution for the parametric choice k2, �1=0 turns out to be

x�t� = � �q + 1��I1 + t�q

k̂1q�I1 + t�q+1 + �q + 1�I2
�1/q

, �129�

hich exactly coincides with the result �7� obtained by Feix et al.3 for integer q�=l� values.
Case (ii): k3=0, k4= �k1 / �2�q+1����k2±�k2

2−4�1�, k1, k2 and �1: arbitrary.

The associated equation of motion and the first integral are �see Table III�

                                                                                                            



TABLE III.
form of S an

Cases

�i�

�ii�

�iii�
Parametric restrictions, null forms �S�, integrating factors �R�, and time-dependent integrals of motion �I� of ẍ+ �k1xq+k2�ẋ+k3x2q+1+k4xq+1+�1x=0 �identified with the assumed Ansatz
d R�.

Parametric restrictions Null form �S� Integrating factor �R� Integrals of motion �I�

k3 =
k1

2

�q + 2�2 , k4 =
k1k2

�q + 2�

�k1, k2, �1: arbitrary�

� qk1

�q + 2�
xq+1 − ẋ�
x

xe�	t

�ẋ −
�k2 ± 	�

2
x +

k1

�q + 2�
xq+1�2

�a� I = e�	t ẋ −
�− k2 � 	�

2
x +

k1

q + 2
xq+1

ẋ −
�− k2 ± 	�

2
x +

k1

q + 2
xq+1 �

k2 ,�1�0, 	= �k2
2−4�1�1/2

�b� I = − t +
x

� k2

2
x +

k1xq+1

q + 2
+ ẋ� , k2

2 = 4�1

k4 =
k1�k2 ± 	�
2�q + 1�

, k3 = 0,

�k1, k2, �1: arbitrary�

1

2
�k2 � 	� + k1xq, e��k2±	�/2�t

I = �ẋ +
k2 � 	

2
x +

k1

�q + 1�
xq+1�e��k2±	�/2�t,

	= �k2
2−4�1�1/2

k1,k3 = 0, �1 =
2�q + 2�k2

2

�q + 4�2

�k2, k4: arbitrary�

2k2ẋ

�q + 4�
+

4k2
2x

�q + 4�2 + k4xq+1

�ẋ +
2k2x

�q + 4��
�ẋ +

2k2x

�q + 4��e��2�q+2��/��q+4���k2t I = e��2�q+2��/��q+4���k2t� ẋ2

2
+

2k2xẋ

�q + 4�
+

2k2
2x2

�q + 4�2 +
k4xq+2

�q + 2��
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Cases

�iv�a

�iv�b
TABLE III. �Continued.�

Parametric restrictions Null form �S� Integrating factor �R� Integrals of motion �I�

k3 =
�r − 1�k1

2

�q + 1�r2 ,

k4 =
k1k2

�q + 2�
,

�1 =
�q + 1�k2

2

�q + 2�2 , r � 0

�k1, k2, r: arbitrary�

k2

�q + 2�
+ k1xq +

k3x2q+1

�ẋ +
k2

�q + 2�
x�

�k2x + �q + 2�ẋ�e���q+1��2−r��/��q+2���k2t

� k2

�q + 2�
x + rk3xq+1 + ẋ�r

I = � k3x2�q+1�

�q + 1�
+ �ẋ +

k2x

q + 2
��ẋ +

k2x

q + 2
+

k1xq+1

q + 1
��


� k2

�q + 2�
x + rk3xq+1 + ẋ�−r

e���q+1��2−r��/��q+2���k2t, r � 2

I =
q + 1

q + 2
k2t + log�k1xq+1 + 2�q + 1��ẋ +

k2

q + 2
x��

− 2�q + 1��ẋ +
k2

q + 2
x�

k1xq+1 + 2�q + 1��ẋ +
k2

q + 2
x��, r = 2

k1=0 , k4=0,

�1 =
�q + 1�k2

2

�q + 2�2 , r = 0

�k2, k3: arbitrary�

k2

�q + 2�
+

k3x2q+1

�ẋ +
k2

�q + 2�
x� e���2q+2�k2�/��q+2���t�ẋ +

k2

�q + 2�
x� I = � ẋ2

2
+

k2xẋ

�q + 2�
+

k2
2x2

2�q + 2�2 +
k3x2q+2

�2q + 2�
�e���2q+2�k2�/�q+2��t
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ẍ + ��q + 1�k̂1xq + k2�ẋ +
k̂1

2
�k2 ± �k2

2 − 4�1�xq+1 + �1x = 0, �130�

nd

I = �ẋ +
k2 � �k2

2 − 4�1

2
x + k̂1xq+1�e��k2±�k2

2−4�1�/2�t, �131�

here k1= �q+1�k̂1. As in the earlier cases, that is, q=1 and q=2, we are able to integrate the first

ntegral �131� explicitly only for a specific parametric restriction, namely, �1= �q+1�k̂2
2, where

2= �q+2�k̂2. In this case the equation of motion �130� and the first integral, Eq. �131�, can be
ecast in the form

ẍ + �k1xq + �q + 2�k̂2�ẋ + k1k̂2xq+1 + �q + 1�k̂2
2x = 0 �Eq.�12�� ,

nd

I = �ẋ + k̂2x + k̂1xq+1�e�q+1�k̂2t, �132�

espectively. Now comparing �132� with �50�, we get

I = eqk̂2t� d

dt
�xek̂2t�� + k̂1�xek̂2t��q+1�. �133�

Next, identifying the dependent and independent variables from �133� using the relations �51�,
e obtain the transformation

w = xek̂2t, z = −
1

qk̂2

e−qk̂2t. �134�

sing the transformation �134�, the first integral �133� can be rewritten in the form

I = w� + k̂1w�q+1�, �135�

hich in turn leads to the solution by an integration, that is,

z − z0 =
 dw

I − k̂1w�q+1�
, �136�

here z0 is an arbitrary constant. Solving Eq. �136�, we get25

z − z0 =
1

Ig1/�q+1��
−

2

q + 1 �
i=0

�q−1�/2

Pi cos
2i

q + 1
 +

2

q + 1 �
i=0

�q−1�/2

Qi sin
2i

q + 1


+
1

q + 1
ln

�1 + w�
�1 − w�

,q-a positive odd number,

−
2

q + 1 �
i=0

�q−2�/2

Ri cos
2i + 1

q + 1
 +

2

q + 1 �
i=0

q−2
2

Ti sin
2i + 1

q + 1


+
1

q + 1
ln�1 + w�, q-a positive even number,

� �137�

ˆ
here g=k1 / I and
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Pi =
1

2
ln�w2 − 2w cos

2i

q + 1
 + 1�, Qi = arctan�w − cos

2i

q + 1


sin
2i

q + 1
 � ,

Ri =
1

2
ln�w2 + 2w cos

2i + 1

q + 1
 + 1�, Ti = arctan�w + cos

2i + 1

q + 1


sin
2i + 1

q + 1
 � .

ewriting w and z in terms of old variables, one can get the explicit solution.
Case (iii): k1, k3=0, �1= �2�q+2�k2

2� / ��q+4�2�, k2 and k4: arbitrary.
The parametric choice given above fixes the equation of motion of the form

ẍ + �q + 4�k̂2ẋ + k4x�q+1� + 2�q + 2�k̂2
2x = 0 �Eq.�14�� ,

here k2= �q+4�k̂2. Rewriting the first integral I given in case �iii� in Table III, in the form �49�,
e get

I =
1

2
�ẋ + 2k̂2x�2e2�q+2�k̂2t +

k4x�q+2�

�q + 2�
e2�q+2�k̂2t. �138�

ow splitting the first term in Eq. �138� further in the form of �50�,

I = �eqk̂2t d

dt� x
�2

e2k̂2t��2

+
2��q+2�/2�k4

�q + 2� � x
�2

e2k̂2t��q+2�

, �139�

nd identifying the dependent and independent variables from �139� using the relations �51�, we
btain the transformation

w =
x
�2

e2k̂2t, z = −
1

qk̂2

e−qk̂2t. �140�

sing the transformation �140�, the first integral �138� can be brought to the form

I = w�2 +
2��q+2�/2�k4

�q + 2�
w�q+2�. �141�

eparating the dependent and independent variables and integrating the resultant equation we get

z − z0 =
 dw

�I − k̂4w�q+2�
, �142�

here k̂4= ��2�q+2�/2� / ��q+2���k4 and z0 is an arbitrary constant.
Case (iv): k3= ��r−1�k1

2� / ��q+1�r2�, k4=k1k2 / �q+2�, �1= ��q+1�k2
2� / ��q+2�2�, k1, k2, and r:

rbitrary.
The equation of motion in this case turns out to be

ẍ + ��q + 1�k̂1xq + �q + 2�k̂2�ẋ + �q + 1�� �r − 1�
r2 k̂1

2x2q + k̂1k̂2xq + k̂2
2�x = 0, r � 0 �Eq. �16�� ,

here k1= �q+1�k̂1, k2= �q+2�k̂2. Rewriting the associated first integral I, given in case �iv� in

able III, in the form �50�, we get
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I =�
��r − 1�k̂1

2

r2 �xek̂2t�2�q+1� +
d

dt
�xek̂2t�� d

dt
�xek̂2t�eqk̂2t + k̂1�xek̂2t�q+1�eqk̂2t� ,


� d

dt
�xek̂2t�eqk̂2t +

k̂1�r − 1�
r

�xek̂2t�q+1�−r

, r � 0,2

d

dt
�xek̂2t�eqk̂2t

k̂1

2
�xek̂2t�q+1 +

d

dt
�xek̂2t�eqk̂2t

− log� k̂1

2
�xek̂2t�q+1 +

d

dt
�xek̂2t�eqk̂2t� , r = 2

1

2
� d

dt
�xek̂2t��2

e2qk2t +
k3

2�q + 1�
�xek̂2t�2�q+1�, r = 0.

�
�143�

dentifying the dependent and independent variables from �143� and the relations �51�, we obtain
he transformation

w = xek̂2t, z = −
1

qk̂2

e−qk̂2t. �144�

ubsituting the transformation �144� into �16�, one obtains

w� + �q + 1�k̂1wqw� + �q + 1�
�r − 1�

r2 k̂1
2w2q+1 = 0, r � 0, � =

d

dz
. �145�

n terms of the new variables �144�, the time-dependent first integral �143� can be transformed into
ime-independent ones of the form

I =�
�w� +

�r − 1�
r

k̂1wq+1�−r�w��w� + k̂1wq+1� +
�r − 1�

r2 k̂1
2w2�q+1�� , r � 0,2,

w�

w� +
k̂1

2
wq+1

− log�w� +
k̂1

2
wq+1� ,

r = 2,

w�2

2
+

k3

2�q + 1�
w2�q+1�, r = 0.

� �146�

nce again one can deduce the Hamiltonians in the form

H =�
���r − 1�p��r−2�/�r−1�

�r − 2�
−

�r − 1�
r

k̂1wq+1p� , r � 0,1,2,

1

2
k̂1wq+1p + log�2�q + 1�

p
� , r = 2,

ep + k̂1wq+1, r = 1,

p2

2
+

k3

2�q + 1�
w2�q+1�, r = 0,

� �147�
ith
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p = �
1

�r − 1�
�w� +

�r − 1�
r

k̂1wq+1��1−r�

, r � 0,1

log�w�� , r = 1

w�, r = 0,
� �148�

hereby ensuring Liouville integrability of Eq. �16�.

. Summary of results in q=arbitrary case

To conclude the integrability of Eq. �9�, we have established the fact that the following
quations are integrable:

1� ẍ + �k1xq + �q + 2�k2�ẋ + k1k2xq+1 + �q + 1�k2
2x = 0 �Eq. �12�� ,

2� ẍ + ��q + 2�k1xq + k2�ẋ + k1
2x2q+1 + k1k2xq+1 + �1x = 0 �Eq. �13�� ,

3� ẍ + �q + 4�k2ẋ + k4xq+1 + 2�q + 2�k2
2x = 0 �Eq. �14�� ,

4� ẍ + ��q + 1�k1xq + k2�ẋ +
�r − 1�

r2 ��q + 1�k1
2x2q + �q + 2�k1k2xq + k2

2�x = 0,

r � 0 �Eq. �15�� ,

5� ẍ + ��q + 1�k1xq + �q + 2�k2�ẋ + �q + 1��k3x2q + k1k2xq + k2
2�x = 0 �Eq. �16�� ,

here r2k3= �r−1�k1
2 and k1, k2, k4, �1, and r are arbitrary parameters �for simplicity we have

emoved the hats in the ki’s, i=1,2, in Eqs. �12�–�16��. The significance and newness of Eqs.
12�–�16� were already pointed out in Sec. I B.

I. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated the integrability properties of Eq. �9� and shown that it
dmits a large class of integrable nonlinear systems. In fact, many classical integrable nonlinear
scillators can be derived as subcases of our results. One of the important outcomes of our
nvestigation is that the entire class of Eq. �6� can be derived from a conservative Hamiltonian
vide Eq. �123��, even though the system deceptively looks like a dissipative equation.

From our detailed analysis we have shown that Eq. �9� admits both conservative Hamiltonian
ystems and dissipative systems, depending on the choice of parameters. As far as the former is
oncerned we have deduced the explicit forms of the Hamiltonians for the respective equations. In
act, for the case q=1, we have constructed suitable canonical transformations and transformed the
quations into conservative nonlinear oscillator equations. However, the canonical transformations
or the conservative Hamiltonian systems for the cases q=2, . . ., arbitrary, if they exist at all, still
emain to be obtained. Exploring the classical dynamics underlying these conservative Hamil-
onian systems is also of considerable interest for further study. As far as dissipative systems are
oncerned we have not only shown that Eq. �9� contains the well-known force-free Helmholtz,
uffing, and Duffing–van der Pol oscillators but also have several integrable generalizations
hich are another important outcome of our investigations. The study of chaotic dynamics of

hese nonlinear oscillators under further perturbations is one of the current topics23 in the contem-
orary literature in nonlinear dynamics. In principle one can extend such analysis to the above-
eneralized equations as well.

In this paper, we also have not touched the question of linearizability of the integrable cases

f Eq. �9�. In our earlier work, we have shown that Eq. �55� is linearizable to the free particle
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quation, d2w /dz2=0. Of course one can show that this is the only linearizable equation in �9�
hrough invertible point transformation.9,11,19 However, linearizablity of other integrable cases
hrough more general transformations still remains to be explored.

In addition to the above, we have also carried out the Painlevé singularity structure analysis of
q. �9� and compared the results obtained through both the methods. The details of this will be
ublished elsewhere.

As we mentioned at the end of Sec. II, the crux of the PS procedure lies in finding the explicit
olutions satisfying all three determining equations �22�–�24�. In this paper we have considered
nly certain specific Ansatz forms to determine the null forms S, and integrating factors R. As a
onsequence only a specific class of integrable equations have been derived. It is not clear whether
he Ansatz forms used in this paper exhaust all possible integrable cases of Eq. �9�. One needs to
onsider more generalized Ansatz forms, and if possible to solve Eqs. �22�–�24� for the most
eneral forms of R and S, and try to identify all possible integrable cases underlying Eq. �9�. This
s being explored further.
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We consider a �-deformation of the Segal-Bargmann transform, which is a unitary
map from a �-deformed quantum configuration space onto a �-deformed quantum
phase space �the �-deformed Segal-Bargmann space�. Both of these Hilbert spaces
have canonical orthonormal bases. We obtain explicit formulas for the Shannon
entropy of some of the elements of these bases. We also consider two reverse
log-Sobolev inequalities in the �-deformed Segal-Bargmann space, which have
been proved in a previous work, and show that a certain known coefficient in them
is the best possible. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2178583�

. INTRODUCTION

In this paper we will study a certain entropy in the context of a deformation of quantum
echanics called �-deformed Segal-Bargmann analysis. This latter we will describe further on. So

o start we would like to discuss the role of entropy in quantum mechanics in order to place this
ork in a broader context. �The text by Ohya and Petz23 is a good general reference for this.� First
f all, the concept of entropy comes from thermodynamics as developed in the 19th century.
ntropy was later interpreted in terms of the classical statistical mechanics of the constituent
ntities �molecules� of matter. This led to the idea that entropy measures the uncertainty �meaning
lack of complete knowledge or information� on a microscopic scale of a macroscopic thermo-

ynamic state. After quantum mechanics was formulated as a physical theory by Schrödinger and
eisenberg, the concept of entropy was soon introduced into this new theory in Ref. 37 by von
eumann, who took thermodynamics as a source of intuition.

The point was to define an entropy of a quantum mechanical state which von Neumann had
efined as a positive �and so self-adjoint� trace class operator � with Tr �=1. This operator could
n turn be expanded by the spectral theorem in terms of an orthonormal basis ��k�, depending on
, of the underlying Hilbert space of the quantum system under consideration as �
�k�k��k	
�k�, where ��k� is the set of eigenvalues of � and ��k	
�k� is the Dirac notation for the
rthogonal projection whose range in the one-dimensional subspace spanned by the normalized
igenvector �k of �. The hypotheses on � imply that �k�0 and �k�k=1.

The pure states in quantum mechanics are usually thought of as the vectors � in the Hilbert
pace with ���=1, modulo the equivalence relation �1��2 provided that �1=ei��2 for some real
umber �. In the present context, this is the same as taking the pure states to be the orthogonal
rojections ��	
�� with � satisfying ���=1. Physical intuition says that any two pure states should
ave the same entropy, and since entropy in thermodynamics is only defined up to an overall
dditive constant �as is voltage in electrostatics�, one can take the entropy of the pure states to be
ero. These considerations, among others, led von Neumann to define the entropy of a general

�Electronic mail: cpita@mx.up.mx
�
Electronic mail: sontz@cimat.mx
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tate � �also called a density matrix or a mixed state� as −�k�k log �k, using the above notation.
We set 0 log 0=0 by convention.�

Some years later while developing a mathematical theory of communication Shannon �in Ref.
1� introduced a similar definition for the entropy of a probability distribution. Specifically, for a
iscrete probability space S with probability pk for each k�S �so that pk�0 and �k�Spk=1�, the
ntropy defined by Shannon is −�k�Spk log pk, the same formula as used by von Neumann but in
nother context �and with another notation�. These two entropies, as well as natural adaptations of
hem to more general situations, have been used in many applications in physics, mathematics,
omputer science and so on. Note that our Definition 2.5 is one such adaptation. �We dropped the
inus sign in Definition 2.5 to obtain a positive quantity, so that technically speaking what we

hen have is an “information” rather than an “uncertainty” or “entropy.”�
However, there also arise situations in quantum mechanics where one is led to nontrivial

ntropies of pure states. To our knowledge the first instance of this in the literature occurs in an
rticle �Ref. 14� by Hirschman in 1957, where the interest is in understanding the relation between
function f and its Fourier transform Ff in terms of an “information” content. Under some

ypotheses on f �L2�R�, Hirschman shows that

ESh��f �2� + ESh��Ff �2� � 0,

here ESh�g�=Rdx g�x�log g�x� is the appropriate Shannon entropy of a function g�0 in this
ontext and Ff�k�=Rdx e−2	ikxf�x� is the Fourier transform of f . Moreover, Hirschman conjec-
ured �and many years later in 1975 Beckner5 proved� that

ESh��f �2� + ESh��Ff �2� � log 2 − 1,

here the constant on the right-hand side is now optimal. From this second stronger version
irschman proved the Heisenberg uncertainty principle in the usual form �due actually to Kennard

n Ref. 15� that says that the product of the variances of �f �2 and �Ff �2 has a positive lower bound,
r explicitly that

Var��f �2�Var��Ff �2� �
1

16	2

or our definition of the Fourier transform and with �f�L2 =1. Consequently, entropy-entropy in-
qualities of the sort proved by Hirschman and Beckner are often called entropic uncertainty
elations. �See Chap. 16 in Ref. 23.�

Later in 1975, Gross10 studied log-Sobolev inequalities, which are a type of energy-entropy
nequality, again involving a Shannon entropy of a pure state as in Definition 2.5. These inequali-
ies arose in the mathematical study of quantum field theory �see Ref. 8� and have found many
pplications in quantum theory, statistical mechanics, analysis, probability, etc. A recent survey
ith many references to the literature in statistical mechanics and probability is Ref. 11. It turns
ut that log-Sobolev inequalities are related to hypercontractivity, with this relation going back to
ederbush’s work8 in 1969. For a rather comprehensive review of the literature on hypercontrac-

ivity up to the time of its publication in 1992, see Ref. 7.
Using the article14 of Hirschman in Fourier analysis as an inspiration, but also keeping in

ind the ground-breaking article �Ref. 10�, Sontz in Ref. 33 began a study of Segal-Bargmann
nalysis, and in particular the Segal-Bargmann transform, in terms of a Shannon entropy that
rises naturally in that context. This led to new Hirschman-type inequalities �that is, entropic
ncertainty relations� and log-Sobolev inequalities, but also rather surprisingly to a reverse log-
obolev inequality, where the Shannon entropy times a positive constant �together with a norm

erm� dominates the energy. �In a log-Sobolev inequality, the Shannon entropy is bounded above
y a positive constant times the energy.� For a review of these results plus a number of open
roblems and more references, see Ref. 35.

More recently, Sontz and collaborators �in Refs. 2, 3, and 24� have established similar in-

qualities in �-deformed Segal-Bargmann analysis, where the entropy is again an adaptation of
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hannon entropy to the theory. The present paper is a continuation of those works. We would like
o understand better these inequalities and, in particular, their optimal constants. The results of
ec. VI are one step in that direction. In this paper we propose to study the entropies of the
anonical basis elements of the �-deformed Hilbert spaces. While it remains an open problem
hether these functions are those that give us the optimal constants of the various inequalities that
e have proved in our previous works, it is an interesting problem in its own right to evaluate

hese entropies since they are natural quantities in the theory. A minor surprise is that Euler’s
onstant appears, though this constant has a way of “spontaneously” arising in many situations in
nalysis. This extends earlier work by Sontz in Ref. 34 to the context of another quantization
cheme of classical mechanics, which we will call �-deformed quantum mechanics and which we
ill explain shortly.

As a final comment about entropy in quantum mechanics, let us note that the Shannon entropy
e are using is closely related to the Wehrl entropy, as introduced in Ref. 39. The idea of Wehrl

n our terminology is to take first the Segal-Bargmann transform �described below� of a pure state
and then to calculate the Shannon entropy of the resulting state � in the Segal-Bargmann space.

However, his formula is different since he uses a related coherent state transform.� This is then
alled the classical entropy of the state �. �This can also be done for mixed states.� We prefer
owever to refer to this as the Shannon entropy of �, since � has its own Shannon entropy, which
s not in general equal to the Shannon entropy of �. �See Ref. 33.� We note that Lieb in Ref. 18
roves a reasonable conjecture of Wehrl concerning an inequality for the Wehrl entropy �see Ref.
9�, and that he also makes a conjecture about a similar sort of inequality for a finite-dimensional
ituation involving the Bloch coherent states for spin. Also this conjectured inequality involves a
ehrl entropy, so that it should be amenable to our point of view. However, despite some recent

artial results �Refs. 6 and 28�, this tantalizing conjecture remains unsolved. And this even though
ieb proved in Ref. 18 the supposedly harder conjecture of Wehrl �in an infinite-dimensional
ontext� almost 30 years ago.

We now review some structures in usual quantum mechanics as preparation for discussing a
eformation of it. Two of the basic operators in quantum mechanics for a single one-dimensional
article are the position operator Q and the momentum operator P, which can be represented as
��x�=x��x� and P��x�=−i�d /dx���x�, acting on complex-valued functions � belonging to �a
ense subspace of� the Hilbert space L2�R ,dx�. �This space is commonly thought of as a quantum
onfiguration space.� It turns out that P and Q are self-adjoint operators in L2�R ,dx� and that they
atisfy the commutation relation �P ,Q�=−iI, called the canonical commutation relation �CCR�. In
erms of Q and P we can define the operators a=2−1/2�Q+ iP� �annihilation� and a*=2−1/2�Q
iP� �creation�, which are each adjoint to the other and satisfy the CCR �a ,a*�= I. In 1932 Fock9

ealized that the relation �a ,a*�= I is also satisfied by the operators a
�z�= �d /dz�
�z� and
*
�z�=z
�z� acting on the space of all holomorphic functions 
. This interesting observation
pened a critical mathematical question: does there exist a Hilbert space of holomorphic functions
here the operators described above are each adjoint to the other? In 1961 Bargmann4 answered

his question giving the mathematical foundations for Fock’s observation. He defined a Gaussian
easure d�Gauss and considered the holomorphic subspace B2 of the Hilbert space L2�C ,d�Gauss�,

nd showed that in B2 the creation and annihilation operators are adjoints of each other. �It turns
ut that B2 is closed in L2�C ,d�Gauss�, and then is itself a Hilbert space.� Because of this and
imilar work by Segal,29,30 the space B2 is known as the Segal-Bargmann space, and this space is
ommonly thought of as a quantum phase space.

So we have two Hilbert spaces, L2�R ,dx� and B2, in both of which are defined two unbounded
perators a and a*, each adjoint to the other and satisfying the CCR �a ,a*�= I. One refers to this
act by saying that the spaces L2�R ,dx� and B2 carry representations of the Lie group generated by
he exponentiated form of the CCR. It turns out that these representations are irreducible. The

o-called Bargmann transform B̃ :L2�R ,dx�→B2 �also described in Ref. 4� is an isomorphism, that
s a unitary onto map, between these two quantum spaces which also intertwines the actions of a
nd a*. It is possible to replace the quantum configuration space L2�R ,dx� by another unitarily

2
quivalent space, namely L �R ,dg�, called the ground state representation, where dg is another

                                                                                                            



G
u
S
h
o
e
o
B
t
t
c

w
t
p
d
s
I
s
o
e
s
d

e

s
m
�
s
“

t
e
B

s
t
g
�

w

p
n
�

032101-4 C. Pita Ruiz and S. B. Sontz J. Math. Phys. 47, 032101 �2006�

                        
aussian measure. In this case, the resulting transform B that maps the ground state representation
nitarily onto the Segal-Bargmann space is called the Segal-Bargmann transform. What we call
egal-Bargmann analysis has to do mainly with the study of operators related to B and spaces of
olomorphic functions related to B2. The present work is a part of Segal-Bargmann analysis. For
ther related works in the theory of white noise see Kuo’s book16 �where the S-transform is
ssentially the Segal-Bargmann transform�, in microlocal analysis see the works of Martinez22 and
f Sjöstrand32 �where the FBI transform is closely related though not identical to the Segal-
argmann transform�, in heat kernel analysis �since the kernel function of the Segal-Bargmann

ransform is related to the heat kernel� see the review article of Hall,13 in coherent state theory see
he book by Ali, Antoine, and Gazeau1 �since the Segal-Bargmann transform is an example of a
oherent state transform�, and in all the references therein.

It is easy to see that the CCR implies the equations of motion i�P ,H�=Q and i�Q ,H�=−P,
here Hª2−1�P2+Q2� is the Hamiltonian of the harmonic oscillator. In 1950, Wigner40 proved

hat the converse implication is false by exhibiting unbounded operators P� and Q�, labeled by a
arameter ��−1/2, that satisfy the equations of motion, where H�ª2−1�P�

2 +Q�
2 � replaces H, but

o not satisfy the CCR. We consider this �-deformation of quantum mechanics to be interesting
ince it gives a mathematically consistent way of effecting a quantization of classical mechanics.
t is well known that at a mathematical level quantization is not unique. However in physics we
ee that nature manifests just one of these possibilities. �Nelson refers to this as “a mystery” in an
ft-cited quotation. See Ref. 25, p. 207.� We hope that further mathematical studies will be able to
lucidate the mathematical properties characteristic of nature’s choice. As a further comment, we
hould note that experiment can set a limit on the absolute value of the parameter �, but cannot
efinitively prove that it is equal to zero.

Later, Rosenblum and Marron �in Refs. 26, 27, and 21� realized these operators P� and Q�

xplicitly acting in a �-quantum configuration space L2�R , �x�2�dx� and in a �-Segal-Bargmann

pace B�
2 . They also defined a �-Bargmann transform B̃�, which is a unitary onto transformation

apping the former Hilbert space to the latter Hilbert space. This theory can be understood as a
-deformation of standard Segal-Bargmann analysis with the property that if one sets �=0 the

tandard theory is recovered �see Ref. 36�. So we will refer to L2�R , �x�2�dx� and B�
2 , as the

�-deformed quantum configuration space” and the “�-deformed Segal-Bargmann space,” respec-

ively, and to B̃� as the “�-deformed Bargmann transform.” It is also straightforward to obtain
xplicitly the “�-deformed ground state representation” L2�R ,dg�� and the “�-deformed Segal-
argmann transform” B�, which is a unitary map from L2�R ,dg�� onto B�

2 .
In Ref. 34, Sontz obtained explicit formulas for the entropy of relevant elements of the Hilbert

paces L2�R ,dg� and B2, namely, elements of the corresponding canonical �orthonormal� basis of
hese spaces. By denoting by n, n=0,1 , . . . the functions of the canonical basis �n�n=0

� of the
round state representation L2�R ,dg�, and by �n, n=0,1 , . . . the functions of the canonical basis
�n�n=0

� of the Segal-Bargmann space B2, Sontz proved in Ref. 34 that for n=0,1 , . . . one has that

SL2�C,d�Gauss�
��n� = n�− � + 1 +

1

2
+ ¯ +

1

n
� − log n!, �1.1�

SL2�R,dg��1� = 2 − log 2 − � , �1.2�

here � is Euler’s constant.
In this work we will obtain for the �-deformed theory results similar to �1.1� and �1.2�. More

recisely, in Theorem 4.3 we will show that for any ��−1/2, the entropy SL2�C�Z2,d�����n
�� of the

th �-deformed element �n
�, n=0,1 , . . ., of the �-deformed canonical basis ��n

��n=0
� of the

2
-deformed Segal-Bargmann space B� is given by
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SL2�C�Z2,d�����n
�� =

n

2
���� +

n + ��n� + 1

2
� + ��n + ��n + 1� + 1

2
�� − log

���n�
2n , �1.3�

here � is the logarithmic derivative of the gamma function, � is the characteristic function of the
dd positive integers, and �� is a �-deformation of the factorial function �defined in Sec. II�. We
ill show that in the case �=0 this formula reduces to �1.1�, so �1.3� is a generalization of �1.1�

or the �-deformed theory. Also, in Sec. IV we will show that the entropy SL2�R,dg���1
�� of the

-deformed element 1
� of the �-deformed canonical basis �n

��n=0
� of the �-deformed ground state

epresentation L2�R ,dg�� is given by

SL2�R,dg���1
�� = ��� + 3

2� − log�� + 1
2� , �1.4�

nd when �=0 this formula reduces to �1.2�, so �1.4� generalizes �1.2�.
In this paper we want to emphasize the importance of an idea that has not played a role in our

revious research in Segal-Bargmann analysis. This is the idea of an extensive quantity, which
eant originally in the context of thermodynamics a quantity proportional to the size of a physical

ystem. In the context of this paper the size is the index n �or quantum number� of the states
orming the canonical orthonormal bases of the Hilbert spaces under study. So we say that a
umber depending on the nth basis element is an extensive quantity if it is asymptotically propor-
ional to n. For example, the energy levels of the harmonic oscillator are extensive in this sense of
he word. So our main results in Sec. IV concerning the entropies of the basis elements �n

� show
hese entropies to be extensive quantities. At one and the same time this shows that entropy is a
seful concept from a physical point of view as well as that the �-deformation of quantum
echanics under study here has this desirable property. Even though being an extensive quantity

ccording to our definition is an asymptotic property, we realize this result by an actual explicit
omputation of the entropies and only later by doing the asymptotic analysis. In Sec. V we do a
imilar analysis of the entropies of the monomials tn in L2�R ,dg��, basically because we have the
athematical tools for doing this. But it turns out that these entropies are not extensive quantities.
his is not surprising since these monomials, while mathematically simple, are not the eigenfunc-

ions of a physically interesting self-adjoint operator. In Sec. VI, we study a �-deformed energy
defined there� and, among other things, show that it is an extensive quantity.

We now outline in detail the content of the work. In Sec. II we give, on the one hand, the
efinitions and notation of the �-deformed objects that will be used throughout the work �here we
ntroduce the �-deformed Hilbert spaces L2�R ,dg�� and B�

2 , and their canonical bases as well�. On
he other hand, we give the definition of the Shannon entropy of a function f in a complex Hilbert
pace L2�� ,d�� where �� ,d�� is a finite measure space. All the material in Sec. II is previously
nown and is included here only for the clarity of the exposition. In Sec. III we prove some results
bout the behavior of the �-deformed factorial function �� and of the logarithmic derivative � of
he gamma function �both involved in formula �1.3��, that will help us to obtain some properties of
he sequence of entropies of the functions �n

�, n=0,1 , . . .. In particular, these entropies are exten-
ive quantities. These properties are not explicitly given �in the case �=0� in Ref. 34, but we give
hem as a proposition at the end of Sec. III. Lemma 3.1 in Sec. III is new for us, but we can hardly
laim originality for a result about the well-studied special function �. However, Lemma 3.2 and
he rest of the results of this article �except as noted in Sec. VI� are new. In Sec. IV, besides the
iscussion that led us to formula �1.3� which generalizes �1.1�, we also obtain a generalization of
he proposition at the end of Sec. III about some properties of the sequence of entropies. Again,
hese entropies are extensive quantities. In Sec. V we consider the �-deformed ground state
epresentation and we obtain explicit formulas for the entropies of the monomials tn

L2�R ,dg��, n=0,1 , . . . and these turn out not to be extensive quantities. Unfortunately the
echnique we use here to obtain these formulas �and those of Sec. IV� does not work to obtain the
ntropies of the elements n

� of the canonical basis of L2�R ,dg��, for n�2. It turns out that our
ethod for calculating the entropy of a function f works only in the case of f being a monomial,

nd the elements n
� are monomials only for n=0,1. Also, by means of a concrete example, in Sec.
we show that the �-deformed Segal-Bargmann transform B� does not preserve entropy. In Sec.
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I we consider two reverse log-Sobolev inequalities proved in Ref. 3, in which the condition c
1 of a certain parameter c appears as a sufficient condition. In this section we show that this

ondition is also necessary, or in other words, that the condition c�1 is the best possible. Finally,
n Sec. VII we make some comments about what we left unfinished in this paper and what is
ossible to do beyond the results presented here.

We would also like to note that our results can be generalized to the case of Rn and Cn �in
lace of R and C� for any integer n�1. This works out because the functions �of n variables� of
he canonical bases can be factored as products of functions �of one variable�, which are precisely
he basis elements considered here in the one-dimensional case. Since all the relevant measures
lso factorize in terms of the measures used here, we can immediately calculate all the entropies
f the basis functions in dimension n in terms of the entropies studied here in the one-dimensional
ase. �See Lemma 2.1 in Ref. 34.�

I. DEFINITIONS AND NOTATION

In this section we give the definitions and the notation that we will use throughout the work.
irst, we take ��− 1

2 to be a fixed parameter �unless otherwise stated�. The �Coxeter� group Z2 is
he multiplicative group �−1,1�, and log is the natural logarithm �base e�. We use the convention
log 0=0 �which makes the function � : �0,��→R, ��x�=x log x continuous�. We also use the

onvention that C denotes a constant �a quantity that does not depend on the variables of interest
n the context�, which may change its value every time it appears. We denote by H�C� the space
f holomorphic functions f :C→C with the topology of uniform convergence on compact sets.

We begin by defining the �-deformations of the factorial function and of the exponential
unction. Let N denote the set of positive integers.

Definition 2.1: The �-deformed factorial function �� :N� �0�→R is defined by ���0�=1 and

���n� ª �n + 2���n�����n − 1� ,

here n�N and � :N→ �0,1� is the characteristic function of the odd positive integers. The
-deformed exponential function e� :C→C, is defined by the power series

e��z� ª �
n=0

�
zn

���n�
.

We note that �0�n�=n! �the usual factorial function� and so e0�z�=exp�z� �the usual complex
xponential function�. It is clear that the power series in the definition of e��z� is absolutely
onvergent for all z�C. So the �-deformed exponential e� is an entire function.

We will use the following explicit formulas for ���2n� and ���2n+1�, n=0,1 ,2 , . . . �see Ref.
6, p. 371�:

���2n� =

22n��n + 1���� + n +
1

2
�

��� +
1

2
� =

�2n�!��1

2
���� + n +

1

2
�

��� +
1

2
���n +

1

2
� , �2.1�

���2n + 1� =

22n+1��n + 1���� + n +
3

2
�

��� +
1

2
� =

�2n + 1�!��1

2
���� + n +

3

2
�

��� +
1

2
���n +

3

2
� . �2.2�

The following definition �from Ref. 26� gives us a �-deformation of the classical Hermite

olynomials.
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Definition 2.2: For n=0,1 , . . . we define the nth �-deformed Hermite polynomial Hn
��t� by the

enerating function

exp�− z2�e��2tz� = �
n=0

�

Hn
��t�

zn

n!
.

It is easy to check that Hn
��t� is in fact a polynomial of degree n in the real variable t. For

xample, we have that H0
��t�=1, H1

��t�= �2/ �1+2���t, H2
��t�= �4/ �1+2���t2−2, and so on.

The normalized �-deformed Hermite polynomials n
��t�, n=0,1 , . . . defined by

n
��t� ª 2−n/2�n!�−1����n��1/2Hn

��t� , �2.3�

orm an orthonormal basis of the �-deformed ground state representation L2�R ,dg��, where dg� is
he �-deformed Gaussian measure defined by

dg��t� ª ���� +
1

2
��−1

exp�− t2��t�2� dt . �2.4�

The basis �n
��n=0

� is called the canonical basis of L2�R ,dg��. �See Refs. 26 and 24.�
The case �=0 recovers the well-known fact that for n=0,1 , . . ., the normalized polynomials

n�t�=2−n/2�n!�−1/2Hn�t�, where Hn�t� denotes the nth Hermite polynomial, form the canonical
rthonormal basis of the ground state representation L2�R ,dg�, where dg is the Gaussian prob-
bility measure dg�t�=	−1/2 exp�−t2�dt. �See Ref. 12.�

Definition 2.3: We define the measure d�� on the space C�Z2 by

d���z,1� ª
21/2−�

	��� +
1

2
�K�−1/2��z�2��z�2�+1 dx dy , �2.5�

d���z,− 1� ª
21/2−�

	��� +
1

2
�K�+1/2��z�2��z�2�+1 dx dy , �2.6�

here � is the Euler gamma function, K� is the Macdonald function of order � (both defined in
ef. 17), and dx dy is Lebesgue measure on C.

By using that C�C� �1��C� �−1�, we will identify the restrictions �2.5� and �2.6� as mea-
ures on C.

The Macdonald function K� is the modified Bessel function of the third kind �with purely
maginary argument, as described in Ref. 38, p. 78�, which is known to be a holomorphic function
n C \ �−� ,0� and is entire with respect to the parameter �. Nevertheless, our interest will be only
n the values and behavior of this function for x�R+ and ��R. For z�C, �arg z��	 and ��Z,
he Macdonald function can be defined as

K��z� =
	

2

I−��z� − I��z�
sin��	�

see Ref. 17, p. 108�, where I��z� is the modified Bessel function of the first kind. For ��Z, we
efine K��z�=lim�→� K��z�. This expression shows that Ka�z� is an even function of the parameter
. In particular, since I1/2�z�= �2/	z�1/2sinh z and I−1/2�z�= �2/	z�1/2 cosh z �see Ref. 17, p. 112�,

e have that
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K±1/2�z� = � 	

2z
�1/2

exp�− z� ,

hich shows that for �=0 the measures defined on C by �2.5� and �2.6� are the same Gaussian
easure,

d�0�z,1� = d�0�z,− 1� = 	−1 exp�− �z�2�dx dy ,

hich is the Gaussian measure d�Gauss of the Segal-Bargmann space B2=H�C��L2�C ,d�Gauss�.
By using the formula

�
0

�

K��s�s�−1 ds = 2�−2��� − �

2
���� + �

2
� , �2.7�

hich holds if Re �� �Re �� �see Ref. 38, p. 388�, we can see that �2.5� and �2.6� are finite
easures on C, and moreover that the former is a probability measure. �See Ref. 24.�

The integral representation

K��z� = �
0

�

exp�− z cosh u�cosh��u�du, Re z � 0 �2.8�

see Ref. 17, p. 119� gives us at once two important properties of the Macdonald function. The first
s that K��x��0 for all x�R+, and the second is that K� is a monotone decreasing function for
�R+.

We will work with the Hilbert space L2�C�Z2 ,d���. The norm of a vector f� will be denoted
y �f�L2�C�Z2,d���. Let us consider the space

H2,� = �f:C → C�fe � L2�C, �d���C��1�� and fo � L2�C, �d���C��−1��� ,

here f = fe+ fo is the decomposition of f into its even and odd parts. �We will use this decom-
osition and its notation without further comment.� Observe that when �=0 we have H2,0

L2�C ,d�Gauss�.
For f �H2,� we define

�f�H2,�

2
ª �fe�L2�C,�d���C��1��

2 + �fo�L2�C,�d���C��−1��
2 .

The linear map � :H2,�→L2�C�Z2 ,d��� defined as ��f��z ,1�= fe�z� and ��f��z ,−1�= fo�z�
s injective and has the property that

�f�H2,�
= ��f�L2�C�Z2,d��� �2.9�

or all f �H2,�. Therefore � · �H2,�
is a norm on H2,�. It is not hard to show that the range of � is

closed subspace of L2�C�Z2 ,d���. Therefore H2,� is a Hilbert space, since we have identified it
ith a closed subspace of the Hilbert space L2�C�Z2 ,d���. For a function f �H2,� we will

ometimes write its norm as �f�L2�C�Z2,d���, meaning that we are using �2.9� and identifying f with
f .

We will use the notations d�e,� and d�o,� for the restrictions �d���C��1� and �d���C��−1�,
espectively. So for f �H2,� we have

�f�H
2 = �fe� 2

2 + �fo� 2
2 = �fe�H

2 + �fo�H
2 .
2,� L �C,d�e,�� L �C,d�o,�� 2,� 2,�
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Definition 2.4: The �-deformed Segal-Bargmann space, denoted by B�
2 , is defined as

B�
2
ª H�C� � H2,�. �2.10�

That is, B�
2 is the holomorphic subspace of H2,�. It turns out that B�

2 is closed in H2,�, and then
t is also closed in L2�C�Z2 ,d���, so B�

2 is itself a Hilbert space. �The proof of this fact does not
epend on �; see Theorem 2.2 in Ref. 12 for the case �=0.� Observe that when �=0 we have

0
2=H�C��H2,0=H�C��L2�C ,d�Gauss�=B2.

If we decompose the space H�C� of holomorphic functions f :C→C as H�C�=He�C�
� Ho�C�, where

He�C� ª �f � H�C�:f = fe�

nd

Ho�C� ª �f � H�C�:f = fo�

re the subspaces of the even and odd functions of H�C�, respectively, then by writing H�C�
f = fe+ fo, the space B�

2 is just the space of holomorphic functions f :C→C such that the even
art fe �the odd part fo� of f is square integrable with respect to the measure d�e,� �with respect to
he measure d�o,�, respectively�. That is,

B�
2 = �f � H�C�:fe � L2�C,d�e,�� and fo � L2�C,d�o,��� .

Yet another way to think of B�
2 is as

B�
2 = Be,�

2
� Bo,�

2 , �2.11�

here

Be,�
2 = He�C� � H2,�

nd

Bo,�
2 = Ho�C� � H2,�

re the even and odd subspaces of B�
2 .

Observe that the inner product of the Hilbert space B�
2 �from which the norm on B�

2 defined
bove comes� is


f ,g	B
�
2 = 
fe,ge	L2�C,d�e,�� + 
fo,go	L2�C,d�o,��. �2.12�

We then have that Be,�
2 and Bo,�

2 are orthogonal subspaces of B�
2 , and that �2.11� holds as

ilbert spaces.
The monomials �n

��z�, n=0,1 , . . . defined for z�C by

�n
��z� ª ����n��−1/2zn, �2.13�

orm an orthonormal basis of the �-deformed Segal-Bargmann space B�
2 . The basis ��n

��n=0
� is

alled the canonical basis of B�
2 . When �=0 we obtain the monomials �n�z�= �n!�−1/2zn, n

0,1 , . . . which are known to form the canonical basis of the Segal-Bargmann space B2. �See Ref.
2.�

The �-deformed Segal-Bargmann transform B� :L2�R ,dg��→B�
2 can be defined as B��n

��
�
�n , n=0,1 , . . .. It is clear that B� so defined is a unitary map. An explicit formula for B� is
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�B�f��z� = �
R

exp�−
z2

2
�e��21/2tz�f�t�dg��t� . �2.14�

See Ref. 24.� When �=0 this formula becomes

�B0f��z� = �
R

exp�−
z2

2
+ 21/2tz� f�t�dg�t� ,

hich is the undeformed Segal-Bargmann transform studied, for example, in Ref. 12, where it is
hown that it is a unitary map from the quantum configuration space L2�R ,dg� onto the quantum
hase space B2.

Definition 2.5: Let �� ,d�� be a finite measure space, that is, 0�������. For
f �L2�� ,d��, the Shannon entropy SL2��,d���f� is defined by

SL2��,d���f� ª �
�

�f����2 log �f����2 d���� − �f�L2��,d��
2 log �f�L2��,d��

2 . �2.15�

By considering the convex function � : �0,��→R, ��x�=x log x, and the probability measure
pace �� ,d���, where d��=W−1d�, W=����, we have by Jensen’s inequality �see Ref. 19, p. 38�
hat

��
�

�f����2 d�����log� 1

W
�

�

�f����2 d����� � �
�

�f����2 log �f����2 d����

r

�− log W��f�L2��,d��
2

� SL2��,d���f� ,

hich shows that SL2��,d���f��−�, though SL2��,d���f�= +� can happen. In particular, this entropy
s well defined for every element of L2�� ,d�� since ���� is finite. This is not so if ����=�. For
xample, see Ref. 14 for the case of Lebesgue measure. Also observe that SL2��,d����f��0, though

L2��,d���f� can be negative. Finally, note that SL2��,d���f� is homogeneous of degree 2.
Observe that for f �B�

2 , f �0, the entropy SL2�C�Z2,d����f� is not in general equal to

L2�C,d�e,���fe�+SL2�C,d�o,���fo�. What we really have is

SL2�C�Z2,d����f� = SL2�C,d�e,���fe� + SL2�C,d�o,���fo� + �fe�L2�C,d�e,��
2 log

�fe�L2�C,d�e,��
2

�f�L2�C�Z2,d���
2

+ �fo�L2�C,d�o,��
2 log

�fo�L2�C,d�o,��
2

�f�L2�C�Z2,d���
2 . �2.16�

Nevertheless, observe that if f is an even �odd� function, its entropy is given by

L2�C,d�e,���f� �SL2�C,d�o,���f�, respectively�. Then, for the functions �n
� of the canonical basis of B�

2

e have Sn
�=SL2�C,d�e,����n

�� when n is even, and Sn
�=SL2�C,d�o,����n

�� when n is odd, where

n
�
ªSL2�C�Z2,d�����n

��, n=0,1 ,2 , . . ..

II. PRELIMINARY RESULTS

In the calculations we will do in the Secs. IV and V, the derivative of the gamma function will
rise naturally. Recall that the logarithmic derivative of z���z�, also called the digamma function

nd denoted by ��z�, is defined by
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��z� ª
���z�
��z�

or all z�0,−1,−2,¼. �See Ref. 17, p. 5.� We will be interested only in the values and behavior
f ��x� with x�R+.

From the basic property of the gamma function ��x+1�=x��x� one obtains the formula

��x + 1� =
1

x
+ ��x� ,

rom which one gets by induction that

��x + n� = �
k=0

n−1
1

x + k
+ ��x�

or n�N. Using the identities ��1�=−� and �� 1
2

�=−�−2 log 2 �see Ref. 17, p. 6�, the previous
ormula implies �by taking x=1 and x= 1

2 � that

��n + 1� = − � + �
k=1

n
1

k

nd

��n +
1

2
� = − � − 2 log 2 + 2�

k=1

n
1

2k − 1
.

When necessary we will use these formulas without further comment.
In this section we will state and prove two lemmas that we will be using in Secs. IV and V.
Lemma 3.1: (a) The inequality 0���x+m�−log x� �2m−1��2x�−1 holds for all x�R+ and

�N. In particular, we have that for any m�N

lim
x→+�

���x + m� − log x� = 0.

(b) For y�0 fixed we have that

lim
x→+�

���x + y� − log x� = 0.

(c) The inequality −x−1���x�−log x�−�2x�−1 holds for all x�R+. In particular, we have that

lim
x→+�

���x� − log x� = 0.

Proof: From the integral representation of ��z�,

��z� = �
0

� � e−t

t
−

e−tz

1 − e−t�dt ,

nd the integral representation of log�z�,

log�z� = �
0

� e−t − e−tz

t
dt ,
oth valid for Re z�0 �see Ref. 17, pp. 6 and 7�, one obtains for all x�0 and m�0 that
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��x + m� − log x =�
0

� �1

t
−

e−tm

1 − e−t�e−tx dt . �3.1�

For m�N, let us consider the function hm :R→R,

hm�t� =
1

t
−

e−tm

1 − e−t ,

here we define hm�0�=limt→0 hm�t�= �2m−1� /2�0. So hm is continuous. For all t�0 we will
rove by induction that 0�hm�t�� �2m−1� /2 holds for all m�N. Observe that et�1+ t for t
0 implies h1�t��0 for t�0. Also observe that ��t�=tanh�t /2�− �t /2� is a decreasing function in

+, so that tanh�t /2�� �t /2� for t�0, which implies that h1�t��
1
2 for t�0. This proves the

nequality 0�hm�t�� �2m−1� /2 for m=1. Suppose now that the inequality holds for a given
�N. The hypothesis hm�t��0 gives us

hm+1�t� =
1

t
−

e−tm

1 − e−t e
−t = �1

t
−

e−tm

1 − e−t�e−t +
1 − e−t

t
� 0

or t�0. Also, the case m=1 gives us that �1/ t��
1
2 + �e−t / �1−e−t��, which together with the

ypothesis hm�t�� �2m−1� /2 gives us �for t�0� that

hm+1�t� = �1

t
−

e−tm

1 − e−t�e−t +
1 − e−t

t
�

2m − 1

2
e−t + �1 − e−t��1

2
+

e−t

1 − e−t� =
2m − 1

2
e−t +

1 + e−t

2

= me−t +
1

2
�

2m + 1

2
,

s wanted. Then �3.1� and the inequality 0�hm�t�� �2m−1� /2 we just proved above gives us that

0 � ��x + m� − log x �
2m − 1

2
�

0

�

e−tx dt = �2m − 1��2x�−1,

hich proves �a�.
For x�R+ we have that

��x� − log�x� = ��x + 1� − log�x� − x−1.

So, by using �a� with m=1 we have that

− x−1 � ��x� − log�x� � �2x�−1 − x−1 = − �2x�−1,

hich proves �c�.
Now we prove �b�. �We need to prove the result for y�N.� Observe that it is sufficient to

emonstrate the result for y� �0,1�, since given that for any fixed noninteger Y �0 we can write
= �Y�+y, where �Y� is the floor function of Y and y� �0,1�. Then, by defining Xªx+ �Y� we have

hat

lim
x→+�

���x + Y� − log x� = lim
X→+�

���X + y� − log�X − �Y��� = lim
X→+�

���X + y� − log X − log
X − �Y�

X
�

= lim
X→+�

���X + y� − log X� = 0.

We consider the continuous function hy :R→R, hy�t�= �1/ t�− �e−ty / �1−e−t��, where hy�0�
limt→0 hy�t�= �2y−1� /2, and 0�y�1 is fixed. According to �3.1�, with m=y� �0,1�, it is suf-

cient to prove that hy is bounded in �0,��, since if �hy�t���C for all t�0, then
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���x + y� − log x� = ��
0

�

hy�t�e−tx dt� � C�
0

�

e−tx dt =
C

x
,

nd thus ��x+y�−log x→0 as x→ +�. But observe that limt→+� hy�t�=0 and that hy is continu-
us, which shows that hy is bounded on �0,��. Q.E.D.

Lemma 3.2: Let ��− 1
2 be fixed. Then

lim
n→�

����n��1/n

n
= e−1.

Note that this limit does not depend on �.)
Proof: It is sufficient to prove that

lim
n→�

����2n��1/2n

2n
= lim

n→�

����2n + 1��1/�2n+1�

2n + 1
= e−1.

Let us consider the even case. We can write by using formula �2.1� that

����2n��1/2n

2n
=

��2n�!�1/2n

2n � ��1

2
�

��� +
1

2
��

1/2n

���� + n +
1

2
�

��n +
1

2
� �

1/2n

.

We have that limn→����2n�!�1/2n /2n�=e−1 and limn→�
��� 1

2
� /���+ 1

2
��1/2n=1. So it remains to

rove that the limit of the third factor in the left-hand side is 1. By using Stirling’s formula we
ave that

lim
n→����� + n +

1

2
�

��n +
1

2
� �

1/2n

= lim
n→���2	�� + n +

1

2
��+n

e−��+n+1/2�

�2	�n +
1

2
�n

e−�n+1/2� �
1/2n

= lim
n→���� + n +

1

2
��/2n

e−�/2n�� + n +
1

2

n +
1

2
�

1/2

� = 1.

For the odd case, by using �2.2� we have that

����2n + 1��1/�2n+1�

2n + 1
=

��2n + 1�!�1/�2n+1�

2n + 1 � ��1

2
�

��� +
1

2
��

1/�2n+1�

���� + n +
3

2
�

��n +
3

2
� �

1/�2n+1�

.

We have that

lim
n→�

��2n + 1�!�1/�2n+1�

2n + 1
= e−1 and lim

n→�� ��1

2
�

��� +
1

2
��

1/�2n+1�

= 1.

o the proof ends by showing that the limit of the third factor in the left-hand side is 1. By using

tirling’s formula we have that
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lim
n→����� + n +

3

2
�

��n +
3

2
� �

1/�2n+1�

= lim
n→���2	�� + n +

3

2
��+n+1

e−��+n+3/2�

�2	�n +
3

2
�n+1

e−�n+3/2� �
1/�2n+1�

= lim
n→���� + n +

3

2
��/�2n+1�

e−�/�2n+1��� + n +
3

2

n +
3

2
�

�n+1�/�2n+1�

� = 1.

Q.E.D.
Observe that formula �1.1�, which gives us the entropy of the elements of the canonical basis

�n� of B2, can be written as

SL2�C,d�Gauss�
��n� = n��n + 1� − log n!. �3.2�

In the case n=0 we have �0�z�=1 and then from �2.15� we have that SL2�C,d�Gauss�
�1�=0. �Note

hat this case is also included in �3.2�.�
We can use Lemmas 3.1 and 3.2 to prove some properties of the sequence of entropies �Sn�n=0

� ,
here SnªSL2�C,d�Gauss�

��n�. First, we note that

Sn+1 = �n + 1���n + 2� − log�n + 1�! = �n + 1�� 1

n + 1
+ ��n + 1�� − log n! − log�n + 1�

= Sn + 1 + ��n + 1� − log�n + 1� � Sn + 1 −
1

n + 1
,

here we used Lemma �3.1� �c�. Thus, for n=0 we have that S1�0, and for n�N we have

n+1�Sn. That is, the sequence �Sn�n=0
� is increasing. Moreover, �Sn�n=0

� is a sequence of non-
egative terms. �This conclusion also comes from the fact that �C ,d�Gauss� is a probability measure
pace.�

Next, by using the equality Sn+1−Sn=1+��n+1�−log�n+1� of the previous argument and
emma 3.1 �c� we have that

lim
n→�

�Sn+1 − Sn� = 1,

hich proves that the sequence �Sn�n=1
� is unbounded and, moreover, implies that

lim
n→�

Sn

n
= 1.

Proof: limn→��Sn+1 − Sn� = 1 Þ limn→��1/n��k=0

n−1
�Sk+1 − Sk� = 1 Þ

limn→���Sn − S0�/n� = 1 Þ limn→��Sn/n� = 1.

his limit can also be proved directly by noting that

Sn

n
= ��n + 1� −

1

n
log n! = ��n + 1� − log n − log

�n!�1/n

n
,

nd thus, by using that ��n+1�−log n→0 as n→� �Lemma 3.1 �a�� and that log��n!�1/n /n�
−1
e as n→�, we obtain the desired result limn→��Sn /n�=1.
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In conclusion, we have proved the following.
Proposition 3.1 The sequence �Sn�n=0

� , where Sn=SL2�C,d�Gauss�
��n� is the entropy of the nth

anonical basis element in L2�C ,d�Gauss� is an unbounded increasing sequence of non-negative
erms, with the property limn→��Sn+1−Sn�=1. In particular, Sn is an extensive quantity.

V. ENTROPIES IN B�
2

As noted in Sec. II, for calculating the entropies Sn
�=SL2�C�Z2,d�����n

�� of the elements of the
anonical basis ��n

��n=0
� of the �-deformed Segal-Bargmann space B�

2 , we need to consider the
ases when n is even �in which case we have that Sn

�=SL2�C,d�e,����n�� and when n is odd �in which
ase we have that Sn

�=SL2�C,d�o,����n��. We begin by considering the even case. For n=0 we have

0
��z�=1 and then S0

�=0. So we are interested in calculating S2n
� for n�1. Formula �2.15� tells us

hat

S2n
� = �

C
��2n�z��2 log��2n�z��2 d�e,��z� − ��2n�L2�C,d�e,��

2 log��2n�L2�C,d�e,��
2

=
21/2−�

	��� +
1

2
��C

� z2n

����2n��1/2�2

log� z2n

����2n��1/2�2

K�−1/2��z�2��z�2�+1 dx dy .

Since the log term in the integral of the right-hand side is log�z2n�2−log ���2n�, we can write

2n
� as a difference of two integrals, I1− I2 say, in which I2=log ���2n���2n�L2�C,d�e,��

2 =log ���2n�.
n I1 we change �x ,y� to polar coordinates �r ,��, and then let s=r2 to obtain

S2n
� =

21/2−�

	��� +
1

2
��C

� z2n

����2n��1/2�2

log�z2n�2K�−1/2��z�2��z�2�+1 dx dy − log ���2n�

=
21/2−�2

���2n���� +
1

2
��0

�

r4n�log r4n�K�−1/2�r2�r2�+2 dr − log ���2n�

=
21/2−�

���2n���� +
1

2
��0

�

s2n�log s2n�K�−1/2�s�s�+1/2 ds − log ���2n� .

For calculating the integral 0
��log s2n�K�−1/2�s�s�+2n+1/2 ds, we define the function 
 in a

eighborhood of �=1 as


��� = �
0

�

s2n�K�−1/2�s�s�+1/2 ds .

Observe that for ��− 1
2 , n�N and � in a neighborhood of 1, one has that 2n�+�+ 3

2 �
�− 1

2 �, so we can use formula �2.7� to write


��� = 22n�+�−1/2��n� + 1���� + n� + 1
2� .

The derivative 
� is on the one hand


���� = �
0

�

s2n��log s2n�K�−1/2�s�s�+1/2 ds ,
nd on the other hand,
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���� = 22n�+�−1/2��n� + 1�n���� + n� +
1

2
� + 22n�+�−1/2n���n� + 1���� + n� +

1

2
�

+ 22n�+�−1/22n�log 2���n� + 1���� + n� +
1

2
�

= 22n�+�−1/2��n� + 1���� + n� +
1

2
��n��� + n� +

1

2
�+ n��n� + 1�+ 2n log 2� .

Then


��1� = �
0

�

s2n�log s2n�K�−1/2�s�s�+1/2 ds = 22n+�−1/2��n + 1���� + n +
1

2
��n��� + n +

1

2
�

+ n��n + 1�
+ 2n log 2

� .

Thus we have that

S2n
� =

��n + 1���� + n +
1

2
�22n

���2n���� +
1

2
� �n��� + n +

1

2
� + n��n + 1� + log 22n� − log ���2n� .

By using formula �2.1� for ���2n� we have that the entropy of the even elements �2n is

S2n
� = n���� + n +

1

2
� + ��n + 1�� − log

���2n�
22n . �4.1�

Note that this formula makes sense for n=0, obtaining the known result S0
�=0.

In the case �=0, formula �4.1� becomes

S2n
0 = n���n +

1

2
� + ��n + 1�� − log

�2n�!
22n

= n�− � − 2 log 2 + 2�
k=1

n
1

2k − 1
− � + �

k=1

n
1

k
� − log�2n�! + 2n log 2

= 2n�− � + �
k=1

n
1

2k − 1
+

1

2�
k=1

n
1

k
� − log�2n�! = 2n�− � + �

k=1

2n
1

k
� − log�2n�!,

hich is �1.1� for even positive integers, as expected.
Since �C ,d�e,�� is a probability measure space, we have that S2n

� �0 for all n=0,1 ,2 , . . .. But
e can arrive at this conclusion directly from the formula obtained for S2n

� as follows. Observe that
or n�N we can write formula �2.1� as

���2n�
2n = n!�

n �� + k −
1� . �4.2�
2 k=1 2
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hen

S2n
� = n��� + n +

1

2
� + n��n + 1� − log�n!�

k=1

n �� + k −
1

2
��

= �
k=1

n ���� + n +
1

2
� − log�� + k −

1

2
� + ��n + 1� − log�k�� .

Lemma 3.1�a� gives us that ���+n+ 1
2

�−log��+k− 1
2

��0 and that ��n+1�−log�k��0 for all
=1 , . . . ,n. So we conclude that S2n

� �0, as wanted. Moreover, observe that for fixed n�N, we
ave that �again by Lemma 3.1�a�� ���+n+ 1

2
�−log��+k− 1

2
�→0 as �→ +�, and so

lim
�→+�

S2n
� = �

k=1

n

���n + 1� − log�k�� = n��n + 1� − log n! .

That is, for n�N fixed we have that

lim
�→+�

S2n
� = Sn.

Let us consider the particular case when �= 1
2 +m, m=0,1 ,2 , . . .. Formula �4.2� becomes in

his case

�1/2+m�2n�
22n = n!�

k=1

n

�k + m� =
n!�m + n�!

m!
,

nd then formula �4.1� gives us

S2n
1/2+m = n���n + m + 1� + ��n + 1�� − log

n!�m + n�!
m!

= �n + m���n + m + 1� − log�m + n�! + n��n + 1� − log n! − m��n + m + 1� + log m!

= Sn+m + Sn − m��
k=0

n−1
1

m + k + 1
+ ��m + 1�� + log m! = Sn+m + Sn − Sm − �

k=1

n
m

m + k
.

That is, for n ,m=0,1 ,2 , . . ., we have the formula

Sn+m + Sn − Sm = S2n
1/2+m + �

k=1

n
m

m + k
,

hich shows that the values of the entropies Sn+m, Sn, and Sm �of the undeformed case� are related
y means of the entropy S2n

1/2+m corresponding to the �m+ 1
2

�-deformed case.
We claim that �S2n

� �n=0
� is an increasing sequence for fixed ��− 1

2 . In fact, we have that

S2n+2
� = �n + 1���� + n +

3

2
� + �n + 1���n + 2� − log

���2n + 2�
22n+2

= n� 1

� + n +
1

2

+ ��� + n +
1

2
�� + ��� + n +

3

2
� + n� 1

n + 1
+ ��n + 1�� + ��n + 2�

− log
�2n + 2��2n + 1 + 2�����2n�

2 2n
2 2
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= S2n
� + ��� + n +

3

2
� − log�� + n +

1

2
� + ��n + 2� − log�n + 1� +

n

� + n +
1

2

+
n

n + 1
.

Lemma 3.1�a� gives us ���+n+ 3
2

�−log��+n+ 1
2

��0 and ��n+2�−log�n+1��0. Thus we
ave that S2n+2

� −S2n
� �0, as wanted. Lemma 3.1�a� also tells us that ���+n+ 3

2
�−log��+n+ 1

2
�

0 and ��n+2�−log�n+1�→0 as n→�. Thus, for fixed ��− 1
2 , we have by the expression

bove that limn→��S2n+2
� −S2n

� �=2. In particular we see that the sequence �S2n
� �n=0

� is unbounded.
his limit implies that limn→��S2n /2n�=1, but we can give a direct proof of this last result by
oting that

S2n
�

2n
=

1

2
���� + n +

1

2
� + ��n + 1�� −

1

2n
log

���2n�
22n

=
1

2
���� + n +

1

2
� + ��n + 1�� − log

����2n��1/2n

2n
− log n

=
1

2
���� + n +

1

2
� − log n + ��n + 1� − log n� − log

����2n��1/2n

2n
.

Lemma 3.1�b� tells us that ���+n+ 1
2

�−log n→0 and ��n+1�−log n→0 as n→�. Lemma
.2 tells us that log�����2n��1/2n /2n�→−1 as n→�. Then we have that limn→��S2n /2n�→1, as
anted.

In conclusion, we have proved the following theorem.
Theorem 4.1: The entropy of �2n

� is given by

S2n
� = n���� + n +

1

2
� + ��n + 1�� − log

���2n�
22n ,

here ��− 1
2 and n=0,1 , . . .. For fixed ��− 1

2 , the sequence �S2n
� �n=1

� is an unbounded increasing
equence of positive terms such that

lim
n→�

�S2n+2
� − S2n

� � = 2,

hich implies that

lim
n→�

S2n
�

2n
= 1.

For fixed n�N, we have that

lim
�→+�

S2n
� = Sn,

here Sn=Sn
0.

For n ,m=0,1 ,2 , . . ., we have that

Sn+m + Sn − Sm = S2n
1/2+m + �

k=0

n−1
m

m + k + 1
.

We now calculate the entropies of the odd functions �2n+1, n=0,1 ,2 , . . .. The steps we will
ollow in the calculations are analogues of the even case. Since S2n+1

� =SL2�C,d�o,����2n+1� we have

hat
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S2n+1
� =

21/2−�

	��� +
1

2
��C

� z2n+1

����2n + 1��1/2�2

log� z2n+1

����2n + 1��1/2�2

K�+1/2��z�2��z�2�+1 dx dy

=
21/2−�2

���2n + 1���� +
1

2
��0

�

r4n+2�log r4n+2�K�+1/2�r2�r2�+2 dr − log ���2n + 1�

=
21/2−�

���2n + 1���� +
1

2
��0

�

s2n+1�log s2n+1�K�+1/2�s�s�+1/2 ds − log ���2n + 1� .

We define

���� = �
0

�

s�2n+1��K�+1/2�s�s�+1/2 ds .

Since for ��− 1
2 , n�N� �0� and � in a neighborhood of 1, one has that �2n+1��+�+ 3

2
��+ 1

2 �, we can use formula �2.7� to write

���� = 2�2n+1��+�−1/2���n + 1
2�� + 1

2����n + 1
2�� + � + 1� .

By calculating the derivative ���1� in two different ways as we did in the even case, we get

���1� = �
0

�

s2n+1 log s2n+1K�+1/2�s�s�+1/2 ds

= 22n+�+1/2��n + 1���� + n +
3

2
��

2n + 1

2
��� + n +

3

2
�

+
2n + 1

2
��n + 1�

+ �2n + 1�log 2
� .

Thus, by using formula �2.2� for ���2n+1� we find that the entropy of �2n+1 is

S2n+1
� = �n +

1

2
����� + n +

3

2
� + ��n + 1�� − log

���2n + 1�
22n+1 . �4.3�

In the case �=0 this formula becomes

S2n+1
0 = �n +

1

2
����n +

3

2
� + ��n + 1�� − log

�2n + 1�!
22n+1

= �n +
1

2
�� 1

n +
1

2

+ ��n +
1

2
� + ��n + 1�� − log�2n + 1�! + �2n + 1�log 2

= �2n + 1��− � +
1

2n + 1
+ �

k=1

n
1

2k − 1
+

1

2�
k=1

n
1

k
� − log�2n + 1�!

= �2n + 1��− � + �
k=1

2n+1
1

k
� − log�2n + 1�! ,
hich is �1.1� for odd positive integers.

                                                                                                            



�
�
�
t
p

w
s

a
l
u
d

032101-20 C. Pita Ruiz and S. B. Sontz J. Math. Phys. 47, 032101 �2006�

                        
Observe that for n�N we can write formula �2.2� as

���2n + 1�
22n+1 = n!�

k=1

n+1 �� + k −
1

2
� .

Thus �4.3� can be written as

S2n+1
� = �

k=1

n ���� + n +
3

2
� − log�� + k −

1

2
�� +

1

2
���� + n +

3

2
� − log�� + n +

1

2
��

+ �n +
1

2
���n + 1� − log n! −

1

2
log�� + n +

1

2
� . �4.4�

For fixed n=0,1 ,2 , . . ., we have by Lemma 3.1�a� that ���+n+ 3
2

�−log��+k− 1
2

�→0 and
��+n+ 3

2
�−log��+n+ 1

2
�→0 as �→ +�. Thus, because of the last term of the right-hand side in

4.4�, we have that lim�→+� S2n+1
� =−�. That is, negative entropies do occur in the odd case.

Recall that �C ,d�o,�� is not a probability measure space for ��0.� Nevertheless we will see now
hat for fixed ��− 1

2 the sequence �S2n+1
� �n=0

� is increasing and unbounded, and so it is eventually
ositive. We have that

S2n+3
� = �n +

1

2
����� + n +

3

2
� + ��n + 1�� − log

���2n + 1�
22n+1 + �n +

3

2
�� 1

� + n +
3

2

+
1

n + 1�
+ ��� + n +

3

2
� + ��n + 1� − log��n + 1��� + n +

3

2
��

= S2n+1
� + �n +

3

2
�� 1

� + n +
3

2

+
1

n + 1� + ��� + n +
3

2
� − log�� + n +

3

2
� + ��n + 1�

− log�n + 1� � S2n+1
� + �n +

3

2
�� 1

� + n +
3

2

+
1

n + 1� −
1

� + n +
3

2

−
1

n + 1

= S2n+1
� + �n +

1

2
�� 1

� + n +
3

2

+
1

n + 1� � S2n+1
� ,

here we used Lemma 3.1�c�. This proves that the sequence �S2n+1
� �n=0

� is increasing. Moreover,
ince

S2n+3
� − S2n+1

� = �n +
3

2
�� 1

� + n +
3

2

+
1

n + 1� + ��� + n +
3

2
� − log�� + n +

3

2
� + ��n + 1�

− log�n + 1�

nd by Lemma 3.1�c� we have that ���+n+ 3
2

�−log��+n+ 3
2

�→0 and also that ��n+1�−
og�n+1�→0 as n→�, then we conclude that limn→��S2n+3

� −S2n+1
� �=2, which implies the

nboundedness of the sequence �S2n+1
� �n=0

� . This limit implies that limn→��S2n+1
� / �2n+1��=1, but a
irect proof of this is as follows. Note that
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S2n+1
�

2n + 1
=

1

2
���� + n +

3

2
� + ��n + 1�� − log

����2n + 1��1/�2n+1�

2n + 1
− log�n +

1

2
�

=
1

2
���� + n +

3

2
� − log�n +

1

2
� + ��n + 1� − log�n +

1

2
�� − log

����2n + 1��1/�2n+1�

2n + 1
.

Note that Lemmas 3.1�b� and 3.2 give us that ���+n+ 3
2

�−log�n+ 1
2

�→0, ��n+1�−
og�n+ 1

2
�→0 and log�����2n+1��1/�2n+1� / �2n+1��→−1 as n→�. Then we have that

S2n+1
� / �2n+1��→1 as n→�.

Thus, we have proved the following theorem.
Theorem 4.2: The entropy of �2n+1

� is given by

S2n+1
� = �n +

1

2
����� + n +

3

2
� + ��n + 1�� − log

���2n + 1�
22n+1 ,

here ��− 1
2 and n=0,1 ,2 , . . .. For fixed ��− 1

2 , the sequence �S2n+1
� �n=0

� is an unbounded in-
reasing sequence such that

lim
n→�

�S2n+3
� − S2n+1

� � = 2,

hich implies that

lim
n→�

S2n+1
�

2n + 1
= 1.

For fixed n=0,1 ,2 , . . ., we have that

lim
�→+�

S2n+1
� = − � .

We can relate the entropies S2n+1
� with the entropies S2n

� as follows. We note that

S2n+1
� =

2n + 1

2
���� + n +

3

2
� + ��n + 1�� − log

���2n + 1�
22n+1

= �n +
1

2
�� 1

� + n +
1

2

+ ��� + n +
1

2
� + ��n + 1�� − log

���2n + 1�
22n+1

= �1 +
1

2n
��S2n

� + log
���2n�

22n � +

n +
1

2

� + n +
1

2

− log
���2n + 1�

22n+1

= �1 +
1

2n
�S2n

� +

n +
1

2

� + n +
1

2

+ log
����2n��1/2n

2�� + n +
1

2
� .

So we have that

S2n+1
� − S2n

� =
S2n

�

2n
+

n +
1

2

� + n +
1

+ log
����2n��1/2n

2�� + n +
1� .
2 2
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By using Lemma 3.2 and Theorem 4.1 we obtain

lim
n→�

�S2n+1
� − S2n

� � = 1.

Similarly one has that

S2n
� − S2n−1

� =
S2n−1

�

2n − 1
+ 1 + log

���2n − 1�1/�2n−1�

2n
.

Lemma 3.2 and Theorem 4.2 allow us to conclude

lim
n→�

�S2n
� − S2n−1

� � = 1.

Finally, observe that we can express the formulas �4.1� and �4.3� in terms of the characteristic
unction � of the odd positive integers as

Sn
� =

n

2
���� +

n + ��n� + 1

2
� + ��n + ��n + 1� + 1

2
�� − log

���n�
2n .

From this formula one can obtain at once the case �=0 �formula �1.1�� by using the identity

��n + 1

2
� + ��n + 2

2
� = 2��n + 1� − 2 log 2,

hose proof is an easy exercise by induction.
Combining Theorems 4.1 and 4.2 with the previous results, we have the following.
Theorem 4.3: Let ��− 1

2 be fixed. The entropy Sn
� is given by

Sn
� =

n

2
���� +

n + ��n� + 1

2
� + ��n + ��n + 1� + 1

2
�� − log

���n�
2n .

The sequence �Sn
��n=0

� of entropies is such that the subsequences of even terms �S2n
� �n=1

� and of
dd terms �S2n+1

� �n=0
� are increasing, the former being positive and the latter being eventually

ositive. Moreover, we have that

lim
n→�

�Sn+1
� − Sn

�� = 1,

hich shows that the sequence �Sn
��n=0

� is unbounded and implies that

lim
n→�

Sn
�

n
= 1.

So we have that Sn
� is an extensive quantity in n. Note that this assertion is independent of �.

. ENTROPIES IN L2
„R ,dg�…

Following the same sort of ideas we used in the preceding section, we will calculate in this
ection the entropies of the monomials tn�L2�R ,dg��, n=1,2 , . . .. �In the case n=0 we obtain

rom the definition that SL2�R,dg���1�=0.� That is, for n=1,2 , . . . we will calculate explicitly
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SL2�R,dg���tn� =
1

��� +
1

2
��R

�tn�2 log �tn�2 exp�− t2��t�2� dt − �tn�L2�R,dg��
2 log �tn�L2�R,dg��

2

=
1

��� +
1

2
��0

�

un�log un�exp�− u�u�−1/2 du − �tn�L2�R,dg��
2 log �tn�L2�R,dg��

2 .

A direct calculation gives us

�tn�L2�R,dg��
2 =

��n + � +
1

2
�

��� +
1

2
� .

Next, define the function

���� = �
0

�

un� exp�− u�u�−1/2 ds = ��n� + � +
1

2
�

n a neighborhood of �=1. By calculating the derivative ���1� in two different ways �using the
echnique from the preceding section� we find that

�
0

�

un�log un�exp�− u�u�−1/2 du = n��n + � +
1

2
���n + � +

1

2
� .

Then the entropy SL2�R,dg���tn� is

SL2�R,dg���tn� =

��n + � +
1

2
�

��� +
1

2
� �n��n + � +

1

2
� − log

��n + � +
1

2
�

��� +
1

2
� � . �5.1�

When n=1 formula �5.1� becomes

SL2�R,dg���t� =

��� +
3

2
�

��� +
1

2
����� +

3

2
� − log

��� +
3

2
�

��� +
1

2
�� = �� +

1

2
����� +

3

2
� − log�� +

1

2
�� .

By using that SL2�R,dg���t� is homogeneous of degree 2 we can calculate the entropy of the
onomial 1

��t�= �2/ �1+2���1/2t, which is the second element of the canonical basis �n
��n=0

� of
2�R ,dg��. In fact, we have that SL2�R,dg���1

��= �2/ �1+2���SL2�R,dg���t�, and then

SL2�R,dg���1
�� = ��� + 3

2� − log�� + 1
2� . �5.2�

When �=0 this formula becomes

SL2�R,dg��1
0� = ��3

2
� − log�1

2
� = 2 − log 2 − � ,

sing �� 3
2

�=2−2 log 2−�, which is �1.2� as expected.
Unfortunately we cannot continue the previous procedure in order to obtain explicit formulas

� 2 �
or the entropies of n �L �R ,dg�� with n�2, since for those values of n the polynomials n are
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o longer monomials, and then �5.1� is not useful. Nevertheless we will study some properties of
he sequence �sn

��n=0
� , where sn

�
ªSL2�R,dg���tn�, and compare them with the results obtained in Sec.

V.
Before that, recall that the �-deformed Segal-Bargmann transform B� :L2�R ,dg��→B�

2 is
uch that B��n

��=�n
�, n=0,1 , . . .. When n=0 we have 0

��t�=1, �0
��z�=1, and SL2�R,dg���1�

SL2�C,d�e,���1�=0. So in this case we see that B� preserves entropy. Let us consider the case
=1. Formula �4.3� gives us

SL2�C,d�o,���B��1
��� = 1

2���� + 3
2� + ��1�� − log�� + 1

2� .

This formula, ��1�=−�, and �5.2� give us that

SL2�C,d�o,���B��1
��� − SL2�R,dg���1

�� = − 1
2���� + 3

2� + �� . �5.3�

Observe that lim�→− 1
2

+����+ 3
2

�+��=��1�+�=0, and that �����+ 3
2

�+� is an increasing

unction since we have that ���x��0 for x�0 �see Ref. 20, p. 14�. Then ���+ 3
2

�+��0 for
�− 1

2 , and thus formula �5.3� tells us that SL2�C,d�o,���B��1
����SL2�R,dg���1

��. That is, the
-deformed Segal-Bargmann transform B� decreases the entropy of 1

�. We have already noted
hat B� preserves the entropy of 0

�. It seems reasonable to conjecture that B� increases the entropy
f other functions in L2�R ,dg��. �This is known to be true in the case �=0. See Ref. 33.�

As happens in the case of the sequence of entropies �Sn
��n=0

� in the preceding section, the
equence of entropies �sn

��n=0
� is unbounded as we will prove now. By using the asymptotics

��z� = log z + O�z−1� , �5.4�

alid for �arg z��	 and z→� �see Ref. 20, p. 18�, and Stirling’s formula

log ��z� = �z − 1
2�log z − z + O�1� , �5.5�

lso valid for �arg z��	 and z→� �see Ref. 20, p. 12�, we see that for large n the term in
arentheses on the right-hand side of �5.1� behaves like

n�log�n + � + 1
2� + O�n−1�� − �n + ��log�n + � + 1

2� + �n + � + 1
2� + O�1�

= n − � log�n + � + 1
2� + O�1� ,

hich is unbounded. In turn this implies that the sequence of entropies �sn
��n=0

� is unbounded, as
anted.

Now let us see that the sequence �sn
��n=0

� is increasing �as the sequence �Sn
��n=0

� is�. First note
hat Lemma �3.1� �a� gives us

s1
� = �� + 1

2����� + 3
2� − log�� + 1

2�� � 0 = s0
�,

o let us prove that sn+1
� �sn

� for n�1. Observe that

��n + � +
1

2
�

��� +
1

2
� = �

k=1

n �k + � −
1

2
� .
So we can write �5.1� as
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sn
� =

��n + � +
1

2
�

��� +
1

2
� �n��n + � +

1

2
� − log �

k=1

n �k + � −
1

2
��

=

��n + � +
1

2
�

��� +
1

2
� �

k=1

n ���n + � +
1

2
� − log�k + � −

1

2
�� .

Then, by using Lemma �3.1� �a� we get

sn+1
� =

��n + � +
3

2
�

��� +
1

2
� �

k=1

n+1 ���n + � +
3

2
� − log�k + � −

1

2
��

=

��n + � +
3

2
�

��� +
1

2
� �

k=1

n

� 1

n + � +
1

2

+ ��n + � +
1

2
�− log�k + � −

1

2
��

+

��n + � +
3

2
�

��� +
1

2
� ���n + � +

3

2
� − log�n + � +

1

2
��

=

n��n + � +
1

2
�

��� +
1

2
� + �n + � +

1

2
�sn

� +

��n + � +
3

2
�

��� +
1

2
� ���n + � +

3

2
� − log�n + � +

1

2
�� � sn

�,

hich proves that �sn
��n=0

� is increasing, as wanted. In particular we have that the sequence �sn
��n=1

�

s positive. �Recall that since L2�R ,dg�� is a probability measure space, we have that sn
��0 for all

=0 ,1 , . . ..�
Finally, observe that from formulas �2.1�, �3.2�, and �4.1� we see that �5.1� can be written as

sn
� =

��n + � +
1

2
�

��� +
1

2
� �S2n

� − Sn� .

We know that limn→��S2n
� /2n�=1 �Theorem 4.1� and limn→��Sn /n�=1 �Proposition 3.1�. Then

e have that

lim
n→+�

sn
�

n��n + � +
1

2
� = ���� +

1

2
��−1

.

So the sequence �sn
��n=0

� diverges to infinity much faster than the sequence �Sn
��n=0

� does. In
�
articular, sn is not asymptotic to n, namely it is not extensive in n. Using the log-Sobolev
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nequalities proved in Ref. 24, one can show that the entropies of the basis elements n
� are

omparable, modulo terms linear in n, with the entropies Sn
� studied in the preceding section. This

mplies that the entropies of the n
� are extensive quantities in n.

I. �-DEFORMED ENERGIES

In this section we study two entropy-energy inequalities, known as reverse log-Sobolev in-
qualities �in the �-deformed Segal-Bargmann space B�

2 � that are proved in Ref. 2. We first quote
he appropriate definition of energy from Ref. 2 and then calculate it for the functions in the
anonical basis of B�

2 . Since we already have calculated the entropies for these functions, we can
hen proceed to the analysis of the two reverse log-Sobolev inequalities.

Definition 6.1: For f �Be,�
2 we define its �-deformed energy Ee,��f� as

Ee,��f� = �
C

�f�z��2�z�2 d�e,��z� .

For f �Bo,�
2 we define its �-deformed energy Eo,��f� as

Eo,��f� = �
C

�f�z��2�z�2 d�o,��z� .

In general, for f �B�
2 we define its �-deformed energy E��f� as E��f�=Ee,��fe�+Eo,��fo�.

We will denote by En
� to the �-deformed energy E���n

��, so we have E2n
� =Ee,���2n

� � and

2n+1
� =Eo,���2n+1

� �. We have that

E2n
� =

21/2−�

	��� +
1

2
��C

� z2n

����2n��1/2�2

�z�2K�−1/2��z�2��z�2�+1 dx dy

=
21/2−�2

��� +
1

2
����2n�

�
0

�

K�−1/2�r2�r2�2n+�+2� dr =
21/2−�

��� +
1

2
����2n�

�
0

�

K�−1/2�s�s2n+�+3/2 ds .

Since 2n+�+ 5
2 � ��− 1

2 � we can use formula �2.7� to write

E2n
� =

21/2−�

��� +
1

2
����2n�

22n+�+1/2��n +
3

2
���n + � + 1� ,

hich simplifies �by using �2.1�� to

E2n
� =

2��n +
3

2
���n + � + 1�

��n + 1���n + � +
1

2
� . �6.1�
Similarly we have that
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E2n+1
� =

21/2−�

	��� +
1

2
��C

� z2n+1

����2n + 1��1/2�2

�z�2K�+1/2��z�2��z�2�+1 dx dy

=
21/2−�2

��� +
1

2
����2n + 1�

�
0

�

K�+1/2�r2�r2�2n+�+3� dr

=
21/2−�

��� +
1

2
����2n + 1�

�
0

�

K�+1/2�s�s2n+�+5/2 ds .

Since 2n+�+ 7
2 � ��+ 1

2 � we can use formula �2.7� to write

E2n+1
� =

21/2−�

��� +
1

2
����2n + 1�

22n+�+3/2��n +
3

2
���n + � + 2� ,

hich simplifies �by using �2.2�� to

E2n+1
� =

2��n +
3

2
���n + � + 2�

��n + 1���n + � +
3

2
� . �6.2�

When �=0 formulas �6.1� and �6.2� become

E2n
0 = 2n + 1 and E2n+1

0 = 2n + 2,

hich agrees with the known result that the �undeformed� energy En of the function �n is n+1 �see
ef. 33�.

In Ref. 2 the following two reverse log-Sobolev inequalities are proved in the context of
-deformed Segal-Bargmann analysis �Theorems 5.1 and 5.2�.

Theorem 6.1: For all c�1 there exists a real number Pe�c ,�� such that for f �Be,�
2 we have

Ee,��f� � cSL2�C,d�e,���f� + Pe�c,���f�Be,�
2 .

Theorem 6.2: For all c�1 there exists a real number Po�c ,�� such that for f �Bo,�
2 we have

Eo,��f� � cSL2�C,d�o,���f� + Po�c,���f�Bo,�
2 .

A direct consequence of these results is the following reverse log-Sobolev inequality in the
-deformed Segal-Bargmann space B�

2 �Theorem 5.3 in Ref. 2�.
Theorem 6.3: For all c�1 there exists a real number P�c ,�� such that for f �B�

2 we have

E��f� � c�SL2�C,d�e,���fe� + SL2�C,d�o,���fo�� + P�c,���f�B
�
2 .

In particular, if we consider the elements �n
�, n=0,1 , . . . of the canonical basis of B�

2 , Theorem
.1 tells us that for all c�1 there exists a constant Pe�c ,�� such that for all n=0,1 , . . . we have
hat

E2n
� � cS2n

� + Pe�c,�� , �6.3�

nd Theorem 6.2 tells us that for all c�1 there exists a constant Po�c ,�� such that for all n

0,1 , . . .. we have that
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E2n+1
� � cS2n+1

� + Po�c,�� . �6.4�

Remark: By using Stirling’s formula it is easy to see from �6.1� and �6.2� that for fixed n
0,1 , . . ., we have that En

�→ +� as �→ +�. We already know that S2n+1
� →−� as �→ +� �see

heorem 4.2�. Then �6.4� tells us that for any c�1 and any n=0,1 , . . . we have that Po�c ,��
E2n+1

� −cS2n+1
� → +� as �→ +�. That is, the values of the constant Po�c ,�� in Theorem 6.2 will

e as large as we want, by taking ��0 large enough.
So Theorem 6.1 tells us that c�1 is a sufficient condition to conclude the existence of the

onstant Pe�c ,�� such that the inequality �6.3� holds for all n=0,1 , . . .. We will prove now that
his condition is also necessary, by showing that for fixed ��− 1

2 , the sequence �E2n
� −cS2n

� �n=0
� is

ounded above if and only if c�1.
By using the formula

��z + ��
��z + ��

= z�−��1 + O�z−1�� , �6.5�

alid for �arg z��	 and z→� �see Ref. 20, p. 12� we can write the following asymptotics for E2n
� :

E2n
� = 2

��n +
3

2
�

��n + 1�
��n + � + 1�

��n + � +
1

2
� = 2n1/2�1 + O�n−1��n1/2�1 + O�n−1�� = 2n + O�1� .

Also, by using �2.1�, �5.4�, and �5.5� and formula �4.1� for S2n
� , we can write

S2n
� = n���� + n +

1

2
� + ��n + 1�� − log

��n + 1���� + n +
1

2
�

��� +
1

2
�

= n�log�� + n +
1

2
� + log�n + 1� + O�n−1��

− �n +
1

2
�log�n + 1� + n + 1 − �� + n�log�� + n +

1

2
� + � + n +

1

2
+ O�1�

= −
1

2
log�n + 1� − � log�� + n +

1

2
� + 2n + O�1� .

Then we have that

E2n
� − cS2n

� = 2n + O�1� − c�− 1
2 log�n + 1�− � log�� + n + 1

2�+ 2n + O�1��

= �1 − c�2n +
c

2
log�n + 1� + c� log�� + n +

1

2
� + O�1�

= �1 − c�2n +
c

2
log

n + 1

� + n +
1

2

+ c�� +
1

2
�log�� + n +

1

2
� + O�1�

= �1 − c�2n + c�� +
1

2
�log�� + n +

1

2
� + O�1� .

Clearly, the sequence �E2n
� −cS2n

� �n=0
� is bounded above if and only if c�1. This shows that the

ondition c�1 is the best possible in the reverse log-Sobolev inequality in Theorem 6.1, namely

hat this inequality does not hold for c�1.

                                                                                                            



e
s
�

−
p

T
t

V

n

f
t

A

�
h

032101-29 Entropies in deformed Segal-Bargmann analysis J. Math. Phys. 47, 032101 �2006�

                        
Now let us consider Theorem 6.2. We know that c�1 is a sufficient condition to conclude the
xistence of the constant Po�c ,�� such that the inequality �6.4� holds for all n=0,1 , . . .. We will
ee now that this condition is also necessary, by showing that for fixed ��− 1

2 , the sequence
E2n+1

� −cS2n+1
� �n=0

� is bounded above if and only if c�1.
By using �6.5� we can write the following asymptotics for E2n+1

� :

E2n+1
� =

2��n +
3

2
���n + � + 2�

��n + 1���n + � +
3

2
� = 2n1/2�1 + O�n−1��n1/2�1 + O�n−1�� = 2n + O�1� .

By using �2.2�, �5.4�, and �5.5� and formula �4.3� for S2n+1
� , we can write

S2n+1
� = �n +

1

2
����� + n +

3

2
� + ��n + 1�� − log

��n + 1���� + n +
3

2
�

��� +
1

2
�

= �n +
1

2
��log�� + n +

3

2
� + log�n + 1� + O�n−1��

− �n +
1

2
�log�n + 1� + n + 1 − �� + n + 1�log�� + n +

3

2
� + � + n +

3

2
+ O�1�

= − �� +
1

2
�log�� + n +

3

2
� + 2n + O�1� .

Then we have that

E2n+1
� − cS2n+1

� = 2n + O�1� − c�− �� +
1

2
�log�� + n +

3

2
�+ 2n + O�1��

= �1 − c�2n + c�� +
1

2
�log�� + n +

3

2
� + O�1� .

As in the case of Theorem 6.1 considered above, we see now that the sequence �E2n+1
�

cS2n+1
� �n=0

� is bounded above if and only if c�1, which shows that the condition c�1 is the best
ossible in the reverse log-Sobolev inequality in Theorem 6.2.

Either one of the two cases considered in this section shows that the condition c�1 in
heorem 6.3 is also the best possible. Note that the asymptotics that we have proved for En

� show
hat it is extensive in n.

II. FINAL REMARKS

In conclusion, we have just a few comments.
First, it would be interesting to evaluate in closed form the entropies of the elements n

� for
�2 of the canonical basis of L2�R ,dg��. This has not even been done yet in the case �=0.

Second, we would like to repeat the conjecture that the �-deformed Segal-Bargmann trans-
orm increases the entropy of some functions. And again, this is plausible since it is known to be
rue when �=0. �See Ref. 33.�
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In this paper we perform an exact study of “quantum fidelity” �also called
Loschmidt echo� for the time-periodic quantum harmonic oscillator of the follow-

ing Hamiltonian: Ĥg�t�ª �P2 /2�+ f�t��Q2 /2�+ �g2 /Q2�, when compared with the

quantum evolution induced by Ĥ0�t� �g=0�, in the case where f is a T-periodic
function and g a real constant. The reference �initial� state is taken to be an arbitrary
“generalized coherent state” in the sense of Perelomov. We show that, starting with
a quadratic decrease in time in the neighborhood of t=0, this quantum fidelity may
recur to its initial value 1 at an infinite sequence of times tk. We discuss the result

when the classical motion induced by Hamiltonian Ĥ0�t� is assumed to be stable
versus unstable. © 2006 American Institute of Physics. �DOI: 10.1063/1.2178153�

. INTRODUCTION

A growing interest has been devoted recently on the study of the so-called “quantum fidelity”

Fg�t� ª �U0�t,0��,Ug�t,0��� �1�

or some reference state � that we take as initial wave packet, U0�t ,0� being the quantum unitary
volution operator induced by some Hamiltonian, and Ug�t ,0� the quantum evolution for a per-
urbation of it, g being the size of the perturbation. The long-time behavior of Fg�t� is of particular
nterest, and it has been studied for a large class of �time independent� Hamiltonians in a more or
ess heuristic way, and this long-time behavior has been suggested to depend sensitively on the
egular versus chaotic motion of the underlying classical motion �see the reference section�.

The first occurrence of this notion in the literature is due to Peres.22 Recently a large amount
f work has been presented on this topic �see Refs. 1–6, 9–19, and 23–44�. In most of these works,
t is claimed that the quantum fidelity decays very fast to zero as time grows, when the underlying
lassical �unperturbed� dynamics is generically chaotic.

Although the short time decay of the fidelity is rather well understood,42 some of the argu-
ents put forward in the above cited works are not entirely convincing, since they are either

urely numerical, or extrapolate the “short time” behavior to guess the �Gaussian or exponential�
ecay at infinity. However there are few �semiclassical and/or perturbative� approaches which
xplain quantitatively behaviors in different time regimes. In particular there is a semiclassical
ephasing approximation put forward by Vanicek,32 and perturbative semiclassical calculations of
rosen and Znidaric27 which are valid in the regime of integrable, chaotic, and mixed dynamics
egimes. Finally let us mention exact perturbative calculations of fidelity decay via random-matrix
escription by Gorin et al.,16 and an exact nonperturbative supersymmetric random-matrix de-

�
Electronic mail: monique.combescure@ipnl.in2p3.fr
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cription by Stoeckmann et al.31 Thus it is a field of very rich and promising insight for the study
f stability under perturbations of the quantum dynamics when the underlying classical motion
isplays chaotic behavior.

In other approaches,18,41 the case of integrable or regular systems is considered as well, and
eems to indicate the occurrence of an anomalous power law decay. Moreover, in a case of nearly
ntegrable system a recurrence of fidelity has been exhibited;28 in this case the quantum fidelity

anifests recurrences very close to the initial value 1 as time evolves.
Thus it is a very intriguing subject of high interest to know more about the complete time

ehavior of the quantum fidelity when the underlying dynamics is chaotic versus regular. To our
nowledge, no completely rigorous approach of this topic has been attempted yet. It would be
ighly desirable to have a mathematically explicit description of the long-time behavior of the
uantum fidelity, although it is a very difficult task.

This paper is a first attempt towards this rigorous understanding. It relies on a rather simplistic
lass of Hamiltonians for which the perturbed as well as unperturbed quantum dynamics can be
xplicitly solved in terms of the classical dynamics. Moreover the reference quantum states are
aken in a suitable large class of quantum states known as “generalized coherent states” in the
ense of Perelomov. The results are rather surprising:

i� for a large class of reference states, the quantum fidelity never decreases to 0, but instead
remains bounded from below by some constant;

ii� in the unstable case, the quantum fidelity either decays exponentially fast to some nonzero
constant, as t→�, or manifests strong recurrences to 1;

iii� in the stable case the quantum fidelity always manifests strong recurrences to 1 as time
evolves.

These facts are strongly related to the underlying SU �1, 1� structure underlying the corre-
ponding Hamiltonians, as can be seen from the work of Perelomov.21

We also are able to show a strong relationship between “quantum and classical fidelity” for
his specific situation.8

To complete this Introduction, let us notice that a notion of classical fidelity that “mimics” the
uantum fidelity has been proposed in the literature,27,12,2,36 where decay properties similar to
hose of the quantum fidelity appear. Thus it would be desirable to understand more deeply the
elationships between the classical and quantum fidelity on a firm mathematical basis. We shall
ursue this investigation in future presentations, notably in the semiclassical limit �see Refs. 8 and
�.

I. CALCULUS OF THE QUANTUM FIDELITY

Let us consider the following operators in H=L2�R� with suitable domains �see Ref. 21�:

K0 =
Q2 + P2

4
+

g2

2Q2 , �2�

K± =
Q2 − P2

4
� i

QP + PQ

4
−

g2

2Q2 , �3�

here Q is the usual multiplication operator by x and

P ª − i
d

dx
,

0 and K± satisfy the usual commutation rules of SU �1, 1� algebra, namely
�K0,K±� = ± K±, �4�
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�K−,K+� = 2K0. �5�

We define the “generalized coherent states” �squeezed states� as follows: given any ��C,

S� = exp��K+ − �̄K−� , �6�

�� = S���� , �7�

being a normalized state in H such that

K−� = 0, �8�

2K0� = �� + 1
2�� , �9�

ith

� ª

1
2 + �1

4 + 2g2. �10�

We shall focus on the following cases g=1, g=�3, where � has the following form:

��x� = c1x2e−x2/2, �11�

��x� = c2x3e−x2/2 �12�

ith

c1 = �4
3 , �13�

c2 = � 8
15 �14�

omitting the factors in ��.
This makes � and � to be �normalized to 1� finite linear combinations of Hermite functions.
It has been shown �see Ref. 21� that for �=�, �� has the following form:

�� = c1x2e−2�u−	� exp�−
5i


2
+ i

u̇x2

2
−

1

2
�u − 	� −

1

2
�xe−�u−	��2	 , �15�

here the constants u , u̇ ,
 ,	 are suitably determined from ��C, whereas for �=�, �� is

�� = c2x3e−3�u−	� exp�−
7i


2
+ i

u̇x2

2
−

1

2
�u − 	� −

1

2
�xe−�u−	��2	 . �16�

Now the evolutions of �� with respect to U1�t ,0� and U�3�t ,0�, respectively, together with

0�t ,0� are completely explicit.
Consider a complex solution of the classical equations of motion induced by Hamiltonian

ˆ
0�t�,

ẍ + fx = 0 �17�

nd look for it in the form

x = eu+i
, �18�

here the functions t�u and t�
 are real.

We assume for u�t� and 
�t� the following initial data:
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u�0� = u0,

u̇�0� = u̇0,


�0� = 
0,


̇�0� = e−2�u0−	�.

ince f is real, the Wronskian of x and x̄ is constant and equals

2ie2	 = 2i
̇�t�e2u�t�. �19�

This yields

ẍ = �ü + i
̈ + �u̇ + i
̇�2�x = �ü + u̇2 − e−4�u−	��x = − fx �20�

nd therefore u obeys the following differential equation:

ü + u̇2 − e−4�u−	� + f = 0. �21�

We have the following result.

Lemma 2.1: Let Ĥg= �P2+Q2� /2+g2 /Q2. Then the quantum propagator for Ĥg�t� is of the
ollowing form:

Ug�t,0� = eiu̇Q2/2e−i�u−	��QP+PQ�/2e−i�
−
0�Ĥgei�u0−	��QP+PQ�/2e−iu̇0Q2/2. �22�

he same formula holds for the propagator U0�t ,0� of Ĥ0�t� with Ĥg replaced by Ĥ0.
Proof: Let us denote

V�t� ª eiu̇Q2/2e−i�u−	��QP+PQ�/2e−i
Ĥg. �23�

We have

i
d

dt
V�t� = �− ü

Q2

2
+

u̇

2
eiu̇Q2/2�QP + PQ�e−iu̇Q2/2	V�t�

+ �
̇eiu̇Q2/2ei�u−	��QP+PQ�/2Ĥge−i�u−	��QP+PQ�/2e−iu̇Q2/2�V�t� �24�

nd since

eiu̇Q2/2Pe−iu̇Q2/2 = P − u̇Q �25�

e have

eiu̇Q2/2�PQ + QP�e−iu̇Q2/2 = PQ + QP − 2iu̇Q2. �26�

Therefore the first line on the right-hand side �RHS� of �24� is

��−
ü

2
− u̇2	Q2 +

u̇

2
�QP + PQ�	V�t� . �27�

Furthermore

e−i�u−	��QP+PQ�/2Ĥge−i�u−	��PQ+QP�/2 = �P2

2
+

g2

Q2	e2�u−	� +
Q2

2
e−2�u−	� �28�
hich implies that the second line on the RHS of �24� is
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�1

2
�P − u̇Q�2 +

g2

Q2 +
Q2

2
e−4�u−	�	V�t� , �29�

here we have used that


̇ = e−2�u−	�.

Collecting the different terms, we get

i
d

dt
V�t� = �P2

2
+

g2

Q2 +
Q2

2
�− ü − u̇2 + e−4�u−	��	V�t� = �P2

2
+

g2

Q2 + f�t�
Q2

2
	V�t� �30�

sing �21�. �

We shall now consider the “quantum fidelity” in two particular cases g=1 and g=�3, starting,
espectively, with the initial states ��,1=S����, and ��,2=S����,

F1�t� = �U0�t,0���,1,Ug�t,0���,1� , �31�

nd similarly for F2�t� with ��,1 replaced by ��,2.
Theorem 2.2: (i) Let g=1 and ��,1=S����. Then we have

F1�t� = 2
3 + 1

3e−2i�
�t�−
�0��. �32�

ii) Let g=�3 and ��,2=S����. Then we have

F2�t� = 2
5 + 3

5e−3i�
�t�−
�0��. �33�

Proof: Since x2 is expanded as

x2 = 1
4H2�x� + 1

2H0�x�

t is clear that

U0�t,0���,1 = c1 exp� i

2
u̇�t�x2 −

1

2
�u�t� − 	�	
1

4
e−5i
�t�/2H2�xe−�u�t�−	�� +

1

2
e−i
�t�/2−2i
�0��

� exp�−
1

2
x2e−2�u�t�−	�	 �34�

nd

Ug�t���,1 = V�t�� = c1 exp�−
5

2
i
�t� +

i

2
u̇�t�x2 −

1

2
�xe−�u�t�−	��2	 �35�

rom which we deduce that

F1�t� = c1
2� x2�x2 −

1

2
	 +

e−2i�
�t�−
�0��

2
x2�e−x2

dx =
4

3
�1

2
+

1

4
e−2i�
�t�−
�0��	 =

2

3
+

1

3
e−2i�
�t�−
�0��,

�36�

ii� follows from a very similar calculation using that

H3�x� = 8x3 − 12x .
�
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Let us now assume that g has an arbitrary real value �not specifically of the form g
�k�k+1� /2 for k�N which gives rise to integer values of �= 1

2 +�1
4 +2g2�. Then the state �

cx�e−x2/2 is no longer a finite linear combination of Hermite functions. It has nevertheless an
nfinite expansion on the basis of Hermite functions �n,

� = �
n=0

�

�n�n

nd one can establish the following general result about the corresponding “quantum fidelity.”
Theorem 2.3:

Fg�t� = exp�− i��
�t� − 
�0����
n=0

�

��n�2 exp�in�
�t� − 
�0���

hich, since �n=0
� ��n�2=1, returns in absolute value to 1 as long as 
�t�−
�0�=0�mod 2��. If �

p /q is rational, then the quantum fidelity recurs exactly to 1 (not only in absolute value)
rovided that 
�t�−
�0�=0�mod 2q��.

Proof: Again according to Ref. 21, we have

�� ª S���� = e−i��+1/2�
0D�u0�� ,

here by D�u� we denote the following unitary operator:

D�u� ª eiu̇Q2/2e−i�u−	��QP+PQ�/2.

Then

U0�t,0��� = D�ut�e−i�
t−
0�Ĥ0�
n=0

�

�ne−i
0��+1/2��n = D�ut��
n=0

�

�ne−i
t�n+1/2�+i
0�n−���n,

hereas

Ug�t,0��� = e−i
t��+1/2�D�ut�� ,

o that

�U0�t,0���,Ug�t,0������ = �
n,m

�̄n�mei
t�n+1/2�−i
0�n−��−i
t��+1/2���n,�m� = �
n=0

�

��n�2ei�
t−
0��n−��.

�

II. DISCUSSION OF THE RESULT

Since f is a T-periodic function, Floquet analysis applies to Eq. �17� which is nothing but the
ell-known Hill’s equation. Depending to the parameters characterizing the function f �as, for

xample,  and � in the case of Mathieu equation where f�t�=+� cos �t�, the solutions can be
ither stable or unstable. In all cases the quantum fidelity F1�t� and F2�t� are bounded from below
y some positive constant in absolute value, and therefore never decrease to zero.

The phase 
�t� is determined by


�t� − 
�0� = e2	�t

e−2u�s� ds . �37�

0
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In the stable case, the function t�u�t� is T-periodic. Therefore 
�t� grows from −� to +� as
ime evolves from −� to +�. It follows that there exists an infinite sequence of times �tk� where

1�t� recurs to its initial value 1, and an infinite squence �tk�� where �F1�t�� attains its minimum
/3. The same statement holds for F2�t� where 1/3 is replaced by 1/5.

In the unstable case there is some positive Lyapunov exponent � and some real solution of
ill’s equation such that

x�T� = e�Tx�0� ,

ẋ�T� = e�Tẋ�0� .

Here, since we deal with complex solutions x�t� such that the Wronskian of x and x̄ is nonzero,
e deduce that �x�t���0. Moreover, depending on the instability zone, �x�t��−2=e−2u�t� can be

ntegrable near ±�, or diverge at ±�. These topics are clearly detailed in Ref. 20. In the first case
he conclusion is that there exists two constants 
± such that


�t� → 
± as t → ± � . �38�

This is the case for the inverted harmonic oscillator �f =−1� that we describe in the preceding
ection.

Therefore the quantum fidelity in this case behaves generically as described in the following
icture:

If the instability zone in which the solution x�t� lies is such that �x�t��−2 is not integrable near
�, then the diagram is typically similar to that of the stable case, which shows infinite recur-

ences to 1 of the quantum fidelity.

V. LINK WITH THE “CLASSICAL INFIDELITY”

We can call “classical infidelity” the discrepancy between two classical trajectories, along
heir evolution, when they merge from the same initial phase-space point at t=0. The possible
rossing of the two trajectories governed by H0�t� and Hg�t�, in phase space, as time evolves,
ould then be a signature of the “classical fidelity” as defined in the literature.

From now on we assume that 	 of Sec. II is determined by �g�0�,

e2	 = g�2. �39�
Proposition 1: Let x�t� be a real trajectory for the time-periodic Hamiltonian H0�t�, and y�t�
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real trajectory for Hamiltonian Hg�t�. Assume in addition that they satisfy x�0�=y�0��R,
˙�0�= ẏ�0��R. Then we have

�x�t� − y�t�� = �y�t���1 − cos 
̃�t�� , �40�

here 
̃�t� is defined as follows:


̃�t� ª g�2�
0

t

y�s�−2 ds � 
�t� − 
�0� . �41�

Proof: Let z�t� be a complex solution of the equation

z̈ + fz = 0. �42�

t can be written as z�t�=eu+i
̃ as above, where t�u and t� 
̃ are real functions. Assume that x�t�
s such that x�0��0. Then it is easy to see that x�t�=Rz�t�=eu�t� cos 
̃�t� is a solution of Eq. �42�,
nd that the positive function y�t�ªeu�t� is a solution of

ÿ + fy −
2g2

y3 = 0 �43�

hich means that it defines a classical trajectory for Hg�t�.
Namely we get from Eq. �41� that

d

dt

̃�t� = g�2e−2u�t� �44�

nd therefore

ẍ = �ü + u̇2 − 2g2e−4u�x = − fx , �45�

o that

�ü + u̇2 − 2g2e−4u + f�eu = 0 �46�

hich is nothing but Eq. �43� noting that

ÿ = �ü + u̇2�y . �47�

Moreover, they satisfy x�0�=y�0�, ẋ�0�= ẏ�0�, and

�x�t� − y�t�� = y�t��1 − cos 
̃�t�� .

In the case where x�0��0, we just take x�t�=−Rz�t� and y�t�=−eu�t�, which completes the
esult. �

Conclusion: The classical infidelity vanishes for 
̃�t�=2k� �k�Z�, which precisely gives rise
o recurrences to 1 of the “quantum fidelity” �Theorem 2.3�. We expect this remarkable property
o be true in more general situations, in particular in the semiclassical regime �see Ref. 8�.

By “vanishing of the classical infidelity” we mean that given any solution of the unperturbed
ynamics, there exists a solution of the perturbed one that coincides with it at the origin, and at
ny values of time solving the equation

g�2�
0

t

ds y�s�−2 = 0 �mod 2�� .

One may ask whether this holds true for general solution x�t�, y�t� of Eqs. �42� and �43�. This

s answered in the following particular cases below.
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�i� Particular case f =1 �the case f =�2 could be treated as well�: When we apply the result
bove, we find that solutions x�t�=A cos t and y=A coincide for t=2k�, k�Z, and that y obeys
q. �43� provided A= �2g2�1/4. One shows that a more general result holds, involving general
olutions of the equations under consideration.

The general solution of Eq. �43� is of the form �apart from the sign before the square root�

y�t� = �� + � cos 2t +  sin 2t �48�

ith � ,� , related to each other by the relation

�2 − ��2 + 2� = 2g2. �49�

It obeys the initial data

y�0� = �� + � ,

ẏ�0� =


�� + �
,

nd the conserved energy is simply �.
We take as real solution of Eq. �43� �harmonic oscillator�,

x�t� = �� + � cos t +


�� + �
sin t , �50�

hich has the same initial data as y�t�. Both functions being 2�-periodic, the generic “classical
nfidelity” vanishes when t=2k�, k�Z.

�ii� Particular case f =−1 �the case f =−�2 could be treated as well�: Any complex solution of
he differential equation �inverted harmonic oscillator�

z̈ − z = 0 �51�

an be written in the form

z�t� = �a + ib�et + �c + id�e−t, �52�

here a ,b ,c ,d are real constants. We define

Z�t� ª �z�t��2.

One can prove that y�t�=�Z�t� obeys the differential equation

ÿ − y −
2g2

y3 = 0 �53�

ith

g2 = 2�ad − bc�2 � 0 �54�

t is important to note that this implies Z�t��0, "t.
Define x�t�ªy�t�cos 
�t�, with 
�0�=0. Then, clearly

x�0� = y�0� ,

ẋ�0� = ẏ�0� .
We want x�t� to be a real solution of Eq. �53�. Since
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ẍ − x =
1
�Z
� Z̈

2
−

Ż2

4Z
− Z − 
̇2Z	cos 
 − � 
̇Ż

�Z
+ 
̈�Z	sin 
 �55�

nd since Z obeys

Z̈

2
−

Ż2

4Z
− Z −

2g2

Z
= 0 �56�

he RHS of Eq. �55� vanishes provided


̇2 = 2g2Z−2. �57�

Then x�t� and y�t� are two trajectories for Hamiltonians �P2−Q2� /2 and �P2−Q2� /2
�g2 /Q2� respectively, with the same initial data, and we have

�x�t� − y�t�� = y�t��1 − cos 
�t�� . �58�

Using the particular solution of Eq. �51�

z�t� =
1 + i

2
et +

1 − i

2
e−t

hat can be rewritten as

z�t� = �cosh 2t exp� i

2
arcsin tanh 2t	 ,

.e., with u�t�= 1
2 ln cosh 2t �which satisfies u�0�= u̇�0�=0�, the formula �22� can be rewritten in the

imple form

Ug�t,0� = exp� i

2
Q2 tanh 2t	exp� i

4
�QP + PQ�ln cosh 2t	exp�−

i

2
Ĥg arcsin tanh 2t	 �59�

hich holds true for g=0, and g=1/�2. For g=0, this is nothing but the well-known Mehler’s
ormula.

�iii� Study of 
�t�: Recall that the fidelity Fg�t� strongly depends on the reference state via the
onstants a ,b ,c ,d,


�t� = g�2�
0

t ds

�a2 + b2�e2s + �c2 + d2�e−2s + 2�ac + bd�
= �arctan�ac + bd + �a2 + b2�e2t

�ad − bc� 	
− arctan�ac + bd + �a2 + b2�

�ad − bc� 		 . �60�

This implies that 
�t�→
± as t→ ±� exponentially fast in the future and in the past. The
alculus is especially simple in the particular case where we choose a=d=g /�2, c=b=0,


�t� = arctan�e2t� −
�

4
. �61�

No crossing of the classical trajectories happens in this case between the perturbed and
nperturbed dynamics, and the square of the quantum fidelity in the case g=1 is nothing but

�F1�t��2 =
5

9
+

8

9�e2t + e−2t�
�

5

9
+

4

9
e−2�t� �62�
s t→ ±�.
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Here the symmetry is perfect between the future and the past, and the quantum fidelity has no
ecurrences to 1, but instead decays exponentially fast to 5 /9.

. CONCLUSION

It has been suggested in many recent works that the type of decay of the quantum fidelity may
elp to discriminate between chaotic or regular underlying classical motion; in other words the
ypersensitivity of quantum dynamics under small perturbations, as measured by the type of
ecrease of the quantum fidelity, could be a signature of what is often called �rather improperly�
quantum chaos.”

Thus it is highly desirable to have a better understanding of how this function of time �rep-
esented by Eq. �1� for suitable class of reference quantum states �� behaves at infinity in general
s well in particular systems. In this paper we have been able to describe the full time behavior of
he quantum fidelity for a rather specific class of systems, and for reference states in a suitable
lass of “generalized coherent states”. The underlying SU�1,1� structure possessed by these sys-
ems allows us to perform an exact calculus of the quantum fidelity, and to compare it with the
classical infidelity” of the corresponding classical motion. This classical motion can be either
table, or unstable with positive Lyapunov exponent. The quantum fidelity has the following
emarkable properties:

i� either it decays to a �generally nonzero� limit in the past and in the future,
ii� or it manifests an infinite sequence of recurrences to 1 as time evolves.

This sheds a new light on this question which has been addressed in a great variety of cases
n the physics literature, and where the quantum fidelity is generally claimed to decay very rapidly
o zero. Thus the first mathematical study presented here on the long-time behavior of the quantum
delity could allow in the future a better understanding of these features in more general situations
n a rigorous level.
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We propose three effective Hamiltonians which approximate atoms in very strong
homogeneous magnetic fields B modelled by the Pauli Hamiltonian, with fixed total
angular momentum with respect to magnetic field axis. All three Hamiltonians
describe N electrons and a fixed nucleus where the Coulomb interaction has been
replaced by B-dependent one-dimensional effective �vector valued� potentials but
without magnetic field. Two of them are solvable in at least the one electron case.
We briefly sketch how these Hamiltonians can be used to analyze the bottom of the
spectrum of such atoms. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2178155�

. INTRODUCTION

The Pauli Hamiltonian of a nonrelativistic atom with an infinitely heavy nucleus and electrons
ith spin in a constant magnetic field B of strength B is given by

HB�Z,N� = �
j=1

N �1

2
�1

i
� j −

1

2
B Ù rj�2

+ �� j · B −
Z

�rj�
� + �

1�j�k�N

1

�rj − rk�
, �1�

here rj = �xj ,yj ,zj��R3 are the coordinates of the jth electron, �� j is its spin, and � j is the
radient with respect to rj. Note that we have made the choice of 1

2BÙr for the vector potential of
, and that we are working in atomic units.

We fix the direction of B to be the z direction: B=B�0,0 ,1� with B�0 without loss of
enerality. Recall that the z-component of �� j is given, in the Pauli representation, by

I � ¯ �zj
¯ � I, �zj

=
1

2
�− 1 0

0 1
� ,

cting on the N-fold tensor product C2 � ¯ � C2. It is known �see Ref. 13� that HB
ªHB�Z ,N�

efines an essentially self-adjoint operator on
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�
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H = �
j=1

N

L2�R2� � C2, �2�

he Hilbert space of distinguishable electrons or “boltzons” �meaning particles satisfying the
oltzman statistics: we thank Beth Ruskai for introducing us to this expression�. Physical atoms
re of course modeled by HB restricted to the fermionic subspace

Hf = Ù
j=1

N

L2�R3� � C2, �3�

f totally antisymmetric wave functions in H, where Ù stands for exterior product. A useful
lternative description of H, used in atomic physics, is given by the unitary map

H → L2��R3 � 	±1
�N�, � → U����r1,s1; . . . ;rN,sN� ,

he isometry being defined by taking the components of ��r1 , . . . ,rN� with respect to the natural
asis of C2 � ¯ � C2 consisting of the products � jesj

of the normalized eigenvectors e± of �zj
, e−

orresponding to “spin down” and e+ to “spin up.” In this new representation, �zj
acts as the

ultiplication operator by sj /2, and the fermionic subspace H f of �2� is simply obtained by
ntisymmetrizing with respect to the 4-tuples of variables �r1 ,s1� , . . . , �rN ,sN�.

The main results of this paper can be summarized in the following five theorems below. It is
orthwhile to observe that HB commutes with each individual spin operator �zj

and therefore
ecomposes in a direct sum which is unitarily equivalent to

�
szj

�	±1

HB,Sz=−�NB/2� + �

j=1

N

�1 + szj
�
B

2
,

here Szª� j=1
N �zj

denotes the z component of the total spin operator. So from now on we will

onsider only HB,Sz=−�NB/2� and denote it again by HB. Notice that this operator simply acts in
� j=1

N L2�R3�. Since the Hamiltonian HB also commutes with the total angular momentum operator
n the field direction, which we will call Lz, we can fix a value M�0 of the latter. Our results will
mply that the bottom of the spectrum of HB will necessarily occur for a non-negative value of M,
nd we will therefore restrict ourselves to M�0. Let HB,M be the restriction of HB to the Mth
ngular momentum channel �in the field direction�, and let �eff

B,M be the orthogonal projection onto
he lowest Landau states with z-angular momentum M �cf. �31� for the precise definition�. We
efine the effective Hamiltonian heff=heff

B,M by

heff
B,M = �eff

B,MHB,M�eff
B,M, �4�

nd let

��
B,M = I − �eff

B,M

e the projection onto the orthogonal complement �always restricting ourselves to the Mth
-angular momentum channel�. The operator heff

B,M is the first, and most encompassing, of three
effective Hamiltonians” we will consider in this paper. The two other ones, called hC

B,M and h�
B,

ill be defined below. It will be convenient to complete heff
B,M as follows:

Heff
B,M

ª heff
B,M

� H�
B,M, with H�

B,M
ª��

B,MHB,M��
B,M. �5�

or any self-adjoint operator A, we let ��A� denote the spectrum of A and 	�A� its resolvent set.
ur first main result is the following.

Theorem 1.1: Let 
=
�B� be the unique positive solution of the equation


 + log 
 = 1 log B , �6�
2
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nd let deff���=dist�� ,��heff
B,M��. There exist positive constants Beff, ceff, and Ceff, which only de-

end on Z, N, and M, such that for all B�Beff, and all real � satisfying

ceff



�B
� deff��� �

1

2

2

e have that ��	�HB,M�, and

��HB,M − ��−1 − �Heff
B,M − ��−1� � Ceff


�B�2

deff���2�B
. �7�

Remarks 1.2: �i� We shall see in Theorem 3.1 that ��H�
B,M��R+ for B�B�36�, where the latter

s defined by formula �36� �see our convention on constants at the end of this introduction�. Since

eff�B�36� by �106�, and since one can see from �9� and �10� below that R+���heff
B,M�, it follows

hat ��heff
B,M�=��Heff

B,M� when B�Beff.
�ii� The equation for 
�B� is equivalent to 
e
=�B, and can therefore be written as


�B� = W��B� ,

here W is the principal branch of the Lambert W function, see, e.g., Ref. 8. Using known
roperties of the Lambert W function, or by elementary arguments, one shows that


�B� =
1

2
log B − log�2� B + log 2 + O� log�2� B

log B
�, B → � , �8�

here log�2��x�ª log�log x�, for x1. In particular, 
�B� log��B�, as B→�.
�iii� Our proof yields explicit constants Beff, ceff, and Ceff, for given N, M, and Z. This is also

rue for the constants in Theorems 1.3 and 1.5 below.
�iv� The upper bound 
2 /2 on deff��� is only there to allow a simple expression for the upper

ound in �7�, and is by no means essential. The same remark applies to Theorems 1.3, 1.5, and 1.6
elow.

Some applications of Theorem 1.1, as well as of Theorems 1.3, 1.5, 1.6, and 1.8 below, to the
tudy of spectral properties of HB,M are given in the concluding remarks section.

The operator heff
B,M has the structure of a multiparticle Schrödinger operator on the real line, R,

heff
B,M = −

1

2
� − Z�

j

Vj
B,M�zj� + �

j�k

Vjk
B,M�zj − zk� , �9�

ith operator-valued potentials acting pointwise on a certain finite-dimensional Hilbert space FM
B ,

efined in �32� below. Essentially, FM
B is the vector space spanned by the lowest Landau states with

ngular momentum Lz=M. As we will see, Ran �eff
B,M is canonically isomorphic to the space

2�RN ,FM
B � of vector-valued L2-functions, and the potentials in �9� are simply obtained by pro-

ecting the respective Coulomb terms in �1� along �eff
B,M,

Vj
B,M�zj� ª�eff

B,M 1

�rj�
�eff

B,M, Vjk
B,M�zj − zk� ª�eff

B,M 1

�rj − rk�
�eff

B,M. �10�

e will show that the potentials �10� can be approximated by certain simpler ones, which will give
ise to our two other effective Hamiltonians. Define the tempered distribution qB on R by

qB�z� = log B��z� + Pf� 1

�z�� , �11�
here
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Pf� 1

�z��ª d

dx
�sgn�z�log�z�� ,

with distributional derivative� is the finite part �in the sense of Hadamard� of the singular function
/ �z�; Pf��z�−1� should be interpreted as a regularization of the �three-dimensional� Coulomb po-

ential restricted to the line. Also introduce �constant� finite-dimensional operators Cj
n,B,M and

jk
e,B,M, acting on the vector space FM

B introduced above, defined by

Cj
n,B,M

ª − �eff
B,M log�B

4
�xj

2 + yj
2���eff

B,M �12�

nd

Cjk
e,B,M

ª − �eff
B,M log�B

4
��xj − xk�2 + �yj − yk�2���eff

B,M. �13�

he superscripts “n” and “e” stand for “nucleus” and “electron,” respectively, as a reminder that
12� is a vestige of the interaction between the jth electron and the nucleus, while �13� originates
n the electron-electron interaction between electrons j and k. Finally, define an operator hC

B,M on
2�R ,FM

B � �the C standing for Coulomb� by

hC
B,M = −

1

2
� − Z�

j

�qB�zj� + Cj
n,B,M��zj�� + �

j�k

�qB�zj − zk� + Cjk
e,B,M��zj − zk�� . �14�

s we will see in Sec. IV, the right-hand side of �14� defines a self-adjoint operator hC
B,M on

2�RN�, despite the distributional potentials. This will be a consequence of the Kato-Lax-Lions-
ilgram-Nelson theorem. The form domain of hC

B,M is simply the vector-valued first Sobolev
pace H1�RN ;FM�, while its operator domain will be characterized in the Appendix. As in �5� we
ntroduce

HC
B,M

ª hC
B,M

� H�
B,M.

ur second main theorem then is the following.
Theorem 1.3: Let 
=
�B� be as in Theorem 1.1, and set dC���ªdist�� ,��hC

B,M��. There exists
ositive constants BC, cC, and CC which depend only on Z, N, and M, such that for all B�BC and
ll real � satisfying

cC

3/2

B1/4 � dC��� �
1

4

2

e have that ��	�HB,M�, and

��HB,M − ��−1 − �HC
B,M − ��−1� �

CC

3/2

B1/4dC���2 . �15�

Remark 1.4: In top order in B, all that remains of the electrostatic potentials in HB,M are the
xtremely short-range �-potentials. In next order, the long-range character of the original Coulomb
otentials reasserts itself in two ways: in the magnetic field direction, through the Pf�� · �−1�-terms
n hC

B,M, and in the transversal directions, through the Cj
n,B,M and Cjk

e,B,M terms. The latter are in fact
imply the quantum mechanical mean, with respect to the projection onto the lowest Landau band
tates of total angular momentum M �in the field direction�, of a two-dimensional logarithmic
otential, minus a B-dependent constant. This logarithmic potential is the natural electrostatic
otential for the plane. Physically, this can be understood as follows: under the influence of the
trong magnetic field the electrons will spiral closely around the field lines, along circles of radius
�B−1/2� in the plane transversal to the field, while occupying an interval of size O��log B�−1� in
he field direction itself, as a consequence of the nuclear attraction. For big B, and at different
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ocations in the �x ,y�-plane, they will see each other and the nucleus as so many infinitely long
harged wires, and, as is known from classical electrostatics, such wires interact via a logarithmic
otential.

A simpler effective Hamiltonian, our third and last one, and historically the first to be pro-
osed �cf. Refs. 14, 4, and 6�, is roughly speaking obtained by only keeping the leading term in the
otential of hC

B,M. More precisely, we set

h�
B = − 1

2�z + 2
�B�v�, �16�

here

v��z� = − Z�
j=1

N

��zj� + �
j�k

��zj − zk� . �17�

ooking back at �11� it would seem natural to take as potential log Bv�, but it turns out that

�B�v� leads to smaller error estimates; notice that in view of �8�, 2
v� is also a O�log B� part of
he potential in hC

B. Furthermore, with this choice the coupling constant 2
�B� is positive for all
0 which is not the case for log B. Contrary to our previous two effective Hamiltonians, h�

B does
ot explicitly depend on M anymore, but it will operate on an M and B-dependent Hilbert space,
amely L2�RN ,FM

B �L2�RN� � FM
B �which in fact are canonically isomorphic for different B�.

onsidering �16� as acting on scalar L2�RN�, we define the �-model as being the operator

h�
B,M

ª h�
B

� IFM
B , IFM

B being the identity operator. �18�

e will often simply write h�
B, except when we want to stress the vector-valued nature of the

2-functions in the domain. Again as in �5� we introduce

H�
B,M

ª h�
B,M

� H�
B,M.

ur third approximation theorem is the following.
Theorem 1.5: Let 
ª
�B� be as in Theorem 1.1, and set d����ªdist�� ,��h�

B,M��. There exist
ositive constants B�, c�, and C�, depending on N, Z, and M, such that for all B�B� and real �
atisfying

c�
 � d���� � 1
4


2, �19�

e have that ��	�HB,M�, and

��HB,M − ��−1 − �H�
B,M − ��−1� �

C�


d����2 . �20�

ee Ref. 6 for weaker versions of this theorem. We also mention Ref. 4, which established the
onvergence of the ground state energy of fermionic HB �see below� to that of bosonic �scalar� h�

B

n L2�RN�, using variational arguments: these authors did not fix M, but they only proved conver-
ence of the ground state energy, while we can conclude much more from the norm resolvent
onvergence to the effective Hamiltonians; see Sec. IX for a list of applications of the results of
he present paper. �Reference 4, following Ref. 14, first did a rescaling of HB’s ground state energy
hich allowed them to compare with h�

B for a fixed B �e.g., fixing 2
�B�=1�. Since this homo-
eneity property is not valid anymore for our other two effective Hamiltonians, we prefer not to do
his here �contrary to our earlier papers6�, in order to have a coherent presentation.� Earlier, Ref. 14
ad shown that the ground state of the Hartree mean-field model associated to �16� approximates
he quantum mechanical ground state energy in the so-called hyperstrong limit Z, B /Z3→�,
ssuming N /Z uniformly bounded. The idea that a model such as the �-model could be relevant in

he context of strong magnetic fields is not new in the physics literature, see, e.g., Ref. 19.
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We next turn to the effects of particle symmetry. Electrons in physical atoms are fermions, and
e now consider the analogues of Theorems 1.1, 1.3, and 1.5 for HB restricted to the fermionic

ubspace Hf= PAS�H�, where PAS is the orthogonal projection onto the subspace of antisymmetric
ymmetric wave functions defined by

PAS��r1,s1; . . . ;rN,sN� ª
1

N! �
��SN

�− 1����r��1�,s��1�; . . . ;r��N�,s��N�� ,

ith �−1��ª �−1�sgn���. The projection PAS commutes with HB, Lz, Sz and with the N-particle
andau Hamiltonian H0

B defined in �24� below, and therefore also with �eff
B,M �see Sec. II�. Recall-

ng that we have fixed our spins to Sz=−NB /2, PAS for us will only act in the spatial variables
r1 , . . . ,rN�. Let Hf

B,M
ªPASHB,MPAS=HB,MPAS the fermionic Pauli operator with z-angular mo-

entum M. Similarly, introduce fermionized versions of the other operators: �eff,f
B,M

ªPAS�eff
B,M,

�,f
B,M

ªPAS��
B,M, Heff,f

B,M
ªPASHeff

B,M= PASheff
B,M

� H�,f
B,M

ªheff,f
B,M

� H�,f
B,M, hC,f

B,M= PAShC
B,M, h�,f

B
ªPASh�

B,

C,f
B,M= PASHC

B,M and finally H�,f
B,M

ªPASH�
B,M. A careful examination of the proofs of Theorems 1.1,

.3, and 1.5 will show the following.
Theorem 1.6: Theorems 1.1, 1.3, and 1.5 also hold true for the fermionized operators. For

xample, if � satisfies the conditions of Theorem 1.1 with deff��� replaced by deff,f���
dist�� ,��heff,f

B,M��, then

��Hf
B,M − ��−1 − �Heff,f

B,M − ��−1� � Ceff

�B�2

deff,f���2�B
, �21�

ith the same constants as before. Similarly for HC,f
B,M, H�,f

B,M.
Remark 1.7: Theorem 1.6 is not simply obtained by “sandwiching” Theorems 1.1, 1.3, and 1.5

etween PAS, since the statements thus obtained would not involve the distances to the spectra of
he fermionized operators. Also, we established the fermionic versions with the same constants as
or the boltzonic ones, but it is conceivable that one could have smaller constants in the fermionic
ase.

The operators heff,f
B,M and hC,f

B,M are easily described

heff,f
B,M = −

1

2
� − Z�

j=1

N

Vav;1
B,M�zj� + �

j�k

Vav:2
B,M�zj − zk� , �22�

here, using the notation of �10�,

Vav:1
B,M�z� ª

1

N
�

j

Vj
B,M�z� ,

nd

Vav:2
B,M�z� ª �N

2
�−1

�
j�k

Vjk
B,M�z� ,

he average one-, respectively, two-particle potentials. Similarly, hC,f
B,M equals

hC,f
B,M = −

1

2
� − Z�

j=1

N

�qB�zj� + Cav:1
b,B,M��zj�� + �

j�k

�qB�zj − zk� + Cav:2
e,B,M��zj − zk�� , �23�
ith
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Cav:1
n,B,M

ª

1

N
�
j=1

N

Cj
n,B,M

nd

Cav:2
e,B,M

ª �N

2
�−1

�
j�k

Cjk
e,B,M,

hile h�,f
B,M is given by the same expression as h�

B, except of course that its domain changes.
To complete the picture, we finish with an explicit description of Ran��eff,f

B,M�, which is equal to
PAS�Ran �eff

B,M�= PAS�L2�RN� � FM
B �. Fix M�0, and let

��M� = 	m � NN:�m� = M
 ,

he set of partitions of M, where, as usual, �m�=m1+ . . . +mN if m= �m1 , . . . ,mN�. The vector space

M
B is spanned by the lowest Landau �generalized� eigenstates indexed by m���M�, cf. Sec. II
elow. The symmetric group SN acts on ��M� in the natural way, by permuting the indices of an
lement m= �m1 , . . . ,mN� of ��M�. Under this action, ��M� will decompose as a finite union of
isjoint orbits,

��M� = �
m̄�M

SN · m̄ ,

being a set of representatives of the orbits. If Gm̄ denotes the stabilizer of m̄�M, then we
rite M as a disjoint union M=M1�M2, with M1 the subset of those m̄�M such that Gm̄

	e
, and M2=M \M1, its complement. In other words, m̄�M1 iff no two components of m̄ are
he same, and m̄�M2 iff at least two of its components are identical. Let LAS

2 �RN� be the space of
nitsymmetrical wave functions in L2�RN�. We then will prove, in Sec. VIII, the following.

Theorem 1.8: There is a natural unitary isomorphism

UM
B :Ran��eff,f

B,M� → �
m̄�M1

�

L2�RN� � �
m̄�M2

�

LAS
2 �RN�

nd

UM
B h�,f

B,MUM
B* = �

m̄�M1

�

�h�
B�L2�RN� � �

m̄�M2

�

�h�
B�LAS

2 �RN�.

Remark 1.9: The operators UM
B hC,f

B,MUM
B* and UM

B heff,f
B,MUM

B* can mix different components of
an�UM

B �, as we will see at the end of Sec. VIII, and will therefore have a more complicated
tructure.

The paper is organized as follows. Section II contains the precise definition of our effective
rojector �eff

B,M. In Sec. III we establish, with the help of the Feshbach decomposition, a first
pproximation theorem, comparing HB,M’s resolvent at � with that of Heff

B,M+WB,M���, where the
ast term is an auxiliary potential which itself depends on the spectral parameters �. Section IV
nalyzes the large-B behavior of the potential of Heff

B,M, as well as that of WB,M. Sections V–VII are
evoted to the proofs of, respectively, Theorems 1.1, 1.3, and 1.5. In Sec. VIII we prove Theorems
.6 and 1.8. Section IX, finally, concludes with some applications to the spectral theory of HB,M,
nd some general observations.

Convention on constants: In the course of this work, we have had to introduce a large number
f constants. To keep track of them, we will use the convention that whenever the subscript of a
onstant is a number, the number refers to the formula where the constant in question was first

ntroduced. That is, C�x�ªconstant defined in formula �x�.
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I. NONINTERACTING ELECTRONS AND THE LOWEST LANDAU BAND

We begin by reviewing the spectral decomposition of

H0
B
ª H0

B�N� ª �
j=1

N
1

2
��1

i
�rj

−
1

2
B Ù rj�2

− NB� , �24�

he “free” Hamiltonian of N independent electrons interacting only with the field B. Recall that we
ave fixed all electron spins in their szj

=−1 state. The operator H0
B is just a direct sum of N

ne-particle operators 1
2

��i−1�r− 1
2BÙr�2−B�, whose spectral decomposition is explicitly known,

�
m�Z,n�N

�1

2
pz

2 +
B

2
�2n + �m� − m���m,n

B .

ere, pz is the momentum in the field direction, and �m,n
B is the projection, in the x ,y variables,

nto the normalized eigenfunctions �m,n
B =�m,n

B �x ,y��L2�R2� of the operator

−
1

2
�x,y +

B2

8
�x2 + y2� −

B

2
,

estricted to the m-eigenspace of Lz=xpy −ypx, the angular momentum in the field direction. These
igenfunctions are explicitly known in terms of Laguerre functions, see, e.g., Ref. 10, but for our
urposes we will only need those with n=0, m�0. These have a particularly simple expression:
f �	 ,�� are polar coordinates in the x ,y plane, then

�m
B
ª �m,0

B :�x,y� → � Bm+1

2�2mm!
�1/2

	me+im�e−B	2/4. �25�

The spectral decomposition of H0
B is simply the sum of the one-particle decompositions, and

he projections onto its eigenstates will be indexed by N-tuples m= �m1 , . . . ,mN��ZN, n
�n1 , . . .nN��NN. If we let

�m,n
B

ª�m1,n1

B
� ¯ � �mN,nN

,

hen

H0
B = �

m,n
��

j=1

N
1

2
pzj

2 +
B

2
�2nj + �mj� − mj���m,n

B . �26�

he lowest Landau band of H0
B is defined as

L0
B = �

m�Z+
N
Ran �m,0

B , �27�

here 0ª �0, . . . ,0�, and if we set

Xm
B�x,y� ª �

j=1

N

�mj

B �xj,yj�, m1, . . . ,mN � 0, �28�

hen L0 will be spanned by the tensor products Xm
B

� u, with u=u�z��L2�RN�. We will call the Xm
B

he lowest Landau band states �these are not eigenvectors of H0
B, but Xm

B
� 1 would be generalized

igenvectors with eigenvalue 0�. The operator H0
B restricted to L0

B simply is the free Laplacian in

he field direction,
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1

2�
j

pzj

2 = −
1

2
�z,

here z= �z1 , . . . ,zN�.
We next reduce the Hamiltonian HB and H0

B to their angular momentum sectors with respect
o the field direction. The total orbital angular momentum in the direction of B= �0,0 ,B�,

Lz = �
j

�xjpyj
− yjpxj

�, �px,py,pz� =
1

i
�r,

ommutes with HB and H0
B, and is therefore a constant of motion for both Hamiltonians. If PM is

he orthogonal projection onto the Mth eigenspace of Lz, then we let

HB,M
ª HBPM, H0

B,M
ª H0

BPM �29�

cting on HªL2�R3N� � C2N. Since we are primarily interested in the spectral behavior of HB near
he bottom of its spectrum, we will restrict M to Z+, for L0

B�Ran PM� 	0
ÛM�0. Indeed, notice
hat since HB,−M is unitarily equivalent to HB,M+MB, one has inf ���HB�M�0�� inf ���HB�M�0� as
oon as B0.

We next let

��M� = 	m = �m1, . . . ,mN� � ZN:mj � 0, m1 + ¯ + mN = M
 , �30�

he set of partitions of M, and define the effective projection �eff
B,M by

�eff
B,M

ª �
m���M�

�m,0
B . �31�

his is simply the orthogonal projection onto L0� �Lz=M
. We also let ��
B,M be the orthogonal

rojection onto the orthogonal complement of Ran��eff
B,M� in Ran�PM�. Observe that

��
B,M = �

m1+¯+mN=M,
�j2nj+�mj�−mj�2

�m,n.

f we let FM
B be the finite-dimensional vector space spanned by the lowest Landau states with total

ngular momentum M,

FM
B
ª Span	Xm

B :m � ��M�
 , �32�

hen we can identify the range of �eff
B,M with the space L2�RN ,FM

B � of FM
B -valued L2-functions, as

e will do without further comment.
To lighten the notations, we will often suppress one or both upper indices B or M, unless

here this would cause confusion. This will always be clearly indicated, usually at the beginning
f a section.

II. ESTIMATES FOR FESHBACH DECOMPOSITIONS

We fix a non-negative integer M�0. In this section we will drop all upper-indices B, M, and
imply write H for HB,M, H0 for H0

B,M and �eff, respectively, �� for �eff
B,M and ��

B,M. We write our
tomic Hamiltonian HB,M as

H = H0 + V ,
here
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V ª − �
j

Z

�rj�
+ �

j�k

1

�rj − rk�
, �33�

s the electrostatic potential, and introduce the operators

Veff ª�effV�eff, V� ª��V��, V�,eff ª��V�eff,

nd its adjoint, Veff,�=�effV��. These are to be considered as operators on Ran �eff, Ran ��, and
etween these two Hilbert spaces, respectively. We furthermore set

heff ª�effH�eff, H� ª��H��, H�,eff ª��H�eff = Heff,�
* ,

nd for ��C introduce the resolvents �wherever defined�

R ª R��� ª �H� − ��−1, Reff
W
ª Reff

W��� ª �heff + W��� − ��−1,

here

W ª W��� = − Veff,�R���V�,eff.

trictly speaking Reff
W is not a resolvent since the potential W��� depends on the spectral parameter

. The operators R and Reff
W act on, respectively, the ranges of �� and of �eff. Finally, let

T ª H0PM, Teff ª�effT�eff, T� ª��T��;

commutes with �eff and ��, and ��T�eff=0. Note that

T� � B��,

n the range of PM.
Using matrix notation associated to the decomposition PMH=Ran �eff � Ran ��, we decom-

ose H as

H = � heff Heff,�

H�,eff H�

� = �Teff + Veff Veff,�

V�,eff T�
B + V�

� . �34�

y the classical Feshbach formula, we then have

�H − ��−1 = � Reff
W − Reff

WVeff,�R

− RV�,effReff
W R + RV�,effReff

WVeff,�R
� , �35�

or those ��C for which the right-hand side makes sense. The following theorem is the main
esult of this section: recall that 	�A� denotes the resolvent set of an operator A, and ��A� its
pectrum.

Theorem 3.1: Let

B�36� ª 16Z2N�M + N + 2� �36�

nd

C�37� ª c0 +
c0

2

�B�36�
, c0

2 = �32Z2N + 8N�N − 1�2��M + N + 2� . �37�

f ��0 and if the field strength B�B�36�, then ��	�H��. If, moreover, ����Heff+W�, then �

	�H�, and

��H − ��−1 − �heff + W − ��−1
� R���� �

C�37�

dW����B
, �38�
eff
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here deff
W��� is the distance of � to ��heff+W�.

Proof of Theorem 3.1: The proof consists of estimating the relevant matrix elements in the
eshbach formula. This will be done in several steps. Let

R0 = �T� − ��−1,

he resolvent of T� on Ran ��.

Bound on R0: Since T��B on Ran �� and since ��0, it immediately follows that �R0�
B−1. Write V as

V = Vn + Ve, where Vn ª − �
j

Z

�rj�
, and Ve ª �

j�k

1

�rj − rk�
, �39�

he sum of electron-nucleus and the electron-electron interactions.
A remark on notation: we will often leave the projection �� understood when multiplying

perators on the left and/or right by R0 or R, and for example, simply write R0
1/2VnR0

1/2 instead of
he more explicit R0

1/2��Vn��R0
1/2.

Bound on R0
1/2VnR0

1/2. First, since R0�B−1 on the range of ��,

0 � ��R0Vn
�R0�2 � B−1�R0Vn

2�R0.

y Cauchy-Schwarz,

�R0Vn
2�R0 � Z2N�R0�

j

�rj�−2�R0.

ext, using Hardy’s inequality on R3 : �rj�−2�−4� j, and the fact that

H0
B = �

j

−
1

2
� j +

1

8
�B Ù rj�2 −

B

2
�Lz + N� ,

e find that

�R0��
j

�rj�−2��R0 � 8�R0�
j
�−

� j

2
+

�B Ù rj�2

8
��R0 = 8�R0�T� +

B

2
�M + N���R0 = 8�� + 8�R0

+ 4�M + N�BR0 � �8 + 4�M + N����,

ince ��0. It follows from these estimates that

�R0
1/2VnR0

1/2� � 2ZB−1/2�N�M + N + 2� .

e note, as a consequence, that if b0=4Z2N�M+N+2�, then �R0
1/2VnR0

1/2�� �b0B−1�1/2�1 if B
b0. For later reference we also note the following.

Bound on R0
1/2Vn

2R0
1/2: the estimates above immediately imply that this positive operator is

ounded from above by 4Z2N�M+N+2�.
Existence of and bound on R: Since the electron-electron repulsion Ve�0, it follows that R

RNI, where RNI= �T�+Vn,�−��−1, the resolvent of an atom with noninteracting electrons. Using
he symmetrized resolvent formula,

RNI = �R0�1 + �R0Vn
�R0�−1�R0, �40�

e see that RNI exists and is positive if Bb0 and ��0. Hence T�+Vn,�−��0 and therefore also

�−� and R. Moreover, if B4b0=16Z2N�M+N+2�=B�36�, then every ��0 belongs to 	�H��

nd
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0 � R �
�R0�

1 − �R0
1/2VnR0

1/2�
� B−1� 1

1 − �b0B−1�1/2�� 2B−1.

Bound on R0
1/2Ve

2R0
1/2: The following elementary operator inequality is very useful to estimate

he electron-electron interactions.
Lemma 3.2:

1

�rj − rk�2
� 2�− � j − �k� . �41�

Proof: The unitary transformation induced by the following orthogonal transformation of
3�R3:

s ª
r1 − r2

�2
, t ª

r1 + r2

�2
�42�

ommutes with the Laplacian, and transforms �rj −rk�−2 into 2−1�s�−2. By Hardy’s inequality,

1

2�s�2
� − 2�s � − 2��s + �t� ,

nd transforming back to the �rj ,rk�-coordinates yields �41�. Q.E.D.
We can then estimate

Ve
2 = ��

i�j

1

�ri − rj�
�2

�
N�N − 1�

2 �
i�j

1

�ri − rj�2
� N�N − 1��

i�j

�− �i − � j� = N�N − 1�2�
i

�− �i�

� 2N�N − 1�2�
i
�−

�i

2
+

�B Ù rj�2

8
� ,

nd therefore, by similar arguments as before,

�R0Ve
2�R0 � 2N�N − 1�2�R0�T� +

B

2
�M + N���R0 � N�N − 1�2�M + N + 2� ,

n Ran����.
Bound on VR0

1/2: By the general identity �AA*�= �A�2, we have

�VR0
1/2�2 = �R0

1/2V2R0
1/2� � 2��R0

1/2Vn
2R0

1/2� + �R0
1/2Ve

2R0
1/2�� � �8Z2N + 2N�N − 1�2��M + N + 2� .

Bound on Veff,�R1/2: �Remember that we have shown that R�0, so its square root is well-
efined.� We first estimate �VRV�, as follows. Recalling the noninteracting resolvent RNI intro-
uced above, we have that

0 � VRV � VRNIV = VR0
1/2�1 + R0

1/2VnR0
1/2�−1R0

1/2V .

ence its norm can be estimated by

�VRV� �
�VR0

1/2�2

1 − �R0
1/2VnR0

1/2�
,

rom which we obtain an estimate for �VR1/2� by taking square roots. Therefore, if B�B�36�
4b0 as above,

�Veff,�R1/2� � �VR1/2� � ��16Z2N + 4N�N − 1�2��M + N + 2� .
We now come to the proof of �38�. By Feshbach’s formula, we have
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��H − ��−1 − Reff
W

� R���� = �� 0 − Reff
WVeff,�R

− RV�,effReff
W RV�,effReff

WVeff,�R
�� � �Reff

WVeff,�R�

+ �RV�,effReff
WVeff,�R� � �Reff

W��Veff,�R1/2��R1/2� + �Reff
W�

��Veff,�R1/2�2�R1/2�2, �43�

here we have used the following elementary estimate for the norm of matrices of operators:

�� 0 A

A* B
�� � �A� + �B� .

ence if BB�36� and if ����Reff
W�, we obtain

��H − ��−1 − Reff
W

� R���� �
1

deff
W�����2�VR1/2�

�B
+

2�VR1/2�2

B
� �

1

deff
W���B1/2�c0 +

c0
2

�B�36�
� ,

ith c0
2= �32Z2N+8N�N−1�2��M+N+2�. Q.E.D.

Corollary 3.3 (of the proof): Theorem 3.1 also holds, if we replace H and heff+W by their
ermionized versions Hf, heff,f +W f, and deff

W��� by the distance of � to the spectrum of heff,f +W f.
Proof: Simply write down the Feshbach’s formula �35� for Hf with respect to the decompo-

ition I=�eff,f +��,f of H f, and estimate as in �43�, where all operators will now have a subindex

f . Next use that PAS commutes with everything, and trivially estimate �Af�= �PASA�� �A�, for A
R, R1/2 and Veff,�R1/2, except for �Reff,f

W �, which will be estimated by 1 over the distance of � to
he spectrum of Heff,f +W f. Q.E.D.

The proof shows that in the fermionic case, Theorem 3.1 will at least be true with the same
onstants as for the boltzonic case. The optimal constants for fermions might be smaller, though.

Remark 3.4: In the proof of Theorem 3.1 we systematically used Hardy’s inequality. Alterna-
ively, one can use, at least when N=1, the bounds on the matrix elements of the Coulomb
otential with respect to the Landau levels which were derived in Ref. 10.

V. EFFECTIVE POTENTIALS FOR LARGE FIELDS

The operator heff+W=heff
B,M+WB,M of Theorem 3.1 acts on Ran��eff

B,M�=�eff
B,M�H�, a Hilbert

pace which depends on both B and M, and which is canonically isomorphic to the space of

M
B -valued L2-functions on RN,

Ran��eff
B,M� = L2�RN,FM

B � . �44�

Recall that FM
B =Span 	Xm

B :m���M�
.� We will mostly suppress the M-dependence from our
otations, M being fixed in our analysis. The potential term of heff

B ,

Veff
B = �eff

B V�eff
B , �45�

an be interpreted as an operator valued function of z= �z1 , . . . ,zN��RN, with values in the space
f linear operators on FM

B and acting in the natural way on L2�Rz
N ;FM

B �. To get rid of the
-dependence of our Hilbert spaces we do a unitary rescaling. Let us pose x= �x1 , . . . ,xN��RN and
imilarly for y and z. Define a unitary operator Uxy

B on H by

Uxy
B ��x,y,z� = BN/2���Bx,�By,z� . �46�

ince Xm
B�x ,y�=BN/2Xm

1 ��Bx ,�By�, it follows that

Uxy
B*�eff

B Uxy
B = �eff

1 .

B
et us write Veff in multiparticle form,
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Veff
B = − �

j

ZVj
B + �

j�k

Vjk
B , �47�

ith Vj
B and Vjk

B defined by �10�. Then Uxy
B*Vj

BUxy
B =�eff

1 Uxy
B*�rj�−1Uxy

B �eff
1 =�BVj

1��Bzj�, with

Vj
1�z� = �eff

1 1

�xj
2 + yj

2 + z2
�eff

1 , �48�

nd likewise for Vjk
B :Uxy

B*Vjk
B Uxy

B �z�=�BVjk
1 ��B�zj −zk��, with

Vjk
1 �z� = �eff

1 1
��xj − xk�2 + �yj − yk�2 + z2

�eff
1 . �49�

he operator

ĥeff
B
ª Uxy

B*Heff
B Uxy

B , �50�

ill now act on the fixed, B-independent, Hilbert space, L2�RN ,FM
1 �, and

ĥeff
B = −

1

2
�z − �

j

Z�BVj
1��Bzj� + �

j�k

�BVjk
1 ��B�zj − zk�� = −

1

2
�z + �BVeff

1 ��Bz� .

The next step will be to examine the asymptotic behavior of �BVeff
1 ��Bz� as B→�. The main

dea is contained in Lemma 4.1 below. We introduce the free Laplacian on RN,

h00 = − 1
2�z, �51�

nd its resolvent

R00�− 
2� = �h00 + 
2�−1. �52�

e will need this resolvent both in dimension N and dimension 1. To distinguish between these
wo cases we will, in the one-dimensional case, systematically use �2 as spectral parameter instead
f 
2, reserving the latter for the multidimensional case.

If u is a function or tempered distribution on RN, with values in some auxiliary Hilbert space
, then �R00�−
2�−s/2u�L2�RN;F� is a norm on the sth Sobolev space Hs�RN ;F�. A linear operator A
ends Hs�RN ;F� continuously into H−s�RN ;F� iff the L2-operator norm �R00�−
2�s/2AR00�−
2�s/2�
s finite. The case of interest for us will be s=1. We will also need the Fourier transform F, but
nly in dimension 1, for which we normalize as follows:

F�u���� = �
R

u�z�e−iz� dz .

here will consequently be a factor of �2��−1 in the inversion formula.
Recall that

Pf� 1

�x�� =
d

dx
�sgn�x�log�x�� ,

ith the derivative in distribution sense. Let F be a finite-dimensional complex Hilbert space, and
�F� the space of linear operators on F.

Lemma 4.1: Let v be an L�F�-valued tempered distribution on R, such that its Fourier
ransform can be identified with a locally integrable function Fv=Fv���. Assume also the follow-
ng:
i� There exist C0, C1�L�F� and a1/2, such that
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Fv��� = − C0 log��� + C1 + O����a�, � → 0. �53�

ii� If

e��� ª Fv��� + C0 log��� − C1,

denotes the error in the approximation (53), then

Cv
2
ª �

R

�e����2

���2
d� � � . �54�

For each �0 let

v�,� ª C0 log � · � +
1

2
C0 · Pf� 1

�x�� + ��C0 + C1� · � , �55�

where � is Dirac’s delta distribution in 0, and �=���1� is the Euler constant. If R00�−�2�
denotes the free resolvent in dimension 1 and �0, then

�R00�− �2�1/2��v�� · � − v�,��R00�− �2�1/2� �
21/4Cv

����
. �56�

Remark: Observe that the integral �54� converges in 0, since we assumed that a1/2 in �53�.
Proof: It is known that

F −1�log���� = −
1

2
Pf� 1

�x�� − ��0, �57�

here � is Euler’s constant, cf., e.g., Ref. 17. �Equation �57� can also easily be shown directly,
sing the observation that Pf�1/ �x�� and −2F −1�log���� are both solutions of the distributional
quation x�=−sgn x and therefore only differ by a multiple of �, which can then be computed to
e −2�.� Therefore

v�,� = C0�log ��� − C0F −1�log���� + C1� = F −1�− C0 log����/�� + C1� ,

nd

F�R00�− �2�1/2��v�� · � − v�,��R00�− �2�1/2�F −1

s an integral operator with kernel

1

2�

1

��2/2 + �2�1/2e� � − ��

�
� 1

���2/2 + �2�1/2 , �58�

ince multiplication by a distribution a�x� becomes an integral operator with kernel �2��−1Fa��
��� after conjugation by F. Since conjugation by the Fourier transform does not change the
perator norm, it follows that the norm in �56� can be bounded by the Hilbert-Schmidt norm of
58�, whose square equals

1

�2�
R
��

R

1

��� − ��2 + 2�2���2 + 2�2�
d���e��

�
��2

d� =
�2

��
�

R

�e��/���2

�2 + 8�2d�

=
�2

���
�

R

�e����2

�2 + ��2/8�2�
d� �

Cv
2�2

���
.

ere we have used the elementary integral identity:
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�
R

1

�a�2 + b��a�� − ��2 + b�
d� =

2�
�ab

1

a�2 + 4b
, �59�

here a ,b0. This finishes the proof of Lemma 4.1. Q.E.D.
We will apply the previous lemma to our potentials �10�, but before doing so we first state and

rove a weaker variant, which will be used to prove Theorem 1.1. Let us introduce the �numerical�
onstant,

C�60� ª � 1

4�
�

R

��log���� + 2�2

�2 + 4
d��1/2

. �60�

umerical evaluation of the integral �using either Mathematica or Maple 8� gives C�60�
2 1.53.

Lemma 4.2: Let v=v�z� be an L�F�-valued tempered distribution on R such that

Cv ª sup
��R

���log���� + 1�−1Fv���� �� . �61�

hen for all ��e and all �0,

��− �� + �−1�−1/2� �

log �
v��z���− �� + �−1�−1/2� � C�60�Cv��log �� + 2� . �62�

Proof: Conjugating as before by the Fourier transform, and estimating the operator norm by
he Hilbert-Schmidt one, we find that the left-hand side of �62� is bounded, by the square root of

�2��−2�
R
��

R

1

���2 + �−1����� − ��2 + �−1�
d�� 1

�log ��2�Fv��
�
��2

d� .

y �61� we can bound

1

�log ��2 �Fv��/���2 � Cv
2� �log����

log �
+ 1 +

1

log �
�2

� Cv
2��log���� + 2�2,

ince we suppose that ��e. Hence, using �59� again, we find that our norm is bounded by the
quare root of

Cv
2

2�
�

R

��log���� + 2�2

��2 + 4�−1 d� �
Cv

2

2�
�

R

��log���� + �log �� + 2�2

�2 + 4
d� �

Cv
2

�
�log ��2�

R

d�

�2 + 4

+
Cv

2

�
�

R

��log���� + 2�2

�2 + 4
d� = Cv

2� �log ��2

2
+ 4C�60�

2 � ,

y �60�. Since C�60�
2 �1/2, we see that �62� will be bounded by C�60�Cv��log ��+2�, as

laimed. Q.E.D.

The next step will be to apply Lemma 4.1 to the potentials Vj
1 and Vjk

1 , with �=�B. We
ntroduce the B-dependent tempered distribution q=qB, and linear operators Cj

n, Cjk
e �L�FM

1 � by

qB�z� = log B��z� + Pf� 1

�z�� , �63�
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Cj
n
ª Cj

n,M
ª − �eff

1 log� 1
4 �xj

2 + yj
2���eff

1 , �64�

Cjk
e
ª Cjk

e,M
ª − �eff

1 log� 1
4 ��xj − xk�2 + �yj − yk�2���eff

1 . �65�

bserve that �64� and �65� are related to �12� and �13� by conjugation by Uxy
B . See also Remark 1.4

or a physical interpretation of these three terms.
Lemma 4.3: Let R00�−�2�= �− 1

2�z+�2�−1, �0 be the free resolvent in dimension 1. There
xists a positive constant C�66�ªC�66��M�0 only depending on M, such that for all B ,�0,

�R00�− �2�1/2��BVj
1��Bz� − �qB�z� + Cj

n��z���R00�− �2�1/2� �
C�66�

��B1/4
�66�

nd

�R00�− �2�1/2��BVjk
1 ��Bz� − �qB�z� + Cjk

e ��z���R00�− �2�1/2� �
C�66�

��B1/4
, �67�

he norm being the operator norm on L2�R ,FM
1 �.

To simplify future estimates, we have taken the same constant in both inequalities.
Proof: Recall the formulas �48� and �49� for Vj

1�z� and Vjk
1 �z�. We need the asymptotics of their

ourier transforms at 0. By Ref. 1, 9.6.21, the Fourier transform of �1+z2�−1/2 equals

F��1 + z2�−1/2���� = 2K0����� ,

here K0 is the Macdonald function. Since the projector �eff
1 effectively only acts in the x and y

ariables, it follows that

FVj
1��� = �eff

1 Fz→���xj
2 + yj

2�−1/2�1 + ��xj
2 + yj

2�−1/2z�2�−1/2��eff
1 = 2�eff

1 K0��xj
2 + yj

2 · ���eff
1 ,

ith a similar formula for FVjk
1 .

Now it is known that

K0����� = − log��� + log 2 − � + O����2 log������, ��� → 0,

nd that K0����� is bounded on ����1 �even exponentially decreasing there�: see, e.g., �Ref. 1
.6.13�. It then easily follows that, as �→0 and as operators on Ran �eff

1 ,

FVj
1���  − 2 log��� − 2� + Cj

n,

FVjk
1 ���  − 2 log��� − 2� + Cjk

e , �68�

ith an error of O���2 log�����. An appeal to Lemma 4.1, with �=�B and with C0=2 and C1

=−2�+Cj
n, respectively, C1=−2�+Cjk

e , then finishes the proof. Q.E.D.
Remark 4.4: An explicit computation of the matrices of Cj

n and Cjk
e with respect to the natural

asis Xm
1 ,m���M� shows that Cj

n and Cjk
e do depend on their indices j and j, k, respectively.

We will likewise need Lemma 4.2 for v=Vj
1. We can without loss of generality assume that

j=1, by permutational symmetry of ��M�. As we have seen above, FV1
1���

2�eff
1 K0�����x1

2+y1
2��eff

1 . It can easily be verified that ���log�����+1�−1K0�����=1, so that, for
xample,

CV1
1 � C�69� ª 2 + 2��eff

1 �log �x1
2 + y1

2��eff
1 � . �69�

he operator norm on the right-hand side can be evaluated explicitly, and behaves asymptotically

or large positive M as 2 log�M�.
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We next extend Lemma 4.3 to multiparticle potentials. Let us define the multiparticle potential

C by

vC�z� = vC
B�z� = − Z�

j

�qB�zj� + Cj
n��zj�� + �

j�k

�qB�zj − zk� + Cjk
e ��zj − zk�� . �70�

emma 4.5: Let R00�−
2�= �− 1
2�z+
2�−1, 
0, be the resolvent of the free Hamiltonian in RN.

hen

�R00�− 
2�1/2��BVeff
1 ��Bz� − vC�z��R00�− 
2�1/2� �

C�72�

�
B1/4
, �71�

here

C�72� ª C�72��N,Z,M� ª C�66�N
1/4�Z + 1

2 �N − 1�� . �72�

Proof: We split both potentials into their electron-nucleus and electron-electron parts,

Veff
1 = Veff,n

1 + Veff,e
1 ,

nd similarly for vC: vC=vC,n+vC,e=vC,n
B +vC,e

B . Writing Vs,�
B �z� for �BVs,�

1 ��Bz� �with a mild abuse
f notation�, where �=n or e, we bound the left-hand side of �71� by

�R00�− 
2�1/2�Veff,n
B − vC,n�R00�− 
2�1/2� + �R00�− 
2�1/2�Veff,e

B − vC,e�R00�− 
2�1/2� , �73�

nd estimate the two terms separately. Let R00,j�−�2� be the one-dimensional resolvent in the
ariable zj, with a � which will be picked below. We will simply write R00 for R00�−
2� and R00,j

or R00,j�−�2�. If we set

�Vj ª Vj
B�zj� − qB�zj� − Cj

n��zj�

nd

�Vn ª Z�
j

�Vj = Veff,n
B − vC,n,

hen, by �66�,

R00
1/2�VnR00

1/2 = Z�
j

�R00
1/2R00,j

−1/2��R00,j
1/2 �VjR00,j

1/2 ��R00,j
−1/2R00

1/2� �
C�66�Z

��B1/4�
j

R00
1/2R00,j

−1 R00
1/2

=
C�66�Z

��B1/4
R00�− 
�2�−

1

2
�z + N�2��

C�66�Z

��B1/4
max
��RN

���2/2 + N�2

���2/2 + 
2

=
C�66�Z max�1,N�2/
2�

��B1/4
=

C�66�ZN1/4

�
B1/4

f we pick �=
 /�N; this choice actually minimizes �−1/2 max�1,N�2 /
2� as a function of �
0, as is easily checked. Similar estimates show that −R00

1/2�VnR00
1/2 is bounded from above, in

perator sense, by the same number, and we therefore conclude that the first norm in �73� is
ounded by C�66�ZN1/4 /�
B1/4.

To estimate the second term of �73�, we will use the following lemma, which is analogous to
emma 3.2 from Sec. II. Let � j =−d2 /dzj

2, �k=−d2 /dzk
2.

Lemma 4.6: Let v=v�z� be an L�F�-valued distribution on R (F a finite-dimensional Hilbert
2 1/2 2 1/2
pace), such that R00�−� � vR00�−� � is self-adjoint, for �0. Then for all �0,
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��−
1

2
� j −

1

2
�k + �2�−1/2

v�zj − zk��−
1

2
� j −

1

2
�k + �2�−1/2�

�
1

2
��−

1

2
�s +

�2

2
�−1/2

v�s��−
1

2
�s +

�2

2
�−1/2� . �74�

Proof: We use a similar change of variables as in the proof of Lemma 3.2: s= �zj −zk� /�2, t
�zj +zk� /�2. Then, withdenoting unitary equivalence,

�−
1

2
� j −

1

2
�k + �2�1/2

v�zj − zk��−
1

2
� j −

1

2
�k + �2�−1/2

 �−
1

2
�s −

1

2
�t + �2�−1/2

v��2s��−
1

2
�s −

1

2
�t + �2�−1/2


1

2
�−

1

2
�s −

1

2
�t +

�2

2
�−1/2

v�s��−
1

2
�s −

1

2
�t +

�2

2
�−1/2

.

bserving that

��−
1

2
�s +

�2

2
�1/2�−

1

2
�s −

1

2
�t +

�2

2
�−1/2� � 1

n L2�R2�, the lemma follows. Q.E.D.
Let us write

R00,jk = R00,jk�− �2� = �− 1
2 �� j + �k� + �2�−1/2, �75�

he two-dimensional free resolvent, where � will be optimized at the end of the proof. Recall that

00=R00�−
2�, and set

�Vjk = Vjk
B �zj − zk� − qB�zj − zk� − Cjk

e ��zj − zk� .

hen, using Lemmas 4.6 and 4.3, R00
1/2�Veff,e

B −vC,e
B �R00

1/2 can be estimated from above as follows:

R00
1/2�

j�k

�VjkR00
1/2 = �

j�k

�R00
1/2R00,jk

−1/2 ��R00,jk
−1 �VjkR00,jk

1/2 ��R00,jk
−1/2 R00

1/2� �
C�66�

23/4��B1/4 �
j�k

R00
1/2R00,jk

−1 R00
1/2

=
C�66�

23/4��B1/4
R00�− 
2���

j�k
�−

1

2
�� j + �k� + �2��

=
C�66��N − 1�

23/4��B1/4
R00�− 
2��−

1

2
�z +

N�2

2
�

�
C�66��N − 1�

23/4B1/4

1
��

max�1,
N�2

2
2 ��
C�66��N − 1�N1/4

2�
B1/4
,

here we minimized the right-hand side over � by choosing �=
�2/N. The similar upper bound
or −R1/2�Ve−vC,e

B �R00
1/2 gives the desired estimate for the second norm in �73�, and combining the

wo estimates, we have proved Lemma 4.5. Q.E.D.
We now derive a similar estimate for WB as B→�.
Lemma 4.7: Let R00�−
2� be the free resolvent in dimension N, and let U=Uxy

B be the unitary
ransformation defined by (46). Then, if, ��0,

�R00�− 
2�1/2U*WBUR00�− 
2�1/2� �
C�77�

, �76�


�B
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ith

C�77� ª C�77��N,Z� ª 2�3/2N3/2�Z2 +
�N − 1�2

4
� . �77�

Proof: Recall that WB=−Veff,�RV�,eff, where R=R���= �H�−��−1 on Ran ��
B . Hence

U*WBU = − BVeff,�
1 ��Bz�U*RUV�,eff

1 ��Bz� ,

here Veff,�
1 =�eff

1 V��
1 , and similarly for V�,eff

1 . Since for ��0, 0�R�2/B �see Sec. III�, we
ave that, letting V�· ,z� be the function �x ,y�→V�x ,y ,z�,

0 � − U*WBU � 2�eff
1 V�· ,�Bz���V�· ,�Bz��eff

1 � 2�eff
1 V�· ,�Bz�2�eff

1 � 4��eff
1 Vn�· ,�Bz�2�eff

1

+ �eff
1 Ve�· ,�Bz�2�eff

1 � . �78�

s in the previous lemma, we treat the two terms separately. By Cauchy-Schwarz,

Vn�x,y,�Bz�2 � Z2N�
j=1

N
1

	 j
2 + Bzj

2 ,

here 	 j
2=xj

2+yj
2. As before, let R00,j�−�2� be the resolvent of h00,j =−�1/2�d2 /dzj

2 on R. We first
stimate the L2-norm of each

R00,j�− �2�1/2�eff
1 �	 j

2 + Bzj
2�−1�eff

1 R00,j�− �2�1/2, �79�

y conjugating with the Fourier transform F. Since F��1+z2�−1����=�e−���, �79� then becomes an
ntegral operator with kernel

1

2
B−1/2� � j

2

2
+ �2�−1/2

��eff
1 	 j

−1e−	jB
−1/2��j−�j��eff

1 ��� j
2

2
+ �2�−1/2

. �80�

he norm of �80� can be estimated by its Hilbert-Schmidt norm, whose square can be bounded by

1

4B
��eff

1 1

	 j
�eff

1 �2��
R
� �2

2
+ �2�−1

d��2

=
�2C�81�

2

2�2B
,

here we have set

C�81� ª ��eff
1 	 j

−1�eff
1 � . �81�

ote that C�81� is independent of j, because of the permutational symmetry of ��M�. It follows that

R00,j�− �2�1/2�eff
1 �	 j

2 + Bzj
2�−1�eff

1 R00,j�− �2�1/2 �
�C�81�

�2��B
, �82�

nd therefore

0 � R00�− 
2�1/2�eff
1 Vn�· ,�B�2�eff

1 R00�− 
2�1/2 �
�C�81�Z

2N

�2�B1/2
R00�− 
2��

j

�h00,j + �2�

=
�C�81�Z

2N

�2�B1/2
R00�− 
2��h00 + N�2� �

�C�81�Z
2N3/2

�2
B1/2
,

f we choose �=
 /�N. The same inequality then holds for the norm, since the operator we

stimate is positive.
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We next treat the interaction term R00�
2�1/2Ve�· ,�Bz�2R00�
2�1/2 in a similar way as in the
roof of Lemma 4.5. First, by Cauchy-Schwarz again,

Ve�· ,�Bz�2 �
N�N − 1�

2 �
j�k

1

	 jk
2 + B�zj − zk�2 ,

here we have set 	 jk
2 = �xj −xk�2+ �yj −yk�2. Since the rotation �rj ,rk�→ �2−1/2�rj −rk� ,2−1/2�rj

rk�� commutes with �eff
1 �since it commutes with H0

1 and with Lz�, we find, after a unitary
ransformation, that

�R00,jk�− �2�1/2�eff
1 �	 jk

2 + B�zj − zk�2�−1�eff
1 R00,jk�− �2�1/2�

� �1

2
R00,j�−

�2

2
�1/2

�eff
1 �	 j

2 + Bzj
2�−1�eff

1 R00,j�−
�2

2
�1/2� � �C�81�

2��B
;

ompare the proof of Lemma 4.6. Hence, using similar arguments as before,

R00�− 
2�1/2�eff
1 Ve�· ,�B�2�eff

1 R00�− 
2�1/2 �
�C�81�N�N − 1�

4��B
R00�− 
2��

j�k

�h00,jk + �2�

�
�C�81�N�N − 1�2

4��B
R00�− 
2��h00 +

N�2

2
�

�
�C�81�N

3/2�N − 1�2

4�2
�B
,

f we choose �=
�2/N. Adding this estimate to the one for Vn
2, and remembering the factor 4

rom �78�, we have proved �76� with the constant C�77�=23/2�C�81�N
3/2�Z2+ ��N−1�2 /4��. A priori,

�81� might still depend on M, but it in fact does not, as we will finally show. We compute C�81� in
he Landau basis �28� of FM

1 , with respect to which �eff
1 	1

−1�eff
1 diagonalizes,

C�81� = max
0�m�M

1

2mm!
�

0

�

	1
2me−	1

2/2 d	1 = max
0�m�M

1

m!�2
�

0

�

sm−1/2e−s ds = max
0�m�M

��m +
1

2
�

�2��m + 1�
.

t is known that

��m +
1

2
� =

1 � 3 � 5 � ¯ � �2m − 1�
2m ��1

2
� ,

f. e.g., Ref. 1, formula 6.1.12, p. 255. Using this, one easily finds that

C�81� =
1
�2

��1

2
� =��

2
,

hich completes the proof of the lemma. Q.E.D.
To prove Theorem 1.5 we will need to control the Sobolev norm of V1

B−v�
B. This is done in the

ollowing lemma, which we formulate in slightly greater generality than needed, with an eye to
uture applications.

Lemma 4.8: Let V1
B
ªV1

B,M be defined as in (10), c0 and let 
c=
c�B� be the unique positive
olution of


c =
2

log��B� . �83�

c 
c
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hen the constant

C�84� ª ��2 + 9 log2�2� +
64�2

�
+ sup

����1
�FV1

1��� + 2 log������2 +
8�2

�
sup
����1

�FV1
1����2�1/2

�84�

s finite and depends only on M. Moreover for all c0 and all B0

�R00�− 
c
2�1/2�V1

B − c
c�B���R00�− 
c
2�1/2� �

C�84�


c�B�
. �85�

bserve that if c=2, then 
c�B� is the 
�B� from Theorem 1.1: cf. �6�. Also note that the constant

�84� is independent of c0.
Proof: The first statement follows at once using the explicit knowledge of FV1

1 obtained in the
roof of Lemma 4.3. To prove the estimate �85� we introduce the auxiliary function X by

FV1
B��� − c
cF���� = FV1

1� �

�B
� + 2 log

���
�B

− 2 log
���

c

¬ X� �

�B
� − 2 log

���

c

,

here in the first line we used Eq. �83�. The Fourier transform of V1
B−c
c�B�� acts as convolution

y a function, and we estimate the norm of YªR00�−
c
2�1/2�V1

B−c
c��R00�−
c
2�1/2 by its Hilbert-

chmidt norm, as in the proofs of Lemmas 4.1 and 4.2. It follows that

�Y�2 �
�2

�
c
�

R

�FV1
B��� − c
cF�����2

8
c
2 + �2

d� �
2�2

�
c
�

R

�X� �

�B
��2

+ �2 log
���

c
�2

8
c
2 + �2

d� .

irst,

1


c
�

R

4

8
c
2 + �2�log

���

c
�2

d� =
�

2�2
c
2
��2 + 9 log2�2�� .

e next look at the contribution of X, which we split in two parts,

�
�B

� �X� �

�B
��2

d�

8
c
2 + �2 =

1
�B
�

1

� �X����2 d�

8B−1
c
2 + �2 �

2
�B
�

1

� �FV����2 + 4�log����2

�2 d�

�
2

�B� sup
����1

�FV����2 + 8� ,

ince

�
1

� �log����2

���2
d� = 2

nd

�
0

�B �X� �

�B
��2

d�

8
c
2 + �2 � sup

����1
�X����2�

0

�B d�

8
c
2 + �2 �

�

4�2
c

sup
����1

�X����2.

he rest is now elementary. Notice in particular that supB0 
c�B� /�B=1. Q.E.D.
B
The limit potential �70� suggests defining an effective Hamiltonian hC=hC by
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hC ª h00 + vC. �86�

s it stands, this is just a formal expression, and our first task is to give a meaning to hC as a
elf-adjoint operator on L2�RN ;FM

1 �. We do this by showing that vC is form-bounded with respect

00, with zero relative form-bound. Let �·, ·� denote the duality between distributions and test
unctions.

Lemma 4.9: The quadratic forms u→ �� , �u�2�= �u�0��2 and u→ �Pf�1/ �z�� , �u�2� are well defined
n H1�R�, and form-bounded with respect to h00, with relative bound zero. More precisely, we have
or all �0 that

� �
1
2 �− ��z + �−1� , �87�

nd

Pf��z�−1� � C�89���log �� + 1��− ��z + �−1� , �88�

here

C�89� ª��2

2
+ 2�log 2�2 + � . �89�

Proof: This is well known for �. For Pf��z�−1� we first note that, since Pf��z�−1�
=−2F−1�log����−2��0, it suffices to prove the form-boundedness of F−1�log����. The latter will
ollow from

��− �� + �−1�−1/2F −1�log�����− �� + �−1�−1/2�2 �
1

2
�log ��2 +

�2 + 4�log 2�2

8
, �90�

or all �0. To prove �90�, observe that after conjugation by the Fourier transform F, and
stimating the operator norm by the Hilbert-Schmidt norm, the square of �90� can be bounded by

1

�2��2�
R
�

R

�log�� − ���2

���2 + �−1����2 + �−1�
d� d� . �91�

hanging variables and using �59�, we find that �91� can be bounded by

1

2�
�

R

�log����2

��2 + 4�−1d� =
1

2�
�

R

�log��/���2

�2 + 4
d� �

1

�
�log ��2�

R

d�

�2 + 4
+

1

�
�

R

�log ��2

�2 + 4
d�

=
1

2
�log ��2 +

�2 + 4�log 2�2

8
.

ence, using �87�,

��Pf��x�−1�, �u�2�� = 2 · ��F −1�log����, �u�2� + ���, �u�2�� � ��2�log ��2 +
�2

2
+ 2�log 2�2�1/2

+ ��
�	− ���u,u� + �−1�u�2
 = ��2�log �� + C�89��	− ���u,u� + �−1�u�2
 ,

hich implies �88� since �2/C�89��1. Q.E.D.
Because of the terms Cj

n��zj� and Cjk
e ��zj −zk� we must extend the first part of Lemma 4.9 to

he vector-valued case, but this is immediate: we just note that if C a linear operator on FM
1 �or any

nite-dimensional vector space, for that matter�, then the right interpretation of C� as quadratic
orm on H1�R ,FM

1 � is given by ���z� , �Cu�z� ,u�z���, where �·, ·� is the inner product on FM
1 .

Finally, we lift Lemma 4.9 to RN. Recall that if L :RN→R is a linear map, then the pull-back
*
� of a distribution � on R is well defined, and can be computed by going to linear coordinates

                                                                                                            



z
w
L

i
i
T
m
S

V

d

a

w

w

w
o

w

d
l

w

032103-24 R. G. Brummelhuis and P. Duclos J. Math. Phys. 47, 032103 �2006�

                        
� with respect to which L�z��=z1�. It then immediately follows from Lemma 4.9 that L*� and L*qB

ill be form-bounded with respect to h00 on RN, with relative bound 0. Taking L�z�=Lj�z�=zj and
�z�=Ljk�z�=zj −zk, we see that the sequilinear form tC

B�u� given by

tC
B�u� =

1

2
��u�2 − Z�

j

�Lj
*qB, �u�2� + ��Lj

*�,�Cj
nu,u��� + �

j�k

�Ljk
* qB, �u�2� + �Ljk

* �,�Cjk
e u,u�� ,

�92�

s well defined on H1�RN ,FM
1 �, and bounded from below by −C�u�2, for some constant C, depend-

ng on B, Z, N, and M. By the Kato-Lax-Lions-Milgram-Nelson theorem �cf., e.g., Ref. 15,
heorem X.17�, tC

B defines a unique self-adjoint operator, which we will call hC=hC
B,M, and infor-

ally write as �86�. In the Appendix we will give a characterization of the operator domain of hC
B.

imilar arguments will define h�
B as a self-adjoint operator, cf. Ref. 6.

. PROOF OF THEOREM 1.1

We will first compare the resolvents of heffªheff
B,M and of heff+W, where WªWB,M��� was

efined at the beginning of Sec. III. Set

reff ª reff��� ª �heff − ��−1, Reff
W
ª Reff

W��� ª �heff + W − ��−1,

nd let

B�93� ª
4C�77�

2


�C�77��2 , �93�

here 
=
�B� is the function defined by �6�, and

ceff ª 2� N

2�eff
2 + 1�C�77�, �94�

ith �eff=�eff�Z ,M� the unique positive solution of

ZC�60�CV1
1���log �� + 2� = 1

4 , �95�

here CV1
1 is defined by �61� with v=V1

1 �see �69� for an upper bound�. Note that both constants
nly depend on N, Z, and M, and this in a controlled way.

We then have the following.
Theorem 5.1: If B�B�93�, ��0 and

ceff



�B
� deff��� �

1

2

2, �96�

ith 
=
�B� is as in Theorem 1.1, then ��	�heff+W�, and �Reff
W�����2�reff����. Furthermore,

�Reff
W��� − reff���� � ceff




deff���2�B
. �97�

Proof of Theorem 5.1: It clearly suffices to establish Theorem 5.1 after conjugation by Uxy
B ,

efined by �46�. To simplify notations, we will simply denote the conjugated operators by the same
etters as the original ones. Using the symmetrized resolvent formula we estimate

�Reff
W��� − reff���� �

1

deff���� �Keff����
1 − �Keff����� , �98�
here
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Keff��� ª �reff����1/2W���reff���1/2, �99�

ith the convention that A1/2
ªsgn�A��A�1/2, if A is a self-adjoint operator. �Note that since � is not

ecessarily below the infimum of the spectrum, reff��� is not necessarily positive, and we use the
ymmetrized resolvent formula in the following form: Reff

W =reff
1/2�1+ �reff�1/2Wreff

1/2�−1�reff�1/2.� Now
et �� inf ��heff�, to be specified later. The following elementary lemma will allow us to replace

by � in �99�.
Lemma 5.2: If �� inf ��heff�, then for all real � in the resolvent set 	�heff�,

�reff����heff − ��� � max� ���
deff���

,1� . �100�

Proof: We distinguish two cases: inf ��heff����0 and �� inf ��heff�. �Observe that
nf ��heff��0, by the HVZ theorem, since this is already the case for N=1.� In the first case, let
�− ,�+� be the largest open interval in 	�heff� which contains �. Since �0,�� is in the spectrum �it
s already in the essential spectrum�, �+�0. It is easy to see that the function x→ �x−�� / �x−�� is
ncreasing on �−� ,�−����heff� and decreasing on ��+ ,�����heff�. It follows that

�reff����heff − ��� sup
x���heff�

�x − ��
�x − ��

= max� ��− − ��
��− − ��

,
��+ − ��
��+ − �� ��

���
deff���

,

s was to be shown. One shows in a similarly way that �100� equals �inf ��heff�−�� / �inf ��heff�
��� ��� /deff���, if ���� inf ��heff�, and is equal to 1 if ���. Q.E.D.

Substituting Id=reff���1/2�heff−��1/2= �heff−��1/2reff���1/2 at the appropriate places in formula
99�, we see that if ��0,

�Keff���� � max� ���
deff���

,1��Keff��;��� , �101�

ith

Keff��;�� ª reff���1/2W���reff���1/2.

epeating the same argument for Keff�� ;�� using Id= �h00+
2�1/2R00�−
2�1/2, we obtain from
emma 4.7 that

�Keff��;��� �
C�77�


�B
�reff���1/2�h00 + 
2�1/2�2. �102�

e will now estimate the norm on the right-hand side, for suitably chosen �.
Lemma 5.3: Assume B�e2. Define

�eff = �eff�N,Z,M� ª −

2

2
� N

2�eff
2 + 1� , �103�

here 
 is as in Theorem 1.1, and where �=�eff is the unique positive solution to the equation
95). Then �eff� inf ��heff�, and

�reff��eff�1/2�h00 + 
2�1/2� � �2. �104�

Assuming the lemma for the moment, we continue with the proof of Theorem 5.1: we have,
y �101�, �102�, and �104�, that if deff����c#
 /�B, then

�Keff���� � 2 max�
2

2
� N

2�eff
2 + 1� 1

deff���
,1�C�77�


�B
�

1

2
,

rovided that c# satisfies
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c# � 2� N

2�eff
2 + 1�C�77� and

C�77�


�B
�

1

4
.

ince 
�B��B is increasing, and since 
�B��B=x iff B=x2 / �4
�x /4�2�, the last inequality is
mplied by B�B�93�. Choosing c#=ceff defined by �94�, we conclude that if � is such that deff���

ceff
 /�B, then by �98�, �101� and �102� and our choice of �=�eff,

�Reff
W − reff���� �

4

deff���
max�
2

2
� N2

2�eff
+ 1� 1

deff���
,1�C�77�


�B
� 2C�77�� N

2�eff
2 + 1� 


deff���2�B
,

rovided that deff����
2 /2. This proves Theorem 5.1, modulo that of Lemma 5.3. Q.E.D.
Proof of Lemma 5.3: We will use a scaling argument. If we let  denote the unitary equiva-

ence induced by the change of variables z→z /
, where 
0 is for the moment a free parameter,

nd if we write Veff
B for �BVeff

1 ��B · �, then if �� inf ��heff�,

0 � �h00 + 
2�1/2reff����h00 + 
2�1/2  �h00 + 1�1/2�−
1

2
�z + 
−2Veff

B � ·



� − 
−2��−1

�h00 + 1�1/2

� �h00 + 1�1/2�−
1

2
�z + 
−2Veff,n

B � ·



� − 
−2��−1

�h00 + 1�1/2, �105�

eff,n
1 being the attractive part of Veff. We now choose 
=log��B /
�, as in �6�, and set �
�B /
. Notice that B�e2 implies that ��e. Then, by Lemma 4.2,

�B


2 Veff,n
1 ��B



z� = − Z�

j=1

N
�

log �
Vj

1��zj� � − 2C�60�ZCV1
1���log �� + 2��−

1

2
�z +

N

2�2�, �  0

=−
1

2
h00 −

N

4�eff
2 ,

niformly in �, if we choose �ª�eff=�eff�Z ,M� such that �95� holds. We now take

� = �eff = −

2

2
� N

2�eff
2 + 1� .

hen it follows that �eff� inf ��heff�, since heff−�eff�
1
2 �h00+1�� 1

2 . Furthermore, �105� can be
stimated by

�h00 + 1�1/2�1

2
h00 − � N

4�eff
2 +

�eff


2 ��−1

�h00 + 1�1/2 = 2,

hich implies �104�.
Proof of Theorem 1.1: It now suffices to combine Theorem 3.1 and Theorem 5.1, while

arefully keeping track of the constants. First of all, �96�, implies that �Reff
W��2�reff����, and

herefore deff
W����deff��� /2. Furthermore, ��0 if deff���0, and if

B � Beff ª max	B�36�,B�93�,e
2
 , �106�
hen

                                                                                                            



s
e

V

ª

o

t

t

w

t

c
p
f

032103-27 Effective Hamiltonians J. Math. Phys. 47, 032103 �2006�

                        
��H − ��−1 − �heff − ��−1
� �H� − ��−1� � ��H − ��−1 − Reff

W��� � �H� − ��−1� + �Reff
W��� − reff����

�
C�37�

�B

1

deff
W���

+ ceff



deff���2�B
� �2C�37� + ceff




deff���
�

�
1

deff����B
�using deff���/2 � deff

W����

� �C�37� +
ceff



� 
2

deff���2�B
�using deff��� � 
2/2 again�

� �C�37� +
ceff


�Beff�
� 
2

deff���2�B
,

ince 
�B�−1 is a decreasing function of B. This proves Theorem 1.1 with a constant Ceff which is
qual to

Ceff ª C�37� +
ceff


�Beff�
.

Q.E.D.

I. PROOF OF THEOREM 1.3

As a first step, we will compare the resolvents reff��� of heff and rC���ª �hC−��−1 of hC

hC
B. Recall, that dC���ªdist�� ,��hC��.
Theorem 6.1: Let 
=
�B� be defined by (6). There exist (computable) constants BC� ,CC� �0,

nly depending on Z, N, and M, such that for all B�BC� and all real ��0 satisfying

dC��� � CC�

3/2B−1/4, �107�

hen ��	�Heff�, with �reff�����2�rC����. In addition, letting �with �eff defined in �95��

CC� = max�CC� ,4C�72�� N

2�eff
2 + 1�� � CC� ,

hen if

dC��� � CC�

3/2B−1/4, �108�

e also have that �rC�����2�reff����.
Finally, if

CC�

3/2B−1/4 � dC��� � 1

2

2, �109�

hen

�reff��� − rC���� � CC�

3/2

dC���2B1/4 . �110�

Proof: The proof is similar to the proof of Theorem 5.1, with however some technical
hanges, due to the fact that vC is not homogeneous of degree −1, and that its electron-electron
art is not positive anymore. As before, we conjugate all operators by Uxy

B , keeping the same letters
or the conjugated operators.
Arguing as in the proof of Theorem 5.1, one shows that
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�reff��� − rC���� �
1

dC���
�KC����

1 − �KC����
,

here KCª �rC����1/2�heff−hC�rC���1/2. Using Lemma 4.5, we find that, for any �� inf ��hC�,

�KC���� �
C�72�

B1/4�

max� ���

dC���
,1��rC���1/2�h00 + 
2�1/2�2. �111�

e then use the following analogue of Lemma 5.3, of which we only state a qualitative version.
Lemma 6.2: There exists a constant �C=�C�Z ,N ,M��1/2 such that if B�e, and if �C

ª−�C

2, 
 defined by (6), then �C� inf ��hC�, and

�rC��C�1/2�h00 + 
2�1/2�2 � 2. �112�

Proof: As before, we will use scaling. However, contrary to ��z�, the distribution Pf�1/ �z�� is
ot homogeneous of degree −1 on R. In fact, if 	
 is the dilation 	
�z�=
−1z on R, 
0 arbitrary,
hen the pullback of Pf �1/�·�� by 	
 equals

	

*Pf� 1

� · �� = 
Pf� 1

� · �� − 2
 log 
� . �113�

et us split the potential vCªvC
B of hC as

vC = log Bv� + vQ,

here v� is defined in �17� and

vQ = − Z�
j
�Pf

1

�zj�
+ Cj

n��zj�� + �
j�k

�Pf
1

�zj − zk�
+ Cjk

e ��zj − zk�� ,

he �pseudo-� Coulombic part. If  denotes unitary equivalence with respect to the dilation 	
 �on
N�, then in view of our choice of 


hC − �  
2�h00 +
log B − 2 log 




v� +

1



vQ − 
−2�� = 
2�h00 + 2v� +

1



vQ − 
−2��

� 
2�1

2
h00 − b − 
−2��

orm some b0 depending only on Z, N, and M, since by Lemma 4.9 we know that 2v�

�1/
�vQ is h00 form bounded with relative bound 0. Recall that B�e implies 
�1. Choosing
=�Cª−
2� 1

2 +b�
¬−
2�c will insure that �h00+
2�rC����h00+
2�1/2�2 which is what we want

o prove. A more careful argument, which we will skip, will yield an explicit b. Q.E.D.
We continue with the proof of Theorem 6.1. By �112� and �111� with �=�C, we find that

�KC���� �
2C�72�

B1/4�

max� �C


2

dC���
,1� �

1

2
,

f both

dC��� � 4C�72��C

3/2

B1/4 ¬ CC�

3/2

B1/4 ,

nd 
1/2B1/4�4C�72� which, since B�
�B�2B is increasing, is equivalent to B
3 4 2 −2
4 C�72�
�4C�72�� . Since we also need B�e we set
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BC� ª max� 43C�72�
4

4
�C�72�
2 �2 ,e� .

his fixes our constants CC� and BC� , and also implies that �reff�����2�rC����, by the resolvent
ormula.

To show that �108� implies that �rC�����2�reff����, we repeat the argument with rC and reff

nterchanged: by the resolvent formula,

rC��� = reff���1/2�1 + K̃C����−1�reff����1/2,

ith

K̃C��� ª �reff����1/2�hC − heff�reff���1/2,

o that, using Lemmas 4.5, 5.2, and 5.3, we arrive at

�K̃C���� �
2C�72�

B1/4�

max� ��eff�

deff���
,1� �

2C�72�

B1/4�

max�2��eff�

dC���
,1� ,

f dC����CC�

3/2B−1/4, by the first part. We therefore conclude that �K̃C�����1/2, and hence

rC�����2�reff����, if both �
B1/4�4C�72�, which will be satisfied if B�BC� defined above, and if

4��eff�C�72�

�
B1/4dC���
�

1

2
.

he latter inequality is equivalent to

dC��� � 4� N

2�eff
2 + 1�C�72�


3/2

B1/4 ,

hich yields condition �108�.
Finally, if � satisfies �109�, then

�reff��� − rC���� �
4C�72�


1/2B1/4dC���
max� �C


2

dC���
,1� � 4�CC�72�


3/2

dC���2B1/4 = CC�

3/2

dC���2B1/4 ,

here we used that dC����
2 /2��C

2. This finishes the proof of Theorem 6.1. Q.E.D.

Proof of Theorem 1.3: We define

BC ª max	Beff,BC� 
 �114�

nd

cC ª max	Cc�,2ceff
�BC�−1/2BC
−1/4
 . �115�

uppose that B�BC, and that

cC

3/2B−1/4 � dC��� � 1

4

2.

y Theorem 6.1, deff����2dC����
2 /2. By the same theorem, and by �115�,

deff��� � 1
2dC��� � ceff
�BC�−1/2BC

−1/4
3/2B−1/4 � ceff
�B�B−1/2,

ince 
�B� /�B is a decreasing function of B0. The conditions of Theorem 1.1 are therefore met.
ince the condition �109� of Theorem 6.1 is clearly also satisfied, we conclude that the difference

f the resolvents �15� can be estimated by
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Ceff

2

deff���2�B
+ CC�


3/2

dC���2B1/4 � Cc

3/2

dC���2B1/4 ,

or B�BC, with

CC ª 4Ceff

�
�BC�
BC

1/4 + CC� , �116�

here we used that 
�B� /�B is decreasing. Q.E.D.

II. PROOF OF THEOREM 1.5

This will be done by closely following the strategy of Sec. VI. First, we compare the resol-
ents reff��� of heff and r����ª �h�−��−1 of h�ªh�

B,M. Recall, that d����ªdist�� ,��h���.
Theorem 7.1: Let 
=
�B� be defined by (6). There exist (computable) constants B��, C���0,

nly depending on Z, N, and M, such that for all B�B�� and all real � satisfying

d���� � C��
 , �117�

e have that ��	�heff�, with �reff�����2�r�����. In addition, letting

C�� = max�C��,4C�118�� N

2�eff
2 + 1�� with C�118� ª �NZ +

N�N − 1�
2

�C�84�, �118�

nd �eff given by (95), then if

d���� � C��
 , �119�

e also have that �r������2�reff����. Finally, if

C��
 � d���� � 1
2


2, �120�

hen

�reff��� − r����� � C��



d����2 . �121�

Proof: As in the proof of Theorem 5.1, Theorem 6.1 shows that

�reff��� − r����� �
1

d����
�K�����

1 − �K�����
,

here K�ª �r�����1/2�heff−h��r����1/2. Using Lemma 4.8 with c=2, Lemma 4.6, the triangle in-
quality, and similar comparison arguments as in the proofs of Theorems 5.1 and 6.1, we easily
nd that, for any �� inf ��h��,

�K����� �
C�118�



max� ���

d����
,1��r����1/2�h00 + 
2�1/2�2, �122�

here C�118� was defined above. We then use the following analogue of Lemmas 5.3 and 6.2.
Lemma 7.2: Let ��=1/2+4NZ2, ��ª−��


2 and let 
 be defined by (6). Then ��

inf ��h��, and

�r�����1/2�h00 + 
2�1/2�2 � 2. �123�
Proof: We will use, as before, the scaling z�z /
. We get, with the help of Lemma 4.9,
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h� − �  
2�h00 + 2v� − 
−2�� � 
2�h00 − 2Z�
j=1

N

��zj� − 
−2��
� 
2�h00�1 − 2Z�� − N�−1Z − 
−2�� ��  0� =

1

2

2�h00 + 1� ,

f we choose �=��ª1/ �4Z� and �=��ª−
2� 1
2 +4NZ2�. Q.E.D.

We continue with the proof of Theorem 7.1. By �122� and �123� with �=��, we find that

�K����� �
2C�118�



max� ��


2

d����
,1� �

1

2
,

f both

d���� � 4C�118���
¬ C��
 ,

nd 
�4C�118� which, since B�
�B� is increasing, is equivalent to

B � B�� ª 16C�118�
2 e8C�118�.

his fixes our constants C�� and B��, and also implies that �reff�����2�r�����, by the resolvent
ormula. To show that �119� implies that �r������2�reff����, we repeat the argument with r� and

eff interchanged: by the resolvent formula,

r���� = reff���1/2�1 + K̃�����−1�reff����1/2,

ith

K̃���� ª �reff����1/2�h� − heff�reff���1/2,

o that, using Lemmas 4.8, 5.2, and 5.3, we arrive at

�K̃����� � 2 max� ��eff�
deff���

,1�C�118�



� 2 max�2��eff�

d����
,1�C�118�



,

f d�����C��
, by the first part. We therefore conclude that �K̃������1/2 if both 
�4C�118�,
hich is satisfied since B�B�� defined above, and if

4��eff�C�118�


d����
�

1

2
.

he latter inequality is equivalent to

d���� � 4� N

2�eff
2 + 1�C�118�
 ,

hich yields condition �119�. Finally, if � satisfies �120�, then

�reff��� − r����� �
4C�118�


d����
max� ��


2

d����
,1� = 4��C�118�




d����2 = C��



d����2 ,

here we used that d�����
2 /2���

2. This finishes the proof of Theorem 7.1. Q.E.D.

Proof of Theorem 1.5: We want to realize the assumptions of Theorems 1.1 and 7.1 with

onditions on B and d�. We define
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B� ª max	Beff,B��


nd

c� ¬ max	C��,2ceffB�
−1/2
 . �124�

learly B�B� and c�
�d�����
2 /4 will do, for under these conditions, using Theorems 1.1 and
.1, the left-hand side of �20� can be estimated by

Ceff

2

deff
2 ����B

+
C��


d�
2���

� �4Ceff
�B��
�B�

+ C��� 


d����2 ¬ C�




d����2

ince we know that both 2deff����d���� and 2d�����deff���, by Theorem 7.1, and since 
�B� /�B
s a decreasing function of B0. Q.E.D.

III. THE FERMIONIC CASE

We first prove Theorem 1.6. This is simply done by repeating the proofs of Theorems 1.1, 1.3,
nd 1.5 for the fermionized operators, that is, for the operators sandwiched between PAS. We must
heck that the main ingredients of these proofs remain valid. First of all, Corollary 3.3 is used to
ompare the resolvents of Hf

B,M and Heff,f
B,M +W f. Next, Lemma 4.7 remains valid for W f

PASWPAS, with the operator norm being the one on PAS�Ran �eff
B,M�, since PAS commutes with

00 on Ran �eff
B,M=L2�RN ,FM

B � �as we will explicitly see below, PAS not only mixes the coordinates
f RN, but also the different components with respect to the natural basis of FM

B ; however, h00 acts
n a scalar way�. We then repeat the proof of Theorem 1.1 in Sec. V, replacing deff everywhere by

eff,f. Similar remarks apply to the proofs of Theorems 1.3 and 1.5. Q.E.D.
We next turn to Theorem 1.8. The parameter B here plays a nonessential role, and we will

imply drop it, writing Xm, �m, FM for Xm
B , �m

B , FM
B , etc. We start by analyzing the subspace of

ntisymmetric wave functions in the range of �effª�eff
B . Recall that

��M� = 	m = �m1, . . . ,mN�:mj � 0,m1 + ¯ + mN = M
 .

he permutation group SN acts on ��M� by � · �m1 , . . . ,mN�= �m��1� , . . . ,m��N�� and ��M� can
herefore be written as a disjoint union of orbits of SN,

��M� = �
m̄�M

SN · m̄ ,

���M� being a set of representatives of SN \��M�. If we let

Vm̄ = Span	X�·m̄:� � SN
 , �125�

hen, recalling that FM=Span 	Xm :m���M�
, we have the orthogonal decomposition

FM = �
m̄�M

Fm̄.

rom this it follows that

�eff
1,M�L2�R3N� � C2N� = L2�RN� � FM = �

m̄�M
L2�RN� � Fm̄.

ince PAS leaves each L2�RN� � Fm̄ invariant, it suffices to analyze the subspace of antisymmetric
ave functions in each of the latter. We therefore fix an m̄�M and let

Gm̄ = 	� � SN:� · m̄ = m̄
 , �126�

he stabilizer of m̄. Choose representatives �1 , . . . ,�K, K=K�m̄�, for the right equivalence classes

f Gm̄ in SN :SN /Gm̄= 	�1Gm̄ , . . . ,�KGm̄
 with �iGm̄�� jGm̄=� if i� j. Then X�1·m̄ , . . . ,X�K·m̄ con-
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titutes an orthonormal basis for Fm̄, and each element �=��x ,y ,z� of L2�RN� � Fm̄ can be
niquely written as

� = �
j=1

K

ajX�j·m̄
= �

j=1

K

aj�z�X�j·m̄
�x,y� , �127�

or suitable aj =aj�z��L2�RN�. For any such � and r= �x ,y ,z��R3N= �RN�3,

��� · r� = �
j

aj�� · z�X�j·m̄
�� · x,� · y� = �

j

aj�� · z�X��−1·�j�·m̄
�x,y� ,

here � ·r= �r��1� , . . . ,r��N��, and similarly for � ·x, � ·y, and � ·z, and where we used that

Xm�� · x,� · y� = �
j

�mj
�x��j�,y��j�� = X�−1·m�x,y� .

t follows that ��L2�RN� � Fm̄ is antisymmetric iff, for any ��SN,

�
j

aj�� · z�X��−1�j�·m̄
= �− 1���

j

aj�z�X�j·m̄
.

his is equivalent to the statement that � is antisymmetric iff,

�
j

aj�� · z�X���j�·m̄
= �− 1���

j

aj�z�X�j·m̄
, �128�

ince the two statements are equivalent when � is a transposition, and these generate SN. The
ersion �128�, with no �−1, will be more convenient to work with. We next observe that the map

j→�� j gives rise to a permutation 	��� of SK.
Lemma 8.1: For any m̄�M the map 	=	m̄ :SN→SK, K=K�m̄�, such that

	����i� = j Û ��i � � jGm̄

s a well-defined homomorphism. Q.E.D.
In other words, 	��� is characterized by

��i � �	����i�Gm̄.

ne easily verifies that 	��� is indeed a permutation of 	1, . . . ,K
, and that 	 is an homomorphism
f SN into SK.

With this notation, the left-hand side of �128� reads

�
j

aj�� · z�X�	����j�·m̄
,

nd on replacing j by 	���−1�j� and using the fact that the X�j·m̄
form a basis of Fm̄, we find that

is antisymmetric iff, for all j and all ��SN,

aj�z� = �− 1��a	��−1��j��� · z� . �129�

f we successively replace � by �−1 and z by � ·z, this becomes

aj�� · z� = �− 1��a	����j��z� , �130�

hich implies that all aj are uniquely determined by any one of them, a1, say, which we let, by
efinition, correspond to �1=e, the unity element of SN. More explicitly, since 	�� j��1�= j �for

j�1=� j �� jGm̄=G	��j��1�·m̄, by definition of 	�, Eq. �129� with �=� j implies the important rela-

ion
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aj�z� = �− 1��ja1�� j · z� . �131�

n particular, PAS�L2�RN� � Fm̄� can be identified with a subspace of L2�RN�, by sending � to a1

see �132��. We now analyze the symmetry properties of a1 imposed by the antisymmetry of �.
Lemma 8.2: Let H be the subgroup of SN generated by the set 	��	����1�

−1 :��SN
. Then, for all
�H, a1�� ·z�= �−1��a1�z�, and these are the only symmetry-conditions which the anti-symmetry
f � imposes on a1.

Proof: Let ��SN be arbitrary. Then by �130�, a1�� ·z�= �−1��a	����1��z� which, by �131�, equals
−1���−1��	����1�a1��	����1� ·z�. Therefore

a1���	����1�
−1 · z� = �− 1���	����1�

−1
a1�z� ,

hence the lemma. Q.E.D.
Lemma 8.3: The group H of Lemma 8.2 is generated by the union of all stabilizers G�j·m̄

of

j · m̄, 1� j�K.
Proof: Let ��SN. Then ��� jGm̄, for some j. Since ��1=�e�� jGm̄, we have that 	����1�

j, and therefore ��	����1�
−1 �� jGm̄� j

−1=G�j·m̄
.

Conversely, if ��G�j·m̄
, then �=� j��� j

−1, for some ���Gm̄. Set �=� j��. Then 	����1�= j,
ince � j���1�� jGm̄, and therefore �=�� j

−1=��	����1�
−1 is a generator of H. We conclude that the set

f generators of H equals � jG�j·m̄
, which proves the lemma. Q.E.D.

Lemma 8.4: Let H be the subgroup from Lemma 8.2. If Gm̄= 	e
, then H= 	e
, while if Gm̄

	e
, then H=SN.
Proof: It is obvious, from Lemma 8.3, that if Gm̄= 	e
, then H= 	e
, and a1 does not have to

atisfy any symmetry conditions with respect to the action of SN, by Lemma 8.2.
Now suppose that Gm̄ is nontrivial. Then there exist two indices i and j such that m̄i= m̄j. We

an suppose, without loss of generality, that i=1 and j=2. In that case, the transposition �12� is in

m̄, and therefore ���1� ,��2��=��12��−1�H, for all ��SN, by Lemma 8.3 again. But then all
ranspositions will be in H, which clearly implies that H=SN. Q.E.D.

Define a linear mapping

Um̄:PAS�L2�RN� � Fm̄� → L2�RN� , �132�

y

Um̄����z� = �K���· ,z�,Xm̄�L2�R2N�,

here we recall that K=K�m̄�=#�SN /Gm̄�. If � is given by �127�, then Um̄����z�=�Ka1�z�. By
130�, �Um̄��2= ���2, so that Um̄ is unitary and therefore injective. If Gm̄ is nontrivial, then H
SN, and the image of Um̄ is contained in the space LAS

2 �RN� of antisymmetric wave functions on
N, by Lemmas 8.2 and 8.4. Since the only symmetries of a1 are those imposed by H, it follows

hat Um̄ is surjective onto LAS
2 �RN�. Similarly, if Gm̄= 	e
, then H= 	e
, and the image of Um̄ is

2�RN�: indeed, if a1=a1�z� is arbitrary, then

�a1
ª �

��SN

a1�� · z�X�·m̄�y,z�

s an antisymmetric element of L2�RN� � FM such that Um̄��a1
�=a1.

Proof of Theorem 1.8: Recall that

M1 = 	m̄ � M:Gm̄ = 	e

, M2 = 	m̄ � M:Gm̄ � 	e

 ,
nd define
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UM ¬ UM
B :PAS�L2�RN

� FM�� → �
m̄�M1

�

L2�RN� � �
m̄�M2

�

LAS
2 �RN� , �133�

y UMª� m̄�MUm̄. Then we have shown that UM is a surjective isometry. The intertwining
ormula of h�,f

M with UM being obvious, this proves Theorem 1.8. Q.E.D.
Contrary to h�,f

M , the operator UMhC,f
M UM

* will in general not act diagonally anymore on the
ange of UM, but will contain terms which couple antisymmetric and boltzonic components in
133�, that is, components in LAS

2 �RN� and L2�RN�. The potentially problematic terms in hC,f
M are

MCav:1
n,M UM

* and UMCav:2
e,M UM

* �still dropping the B from our notations�. The first one is easily seen
o act diagonally on the right-hand side of �133�: recall that

Cav:1
n,M = − �eff

1 � 1

N
�
j=1

N

log�1

4
	 j

2���eff
1 ,

nd identify this with a Hermitian operator on FM=Span 	Xm :m���M�
 �it acts as a multiplica-
ion operator on L2�RN ,FM��. The matrix of Cav:1

n,M in the basis Xm, m���M�, is easily seen to be
iagonal. Moreover,

�X�·m�Cav:1
n,M �X�·m� = − �

R2N
�Xm��−1 · �x,y���2 log

1

4
�� j=1

N 	 j
2�1/N dx dy = �Xm�Cav:1

n,M �Xm� .

ence, taking B=1, for simplicity, Cav:1
n,M will act on Fm̄ as scalar multiplication by

�Xm̄Cav:1
n,M �Xm̄� = −

1

N
�
j=1

N �
R2N

�log
	 j

2

4
���=1

N ��m̄�

1 �2�	��dx� dy� = −
1

N
�
j=1

N �
R2
�log

	2

4
���m̄j

1 �2�	�dx dy

= −
1

N
�
j=1

N

�2m̄jm̄j!�−1�
0

�

	2m̄j+1 log
	2

4
e−	2/2 d	 = log 2 −

1

N
��

j=1

N

��m̄j + 1�� ,

here ��z�=���z� /��z�, the logarithmic derivative of the �-function. Hence UMCav:1
n,M UM

* simply
cts diagonally on the right-hand side of �133�, and more precisely, by scalar multiplication in
ach component.

The operator UMCav:2
e,M UM

* is more complicated: it is not going to be diagonal in the natural
asis and it will in general mix the different components Ran UM, even those with index in M1

nd M2. This is already the case in the simplest case in which both M1 and M2 are nonempty,
amely that of two electrons, N=2, and a total angular momentum of M=2. In that case ��M� is
he union of two orbits under S2, namely 	�0,2�, �2,0�
, and 	�1,1�
 the first having as stabilizer the
dentity, and the second having as stabilizer the full group S2. We can therefore take M1

	�0,2�
 and M1= 	�1,1�
. We will now compute the matrix element

�X�0,2�
1 �Cav:2

e,2 �X�1,1�
1 � , �134�

nd simply observe that the result is nonzero. For this computation it is convenient to use complex
otation for the lowest Landau functions �25�: if we let �=x+ iy, then �taking B=1 again�

�m
1 = cm�

me−���2/4,

here cm= �2�2mm!�−1/2. We then find that �134� equals

− c0c2c1
2�

C
�

C
�1�2�̄ 2

2 log� ��1 − �2�2

4
�e−���1�2+��2�2�/2 d�1 d�2.

aking the �by now familiar� change of variables u= ��1+�2� /�2, v= ��1−�2� /�2, this integral

ecomes
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−
c0c2c1

2

4
�

C
�

C
�u2 − v2��ū − v̄�2 log��v�2/8�e−��u�2+�v�2�/2 du dv .

ince �u2−v2��ū2−2uv+ v̄2�= �u�4− �v�4+2i Im u2v̄2+2uv�v2−u2�, and since, in general,

�
C
�

C
u�ū�v�v̄�g��u�2, �v�2�du dv = 0,

nless 
=� and �=�, we obtain that �134� equals

−
c0c2c1

2

4
�

C
�

C
��u�4 − �v�4�log��v�2/8�e��u�2+�v�2�/4 du dv

= −
c0c2c1

2

4 ��
C

�u�4e−�u�2/2 du�
C

log��v�2/8�e−�v�2/2 dv

− �
C

e−�u�2/2 du�
C

�v�4 log��v�2/8�e−�v�2/2 dv� =
3

16�2
,

s can be shown using the �-function and its derivative. So �134� is nonzero, and UMhC,f
M UM

* mixes
he two sectors.

X. CONCLUDING REMARKS

We finally want to give an idea what these effective Hamiltonians might be good for. Our
riginal motivation for introducing them was for studying the structure of the bottom of spectrum
f HB,M, in connection with the maximum ionization problem for atoms in strong magnetic fields;
ee below. To illustrate how this works, we first consider the comparison with H�

B,M=h�
B,M

� H�
B,M; cf. Theorem 1.5. Since, by construction, B�B�36�, we know from Theorem 3.1 that

�H�
B,M�� �0,�� if BB�. Let E�ª inf h�

B, then clearly E��0.
Since h�

B is unitarily equivalent to 
2�− 1
2�z+2v� � we conclude that whenever E� is an isolated

igenvalue, its position as well as its isolation distance is proportional to 
2. That E� is an
igenvalue is true for Z large enough when N is fixed; to determine how big Z must be exactly,
elative to N, for this to happen is an open problem �see below�. Let us assume henceforth that E�

s an eigenvalue, which then necessarily is simple. Consequently E� is an eigenvalue of H�
B,M with

ultiplicity dim FM
B , see �18�. Choose two points �±ªE�±C
2 in 	�H�

B,M��	�HB,M�, which sat-
sfy �19�. This is possible when BB�, see Theorem 1.5. Let � be the circle in the complex plane
entered at E� with radius C
2 and define P and P� as the eigenprojections associated to HB,M and

�
B,M, respectively, onto their spectrum inside �. To estimate P− P� we need a bound on R���
R����ª �HB,M−��−1− �H�

B,M−��−1 for all ���. We know already that �R��±�−R���±��
C�
 /d���±�2=C�C

−2
−3 by Theorem 1.5. To propagate this estimate on all of � we use the
onvenient formula �see Ref. 12, Sec. IV, �3.10��

�R��� − R����� �

�H�
B,M − �±

H�
B,M − �

�2

�R��±� − R���±��

1 − �� − �±��H�
B,M − �±

H�
B,M − �

��R��±� − R���±��

�
C�C

−2
−3

1 − �2C�C
−1
−1

.

hen integrating over the contour � finally gives �P− P��=O�
−1� as B tends to infinity. This
hows that for B large enough these two projections have the same dimension and since they are

B
ontinuous with respect to B we finally get that for all BB�, dim P=dim P�=dim FM.
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Our conclusion is therefore that, for sufficiently large B, HB,M will have a cluster of eigenval-
es in the interval �E�−c�


2 ,E�+c�

2� with total multiplicity of dim FM

B , and apart from this no
igenvalues at a distance C
2 from E� �the allowed B’s will depend on C�, so that the cluster is
eparated from the rest of the spectrum by a distance proportional to 
2. In the particular case
hen dim FM

B =1, i.e., M=0 or N=1, we get an estimate on the difference of the eigenvectors �
��=O�
−1� as B→� �in the L2 norm�. Here � denotes the eigenvector of HB,M and

��x ,y ,z�ª��
B�z�Xm=0

B �x ,y� if M=0, where ��
B is the ground state of h�

B. In the case N=1 one has

�
B�z�=�2
Ze−2
Z�z�.

Consider now the comparison with hC
B,M. The difficulty here is to find the necessary a priori

nformation on the structure of ��hC
B,M�. In the case of N=1, using the invariance of ��hC

B,M� under
he reflection z�−z, and the characterization of the domain of ��hC

B,M� in the Appendix, one sees
hat the odd spectrum �that is, the spectrum of hC restricted to the odd wave functions� is
-independent and coincides with the spectrum of the hydrogen in the s sector of symmetry. Since

he even spectrum intertwines with the odd spectrum and since it is monotonically decreasing with
espect to B, cf. �11�, it is easy to realize that ��hC

B,M��R−, apart from the ground state energy, is
ade up of clusters of two eigenvalues, the clusters being separated by a distance of order 1 as
→�. Thus by using Theorem 1.3 and following a similar strategy as above one can conclude

hat for N=1, and arbitrarily small �, ��HB,M�� �−� ,−�� has the same cluster structure for B
B� sufficiently large. Moreover this spectrum deviates from the one of the Coulomb model by at
ost cC
�B�3/2B−1/4 as B→�.

The model operator heff
B,M is for the moment of mainly theoretical interest since it does not

eem to be solvable even in the one electron case. Notice however that one could solve heff
B,M

umerically, at least for few electrons and small M, and subsequently use Theorem 1.1 to approxi-
ate the true spectrum of HB,M for large B. Given the nontrivial dimension reduction achieved by
heorem 1.1 �from wave functions of 3N variables to ones of N variables, albeit vector-valued�
uch a procedure would, from a numerical point of view, seem preferable to attacking HB,M

irectly.
Whether the simpler models, i.e., the delta and the Coulomb model, are solvable in the

-electron case, N�2, is a challenging question in view of applications. We are thinking in
articular of the problem of determining the maximum number Nc of electrons which a clamped
ucleus with charge Z can bind when an intense homogeneous magnetic field is applied. Refer-
nce 14 has shown that lim inf Nc /Z�2 as Z, B /Z3→�. Very little precise is known for fixed Z
nd high B. It is conjectured that there should be a B-independent absolute �that is, nonasymptotic�
pper bound of the form Nc�aZ+b, similar to Lieb’s bound Nc�2Z+1 valid when B=0, but this
s as yet unproved. Some weaker results are known, of which the best to date is the one of Ref. 18;
ee also Ref. 7 for work on heuristic models related to our heff

B,M. It is natural to first try to solve the
aximal binding question for h�

B, or any of our other effective Hamiltonian, and use the approxi-
ation theorems of this paper to draw conclusions for HB,M itself. Some modest progress is

ossible in this way. It is, for example, known that the delta model with two electrons is at least
umerically solvable, see Ref. 16, and that this model possesses a unique bound state at the bottom
f its spectrum as long as Z0.375. Therefore using Theorem 1.5 we see that for all Z0.375
here exists BZ�0 such that for all B�BZ one nucleus with such a charge can bind two electrons.
s a consequence, Lieb’s bound of Nc�2Z+1 is no longer valid in strong magnetic fields. For
eneral Z, no maximum ionization bound for the �-model is known as yet.

Let us now briefly turn to the effect of particle symmetry. It follows from Theorems 1.6 and
.8 that Hf

B,M can be approximated by a direct sum of copies of h�
B acting on antisymmetric L2�RN�

lus a direct sum of copies of h�
B acting on L2�RN� without any symmetry condition. The latter will

ccur iff M1��, which is the case iff M�0+1+ ¯ + �N−1�= 1
2N�N−1�. For such M, the ground

tate energy will be approximately that of boltzonic h�
B, which is also the ground state energy of

he bosonic h�
B, and the same can be shown to be the case for the ground state wave function

assuming there is one�, by standard permutation arguments. In fact, Theorem 1.6 plus Theorem
.8 predict the existence of a cluster of #M1 eigenvalues at the bottom of the spectrum of Hf

B,M,
2
t a distance of order 
�B� from the origin as B→�.
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A further interesting corollary to Theorem 1.8 can be obtained by considering M as a free
arameter. If h�

B possesses a ground state, whose energy is isolated in its spectrum, then for
ufficiently large B, Hf

B
ªPASHB will assume its ground state for an M�

1
2N�N−1�. Stated other-

ise, assuming there is a mechanism for transfer of the angular momentum �e.g., emission and
bsorption of photons�, atoms in strong magnetic fields will have an orbital angular momentum in
he field direction of at least 1

2N�N−1�. A natural conjecture is that we have equality here. Notice
hat this conjecture was shown to be true in the case of N=1 in Ref. 2, see also Ref. 3.

We mention one further application of these effective Hamiltonians. After the location of the
pectrum to leading order one can now use regular perturbation theory to compute lower order
orrections. We have shown how this can be done in Ref. 5. This seems definitely more convenient
han variational techniques and more familiar than the Birman-Schwinger method used in Ref. 2
or the one electron case. Continuing, for example, the above comparison of HB,M with h�

B,M, it is
mmediate to realize that adding the first order perturbative correction will give an error of order
. In case N=1 we get that the ground state energy of HB,M is equal to �heff

B,M�� ,���+O�1� with

��x ,y ,z�=�2
Ze−2
Z�z��M
B �x ,y�. This should be compared to Theorem 2.5 of Ref. 2. In fact, one

an write the ground state energy as a convergent power series, each term of which being of order
−k for k running from −2 to infinity. However, as pointed out in Ref. 2, in view of the log�B�
ehavior of 
 this series is of limited value. The situation will be much better with the Coulomb
odel hC

B,M since the perturbation series will converge much faster because of the 
3/2B−1/4 be-
avior of the rhs of �15�. We hope to tackle this program soon.

The above remarks concentrated on applications of our effective Hamiltonians to the ground
tate energy of HB,M, but their potential interest is not limited to that. As the example of hC shows,
ther parts of the discrete spectrum of HB,M will also become amenable to analysis, if this is the
ase for the effective operator. On a conceptual level, Theorem 1.1 gives a precise mathematical
ense to, and justification of, the physicist’s attractive heuristic picture of an atom in a strong
omogeneous magnetic field as consisting of electrons in their lowest Landau band states inter-
cting through a kind of “residual” electrostatic interaction. Finally let us note that the techniques
eveloped in this paper are expected to work in other contexts. An interesting example is that of
wo-dimensional electronic systems on a cylinder which describe excitons in carbon nanotubes; cf.
ef. 9.
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PPENDIX: A CHARACTERIZATION OF THE OPERATOR DOMAIN OF hC

In this appendix we will characterize the operator domain of hC=hC
B. It will in fact be conve-

ient to consider a slightly more general situation. Let L= 	L� ,1���K
, be a finite collection of
yperplanes in RN �we might more generally consider nonsingular C1 hypersurfaces�. Let F be a
nite-dimensional complex vector space, with Hermitian inner product �·,·� and let A�, B� be
ermitian operators on F. Let Hk�RN ,F� be the kth Sobolev space on RN, with values in F. Then

he following sesquilinear form is well defined on H1�RN ,F� and bounded from below:

tL�u,v� =
1

2
��u,�v� + �

�

�L�
*Pf�� · �−1�,�A�u,v�� + �L�

*�,�B�u,v�� , �A1�
·,·� denoting the duality between distributions and test functions. We let

                                                                                                            



b
R
R
e
p
p
s

�
�

�

a

t
o

�
i
H
K

a

I
o

s

a

032103-39 Effective Hamiltonians J. Math. Phys. 47, 032103 �2006�

                        
hL = −
1

2
�z + �

�

A�Pf� 1

L�z�
� + B���L��z�� .

e the associated self-adjoint operator, whose existence is guaranteed by the KL2MN-theorem. Let
be the set of connected components of RN \�� Ker L�, so that RN \�� Ker L�=�R�RR and

�R�=�, if R, R��R, R�R�. Note that, on any of these components R, Lj
*Pf�1/ � · �� simply

quals the function 1/ �Lj�z��. We will identify Lj with an element of RN, using the Euclidean inner
roduct on RN; the latter will be denoted by a dot: z ·w, to distinguish it from the Hermitian inner
roduct �v ,w� on F. If we let H2�R ,F� be the F-valued Sobolev space of order 2 on the open
ubset R�RN, then the domain of hL can be characterized as follows.

Theorem A.1: Let u�L2�RN ,F�. Then u�Dom�hL� iff the following three conditions hold:

i� u�H1�RN ,F�.
ii� For each R�R,

−
1

2
�u + �

�

1

�L��z��
A�u � H2�R,F� .

iii� For each j and for each x� 	Lj =0
 \�k�j	Lk=0
:

Lj · �u�x + �
Lj

�Lj�
� − Lj · �u�x − �

Lj

�Lj�
�  4 log �Aju�x� + 2Bju�x� + o�1� ,

s �→0.
Proof: We will use the following characterization �see Ref. 12� of Dom�hL�:

u � Dom�hL� Û �u � Dom�tL� = H1�RN,F� ,

and

�tL�u,v�� � Cu�v�2, "v � Dom�tL� = H1�RN,F� ,
� �A2�

he norm on the right-hand side being the L2-norm. Here we may, and will, suppose without loss
f generality that v�Cc

1�RN ,F�, the space of compactly supported F-valued C1-functions.
To analyze �A2�, we will first establish a convenient integral expression for the pull-backs of

and of Pf �1/�·�� under a linear map L :RN→R. Using the Euclidean inner product, we can
dentify L with an element of RN, which we also denote by L. Using the definition of pull-back �cf.
örmander,11 Chap. 6�, one easily shows that if d�L denotes the Euclidean surface measure on
er�L�, and �L� is the Euclidean norm of L, then

�L*�,�� = �
	L=0


�

�L�
d�L, �A3�

nd

�L*Pf�1/� · ��,�� = − �
RN

sgn�L�z��log�L�z��
�L�2 L · �u�z�dz . �A4�

n fact, since taking pull-backs is coordinate invariant, it suffices to verify these formulas in an
rthogonal coordinate system in which L= ��L� ,0 , . . . ,0�.

We next observe that, for each R�R, there exists a �unique� function sR : 	1, . . . ,K
→ 	0,1
,
uch that

R = 	z � RN:�− 1�sR�j�Lj�z� � 0, j = 1, . . . ,K
 ,
nd if �0, we define R� by
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R� = 	z � RN:�− 1�sR�j�Lj�z� � �, j = 1, . . . ,K
 .

bserve that the boundary of R�, as well as that of R, are polyhedrae, each of whose faces are
ontained in one of the hypersurfaces 	�−1�sR�j�Lj =�
 and 	Lj =0
, respectively. On such face, the
utward-pointing normal nR,� can be identified with the vector −�−1�sR�j�Lj / �Lj� �translated to the
elevant base point on the face, to be precise�. Note, that nR,� is only defined almost everywhere on
he boundary �with respect to the surface measure�. This will not cause difficulties, though.

Suppose now that u�Dom�hL� and in particular satisfies the conditions �A2�. We then have,
or any v�Cc

1�RN ,F�,

tL�u,v� = lim
�→0
� 1

2 �
R�R

�
R�

��u,�v�dz − �
�

�
R
�

R�

sgn�L��log�L��
�L��2 �L� · ���A�u,v�dz

+ �
�
�

	L�=0


�B�u,v�
�L��

d�L�� . �A5�

e want to apply Gauss’ divergence theorem to each of the integrals over R�: this is allowed since
f u�H1�RN ,F� satisfies �A2�, then by choosing v compactly supported in R, we see that

−
1

2
�zu + �

�

A�� 1

L�z�
�u � Lloc

2 �R,F� ,

hich obviously implies that �u�Lloc
2 �R ,F� �since we are staying away from the singularities on

he hyperplanes�, and hence u�Hloc
2 �R ,F�. Now

�
R�

��u,�v�dz = �
R�

�− �u,v�dz + �
�R�

�nR,� · �u,v�d�R,�, �A6�

�R,� being the Euclidean surface measure on the boundary. Furthermore,

− �L��−2�
R�

sgn�L��log�L���L� · ����A�u,v��dz = �
R�

�A�u,v�
�L��z��

dz − �L��−2�
�R�

sgn�L��log�L��

��A�u,v��L� · nR,��d�R,�.

sing this, the second term in �A5� can, after rearranging, be written as

�
R�R

�
R 

��
j

�Aju,v�

�Lj�z��
�dz + �

j
�
±

± �Lj�−1�Lj=±�,
�L��� if ��j

sgn�Lj�z��log�Lj�z���Aju,v�

+ �
j,k:j�k

�
±

± �Lk�−1�Lj�−2Lk · Lj�Lk=±�,
�L��� if ��k

sgn�Lj�z��log�Lj�z���Aju,v� ,

he surface integrals being with respect to the natural surface measures. Since v is compactly
upported, the third sum will vanish, in the limit of �→0. This follows from the local integrability
f u · log�Lj� on 	Lk=0
 �if j�k�, which can be seen as follows. Since u�H1, its restriction �u�	Lk=0

s in �vector-valued� L2. On the other hand, log�Lj�, restricted to 	Lk=0
 is in Lloc

2 �RN−1�, and
herefore u log�Lj�, restricted to 	Lk=0
 is locally integrable. Rearranging also the sum over R of
he boundary terms in �A6� as a sum of integrals over the various hypersurfaces 	Lj = ±�
, we

1 N
onclude that for v�Cc�R ,F�,
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tL�u,v� = lim
�→0

�
R�

�−
1

2
�u + �

�

A�u

�L��z��
,v�dz + �

j
�
±

!
1

2
�

Lj=±�,�L������j�

�Lj · �u,v�

�Lj�
d�	Lj=±�


+ �
j

2 log ��
±
�

Lj=±�,�L������j�

�Aju,v�

�Lj�
d�	Lj=±�
 + �

	Lj=0


�Bju,v�

�Lj�
d�	Lj=0
.

ince u�H1 implies that �u�·+�Lj / �Lj��−u�·��L2�	Lj=0
�=O����, and since �u ,v��L1�	Lj =0
�, we
an replace the next to last term by

2 log ��Lj�−1�
	Lj=0


�Aju,v�d�	Lj=0
 + o�1�, � → 0.

e can, for the same reason, replace v in the second integral by its restriction to 	Lj =0
. Letting
→0, it follows that if u satisfies �A2�, then it satisfies �i�, �ii�, and �iii�.

Conversely, suppose that u satisfies conditions �i�, �ii�, and �iii� of the theorem. Then running
he argument backwards shows that �tL�u ,v���Cu�v�2, first for all compactly supported v and
hence for all v�H1�RN ,F�. Hence u�Dom�hL�, by �A2�.
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For multiqubit density operators in a suitable tensorial basis, we show that a num-
ber of nonunitary operations used in the detection and synthesis of entanglement
are classifiable as reflection symmetries, i.e., orientation changing rotations. While
one-qubit reflections correspond to antiunitary symmetries, as is known, for ex-
ample, from the partial transposition criterion, reflections on the joint density of
two or more qubits are not accounted for by the Wigner theorem and are well-posed
only for sufficiently mixed states. One example of such nonlocal reflections is the
unconditional NOT operation on a multiparty density, i.e., an operation yeilding
another density and such that the sum of the two is the identity operator. This
nonphysical operation is admissible only for sufficiently mixed states. © 2006
American Institute of Physics. �DOI: 10.1063/1.2181827�

. INTRODUCTION

The Wigner theorem asserts that unitary and antiunitary operations exhaust all possible sym-
etric transformations applicable to the wave function of a quantum mechanical system. The

nitary transformations are physically associated with forward-in-time evolution, and antiunitary
ith backward-in-time evolution �see, for example, Ref. 1�. The characteristic feature of this last

lass is the presence of a conjugation operation on a wave function or a transposition operation on
density operator. It is known2 that the geometric interpretation of the time reversing operation for
density operator in a two-dimensional Hilbert space �also known as “qubit”� is a reflection, i.e.,

n orientation-changing rotation in O−�3�=O�3� \SO�3� of the corresponding Bloch vector.
A closely related operation, variously known as a spin flip,3 �unconditional� NOT operation, or

niversal inverter,4 changes the sign of the entire Bloch vector. In this sense it corresponds
eometrically to inversion in the origin, which is widely known as the parity operation.5 For a
ingle isolated qubit these operations are indistinguishable from equivalent orientation preserving
perations, since O�3� and SO�3� both act transitively on the Bloch sphere, but for multiqubit
ystems they correspond to partially antiunitary transformations such as the “partial transposition,”
hich can be used to detect bipartite entanglement.6 This highlights the intrinsically “discrete”
ature of such tests and their invariance under LOCC �local operations and classical communica-
ion�.

In this paper we introduce a more general class of involutory “symmetry” operations, and
rgue that these are likewise useful in studying the multiparty nonseparability of density operators.
hese operations are most easily described in terms of the Stokes tensor7–9 and its “unfolding” to

he so-called real density matrix,10 both of which are equivalent, as carrier spaces, to the coherence
ector.11,12 All these representations parametrize the real linear space of multiqubit density opera-
ors by the expectation values of all possible tensor products of the Pauli operators, differing only
n their notations and indexing systems. The Stokes tensor indexing has the advantage of making

he “affine” structure of the set of n-qubit density operators Dn explicit, whereas the real density

47, 032104-1022-2488/2006/47�3�/032104/14/$23.00 © 2006 American Institute of Physics
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atrix has the advantages that both the matrix itself, as well as any operations on it which are
iagonal with respect to the Stokes tensor, can be displayed as a compact two-dimensional �2D�
able on a printed page �see below for examples�.

As is well known, unitary operations on the usual Hermitian density operator induces
rientation-preserving rotations of the coherence vector, and thereby also norm-preserving linear
roup actions on the Stokes tensor and/or real density matrix �loc. cit.�. In the following, we shall
requently use the term “density,” without further qualification, to indicate an equivalence class of
robability distributions over an ensemble of multiqubit systems which all give rise to the same
ensity operator, irrespective of how this is represented �as a Hermitian matrix, or a Stokes tensor,
tc.�.

We now distinguish the following two types of nonunitary but norm-preserving operations on
multiqubit Stokes tensor:

i� local reflections applied simultaneously to two or more qubits;
ii� “nonlocal” reflections, i.e., reflections applied to the joint density of two or more qubits.

he two cases are qualitatively different: while �i� is equivalent, up to local unitary operations, to
ultiqubit partial transposition, �ii� is a genuinely new operation and does not correspond to any

ocal operation on two or more qubits. In particular, the total reflection of all components of the
tokes tensor other than the expectation value of the identity does not correspond to time-reversal
i.e., to the total transpose of the density matrix� but rather to a multiparty NOT operation.

Reflections on more than one qubit are nonunitary operations that do not necessarily yield
alid �positive semidefinite� density operators. However, it can be shown that any mixed state with
igenvalues “small enough” is still a density operator when it is totally reflected. In other words,
otal reflection is a nonunitary involution which preserves such sufficiently mixed sets of density
perators. On this set, total reflection behaves like a antiunitary operation in the sense that it
reserves the Hermitian structure, the trace and the �Hilbert-Schmidt� inner product. This tells us
hat for general mixed states there are more symmetries to be exploited than those of Wigner
heorem.

For three qubits, the set of density operators admitting a total reflection includes, for example,
he unextendible product basis �UPB� states used in Ref. 13 to generate a bound entangled density
perator with all positive partial transpositions �PPT�. The “complement” operation that turns a
eparable density into the bound entangled UPB state is in fact a total reflection of the type �ii�
bove. The various entanglement measures �the concurrence, the negativity and the tangle among
hem� that rely on the use of spin-flip operations are also examples of application of multiple
ne-qubit reflections of the type �i�. In between local and total reflections lies a class of “nonlocal
et partial” reflections which also belong to the class �ii� above. These maps resemble very closely
hose used in the so-called reduction criterion.14,15

Besides their unifying mathematical �group theoretic� character, we see reflections as a new
ool to “probe” the structure of the set of multiparticle density operators, in particular its nonsepa-
able regions, by means of operations analogous, but inequivalent, to partial transposition. Hope-
ully this will eventually lead to a better understanding of bound entanglement in multipartite
ystems.

I. ONE QUBIT: TRANSPOSITION AND TIME-REVERSAL

For a single qubit with density operator ��D1�C2�2, the Stokes tensor is the affine 3-vector
�0 �� T�T, where �0=tr��� /�2=1/�2 and �� = ��1 �2 �3�T is the Bloch vector of the qubit times �2.
hus �summing over repeated indices� we have �=� j� j where � j =� j /�2 are the rescaled Pauli
atrices �j=1,2 ,3�, �0=12 /�2, and � j =tr��� j�. In this notation, the real density matrix is given
y
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� = ���� � �2��0 �2

�1 �3� . �1�

he Stokes tensor is readily recovered from this by applying the “col”16 �or reshaping17� operator
o it and dividing by �2. As is well known, unitary transformations of � by U�SU�2�, namely
�U†, induce rotations of the corresponding Bloch vector. This geometric interpretation will now
e extended to antiunitary transformations.18,19

Any antiunitary operation can be written as the product of a unitary operation and complex

onjugation K. Given a pure state with wave vector 	�
=c0 	0
+c1 	1
 �c0 ,c1�C�, let 	�̃
 be the

ave vector obtained by means of K alone: 	�̃
=K 	�
=c0
* 	0
+c1

* 	1
. The corresponding density

atrix is �= 	�
�� 	 =� j,k=0
1,1 cjck

* 	 j
�k	, so that 	�̃
��̃ 	 =� j,k=0
1,1 cj

*ck 	 j
�k 	 = �	�
�� 	 �T. Since any density
atrix is a convex combination of pure state density matrices, the effect of K on a general � is to

ranspose it, i.e., �T=K�K†=�0�0+�1�1−�2�2+�3�3. As indicated, this is simply a change in the
ign of the �2 component of the Bloch vector, i.e., ��1 −�2 �3�T.

The rotation group O�3�, of course, has two connected components, one of which preserves
he orientation of a frame �namely SO�3�, which contains the identity operator 13�, and one of
hich changes its orientation �denoted here by O−�3�, to which −13 belongs�. This topological

tructure is illustrated in Fig. 1. A reflection is a rotation which does not preserve orientation. The
anonical example is spatial inversion, which is defined as multiplication by RS�−13. Any reflec-
ion R�O−�3� is obtained by multiplying RS with a rotation in SO�3�. For example, the reflection
sed in the transpose, RT=diag�1,−1,1�, can be written as the product of a spatial inversion with
rotation by � about the y axis.

For any vector �� , spatial inversion maps �� to its antipode −�� =RS��� � on a sphere of radius
��  =���1�2+ ��2�2+ ��3�2. It follows from this together with the above that, for density matrices,
S�UK�K†U†=�0�0−�1�1−�2�2−�3�3 where U= i�2�SU�2� rotates the Bloch vector by �
bout the y axis. In addition, it is easily shown that the eigenvalues of � are given by

eig��� = � 1
�2

� 1
�2

± �� �� . �2�

ince reflections, like rotations in SO�3�, are length preserving actions on the Bloch sphere, we see
hat the eigenvalues are preserved under reflections: eig��S�=eig��T�=eig���. For pure states, an
mportant difference between RS and RT is that RS maps any ket 	�
 to an orthogonal one, whereas

T does not. In other words, spatial inversion corresponds exactly to the spin-flip operation.3,20

Both the transposition and the spin-flip can also be defined in terms of the real density matrix,
sing the componentwise �also known as Hadamard, or sometimes Schur� matrix product “�.” In

FIG. 1. Topological structure of the rotation group O�3�.
he case of the transpose, this is simply
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���T� = �2�1 − 1

1 1
� � ��0 �2

�1 �3� . �3�

s shown in Ref. 16, an operator sum representation is obtained from the singular value decom-
osition of the sign matrix �left-hand factor�, leading to

���T� = ����	0
�0	 − �2�3����	1
�1	 . �4�

or the spin-flip, on the other hand, it is easily seen that

���S� = �2� 1 − 1

− 1 − 1
� � ��0 �2

�1 �3� = 2	0
�0	 − ���� . �5�

hese alternative representations of transposition and spin-flip will be useful in studying multiqu-
it reflections below.

For a single qubit the notion of reflection admits a further interpretation in terms of “co-
ompletely positive” �co-CP� maps. From the Størmer-Woronowicz theorem, any positive 2�2
ap � is decomposable as

� = c�1 + �1 − c��2 � T �0 � c � 1� , �6�

here �1, �2 are completely positive �CP� maps and T is transposition. The composition �2 �T is
alled a co-CP map. For the Bloch vector, the CP maps form a semigroup in the group of
rientation-preserving affine maps GL+�3,R��R3, where GL+�3,R�= �g�GL�3,R3� 	det�g�	0�
nd “�” denotes its semidirect product with the translation group R3.17,21,22 Unital CP maps live
n the GL+�3,R� component, while unital co-CP maps live in the other component, GL−�3,R�

�g�GL�3,R3� 	det�g�
0�. Restricting further to symmetries �i.e., trace- and norm-preserving
aps�, one gets rotations and reflections as above.

II. TWO QUBITS: PARTIAL TRANSPOSITION, PARTIAL TIME REVERSAL, MULTIPLE
OCAL REFLECTIONS AND TOTAL REFLECTIONS

For two qubits, a complete basis for the space of density matrices D2�C4�4 is given by

jk=� j � �k �j ,k� �0,1 ,2 ,3��. This basis is also orthonormal relative to the Hilbert-Schmidt inner
roduct, i.e., tr�� jk�lm�=� jl�km for all j ,k , l ,m� �0,1 ,2 ,3�. For a given density matrix �, the
-basis defines a real, rank 2 tensor � jk which gives a contravariant representation of the same
ensity, �=� jk� jk. Viewed as a 16-vector, � jk is affine, i.e., �00=tr���00�=1/2, and it is bounded
y the 15-dimensional sphere in R16 of radius 1,

tr��2� = tr��� jk� jk�2� = �
j,k=0

3,3

�� jk�2 � 1, �7�

ith equality if and only if the state is pure.
A two-qubit density matrix � is said to be separable if it can be written as a convex combi-

ation �=�r=1
s wr�A,r � �B,r for some set of real numbers wr0 such that �r=0

s wr=1, where �A,r,

B,r are all single-qubit density matrices. A necessary and sufficient condition for the separability
f a two-qubit density is provided by the positive partial transpose �PPT� criterion of Peres6 and
orodecki.23 The partial transpose of a two-qubit density matrix � with respect to the first �left�

ubsystem A is defined as �TA ��K � 12���K � 12�†, and similarly �TB ��12 � K���12 � K�†. Each
artial transpose is still a well-defined �i.e., positive semidefinite� density operator if and only if �
s separable. The PPT criterion may be viewed as a check on the feasibility of the “partial time
everse” operation:18,19 changing the time arrow of one of the subsystems alone.

In terms of the Stokes tensor � jk, the description of partial transposition is very intuitive and
elies on the observation that �2=−�2

T is the only Pauli matrix with imaginary elements.
TA
Proposition 1: For two qubits, the partial transpose operations on the density matrix � and
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TB act on the Stokes tensor � jk by changing the sign of all elements bearing the index “2” in the
orresponding subsystem:

�TA = �0k�0k + �1k�1k − �2k�2k + �3k�3k, �8a�

�TB = � j0� j0 + � j1� j1 − � j2� j2 + � j3� j3. �8b�

he verification is just a straightforward calculation, which may be found in Table I. Note also that
or the “total” transpose �T �=��TA�TB� we have instead

� jk
T = � jk if j,k � 2 or j = k = 2, �9a�

�jk
T = − � jk if j = 2 or k = 2, j � k , �9b�

howing that �22 behaves differently under partial or total transposition.
The PPT separability test of Peres-Horodecki relies essentially on the decomposability prop-

rty �6�: any 1-qubit positive but not CP map, when applied to a 2-qubit density, returns a density
f and only if the original density is separable. Restricting from positive maps to symmetry
perations is the same as restricting to local reflections. In fact, the map �8a� can be thought of as

he linear transformation R̄T � 14, where R̄T is the following affine orientation-changing three-

imensional rotation: R̄T=diag�1,RT�=diag�1,1 ,−1 ,1�. Since all single qubit reflections are uni-

arily equivalent, any matrix R�O−�3� can be used in place of RT. Indeed, if R̄=diag�1,R�, then
ocal operations from the same connected component of O�3� satisfy

eig��R̄ � 14����� = eig��R̄T � 14����� , �10�

here the notation must be interpreted as follows: the matrix R̄ � 14 acts on the 16-vector � jk and

he resulting 16-vector provides the coefficients in the sum over the basis elements � jk, i.e., �R̄
¯ lm jk

TABLE I. Action �sign changes� of the rotations and reflections involving

R̄T, R̄S, and R̄S,16 on the components of the 2-qubit Stokes tensor � jk.

� jk R̄T � 14 14 � R̄T R̄T � R̄T R̄S � 14 14 � R̄S R̄S � R̄S R̄S,16

�00 + + + + + + +
�01 + + + + − − −
�02 + − − + − − −
�03 + + + + − − −
�10 + + + − + − −
�11 + + + − − + −
�12 + − − − − + −
�13 + + + − − + −
�20 − + − − + − −
�21 − + − − − + −
�22 − − + − − + −
�23 − + − − − + −
�30 + + + − + − −
�31 + + + − − + −
�32 + − − − − + −
�33 + + + − − + −

# sign changes 4 4 6 12 12 6 15
� 14����= ��R � 14� jk � ��lm.
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Equation �10� shows that all reflections are positive but not completely positive. Thus we can
eformulate the PPT criterion for the separability of two qubits as follows:

Theorem 1: A two-qubit density matrix � is separable if and only if �R̄ � 14���� is a density
atrix for any R�O−�3�.

A particularly simple such map is R̄S=diag�1,RS�, where RS is the spin-flip operation from the

receding section. It is easily seen that �R̄S � 14����=2�0k�0k−�, so that the sign is changed in all
lements � jk except those appearing in the reduced density matrix of the second qubit �i.e., the
0k�.

The �total� transpose �T of � corresponds to the matrix R̄T,16= R̄T � R̄T=diag�1,RT,15� with

T,15=diag�1,−1,1 ,1 ,1 ,−1 ,1 ,−1 ,−1,1 ,−1 ,1 ,1 ,−1 ,1��SO�15�, where the minus signs corre-
pond to the six basis elements obeying �9b�. Since the determinant of this matrix is positive, for

wo qubits the transpose is an orientation-preserving operation. Up to local operations R̄T � R̄T is

quivalent to the “double local reflection” �or double spin-flip� map R̄S � R̄S. The difference be-

ween R̄S � 14 and R̄S � R̄S is easily understood by looking at Figs. 2 and 3. �In Figs. 2–4, the two
ectors contained in the smaller spheres correspond to the Bloch vectors � j0 and �0k of the two
educed density matrices, the third vector �double arrow� to the two-body correlation part of the

tokes tensor � jk, j ,k�0.� While R̄S � 14 leaves the reduced density of the second qubit un-

hanged �Fig. 2�, the correlation part remains unchanged under the action of R̄S � R̄S because its
ign is flipped twice �Fig. 3�. It may be shown, however, that both are positive but not-completely-
ositive maps.

All the “local” maps in O�3� mentioned so far are orientation-preserving when acting on two
ubits, even though they all have at least one factor that is orientation-changing when acting on a

ingle, isolated qubit: det�R̄T � 14�=det�R̄T � R̄T�=det�R̄S � 14�=det�R̄S � R̄S�=1. The recovery of
parity” whenever an orientation-changing map is applied to two or more qubits is due to the

FIG. 2. �Color online� Reflections on a 2-qubit density matrix: the single qubit reflection R̄S � 14 �PPT test�.

IG. 3. �Color online� Reflections on a 2-qubit density matrix: the double local reflection R̄S � R̄S �which is equivalent to

he total transpose under LOCC�.
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ffine structure of the Hilbert space of a qubit �resulting in a affine Bloch vector�, itself a conse-
uence of the trace-preserving condition,

�1

O�3� � � �1

O�3� � � �1

SO�15� � .

ence the question arises: do there exist any orientation-changing symmetric operations on two

ubits? One such map is the 2-qubit total reflection R̄S,16=diag�1,−115�, −115�O�15� \SO�15�
O−�15�. Its action �see Fig. 4� corresponds to changing the sign of the entire tensor � jk except for
ffine component �00=1/2, thus the name total reflection. This nonlocal operation is genuinely
ew and inequivalent to any composition of local symmetric operations.

The most significant difference between total transpose and total reflection is that whereas the
ormer map preserves the eigenvalues of the density matrix, the latter does not. Indeed, the total
eflection is not even a positive map, since it converts the density matrix of any pure state to one
ith eigenvalues �1,1 ,1 ,−1� /2. This fact is readily established by writing the total reflection
irectly in terms of the Hermitian density matrix as

R̄S,16��� = 1
214 − � , �11�

hich makes it clear that it holds for the density matrices of the basis states 	00
�00 	 , 	01
�01 	 ,
10
�10	, and 	11
�11	, and that the total reflection commutes with arbitrary two-sided unitary
ransformations of �.

The changes in the signs of the elements of the Stokes tensor are summarized in Table I for all

he discrete symmetric operations mentioned in this section. It may be observed that R̄S � R̄S and

T,16= R̄T � R̄T both have an even number of “−” signs �6�, whereas R̄S,16 has an odd number
namely 15�, thus confirming that a total reflection on a two-qubit joint density is inequivalent to
uch operations.

In terms of density matrices, the positive-but-not-completely-positive operation R̄S � R̄S cor-
esponds to

R̄S � R̄S��� = ��2 � �2��*��2 � �2� = 4�22�
*�22. �12�

he transformed density matrix ��� R̄S � R̄S��� is frequently found in entanglement measures,
ncluding the concurrence C���=max�0,�1−�2−�3−�4� �where � j �eig����� �Ref. 24�� and the
orentzian metric tr�����= ��00�2−� j=1

3 ���0j�2+ �� j0�2�+� j,k=1
3 �� jk�2.9

V. TWO QUBITS: MATRIX STRUCTURES AND THE COMPUTABLE CROSS-NORM

In this section, we show how the foregoing nonunitary symmetry operations on a two-qubit
ensity matrix can be expressed compactly using the Hadamard product of matrices25 together

FIG. 4. �Color online� Reflections on a 2-qubit density matrix: the total reflection R̄S,16 �a nonlocal operation�.
ith either the Stokes tensor or the real density matrix. We will also show that a non-separability
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riterion called the computable cross-norm26 �or the matrix realignment method27�, which is in-
quivalent to the PPT criterion, can be computed directly from the Stokes tensor without having to
onvert back to the traditional Hermitian representation. For two qubits, the Stokes tensor can also
e viewed as a square array of real numbers, which is related to the real density matrix as follows:

2�
�00 �01 �02 �03

�10 �11 �12 �13

�20 �21 �22 �23

�30 �31 �32 �33
�↔ �

�00 �20 �02 �22

�10 �30 �12 �32

�01 �21 �03 �23

�11 �31 �13 �33
� . �13�

he rearrangement of the elements seen here corresponds to the Choi16 �also known as
eshuffling17� map for n=2 qubits, but for n	2 the Stokes tensor-to-real density matrix map is not
he same as the Choi map; indeed, then the order of the Stokes tensor is greater than 2, so it can
o longer be identified so simply with a matrix.

The real density matrix has the useful feature of preserving the tensor product structure of the
orresponding Hermitian density matrix, i.e., for two qubits: ��� � ���=���� � ������� � ��. It
ollows immediately that a 2-qubit real density matrix can be written as a convex combination of
-qubit real density matrices if and only if the 2-qubit density is separable. A 2�2 real matrix, on
he other hand, is a real density matrix if and only if its upper-left element is unity and the length
f the Bloch vector determined by the remaining elements does not exceed unity �cf. Eq. �2��. It
hould also be noted that, with either the real density matrix or the Stokes tensor, the partial trace
peration involves only discarding elements involving the qubit traced over: no additional opera-
ions are needed as in the Hermitian representation.

As shown previously for the 1-qubit case, we can express involutory symmetry operations by
eans of Hadamard products of the real density matrix with matrices the elements of which are all
1. Moreover, these matrices will be tensor products if and only if the operations that define them
re. This may be seen in the following list of sign matrices for all the operations given in Table I:

R̄T � 14 ↔ �+ 1 − 1

+ 1 + 1
� � �+ 1 + 1

+ 1 + 1
� , �14a�

14 � R̄T ↔ �+ 1 + 1

+ 1 + 1
� � �+ 1 − 1

+ 1 + 1
� , �14b�

R̄T � R̄T ↔ �+ 1 − 1

+ 1 + 1
� � �+ 1 − 1

+ 1 + 1
� , �14c�

R̄S � 14 ↔ �+ 1 − 1

− 1 − 1
� � �+ 1 + 1

+ 1 + 1
� , �14d�

14 � R̄S ↔ �+ 1 + 1

+ 1 + 1
� � �+ 1 − 1

− 1 − 1
� , �14e�

R̄S � R̄S ↔ �+ 1 − 1 � � �+ 1 − 1 � , �14f�

− 1 − 1 − 1 − 1
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R̄S,16 ↔ �
+ 1 − 1 − 1 − 1

− 1 − 1 − 1 − 1

− 1 − 1 − 1 − 1

− 1 − 1 − 1 − 1
� . �14g�

Note that R̄S,16 is distinguished from the other operations not only by the fact that it is not
rientation-preserving, but also by the fact that it is nonlocal and hence does not preserve the
ensor product structure in the space of �real or Hermitian� density matrices. It is easily seen that
he involutory mapping induced by any tensor product of sign matrices as above must preserve
rientation, but there are many orientation-preserving mappings that are not tensor products,
ncluding the pair given below:

�
+ 1 + 1 + 1 + 1

+ 1 − 1 − 1 + 1

+ 1 − 1 − 1 + 1

+ 1 + 1 + 1 + 1
�↔ �

+ 1 + 1 + 1 − 1

+ 1 + 1 − 1 + 1

+ 1 − 1 + 1 + 1

− 1 + 1 + 1 + 1
� . �15�

s indicated by the double arrow, these two are related by the Choi map, i.e., taking the Hadamard
roduct of one with the real density matrix is the same as taking the Hadamard product of the
ther with the Stokes tensor �cf. Eq. �13��. Tests with randomly generated pure states quickly show
hat neither of these maps is positive, let alone completely positive.

Similarly, one can easily construct many other discrete reflection symmetries which are nei-
her locally nor unitarily equivalent to the total reflection, simply by composing the latter with any
ther nonlocal and nonunitary rotation symmetry. One interesting example is obtained by com-

osing the local reflections R̄S � R̄S with the total reflection R̄S,16 on two qubits, obtaining

�R̄S � R̄S�R̄S,16 ↔ C ��
+ 1 + 1 + 1 − 1

+ 1 + 1 − 1 − 1

+ 1 − 1 + 1 − 1

− 1 − 1 − 1 − 1
� . �16�

he Hadamard product with C changes the sign of the bilinear �two-body� part of the Stokes
ensor. It is, of course, a nonpositive map which takes the Hermitian density matrix of any pure
tate to one with eigenvalues �1,1 ,1 ,−1� /2. This map may also be written quite simply as an
perator sum, as follows:

�−1�C � ����� = �
k=1

3

��k0��k0 + �0k��0k� −
1

2
14. �17�

Finally, we show how a separability test based on the so-called computable cross-norm
CCN�, denoted in what follows by “�,” can be performed directly using the Stokes tensor. The
CN is a lower bound on the cross-norm entanglement measure in a bipartite system, denoted by
�,” which satisfies ����=1 if � is separable and ����	1 if it is not.26 Consequently, ����	1
mplies � is nonseparable, though not vice versa; this condition is neither weaker nor stronger than
he PPT criterion, but inequivalent to it. The CCN � is not itself an entanglement measure, since
t may increase under the partial trace operation, but it has the advantage that it is readily com-
uted as the sum of the singular values �also known as trace class norm� of the reshuffled density
atrix Choi���. For two qubits it can also be computed directly from the Stokes tensor, as shown

y the following:
Proposition 2: For two qubits, the singular values of the Stokes tensor �k�, regarded as a
atrix as in Eq. �13�, are twice those of the reshuffled density matrix Choi���.
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Proof: The reshuffling operation is defined to satisfy Choi��1
T

� �2�= 	�2
��1
T	, where 	�2
 de-

otes the result of applying the reshaping operator to �2, and ��1
T 	 = 	�1
T. The one nonzero singular

alue of this matrix is simply the product of the Hilbert-Schmidt norms of its factors �1  �2.
ecall now that � is factorizable if and only if the corresponding real density matrix ���� is and

hat the linear mapping � /2n/2 preserves the Hilbert-Schmidt norm �where n is the number of
ubits�. Hence 	���2�
����1

T� 	 /2 is the singular value decomposition of the corresponding re-
huffled real density matrix Choi����1

T
� �2�� /2, and its nonzero singular value is

���1�  ���2�  /2= �1  �2. Together with the fact that for two qubits the Stokes tensor and the
eal density matrix are related by the Choi map, this establishes the result for factorizable states.

To prove the general case, we recall that the reshaping map Choi is self-inverse. Thus the
ingular value decomposition of a general matrix Choi���=�k�krksk

T provides a canonical decom-
osition of � into a sum of tensor products �kpk�1k

T
� �2k, where pk=�krk

T 	12
sk
T 	12
. Although pk

ay be negative and the factors �1k
T , �2k of each term in this sum are not necessarily states �i.e.,

on-negative definite�, we are free to apply the composition Choi�� to each term �1k
T

� �2k thereby
btained. Then noting that � also preserves orthogonality and invoking the uniqueness of singular
alue decompositions completes the proof. �

The claim that � is separable implies �����1 can now be established directly, since ���1

� �2�= �1  �2  �1 and � satisfies the triangle inequality just like any norm, so that for any pk

0 summing to unity we have ���kpk�1k � �2k���kpk=1. The singular value decomposition of
hese matrices can be regarded as an extension of the Schmidt composition for pure states to

ixed states. Indeed it can be shown that for pure states Choi��� has a degenerate pair of singular
alues which are equal to twice the product of the corresponding Schmidt coefficients.

. REFLECTIONS ON THREE OR MORE QUBITS

The situation is similar for three �or more� qubits, since the adjoint action �conjugation� still
orresponds to a real “one-sided” rotation of the Stokes tensor, and the rotation group in all
imensions splits into orientation preserving and changing connected components. The main dif-
erence is that the number of inequivalent kinds of rotations and reflections goes us rapidly with
he number of qubits. It is possible, however, to identify some particularly significant involutions.
n the case of three qubits �=� jkl� jkl, the following are some of the new possibilities:

ia� the two-qubit partial transposition R̄T,16 � 14 �and the two others obtained by qubit permuta-
tion�;

ib� the total transposition R̄T,64=diag�1,RT,63� �where RT,63�SO�63� is diagonal with 28 −1’s
and 35 +1’s in it�, which changes the sign of just those elements � jkl with an odd number of
indices equal “2”;

iia� the two-qubit “reflection” R̄S,16 � 14 �and the two others obtained by qubit permutation�—
which is however an orientation-preserving rotation on three qubits;

iib� the total �three-qubit� reflection R̄S,64=diag�1,−163�.

The effect of R̄S,64 on � jkl is to change the sign of the entire tensor except for its constant
omponent �000=1/ �2�2�, showing that it may be expressed as

R̄S,64��� = 2�000�000 − � = 1
418 − � . �18�

his is again a nonlocal operation which admits no factorization into independent one-qubit

perations. Similarly, the action of R̄S,16 � 14 on � jk� is to change the sign of the entire tensor
xcept for the Bloch vector of the 1-qubit reduced density �00�. Items �ia� and �ib� above are
undamentally different from �iia� and �iib�. The first two produce a Hermitian matrix with nega-
ive eigenvalues whenever the density has bipartite entanglement through the cut, whereas the
atter two instead may map even separable densities to Hermitian matrices with negative eigen-

¯
alues. This can be seen looking at the components of the UPB state. If RS,64 is applied to the
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separable� density �UPB−sep= 1
4� j=1

4 	� j
�� j	 with 	� j
= 	01+ 
 , 	1+0
 , 	+01
 , 	−−−
 and 	± 

1��2 �	0
± 	1
�, one gets the bound entangled state �UPB used in Ref. 13. So in this case a

eparable state is reflected into an entangled state. However, no one of the four components
� j
�� j	 taken alone �each is obviously separable� is a density when reflected. Obviously �ib� only
everses the time arrow on any 3-qubit density.

In similar fashion, for any number n	1 of qubits one can define an m-qubit �1
m�n�
onlocal “reflection” R̄S,4m � 14n−m, which is only a true �i.e., orientation-changing� reflection when
he reflection is total �m=n�. Assuming the reflection acts on the first m qubits of an n-qubit
ensity operator �, this may be written as

R̄S,4m � 14n−m��� = 2�0¯0jm+1¯jn�0¯0jm+1¯jn
− � . �19�

hese operations leave the norm of the n-qubit tensor � j1¯jn �i.e., tr��2�� invariant, but need not
reserve the spectrum nor even leave it nonnegative, as we saw above. Hence it is a “generically”
ll-defined operation on the set of density operators of composite systems Dn.

These observations are summarized in the following:

Proposition 3: In Dn, the linear map R̄S,4n �1
n�:

i� preserves the trace and Hermiticity;
ii� preserves the Hilbert-Schmidt inner product;
iii� is neither unitary nor antiunitary;
iv� is not Dn-invariant.

roperties �i� and �ii� together say that R̄S,4n is neither a contraction nor a dilation map, whereas

iv� affirms that R̄S,4n is not a positive map.
Nevertheless, it is possible to specify a simple spectral condition on the density matrix that

uarantees that its total reflection is still non-negative definite.
Theorem 2: Given �=�0. . .0�0. . .0+��Dn �where � is the associated homogeneous tensor�, a

ufficient condition for �̃= R̄S,4n���=�0. . .0�0. . .0−��Dn is that the set of eigenvalues satisfies
ig���� �0,21−n�.

Proof: The proof is based on the well-known fact25 that adding a multiple of the identity c1m

nto an m�m Hermitian matrix A shifts its eigenvalues by c, i.e., eig�A+c1m�=eig�A�+c. Since
he eigenvalues of the random state’s density matrix eig��0. . .0�0. . .0�= �2−n� �with multiplicity 2n�,
e see that eig���� �0,21−n� implies both eig���� �−2−n ,2−n� and eig�−��� �−2−n ,2−n�, so that

ig��̃�� �0,21−n�, as well. �

Hence the linear map R̄S,4n is well-defined �positive� in the subset of densities with eigenval-
es in the interval �0,21−n�.

Corollary 1: A necessary but not sufficient condition for Theorem 2 to hold is that tr��2�
21−n.

Proof: If ��1
, . . . ,��2n are the eigenvalues of �, when Theorem 2 holds it must be r2=��1

2

¯ +��2n
2 �1/2n. Hence r�1/2n/2 and tr��2�= ��0¯0�2+r2�1/2n−1. �

Corollary 2: A necessary but not sufficient condition for �̃ to be a density is that rank���
2n−1.

In fact, only when � is a mixture of at least 2n−1 pure states one can achieve eig���
�0,1 /2n−1�.

On a 3-qubit density, the action of R̄S,16 � 14 is depicted in Fig. 5. Essentially the entire Stokes
ensor changes sign, except for the reduced density trAB���. Its action closely resembles the reduc-
ion criterion of Refs. 14 and 15. That criterion also makes implicit use of nonlocal reflections, but
t is formulated based on a positive map, hence it is well-posed on all of Dn. For a 3-qubit density
t affirms that a necessary condition for separability is 12 � 12 � trAB���−�0 as well as 12

� trA���0 �and likewise for the other indexes�. Since tr�12 � 12 � trAB���−��=3, one difference

etween our partial reflection and the reduction criterion is that the latter is not a trace preserving
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ap. Thus it is not a symmetry in the sense used in the paper. Nonetheless, the reduction criterion

tilizes a positive map which can be used to test separability. In our case R̄S,16 � 14 is not a positive
ap even when restricted to separable states with eigenvalues in �0,1 /4�, in which the 3-qubit

otal reflection R̄S,64 is always well-posed.

We can, however, convert our 2-qubit total reflection R̄S,16 into a “relaxed” total reflection,
amely

R̄S,16
rel ��� = 1

3 �14 − �� , �20�

hich is the same as R̄S,16 applied to the “remixed” density matrix �14 /2+�� /3. Since the remixed
ensity matrix now has eigenvalues in �0,1 /2�, the relaxed reflection is a positive map by Theo-

em 2. It is also easily shown that R̄S,16
rel is not completely positive, and hence provides a necessary

ondition for the separability of an arbitrary 2n�2n, n	2, density matrix. It should be possible to
elax all the reflections described in this paper to positive maps by a similar strategy.

Concerning a total reflection, all pairs � and �̃= R̄S,4n��� satisfying Theorem 2 are complemen-
ary in the sense that their mixture is the random state:

1

2
�� + �̃� =

1

2n12n. �21�

quation �21� implies that R̄S,4n corresponds to a multiparty NOT operation. In fact, also in the
ingle qubit case, the NOT operation corresponds to a change of sign to the homogeneous part
i.e., the Bloch vector� but it is not modifying the sign of the trace part and hence a qubit and its
eflection obey to �21�. Such operation is used for example to map a density operator belonging to
subset of the Hilbert space Dn to its complement in Dn, for example in the UPB construction
entioned above.13,28

I. CONCLUDING REMARKS

Reflections are a natural discrete class of transformations relative to the Stokes tensor and/or
eal density matrix parametrization. Their meaning and relation to LOCC is interesting and calls
or natural generalizations to nonlocal operations in the way explained above. The nonlocal re-
ections, in fact, originate from the nonconnectedness of the group of rotations acting on the
tokes tensor parametrization. In terms of density matrices, this interpretation is not as sharp. As
matter of fact, operations reducible to reflections appear in the PPT test and in the various
easures of entanglement relying upon “spin-flip” operations �like concurrence, negativity and

IG. 5. �Color online� Schematic illustration of the action of a two-qubit reflection R̄S,16 � 14��� on three qubits. One-body
� j00, �0k0 and �00��, two-body �� jk0, � j0� and �0k��, and three-body �� jk�� correlation terms are indicated by single, double,
nd triple arrows. All the signs are changed except for those of �00�.
angle� for what concerns �multiple� 1-qubit reflections. Also nonlocal reflections are used: for
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xample a total reflection corresponds to what is normally referred to as “taking the complement
f a density,” used for example, in the construction of unextendible product basis states.13 Like-
ise, the reduction criterion makes use of a positive map closely related to our nonlocal reflec-

ions.
For the purposes of further understanding the structure of composite quantum systems, we

nd it useful to have a unifying perspective on these nonunitary yet symmetric �in the sense of
igner theorem� transformations.

It is worth pointing out that reflections can be defined in the same terms also for SLOOC
stochastic LOCC�.9,29,30 For the Stokes tensor, in fact, this class of operations relaxes the group of
dmissible local transformations from affine rotations to proper orthochronous local Lorentz trans-
ormations SO�1,3�. The reflected action in O−�3� then corresponds to choosing the other con-
ected component of O�1,3� with the same time direction as SO�1,3� �i.e., with positive “time-
ike” metric element�. Also nonlocal reflections fit in with the group structure of nonlocal filtering
perations. For example, total reflections belong to O�1,4n−1� \SO�1,4n−1�. Note further that the
dea of restricting the set of density operators in order to have a larger set of symmetries is “dual”
o the idea of using group actions that are contractions.31,32

The idea of using reflections does not extend in a straightforward manner to qutrids �nor to
igher dimension quantum systems�, as in this case the admissible parameters live on a rather
omplicated subset of the seven-dimensional sphere33,34 for which the rotation representing trans-
osition is always admissible but spatial inversion may not be. However, the various UPB con-
tructions on 3�3 systems of Ref. 13 correspond to well-defined reflections.

Finally notice that there are many isometries of the Stokes tensor that do not correspond to
eflections relative to any basis; those that do are of course involutions, and it would be interesting
o show that any Stokes tensor isometry which is an involution �and hence is described by a
ymmetric orthogonal matrix� is a reflection relative to some basis.
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Arbitrarily small changes in the commutation relations suffice to transform the
usual singular quantum theories into regular quantum theories. This process is an
extension of canonical quantization that we call general quantization. Here we
apply general quantization to the time-independent linear harmonic oscillator. The
unstable Heisenberg group becomes the stable group SO�3�. This freezes out the
zero-point energy of very soft or very hard oscillators, like those responsible for the
infrared or ultraviolet divergencies of usual field theories, without much changing
the medium oscillators. It produces pronounced violations of equipartition and of
the usual uncertainty relations for soft or hard oscillators, and interactions between
the previously uncoupled excitation quanta of the oscillator, weakly attractive for
medium quanta, strongly repulsive for soft or hard quanta. © 2006 American In-
stitute of Physics. �DOI: 10.1063/1.2070088�

. MAKE IT SIMPLE

The three main evolutions of physics in the twentieth century have a suggestive family
esemblance. Each introduces a new kind of noncommutativity. The new noncommutativity in
pecial relativity was that of boosts, in general relativity and the standard model gauge theories
hat of infinitesimal translations, and in quantum theory that of filter operations. The seminal work
f Segal,17 which stimulated the present work, pointed out that further changes of this kind are
ecessary for stability and suggested one. Our main goal is finiteness, not stability, but the stabi-
izing changes Segal suggested lead ultimately to a finite quantum theory, including one of space-
ime. Such a theory has been sought by physicists since the formulation of quantum theory.

By gently modifying the commutation relations of an existing quantum theory one produces a
impler theory with the existing quantum theory as a suitable limiting case, and with nearly the
ame continuous symmetries. A special form of Segal’s general concept was applied retroactively
o the relation between special relativity and Galileo relativity.13,12 More proactively, Snyder’s
pace-time quantization19 was an attempted regularization and moved unwittingly toward simplic-
ty but did not simplify the momentum algebra. Vilela made the first efforts to find a new particle
heory on a simple algebra.21 Something like the regularization of the harmonic oscillator pro-
osed by Segal is now under study by several groups from several points of view.6,1,14,15,20

For example, ’tHooft20 studies the classical particles on a circle and shows that under certain
onditions, this system is equivalent to a quantum harmonic oscillator. The work of Vilela Mendes
iffers from others in presenting the quantum harmonic oscillator as a limit case of a “more
uantum” oscillator that has a more stable algebra in the sense of Segal. We follow that line here.18

Naturally one discards the unregularized theory in favor of the regularized one. This last step
s overlooked in some older studies.

�
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General quantization changes the quantization rules. It replaces the usual quantization pre-
cription by the following one:

Make the commutator algebra of the generators a simple Lie algebra.
Briefly put: If the algebra is simple, keep it simple. If it is not simple, make it simple by the

east change possible.
We apply this strategy to all the algebras postulated in a physical theory, on the grounds that

hey must all depend continuously on experimental data that are subject to error. An algebra that
s not stable is not empirical but is at least partly based on ideology. It is not possible to eliminate
ll such ideology-based hypotheses from physics. But it is possible to reduce their number sys-
ematically.

This implies that canonical quantization and special and general relativization are relatively
mall parts of a vast unifying drift toward simplicity and unity of the groups beneath our physical
heories. General quantization is an attempt to take part in that drift.

In the case of the algebra of variables, semisimplicity is as good as simplicity, since it implies
direct sum that we can reduce to a simple term forever by a single measurement of the super-

election variable that distinguishes these terms.
Canonical quantization introduced one quantum constant and stabilized the atom. General

uantization introduces as many quantum constants as necessary to stabilize the group of the
heory.

General quantization has no effect on �say� the rotator quantum algebra with given angular
omentum l �L�L=L, L ·L= l�l+1��, whose group is already simple. But it changes the quan-

um dynamics of a free particle deeply, revising the theories of both space and time.
We test general quantization here on the kinematics of the linear harmonic oscillator, a ubiq-

itous constituent of all present field theories, and compare the finite quantum oscillators with the
sual quantum oscillators, which are singular in several senses. The differences have profound
onsequences for extreme energy physics: the physics of both very high and very low energies.

Planck’s quantum constant h froze out the very stiff oscillators responsible for the infinite heat
apacity of cavity radiation in Maxwell’s theory, but the zero-point energy of the resulting quan-
um theory of electromagnetism still diverged, however, unless one arbitrarily replaced the local
agrangian and Hamiltonian of Maxwell by nonlocal ones tailored to have some finite zero-point
nergy, usually set to 0 on grounds of Lorentz invariance. Indeed, the quantum theory of the
armonic oscillator carries the germs of all the main divergences of quantum field theory. Its basic
perators of position q, momentum p, and Hamiltonian H� 1

2 �p2+q2� are undefined on almost
very vector � in its Hilbert space, q�= p�=H�=�. Such divergences occur in a quantum theory
f and only if its Hilbert space is infinite dimensional.

The usual quantum oscillator theory is also unstable in the Segal sense detailed below. It is not
s unstable as the classical theory, which has the operators q and p commute, and we have become
ccustomed to its foibles, but it is still not operational, in that its basic operations usually cannot
e carried out. General quantization makes its Hilbert space finite dimensional. The result is a
nite quantum theory whose operations can in principle be carried out, with two Segal quantum
onstants h� ,h� besides the usual Planck constant.

We find that introducing these constants freezes out even the offending zero-point oscillations
f extremely hard or soft oscillators without greatly changing the zero-point energies of medium
nes. The frozen oscillators have infinitesimal zero-point energies compared to the usual quantum
alues. They also grossly violate the usual equipartition and uncertainty relations.

This toy model illustrates how a finite quantum theory of the cavity might produce a finite
ero-point energy without conflicting with the many finite predictions and symmetries of the usual
uantum theory. We propose that the linear harmonic field oscillators considered fundamental in
resent quantum physics—those of supposedly fundamental fields, not those of elastic solids,
ay—are actually finite quantum oscillators near the bottoms of their energy spectra. The unob-
erved oscillators responsible for the infrared and ultraviolet divergencies of present quantum
heories are frozen by finite quantum effects described here and contribute negligibly to the

ero-point energy.
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The change we carry out here is not enough to make quantum field theory finite. For that we
ust also simplify the Heisenberg algebra of the space-time operators x� and ��. This replaces the
anifold theory of space-time, which assumes an infinity of events, by a simple quantum theory,
ith only a finite number of disjoint events, though the number may be arbitrarily large. Field

heory has compound algebra on two levels, that of the underlying space-time and that of the
verlying canonical commutation relations. In this paper we change only one level.

I. ALGEBRA FLEXING AND FLATTENING

A semisimple group is a Lie group whose Lie algebra has no invariant solvable subalgebras;
Lie algebra A being solvable if for some integer n�0, An= �0�. Then its Lie algebra has no

adical. A group that is not semisimple we call compound. General quantization reduces the radical
nd ultimately eliminates it.

Lie products � on a given vector space A, also called structure tensors, form a submanifold
�� of the tensor space A � A† � A†. A regular �stable, robust� algebra is one that is unchanged up
o isomorphism by all sufficiently small changes in its structure tensor �Lie product� within the

anifold ���. For example, the Lorentz algebra is stable against corrections to the speed of light.
y algebra flexing we mean a homotopy of the structure tensor of a compound algebra that makes

t semisimple. Algebra flattening is the inverse process. The well-known contraction process of
nönü and Wigner13 is a special case of flattening accomplished by a one-parameter group of
ilations of a coordinate system of the Lie algebra in a fixed direction. The inverse to group
ontraction is group expansion11 and is a special case of flexing.

Several regularization processes have been used to remove unwanted infinities from physics.
nphysical regularizations cope with the divergencies of a theory without changing the finite

esults. They are regarded as giving the theory meaning rather than changing the theory. These
nclude Pauli-Villars regularization,16 lattice regularization �lattice gauge theory�22 and dimen-
ional regularization.4,5,20 They contain regularization parameters that go to singular limits, like
he lattice spacing going to 0. Physical regularizations, on the contrary, change the finite predic-
ions as well as making the infinite ones finite, and are intended as distinct physical theories in
heir own right. Their regularization parameters do not go to a singular limit but must be deter-

ined by experiment. The most famous example is Planck’s, which ultimately led to quantum
heory. This was a simplification in that the associative algebra generated by the position and

omentum variables has a Lie algebra with an infinite-dimensional radical for h=0 but only a
ne-dimensional radical for h�0.

Physical regularizations are subtler than unphysical ones but their consequences for human
hought have been more dramatic. General quantization is proposed as a physical regularization.

Compound algebras are unstable with respect to a small change in their structures.17 Flexing
tabilizes them.

Conversely, flattening destabilizes. Approximating a circle by a tangent line or a sphere by a
angent plane are well-known flattenings. The circle and sphere are finite and their flattened form
s infinite. Finite dimensional representations of the group of the sphere—such as spherical har-

onic polynomials—form a complete set on the sphere, and all the operators of an irreducible
epresentation have finite bounded spectra. On the other hand, the tangent plane is not compact
nd requires infinite-dimensional representations of the translation group for a complete set, and

ts algebra generators have unbounded spectra.
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II. SIMPLIFYING THE HEISENBERG ALGEBRA

The Heisenberg Lie algebra H�1� is defined by the commutation relations:

�p,x� = − i� ,

�i,x� = 0, �1�

�x,i� = 0.

t is compound and the imaginary unit i generates its radical. Segal proposed to simplify H1 by
ntroducing two more quantum constants, which we designate here by �� and ��. His expanded
ommutation relations are, except for notation,

�p,x� = − �i ,

�i,p� = − ��x , �2�

�x,i� = ��p .

Refs. 6, 21, and 17�. The irreducible unitary representations of this group are infinite dimensional.
o avoid possible divergences and other problems, we instead use the SO�3� regularization3,2,9,10

�p,x� = − i� ,

�i,p� = − x��, �3�

�x,i� = − p��.

ltimately we will need an indefinite metric for physical reasons, but not for the time-independent
armonic oscillator.

Regularizing the Heisenberg algebra means changing the role of i in the theory from constant
entral element to quantum variable operator on the same footing as p and q. We call this
-activation. The new variable that it introduces is called a regulator. A previous exploration in
uaternion quantum theory activated an i that served as the electromagnetic axis ��x� that resolves
he electroweak gauge boson into electromagnetic and weak bosons,8 and gives mass to the
harged partner of the photon through the Stückelberg-Higgs effect. This led to a natural SU�2�
hat was interpreted as isospin. That theory was dropped because it did not leave room for color
U�3�. Here we activate i on more principled grounds, namely the principle of simplicity. There is
ow plenty of room for internal groups like color SU�3�, though they do not arise for the harmonic
scillator.

General quantization leads to the same kind of factor-ordering problems as the special case of
anonical quantization. To reduce these we regularize not Hermitian observables directly but
kew-Hermition generators

q̂ = iq, p̂ = − ip . �4�

he usual quantum commutation relations are then

�q̂, p̂� = �i ,

�i, q̂� = 0,

�5�
ˆ
�p,i� = 0,
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i2 = − 1.

he regularized generators q̌ , p̌ , ı̌ obey

�q̌, p̌� = �ı̌ ,

�ı̌, q̌� = ��p̌ , �6�

�p̌, ı̌� = ��q̌ ,

e suppose � ,�� ,���0 so the orthogonal group is SO�3�. The quantities with a breve “” are the
ew expanded quantum operators. In this way the simplification process introduces a new dynami-

ally variable generator ı̌, somewhat as general-relativization introduced the new dynamical vari-
ble g�	 the gravitational metric tensor field. The most primitive theory with a dynamical variable

ike ı̌ is quaternion quantum field theory.8 There ı̌ generates rotations about the electric �or elec-
romagnetic� axis in isospin space, defining a natural Higgs field. We suppose that the present

enerator ı̌ is also a Higgs field.
When general quantization introduces new group generators in this way for simplification, we

all these regularization operators or “regulators.” The physical constants to which regulators
educe in the singular theory we call regularization constants or “regulants.” Examples of a
egulator in present physics are the Riemann curvature of space-time �as the commutator of
ovariant transports� and the gravitational field itself �as the anticommutator of unit Clifford
ectors�. Examples of regulants are � and c.

Except for scale factors the simplified commutation relations are those of an SU�3� quantum

kew-angular-momentum operator-valued vector Ľ= Ľ� Ľ for a dipole rotator in three dimen-
ions. We assume an irreducible representation with

Ľ2 = − l�l + 1� , �7�

here l can have any non-negative half-integer eigenvalue. In the present work it suffices to

onsider only integer values of l. Then the Ľx , Ľy , Ľz are represented by �2l+1�� �2l+1� matrices
beying

�Ľ1,Ľ2� = Ľ3,

�Ľ2,Ľ3� = Ľ1,

�8�
�Ľ3,Ľ1� = Ľ2,

�Ľ1�2 + �Ľ2�2 + �Ľ3�2 = − l�l + 1� .

e fix the scale factors with

q̌ = QĽ1,

p̌ = PĽ2, �9�

ı̌ = JĽ3.
y �6�,
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J = ����� = 1/l ,

Q = ����, �10�

P = ����.

he commutation relations �8� and the angular momentum quantum number l determine a simple

associative� enveloping algebra Alg�L , l�. The spectral spacing of the Ľ3 is 1, so the finite

uantum constants Q , P ,J serve as quanta of position, momentum and ı̌. Since q , p are supposed
o have continuous spectra in quantum theory, the constants Q , P must be very small on the
rdinary quantum scale. It follows that J=QP /� is also very small on that scale and l
1.

For l
�l
1, variations ��ı̌2��O�l−1/2�1 about �ı̌�2=−1 can be negligible at the same time
s the spectral intervals �p� P�l and �q�Q�l for quasicontinuous p ,q	0. This simulates the
sual oscillator.

V. FINITE LINEAR HARMONIC OSCILLATOR

Now we specialize to the oscillator by fixing a Hamiltonian. For given finite-quantum con-
tants P ,Q the finite harmonic oscillator has a Hamiltonian of the form

H =
P2Lx

2

2m
+

kQ2Ly
2

2
ª

K

2
�Lx

2 + �2Ly
2� , �11�

here

K =
P2

m
, �2 =

��mk

��
. �12�

or fixed � ,�� ,��, all finite oscillators are divided into three kinds with ill-defined boundaries:
edium, where kinetic and potential terms in H are of comparable size ���1�; soft, when the
otential energy term is dominant ��→0�; and hard, when the kinetic energy term is dominant
�→��. Examination of the Hamiltonian of a spin-zero scalar field �Klein-Gordon field� in quan-
um field theory shows that the possibilities �1 and �
1 are also important. The oscillators that
ive rise to infrared divergencies of the quantum field theory correspond to soft oscillators of the
nite quantum theory. Those that feed ultraviolet divergencies correspond to hard oscillators.

. MEDIUM OSCILLATORS

The case �=1 is symmetric under rotations about the z axis, and so is especially simple.20

ince

�Ľ1�2 + �Ľ2�2 + �Ľ3�2 = �Ľ2� , �13�

Ȟ =
K

2
�l�l + 1� + �Ľ3�2� . �14�

he oscillator quantum number n that labels the energy level is now

n = l + m . �15�
he expanded energy spectrum is
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En =
K

2
�l�l + 1� − �n − l�2� = lK
n +

1

2
−

n2

2l
� . �16�

or n�l l this reproduces the usual uniformly spaced oscillator energy spectrum as closely as
esired, but with multiplicity 2 for each level instead of 1.

The ground-state energy for this oscillator is

E0 = 1
2Kl = 1

21/2�� , �17�

xactly the usual oscillator ground energy, since Kl=��.
The main new feature is that this finite oscillator has an upper energy limit

Emax = 1
2Kl�l + 1� �18�

s required by a finite quantum theory.
In the general case of ��1 we obtain an upper bound for the ground energy by a variational

pproximation with the trial function �Lz= ± l. This reproduces our previous result �17�, now as an
pper bound for the ground energy of a medium FLHO,

E0 �
1
2Kl . �19�

edium oscillators have many states with m-value close to its extremum value m= ± l. The usual
eisenberg uncertainty principle

��p�2��q�2 �
1

4
�i�p,q�2 =

�2

4
�20�

ecomes

��Lx�2��Ly�2 �
�2

4
�Lz�Lz	±l

2 �21�

or a low-lying energy level of a medium oscillator. By �9� and �10�,

��p�2��y�2 �
�2

4
�22�

or large l. So medium oscillator states in low-lying energy levels have uncertainties at or above
he lower limit set by the Heisenberg uncertainty principle.

I. SOFT OSCILLATORS

Recall our finite quantum oscillator Hamiltonian

Ȟ =
K

2
�Ľx

2 + �2Ľy
2� . �23�

hen �1 we can estimate the spectrum of Ȟ using perturbation theory. The unperturbed Hamil-
onian for our problem is the kinetic energy

H0 =
K

2
Lx

2 �24�
nd the unperturbed eigenvectors are �Lx=m so the unperturbed energy levels are
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Em�0� =
K

2
m2. �25�

he first-order shifts are

�Em =
K

2
�Lx = m�Ly

2�Lx = m . �26�

ue to the axial symmetry of �Lx=m,

�Lx = m�Ly
2�Lx = m = �Lx = m�Lz

2�Lx = m . �27�

herefore the energy shift is, to lowest order in �2,

K

2
�Lx = m��2Ly

2�Lx = m =
K

4
�2�m�Lx

2 + Ly
2�m

=
K

4
�2�m�L2 − Lz

2�m

=
K

4
�2l�l + 1� − m2. �28�

he new energy spectrum is then

Em 	
K

2
m2 + �Em =

K

2
m2 +

1

4
K�2�l�l + 1� − m2� . �29�

he estimated upper bound for the energy is

Emax 	
1

2
Kl2
1 +

�2

2l
� . �30�

For �→0 this reproduces the upper bound for the unperturbed Hamiltonian Lz
2, as it should.

he zero-point energy E0 of first-order perturbation theory is

E0 	 1
4�2Kl�l + 1� . �31�

or �→0 this is infinitesimal compared to the usual QLHO.
A soft oscillator shows no resemblance to the usual quantum oscillator. Its energy levels do

ot have uniform spacing. Its kinetic energy dwarfs its potential energy, so equipartition is grossly
iolated. The low energy states are near �Lx=0 instead of �Lz= ± l. Its p degree of freedom is
rozen out. It is “too soft to oscillate:” There is not enough energy in the q degree of freedom, even
t its maximum excitation, to produce one quantum of p. The uncertainty relation reads

��Lx�2��Ly�2 �
�2

4
�Lz�Lx	0

2 	 0. �32�

herefore

�p�q 
�

2
, �33�
hich violates the Heisenberg uncertainty principle grossly.

                                                                                                            



V

p
l
c
e

b
t
b

F
e

T

w

V

q
o
a

d
H

H
fi

b
q
o
fi
d
s
b
t
d

I

t
r

032105-9 Finite quantum harmonic oscillator J. Math. Phys. 47, 032105 �2006�

                        
II. HARD OSCILLATORS

The story is just reversed for hard oscillators but the gross violations of usual quantum
rinciples remain the same. A hard oscillator has much greater potential than kinetic energy. Its
ow energy states are now near �Ly =0 instead of �Lz= ± l �the medium case� or �Lx=0 �the soft
ase�. Its q degree of freedom is frozen out. It is “too hard to oscillate.” There is not enough
nergy in the p degree of freedom, even at maximum excitation, to arouse one quantum of q.

A hard oscillator can also be treated by perturbation theory. The kinetic energy is the pertur-
ation. We may carry all of the main results in the preceding section for soft FLHO oscillators to
he hard ones simply by replacing � with 1/� and K with K�2. A hard FLHO shows no resem-
lance to the usual QLHO. Its zero-point energy E0 is now

E0 	
K

4
l�l + 1� . �34�

or �→� this is infinitesimal compared to the usual quantum oscillator zero-point energy. Its
nergy levels of a hard oscillator are not uniformly spaced. Its uncertainty relation reads

��Lx�2��Ly�2 �
�2

4
�Lz�Ly	0

2 	 0. �35�

herefore

�p�q 
�

2
, �36�

hich seriously violates the Heisenberg uncertainty principle again.

III. UNITARY REPRESENTATIONS

Variables p and q do not have finite-dimensional unitary representations in classical and
uantum physics. They are continuous variables and generate unbounded translations of each
ther. But since in the finite quantum theory, all operators become finite and quantized, we expect
ll translations to become rotations with simple finite-dimensional unitary representations.

The canonical group of a classical oscillator becomes the unitary group of an infinite-
imensional Hilbert space for a quantum oscillator, and the unitary group of a 2l+1 dimensional
ilbert space for the finite oscillator.

The Lie algebra generated by momentum and position as infinitesimal symmetry generators is
�1� for the classical and quantum oscillator and the SO�3� angular momentum algebra for the
nite oscillator. The corresponding Lie groups are the Heisenberg group H�1� and SO�3�.

Unitarily inequivalent unitary representations of the canonical commutation relations are for-
idden in quantum mechanics but are present and important in quantum field theory, but general
uantization eliminates them. After general quantization the commutation relations become those
f a large simple group, and we presently explore the orthogonal groups. Once its invariants are
xed, as by measurement, the finite-dimensional unitary representations of this group are uniquely
etermined up to unitary equivalence. Yet the general quantized theory approaches the usual
ingular theory in an appropriate limit, where the dimension of the representations grow without
ound and the group becomes compound. The inequivalent representations of quantum field
heory must return in that singular limit. More than that we cannot say at this stage in the
evelopment.

X. CONCLUSION

We suggest that algebra flattening causes the infinities of present physics. Since quantum
heory began as a regularization procedure of Planck, it is rather widely accepted that further

egularization of present quantum physics calls for further quantization, but what to quantize and
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ow to quantize it remains at least a bit unclear. If we regard quantization as another step in group
egularization, the rest of the path becomes clear. It is blazed with radicals ripe for relativization.
eneral quantization of the linear harmonic oscillator results in a finite quantum theory with three
uantum constants � ,�� ,�� instead of the usual one. The finite quantum oscillator is isomorphic to

dipole rotator with N= l�l+1��1/ ������
1 states and bounded Hamiltonian H=A�Lx�2

B�Ly�2. Its position and momentum variables are quantized with uniformly spaced bounded finite
pectra and supposedly universal quanta of position and momentum. For fixed quantum constants
nd large N
1 there are three broad classes of finite oscillator, soft, medium, and hard. The field
scillators responsible for infrared and ultraviolet divergences are soft and hard, respectively.
edium oscillators have ��N low-lying states having nearly the same zero-point energy and level

pacing as the quantum oscillator and nearly obeying the Heisenberg uncertainty principle and the
quipartition principle. The corresponding rotators are nearly polarized along the z axis with Lz

± l.
The soft and hard oscillators have infinitesimal 0-point energy, and grossly violate both equi-

artition and the Heisenberg uncertainty relation. They do not resemble the quantum oscillator at
ll. Their low-lying energy states correspond to rotators with Lx�0 or Ly �0 instead of Lz� ± l.
oft oscillators have frozen momentum p	0 because their maximum potential energy is too small

o produce one quantum of momentum. Hard oscillators have frozen position q	0 because their
aximum kinetic energy is too small to produce one quantum of position.

The zero-point energy of a physical oscillator likely contributes to its gravitational field. It will
e interesting to estimate its contribution to astronomical gravitational fields. For a consistent
stimate we should regularize the quantum field theory, not just one of its oscillators. This changes
ot only the structure of the individual oscillators, as considered here, but also the number and
istribution of the oscillators. We leave this study for later, but it is already easy to say how it will
roceed, and what form it will take.

Field theory has compound algebras on two levels, that of the underlying space-time and that
f the overlying canonical commutation relations regularization. In this paper we change only the
op level, but to simplify field theory we must also simplify the Heisenberg algebra of the lower-
evel space-time operators x� and ��. This replaces the manifold theory of space-time, which
ssumes an infinity of events, by a simple quantum space-time theory, with only a finite number of
isjoint events, though that number may be arbitrarily large.

We must then combine two finite-dimensional algebras, that of the local field variables and
hat of the space-time-energy-momentum variables, to make the finite-dimensional algebra of the
eld theory. In c discrete theories, the combination process is exponentiation ST where S is the

ocal field-variable state-set and T is the space-time set. In the q /c theories that work best today,
here the numerator q indicates that S is quantum and the denominator c indicates that T is still

lassical, an exponential still exists and is used. General quantization leads to q /q theories. In that
ase the usual exponential ST becomes basis dependent, and the most economical invariant con-
truct that includes all the special cases is the exterior algebra over S � T, but this is still finite
imensional. Since general quantization gives time too a beginning and an end, the time devel-
pment is certainly not unitary. As a result the problem of reconciling unitarity, causality, and
orentz invariance7 is eliminated. On the other hand, since the Lorentz group is already simple,
orentz invariance is unaffected by general quantization.

General quantization modifies low- and high-energy physics. Because the low-lying energy
evels of medium oscillators have nearly uniform spacing, the energy of two excitations is but
lightly less than the sum of their separate energies. The corresponding quanta nearly do not
nteract, and the small interaction that they have is attractive. For soft or hard oscillators, the
nergy level varies quadratically with the energy quantum number. The energy of two quanta of
scillation is twice the sum of their separate energies, for example. The corresponding quanta have
repulsive interaction of great strength; the interaction energy is equal to the total energy of the

eparate quanta. Thus the simplest regularization leads to interactions between the previously
ncoupled excitation quanta of the oscillator, weakly attractive for medium quanta, strongly re-

ulsive for soft or hard quanta.
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Like Dirac’s theory of the “anomalous” magnetic moment of the relativistic electron, these
xtreme-energy effects depend on factor ordering. They can be adjusted to fit the data by reorder-
ng factors and so are not crucial tests of the theory. A group regularization of a time-dependent
ree Dirac equation has been carried out10 and the extension to interactions is under study.
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xact supersymmetry in the relativistic hydrogen atom in
eneral dimensions—supercharge and the generalized
ohnson-Lippmann operator
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A Dirac particle in general dimensions moving in a 1/r potential is shown to have
an exact supersymmetry, for which the two supercharge operators are obtained in
terms of �a D-dimensional generalization of� the Johnson-Lippmann operator, an
extension of the Runge-Lenz-Pauli vector that relativistically incorporates spin de-
grees of freedom. So the extra symmetry �S�2�� in the quantum Kepler problem,
which determines the degeneracy of the levels, is so robust as to accommodate the
relativistic case in arbitrary dimensions. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2173173�

NTRODUCTION

There is an increasing amount of fascination with supersymmetry �SUSY� in various fields of
hysics.1,2 In a broad context SUSY is a kind of �graded� Lie algebra that closes under a combi-
ation of commutation and anticommutation.3 One of the simplest realizations of such a symmetry
ay be found in one of the oldest problems in physics—motion of an electron in a hydrogen atom,

r, classically, Kepler’s problem. It has long been known that there is a hidden symmetry �a
ynamical symmetry� in the problem, which is related to an extra conservation �the Runge-Lenz
ector�. So the symmetry of the problem is higher �SO�4�� than the trivial SO�3�, which is the
ause of the “accidental” degeneracy �i.e., the energy level independent of l� in the spectrum of the
ydrogen in nonrelativistic quantum mechanics. If we move on to the Dirac electron in hydrogen
n the relativistic quantum mechanics, the accidental degeneracy is lifted �since the Runge-Lenz
ector, which designates the direction of the perihelion, is no longer conserved�. However, the
egeneracy is lifted only incompletely, and twofold degeneracies �for the Dirac-operator quantum
umber ��−�2S ·L+1�= ± �j+1/2� with j being the total angular momentum� remain, which was
uzzling.

In 1985 Sukumar made an interesting suggestion that the strange degeneracy may be ex-
lained as a supersymmetry in the problem.4 Subsequently however, Tangerman and Tjon5 who
ave pointed out that there is indeed an exact supersymmetry for the nonrelativistic hydrogen
tom, criticized that Sukumar’s work has not actually constructed supercharges for the relativistic
ydrogen atom. On the other hand, analytic studies for the relativistic hydrogen in general spatial
imensions have been developed, and analytic solutions are now obtained.6,7

Given this background, the purpose of the present paper is to show that an exact supersym-
etry for the relativistic Dirac particle in a 1/r potential in fact exists in general D spatial

imensions. In doing so we have actually constructed the supercharges Q± �i.e., mutually anti-
ommuting operators that commute with the Hamiltonian� for the Dirac Hamiltonian in �D+1�
imensions. The symmetry enables us to obtain the lowest eigenenergy and its wave function for
ach sector of �the D-dimensional generalization of� ��� in a simple and transparent manner, so the
roblem indeed turns out to be algebraically solvable.

�
Present address: Department of Applied Physics, University of Tokyo, Hongo, Tokyo 113-8656, Japan.
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One interesting point is whether the supersymmetry in the hydrogen problem is related to the
unge-Lenz vector that describes the hidden conservation law on the nonrelativistic level. Dahl
nd Jorgensen8 have shown, for the relativistic hydrogen in �3+1� dimensions, that the Runge-
enz-Pauli vector �that necessarily involves spin degrees of freedom for the Dirac particle, and is
alled Johnson-Lippmann operator9� may be indeed used to construct supercharges describing the
upersymmetry. So the question we address here amounts to whether this extends to general
imensions. We first construct the Johnson-Lippmann operator generalized to the relativistic hy-
rogen in �D+1� dimensions, and then show that the generalized operator may actually be used to
onstruct the supercharges. The supercharges are in fact shown to reduce to �the �D+1� dimen-
ional generalization of� Runge-Lenz-Pauli vector in the nonrelativistic limit. While the Runge-
enz-Pauli vector in general dimensions has been discussed in Refs. 10 and 11 for the nonrela-

ivistic case, the relativistic one is obtained for the first time. So we shall conclude that the
upersymmetry is unexpectedly robust enough to be extended to the most general case, i.e.,
elativistic case in general dimensions. We can summarize the situation as

D=3 General D

onrelativistic SUSY �Ref. 5� energy levels �Ref. 12�
elativistic SUSY �Ref. 8� SUSY �present work�

IRAC’S EQUATION

Dirac’s equation for the relativistic hydrogen atom in �D+1� dimensions is written, in natural
nits �where c=�=1�, as

��0�p0 − eA0� + �ipi − m���x� = 0 �1�

n standard notations, where �’s satisfy ��� ,���=g��=diag�1,−1,−1, . . . �, p�= i��, x
�x0 ,x1 , . . . ,xD�, and summations over repeated indices are implied. We assume a 1/r potential, so
e have eA0=−Z� /r, where �=e2 / ��c� is the fine-structure constant and Z the atomic number.
hen the lines of electric force are allowed to spread in the D spatial dimensions the Coulomb

otential becomes 1/rD−2, but we focus on the 1/r potential for general dimensions to retain the
tomic stability.13 We come back to this point later. If the time derivative is explicitly written, we
ave

i
�

�x0��x0,x1, . . . ,xD� = H��x0,x1, . . . ,xD� ,

�2�

H = �0m + �0�ipi −
Z�

r
�i = 1,2, . . . ,D� ,

here H is the Hamiltonian and summations are implied for repeated spatial superscripts.
The operators that commute with the Hamiltonian are the total angular momentum �in D

patial dimensions�,

Jab = Lab +
i

2
�a�b,

�3�

Lab = ixa�b − ixb�a,
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nd the Dirac operator �in D dimensions�,

K � �0	 i

2 

a�b

�a�bLab +
1

2
�D − 1�� = �0	J2 − L2 − S2 +

1

2
�D − 1�� , �4�

hat is related to the spin-orbit interaction.

ENERALIZED JOHNSON-LIPPMANN OPERATOR

While J and K are �usually the only� constants of motion for arbitrary central fields, it is
nown, for the ordinary D=3, that there is an extra operator, a relativistic analogue of the Runge-
enz-Pauli vector, that commutes with the Hamiltonian, as first constructed by Johnson and
ippmann.9 We now generalize the Johnson-Lippmann operator to �D+1� dimensions to define a
eneralized Johnson-Lippmann operator,

A � �D+1�0�i x
i

r
−

i

Zm�
K�D+1�H − �0m� . �5�

ere we have defined �D+1, a pseudoscalar, which is a generalization of �5 in �3+1� dimensions,
nd which satisfies ��D+1�†=�D+1,��D+1�2=1, ��D+1 ,���=0. �D+1 is constructed from
�0 ,�1 , . . . ,�D�, but its actual form depends on whether the spatial dimension is even or odd.

From the �anti�commutation relations above, we can show, after a rather tedious manipulation,
hat we have indeed �H ,A�=0 with a notable relation between H and A,

A2 = 1 + � K

Z�
2�H2

m2 − 1 . �6�

he expression reduces to the D=3 counterpart obtained in Refs. 8 and 14.
For K and A, on the other hand, we can show that

�A,K� = 0,

.e., we end up with mutually anticommuting operators, K ,A, that commute with H.

ONSTRUCTION OF THE SUPERCHARGE OPERATORS

We are now in position to construct the generators of the supersymmetry, which was left
ndone in Ref. 8 and stated in Ref. 5 as an operator interesting to find. We can do so by going back
o a supersymmetric quantum mechanical model originally conceived by Witten,3,15 to which the
resent Hamiltonian is shown to be formally equivalent. Due to the relation �6�, we can take H
A2 as a Hamiltonian of the present problem. We can construct two operators Q1 ,Q2 that com-
ute with H,

Q1 = A, Q2 = i
AK

���
, �7�

here � is the eigenvalue of K. We have then

H = Q1
2 = Q2

2,

�8�
�Q1,Q2� = 0.
f we further define
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Q± �
1

2
�Q1 ± iQ2� =

1

2
�1 ±

K

���A =
1

2
A�1 � P�� �9�

ith P��K / ���, we have

Q+
2 = Q−

2 = 0,

�10�
H = �Q+,Q−� .

his establishes an equivalence to Witten’s model.
So we can take the eigenvectors �n , ± � that satisfy

H�n, ± � = En
�±��n, ± � ,

�11�
P��n, ± � = ± �n, ± � ,

ince H=A2 commutes with K, and we can talk about the simultaneous eigenvectors.
P� does not commute with Q±, for which we have Q±�n , ± �=0. On the other hand, �H ,Q��=0

mplies that �n , ± � and Q��n , ± � have a degenerate eigenvalue of H with different eigenvalues of

�. From the relation �6� a zero eigenstate of H=A2 is the ground state of the original H �or, more
recisely, the lowest-energy state for each value of ��. Since �n ,	�H�n ,	�= �n ,	��Q+ ,Q−��n ,	�
�Q+�n ,	��2+ �Q−�n ,	��2
0 �for 	=±�, a state is the ground state of H if the equality holds in the
bove inequality. The equality occurs when Q+�0,−�=0 or Q−�0, + �=0. If we go back to the
efinition of Q± �Eq. �9��, the zero-eigenvalue state �0� should satisfy

A�0� = 0,

ince �1�P���n , � ��0.

ERNEL OF A

One way to establish the existence of such a state is an analytic method. Following Ref. 6, we
rite the wave function for odd spatial dimensions D=2N+1 as

���x1,x2, . . . ,xD� = r−N� F�r�����
iG�r��−���

 , �12�

here F�G� is the “large �small�” components, �� is the angular part with angular coordinates ,
nd K��=��� holds. If we plug this into A��=0, we have, after some manipulation,

��x
d

dx
+ sign���x2

− s2�� f�x�
g�x�

 = 0,

�13�
s � ��2 − �Z��2,

here we have defined F�r�� f�x�, G�r��g�x� in terms of a dimensionless x��Z�m / ����r
�Z / ���a0�r with a0 being the Bohr radius.

For this differential equation of second order, there are two independent solutions, f�x�
x−se−sign���x or xse−sign���x with

� = ± �l + 1
2 �D − 1�� ,

here l�=0,1 , . . . � is the orbital angular momentum, but the only normalizable one is the latter

ith ��0. With a similar argument for g�x�, we arrive at the kernel of A,
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�� � xs−Ne−x� ����

i
� − s

Z�
�−��� � �14�

s the nondegenerate lowest state �the unpaired levels in Fig. 1�.
For even D=2N we can perform a similar procedure, again following Ref. 6. This time we can

et ��=r−N+1/2�F�r�����+ iG�r��−����, for which the same differential equation results for
�r� ,G�r�, so we have a nondegenerate ground state, ���xs−N+1/2e−x�����+ i���
s� /Z���−����.

IGENENERGIES AND THE GROUP THEORY

Eigenenergies may readily be obtained algebraically: As used above, Eq. �6� dictates that each
f the zero eigenstates of the supersymmetric Hamiltonian H=A2 is the lowest-energy state �for
ach sector of K� of the original H. This immediately implies that E, the lowest-lying �within each
ector of K� eigenvalue of H, is

E/m =�1 − �Z�

�
2

= �1 + �Z�

s
2�−1/2

, �15�

n agreement with the analytical result in Ref. 6. We can go up the ladder �where the leg corre-
ponds to �= ± ��� while the rung spanned by a quantum number we call n�� by making s
��2− �Z��2→s+1.

So we end up with

E/m = �1 +
�Z��2

�n − ��� +
D − 3

2
+ ��2 − �Z��22�

−1/2

,

here we assume Z�� �D−1� /2 for the atomic stability. Here the principal quantum number is

IG. 1. �Color online� Energy level scheme for the relativistic hydrogen in D spatial dimensions. The lowest few levels are
lotted against the Dirac quantum number � and tanh D, where the energy is plotted on a logarithmic scale to make the
evel splittings clearer. How the S�2� ladder is obtained with a shift in s and the supercharge operation Q+ is indicated by
rrows with the sign of � and the principal quantum number n �solid and open numbers� indicated.
iven as
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n = l + 1 + n�

ith n�=0,1 , . . ., where each level is doubly degenerated �corresponding to �= ± �l+ �D−1� /2�
nd related by Q+�, except at the bottom of each ladder at n�=0 �i.e., n= l+1� for which only �
0 should be taken �Fig. 1�. We can also see that the interdimensional degeneracy, which exists

etween the levels �l ,D�→ �l±1,D�2� noted for the nonrelativistic case,12 persists for the rela-
ivistic case, and the supersymmetric ladders live on such a spectrum.

Group theoretically the present result implies the following. The nonrelativistic hydrogen
tom in D spatial dimensions has a hidden symmetry �with the Runge-Lenz vector conserved�, and
he symmetry of the problem is higher �SO�D+1�� than the symmetry �SO�D�� of the space. If we
o to the relativistic case the symmetry is degraded, but only partially degraded into SO�D�

� S�2� due to the supersymmetry. So the conjecture, stated in Ref. 5, is established here for
eneral dimensions.

ELATION WITH THE RUNGE-LENZ-PAULI VECTOR

Related to the above, we can note a certain relation between the generalized Johnson-
ippmann operator �A� and the Runge-Lenz-Pauli vector as follows. Since A is Hermitian, we
ave

A =
1

2
�A + A†� = − �D+1�0�i� 1

2Zm�
�0�pjLij − Ljip

j� −
xi

r
� +

i

m
K�D+11

r
. �16�

his expression reduces, in the nonrelativistic limit, to

A → − 	iMi,

here

Mi =
1

2mZ�
�pjLij − Ljip

j� −
xi

r

s the nonrelativistic Runge-Lenz-Pauli vector in D spatial dimensions10,11 and 	i=�D+1�0�i the
pin operator in D dimensions. Namely, the operator in this limit is the inner product of the
unge-Lenz-Pauli vector �M� and the spin ��� in D dimensions.16

UMMARY AND DISCUSSIONS

So the higher symmetry for the 1/r potential in general dimensions is revealed to be surpris-
ngly robust against the relativistic generalization and is retained as a supersymmetry. The super-
harge is indeed related to �a D-dimensional generalization of� the Johnson-Lippmann operator.

Given the formula for the general D, we are tempted to ask what happens in the D→� limit.
n the nonrelativistic case the kinetic energy ���1/D��potential energy� is dominated by the
otential energy, so the system reduces to a set of harmonic oscillations around the classical
otential minima as stressed in Ref. 12. In the relativistic case, however, we see that we cannot
liminate the small component �G� in the D→� limit, since the coupling between F and G does
ot vanish in this limit. This implies that we cannot trivially relate the supersymmetry with a set
f oscillators even asymptotically.

Another basic question is whether the supersymmetry is just accidental to the 1/r potential. As
entioned above, electromagnetically there is a problem of how we can conceive the 1/r potential

s the Coulomb potential in general dimensions. We should have 1/rD−2 potential from Gauss’s
aw if the lines of electromagnetic force extend over the D spatial dimensions, but there is a
ell-known Ehrenfest’s 1920 result that the atom becomes unstable for this potential. Some

uthors argue that we should in fact stick to 1/r in general dimensions.17 Experimentally, a

ow-dimensional �D=2� case may be interesting as an accessible one.
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In a broader context, a supercharge is a kind of generalization of the Dirac operator, so it could
e that supersymmetry is shared by a wide class of Dirac-type equations. Recently, Leviatan18 has
xplicitly constructed the supercharges of the Dirac equation in �3+1� dimensions for more gen-
ral potentials which include the case of the 1/r potential. Furthermore, some authors19 have
iscussed generalization of the Runge-Lenz-Pauli vector, such as the case of a particle around a
agnetic monopole with a vector potential around it. So the exploration of supersymmetry in
ider gauge-field models will be an interesting future problem.
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In the paper cited in the title �J. Math. Phys. 46, 062303 �2005�� local scalar QFT
�in Weyl algebraic approach� has been constructed on degenerate semi-Riemannian
manifolds S1�� corresponding to the extension of Killing horizons by adding
points at infinity to the null geodesic forming the horizon. It has been proved that
the theory admits a natural representation of PSL�2,R� in terms of
*-automorphisms and this representation is unitarily implementable if referring to a
certain invariant state �. Among other results it has been proved that the theory
admits a class of inequivalent algebraic �coherent� states ����, with ��L2���,
which break part of the symmetry, in the sense that each of them is not invariant
under the full group PSL�2,R� and so there is no unitary representation of whole
group PSL�2,R� which leaves fixed the cyclic GNS vector. These states, if re-
stricted to suitable portions of M are invariant and extremal KMS states with
respect to a surviving one-parameter group symmetry. In this paper we clarify the
nature of symmetry breakdown. We show that, in fact, spontaneous symmetry
breaking occurs in the natural sense of algebraic quantum field theory: if ��0,
there is no unitary representation of whole group PSL�2,R� which implements the
*-automorphism representation of PSL�2,R� itself in the GNS representation of ��

�leaving fixed or not the state�. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2173174�

. SUMMARY OF SOME ACHIEVED RESULTS

In Ref. 1 local scalar QFT �in Weyl algebraic approach� is constructed on degenerate semi-
iemannian manifolds M=S1�� corresponding to the extension of future Killing horizons by
dding points at infinity to the null geodesic forming the horizon. Above the transverse manifold

has a Riemannian metric inducing the volume form ��, whereas S1 is equipped with the null
etric. To go on, fix a standard frame �see Sec. II A of Ref. 1� �� �−� ,�� on S1 of M=S1�� –

o that S1 is realized as �−� ,�� with the endpoints identified—and consider the C*-algebra of
eyl W�M� generated by nonvanishing elements V��� in Eq. 12 in Sec. II E in Ref. 1, the smooth

orms � of the space D�M� being the space of forms �	 defined in Eq. 1 in Sec. 2.1 in Ref. 1. We
hall exploit the group of *-automorphisms 
 defined in Eq. 19 in Ref. 1 representing the Möbius
roup PSL�2,R� viewed as a subgroup of diffeomorphisms of S1 and thus of M �see Sec. III A of
ef. 1�:


g�V���� = V���g−1�� , �1�
�g�
ªg*� being the natural pullback action of g�PSL�2,R� on forms. In the following �
t

�X��t�R
ndicates the one-parameter subgroup associated with the vector field X on M corresponding to an
lement of the Lie algebra of PSL�2,R�. In particular the vector field on M, D, generating a

�
Electronic mail: moretti@science.unitn.it
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ne-parameter subgroup of PSL�2,R�, is that defined in Eq. 16 in Ref. 1. If ��L2�� ,��� and ��

s the coherent state on W�M� defined by means of 33 of Sec. IV B in Ref. 1, we indicate its GNS
riple by �H� ,�� ,���.States �� are constructed as follows with respect to �ª�0. The map
����V���ei�M���++��+�, ��D�M�, uniquely extends to a *-automorphism �� on W�M� such

hat �� �
t
�D�=
t

�D�
��� for all t�R. The function ª ln � tan�� /2�� and the D-positive-frequency

art of �, �+, are, respectively, defined and discussed in Sec. IV B �Eq. 32� and in Lemma 3.1 of
ec. III B of Ref. 1.

���w� ª ����w� for all w � W�M� . �2�

he state � was defined in Eq. 13 in Ref. 1 and it is pure in accordance with Lemma A.2 in Ref.
, because the real linear map K :S�M��	�	+ has dense range in the one-particle space H by
onstruction. It is clear that the GNS representation generated by �� is irreducible if that of � is
rreducible. As a consequence every �� is pure.

Among other results it has been proved that �Theorems 4.1, 4.2, and 5.1� the pure states �� are
nequivalent states and, the restrictions to the algebra localized at the “half circle times �,” give
ise to different extremal KMS states at rationalized Hawking temperature T=1/2� with respect to

t

�D��t�R. If one is dealing with a bifurcate Killing horizon of a black hole the “half circle times
” is nothing but F+, the future right branch of the Killing horizon �see Sec. I and figure in Ref.
�. In this case −�−1D, with �−1=� being the surface gravity of the examined black hole, can be
ecognized as the restriction to the horizon to the Killing vector field defining Schwarzschild time,
T becomes proper Hawking’s temperature and the order parameter associated with the breakdown
f symmetry can be related with properties of the black hole.

I. SPONTANEOUS BREAKING OF PSL„2,R… SYMMETRY

As illustrated in further details below, a remarkable property of states �� is that, for ��0, they
reak part of the symmetry, in the sense that each of them is not invariant under the full group
SL�2,R� and so there is no unitary representation of whole group PSL�2,R� which leaves fixed

he cyclic GNS vector. We want here to clarify the nature of this breakdown of PSL�2,R� sym-
etry, proving that, actually there is no unitary representation of PSL�2,R� which implements the

ull group action of PSL�2,R� no matter the issue of the invariance of �� under PSL�2,R�. This
eads to spontaneous breaking of PSL�2,R� symmetry.

Let us focus on this issue from a general point of view. In the physical literature there are
everal, also strongly inequivalent, definitions of spontaneous breaking of symmetry related to
ifferent approaches to quantum theories. We adopt the following elementary definition which is
uite natural in algebraic QFT and is equivalent to the definition given on p.119 of the recent
eview3 on breaking symmetry theory �see the end of the paper for further comments�.

Definition 1: Referring to a C*-algebra A, one says that

�a� A Lie group G is a group of symmetries for A if there is a representation � of G made of
*-automorphisms of A. If some notion of time evolution is provided, it is required that it
corresponds to a one parameter subgroup of G. �If this subgroup does not belong to the
center of G, the self-adjoint generators of unitary representations of G implementing �, if
any, give rise to constants of motion which may depend parametrically on time. It hap-
pens, for instance, for Poincaré-invariant systems, where the conserved self-adjoint op-
erator Ki�t� associated with boost invariance along the ith axis depend parametrically on
time. Indeed, on the appropriate domain, Ki�t�=Ki�0�− tPi and it is conserved under
Heisenberg evolution UtK

i�t�Ut
†=Ki�0�.�

�b� Assuming that �a� is valid, spontaneous breaking of G symmetry occurs with respect to an
algebraic state � on A and �, if there are elements g�G such that �g are not imple-
mentable unitarily in the GNS representation �H� ,�� ,��� of �, i.e. for those elements

†
there is no unitary operator Ug on H� with Ug���a�Ug=����g�a�� for all a�A.
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Considering the inequivalent GNS triples �H� ,�� ,���, Theorems 3.2 and 3.3 in Ref. 1 show
hat, if �=0 the group of automorphisms 
 representing PSL�2,R� can be unitarily implemented in
he space H=H0 and the cyclic vector �ª�0 of the GNS representation is invariant under that
strongly continuous� unitary representation of PSL�2,R�. �In the proof theorem 3.2 in all occur-
ences of the symbol PSL�2,R� before the statement “¼is in fact a representation of PSL�2,R�.”
t must be replaced by PSL�2,R�˜, it denoting the universal covering of PSL�2,R�.� Conversely, if
�0, PSL�2,R� symmetry turns out to be broken. Indeed, Theorem 4.1 states that each state ��

ith ��0 is invariant under �
t
�D��t�R, but it is not under any other one-parameter subgroup of 


barring those associated with cD for c�R constant�. In the general case this is not enough to
ssure occurrence of spontaneous breaking of PSL�2,R� symmetry as defined in Definition 1.

In a different context, it is possible to show that—see Sec. III.3.2 of Ref. 4—if G is Poincaré
roup or an internal symmetry group for a special relativistic system and the reference state � is
primary vacuum state over the net of algebras of observables, then non-G invariance of the

acuum state implies—and in fact is equivalent to—spontaneous breaking of G symmetry. Our
onsidered case is far from that extent and thus there is no a priori guarantee for the occurrence
f spontaneous breaking of PSL�2,R� symmetry for states �� with ��0 and the issue deserves
urther investigation. The following theorem gives an answer to the issue.

Theorem 1: If L2�� ,������0, spontaneous breaking of PSL�2,R�-symmetry occurs with
espect to �� and the representation 
. �In particular, there is no unitary implementation of the
ontrivial elements of the subgroup of PSL�2,R� generated from the vector field � /��.�

Proof: Referring to the GNS triple of �� define V̂����ª���V����. The existence of a unitary
mplementation, Lg :H�→H�, of 
 in the GNS triple �H� ,�� ,��� implies, in particular, that

LgV̂����Lg
† = ���
g�V������, for all � � D�M� and every g � PSL�2,R� . �3�

y construction, �H� ,� ,��� �notice that we wrote � instead of ��� is a GNS triple of � �notice
hat we wrote � instead of ��� if

�:V��� � V̂��� ª V̂����e−i�M���++��+�. �4�

n this realization 
 can be unitarily implemented �Theorem 3.2 in Ref. 1�: There is a �strongly
ontinuous� unitary representation U of PSL�2,R� such that

UgV̂���Ug
† = ��
g�V�����, for all � � D�M� and every g � PSL�2,R� . �5�

uppose that 
 can be implemented also in �H� ,�� ,���, where now �� :V���� V̂����, and let L
e the corresponding unitary representation of PSL�2,R� satisfying �3�. That equation together
ith �4� entail that the unitary operator SgªUg

†Lg satisfies

SgV���Sg
† = eicg,�V��� ,

�6�

cg,� ª 	
M

�����g−1��+ + ����g−1��+ − ��+ − ��+� .

ow, dealing with exactly as in the proof of �ii� of �b� of Theorem 4.1 �where the role of our Sg

as played by the operator U and the role of cg,� was played by the simpler phase �M���+

��+�� one finds that �6� entails that 
�� ,Sg����0 and

�Sg���2 = �
��,Sg����2e
�

��n,j�
2
,
n,j
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�n,j ª − 2i	
M

�����s�uj�s�
�

��

ei�g − ei�

�4�n
d� d���s� . �7�

bove the real compactly supported functions uj defines a Hilbert base in L2�� ,���, and
�g ,sg�ªg�� ,s��M is obtained by the action of g�PSL�2,R� on �� ,s��M �obviously sg=s
ince PSL�2,R� acts on the factor S1 of M=S1���. Now take g� �
t

�K��t�R, the one-parameter
ubgroup of PSL�2,R� generated by the vector field Kª� /��, and realize the factor S1 of M
S1�� as �−� ,�� with the identification of its endpoints. In this case, obviously, �g=�+ t. A
irect computation shows that, for some j0 with ��uj�s���s����s�=0 �which does exist otherwise
=0 almost everywhere�

��2n+1,j0
�2 = C� 1

2n + 1
−

cos��2n + 1�t�
2n + 1

�
or some constant C�0 independent form n. The series of elements −cos��2n+1�t� / �2n+1� con-
erges for t�0, ±� �it diverges to +� for t= ±��, whereas that of elements 1 / �2n+1� diverges to
�. Thus the exponent in �7� and Lg cannot exist, if g=
t

�K� with t�0 �

Remark: The automorphism �� is a symmetry of the system because it commutes with time
volution 
t. �It is worth noticing that, if restricting to real functions �, ���� defines a group of
utomorphisms.� Since ���W�F+������W�F+� for ����, and all these states are extremal 
�D�-KMS
tates at the same temperature, following Haag �Sec. V.I.5 in Ref. 4�, we can say that spontaneous
ymmetry breaking with respect to �� occurs in the context of extremal KMS states theory.

II. FINAL COMMENTS ON INEQUIVALENT APPROACHES CONCERNING SYMMETRY
REAKDOWN

If � is a state on the C*-algebra A, its Gelfand ideal, I�, consists of the elements a�A such
hat ��a*a�=0. I� plays a central role in GNS reconstruction procedure. Breakdown of symmetry
ould be investigated from another point of view—relying upon the invariance properties of
elfand ideal—with some overlap with our approach. It is based on the following proposition.

Proposition 1: Let � be a faithful *-automorphism representation of the group G on the
*-algebra A with unit I and let � :A→C be a state with GNS triple �H� ,�� ,���.

The Gelfand ideal I� is invariant under � if and only if there is a G-representation made of
ensely defined operators Ug :���A�→���A� which implements � leaving fixed ��, i.e.,

�i� Ug���a�Ug
−1 = ����g�a�� for all a � A,g � G and �ii� Ug�� = �� for all g � G .

�8�

f a representation G�g�Ug satisfying �8� exists the following holds.

�a� It is unique and the operators Ug are completely determined by

Ug���a��� = ����ga��� for all a � A and g � G . �9�

�b� Operators Ug are �restrictions to the dense domain ���A� of uniquely determined� uni-
tary operators on H�, if and only if � is invariant under �.

Sketch of proof: From GNS theorem I�= �a�A ����a���=0�. From it one easily proves that
f I� is �-invariant �9� define a well-posed representation of G satisfying �8� �notice that, �g�I�
I and ���I�= I so that �ii� in �8� holds true from �9��. Since �i� and �ii� in �8� entails �9�, I�

�a�A ����a���=0� proves that the existence of a representation satisfying �8� implies
-invariance of I�and �a� is valid as well. Proofs of �b� are based on the identities �from GNS

heorem� �Ug���a����2=���g�a*a�� and ��a*a�= ����a����2. �

In view of that result, by a pure mathematical point of view, a strategy to distinguish several
egrees of G-symmetry breakdowns for a state � :A→C when G is represented, at algebraic level,

y the *-automorphism representation �, could be the following.
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�1� �No symmetry breaking� Gelfand ideal is invariant under �g—i.e., �i� and �ii� in �8� are
alid for an operator representation of G.

�2� Gelfand ideal is invariant under �—so that both �i� and �ii� in �8� hold true—but the
nduced action of � in the GNS representation of � is not unitarily implementable.

�3� Gelfand ideal is not invariant under �g—so that at least one of �i� and �ii� in �8� is not valid
or any operator representation of G on the relevant domain.

In this paper we, instead, have adopted quite a different point of view �sharing however some
verlap with the point of view illustrated above� entirely based on the definition of spontaneous
reaking of symmetry defined on p. 119 of Ref. 3. We considered only the problem of unitary
non�implementability of �PSL�2,R�� symmetry. This is in accordance with the well-known gen-
ral Wigner-Kadison notion of quantum symmetry described in terms of appropriate �projective�
nitary or antiunitary operators.5 The three degree of symmetry breakdown one may consider in
his context are the following, referring to � ,G ,� as before.

�U1� �No symmetry breaking� Algebraic symmetry � is implementable for � by means of
nitary operators and the state � is invariant under the action � of the full group G—�i�, and �ii�
n �8� are valid for a unitary representation of G.

�U2� �Symmetry breaking due to the cyclic vector� Algebraic symmetry � is implementable for
by means of unitary operators and the state � is not invariant under the action � of the full

roup G—�i�, but not �ii� in �8�, is valid for a unitary representation of G.
�U3� �Spontaneous symmetry breaking� Algebraic symmetry � is not implementable for � by

eans of unitary operators—�i� in �8� does not hold for any unitary representation of G.
In Ref. 1 we established, for states �� with ��0 the validity of either degree �U2� or �U3�

oncerning G=PSL�2,R� symmetry breaking. This paper shows that, actually, the strongest degree
U3� takes place.

A priori this extent may be compatible with either �2� or �3� of the other scheme. A closed
crutiny would be necessary to examine this issue but it is far from the goal of this paper where
nly Wigner-Kadison unitary symmetries are considered since they are the only way to preserve
uantum probabilities and have direct physical meaning.

To conclude we notice that an example of the intermediate case �U2� is realized in the
ramework of Ref. 1 with respect to the Weyl algebra W�M�, with M=S1, and for the fully
SL�2,R�-symmetric state ��=0. Breaking of symmetry at level �U2� occurs when extending the
ymmetry group from PSL�2,R� to the infinite dimensional one GªDiff+�S1�.

1 V. Moretti and N. Pinamonti, J. Math. Phys. 46, 062303 �2005�.
2 B. S. Kay and R. M. Wald, Phys. Rep. 207, 49 �1991�.
3 F. Strocchi, Symmetry Breaking, Lecture Notes in Physics, Springer, Berlin �2005�.
4 R. Haag, Local Quantum Physics: Fields, Particles, Algebras, 2nd revised and enlarged ed. �Springer, Berlin, 1992�.
5 R. Kadison, Ann. Math. 54, 325 �1951�; C. Piron, Foundations of Quantum Physics �W. A. Benjamin, London, 1976�.
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on-Abelian gauge field theory in scale relativity
Laurent Nottale,a� Marie-Noëlle Célérier,b� and Thierry Lehnerc�

Observatoire de Paris-Meudon, LUTH, CNRS, 5 Place Jules Janssen, 92195 Meudon
Cedex, France

�Received 21 November 2005; accepted 18 January 2006; published online 13 March 2006�

Gauge field theory is developed in the framework of scale relativity. In this theory,
space-time is described as a nondifferentiable continuum, which implies it is frac-
tal, i.e., explicitly dependent on internal scale variables. Owing to the principle of
relativity that has been extended to scales, these scale variables can themselves
become functions of the space-time coordinates. Therefore, a coupling is expected
between displacements in the fractal space-time and the transformations of these
scale variables. In previous works, an Abelian gauge theory �electromagnetism� has
been derived as a consequence of this coupling for global dilations and/or contrac-
tions. We consider here more general transformations of the scale variables by
taking into account separate dilations for each of them, which yield non-Abelian
gauge theories. We identify these transformations with the usual gauge transforma-
tions. The gauge fields naturally appear as a new geometric contribution to the total
variation of the action involving these scale variables, while the gauge charges
emerge as the generators of the scale transformation group. A generalized action is
identified with the scale-relativistic invariant. The gauge charges are the conserva-
tive quantities, conjugates of the scale variables through the action, which find their
origin in the symmetries of the “scale-space.” We thus found in a geometric way
and recover the expression for the covariant derivative of gauge theory. Adding the
requirement that under the scale transformations the fermion multiplets and the
boson fields transform such that the derived Lagrangian remains invariant, we
obtain gauge theories as a consequence of scale symmetries issued from a geomet-
ric space-time description. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2176915�

. INTRODUCTION

In standard gauge field theory, the nature of the gauge transformations, of the gauge fields and
f the conserved charges are postulated and designed from experimental considerations. The group
f gauge transformations does not act upon the space-time coordinates, as does, for example, the
U�2� spin rotation group or the Lorentz group, but in an “internal space” whose physical meaning

s not understood from first principles. For a general gauge group G, the particle wave functions
hat are multiplets of Dirac bi-spinors form a n-component vector in the internal space, and the
auge potentials A� �more generally W�

a � are fields in standard space-time defined only up to a
auge transformation.

There is indeed a fundamental difference between the situation of transformations in the
tandard gauge theories and of, e.g., Lorentz transformations. Thanks to the fact that space-time
oordinates are directly observable, we know from the very beginning what Lorentz transforma-
ions are, namely, space-time rotations of the coordinates, dx�=��

� dx�. They write in the case of
n infinitesimal transformation, �i� dx��= ���

�+��
��dx�, where the �ij �i and j=1 to 3� represent the

�Electronic mail: laurent.nottale@obspm.fr
�Electronic mail: marie-noelle.celerier@obspm.fr
�
Electronic mail: thierry.lehner@obspm.fr
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nfinitesimal angles of rotation in space and the �0i=vi /c �vi�c� are the infinitesimal Lorentz
oosts. Then, once this basic definition is given, one can consider the effect of these transforma-
ions on various physical quantities defined in space-time, e.g., the wave function �. This involves
epresentations of the Lorentz group adapted to the nature of the physical object under consider-
tion, i.e., �ii� ��= �1+ 1

2���	���� �see, e.g., Ref. 1�.
In contradistinction with this situation, in standard gauge theories the gauge functions, being

rbitrary, are considered to be devoid of physical meaning. As a consequence, there is up to now
o equivalent of the basic defining transformation �i�. Therefore, in the standard framework, the
auge group is indirectly defined through its action on the various physical objects according to its
epresentations, in similarity with relation �ii�, but the physical meaning of the gauge space itself
s lacking.

In the present paper, we place ourselves in the framework of the scale relativity theory, in
hich the description of the space-time geometry is generalized to continuous but nondifferen-

iable manifolds. In this theory, one attempts to recover the quantum behavior as a manifestation
f the nondifferentiability, then the gauge fields themselves as a manifestation of the nondifferen-
iable and fractal geometry �in analogy with gravitation interpreted as a manifestation of the
on-Euclidean curved geometry in general relativity�.

In this framework, we give a geometric meaning to the gauge space, then we can rebuild the
auge transformations of the various physical quantities �namely, the various quantum fields� as
onsequences of the fundamental transformations of the variables which define this gauge space.
n other words, it is precisely an equivalent for gauge theories of the defining transformation �i�
hat can be proposed in scale relativity. The specifically new results given in the present paper
onsist of extending to non-Abelian gauge theory the results of previous works2–4 devoted to the
nderstanding of the simpler gauge invariant theory of electromagnetism.

The paper is organized as follows. After a summarized review �Sec. II� of the main steps of
he construction of the scale relativity theory, including the exposition of the salient features that
ave led to the demonstration of the Dirac equation5,6 from the scale relativistic first principles, we
ive a brief reminder of the results previously obtained for electromagnetism �Sec. III�. Then we
ive, in Sec. IV, an extension of the concepts and methods thus obtained, and we apply them to a
eneral development of the non-Abelian gauge formalism. Section V is devoted to the conclusion.

I. SCALE RELATIVITY AND QUANTUM MECHANICS: SUMMARY

. Foundations of scale relativity

The theory of scale relativity is based on the giving up of the hypothesis of manifold differ-
ntiability which is a key assumption of Einstein’s general relativity. In the new theory, the
oordinate transformations are continuous but can be differentiable �and therefore it includes
eneral relativity� or non-differentiable. The giving up of the assumption of differentiability im-
lies several consequences,7 leading to the successive steps of the construction of the theory:

�1� It has been proved7,3,8 that a continuous and nondifferentiable curve is fractal in a general
eaning, namely, its length is explicitly scale dependent and goes to infinity when the scale

nterval 
 goes to zero, i.e., L=L�
�→� when 
→0. This result can be readily extended to a
ontinuous and nondifferentiable manifold.

�2� The fractality of space-time9,10 involves the scale dependence of the reference frames. We
herefore add to the usual variables defining the reference frames �position, orientation, motion�,
ew variables 
 characterizing their state of scale. In particular, the coordinates themselves be-
ome functions of these scale variables, i.e., X=X�
� �in the simplified case of only one variable�.
n an experimental situation, these scale variables are identified with the resolution scale of the
easurement apparatus. In the case of a theoretical physics description, they are identified with the

ifferential elements themselves, of which the coordinates become explicit functions, i.e., X
X�dX�.

�3� The scale variables 
 can never be defined in an absolute way, but only in a relative way.

amely, only their ratio �=
� /
 does have a physical meaning. This universal behavior leads to
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xtend to scales the principle of relativity,11,12,7 in order to include in the possible changes of
eference frames the new ones which are described by the transformations of these scale variables.

�4� Though the nondifferentiability manifests itself at the limit 
→0, the use of differential
quations is made possible by representing physical quantities f by fractal functions f�X�
� ,
�.7

ven if the function f�X ,0� is nondifferentiable with respect to the variable X, the fractal function
f�X ,
� is differentiable for any 
�0 with respect to both X and 
. This allows us to complete the
ifferential equations of standard physics by new differential equations of scale, which are con-
trained by the principle of scale relativity. The study of the scale laws derived from these
ifferential equations has been developed according to various levels of relativistic
ransformations.12,3,13 In what follows, we consider only the simplest case, namely Galilean-type
cale transformations �i.e., characterized by a constant fractal dimension�.

�5� The simplest possible scale differential equation is a first order equation, �X /� ln 

��X�, which can be simplified again by Taylor expanding the unknown function �, so that it

eads �X /� ln 
=a+bX+ ¯ . The solution of this equation is made of two terms, a scale-
ndependent, differentiable, classical part and a power-law, nondifferentiable fractal part, which
ead

X = x + ��



�−b

, �1�

here x=−a /b. When the coefficient b is constant, the second term is the standard expression for
he length of a fractal curve of dimension DF=1−b.14 Moreover, the transformation law of this
ower-law term under a scale transformation ln�� /
�→ ln�� /
�� takes the mathematical form of
he Galileo group, and it therefore comes under the principle of relativity,12 as initially required.

. Metric of a fractal space-time

In Eq. �1�, the scale variable 
 is a space resolution, e.g., 
=�X. The next step consists of
onsidering its four-dimensional differential counterpart and to express it in terms of intervals of
he invariant length �proper time� ds, by using the standard relation between the resolution interval
f projected coordinates and the resolution interval of the invariant length on a fractal, ��X��DF

�s,

dX� = dx� + d�� = v� ds + � � ��c�1−1/DF � ds1/DF, �2�

here � is dimensionless, �c is a length scale which must be introduced for dimensional reasons
nd DF is a fractal �covering� dimension. In the case where this description holds for a quantum
article of mass m, �c will be identified with its Compton length � /mc. The elementary displace-
ent on a fractal space-time is therefore the sum of a classical, standard differentiable element,
hich is leading at large scales, and of a fractal, nonstandard fluctuation which is leading at small

cales.
In what follows, we simplify again the description by considering only the case DF=2. For

his, we base ourselves on Feynman’s result15,16 according to which the typical paths of quantum
articles �those which contribute mainly to the path integral� are nondifferentiable and �in modern
ords� fractal of dimension DF=2. The case DF�2 has also been studied in detail: it has been

hown that DF=2 is a critical dimension for which the explicit scale dependence disappears in the
nal equations �see Ref. 3 and references therein�.

Let us now show how Eq. �2� can be used to give an explicit form to the metric of a fractal
pace-time �disregarding at this step of the construction other consequences of nondifferentiability
uch as the multivaluedness of derivatives, see next sections�. The fractal fluctuations �here in four
imensions� write for fractal dimension 2,

d�� = ���c ds , �3�
�
here the  are dimensionless highly fluctuating functions.
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In what follows, we replace them �in a provisional way� by stochastic variables such that
�
=0, 	�0�2
=−1, and 	�k�2
=1 �k=1 to 3�. We recover here a description which is familiar in
sual stochastic processes, which can also be separated in a regular part and a stochastic part, but
ere this is done at the level of the metric. As we shall see, we do not have to be more specific
bout the probability distribution of these stochastic variables. Their zero mean and unit variance
s the only information needed in the subsequent calculations, which are therefore valid whatever
his distribution.

Now we can write the fractal fluctuations in terms of the coordinate differentials instead of the
nvariant length differential,

d�� = ���� dx�. �4�

he identification of Eqs. �3� and �4� leads very simply to the establishment of the expressions for
he de Broglie-Einstein length and time scales from the Compton one, i.e., for two variables,

�x =
�c

dx/ds
=

�

px
, � =

�c

dt/ds
=

�

E
. �5�

he de Broglie scale �and the Compton scale in rest frame� therefore plays an essential role in the
roperties of the scale variables �identified here with the differential elements�. It stands out as a
atural reference scale for them, since it plays the role of a fractal to nonfractal transition �that
hould not be understood as a transition acting in position space but instead in scale space�. Indeed
e see from the relation 	d�x

2
=�x dx �and similar relations for the other variables� that when
dx � ��x, the fractal fluctuation becomes �d�x � � �dx� and therefore it dominates the classical
differentiable� contribution. On the contrary, when �dx � ��x, the fractal fluctuation �d�x � � �dx�
ecomes negligible and only the classical term remains. The subsequent developments of the
heory, which lead to construct a wave function and to derive Schrödinger and Dirac equations
see Sec. II D�, finally allow one to identify this transition with a quantum to classical transition.7

Let us now assume that the large scale �classical� behavior is given by Riemannian metric
otentials g���x ,y ,z , t�. The invariant proper time dS along a geodesic �which is therefore sub-
ected to curvature at large scale and fractality at small scales� writes in terms of the complete
ifferential elements dX�=dx�+d��,

dS2 = g�� dX� dX� = g���dx� + d����dx� + d��� . �6�

ow replacing the d�’s by their expression �Eq. �4��, we obtain a fractal metric. Assuming for
implicity �1�1� dimensions, a diagonal classical part of the metric and a fractal dimension DF

2, it reads

dS2 = g00�1 + 0� �

dt
�2

c2 dt2 − g11�1 + 1��x

dx
�2

dx2. �7�

e therefore obtain generalized fractal metric potentials which are explicitly dependent on the
oordinate differential elements, in agreement with the program of Refs. 11 and 7. More generally
he metric potentials can be written in their turn as the sum of the standard metric potentials
which describe curvature� and of divergent, highly fluctuating terms �which describe fractality�,
.g., for the g00 component,

g̃00�x,t;dt� = g00�x,t� + �00�x,t�� �

dt
� , �8�

here we have kept only the leading term, owing to the fact that 	�
=0. The ����x , t� can be
escribed at a first approximation in terms of stochastic variables. We recover here our result7

ccording to which, in the limit �dx ,dt→0�, the metric is divergent �singular� at each of its points
nd instants, which is the very intrinsic expression of the fractality of space-time. As a conse-

uence, the curvature is also explicitly scale-dependent and divergent when the scale intervals tend
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o zero. This property ensures the fundamentally non-Riemannian character of a fractal space-time
s well as the ability to characterize it in an intrinsic way.

Note that all the above developments have been made in the framework of Galilean scale
elativity, in which the fractal dimension is assumed to be constant �we call it Galilean because its
aws of scale transformation are similar to inertial laws of motion�. However it is worth briefly
ecalling here that a special scale relativity theory has been proposed,7,12 in which the transfor-
ation laws of the scale variables ln � take the form of a Lorentz group, so that the fractal

imension becomes itself a variable. In this framework, the differential elements dX can no longer
end to zero since they are limited at small scales by a minimal length scale, invariant under
ilations, that we have identified with the Planck length �P=��G /c3. It has a status similar to that
f c in motion special relativity, i.e., of an unreachable and impassable horizon rather than of a
utoff or a barrier: namely, it replaces the zero point since an infinite contraction would be needed
o obtain it from another scale. Combined with the role of scale transition played by the Compton
ength �in rest frame�, this interpretation of the Planck scale leads to introduce a set of fundamental
onstants C=ln��c /�P�=ln�mP /m� which are characteristic of elementary particles of mass m and
ompton length �c= � /mc. These constants play an essential role in structuring the geometry of

he geodesics families of the fractal space-time3 �to which we identify the particles, see next Sec.
I C�, in particular when accounting for the coupling between scale and motion that leads to the
mergence of gauge fields, which is the main subject of the present paper.

. Geodesics of a fractal space-time

. Infinity of geodesics

The next step in such a geometric approach consists of writing the geodesics equation. We
ake the conjecture that the description of quantum particles can be reduced to that of these

eodesics. Then their internal properties are the geometrical properties of the geodesics bundle
orresponding to their state, according to the various conservative quantities �prime integrals� that
efine them.

Any measurement performed on the “particle” is interpreted as a selection of the geodesics
undle linked to the interaction with the measurement apparatus �that depends on its resolution�
nd/or to the information known about it �for example, the which-way-information in a two-slit
xperiment3�.

Generalizing to space-times the definition of fractal functions, we have defined a fractal
pace-time as the equivalence class of a family of Riemannian manifolds, explicitly depending on
he scale variables. In such space-times, the geodesics equations are also scale dependent and the
umber of geodesics that relate any two events �or starts from any event� is infinite. We are
herefore led to adopt a generalized statistical fluidlike description where the deterministic velocity

��s� is replaced by a scale-dependent, fractal velocity field V��X��s ,ds� ,s ,ds�.

. Discrete symmetry breaking

Another consequence of nondifferentiability is the breaking of the invariance by reflexion of
he differential element ds. Indeed, for fractal functions f�s ,ds�, two generalized derivatives are
efined instead of one,

f+��s,ds� =
f�s + ds,ds� − f�s,ds�

ds
, f−��s,ds� =

f�s,ds� − f�s − ds,ds�
ds

, �9�

hat are transformed one into the other by the reflexion ds↔−ds. Applied to the space-time
oordinates, these two derivatives give two divergent velocity fields, V+

��x�s ,ds� ,s ,ds� and

−
��x�s ,ds� ,s ,ds�. Each of them can be in turn decomposed in terms of classical parts v+ and v−,
nd of fractal parts w+ and w−.

Then we define two “classical” derivatives d+ /ds and d− /ds, which, when they are applied to
�
, yield the “classical” velocity fields
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d+

ds
x��s� = v+

�,
d−

ds
x��s� = v−

�. �10�

ince there is no reason to privilegize one process rather than the other, we consider both �+� and
−� processes on the same footing, and we combine them in a unique twin process in terms of
hich the microscopic reversibility is recovered.7 A simple and natural way to account for this
oubling is to use complex numbers and the complex product.6 In the scale relativity framework,
his fundamental two-valuedness implied by nondifferentiability can be shown to be the origin of
he complex nature of the wave function of quantum mechanics.

. Quantum-covariant derivative

The next step of the scale-relativity program amounts to include in the construction of a
omplex derivative operator the various effects �described above� of nondifferentiability and
ractality,7

d̄

ds
=

1

2
�d+

ds
+

d−

ds
� −

i

2
�d+

ds
−

d−

ds
� . �11�

uch an operator will play the role of a covariant derivative �in Einstein’s general meaning given
o this word, i.e., as a tool of implementation of the principle of covariance, according to which the
undamental equations of physics should keep their form under transformations of the reference
ystem�. It can be used to define a complex four-velocity field,

V� =
d̄

ds
x� = V� − iU� =

v+
� + v−

�

2
− i

v+
� − v−

�

2
. �12�

he total derivative of a fractal function contains finite terms up to highest orders. For a constant
ractal dimension DF=2, a finite contribution only proceeds from terms up to second order. Since
nly stationary functions which do not depend explicitly on s are considered, one can show that
he complex covariant derivative operator reads in the relativistic case2,6

d̄

ds
= �V� + i

�c

2
�����. �13�

inally, using the strong covariance principle �extended to scales�, we are led to write a geodesics
quation by using this covariant derivative in terms of a freelike equation of motion,

d̄

ds
V� = 0. �14�

t this stage, the wave function �=eiS/m�c is defined as a mere re-expression of the complex action
. By introducing it in the above geodesics equation thanks to its relation to the velocity field

�= i��� ln �, it gives after integration the complex �standard� free Klein-Gordon equation,

c
2�����+�=0.2,3

Note that we consider in this paper only the full relativistic case in which both space and time
re fractal �which corresponds to energies larger than mc2, i.e., to scales smaller than the Compton
cale�. However it is worth briefly recalling that nonrelativistic quantum mechanics �which usually
pplies at intermediate scales� is recovered in our framework in terms of a three-dimensional
ractal space, with no fractal time. In this case a generalized Schrödinger equation for a complex
ave function is derived.7,3,6,17–19 The reason for such an asymmetry between space and time in

he scale-relativity description �and in quantum mechanics� is to be found in the quantum-classical
ransition, identified with the fractal-nonfractal transition �see Sec. II B�. Indeed, for a free particle
t is given by the Einstein-de Broglie scale ��= � / p�, whose time scale �= � /E is always smaller

2 2 2
han its corresponding space-scales �= � / p, because of the relation E = p +m �and therefore
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nally because of the existence of mass�. This implies a first transition from standard space-time
o fractal space, then at smaller scales a second transition to fractal space-time.7 These three
egimes manisfest themselves successively as classical, quantum nonrelativistic then quantum
elativistic mechanics.

. The Dirac equation as a geodesics equation in a fractal space-time

As recalled hereabove, the Klein-Gordon equation is obtained as a result of the ds↔−ds
ymmetry breaking. The consideration of a more general case where we add the breaking of the
ymmetries dx�↔−dx� and x�↔−x� leads to the appearance of bispinors which are solutions of
he Dirac equation.6

Following the method described in Sec. II C 3, these additional discrete symmetry breakings
ead to two new doublings of the velocity field and of the classical derivative. The four-velocity
eld has now eight components, which are used to construct a biquaternionic �complex-
uaternionic� velocity field. Then a biquaternionic covariant derivative operator may be built,
hich keeps once again the same form �Eq. �13�� as in the complex case,6 even though the
elocity field is now a biquaternion instead of a complex number.

The biquaternionic geodesics equation reads

d̄

ds
V� = �V� + i

�c

2
�����V� = 0. �15�

biquaternionic action is defined according to

�S = ��S dx� = − mcV��x�. �16�

he biquaternionic four-momentum can therefore be written P�=mcV�=−��S. Then we introduce
biquaternionic wave function, which is once again a mere reexpression of the action, as

�−1��� =
i

cS0
��S , �17�

hich yields for the biquaternionic four-velocity the expression

V� = i�c�
−1��� . �18�

his relation is destined to play an essential role in the subsequent construction of the non-Abelian
auge theory. Indeed, its specific form ��−1����, which is linked to the noncommutativity of
iquaternions, will allow a proper generalization to multiplets which permits in its turn a geomet-
ic construction of the non-Abelian charges in accordance with the standard Yang-Mills theory
Sec. IV�.

Then we replace in Eq. �15� the velocity field V� by its expression �Eq. �18��. We obtain the
otion equation as a third-order differential equation, which becomes after some calculations

����������−1�=0 and may therefore be integrated. This yields the Klein-Gordon equation for a
ree particle, �c

2�����+�=0, but now generalized to complex quaternions.5,6

Long-known properties of the quaternionic formalism �see, e.g., Refs. 20 and 21� can finally
e used to readily obtain the Dirac equation for a free particle, namely,

1

c

��

�t
= − �k ��

�xk − i
mc

�
�� , �19�

s a mere square root of the Klein-Gordon operator,5,6 which was itself derived from the geodesics
quation �15�. Then the isomorphism which can be established between the quaternionic and
pinorial algebrae22 allows us to identify the wave-function � to a Dirac spinor. In a Lagrangian

ormalism, the Dirac equation proceeds from the Lagrangian density,
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L = �̄�i���� − m�� , �20�

hich therefore becomes a direct consequence of the scale relativity principles.6 It is also easy to
erive the Pauli equation, since it is known that it can be obtained as a non-�motion�-relativistic
pproximation of the Dirac equation, while, in this approximation, Dirac bi-spinors become Pauli
pinors.

Let us conclude this section by a final remark: one of the consequences of this theory is that
t provides a physical picture of the nature of spin. In the scale-relativistic framework, the complex
ature of the wave function and the existence of spin have both a common origin, namely, the
undamental two valuedness of the derivative �in its generalized definition� coming from nondif-
erentiability. These two successive doublings are naturally accounted for in terms of algebra
oublings �see Appendix of Ref. 6�, i.e., of a description tool that jumps from real numbers R to
omplex numbers C=R2, then to quaternions H=C2. However, while the origin of the complex
ature of the wave function is linked to the total derivative �and therefore to proper time� through
he doubling d /ds→ �d+ /ds ,d− /ds�, the origin of spin is linked to the partial derivative with
espect to the coordinates through the doubling � /�x�→ ��+ /�x� ,�− /�x��, which finally leads to
he two valuedness of the wave function itself �→ ��1 ,�2�, characterizing a �Pauli� spinor.

Such a physical effect has naturally a consequence on the angular momentum �x�� /�x�

x�� /�x��, leading to the two directions in which spin can become locked. Moreover, numerical
imulations of the fractal geodesical curves �work in preparation� which are solutions of Eq. �15�
llow us to obtain a more specific picture of the spin as an internal angular momentum of these
eodesics. Indeed, these solutions are characterized by spiral structures at all scales, in agreement
ith Ord’s reformulation of the Feynman relativistic chessboard model in terms of spiral paths.23

hey also support our early models of emergence of a spinlike internal angular momentum in
ractal spiral curves of fractal dimension 2.7,11 We here recall briefly the argument: the angular
omentum Lz=mr2�̇ should classically vanish for r→0. But in the fractal spiral model, �̇→�
hen r→0 in such a way that r2�̇ remains finite when DF=2 �while it is vanishing for DF�2 and
ivergent for DF�2�. This result solves the problem of the apparent impossibility to define a spin
n a classical way both for an extended object and for a pointlike object, and provides another
roof of the critical character of the value DF=2 for the fractal dimension of quantum particle
aths �which can be derived from the Heisenberg relations�.

II. SCALE-RELATIVISTIC THEORY OF ELECTROMAGNETISM: SUMMARY

. Electromagnetic field and electric charges

Let us now briefly recall the results previously obtained in the case of a U�1� field.2–4

We consider here a special situation in which the set of the scale variables comes down to only
ne element, �=
 /�. This amounts to limit ourselves to the study of global scale transformations
contractions/dilations� in “scale-space.”

Because, according to the principle of scale relativity, this “scale-space” is fundamentally
onabsolute, the scale of a structure �internal to the fractal geodesics which are identified with a
particle”� is expected to change during a displacement in space-time. In other words, we now
onsider scale variables which become explicit functions of the coordinates, i.e., �=��x ,y ,z , t�.

This is analogous to the situation encountered in general relativity �GR� for a curved space-
ime: namely, in a parallel displacement, a vector V� is subjected to an increase �V�

=−���
� V� dx� �where the ���

� are the Christoffel symbols, i.e., the gravitational field�, due to the
eometric effects of curvature. Then, if one subtracts this geometric increase from its total varia-
ion dV�, one recovers the inertial part of the variation �see, e.g., Ref. 24�. This allows one to
efine the GR covariant derivative D as DV�=dV�−�V�=dV�+���

� V� dx�.
The same kind of behavior is true in the scale relativity framework, but with an essential

ifference: while the effects of curvature affect vectors, tensors, etc., but not scalars, the effects of
2
ractality begin already at the level of scalars, among which the “invariant” of length ds itself.
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Therefore, we expect in a displacement the appearance of a resolution change due to the
ractal geometry, that reads

�
 = −
1

q
A�
 dx�, �21�

.e., in terms of the scale ratio,

� ln � =
1

q
A� dx�. �22�

The introduction of the �1/q� term in this definition is an important point for the electromag-
etic case and also for its non-Abelian generalizations. Indeed, as we shall see in what follows, the
field” A� will be identified with an electromagnetic potential. Since ln � is dimensionless, we are
ed to divide the potential term by the “active” electric charge q, leaving a charge-independent
urely geometric contribution.

This leads to the appearance of a dilation field, according to the construction of a scale-
ovariant derivative,

D� = d� − �� = d� − A� dx�, �23�

here we have set �=q ln �. We finally obtain the partial derivative as the sum of the inertial and
f the geometric terms as

��� = D�� + A�. �24�

Let us now consider the action S for, e.g., an electron. In the framework of a space-time theory
ased on a relativity principle, which is here the case, its variation should be given directly by the
pace-time invariant ds, i.e., ��dS=0 becomes identical with a geodesics �Fermat� principle
�ds=0. But now the fractality of the geodesical curves to which the electron wave field is

dentified means that their proper length becomes a function of the scale variable, so that S
S���.

Therefore the differential of the action reads

dS =
�S

��
d� =

�S

��
�D� + A� dx�� , �25�

o that we obtain

��S = D�S +
�S

��
A�. �26�

his result provides us with a definition for the “passive” charge �on which the electromagnetic
eld acts� as2,3

e

c
= −

�S

��
. �27�

his is a second important point worth to be emphasized, since it will play an important role for
he generalization to non-Abelian gauge theories. In the standard theory, the charge is set from
xperiment, then it is shown to be related to gauge transformations, while the gauge functions are
onsidered to be arbitrary and devoid of physical meaning. In the scale relativity approach, the
harges are built from the symmetries of the “scale-space.” One indeed recognizes in Eq. �27� the
tandard expression that relates a conservative quantity to the symmetry of a fundamental variable
here, the relative resolution�, according to Noether’s theorem.

Note that, at this level of the construction of the theory, the charge is defined as a large scale

rime integral �conservative quantity�. But, once this result is obtained, a second step consists of
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tudying in detail the internal structures of the fractal geodesics �that are identified with the
harged particle�.3,7 These internal structures can afterwards be interpreted �at time scales smaller
han �= � /E�, in terms of virtual particle-antiparticle pairs, then of radiative corrections and of the
cale variation of the charge toward small scales, as described by the renormalization group
quations.

It is also remarkable that, in such a relativistic foundation of electromagnetism, we are led to
ntroduce in a separate way an active and a passive charge. This is also analogous to the intro-
uction in GR of an active gravitational mass and of a passive mass which are equal according to
he GR strong principle of equivalence. As a consequence, a scale-relativistic principle of equiva-
ence of these charges can be set �in order to account for the action-reaction principle in
oulomb’s law�. Under this principle, e=q and Eq. �27� becomes e2 /c=−�S /� ln �.

We have therefore established from first principles the form of the action in the classical
lectromagnetic theory, in particular the form of the particle-field coupling term �which was
ostulated in the standard theory�, as �see, e.g., Ref. 24�

dS = − mc ds −
e

c
A� dx�. �28�

ut this form has also a new geometrical interpretation. It means that, in this framework, an
ncrease of the length can come from two contributions: the first is the usual variation due to the

otion of the particle, while the second new contribution, which is of geometric nature, is a length
ilation of the internal fractal structures.

We are now able to write a geodesics equation minimizing the length invariant �i.e., the proper
ime�, which coincides with the least-action principle ��dS=0 �see Ref. 24�. The variation of the
bove action yields the Lorentz equation of electrodynamics,

mc
du�

ds
=

e

c
F��u�, �29�

here F��=��A�−��A� is the electromagnetic tensor field. We also recover the standard form for
he differential of the action as a function of the coordinates, namely,

dS = − �mcu� +
e

c
A��dx�. �30�

. Quantum electrodynamics

Let us proceed with a brief account of the generalization of this approach to quantum elec-
rodynamics. As recalled in Sec. II, in the scale relativistic approach to the quantum theory,3,7 the
our-velocity V� that describes a scalar particle is complex, so that its action is also a complex
umber and it now writes S=S�x� ,V� ,��. The wave function is defined from this action as �
exp�iS / � �.

Therefore Eq. �30� now takes the form

dS = − mcV� dx� −
e

c
A� dx�. �31�

The new relation between the wave function and the velocity reads

mcV� = i � D� ln � = i � �� ln � −
e

c
A�, �32�

o that we recover the standard QED covariant derivative as being nothing but the scale-covariant

erivative previously introduced, but now acting on the wave function,
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D� = �� + i
e

�c
A�. �33�

. Gauge invariance

Let us now consider a second internal structure of the fractal geodesics, that lies at a relative
cale 
�=���. Equation �22� becomes

� ln �� =
1

q
A�� dx�. �34�

et � be the ratio between the scales 
� and 
. In the framework of Galilean scale relativity �where
he product of two successive dilations � and �� is ��=�����, this ratio is simply �=�� /�. One
herefore finds

A�� = A� + q�� ln � , �35�

hich is the standard gauge invariance relation for the potential. But here a gauge transformation,
nstead of being arbitrary, is identified with a scale transformation of the resolution variable in
cale space. Under such a transformation, the wave function of the particle becomes

�� = � exp�− i
eq

�c
ln �� . �36�

s a consequence, the Lagrangian given by Eq. �31�, that includes the particle and field-particle
oupling terms, remains globally invariant under a gauge transformation.

When q=e �the electron charge�, we have e2=4���c, where � is the “fine structure con-
tant,” i.e., the electromagnetic coupling constant. The previous expression becomes in this case
�=� exp�−i4�� ln ��. In the framework of the special scale-relativity theory12 in which possible
cale ratios become limited �ln �� ln�mP /me�� because of the identification of the Planck length
cale with a lowest �invariant under dilations� scale, this expression has been used to suggest the
xistence of a relation between the mass and the charge of the electron.2–4

Let us conclude this review part by stressing that the scale-relativity theory of electromagne-
ism shares some features with the Weyl-Dirac theory,25,26 but that it has new and essential
ifferences. Namely, the Weyl theory considers scale transformations of the line element, ds

ds�=� ds, but without specifying any fundamental cause for this dilation. The variation of ds
hould therefore exist at all scales, in contradiction with the observed invariance of the Compton
ength of the electron �i.e., of its mass�.

In the scale-relativity proposal, the change of the line element comes from the fractal geom-
try of space-time, and it is therefore a consequence of the dilation of the scale variables �“reso-
utions”�. Moreover, the explicit effects of the dependence on resolutions is observable only below
he transition between scale dependence and scale independence, which is identified with the
ompton scale of the particle in its rest frame. This ensures the invariance, in this theory, of the
bserved electron mass.

V. NON-ABELIAN GAUGE FIELDS

. Scale-relativistic description

. Introduction

We now generalize the electromagnetic description to a geometric foundation of non-Abelian
auge theories, based upon the scale-relativity first principles. We consider that the internal fractal
tructures of the “particle” �i.e., of the family of geodesics of a nondifferentiable space-time� are

ow described in terms of several scale variables ���¯�x ,y ,z , t�, that generalize the single reso-
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ution variable 
. We write them for simplicity in units of �, and we assume that the various
ndices can be gathered into one common index: we therefore write the scale variables under the
implified form �� ��=0 to N�.

In the simplest case, ��=
�, where 
� correspond to the resolutions of the space-time coor-
inates X� ��=1–4�. However, other situations can be considered, since their true nature is
ensorial rather than vectorial, and since, in analogy with GR, general transformations can be
pplied to these variables, for example, the transformation 
�→ ln 
� may be particularly relevant
or such scale variables. In this paper, we shall not be more specific about the choice of the scale
ariables, in order to keep generality. Moreover, our aim here is mainly to relate in a general way
he scale-relativistic tools to the standard description of current gauge theories, so that we shall
resent only a general description of the scale transformations obtained, leaving to future works a
ore specific establishment of the final gauge group. However, even at this preliminary stage of

he analysis, we can show that in any case it contains at least an SU�2� subgroup, e.g., the
hree-dimensional rotations in scale-space which can be identified with the isospin transformation
roup �see Sec. IV A 4 below�.

. General scale transformations

Let us consider infinitesimal scale transformations. The transformation law on the �� can be
ritten in a linear way as

��� = �� + ��� = ���� + �������, �37�

here ��� is the Kronecker symbol, or equivalently,

��� = ������. �38�

et us now assume that the ��’s are functions of the standard space-time coordinates. This leads
s to generalize the scale-covariant derivative previously defined in the electromagnetic case as
ollows: the total variation of the resolution variables becomes the sum of the inertial one, de-
cribed by the covariant derivative, and of the new geometric contribution, namely,

d�� = D�� − ������ = D�� − ��W��
� dx�. �39�

ote that, here, this covariant derivative is similar to that of GR, i.e., it amounts to subtract the
ew geometric part in order to keep only the inertial part �for which the motion equation will
herefore take a geodesical, freelike form�. This is different from the case of the quantum-
ovariant derivative �Eq. �13��, which includes the effects of nondifferentiability by adding new
erms in the total derivative.

Recall that in the Abelian case, which corresponds to a unique global dilation, this expression
an be simplified since d� /�=d ln �=d�. We want also to note here that we have chosen to write
he new geometric contribution −������, i.e., with a minus sign, in order to recover the covariant
erivative of gauge theories in its standard form �this is actually an inessential sign ambiguity�.

In this new situation we are led to introduce “gauge field potentials” W��
� that enter naturally

n the geometrical frame of Eq. �39�. These potentials are linked to the scale transformations as
ollows:

���� = W��
� dx�. �40�

ne should remain cautious about this expression and keep in mind that these potentials find their
rigin in a covariant derivative process and are therefore not gradients �this is expressed by the use
f a difference sign ���� instead of d����. They formalize the coupling between displacements in
pace-time and transformations of the scale variables and play in Eq. �39� a role analogous to the
ne played in general relativity by the Christoffel symbols. It is also important to notice that the

��
� introduced at this level of the analysis do not include charges. They are functions of the space
nd time coordinates only. This is a necessary choice because our method generates, as we shall
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ee, not only the fields but also the charges from, respectively, the scale transformations and the
cale symmetries of the dynamical fractal space-time.

. Multiplets

After having written the transformation law of the basic variables �the ��’s�, we are now led
o describe how various physical quantities transform under these �� transformations. These new
ransformation laws are expected to depend on the nature of the objects to transform �e.g., vectors,
ensors, spinors, etc.�, which implies to jump to group representations.

In the case where the particle is a spin-1/2 fermion, it has been recalled in Eq. �18� that the
elation between the velocity and the spinor fields reads

V� = i��−1��� , �41�

here V� and � are complex quaternions and the constant �= � /mc is the Compton length of the
article.

However, bispinors are not a general enough description for fermions subjected to a general
auge field. Indeed, we consider here a generalized group of transformations which therefore
nvolves generalized charges. As a consequence of these new charges �whose existence will be
ully justified below and their form specified�, the very nature of the fermions is expected to
ecome more complicated. Experiments have indeed shown that new degrees of freedom must be
dded in order to represent the weak isospin, hypercharge and color. In order to account in a
eneral way for this more complicated description, we shall simply introduce multiplets �k, where
ach component is a Dirac bispinor. Therefore, as already remarked in previous presentations,3

hen the scale variables become multiplets, the same is true of the charges. As we shall see in
hat follows, in the present approach it is at the level of the construction of the charges that the

et generators enter.
In this case the multivalued velocity becomes a biquaternionic matrix,

V jk
� = i�� j

−1���k. �42�

he biquaternionic �therefore noncommutative� nature of the wave function �which is equivalent
o Dirac bispinors� plays here an essential role, as previously announced. Indeed, it leads to write
he velocity field as �−1��� instead of �� ln � in the complex case, so that its generalization to
ultiplets involves two indices instead of one. As we shall see in what follows, the general

tructure of Yang-Mills theories and the correct construction of non-Abelian charges will be
btained thanks to this result.

Therefore the action becomes also a tensorial two-index quantity,

dSjk = dSjk�x�,V jk
� ,��� . �43�

n the absence of a field, it is linked to the generalized velocity �and therefore to the spinor
ultiplet� by the relation

��Sjk = − mcV jk
� = − i � � j

−1���k. �44�

Now, in the presence of a field �i.e., when the second-order effects of the fractal geometry
ppearing in the right-hand side of Eq. �39� are included�, using the complete expression for ����,

���� = D��� − W��
� ��, �45�

e are led to write a relation that generalizes Eq. �25� to the non-Abelian case,

��Sjk =
�Sjk

���

���� =
�Sjk

���

�D��� − W��
� ��� . �46�
hus we obtain
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��Sjk = D�Sjk − ���Sjk

���

W��
� . �47�

We are finally led to define a general group of scale transformations whose generators are

T�� = ���� �48�

where we use the compact notation ��=� /����, yielding the generalized charges,

g̃

c
tjk
�� = ���Sjk

���

. �49�

his group is submitted to a unitarity condition, since, when it is applied to the wave functions,
�† must be conserved.

. Rotations in “scale-space”

In order to enlight the meaning of the new definition we have obtained for the charges, we
onsider in the present section a subsample of the possible scale transformations on intrinsic scale
ariables: namely, those which are built from the antisymmetric part of the gauge set �that can
herefore be identified as rotations in the scale space�. In this case the infinitesimal transformation
s such that

���� = − ���� Þ W��
� = − W��

� . �50�

herefore, reversing the indices in Eq. �47�, we may write

��Sjk = D�Sjk − ���Sjk

���

W��
� . �51�

aking the half-sum of Eqs. �47� and �51� we finally obtain

��Sjk = D�Sjk −
1

2
����Sjk

���

− ���Sjk

���
�W��

� . �52�

This leads to define the new charges,

g̃

c
tjk
�� =

�Sjk

����

=
1

2
����Sjk

���

− ���Sjk

���
� . �53�

e recognize here a definition similar to that of the angular momentum, i.e., of the conservative
uantity that finds its origin in the isotropy of space; but the space under consideration is here the
scale-space,” i.e., the space of the scale variables that must be added for a proper description of
fractal geometry of space-time. Therefore the charges of the gauge fields are identified, in this

nterpretation, with “scale-angular momenta.”
The subgroup of transformations corresponding to these generalized charges is, in three di-

ensions, a SO�3� group related to a SU�2� group by the homomorphism which associates to two
istinct 2�2 unitary matrices of opposite sign the same rotation. We are therefore naturally led to
efine a “scale-spin,” which we propose to identify to the simplest non-Abelian charge in the
urrent standard model: the weak isospin.

Coupling this SU�2� representation of the rotations in a three-dimensional sub-“scale-space”
o the U�1� representation of the global scale dilations �that describes the electromagnetism pro-
ess� analyzed in Sec. III, we are therefore able to give a physical geometric meaning to the
ransformation group corresponding to the U�1��SU�2� representation of the standard elec-

27,28
roweak theory.
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It is worth stressing here that the group of three-dimensional rotations in “scale-space” is only
subgroup of an at least four-dimensional rotation group �one scale variable for each space-time

oordinate�, and therefore at least SO�4�, and, more precisely, its universal covering group
U�2��SU�2�.

. Yang-Mills theory with the scale-relativity tools

. Simplified notation

For the subsequent developments, we shall simplify the notations and use only one index a
�� ,�� for the scale transformations: this index runs on the gauge group parameters, now written

a. For example, in three dimensions, this means that we replace the three rotations �23,�31,�12,
espectively, by �1 ,�2 ,�3. We obtain the following more compact form for the complete action:

dSjk = �D�Sjk −
g̃

c
tjk
a Wa��dx�, �54�

nd therefore

D�Sjk = − i � � j
−1D��k = − i � � j

−1���k +
g̃

c
tjk
a Wa

�. �55�

. Scale relativistic tools for Yang-Mills theory

The previous equations have used new concepts that are specific of the scale-relativity ap-
roach, namely �i� the scale variables ��, �ii� the biquaternionic velocity matrix V jk

� , and �iii� its
ssociated action Sjk. The standard concepts of quantum field theories, namely the fermionic field
, the bosonic field Wa

�, the charges g, the gauge group generators tjk
a and the gauge-covariant

erivative D� are here all of them derived from these new tools.
Let us show that we are thus able to recover the basic relations of standard non-Abelian gauge

heories �see, e.g., Ref. 29�. From Eq. �55�, we first obtain the standard form for the covariant
artial derivative, now acting on the wave-function multiplets,

D��k = ���k + i
g̃

�c
tk
jaWa

�� j . �56�

he �k’s do not commute together since they are biquaternionic quantities, but this is the case
either of tk

ja nor of Wa
�, so that � j can be set to the right as in the standard way of writing; from

he multiplet point of view �index j�, we simply exchange the lines and columns.
Now introducing a dimensionless coupling constant �g and a dimensionless charge g, such

hat

g2 = 4��g =
g̃2

�c
, �57�

nd redefining the dimensionality of the gauge field �namely, we replace Wa
� /��c by Wa

��, the
ovariant derivative may be more simply written under its standard form,

D��k = ���k + igtk
jaWa

�� j , �58�

here all of the three new contributions, g, tk
ja, and Wa

� have been constructed from the origin by
he theory and given a geometric meaning.
In the simplified case of a fermion singlet, it reads
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D� = �� + igtaWa
�. �59�

et us now derive the laws of gauge transformation for the fermion field. Consider a transforma-
ion �a of the scale variables. As we shall now see, the �a can be identified with the standard
arameters of a non-Abelian gauge transformation. Indeed, using the above remark about the
xchange of lines and columns, Eq. �44� becomes

− i � ���k = ��Sk
j� j �60�

nd allows us to recover by a different way Eq. �58�, from which we obtain the standard form for
he transformed fermion multiplet in the case of an infinitesimal gauge transformation ��a,

�k� = ��k
j − igtk

ja��a�� j . �61�

. Yang-Mills theory

We have now at our disposal all the tools of quantum gauge theories. The subsequent devel-
pments are standard ones in terms of these tools. Namely, one introduces the commutator of the
atrices ta �which have a priori no reason to commute�, under the form

tatb − tbta = ifab
c tc. �62�

herefore the ta’s are identified with the generators of the gauge group and the ifab
c ’s with the

tructure constants of its associated Lie algebra. The noncommutativity of the generators and the
equirement of the full Lagrangian invariance under the scale transformations finally imply the
ppearance of an additional term in the gauge transformation law of the boson fields. We obtain
his additional term by the standard method recalled below.

We replace into the Lagrangian of the fermionic field given by Eq. �20� the partial derivative

� by its covariant counterpart D� of Eq. �59�. The development of the covariant derivative leads
o the appearance of two terms, a free particle one and a fermion-boson coupling term,

L = �̄�i���� − m�� − g�̄��taW�
a � . �63�

et us now consider an infinitesimal scale transformation of the fermion field,

� → �e−ig��btb. �64�

he requirement of the full Lagrangian invariance under this transformation involves also the
oupling term. Let us consider the transformation of this term, except for the W� contribution,

�̄��ta� → �̄eig��btb��ta�e−ig��btb. �65�

ccounting for the fact that this is an infinitesimal transformation, it becomes

�̄�1 + ig��btb���ta��1 − ig��btb� = �̄��ta� + ig�̄����b�tbta − tatb�� . �66�

e replace the commutator tbta− tatb by its expression in Eq. �62�, and we obtain

�̄��ta� → �̄��ta� − g�̄����bfba
c tc� . �67�

hen the requirement of invariance could be fulfilled only provided the transformation of the field

�
a itself involves a new term �in addition to the Abelian term ����a�, i.e.,

W�
a → W�

a + �W�
a . �68�
he transformation of the full coupling term now reads
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�̄��taW�
a � → ���̄��ta�� − gfba

c ��b��̄��tc����W�
a + �W�

a � . �69�

eglecting the second order term in the elementary variations and using the fact that we can
nterchange the running indices, we see that this expression is invariant provided

�̄��ta��W�
a − gfbc

a ��bW�
c ��� = 0. �70�

ne general solution, independent of the ta’s, to the requirement of the Lagrangian invariance in
he non-Abelian case is therefore

�W�
a = gfbc

a ��bW�
c . �71�

inally, under an infinitesimal scale transformation ��b, the non-Abelian gauge boson field W�
a

ransforms as

W�
a → W��

a = W�
a + ����a + gfbc

a ��bW�
c . �72�

e recognize here once again a standard transformation of non-Abelian gauge theories, which is
ow derived from the basic transformations on the �a’s of Eq. �39�.

We can finish as usual the development of standard Yang-Mills theory. The gauge field self-
oupling term, − 1

4F��F��, is retained as the simplest invariant scalar that can be added to the
agrangian. It is defined as follows.

First, one defines the Yang-Mills field,

A� � taW�
a , �73�

hich yields the covariant derivative of Eq. �59� under the standard form,

D� = �� + igA�. �74�

hen, one establishes the analogue of the Faraday tensor of electromagnetism, by defining

F��
a � ��W�

a − ��W�
a − gfbc

a W�
b W�

c �75�

nd

F�� � taF��
a , �76�

hich gives

F�� = ��A� − ��A� + ig�A�,A�� . �77�

ne adds to the Lagrangian density L a kinetic term for the free Yang-Mills gauge field,

LA = − 1
4F��F��. �78�

his form is justified by the same reasons as in the standard theory �namely, it must be a scalar and
onstructed from the fields and not from the potentials, which are gauge dependent�. The Euler-
agrange equations therefore read

��F�� + ig�A�,F��� = 0. �79�

ntroducing the Yang-Mills derivative operator,

�� = �� + ig�A�, � , �80�

ne finally obtains the standard Yang-Mills equations which generalize to the non-Abelian case the

ource-free Maxwell equation,
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��F�� = 0. �81�

e are therefore provided with a fully consistent gauge theory obtained as a consequence of scale
ymmetries issued from a geometric space-time description.

. CONCLUSION

In the present paper our purpose has been to give a physical meaning to the various items
ntering the gauge field theories in the framework of scale relativity, extending to the non-Abelian
ase the results of previous works devoted to the understanding of the Abelian gauge-invariant
heory of electromagnetism.

We have so far reached an understanding of the nature of gauge transformations, in terms of
geometric space-time description. We decompose, for simplification purpose, the dynamics

merging from displacements in the fractal space-time of scale relativity into �i� transformations
ccuring on the scale variables in the framework of a nondirectly observable local “scale-space”
oupled to �ii� displacements in space-time. The scale variables become thus functions of the
pace-time coordinates.

The gauge charges appear as the generators of the set of scale transformations applied to a
eneralized action, therefore emerging from the scale symmetries of the dynamical fractal space-
ime. Considering the transformation laws verified by the scale variables, we are able to establish
ow the various physical quantities transform under these laws and to recover the standard gauge
heory form of these transformations.

We are now provided with a theory where the gauge group is no more defined through its only
ction on the physical objects, as in the standard framework, but as the transformation group of the
cale variables, and where the boson fields and the charges are given a physical meaning. We have
stablished the following correspondences between the standard gauge theory items and the scale-
elativistic tools:

�i� gauge transformations ↔ scale transformations in scale-space,
�ii� internal gauge space ↔ local “scale-space,”
�iii� gauge fields ↔ manifestations of the fractal and scale-relativistic geometry of space-

time �analogues of the Christoffel symbols issuing from the curvature of space-time in
general relativity�,

�iv� gauge charges ↔ conservative quantities, conjugate to the scale variables, originating
from the symmetries of the “scale space” and generators of the scale transformation
group.

Since, in the present study, our aim was to recover the standard description of current gauge
heory, we have, in the main part of the work, retained a general form for the scale variables.
owever we have shown that, whatever will be their more specific form, the gauge set will contain

n any case the U�1��SU�2� electroweak theory group as subset.
In future works, we shall study other sets of transformations that can be derived from the

resent study, where the scale variables will be given new precise definitions and which hopefully
ould yield hypercharge, color and maybe new developments in gauge field theory. We shall also
onsider in more details the issues of the fermion sectors, of the mass and charge renormalization
nd of the Higgs field.
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We consider three-dimensional �3D� flow equations inspired by the renormalization
group �RG� equations of string theory with a three-dimensional target space. By
modifying the flow equations to include a U�1� gauge field, and adding carefully
chosen De Turck terms, we are able to extend recent two-dimensional results of
Bakas to the case of a 3D Riemannian metric with one Killing vector. In particular,
we show that the RG flow with De Turck terms can be reduced to two equations:
the continual Toda flow solved by Bakas, plus its linearizaton. We find exact solu-
tions which flow to homogeneous but not always isotropic geometries. © 2006
American Institute of Physics. �DOI: 10.1063/1.2178585�

. INTRODUCTION

The Ricci flow of d-dimensional manifolds is interesting because of its relationship to the
enormalization group �RG� equations of generalized two-dimensional �2D� sigma models with
-dimensional target space. In two space-time dimensions, Ricci flow also provides a proof1 of the
niformization theorem,2 which states that every closed orientable two-dimensional manifold with
andle number 0,1, or �1 admits uniquely the constant curvature geometry with positive, zero, or
egative curvatures, respectively. Bakas3 has shown that the 2D Ricci flow equations in conformal
auge provide a continual analogue of the Toda field equations. Using this algebraic approach he
as able to write down the general solution.

The potential importance of a three-dimensional �3D� uniformization theorem is evident par-
icularly in the context of �super� membrane physics and three-dimensional quantum gravity where
ne should be able to perform path-integral quantization via a similar procedure to that in two
imensions. Unfortunately, there is no uniformization theorem in three dimensions, only a con-
ecture due to Thurston4,5.

Recently there has been speculation that Perelman6 has overcome some roadblocks in Hamil-
on’s program to prove the conjecture using the Ricci flow.7,8 It is therefore important to under-
tand in detail the properties of this flow.

In the following, we follow up on a suggestion by Bakas to use his 2D results in order to
nalyze the flow equations for 3D manifolds with a single Killing vector. This provides a tractable
idisuperspace approach which can be systematically studied in the context of the stringy flow
rst considered in Ref. 9. We will show that this flow reduces to the infinite dimensional gener-
lization of the Toda equation for the conformal factor of the invariant 2D submanifold plus a
inear equation for the scale factor of the extra dimension. Note that since the latter scale factor
epends on the coordinates of the invariant subspace, our manifolds are not simple direct products.
n addition, we will analyze two exact analytic solutions in detail and show that they have the
xpected behavior.

The paper is organized as follows. Section II reviews 2D flow equations and Bakas’ results,
10
ec. III reviews the stringy flow of Ref. 9, but with the De Turck modification. The De Turck

47, 032304-1022-2488/2006/47�3�/032304/6/$23.00 © 2006 American Institute of Physics
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odification contains a vector field �i, and we show that if we choose this vector field as a linear
ombination of two vector fields, one of which is proportional to the gradient of the dilaton field,
hen the dilaton can be decoupled from the flow of the remaining fields. In Sec. IV we discuss the
ow for a metric ansatz where one of the coordinates is in the direction of a Killing vector field,
nd the remaining part of the metric is in the form of a conformal 2D metric. We use the second
art of the De Turck vector field to preserve this form of the metric throughout the flow. In order
hat the flow is self-consistent, the U�1� vector field in the stringy flow must be fixed in terms of
he functions that occur in the metric tensor. The flow then reduces to two equations for the two

etric degrees of freedom. One of these is the continual Toda equation3 for the conformal factor
f the 2D geometry orthogonal to the Killing vector field, and the other, for the component of the
etric in the direction of the Killing vector field, is the linearization of the continual Toda

quation. Section V presents specific solutions and Sec. VI ends with conclusions and prospects
or future work.

I. THE 2D CASE

We now summarize the methodology and results of Bakas3 since they play a crucial role in the
ollowing. The Ricci flow equations, for arbirary 2-metric gAB are

�gij

�t
= − Rij + �i� j + � j�i. �1�

he last two terms �the so-called “De Turck” terms� incorporate the effects of all possible diffeo-
orphisms and can be chosen arbitrarily in order to simplify the equations and/or optimize con-

ergence. The original reason for the inclusion of these terms was to show that the bare Ricci
ow—without the Lie derivative term—satisfied short term existence. To do this, one had to break

he diffeomorphism invariance and this was accomplished by introducing a background symmetric

onnection �̄ jk
i , and the vector field �i

ªgjk�� jk
i − �̄ jk

i �, where the last term is the Christoffel con-
ection with respect to the metric gij. It was shown10 that the resulting flow was strongly parabolic
nd short time existence could be proved. It was also shown that any solution of the bare Ricci
ow was also a solution of the De Turck modified flow.

Bakas chose to work in the conformal gauge,

ds2 = gij dxi dxj = 1
2 exp����dx2 + dy2� . �2�

n this gauge there is no need to add De Turck terms and the flow takes the form of a nonlinear
heat equation:”

�

�t
e� = �2� . �3�

The Toda equations describe the integrable interactions of a collection of two-dimensional
elds �i�x ,y� coupled via the Cartan matrix Kij,

�
j

Kije
�j�x,y� = �2�i�x,y� . �4�

akas argues that Eq. �3� is a continual analogue of the above, with the Cartan matrix replaced by
he kernel,

Kij → K�t,t�� =
�

�t
��t,t�� . �5�

his leads to a general solution to �3� in terms of a power series around the free field expanded in
ath ordered exponentials. Each term in the perturbation series is itself a solution of the Ricci flow.

lthough the resulting expression is difficult to work with explicitly, it does provide a formal
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omplete solution to the 2D flow equations. Bakas showed that several solutions of the flow found
y other means can be written as continual Toda flows, and this provides some confidence in the
onvergence of the latter. One of these solutions is the so-called sausage model, and this 2D flow
ill appear in the 3D case discussed below. Furthermore, Bakas indicates that the continual Toda
ow, though formally a solution of the RG flow in 2D only to lowest order in the coupling
onstant, may be lifted at least in some cases to a solution of the flow with higher order terms.3

inally, it is clear that the solution will provide some insight into how uniformization works that
annot be easily seen via the more conventional discussion of the heat equation.

In the next sections we will show that a similar formal solution can also be found for three-
imensional metrics with at least one Killing field.

II. 3D FLOW EQUATIONS

We consider here a generalization of the Ricci flow, in which, besides the metric gij, there are
dditional fields which flow, consisting of a dilaton �, a gauge two-form potential Bij with field
trength Hijk and finally, a U�1� gauge field with potential 1-form Ai and corrresponding field
trength Fij which couples as a Maxwell-Chern-Simons theory. Including De Turck terms plus
auge terms for the flow of the nonmetric fields, the flow is

ġij = − 2�Rij + 2��ij − ��FFi
kFjk +

�H

4
HiklHj

kl�� + L�gij , �6�

Ȧi = − �e2�� j�e−2�Fi
j� +

e�F

2
�i

jkFjk� + L�Ai + �i	 , �7�

Ḃij = e2��k�e−2�Hk
ij� + L�Bij + �i	 j − � j	i, �8�

�̇ = − 
 + �� − ����2 +
�F

2
F2 +

�H

12
H2 + L�� . �9�

n the above, the terms in the Lie derivatives L� are the De Turck terms. The terms containing 	
nd 	i appear for similar reasons to the De Turck terms: that is, they correspond to arbitrary gauge
ransformations on the gauge fields with potentials Ai and Bij. By choosing the gauge and coor-
inate transformation terms judiciously, we are able to simplify the equations considerably.

This flow is motivated by two considerations. First, as shown in Ref. 9, all of the Thurston
eometries are solutions of the equations of motion of this theory for various values of the
arameters 
, �H, �F, e, as well as the other fields. In particular, the addition of the Maxwell term
lone �e=0� yields S2�E1, H2�E1 and Sol as solutions. Moreover, there exists a generalized
irkhoff theorem which guarantees that these are the only solutions when �=constant and A
0. With e�0, one finds that the remaining Thurston geometries Nil and SL�2,R� are also

olutions. As argued in Ref. 9 it seems plausible that these are the only solutions, but to date no
igorous proof exists.

The second motivation comes from string theory. In particular, the RG flow for a nonlinear
igma model with a four-dimensional �4D� Kaluza-Klein target space resembles the flow above,
ith the Ai potential originating as the twist potential of the 4D Kaluza-Klein metric. That is, the

dea is to introduce an extra fourth dimension y, with the gyi components of the metric and the Biy

omponents of the antisymmetric tensor field proportional to each other. The gyy component of the
etric is a constant, and all the remaining components of the various fields are independent of the

y coordinate. The Chern-Simons term arises from the presence of such a term in the definition of
he field strength Hijk in terms of the Bij and Byj potentials. The details of this are being investi-

11
ated elsewhere.
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We choose �i=ki+2�i� and let 	=−2Aj�
�j and 	i=2Bji�

�j, where ki is as yet arbitrary. With
hese choices the dilaton is completely eliminated from the flow equations for the metric and
auge fields,

ġij = − 2�Rij − ��FFi
kFjk +

�H

4
HiklHj

kl�� + Lkgij , �10�

Ȧi = − �� jFi
j +

e�F

2
�i

jkFjk� + LkAi + �i , �11�

Ḃij = �kH
k
ij + LkBij + �i j − � ji, �12�

�̇ = − 
 + �� − 2����2 +
�F

2
F2 +

�H

6
H2 + Lk� . �13�

he arbitrary vector ki and gauge parameters  ,i indicate that we are still free to add further De
urck and gauge terms to the equations. We will use this freedom later to simplify the equations

hat result from a particular ansatz.

V. A PARTICULAR CASE WITH ONE KILLING VECTOR FIELD

Henceforth we set Bij identically equal to 0, which is consistent with the flow equations. We
lso consider the case e=0 �no Chern-Simons term�. We assume the metric to have a single Killing
ector and to be manifestly hypersurface orthogonal �i.e., diagonal�,

ds2 = e��dx2 + dy2� + e� dw2. �14�

e also choose the following ansatz for the vector potential:

Ai = �e�/2,0,0� . �15�

Consistency of the above ansatz requires that the flow equations preserve the diagonal nature
f the metric. It turns out that this can be accomplished by choosing the vector field ki as

ki = − 1
2�i� , �16�

With these choices the flow equations simplify to

ġxx = e��̇ = �2� + 1
2 �1 + �F���x��2,

ġyy = e��̇ = �2� + 1
2 �1 + �F���y��2,

ġxy = 0 = 1
2 �1 + �F��x��y� , �17�

Ȧx = Ȧy = 0,

Ȧw = � f�
2e�/2 + �1 + �F�����2. �18�

n the above, �2 denotes the flat space Laplacian.
We now fix �F=−1, in which case the flow boils down to two simple partial differential
quations. The first is
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�te
� = �2� , �19�

hich is the “continual Toda eqn” from Ref. 3. The other flow is the linearization of the continual
oda flow,

e��te
−�/2 = − �2e−�/2. �20�

To the best of our knowledge, there is no simpler flow constructed from the Ricci-De Turck
ow alone, without other fields, which can self-consistently flow the metric preserving the mani-
estly static form. Note that for any given solution � of �19�, there exists a corresponding solution
or �,

e−�/2 = ��x,y,− t� + 
�x,y� , �21�

here 
�x ,y� is any harmonic function on the x ,y subspace, i.e., satisfying, �2
=0.

. EXACT SOLUTIONS OF THE FLOW

We first examine a nontrivial flow, namely the sausage solution of Bakas3 �also called the
ossineau flow in the mathematical literature8�. This is an exact solution of the continual Toda
quation of the form

e� =
2 sinh�2�t�

��cosh�2�t� + cosh�2y��
. �22�

n this case,

e−�/2 = ln	 2 sinh�2�t�
��cosh�2�t� + cosh�2y��

	 , �23�

here we have eliminated an imaginary term from e−�/2 by using the freedom to shift by a
armonic function.

In the limit as t→�, e�→2/�, and e�→ ln�2/��−2, so that the Ricci tensor goes to zero and
n this limit, the geometry is flat. On the other hand, in the limit t→0+, e�→2t / cosh2 y. In this
imit, we find that the Ricci scalar R
1/ t. So, if we flow the highly curved nonhomogeneous

etric with initial value at t=��0,

ds2 = �ln
2�

cosh2 y
�−2

dw2 +
2�

cosh2�y�
�dx2 + dy2� , �24�

e end up at t→� with the flat metric. This is consistent with Thurston’s conjecture.
The second type of solution is of the Liouville type. We set

e��x,y;t� = T�t�e��x,y�. �25�

ow for t�0, we find that

T�t� = �t ,

�26�
�2� − �e� = 0,

here � is a separation constant. The second of the above equations is the Liouville equation, so
he two-dimensional part of the metric, e��dx2+dy2�, has constant negative curvature �for t�0�.

Again we choose e−�/2=�, so that

e� = �ln �t + ��x,y��−2. �27�

he separation constant ln � can be absorbed into � without loss of generality.

Hence the metric is
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ds2 = �ln t + ��x,y��−2 dw2 + �te��x,y��dx2 + dy2� . �28�

he quantity ��x ,y� is a solution of the Liouvile equation.
If t�0, then the flow starts from some highly curved nonhomogeneous metric near t=0. As

→�, we have

RAB 
 −
1

2t
gAB,

�29�
Rww 
 0,

ith A ,B , ¯ =x ,y. Hence, the geometry is asymptotically that of the homogeneous, but aniso-
ropic geometry H2�E1.

Thus the flow is consistent with the Thurston conjecture.

I. CONCLUSIONS

We have shown that the modified Ricci flow equations �9� for 3D metrics with at least one
illing vector can be integrated in precisely the same manner as the 2D equations, at least for the

pecial case �F=−1. In addition to extending this analysis to other values of the parameters in the
ction, and hence to other topologies, it is interesting to speculate whether these techniques could
ork for more general 3D metrics.

Consider, without loss of generality, a diagonal metric

ds2 = e�1�x;t��dx1�2 + e�2�x;t��dx2�2 + e�3�x;t��dx3�2, �30�

here the functions �i�x ; t� depend on all three coordinates xi. The resulting bare Ricci flow is
gain not manifestly elliptic, and the equations have non-trivial off-diagonal terms on the right-
and side that make direct integration difficult. Since in three dimensions any metric can be made
iagonal with a suitable coordinate transformation, it is reasonable to assume that there exists a
odified flow that ensures that diagonal metrics evolve into diagonal metrics. We have as yet not

ucceeded in constructing this modified flow, but if it did exist, it is possible that the resulting
hree flow equations for each of the three scale factors would take a form similar to what we have
ound above, albeit with nontrivial coupling. It may therefore provide a basis for solving the 3D
ow equations in a more general setting.
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We study the Casimir effect for free massless scalar fields propagating on a two-
dimensional cylinder with a metric that admits a change of signature from Lorent-
zian to Euclidean. We obtain a nonzero pressure, on the hypersurfaces of signature
change, which destabilizes the signature changing region and so alters the energy
spectrum of scalar fields. The modified region and spectrum, themselves, back react
on the pressure. Moreover, the central term of diffeomorphism algebra of corre-
sponding infinite conserved charges changes correspondingly. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2174291�

. INTRODUCTION

The Casimir effect is usually regarded as the most well-known manifestation of vacuum
uctuations in quantum field theory. In this effect, the presence of reflecting boundaries in the
uantum vacuum alters the zero-point modes of the quantized fields, and results in the shifts of the
acuum expectation values of quantities such as energy densities and stresses. These shifts lead to
acuum forces which act on the reflecting boundaries. The particular features of these forces
epend on the nature of the quantum field, the type of space-time manifold and its dimensionality,
he boundary geometries and the specific boundary conditions imposed on the field. Since the
riginal work by Casimir in 19481 many theoretical and experimental works have been done on
his problem.2–11 In general, there are several approaches to calculate the Casimir energy: mode
ummation,2 Green’s function method,4 heat kernel method,8 along with appropriate regularization
chemes such as point separation,12,13 dimensional regularization,14 and zeta function
egularization.15–19 Recently, general new methods have been obtained to compute the renormal-
zed one-loop quantum energies and energy densities.20,21

On the other hand, signature changing space-times have recently been of particular impor-
ance as the specific geometries with interesting physical effects. The original idea of signature
hange was due to Hartle, Hawking, and Sakharov.22 This interesting idea would make it possible
o have both Euclidean and Lorentzian metrics in path integral approach to quantum gravity. Later,
t was shown that the signature change may happen in classical general relativity, as well.23 There
re two different approaches, continuous and discontinuous, to study the signature change in
lassical general relativity.23,24 In the continuous approach, the signature of metric changes con-
inuously in passing from Euclidean to Lorentzian region. Hence, the metric becomes degenerate
t the border of these regions. In the discontinuous approach, however, the metric becomes non-
egenerate everywhere and is discontinuous at the border of Euclidean and Lorentzian regions.

The issue of propagation of quantum fields on signature-changing space-times has also been
f some interest.24 For example, Dray et al. have shown that the phenomenon of particle produc-
ion may happen for scalar particles propagating in a space-time with heterotic signature. They

�Author to whom correspondence should be addressed. Electronic mail: f.darabi@azaruniv.edu
�
Electronic mail: rezakord@ipm.ir
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ave also obtained a rule for propagation of massless scalar fields on a two-dimensional space-
ime with signature change. Dynamical determination of the metric signature in space-time of
ontrivial topology is another interesting issue which has been studied in Ref. 25

To the authors knowledge, no attempt has been done to study the Casimir effect within the
eometries with signature change. A relevant work to the present paper is Ref. 26. In this work, a
odel of free massless scalar fields on a two-dimensional cylinder with a signature-changing strip

as been studied and shown that the energy spectrum depends on the strip’s width and differs from
he ordinary bosonic spectrum, for low energies. Moreover, It was shown that the diffeomorphism
lgebra of the corresponding infinite conserved charges is different from “Virasoro” algebra and
pproaches it at higher energies.

In this paper, we study the Casimir effect for the free massless scalar field propagating on the
bove two-dimensional signature-changing cylinder. We will obtain a nonzero pressure on the
ypersurfaces of signature change which leads to instability in the signature-changing region.
herefore, depending on situation, Euclidean or Lorentzian region will grow or shrink, and this
ill alter the energy spectrum and the diffeomorphism algebra discussed above.

Meanwhile, a lot of topics related to the Casimir effect have been explored in the context of
tring theory.10,27 The above two-dimensional signature-changing cylinder is topologically similar
o a closed string, with two Euclidean and Lorentzian parts, propagating in a distributional way in
he two-dimensional target space, and the discontinuous nature of the model in classifying Euclid-
an and Lorentzian solutions with discrete symmetry motivates one to study it in the context of
rbifolds.26,28 On the other hand, a closed string with two Euclidean and Lorentzian parts may be
f some importance in the context of D-branes and related conformal field theories. Therefore,
aking into account this similarity, the study of Casimir effect in our model may have nontrivial
mpacts on closed strings or D-branes.

In general, we believe the idea of Casimir effect in signature-changing space-times is novel
nd interesting. In the present paper this effect is inevitably limited to two-dimensional space-
ime, which may be relevant to the study of closed bosonic strings with Euclidean and Lorentzian
arts. But, further study of Casimir effect in 3+1 dimensional signature changing space-times may
ave more important physical implications, especially at early universe.29

I. CASIMIR STRESS TENSOR IN SIGNATURE CHANGING SPACE-TIME

We consider a free massless scalar field � which propagates on a two-dimensional manifold
M =R�S1 �the circle S1 represents space and the real line R represents time� with the following

etric:

ds2 = − d�2 + g���d�2, �1�

here � is timelike coordinate and � is a periodic spacelike coordinate with the period L �we
ssume L is the circumference of the circle with radius r�, and g��� is a periodic function of �,
hich takes +1 for Lorentzian and −1 for Euclidean regions �notice that in this region the metric
ill be g��=diag�−1,−1��

g��� = �− 1 0 � � � �0 + mod L ,

+ 1 �0 � � � L + mod L ,
� �2�

here �=0, L, and �=�0 are the hypersurfaces of signature change. We assume the scalar field to
atisfy specific junction conditions at these hypersurfaces. In the literature of signature change
here are two kinds of junction conditions:

i� � and its derivatives are continuous across �=�0, �Dray et al.�,24

ii� � is continuous but its derivatives vanish across �=�0, �Hayward�.23

In this paper, we assume the first junction conditions as the appropriate boundary conditions

t each region. We assume the continuity of � as well as its derivatives at all times � as
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��E��,�� = ��L��,��,

�3�
����E��,�� = � − 	���L��,��,

here � ,�� are the hypersurfaces of signature change, and 	=	+ /	− takes the values ±1 according
o the orientation of the coordinates � and � in both regions of different signatures. Assuming
+= +1 and 	−= +1 for Euclidean and Lorentzian regions, respectively, the junction conditions �3�
re written as26

��E�0 = ��L�L, ��E��0
= ��L��0

,

�4�
����E�0 = � − ���L�L, ����E��0

= � − ���L��0
.

y solving the wave equations,

���
2 + ��

2��E��,�� = 0,

�5�
���

2 − ��
2��L��,�� = 0,

n both Euclidean and Lorentzian regions and imposing the junction conditions �4�, we obtain
ontrivial solutions for �
, provided the continuous spectrum 
 satisfies the following “quantiza-
ion condition”26

cosh 
�0 cos 
��0 − L� = 1. �6�

The spectrum 
 in this model is obtained by solving the quantization condition which leads to
eal and �0-dependent values. It differs from ordinary spectrum �with pure Lorentzian signature� at
ow energies and coincides with the integer roots of cos 
�L−�0�, at high energies. Therefore,
sum over energies” approaches “sum over integers” at higher energies.26� It is shown in Ref. 26,
hat due to the same time evolution of the functions �


E and �

L one can construct a set of real

istributional orthogonal and complete solutions on the arbitrary �=const hypersurface as

�
��,�� = �+�

E��,�� + �−�


L��,�� , �7�

here �

E = ��


E +�−

E �, �


L = ��

L +�−


L �, and �+ ,�− are Heaviside distributions with support in
uclidean and Lorentzian regions, respectively. �Heaviside distributions have the property d�±

±, where  is the hypersurface Dirac distribution with support on the hypersurfaces of signature
hange.� The solutions �
 are then expanded as normal mode expansions.26

One can also obtain the following expressions for the components of energy-momentum
ensors associated with the scalar field ��� ,�� in both Euclidean and Lorentzian regions26

T00
E = �����

E�2 − ����E�2�, T01
E = 2���

E���E,

�8�
T00

L = �����
L�2 + ����L�2�, T01

L = 2���
L���L.

y introducing new coordinates �+
E, �−

E in the Euclidean region, and �+
L, �−

L in the Lorentzian one
s

�+
E = � + i�, �+

L = � + � ,

�9�
�−

E = � − i�, �−
L = � − � ,
e obtain
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T++
E = �T00

E − iT01
E �/2, T++

L = �T00
L + T01

L �/2,

T−−
E = �T00

E + iT01
E �/2, T−−

L = �T00
L − T01

L �/2, �10�

T+−
E = T−+

E = 0, T+−
L = T−+

L = 0.

hen by substituting the normal mode expansions of the solutions �
 we obtain26

T++
E = 1

2 ����� − i�����2 = 2�


�

f̃

E�+ � f̃
�

E �+ ��̃
�̃
�
† ,

T−−
E = 1

2 ����� + i�����2 = 2�


�

f̃−

E �− � f̃−
�

E �− ��̃
�̃
�
† ,

�11�
T++

L = 1
2 ����� + �����2 = 2�



�

f̃

L�+ � f̃
�

L �+ ��̃
�̃
�
† ,

T−−
L = 1

2 ����� − �����2 = 2�


�

f̃−

L �− � f̃−
�

L �− ��̃
�̃
�
† ,

here �̃† and �̃ are the creation and annihilation operators, respectively, and �the scalar product
�
 ,�

 has been defined in Ref. 26�

f̃

E�±� = ��a/b�
 + 1�exp�− i
�±

E�/�4�	�
,�

 ,

�12�
f̃


L�±� = ��c/b�
 + �1/b�−
�exp�− i
�±
L�/�4�	�
,�

 ,

ith �a /b�
, �c /b�
, �1/b�
 given by26

�a/b�
 =
sin 
��0 − L�

cosh 
�0 + sinh 
�0 − cos 
��0 − L�
,

�c/b�
 =
�1 + i�exp�2�i
��sinh 
�0 + cosh 
�0 − exp�i
��0 − L���

2�cosh 
�0 + sinh 
�0 − cos 
��0 − L��
, �13�

�1/b�
 =
�1 − i�exp�− 2�i
��sinh 
�0 + cosh 
�0 − exp�− i
��0 − L���

2�cosh 
�0 + sinh 
�0 − cos 
��0 − L��
.

otice that in obtaining these results we have imposed the quantization condition �6�.
Now, substituting the normal mode expansions �11� into Eqs. �10� leads to

T01
E = i�T++

E − T−−
E � = 2i�



�

� f̃

E�+ � f̃
�

E �+ � − f̃−

E �− � f̃−
�

E �− ���̃
�̃
�
† ,

T00
L = T++

L + T−−
L = 2�



�

� f̃

L�+ � f̃
�

L �+ � + f̃−

L �− � f̃−
�

L �− ���̃
�̃
�
† , �14�

T01
L = T++

L − T−−
L = 2� � f̃


L�+ � f̃
�
L �+ � − f̃−


L �− � f̃−
�
L �− ���̃
�̃
�

† .



�
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II. VEV OF CASIMIR STRESS TENSOR

The poisson bracket structure for � and its conjugate momentum � is given by equal time
elations

�����,����� = �� − ��� ,

�15�
�����,����� = �����,����� = 0.

y substituting the normal mode expansions of � and � together with the expansion of ��
��� we obtain26

��̃
,�̃
�
† � = 

+
�,0. �16�

f we assume �0L
 to be the vacuum state for the signature changing cylinder R�S1 with circum-
erence L, then

�̃
�0L
 = 0,

	0L��̃

† = 0, �17�

	0L��̃
�̃
�
† �0L
 = 

+
�,0

nd we obtain the following vacuum expectation values for the components of energy momentum
ensors:

	0L�T00
E �0L
 = 2�



�

� f̃

E�+ � f̃
�

E �+ � + f̃−

E �− � f̃−
�

E �− ��

+
�,0,

	0L�T01
E �0L
 = 2i�



�

� f̃

E�+ � f̃
�

E �+ � − f̃−

E �− � f̃−
�

E �− ��

+
�,0,

	0L�T00
L �0L
 = 2�



�

� f̃

L�+ � f̃
�

L �+ � + f̃−

L �− � f̃−
�

L �− ��

+
�,0,

�16�
	0L�T01

L �0L
 = 2�


�

� f̃

L�+ � f̃
�

L �+ � − f̃−

L �− � f̃−
�

L �− ��

+
�,0,

	0L�T11
E �0L
 = − 	0L�T00

E �0L
 ,

	0L�T11
L �0L
 = 	0L�T00

L �0L
 .

ow, by the following normalization,

4�	�
,�

 = 1
2 �L − �0� , �19�

nd inserting it into Eqs. �12� and then applying the delta function 
+
�,0 we obtain

	0L�T00
E �0L
 =

2

L − �0
�

=0

� ��a

b
�




+ 1���a

b
�

−


+ 1�
 ,

E E
	0L�T01�0L
 = 	0L�T10�0L
 = 0,
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	0L�T11
E �0L
 = − 	0L�T00

E �0L
 ,

�20�

	0L�T00
L �0L
 =

2

L − �0
�

=0

� �� c

b
�




+ �1

b
�

−

��� c

b
�




+ �1

b
�

−

�*


 ,

	0L�T01
L �0L
 = 	0L�T10

L �0L
 = 0,

	0L�T11
L �0L
 = 	0L�T00

L �0L
 .

y using the Heaviside distribution �+ ,�− we may write

	0L�T00�0L
 = �+	0L�T00
E �0L
 + �−	0L�T00

L �0L
 ,

�21�
	0L�T11�0L
 = �+	0L�T11

E �0L
 + �−	0L�T11
L �0L
 .

he normal ordered expressions are then as follows:

	0L�:T00:�0L
 = �+	0L�:T00
E :�0L
 + �−	0L�:T00

L :�0L
 ,

�22�
	0L�:T11:�0L
 = �+	0L�:T11

E :�0L
 + �−	0L�:T11
L :�0L
 ,

uch that

	0L�:T00
E :�0L
 = 	0L�T00

E �0L
 − limL�→�	0L��T00
E �0L�
 ,

	0L�:T00
L :�0L
 = 	0L�T00

L �0L
 − limL�→�	0L��T00
L �0L�
 ,

�23�
	0L�:T11

E :�0L
 = 	0L�T11
E �0L
 − limL�→�	0L��T11

E �0L�
 ,

	0L�:T11
L :�0L
 = 	0L�T11

L �0L
 − limL�→�	0L��T11
L �0L�
 ,

here the second terms are introduced to remove the ultraviolet divergences in the first terms.2

ince we have Euclidean and Lorentzian quantities in the second terms, then the state �0L�
 should
ave the property: �0L�
→ �0
 as L�→�, such that �0
 is the vacuum state of an R�R signature
hanging space-time. The Casimir energy is measured with respect to this state.

V. REGULARIZATION OF VEV OF CASIMIR STRESS TENSOR

Because both terms on the right-hand side �rhs� of the above equations are individually
ivergent they must be subtracted by careful analysis. By introducing the cutoff to the sums in 00
omponents we obtain

	0L�T00
E �0L
cutoff =

2

L − �0
�

=0

� ��a

b
�




+ 1���a

b
�

−


+ 1�
e−�
,

�24�

	0L�T00
L �0L
cutoff =

2

L − �0
�

=0

� �� c

b
�




+ �1

b
�

−

��� c

b
�




+ �1

b
�

−

�*


e−�
.

he 11 components will be easily obtained in terms of 00 components through Eqs. �20�. We now

reak down each sum into two separate sums,
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	0L�T00
E �0L
cutoff =

2

L − �0
�


�N
��a

b
�




+ 1���a

b
�

−


+ 1�
e−�


+
2

L − �0
�

=N

� ��a

b
�




+ 1���a

b
�

−


+ 1�
e−�
,

�25�

	0L�T00
L �0L
cutoff =

2

L − �0
�


�N
�� c

b
�




+ �1

b
�

−

��� c

b
�




+ �1

b
�

−

�*


e−�


+
2

L − �0
�

=N

� �� c

b
�




+ �1

b
�

−

��� c

b
�




+ �1

b
�

−

�*


e−�
,

here N is the root of quantization condition so that for any 
�N the spectrum almost coincides
ith integer values. As is shown in Fig. 2 in Ref. 26, it is easily seen from quantization condition

hat whatever can �0 be, the real spectrum of 
 approaches the integer one, generally at higher
alues of N. Hence, we assume N to be sufficiently large so that the first sums over 
�N be
finite� sums over real values and the second sums over 
�N be almost �infinite� sums over
nteger values. Thus, we may discard the cutoff e−�
 from the finite sums and keep them just for
nfinite sums.

Now, we consider the second sum in 	0L�T00
E �0L
cutoff. Since each of the terms ��a /b�
+1� and

�a /b�−
+1� approaches 1 for large 
 �because �a /b�±
 almost vanish for large 
� then this sum
oes like

2

L − �0
�

=N

�


e−�
. �26�

n the same way for 	0L�T00
L �0L
cutoff, it is easily shown that each of the terms ��c /b�
+ �1/b�−
�

nd ��c /b�
+ �1/b�−
�* approaches 1 for large integerlike values 
�N, and the second sum goes
ike

2

L − �0
�

=N

�


e−�
, �27�

s well. Therefore, we calculate this sum for both regions. We know that 
�N denotes for
ntegers, hence we redefine 
=N to �integer� �=0. To this end, we note that 
�N indicates, by
efinition, the integer roots of cos 
�L−�0�=0 in the quantization condition, from which we
btain 
� �n+1/2� / �L−�0�� and N= �n+1/2� / �L−�0��. This is equal to n= �N�L−�0� /��− 1

2
ith integer n. Therefore, we may define �=n− �N�L−�0� /��+ 1

2 , with �=0,1 ,2 , . . . . We also
btain 
 in terms of � as 
=N+ ��� / �L−�0��.

Therefore, the sum �26� or �27� in Euclidean and Lorentzian regions is written as

2

L − �0
�
�=0

� �N +
��

L − �0
�e−��N+���/�L−�0��,

� −2��n/L 2��/L 2��/L −2
hich, after some calculations, leads to �we have used �n=0ne =e �e −1� �Ref. 2��
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2

L − �0
�
�=0

� �N +
��

L − �0
�e−��N+���/�L−�0�� =

2

L − �0
e−�N

�N +
��

L − �0
�e−��N+���/�L−�0�� − N

�e−��N+���/�L−�0�� − 1�2 .

�28�

irst, we focus on the Euclidean calculations. By using Eqs. �22� and �23� for the Euclidean region
e find

�+	0L�:T00
E :�0L
 = �+� 2

L − �0
��


=0

N−1 ��a

b
�




+ 1���a

b
�

−


+ 1�


+ e−�N

�N +
��

L − �0
�e−��N+���/�L−�0�� − N

�e−��N+���/�L−�0�� − 1�2 �
−

2

L − �0
��


=0

N−1


 + lim
L→�

e−�N

�N +
��

L − �0
�e−��N+���/�L−�0�� − N

�e−��N+���/�L−�0�� − 1�2 �� , �29�

r

�+� 2

L − �0
��


=0

N−1 ���a

b
�




+ 1���a

b
�

−


+ 1� − 1�
�
+

2

L − �0
�e−�N

�N +
��

L − �0
�e−��N+���/�L−�0�� − N

�e−��N+���/�L−�0�� − 1�2

− lim
L→�

e−�N

�N +
��

L − �0
�e−��N+���/�L−�0�� − N

�e−��N+���/�L−�0�� − 1�2 �� , �30�

here the finite sum has appeared without cutoff. In obtaining �
=0
N−1
 in the second line of �29�,

e have used limL→��a /b�±
� lim�0→��a /b�±
=0 in the finite sum. We now expand the

e−�N

�N +
��

L − �0
�e−��N+���/�L−�0�� − N

�e−��N+��/L−�0� − 1�2

erms in the second bracket of �30� about �=0. After some calculation we obtain

2

L − �0
�e−�N

�N +
��

L − �0
�e−��N+���/�L−�0�� − N

�e−��N+���/�L−�0�� − 1�2 �
=

2

�2�
− ��2N2

2
− �N + 1�� �

6�L − �0�2 +
13

6�L − �0�
N� −

N2

�
�1 − �N� .
ubstituting this result into the above bracket and taking �→0 leads to
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2

L − �0
�e−�N

�N +
��

L − �0
�e−��N+���/�L−�0�� − N

�e−��N+���/�L−�0�� − 1�2 − lim
L→�

e−�N

�N +
��

L − �0
�e−��N+���/�L−�0�� − N

�e−��N+���/�L−�0�� − 1�2 �
= −

�

6�L − �0�2 −
13

6�L − �0�
N .

inally, we have the following expression for the Euclidean region:

	0L�:T00
E :�0L
 = � 2

L − �0
�

=0

N−1 ���a

b
�




+ 1���a

b
�

−


+ 1� − 1�
 −
�

6�L − �0�2 −
13

6�L − �0�
N� .

�31�

n the same way, the calculations for the Lorentzian region lead to

	0L�:T00
L :�0L
 = � 2

L − �0
�

=0

N−1 ��� c

b
�




+ �1

b
�

−

��� c

b
�




+ �1

b
�

−

�*

− 1�
 −
�

6�L − �0�2

−
13

6�L − �0�
N� . �32�

ote that, since N is not uniquely determined, then the expectation values �31� and �32� are
valuated approximately. Therefore, for a given �0, replacing N by N+1 or N−1 leads to better or
orse approximation, respectively. This is because, as we go to higher values of N the real

pectrum coincides with integer one with better approximation.

. FINITE ENERGY DENSITY AND PRESSURE IN EUCLIDEAN AND LORENTZIAN
EGIONS

By using Eqs. �20� for the 11 components we have

	0L�:T11
E :�0L
 = − 	0L�:T00

E :�0L
 ,

�33�
	0L�:T11

L :�0L
 = 	0L�:T00
L :�0L
 .

herefore, the state �0L
 contains the finite energy density and pressure in the Euclidean and
orentzian regions as follows:

�E = 	0L�:T00
E :�0L
 ,

�34�
�L = 	0L�:T00

L :�0L
 ,

pE = 	0L�:T11
E :�0L
 = − �E,

�35�
pL = 	0L�:T11

L :�0L
 = �L.

e then find that the total pressure acting on the signature-changing hypersurfaces �=0,L and
=�0 is given by

pT = pL − pE = �L + �E, �36�

hich is generally nonzero according to Eqs. �31�, �32�, and �34�. This nonzero pressure causes
nstability in the location of �0 relative to �=0. Depending on the initial location of �0, the
orresponding value and sign of the pressure may lead one of the regions �L or E� to grow or

hrink. It is very hard to judge about the exact behavior of the pressure from Eqs. �31� and �32�,
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ecause it depends on N, the location of �0, and the complicated functions �a /b�
, �c /b�
, �1/b�


n which the energy spectrum 
, itself, depends on �0 through the quantization condition �6�.
Nevertheless, one may evaluate the situation in the two limits of �0. In the limit �0→0, the

erm � /6�L−�0�2 may be neglected in comparison with two other terms. Therefore, there is a
ompetition between the first sums and third terms in Eqs. �31� and �32�. And, upon this compe-
ition the pressure may cause the Euclidean region to grow or shrink. On the other hand, in the
imit �0→L, the term � /6�L−�0�2 may dominate the other two terms and the pressure pT=�L

�E becomes negative, pL� pE, which means the Euclidean region is growing �with increasing
ressure� toward �0=L. Fortunately, in this case, there is no divergency problem at �0=L. This is
ecause, once the circle is completely covered by Euclidean metric, the quantization condition and
ll subsequent calculations break down.

The nonzero pressure obtained above and the consequent change in the signature changing
egion will certainly change the energy spectrum of the scalar fields through the quantization
ondition

cosh 
�0 cos 
��0 − L� = 1.

he modified signature-changing region �0 and energy spectrum 
 back react on the pressure
hrough Eqs. �31� and �32�. The central term of the algebra corresponding to infinite conserved
harges26

�L
,L
�� = �
 − 
��L
+
� + C�
,
��

s correspondingly changed through

C�
,
�� = 
+
�,0f�
,
�,�0� − 4 �

1,
2�0

N


1
2
2

2C
1,
2

−
� C
1,
2


 + �

1�0

N


1
2�
 − 
1�2C
1,
−
1

−
� ,

here

f�
,
�,�0� = 3 �
l=−n

0

�− 2�l + k�a − 
 − 
���2�l + k�a + 
�2���2�l + k�a + 
 + 
���2�l + k�a���1/2

nd

N = �2k − 1�a, 
 = �2n − 1�a, a =
�

2�2� − �0�

ith k and n as integers.
It is seen that in the special case N=0 the first sums and the last terms vanish in �31� and �32�

nd these lead to the standard result −� /6L2 for the pure Lorentzian metric �0=0 on the cylinder.2

n fact, N=0 corresponds to 
=N=0 which means 
 is an integer starting from zero; a case which
ccurs only in the pure Lorentzian region.

I. CONCLUSION

We have studied a two-dimensional model in which the space-time is a cylinder �circle
real number� with the circle representing space and the real line representing time. Moreover,
e have assumed that this manifold admits a signature change of the type which had already been

eported in Ref. 26.
We were interested in studying the Casimir effect for the real massless scalar fields propagat-

ng over this manifold. To this end, we have considered the expressions for the components of
nergy-momentum tensors associated with the real scalar field and calculated the corresponding
acuum expectation values. These expressions are found to be infinite, hence a regularization
cheme is used to make them finite. By introducing a convenient cutoff and a regularization

cheme, we obtain the finite expressions for the vacuum expectation values of the energy momen-
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um tensors. These provide us with the finite energy densities and pressures in both Euclidean and
orentzian regions so that the net pressure on the signature changing hypersurfaces is obtained.
his pressure causes instability in the signature changing region �0 and this instability alters the
nergy spectrum through the quantization condition. The modified �0 and spectrum 
 themselves
ack react on the pressure through Eqs. �31� and �32�. Moreover, the central term of diffeomor-
hism algebra of real massless scalar fields obtained in Ref. 26 is altered due to modifications in

0 and spectrum 
.
The action for free massless scalar field propagating on the signature-changing background

S =
1

2
� dt�

Lorentzian
d���g�gL

�����

L���


L +
1

2
� dt�

Euclidean
d���g�gE

�����

E���


E

ay be rewritten in the form of string action

S �
1

2
� dt� d���g�g�����


a ���

b �ab

ith the distribution g��=�+g��
E +�−g��

L and �

a = ��


E ,�

L� with �ab=diag��+ ,�−�. In this way it

ooks like we have a closed string with Euclidean and Lorentzian parts propagating in a distribu-
ional way in the two-dimensional target space ��


E ,�

L�.26 The discontinuous nature of the model

n classifying Euclidean and Lorentzian solutions �

E ,�


L with discrete symmetry under 
↔−
 in
ach class motivates one to study it in the context of orbifolds. For example, if we suppose the
arget space M to be �


a = ��

E ,�−


E ,�

L ,�−


L � and assume a permutation of it �= ��

E�−


E �
��


L�−

L �, then regarding the definition of an orbifold as the object one obtains by dividing a

anifold by the action of a discrete group, it seems to be possible to define an orbifold M /�
hich results in �


a = ��

E ,�


L�. In this way, perhaps at a formal level, we may have a string on an
rbifold.26

Therefore, the study of Casimir effect in the present model may provide important results
elevant to the study of closed bosonic strings. It is also appealing to proceed with the idea of
asimir effect in different 3+1 dimensional signature-changing space-times to investigate what

econdary effects may be produced by the Casimir effect.29

CKNOWLEDGMENT

This work has been financially supported by the Research Department of Azarbaijan Univer-
ity of Tarbiat Moallem, Tabriz, Iran.

1 H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 �1948�.
2 N. D. Birrel and P. C. W. Davies, Quantum Fields in Curved Space �Cambridge University Press, Cambridge, 1982�.
3 V. M. Mostepanenko and N. N. Trunov, The Casimir Effect and Its Applications �Clarendon, Oxford, 1997�.
4 G. Plunien, B. Muller, and W. Greiner, Phys. Rep. 134, 87 �1986�.
5 S. K. Lamoreaux, Am. J. Phys. 67, 850 �1999�.
6 The Casimir Effect. 50 Years Later, edited by M. Bordag �World Scientific, Singapore, 1999�.
7 M. Bordag, U. Mohidden, and V. M. Mostepanenko, Phys. Rep. 353, 1 �2001�.
8 K. Kirsten, Spectral Functions in Mathematics and Physics �CRC Press, Boca Raton, 2001�.
9 Proceedings of the Fifth Workshop on Quantum Field Theory under the Influence of External Conditions, edited by M.
Bordag �Int. J. Mod. Phys. A 17 �2002��, Nos. 6 and 7.

0 K. A. Milton, The Casimir Effect: Physical Manifestation of Zero-Point Energy �World Scientific, Singapore, 2002�.
1 M. R. Setare and A. A. Saharain, Int. J. Mod. Phys. A 16, 1463 �2001�; M. R. Setare and A. H. Rezaeian, Mod. Phys.
Lett. A 15, 2159 �2000�; M. R. Setare and R. Mansouri, Class. Quantum Grav. 18, 2331 �2001�; M. R. Setare, ibid. 18,
2097 �2001�; M. R. Setare and R. Mansouri, ibid. 18, 2659 �2001�; M. R. Setare, ibid. 18, 4823 �2001�; A. A. Saharian
and M. R. Setare, Phys. Lett. B 552, 119 �2003�.

2 S. M. Christensen, Phys. Rev. D 14, 2490 �1976�; 17, 946 �1978�.
3 S. L. Adler, J. Lieberman, and Y. J. Ng, Ann. Phys. �N.Y.� 106, 279 �1977�.
4 S. Deser, M. J. Duff, and C. J. Isham, Nucl. Phys. B 11, 45 �1976�; see also D. M. Capper and M. J. Duff, Nuovo
Cimento Soc. Ital. Fis., A 23A, 173 �1974�; 53A, 361 �1975�.

5 S. W. Hawking, Commun. Math. Phys. 55, 133 �1977�.
6 S. Blau, M. Visser, and A. Wipf, Nucl. Phys. B 310, 163 �1988�.
7
 E. Elizalde, S. D. Odintsov, A. Romeo, A. A. Bytsenko, and S. Zerbini, Zeta Regularization Techniques with Applica-

                                                                                                            



1

1

2

2

2

2

2

2

2

2

2

2

032501-12 F. Darabi and M. R. Setare J. Math. Phys. 47, 032501 �2006�

                        
tions �World Scientific, Singapore, 1994�.
8 E. Elizalde, Ten Physical Applications of Spectral Zeta Functions, Lecture Notes in Physics �Springer-Verlag, Berlin,
1995�.

9 A. A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti, and S. Zerbini, Analytic Aspect of Quantum Fields �World
Scientific, Singapore, 2003�.

0 N. Graham, R. L. Jaffe, V. Khemani, M. Quandt, M. Scandurra, and H. Weigel, Nucl. Phys. B 645, 49 �2002�.
1 N. Graham, R. L. Jaffe, V. Khemani, M. Quandt, M. Scandurra, and H. Weigel, Phys. Lett. B B527, 196 �2003�.
2 J. B. Hartle, and S. W. Hawking, Phys. Rev. D 28, 2960 �1983�; A. D. Sakharov, Sov. Phys. JETP 60, 214 �1984�.
3 G. F. R. Ellis, A. Sumruk, D. Coule, and C. Hellaby, Class. Quantum Grav. 9, 1535 �1992�; S. A. Hayward, ibid. 9, 1851
�1992�; 10, L7 �1993�; Phys. Rev. D 52, 7331 �1995�; T. Dereli and R. W. Tucker, Class. Quantum Grav. 10, 365
�1993�; M. Kossowski and M. Kriele, Proc. R. Soc. London, Ser. A 446, 115 �1995�; Class. Quantum Grav. 10, 1157
�1993�; 10, 2363 �1993�; C. Hellaby and T. Dray, Phys. Rev. D 49, 5096 �1994�; J. Math. Phys. 35, 5922 �1994�; Phys.
Rev. D 52, 7333 �1995�.

4 T. Dray, C. A. Manogue, and R. W. Tucker, Phys. Rev. D 48, 2587 �1993�; Gen. Relativ. Gravit. 23, 967 �1991�; Class.
Quantum Grav. 12, 2767 �1995�; J. D. Romano, Phys. Rev. D 47, 4328 �1993�; J. Gratus and R. W. Tucker, J. Math.
Phys. 36, 3353 �1995�; 37, 6018 �1996�.

5 E. Elizalde, S. D. Odintsov, and A. Romeo, Class. Quantum Grav. 11, L61 �1994�.
6 F. Darabi, M. A. Jafarizadeh, and A. Rezaei-Aghdam, Class. Quantum Grav. 16, 1417 �1999�.
7 M. Fabinger and P. Horava, Nucl. Phys. B 580, 243 �2000�; L. Hadasz, G. Lambiase, and V. V. Nesterenko, Phys. Rev.
D 62, 025011 �2000�; E. Elizalde and S. D. Odintsov, Class. Quantum Grav. 12, 2881 �1995�; H. Cheng and X. Li, Chin.
Phys. Lett. 18, 1163 �2001�.

8 L. Dixon, J. A. Harvey, C. Vafa, and E. Witten, Nucl. Phys. B 261, 678 �1985�; 274, 285 �1986�.
9 M. R. Setare and F. Darabi, Casimir effect for a spherical shell in de Sitter spacetime with signature change, hep-th/
0511077.
                                                                                                            



N
F

I

G
m
b
p
t

t
v

b
i
n
e
t
c
L
h
s
a
a

s

a

b

c

JOURNAL OF MATHEMATICAL PHYSICS 47, 032502 �2006�

0

                        
onintegrability of density perturbations in the
riedmann-Robertson-Walker universe

Tomasz Stachowiaka� and Marek Szydłowskib�

Astronomical Observatory, Jagiellonian University, ul. Orla 171,
30-244 Kraków, Poland

Andrzej J. Maciejewskic�

Institute of Astronomy, University of Zielona Góra, ul. Podgórna 50, 65-246 Zielona
Góra, Poland

�Received 9 November 2005; accepted 30 January 2006; published online 14 March 2006�

We investigate the evolution equation of linear density perturbations in the
Friedmann-Robertson-Walker universe with matter, radiation, and the cosmological
constant. The concept of solvability by quadratures is defined and used to prove
that there are no “closed form” solutions except for the known Chernin, Heath,
Meszaros and simple degenerate ones. The analysis is performed applying Kova-
cic’s algorithm. The possibility of the existence of other, more general solutions
involving special functions is also investigated. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2178584�

. INTRODUCTION

This paper is an attempt to apply the methods of differential algebra, and the differential
alois theory in particular, to a problem of cosmology. Although the considerations are mostly
athematical, the problem itself, and its solutions, are of rather practical interest. Linear pertur-

ations of the Einstein equations in many forms are investigated due to their direct relation to such
ractical questions as the formation of galaxies or the CMB inhomogeneities. We, however, enter
he physical domain only as the source of a theoretical problem, on which we concentrate.

The result itself is of negative nature, or, in other words, it makes any further investigation of
his kind unnecessary. All the known solutions are given, together with the conditions for their
alidity. As no new ones can exist, this closes and completes the analysis of the given equation.

Of course, that is not to say that apart from those special cases nothing can be said about the
ehavior of the solution. It is only to some extent that differential algebra can make exact the
ntuitive concepts of “being possible to solve” or “expressible in a closed form.” The definition of
onintegrability employed here is but one of many which were born as classical mechanics
volved. The Liouville’s theorem implies that enough first integrals might yield a complete solu-
ion of a dynamical system, and accordingly many criteria regarding the existence of certain
lasses of first integrals were developed. The first achievements were those of Kovalevskaya and
yapunov, greatly improved only recently by Ziglin, Morales, and Ramis. The Galois theory used
ere, can also be applied to prove nonexistence of meromorphic first integrals in more complex
ystems. Paradoxically here, we are presented with an equation simple enough not to allow for the
pplication of those advanced methods. Thus, only a small part of the theory is put into practice
nd explained here. For a complete bibliography and exposition see, for example, Ref. 1.

The paper is organized as follows. In Sec. II we derive the equation in question in a non-
tandard but intuitively clear way. The next two sections describe the concept of Liouvillian
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�
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olutions, integrability and give the basic criteria, which we proceed to use in Sec. V. We also
nvestigate the possibility of solving the problem by a combination of some special and Liouvillian
unctions, and give the theorem which is the main result in Sec. VI. Finally, conclusions and
nishing remarks are given in Sec. VII.

I. DENSITY PERTURBATION EQUATION

We will be considering the Friedmann-Robertson-Walker universe given by the metric

ds2 = c2 dt2 − a�t�2� dr2

1 − Kr2 + r2 d�2� , �1�

here K is the curvature index, d�2 is the distance element on a two-sphere. The universe will be
lled with radiation and baryonic matter characterized by their pressures and densities p and �. A
onzero cosmological constant’s effect will also be considered.

The Einstein equations for this model give

� ȧ

a
�2

=
8�G

3
� +

�

3
−

K

a2 ,

�2�
ä

a
= −

4�G

3
�3p + �� +

�

3
,

here G, and � are the gravitational and cosmological constants, respectively. The conservation
quation reduces to

c2�̇ = − 3H�p + �c2� , �3�

ith the dot representing the time derivative. This can be expressed as the following transforma-
ion laws for matter and radiation, respectively:

pm = 0 Þ
�m

�m0
= �a0

a
�3

,

�4�

pr =
1

3
�r Þ

�r

�r0
= �a0

a
�4

.

m0 and �r0 are the values of the densities for the moment when a=a0, which can be chosen as the
resent day.

The fluctuation is introduced by the means of the scale factor

a = ã�1 + y� , �5�

nd ã is the solution of the original equations �2�. As it is a matter perturbation only, we have

�r = �̃r,

�m = �̃m�a

ã
�−3

= �̃m�1 + y�−3 = �̃m�1 − 3y� ,

here we use the scaling law �4� and linearize the problem. Substituting this into the second of

qs. �2�, we obtain
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ä̃�1 + y� + 2ȧ̃ẏ = −
8�G

3
ã�1 + y��r −

4�G

3
ã�1 + y��̃m�1 − 3y� +

1

3
�ã�1 + y� , �6�

hich, after substituting the equation satisfied by the unperturbed ã, simplifies to

ÿ + 2Hẏ − 4�G�̃my = 0, �7�

ith the Hubble “constant”

H ª

ȧ̃

ã
. �8�

This kind of perturbation is of the scalar type, i.e., constructed from a single function y. Here,
e take it to depend on time only, although in general it could also involve spatial variables. This

ase could then be thought of as the zeroth order coefficient in the expansion of y�t ,r ,� ,�� in
erms of eigenfunctions of the spatial Laplace operator. Another generalization would be to con-
ider the vector and tensor type perturbations �see Ref. 2 for details of the decomposition�. As it
urns out, vector perturbations also admit quite general exact solutions.3

In order to simplify Eq. �7� fully, that is, bring it to the linear form with rational coefficients,
e choose new variables,

x ª
ã

ã0

, u ª H0t , �9�

nd constant density parameters,

�r0 ª
8�G�r0

3H0
2 , �m0 ª

8�G�m0

3H0
2 , �10�

�K0 ª −
c2K

ã0
2H0

2 , ��0 ª
c2�

3H0
2 �11�

hich allow us to rewrite the main equation as

� dx

du
�2d2y

dx2 + � d2x

du2 +
2

x
� dx

du
�2�dy

dx
−

3

2
�m0

1

x3 y = 0, �12�

here the perturbation y is now considered as a function of x. Finally, using the first of Eqs. �2�,
hich in the new variables reads

x2� dx

du
�2

= ��0x4 + �K0x2 + �m0x + �r0 ¬ W�x� , �13�

e can eliminate the derivatives with respect to u, and denoting the differentiation with respect to
with a prime, we get

x���0x4 + �K0x2 + �m0x + �r0�y� + �3��0x4 + 2�K0x2 + 3
2�m0x + �r0�y� − 3

2�m0y = 0.

�14�

As follows from the definitions, �K0 and ��0 are of arbitrary signs, while �r0 and �m0 are
on-negative. We take �m0 to be strictly positive, though, because of the nature of the examined
erturbations.

We also introduce the functions p�x� and q�x� related to the above equation in the following

orm:
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y��x� + p�x�y��x� + q�x�y�x� = 0. �15�

hey are

p�x� =
6��0x4 + 4�K0x2 + 3�m0x + 2�r0

2x���0x4 + �K0x2 + �m0x + �r0�
and q�x� =

− 3�m0

2x���0x4 + �K0x2 + �m0x + �r0�
.

�16�

Having obtained the solutions as functions of x it is straightforward to express them as
unctions of the cosmological or conformal time, since x�u� satisfies Eq. �13�, and is therefore
xpressible in terms of the elliptic functions. The exact formulas can be found, for example, in
ef. 4.

II. LIOUVILLIAN SOLUTIONS

Equation �14� is, in general, a Fuchsian one, and the solutions can be found by means of
eries. In particular, in vicinities of the singular points

y±�x� = �x − x0��±�1 + 	
n=1

�

cn�x − x0�n� , �17�

here �± are the characteristic exponents at the point x0. Such solutions are local, and the area of
onvergence around a given point is restricted by the remaining singular points. However, there
re some special cases in which the solutions can be expressed by means of known special
unctions, and become global. It is then much easier to investigate and understand their behavior.
hus, we are lead to the natural question of existence of such “simple” solutions. In this section
e give a short description of a class of functions, which could here be called closed-form

olutions.
It is natural to start seeking for the solutions in a class of functions to which the given

quation’s coefficients belong, but such a set proves to be insufficient in most cases. As we are
ealing with an equation whose coefficients are rational functions, the first choice is the field
�x�—rational functions with complex numbers as the field of constants. Or, in the language of
ifferential algebra, �C�x� ,��—the above field equipped with a suitable derivation operation,
hich, in this case, coincides with the usual, complex one, and will be denoted by a prime

hroughout this section.
This field is much too small, of course, and we are soon forced to extend it, introducing new

lements. Just, as C�x� is an extension of C obtained by adjoining an indeterminate variable x, our
ew fields will be C�x� to which new functions are added. Naturally, the derivation on the ex-
ended field must coincide with the subfield’s derivation when restricted to it �that is essentially
hat a differential extension is�.

To keep the new functions relatively simple, so that the usual notion of “solvability by
uadratures” could still be applied, the new elements are restricted to three classes.

Definition 1: For a differential field extension F�G, an element a�F is

primitive over G if a� � G ,

exponential over G if a�/a � G, or

algebraic over G if P�a� = 0 for some P�x� � G�x� — the ring of polynomials

with coef ficients in G .

Definition 2: A field extension is called Liouvillian if it is a result of a finite number of

xtensions, each the adjunction of an algebraic, exponential, or primitive element.
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Some examples of “new” functions appearing in this process are radicals �for algebraic ele-
ents�, logarithms and inverse circular function �for primitives�, and trigonometric functions �for

xponentials�. In short, the new elements are expressible as combinations of exponentials, inte-
rals, and algebraic and elementary functions.

Finally, we are able to formulate what we mean by integrability.
Definition 3: A linear differential equation with coefficients in C�x� is said to possess Liou-

illian solutions, or be solvable by quadratures, if its solutions belong to a Liouvillian extension of
�x�.

V. MONODROMY AND GALOIS GROUPS

In order to characterize a differential equation we can introduce two groups whose invariant
roperties are closely connected with those of the first integrals of the given equation.

The first, called the monodromy group M is associated with the continuation of the local
olutions of a linear differential equation, along closed paths in the domain where the equation is
efined. The group itself is an image of the fundamental group of that domain, and a subgroup of
L�n ,C� for n the order of the equation. The only other fact, concerning M, that we will need
ere is that M�G—the differential Galois group, which we proceed to describe.

G is directly connected with the extension of the base field C�x� to a bigger field F, which
ontains the solutions of the considered equation. G is defined as the group of automorphisms of
that leave C�x� elementwise fixed. Carrying this information regarding the equation, the Galois

roup enables to test for particular forms of solutions. One of the fundamental properties is as
ollows.

Lemma 1: Let G be the differential Galois group of a linear differential equation
��x�=r�x�w�x�, r�x��C�x�. Then it is an algebraic subgroup of SL�2,C�, and one of the follow-

ng cases can occur.

1� G is triangulizable. There is a solution of the form exp
	, where 	�C�x�.
2� G is conjugate to a subgroup of

D† = ��c1 0

0 c1
−1 ��c1 � C*  � �� 0 c2

− c2
−1 0

��c2 � C*  ,

where C*=C \ �0�. There is a solution of the form exp
	, with 	 algebraic over C�x� of
degree 2.

3� G is finite. All the solutions are algebraic.
4� G=SL�2,C�. The equation has no Liouvillian solutions.

. NONINTEGRABILITY OF THE EQUATIONS

We now proceed to the direct analysis of the integrability of Eq. �14�, based mainly on the
ovacic’s algorithm.5 First we consider the equation with ��0=0, for which the calculation is not

oo cumbersome, and next, we outline the reasoning for the general case.

. Models without the cosmological constant

In order to apply the algorithm, Eq. �15� is cast into a reduced form

v��x� = r�x�v�x� , �18�

ith

r�x� = −
1

4x2 −
3�2
x + 1�2

�
x2 + x + ��2 +
4
x + 7

x�
x2 + x + ��
, �19�
here we have introduced new parameters
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 ª

�K0

�m0
, � ª

�r0

�m0
.

he reduction itself is performed by means of the following change in the dependent variable:

y�x� = v�x�exp�−
1

2
�

x0

x

p�s�ds� , �20�

here the constant x0 is arbitrary. This transformation does not change the class of solutions we
re interested in, as it uses the “admissible” operations only.

In the general case, there are two distinct roots of the polynomial W�x� in Eq. �14� and they
re both nonzero. The degenerate cases will be treated separately.

Looking for the local solutions around x=0, which is a regular singular point of the equation
ith both characteristic exponents equal to 1

2 , we find

v1�x� = x1/2w1�x� ,

�21�
v2�x� = ln�x�v1�x� + x1/2w2�x� ,

nd w1 and w2 are holomorphic at x=0. Using these, it is now possible to obtain an element of the
onodromy group, by continuation of the fundamental solution matrix along a small closed path

round x=0,

�v1 v2

v1� v2�
� → �− 1 − 2�i

0 − 1
��v1 v2

v1� v2�
� . �22�

Since M�G, the Galois group cannot be D†, as that group does not contain nondiagonaliz-
ble matrices. Also, a triangular, nondiagonal matrix cannot generate a finite group, so that G itself
annot be finite. We have thus excluded cases 2 and 3 of Lemma 1.

Case 1 can also be easily excluded applying the aforementioned algorithm. In order for the
olution to be of the form

P�x�exp�� 	�x�dx� , �23�

ith a monic P�x��C�x�, and 	�x��C�x�, the following equation must be satisfied:

P��x� + 2	�x�P��x� + �	��x� + 	�x�2 − r�x��P�x� � 0, �24�

or P�x� and 	�x� found according to the algorithm, as follows. First, we define a set of auxiliary
uantities,

�c
± = 1

2 ± 1
2
�1 + 4b , �25�

here c��� ���—the set of all the finite poles of r�x� including infinity, and b is the coefficient
f �x−c�−2 in the Laurent expansion of r�x� around a given point x=c. Next, for all possible
ombinations of signs s��� ,s�c� we compute the possible degrees of P�x� as

d = ��
s��� − 	

c��

�c
s�c�, �26�
nd, for the same combinations of signs s�c�, the respective possible 	
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	�x� = 	
c��

�c
s�c�

x − c
. �27�

nserting the functions just obtained into Eq. �24� we are left with a system of linear equations
etermining the unknown coefficients of P�x�. In this particular case, the only non-negative value
f d is 0, so that P�x�=1, and the system is reduced to

3

2x�
x2 + x + ��
� 0, �28�

hich cannot hold. The first case of Lemma 1 is also excluded, which means that G is SL�2,C�,
nd the equation has no Liouvillian solutions in the general case.

When we admit a double nonzero root of W�x�, or in other words, when

�m0 = 2��r0�1 − ��r0� , �29�

e have the well-known Chernin solution6

y�x� = 2F1�− i�3,i�3,1;
x

x + 2�r0
� . �30�

here 2F1 is the Gauss hypergeometric function.
In the current notation it means that 4�
=1, and that the root itself is x0=−2�. As Eq. �15�

ow has three regular singular points: 0, x0, and �, it becomes a Riemann P-equation. The
omplete set of solutions is denoted by

y�x� = P�0 − 2� �

0 − i�3 0 x

0 i�3 1
� . �31�

uch a P-function is not Liouvillian either, as can be immediately checked using Kimura’s
heorem.7

Another degenerate subcase occurs when �=0, and 
�0, so that 0 becomes a root of W�x�
nd there is another nonzero root x=−1/
. Like before the solution is a P-function,

y�x� = P�
0 −

1



�

−
3

2
0 0 x

1
1

2
1

� . �32�

his time however, it is a Liouvillian solution because we can express the above symbol as two
ase solutions,

y1�x� = x−3/2��m0 + �K0x ,

�33�

y2�x� = x2F1�1,2,
7

2
;−

�K0

�m0
x� ,
The next subcase is 
=0 and only two simple roots remain, 0 and −�. We accordingly get
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y�x� = P�0 − � �

0 0 − 1 x

0 1
2

3
2

� . �34�

s before, this is a Liouvillian function, according to Kimura’s theorem, and it can be rewritten as
he following two independent solutions:

y1�x� = 1 +
3�m0

2�r0
x ,

�35�

y2�x� = ��r0 + �m0x2F1�2,−
1

2
,
3

2
;1 +

�m0

�r0
x� ,

hich are the solutions discovered by Meszaros.8

The last possibility is that �=
=0 which implies �m0=1, and we simply obtain

y1�x� = x ,

�36�
y2�x� = x3/2.

Taking into account that condition �29� makes it impossible for the physical cases
�m0�0� to have zero as a triple root, we conclude that the only Liouvillian solutions of Eq. �14�
or ��0=0, appear when at least one of the parameters �r0 or �K0 is equal to zero.

. Models with the cosmological constant

The reasoning for ��0�0 is the same as in the preceding section, but since the leading
oefficient now contains a polynomial of the fourth degree, the calculations are somewhat more
aborious.

In general, when W�x� has only simple roots, and they are all nonzero �which means

r0�0�, we obtain, as before, a triangular element of the monodromy group M. This leaves us
ith only the first case of the Kovacic’s algorithm to check, and the physical requirement of

m0�0 causes the equation to be nonintegrable.
In fact, even if the roots become multiple, but still nonzero, the local solutions in the vicinity

f x=0 do not change and, again, we only need to consider the first case of the algorithm. We
ntroduce the roots by the following formula:

W�x� = ��0�x − e1��x − e2��x − e3��x − e4� .

aking e2=e4, we could rewrite the polynomial as W�x�=��0�x−e1��x+e1+2e2��x−e2�2, because
e must have e1+e2+e3+e4=0.

This time, the coefficients b, as defined in the preceding section, is not numeric, but depends
n the roots. We now have

�e2

± =
1

2
±

1

2
�1 + 4�3

4
+

3e1

e2 − e1
−

e1

e1 + 3e2
�¬ 1 ± n

2
. �37�

e see that n must be at least a positive integer, and that initially there are countably many
ossibilities to check. Since the relation between the roots and the densities � is known, we might
btain an important restriction of the form

�r0

��0
= −

3�n2 − 4�
n2 + 12

e2
4, �38�

hich means that ��0 must be negative if n�2. One can readily check that n=1,2 give no

olution. Further calculations with these restrictions on ��0 and n, determining the coefficients of
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he appropriate polynomial P�x� require us to solve a system of n homogeneous, linear equations.
nfortunately we have been unable to do that for general n, but it is easy to check for the first 50
alues that the determinant of the system is not zero, with its modulus monotonically increasing
ith n. Thus we conjecture that there are no values of n for which a solution exists.

When the double root becomes triple, it also becomes a pole of the third order of the function
�x�. This means that only the second case of Kovacic’s algorithm needs to be considered, but it
ields no Liouvillian solutions.

It is impossible for W�x� to have two double roots or a quadruple root, because as we noted
he sum of all roots must be zero, and that would lead to �m0=0.

Letting �r0=0 changes the multiplicity of x=0 as a singular point, and the monodromy
rgument no longer holds. We note also that no further increase in the multiplicity of that point is
ossible as �m0�0.

Assuming first that there are no multiple roots of W�x�, the algorithm immediately yields the
ollowing fundamental solutions:

y1�x� = x−3/2���0x3 + �K0x + �m0,

�39�

y2�x� = y1�x� � � x

��0x3 + �K0x + �m0
�3/2

dx ,

hich holds even if one of the roots becomes double. This solution is also known, and was found
y Heath.9

As above, a triple root would mean �m0=0 and is thus not physical.

I. ON MORE GENERAL SOLUTIONS

Although the concept of Liouvillian solutions gives us a simple and applicable formulation of
olvability by quadratures, it is easily seen to be insufficient on itself as a mean to discard an
quation as insolvable in general. The fact that the Bessel or hypergeometric functions �except for
ome special cases� are not Liouvillian is the best example of that.

Of course, there are no algorithms for finding more complex solutions, but it is possible to
xtend the considered class somewhat. Following the paper of Bronstein,10 we try to find solutions
n the form

y1�x� = m�x�F1��x�� ,

�40�
y2�x� = m�x�F2��x�� ,

here F1�� and F2�� are fundamental solutions of a given target equation

y��� = u��y�� , �41�

nd m�x� and �x� are Liouvillian over C�x�. The quoted paper presents an algorithmic approach
or target equations which have an irregular singularity at infinity, and �x��C�x�. It also offers a
heck for a certain class of algebraic �x�.

Upon substituting the form of solutions �40� into Eq. �18�, and using the target equation �41�,
e are left with an expression containing only F�� and F���. Making the coefficients equal to

ero gives the fundamental equations to be solved

2 4 2
3��x� − 2��x���x� + 4u��x����x� − 4r�x���x� = 0, �42�
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m�x� =
1

���x�
. �43�

he main theorem of Ref. 10 makes it possible to find all rational solutions of Eq. �42�, by
ounding the degrees of the polynomials involved.

Theorem 1: Let �iQi
i be the square-free decomposition of the denominator of r�C�x�. If the

rder of u�x� at infinity ���u��2, then any solution �C�x� of (42) can be written as = P /Q
here

Q = �
i

Q�2−���u��i+2
i � C�x� , �44�

nd P�C�x� is such that either deg�P��deg�Q�+1 or

deg�P� = deg�Q� +
2 − ���r�
2 − ���u�

. �45�

or the algebraic case, they also provide a possible �but not exhaustive� ansatz of the form

�x� = P�x1/�2−���u����
i�2

Qi
�i−2��2−���u��, �46�

nd a bound for deg�P� of either

deg�P� � �2 − ���u���deg�Q� + 2�

r

deg�P� = �2 − ���u��deg�Q� + 2 − ���r� .

Here, we choose to investigate the Bessel and Kummer functions, as the solutions of the target
quation. The other classical classes of 0F1 and 1F1 functions, to which Theorem 1 is applicable,
re equivalent to these two classes, rationally or algebraically.

In the general case of ��0�0, and no multiple roots of W�x�, the denominator of r�x� is
6x2W�x�2, and hence its square-free decomposition has only one term Q2=xW�x�. We take first
he Bessel equation,

F��� = �4n2 − 1

42 − ��F�� , �47�

here � is 1 for the Bessel and −1 for modified Bessel functions. We have ���u�=0, and ���r�
2, so

Q = �
i

Q2i+2
i = 1, �48�

nd deg�P��1. Finally, substituting �x�=c1x+c0 into Eq. �42� yields no nonconstant solutions.
Proceeding in the same way, for Kummer functions, algebraic forms of �x�, and possible

ases of the roots of W�x�, we found no new solutions of this more general class.
Thus, we can finally formulate the main results as the following theorem.
Theorem 2: If �m0�0, �r0�0, �K0�R, and ��0�R �unless W�x� admits a double root,

hich requires the assumption of ��0�0�, then the matter density perturbation equation (14)
oes not possess any solutions Liouvillian over C�x�, or, in other words, is not solvable by
uadratures, except for the following three cases:

1� Heath’s solution ��r0=0�. It is given by (39), for ��0�0, and by (33), when ��0=0.
2� Meszaros’s solution ��K0=0, ��0=0�. Given by (35).

3� Matter only ���0=�r0=�K0=0 ,�m0=1�. Given by (36).
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Moreover, there exist no solutions of the class m�x�F��x��, where F�� is a classical special
unction of the type 0F1 or 1F1, m�x� is Liouvillian over C�x�, and �x��C�x� or is algebraic of the
orm (46).

However, when ��0=0 and W�x� admits a double root, the non-Liouvillian solution of Cher-
in’s, given by (30), applies.

II. CONCLUSIONS

The problem studied in this paper is a good example of a possible application of the differ-
ntial Galois theory in practice. The known solution of the perturbation equation were originally
iscovered in different contexts and over the span of a few years, whereas here, one theory allows
or full analysis.

Furthermore, the existence of other closed-form solutions has been ruled out. The one excep-
ion is the case of a double root of W�x�, when the cosmological constant is negative. Although �
s usually assumed to be positive now, it still remains a viable mathematical possibility. However,
e expect that case will not yield any new solutions, as the “manual” check for the first, simplest

andidates failed.
Despite the fact that the analysis of perturbations can be performed numerically, without the

eed of explicit solutions, we feel that a more exact approach is always valuable—providing a
etter understanding of the complexity of the problem, revealing hidden, special solutions, or
imply providing a more exact formula for numerical work. It also reflects, in some sense, the fact
hat general relativity, as the next step in the theory of gravitation, introduces nonintegrability into
he basic equations. This can be seen clearly in a more advanced employment of the Galois theory
pplied to cosmological models themselves, for example, Refs. 1 and 11.

From the physical point of view, this model is a relatively simple one, and it is already known
hat the solutions found are not on themselves strong enough to explain the density fluctuations
evels today. The main problem is the fact that they would need to be exponential, whereas they
row at most like a fixed power of the scale factor, and there is not enough time for the initial
erturbations to increase sufficiently. One must also be aware that linear instability might be
umped when considered in the quadratic regime, so the least to be required of the linear equa-
ion’s solutions is appropriate amplification. Nevertheless, these basic effects, being the first ap-
roximation, have physical meaning and should be taken into account when constructing more
omplicated models or explaining observational data.

We hope to investigate this field further in the future, as it does not limit the results to negative
tatements on integrability only, as we tried to demonstrate in this paper.

CKNOWLEDGMENTS

One of the authors �T.S.� has been supported by the KBN Grant No. 2P03D 00 326.

1 J. J. Morales-Ruiz, Differential Galois Theory and Non-integrability of Hamiltonian Systems �Birkhäuser Verlag, Basel,
1999�.

2 J. M. Stewart, Class. Quantum Grav. 7, 1169 �1990�.
3 J. Bičák, D. Lynden-Bell, and J. Katz, Phys. Rev. D 69, 064011 �2004�.
4 M. P. Dbrowski and T. Stachowiak, “Phantom Friedmann cosmologies and higher-order characteristics of expansion,”
arxiv:hep-th /0411199.

5 J. J. Kovacic, J. Symb. Comput. 2, 3 �1986�.
6 A. D. Chernin, Astron. Zh. 42, 1124 �1965�.
7 T. Kimura, Funkc. Ekvac. 12, 269 �1969�.
8 P. Meszaros, Astron. Astrophys. 37, 225 �1974�.
9 D. J. Heath, Mon. Not. R. Astron. Soc. 179, 351 �1977�.
0 M. Bronstein and S. Lafaille, “Solutions of linear ordinary differential equations in terms of special functions,” Proceed-
ings of ISSAC’2002 �ACM Press, 2002�, pp. 23–28.

1
 A.J. Maciejewski, M. Przybylska, and M. Szydowski, Gravitation Cosmol. 8, 93 �2002�.

                                                                                                            



A
d

I

p
L
T
o
l
S
u
s
D
p

t
p
fl
e
g
t
c

a

JOURNAL OF MATHEMATICAL PHYSICS 47, 032901 �2006�

0
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-KdV equation
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A new idea of electron inertia-induced ion sound wave excitation for transonic
plasma equilibrium has already been reported. In such unstable plasma equilibrium,
a linear source driven Korteweg-de Vries �d-KdV� equation describes the nonlinear
ion sound wave propagation behavior. By numerical techniques, two distinct
classes of solution �soliton and oscillatory shocklike structures� are obtained.
Present contribution deals with the systematic methodological efforts to find out its
�d-KdV� analytical solutions. As a first step, we apply the Painleve method to test
whether the derived d-KdV equation is analytically integrable or not. We find that
the derived d-KdV equation is indeed analytically integrable since it satisfies Pain-
leve property. Hirota’s bilinearization method and the modified sine-Gordon
method �also termed as sine-cosine method� are used to derive the analytical re-
sults. Perturbative technique is also applied to find out quasistationary solutions. A
few graphical plots are provided to offer a glimpse of the structural profiles ob-
tained by different methods applied. It is conjectured that these solutions may open
a new scope of acoustic spectroscopy in plasma hydrodynamics. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2173087�

. INTRODUCTION

Recently, we have discovered an interesting property of a theoretically defined transonic
lasma system, assumed to have hydrodynamic equilibrium configuration of physical interest.1–3

ocal normal mode theory defines the desired length of the theoretical transonic plasma system.
he ion flow gradient is assumed to be weak enough so as to justify the uniform ion flow motion
ver the defined transonic plasma length. Of course, the equilibrium charge neutrality condition
imits the range of allowed Mach number domain of plasma flows in transonic equilibrium.
elf-similar plasma expansion4 into vacuum may be a good example of transonic plasma flow
nder plasma approximation. Likewise, the solar wind plasmas are also of the category of self-
imilar plasma flow motion. The transonic plasma layer, in laboratory plasmas, exists near the
ebye sheath edge created by plasma-boundary wall interaction processes. This is supposed to
atch the Debye sheath layer on one end and the presheath layer on the other end.

According to our own proposed inertia-induced ion acoustic excitation theory, we argue that
he large-scale plasma flow motion feeds the energy to the short scale fluctuations near the
re-sheath termination at sonic point. This is a kind of energy transfer process from large-scale
ow energy to wave energy through short scale instability. In order to maintain the turbulence
quilibrium there must be some source to feed large-scale flow and sink to arrest the infinite
rowth of the excited short waves. The growing wave energy could be used to remodify the global
ransonic equilibrium such that the transonic transition becomes a natural equilibrium with smooth
hange in flow motion from subsonic to supersonic. Of course, this is a quite involved problem to

�
Electronic mail: pralaykarmakar@sify.com
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andle the self-consistent turbulence theory of transonic plasma in terms of anomalous transport.
ow the question arises, how to produce such boundary layer with sufficient size of the transonic
lasma layer for laboratory experimentations?

This is an experimental challenge to design such experiments to produce extended length of
he transonic zone to sufficient extent to resolve the desired unstable wave spectral components.
reation of a thick boundary layer of transonic flow dynamics is, no doubt, an important task. This
one lies between subsonic and supersonic domains and is bounded by low supersonic and high
ubsonic speeds. Mind it, here the sonic velocity corresponds to the phase velocity of the bulk
lasma mode of the dispersionless ion acoustic wave. In case of sheath edge boundary, transonic
ayer could be probed by high-resolving diagnosis of the Debye length order. The desired experi-
ents of spectral analysis of the unstable ion acoustic waves in transonic plasma condition may

e quite useful to resolve the mystery of sheath edge singularity. Using de-Lavel nozzle mecha-
ism of hydrodynamic flow motion, experiments could be designed to produce transonic transition
ayer of desired length.

Study of the ambient acoustic spectrum associated with plasma flow motion can be termed as
he acoustic spectroscopy of equilibrium plasma flows. This may be useful for expanding back-
round plasmas,4 solar wind plasmas5 and also in space plasmas through which the space vehicles’
otion and aerodynamic motion5 occur. Basic principles of the acoustic spectroscopy have con-

ern to the linear and nonlinear ion acoustic wave turbulence theory and properties of the transonic
lasma equilibrium.4,6 These properties may be used to develop the required diagnostic tools to
tudy and describe the hydrodynamic equilibrium states of plasma flows by suitable observations
nd analysis of the waves and instabilities they exhibit. In fact, the ambient turbulence-driven
lasma flow is quite natural to occur in toroidal and poloidal directions of the magnetic confine-
ent of tokamak device. Similar physical mechanism is supposed to be operative in the transonic

ransition behavior of equilibrium plasma flow motion. Thorough investigations of acoustic wave
urbulence theory in transonic plasma condition will be needed.

Recently, there has been an outburst of interest in plasma states where the assumption of static
quilibrium practically is violated. Great deals of research activities are now going on in transonic
nd supersonic magnetohydrodynamic flows in laboratory and astrophysical plasmas.5 Similar
ctivities are also important for understanding the designing of supersonic aerodynamics7 having
elevance in spacecraft-based laboratory experimentations of space plasma research as well. It is
lso argued that future tokamak reactors need the consideration of rotation of fusion plasma with
igh speeds that do not permit the assumption of static equilibrium to hold good. This may be
rought about due to neutral beam heating and pumped divertor action for the extraction of heat
nd exhaust.

In astrophysics, the primary importance of plasma flows is revealed in such diverse situations
s coronal flux tubes, stellar winds, rotating accretion disks, and jets emitted from radio galaxies.
he main point is to argue that the basic understanding of the acoustic wave dynamics in transonic
lasma system constitutes an important subject of future interdisciplinary research. This may be
seful for development of the appropriate diagnostics for acoustic spectroscopy to measure and
haracterize the hydrodynamic equilibrium of transonic plasmas.

Consideration of the Boltzmannian electrons for ion acoustic wave description is no more
ractical in such plasma equilibrium. For example, it hides the unstable behavior of the ion
coustic wave fluctuations in transonic plasma equilibrium. For simple monoenergetic but uniform
on flow dynamics, it is predicted that the ion acoustic wave remains no more stable in transonic
lasma condition. It suffers linear resonant growth1 of explosive type due to linear process of
esonance mode-mode coupling of positive and negative energy waves.2 It is thus natural to argue
hat the acoustic wave turbulence should constitute the unique property of the transonic plasma
ystem in the absence of magnetic and gravitational force fields. It is further argued that the
onventional idea of Bohm condition for stable sheath formation requires a fresh review. Similar
utlook is needed to understand the formation of other nonlinear localized structures of low
requency acoustic waves like solitons, double layers, etc.
The lowest order nonlinear wave theory of the ion acoustic wave dynamics predicts that the

                                                                                                            



u
w
n
t
a
s
n
w
h

K
P
i
b
t
m
t
w
w
t
a

P
v
v
d
s
o
d
p
o
T
u

d
a
i
t

I

q
c
o
p
q
k
n
s
d
s

s

032901-3 Analytical integrability and physical solutions J. Math. Phys. 47, 032901 �2006�

                        
sual KdV equation is not suitable to describe the kinetics of the nonlinear traveling ion acoustic
aves in transonic plasma condition.3 The d-KdV equation is prescribed as a more suitable
onlinear differential equation to describe the nonlinear traveling ion acoustic wave dynamics in
ransonic plasma condition. By mathematical structure of the derived d-KdV equation, it looks
nalytically nonintegrable and physically nonconservative dynamical system. Due to the linear
ource term, an additional class of nonlinear traveling wave solution of oscillatory shocklike
ature is obtained. This is more prominent in the shorter scale domain of the unstable ion acoustic
ave spectrum but within the validity limit of weak nonlinearity and weak dispersion. Researchers
aving interest in the subject are advised to read our earlier presentations for details.1–3

In this contribution, we make specific methodological attempts to analytically solve the d-
dV equation to reproduce our own predicted numerical results. We first apply the well-known
ainleve method8–14 of mathematical calculations to check the mathematical possibility of finding

ts analytical solutions. We find that it is indeed analytically integrable. In the process, Hirota’s
ilinear transformation14,15 is obtained for analytical solutions. We then proceed further and apply
he mathematical technique of sine-cosine method �also known as modified sine-Gordon
ethod�16,17 to derive the desired analytical solutions. Solution obtained by this method is akin to

he linear superposition of two distinct nonlinear stationary waves. In the asymptotic limit of long
avelength of the driving source term, usual KdV soliton solution is recovered. For shorter
avelengths of the linear driving source, shock-dominated solution is found without any oscilla-

ory character. But, due to limitations of the available mathematical tools, only approximate results
re possible.

Quasistationary solutions with the well-known perturbative technique18,19 are also derived.
hysical significance of quasistationarity means that the amplitudes of the solutions are slowly
arying and they are free from any secular terms in the asymptotic expansion of dynamical
ariables. In fact, as per required relative accuracy, the analytical results obtained by all these
ifferent mathematical methods are graphically compared. In all the cases a linear superposition of
hock and soliton is obtained. Thus the numerical solutions2 are partially verified with the help of
btained analytical findings. Absence of the oscillations in graphical representation of the shock-
ominated solution may be attributed to the limitations of the applied mathematical tools. This
rovides further scope for suitable improvement of existing mathematical methods to produce the
scillatory shocklike solutions that comprise of oscillatory peaks in the shock-dominated solution.
hat means the well-defined �explicit� functional form of oscillatory shocklike solution is still
nknown. This forms a good mathematical problem for future research work.

Contents of this research paper are organized as follows. Section II includes general physical
iscussions on integrability of the d-KdV equation. Section III highlights the methodology of
nalytical integration and derivation of the exact analytical �traveling wave� solutions. Section IV
ncludes the results and discussions obtained thereof. Last, Sec. V contains a compact summary of
he conclusions drawn from this present contribution.

I. INTEGRABILITY TEST OF d-KdV EQUATION

Actually, the concept of integrability is not well defined in mathematical sense. However, the
uestion of integrable nonlinear dynamical equations could be associated with the following
onceptual view of the unknown solutions. It is basically a mathematical property of the function
f the unknown solutions of the given nonlinear dynamical equation. It is used to enhance the
redictive ability of the given nonlinear equation to provide more and more quantitative and
ualitative informations regarding the governing dynamical physical systems. There are two well-
nown broad notions as defined and discussed in mathematical literature.8–14 We have used the
otion of integrability in the complex time plane, which is now called the Painleve property. Fixed
ingularities occur at points where the coefficients of the equation are singular.8–14 The ordinary
ifferential system is said to possess the Painleve property when all the movable singularities are
ingle valued �simple poles�.

More briefly, a dynamical evolution equation is said to satisfy the Painleve property9 when the

olutions of the equation are single valued about the movable singularity manifold and the singu-
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arity manifold is noncharacteristic. Theoretically speaking, a given dynamical evolution equation
s said to have analytical integrability if it can have the reduced structures like mathematical forms
f the Painleve transcendents11 after proper mathematical transformations. The next section deals
ith the mathematical derivations of the Painleve property to predict integrable and conservative
ynamical behavior of the d-KdV equation having self-consistent linear driving source term. This
s to point out that this equation is an outcome of our own theoretical derivations2,3 while describ-
ng the nonlinear ion acoustic wave dynamics in transonic plasma system.

. Basic governing equations

For the sake of instant reference for readers of this paper, the self-consistently closed set of
asic governing equations for fluid description of transonic plasma system in normalized form is
iven as follows.

Electron continuity equation

��

�t
+ ve ·

��

�x
+

�ve

�x
= 0. �1�

Electron momentum equation

me

mi
� �ve

�t
+ ve ·

�ve

�x
� =

��

�x
−

1

ne

�ne

�x
. �2�

This is to remind the readers that this equation is obtained by substituting zero-order solution
f Boltzmann electron density distribution into the normal electron continuity equation. In fact, in
he asymptotic limit of me /mi→0, electron continuity equation as such is redundant because the
eft-hand side �electron inertial effect� of �2� is ignorable. Equation �1� basically offers a scope to
ntroduce the weak but finite role of electron to ion inertial mass ratio on the normal mode
ehavior of the ion acoustic wave.

Ion continuity equation

�ni

�t
+

�

�x
�nivi� = 0. �3�

Ion momentum equation

dvi

dt
= −

��

�x
. �4�

Poisson equation

�2�

�x2 = ne − ni. �5�

Our previous theoretical calculations of linear ion acoustic wave analysis1,2 provide a clear-cut
dea of the possible existence of linear ion acoustic wave turbulence in transonic zone of plasma
ows within fluid model approach. The following form of the derived d-KdV equation3 obtained
y reductive perturbation method then describes the nonlinear ion acoustic wave dynamics under
ransient limit:

K0
��

�t
+ M0�

��

�x
+

1

2

�3�

�x3 = �K0� . �6�

ere the notations K0 and M0 termed as complex response coefficients3 and the linear resonant

rowth rate ��� of the ion acoustic wave appearing in Eq. �6� are defined as follows:
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K0 = �A2 + B2�1/2,

here

A = �Mr

�m
+

MDr
3 − 3MDrMi

2

�MDr
2 + Mi

2�3 �
nd

B = �Mi

�m
+

Mi
3 − 3MDr

2 Mi

�MDr
2 + Mi

2�3 � ,

M0 = �C2 + D2�1/2,

here

C =
1

2
�3��MDr

2 − Mi
2�2 − 4MDr

2 Mi
2	

�MDr
2 + Mi

2�4 −
�Mr

2 − Mi
2�2 − 4Mr

2Mi
2

�m
2 − 1


nd

D = −
1

2�12�MDr
2 − Mi

2�MDrMi

�MDr
2 + Mi

2�4 +
4�Mr

2 − Mi
2�MrMi

�m
2 � ,

� =2�mi

me
�k�De��1 − vi0�1/2� .

ere the notation MDr represents for the real part of Doppler shifted ion sound wave Mach number
nd Mi represents for the imaginary part of the same and is correlated to the linear growth rate as
iscussed earlier.3 The other notations like k�De and vio represent for the normalized acoustic wave
umber and equilibrium ion fluid flow velocity of the transonic plasma, respectively. Likewise, the
otation defined as �m=mi /me denotes for the ion to electron mass ratio. Here it will be pertinent
o comment that in our defined plasma system, the plasma ions are self-consistently drifting or
treaming through a negative neutralizing background of hot electrons having relatively zero
nertia. As such the time response of the electron fluid for ion sound wave description is normally
gnored. As a result, the unique role of finite but weak electron inertia having an ability to
estabilize the ion sound wave in transonic plasma equilibrium even within fluid model approach
f normal mode description is masked.

Physical description of our proposed excitation theory of ion sound wave in transonic plasma
quilibrium differs from those of the others �Refs. 20–24� to drive the same ion acoustic wave
nstability. Driving physics suggests that even a slight temporal delay of thermal electrons that
ffer instantaneous response to the ion sound wave potential fluctuations may cause a resonant
xplosive growth1,2 if the ion flow velocity falls within the transonic domain of quasineutral
lasma flow motion. In fact, an appropriate phase difference between the ion density and electron
ensity perturbations are introduced so as to yield the growth. Contributions of other sources of
on sound wave instability driving may, however, be evaluated by the relative comparison of the
rowth rates and ion sound excitation thresholds.

. Comments on derivation of d-KdV equation

In our earlier presentation,3 the invariance property of stretched coordinates is assumed to
old good during transient time effect of the instability. This results into Eq. �6� with the stretched
oordinate system defined by �=�1/2�x−Mt� and �=�3/2t where x and t are normalized forms. This
an be justified as follows. Due to linear instability, Mach number M that defines the ratio of

onlinear phase velocity and ion sound speed becomes complex, i.e., M =Mr+ iMi. As a result,

                                                                                                            



�
�
f
i
g

w
=
s

T
v

w
i
o

C

t
p
s
s
f

A
l
t
b

t
r

F
d

032901-6 P. K. Karmakar and C. B. Dwivedi J. Math. Phys. 47, 032901 �2006�

                        
r=�1/2�x−Mrt� and �i=−�1/2Mit, where �=k2�De
2 . If we define the transient time as t= tt��−1/2

1 /k�De�X�, then �i=−Mi and the corresponding differential operators �under Galilean trans-
ormations� are transformed as follows: � /�x��1/2� /��r and � /�t�−Mr�

1/2� /��r+�3/2� /��. This
mplies that the differential operators remain invariant during transient effect of the instability on
lobal structure of the nonlinear traveling wave solution.

Let us now consider the cyclic behavior of the space coordinate in Galilean frame of solitary
ave and assume circular geometry to define �=�0ei��t� in time domain. Now for Mi	1, ��t�
tan−1��i /�r���−Mi /X��=−Mi for X��1, where �1/2�x−Mrt��X� is the rescaled width of the

olitary wave. The radius of the considered circular geometry is given by

�0 = �r�1 + �i
2/�r

2�1/2 � �1/2�x − Mrt��1 + �2�1/2 � �r for ��� 	 1.

hus under the defined circular geometry under the conditions Mi	1 and, one gets the following
alues of the phase angles 
 for K0 and � for M0 as follows:


 = tan−1�B/A� = tan−1�− 3Mi/1� � − 3Mi,

� = tan−1�D/C� = tan−1�− 6Mi/1� � − 6Mi.

These estimations of �, 
, and � are made for resonant conditions MDr�1 for ion acoustic
ave excitation. It is notable that ��
��	1 within an order of magnitude. It is thus found that

n the above limiting cases of the global phase transformation method �GPTM�,3 the compact form
f the linear source driven KdV �d-KdV� equation is well verified and justified.

. Painleve test of d-KdV equation

Now let us look into the details of the methodological description of the Painleve property of
he derived d-KdV equation from these basic equations. Following the prescribed mathematical
rocedure, we will now prove that the d-KdV equation satisfies the Painleve property. The as-
umed Laurent’s series expansion of the unknown solution of Eq. �6� around singularity �near
ingularity and not at singularity� as a function of singularity manifold f�x , t��0 is given as
ollows:

� = �
j=0

�

� j f
j+�. �7�

fter substituting this expression into Eq. �6� and following the basic principle of homogeneity of
eading order analysis �balancing the highest order contributions from the linear and nonlinear
erms of the d-KdV equation�, we get �=−2 under the soliton formation condition of nonlinearity
alanced by dispersion.

Now substituting the various differential terms obtained from �7� into Eq. �6� and collecting
he coefficients of the power of f j−5 from each term, we get what is known as the recurrence
elation �RR� and can be set in the more compact form as follows:

K0�� j−3,t + � j−2�j − 4�f t	 + M0��
k=0

j

� j−k�fk−1,x + �k − 2��kfx	
 +
1

2
�� j−3,xxx + 3� j−2,xx�j − 4�fx

+ 3� j−1,x�j − 3��j − 4�fx
2 + 3� j−2,x�j − 4�fxx + 3� j−1�j − 3��j − 4�fxfxx

+ � j�j − 2��j − 3��j − 4�fx
3 + � j−2�j − 4�fxxx� = �K0� j−3. �8�

rom this recurrence relation of general nature, one can generate order-by-order equations for
ifferent cases of j values.
Case (1): For j=0, we get from �8�,
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�0 = − � 6

M0
� fx

2. �9�

Case (2): For j=1, we get from �8�,

�1 = � 6

M0
��xx. �10�

Case (3): For j=2, we get from �8�,

K0

M0
�fxf t� +

2

M0
�fxfxxx� −

3

2M0
fxx

2 + �2fx
2 = 0. �11�

Case (4): For j=3, we get from �8�,

fxt −
M0

K0
�3fx

2 +
1

2K0
fxxxx +

M0

K0
�2fxx = �fx. �12�

Case 5: For j=4, we get from �8�,

�

�x
� fxt −

M0

K0
�3fx

2 +
1

2K0
fxxxx +

M0

K0
�2fxx − �fx
 = 0. �13�

The arbitrary function is chosen such that � j =0" j�3 �closure property depending on the
ighest order of differentiation j=3 for d-KdV equation�. It is noteworthy that the equation �13�
ith the help of condition �12� is known as the compatibility condition for d-KdV equation �6�.
his is also noted from the transcendental equations �11� and �12� that the recurrence relations for

j�3 are modified by an additional term proportional to linear growth rate ��� of the ion acoustic
ave instability in transonic plasma system.

Now collecting all the terms involving � j from �8�, we determine the locations of the resonant
erms �termed as the resonances� as follows:

M0�0� j�j − 4�fx + 1
2 �� j�j − 2��j − 3��j − 4�fx

3	 = 0 Þ 1
2 �j + 1��j − 4��j − 6�� j fx

3 = 0

Þ j = − 1,4,6�resonances� . �14�

his is to note that the resonances8–14 at j=−1,4 ,6 are obtained by substituting the value of �0 in
he above identity of Eq. �14�. At these values of j the function � j is allowed to have arbitrary
alues. Now the solution can be shown to allow the Bäcklund transformation as given below,

� = �
j=0

2

� j f
j−2 = �0f−2 + �1f−1 + �2,

� = − � 6

M0
� fx

2

f2 +
�1

f
+ �2,

� = � 6

M0
� �2

�x2 ��ln�f��� + �2. �15�

t is now methodologically proved that the derived d-KdV equation of our concern satisfies the
ainleve properties. That means that the assumed solutions are free from movable singularity and
ence the d-KdV equation is, indeed, analytically integrable and solvable. Thus the equation �15�

epresents a form of analytical solution in terms of assumed singularity manifold. However, the
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xact nature of the singularity manifold has been neither identified nor characterized analytically
or explicit solutions.

. Properties of d-KdV equation

One can now show that the deduced d-KdV equation derived for physical situation of tran-
onic plasma system possesses the properties of integrable dynamical systems with sufficient
umber of conserved quantities.14 The sufficiency of conserved quantities, however, depends on
he order of the dynamical evolution equation describing the system. This is to remind the readers
hat for simplicity, the transonic plasma of infinite extension is assumed. Of course, realistic
ituation of laboratory produced transonic plasma will require nonlocal theory within fluid and
lasov models. Moreover, detailed study will be required to develop an appropriate theory of

aturation mechanism through turbulence production or otherwise. Other complexities like pres-
nce of external forces and collisions, etc., may be included to provide a wide range scanning of
lasma and flow parameter domains to test the effect on the proposed excitation theory of ion
ound wave.

. Bäcklund transformations

A Bäcklund transformation �BT� is defined as a mathematical transformation that connects the
ame or distinct analytical solutions of two differential equations. If the transformation, however,
onnects two distinct solutions of the same differential equation, it is termed as the auto-Bäcklund
ransformation �a-BT�. A BT13 for the d-KdV equation �6� is obtained from the equation �15� with

2�0 ��2=0 for Hirota’s bilinear transformation� as follows:

� = − � 6

M0
� fx

2

f2 +
�1

f
+ �2. �16�

t gives a mathematical idea of how the arbitrary function �f� enters the assumed solution of Eq.
6�.

. Lax pair

Now for our d-KdV equation �6�, we can construct two canonically conjugate operators
orresponding to the invariance property of usual KdV equation in absence of any driving source
nder Galilean transformations. These two operators �designated as L and B as given below�
ogether form what is known as Lax pair and the connecting mathematical equation is termed as
ax equation of the d-KdV equation,

L =
1

2K0

�2

�x2 + �M0

K0
��I , �17�

B = −
2

K0

�3

�x3 −
M0

2K0
��

�

�x
+

�

�x
�� , �18�

�L

�t
= �L,B� . �19�

his equation �19� is known as the Lax equation11,14 in terms of the Lax pair �Lax operators� L and
, which can be termed as the Lax equivalence of the derived d-KdV equation with I as an identity
perator. In mathematical language, the existence of Lax pair is a decisive criterion for integrable
ystems. If L is time independent, one gets a commutator �L ,B�=0 signifying a conservative and

ntegrable dynamical system.
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II. ANALYTICAL SOLUTIONS OF d-KdV EQUATION

Now it is clear that the d-KdV equation is integrable and hence one can, in principle, find out
ts analytical solutions. Analytical solution of a given dynamical equation means to derive the
ell-defined �explicit� functional form of the solution that satisfies the given equation. It is indeed
ifficult to analytically solve it in space and time domain as two-dimensional �2D� problem. To
implify the situation, we look for the steady state solution. For this we apply Galilean transfor-
ation to reduce 2D form of the nonlinear differential d-KdV equation into one-dimensional �1D�

orm of nonlinear differential equation. After that, we apply the sine-cosine method as discussed
arlier16,17 to derive analytical solutions of the steady state d-KdV.

. Application of Hirota bilinear transformation method

The analytical transformation depicted by the equation �15� under the arbitrary condition of

2=0 is known as Hirota’s bilinear transformation.14,15 The mathematical significance of bilinear
s that the sum of the various powers of f in each term of the transformed differential equation �as
ollows� is equal to 2. After replacing the various differential terms of the equation �6� with the
elp of �15�, we get the following transformed equation:

K0� fxxt

f
−

fxxf t

f2 − 2
fxfxt

f2 + 2
fx

2f t

f2 
 +
fxxfxxx

f2 − 3
fxfxx

2

f3 + 4
fx

2fxxx

f3 +
1

2

fxxxxx

f
−

5

2

fxfxxxx

f2 − 48
fx

3fxx

f4

= �K0
fxx

f
− �K0

fx
2

f2 . �20�

ow, let us apply the reductive �nonlinear� perturbation technique about the vacuum in the form
f harmonics in ��1� known as the dispersion strength representing the balancing between weak
ispersion and weak nonlinearity, to expand the arbitrarily chosen singularity manifold function �
s f =1+�f �1�+�2f �2�+¯. By the first order analysis �with respect to �� in the above mathematical
ethod, we get the solution of the d-KdV equation �6� for one soliton system as follows:

��x,t� = 1.5� k2

M0
�sec h2�1

2
��r + i�i�� . �21�

quation �21� represents analytical �traveling wave� solution of d-KdV equation propagating
nder transonic conditions, ignores to produce the analytical form of oscillatory shocklike struc-
ures. From a physical point of view, one may give a conclusion hereof that the argument �� /2� of
he soliton solution is getting self-consistently transformed into a complex one owing to the
omplex nature of the ion acoustic propagation vector �k� while passing through the unstable
onditions of transonic plasmas. Complex nature of the argument in presence of a linear free
nergy source in transonic condition is itself a physical signature of the said instability. The real as
ell as imaginary parts of the complex argument of the KdV soliton are given as follows:

�r = kx + 1
2k3t ,

�i = − �K0t .
gain, expanding Hirota solution as given by Eq. �21� by well-known expansion formulas of
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ircular and hyperbolic functions, this solution can be written in the following expanded form:

���r,�i� = 1.5� k2

M0
�sec h2�1

2
��r��� cos��i� + sin2�1

2
�i�sec h2�1

2
�r�

1 − sec h2�1

2
�r�sin2�1

2
�i� � − i1.5� k2

M0
�tanh�1

2
��r��

�� sin��i�sec h2�1

2
�r�

1 − sec h2�1

2
�r�sin2�1

2
�i�� . �22�

ow solution �22� can be simplified in the transient limit of �i	1 into the following form:

�r��r,�i� = 1.5� k2

M0
�sec h2�1

2
��r�� , �23�

�i��r,�i� = 1.5� k2

2M0
��i sinh��r�sec h4�1

2
�r� . �24�

t is, however, noticed that the asymmetric structures represented by Eq. �24� fail to produce the
xpected nature of shocklike solutions. But, of course, the average qualitative features in transonic
omains are reflected. And hence, it paves the way for further application of improved mathemati-
al tools for more accurate results.

. Application of sine-cosine method

Yan15 developed sine-cosine method directly from the modified transformation of famous
ine-Gordon equation. A new form of nonlinear mathematical transformation is obtained by suit-
ble mathematical tailoring of the sine-Gordon equation. This was applied to solve the usual KdV
quation and a new class of solutions was predicted for the usual KdV equation. The same is
upposed to be true for other well studied nonlinear dynamical equations too. We apply this
ethod to solve the d-KdV equation derived to describe the structural behaviors of nonlinear

raveling ion acoustic wave in unique equilibrium condition of transonic plasma system.
This effort is primarily motivated by our own numerical results of the same d-KdV equation

hat predicts the possibility of oscillatory shocklike solution in addition to usual soliton solution.
he main issue is to find out the explicit form of analytical solution for the oscillatory shocklike
rofile. As we will see later that even this method is incapable to yield the desired result. However,
n explicit term of shock profile is analytically deduced. As per the mathematical procedure laid
own for sine-cosine method to solve the usual KdV equation, we express the traveling wave
olution of d-KdV equation as follows:

���� = A0 + �
j=1

n

tanhj−1����Aj tanh��� + Bj sec h���� , �25�

here �=x− t and the same is used to numerically solve the d-KdV equation to find out the steady
tate solution in our earlier work.3 Accordingly, the nonlinear transformation derived from im-
roved sine-Gordon equation �sine-cosine method� is given below,

d�

d�
= sin � . �26�
fter integration of Eq. �26�, we arrive at the following transformations ��Û��:
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sin��� = sec h��� ,

cos��� = tanh��� .

ow, the principle of homogeneous balancing used for evaluation of the upper limit of summation
fter equalizing the highest order contributions from the linear as well as nonlinear terms, yields
=2 for the equation �6�. After using these transformations, the assumed solution �25� can be
xpressed in a new form as functions of the intermediate variable �,

���� = A0 + �
j=1

n

cosj−1����Aj cos��� + Bj sin���� . �27�

ubstitution of this solution into the Galilean transformed form of Eq. �6� through the relation
=x− t results into a trigonometric identity of algebraic shape. After collecting common terms, the

oefficient of each term in the trigonometric identity must vanish. As a result, the following forms
f algebraical relationships among the various unknown coefficients appearing in the transformed
orm of the d-KdV equation are derived by homogeneous equalization of various powers of
inm � cosn � from both sides. It will be definitely noticed that there will be existence of some
ore terms with respect to the usual KdV equation because of the presence of an additional

elf-consistent source term involving � in the d-KdV equation.
Constant:

A1�1 −
M0

K0
A0� +

A1

K0
− �A0 = 0.

sin �:

B2�1 −
M0

K0
A0� −

M0

K0
A1B1 +

5B2

2K0
− �B1 = 0.

cos �:

2A2�1 −
M0

K0
A0� −

M0

K0
�A1

2 − B1
2 + B2

2� +
8A2

K0
− �A1 = 0.

cos2 �:

− A1�1 −
M0

K0
A0� − 3

M0

K0
�A1A2 −

4

3
B1B2� −

4A1

K0
− �A2 = 0.

cos3 �:

− 2A2�1 −
M0

K0
A0� +

M0

K0
�A1

2 − 2A1
2 − B1

2 + 3B2
2� −

20A2

K0
= 0.

cos4 �:

A1A2 − B1B2 +
A1

M0
= 0.

cos5:

A2
2 − B2

2 +
6A2

M0
= 0.
sin � cos �:
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− B1�1 −
M0

K0
A0� − 2

M0

K0
�A1B2 + A2B1� −

5

2K0
B1 − �B2 = 0.

sin � cos2 �:

− 2B2�1 −
M0

K0
A0� +

M0

K0
�2A1B1 − 3A2B2� −

14

K0
B2 = 0.

sin � cos3 �:

A1B2 + A2B1 +
B1

M0
= 0.

sin � cos4 �:

A2B2 +
3

M0
B2 = 0.

his is to note that a few additional terms in the above recursion equations are appearing due to
inear resonant growth effect ��� of the ion acoustic wave in transonic plasma equilibrium. Solving
ll these equations for an arbitrary choice of B1=0 and B2=0, we arrive at the following approxi-
ate values of the unknown coefficients:

A0 =
K0

M0
+

4

M0
,

A1 = −
�K0

M0
,

A2 = −
6

M0
.

he above values of coefficients are calculated under weak dispersion and weak nonlinearity
nder ignorable resonant growth rate such that ��0 and �p=0" p�1. And, otherwise, all the
ecurrence relations could not be satisfied simultaneously. Last, the exact traveling wave analytical
olutions of the d-KdV equation as an intermixed superposition of two distinct classes �shock and
oliton� can be written as

���� = � K0

M0
+

4

M0
� + �−

�K0

M0
�tanh��� + �−

6

M0
�tanh2��� , �28�

��x − t� = � K0

M0
−

2

M0
� + �−

�K0

M0
tanh�x − t� +

6

M0
sec h2�x − t�
 . �29�

fter rescalings with �→ �K0 /2�� and �→ �K0 /2�−1/2�, the solution �29� can be written in the
caled out form as follows:

�SC��� = a0 sec h2�1

2
K0�� + �a2 + a3 tanh�1

2
K0��
 , �30�

here a0=3K0 /M0, a1=K0 /2�K0 /M0−2/M0�, and a2=−�K0
2 /M0.

It is obviously clear from Eq. �30� that there is a linear superposition of both shock �tanh�-like
nd soliton �sech2�-ic solutions over some dc background formed by the coherent self-coupling of

dentical spectral components of ion acoustic wave fluctuations in transonic plasma.

                                                                                                            



C

b
o
s
f

c
f
f
=
a
s
t

s
f
a
m
o
t

N
g

T
s

N
i
=

U
q
a
=

032901-13 Analytical integrability and physical solutions J. Math. Phys. 47, 032901 �2006�

                        
. Application of perturbative method

New physical but analytically quasistationary solutions have already been obtained by pertur-
ations over usual KdV solitons and solitary waves in a new frame of reference described by a set
f fast and slow variables by Kodama et al.18 We apply the same method to find out analytical
olutions of the d-KdV equation of our concern. This method is actually believed to be motivated
or newer and more satisfactory analytical results for a driven KdV system over others.

To apply the perturbative technique,18,19 first of all, new transformations in terms of fast
oordinate ���; and slow coordinates ��� and ��� are introduced for quasistationary solutions as
ollows: �=x− t, �=�t, and �=�x. These give �� /�x=1, �� /�t=−1, �� /�t=�, and �� /�x=�. Now,
or quasistationary character, we assume that the usual potential function is of the form, �
f�� ,� ,��=�0+��1+¯, where �0 is the leading order solution �usual soliton� of the d-KdV in

bsence of the linear growth term, that is treated as perturbation. Then, these results on being
ubstituted on the d-KdV equation, order-by-order analyses are performed and integrated to have
he desired analytical results.

Now, as already reported in our earlier work,3 ��1� is a smallness parameter specifying the
trength of balancing between nonlinearity and dispersion of the plasma medium, we take ���
or the calculations by perturbative technique and substitute ��� back finally to get the desired
nalytical results. This is, of course, not going to change the physical properties of the plasma
edium under the approximation of weak nonlinearity and weak dispersion during the lowest

rder nonlinear expansion of relevant physical variables with respect to leading order ones. With
his background, our d-KdV equation �6� can now be written as

−
�

��
��0 + ��1 + ¯ � +

M0

K0
��0 + ��1 + ¯ �

�

��
��0 + ��1 + ¯ � +

1

2K0

�3

��3 ��0 + ��1 + ¯ �

= ���0 + ��1 + ¯ � − �
�

��
��0 + ��1 + ¯ � . �31�

ow equating the coefficients of �0 ,�1, etc., to zero from both sides of Eq. �31�, respectively, we
et the following equations:

−
��0

��
+

M0

K0
�0

��0

��
+

1

2K0

�3�0

��3 = 0, �32�

−
��1

��
+

M0

K0
��0

�

��
+

�

��
�0��1 +

1

2K0

�3�1

��3 = �0 − �0�. �33�

he solution of Eq. �32� is the leading order unperturbed solution of Eq. �6�, which is a usual
oliton having amplitude-width relationship as A�w2=6/M0. It is given by

�0 = 3� K0

M0
�sec h2�1

2
K0�� . �34�

ow since we are interested in quasistationary solutions, a new slow variable a= f��� has been
ntroduced for the description of slow amplitude variation such that 3K0 /M0=4a2, that is, a
3K0 /4M0. Then from the equation �34�, one gets

�0� =
a�

a
�2u0 + �u0�� . �35�

nder the assumption that equation �33� should be free from secular terms and for solutions
uasistationary in nature, we equate the integration results of the right-hand side to zero to yield
���=a0 exp�2/3��. Now, in order to solve, the equation �33� on being substituted with y

tanh�a�� becomes
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�1 − y2�
d2�1

dy2 − 2y
d�1

dy
+ �3�3 + 1� −

4

1 − y2
�1 =
2

3
4M0

3K0

1

1 + y
+

2

3
4M0

3K0
ln�1 + y

1 − y
� .

�36�

pplying the well-known method of separation of variables,18,19 the solution of the equation �36�
s a perturbation over usual soliton can be written as

�1��� = −
1

3
 M0

3K0
�− 1 + tanh � + 2�1 − � tanh ��sec h2� + ��2 − � tanh ��sec h2�� .

�37�

hus the total solution ����=�0���+��1���+¯ of the equation �6� as a superposition of the
eading order solution and the perturbation over it obtained by perturbative technique as discussed
bove, can be written as

���� = 3� K0

M0
�sec h2�1

2
K0�� −

�

3
 M0

3K0
�− 1 + tanh � + 2�1 − � tanh ��sec h2� + ��2

− � tanh ��sec h2�� . �38�

he solution �38� can be set into a compact expression as follows:

�PT��� = a0 sec h2�1

2
K0�� + �A���sec h2��� + b0�1 − tanh����� , �39�

here a0=3K0 /M0, A���=−2b0�1+��1−1.5 tanh ��	, b0=� /3a0.
It is again obvious from the equation �39�, in conformity with the equation �30�, that there is

linear superposition of both shock �tanh�-like and soliton �sech2�-ic solutions over some preex-
sting dc background formed by the self-interaction of identical spectral components of ion acous-
ic wave fluctuations in transonic plasma. However, under the no-growth limit ��=0�, only soli-
onic structures exist and no shock at all. The analytically derived solutions represented by the
quations �30� and �39� both, therefore, physically suffice to exhibit analogous characteristics.

V. RESULTS AND DISCUSSIONS

Our mathematical calculations clearly demonstrate that the derived d-KdV is really analyti-
ally integrable. Solving it analytically, a solution as a linear superposition of two distinct modes
f nonlinear traveling waves is generated. In mutual isolation, one corresponds to the usual soliton
olution and the other corresponds to the shock solution. Of course, the oscillatory part with
inusoidal or nonsinusoidal peaks as depicted in numerically obtained profiles of the oscillatory
hocklike solutions3 does not appear there in our analytical solution. Furthermore, the depression
nd amplifications of solitons are feeble. This could be attributed to the limitation of the used
athematical techniques that seems to be blind to these oscillations. These two possible modes of

onlinear traveling ion acoustic wave should be observable in transonic plasma system if one
llows the ion acoustic wave to propagate through it.

Required study of magnetohydrodynamic waves and instabilities of both laboratory and space
lasmas has been carried out for many years under the assumption of static equilibrium. However,
here are many practical situations as mentioned in the introduction where plasma flows are
ignificantly large to violate the condition of static equilibrium. There are several efforts to con-
uct experiments in transonic and supersonic wind tunnels. Certain experimental facility like high
requency plasmatron is demonstrated to behave as ideal facility for MHD phenomena under real
ight conditions of aircraft.

In the moving frame of space vehicles, which carry the payloads for exploring the properties
f space plasma environment, background plasmas are always in motion. Its velocity can be

pproximately taken equal to the velocity of the vehicle itself but in opposite direction. The space
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aboratory frame observations of the low frequency range in acoustic domain must have some
ignature of our results provided that the space vehicle is moving with near sonic or near super-
onic speeds. We are not aware of any such particular observations of ion acoustic wave fluctua-
ions in transonic condition of plasma flows.

Most of the plasma devices of industrial applications like dense plasma focus machine, plasma
orches, etc., depend on the plasma flows that violate the static equilibrium.4–6 In fusion plasmas
f future generations too, the static approximation of the equilibrium plasma description may not
e suitable to describe the wave behavior. In future course of fusion research, rotational motions
f fusion plasmas in poloidal and toroidal directions may decide the equilibrium. This is important
o state that in toroidal plasmas, the geodesic acoustic mode20 becomes of fundamental importance
n comparison to the ordinary sound modes. This may be more important when these rotational

otions are in the defined range of the transonic limit. Simplicity is correlated to the local mode
pproximation of the acoustic wave description in the transonic limit of uniform and unidirectional
lasma flow motion without magnetic field.

There are some indications that the magnetized plasma flow systems may emit nonlinear
tanding MHD waves. In plasmas only nonlinear wave modes like soliton, shock, etc., in general,
an travel for long before suffering major modifications. Transonic plasma zone seems to act as an
nteresting site for rich varieties of linear and nonlinear ion acoustic wave activities. Like MHD
pectroscopy, the coining of the idea of acoustic spectroscopy5 in unmagnetized plasma flow
otions may have far reaching impact to study the unique property of the transonic plasmas of

aboratory or space productions for basic and applied research. The real key to open the mystery
f the sheath edge singularity lies in thorough investigations of wave turbulence physics in tran-
onic boundary layer, which is assumed to have diffuse nature of near quasineutral plasma poten-
ial distribution over a finite extension.

One can then speculate that the wave induced diffusion and transport phenomena may have
one into the evolutionary processes of the equilibrium formation of transonic plasma flows,
herever it exists. Logically speaking the residues of participating waves, even if a little, must
ave left behind a signature of turbulent state of transonic plasma in a self-consistent nonlinear
ydrodynamic equilibrium. This can be verified if and only if one can observe and analyze the
ide range acoustic spectrum, especially shorter scales, in defined transonic plasma zone. This is

he logical basis to put forth our own hypothesis that the transonic plasma equilibrium should, in
rinciple, look like a turbulent plasma medium maintained by anomalous diffusion processes.
ere we expect that the collective scale energy exchange processes in between the ion acoustic
ave energy and the ion flow energy occur predominantly in an adiabatic manner so that there is
o violation of the law of conservation of energy. This, in fact, is the distinctive characteristic of
ny conservative dynamical system.

The driving source of energy transfers part of its amount to amplify the spectral components
f the usual ion acoustic soliton. As a result, the usual global balancing between the nonlinearity
nd dispersion strength will be disturbed. If the dispersion strength of the source wavelength
emains negligibly weaker to compete with soliton dispersion strength, the phase coordination
mong the spectral components of the soliton remains intact and only amplification or suppression
f the soliton amplitude occurs. However, when the source dispersion strength becomes signifi-
ant, the space-symmetry of the soliton potential distribution breaks down and a new steady state
olution of oscillatory shocklike structure is obtained. Adiabatic process is supposed to govern the
nergy exchange process among different spectral acoustic components.

The nonlinear traveling wave solutions of the d-KdV equation as derived from Hirota’s
ethod, sine-cosine method as well as perturbative technique are graphically depicted in Figs. 1

nd 2 for the characterization of the ion acoustic wave motion through transonic zone for some
ypical values3 of resonance excitation threshold as deviation from sonic point �=1−Mr and scale
ength k�De of source perturbation. The graphical depictions are, however, in partial agreement

3
ith the predicted numerical results in terms of average properties.
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. CONCLUSIONS

In brief, we conclude that the present mathematical study of d-KdV equation offers a signifi-
ant contribution of analytical supports to our numerical prediction of structural transformation of
he traveling nonlinear ion acoustic waves in transonic plasma equilibrium of desired quality. It
learly shows that the actual solution of d-KdV equation is a resultant of linear mixing �superpo-
ition� of soliton and shock both.

Dominating features of the individual nonlinear modes is decided by an appropriate choice of
he specific values of unstable wave number �or wavelength� for a given value of the ion flow

ach number. It is obvious to note that in zero growth limit of d-KdV equation, the shock-term
isappears and only soliton remains. This limit is correlated with dc range of the chosen unstable
ave number of quite weaker dispersion strength. As the dispersion strength becomes significant

IG. 1. �Color online� Solitonic symmetric structures obtained by Hirota, sine-Gordon, and perturbative techniques for
=1.5�10−8 and k�De=1.5�10−6.

IG. 2. �Color online� Shocklike asymmetric structures obtained by Hirota, sine-Gordon, and perturbative techniques for
−6 −4
=2.5�10 and k�De=1.0�10 .
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o influence the original soliton strength of weak nonlinearity and weak dispersion in the defined
ransonic plasma of finite extension, structural modification of the usual KdV soliton profile
ccurs.

We further argue that the linear and nonlinear normal mode behaviors of the ion acoustic
aves in transonic plasma condition differ qualitatively from those derived for static and dynamic

quilibriums without electron inertial correction. The finite but weak hydrodynamic tailoring of
he electron fluid motion on ion acoustic space and time scales brings about this difference. It is
hen argued that the plasma flows in transonic equilibrium should exhibit rich spectrum of linear
nd nonlinear ion acoustic waves and oscillations. Of course, under Vlasov model the hot elec-
rons with streaming velocity comparable to the phase speed of the ion sound wave may destabi-
ize the ion sound mode through wave-particle resonance effect21 too. However, our excitation

echanism of ion sound wave differs from the other known mechanisms22–24 to excite the same
on sound wave on many grounds.24

This kind of theoretical scenario of transonic plasmas offers a unique scope of acoustic
pectroscopy to describe the internal state of transonic equilibrium of plasma flows, if it exists at
ll. These calculations may have potential applications in thorough study of the ion acoustic wave
urbulence related with aerodynamics, solar wind, and space plasmas, fusion plasmas of future
eneration, industrial plasmas, and plasma flows in astrophysical context, etc.
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The aim of this work is to demonstrate a curious property of general periodic
structures. It is well known that the corresponding homogenized matrix is positive
definite. We calculate here the next order Burnett coefficients associated with such
structures. We prove that these coefficients form a tensor which is negative
semidefinite. We also provide some examples showing degeneracy in
multidimension. © 2006 American Institute of Physics. �DOI: 10.1063/1.2179048�

. INTRODUCTION

The aim of this paper is to demonstrate a curious property of general periodic structures. Let
s consider acoustic wave propagation in a periodic medium with a small period denoted by �. To
rst order, we can approximate this medium by the associated homogenized medium. It is well
nown that the acoustic wave propagation in the homogenized medium provides good approxi-
ation to the propagation of sufficiently long waves in the original periodic medium �Refs. 1

nd 9�.
Here, we are interested in higher order approximation. From our previous work,2 it is known

hat the homogenized medium is described by the second order derivatives of the first Bloch
igenvalue �1��� at �=0 and the next order approximation to the periodic medium is provided by
fourth order tensor, namely the fourth derivatives of �1��� at �=0. In the physics literature such
igher order derivatives are known as Burnett coefficients and they are of great interest �Refs. 14
nd 8�. It is known that the homogenized matrix is positive definite.1 This work is devoted to the
tudy of the next order approximation.

The approximation of the periodic medium comes about from the asymptotic expansion of

1��� near �=0,

�1��� =
1

2!
�1��0��2 +

1

4!
�1

�4��0��4 + ¯ .

ubstituting �=��, we get the asymptotic expansion of the first eigenvalue associated to the
-periodic operator A� near �=0,
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�1
���� = �−2�1���� =

1

2!
�1��0��2 +

1

4!
�2�1

�4��0��4 + ¯ .

t is already established that the Hessian matrix �1��0� /2 coincides with the homogenized matrix
enoted by �qk�� �defined for instance in Ref. 1� and hence is positive definite. In this write-up, we
how that

1

4!
�1

�4��0��4 � 0 " � � RN.

urther, we show that there can be directions ��0 such that

1

4!
�1

�4��0��4 = 0.

owever, in one dimension, as we show below, such a degeneracy cannot happen unless the
edium is homogeneous.

Before starting our computations, let us interpret the above result in terms of acoustic wave
ropagation in the original �-periodic medium. From the above expansion, it is clear that

�1
���� �

1

2!
�1��0��2 if �2���4 is small.

his shows that the usual homogenized medium, as remarked above, provides a good description
rovided the waves are long. However, for short waves the above approximation is poor. Indeed if
2 ���4=O�1� and �4 ���6=o�1� then we have

�1
���� �

1

2!
�1��0��2 +

1

4!
�2�1

�4��0��4.

he above picture shows that long waves experience hyperbolic effects while short waves in
uestion undergo some dispersion too. This dispersive nature medium is described by the fourth
rder tensor �1

�4��0�. However, the dispersion is not classical. It has a negative sign and we may
hen call it negative dispersion. Strictly speaking, the corresponding initial value problem model-
ng the propagation of such short waves is not well posed. We would like to bring to the attention
f homogenization community that some curious materials �with negative refraction, negative
eflection coefficients� are being conceived and produced �see Refs. 5, 10, 11, and 13�. Viewed in
his light, our result says that a fine periodic structure provides one such curious material as far as
hort wave propagation is concerned. At this point, we would like to emphasize other features of
ur result. It came as a surprise to us to see a definite sign for the fourth order derivative, as it was
ot expected. Though our computations follow a general pattern, it is not clear to us whether
igher order derivatives too have a definite sign. The next remark is concerned with the level of
enerality at which we are working: we have no restriction whatsoever on the original periodic
edium except the classical ones. In other words, the material components used in mixing are

rbitrary, their proportions are arbitrary and the microgeometry of mixing is also arbitrary. This
ontrasts sharply with the current efforts in producing curious or smart materials using particular
omponents and following a particular design, for example, photonic crystals �see Refs. 7, 6, and
2�.

I. PRELIMINARIES

Let us now introduce the problem to be studied in this work. First, we remark that the
ummation with respect to the repeated indices is understood throughout this paper. We consider

he operator
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A =
def

−
�

�yk
�ak��y�

�

�y�
�, y � RN, �2.1�

here the coefficients satisfy

ak� � L#
��Y� where Y = � 0,2��N, i.e., each ak� is a

Y-periodic bounded measurable function defined on RN, and

$� 	 0 such that ak��y��k�� 
 ����2 " � � RN, y � Y a.e.,

ak� = a�k " k, � = 1, . . . ,N .

�2.2�

or each �	0, we consider also the �-periodic operator A� where

A� =
def

−
�

�xk
�ak�

� �x�
�

�x�
� with ak�

� �x� =
def

ak�� x

�
�, x � RN. �2.3�

n homogenization theory, it is usual to refer to x and y as the slow and the fast variables,
espectively. They are related by y=x /�.

Our results are based on Bloch waves � associated with the operator A which we define now.
et us consider the following spectral problem parametrized by ��RN: find �=�����R and �
��y ;�� �not zero� such that

A��· ;�� = ������· ;�� in RN, ��· ;�� is ��;Y� -periodic, i.e.,

��y + 2�m;�� = e2�im·���y ;�� " m � ZN, y � RN.
�2.4�

ext, by the Floquet theory, we define ��y ;��=e−iy·���y ;�� and �2.4� can be rewritten in terms of
as follows:

A���� = �� in RN, � is Y-periodic. �2.5�

ere, the operator A��� is called the translated operator and is defined by

A��� = e−iy·�Aeiy·�.

t is well known �see Refs. 1 and 3� that for each ��Y�= �−1/2 ,1 /2 �N, the above spectral
roblem �2.5� admits a discrete sequence of eigenvalues and their eigenfunctions �referred to as
loch waves� introduced above enable us to describe the spectral resolution of A �an unbounded
elf-adjoint operator in L2�RN�� in the orthogonal basis 	eiy·��m�y ;�� �m
1,��Y�
.

To obtain the spectral resolution of A�, let us introduce Bloch waves at the �-scale,

�m
� ��� = �−2�m���, �m

� �x;�� = �m�y ;��, �m
� �x;�� = �m�y ;�� ,

here the variables �x ,�� and �y ,�� are related by y=x /� and �=��. Observe that �m
� �x ;�� is

Y-periodic �in x� and �−1Y� periodic with respect to �. In the same manner, �m
� �· ;�� is ��� ;�Y�

eriodic because of the relation �m
� �x ;��=eix·��m

� �x ;��. Note that the dual cell at �-scale is �−1Y�
nd hence we take � to vary in �−1Y� in the sequel. With these notations, we have �see Ref. 1� the
ollowing.

Theorem 2.1: Let g�L2�RN�. The mth Bloch coefficient of g at the �-scale is defined as
ollows:

�Bm
� g���� = �

RN
g�x�e−ix·��̄m

� �x;��dx " m 
 1, � � �−1Y�.
hen the following inverse formula and Parseval’s identity hold:
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g�x� = �
�−1Y�

�
m=1

�

�Bm
� g����eix·��m

� �x;��d� ,

�
RN

�g�x��2 dx = �
�−1Y�

�
m=1

�

��Bm
� g�����2 d� .

inally, for all g in the domain of A�, we get

A�g�x� = �
�−1Y�

�
m=1

�

�m
� ����Bm

� g����eix·��m
� �x;��d� .

�

In the homogenization process, one can neglect all the modes for m
2 �see Refs. 4 and 2�. To
his end, we consider a sequence of solutions u� of the equation

A�u� = f in RN. �2.6�

e can show that the component of u� in the higher Bloch modes are not significant. More
recisely, let us consider v� defined by

v��x� = �
�−1Y�

�
m=2

�

�Bm
� u�����eix·��m

� �x;��d� . �2.7�

hich is nothing but the projection of u� corresponding to all higher Bloch modes. Then the
ollowing estimates on v� are derived in Ref. 2.

Proposition 2.2: Depending on the regularity of the source term f in �2.6�, we have

�i� If f �H−1�RN� : v�L2�RN��c�  fH−1�RN�.
�ii� If f �L2�RN� : v�L2�RN��c�2  fL2�RN�.
�iii� If f �L2�RN� : �v��H1�RN��c�  fL2�RN�.
�iv� If f �H1�RN� : v�L2�RN��c�3 � f �H1�RN�.
�v� If f �H1�RN� : �v��H1�RN��c�2 � f �H1�RN�.

ere, we denote by � · �H1�RN� the seminorm of H1�RN�. �

The above result is at the basis of neglecting higher order Bloch eigenvalues 	�m
� ���
m
2 in the

ontext of our discussion in the Introduction.

II. FOURTH ORDER TENSOR �1
„4…
„0…

In this section, we present the expression for the fourth order tensor �1
�4��0� and show that it is

egative semidefinite. Recall that �1��� and �1�· ;�� depend analytically on � in a small neigh-
orhood B of �=0 �see Ref. 4�.

. Derivatives of the first Bloch eigenvalue and eigenvector

The purpose of this section is to present expressions for derivatives of the first Bloch eigen-
alue �1��� and the first Bloch eigenvector �1�· ;�� at �=0 and indicate a systematic method to
ompute them. For details of these computations, the reader is referred to Ref. 2. Our approach
xploits the connection between the Bloch space computation with the multiscale computation.

The derivatives of the first eigenvalue and eigenfunction in �=0 exist thanks to the regularity
roperty established in Ref. 4. In fact, we know that there exists 	0 such that the first eigenvalue

1��� is an analytic function on B= 	� � �� � �
, and there is a choice of the first eigenvector
1�y ;�� satisfying
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� → �1�· ;�� � H#
1�Y� is analytic on B, �1�y ;0� = �Y�−1/2 =

1

�2��N/2 .

part from the above result of regularity on the Bloch spectrum, the following proposition was
lso proved in Ref. 2.

Proposition 3.1: We have the relations

�1�0� = 0, Dk�1�0� =
��1

��k
�0� = 0 " k = 1, . . . ,N ,

1

2
Dk�

2 �1�0� =
1

2

�2�1

��k � ��

�0� = qk� " k, � = 1, . . . ,N ,

here qk� are the homogenized coefficients defined by

qk� = MY�ak� + akm
���

�ym
� =

def 1

�Y��Y
�ak� + akm

���

�ym
�dy " k, � = 1, . . . ,N , �3.1�

ith test function �k defined by the following cell problem:

A�k =
�ak�

�y�

in RN,

�k � H#
1�Y�, MY��k� = 0. �3.2�

oreover, all odd order derivatives of �1 at �=0 vanish, i.e.,

D��1�0� = 0 " � � Z+
N, ��� odd .

ll even order derivatives of �1 at �=0 can be calculated in a systematic fashion. For instance,
he fourth order derivatives have the following expressions: for all k , � ,m ,n=1, . . . ,N,

1

4!
Dk�mn

4 �1�0� =
1

4

1

�Y��Y

	Cn�k�m + Ck��mn + C��mnk + Cm�nk�
dy

−
1

3!

1

�Y��Y

	�ak� − qk���mn + �a�m − q�m��nk + �amn − qmn��k�

+ �ank − qnk���m + �akm − qkm���n + �a�n − q�n��km
dy .

ere, the operator Ck is defined by

Ck� =
def

− akj�y�
��

�yj
−

�

�yj
�akj�y��� �3.3�

is skew-adjoint, Ck
*=−Ck�, and �k�, �k�m are the test functions defined by the following cell

roblems:

A�k� = �ak� − qk�� − 1
2 �Ck�� + C��k� in RN,

1
�k� � H#�Y�, MY��k�� = 0, �3.4�
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A�k�m = 1
3 ��ak� − qk���m + �a�m − q�m��k + �amk − qmk����

− 1
3 �Ck��m + C��mk + Cm�k�� in RN, �3.5�

�k�m � H#
1�Y�, MY��k�m� = 0.

�

The above expressions are obtained by differentiating the eigenvalue problem,

�A��� − �1�����1�· ;�� = 0,

nd using that the branch ���1�· ;�� can be so chosen that the following conditions are satisfied
imultaneously:

� � B � �1�· ;�� � H#
1�Y� is analytic,

�1�· ;��L2�Y� = 1 " � � B,

Im�
Y

�1�y ;��dy = 0 " � � B.

. D4�1„0… is negative semidefinite

First, we denote the fourth derivatives as

Bk�mn =
1

4!
Dk�mn

4 �1�0� .

hus, by the Proposition 3.1, for any ��RN we get

Bk�mn�k���n�m =
1

4

1

�Y��Y

��Cn�n���k�m�k���m� + �Ck�k����mn���m�n��dy

+
1

4

1

�Y��Y

��C������mnk�m�n�k� + �Cm�m���nk��k���n��dy

−
1

3!

1

�Y��Y

��k���ak� − qk����mn�m�n� + ���m�a�m − q�m���nk�k�n��dy

−
1

3!

1

�Y��Y

��m�n�amn − qmn���k��k��� + �k�n�ank − qnk����m�m����dy

−
1

3!

1

�Y��Y

��m�k�akm − qkm����n���n� + ���m�a�n − q�n���km�m�k��dy .

Now, we introduce the following notations:

C = �nCn, ��1� = �k�k, ��2� = �k���k�, ��3� = �k���m�k�m,

a = �k�makm, q = �k�mqkm. �3.6�
hen, by the summation, the above expression is simplified to the following:
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Bk�mn�k���m�n =
1

�Y��Y

C��3� dy −
1

�Y��Y

�a − q���2� dy . �3.7�

Since the test function �k satisfies the cell problem �3.2�, we have by the notations �3.6�,

A��1� = �k
�ak�

�y�

. �3.8�

nalogously, by the cell problems �3.4� and �3.5�, we have the following Y-periodic problems:

A��2� = �a − q� − C��1�, �3.9�

A��3� = �a − q���1� − C��2�. �3.10�

By the notation �3.6�, since Ck is defined in �3.3�, we get

1

�Y��Y

C��3� dy = −
1

�Y��Y

�kak�

���3�

�y�

dy .

sing �3.8� and integrating by parts, we have

1

�Y��Y

C��3� dy =
1

�Y��Y

A��1���3� dy =
1

�Y��Y

��1�A��3� dy =
1

�Y��Y

��a − q����1��2 − ��1�C��2��dy ,

y �3.10�. Therefore, from �3.7�, we obtain

Bk�mn�k���m�n =
1

�Y��Y

�a − q����1��2 dy −
1

�Y��Y

��1�C��2� dy −
1

�Y��Y

�a − q���2� dy .

gain, by definition of C, we have C*=−C and hence

Bk�mn�k���m�n =
1

�Y��Y

�a − q����1��2 dy −
1

�Y��Y

��a − q� − C��1����2� dy .

sing now �3.9�, we get

Bk�mn�k���n�m =
1

�Y��Y

�a − q����1��2 dy −
1

�Y��Y

A��2���2� dy .

ubstituting,

a − q = A��2� + C��1�,

e can rewrite the above expression as follows:

Bk�mn�k���m�n = −
1

�Y��Y

A���2� −
1

2
���1��2� · ���2� −

1

2
���1��2�dy +

1

4

1

�Y��Y

A���1��2 · ���1��2 dy

+
1

�Y��Y

C��1� · ���1��2 dy . �3.11�

We show now that the last two terms of the above expression add up to zero. More precisely,

e prove
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1

4

1

�Y��Y

A���1��2 · ���1��2 dy +
1

�Y��Y

C��1� · ���1��2 dy = 0. �3.12�

o this end, let us first consider the last term. By definition of C,

�
Y

C��1� · ���1��2 dy = − 2�k�
Y

ak�

�

�y�
�1

3
���1��3�dy − �k�

Y

�ak�

�y�

���1��3 dy .

ia a simple integration by parts, we obtain

�
Y

C��1� · ���1��2 dy = −
1

3
�

Y

A��1� · ���1��3 dy . �3.13�

On the other hand, regarding the first term in �3.12�, we can establish a more general relation,

1

�p + 1�2�
Y

A���1��p+1 · ���1��p+1 dy =
1

2p + 1
�

Y

A��1� · ���1��2p+1 dy " p � N . �3.14�

his proof is simply obtained by writing the expression

ak�

���1�

�y�

���1�

�yk
���1��2p

n two different ways, namely

ak�

���1�

�y�

�

�yk
� 1

2p + 1
���1��2p+1� and ak�

�

�y�
� 1

p + 1
���1��p+1� �

�yk
� 1

p + 1
���1��p+1� .

simple integration of these expressions leads us to the above relation �3.14�. Finally, taking p
1 in �3.14� and using �3.13�, we get �3.12�. Thus, we conclude the proof of the following result.

Proposition 3.2: The tensor of fourth derivatives of �1 in 0 is negative semidefinite. More
recisely, for any ��RN, we get

1

4!
Dk�mn

4 �1�0��k���m�n = −
1

�Y��Y

A���2� −
1

2
���1��2� · ���2� −

1

2
���1��2�dy � 0. �3.15�

�

. One-dimensional case

In this case, we get a more simple formula for the form associated with the fourth order
erivatives of �1. More exactly, we show that, for any ��R, we have

1

4!
D4�1�0��4 = −

q

2�
�

0

2�

���1��2 dy � 0. �3.16�

ndeed, by �3.7� we know that

1

4!
D4�1�0��4 =

1

2�
�

0

2�

�C��3� − �a − q���2��dy .

hen, we prove �3.16� by showing that

�2�

C��3� dy = �2�

�− q���1��2 + �a − q���2��dy . �3.17�

0 0
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To prove the above result, we first establish some formulas where we use one-dimensional
ature of the problem. Considering �3.8� and integrating, we get

a
d��1�

dy
= �q − a�� . �3.18�

ow, considering �3.9� and integrating, we get

a
d��2�

dy
= − a��1�� + c ,

here c is some constant. Dividing the above relation by a and integrating it over Y, we get c
0 and then the following relation results:

d��2�

dy
= − ��1�� . �3.19�

Because of the above relations �3.18� and �3.19�, there are simplifications in one dimension
hich can be exploited to establish �3.17�. To this end, it is enough to use the equations satisfied
y ��1� and ��3� and integration by parts.

Remark 3.3: An immediate consequence of (3.16) is

D4�1�0� = 0 Û a�y� is constant . �3.20�

ndeed, if D4�1�0�=0 then ��1�=0 and by (3.18), the coefficient a�y� is constant. �

V. DEGENERATE CASES

Unfortunately, in several space dimensions �3.20� need not be true. It can happen that the
oefficients 	ak�
 are not constants and yet

Dk�mn
4 �1�0��k���m�n = 0 for some � � 0. �4.1�

n this section, we show some examples of such degenerates cases.
First, we propose to prove two equivalent expressions for �4.1�.
Proposition 4.1: Let us pose

��2� = �k�
�2��k��,

here the constants �k�
�2� are defined by

�k�
�2� =

1

2!

1

�Y��Y

���k dy . �4.2�

hen, if there exists ��RN− 	0
 satisfying (4.1), we get

��2� = 1
2 ���1��2 − ��2�. �4.3�

lso (4.1), is equivalent to the following Hamilton-Jacobi type equation for ��1�:

a − q + 2�kak�

���1�

�y�

+ ak�

���1�

�yk

���1�

�y�

= 0. �4.4�

�

Proof: From �3.15� and �4.1�, we have immediately that ��2�− 1
2 ���1��2=C, for some constant

�1� �2�
. Integrating this relation and using the definition of � and � , we get
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C�Y� = −
1

2
�k���

Y

�k�� dy ,

nd by definition �4.2� of �k�
�2�, we obtain �4.3�.

Applying the operator A on the relation �4.3�, we get

A��2� = A� 1
2 ���1��2� .

ince ��1� and ��2� are solutions of �3.8� and �3.9�, respectively, we have

A��2� = a − q + 2�kak�

���1�

�y�

+ A��1� · ��1�

nd

A�1

2
���1��2� = A��1� · ��1� − ak�

���1�

�y�

���1�

�yk
.

e subtract the last two expressions and arrive at �4.4�. Conversely, we can start from �4.4� and
educe �4.3�. This completes the proof. �

Next, we present some examples of degenerate cases in several space dimensions.
Case of laminates: We place ourselves in two dimensions. Consider the matrix of coefficients

ak��y��,

�a11�y1� 0

0 a22
� ,

ith a22 being a constant. Taking �= �0,1�, the following can be easily checked:

�2 � 0, ��1� � 0, q22 = a22, a = q = a22.

Recall that �2 is the solution of �3.2��. Thus, the equation �4.4� and hence the property �4.1� are
asily satisfied but �ak��y�� is not a constant matrix.
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Irreducible tensor concomitants of an arbitrary complex antisymmetric second rank
tensor, or bivector, in a Minkowski space-time are presented. These tensors are
quadratic in the complex bivector and invariant under an overall multiplicative
phase change of the bivector; in other words, they are sesquilinear-quadratic tensor
concomitants of the complex bivector. The tensors are real and irreducible under
the full real Lorentz group. Particular consideration is given to when the complex
bivector is the electromagnetic field strength tensor �complex description is appro-
priate for radiation�, and it is found that some of these irreducible tensors are novel
electromagnetic observables not previously mentioned in the literature. © 2006
American Institute of Physics. �DOI: 10.1063/1.2173176�

I. INTRODUCTION

Quadratic concomitants of bivectors12,8 �antisymmetric second rank tensors� are of fundamen-
tal importance in physics in general and in electromagnetism in particular. In electromagnetism,
see Ref. 4, the electromagnetic field strength can be described by the real bivector

F�� =�
0 − E1 − E2 − E3

E1 0 − B3 B2

E2 B3 0 − B1

E3 − B2 B1 0
�, �,� = 0,1,2,3, �1�

where �E1 ,E2 ,E3� is the electric field and �B1 ,B2 ,B3� is the magnetic field �Greek indices run over
0,1,2,3 where 0 is associated with a timelike coordinate and 1,2,3 with spacelike coordinates�. F��

has the following well-known bilinear concomitants: the two scalars.

C+
�r� = 1

4F��F��, �2�

C−
�r� = 1

8F��F�������, �3�

where ����� is the Levi-Civita tensor in four dimensions �with �0123=−1�, and the second rank
tensor

a�Electronic mail: T.Carozzi@sussex.ac.uk
b�Electronic mail: jb@irfu.se

47, 032903-10022-2488/2006/47�3�/032903/7/$23.00 © 2006 American Institute of Physics
                                                                                                                



                
T�r�
�� = F��F�

� − 1
4C+

�r����, �4�

where ��� is the metric tensor of Minkowski space. C+
�r� is the Lagrangian density of the free

electromagnetic field, C−
�r� is the electromagnetic pseudoscalar, and T�r�

�� is the electromagnetic
energy-momentum density tensor.

However, there are cases when we need to consider bivectors that are complex. For electro-
magnetic radiation, for instance, it is more convenient to use complex rather than real field
quantities. From quantum theory of light it is known that the observables of an electromagnetic
field are ultimately constructed from a complex field strength F��, see Refs. 2 and 11. Of these
observables, the simplest are sesquilinear-quadratic in F��, that is, they are functions of the

components of F��F̄��, where F̄�� is the complex conjugate of F��, see Ref. 5.
A question that has not yet been addressed fully, however, is which tensor valued observables

can be constructed from an arbitrary complex F��. At first glance this question seems pointless
since one quickly realizes that an infinite number of sesquilinear-quadratic tensor concomitants of
F�� are possible. However, we will show that all sesquilinear-quadradric tensor concomitants of a
complex F�� can be constructed from a unique �up to duality transform� set of tensors. This is the
set of tensor concomitants that are real irreducible under the full Lorentz group.10

The main objective of this paper is therefore to introduce this set of real irreducible tensors
which are sesquilinear-quadratic concomitants of an arbitrary complex bivector. Although the
results are of particular interest when the complex bivector is the electromagnetic field, we will
keep the treatment general so it applies to any complex bivector. In Sec. II we provide the relevant
definitions and criteria for the unique sesquilinear-quadratic concomitant which are then presented
in Sec. III where we also show that any sesquilinear-quadratic concomitant of a complex bivector
can be completely decomposed in terms of these tensors. Finally, we write these tensors explicitly
in terms of electric and magnetic 3-vectors and find that some of them have not been previously
discussed in the literature.

This work is related to Olofsson7 which attempts to decompose rank-4 bilinear concomitants
of complex bivectors. A paper using a spinor algebra approach, as opposed to the tensor algebra
approach used here, is in preparation.9

II. CRITERIA FOR THE SESQUILINEAR-QUADRATIC TENSOR CONCOMITANTS

In what follows, we will be concerned with 4-tensors in a complex Minkowski space-time
with the real metric tensor g��=���=diag�+1,−1,−1,−1�. Consider an arbitrary �in general not
self-dual� complex bivector F��. By definition it fulfills

F�� = − F��, where F�� � C �5�

for all � ,�. We will be interested in the tensor concomitants which are sesquilinear-quadratic in
F��. These are defined as follows.

Definition: A sesquilinear-quadratic tensor concomitant H�1¯�n

�1¯�m of a complex bivector F�� is
a tensor valued function H�1¯�n

�1¯�m�F��� of even rank m+n that scales as H�1¯�n

�1¯�m→ �	�2H�1¯�n

�1¯�m

under the change F��→	F�� where 	 is an arbitrary complex scalar.
In practice, to construct sesquilinear-quadratic concomitants of a complex F��, it is necessary

to use the complex conjugate of the bivector which we denote F̄�� and define as

F̄�� ª R�F��	 − iI�F��	 , �6�

where R�·	 and I�·	 denote the real part and imaginary part, respectively, of its argument.
To be clear then, a sesquilinear-quadratic tensor concomitant of F�� is any tensor constructed

from the set �F̄��F�� ,��� ,�����	, and their related covariant and mixed tensors, using the usual
rules and operations of tensor algebra. Some examples of sesquilinear-quadratic tensor concomi-

tants of F�� are F̄ F��� − F̄ F��� � and 3F̄ F �����.
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We will show that out of the infinite number of possible sesquilinear-quadratic tensor con-
comitants of a complex bivector, there exists a unique �up to duality transform� finite set from
which any sesquilinear-quadratic tensor concomitant can be constructed. The tensors in this set are
the real irreducible tensors under the full real Lorentz group, L. By real irreducible tensor under
L, we mean that the tensor cannot be written as a sum of tensors which transform independently
of each other under a general transformation in L, see Refs. 1 and 10.

Let us now stipulate some explicit criteria that the sesquilinear-quadratic tensor concomitants
of a complex bivector should fulfill to be real irreducible under L, and which we have used to find
these tensors. Tensors of all ranks should be decomposed into proper tensors and pseudotensors;
this because L includes improper transformations. Tensors of second rank should be traceless, that
is, they should vanish when fully contracted with the metric tensor,

T�
� = 0, �7�

and they should be decomposed into symmetric and antisymmetric parts. Tensors of fourth rank
should be traceless over all pairs of indices and in addition vanish when contracted over three or
four indices of the Levi-Civita tensor; that is, for a fourth rank tensor concomitant W���� to be
irreducible it must satisfy all of the following conditions:

W�
��� = W�

��� = W�
�

�� = W�
�

�� = W��
�

� = W�
��� = 0, �8�

�����W���� = 0, �9�

�����W���� = �����W���� = �����W���� = �����W���� = 0. �10�

These conditions ensure that a fourth rank tensor cannot be decomposed, for example, as W����

=X����+Y����� or W����=X����+c����� or W����=X����+Y�
������, for some fourth rank ten-

sor X����, second rank tensor Y��, and scalar c. Tensors of ranks higher than four need not be
considered as they can be constructed from the tensors of rank 0, 2, and 4 through multiplication
with ��� or �����. Finally, to be real13 irreducible tensors we require that all the tensors be real
�imaginary part is zero� for real representations of L.

In conclusion the tensors in the irreducible tensorial set we wish to introduce must be

�1� Sesquilinear-quadratic concomitants of complex F��,
�2� �all ranks� either proper tensors or pseudotensors,
�3� �second rank� symmetric or antisymmetric, and fulfill �7�,
�4� �fourth rank� fulfill �8�–�10�.

III. THE IRREDUCIBLE TENSORIAL SET

The irreducible tensorial set which fulfills the criteria enumerated in Sec. II are the six tensors

H ª �C+,C−,Q��,T��,U��,W����	 �11�

defined as follows. The two scalars are the proper scalar

C+ ª �F̄��F�� − *F̄��
*F���/8 �12�

and the pseudoscalar

C− ª �F̄��
*F�� + *F̄��F���/8, �13�

where we have used the dual of F�� defined as
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*F�� ª 1
2�����F�� = 1

2���
��F��. �14�

The three second rank tensors are the antisymmetric pseudotensor

Q�� ª i�F̄�
�F�� − *F̄�

�
*F�� − 2C+����/2, �15�

the symmetric proper tensor

T�� ª �F̄�
�F�� + *F̄�

�
*F���/2, �16�

and the symmetric pseudotensor

U�� ª i�F̄�
�

*F�� − *F̄�
�F���/2. �17�

The fourth rank tensor is the proper tensor

W���� ª �F̄��F�� − *F̄��*F���/2 + 2iQ����������� − 2
3C+��������� − 1

3C−�����, �18�

where the square brackets denotes antisymmetrization over the enclosed indices, e.g., T����g����

= 1
2 �T��g��−T��g���, and nested brackets are not operated on by enclosing brackets, e.g.,

T����g������= 1
4 �T��g��−T��g��−T��g��+T��g���. It fulfills the symmetries W����=−W����

=−W����=W���� and W������=0.
Note that all the tensors in the set are either self-dual or anti-self-dual with respect to the

duality transform: F��� *F�� and *F���−F�� jointly. Note also that if F�� is purely real, then
Q�� and U�� vanish.

The importance of H is brought out in the following theorem.
Theorem: Any sesquilinear-quadratic concomitant of a complex antisymmetric 4-tensor F��

can be completely decomposed in terms of the tensors in the set H.
Proof: As mentioned previously, any sesquilinear-quadratic tensor concomitant of F�� can be

written exclusively as linear combinations of tensor terms of the form F̄��F�� �possibly� multi-
plied and contracted over any of its indices by the tensors ��� and ����
.

Therefore it suffices to show that F̄��F�� can be decomposed into the tensors in H. Using
straightforward tensor algebra, it is possible to show that

F̄��F�� = T����������� − 1
8 i�U����

��� − U����
��� − U����

��� + U����
���� + W����

− 2iQ����������� + 2
3C+��������� + 1

3C−����� + 1
2 i���

��U����� ������

+ 1
16���

���T�
�

��� − T�
�


��� − T�
�

��� + T�
�


���� .

It is clear from inspection of this expansion that the sesquilinear-quadratic dependency on F is
completely contained in the six irreducible tensors: C+, C−, Q��, T��, U��, and W����. �

A further check of the above theorem is gained from the dimensionality of the space of
sesquilinear-quadratic concomitants of a complex bivector. F�� has 12 degrees of freedom count-

ing both real and imaginary parts while F̄��F�� has 36 degrees of freedom. The set H has,
respectively, �1, 1, 6, 9, 9, 10	 degrees of freedom, which in total gives 36 degrees of freedom.

Thus, dimensionally �6̄� � �6�= �1� � �1� � �6� � �9� � �9� � �10�, where a sesquilinear-quadratic
product on a complex space is assumed on the left-hand side.

The set H is unique under the conditions enumerated in Sec. II up to a duality transform of
either Q�� or W����; that is,

*Q��, �19�
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*W���� ª 1
2���

��W���� �20�

are alternatives to either Q�� or W����, respectively, as elements in the minimal set of real
irreducible tensors.

IV. ELECTROMAGNETIC COMPONENTS OF THE IRREDUCIBLE TENSORS AND THEIR
ASSOCIATION WITH KNOWN QUANTITIES

It is instructive to write out the components of the irreducible tensorial set, H, in terms of
complex electric and magnetic field 3-vectors. Any complex electromagnetic field strength
4-tensor can be written

F�� = 
0 − ET

E B�
� , �21�

where

E = �E1,E2,E3�T � C3, �22�

B = �B1,B2,B3�T � C3, �23�

are the electric 3-vector and the magnetic 3-vector, respectively. Here T denotes the transpose
operator, and the B� ª�ijkBj where �ijk is the Levi-Civita tensor in three dimensions �lower case
italic letters i , j ,k=1,2 ,3 represent Cartesian components in 3-space�.

In terms of the E and B 3-vectors, the components of the irreducible tensors are as follows:
The two scalars are

C+ = ��E�2 − �B�2�/2, �24�

C− = − R�Ē · B	 . �25�

The three second rank tensors consists of the antisymmetric pseudotensor

Q00 = 0, �26�

Qi0 = I�Ē � B	 , �27�

Qij = I�Ē � E − B̄ � B	 =
i

2
�Ē � E − B̄ � B� � , �28�

Qji = − Qij , �29�

and the symmetric proper tensor

T00 = ��E�2 + �B�2�/2, �30�

Ti0 = R�Ē � B	 , �31�

Tij = − R�Ē � E + B̄ � B	 + T0013, �32�

Tji = Tij �33�

and the symmetric pseudotensor
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U00 = I�Ē · B	 , �34�

Ui0 =
i

2
�Ē � E + B̄ � B� , �35�

Uij = − I�Ē � B − B̄ � E	 + U0013, �36�

Uji = Uij , �37�

where 13 is the identity matrix in three dimensions.
As for the last tensor in the set, the fourth rank proper tensor W����, it is more efficient to

write its components out using a bivector indexing scheme, see Ref. 3. We will denote a bivector
index with upper case italic letters, such as A or B, and let it run through the integers 1 through 6.
FA is used to represent the tensor component F�� of an antisymmetric tensor according to the
index mapping: A↔ ����, where 1↔ �10�, 2↔ �20�, 3↔ �30�, 4↔ �32�, 5↔ �13�, 6↔ �21�. Based
on this scheme, the second rank antisymmetric tensor �21� can be written in terms of the 3-vectors
E and B as

F�� = 
0 − ET

E B�
� ↔ 
E

B
� = FA �38�

where the six-component vector on the right-hand side, FA, is known as a sixtor, see Ref. 10. A
fourth rank tensor can be written out in terms of its components using two bivector indices: the
first and second 4-tensor indices map to the first bivector index, and the third and fourth 4-tensor
indices map to the second bivector index. With this scheme we can write down the components of
W���� accordingly

W���� ↔ WAB =
1

2
R�Ē � E − B̄ � B	 − 2
3C+13 R�Ē � B + B̄ � E	 − 2

3C−13

R�Ē � B + B̄ � E	 − 2
3C−13 − R�Ē � E − B̄ � B	 + 2

3C+13

� . �39�

From the above expressions of the irreducible tensors explicitly in terms of the complex
electric and magnetic field components, it is possible to identify some quantities from electromag-
netic theory. The tensors C+, C−, and T�� are sesquilinear-quadratic generalizations of the well-
known electromagnetic scalar-invariants and energy-momentum density tensor, respectively. Ten-
sors closely related to T�� and U�� were introduced by Ref. 5. Also some of the 3-vectors are
already known: Qi0 in Eq. �27� is the imaginary part of the complex Poynting vector, see Ref. 4,
and the 3-vector Ui0 in Eq. �35� is mentioned in Ref. 6. As far as the authors are aware the rest of
the quantities, specifically the 4-tensors Q�� and W����, are novel in the theory of electromagne-
tism.

V. CONCLUSION

We have shown that any sesquilinear-quadratic concomitant of a complex bivector can be
completely decomposed into tensors in the set H as defined in Sec. III and summarized in Table
I. The tensors in H are either proper tensors or pseudotensors and are real irreducible under the
full real Lorentz group. This tensorial set is unique up to a duality transform of Q�� or W����.

Of the tensors in set H, the electromagnetic quantities related to C+ ,C−, and T�� are all
sesquilinear-quadratic generalizations of previously known quadratic tensor concomitants of real
�electromagnetic� bivector fields; while Kujawski5 introduced quantities closely related to T�� and
U��. As far as the authors are aware the other tensors, Q�� and W����, have not been previously
considered in the literature.
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as the Weyl tensor.

Concomitant Rank Proper/Pseudo # comp

C+ 0  1

C− 0 � 1

Q�� 2 �A� � 6

T�� 2 �S�  9

U�� 2 �S� � 9

W���� 4  10
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We propose a general scheme of constructing of soliton hierarchies from finite
dimensional Stäckel systems and related separation relations. In particular, we con-
centrate on the simplest class of separation relations, called Benenti class, i.e.,
certain Stäckel systems with quadratic in momenta integrals of motion. © 2006
American Institute of Physics. �DOI: 10.1063/1.2176908�

. INTRODUCTION

The theory of integrable nonlinear evolution equations has a long history as a part of many
ranches of theoretical physics and applied mathematics. Generally it can be divided in two parts:
he theory of integrable nonlinear ordinary differential equations �ODE’s� and the theory of inte-
rable nonlinear partial differential equations �PDE’s�. Within the first class of equations �ODE’s�
e will consider finite dimensional Hamiltonian systems, integrable by the Hamilton-Jacobi
ethod, called Stäckel systems, while within the second class �PDE’s� we will consider

1+1�-dimensional field systems, having infinite hierarchy of commuting symmetries and called
urther for simplicity soliton systems. The solvability by quadratures of some class of finite
imensional systems by the Hamilton-Jacobi method, laid in the 19th century one of the funda-
ents of analytical mechanics of integrable systems, while the solvability by quadratures of some

lass of infinite dimensional field systems by the inverse scattering method, laid in the second half
f the 20th century, one of the fundaments of the so-called soliton theory.

During the last few decades both theories have been developed very intensively using many
ommon modern mathematical tools like Lax representation, r-matrix theory, multi-Hamiltonian
heory, etc. In that time some links between both theories were investigated. It was found �Refs.
–4, see also references in Ref. 5� that finite dimensional restrictions, invariant with respect to the
ction of a given soliton system, like stationary flows, restricted flows or constrained flows of Lax
epresentation, are Liouville integrable Hamiltonian systems of Stäckel type. Moreover, analytical
olutions of an appropriate finite dimensional systems are closely related to a special class of
olutions of related soliton systems, like for example, so-called finite-gap solutions.6,7

In the present paper we are interested in passing in the opposite direction—building integrable
ierarchies of PDE’s from Stäckel systems.8 In that sense we would like to initiate a unified
pproach to Stäckel ODE’s and soliton PDE’s. Our claim is the following: both a wide class of
täckel systems and a wide class of soliton systems can be constructed form common fundamental
bjects known as separation relations (or from separation curves).

The paper is organized as follows. Section II is devoted to general description of the concept
f separation relations. Section III explains the main ideas of relating soliton systems with sepa-
ation curves that are quadratic in momenta. The idea is to apply to a set of Killing vector fields

�Partially supported by KBN Research Project 1 P03B 111 27 and by Swedish Research Science Council Grant No.

2004-6920.
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set of invariants generated by Euler-Lagrange equations associated with appropriately chosen
agrangian densities. This allows for elimination of some variables in our Killing systems which

eads to dispersive soliton hierarchies. Section IV is a brief introduction to what can be called
enenti class of Stäckel systems. In Sec. V we describe the structure of our systems in Viète
oordinates. In Sec. VI we explain the details of our elimination procedure which allows, in a
ystematic way, to construct soliton hierarchies. It is divided into two sections as the elimination
rocedure differs in case of “positive” and “negative” �see below� separable potentials. Section
II concludes the article with several examples.

I. SEPARATION RELATIONS

Let us consider a 2n-dimensional manifold M equipped with a Poisson operator � with some
anonical �Darboux� coordinates labelled as M �u= �� ,��, with �= ��1 , . . . ,�n� and �
��1 , . . . ,�n�. The following definition introduces the basic object of our considerations.9

Definition 1: A set of n relations of the form

�i��i,�i,a1, . . . ,an� = 0, i = 1, . . . ,n, ai � R �1�

each involving only one pair �i ,�i of canonical coordinates) are called separation relations
rovided that the dependence of � on a is essential, i.e., that det���i /�aj��0.

The condition in �1� means that we can resolve the equations �1� with respect to ai obtaining

i=Hi�� ,��, i=1, . . . ,n. This defines some new functions Hi�� ,�� that in turn define the follow-
ng Hamiltonian systems �evolutionary vector fields� on M,

uti
= � dHi = XHi

, i = 1, . . . ,n . �2�

f the functions Wi��i ,a� are solutions of a system of n decoupled ODE’s obtained from �1� by
ubstituting �i=�Wi��i ,a� /��i

�i��i,�i =
�Wi��i,a�

��i
,a1, . . . ,an� = 0, i = 1, . . . ,n , �3�

hen the function W�� ,a�=�i=1
n Wi��i ,a� is an additively separable solution of all the equations �3�

nd simultaneously it is a solution of all Hamilton-Jacobi equations

ai = Hi��,� =
�W��,a�

��
�, i = 1, . . . ,n �4�

elated with the Hamiltonians Hi—simply because solving �1� to the form ai=Hi�� ,�� is a purely
lgebraic operation. Assume now that det��2W /��i�aj�=det��2Wi /��i�aj��0. Then the Hamilto-
ians Hi Poisson-commute since the constructed function W�� ,a� is a generating function for the
anonical transformation �� ,��→ �b ,a� where

bi =
�W��,��

�ai
= ti + consti, i = 1, . . . ,n . �5�

quations �5� are implicit solutions of �2� known as the inversion Jacobi problem. Thus, starting
rom a set of n separation relations we can create an n-dimensional separable Liouville system. All
ystems separable in the sense of Hamilton-Jacobi theory can be obtained in this way.

In an important case, when the functions �i in �1� do not depend on the index i, the separation
elations �1� can be generated by taking n copies of a curve in �-� plane:

���,�,a1, . . . ,an� = 0, ai � R �6�

alled separation curve.
Restricting our considerations to a subclass of �1�, when all separation relations are affine in
i=Hi with coefficients being monomials in � and �, we obtain
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�
k=1

n

Hk�i
�k�i

�k = �i��i,�i�, i = 1, . . . ,n, �k,�k � N , �7�

here �i are arbitrary smooth functions of two arguments. Equations �7� are called generalized
täckel separation relations and the related dynamic systems, generated by Hamiltonian functions

i, are called the Stäckel separable ones. To recover explicit Stäckel form of Hamiltonians it is
ufficient to solve the linear system �7� with respect to Hi. If additionally �i��i ,�i�=���i ,�i� then
he above separation conditions can be represented by n copies of the following separation curve:

�
k=1

n

Hk�
�k��k = ���,�� . �8�

he separable systems that were most intensively studied in the last century were one-particle
ynamical systems on Riemannian manifolds with flat or constant curvature metrics. All these
ystems can be obtained by choosing �i=0,�i=n− i, i=1, . . . ,n with � quadratic in momenta

���,�� = 1
2 f����2 + ���� . �9�

his case will be considered in the next sections of this paper.
We can now shortly present—by a simple example—the possibility of passing from a sepa-

ation curve to soliton systems.10 Let us consider the separation curve �8� with n=2,�1=�2

0 ,�1=1 ,�2=0 and with � in the form of �9�,

H1� + H2 = 1
2��2 + �4. �10�

he related separation conditions �7� are

H1�1 + H2 = 1
2�1�1

2 + �1
4,

�11�
H1�2 + H2 = 1

2�2�2
2 + �2

4.

olving this linear system with respect to H1 and H2 one gets the Liouville integrable system �2�
n four-dimensional phase space, written in separation coordinates �� ,��. The explicit form of
amiltonians Hi is

H1 =
1

2

�1�1
2 − �2�2

2 + 2�1
4 − 2�2

4

�1 − �2
, H2 =

1

2

�1�2��1
2 − �2

2 + 2�1
3 − 2�2

3�
�2 − �1

.

he canonical transformation of the form

q1 = �1 + �2, 1
4q2

2 = − �1�2,

p1 =
�1�1

�1 − �2
+

�2�2

�2 − �1
, p2 = �− �1�2� �1

�1 − �2
+

�2

�2 − �1
�

ransforms the system to new coordinates �q , p�, with

H1 = 1
2 p1

2 + 1
2 p2

2 + q1
3 + 1

2q1q2
2, H2 = 1

2q2p1p2 − 1
2q1p2

2 + 1
16q2

4 + 1
4q1

2q2
2.

he function H1�q , p� turns out to be the Hamiltonian function of the integrable case of the
enon-Heiles system, while H2�q , p� is the additional involutive first integral of this system. Let
s now denote the evolution parameters t1 and t2 of the system by x and t, respectively. Then we

btain
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q1,x =
�H1

�p1
= p1, q2,x =

�H1

�p2
= p2,

q1,t =
�H2

�p1
=

1

2
q2p2, q2,t =

�H2

�p2
=

1

2
q2p1 − q1p2,

rom which eliminating p1 and p2 we obtain a system of first order PDE’s for q1�x , t� and q2�x , t�,

q1,t = 1
2q2q2,x = 1

4 �q2
2�x, q2,t = 1

2q2q1,x − q1q2,x. �12�

inally, we can eliminate q2 through

q1,xx = p1,x = −
�H1

�q1
= − 3q1

2 −
1

2
q2

2

hich yields q2
2=−6q1

2−2q1,xx and then generate a higher order �in x-derivatives� PDE. The first
quation in �12� turns then into the famous KdV soliton system

q1,t + 1
2q1,xxx + 3q1q1,x = 0, �13�

hile the second equation in �12� turns into a differential consequence of the first one. Obviously,
ust from the presented construction, there is no guarantee that Eq. �13� is integrable. We can only
ay that q1�x , t� calculated from the corresponding inversion Jacobi problem is a nontrivial par-
icular solution �one-gap solution� for the field system �13�. To prove the integrability of �13� one

ust construct some related infinite hierarchy of symmetries using some more regular procedure.

II. FROM SEPARATION CURVES TO CONSTRAINED DISPERSIONLESS SYSTEMS

In this paper we will concentrate on a special but important class of separation curves with the
unction ��� ,�� in �8� being quadratic in momenta � �more precisely, of the form �9�� and with
ultipliers of Hamiltonian functions being monomials with respect to �,

H1��1 + ¯ + Hn��n = 1
2�m�2 + �k, �14�

here �1	 ¯ 	�n−1	�n=0, �i�N ,m ,k�Z and n�N. Separable systems from this class de-
cribe one-particle dynamics on Riemannian manifolds and belong to classical Stäckel systems.
ach class of these systems is labelled by a decreasing sequence ��1 , . . . ,�n� while members of a
iven class are numbered by pairs �m ,k��Z2. Taking n copies of the curve �14� with variables
� ,�� labelled within each copy as ��i ,�i�, we obtain a system of n separation relations in the
orm of n equations linear in the coefficients Hi. Solving it we obtain n functions

r
�m,k�=Hr

�m,k��� ,�� of the form

Hr
�m,k� = 1

2�TKrG
�m�� + Vr

�k�, r = 1, . . . ,n, m,k � Z , �15�

here we denote �= ��1 , . . . ,�n�T and �= ��1 , . . . ,�n�T. The functions �15� can be interpreted as n
amiltonians on the phase space T*Q cotangent to a Riemannian manifold Q equipped with the

ontravariant metric tensor G�m�. These Hamiltonians are in involution with respect to the canoni-
al Poisson bracket on T*Q. Moreover, they are separable in the sense of Hamilton-Jacobi theory
ince they by the very definition satisfy Stäckel relations �14�. The objects Kr in �15� can be
nterpreted as �1, 1�-type Killing tensors on Q. The scalar functions Vr

�k� are separable potentials.
urther, all the metric tensors G�m� and all the Killing tensors Kr are diagonal in �-variables so that

Kr = diag�vr
1, . . . ,vr

n� , �16�

here vr
i are eigenvalues of Kr. We will constantly assume that these eigenvalues are single.

*
The set �15� of n Hamiltonian functions leads to n Hamiltonian systems on T Q of the form
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�tr
=

�Hr
�k,m�

��
, �tr

= −
�Hr

�k,m�

��
, r = 1, . . . ,n . �17�

et us now call the variable t1 as x; t1	x. Since all the Hamiltonians Hr
�k,m� �for fixed k and m�

ommute, the equations �17� have a common set of solutions depending on all the evolution
arameters ti

�i = �i�t1 = x,t2, . . . ,tn�, �i = �i�t1 = x,t2, . . . ,tn� .

e have, due to �17�, that

�x 	 �t1
=

�H1
�k,m�

��
= G�m�� so that � = g�m��x,

here the inverse of G�m� �i.e., respective covariant metric tensors� is denoted as g�m�. Observe that
he above relation does not depend on k. Using this to eliminate � from the first part of �17� we
btain

�tr
=

�Hr
�k,m�

��
= KrG

�m�� ,

r, according to the above

�tr
= Kr�x 	 Zr

n��,�x�, r = 1, . . . ,n . �18�

his is a set of n autonomous systems of n coupled first order PDE’s of evolutionary type, with the
ight-hand sides depending linearly on the derivatives �x.

11 More precisely, it is a set of n inte-
rable dispersionless equations, belonging to the class of so-called weakly nonlinear semi-
amiltonian systems,12,13 where the variables �i are the Riemann invariants for �18�. We will call

hem Killing dispersionless system as they are constructed directly from Killing tensors.
We will interpret the right-hand sides of �18� as vector fields on an infinite dimensional

anifold M the points of which are vector functions of x of the form u= ��1�x� , . . . ,�n�x��, where
e assume that the functions �i�x� are either periodic in x or they vanish together with all their
erivatives when x→ ±
. A vector field X is at a point u�M given by an n-tuple of the form
�u�= �f1��� , . . . , fn���� where f i���= f i��1 ,�1,x , . . . ,�2 ,�2,x , . . . ,�n ,�n,x , . . . � are differential func-

ions of �. Similarly, a covector field � on M is in a point u= ��1�x� , . . . ,�n�x�� given by ��u�
�g1��� , . . . ,gn����. The dual map between TuM and Tu

*M is given by


�,X��u� = �
x
�
i=1

n

f i���gi���dx .

ere and below the integration is performed over one period �in case of periodic boundary
onditions� or over R in case of functions vanishing at ±
. All functions and expressions are
lways assumed to be integrable. For any two given vector fields X and Y on M their commutator
s defined in a usual way as �X ,Y�=X��Y�−Y��X� where X��Y� denotes the directional derivative
f X in the direction of Y.

As was shown in Ref. 14, the vector fields Zi
n pairwise commute,

�Zi
n,Zj

n� = 0, i, j = 1, . . . ,n ,

hus, �18� is a set of n commuting evolutionary dynamic systems �vector fields� on M. We will
eed the superscript n to indicate the number of components �dimension� of these systems. Below
e will introduce invariants on �18� that eventually turn these systems into hierarchies of soliton

ystems with lower number of fields. This is the main idea of this paper.

We begin by defining the following differential functions �currents, Lagrangians�:
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Lr
�n,m,k� =

def
1
2�x

Tg�m�Kr�x − Vr
�k�, r = 1, . . . ,n . �19�

n our further considerations we will especially need the first current L1
�n,m,k�, so we will denote it

imply by L�n,m,k�,

L�n,m,k� =
def

L1
�n,m,k�.

his current is a Legendre transform of H1
�n,m,k� �this is not true for Hr

�n,m,k� with r	1�. These
ifferential functions yield the following functionals on M:

Ir
�n,m,k��u� =

def�
x

Lr
�n,m,k����dx ,

here, as usual, u= ��1�x� , . . . ,�n�x��. We have, of course,

dIr
�n,m,k�

dts
=  �Ir

�n,m,k�

��
,Zs

n���� = 
E�Lr
�n,m,k��,Zs

n���� ,

here E= �E1 , . . . ,En�= �� /��1 , . . . ,� /��n� is the Euler-Lagrange operator on M.
Lemma 2: In the notation as above,

dI1
�n,m,k�

dtr
= 0, r = 1, . . . ,n .

Proof: It suffices to prove that

�
i=1

n

Ei�L�n,m,k���i,tr
= �

i=1

n

Ei�Lr
�n,m,k���i,x �20�

ince integrating of �20� yields,

dI1
�n,m,k�

dtr
=

dIr
�n,m,k�

dt1
, r = 1, . . . ,n

hile

dIr
�n,m,k�

dt1
= �

x
�
i=1

n

Ei�Lr
�n,m,k���i,x dx = �

x

d

dx
�Lr

�n,m,k��dx = 0

ue to the appropriately chosen boundary conditions. The proof of �20� can be found in Appendix
. �

Corollary 3: Lemma 2, due to theorem of Ref. 15 (see also Ref. 16) implies that the
n-dimensional set E�M defined as

E = �u:Ei�L�n,m,k�� = 0 for all i = 1, . . . ,n�

s Zr
n-invariant for all r=1, . . . ,n.
Thus, if u0�E then the integral �Fröbenius� n-dimensional submanifold Su0

of M spanned by
he commuting vector fields Zr

n and containing u0 is a subset of E. This means that the solution
�x , tr� of the rth Killing system in �18� that starts at a point u0�E, i.e., initially satisfying the set

f Euler-Lagrange equations
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Ei�L�n,m,k�� = 0, i = 1, . . . ,n �21�

emains in E, i.e., always satisfy �21�. This further means that we can use the set of equations �21�
o eliminate some of the variables �i in �18�. Such an operation does not alter �18�, but reparam-
trizes it, leading to fewer equations of higher order, and the dispersion will occur. As we will see
elow, this operation of elimination of variables from �18� through the use of �21� will lead both
o known and new soliton hierarchies in �1+1� dimensions.

V. BENENTI CLASS OF STÄCKEL SYSTEMS

In the rest of this paper we consider the simplest class of separation curves �14� in the form

H1�n−1 + H2�n−2 + ¯ + Hn = 1
2�m�2 + �k �22�

� ,��R for a moment�, where n�N while m ,k�Z. This object contains a complete information
bout the so-called Benenti systems.17–19 Hamiltonian functions calculated from the related system
f separation relations take the form �15�.20 Due to a special form of �22� it turns out that the
etric tensors G�m� are now

G�m� = LmG�0�, with G�0� = diag� 1

�1
, . . . ,

1

�n
�, m � Z ,

here �i=� j�i��i−� j� and where L=diag��1 , . . . ,�n� is a �1, 1�-tensor on Q �it is a conformal
illing tensor with respect to all the metrics G�m��. Moreover, Killing tensors Kr can now be
btained by the following recursion relation:

Kr+1 = LKr + qrI, K1 = I, Kn+1 = 0, r = 1, . . . ,n , �23�

o that indeed they are diagonal �in �-coordinates� in accordance with �16�: Kr=diag�vr
1 , . . . ,vr

n�.
he functions qr=qr��� are coefficients of the characteristic polynomial of the tensor L, i.e., they
re defined by

det��I − L� = �
i=0

n

qi�
n−i, �24�

o that q0=1 ,q1=−�i=1
n �i , . . . ,qn= �−1�n�i=1

n �i �qi are Viète polynomials in the variables ��. More-
ver, the potentials Vr

�k� in Hamiltonians �15� can now be obtained from the following recursion
elation:20

Vr
�k� = Vr+1

�k−1� − qrV1
�k−1�, k � Z �25�

with the convention that Vr
�k�	0 for r1 or r	n� with the initial condition

Vr
�0� = �r,n, r = 1, . . . ,n . �26�

his recursion can be reversed. The inverse recursion is given by

Vr
�k� = Vr−1

�k+1� −
qr−1

qn
Vn

�k+1�, k � Z, r = 1, . . . ,n . �27�

he first potentials are rather trivial,

Vr
�k� = �r,n−k for k = 0,1, . . . ,n − 1, Vr

�n� = − qr, Vr
�−1� = −

qr−1

qn
, �28�

ut for r−1 or for r	n the potentials become complicated polynomial �for r	n� or rational �for
−1� functions of q.
From �25� we get
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Vn
�k� = − qnV1

�k−1�, k � Z �29�

nd

Vr
�k� = − qrV1

�k−1� − qr+1V1
�k−2� − ¯ − qnV1

�k−n+r−1�, k � Z �30�

hile iteration of �27� leads to

Vr
�k� = −

1

qn
�qr−1Vn

�k+1� + ¯ + q1Vn
�k+r−1� + Vn

�k+r�� = qr−1V1
�k� + ¯ + q1V1

�k+r−2� + V1
�k+r−1�, k � Z .

�31�

. KILLING SYSTEMS AND RELATED INVARIANTS FOR THE BENENTI CLASS IN
IÈTE COORDINATES

The functions qr��� defined in �24� can serve as a new set of variables on Q �we will call them
iète coordinates�. It turns out that these coordinates �that also reparametrize the infinite-
imensional manifold M so that M�u= �q1�x� , . . . ,qn�x�� now� are much more convenient for
ur further purposes. The above considerations, in particular Lemma 2 and the corollary that
ollows, remain true independently of coordinate system since the Euler-Lagrange equations are
nvariant with respect to point transformations. In this section we sort out the structure of �18� and
21� for the Benenti class in Viète coordinates as well as we prove many other important relations.

The tensors L, L−1, G�0� and g�0�= �G�0��−1 have in Viète coordinates �24� the form

L =�
− q1 1 0

− q2 0 �

] 1

− qn 0 ¯ 0
�, L−1 =�

0 ¯ 0 −
1

qn

1 0 0 −
q1

qn

� 0 ]

0 1 −
qn−1

qn

� , �32�

G�0� =�
0 0 0 1

0 ¯ ¯ q1

0 1 ¯ ]

1 q1 ¯ qn−1

�, g�0� =�
V1

�2n−2�
¯ − q1 1

¯ ¯ ¯ 0

− q1 1 ¯

1 0 0
� , �33�

o that Lj
i =Vi

�n−j+1� and gij
�0�=V1

�2n−i−j�. Moreover, for the Benenti class, the system �18� attains in
iète coordinates �24� the form qtr

=Kr�q�qx or, explicitly

d

dtr
qj = �qj+r−1�x + �

k=1

j−1

�qk�qj+r−k−1�x − qj+r−k−1�qk�x� 	 �Zr
n�q�� j, r, j = 1, . . . ,n , �34�

here q�=0 as soon as �	n and �Zr
n�q�� j denotes the jth component of the vector field Zr

n�q�. One
roves �34� by a direct calculation, using �32� and �23�. Observe, that the following symmetry
elation takes place: �Zi

n�q�� j = �Zj
n�q��i, i , j=1, . . . ,n.

We can, in accordance with the above, also define the infinite Killing hierarchy for the Benenti

lass
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d

dtr
qj = �qj+r−1�x + �

k=1

j−1

�qk�qj+r−k−1�x − qj+r−k−1�qk�x� 	 �Zr

�q�� j, r, j = 1, . . . ,
 �35�

hat is formally given by the same expression as �34� but where we now do not impose the
estriction q�=0 for �	n. By comparing �34� and �35� one sees directly that for the nth Killing
ector field Zr

n�q� from �34� its first n+1−r components coincide with the corresponding compo-
ents of the infinite vector field Zr


�q�,

�Zr
n�q�� j = �Zr


�q�� j for j + r − 1 � n . �36�

Lemma 4: The infinite-component vector fields Zr

�q� in (35) mutually commute:

�Zi

�q�,Zj


�q�� = 0 for all i, j = 1, . . . 
 .

Proof: This can be proved by using �Zi
n�q� ,Zj

n�q��=0 for all i , j=1, . . . ,n and �36�. Indeed,
rom �36� and the relation

�Zi

�q�� j = �Zi


� j�q1, . . . ,qi+j−1�

ne finds that

��Zi

�q�,Zj


�q���l = ��Zi
3�n−1��q�,Zj

3�n−1��q���l, i, j,l = 1, . . . ,n

or arbitrary n�N. �

Let us point out that the infinite Killing hierarchy �35� is exactly the so-called universal
ierarchy considered recently in Refs. 21 and 22 from the point of view of Lax representation.

Lemma 5: In Viète coordinates the following relations hold:

1�

�V1
�k�

�qi
=

�V1
�k+��

�qi+�

for i = 1, . . . ,n − �,k � Z , �37�

2�

�Lk� j
i = Vi

�n+k−j�, k � Z , �38�

3�

gij
�m� = V1

�2n−m−i−j�, m � Z . �39�

Proof: For relation �37� the proof is inductive with the help of formula �30�. For relation �38�
he proof is by induction with respect to k. By �32�, Lj

i =Vi
�n−j+1�. By the induction assumption and

ue to the recursion �25�,

�Lk+1� j
i = �

r=1

n

Lr
i�Lk� j

r = − qiV1
�n+k−j� + Vi+1

�n+k−j� = Vi
�n+k−j+1�,

hich concludes the inductive step up. Similarly, due to the recursion �27�,

�Lk−1� j
i = �

r=1

n

�L−1�r
i�Lk� j

r = Vi−1
�n+k−j� −

qi−1

qn
Vn

�n+k−j� = Vi
�n+k−j−1�,

hich concludes the inductive step down. Finally, for relation �39�, according to �33�, we have
�0� �2n−i−j�

ij =V1 . By induction
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gij
�m+1� = �

k=1

n

V1
�2n−m−i−k��L−1� j

k.

hus, due to �32� we have for jn,

gij
�m+1� = gi,j+1

�m� = V1
�2n−m−i−j−1�

hile for j=n we have

gin
�m+1� = −

1

qn
�qn−1V1

�n−m−i� + . . . + q1V1
�2n−m−2−i� + V1

�2n−m−1−i�� = −
1

qn
Vn

�n−m−i� = V1
�n−m−i−1�,

hich follows from �29� and �31�. This concludes the inductive step up. The induction down �for
0� is proved in a similar way. �

The next theorem describes symmetry properties of functions �19�. Observe that due to �28�
he functions �19� are in the Benenti case geodesic �without the potential part� for k=0, . . . ,n
1.

Theorem 6: For the Lagrangian densities

Ln,m,k =
1

2 �
i,j=1

n

qi,xgij
�m��q�qj,x − V1

�k� =
1

2 �
i,j=1

n

qi,xV1
�2n−m−i−j�qj,x − V1

�k�

he following relations hold:

1� for �=1, . . . ,n−1

Ei�Ln,m,k� = Ei−��Ln,m+�,k−��, i = � + 1, . . . ,n , �40�

that can also be written as

Ei�Ln,m,k� = Ei+��Ln,m−�,k+��, i = 1, . . . ,n − � . �41�

2�

El�Ln,0,2n+�� = El+1�Ln+1,0,2n+�+2�, � = 1, . . . ,n − 1, l = � + 1, . . . ,n . �42�

3�

El�Ln,n−�,0� = El�Ln+1,n+1−�,0�, � = 1, . . . ,n − 1, l = 1, . . . ,� �43�

E�+l�Ln,n−�,−n��qj→qj+1
= El�Ln+1,n+1−�,−n−1�, l = 1, . . . ,n − �, j = 1, . . . ,n . �44�

The proof of this theorem can be found in Appendix B. As it will be shown in the next section,
heorem 6 guarantees that the form of invariants survives the passage from n-component to �n
1�-component Killing system and hence it will be crucial for the construction of soliton hierar-
hies. The index � will be related with the number of components of the obtained soliton systems.

I. ELIMINATION PROCEDURE

Using the results of the preceding section we will now construct in a systematic way soliton
ierarchies related to Benenti class of separation relations. These hierarchies will be generated by
procedure of elimination of variables in the set of dispersionless systems �34� with the help of
uler-Lagrange equations �21� �with suitable chosen parameters n, m, and k determining the
etric tensor g�m� and the separable potential V1

�k��. Actually, we present two separate elimination
rocedures, one for positive potentials �i.e., with k	n� and one for negative potentials �i.e., those

ith k0�, leading to different soliton hierarchies.
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As we pointed out, the set E�M of solutions of Euler-Lagrange equations �21� is invariant
ith respect to all the vector fields Zr of Killing systems �18�. The same must be true even in Viète

oordinates: �21� written in Viète coordinates is also invariant with respect to �34�. This means that
e can use the set of equations �21� to eliminate some of the variables qi in �34�, since along the

olutions of systems from �34� they are all the time mutually related by the relations �21�.

. Elimination for positive potentials

First, let us concentrate on the case with positive �polynomial� separable potentials. Our aim
s to produce s �s�N� commuting �-component ���N� vector fields �evolutionary systems� from
34� and �21�. In order to do this we choose n as n=s+�−1 and consider the set of systems �34�
ith this chosen n,

qtr
= Zr

s+�−1�q1, . . . ,qs+�−1�, r = 1, . . . ,n = s + � − 1. �45�

otice that r can reach r=s+�−1 but only up to r=s the first � components of �45� are complete
n the sense of the infinite Killing hierarchy �35�, i.e., coincide with the corresponding components
f this hierarchy �see �36��. We will now use �21� generated by Ln,0,2n+� in order to perform the
limination. The structure of these equations is described in the lemma below.

Lemma 7: The last n−� invariant equations in (21) for Ln,0,2n+�, with n=s+�−1 �so that
=0 and k=2n+�=2s+3�−2� have the form

w�+1
�n,�� 	 − 2qn + ��+1

�n,���q1, . . . ,qn−1� = 0,

¯ , �46�

wn
�n,�� 	 − 2q�+1 + �n

�n,���q1, . . . ,q�� = 0,

here we denoted, to shorten the notation, Ei�Ln,0,2n+�� as wi
�n,��.

Proof: From the recursion �25� it follows that

V1
�n+j� = V1

�n+j��q1, . . . ,qj+1�, j = 0, . . . ,n − 1 �47�

o that, again by �37� and �30�,

�V1
�2n+��

�qn+1−j+�

=
�V1

�n+j�

�q1
= 2qj + f j�q1, . . . ,qj−1�, j = 2, . . . ,n, � = 1, . . . ,n − 1 �48�

for j=1 we would have f1	0� where the first equality follows by inserting i=1, k=n+ j and �
n− j+� in �37� and the second one from the fact that according to �28� and �30�V1

�n+j�=−qj+1

2q1qj +� j�q1 , . . . ,qj−1� for j=2, . . . ,n. On the other hand, for the geodesic Lagrangian density

Ln,0,0 =
1

2 �
i,j=1

n

V1
�2n−i−j�qi,xqj,x

rom �B2�, as V1
�k��0 for k�n−1 and �V1

�k� /�q1�0 for k�n, we find that

El�Ln,0,0� = Fl�q1, . . . ,qn−l+1�, l = 1, . . . ,n .

ince L1
n,0,2n+�=L1

n,0,0−V1
�2n+��, we obtain �setting j=n+1− i+� in �48��

Ei�Ln,0,2n+�� = − 2q�+n−i+1 + �i
�n,���q1, . . . ,q�+n−i�, i = 1, . . . ,n ,
where as usual we denote q�=0 for �	n� where
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�i
�n,���q1, . . . ,q�+n−i� = Fi�q1, . . . ,qn−i+1� + f�+n−i+1�q1, . . . ,q�+n−i� .

�

Due to their structure, Eqs. �46� make it possible to successively express �eliminate� the
ariables q�+1 , . . . ,qs+�−1	qn as differential functions of q1 , . . . ,q�,

q�+1 = f�+1
n �q1, . . . ,q�� ,

q�+2 = f�+2
n �q1, . . . ,q�� ,

�49�
¯ ,

qn = fn
n�q1, . . . ,q�� .

Let us first observe that performing the elimination �49� in the systems �45� must lead to

-component systems of the form q̄tr
= Z̄r

��q1 , . . . ,q��, while for each system in �45� the last s−1
omponents turn into some system of differential consequences of w1

�n,�� , . . . ,w�
�n,�� �and are zero

n Su0
, i.e., they are satisfied along any solutions of q̄tr

= Z̄r
��. Therefore, after this elimination we

btain

q̄tr
= Z̄r

��q1, . . . ,q��, r = 1, . . . ,n ,

�50�
0 = �r

i�w1, . . . ,w��, i = � + 1, . . . ,n ,

ith q̄= �q1 , . . . ,q��T and �r
i 	qi,tr

− �Zr
n�i.

Lemma 8: The first s vector fields Z̄r
� in �50� commute:

�Z̄i
�,Z̄j

�� = 0, i, j = 1, . . . ,s .

Proof: Obviously, in general, for i , j=1, . . . ,n,

�Z̄i
�,Z̄j

�� = Vij�w1
�n,��, . . . ,w�

�n,���

or some vector fields Vij that vanish on E�M only. Assume for a moment that for n=s+�−1

nd for some i , j�s we have Vij�w1
�n,�� , . . . ,w�

�n,����0. As the vector fields Z̄i
� , Z̄j

� were obtained
y the reduction of the complete �in the sense of the infinite hierarchy� components of Zi

n ,Zj
n,

hus by increasing n→n+�, we do not change the form of Vij, which now must be expressed
y a higher dimension invariants wj

�n+�,��: Vij =Vij�w1
�n+�,�� , . . . ,w�

�n+�,���. But

j
�n+�,��=wj

�n+�,���q1 , . . . ,qn+�� and lower dimensional invariants wj
�n,�� are nonexpressible by the

igher dimensional invariants wi
�n+�,��, so we get a contradiction. �

We will now show that this procedure leads in fact to an infinite hierarchy of commuting
ows. In order to do this, we will for a moment introduce a new index so that the vector fields in

50� will be denoted Z̄r
n,� as being obtained by reducing the n-component Killing systems �45�.

Lemma 9: In the above notation

Z̄r
n+1,� = Z̄r

n,� for r = 1, . . . ,s .

Proof: According to �42� we have

w�+i+1
�n+1,�� = w�+i

�n,�� for i = 1, . . . ,n − � .

hus, increasing s to s+1 and keeping � unaltered �so that n changes to n+1� the n−� equations

49� change to n−�+1 equations
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q�+i = f�+i
n+1�q1, . . . ,q�� = f�+i

n �q1, . . . ,q��, i = 1, . . . ,n − � ,

qn+1 = fn+1
n+1�q1, . . . ,q�� ,

o that the variables q�+1 , . . . ,qn are expressed by the same functions of q1 , . . . ,q� and a new
limination equation for qn+1 appears. Moreover, �Zr

n+1�q�� j = �Zr
n�q�� j for j=1, . . . ,� and r

1, . . . ,s. Thus, replacing q�+i by f�+i
n �q1 , . . . ,q�� in �Zr

n+1�q�� j and in �Zr
n�q�� j yields for j

1, . . . ,� and r=1, . . . ,s the same expression. But the first operation leads to the reduced vector

eld Z̄r
n+1,� while the second to Z̄r

n,�. �

Let us now take s+1 instead of s �so that n→n+1� in �45� and �49� and perform the reduc-
ion. According to the above lemma we obtain the following sequence of s+1 reduced systems:

q̄tr
= Z̄r

n+1,� = Z̄r
n,� for r = 1, . . . ,s and q̄tn+1

= Z̄n+1
n+1,�,

.e., we obtain the same sequence of s systems as before plus an additional system at the end of the
equence. Therefore, we see that this procedure leads to infinite hierarchies of commuting systems,
ince we can always increase n as much as we please without altering the already obtained
ystems generated in previous steps.

The procedure described above can be generalized by using only some part of the equations in
46� in order to perform the elimination, since all of these equations are invariant along the flows
f our Killing systems. Namely, we can skip the last � �with 0���n−�−1=s−2� equations in
46� and use only the remaining equations �i.e., w�+1

�n,��=0,w�+2
�n,��=0, . . . ,wn−�

�n,��=0� to eliminate

�+�+1 , . . . ,qn in the Killing systems with n=s+�+�−1,

qtr
= Zr

s+�+�−1�q1, . . . ,qs+�+�−1�, r = 1, . . . ,n = s + � + � − 1. �51�

hus, the index � indicates how many of the last equations in �46� we “forget” about. It turns out
hat the elimination that follows leads also to hierarchies of commuting equations. To see that, let
s first observe, that this elimination can formally be obtained by performing the above described
rocedure with the help of the Lagrangian density Ln,−�,2n+�+�, since according to Theorem 6 we
ave

Ei�Ln,−�,2n+�+�� = Ei−��Ln,0,2n+�� 	 wi−�
�n,�� for i = � + 1, . . . ,n . �52�

enoting Ei�Ln,m,2n+k� as wi
�n,m,k�, where now wi

�n,0,k�	wi
�n,k� �in the notation of �46��, the last n

�−� Euler-Lagrange equations �invariants�, associated with L1
n,−�,2n+�+�, have therefore the

orm

w�+�
�n,−�,�+�� = w�

�n,�� = w�
�n,���q1, . . . ,qn� = 0,

w�+1+�
�n,−�,�+�� = w�+1

�n,�� = − 2qn + ��+1
�n,���q1, . . . ,qn−1� = 0,

�53�
¯ ,

wn
�n,−�,�+�� = wn−�

�n,�� = − 2q�+�+1 + �n−�
�n,���q1, . . . ,q�+�� = 0.

hese equations make it possible to successively express �eliminate� the variables q�+�+1 , . . . ,qn as

ifferential functions of q1 , . . . ,q�+�, which yields
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q�+�+1 = q�+�+1�q1, . . . ,q�+�� ,

¯ , �54�

qn = qn�q1, . . . ,q�+�� .

herefore, after this elimination the Killing equations �51� take the form

q̄tr
= Z̄r

�+��q̄� ,

�55�
0 = �r

i�w1
�n,−�,�+��, . . . ,w�+�

�n,−�,�+���, i = � + � + 1, . . . ,n

or r=1, . . . ,n=s+�+�−1 and with q̄= �q1 , . . . ,q�+��T and �r
i 	qi,tr

− �Zr
n�i �so that the reduced

ystems will have N=�+� components�. Similarly as before, in Killing equations �51�, only up to
=s the first �+� components are complete in the sense of the infinite Killing hierarchy �35�. As

efore, it stems from the fact that the first s vector fields Z̄r
�+� commute to zero,

�Z̄i
�+�,Z̄j

�+�� = 0, i, j = 1, . . . ,s ,

he proof of which is analogous as in the case �=0 but now we must take n=s+�+�−1. As
reviously, we can repeat the elimination procedure taking s+1 instead of s �so that n increases to
+1 and k=2n+�+� increases to 2�n+1�+�+�=k+2 while � and � are kept unaltered�. By the
ame argument as before, this new procedure �with n+1 instead of n� will lead to a sequence of
+1 autonomous ��+��-component systems in which the first s systems will coincide with the
orresponding systems obtained from the original procedure �with n�. Thus, again we will obtain
nfinite hierarchies of soliton systems.

. Elimination for negative potentials

We now present the second possibility of elimination—with the use of negative �rational�
eparable potentials. Again, our aim is to produce s �s�N� commuting �-component ���N�
ector fields �evolutionary systems� from �34� and �21�. This time however we have to choose
=s+2�−1 and the Lagrangian density Ln,n−�,−n in order to create an infinite hierarchy of com-
uting flows.

Lemma 10: The first n−� invariant equations (21) with Ln,n−�,−n, i.e., with m=n−� and
=−n, have the form

v1
�n,�� 	 −

1

qn
2 + �1

�n,���q1, . . . ,q�� = 0,

�56�

vi
�n,�� 	

2qn−i+1

qn
3 + �i

�n,���q1, . . . ,q�−i+1,qn−i+2, . . . ,qn� = 0, i = 2, . . . ,n − � ,

here we denote, to shorten the notation, Ei�Ln,n−�,−n� as vi
�n,�� and q�=0 when �1.

Proof: From the recursion �27� it follows that

V1
�−j� = V1

�−j��qn−j+1, . . . ,qn�, j = 1 . . . ,n . �57�
rom this and from �B5�, �47�, and �B7�, we have
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Ei�Ln,n−�,0� = Gi�q1, . . . ,q�−i+1�, i = 1, . . . ,� ,

�58�
Ei�Ln,n−�,0� = Gi�qn−i+1+�, . . . ,qn�, i = � + 1, . . . ,n − � .

oreover, by using Lemma 5 we find

�V1
�−n+1−i�

�q1
= −

2qn−i+1

qn
3 + gi�qn−i+2, . . . ,qn�, i = 2, . . . ,n − �

nd

�V1
�−n+��

�q�+1
=

�V1
�−n�

�q1
=

1

qn
2 .

lugging all this into Ei�Ln,n−�,−n� , i=1, . . . ,n−�, we obtain �56� where �i
�n,���q�=Gi�q�−gi�q�.

�

Let us now consider the following Killing systems:

qtr
= Zr

n�q�, r = � + 1, . . . ,� + s, with n = s + 2� − 1. �59�

e can use the n−� equations �56� to successively express �eliminate� the variables q�+1 , . . . ,qn

s differential functions of q1 , . . . ,q�. This leads to the elimination relations of the form

q�+i = f�+i
n �q1, . . . ,q��, i = 1, . . . ,n − � . �60�

erforming the elimination �60� in �59� we obtain an autonomous sequence of s evolution equa-
ions

q̄tr
= Z̄r

��q1, . . . ,q��, r = � + 1, . . . ,� + s �61�

uch that the vector fields Z̄r
� mutually commute to zero. One proves this by the same arguments

s in the positive case, since the first � components of all the vector fields in �59� are complete in
he sense of infinite hierarchy �35�.

Analogously to the positive case, we will now show that this procedure leads to an infinite
ierarchy. As in the positive case, we will for a moment introduce a new index so that the vector

elds in �61� will be denoted Z̄r
n,� as being obtained by reducing the n-component Killing systems

59�.
Lemma 11: In the notation as above

Z̄r+1
n+1,� = Z̄r

n,� for r = � + 1, . . . ,� + s .

Proof: Let us observe that, according to results �41�, �43�, �44�, and �B9�,

vi
�n+1,�� = �vi

�n,���qj→qj+1,j=n−i+1,. . .,n for i = 1, . . . ,n − � . �62�

hus, increasing s to s+1 and keeping � unaltered �so that n changes to n+1� the n−� equations
60� change to n−�+1 equations

q�+1 = f�+1
n+1�q1, . . . ,q��, q�+i+1 = f�+i+1

n+1 �q1, . . . ,q�� = f�+i
n �q1, . . . ,q��, i = 1, . . . ,n − � .

�63�

bserve that the last n−� equations �60� express now q�+i+1 �instead of q�+i� as f�+i
n �q1 , . . . ,q��.

n the other hand, due to �34�, by changing qi→qi+1 for all i	� in the sequence qtr
=Zr

n+1�q� we
n+1 j n+1 j
ransform it so that �Zr �q�� → �Zr+1�q�� for j=1, . . . ,� and r=�+1, . . . ,�+s. Thus, inserting
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f�+i
n �q1 , . . . ,q�� instead of q�+i+1 in �Zr+1

n+1�q�� j �for j=1, . . . ,� and r=�+1, . . . ,�+s� yields the
ame expression as inserting the same function f�+i

n �q1 , . . . ,q�� instead of q�+i in �Zr
n+1�q�� j. But

he first operation leads to the reduced vector field Z̄r+1
n+1,� while the second—to Z̄r

n,�. �

Let us now take s+1 instead of s �so that n→n+1� in �59� and �60� and perform the reduc-
ion. According to Lemma 11 we obtain the following sequence of s+1 reduced systems:

q̄t�+1
= Z̄�+1

n+1,�, q̄tr+1
= Z̄r+1

n+1,� = Z̄r
n,� for r = � + 1, . . . ,� + s ,

.e., we obtain the same sequence of s systems as before but shifted and an additional system in the
eginning of the sequence. This first system can therefore be treated as a next system in some
nfinite, commuting hierarchy of vector fields.

Let us also observe that we could use �60� to eliminate variables in Killing systems of the
orm �45� and this would lead to a system of s commuting evolutionary systems. However, this
hoice does not lead to any hierarchy: by increasing s to s+1 we obtain a different sequence of
ystems.

As before, this procedure can be generalized: we can use the first n−�−� equations �0��
n−�−1� in �56� to eliminate q�+�+1 , . . . ,qn from the following sequence of s Killing systems:

qtr
= Zr

n�q�, r = � + � + 1, . . . ,� + � + s with n = s + 2�� + �� − 1. �64�

his elimination leads—similarly as above—to s commuting to zero N=�+�-component systems

tr
= Z̄r

�+��q1 , . . . ,q�+�� and by increasing s by 1 we always obtain a new system of the hierarchy
t the beginning of the sequence.

Next section contains some examples of the above described elimination procedures.

II. EXAMPLES

. Elimination with positive potentials

Below we will present some examples performed with the help of the �generalized� procedure
escribed in the preceding section. Soliton hierarchies are now classified by pairs �� ,��, �
1,2 , . . . ,�=0,1 , . . ., where N=�+� is a number of components in the systems of a given
ierarchy. Assume we would like to construct first s members of the hierarchy. We have then to fix
=s+�+�−1 and take first s Killing equations in �51�. Then, we have to eliminate coordinates

�+�+1 , . . . ,q�+�+s−1=qn using invariants w�+1
�n,��=0, . . . ,wn−�

�n,��=0. According to �52�, these invari-
nts can be generated, for example, from Ln,0,2n+� by taking the equations Ei�Ln,0,2n+��=0, i=�
1, . . . ,n−�. After the elimination procedure, soliton equations are represented by first N=�+�
omponents of first s reduced Killing equations. Observe, that in this procedure the first soliton
quation has always the trivial form q̄t1

= q̄x, q̄= �q1 , . . . ,q�+��T.
Let us start with a one-field hierarchy: N=�+�=1. There is only one possibility here: �=1,

=0. We present how to produce first s=3 flows which will be recognized as the first members of
he KdV hierarchy. We have therefore to take n=3 and k=7. Killing systems �34� have the form

d

dt1�
q1

q2

q3
� = �q1,x

q2,x

q3,x
� = Z1

3,

d

dt2�
q1

q2� = � q2,x

q3,x + q1q2,x − q2q1,x� = Z2
3,
q3 q1q3,x − q3q1,x
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d

dt3�
q1

q2

q3
� = � q3,x

q1q3,x − q3q1,x

q2q3,x − q3q2,x
� = Z3

3 �65�

hile the Lagrangian L3,0,7 is

L3,0,7 = 1
2q1

2q1,x
2 − 1

2q2q1,x
2 − q1q1,xq2x + q1,xq3,x + 1

2q2,x
2 − 2q2q3 + 3q1

2q3 + 3q1q2
2 − 4q1

3q2 + q1
5

nd the Euler-Lagrange equations �46� for the above Lagrangian attain the form

w2
�3,1� 	 − 2q3 + 6q1q2 − 4q1

3 + 1
2q1,x

2 + q1q1,xx − q2,xx = 0,

w3
�3,1� 	 − 2q2 + 3q1

2 − q1,xx = 0.

hese equations can be solved with respect to q2, q3 yielding �49� of the form

q2 = − 1
2q1,xx + 3

2q1
2, q3 = 1

4q1,xxxx − 5
2q1q1,xx − 5

4q1,x
2 + 5

2q1
3. �66�

ubstituting it to the above Killing systems gives �50� that read now explicitly as

�q1,t1
= q1,x = Z̄1

1,

0 = 0,

0 = 0,
�

�q1,t2
= − 1

2q1,xxx + 3q1q1,x = Z̄2
1,

0 = 0,

0 = 1
2w1,x,

�

�q1,t3
= 1

4q1,xxxxx − 5q1,xq1,xx − 5
2q1q1,xxx + 15

2 q1
2q1,x = Z̄3

1,

0 = 1
2w1,x,

0 = − 1
4w1,xxx + 3

2q1w1,x

�
o that the first components q1,ti

= Z̄i
1�q1� are the first three flows of the KdV hierarchy while the

emaining equations are just differential consequences of w1, which of course vanish on any Su0
.

y taking larger s we can produce an arbitrary number of flows from the KdV hierarchy.
Next, let us consider two-field systems: N=�+�=2. There are two possibilities: �� ,��

�2,0� and �� ,��= �1,1�. Therefore, as a second example we consider the case �� ,��= �2,0�, and
=3. We have now to take n=s+�+�−1=4 and k=2n+�=10. The Euler-Lagrange equations

4�L4,0,10�=w4
�4,2�=0 and E3�L4,0,10�=w3

�4,2�=0 can be solved with respect to q3, q4 yielding �49� of
he form

q3 = − 1
2q1,xx + 3q1q2 − 2q1

3,

q4 = 1
4q1,x

2 − 1
2q2,xx − q1q1,xx − 7

2q1
4 + 3q1

2q2 + 3
2q2

2.

ubstituting it to two first components of Killing equations Z2
4�q�, Z3

4�q� yields two first nontrivial

embers of another two-field soliton hierarchy,
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q1,t2
= q2,x,

�67�
q2,t2

= − 1
2q1,xxx + 4q1q2,x + 2q2q1,x − 6q1

2q1,x,

nd

q1,t3
= − 1

2q1,xxx + 3q1q2,x + 3q2q1,x − 6q1
2q1,x,

q2,t3
= − 1

2q2,xxx − 3
2q1q1,xxx + 3q2q2,x + 6q1q2q1,x + 6q1

2q2,x − 18q1
3q1,x.

n the second two-field case �� ,��= �1,1�, if we keep s=3 unchanged, we have to take n=s+�
�−1=4 and k=2n+�=9. From the Euler-Lagrange equations �46� for L4,0,9,

E3�L4,0,9� = w3
�4,1� = 0, E2�L4,0,9� = w2

�4,1� = 0

e can eliminate q3 and q4, which yields �54�. Explicitly, we obtain

q3 = 1
4q1,xxxx − 5

2q1q1,xx − 5
4q1,x

2 + 5
2q1

3,

q4 = 1
4q2,xxxx − 1

4q1q1,xxxx − 3
4q1,xq1,xxx − 1

2q1,xx
2 − q2q1,xx − 5

2q1,xq2,x + 4q1
2q1,xx − 5

2q1q2,xx + 25
4 q1q1,x

2

+ 3q1
2q2 − 7

2q1
4 + 3

2q2
2.

hen, two first components of the Killing equations qt2
=Z2

4�q�, qt3
=Z3

4�q� turn into

q1,t2
= q2,x,

q2,t2
= − 1

2q2,xxx + 1
2q1q1,xxx + q1,xq1,xx + 4q1q2,x + 2q2q1,x − 6q1

2q1,x,

nd

q1,t3
= − 1

2q2,xxx + 1
2q1q1,xxx + q1,xq1,xx + 3q1q2,x + 3q2q1,x − 6q1

2q1,x,

q2,t3
= 1

4q2,xxxxx − 1
4q1q1,xxxxx − q1,xq1,xxxx − 7

4q1,xxq1,xxx − q2q1,xxx − 7
2q2,xq1,xx + 9

2q1
2q1,xxx − 3q1q2,xxx

− 9
2q1,xq2,xx + 21q1q1,xq1,xx + 6q1q2q1,x + 3q2q2,x + 6q1

2q2,x + 6q1,x
2 − 18q1

3q1,x.

inally, we shortly mention the three-field case: N=�+�=3. There are three different hierarchies
ith the following first nontrivial member of each hierarchy: for �� ,��= �3,0�,

q1,t2
= q2,x,

q2,t2
= q3,x + q1q2,x − q2q1,x,

q3,t2
= − 1

2q2,xxx − 12q1q2q1,x − 6q1
2q2,x + 3q2q2,x + 2q3q1,x + 4q1q3,x + 10q1

3q1,x;

or �� ,��= �2,1�,

q1,t2
= q2,x,

q2,t = q3,x + q1q2,x − q2q1,x,

2
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q3,t2
= − 1

2q2,xxx + 1
2q1q1,xxx + q1,xq1,xx − 12q1q2q1,x − 6q1

2q2,x + 3q2q2,x + 2q3q1,x + 4q1q3,x + 10q1
3q1,x;

nd for �� ,��= �1,2�,

q1,t2
= q2,x,

q2,t2
= q3,x + q1q2,x − q2q1,x,

q3,t2
= − 1

2q3,xxx + 1
2q1q2,xxx + 1

2q2q1,xxx − 1
2q1

2q1,xxx − 2q1q1,xq1,xx + q1,xq2,xx + q2,xq1,xx − 1
2q1,x

3

+ 2q3q1,x + 4q1q3,x − 12q1q2q1,x − 6q1
2q2,x + 3q2q2,x + 10q1

3q1,x.

n general, for a fixed N=�+�, this procedure leads to N different N-component hierarchies of
oliton systems. As the field representation of constructed hierarchies is nonstandard, it is not easy
o recognize which hierarchies are known and which are new. We immediately recognized the
dV hierarchy. We also found that two-field hierarchy starting from �67� turns after the transfor-
ation

u1 = − 3q1
2 + 2q2, u2 = 2q1, x → �2ix, t → �2it

nto the 2-component coupled KdV hierarchy in the representation of Fordy and Antonowicz.23

or example, the first flow of this hierarchy �67� turns into

u1,t1
= 1

4u2,xxx + 1
2u2u1,x + u1u2,x,

u2,t1
= u1,x + 3

2u2u2,x

yielding �3.18� in Ref. 23�.

. Elimination with negative potentials

We start by presenting the first two �s=2� flows of the only N=1-component hierarchy that
an be obtained within our scheme by using the negative separable potentials. Since N=1=�
�, the only choice is to set �=1, �=0, which yields n=s+2��+��−1=3. The Euler-Lagrange
quations �56� for

Ln,n−�,−n = L3,2,−3 =
1

2
q1,x

2 −
q2,xq3,x

q3
+

q3,x
2 q2

2q3
−

q1

q3
2 +

q2
2

q3
3

ttain the form

− 1 − q3
2q1,xx = 0, 4q2 + 2q3

2q3,xx − q3q3,x
2 = 0 �68�

hich allows for expressing q2 and q3 as differential functions of q1,

q3 = q3�q1� = �− q1,xx�−1/2,

q2 = q2�q1� = − 1
16�5q1,xxx

2 − 4q1,xxq1,xxxx��− q1,xx�−7/2

here and in what follows we only consider the positive solution for qn, otherwise we can change
→−t�. Substituting these expressions to the Killing systems �64� and performing the necessary

erivations we obtain the following two commuting flows:
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q1,t2
= �q2�q1��x, q1,t3

= �q3�q1��x

ith the differential functions q2�q1� and q3�q1� given as above. After substitution u=−q1,xx the
econd equation turns into the well known Harry Dym equation while the first one becomes the
econd member of the hierarchy. If we want to produce a next member of this hierarchy we have
o take s=3. According to the general remarks in the previous section this new system will appear
s the first system in our sequence of systems.

Let us now consider two-field systems: N=�+�=2. As before, we have now two choices:
� ,��= �1,1� and �� ,��= �2,0�. We start with �� ,��= �2,0�. We have now n=s+2�−1=5 and
hus we consider the Lagrangian Ln,n−�,−n=L5,3,−5. The associated Euler-Lagrange equations �56�
an be written as

q5
2�q1,x

2 + 2q1,xxq1 − 2q2,xx� − 2 = 0, 2q4 − q5
3q1,xx = 0,

4q3q5 − q5,x
2 q5

2 − 6q4
2 + 2q5

3q5,xx = 0

nd they can be solved to

q5 = f5
5�q1,q2� = 2w−1/2,

q4 = f4
5�q1,q2� = 4q1,xxw

−3/2,

q3 = f3
5�q1,q2� = �− 5

2wx
2 + 12q1,xx

2 w + 2wwxx�w−7/2,

here w=2q1,x
2 +4q1,xxq1−4q2,xx. Substituting it into �64� we arrive at the following two commut-

ng two-component systems:

q1,t3
= �f3

5�q1,q2��x,

q2,t3
= q1�f3

5�q1,q2��x − �f3
5�q1,q2��q1,x + �f4

5�q1,q2��x

nd

q1,t4
= �f4

5�q1,q2��x,

�69�
q2,t4

= q1�f4
5�q1,q2��x − �f4

5�q1,q2��q1,x + �f5
5�q1,q2��x.

he system �69� can be written more explicitly as

q1,t4
= 2�2q1,xxxw − 3q1,xxwx�w−5/2,

q2,t4
= �4q1q1,xxxw − 6q1q1,xxwx − 4q1,xq1,xxw − wwx�w−5/2.

inally, let us consider the case �� ,��= �1,1�. Again, we have n=5, but this time we consider the
agrangian Ln,n−�−�,−n+�=L5,3,−4. Its first n−�−�=3 Euler-Lagrange equations

0 = − q5
2q1,xx − 1,

0 = 4q4 + 2q5
2q5,xx − q5q5,x

2 ,

0 = 2q3q5 − q5
2q4,xq5,x + q4q5q5,x

2 − 3q4
2 + q5

3q4,xx − q5
2q4q5,xx
ield the following elimination equations:
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q5 = f5
5�q1� = �− q1,xx�−1/2,

q4 = f4
5�q1� = −

1

24 �5q1,xxx
2 − 4q1,xxq1,xxxx��− q1,xx�−7/2, �70�

q3 = f3
5�q1� =

1

29 P�q1��− q1,xx�−13/2,

here P�q1� is some complicated differential polynomial of q1 �homogeneous of degree 4 and of
rder 6� with integer coefficients. Substituting �70� into the Killing systems �64� we arrive at the
ollowing two commuting two-component flows:

q1,t3
= �f3

5�q1��x,

q2,t3
= q1�f3

5�q1��x − f3
5�q1�q1,x + �f4

5�q1��x

nd

q1,t4
= �f4

5�q1��x,

q2,t4
= q1�f4

5�q1��x − f4
5�q1�q1,x + �f5

5�q1��x.

he last vector field can be written more explicitly as

q1,t4
=

1

25 �− 40wwxwxx + 35wx
3 + 8w2wxxx�w−9/2,

q2,t4
=

1

25 �10q1,xwwx
2 − 8q1,xw

2wxx − 40q1wwxwxx + 35q1wx
3 + 8q1w2wxxx�w−9/2,

here w=−q1,xx. Let us notice that in this case we obtain a hierarchy of systems such that every
ystem is driven by its first equation which is a consecutive equation of Harry Dym hierarchy. One
an see that, contrary to the positive case, if �	0 the obtained systems are always driven by its
rst � components that coincide with the corresponding systems from �=0 hierarchy.

III. CONCLUSIONS

In this paper we developed a method of unified constructing of Stäckel systems and soliton
ierarchies from the same common denominator in the form of separation relations �7�. We
eveloped our theory starting from separation relations generated by separation curves of the form

H1��1 + . . . + Hn��n = 1
2�m�2 + �k, �i,n � N, m,k � Z . �71�

e performed a detailed, systematic construction of soliton hierarchies for the Benenti class of
eparation relations, given by the particular form of �71�, namely

H1�n−1 + H2�n−2 + ¯ + Hn = 1
2�m�2 + �k.

he results we obtained are hopefully only a first step of a new research program. The next step
f this program would be finding out a way for systematic constructing of other soliton hierarchies
rom different classes of separation curves �71�, when the sequence ��1 , . . . ,�n� differs from �n
1, . . . ,0�. The next-nontrivial-step would be to extend the theory to the case of polynomial

eparation curves �8� with ��1 , . . . ,�n�� �0, . . . ,0�. We expect by presented procedure to generate

ot only the majority of known soliton systems but also to construct in a systematic way a vast
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umber of new integrable hierarchies. One should also investigate the possibility of “prolonga-
ion” of standard integrable structures of separable systems �such as integrals of motion, bi-
amiltonian structure� onto the corresponding evolutionary hierarchies of PDE’s.

PPENDIX A

The involutivity of H1
�m,k� and Hr

�m,k� �15� leads to the following relations imposed on

kk
�m���� ,vr

k��� ,V1
�k���� and Vr

�k����:14

�vr
i

��i
= 0, i = 1, . . . ,n , �A1�

�

��i
ln gkk

�m� =

�vr
k

��i

vr
k − vr

i , i � k, all m,r �A2�

�Vr
�k�

��i
= vr

i �V1
�k�

��i
for all i,r, and k . �A3�

e will prove here the relation �20�, i.e.,

�
i=1

n

Ei�L�n,m,k���i,tr
− �

i=1

n

Ei�Lr
�n,m,k���i,x = 0. �A4�

irst, let us consider the geodesic case. Due to �18� we have �i,tr
=vr

i�i,x where vr
i are eigenvalues

f Kr �see �16��. For the geodesic Hamiltonians,

L�n,m,0� =
1

2�
i=1

n

gii
�m��i,x

2 and Lr
�n,m,0� =

1

2�
i=1

n

gii
�m�vr

i�i,x
2

o that in this case the left-hand side of �A4� attains the form

�
i=1

n

Ei�L�n,m,0���i,tr
− �

i=1

n

Ei�Lr
�n,m,0���i,x

= �1

2 �
i,k=1

n
�gkk

�m�

��i
��k,x�2vr

i�i,x − �
i=1

n
d

dx
�gii

�m��i,x�vr
i�i

x�
− �1

2 �
i,k=1

n
�gkk

�m�

��i
��k,x�2vr

k�i,x +
1

2 �
i,k=1

n

gkk
�m��vr

k

��i
��k,x�2�i,x

− �
i=1

n
d

dx
�gii

�m��i,x�vr
i�i.x − �

i=1

n

gii
�m��i,x

2 dvr
i

dx
�

=
1

2 �
i,k=1

n
�gkk

�m�

��i
��k,x�2�vr

i − vr
k��i,x − �1

2 �
i,k=1

n

gkk
�m��vr

k

��i
��k,x�2�i,x − �

i=1

n

gii
�m��i,x

2 dvr
i

dx
� = 0
ince the expression in the last parentheses equals to
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1

2 �
i,k=1

n

gkk
�m��vr

k

��i
��k,x�2�i,x − �

i,k=1

n

gii
�m��i,x

2 �vr
i

��k
�k,x = −

1

2 �
i,k=1

n

gkk
�m��vr

k

��i
��k,x�2�i,x

= +
1

2 �
i,k=1

n
�gkk

�m�

��i
��k,x�2�vr

i − vr
k��i,x,

here the last equality follows from formula �A2� which can be written in equivalent form

gkk
�m��vr

k

��i
=

�gkk
�m�

��i
�vr

k − vr
i�

that is in fact also valid for k= i�. Thus, the statement has been proved for geodesic densities. For
he potential parts,

�
i=1

n

Ei�V1
�k���i,tr

− �
i=1

n

Ei�Vr
�k���i,x = �

i=1

n � �V1
�k�

��i
vr

i −
�Vr

�k�

��i
��i,x = 0

ue to �A3�. This concludes the proof.

PPENDIX B

We will prove here Theorem 6. The relation �40� is a consequence of �37� and �39� of Lemma
. Indeed, by �39�,

El�Ln,m,k� =
1

2 �
i,j=1

n
�V1

�2n−m−i−j�

�ql
�qi�x�qj�x −

�V1
�k�

�ql
−

d

dx
��

i=1

n

V1
�2n−m−i−l��qi�x� ,

nd

El−��Ln,m+�,k−�� =
1

2 �
i,j=1

n
�V1

�2n−m−�−i−j�

�ql−�

�qi�x�qj�x −
�V1

�k−��

�ql−�

−
d

dx
��

i=1

n

V1
�2n−m−�−i−l+���qi�x�

=
lemma 5

El�Ln,m,k� .

he relation �41� is just a rewritten form of �40�.
Since in what follows we will compare separable potentials with different n, in the rest of the

roof we will use temporary extended notation for potentials in the form V1
n,�k�. From �28� and �47�

t follows that

V1
n,�n+k� = V1

n+1,�n+1+k�, k = − n, . . . ,n − 1. �B1�

e prove now �42�. Using the relation �37� for r=1 we obtain

El�Ln,0,0� =
1

2 �
i,j=1

n
�V1

n,�2n−i−j�

�ql
�qi�x�qj�x −

d

dx
��

i=1

n

V1
n,�2n−i−l��qi�x�

=
1

2 �
i,j=1

n
�V1

n,�2n−i−j−l+1�

�q1
�qi�x�qj�x −

d

dx
��

i=1

n

V1
n,�2n−i−l��qi�x� . �B2�
nd in a similar way we have
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El+1�Ln+1,0,0� =
1

2 �
i,j=1

n+1
�V1

n+1,�2n+2−i−j−l�

�q1
�qi�x�qj�x −

d

dx
��

i=1

n+1

V1
n+1,�2n−i−l+1��qi�x�

=
���1

2 �
i,j=1

n
�V1

n+1,�2n−i−j−l+2�

�q1
�qi�x�qj�x −

d

dx
��

i=1

n

V1
n+1,�2n−i−l+1��qi�x�

=
�B1�1

2 �
i,j=1

n
�V1

n,�2n−i−j−l+1�

�q1
�qi�x�qj�x −

d

dx
��

i=1

n

V1
n,�2n−i−l��qi�x� .

he equality ��� is due to the fact that V1
n+1,�2n−i−l+1�=0 for i=n+1 and similarly V1

n+1,�2n−i−j−l+2�

oes not depend on q1 for i=n+1 or j=n+1 �this follows from �42� and �57��. Thus

El�Ln,0,0� = El+1�Ln+1,0,0�, l = 1, . . . ,n . �B3�

oreover, from �30� it follows that

V1
n,�2n+�� = − q1V1

n,�2n+�−1� − ¯ − qnV1
n,�n+��,

ence, for l	�

�V1
n,�2n+��

�ql
= − q1

�V1
n,�2n+�−1�

�ql
− ¯ − qn

�V1
n,�n+��

�ql
− V1

n,�2n+�−l�

= − q1
�V1

n,�2n+�−l�

�q1
− ¯ − qn

�V1
n,�n+�−l+1�

�q1
− V1

n,�2n+�−l�.

n the other hand, we have

V1
n+1,�2n+�+2� = − q1V1

n+1,�2n+�+1� − ¯ − qnV1
n+1,�n+�+2� − qn+1V1

n+1,�n+�+1�,

ence, for l	� and according to �B1� and �47�

�V1
n+1,�2n+�+2�

�ql+1
= − q1

�V1
n+1,�2n+�+1�

�ql+1
− ¯ − qn

�V1
n+1,�n+�+2�

�ql+1
− V1

n+1,�2n+�−l+1�

= − q1
�V1

n+1,�2n+�+1−l�

�q1
− ¯ − qn

�V1
n+1,�n+�+2−l�

�q1
− V1

n+1,�2n+�−l+1�

= − q1
�V1

n,�2n+�−l�

�q1
− ¯ − qn

�V1
n,�n+�+1−l�

�q1
− V1

n,�2n+�−l� =
�V1

n,�2n+��

�ql
, �B4�

nd from �37� it follows that

�V1
n,�n+s�

�ql
=

�V1
n+1,�n+s+2�

�ql+1
, 0 � s − l + 1 � n .

o, from �B3� and �B4� for � l�n equation �42� is fulfilled.
Now, we pass to the proof of relations �43�. First, we have

El�Ln,n−�,0� =
1

2 �
i,j=1

n
�V1

n,�n+�−i−j�

�ql
�qi�x�qj�x −

d

dx
��

i=1

n

V1
n,�n+�−i−l��qi�x�

=
1

2 �
i,j=1

n
�V1

n,�n+�−i−j−l+1�

�q1
�qi�x�qj�x −

d

dx
��

i=1

n

V1
n,�n+�−i−l��qi�x� . �B5�
n the other hand,
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El�Ln+1,n+1−�,0� =
1

2 �
i,j=1

n+1
�V1

n+1,�n+�−i−j−l+2�

�q1
�qi�x�qj�x −

d

dx
��

i=1

n+1

V1
n+1,�n+�−i−l+1��qi�x� .

y �42� and �57�, for l�� the last term in both sums does not contribute. Moreover, according to
B1� and the fact that V1

n,�2n�−qn+1=V1
n+1,�2n+1�, we have

�V1
n,�n+k�

�q1
=

�V1
n+1,�n+k+1�

�q1
, k = − n, . . . ,n ,

ence

El�Ln+1,n+1−�,0� =
1

2 �
i,j=1

n
�V1

n,�n+�−i−j−l+1�

�q1
�qi�x�qj�x −

d

dx
��

i=1

n

V1
n,�n+�−i−l��qi�x� = El�Ln,n−�,0� .

inally, we prove the relation �44�. From the negative recursion �27�, we have

�V1
n,�−k��qn−k+1, . . . ,qn��qi→qi+1,i=n−k+1,. . .,n = V1

n+1,�−k��qn−k+2, . . . ,qn+1�, k = 1, . . . ,n . �B6�

hen

E�+l�Ln,n−�,0� =
1

2 �
i,j=1

n
�V1

n,�n−i−j+1−��

�ql+�

�qi�x�qj�x −
d

dx
��

i=1

n

V1
n,�n−i−l��qi�x�

=
1

2 �
i,j=1

n
�V1

n,�2n−i−j−l+1�

�qn
�qi�x�qj�x −

d

dx
��

i=1

n

V1
n,�n−i−l��qi�x� �B7�

nd

E�+l�Ln+1,n+1−�,0� =
1

2 �
i,j=1

n+1
�V1

n+1,�n−i−j+2−��

�ql+�

�qi�x�qj�x −
d

dx
��

i=1

n+1

V1
n+1,�n−i−l+1��qi�x�

1

2 �
i,j=1

n+1
�V1

n+1,�2n−i−j−l+3�

�qn+1
�qi�x�qj�x −

d

dx
��

i=1

n+1

V1
n+1,�n−i−l+1��qi�x�

1

2 �
i,j=0

n
�V1

n+1,�2n−i−j−l+1�

�qn+1
�qi+1�x�qj+1�x −

d

dx
��

i=0

n

V1
n+1,�n−i−l��qi+1�x� .

s for i , j=0 there is no contribution to the sum, so according to �B6� we have

E�+l�Ln,n−�,0��qj→qj+1
= E�+l�Ln+1,n+1−�,0�, l = 1, . . . ,n − �, j = 1, . . . ,n . �B8�

rom �37� and �B6� we have

� �V1
n,�−n�

�qi
�

qj→qj+1,j=1,. . .,n

=
�V1

n+1,�−n�

�qi+1
=

�V1
n+1,�−n−1�

�qi
, i = 1, . . . ,n �B9�

hat together with �B8� proves the relation �44�.
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We consider a scalar field action for which the Lagrangian density is a power of the
massless Klein-Gordon Lagrangian. The coupling of gravity to this matter action is
considered. In this case, we show the existence of nontrivial scalar field configu-
rations with vanishing energy-momentum tensor on any static, spherically symmet-
ric vacuum solutions of the Einstein equations. These configurations in spite of
being coupled to gravity do not affect the curvature of space-time. The properties of
this particular matter action are also analyzed. For a particular value of the expo-
nent, the extended Klein-Gordon action is shown to exhibit a conformal invariance
without requiring the introduction of a nonminimal coupling. We also establish a
correspondence between this action and a nonrelativistic isentropic fluid in one
fewer dimension. This fluid can be identified with the �generalized� Chaplygin gas
for a particular value of the power. It is also shown that the nonrelativistic fluid
admits, apart from the Galileo symmetry, an additional symmetry whose action is a
rescaling of the time. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2179050�

. INTRODUCTION

The fundamental tenet of general relativity is the manifestation of the curvature of space-time
roduced by the presence of matter. This phenomena is encoded through the Einstein equations
hat relate the Einstein tensor �with or without a cosmological constant� to the energy-momentum
ensor of the matter,

G�� + �g�� = �T��. �1�

ince the energy-momentum tensor depends explicitly on the metric, both sides of the equations
ust be solved simultaneously.

In the first part of this paper, we address the following question: for a fixed geometry solving
he vacuum Einstein equations, is it possible to find a matter source coupled to this space-time
ithout affecting it. Concretely, this problem consists of examining a particular solution of the
instein equations �1� for which both sides of the equations vanish, i.e.,

G�� + �g�� = 0 = �T��. �2�

n three dimensions, such gravitationally undetectable solutions have been obtained in the context
f scalar fields nonminimally coupled to gravity with a negative cosmological constant.1 Recently,
he same problem has been considered in higher dimensions but with a flat geometry.2

In our case, we show that for any static, spherically symmetric vacuum solutions of the
instein equations �eventually with a cosmological constant�, a particular matter source action can

�
Electronic mail: hassaine@inst-mat.utalca.cl
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e coupled to this geometry yielding to nontrivial solutions of the equations �2�. This matter
ource is described in �D ,1� dimensions by an extended Klein-Gordon action,

S� =� dDx� dt�− g�g����������, �3�

here � is the dynamical field and � is a real parameter whose range will be fixed later. For �
1, this action reduces to the well-known massless Klein-Gordon action.

The derivation of solutions of the equations �2� is shown to be equivalent of finding a null
ector field k� �for the vacuum metric g��� which derives from the scalar field �. For a static,
pherically symmetric space-time, the derivation of vector fields satisfying these conditions is
lways possible. In this case, the potential � can be expressed as a general smooth function that
epends only on a null coordinate.

The existence of these gravitationally undetectable solutions is essentially due to the particular
orm of the matter action �3�. For this reason, we investigate some properties of this matter action
n the second part of this paper. In particular, the symmetries of the extended Klein-Gordon action
3� are analyzed. It is shown that for the particular value �= �D+1� /2, this action exhibits a
onformal invariance for which the conformal weight of the scalar field � is zero. In contrast with
he massless Klein-Gordon action, this conformal symmetry is achieved without requiring the
ntroduction of a nonminimal coupling. Finally, we establish a correspondence between the rela-
ivistic action �3� and a nonrelativistic isentropic fluid defined in one fewer dimension. The clue of
his correspondence lies in the fact that the nonrelativistic space-time can be viewed as the
uotient of a higher-dimensional Lorentz manifold by the integral curves of a covariantly, lightlike
ector field.3 For �=1/2, this nonrelativistic fluid is identified with the Chaplygin gas while for
���1/2, the model corresponds to the generalized Chaplygin gas. Note that the Chaplygin
osmology provides an interesting setup to explain that the expansion of the universe is
ccelerating.4–6 The Chaplygin gas has also raised a growing attention because of its connection
ith the Nambu-Goto action,7 its rich symmetrical structure8 and its supersymmetric extension.9

or a general review on this topics see Ref. 10 and works on supersymmetric fluid models are
eported in Ref. 11. The features of the Chaplygin gas can also be understood in a Kaluza-Klein-
ype framework.12 The symmetries of the nonrelativistic fluid are also investigated and it is shown
he existence, apart from the Galileo symmetry, of an additional symmetry whose action is a time
escaling.

The paper is organized as follows. We first derive solutions of the equations �2� for the
nergy-momentum tensor associated to the extended Klein-Gordon action �3�. In the remaining
ections, we discuss some general features of the matter action. In particular, we explain the origin
f the conformal invariance of the extended Klein-Gordon action for the particular value �= �D
1� /2. The last part of the paper is devoted to the correspondence between the relativistic matter
ction and a nonrelativistic isentropic and polytropic fluid in one fewer dimension. The symme-
ries of this nonrelativistic fluid are also analyzed.

I. STEALTH SOLUTIONS

We consider the action of �D+1�-dimensional gravity coupled to a scalar field � with dynam-
cs described by the extended Klein-Gordon action �3�,

I =� dDx� dt�− g� 1

2�
�R − 2�� −

1

2
�g����������� , �4�

here R is the scalar curvature and � is the gravitational constant. The field equations obtained by

arying the metric and the scalar field read, respectively,
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G�� + �g�� = �T��, �5a�

����− gg��������������−1� = 0, �5b�

here the energy-momentum tensor is given by

T�� = 2����������������−1 − g�����������. �6�

We look for a particular solution of the Einstein equations �5a� for which both sides of the
quations vanish �2�. We first show that the equation T��=0 implies some restrictions on the scalar
eld � and on the real parameter �. Indeed, independently of the background metric, the vanishing
f the energy-momentum tensor is possible only if the scalar field satisfies ������=0, otherwise
he metric would be proportional to

g�� 	
������

������
,

nd, hence its determinant would vanish. Consequently, the condition T��=0 can be consistently
chieved only for a scalar field satisfying ������=0 and for �
1 because of the form of the
nergy-momentum tensor �6�. It is interesting to note that under these conditions, the extended
lein-Gordon equation �5b� is automatically satisfied.

In sum, the system described by the particular Einstein equations �2� together with the ex-
ended wave equation �5b� is equivalent of finding a vacuum metric and a null vector field that
erives from �,

g��k�k� = 0, k� = ��� . �7�

e now show that a static and spherically symmetric space-time geometry always admits such
ector field �7�. Indeed, let us consider such geometry which in addition is supposed to solve the
acuum Einstein equations. The line element is given by

ds2 = − f�r�h�r�dt2 +
dr2

f�r�
+ r2 d�D−1

2 , �8�

here d�D−1
2 is the line element of the �D−1�-dimensional sphere. It is simple to see that the

ector field defined by

k� = �
1

�h�r�
r

� −
1

f�r�h�r�
t

� �9�

s null and derived from the potential

t � �r dr̃

f�r̃��h�r̃�
. �10�

ence, any smooth function of this potential �10�

� = F	t � �r dr̃

f�r̃��h�r̃�

 , �11�

s a solution on the vacuum space-time metric of the constraint

g�������� = 0. �12�

his result is not surprising and can be explained as follows. The null coordinates u and v

ssociated to the space-time �8� can be defined as
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u = t − �r dr̃

f�r̃��h�r̃�
, �13a�

v = t + �r dr̃

f�r̃��h�r̃�
, �13b�

nd, in these coordinates, the metric �8� takes the following form:

ds2 = − f�r�h�r�du dv + r2 d�D−1
2 . �14�

onsequently, any smooth function F of one of the null coordinate, i.e., F�u� or F�v�, will provide
nontrivial solution to the equation �12�. In the original coordinates �8�, this solution becomes

recisely �11�.
Thus, we have shown that the curvature of vacuum space-time �8� may not react to the

resence of matter source described by the action �3� provided the scalar field is given by the
xpression �11�. The existence of such configurations is a direct consequence of the particular
orm of the matter action. In what follows, we analyze some properties of this action.

II. PROPERTIES OF THE EXTENDED KLEIN-GORDON ACTION

We first show that the matter action �3� can be derived from the action of a massive complex
calar field with Lagrangian given by

L = 1
2g������������� + V����2� , �15�

here V denotes a potential that depends only on the module of the scalar field. Decomposing the
calar field as

� =
f

m
e−im�, �16�

here m represents the mass of the complex scalar field, the Lagrangian density �15� becomes

L =
1

2m2g����f��f +
1

2
f2g�������� + V�f2/m2� . �17�

s shown below, this expression reduces to the extended Klein-Gordon Lagrangian �3� provided
he first term in �17� is neglected or eliminated and also for a particular election of the potential.
ne possibility to eliminate the first term is to consider an effective potential that depends also on

he derivatives of the scalar field,

Veff����,������ = V����� − 1
2g���������������� .

n this case the starting Lagrangian �15� with this potential reduces to

L = 1
2 f2g�������� + V�f2/m2� . �18�

ne can also reach this expression �18� by neglecting the first term of �17� by considering the
cale of the inhomogeneities as corresponding to the space-time variations of f on scales greater
han m−1, i.e., ��f �mf . This has been considered in the context of cosmology to show that the
eneralized Chaplygin gas can be described by a generalized Born-Infeld Lagrangian.5

The field equations resulting from the variation of the Lagrangian �18� read

1 g������������ = − V��f2� , �19a�
2
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���f�− gg������ = 0. �19b�

here we have set the mass to unity for simplicity. We consider a self-interacting potential V given
y

V����� = �������/��−1�, �20�

here � is a constant. In this case, the action �18� becomes

S =�
M

dDx� dt�− g�1

2
f2���������� + �f2�/��−1�� , �21�

nd the function f can be eliminated in favor of the phase � through the equation of motion �19a�,

f2 	 ���������−1.

inally, the substitution of this last expression into the Lagrangian �21� yields the extended Klein-
ordon action �3�.

. Conformal symmetry

In �D+1� dimensions, the extended Klein-Gordon action �3� possesses the conformal invari-
nce for a value of the parameter � given by

� =
D + 1

2
. �22�

ndeed, it is simple to see that the trace of the energy-momentum tensor �6� vanishes for this value,

g��T�� = �2� − �D + 1�����������.

he implementation of this symmetry on the scalar field � is with a zero conformal weight,

g�� → �2g��, � → � . �23�

arious comments can be made with respect to this conformal symmetry. First, in contrast with the
tandard Klein-Gordon action this conformal symmetry is achieved without the introduction of the
onminimal coupling. Moreover, it is interesting to note that the scalar field action �3� remains
nchanged against the transformations �23�, i.e.,

S�D+1�/2��2g��,�� = S�D+1�/2�g��,�� .

inally, the origin of this conformal invariance can be explained as follows. It is well known that
n �D+1� dimension with D
1, the following generalized Klein-Gordon Lagrangian density:

L�D,1� =
1

2
g������������� +

�D − 1�
8D

R��� + �������D+1�/�D−1� �24�

s conformally invariant. Here R represents the scalar curvature of the metric and the last term in
24� is the unique potential that preserves the conformal invariance. For convenience, we rewrite
his action in terms of the module and the phase, �= fei�,

L�D,1� =
1

2
��f��f +

1

2
f2������ +

�D − 1�
8D

Rf2 + �f2�D+1�/�D−1�, �25�
nd the implementation of the conformal symmetry on the dynamical fields is given by
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g�� → �2g��, f → ��1−D�/2f , � → � . �26�

simple but tedious computation shows that the term proportional to Rf2 is precisely introduced
o cancel the variation of the term ��f��f under the conformal transformation �26�. Consequently,
f one drops this kinetic term �as we did in the previous derivation�, the following Lagrangian

L�D,1� =
1

2
f2g�������� + �f2�D+1�/�D−1� �27�

lso exhibits the conformal invariance. This expression corresponds precisely to the Lagrangian
21� for the conformal value of the parameter � given by �22�.

. Nonrelativistic fluid

We now establish a correspondence between the relativistic action �3� defined in �D ,1� di-
ensions and a nonrelativistic fluid in �D−1,1� dimensions through a Kaluza-Klein-type frame-
ork. The clue of this correspondence lies in the fact that the quotient of a Lorentz �D ,1�
anifold by the integral curves of a covariantly constant and lightlike vector field � is a �D
1,1� manifold which carries the geometric structure of nonrelativistic space-time.3

We first illustrate this framework with a simple example. On the Lorentz manifold we con-
ider a coordinate system given by �t ,x� ,z� where �t ,x�� are the coordinates on the nonrelativistic
pace-time and z represents the additional coordinate. Let � be a complex scalar field satisfying
he wave equation in �D ,1� dimensions together with an equivariance condition

�� = 0, �28a�

����� = i� . �28b�

his system of equations �28� has been shown to be strictly equivalent to the free Schrödinger
quation in �D−1,1� dimensions on a general Newton-Cartan space-time.3

In our case, we consider the action defined in �21� which has been shown to be equivalent to
he extended Klein-Gordon action �3�. The field equations associated to �21� read

1

2
g������������ = −

��

� − 1
�1/��−1�, �29a�

�����− gg������ = 0, �29b�

here for convenience we have substituted f2 by �. In order to fix the set up of the Kaluza-Klein-
ype framework, we consider the Minkowski metric written in the light-cone coordinates

ds2 = 2 dt dz + dx�2, �30�

or which the lightlike vector field � can be chosen to be ����=�z. Since � is the module and � the
hase of the complex scalar field �16�, the analogue of the equivariance condition �28� is given by

����� = 0 Þ � = ��t,x�� , �31a�

����� = 1 Þ ��t,x�,z� = ��t,x�� + z . �31b�

t is easy to see that on the flat background �30� and for fields � and � satisfying the conditions
31�, the relativistic field equations �29� project onto the following �D−1,1�-dimensional nonrel-
tivistic equations:

� �
�t� + � · ����� = 0, �32a�
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�t� +
1

2
��� ��2 = −

��

� − 1
�1/��−1�. �32b�

hese equations turn out to be the nonrelativistic equations of an isentropic, irrotational and

olytropic fluid. Indeed, identifying � as the potential velocity, i.e., v� =�� � and � as the density,
he first equation �32a� is a continuity relation while the gradient of the second equation �32b�
ields a Euler equation of an isentropic fluid with pressure given by

p =
�

� − 1
��/��−1�. �33�

or a potential strength �
0 and for �=1/2 �respectively, for 0���1/2�, the relation �33�
epresents the state equation of the Chaplygin gas �respectively, the generalized Chaplygin gas�.
inally, we remark that the field equations �32� can be derived from the following action principle:

S��,�� =� dD−1x� dt��	�t� +
1

2
��� ��2
 + ���/��−1�� . �34�

In what follows, we study the symmetries of the nonrelativistic fluid model whose dynamics
s described by the equations �32�.

Nonrelativistic symmetries: We analyze the dynamical symmetries of the nonrelativistic isen-
ropic fluid described by the equations �32�. This model being nonrelativistic possesses the appro-
riate symmetry, namely the Galileo symmetry. The action of this symmetry on the coordinates is
iven by

t → T = t + � ,

x� → X� = Rx� + � − �� t ,

here R�SO�D−1�, �, � , and �� are the parameters associated to the rotations, the time transla-
ions, the space translations and the Galileo boosts, respectively. The implementation of the Ga-
ileo symmetry on the dynamical fields reads

� → �̃�t,x�� = ��T,X� �

nd

� → �̃�t,x�� = ��T,X� � + �� · x� − 1
2 ��� �2t .

he application of the Noether theorem yields to the following constants of motion:

H =� dD−1x�H =� �1

2
���� ��2 + ���/��−1�� �35a�

P� =� dD−1x�P� =� dD−1x����� �� , �35b�
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Mij =� dD−1x��xiP j − xjPi� , �35c�

G� = tP� −� dD−1x��x��� , �35d�

hich corresponds to the energy �, the momentum � , the rotations R and the Galileo boosts �� ,
espectively. The equations are also invariant under a shift of the velocity potential by constant,
→�+constant, and the associated conserved charge is given by

N =� dD−1x�� . �36�

he corresponding Lie algebra generated by H, P� , Mij, G� , and N is the Galileo algebra with a
entral extension given by �36� and corresponds to the Galileo 2-cocycle.

�i� For a generic value of the parameter �, there exists an additional symmetry which does not
elong to the Galileo group. This symmetry acts on the coordinates by rescaling only the time

t → T = e�t ,

x� → X� = x� , �37�

hile its action on the dynamical fields is given by

� → �̃�t,x�� = e2��−1����T,X� � ,

� → �̃�t,x�� = e���T,X� � , �38�

r infinitesimally

� = 2�� − 1���t,x�� + t�t��t,x�� ,

� = ��t,x�� + t�t��t,x�� . �39�

he associated conserved quantity reads

B� = tH −
�3 − 2��
2� + 1

� dD−1x����� −
�2� − 1�
2� + 1

� dD−1x��x� · �� ��� . �40�

his expression is clearly not defined for �=−1/2 in spite of the fact that this value is not singular
t the level of the transformations �37� and �38�. In fact, a careful application of the Noether
rocedure shows that for �=−1/2 the associated conserved quantity does not involve the energy
ensity and instead is given by

B−1/2 =� dD−1x���� −
1

2
�x� · �� ���� . �41�

n the case of the Chaplygin gas, �=1/2, the last piece of the expression �40� vanishes and the
oether charge corresponds to the one derived in Ref. 8. Interestingly, for ��1/2, the two

onserved charges �40� and �41� involve a piece proportional to the space coordinate x�. This fact
s intriguing since the transformations �37� only affect the time and not the space coordinate. This
an be explained by the fact that, under the infinitesimal changes of the dynamical fields �39�, the

ariation of the action �34� becomes
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�S = S�� + �,� + �� − S��,�� = �2� − 1�S��,�� +� �t���t�t�� − �� + tH� , �42�

here H represents the density energy �35a�. For �=1/2, this variation �42� reduces to a surface
erm and, hence a direct application of the Noether theorem yields to the conserved charge �40�.
or ��1/2, the reason for which the transformation �37� still acts as a symmetry is due to the fact

hat the original action can also be written as a surface term. Indeed, using the equations of motion
32�, the action �34� can be expressed on-shell as

S��,�� =
1

2� + 1
� dD−1x� dt �t�2�� − �x� · �� �� . �43�

s a consequence, for ��1/2, the variation �S of the action �42� under the time dilatation
ransformation �37� is also a surface term. This proves that these transformations act as a symme-
ry for the action and also the reason for which the conserved quantities �40� and �41� involve the
pace coordinate x�.

For a generic value of the parameter �, the group structure of the symmetries is given by the
emidirect sum of the Galileo group with central extension G with the generator associated to this
xtra symmetry �40�,

G = G � B . �44�

There exist two particular values of the parameter � for which the symmetry group can be
arger than the one discussed before �44�.

�ii� For the value �=1/2, which corresponds to the Chaplygin gas, it has been shown that,
part from the time dilation �37�, there exists an extra symmetry whose action is field dependent,
.e.,

t → T = t + 1
2�� · �x� + X� � ,

x� → X� = x� + �� ��T,X� � , �45�

nd

� → �̃�t,x�� = ��T,X� �
1

�J�
,

� → �̃�t,x�� = ��T,X� � , �46�

here �J� is the Jacobian of the transformation, J=det��X� /�x��.8 The Noether conserved quantity
s given by

D� =� dD−1x� dt�x�H − �P� � , �47�

nd the group structure generated by the quantities �35�, �40�, and �47� is the Poincaré group in
ne higher dimension, namely in �D ,1� dimensions. The existence of this symmetry is due to the
act that for �=1/2, the action expressed in terms of � can be written as a square root,

S =� dD−1x� dt��t� +
1

2
��� ��2,

nd this later can be seen to descend from a Nambu-Goto action in one higher dimension in the
7
ight cone parametrization. This explains the arising of the Poincaré symmetry only for �=1/2
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ince for the other values of �, the action is not a square root and hence it is not longer param-
trization invariant.

�iii� In �D−1,1� dimensions and for a value of � given by �D+1� /2, the polytropic fluid
xhibits a Schrödinger symmetry for which the group structure is the semidirect sum of the static
alileo group with SL�2,R�, �see Refs. 13 and 14 and for an extension to discontinuous flows see
ef. 15�. The arising of this symmetry is a consequence of the conformal symmetry of the

elativistic model in one higher dimension.

V. DISCUSSION

Here, we have considered the Einstein equations with a matter source scalar field. The dy-
amics of the scalar field is described by an extended Klein-Gordon action that depends on a real
arameter �. We have restricted ourselves to a particular class of solutions for which both sides of
he Einstein equations vanish. In this case, we have shown that for any static, spherically sym-

etric vacuum solutions of the Einstein equations, a nontrivial scalar field with zero energy-
omentum on-shell can be derived. This means that this matter source in spite of being coupled

o gravity does not affect the curvature of the space-time. An interesting work will consist to see
hether scalar field with a nonzero energy momentum tensor can be coupled to black hole
eometry. The existence of these undetectable solutions is essentially due to the form of the matter
ction. For this reason, some properties of this action have been analyzed. In particular, we have
hown that the extended Klein-Gordon action possesses a conformal invariance for a particular
alue of the exponent �. This invariance does not require the introduction of the nonminimal
oupling as it is the case for the standard Klein-Gordon action. We have also established a
orrespondence between this extended Klein-Gordon dynamics and a nonrelativistic isentropic
uid in one fewer dimension. This gas can be identified with the �generalized� Chaplygin gas for
pecific values of the parameter �. The nonrelativistic model corresponds to an irrotational, isen-
ropic, and polytropic fluid. This fluid admits, apart from the Galileo symmetry, an additional
ymmetry. The action of this extra symmetry on the coordinate consists of a rescaling of the time
nly. An interesting work will consist of finding solutions of this nonrelativistic fluid and to make
se of this extra symmetry to generate nontrivial solutions.
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We consider a self-adjoint, purely absolutely continuous operator M. Let P be a
rank one operator Pu= �� ,u�� such that for �0 H�0

ªM +�0P has a simple eigen-
value E0 embedded in its absolutely continuous spectrum, with corresponding ei-
genvector �. Let H� be a rank one perturbation of the operator H�0

, namely, H�

=M + ��0+��P. Under suitable conditions, the operator H� has no point spectrum
in a neighborhood of E0, for � small. Here, we study the evolution of the state �
under the Hamiltonian H�, in particular, we obtain explicit estimates for its sojourn
time �����=�−�

� ��� ,e−iH�t���2 dt. By perturbation theory, we prove that ����� is
finite for ��0, and that for � small it is of order �−2. Finally, by using an analytic
deformation technique, we estimate the sojourn time for the Friedrichs model in
Rn. © 2006 American Institute of Physics. �DOI: 10.1063/1.2174236�

. INTRODUCTION

A rank one perturbation of an operator H0 may drastically change the nature of its spectrum.
ee for instance Refs. 2 and 16. Here we study a class of perturbations for a self-adjoint operator

0 having a simple eigenvalue E0 embedded in its absolutely continuous spectrum. We impose
eneral conditions on the rank one perturbation P, Pu= �� ,u��, which guarantee that the operator

�=H0+�P is purely absolutely continuous. Moreover if H0 has a normalized eigenvector �0

ith corresponding eigenvalue E0 then we explicitly estimate the sojourn time ����0�, precisely,
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����0� 	
1

�

1

�2

1

��P�0,�0��2��0
� �E0�

nder conditions which guarantee in particular suitable regularity of the spectral measure ��0
of

M.
In the case where M is the multiplication operator by x and � is analytic �in the sense of Sec.

� we can use the analytic translation technique to prove that

����0� =
1

2�	�
+ O
 1

���� ,

here 1 /2	 is the Fermi golden rule term,

1

2
	 = �2 Im�P�0,S�E0 + i0�P�0� .

Here, S�E0+ i0� is the reduced resolvent of H�0
at E0 �Ref. 8, Chap. III, Sec. 6.5, for the

efinition of the reduced resolvent�.
There are numerous works which describe resonances by analyzing the behavior of the sur-

ival amplitude, i.e., the function R� t� �e−itH�0 ,�0�, which, in many cases, include explicit
xponential decay laws for this quantity. We mention, Refs. 1, 3, 4, 6, 10, 11, 17, 19, 18, and 20,
or example. On the other hand, as it was suggested in Ref. 10, the study of the sojourn time seems
o be an approach to resonances more general than analytic continuation techniques. �See Refs. 7,
3, and 15.�

The present work is also an attempt to give a dynamical characterization of quantum reso-
ances, by estimating directly the sojourn time, that is, the L2 norm of this survival amplitude,
hich measures the total amount of time that well chosen states remain on itself. We expect that

his direct approach of the sojourn time will allow less regular Hamiltonian than the ones consid-
red with the survival amplitude method. For example, in the concrete Friedrichs model, see Sec.
V A, we need only that our perturbation P is twice differentiable with respect to the x variable,
hich seems to be a rather weak condition in view of the above quoted papers. This hope must be

ested with a genuine potential perturbation. Also, contrary to what is usually done, we have not
ocalized �0 within an ad hoc spectral subspace of H�, i.e., g�H���0, where g is a function
ocalized around the embedded eigenvalue E0; this is mainly because our assumptions on M do not
llow neither thresholds nor other eigenvalues than E0.

This paper has the following structure: in the first two sections we establish some technical
acts. The following section contains our main result, the asymptotics of the sojourn time. In the
ast section we use the analytic translation technique to establish the connection with resonance
heory.

I. RANK ONE PERTURBATIONS OF SELF-ADJOINT OPERATORS

Although the content of this section is classical, we include it for the reader’s convenience.
et M be a self-adjoint operator on a Hilbert space H. We consider rank one perturbations of M,

H� = M + �P , �2.1�

here ��R and P= ������ denotes the orthogonal projection Pu= �� ,u�� and ���=1.
Let Ex

M be the resolution of the identity associated to M, that is M =�−�
� x dEx

M and let ���x�
�� ,Ex

M��. For z�C with Im z
0 we consider the Borel transform of the measure ��, that is

F��z� = ��,�M − z�−1�� . �2.2�

emma 2.1: Assume E0 is not an eigenvalue of M. Given ��0, the real number E0 is an eigen-
−1
alue of H� if and only if lim�→0�M −E0− i�� � exists in H and F��E0+ i0�=−1/�.
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Proof: If H��0=E0�0, �0 normalized, then,

M�0 + ���,�0�� = E0�0. �2.3�

ince E0 is not an eigenvalue of M, we have that ��0 ,���0 and � belongs to the range of M
E0.

On the other hand,

�M − E0��M − E0 − i��−1�0 = − ���,�0��M − E0 − i��−1� .

ut �M −E0��M −E0− i��−1 is a bounded operator which is strongly convergent to the identity as �
pproaches 0. By computing such limit we have that �ª lim�→0�M −E0− i��−1� exists and it
atisfies �0+��� ,�0��=0. It follows that,

F��E0 + i0� = ��,�� = −
1

�
.

onversely, if both conditions hold, then �ª lim�→0�M −E0− i��−1� satisfies �� ,��=−1/�. Con-
ider ����= �M −E0− i��−1�. Then,

�M − E0����� = �M − E0��M − E0 − i��−1� ,

onverges to �, when � approaches 0. Since M is a closed operator, we obtain that � belongs to the
omain of M and �M −E0��=�.

Hence, M�−�=E0�. The eigenvalue equation �2.3� follows from the identity −1=��� ,��.
�

Corollary 2.1: Let E0 be an eigenvalue of H�. Then E0 is simple with eigenvector �
lim�→0�M −E0− i��−1�. Also,

���2 = 
−�

� d��

�x − E0�2 and ��,�� = 
−�

� d��

x − E0
. �2.4�

Proof: The first part of the corollary follows from the proof of the Lemma 2.1. To prove
ormula �2.4�, we note that since ���2=lim�→0��M −E0− i��−1��2 exists, by the monotone conver-
ence theorem,


R

d��

�x − E0�2 = lim
�→0


R

d��

�x − E0�2 + �2 = ���2.

o the integrals �R�d�� / �x−E0�2� and �R�d�� / �x−E0�� are finite. The Lebesgue theorem then
mplies

��,�� = lim
�→0


R

d��

�x − E0� + i�
+ 

R

d��

x − E0
.

�

We now consider a family of rank one perturbations of the operator H�0
=M +�0P on H,

xplicitly,

H� = M + ������� , �2.5�

here ��H is a fixed unit vector. We are mainly interested on studying the time behavior of
ossible bound states of H�0

, under the Hamiltonian H�, for � near �0.
Let us assume that H�0

=M +�0������ has an eigenvalue E0 with corresponding eigenvector �.

ecause of Lemma 2.1 and Corollary 2.1, this means that 1+�0 lim�→0 F��E0+ i��=0 and

                                                                                                            



p

w

w
o

w

I

a

T

I
s

n

b

e

d

033501-4 Asch et al. J. Math. Phys. 47, 033501 �2006�

                        

−�

� d��

�x − E0�2 � � .

Our goal is to study the time evolution of � under the perturbed Hamiltonian H� for the
arameter � close to zero.

For this purpose, we study the function

R � t � ���,e−iH�t���2

hich represents the probability of finding at time t the system in its initial state �, and

����� = 
−�

�

���,e−iH�t���2 dt, � = � − �0 �2.6�

hich measures the total amount of time the state remains in its initial subspace �s� :s�C�. We
bserve that ��� ,e−iH�0

t���2=1 for all t and so �0��� is infinite.
We shall prove that for ��0 and small, the sojourn time ����� is finite and of order �−2,

hen the operator H� has no bound states �see assumption �H3��.

II. FINITENESS OF THE SOJOURN TIME OF �

Let H be a self-adjoint operator on a complex Hilbert space H. For any vector  in the
bsolutely continuous subspace Hac�H� associated to H, we know that

�,e−iHt� =� 2

�


−�

�

e−i�t Im�,�H − � − i0�−1�d� .

his allows us to express the sojourn time in terms of resolvent operators, explicitly,

���� =
1

2�


−�

�

�Im��,�H − � − i0�−1���2 d� . �3.1�

t is known that �2.6� and �3.1� are both valid expressions for the sojourn time, as soon as the
urvival amplitude R� t� �e−itH� ,�� is in L2�R�, see Ref. 12.

In all what follows, we assume the following hypothesis.
�H0�: M is a purely absolutely continuous operator acting on the Hilbert space H, ��0 a

ormalized element of H, Pª ������ and H�ªM +�P.
�H1�: There exists �0�0, such that H�0

has a unique eigenvalue E0, H�0
�=E0�. Notice that,

y Lemma 2.1, this implies in particular that �ª �M −E0± i0�−1� exists in H and �� ,��=−�0
−1.

�H2�: The function ��R� �� , �M −�− i0�−1���C is continuous. We assume moreover that

lim
���→�

��,�M − � − i0�−1�� = 0.

Notice that, by the first resolvent equation, this implies in particular that

R \ �E0� � � � ��,�M − � − i0�−1�� � C

xists as a continuous function.
�H3�: There exists �0
0 such that for all 0� �����0, the function

D��,�� ª 1 + ��0 + ����,�M − � − i0�−1��

oes not vanish, for any ����M�. Clearly, for such �, the operator H�0+�
has no eigenvalues.

�H4�: The function �� �� , �M −�− i0�−1���C is of class C1 in a neighborhood of E0, that is,

−1
g��� ª Re��,�M − � − i0� �� ,
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������ ª
1

�
Im��,�M − � − i0�−1��

exist and they are C1 functions in a neighborhood of E0.
�H5�: The function ��� belongs to L2�R�.
�H6�: ����E0�
0.
Concerning the resolvent operators, we use the following notation:

R��z� = �H� − z�−1, R0�z� = �H�0
− z�−1, R�z� = �M − z�−1,

here �=�−�0. The Aronszjan-Krein formula9,16 expresses the resolvent R��z� in terms of R0�z�
or any z=�+ i��C, with ��0. This formula gives

R� = R0 −
�

1 + ���,R0��
R0PR0. �3.2�

imilarly,

R0 = R −
�0

1 + �0��,R��
RPR . �3.3�

gain, we use the Borel transform F��z�= �� , �M −z�−1��, which, because of �3.3� gives

��,R0�z��� =
F��z�

1 + �0F��z�
.

hus, by replacing in �3.2�,

R� = R0 − �
1 + �0F�

1 + ��0 + ��F�

R0������R0. �3.4�

ince, �����= �� ,E�
M��, for any positive � we have that

F��z� = 
−�

� x − �

�x − ��2 + �2d���x� + i
−�

� �

�x − ��2 + �2d���x� . �3.5�

y our hypothesis, we have that d�����=������d�= �1/��Im F���+ i0�d�, where ��� denotes the
adon-Nikodym derivative of the measure �� relative to the Lebesgue measure. So the limit when
→0 in �3.5� exists thanks to �H6� and gives

F��� + i0� = PV
−�

� ����x�
x − �

dx + i������� , �3.6�

here the first term on the right-hand side of �3.6� is the Cauchy principal value.
Lemma 3.1: Suppose that (H0), (H1), (H2), (H3), and (H5) hold. Then, for all 0� �����0 is

nite and

����� =
2��4

�0
4 

R

��������2

�D��,���4
d� , �3.7�

here

D��,�� ª 1 + ��0 + ��F��� + i0� . �3.8�

Proof: From the formula �3.1�, we only need to compute Im�� ,R���+ i0��� for ��E0.
Since H�0

�=E0� and �= �M −E0− i0�−1�, we have that �0�� ,��=−1. Hence, the identity

3.4� gives
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��,R��z��� =
1

E0 − z
���2 − �

1 + �0F��z�
1 + ��0 + ��F��z�

1

�0
2�E0 − z�2 .

Consider z=�+ i� with �
0. Hypothesis �H2� allows us to compute the limit as �→0 to
btain that

��,R��� + i0��� =
1

�E0 − ��
���2 −

�

�0
2�E0 − ��2 lim

�→0

1 + �0F��� + i��
1 + ��0 + ��F��� + i��

.

By taking the imaginary part, it follows immediately that

Im��,R��� + i0��� = −
�

�0
2�E0 − ��2 lim

�→0
Im

1 + �0F��z�
1 + ��0 + ��F��z�

.

Now,

Im
1 + �0F��z�

1 + ��0 + ��F��z�
=

� Im F��z�
�1 + ��0 + ��F��z��2

.

Hence, by using that �1/ �E0−��2�������=������ we conclude that

Im��,R��� + i0��� = −
�2

�0
2�E0 − ��2 lim

�→0

Im F��� + i��
�1 + ��0 + ��F��� + i���2

=
�2

�0
2

�������
�D��,���2

or any ��E0, thus ending the proof. The integral of �3.7� makes sense, i.e., is finite, thanks to
H2�, �H3�, and �H5�. �

V. EXACT ASYMPTOTICS FOR ��

In this section we prove the explicit asymptotics for the sojourn time in a general context and
e will apply it to some concrete examples.

Theorem 4.1: Assume that �H0�–�H6� holds. Then the sojourn time ����� has the following
ehavior:

lim
�→0

�2����� =
1

�

�0
2���10

����E0�
.

Proof: By using the first resolvent equation and �H1�, we can rewrite D�� ,�� as

D��,�� = 1 + ���,R�� + i0��� = 1 −
�

�0
+ ��� − E0���,R�� + i0��� .

y �H4� and applying the resolvent equation twice, we obtain that

D��,�� = −
�

�0
+ ��� − E0�q��� + i���� − E0�2������

ith

q��� ª ���2 + �� − E0�g��� .

y Lemma 3.1 we known that ����� is finite and it is represented by �3.7�.
Consider the interval I�ª ���R , ��−E0���� for some �
0. Let us split the integral in two
arts,

                                                                                                            



W
L

a

T
f

i

B
c
v
W

L
c

w

a

w

T
o

w

033501-7 Sojourn time for rank perturbations J. Math. Phys. 47, 033501 �2006�

                        
A� ª
2��6

�0
4 

I�

��������2

�D��,���4
d�, B� ª

2��6

�0
4 

R\I�

��������2

�D��,���4
d� .

e will prove first that B�→0 as �→0 and second that A� tends to the desired limit using the
ebesgue dominated convergence theorem.

We get at once that B�=O��6� since �D�� ,����c�
0 on R \ I�, and ��� belongs to L2�R� by
ssumption �H5�.

For ��0 one defines

s���� ª �−2�− ��0
−1 + ��� − E0�q���� .

hanks to �H4� we know that g��� is a C1 function in a neighborhood I�g
of E0. Then s is a C1

unction with derivative

s�� ��� =
��q��� + �� − E0�q�����

�2

n I�g
and s�� �E0�=�−2����2.

We choose �0� ��0� /2 so that � does not vanish and therefore E0 is not a critical point of s�.
y the inverse mapping theorem we know that s� is locally in E0 a C1 diffeomorphism, i.e., we
an choose �s
0 small enough so that the restriction of s� to I�s

is such a C1-diffeomorphism. In
iew of the explicit dependence of s� with respect to � one can choose this �s independently of �.
e continue to denote �s by �. We note that

s � Ĩ� Û �s +
1

��0
� � �

��q���s���
�2 .

et Ĩ��s����s�� I� be the inverse of the previous change of variable. The quantities D and A�

an now be written as

D����s�,�� = �2s +
i�

�

�2s + ��0

−1

q����s��
�2

�������s�� ¬ �2D̃�s,��

ith

D̃�s,�� = s +
i�

�

�s + �0

−1

q����s��
�2

�������s��

nd

A� =
2��6

�0
4 

Ĩ�

��������s���2

�8�D̃�s,���4
�2

��q����s�� + ����s� − E0�q�����s���
ds

=
2�

��0
4

R
1Ĩ�

��������s���2

�D̃�s,���4
1

q����s�� + ����s� − E0�q�����s��
ds ,

here 1Ĩ�
denotes the characteristic function of I�.

We know that q���= ���2+ ��−E0�g��� and g is assumed to be C1 on I�g
so g is bounded there.

herefore we can choose 0��q�min��g ,�s� small enough such that q����
1
2 ���2 on I�q

. In view
f

"s � I�s
, �2s + ��0

−1 = ����s� − E0�q���s��
e see at once that lim�→0���s�=E0. Then, by assumption �H4�,
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lim
�→0

����s� = ����E0�, lim
�→0

D̃�s,�� = s +
i�

�0
3���4����E0�

nd

lim
�→0

1

�q����s�� + ����s� − E0�q�����s���
=

1

���2 .

herefore,

lim
�→0

�integrand� =
2�

�0
5

�����E0��2

�s2 +
�2�����E0��2

�0
6���8 �2 =

1

���2 .

y formal integration one arrives at

2�

�0
5

�����E0��2

���2 
R

1

�s2 +
������E0��2

�0
6���8 �2ds =

2�

�0
5

�����E0��2

���2

�

2
������E0��
�0

3���4 �3 =
�0

4

�

���10

�����E0��
.

hen, it remains to justify the interchange of the limit with the integral.
First we have

�D̃�s,���2 = s2 +
�2

�2
�s + �0
−1

q����s��
�4

��������s���2.

ue to assumptions �H4�, �H6� we know that there exists a neighborhood of E0 on which ���
0. Let K be a compact interval which contains 0 in its interior, the image of K in the � variable

s a compact interval which contains E0 and shrinks as �→0. So for ��� small enough we are sure
hat �������s��2�c
0 with c independent of �. Since we can also easily make that the quantity
1 /�2���s+�0

−1 /q����s���4 is also bounded below uniformly with respect to � we get that

$�0 
 0, " s � K, " ��� � �0, �D̃�s,���2 � c 
 0.

t follows that

"s � Ĩ�, �D̃�s,���2 � max�s2,c� .

hen since g is C1 on I�g
one has that ��q���− ��−E0�q���� is C0 on I�g

and since q�E0�
���2
0 one can choose �ª�g small enough so that

"s � Ĩ�, q����s�� + ����s� − E0�q�����s�� � c 
 0.

inally thanks to �H4� we can choose � small enough so that ���� ��c1 on I�. In conclusion we
ave obtained

$� 
 0, $ �0 
 0, " s � Ĩ�, " ��� � �0, 0 � integrand �
4�

�0
5

c1
2

max�s4,c2�c

˜
nd since outside I� the integrand vanishes this bound is valid on R. �
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. The Friedrichs model

The Friedrichs model corresponds to a very simple choice of the operator M, namely, the
ultiplication operator M��x�=x��x� acting in HªL2�R�. The operator M with domain D�M�
�� :x��L2�R�� is purely absolutely continuous with spectrum ��M�=R. Moreover, its spectral
easure is given by ����x�= �� ,Ex

M��= ���x��2.
We consider the rank one perturbation H�=M +�������. In order to verify our hypothesis, we

mpose on the vector � the following conditions.
�F0�: � is normalized in H.
�F1�: � belongs to the Sobolev space H2�R�.
�F2�: � has a unique zero at x=E0.
�F3�: �0�0 and � satisfy the relation

1 + �0
−�

� ���x��2

x − E0
dx = 0.

�F4�: ���E0��0, and ��C2 in a neighborhood of E0.
Clearly �H0� holds. On the other hand, conditions �F1�–�F3� imply hypothesis �H1�–H�5�.

lso, �F4� guarantees condition �H6�. By Theorem 4.1 we deduce the following result.
Theorem 4.2 (Friedrichs model): Assume that �F1�–�F4� holds. Then the sojourn time �����

as the following behavior:

lim
�→0

�2����� =
1

�

�0
4���10

���E0��2
,

r else if �0ª����−1 denotes the normalized eigenvector then

����0� 	
�→0 1

�

1

�2

1

��P�0,�0��0�E0��2
.

Actually conditions �F1�–�F4� can be relaxed by asking local properties, around E0, for the
ector �.

. Model M=X2

Another choice of the operator M is the multiplication by x2 in HªL2�R�, which it is purely
bsolutely continuous with spectrum ��M�= �0,��. Its spectral measure is just

�� ��� = �0 if � � 0,

������2 + ���− ����2�

2��
if � 
 0. �

gain, we consider rank one perturbations H�=M +�������. As we mentioned in the Introduction,
n order to apply our results we must choose � as g�M� times an adequate function, where g is a
uitable cutoff function. It is easy to verify that if we just take g�x�=x2 and �0 satisfies

1� �0 is in the Schwartz’ class and �0�x�
0, for all x�R,
2� �−�

� �x2−E0�x4��0�2=−1/�0,
3� �−�

� �x2−E0�x4��0�2��−�
� �x2−E0�2x2��0�2, and

4� �−�
� �x2−E0�2x4��0�2=1.

hen, with E0 positive and ��x�=g�M��x2−E0��0�x�=x2�x2−E0��0�x� all the hypothesis �H0�–�H6�

re satisfied.
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. SOJOURN TIME AND RESONANCES DEFINED BY ANALYTIC TRANSLATION

This section is concerned with the connection between the sojourn time and the resonance
idth which can be shown for the Friedrichs model in L2�Rn�, n�1. We first recall its definition.

Let e= �e1 ,e2 , . . . ,en� be a unit vector in Rn and consider the multiplication operator by the
unction e ·x=�i=1

n eixi, i.e., the operator

�M��x� = e · x�x� . �5.1�

e denote by D its natural domain. Let now ��L2�Rn�, ���=1 and denote by P the projector on
he vector �. Then the Friedrichs operators,

H��� = M + �P, � � R �5.2�

ith domain D are well defined in L2�Rn� as self-adjoint operators. We are interested in the study
f the sojourn time associated to the dynamics defined from the family of Hamiltonians �H� ,�
R� for a dense subset of vectors of L2�Rn� �Ref. 12, p. 88�. We shall estimate the time evolution

nder H��� and the sojourn time, following a method developed by Herbst in the context of Stark
ffect see, e.g., Refs. 3 and 4. From now we use the notation HªH���.

For ��R, define the following family of unitary transformations:

" � L2�Rn�, �U���x� ª �x − �e� . �5.3�

hen, U�; ��R is a strongly continuous one-parameter unitary group and

H� ª U�HU�
−1 = M� + �P�, M� = e · x − � , �5.4�

here P� is the projector on the span generated by the vector ��ªU��.
Our general assumption is the following.
�HA�: There exists some a
0 such that the vector valued function, R��→���L2�Rn� has

n analytic extension in the strip Saª �z�C , �Im z��a�.
We denote by Da the set of vectors satisfying the assumption �HA�. This set is a dense subset

f L2�Rn�.5

We extend P�, for ��Sa by

" � L2�Rn�, P� ª ���̄,���

hich is an analytic family of rank one operators. Then �H� ;��Sa� is a self-adjoint analytic
amily of type A operators.8 Moreover, due to the Weyl theorem,14 we have that �ess�H��
�ess�H0,��=R− i Im �. Our first technical result is the following.

Lemma 5.1: Suppose that �HA� is satisfied. Then for a
 Im �
0 and 0���1, there exists a
ositive energy e such that

sup���H� − z�−1�; z � C, �Re z� � e, Im z � − Im ��1 − ��� � � . �5.5�

emma 5.1, together with the discreteness of the spectrum in �z�C , Im z
−Im �� imply that for

 Im ��0, the operators H� have only a finite number of eigenvalues localized in the compact
et �z�C ,0� Im z�−Im ��1−�� , �Re z��e�, 0���1. Some of them can be real, in that case
hey correspond to embedded eigenvalues for the self-adjoint operator H while the nonreal eigen-
alues correspond to resonances for the pair �M ,H� �see, e.g., Refs. 14 and 4�. Notice that the
pper bound on the number of eigenvalues given by the proof below diverges when a tends to 0.

Proof: Because of the unitary property for real �, it is sufficient to choose �= i�, a
�
0.
hen for z�C, Im z
−� we have

��Mi� − z�−1� � �� + Im z�−1. �5.6�
ecall that by the Aronszjan-Krein formula we get
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�Hi� − z�−1 = �Mi� − z�−1 − �
�Mi� − z�−1Pi��Mi� − z�−1

1 + ���−i�,�Mi� − z�−1�i��
. �5.7�

ence the lemma is proven if we show that the denominator on the right-handside �rhs� of �5.7� is
niformly bounded below by a strictly positive constant. Then consider the following integral:

I = 
Rn

dx
��i��x��2

��e · x − Re z�2 + �� + Im z�2�1/2 . �5.8�

or �
0 let ��ª �x�Rn , �e ·x−Re z���� and ��
c its complement, accordingly let

I� = 
��

dx
��i��x��2

��e · x − Re z�2 + �� + Im z�2�1/2

nd I�
c = I− I�. Since obviously

I� �
��i��2

�

e can choose �
0 such that I��1/4. On the other hand,

I�
c �

1

�� + Im z���
c

��i��x��2 dx

ut the rhs of this last inequality goes to zero as �Re z� goes to infinity, uniformly in Im z�
��1−��. Hence there exists a positive energy e such that for z�C, �Re z��e, Im z�−��1−��,

�
c �1/4 and then 1+ ���−i� , �Mi�−z�−1�i����1/2 which finishes to prove the lemma. �

We turn now on the dynamics defined by the operators �5.2�. Let �Ej� j=1,. . .,N be the real
igenvalues of H and �� j� j=1,. . .,N the associated orthogonal eigenprojectors. We know from Refs.
4 and 4 that for j=1, . . . ,N , �� j��� ,��Sa� are analytic families of projectors and that for
m ��0 they coincide with

� j��� = −
1

2�i


�z−Ej�=�

�H� − z�−1 dz, � 
 0 and small enough. �5.9�

ix Re �=0, Im �=�, 0���a and denote by �Zj� j=1,. . .,M the set of complex eigenvalues of Hi�

nd by ��̃ j�i��� j=1,. . .,M, the associated eigenprojectors defined through the Cauchy integral for-
ula as in �5.9�. We have the following.

Theorem 5.1: Assume �HA�. Let 0���a as above and �Da, then there exist 0���1
uch that for all t�0,

�,e−itH� =
t→�

�
j=1..N

e−itEj�,� j� + �
j=1..M

e−itZj�̃−i�,�̃ j�i��̃i�� + O,��e−���1−���t� .

�5.10�

ere ̃±i�ª �1−��i���±i� and �ª� j=1. . .N� j. If H has no eigenvalue take �=0 on the rhs of
5.10) and similarly for the complex eigenvalues Zj of Hi�.

It is worth to notice, in particular to well understand �5.18�, that due to the analyticity and

nitary properties, the coefficients ��̃−i� ,�̃ j�i��̃i��� j=1,. . .,M are � independent.
Proof: By using the spectral theorem and since H has no singular continuous spectrum �H is
rank one perturbation of the purely ac operator M, see Ref. 8�, for every �Da, we have
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�,e−itH� = �
j=1..N

e−itEj�,� j� + 
R

d� Q���e−it�. �5.11�

ere

Q��� =
1

2i�
�G̃�� + i0� − G̃�� − i0�� , �5.12�

here

G�z� ª �,�H − z�−1� . �5.13�

rom our previous discussion, it is clear that �G̃�z� , Im z
0� has a meromorphic extension in
Im z
−�� given by

G̃�z� = �̃−i�,�Hi� − z�−1̃i�� .

imilarly �G̃�z� , Im z�0� has a meromorphic extension in Im z�� with the expression

G̃�z� = �̃i�,�H−i� − z�−1̃−i�� .

oreover by using the formula

�H − z�−1 = −
1

z
−

1

z2H +
1

z2H�H − z�−1H

nd the analyticity properties evoked above, we have for 0
 Im z
−�, �Re z��e,

Q�z� =
1

2i�z2 ��H−i�̃−i�,�Hi� − z�−1Hi�̃i�� − �H̃,�H − z�−1H̃�� �5.14�

hich together with Lemma 5.1 immediately implies

�Q�z�� = Q,�
 1

�z�2� �5.15�

f 0
 Im z
−��1−��, 0���1, and �Re z� large enough. Then the integral on the rhs of �5.11�
an be computed by using the Cauchy theorem,


R

d� Q���e−it� = �
j=1..M

e−itZj �Res G̃�z��z=Zj
+ e−���1−���t

R
d� Q�� − i���1 − ����e−it�.

�5.16�

he parameter �, 0���1 is chosen such that the operator Hi� has no complex eigenvalues on the
ine ��− i��−�� ;��R�. Standard arguments show that the first term of the rhs of �5.16� gives the
econd term of the rhs of �5.10�. By using the estimate �5.15� we get that the second term of the
hs of �5.16� is O,��e−��1−��t� so that �5.16� implies the theorem. �

Theorem 5.1 provides a general framework to study sojourn times associated to the family of
perators �H��� ,�
0� given in �5.2�, for the dense set of analytic vectors associated to the one
arameter unitary group �U� ,��R�.

According to the general context of this paper we consider the following situation. Suppose
hat H��0� has only one real eigenvalue E0 for some �0. Lemma 2.1 gives a necessary and
ufficient condition for this property to take place and Corollary 2.1 asserts that E0 is simple. Let
ª ��0���0� be the orthogonal projector onto the corresponding eigenvector. We know that E0

emains a simple eigenvalue of Hi���0� for a
�
0. Denote by �Zj� j=1,. . .,M the �eventual� com-

lex eigenvalues of Hi���0�.
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We also assume that, for � near �0 and ���0, the operator H��� has only continuous
pectrum. Then, Hi���� has no real eigenvalues and therefore, by the usual perturbation theory, the
perator Hi���� has an eigenvalue E��� near E0 with Im E����0 and eigenvalues �Zj���� j=1,. . .,M

ear �Zj� j=1,. . .,M.
Using the classical formulas of regular perturbation theory, see Ref. 8, Chap. 2, one gets with

ª�−�0,

E��� =
�→0

E0 + ���0,−i�,Pi��0,i�� − �2��0,−i�,Pi�Si��E0�Pi��0,i�� + O���3�

=
�→0

E0 + ���0,P�0� − �2�P�0,S�E0 + i0�P�0� + O���3� ,

here Si��E0� denotes the reduced resolvent of Hi���0� at E0, see Ref. 8, Chap. III, Sec. 6.5 for the
efinition of the reduced resolvent. Let

	 ª 2�2 Im�P�0,S�E0 + i0�P�0� , �5.17�

e the resonance width of E���; one has Im E���=− 1
2	+O��3�. One also obtains that �Zj���

Zj�=O��� and therefore �Im Zj���� remains uniformly away from zero for � small enough.
inally the perturbation theory gives the expansion of the eigenprojector associated to E���,

��i�,�� =
�→0

��i�,�0� + O���� with ��i�,�0� = ��0,i����0,−i�� .

efine now ��
± �the sojourn time in the future, respectively, in the past�

��
±�� ª 

R±

��,e−itH��0+����2 dt .

y using Theorem 5.1 one gets integrating �5.10� over R+ �notice that here ̃=�,

��
+�� =

�→0 ��−�,��i�,��i���2

− 2 Im E���
+ O,��1� =

�→0 ��,�0��4

	
+ O,���−1� .

ince clearly ��
− =��

+ we have proven the following.
Theorem 5.2: In the conditions stated above let �Da and assume in addition that 	 defined

n (5.17) does not vanish. Then for �=�0+�,

���� =
�→0 ��−i�,��i�,��i���2

− Im E���
+ O,��1� �5.18�

=2
��,�0��4

	
+ O��−1� , �5.19�

here �0 denotes the normalized eigenvector associated to the eigenvalue E0 of H��0�.
Remark 5.1: (a) Let us illustrate this result in the one dimensional case. Again with the

ronszjan-Krein formula

S�E0 + i0� = R0�E0 + i0� + �R0�E0 + i0��0,�0�� − �R0�E0 + i0�� + �R0�E0 + i0��

o that

1

2
	 = �2 Im�P�0,S�E0 + i0�P�0� = �2���,�0��4 Im�R�E0 + i0��0,�0� = ��2���0,P�0��2��0�E0��2

=
��2���E0��2

�4���6 =
��2����E0��2

�4���6 .

0 0
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irst we see that the assumption ���E0��0 guarantees that 	�0. Then �2����0�
���0 , P�0��−2��0�E0��−2+O��� which indeed is what we found in Theorem 4.1 with a more precise
stimate here on the rate of decay of the remainder.

(b) Instead of requiring that H��� has no real eigenvalue for � near �0 we could equivalently
emand that the resonance width 	 is not zero since as we have seen above E��0+��=E0

���0 , P�0�− 1
2	+O��3�.
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We show that second-order superintegrable systems in two-dimensional and three-
dimensional Euclidean space generate both exactly solvable �ES� and quasiexactly
solvable �QES� problems in quantum mechanics via separation of variables, and
demonstrate the increased insight into the structure of such problems provided by
superintegrability. A principal advantage of our analysis using nondegenerate su-
perintegrable systems is that they are multiseparable. Most past separation of vari-
ables treatments of QES problems via partial differential equations have only in-
corporated separability, not multiseparability. Also, we propose another definition
of ES and QES. The quantum mechanical problem is called ES if the solution of
Schrödinger equation can be expressed in terms of hypergeometric functions mFn
and is QES if the Schrödinger equation admits polynomial solutions with coeffi-
cients necessarily satisfying a three-term or higher order of recurrence relations. In
three dimensions we give an example of a system that is QES in one set of sepa-
rable coordinates, but is not ES in any other separable coordinates. This example
encompasses Ushveridze’s tenth-order polynomial QES problem in one set of sepa-
rable coordinates and also leads to a fourth-order polynomial QES problem in
another separable coordinate set. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2174237�

. INTRODUCTION

It is well known that N-dimensional nonrelativistic quantum systems described by the Hamil-
onian

H = −
1

2�
i=1

N
�2

�xi
2 + V�x1,x2, . . . ,xN� �1�

re integrable if there exist N linearly independent and global differential operators I�, �
0,1 , . . . ,N−1 and I0=H, commuting with the Hamiltonian �1� and with each other

�I�,H� = 0, �I�,I j� = 0, � , j = 1,2, . . . ,N − 1. �2�

his particular class of integrable systems is called �maximally� superintegrable �this term was

ntroduced first by Rauch-Wojciechowski in Ref. 1� if it is integrable and, also, possesses 2N−1

47, 033502-1022-2488/2006/47�3�/033502/30/$23.00 © 2006 American Institute of Physics
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unctionally independent differential operators �integrals of motion�. The additional N−1 integrals

k, commute with the Hamiltonian

�Lk,H� = 0, k = 1,2, . . . ,N − 1, �3�

ut not necessarily with each other. �These definitions have obvious classical analogs for the
lassical Hamiltonian.� Three examples of this kind have been well known for a long time, viz. the
epler-Coulomb problem, the isotropic harmonic oscillator, and the nonisotropic oscillator with

ommensurable frequencies.
The existence of additional quantum integrals of motion for these systems leads to many

nteresting properties not shared by integrable systems. In classical mechanics the corresponding
dditional integrals of motion have the consequence that in the case of superintegrable systems in
wo dimensions and maximally superintegrable systems in three dimensions all finite trajectories
re found to be periodic.

One of the most important properties for many superintegrable systems �particularly second-
rder systems where there are 2N−1 functionally independent quadratic constants of the motion�
s multiseparability, i.e., the separation of variables for the Hamilton-Jacobi and Schrödinger
quations in more than one orthogonal coordinate system.2–8 �Each separable coordinate system is
ssociated with N commuting second-order constants of the motion.� For instance, the isotropic
armonic oscillator in three dimensions is separable in eight coordinate systems, namely in Car-
esian, spherical, circular polar, circular elliptic, conical, oblate spheroidal, prolate spheroidal, and
llipsoidal coordinates. The Kepler-Coulomb potential is separable in four coordinate systems,
amely in conical, spherical parabolic, and prolate spheroidal coordinates.

A systematic search for such systems in two- and three-dimensional Euclidean space was
tarted in the pioneering work of Smorodinsky and Winternitz with collaborators in Refs. 9–11 and
as continued in Ref. 12. Particularly, in Ref. 10 it was shown that in two-dimensional real
uclidean space there exist four superintegrable potentials, three of which could be considered as

he singular generalization of Kepler-Coulomb, circular oscillator and anisotropic oscillator sys-
ems. These results were extended for two- and three-dimensional spaces with constant curvature
both positive and negative�,13 and on the complex two-dimensional sphere and Euclidean
pace.14–18 The program is continuing for various conformally flat space spaces.19–30,5–7

In the last 15 years superintegrable systems have become a subject of investigation from many
oints of view: in Refs. 13, 18, 31, and 32 via the path integral approach, in Refs. 19, 21, and 22
y solving the Schrödinger equation with the help of the Niven ansatz,33 in Refs. 34–39 from the
urely algebraic approach, and generally in Ref. 40. As has been shown by a number of authors,
any superintegrable systems generate an algebraic structure which may be considered as a

onlinear extension of the Lie algebra �in classical mechanics Poisson algebras�, namely a qua-
ratic algebra. The general form of quadratic algebras, which are encountered in the case of
wo-dimensional quantum superintegrable systems has been investigated.39,5,6

Particularly useful is the exact solvability of many superintegrable systems. Essentially, this
eans that after any separation of variables each of the separated ordinary differential equations

dmits an exact solution. However, the term exact solvability is defined differently by different
uthors. In Refs. 41 and 42 �see also the recent paper �Ref. 43�� we read that “an exactly solvable
uantum mechanical system can be characterized by the fact that in its solution space one can
ndicate explicitly an infinite flag of functional linear spaces, which is preserved by the Hamil-
onian” or the “Hamiltonian is exactly solvable if its spectrum can be calculated algebraically.”
ndeed, in spite of an “intuitive” understanding of the term exactly solvable, no universal defini-
ion exists up to now.

On the other hand, there are limiting cases of well-known one-dimensional exactly solvable
ystems, namely the harmonic oscillator and Coulomb problems with � /x2 ���−1/4� interaction,
orse potential, trigonometric and modified Pöschl-Teller potentials, trigonometric and hyper-

olic Manning-Rosen potentials,44,45 and the Natanson potential.46 All these potentials have the
eneral property that the Schrödinger spectral problem has an explicit formula for the whole

nergy spectrum including the continuous spectrum, and the eigenfunctions �up to the asymptotic

                                                                                                            



a
h
M
fi
o
c
t

c
h
e
o
i
F
o

u
t

o
p
w
n
t
S
a
v
S
c
p
e
n

a
a
e
p
c
t
g
r
c
w
o
o
s

N
c
o
f
c

033502-3 Quasiexact solvability and superintegrability J. Math. Phys. 47, 033502 �2006�

                        
nsatz or gauge transformations41,42� are of hypergeometric type 1F1, 2F1. For the bound states we
ave solutions in terms of classical polynomials47 whereas for continuous states just infinite series.
oreover, hypergeometric functions describe both the continuous quantum systems as well as the

nite systems and appear also as solutions of related difference equations, for instance, the finite
ne- and two-dimensional oscillator expressed in terms of discrete variables polynomials, Kraw-
huk, Meixner, and Hahn.48 The standard definitions of exact solvability do not include many of
hese systems.

Thus, we propose another definition of exact solvability: a quantum mechanical system is
alled exactly solvable if the solutions of the Schrödinger equation can be expressed in terms of
ypergeometric functions mFn. �Basically, we are requiring that the coefficients in power series
xpansions of the solutions satisfy two-term recurrence relations, rather than recurrence relations
f higher order.� It is obvious that an N-dimensional Schrödinger equation is exactly solvable if it
s separable in some coordinate systems and each of the separated equations is exactly solvable.
urther, we say that a superintegrable system is exactly solvable if it is exactly solvable in at least
ne system of coordinates.

At first sight, such a definition of exactly solvable problems may seem too narrow, but it leads
s to distinguish two kinds of models: �1� those which it is possible to study analytically and �2�
hose which can be solved numerically via the solution of algebraic equations.

The process of separation of variables in the N-dimensional Schrödinger equation leads to
rdinary differential equations having as solutions many of the special functions of mathematical
hysics. A complication of the separated equations involves the N separation constants. In general
e have a multiparameter eigenvalue problem.49 It is possible to distinguish three different cases,
amely when there is complete, partial or nonseparability of the separation constants. It is obvious
hat in the case of complete separability �of separation constants� the initial N-dimensional
chrödinger equation splits into N independent second-order differential equations, each involving
single separation parameter. This situation occurs, for instance, in the case of separation of

ariables in the Helmholtz �free Schrödinger equation, which is also superintegrable� or the
chrödinger equation for the harmonic oscillator in Cartesian coordinates. The second “extremal”
ase, when complete nonseparability exists, is realized, in separation of variables for the same
roblems but in ellipsoidal coordinates. In the last case each separated second-order differential
quation contains simultaneously all separation constants �usually depending on dimensional or
ondimensional parameters�,3,4 for which the simultaneous quantization becomes nontrivial.

The standard method of solution of a second-order ordinary differential equation, obtained
fter separation of variables in N-dimensional Schrödinger equations, involves �after taking into
ccount the asymptotic ansatz� expansions around one of the singular points of the differential
quation �the standard power series method,50 or the so-called Hill-determinant method51�. The
roblem reduces to the solution of the recurrence relations for the expansion coefficients. If one
an express the equation in a form such that the coefficients obey a two-term recurrence relation,
hen the corresponding solution can be written in closed or analytic form or in terms of hyper-
eometric functions and we have an exactly solvable problem. Such situations occur when sepa-
ation of variables for superintegrable systems is possible in subgroup type coordinate �spherical,
ylindrical, and Cartesian�52 and often in parabolic type coordinates. This method is also powerful
hen separation of variables is possible in nonsubgroup systems of coordinates such as spheroidal
r elliptic types. In this case we arrive at high-order recurrence relations, the subsequent analysis
f which allows us to investigate the behavior of the solution and to determine if polynomial
olutions exist.

There is another general approach for solving the Schrödinger equation by exploring the
iven-type ansatz,33 based on the existence of polynomial solutions. According to this method the

omplete solution can be constructed without direct separation of variables and computed in terms
f the zeros of the corresponding polynomial. This method has been used in Refs. 19, 21, and 22
or the investigation of two- and three-dimensional superintegrable systems in Euclidean and

urved spaces. We illustrate the difference between systems that are merely separable and those
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hat are superintegrable. Consider the problem of motion in the plane for a charged particle with
wo fixed Coulomb centers with coordinates �±D /2 ,0� �the so-called plane two center problem�

V�x,y� = −
�1

�y2 + �x + D/2�2
−

�2

�y2 + �x − D/2�2
. �4�

his system is not superintegrable and separation of variables is possible only in two-dimensional
lliptic coordinates �see Eq. �70��. Upon the substitution ��� ,� ;D2�=X�� ;D2�Y�� ;D2� and the
eparation constant A�D�, the Schrödinger equation splits into a system of two ordinary differen-
ial equations

d2X

d�2 + �D2E

2
cosh2 � + D��1 + �2�cosh � + A�D��X = 0, �5�

d2Y

d�2 − �D2E

2
cos2 � + D��1 − �2�cos � + A�D��Y = 0. �6�

oth Eqs. �5� and �6� belong to the class of nonexactly solvable problems. In general polynomial
olutions do not exist even for the case of discrete spectrum E�0 �to be completely correct let us
ote that polynomial solutions exist only for special values of parameters �1 ,�2, and R�, and each
f the wave functions X�� ;D2� and Y�� ;D2� is expressed as an infinite series with a three-term
ecurrence relation.

Let us now set �2=0. Then the potential �4� transforms to the ordinary two-dimensional �2D�
ydrogen atom problem, which is well known as a superintegrable system53–55 with dynamical
ymmetry group SO�3�, and admits separation of variables in three systems of coordinates: polar,
arabolic, and elliptic. In this case we can see that the separation equations �5� and �6�, namely

d2X

d�2 + �D2E

2
cosh2 � + D�1 cosh � + A�D��X = 0, �7�

d2Y

d�2 − �D2E

2
cos2 � + D�1 cos � + A�D��Y = 0 �8�

ransform into each other by the change �↔ i�. Thus separation of variables in elliptic coordinates
or the 2D hydrogen atom gives two functionally identical one-dimensional Schrödinger type
quations with two parameters: coupling constant E and energy A�D� �correspondingly energy and
eparation constant for 2D�, but one defined on the real and the other on the imaginary axis. In
ther words, instead of the systems of differential equations �7� and �8�, the problem reduces to
olving only one of the equations �7� or �8� for which the “domain of definition” is the complex
lane. The requirement of finiteness for the wave functions in the complex plane permits only
olynomial solutions �see for details Ref. 56�. As a result we obtain simultaneous quantization of
he energy spectrum

En = −
�1

2

2�n + 1/2�2 , n = 0,1,2, . . . �9�

nd the elliptic separation constant As�D� where s=0,1 ,2 , . . . ,n �as a solution of an nth-degree
lgebraic equation�. The polynomial solution is defined by a finite series with three-term recur-
ence relations for the coefficients. They cannot be considered as exactly solvable and can be
nvestigated only numerically. A similar situation occurs, for instance, in the case of the two-center
roblem in three-dimensional Euclidean space �the so-called prolate spheroidal radial and angular
oulomb wave functions�57 and three-dimensional sphere �Heun wave functions�,58 where after
liminating one of the Coulomb centers the problems reduce to superintegrable systems admitting

nly polynomial solutions. These �and many other� examples suggest a deep connection of the
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otion of superintegrability and existence of polynomial solutions of the corresponding
chrödinger equation.

We note that each of equations �7� or �8� has the form of a one-dimensional Schrödinger
quation with the parameter E and eigenvalue A�D�, and could be separately considered in the
egions �� �0,2�� or �� �0, 	 �, correspondingly. Then for arbitrary values of constant E �for
xample when En=0 �n→ 	 � the equations �7� and �8� transform to periodic and modified
athieu equations, which are nonexactly solvable� the solutions of Eqs. �7� or �8� expressed via

nfinite series and only on the “energy surface” of the 2D hydrogen atom �9�, split into polynomial
nd nonpolynomial sectors �each of these sectors is noncomplete� and for fixed number n, only
ome of the eigenvalues As�D� �s=0,1 ,2 , . . . ,n� can be calculated from an nth-degree algebraic
quation. We can say that Eqs. �7� and �8� “remember” their polynomial solutions. It is obvious
hat the spectrum of As�D�, �s=0,1 ,2 . . . ,n� and occurrence of polynomial solutions of each of the
quations �7� and �8� coincides with the eigenvalues of separation constants and the wave function
fter the reduction to one of the regions �� �0,2�� or �� �0, 	 �� for the 2D hydrogen atom.

These phenomena have been intensively discussed in the literature in the late 1980s and called
uasiexact solvability �this term was first introduced by Turbiner and Ushveridze in Ref. 59� and
odels of this type called quasiexactly solvable systems60–62 �see also Ref. 63 and references

herein�. The crucial example that stimulated the investigation of quasiexactly solvable systems is
he Hamiltonian �1� with anharmonic potential

V�x� =
1

2

2x6 + 2�
2x4 + �2�2
2 − 2�
 − �x2 + 2

�� − 1
4��� − 3

4�
x2 , �10�

here 
, �, ��1/2 and  are constants. As noticed by many authors,64–66 this system admits
olynomial solutions only for special values of constant =
�2n+1� �n=0,1 ,2 . . . �

��x� 	 x2�−1/2e−�
/4�x4−�
x2
Pn�x2� . �11�

here are different approaches to the investigation of quasiexactly solvable systems. In the alge-
raic approach formulated by Turbiner in Ref. 60 quasiexact solvability is explained in terms of a
hidden symmetry algebra” sl�2,R�. �This is not a hidden dynamical symmetry in the usual sense
ecause the Hamiltonian �12� belongs to the enveloping algebra but is not a Casimir operator.�
ore precisely this means the following: The one-dimensional Hamiltonian �1� after suitable

hanges of variable z=��x� and “gauge transformation” H=e−��z�He��z� can be written in the form

H = �
a,b=0,±

CabJaJb + �
a=0,±

CaJa, �12�

here the first-order differential operators 
J± ,J0� satisfy the commutation relations for sl�2,R�.60

The above mentioned analysis for the 2D hydrogen atom shows that, despite the elegance of
he algebraic approach, the phenomena of quasiexactly solvability has deeper roots than can be
xplained via the “one-dimensional” model �12�. Other examples are the hydrogen atom and
scillator problems on two- and three-dimensional spheres19,67 and two-dimensional
yperboloids,22 which generate not only hyperbolic and trigonometric but elliptic quasiexactly
olvable systems �see also Refs. 68, 56, 69, and 70�. We should also mention Lamé polynomials.
hey come from separation of variables for the Helmholtz �also superintegrable!� or Schrödinger
quation in elliptic coordinates on the two-dimensional sphere. As also determined in Ref. 37
without showing the mechanism of this phenomena� some of the quasiexactly solvable systems
an be obtained through dimensional reduction from two- and three-dimensional superintegrable
odels with quadratic invariants �second-order superintegrability�.

A second approach, known as analytic, was formulated by Ushveridze �see, for example, Refs.
1–63� and represents a one-dimensional reduction of the Niven-Stieltjes method for solving
ultiparameter spectral problems such as the generalized Lamé equation �or ellipsoidal

quation�.33 The solution in this method is determined by the zeros of polynomials Pn�x2�. Then

he wave function �11� can be rewritten in the form
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��x� 	 x2�−1/2e−�
/4�x4−�
x2
�
i=0

n

�x2 − �i� , �13�

here the numbers ��1 ,�2 , . . . ,�n� satisfy a system of n algebraic equations �see Sec. II C�. Ac-
ording to the oscillation theorem, the number of zeros in the physical interval �i� �0, 	 � enu-
erates the ground state and first n excitations, described in terms of all zeros �complete solutions

f the systems of algebraic equations and including nonphysical section �i� �−	 ,0�� as

E = 4���
 + �
i=1

n
1

�i
� . �14�

wo natural questions occur in this approach: what is the physical meaning of the negative zeros

i, and why in the correct formula for the energy spectrum �14� do n zeros of the polynomial
Pn�x2� appear?

With this paper we begin an investigation of second-order superintegrable systems on constant
urvature spaces �Euclidean, sphere, hyperboloid and pseudo-Euclidean� based on the superinte-
rability and direct solutions of the Schrödinger equation. We pay special attention to nonsub-
roup type coordinates and prove the existence of polynomial solutions for several of these
ystems. We demonstrate that quasiexact solvability is directly related with multiseparability of
econd-order superintegrable systems, on one hand, and with the presence of polynomial solutions
or these systems on the other.

The first part of this paper is devoted to two �singular anisotropic and singular circular
scillators� from the four possible superintegrable systems in two-dimensional real Euclidean
pace �see, for example, Ref. 19�. The other two systems may be transformed �only for the discrete
pectrum� to the singular circular oscillator �for V3� or ordinary shifted oscillator �for V4� systems
y the help of the Levi-Civita mapping,71 so are less fundamental for our purposes. In the second
art of the paper we give some examples of superintegrable systems in three dimensions that
einforce our definitions of exact and quasiexact solvability. In particular we exhibit a quasiexactly
olvable superintegrable system which is not at the same time exactly solvable in any separable set
f coordinates. In one set of separable coordinates this provides deeper insight into an example of
shveridze,63 p. 155 �the tenth-order polynomial QES problem� and also leads to a fourth-order
olynomial QES problem in another separable coordinate set. In addition we indicate precisely
ow the eigenvalues of the symmetry operators which describe separation can be calculated from
determinant condition. For these examples we will work with complex superintegrable systems

nd not address the relatively simple issue of determining the distinct real restrictions of the
omplex spaces. These examples greatly clarify the concepts and show how the extension to N
imensions can be achieved.

I. THE SINGULAR ANISOTROPIC OSCILLATOR

Let us first consider the potential �k2�0�

V1�x,y� =
1

2

2�4x2 + y2� + k1x +

k2
2 − 1

4

2y2 �15�

he singular anisotropic oscillator. The Schrödinger equation has the form

� �2

�x2 +
�2

�y2� + �2E − 
2�4x2 + y2� − 2k1x −
k2

2 − 1
4

y2 �� = 0. �16�

or k2�1/2 the singular term at y=0 is repulsive and the motion takes place only on one of the
alf planes �−	 �x� 	 ,y�0� or �−	 �x� 	 ,y�0�, whereas for 0�k2�1/2 in whole plane

x ,y�. The Schrödinger equation separates in two systems: Cartesian and parabolic coordinates.
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. Cartesian bases

Separation of variables for Eq. �16� in Cartesian coordinates leads to the two independent
ne-dimensional Schrödinger equations

d2�1

dx2 + �21 − 4
2x2 − 2k1x��1 = 0, �17�

d2�2

dy2 + �22 − 
2y2 −
k2

2 − 1
4

y2 �2 = 0, �18�

here

��x,y ;k1, ± k2� = �1�x;k1��2�y ; ± k2� �19�

nd 1, 2 are Cartesian separation constants with 1+2=E.
Equation �18� represents the well-known linear singular oscillator system �see for instance

efs. 72 and 73 and Refs. 10, 20, and 74�. It is an exactly solvable problem and has been used in
any applications, for example, as a model in N-body problems,75 or fractional statistics and

nyons.76,77 The complete set of orthonormalized eigenfunctions, �on 1/2� in the interval 0�y
	 of Eq. �18�, can be expressed in terms of finite confluent hypergeometric series or Laguerre

olynomials

�n2
�y ; ± k2� =� 2
�1±k2�n2!

��n2 ± k2 + 1�
y1/2±k2e−1/2
y2

Ln2

±k2�
y2� , �20�

here 2=
�2n2+1±k2�. We assume that the positive sign at the k2 must be taken if k2�
1
2 and

oth the positive and the negative sign must be taken if 0�k2�
1
2 , so that the polynomials have

nite norm. Let us also note that unlike the potential �15� the wave function is not invariant under
he replacement k2→−k2 and splits into two families of solutions that transform to one another
nder this change.

The second equation �17� easily transforms to the ordinary one-dimensional oscillator prob-
em. In terms of Hermite polynomials the orthonormal solutions �in region −	 �x�	� are

�n1
�x;k1� = �2


�
1/4 e−
z2

�2n1n1!
Hn1

��2
z�, z = x +
k1

4
2 , �21�

here 1=
�2n1+1�− �k1
2 /8
2�. Thus the complete energy spectrum is

E = 1 + 2 = 
�2n + 2 ± k2� −
k1

2

8
2 , n = n1 + n2 = 0,1,2, . . . �22�

nd the degree of degeneracy for fixed principal quantum number n is �n+1�. Finally note that the
eparation of variables in Cartesian coordinates leads to two exactly solvable one-dimensional
chrödinger equations and the complete wave function may be constructed with the help of
ormulas �20�, �21�, and �19�.

. Parabolic bases

. Separation of variables

Parabolic coordinates � and � are connected with the Cartesian x and y by

x = 1
2 ��2 − �2�, y = ��, � � R, � � 0. �23�
he Laplacian and the two-dimensional volume element are given by
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� =
�2

�x2 +
�2

�y2 =
1

�2 + �2� �2

��2 +
�2

��2, dv = dx dy = ��2 + �2�d� d� . �24�

he Schrödinger equation in parabolic coordinates �23� is

1

�2 + �2� �2�

��2 +
�2�

��2  + �2E − 
2��4 − �2�2 + �4� − k1��2 − �2� −
k2

2 − 1
4

�2�2 �� = 0. �25�

pon substituting

���,�� = X���Y���

nd introducing the parabolic separation constant , the equation �25� splits into two ordinary
ifferential equations,

d2X

d�2 + �2E�2 − 
2�6 − k1�4 −
k2

2 − 1
4

�2 X = − X , �26�

d2Y

d�2 + �2E�2 − 
2�6 + k1�4 −
k2

2 − 1
4

�2 Y = + Y . �27�

quations �26� and �27� are transformed into one another by change �↔ i�. We have

���,�;E,� = C�E,�Z��;E,�Z�i�;E,� , �28�

here C�E ,� is the normalization constant determined by the condition

�
0

	

d��
−	

	

d���2 + �2�����,�;E,��2 = 1 �29�

nd the function Z�� ;E ,� is a solution of the equation

�−
d2

d�2 + �
2�6 + k1�4 − 2E�2 +
k2

2 − 1
4

�2 �Z��;E,� = Z��;E,� . �30�

hus, at �� �−	 , 	 � we have Eq. �26� and at �� �0, i	 �—Eq. �27�. Note that in the complex �
omain the “physical” region is just the two lines Im �=0 and Re �=0, Im ��0. Our task is to
nd the solutions of Eq. �30� that are regular and decreasing as �→ ±	 and �→ i	.

. Recurrence relations

Consider now the equation �30�. To solve it we make the substitution

Z��;E,� = exp�−



4
�4 −

k1

4

�2�

1
2

±k2���;E,� , �31�

nd obtain the differential equation

d2�

d�2 + �2� 1
2 ± k2�
�

− 2
���2 +
k1

2
2� d�

d�
+ �2Ẽ�2 + ̃�� = 0, �32�

here

Ẽ = E +
k1

2

8
2 − 
�2 ± k2�, ̃ =  −
k1



�1 ± k2� . �33�

2
assing to a new variable z=� in Eq. �32�, we have
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z
d2�

dz2 + ��1 ± k2� − 
z�z +
k1

2
2�d�

dz
+ �1

2
Ẽz +

1

4
̃�� = 0. �34�

e express the wave function ��z� in the form

��z;E,� = �
s=0

	

As�E,�zs. �35�

he substitution �35� in Eq. �34� leads to the following three-term recurrence relation for the
xpansion coefficients As�As�E ,�,

�s + 1��s + 1 ± k2�As+1 +
1

4
� −

k1



�2s + 1 ± k2��As +

1

2
�E +

k1

8
2 − 
�2s ± k2��As−1 = 0,

�36�

ith the initial conditions A−1=0 and A0=1.
As shown in the Appendix, the asymptotic behavior of the expansion coefficients As

As�E ,� for large s is As���±
�
s /s!, depending on whether s is even or odd, and

��z� � �
��±��
z�s

�s!
. �37�

hen we have for z�0 �the case of Eq. �26��,

�
��±��
z�s

�s!
��� �±�
z2�s

s!
= �± cosh�


2
z2 + �� sinh�


2
z2 . �38�

his function does not belong to the Hilbert space. If k1�0 then we must make the replacements

s→−bs and �s→−�s. This has the effect of replacing z by −z in �37�. Now the asymptotic
olution is oscillatory. However, for z�0 �the case of Eq. �27�� the solution does not belong to the
ilbert space. The solution we have found is the minimal solution of the three-term recurrence

elations. There is a linearly independent solution, but the coefficients grow more rapidly than the
inimal solution coefficients.

. Energy spectrum and separation constant

The function Z��� cannot converge simultaneously at large � for real and imaginary � and
herefore the series �35� should be truncated in order to obtain convergence. The condition for
eries �35� to be truncated results in the energy spectrum �22� where now the coefficients As

As
nq�k1 , ±k2� satisfy the relation

�s + 1��s + 1 ± k2�As+1 + �sAs + 
�n + 1 − s�As−1 = 0, �s =


4
−

k1

4

�2s + 1 ± k2� . �39�

he three-term recurrence relations �39� represent a homogeneous system of n+1 algebraic equa-
ions for n+1 coefficients 
A0 ,A1 ,A2 , . . . ,An�. The requirement for the existence of a nontrivial
olution leads to a vanishing of the determinant

Dn�� = �
�0 1 ± k2


n �1 2�2 ± k2�
2
 �n−1 n�n ± k2�


 �n

� = 0. �40�

he roots of the corresponding algebraic equation give us the �n+1� eigenvalues of the parabolic

eparation constant n�k1 , ±k2�. It is known that all roots for such determinants are real and
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istinct.78 Thus all values of the separation constant are real and can be enumerated with the help
f the integer q, namely the values are n�k1 , ±k2�→nq�k1 , ±k2�, where 0�q�n. The degen-
racy for the n-energy state, as in the Cartesian case, equals n+1.

Note that Eq. �40� is invariant under the simultaneous transformation k1→−k1 and →−.
hus if one of the =n�k1 , ±k2� is a root of Eq. �40�, then =−n�−k1 , ±k2� is also a root of the
ame equation. We see that for the odd energy state �n-odd� the range of nq�k1 , ±k2� splits into
wo subsets nq

�1� and nq
�2� connected by the relation nq

�1��k1 , ±k2�↔−
nq�
�2� �−k1 , ±k2�. For n-even,

here exists the additional root nq�k1 , ±k2�=−nq�−k1 , ±k2�, which equals zero when k1=0.

. Wave functions

We will term the polynomial solutions of Eq. �34�, or Eq. �32�, as Mknq�z ;k1 , ±k2�, and the
unction �31� as Tanq�z ;k1 , ±k2�. �The notation Ta is in memory of Professor V. Ter-Antonyan
1942–2003�.� Then the physical admissible solutions of Eq. �34� have the form

Mknq�z;k1, ± k2� � ��z;E,� = �
s=0

n

As
nq�k1, ± k2�zs, �41�

nd the corresponding solution of Eq. �31� is

Tanq��;k1, ± k2� = exp�−



4
�4 −

k1

4

�2�

1
2

±k2Mknq��2;k1, ± k2� . �42�

bserve that parabolic wave functions �and also Cartesian wave functions� split into two classes
nd transform to each other via k2→−k2. In the case k2=0 �when the centrifugal term disappears�,
he solution �42� becomes an even and odd parity wave function under the exchange �→−�.

It is known that there exists a direct connection between the quantum numbers q and numbers
f zeros of the polynomial �41� and, therefore, the eigenvalues of the separation constant

nq�k1 , ±k2� may be ordered by the numbers of nodes of the wave function Tanq�� ;k1 , ±k2�.
ndeed we will see that these are orthogonal polynomials, hence,50 all the n zeros of the

Mknq�z ;k1 , ±k2� are situated on the real axis −	 �z�	, and all zeros have multiplicity one.
ssume that the separation constants nq�k1 , ±k2� are enumerated in ascending order, i.e.,

n0�k1, ± k2� � n1�k1, ± k2� � ¯ � n,n−1�k1, ± k2� � n,n�k1, ± k2� . �43�

hen according to the oscillation theorem,79 the quantum number q also enumerates the zeros of
olynomials Mknq�z ;k1 , ±k2� in the region z�0, or the real axis of �. Let us now introduce two
uantum numbers q1 and q2, which determine the zeros of polynomials Mknq�z ;k1 , ±k2� for z
0 and z�0, correspondingly. Then q1+q2=n, and

nq1
�k1, ± k2� = − nq2

�− k1, ± k2� . �44�

or �=� the function �42� gives the solution of Eq. �26�, and for �= i� the solution of Eq. �27�.
hus the parabolic wave function �28� can be written in the following way:

�nq1q2
��,�;k1, ± k2� = Cnq1q2

�k1, ± k2�Tanq1
��;k1, ± k2�Tanq2

�i�;k1, ± k2� . �45�

. Orthogonality relations and normalization constant

The wave functions �45� as eigenfunctions of Hamiltonians are orthogonal for quantum num-

er n, or for n�n�,
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�
0

	

d��
−	

	

d���2 + �2��n�q1q2

* ��,�;k1, ± k2��nq1q2

* ��,�;k1, ± k2� = 0. �46�

ecause the energy spectrum is degenerate there exist additional orthogonality relations for quan-
um number q. Using the equations �26� and �27� it is easy to prove that for q1�q1� and q2�q2�,

�
−	

	

d� Tanq1�
* ��;k1, ± k2�Tanq1

��;k1, ± k2� = �
0

	

d� Tanq2�
* �i�;k1, ± k2�Tanq2

�i�;k1, ± k2� = 0.

�47�

hus we have for q�q�,

�
0

	

d��
−	

	

d���2 + �2��nq1�q2�
* ��,�;k1, ± k2��nq1q2

��,�;k1, ± k2� = 0. �48�

et us now calculate the normalization constant Cnq1q2
�k1 , ±k2�. From the explicit form of the

ave function �nq1q2

* �� ,� ;k1 , ±k2� and the normalization condition �29�, it follows that

1

8
�Cnq1q2

�k1, ± k2��2 �
s,s�,t,t�=0

n

�− 1�t+t�As
n�k1, ± k2�As�

n �k1, ± k2�At
n�k1, ± k2�At�

n �k1, ± k2�
Ft,t�
−1/4Fs,s�

+1/4

+ Ft,t�
+1/4Fs,s�

−1/4� = 1, �49�

here

Ft,t�
±1/4 = �

m=0

	 ��m + t + t� ± k2 + 1

2
+

1

4
±

1

4


m!
� k1

2

m

. �50�

. Niven approach

Let us express solutions of the Schrödinger equation �16� in the following form:19

��x,y� = e−
�x + �k1/4
2��2− 1
2


y2
y

1
2

±k2��x,y� . �51�

rom Eqs. �20�, �21�, and �31� follows that the function ��x ,y� is a polynomial �product of two
olynomials� in terms of the variables �x ,y2� in Cartesian coordinates and ��2 ,�2� for parabolic
nes. It satisfies the equation

R��x,y� = − 2E��x,y� , �52�

here the operator R is

R =
�2

�x2 +
�2

�y2 + � �1 ± 2k2�
y

− 2
y� �

�y
− 4
�x +

k1

4
2� �

�x
− 
�2 ± k2� +

k1
2

8
2 . �53�

aking into account that

Mknq�z;k1, ± k2� = �
s=0

n

As
nq�k1, ± k2�zs = ��=1

n �z − ��� , �54�

here ��, �=1,2 , . . . ,n are zeros of polynomials Mknq�z� on the real axis −	 �z�	, and that in

arabolic coordinates
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y2

�
+ 2x − � =

��2 − ����2 + ��
�

, �55�

e can choose a solution of Eq. �52� in the form

��x,y� = Mknq1
��2;k1, ± k2�Mknq2

�− �2;k1, ± k2� � ��=1
n � y2

��

+ 2x − �� . �56�

hen from �52� it follows that the zeros �� must satisfy the systems of n algebraic equations

�
m��

n
2

�� − �m
+

�1 ± k2�
��

− 
�� =
k1

2

, � = 1,2, . . . ,n , �57�

nd for the energy spectrum we again have a formula �22�. The system of algebraic equations �57�
ontains n sets of solutions �zeros� ��1

�q� ,�2
�q� , . . . ,�n

�q��, q=1,2 , . . . ,n and all zeros are real. The
ositive zeros ���0 define the nodes of wave functions for Eq. �26�, whereas negative zeros

��0 define the nodes of wave functions for Eq. �27�.
The eigenvalues of the parabolic separation constant can be calculated in the same way via the

perator equation ���x ,y�=��x ,y� �see for details Ref. 19�. A more elegant way is to use
irectly the differential equation �34�.63 We first rewrite Eq. �34� in the form

�4z
d2

dz2 + 4��1 ± k2� − 
z�z +
k1

2
2� d

dz
+ �4n
z −

k1



�1 ± k2���Mknq�z;k1, ± k2�

= Mknq�z;k1, ± k2� . �58�

etting the wave function Mknq�z ;k1 , ±k2� in the form of �54�, we arrive at the following result:

nq�k1, ± k2� = 4�1 ± k2�� k1

4

+ �

�=1

n
1

��
�q�� , �59�

in case of n=0 the sum must be eliminated� where the quantum number q=1,2 , . . . ,n labels the
igenvalue of the parabolic separation constant.

II. THE SINGULAR CIRCULAR OSCILLATOR

The potential of the singular circular oscillator is �k1 ,k2�0�

V2�x,y� =
1

2

2�x2 + y2� +

1

2
� k1

2 −
1

4

x2 +

k2
2 −

1

4

y2 � . �60�

he corresponding Schrödinger equation separates in three different orthogonal coordinate sys-
ems: Cartesian, polar, and elliptical coordinates.

. Cartesian bases

From the asymptotic ansatz,

��x,y� = x
1
2

±k1y
1
2

±k2 exp�− 
�x2 + y2��X�x�X�y� �61�
e obtain two independent and identical separation equations
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� �2

�zi
2 + �− 2
 +

1 ± 2ki

xi
2 x

�

�xi
− �1 ± 2ki�
�X�xi� = 2iX�xi�, i = 1,2, �62�

here x1=x, x2=y, and 1+2=−E. As in the case of the singular anisotropic oscillator we assume
hat the positive sign of ki must be taken if ki�

1
2 and both the positive and the negative sign must

e taken if 0�ki�
1
2 .

The last equation is just that for confluent hypergeometric functions. The quantization rule
ives

i = − 
�2ni ± ki + 1�, ni = 0,1,2, . . . �63�

nd the solution of Eq. �62� in terms of Laguerre polynomials is X�xi�=Lni

±ki�
xi
2�. Thus the

orresponding set of orthonormal eigenfunctions which are normalized in quadrant x�0,y�0 �on
/4� is

�n1,n2

�±k1,±k2��x,y� = Cn1,n2

�±k1,±k2��x�
1
2

±k1�y�
1
2

±k2e−�
/2��x2+y2�Ln1

±k1�
x2�Ln2

±k2�
y2� , �64�

here

Cn1,n2

�±k1,±k2� =� 
2±k1±k2n1 ! n2!

��n1 ± k1 + 1���n2 ± k2 + 1�
. �65�

rom �63� we have

En = 
�2n + 2 ± k1 ± k2� , �66�

here n=n1+n2=0 ,1 ,2 , . . . is the principal quantum number and the degree of degeneracy is n
1.

. Polar bases

Separation of variables in the Schrödinger equation for the potential �61� in polar coordinates

x = r cos �, y = r sin �, 0 � r � 	 , 0 � � � 2� �67�

ives us the orthonormal solution in polynomial form

�nr,m
�±k1,±k2��r,�� =� 2
nr!

��nr + 2m ± k1 ± k2 + 2�
��
r��2m±k1±k2+1�e−
r2/2Lnr

2q±k1±k2+1�
r2��m
�±k1,±k2����,

nr,m = 0,1,2, . . . , �68�

�m
�±k1,±k2���� =��2m ± k1 ± k2 + 1�q ! ��q ± k1 ± k2 + 1�

2��m ± k2 + 1���m ± k1 + 1�
�cos ��1/2±k1�sin ��1/2±k2Pm

�±k2,±k1�

��cos 2�� , �69�

here Pm
��,���x� is a Jacobi polynomial and E=
�2n±k1±k2+2�, with n=nr+m and with the same

egree of degeneracy �n+1�.
Thus the quantum system �60� is exactly solvable in the Cartesian and polar systems of

oordinates.

. Elliptic bases

. Separation of variables
Elliptic coordinates �� ,�� connect with Cartesian ones by �0��� 	 ,0���2��
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x =
D

2
cosh � cos �, y =

D

2
sinh � sin � , �70�

here D is the interfocal distance. The Laplacian and volume element are

� =
8

D2�cosh 2� − cos 2��� �2

��2 +
�2

��2, dV =
D2

8
�cosh 2� − cos 2��d� d� . �71�

he Schrödinger equation with �60� can be rewritten as

�2�

��2 +
�2�

��2 + �D2E

4
�cosh 2� − cos 2�� −

D4
2

64
�cosh2 2� − cos2 2�� − ��k1

2 − 1
4�

cos2 �
+

�k2
2 − 1

4�
sin2 �

�
− ��k1

2 − 1
4�

sinh2 �
−

�k2
2 − 1

4�
cosh2 �

��� = 0, �72�

nd after the separation ansatz

���,�;D2� = X��;D2�Y��;D2� �73�

ransforms to two ordinary differential equations

d2X

d�2 + �D2E

4
cosh 2� −

D4
2

64
cosh2 2� −

k2
2 − 1

4

sinh2 �
+

k1
2 − 1

4

cosh2 �
�X = − �D2�X , �74�

d2Y

d�2 − �D2E

4
cos 2� −

D4
2

64
cos2 2� +

k1
2 − 1

4

cos2 �
+

k2
2 − 1

4

sin2 �
�Y = + �D2�Y , �75�

here  is the elliptic separation constant. These equations can be written in the unit form

d2Z���
d�2 + �D4
2

64
cos2 2� −

D2E

4
cos 2� −

k1
2 − 1

4

cos2 �
−

k2
2 − 1

4

sin2 �
�Z��� = �D2�Z��� , �76�

here at �� �0,2�� we have the equation �75� but at �� �0, i	 �—Eq. �74�. In other words, in the
omplex � plane the “physical regions” are only the shaded domains on the two lines Im �=0 and
e �=0.

For k1,2�
1
2 the centrifugal barrier is repulsive and motion takes place in only one of the

uadrants, as �� �0,� /2�, whereas for 0�k1,2�
1
2 it takes place in the whole region �� �0,2��.

or the particular case k1=k2= 1
2 the equation �76� transforms to the problem of the ordinary

wo-dimensional oscillator and has been investigated in detail in Ref. 69. In this paper we have
hown that the solution of Eq. �76� �for k1=k2=1/2� is described by Ince polynomials.80

In the case where k1 and k2 are integers, Eqs. �74� and �75� coincide with those that have been
ound via separation of variables in the Schrödinger equation for the four-dimensional isotropic
scillator in spheroidal coordinates.70

. Recurrence relations

Let us now consider the equation �76�. First, introducing the function W�� ;D2� according to

Z��;D2� = exp�−
D2


16
cos 2��W��;D2� , �77�
e have the equation
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d2W

d�2 +
D2


4
sin 2�

dW

d�
+ �D2


4
cos 2� −

D2E

2
cos2 � −

k1
2 − 1

4

cos2 �
−

k2
2 − 1

4

sin2 �
− �W = 0. �78�

or k1=k2=1/2 this is the Ince equation.50

Next the substitution

W��;D2� = �sin ��
1
2

±k2�cos ��
1
2

±k1U��;D2� �79�

ields the equation

d2U

d�2 + ��1 ± 2k2�cot � − �1 ± 2k1�tan � +
D2


4
sin 2��dU

d�
+ �p cos2 � − ̃�U = 0, �80�

here

p =
D2

2
�
�2 ± k1 ± k2� − E�, ̃ =  +

D2


2
�1 ± k1� + �1 ± k1 ± k2�2 −

D2E

4
−

D4
2

64
. �81�

assing to a new variable t=cos2 � we find

t�1 − t�
d2U

dt2 + ��1 ± k1��1 − t� − �1 ± k2�t +
D2


4
t�t − 1��dU

dt
+

1

4
�pt − ̃�U = 0. �82�

inally, looking for the solution of the last equation in the form

U�t;D2� = �
s=0

	

As�D2�ts, �83�

or coefficients As�D2� we have the three-term recurrence relation

�s + 1��s + 1 ± k1�As+1 − �s�s + 1 ± k1 ± k2� +
D2


4
s +

̃

4
�As +

1

4
�p + D2
�s − 1��As−1 = 0,

�84�

ith A−1=0 and initial condition A0=1.

. Energy spectrum and separation constant

In analogy with our asymptotic solution of the recurrence relation for the singular anisotropic
perator in the parabolic basis we use continued fractions. For the minimal solution of the recur-
ence relations we find for s−1�1,

As+1

As
�

D2


4s
�1 + O� 1

�s
 . �85�

hus we have

As �
�D2


4
s

s!
,

nd
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U�cos �� � �
�D2


4
k

k!
cos2k � � exp�D2


8
cos 2� . �86�

herefore we see that for this case the function Z�cos � ;D2� as �→ i	 is not normalizable. There
s a linearly independent solution of the recurrence relations, but the coefficients grow even faster.
ence it follows that the series �83� should be truncated. The condition that the series �83� be

runcated gives us well-known formulas for the energy spectrum �66� and reduces the solution to
olynomials,

Un
�±k1,±k2��t;D2� = �

s=0

n

As
�±k1,±k2��D2�ts, �87�

here now the coefficients As�As
�±k1,±k2��D2� satisfy the following three-term recurrent relations:

�s + 1��s + 1 ± k1�As+1 + �sAs −
D2


4
�n − s + 1�As−1 = 0, s = 0,1, . . . ,n �88�

ith

�s = −
1

4
��2s + 1 ± k1 ± k2�2 +

D2


2
�2s − n + 4 ± 4k1� −

D2


4
�2 ± k1 ± k2� −

D4
2

64
+ �D2��

�89�

nd A−1=An+1=0.
The recurrence relations �88� become a system of �n+1� linear homogeneous equations for the

oefficients As. Equating the corresponding determinant to zero,

Dn�� = �
�0 �1 ± k1�

−
D2


4
n �1 2�2 ± k1�

−
D2


2
�n−1 n�n ± k1�

−
D2


4
�n

� = 0 �90�

eads to the algebraic equation of degree �n+1� which determines the eigenvalues of the elliptic
eparation constant nq

�±k1,±k2��D2�. The quantum number q=0,1 ,2 , . . . ,n labels the �n+1� roots of
q. �90� and therefore the degree of degeneracy, as in the polar and Cartesian cases, for the nth
nergy state is n+1. It is also known that the corresponding enumeration of the quantum number
defines the numbers of zeros of the polynomial �87�, which has exactly n zeros situated in the

pen interval 0� t�	, and therefore, the elliptic separation constant nq
�±k1,±k2��D2� may be ordered

lso by the numbers of the nodes of the eigenfunction of Eq. �76�.

. Wave functions

The condition of finiteness of the solution of Eq. �78� allows the following polynomials:

Inq
�±k1,±k2���;D2� = �sin ��

1
2

±k2�cos ��
1
2

±k1�
s=0

n

As
�±k1,±k2��D2��cos ��2s, �91�

hile the corresponding solution of Eq. �76� is

�±k1,±k2� 2 −�D2
/16�cos 2� �±k1,±k2� 2
Znq ��;D � = e Inq ��;D � . �92�
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e will denote the polynomials Inq
�±k1,±k2��� ;D2� as associated Ince polynomials. In the case of

1=k2=1/2 these polynomials transform to the four types of ordinary Ince polynomials, which are
ven or odd with respect to the changes �→−� and �→�+�.80,69

At �=� the wave functions �92� give us the solution of the angular equation �75�, and for
= i� the solution of the radial equation �74�. For each of the wave functions, radial or angular,

here corresponds a definite number of zeros which can be represented by two quantum numbers

1 and q2, obeying the condition q1+q2=n. Then the complete elliptic wave function �73� may be
ritten as

�nq1q2

�±k1,±k2���,�;D2� = Cnq1q2
�±k1, ± k2;D2�Znq1

�±k1,±k2���;D2�Znq2

�±k1,±k2��i�;D2� , �93�

here Cnq1q2
�±k1 , ±k2 ;D2� is the normalization constant. It could be calculated from the condition

D2

4
�

0

	

d��
0

�/2

d��cosh2 � − cos2 ���nq1q2

�±k1,±k2�*��,�;D2��nq1q2

�±k1,±k2���,�;D2� =
1

4
. �94�

. Orthogonality relations

The wave functions �93� as eigenfunctions of the Hamiltonians are orthogonal n�n�,

�
0

	 �
0

�/2

�n�q1q2

�±k1,±k2�*��,�;D2��nq1q2

�±k1,±k2���,�;D2�dV = 0. �95�

quations �74� and �75� enable one to prove the property of double orthogonality for wave
unctions Znq

�±k1,±k2��� ;D2�, namely

�
0

	

Znq2�
�±k1,±k2�*�i�;D2�Znq2

�±k1,±k2��i�;D2�d� = 0, �96�

�
0

�/2

Znq1�
�±k1,±k2�*��;D2�Znq1

�±k1,±k2���;D2�d� = 0 �97�

or q1�q1� and q2�q2�, and therefore when q�q�,

�
0

	

d��
0

�/2

d��cosh2 � − cos2 ���nq1�q2�
�±k1,±k2�*��,�;D2��nq1q2

�±k1,±k2���,�;D2� = 0. �98�

V. THREE-DIMENSIONAL SPACE

So far we have considered only superintegrable systems in two dimensions. To make clearer
ur approach and how it extends to all dimensions, we consider some three-dimensional �3D�
xamples.

. The harmonic oscillator

As is very well known, the Schrödinger equation for the 3D harmonic oscillator �a superin-
egrable system� is exactly solvable in Cartesian coordinates. We consider it in elliptic coordinates
here the separation equations are QES. We will show explicitly that the polynomial solutions of

he uncoupled 3D problem can be found directly and that the results greatly simplify the deter-
ination of the polynomial solutions of the separated QES equations. In elliptic coordinates the

chrödinger equation has the form
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H =
1

�u − v��u − w��4�P�u�
�

�u
��P�u�

�

�u
 − 
2�u3 − E1u

2��
+

1

�v − u��v − w��4�P�v�
�

�v
��P�v�

�

�v
 − 
2�v3 − E1v

2��
+

1

�v − w��v − u��4�P�w�
�

�w
��P�w�

�

�w
 − 
2�w3 − E1w

2�� ,

here

E1 = e1 + e2 + e3, P�� = � − e1�� − e2�� − e3� .

ere the elliptic coordinates are given by

x2 =
�u − e1��v − e1��w − e1�

�e1 − e2��e1 − e3�
, y2 =

�u − e2��v − e2��w − e2�
�e2 − e1��e2 − e3�

,

z2 =
�u − e3��v − e3��w − e3�

�e3 − e2��e3 − e1�
.

he separation equations that describe the solutions of H�=E� are

�4�P��
�

�
��P��

�

�
 − 
2�3 + �− E1 + E�2� + L1 − L2���� = 0

or =u ,v ,w. The operators that describe the separation constants are

L1 =
vw

�u − v��u − w��4�P�u�
�

�u
��P�u�

�

�u
 − 
2�u3 − E1u

2��
+

uw

�v − u��v − w��4�P�v�
�

�v
��P�v�

�

�v
 − 
2�v3 − E1v

2��
+

uv
�w − u��w − v��4�P�w�

�

�w
��P�w�

�

�w
 − 
2�w3 − E1w

2�� ,

nd

L2 =
v + w

�u − v��u − w��4�P�u�
�

�u
��P�u�

�

�u
 − 
2�u3 − E1u

2��
+

u + w

�v − u��v − w��4�P�v�
�

�v
��P�v�

�

�v
 − 
2�v3 − E1v

2��
+

u + v
�w − u��w − v��4�P�w�

�

�w
��P�w�

�

�w
 − 
2�w3 − E1w

2�� .

In order to find square integrable solutions to this problem it is natural to remove an expo-
ential factor according to

��u,v,w� = exp�−



2
�u + v + w���u,v,w� .
hen there are polynomial solutions for ��u ,v ,w� of the form
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��u,v,w� = �
j=1

r

�u − � j��v − � j��w − � j� .

he zeros of the polynomials satisfy the relations

− 4
 + �
i�j

4

�i − � j
+ �

s=1

3
1

� j − es
= 0.

It follows that the eigenvalues E and �1, �2 of the operators L1 and L2 can be expressed in the
orm

�1 = − 4r2E1 + 2�3 + 4r��
j=1

r

� j + �− �1 + 4r�E2 + 4E1�
j=1

r

� j − �
j=1

r

� j
2�
 − E3
2,

�2 = − 2r�2r + 1� − 2�2r + 1�E1
 + 4
�
j=1

r

�i − E2
2,

here E2=e1e2+e2e3+e1e3 and E3=e1e2e3. Because of the relations among the zeros � j there are
lso alternative expressions available for these eigenvalues. We now turn our attention to calcu-
ating the eigenvalues. Let us first consider the special case r=1. If we choose a basis of functions
f u, v, and w F0=1 ,F1=u+v+w ,F2=uv+uw+vw, and F3=uvw then we can find solutions

��u,v,w� = a0F0 + a1F1 + a2F2 + a3F3.

f we look for eigenfunctions for the operator L1 that correspond to this form we obtain the
onditions

�2E3
2 + 5E2
 + 4E1 + �1�a3 + �4E1
 + 6�a2 + 4
a1 = 0,

�− 2E2 − 4E3
�a3 + ��1 + 
E2 + 
2E3�a2 = 0,

�− 2E2 − 4E3
�a2 + ��1 + 
E2 + 
2E3�a1 = 0, �− 2E2 − 4E3
�a1 + ��1 + 
E2 + 
2E3�a0 = 0.

or these equations to have a nontrivial solution the corresponding determanental condition must
old viz.

��1 + 
E2 + 
2E3���1
3 + �4E1 + 7E2
 + 3E3
2��1

2 + �14E3E2
3 + �24E1E3 + 11E2
2�
2

+ �16E1E2 + 24E3�
 + 12E2��1 + E3�20E1E3 + 11E2
2�
4 + �5E2

3 + 188E3
2 + 32E1E2E3�
3

+ 4E2�6E1E2 − 14E3�
2 + 28E2
� = 0.

For the operator L2 the corresponding relations among the ai are

�6 + �2 + E2
2 + 6
E1�a3 + 4
a2 = 0, �6 + �2 + E1
 + E2
2�a2 + 4
a3 = 0,

− �2E2 − 4E3
�a3 + �− 4E2
 + 4E1�a2 + �E2
2 + 2
E1 + �2�a1 = 0,

− �2E2 − 4E3
�a2 + �− 4E1 + 4E2
�a1 + ��2 + 2E1
 + E2
2�a0 = 0,
ith the determinant condition
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��2 + 2
E1 + 
2E2���2
3 + �14
E1 + 3
2E2��2

2 + �3
4E2
2 + 28
3E1E2 + 
2�60E1

2 + 40E2�

+ 112
E1 + 36��2 + 
6E2
3 + 14
5E1E2

2 + 4
4E2�15E1
2 + 7E2� + 
3�72E1

3 + 208E1E2 − 343E3�

+ 
2�240E1
2 + 100E2� + 168
E1� = 0.

This illustrates clearly that our method gives the eigenvalues of L1 and L2 as solutions of
olynomial equations. If we substitute in this way into the Schrödinger equation itself then we
btain the conditions

�E + 7
�aj = 0, j = 1,2,3,

�2E2 + 4E3
�a3 + 4�E1 + 
E2�a2 + 2�3 + 2
E1�a1 − �E + 3
�a0 = 0

ielding the two eigenvalues −7
 and −3
 for E. This method has obvious extensions to r
2, . . . .

Note that if we look for polynomial solution of the separation equations then we obtain
ifferent equations. In particular if we look for solutions of the form ���=exp�−�
 /2���−c� in
he separation equation

�P��
�

�
��P��

�

�
��� + �
2�− 3 + �E1 − E�2� + �2 − �1���� = 0

e obtain the relations

�2
2 + �2�6 + 8
E1 + 2
2E2� + 4
�1 + 
4E2

2 + 
3�8E1E2 + 4E3� + 
2�12E1
2 + 26E2� + 28
 = 0,

�1�2 + 
�E2 + E3
��2 + 
�6E1 + 
E2��1 + E2E3
4 + 
3�6E1E3 + E2
2� + 
2�6E1E2 + 22E3� + 14E2


= 0,

here

c = ��12 + 2�2� + 6
E1 + 
2E2�/4
 .

f we were to pursue this approach further then we would obtain more complicated relations
mong the �1 and �2 which could be uncoupled to produce the individual equations for �1 and �2,
espectively. This example shows clearly how study of the full 3D superintegrable system yields
esults for solutions of the separation equations that could not easily be obtained from a direct
tudy of the separation equations themselves.

. Ushveridze’s separation of variables example

A critical further example is that studied by Ushveridze on p. 115 of Ref. 63. He takes two
opies of an ordinary differential QES problem �polynomial potential of order 10� and combines
hem to form a single 2D partial differential equation from which the original ordinary differential
quations can be obtained by separation of variables. However, the partial differential equation
hat he obtains is merely separable, not multiseparable. In particular it is not superintegrable. Here
e show the increased insight and greater simplicity obtained by using three copies of the QES
roblem to form a 3D superintegrable system. We proceed as follows. Consider the Schrödinger

quation H�=E� where
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H =
1

�u2 − v2��u2 − w2�� �2

�u2 − 36k1
2u10 − 48k1k2u

8 − 8�2k2
2 + 3k1k3�u6 +

p�1 − p�
u2 �

+
1

�v2 − u2��v2 − w2�� �2

�v2 − 36k1
2v10 − 48k1k2v

8 − 8�2k2
2 + 3k1k3�v6 +

p�1 − p�
v2 �

+
1

�w2 − v2��w2 − u2�� �2

�w2 − 36k1
2w10 − 48k1k2w

8 − 8�2k2
2 + 3k1k3�w6 +

p�1 − p�
w2 � .

his equation is clearly separable in the u ,v ,w coordinates. Passing to Cartesian coordinates z
iuvw and

x + iy = 1
2 �u2v2 + u2w2 + v2w2� − 1

4 �u4 + v4 + w4�, x − iy = 1
2 �u2 + v2 + w2� ,

e can recognize the Hamiltonian operator in the form

H =
�2

�x2 +
�2

�y2 +
�2

�z2 + 36k1
2�2�x − iy�3 − 4�x2 + y2� − z2� + 48k1k2�3�x − iy�2 − �x + iy��

− 16�2k2
2 + 3k1k3��x + iy� −

p�p − 1�
z2 . �99�

This in turn can be recognized as essentially the complex Euclidean space superintegrable
ystem with nondegenerate potential

V = ��z2 − 2�x − iy�3 + 4�x2 + y2�� + ��2�x + iy� − 3�x − iy�22� + ��x + iy� +
�

z2 , �100�

n which the six basis second-order symmetry operators can be taken in the form

H = �x
2 + �y

2 + �z
2 + V ,

S1 = ��x − i�y�2 + f1, S2 = �z
2 + f2, S3 = 
�z,J2 + iJ1� + f3, �101�

S4 =
1

2

J3,�x − i�y� −

i

4
��x + i�y�2 + f4, S5 = �J2 + iJ1�2 + 2i
�z,J1� + f5,

here 
A ,B�=AB+BA, the Ji are the angular momentum operators, e.g., J3=x�y −y�x, and the f i

re appropriate functions. There is a quadratic algebra generated by these symmetries. This is a
irect consequence of the observation that this potential is an example of a nondegenerate poten-
ial in three dimensions.7,8

The separation equations for the Schrödinger equation have the form

� �2

�2 − 36k1
210 − 48k1k28 − 8�2k2

2 + 3k1k3�6 +
p�1 − p�

2 + E4 + �22 + �3���� = 0,

ssentially, Ushveridze’s 1D QES problem. The operators with the separation constants as eigen-

alues are
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L2 =
v2 + w2

�u2 − v2��u2 − w2�� �2

�u2 − 36k1
2u10 − 48k1k2u

8 − 8�2k2
2 + 3k1k3�u6 +

p�1 − p�
u2 �

+
u2 + w2

�v2 − u2��v2 − w2�� �2

�v2 − 36k1
2v10 − 48k1k2v

8 − 8�2k2
2 + 3k1k3�v6 +

p�1 − p�
v2 �

+
u2 + v2

�w2 − v2��w2 − u2�� �2

�w2 − 36k1
2w10 − 48k1k2w

8 − 8�2k2
2 + 3k1k3�w6 +

p�1 − p�
w2 �

�102�

nd

L3 =
v2w2

�u2 − v2��u2 − w2�� �2

�u2 − 36k1
2u10 − 48k1k2u

8 − 8�2k2
2 + 3k1k3�u6 +

p�1 − p�
u2 �

+
u2w2

�v2 − u2��v2 − w2�� �2

�v2 − 36k1
2v10 − 48k1k2v

8 − 8�2k2
2 + 3k1k3�v6 +

p�1 − p�
v2 �

+
u2v2

�w2 − v2��w2 − u2�� �2

�w2 − 36k1
2w10 − 48k1k2w

8 − 8�2k2
2 + 3k1k3�w6 +

p�1 − p�
w2 � .

�103�

In searching for finite solutions of H�=E� we write

��u,v,w� = exp�k1�u6 + v6 + w6� + k2�u4 + v4 + w4� + k3�u2 + v2 + w2���uvw�p��u,v,w� ,

here

��u,v,w� = �
j=1

r

�u2 − � j��v2 − � j��w2 − � j� .

he zeros of the polynomials satisfy the relations

2r + 1

2�i
− 12k1�i

2 − 4k2�i − k3 + �
j�i

1

�i − � j
= 0.

olving these equations we see that the eigenvalues of the operators H, L2, and L3 have the form

E = − �30 + 24r + 12p�k1 − 16k2k3, �2 = − 4k3
2 − �12 + 16r�k2 − 24k1�

j=1

r

� j ,

�3 = − �2 + 8r + 4p�k3 − 16k2�
j=1

r

� j − 24k1�
j=1

r

� j
2.

ecause of the relations among the zeros there are many other expressions for these eigenvalues.
f we look for solutions of the form

��u,v,w� = a0G0 + a1G1 + a2G2 + a3G3,

here G0=1, G1=u2+v2+w2, G2=u2v2+u2w2+v2w2, and G3=u2v2w2, i.e., second-order polyno-
ial solutions, and substitute this expression into the eigenvalue equations, we obtain the follow-

ng polynomial equations for the eigenvalues:

3
�E + k1�54 + 12p�� �E + k1�30 + 12p�� = 0,
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��2 + 2k2�4p + 1� + 4k3
2���2

3 + �12k3
2 + �68 + 24p�k2��2

2

+ �192k1k3 + 16�2p + 7��6p + 13�k2
2 + 32k3

2k2�6p + 17� + 48k3
4��2

+ 64�17 + 6p�k2k3
4 + 768k1k3

3 + 64�2p + 7��6p + 13�k2
2k3

2 + 768�2p + 7�k1k2k3

+ 64�2p + 3��2p + 7�2k3
2 − 1152�2p + 1�k1

2 = 0,

��3 + 2k3�p + 1����3
3 + 2�6p + 7�k3�3

2 + 4�6p + 11��1 + 2p�k3
2�3 + 8�1 + 2p�2�12k1 + 2pk3

2 + 5k3
3��

= 0.

On the other hand, if we study the separation equations individually and look for a solution of
he form

��� = exp�k16 + k24 + k32�p� − c�

n the above separation equation then we obtain different relations

�2
2 + �4k2�10 + 4p� + 8k3

2��2 + 24k1�3 + 16k3
4 + 8�4k2k3

2 + 6k1k3��5 + 2p� + 16k2
2�2p + 7��2p + 3� = 0,

�2�3 + 2�2p + 1��2 + �4k2�2p + 7� + 4k3
2��3 + 48k1�1 + 2p� + 8k2k3�2p + 7��2p + 1� + 8�1 + 2p�k3

3

= 0,

here

c = −
1

24k1
�4k2�p + 7� + 4k3

3 + �2� .

he above computation extends in an obvious manner to the computation of polynomial solutions
f any order. There is a clear relationship with Ushveridze’s equation on p. 115 of Ref. 63 through
he correspondence a=6k1, b=4k2, c=2k3, and s= �2p+1� /4.

We now look for solutions determined by other second-order constants of the motion and
orresponding �possibly separable� coordinate systems. First consider our basic equation H�
E� written in terms of different coordinates �=x+ iy, �=x− iy, z. We can find nonseparable

olutions in these coordinates of the form

� = exp�2 � � + �k2 + 3k1��2��

�� �−
3k1�k2 + 3k1��

� + �k2 + 3k1��2�
+

��− 9k1
2�2 + 9k1k2� + 6k1k2 + 4k2

2� + E

�� + �k2 + 3k1��2� �d�
�exp�− 3k1z

2�zpL
n

p+ 1
2�6k1z

2� ,

here

E = E − 6k1�4n + 2p + 1�

nd Lm
��t� is a Laguerre polynomial. It is clear that the above � integral can be calculated in terms

f elementary functions but we prefer the form given as it is more compact. This possibility for an
xplicit solution comes about from the existence of a symmetry of the form p�

2 + f .

If we choose new separable coordinates u ,v ,z defined by
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x + iy = − 1
2 �u − v�2, x − iy = u + v

hen the Schrödinger equation has the separable form

H� = � 1

u − v
�� �

�u2 − 144k1
2u4 − 96k1k2u

3 + 16�2k2
2 + 3k1k3�u2

− � �

�v2 − 144k1
2v4 − 96k1k2v

3 + 16�2k2
2 + 3k1k3�v2� +

�2

�z2 − 36k1
2z2 +

p�1 − p�
z2 �� = E� .

�104�

he symmetry operator L associated with separation in these coordinates is of the form

L� = � 1

u − v
�v� �

�u2 − 144k1
2u4 − 96k1k2u

3 + 16�2k2
2 + 3k1k3�u2

− u� �

�v2 − 144k1
2v4 − 96k1k2v

3 + 16�2k2
2 + 3k1k3�v2�� .

earching for finite solutions using these coordinates, we see that they can be taken in the form

� = exp�4k1�u3 + v3� + 2k2�u2 + v2� − 2� k2
2

k1
+ k3�u + v��i=0

r ��u − �i��v − �i��

�exp�− 3k1z
2�zpL

n

p+ 1
2�6k1z

2� .

or solutions of this kind these zeros satisfy

− 2k1k3 − 2k2
2 + 4k1k2�

i=1

r

�i + 12k1
2�

i=1

r

�i
2 + �

j�i

k1

�i − � j
= 0.

he eigenvalues of L and H� have the form

r = − 4
k2

4

k1
2 − 8

k2
2k3

k1
− 4k3

2 − 4�1 + 2r�k2 − 24�
i=1

r

�i, Er = 16k2k3 + 16
k2

3

k1
− 24�r + 1�k1,

nd E=Er+6k1�4n+2p+1�.
It is clear that we can find solutions of the form given above but with a choice of polynomial,

ay c1uv+c2�u+v�+c3 for illustration. The resulting polynomial equation for the eigenvalues of L
s

�k1
2 + 4k1

2k3
2 + 4k2k1

2 + 4k2
4 + 8k1k3k2

2��k1
42 + 8k1

2�2k2k1
2 + k3

2k1
2 + 2k1k3k1

2 + k2
4��

− 96k3k1
5 − 48k2

2k1
4 + 64k3

2k1
4k2 + 16k3

4k1
4 + 128k2

3k3k1
3 + 64k3

3k1
3k2

2 + 64k2
5k1

2 + 96k1
2k2

4k3
2

+ 64k2
6k1k3 + 16k2

8 = 0.

hese are finite solutions, clearly different from those given previously. The above analysis can be
xtended in an obvious manner to yield polynomial solutions of any order.

Note that for this last coordinate system we have given an example of a QES problem with a
uartic potential, something hitherto not known to be possible �as mentioned in Ushveridze’s

ook�. Indeed the separation equations have the form
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� �2

��2 − 144k1
2�4 − 96k1k2�3 + 16�2k2

2 + 3k1k3��2

− �16k2k3 + 16
k3

2

k1
+ 6k1�4n − 4r + 2p − 3� � + r����� = 0,

here �=U ,V and �=u ,v. There are typically r+1 solutions

���� = exp�4k1�3 + 2k2�2 − 2� k2
2

k1
+ k3 � �i=0

r ��− �i�

f this equation, with corresponding eigenvalues r
�s� ,s=1, . . . ,r+1. It is clear from our definition

f QES that if we look for series solutions then the recurrence relations involved will contain more
han three terms. The analysis then proceeds in analogy with what has been demonstrated for the
ase of three terms and the requirement of polynomial solutions �to within a factor� is a conse-
uence of the solutions generated in this manner being well behaved at the regular singular points.

It is clear that in higher dimensions there are many examples which generalize the examples
ccurring in Ref. 63. The utility of the use of partial differential operators, rather than ordinary
ifferential operators, is evident. Finally, we note in the superintegrable example presented here,
hough our system is multiseparable there are no separable coordinates in which the separated
quations are each exactly solvable.

. CONCLUSIONS AND SUMMARY

We have demonstrated that solutions of the Schrödinger equation for the potential V1 may be
onstructed via separation of variables in two different ways. Using Cartesian coordinates we
rrive at two independent exactly solvable equations �17� and �18�, each of them representing a
ne-dimensional nonparametric spectral problem where the Cartesian separation constants i play
he role of energy. To obtain solutions in the form of Laguerre and Hermite polynomials, both
eparation constants are quantized and as a result the energy spectrum for the two-dimensional
chrödinger equation is obtained. For the second separable system which uses parabolic coordi-
ates the solution method is more complex. We have shown that the separation procedure reduces
o an ordinary differential equation for real and imaginary variables. It has been proven that the
equirement of convergence for solutions of Eq. �30� at the singular points �= ±	 and �= i	 leads
o only polynomial solutions �42� with the restriction for the energy spectrum E in the form �22�
nd for a fixed energy �or quantum number n� gives the spectrum of the separation constant as the
oot of an nth-degree polynomial equation. In contrast to the solution in Cartesian coordinates the
oefficients of the polynomial solutions satisfy three-term recurrence relations and cannot be
ritten in explicit form in general. For this reason we refer to the equation �30� as quasiexactly

olvable.
On the other hand, the substitution of the formula for the energy spectrum into Eq. �30� gives

ise to the equation

�−
d2

d�2 + �
2�6 + k1�4 + � k1
2

4
2 − 
�4n + 4 ± 2k2���2 +
k2

2 − 1
4

�2 �Zn��� = Zn��� ,

�105�

hich on the real axis completely coincides for k1=4�
2 and 1±k2=2�, with the one-dimensional
pectral problem �10�, and is called a quasiexactly solvable problem. Now it is easy to understand
he origins of the occurrence of quasiexactly solvable systems. The requirement of convergence
ust in real space �which is possible to determine following Ref. 37 as the dimensional reduction�
n the vicinity of singular points �= ±	 requires that there are polynomial solutions of the form
41�. We also can shed light on the mystery of the zeros of the polynomial Pn�x2�. Indeed, the

ubstitution of the wave function �11� into the Schrödinger equation with potential �10� leads to
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he differential equation for polynomial Pn�x2� in the same form as Eq. �58� �in variable x2=z�, but
ith the difference that the physical region of Eq. �58� is the whole real axis z� �−	 , 	 �, and

herefore all zeros �for positive and negative x2� of Pn�x2� correspond to the zeros of two-
imensional eigenfunction of singular anisotropic oscillator in parabolic coordinates.

The situation is repeated in the case of the second potential �60�. We have determined that the
eparation of variables in two-dimensional elliptic coordinates leads to a Schrödinger type equa-
ion �76� in the complex plane and the requirement of convergence at the point �=0,2� and �
i	 requires polynomial solutions and defines the energy spectrum �66�. As a consequence trigo-
ometric and hyperbolic quasiexactly solvable systems �see potentials 5 and 8 in Ref. 61� are
enerated in the form

d2X

d�2 + ���2

4
+ ��2n + 2 ± k1 ± k2�cosh2 � −

�2

4
cosh4 � −

k1
2 − 1

4

sinh2 �
+

k2
2 − 1

4

cosh2 �
+ �X = 0,

d2Y

d�2 − ���2

4
+ ��2n + 2 ± k1 ± k2�cos2 � −

�2

4
cos4 � +

k1
2 − 1

4

cos2 �
+

k2
2 − 1

4

sin2 �
+ �Y = 0,

here �=D2
 /2. Thus we have established that an integral part of the notion of quasiexact
olvability is the reduction of superintegrable systems to one-dimensional problems.

Indeed, we can express our observation in the form of the following hypothesis: All quantum-
echanical problems which are expressible as one-dimensional quasiexactly solvable systems can

e determined via separation of variables in an N-dimensional Schrödinger equation for superin-
egrable systems.

This analogy prompts us to use the term quasiexact solvability for the equations of type �30�
r �76�, defined in the complex plane and which are not exactly solvable but which admit poly-
omial solutions. Thus we suggest calling quantum mechanical systems first-order quasiexactly
olvable if the polynomial solution of the one-parametric differential equation of the kind of
chrödinger equation or N-dimensional equation after separation of variables is defined through
ecurrence relations which must always contain three terms or more and the discrete eigenvalues
an be calculated as the solutions of algebraic equations. According to this definition systems �30�
nd �76� are first order quasiexactly solvable.

In three dimensions we have provided even more striking examples of 1D QES problems
btained as restrictions from superintegrable systems. We exhibited a quasiexactly solvable super-
ntegrable system which is not at the same time exactly solvable in any separable set of coordi-
ates. In one set of separable coordinates we obtain Ushveridze’s tenth-order polynomial QES
roblem and in another set a fourth-order polynomial QES problem. We have shown how the
igenvalues of the symmetry operators which describe separation can be calculated from a deter-
inant condition. These examples, and more to come on other manifolds and in higher dimen-

ional spaces, indicate that our modified definition of QES systems can be extended to
-dimensional spaces and fine tuned to distinguish between the number of parameters in the

ystems. These matters will be taken up in other papers in this series.
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PPENDIX: ASYMPTOTIC BEHAVIOR OF COEFFICIENTS

To understand the behavior of the solutions of relations �36� for large s we use continued
81
ractions theory. Setting
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As

As−1
= �sf�s� ,

�A1�

f�s� =�


2

�� s

2
+

1

2
��±

k2

2
+

s

2
+

1

2
�� �

2

±

k2

2
+

s

2
+ 1

�� s

2
+ 1��±

k2

2
+

s

2
+ 1�� �

2

±

k2

2
+

s

2
+

1

2
 ,

here ��z� is the gamma function, we can write the recurrence relation �36� in the standard form

�s =
1

bs + �s+1
,

�A2�

bs =� 2




�� s

2
+

1

2
��±

k2

2
+

s

2
+

1

2
�� �

2

±

k2

2
+

s

2
+ 1�−  +

k1



�2s + 1 ± k2��

�� s

2
+ 1��±

k2

2
+

s

2
+ 1�� �

2

±

k2

2
+

s

2
+

3

2
23

,

here �=−�E+k1 / �8
2�� /2. Note that

f�s + 1�f�s� = 


��



± k2 + s + 1

�s + 1��±k2 + s + 1�
.

tirling’s formula for the gamma function ��z�=zz−1/2e−z�2��1+O�1/z�� as �z � →	 with �arg z �
�, gives f�s�=−�
 /s�1+O�1/s�� and bs= ± �k2 /2
�s
��1+O�1/s��. In the following we take

1�0, k2 , ,E real and 
�0. Without loss of generality we can assume bs is positive for suffi-
iently large s since, otherwise, we could make the replacements bs→−bs, �s→−�s.

Since �bs=	, it is a consequence of the Seidel-Stern theorem that the formal continued
raction expressions for the �s converge,

�s =
1

bs
+

1

bs+1
+ ¯ +

1

bs+k
+ ¯ .

oreover, standard continued fraction theory tells us that

�s = lim
n→	

An
�s�

Bn
�s� , �A3�

here

�A−1
�s�

B−1
�s�  = �1

0
, �A0

�s�

B0
�s�  = �0

1
 , �A4�

nd

�An
�s�

Bn
�s�  = bn+s�An−1

�s�

Bn−1
�s�  + �An−2

�s�

Bn−2
�s� , n � 1.

�s� �s� �s� �s� n−1
urthermore the relation An Bn−1−An−1Bn = �−1� holds for all n�0, which implies
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An
�s�

Bn
�s� −

An−1
�s�

Bn−1
�s� =

�− 1�n−1

Bn−1
�s� Bn

�s� .

his result in turn implies that the sequence A2n
�s� /B2n

�s� is, for large s and n, monotone increasing in
and goes to �s in the limit, whereas A2n+1

�s� /B2n+1
�s� is monotone decreasing in n and goes to �s in

he limit. For example,

A2n+2
�s�

B2n+2
�s� −

A2n
�s�

B2n
�s� =

b2n+2+s

B2n
�s�B2n+2

�s� . �A5�

t follows from �A3�, �A5� that

�s =
A0

�s�

B0
�s� + �

n=1

	
b2n+2+s

B2n
�s�B2n+2

�s� . �A6�

imple estimates using the recurrence relations �A4� give

B2n
�s� � 1 + bs+1�

m=1

n

b2m+s, B2n+1
�s� � �

m=0

n

b2m+1+s.

ubstituting these results into the identities

B2n
�s� = �

m=1

n

b2m+sB2m−1
�s� , B2n+1

�s� = �
m=0

n

b2m+s+1B2m
�s�

e get refined upper bounds for B2n
�s� ,B2n+2

�s� . We can approximate the sum �m=s
n 1/�m by the integral

s
n�1/�x�dx and use similar approximations to get an upper bound for the series �A6�,

��s� � �1�
0

	 dy
�y + s�y2 + 1�

+ �2

or positive constants � j independent of s. This shows that ��s� is uniformly bounded in s. Since

s+1=−bs+1/�s and bs→0 as s→	 it is also true that �1/�s� is uniformly bounded in s.
It follows from �A2� that

�s+1 − �s−1 =
�s−1 − �bs + �s−1��1 − bs−1�s−1�

1 − bs−1�s−1
.

ow choose s0 so large that bs+1�bs and bs�s�1 for all s�s0. Note from this identity that if

s1−1�1 for some s1�s0 then �s1+1��s1−1�1. Thus the sequence �s1+2k−1 is monotonically in-
reasing for all k�0. Since ��s� is bounded, it follows that in this case limk→	 �s1+2k−1=�+ exists,
nd �+�1. Since �s+1=−bs+1/�s, bs→0 as s→	 and �1/�s� is uniformly bounded in s, then the
equence �s1+2k is also convergent, limk→	 �s1+2k=�− where 0��−�1.

The other possibility is that ��1 for all s�s0. Since 1/�s−�s+1=bs→0 as s→	, and 1/�s

1, �s+1�1 for all s�s0 it follows that limk→	 �k=�+=�−=1. Thus in all cases the sequences �2k

nd �2k+1 converge.
We conclude that

As+1

As
= f�s + 1��s =�
�±

s
�1 + O�1/s��, �+�− = 1,

epending on whether s is even or odd.
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ntrinsic spectral geometry of the Kerr-Newman
vent horizon

Martin Engmana� and Ricardo Cordero-Soto
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We uniquely and explicitly reconstruct the instantaneous intrinsic metric of the
Kerr-Newman event horizon from the spectrum of its Laplacian. In the process we
find that the angular momentum parameter, radius, area; and in the uncharged case,
mass, can be written in terms of these eigenvalues. In the uncharged case this
immediately leads to the unique and explicit determination of the Kerr metric in
terms of the spectrum of the event horizon. Robinson’s “no hair” theorem now
yields the corollary: One can “hear the shape” of noncharged stationary axially
symmetric black hole space-times by listening to the vibrational frequencies of its
event horizon only. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2174290�

. INTRODUCTION

Although in general the spectrum of the Laplacian on a manifold determines, via the heat
ernel, a sequence of invariants which restrict the geometry, it is a rare occasion indeed that the
etric is uniquely determined by the eigenvalues �see, for example, Ref. 6�. In fact one of the few

niqueness results of this kind was proved by Brüning and Heintze:1 An S1 invariant two-
imensional surface diffeomorphic to the sphere, which has, in addition, a mirror symmetry about
ts equator is uniquely determined by its spectrum. This has been generalized by Zelditch,16 but the
rüning and Heintze result is the appropriate setting for our purposes since this is exactly the class
f metrics which include Kerr-Newman event horizons.

In 1973 Smarr11 studied the metric of the horizon in terms of a scale parameter and a distor-
ion parameter and in a particularly convenient coordinate system for calculating, for example, the
urvature. More recently, the first author of the present paper has used a similar coordinate system
o study the spectrum of S1 invariant surfaces. As it turns out, Smarr’s form of the horizon metric
s a scaled version of a special case of our form of the metric.

S1 invariant metrics on S2 can be described in terms of a single function f�x�. One can show
hat the sum of the reciprocals of the nonzero, S1 invariant eigenvalues �i.e., the trace of the S1

nvariant Greens operator� is given by an integral involving the function f�x�. The key to the
esults we obtain here is that, in the case of the Kerr-Newman event horizon, the function f�x� is
simple rational function and the above-mentioned integral can be calculated explicitly. Together
ith a similar equivariant trace formula, one can now write Smarr’s parameters in terms of these

races and hence explictly display the metric in terms of it’s spectrum. As far as we know, this is
he only nontrivial example of this phenomonen �the Brüning and Heintze result is not construc-
ive in this sense�.

An interesting byproduct of our results �in the uncharged case�, together with Robinson’s
niqueness theorem, is the unique reconstruction of space-time in terms of these eigenvalues. We
onclude the paper with a discussion of possible physical interpretations of these results.

�
Electronic mail: um�mengman@suagm.edu and mathengman@yahoo.com
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I. SMARR’S FORM OF THE METRIC

The Kerr-Newman metric describing the geometry of a rotating charged black hole written in
err ingoing coordinates �v ,r ,� ,�� is

ds2 = − �1 −
2mr − e2

�
�dv2 + 2 dr dv −

�2mr − e2�2a sin2 �

�
dv d� − 2a sin2 � dr d� + � d�2

+ � �r2 + a2�2 − �a2 sin2 �

�
�sin2 � d�2, �1�

n which �m ,a ,e� represent, respectively, the total mass, angular momentum per unit mass, and the
harge. Also �=r2+a2 cos2 � and �=r2−2mr+a2+e2 �we use the lower case letter here, instead of
he traditional upper case, to avoid confusion with the equally traditional use of � for the Laplac-
an�. The uncharged �e=0� case is the Kerr metric.

This family of metrics is quite general. To quote Wald15 “¼ the Kerr-Newman family of
olutions completely describes all the stationary black holes which can possibly occur in general
elativity.” This fact is due to the famous uniquess theorems of Israel,7 Carter and Robinson,10 and

azur,8 for example.
For the Kerr-Newman metric the surface of the event horizon can be thought of as a spacelike

lice through the null hypersurface defined by the largest root, r+, of �=0, i.e., r+=m
�m2−a2−e2. The intrinsic instantaneous metric on the event horizon is obtained by setting r
r+, so that dr=0, and also setting dv=0 to get

dseh
2 = �r+

2 + a2 cos2 ��d�2 + � �r+
2 + a2�2

r+
2 + a2 cos2 �

�sin2 � d�2. �2�

In Ref. 11, Smarr defines the scale parameter by �=�r+
2 +a2 and the distortion parameter by

=a /�r+
2 +a2 and introducing a new variable x=cos � one finds that the event horizon metric is

dseh
2 = �2� 1

f�x�
dx2 + f�x�d�2� , �3�

here �x ,��� �−1,1�� �0,2	� and

f�x� =
1 − x2

1 − �2�1 − x2�
. �4�

t is well known that the Gauss curvature of a metric in this form is simply K�x�
−1/ �2�2�f��x� so that in this case

K�x� =
1

�2� 1 − �2�1 + 3x2�
�1 − �2�1 − x2��3� , �5�

nd the surface area of the metric is A=4	�2. We point out that in case a=0 ��=0�, e=0 �1� gives
he Schwarzschild black hole and �3� is the metric of the constant Gauss curvature=1/�2 metric
n S2.

II. SPECTRUM OF S1 INVARIANT METRICS

For any Riemannian manifold with metric gij the Laplacian is given by

�g = −
1
�g

�

�xi��ggij �

�xj� .

This is the Riemannian version of the Klein-Gordon, or D’Alembertian, or wave operator

sually denoted by �.
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In this section we outline some previous work on the spectrum of the Laplacian on S1

nvariant metrics on S2. The interested reader may consult Refs. 2–4 for further details.
To simplify the discussion the area of the metric is normalized to A=4	 for this section only.

he metrics we study have the form

dl2 =
1

f�x�
dx2 + f�x�d�2, �6�

here �x ,��� �−1,1�� �0,2	� and f�x� satisfies f�−1�=0= f�1� and f��−1�=2=−f��1�. In this
orm, it is easy to see that the Gauss curvature of this metric is given by K�x�= �−1/2�f��x�. The
anonical �i.e., constant curvature� metric is obtained by taking f�x�=1−x2 and the metric �3� is a
omothety �scaling� of a particular example of the general form �6�.

The Laplacian for the metric �6� is

�dl2 = −
�

�x
� f�x�

�

�x
� −

1

f�x�
�2

��2 .

et 
 be any eigenvalue of −�. We will use the symbols E
 and dim E
 to denote the eigenspace
or 
 and it’s multiplicity �degeneracy�, respectively. In this paper the symbol 
m will always mean
he mth distinct eigenvalue. We adopt the convention 
0=0. Since S1 �parametrized here by 0

��2	� acts on �M ,g� by isometries we can separate variables and because dim E
m
�2m+1

see Ref. 4 for the proof�, the orthogonal decomposition of E
m
has the special form

n which Wk�=W−k� is the “eigenspace” �it might contain only 0� of the ordinary differential
perator

Lk = −
d

dx
� f�x�

d

dx
� +

k2

f�x�

ith suitable boundary conditions. It should be observed that dim Wk�1, a value of zero for this
imension occurring when 
m is not in the spectrum of Lk.

The set of positive eigenvalues is given by Spec�dl2�=�k�Z Spec Lk and consequently the
onzero part of the spectrum of −� can be studied via the spectra Spec Lk= �0�
k

1�
k
2� ¯


k
j � ¯ 	"k�Z. The eigenvalues 
0

j in the case k=0 above are called the S1 invariant eigen-
alues since their eigenfunctions are invariant under the action of the S1 isometry group. If k
0 the eigenvalues are called k equivariant or simply of type k�0. Each Lk has a Green’s

perator, k : �H0�M���→L2�M�, whose spectrum is �1/
k
j	 j=1

� , and whose trace is defined by

�k 
 �
j=1

�
1


k
j . �7�

he formulas of present interest were derived in Refs. 2 and 3 and are given by

�0 =
1

2
�

−1

1 1 − x2

f�x�
dx �8�

nd

�k =
1

k
if k � 0. �9�

0 1
Remark: One must be careful with the definition of �0 since 
0=0 is an S invariant eigen-
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alue of −�. To avoid this difficulty we studied the S1 invariant spectrum of the Laplacian on
-forms in Ref. 3 and then observed that the nonzero eigenvalues are the same for functions and
-forms.

V. SPECTRAL DETERMINATION OF THE EVENT HORIZON

In case f�x� is given by �4� the metric �3� is related to �6� via the homothety dseh
2 =�2 dl2, and

t is well known that


 � Spec�dl2� if and only if



�2 � Spec��2 dl2�

o that, after an elementary integration, the trace formulas for the event horizon are

�0 = �2�1 −
2�2

3
� �10�

nd

�k =
�2

k
" k � 0. �11�

For the k=1 case, for example, one can invert the resulting pair of equations to get

�2 =
3

2
�1 −

�0

�1
� �12�

nd

�2 = �1, �13�

nd thereby write the event horizon metric explicitly and uniquely in terms of the spectrum as
ollows.

Proposition: With �0 and �1 defined as in �7� the instantaneous intrinsic metric of the Kerr-
ewman event horizon is given by

dseh
2 = �1� 1 −

3

2
�1 −

�0

�1
��1 − x2�

1 − x2 dx2 +
1 − x2

1 −
3

2
�1 −

�0

�1
��1 − x2�

d�2� . �14�

An immediate consequence of �11� is that the area of the metric has a representation for each
�N given by

A = 4	k�k. �15�

Remarks: �i� One might view Eqs. �10� and �11� as nothing more than definitions of new
arameters in terms of the old. On the other hand, the quantities �k are fundamental and naturally
efined quantities coming from the discrete set of vibrational wave frequencies on the surface.
lternatively, one can think of each trace, �k as the sum of the squares of all wavelengths of given
uantum number k.

�ii� One can use �0 together with �k for any k to reconstruct the metric. In some sense one can
construct the metric in ways.”

�iii� Brüning and Heintze proved that for S1 invariant metrics symmetric about the equator the
1 invariant spectrum determines the metric. Their result requires the prescription of all of the
igenvalues of the k=0 spectrum to uniquely determine the surface of revolution. In the example

f the present paper the metric is, therefore, uniquely determined once we have knowledge of the
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ntire list of S1 invariant eigenvalues. For the explicit construction one exchanges complete
nowledge of the k=0 spectrum for partial spectral data, namely the traces of the Greens operators
or k=0 and any k�0.

All the physical parameters can also be written in terms of the spectra as follows:

a2 = 3
2 ��1 − �0� , �16�

r+
2 =

3�0 − �1

2
, �17�

m2 =
��1 + e2�2

6�0 − 2�1
, �18�

s well as the angular velocity and surface gravity. We observe, however, that the mass depends on
he charge e as well as the spectrum so that the mass is uniquely determined by the spectrum only
n the Kerr �e=0� case.

We set together Remark �iii� with �16� and �18� �with e=0�, �1�, and Robinson’s uniqueness
heorem10 to observe.

Theorem: A noncharged stationary axially symmetric asymptotically flat vacuum space-time
ith a regular event-horizon is uniquely determined by the S1 invariant spectrum of the intrinsi-
ally defined Laplacian on its event horizon. The space-time is explicitly constructed from the S1

nvariant trace together with any k�0 trace of the associated Green’s operator on the event
orizon.

. DISCUSSION

It is well known �see Refs. 5, 13, and 9, among many others� that the quasinormal mode
requencies for scalar, electromagnetic, and gravitational radiation of black holes are related to the
eparation constants arising from separating variables in the Teukolsky master equation. These
characteristic sounds” of the black hole are considered to be observable in an astrophysical sense.
he angular operator �and, respectively, its separation constants� coming from the separation of
ariables is closely related to the Laplacian �and, respectively, its eigenvalues� on the event
orizon in the sense that, for scalar fields, they both reduce to the Laplacian �and corresponding
igenvalues� on the constant curvature S2 for the Schwarzschild �a=0� case. There is also some
vidence �this is a work in progress� that the a�0 Teukolsky angular equation can be viewed,
fter a change of variables, as a Laplace eigenvalue equation for a fourth order Taylor polynomial
pproximation of the horizon metric function. We hope to pursue these matters in our future work.

On a more philosophical note, the reader may have noticed that the main result of this paper
s consistent with the holographic principle �Refs. 12 and 14� in as much as the structure of the
3+1 dimensional� Kerr-Newman space-time is encoded in the intrinsic spectral data of the �two-
imensional� event horizon surface.

These phenomena suggest that the spectrum of the Laplacian on event horizons is playing an
mportant, if rather subtle and not well understood, role in the physics of the space-time manifold.
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In this supplement to the paper by Franzen et al. �Fortschr. Phys. �to be published��,
we discuss the uplift of half-flat sixfolds to Spin�7� eightfolds by fibration of the
former over a product of two intervals. We show that the same can be done in two
ways—one, such that the required Spin�7� eightfold is a double G2 sevenfold fi-
bration over an interval, the G2 sevenfold itself being the half-flat sixfold fibered
over the other interval, and second, by simply considering the fibration of the
half-flat sixfold over a product of two intervals. The flow equations one gets are an
obvious generalization of the Hitchin’s flow equations �to obtain sevenfolds of G2

holonomy from half-flat sixfolds �Hitchin �2001���. We explicitly show the uplift of
the Iwasawa using both methods, thereby proposing the form of new Spin�7� met-
rics. We give a plausibility argument ruling out the uplift of the Iwasawa manifold
to a Spin�7� eightfold at the “edge,” using the second method. For Spin�7� eight-
folds of the type X7�S1, X7 being a sevenfold of SU�3� structure, we motivate the
possibility of including elliptic functions into the “shape deformation” functions of
sevenfolds of SU�3� structure of Franzen et al. via some connections between
elliptic functions, the Heisenberg group, theta functions, the already known
D7-brane metric �Greene et al., Nucl. Phys. B 337, 1 �1990��, and hyper-Kähler
metrics obtained in twistor spaces by deformations of Atiyah-Hitchin manifolds by
a Legendre transform �Chalmers, Phys. Rev. D 58, 125011 �1998��. © 2006 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2178156�

NTRODUCTION

It is known that manifolds with G2 and Spin�7� holonomies, are very useful in getting minimal
mount of supersymmetry after compactification of seven and eight dimensions, respectively, in
tring/M-theory.1 In the past few years, half-flat manifolds have been shown to be relevant to flux
ompactifications in string theory �see Refs. 2 and 3 and references therein�. In Ref. 4, using the
esults of Ref. 5, we explicitly showed how to uplift the Iwasawa manifold, an example of a
alf-flat manifold, to sevenfolds of either G2-holonomy or SU�3� structure. In this short note, we
how how to uplift half-flat manifolds to Spin�7� eightfolds. We will be following the notations of
ef. 4. We also give plausibility arguments in favor of inclusion of the Weierstrass elliptic function

n Spin�7�-metrics of the type X7�S1, X7 being sevenfolds of SU�3� structure.
Spin�7� folds are characterized by a self-dual closed �and hence co-closed� Cayley four-form

with the additional constraint that the Â-genus of the eightfold equals unity6�. We will begin with
he construction of a Spin�7� eightfold as a double G2-fibration over an interval. We then go on to
onstructing a Spin�7� eightfold as a fibration of a half-flat over the product of two intervals.

�
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PIN„7… AS A DOUBLE G2-FIBRATION OVER AN INTERVAL

Let us begin with the following construction of a Spin�7� eightfold X8
Spin�7� �see diagram 1

elow�:

n other words, one has a “double” G2-fibration structure in the sense that the Spin�7� eightfold is
fibration of a G2�t1�-manifold over an interval I�t2� as well as a G2�t2�-manifold over an interval

�t1�, where the G2�ti�-manifold is itself a fibration of a half-flat sixfold over an interval I�ti� �via
he Hitchin’s construction7�. Given a half-flat manifold M6�� ,J�, the Hitchin’s construction in-
olves �with respect to seven dimensions� a closed and co-closed three-form �3=JÙdt+�+�t�,
+�Re���, one can write down the following Cayley four-form �4:

�4 = �1 * 7�3
1 + �2 * 7�3

2 + �̃1�1 Ù dt2 + �̃2�3
2 Ù dt1

+ �1�+ Ù dt1 + �2�+ Ù dt2 + �1�− Ù dt1 + �2�− Ù dt2 + �J Ù J + �J Ù dt1 Ù dt2. �1�

he self-duality condition would thus imply

�1�J Ù dt1 Ù dt2 + �+ Ù dt2� + �2�J Ù dt1 Ù dt2 − �+ Ù dt1�

+ �̃1�1

2
J Ù J + �− Ù dt1� + �̃2�−

1

2
J Ù J − �− Ù dt2�

− �1�− Ù dt2 + �2�− Ù dt1 + �1�+ Ù dt2 − �2�+ Ù dt1

+ 2�J Ù dt1 Ù dt2 +
�

2
J Ù J

=�1�1

2
J Ù J + �− Ù dt1� + �2�1

2
J Ù J + �− Ù dt2�

˜ ˜
+ �1�J Ù dt1 Ù dt2 + �+ Ù dt2� + �2�− J Ù dt1 Ù dt2 + �+ Ù dt1�
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+ �1�+ Ù dt1 + �2�+ Ù dt2 + �1�− Ù dt1 + �2�− Ù dt2

�J Ù J + �J Ù dt1 Ù dt2, �2�

mplying

�1 + �2 + 2� = �̃1 − �̃2 + � ,

�1 + �1 = �̃1 + �2, − �2 − �2 = �̃2 + �1. �3�

ence, the following is the form of the self-dual four-form:

�4 = �1 * 7�3
1 + �2 * 7�3

2 + �̃1�1 Ù dt2 + �2
˜ �3

2 Ù dt1 + �1�+ Ù dt1 + �2�+ Ù dt2 + ��̃1 + �2

− �1��− Ù dt1 − ��2 + �̃2 + �1��− Ù dt2 + �J Ù J + ��1 + �2 + 2� + �̃2 − �̃1�J Ù dt1 Ù dt2.

�4�

or �4� to be a Cayley four-form, it must satisfy the condition that it is closed, which on using

d * 7�3
1 = �d̂ + dt1 Ù

�

�t1
+ dt2 Ù

�

�t2
� * 7�3

1 = dt2 Ù
� * 7�3

1

�t2
,

d * 7�3
2 = �d̂ + dt1 Ù

�

�t1
+ dt2 Ù

�

�t2
� * 7�3

2 = dt1 Ù
� * 7�3

2

�t2
,

d�3
1 = dt2 Ù

��3
1

�t2
, d�3

2 = dt2 Ù
��3

2

�t1
, �5�

mplies

d�4� d̂JÙJ=d̂�+=0 = �1�dt2 Ù
�J

�t2
Ù J + dt2 Ù

��−

�t2
Ù dt1� + �2�dt1 Ù

�J

�t1
Ù J + dt1 Ù

��−

�t1
Ù dt1�

+ �1�dt2 Ù
��+

�t2
Ù dt1� + �2�dt1 Ù

��+

�t1
Ù dt2� + ��̃1 + �2 − �1��d̂�1 Ù dt1

+ dt2 Ù
��−

�t2
Ù dt1� − ��2 + �̃2 + �1��d̂�1 Ù dt2 + dt1 Ù

��−

�t1
Ù dt2�

+ 2��dt1 Ù
�J

�t1
Ù J + dt2 Ù

�J

�t2
Ù J� + ��1 + �2 + 2� + �̃2 − �̃1�d̂J Ù dt1 Ù dt2 = 0.

�6�

ne thus gets the following flow equations:

��1 + 2��
�J

�t2
Ù J = ��2 + �̃2 + �1�d̂�−,

�2� + �2�
�J

Ù J = ��1 − �2 + �̃1�d̂�−,

�t1
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��̃1 + �̃2�
��−

�t2
+ ��̃2 + �1�

��−

�t1
+ �1

��+

�t2
− �2

��+

�t1
+ ��1 + �2 + 2� + �̃2 − �̃1�d̂J = 0. �7�

et us use the flow equations of �7� to explicitly uplift the Iwasawa manifold to a Spin�7�
ightfold, working with the standard complex structure limit of the Iwasawa, and consider its
eformation of the type

J�t1,t2� = ea�t1,t2�e12 + eb�t1,t2�e34 + ec�t1,t2�e56 �8�

nd

��t1,t2� = e�a+b+c��t1,t2�/2�e1 + ie2� Ù �e3 + ie4� Ù �e5 + ie6� . �9�

hen the flow equations �7� imply

�a

�t1
=

�b

�t1
= −

�c

�t1
, 2

�a

�t1
ea+b = 4	1e

�a+b+c�/2, �10�

here 	1���1−�2+ �̃1� / �2�+�2�, which could be satisfied by equality of a ,b ,−c, and

a�t1,t2� =
2

3
ln�3	1e


1t1 + f2�t2�� , �11�

1 being a linear combination of the integration constants that would appear in the integration of
he first set of equations in �10�; similarly,

a�t1,t2� = 2
3 ln�3	2e


1t2 + f1�t1�� , �12�

here 	2���2+�2
˜ +�1� / ��1+2��,

��̃1 + �2�
2

�a

�t2
+

��̃2 + �1�
2

�a

�t1
= 0,

Û��̃1 + ��	2 + ��̃2 + �1�	1 = 0,

e�a+b+c�/2��1

2

�a

�t2
−

�2

2

�a

�t1
� = ��1 + �2 + 2� + �̃2 − �̃1�ec, �13�

Û��1	2 − �2	1�e−�3a/2�+
1 = ��1 + �2 + 2� + �̃2 − �̃1�e−a+
3,

Þ�1	2 − �2	1 = �1 + �2 + 2� + �̃2 − �̃1.

Hence, the metric corresponding to the Spin�7� eightfold obtained by uplifting the Iwasawa
anifold via the flow equations of �7� such that the eightfold is a double G2-fibration over an
nterval, is given by the following solutions to �10�–�13�:

                                                                                                            



w

N
m

a

w
m

S

L

O

i

T

F

033504-5 Flow equations for uplifting half-flat to Spin�7� J. Math. Phys. 47, 033504 �2006�

                        
ds8
2 = dsI�I

2 �t1,t2� + �1 + 	1t1 + 	2t2�
2
3�	dz	2 + 	dv	2� +

1

d�1 + 	2t1 + 	2t2�
2
3

	du − zdv	2, �14�

ith the constraints

�1	2 − �2	1 = �1 + �2 + 2� + �̃2 − �̃1,

	1

	2
= −

�̃1 + �2

�̃2 + �1

, or �̃1 = − �2, �̃2 = − �1. �15�

otice that �14� has the required double G2-fibration structure of diagram 1 by noting that �14� is
ade up of

ds7
2�t1,given t2� = dt1

2 + �	1
� + 	1t1�

2
3�	dz	2 + 	dv	2� +

1

�	1
� + 	1t1�

2
3

	du − z dv	2 �16�

nd

ds7
2�t2,given t1� = dt2

2 + �	2
� + 	2t2�

2
3�	dz	2 + 	dv	2� +

1

�	2
� + 	2t2�

2
3

	du − z dv	2, �17�

hich are the two-parameter G2-metrics of Ref. 4. �In Ref. 4, however, one had set 	i
�=1.� The

etric of �14� also thus has G2-holonomy. �The authors thank J. Maldacena for pointing this out.�

PIN„7… AS A FIBRATION OF A HALF-FLAT OVER IÃ I

Let us now consider the following fibration structure:

�18�

et us assume that the Cayley four-form is given by

�4 = a1�− Ù dt1 + a2�− Ù dt2 + b1�+ Ù dt1 + b2�+ Ù dt2 + cJ Ù J + fJ Ù dt1 Ù dt2. �19�

ne then gets

*8�4 = a1�+ Ù dt2 − a2�+ Ù dt1 − b1�− Ù dt2 + b2�− Ù dt1 + 2cJ Ù dt1 Ù dt2 +
f

2
J Ù J , �20�

mplying that for �4= * 8�4,

a1 = b1, a2 = − b1, c =
d

2
. �21�

he required Cayley four-form is

�4 = a1�− Ù dt1 + a2�− Ù dt2 − a2�+ Ù dt1 + a1�+ Ù dt2 +
f

2
J Ù J + fJ Ù dt1 Ù dt2. �22�
inally, the condition that �4 of �22� is closed gives
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d�4 = a1�d̂�− Ù dt1 + dt2 Ù
��−

�t2
Ù dt1� + a2�d̂�− Ù dt2 + dt1 Ù

��−

�t1
Ù dt2�

+ a1�d̂�+ Ù dt2 + dt1 Ù
��+

�t1
Ù dt2� − a2�d̂�+ Ù dt1 + dt2 Ù

��−

�t2
Ù dt1�

+ f�d̂J Ù J + dt1 Ù
�J

�t1
Ù J + dt2 Ù

�J

�t2
Ù J� = 0. �23�

sing that for half-flat manifolds, d̂JÙJ=d̂�+=0, one thus gets the following flow equations:

a1 d̂�− = − f
�J

�t1
Ù J ,

a2 d̂�− = − f
�J

�t2
Ù J ,

− a1
��+

�t2
+ a2

��−

�t1
+ a2

��+

�t2
+ a1

��+

�t2
= f d̂J . �24�

One can again show that one can explicitly uplift the Iwasawa manifold to a Spin�7� eightfold
t standard complex structure limit of the Iwasawa and consider its deformation of the type as
iven in �8� and �9�. The set of equations that one gets from �24�, are

�a

�ti
=

�b

�ti
= −

�c

�ti
,

�a

�t1
= −

2a1

f
e−�3a/2�+
1,

�a

�t2
= −

2a2

f
e−�3a/2�+
1, �25�

�a1

2

�a

�t2
− a2

�a

�t1
�e�a+b+c�/2 = 0, �−

a2

2

�a

�t2
−

a1

2

�a

�t1
�e�a+b+c�/2 = fec,

hich are satisfied by

a�t1,t2� =
2

3
ln�1 + 3

a1e

1

f
t1 + 3

a2e

2

f
t2� ,

with a1
2 + a2

2 = f2. �26�

hus, the metric for the Spin�7� eightfold is

ds8
2 = dsI�I

2 �t1,t2� + �1 +
a1


a1
2 + a2

2
t1 +

a2


a1
2 + a2

2
t2� 2

3
�	dz	2 + 	dv	2�

+ �1 +
a1


a1
2 + a2

2
t1 +

a2


a1
2 + a2

2
t2�− 2

3
	du − z dv	2. �27�

gain, the metric also has G2-holonomy.
However, it is unlikely to be able to uplift the Iwasawa to a Spin�7� eightfold at the “edge.”

ne notes that at the edge �see Ref. 2 and references therein�, the one-forms, incorporating
A�t1,t2� 1 B�t1,t2� 3 4 C�t1,t2� 5 6
1,2-dependent deformations, are �=−e f , �=e �f + if �, �=e �e + ie �, and J
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�i /2� ��Ù �̄+�Ù �̄+�Ù �̄and �=�Ù�Ù��. The one-forms f i , i=1, . . . ,4 are defined via f i

Pj
iej, where P�SO�4� matrix, and one writes it as� X

0
0
Y

�, where X ,Y �SU�2�, i.e.,

�
P1

1 P2
1 0 0

P1
2 P2

2 0 0

0 0 P3
3 P4

3

0 0 P3
4 P4

4
� ,

here P1
1P2

2− P2
1P1

2= P3
3P4

4− P4
3P3

4=1. The flow equations d̂�−=−�J /�t1ÙJ=−�J /�t2ÙJ implies A
ives the same result after differentiation with respect to t1 or t2. Unlike the standard complex
tructure limit, there are common components to �+ and �− in the edge. One can show that the
ther flow equation

a1
��−

�t2
− a2

��−

�t1
− a2

��+

�t2
− a1

��+

�t1
+ f d̂J = 0

ecomes

eA+B+C��D−�P1
1P3

3 + P1
2P3

4� − D+�P1
2P3

3 − P1
1P3

4��e136 + �D−�P1
1P4

3 + P1
2P4

4� − D+�P1
2P4

3 − P1
1P4

4��e146

+ �D−�P2
1P3

3 + P2
2P3

4� − D+�P2
2P3

3 − P2
1P3

4��e236

+ �D−�P2
1P4

3 + P2
2P4

4� − D+�P2
2P4

3 − P2
1P4

4��e246

+ �D−�− P1
1P3

4 + P1
2P3

3� − D+�− P1
1P3

3 − P1
2P3

4��e135

+ �D−�− P1
1P4

4 + P1
2P4

3� − D+�− P1
1P4

3 − P1
2P4

4��e145

+ �D−�− P2
1P3

4 + P622P3
3� − D+�− P2

1P3
3 − P2

2P3
4��e235

+ �D−�− P2
1P4

4 + P2
2P4

3� − D+�− P2
1P4

3 − P2
2P4

4��e246

=− e2C�e135 + e425 − e614 − e623� , �28�

where D+��a2�� /�t2�+a1�� /�t1�� ABC and D−��a1�� /�t2�−a2�� /�t1��ABC�, which implies
hat one will overconstrain the matrix P �from the first set of flow equations, one sees that D−

0, and hence one gets from �28�, eight equations in the six parameters Pj
i�. Hence, the uplift of

he edge to a Spin�7� is quite likely to be impossible.

OSSIBILITY OF INTRODUCING WEIERSTRASS ELLIPTIC FUNCTIONS IN SPIN„7…
IGHTFOLDS INCLUDING AN S1

We now give some very compelling evidence in support of the possibility of inclusion of
eierstrass elliptic functions in those Spin�7� eightfolds which are of the type X7�S1, X7 being a

evenfold of SU�3� structure.
Seven-dimensional manifolds of G2-holonomy or SU�3� structure are required for getting N

1 supersymmetry in four dimensions from the 11-dimensional M-theory. Similarly, Spin�7�
ightfolds are required for getting N=1 supersymmetry in three dimensions from �the 11 dimen-
ional� M-theory. One could explore the option of getting compact Spin�7� uplifts using S1’s
nstead of intervals by using the same flow equations as derived in this paper, but further demand-

ng periodicity with respect to t1 and t2, of the solutions.
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Assuming the existence of Spin�7� eightfolds of the type X7�S1, one could first argue the
xistence of a G2-structure by noting the existence of a singlet in the decomposition under

2�Spin�7� of the 8 in the fundamental spinorial representation �8→7+1�. Further, assuming
hat Majorana-Weyl spinors �	=	+ � 	−, the ± signs referring to the chiralities� on the Spin�7�
ightfold are nowhere vanishing, there is a further reduction of the structure group to G2+�G2−

SU�3�, the two G2’s corresponding to the two chiralities of 	±.
Having established the connection between �the use of� Spin�7� eightfolds and sevenfolds with

U�3�-structure, let us now move to the main theme of this section—the possibility of inclusion of
eierstrass elliptic functions in sevenfolds with SU�3� structure and thereby Spin�7� eightfolds of

he type X7�S1.
Using the results of Ref. 5, explicit metrics for sevenfolds with SU�3� structure were obtained.

he “shape” deformation functions “A�z , z̄ ;v , v̄�” and “B�z , z̄ ;v , v̄�,” as indicated in Ref. 4, could
lso be related to elliptic functions—the seven-dimensional SU�3� structure does not impose too
any constraints if one allows wrapped M5-branes in the analysis. The following are some

nteresting connections between some concepts, thereby motivating further the idea of having
ingular uplifts to seven dimensions of the Iwasawa manifold, involving elliptic functions.

�i� The D7-brane metric �relevant to “cosmic strings” in Ref. 8� is given by

ds10
2 = ds8

2 + �2�z�	����z��	4	z	−N/6	dz	2, �29�

where �2� Im �, �=a+ ie−�, a�axion and ��dilaton, �� Dedekind eta function �see
below�, N� the number of D7-branes, and z is the complex coordinate transverse to
the D7-brane. Hence, one has one explicit example of a metric involving �, which is
related to theta functions, as indicated below.

�ii� The Jacobi theta function9 defined for two complex variables z and � where Im �0,
��z :��=−�

� ei�n2�+2�inz. The theta function is related to the Dedekind eta function via
��0;��=�2���+1� /2� /���+1�.

�iii� The Weierstrass elliptic function9 is a doubly periodic function with periods 2�1 and
2�2 such that �1�2 is not real,

P�z;�1,�2� =
1

z2 + 
m,n�Z\�0,0�

� 1

�z − 2m�1 − 2n�2�2 −
1

�2m�1 + 2n�2�2� .

P satisfies the following cubic equation:

�dP�z;��
dz

�2

= P3�z;�� − g2P − g3,

where g2=60m,n�Z\�0,0��1/ �2m�1+2n�2�4�, g3=140m,n�Z\�0,0��1/ �2m�1+2n�2�6�.
This is an equation of a torus, which could be related to the Riemann surface that is
referred to in Ref. 5. The torus degenerates, i.e., becomes singular along the dis-
criminant locus given by �=g2

3−27g3
2=0. There is the following relation between the

discriminant locus and the Dedekind eta function: �= �2��12�24. The following re-
lations are true: P�z ;�1=1 ,�2=��=−�d2 /dz2��11�z ;��+ constant
=�2�2�0;���10

2 �0;����10
2 �z ;�� /�11

2 �z ;���+e2���, where e2 is one of the three roots
ei=1,2,3, of the cubic equation 4t3−g2t−g3=0, and P��1�=e1, P��2�=e2, P�−�1−�2�
=e3. �The ei’s are given by e1���= ��2 /3���4�0;��+�01

4 �0;���, e2���=−��2 /3�
���4�0;��+�4�0;��� e3���= ��2 /3���10

4 �0;��−�4�0;���, where the three other theta
functions are defined as �01�z ;��=��z+ 1

2 ;�� �10�z ;��=ei��/4�+i�z��z+ �� /2� ;��
�11�z ;��=ei��/4�+i��z+ 1

2
���z+ ���+1� /2� ;��.�

�iv� Consider a holomorphic function f�z� and a ,b�R. Define two operators Sa and Tb as

follows: �Saf��z�= f�z+a�, �Tbf��z�=ei�b2�+2i�bzf�z+b��. Then S ,T and a phase factor
form the generators of the nilpotent Heisenberg group central to the group-theoretic way

of understanding the Iwasawa manifold. If U�
�C ,a ,b��H�Heisenberg group, then
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U�
,a,b�f�z� = 
�Sa � Tbf��z� = 
ei�b2�+2i�bzf�z + b� + a� ,

and U is referred to as the theta representation of the Heisenberg group.10

�v� �Inverse� Elliptic functions, as shown in Ref. 11, naturally figure in the hyper-Kähler
metrics in twistor spaces obtained by deformations of Atiyah-Hitchin spaces and Leg-
endre transform. Lets elaborate upon this a little.

Deformations of Atiyah-Hitchin manifolds �written as hypersurface in C3: x2+y2z=1� of the
ype x2z+ �yz+a�2=z2+a2 have been considered. The twistor threefolds are obtained as holomor-
hic sections ��OCP1�4�� with the following similar equation: x2�������+ �y�������+p����2

����+p2���, where � is ��OCP1�4�� and the deformation p is ��OCP1�2��, and � is a CP1-valued

oordinate. The reality involution: �̄�2m����= �−�m��̄��2m��−1/ �̄�,where ��2m���� is ��OCP1�2m��,
mplies that ���� has five independent parameters, i.e., ����=z+v�+w�2− v̄�3+ z̄�4 �z ,v�C and
�R� and the deformation p���=a+b�− ā�2 ,a�C ,b�R. An SL�2,C� transformation: �

�a�+b� / �−b�+ ā�, 	a	2+ 	b	2=1 can be used to restrict p���= b̃�. For genericvalues of the five
eal parameters in ����, one gets eight points on an elliptic curve, �2=��z��, corresponding to the
oots of ����+p2���=0—the divisor for four of these eight should correspond to ��Lm�, where Lm

re holomorphic line bundles over TCP1 with e−m	/� �	 being a fiber coordinate� the transition
unctions. The splitting of the eight roots into two groups of four each is determined by the
ollowing condition: ���

�+��
�−�−1/�̄

� −�
−1/�̄

� ��d� /
�����=2; the roots of ����+p2���=0 are � ,� ,

1 / �̄ ,−1/ �̄.Now, if x1 ,x2 are roots of ����+ b̃�=0 after the SL�2,C� transformation,

�����
p���

� →
�→ a�+b

−b̄�+a�
r1�3 − r2�2 − r1�

�− b̄� + ā�4

b̃�a� + b�

�− b̄� + ā�
� ,

1 ,r2�R, then the aforementioned constraint can be rewritten in terms of inverse elliptic func-
ions,

P−1�x1 −
r2

3r1
� + P−1�x2 −

r2

3r1
� − P−1�−

1

x̄1

−
r2

3r1
� − P−1�−

1

x̄2

−
r2

3r1
� =

m
r1

2
,

here the inverse elliptic function P−1�z����
z �d� /
4�3−g2�−g3�. The constraint is also equiva-

ent to �F /�w=0 for a suitable constraint function F defined in terms of appropriate contour
ntegrals. The Kähler potential is then given in terms of the Legendre transform of

:K�z , z̄ ;�F /�v ,�F̄ /�v̄�=F�z , z̄ ;v , v̄ ;w�−v��F /�v�− v̄��F̄ /�v̄� evaluated at the constraint,
F /�w=0.

Thus, one sees the existence of �inverse� elliptic functions in the hyper-Kähler metrics in
wistor spaces obtained using deformations of Atiyah-Hitchin spaces and Legendre transforms.

To summarize, we have obtained the relevant flow equations for uplifting half-flat manifolds
o Spin�7� eightfolds by two methods—first, by considering a double G2 �constructed from the
alf-flat� fibration over an interval, and the second, by considering a fibration of the half-flat over
he product of two intervals. We were able to explicitly uplift the Iwasawa at the standard complex
tructure limit in the moduli space of almost complex structures on the Iwasawa. We gave a
lausibility argument against the same for the second method, at the “edge.” We also gave moti-
ating reasons for considering singular uplifts involving doubly periodic functions—the physical

nterpretation of the same is not yet clear.
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We provide a simple method for the calculation of the terms cn in the Zassenhaus
product ea+b=ea · eb ·�n=2

� ecn for noncommuting a and b. This method has been
implemented in a computer program. Furthermore, we formulate a conjecture on
how to translate these results into nested commutators. This conjecture was
checked up to order n=17 using a computer. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2178586�

. INTRODUCTION

The product of the exponentials of two noncommuting variables x and y may be expressed in
erms of the Baker-Campbell-Hausdorff �BCH� series

exey = ex+y+�n=2
� zn. �1�

he terms zn of the sum may be written as linear combinations of words W of length n consisting
f letters x and y,

zn = �
W�s1,. . .,sn�

z�W�W�s1, . . . ,sn� , �2�

here each word W�s1 , . . . ,sn� is a product of n factors si=x or si=y. The sum in Eq. �2� is over
ll possible different words, i.e., the sum over W has in principle 2n terms. Some of these terms
anish, because the corresponding coefficient z�W� equals zero. The coefficients z�W� may be
etermined in various ways. A simple method to determine these coefficients has been suggested
ecently by Reinsch.1 His method is easily implemented in a computer program.1,2 Another
ethod was presented by Goldberg,3 and his method was implemented in a program by Newman

nd Thompson.4

The terms zn of the BCH series may be expressed as linear combinations of nested commu-
ators of x and y. This was originally shown by Baker, Campbell, and Hausdorff.5 However,
xplicit determination of the coefficients was difficult for general n. Dynkin6,7 showed that the
oefficients are in fact easily obtained, so that the zn can be represented as

zn =
1

n
�

W�s1,. . .,sn�
z�W���¯��s1,s2�,s3�, . . . �,sn� , �3�

here ��¯��s1 ,s2� ,s3� , . . . � ,sn� is a direct translation of the word W into a left normal nested
ommutator, i.e., the order of the letters in the commutator and the word are the same. The
epresentation of the zn in terms of commutators is not unique due to the Jacobi identity

�Electronic mail: mehr-davon@gmx.de
�
Electronic mail: michael.weyrauch@ptb.de
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�x ,y� ,z�+ ��y ,z� ,x�+ ��z ,x� ,y�=0 and similar identities for higher order commutators. Some of
them are discussed by Oteo.8 Oteo also formulates a conjecture concerning another translation of
he BCH terms into a linear combination of commutators. This translation consists of fewer terms
han Dynkin’s translation, but a general proof of its validity is not known to us. We have checked
he validity of Oteo’s conjecture up to order n=17 on a computer.

It was first shown by Zassenhaus9 that there exists a formula analogous to the BCH formula
or the exponential of the sum of two noncommuting variables a and b,

ea+b = ea · eb · �
n=2

�

ecn, �4�

hich is known as the Zassenhaus product formula. The individual terms cn will be called the
assenhaus exponents in the following. They may also be written in terms of words of length n
onsisting of the letters a and b, i.e.,

cn = �
W�t1,. . .,tn�

c�W�W�t1, . . . ,tn� �5�

ith ti=a or ti=b. It is the goal of this paper to provide a simple method for the calculation of the
oefficients c�W� as well as to propose a suitable computer implementation. Our method has been
eveloped in analogy to the procedure proposed by Reinsch1 for the BCH terms.

The Zassenhaus exponents may also be obtained in terms of nested commutators as shown,
.g., in Refs. 9 and 10. Dynkin’s theorem6 provides a �generally valid� translation of words into
ested commutators, if such a translation exists. Therefore, it is possible to directly translate the
xpressions for the Zassenhaus exponents �5� into a linear combination of left normal nested
ommutators as in Eq. �3�. In analogy to the conjecture by Oteo8 for the BCH terms, we formulate
ere a conjecture concerning another translation of words into left normal nested commutators for
he Zassenhaus exponents involving fewer terms than Dynkin’s translation. Using a computer, we
ound this conjecture to be valid for the Zassenhaus exponents up to order n=17, but at this time
e cannot provide a general proof.

I. THE ZASSENHAUS EXPONENTS

In this section we state a corollary which allows a recursive determination of the Zassenhaus
xponents.

Let �1 , . . . ,�n be commuting variables. In terms of these variables we define three upper
riangular �n+1�� �n+1� matrices H, K, and L with matrix elements given by

Hij =
1

�j − i�!
· �

k=i

j−1

�1 + �k�, Kij =
�− 1�i+j

�j − i�!
, �6�

Lij =
�− 1�i+j

�j − i�!
· �

k=i

j−1

�k, �7�

or 1� i� j�n+1 and zero otherwise. These matrices may be expressed as exponentials of the
n+1�� �n+1� matrices P and Q defined by

Pij = �i+1,j, Qij = �i+1,j�i, �8�

here �ij is the Kronecker symbol,

H = exp�P + Q�, K = exp�− P�, L = exp�− Q� . �9�
urthermore, we define an operator U which operates on products p of the variables �i,
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p = �1
�1�2

�2�3
�3
¯ �n

�n

ith �i� �0,1� for i=1, . . . ,n. The operator U “translates” such a product p into a word consisting
f letters a and b according to the following rule: If �i=0, �i

�i is replaced by an a, and if �i=1, �i
�i

s replaced by a b. The index i determines the position of the letter in the word. For example, for
=6 the product p=�1

1�2
0�3

1�4
1�5

0�6
0=�1�3�4 is translated as follows:

U�p� = U��1
1�2

0�3
1�4

1�5
0�6

0� = U��1�3u4� = babbaa .

he operator U is a vector-space isomorphism mapping the space of polynomials in the � variables
with �i=0 or �i=1� into the space of words of length n.

Corollary 1: The Zassenhaus exponent c2 defined in Eq. (4) is obtained in terms of the 3
3 matrices L, K, H as c2=U�L ·K ·H�1,3. For n�2, the Zassenhaus exponents cn are given in

erms of the corresponding �n+1�� �n+1� matrices as

cn = U��e−Cn−1 · ¯ · e−C2 · L · K · H�1,n+1� . �10�

ere, Cm �1�m�n� are the Zassenhaus exponents written in terms of the �n+1�� �n+1� matrices
P and Q, and the index 1, n+1 indicates the upper right element of a matrix.

This corollary permits a recursive determination of the Zassenhaus exponents. In fact, due to
he special structure of the matrices P and Q all exponentials in Eq. �10� are obtained as finite

sums, and the whole calculation can be done in a finite amount of steps either by hand or on a
computer. A suitable computer implementation will be presented in Sec. IV.

Examples: Before proving Corollary 1 we work out a number of examples.
For n=2 we need to use the 3�3 matrices given by

L = 	1 − �1
1
2�1�2

0 1 − �2

0 0 1

, K = 	1 − 1 1

2

0 1 − 1

0 0 1

 ,

H = 	1 �1 + �1� 1
2 �1 + �1��1 + �2�

0 1 �1 + �2�
0 0 1


 .

hen,

L · K · H = 	1 0 1
2�1 − 1

2�2

0 1 0

0 0 1

 ,

nd the second Zassenhaus exponent takes the form

c2 = U�L · K · H�1,n+1 = U� 1
2�1 − 1

2�2� = 1
2U��1

1�2
0 − �1

0�2
1� = 1

2 �ba − ab� . �11�

For n=3 we need to use the 4�4 matrices,

L =	
1 − �1

1
2�1�2 − 1

6�1�2�3

0 1 − �2
1
2�2�3

0 0 1 − �3 
 ,
0 0 0 1
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K =	
1 − 1 1

2 − 1
6

0 1 − 1 1
2

0 0 1 − 1

0 0 0 1

 ,

H =	
1 �1 + �1�

1

2
�1 + �1��1 + �2�

1

6�
i=1

3

�1 + �i�

0 1 �1 + �2�
1

2�
i=2

3

�1 + �i�

0 0 1 �1 + �3�
0 0 0 1


 ,

nd the matrices P and Q defined in Eq. �8�,

P =	
0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 and Q =	

0 �1 0 0

0 0 �2 0

0 0 0 �3

0 0 0 0

 .

t follows from Eq. �11� that

e−C2 = exp�−
1

2
�Q · P − P · Q�� =	

1 0 1
2 ��2 − �1� 0

0 1 0 1
2 ��3 − �2�

0 0 1 0

0 0 0 1

 .

herefore, the third Zassenhaus exponent takes the form

c3 = U�e−C2 · L · K · H�1,n+1

= U� 2
3�1�3 − 1

3�2 − 1
3�2�3 − 1

3�1�2 + 1
6�1 + 1

6�3�
= 2

3bab − 1
3aba − 1

3abb − 1
3bba + 1

6baa + 1
6aab .

n an analogous way one obtains for c4,

c4 = − 1
24aaab + 1

8aaba + 1
8aabb − 1

8abaa − 1
4abab − 1

8abbb + 1
24baaa + 1

4baba + 3
8babb − 1

8bbaa

− 3
8bbab + 1

8bbba .

hese results all agree with the standard results given in the literature, see, e.g., Ref. 11.

II. PROOF OF COROLLARY 1

The �n+1�� �n+1� matrices P and Q have nonzero elements only in their first superdiagonal.
product of m factors P or Q is a �n+1�� �n+1� matrix which contains nonzero elements only

in the mth superdiagonal. In particular, a product of n factors P or Q has only one nonzero element
in its upper right corner. A product of k factors P or Q with k�n is a null matrix.

Each Zassenhaus exponent cn is a linear combination of words of length n. As a consequence,

n is a �n+1�� �n+1� matrix, which has a nonzero entry only in its upper right-hand corner, and

or each n�N,
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eP+Q = eP · eQ · �
i=1

n

eCi �12�

s obtained in terms of a finite product with n factors. Therefore, one obtains

eCn = e−Cn−1 · ¯ · e−C2 · e−Q · e−P · eP+Q. �13�

he exponentials can be calculated from a finite sum.
Since Cn only has one nonzero element in its upper right-hand corner, it holds that eCn = I

Cn, and we find

�Cn�1,n+1 = �� c�A1 ¯ An�A1 ¯ An�1,n+1
= �eCn�1,n+1 = �e−Cn−1 · ¯ · e−C2 · e−Q · e−P · eP+Q�1,n+1,

�14�

here Ai= P or Ai=Q, and the sum runs over all different matrix products A1¯An. The next step
s to show that the upper-right element of a product matrix A1¯An is given by a product of �i, and
hat the indices on the �i variables determine the positions of the Q’s in the matrix product

1¯An. This has been shown in Ref. 1 and is not repeated here. Applying the operator U on this
roduct of �i then transforms the result Eq. �14� into a linear combination of words in terms of the
etters a and b. This proves Corollary 1.

V. COMPUTER IMPLEMENTATION

The following Mathematica program implements Corollary 1. Calling it will return the Zas-
enhaus exponent cn in terms of the variables a and b.

The program consists of three parts: First the matrices L, K, H, P, and Q are defined. Then the
roduct of exponentials as required by Corollary 1 is calculated �starting from n=2�, and finally
he translation U is implemented. The program works with strings in order to prevent Mathematica
rom sorting the words alphabetically.
H[n�,a�,b�]ªModule[{C,L,K,H,P,Q,m,t,r,i,j,k,u,z},
[2]=(t[1]ˆ2 t[2])/2	(t[1] t[2]ˆ2)/2;
or [m=2, m<=n, m++,
=Table[(	1)ˆ(i+j)/(j	i)! Product[t[k],{k,i,j	1}], {i,m+1},

{j,m+1}];
=Table[(	1)ˆ(i+j)/(j	i)!, {i,m+1}, {j,m+1}];
=Table[1/(j	i)! Product[(1+t[k]), {k,i,j	1}], {i,m+1}, {j,m+1}];
=Table[KroneckerDelta [i+1,j], {i,m+1}, {j,m+1}];
=Table[KroneckerDelta [i+1,j] t[i], {i,m+1}, {j,m+1}];
[m]=Expand[

((Dot @@ Table[MatrixExp[	Sum[
r=(List @@ C[m	u][[z]]) /. {t[i�]→P, t[i�]ˆ2→Q};
r[[1]] (Dot @@ Take [r,	Length[r]+1]),
{z,Length[C[m	u]]}]],
{u,1,m	2}]) .L.K.H) [[1, m+1]] Product [t[j], {j,m}]]];

um[r=(List @@ C[n][[k]])
/. {t[i�]→ToString[a], t[i�]ˆ2 → ToString[b]};
r[[1]] (StringJoin @@ Take [r,	n]), {k, Length [C[n]]}]];

More elegant but less readable Mathematica implementations than the one given above are
ossible, e.g., using NestList instead of a For loop. Since the Zassenhaus exponents for larger n
re rather lengthy expressions, the computer needs a significant amount of memory for this
alculation. On a standard personal computer with 2 GB of memory we could obtain the Zassen-

aus exponents up to n=17 within about one hour of computer time.
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. EXPRESSION IN TERMS OF COMMUTATORS

In the introduction we briefly discussed Dynkin’s translation6,7 of words into commutators,
hich is applicable, whenever such a translation exists. Since it is known that a representation in

erms of commutators exists for the Zassenhaus exponents,9,10 we may directly use Dynkin’s
rescription in order to obtain an explicit representation of the Zassenhaus exponents in terms of
ommutators. We checked the validity of this procedure using a computer up to order n=17. A
ranslation for the BCH terms into commutators involving fewer terms than Dynkin’s prescription
as proposed by Oteo.8 To our knowledge the validity of this translation has never been proved in
eneral. Oteo showed it to be valid up to order n=10, and we checked this conjecture up to order
=17 on a computer.

In analogy to Oteo’s prescription for the BCH terms, we now write down an expression for the
assenhaus exponents

cn = �
W�t1,. . .,tn�

c�W�W�t1, . . . ,tn� �15�

n terms of commutators. The words W consist of letters a and b; na�W� counts the number of a’s
n that word. Analogously, nb�W�=n−na�W� counts the number of b’s in the word W. We conjec-
ure that the Zassenhaus exponent cn may be expressed in terms of the left normal commutator as
ollows:

cn = �
W�t1,. . .,tn�
t1=b,t2=a

c�W�
nb�W�

��¯��t1,t2�,t3�, . . . �,tn� . �16�

ere we only sum over words starting with the letters ba. Similarly, one may write

cn = �
W�t1,. . .,tn�
t1=a,t2=b

c�W�
na�W�

��¯��t1,t2�,t3�, . . . �,tn� �17�

nd only sum over words starting with the letters ab.
We checked this conjecture up to order n=17 using Mathematica and compared results up to

rder n=6 with expressions given in the literature, e.g., in Ref. 11.
Example: For n=4 one finds the following representation of the Zassenhaus exponent in terms

f words

c4 = − 1
24aaab + 1

8aaba + 1
8aabb − 1

8abaa − 1
4abab − 1

8abbb + 1
24baaa + 1

4baba + 3
8babb − 1

8bbaa

− 3
8bbab + 1

8bbba .

ccording to our conjecture this may be translated into nested commutators as

c4 = 1
24���b,a�,a�,a� + 1

8 ���b,a�,b�,a� + 1
8 ���b,a�,b�,b�

= − 1
24���a,b�,a�,a� − 1

8 ���a,b�,a�,b� − 1
8 ���a,b�,b�,b� .

his result agrees with results given in the literature �e.g., in Ref. 10�.

I. CONCLUSION

We developed a method for the calculation of the Zassenhaus exponents cn in the Zassenhaus
roduct formula ea+b=ea · eb ·�n=2

� ecn for noncommuting a and b. The method is given in Corollary
, from which we obtain the Zassenhaus exponents in terms of words. It appears that our method
s simpler and faster than previous methods �see, e.g., Ref. 10�. We provide a suitable computer

mplementation.
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We would like to mention that the method presented here can be easily generalized to the
assenhaus product formula for q-deformed exponentials. �The Zassenhaus formula for
-deformed exponentials is discussed, e.g., in Ref. 11 and references therein.�

Furthermore, we formulated a conjecture on how to translate the Zassenhaus exponents given
n terms of words into a form in terms of left normal nested commutators. This representation
nvolves fewer terms than a translation based on Dynkin’s theorem7 and has been found to be valid
or Zassenhaus exponents up to order n=17 using a computer. We expect a proof of our conjecture
o be possible along the lines of Dynkin’s proof for his representation of the BCH formula in terms
f commutators. This proof shows essentially by direct calculation that the conjectured commu-
ator representation is equivalent to the representation in terms of words. We will address this issue
n a forthcoming paper.
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The condition for E=0 to be an eigenvalue of the operator �−∆+m2−m+�V is
obtained through the use of the Birman-Schwinger principle �Theorem 3.2�. By
setting E=−�2 and using the analyticity of the corresponding Birman-Schwinger
kernel �Theorem 3.1�, the series development of �−1 is obtained up to second order
on � �Theorem 4.1�. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2179049�

. INTRODUCTION

The Birman-Schwinger principle2,24 has been extensively used in several branches of physics
nd mathematics. The original motivation for its implementation was the possibility of having
igenvalue counting functions for the Schrödinger equation. In this approach, the potential term is
aken to be of the form �V with � being a constant and V a potential satisfying a certain number
f properties �e. g., V is nonpositive�. The eigenvalue counting functions thus obtained will depend
n �, and in general, for a given operator O, they can be defined by the following expression:

N��� = �number of µ j � Spec�O�,µ j � �� .

esearch on this class of functions was actually initiated by Weyl for the Laplace operator ∆,27,28

ith an emphasis in the following years on the asymptotic expression for N��� when �→�.5,20,26

ore recently, the use of microlocal analysis has indeed allowed a more detailed study of asymp-
otics with some proposals to replace eigenvalue counting functions by spectral shift functions.10

Generalizations of the method itself have also been proposed to deal with certain physical
ituations arising in quantum mechanics6 and modified versions have been formulated, for ex-
mple, in phonon physics where perturbations on acoustic and electromagnetic waves can be
escribed through the presence of exponentially localized eigenmodes of their corresponding
perators,8,9 and where an analogy with the appearance of bound states for the Schrödinger
quation can also be established.

In Ref. 15 the eigenvalue equation

�− ∆ + �V�� = E� �1�

as studied through the use of the Birman-Schwinger principle and some conditions expressing
he fact that the solutions to the Schrödinger equation are in L2�R3� were obtained. A related study
as also done for the Dirac operator in Ref. 14. In both cases the potential V were assumed to

atisfy a certain set of properties. In this work we shall apply the same techniques to the case of
he pseudodifferential operator �−∆+m2−m, which was studied by Herbst in the presence of a
oulomb potential.12 This operator had also been used in other contexts such as hadronic
hysics.25,7,18 For a discussion of several aspects of this relativistic operator and its relation to the
irac operator we refer to Refs. 16, 11, 18, and 17.

In the next section we mention some basic facts regarding the Birman-Schwinger principle.
ection III deals with the analyticity of the Birman-Schwinger kernel for �∆+m2−m �Theorem
.1�. In this section we also state a theorem �Theorem 3.2� providing the condition under which
=0 is an eigenvalue of �∆+m2−m+�V, with V a nonpositive potential with compact support.

−1
he series expansion of � up to second order on � is discussed in Sec. IV and the corresponding

47, 033506-1022-2488/2006/47�3�/033506/14/$23.00 © 2006 American Institute of Physics
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xpressions for the coefficients are given �Theorem 4.1�. Several expressions used in the main text
re derived in Appendix A and Appendix B. Appendix C contains a simple estimate on
��−∆+m2−E�−1�x��.

I. THE BIRMAN-SCHWINGER PRINCIPLE

For convenience we recall the steps leading to the Birman-Schwinger principle and how it can
e used in order to extract some information about eigenvalues. One begins from a general
igenvalue equation of the form

H� = �H0 + �V�� = E� �2�

ith H0 an operator representing the kinetic energy. We shall suppose in the following that the
otential V�C0

��R3� and takes negative values. The above equation then can be recast in the form

� = ��H0 − E�−1�V�� .

y multiplying this equation by �V�1/2 and defining �ª�V�1/2� one obtains

�K� = �, K = �V�1/2�H0 − E�−1�V�1/2. �3�

he physical meaning behind this rewriting is that the operator K has an eigenvalue �0
−1 if and

nly if H has an eigenvalue E=E0 for �=�0, the multiplicity in both cases being the same. One
an think of this in some sense as transformation which preserves the multiplicity among the
igenvalues of these two different operators.

It is clear that the main feature of the method is to interchange the role played by the constant
and the energy E: the usual approach in quantum mechanics when dealing with an equation as

q. �1� is to consider the potential term as being a perturbation and under suitable assumptions, the
echniques of perturbation theory can then be employed to obtain a �convergent� solution for the
igenfunctions � and the eigenvalues E in terms of the perturbation parameter �. The Birman-
chwinger principle on the other hand allows one to consider the energy E as a free parameter on
hich a series expansion for � can be obtained. In fact, for most practical reasons it is useful to set
=−�2 and consider a series development on powers of the parameter � �which is identified with

he fine structure constant� as

������−1 = �0
−1 + a� + b�2 + ¯ . �4�

fter this is done, the question is to know if one can solve the above relation for � in terms of �
nd if the resulting series obtained in this way is analytic. As outlined in Ref. 15, most of the steps
eading to Eq. �4� pose no difficulties on this regard but a careful analysis must be done for the
econd part.

II. KERNEL IN COORDINATE SPACE

In this section we study some properties of the Birman-Schwinger kernel for the operator
−∆+m2−m. The integral kernel is given by Eqs. �1� and �2� in Appendix A, namely

K�x,y� = �V�x��1/2 m

4��x − y�	
1 −
µ2

m2�1/2

e−µ�x−y� +
2

�
F�m�x − y�;µ���V�y��1/2. �5�

he potential V is assumed to be nonpositive and with compact support �. The parameter µ is
etermined from µ2=m2− �m+E�2=−2mE−E2. By setting E=−�2, one has µ2=2m�2−�4; this
arametrization will be used at the end of this section and in Sec. IV.

In order to use perturbation theory on this operator, it is necessary to prove that it depends
nalytically on the parameter µ. For convenience we shall set m=1 in the following. First, if one
onsiders the case of real µ, it is more or less clear that Eq. �5� makes only sense as long as 0

µ�1, and thus one can try to look for analyticity inside the disc �µ��1 in the complex plane
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we shall see that this is not an arbitrary choice for the problem�. Let us then consider �f ,Kg� for
f ,g�L2. There are four different integrals over R3	R3 to be considered:

�i� �1 − µ2�1/2
 f , �V�1/2e−µ�·�

� · �
�V�1/2g� ,

�ii� 
 f , �V�1/2K1�� · ��
� · �

�V�1/2g� ,

�iii� �1 − µ2�
 f , �V�1/2e−µ�·�
0

�·�

cosh�µz�K0�z�dz �V�1/2g� ,


�iv� �1 − µ2�
 f , �V�1/2 sinh�µ� · ��
�·�

�

e−µzK0�z�dz�V�1/2g � .

o deal with them we shall argue in the same way as in Ref. 14 for the Dirac operator. The
rgument is based on writing �f ,Kg� as a sum of integrals of the form

c�µ�   f�x�
h�x,y�
�x − y�2

e−µ�x−y�g�y�d3xd3y

ith h�x ,y� a function in L��R3	R3� having compact support and c�µ� an analytic function of µ.
y using Sobolev’s inequality one then finds that f�x��h�x ,y� / �x−y�2�g�y��L1�R3	R3�. The fact

hat K as an operator can be bounded by operators with compact support in L2 means that one is
ealing with a meaningful object. In this way the whole problem of an analytic extension on µ is
ontained in the expression of the coefficients c�µ� and the exponential e−µ�x�.

For the first integral one immediately has c�µ�= �1−µ2�1/2 and h�x ,y�= �V�x��1/2�x−y��V�y��1/2.
n the second case obviously there is no dependence on µ and it suffices to note that with the
unction h�x ,y�= �V�x��1/2�x−y�K1��x−y���V�y��1/2, which has compact support and is in L��R3

R3�, one has f�x��h�x ,y� / �x−y�2�g�y��L1�R3	R3�.
The third and fourth integral require more care: first, for the third integral one must consider

�µ�= �1−µ2�, which is analytical on µ, and a function

hµ�x,y� = �V�x��1/2�x − y�
0

�x−y�

cosh�µz�K0�z�dz�V�y��1/2.

owever, it is clear that hµ�x ,y��F1�µ��V�x��1/2�x−y��V�y��1/2 where

F1�µ� = 
0

�

cosh�µz�K0�z�dz =
�

2�1 − µ2

s an elementary calculation shows. This also points to the necessity of considering �µ��1.
ne can now apply Sobolev inequality to the product �V�x��1/2�x−y��V�y��1/2, obtaining thus that

f�x��hµ�x ,y� / �x−y�2�g�y��L1�R3	R3�. Furthermore, by writing cosh�µz� in terms of exponen-
ials functions, it is clear that hµ�x ,y� is analytical on µ.

Consider now the fourth integral: one has as before c�µ�= �1−µ2� and

hµ�x,y� = �V�x��1/2�x − y�sinh�µ�x − y��
�x−y�

�

e−µzK0�z�dz�V�y��1/2.

ne can now see that hµ�x ,y��
1
2c�V�x��1/2�x−y��V�y��1/2, where c=�0

�K0�z�dz=� /2, using the fact
−µz −µa � �
hat e 
e for z� �a ,�� and that �a K0�z�dz
�0 K0�z�dz for a�0. Sobolev’s inequality then
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eads as in the previous case to f�x��hµ�x ,y� / �x−y�2�g�y��L1�R3	R3�. As before, the function hµ

s analytical on µ since it involves in a simple way analytical functions of µ in its definition.
From the previous considerations we have the following.
Theorem 3.1: Let f ,g�L2�R3� then �f ,Kg� where the kernel K�x ,y� is given by Eq. (5) is

nalytical in the sense of norm.
Proof: Since we already know that �f ,Kg� is analytical on µ, Theorem 3.12 in Ref. 13 can be

sed to deduce that K is indeed analytic in the sense of norm. �

One should notice that the fact that one is considering a potential V with compact support �
s fundamental for this argument to work. Let us now proceed to finding under which conditions
s 0 an eigenvalue of Eq. �2�. On general grounds one can argue in the following way: given an
perator O with inverse O−1, consider a function � solution to the equation

l0� = µ0� , �6�

here l0= �V�1/2O−1�V�1/2. This equation is similar in structure to Eq. �3�. Let us now define a
unction u through the relation

u = O−1�V�1/2� .

his function satisfies the integral equation

u = O−1�V�1/2� = µ0
−1O−1�V�1/2�V�1/2O−1�V�1/2� = µ0

−1O−1�V�u ,

amely

u�x� = µ0
−1

supp V

O−1�x,y��V�y��u�y�d3y . �7�

n the case of a potential V with compact support, let us say �, one obtains a development in
eries for large �x� of the previous expression as

u�x� = µ0
−1�x�−1

�

c1�y��V�y��u�y�d3y + µ0
−1�x�−2

�

c2�y��V�y��u�y�d3y + ¯ �8�

nd therefore


�

c1�y��V�y��u�y�d3y = µ0
�

c1�y��V�y��1/2��y�d3y = 0 �9�

ust be imposed in order to have u�L2�R3�. In the above the functions c1�y� and c2�y� are
etermined from the series development of O−1�x ,y� in powers of 1 / �x� for large �x�. We have
ssumed that the negative powers of �x� appearing in this series development are integers, which is
learly seen from Eq. �8�. This might be not necessarily the most general scenario, but as long as
he first term has a factor �x�− with 
3/2, as in the case we are considering, Eq. �9� will be
btained.

Along the precedent lines we can state the following theorem.
Theorem 3.2: Let V be a nonpositive potential with compact support ��R3. Then E=0 is an

igenvalue of �−∆+m2−m+�V if and only if ���V�y��u�y�d3y=0, where u is the corresponding
igenfunction assumed to be in L2�R3�.

Proof: According to the previous discussion, let us consider O=�−∆+m2−m. We have then
hat the operator l0= �V�1/2O−1�V�1/2 is given by

l0 = �V�x��1/2 m

4��x − y�	1 +
2

�
K1�m�x − y�� +

2

�


0

m�x−y�

K0�y�dy��V�y��1/2

−1 1/2
nd that u defined as u=O �V� �, with l0�=µ0�, satisfies
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u�x� = µ0
−1�O−1�V�u��x� =

m

4�µ0


�

1

�x − y�	1 +
2

�
K1�m�x − y�� +

2

�


0

m�x−y�

K0�y�dy�u�y�d3y .

�10�

sing this expression one obtains for large values of �x�,

u�x� =
m

2�µ0

1

�x��

�V�y��u�y�d3y + ¯ , �11�

ince �0
�K0�y�dy=� /2 and K1�z���� /2ze−z for large z. It is clear that Eq. �11� corresponds to

aving c1�y�=m /2� in Eq. �8�. It is then clear that if u�L2�R3� then the coefficient of �x�−1 in Eq.
11� should vanish, leading to the condition ���V�y��u�y�d3y=0. On the other hand, from the
irman-Schwinger principle one knows that u=µ0

−1O−1�V�u iff �O+µ0
−1V�u=0, this last equation

eing understood in the sense of distributions. Therefore, the constraint ���V�y��u�y�d3y=0 is a

ecessary and sufficient condition for E=0 to be an eigenvalue of �−∆+m2−m+µ0
−1V. �

One should notice that a similar condition exists for the Schrödinger operator. This can be
nderstood on the grounds of the nonlocal behavior associated to �−∆+m2−m: nonlocality is
ontained in the Bessel function K1�z� appearing in the function F�m�x� ;µ=0� in Eq. �6� and for
arge distances �at least greater than m−1� it becomes highly suppressed. In this situation the main
ontribution arises from a Schrödinger-type term �first term in Eq. �5��.

One can also try to see what happens for small values of �x�. In this case there are two terms
o lowest order to be considered,

A1 = 
�

1

�y�
�V�y��u�y�d3y �12�

nd

A2 = 
�

1

�y�
�V�y��u�y�

�y�

� K1�z�
z

dz d3y . �13�

oth terms are constants, independent of �x�. If supp V=� contains the origin, then for a nondi-
ergent value of u��x�=0� to exist, these constants should have finite values. The constant A1 also
ppears when one considers a similar situation for the kernel of the Schrödinger operator. If the
roduct �V�y��u�y� behaves like y−� with �
2 near 0 then it is well defined �strict inequality
eans A1=0�. On the other hand, A2 is more singular due to the presence of the integral involving

he Bessel function K1. The first integral �from �y� to infinity� diverges as 1 /y near the origin. This
eans that finite values are possible in this case when the product �V�y��u�y� behaves like y−� with

1 �again, strict inequality means a vanishing value for A2�.

V. PERTURBATION THEORY AND FOURIER TRANSFORM

In what follows we shall consider perturbation theory for Eq. �5�. From this kernel we can
mmediately write for � small the series development K=L0+ �2m�1/2�A+2m�2B+¯ where

L0�x,y� = �V�x��1/2 m

4��x − y	2 +
2

�


m�x−y�

� K1�z�
z

dz��V�y��1/2, �14�

A�x,y� = −
m

2�
�V�x��1/2�V�y��1/2, �15�
nd
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B�x,y� = �V�x��1/2 1

�x − y�� 1

2

�x − y�2 −

1

m2� +
1

�

�x − y�2 −

2

m2�
0

m�x−y�

K0�z�dz

+
2�x − y�

�m


m�x−y�

�

K0�z�z dz +
1

�m2
0

m�x−y�

K0�z�z2 dz��V�y��1/2. �16�

s mentioned before, the presence of the second term inside the brackets in Eq. �14� is an
ndication of the nonlocality of the Herbst operator. Furthermore, by going into Fourier space, one
an see that the kernel of L0 is not positive definite, and for large values of k it can take arbitrary
ositive and negatives values. This is due to the strong divergence produced by the integral of the
uotient K1�z� /z, which when coupled with the factor 1 / �x−y� is of order 3.

Let us now find an expression for �−1= �� ,K�� �see Eq. �3�� where � satisfies L0�=µ0� and
��2=1. We have

������−1 = ��,L0�� + �2m�1/2���,A�� + 2m�2��,B�� + ¯

= µ0 −
�m3/2

�2�



�

�V�y��1/2��y�d3y�2

+ b�2 + ¯ . �17�

he expression for the coefficient b is rather cumbersome as can be deduced from Eq. �16� and no
efinite statement on the sign of this coefficient can readily be established. But before with the
nalysis of it, let us review the general procedure used to write the energy E as a function of the
arameter �. Assuming µ0�0, one deduces from the expression

������−1 = µ0 + a� + b�2 + ¯

he relation

�0
−1���� = 1 − �0a� + �0��0a2 − b��2 + ¯ , �0 ª µ0

−1,

or � small. The next step is to invert this relation and to find � as a function of �; it is here where
are should be taken. If a does not vanish then one has

���� = −
1

�0
2a

�� − �0� +
�0a2 − b

�0
4a3 �� − �0�2 + ¯

nd therefore

E��� = − ����2 = −
1

��0
2a�2 �� − �0�2 + ¯ .

n the other hand, if a vanishes then

�0
−1���� = 1 − �0b�2 + c�3 + ¯

nd it follows that there are two different expressions for �,

�±��� = ñ	 1

�0
2�− b�

�� − �0� −
c

�0
3�− b�3/2 �� − �0�3/2 + ¯ �1/2

.

ne obtains then

E±��� = − �±���2 = −
1

�0
2�− b�

�� − �0� + ¯

nd moreover, the series development is done in powers of ��−�0�1/2. For O=�−∆+m2−m, the
1/2 3 2
oefficient a is proportional to ����V�y�� ��y�d y� according to Eq. �17� and then it suffices to
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ecall the discussion leading to Eq. �11� to conclude that the �first� second series development
orresponds to E=0 �not� being an eigenvalue. For the first series, when a�0, it is possible to
ppeal to the implicit theorem function to deduce analyticity of ���� at the point �0 and thus of
���. When a=0, analyticity does not hold in the Schrödinger case15 because of an argument
aking use of the fact that −∆+�V only admits nonpositive eigenvalues for all ��0 �Theorem
III.11 in Ref. 21 applied to V�C0

��R3��. Unfortunately we have not been able to find a similar
esult for the Herbst operator in the three-dimensional case.

We also remark that in the case when a=0, if � approaches �0 from above by real values then
should necessarily be negative for �±��� to be well defined. In the case of the Schrödinger

quation it is known through an argument involving Fourier transform that b takes negative values
hen a vanishes,15 in consequence the energy approaches a value E0=0 from below as �→�0

+.
or the Herbst operator one can proceed in the same way, i.e., one can write

B�x,y� = �V�x��1/2B�x,y��V�y��1/2

nd therefore

b = 2m2��,B�� = 2m2��, �V�1/2B�V�1/2�� = 2m2�f ,Bf� = 2m2 B̂�k�� f̂�k��2d3k �18�

ith f = �V�1/2�. The sign of b is then related to the behavior of the Fourier transform B̂. We should
lso note that the fact that a=0 guarantees that the expression in momentum space on the right-
and side of Eq. �18� is defined as k→0.

As seen from Eq. �16� not all functions appearing in that expression have norm in L2�R3�, and
t is then necessary to use Fourier transform in the sense of distributions to find the Fourier

ransform B̂�k�. The details of this are given in Appendix B, here we only write the final result of
he calculations which reads as

b = 2m2 B̂�k�� f̂�k��2d3k = 2m �m4B̂�m���� f̂�m���2d3�

= 2m 	−
1

2��2 −
1

4�3�4 −
1

�
	 1

8�2�4

6w4 + 5w2 + 2

�1 + w2�5/2 +
1

�2

1

�1 + w2�1/2�
+

3

2�2�3

w3

�1 + w2�5/2 −
1

2��2

2w2 − 1

�1 + w2�5/2�� f̂�m���2d3� , �19�

here �� =k� /m, �= ��� �� �0,��, and w=2��. Even though a positive term is present in this ex-
ression, its contribution is dominated by similar negative terms as one can easily verify from Eq.
19�. Therefore one concludes that b is �conditionally� negative and that E→0− when �→�0

+.
oreover, it also follows from this expression that in the nonrelativistic case �k=m�→0� the

eading order contribution is given by −�−1�−2− �2�3�−1�−4, an analogous result to the
chrödinger case.

We can resume the previous calculations in the following theorem.
Theorem 4.1: Consider the series development of �−1= �� ,K��=�0

−1+a�+b�2+¯ in powers
f �, then

i� a=−�m3/2 /�2������V�y��1/2��y�d3y�2,
ii� if a=0 then b=2m2�f ,Bf� with f = �V�1/2�, is conditionally negative and the Fourier trans-

form B̂�k� of the kernel B�x ,y� can be read out from Eq. (19).

. CONCLUSIONS

It has been shown that having wave functions of the operator �−∆+m2−m in L2�R3� is

losely related to the vanishing of the first order coefficient a in the series development given by
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q. �4�, perturbation theory being permitted due to the analyticity of the corresponding Birman-
chwinger kernel �Theorem 3.1�. The coefficient a has the same form as in the Schödinger case as
een from Eq. �17� and its vanishing can be recast as a statement on the fact that E=0 is an
igenvalue of the equation ��−∆+m2−m+�V��=E� �Theorem 3.2�. Moreover, the second order
oefficient b in Eq. �4� can be shown to consist of a Schrödinger-type part and more involved
ontributions due to the nonlocal nature of the operator under study. Fourier analysis however can
e used to show that b is conditionally negative �Theorem 4.1�. The physical consequence of these
acts is similar to the Schrödinger case, namely, the phenomenon of “coupling constant threshold.”

When considering the Schrödinger operator with a spherically symmetric potential V, the
bove characterization can be explicitly formulated as a condition for the presence of s-waves as
olutions of the equation �−∆+V��=0 and indeed, it is only the behavior of � at infinity, where
he potential V vanishes, which should be considered to obtain this result.15

In the case of the Herbst operator a similar criteria should be also possible, however there is
simple feature that is present in one case and not in the other: the answer for the Schrödinger

perator can readily be given because one knows precisely the expression for the operator ∆ in
pherical coordinates meanwhile for the Herbst operator one should study instead an integral
quation. The following auxiliary problem then arises: is it possible to write an appropriate
ntegral equation for ∆�=0 from which one can recover the well known radial dependence rl and
−l−1, l=0,1 , . . ., of the spherically symmetric solutions? The answer is yes. The next natural step
s to see if the same process can be applied to the integral equation obtained from ��−∆+m2

m��=0. This is a subject that we hope to discuss in a future work.
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PPENDIX A: INVERSE FOURIER TRANSFORM

In this section we would like to derive the expression for ��−∆+m2−E�−1 in coordinate space.
ince one is lead to deal with tempered function, the Fourier transform in the generalized sense
hould be considered. Several ways exist to calculate the Fourier transform of tempered functions,
uch as the �-prescription, where it is customary to consider after the calculations only those terms
ith no dependence on � in the limit �→0. This method was widely used in the evaluation of
ropagators in the early days of QED. The Hankel transform3 is the other method introduced to
eal with tempered functions. It is known that the �-prescription, the same being the case with the
ankel transform, is related to the notion of finite part, Pf. of a distributional pseudofunction �Ref.
2, pp. 20� acting on Schwartz’s space S of infinitely differentiable and rapidly vanishing func-
ions, together with its derivatives, at infinity. We shall also use the fact that for a distribution f , the
elations �F�f� ,��= �f ,F���� and �F−1�f� ,��= �f ,F−1���� where ��S hold.4

Accordingly one can write


R3

1
�4�2p2 + m2 − E

��p�d3p = E
R3

1

4�2p2 + m2 − E2��p�d3p + 
R3

�4�2p2 + m2

4�2p2 + m2 − E2��p�d3p

= E
R3

1

4�2p2 + m2 − E2��p�d3p

+ �− ∆ + m2�
3

1
�4�2p2 + m2�4�2p2 + µ2�

��p�d3p

R
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= E
R3

1

4�2p2 + µ2��p�d3p

+ �− ∆ + µ2�
R3

1
�4�2p2 + m2�4�2p2 + µ2�

��p�d3p

+ �m2 − µ2�
R3

1
�4�2p2 + m2�4�2p2 + µ2�

��p�d3p ,

here we have set µ2=m2−E2. Therefore, from �F�f� ,�� = � f ,F���� = �F−1�F�f�� ,��,
ne has in the sense of distributions acting on S,

F−1	 1
�4�2p2 + m2 − E

��x� = EF−1	 1

4�2p2 + µ2��x�

+ �− ∆ + µ2�F−1	 1
�4�2p2 + m2�4�2p2 + µ2�

��x�

+ �m2 − µ2�F−1	 1
�4�2p2 + m2�4�2p2 + µ2�

��x� .

The first term is a standard example in textbooks on Fourier transforms or potential theory and
an be easily found:


R3

1

4�2p2 + µ2��p�d3p = 
R3


0

�

e−�4�2p2+µ2�t dt ��p�d3p

= 
R3


0

� 
R3

e−4�2p2t+2�p·xd3pe−µ2tF����x�d3x

= 
R3


0

� 1

�4�t�3/2 exp�− �x�2/4t − µ2t�dtF����x�d3x

=
µ

�4��3/22� 2

µ�x�R3
K1/2�m�x��F����x�d3x = 

R3

e−µ�x�

4��x�
F����x�d3x

ith ��S. In the above we have use Fubini’s theorem and an integral representation of the Bessel
unctions K��z�. For the second and third term one should calculate the inverse Fourier transform

F−1	 1
�4�2p2 + m2�4�2p2 + µ2�

��x� .

sing the fact that the usual properties of convolution of the �inverse� Fourier transform remain
alid for distributions,4 then the problem reduces to the convolution of F−1�1/ �4�2p2+µ2���x�
ith F−1�1/�4�2p2+m2��x�. This latter inverse Fourier transform can be found in the same way as
one before with the result


R3

1
�4�2p2 + m2

��p�d3p =
m

2�2
R3

K1�m�x��
�x�

F����x�d3x .
herefore, in distributional sense, one has the following expression:
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F−1	 1
�4�2p2 + m2 − E

��x� =
E

4��x�
e−µ�x� + �− ∆ + µ2�	 e−µ�·�

4�� · �
�

m

2�2

K1�m� · ��
� · � ��x�

+
m�m2 − µ2�

8�3 	 e−µ�·�

� · �
�

K1�m� · ��
� · � ��x�

=
E

4��x�
e−µ�x� +

m

2�2

K1�m�x��
�x�

+
m�m2 − µ2�

8�3 	 e−µ�·�

� · �
�

K1�m� · ��
� · � ��x� .

t is clear from the above that this expression might be treated indeed as an ordinary function if the
onvolution in the last line makes sense. In fact, using the expansion1

e−�R

�R
=

2

�
∑
l=0

�

�2l + 1�	� �

2�r1
Il+1/2��r1��	� �

2�r2
Kl+1/2��r2��Pl�cos � ,

here R= �r2+�2−2r� cos���1/2 ,r1=min�r ,�� ,r2=max�r ,��, only the term with l=0 is seen to
ive a nonvanishing contribution for the convolution after performing the integral over the angular
ariables. Therefore, one obtains

	 e−µ�·�

� · �
�

K1�m� · ��
� · � ��x� =

4�

m2

2µ

�
� �

2µ�x�
K1/2�µ�x��

0

m�x� �m�

2µy
I1/2
µy

m
�K1�y�y dy

+
4�

m2

2µ

�
� �

2µ�x�
I1/2�µ�x��

m�x�

� �m�

2µy
K1/2
µy

m
�K1�y�y dy

=
4�

m2�x�
e−µ�x�

0

m�x� m

µy
sinh
µy

m
�K1�y�y dy

+
4�

m

sinh�µ�x��
µ�x� 

m�x�

�

e−µy/mK1�y�dy .

he explicit expressions of the Bessel functions I1/2�x� and K1/2�x� have been used in order to
rite the above relation. The final outcome of the previous calculations is then

F−1	 1
�4�2p2 + m2 − E

��x� =
m

4��x�	 E

m
e−µ�x� +

2

�
F�m�x�;µ��

=
m

4��x�	
1 −
µ2

m2�1/2

e−µ�x� +
2

�
F�m�x�;µ�� �A1�

ith

F�m�x�;µ� = K1�m�x�� +
m2 − µ2

4�
�x�	 e−µ�·�

� · �
�

K1�m� · ��
� · � ��x� = K1�m�x�� + 
1 −

µ2

m2�
		e−µ�x�

0

m�x� 	 m

µy
�sinh
µy

m
�K1�y�y dy +

m

µ
sinh�µ�x��

m�x�

�

e−µy/mK1�y�dy�
= K1�m�x�� + 
1 −

µ2

m2�	e−µ�x�
0

m�x�

cosh
µy

m
�K0�y�dy − sinh�µ�x��

m�x�

�

e−µy/mK0�y�dy� .

�A2�

n the above we have used some relations among integrals involving Bessel and exponentials
19,1
unctions in order to write the last expression.
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PPENDIX B: FOURIER TRANSFORM OF B„x ,y…

For convenience we present here the calculations leading to Eq. �19� in the text. In the
xpression for B, several tempered functions in the sense of distributions appear and their Fourier
ransforms, which will be also tempered functions, can be found in this context.

In the following we shall apply the Hankel transform to a well-behaved function suited to the
roblem �strictly speaking the Hankel transform refers to the one-dimensional case� and then
rgue its validity for more general cases.

To begin with we shall use the formula �Ref. 3, Sec. 43�

F�f ,k� =
2�

k�n−2�/2
0

+�

dr f�r�rn/2J�n−2�/2�2�kr� .

ere n is the dimension of the space under consideration. Let us apply this to the function f�x�
�x�−��0

m�x�g�z�dz with 0��, we have

F�f ,r� =
2�

r�n−2�/2
0

�

dr r−�
0

mr

dz g�z�rn/2J�n−2�/2�2�kr�

=
2�

r�n−2�/2
0

�

dr rn/2−�J�n−2�/2�2�kr�
0

mr

dz g�z�

=
2�

k�n−2�/2
1

�2�k�n/2−�+1
0

�

dz g�z�
z/m

�

du un/2−�J�n−2�/2�u�

=
1

�2��n/2−�

1

kn−�	
0

�

dz g�z�
0

�

du un/2−�J�n−2�/2�u� − 
0

�

dz g�z�
0

wz

du un/2−�J�n−2�/2�u�� .

n the above we have defined a dimensionless parameter w=2�k /m and assumed that the function
�z� is well behaved so that Fubini’s theorem can be used. For our function g�z� we shall take
ndeed g�z�=z�K0�z� ,0
�. The previous expression is justified as long as n /2���n since the
ntegrals involving the Bessel function J��u� are then well defined. After using the relations


0

�

sµJ��s�ds = 2µ�
� + µ + 1

2
�� �
� − µ + 1

2
� ,


0

�

sµK��s�ds = 2µ−1�
µ + � + 1

2
��
µ − � + 1

2
� ,

nd


0

x

sµJ��s�ds = xµ+1∑
k=0

�
�− 1�k�x/2��+2k

k!�µ + � + 2k + 1���� + k + 1�
,

ne arrives to
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F�f ,r� =
1

�2��n/2−�

1

kn−��2�+n/2−�−1�
� + 1

2
�2�
n − �

2
�

�
�

2
�

− wn−�2�+n/2−�−1∑
m=0

�
�− w2�m

m!
m +
n − �

2
�

�
m +
� + n − � + 1

2
�2

�
m +
n

2
� � .

he sum inside the brackets is just a hypergeometric function; the final result then reads as

F�f ,r� =
1

�2��n/2−�

1

kn−��2�+n/2−�−1�
� + 1

2
�2�
n − �

2
�

�
�

2
� − wn−�2�+n/2−�

�
� + n − � + 1

2
�2

�n − ���
n

2
�

	 3F2
n − �

2
,
� + n − � + 1

2
,
� + n − � + 1

2
;
n

2
,1 +

n − �

2
;− w2�� . �B1�

sing a reasoning due to Schwartz �Ref. 23, p. 113�, this expression can be seen to hold also for
ther values of �, in particular for ��0, if one keeps in mind that the function f should be then
nderstood as a tempered function as well as its Fourier transform. More care should be taken
hen n−�=−2h, �=−2h, or �+n−�+1=−2h, h being a positive integer, where poles appear in

he � function, but the appropriate modification to be used for those cases has also been pointed
ut by Schwartz. This modification will not concern us however because of the values of � �±1 or
� appearing in Eq. �16� and of the dimension n=3. As a particular case then one can consider
=1,�=0,n=3,

F�f ,r� =
1

�2��1/2

1

k2	�1/2

21/2 −
w2

21/2��3/2�3F2�1,3/2,3/2;3/2,2;− w2�� =
1

2k2

1

�1 + w2�1/2 .

his corresponds, taking into account a factor −2/ ��m2� and replacement k=m�, to the second
erm inside the brackets in Eq. �19�.

It is also straightforward from the previous computation to identify the Fourier transform of
f�x�= �x�−��m�x�

� g�z�dz ,0��, this is given by the second term in Eq. �B1�, namely

F�f ,r� =
1

�2��n/2−�

1

kn−�wn−�2�+n/2−�

�
� + n − � + 1

2
�2

�n − ���
n

2
�

	 	3F2
n − �

2
,
� + n − � + 1

2
,
� + n − � + 1

2
;
n

2
,1 +

n − �

2
;− w2�� . �B2�

his formula can also be generalized to other values of � than those in the interval �n /2 ,n�, with
are needed only to be taken in more detail at the points mentioned in a previous paragraph.
aking this into account, if we now calculate the case �=0,�=1,n=3, the following expression
s obtained:
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F�f ,r� =
1

�2��3/2

1

k3w325/2 ��5/2�2

3��3/2� 3F2�3/2,5/2,5/2;3/2,5/2;− w2� =
3

4�

1

k3w323/2 1

�1 + w2�5/2

orresponding, times a factor 2 / ��m� and replacement k=m�, to the positive term in Eq. �19�.

PPENDIX C: AN ESTIMATE

We rewrite Eq. �1� as

��− ∆ + m2 − E�−1��x�� =
m

4��x�2	
1 −
µ2

m2�1/2

�x�e−µ�x� +
2

�
�x�F�m�x�;µ�� .

e would like to show that for a fixed value of µ, each term inside the brackets is bounded as
unction of �x�. This is obviously true for h0��x��= �x�e−µ�x��
µ−1� and also for the first term coming
rom the product �x�F�m�x� ;µ�, namely h1��x��= �x�K1�m�x���
1�. The next two terms to consider
re

h2��x�� = �x�e−µ�x�
0

m�x�

cosh
µy

m
�K0�y�dy

nd

h3��x�� = �x�sinh�µ�x��
m�x�

�

e−µy/mK0�y�dy .

2 can be seen to be bounded as follows:

h2��x�� 
 µ−1
0

�

cosh
µy

m
�K0�y�dy =

1

2µ


0

�

cosh
µy

m
�

0

�

exp	−
1

u
−

uy2

4
�du

u
dy

=
1

4µ


0

� 
−�

�

exp	−
uy2

4
+

µy

m
�dy e−1/udu

u
=

�1/2

2µ


0

�

exp	−
1

u

1 −

µ2

m2�� du

u3/2

=
�

2µ

1 −

µ2

m2�−1/2

.

et us turn now to h3, one has

h3��x�� 
 �x�eµ�x�
m�x�

�

K0�y�e−µy/m dy 
 �x�
m�x�

�

K0�y�dy 
 m�x0�2K0�m�x0�� ,

here m�x0� satisfies the transcendental equation �z
�K0�y�dy=zK0�z� with solution z=0.745 1315.

rom this follows also that m�x0�K0�m�x0���� /2 and hence

h3��x�� � ��x0�/2 
 c�/2m, c � �0.745 1315,�� .

ollecting all the previous results we have the following estimate:

���− ∆ + m2 − E�−1��x��� 

m

4��x�2	
1 −
µ2

m2�1/21

µ
+

2

�
	1 + 
1 −

µ2

m2�	 �

2µ

1 −

µ2

m2�−1/2

+
c�

2m
���



m

4��x�2	1 +
2

µ
+

c

m
� . �C1�
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In the present paper the low density limit of the nonchronological multitime corre-
lation functions of boson number type operators is investigated. We prove that the
limiting truncated nonchronological correlation functions can be computed using
only a subclass of diagrams associated to noncrossing pair partitions and thus
coincide with nontruncated correlation functions of suitable free number operators.
The independent in the limit subalgebras are found and the limiting statistics is
investigated. In particular, it is found that the cumulants of certain elements coin-
cide in the limit with the cumulants of the Poisson distribution. An explicit repre-
sentation of the limiting correlation functions and thus of the limiting algebra is
constructed in a special case through suitably defined quantum white noise
operators. © 2006 American Institute of Physics. �DOI: 10.1063/1.2178154�

. INTRODUCTION

The reduced dynamics of a quantum open system interacting with a reservoir in certain
hysical regimes is approximated by Markovian master equations. These regimes include the
eak system-reservoir interactions and dilute reservoirs and in the theoretical framework they are
escribed by certain limits. For a weakly interacting system one considers the limit as the coupling
onstant goes to zero �weak coupling limit, WCL� whereas for a dilute reservoir one considers the
imit as the density of the reservoir goes to zero �low density limit, LDL� and an appropriate time
escaling should be performed in order to get a nontrivial limit. The Markovian reduced dynamics
n these limits is considered in the review papers by Spohn and Lebowitz.1,2 The reduced dynam-
cs in the LDL was considered in details later by Dümcke3 using the method based on the quantum
ogoliubov-Born-Green-Kirkwood-Yvon hierarchy.

The total dynamics in these limits is governed by various quantum stochastic equations. There
s a unique up to now approach, called the stochastic limit method, which allows an efficient
erivation of the stochastic equations in the WCL. This approach is based on the quantum white
oise technique and was developed by Accardi, Lu, and Volovich.4

The convergence of the evolution operator of the total system in the LDL to a solution of a
uantum stochastic equation was proved by Accardi and Lu5 and by Rudnicki, Alicki, and
adowski.6 Recently the low density limit was investigated with the quantum white noise

echnique.7,8 This technique, well developed for the WCL, was nontrivially modified to include the
DL and for this case was called the stochastic golden rule for the low density limit. This

echnique was applied to the derivation of the quantum stochastic equations in the LDL. An
dvantage of the obtained equations is that they, in contrast with the exact Schrödinger equation,
re explicitly solvable. At the same time they provide a good approximation of the exact dynam-
cs.

�
Electronic mail: apechen@princeton.edu
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The approach of Refs. 7 and 8 uses the so-called Fock–anti-Fock representation for the
anonical commutation relations �CCR� algebra �this representation is unitary equivalent to the
el’fand-Naimark-Segal representation�. The difficulty with this approach is that the creation and

nnihilation operators in the Fock–anti-Fock Hilbert space do not describe creation and annihila-
ion of physical particles and thus do not have direct physical meaning. To avoid this difficulty the
nvestigation of the LDL directly in terms of the physical fields was performed.9 Using this
pproach the chronological correlation functions in the LDL were found and the corresponding
tochastic equations derived.

In the present paper we investigate the low density limit of the nonchronologically ordered
orrelation functions of boson number type operators. The investigation is related with ab initio
erivations of quantum stochastic equations describing quantum dynamics of a test particle inter-
cting with a dilute gas. We find the limiting truncated correlation functions of the number type
perators and show that they can be computed by representing the number operators through
reation and annihilation operators and then considering only a subclass of diagrams associated to
oncrossing pair partitions. This fact allows to represent the limiting truncated correlation func-
ions as the nontruncated correlation functions of number operators of a free quantum white noise
hus making a connection with the Voiculescu free probability theory. We find the limiting statis-
ics and show that the cumulants of certain elements coincide in the limit with the cumulants of the
oisson distribution.

The free probability theory was developed by Voiculescu around 1985 as a way to deal with
on Neumann algebras of free groups. Then the theory was separated from this special context and
egan to develop as an independent field. In particular, applications of the free independence
heory to random matrices were found. The details of free probability theory and its applications
o random matrices could be found, for example, in Refs. 10 and 11.

Expectations of free random variables are characterized by diagrams associated to noncrossing
air partitions. The vanishing of crossing diagrams in the stochastic weak coupling limit for
onrelativistic QED and for the Anderson model was found in Refs. 4 and 12, respectively, thus
aking a connection between the WCL and free probability. The WCL is typically described by

he quantum Boltzmann statistics.4 In Ref. 13 a generalized version of Boltzmann commutation
elations, the so-called entangled commutation relations, was found in the weak coupling limit for
onlinear interactions and possible applications to photon splitting cascades were discussed.

The investigation of the multitime nonchronologically ordered correlation functions could
ave a connection with the behavior of fluctuations in certain asymptotic regimes. The latter is
escribed in the review paper by Andries, Benatti, De Cock, and Fannes.14 In that approach the
imiting statistics is defined in terms of ground state distribution determined by nontrivial pair
artitions. The authors conjecture the appearance of exotic statistics in certain asymptotic regimes.
he asymptotic fluctuations are the limiting correlation functions of appropriate centered elements
nd thus the results of the present paper could be applied to study the fluctuations in the low
ensity limit.

In Sec. II the truncated nonchronologically ordered correlation functions are defined and their
ow density limit is established �Theorem 1�. In Sec. III the irreducible diagrams �pair partitions�
hich contribute to the limiting correlation functions are found �Theorem 2�. In Sec. IV the

imiting truncated correlation functions are represented as correlation functions of a suitable free
hite noise. In Sec. V we identify the independent in the limit subalgebras �Theorem 4� and

alculate the limiting cumulants which for some elements coincide with the cumulants of the
oisson distribution �Theorem 5�. In Sec. VI an explicit representation of the limiting correlation
unctions and thus of the limiting algebra is constructed for a special case by using suitable
uantum white noise operators.
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I. THE CORRELATION FUNCTIONS IN THE LDL

We begin this section with construction of a general class of noncommutative probability
paces relevant for the investigation of the low density limit. The framework of a *-probability
pace is used. A relation between the objects defined in this section and the model of a test particle
nteracting with a dilute gas is given in Appendix A.

Definition 1: A *-probability space is a pair �A ,��, where A is a unital *-algebra over C and
:A→C is a state, i.e., a linear normalized, ��1A�=1, and strictly positive functional.

Let H be a Hilbert space with inner product denoted by �· , · � �called as one particle Hilbert
pace�, �St�t�R a one parameter unitary group in H �a one particle free evolution�, n̂ a bounded
ositive operator in H �density operator� such that "t�R ,S−tn̂St= n̂, and B a countable set of real
umbers.

Let ��H� be the symmetric Fock space over H. For any trace class self-adjoint operator T
cting in H we denote by N�T�	d��T� its second quantization operator in ��H� and extend this
efinition by complex linearity to the set of all trace class operators T�H�. For any T�T�H� ,�
B, and a positive number ��0 we define the following operator in ��H�:

NT,�,��t� ª
e−it�/�

�
N�St/�TS−t/�� . �1�

et L�R�=�p�NLp�R�, where Lp�R� is the space of p-power integrable functions over R. For any
pen subset ��R let L��� be the set of functions from L�R� with support in �. We denote by

�,� the *-algebra generated by operators NT,�,����ª
dt ��t�NT,�,��t� with T�T�H�, ��B, �
L��� and denote A�ªAR,�.

Let A±�g�, g�H be the creation and annihilation operators in ��H� �we denote in the sequel
−�g�	A�g�� with the canonical commutation relations �A�f� ,A+�g��= �f ,g� and let ACCR be the
lgebra of polynomials in A±�·�. Any operator N�T� can be represented in terms of the creation and
nnihilation operators. For example, if T= �f��g�, where we use Dirac’s notations for elements

f ,g�H, then N�T�=A+�f�A�g�. An arbitrary operator N�T� can be expressed in terms of A± using
he fact that any trace class operator T is a limit of finite rank operators. Thus the algebra A� is a
ubalgebra of ACCR.

Let �n̂ be a Gaussian gauge-invariant mean-zero state on ACCR with the two point correlation
unction �n̂�A+�f�A�g��ª �g , n̂f� �thus �n̂�N�T��=Tr�n̂T� and here we use the assumption for T
eing trace class�. Denoting by the same symbol its restriction to A�,�, we finally have for any
�0 and for any open subset ��R the *-probability space �A�,� ,��n̂�.

Remark 1: The condition "t :S−tn̂St= n̂ leads to the invariance of the state �n̂ under the free
volution generated by St.

With the notations above we define the nonchronologically ordered multitime correlation
unctions as

W�,n̂,T1,�1,. . .,Tn,�n
�t1, . . . ,tn� ª ��n̂�NT1,�1,��t1� ¯ NTn,�n,��tn�� , �2�

W�,n̂,T1,�1,. . .,Tn,�n
��1, . . . ,�n� ª ��n̂�NT1,�1,���1� ¯ NTn,�n,���n�� . �3�

e will use for the correlation functions �2� and �3� also the shorter notations W��t1 , . . . , tn� and

���1 , . . . ,�n�. The reason for introducing the averaged operators NT,�,���� and the averaged
orrelation functions �3� is that, as we will show below, the nonaveraged operators NT,�,��t� and
he correlation functions �2� in the limit as �→0 become singular distributions. Clearly, one has
he relation

W���1, . . . ,�n� =� dt1 ¯ dtn W��t1, . . . ,tn��1�t1� ¯ �n�tn� .

T
Definition 2: The truncated correlation functions W� �t1 , . . . , tn� are defined for n=1 by
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�
T�t1�ªW��t1� and for n�1 by induction through the relation:

W��t1, . . . ,tn� = W�
T�t1, . . . ,tn� + 

l=2

n

n
� W�

T�ti1
, . . . ,tik1

�

�W�
T�tik1+1

, . . . ,tik2
� ¯ W�

T�tikl
, . . . ,tin

� ,

here n� is the sum over i1� i2� ¯ ik1
, ik1+1� ¯ � ik2

, . . . , � ikl+1� ¯ � in.
The truncated correlation functions are often used in quantum field theory and in quantum

inetic theory.15 They entirely determine the corresponding nonchronological correlation func-
ions. Thus the investigation of the limit of the nonchronological correlation functions can be
educed to the investigation of the limit of the truncated correlation functions.

We define the “projection” PEª �2	�−1
dt Ste
−itE �it has the property PEPE�=
�E−E��PE�

nd for any k=1,2 , . . . ,n denote �̃k=�n+ ¯ +�k. The following theorem states the low density
imit of the truncated correlation functions.

Theorem 1: One has the limit in the sense of distributions in variables t1 , . . . , tn,

lim
�→0

W�,n̂,T1,�1,. . .,Tn,�n

T �t1, . . . ,tn� = �2	�n−1
�t2 − t1� ¯ 
�tn − tn−1�

� 
�̃1,0� dE Tr�n̂PE+�̃1
T1PE+�̃2

T2 ¯ PE+�̃n
Tn� , �4�

here Tr denotes trace and 
�̃1,0 is the Kronecker delta symbol.
The theorem is a corollary of Theorem 2 from Sec. III.

II. THE NONTRIVIAL DIAGRAMS

In the present section we investigate the low density limit of the nonchronologically ordered
orrelation functions for the particular case of operators of the form Tl= �f l��gl� and find the
iagrams which are nontrivial in the low density limit.

In order to simplify the notations we will use the following energy representation for the
reation and annihilation operators:

Al
+
ª

e−itlEl/�

��
A+�PEl

f l�, Al ª
1
��

A�Stl/�
gl�

a slightly different version of the energy representation was introduced in Ref. 7�. One has

Tl,�l,�
�tl�=e−itl�l/�
dEl Al

+Al. Notice that the operator Al
+ is not the adjoint of Al. The symbols

l ,Al
+ are used only to simplify the notations below.
A multitime correlation function can be expressed using Gaussianity of the state �n̂ and the

nergy representation for the creation and annihilation operators as

W�,n̂,T1,�1,. . .,Tn,�n
�t1, . . . ,tn� = exp�− i

l=1

n

�ltl/��� � dE1 ¯ dEn ��n̂�Ai1
+ Aj1

� ¯

� ��n̂�Aik
+Ajk

���n̂�Ajk+1
Aik+1

+ � ¯ ��n̂�Ajn
Ain

+ � , �5�

here � is the sum over k=1, . . . ,n, 1= i1� i2� ¯ � ik , jk+1� ¯ � jn, il� jl for l=1, . . . ,k and
jl� il for l=k+1, . . . ,n. The sum contains terms of the form

��n̂�Ai1
+ Aj1

� ¯ ��n̂�Aik
+Ajk

���n̂�Ajk+1
Aik+1

+ � ¯ ��n̂�Ajn
Ain

+ � . �6�

o each such term we associate a diagram by pairing in the string A1
+A1A2

+A2¯An
+An the operators

il
+ and Ajl

for l=1,2 , . . . ,n.

Definition 3: We say that the expression �6� corresponds to a reducible diagram if there exists
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nonempty subset I� �1, . . . ,n� (strict inclusion) such that il� IÛ jl� I. Otherwise we say that
he expression �6� corresponds to an irreducible diagram.

An important property of the truncated correlation functions �Definition 2� is that they keep
nly all irreducible diagrams. The following are the examples of irreducible �first� and reducible
second� diagrams for n=2:

�7�

iven a reducible diagram, one can represent the set �1, . . . ,n� as a union of several disjoint
ubsets I1 , . . . , Il such that the diagram contains only pairings between operators with indices from
he same subsets. In this sense a general reducible diagram can be represented as a union of
utually disjoint irreducible diagrams. Examples of the truncated correlation functions, the cor-

esponding irreducible diagrams, and their limits as �→0 for n=1,2 ,3 are given below.
Example 1: n=1. The invariance of the state under the free evolution leads to the identity

�
T�t�=W��t�=W��0�= �g1 , n̂ f1�.

Example 2: n=2. One has

W�
T�t1,t2� = W��t1,t2� − W��t1�W��t2� =� dE1 dE2 ��n̂�A1

+A2���n̂�A1A2
+�

=� dE1 dE2
ei�t2−t1��E2−E1�/�

�
�g2,PE2

n̂ f1��g1,�1 + �n̂�PE2
f2� . �8�

his expression corresponds to the first �irreducible� diagram in �7� which is nonzero in the limit.
pplication of Lemma 1 �see Appendix B� to the right-hand side �rhs� of �8� gives

lim
�→0

W�
T�t1,t2� = 2	
�t2 − t1� � dE�g2,PEn̂f1��g1,PEf2� .

Example 3: n=3. One has

W�
T�t1,t2,t3� =� dE1 dE2 dE3���n̂�A1

+A3���n̂�A1A2
+���n̂�A2A3

+� + ��n̂�A1
+A2���n̂�A1A3

+���n̂�A2
+A3�� .

his expression corresponds to the sum of the two irreducible diagrams:

n this case only the first diagram is non-zero in the limit and Lemma 1 gives

lim
�→0

W�
T�t1,t2,t3� = �2	�2
�t3 − t2�
�t2 − t1� � dE�g3,PEn̂f1��g1,PEf2��g2,PEf3� .

he case of arbitrary n is described by the following theorem.
Theorem 2: Let Tl= �f l��gl�, where fl ,gl�H for l=1,2 , . . . ,n. One has the limit in the sense of

istributions in variables t1 , . . . , tn,

lim
�→0

W�,n̂,T1,�1,. . .,Tn,�n

T �t1, . . . ,tn� = �2	�n−1
�t2 − t1� ¯ 
�tn − tn−1�
�̃1,0� dE�gn,PEn̂f1�

��g1,PE+�̃ f2� ¯ �gn−1,PE+�̃ fn� . �9�

2 n
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or each n only the following irreducible diagram is non zero as �→0:

�10�

Proof: Case �a�: �1=�2= ¯ =�n=0. Using the correlation functions

��n̂�Ai�
+ Aj�

� = ei�ti�−tj�
�Ei�

/��gj�
, n̂ f i�

� ,

��n̂�Aj
Ai

+ � =
ei�ti−tj

�Ei
/�

�
�gj

,�1 + �n̂�f i
� ,

ne can write �6� as

1

�n exp�i��t1 − tj1
�E1 + ¯ + �tin

− tjn
�Ein

�/����kF�E� + O��k+1�� , �11�

here

F�E� = �
l=1

k

�gjl
,PEl

n̂f il
� �

l=k+1

n

�gjl
,PEil

f il
� .

Define the permutations pi and pj of the set �1, . . . ,n� by pi�l�= il and pj�l�= jl for l
1, . . . ,n and let p�= pipj

−1. Consider the expression in the square brackets in the exponent in �11�.
he term proportional to tl in this expression has the form tl�El−E�l

�, where �l= p��l�. Thus �11�
an be written as

1

�n exp�i�tn�En − E�n
� + ¯ + t1�E1 − E�1

��/����kF�E� + O��k+1��

nd with the notations �l�E�=En+ ¯ +El−E�n
− ¯−E�l

for l=2, . . . ,n as

ei�tn−tn−1��n�E�/�

�
¯

ei�t2−t1��2�E�/�

�
��k−1F�E� + O��k�� . �12�

f the expression �6� corresponds to an irreducible diagram then the functions �l�E� are linearly
ndependent and, since they are linear in their arguments, the convolution 
��2�E��¯
��n�E�� is
ell defined.

In the case k�1, since for any l=2, . . . ,n �see Lemma 1�,

lim
�→0

ei�tl−tl−1��l�E�/�

�
= 2	
�tl − tl−1�
��l�E�� �13�

nd k−1�0, the limit of �12� equals zero.
In the case k=1 the expression �6� corresponds to the diagram �10� and one has

��n̂�A1
+An���n̂�A1A2

+� ¯ ��n̂�An−1An
+�

=
ei�tn−tn−1��n�E�/�

�
¯

ei�t2−t1��2�E�/�

�
�F�E� + O���� , �14�

here �l�E�=El−E1. Using �13� one finds that the limit of the rhs of �14� is

n−1
�2	� 
�t2 − t1� ¯ 
�tn − tn−1�
�E2 − E1� ¯ 
�En − E1�
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��gn,PE1
n̂ f1��g1,PE2

f2� ¯ �gn−1,PEn
fn� .

ntegration over E1¯En gives the equality �9� in the case �a�.
Case �b�: arbitrary �1 , . . . ,�n. In this case the expression �14� in the decomposition �5� is

ultiplied by the factor exp�−il�ltl /��. The product can be written as

ei�tn−tn−1���n�E�−�̃n�/�

�
¯

ei�t2−t1���2�E�−�̃2�/�

�
e−it1�̃1/��F�E� + O���� .

f �̃1=0 then the statement of the theorem follows by the same arguments as in the case �a�. If
˜ 1�0 then the limit of this term equals to zero by Riemann-Lebesgue lemma due to the presence
f the rapidly oscillating factor exp�−it1�̃1 /��. �

V. THE FREE WHITE NOISE NUMBER OPERATORS

In the present section we show that the limiting truncated correlation functions coincide with
he complete �i.e., nontruncated� correlation functions of the free white noise number operators.

Definition 4: Free white noise operators NT�t� are the operators satisfying the multiplication
ule

NT�t�NT��t�� = 
�t − t��NT*T��t� , �15�

here the *-product of operators T and T� is defined by T*T�ª2	
dE PETPET�.
Remark 2: We call the operators NT�t� as free �or Boltzmann� number operators since they can

e constructed using the creation and annihilation operators Bf
±�t� satisfying the free relations

f
−�t�Bg

+�t��=2	
�t− t���f ,g�. In fact, define N�f��g��t�ª
dE BPEf

+ �t�BPEg

− �t� and extend this defini-
ion by linearity to any T. Then such defined operators satisfy the relation �15�.

Let A be the algebra generated by the free white noise operators NT�t� and let �n̂ be the state
n A characterized by �n̂�NT�t��=Tr�n̂T�.

Theorem 3: One has the equality

lim
�→0

W�,n̂,T1,0,. . .,Tn,0
T �t1, . . . ,tn� = �n̂�NT1

�t1� ¯ NTn
�tn�� . �16�

Proof: By direct calculations using the Eq. �4� and the relation �15�.
The existence of the representation of the limiting truncated correlation functions by the free

hite noise number operators is related to the fact that only a subclass of the noncrossing irre-
ucible diagrams survives in the low density limit. We emphasize however, that the left-hand side
lhs� of Eq. �16� is the limit of a truncated correlation function whereas the rhs contains the
omplete correlation function.

. INDEPENDENCE AND THE GENERALIZED POISSON STATISTICS IN THE LDL

The fact that the limiting truncated correlation functions are the distributions in variables

1 , . . . , tn with support at t1= ¯ = tn leads to the appearance of independent subalgebras in the low
ensity limit. In the beginning of this section we remind the basic notions of independent subal-
ebras and of cumulants. Then we find the asymptotically independent subalgebras of A� and
iscuss the limiting statistics. We show that the cumulants and the moments of certain elements in
he algebra A� in the low density limit coincide with the cumulants and the moments of the
oisson distribution.

Definition 5: Let �A ,�� be a *-probability space. A family of unital *-subalgebras �Ai�i�I,

i�A, is called independent if ��a1¯an�=0 whenever al�Ail
,��al�=0, and k� l implies ik

il.
Definition 6: Let �A ,�� be a *-probability space. Cumulants of the space �A ,�� are the

ultilinear functionals �n :An→C ,n�1, uniquely determined by �1�a�ª��a� ,a�A, and for n

1 by induction through the relation
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��a1 ¯ an� = 
	,	=:�A1,. . .,Ak�

��Aj�
��a1, . . . ,an��Aj� ,

here the sum is over all partitions 	 of the set �1, . . . ,n� and “�a1 , . . . ,an� �A” designates the set
f ai with i�A.

Remark 3: The cumulants �n
��� for a *-probability space �A� ,��n̂� are directly related to the

runcated correlation functions. Namely, if a1=NT1,�1,���1� , . . . ,an=NTn,�n,���n�, then

n
��a1 , . . . ,an�=W�,n̂,T1,�1,. . .,Tn,�n

T ��1 , . . . ,�n�.
For the analysis of independence in the low density limit we introduce the notion of asymp-

otically independent subalgebras for a *-probability space �A� ,��n̂�.
Definition 7: Let �A� ,��n̂� be a *-probability space for the LDL. We say that a family of

ubalgebras A1,�, . . . ,Al,� of A� is asymptotically independent if

lim
�→0

��n̂�a1, . . . ,an� = 0

henever al�Ail,�
,��n̂�al�=0, and k� l implies ik� il.

The next theorem identifies asymptotically independent subalgebras of A�.
Theorem 4: Let �1 , . . . ,�l be a family of disjoint open subsets in R. Then the family of

ubalgebras A�1,� , . . . ,A�l,�
is asymptotically independent.

The proof follows from the fact that the truncated correlation functions become in the limit as
→0 distributions in variables t1 , . . . , tn with support at t1= t2= ¯ = tn. �

Now let us analyze the statistics which appears in the low density limit. From Theorem 1 and
he relation between the cumulants and the truncated correlation functions it follows that lth
umulant for the element a=NT,�,���� in the limit has the form

�l�a, . . . ,a� ª lim
�→0

W�,n̂,T,�,. . .,T,�
T ��, . . . ,�� =

1

2	

�,0� dt dE Tr n̂�2	��t�PET�l. �17�

e specify the further consideration to the case H=L2�R3�. Consider n̂=1 �identity operator� and

t=eitH1 where H1 is the multiplication operator by the function ��k�= �k�2, k�R3. Let T� be the
ntegral operator in H with the kernel T��k ,k��= �2	��k � �k���−1��0,�����k � ���0,�����k� � �, where � is

positive number and ��0,��� is the characteristic function of the interval �0,���. Let �0�t�
�2	�−1��0,2	��t�.

Theorem 5: Let a�=NT�,�,���0�, where T� and �0 are defined as above. Then for any l�N one
as

�l�a�, . . . ,a�� = �
�,0.

hus, the cumulants of the element a� in the case �=0 coincide in the low density limit with the
umulants of the Poisson distribution with expectation equal to �.

Proof: The proof of the theorem is based on the direct calculation of the cumulants using Eq.
17�. One has

1

2	
� dt�2	�0�t��l = 1.

ne also has

� dE Tr n̂�PET��l =� dE� dk1 ¯ dkl 
��k1�2 − E�T��k1,k2�

2 2
�
��k2� − E�T��k2,k3� ¯ 
��kl� − E�T��kl,k1�
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=� dE�T���E,�E� � dk 
��k�2 − E��l

=� dE ��0,�����E� = � .

hus the rhs of Eq. �17� equals �
�,0. This proves the theorem. �

Moments of the element a� in the case �=0 in the low density limit are equal to the sum over
ll partitions of the limiting cumulants and given by Touchard polynomials,

lim
�→0

��n̂�a�
n� = 

k=1

n

S�n,k��k,

here S�n ,k� is a Stirling number of the second kind, i.e., the number of partitions of a set of size
into k disjoint nonempty subsets. The limiting moments coincide with the moments of the

oisson distribution with expectation equal to �. For a1 one has

lim
�→0

��n̂�a1
n� = Bn,

here Bn is the nth Bell number, i.e., the number of partitions of a set of size n. The Bell numbers
re the moments of the Poisson distribution with expectation equal to 1.

I. AN OPERATOR REPRESENTATION OF THE LIMITING CORRELATION FUNCTIONS

In the present section we explicitly realize the limiting correlation functions as correlation
unctions of certain operators acting in a suitable Hilbert space. Presence of delta functions in the
imiting correlation functions suggests that they can be represented as correlation functions of
ertain white noise operators. Here such a representation is constructed in the special case using
he results of Ref. 7.

Let g0 ,g1�H satisfy the condition �g0 ,Stg1�=0 for any t�R. Define for n ,m=0,1 the Hil-
ert space KnmªL2�Spec H1 ,d�nm�, where Spec H1�R is the spectrum of H1 and d�nm

�gn , PEgn��gm , PEn̂gm�dE. Let Kª�n,m=0,1Knm and let HWNª��L2�R ,K�� be the symmetric
ock space over the Hilbert space of square integrable K-valued functions on R �abbreviation WN
ere stands for white noise�. Using the natural decomposition HWN= �n,m=0,1��L2�R ,Knm�� one
an define the creation and annihilation operator valued distributions Bm,n

± �E , t� acting in HWN and
atisfying the canonical commutation relations

�Bm,n
− �E,t�,Bm�,n�

+ �E�,t��� = 2	
�t� − t�
�E� − E��gm,PEgm���gn�,PEn̂gn� . �18�

he operator valued distributions Bm,n
± �E , t� are called time-energy quantum white noise due to the

resence of 
�t�− t�
�E−E�� in �18�. Let us define the number operators,

Ñm,n�E,t� ª 
n�=0,1

1

�gn�,PEn̂gn��
Bm,n�

+ �E,t�Bn,n�
− �E,t�

nd denote Ngm,gn
�t�ª
dE�Ñm,n�E , t�+Bn,m

− �E , t�+Bm,n
+ �E , t��. Let ��HWN be the vacuum vector.

Theorem 6: Let T1= �gm1
��gn1

� , . . . ,Tk= �gmk
��gnk

�, where m1 ,n1 , . . . ,mk ,nk� �0,1�. One has
he equality

lim
�→0

W�,n̂,T1,0,. . .,Tk,0�t1, . . . ,tk� = ��,Ngm1
,gn1

�t1� ¯ Ngmk
,gnk

�tk��� . �19�
Proof. The right-hand side of �19� has the form
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��,Ngm1
,gn1

�t1� ¯ Ngmk
,gnk

�tk��� =� dE1 ¯ dEk��,�Ñm1,n1
�E1,t1� + Bm1,n1

− �E1,t1�

+ Bm1,n1

+ �E1,t1�� ¯ �Ñmk,nk
�Ek,tk� + Bnk,mk

− �Ek,tk� + Bmk,nk

+ �Ek,tk����

et us denote Ñm,n�t�ª
dE Ñm,n�E , t�. The truncated correlation function corresponds to the term

� dE dE���,Bn1,m1

− �E,t1�Ñm2,n2
�t2�Ñm3,n3

�t3� ¯ Ñmk−1,nk−1
�tk−1�Bmk,nk

+ �E�,tk��� . �20�

otice that Ñm,n�t��=0. Therefore �20� equals

� dE dE���,�¯��Bn1,m1

− �E,t1�,Ñm2,n2
�t2��,Ñm3,n3

�t3�� ¯ Ñmk−1,nk−1
�tk−1��Bmk,nk

+ �E�,tk��� .

he commutators can be calculated by induction using the canonical commutation relations �18�.
he result is

�2	�k−2
�t2 − t1� ¯ 
�tk−1 − tk−2� � dE dE��gn1
,PEgm2

� ¯ �gnk−2
,PEgmk−1

�

� ��,Bnk−1,m1

− �E,tk−1�Bmk,nk

+ �E�,tk��� . �21�

he last two-point correlation function can be calculated using the commutation relations �18�.
his gives for �21� the expression

�2	�k−1
�t2 − t1� ¯ 
�tk − tk−1� � dE�gn1
,PEgm2

� ¯ �gnk−1
,PEgm1

��gnk
,PEn̂gm1

�

hich coincides with the rhs of �9� in the case �1= ¯ =�k=0.
Remark 4: The limiting correlation functions could be represented as expectations of certain

uantum white noise operators in the general case if one could construct a Hilbert space HWN, a

ector ��HWN, and operator valued distributions Bf ,g
± �E , t� and Ñf ,g�E , t� in HWN with the

roperty Bf ,g
− �E , t��= Ñf ,g�E , t��=0 and satisfying the commutation relations

�Bf ,g
− �E,t�,Bf�,g�

+ �E�,t��� = 2	
�t� − t�
�E� − E��f ,PEf���g�,PEn̂g� , �22�

�Bf ,g
− �E,t�,Ñf�,g��E�,t��� = 2	
�t� − t�
�E − E���f ,PEf��Bg�,g

− �E,t� , �23�

�Ñf ,g�E,t�,Ñf�,g��E�,t��� = 2	
�t� − t�
�E� − E���g,PEf��Nf ,g��E,t�

− �g�,PEf�Nf�,g�E,t�� . �24�

uppose there exist such operators. Define Nf ,g�t�ª
dE�Ñf ,g�E , t�+Bg,f
− �E , t�+Bf ,g

+ �E , t��. Then
ne can prove exactly in the same way as in Theorem 6 that

lim
�→0

W�,n̂�f1��g1�,0,. . .,�fn��gn�,0�t1, . . . ,tn� = ��,Nf1,g1
�t1� ¯ Nfn,gn

�tn��� .
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PPENDIX A

Here we make a connection between the objects defined in Sec. II and the model of a test
article interacting with a dilute Bose gas �see Ref. 9 for details�.

The one particle Hilbert space for this model has the form H	L2�R3�, where R3 is the
hree-dimensional coordinate or momentum space. The one particle free evolution is a unitary
roup St	eitH1 whose generator H1 in the momentum representation is the multiplication operator
y the function ��k�= �k�2 /2m, where m is the mass of a gas particle. The test particle is charac-
erized by its Hilbert space HS and its free Hamiltonian HS acting in HS which is assumed to have
discrete spectrum. The discrete set B is the set of all transition frequencies of the test particle, or

quivalently, the spectrum of its free Liouvillean −i�HS , · �.
The dynamics of a test particle interacting with a gas is described by an evolution operator

�t� acting in HS � ��H� and satisfying in the interaction picture, after the time rescaling t
t /�, the following Schrödinger equation:

dU�t/��
dt

= − i�
l,�

Ql,� � NTl,�,��t��U�t/�� . �A1�

ere Ql,� are certain operators in HS such that �HS ,Ql,��=−�Ql,� and Tl are certain operators in
. The explicit form of these operators is determined by the details of the microscopic interaction

etween the test particle and particles of the gas. Equation �A1� is the place where the operators

T,�,��t� appear.
The condition S−tn̂St= n̂ and positivity of n̂ imply that for this model n̂ is a multiplication

perator by a function n :R3→ �0, � �. The value n�k� has the meaning of the density of gas
articles at momentum k. If the state of the gas is ��n̂ then the density of gas particles and the rate
f collisions between the test particle and the gas are of order �. Thus the limit �→0 is the low
ensity limit. The limit is nontrivial since the dynamics is studied on the kinetic time scale of order
/�.

PPENDIX B

Let S�R� be the Schwartz space over R and let S��R� be the dual space of distributions. We
eproduce the following lemma from Ref. 4.

Lemma 1: One has the limit in S��R��S��R�,

lim
�→0

eitx/�

�
= 2	
�t�
�x� ,

Proof: Let f ,��S�R� and let f̃ be Fourier transform of f , f̃���=
dx ei�xf�x�. One has the
dentifies

I ª lim
�→0

� dt dx
eitx/�

�
f�x���t� = lim

�→0
� d� ����� � dx ei�xf�x� = lim

�→0
� d� ����� f̃��� .

ince f̃ �S�R�, the function ����� f̃��� satisfies the conditions of the Lebesgue lemma which
llows to exchange the limit and integration in the last expression. Thus

I = ��0� � d� f̃��� = 2	��0�f�0� .

�

1 H. Spohn and J. L. Lebowitz, Adv. Chem. Phys. 38, 109 �1978�.
2 H. Spohn, Rev. Mod. Phys. 52, 569 �1980�.
3 R. Dümcke, Commun. Math. Phys. 97, 331 �1985�.
4
 L. Accardi, Y. G. Lu, and I. V. Volovich, Quantum Theory and Its Stochastic Limit �Springer, Berlin, 2002�.

                                                                                                            



1

1

1

1

1

1

033507-12 Alexander Pechen J. Math. Phys. 47, 033507 �2006�

                        
5 L. Accardi and Y. G. Lu, Commun. Math. Phys. 141, 9 �1991�.
6 S. Rudnicki, R. Alicki, and S. Sadowski, J. Math. Phys. 33, 2607 �1992�.
7 L. Accardi, A. N. Pechen, and I. V. Volovich, J. Phys. A 35, 4889 �2002�.
8 L. Accardi, A. N. Pechen, and I. V. Volovich, Infinite Dimen. Anal., Quantum Probab., Relat. Top. 6, 431 �2003�.
9 A. N. Pechen, J. Math. Phys. 45, 400 �2004�.
0 D. V. Voiculescu, K. J. Dykema, and A. Nica, Free Random Variables CRM monograph series 1 �American Mathemati-
cal Society, Providence, RI, 1992�.

1 D. V. Voiculescu, Lectures on Free Probability Theory, Lecture Notes in Math. 1738 �Springer, Berlin, 2000�, pp.
279–349.

2 L. Accardi, Y. G. Lu, and V. Mastropietro, Infinite Dimen. Anal., Quantum Probab., Relat. Top. 1, 467 �1998�.
3 L. Accardi, I. Ya. Aref’eva, and I. V. Volovich, Proc. Steklov Inst. Math. 228, 106 �2000�.
4 J. Andries, F. Benatti, M. De Cock, and M. Fannes, Rev. Math. Phys. 12, 921 �2000�.
5 N. N. Bogoliubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov, General Principles of Quantum Field Theory �Kluwer
Academic, Dordrecht, Boston, 1990�.
                                                                                                            



A

I

s
s
a

d
t
a
n
m
f
v
d
r
g

G
fi
t
e
g
w
f
d
o
p
m

a

b

c

JOURNAL OF MATHEMATICAL PHYSICS 47, 033508 �2006�

0

                        
nyons, group theory and planar physics
J. Negroa� and M. A. del Olmob�

Departamento de Física Teórica, Universidad de Valladolid, E-47005, Valladolid, Spain

J. Tosiekc�

Institute of Physics, Technical University of Lódź, Wólczańska 219, 93-005 Lódź, Poland

�Received 19 December 2005; accepted 21 December 2005;
published online 23 March 2006�

Relativistic and nonrelativistic anyons are described in a unified formalism by
means of the coadjoint orbits of the symmetry groups in the free case as well as
when there is an interaction with a constant electromagnetic field. To deal with
interactions we introduce the extended Poincaré and Galilei Maxwell groups.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2168399�

. INTRODUCTION

The first works, of a rather theoretical character, devoted to particles with an arbitrary spin and
tatistics in �2+1� dimensions go back to 1977,1 but the real interest in physics behind the anyons
tarted some years later when the fractional quantum Hall effect was explained just in terms of
nyons.2

In the last years some works analyzing the role of the Galilei and Poincaré groups in �2+1�
imensions in the theory of anyons have appeared in the literature.3–10 Although the usual group
heoretical considerations fit well when the anyons are free, this is not the case when the action of
n external electromagnetic field is considered.11 However, recently12,13 we have introduced two
oncentral extensions of the Poincaré and Galilei groups by homogeneous and constant electro-
agnetic fields, called Maxwell groups14,15 that seem to provide an appropriate group theoretical

ramework for anyons in the presence of constant fields. Our intention here is to adopt this
iewpoint to present a unified approach for these kinds of interacting systems in 2-space +1-time
imensions which can also involve noncommuting coordinates. In this context we mention a
ecent work16 where the authors also obtain, in a different way, the extended Galilei-Maxwell
roup �called by them “enlarged Galilei group”�.

The paper has been organized as follows. In the first two sections we revise the Poincaré and
alilei groups to recover the main features of the free relativistic and nonrelativistic anyons and
x the notation. As in all the cases presented along this paper, we have made a systematic use of

he coadjoint orbit method that supply us with a canonical setup of classical systems bearing
nough symmetry in terms of the corresponding symmetry group; in particular, for the Galilei
roup we have taken into account its double central extension. In the next two sections we deal
ith interacting anyons and constant electromagnetic fields. First, in Sec. IV within a relativistic

rame, while the nonrelativistic situation is considered in the following section, where we also
iscuss how to perform the nonrelativistic limit. As we mentioned before the groups involved in
ur analysis are certain noncentral extensions of the Galilei and Poincaré groups where the key
oint is that electromagnetic fields take part as dynamical objects. Some conclusions and com-
ents on the main differences with other approaches end the paper.
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�Electronic mail: olmo@fta.uva.es
�
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We have also added two Appendixes for the sake of completness. In the first Appendix we
ive a brief review about the symplectic structures associated to a Lie group. In the second
ppendix we supply a classification of orbits for the space GM*�2+1� dual to the Lie algebra of

he Galilei-Maxwell group.

I. ANYONS AND THE POINCARÉ GROUP

The Poincaré group P�2+1�, is a six-dimensional �6D� Lie group of transformations of the
2+1�-D Minkowski space-time provided with the metric tensor gij =diag�1,−1,−1�. Two spatial
artesian axes will be denoted by X1 and X2.

Our �2+1�-D system may be seen as embedded in the �3+1�-D Minkowski space-time
quipped with the metric tensor gij =diag�1,−1,−1,−1�. Then, the third spatial axis perpendicular
o the X1X2 plane will be denoted by X3. We will make use of this embedding; for example, a
otation on the plane X1X2 may be considered as the rotation around X3. In that case vectors on the
patial plane are thought to be three-dimensional �3D� objects.

Each element of P�2+1� is parametrized by a pair �a ,��, where a= �b ,a1 ,a2� represents a
ime �b� and space �a1 ,a2� translation, and � a Lorentz transformation. The element � can be
actorized as �=��� ,n����R��, with ��� ,n�� being a boost of rapidity � in the direction of the unit
lanar vector n� and ��R�� denoting a rotation of angle � around the axis X3.

The Lie algebra P�2+1� of the Poincaré group P�2+1� is spanned by the basis �P0

H , P1 , P2 ,K1 ,K2 ,J�, which are the infinitesimal generators of time and space translations,
oosts transformations along axes X1, X2, and X3 rotations, respectively. The nonvanishing com-
utators are

�H,Ki� = − Pi, �Pi,Ki� = − H, �Pi,J� = − �ijPj ,

�Ki,Kj� = − �ijJ, �Ki,J� = − �ijKj, i, j = 1,2, �2.1�

here �ij denotes the 2D completely skew-symmetric tensor.

. Coadjoint orbits

Let �h , p1 , p2 ,k1 ,k2 , j� be the coordinates of an arbitrary point of P*�2+1�, the dual space of
�2+1�, in a basis dual to �H , P1 , P2 ,K1 ,K2 ,J�. The coadjoint action of P�2+1� on P*�2+1� is
iven by17

g:�h,p1,p2,k1,k2, j� → �h�,p1�,p2�,k1�,k2�, j��, g = �b,a1,a2,���,n��,��R��� ,

h� = cosh �h − sinh �n� · p��,

p�� = p�� − sinh �hn� + �cosh � − 1��n� · p���n� ,

k�� = k�� + sinh �j� � n��/2 − �cosh � − 1��n��/2 · k���n��/2

+ b�p�� − sinh �hn� + �cosh � − 1��n� · p���n�� + a��cosh �h − sinh �n� · p��� ,

j�� = cosh �j� + sinh �n� � k�� + a� � �p�� − sinh �hn� + �cosh � − 1��n� · p���n�� , �2.2�

here we have used the following notation:

n� = �n1,n2,0�, p� = �p1,p2,0�, k� = �k1,k2,0�, a� = �a1,a2,0�, j� = �0,0, j� , �2.3�

nd x�� stands for the rotation of a vector x� around the axis X3 by an angle �.

The invariants of the coadjoint action �2.2� are
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C1 = �2 = g�	���	 = h2 − p1
2 − p2

2, C2 = hj� + p� � k� , �2.4�

here �= �h , p1 , p2� and g�	=diag�1,−1,−1�.
The invariant C2 is in fact a 3D vector, but its only nonzero component is the third one, equal

o hj+ p1k2−k1p2. It is a lower dimensional version of the Pauli-Lubanski four-vector. Recall that
n �3+1�-D Minkowski space-time the Pauli-Lubanski vector w takes the form

w = �w0,w� = �j · p,hj + p � k� , �2.5�

here now the involved vectors are generic 3D. The scalar w2 is invariant under the
3+1�-Poincaré group action. In �2+1� dimensions the Pauli-Lubanski vector reduces to the
xpression �2.4� of C2.

The classification of the coadjoint orbits was published in Refs. 17 and 18. There are orbits of
imension 4, 2, and 0 �points�. The four-dimensional �4D� orbits are divided in three classes,

i� C1
0 relativistic particles of a mass �C1,
ii� C1�0 tachyons,
iii� C1=0, p� �0 massless particles.

We will consider the strata of orbits with C1
0. Rewriting C1=m2, where m is the rest mass
f the particle, the invariant C1 leads to the equation of a hyperboloid of two sheets h2− p1

2− p2
2

m2=0. We will restrict to that one of positive energy h
0, denoted Hm
+ , as usual. For the second

nvariant, we rewrite C2=ms�, where

s� =
hj� + p� � k�

�h2 − p1
2 − p2

2
. �2.6�

he nontrivial component of s� is the spin s of the system.

. Symplectic structure

The two independent invariants m and s fix, in the way presented above, a coadjoint orbit Om,s
+

hat constitutes a 4D differentiable submanifold of P*�2+1�. Moreover, we can cover Om,s
+ with

ne chart �Om,s
+ ,�� using as coordinates �p1 , p2 ,k1 ,k2�. Indeed, the Jacobian of the transformation

�h,p1,p2,k1,k2, j� → �C1,C2,p1,p2,k1,k2�

eing �2h2�−1, it is always positive on the sheet Hm
+ . On the orbits Om,s

+ there is a natural Poisson
tructure �A5�—see Appendix A—given by

� = h
�

�ki
Ù

�

�pi
− j

�

�k1
Ù

�

�k2
. �2.7�

he symplectic form related with the tensor � is

 = −
1

h
dki Ù dpi −

j

h2dk1 Ù dk2, �2.8�

here, according to �2.4�,

h = + �p�2 + m2, j =
ms − p1k2 + p2k1

�p�2 + m2
. �2.9�
he coordinates, pi, ki, i=1,2 are not canonical since their Poisson brackets are
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�k1,k2� = − j, �p1,p2� = 0, �ki,pj� = h�ij . �2.10�

he equations of the time evolution obtained from the law of motion �A6� with the Hamiltonian
2.9� are

ṗi = 0, k̇i = pi, i = 1,2. �2.11�

hey look like the equations of motion of a nonrelativistic free particle.
We find a set of canonical coordinates �p� ,q��, where

q� =
k�

h
−

p� � s�

h�m + h�
�2.12�

nd the expression for the angular momentum becomes

j =
ms

h
+ q� � p� +

ms

h�m + h�
p�2. �2.13�

ow, if we identify qi as position coordinates, the equations of motion are the well-known rela-
ions

ṗi = 0, q̇i =
pi

h
, i = 1,2. �2.14�

detailed analysis of the different coordinate systems for anyons can be found in Ref. 19.

. Irreducible unitary representations

In quantum mechanics the coadjoint orbits of a Lie group allow us to define the irreducible
nitary representations �IUR� associated to quantum elementary physical systems having such a
ymmetry group. Thus, the IUR’s of P�2+1� associated to the stratum of orbits Om,s

+ are

�Um,s�a,�����p� = eip·aeis��p,�����−1p� , �2.15�

here s is the quantum number labelling a representation of SO�2� and ��p ,�� is the Wigner
ngle, which is determined by the little group of a point of the orbit. More explicitly, choosing the
oint pm= �m ,0 ,0�, whose isotropy group is SO�2�, and the boost elements �p→p��SO�2,1�
ransforming the point p into p�, then

��p,�� = �pm→��p�
−1 ��pm→p. �2.16�

he functions ��p� belong to the Hilbert space H=L2�Hm
+ ,d��p��, being d��p� the SO�2,1�-

nvariant measure in Hm
+ .

The differential realization of the generators for this representation is

Ĥ = h, P̂i = pi, K̂j = i�h�pj
+ pj�h� +

� jkpk

2m
s, Ĵ = i�p2�p1

− p1�p2
� +

h

m
s . �2.17�

he two Casimirs corresponding to the invariants �2.4�, C1= P̂2 and C2= Ĥ · Ĵ+ P̂
�

� K̂
�

, give the
ollowing equations:

�p2 − m2���p� = 0, �hĴ + P̂
�

� K̂
�

− ms���p� = 0. �2.18�

he first one corresponds to the mass shell condition which gives rise to the Klein-Gordon
quation. The second one is the Pauli-Lubanski equation describing the spin of the particle. In two
imensions the unitarity of the realizations does not impose restrictions on the values of s, thus

llowing for the existence of anyons. In this way we easily recover results of Ref. 4.
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II. NONRELATIVISTIC ANYONS AND THE GALILEI GROUP

In the nonrelativistic case we must deal with the Galilei group G�2+1� in �2+1�-D, which can
e seen as a contraction of the Poincaré group P�2+1�. The commutation rules of its Lie algebra
�2+1� are those of Poincaré �2.1� except that now

�K1,K2� = 0, �Ki,Pj� = 0, i, j = 1,2. �3.1�

he algebra G�2+1� admits a 2D central extension Ḡ�2+1� characterized by the new
ommutators20,21

�Pi,Kj� = − �ijM, �K1,K2� = K , �3.2�

here M and K are central generators, i.e., �M , · �= �K , · �=0 for any element of G�2+1�.
Both extensions can also be obtained by a contraction from the Poincaré group.21,22 It is

nough to consider the direct product P̃�2+1�=R2 � P�2+1�. Obviously, at the level of the Lie

lgebra we have P̃�2+1�=R2 � P�2+1�. Hence, a basis is constituted by the generators of R2

M ,K� plus the known generators of the Poincaré algebra �H , P1 , P2 ,K1 ,K2 ,J�. Let us consider a
ew basis given by

M� = M, K� = K, H� = H − M, Pi� = Pi, Ki� = Ki, J� = J + K, i = 1,2. �3.3�

he nonvanishing commutators of P̃�2+1� in this new basis are

�H�,Ki�� = − Pi�, �Pi�,Ki�� = − H� − M�, �Pi�,J�� = − �ijPj�,

�Ki�,Kj�� = − �ij�J� − K��, �Ki�,J�� = − �ijKj�, i, j = 1,2. �3.4�

ow in order to perform the contraction we define an appropriate rescaled basis

M� = �2M�, K� = �2K�, H� = H�, Pi� = �Pi�, Ki� = �Ki�, J� = J�, �3.5�

here � is a fixed real positive number. The nonvanishing Lie commutators are now

�H�,Ki�� = − Pi�, �Pi�,Ki�� = − �2	H� +
1

�2 M�
, �Pi�,J�� = − �ijPj�,

�Ki�,Kj�� = − �ij�
2	J� −

1

�2K�
, �Ki�,J�� = − �ijKj�, i, j = 1,2.

n the limit �→0 we recover the Lie commutators of the extended algebra Ḡ�2+1�.
To give a physical interpretation of the contraction procedure we identify the contraction

arameter � with the inverse of the light speed ��=1/c�. From a cohomological point of view a
hange of the basis defined by relations �3.3�–�3.5� corresponds to introducing a trivial two-
ocycle on the Poincaré group. After the contraction �→0 this trivial two-cocyle becomes a
ontrivial one of the Galilei group.23

. Coadjoint orbits

By Ḡ*�2+1� we will denote the space dual to the algebra Ḡ�2+1�. Each vector belonging to
*�2+1� is characterized by eight components �m ,� ,h , p1 , p2 ,k1 ,k2 , j� in the basis dual to

¯
M ,K ,H , P1 , P2 ,K1 ,K2 ,J� of G�2+1�.
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Let us denote by g= �� ,� ,b ,a� ,v� ,R�� the elements of Ḡ�2+1�, with a convention similar to
hat of Poincaré P�2+1� except that v� stands for the Galilean boosts, and �� ,�� parametrize the

roup elements generated by �M ,K�. The coadjoint action of g� G̃�2+1� on the dual space
*�2+1� is given by21

m� = m ,

�� = � ,

h� = h − v� · p�� + 1
2mv�2,

p�� = p�� − mv� ,

k�� = k�� + bp�� + m�a� − bv�� + v� � �� ,

j�� = j� + a� � p�� + v� � k�� − 1
2�v�2 − ma� � v� , �3.6�

here we have also used the notation

p� = �p1,p2,0�, v� = �v1,v2,0�, k� = �k1,k2,0�, a� = �a1,a2,0�, �� = �0,0,��, j� = �0,0, j� .

The invariants of the coadjoint action �3.6�, besides m and �, are

C1 = p�2 − 2mh, C2 = mj� − ��h + p� � k� . �3.7�

ote that the first one can be written as U=−C1 /2m and is interpreted as the internal energy of the
hysical system. As in the relativistic case we denote C2=ms�, but now

s� = j� −
��h

m
+

p� � k�

m
. �3.8�

t is easy to derive the expressions �3.7� from their relativistic counterparts �2.4� following the
ontraction procedure outlined above �see also Ref. 22�. Obviously, expression �3.8� is the non-
elativistic limit of �2.6�.

The classification of the coadjoint orbits �4D, 2D, and 0D� was presented in Ref. 21. The
elevant 4D orbits characterized by the values �m�0,� ,U ,s� are denoted by Om,s

�,U. In the follow-
ng we will assume ��0, since the results for �=0 can be obtained directly.

. Symplectic structure

A set of coordinates adapted to the orbit Om,s
�,U are �m ,� ,U ,s , p1 , p2 ,x1 ,x2�, where xi=ki /m.

ince the transformation

�m,�,h,p1,p2,k1,k2, j� → �m,�,U,s,p1,p2,x1 = k1/m,x2 = k2/m�

as a nonzero Jacobian �as long as m�0!�, we can cover the whole orbit Om,s
�,U with one chart

Om,s
�,U ,�� using coordinates �p1 , p2 ,x1 ,x2�. The induced Poisson tensor � on the orbit Om,s

�,U takes
he form

� =
�

Ù
�

+
�

2

�
Ù

�
, i = 1,2. �3.9�
�xi �pi m �x1 �x2
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he inverse of � gives the symplectic form  on Om,s
�,U,

 = dxi Ù dpi +
�

m2dx1 Ù dx2, i = 1,2. �3.10�

he coordinates �p� ,x�� are not canonical since their Poisson brackets are

�x1,x2� =
�

m2 , �p1,p2� = 0, �xi,pj� = �ij . �3.11�

evertheless, the Hamiltonian

h =
p�2

2m
+ U �3.12�

as the usual form of a free nonrelativistic particle, leading to the motion equations

p�̇ = 0, x�̇ =
p�

m
. �3.13�

e see that the dynamics of the particle is independent of the parameter � because the Hamil-
onian function �3.12� does not contain any function of x�. Equations �3.13� are consistent with
3.6� if we assume that the parameter b represents the time and the coadjoint action gives the
elation between the coordinates in two different inertial frames. Indeed, let the laboratory frame
� and the �instantaneous� rest frame � of the particle be related by the element g= �t ,a� ,−v� ,0�
G�2+1�. Then, Eqs. �3.6� can be read as

p��� = mv� , x��� = t
p���

m
−

p���

m2 � �� + a� . �3.14�

he angular momentum is given by

j = x� � p� +
��

m
	 p�2

2m
+ U
 + s �3.15�

hich is the nonrelativistic limit of �2.13�.
A set of canonical coordinates �p� ,q�� can be straightforwardly obtained from �p� ,k�� by

qi = xi +
�ij�pj

2m2 . �3.16�

t is worth to consider �3.16� as the nonrelativistic limit of the corresponding ones �2.12� for
oincaré. The coadjoint action of the Galilei group G�2+1� in these coordinates is expressed by
ormulas

p�� = p�� − mv� ,

q�� = q�� +
b

m
p�� + �a� − bv�� +

1

2m
v� � �� . �3.17�

lthough � does not affect the dynamics, it gives the contribution �1/2m�v� ��� to q� . The time
volution of canonical variables is given by �cf. �3.13��

ṗi = 0, q̇i = pi, i = 1,2. �3.18�

� �
ote that in the coordinates �p ,q� the angular momentum takes the form
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j� = q� � p� +
��U

m
+ s , �3.19�

here � gives rise to an extra term. Similarly to �3.14� equations �3.17� give now

p� = mv� , q� = t
p�

m
−

p�

2m2 � �� + a . �3.20�

he � term is the only one that remains without a clear physical interpretation in the free case.21,24

. Irreducible unitary representations

The IUR of G�2+1� associated to this stratum of orbits are21

�Um,s
�,U�g����p�� = ei���1/2m�p�2+U�b−p� ·a��ei���1//2m�v��p��ei�s+��U/m�����R−1����p� − mv��� , �3.21�

here R��� is a rotation of angle �. The carrier space of the representation is the Hilbert space
=L2�R2�. Note that the differential realization of the generators in this representation is

P̂j = pj, K̂j = im�pj
−

�

2m
� jkpk, Ĥ =

1

2m
p�2 + U, Ĵ = i�p2�p1

− p1�p2
� + s + �U .

�3.22�

fter a global change of phase, U��g�=��g�U�g�, the IUR Um,s
�,U is shown to be equivalent to Um,0

�,0 .
It is worth mentioning that we can consider massless particles in the Galilean framework. In

his case their 4D coadjoint orbits are characterized by �m=0,��0� and the invariants C1= p�2

0 and C2= p� �k� −�h. If we compare C2 with the relativistic Pauli-Lubanski operator for m=0 in

2.18�, �hĴ+ P̂
�

� K̂
�

−C2���p�=0, we see that C2 gives the helicity of our system, while J is now
eplaced by �. We remark that this case is not equivalent to that of the orbit �m=0, �=0�, and that
n the present context the Hamiltonian becomes linear in p� . However, one must be careful about
he interpretation since the coordinates �k� , p�� are not canonical �see also Ref. 4�.

The IUR associated to the null-mass orbits are

�UC1,C2

� �g����w� ,�� = ei��1
2

w� �y��eip� ·�a�−by��e−i�C2/2��b��y� − w� ,� − �� , �3.23�

here p� =�C1�cos � , sin �� and ��L2�R2�S1�.

V. RELATIVISTIC ANYONS IN AN EXTERNAL ELECTROMAGNETIC FIELD

Once revisited the description of free anyons, in the next sections we will analyze the more
nteresting case when charged particles move in a constant electromagnetic field. The presence of
xternal forces modifies the symmetry group of the system. This is the reason why instead of the
oincaré P�2+1� and Galilei G�2+1� groups, we will consider the so-called Poincaré-Maxwell
M�2+1� and Galilei-Maxwell GM�2+1� groups.14,15

Let us start with the relativistic case. The Poincaré-Maxwell group PM�2+1� is a nine-
imensional �9D� Lie group with six infinitesimal generators �H , P1 , P2 ,K1 ,K2 ,J�, corresponding
o P�2+1�, plus three new elements �B ,E1 ,E2� related to the electromagnetic field.14 It can be
onsidered as a 3D noncentral extension of the Poincaré group. The nonvanishing commutators for
ts Lie algebra, PM�2+1�, are
�B,Ki� = �ijEj, �Ei,Kj� = − �ijB, �Ei,J� = − �ijEj ,
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�H,Pi� = Ei, �H,Ki� = − Pi, �Pi,Pj� = − �ijB ,

�Pi,Kj� = − �ijH, �Pi,J� = − �ijPj, �Ki,Kj� = − �ijJ ,

�Ki,J� = − �ijKj, i, j = 1,2. �4.1�

. Coadjoint orbits

We will denote by �� ,�1 ,�2 ,h , p1 , p2 ,k1 ,k2 , j� the coordinates fixing a point on PM*�2+1�
y means of the dual basis of �B ,E1 ,E2 ,H , P1 , P2 ,K1 ,K2 ,J�. The general formula expressing the

oadjoint action of a group element g= �c ,d� ,b ,a� ,��� ,n����R���� PM�2+1� on PM*�2+1� is
iven by

�� � = �cosh ���� + �sinh ���n� · ����n��/2,

��� = �� − �sinh ����� � n��/2� + �cosh � − 1��n��/2 · ����n��/2,

h� = �cosh ��h − �sinh ���n� · p��� − a� · ���,

p�� = p�� − �sinh ��hn� + �cosh � − 1��n� · p���n� + b��� − �� � � a� ,

k�� = k�� − �sinh ��j� � n��/2 + �cosh � − 1��n��/2 � k���n��/2

+ bp�� − 1
2b2��� + h�a� + 1

2a�2��� − �� � � d� − c� � ���,

j�� = �cosh ��j� + �sinh ���n� � k��� + a� � p�� + 1
2a�2�� � + d� � ���, �4.2�

here the notation used is the same as in �2.3� with the additional vectors

�� = �0,0,��, �� = ��1,�2,0�, c� = �0,0,c�, d� = �d1,d2,0� .

he parameters c, d1, and d2 describe the group elements generated by B, E1, and E2, respectively.
otice that �h , p1 , p2� represents the 3D energy-momentum vector covariant under �2+1� Lorentz

ransformations.
The invariants under the coadjoint action �4.2� are

C0 = ��2 − �� 2,

C1 = h2 − p�2 − 2�k� · �� − j� · �� � ,

C2 = h�� + p� � �� . �4.3�

he first one is, of course, the invariant of the electromagnetic field under Lorentz transformations,

0=−F�	F�	, where F0i=�i and F12=�. If C0
0, C0�0 or C0=0 we say that the electromagnetic
eld �or the orbit� is of electric, magnetic, or perpendicular type, respectively.

The second invariant C1 describes the interaction: it includes the electric coupling term k� ·��,

nd the coupling of angular momentum and magnetic field, j� ·�� . The last invariant C2 from �4.3�
dmits a covariant expression C2=−��	�p�F	�. It has no immediate interpretation, but its appear-

nce is a consequence of the symmetries of the system.
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Since we have three independent invariants the maximal dimension of the coadjoint orbits is
ix. In this work we will be concerned only with this kind of orbits, henceforth denoted OC1C2

C0 .

. Symplectic structure

A suitable chart of coordinates for the points of the 9D differentiable manifold PM*�2+1� is
iven by �C0 ,C1 ,C2 ,�1 ,�2 , p1 , p2 ,k1 ,k2�. Each 6D orbit OC1C2

C0 can be covered with just one chart
OC1C2

C0 ,�� with coordinates ��1 ,�2 , p1 , p2 ,k1 ,k2�. Indeed, from �4.3� we find that the Jacobian of
he transformation

��,h, j,�1,�2,p1,p2,k1,k2� → �C0,C1,C2,�1,�2,p1,p2,k1,k2�

quals 4�3. A singularity appears if �=0, but we shall deal here only with orbits of magnetic type
��0�.

In the chart �OC1C2

C0 ,�� the Poisson tensor � takes the form

� = − �
�

��1
Ù

�

�k2
+ �

�

��2
Ù

�

�k1
− �

�

�p1
Ù

�

�p2
− h

�

�p1
Ù

�

�k1
− h

�

�p2
Ù

�

�k2
− j

�

�k1
Ù

�

�k2
,

�4.4�

here � ,h , j are functions of the coordinates obtained from relations �4.3�. To make easy further
omparisons with the nonrelativistic case we will represent it as a matrix �using the previous order
f the coordinates�

�ij =�
0 0 0 0 0 − �

0 0 0 0 � 0

0 0 0 − � − h 0

0 0 � 0 0 − h

0 − � h 0 0 − j

� 0 0 h j 0

� �4.5�

hose determinant is �6. The symplectic two-form is

 =
h2 − j�

�3 d�1 Ù d�2 +
h

�2d�1 Ù dp1 +
1

�
d�1 Ù dk2

h

�2d�2 Ù dp2 −
1

�
d�2 Ù dk1 +

1

�
dp1 Ù dp2.

�4.6�

uch a symplectic form is not canonical: the nonvanishing Poisson brackets are

��i,kl� = − �il�, �pi,pl� = �il�, �pi,kl� = − �ilh, �ki,kl� = − �il j, i,l = 1,2. �4.7�

In order to find the equations of motion we need to know the Hamiltonian of the system. From
he invariant C2 �see �4.3�� we get

h =
C2

�
+

�� � p�

�
, �4.8�

here from �4.3� we can write �=���2−C0. Thus, we obtain

�̇i = 0, ṗi = − �i, k̇i = pi, i = 1,2. �4.9�

quations �4.9� are extremely simple. The first one says that the fields are constant. The others
ook like the equations of motion for a nonrelativistic particle with a unit negative charge inside an

lectric field. Comparing the time evolution from these formulas with the transformation rules
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4.2� we can identify the time t with the parameter b. This is natural because b is associated to the
amiltonian generator H.

Let us remark that the above relations are quite different from the usual ones derived from the
tandard Hamiltonian formalism. In that approach the Hamilton function is

H = �m2 + ��� + 1
2�� � r��2

− �� · r� , �4.10�

here m denotes the mass of the particle and r� its vector of position, being ��� ,r�� canonically
onjugated variables. Then, the equations of motion are

��̇ = �� −
1

2
r�̇ � �� , r�̇ =

1

E	�� +
1

2
�� � r�
 , �4.11�

ith E=H+�� ·r� the energy of the system. But, the “group” coordinates �1 ,�2 , p1 , p2 ,k1 ,k2 have not
simple interpretation in terms of �� and r� �4.11�. In fact, there is not a punctual transformation

elating both pictures. We shall comment on this problem more carefully in the last section.

. NONRELATIVISTIC ANYONS IN AN EXTERNAL ELECTROMAGNETIC FIELD

The magnetic limit25 of the Poincaré-Maxwell group, that we call Galilei-Maxwell group,15 is
he most suitable to describe nonrelativistic anyons in the presence of external covariant fields.

The Galilei-Maxwell group is a 10-dimensional �10D� Lie group, whose infinitesimal genera-
ors are those of G�2+1�, �H , P1 , P2 ,K1 ,K2 ,J�, together with �E1 ,E2 ,B ,M�. However, here, we
ill take into account also the central extension characterized by the nonvanishing commutator

K1 ,K2�=K, leading to a group denoted simply GM�2+1�. The nonvanishing commutators of its
ie algebra, GM�2+1�, are

�Ei,Kj� = − �ijB, �Ei,J� = − �ijEj ,

�H,Pi� = Ei, �H,Ki� = − Pi, �Pi,Pj� = − �ijB ,

�Pi,Kj� = − �ijM, �Pi,J� = − �ijPj, �Ki,Kj� = �ijK ,

�Ki,J� = − �ijKj,Kj, i, j = 1,2. �5.1�

t is interesting to point out that in a frame where the electric field E� vanishes we recover the
ommutators corresponding to a pure magnetic Landau system.15,26

On the other hand, it is worthy to note that in order to relate the extended and nonextended
M algebras, we can redefine the basis generators inside the enveloping algebra taking into

ccount the central character of M, K, and B. So, we can write

Ki� = Ki + ��ijPj, Pi� = Pi +
M

B
�ijEj , �5.2�

here �= �−M +�M2+�B� /B, and Me=�M2+�B is a kind of effective mass.7 Then, the new
ommutators entering Ki� , Pi� are the same as above except that

�Ki�,Kj�� = 0. �5.3�

. Coadjoint orbits

Let us denote by �m ,� ,� ,�1 ,�2 ,h , p1 , p2 ,k1 ,k2 , j� the coordinates of an arbitrary point of
*�2+1� in a basis dual to �M ,K ,B ,E1 ,E2 ,H , P1 , P2 ,K1 ,K2 ,J�. The coadjoint action of an ele-

� � *
ent g= �� ,� ,c ,d ,b ,a ,v ,���GM�2+1� on the dual space GM �2+1� is given by
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m� = m ,

��� = �� ,

�� � = �� ,

��� = ��� − v� � �� ,

h� = h − v� · p�� + 1
2mv�2 − a� · ���� − v� � �� � ,

p�� = p�� − mv� − b���� − v� � �� � − �� � a� ,

k�� = k�� + ma� + bp�� − 1
2b2��� + v� � �� − �� � d� + 1

2a� � �� ,

j�� = j� − a� � p�� − v� � k�� + 1
2�� · v�2 + ma� � v� + 1

2�� · a�2 − d� � ��� + 1
2b��� � a� − �� �d� · v�� .

�5.4�

Besides m, �, and C0�� we have the following invariants of the coadjoint action:

C1 = �� p�2 − 2mh�� + 2�� ��� · k�� − 2�2j� + ����2, C2 = 2�� 2h + 2�� · �p� � ��� + m��2. �5.5�

hese invariants are the nonrelativistic version of �4.3�. The invariance of the magnetic field ��

ay be seen as the consequence of the invariance of the Lorentz force F� =�� +v� ��� under �homo-
eneous� Galilei transformations. A charged particle moving slowly can see mainly the magnetic
eld in our magnetic limit,25

���2

�
� 1. �5.6�

et us consider the relativistic invariant C0=��2−�2 from �4.3�. Using �5.6� in the 0-term approxi-
ation term we obtain the nonrelativistic invariant

C0 = − �0
2.

e can omit the vector symbol because the magnetic field has only one component, so that

� = ��0
2 + ��2 

�5.6�

�0 +
1

2

��2

�0
. �5.7�

y substituting

h → m	1 +
h

m

, j → − �	1 −

j

�

, � → �	1 +

1

2

��2

�2

n the other invariants C1 and C2 of �4.3�, and omitting terms of higher order in h /m, j /�, and

�2 /�2, we obtain their nonrelativistic counterparts of �5.5�, respectively.
The classification of the coadjoint orbits is displayed in Appendix B. There are orbits of

C1C2
imension 6 and 4, but the most important for us are the 6D orbits denoted Om�� with ��0.
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. Symplectic structure

Each 6D orbit Om��
C1C2 can be covered with one chart �Om��

C1C2 ,��. As coordinates we can choose
�1 ,�2 , p1 , p2 ,k1 ,k2� since the Jacobian of the transformation

�m,�,�,�1,�2,h,p1,p2,k1,k2, j� → �m,�,�,C1,C2,�1,�2,p1,p2,k1,k2�

quals 4�4 ��0�. The Poisson tensor � on the orbit Om��
C1C2 is

� = m
�

�ki
Ù

�

�pi
+ �

�

�k1
Ù

�

�k2
− �

�

�p1
Ù

�

�p2
− ��ij �

�ki
Ù

�

�� j
. �5.8�

he components of �, written in matrix form, are

�ij =�
0 0 0 0 0 − �

0 0 0 0 � 0

0 0 0 − � − m 0

0 0 � 0 0 − m

0 − � m 0 0 �

� 0 0 m − � 0

� , �5.9�

he determinant of � is �6 ��0, for our orbits�. The natural symplectic form on Om��
C1C2 is

 =
�� + m2

�3 d�1 Ù d�2 +
m

�2d�i Ù dpi +
1

�
�ijdki Ù d� j +

1

�
dp1 Ù dp2. �5.10�

herefore the coordinates ��i , pi ,ki; i=1,2� are not canonical since the nonvanishing Poisson
rackets are

��i,kj� = − �ij�, �p1,p2� = − �, �pi,kj� = − �ijm, �k1,k2� = � . �5.11�

otice in particular that even the coordinates k1 ,k2 do not commute.
On the other hand, observe that the above tensor �5.9� coincides with �4.5� if we simply

ubstitute h by m and j by −�. The root of the proposed substitution is the fact that the Galilei-
axwell group GM�2+1� is the nonrelativistic limit of the Poincaré-Maxwell group PM�2+1�.
e can look at � as a nonrelativistic track of the angular momentum j �see also in this respect the

rguments supplied in Ref. 4�.
Using the invariant C2 from �5.5� we get a Hamiltonian linear in momenta p� �which is the

onrelativistic version of �4.8��,

h = −
p� � ��

�
−

m

2�2��2 +
C2

2�2 . �5.12�

bserve that by a naive limit �→0 we do not recuperate the free Hamiltonian �3.12�; in fact
im�→0 h is not defined, and the same happens with the Poisson tensor.

After simple calculations we obtain the equations of motion

�̃i = 0, ṗi = − �i, k̇i = pi, i = 1,2. �5.13�

f course, our system includes constant homogeneous fields �� ,�� perpendicular to each other as
e already knew from the coadjoint action. We can also see that � does not take part in any of the

ormulas �5.13�, so, surprisingly, the equations of motion are not affected by the magnetic field.
omparing formulas �5.13� with transformation rules �5.4� we conclude that these two sets of
quations are compatible if we identify the parameter b with time. Moreover, the equations of

otion are also independent of the parameter �.
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It would be interesting to compare our results with those obtained in a more standard way
ollowing the minimal coupling recipe. For simplicity we will assume here that the exotic exten-
ion � vanishes. Let us consider a nonrelativistic particle with a unit negative electric charge

oving on a plane in a constant homogeneous electric �� = ��1 ,�2 ,0� and magnetic �� = �0,0 ,��
elds. A phase space for this system is a 4D symplectic manifold �M , ̃�, where the differentiable
anifold M is diffeomorphic to R4 with canonical coordinates denoted by �1 ,�2 ,r1 ,r2. The first

air �� = ��1 ,�2 ,0� is interpreted as the generalized momentum and the second r�= �r1 ,r2 ,0� is for
he vector of position. The symplectic form is

̃ = d�1 Ù dr1 + d�2 Ù dr2. �5.14�

he Poisson tensor �̃ in coordinates ��1 ,�2 ,r1 ,r2� takes the natural form

�̃ij =�
0 0 − 1 0

0 0 0 − 1

1 0 0 0

0 1 0 0
� . �5.15�

inally, the Hamiltonian is represented by the minimal coupling expression

H =
1

2m
	�� +

1

2
�� � r�
2

+ �� · r� , �5.16�

eading to the motion equations

��̇ = − �� +
1

2
�� � r�̇, r�̇ =

1

m
	�� +

1

2
�� � r�
 . �5.17�

ntegrals of the motion equations �5.17� are the Hamiltonian �5.16� and

C1 = �� � ��� − 1
2�� � r�� , �5.18�

C2 = ��� · ��� + 1
2�� � r���2

− 2��� · r����� · ��� � ��� − m��2� . �5.19�

We can get canonical coordinates from the group coordinates �p� ,k��, but unfortunately, there is
o point transformation connecting these two nonrelativistic interacting pictures.

I. CONCLUDING REMARKS

The symmetry group of a system plus the formalism �Hamiltonian mechanics on a symplectic
anifold� restrict the equations of motion, allow to define elementary systems, and may lead to

nteracting systems compatible with the symmetries. The natural framework to display such sym-
etries is the method of coadjoint orbits. In this way we get a manifold, the invariant symplectic

orm, and the Hamiltonian.
This situation is quite different for the Hamilton formulation of mechanics in the phase space.

n this frame the same symplectic manifold �M ,� may be used to describe physical systems with
ifferent Hamiltonians. In order to build a Hamiltonian for interactions, one is guided by other
rinciples such as the minimal coupling rule. However, there is not a canonical way to display the
ymmetries in this context.

These two approaches have significative differences that could be appreciated along the ex-
mples worked in this paper. For instance, in our coadjoint orbit scheme, the Hamiltonians ob-
ained for the interacting cases are linear in p� , the equations of motion depend on the electric field

�, while the magnetic field �� takes part only in the symplectic two-form. These features are in

harp contrast to the usual interacting Hamiltonian in phase space.
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Another difference is with respect to the role played by the fields. They are an integral part of
he system in the group approach, while in the phase space they are treated as external parameters.
he reason is that in our procedure we have considered the fields on the same foot as coordinates
nd momenta. In other words, the fields have been treated as dynamical fields instead of external
elds, as usual. If we want to set a complete theory for the whole interacting system �particle
fields� it is expected that both components should take part of the system at the same level.

The group approach also enlightens us on how to go from a relativistic to a nonrelativistic
escription of the system in a very simple and natural way. So, manifolds, symplectic forms,
amiltonians, invariants, and equations of motion are related through a contraction procedure.

The price for the simplicity of the group approach is the fact that we must use noncanonical
nd noncommuting coordinates which obscure the physical interpretation. �However this is usual
n the new formulations of planar physics, see for instance, Refs. 16 and 27–30�.

To show the explicit relation between the group approach and the formulation in phase space
s an open problem. This situation of having different descriptions for the same system �one more
ppropriate to handle symmetries, the other adapted for an easier interpretation� happens also in
uantum mechanics. In this framework symmetries can be described by unitary irreducible repre-
entations of symmetry groups in a representation space related to the coadjoint orbits as has been
hown in Secs. III C and IV C. On the other side, quantum mechanical systems are usually
escribed by means of wave functions of the configuration space. The connection between these
wo pictures sometimes is easy �the free case�, but when interactions are included it is more
nvolved.
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PPENDIX A: G-INVARIANT SYMPLECTIC STRUCTURES

This Appendix contains some basic information about Poisson structures on a space G* dual to
Lie algebra G. We start from the definition of the Poisson bracket on some real n-dimensional
anifold M, then we concentrate on the case when the manifold M is an orbit O* of the coadjoint

ction. We prove that O* is endowed in a canonical way with a symplectic structure.
Let M be a real n-dimensional differentiable manifold. The set of smooth real-valued func-

ions C��M� with a commutative multiplication constitutes a ring.
The Poisson bracket, �· , · � :C��M��C��M�→C��M�, on the manifold M is a bilinear relation

atisfying the following conditions:

1� antisymmetry �f1 , f2�=−�f2 , f1�,
2� Jacobi’s identity �f1 , �f2 , f3��+ �f2 , �f3 , f1��+ �f3 , �f1 , f2��=0,
3� derivation rule �f1 , f2f3�= f2�f1 , f3�+ f3�f1 , f2�,

or every f1 , f2 , f3�C��M�.
The first two properties equip C��M� with the structure of a real Lie algebra. The derivation

ule �known also as the Leibniz identity� and the bilinearity of the Poisson bracket say that for
very f �C��M� there exists a vector field Xf such that

Xfg = �f ,g�, " g � C��M� .

et us cover some open subset U�M by a chart �U ,��, such that �x1 , . . . ,xn� denotes the coor-
inates of x�U in this chart. In a natural basis � /�xi��xi

�i=1, . . . ,n� induced by the chart we
i
ave Xf = �Xf� �xi

, where Einstein’s sum convention is used. It is easy to check that
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�Xf�i = Xf�xi� = �f ,xi� . �A1�

sing �A1� we find that the Poisson bracket

�f ,g� = Xfg = �Xf�i�xi
g = �f ,xi�

�g

�xi
. �A2�

n the other hand,

�f ,xi� = − �xi, f� = − Xxi
�f� = − �xi,xj�

�f

�xj
= �xj,xi�

�f

�xj
. �A3�

etting �A3� into �A2� we finally have

�f ,g� =
�f

�xj

�g

�xi
�xj,xi� . �A4�

ence, it is enough to know the Poisson brackets of the coordinate functions �xj ,xi� , i , j
1, . . . ,n, to compute the Poisson bracket of any pair of functions. The expression �A4� defines a

wo-contravariant skew-symmetric tensor � by

��df ,dg� = �f ,g� . �A5�

o, we conclude that the correspondence f →Xf defines a map ��x� :Tx
*M→TxM in every point

�M. The rank of ��x� is called the rank of the Poisson structure in x.
The differential equations that determine the integral curves of Xf in M are

dxi

dt
= �f ,xi�, i = 1, . . . ,n . �A6�

hey look like Hamilton equations being −f the Hamiltonian function. For this reason the vector
elds Xf are called Hamiltonian vector fields and f is called the Hamiltonian of Xf.

Let us consider now the problem of defining a Poisson structure on the space G*, dual to a Lie
lgebra G. For every smooth function f �C��G*� its �total� differential �df�x at x�G* is a linear
apping �df�x :TxG*→R, where TxG* denotes the tangent space of G* at the point x. The dual

pace G* is a vector space and it can be identified with TxG*. The differential �Df�x is the func-
ional over the tangent space TxG* and, hence, also over G*. It means that �Df�x� �G*�* which is
somorphic to G. Thus, to any function f �C��G*� we assign �xf �G, in such a way that for every

y�G*,

�y,�xf� = �df�x�y� =
d

dt
�f�x + ty��t=0. �A7�

he formula �A7� allows us to define the Poisson structure on G* by

�g, f��x� = �x,��xg,�xf�� . �A8�

efining the functions �a�C��G*�, with a�G, by �a�x�= �x ,a� we obtain from �A7� that �x�a

a. Hence

��a,�b��x� = �x,�a,b�� = ��a,b��x� . �A9�

f �a1 , . . . ,an� is a basis of G then �i��ai
, i=1, . . . ,n, can be chosen as a set of coordinate

* *
unctions on G . From �A4� and �A7� we obtain that the Poisson structure on G takes the form
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�f ,g��x� =
�f

��i

�g

�� j
��i,� j� =

�f

��i

�g

�� j
cij

k �k, �A10�

ith cij
k being the structure constants of G relative to its basis �a1 , . . . ,an�. Thus, for a set of

oordinate functions �i , i=1, . . . ,n, on G* we have

��i,� j� = cij
k �k, �A11�

o that the Poisson bracket of ��i ,� j� is a linear function of �k.
A special case of manifold with a Poisson structure is the symplectic manifold. A pair �M ,�

s called a symplectic manifold if M is a finite-dimensional differentiable manifold and  a
ondegenerate two-form satisfying the condition d=0. The nondegeneracy condition of  is
quivalent to the requirement that the rank of ̂ :Tx�M�→Tx

*�M�, defined by

�̂�v�,v�� = �v,v�� ,

s maximal at each point x�M. The map ̂ allows us to define a skew-symmetric contravariant
ensor field � on M by

���,�� = �̂−1���,̂−1����, �,� � T*M . �A12�

he tensor � constitutes the Poisson structure on M. Thus, when �=dg and �=df we obtain that

�g, f� = ��dg,df� = �̂−1�dg�,̂−1�df�� . �A13�

Let G be a Lie group and G its Lie algebra. For every element g�G the inner automorphism

g :G→G defined as

ig�g�� = gg�g−1

nduces a Lie algebra automorphism ig* :G→G which gives rise to the adjoint representation of G
n G by Adg=exp ig*. The coadjoint representation of G on G* is now given by

�CoAdg�u�,a� = �u,Adg−1�a��, u � G*, a � G . �A14�

ach orbit O* of the coadjoint action is a symplectic submanifold of the Poisson manifold G*, and
t is endowed in a canonical way with a symplectic structure characterized by the two-form
Kirillov-Kostant-Souriau theorem�

�Xa,Xb� = �u,�a,b��, u � O*, a,b � G , �A15�

here Xa is the fundamental vector field associated with the coadjoint action

�Xaf��u� =
d

dt
�f�CoAde−tau��t=0. �A16�

The Poisson structure on O*, as a submanifold of G*, defined through the symplectic two-form
*
�A15� coincides with that induced by the Poisson structure �A10� on G .
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PPENDIX B

We have the following Table I.
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ABLE I. Coadjoint orbits classification for GM*�2+1�.

Constraints Dimension Invariants

�0, m�0, ��0 6 C1= 1
2��2 ·�� + ��� ·k�� ·�� + 1

2 p�2 ·�� −mh�� − �j� ·�� � ·��

C2 = �� 2h + �p� � ��� · �� +
m

2
��2

�=0, m�0, ��0 6 C1=−m � 2 p�2+m2h−m�� ·k� + �p� ���� ·k�

C2=��2

m=0, ��0, ��0 6 C1= 1
2��2 ·�� + ��� ·k�� ·�� + 1

2 p�2 ·�� − �j� ·�� � ·��

C2=h ·�� + �p� ����

�=0, ��0, m�0 6 C1= ��� ·k�� ·�� + 1
2 p�2 ·�� −mh ·�� − �j� ·�� � ·��

C2 = �� 2h + �p� � ��� · �� +
m

2
��2

�=m=0, ��0 6 C1= p� ���
C2=��2

�=�=0, m�0 6 C1=− 1
2 p�2+mh−�� ·k�

C2=��2

m=�=0, ��0 6 C1=− 1
2 p�2−�� ·k� +�� · j�

C2=h ·�� + p� ���

�=m=�=0 4 C1= 1
2 p�2+�� ·k�

C2= p� ���
C3=��2

C4= �p� ·��� · �p� ����+��2 · �k� ����
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ertain hidden symmetries of crystals
Mario Nardonea�

Mathematical Institute, Oxford University, Oxford, OX1 3LB, United Kingdom

�Received 23 May 2005; accepted 19 September 2005; published online 24 March 2006�

Recently, among schemes for crystals classification, the arithmetic criterion has
been introduced in solid-mechanics literature devoted to solid-to-solid phase tran-
sitions. Its main feature is to detect subtle symmetries ignored by standard classi-
fication schemes, e.g., space-group type classification. Using the arithmetic crite-
rion, certain phase transitions can be identified by symmetry change, even when
occurring between isosymmetric allotropes. Unfortunately, its original formulation
is somewhat involved and not completely general. We give a general coordinate-
free definition for it and prove that such a classification scheme has intrinsic
character. © 2006 American Institute of Physics. �DOI: 10.1063/1.2121147�

. INTRODUCTION

This is the first of a series of papers devoted to the systematic investigation of the arithmetic
cheme for crystal structures classification. By crystal structures we mean point sets in the Eu-
lidean space, possibly admitting a group of translational symmetries, each point of which carries
color. These are geometric models for aggregates of points, each point giving for example the

average� position of an atom or cluster of atoms, such as in crystalline solids, each color identi-
ying, for instance, different types of atoms. These objects have varying nomenclature in the
iterature, such as lattices with a basis,2,20 ideal crystals,6 multiregular point systems,5

ultilattices.24,25

A basic way of describing their symmetries of crystal structures use their space groups. This
eads to the well-known 219 types in three dimensions �230 types when orientation is taken into
ccount�.15 One difficulty with this approach is that it only captures the intrinsic space geometries
f the crystals, i.e., the orbifolds they generate,26,21 ignoring the arrangement of the atoms with
espect to these landscapes. As a consequence, crystals with reasonably different symmetry prop-
rties cannot be distinguished. Concretely this happens with isosymmetric solid-to-solid phase
ransformations, i.e., crystalline substances which exhibit distinct allotropes with the same space-
roup type16,24,4 �see Fig. 4 for a simple theoretical example�.

In this case, the existence of different symmetries for the two phases involved is confirmed by
he presence of a phase transition. This raises the problem of how to define a good way of
lassifying structures so as to be able to distinguish between them even in the above-mentioned
ritical situation. While there exist well-known empirical lists of classes of structures such as
trukturberichte,1 the literature does not currently show general, sufficiently subtle, accepted cri-

eria for the classification of all the �possibly colored� crystal structures. This is evident in the
omprehensive crystal structure database at http://cst-www.nrl.navy.mil/lattice/.

The arithmetic criterion has been recently developed in the context of solid mechanics and
artensitic transformations, see Refs. 24, 25, and 3, following earlier works,7,22,23 as a classifica-

ion scheme for �colored� crystals based on symmetry. It extends to general structures the classical
rithmetic method used in crystallography to classify simple lattices �i.e., crystals with one atom
er primitive translational cell� into Bravais types,6 obtaining, for instance, the well-known 14
ravais types in three dimensions.

�
Electronic mail: nardone@maths.ox.ac.uk
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The classification into Bravais types considers the equivalence classes of natural representa-
ions of the point group on the translation group. The arithmetic method instead, involves the
quivalence classes of natural representations of the point group on a particular group obtained
ombining the translation group with the group of permutations of the �colored� set of the
ranslation-group orbits. It has been shown24 that this actually produces a finer classification of
rystals than that based on the space-group type �and even that by Pearson Symbol�; see also Sec.

C.
Furthermore it produces symmetry hierarchies among crystals that are more general than the

tandard ones.17 In Refs. 8, 11, 10, and 9 �see Table I for a summary of the corresponding results�
he systematic enumeration of the classes of structures generated by the arithmetic criterion were
orked out in the simplest cases, while in Ref. 10 the symmetry hierarchies among crystals were

hown, again in the simplest cases.
Unfortunately the original definition of the arithmetic criterion is involved, and not directly

xpressed in a coordinate-free way, nor completely general for certain aspects. We think this is
hat has prevented its diffusion from solid mechanics and crystallography. In fact, it has natural

pplications in other fields, such as solid state physics and chemistry, in the investigation of
iffusionless solid-to-solid phase transitions and ab initio computations of materials. Theoretical
rystallographers and solid-mechanics researchers may also find the perspective presented here
nteresting. The only requirements for reading this paper are an understanding of basic crystallog-
aphy and some familiarity with group theory.

Our main objective is to give a simpler and coordinate-free formulation of the arithmetic
riterion, making it available to a wider spectrum of scientists. In doing this, we have developed
unified treatment for structures of any dimension, such as bulk crystalline materials, slabs, linear
olymers and molecules, embedded in a Euclidean space of arbitrary dimension, possibly different
rom that of the structure considered. This lays the foundation for further generalization to modu-
ated crystals and quasicrystals.

The classification according to the arithmetic criterion belongs, together with Bravais and
pace-group type schemes, to the family of classification criteria based on global symmetry, i.e.,
he space group of structures. There are other schemes based on different ideas, such as the
opological and combinatorial properties of structures.13 Notice that the structures we consider are
odeled by points, maybe of different colors; no other information is encoded. In particular, we do

ot consider relations among points like chemical bonds, such as in Ref. 14, though a generali-
ation aimed to include these features is straightforward.

The basic expected requirements for symmetry-based criteria are: to coincide with the Bravais
lassification scheme whenever applied to simple lattices; to have intrinsic character �in the sense
hat it is possible to formulate them directly in a coordinate-free way�; and, possibly, to produce a
nite number of equivalence classes once the number of �colored� atoms per �primitive transla-

ional� cell has been fixed. The criteria producing the classification into Bravais types, lattice
omplexes, or space-group types, all satisfy these properties. We show this is true for the arith-
etic criterion too, though the finiteness property will be proved in a separate paper.

This paper is structured as follows. In Sec. II we give the basic definitions of �crystal�
tructures in a Euclidean space, while in Sec. III we state the minimal properties expected from

TABLE I. Some results on arithmetic equivalence.

dim. Euclid. space=2 dim. Euclid. space=3

Archit type No. arithm equiv classes Archit type No. arithm equiv classes

�1� 5 �1� 14
�2� 5 �2� 29

�1,1� 10 �1,1� 51
ny �symmetry-based� criterion classifying structures. In Sec. IV we review the standard space-
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roup type scheme, reformulated in such a way that the arithmetic principle can be introduced as
n extension of it. In Sec. V we state, in a coordinate-free form, the generalized form of the
rithmetic classification principle, and in Sec. VI we give some results pertaining to the arithmetic
cheme and we conclude with some examples showing how sensitive this criterion is. In the
ppendix we provide some background material used throughout the paper.

Notations and conventions. Our notation is close to Ref. 19, which can be consulted for a
ore detailed exposition of the mathematics summarized in the Appendix.

1� We write maps à la Hormander: f :X�x�y�Y.
2� For A, B, C objects in a category, the symbol Iso�A ,B� denotes the set of isomorphisms in

that category from A to B; Iso�C� means Iso�C ,C� and idC refers to the identity morphism of
C.

3� When an equivalence relation is clear from the context, we denote by �x� the equivalence
class of the element x; sometimes, however, we omit the square brackets.

4� A morphism is often depicted as an arrow between two objects. All diagram of objects and
morphisms are understood to be commutative, i.e. one gets the same results whatever way
one performs composition of morphisms between the same two objects.

5� We omit zero submatrices and write � a b

c � for � a b

0 c �.
6� The symbol � denotes the end of a proof.

I. PRELIMINARIES AND DEFINITION OF STRUCTURES

We first restate some basic notions regarding the symmetry of Euclidean spaces and struc-
ures, presented in a way suitable for later developments. �One can choose to operate within either
he oriented or nonoriented context. In the former case one works with oriented Euclidean spaces
nd uses orientation-preserving affinities, isometries and their linear parts.�

. Euclidean spaces and their space groups

Definition 2.1: Let E be a Euclidean space; the space group G�E� of E is the group of all the
sometries of E. Other key concepts are:

1� L�E�, the translation group of E, is the �additive� group underlying E;
2� P�E�, the point group of E, is the group of orthogonal linear maps of the vector space L�E�;
3� � : P�E�→ Iso�L�E��, the action of P�E� on L�E�, is the natural action q.tªqt.

We write I :L�E�→G�E� for the map taking a vector to the translation by that vector; for
clarity vectors will sometimes be written in bold. Choosing an origin O for E defines in a natural
way a �Group-�morphism � : P�E�→G�E� called a splitting �morphism� of E. The origin is the
nly point fixed by all the elements of the image of � :��q� .O=O"q� P�E�.

. Structures and their space groups

Next, we give the definition of structures. We make no a priori hypotheses on the �dimensions
f the� Euclidean spaces involved. Hence the host Euclidean space, though sometimes omitted for
revity, is part of the data needed to specify a structure. In view of this generality, structures need
ot “fill” the underlying space. We say that a structure is full when it “fills” such a space, i.e., with
otation introduced just below in the text, when dimR L�S�=dimR L�E�. Full structures are those of
xamples 2.4, 2.5, 5.8, 5.9, but not that of Example 5.10, for which dimR L�S�=0�3
dimR L�E�. For a Z-submodule N of an R-module M, we write dimRN for dimRRN, where RN is

he R-span of N in M.
Definition 2.2: For a set of colors C, a C-structure embedded into the Euclidean space E,

hich we write as S�E, is a C-set c�S� :S�S�→C with S�S� a subset of E. The concept of C-set

s recalled in the Appendix. When C is a made up of one only element we refer to the noncolored
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ase, colors playing no role at all. We will often speak of structures rather than C-structures when
is clear from the context.

Definition 2.3: G�S�ª �g�G�E� such that g .S=S� is the space group of S. �In other words,
he space group is made up of all the isometries mapping the set S�S� in itself and respecting the
olors of its points.� In this context �compare with Definition 2.1�:

1� L�S�ªI−1�G�S��I�L�E��� is the translation group �also known as skeletal lattice24,25� of S;
2� P�S�ªG�S� /I�L�S�� is the point group of S;
3� � : P�S�→ Iso�L�E�L�S�� induced by � : P�E�→ Iso�L�E�� is the arithmetic point group of S.

Notice that we do not restrict our attention only to structures S with a discrete translation
roup, i.e., with dimR L�S�=dimZ L�S�.

. Examples of structures

For a Euclidean space E choose an origin O and an orthonormal basis �ei�i�1 for L�E�.
Example 2.4: The crystal of cesium chloride �CsCl�.

�S�ªS1�S2, where, for LªZe1+Ze2+Ze3,

S1 ª O + 0 + L ,

S2 ª O + 1
2 �e1 + e2 + e3� + L;

�S�ª �S1→ �Cs��� �S2→ �Cl��.
Example 2.5: The crystal of C-diamond �C�.

�S�ªS1�S2, where, for LªZ 1
2 �e1+e2�+Z 1

2 �e2+e3�+Z 1
2 �e3+e1�,

S1 ª O + 0 + L ,

S2 ª O + 1
4 �e1 + e2 + e3� + L;

�S�ª �S1�S2→ �C��.
Example 2.6: The crystal of sodium �Na�.

�S�ª Ŝ1� Ŝ2, where, for L̂ªZe1+Ze2+Ze3,

Ŝ1 ª O + 0 + L̂ ,

Ŝ2 ª O + 1
2 �e1 + e2 + e3� + L̂;

�S�ª �Ŝ1� Ŝ2→ �Na��.
Equivalently, putting in evidence the entire translation group, we have: S�S�ªS1, where, for

ªZ 1
2 �−e1+e2+e3�+Z 1

2 �+e1−e2+e3�+Z 1
2 �+e1+e2−e3�,

S1 ª O + 0 + L;

�S�ª �S1→ �Na��.

II. GENERALITIES ON SCHEMES FOR CRYSTALS CLASSIFICATION

For a classification scheme written in terms of crystal bases �a crystal basis for EL is an
-basis of E which by restriction induces a Z-basis of L� the restriction of having intrinsic

haracter is usually stated by requiring its independence from the crystal bases chosen. We avoid
he use of such bases, in which case such a property is expressed as follows �Fig. 1�:

Definition 3.1: Let � be an equivalence relation among structures. The equivalence � has

ntrinsic character if for every couple S��E�, S��E� and every ��Aff�E� ,E�� such that
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�→
�

S� is a �C-Set-�isomorphism and G�S��→
C�

G�S�� is a �Group-� isomorphism, we have S��S�.

V. CLASSIFYING STRUCTURES: SPACE-GROUP TYPE APPROACH REVISED

The arithmetic equivalence is formulated in terms of lattice groups of structures with respect
o given essential arithmetic descriptors, while the space-group type equivalence is formulated in
erms of space groups of structures. In some sense lattice groups generalize space groups and the
rithmetic equivalence generalizes the space-group type equivalence. We reformulate the concepts
f the space group of a structure and the space-group type equivalence in order to make this fact
ore evident, shortening the abstraction necessary to grasp the arithmetic criterion. To this pur-

ose we rewrite space groups as objects encoding the absolute translational motion of primitive
ranslational cells for each element of the point group. �A primitive translational cell is a funda-
ental domain for the action IL�S�→ Iso�E�.� Formally, we interpret them as representations of

he point group on the translation group of the entire Euclidean space L�E�.
Fix a splitting � : P�E�→G�E�. �Actually, in this context, a splitting should be thought

s modulo L�S�, where the action of L�S� on the set of splittings of E is l.�ªCI�l� ��.� Since
�E�=IL�E�’��P�E�, where � :�P�E�→ Iso�IL�E�� is given by conjugation in G�E�, i.e.,
�q� .IlªC��q�Il,6 the following construction makes sense. For t�L�E� and q� P�E� write t��q

or I�t� ���q�. �The element t��id is the same for every splitting � and it will be denoted simply
y t� id.� Consider the �Group-�monomorphism �notice that � : P�S�→ Iso�L�E�L�S�� is faithful,
ince � : P�E�→ Iso�L�E�� is so�:

G�S� � L�E�’�P�S� ,

t��q � � ��q� t

1
	 ,

y restriction we get:

j:IL�S� � j�IL�S�� ,

I�l� � � ��id� l

1
	 .

he following �Group-�monomorphism is then naturally induced:

G�S�/IL�S� � �L�E�/L�S��’�P�S� ,

�t��q� � � ��q� �t�
1

	 ,

IG. 1. From left of right: CsCl, C-Diamond, and Na crystals. Primitive �left� and conventional �middle and right�
ranslational cells are shown.
.e.,
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G��S�:P�S� � �L�E�/L�S��’�P�S�

q � � ��q� �t�
1

	 . �4.1�

riting space groups explicitly, we omit the square brackets in the last expression and identify
lements of L�E� when they differ by an element of L�S�.

Remark 4.1: For a structure S, we indicate by G��S� the image of the �Group-�morphism in
4.1� and we call it the compact representation of the space group of S relative to the splitting �.
his representation of the space group gets rid of the trivial part L�S� pertaining to the translation
roup L�E�. Unlike G�S�, G��S� is always a finite group, and still keeps all the information of
�S�. In fact, there is a bijective correspondence between space groups and their compact repre-

entations:

G��S� = 
� ��q� �t�
1

	 such that � ��q� t

1
	 � G�S��

nd

G�S� = 
� ��q� t

1
	 such that � ��q� ���

1
	 � G�S��, with IL�S� . t = ���� .

Definition 4.2: Two structures S��E� ,S��E� are space-group type equivalent if there exists
�Aff�E� ,E�� such that C� :G�S��→G�S�� is a �Group-�isomorphism.

In terms of compact representations of space groups, denoting by � : Iso�EL�→ Iso�E /L� the
ction induced by EL� t� �t��E /L, we have:

Remark 4.3: Two structures S��E� ,S��E� are space-group type equivalent if and only if

. L�E��L�S��=L�E��L�S�� �call them EL�,

. there exists ��T� ,A�� �E /L�’�Iso�EL� such that C� A �T�

1 � :G���S��→G���S�� is a

�Group-�isomorphism.

Again, performing explicit computation, we omit the square brackets in the last expression
nd identify elements of L�E� differing by an element of L�S�.

Notice that in Remark 4.3, the structures enter only through their compact representations; the
hosen splittings are not directly involved. In fact, we know that the concept of space-group type
quivalence does not depend on the splittings chosen.

ome know results on space-group type quivalence

Table II shows some known results15 which refer to the space-group type classification for
tructures with a discrete translation group. �In the nonoriented case, the “230” in such a table

TABLE II. Some results on space-group type equivalence.

dim. transl. group dim. Euclid. space No. space-group types Nomenclature

2 2 17 plane groups
2 3 80 layer groups
3 3 230 �3–� space groups
hould be replaced by “219.”�
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. CLASSIFYING STRUCTURES: THE ARITHMETIC APPROACH

. Arithmetic description of structures

One way to look at crystal structures is as multilattices, i.e., unions of simple lattices24,25 all
ith the same skeletal lattice. The most natural choice for it is the whole translation group of the

tructure they belong to. In this context, the orbit space S \IL�S� consists of one �colored� point for
ach of these simple lattices. The multiset �see the Appendix� associated to such an orbit space
ives the number of such simple lattices, together with their color distribution, i.e., the number of
atoms,” for each different species, in a primitive translational cell. We name these two concepts
s follows:

Definition 5.1: For a structure S, we call the C-set S \IL�S� the arithmetic architecture of S,
nd the multiset associated to it, �S \IL�S��, the arithmetic architecture type of S. For instance,
imple lattices are those structures whose arithmetic architecture type is �1�, while structures with
rithmetic architecture type �1, 2� are those made up of 1+2=3 translation-group orbits, two of
hem with the same color and the third one with a different color.

Example 5.2: Cesium chloride crystal CsCl �Example 2.4�. The arithmetic description is

ence its arithmetic architecture type is �1, 1�.
Example 5.3: Diamond C �Example 1.5�. The arithmetic description is

ence its arithmetic architecture type is �2�.
Example 5.4: Sodium crystal Na �Example 2.6�. The arithmetic description is

ence its arithmetic architecture type is �1�. Notice that we have to use the description in terms of
he whole translation group; equivalently we have to refer to a primitive translational cell. For
nstance the arithmetic description:

ould wrongly lead us to conclude that the arithmetic architecture type is �2�.

. Essential arithmetic descriptors of structures

We now introduce the concept of essential arithmetic descriptors for structures. This concept
s close to the notion of bases relative to a primitive translational cell,2,18 though its elements need
ot be confined to the closure of such a cell. A structure can be reconstructed from one of its
ssential arithmetic descriptors; in fact, an essential arithmetic descriptor is a minimal colored set
enerating the structure once the elements of its translation group are applied to such a set.
ormally:

Definition 5.5: For a structure S and A a C-set isomorphic to the arithmetic architecture of S,

n essential arithmetic descriptor for S is a sub-C-set of the C-set S, �P����A, such that
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S = ���AP� + L�S�.

ctually an essential arithmetic descriptor should be thought of modulo L�S� �the same transition
or all of its points�, i.e., as an element of EA \L�S� rather than EA, the action L�S�→ Iso�EA� being
.�Q����Aª �Q�+ l���A.

Example 5.6: For the structure of C-Diamond in Example 2.5; the following is a 1-1 param-
trization of the set of all its essential arithmetic descriptors:

c:��O + 0 + 1�a,b,c�,O + 1
4 �e1 + e2 + e3� + 1�d,e,f�� � �C�� ,

ith 1�x,y,z�ªx 1
2 �e1+e2�+y 1

2 �e2+e3�+z 1
2 �e3+e1� and each of a ,b ,c ,d ,e , f ranging in the integers.

n other words, every essential arithmetic descriptor appears for a unique value of
�a ,b ,c� , �d ,e , f��. Notice that each essential arithmetic descriptor is a C-set.

For an essential arithmetic descriptor �P����A of S one has the �C-Set-�isomorphism

�P����A
:A���IL�S� . P��S \IL�S�. This simply describes the labeling in terms of the ele-

ents of A, induced by the chosen essential arithmetic descriptor, for the simple lattices forming
.

. The lattice group of a structure

Lattice groups encode the relative �translational� motion of the “atoms” inside primitive trans-
ational cells for each element of the point group. These are representations of the point group on
he group WA�S�ªL�S�
Iso�A� obtained by intertwining the translation group and the group of
ermutations of its arithmetic architecture.

Definition 5.7: Let S be a structure and �P����A an arithmetic descriptor for it. We will
ake use of the following group: WA�S�’�A

P�S�, where �A : P�S�→ Iso�WA�S�� is
. �������A ,��ª ��q .�����A ,���. Consider the �Group-�monomorphism:

G�S� → WA�S�’�A
P�S� ,

t��q � � ��q� ��q�

�̃�q�
	 ,

here, for t��q�G�S�, ���q� ,��q���WA�S� is uniquely determined by

�t��q� . P� = ���q�� � id� . P��q���� " � � A;

y restriction we get

j:IL�S� � jIL�S� ,

I�l� � � ��id� �l���A

id
	 .

ence the following �Group-�monomorphism is induced:

G�S�/IL�S� � �WA�S�/L�S��’�A
P�S� ,

�t��q� � � ��q� ���q��

�̃�q�
	 .

.e.,

�S��P � :P�S� � �WA�S�/L�S��’� P�S�

� ��A A
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q � � ��q� ���q��

�̃�q�
	 �5.1�

lthough to obtain �5.1� we used a splitting for E, this formula does not depend upon such a
hoice. We omitted the diagonal inclusion j :L�S�� l� ��l���A , id��WA�S� �all columns, indexed
y �, equal l�. Similarly to what we did with the elements of compact representations of space
roups, for the elements of lattice groups we omit square brackets and identify the top right
ubmatrices differing by a matrix with all equal columns.

The group image �S��P����A
of P�S� via �5.1� is called the lattice group of the structure S

ith respect to the essential arithmetic descriptor �P����A.

Notice that, choosing a crystal basis for the structure S�E, any element � ��q� ���

�̃ � of its

attice group can be written referring to such a basis; in this case both ��q� and � are represented
y matrices with integer coefficients.24,25

. Examples of explicit computations of space groups and lattice groups of structures

Example 5.8: Consider the �full noncolored� structure S� sketched in Fig. 2—the plane regular
oint system p4mm#d.15 Its arithmetic point group is ���P�S���= 4+�0,0� ,m�0,y��. �Notations
ere are as in Ref. 15: 4+�0,0� is the counterclock wise rotation by +2� /4 around the axis
erpendicular to the page passing through the origin and pointing toward the reader, while m�0,y�
s the mirror reflection across the plane with axis e2 and passing through the origin.�

Referring to the figure, we choose the center of the square sketched as origin O� of the
uclidean space E�, the points P1� , P2� , P3� , P4� as essential arithmetic descriptor and the vectors

1� ,e2� shown as crystal basis.
The action of the point group on the origin O� is

��−1 . 4+�0,0� � �O� � O� + 0� ,

��−1 . m�0,y� � �O� � O� + 0� .

he action of the point group on the essential arithmetic descriptor P1� , P2� , P3� , P4� is

��−1 . 4+�0,0� ��
P1� � P3� + 0

P2� � P4� + 0

P3� � P2� − e2�

P� � P� − e�
� ,

IG. 2. The plane regular point systems p4mm e �left�, and p4mm f �right� �basis vectors not in scale; primitive transla-
ional cells shown�.
4 1 2
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��−1 . m�0,y� ��
P1� � P2� + 0

P2� � P1� + 0

P3� � P3� + e1�

P4� � P4� + e1�
� .

o the compact representation of the space group of S� written with respect to the origin O� and
ith coordinates relative to the basis e1� ,e2� is

�� 0 − 1 0

1 0 0

1
�,� − 1 0 0

0 1 0

1
��, �g

hile the lattice group of S� written with respect to the essential arithmetic descriptor
P1� , P2� , P3� , P4� and with coordinates relative to the basis e1� ,e2� is

��
0 − 1 0 0 0 0

1 0 0 0 − 1 − 1

0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0

� ,�
− 1 0 0 0 1 1

0 1 0 0 0 0

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

�� .

ncidentally, the action �� : P�S��→ Iso�A� in this case is

��−1 . 4+�0,0� � �1,3,2,4� ,

��−1 . m�0,y� � �1,2��3��4� .

Example 5.9: Consider the �full noncolored� structure S� sketched in Fig. 2—the plane regular
oint system p4mm#f .15 Its arithmetic point group is ���P�S���= 4+�0,0� ,m�0,y��. �This is the
ame arithmetic point group as in the previous example, once we have identified the Euclidean
paces E� ,E� via the affinity defined by O��O� and ei��ei�. In addition, with this identification,
he space groups of these two structures coincide.�

Referring to the figure, we choose the center of the square sketched as origin O� of the
uclidean space E�, the points P1� , P2� , P3� , P4� as essential arithmetic descriptor and the vectors

1� ,e2� shown as crystal basis, the same as the one in the previous example identifying in an
bvious way the two underlying Euclidean spaces. The action of the point group on the chosen
rigin for E� is

��−1 . 4+�0,0� � �O� � O� + 0� ,

��−1 . m�0,y� � �O� � O� + 0� ,

hile the action of the point group on the chosen essential arithmetic descriptor is

��−1 . 4+�0,0� ��
P1� � P2� + 0

P2� � P3� + 0

P3� � P4� + 0

P� � P� + 0
� ,
4 1

                                                                                                            



H
E

�g��

w
w

����

T

F
C

033509-11 Certain hidden symmetries of crystals J. Math. Phys. 47, 033509 �2006�

                        
��−1 . m�0,y� ��
P1� � P2� + 0

P2� � P1� + 0

P3� � P4� + 0

P4� � P3� + 0
� .

ence the compact representation of the space group of S� written with respect to the origin O� of
� and with coordinates relative to the basis e1� ,e2� is

�� 0 − 1 0

1 0 0

1
�,� − 1 0 0

0 1 0

1
��,

hile the lattice group of S� written with respect to the above essential arithmetic descriptor and
ith coordinates relative to the chosen crystal basis is

��
0 − 1 0 0 0 0

1 0 0 0 − 1 − 1

0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0

� ,�
− 1 0 0 0 1 1

0 1 0 0 0 0

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

�� .

he action �� : P�S��→ Iso�A� is

��−1 . 4+�0,0� � �1,2,3,4� ,

��−1 . m�0,y� � �1,2��3,4� .

IG. 3. The fullerene C20 molecule. Numbering according to IUPAC Recommendations 2004; see Ref. 12, Ref. No. 20:1,
AS Reg. No. 104375-45-3.
Example 5.10: Consider the �C�-structure S sketched in Fig. 3, modeling C20 fullerene mol-
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cule. Its arithmetic point group is ��P�S��= 5a
+ ,5b

+ ,m�. �We use the following �nonstandard�
otation: 5a

+ �respectively, 5b
+� denotes the counterclock wise rotation by +2� /5 around the axis

erpendicular to the two faces with vertices 5, 4, 3, 2, 1 �respectively, 1, 8, 7, 6, 5� and 20, 19, 18,
7, 16 �respectively, 20, 13, 12, 11, 19�, pointing from the latter to the former and passing through
he origin; m denotes the mirror reflection across the plane passing through vertices 3, 7, 12, 17.�

Referring to the figure, we choose the center of the square sketched as origin O of the
uclidean space E, the points P1 , . . . , P20 as essential arithmetic descriptor �denoted simply by
,¼,20 in the figure�.

The action of the point group on the chosen origin for E is

�−1 . 5a
+ � �O � O + 0� ,

�−1 . 5b
+ � �O � O + 0� ,

�−1 . m � �O � O + 0� ,

hile the action of the point group on the chosen essential arithmetic descriptor is

�−1 . 5a
+ � � P1 � P���−1.5a

+��1� + 0

. . .

P20 � P���−1.5a
+��20� + 0� ,

�−1 . 5b
+ � � P1 � P���−1.5b

+��1� + 0

. . .

P20 � P���−1.5b
+��20� + 0� ,

�−1 . m � � P1 � P���−1.m��1� + 0

. . .

P20 � P���−1.m��20� + 0
� ,

here the action � : P�S�→ Iso�A� is

�−1 . 5a
+ � �5,4,3,2,1��14,12,10,8,6��15,13,11,9,7��20,19,18,17,16� ,

�−1 . 5b
+ � �1,8,7,6,5��2,9,17,15,4��3,10,18,16,14��11,19,20,13,12� ,

�−1 . m � �1,5��2,4��3��6,8��7��9,15��10,14��11,13��12��16,18��17��19,20� .

rom this, the lattice group of S written with respect to the above essential arithmetic descriptor
an be immediately written, though the matrix notation is awkward. Notice that in the definition of
reath product we used matrix notation just to avoid being too abstract. The drawback of this

hoice is a cumbersome notation in a case like the above where the arithmetic architecture is large.
n such a case one should switch to cycles’ notation; the modifications are straightforward.

. Relationship between space groups and lattice groups

As we said, while space groups keep track of the absolute translational motion of primitive
ranslational cells, lattice groups record the relative �translational� motion of the “atoms” inside

uch cells. Hence there seems to be no correlation between space groups and lattice groups, but
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ctually the latter can be recovered from the former �but not vice-versa;24,25 see also Examples 6.4,
.5�. The reason is that the baricenter of the “atoms” inside a primitive translational cell, being
igidly attached to it, determines its position. Formally:

Remark 5.11: The following is a �Group-�isomorphism:

�S��P����A
� � ��q� ���q��

�̃�q�
	 � � ��q� ���q� + �id − q� . �P̄ − O��

1
	 � G��S� ,

tting the diagram:

here, for �������A��L�S�A /L�S�, ��̄��L�E� /L�S� is well defined as �average of ������A�.
ence the lattice group retains �strictly� more information than the space group.

Example 5.12: We apply this remark to obtain the space group from the lattice group in some
xplicit cases.

1. Example 4.8. P�=O�− 1
4e1�+ 1

4e2�; from ���� we get �����−1 .4+�0,0��=− 1
2e2�,

����−1 .m�0,y��= 1
2e1� and, by Remark 5.11, we get �g��.

2. Example 4.9. P�=O�+0; ���� gives �����−1 .4+�0,0��=0, �����−1 .m�0,y��=0; by Remark
.11 we get �g��.

. The arithmetic classification principle

We are now ready to give an intrinsic definition of the arithmetic equivalence for structures.
rite �A :EL→ Iso �WA� for A.�������A ,��ª ��A.�����A ,��.

Definition 5.13: Two structures with the same arithmetic architecture A, S��E� and S��E�,
re arithmetically equivalent if

1. L�E��L�S��=L�E��L�S�� �call them EL�, and hence WA�S��=WA�S�� �call them WA�,
2. for �P�����A, �P�����A essential arithmetic descriptors for S�, S�, respectively, there exist

���� ,�� ,A�� �WA /L�’�A
Iso�EL� such that

C� A ���

�̃
	:�S���P

�����A
→ �S���P

�����A
is a �Group-�isomorphism. �5.2�

xplicitly, the conjugation in �5.2� is:

C� A ���

�̃
	�

���q�� ����

�̃�
	

= � �����−1CA���q��� �A . ���̃−1 + ���̃−1.C�����˜ − ��−1CA���q�� . ��̃−1��

C�����˜

	 ,

here the symbol “̃ ” refers to the standard permutation representation �see the Appendix�. This
efinition should be compared with that of Ref. 24. Although slightly different, they are equiva-
ent; the main differences are: �a� the use of a different representation, where we use the standard
ne, for the colored permutations; �b� the use, in WA, of the quotient with respect to the first
omponent ��1,0 , . . . ,0�L�S� , id�, where we use that with respect to the diagonal

�1, . . . ,1�L�S� , id�.
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Remark 5.15: By proceeding in a more involved way, one can avoid, in Definition 5.13, to
ssume a priori that the two structures share the same arithmetic architecture, and show this is a
ecessary consequence of their arthmetic equivalence.

In Definition 5.13, the structures are involved only through their lattice groups; the chosen
ssential arithmetic descriptors are not directly involved. Actually:

Remark 5.15: Definition 5.13 does not depend on the essential arithmetic descriptors chosen.
Proof: Let �P�����A, �P�����A, be two essential arithmetic descriptors for a structure S. By

efinition there exists t�L�E� /L�S� and �� ,���WA�S� /L�S� such that

�t��id� . P�� = ��� � id� . P����� " � � A .

t is straightforward to see that C

� ��id� ���

�̃ �
:�S��P

�����A
→�S��P

�����A
is a �Group-�

somorphism satisfying condition �5.2�. �

I. SOME RESULTS ON THE ARITHMETIC CLASSIFICATION SCHEME

. Basic features of the arithmetic criterion

We now show that the arithmetic criterion satisfies the basic requirements for any symmetry-
ased classification schemes mentioned in Sec. I.

Remark 6.1: The arithmetic criterion coincides with the Bravais classification scheme when
estricted to simple lattices.

Proof: When �A� is made up of one only element, WA is the trivial group; the conclusion is
ow straightforward from the definitions. �

Remark 6.2: The arithmetic criterion has intrinsic character.

Proof: Let S��E�, S��E� be two structures, ��Aff�E� ,E�� with S�→
�

S�

C-Set-�isomorphism and G�S��→
C�

G�S�� �Group-�isomorphism. We must prove that S� and S� are
rithmetically equivalent. To do so, let �P�����A be an essential arithmetic descriptor for S� and
P�����Aª��P�����A, with c�P�����Aªc�P�����A. It is easily seen that �P�����A is an essential
rithmetic descriptor for S�. We prove that:

C
� A �0�

id̃
	
:�S���P

�����A
→ �S���P

�����A
is a �Group-�isomorphism,

here AªI�−1 �� �I�. We establish C

� A �0�

id̃ �
:�S���P

�����A
��S���P

�����A
, the other inclu-

ion being shown in an analogous way. Take � ���q�� ����

�̃� � ��S���P
�����A

; hence:

������ ,��� ,q��� �WA /L�’�A
P and there exists a unique �t���E /L such that

�t����q�� . P�� = ���� � id� . P������ " � � A .

y inserting the identity �−1 ��=id into the left-hand side, pre-composing both sides by � and
efining AªI�−1 �� �I�, we have:

C��t����q��� . P�� = �A . ��� � id� . �P������ " � � A .

y construction �P�����A=��P�����A; hence we have:

C��t����q�� . P�� = �A . ��� � id� . P������ " � � A .
efining �T��E /L by �¬T���A �it depends on the splittings �� ,���:
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��At�����id − ��−1�CA����q����� . T����CA����q���� . P�� = �A . ��� � id� . P������ " � � A .

or �t��ªA�t������id−��−1CA���q��� . �T�, we have:

���A . ���,���,��−1CA���q��� � �WA/L���A
P

nd

�t������−1CA���q��� . P�� = �A . ��� � id� . P������ " � � A .

herefore, by the explicit formula for conjugation in �5.2�, we get:

� �����−1CA���q��� �A . ���

�̃�
	 � �S���P

�����A
,

.e.,

C
� A �0�

id̃
	�

���q�� ����

�̃�
	 � �S���P

�����A
,

nd we are finished. �

In view of the intrinsic character of the arithmetic principle, its finiteness property can be
ormulated as follows:

Remark 6.3: There exists only a finite number of arithmetic nonequivalent classes of struc-
ures with given finite arithmetic architecture type and given space-group type.

. Some known results on arithmetic classification

We summarize in Table I some known results6,8,9,15,25,11 which refer to the arithmetic classi-
cation of full structures in dimensions 2 and 3.

. Examples of arithmetically nonequivalent isosymmetric structures

We conclude with two examples of structures which are space-group type, but not arithmeti-
ally, equivalent. These show once more that the arithmetic scheme is finer than classification by
pace-group type.

Example 6.4: The two structures described in Examples 5.8, 5.9 have the same space-group
ype p4mm �actually the same space group once their Euclidean spaces are identified as we did
arlier�, same arithmetic architecture type �4�, and same geometric architecture type �1�. �The
eometric architecture type describes the number of space-group orbits forming a structure and
heir colors, much the same way the arithmetic architecture type describes the number of
ranslation-group orbits forming a structure and their colors. In other words, the crystallographic
rchitecture type gives the number of “atoms,” of each different species, that are present in a
symmetric cell.15� Notice anyway that the two structures are space-group orbits of different
attice complexes, p4mm#d and p4mm#f , respectively.15,6.

Example 6.5: The following, taken from Ref. 24, is a subtler example. Figure 4 shows two
tructures with the same space-group type Pmmm �even the same space group if their Euclidean
paces are identified in the obvious way�, same arithmetic architecture type �3� �the space-group
ype together with the arithmetic architecture type amounts to giving the colored version of the
earson symbol15�, same geometric architecture type �3�, whose space-group orbits all belong to

he same lattice complex Pmmm#a. These two structures have symmetry properties whose differ-
nces are detected by the arithmetic scheme �Ref. 24� but not by any of the established criteria

urrently used in crystallography or physics.
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PPENDIX

We briefly recall the essential mathematics we need; see Ref. 19 for more details.

. Set theory

a. For a family of sets �X����A �respectively, maps �X�→
f�

Y����A�, ���A�X�� �respectively,

��A�X�→
f�

Y��� denotes their disjoint union. For an indexing set A and a set X �respectively, a

ap X→
f

Y�, XA �respectively, fA� denotes the direct product of copies of the set X �respectively,

he map X→
f

Y�, one copy for each element of A.
b. For any given set C, to be interpreted as a set of colors, we define the C-Set category as

ollows: an object is a �Set-�morphism c :S→C �S is a set S and c specifies how S is colored�; a
orphism between the objects c� :S�→C and c� :S�→C is a �Set-�morphism f :S�→S� preserving

olors, i.e., such that

learly in the noncolored case, i.e., when C is made up of one only element, the C-Set category
nd the Set category are equivalent; in this case c :S→C is trivially determined by S only.

c. For a C-set X, we write �X� for its associated multiset. This is the nonordered family of
atural numbers �repetitions are allowed� counting the elements of X for each of its colors. For
xample, for X= ��a ,b����� ��c����� ��d ,e����, we have �X�= �1,2 ,2�.

. Group theory

a. For a group G and g�G, Cg: G�h�ghg−1�G denotes the conjugation by g. �gk�k�K�
enotes the subgroup of G generated by �gk�k�K.

The next two definitions give the construction of certain groups. Instead of using the more
ompact description, we represent them more concretely via suitable matrix groups; although this
s somewhat awkward, it avoids excessive formal style.

b. Given two groups X, Z and an action � :Z→ Iso�X�, the semi-direct product X’�Z can be

FIG. 4. Example of isosymmetric structures �Ref. 24�. All the faces are rectangles �primitive translational cells shown�.
escribed, when � is faithful, by the group of matrices of the form:
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� ��z� x

id
	 ,

ith z�Z and x�X. Performing the matrix product, one formally proceeds by paying attention to
he order of the operations involved; the product operation must be replaced by the action of
so�X� on X, while the sum operation by ·Xop; Xop is the opposite group of X. In this paper X can
e non-Abelian, so strictly speaking, the common matrix notation is slightly out of place. The
atrix shown above is denoted by �x ,z�. Explicitly:

� ��z�� x�

id
	·X’�Z� ��z�� x�

id
	 = � ��z�.Zz�� x�·X���z�� . x��

id
	 .

c. For H a group, I a C-set and S a subgroup of Iso�I�, the wreath product H
S can be
escribed by the group of matrices of the form:

� id �

�̃
	 .

he right part of the matrix has columns indexed by the elements of I, �= ��i�i�I�HI and �̃ is the
tandard representation of �� Iso�I� on the set I. The matrix shown above is denoted by �� ,��.
xplicitly:

� id ��

�̃�
	·H
S� id ��

�̃�
	 = � id ��·H��� . �̃��

��·S��˜

	 .

d. For G a group and H a subgroup of it, GH denotes them when considered simultaneously.
n particular, Iso�GH� is the subset of Iso�G� whose elements induce morphisms in Iso�H�.

. Group actions

a. Given an action � :G→ Iso�X� ,X \G denotes the G-orbit space of X relative to �; the points
f X \G are called the orbits of G acting on X via �. The natural projection is X�x� �x��X \G.
n action � :G→ Iso�X� is faithful if � :G→ Iso�X� is injective.

b. A �Group-�morphism � :G→ Iso�X� with G group and X C-set is called a permutation
epresentation of the group G on the C-set X. We write the elements of Iso�X� via cycles’
otation19 or via the standard linear permutation representation. The latter is constructed as fol-
ows: for a set A, consider the abstract vector space with �����A as basis, then the standard linear
ermutation representation of �� Iso�A� is the �Vectorspace-�morphism sending the vector � to
he vector ����. For example, let A= �a ,b ,c�; representing the permutation via cycles’ notation we
ave �we write the elements of the basis A from left to right in the order a ,b ,c�:

�a��b��c� � �1 0 0

0 1 0

0 0 1
�, �a,b��c� � �0 1 0

1 0 0

0 0 1
�, �a,b,c� � �0 0 1

1 0 0

0 1 0
� .
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The quantum Markov property is equivalent to the strong additivity of von Neu-
mann entropy for graded quantum systems. The additivity of von Neumann entropy
for bipartite graded systems implies the statistical independence of states. However,
the structure of Markov states for graded systems is different from that for tensor-
product systems which have trivial grading. For three-composed graded systems we
have U�1�-gauge invariant Markov states whose restriction to the marginal pair of
subsystems is nonseparable. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2176911�

. INTRODUCTION

We are interested in characterization of state correlations for general composite systems which
o not necessarily satisfy the local commutativity. Here we specifically consider finite-dimensional
uantum systems with graded commutation relations. For such systems as well, we can divide the
otal system into the subsystem on a specified region and that on its complement region and
iscuss the nature of state correlations between them as in the tensor-product systems.

We have pointed out that known criterions of separability for tensor-product systems should
e altered for lattice fermion systems11 when fermion hopping terms are present. �Note that purely
ermionic correlation due to fermion hopping terms cannot be distilled to use.�

We are going to discuss quantum Markov property,1 a quantum version of Markov property
nvented by Accardi. This is given by means of quasiconditional expectations and has played
arious roles, see, e.g., Ref. 2. We can view the Markov property as a kind of characterization of
tate correlation for composite systems. A pivotal example of quantum composite systems is tensor
roduct of Hilbert spaces for which lots of works, prominently those on Markov chains for
ne-dimensional quantum spin lattice systems have been done.

We note that the definition of Markov property has been given under a very general setting
hat is not limited to the most familiar case of tensor-product systems. That is, it does not require
n principle any specific algebraic location among subsystems imbedded in the total system.3 Its
etailed analysis for the setting of nonindependent systems, however, has started only recently.
eference 4 investigates Markov chains for one-dimensional �spinless� fermion lattice systems. It
as been clarified there that the notion of Markov property and of the Markov chain is well
pplicable to fermion lattice systems. �More precisely, the above Markov chain refers to
d�-Markovian chain,1 see also Ref. 13 on the generalized Markov chain.� Furthermore, a class of
�1�-gauge invariant Markov chains with fermionic hopping correlations is given.4

It has been shown that the Markov property is tightly related to the sufficiency of conditional
xpectations through the strong subadditivity of von Neumann entropy: A state of a three-
omposed tensor-product system is Markovian if and only if it takes the equality for the strong
ubadditivity inequality of entropy, which will be referred to as “the strong additivity of
ntropy.”16,6,12,7

We show that a similar equivalence relation of the Markov property and the strong additivity

f entropy is valid for graded quantum systems. Its proof proceeds in much the same way as that

47, 033510-1022-2488/2006/47�3�/033510/10/$23.00 © 2006 American Institute of Physics
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or the tensor-product case following Ref. 15 �whose methods and results can be used in the
resent nonindependent situation� with some simple modifications due to the grading.

We now introduce the graded systems under our consideration. Let F be a lattice and �AI ;I
F� be a family of �-algebras that have a common unital element denoted 1. If I�J, then

I�AJ, and if I�J=�, then AI�AJ=C1. Let � be an involutive �-automorphism of A that
etermines the grading as

Ae
ª �A � A���A� = A�, Ao

ª �A � A���A� = − A� . �1�

e assume that our grading transformation � is nontrivial. The above Ae and Ao �which is not
mpty� are called the even and odd parts of A. For I�F

AI
e
ª Ae � AI, AI

o
ª Ao � AI. �2�

or A�A�AI� we have the even-odd decomposition:

A = A+ + A−, A+ ª
1
2 �A + ��A�� � Ae�AI

e�, A− ª
1
2 �A − ��A�� � Ao�AI

o� . �3�

We introduce U�1� gauge transformation:

���ai
*� = ei�ai

*, ���ai� = e−i�ai �4�

or ��C1. A state invariant under � is called even, and that invariant under �� for any ��C1 is
alled U�1�-gauge invariant.

If a pair of subsets I and J of F are disjoint, then the following graded commutation relations
old:

�AI
e,AJ

e� = 0, �AI
e,AJ

o� = 0, �AI
o,AJ

e� = 0, �AI
o,AJ

o� = 0, �5�

here �A ,B�=AB−BA denotes the commutator and �A ,B�=AB+BA the anticommutator.
We assume that AI is isomorphic to a finite-dimensional type-I factor �a full matrix algebra�

or any I�F. Under this assumption, there is a unitary vI in AI that implements � on AI as

vI
*�A�vI = ��A�, A � AI. �6�

his vI is even, since ��vI�=vI
*�vI�vI= �vI

*vI�vI=vI. For disjoint I and J, the unitary vI�J of �6� for

I�J is given by vIvJ.
The lattice fermion system is a typical example of the graded quantum systems. Let ai

* and ai

e creation and annihilation operators on the specified site i in a lattice. For each finite subset I,
he subsystem AI are generated by ai

* and ai in I. The even-odd grading transformation is given by

��ai
*� = − ai

*, ��ai� = − ai.

he unitary vI is given by vIª�i�Ivi, viªai
*ai−aiai

*.
We shall provide the plan of this paper. In Sec. II we introduce a formula of strong subaddi-

ivity of entropy �SSA�8 in terms of the densities with respect to the tracial state for general
omposite systems made of finite-dimensional type-I factors. For the graded systems, it becomes
he familiar formula of SSA in terms of the density matrices with respect to the matrix trace.

In Sec. III, the equivalence of the Markov property and the strong additivity of entropy for
ven states of the graded systems is shown. For noneven states, we have a weak result.

In Sec. IV, we consider restrictions of Markov states onto the marginal subsystems that are
eparated from each other. It was shown in Refs. 6 and 12 that a Markov state of a three-composed
ensor-product system is separable �classically correlated� with respect to the marginal pair of
ubsystems. We show that this statement is invalid for the graded systems; there are U�1�-gauge
nvariant �hence obviously even� Markov states that are nonseparable for the marginal pair. Intu-
tively speaking, such Markov states have fermion hopping correlations between the marginal

ubsystems.
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In Sec. V, we show that a state of a graded bipartite system satisfies the additivity of von
eumann entropy if and only if it is a product state. This is almost obvious if the state under

onsideration is assumed to be even. The point is that the evenness �at least on one of the pair of
ubsystems� follows from the additivity of entropy.

I. STRONG SUBADDITIVITY OF ENTROPY

We provide the strong subadditivity of entropy for a general setting that encompasses non-
ndependent systems. Let A be a finite-dimensional type-I factor. Let � denote the tracial state on

. If an element d�A is positive and normalized as ��d�=1, then it is called a density. For any
tate � of A, there exists a unique density ���A called the density of � satisfying that

��a� = ����a�, a � A .

or the tracial state �, its density is obviously 1, the unity of A.
Let �1 and �2 be a pair of densities of A. The relative entropy for them is defined by

H��1,�2� ª ���1�ln �1 − ln �2�� �7�

f the support of �1 is contained in �2. Otherwise, we set it +�. For a pair of two states � and �
n A, their relative entropy is

H��,�� ª H���,��� . �8�

We define the entropy for a given state � as

Ŝ��� ª − ��ln ��� . �9�

e see

Ŝ��� = − H��,�� .

robably the following is a more frequently used definition of entropy:

S��� ª − Tr�D� ln D�� = − ��ln D�� ,

here Tr is the matrix trace that takes 1 for each one-dimensional projection, and D� denotes the
ensity matrix of � with respect to Tr. We see

Ŝ��� = S��� − S��� = S��� − ln Tr�1� �10�

or any state �. Hence if A is a n by n full matrix algebra, n�N, then the difference S���
Ŝ��� is constantly ln n.

Let B be a subalgebra of A. We denote the �uniquely determined� conditional expectation
rom A onto B with respect to the tracial state by EB

A. Here, the upper-right subscript of E
ndicates the domain and the lower-right the range. Let �B denote the restriction of � to B. Then
he density of �B is given by that of � as

��B
= EB

A���� . �11�

We have

Ŝ��B� − Ŝ��� = H���,��B
� = H��,�B � tr�A�B�� = H��,� � EB

A� . �12�

s a special case of �12�,

Ŝ��B� = Ŝ�� � EA� . �13�
B
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In fact, we have so far assumed that � is a faithful state, but �12� is valid when � is
onfaithful. To see this, we take 	 ·�+ �1−	�� where 	 is a positive small number and then take
he limit 	→0.

Let us take three disjoint subsets A, B, and C. Let AABC, AAB, ABC, and AB denote finite-
imensional quantum systems corresponding to the indexes. Let EA,B

A,B,C and EA
A,B denote the trace

reserving conditional expectation from AABC onto AAB and that from AAB onto AA, respectively.
e use similar notations for other indexes. If the domain is the total system AABC, then we simply
rite, e.g., EA,B instead of EA,B

A,B,C when there is no fear of confusion.
The following five conditions, called the commuting square condition, are all equivalent to

ach other:

1� EA,B �ABC=EB
B,C,

2� EB,C �AAB=EB
A,B,

3� AB=AAB�ABC and EA,BEB,C=EB,CEA,B,
4� EA,BEB,C=EB,
5� EB,CEA,B=EB.

If our three-composed system AABC satisfies this commuting square condition, then the strong

ubadditivity of entropy Ŝ��� for any state � follows. The proof is standard and easy, but we
ecapture it for completeness.

Proposition 1: Let AABC, AAB, ABC, and AB be finite-dimensional factors satisfying the
ommuting square condition, and let �ABC be an arbitrary state on AABC. Then

Ŝ��ABC� − Ŝ��AB� − Ŝ��BC� + Ŝ��B� 
 0. �14�

Furthermore, if the system satisfies the graded commutation relations �5�, then

S��ABC� − S��AB� − S��BC� + S��B� 
 0. �15�

Proof: By �12� and �13�, and the relation EB,CEA,B=EA,BEB,C=EB, we obtain

Ŝ��BC� − Ŝ��ABC� = H��ABC,�ABC � EB,C� � H��ABC � EA,B,�ABC � EB,C � EA,B�

= H��ABC � EA,B,�ABC � EA,B � EB,C� = H��ABC � EA,B,�ABC � EB�

= Ŝ��ABC � EB� − Ŝ��ABC � EA,B� = Ŝ��B� − Ŝ��AB� , �16�

here the inequality is due to the monotonicity of relative entropy under the action of completely
ositive maps.

Let us turn to the graded systems of finite-dimensional factors, which satisfy the commuting
quare condition.5 Suppose that I and J are disjoint subsets. Then the matrix trace on AI�J
enoted TrI�J is given by the product extension of those in AI and in AJ denoted TrI and TrJ,
espectively. Thus we have TrI�J�1�=TrI�1��Tr�1�. Now �14� and �10� imply �15�. �

As this proposition indicates, the strong additivity of entropy is satisfied irrespective of
hether states are even or not. In Refs. 9 and 10 we have shown that noneven states may induce
athological state correlations and some entropy inequalities known for tensor-product systems do
ot hold in general for the graded systems.

II. MARKOV PROPERTY AND STRONG ADDITIVITY

It is obvious that the equality of �14� and of �15� is equivalent to that of �16�, i.e.,

H��ABC,�ABC � EB,C� = H��ABC � EA,B,�ABC � EB� , �17�

quivalently,

H��� ,�� � = H��� ,�� � . �18�

ABC BC AB B
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By a general result of the sufficiency given in Ref. 15, �17� implies that the conditional
xpectation EA,B is sufficient for �ABC �EB,C and �ABC, that is, there exists a completely positive
ap that recovers �ABC �EB,C and �ABC from �ABC �EB,C �EA,B and �ABC �EA,B, respectively. The

anonical form of such maps is given as follows.12

Let  denote the completely positive map on A defined by

�X� ª ��B

−1/2EA,B���BC

1/2X��BC

1/2���B

−1/2, X � AABC. �19�

et T� denote the dual of  with respect to the tracial stare, which is written as

T��X� ª ��BC

1/2��B

−1/2X��B

−1/2��BC

1/2, X � �AABC� . �20�

It is easy to see T����B
�=��BC

. Also T����AB
�=��ABC

is satisfied if and only if EA,B is sufficient
or the given pair of states �ABC and �ABC �EB,C, equivalently, �17� holds.

The following is a more or less summary of the contents stated above. It corresponds to
heorem 5.2 of Ref. 16 and also Sec. V of Ref. 12 where the statement is for the tensor-product
ystems.

Proposition 2: Let AABC, AAB, ABC, and AB be finite-dimensional factors satisfying the
ommuting square condition. Let �ABC be an arbitrary faithful state on AABC. The strong additivity
f von Neumann entropy, i.e.,

S��ABC� − S��AB� − S��BC� + S��B� = 0 �21�

s satisfied if and only if EA,B is sufficient for the pair of states �ABC and �ABC �EB,C. Let  denote
he �ABC-preserving (and �ABC �EB,C-preserving) conditional expectation from AABC to AAB given
s (19). Let T� denote the dual of this  with respect to the tracial state whose concrete formula
s given as (20). This T� gives the canonical left inverse of EA,B for the densities of �ABC and

ABC �EB,C, that is,

T����B
� = ��BC

�22�

nd

T����AB
� = ��ABC

. �23�

The set of fixed points of  contains AA
e . If the state �ABC is even, then the set of fixed points

f  contains AA and accordingly the Markov property of �ABC with respect to a triplet
AA ,AB ,AC� is satisfied.

Proof: We shall confirm the part about the fixed point elements of . Take X�AA
e , which is

n the commutant of ABC. We have

�X� = ��B

−1/2EA,B���BC

1/2 X��BC

1/2 ���B

−1/2 = ��B

−1/2EA,B�X��BC
���B

−1/2 = ��B

−1/2XEA,B���BC
���B

−1/2

= ��B

−1/2XEA,B�EB,C���BC
����B

−1/2 = ��B

−1/2XEB���BC
���B

−1/2 = ��B

−1/2X��B
��B

−1/2 = X��B

−1/2��B
��B

−1/2 = X .

�24�

Suppose now that �ABC is even. Then ��BC
�ABC

e and also ��B
�AB

e commute with any X
AA. Hence we see that the above set of equalities �24� holds for this case. �

From this result, if an even state satisfies the strong additivity of entropy, then the Markov
roperty with respect to a triplet �AA ,AB ,AC� in the sense of Ref. 1 �cf. Lemma 11.3 of Ref. 14�

s satisfied. This in fact precisely specifies what we mean by the Markov property.
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V. MARKOV STATES ON THE MARGINAL SUBSYSTEMS

The definition of separable states �i.e., classically correlated states� for nonindependent sys-
ems is much the same as that for the tensor-product systems.11 That is, if a state is written as a
onvex sum of some product states, then it is called a separable state. Let A and C be a pair of
isjoint subsets, and � be a state on AAC. If

��XY� = ��X���Y� �25�

or all X�AA and Y �AC, then � is called a product state with respect to the pair �AA ,AC�. It is
asy to see that the product property in the converse order,

��YX� = ��Y���X� = ��XY� �26�

ollows from �25� and the graded commutation relations.
We discuss the property of Markov states with respect to �AA ,AB ,AC� for the marginal

ubsystem AAC. As we announced in the introduction, Corollary 7 of Ref. 6 is invalid for the
raded systems.

Proposition 3: For a three-composed graded system �AA ,AB ,AC�, there exist U(1)-gauge
nvariant states that satisfy the Markov property for �AA ,AB ,AC� but are nonseparable for
AA ,AC�.

We shall construct such Markov states. Using the Jordan-Wigner transformation, we set a
hree-composed tensor-product system in the following way. Let vA, vB, and vA,B denote the
nitaries implementing � on the specified subsystems. Let AA

s
ªAA, AAB

s
ªAAB, AABC

s
ªAABC,

B
s
ª �AB

e ,vAAB
o�, AC

s
ª �AC

e ,vA,BAC
o �, and ABC

s
ª �ABC

e ,vAABC
o � where the notation �,� denotes the

lgebra generated by the arguments. They induce a tensor-product system AABC
s =AA

s
� AB

s
� AC

s .
e assign finite-dimensional Hilbert spaces HĀ, HB̄ and HC̄ to AA

s , AB
s and AC

s , respectively. We
ill use the next lemma later. Its proof is obvious.

Lemma 4: Let �ABC be an arbitrary even state on AABC. It satisfies

S��ABC� − S��AB� − S��BC� + S��B� = 0, �27�

f and only if

S��ABC� − S����AAB
s � − S����ABC

s � + S����AB
s � = 0. �28�

For a while we will focus on the two composed system, AAC. In Ref. 11 we have discussed
ow the state correlation �separability, nonseparability� will remain or change under the Jordan-
igner transformation which maps the CAR pair �AA ,AC� to �AA ,AC

s̃ �, where AC
s̃ denotes the

ommutant of AA in AAC and is explicitly given as �AC
e ,vAAC

o �. �Note that AC
s̃ is different from

reviously introduced AC
s .� It has been shown that the set of all separable states for the CAR pair

s strictly smaller than that for the tensor-product pair. That is, if �AC is a separable state for the
air �AA ,AC�, then so it is for �AA ,AC

s̃ �. However, there exist U�1�-invariant states that are
eparable for the latter but nonseparable for the former. We introduce an example of such states
rom Ref. 11.

Let kA and kC be some nonzero odd elements in AA and in AC, e.g., field operators on
pecified regions. Let Kª1/2�kA

*kC−kAkC
* � which is self-adjoint and denotes fermion-hopping

nteraction between AA and AC. Suppose that 	kA	
1	kC	
1, then 	K	
1. For ��R, ���
1,

AC,�ª1+�K gives a density operator. For 0� ���
1, the state on AAC with its density �AC,�

ives a state satisfying all the desired conditions.
Now take such a U�1�-gauge invariant state �AC on AAC. It has a state decomposition �AC


i=1
n �i�AC,i, 0��i�1, 
�i=1, such that each �AC,i is a product state for �AA ,AC

s̃ �, but has no
roduct-state decomposition for �AA ,AC�. From this, we are going to construct a state on AABC

hat proves Proposition 3.
Let us assume that the dimension of HB̄ is equal or more than n. Then we have a set of n

e
on-zero even orthogonal projections pi�AB, 1
 i
n. Let �B,i�X�ª��piX� /��pi�, for X�AB.
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hose are all even states of AB. Let �ABCª
i=1
n �i�AC,i ��B,i, where �AC,i ��B,i denotes the

uniquely determined� product state extension of �AC,i on AAC and �B,i on AB, see Ref. 5.
We will see that �AC,i ��B,i gives a product state for �AA ,AC

s � when restricted to AA � AC
s . We

ust check this for the product element ac+ such that a�AA and c+�AC
e , and for a�vAvBc−� such

hat a�AA and c−�AC
o . We have

�AC,i � �B,i�ac+� = �AC,i�ac+� = �AC,i�a��AC,i�c+� = �AC,i � �B,i�a��AC,i � �B,i�c+� , �29�

nd using the product property of �AC,i for �AA ,AC
s̃ �,

�AC,i � �B,i�avAvBc−� = �AC,i � �B,i�avAc−vB� = �AC,i�avAc−��B,i�vB� = �AC,i�a��AC,i�vAc−��B,i�vB�

= �AC,i�a��AC,i � �B,i�vAc−vB� = �AC,i � �B,i�a��AC,i � �B,i�vAvBc−� . �30�

ence, �AC,i ��B,i has a product state restriction, and accordingly �ABC has a separable state
estriction for �AA ,AC

s �. We conclude that our �ABC has the structure as in Theorem 6 of Ref. 6 or
s the formula �14� of Ref. 12 with respect to �HĀ ,HB̄ ,HC̄�. Hence, it satisfies the Markov
roperty with respect to �AA

s ,AB
s ,AC

s �.
From the equivalence of the Markov property and the strong additivity of entropy for three-

omposed tensor-product systems, which has been shown in the above references, �28� is satisfied
or �ABC. Since it is even, it satisfies �27� as well and, hence, is Markovian with respect to
AA

s ,AB
s ,AC

s � by Proposition 2. As ��AC�AAC
=�AC is obviously nonseparable for �AA ,AC� by

efinition, �ABC gives a state showing Proposition 3.

. ADDITIVITY OF VON NEUMANN ENTROPY AND THE PRODUCT PROPERTY

In this section, we consider a two-composed graded system AAC generated by AA and AC.
amely, we treat the case where the intersection region B is trivial. Then the strong subadditivity
f entropy �15� becomes

S��AC� − S��A� − S��C� 
 0, �31�

hich is called the subadditivity of entropy. We discuss characterization of additivity of entropy,
.e., the condition of equality of this inequality.

The answer is very simple for tensor-product systems: a state satisfies the additivity of entropy
f and only if it is a product state. For the graded system, we can show a similar result easily under
he assumption that the marginal states �A and �C are not both noneven. Let �A ��C denote the
roduct state of AAC whose restrictions to AA and AC are �A and �C. Its existence is guaranteed
f �A and/or �C is even. Then we have

S��AC� − S��A� − S��C� = − H��AC,�A � �C� 
 0. �32�

y the strict positivity of relative entropy, it is 0 if and only if �AC=�A ��C.
Now we drop the evenness assumption on the states. If �A and �C are both noneven, then

here is no product state extension for them.5 Hence, the above argument using the strict positivity
f relative entropy does not work for the general case.

Using Ref 12 we obtain the following result.
Proposition 5: Let �AC be a state of the two-composed graded system AAC. It satisfies the

dditivity of entropy

S��AC� − S��A� − S��C� = 0, �33�

f and only if it is a product state for �AA ,AC�. If it is the case, at least one of �A and �C is even.
Proof: The equivalence of �33� and �18� when the middle part B is empty implies that �33� is
quivalent to
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H���AC
,��C

� = H���A
,1� . �34�

his is equivalent to say that EA is sufficient for ��AC
and ��C

. Now from �20� the canonical left
nverse of EA for those densities is given by

T��X� ª ��C

1/2X��C

1/2, X � AA. �35�

ence we have

��AC
= T����A

� = ��C

1/2��A
��C

1/2. �36�

xchanging A and C and repeating the same argument as above, we have also

��AC
= ��A

1/2��C
��A

1/2. �37�

Let us take the decomposition of ��A
into its even-odd parts and that of ��C

as in �3�,

��A
= ��A+ + ��A−, ��A+ � AA

e , ��A− � AA
o ,

��C
= ��C+ + ��C−, ��C+ � AC

e , ��C− � AC
o . �38�

imilarly take the even-odd decomposition of ��A

1/2 and that of ��C

1/2 in the following:

��A

1/2 = a+ + a−, a+ � AA
e , a− � AA

o ,

��C

1/2 = c+ + c−, c+ � AC
e , c− � AC

o . �39�

ince the densities are positive hence self-adjoint, each of a+, a−, c+, and c− is self-adjoint. We
ave

��A
= ���A

1/2�2 = a+
2 + a−

2 + a+a− + a−a+,

��A+ = a+
2 + a−

2 ,

��A− = a+a− + a−a+, �40�

nd

��C
= c+

2 + c−
2 + c+c− + c−c+,

��A+ = c+
2 + c−

2 ,

��A− = c+c− + c−c+. �41�

ow we shall express the equality ��C

1/2��A
��C

1/2=��A

1/2��C
��A

1/2=��AC
in terms of a+, a−, c+, and c−. We

ompute

��C

1/2��A
��C

1/2 = ��C

1/2���A+ + ��A−���C

1/2 = ���A+��C

1/2 + ��A−����C

1/2����C

1/2 = ��A+��C
+ ��A−����C

1/2���C

1/2

= �a+
2 + a−

2��c+
2 + c−

2 + c+c− + c−c+� + �a+a− + a−a+��c+ − c−��c+ + c−�

= a2�c2 + c2 + c+c− + c−c+� + a2�c2 + c2 + c+c− + c−c+� + a+a−�c2 − c2 − c−c+ + c+c−�
+ + − − + − + −
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+ a−a+�c+
2 − c−

2 − c−c+ + c+c−� . �42�

lso,

��A

1/2��C
��A

1/2 = ��A

1/2���C+ + ��C−���A

1/2 = ��A
��C+ + ��A

1/2����A

1/2���C−

= �a+
2 + a−

2 + a+a− + a−a+��c+
2 + c−

2� + �a+
2 − a−

2 − a+a− + a−a+��c+c− + c−c+�

= a+
2�c+

2 + c−
2 + c+c− + c−c+� + a−

2�c+
2 + c−

2 − c+c− − c−c+� + a+a−�c+
2 + c−

2 − c+c− − c−c+�

+ a−a+�c+
2 + c−

2 + c+c− + c−c+� . �43�

quating �42� and �43�, we have

a−
2�c+c− + c−c+� + a+a−�− c−

2 + c+c−� + a−a+�− c−
2 − c−c+� = 0. �44�

aking the even and odd parts of this, we have

a+a−c+c− − a−a+c−c+ = 0, �45�

a−
2�c+c− + c−c+� − �a+a− + a−a+�c−

2 = 0. �46�

y acting the unitary transformation Ad�vA� on both sides of �46� where vA in AA
e gives the

mplementation of � on AA as �6�, we have

a−
2�c+c− + c−c+� + �a+a− + a−a+�c−

2 = 0.

y averaging this and �46�, we have

a−
2�c+c− + c−c+� = 0. �47�

imilarly, we have

�a+a− + a−a+�c−
2 = 0. �48�

We will see that from �45�, �47�, and �48�, our assertion, i.e., the evenness of ��A
or �and� ��C

ollows. For �47� to be satisfied,

a−
2 = 0 or/and �c+c− + c−c+� = 0, �49�

s a−
2 �AA

e and hence a−
2�c+c−+c−c+�=a−

2
� �c+c−+c−c+�=0. In the same way,

c−
2 = 0 or/and �a+a− + a−a+� = 0. �50�

f a−
2 =0, then a−=0 since a− is self-adjoint. Therefore, ��A

1/2 is even and so ��A
is. If c−

2 =0, then ��C

s even. We now consider the remaining possibility, i.e., the case where a+a−+a−a+=c+c−+c−c+

0. This implies that ��A−
=��C−

=0, namely both of ��A
and ��C

are even. In conclusion, at least
ne of the marginal states ��A

and ��C
should be even.

Now we know that the product state �A ��C exists and can use the argument in �32� that leads
o our desired assertion. �

We shall go back to three-composed systems and comment on the condition of the strong
dditivity of entropy. For now, we are only able to produce the desiarble form of Markov property
or even states. We guess that the assumed strong additivity of entropy may control in a certain
ense nonevenness of the states satisfying this as for the case of two-composed systems above.

ithout the evenness assumption, we need more involved analysis to understand the structure of

hose states satisfying the strong additivity of entropy.
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Using automorphisms � of finite-dimensional Lie algebras and classical skew-
symmetric r-matrices we construct “twisted” nonskew symmetric r-matrices with
the spectral parameters. Using them and results of our previous papers we construct
new quantum spin chains that generalize famous Gaudin spin chains. We consider
several examples of the twisted nonskew symmetric r-matrices and the correspond-
ing Gaudin-type systems. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2179052�

. INTRODUCTION

Gaudin models1 are one of the most celebrated integrable models of mathematical physics.
hey were shown to be connected with the conformal field theory via solutions of the Knizhnik-
amolodchikov equations,2,3 and with the BCS model in one dimension.4,5 These facts give a
pecial importance to their investigation. Standard Gaudin spin chains,1,6,7 are connected with the
kew-symmetric classical r-matrices introduced in Ref. 8, i.e., with the skew symmetric solutions
f the classical Yang-Baxter equations, which were investigated and classified in Ref. 9.

In the papers10 we have constructed new integrable classical spin chains starting from the
eneral non-skew symmetric solutions of the “generalized” classical Yang-Baxter equations �a
ualized form of the modified Yang-Baxter equations11–13� with values in a semisimple �reductive�
ie algebras g. In particular we have constructed the second order in spin variables Hamiltonians
f these systems and showed that they are direct analogs of the famous Gaudin Hamiltonians. We
ave called our systems “generalized Gaudin systems.” In our previous paper14 we have consid-
red a problem of the quantization of the generalized Gaudin systems. The quantization of the
asic �spin� variables is achieved by the standard procedure of substitution of the Lie-Poisson
racket on g�N by commutator, or by other words in passing from �S�g�N� , � , �� to �A�g�N� , � , ��
r some of its representations in the Hilbert space H. Nevertheless, due to the problem of ordering,
uch a simple recipe does not solve the problem of commutativity of the classically Poisson-
ommutative integrals which are nonlinear in basic variables. At the present moment no general
pproach to a proof of the quantum integrability of such the classical integrable systems is known.
hat is why we have dealt with this problem in the case of the our systems directly. In Ref. 14 we
ave given a direct proof that after symmetrization in spin variables generalized Gaudin Hamil-
onians stay commutative also in the quantum case. We have also considered a class of examples
f nonskew r-matrices with spectral parameters connected with some special infinite-dimensional
ie algebras of Ref. 15 and associated quantum Gaudin Hamiltonians.

In the present paper we consider other important class of examples of nonskew r-matrices and
ssociated Gaudin-type systems. We show that for each classical skew-symmetric r-matrix r�u
v�, which is anti-invariant with respect to some automorphism � of the second order of the Lie
lgebra g, prolonged to the algebra of functions, it is possible to define “twisted” nonskew
-matrix r12

� �u ,v� given by the following formula:

�
Electronic mail: tskrypnyk@imath.kiev.ua
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r12
� �u,v� = r12�u − v� − r12

�2�u + v�, where r12
�2�u + v� = �1 � ��r12�u + v� . �1�

e consider examples of the r-matrices �1� associated with the rational r-matrix of Yang and
lliptic r-matrix of Belavin16 in details.

With the help of the r-matrices �1� we construct new quantum-commuting Gaudin-type
amiltonians. They have the following form:

Ĥl = �
k=1,k�l

N

�
�,�=1

dim g

�r���uk − ul� − �r�2����uk + ul��Ŝ�
k Ŝ�

l − �
�,�=1

dim g

�r�2����2ul�Ŝ�
l Ŝ�

l , �2�

here N is a number of sites, Ŝ�
l , Ŝ�

k are components of the generalized spin operators in the site
and k, correspondingly, that obey the commutation relations of g�N, r���uk−ul� are the matrix
lements of the g � g-valued skew symmetric classical r matrix and uk , k�1,N are nonzero
omplex numbers such that uk� ±ul.

We consider examples of such Hamiltonians, in particular, those connected with the “twisted”
elavin sl�n� elliptic r-matrix. In the most physically important case of sl�2��so�3� we obtain the

ollowing quantum spin chain Hamiltonians:

Ĥl = �
k=1,k�l

N

�
i=1

3

�wi�uk − ul� − wi�uk + ul��Ŝi
kŜi

l − �
i=1

3

wi�2ul�Ŝi
lŜi

l, �3�

here Ŝi
k are the components of the usual spin operators and wi�uk� are expressed via the elliptic

acobi functions.8

The structure of the present paper is the following: in the second section we introduce the
ain definitions and notations and formulate the theorem concerning the commutativity of the

eneralized Gaudin Hamiltonians associated with the nonskew symmetric r-matrices. In the third
ection we consider the construction of the nonskew symmetric classical r-matrices with the
pectral parameter using automorphism of g of the second order and skew symmetric classical
-matrices. In the fourth section we consider the generalized Gaudin Hamiltonians �10� associated
ith the constructed in the preceding section “twisted” classical r-matrices. In the appendix we
ive the direct proof of the commutativity of such Hamiltonians.

I. INTEGRABLE SPIN CHAINS AND CLASSICAL r-MATRICES

Let g be a simple �reductive� Lie algebra. Let X� ,�=1,dim g be some basis in g with the
ommutation relations

�X�,X�� = �
�=1

dim g

C��
� X�. �4�

et Ŝ�
i ,�=1,dim g, i=1,N be linear operators in some Hilbert space that constitute Lie algebra

somorphic to g�N with the commutation relations

�Ŝ�
i , Ŝ�

j � = �ij �
�=1

dim g

C��
� Ŝ�

j . �5�

e will consider operators Ŝ� to be � component of the “generalized spin operator.” Then opera-

ors Ŝ�
i could be interpreted as the � component of the generalized spin operator living at the i-cite

f the generalized spin chain.

Remark 1: In the case g=so�3� operators Ŝa ,�=1,3 are components of the usual spin and
ˆ i �N
perator and S� have the usual so�3� commutation relations,
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�Ŝ�
i , Ŝ�

j � = �ij�
�=1

3

����Ŝ�
j . �6�

We will be interested in a construction of a family of the second order in “spin” variable Ŝ�
i

utually commuting operators Ĥj , j=1,N that generalize standard Gaudin Hamiltonians.
We will need the following definition.
Definition 1: A function of two complex variables r�u1 ,u2� with values in the tensor square of

he algebra g is called a classical r-matrix if it satisfies the following “general” or “generalized”
lasssical Yang-Baxter equation:

�r12�u1,u2�,r13�u1,u3�� = �r23�u2,u3�,r12�u1,u2�� − �r32�u3,u2�,r13�u1,u3�� , �7�

here r12�u1 ,u2�	��,�=1
dim g r���u1 ,u2�X� � X� � 1, etc. �This equation first appeared in somewhat

ifferent form in Refs. 11 and 13. In the present form it appeared later in Ref. 17.�
Remark 2: If the matrix r�u1 ,u2� is “skew,” i.e., r12�u1 ,u2�=−r21�u2 ,u1� Eq. �7� passes into the

sual classical Yang-Baxter equation

�r12�u1,u2�,r13�u1,u3�� = �r23�u2,u3�,r12�u1,u2� + r13�u1,u3�� . �8�

ue to the fact that all solutions of the equations �8� are skew18 each solution of �8� is also a
olution of �7�.

Remark 3: Note, that by reparametrizations and gauge transformations each solution of the
quation �8� could be transformed to the form r12�u1 ,u2�	r12�u1−u2�.18 This statement is not true
or general nonskew solutions of the equation �7�.

Let us fix N distinct points �uk� on the complex plane such that in the neighborhood of these
oints r�u ,v� possesses the following decomposition:

r�u,v� =
ĉ

�u − v�
+ r0�u,v� , �9�

here r0�u ,v� is a regular in the neighborhood of u=uk, v=um, k ,m�1,N g � g-valued function,
ˆ �g � g is the tensor Casimir, ĉ=��,�g��X� � X�, g�� is the nondegenerate invariant metric on g.

The following theorem holds true.14

Theorem 2.1: Let r�ui ,uj�	��,�=1
dim g r���ui ,uj�X� � X� be the classical r-matrix and r0�ui ,uj� its

egular part. Then the second order in spin variables operators Ĥl , l=1,N of the type

Ĥl = �
k=1,k�l

N

�
�,�=1

dim g

r���uk,ul�Ŝ�
k Ŝ�

l +
1

2 �
�,�=1

dim g

r0
���ul,ul��Ŝ�

l Ŝ�
l + Ŝ�

l Ŝ�
l � �10�

orm commutative family in the universal enveloping algebra A�g�N� and its representations.
Remark 4: In the case of the skew symmetric r-matrices we have that r0

�,��ul ,ul�=

r0
�,��ul ,ul� and, hence, additional term in the corresponding Hamiltonian Ĥl turns zero and Ĥl

oincides with the standard Gaudin Hamiltonian.
Remark 5: Theorem 2.1 implies also commutativity of the corresponding classical Hamilto-

ians with respect to the natural Lie-Poisson bracket. Their classical commutativity was shown by
n other method in Ref. 10. For the case of a g of a higher rank these Hamiltonians do not form
omplete family of the commuting integrals and should be completed by the “higher” integrals.10

roof of their quantum commutativity is a separate complicated problem even in the case of the
tandard skew symmetric r-matrices. This problem for the case of the general skew symmetric
-matrices was approached in Ref. 19 and solved for the case of the simplest rational r-matrix in

ef. 20.
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II. AUTOMORPHISMS OF THE SECOND ORDER AND “TWISTED” NONSKEW
-MATRICES

In this section we construct nonskew symmetric classical r-matrices with spectral parameters
tarting from the standard skew symmetric classical r-matrices with spectral parameters.

Let � be involutive automorphism of g, i.e., �2=1 and ���X ,Y��= ���X� ,��Y�� , "X ,Y �g.
e will use the following notations: �1=� � 1, �2=1 � �, etc. Let �̃ be a lift of � onto the algebra

f g-valued functions given by the formula �̃X�u�=�X�−u�, and on the level of their tensor
roduct by the formula ��̃1�̃2�r12�u ,v�= ��1�2�r12�−u ,−v�, etc.

The following theorem holds true.
Theorem 3.1: Let r12�u−v� be skew symmetric r-matrix, i.e., a solution of the equation (8)

hich is anti-invariant with respect to the action of the automorphism �̃,

��1�2
˜ �r12�u − v� = − r12�u − v� . �11�

hen (i) the function r12
�2�u+v�	�2r12�u+v� is symmetric,

r12
�2�u + v� = r21

�1�u + v� = − r12
�1�− u − v� , �12�

ii) the function

r12
� �u,v� = r12�u − v� − r12

�2�u + v� = r12�u − v� + r12
�1�− u − v� , �13�

s a nonskew symmetric solution of the equation (7).
Remark 6: Note, that formula �13� differs from the one that can be extracted from Ref. 13.

ndeed, in Ref. 13 it is imposed the condition of invariance of the r-matrix r�u−v� under the action

f �̃, ��1�2
˜ �r12�u−v�=r12�u−v� instead of the anti-invariance condition �11�. Using formula of

ef. 13 for the case �2=1 one obtains the different formula, r12
� �u ,v�=r12�u−v�+r12

�2�u+v�, which
s not true for anti-invariant r-matrices r12�u−v�.

Remark 7: The construction of the theorem holds also in the case of the trivial involutive
utomorphism �	1. In this case �̃�X�u��=X�−u� and anti-invariance condition for r12�u−v� is
quivalent to the condition r12�u−v�=−r12�v−u�, or taking into account skew symmetry of r�u
v� to the following symmetry condition: r12�u−v�=r21�u−v�.

Proof: Let us at first prove item �i�. At first let us note that using skew symmetry, r12�u+v�
−r21�−v−u� condition �11� is easily shown to be equivalent to the condition ��1�2�r12�u+v�
r21�u+v�. Now it is easy to see that due to the equality �1

2=1 this implies identity r12
�2�u+v�

r21
�1�u+v�. Using the skew symmetry condition for r�u+v� again we obtain r21

�1�u+v�=−r12
�1�−u

v�. This proves item �i�.
Let us now prove item �ii�. For this purpose we must show that generalized classical Yang-

axter equation �7� for the r-matrix r��u ,v� given by the formula �13� follows from the usual
lassical Yang-Baxter equation �8� for the r-matrix r12�u−v�. We must prove that

�r12�u1 − u2� + r12
�1�− u1 − u2�,r13�u1 − u3� + r13

�1�− u1 − u3�� = �r23�u2 − u3� + r23
�2�− u2 − u3�,r12�u1

− u2� + r12
�1�− u1 − u2�� − �r32�u3 − u2� + r32

�3�− u3 − u2�,r13�u1 − u3� + r13
�1�− u1 − u3�� .

his equation is equivalent to the following four equations:

�r12�u1 − u2�,r13�u1 − u3�� = �r23�u2 − u3�,r12�u1 − u2� + r13�u1 − u3�� , �14a�

�r12
�1�− u1 − u2�,r13

�1�− u1 − u3�� = �r23�u2 − u3�,r12
�1�− u1 − u2� + r13

�1�− u1 − u3�� , �14b�

�r12�u1 − u2�,r13
�1�− u1 − u3�� = �r23

�2�− u2 − u3�,r12�u1 − u2�� − �r32
�3�− u2 − u3�,r13

�1�− u1 − u3�� ,
�14c�
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�r12
�1�− u1 − u2�,r13�u1 − u3�� = �r23

�2�− u2 − u3�,r12
�1�− u1 − u2�� − �r32

�3�− u2 − u3�,r13�u1 − u3�� .

�14d�

quation �14a� is the standard Yang-Baxter equation which is satisfied by r�u1−u2� by the condi-
ions of the theorem. Equation �14b� passes to the equation �14a� after the change of variable

1→−u1 and action on both sides of the automorphism �1.
Changing the sign of the variable u3 in the equation �14c� and taking into account that

13
�1�−u1+u3�=−r31

�1�u1−u3�=−r13
�3�u1−u3� and r23

�2�−u2+u3�=−r23
�3�u2−u3�, we see that Eq. �14c� is

quivalent to the following equation:

�r12�u1 − u2�,r13
�3�u1 − u3�� = �r23

�3�u2 − u3�,r12�u1 − u2�� − �r32
�3�u3 − u2�,r13

�3�u1 − u3�� .

cting on both sides of this equation by the automorphism �3 we obtain that Eq. �14c� is also
quivalent to Eq. �14a�. At last Eq. �14d� is equivalent to �14c�. To see this it is enough to change
ndices 2↔3 in Eq. �14d�.

Theorem is proved.
Let us consider several examples of this construction.
Example 1: Let g=gl�n� and r�u−v�= �u−v�−1�i,j=1

n Xij � Xji, is r-matrix of Yang. Here
Xij���=�i�� j� is the standard matrix basis of gl�n�. Let us consider automorphism � of gl�n�
iven on the basis elements by the formula ��Xij�=−Xji. It is easy to show, that �1�2

˜ �r�u−v��
=−r�u−v�. Hence by the virtue of Theorem 3.1 we obtain that the following gl�n� � gl�n�-valued
unction

r��u,v� = �u − v�−1 �
i,j=1

n

Xij � Xji + �u + v�−1 �
i,j=1

n

Xij � Xij �15�

atisfies the generalized classical Yang-Baxter equation �7�. This r-matrix coincides with the
lassical r-matrix found previously in Ref. 21.

Example 2: Let us consider the case g=sl�n� and the classical elliptic r-matrix of Ref. 16,

r�u − v� = �
a�Zn

2\�0�

��a�wa�u − v�X� � X−�, �16�

here a= �a1 ,a2�, ��a�=e�2�ia1a2�/n , Zn
2=Zn�Zn and Zn=Z /nZ, wa�u� is expressed via the

-functions with characteristic:

wa�u� =
	�a2/n+1/2,a1/n+1/2��u�	1/2,1/2� �0�

	1/2,1/2�u�	a2/n+1/2,a1/n+1/2�0�
, �17�

nd basic elements X� satisfy the following commutation relations:22

�Xa,Xb� = �a,bXa+b, �18�

here �a,b=e�2�ia2b1�/n−e�2�ia1b2�/n. Using the fact that �−a,−b=�a,b it is easy to see, that the map
�Xa�=X−a is the automorphism of sl�n�. Moreover, from the skew symmetry of r�u−v� it follows

hat wa�u−v�=−w−a�v−u� and ��a�=��−a�, and it is straightforward to show that ��1�2
˜ �r12�u

v�=−r12�u−v�. Hence we can use the formula �13� and obtain the following “twisted” elliptic
-matrix:

r��u,v� = �
a�Z2\�0�

��a��wa�u − v�X� � X−� − wa�u + v�X� � X�� . �19�

n
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Example 3: Let us consider in details the previous example but in the special case g=sl�2�.
ntroducing new generators X1= i /2X�1,1�, X2= i /2X�0,1�, X3=1/2X�1,0� we obtain the following
ommutation relations: �Xi ,Xj�=�ijkXk, which reflect isomorphism sl�2,C��so�3,C�. Taking into
ccount that in the group Z2

2 we have that a=−a and, hence, we obtain that formula �16� �up to a
oefficient� acquires the form of Sklyanin,8

r�u − v� = �
k=1

3

wk�u − v�Xk � Xk, �20�

here wk�u� are expressed via Jacobi functions, w1�u�=1/sn�u�, w2�u�=dn�u� / sn�u�, w3�u�
cn�u� / sn�u�.

It is easy to see that in this case �=1 and r12�u−v�=−r12�v−u� due to the fact that functions

k�u� are odd. Hence the condition of Theorem 3.1 is true and we obtain the following nonskew
ymmetric so �3� elliptic r-matrix:10

r��u,v� = �
k=1

3

�wk�u − v� − wk�u + v��X
 � X
. �21�

his r-matrix could also be obtained using the results of Refs. 23 or 24.

V. INTEGRABLE SPIN CHAINS ASSOCIATED WITH r�
„u ,v…

In this section using classical r-matrices constructed in the preceding section will explicitly
btain Hamiltonians of the new integrable quantum spin chains �10�.

The following theorem holds true.
Theorem 4.1: Let r�u−v� be the classical skew symmetric r-matrix satisfying equation (8).

et uk ,k�1,N be some fixed nonzero complex numbers such that uk� ±ul. Then the second order

n spin variables Ŝ�
k operators Ĥl , l=1,N of the type

Ĥl = �
k=1,k�l

N

�
�,�=1

dim g

�r���uk − ul� − �r�2����uk + ul��Ŝ�
k Ŝ�

l − �
�,�=1

dim g

�r�2����2ul�Ŝ�
l Ŝ�

l �22�

orm commutative family in the universal enveloping algebra A�g�N� and its representations.
Proof: Proof of this theorem follows from the Theorems 2.1 and 3.1. It is necessary only to

nd out the explicit form of the tensor r0
��u ,u�. By the direct calculation we obtain that

r0
��u,u� = lim

v→u
�r�u − v� − r�2�u + v� − �u − v�−1ĉ� = r0 − r�2�2u� , �23�

here we have used that r�u−v�= �u−v�−1ĉ+r0+�k=1
� rk�u−v�k.

Now, substituting the explicit expression for the “twisted” classical r-matrix �13� and its
egular part �23� into the formula �10� and taking into account skew symmetry of the tensor r0 and
ymmetry of the tensor r12

�2�2u� we obtain the formula �22�.
Theorem is proved.
Remark 8: Note that due to the symmetry of the tensor r12

�2�2u� no additional symmetrization

f the operators Ŝ�
l , Ŝ�

l as in formula �10� is needed in the formula �22�.
Remark 9: Theorem 4.1 could be also proved directly without appealing to the more general

heorem 2.1. Moreover, proof of this theorem in such a case is much simpler and we expose it for
he sake of completeness in the Appendix.

Let us consider concrete examples of the formula �22� for the concrete r-matrices.
Example 4: Let us consider the case g=gl�n� and r-matrix r��u ,v� from the Example 1. In this

ase the spin operators are labeled by two matrix indices, i.e., Ŝ�
k 	 Ŝij

k and we obtain the following
ˆ l
xplicit formula for the commuting Gaudin-type Hamiltonians H , l�1,N:
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Ĥl = �
k=1,k�l

N

�uk − ul�−1 �
i,j=1

n

Ŝij
k Ŝji

l + �
k=1,k�l

N

�uk + ul�−1 �
i,j=1

n

Ŝij
k Ŝij

l + �2ul�−1 �
i,j=1

n

Ŝij
l Ŝij

l , �24�

here commutation relations among the generalized spin operators are

�Ŝij
m, Ŝkl

n � = �mn��kjŜil
n − �ilŜkj

n � .

Example 5: Let us consider the case g=sl�n� and nonskew symmetric elliptic r matrix r��u ,v�
rom the Example 2. This example yields the following commuting generalized Gaudin-type

amiltonians Ĥl , l�1,N:

Ĥl = �
k=1,k�l

N


 �
a�Zn

2\0

��a�wa�uk − ul�Ŝa
kŜ−a

l − �
a�Zn

2\0

��a�wa�uk + ul�Ŝa
kŜa

l � − �
a,b�Zn

2\0

��a�wa�2ul�Ŝa
l Ŝa

l .

�25�

ommutation relations among the generalized spin operators are

�Ŝa
n, Ŝb

m� = �nm�a,bŜa+b
m . �26�

Example 6: Let us consider the case g=sl�2��so�3� and nonskew symmetric elliptic r matrix
��u ,v� from the Example 3. This example yields the following commuting Gaudin-type Hamil-

onians Ĥl , l�1,N,

Ĥl = �
k=1,k�l

N

�
i=1

3

�wi�uk − ul� − wi�uk + ul��Ŝi
kŜi

l − �
i=1

3

wi�2ul�Ŝi
lŜi

l. �27�

ommutation relations among the usual spin operators are standard,

�Ŝi
n, Ŝj

m� = �nm�ijkŜk
m. �28�

amiltonian �27� is a quantum version of classical Hamiltonian obtained by us in Ref. 10.
Example 7: Finally, let us consider the previous example in the special cases N=1 and N

2 in order to show that our quantum spin systems is a generalization of the well known ones.
ndeed, in the case N=1 our construction yields the following Hamiltonian:

Ĥ1 = − �
i=1

3

wi�2u1�Ŝi
1Ŝi

1.

etting wk�2u1�=−Jk we obtain quantum Hamiltonian of the anisotropic Euler top,

Ĥ1 = �
k=1

3

JkŜk
1Ŝk

1.

n the case N=2 we have two spin operators and two commuting Gaudin-type Hamiltonians,

Ĥ1 = �
i=1

3

�wi�u2 − u1� − wi�u1 + u2��Ŝi
2Ŝi

1 − �
i=1

3

wi�2u1�Ŝi
1Ŝi

1,

Ĥ2 = �
i=1

3

�wi�u1 − u2� − wi�u1 + u2��Ŝi
1Ŝi

2 − �
i=1

3

wi�2u2�Ŝi
2Ŝi

2.

hese Hamiltonians are exactly quantized Hamiltonians of the classical Steklov system on

o�3�+so�3� in the form proposed in Ref. 22.
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. CONCLUSION AND DISCUSSION

In the present paper using automorphisms of the second order of semisimple Lie algebras g

nd standard skew symmetric g � g-valued r-matrices we have constructed new nonskew symmet-
ic classical r-matrices with the spectral parameters. Using them we have explicitly constructed
ew integrable quantum Gaudin-type spin chains. We have considered several examples of our
onskew symmetric r-matrices and the corresponding commuting quantum Hamiltonians.

An interesting and important mathematical problem is a diagonalization of these Hamilto-
ians, i.e., an explicit construction of their eigenvectors and eigenvalues. It would be also inter-
sting to find direct physical applications for the constructed integrable spin systems. One of the
ossible applications of our models are integrable fermionic systems with BCS-type
amiltonians.4,5 We hope, that using our results it will be possible to obtain an exactly solvable
eneralization of the one-dimensional BCS Hamiltonian. The work over these problems is now in
rogress and we will return to them in our future presentations.
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PPENDIX: DIRECT PROOF OF THE THEOREM 4.1

We will prove the theorem directly showing that �Ĥk , Ĥl�=0"k , l ,k� l. The first stage of the
roof is independent of the choice of the concrete r-matrix r���uk ,ul� and repeats the part of the
roof of the Theorem 2.1 in details exposed in Ref. 14.

Let us represent our Hamiltonians as follows: Ĥk= Ĥ0
k + Ĥ1

k, Ĥl= Ĥ0
l + Ĥ1

l , where

Ĥ0
l = �

�,�=1

dim g

�
k�l

N

r���uk,ul�Ŝ�
k Ŝ�

l ,Ĥ1
l = 1/2 �

�,�=1

dim g

r0
���ul,ul��Ŝ�

l Ŝ�
l + Ŝ�

l Ŝ�
l � .

ere we use the notation of the Sec. I. It is easy to see that �Ĥ1
k , Ĥ1

l �=0, and hence,

�Ĥk,Ĥl� = �Ĥ0
k,Ĥ0

l � + �Ĥ0
k,Ĥ1

l � + �Ĥ1
k,Ĥ0

l � . �A1�

et us calculate each of this summands separately,

�Ĥ0
k,Ĥ0

l � = �
m�k

�
n�l

�
�,�,�,�

r�,��um,uk�r�,��un,ul��Ŝ�
mŜ�

k , Ŝ�
nŜ�

l �

= �
m,n�k,l

�
�,�,�,�

r�,��um,uk�r�,��un,ul��Ŝ�
mŜ�

k , Ŝ�
nŜ�

l �

+ �
n�l,k

�
�,�,�,�

r�,��ul,uk�r�,��un,ul��Ŝ�
l Ŝ�

k , Ŝ�
nŜ�

l � + �
m�k,l

�
�,�,�,�

r�,��um,uk�r�,��uk,ul�

��Ŝ�
mŜ�

k , Ŝ�
k Ŝ�

l � + �
�,�,�,�

r�,��ul,uk�r�,��uk,ul��Ŝ�
l Ŝ�

k , Ŝ�
k Ŝ�

l �

= �
m�k,l

r�,��um,uk�r�,��um,ul�C��

 Ŝ


mŜ�
k Ŝ�

l + �
m�l,k

�
�,�,�,�

r�,��ul,uk�r�,��um,ul�C��

 Ŝ


l Ŝ�
k Ŝ�

m

+ �
m�k,l

�
�,�,�,�

r�,��um,uk�r�,��uk,ul�C��

 Ŝ�

mŜ

k Ŝ�

l + �
�,�,�,�

r�,��ul,uk�r�,��uk,ul��Ŝ�
l Ŝ�

k , Ŝ�
k Ŝ�

l � .
                                                                                                            



N

i
c
=
=
r

w

a
�
H

T

L

U

�
l

w

L
t
i

W

033511-9 Generalized Gaudin spin chains J. Math. Phys. 47, 033511 �2006�

                        
ote that in the first three summands of the final expression on the right-hand side of this equality

ndices m ,k , l are all different and the order of the operators, Ŝ

m, Ŝ�

k , Ŝ�
l , is not important. Let us

onsider these summands in more details. Taking into account that r12�um ,uk�
��,�=1

dim g r���um ,uk�X� � X� � 1, r13�um ,ul�=��,�=1
dim gr���um ,ul�X� � 1 � X�, r23�uk ,ul�

��,�=1
dim gr���uk ,ul�1 � X� � X�, r32�ul ,uk�=��,�=1

dim g r���uk ,ul�1 � X� � X� we obtain that they can be
ewritten in the following way:

��r12�um,uk�,r13�um,ul�� + �r12�um,uk�,r23�uk,ul�� + �r32�ul,uk�,r13�um,ul��, Ŝ1
mŜ2

kŜ3
l  ,

here we have used the following notations:

Ŝ1
m = �

�=1

dim g

Ŝ�
mX�

� 1 � 1, Ŝ2
k = �

�=1

dim g

1 � Ŝ�
mX�

� 1, Ŝ3
l = �

�=1

dim g

1 � 1 � Ŝ�
mX�,

nd �, is a scalar product on g � g � g extended in a natural way from the scalar product on g and
X� ,X�=��

�. By the virtue of the generalized Yang-Baxter equation these summands cancel.
ence, we obtain

�Ĥ0
k,Ĥ0

l � = �
�,�,�,�

r�,��ul,uk�r�,��uk,ul��Ŝ�
l Ŝ�

k , Ŝ�
k Ŝ�

l � . �A2�

his expression could be rewritten as �Ĥ0
k , Ĥ0

l �= �Ĥk,l , Ĥl,k�, where

Ĥk,l = �
�,�

r�,��ul,uk�Ŝ�
l Ŝ�

k , Ĥl,k = �
�,�

r�,��uk,ul�Ŝ�
k Ŝ�

l .

et us now use the explicit form of our twisted r-matrices,

r�,��ul,uk� = r�,��ul − uk� − �r�2��,��ul + uk� ,

r�,��uk,ul� = r�,��uk − ul� − �r�2��,��ul + uk� .

sing the skew symmetry of r�ul−uk�: r�,��ul−uk�=−r�,��uk−ul� and symmetry of r�2�ul+uk�:
r�2��,��ul+uk�= �r�2��,��ul+uk� we obtain that in our case Ĥk,l and Ĥk,l can be rewritten as fol-
ows:

Ĥk,l = − ĥ−
kl − ĥ+

kl,Ĥl,k = ĥ−
kl − ĥ+

kl, �A3�

here ĥ−
k,l=��,�r�,��uk−ul�Ŝ�

l Ŝ�
k , ĥ+

k,l=��,��r�2��,��uk+ul�Ŝ�
l Ŝ�

k . Hence we obtain

�Ĥ0
k,Ĥ0

l � = 2�ĥ−
kl, ĥ+

kl� = 2 �
�,�,�,�

r�,��uk − ul��r�2��,��uk + ul��Ŝ�
k Ŝ�

l , Ŝ�
k Ŝ�

l � . �A4�

et us consider in details the expression �Ŝ�
l Ŝ�

k , Ŝ�
k Ŝ�

l �= Ŝ�
l Ŝ�

l �Ŝ�
k , Ŝ�

k�+ �Ŝ�
l , Ŝ�

l �Ŝ�
k Ŝ�

k . Let us show that
his expression is symmetric with respect to the permutation of the operators with the same upper
ndices. We have

�Ŝ�
l Ŝ�

k , Ŝ�
k Ŝ�

l � = 1
2 �Ŝ�

l Ŝ�
l + Ŝ�

l Ŝ�
l ��Ŝ�

k , Ŝ�
k� + 1

2 �Ŝ�
l , Ŝ�

l ��Ŝ�
k Ŝ�

k + Ŝ�
k Ŝ�

k� + 1
2 ��Ŝ�

l , Ŝ�
l ��Ŝ�

k , Ŝ�
k� + �Ŝ�

l , Ŝ�
l ��Ŝ�

k , Ŝ�
k ��

= 1
2C��


 �Ŝ�
l Ŝ�

l + Ŝ�
l Ŝ�

l �Ŝ

k + 1

2C��

 Ŝ


l �Ŝ�
k Ŝ�

k + Ŝ�
k Ŝ�

k� ,
e obtain that formula �A2� can be rewritten in the symmetrized tensor form,
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�Ĥ0
k,Ĥ0

l � = ��r12�uk − ul�,r13
�3�uk + ul��, Ŝ1

k��Ŝ2
l Ŝ3

l �� − ��r23
�3�ul + uk�,r13�uk − ul��,��Ŝ1

kŜ2
k��Ŝ3

l  ,

�A5�

here ��Ŝ2
l Ŝ3

l ��	����Ŝ�
l Ŝ�

l + Ŝ�
l Ŝ�

l �1 � X� � X�, ��Ŝ1
kŜ2

k��	����Ŝ�
k Ŝ�

k + Ŝ�
k Ŝ�

k �X� � X� � 1 and we
ave used the symmetry of the tensors r23

�3�ul+uk� and r13
�3�uk+ul�.

Let us now explicitly calculate expression �Ĥ1
k , Ĥ0

l �,

�Ĥ1
k,Ĥ0

l � =
1

2 �
m�k

�
�,�,�,�

r�,��um,uk�r0
�,��ul,ul��Ŝ�

mŜ�
k ,�Ŝ�

l Ŝ�
l + Ŝ�

l Ŝ�
l ��

=
1

2 �
m�k

�
�,�,�,�

�r�,��uk − um� + �r�2��,��um + uk���r�2��,��2ul��Ŝ�
mŜ�

k ,�Ŝ�
l Ŝ�

l + Ŝ�
l Ŝ�

l ��

=
1

2 �
�,�,�,�

�r�,��uk − ul� + �r�2��,��ul + uk���r�2��,��2ul��Ŝ�
l Ŝ�

k ,�Ŝ�
l Ŝ�

l + Ŝ�
l Ŝ�

l ��

=
1

2 �
�,�,�,�,


�r�,��uk − ul� + �r�2��,��ul + uk���r�2��,��2ul�Ŝ�
k �C��


 �Ŝ

l Ŝ�

l + Ŝ

l Ŝ�

l �

+ C��

 �Ŝ


l Ŝ�
l + Ŝ


l Ŝ�
l �� = ��r12�uk − ul� + r13

�3�ul + uk�,r23
�3�2ul��, Ŝ1

k��Ŝ2
l Ŝ3

l �� , �A6�

here we have used symmetry of the tensors �r�3�13�ul+uk� and �r�3�23�2ul�.
In analogous way we obtain

�Ĥ0
k,Ĥ1

l � = − ��r12
�2�2uk�,r13�uk − ul� − r23

�3�uk + ul��,��Ŝ1
kŜ2

k��Ŝ3
l  . �A7�

n the other hand, using identities �14b� and �14d� and condition �12� it is easy to show that

�r12�uk − ul�,r13
�3�uk + ul�� = − ��r12�uk − ul� + r13

�3�uk + ul�,r23
�3�2ul��� , �A8�

�r13�uk − ul�,r23
�3�uk + ul�� = �r12

�2�2uk�,r13�uk − ul� − r23
�3�uk + ul�� . �A9�

Substituting equalities �A8� and �A9� into expression �A5� and then substituting �A5� together

ith the expressions �A6� and �A7� into the equation �A1� we obtain that �Ĥk , Ĥl�=0.
Theorem is proved.
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We consider symmetries on the C*-algebra of the discrete Heisenberg group and
their generalization to the generalized discrete Heisenberg groups, and study the
structure of the crossed products by the symmetries and their fixed point algebras,
and also compute the stable rank of the crossed products and their fixed point
algebras. © 2006 American Institute of Physics. �DOI: 10.1063/1.2180625�

NTRODUCTION

The group C*-algebras of either Lie, discrete, or locally compact groups have been very
nteresting objects in the theory of C*-algebras �cf. Dixmier8 and Pedersen17�. Among many
hings, their �algebraic� structure is well studied to some great extent. For this subject, see Green12

r Poguntke.19 In particular, it is shown by Ref. 19, Theorem 2, that the group C*-algebra of a
onnected Lie group has only either the C*-algebra of compact operators on a �finite or infinite
imensional� Hilbert space, noncommutative tori or their tensor products as simple quotients. On
he other hand, symmetries on C*-algebras regarded as as noncommutative spaces have been of
uch interest and studied well. See Ref. 2 for symmetries of the CAR algebras, and see Bratteli,
lliott, Evans, and Kishimoto �Refs. 4–6� for symmetries on the irrational or rational rotation
*-algebras, and see also Ref. 3 for symmetries on certain noncommutative tori. Recently, the
ltimate result for symmetries on noncommutative tori has been obtained by Phillips.18

Our first interest is to study the structure of the group C*-algebras of discrete solvable groups
nd to compute their stable rank since little is known about this case in the literature. As the first
tep toward this program, we consider symmetries on the group C*-algebra of the discrete Heisen-
erg group and their generalization to the generalized discrete Heisenberg groups. After we ob-
ained the structure of the crossed products of those group C*-algebras by the symmetries, we find
s a corollary that group C*-algebras of solvable discrete groups may have certain simple AF
lgebras as quotients. Compared with the result of Ref. 19 mentioned above, this consequence as
point of view seems to be interesting. We also obtain that group C*-algebras of disconnected Lie
roups may have certain AH algebras �in fact AT algebras� as simple quotients. The estimates of
he stable rank of the crossed products by the symmetries and their fixed point algebras should be
lso interesting. Indeed, we show that the estimates of the stable rank for the group C*-algebras of
olvable discrete groups are different from those for nilpotent discrete groups obtained in Ref. 14
n the sense that the stable rank of the group C*-algebras is determined by the spaces of all
wo-dimensional irreducible representations of the groups, and however, the stable rank of their
xed point algebras is estimated by the spaces of all one-dimensional representations of them. See
ef. 20 for the stable rank of C*-algebras, and see also Refs. 15, 21, and 24 for some results on the

table rank.
The contents of this paper are as follows: Section I, the symmetries; Sec. II, the structure; Sec.

II, the stable rank, and Sec. IV, applications to Lie group C*-algebras. In Sec. I we construct the
ymmetries mentioned above by a simple procedure. This construction method to obtain symme-
ries and to derive solvable discrete groups from nilpotent ones could prove useful in other

�
Electronic mail: sudo@math.u-ryukyu.ac.jp
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ituations. In Sec. II we consider the structure of the crossed products of the group C*-algebras of
he generalized discrete Heisenberg groups by the symmetries and their fixed point algebras. For
he proofs, we use some results of Bratteli, Elliott, Evans, and Kishimoto �Refs. 4–6� about
oncommutative spheres, which are crossed products of rotation algebras by the flips and their
xed point algebras. In fact, the crossed products by some �canonical ones� of our symmetries and

heir fixed point algebras are continuous field C*-algebras with fibers given by noncommutative
pheres in the sense above, but not always as shown below. In Sec. III we estimate the stable rank
f the crossed products by our symmetries and their fixed point algebras using the structure of Sec.
I, some basic results on the stable rank and an estimate for the stable rank of continuous field

*-algebras �Ref. 13�. In Sec. IV we apply the methods above to the group C*-algebras of the
autner groups and Dixmier groups and their generalizations. See also Refs. 27, 32, and 30 and
efs. 33 and 34 for the structure and stable rank of the group C*-algebras of certain connected

olvable Lie groups and see Refs. 28, 29, and 31 for the cases of certain disconnected solvable Lie
roups.

. THE SYMMETRIES

Notation: Let C*�G� be the �full� group C*-algebra of a locally compact group G �cf. Refs. 8
nd 17�. Let A’�G be the �full� crossed product of a C*-algebra A by a locally compact group G
ith � an action by automorphisms of A.17

Recall that the discrete Heisenberg group of rank 3 is

H3
Z = �g = �c,b,a� = �1 a c

0 1 b

0 0 1
��a,b,c � Z	 .

efine the semidirect product H3
Z
’��1�Z2 to be the group generated by H3

Z and the diagonal matrix

1=−1 � 1 � 1 �the diagonal sum�, where the action ��1� of Z2 is defined by �−1
�1��c ,b ,a�=d1gd1

−1

= �−c ,b ,−a��H3
Z.

Similarly, we define the semidirect product H3
Z
’��2�Z2 generated by H3

Z and the diagonal
atrix d2=1 � −1 � 1, where the action ��2� of Z2 is defined by �−1

�2��c ,b ,a�=d2gd2
−1= �c ,−b ,−a�

H3
Z. Moreover, define the semidirect product H3

Z
’��3�Z2 generated by H3

Z and the diagonal matrix

3=1 � 1 � −1, where the action ��3� of Z2 is defined by �−1
�3��c ,b ,a�=d3gd3

−1= �−c ,−b ,a��H3
Z.

Furthermore, we may take the following diagonal matrices: d1,2=−1 � −1 � 1, d1,3=−1 � 1
� −1, and d2,3=1 � −1 � −1 to define the semidirect products with the, respectively, corresponding
ctions ��1,2�, ��1,3�, and ��2,3�. But it follows from direct computation that ��1,2�=��3�, ��1,3�

��2�, and ��2,3�=��1�.
Let C*�H3

Z
’��j�Z2� be the group C*-algebra of H3

Z
’��j�Z2 for 1� j�3. Then C*�H3

Z
’��j�Z2� is

somorphic to the crossed product C*�H3
Z�’��j�Z2 of the group C*-algebra C*�H3

Z� by the action ��j�

f Z2. Let U ,V ,W be the unitaries generating C*�H3
Z�, respectively, corresponding to the following

atrices: �0,0,1�, �0,1,0�, and �1,0 ,0��H3
Z. By definition of the actions ��j� of Z2 �called symme-

ries�, we obtain
Proposition 1.1: There exist symmetries ��j��1� j�3� on the group C*-algebra C*�H3

Z� with
, V, W the canonical generators such that

��1��U� = U*, ��1��V� = V, ��1��W� = W*,

��2��U� = U*, ��2��V� = V*, ��2��W� = W ,

��3��U� = U, ��3��V� = V*, ��3��W� = W*.
Recall that the discrete Heisenberg group of rank 2n+1 is
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H2n+1
Z = �g = �c,b,a� = � 1 a c

0n
t 1n bt

0 0n 1
��a,b � Zn,c � Z	 ,

here 1n is the n�n identity matrix, 0n= �0��Zn, and bt, 0n
t are the transposes of b, 0n, respec-

ively. Define the semidirect product H2n+1
Z

’��1�Z2 to be the group generated by H2n+1
Z and the

iagonal matrix d1=−1 � 1n � 1, where the action ��1� of Z2 is defined by �−1
�1��c ,b ,a�=d1gd1

−1

�−c ,b ,−a��H2n+1
Z , where −a= �−aj��Zn.

Similarly, define the semidirect product H2n+1
Z

’��n+2�Z2 to be the group generated by H2n+1
Z and

he diagonal matrix dn+2=1 � 1n � −1, where the action ��n+2� of Z2 is defined by �−1
�n+2��c ,b ,a�

dn+2gdn+2
−1 = �−c ,−b ,a��H2n+1

Z , where −b= �−bj��Zn.
Furthermore, for 2� j�n+1 we define the semidirect product H2n+1

Z
’��j�Z2 generated by H3

Z

nd the diagonal matrix dj =1 j−1 � −1 � 1n+2−j, where the action ��j� of Z2 is defined by

�−1
�j��c,b,a� = djgdj

−1 = �c,b − 2bj

,a − 2aj


� ,

here bj

= �0, . . . ,0 ,bj ,0 , . . . ,0� and aj


= �0, . . . ,0 ,aj ,0 , . . . ,0� �bj, aj are jth components�.
Let C*�H2n+1

Z
’��j�Z2� be the group C*-algebra of H2n+1

Z
’��j�Z2 for 1� j�n+2. Then

*�H2n+1
Z

’��j�Z2� is isomorphic to the crossed product C*�H2n+1
Z �’��j�Z2 of the group C*-algebra

*�H2n+1
Z � by the symmetry ��j�. Let Uj, Vj, W �1� j�n� be the unitaries generating C*�H2n+1

Z �,
espectively, corresponding to the following diagonal matrices: �0,0n ,1 j


�, �0,1 j

 ,0n�, and

1,0n ,0n�, where 1 j

=aj


 with aj =1. By definition of the actions ��j� of Z2 �called symmetries�, we
btain the following.

Proposition 1.2: There exist symmetries ��j� �1� j�n+2� on the group C*-algebra C*�H2n+1
Z �

ith Uj, Vj, W �1� j�n� the generators such that

��1��Uj� = Uj
*, ��1��Vj� = Vj �1 � j � n�, ��1��W� = W*,

��n+2��Uj� = Uj, ��n+2��Vj� = Vj
* �1 � j � n�, ��n+2��W� = W*,

nd for 2� j�n+1,

��j��Uj� = Uj
*, ��j��Vj� = Vj

*, ��j��W� = W ,

��j��Uk� = Uk �k � j�, ��j��Vk� = Vk �k � j� .

Moreover, define the semidirect product H2n+1
Z

’�Z2 to be the group generated by H2n+1
Z and

he diagonal matrix d1n
=1 � −1n � 1, where the action � of Z2 is defined by �−1�c ,b ,a�

d1n
gd1n

−1= �c ,−b ,−a��H2n+1
Z .

Definition: We say that an action � of Z2 on the group C*-algebra C*�H2n+1
Z � is a canonical

ymmetry if it is induced from a semidirect product H2n+1
Z

’�Z2 generated by H2n+1
Z and an �n

2�� �n+2� diagonal matrix with 1 or −1 on the diagonal, where � is the adjoint action by the
iagonal matrix.

Proposition 1.3: There exist 2n+1−1 nontrivial canonical symmetries on the group C*-algebra
*�H2n+1

Z �. In particular, if one of the symmetries is � defined above, then

��Uj� = Uj
*, ��Vj� = Vj

* �1 � j � n�, ��W� = W ,

here Uj, Vj, W are generating unitaries of C*�H2n+1
Z �.

Proof: Let d be the diagonal matrix associated with a canonical symmetry. Note that dgd−1

dgd= �−d�g�−d�−1 for g�H2n+1
Z . Thus, the number of choosing diagonal matrices with 1 or −1

n the diagonal is reduced to 2n+2 /2=2n+1. Since 1n+2g1n+2= �−1n+2�g�−1n+2�=g for g�H2n+1
Z ,

n+1
here are 2 −1 nontrivial canonical symmetries. �
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I. THE STRUCTURE

Notation: We identify elements z of T with ��R�mod 1� via z=e2�i�, and write ��T. Let
�X� be the C*-algebra of continuous complex-valued functions on a compact Hausdorff space X.
or a C*-algebra A, let C�X ,A� be the C*-algebra of continuous A-valued functions on X. Let
�X , �At�t�X� be the continuous field C*-algebra of continuous operator fields on X with fibers At

or t�X C*-algebras �Ref. 8�. An AF algebra is an inductive limit of finite-dimensional
*-algebras, and an AT algebra is an inductive limit of matrix algebras over C�T�, and an AH
lgebra is an inductive limit of homogeneous C*-algebras �cf. Ref. 23�.

Theorem 2.1: The crossed product C*�H3
Z�’��2�Z2 is isomorphic to the continuous field

*-algebra ��T , �A�’Z2���T�, where A� are rotation algebras for ��R�mod 1�.
Proof: Since H3

Z is isomorphic to the semidirect product Z2
’Z through the identification

etween g�H3
Z and �c ,b ,a� for c ,b ,a�Z, C*�H3

Z� is isomorphic to C*�Z2�’Z. By the Fourier
ransform, C*�Z2�’ZC�T2�’Z. Furthermore, we have

C�T2� ’ Z  ��T,�C�T�’�Z���T�

nd C�T�’�Z=A� �cf. Ref. 1�. Therefore, we obtain

C*�H3
Z�’��2�Z2  ��T,�A����T� ’ Z2  ��T,�A� ’ Z2���T�

ince A� generated by U ,V are invariant under Z2, and note also that C�T� generated by W is the
enter of C*�H3

Z�’��2�Z2 since W is fixed by ��2� �see Proposition 1.1� �cf. Ref. 16 Theorem 1.2
nd see also Ref. 22�. �

Remark: Since the action of Z2 on A� is the flip, the crossed product A�’Z2 for � irrational
s a simple C*-algebra with a unique tracial state by Ref. 4 and is AF by Ref. 6, Theorem 1.1. In
act, the crossed products A�’Z2 are inductive limits of finite direct sums of the building blocks

n,k defined by Cn,k=Mn�C� � Ck for n	1 and k=−1,0 ,1 ,2, where C−1=C, C0=C��−1,1��, C1

�f �C��0,1� ,M2�C�� � f�0��C � C�, and

C2 = �f � C��− 1,1�,M2�C���f�− 1� � C2, f�1� � C2�

see Ref. 6, Corollary 7.4�. Then it follows that the crossed products are AF since they are simple
ith unique tracial states �Ref. 6, Theorem 8.1 and see Ref. 25�. If �= p /q with p, q mutually
rime positive integers, the crossed products A�’Z2 are regarded as certain subalgebras of
�S2 ,M2q�C�� �Ref. 5, Theorem 1.3�.

Moreover, we have the following.
Theorem 2.2: The crossed product C*�H2n+1

Z �’�Z2 is isomorphic to the continuous field
*-algebra ��T , ���nA��’Z2���T�, where A� are rotation algebras for ��R�mod 1�.

Proof: Since H2n+1
Z is isomorphic to the semidirect product Zn+1

’Zn through the identification
etween g�H2n+1

Z and �c ,b ,a� for c�Z, b, a�Zn, C*�H2n+1
Z � is isomorphic to C*�Zn+1�’Zn. By

he Fourier transform, C*�Zn+1�’ZnC�Tn+1�’Zn. Furthermore, we have

C�Tn+1� ’ Zn  ��T,�C�Tn�’�Z
n���T�

nd C�Tn�’�Zn= �nA�. Therefore, we obtain

C*�H2n+1
Z �’�Z2  ��T,��

nA����T� ’ Z2  ��T,���
nA�� ’ Z2���T�

ince �nA� generated by Uj, Vj�1� j�n� are invariant under Z2, and note also that C�T� gener-
ted by W is the center of C*�H2n+1

Z �’�Z2 since W is fixed by � �see Proposition 1.3� �cf. Ref. 16,
heorem 1.2 and see also Ref. 22�. �

Remark: Since the action of Z2 on �nA� is the flip, the crossed product ��nA��’Z2 for �
rrational is a simple AF algebra by Refs. 4 and 6 �or Ref. 18, Theorem 10.11�.

Corollary 2.3: The group C*-algebras of solvable discrete groups may have certain AF alge-
ras as simple quotients.

Z
Proof: For instance, we take H3’��2�Z2 as a solvable discrete group. �
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Corollary 2.4: The group C*-algebras of solvable discrete groups may have certain AT alge-
ras as simple quotients.

Proof: For instance, we take H2n+1
Z

’��2�Z2 as a solvable discrete group. In this case, we have

C*�H2n+1
Z �’��2�Z2  ��T,���

nA�� ’ Z2���T�

nd ��nA��’Z2�A�’Z2� � ��n−1A�� since U1, V1 are invariant under Z2 and the action of Z2 is
rivial elsewhere. If � is irrational, A�’Z2 is a simple AF algebra by Refs. 4 and 6, and A� is a
imple AT algebra by Ref. 10, where an AT algebra is an inductive limit of direct sums of matrix
lgebras over C�T�. Therefore, ��nA��’Z2 with the tensor product decomposition is a simple AH
lgebra. Furthermore, since A� has real rank zero by Choi-Elliott7 we have that the tensor product

�n−1A� is in fact an AT algebra by Elliott-Gong �Ref. 11, Theorems 3.11 and 3.19�. Hence
�nA��’Z2 is an AT algebra. �

Theorem 2.5: The fixed point algebra C*�H3
Z���2�

associated with the crossed product
*�H3

Z�’��2�Z2 is isomorphic to ��T , �A�
��2�

���T� the associated continuous field C*-algebra, where

�
��2�

are the fixed point algebras of the rotation algebras A� for ��R�mod 1�.
Proof: Note that C�T� generated by W is contained in C*�H3

Z���2�
and is the center. Thus,

*�H3
Z���2�

is written as the C*-algebra of a continuous field on T with fibers contained in A�’Z2.

n fact, the fibers are given by A�
��2�

. �

Remark: The fixed point algebra A�
��2�

for � irrational is a simple AF algebra. Indeed, the fixed

oint algebras A�
��2�

for � irrational are corners of A�’��2�Z2. Hence they are AF. If �= p /q with

p ,q mutually prime positive integers, the fixed point algebras A�
��2�

are regarded as certain subal-

ebras of C�S2 ,Mq�C�� �Ref. 5, Theorem 1.2�. If q	3, then A�
��2�

and A�’��2�Z2 are Morita
quivalent, but not for q=1 or q=2.

Furthermore, we have the following.
Theorem 2.6: The fixed point algebra C*�H2n+1

Z �� associated with the crossed product
*�H2n+1

Z �’�Z2 is isomorphic to ��T , ���nA������T� the associated continuous field C*-algebra,
here ��nA��� are the fixed point algebras of the noncommutative tori �nA� for ��R�mod 1�.

Proof: Note that C�T� generated by W is contained in C*�H2n+1
Z �� and is the center. Thus,

*�H2n+1
Z �� is written as the C*-algebra of a continuous field on T with fibers contained in

�nA��’Z2. In fact, the fibers are given by ��nA���. �

Remark: The fixed point algebra ��nA��� for � irrational is a simple AF algebra. Indeed, the
xed point algebras ��nA��� for � irrational are corners of ��nA��’�Z2. Hence they are AF. See
lso Ref. 3 Theorem 3.1.

We next consider the case of symmetries ��1� ,��3� in Proposition 1.1.
Theorem 2.7: The crossed products C*�H3

Z�’��j�Z2 �j=1,3� are isomorphic to C�T2�’ �Z2

Z� which has the decomposition into the following exact sequence:

0 → �0��0,��,�C���z� � T� � ��z̄� � T�� ’ �Z2 � Z��z��0,���

→ C�T2� ’ �Z2 � Z� → C*�Z2� � �C�T� ’ Z � C�T�’−1Z� → 0,

here the closed ideal is the C*-algebra of continuous operator fields on �0,�� vanishing at
nfinity with fibers double rotation C*-algebras on the disjoint union T�T that we call, and the
ctions of two crossed products in the quotient are the flip and the minus flip on T, respectively.
oreover, the double rotation C*-algebras for irrational z� �0,�� are isomorphic to �Az

� Az̄�’Z2 and are simple AF algebras.
Proof: As in the proof of Theorem 2.1, we have C*�H3

Z�C�T2�’Z. Furthermore, note that

�C�T2� ’ Z�’��3�Z2  C�T2� ’ �Z2 � Z�

ince ��3��U�=U so that the actions of Z and Z2 commute. For j=1, we replace the role of U with
2 �1�
hat of V via �W ,V ,U�↔ �W ,U ,V� exchanging the order in C�T �’Z. Since � �V�=V, we can
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eplace ��3� with ��1� in the isomorphism above. Set �=��j� for j=1,3. The action � on T is given
y

��−1,1��z,w� = ��1,1���−1,0��z,w� = ��1,1��z̄,w̄� = �z̄, z̄w̄� � T2

or �−1,1��Z2�Z. It follows that the closed subspaces �±1��T of T2 are invariant under �, and

2 acts trivially on the subspace. Since ��−1,1��1,w�= �1, w̄� and ��−1,1��−1,w�= �−1,−w̄�, the ac-
ions on �1��T and �−1��T are the flip and the minus flip, respectively. Therefore, we obtain

C�T2� ’ �Z2 � Z� → C��±1� � T� ’ �Z2 � Z�  C*�Z2� � �C�T� ’ Z � C�T�’−1Z� → 0.

urthermore, note that the disjoint unions ��z��Z�� �z̄�T� in T2 for z� ±1 are invariant under �.
hus the kernel of the onto homomorphism above is given by

�0��0,��,�C���z� � T� � ��z̄� � T�� ’ �Z2 � Z��z��0,��� ,

here we identify the quotient space �T \ �±1�� /Z2 with �0,��. Simplicity of the fibers for irratio-
al z� �0,�� follows from minimality of the action � on ��z��T�� ��z̄��T�, that is, any orbit
nder � in this disjoint union is dense in it. Note that ��1,n��z ,w�= �z ,znw�� �z��T and ��1,n�
�z̄ ,w�= �z̄ , �z̄�nw�� �z̄��T. Moreover, we note that

C���z� � T� � ��z̄� � T�� ’ �Z2 � Z�  C���z� � T� � ��z̄� � T�� ’ Z ’ Z2  �Az � Az̄� ’ Z2.

lso observe that the crossed products Az’Z2 and Az̄’Z2 are C*-subalgebras of �Az � Az̄�’Z2,
nd their union is equal to it. Since the crossed products Az’Z2 and Az̄’Z2 for irrational z are AF
lgebras with building blocks invariant under the flip, it follows that �Az � Az̄�’Z2 is also AF.

�

Theorem 2.8: The fixed point algebras C*�H3
Z���j�

associated with the crossed products
*�H3

Z�’��j�Z2 �j=1,3� are isomorphic to C�T2���j�
’Z which are isomorphic to

C�S2/T � T� ’ Z  ���0,��,�C�T�1T�’�Z����0,�� � �C���,2���’�Z��=0 � �C�T�’�Z��=�� ,

he continuous field C*-algebra on �0,�� with fibers the double rotation algebras C�T�1T�’�Z
n the space T�1T attached at 1�T for �� �0,�� and C��� ,2���’0Z=C��� ,2���T�, and
2 /T�T is obtained from S2 identifying four edges in S2 to make two circles T.

Proof: As in the proof of Theorem 2.7, we have that for �=��j� �j=1,3�,

C*�H3
Z�’��j�Z2  C�T2�’�Z2 ’ Z .

ince C�T2��=C�S2� �Ref. 5�, we have C*�H3
Z��=C�S2�’Z. We may view S2 as follows. Consider

he space obtained from ��s , t�� �0,2��� �0,2�� �s� t� by identifying the points �s ,0� with
2�−s ,0� for 0�s��, �2� , t� with �2� ,2�− t� for 0� t��, and �0,0� with both �0,2�� and
2� ,2��, and consider the space obtained from ��s , t�� �0,2��� �0,2�� �s	 t� by identifying the
oints �0, t� with �0,2�− t� for 0� t��, �s ,2�� with �2�−s ,2�� for 0�s��, and �0,0� with
oth �2� ,0� and �2� ,2��. Then we attach the spaces along with the line ��s ,s� �0�s�2�� and
btain the attached space that is homeomorphic to S2. Moreover, we need to identify the edges
circles� ��s , t� �0�s��� for t=0,1 and ��s , t� �0� t��� for s=0,1 in S2 to make two circles T.
hus, we need to replace S2 with S2 /T�T.

Since the subspaces ��s ,0� �0�s���, ��s , t� �0�s�2� , t=s , t=2�−s� for s� �0,��, and
�s , t� �0�s�2� , t=�� are invariant under the action of Z, we obtain the decomposition as in the
laim. �

II. THE STABLE RANK

Notation and facts: For a unital C*-algebra A, its stable rank sr�A� is defined to be the
n n
mallest integer n	1 such that any element �aj� of A is approximated by elements �bj� of A
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uch that � j=1
n bj

*bj are invertible in A. For a nonunital C*-algebra A, its stable rank is defined to be
hat of the unitization A+ by C �see Ref. 20�. For x a real number, by �x� we mean the maximum
nteger �x, and by �x� we mean the least integer 	x in what follows. In particular, recall that

sr�C0�X�� = �dim X+/2� + 1, sr�Mn�A�� = ��sr�A� − 1�/2� + 1

or X a locally compact Hausdorff space, X+ its one point compactification, and C0�X� the
*-algebra of continuous functions on X vanishing at infinity, and Mn�A� the n�n matrix algebra
ver A a C*-algebra �see Ref. 20, Proposition 1.7 and Theorem 6.1�. Note that C0�X�+C�X+�.
or a �unital� C*-algebra A, its connected stable rank csr�A� is defined to be the smallest integer
	1 such that the set of all �bj� of An with � j=1

n bj
*bj invertible in A is connected �see Ref. 20�.

ecall that

max�sr�I�,sr�A/I�� � sr�A� � max�sr�I�,sr�A/I�,csr�A/I��

or a short exact sequence: 0→J→A→A /J→0 of C*-algebras �Ref. 20, Theorems 4.3, 4.4, and
.11�. Also recall that

csr�Mn�A�� � ��csr�A� − 1�/n� + 1, csr�C0�X�� � ��dim X+ + 1�/2� + 1

or A a C*-algebra and X a locally compact Hausdorff space �Ref. 21, Theorem 4.7 and Ref. 15,
orollary 2.5�. Moreover,

sr���X,�At�t�X�� � sup
t�X

sr�C��0,1�k� � At�

or ��X , �At�t�X� a continuous field C*-algebra on a 
-compact, locally compact k-dimensional
etric space X with fibers At unital C*-algebras by Ref. 14 �see also Ref. 13 for the case where
= �0,1� the interval or T the torus� and see Ref. 8, Chap. 10 for continuous field C*-algebras.

Lemma 3.1: The crossed product C�T2�’Z2 by the flip has a composition series such that

0 → I → C�T2� ’ Z2 → �
4C2 → 0,

0 → C0�R2� � M2�C� → I → �
4C0�R� � M2�C� → 0.

Proof: Note that the flip on T2 is given by �z ,w�� �z̄ , w̄��T2. Since the four points
±1, ±1��T2 are fixed under the flip, we have the following exact sequence:

0 → C0�T2 \ ��±1, ± 1��� ’ Z2 → C�T2� ’ Z2 → C4
’ Z2 → 0

nd C4
’Z2 �4C*�Z2� �4C2, where C0�T2 \ ��±1, ±1��� is the C*-algebra of continuous func-

ions on T2 \ ��±1, ±1�� vanishing at infinity. Since the subspaces �±1�� �T \ �±1�� and �T \ �±1��
�±1� are disjoint and closed in T2 \ ��±1, ±1��, we have

0 → C0��T \ �±1�� � �T \ �±1��� ’ Z2 → C0�T2 \ ��±1, ± 1��� ’ Z2

→ C0��±1� � �T \ �±1��� ’ Z2 � C0���T \ �±1�� � �±1��� ’ Z2 → 0.

n addition, we have

C0���±1� � �T \ �±1��� ’ Z2  �
2C0�T \ �±1�� ’ Z2,

C0��T \ �±1�� � �±1�� ’ Z2  �
2�T \ �±1�� ’ Z2.

oreover, we obtain

2
C0�T \ �±1�� ’ Z2  C0��0,��� � C ’ Z2  C0�R� � M2�C� ,
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C0��T \ �±1��2� ’ Z2  C0��0,��2� � C2
’ Z2  C0�R2� � M2�C�

ince the flip on T \ �±1� is the reflection on it. �

Remark: Compare this result with Eilers-Loring-Pedersen �Ref. 9, 4.3� using the different
ethodology.

Theorem 3.2: The C*-algebra C*�H3
Z
’��2�Z2� of the discrete solvable group H3

Z
’��2�Z2 has

table rank 2. In the process we obtain

sr�C*�H3
Z
’��2�Z2�� = 2 = sr�C�T2� ’ Z2�

nd

sr�C*�H3
Z
’��2�Z2�� = �dim�H3

Z
’��2�Z2�2

Ù/2� + 1 = sr�C0�R2� � M2�C�� = ��2/2�/2� + 1 = �1/2� + 1 = 2,

nd

sr�C*�H3
Z
’��2�Z2�� � �dim�H3

Z
’��2�Z2�1

Ù/2� + 1 = �0/2� + 1 = 1,

here �H3
Z
’��2�Z2�1

Ù, �H3
Z
’��2�Z2�2

Ù are the spaces of all 1,2-dimensional irreducible representa-
ions of H3

Z
’��2�Z2, respectively.

Proof: Using Theorem 2.1 and Ref. 13 we obtain

sr�C*�H3
Z
’��2�Z2�� = sr���T,�A� ’ Z2���T�� � sup

��T
sr�C�T,A� ’ Z2�� .

ince A�’Z2 for � irrational are AF, the fibers C�T ,A�’Z2� for � irrational are AT algebras.
ence we have sr�C�T ,A�’Z2��=1.

When �=0, using Lemma 3.1 we have

0 → C�T,I� → C�T,C�T2� ’ Z2� → C�T, �
4C2� → 0,

0 → C0�T � R2� � M2�C� → C�T,I� → �
4C0�T � R� � M2�C� → 0,

nd C�T , �4C2� �8C�T�. By Ref. 20, Proposition 1.7 and Theorem 6.1,

sr�C0�T � R2� � M2�C�� = ��sr�C0�T � R2�� − 1�/2� + 1 = ��3/2�/2� + 1 = 2,

sr�C0�T � R� � M2�C�� = ��sr�C0�T � R�� − 1�/2� + 1 = ��2/2�/2� + 1 = 2.

y Ref. 21, Theorem 4.7 and Ref. 15, Corollary 2.5 we have

csr�C0�T � R� � M2�C�� � ��csr�C0�T � R�� − 1�/2� + 1 � ��3/2�/2� + 1 = 2.

herefore, using Ref. 20, Theorems 4.3, 4.4, and 4.11 we obtain sr�C�T ,I��=2. Since sr�C�T��
1 and csr�C�T��=2 �Ref. 24, p. 381�, we obtain sr�C�T ,C�T2�’Z2��=2 by Ref. 20, Theorems
.3, 4.4, and 4.11. Similarly, using Lemma 3.1 and the argument above for computing stable rank
e also have sr�C�T2�’Z2�=2.

For �= p /q nonzero rationals for mutually prime positive integers p ,q, it is shown by Ref. 5,
heorem 1.3 that

A� ’ Z2  ��S2,�M2q�C��t�S2\�j=0
3 �pj�

� �Mpj
�0�j�3� ,

he continuous field C*-algebra on the two-dimensional sphere S2 with fibers M2q�C� for t
S2 \� j=0

3 �pj� and Mpj
at certain points pj of S2 for 0� j�3, where Mpj

are subalgebras of

M2q�C� that are the sums of certain two matrix algebras over C. Hence, by Ref. 13 we obtain
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sr�C�T,A� ’ Z2�� = sr���T � S2,�M2q�C��t�S2\�j=0
3 �pj�

� �Mpj
�0�j�3��

� max�sr�C�T � S2,M2q�C���, max
0�j�3

�sr�C�T � S2,Mpj
����

� max���3/2�/2q� + 1, max
0�j�3

���3/2�/qj� + 1�� � 2,

here Mpj
=Mqj

�C� � Mqj�
�C� for 1�qj �qj�.

Therefore, we obtain

2 = sr�C�T2� ’ Z2� � sr���T,�A� ’ Z2���T�� � sup
��T

sr�C�T,A� ’ Z2�� = 2.

Furthermore, using Lemma 3.1 and from the discussions above we conclude that the dimen-
ion of the space �H3

Z
’�Z2�2

Ù is equal to the dimension of R2, and the dimension of the space
H3

Z
’�Z2�1

Ù is equal to zero since it corresponds to �4C2. �

Lemma 3.3: The crossed product C�T2n�’Z2 by the flip has a composition series �J j� j=0
2n+1 such

hat J0= �0�, J2n+1=C�T2n�’Z2 and

0 → I2n → C�T2n� ’ Z2 → �
22n

C2 → 0,

I2n−k+1/I2n−k  �
�2n

k �
�

2C0�Rk� � M2�C� �1 � k � 2n� .

Proof: Note that the flip on T2n is given by �zj ,wj� j=1
n � �z̄ j , w̄j� j=1

n �T2n=�nT2. Since the 22n

oints �±1, ±1� j=1
n �T2n are fixed under the flip, we have the following exact sequence:

0 → C0�T2n \ ��±1, ± 1� j=1
n �� ’ Z2 → C�T2n� ’ Z2 → C22n

’ Z2 → 0

nd C22n
’Z2 �22n

C*�Z2� �22n
C2, where C0�T2n \ ��±1, ±1� j=1

n �� is the C*-algebra of continuous
unctions on T2n \ ��±1, ±1� j=1

n � vanishing at infinity. Since the 2n subspaces

��T \ �±1�� � �±1�� � �±1, ± 1� � ¯ � �±1, ± 1� ,

��±1� � �T \ �±1��� � �±1, ± 1� � ¯ � �±1, ± 1� ,

�±1, ± 1� � ��T \ �±1�� � �±1�� � �±1, ± 1� � ¯ � �±1, ± 1�, ¯ ,

�±1, ± 1� � ¯ � �±1, ± 1� � ��±1� � �T \ �±1��� � �nT2

re disjoint and closed in T2n \ ��±1, ±1� j=1
n �, we have

0 → C0�X2n−1� ’ Z2 → C0�T2n \ ��±1, ± 1� j=1
n �� ’ Z2 → �

2n
�

2C0�T \ �±1�� ’ Z2 → 0,

here X2n−1 is the complement of the union of the 4n closed subspaces homeomorphic to T \ �±1�
n T2n \ ��±1, ±1� j=1

n �. Inductively, we have the following exact sequences for 1�k�2n−1:

0 → C0�X2n−k� ’ Z2 → C0�X2n−k+1� ’ Z2 → �
�2n

k �
�

2C0��T \ �±1��k� ’ Z0 → 0,

here the combination � 2n
k

� corresponds to choosing k copies of the subspace T \ �±1� of T in T2n,
nd X2n=T2n \ ��±1, ±1� j=1

n � and X1= �T \ �±1��2n. Moreover, we obtain

C0��T \ �±1��k� ’ Z2  C0��0,��k� � C2
’ Z2  C0�Rk� � M2�C�

ince the flip on �T \ �±1��k is the reflection on it. �

Theorem 3.4: The C*-algebra C*�H2n+1
Z

’�Z2� of the discrete solvable group H2n+1
Z

’�Z2 has

table rank �n /2�+1. In the process we obtain
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sr�C*�H2n+1
Z

’�Z2�� = �n/2� + 1 = sr�C�T2n� ’ Z2�

nd

sr�C*�H2n+1
Z

’�Z2�� = �dim�H2n+1
Z

’�Z2�2
Ù/2� + 1 = sr�C0�R2n� � M2�C�� = ��2n/2�/2� + 1 = �n/2� + 1,

nd

sr�C*�H2n+1
Z

’�Z2�� � �dim�H2n+1
Z

’�Z1�1
Ù/2� + 1 = �0/2� + 1 = 0,

here �H2n+1
Z

’�Z2�1
Ù, �H2n+1

Z
’�Z2�2

Ù are the spaces of all 1,2-dimensional irreducible representa-
ions of H2n+1

Z
’�Z2, respectively.

Proof: Using Theorem 2.2 and Ref. 13 we obtain

sr�C*�H2n+1
Z

’�Z2�� = sr���T,���
nA�� ’ Z2����T� � sup

��T
sr�C�T,��

nA�� ’ Z2�� .

ince ��nA��’Z2 for � irrational are AF, the fibers C�T , ��nA��’Z2� for � irrational are AT
lgebras. Hence we have sr�C�T , ��nA��’Z2��=1.

When �=0, by using Lemma 3.3, C�T ,C�T2n�’Z2� has a composition series �K j� j=0
2n+1 such

hat K0= �0�, K2n+1=C�T ,C�T2n�’Z2� and

0 → K2n → C�T,C�T2n� ’ Z2� → �
22n

�
2C�T� → 0,

K2n−k+1/K2n−k  �
�2n

k �
�

2C0�T � Rk� � M2�C�

or 1�k�2n. By Ref. 20, Proposition 1.7 and Theorem 6.1,

sr�C0�T � Rk� � M2�C�� = ��sr�C0�T � Rk�� − 1�/2� + 1 = ���k + 1�/2�/2� + 1.

n particular, if k=2n, then sr�C0�T�R2n� � M2�C��= �n /2�+1. By Ref. 21, Theorem 4.7 and Ref.
5, Corollary 2.5 we have

csr�C0�T � Rk� � M2�C�� � ��csr�C0�T � Rk�� − 1�/2� + 1 � ���2 + k�/2�/2� + 1.

n particular, if k=2n−1, then csr�C0�T�R2n−1� � M2�C��� �n /2�+1. Therefore, inductively us-
ng Ref. 20, Theorems 4.3, 4.4, and 4.11 to the finite composition series of C�T ,C�T2n�’Z2� we
btain

sr�C�T,C�T2n� ’ Z2�� = �n/2� + 1.

imilarly, using Lemma 3.3 and the argument above for computing the stable rank we also have
r�C�T2n�’Z2�= �n /2�+1.

For �= p /q nonzero rationals for mutually prime positive integers p ,q, it follows from Ref. 5,
heorem 1.3 that

�
n�A� ’ Z2�  �

n��S2,�M2q�C��t�S2\�j=0
3 �pj�

� �Mpj
�0�j�3� ,

hich is viewed as the continuous field C*-algebra on the product space �nS2 with fibers
�2M2q�C�M2nqn�C� for t��n�S2 \� j=0

3 �pj�� and n-fold tensor products of some copies of
M2q�C� and Mpj

for other points of �nS2. Since ��nA��’Z2 is a canonical subalgebra of
�n�A�’Z2�, it can also be viewed as the continuous field on �nS2 with fibers M2qn�C� for t

�n�S2 \� j=0
3 �pj�� and n-fold tensor products of some copies of Mq�C� and Mpj

and one copy of
M2q�C� for other points of �nS2. Let Bt for t��nS2 be those fibers and let Mlt

=Bt or Mlt
be the
irect factor of Bt with the size lt smallest among direct factors of Bt. By Ref. 13 we obtain
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sr�C�T,��
nA�� ’ Z2�� = sr����nS2,�C�T,Bt��t��nS2��

� sup
t��nS2

sr�C�T � �nS2,Mlt
�C��� = sup

t��nS2
���1 + 2n�/2�/lt� + 1 � �n/2� + 1.

Therefore, we obtain

�n/2� + 1 = sr�C�T2n� ’ Z2� � sr���T,���
nA�� ’ Z2����T�

� sup
��T

sr�C�T,��
nA�� ’ Z2�� = �n/2� + 1.

Furthermore, using Lemma 3.3 and from the discussions above we conclude that the dimen-
ion of the space �H2n+1

Z
’�Z2�2

Ù is equal to the dimension of R2n, and the dimension of the space
H2n+1

Z
’�Z2�1

Ù is equal to zero since it corresponds to �22n
C2. �

Remark: Reference 14 shows that for � a finitely generated, torsion free, two-step nilpotent
discrete� group and C*��� its group C*-algebra,

sr�C*���� = sr�C��1
Ù�� = �dim �1

Ù/2� + 1,

here �1
Ù is the space of one-dimensional representations of �. See also the same equality for � a

ilpotent Lie group33 �for the simply connected case� and Ref. 26 �for the connected case�.
urthermore, by Ref. 34, for G a simply connected solvable Lie group,

sr�C*�G�� = min�dim G,max�2,sr�C0�G1
Ù���� .

ur theorem above says that this formula for a discrete solvable group � is not valid even if
eplacing dim G with the rank of �.

Theorem 3.5: The fixed point algebra C*�H3
Z���2�

associated with the crossed product
*�H3

Z�’��2�Z2 has stable rank 2. In the process we obtain

sr�C*�H3
Z���2�

� = 2 = sr�C�T2���2�
�

nd

sr�C*�H3
Z���2�

� = sr�C��C*�H3
Z���2�

�1
Ù�� = sr�C�S2�� = �dim S2/2� + 1 = 2,

here �C*�H3
Z���2�

�1
Ù means the space of all one-dimensional representations of C*�H3

Z���2�
.

Proof: By Theorem 2.5 we have C*�H3
Z���2�

��T , �A�
��2�

���T�, where A�
��2�

are the fixed point
lgebras of the rotation algebras A� for ��R�mod 1�. By Ref. 13 we obtain

sr���T,�A�
��2�

���T�� � sup
��T

sr�C�T,A�
��2�

�� .

If � is irrational, then A�
��2�

is an AF algebra. Hence C�T ,A�
��2�

� is an AT algebra. Therefore,

e have sr�C�T ,A�
��2�

��=1.

If �=0, then A0
��2�

=C�S2� �Ref. 5, a remark after Theorem 1.2�. Since C�T ,C�S2��C�T
S2�, we have sr�C�T ,C�S2���= �3/2�+1=2.

For �= p /q nonzero rationals for mutually prime positive integers p ,q, it is shown by Ref. 5,
heorem 1.2 that

A�
��2�

 ��S2,�Mq�C��t�S2\�j=0
3 �pj�

� �Mpj
�0�j�3� ,

he continuous field C*-algebra on S2 with fibers Mq�C� for t�S2 \� j=0
3 �pj� and Mpj

at certain
oints pj of S2 for 0� j�3, where Mpj

are subalgebras of Mq�C� that are the sums of certain two

atrix algebras over C. Hence, by Ref. 13 we obtain
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sr�C�T,A�
��2�

�� = sr���T � S2,�Mq�C��t�S2\�j=0
3 �pj�

� �Mpj
�0�j�3��

� max�sr�C�T � S2,Mq�C���, max
0�j�3

�sr�C�T � S2,Mpj
����

� max���3/2�/q� + 1, max
0�j�3

���3/2�/qj� + 1�� � 2,

here Mpj
=Mqj

�C� � Mqj�
�C� with 1�qj �qj�.

Therefore, we obtain

2 = sr�C�T2���2�
� � sr���T,�A�

��2�
���T�� � sup

��T
sr�C�T,A�

��2�
�� = 2.

�

Theorem 3.6: The fixed point algebra C*�H2n+1
Z �� associated with the crossed product

*�H2n+1
Z �’�Z2 has stable rank n+1. In the process we obtain

sr�C*�H2n+1
Z ��� = n + 1 = sr�C��nT2���

nd

sr�C*�H2n+1
Z ��� = sr�C��C*�H2n+1

Z ���1
Ù�� = sr�C��nS2�� = �2n/2� + 1 = n + 1,

here �C*�H2n+1
Z ���1

Ù means the space of all one-dimensional representations of C*�H2n+1
Z ��.

Proof: By Theorem 2.6 we have

C*�H2n+1
Z ��  ��T,���

nA������T� ,

here ��nA��� are the fixed point algebras of the noncommutative tori ��nA�� for �
R�mod 1�. By Ref. 13 we obtain

sr���T,���
nA������T�� � sup

��T
sr�C�T,��

nA����� .

If � is irrational, then ��nA��� is an AF algebra. Hence C�T , ��nA���� is an AT algebra.
herefore, we have sr�C�T , ��nA�����=1.

If �=0, then ��nA0��=C��nS2�. Since C�T ,C��nS2��C�T��nS2�, we have
r�C�T ,C��nS2���= ��2n+1� /2�+1=n+1.

For �= p /q nonzero rationals for mutually prime positive integers p ,q, it follows from Ref. 5,
heorem 1.2 that

��
nA���  �

n��S2,�Mq�C��t�S2\�j=0
3 �pj�

� �Mpj
�0�j�3� ,

hich is viewed as the continuous field C*-algebra on �nS2 with fibers �nMq�C�Mqn�C� for
��n�S2 \� j=0

3 �pj�� and n-fold tensor products of some copies of Mq�C� and Mpj
�0� j�3� at

ther points of �nS2, where Mpj
are subalgebras of Mq�C� that are the sums of certain two matrix

lgebras over C. Let Bt for t��nS2 be those fibers and let Mlt
�C�=Mqn�C� or Mlt

�C� be the direct
actor with the size lt smallest among direct factors of Bt. Hence, by Ref. 13 we obtain

sr�C�T,��
nA����� = sr���T � �nS2,�Bt�t��nS2��

� sup
t��nS2

sr�C�T � �nS2,Mlt
�C��� � ���2n + 1�/2�/lt� + 1 � �n/2� + 1.

Therefore, we obtain

n + 1 = sr�C��nT2��� � sr���T,���
nA������T�� � sup

��T
sr�C�T,��

nA����� = n + 1.
�
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Corollary 3.7: We obtain

sr�C*�H2n+1
Z �’�Z2� = �n/2� + 1 � n + 1 = sr�C*�H2n+1

Z ���

or n	1, where �=��2� when n=1.
Theorem 3.8: The crossed products C*�H3

Z�’��j�Z2 �j=1,3� have stable rank 2. Furthermore,

e obtain sr�C*�H3
Z���j�

�=2.
Proof: By Theorem 2.7, we may view C*�H3

Z�’��j�Z2 as the continuous field C*-algebra on
0,�� with fibers simple AF algebras �Az � Az̄�’Z2 for z� �0,��, C*�Z2� � �C�T�’Z� at 0, and
*�Z2� � �C�T�’−1Z� at �. Using Lemma 3.1 and the methods of Theorem 3.2 similarly, one can
btain the conclusion. Using Theorem 2.8 we obtain the claim for the fixed point algebras
*�H3

Z���j�
�j=1,3�. �

V. APPLICATIONS TO LIE GROUP C*-ALGEBRAS

Using the methods of Sec. I one can construct symmetries on the C*-algebras of Lie groups
uch as the Mautner group M5 �a real five-dimensional solvable Lie group C2

’�R with � the
ction defined by �t�z ,u�= �e2�itz ,e2�i�tw� for z, w�C and � an irrational� and the Dixmier group

7 �a real seven-dimensional solvable Lie group C2
’�H3

R a semidirect product by the real three-
imensional Heisenberg Lie group with � the action defined by �g�z ,w�= �eiaz ,eibw� for z, w
C and g= �c ,b ,a��H3

R� �cf. Refs. 27 and 32�. Indeed, the symmetries on C*�M5� and C*�D7� are
nduced from the flip on C2 in C2

’�R and C2
’H3

R, respectively. Moreover, the structure of
*�M5� as a continuous field C*-algebra is given by

C*�M5�  �0��0,��2,�C�T2�’�R�t��0,��2 � �C�T� ’ R�t���0���0,������0,����0�� � �C*�R��t=�0,0�� ,

here C�T2�’�RK � A� with A� the irrational rotation algebra with � and K the C*-algebra of
ompact operators, and C�T�’RK � C�T� �cf. Ref. 27�. On the other hand, the structure of
*�D7� as a continuous field C*-algebra is given by

C*�D7�  �0��0,��2,�C�T2� ’ H3
R�t��0,��2 � �C�T� ’ H3

R�t���0���0,������0,����0�� � �C*�H3
R��t=�0,0�� ,

here the fibers are decomposed into the following �cf. Ref. 32�:

C�T2� ’ H3
R  �0�R,�A� � K���R� ,

C�T� ’ H3
R  �0�R,�C�T� � K���R\�0� � �C0�R � T� � K��=0� ,

C*�H3
R�  �0�R,�K���R\�0� � �C0�R2���=0� .

ote that the centers of the left-hand sides are given by the center of C*�H3
R� that is isomorphic to

*�R�C0�R�.
From the above and further analysis we have the following.
Theorem 4.1: There exist symmetries on the group C*-algebras C*�M5� and C*�D7� of M5

C2
’R and D7=C2

’H3
R induced from the flip on C2. Moreover, the structures of C*�M5�’Z2

nd C*�D7�’Z2 by the symmetries are given by

C*�M5� ’ Z2  �0��0,��2,�K � A� ’ Z2�t��0,��2

� �K � C�T� ’ Z2�t���0���0,������0,����0�� � �C*�R � Z2��t=�0,0��

nd

C*�D7� ’ Z2  �0��0,��2,�C�T2� ’ H3
R
’ Z2�t��0,��2

� �C�T� ’ HR
’ Z � � �C*�HR � Z �� � ,
3 2 t���0���0,������0,����0�� 3 2 t=�0,0�
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here the fibers are decomposed into the following:

C�T2� ’ H3
R
’ Z2  �0�R,�A� � K ’ Z2���R\�0� � �K � C�T2� ’ Z2��=0� ,

C�T� ’ H3
R
’ Z2  �0�R,�C�T� � K ’ Z2���R\�0� � �C0�R � T� � K ’ Z2��=0� .

Remark: Note that the fibers K � A�’Z2 for � irrational involved in the decompositions
bove are simple AF algebras.

Corollary 4.2: The group C*-algebras of disconnected solvable Lie groups may have certain
F algebras as simple quotients.

Proof: For instance, we take M5’Z2 or D7’Z2 considered above as a disconnected solvable
ie group. �

Corollary 4.3: The group C*-algebras of disconnected solvable Lie groups may have certain
T algebras as simple quotients.

Proof: For instance, for the generalized Dixmier group D6n+1 considered in Ref. 32 we define
disconnected solvable Lie group D6n+1’Z2 similarly and extensively. See Ref. 32 for the

tructure of C*�D6n+1�. Using this we obtain the similar result as Theorem 4.1. In particular,
*�D6n+1’Z2� has a simple AH algebra ��A�� � K’Z2 as a quotient, and this AH algebra is in

act an AT algebra by the same reason as given in the proof of Corollary 2.4. �

Theorem 4.4: The crossed product C*�M5�’Z2 has stable rank 2, and for the crossed product
*�D7�’Z2, we have 2�sr�C*�D7�’Z2��3. Furthermore, we obtain

sr�C*�M5� ’ Z2� = 2 = sr�K � C��1,2�2� � M2�C�� ,

here K � C��1,2�2� � M2�C� is a certain quotient of C*�M5�’Z2, and

sr�C*�M5� ’ Z2� � �dim�C*�M5� ’ Z2�1
Ù/2� + 1 = �1/2� + 1 = 1,

hile �C*�D7�’Z2�1
Ù is R2, where �C*�M5�’Z2�1

Ù, �C*�D7�’Z2�1
Ù are the spaces of all one-

imensional representations of C*�M5�’Z2, C*�D7�’Z2, respectively.
Proof: We use the structures of C*�M5�’Z2 and C*�D7�’Z2 in Theorem 4.1. By Ref. 13 and

ef. 20, Proposition 1.7 and Theorems 3.6 and 6.4, we obtain

sr�C*�M5� ’ Z2� � max�sr�C0��0,��2� � K � A� ’ Z2�,

sr�C0��0,��2� � K � C�T� ’ Z2�,

sr�C0��0,��2� � C0�K � Z2��� = max�2,2,2� = 2

nd

sr�C*�D7� ’ Z2� � max�sr�C0��0,��2� � C�T2� ’ H3
R
’ Z2�,

sr�C0��0,��2� � C�T� ’ H3
R
’ Z2�,

sr�C0��0,��2� � C*�H3
R � Z2��� .

urthermore, we obtain

sr�C0��0,��2� � C�T2� ’ H3
R
’ Z2� � sup

��R
sr�C0�R � �0,��2� � K � A� ’ Z2� = 2,

sr�C0��0,��2� � C�T� ’ H3
R
’ Z2� � sup sr�C0�R � �0,��2� � K � C�T� ’ Z2� = 2,
��R
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sr�C0��0,��2� � C*�H3
R � Z2�� � max�sr�C0�R � �0,��2� � K � C�Z2��,

sr�C0�R � �0,��2� � C0�R2 � Z2��� = max�2,3� = 3.

n the other hand, we have

sr�C*�M5� ’ Z2� 	 sr�K � C��1,2�2� � M2�C�� = 2

ince C0�T \ �±1��’Z2C0�R� � M2�C� and K � C��1,2�� � M2�C� � C��1,2�� is a quotient of
*�M5�’Z2, where the first interval �1,2� corresponds to the closed subset of R of C0�R�, and the

econd interval �0,1� corresponds to the closed subset of the subspace �0�� �0,�� in the base
pace �0,��2.

Furthermore, it follows from Theorem 4.1 that the space �C*�M5�’Z2�1
Ù is given by R�Z2.

ence its dimension is one. Also, we have �C*�D7�’Z2�1
Ù is R2�Z2 from Theorem 4.1 and the

ecompositions of C*�D7� and C*�H3
R� given before Theorem 4.1. �

Theorem 4.5: The structures of the fixed point algebras C*�M5��, C*�D7�� associated with the
rossed products C*�M5�’�Z2, C*�D7�’�Z2 are given by

C*�M5��  �0��0,��2,�K � A�
��t��0,��2 � �K � C�T���t���0���0,������0,����0�� � �C*�R � Z2��t=�0,0�� ,

nd

C*�D7��  �0��0,��2,��C�T2� ’ H3
R���t��0,��2

� ��C�T� ’ H3
R���t���0���0,������0,����0�� � �C*�H3

R � Z2��t=�0,0�� ,

here the fibers are decomposed into the following:

�C�T2� ’ H3
R��  �0�R,�K � A�

����R� ,

�C�T� ’ H3
R��  �0�R,�K � C�T�����R\�0� � �K � C0�R � T����=0� .

Remark: Note that the fibers K � A�
� for � irrational involved in the decompositions above are

imple AF algebras.
Theorem 4.6: For the fixed point algebras C*�M5�� and C*�D7��, we have

1 � sr�C*�M5��� � 2, 2 � sr�C*�D7��� � 3.

urthermore, we have

�dim�C*�M5���1
Ù/2� + 1 = �1/2� + 1 = 1, �dim�C*�D7���1

Ù/2� + 1 = �2/2� + 1 = 2,

here �C*�M5���1
Ù, �C*�D7���1

Ù are the spaces of all one-dimensional representations of C*�M5��,
*�D7��, respectively.

Proof: We use the structures of C*�M5�� and C*�D7�� given in Theorem 4.5. By Ref. 13 and
ef. 20, Proposition 1.7 and Theorems 3.6 and 6.4,

sr�C*�M5��� � max�sr�C0��0,��2� � K � A�
��,

sr�C0��0,��2� � K � C�T���,

sr�C0��0,��2� � K � C0�R � Z2��� = max�2,2,2� = 2
nd
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sr�C*�D7��� � max�sr�C0��0,��2� � �C�T2� ’ H3
R���,

sr�C0��0,��2� � �C�T� ’ H3
R���,

sr�C0��0,��2� � C*�H3
R � Z2��� .

urthermore, we obtain

sr�C0��0,��2� � �C�T2� ’ H3
R��� � sup

��R
sr�C0�R � �0,��2� � K � A�

�� = 2,

sr�C0��0,��2� � �C�T� ’ H3
R��� � sup

��R
sr�C0�R � �0,��2� � K � C�T��� = 2,

sr�C0��0,��2� � C*�H3
R � Z2�� � max�sr�C0�R � �0,��2� � K � C2�,sr�C0�R � �0,��2� � C0�R2�

� C2�� = max�2,3� = 3.

Furthermore, it follows from Theorem 4.5 that the space �C*�M5���1
Ù is given by R�Z2, and

he space �C*�D7���1
Ù is given by R2�Z2.

Furthermore, we can define symmetries on the generalized Mautner groups M2n+m �the semi-
irect products Cn

’�Rm with � multirotations on Cn�30 and the generalized Dixmier groups D6n+1

the semidirect product C2n
’�H2n+1

R by the generalized Heisenberg groups H2n+1
R with � multiro-

ations on C2n�32 induced from the flips on Cn and C2n, respectively.
Theorem 4.7: There exist symmetries on the group C*-algebras C*�M2n+m� and C*�D6n+1� of

he generalized Mautner groups M2n+m=Cn
’Rm and the generalized Dixmier groups D6n+1

C2n
’H2n+1

R induced from the flip on Cn and C2n, respectively. Moreover, the structures of
*�M2n+m�’Z2 and C*�D6n+1�’Z2 by the symmetries are given by

C*�M2n+m� ’ Z2  �0��0,��n,�C�Tn� ’ Rm
’ Z2�t��0,��n

� �k=1
n−1�C�Tk� ’ Rm

’ Z2�t���n
k ��0,��k � �C*�Rm � Z2��t=�0,. . .,0��Cn� ,

here the fibers C�Tk�’Rm
’Z2 �1�k�n� are given by

K � C0�Tk−l � Rs� ’ Z2,

K � C0�Tk−l � Rs� � A ’ Z2

or certain 0� l�k and 0�s�m−1 and A a certain noncommutative torus, and

C*�D6n+1� ’ Z2  �0��0,��2n,�C�T2n� ’ H2n+1
R

’ Z2�t��0,��2n

� �k=1
n−1�C�Tk� ’ H2n+1

R
’ Z2�t���2n

k ��0,��k � �C*�H2n+1
R � Z2��t=�0,. . .,0��C2n� ,

here the fibers C�Tk�’H2n+1
R

’Z2 �1�k�2n� are given by

C�Tk� ’ H2n+1
R

’ Z2  �0�R,�K � ��
sA�� � C�Tl� ’ Z2���R\�0� � �K � C0�R2n−k � Tk� ’ Z2��=0�

or certain 2s+ l=k with s, l	0.
Moreover, the structures of the fixed point algebras C*�M2n+m��, C*�D6n+1�� by the symmetries

re given by replacing the above fibers C�Tk�’Rm
’Z2 with �C�Tk�’Rm�� and the above fibers

�Tk�’H2n+1
R

’Z2 with �C�Tk�’H2n+1
R ��, respectively, and the replaced fibers are, respectively,

somorphic to

k−l s � k−l s �
K � C0�T � R � or K � �C0�T � R � � A� ,
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�0�R,�K � ���
sA�� � C�Tl������R\�0� � �K � C0�R2n−k � Tk����=0� .

Theorem 4.8: For the crossed products C*�M2n+m�’Z2 and C*�D6n+1�’Z2, we have

�m/2� + 1 � sr�C*�M2n+m� ’ Z2� � ��n + m�/2� + 1,

n + 1 � sr�C*�D6n+1� ’ Z2� � 2n + 1.

or the their fixed point algebras C*�M2n+m��, C*�D6n+1��,

�m/2� + 1 � sr�C*�M2n+m��� � ��n + m�/2� + 1,

n + 1 � sr�C*�D6n+1��� � 2n + 1.

urthermore, we have

�dim�C*�M2n+m� ’ Z2�1
Ù/2� + 1 = �m/2� + 1 = �dim�C*�M2n+m���1

Ù/2� + 1,

�dim�C*�D6n+1� ’ Z2�1
Ù/2� + 1 = n + 1 = �dim�C*�D6n+1���1

Ù/2� + 1,

here for G=C*�M2n+m�’Z2, C*�M2n+m��, C*�D6n+1�’Z2, or C*�D6n+1��, G1
Ù is the space of all

ne-dimensional representations of G.
Proof: We use the structures of the crossed products and the fixed point algebras in the

tatement given in Theorem 4.7, and estimate their stable rank as given in the proofs of Theorems
.4 and 4.6. In particular, note that

sr�C0��0,��n � Rm�� = ��n + m�/2� + 1, sr�C*�Rm�� = �m/2� + 1

or the stable rank of C*�M2n+m�’Z2 and C*�M2n+m��, and

sr�C0��0,��2n � R2n�� = 2n + 1, sr�C0�R2n�� = n + 1

or the stable rank of �C*�D6n+1��’Z2 and �C*�D6n+1���.
Furthermore, note that the spaces �C*�M2n+m�’Z2�1

Ù, �C*�M2n+m���1
Ù are given by Rm�Z2,

nd the spaces �C*�D6n+1�’Z2�1
Ù, �C*�D6n+1���1

Ù are given by R2n�Z2. �
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We use AdS/CFT inspired methods to study the Racah coefficients for type I rep-
resentations of the Lorentz group SO0�1,d+1� with d�1. For such representations
�a multiple of� the Racah coefficient can be represented as an integral of a product
of six bulk-to-bulk propagators over four copies of the hyperbolic space Hd+1. To
compute the integrals we represent the bulk-to-bulk propagators in terms of bulk-
to-boundary ones. The bulk integrals can be computed explicitly, and the boundary
integrations are carried out by introducing Feynman parameters. The final result is
an integral representation of the Racah coefficient given by four Barnes-Mellin type
integrals. © 2006 American Institute of Physics. �DOI: 10.1063/1.2180626�

. INTRODUCTION AND THE MAIN RESULT

Racah or Racah-Wigner �RW� coefficients or, as they are often called, 6j-symbols are impor-
ant objects in group representation theory. They depend on six irreducible representations of the
roup and are obtained by multiplying four Clebsch-Gordan coefficients and summing over the
asis labels. Explicit formulas for RW coefficients are available for the case of group SU�2�. They
re given by a �finite� generalized hypergeometric series 4F3�1� of unit argument.1 RW coefficients
or other compact groups, especially the unitary group U�n� and the rotation group SO�n� have
lso been computed. For noncompact groups these coefficients have received much less attention.
his has to do with the envisaged physical application of the RW coefficients: they figure promi-
ently in the lattice approach to QCD. As QCD concerns itself with compact gauge groups such as
U�n� there is no field theoretic motivation to compute the noncompact RW coefficients. This
ituation changed with the introduction of the spin foam models of quantum gravity.2 Here of
hysical interest are exactly models with noncompact groups such as the Lorentz group. These
odels use RW and other similar coefficients in an essential way.3 It thus became of importance

o study and derive explicit expressions for the noncompact RW coefficients. Of particular interest
re the Lorentz group RW coefficients. This is the problem that is considered in the present paper.
nother obvious complication that arises in the noncompact case is that the unitary representations

re infinite dimensional. Sums of the compact case get replaced by integrals; the problem requires
more careful analytical treatment, including a careful analysis of the convergence of all the

xpressions. This paper gives such a treatment for SO0�1,d+1� RW coefficients for type I repre-
entations, for d�1. Here SO0�1,d+1� denotes the connected component of SO�1,d+1�. We shall
ssume d�1 throughout the paper when not explicitly mentioned otherwise.

Motivations for considering the RW coefficients for type I representations are twofold: �i�
hese are the representations that are of importance for quantum gravity applications;3,4 �ii� RW

�Electronic mail: kirill.krasnov@nottingham.ac.uk
�
Electronic mail: jorna.louko@nottingham.ac.uk

47, 033513-1022-2488/2006/47�3�/033513/19/$23.00 © 2006 American Institute of Physics

                                                                                                            

http://dx.doi.org/10.1063/1.2180626
http://dx.doi.org/10.1063/1.2180626


c
o
b
r
r

t
a
o
r
i

c
d

T
c

d

T

a
s
p
R
o
“

u
s
t
t
f

w

T
=
a

033513-2 K. Krasnov and J. Louko J. Math. Phys. 47, 033513 �2006�

                        
oefficients for type I representations can be obtained from a certain integral over several copies
f the hyperbolic space. As we show in this paper, these integrals and thus the RW coefficients can
e given in terms of four Barnes-Mellin-type integrals. One may be able to use this integral
epresentation for an analytic continuation, and in this way obtain RW coefficients for other
epresentations.

We recall here some basic facts about SO0�1,d+1� representation theory.5 Representations of
ype I form the most degenerate series of representations. At the same time they are the simplest
nd the most studied ones. These irreducible unitary representations appear in the decomposition
f the space L2�Hd+1� of square integrable functions on the hyperbolic space Hd+1 into irreducible
epresentations. Thus, type I representations can be realized in the space of L2�Hd+1� functions. It
s this realization that will be the starting point for our analysis.

These representations can also be realized in the space of homogeneous functions on the light
one in Minkowski space M1,d+1. We shall refer to minus degree of homogeneity by the conformal
imension � of the representation. For representations of type I,

� = d/2 + i�, � � R . �1.1�

here is another important series of unitary representations with real integral �. We shall not
onsider them here. We shall also require a notion of the dual representation. Its conformal

imension �̄ is such that

� + �̄ = d . �1.2�

he dual representation is an equivalent representation.
A brief description of the logic of the paper is as follows. We represent the RW coefficient as

n integral over four copies of the hyperbolic space of a product of six “propagators,” the corre-
ponding expression to be given in the main text. This way of representing the 6j-symbols was
roposed in Ref. 4 and later explored in papers by many authors, in particular Refs. 3 and 6. In
ef. 3 the bulk-to-bulk propagator was represented as a composition of two “bulk-to-boundary”
nes. This representation will be of central importance for us in this paper. The terminology
bulk-to-boundary” and “bulk-to-bulk” is that used in the AdS/CFT context.7

Replacing each bulk-to-bulk propagator by a composition of two bulk-to-boundary ones and
sing the usual field theoretic trick of Feynman parameters, all the integrals over the hyperbolic
pace as well as over the boundary can be taken. Moreover, as we shall see, all the integrals over
he Feynman parameters can be taken as well, at the expense of introducing four Barnes-Mellin-
ype integrals. The expression we end up with has these four integrals remaining. Our final result
or the RW coefficient is

�6�� = K�1,�2,�3,�5,�6
K�4,�̄2,�̄3,�̄5,�6� d� ds

�2�i�2 � d�� ds�

�2�i�2 ��− s���− ����− s����− ���

���� − s���	 − ����
 + s + ����� + s + ������ − s����	� − �����
� + s� + ���

����� + s� + ����d/2�d�� − s� − �� − A��d��� − s − � + A�
�d�− s − s��

, �1.3�

here

�d�x� =
��x�

��d/2 − x�
. �1.4�

he integration contour in each of the four variables is parallel to the imaginary axis at Re�z�
r, where the parameter r can be chosen freely in the interval −d /8r0. Various quantities that

ppear in �1.3� are defined as follows:
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 =
�̄1 + �3 − �2

2
, 
� =

�̄4 + �̄6 − �̄2

2
,

� =
�̄1 + �6 − �5

2
, �� =

�̄4 + �̄3 − �̄5

2
,

� =
�2 − �3 + �5 − �6

2
, �� =

�̄2 − �̄3 + �̄5 − �̄6

2
,

�1.5�

	 =
�1 − �̄1

2
, 	� =

�4 − �̄4

2
,

A =
�1 − �4 + �2 + �5 − d

2
,

K�1,�2,�3,�5,�6

=

�3d/2���1 + �2 + �3 − d

2
����1 + �5 + �6 − d

2
����2 + �3 − �1

2
����5 + �6 − �1

2
�

4�2��1����2����3����5����6�
.

s is shown in the main text, for type I representations the Barnes-Mellin integrals in �1.3�
onverge in absolute value, so that this formula gives a well-defined representation of the RW
oefficient. The expression �1.3� can potentially be used for numerical study of the 6j-symbol as
ell as for the study of the asymptotics. We do not consider these problems in the present paper.

Given the answer �1.3� for the RW coefficient one may ask if it is “as expected” from general
onsiderations. For instance, it can be expected that the noncompact case answer can be obtained
y some “analytic continuation” from the one of the compact case. By “analytic continuation” one
ould mean some procedure of rather free manipulation with the compact answer by replacing the
nite sums with integrals and continuing the representation labels to complex values. For example,

he answer for the SU�2� RW coefficient is given by a single finite sum. Should one expect the
O0�1,2�, and more generally SO0�1,d+1�, RW coefficient to be given by a single integral? Here
e would like to argue against this expectation.

As is clear from the computation of the 6j-symbol given in Ref. 1, the fact that representations
f SU�2� are highest weight is used in an essential way. The idea of the computation is as follows.
onsider a product of three Clebsch-Gordan coefficients contracted to form a “star-triangle.”
hen the Clebsch-Gordan coefficients are appropriately normalized, this star-triangle is propor-

ional to a single Clebsch-Gordan coefficient with the proportionality coefficient being the
j-symbol,

�
mij

Cm1m12m13

l1l12l13 Cm2m23m12

l2l23l12 Cm3m13m23

l3l13l23 = �6j�Cm1m2m3

l1l2l3 . �1.6�

ere the m-labels should satisfy a conservation law for each Clebsch-Gordan coefficient,

m1 = m12 + m13, m2 = m23 + m12, m3 = m23 − m13, m2 = m1 + m3. �1.7�

hus, there is only a single loop “momentum” to be summed over. Each Clebsch-Gordan coeffi-
ient is also given by a finite sum, see Ref. 1. Therefore, we have four sums on the left-hand side
nd one sum times the 6j-symbol on the right-hand side. What simplifies the computation con-

iderably is that one can set the basis labels m1 ,m2 to be highest weight. For such values of m the
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um that gives the Clebsch-Gordan coefficient reduces to a single term. Thus, if we set two of the
xternal states to be highest weight, we get only two sums remaining on the left-hand side and no
um times the 6j on the right. One of the summations on the left-hand side can be carried out
xplicitly using Gauss’s sum. One gets an expression for the 6j given by a single sum.

Let us now return to the noncompact case. Going to a “momentum” basis, analogous to the
-basis of SU�2�, one can have momentum conserved at each vertex. One analogously will have

o do only a single integral over the loop momentum. However, in the momentum basis the
lebsch-Gordan coefficients are no longer as simple as in �4.13�. One should expect an integral

epresentation with at least one integral. Now, the type I representations are not highest or lowest
eight. Thus, there is no simplification of the momentum basis Clebsch-Gordan coefficients that

an be used in the computation of the 6j-symbol. The total number of integrals remains at least
our on the left-hand side and at least one on the right-hand side. Thus, at the very best one expects
he noncompact 6j-symbol for type I representations to be given by three integrals. We have tried
o further simplify our answer �1.3� in line with this this expectation. Unfortunately, no summation
heorems for the generalized hypergeometric series seem to be applicable, and we were not able to
implify the result further. It thus remains an interesting open problem to find a simpler represen-
ation for the RW coefficient than the one given by �1.3�.

This paper is organized as follows. We start in Sec. II by reviewing the bulk-to-bulk and
ulk-to-boundary propagators. Section III gives a formula for the RW coefficients in terms of
ulk-to-bulk propagators, as well as another convenient representation in terms of a boundary
-point function. In Sec. IV we compute the 3-point function, and in Sec. V we discuss its
ormalization. An important regularization procedure is introduced here. In Sec. VI we compute
he 4-point function. Finally, in Sec. VII we compute the remaining sphere integrals. Certain
echnical results are given in two appendixes.

I. BULK-TO-BULK AND BULK-TO-BOUNDARY PROPAGATORS

In this section we allow d to be any positive integer.
We consider the d-dimensional conformal group SO0�1,d+1�. One of the associated homo-

eneous spaces is the hyperbolic space Hd+1=SO0�1,d+1� /SO�d+1�. The space L2�Hd+1� of
quare integrable functions on Hd+1 decomposes into irreducible representations of the so-called
ype I series. More generally, the most degenerate series of representations of the conformal group
s that in the space of homogeneous functions on the light cone in Minkowski space M1,d+1.
unctions of degree of homogeneity −� form an irreducible representation of “conformal dimen-
ion” �. Not all of these representations are unitary. For unitary representations of type I the
onformal dimension is given by �1.1�.

Thoughout the paper, we label the representations by their conformal dimension �. While the
nal results will be justified only for the type I values �1.1�, several intermediate results remain
alid for more general values, and we present the intermediate results in this form in view of
otential extensions beyond type I representations.

To proceed, we need the notions of bulk-to-bulk and bulk-to-boundary propagators.7 We use
he upper half-space model of Hd+1. Let the coordinates in the upper half-space be ��0�0,�i�, i
1, . . . ,d. The metric is then

ds2 =
1

�0
2�d�0

2 + �
i

d�i
2� . �2.1�

he boundary of Hd+1 is the set of points with �0=0 and the point at infinity. When referring to
oints of the boundary we shall use a different letter x :xi=�i.

Following Ref. 7, we introduce the following function of a point on the boundary x and a bulk

oint � in Hd+1:
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K���,x� =
�0

�

��0
2 + 	� − x	2��

. �2.2�

e refer to this function as the bulk-to-boundary propagator. Another, more familiar from math-
matics literature, expression for this object is given by

K���̂, x̂� = ��̂ · x̂�−�, �2.3�

here the vectors �̂ and x̂ in Minkowski space M1,d+1 are the representatives of, respectively, � and

in the hyperboloid model of Hd+1 and the dot product is the Minkowski pairing. �̂ is unit timelike
nd x̂ is null.

The bulk-to-bulk propagator is obtained by taking a product of two propagators �2.2�, one for

epresentation �, another for the dual representation �̄, and integrating over the point on the
oundary:

K���1,�2� = �
Sd

ddxK���1,x�K�̄��2,x� . �2.4�

e have denoted the integration domain, x�Rd, by Sd as a reminder of the boundary topology in
he Poincare ball model of Hd+1. As the integrand is asymptotic to a constant times 	x	−2d at 	x	

�, the integral converges for all ��C.
The bulk-to-bulk propagator �2.4� can be computed explicitly. To begin, assume Re����0

nd Re��̄��0. Using the Feynman representation reviewed in Appendix A, we obtain

K���1,�2� =
��1

0����2
0��̄

�������̄�
�

Sd
ddx� dt du t�−1u�̄−1 � e−t��1

0�2−u��2
0�2−t	�1 − x	2−u	�2 − x	2. �2.5�

aking the integral over x yields

K���1,�2� =
��1

0����2
0��̄

�������̄�
� dt du t�−1u�̄−1e−t��1

0�2−u��2
0�2 �d/2

�t + u�d/2e−�tu/�t+u��	�1 − �2	2.

y construction, K���1 ,�2� is invariant under the action of the Lorentz group and hence depends
n �1 and �2 only through their hyperbolic distance l. Using this invariance, we can choose �1

��1
0 ,0� and �2= ��2

0 ,0�, in which case

l = ln��1
0/�2

0� . �2.6�

riting �=el and rescaling the integration variables, we obtain

K���1,�2� =
�d/2��

�������̄�
� dt du

�t + u�d/2 t�−1u�̄−1e−t�2−u. �2.7�

he integrals over t and u can now be taken with the change of variables

� =
t

t + u
, dt du =

u d� du

�1 − ��2 , �2.8�

here 0�1. We get

K���1,�2� =
�d/2��

�������̄�
�

0

1 d�

�1 − ��2−d/2�
0

� du

ud/2−1� �u

1 − �
��−1

u�̄−1e−u
���2/�1−���+1�. �2.9�
he integral over u gives
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K���1,�2� =
�d/2����d/2�

�������̄�
�

0

1

d� ��−1�1 − ��d−�−1�1 − ��1 − �2��−d/2. �2.10�

sing the integral representation of the hypergeometric function,

F�a,b,c;z� =
��c�

��b���c − b��0

1

dt tb−1�1 − t�c−b−1�1 − tz�−a, �2.11�

e finally obtain

K���1,�2� =
�d/2����d/2�

��d�
F�d/2,�,d,1 − �2� . �2.12�

y analytic continuation, the result �2.12� holds for all ��C. Note that there is no singularity
hen � is a nonpositive integer; the hypergeometric series just terminates then. We also note that,

n view of the identity

F�c − a,c − b,c;z� = �1 − z�a+b−cF�a,b,c;z� �2.13�

e have K���1 ,�2�=K�̄��1 ,�2�. Thus, the bulk-to-bulk propagator is a nonoriented one. Indeed, the

hange of orientation is equivalent to the replacement �→ �̄, but this does not change the propa-
ator.

The result �2.12� can be expressed in terms of a Legendre function.8 For d=1, the formula was
iven in Ref. 6. For d=2, the result can be given in terms of an elementary function as

K���1,�2� =
�

� − 1

sinh�� − 1�l
sinh l

. �2.14�

or type I representations this reduces to

K���1,�2� =
�

�

sin �l

sinh l
. �2.15�

II. RACAH-WIGNER COEFFICIENTS

We shall compute the RW coefficients through an object called the �6�� symbol, given by an
ntegral over four copies of Hd+1 of a product of six bulk-to-bulk propagators:

�6�� = �
Hd+1

d�1 ¯ d�4�
ij

K�ij
��i,� j� . �3.1�

ere i , j=1, . . . ,4 enumerate the points integrated over and �ij are the six representations that the
6�� symbols depend upon. We begin formally with general �ij�C but will eventually specialize
o the type I values �1.1�. Since the non-type-I representations are not realizable in L2�Hd+1�, we do
ot expect that the integral �3.1� can be made convergent for them even after eliminating the
nfinite volume factor by the procedure of Sec. V.

The relation between the �6�� symbol �3.1� and the RW coefficients has been discussed in
ef. 4. To make the present paper self-contained, we shall briefly recall the relation here.

By definition, the representations of type I �with respect to a subgroup H� are those which
ontain a vector invariant under H. When G=SO0�1,d+1�, the subgroup H is taken to be the
aximal compact subgroup H=SO�d+1�. Let � � be a type I representation, labelled by the index

, and let � be an H-invariant vector. We define on G the function � � as the �� matrix element
�
f � ,
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���g� ª t��
� �g� ª �	���g�	�� . �3.2�

� is called a spherical function. Given ��, we define the kernel

K��g1,g2� ª ���g1
−1g2� . �3.3�

s � is invariant under H, �3.2� shows that �� projects into a function on the double coset
\G /H, and �3.3� then shows that the kernel projects into a function on two copies of the

omogeneous space G /H. In the case of G=SO0�1,d+1� and H=SO�d+1�, this homogeneous
pace is the hyperbolic space Hd+1, and from the explicit evaluation of the spherical function in
ec. 9.3.1 of Ref. 5 it is seen that the kernel �3.3� concides �up to a multiple that depends on the
ormalization of �� with the bulk-to-bulk propagator �2.12�.

Next, we recall the definition of the Clebsch-Gordon coefficients. Given two �irreducible�
epresentations V�1, V�2 of G, one can decompose the tensor product representation V�1 � V�2 into
rreducible representations V� as

V�1 � Vp2 = ��3
n��3�V�3, �3.4�

here n��� are multiplicities. The Clebsch-Gordan coefficients are the matrix elements of the
ntertwining map defined by this decomposition. Explicitly, if i1 and i2 are vectors in, respectively,

�1 and V�2, we have

	i1� � 	i2� = �

�3i3


C�1i1�2i2

�3i3 	i3� , �3.5�

here 
i3� is a �generalized� basis in V�3, the sum on the right-hand side includes a sum over the
ultiplicity label 
=1, . . . ,n��3�, and the sum over the other labels is understood in the sense of
sum or an integral depending on whether the labels are discrete or continuous. The C’s on the

ight-hand side are then the Clebsch-Gordan coefficients in the respective bases.
We will further need the orthogonality relation for the matrix elements ti1i2

� �g�ª i1	���g�	i2�.
his relation reads

� dg ti1j1

�1 �g�ti2j2

�2 �g� = 	 �1�2	i1i2
	 j1j2

, �3.6�

here we have used the reality of the matrix elements for G=SO0�1,d+1�, and the 	’s on the
ight-hand side are understood as Kronecker or Dirac deltas as appropriate. For a compact group,
hose representations are finite dimensional, the right-hand side of �3.6� would usually be nor-
alized to include the factor 1 /dim�j1�, but in our case of a noncompact group the representations

re infinite dimensional and such a normalization is not an option. Using �3.5� and �3.6�, it is then
ossible to compute the integral of the product of three matrix elements, with the result

� dg ti1j1

�1 �g�ti2j2

�2 �g�ti3j3

�3 �g� = �




C�1i1�2i2

�3i3 
C�1j1�2j2

�3j3 . �3.7�

Now, when the multiplicity of type I representations in the tensor product �3.4� of two such
epresentations is equal to 1, the multiplicity label on the type I Clebsch-Gordan coefficients
ecomes redundant, and it can be shown from �3.7� that the �6�� symbol �3.1� equals the usual
ype I RW coefficient, constructed from the Clebsch-Gordan coefficients, multiplied by four fac-
ors of the form C�1��2�

�3� , one such factor coming from each � in �3.1�. In this case one can
herefore regard the �6�� symbol �3.1� as the type I RW coefficient up to a certain normalization
actor. When the multiplicity of type I representations in the tensor product of two such represen-
ations is not equal to 1, on the other hand, the multiplicity label on the type I Clebsch-Gordan


 �3�
oefficients cannot be dropped. The �6�� symbol �3.1� involves then factors of the form C�1��2�
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or each �, and there is a sum over the four independent multiplicity labels. As the type I RW
oefficients then have a multiplicity label corresponding to each �, the �6�� symbol �3.1� is no
onger a simple multiple of the type I RW coefficients.

Thus, to establish the relation of the �6�� symbol �3.1� to the usual RW coefficients it remains
o find the multiplicity of type I representations in the tensor product �3.4� of two such represen-
ations. For SO0�1,2� this multiplicity is known to be 2.9 The SO0�1,2� �6�� symbol �3.1� is
herefore not a simple multiple of �any of the� RW coefficients. The SO0�1,2� �6�� symbol �3.1�
an still be computed and used as a basis of a state sum model,6 but its group theoretic interpre-
ation does not appear straightforward.

For SO0�1,d+1� with d�1, the multiplicity of type I representations in the tensor product
3.4� of two such representations is one. To see this, we recall that the principal series represen-
ations can be obtained as the induced representations of the parabolic subgroup MAN, where N is
he d-dimensional Abelian group of null rotations, A is the one-dimensional group of dilatations
nd M =SO�d�, and in particular the type I representations are induced from the trivial represen-
ation of M.10 The claim then follows from Theorem 16 of Ref. 11 and the discussion of
O0�1,d+1� on pages 182–183 therein. This establishes the relation of our �6�� symbol �3.1� to

he usual RW coefficients for SO0�1,d+1� with d�1.
To proceed with the analysis of the �6�� symbol, we represent four of the six bulk-to-bulk

ropagators in �3.1� as in �2.4�, while leaving the two bulk-to-bulk propagators corresponding to
he opposite edges of the tetrahedron in their original form. By doing this one achieves the
epresentation as is shown in Fig. 1.

Thus, let us introduce the following object:

D�1,�2,�3,�5,�6
�x2,x3,x5,x6� = �

Hd+1

d� d� K�2
��,x2�K�3

��,x3�K�1
��,��K�5

��,x5�K�6
��,x6� .

�3.8�

his quantity is a particular 4-point function on the boundary. With the help of this 4-point
unction, the RW coefficient can be written as

�6�� =�
Sd

ddx2d
dx3d

dx5d
dx6D�1,�2,�3,�5,�6

�x2,x3,x5,x6�D�4,�̄2,�̄6,�̄5,�̄3
�x2,x6,x5,x3� . �3.9�

his representation is much more convenient than the one given by �3.1�, since the 4-point
unction D�1,�2,�3,�5,�6

�x2 ,x3 ,x5 ,x6� can be computed explicitly. Computing the RW coefficient
hen reduces to the computation of the Sd integrals in �3.9�. As we shall see in Sec. V, after a
ertain gauge fixing that is necessary to render the results finite, what one has is actually not four
ntegrals but a single integral over the sphere. This makes the representation �3.9� very convenient
or practical applications. We note that this representation is only available in the context of
oncompact conformal groups, when there is a boundary and the associated representation �2.4�.
or compact groups like SO�n� one can also compute the RW coefficients for type I representa-

ions by integrating over the appropriate homogeneous manifold. However, there is no analog of

FIG. 1. Expression for the Racah-Wigner coefficient in terms of the 4-point functions.
he representation �3.9�.
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Thus, we would like to compute the 4-point function given by �3.8�. In order to do this, we use
he representation �2.4� for the remaining bulk propagator. Thus, we represent the 4-point function
s

D�1,�2,�3,�5,�6
�x2,x3,x5,x6� =� ddx1C�1,�2,�3

�x1,x2,x3�C�̄1,�5,�6
�x1,x5,x6� , �3.10�

here we have defined the 3-point function

C�1,�2,�3
�x1,x2,x3� = �

Hd+1

d� K�1
��,x1�K�2

��,x2�K�3
��,x3� . �3.11�

e need to find this 3-point function.

V. 3-POINT FUNCTION

We note in passing that the 3-point function �3.11� is the Clebsch-Gordan coefficient when the
epresentations are realized in the space of functions on the boundary. Since d�1 by assumption,
hese Clebsch-Gordon coefficients have no multiplicity indices.

The conditions for the integral in �3.11� to converge are

Re��
i

�i� � d �4.1�

nd

Re��1 + �2 − �3� � 0, Re��2 + �3 − �1� � 0, Re��1 + �3 − �2� � 0. �4.2�

hese conditions can be conveniently obtained by transforming to the Poincare ball model of

d+1: �4.2� comes from neighborhoods of the three boundary points xi, and �4.1� comes from the
emaining part of the boundary. Note that �4.2� implies Re��i��0 for all i. Note also that the
onvergence holds for type I representations.

In order to compute the bulk integral we use the Feynman parametrization �A1� for each of the
ulk-to-boundary propagators. We get

C�1,�2,�3
�x1,x2,x3� =

1

���1�
1

���2�
1

���3��0

�

dt1 dt2 dt3 t1
�1−1t2

�2−1t3
�3−1

� �
0

� d�0

�0
d+1�0

�i�i�
Sd

dd�e−t1��0
2+	� − x1	2�−t2��0

2+	� − x2	2�−t3��0
2+	� − x3	2�. �4.3�

e now use the formulas �A2� and �A3� of Appendix A to get

C�1,�2,�3
�x1,x2,x3� =

�d/2���i�i − d

2
�

2���1����2����3��0

�

dt1 dt2 dt3 t1
�1−1t2

�2−1t3
�3−1

� �St�−��i�i�/2e−�1/St���ijtitj	xi − xj	
2�. �4.4�

We now make a series of changes of variables of integration. The first change is

ti = �St�1/2ti� = ��
j

tj��ti�, det� �ti
�tj�

� = 2�St�3/2. �4.5�
emoving the primes, we get
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C�1,�2,�3
�x1,x2,x3� =

�d/2���i�i − d

2
�

���1����2����3��0

�

dt1 dt2 dt3 t1
�1−1t2

�2−1t3
�3−1e−�ijtitjxij

2
. �4.6�

ere we have introduced

xij = 	xi − xj	 . �4.7�

The second change of variables is

t1t2 →
t1t2

x12
2 , t1t3 →

t1t3

x13
2 , t2t3 →

t2t3

x23
2 . �4.8�

he integral reduces to

C�1,�2,�3
�x1,x2,x3� =

1

�x12��1+�2−�3�x13��1+�3−�2�x23��2+�3−�1

�

�d/2���i�i − d

2
�

���1����2����3��0

�

dt1 dt2 dt3 t1
�1−1t2

�2−1t3
�3−1e−�ijtitj . �4.9�

It is now possible to take the remaining integral in Feynman parameters by the following
hange of variables:

t1t2 = u3, t1t3 = u2, t2t3 = u1, �4.10�

o that

t1
2 =

u2u3

u1
, t2

2 =
u1u3

u2
, t3

2 =
u1u2

u3
, det� �ti

�uj
� =

1

2�u1u2u3

. �4.11�

he integral over ti thus reduces to

1

2
�

0

�

du1 du2 du3 u1
��2+�3−�1−2�/2u2

��1+�3−�2−2�/2u3
��1+�2−�3−2�/2e−u1−u2−u3

=
1

2
���2 + �3 − �1

2
����1 + �3 − �2

2
����1 + �2 − �3

2
� . �4.12�

hus, we get for the Clebsch-Gordan coefficients,

C�1,�2,�3
�x1,x2,x3� =

C��1,�2,�3�
�x12��1+�2−�3�x13��1+�3−�2�x23��2+�3−�1

, �4.13�
here
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C��1,�2,�3� =

�d/2���1 + �2 + �3 − d

2
����2 + �3 − �1

2
����1 + �3 − �2

2
����1 + �2 − �3

2
�

2���1����2����3�
.

�4.14�

. NORMALIZATION OF THE CLEBSCH-GORDAN COEFFICIENTS: GAUGE FIXING
ROCEDURE

In this section we introduce a certain gauge fixing procedure that is necessary to render the
ntegrals defining the RW coefficient finite. We do this considering as an example the question of
ormalization of the Clebsch-Gordan coefficient. To this end, let us compute the so-called theta
ymbol given by

���1,�2,�3� = �
Hd+1

d�1 d�2 K�1
��1,�2�K�2

��1,�2�K�3
��1,�2� . �5.1�

sing the expression for the 3j-symbol that we have just computed, this becomes

���1,�2,�3� = C��1,�2,�3�C��̄1,�̄2,�̄3��
Sd

ddx1d
dx2d

dx3
1

d12
d x13

d x23
d . �5.2�

he integral over x1 ,x2 ,x3 in �5.2� is divergent. This divergence is a manifestation of the obvious
ivergence in integrating over Hd+1 a function that is invariant under the isometries: The integral
s proportional to the infinite volume of Hd+1. As the volume of Hd+1 is related to the volume of
he Lorentz group, the divergence ultimately comes from the fact that the Lorentz group is
oncompact.

In �5.1�, the divergence can be removed by fixing one of the integration points and only
ntegrating over the remaining one. To remove the divergence in �5.2�, and in similar integrals
ith more integration points, we can use the action of the conformal group on the sphere to put

hree of the integration points to specific locations. For d=2 this procedure completely fixes the
O0�1,d+1� invariance and hence eliminates the divergence.12 For d�2 this procedure fixes the
O0�1,d+1� invariance up to the SO�d−1� subgroup that leaves the three prescribed points

nvariant, but as this subgroup is compact, the divergence has again been eliminated.
To implement this procedure, one needs to find the Faddeev-Popov determinant that makes the

esult independent of the locations to which the three integration points are fixed. We shall do this
n Appendix B by decomposing the Haar measure on SO0�1,d+1� in terms of the locations of the
hree fixed points and the invariantly normalized volume of the compact subgroup SO�d−1�
which is trivial for d=2�. The result is the replacement

�
i

ddxi → 	xA − xB	d	xA − xC	d	xB − xC	d � 	d�xA − xA
0�	d�xB − xB

0�	d�xC − xC
0 ��

i

ddxi, �5.3�

here xA, xB, and xC are the three integration points that are fixed, respectively, to the locations xA
0 ,

B
0 , and xC

0 . For d=2, formula �5.3� reduces to that found in Ref. 12.
In the divergent integral �5.2�, the gauge fixing �5.3� simply removes the integral. This gives

or the normalization of the Clebsch-Gordan coefficients the formula

¯ ¯ ¯
���1,�2,�3� = C��1,�2,�3�C��1,�2,�3� . �5.4�
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I. COMPUTATION OF THE 4-POINT FUNCTION

Using the expression �4.13� for the 3-point function, the 4-point function becomes

D�1,�2,�3,�5,�6
�x2,x3,x5,x6� = C�1,�2,�3

C�̄1,�5,�6�
Sd

ddx1
1

�x12��1+�2−�3�x13��1+�3−�2�x23��2+�3−�1

�
1

�x15��̄1+�5−�6�x16��̄1+�6−�5�x56��5+�6−�̄1

. �6.1�

n addition to the convergence conditions of Sec. IV for each of the 3-point functions, the condi-
ions for the integral in �6.1� to converge are

Re��1 + �2 − �3�  d, Re��1 + �3 − �2�  d ,

Re��̄1 + �5 − �6�  d, Re��̄1 + �6 − �5�  d . �6.2�

ote that these conditions are satisfied for the type I representations.
We see that only four of the quantities in the denominator involve x1. In order to take the

ntegral, let us use the Feynman representation for them. In other words, let us consider

I�1,�2,�3,�5,�6
�x2,x3,x5,x6� = �

0

�

dt12 dt13 dt15 dt16

� t12
���1+�2−�3�/2�−1t13

���1+�3−�2�/2�−1t15
���̄1+�5−�6�/2�−1t16

���̄1+�6−�5�/2�−1

� �
Sd

ddx1e
−t12x12

2 −t13x13
2 −t15x15

2 −t16x16
2

. �6.3�

n terms of this function

D�1,�2,�3,�5,�6
�x2,x3,x5,x6�

=
I�1,�2,�3,�5,�6

�x2,x3,x5,x6�

�x23��2+�3−�1�x56��5+�6−�̄1

�
C�1,�2,�3

C�̄1,�5,�6

���1 + �2 − �3

2
����1 + �3 − �2

2
��� �̄1 + �5 − �6

2
��� �̄1 + �6 − �5

2
� . �6.4�

Let us now evaluate the function �6.3�. The integral over x1 is taken using �A3�

�
Sd

ddx1e
−t12x12

2 −t13x13
2 −t15x15

2 −t16x16
2

=
�d/2

�St
1�d/2e−�t12t13x23

2 +t12t15x25
2 +t12t16x26

2 +t13t15x35
2 +t13t16x36

2 +t15t16x56
2 �/St

1
,

�6.5�

here

St
1 = t12 + t13 + t15 + t16. �6.6�

Let us now make a series of changes of variables. First, let us choose

t1i = �St
1�1/2t1i� , det� �t1i

�t1i�
� = 2�St

1�2. �6.7�
fter this change of variables we get
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I�1,�2,�3,�5,�6
�x2,x3,x5,x6� = 2�d/2�

0

�

dt12 dt13 dt15 dt16

� t12
���1+�2−�3�/2�−1t13

���1+�3−�2�/2�−1t15
���̄1+�5−�6�/2�−1t16

���̄1+�6−�5�/2�−1

� e−t12t13x23
2 −t12t15x25

2 −t12t16x26
2 −t13t15x35

2 −t13t16x36
2 −t15t16x56

2
. �6.8�

The second change of variables is

t12t13 →
t12t13

x23
2 , t12t15 →

t12t15

x25
2 , t12t16 →

t12t16

x26
2 , t13t15 →

t13t15

x35
2 . �6.9�

s a consequence we get

t13t16 =
t13t15t12t16

t12t15
→

x25
2

x35
2 x26

2 t13t16, t15t16 =
t13t15t12t16

t12t13
→

x23
2

x35
2 x26

2 t15t16. �6.10�

r, equivalently,

t12 → t12
x35

x23x25
, t13 → t13

x25

x23x35
, t15 → t15

x23

x25x35
, t16 → t16

x25x23

x26
2 x35

. �6.11�

s the result of this transformation we get

I�1,�2,�3,�5,�6
�x2,x3,x5,x6� =

2�d/2

�x23��1−�̄1�x25��2−�3+�5−�6�x26��̄1+�6−�5�x35��̄1+�3−�2

� �
0

�

dt12 dt13 dt15 dt16 e−t12t13−t12t15−t12t16−t13t15−t13t16u−t15t16v

� t12
���1+�2−�3�/2�−1t13

���1+�3−�2�/2�−1t15
���̄1+�5−�6�/2�−1t16

���̄1+�6−�5�/2�−1.

�6.12�

ere we have introduced the cross ratios,

u =
x25

2 x36
2

x26
2 x35

2 , v =
x23

2 x56
2

x26
2 x35

2 . �6.13�

he two cross ratios are related for d=2 but independent for d�2.
We now specialize to the type I representations.
To compute the integrals over the Feynman parameters we, following an analogous compu-

ation in Ref. 13, use the Mellin-Barnes integral representation:

e−z =
1

2�i
�

r−i�

r+i�

ds ��− s�zs, r  0, 	arg z	 
�

2
. �6.14�

hus, the integral over Feynman parameters becomes

1

2
I�1,�2,�3,�5,�6

�u,v� ª� d� ds

�2�i�2��− ����− s�usv��
0

�

dt12 dt13 dt15 dt16 e−t12t13−t12t15−t12t16−t13t15

� t12
���1+�2−�3�/2�−1t13

���1+�3−�2�/2�+s−1t15
���̄1+�5−�6�/2�+�−1t16

���̄1+�6−�5�/2�+s+�−1.

�6.15�
o justify the interchange of integrals that has led to �6.15�, we assume that the parameter r in the
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wo Mellin-Barnes contours is the same and satisfies −d /8r0. This guarantees that the expo-
ent of each tij in �6.15� has real part greater than −1.

In the Feynman parameter integrals, we change variables by

t12t13 = u1, t12t15 = u2, t12t16 = u3, t13t15 = u4, �6.16�

r, equivalently,

t12
2 =

u1u2

u4
, t13

2 =
u1u4

u2
, t15

2 =
u2u4

u1
, t16

2 = u3
2 u4

u1u2
. �6.17�

he Jacobian of this transformation is

det� �t1i

�uj
� =

1

2u1u2
. �6.18�

herefore, we get

I�1,�2,�3,�5,�6
�u,v� =� d� ds

�2�i�2��− ����− s�usv���
 + s + ����� + s + ����� − s���	 − �� ,

�6.19�

here we have introduced the following quantities:


 =
�̄1 + �3 − �2

2
,

� =
�̄1 + �6 − �5

2
,

�6.20�

� =
�2 − �3 + �5 − �6

2
,

	 =
�1 − �̄1

2
.

Combining this, and the expressions �6.12� and �6.4�, we have for the 4-point function,

D�1,�2,�3,�5,�6
�x2,x3,x5,x6� = K�1,�2,�3,�5,�6

I�1,�2,�3,�5,�6
�u,v�

�x25��2−�3+�5−�6

�
1

�x23��2+�3−�̄1�x26��̄1+�6−�5�x35��̄1+�3−�2�x56��5+�6−�̄1

,

�6.21�
here we have introduced
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K�1,�2,�3,�5,�6
=

�d/2C�1,�2,�3
C�̄1,�5,�6

���1 + �2 − �3

2
����1 + �3 − �2

2
��� �̄1 + �5 − �6

2
��� �̄1 + �6 − �5

2
� .

�6.22�

hus, essentially all nontriviality of the 4-point function is in the dependence of the function

�1,�2,�3,�5,�6
�u ,v� given by �6.19� on the two cross ratios u ,v. The integral representation �6.19�

hat we have obtained may be used to derive power series expansions of I�1,�2,�3,�5,�6
�u ,v� in u

nd v.13

II. COMPUTATION OF THE RACAH-WIGNER COEFFICIENTS

Having obtained the 4-point function we can use this result to compute the RW coefficients.
ecalling �3.9�, we get

�6�� = K�1,�2,�3,�5,�6
K�4,�̄2,�̄3,�̄5,�̄6�

Sd

ddx2d
dx3d

dx5d
dx6

x23
d x26

d x35
d x56

d

� �1

v
���1−�4+�2+�5−d�/2

I�1,�2,�3,�5,�6
�u,v�I�4,�̄2,�̄6,�̄5,�̄3

�u/v,1/v� . �7.1�

ere we have used the fact that under the exchange of x3, x6 we have v→1/v, u→u /v. We have
lso used the relation �1.2� between the conformal dimension and its dual and combined all powers
f xij. Note that the integration measure in �7.1� is exactly right to give an invariant expression, as
his measure can be verified to be invariant under conformal transformations of the xi.

What remains is to compute the sphere integrals in �7.1�. This integral is

Id�a,b� = �
Sd

dx2 dx3 dx5 dx6

x23
d x56

d x26
d x35

d � x23x56

x26x35
�2a� x25x36

x26x35
�2b

, �7.2�

here

a = − A + � − s� − ��, b = s + s�, A =
�1 − �4 + �2 + �5 − d

2
. �7.3�

s it stands, the integral �7.2� still diverges because of the volume of the gauge group. We
liminate this divergence by the replacement �5.3�, leaving x2 to be integrated over but fixing the
ocations of the other three points. The integral becomes

Id�a,b� = 	x3
0 − x6

0	d� x5
0 − x6

0

x3
0 − x5

0�2a� x3
0 − x6

0

x3
0 − x5

0�2b

Ĩd�a,b� , �7.4�

here

Ĩd�a,b� = �
Sd

dx2
	x2 − x3

0	2a−d	x2 − x5
0	2b

	x2 − x6
0	2a+2b+d . �7.5�

he convergence conditions in �7.5� are

Re�a� � 0, Re�b + d/2� � 0, Re�a + b�  0, �7.6�

and they are satisfied for our Mellin-Barnes contour choice, −d /8r0.

To compute the integral over x2 we use the Feynman parametrization. We have
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Ĩd�a,b� =
1

��d/2 − a���− b���a + b + d/2��Sd
dx2t3

d/2−a−1t5
−b−1t6

a+b+d/2−1

� e−t3	x2 − x3
0	2−t5	x2 − x5

0	2−t6	x2 − x6
0	2. �7.7�

e have already dealt with essentially the same integral in Sec. IV, formula �4.3�. Thus, we shall
e sketchy here. One first takes the x2 integral using �A3�. One then makes a series of rescalings
f Feynman parameters ti. The powers of these parameters in �7.7� are such that the rescaling �4.5�
ompletely removes the quantity St from the integral. Rescaling �4.8� takes the differences 	xi

0

xj
0	 out of the integral, and their resulting powers are exactly such that they cancel the similar

uantities in �7.4�. The last change of variables �4.10� reduces all the integrals to those giving
-functions. The final result is

Id�a,b� =
�d/2��a���d/2 + b���− a − b�

��d/2 − a���− b���a + b + d/2�
=

�d/2�d�a��d�− a − b�
�d�− b�

, �7.8�

here we have introduced a dimension-dependent �-function given by

�d�x� =
��x�

��d/2 − x�
. �7.9�

ubstituting the values �7.3� of the parameters a and b, our final result for the �6�� symbol is

�6�� = K�1,�2,�3,�5,�6
K�4,�̄2,�̄3,�̄5,�̄6

� �d/2� d� ds

�2�i�2 � d�� ds�

�2�i�2 ��− s���− ����− s����− ���

���� − s���	 − ����
 + s + ����� + s + ������ − s����	� − �����
� + s� + ���

����� + s� + ���
�d�� − s� − �� − A��d��� − s − � + A�

�d�− s − s��
. �7.10�

sing Stirling’s formula and the assumption −d /8r0 for the Mellin-Barnes contours, it can be
erified that the quadruple integral in �7.10� is convergent in absolute value. Equation �7.10�
herefore gives a manifestly well-defined expression for the �6�� symbol.
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PPENDIX A: INTEGRALS

In this appendix we give the formulas that are central to the methods of integration that we
se. The same method was exploited in the context of AdS/CFT correspondence, see e.g., Ref. 13.
he standard Feynman parameter method is based on the following representation:

1

z� =
1

�����0

�

dt t�−1e−tz. �A1�

We shall also need the following two integrals:

�
0

� d�0

�0
d+1�0

�i�ie−�iti�0
2

=
1

2
�St��d−�i�i�/2���i

�i − d

2
� �A2�
nd
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�
Sd

ddxe−�iti	x − xi	
2

=
�d/2

St
d/2 e−�1/St���ijtitj	xi − xj	

2�. �A3�

n both of these formulas,

St = �
i

ti. �A4�

PPENDIX B: GAUGE-FIXED INTEGRATION MEASURE

In this appendix we verify that the gauge-fixing procedure �5.3� results from decomposing the
aar measure on SO0�1,d+1� as stated in Sec. V. We assume d�1 as in the main text.

. Notation

We first recall some basic properties of the conformal group.10

We view SO0�1,d+1� as the matrix group in its defining representation, acting on R1,d+1 by
atrix multiplication of a column vector. We write the points in R1,d+1 as �t ,y ,z1 , . . . ,zd�¬ �t ,y ,z�,
here z is in Rd.

The action of SO0�1,d+1� as the conformal group on Rd� 
�� is obtained from that on the
uture null cone in R1,d+1, t=�y2+z2, by parameterizing the cone as �t ,y ,z�=s� 1

2 �1+x2� , 1
2 �1

x2� ,x�, where s�0 and x�Rd� 
��. The point x=� corresponds to the null ray t+y=0=z.
If q�Rd and ��0, we define the SO0�1,d+1� matrices

N+�q� ª �1 + 1
2q2 1

2q2 qT

− 1
2q2 1 − 1

2q2 − qT

q q Id
� , �B1�

N−�q� ª �1 + 1
2q2 − 1

2q2 qT

1
2q2 1 − 1

2q2 qT

q − q Id
� , �B2�

A��� ª �
1
2 ��−1 + �� 1

2 ��−1 − �� 0
1
2 ��−1 − �� 1

2 ��−1 + �� 0

0 0 Id
� , �B3�

here q is viewed as a column vector and Id is the d�d unit matrix. In terms of the action on
1,d+1, N±�q� are null rotations and A��� is a boost. The conformal action of N+�q� on Rd is the

ranslation x�x+q, the action of N−�q� is the proper conformal transformation x / �x2��x / �x2�
q, and the action of A��� is the dilatation x��x.

Finally, if u and v are two unit vectors in Rd, u�−v, we define the SO�d� matrix

S̃�v,u� ª Id + 2v � uT −
�u + v� � �u + v�T

. �B4�

1 + u · v
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�v ,u� is a rotation in the plane of u and v and takes u to v, reducing to Id when u=v. Given

�v ,u�, we define the corresponding block-diagonal SO0�1,d+1� matrix by S�v ,u�
diag�I2 , S̃�v ,u��.

. Parametrization

Let xA, xB, and xC be three distinct points in Rd. We set

xD ª

xAB
2 xAC

2

xBC
2 � xB − xA

xAB
2 −

xC − xA

xAC
2 � , �B5�

here xijª 	xi−xj	 as in the main text. As 	xD	=xABxACxBC
−1 , it follows that xD�0.

Let v be a unit vector in Rd. When xD / 	xD	�−v, we define

h�xA,xB,xC� ª S�v,xD/	xD	�A�1/	xD	�N−�b�N+�a� , �B6�

here aª−xA and bªxAC
−2 �xA−xC�. A direct computation shows that the conformal action of h

akes the triple �xA ,xB ,xC� to the triple �0,v ,��. Each SO0�1,d+1� matrix g whose conformal
ction takes �xA ,xB ,xC� to �0,v ,�� can therefore be uniquely written as

g = Rh , �B7�

here R=diag�I2 , R̃� and R̃ is an SO�d� matrix in the SO�d−1� subgroup that fixes v. Note that
his subgroup is trivial for d=2 but nontrivial for d�2.

If v is considered fixed, the above discussion shows that formulas �B6� and �B7� give a unique
arameterization of an open subset in SO0�1,d+1� by the triple �xA ,xB ,xC� and a group isomor-
hic to SO�d−1�. This parametrization does not cover all of SO0�1,d+1�, but the missing subset
s of measure zero and can be recovered by choosing a different v and by limits in which one of

A, xB, and xC is taken to infinity.
Now, the right action of SO0�1,d+1� on �B7� induces on the triple �xA ,xB ,xC� the conformal

O0�1,d+1� action of the main text. To eliminate the volume divergence of the main text, we
herefore need to write the Haar measure on SO0�1,d+1� in the decomposition �B7� and identify
he part of the measure that is associated with the noncompact factor h. If this measure is
�xA ,xB ,xC� ddxAddxBddxC, the divergence will be eliminated by the replacement

ddxAddxBddxC →
	d�xA − xA

0�	d�xB − xB
0�	d�xC − xC

0 �
��xA,xB,xC�

ddxAddxBddxC, �B8�

here the distinct points xA
0 , xB

0 , and xC
0 can be chosen arbitrarily.

. Measure computation

From �B6� and �B7� we find

�AR�−1�dg g−1��AR� = R−1 dR + dS S−1 + SQS−1, �B9�
here
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Q = �	xD	−1d�	xD	� + 2b · da��0 1 0

1 0 0

0 0 0
�

+ � 0 0 �1 + b2�daT − 2�b · da�bT + dbT

0 0 0

�1 + b2�da − 2�b · da�b + db 0 0
�

+ �0 0 0

0 0 �1 − b2�daT + 2�b · da�bT − dbT

0 �1 − b2�da + 2�b · da�b − db 0
�

+ �0 0 0

0 0 0

0 0 2�b � daT − da � bT�
� . �B10�

he explicit form of the term dS S−1 can be found from �B4�.
To find the part of the Haar measure that corresponds to the noncompact factor h, we project

he right-hand side of �B9� to the subspace orthogonal �with respect to the Killing form� to the
ubspace generated by R−1 dR. Choosing v for concreteness to be �1,0,0,¼�, this amounts to
etting the lower-right �d−1�� �d−1� block to zero but leaving the other components unchanged.
rom the coefficients of the remaining 3d Lie algebra elements we can then identify the 3d
3d determinant that gives the desired measure. Evaluating the determinant by elementary matrix

lgebra techniques, we find that this measure is

ddxAddxBddxC

	xA − xB	d	xB − xC	d	xC − xA	d
. �B11�

ence the gauge fixing procedure �5.3� follows.
As a check, it can be directly verified that the measure �B11� is invariant under the conformal

ction of SO0�1,d+1�.
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We study a general class of line-soliton solutions of the Kadomtsev-Petviashvili II
�KPII� equation by investigating the Wronskian form of its tau-function. We show
that, in addition to the previously known line soliton solutions of KPII, this class
also contains a large variety of multisoliton solutions, many of which exhibit non-
trivial spatial interaction patterns. We also show that, in general, such solutions
consist of unequal numbers of incoming and outgoing line solitons. From the
asymptotic analysis of the tau function, we explicitly characterize the incoming and
outgoing line solitons of this class of solutions. We illustrate these results by dis-
cussing several examples. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2181907�

. INTRODUCTION

The Kadomtsev-Petviashvili �KP� equation

�

�x
�− 4

�u

�t
+

�3u

�x3 + 6u
�u

�x
� + 3� 2�2u

�y2 = 0, �1.1�

here u=u�x ,y , t� and � 2= ±1, is one of the prototypical �2+1�-dimensional integrable nonlinear
artial differential equations. The case � 2=−1 is known as the KPI equation, and � 2=1 as the
PII equation. Originally derived11 as a model for small-amplitude, long-wavelength, weakly

wo-dimensional �y-variation much slower than the x-variation� solitary waves in a weakly dis-
ersive medium, the KP equation arises in disparate physical settings including water waves and
lasmas, astrophysics, cosmology, optics, magnetics, anisotropic two-dimensional lattices, and
ose-Einstein condensation. The remarkably rich mathematical structure underlying the KP equa-

ion, its integrability and large classes of exact solutions have been studied extensively for the past
0 years, and are documented in several monographs.1,3,8,15,18,21

In this paper we study a large class of solitary wave solutions of the KPII equation. It is well
nown �e.g., see Refs. 5 and 15� that solutions of the KPII equation can be expressed as

u�x,y,t� = 2
�2

�x2 ln ��x,y,t� , �1.2�

here the tau function ��x ,y , t� is given in terms of the Wronskian determinant7,15

�Electronic mail: biondini@buffalo.edu
�
Electronic mail: chuck@math.uccs.edu

47, 033514-1022-2488/2006/47�3�/033514/26/$23.00 © 2006 American Institute of Physics
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��x,y,t� = Wr�f1, . . . , fN� = det�
f1 f2 ¯ fN

f1� f2� ¯ fN�

] ] ]

f1
�N−1� f2

�N−1�
¯ fN

�N−1�
� . �1.3�

ith f �i�=�i f /�xi, and where the functions f1 , . . . , fN are a set of linearly independent solutions of
he linear system

�f

�y
=

�2f

�x2 ,
�f

�t
=

�3f

�x3 . �1.4�

quations �1.2� and �1.3� can also be obtained as the N-fold Darboux transformation for KPII
Ref. 15� starting from a seed solution u=0. In fact, the functions f1 , . . . , fN in Eqs. �1.3� are
recisely N independent solutions of the KPII Lax pair: �yf −�x

2f +uf =0 and �t f −�x
3f +6u��xu�f

3��x
−1�yu�f =0, with u=0. A one-soliton solution of the KPII equation is obtained by choosing

=1 and f�x ,y , t�=e�1 +e�2, where

�m�x,y,t� = kmx + km
2 y + km

3 t + �m,0 �1.5�

ith km ,�m,0�R, m=1,2 and with k1�k2 for nontrivial solutions. Without loss of generality, one
an order the parameters as k1�k2. The above choice yields the following traveling-wave solu-
ion:

u�x,y,t� = 1
2 �k2 − k1�2 sech2 1

2 ��2 − �1� = ��k · x + �t� , �1.6�

here x= �x ,y�. The wave-vector k= �lx , ly� and the frequency � are given by

k = �k1 − k2,k1
2 − k2

2�, � = k1
3 − k2

3, �1.7�

nd they satisfy the nonlinear dispersion relation

− 4�lx + lx
4 + 3ly

2 = 0. �1.8�

he solution in Eq. �1.6� is localized along points satisfying �1=�2, which defines a line in the xy
lane, for fixed t. Such solitary wave solutions of the KPII equation are thus called line solitons.
hey are stable with respect to transverse perturbations unlike the KPI �Eq. �1.1� with � 2=−1�

ine-soliton solutions which are not stable with respect to small transverse perturbations. Equation
1.6� also implies that, apart from the constant �1,0−�2,0 corresponding to an overall translation of
he solution, a line soliton of KPII is characterized by either the phase parameters k1 ,k2, or the
hysical parameters, namely, the soliton amplitude a and the soliton direction c, defined, respec-
ively, as

a = k2 − k1, c = k1 + k2. �1.9�

ote that c=tan �, where � is the angle, measured counterclockwise, between the line soliton and
he positive y axis. Hence, the soliton direction c can also be viewed as the “velocity” of the
oliton in the xy plane, c=−dx /dy= ly / lx. For any given choice of amplitude and direction of the
oliton, one obtains the phase parameters k1,2 uniquely as k1= 1

2 �c−a� and k2= 1
2 �c+a�.

When c=0 �equivalently, k1=−k2�, the solution in Eq. �1.6� becomes y-independent and re-
uces to the one-soliton solution of the Korteweg-de Vries �KdV� equation. Similar to KdV, it is
lso possible to obtain multisoliton solutions of the KPII equation. Each of the multisoliton
olutions decay exponentially in the xy plane, except along a number of rays or line solitons as

y→ ±�. These line solitons are sorted according to their directions, with increasing values of c
rom left to right as y→−� and increasing values of c from right to left as y→�. However, the
ultisoliton solution space of the KPII equation turns out to be much richer than that of the �1

1�-dimensional KdV equation due to the dependence of the KPII solutions on the additional
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patial variable y. It is possible to construct a general family of multisoliton solutions via the
ronskian of Eq. �1.3� by choosing M phases �1 , . . . ,�M defined as in Eq. �1.5� with distinct real

hase parameters k1�k2� ¯ �kM and then defining the functions f1 , . . . , fN in Eq. �1.3� by

fn�x,y,t� = 	
m=1

M

an,me�m, n = 1,2, . . . ,N . �1.10�

he constant coefficients an,m define the N	M coefficient matrix Aª �an,m�, which is required to
e of full rank �i.e., rank�A�=N� and all of whose nonzero N	N minors must be sign definite. The
ull rank condition is necessary and sufficient for the functions fn in Eq. �1.10� to be linearly
ndependent. The sign definiteness of the nonzero minors is sufficient to ensure that the tau
unction ��x ,y , t� has no zeros in the xy plane for all t, so that the KPII solution u�x ,y , t� resulting
rom Eq. �1.2� is nonsingular.

One of the main results of this work �cf. Theorem 3.6� is to show that, when the coefficient
atrix A satisfies certain conditions �cf. Definition 2.2�, Eq. �1.10� leads to a multisoliton con-
guration with N− asymptotic line solitons as y→−� and N+ asymptotic line solitons as y→�,
here N−=M −N and N+=N. Furthermore, each of the asymptotic line solitons has the form of a
lane wave similar to the one-soliton solution in Eq. �1.6�. We refer to these multisoliton configu-
ations the �N− ,N+�-soliton solutions of KPII, and call the asymptotic line solitons as y→−� and
s y→� the incoming and outgoing line solitons, respectively. The amplitudes, directions and
ven the number of incoming solitons are in general different from those of the outgoing ones,
epending on the values of M ,N, the phase parameters k1 , . . . ,kM and the coefficient matrix A. We
ote that a special family of KPII �N− ,N+�-soliton solutions which also satisfy the finite Toda
attice hierarchy, was found earlier in Ref. 2. In this paper, we generalize the results of Ref. 2 to
he entire class of �N− ,N+�-soliton solutions of KPII generated by arbitrary coefficient matrices A.
hese solutions exhibit a variety of spatial interaction patterns which include the formation of

ntermediate line solitons and web structures in the xy plane.2,12,16,23 In contrast, the line solitons
or the previously known5,15,24ordinary soliton solutions of KPII �cf. Sec. IV� and the KdV soli-
ons experience only a phase shift after collision. The existence of these nontrivial spatial features
as found to be related to the presence of resonant soliton interactions in some earlier

tudies.4,17,19,22 Several examples of these �N− ,N+�-soliton solutions of KPII are discussed
hroughout this work �e.g., see Figs. 1–4�. If M =2N, it follows from Theorem 3.6 that N−=N+

N, i.e., the numbers incoming and outgoing asymptotic line solitons are the same. We call the
esulting solutions the N-soliton solutions of KPII. Among these, there is an important subclass
alled the elastic N-soliton solutions, for which the amplitudes and directions of the out-going line
olitons coincide with those of the incoming line solitons. Elastic N-soliton solutions possess a
umber of interesting features, some of which have been studied in Ref. 12. A detailed study of the
pecific properties of the elastic N-solutions will be reported in a future presentation.

We note that multisoliton solutions exhibiting nontrivial spatial structures and interaction
atterns were also recently found in other �2+1�-dimensional integrable equations. For example,
olutions with soliton resonance and web structure were presented in Refs. 9 and 10 for a coupled
P system, and similar solutions were also found in Ref. 14 in discrete soliton systems such as the

wo-dimensional Toda lattice, together with its fully discrete and ultradiscrete analogues. From
hese works, the existence of these solutions appears to be a rather common feature of
2+1�-dimensional integrable systems. Thus, we expect that the scope of the results described in
his paper will not be limited to the KP equation alone, but will also be applicable to a variety of
ther �2+1�-dimensional integrable systems.

I. THE TAU FUNCTION AND THE ASYMPTOTIC LINE SOLITONS

In this section we investigate the properties of the tau function given by Eq. �1.3� when the N
unctions f1 , . . . , fN are chosen according to Eq. �1.10� as linear combinations of M exponentials
�1 , . . . ,e�M. We should emphasize that Eq. �1.10� represents the most general form for the func-

ions involving linear combinations of exponential phases. Since the elements of the N	M coef-
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cient matrix A= �an,m� are the linear combination coefficients of the functions f1 , . . . , fN, one can
aturally identify each fn with one of the rows of A and each phase �m with one of the columns of
, and vice versa. Next, we examine the asymptotic behavior of the tau function in the xy plane as

y→ ±�. It is clear that, with the above choice of functions, the tau function is a linear combination
f exponentials. Consequently, the leading order behavior of the tau function as y→ ±� in a given
symptotic sector of the xy plane is governed by those exponential terms which are dominant in
hat sector. A systematic analysis of the dominant exponential phases allows us to characterize the
ncoming and outgoing line solitons of �N− ,N+�-soliton solutions of KPII.

. Basic properties of the tau function

We present here some general properties of the tau function. Without loss of generality,
hroughout this work we choose the phase parameters km to be distinct and well ordered as k1

k2� ¯ �kM.
Lemma 2.1: Suppose �N,M =Wr�f1 , . . . , fN� as in Eq. �1.3� with the functions f1 , . . . , fN given by

q. �1.10�. Then

�N,M�x,y,t� = det�A
KT� , �2.1�

here A= �an,m� is the N	M coefficient matrix, 
=diag�e�1 , . . . ,e�M�, and the N	M matrix K is
iven by

K =�
1 1 ¯ 1

k1 k2 ¯ kM

] ] ]

k1
N−1 k2

N−1
¯ kM

N−1
� ,

here the superscript T denotes matrix transpose. Moreover, �N,M can be expressed as

�N,M�x,y,t� = 	
1�m1�m2�¯�mN�M

V�m1, . . . ,mN�A�m1, . . . ,mN�exp��m1,. . .,mN
� , �2.2�

here �m1,. . .,mN
denotes the phase combination

�m1,. . .,mN
�x,y,t� = �m1

�x,y,t� + ¯ + �mN
�x,y,t� , �2.3�

�m1 , . . . ,mN� denotes the N	N minor of A obtained by selecting columns m1 , . . . ,mN, and
�m1 , . . . ,mN� denotes the Van der Monde determinant

V�m1, . . . ,mN� = 

1�s1�s2�N

�kms2
− kms1

� . �2.4�

Proof: Equation �2.1� follows by direct computation of the Wronskian determinant �1.3�. Next,
o prove Eq. �2.2� apply the Binet-Cauchy theorem to expand the determinant in Eq. �2.1� and note
hat the N	N minor of K obtained by selecting columns 1�m1� ¯ �mN�M is given by the
an der Monde determinant V�m1 , . . . ,mN�. �

From Lemma 2.1 we have the following basic properties of the tau function:

i� The spatiotemporal dependence of the tau function in Eq. �2.2� is confined to a sum of
exponential phase combinations �m1,. . .,mN

which according to Eq. �2.3� are linear in x ,y , t.
Moreover, all the Van der Monde determinants V�m1 , . . . ,mN� are positive, as the phase
parameters k1 , . . . ,kM are well ordered. A sufficient condition for the tau function in Eq.
�2.2� to generate a nonsingular solution of KPII is that it is sign-definite for all �x ,y , t�
�R3. In turn, a sufficient condition for the sign-definiteness of the tau-function is that the

minors of the coefficient matrix A are either all non-negative or all nonpositive. However,
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it is not clear at present whether these conditions are also necessary. If the tau function in
Eq. �2.2� is taken as a sum of exponential phase combinations with non-negative coeffi-
cients, the solution u�x ,y , t� in Eq. �1.2� can be expressed as a ratio of two sums, each
containing the same set of exponential terms, and with non-negative coefficients. Conse-
quently, the resulting solution of KPII is bounded and positive definite for all �x ,y , t�
�R3.

ii� Each exponential term in the tau function of Eq. �2.2� contains combinations of N distinct
phases �m1

, . . . ,�mN
identified by integers m1 , . . . ,mN chosen from �1, . . . ,M�. Thus, the

maximum number of terms in the tau function is given by the binomial coefficient � M
N

�.
However, a given phase combination �m1,. . .,mN

is actually present in the tau function if and
only if the corresponding minor A�m1 , . . . ,mN� is nonzero.

iii� If M �N the functions f1 , . . . , fN are linearly dependent; in this case there are no terms in
the summation in Eq. �2.2�, and therefore the tau function �N,M�x ,y , t� is identically zero.
Also, if M =N, there is only one term in the summation corresponding to the determinant of
A; then �N,M�x ,y , t� depends linearly on x and therefore it generates the trivial solution
u�x ,y , t�=0. Finally, if rank�A��N, all N	N minors of A vanish identically, leading once
again to �N,M�x ,y , t�=0. Therefore, for nontrivial solutions one needs M �N and rank�A�
=N.

iv� The transformation A→A�=GA with G�GL�N ,R� �corresponding to elementary row op-
erations on A� amounts to an overall rescaling ��x ,y , t�→���x ,y , t�=det�G���x ,y , t� of the
tau function �2.1�. Such rescaling leaves the solution u�x ,y , t� in Eq. �1.2� invariant. This
reflects the fact that N independent linear combinations of the functions f1 , . . . , fN in Eq.
�1.10� generate equivalent tau functions. This GL�N ,R� gauge freedom can be exploited to
choose the coefficient matrix A in Eq. �2.1� to be in reduced row-echelon form �RREF�.
The GL�N ,R� invariance means that the tau function �2.1� represents a point in the real
Grassmannian Gr�N ,M�.12

v� Suppose that one of the functions in Eq. �1.10� contains only one exponential term, and is
given by fp=ap,qe�q with ap,m=0 "m�q. Then, the minors A�m1 , . . . ,mN�=0 whenever
q� �m1 , . . . ,mN�. As a result, the tau function in Eq. �2.2� can be expressed as
�N,M�x ,y , t�=e�q���x ,y , t�, and ���x ,y , t� is a sum of exponential phase combinations, where
each combination consists of N−1 distinct phases chosen from all M phases except �q.
From Eq. �1.2� it is evident that �N,M�x ,y , t� and ���x ,y , t� generate the same solution of
KPII. Moreover, the function ���x ,y , t� is effectively equivalent to a tau function
�N−1,M−1�x ,y , t� with a coefficient matrix obtained by deleting the pth row and qth column
of A. Hence in this case the tau function �N,M�x ,y , t� is reducible to another tau function
�N−1,M−1�x ,y , t� obtained from a Wronskian of N−1 functions with M −1 distinct phases.

In accordance with the above remarks, throughout this work we consider the coefficient
atrix A to be in RREF. Also, to avoid trivial and singular cases, from now on we assume that

M �N and rank�A�=N, and that all nonzero N	N minors of A are positive. Finally, we assume
hat A satisfies the following irreducibility conditions.

Definition 2.2 (Irreducibility): A matrix A of rank N is said to be irreducible if, in RREF:

i� Each column of A contains at least one nonzero element.
ii� Each row of A contains at least one nonzero element in addition to the pivot.

ondition �i� in Definition 2.2 requires that each exponential phase appear in at least one of the
functions f1 , . . . , fN. If a particular phase is absent, then the corresponding tau function �N,M can be
eexpressed in terms of a reduced tau function �N,M−1. Condition �ii� requires that each function
ontains at least two exponential phases in order to avoid reducible situations like those in part �v�

f the above remarks. Note also that if an N	M matrix A is irreducible, then M �N.
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. Dominant phase combinations and index pairs

We now study the asymptotic behavior of the tau function in the xy-plane for large values of
y and finite values of t. Let 
 denote the set of all phase combinations �m1,. . .,mN

such that
�m1 , . . . ,mN��0, that is, the set of phase combinations that are actually present in the tau

unction ��x ,y , t�.
Definition 2.3 (Dominant phase): A given phase combination �m1,. . .,mN

�
 is said to be

ominant for the tau function ��x ,y , t� of Eq. �2.2� in a region R�R3 if �m1�,. . .,mN�
�x ,y , t�

�m1,. . .,mN
�x ,y , t� for all �m1�,. . .,mN�

�
 and for all �x ,y , t��R. The region R is called the dominant
egion of �m1,. . .,mN

.
The phase combinations �m1,. . .,mN

�x ,y , t� are linear functions of x, y, and t. So, each of the
nequalities in Definition 2.3 defines a convex subset of R3. The dominant region R associated
ith each phase combination is also convex because it is defined by the intersection of finitely
any convex subsets. Furthermore, since the phase combinations are defined globally on R3, each

oint �x ,y , t��R3 belongs to some dominant region R. As a result, we obtain a partition of the
ntire R3 into a finite number of convex dominant regions, intersecting only at points on the
oundaries of each region. It is important to note that such boundaries always exist whenever there
s more than one phase combination in the tau function, because then there are more than one
ominant region in R3. The significant of the dominant regions lies in the following:

Lemma 2.4: The solution u�x ,y , t� of the KPII equation generated by the tau function �2.2� is
xponentially small at all points in the interior of any dominant region. Thus, the solution is
ocalized only at the boundaries of the dominant regions, where a balance exists between two or
ore dominant phase combinations in the tau function of Eq. �2.2�.

Proof: Let R be the dominant region of �m1,. . .,mN
, which is therefore the only dominant phase

n the interior of R. Then from Eq. �2.2�, �N,M�x ,y , t��O�e�m1,. . .,mN� in the interior of R. As a result,
n �N,M�x ,y , t� locally becomes a linear function of x apart from exponentially small terms. Hence,
t follows from Eq. �1.2� that the solution u�x ,y , t� of KPII is exponentially small at all such
nterior points of R. �

The boundary between any two adjacent dominant regions is the set of points across which a
ransition from one dominant phase combination �m1,. . .,mN

to another dominant phase combination

m1�,. . .,mN�
takes place. Such boundary is therefore identified by the equation �m1,. . .,mN

=�m1�,. . .,mN�
,

hich defines a line in the xy plane for fixed values of t. The simplest instance of a transition
etween dominant phase combinations arises for the one-soliton solution �1.6�, which is localized
long the line �1=�2 defining the boundary of the two regions of the xy plane where �1 and �2

ominate. In the one-soliton case, these two regions are simply half-planes. But in the general case
he dominant regions are more complicated, although the solution u�x ,y , t� is still localized along
he boundaries of these regions, corresponding to similar phase transitions. For example, Fig. 1�a�
llustrates a �2,1�-soliton known as a Miles resonance17 �also called a Y junction�, generated by the
au function �1,2=e�1 +e�2 +e�3. In this case, the xy plane is partitioned into three dominant regions
orresponding to each of the dominant phases �1, �2, and �3. Once again, the solution u�x ,y , t� is
xponentially small in the interior of each dominant regions, and is localized along the phase
ransition boundaries: here, �1=�2, �1=�3, and �2=�3. It should also be noted that some of these
egions have infinite extension in the xy plane, while others are bounded, as in the case of resonant
oliton solutions, described in Sec. IV and Ref. 2. Each phase transition which occurs asymptoti-
ally as y→ ±� defines an asymptotic line soliton, which is infinitely extended in the xy plane.

When studying the asymptotics of the tau function for large y it is useful to consider the limit
y→ ±� along the straight lines

Lc:x + cy =  , �2.5�

arametrized by the direction c. Note that c increases counterclockwise, namely from the positive

axis to the negative x axis for y�0 and from the negative x axis to the positive x axis for y
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0. From Eqs. �1.5� and �2.5�, each exponential phases along Lc is �m=km�km−c�y+km+km
3 t

�m,0. The difference between two such phases along Lc then becomes

�m − �m� = �km − km���km + km� − c�y + �km − km�� + �km
3 − km�

3 �t + �m,0 − �m�,0, �2.6a�

nd the difference between any two phase combinations along Lc is given by

�m1,. . .,mN
− �m1�,. . .,mN�

= �	
j=1

N

�kmj − kmj�
��kmj

+ kmj�
− c��y + ��,t� , �2.6b�

here �� , t�=	 j=1
N ��kmj

−kmj�
�+ �kmj

3 −kmj�
3 �t+�mj,0

−�mj�,0�. In particular, the single-phase-

ransition line Lm,m� :�m=�m� given by Eq. �2.5� with cm,m�=km+km�, will play an important role
elow.

It is also convenient at this point to introduce the following notations which will be employed
hroughout this paper. We denote by A�m��RN the mth column of a matrix A, and we denote by
�m1 , . . . ,mr� the N	r submatrix obtained by selecting the r columns A�m1� , . . . ,A�mr�. We also

abel the N pivot columns of an irreducible, N	M matrix A by A�e1� , . . . ,A�eN�, with 1=e1

e2� ¯ �eN�M, and we label the M −N nonpivot columns by A�g1� , . . . ,A�gM−N�, where 1
g1�g2� ¯ �gM−N=M. Note that A has N pivot columns because it is rank N; also, e1=1 since
is in RREF, and eN�M since it is irreducible. We now establish a result that will be useful in

rder to characterize the asymptotics of the tau function.
Theorem 2.5: (Single-phase transition) Asymptotically as y→ ±�, and for generic values of

he phase parameters k1 , . . . ,kM, the dominant phase combinations in the tau function �2.2� exhibit
he following behaviors in the xy plane.

i� For finite values of t, the set of dominant phase combinations remains invariant in time.
ii� The dominant phase combinations in any two adjacent dominant regions contain N−1

common phases.

e discuss below several consequences of Theorem 2.5 which is proved in the Appendix.
Consider the single-phase transition as y→ ±� in which a phase �i from the dominant phase

ombination in one region is replaced by another phase � j to produce the dominant phase com-
ination in the adjacent region. We refer to this transition as an i→ j transition, which takes place

IG. 1. Dominant phase combinations in the different regions of the xy plane �labeled by the indices in parentheses� and
he asymptotic line solitons �labeled by the indices in square braces� for two different line soliton solutions: �a� a
undamental Miles resonance �Y junction� produced by the tau function with N=1, M =3 and �k1 ,k2 ,k3�= �−1,0 , 1

2
� at t

0; �b� an ordinary two-soliton solution, produced by the coefficient matrix in Example 2.7 with �k1 , . . . ,k4�= �− 3
2 ,

1
2 ,0 ,1� at t=0 �see text for details�. Here and in all of the following figures, the horizontal and vertical axes are,

espectively, x and y, and the graphs show contour lines of ln u�x ,y , t� at a fixed value of t.
long the line Lij :�i=� j whose direction in the xy plane is given by cij =ki+kj. As y→�, it is clear
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rom Eq. �2.6a� that, if ki�kj, the transition i→ j takes place from the left of the line Li,j to its
ight, while if ki�kj the transition i→ j takes place from the right of the line Li,j to its left. Thus,
s y→�, each dominant phase region R is bounded on the left by the transition line Li,j given by
he minimum value of ci,j that corresponds to an allowed transition and, on the right by the
ransition line Li,j given by the maximum value of ci,j that corresponds to an allowed transition.
ere, an allowed transition from one dominant phase combination to another means that the
inors associated with those phase combinations in the tau function of Eq. �2.2�, are both nonzero.

n turn, these nonvanishing minors determine the values of cij corresponding to the allowed
ingle-phase transitions. A similar statement can be made for transitions occurring as y→−�. So,
ach dominant phase region R as y→ ±� has boundaries defined by a counterclockwise and a
lockwise single-phase transitions which can be determined in the following way.

Corollary 2.6: Suppose that �m1,. . .,mN
is the dominant phase combination on a region R

symptotically as y→ ±�. Let J be the complement of the set of indices �m1 ,m2 , . . . ,mN� in
1,2 , . . . ,M�. For each j�J, define Ij � �m1 ,m2 , . . . ,mN� as the set of all indices mr

�m1 ,m2 , . . . ,mN� such that the minor A�m1 , . . . ,mr−1 , j ,mr+1 , . . . ,mN��0. Then, the following
old.

i� As y→�, the directions of the counterclockwise and clockwise transition boundaries of R
are, respectively, given by

c+ = min
i�Ij,j�J

�ci,j� with ki � kj, c− = max
i�Ij,j�J

�ci,j� with ki � kj . �2.7a�

ii� As y→−�, the directions of the counterclockwise and clockwise transition boundaries of R
are, respectively, given by

c+ = min
i�Ij,j�J

�ci,j� with ki � kj, c− = max
i�Ij,j�J

�ci,j� with ki � kj . �2.7b�

The results of Theorem 2.5 and Corollary 2.6 can be used to determine the asymptotic
ehavior of the tau function, thereby obtaining an important characterization of the asymptotic line
olitons corresponding to �N− ,N+�-soliton solutions of the KPII equation. Namely, for the tau
unction �N,M�x ,y , t� of Eq. �2.2� with generic values of the phase parameters k1 , . . . ,kM we have
he following:

i� As y→ ±�, the dominant phase combinations of the tau function in adjacent regions of the
xy plane contain N−1 common phases and differ by only a single phase. The transition
between any two such dominant phase combinations �i,m2,. . .,mN

and � j,m2,. . .,mN
occurs along

the line Li,j :�i=� j, where a single phase �i in the dominant phase combination is replaced
by a phase � j. Moreover, if the dominant phase combination �i,m2,. . .,mN

in a given region is
known, the transition line Li,j and the dominant phase combination � j,m2,. . .,mN

are deter-
mined via Corollary 2.6. In particular, Eqs. �2.7� for c± determine explicitly the pair of
phase parameters ki and kj corresponding to the single-phase transition i→ j across each
boundary Li,j of a given dominant phase region.

ii� As y→ ±� along the line Li,j, the asymptotic behavior of the tau function is determined by
the balance between the two dominant phase combinations �i,m2,. . .,mN

and � j,m2,. . .,mN
, and is

given by

�N,M�x,y,t� � ViA�i,m2, . . . ,mN�e�i,m2,. . .,mN + VjA�j,m2, . . . ,mN�e�j,m2,. . .,mN,

where ViªV�i ,m2 , . . . ,mN� and VjªV�j ,m2 , . . . ,mN� are Van der Monde determinants
defined in Eq. �2.4�, and where the minors A�i ,m2 , . . . ,mN� and A�j ,m2 , . . . ,mN� of the
coefficient matrix A are both nonzero. The solution u�x ,y , t� of the KPII equation in a

neighborhood of such a single-phase transition is then obtained from Eq. �1.2� as
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u�x,y,t� � 1
2 �ki − kj�2 sech2� 1

2 ��i − � j�� . �2.8�

Moreover, Lemma 2.4 and Theorem 2.5 together imply that the solution of the KPII
equation is exponentially small everywhere in the xy-plane except at the locations of such
single-phase transitions. Equation �2.8�, which is a traveling wave solution satisfying the
dispersion relation in Eq. �1.8�, coincides with the one-soliton solution in Eq. �1.6�. Thus,
it defines an asymptotic line soliton associated with the single-phase transition i→ j. The
phase parameters ki and kj associated with the single-phase transition i→ j are determined
by Eqs. �2.7�. Then, the soliton amplitude is given by ai,j = ki−kj, and the soliton direction
is given by the direction of Li,j, which is ci,j =ki+kj.

iii� All of the asymptotic line solitons resulting from the single-phase transitions described
above are invariant in time, in the sense that their number, amplitudes, and directions are
constants.

Motivated by these results, we label each asymptotic line soliton by the index pair �i , j� which
niquely identifies the phase parameters ki and kj in the ordered set �k1 , . . . ,kM�. The results
ummarized in the above remarks can be applied to explicitly delineate the dominant phase
ombinations and the asymptotic line solitons associated with the tau function of a given
N− ,N+�-soliton solution of the KPII equation, as illustrated by the following example.

Example 2.7: When N=2 and M =4, Lemma 2.1 implies that the tau function ��x ,y , t� is given
y

��x,y,t� = Wr�f1, f2� = 	
1�m�m��4

�km� − km�A�m,m��e�m+�m�, �2.9�

here the phases are given by �m=kmx+km
2 y+km

3 t+�m,0 for m=1, . . . ,4, as in Eq. �1.5�, and where
he phase parameters are ordered as k1� ¯ �k4. We consider the line-soliton solution constructed
rom the functions f1=e�1 +e�2 and f2=e�3 +e�4, so that the associated 2	4 coefficient matrix is

A = �1 1 0 0

0 0 1 1
� . �2.10�

hen A�1,2�=A�3,4�=0, and the remaining four minors are all equal to 1. We apply Corollary 2.6
o determine the asymptotic line solitons associated with the tau function in Eq. �2.9�. First note
rom the expression �m,m�= �km+km��x+ �km

2 +km�
2 �y+ �km+km�

3 �t+ ��m,0+�m�,0� that for every finite
alue of y the dominant phase combination as x→−� is given by �1,3, which corresponds to the
inimum value of km+km� such that A�m ,m���0 �cf. Definition 2.3�. We denote by R1,3 the region
f the xy plane where �1,3 is the dominant phase. The transition boundaries of R1,3 are determined
y applying Corollary 2.6 as follows: The complement of the index set �1,3� is J= �2,4�. When

j=2�J, we have A�1,2�=0 but A�2,3��0; hence I2= �1�. Similarly, when j=4 we have I4= �3�
ecause A�1,4��0 but A�4,3�=0. Thus the possible transitions i→ j from R1,3 are 1→2 and 3

4. As y→�, the second of Eqs. �2.7a� implies that the clockwise transition boundary of R1,3 is
iven by the transition line L3,4, whose direction c3,4=k3+k4 is greater than the direction c1,2

k1+k2 of the line L1,2. Across the transition line L3,4, the dominant phase combination switches
rom �1,3 to �1,4, onto the corresponding dominant region R1,4. Similarly, as y→−�, the first of
qs. �2.7b� implies that the counterclockwise transition boundary of R1,3 is given by the transition

ine L1,2, whose direction c1,2 is less than the direction c3,4 of the line L3,4. This implies that the
ominant phase combination and dominant region change to �2,3 and R2,3, respectively. Applying
orollary 2.6 again to the region R2,3 as y→−�, one finds J= �1,4� with I1= �2� and I4= �3�, so the
ossible transitions from R2,3 are 2→1 and 3→4. The 2→1 transition corresponds to a clockwise
ransition from R2,3 back to R1,3, whereas the 3→4 transition corresponds to a counterclockwise
ransition from R2,3 to the region R2,4, where �2,4 is the dominant phase combination. Continuing
ounterclockwise from R1,3 we finally obtain the following dominant phase regions asymptotically

s y→ ±�, together with the associated single-phase transitions:
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R1,3 ——→
1→2

R2,3 ——→
3→4

R3,4 ——→
2→1

R1,4 ——→
4→3

R1,3. �2.11�

t is then clear that there are two asymptotic line solitons as y→−� as well as y→�, and in both
ases they correspond to the lines �1=�2 and �3=�4. The dominant phase regions, denoted by
ndices �m ,m��, and the asymptotic line solitons, identified by the index pairs �i , j�, are illustrated
n Fig. 1�b�. The corresponding solution is called an ordinary 2-soliton solution. The ordinary
-soliton solutions are described in Sec. IV.

In the following section we obtain several results that will allow us to identify more precisely
he index pairs corresponding to each asymptotic line soliton. In addition, we will prove a general
esult concerning the numbers of asymptotic line solitons present in an �N− ,N+�-soliton solution
orresponding to the tau function of Eq. �2.2�.

II. ASYMPTOTIC LINE SOLITONS AND THE COEFFICIENT MATRIX

In this section we continue our investigation of the tau function in the general setting intro-
uced in Sec. II. We have seen in the preceding section that an asymptotic line soliton corresponds
o a dominant balance between two phase combinations in the tau function. But we still need to
dentify which phase combinations in a given tau function are indeed dominant as y→ ±�. This
equires a detailed study of the structure of the N	M coefficient matrix A associated with the tau
unction. In this section we carry out this analysis, which enables us to explicitly identify all the
symptotic line solitons of a given tau function in an algorithmic fashion. One of our main results
f this section will be to establish that, for arbitrary values of N and M, and for irreducible
oefficient matrices �cf. Definition 2.2� with non-negative N	N minors, the tau function �2.2�
roduces an �N− ,N+�-soliton solution with N−=M −N and N+=N, i.e., a solution in which there are

−=M −N asymptotic line solitons as y→−� and N+=N asymptotic line solitons as y→�.

. Dominant phases and the structure of the coefficient matrix

We begin by presenting a simple yet useful result �see also Ref. 2, Lemma 2.4� that will be
requently used to determine the dominant phase combinations in the tau function as y→ ±�.

Lemma 3.1 (Dominant phase conditions): As y→ ±� along the line Li,j :�i=� j with i� j, the
xponential phases �1 , . . . ,�M satisfy the following relations.

i� As y→�, �m��*, "m� �i+1, . . . , j−1�, and �m��*, "m� �1, . . . , i−1, j+1, . . . ,M�,
where �*ª�i=� j.

ii� As y→−�, �m��*, "m� �i+1, . . . , j−1�, while �m��*, "m� �1, . . . , i−1, j+1, . . . ,M�.

Proof: It follows from Eq. �2.6a� that, along the line Li,j whose direction is ci,j =ki+kj, the
ifference between any two exponential phases �m and �m� is given by

�m − �m� = �km − km����km + km�� − �ki + kj��y + ���,t� , �3.1�

here ��� , t� is a linear function of  and t and which also depends on the constants �m,0, �m�,0,

i,0, and � j,0. It is clear that the sign of �m−�m� as y→ ±� and for finite values of  and t is
etermined by the coefficient of y on the right-hand side of Eq. �3.1�. Then, setting m�= i �or
�= j� in Eq. �3.1� one obtains the desired inequalities. �

Lemma 3.1, which is illustrated in Fig. 2, will be used to obtain a set of conditions that are
ecessary for a given pair of phase combinations in the tau-function to be dominant. These
onditions are given in terms of the vanishing of certain N	N minors of the coefficient matrix A,
nd they determine which phase combinations are present �or absent� in the tau function of Eq.
1.3�. In order to derive these conditions, it is convenient to introduce two submatrices Pi,j and Qi,j
ssociated with any index pair �i , j� with 1� i� j�M, and given by
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Pi,j = A�1,2, . . . ,i − 1, j + 1, . . . ,M�, Qi,j = A�i + 1, . . . , j − 1� . �3.2�

he matrix Pi,j is formed by the consecutive columns of A to the left of column A�i� and those to
he right of column A�j�, while Qi,j is formed by the consecutive columns of A between columns
�i� and A�j�. Using the matrices Pi,j and Qi,j and the dominant phase conditions in Lemma 3.1 we

hen have the following.
Lemma 3.2 (Vanishing minor conditions): Suppose that the index pair �i , j� identifies an

symptotic line soliton. Let the two dominant phase combinations along the line Li,j :�i=� j be
iven by �i,p1,. . .,pr,q1,. . .,qs

and � j,p1,. . .,pr,q1,. . .,qs
, and let A�i , p1 , . . . , pr ,q1 , . . . ,qs�,

�j , p1 , . . . , pr ,q1 , . . . ,qs� be the corresponding nonzero minors where A�p1� , . . . ,A�pr�� Pi,j and
�q1� , . . . ,A�qs��Qi,j.

i� If �i , j� identifies an asymptotic line soliton as y→�, then

a� all N	N minors obtained by replacing one of the columns A�i� ,A�j� ,A�q1� , . . . ,A�qs� from
either A�i , p1 , . . . , pr ,q1 , . . . ,qs� or A�j , p1 , . . . , pr ,q1 , . . . ,qs� with any column A�p�� Pi,j,
are zero;

b� all N	N minors obtained by replacing one of the columns A�q1� , . . . ,A�qs� from either
A�i , p1 , . . . , pr ,q1 , . . . ,qs� or A�j , p1 , . . . , pr ,q1 , . . . ,qs� with either A�i� or A�j�, are zero.

ii� If �i , j� identifies an asymptotic line soliton as y→−�, then

a� all N	N minors obtained by replacing one of the columns A�i� ,A�j� ,A�p1� , . . . ,A�pr� from
either A�i , p1 , . . . , pr ,q1 , . . . ,qs� or A�j , p1 , . . . , pr ,q1 , . . . ,qs� with any column A�q��Qi,j,
are zero;

b� all N	N minors obtained by replacing one of the columns A�p1� , . . . ,A�pr� from either
A�i , p1 , . . . , pr ,q1 , . . . ,qs� or A�j , p1 , . . . , pr ,q1 , . . . ,qs� with either A�i� or A�j�, are zero.

Proof: All of the above conditions follow from the repeated use of the dominant phase
onditions in Lemma 3.1. For example, as y→� along the line Li,j, Lemma 3.1 implies �p��m for
ll p� �1, . . . , i−1, j+1, . . . ,M� and for all m� �i , j ,q1 , . . . ,qs�. Consequently, if condition �b� in
art �i� of the Lemma does not hold, each of the phase combinations obtained by replacing �m with

p in either �i,p1,. . .,pr,q1,. . .,qs
or � j,p1,. . .,pr,q1,. . .,qs

will be greater than both �i,p1,. . .,pr,q1,. . .,qs
and

j,p1,. . .,pr,q1,. . .,qs
. But this contradicts the hypothesis that �i,p1,. . .,pr,q1,. . .,qs

and � j,p1,. . .,pr,q1,. . .,qs
are the

ominant phase combinations as y→� along Li,j. The other conditions follow in a similar fash-
on. �

We should emphasize that in general, the asymptotic solitons and the index pairs labeling
hem as y→� are different from those as y→−�. Lemma 3.2 allows us to determine the ranks of

FIG. 2. Relations among the exponential phases as y→ ±� along the direction Li,j :�i=� j.
he submatrices Pij and Qij associated with each asymptotic line soliton �i , j�. This information
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ill be exploited later in Theorem 3.6 to identify explicitly the asymptotic line solitons produced
y any given tau function. The next two results are direct consequences of the conditions specified
n Lemma 3.2.

Lemma 3.3 (Span): Let A�p1� , . . . ,A�pr�� Pi,j and A�q1� , . . . ,A�qs��Qi,j be the columns in the
inors associated with the dominant pair of phase combinations of Lemma 3.2.

i� If �i , j� identifies an asymptotic line soliton as y→�, the columns A�p1� , . . . ,A�pr� form a
basis for the column space of the matrix Pi,j.

ii� If �i , j� identifies an asymptotic line soliton as y→−�, the columns A�q1� , . . . ,A�qs� form a
basis for the column space of the matrix Qi,j.

Proof: We prove part �i�. Since A�i , p1 , . . . , pr ,q1 , . . . ,qs��0 by Lemma 3.2, the set of col-
mns A= �A�i� ,A�p1� , . . . ,A�pr� ,A�q1� , . . . ,A�qs�� is a basis for RN. Hence the set
A�p1� , . . . ,A�pr���A is linearly independent. Moreover, any A�p�� Pi,j can be expanded with
espect to the basis A as

A�p� = aA�i� + 	
m=1

r

bmA�pm� + 	
m=1

s

cmA�qm� . �3.3�

eplacing one of the columns A�i� ,A�q1� , . . . ,A�qs� in A�i , p1 , . . . , pr ,q1 , . . . ,qs� with A�p�� Pij,
e have from Lemma 3.2�i��a� that

A�p,p1, . . . ,pr,q1, . . . ,qs� = 0, A�i,p1, . . . ,pr,q1, . . . qm−1,p,qm+1, . . . qs� = 0.

ence in Eq. �3.3� we have a=0 and cm=0"m=1, . . . ,s. Therefore A�p�
span��A�p1� , . . . ,A�pr��� for all A�p�� Pi,j. Similarly, part �ii� follows from the conditions in

emma 3.2�ii��a�. �

Lemma 3.4 (Rank conditions): Let r be the number of columns from Pi,j and let s be the
umber of columns from Qi,j in the minors associated with the dominant pair of phase combina-
ions of Lemma 3.2.

i� If �i , j� identifies an asymptotic line soliton as y→�, then rank�Pi,j�=r�N−1 and
rank�Pi,j A�i��=rank�Pi,j A�j��=rank�Pi,j A�i , j��=r+1.

ii� If �i , j� identifies an asymptotic line soliton as y→−�, then rank�Qi,j�=s�N−1 and
rank�Qi,j A�i��=rank�Qi,j A�j��=rank�Qi,j A�i , j��=s+1.

bove and hereafter, �A B� denotes the matrix A augmented by the matrix B.
Proof: Let us prove part �i�. Since the columns A�p1� , . . . ,A�pr� form a basis for the column

pace of Pi,j, from Lemma 3.3�i� we immediately have rank�Pi,j�=r. Moreover, since A
�A�i� ,A�p1� , . . . ,A�pr� ,A�q1� , . . . ,A�qs�� is a basis for RN, the vectors A�i� ,A�p1� , . . . ,A�pr� are

inearly independent, and therefore rank�Pi,j A�i��=r+1. Similarly, replacing A�i� with A�j� in the
revious statement we have rank�Pi,j A�j��=r+1. It remains to prove that rank�Pi,j A�i , j��=r
1. Expanding the jth column of A in terms of A as in Lemma 3.3 we have

A�j� = aA�i� + 	
m=1

r

bmA�pm� + 	
m=1

s

cmA�qm� . �3.4�

y replacing one of the columns A�q1� , . . . ,A�qs� in A�i , p1 , . . . , pr ,q1 , . . . ,qs� with A�j�, we have
rom Lemma 3.2�i��b� that A�i , p1 , . . . , pr ,q1 , . . . ,qm−1 , j ,qm+1 , . . . ,qs�=0. Therefore cm=0 for all
=1 , . . . ,s. Consequently we have A�j��span��A�i� ,A�p1� , . . . ,A�pr���, which implies that

ank�Pi,j A�i , j��=r+1. Similarly, using Lemma 3.2�ii��b� one can establish the corresponding
esults in part �ii� for the asymptotic line solitons as y→−�. �

It is important to note that, even though Lemmas 3.3–3.4 were proved by using the vanishing
inor conditions in Lemma 3.2, they provide additional information on the structure of the
oefficient matrix A. For example, when r�N−1 for an asymptotic line soliton as y→�, Lemma

                                                                                                            



3
L
a

�

�

W
4
t
s
t
k

B

o
c
s

�

�

t
A
e
A
�
=
h

=

a

�

�

033514-13 Line solitons of the KP II equation J. Math. Phys. 47, 033514 �2006�

                        
.4 yields rank�Pi,j A�i , j���N, and when s�N−1 for an asymptotic line soliton as y→−�,
emma 3.4 yields rank�Qi,j A�i , j���N. As a consequence, we immediately have the following
dditional vanishing minor conditions:

i� If �i , j� identifies an asymptotic line soliton as y→�, then

A�i, j,p1, . . . ,pr,m1, . . . ,mN−r−2� = 0 " �m1, . . . ,mN−r−2� � �1, . . . ,M� . �3.5a�

ii� If �i , j� identifies an asymptotic line soliton as y→−�, then

A�i, j,q1, . . . ,qs,m1, . . . ,mN−s−2� = 0 " �m1, . . . ,mN−s−2� � �1, . . . ,M� . �3.5b�

e remark that conditions �3.5� were also introduced �without proof� in Ref. 12 �cf. Definition
.2� in order to characterize the tau functions of the elastic N-soliton solutions which correspond
o the special case M =2N. It should also be noted that, when �i , j� identifies an asymptotic line
oliton as y→�, Lemma 3.4�i� only provides information on Pi,j, and the only condition on Qi,j is
hat rank�Qi,j��s. Similarly, when �i , j� identifies an asymptotic line soliton as y→−�, all is
nown about Pi,j is that rank�Pi,j��r.

. Characterization of the asymptotic line solitons from the coefficient matrix

In the preceding section we derived several conditions that an index pair �i , j� must satisfy in
rder to identify an asymptotic line soliton. Those results are now applied to obtain a complete
haracterization of the incoming and outgoing asymptotic line solitons of a generic line-soliton
olution of the KPII equation.

Lemma 3.5 (Pivots and nonpivots): Consider an index pair �i , j� with 1� i� j�M.

i� If �i , j� identifies an asymptotic line soliton as y→�, the index i labels a pivot column of
the coefficient matrix A. That is, A�i�=A�en� with 1�n�N.

ii� If �i , j� identifies an asymptotic line soliton as y→−�, the index j labels a nonpivot column
of the coefficient matrix A. That is, A�j�=A�gn� with 1�n�M −N.

Proof: We first prove part �i�. Suppose that �i,m2,. . .,mN
is one of the dominant phase combina-

ions corresponding to the asymptotic line soliton �i , j� as y→�. The corresponding minor
�i ,m2 , . . . ,mN� is nonzero. Since A is in RREF, we have A�i�=�r=1

n cr A�er� for some n�N, where

1� ¯ �en� i. Therefore A�i ,m2 , . . . ,mN�=	r=1
n cr A�er ,m2 , . . . ,mN�. If en� i, we have

�e1� , . . . ,A�en�� Pi,j, where Pi,j is the submatrix of A defined in Eq. �3.2�. Then from condition
a� in Lemma 3.2�i� we have A�er ,m2 , . . . ,mN�=0"r=1, . . . ,n, implying that A�i ,m2 , . . . ,mN�
0. But this is impossible, since �i,m2,. . .,mN

is a dominant phase combination. Therefore we must
ave i=en, meaning that A�i� is a pivot column.

Part �ii� follows from the rank conditions in Lemma 3.4�ii�. In particular, rank�Qi,j A�i��
rank�Qi,j A�i , j��=s+1 implies that A�j��span��A�i� , . . . ,A�j−1���. Since A is in RREF, none of

its pivot column can be spanned by the preceding columns. Hence A�j� is not a pivot column.�
Lemma 3.5 identifies outgoing and incoming asymptotic line solitons, respectively, with the

pivot and the nonpivot columns of A. It is then natural to ask if in fact each of the N pivot columns
and each of the M −N nonpivot columns identifies an outgoing or incoming line soliton, and
whether such identification is unique. Both of these questions can be answered affirmatively by the
following theorem which constitutes one of the main results of this work, and is proved in the
Appendix.

Theorem 3.6: (Asymptotic line solitons) Let �N,M�x ,y , t� be the tau function in Eq. (2.1)
ssociated with a rank N, irreducible coefficient matrix A with non-negative minors.

i� For each pivot index en there exists a unique asymptotic line soliton as y→�, identified by
an index pair �en , jn� with n=1, . . . ,N and 1�en� jn�M.

ii� For each nonpivot index gn there exists a unique asymptotic line soliton as y→−�, iden-

tified by an index pair �in ,gn� with n=1, . . . ,M −N and 1� in�gn�M.
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hus, the solution of KPII generated by the coefficient matrix A via Eq. �2.1� has exactly N+=N
symptotic line solitons as y→� and N−=M −N asymptotic line solitons as y→−�.

Part �i� of Theorem 3.6 uniquely identifies the asymptotic line solitons as y→� by the index
airs �en , jn� where en� jn. The indices e1 , . . . ,eN label the N pivot columns of A, however, the jn’s
ay correspond to either pivot or nonpivot columns, and indeed both cases appear in examples.
oreover, when the pivot indices are sorted in increasing order 1=e1�e2� ¯ �eN�M, the

ndices j1 , . . . , jN in general are not sorted in any specific order. For example, the line solitons as
y→� generated by the matrix A in Eq. �4.5� of Sec. IV have j1� j3� j2. In fact, the indices
j1 , . . . , jN need not necessarily even be distinct. Similarly, part �ii� of Theorem 3.6 uniquely
dentifies the asymptotic line solitons as y→−� by index pairs �in ,gn�, where in�gn. In this case,
he indices g1 , . . . ,gM−N label the M −N nonpivot columns of A, but the in’s may correspond to
ither pivot or nonpivot columns. Moreover, when the nonpivot indices are sorted in increasing
rder 1�g1� ¯ �gM−N=M, the indices i1 , . . . , iM−N are not in general sorted, and need not be
istinct. Theorem 3.6 yields an important characterization of the solution via the associated coef-
cient matrix A, and it provides a concrete method to identify the asymptotic line solitons as y

±�, as illustrated with the examples below. Further examples are discussed in Sec. IV.
Example 3.7: Consider the tau function �N,M with N=2 and M =5 generated by the coefficient

atrix

A = �1 1 0 − 1 − 2

0 0 1 1 1
� . �3.6�

he pivot columns of A are labeled by the indices �e1 ,e2�= �1,3�, and the nonpivot columns by the
ndices �g1 ,g2 ,g3�= �2,4 ,5�. It follows from Theorem 3.6 that there will be N+=N=2 asymptotic
ine solitons as y→�, identified by the index pairs �1, j1� and �3, j2� for some j1�1 and j2�3,
nd that there will be N−=M −N=3 asymptotic line solitons as y→−�, identified by the index
airs �i1 ,2�, �i2 ,4�, and �i3 ,5�, for some i1�2, i2�4, and i3�5. We first determine the asymptotic
ine solitons as y→� using part �i� of Theorem 3.6 together with the rank conditions in Lemma
.4�i�. The we find the asymptotic line solitons as y→−� using part �ii� of Theorem 3.6 and the
ank conditions in Lemma 3.4�ii�.

For the first pivot column, e1=1, we start with j=2 and consider the submatrix
P1,2= � 0 −1 −2

1 1 1
�. Since rank�P1,2�=2�1=N−1, from Lemma 3.4�i� we conclude that the pair �1,2�

annot identify an asymptotic line soliton as y→�. Incrementing j to j=3,4 ,5 and checking the
ank of each submatrix P1,j we find that the rank conditions in Lemma 3.4�i� are satisfied when

j=4, and P1,4= � −2
1

�=A�5�. So, rank�P1,4�=1 and rank�P1,4 A�1��=rank�P1,4 A�4��=2. The condi-
ion rank�P1,4 A�1,4��=2 is trivial here, since any three columns are linearly dependent. Thus, the
rst asymptotic line soliton as y→� is identified by the index pair �1,4�. For the second pivot,

2=3, proceeding in a similar manner we find that j=4 does not satisfy the rank conditions
ecause P3,4 has rank 2. But j=5 satisfies Lemma 3.4�i�, since P3,5= � 1 1

0 0
�, which yields

ank�P3,5�=1 and rank�P3,5 A�3��=rank�P3,5 A�5��=2. Again, rank�P3,5 A�3,5��=2 is trivially
atisfied here. So the asymptotic line solitons as y→� are given by the index pairs �1,4� and �3,5�,
nd the associated phase transition diagram �cf. Corollary 2.6� is given by

R1,3 ——→
3→5

R1,5 ——→
1→4

R4,5.

We now consider the asymptotics for y→−�. Starting with the nonpivot column g1=2, the
nly column to its left is i=1. We have Q1,2=�, and rank�Q1,2 A�1��=rank�Q1,2 A�2��
rank�Q1,2 A�1,2��=1. Consequently, the pair �1,2� identifies an asymptotic line soliton as y→
�. For g2=4 we consider i=1,2 ,3 and find that the rank conditions in Lemma 3.4�ii� are
atisfied only for i=2. In this case, Q2,4= � 0

1
�=A�3�, so rank�Q2,4�=1=N−1 and rank�Q2,4 A�2��
rank�Q2,4 A�4��=2, while rank�Q2,4 A�2,4��=2 is trivially satisfied. Hence �2,4� is the unique
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symptotic line soliton as y→−� associated to the nonpivot column g2=4. In a similar way we
an uniquely identify the last asymptotic line soliton as y→−� as given by the indices �3,5�. The
hase transition diagram for y→−� is thus given by

R1,3 ——→
1→2

R2,3 ——→
2→4

R3,4 ——→
3→5

R4,5.

o summarize, there are N+=2 outgoing line solitons, each associated with one of the pivot
olumns e1=1 and e2=3, given by the index pairs �1,4� and �3,5�, and there are N−=3 incoming
ine solitons, each associated with one of the nonpivot columns g1=2, g2=4, and g3=5, given by
he index pairs �1,2�, �2,4�, and �3,5�. A snapshot of the solution at t=−32 is shown in Fig. 3�a�.

Example 3.8: Consider the tau function with N=3 and M =6 generated by the coefficient
atrix in RREF,

A = �1 1 1 0 0 0

0 0 0 1 0 − 1

0 0 0 0 1 2
� . �3.7�

gain, we first determine the asymptotic line solitons as y→�, and then the asymptotic line
olitons as y→−�.

The pivot columns of A are labeled by the indices e1=1, e2=4, and e3=5. Thus, we know that
he asymptotic line solitons as y→� will be given by the index pairs �1, j1�, �4, j2�, and �5, j3� for
ome j1�1, j2�4, and j3�5. Starting with the first pivot, e1=1, we take j=2,3 , . . . and check the

ank of the submatrix Pi,j in each case. When j=2 we have P1,2= �1 0 0 0

0 1 0 �1

0 0 1 2
�, and rank�P1,2�

3�N−1. So, by Lemma 3.4�i�, the index pair �1,2� does not correspond to an asymptotic line
oliton as y→�. In fact, using Lemma 3.1 it can be verified that �3,5,6 is the only dominant phase
ombination along the line �1=�2 as y→�. Next, we consider j=3. In this case we have P1,3

�0 0 0

1 0 �1

0 1 2
�, with rank�P1,3�=2¬r and rank�P1,3 A�1��=rank�P1,3 A�3��=rank�P1,3 A�1,3��=3

r+1. So the rank conditions in Lemma 3.4�i� are satisfied. Therefore the index pair �1,3� corre-
ponds to an asymptotic line soliton as y→�. Moreover, by considering j=4,5 ,6 one can easily
heck that the rank conditions are no longer satisfied. Thus �1,3� is the unique asymptotic line

IG. 3. Line soliton solutions of KPII: �a� the �3,2�-soliton solution generated by the coefficient matrix A in Example 3.7
ith �k1 , . . . ,k5�= �−1,0 , 1

4 , 3
4 , 5

4
� at t=−32; �b� the inelastic 3-soliton solution generated by the coefficient matrix A in

xample 3.8 with �k1 , . . . ,k6�= �−1,− 1
2 ,0 , 1

2 ,1 , 3
2

� at t=20 �see text for details�.
oliton associated with the pivot index e1=1 as y→�, in agreement with Theorem 3.6. Let us now
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onsider the second pivot column, e2=4. In this case we find that the rank conditions are only

atisfied when j=5, since P4,5= �1 1 1 0

0 0 0 �1

0 0 0 2
�, with rank�P4,5�=2¬r and rank�P4,5 A�4��

rank�P4,5 A�5��=rank�P4,5 A�4,5��=3=r+1. Therefore, the index pair �4,5� corresponds to an
symptotic line soliton as y→�. Finally, for e3=5, since we know from Theorem 3.6 that j�e3,
e immediately find that the third asymptotic line soliton as y→� is given by the index pair �5,6�.
rom Corollary 2.6, the phase transition diagram as y→� is given by

R1,4,5 ——→
5→6

R1,4,6 ——→
4→5

R1,5,6 ——→
1→3

R3,5,6.

The nonpivot columns of the coefficient matrix A are labeled by the indices g1=2, g2=3, and

3=6. For g1=2, the only possible value of i� j is i=1. In this case Q1,2=�, so rank�Q1,2�=0 and
ank�Q1,2 A�1��=rank�Q1,2 A�2��=rank�Q1,2 A�1,2��=1. Thus the pair �1,2� identifies an
symptotic line soliton as y→−�. For g2=3 we consider i=2,1. When i=2, the rank conditions in
emma 3.4�ii� are satisfied, leading to the asymptotic line soliton �2,3� as y→−�. We can check

hat the soliton associated with the nonpivot column g2=3 is unique by considering i=1 and
erifying that the rank conditions are not satisfied. Similarly, it is easy to verify that for g3=6 the
ndex pair �4,6� uniquely identifies the asymptotic line soliton as y→−�. The phase transition
iagram as y→−� reads as follows:

R1,4,5 ——→
1→2

R2,4,5 ——→
2→3

R3,4,5 ——→
4→6

R3,5,6.

Summarizing, there are N+=3 asymptotic line solitons as y→� identified by the index pairs
1,3�, �4,5�, and �5,6�, and there are N−=3 asymptotic line solitons as y→−� identified by the
ndex pairs �1,2�, �2,3�, and �4,6�. A snapshot of the solution at t=−20 is shown in Fig. 3�b�.

Examples 3.7 and 3.8 illustrate the fact that, starting from any given coefficient matrix A in
REF, the asymptotic line solitons as y→ ±� can be identified in an algorithmic way by applying
heorem 3.6 together with the rank conditions in Lemma 3.4.

V. FURTHER EXAMPLES

In this section we present a variety of line-soliton solutions of KPII generated by the tau
unction �2.2� with different choices of coefficient matrices.

Ordinary N-soliton solutions: These are constructed by taking M =2N and choosing the func-
ions �fn�n=1

N in Eq. �1.10� as �e.g., see Refs. 5 and 15�

fn�x,y,t� = e�2n−1 + e�2n, n = 1, . . . ,N . �4.1�

he corresponding coefficient matrix is thus given by

A =�
1 1 0 0 ¯ 0 0

0 0 1 1 ¯ 0 0

] ] ] ] ] ] ]

0 0 0 0 ¯ 1 1
� ,

ith N pairs of identical columns at positions �2n−1,2n�, n=1, . . . ,N. There are only 2N nonzero
inors of A, which are given by A�m1 ,m2 , . . . ,mN�=1 where, for each n=1, . . . ,N, either mn

2n−1 or mn=2n. The asymptotic analysis of the preceding section implies that the nth
symptotic line soliton as y→ ±� is identified by the index pair �2n−1,2n� for n=1, . . . ,N, where

n=2n−1 and jn=2n label, respectively, the pivot and nonpivot columns of A. Therefore the
mplitude and direction are given by an=k2n−k2n−1 and cn=k2n−1+k2n. Moreover, the dominant
air of phase combinations for the nth soliton as y→� is given by �1,3,. . .,2n−1,2n+2,2n+4,. . .,2N and
1,3,. . .,2n−3,2n,2n+2,. . .,2N, while the dominant phase combinations for the same soliton as y→−� by
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2,4,. . .,2n,2n+1,2n+3,. . .,2N−1 and �2,4,. . .,2n−2,2n−1,2n+1,. . .,2N−1. Apart from the phase shift of each line
oliton, the interaction gives rise to a pattern of N intersecting lines in the xy plane, as shown in
ig. 4�a�.

Solutions of KPII which also satisfy the finite Toda lattice hierarchy: Another class of
N− ,N+�-soliton solutions of KPII is given by the following choice of functions �fn�n=1

N in Eq.

IG. 4. Line-soliton solutions of KPII: �a� an ordinary 3-soliton solution with �k1 , . . . ,k6�= �−3,−2,0 ,1 , 3
2 ,2� at t=4; �b� a

ully resonant �3,2�-soliton solution with �k1 , . . . ,k5�= �−1,0 , 1
2 ,1 , 3

2
� at t=−32; �c� an elastic, partially resonant 3-soliton

olution with A given by Eq. �4.5� and �k1 , . . . ,k6�= �− 3
2 ,−1 ,0 , 1

4 , 3
2 , 7

4
� at t=−20; �d� an elastic, partially resonant 4-soliton

olution with A given by Eq. �4.6� and �k1 , . . . ,k8�= �−2,− 3
2 ,−1 ,− 1

2 ,0 , 1
2 ,1 , 3

2
� at t=20; �e� an inelastic 2-soliton solution

ith A given by Eq. �4.7� and �k1 , . . . ,k4�= �−1,− 1
2 , 1

2 ,2� at t=16; �f� an inelastic 3-soliton solution with A given by Eq.
4.8� and �k1 , . . . ,k6�= �−1,− 1

2 ,0 , 1
2 ,1 , 3

2
� at t=32.
1.10�:
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fn = f �n−1�, n = 1, . . . ,N . �4.2�

n addition to generating solutions of KPII, the set of tau functions �N,M for N=1, . . . ,M also
atisfy the Plücker relations for the finite Toda lattice hierarchy.2 Choosing f�x ,y , t�=	m=1

M e�m

ields the following coefficient matrix:

A =�
1 1 ¯ 1

k1 k2 ¯ kM

] ] � ]

k1
N−1 k2

N−1
¯ kM

N−1
� . �4.3�

Note that A in Eq. �4.3� is not in RREF, and coincides with the matrix K in Lemma 2.1. The
ivot columns of A are labeled by indices 1 , . . . ,N. Furthermore, all the N	N minors of A are
onzero, and coincide with the Van der Monde determinants in Eq. �2.4�. The corresponding class
f KPII solutions was studied in Ref. 2, where it was shown that the N asymptotic line solitons as

y→� are identified by the index pairs �n ,n+M −N� for n=1, . . . ,N, while the M −N asymptotic
line solitons as y→−� are identified by the index pairs �n ,n+N� for n=1, . . . ,M −N. These
pairings can also be easily verified using Theorem 3.6. The dominant pair of phase combinations
for the nth soliton as y→� is given by �1,. . .,n,M−N+n+1,. . .,M and �1,. . .,n−1,M−N+n,. . .,M, while the
ominant pair of phase combinations for the nth soliton as y→−� by �n,. . .,N+n−1 and �n+1,. . .,N+n.
he solution displays phenomena of soliton resonance and web structure �e.g., see Fig. 4�b��.
ore precisely, the interaction of the asymptotic line solitons results in a pattern with �2N−

1�N+ interaction vertices, �3N−−2�N+ intermediate interaction segments and �N−−1��N+−1�
holes” in the xy plane. Each of the intermediate interaction segments can be effectively regarded
s a line soliton since it satisfies the dispersion relation �1.8�. Furthermore, all of the asymptotic
nd intermediate line solitons interact via a collection of fundamental resonances. A fundamental
esonance, also called a Y junction, describes an interaction of three line solitons whose wave
umbers ka and frequencies �a �a=1,2 ,3� satisfy the three-wave resonance conditions17,19

k1 + k2 = k3, �1 + �2 = �3. �4.4�

uch a solution is shown in Fig. 1�a�.
Elastic N-soliton solutions: As mentioned in Sec. I and in the Appendix, the elastic N-soliton

olutions are those for which the sets of incoming and outgoing asymptotic line solitons are the
ame. In this case we necessarily have M =2N. Ordinary N-soliton solutions and solutions of KPII
hich also satisfy the finite Toda lattice hierarchy with M =2N are two special classes of elastic
-soliton solutions. However, a large variety of other elastic N-soliton solutions do also exist, and
ere recently investigated in Ref. 12. For example, Fig. 4�c� shows an elastic 3-soliton solution
enerated by the coefficient matrix,

A = �1 0 0 1 1 1

0 1 0 − 2 − 2 − 1

0 0 1 2 1 0
� . �4.5�

n this case the pivot columns are labeled by indices 1, 2, and 3. So, from Lemma 3.5 we know
hat the asymptotic line solitons as y→� will be identified by index pairs �1, j1�, �2, j2�, and
3, j3�, while those as y→−� by index pairs �i1 ,4�, �i2 ,5�, and �i3 ,6�, for certain values of

1 , . . . , i3 and j1 , . . . , j3. Indeed, from the results developed in Sec. III one can verify that both the
ncoming and the outgoing asymptotic line solitons are given by the same index pairs �1,4�, �2,6�,
nd �3,5�. The soliton interactions in this case are partially resonant, in the sense that the pairwise
nteraction among solitons �1,4� and �2,6� and that among solitons �1,4� and �3,5� are both reso-
ant, but the pairwise interaction among solitons �2,6� and �3,5� is nonresonant. Similarly, Fig.

�d� shows an elastic, partially resonant 4-soliton solution generated by the coefficient matrix
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A =�
1 0 − 1 0 1 0 − 1 − 2

0 1 2 0 − 1 0 1 2

0 0 0 1 2 0 − 1 − 2

0 0 0 0 0 1 2 3
� . �4.6�

n this case the pivot columns are labeled by the indices 1, 2, 4, and 6 and the nonpivot columns
y the indices 3, 5, 7, and 8. The asymptotic line solitons as y→ ±� are identified by the index
airs �1,3�, �2,5�, �4,7�, and �6,8�. As can be seen from Fig. 4�f�, the pairwise interaction of solitons
1,3� and �2,5�, solitons �2,5� and �4,7�, and �4,7� and �6,8� are resonant, but the remaining
airwise interactions between solitons �1,3� and �4,7�, �1,3� and �6,8�, �2,5� and �6,8�, are non-

resonant. It should be clear from these examples that a large variety of elastic N-soliton solutions
with resonant, partially resonant and nonresonant interactions is possible.

Inelastic N-soliton solutions: There also exist a large class of N-soliton solutions that are not
elastic. We have already seen such solutions in Examples 3.7 and 3.8 �cf. Figs. 3�a� and 3�b�� of

ec. III. As a further example, Fig. 4�e� shows an inelastic 2-soliton solution generated by the
oefficient matrix

A = �1 0 0 − 1

0 1 1 1
� . �4.7�

n this case the pivot columns are labeled by indices 1 and 2. The asymptotic line solitons as y
−� are identified by the index pairs �1,4� and �2,3�, while those as y→� by the index pairs

1,3� and �2,4�. Notice that the outgoing solitons interact resonantly via two Y junctions, while the
ncoming soliton pair interact nonresonantly. This is in contrast with an elastic 2-soliton solution,
here both incoming and outgoing pairs of solitons exhibit the same kind of interaction. Similarly,
ig. 4�f� shows inelastic 3-soliton solution generated by the coefficient matrix

A = �1 0 − 1 − 1 0 2

0 1 2 1 0 − 1

0 0 0 0 1 1
� . �4.8�

ere the pivot columns are labeled by indices 1, 2, and 5. The asymptotic line solitons as y
� are identified by the index pairs �1,3�, �2,5�, and �5,6�, while those as y→−� by the index

airs �1,3�, �2,4�, and �3,6�.
Finally, we remark that in the generic case M �2N, the numbers of asymptotic line solitons as

y→ ±� are different, as in the solutions shown in Figs. 3�a� and 4�b�. Also, note that the one-
oliton solutions, the ordinary two-soliton solutions and the Y junction solutions have the property
hat their time evolution is just an overall translation of a fixed spatial pattern. However, for all
ther solutions discussed above, the interaction patterns formed by the asymptotic line solitons,
nd the relative positions of the interaction vertices in the xy plane are in general time dependent.

. CONCLUSIONS

In this paper we have studied a class of line-soliton solutions of the Kadomtsev-Petviashvili II
quation by expressing the tau function as the Wronskian of N linearly independent combinations
f M exponentials. From the asymptotics of the tau function as y→ ±� we showed that each of
hese solutions of KPII is composed of asymptotic line solitons which are defined by the transition
etween two dominant phase combinations with N−1 common phases. Moreover, the number,
mplitudes and directions of the asymptotic line solitons are invariant in time. We also derived an
lgorithmic method to identify these asymptotic line solitons in a given solution by examining the
	M coefficient matrix A associated with the corresponding tau function. In particular, we

roved that every N	M, irreducible coefficient matrix A produces an �N− ,N+�-soliton solution of
PII in which there are N+=N asymptotic line solitons as y→�, labeled by the pivot columns of

, and N−=M −N asymptotic line solitons as y→−�, labeled by the nonpivot columns of A. Such
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olutions exhibit a rich variety of time-dependent spatial patterns which include resonant soliton
nteractions and web structure. Finally, we discussed a number of examples of such
N− ,N+�-soliton solutions in order to illustrate the above results.

It is remarkable that the KPII equation possesses such a rich structure of line-soliton solutions
enerated by a simple form of the tau function. In this work we have primarily focused on the
symptotic behavior of the solutions as y→ ±�, but not on their interactions in the xy plane. A full
haracterization of the interaction patterns of the general �N− ,N+�-soliton solutions is an important
pen problem, which is left for further study. Nonetheless, we believe that our results will provide
key step toward that endeavor. We point out that resonant interaction described by the line

olitons of KPII is a physical phenomenon that has been observed experimentally in ion-acoustic
aves �see e.g., Refs. 20 and 13�. Hence, we expect that the resonant solutions considered in this
ork are likely to be stable with respect to small perturbations and physically relevant. However,
formal stability analysis of these �2+1�-dimensional solutions is a highly nontrivial task, and has
ot yet been carried out to the best of our knowledge. Finally, we note that soliton solutions
xhibiting phenomena of soliton resonance and web structure have been found for several other
2+1�-dimensional integrable systems, and those solutions can also be described by direct alge-
raic methods similar to the ones used here. Therefore we expect that the results presented in this
ork will also be useful to study solitonic solutions in a variety of other �2+1�-dimensional

ntegrable systems.
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PPENDIX A: PROOF OF THEOREM 2.5

To prove part �i� of Theorem 2.5, it is sufficient to show that, along each line Lc, the sign of
he inequalities among the phase combinations in Definition 2.3 remain unchanged in time as y

±�. For this purpose, note that the sign of �m1,. . .,mN
−�m1�,. . .,mN�

in Eq. �2.6b� is determined by the
oefficient of y on the right-hand side as y→ ±� and for finite  and t, if this coefficient is
onzero. For generic values of the phase parameters k1 , . . . ,kM this coefficient is indeed nonvan-
shing, and its sign depends only on the direction c of the line Lc. Consequently, the dominant
hase combinations asymptotically as y→ ±� are determined only by the constant c for finite
ime.

Part �ii� of the theorem is proved by showing that the only possible phase transitions are those
n which a single phase, say �m changes to �m� between the two dominant phase combinations
cross adjacent regions, and that no other type of transitions can occur. We first prove that
ingle-phase transitions are allowed; then we show that no other type of transitions are allowed. In
he following, we will assume t to be finite so that the dominant phase combinations remain
nvariant, according to part �i�. Suppose that �m1,. . .,mN

is the dominant phase combination in a
egion R asymptotically for large values of y. Since R is a proper subset of R3, it must have a
oundary, across which a transition will take place from �m1,. . .,mN

to some other dominant phase
ombination. Since �m1,. . .,mN

is dominant, A�m1 , . . . ,mN��0 according to Definition 2.3. There-
ore, the columns A�m1� , . . . ,A�mN� of the coefficient matrix form a basis of RN, and for all

j� �m1 , . . . ,mN� we have that A�j� is in the span of A�m1� , . . . ,A�mN�. Thus there exists at least
ne column A�ms� such that the coefficient of A�ms� in the expansion of A�j� is nonzero. We then
ave A�m1 , . . . ,ms−1 , j ,ms+1 , . . . ,mN��0, implying that the phase combination

m1,. . .,ms−1,j,ms+1,. . .,mN
is actually present in the tau function. Then, for any j� �m1 , . . . ,mN� it is

ossible to have a single-phase transition from R to the adjacent region R� across the line �ms
� j, since the sign of �ms

−� j changes across this line, implying that �m1,. . .,ms−1,j,ms+1,. . .,mN
is larger
han �m1,. . .,mN
in R�.
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We next show that no other type of transitions can occur apart from single-phase transitions;
e do so by reduction ad absurdum. Suppose that at least two phases �m1

,�m2
from the dominant

hase combination �m1,. . .,mN
in a region R are replaced with phases �m1�

,�m2�
during the transition

rom R to an adjacent region R�. This transition occurs along the common boundary of R and R�,
hich is given by line L : ��m1

+�m2
�− ��m1�

+�m2�
�=0. Thus, along L, the differences �m1

−�m1�
and

m2
−�m2�

�or, equivalently, the differences �m1
−�m2�

and �m2
−�m1�

� must have opposite signs or be
oth zero.

If both differences are zero along L, the lines �m1
=�m1�

and �m2
=�m2�

�or, equivalently, the lines

m1
=�m2�

and �m1�
=�m2

� must both coincide with the line L in the xy plane. This is possible only at
given instant of time and if the directions of the two lines are the same, i.e., if km1

+km1�
=km2

km2�
�or, equivalently, km1

+km2�
=km1�

+km2
�. So for generic values of the phase parameters, or for

eneric values of time, this exceptional case can be excluded. Hence, we assume that �m1
−�m1�

and

m2
−�m2�

are of opposite signs.
Note that �m1

−�m1�
=�m1,. . .,mN

−�m1�,m2,. . .,mN
and �m2

−�m2�
=�m1,. . .,mN

−�m1,m2�,m3. . .,mN
. Moreover,

ince �m1,. . .,mN
is the dominant phase in R, both of these phase differences must be positive in the

nterior of R if the minors A�m1� ,m2 , . . . ,mN� and A�m1 ,m2� ,m3 . . . ,mN� are nonzero. Hence, we
ust conclude that �m1

−�m1�
and �m2

−�m2�
cannot have opposite signs unless one or both of the

hase combinations �m1�,m2,. . .,mN
and �m1,m2�,m3. . .,mN

is absent from the tau function. This requires
hat either A�m1� ,m2 , . . . ,mN� or A�m1 ,m2� ,m3 . . . ,mN� must be zero. A similar argument applied to
he phase differences �m1

−�m2�
and �m2

−�m1�
leads to the conclusion that one or both of the minors

�m2� ,m2 , . . . ,mN� and A�m1 ,m1� ,m3 . . . ,mN� must vanish. However, from the Plücker relations
mong the N	N minors of A we have

A�m1,m2 . . . ,mN�A�m1�,m2�, . . . mN� = A�m1,m2�,m3, . . . mN�A�m1�,m2, . . . ,mN�

− A�m1,m1�,m3 . . . ,mN�A�m2�,m2, . . . ,mN� .

t follows from above that either A�m1 , . . . ,mN�=0 or A�m1� ,m2� ,m3 , . . . ,mN�=0. But this is im-
ossible since by assumption both minors on the left-hand-side are associated with dominant
hase combinations. Thus, they are both nonzero. Hence we have reached a contradiction which
mplies that as y→ ±�, phase transitions where more than one phase changes simultaneously
cross adjacent dominant phase regions, are impossible.

PPENDIX B: PROOF OF THEOREM 3.6

First we need to establish the following Lemma that will be useful in proving the theorem.
Lemma B.1: If Pij is the submatrix defined in Eq. �3.2� and en labels the nth pivot column of

n irreducible coefficient matrix A, then N−1� rank�Penen+1��N, "n=1, . . . ,N.
Proof: Recall that the pivot indices are ordered as 1=e1�e2� ¯ �eN�M for an irreducible

atrix A. Then it follows from Definition 2.2�ii� that, corresponding to each pivot column A�en� of
n irreducible matrix A, there exists at least one nonpivot column A�j*�, with j*�en, that has a
onzero entry in its nth row. Hence we have A�e1 , . . . ,en−1 , j* ,en+1 , . . . ,eN��0. This implies that
he matrix A�1, . . . ,en−1,en+1, . . . ,M�= �Penen+1 A�en+1�� which contains the columns
�e1� , . . . ,A�en−1� ,A�j*� ,A�en+1� , . . . ,A�eN�, has rank N. Thus, the rank of Penen+1 is at least N
1, and this yields the desired result. �

We are now ready to prove Theorem 3.6. We prove part �i� here; the proof of part �ii� follows
imilar steps. The proof of part �i� is divided in two parts. First we show that for each pivot index

n, n=1, . . . ,N, there exists an index jn�en with the necessary and sufficient properties for �en , jn�
o identify an asymptotic line soliton as y→�; then we prove that such a jn is unique.

Existence: The proof is constructive. For each pivot index en, and for any j�en, we consider
he rank of the matrix Pen,j =A�1,2 , . . . ,en−1, j+1, . . . ,M� starting from j=en+1. When j=en

1 we have Pen,j = Pen,en+1, and therefore N−1� rank�Pen,en+1��N from Lemma B.1. If
ank�Pen,en+1�=N, then Lemma 3.4�i� implies that the pair �en ,en+1� does not identify an
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symptotic line soliton as y→�. In this case, we increment the value of j successively from en

1, until rank�Pen,j� decreases from N to N−1. Note that a value of j such that rank�Pen,j�=N
1 always exists because if j=M, then rank�Pen,M�=rank�A�1, . . . ,en−1��=n−1�N−1, since A is

n RREF. Suppose j= j* is the smallest index such that rank�Pen,j*
�=N−1 and rank�Pen,j*

A�j*��
N. We next check the rank of rank�Pen,j*

A�en��. Since rank�Pen,j*
�=N−1, two cases are pos-

ible: either �a� rank�Pen,j*
A�en��=N or �b� rank�Pen,j*

A�en��=N−1. We discuss these two cases
eparately.

�a� Suppose that rank�Pen,j*
A�en��=N. By construction we have rank�Pen,j*

A�j*��=N, and
ince N=rank�A� one also has rank�Pin,j*

A�en , j*��=N. In this case we set j*= jn. It follows from
emma 3.4 that the pair �en , jn� satisfies the necessary rank conditions to identify an asymptotic

ine soliton as y→�. Next we show that these rank conditions are also sufficient in order to
etermine a pair of dominant phase combinations in the tau function corresponding to the single-
hase transition en→ jn. Since rank�Pen,jn

�=N−1, it is possible to choose N−1 linearly indepen-
ent columns A�p1� , . . . ,A�pN−1� from the matrix Pen,jn

so that for all choices of linearly indepen-
ent columns A�l1� , . . . ,A�lN−1�� Pen,jn

one has �p1,. . .,pN−1
��l1,. . .,lN−1

as y→� along the transition
ine Len,jn

. The existence of such a set is guaranteed because part �i� of the dominant phase
ondition 3.1 implies that, as y→� in the �en , jn� direction, the phases corresponding to the index
et Pen,jn

are ordered as �1��2� ¯ ��en−1 and � jn+1�� jn+2� ¯ ��M. Therefore, it is possible to
elect the top N−1 phases from the above two lists so that the corresponding columns are linearly
ndependent. Furthermore, the conditions rank�Pen,jn

A�en��=rank�Pen,jn
A�jn��=N imply that the

inors A�en , p1 , . . . , pN−1� and A�jn , p1 , . . . , pN−1� are both nonzero, and thus �en,p1,. . .,pN−1
and

jn,p1,. . .,pN−1
form a dominant pair of phase combinations as y→� along the direction of Len,jn

.
�b� Suppose that rank�Pen,j*

A�en��=N−1. Note that this is possible only for n�N, because
hen n=N the submatrix PeN,j for any j�eN contains the pivot columns A�e1� , . . . ,A�eN−1�.
ence, rank�PeN,j�=N−1 and rank�PeN,j A�eN��=N. Consequently, n=N always belongs to case

a� above and not to case �b�. So we consider only the case n�N below.
Since rank�Pen,j*

�=rank�Pen,j*
A�en��=N−1, this means that A�en��span�Pen,j*

�. However,
ince A�en� is a pivot column, it cannot be spanned only by its preceding columns
�1� , . . . ,A�en−1�. Hence the spanning set of A�en� from Pen,j*

must contain at least one column
rom A�j*+1� , . . . ,A�M�. In this case we continue incrementing the value of j starting from j* until
he pivot column A�en� is no longer in the span of the columns of the resulting submatrix Pen,j. Let
jn be the smallest index such that A�en� is spanned by the columns of the submatrix Pen,jn

A�jn� but
ot by those of Pen,jn

. Then, by construction we have rank�Pen,jn
�¬r�N−1, and

ank�Pen,jn
A�en��=rank�Pen,jn

A�jn��=rank�Pen,jn
A�en , jn��=r+1. The rank conditions in Lemma

.4�i� are once again satisfied for the index pair �en , jn� thus found. The sufficiency of these
onditions can then be established by following similar steps as in case �a�. Namely, it is possible
o choose a set of linearly independent vectors A�l1� , . . . ,A�lr�� Pen,jn

and extend this set to a basis
f RN as follows: �A�en� ,A�l1� , . . . ,A�lr� ,A�m1� , . . . ,A�ms��, where A�m1� , . . . ,A�ms��Qen,jn

and
+s=N−1. We then have A�en , l1 , . . . , lr ,m1 , . . . ,ms��0, which also implies
�jn , l1 , . . . , lr ,m1 , . . . ,ms��0 since A�en��span�Pen,jn

A�jn��. As in case �a�, we can now maxi-
ize the phase combinations over all such sets �l1 , . . . , lr ,m1 , . . . ,ms�, and find a set of indices

p1 , . . . , pr ,q1 , . . . ,qs� such that �en,p1,. . .,pr,q1,. . .,qs
and � jn,p1,. . .,pr,q1,. . .,qs

form a dominant pair of
hase combinations as y→� along the direction of Len,jn

. Summarizing, we have shown that for
ach pivot index en ,n=1,2 , . . . ,N, there exists at least one asymptotic line soliton �en , jn� with

jn�en as y→�. Next we prove uniqueness.
Uniqueness: Suppose that �en , jn� and �en , jn�� are two asymptotic line solitons identified by the

ame pivot index en as y→�. Without loss of generality, assume that jn�� jn, and consider the line
oliton �en , jn��. Lemma 3.4�i� implies that rank�Pen,jn�

A�jn���=rank�Pen,jn
A�en , jn���. Hence the

ivot column A�en� is spanned by the columns of the submatrix �Pen,jn�
A�jn���. But by assumption

e have �Pen,jn�
A�jn���� Pen,jn

, since jn�� jn. Hence A�en� is also spanned by the columns of Pen,jn
.

his however implies that rank�Pen,jn
A�en��=rank�Pen,jn

�, which contradicts the necessary rank
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onditions in Lemma 3.4�i� for �en , jn� to identify an asymptotic line soliton as y→�. Therefore
e must have jn= jn�. Thus, it is not possible to have two distinct asymptotic line solitons as y
� associated with the same pivot index en. Part �i� of Theorem 3.6 is now proved.

PPENDIX C: EQUIVALENCE CLASSES AND DUALITY OF SOLUTIONS

In this appendix, we investigate the relationship between two classes of KPII multisoliton
olutions with complementary sets of asymptotic line solitons. Note that the KPII equation �1.1� is
nvariant under the inversion symmetry �x ,y , t�→ �−x ,−y ,−t�. As a result, if u�x ,y , t� is an �M
N ,N�-soliton solution of KPII with M −N incoming and N outgoing line solitons, then u�−x ,

−y ,−t� is a �N ,M −N�-soliton solution of KPII where the numbers of incoming and outgoing line
solitons are reversed. It follows from Theorem 3.6 that the solution u�−x ,−y ,−t� should corre-
spond to some tau function �M−N,M�x ,y , t� associated with an M −N	M coefficient matrix whose
ivot and nonpivot columns uniquely identify the asymptotic line solitons of u�−x ,−y ,−t�.

Before proceeding further, we introduce the notion of an equivalence class which plays an
mportant role in subsequent discussions. Let 
 as in Definition 2.3 denote the set of all phase
ombinations �m1,. . .,mN

which appear with nonvanishing coefficients in the tau function ��x ,y , t� of
q. �2.2�.

Definition C.2 (Equivalence class): Two tau functions are defined to be in the same equiva-
ence class if (up to an overall exponential phase factor) the set 
 is the same for both. The set of
N− ,N+�-soliton solutions of KPII generated by an equivalence class of tau functions defines an
quivalence class of solutions.

It is clear from the above definition that tau functions in a given equivalence class can be
iewed as positive-definite sums of the same exponential phase combinations but with different
ets of coefficients. They are parametrized by the same set of phase parameters k1 , . . . ,kM, but the
onstants �m0 in the phase �m are different. Moreover, the irreducible coefficient matrices associ-
ted with the tau functions have exactly the same sets of vanishing and nonvanishing minors, but
he magnitudes of the nonvanishing minors are different for different matrices. Thus, it is evident
rom the remarks following Corollary 2.6 in Sec. II that the asymptotic line solitons of each
olution in an equivalence class arise from the same i→ j single phase transition, and are therefore
abeled by the same index pair �i , j�. Theorem 3.6 then implies that the coefficient matrices
ssociated with the tau functions in the same equivalence class have identical sets of pivot and
onpivot indices labeling the asymptotic line solitons as y→� and as y→−�, respectively. Thus,
olutions in the same equivalence class can differ only in the position of each asymptotic line
olitons and in the location of each interaction vertex. As a result, any �N− ,N+�-soliton solution of
PII can be transformed into any other solution in the same equivalence class by spatio-temporal

ranslations of the individual asymptotic line solitons. We refer to the two tau functions

N,M�x ,y , t� and �M−N,M�x ,y , t� as dual to each other if the solution u�−x ,−y ,−t� obtained from the
unction �N,M�−x ,−y ,−t� and the solution generated by �M−N,M�x ,y , t� are in the same equivalence
lass. Note that �N,M�−x ,−y ,−t� is not exactly a tau function according to Eq. �2.2�, but it is
ossible to construct from it a dual tau function �M−N,M�x ,y , t� whose coefficient matrix B can be
erived from the coefficient matrix A associated with the tau function �N,M�x ,y , t�. We describe
his construction below.

Since A is of rank N and in RRFF, it can be expressed as A= �IN ,G�P, where IN is the N
N identify matrix of pivot columns, G is the N	 �M −N� matrix of nonpivot columns, and P

enotes the M 	M permutation matrix of M columns of A. We augment A with M −N additional
ows to form the invertible M 	M matrix,

S = �IN G

O IM−N
�P , �C1�

here O is the �M −N�	N zero matrix and IM−N is the �M −N�	 �M −N� identify matrix. Let A�
e the �M −N�	M matrix obtained by selecting the last M −N rows of �S−1�T. The rank of A� is
M −N, and the following complementarity relation holds between A and A�.
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Lemma C.3: The pivot columns of A� are labeled by exactly the same set of indices which
abel the nonpivot columns of A, and vice versa. Moreover, if A is irreducible then A� is also
rreducible.

Proof: From Eq. �C1� and the fact that P−1= PT for a permutation matrix, we obtain

�S−1�T = � IN OT

− GT IM−N
�P , �C2�

hich implies that A�= �−GT , IM−N�P. Then �by performing row reduction in reverse order�, the
ivot columns of A�P−1 can be identified with its last M −N columns which correspond to the
onpivot columns of AP−1= �IN ,G�, and vice versa. The same correspondence between pivot and
onpivot columns also holds for A and A� because the columns of both matrices are permuted by
he same matrix P−1. This proves the first part of the lemma.

To establish that A� is irreducible, note first from Definition 2.2 that the permutation of
olumns preserves irreducibility of a matrix. Since A is irreducible, Definition 2.2 implies that all
ows or columns of G and GT are nonzero. Therefore the matrix A�P−1= �−GT , IM−N�, and hence
�, are both irreducible. �

Note that A� is not in the canonical RREF, but can be set in RREF by a GL �N ,R� transfor-
ation. Next, we define the matrix B which is also of rank M −N and irreducible like A�, and
hose columns are obtained from A� as

B�m� = �− 1�mA��m�, m = 1, . . . ,M . �C3�

hen using Eqs. �C2� and �C3�, the minors of A can be expressed in terms of the complementary
inors of B via �see, e.g., Ref. 6, p. 21�

A�l1, . . . ,lN� = �− 1�� det�P�B�m1, . . . ,mM−N� , �C4�

here �=M�M +1� /2+N�N+1� /2, and where the indices m1�m2� ¯ �mM−N are the comple-
ent of 1� l1� l2� ¯ lN in �1,2 , . . . ,M�. The matrix B plays the role of a coefficient matrix for

he dual tau function as given by the following lemma.
Lemma C.4 (Duality): If �N,M�x ,y , t� is the tau function associated with an irreducible N

M coefficient matrix A, then the matrix B defined via Eq. �C3� generates a tau function

M−N,M�x ,y , t� that is dual to �N,M�x ,y , t�.
Proof: Without loss of generality we choose the tau function �N,M�x ,y , t� associated with the

iven equivalence class of solutions such that �m,0=0 for all m=1, . . . ,M in Eq. �2.2�. Then, using
q. �C4� we can express the tau function as

�N,M�− x,− y,− t� = �− 1�� det�P�e−�1,. . .,M���x,y,t� , �C5a�

here

���x,y,t� = 	
1�m1�m2�¯�mM−N�M

V�l1, . . . ,lN�B�m1, . . . ,mM−N�e�m1,. . .,mM−N, �C5b�

ith V�l1 , . . . , lN� denoting the Van der Monde determinant as in Eq. �2.2� and where the sum
s now taken over the complementary indices m1 , . . . ,mM−N instead of l1 , . . . , lN. �The number
f terms in the sum remains the same since � M

N
�= � M

M−N
�.� It is clear from Eq. �1.2� that both

N,M�−x ,−y ,−t� and ���x ,y , t� in Eq. �C5a� generate the same solution u�x ,y , t� of KPII although
��x ,y , t� itself is not a tau function. Note that all the nonzero minors of B have the same sign,
hich is determined by the sign of �−1�� det�P��0. Thus, by replacing each Van der Monde

oefficient V�l1 , . . . , lN� by V�m1 , . . . ,mM−N� in Eq. �C5b�, it is possible to obtain from ���x ,y , t�, a
ew tau function �M−N,M�x ,y , t� associated with the irreducible coefficient matrix B. Since both
��x ,y , t� and �M−N,M�x ,y , t� are sign-definite sums of the same exponential phase combinations,
hey generate solutions that are in the same equivalence class. Therefore, the tau function
M−N,M�x ,y , t� constructed via the above prescription is dual to the tau function �N,M�x ,y , t�. This
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ields the desired result. �

By applying Lemma C.4, it is easy to show that part �i� of Theorem 3.6 implies part �ii� and
ice versa. For example, by applying part �i� of Theorem 3.6 to the tau function �M−N,M�x ,y , t� in
emma C.4 one can conclude that as y→�, �M−N,M�x ,y , t� generate a solution with exactly M
N line solitons, identified by the pivot indices g1 , . . . ,gM−N of the associated coefficient matrix B.
ne should however note that since the ordering of the pivot and nonpivot columns of B is

eversed with respect to that of A, if �i , j� with i� j labels an asymptotic line soliton generated by

M−N,M�x ,y , t� as y→�, then j is the pivot index, not i. The solution generated by �M−N,M�x ,y , t�
s in the same equivalence class as u�−x ,−y ,−t� because �M−N,M�x ,y , t� is dual to �M,N�x ,y , t�.
onsequently, as y→�, u�−x ,−y ,−t� has M −N asymptotic line solitons labeled by exactly the

ame indices g1 , . . . ,gM−N. Then as y→−�, it follows that the solution u�x ,y , t� generated by

N,M�x ,y , t� also has M −N asymptotic line solitons. Furthermore, these line solitons are labeled by
he same indices g1 , . . . ,gM−N which are the nonpivot indices of the coefficient matrix A of the tau
unction �N,M�x ,y , t�. This proves part �ii� of Theorem 3.6. Similarly, one could also prove part �i�
f the Theorem using part �ii� and Lemma C.4.

Another consequence of Lemma C.4 is that the dominant pairs of phase combinations for the
symptotic line solitons of �M−N,N�x ,y , t� as y→� are the complement of those for the asymptotic
ine solitons of the dual tau function �N,M�x ,y , t� as y→−�. Thus, if the dominant pair of phase
ombinations for �M−N,M�x ,y , t� as y→� along the line Li,j is given by �i,m2,. . .,mM−N

and

j,m2,. . .,mM−N
, the dominant phase combinations for �N,M�x ,y , t� as y→−� along Li,j are �i,l2,. . .,lN

nd � j,l2,. . .,lN
, where the index set �l2 , . . . , lN� is the complement of �i , j ,m2 , . . . ,mM−N� in

1 , . . . ,M�.
A particularly interesting subclass of �N− ,N+�-soliton solutions is obtained by requiring the

olutions u�x ,y , t� and u�−x ,−y ,−t� to be in the same equivalence class. Thus, this class of
olutions is generated tau functions which can be regarded as “self-dual.” The corresponding
olutions are the elastic N-soliton solutions of KPII, for which the amplitudes and directions of the

incoming line solitons coincide with those of the N outgoing line solitons. Hence, the set of
ncoming line solitons and the set of outgoing line solitons are both labeled by the same index
airs ��in , jn��n=1

N . Clearly, in this case we have N+=N−=N and M =2N. Some properties of the
lastic N-soliton solution have been studied in Ref. 12, and we will discuss several other properties
n a future presentation. Here we only mention one result which is a direct consequence of
heorem 3.6 and the above discussions:

Corollary C.5: A necessary condition for a set of index pairs ��in , jn��n=1
N to describe an elastic

-soliton solution is that the indices i1 , . . . , iN and j1 , . . . , jN form a disjoint partition of the
ntegers 1, . . . ,2N.

Proof: From part �i� of Theorem 3.6, the indices i1 , . . . , iN for the N asymptotic line solitons as
y→� label the pivot columns of A, and from part �ii� of Theorem 3.6, the indices j1 , . . . , jN for the

asymptotic line solitons as y→−� label the nonpivot columns of A. In order for the N
symptotic line solitons as y→−� to be the same as those as y→�, however, the index pairs
in , jn� must obviously be the same as y→ ±� for all n=1, . . . ,N. But the sets of pivot and
onpivot indices of any matrix are of course disjoint; hence the desired result. �

Note however that the condition in Corollary C.5 is necessary but not sufficient to describe an
lastic N-soliton solution. It is indeed possible to have N-soliton solutions where the index pairs
abeling the asymptotic line solitons as y→� and as y→−� form two different disjoint partition
f integers �1,2 , . . . ,2N�. Such N-soliton solutions are not elastic. See, for example, the 2-soliton
olution in Fig. 4�e�.
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A simple procedure is given to transform the Blasius equation into an Abel equation
of the second kind. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2176913�

In this Comment, we focus on the nonlinear ode

y� + �yy� − �y�2 = 0, �1�

here the prime denotes derivation with respect to the independent variable x, and �, � are
rbitrary constants. This equation describes similarity solutions of the Navier-Stokes equations,
orresponding to �axisymmetric� flows caused by the stretching of a flat boundary.1 For �=0, it
educes to the Blasius equation.2

Equation �1� has been investigated analytically in a recent work by Panayotounakos et al.,3 to
hich we refer for further details, such as the specification of the boundary conditions. The main

esults of Ref. 3 are �i� the transformation of �1� into an Abel equation of the second kind; �ii� the
efinition of a methodology for the construction of exact solutions to the Abel equation, and
onsequently, of exact solutions to �1�. Here we concentrate on the result at point �i�. This result
nvolves an elaborate procedure, that relies on first reducing �1�, through a sequence of admissible
unctional transformations, to a generalized Emden-Fowler equation, and then transforming the
atter equation into an Abel equation of the second kind. The authors note that this procedure is in
act quite general, and could also be applied to other important equations of mathematical physics,
uch as those for the Duffing and the Van der Pol nonlinear oscillators, the Kidder equation, etc.

A general approach is always commendable, but sometimes, when dealing with specific prob-
ems, simpler ad hoc approaches may be devised. The purpose of this Comment is to provide such
n approach for the problem at hand. We first notice that the substitution

y� =
df�y�

dy
, �2�

educes �1� to

d

dy
� ḟ f̈� + �y f̈ − � ḟ = 0, �3�

ith the overdot denoting derivation with respect to y. After a simple manipulation of the middle
erm on the left-hand side, �3� can be integrated once, yielding

ḟ f̈ + �y ḟ − �� + ��f = C , �4�

ith C an arbitrary constant. Note that in the special case �+�=0, �4� already has the form of an
˙
bel equation of the second kind, in the variable f .

47, 034101-1022-2488/2006/47�3�/034101/2/$23.00 © 2006 American Institute of Physics
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In the general case �+��0, a further step is needed to complete the reduction. In this case,
e may take C=0 in �4� �the addition of a constant to f would not modify y�, and set

z = y
ḟ

f
, w = A

y3

f
, �5�

ith A an arbitrary constant, to transform �4� into the Abel equation of the second kind

��� + � − �z�w − Az2�z − 1��
dw

dz
= Az�3 − z�w . �6�

iven a solution w�z� of the Abel equation �6�, one may solve �5� to get f�y�, and then �2� to
btain y�x�. However, finding exact solutions of �5� is likely to be difficult in practical cases, and
t is more convenient to construct a parametric representation of the solution, in analogy to what
s done in Ref. 3 �see Sec. 3, equations from �3.33� to �3.38��. It readily follows from �5�, �6�, and
2� that

y = y�z� = �wf

A
�1/3

, �7�

x = x�z� = C1 +
1

A2/3 � dz
w2/3

z2f4/3

df

dz
, �8�

ith f�z� given by

f�z� = exp�C2 + A� z2dz

�� + � − �z�w − Az2�z − 1�
� , �9�

nd C1, C2 integration constants.

1 C. Y. Wang, Phys. Fluids 27, 1915 �1984�.
2 H. Blasius, Z. Math. Phys. 56, 1 �1908�.
3 D. E. Panayotounakos, N. B. Sotiropoulos, A. B. Sotiropoulou, and N. D. Panayotounakou, J. Math. Phys. 46, 033101
�2005�.
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he Wigner-Weyl transformation and the quantum path
ntegral
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LCAM, Bat. 351, Centre Universitaire Paris-Sud, Orsay, 91405, France
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We show that the space of quantum states for a spinless particle possesses a �trivial�
fiber bundle structure B�F where B is the classical phase space. This geometric
point of view allows us to define a “quantum path integral” that connects quantum
observables with their classical counterparts. We show that this path integral re-
duces in fact to the Wigner-Weyl transformation. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2184768�

. INTRODUCTION

Among the different methods that have been developed to link classical and quantum formal-
sms, one of the most famous is the Wigner-Weyl transformation. This operation defines a one-
o-one correspondence between quantum operators A and functions in phase space a�p ,q� in such
way that the quantum evolution of a�p ,q� reduces to the classical one when � vanishes.1,2 In this

ramework quantization is mathematically a deformation of the Abelian algebra of functions in
hase space into a noncommutative algebra.3

In this paper we bring to the fore a geometric property of the quantum Hilbert space that
llows us to identify a part of the quantum space with the classical phase space. In fact we prove
hat the quantum space possesses a trivial fiber bundle structure B�F. The basis B is the classical
hase space, while the fiber F contains the quantum effects. The group of translation along the
asis B is the Weyl group: two fibers F� and F� �corresponding to projections � and � on the
asis� are linked by a Weyl transformation. Following this picture, we define the classical observ-
ble a��� corresponding to a quantum operator A as being some “averaged value” of A over the
ber F�. To represent this “averaged value,” we introduce a “quantum path integral” over the
bers, specifying the rules of calculation. We show that this intuitive definition leads us to the
igner-Weyl transformation.

The paper is organized as follows:

�i� The first section is devoted to the fiber bundle structure and related questions.
�ii� Then we introduce the “quantum path integral,” the rules of calculation and the first

consequences.
�iii� We show how this quantum path integral and the Wigner-Weyl transformation are linked

and we investigate some consequences.
�iv� Finally we conclude our paper.

Remark: In the following we restrict ourselves to the one dimension case. Moreover bold
etters stand for operators.

�
Electronic mail: bergeron@lcam.u-psud.fr
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I. FIBER BUNDLE STRUCTURE

. Definition

To be able to identify some classical structure into the “quantum world” H=L2�R�, we need
o specify how the basic quantum quantities �observables Q and P=−i��q� are connected with
lassical ones. Since quantum mechanics introduces intrinsic uncertainties, while classical me-

hanics ignore them, we can say that the classical equivalent of a �normalized� state ��̇� is the
oint of phase space �p ,q� with p= �� �P ��� and q= �� �Q ���. Of course these quantities do not
xist for any square integrable function ��L2�R�, so we restrict the space of functions to S,
here S is the set of C� functions with rapid decrease. Moreover we see that the space of interest

s not really the Hilbert space, but rather the set of projectors ��= �1/ ��̇�2� ������. So we define

= 	�� / �̇�S
. We define the projection � as

"�� � P, ����� = �Tr���P�,Tr���̇Q�� . �1�

o � is the projection from P onto the basis B which is in fact the classical phase space.
Now we define the fiber F0 as F0=�−1�	�0,0�
� and more generally Fp,q=�−1�	�p ,q�
�. If we

all 	Wp,q
 the Weyl group of unitary transformations

Wp,q = exp��i/ � �„Pq − Qp…� . �2�

e know that

Wp,q
† PWp,q = P − p and Wp,q

† QWp,q = Q − p . �3�

his implies

Fp,q = Wp,q
† F0Wp,q. �4�

e deduce that for any ��P ,W�����W����
† �F0. Then any element ��P is specified by the

air �b ,�0� where b= �p ,q��B and �0�F0. Then P is homeomorphic to the Cartesian product
�F0.

. Remark

This representation of P is instructive for the study of time evolution. Generally we have a
air �b�t� ,�0�t��, but special cases are interesting.

For example, if the Hamiltonian is H=P2 /2m+V�Q� where the potential V�Q� is at the most
uadratic, then the equations of motion for the observables P�t� and Q�t� are linear. So the
xpressions of P�t� and Q�t� are the classical ones �linear in P and Q� and the point �p�t� ,q�t��
ollows a classical trajectory, while the projector �0�t� evolves as �0�t�=U†�t��0U�t�. Then the
volution of classical quantities �expectation values of P and Q� does not depend on the evolution
f quantum effects represented by �0�t�. But if the potential V�Q� is more than quadratic, modi-
cations on the classical behavior of �p�t� ,q�t�� appear due to quantum effects.

Another example is the case of eigenstates. If we start with a bound eigenstate of H then
p�t� ,q�t��= �0,q0� and �0�t�=�0. So a bound eigenstate looks like a classical equilibrium point.

II. CLASSICAL OBSERVABLES AND THE QUANTUM PATH INTEGRAL

. Definition

If A is a quantum observable and if ���P is the state, since classical mechanics ignore
uantum uncertainties, we should say that Tr���A� is the corresponding classical value of A. But
ince classical mechanics is only sensitive to the values of p and q, it does not distinguish the
tates ���Fp,q. So we have in fact an infinity of values for Tr���A� corresponding to a unique

lassical point. So we can think that the true classical value is some “averaged value” of Tr���A�
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ver Fp,q. To implement this idea we introduce a symbolic “quantum path integral” over P with
he notation �D	�
 and we give the following axioms:

�i� The classical expression C�A��p ,q�= Ã�p ,q� of the observable A is given by

Ã�P,q� =� D	�
	�P − �P���	�q − �Q����A��, �5�

where �O��=Tr��O�. The distributions 	 specify the “integration” over Fp,q.
�ii� We assume that the “measure” D	�
 is real �but not necessarily positive� in order to

transform self-adjoint operators into real functions, then C�A†��p ,q�=C�A��p ,q�*.
�iii� Since the group of symmetry in the quantum space is the unitary group, we assume that

the “measure” D	�
 is invariant under these transformations,

D	U†�U
 = D	�
 if U†U = UU† = 1H. �6�

�iv� The condition of “normalization,”

� D	�
	��P���	��Q��� = 1, �7�

stipulates that the “integral” over the fiber F0 is equal to 1.

Remarks: Following our definition, the path integral over P is limited to projectors �� with
�S. So the invariance of the “measure” under unitary transformations must be limited to

ransformations that leave S invariant.
Furthermore, in this paper we do not assume that the path integral is really an integral in the

athematical meaning of the word. We think that the symbol �D	�
 rather corresponds to a
ra-ket of duality as for �	 ,
�=�dx 	�x�
�x�. But this is not a real problem if we understand the
ymbol �D	�
 as a convenient notation and if the axioms are sufficient to give effective rules of
alculation �with no contradiction�. A rigorous mathematical approach probably involves some
eneralization of Gleason theorem.4

Last, our definition of classical counterparts for quantum observables seems to introduce
osses of information since we perform some “average.” As we will see later this is not true.

. Consequences

. First relations

Introducing the invariance of the “measure” for Weyl transformations �Wp,q� into the expres-

ion of Ã�p ,q�, and taking into account Eq. �3�, we find

Ã�p,q� =� D	�
	�p + p0 − �P���	�q + q0 − �Q����Wp0,q0

† AWp0,q0
��. �8�

e deduce

Ã�p − p0,q − q0� =� D	�
	�p − �P���	�q − �Q����Wp0,q0

† AWp0,q0
��. �9�

e recover that the translation of quantum observables by the Weyl group corresponds to a
lassical translation in phase space,

C�Wp0,q0

† AWp0,q0
��p,q� = C�A��p − p0,q − q0� . �10�
The same calculation with the parity KP gives
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Ã�− p,− q� =� D	�
	�p − �P���	�q − �Q����KP
†AKP��. �11�

o,

C�KP
†AKP��p,q� = C�A��− p,− q� . �12�

For the unitary group of rescaling R�=exp��i� /2� ��PQ+QP�� we obtain

C�R�
†AR���p,q� = C�A��e�p,e−�q� , �13�

ince R�
†PR�=e�P and R�

†QR�=e−�Q.
The invariance for Weyl transformations applied to the condition of normalization gives

1 =� D	�
	�p − �P���	�q − �Q��� . �14�

n the one hand, this equation says that the “integral” over each fiber Fp,q is equal to 1, on the
ther hand, if we notice that Tr��1H�=1, this equation means that the classical representation of
he identity operator 1H is 1,

C�1H��p,q� = 1. �15�

Now if we replace the general observable A by P or Q and we take into account the 	 in the
ntegral, we find

� D	�
	�p − �P���	�q − �Q����P�� = p ,

�16�

� D	�
	�p − �P���	�q − �Q����Q�� = q .

hen the classical representation of P is p and the classical representation of Q is q,

C�P��p,q� = p and C�Q��p,q� = q . �17�

Let us prove that these relations can be extended to more complicated functions of P or Q.
We define the function f��p ,q�=C�ei�P��p ,q�. Thanks to Eqs. �3� and �10� we obtain

f��p − p0,q − q0� = e−i�p0f��p,q� . �18�

he case p0=0 tells us that f��p ,q−q0�= f��p ,q�, then f� is in fact independent of q. So
f��p ,q�=g��p� and g� verifies g��p− p0�=e−i�p0g��p�. We deduce that g��p�=C���ei�p, so

C�ei�P��p,q� = C���ei�p. �19�

oreover the rescaling operators R� give C�R�
†ei�PR��=C�exp�i�e�P��, then using Eq. �13�, we

nd that C���=C��e��. We deduce C���=lim�→−� C��e��=C�0�. But C�0�=1 because C�1H�=1
nd we obtain

C�ei�P��p,q� = ei�p. �20�

y Fourier transform we can extend this result to any operator f�P�,

C�f�P���p,q� = f�p� . �21�

The same reasoning is possible for operators f�Q� and
C�f�Q���p,q� = f�q� . �22�
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Finally, we introduce the self-adjoint operator � by the formula

� =� D	�
	��P���	��Q���� , �23�

nd we define �p,q=Wp,q
† �Wp,q. The invariance of the measure D	�
 under Weyl translations

hows that

�p,q =� D	�
	�p − �P���	�q − �Q���� . �24�

hen the path integral expression C�A��p ,q� reduces to

C�A��p,q� = Tr��p,qA� . �25�

Remark: We notice that the operator � must be bounded if we want that �
 �� �
�=Tr�� �
�
�
 � � exists for any 
�H.

Furthermore, the invariance of D	�
 under unitary transformations gives

U†�U =� D	�
	��U†PU���	��U†QU���� . �26�

his implies that � must be invariant under different transformations because of the 	 distribu-
ions. Under parity we have KP

†PKP=−P and KP
†QKP=−Q, then KP

† �KP=�. Under rescaling we
ave R�

†PR�=e�P, and R�
†QR�=e−�Q then R�

†�R�=� again. Finally under the operators Ut

exp��−�i� t /2m�P2� of free evolution, we have Ut
†PUt=P and Ut

†QUt=Q+Pt /m, so Ut
†�Ut=�.

We conclude that � must be invariant �at least� under the following family of unitary trans-
ormations 	KP ,R� ,Ut
.

. Relations with integrals on phase space

If we multiply Eq. �14� by a�p ,q� and we perform integration on p and q we obtain

� D	�
a��P��,�Q��� =� dp dq a�p,q� . �27�

Moreover if we have two operators A, B with their classical counterparts Ã�p ,q� , B̃�p ,q�, and

f we multiply the expression of Ã�p ,q� by the function B̃�p ,q�, after an integration on p and q we
btain

� D	�
B̃��P��,�Q����A�� =� dp dq B̃�p,q�Ã�p,q� . �28�

ince this expression is invariant by the exchange of Ã and B̃, we deduce

� D	�
B̃��P��,�Q����A�� =� D	�
Ã��P��,�Q����B��. �29�

To go further, we must be able to specify the operator �.

V. THE QUANTUM PATH INTEGRAL AND THE WIGNER-WEYL TRANSFORMATION

. The Wigner-Weyl transformation revisited

From the symmetry properties already analyzed, we know that the bounded self-adjoint op-
rator � is invariant under the family of unitary transformations 	KP ,R� ,Ut
. So what are the

ossible �? In fact the solution is
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� = Z11H + 2Z2KP, �30�

here Z1 and Z2 are real numbers. We differ the proof to the appendix since it is rather technical.
The constant Z1 leads to a constant contribution to �p,q that can be eliminated, then we choose

1=0.
Let us define �=2KP and �p,q=Wp,q

† �Wp,q, then �p,q=Z2�p,q. A direct calculation shows
hat

Tr��p�,q�
†

�p,q� = Tr��p�,q��p,q� = 2� � 	�p� − p�	�q� − q� . �31�

oreover for any operator A,

Tr��p,qA� =� dx e−�i/��pxq + � x

2
�A�q −

x

2
� . �32�

hen Tr��p,qA� corresponds to the Wigner-Weyl transformation.
Furthermore our classical mapping A→C�A� verifies C�A��p ,q�=Tr��p,qA�, then C�A��p ,q�

Z2 Tr��p,qA�. But we know that C�1H�=1, so Z2
−1=Tr��p,q� and we deduce that Z2=1 from

r��p,q�=1. We conclude that �p,q=�p,q and the classical mapping A→C�A� is exactly the
igner-Weyl transformation.

So our axioms for the path integral uniquely define the symbol �D	�
 for “integrals” involv-
ng functions �→b��P�� , �Q����A��.

Moreover, Eq. �24� implies

� D	�
	�p − �P���	�q − �Q���� = �p,q. �33�

Furthermore, we have the following expression of the path integral:

� D	�
	�p − �P���	�q − �Q����A�� = Tr��p,qA� . �34�

In turn these relations induce new properties for the path integral.

. Consequences for the path integral

Taking into account Eq. �33� we find

A =
1

2��
� D	�
Ã��P��,�Q���� with Ã�p,q� = Tr��p,qA� . �35�

Multiplying Eq. �34� by B̃�p ,q� associated with the quantum observable B, we find after
ntegration

� D	�
B̃���P���,�Q����A�� = 2� � Tr�BA� . �36�

We can exchange A and B so

� D	�
Ã��P��,�Q����B�� = 2� � Tr�BA� . �37�
Specially if B is the identity, then b=1, so
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� D	�
�A�� =� D	�
Ã���P���,�Q��� = 2� � Tr�A� . �38�

This implies

� D	�
��A,B��� = 0. �39�

Using Eqs. �27� and �28� and Eqs. �36� and �38� we recover the well-known relations

� dp dq

2��
Ã�p,q� = Tr A and � dp dq

2��
Ã�p,q�B̃�p,q� = Tr�AB� . �40�

Always from Eqs. �29�, �36�, and �38�, we have

� D	�
�AB�� =� D	�
Ã���P���,�Q����B�� �41�

r

� D	�
�AB�� =� D	�
�A��B̃���P���,�Q��� . �42�

Finally Eq. �36� presents a special interest when we are looking for expectation values. If we

ssume that D is a density operator with a classical counterpart D̃�p ,q� then

Tr�DA� =
1

2��
� D	�
D̃���P���,�Q����A��. �43�

he probability law appears thanks to the classical function D̃�p ,q�, while the observable is
epresented by the quantum quantity �A��. This expression is very close to a classical formula of
xpectation value, but with an “integral” over quantum space.

. CONCLUSION

Thanks to the structure of the fiber bundle, we have introduced an intuitive definition for the
lassical counterparts of quantum observables, using a “quantum path integral.” The path integral
ormulation reveals hidden properties of the Wigner-Weyl transformation that in turn gives special
elations for the path integral. Moreover we remark that while the Feymann path integral allows us
o calculate quantum amplitudes by integration over classical trajectories, this new path integral
llows us to define classical quantities by integration over quantum states. Of course the math-
matical nature of the notation �D	�
 remains unspecified and this needs a special study.

PPENDIX

In this appendix we will prove the uniqueness of � verifying the conditions: � is a bounded
elf-adjoint operator invariant under 	KP ,R� ,Ut
. To investigate the solutions, we use the Wigner-
eyl transformation �with the notations previously introduced�.

Let us assume that A is a bounded self-adjoint operator invariant under KP and R� with a
lassical counterpart a�p ,q�=Tr��p,qA�.

We know that a�p ,q� can be a distribution, but since distributions are limits of functions we
rst investigate the case where a�p ,q� is a function. The hypothesis for A are translated into the
ollowing properties of a:

a�p,q� is real and even, a�e�p,e−�q� = a�p,q� . �A1�
his implies that
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a�p,q� = F�pq� with F real. �A2�

For convenience, let us write F as a Fourier transform,

af�p,q� =� d�

���
f���exp�− 2i

pq

��
� , �A3�

ith f�−��*= f���.
The corresponding operator A f is obtained with the formula due to the Wigner-Weyl transfor-

ation

� dp dq

2��
af�p,q��p,q. �A4�

his relation gives

A f =� d� f��� � dk

2�
��� − 1�k���� + 1�k� , �A5�

here the kets �k� verify P �k�= �k �k� and �k �k��=2�	�k−k��.
Let us introduce the operators �� defined as

�� =� dk

2�
��1 − ��k���� + 1�k� , �A6�

e notice that �1/�= �� �Kp��.
If we divide the � domain into �� � �1 and �� � 1 in Eq. �A5� we obtain

A f = KP�
����1

d� f����� + �
���1

d�

���
f����1/�. �A7�

hen if we define the independent functions f1 and f2 by f1���= f��� for �� � �1 and f2�1/��
�� � f��� for �� � 1 we obtain

A f = KP�
����1

d� f1����� + �
����1

d� f2�����. �A8�

Moreover we want A f to be invariant under Ut=exp�−�i� t /2m�P2�. This is equivalent to the
ondition�P2 ,A f�=0. But from the previous expression of �� we deduce

�P2,��� = − 4�� dk

2�
��k�2��1 − ��k���� + 1�k� . �A9�

o the condition �P2 ,A f�=0 is equivalent to �f1���=�f2���=0 and then f1���=C1	��� and
f2���=C2	���. Replacing f1 and f2 into the expression of A f, we find A f =C1KP+C21H since

0=1H. Finally since A f is self-adjoint C1 and C2 must be real.

1 H. Weyl, Z. Phys. 46, 1 �1927�; E. P. Wigner, Phys. Rev. 40, 749 �1932�; G. A. Baker, Jr., ibid. 109, 2196 �1958�; J. E.
Moyal, Proc. Cambridge Philos. Soc. 45, 99 �1949�.

2 N. L. Balazs and B. K. Jennings, Phys. Rep. 104, 347 �1984�; M. Hillery, R. F. O’Connel, M. Scully, and E. P. Wigner,
ibid. 106, 121 �1984�.

3 F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, Ann. Phys. 110, 111 �1978�; 111, 61 �1978�; M.
Flato, A. Lichnerowicz, and D. Sternheimer, Compos. Math. 31, 41 �1975�.

4 A. Gleason, J. Math. Mech. 6, 885 �1957�; for review G. Auletta, Foundations and Interpretation of Quantum Mechanics
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We consider a classical Hamiltonian H on R2d, invariant by a finite group of

symmetry G, whose Weyl quantization Ĥ is a self-adjoint operator on L2�Rd�. If �

is an irreducible character of G, we investigate the spectrum of its restriction Ĥ� to
the symmetry subspace L�

2�Rd� of L2�Rd� coming from the decomposition of Peter-
Weyl. We give reduced semiclassical asymptotics of a regularized spectral density

describing the spectrum of Ĥ� near a noncritical energy E�R. If �Eª �H=E� is
compact, assuming that periodic orbits are nondegenerate in �E /G, we get a re-
duced Gutzwiller trace formula which makes periodic orbits of the reduced space
�E /G appear. The method is based upon the use of coherent states, whose propa-
gation was given in the work of Combescure and Robert. © 2006 American Insti-
tute of Physics. �DOI: 10.1063/1.2184890�

. INTRODUCTION

The purpose of this work is to give a Gutzwiller trace formula for a reduced quantum Hamil-
onian in the framework of symmetries given by a finite group G of linear applications of the
onfiguration space Rd. This semiclassical trace formula will link the reduced spectral density to
eriodic orbits of the dynamical system in the classical reduced space, i.e., the space of G-orbits.
Results of this paper were presented without proof in a Note aux Comptes Rendus �see Ref. 3�.�

The role that symmetry plays in quantum dynamics appeared since the beginning of the
heory, and was emphasized by Hermann Weyl in the book. “The theory of groups and quantum

echanics” �Ref. 28�. Pioneering physical results were given for models having a lot of symme-
ries. In the mathematical domain, first systematical investigations were done in 1978–1979,
ainly for the eigenvalues counting function of the Laplacian on a Riemannian compact manifold

imultaneously by Donnelly and Brüning and Heintze �see Refs. 2 and 7�. Later, Guillemin and
ribe described the relation with closed trajectories in Refs. 12 and 13. In Rd, a general study was
one in the early 1980s for globally elliptic pseudodifferential operators, both in cases of compact
nite and Lie groups, by Helffer and Robert �see Refs. 15 and 16� for high energy asymptotics,
nd later by El Houakmi and Helffer in the semiclassical setting �see Refs. 9 and 10�. Main results
ere then given in terms of reduced asymptotics of Weyl type for a counting function of eigen-
alues of the operator. Here, in a semiclassical study with a finite group of symmetry, we want to
o one step beyond Weyl formulas, investigating oscillations of the spectral density, and estab-
ishing a Gutzwiller formula for the reduced quantum Hamiltonian. The case of a compact Lie
roup will be carried out in another paper �see Ref. 4�.

Without symmetry, in 1971, Gutzwiller published for the first time his trace formula linking

emiclassically the spectrum of a quantum Hamiltonian Ĥ near an energy E, to periodic orbits of
he classical Hamiltonian system of H on R2d, lying in the energy shell �Eª �H=E�. This was one
f the strongest illustrations of the so-called correspondence principle. Later, mathematical proofs

�
Electronic mail: cassanas@math.univ-nantes.fr

47, 042102-1022-2488/2006/47�4�/042102/23/$23.00 © 2006 American Institute of Physics
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ere given �see, for example, Refs. 20, 21, 19, and 8�, using various techniques like wave
quation, heat equation, microlocal analysis, and more recently wave packets �see Ref. 5�.

Coming back to classical dynamics, let H :R2d→R be a smooth Hamiltonian with a finite
roup of symmetry G, such that H is G-invariant, i.e., suppose that there is an action M from G
nto Sp�d ,R�, the group of symplectic matrices of R2d, such that

H�M�g�z� = H�z�, " g � G, " z � R2d. �1.1�

he Hamiltonian system associated to H is

żt = J � H�zt�, where J = � 0 Id

− Id 0
� . �1.2�

n the framework of symmetry, specialists in classical dynamics are used to investigate this system
n the space of G-orbits: R2d /G, also called the reduced space.

Here, for a quantum study with symmetry, it is therefore natural to expect a reduced
utzwiller formula, linking semiclassically the spectrum of the reduced quantum Hamiltonian
ear the energy E to periodic orbits of the reduced classical dynamical system on �E /G.

We now briefly describe our main result. First, we introduce our quantum reduction. We
ollow the same setting as in papers by Helffer and Robert:15,16 let H :R2d→R be a smooth
amiltonian and G a finite subgroup of the linear group Gl�d ,R�. If g�G, we set

M�g��x,�� ª �gx, tg−1�� �1.3�

nd we assume that H is G-invariant as in �1.1�. As usual, we make suitable assumptions—see
3.5�—to have nice properties for the Weyl quantization of H �as functional calculus�, which is
efined as follows: for u�S�Rd�,

Oph
w�H�u�x� = �2�h�−d	

Rd
	

Rd
e�i/h��x−y��H� x + y

2
,��u�y�dy d� . �1.4�

n particular, Oph
w�H� is essentially self-adjoint on S�Rd� and we denote by D�Ĥ�, Ĥ its self-adjoint

xtension.

G acts on the quantum space L2�Rd� by M̃ defined for g�G by

M̃�g��f��x� = f�g−1x�, " f � L2�Rd�, " x � Rd. �1.5�

f � is an irreducible character of G, we set d�ª��Id�. Then, we define the symmetry subspace

�
2�Rd� associated to �, by the image of L2�Rd� by the projector

P�ª
d�

G
 �g�G

��g�M̃�g� , �1.6�

2�Rd� splits into a Hilbertian sum of L�
2�Rd�’s �Peter-Weyl decomposition�, and the property �1.1�

mplies that each L�
2�Rd� is stable by Ĥ. Our goal is to give semiclassical trace formulas for the

estriction Ĥ� of Ĥ to L�
2�Rd�, which will be called the reduced quantum Hamiltonian. We define

he following reduced regularized spectral density:

G��h� ª Tr���Ĥ��f�E − Ĥ�

h
�� , �1.7�

here � is smooth, compactly supported in a neighborhood �E−�E ,E+�E� of E�R��E�0� such

hat H−1��E−�E ,E+�E�� is compact ���Ĥ�� is an energy cutoff which is trace class�, f is smooth

nd f̂ �the Fourier transform of f� is compactly supported in R. The case where Supp� f̂� is

ocalized near zero is the one that leads to the Weyl formulas, and gives an asymptotic expansion

                                                                                                            



o

o

�
d
a
�

t

I
�

f
I

�
n

t
c
e

w

d

w
E
s
G

G

a

F

a

a
u
a
c
fi
T
t
fl

042102-3 Reduced Gutzwiller formula with symmetry J. Math. Phys. 47, 042102 �2006�

                        
f the counting function of Ĥ� �see Theorem 4.5, Corollary 4.7�. Here we want to focus on the

scillating part of G��h�. Thus we suppose that 0�Supp� f̂�.
In order to state the theorem in terms of the reduced space, we need a smooth structure on

E /G, and thus we suppose that the group acts freely on �E, so that dynamics of H on �E would
escend to the quotient. Note that this is not an essential assumption, since we have proved the
symptotic without this hypothesis �see Theorem 4.8�. The following result involves the quantity
�g�̄�, defined as follows.

If � denotes the projection on the quotient and �̄ is a periodic orbit in �E /G if ����= �̄, then,
here is only one g� in G such that, "z��, M�g��	T

�̄
*�z�=z, where T�̄

* is the primitive period of �̄.

f ���1�=���2� then g�1 and g�2 are conjugate elements of G, and we denote by ��g�̄� the quantity
�g�1�=��g�2�.

In order to have a finite number of periodic orbits of the reduced space involved in the trace
ormula, we will suppose that periodic orbits of �E /G are non-degenerate, in the following sense:
f �̄ is a periodic orbit of �E /G, with primitive period T�̄

*, and if n�Z* is such that nT�̄*

Supp� f̂�, then 1 is not an eigenvalue of the differential of the Poincaré map P�̄ of �̄ in �E /G at
T�̄* :ker��dP�̄�n− Id�= �0�. Then we have the following result.

Theorem 1.1: Under previous assumptions, suppose that the group G acts freely on �E and
hat periodic orbits of �E /G are non–degenerate in the sense given above. We then have a
omplete asymptotic expansion of G��h� in powers of h, modulo an oscillating factor of the form
i�
/h� as h→0+ (see Theorem 4.8 for details). The first term is given by

G��h� = d���E� �
�̄ periodic

orbit of �E/G

�
n�Z*s.t.

nT�̄
*�Suppf

f̂�nT�̄
*���g�̄

n�e�i/h�nS�̄
T�̄

*ei��/2���̄,n

2�
det�dP�̄�n − Id
1/2 + O�h� ,

here S�̄ª�0
T�̄

*

psq̇sds, P�̄ is the Poincaré map of �̄ in �E /G, and ��̄,n�Z. Other terms in O�h� are

istributions at f̂ , with support in the set of periods of orbits in �E /G.

Remark 1: The case with 0�Supp� f̂� could have been included in the preceding theorem, and
e would get a Weyl term in addition to this oscillating part. This term was already described by
l Houakmi �see Ref. 9� for the leading contribution. See also Theorem 4.5, where we obtain
lightly more detailed asymptotics for this Weyl part, by calculating the contribution of each g in
.

Remark 2: One could also consider a symmetry directly given in phase space Rd�Rd, and set
as a finite subgroup of Sp�d ,R�. Then we would have to suppose that there exists a unitary

ction M̃ :G→L�L2�Rd�� which is metaplectic, i.e., satisfies

M̃�g�−1 Oph
w�H�M̃�g� = Oph

w�H � g�, for all g in G . �1.8�

or a fixed g, there is always some M̃�g� satisfying �1.8�, but it is not unique �multiply M̃�g� by

complex of modulus 1�. The difficulty is to find a M̃ that is also a group homomorphism.
The method used is close to the one of Ref. 5: unlike papers previously quoted, which used an

pproximation of the propagator exp�−i�t /h�H� by some FIO following the WKB method, we will
se here the work of Combescure and Robert on the propagation of coherent states. This method
voids problems of caustics and looks simpler to us. Moreover, the symmetry behaves well with
oherent states, and we get very pleasant formulas �see �3.10��. Thanks to these wave packets, we
rst reduce the problem to an application of the generalized stationary phase theorem �Sec. III�.
hen we find minimal hypotheses for the critical set to be a smooth manifold, and to ensure that

he transverse Hessian of the phase is nondegenerate. These hypotheses will be called G-clean

ow conditions, and we get a theoretical asymptotic expansion of G��h� under these assumptions
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Theorem 4.4�. Finally, as in the particular cases, we will show that these conditions are fulfilled

n the one hand when f̂ is supported near zero �Weyl term Theorem 4.5�, and on the other hand
hen periodic orbits are nondegenerate �oscillating term, Theorem 4.8�. In both cases, we calcu-

ate geometrically first terms of the asymptotic expansion, to make quantities of the reduced
lassical dynamics appear, as the energy level, periodic orbits and the Poincaré map. The symme-
ry of periodic orbits plays an important part in the result.

We found strong motivation in the work of physicists Lauritzen, Robbins, and Whelan.17,18,23

I. QUANTUM REDUCTION

. Symmetry subspaces

We recall some basic facts on representations �see Refs. 26 and 27 or 22�. A representation
:G→Gl�E� of the group G on a finite dimensional complex vector space E is said to be irre-
ucible if there is no nontrivial subspace of E stable by �g�, for all g in G. The character

 :G→C of a representation is defined by ��g�ªTr��g��, for g�G. The degree of the repre-
entation  is denoted by d� and is the dimension of E. Two such representations are isomorphic

f and only if they have the same character. We will denote by Ĝ the set of all irreducible

haracters, that is the set of characters of irreducible representations. Moreover, G finite implies Ĝ
nite.

A representation M̃ of G on a Hilbert space is said to be unitary if each M̃�g� is a unitary

perator. This is the case of our representation M̃ on the Hilbert space L2�Rd� defined by �1.5�
ince 
det�g�
=1. One can easily check that M̃ is strongly continuous. Then, the Peter-Weyl
heorem �see Refs. 27 or 22� says that if one set L�

2�Rd�ªP��L2�Rd��, where P� is defined by
1.6�, then the P�’s are orthogonal projectors of sum identity, and we have the Hilbertian decom-
osition,

L2�Rd� = �

��Ĝ

�

L�
2�Rd� . �2.1�

urthermore, if �� G̃, then any irreducible subrepresentation of M̃ in L�
2�Rd� is of character �, and

decomposition having such a property is unique. These L�
2�Rd�’s will be called here the symmetry

ubspaces.
One must think of them as a certain class of functions of L2�Rd� having a certain symmetry

inked to G and �. For example, if G= �±IdRd�, then we have two irreducible characters �+ and �−

uch that L�+

2 �Rd� is the set of even functions of L2�Rd�, and L�−

2 �Rd� is the set of odd functions.
ore generally, if � is a character of degree 1, then � is multiplicative, and we have

L�
2�Rd� = �f � L2�Rd�: " g � G,M̃�g�f = ��g�f� .

his is in particular the case for Abelian groups. If G�d is the symmetric group of permutation
atrices acting on Rd, then there is at least two characters of degree 1: �0, the trivial character

always equal to 1�, and the signature �. Thus we get

L�0

2 �Rd� = �f � L2�Rd�: " � � G, f�x��1�, . . . ,x��d�� = f�x1, . . . ,xd�� ,

L2�Rd� = �f � L2�Rd�: " � � G, f�x , . . . ,x � = ����f�x , . . . ,x �� .
� ��1� ��d� 1 d
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. Reduced Hamiltonians

It is easy to check on the formula �1.4� that we have on S�Rd�,

M̃�g�−1 Oph
w�H�M̃�g� = Oph

w�H � M�g��, " g � G . �2.2�

hus we see that the property of G-invariance �1.1� is equivalent to the commutation of Ĥ with all

M̃�g�. In particular, it implies that Ĥ commutes with all P�’s, and thus, L�
2�Rd� is stable by Ĥ. We

an then define the operator that we plan to study: if �� Ĝ, set

D�Ĥ�� ª L�
2�Rd� � D�Ĥ� .

he restriction Ĥ� of Ĥ to L�
2�Rd� is called the reduced quantum Hamiltonian, and is a self-adjoint

perator on the Hilbert space L�
2�Rd�. If f :R→C is Borelian, then we have

�f�Ĥ�,P�� = 0, D�f�Ĥ��� = D�f�Ĥ�� � L�
2�Rd�, f�Ĥ� = �

��Ĝ

f�Ĥ��P�,

f�Ĥ�� is the restriction of f�Ĥ� to L�
2�Rd�. Last, if ��A� denotes the spectrum of a self-adjoint

perator A, then we have ��Ĥ�=���Ĝ��Ĥ��. Moreover, the following trace formula will be
ssential for the rest of this paper.

If f :R→R is Borelian, and if f�Ĥ� is trace class on L2�Rd�, then, for all �� Ĝ, f�Ĥ�� is trace
lass on L�

2�Rd� and

Tr�f�Ĥ��� = Tr�f�Ĥ�P�� . �2.3�

ndeed, by completing a Hilbertian basis of L�
2�Rd� into one of L2�Rd�, we have that 
f�Ĥ��
1/2 is

ilbert-Schmidt, i.e., f�Ĥ�� is trace class. Moreover the equality of traces is easily obtained by

oting that if ��0, then Ker�f�Ĥ� � P�−��=Ker�f�Ĥ��−��.

. Interpretation of the symmetry

The investigation of Ĥ� provides informations on the spectrum of Ĥ.

Lemma 2.1: If �� Ĝ then eigenvalues of Ĥ� have a multiplicity proportional to d�.

Indeed, if F�L�
2�Rd� is an eigenspace of Ĥ�, then it is M̃-invariant. One can decompose it into

rreducible representations By the Peter-Weyl theorem, the only irreducible representation appear-

ng is the one of character �, and thus is of dimension d�. In particular, the operator Ĥ� provides

lower bound for the multiplicity of some eigenvalues of Ĥ.

Another remark: by splitting an eigenfunction of Ĥ on the symmetry subspaces, we get at least

n eigenvector in one L�
2�Rd�. This means that each eigenspace of Ĥ contains an eigenfunction

aving a certain symmetry. As it is well known for the double-well potential �G= �±Id��, where
igenspaces are of dimension 1, this leads to an alternance of even/odd eigenspaces related to
unneling effect.

If N��I� denotes the number of eigenvalues of Ĥ� �with multiplicity� in an interval I of R, and

�I� the one of Ĥ, then the quantity N��I� /N�I� can be thought as the proportion of eigenfunctions

f symmetry � among those corresponding to eigenvalues of Ĥ.

. Examples

We give a few examples of Schrödinger Hamiltonians with a finite group of symmetry:

2
H�x,�� ª 
�
 + V�x� .
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1� G= �±Id�: Double well V�x�= �x2−1�2, harmonic or quadratic oscillator V�x�=x2 or x4, the

well on the island V�x�= �x2+a�e−x2
�a�0�. For the two first examples, V�x�→+�+�, so Ĥ is

essentially self-adjoint on S�R� and with compact resolvent.
2� G�2, d=2. Any potential satisfying V�x ,y�=V�y ,x�.
3� Group of isometries of the triangle, d=2: V�x ,y�= 1

2 �x2+y2�2−xy2+ 1
3x3, which in polar

coordinates is Ṽ�r ,��=V�r cos � ,r sin ��= 1
2r2+ 1

3r3 cos�3�� �see also the Hénon-Heiles po-
tential: V�x ,y�= 1

2 �x2+y2�−xy2+ 1
3x3, but one must look for the self-adjointness of this op-

erator�.
4� Group of isometries of the square, d=2: V�x ,y�= 1

2x2y2.
5� G�Z /2Z�d: harmonic oscillator with distinct frequencies: V�x�= �Sx ,x�Rd, with S symmetric

positive definite matrix with eigenvalues pairwise distincts. In this case, Ĥ is still essentially
self-adjoint on S�Rd� and with compact resolvent. This is one of the few cases where we can
calculate periodic orbits of the dynamical system.

II. REDUCTION OF THE PROOF BY COHERENT STATES

We adapt here the method of Ref. 5. The essential tool is the use of coherent states. We refer
o the Appendix where we recall basic things about it �see also Refs. 5 and 6�. Note that, by an
veraging argument �see Lemma 4.6�, we could suppose that the group G is composed of isom-
tries. For the moment, we still use the general expression of �1.3�, to keep in mind the symplectic
orm of M�g�. We suppose that � and f are in S�R� such that Supp���� �E−�E ,E+�E� and the

ourier transform f̂ of f is with compact support. We know from Refs. 14 and 24, that, under

ypothesis �3.5�, ��Ĥ� is trace class for small h, and, by formula �2.3�, we have

G��h� = Tr���Ĥ��f�E − Ĥ�

h
�� =

d�

G
 �g�G

��g�Ig�h� ,

here

Ig�h� ª Tr���Ĥ�f�E − Ĥ

h
�M̃�g�� . �3.1�

hen, by Fourier inversion, we make the h-unitary quantum propagator Uh�t�ªe−i�t/h�Ĥ appear,
nd write

Ig�h� =
1

2�
	

R
ei�tE/h� f̂�t�Tr���Ĥ�Uh�t�M̃�g��dt . �3.2�

hen we use the trace formula with coherent states—see �5.5�—to write

Ig�h� =
�2�h�−d

2�
	

R
	

Ra
2d

ei�tE/h� f̂�t�mh�
,t,g�d
 dt , �3.3�

here

mh�
,t,g� ª �Uh�t��
;M̃�g�−1��Ĥ��
�L2�Rd�. �3.4�

sing an expansion of the type �3.6�, with the same proof as in Ref. 5, we get the following

emma.
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Lemma 3.1: There exists a compact set K in R2d such that

	
R2d\K


mh�
,t,g�
d
 = O�h+��

niformly with respect to g�G and t�R.
We can then suppose that �Eª �H=E� is included in K, and choose a real cutoff function �1,

ompactly supported in R2d and equal to 1 on K. Then, we classically write 1=�1+ �1−�1� in
3.3�, and settle problems at infinity in 
. Besides, we want to use the functional calculus of

elffer and Robert14,24 for the description of ��Ĥ�. Thus we make the following hypothesis: $C
0, $C
�0, $m�0 such that

�H�z�� � C�H�z����z − z��m, " z,z� � R2d,


�z

H�z�
 � C
�H�z��, " z � R2d, " 
 � N2d, �3.5�

H has a lower bound on R2d.

hen, we can write for N0�N,

��Ĥ� = �
j=0

N0

hj Oph
w�aj� + hN0+1RN0+1�h� , �3.6�

here Supp�aj��H−1��E−�E ,E+�E��, a0�z�=��H�z��, with �RN0+1
�h��Tr�Ch−d.

We obtain

Ig�h� = �
j=0

N0

hjIg
j �h� + O�h−dhN0+1� . �3.7�

ow, we are led to give a complete asymptotic expansion for a fixed j0 in N of the quantity

Ig
j0�h� =

�2�h�−d

2�
	

R
	

R

2d

ei�tE/h� · f̂�t��1�
�mh
j0�
,t,g�d
 dt , �3.8�

ith

mh
j0�
,t,g� ª �Uh�t��
;M̃�g�−1 Oph

w�aj0
��
�L2�Rd�. �3.9�

or the right-hand term of the brackets in (3.9), we expand Oph
w�aj0��
 in powers of h, by Lemma

.1 of Ref. 5. Namely, if N�N*, then it exists Cd,N�0, such that for all 
�R2d,

�Oph
w�aj0

��
 − �
k=0

N

hh/2 �
��N2d,
�
=k

��aj0
�
�

�!
Th�
��h Op1

w�z���̃0�
L2�Rd�

� Cd,N · h�N+1�/2.

hanks to �2.2�, using the definition �5.1� of Th�
�, we have

M̃�g�−1Th�
� = Th�M�g−1�
�M̃�g�−1. �3.10�

or the left-hand term of the brackets in (3.9), we use the theorem of propagation of coherent

tates given by Combescure and Robert �Refs. 5 and 6 or 25�. If M �N, then we have
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�Uh�t��
 − ei���t,
�/h�Th�
t��h��
j=0

M

hi/2bj�t,
��x� · e�i/2��M0x,x���
L2�Rd�

� CM,T�
� · h�M+1�/2,

here 
t=	t�
� is the solution of the system �1.2� with initial condition 
 �see the Appendix for
ther notations�. After all, since there is no problem of control for 
 at infinity, we get

mh
j0�
,t,g� = �

k=0

2N

�
j=0

2N−k

hj/2hh/2 �

�
=k

��aj0
�
�

�!
ei���t,
�/h�� j,��
,t,g,h� + O�h−dhN+�1/2�� , �3.11�

ith

� j,��
,t,g,h� ª �Th�
t��hbj�t,
�e�i/2��M0x,x�;Th�M�g−1�
��hM̃�g�−1Q��̃0� ,

here Q� is the polynomial in d variables such that

Op1
w�z���̃0 = Q� . �̃0. �3.12�

n view of the Appendix, we have

�h
*Th�− M�g−1�
�Th�
t��h = e�i/2h��M�g−1�
,J
t�T1�
t − M�g−1�


�h
� .

hus

� j,��
,t,g,h� = e�i/2h��M�g−1�
,J
t��T1�
t − M�g−1�

�h

�bj�t,
�e�i/2��M0x,x�;M̃�g�−1Q��̃0�
L2

.

e will use the notation


 = �q,p� � Rd � Rd and �qt,pt� ª 
t = 	t�
� .

ake the change of variable g−1yªx− �qt−g−1q� /�h in the previous �;�L2. Since G is compact,
det�g�
=1, and we obtain after calculation:

� j,��
,t,g,h� = �−d/4e�i/h����qp+qtpt�/2�−tgpqt�+�i/2�
gqt − q
2	
Rd

e−�1/2��Ay,y�+ByQ��y +
gqt − q

�h
�bj�
,t��y�dy ,

here

A ª I − tg−1M0g−1 and �ª

i
�h

��q − gqt� + i�tg−1pt − p�� . �3.13�

hen we set

Q��x� ¬ �

�
�
�


��,�x
� and bj�t,
��x� ¬ �


�
�3j

c�,j�t,
�x�

where c�,j is smooth in t, 
�. For the same reasons as in Ref. 5 �parity of Q� and bj�t ,
��, only
nteger powers of h have nonzero coefficients. Then, we can expend Q� and bj�t ,
� and use the
ollowing calculus of the integral of a Gaussian.

Lemma 3.2: Let A�Md�C� such that tA=A, and that RA is a positive definite matrix, �
Cd and 
�Nd. Then A is invertible and

	
Rd

e−�1/2��Ax,x�+�xx
 dx = �2��1/2 det−1/2�A�e�1/2��A−1�,�� �
��


�A−1���P��A� ,

x

                                                                                                            



w

w

T

w

w

A

w

W
c

042102-9 Reduced Gutzwiller formula with symmetry J. Math. Phys. 47, 042102 �2006�

                        
here P��A� does not depend on �, and P0�A�=1 (det*
−1/2 is defined in Ref. 5, Theorem 3.3).

We get

ei�t/i�Ee�i/h���t,
�� j,��
,t,g,h� = �

�
�3j

�

�
�
�


��,�c�,j�t,
� �
���

��
�
��2��d/2

�det*
−1/2�I − itg−1M0g−1� �

���−�+�
�gqt − q����I − itg−1M0g−1�−1

���0���P��A�h−�1/2��
�
+
�
� exp� i

h
�E�t,
,g�� ,

here �0ª
�h�, and

�E�t,
,g� = tE + S�t,
� + qp − tgpqt +
i

2

gqt − q
2 −

i

2
�A−1�0,�0� . �3.14�

hus, �3.8� and �3.9� give

Ig
j0�h� =

�2�h�−d

2� �
k=0

2N

�
j=0

2N−k

h�i+h�/2 �

�
=k

�

�
�3j

�

�
�
�


��,�

�d/2�!
�2��d/2 �

���
��
�
�L�,�,�,�,j�h� + O�hN+�1/2�−d� ,

ith

L�,�,�,�,j�h� ª �
���−�+�

h−�1/2��
�
+
�
�

�	
Rt

	
Ra

2d
exp� i

h
�E�t,
,g�� f̂�t���aj0

�
��1�
�D�,�,�,j�t,
,g�d
 dt ,

�3.15�

here

D�,�,�,j�t,
,g� ª c�,j�t,
�det*
−1/2�I − itg−1M0g−1�P��A��A−1��q − gqt� + i�tg−1pt − p�����gqt − q��.

�3.16�

tiresome but straightforward computation gives from �3.14� and �3.13�,

�E = �1 + i�2,

�1�t,
,g� ª �E − H�
��t +
1

2
� M�g�−1
,J,
 � −

1

2
	

0

t

�
t − M�g−1�
�J
̇s ds , �3.17�

�2�t,
,g� ª
i

4
��I − Ŵt��M�g�
t − 
�;�M�g�
t − 
�� ,

here Ŵtª � Wt −iWt

−iWt −Wt
� with 1

2 �I+Wt�ª �I− itg−1M0g−1�−1.
Lemma 3.3: We have �Wt�L�Cd��1.
Proof: We introduce the Siegel half-plane,

�d ª �Z � Md�C�:tZ = Z, and IZ is positive definite� .

e know from Ref. 11, pp. 202 and 203 that if Z��d, then ��I− iZ�−1�I+ iZ��L�Cd��1. Now, we
t −1 −1
an take Z= g M0g . Indeed M0 is symmetric, and, since F
�t� is symplectic, we have
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"X � Rd, I�tX · M0X� = 
�A + iB�−1X
Cd
2 .

hus Z��d. The proof is clear if we note that �I− itg−1M0g−1�−1�I+ itg−1M0g−1�=Wt. �

We are led to use a stationary phase theorem to get an expansion of each L�,�,�,�,j�h� in powers
f h. Note that the term D�,�,�,j in �3.16� and its derivatives are vanishing on the critical set of the
hase for derivatives up to 
�
+ 
�
 �see �4.1��. Therefore, when applying the stationary phase
heorem to L�,�,�,�,j�h�, the first terms of the asymptotic will vanish up to h�1/2��
�
+
�
�. This fact
ompensates for the term in h−�1/2��
�
+
�
�, at the beginning of the expression of L�,�,�,�,j�h� in
3.15�.

V. THE STATIONARY PHASE PROBLEM

Now, we fix g in G and we want to find the conditions under which we will be able to apply
he stationary phase theorem under the form of Ref. 5 �Theorem 3.3� on L�,�,�,�,j�h�. A necessary
nd sufficient condition will be called g-clean flow. Then we will give particular cases for which
his criterium is satisfied �see Secs. IV A and IV B�. Our method will first consist of calculating
he critical set of the phase �E and its Hessian. Then we will calculate the kernel of this Hessian,
nd, under assumption of smoothness of the critical set, we will describe the conditions for this
ernel to be equal to the tangent space of the critical set. In this section, since g is fixed in G, we
ill denote �E�t ,z ,g� by �E,g�t ,z�, for z�R2d and t�R.

. Computations and g-clean flow

Computation of the critical set:

Let CE,g ª �a � R� R2d:I��E,g�a�� = 0,��E,g�a� = 0� .

Proposition 4.1: The critical set is

CE,g = ��t,z� � R� R2d:z � �E,M�g�	t�z� = z� , �4.1�

here �t ,z��	t�z� is the flow of the system (1.2).
Proof:

I�E�t,z,g� = R�2�t,z,g� = 1/4
zt − M�g−1�z
2 − 1
4R�Ŵt�M�g�zt − z�;M�g�zt − z�R2d.

e note that, if a and b are in Rd, then

�Ŵt�a,b�;�a,b��R2d = �Wt�a − ib�;�a − ib��Rd.

hus,

I�E�t,z,g� = 0 Û 
zt − M�g−1�z
2 = R�Wt�,��Rd = R�Wt�,�̄�Cd,

here

�ª �gqt − q� − i�tg−1pt − p� .

herefore, by Lemma 3.3, we have I�E�t ,z ,g�=0Û	t�z�=M�g−1�z.
Computation of the gradient of �1:

�t�1�t,z,g� = E − H�z� − 1
2 ��zt − M�g−1�z�;Jżt� ,

�z�1�t,z,g� = 1
2 �tM�g−1� + tFz�t��J�zt − M�g−1�z� .
Computation of the gradient of �2:
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4�t�2�t,z,g� = 2��I − Ŵt��M�g�zt − z�;M�g�żt� − ��t�Ŵt��M�g�zt − z�;�M�g�zt − z�� ,

4�z�2�t,z,g� = 2�tFz�t�
tM�g� − I��I − Ŵt��M�g�zt − z� − t��z�Ŵt��M�g�zt − z���M�g�zt − z� .

hus, we see that �t ,z ,g��CE,g if and only if 	t�z�=M�g−1�z and H�z�=E. �

Computation of Hess �E,g�t ,z�: We first need some formulas coming from the symmetry that
ill be helpful for the computation. We recall that Fz�t�=�z�	t�z��. By differentiating formula

1.1�, we get

�H�M�g�z� = tM�g−1� � H�z�, " z � R2d, " g � G . �4.2�

his formula implies that we have also

	t�M�g�z� = M�g�	t�z�, " z � R2d, " g � G, " t � R such that 	t�z� exists.

�4.3�

oreover we recall that, since M�g� is symplectic, we have

JM�g� = tM�g−1�J and M�g�J = JtM�g−1� . �4.4�

inally, if t and z are such that M�g�	t�z�=z, then we have

�M�g�Fz�t� − I�J � H�z� = 0 and �tFz�t�
tM�g� − I� � H�z� = 0. �4.5�

he second identity comes from the first since M�g�Fz�t� is symplectic. For this first relation, one
an differentiate at s= t the equation:

	t�M�g�	s�z�� = 	s�z� .

ith these formulas, it is easy to find the following.
Proposition 4.2:

Hess �E,g�t,z�

=�
i

2
�l�I − Ŵt�J � H�z�;J � H�z�� − t�H�z� +

i

2
t��tFz�t�

tM�g� − I��I − Ŵt�J � H�z��

− �H�z� +
i

2
�tFz�t�

tM�g� − I��I − Ŵt�J � H�z�
1

2
�JM�g�Fz�t� − t�M�g�Fz�t��J� +

i

2
�tFz�t�

tM�g� − I��I − Ŵt��M�g�Fz�t� − I� � .

Computation of the real kernel of the Hessian: If A�Mn�C�, then we define kerR�A�ª �x
Rn :A�x�=0�=ker�R�A���ker�I�A��.

Proposition 4.3: Let �t ,z��CE,g. Then the real kernel of the Hessian is

kerR Hess �E,g�t,z� = ���,
� � R� �R � H�z���:�J � H�z� + �M�g�Fz�t� − Id�
 = 0� .

�4.6�

Proof: Let ��R and 
�R2d. We set

x ª �J � H�z� + �M�g�Fz�t� − I�
 .

et us denote by Ŵ1 and Ŵ2 the real and imaginary part of Ŵt. Then, �� ,
�
kerR Hess �E,g�t ,z� if and only if

�Ŵ2J � H�z�;x� = 2��H�z�;
� , �4.7�

ˆ
��I − W1�J � H�z�;x� = 0, �4.8�
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�tFz�t�
tM�g� − I��I − Ŵ1�x = 0, �4.9�

nd

− 2� � H�z� + �JM�g�Fz�t� − t�M�g�Fz�t��J�
 + �tFz�t�
tM�g� − I�Ŵ2x = 0.

e multiply this last identity by �M�g�Fz�t��J, we note that Ŵ2=JŴ1 and recall that M�g�Fz�t� is
ymplectic to obtain the equivalent identity,

�M�g�Fz�t� − I��Ŵ1 − I�x = 2x . �4.10�

ow, if �� ,
��kerR Hess �E,g�t ,z�, then, by �4.10� and �4.9�, we have

�x,�I − Ŵ1�x� = 0, i.e., 
x
2 = �Ŵ1x,x� .

y Lemma 3.3, �Ŵ1�L�R2d��1, thus x=0, and by �4.7�, �H�z��
.
Conversely, if x=0 and �H�z��
, then, we have �4.7�–�4.10�. Thus �� ,
�

kerR Hess �E,g�t ,z�. �

We are now able to describe the conditions under which we can apply the generalized sta-
ionary phase theorem on L�,�,�,�,j�h�: we easily check the positivity of the imaginary part of the
hase �E,g by Lemma 3.3. Moreover, if CE,g is a union of smooth submanifolds of R�R2d, if X
CE,g, then the Hessian of �E,g�X� is nondegenerate on the normal space NXCE,g if and only if

erR Hess �E,g�X��TXCE,g, the tangent space of CE,g at X. Besides, note that, by the nonstationary

hase theorem, we can restrict this hypothesis to points X in Supp� f̂��Supp�aj0
�.

Definition: Let g�G, T�0, such that Supp� f̂�� �−T ,T�, and

�g ª ��� − T;T���E → R2d� ,

�t,z� � M�g�	t�z� − z .
�

e say that the flow is g-clean on �−T ,T���E if zero is a weakly regular value of �, i.e.,

�g
−1��0�� ¬ CE,g is a finite union of smooth submanifolds of R� R2d,

"�t,z� � CE,g, T�t,z�CE,g = ker d�t,z��g.

e say that the flow is G-clean on �−T ,T���E if it is g-clean for all g in G.
By Proposition 4.3, we see that if �t ,z��CE,g, then ker d�t,z��g=kerR Hess �E,g�t ,z�. Thus, if

e only know that the support of f̂ is in �−T ,T�, then the g-clean flow condition is the minimal
ypothesis under which we can apply the stationary phase theorem to L�,�,�,�,j�h�. Therefore, we
an state the theorem.

Theorem 4.4: Reduced trace formula with G-clean flow.
Let G be a finite subgroup of Gl�R ,d� and H :R2d→R a smooth Hamiltonian G-invariant.

uppose that E�R is such that there exists �E�0 such that H−1��E−�E ,E+�E�� is compact, and

E= �H=E� has no critical points. Make hypothesis (3.5). Let f and � be real functions in S�R�
uch that Supp���� �E−�E ,E+�E� and f is compactly supported in �−T ,T�, where T�0. Sup-
ose that the flow is G-clean on �−T ,T���E. Then the spectral density

G��h� =
d�

G
 �g�G

��g�Ig�h�

as a complete asymptotic expansion as h→0+ �where the definition of Ig�h� is given by (3.1)].
oreover, if g�G, and, if �CE,g� denotes the set of connected components of CE,g, then the quantity

0
t psqs ds is constant on each element Y of �CE,g�, denoted by SY,g, and we have the following

xpansion:
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Ig�h� �
Y��CE,g�

�2�h��1−dim Y�/2e�i/h�SY,g
1

2��	Y

f̂�t���E�dg�t,z�d�Y�t,z� + �
j�1

hjaj,Y� + O�h+�� ,

here aj,Y are distributions in f̂ � �� �H� with support in Y, and the density dg�t ,z� is defined by

dg�t,z� ª det*
−1/2��E,g� �t,z�
N�t,z�Y

i
�det*

−1/2�A + iB − i�C + iD�
2

� . �4.11�

E,g is given by (3.17) and A ,B ,C ,D are the d�d blocks of the matrix Fz�t�ª�z�	t�z�� �see
A8)�.

Remark: Without symmetry, this theorem can be compared to papers by Paul and Uribe �cf.
efs. 20 and 21� or to the Gutzwiller formula in the Ph.D. thesis of Dozias,8 see also Ref. 19. A
otion of clean flow is also present in Ref. 5. The density dg�t ,z� is difficult to compute in general,
ven without symmetry. The purpose of the next sections is to calculate it in two special cases:

hen f̂ is supported near zero �Weyl part�, and under an assumption of nondegenerate periodic
rbits of the classical flow in �E �oscillating part�.

Proof: As we have seen before, we can apply the stationary phase theorem on each

�,�,�,�,j�h�, which gives an expansion of each Ig
j0�h� and each Ig�h�. The first term is given by

Ig�h� �
h→0+

�2�h�−d

2�
	

Rt

	
R


2d
�2�
� f̂�t���H�
��det*

−1/2�A + iB − i�C + iD�
2

�e�i/h��E,g�t,
� dt d
 .

y definition of CE,g, �E,g is constant on each connected component of CE,g, and equal to

�E,g�t,
� = S�
,t� + Et = 	
0

t

psq̇s ds, where �qs,ps� = 	s�
� .

his ends the proof of Theorem 4.4. �

. The Weyl part

We now deal with one case which leads to an asymptotic expansion at the first order of the

ounting function of Ĥ� in an interval of R. Fix g in G and define

LE,g ª �t � R: $ z � �E:M�g�	t�z� = z� . �4.12�

Theorem 4.5: Let G be a finite subgroup of Gl�R ,d� and H :R2d→R a smooth G-invariant
amiltonian. Let E�R be such that H−1��E−�E ,E+�E�� is compact for some �E�0, and that

E= �H=E� has no critical points. Make hypothesis (3.5). Let f and � be real functions in S�R�
ith Supp���� �E−�E ,E+�E� and f̂ compactly supported. For g in G, we set

�g ª dim ker�g − IdRd�, Fg ª ker�M�g� − IdR2d� and F̃g ª ker�g − IdRd� .

et

Ig,E�h� ª Tr���Ĥ�f�E − Ĥ

h
�M̃�g�� .

hen, under previous assumptions, we have the following:

IF Supp f̂ �LE,g=�, then Ig,E�h�=O�h+��.
If Supp f̂ �LE,g= �0� then we have the following expansion modulo O�h+��:

Ig,��h� � h1−�g� ck� f̂ ,g�hk, as h → 0+ �4.13�

k�0
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niformly in � in a small neighborhood of E, where f̂ �ck� f̂ ,g� is a distribution in f̂ with support
n �0�, and, if d����Fg� denotes the Euclidian measure on ���Fg, then we have

c0� f̂ ,g� = ���� f̂�0�
�2��−�g

det�
�IdRd − g�
F̃g
��	���Fg

d��� � Fg��z�

�H�z�


. �4.14�

Remark 1: The oscillating term of Theorem 4.4 is now vanishing, since, for g�G, SY,g=0
hen Y = �0�� ��E�Fg�. Moreover, it is easy to see that, since �E is compact and noncritical, zero

s isolated in LE,g. Thus the hypothesis Supp f̂ �LE,g= �0� is fulfilled if f̂ is supported close
nough to zero.

Remark 2: Theorem 4.5 slightly improves the previous result of El Houakmi given in Ref. 9,
y the computation of �4.14�. Note that the leading term of G��h� is obtained for g= Id, and

G��h� =
d�

2


G

��E� f̂�0��2�h�1−d 1

2�
	
�E

d�E


�H

+ O�h2−d�, as h → 0+.

Proof: If Supp f̂ �LE,g=�, then �Supp� f̂��R2d��CE,g=�, and by the nonstationary phase
heorem, we get the result.

Now suppose that Supp f̂ �LE,g= �0�. Then we have

CE,g � �Supp� f̂� � R2d� = �0� � ��E � Fg� . �4.15�

emma 4.6: For the rest of the proof, one can assume that G is composed of isometries.
Proof: We recall that, since G is compact, there exists some S0, symmetric d�d positive

efinite matrix, such that

G0 ª S0
−1GS0 is a subgroup of the orthogonal group O�d,R� . �4.16�

ndeed, classically, the following scalar product on Rd:

��x,y�� ª
1


G
 �g�G

�gx;gy�, " x,y � Rd,

s invariant by G, and one can take S0 such that ��x ,y��= �S0
2x ,y� for all x ,y in Rd. Thus, we can

efine a new G0-invariant Hamiltonian,

H0�z� ª H�M�S0�z�, where M�S0� ª �S0 0

0 tS0
−1 � .

f �� Ĝ, then one can define �0 :G0→C by

�0�g0� ª ��S0g0S0
−1� .

hen it is easy to check that �0� Ĝ0 and that the application ���0 is bijective from Ĝ to Ĝ0.
oreover, identity �2.2� implies that

Oph
w�H0� = M̃�S0�−1 Oph

w�H�M̃�S0� .

f �� Ĝ, then we can define

P̃�0
ª

d�0


G0
 �
g0�G0

�0�g0�M̃�g0� .

hen we have P̃�0=M̃�S0�−1P�M̃�S0�. Therefore, if f�Ĥ� is trace class, then f�Ĥ0� also, and we

ave
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Tr�f�Ĥ��� = Tr�f�Ĥ�P�� = Tr��f�Ĥ0�P̃�0
�� ,

y cyclicity of trace. This remark can be applied in particular for the trace �1.7�. Moreover, if g

G, if g0ªS0
−1gS0, then Tr�f�Ĥ�M̃�g��=Tr�f�Ĥ0�M̃�g0��. Finally, it is easy to check that hypoth-

ses for �H ,G� hold for �H0 ,G0�, and that coefficients of the asymptotic have the same expression
n terms of �H0 ,G0� as in �H ,G�. �

From now on, we suppose that G is composed of isometries, without loss of generality. First,
e remark that �E and Fg are transverse submanifolds of R2d. Indeed, if z��E�Fg, then, by

4.2�, since g is an isometry, we have �H�z��Fg, thus Fg+ �R�H�z���=R2d. Therefore

T�0,z�CE,g = �0� � �Fg � �R � H�z���� .

f �� ,
��kerR Hess �E�0,z� then by Proposition 4.3, �J�H�z�+ �M�g�− I2d�
=0. Then one can
ake the scalar product of this equality with J�H�z� to obtain �=0 and thus, kerR Hess �E�0,z�
T�0,z�CE,g. This means that we have the theoretical asymptotic expansion of Theorem 4.5.

Now, we must compute the leading term of this expansion. Here again, we can suppose that g

s an isometry, which simplifies the calculus: in particular, �M�g� ,J�=0, when t=0, we have Ŵt

0, and Fz�0�= Id. By Proposition 4.2, we obtain

Hess �E,g�0,z� =�
i

2

�H�z�
2 − t�H�z�

− �H�z�
1

2
J�M�g� − M�g−1�� +

i

2
�I − M�g���I − M�g−1�� � .

e have N�0,z�CE,g=R� �Fg
�+R�H�z��. Let �0 be a basis of Fg

�. We set

e0 ª
�

�t
= �1,0�, �0 ª �0,�H�z�� .

et � be the basis of N�0,z�CE,g made up of �in this order� e0, �0, and �0. We note that the linear
pplication 1

2J�M�g�−M�g−1��+ �i /2��I−M�g���I−M�g−1�� stabilizes the space Fg
�. Then by cal-

ulating the determinant of the restriction of Hess �E�0,z� to N�0,z�CE,g in this basis, we get �noting
ªN�0,z�CE,g�:

det��E,g� �0,z�
N

i
� = 
�H�z�
2 det� 1

2i
J�M�g� − M�g−1�� +

1

2
�I − M�g���I − M�g−1���

�Fg
�

.

f �g is the orthogonal projector on F̃g, then we have

1


�H�z�
2
det��E,g� �0,z�
N

i
� =�

1

2
�Id − g��Id − g−1� + �g

1

2i
�g − g−1�

−
1

2i
�g − g−1�

1

2
�Id − g��Id − g−1� + �g

� .

hen, since g is an isometry, we can suppose that g is block diagonal with blocks Ip1
,

Ip2
,R�1

, . . . ,R�r
, where p1+ p2+2r=d, � j’s are not in �Z, and R�ª

� cos � −sin �
sin � cos �

�. We then use the
act that g commutes with �g, and that when �C ,D�=0, then det� A B

C D
�=det�AD−BC�, for any
locks A ,B ,C ,D of same size. A straightforward calculus then gives
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det��E,g� �0,z�

N�0,x�eE,g

i
� = 
�H�z�
2 det��Id − g�
F̃g

��2.

ince �det*
−1/2�2=det, we have

det*
−1/2��E,g� �0,z�


N�0,x�eE,g

i
� = ± 
�H�z�

det�Id − g�
F̃g

�
 .

e can prove that the factor ±1 is in fact equal to 1, either by coming back to the calculus of
et*

−1/2 with Gaussians, or, classically, by using a weak asymptotic, i.e., by calculating the

symptotic of Tr���Ĥ�M�g��, when � :R→R is smooth and ��Ĥ� is trace class.

Using �4.11�, the fact that the phase vanishes on CE,g, and that dim�CE,g�� �Supp� f̂��R2d�
2�g−1, we obtain the result we claimed. This ends the proof of Theorem 4.5. �

As a consequence of Theorem 4.5 near t=0, using a well-known Tauberian argument �see Ref.
4�, we get the following.

Corollary 4.7: Let G be a finite group of Gl�d ,R�, H :R2d→R be a G-invariant smooth
amiltonian satisfying (3.5). Let E1�E2 in R, and Iª �E1 ,E2�. Suppose that there exists ��0

uch that H−1��E1−� ,E2+��� is compact. Furthermore suppose that E1 and E2 are not critical

alues of H. If �� Ĝ, then the spectrum of H� is discrete in I, and we have

N1,��h� =
d�

2


G

�2�h�−d Vol�H−1�I�� + O�h1−d� ,

here NI,��h� is the number of eigenvalues of Ĥ� in I counted with multiplicity.
Remark: One can interpret this result by saying that, semiclassically, the proportion of eigen-

unctions of Ĥ having symmetry � is d�
2 / 
G
. In particular, the same proportion of eigenvalues has

ultiplicity greater than d�. The more d� is high, the more L�
2�Rd� plays a role in the spectrum of

ˆ .

. The oscillatory part

If g�G and � is a periodic orbit of �E globally stable by M�g�, we set

Lg,�ª �t � Supp f̂: $ z � �:M�g�	t�z� = z� .

f t0�Lg,�, z��, then P�,g,t0
denotes the Poincaré map of � between z and M�g−1�z at time t0,

estricted to �E. The characteristic polynomial of dP�,g,t0
does not depend on z��. Note that, by

terating formula �4.3�, since G is finite, if we have M�g�	t�z�=z, then for all k in N, we have
M�gk�	kt�z�=z, and with k= 
G
, we obtain that z is a periodic point of the Hamiltonian system
1.2�.

Theorem 4.8: Make the same assumptions as in Theorem 4.5, but suppose that 0�Supp f̂ .
ake the following hypothesis of nondegeneracy: if ���E, is such that $g�G and $t0�Lg,�,

0�0, then 1 is not an eigenvalue of M�g�dP�,g,t0
. Then the set of such �’s is finite and the

ollowing expansion holds true modulo O�h+��, as h→0+:

G��h� �
d�

G
 �

� periodic

orbit of �E

�
g�G s.t.

M�g��=�

��g� �
t0�Lg,�

t0�0

e�i/h�S��t0��
k�0

dk
�,g,t0� f̂�hk. �4.17�

he coefficients f̂ �dk
�,g,t0� f̂� define distributions with support in �t0�, S��t0�ª�0

t0psq̇s ds, ��qs , ps�

	s�z� with z���, and
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d0
�,g,t0� f̂� =

��E�T�
*ei��/2����g,t0�

2�
det�M�g�dP�,g,t0
− Id�
1/2 f̂�t0� ,

here T�
* is the primitive period of � and ���g , t0��Z.

Example 1: If d=1, periodic orbits are always nondegenerate. For example, in the case of a
ouble-well Schrödinger Hamiltonian, one can illustrate the sum of Theorem 4.8 in the diagram
elow, picturing the classical flow in R2: some periodic orbits appear only for g= Id in the sum,
nd others arise for both g= ± Id. One can also fold the picture to compare with the periodic orbits
f the reduced space as in Theorem 1.1.

Example 2: If H is a Schrödinger operator on Rd with potential V�x�= �Sx ,x�, where S is the
iagonal matrix with diagonal nonvanishing w1

2 , . . . ,wd
2, if one assumes that "i� j, wi /wj �Q,

hen periodic orbits appear as a union of d planes, with primitive periods Tj
*=� /wj and are all

ondegenerate.
As a particular case of this theorem, we get Theorem 1.1.
Proof of Theorem 1.1: If we suppose that G acts freely on �E, then �E /G inherits a structure

f smooth manifold such that the canonical projection � :�E��E /G is smooth, and the dynami-
al system restricted to �E descends to quotient. If t0�R*, g�G, and z��E, with orbit �, are
uch that M�g�	t0

�z�=z, then � and ���� are periodic. If P����,��z��t0� denotes the Poincaré map of
��� at time t0, then we have

det�M�g�dzP�,g,t0
− Id� = det�d��z�P����,��z��t0� − Id� . �4.18�

ndeed, if 	̃t denotes the flow in �E /G, then one can differentiate the following identity on �E

ith variable z:

��M�g�	t0
�z�� = 	̃t0

���z�� ,

o get the identity:

dz� � M�g�Fz�t0� = F̃��z��t0� � dz� ,

here F̃��z��t0� is the differential of x�	̃t0
�x� at ��z�. Moreover, � is a submersion, and by an

rgument of dimensions it is also an immersion. Thus we have �4.18�.
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Therefore, the assumptions of Theorem 1.1 imply those of Theorem 4.8. If z��E is such that
he orbit of ��z� is periodic with period t0�0, then there is only one g=g��G such that

M�g�	t0
�z�=z. If Lred denotes the set of periods of �E /G, then we resume �4.17� as

�
� periodic

orbit of �E

�
g�G s.t.

M�g��=�

�
t0�Lg,�

t0�0

¯ = �
t0�Lred

�
���E:���� periodic

with t0 for period

�
g=g�

¯ .

f we denote Stab���ª �g�G :M�g��=��, then we have Stab���= �g�� and it is easy to see that

����
* =T�

* / 
Stab���
. If we denote by N���� the number of orbits of �E with image ���� by �, then
e have N����= 
G
 / 
Stab���
. Thus we have

G��h� = d� �
t0�Lred

f̂�t0� �
���E:���� periodic

with t0 for period

��g�����t0��
T����

*

N����

e�i/h�S��t0�ei��/2����g,t0�

2�
det�d��z�P����,��z��t0� − Id�
1/2 + O�h� .

hen one can show that quantities appearing on the right-hand side do not depend on � but only
n ����, and this proves Theorem 1.1 �

Proof of Theorem 4.8: We fix g in G. If t0�R*, we set

 E,g,t0
ª �� orbit of �E: $ z � �:M�g�	t0

�z� = z� .

Lemma 4.9: Under the nondegeneracy assumptions of Theorem 4.8, LE,g�Supp� f̂� is finite
nd we have

CE,g � �Supp� f̂� � R2d� = �
t0�LE,g

t0�0

�
�� E,g,t0

�t0� � � . �4.19�

Proof: One can adapt the proof of the cylinder theorem of Ref. 1. �

Note that periodic orbits appearing in this critical set are the ones stable by g.

We see that CE,g� �Supp� f̂��R2d� is a submanifold of R�R2d and if �t0 ,z��CE,g, then we
ave

T�t0,z�CE,g = �0� � RJ � H�z� .

o apply the stationary phase theorem, we must show that kerR Hess �E,g�t0 ,z��T�t0,z�CE,g. Let
� ,
��kerR Hess �E,g�t0 ,z�. By Proposition 4.3, we have 
��H�z� and

�J � H�z� + �M�g�Fz�t0� − I�
 = 0. �4.20�

f ��R, we denote by E�ª�k=1
2d ker�M�g�Fz�t0�− Id�k. Let � be the orbit of z. Since 1 is not an

igenvalue of M�g�dP�,g,t0
, 1 is an eigenvalue of M�g�Fz�t0� of multiplicity 2. Thus dim E1=2.

sing �4.5� and �4.20�, we have 
�E1. Let u2�R2d such that �J�H�z� ,u2� is a basis of E1. Note
hat �u2 ,�H�z���0, otherwise we would have u2� �JE1��, which is equal to ���1E� since

M�g�Fz�t0� is symplectic. Since 
�E1 we have �1 ,�2 in R such that


 = �1J � H�z� + �2u2.
                                                                                                            



T
�

I
�

ª

S

T

W

T

a

W
u

w

T
v
u

042102-19 Reduced Gutzwiller formula with symmetry J. Math. Phys. 47, 042102 �2006�

                        
hen, using the fact that �
 ,�H�z��=0, we get �2=0 �since �u2 ,�H�z���0�. Thus coming back to
4.20�, we get �=0 and 
�RJ�H�z�. Thus �� ,
��T�t0,z�CE,g.

This shows that we can apply the stationary phase theorem and get a theoretical expansion of

g�h� and G��h�. We must now compute the first term of this expansion. We suppose that �t0 ,z�
CE,g. We denote by � the orthogonal projector on RJ�H�z�. We set FªM�g�Fz�t0� and W

Ŵt0
. Then we have

det��E,g� �t0,z�

N�t0,z�CE,g

i
�

= det�
1

2
��1 − W�J � H�z�;J � H�z�� −

1

i
t�H�z� +

1

2
t��tF − I��I − W�J � H�z��

−
1

i
� H�z� +

1

2
�tF − I��I − W�J � H�z�

1

2i
�JF + t�JF�� +

1

2
�tF − I��I − W��F − I� + �� .

ince F is symplectic, we have JF+ t�JF�= �tF+ I�J�F− I�. Set

K ª

1

2i
�tF + I�J +

1

2
�tF + I��I − W� . �4.21�

hen, the fourth block is equal to K�F− I�+�.
Using �4.5�, we note that the third block is equal to KJ�H�z�. Let us set

X1 ª
1
2 �I − W�J � H�z� . �4.22�

e then have

det��E,g� �t0,z�

N�t0,z�CE,g

i
� = det� tX1J � H�z� it�H�z� + tX1�F − I�

KJ � H�z� K�F − I� + �
� .

he following technical lemma is due to Combescure �see Ref. 5 for the proof�.
Lemma 4.10: K is invertible and K−1= 1

2 ��F− I�+ i�F+ I�J�.
Moreover, if we set F=� Ã B̃

C̃ D̃
�, then det�K�= �−1�d det� 1

2 �Ã+ iB̃− i�C̃+ iD̃���−1
Since

det��E,g� �t0,z�

N�t0,z�Y

i
� = det�1 0

0 K
�� tX1J � H�z� it�H�z� + tX1�F − I�

J � H�z� �F − I� + K−1�
� ,

nd using �4.11� and the preceding lemma, we get

dg�t,z�−2 = �− 1�d det�g−1�det� tX1J � H�z� it�H�z� + tX1�F − I�
J � H�z� �F − I� + K−1�

� . �4.23�

e denote by 
ª �X1 ,J�H�z�� �note that 
�0 since I−W is invertible and J�H�z��0� and we
se the line operation L2←L2− �1/
�J�H�z�L1, to get

dg�t,z�−2 = �− 1�d
 det�D�det�g−1� , �4.24�

here

D ª �F − I� + K−1� −
1



J � H�z��it�H�z� + tX1�F − I�� .

hen, we compute det�D� in the basis �0ª �v1 , . . . ,v2d� where v1ªJ�H�z�, v2 is such that

2�J�H�z� and �v1 ,v2� is a basis of ker�F− I�2. Last �v3 , . . . ,v2d� is a basis of Vzª���1E�. Let

s set wª �i /2��F+ I��H�z�. We have Dv1=−w and, using Lemma 4.10,
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��F − I� + K−1��v2 = �F − I�v2, �4.25�

1



J � H�z��it � H�z� + tX1�F − I��v2 =

1



�i��H�z�,v2� + �X1,�F − I�v2��J � H�z� . �4.26�

sing the fact that �F− I�v2�E1, one easily gets that there exists �1�R such that �F− I�v2

�1J�H�z�. Thus �X1 , �F− I�v2�=�1
. We obtain, using �4.25� and �4.26�:

Dv2 = −
i

2
��H�z�,v2�J � H�z� . �4.27�

ote that �F− I�Vz�Vz. Moreover K−1� is of rank 1. Hence, since its image is equal to
−1�v1=−w�0, we can neglect it on others columns than the first column. The same idea holds

or �1/
�J�H�z��it�H�z�+ tX1�F− I��, which we neglect in other columns than the second one
since �1/
�J�H�z��it�H�z�+ tX1�F− I��v2�0�. Therefore

det�D� = det�
− w1 −

i



��H�z�,v2� 0

− w2 0

− w3 0

] ] �F − I�
Vz

− w2d 0

� ,

here �w1 , . . . ,w2d� are the coordinates of w in the basis �0.
Hence det�D�=−�i /
�w2��H�z� ,v2�det��F− I�
Vz


�.
We write

w =
i

2
�F + I� � H�z� = w1J � H�z� + w2v2 + v ,

here v�Vz, then we take the scalar product with �H�z�. Since E1= �JVz��, we have
v ,�H�z��=0 and i
�H�z�
2=w2�v2 ;�H�z��. Thus we get

det�D� =
1




�H�z�
2 det��F − I�
Vx
� .

herefore, according to �4.24�

dg�t,z�−2 = �− 1�d
�H�z�
2 det��F − I�

Vx

�det�g−1� . �4.28�

ince det�g−1�= ±1, there exists k�Z, depending on g, such that

dg�t,z� =
eik��/2�


�H�z�

det��F − I�

Vz

�
1/2 .

oreover, dg being continuous, k does not depend on z��. Thus by Theorem 4.4, we have, if

E,gª �t�R : $z��E :M�g�	t�z�=z�,

Ig�h� = �
t0�LE,g�Supp� f̂�

�
�� E,g,t0

e�i/h�S��t0� ��E� f̂�t0�eik��/2�

2�
det��F − I�

Vz

�
1/2	
�

d�


�H

+ O�h� .
oreover, if z��, then
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�

d�


�H

= 	

0

T�
*


J � H�!t�z��

dt


�H�!t�z��

= T�

* .

ast, we sum on g�G to get the expansion of G��h�. This ends the proof of Theorem 4.8. �
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PPENDIX: COHERENT STATES

We recall some basic things on coherent states on R2d in Schrödinger representation. We
ainly follow the presentation of Combescure and Robert �cf. Refs. 6, 25, and 5�.

Notations: The h-scaling unitary operator �h :L2�Rd�→L2�Rd� is defined by

�h��x� = h−d/4��h−1/2x� .

he phase translation unitary operator associated to 
= �q , p��Rd�Rd is given by

Th�
� ª exp� i

h
�px − qhDx�� . �A1�

e classically have Th�
�*=Th�
�−1=Th�−
� and

Th�
�f�
� = exp�i
p

h
�x −

q

2
�� f�x − q� . �A2�

he ground state of the harmonic oscillator −"+ 
x
2 is given by

�̃0�x� ª
1

�d/4 exp�−

x
2

2
� .

e set

�0�x� ª �h�̃0�x� =
1

�h��d/4 exp�−

x
2

2h
� . �A3�

hen the coherent state associated to 
�R2d is given by �
ªTh�
��0. By �A2�, we have

�
�x� =
1

�h��d/4 exp�i
p

h
�x −

q

2
��exp�−


x − q
2

2h
� , �A4�

nd we get easily from �A2� the following formulas:

�h
*Th�
��h = T1� 
�h

� and �h
* Oph

w�a��h = Op1
w�ah�, where a#�z� ª a��hz� ,

Th�
�Th��� = e�1/2h��J
;��Th�
 + �� and Th�
�* Oph
w�a�Th�
� = Oph

w�a�
 + · �� .

A trace formula: If A�L�L2�Rd�� is trace class, then �R


2d
�A�
 ;�
�L2�Rd�
d
� +�, and we

ave �see Ref. 5�

Tr�A� = �2�h�−d	
R2d

�A�
;�
�L2�Rd� d
 . �A5�
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Propagation of coherent states: For z= �q , p��Rd�Rd, let zt= �qt , pt�ª	t�z� be the solution
f the Hamiltonian system �1.2� with initial condition z. We introduce the notations

S�t,z� ª 	
0

t

�ps · q̇s − H�zs��ds , �A6�

��t,z� ª S�t,z� −
qtpt − qp

2
, �A7�

here F
�t�=�z	t�
��Sp�d ,R�. We set

F
�t� = �A B

C D
� where A,B,C,D � Md�R� . �A8�

Theorem 5.1: Semiclassical propagation of coherent states (Combescure-Robert) �Refs. 6 and
5�. Let T�0. Let H :R2d→R be a smooth Hamiltonian satisfying, for all 
�N2d :


�
H�z�
 � C
�x�m
, where m
 � 0, C
 � 0. �A9�

et 
�R2d be such that the solution with initial condition 
 of the system żt=J�H�zt� is defined
or t� �−T ,T�. We denote by Uh�t�ªe−i�t/h�H the quantum propagator.

Then, "M �N, $CM,T�
��0, independent of h and of t� �−T ,T� such that

�Uh�t��
 − ei��t,
�/h�Th�
t��h��
j=0

M

hi/2bj�t,
��x� · e�i/2��M0x,x���
L2�Rd�

� CM,T�
� · h�M+1�/2,

here M0ª �C+ iD��A+ iB�−1, for all t� �−T ,T�, bj�t ,
� :Rd→C is a polynomial independent of
, with degree lower than 3j, with same parity as j, and smoothly dependent on �t ,
�. In particu-
ar, b0�t ,
��x�=�−d/4�det�A+ iB��c

−1/2. Moreover, if the solutions of the Hamiltonian classical sys-
em are defined on �−T ,T� for initial conditions 
 in a compact K, then 
�CM,T�
� is upper

ounded on K by C̃M,T,K independent of 
�K.
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everse inequalities in �-deformed Segal-Bargmann
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We prove reverse hypercontractivity inequalities as well as reverse log-Sobolev
inequalities in the context of a space of holomorphic functions, which is called the
�-deformed Segal-Bargmann space and arises in the works of Wigner, Rosenblum,
and Marron. To achieve this we define �-deformations of energy and entropy. Our
principle results generalize earlier works of Carlen and Sontz. We also show that
the semigroup of this theory is Lp bounded, and we conjecture that it is Lp contrac-
tive and, even more strongly, that it is hypercontractive. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2186257�

. INTRODUCTION

Wigner in the very title of his article29 asked: “Do the equations of motion determine the
uantum mechanical commutation relations?” In response to his own question, Wigner gave in
hat article a parametrized family of inequivalent representations by operators of the equations of

otion with the property that the quantum mechanical �i.e., canonical� commutation relation does
ot hold in those representations for nonzero values of the parameter, which we will denote by �.
osenblum in Ref. 20 has extensively studied these representations, which act in an L2 space of

he configuration space and generalize the study of the harmonic oscillator in one dimension in
uantum mechanics.

Then in Ref. 14 Marron, a student of Rosenblum, presented in detail a family of Hilbert
paces of holomorphic functions parametrized by the same parameter � and which carry repre-
entations unitarily equivalent to those of Wigner mentioned above. We call these the �-deformed
egal-Bargmann spaces. These holomorphic Hilbert spaces are proper closed subspaces of an L2

pace associated with the phase space. However, a brief description of these spaces also appears
ore or less simultaneously in Ref. 21, an unpublished work of Rosenblum. See also Refs. 15 and

7 for earlier related work.
For �=0, one recovers the usual Segal-Bargmann space. �See Refs. 2 and 22.� In this, the

sual context of quantum mechanics, one constructs a number operator N �which is essentially the
amiltonian of the harmonic oscillator� and its associated contraction semigroup e−tN for t�0,
efined by spectral theory. In this case one finds the following inequalities, called complex hyper-
ontractivity or sometimes, more simply, hypercontractivity. This says that for 0� p�q,
� pe2t and f �B0

p the operator e−tN satisfies

�e−tNf�q � �f�p

nd that e−tN is not bounded from B0
p to B0

q for q� pe2t. �Here B0
p and B0

q are spaces of holomorphic
unctions, which we will define later. B0

p is a subspace of an Lp space and is equipped with its

�Electronic mail: anguloa@fciencias.uaslp.mx
�Research partially supported by Grants Nos. 32146-E and P-42227-F, CONACyT �Mexico�. Electronic mail:

sontz@cimat.mx
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orm � · �p.� This result is first due to Janson in Ref. 11. Other proofs have been given by Carlen in
ef. 4, Zhou in Ref. 30, Janson in Ref. 12 and Gross in Ref. 9. In the real variable case, Nelson

n Ref. 16 has a similar, though not identical, result. It is the work of Nelson that initiated interest
n hypercontractivity.

Moreover, Carlen in Ref. 4 obtained another related result, known as reverse hypercontrac-
ivity. This says that for 0�q� p, q� pe2t, and f �B0

p we have that

�e−tNf�q � C�t,p,q��f�p,

here C�t , p ,q� is a finite positive constant. For a discussion about the unknown optimal value of
his constant, see Ref. 6. We note that hypercontractivity says that the operator e−tN maps B0

p to B0
q

ontractively for q� p for certain positive values of t. However, reverse hypercontractivity says
hat the operator e−tN maps B0

p to B0
q boundedly for q� p for certain values of t, including some

egative values. This indicates in what sense the second result is the reverse of the first result. �We
ill define e−tN for all t�0 later on.�

In the context of real variable theory Gross studied in Ref. 8 an inequality known as the
og-Sobolev inequality. In the case of complex variable theory this says that for all holomorphic
unctions f in an appropriate space �which is B0

2 and which will be defined later� we have that

SB0
2�f� � �f ,Nf� ,

here the entropy SB0
2�f� of f will also be defined later on. The term �f ,Nf� is known as the energy

f f .
The second author in Ref. 25 proved an inequality that is known as a reverse log-Sobolev

nequality. Specifically, this says that for every c�1 there exists a number K�c��0 such that

�f ,Nf� � cSB0
2�f� + K�c��f�2

2

or all f �B0
2. Note that there is an interchange in the roles of the entropy and the energy in these

wo types of inequality. The log-Sobolev inequality tells us that finite energy implies finite en-
ropy, while the reverse log-Sobolev inequality tells us precisely the converse.

This paper is a continuation of the works previously mentioned in that we prove reverse
ypercontractivity �originally studied by Carlen in Ref. 4� and reverse log-Sobolev inequalities
originally studied by the second author in Ref. 25�, but now we do this in the context of the
-deformed holomorphic function spaces introduced by Rosenblum21 and Marron14 in their stud-

es of the works of Rosenblum20 and Wigner.29 See Ref. 5 for a study of these reverse inequalities
n the context of complex manifolds without �-deformation. For further studies of �-deformed
egal-Bargmann analysis, see Refs. 1, 18, and 27.

For the undeformed case �=0 the relation between log-Sobolev inequalities and hypercon-
ractivity inequalities has been studied extensively, beginning with Ref. 8. Loosely speaking, either
ne implies the other. Of course, they both involve the number operator N. A similar relation for
he case �=0 between a reverse log-Sobolev inequality and reverse hypercontractivity is to be
xpected, since again they are both based on the same operator N. But this does not work out as
ne might wish. �See Ref. 25.� The �-deformed inequalities are defined in terms of the same
-deformed number operator �defined later�, but as far as we know there is no straightforward

elation between the two reverse inequalities. We present them together in this paper, since in a
ore general approach to deformations of quantum mechanics we would hope to see some un-

erlying connection between them.
An outline of the paper is as follows. In Sec. II we introduce the basic notation and definitions

sed throughout. In Sec. III we define the basic operators of this theory, namely the �-deformed
umber operator N� and its associated semigroup e−tN�. Then we enter the principle part of the
aper in Sec. IV where we discuss reverse hypercontractivity as well as the Lp boundedness of the
emigroup. We continue in Sec. V with reverse log-Sobolev inequalities, where we also define

-deformations of energy and entropy. Then in an Appendix we discuss the relation between the
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nergy of the �-deformed harmonic oscillator �described there� and the �-deformed energy intro-
uced in this paper. Finally, we conclude with a discussion of some problems that remain open.

I. NOTATION AND DEFINITIONS

Let H�C� denote the space of holomorphic functions � :C→C, where C is the field of complex
umbers. We also denote by He�C� and Ho�C� the subspaces of H�C� of even and odd functions,
espectively. We note that H�C�=He�C� � Ho�C�, where � is the internal direct sum. This is a
onsequence of the fact that any ��H�C� can be uniquely written as a sum of an even and an odd
unction, namely of its even part �notation, �e� and of its odd part �notation, �o�. We use this
otation throughout without further comment. We also note that � will always denote a real
arameter satisfying −1/2����. One can find an explanation in Ref. 20 of why the region
�−1/2 is excluded from this analysis.

We now define the three basic scales of spaces which we will work with in this paper. But
efore doing so, we comment that we use the usual notation Lp�� ,	� for the vector space of pth
ower absolutely integrable functions defined on a measure space � with measure 	 as well as
f�pª �f�Lp��,	�ª ���	f 	pd	�1/p. We will consider this for 0� p��. For any r�1 we define its
ual index by r�ªr / �r−1�.

Definition 2.1: For 0� p�� we define

B�
p
ª 
� � H�C�:�e � Lp�C,	e,��, �o � Lp�C,	o,��� ,

P�
p
ª He�C� � Lp�C,	e,�� = He�C� � B�

p ,

I�
p
ª Ho�C� � Lp�C,	o,�� = Ho�C� � B�

p .

ere

d	e,��z� ª 
�K�−�1/2��	z	2�	z	2�+1 dx dy

s a probability measure on C,

d	o,��z� ª 
�K�+�1/2��	z	2�	z	2�+1 dx dy

s a finite measure on C, 
�ª21/2−� / �����+1/2�� is introduced to simplify notation, ��z� is the
uler gamma function and K�z� is the Macdonald function of order . �See Ref. 7 or Ref. 13 for

nformation on these special functions.) Finally, z�C and dx dy is Lebesgue measure on C.
Proofs that d	e,� is a probability measure and that d	o,� is a finite measure are given in Refs.

and 18. Actually, in Ref. 1 it is shown that d	o,� is not a probability measure when ��0. The
acdonald function of order  is characterized by the integral formula

K�z� = �
0

�

e−z cosh u cosh�u�du

or Re�z��0 and arbitrary �C. This can be found in Lebedev13 �p. 119�, for example. From this
ntegral representation it follows that K�x��0 for x�0 and that K is a monotone decreasing
unction on �0,��. In particular, K has no zeros in �0,��. A more general definition and discus-
ion of the basic properties of the Macdonald function is given in Refs. 13 and 28. An explanation
f how the Macdonald function arises naturally in the context of �-deformed Segal-Bargmann
nalysis is given in Ref. 27.

We will be interested in the Macdonald function K�z� in the case when z is real and positive
nd  is real. The asymptotic behavior of the Macdonald function K�x� for x�0 when x→0+ and

hen x→ +� is given as follows. �See Ref. 13, pp. 110 and 136.�
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K�x� 
2		−1��		�

x		 , x → 0+,  � 0, �2.1�

K0�x�  log
2

x
, x → 0+, �2.2�

K�x�  � �

2x
�1/2

e−x, x → + �, for all  � R . �2.3�

ere we use the standard notation f�x�g�x� when x→a �and say that f�x� and g�x� are
symptotic when x→a� provided that limx→a f�x� /g�x�=1. Another useful result says that for real
, � satisfying �� 		 we have that

�
0

�

K�s�s�−1 ds = 2�−2��� − 

2
���� + 

2
� . �2.4�

ee Eq. �8� on p. 388 in Ref. 28 or Eq. 6.561.16 in Ref. 7.
Definition 2.2: For ��B�

p and p�0 we define

���B
�
p ª ���e�P

�
p

p + ��o�I
�
p

p �1/p,

here

��e�P
�
p ª ��

C
	�e	p d	e,��1/p

= ��e�Lp�C,	e,��

nd

��o�I
�
p ª ��

C
	�o	p d	o,��1/p

= ��o�Lp�C,	o,��.

An immediate consequence of these definitions is that these spaces are in fact Banach spaces
hen they should be, namely, when p�1. We also include the case 0� p�1 as is usual in the

tudy of holomorphic spaces. Explicitly, we have the following.
Proposition 2.1: If p�1, then � · �B

�
p is a norm and B�

p equipped with this norm is a Banach
pace.

Since we will not use this result, we only comment on its proof. First, � · �B
�
p is clearly a norm

hen p�1. To show that the space is complete in this case, we can adapt an argument for the case
p=2 and �=0 from Hall.10 This identifies B�

p as a closed subspace of the Banach space
p�C ,	e,�� � Lp�C ,	o,��, where � is the external direct sum, and thereby shows B�

p to be complete.
ee Ref. 1 for a detailed proof of this result.

Note that for p=2 the Banach space B�
2 is actually a Hilbert space with inner product defined

y

��,��B
�
2 ª ��e,�e�P

�
2 + ��o,�o�I

�
2 .

e call this the �-deformed Segal-Bargmann space; it appears in Refs. 14 and 21. When we set
=0 �as well as p=2� we obtain the usual Segal-Bargmann space introduced by Segal22 and
argmann.2

We warn the reader that in the case �=0 while the spaces B�
p are equal to the spaces in Refs.

and 25, the norms we have defined are not identical when p�2 to the norms used by those
uthors. However, they are equivalent norms. Since these comments have no bearing on the rest of

his paper, we leave their elementary proof to the interested reader.
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Definition 2.3: Let �X ,�� be a finite measure space, that is, 0���X���. We define the
ntropy of any f �L2�X ,�� by

SL2�X,���f� ª �
X

	f�x�	2 log	f�x�	2 d��x� − �f�2
2 log�f�2

2.

ere, and in the following, we let log denote the natural logarithm �base e� and set 0 log 0ª0.
his definition of entropy is due to Shannon in Ref. 23. An application of Jensen’s inequality
hows that

SL2�X,���f� � �− log ��X���f�L2�X,��
2

� − � .

owever, note that SL2�X,���f�= +� is not excluded. If f �H, where H is some closed subspace of
2�X ,�� under consideration, we write SH�f� for this entropy. The first use of Shannon entropy in
egal-Bargmann analysis appears in Ref. 24.

As is usual in analysis, we indifferently use the symbol C for a positive, finite constant whose
alue can change with each occurrence.

II. THE BASIC OPERATORS

In this section we will define the �-deformed number operator N� and its associated semi-
roup e−tN� in the context of the �-deformed Segal-Bargmann space B�

2 . Our objective is to extend
his definition to H�C�. �See Definition 3.5.�

We will start with the following definition, which comes from Rosenblum,20 p. 372, in order
o define later on the canonical orthonormal basis of B�

2 .
Definition 3.1: The �-deformed factorial ���n� is defined recursively for integers n�0 by

��0�ª1 and by

���n� ª �n + 2��n����n − 1� for n � 1.

ere �n is the characteristic function of the odd integers, that is, �n=1 if n is odd and �n=0 if n
s even.

Note that the standing hypothesis ��−1/2 implies that ���n��0. We note that

���2j� =
22j��j + 1���� + j + 1/2�

��� + 1/2�
�3.1�

nd

���2j + 1� =
22j+1��j + 1���j + � + 3/2�

��� + 1/2�
, �3.2�

hich can be found in Ref. 20 and are easily checked by induction.
For each integer n�0 we define the function �n

� �actually, holomorphic monomial� by

�n
��z� ª

zn

����n��1/2

or all z�C. By direct evaluation of the integrals, using �2.4�, �3.1�, and �3.2�, we have that
�n

��B
�
2 =1 for all integers n�0. Next, ��n

� ,�m
��=0 for n�m is quite straightforward. Finally, the

et of all these functions forms an orthonormal basis of B�
2 by an argument that closely parallels

he proof in Ref. 2 for the case �=0.
We denote by D�

2 the dense subspace of B�
2 consisting of all finite linear combinations of the

n
�. Clearly, D�

2 is the space of all holomorphic polynomials in z.
The following definition is based on formulas in Ref. 20, p. 381.

Definition 3.2: We define the �-deformed annihilation operator A� as well as the �-deformed
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reation operator A�
� , both with domain of definition equal to D�

2 , by setting for n�0,

A��n
�
ª �n + 2��n�1/2�n−1

� ,

A�
��n

�
ª �n + 1 + 2��n+1�1/2�n+1

� ,

here �−1
� �0, and then extending linearly to all of D�

2 .
The next proposition can be found in Ref. 20, p. 381, though in the context of a different

ilbert space. Since the proof is identical and we will not be needing it, we merely state the result
ithout proving it. The point of this proposition is that the �-deformed canonical commutation

elation, originally given by Wigner in Ref. 29, holds here. �Also see Refs. 14 and 20.� But first,
e define the parity operator J acting in B�

2 by J��z�ª��−z� for all ��B�
2 and all z�C.

Proposition 3.1: Considered as operators defined with the common domain D�
2 we have the

-deformed canonical commutation relation

�A�,A�
�� = I + 2�J or, equivalently, i�P̃�,Q̃�� = I + 2�J ,

here Q̃�ª2−1/2�A�+A�
�� is the definition of the �-deformed position operator, P̃�ª−i2−1/2

A�−A�
�� is the definition of the �-deformed momentum operator, I is the identity operator and J

s the parity operator.

Note that D�
2 is invariant under the actions of all of A�, A�

� , P̃�, and Q̃� so that the commu-
ators are well defined as operators acting on D�

2 . Of course, we are using the usual definition
S ,T�ªST−TS of the commutator of two operators S and T.

We would merely like to note here that the presence of the parity operator J at this basic level
f the theory indicates how it comes about that the various function spaces of this theory are
efined in terms of the even and odd parts of the functions, which are simply the eigenfunctions
f J. More comments about this appear in Ref. 27.

The following definition also is based on Ref. 20 �p. 392�, though again in the context of
nother Hilbert space.

Definition 3.3: We define the �-deformed number operator N� with domain D�
2 by

�ªA�
�A�.

Here the invariance of D�
2 under the action of A� tells us that N� is well defined. We

mmediately have for n�0 that

N��n
� = A�

�A��n
� = A�

���n + 2��n�1/2�n−1
� � = �n + 2��n��n

�. �3.3�

Since the orthonormal basis �n
� diagonalizes N�, we can use that basis to define functions of

�. In particular, this motivates the next definition.
Definition 3.4: For every t�0, we define a linear operator e−tN� :B�

2 →B�
2 as follows. First,

e define the operator in the domain D�
2 by setting

e−tN��n
�
ª e−t�n+2��n��n

�

or every integer n�0 and then extending linearly to D�
2 . Then we can show that �e−tN���B

�
2

���B
�
2 holds for every t�0 and ��D�

2 . Finally, this implies that there is a unique linear
xtension (still denoted by e−tN�) to the closure of D�

2 , namely to B�
2 , with the same operator norm.

Let us remark that this definition is what the functional calculus of an unbounded self-adjoint
perator also gives. We first note that N� with domain Dom�N��=D�

2 is a symmetric operator,
ince the eigenvalues in �3.3� are real. Another straightforward consequence of �3.3� is that each

n
��Ran�N�± i�, which implies that Ran�N�± i� are dense subspaces in B�

2 . So basic functional
nalysis �Ref. 19, p. 257� tells us that N� is essentially self-adjoint. Therefore the functional
alculus allows us to evaluate f t���=e−t�, where ��R and t�0, on the unique self-adjoint ex-

¯ ¯
ension N� of N�. �First, one identifies the spectrum � of N� in order to verify that f t is bounded
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n �.� By the spectral mapping theorem this bounded operator f t�N̄�� agrees on the basis elements

n
� with the bounded operator e−tN� defined above, and so is the same operator acting on B�

2 .

lternatively, one can construct N̄� as the Friedrichs extension of N�.
The statement and proof of the next proposition are adaptations to this context of a result

iven by Bargmann in Ref. 2. We present this in detail since we will use this result.
Proposition 3.2: Let ��H�C� have Maclaurin series (i.e., Taylor series with center at z=0),

��z� = �
n=0

�

an�n
��z�

ritten in terms of the monomials �n
�. Then

���B
�
2

2 = �
n=0

�

	an	2.

n particular, ��B�
2 if and only if �n=0

� 	an	2��.
Proof: The result is given by the following computation, whose steps are justified afterwards:

���B
�
2

2 = �
C

d	e,��z�	�e�z�	2 + �
C

d	o,��z�	�o�z�	2 = lim
R→�

�
	z	�R

d	e,��z���
k=0

�

a2k�2k
� �z��2

+ lim
R→�

�
	z	�R

d	o,��z���
l=0

�

a2l+1�2l+1
� �z��2

= lim
R→�

�
k,k�=0

�

a2k
* a2k��

	z	�R

d	e,��z��2k
� �z�*�2k�

� �z�

+ lim
R→�

�
l,l�=0

�

a2l+1
* a2l�+1�

	z	�R

d	o,��z��2l+1
� �z�*�2l�+1

� �z� = lim
R→�

�
k=0

�

	a2k	2�
	z	�R

d	e,��z�

�	�2k
� �z�	2 + lim

R→�
�
l=0

�

	a2l+1	2�
	z	�R

d	o,��z�	�2l+1
� �z�	2 = �

k=0

�

	a2k	2�
C

d	e,��z�	�2k
� �z�	2

+ �
l=0

�

	a2l+1	2�
C

d	o,��z�	�2l+1
� �z�	2 = �

k=0

�

	a2k	2 + �
l=0

�

	a2l+1	2 = �
n=0

�

	an	2.

he first equality is the definition of the norm. The second equality is by monotone convergence
nd a simple substitution. The interchange of infinite sum and integral in the third equality is
ustified by the uniform convergence in the domain of integration. The fourth equality is due to the
act that the off-diagonal integrals vanish as a change of variables to polar coordinates shows. The
fth equality is monotone convergence, while the sixth uses the fact that the functions �n

� are
ormalized. �

Proposition 3.3: For every ��B�
2 we have

e−tN���z� = �e�e−tz� + e−2�t�o�e−tz� , �3.4�

here t�0 and z�C.
Here �=�e+�o is the decomposition of � into its even and odd parts.
Proof: We first note for all n�0 and t�0 that

e−tN��n
��z� = e−t�n+2��n��n

��z� = e−t�n+2��n�zn/����n��1/2 = e−2�t�n�n
��e−tz�

ollows from the definitions of e−tN� and �n
�. This is exactly the identity �3.4� we wish to show in

he special case when �=�n
� for some n�0. The rest of the argument consists of an extension of

2
he result to all ��B�.
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So we let �=�n=0
� an�n

� be the Maclaurin series of ��B�
2 as before. By the previous propo-

ition we have that ���B
�
2

2 =�n=0
� 	an	2. Since �−�n=0

N an�n
�=�n=N+1

� an�n
� is an element in B�

2 , the

xpressions in this computation are finite:

�� − �
n=0

N

an�n
��

B
�
2

2

= � �
n=N+1

�

an�n
��

B
�
2

2

= �
n=N+1

�

	an	2 → 0 �3.5�

s N→�. Here the second equality is the evaluation of the norm in B�
2 by using the previous

roposition, but now applied to the function �n=N+1
� an�n

��B�
2 , which is a Maclaurin series. The

onvergence to zero in �3.5� follows from the fact that ��B�
2 and the previous proposition.

herefore �3.5� says that the Maclaurin series �n=0
� an�n

�, which is known by complex analysis to
onverge to � uniformly on compact subsets of C, converges to � also in the norm topology of the
ilbert space B�

2 . Using this second sense of the convergence of the Maclaurin series to �, we
mmediately see that

e−tN�� = �
n=0

�

ane−tN��n
�

ince e−tN� is a bounded operator on the Hilbert space B�
2 . So we have that

e−tN���z� = �
n=0

�

ane−tN��n
��z� = �

n=0

�

ane−2�t�n�n
��e−tz� = �

k=0

�

a2k�2k
� �e−tz� + �

l=0

�

a2l+1e−2�t�2l+1
� �e−tz�

= �e�e−tz� + e−2�t�o�e−tz�

s desired. Here we used the fact that the even �respectively, odd� terms of the Maclaurin series
ive us the even �respectively, odd� part of the function. �

Now we extend the definition of e−tN�, using the previous proposition as our guide.
Definition 3.5: We define e−tN� :H�C�→H�C� by

e−tN���z� ª �e�e−tz� + e−2�t�o�e−tz� , �3.6�

here ��H�C�, z�C, and t�R.
Several comments are in order here. First, the previous definition defines the linear operator

−tN� with domain given by any of the spaces P�
p , I�

p , and B�
p for 0� p��, and this is what

nterests us in this paper. By the previous proposition, this generalizes the definition of e−tN� for
�0 given on B�

2 in two ways, namely to a larger space and to all values t�R. Actually, the
efinition also makes sense for all t�C.

The operator e−tN� defined above maps H�C� to itself continuously �with respect to the topol-
gy of uniform convergence on compact subsets� as well as leaving invariant the subspaces He�C�
nd Ho�C�. The action of e−tN� on He�C� is induced exactly by the flow z�e−tz on C, which is
ndependent of �. Moreover, on Ho�C� it is almost induced by the same flow, except that a
onstant multiplier �depending on � as well as on t� also appears. Another immediate consequence
f the definition is that e−tN� for t�R is a group of operators acting on H�C�.

Also, let us note that this definition makes sense for any function �, not just for holomorphic
unctions. However, in that generality the connection with the operator N� is obscured. In par-
icular, the proof of Proposition 3.3 depends on the representation of an entire holomorphic
unction by its Maclaurin series, and the action term by term of e−tN� on that series. Another way
o understand this is to note that the action of e−tN� on the holomorphic polynomials is the starting
oint of its definition and that these polynomials are dense in H�C� in its topology of uniform
onvergence on compact sets. So the extension of the domain of definition of e−tN� to H�C� as
iven is more or less immediate, while its extension to larger spaces of functions is rather arbi-

rary.
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V. REVERSE HYPERCONTRACTIVITY

In this section our main goal is to prove reverse hypercontractivity inequalities on the scale of
paces B�

p for 0� p��. In order to achieve this goal we will first prove such reverse hypercon-
ractivity inequalities for the even and odd subspaces of B�

p , namely P�
p and I�

p . This is a technical
onsideration due to the fact that the definitions of B�

p and its norm depend on the decomposition
f a function into its even and odd parts. And this, as we have noted, comes about from the role
hat the parity operator plays in this theory.

So, we will prove reverse hypercontractivity inequalities on three scales of spaces: P�
p , I�

p , and

�
p where 0� p��. Specifically, this means we will restrict the action of e−tN� for t�R to one of

hese spaces and will ask if the result is a bounded linear map to another one of these spaces
ndexed by q� p. �It need not be a contraction, as is the case in hypercontractivity.� Since e−tN�

reserves parity and holomorphicity, the problem reduces to finding q� p and C�0 for a given
alue of p such that �e−tN�f�q�C�f�p for all f in one of the spaces P�

p , I�
p or B�

p .
For all the results of this section we use the hypotheses 0�q� p and �1/2�log�q / p�� t. We

ote that they do not depend on the parameter �. In other words, they are the same hypotheses that
ppear in the work of Carlen in Ref. 4 on reverse hypercontractivity in the case �=0. Also, we
ote that under these hypotheses t can be a negative number.

The method we use originally appeared in Ref. 6 and is also used in Ref. 5.
Theorem 4.1 (Reverse hypercontractivity for the scale of spaces P�

p , 0� p��):
or 0�q� p and �1/2�log�q / p�� t we have

�e−tN��e�P
�
q � A�t,p,q,����e�P

�
p �4.1�

or all �e� P�
p , where

A�t,p,q,�� ª e�2�+3�t/q��
C
�K�−�1/2��e2t	w	2�

K�−�1/2��	w	2� �p/�p−q�

d	e,��w���p−q�/pq

� � .

Remark: Since any �� P�
p is even, �=�e holds. So we use the notation �e to denote an

rbitrary element in P�
p . Similarly, we use �o to denote an arbitrary element in I�

p .
Proof: We calculate

�e−tN��e�P
�
q

q = �
C

	e−tN��e�z�	q d	e,��z� = �
C

	�e�e−tz�	q
�K�−�1/2��	z	2�	z	2�+1 dx dy

= �
C

	�e�w�	q
�K�−�1/2��e2t	w	2�e�2�+1�t	w	2�+1e2t du dv

= e�2�+3�t�
C

	�e�w�	q
K�−�1/2��e2t	w	2�

K�−�1/2��	w	2�

�K�−�1/2��	w	2�	w	2�+1 du dv

� e�2�+3�t� 	�e	q�P
�
r��

C
�K�−�1/2��e2t	w	2�

K�−�1/2��	w	2� �r�


�K�−�1/2��	w	2�	w	2�+1 du dv�1/r�

,

here we have used K�−�1/2��	w	2��0 for w�0, w=u+ iv=e−tz and Hölder’s inequality for
�r��. Taking r= p /q�1 �implying that its dual index is r�=r / �r−1�= p / �p−q�� and then
valuating the 1/q power, we obtain

�etN��e�P
�
q � e�2�+3�t/q��e�P

�
p��

C
�K�−�1/2��e2t	w	2�

K�−�1/2��	w	2� �p/�p−q�

d	e,��w���p−q�/pq

hich is the inequality �4.1�. Next, to prove that A�t , p ,q ,����, it is necessary and sufficient to

how for r= p /q that

                                                                                                            



i
n
b
t

p

u

F

H
1

f

042103-10 C. Angulo Aguila and S. B. Sontz J. Math. Phys. 47, 042103 �2006�

                        
�
C
�K�−�1/2��e2t	w	2�

K�−�1/2��	w	2� �r�

K�−�1/2��	w	2�	w	2�+1 du dv = ��
0

� �K�−�1/2��e2ts�

K�−�1/2��s� �r�

K�−�1/2��s�s�+�1/2� ds

s finite. And this is equivalent to proving the integrability of the integrand on the right-hand side
ear 0 and near �, since the integrand is a continuous function of s� �0,��. To show the integra-
ility near 0, we use �2.1� which implies that for all s� �0,�� for ��0 sufficiently small we have
hat

�K�−�1/2��e2ts�

K�−�1/2��s� �r�

K�−�1/2��s� �
C

s	�−1/2	 ,

rovided that ��1/2. When ��1/2 this yields

�
0

� �K�−�1/2��e2ts�

K�−�1/2��s� �r�

K�−�1/2��s�s�+�1/2� ds � �
0

� C

s�1/2�−�s�+�1/2� ds = C�
0

�

s2� ds � � ,

sing the standing hypothesis ��−1/2. And when ��1/2 it gives us

�
0

� �K�−�1/2��e2ts�

K�−�1/2��s� �r�

K�−�1/2��s�s�+�1/2� ds � �
0

� C

s�−�1/2�s
�+�1/2� ds = C�

0

�

s ds � � .

inally, for �=1/2 we take s� �0,�� where ��2. We then use �2.2� to obtain that

�K0�e2ts�
K0�s�

�r�
K0�s� � C�log

2

s
�� log

2

e2ts

log
2

s
�

r�

= C�log
2

s
�� log 2/s − 2t

log
2

s
�

r�

= C�log
2

s
��1 −

2t

log
2

s
�

r�
� C log

2

s
.

ere we used for t�0 that log�2/s��0 and 1−2t / log�2/s��1, while for t�0 we used
−2t / log�2/s��2 for � sufficiently small. Then by elementary calculus we have

�
0

� �K0�e2ts�
K0�s�

�r�
K0�s�s ds � C�

0

�

s log�2/s�ds � � .

To show the integrability near � we use �2.3� to show that

�K�−�1/2��e2ts�

K�−�1/2��s� �r�

K�−�1/2��s� � C
1

s1/2e−�1−r��1−e2t��s

or all s� �M ,�� for M sufficiently large. Then we get the estimate

�� �K�−�1/2��e2ts�

K�−�1/2��s� �r�

K�−�1/2��s�s�+�1/2� ds � C��

e−�1−r��1−e2t��ss� ds � � ,

M M
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ince 1−r��1−e2t��0 is equivalent to the hypothesis �1/2�log�q / p�� t given that r�= p / �p−q�.
�

Remark: The previous theorem holds for all even functions in Lp�C ,	e,��, not just the holo-
orphic elements, provided that we use the definition in �3.6� for such functions. But, as we

ommented earlier, such a generalization of the theorem, even though it is true, has nothing to do
eally with the operator N� of interest here. However, we did use the fact that �e is even in the step
here we evaluated e−tN��e�z�. The previous theorem also holds with only a slightly modified
roof for 0�q� p and complex t satisfying �1/2�log�q / p��Re�t�. As we also noted before,
ormula �3.6� defines e−tN� for any t�C. Similar comments hold for the next result, which is about
he spaces I�

p , and for Theorem 4.3, which is about the spaces B�
p .

Theorem 4.2 (Reverse hypercontractivity for the scale of spaces I�
p , 0� p��):

or 0�q� p and �1/2�log�q / p�� t we have that

�e−tN��o�I
�
q � B�t,p,q,����o�I

�
p �4.2�

or all �o� I�
p , where

B�t,p,q,�� ª e
�2��1−q�+3�/q�t��
C
�K�+�1/2��e2t	w	2�

K�+�1/2��	w	2� �p/�p−q�

d	o,��w���p−q�/pq

� � .

Proof: We have that

�e−tN��o�I
�
q

q = �
C

	e−tN��o�z�	q d	o,��z� = �
C

	e−2�t�o�e−tz�	q
�K�+�1/2��	z	2�	z	2�+1 dx dy

= �
C

e−2q�t	�o�w�	q
�K�+�1/2��e2t	w	2�e�2�+1�t	w	2�+1e2t du dv

= e
2��1−q�+3�t�
C

	�o�w�	q
K�+�1/2��e2t	w	2�

K�+�1/2��	w	2�

�K�+�1/2��	w	2�	w	2�+1 du dv

� e
2��1−q�+3�t� 	�o	q�I
�
r��

C
�K�+�1/2��e2t	w	2�

K�+�1/2��	w	2� �r�


�K�+�1/2��	w	2�	w	2�+1 du dv�1/r�

,

here we have used K�+�1/2��	w	2��0 for w�0, w=u+ iv=e−tz and Hölder’s inequality for
�r��. Taking r= p /q�1 and then raising to the 1/q power we obtain the desired estimate

4.2�:

�e−tN��o�I
�
q � e
�2��1−q�+3�/q�t��o�I

�
p��

C
�K�+�1/2��e2t	w	2�

K�+�1/2��	w	2� �p/�p−q�

d	o,��w���p−q�/pq

.

o show that this bound is finite is equivalent to showing that

�
C
�K�+�1/2��e2t	w	2�

K�+�1/2��	w	2� �r�

K�+�1/2��	w	2�	w	2�+1 du dv = ��
0

� �K�+�1/2��e2ts�

K�+�1/2��s� �r�

K�+�1/2��s�s�+�1/2� ds

s finite, where r= p /q. As in the previous theorem, it is now a matter of checking that the
ntegrand on the right-hand side is in fact integrable near 0 and near �. For s� �0,�� with �

ufficiently small we have that
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�K�+�1/2��e2ts�

K�+�1/2��s� �r�

K�+�1/2��s� � C
1

s�+�1/2� ,

here we have used �2.1� together with the standing hypothesis �+ �1/2��0. This gives the
esired estimate,

�
0

� �K�+�1/2��e2ts�

K�+�1/2��s� �r�

K�+�1/2��s�s�+�1/2� ds � �
0

�

C ds � � .

ext, for s� �M ,�� with M sufficiently large we apply �2.3� to get

�K�+�1/2��e2ts�

K�+�1/2��s� �r�

K�+�1/2��s� � C
e−�1−r��1−e2t��s

s1/2 .

ust as in the last estimate in the proof of Theorem 4.1, this then implies that

�
M

� �K�+�1/2��e2ts�

K�+�1/2��s� �r�

K�+�1/2��s�s�+�1/2� ds � C�
M

�

e−�1−r��1−e2t��ss� ds � � ,

here we have used the inequality 1−r��1−e2t��0 which is equivalent to the hypothesis
1 /2�log�q / p�� t together with the fact that r�= p / �p−q�. �

Having shown reverse hypercontractivity for the two scales of spaces P�
p and I�

p , we now can
uickly prove the main goal of this section.

Theorem 4.3 (Reverse hypercontractivity for the scale of spaces B�
p , 0� p��):

or 0�q� p and �1/2�log�q / p�� t we have that

�e−tN���B
�
q � C�t,p,q,�����B

�
p

or every ��B�
p , where

C�t,p,q,�� ª ��A�t,p,q,���q + �B�t,p,q,���q�1/q

nd A�t , p ,q ,�� and B�t , p ,q ,�� are defined in Theorems 4.1 and 4.2, respectively.
Proof: For brevity, we write A instead of A�t , p ,q ,�� and so forth. Using the fact that e−tN�

reserves parity in the second equality, we calculate

�e−tN���B
�
q

q = ��e−tN���e�P
�
q

q + ��e−tN���o�I
�
q

q = �e−tN��e�P
�
q

q + �e−tN��o�I
�
q

q
� Aq��e�P

�
p

q + Bq��o�I
�
p

q

� Aq���B
�
p

q + Bq���B
�
p

q = �Aq + Bq����B
�
p

q = Cq���B
�
p

q .

he first inequality follows from Theorems 4.1 and 4.2, while the first equality and the second
nequality follow from the definition of � · �B

�
p . �

We conclude this section with a result that is somewhat tangential to the topic of reverse
nequalities, but which follows immediately from the results we have just presented. We called this
roperty Lp boundedness before, but we now can give it a more accurate name.

Theorem 4.4 (Boundedness of the semigroup e−tN� on B�
p ): For 0� p�� and t�0 we have

hat e−tN� :B�
p →B�

p boundedly. Explicitly, we have for all ��B�
p that

�e−tN���B
�
p � e�2�+3�t/p���B

�
p .

p
Proof: For �e� P� we have from the proof of Theorem 4.1 that
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�e−tN��e�P
�
p

p = e�2�+3�t�
C

	�e�w�	p
�K�−�1/2��e2t	w	2�	w	2�+1 du dv .

his holds for 0� p�� and t�0. But K�−�1/2��e2t	w	2��K�−�1/2��	w	2� since the Macdonald func-
ion is monotone decreasing and t�0. Applying this to the previous, we immediately get

�e−tN��e�P
�
p

p
� e�2�+3�t��e�P

�
p

p

or all �e� P�
p . Similarly, from the identity at the beginning of the proof of Theorem 4.2 and the

onotonicity of K�+�1/2�, we see that for 0� p�� and t�0 we have

�e−tN��o�I
�
p

p
� e�2��1−p�+3�t��o�I

�
p

p

or all �o� I�
p . The result for general ��B�

p now follows immediately. �

This result is far from being sharp. For example, when �=0, it is known that the semigroup
−tN0 for t�0 acts contractively on B0

p. After all, contractivity is just a special case of hypercon-
ractivity. But the bound we get in this case is e3t/p. We conjecture that e−tN� acts contractively on

�
p and, even stronger, hypercontractively. This seems reasonable, since it is known to be true for
=0. Of course, if it is false, then we would have a nice mathematical property that would single

ut the usual quantization with �=0 from the deformations with ��0.
Also note that this result quickly gives us reverse hypercontractivity for t�0, since then e−tN�

cting on B�
p maps its domain to itself boundedly and B�

p is continuously contained in B�
q for any

� p by Hölder’s inequality. Similar remarks apply to P�
p and I�

p . So the nontrivial case of reverse
ypercontractivity is for negative t, specifically for t� ��1/2�log�q / p� ,0�.

. REVERSE LOG-SOBOLEV INEQUALITIES

In this section the goal is to prove a reverse log-Sobolev inequality in the Hilbert space B�
2 . As

n the preceding section, technical considerations lead us to proving such inequalities first in the
ilbert spaces P�

2 and I�
2 . The upshot is that the result for B�

2 is not what one might have expected
nd, in fact, leads us to a new definition of entropy that is appropriate for B�

2 .
The method we use is due to Gross and first appeared in Ref. 26. Also, see Ref. 5 for another

se of this method. We start with a definition of a quantity that arises in the next theorem.
Definition 5.1: We define the �-deformed energy for �e� P�

2 by

Ee,���e� ª �
C

	�e�z�	2	z	2 d	e,��z� .

While we can consider this definition for larger classes of functions, we will comment in
etail in an Appendix why we are interested in this quantity in the case that �e� P�

2 and why it is
alled an energy in that case.

Theorem 5.1 (Reverse log-Sobolev inequality in the space P�
2 ): For c�1 and �e� P�

2 we
ave that

Ee,���e� � cSP
�
2 ��e� + �c log �

C
e	z	2/c d	e,��z����e�P

�
2

2 , �5.1�

here SP
�
2 ��e� is the entropy of �e as given in Definition 2.3. Moreover, for c�1 we have that

1 � �
C

e	z	2/c d	e,��z� � � ,
o that the coefficient of the norm term is positive and finite.
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We note that the hypothesis c�1 in this and the subsequent theorems in this section does not
epend on the parameter �. In particular, it is the same condition as found by the second author in
ef. 25, where the case �=0 is studied.

Proof: Consider Young’s inequality

st � s log s − s + et,

here s�0 and t are real numbers.
We take c�1 and �e� P�

2 and then set s=c	�e�z�	2 and t= 	z	2 /c in Young’s inequality. Next,
e integrate to get

Ee,���e� = �
C

	�e�z�	2	z	2 d	e,��z� � �
C

c	�e�z�	2 log c	�e�z�	2 d	e,��z� − c��e�P
�
2

2 + �
C

e	z	2/c d	e,��z�

= cSP
�
2 ��e� + �c log c − c + c log��e�P

�
2

2 ���e�P
�
2

2 + �
C

e	z	2/c d	e,��z� ,

sing the definitions of Ee,���e� and SP
�
2 ��e�. Now we replace �e with ��e for ��0 and divide by

2 to get

Ee,���e� � cSP
�
2 ��e� + �c log c − c + c log��e�P

�
2

2 + c log �2���e�P
�
2

2 +
1

�2�
C

e	z	2/c d	e,��z� .

inimizing the right-hand side by varying �, we obtain the optimal value

�2 =
1

c��e�P
�
2

2 �
C

e	z	2/c d	e,��z� ,

f �e�0. Substituting this value into the previous inequality and simplifying we get �5.1� in the
ase when �e�0. But �5.1� trivially holds if �e=0.

We still must discuss the integral �Ce	z	2/c d	e,��z�. But the integrand is bounded below by 1
nd 	e,� is a probability measure, so that �Ce	z	2/c d	e,��z��1 holds. It remains for us to show that
his integral is finite. Since the integrand is continuous, we only must show its integrability near
nfinity �in the complex plane�. We note that by the definition of 	e,� and a simple change of
ariables we have

�
C

e	z	2/c d	e,��z� = 
��
C

e	z	2/cK�−�1/2��	z	2�	z	2�+1 dx dy = �
��
0

�

es/cK�−�1/2��s�s�+�1/2� ds .

�5.2�

o what we must prove is the convergence of this last integral near �. But �2.3� implies that for
ll s� �M ,�� for some M sufficiently large, we have that K�−1/2�s��Cs−1/2e−s. Applying this, we
nd that

�
M

�

es/cK�−�1/2��s�s�+�1/2� ds � C�
M

�

e−�1−1/c�ss� ds � � , �5.3�

here we used c�1 to conclude that the last integral is finite. �

Note the the integral on the right-side of �5.2� is exactly calculable as an infinite series by
xpanding the exponential factor in its Maclaurin series and then using �2.4�. This is also given in
erms of the hypergeometric function in Eq. 6.621.3 in Ref. 7. We do not present this exact result
ere, since it seems to be of little interest, unless it should happen to give the unknown optimal
oefficient of the norm term in �5.1�. So we only present the asymptotic analysis of the integral.

his exact result also shows that the integral �5.2� converges if and only if c�1, which is
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omething that an asymptotic analysis gives us as well. In the case �=0, it is known that the
ondition c�1 in the inequality �5.1� cannot be improved. �See Ref. 25.� It is natural to conjecture
hat this should be true for all �. Similar comments apply to Theorem 5.2.

For the subspace of odd holomorphic functions, we have similar results. We start with the
efinition of the �-deformation of the energy for this case.

Definition 5.2: We define the �-deformed energy for �o� I�
2 by

Eo,���o� ª �
C

	�o�z�	2	z	2 d	o,��z� .

gain, we refer to the Appendix for more details about this concept. It arises in the following
heorem, which corresponds to Theorem 5.1 for the space I�

2 .
Theorem 5.2 (Reverse log-Sobolev inequality in the space I�

2 ): For c�1 and �o� I�
2 we have

Eo,���o� � cSI
�
2 ��o� + �c log �

C
e	z	2/c d	o,��z����o�I

�
2

2 . �5.4�

ere SI
�
2 ��o� is the entropy of �o as given in Definition 2.3. Furthermore, for c�1 we have that

	o,��C� � �
C

e	z	2/c d	o,��z� � � , �5.5�

o that the coefficient of the norm term is finite.
Proof: The proof of formula �5.4� is the same as the proof of �5.1� in Theorem 5.1, and so it

ill be omitted. The lower bound in �5.5� follows immediately from the fact that 1 is a lower
ound on the integrand. For the upper bound in �5.5� we consider

�
C

e	z	2/c d	o,��z� = 
��
C

e	z	2/cK�+�1/2��	z	2�	z	2�+1 dx dy = �
��
0

�

es/cK�+�1/2��s�s�+�1/2� ds .

s in the previous theorem, this integral can be exactly evaluated, but we only do an asymptotic
nalysis. Since the integrand on the left-hand side is integrable near the origin in the complex
lane, the integrand on the right-hand side is integrable near 0. For the integrability on the
ight-hand side near infinity, we use �2.3� to get K�+�1/2��s��Cs−1/2e−s for s sufficiently large. Now
he proof terminates just as in �5.3�, except with K�+�1/2� instead of K�−�1/2�. �

We comment that for −1/2���0 we have 0�	o,��C��1. �See Ref. 1.� So the above proof
oes not exclude the possibility of a negative coefficient of the norm term in �5.4� when
1/2���0. In the case ��0 we have from Ref. 1 that 	o,��C��1, so that the coefficient of the
orm term in �5.4� is positive. However, we do not know for any pair ��−1/2 and c�1 what is
he optimal value of the coefficient of that norm term.

We will use the following concept in the next theorem.
Definition 5.3: We define the total �-deformed energy by

E���� ª Ee,���e� + Eo,���o�

or all ��B�
2 .

Having proved reverse log-Sobolev inequalities in the Hilbert spaces P�
2 and I�

2 , we can now
chieve the goal of this section, which is an inequality of that type for B�

2 . However, we do not get
ne entropy term as is the case for a usual reverse log-Sobolev inequality, but rather two.

Theorem 5.3 (Reverse log-Sobolev inequality in the space B�
2 ): For all c�1 there exist real

umbers M�c ,�� and N�c ,�� such that for ��B�
2 we have

E���� � c�SP
�
2 ��e� + SI

�
2 ��o�� + M�c,����e�P

�
2

2 + N�c,����o�I
�
2

2 .

2
f we set P�c ,��ªmax�M�c ,�� ,N�c ,���, then it follows for all ��B� that
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E���� � c�SP
�
2 ��e� + SI

�
2 ��o�� + P�c,�����B

�
2

2 .

The proof of this result is an immediate consequence of Theorems 5.1 and 5.2. The definition
f the total �-deformed energy as the sum of two quadratic forms in B�

2 is neither surprising nor
xtraordinary. On the other hand, Theorem 5.3 presents us with an expression that is a new type of
ntropy.

Definition 5.4: For any ��B�
2 , we define its �-deformed entropy S���� by

S���� ª SP
�
2 ��e� + SI

�
2 ��o� ,

here �=�e+�o is the decomposition of � into its even and odd parts.
Let us note that this definition is not a particular case of Definition 2.3 of Shannon entropy. As

ar as we know, this is the first occurrence in the literature of a definition of an entropy of a
unction that depends on its decomposition into its even and odd parts. Of course, the �-deformed
ven entropy SP

�
2 ��e� and the �-deformed odd entropy SI

�
2 ��o� are Shannon entropies. With this

efinition the last inequality in Theorem 5.3 now has the compact form:

E���� � cS���� + P�c,�����B
�
2

2 .

I. CONCLUSION

We note that there is a way to generalize this theory to the case of spaces of holomorphic
unctions on Cn for finite n in place of C. We thank C. Pita for telling us about his unpublished
ork on this subject. This is also presented in Ref. 3. It remains an open problem as to how one
ight formulate such a theory for an infinite dimensional phase space.

Here are some other problems that are still open in this area. First, one can try to find the
ptimal constants for the various reverse hypercontractivity and the reverse log-Sobolev inequali-
ies that we have proved. We conjecture that optimizing functions exist for all of these inequalities
hen the optimal constants are introduced into them, though it remains an open problem to

dentify these functions explicitly. We recall that a function fopt is an optimizing function for an
nequality �involving a function f� if that inequality becomes an equality when fopt is substituted
or f .

At present we do not even know whether e−tN� maps B�
p to itself contractively for ��0,

p�2, and t�0. We conjecture that this is true, but we were only able to prove in Theorem 4.4 that
his operator is bounded. In addition we repeat the stronger conjecture made earlier that this
emigroup is hypercontractive on the scales of spaces B�

p , a result which is known to be true when
=0.
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PPENDIX

We would like to comment in this Appendix about the relationship between the �-deformed
nergy and the expected value of the �-deformed harmonic oscillator energy, to be described
elow. We begin with an exact formula for the �-deformed energy for the even case. Let us note
hat the proof of this formula uses hypotheses that are weaker than �e� P�

2 , though the latter is the
ase of interest.

Proposition 6.1: Suppose that �e :C→C is an even, holomorphic function with Maclaurin
eries �e�z�=� j=0

� a2jz
2j. Then we have

Ee,���e� = �
j=0

�

	a2j	222j+1��j + 3/2���� + j + 1�
��� + 1/2�

.

n particular, Ee,���e� is finite if and only if the infinite series on the right-hand side is convergent.
Proof: We exhibit first the following chain of equalities and give the justifications subse-

uently:

�
C

	�e�z�	2	z	2 d	e,��z� = lim
R→�

�
	z	�R

��
j

a2jz
2j����

l

a2lz
2l�z�z d	e,��z�

= lim
R→�

�
	z	�R

�
j,l

a2j
� a2l�z��2j+1z2l+1 d	e,��z�

= lim
R→�

�
j,l

a2j
� a2l�

	z	�R

�z��2j+1z2l+1 d	e,��z�

= lim
R→�

�
j

	a2j	2�
	z	�R

	z	2�2j+1� d	e,��z� = �
j

	a2j	2�
C

	z	2�2j+1� d	e,��z�

=
1

��� + 1/2��j

	a2j	222j+1��j + 3/2���� + j + 1� .

The introduction of the limit in the first equality is an application of the monotone conver-
ence theorem. The interchange of the integral with the infinite sum in the third equality is
llowed by the uniform convergence of the infinite series on the compact domain of integration.
he fourth equality holds since the integrals for j� l are zero, as one sees by introducing polar
oordinates. The fifth equality is again monotone convergence, applied first to the infinite sum and
hen to the integral. The sixth equality is the evaluation of a finite integral, which we present in a

oment. Notice that this chain of inequalities holds also in the case when the integral being
valuated is equal to infinity. Finally for the sixth equality, we have that

�
C

	z	2�2j+1� d	e,��z� = 
��
0

2� ��
0

�

K�−�1/2��r2�r2�+1r2�2j+1�r dr�d�

=
2�1/2�−�

��� + 1/2��0

�

K�−�1/2��s�s�+2j+3/2 ds

=
1

��� + 1/2�
22j+1��j + 3/2���� + j + 1� .

he last equality is an application of the identity �2.4�. �

We now consider the expected value of the �-deformed harmonic oscillator energy ��e ,H��e�
2
or �e� P�, where
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H� ª

1
2 �P̃�

2 + Q̃�
2 � = 1

2 �A�A�
� + A�

�A�� = N� + 1
2 I + �J �A1�

s the �-deformed harmonic oscillator Hamiltonian. �See Ref. 20 and Proposition 3.1.� For �=0,
he relation between the two energies is

Ee,0��e� = ��e,N0�e� + ��e�B0
2

2 = ��e,H0�e� + 1
2 ��e�B0

2
2 ,

here the first equality is an identity of Bargmann in Ref. 2 We therefore expect a relation for
eneral ��−1/2. Since the identity of Bargmann is just a simple application of the canonical
ommutation relation �with �=0�, one would expect that an application of the �-deformed ca-
onical commutation relation starting from the expression ��e ,H��e� would lead to some expres-
ion involving Ee,���e�. But this is not what happens. Instead, the integral �C	�e�z�	2	z	2 d	o,��z�
rises. See Ref. 1 for more about this integral.

We start the analysis of H� by noting that H��2j
� = �2j+�+1/2��2j

� , so that

��e,H��e� = �
j=0

�

	a2j	2���2j��2j + � + 1/2� ,

here �e�z�=� j=0
� a2jz

2j is the Maclaurin series of �e. So using Proposition 6.1, the conjecture that

Ee,���e� = a���e,H��e� + b���e�P
�
2

2

or some constants a� and b� is equivalent to the conjecture that

1

��� + 1/2�
22j+1��j + 3/2���� + j + 1� = a����2j��2j + � + 1/2� + b����2j� �A2�

or all integers j�0, since ��e�P
�
2

2 =� j	a2j	2���2j�. This leads us to consider the quantities

Qj,� ª 22j+1��j + 3/2���� + j + 1�
��� + 1/2����2j�

or every integer j�0.
In particular, the conjecture �A2� is equivalent to saying Qj,�=A�j+B� for some constants A�

nd B�. To proceed we apply the identity �3.1� to get

Qj,� ª 2���j + 3/2�
��j + 1� �� ��� + j + 1�

��� + j + 1/2�� . �A3�

We would like to evaluate this last expression exactly for all values of the parameters, namely
or all integers j�0 and all reals ��−1/2. This can be done for the first quotient since we have
�j+1�= j! and ��j+3/2�=�1/22−j−1�2j+1�!! by well-known identities. �See Ref. 7� So the prob-

em reduces to calculating the second quotient in �A3�. This can be done in either of the following
wo special cases, since we can again calculate the numerator and denominator separately: �1�
=n where n�0 is an integer. �2� �=n+ �1/2� �a half-integer� where n�0 is an integer. We do

ot write down these formulas here. However, let us note that calculations in the case �=1/2
how that the conjecture �A2� is false.

However, for general � we do not need formulas for the numerator and for the denominator
eparately, but we only need one formula for the second quotient itself in �A3�. And this has the

orm ��+1/2� /��� for �0. We note the identity
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���
�� + 1/2�

=
2

�1/2�
0

�/2

�sin2−1 ��d�

rovided that �0, which comes from evaluating the beta function B�1/2 ,� first in terms of the
amma function �Eq. 8.384.1 in Ref. 7� and then in terms of its usual integral representation �Eq.
.380.1 in Ref. 7�. However, the intent behind this identity is that it gives us a way of evaluating
he integral on the right-hand side in terms of the elementary function �. For example, see Eq.
.621.5 in Ref. 7. But here we are interpreting the identity as a way of evaluating a quotient of two
alues of the Euler gamma function in terms of an integral that does not seem elementary at all,
xcept when  is an integer or a half-integer. And these are exactly the cases when the quotient
an be evaluated directly by using identities of the Euler gamma function �.

It seems that there is no simpler identity in general for the second quotient in �A3� and that the
nly thing we can do is to find its asymptotic behavior as j→� with � fixed. But this is a
traightforward application of Stirling’s formula, which tells us that ��+1/2�1/2��� as
→�. �See Sec. 8.327 and Sec. 8.328, Eq. 2 in Ref. 7.� Since we are only getting the asymptotic
ehavior of the second quotient in �A3�, we will only concern ourselves with the asymptotic
ehavior �rather than the exact formula� of the first quotient, which has the same form as the
econd quotient in �A3�. So we find for fixed ��−1/2 that

Qj,�  2�j + 1�1/2�j + � + 1/2�1/2  2j  2j + � + 1/2

s j→�. So there are constants 0�C1,��C2,� so that

C1,��2j + � + 1/2� � Qj,� � C2,��2j + � + 1/2�

or all integers j�0. This implies that

C1,���e,H��e� � E���e� � C2,���e,H��e� .

This says that the expected value of the energy of the �-deformed harmonic oscillator and the
-deformed energy Ee��e� are equivalent as quadratic forms. So any inequality involving one of

hese quadratic forms implies a similar inequality with the other. This explains why we call E���e�
n energy. Also by using �A1�, the expected value of H� can be related to the expected value of

�.
The analysis for the odd case is quite similar, and we will not present it in full detail. We start

y deriving a closed formula for the �-deformed energy.
Proposition 6.2: Let �o :C→C be an odd, holomorphic function with Maclaurin series

o�z�=� j=0
� b2j+1z2j+1. Then we have

Eo,���o� = �
j=0

�

	b2j+1	222j+2��j + 3/2���� + j + 2�
��� + 1/2�

.

n particular, Eo,���o� is finite if and only if the infinite series on the right-hand side is convergent.
Proof: We note that

�
C

	�o�z�	2	z	2 d	o,��z� = lim
R→�

�
	z	�R

��
j

b2j+1z2j+2����
l

b2l+1z2l+2�d	o,��z�

= lim
R→�

�
	z	�R

�
j,l

b2j+1
� b2l+1�z��2j+2z2l+2 d	o,��z�

= lim
R→�

� b2j+1
� b2l+1� �z��2j+2z2l+2 d	o,��z�
j,l 	z	�R
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= lim
R→�

�
j

	b2j+1	2�
	z	�R

	z	2�2j+2� d	o,��z� = �
j

	b2j+1	2�
C

	z	2�2j+2� d	o,��z�

=
1

��� + 1/2��j

	b2j+1	222j+2��j + 3/2���� + j + 2� .

he justifications of the first five equalities are the same as in the corresponding calculation in
roposition 6.1. For the last equality we have used the evaluation of this finite integral,

�
C

	z	2�2j+2� d	o,��z� = 
��
C

K�+1/2�	z	2�	z	2�+1	z	2�2j+2� dx dy = �
��
0

�

K�+1/2�s�s�+2j+5/2 ds

=
1

��� + 1/2�
22j+2��j + 3/2���� + j + 2� ,

here the last equality is an application of �2.4�. �

For �o� I�
2 with Maclaurin series �o�z�=� j=0

� b2j+1z2j+1 we have that

��o�I
�
2

2 = �
j=0

�

	b2j+1	2���2j + 1� ,

��o,H��o� = �
j=0

�

	b2j+1	2���2j + 1��2j + � + 3/2� .

e next define the quantity

Rj,� ª

22j+2��j + 3/2���� + j + 2�
��� + 1/2����2j + 1�

.

hen using �3.2� we obtain

Rj,� = 2
��j + 3/2���� + j + 2�
��j + 1���� + j + 3/2�

.

gain, an exact analysis is possible when � is an integer or half-integer. But in general we are
nly able to give the asymptotic behavior, which is

Rj,�  2�j + 1�1/2�j + � + 3/2�1/2  2j  2j + � + 3/2

s j→� with � fixed. Consequently, there exist constants 0�D1,��D2,� such that

D1,���o,H��o� � Eo,���o� � D2,���o,H��o�

or all �o� I�
2 . And this tells us that the quadratic form Eo,���o� is equivalent to ��o ,H��o�. And

o in this case too we see that the �-deformed energy Eo,���o� is equivalent to the expected value
f the �-deformed harmonic oscillator energy.

Thus, the total �-deformed energy E���� is equivalent to the �-deformed harmonic oscillator
nergy �� ,H��� for all ��B�

2 .
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oulomb wave function FL„� ,�…
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The phase of the regular Coulomb wave function FL�� ,�� is calculated by means of
the phase-integral approximation of arbitrary order with a convenient choice of the
base function. The result agrees with the most accurate asymptotic expansion of the
exact expression, arg ��L+1+ i��, for the phase, truncated at an arbitrary order of
approximation. It is seldom the case that the phase-integral expression for a physi-
cal quantity can be obtained in an arbitrary order of the approximation, and it is
remarkable that in the present case this expression is the same as that obtained from
the most accurate asymptotic formula for the quantity in question. © 2006 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2189196�

. INTRODUCTION

By means of the phase-integral method, which is described in Chap. 1 of Fröman and Fröman
1993� and in Chap. 2 of Fröman and Fröman �2002�, one can in general calculate explicitly only
he first few terms in the expansion for a physical quantity. A formula for the general term can,
owever, be obtained for the phase of the regular Coulomb wave function FL�� ,��. The purpose
f the present paper is to derive this phase with the use of an arbitrary order of the phase-integral
pproximation and to see how the result is related to asymptotic expansions of the exact expres-
ion, arg ��L+1+ i��, for the phase under consideration.

For the background of the present paper we refer to the above-mentioned chapters in Fröman
nd Fröman �1996, 2002� and to a treatment of Coulomb wave functions in Dzieciol, Yngve, and
röman �1999�.

I. TREATMENT OF THE PROBLEM

Consider the differential equation

d2�

d�2 + R���� = 0 �1�

ith

R��� = 1 − 2�/� −
L�L + 1�

�2 . �2�

he solution of �1� along with �2� that is regular at the origin is proportional to the Coulomb wave
unction FL�� ,��, which according to Secs. 14.5.1, 14.5.5, 14.5.6, and 14.5.8 in Abramowitz and
tegun �1972� as �→ +� behaves as

FL��,�� � sin�� − � ln�2�� −
1

2
L� + �L�, � → + � , �3�
here the exact expression for the phase �L is given by

47, 042104-1022-2488/2006/47�4�/042104/4/$23.00 © 2006 American Institute of Physics
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�L = arg ��L + 1 + i�� . �4�

hoosing, in our notation,

Q2��� = R��� −
1

4�2 , �5�

röman and Yngve �1980� have used the phase-integral method in an arbitrary-order approxima-
ion to calculate the phase for the regular solution of a differential equation that becomes identical
o �1� along with �2� when one in their paper sets k=1 and b=0. With this particularization one has
ccording to their equations �10� and �10a, b� in the �2N+1�th order of the phase-integral approxi-
ation the formulas

�L = �
n=0

N

�L
�2n+1� �6�

ith

�L
�1� =

1

2i
�	L +

1

2
+ i�
ln	L +

1

2
+ i�
 − 	L +

1

2
− i�
ln	L +

1

2
− i�
� − � , �7a�

�L
�2n+1� =

�1 − 1/22n−1��B2n�
4n�2n − 1� � 1

�� + i�L + 1
2��2n−1 +

1

�� + i�L + 1
2��2n−1

=
�− 1�n�1 − 1/22n−1��B2n�

4n�2n − 1� � 1

i�L + 1
2 + i��2n−1 −

1

i�L + 1
2 − i��2n−1, n � 1, �7b�

here B2n are Bernouilli numbers. Noting that according to Secs. 23.1.2, 23.1.18, and 23.1.21 in
bramowitz and Stegun �1972�,

�− 1�n�1 − 1/22n−1��B2n� = �− 1�n�1 − 1/22n−1��B2n�0�� = − �1 − 1/22n−1�B2n�0� = B2n� 1
2�,n � 1,

�8�

here B2n�0� and B2n� 1
2

� are Bernouilli polynomials with the arguments 0 and 1/2, respectively,
ne can write �7b� as

�L
�2n+1� =

B2n� 1
2�

4n�2n − 1�� 1

i�L + 1
2 + i��2n−1 −

1

i�L + 1
2 − i��2n−1, n � 1. �7b��

ince

L +
1

2
± i� = �	L +

1

2

2

+ �2�1/2

exp	±i arctan
�

L + 1
2

 �9�

ne can write �7a� as

�L
�1� = ��ln�	L +

1

2

2

+ �2�1/2

− 1 + 	L +
1

2

arctan

�

L + 1
2

, �10a�
nd �7b�� as
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�L
�2n+1� = −

B2n� 1
2�

2n�2n − 1�
Re�i	L +

1

2
+ i�
−�2n−1��

= −
B2n� 1

2�
2n�2n − 1�

Re i�	L +
1

2

2

+ �2�−�2n−1�/2

exp�− i�2n − 1�arctan
�

L + 1
2
�

=−
B2n� 1

2�
2n�2n − 1���L + 1

2�2 + �2��2n−1�/2 sin��2n − 1�arctan
�

L + 1
2
�, n � 1. �10b�

y means of the phase-integral method we have thus for �L obtained the formula �6� along with
7a� and �7b� or alternatively along with �10a� and �10b�.

The exact formula for �L is

�L = arg ��L + 1 + i�� =
1

2i
�ln ��L + 1 + �� − ln ��L + 1 − i��� , �11�

nd the most accurate asymptotic expansion of ln ��L+1± i��, when L+1± i� tends to infinity,
an be obtained from Eq. �5� on p. 32 of Luke �1969�, and is

ln ��L + 1 ± i�� � 	L +
1

2
± i�
�ln	L +

1

2
± i�
 − 1� + ln�2��1/2

+ �
n=1

�
B2n� 1

2�
2n�2n − 1��L + 1

2 ± i��2n−1 , �L +
1

2
± i��→ � . �12�

ith the use of �12� one obtains from �11� the formula

�L �
1

2i
�	L +

1

2
+ i�
ln	L +

1

2
+ i�
 − 	L +

1

2
− i�
ln	L +

1

2
− i�
� − �

+ �
n=1

�
B2n� 1

2�
4n�2n − 1�� 1

i�L + 1
2 + i��2n−1 −

1

i�L + 1
2 − i��2n−1�, �L +

1

2
± i��→ � ,

�13�

hich, when truncated, agrees with the formula �6� along with �7a� and �7b�, which was obtained
y means of the phase-integral method.

With the use of the asymptotic expansion in Sec. 6.1.40 in Abramowitz and Stegun �1972� one
btains the formula

ln ��L + 1 ± i�� � 	L +
1

2
± i�
ln�L + 1 ± i�� − �L + 1 ± i�� + ln�2��1/2

+ �
n=1

�
B2n

2n�2n − 1��L + 1 ± i��2n−1 , �L + 1 ± i�� 	 1, arg�L + 1 ± i�� 
 � 
 � ,

�14�

hich is less accurate than �13�. To understand how �14� is related to �12�, we consider the first

ew terms in �14�, getting
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ln ��L + 1 ± i��

�	L +
1

2
± i�
ln�L + 1 ± i�� − �L + 1 ± i�� + ln�2��1/2 +

B2

2�L + 1 ± i��

=	L +
1

2
± i�
�ln	L +

1

2
± i�
 + ln�1 +

1

2�L + 1
2 ± i���

− �L + 1 ± i�� + ln�2��1/2 +
B2

2�L + 1 ± i��

�	L +
1

2
± i�
�ln	L +

1

2
± i�
 +

1

2�L + 1
2 ± i�� −

1

8�L + 1
2 ± i��2�

− 	L +
1

2
± i�
 −

1

2
+ ln�2��1/2 +

B2

2�L + 1
2 ± i��

=	L +
1

2
± i�
�ln	L +

1

2
± i�
 − 1� + ln�2��1/2 +

B2 − 1
4

2�L + 1
2 ± i�� ,

.e., when we note that according to Secs. 23.1.3 and 23.1.21 in Abramowitz and Stegun �1972�
2−1/4=1/6−1/4=−1/12=B2�1/2�,

ln ��L + 1 ± i�� � 	L +
1

2
± i�
�ln	L +

1

2
± i�
 − 1� + ln�2��1/2 +

B2� 1
2�

2�L + 1
2 ± i�� .

his formula agrees with �12�, when the sum there is truncated after the first term.
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In this paper we introduce a periodic Aharonov-Bohm potential, produced by two
parallel infinite thin layers. The motion of a quantum charged particle without spin,
under the action of this Aharonov-Bohm potential is examined. Finally we intro-
duce a periodic Aharonov-Bohm potential, produced by a system of parallel sole-
noids and the motion of the charged particle in this field is also examined. © 2006
American Institute of Physics. �DOI: 10.1063/1.2189199�

. INTRODUCTION

In the standard interpretation, the Aharonov-Bohm effect is referred to as the phase modifi-
ation of a quantum particle in the region of space in which the magnetic induction B and electric
eld intensity E vanish, but it still exists in a vector potential A or an electric potential �.1–3 The
ffect was also investigated experimentally.2

In a series of recent papers, Audretsch et al.,4,5 Skarzhinsky et al.6 have demonstrated that in
n Aharonov-Bohm potential, some other new important effects like the particle electron-positron
air production, bremsstrahlung of relativistic electrons and scattering of neutral atoms with in-
uced electric dipole moments may occur.

It has been found that the action of the Aharonov-Bohm potential produces shift of the energy
evels of atoms7,8 and quantum harmonic oscillators.9

In these papers the case of an Aharonov-Bohm potential generated by a magnetic string which
roduces weak effects has been considered.

Meanwhile, a series of papers were dedicated to the problem of relativistic particles scattering
n an Aharonov-Bohm potential, generated by an infinite solenoid,10,11 or to the time-dependent
haronov-Bohm potential.12

An attempt is made in our paper to define a magnetic structure that produces Aharonov-Bohm
otentials more efficient for experimental purposes.

This kind of potential is important because it permits us to obtain more realistic configura-
ions, similar to the free electron laser configurations with undulator magnets.13

I. A PERIODIC AHARONOV-BOHM POTENTIAL

Consider a magnetic system consisting in two infinite magnetic layers of thickness �, lying
arallel to the plane Oyz. A section of the system in the Oxy plane is drawn in Fig. 1. The magnetic
ayers L1 and L2 are situated at a distance b from Oyz plane.

Consider that the two magnetic layers are magnetized along the z axis, and that the magnetic
elds have opposite orientations. The magnetic induction will be assumed constant along the z
xis and having periodic variation along the y axis; let � be the space period and

�
Electronic mail: ghed@mec.utt.ro

47, 042105-1022-2488/2006/47�4�/042105/11/$23.00 © 2006 American Institute of Physics
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k =
2�

�
,

he associated wave vector.
Consider that the magnetic induction in points M1 and M2 has the following variation:

B1z�x1,y�,z� = − B0 cos ky�, B2z�x2,y�,z� = B0 cos ky�,

or x1� �−b− �� /2� ,−b+ �� /2��, x2� �b− �� /2� ,b+ �� /2�� and that B1j�−b ,y� ,z�=B2j�b ,y� ,z�=0,
here j=x ,y.

Let a pair of magnetic strings, centered in M1�−b ,y� ,z� and M2�b ,y� ,z� and directed along the
axis and let dS=� dy� be their cross-section area. These two magnetic strings can be assimilated

o a pair of infinite nondispersive solenoids giving rise to the following magnetic fluxes:

d�1 = B1� dy�, d�2 = B2� dy�.

It is known that in an external point P�x ,y ,z� the vector potential of an infinite nondispersive
olenoid, oriented along the z axis is given by1,2

Ax = −
�

2�

y

x2 + y2 , Ay =
�

2�

x

x2 + y2 , Az = 0,

here � is the magnetic flux inside the solenoid.
Accordingly, the pair of magnetic strings produces about a point P�x ,y ,z� �Fig. 1�, situated

etween the magnetic layers, an Aharonov-Bohm vector potential dA, which has the following
omponents:

dAx =
B0 cos ky�� dy�

2�
� y − y�

�x + b�2 + �y − y��2 −
y − y�

�x − b�2 + �y − y��2� ,

dAy =
B0 cos ky�� dy�

2�
� x − b

�x − b�2 + �y − y��2 −
x + b

�x + b�2 + �y − y��2� , �1�

dAz = 0.

Integrating expressions over y��R, we obtain the components Ax, Ay, and Az of the vector
otential.

In this view we shall use the Fourier transform after y. Let F�k� be the Fourier transform of
function F�y�. Then, the direct and the inverse Fourier transforms of the function F are

F�k� =�+�

F�y�eiky dy, F�y� =
1

2�
�+�

F�k�e−iky dy .

FIG. 1. Magnetic configuration.
−� −�
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The relations �1� can be generalized if we replace cos ky� by eiky�,

dAx� =
B0 exp�iky��� dy�

2�
� y − y�

�x + b�2 + �y − y��2 −
y − y�

�x − b�2 + �y − y��2� ,

dAy� =
B0 exp�iky��� dy�

2�
� x − b

�x − b�2 + �y − y��2 −
x + b

�x + b�2 + �y − y��2� , �2�

dAz� = 0.

Integrating one can obtain Ax, Ay, and Az taking the real part of the generalized forms of Eq.
2�.

Using the residues theorem, we get

�
R

eiky�y�

y�2 + �x + b�2dy� = �i sign�k�e−�k��x+b�, �3�

�
R

eiky�y�

y�2 + �x − b�2dy� = �i sign�k�e�k��x−b�, �4�

�
R

eiky��x + b�
y�2 + �x + b�2dy� = � sign�k�e−�k��x+b�, �5�

�
R

eiky��x − b�
y�2 + �x − b�2dy� = − � sign�k�e�k��x−b�. �6�

Using Eqs. �3�–�6� and the properties of the Fourier transform,14 we can integrate �2� and we
btain Ax�, Ay�, and Az�. Taking the real part of these integrals, the components �1� result as

Aj = Real A j�, j = x,y,z ,

hich, for k�0 are

Ax�x,y,z� = B0�e−kb sinh kx sin ky = A0 sinh kx sin ky ,

Ay�x,y,z� = B0�e−kb cosh kx cos ky = A0 cosh kx cos ky , �7�

Az�x,y,z� = 0,

here A0=B0�e−kb. The amplitude A0 can be written as a function of magnetic flux F0 in a section
f a magnetic foil perpendicular on B0 and having the length equal to one-half of the period along
he y axis �i.e., y� �0,� /2��:

A0 = B0�e−kb =
k

2
F0e

−kb. �8�

It is easy to verify that this periodic potential is also an Aharonov-Bohm �AB� potential in the
egion between the two magnetic layers ��A=0 and ��A=0�, and we may consider that the

article is excluded from the magnetic layers.
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In a similar way it is possible to calculate the vector potential outside the layers, i.e., x� �b
�� /2� , � �, y�R, and x� �−b− �� /2� ,−� �, y�R. This potential can be useful for the study of

he phase difference in a double connected domain �the AB effect�.

II. MOTION OF THE CHARGED PARTICLE IN A PERIODIC AHARONOV-BOHM
OTENTIAL

Consider a nonrelativistic particle of charge e, mass m and, moving in the region delimited by
he two magnetic layers which produces the periodic Aharonov-Bohm potential �7� defined in the
receding section.

The Hamiltonian of the particle can be written as

H =
1

2m
	p −

e

c
A
2

, �9�

here A is given by �7�.
The stationary states for the Schrödinger equation of the system �9� can be expressed as

� �2

�x2 +
�2

�y2 − 2i		sinh kx sin ky
�

�x
+ cosh kx cos ky

�

�y



− 	2�sinh2 kx sin2 ky + cosh2 kx cos2 ky� + 
���x,y� = 0, �10�

here we used the following notations:

	 =
eA0

c�
, 
 =

2mE

�2 ,

n which E is the energy of the stationary states.
Consider that the particle cannot penetrate the magnetic foils domain. Then, it follows that the

igenfunctions ��x ,y� of �10� must obey the boundary conditions:

�	b −
�

2
,y
 = 0, �	− 	b −

�

2

,y
 = 0. �11�

Such a condition was also used in Ref. 15.
In order to find the eigenvalues 
 and the eigenfunctions ��x ,y� of the equation �10� we make

he following substitution:

u = x + iy, v = x − iy . �12�

Accordingly, the Schrödinger equation for the stationary states will be

�	2
�

�v
+ 	 cosh kv
	2

�

�u
− 	 cosh ku
 + 
���u,v� = 0, �13�

here ��u ,v�=��x ,y�.
The equation �13� is a differential equation with separable variables. Writing the solution

nder the form

��u,v� = F�u�G�v� ,
e obtain
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�	2
�G

�v
+ 	 cosh kvG


G

	2
�F

�u
− 	 cosh kuF


F
+ 
� = 0,

hich, after separation leads to

	2
�

�u
− 	 cosh ku
F = c1F ,

	2
�

�v
+ 	 cosh kv
G = c2G , �14�


 = − c1c2,

here c1 and c2 are separation constants.
Finally, the solution of Eq. �13�,

��u,v� = C exp�1

2
�c1u + c2v� +

1

2

	

k
�sinh ku − sinh kv�� ,

here C is the normalization constant. The solution can also be written in terms of variables �x ,y�
s

��x,y� = C exp�1

2
�c1 + c2�x +

1

2
i�c1 − c2�y + i

	

k
cosh kx sin ky� . �15�

Since solution �15� does not comply boundary condition �11� we shall set c1=c2=0 and
xamine the more general solution

��x,y� = C exp�i
	

k
cosh kx sin ky�p�x�q�y� , �16�

here p�x� and q�y� are unknown functions.
It is noteworthy that the Schrödinger equation �10� is periodic along the y axis with � and

ven along the x axis. This implies that the solution ��x ,y� must fulfill the following conditions:

��x,y + �� = ��x,y�, ��− x,y� = ��x,y� . �17�

The factor exp�i�	 /k�cosh kx sin ky� in the solution �16� can be expanded in terms of
xp�iky�. Due to the property of periodicity it follows from Bloch’s theorem that the function q�y�
ust be periodic with �.

Finally, we obtain solutions obeying both the conditions �11� and �17�, as unbounded states,

�n1,n2
�x,y� = N cos	��2n1 + 1�

2�b − �/2�
x
exp�in2ky + i

	

k
cosh kx sin ky� , �18�

here N is the normalization constant. The eigenfunction �n1,n2
is even with respect to the x axis.

The values of n1, for �n1,n2
must be n1=0 ,1 ,2 ,3 , . . . . The possible values of n2 are n2

0 , ±1 , ±2, ±3, . . . .
Let �n1n2=�n1n2

be the eigenstates �18�. It is noteworthy that �n1n2 is a set of unbounded
tates. For this reason, in order to avoid divergent integrals, we can restrict the integration over y
o a period, i.e., y� �0,2� /k�.
Taking into account this restriction, the scalar product of these states will be
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�n1n2�n1�n2� = �n1,n1�
�n2,n2�

,

here � is the Kronecker symbol. Accordingly, the normalization constant, N=�2/ �2b−��, and
he energy levels will be

En1n2
=

�2

2m	2�	 �

2b − �

2

�2n1 + 1�2 + k2n2
2� = � �x�2n1 + 1�2 + yn2

2� , �19�

here

x =
�c

ekF0
	 �

2b − �

2

ekb, x =
�c

eF0
kekb.

The states �n1,n2
are twofold degenerated with respect to n1 and n2, except for n2=0.

Bounded states for Aharonov-Bohm potentials generated by a single solenoid were obtained in
series of previous papers.7,9,10

The general solution can also be derived using the variational iteration method of He.16

V. SYSTEM ALGEBRA

We can build the creation and annihilation operators �b+ and b−�

b+ = eiky� 1

ik
	 �

�y
− i	 cosh kx cos ky
 + 1� , �20�

b− = � 1

ik
	 �

�y
− i	 cosh kx cos ky
 + 1�e−iky , �21�

nd also a b0 operator

b0 =
1

ik
	 �

�y
− i	 cosh kx cos ky
 +

1

2
, �22�

onnected to the n2 quantum number.
The action of these operators on the eigenfunctions �n1n2 is given by

b+�n1,n2 = �n2 + 1��n1,n2 + 1 ,

b−�n1,n2 = n2�n1,n2 − 1 , �23�

b0�n1n2 = �n2 + 1
2��n1n2 .

We also can note that by Hermitian conjugations one can show that

b±
† = b�, b0

† = b0.

These operators obey the commutation relations

�b−,b+� = 2b0,

�b0,b+� = b+, �24�

�b0,b−� = − b−.

It is noteworthy that the set of eigenfunctions �n1n2 is separated with respect to n2 into a set

or negative values of n2 and into a set of positive values of n2, due to the fact that
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b−�n10 = 0, b+�n1 − 1 = 0. �25�

We can also build a set of creation and annihilation operators a±, acting on the quantum
umber n1,

a+ =
2b − �

2�
sin

2�x

2b − �
� d

dx
− i	 sinh kx sin ky� + 	n1 +

1

2

cos

2�x

2b − �
, �26�

a− = −
2b − �

2�
sin

�x

2b − �
� d

dx
− i	 sinh kx sin ky� + 	n1 +

1

2

cos

�x

2b − �
, �27�

nd an operator a0,

a0 = − 	2b − �

2�

2� d

dx
− i	 sinh kx sin ky�2

− n1
2 +

1

4
. �28�

It is easy to note that the operators b± are dependent on n1, i.e., on a state �n1n2 an operator
ith the same quantum number n1 must be applied.17 The action of these operators is given by

a+�n1,n2 = �n1 + 1
2��n1 + 1,n2 , �29�

a−�n1,n2 = �n1 + 1
2��n1 − 1,n2 , �30�

a0�n1,n2 = �n1 + 1
2��n1,n2 . �31�

Operators a± and a0 obey the commutation relations

�a−,a+� = 2a0, �32�

�a0,a±� = ± a±. �33�

Operators a± can be written in a n1-independent form using an auxiliary phase type variable �
�� �0,2���.18,19 In this representation, the wave functions take the form

�n1n2� = exp�in1���n1n2 ,

nd the operators a± �26� and �26� will be

a± = ± e±i�2b − �

2�
sin

2�x

2b − �
� �

�x
− i	 sinh kx sin ky� + e±i� cos

2�x

2b − �
	1

i

�

��
+

1

2

 , �34�

a0 = 	1

i

�

��
+

1

2

 . �35�

. COHERENT STATES

We can build the coherent states for the annihilation operator20,21 as the states �z1z2 �where z1

nd z2 are complex valued variables, z1,2�C�, which are eigenstates for operators a− and b−,

a−�z1z2 = z1�z1z2, b−�z1z2 = z2�z1z2 .
These states will be
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�z1z2 = d0 �
n1=0

�

�
n2=−�

�
z1

n1z2
n2

�3/2�n1
n2!

�n1n2 , �36�

here �a�n=a�a+1��a+2�¯ �a+n−1� and d0 is a normalization constant equal to

d0 = 	 �
n1=0

�

�
n2=−�

� �z1�2n1�z2�2n2

�3/2�n1

2 �n2 ! �2
−1/2

.

We can also build the coherent states for the displacement operators D1��1� and D2��2� �where

1,2�C�,

D1��1� = exp��1a+ − �1
*a−�, D2��2� = exp��2b+ − �2

*b−� , �37�

s20,21

��1�2 = D1��1�D2��2��10 . �38�

I. PERIODIC STRUCTURE OF SOLENOIDS

Consider a periodic structure made of solenoids.22 A section in the plane �x ,y� is shown in
ig. 2.

In a point P of the field, situated outside the magnetic flux domain �Fig. 2�, the vector
otential A of periodic Aharonov-Bohm structure has the following components:

Ax =
F

2�
�

n=−�

�

�− 1�n� y − na

�x + b�2 + �y − na�2 −
y − na

�x − b�2 + �y − na�2� ,

Ay =
F

2�
�

n=−�

�

�− 1�n� x − b

�x − b�2 + �y − na�2 −
x + b

�x + b�2 + �y − na�2� ,

Az = 0. �39�

In order to put in a restricted form the series expressing the components Ax and Ay of the
ector potential, we shall use the Fourier transform with respect to variable y. Then, if F�k� is the
ourier transform of a function F�y�, the Fourier transform of the components Ax and Ay are

Ax�k� = i
F

4
sign�k��e−��x+b�k� − e−��x−b�k�� �

+�

�ein�ka+�� + ein�ka−��� , �40�

FIG. 2. Periodic structure of solenoids.
n=−�
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Ay�k� =
F

4
�sign�x − b�e−��x−b�k� − sign�x + b�e−��x+b�k�� �

n=−�

+�

�ein�ka+�� + ein�ka−��� . �41�

The above relations contain the following series:

S = �
n=−�

+�

�ein�ka+�� + ein�ka−��� .

To express this series, the following identity14 will be used:

�
n=−�

+�

einx = T �
n=−�

+�

��x − nT� . �42�

Then, setting x= �k± �� /a�� and =2a, S becomes

S =
2�

a
�

n=−�

+� ���k − �2n + 1�
�

a
� + ��k − �2n − 1�

�

a
�� . �43�

Calculating the inverse Fourier transform, observing that a�0, and eliminating the negative
requencies, the components of the vector potential can be written as

Ax�r� =
F

2�a
�
n=0

+�

�e−2��2n+1����x+b�/2a�� − e−2��2n+1����x−b�/2a���sin�2��2n + 1�
y

2a
� , �44�

Ay�r� =
F

2�a
�
n=0

+�

�sign�x − b�e−2��2n+1����x−b�/2a�� − sign�x + b�e−2��2n+1����x+b�/2a���

�cos�2��2n + 1�
y

2a
� , �45�

Az�r� = 0. �46�

Taking into account that x� �−b ,b�, the components of the vector potential result as

Ax�r� = −
F

�a
�
n=0

+�

e−2��2n+1��b/2a� sinh�2�

2a
�2n + 1�x�sin�2��2n + 1�

y

2a
� , �47�

Ay�r� = −
F

�a
�
n=0

+�

e−2��2n+1���b/2a�� cosh�2�

2a
�2n + 1�x�cos�2��2n + 1�

y

2a
� . �48�

The wavelength �the spatial period�, of the structure of solenoids, and the corresponding wave
umber are �=2a and k=2� /�, respectively.

One can also obtain even harmonics, whose wavelength and wave number are given by

�2n+1 =
�

2n + 1
, k2n+1 = �2n + 1�k .

The Schrödinger equation for the charged particle under the action of the potential �47� and
48� can be written as

�	 �
−

ie
Ax
2

+ 	 �
−

ie
Ay
2

+
2mE

2 ���x,y� = 0. �49�

�x �c �y �c �
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Consider that the particle cannot penetrate the solenoids, i.e., ��x ,y�=0 on the surface of the
olenoids.

In terms of variables �u ,v�, �12�, Eq. �49� can be written in a separable form. Then, introduc-
ng

� =
2mE

�2 , � =
eF

�a � c
, k =

2�

2a
,

particular solution ��x ,y�,

��x,y� = exp�1

2
�c1 + c2�x +

1

2
�c1 − c2�iy − i

�

k �
n=0

�
e−kb�2n+1�

2n + 1
cosh��2n + 1�kx�sin��2n + 1�ky�� ,

�50�

esults.
A more general solution can be written under the form

��x,y� = exp�− i
�

k �
n=0

�
e−kb�2n+1�

2n + 1
cosh��2n + 1�kx�sin��2n + 1�ky��h�x,y� , �51�

here h�x ,y� is an unknown function, even with respect to variable x and periodic with respect to
ariable y, with �=2a. Function h must satisfy the differential equation,

�2h

�x2 +
�2h

�y2 + ��2h = 0.

The general solution cannot be found without knowing the solution outside of the region
elimited by the solenoid structure.

II. CONCLUSIONS

In this paper a periodic Aharonov-Bohm potential of magnetic type, generated by two infinite
ayers of magnetic foil with periodic magnetization is proposed.

This kind of potential is adequate for experimental purposes.
From Eq. �18� one can see that the charged particle has unbounded states with discrete energy

evels.
In the early papers on the subject, it has been considered that the Aharonov-Bohm potential

roduces only phase shift effects in the wave function.
It is easy to see that our periodic potential �7�, �47�, and �48� does not give phase shift effects

or a particle that crosses an integer number of spatial periods �n2� /k� along an axis, parallel to
he y axis, i.e.,

� =
e

�c
�

0

n2�/k

Ay dy = 0,

ince the phase shift per half period is equal but opposite in sign to the phase shift in the next half
eriod.

We estimate that a study of the relativistic oscillator,23 or of the atom in the presence of the
eriodic Aharonov-Bohm potential �7� is also possible.
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Let � be a trace-preserving, positivity-preserving �but not necessarily completely
positive� linear map on the algebra of complex 2�2 matrices, and let � be any
finite-dimensional completely positive map. For p=2 and p�4, we prove that the
maximal p-norm of the product map � � � is the product of the maximal p-norms
of � and �. Restricting � to the class of completely positive maps, this settles the
multiplicativity question for all qubit channels in the range of values p�4. © 2006
American Institute of Physics. �DOI: 10.1063/1.2191787�

. INTRODUCTION AND STATEMENT OF RESULTS

Qubit maps provide a useful laboratory for exploring methods and conjectures in quantum
nformation theory. In particular they can serve as a testing ground for approaches to the problem
f additivity of minimal entropy, and the related issues of Holevo capacity and entanglement of
ormation.18 In this article we will focus on the maximal p-norm and consider the question of its
ultiplicativity for a product map, when one of the factors in the product is a qubit map. For

alues of p close to one this question is directly related to the additivity of minimal entropy, and
ence to the circle of problems mentioned previously.

Recall first that the Schatten norm of a matrix A is defined for p�1 as

�A�p = �Tr�A�p�1/p = �Tr�A*A�p/2�1/p. �1�

et � be a linear map on the matrix algebra Cd�d, then the maximal p-norm of � is defined as

�p��� = sup
�

������p = sup
���

�����������p, �2�

here the first sup runs over states in Cd�d, the second sup runs over pure states �normalized
ectors in Cd�, and the second equality follows by convexity of the p-norm. It is natural to define
nother norm ��� � �1→p by instead taking the sup over all matrices A satisfying ��A � �1=1, and this
as been considered in other works;19,6 however for the applications in this article we are inter-
sted only in the quantity defined in �2�. In the case d=2 we will refer to � as a qubit map.

Recall that the map � is positivity preserving if ��A��0 for every A�0, and trace preserv-
ng if Tr ��A�=Tr�A�. The map is completely positive �CP� if in addition � � Id� is positivity
reserving for every dimension d�. A channel is a CP, trace-preserving map.

Amosov and Holevo2 conjectured that the maximal p-norm is multiplicative for products of
hannels, that is for any channels � and � and for all p�1

�p�� � �� = �p����p��� . �3�

Later Werner and Holevo20 found a family of d-dimensional channels � for which �p��
� ��	�p���2 for p sufficiently large �p	4.78. . . for d=3�. No such example is known for d

2, and the original conjecture �3� survives for the case where at least one of the channels �, �
s a qubit channel.

In our main result we prove �3� for the case where � is a trace-preserving, positivity-
reserving qubit map, where � is any finite-dimensional completely positive map, and where p

2 or p�4. We do not assume that � is completely positive. Indeed it is essential for our proof

47, 042106-1022-2488/2006/47�4�/042106/9/$23.00 © 2006 American Institute of Physics
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hat we consider the larger class of positivity preserving but not completely positive maps. Pre-
ious work on entrywise positive maps14 has provided other examples where multiplicativity holds
or a class of non-CP maps, in the range p�2.

Theorem 1: Let � be a trace-preserving, positivity-preserving qubit map, and � any finite-
imensional completely positive map. Then for p=2 and for all p�4,

�p�� � �� = �p����p��� . �4�

There has been a lot of work on the additivity and multiplicativity question for quantum
hannels, and �4� has been established for special classes of qubit channels, including the depo-
arizing channel,5,3,7,1 unital qubit channels,15,10 and some classes of nonunital qubit
hannels.11,12,17,8 Theorem 1 settles the question of multiplicativity for all qubit channels, at least
n the range p�4 �the case p=2 was proved in Ref. 11�. It should be noted that �4� is false in
eneral for positivity-preserving qubit maps if p
2, as can be seen with the example � � I where
���=�T. We are not aware of any counterexamples to �4� for 2
 p
4.

The proof of Theorem 1 uses the following matrix inequality which is of independent interest.
Theorem 2: Let A, B, C, D�Cd�d for some d�1. Then for p=2 and for all p�4,

	
A B

C D
�	

p
� 	
�A�p �B�p

�C�p �D�p
�	

p
�5�

Inequality �5� was first derived by Nathanson.16 It had been known previously in the cases

here A=D and B=C,4 where �A B

C D � is positive semidefinite,12 and where all matrices A, B, C,

nd D are diagonal.13 We conjecture that the inequality holds in the interval 2� p��, and that the
everse inequality holds in the interval 1� p�2 �it is easy to see that equality holds at p=2�.
roving this conjecture would also establish the noncommutative version of Hanner’s inequality.4

The article is organized as follows. In Sec. II we prove Theorem 1 for a special subclass of
ubit maps, making use of the inequality �5�. In Sec. III we recall a result of Gorini and
udarshan9 on the classification of extreme affine maps on Rn which map the unit ball into itself.
ombining the Gorini-Sudarshan classification with the representation of qubit maps as affine
aps on R3, we derive Lemma 4, which implies that any trace-preserving, positivity-preserving

ubit map � can be expressed as a convex combination of qubit maps from the subclass of Sec.
I, all of which share the same maximal output p-norm as �. Using Lemma 4, we then prove
heorem 1 for all qubit maps. Section IV contains the proof of Theorem 2, which makes use of
reviously known matrix inequalities.12

I. PROOF FOR SPECIAL CLASS OF MAPS

In this section we prove Theorem 1 for a special class of positivity-preserving, trace-
reserving qubit maps. In order to describe this class we will use the representation of qubit states
y points in the Bloch sphere, and qubit maps by affine linear maps on R3.

A qubit state � is represented by a point in the unit ball in R3 via the relation

� =
1

2
�I + � xii� � x = x1

x2

x3
� , �6�

here I is the identity matrix and �1 ,2 ,3� are the Pauli matrices. Positivity of � is equivalent
o

� xi
2 � 1. �7�

trace-preserving qubit map � sends the state �= 1
2 �I+�xii� to the state ����= 1

2 �I+�yii�,
3
here y�R is obtained from x by applying an affine linear map, that is
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y = Ax + v �8�

or some real 3�3 matrix A, and some vector v�R3.
Conjugation by a unitary matrix U�SU�2� maps � to U�U*, and this acts on the Bloch sphere

y a rotation, sending x�R�U�x for some R�U��SO�3�. If unitary conjugations by matrices U, V
re performed on the domain and range of the map � respectively, then representation �8� is
eplaced by

y� = R�V�AR�U�x + R�V�v . �9�

ince the map U�R�U� is onto, the singular value decomposition implies that it is always
ossible to find unitary matrices U ,V so that R�V�AR�U� is diagonal �though the diagonal entries
eed not be all positive�. Spectral properties of the map � �in particular its maximal output

p-norm� are invariant under unitary conjugations in its domain and range, hence there is no loss of
enerality in assuming that the matrix A in �8� is diagonal. Using representation �8�, we will say
hat � is in diagonal form if

A = �1 0 0

0 �2 0

0 0 �3
�, v = v1

v2

v3
� . �10�

ote that � is unital if and only if v=0 in �8�. We now prove Theorem 1 for a special class of
aps.

Lemma 3: Let � be a positivity-preserving, trace-preserving qubit map in diagonal form
10�, and suppose that at most one of the numbers �v1 ,v2 ,v3� is nonzero. Then �4� holds for any
ompletely positive map �, for p=2 and for p�4.

Proof: By permuting coordinates we can assume that only the third component of v can be
onzero, so that v1=v2=0. The diagonal entries of A may be positive or negative. However we can
hange the signs of any two diagonal entries by conjugating with a Pauli matrix, without destroy-
ng the diagonal property and without changing the third diagonal entry; for example conjugating
ith 3 changes the signs of �1 and �2, and leaves �3 unchanged. Using this additional freedom
e can assume that

�1 � 0, �2 � 0. �11�

Let �12 be a bipartite state on C2 � Cd for some d, written in block form

�12 = 
 X Y

Y* Z
� . �12�

et � be a completely positive map on Cd, then

�I � ����12� = 
 A B

B* C
� , �13�

here A=��X�, B=��Y�, and C=��Z�. Since � is completely positive, and �12 is a state, it
ollows that �I � ����12� is positive semidefinite, and hence B=A1/2RC1/2 where R is a contraction.
his implies in particular that for all p�1

�B�p � �A�p
1/2�C�p

1/2. �14�

e will encounter the 2�2 matrices of p-norms


�A�p �B�p

�B�p �C�p
�, 
 �A�p i�B�p

− i�B�p �C�p
� �15�
nd we note now that �14� implies the positivity of these matrices, or more generally
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 �A�p z�B�p

z*�B�p �C�p
� � 0 �16�

or any z�C satisfying �z � �1.
Using the diagonal form �10� and the assumption that v3 is the only nonzero component of v,

e have

�� � ����12� = 
 c++A + c+−C �1B1 − i�2B2

�1B1 + i�2B2 c−−A + c−+C
� , �17�

here B=B1− iB2 with B1, B2 hermitian, and where

c+± = �1 + v3 ± �3�/2, c−± = �1 − v3 ± �3�/2. �18�

ince � is positivity-preserving, it maps the state �1 0

0 0 � into a positive semidefinite matrix, and

his implies that

c++ � 0, c−− � 0. �19�

imilarly it maps the state �0 0

0 1 � to a positive semidefinite matrix, hence also

c+− � 0, c−+ � 0 �20�

. The case p=2

Using representation �17�,

Tr��� � ����12��2 = Tr�c++A + c+−C�2 + 2��1
2Tr B1

2 + �2
2Tr B2

2� + Tr�c−−A + c−+C�2. �21�

sing the positivity of the coefficients �19�, �20� and convexity of the 2-norm gives

Tr��� � ����12��2 � �c++�A�2 + c+−�C�2�2 + 2��1
2Tr B1

2 + �2
2Tr B2

2� + �c−−�A�2 + c−+�C�2�2.

�22�

efine

� = max��1,�2� �23�

hen it follows that

�1
2Tr B1

2 + �2
2Tr B2

2 � �2Tr B*B = �2�B�2
2. �24�

sing �24� the right-hand side of �22� can be rewritten as the trace squared of a 2�2 matrix,
eading to

Tr��� � ����12��2 � Tr
c++�A�2 + c+−�C�2 ��B�2

��B�2 c−−�A�2 + c−+�C�2
�2

= Tr
�
 �A�2 z�B�2

z*�B�2 �C�2
��2

,

�25�

here

z = �1 if � = �1

i if � = �2.
� �26�
s noted in �16� the matrix

                                                                                                            



i

A

a

T
p

B

D

s

F

w
s

�
p
o

T
t
p

042106-5 New multiplicativity results for qubit maps J. Math. Phys. 47, 042106 �2006�

                        

 �A�2 z�B�2

z*�B�2 �C�2
�

s positive semidefinite, hence by definition of the maximal 2-norm we get

��� � ����12��2 � 	�
 �A�2 z�B�2

z*�B�2 �C�2
�	

2
� �2���Tr
 �A�2 z�B�2

z*�B�2 �C�2
�

= �2�����A�2 + �C�2� . �27�

s A=��X� and C=��Z�, this yields

��� � ����12��2 � �2����2����Tr X + Tr Z� = �2����2��� �28�

s Tr X+Tr Z=Tr �12=1. As this holds for any state �12 we deduce that

�2�� � �� � �2����2��� . �29�

he inequality in the reverse direction follows by restriction to product states, hence this com-
letes the proof for the case p=2.

. The case pÐ4

We apply Theorem 2 to �17� to conclude that for p�4,

��� � ����12��p � 	
 �c++A + c+−C�p ��1B1 − i�2B2�p

��1B1 + i�2B2�p �c−−A + c−+C��p
�	

p

. �30�

efine the 2�2 real symmetric matrix

M = 
 �c++A + c+−C�p ��1B1 − i�2B2�p

��1B1 + i�2B2�p �c−−A + c−+C�p
� , �31�

o that �30� can be written

��� � ����12��p � �M�p. �32�

The positivity results �19� and �20� imply that

�c++A + c+−C�p � c++�A�p + c+−�C�p,

�33�
�c−−A + c−+C�p � c−−�A�p + c−+�C�p.

urther, recall �23� and suppose first that �=�1, so that �1−�2�0. Then

��1B1 − i�2B2�p = ���1 − �2�B1 + �2B�p � ��1 − �2��B1�p + �2�B�p � ��B�p, �34�

here in the last inequality we used �B1�p= 1
2 �B+B*�p� �B�p. A similar argument leads to the

ame conclusion if �=�2.
We would like to replace the entries of M with the bounds on the right-hand sides of �33� and

34�, and argue that �M�p must increase under this substitution. However the matrix M may not be
ositive semidefinite �since � is not necessarily completely positive� so this is not immediately
bvious. To see that it does in fact increase, let p=2q so that

�M�p = ��M2�q�1/2. �35�

hen the matrix M2=M*M is positive semidefinite with positive entries, and it is easy to see that
his implies �M2�q is an increasing function of the entries of M2. Since M is also entrywise

2 2
ositive, the entries of M are increasing functions of the entries of M, and therefore so is �M �q.
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herefore �M�p increases when the bounds �33�, �34� are inserted in the right-hand side of �32�,
nd we get

��� � ����12��p � 	
c++�A�p + c+−�C�p ��B�p

��B�p c−−�A�p + c−+�C�p
�	

p

. �36�

ow we note that the right-hand side of �36� is unchanged if the upper-right entry � �B�p is
eplaced by z� �B�p and the lower left-hand entry by z*� �B�p for any �z � =1. Hence using the
otation �26� again, �36� implies

��� � ����12��p � 	�
 �A�p z�B�p

z*�B�p �C�p
�	

p
. �37�

e now repeat the arguments used above in the case p=2, to conclude that

��� � ����12��p � �p�����A�p + �C�p� � �p����p����Tr X + Tr Z� = �p����p��� . �38�

s this holds for any state �12 we again deduce

�p�� � �� � �p����p��� �39�

nd this completes the proof for the case p�4.

II. REDUCTION TO SPECIAL FORM

In this section we will show that the general case of Theorem 1 follows from Lemma 3. Recall
hat a trace-preserving, positivity-preserving qubit map � is represented by an affine linear map on

3 as in �8�, sending the Bloch sphere �the closed unit ball in R3� into an ellipsoid. We will refer
o the latter as the image ellipsoid of �.

For a positivity-preserving, trace-preserving qubit map �, the minimal output entropy and
aximal output p-norm are all achieved on the same input state. That is, there is a pure state ���

uch that for all p�1

�p��� = sup
�

������p = �����������p. �40�

efine the function

hp�r� = 

1 + r

2
�p

+ 
1 − r

2
�p�1/p

. �41�

he spectrum of ������� � � is ��1±r� /2�, for some 0�r�1. Accordingly the value of �40� is

�p��� = hp�r� . �42�

We will denote by Cr the set of all positivity-preserving, trace-preserving qubit maps whose
aximal output p-norm is at most hp�r�, that is

Cr = ��:�p��� � hp�r�� . �43�

ote that Cr does not depend on p. Geometrically, Cr consists of the positivity-preserving qubit
aps for which the image ellipsoid lies inside the sphere of radius r centered at the origin.

It is clear that Cr is a convex set. The next result shows that the extreme points of Cr have a
imple form. Recall the definition �10� of the diagonal form of a qubit map.

Lemma 4: Let � be an extreme point in Cr, represented in diagonal form by the affine map
�Ax+v on R3. Then at most one of the components of v is nonzero.

Lemma 4 is a consequence of the following Theorem of Gorini and Sudarshan,9 which clas-
n
ifies all extreme affine maps of R sending the closed unit ball into itself.
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Theorem 5: [Gorini-Sudarshan] Let Dn be the set of affine maps of Rn which send the closed
nit ball into itself. Denote by �B ,w� the map x�Bx+w, where w�Rn and B�Rn�n. If �B ,w� is
n extreme point in Dn, then there are orthogonal matrices Q1 ,Q2�O�n�, and real numbers 0
��1, 0
��1 such that

Q1w = �0, . . . ,0,��1 − �2��, Q1BQ2 = Diag�m, . . . ,m,�m� , �44�

here m=�1+�2�2−�2 and where Diag�d1 ,d2 , . . . � denotes the diagonal matrix with entries

1 ,d2 , . . . .
To derive Lemma 4 from Theorem 5, we identify Cr with the set of scaled affine maps rD3

��rB ,rw� : �B ,w��D3�. Hence every extreme map � in Cr corresponds to an affine map �rB ,rw�
here �B ,w� satisfies �44�. Further, the matrix Q1 in �44� is in O�3�, and hence either Q1

SO�3� or −Q1�SO�3�; similarly for Q2. Since every rotation in SO�3� can be implemented by
unitary conjugation in SU�2� �see the discussion leading up to �9��, this shows that � can be
ritten in diagonal form with

A = ±rm 0 0

0 ± rm 0

0 0 ± r�m
�, v =  0

0

±r��1 − �2�
� , �45�

nd this proves Lemma 4.
In the remainder of this section we will show that Theorem 1 follows from Lemma 3 and

emma 4. Accordingly, suppose that � is a trace-preserving, positivity-preserving qubit map
atisfying �42� for some 0�r�1, so that

�p��� = hp�r� . �46�

hen it is sufficient to show that for any completely positive map �,

�p�� � �� � hp�r��p��� . �47�

Now Cr is a closed bounded convex subset of R12 �since the matrix A and vector v together
ave 12 entries�, hence by Caratheodory’s Theorem any element of Cr can be written as a convex
ombination of at most 13 of its extreme points. The map � is in Cr, hence there are extreme maps
�i��Cr such that

� = �
i

ai�i, �48�

here ai�0 and �ai=1. Since ��i� are in Cr we also have

�p��i� � hp�r� . �49�

urther, combining Lemmas 4 and 3, we deduce that

�p��i � �� = �p��i��p��� � hp�r��p��� �50�

or all i. By convexity of the p-norm it follows from �48� and �50� that

�p�� � �� � �
i

ai�p��i � �� = �
i

ai�p��i��p��� � hp�r��p��� , �51�
nd this proves �47�.
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V. PROOF OF THEOREM 2

Let p=2q and define

M = 
A B

C D
� . �52�

hen M*M is positive semidefinite, and we write it in block form as

M*M = 
M11 M12

M21 M22
� . �53�

ow we apply the result of Theorem 1�b� from Ref. 12 to the matrix M*M to deduce that

�M*M�q � 	
�M11�q �M12�q

�M21�q �M22�q
�	

q
�54�

or all q�2. Further, M11=A*A+C*C, hence

�M11�q � �A*A�q + �C*C�q = �A�p
2 + �C�p

2. �55�

imilarly

�M12�q = �M21�q � �A�p�B�p + �C�p�D�p �56�

nd

�M22�q � �B�p
2 + �D�p

2. �57�

or a positive semidefinite 2�2 matrix the q-norm is an increasing function of the entries. Hence
ombining �54� with �55�–�57� gives

�M*M�q � �m*m�q, �58�

here

m = 
�A�p �B�p

�C�p �D�p
� . �59�

aking a square root of both sides gives

�M�p � �m�p �60�

hich is the stated result.
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We investigate the concept of superconformal symmetry in six dimensions, applied
to the interacting theory of �2,0� tensor multiplets and self-dual strings. The action
of a superconformal transformation on the superspace coordinates is found, both
from a six-dimensional perspective and by using a superspace with eight bosonic
and four fermionic dimensions. The transformation laws for all fields in the theory
are derived, as well as general expressions for the transformation of on-shell su-
perfields. Superconformal invariance is shown for the interaction of a self-dual
string with a background consisting of on-shell tensor multiplet fields, and we also
find an interesting relationship between the requirements of superconformal invari-
ance and those of a local fermionic �-symmetry. Finally, we try to construct a
superspace analogue of the Poincaré dual to the string world-sheet and consider its
properties under superconformal transformations. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2184810�

. INTRODUCTION

One of the most interesting discoveries in string/M-theory during the past decade is without
oubt the six-dimensional �2,0� theories, named after the supersymmetry algebra under which they
re invariant.1 These are superconformal quantum theories without dynamical gravity, and first
ppeared in a compactification of Type IIB string theory on a four-dimensional hyper-Kähler
anifold.2 They obey an ADE classification �see Ref. 3 for an intrinsically six-dimensional mo-

ivation for why the simply laced Lie algebra series A, D, and E appear� but have no other discrete
r continuous parameters. However, the theories have a moduli space parametrized by the expec-
ation values of a set of scalar fields.

There is a second origin for the A-series of these theories in terms of M-theory, where they
rise as the world-volume theory on a stack of parallel M5-branes.4,5 More specifically, a stack of
+1 branes yields the Ar version of �2,0� theory, where r denotes the rank of the associated Lie
lgebra. The fluctuations of the M5-branes are described by r so-called �2,0� tensor multiplets and
he 5r moduli correspond to the transverse distances between the branes. It is also possible for

embranes to stretch between two M5-branes;6–8 the intersections will then appear as self-dual
trings from the six-dimensional world-volume perspective on the M5-brane. We get in total r�r
1� /2 different species of such strings, corresponding to the number of ways to connect the
ranes. The string tension is proportional to the distance between the branes in question, and is
herefore related to the moduli of the theory. Specifically, if the branes coincide, the strings
ecome tensionless. This picture yields in a simple way the different degrees of freedom of �2,0�
heory; for a more complete discussion, see, e.g., Ref. 9.

An intrinsically six-dimensional formulation of the �2,0� theories is still lacking, and it is the
ltimate goal of our research to find such a definition. In our previous work, we have pursued a
rogram where we consider the theory at a point away from the origin of its moduli space, where

�
Electronic mail: par.arvidsson@chalmers.se
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he strings are tensile. This introduces a scale in the theory and breaks the conformal invariance
pontaneously, but also provides a basis for doing perturbation theory, since in the limit of large
tring tension, the theory describes the well understood free �2,0� tensor multiplet and free self-
ual strings. The dimensionless expansion parameter will then be the square of some typical
nergy divided by the string tension. For simplicity, we have chosen to work in the A1 version of
2,0� theory, which includes a single type of string and a single tensor multiplet.

In this paper, we consider the hitherto uninvestigated superconformal symmetry of our model.
t is well known that superconformal field theories cannot exist in space-times with more than six
imensions. Moreover, in six dimensions, the largest possible supersymmetry consistent with
uperconformal invariance is N= �2,0�. This means that �2,0� theory, regarded as a superconfor-
al theory, has the largest possible supersymmetry in the highest possible dimension. This obser-

ation alone provides a motivation for studying these theories.
The aim of the present paper is first to provide a framework for the study of superconformal

nvariance in six-dimensional �2,0� theory by using superfields. Second, we want to investigate
hether our model10 for a self-dual string interacting with a tensor multiplet background is su-
erconformally invariant, and in what sense. Finally, we would like to use the new superconformal
ools to find some clues on how to formulate the full interacting theory, i.e., when the tensor
ultiplet fields do not obey their free equations of motion.

It is our intention to make the paper self-contained, thereby reviewing and summarizing some
ell-known results on conformal and superconformal symmetry. We think that it is worthwhile to

nclude these, in order to understand how the superfield transformations work and how they are
erived. It is also, in some cases, nontrivial to adapt the known results to our notations and
onventions.

The outline of this paper is as follows: Section II is devoted to the study of �bosonic� confor-
al transformations in six dimensions, as a warm-up exercise preceding the superconformal
odel. We find explicit expressions for the action of the conformal group on the space-time

oordinates, both from a six-dimensional perspective and by considering a projective hypercone in
ight dimensions, where the conformal transformations act linearly. We also study how different
elds behave under conformal transformations, especially the ones in the bosonic sector of the
2,0� tensor multiplet. The results of Sec. II are not new, but still useful from a pedagogical point
f view.

Section III discusses superconformal symmetry. As in the preceding section, we first find how
he transformations act on coordinates, this time in a superspace with six bosonic and 16 fermionic
imensions. The coordinate transformations are also found by considering a projective supercone
n a higher-dimensional superspace; a method which, to the best of our knowledge, has not
ppeared previously in the literature. Next, we use a superfield formalism as a way of compacti-
ying and simplifying the notation and derive how superconformal transformations act on the
uperfields of the complete �2,0� tensor multiplet and on self-dual spinning strings. The explicit
ransformation laws are used to show that the model describing a string interacting with a tensor

ultiplet background is superconformally invariant. We find the new and nontrivial result that the
equirements of superconformal symmetry and those of a local fermionic �-symmetry impose
imilar restrictions on the possible coupling terms, thereby indicating the uniqueness of the theory.

Finally, Sec. IV discusses the construction of a superspace analogue of the Poincaré dual to
he string world-sheet and its properties under superconformal transformations.

I. CONFORMAL INVARIANCE IN THE BOSONIC THEORY

Before discussing the issue of superconformal invariance, it is worthwhile to consider a
impler case, which still contains some important aspects of the problem. Therefore, we begin by
orking with the model describing a spinless self-dual string interacting with the bosonic part of

he �2,0� tensor multiplet in six dimensions.9 The results in this section have appeared previously
n the literature, but it is nevertheless useful to review some aspects in order to get a complete
icture. We will also refer �for comparison� to formulas in this section later in this paper, to point

ut similarities and differences between the bosonic and the superconformal models.
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. Conformal coordinate transformations

In this section, we consider the action of conformal transformations on the coordinates x�,
=0 , . . . ,5, in a six-dimensional space-time. These transformations are called passive, meaning

hat they act on the coordinates themselves, rather than on the fields of the theory.
Conformal transformations act on space-time in such a way that the angle between two

ntersecting curves is left invariant. This means that the infinitesimal proper time interval

d�2 = − ��� dx� dx� �2.1�

ransforms according to

d�2 → �2�x�d�2, �2.2�

here ��� is the flat space-time metric �with “mostly plus” signature� and ��x� denotes a space-
ime dependent quantity that also involves the parameters of the conformal transformation. For an
nfinitesimal transformation, such that ��x�=1+��x�, this yields that

��d�2� = 2��x�d�2, �2.3�

here ��x� is an infinitesimal function.
It is well known that the most general infinitesimal coordinate transformation that respects Eq.

2.3� is given by

�x� = a� + 	��x� + 
x� + c�x2 − 2c · xx�, �2.4�

here c ·x����c�x�=c�x�. The �constant� parameters a�, 	��, 
, and c� are related to the differ-
nt transformations of the conformal group according to the following table:

ymmetry Generator Parameter

ranslations P�=�� a�

otations and Lorentz boosts M��=x������� 	��

ilatations D=x��� 


pecial conformal transformations K�=x2��−2x�x��� c�

here the differential expressions for the generators make the equation

�x� = �a�P� + 	��M�� + 
D + c�K��x� �2.5�

alid. In total, we have 28 parameters, in agreement with the dimensionality of the conformal
roup in six dimensions, denoted by SO�6,2�.

From Eq. �2.4�, it is easily shown that the differential dx� transforms according to

��dx�� = �	�� + 4c���x����dx� + �
 − 2c · x�dx�, �2.6�

hich implies that the proper time interval indeed transforms according to Eq. �2.3� with ��x�

−2c ·x.

Leaving the coordinate transformations aside for a while, we turn to the commutation relations
elating the generators of the conformal group to each other. By direct calculation, it is easily
erified that the differential operators defined in the table above obey

�P�,M��� = − �����P���, �P�,D� = P�,

�K�,M��� = − �����K���, �K�,D� = − K�,
�P�,K�� = − 4M�� − 2���D, �M��,D� = 0,
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�M��,M��� = 2����
���M���

���. �2.7�

his defines the conformal group SO�6,2� in six dimensions. The SO�6,2� structure may be made
ore explicit by introducing a new set of generators J�̂�̂, �̂ , �̂=0, . . . ,7, according to

M�� = J��,

P� = 2�J7� + J6�� ,

K� = 2�J7� − J6�� ,

D = 2J76. �2.8�

hese obey the Lorentz-type commutation relations

�J�̂�̂,J�̂�̂� = ��̂��̂�J��̂��̂ − ��̂��̂�J��̂��̂, �2.9�

here the metric ��̂�̂=diag�−1,1 ,1 ,1 ,1 ,1 ,1 ,−1�. Thus, the conformal transformations act as
otations in an eight-dimensional space with two timelike directions.

There is a formulation �first suggested by Dirac,11 whose work was later continued by
astrup12 and by Mack and Salam13� in which a d-dimensional space-time is regarded as a
rojective hypercone in a space with one extra spacelike and one extra timelike dimension, just
ike the one suggested in the preceding paragraph. In the higher-dimensional space, conformal
ymmetry acts linearly, i.e., as a rotation with the generator J�̂�̂. Denote the coordinates in this
pace by y�̂, and define the projective hypercone by

y2 = ��̂�̂y�̂y�̂ = 0. �2.10�

his equation is clearly Lorentz invariant in the eight-dimensional space, and therefore confor-
ally invariant from a six-dimensional point of view.

Next, let the infinitesimal rotation parameters be assembled in the matrix �̂�̂, such that

�y�̂ = �̂�̂J�̂�̂y�̂ = �̂�̂y�̂. �2.11�

he last equality follows from the obvious definition

J�̂�̂ = y��̂����̂�, �2.12�

here the derivative acts on the y variables.
To make contact with the six-dimensional space-time, we impose that

�̂�̂J�̂�̂ = 	��M�� + a�P� + c�K� + 
D , �2.13�

hich when combined with Eq. �2.8� yields that

	�� = ��,

a� = 1
2 �7� + 6�� ,

c� = 1
2 �7� − 6�� ,


 = 76. �2.14�
ext, we parametrize the projective hypercone by

                                                                                                            



w

i
a

T
s
t
l
m
w

B

o
o
q
l
e
c
m
t
g

w

H
i
t

a
T
s

042301-5 Superconformal symmetry in �2,0� theory J. Math. Phys. 47, 042301 �2006�

                        
y� = �x�,

y7 − y6 = � ,

y7 + y6 = ����x�x�, �2.15�

here � is related to the projectiveness of the hypercone and therefore ��0.
Under a conformal transformation as in Eq. �2.11�, it turns out that the quantity x� introduced

n Eq. �2.15� must transform exactly as the coordinates x� in Eq. �2.4�, while � transforms
ccording to

�� = �2���c�x� − 
�� . �2.16�

his shows that the surface of the projective hypercone defined in Eq. �2.10� behaves as the
ix-dimensional space-time we started with. In this way, we have derived the conformal coordinate
ransformation in Eq. �2.4� from a higher-dimensional perspective, a viewpoint that will be useful
ater in this paper as well. The eight-dimensional formulation also suggests a way of formulating
anifestly conformally invariant quantities, an observation that hopefully will be pursued in future
ork.

. Conformal field transformations

Having discussed the conformal group and its action on the six-dimensional space-time thor-
ughly, we now turn to the question of how the conformal group generators act on fields defined
ver this space-time. This action consists of two parts: one due to the dependence of the field in
uestion on the space-time coordinate x� and one due to specific properties of the field itself. The
atter part consists of the action of the stability subgroup of x=0 �the little group� on the fields,
.g., the transformation properties of a vector field under Lorentz transformations. We will �in
ontrast to our convention in the preceding section� adopt the active view on conformal transfor-
ations, meaning that the space-time coordinates are fixed but the fields change upon such a

ransformation. By considering the stability subgroup mentioned before, it can be found13 that a
eneral field �i�x� �where i denotes some index or indices� transforms according to

�C�i�x� = a����i�x� + 	���x����i�x� + ������i�x�� + 
�x����i�x� + w�i�x��

+ c��x2���i�x� − 2x�x����i�x� + 4x�������i�x� − 2x�w�i�x� + �k���i�x�� ,

�2.17�

here ���, w, and k� are defined through

�M��,�i�0�� = ������i�0� ,

�D,�i�0�� = w�i�0� ,

�K�,�i�0�� = �k���i�0� . �2.18�

ere, M��, D, and K� should not be confused with the differential expressions in the table above;
n these equations �when acting on fields�, they denote the full generators of Lorentz transforma-
ions, dilatations and special conformal transformations, respectively.

Thus, ��� and k� correspond to the intrinsic properties of the field under space-time rotations
nd special conformal transformations, respectively, while w is the conformal weight of the field.
ogether, these generate the stability subgroup of x=0. We also note that a primary field corre-
ponds to one having k�=0.
It is convenient to summarize the transformation �2.17� in the expression
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�C�i�x� = ���x����i�x� + ����x�������i�x� + ��x�w�i�x� + c��k���i�x� , �2.19�

here the space-time dependent parameter functions are defined by

���x� � a� + 	��x� + 
x� + c�x2 − 2c · xx�, �2.20�

����x� � 	�� + 4c���x���, �2.21�

��x� � 
 − 2c · x . �2.22�

his expression is also stated in Ref. 14 and will prove to be useful when dealing with superfields
nd the superconformal group later in this paper. Note that the expression for ���x� in Eq. �2.20�
oincides with the expression for �x� in Eq. �2.4�, indicating that this part corresponds to the
hange in the field due to its dependence on the space-time coordinates.

When acting on fields, the generators obey the same commutation relations as in Eq. �2.7�, but
ith the opposite sign; this is due to the difference between active and passive transformations.

To conclude, the conformal transformation of a general field is specified by stating its con-
ormal weight �w�, its behavior under Lorentz transformations ����� and its properties under
pecial conformal transformations �k��.

. The bosonic tensor multiplet

The next step is to apply the results of the preceding section to the fields in the bosonic sector
f the �2,0� tensor multiplet, consisting of five scalar fields and a two-form gauge potential. We
enote the scalar fields, transforming in the vector representation of the SO�5� R-symmetry group,
y the antisymmetric matrix �ab, a ,b=1, . . . ,4, satisfying the algebraic condition

�ab�ab = 0, �2.23�

here �ab is the SO�5� invariant antisymmetric tensor. Obviously, a and b are SO�5� spinor
ndices. The two-form potential is denoted b and has an associated field strength h=db, both
-symmetry scalars. Actually, it is only the self-dual part of the field strength that is part of the

ensor multiplet, but in order to give a Lagrangian description of the theory,15 we include the
nti-self-dual part as a spectator field. It is essential to keep this part decoupled when adding
nteractions to the theory. The field content, along with the reality properties, is more thoroughly
iscussed in Ref. 16.

The fields have the following properties under conformal transformations:

�����ab� = 0, �k��ab� = 0, w� = 2,

����b��� = �����b���� − �����b����, �k�b��� = 0, wb = 2. �2.24�

he conformal weights w� and wb are bounded from below by a unitarity condition,17,18 and due
o the BPS property of the tensor multiplet representation, this bound is saturated. The weights
oincide with the mass dimensions of the fields.

Using the expression �2.19�, this means that the fields of the bosonic theory transform accord-
ng to

�C�ab�x� = ���x����ab�x� + 2��x��ab�x� , �2.25�

�Cb���x� = ���x���b���x� + 2� ��x�b�����x� + 2��x�b���x� , �2.26�
���

                                                                                                            



w
d

N
w
a
t

p
s
e

w
v
a

i
v
i

i
e

b
n

i
w
�
w

i
b
c

I

t
t
r
t
i

042301-7 Superconformal symmetry in �2,0� theory J. Math. Phys. 47, 042301 �2006�

                        
�Ch����x� = ���x���h����x� − 3����
��x�h������x� + 3��x�h����x� , �2.27�

here we have required the conformal transformation operator to commute with the exterior
erivative, in the sense that

d��Cb� = �C�db� = �Ch . �2.28�

ote that this conformal transformation operator is defined in an abstract sense, acting in different
ays on different fields. Specifically, its explicit form is different when acting on the derivative of
field than on the field itself. The relation �2.28� may seem evident here, but it is useful to relate

o it when we discuss the superconformal transformations later in this paper.
Comparing Eqs. �2.26� and �2.27�, we see that both b and its exterior derivative h=db are

rimary fields, meaning that they have no k� piece in their transformation laws, cf. Eq. �2.19�. It
hould be noted that, in general, derivatives of primary fields are not necessarily primary, consider,
.g., the variation

�C����ab�x�� = ����C�ab�x�� �2.29�

=���x������ab�x� − ��
��x����ab�x� + 3��x����ab�x� − 4c��ab�x� , �2.30�

here we see that the generators of the conformal group act as expected on a field with a subscript
ector index and mass dimension 3, apart from the nonprimary piece with parameter c�. Thus,
lthough �ab is a primary field, its derivative is not.

The bosonic model also includes self-dual strings, described by an embedding field X�, which
s a function of the world-sheet coordinates �labelled �i, i=1,2� and transforms as a Lorentz
ector. In particular, since we have adopted the active viewpoint on conformal transformations, it
s natural to conclude that X� transforms according to

�CX� = − ���X� = − a� − 	�
�X� − 
X� − c�X2 + 2c · XX�, �2.31�

.e., in the same way as the space-time coordinate x� in Eq. �2.4�, but with the opposite sign. This
xpression does not look as nice as the transformations of the tensor multiplet fields found above,

ut if we instead consider the variation of the differential d̃X��d�i �iX
� �which is what we will

eed in explicit calculations�, we get that

�C�d̃X�� = − ��
��X�d̃X� − ��X�d̃X�, �2.32�

n accordance with the expected transformation of a field with a vector index, having conformal
eight wd̃X=−1. Note also, from Eqs. �2.19� and �2.31�, that all terms apart from those involving

��, w, and k� vanish manifestly when transforming the pull-back of a space-time field to the
orld-sheet of the string.

Using the transformation rules found above, it is a straight-forward task to prove that the
nteraction described in Ref. 9 is conformally invariant. It should be stressed that this model,
ecause of its electromagnetic coupling, suffers from a classical anomaly.3 This anomaly is can-
elled when fermionic degrees of freedom are included in the model in a supersymmetric way.

II. CONFORMAL INVARIANCE IN THE SUPERSYMMETRIC THEORY

In this section we turn to the complete theory, incorporating fermionic degrees of freedom in
he model. We take advantage of the superfield notation in order to simplify expressions and keep
hem similar and comparable to the bosonic results in the preceding section. This section mixes
esults that have appeared elsewhere in the literature with new findings. It should also be men-
ioned that, in some cases, our derivation methods are quite different from those that can be found

n previous papers on this subject.

                                                                                                            



A

b
r

t
S
i
t

T

N
t

a

F

b

b
s

i

042301-8 Pär Arvidsson J. Math. Phys. 47, 042301 �2006�

                        
. Including spinors in the model

In this section, we introduce the notations and conventions used for spinors and state the
osonic conformal transformations of the fermionic tensor multiplet fields. It summarizes old
esults, but is included for completeness to keep the paper self-contained.

The �2,0� tensor multiplet includes, apart from the scalars and the two-form potential men-
ioned in the preceding section, four chiral spinors transforming in the spinor representation of the
O�5� R-symmetry group. These are denoted as ��

a where �=1, . . . ,4 is an SO�5,1� Weyl spinor
ndex. An anti-Weyl spinor is denoted by a superscript � index. The spinor fields obey a symplec-
ic Majorana reality condition.19

It is convenient to use spinor indices also for the bosonic representations of the Lorentz group.
his means that we let �by contracting with the appropriate gamma matrices�

x� → x�� = x����, �3.1�

�� → ��� = �����, �3.2�

��� → 1
2�����, �3.3�

b�� → b�
�, such that b�

� = 0, �3.4�

h��� + ��h���� → h�� = h����, �3.5�

h��� − ��h���� → h�� = h����. �3.6�

ote that the last two equations conveniently separate the self-dual and anti-self-dual parts of the
hree-form h into different representations of the Lorentz group.

As is indicated by Eq. �3.3�, pairs of antisymmetric indices may be raised and lowered
ccording to

��� = 1
2��������. �3.7�

inally, we introduce the dot product between vectors in the same way as before, such that

� · x � ���x�� = 6. �3.8�

After these preliminaries, let us return to the conformal group and its generators. Naively, the
osonic differential generators of the table in Sec. II A are translated into

Generator Parameter

P��=��� a��

M��;��= 1
2 �x�����−x������ 	��;��

D=x����� 


K��=x2���−2x��x����� c��

ut it is more convenient to introduce a dual notation for the Lorentz generator M and its corre-
ponding parameter 	, according to

M�
� = �����M��;��, �3.9�

	�
� = 1

2�����	��;��, �3.10�
n analogy with the notation for the two-form b in Eq. �3.4�. This yields that
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	�
�M�

� = 	��;��M��;��, �3.11�

nd the differential operator becomes

M�
� = x����� − x����� = 2x����� − 1

2��
�x · � , �3.12�

hich is traceless as required.
Under a conformal transformation, the spinor field ��

a transforms according to

�C��
a = ����x������

a + ��
��x���

a + 5
2��x���

a , �3.13�

here the x-dependent parameter functions are the obvious translations from Sec. II A and become

����x� = a�� + 	�
�x�� + 	�

�x�� + �
 − 2c · x�x�� + c��x2, �3.14�

��
��x� = 	�

� − 4c��x�� + c · x��
�, �3.15�

��x� = 
 − 2c · x , �3.16�

n terms of which the transformations �2.25� and �2.27� are

�C�ab = ����x�����ab + 2��x��ab, �3.17�

�Ch�� = ����x����h�� + ��
��x�h�� + ��

��x�h�� + 3��x�h��. �3.18�

This ends the discussion concerning the conformal group with only bosonic generators. In the
ext section, we extend the model to incorporate fermionic generators, thereby forming the full
uperconformal group.

. Superconformal coordinate transformations

Since we want to treat a supersymmetric model, it is convenient to supplement the six bosonic
pace-time coordinates x�� by a set of 16 fermionic coordinates �a

�, see Ref. 10 for a more
horough introduction of these concepts. The fermionic coordinates are anticommuting, i.e., Grass-

ann odd, as usual and transform as anti-Weyl spinors under Lorentz rotations and as spinors
nder R-symmetry transformations.

Following the logic of the preceding section, the obvious next step is to find out what the
enerators of the conformal group SO�6,2� look like in this superspace and how they act on the
oordinates. Evidently, the generators must change in comparison to the bosonic case, in order to
ncorporate the nontrivial action of the conformal group on the fermionic coordinates �a

�. For
xample, since �a

� transforms as an anti-Weyl spinor under Lorentz rotations, the corresponding
enerator �M�

�� must be modified. The commutation relations in Eq. �2.7� are expected to remain
nchanged as expressed in terms of abstract generators.

However, we want to go a bit further and also include the R-symmetry group SO�5�, generated
y Uab=U�ab�, and supersymmetry, which is generated by the fermionic Q�

a . We are then forced to
ntroduce the generators Sa

� of special supersymmetry as well, which arise as the commutator of
he supersymmetry and the special conformal symmetry generators. Altogether, we have then
rrived at the superconformal group OSp�8* �4�, which is the expected symmetry group of the
omplete theory. We will denote the parameters of supersymmetry, R-symmetry and special su-
ersymmetry transformations by �a

�, vab, and ��
a , respectively. Note that Q�

a , Sa
�, �a

�, and ��
a all are

ermionic �Grassmann odd� quantities.
In this section, we will content ourselves with the action of the superconformal group on the

oordinates in superspace, postponing their action on fields to the next section. Starting from the
urely bosonic parts of the generators of SO�6,2� �P��, M�

�, D, and K��� obtained above and the
a
ell-known generator of supersymmetry �Q��, we can make suitable ansätze for the unknown but
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ssential additional parts �including fermionic variables and derivatives� of these generators as
ell as for the newly introduced generators �Sa

� and Uab�. By requiring these generators to obey
ertain of the commutation relations of the OSp�8* �4� group �which is related to the requirement
hat the algebra should close�, the unknown coefficients may be determined and the resulting
ifferential generators are found to be

P�� = ���, �3.19�

M�
� = 2x����� − 1

2��
�x · � + �c

���
c − 1

4��
�� · � , �3.20�

D = x · � + 1
2� · � , �3.21�

K�� = − 4x��x����� − �ab�cd�a
��b

����c
����d

���� + 2�c
����2x���� − i�ab�a

����b
����

c , �3.22�

Q�
a = ��

a − i�ac�c
����, �3.23�

Sa
� = �ac�2x�� − i�bd�b

��d
����

c + 2i�a
��c

���
c − i�a

��2x�� − i�bd�b
��d

�����, �3.24�

Uab = 1
2 ��ac�c

���
b + �bc�c

���
a� , �3.25�

here the dot product between two fermionic quantities aa
� and b�

b is defined by

a · b � ac
�b�

c . �3.26�

ote that the fermions involved in this scalar product are required to have opposite SO�5,1�
hirality, i.e., one should be a Weyl spinor and the other an anti-Weyl spinor.

The generators of the superconformal group act on the superspace coordinates x�� and �a
� in

he usual way; the resulting transformation laws are �similar transformations but in a different
otation, and derived in a different way, also appear in Ref. 20�

�x�� = a�� + 	�
�x�� + 	�

�x�� + 
x�� + 4c��x��x�� − i�ab�a
����b

��� + c���ac�bd�a
����b

����c
��d

�

− 2i��
c�c

���x���� − ��
c�ab�c

����a
����b

�, �3.27�

��a
� = �	�

� − 4c��x�� − 2ic���cd�c
��d

� + 2i��
c�c

���a
� + 1

2
�a
� + �a

�

+ 2�ca��
cx�� + i�ac�

bd��
c�b

��d
� + vac�

cd�d
�, �3.28�

hich, as in the bosonic case, look rather messy and complicated. However, it is easily shown that
he action on the superspace differentials e��=dx��+ i�ab�a

��d�b
� and d�a

� can be written as

�e�� = ��
��x,��e�� + ��

��x,��e�� + ��x,��e��, �3.29�

��d�a
�� = ��

��x,��d�a
� + 1

2��x,��d�a
� + Vc

a���d�c
� + 2��,a���e��, �3.30�

here the superspace-dependent parameter functions

��
��x,�� = 	�

� − 4c��x�� + c · x��
� − 2ic���cd�c

��d
� + 2i��

c �c
� −

i

2
��

�� · � , �3.31�

��x,�� = 
 − 2c · x + i� · � �3.32�
re extensions of Eqs. �3.15� and �3.16� to the superconformal case, while the functions
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Va
d��� = − �acvcd + 4i�acc���c

��d
� − 2i��

a�d
� + 2i�ae��

f �e
�� fd, �3.33�

��,a��� = 2c���a
� + �ab��

b �3.34�

re new. Naturally, ��
� and Vb

a are traceless, i.e., they obey ��
�=Va

a=0. To the best of our
nowledge, this way of presenting the superconformal transformations has not appeared previ-
usly in the literature. The advantages of using superspace-dependent parameter functions will be
ade clearer when we consider transformations of superfields in Sec. III C.

The transformations �3.29� and �3.30� contain the expected Lorentz, dilatation and
-symmetry parts �with generalized superspace-dependent parameters�, but also a term connecting

he variation of d�a
� to e�� with the parameter function ��,a���, containing the �constant� param-

ters c�� and ��
a . This separates special conformal and special supersymmetry transformations

rom the other transformations, which yield no such possibilities. This issue will be further dis-
ussed later in this paper and is a superspace analogue to the nontrivial piece k� in Eq. �2.19�.

It is also interesting to note that the infinitesimal supersymmetric interval length is preserved
p to a superspace-dependent scale factor under superconformal transformations, i.e.,

�� 1
2�����e��e��� = ��x,�������e��e��. �3.35�

his relation may in fact be seen as a definition of the superconformal transformations, in analogy
ith Eq. �2.3� in the bosonic case.

Continuing along the path taken in Sec. II, we calculate the commutation relations for the
ifferential generators in Eqs. �3.19�–�3.25�. The result is �similar relations appear, e.g., in Refs.
4 and 20�

�P��,M�
�� = − 2����

�P���� − 1
2��

�P��, �P��,Uab� = 0,

�K��,M�
�� = 2��

���K���� + 1
2��

�K��, �K��,Uab� = 0,

�Uab,D� = 0, �M�
�,Uab� = 0,

�Uab,Ucd� = − �a�c�U�d�b − �b�c�U�d�a, �P��,D� = P��,

�M�
�,D� = 0, �K��,D� = − K��,

�M�
�,Q�

a� = − ��
�Q�

a + 1
4��

�Q�
a, �Q�

a ,D� = 1
2Q�

a ,

�M�
�,Sa

�� = ��
�Sa

� − 1
4��

�Sa
�, �Sa

�,D� = − 1
2Sa

�,

�K��,Q�
a� = − 2�ac��

���Sc
���, �P��,Q�

c� = 0,

�P��,Sa
�� = 2�ac����

�Q���
c , �K��,Sa

�� = 0,

�M�
�,M�

�� = ��
�M�

� − ��
�M�

�, �Uab,Q�
c� = �c�a�Q�

�b�,

�Q�
a ,Q�

b� = − 2i�abP��, �Uab,Sc
�� = �c

�a���b�dSd
�,

�S�,S�� = − 2i�abK��,
a b
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�Q�
a ,Sb

�� = i��
���a

bD − 4�bcU
ac� + 2i�a

bM�
�,

�P��,K��� = − 4����
���M���

��� − 2����
�����

�D , �3.36�

hich together define the superconformal group OSp�8* �4�. It should be noted that these are the
elations that apply when the differential operators act on each other, not when the generators act
n fields. In the latter case, the sign on the right-hand side of every relation should be changed. It
s straightforward to verify that the super-Jacobi identities are satisfied.

In the same way as we compactified the notation in the bosonic case in Eq. �2.9� by extending
pace-time with one extra spacelike and one extra timelike dimension, we may define new gen-

rators J�̂�̂, where �̂ , �̂=1, . . . ,8 are chiral spinor indices in eight dimensions. The hatted indices
ecompose into subscript and superscript indices in six dimensions, corresponding to Weyl ��̂
1, . . . ,4� and anti-Weyl ��̂=5, . . . ,8� spinors, respectively. We let

J�� = 1
2 P��,

J�
� = 1

2 M�
� + 1

4��
�D = − J�

�,

J�� = − 1
2K��, �3.37�

nd also define new supercharges Q̂�̂
a according to

Q̂�
a = Q�

a ,

Q̂a,� = �abSb
�, �3.38�

ogether forming a chiral spinor in eight dimensions.
These generators, together with the unaltered R-symmetry generator Uab, obey the commuta-

ion relations

�Q̂�̂
a ,Q̂

�̂

b� = − 4i��abJ�̂�̂ + I�̂�̂Uab�, �J�̂�̂,Uab� = 0,

�J�̂�̂,J�̂�̂� = − I�̂��̂�J��̂��̂ + I�̂��̂�J��̂��̂, �J�̂�̂,Q̂�̂
a� = I�̂��̂�Q̂��̂�

a
,

�Uab,Ucd� = − �a�c�U�d�b − �b�c�U�d�a, �Uab,Q̂�̂
c � = �c�a�Q̂�̂

�b�, �3.39�

here the symmetric matrix I�̂�̂ has components

I�� = 0,

I�
� = ��

� = I�
�,

I�� = 0; �3.40�

t transforms in the singlet representation of SO�6,2�. The commutation relations �3.39� contain all
he information of Eq. �3.36�, but in a much more compact notation.

It is possible to compactify the notation further by considering the generators in a superspace
ith eight bosonic and four fermionic dimensions. This yields the OSp�8* �4� structure in a mani-

ˆ
est way; this notation appears in Refs. 14 and 21. Introduce a matrix JAB, where A= �� ,a� and

                                                                                                            



B
m
w

J

T

w
o

I

v
s

N
L
l

i
t
G
a

W
h
a

042301-13 Superconformal symmetry in �2,0� theory J. Math. Phys. 47, 042301 �2006�

                        
= ��̂ ,b� are OSp�8* �4� indices. Note that A and B are superindices, meaning that JAB is sym-
etric if both indices are fermionic, otherwise it is antisymmetric. We denote this in the standard
ay by

JAB = − �− 1�ABJBA. �3.41�

AB contains the different generators of the superconformal group, explicitly we take

J�̂�̂ = J�̂�̂,

J�̂
b =

i

2	2
Q̂�̂

b ,

Ja
�̂

= −
i

2	2
Q̂

�̂

a
,

Jab = iUab. �3.42�

hese generators obey the �anti�commutation relations

�JAB,JCD� = − 1
2 �IBCJAD − �− 1�ABIACJBD − �− 1�CDIBDJAC + �− 1�AB+CDIADJBC� �3.43�

here the bracket on the left-hand side is an anticommutator if both entries in it are fermionic,
therwise it is a commutator. The superspace metric IAB= �−1�ABIBA is defined by

IAB = 
 0 ��
� 0

��
� 0 0

0 0 i�ab� . �3.44�

n order to make the relation

IABIBC = �A
C �3.45�

alid �which is essential if want to raise and lower indices�, we also need to define the inverse
uperspace metric as

IAB = 
 0 ��
� 0

��
� 0 0

0 0 − i�ab
� . �3.46�

ote the resemblance between the �anti�commutation relations in Eq. �3.43� and the well-known
orentz group commutation relations. This suggests that the superconformal transformations act

inearly in a superspace with eight bosonic and four fermionic dimensions.
In Sec. II A, we found the conformal transformations of the bosonic coordinates x� in an

ndirect way, by looking at a projective hypercone embedded in an eight-dimensional space with
wo timelike directions. In this higher-dimensional space, the conformal group acts linearly.
uided by the OSp�8* �4� covariant notation introduced above, we would like to perform a similar

nalysis in the superconformal case.
Let the coordinates in superspace be yA and introduce a projective supercone by the equation

IAByAyB = 0. �3.47�

e will parametrize the supercone in a more implicit manner than we did when considering the
ypercone in Sec. II A. Consider a point on the supercone, with coordinates yA= �y� ,y� ,ya�. It is

�
lways possible to introduce a fermionic field �a�y� such that for any point on the supercone,
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ya = 	2�ab�b
�y�. �3.48�

y requiring �a
� to transform as an anti-Weyl spinor under SO�5,1�, this field is well-defined in all

oints on the supercone. In the same manner, we introduce the bosonic field x���y�=−x���y� such
hat

y� = �2x�� − i�ab�a
��b

��y� �3.49�

or any point on the supercone.
It is easily verified that all points yA of this form lie on the supercone defined by Eq. �3.47�.

bviously, we may always multiply x�� or �a
� by a constant and still remain on the supercone. This

xplains the notion projective supercone.
The next step is to vary these coordinates. The transformations are generated by

JAB = − y�A���B� = �− 1�ABy�B���A�, �3.50�

hich satisfies the commutation relations �3.43�, given that

�AyB = IAB. �3.51�

he coordinates yA transform according to

�yA = CDJCDyA = �− 1�C�A+D�IACCDyD, �3.52�

here the parameter matrix is given by

AB = 
 2a�� 	�
� + 1

2
��
� − i	2�b

�

− 	�
� − 1

2
��
� − 2c�� − i	2��

c �cb

i	2�a
� i	2��

c �ca − ivab
� , �3.53�

hosen such that the relation

ABJAB = 	�
�M�

� + a��P�� + c��K�� + 
D + �a
�Q�

a + ��
aSa

� + vabUab �3.54�

s valid.
Since Eq. �3.47� is invariant under a transformation of this type, we may require the left-hand

nd the right-hand sides of Eqs. �3.48� and �3.49� to transform equally. The implicated transfor-
ation properties of the fields x���y� and �a

��y� when the y coordinates are transformed in this way
re found to agree exactly with the superconformal transformations of the coordinates x�� and �a

�

n our original superspace �with six bosonic and 16 fermionic dimensions� in Eqs. �3.27� and
3.28� above. This explains the choice of notation and implies that the rather complicated trans-
ormation laws for x�� and �a

� are a mere consequence of a simple rotation in a superspace with
ight bosonic and four fermionic dimensions.

This way of introducing the superspace coordinates and deriving their transformation proper-
ies has, as far as we know, not appeared previously in the literature. Presumably, the fact that this
orks points to some underlying structure of the �2,0� superspace in six dimensions, the nature of
hich is not clear at the moment.

. Superfields

Having introduced a superspace �in the remainder of this paper, we will work in the usual
2,0� superspace with six bosonic and 16 fermionic dimensions�, the next step is to populate it with
uperfields. The superfield formulation for the �2,0� tensor multiplet first appeared in Ref. 22; a
horough description of its use in our model can be found in Ref. 10. In this paper, we will content
urselves with a short description of the key aspects.

ab ab
Define a superfield � =� �x ,��, obeying the algebraic constraint
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�ab�ab = 0 �3.55�

nd the differential constraint

D�
a�bc + 2

5�deD�
d��ab�ec + �ca�eb + 1

2�bc�ea� = 0, �3.56�

here D�
a is the covariant superspace derivative, defined according to

D�
a = ��

a + i�ac�c
����. �3.57�

t is important to note10 that the differential constraint �3.56� implies that the lowest component of
he superfield must obey the free equations of motion for a massless scalar field, i.e., the Klein-
ordon equation. This reflects the fact that we are dealing with an on-shell superfield formulation.

It is convenient to define supplementary superfields according to

��
a = −

2i

5
�bcD�

b�ca, �3.58�

H�� = 1
4�abD�

a��
b , �3.59�

ut it should be noted that these contain no new degrees of freedom compared to �ab.
By definition, a superfield transforms according to

�Q�ab = �� · Q,�ab� �3.60�

nder a supersymmetry transformation. Working out this commutator, with Q as in Eq. �3.23�, it
an be shown �by comparing with the explicit transformations in Ref. 16� that the lowest compo-
ents of the superfields �ab, ��

a , and H�� are the tensor multiplet fields �ab, ��
a , and h��, hence

he choice of notation. The differential constraint �3.56� yields the usual free equations of motion
or these component fields.

The purpose of this section is to find how the rest of the superconformal transformations act
n the superfields. The transformations will, as in the bosonic case, contain one piece including the
ifferential expressions in Eqs. �3.19�–�3.25� and some nondifferential pieces. The latter may be
erived by requiring that the transformation of �ab must satisfy the differential constraint �3.56�
hen �ab itself does. We also require the abstract transformation operator to commute with the

ovariant derivative in superspace �in the same way as transformations commute with derivatives
n the bosonic case, see Eq. �2.28� and the discussion thereafter�. Note that this approach of course
equires the superfields to be on shell. The transformation of �2,0� superfields was also discussed
n Ref. 23 using a geometric approach, realizing the transformations as derivations in superspace.

e will be more explicit and algebraic in our treatment of the problem, trying to take advantage
f the superfield formulation. It is our goal to write the transformations of the superfields in a form
imilar to the one used in the bosonic case in, e.g., Eq. �3.17�, inspired by the transformation
roperties of the superspace differentials in Eqs. �3.29� and �3.30�.

After some quite involved computations, it is found that the superfields transform according to
we are still in the active picture, where we transform the fields rather than the coordinates�

�C�ab = ����x,������ab + �c
��x,����

c�ab + 2��x,���ab + Va
d����db + Vb

d����ad, �3.61�

�C��
a = ����x,�������

a + �c
��x,����

c��
a + ��

��x,����
a + 5

2��x,����
a + Va

c�����
c − 4��,b����ab,
�3.62�
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�CH�� = ����x,�����H�� + �c
��x,����

cH�� + ��
��x,��H�� + ��

��x,��H�� + 3��x,��H��

+ 3i��,c�����
c + 3i��,c�����

c , �3.63�

here the parameter functions ��
��x ,��, ��x ,��, Vb

a���, and ��,a��� are those defined in Eqs.
3.31�–�3.34�, respectively, while ����x ,��=�x�� and �a

��x ,��=��a
�, see Eqs. �3.27� and �3.28�. In

nalogy with the notion of primary fields in the purely bosonic case, we see that the superfield �ab

s superprimary �its transformation does not contain any �-part� while the others are not. Note
hat the transformations �in this notation� are what one would expect by looking at the indices and

ass dimensions of the fields, apart from the parts containing ��,a���, where the numerical
oefficients are hard to guess a priori.

From these transformations, the transformation laws for the component fields may be read off.
he SO�6,2� transformations agree, as expected, with Eqs. �3.13�, �3.17�, and �3.18�, while super-
ymmetry acts according to

�Q�ab = i�c
���ac��

b − �bc��
a − 1

2�ab��
c � ,

�Q��
a = �ab�b

�h�� + 2����ab�b
�,

�Qh�� = i�a
�������

a + �����
a� , �3.64�

n agreement with Ref. 16. The special supersymmetry transformations of the component fields are

�S�ab = − 4ix����
�a���

�b� − i�ab�cdx����
c��

d,

�S��
a = − 2��

ax��h�� − 4��
b�bc�

ca + 4��
b�bcx

������ac,

�Sh�� = 2i�ab��
ax��������

b + �����
b� − 3i�ab���

a��
b + ��

a��
b� , �3.65�

hile R-symmetry acts according to

�U�ab = − �acvcd�db − �bcvcd�ad,

�U��
a = − �acvcd��

d ,

�Uh�� = 0, �3.66�

s suggested by the index structure of the fields.
This completes the analysis of the superconformal transformations of the free tensor multiplet

n superspace, but we should also consider the self-dual string. It is, as before, described by a
osonic embedding field X�����, but we must supplement it by a second �fermionic� field �a

����
escribing the embedding in the fermionic coordinates. The superconformal transformations of
hese fields are

�CX�� = − a�� − 	�
�X�� − 	�

�X�� − 
X�� − 4c��X��X�� + i�ab�a
����b

���

− c���ac�bd�a
����b

����c
��d

� + 2i��
c�c

���X���� + ��
c�ab�c

����a
����b

�, �3.67�

�C�a
� = − �	�

� − 4c��X�� − 2ic���cd�c
��d

� + 2i��
c�c

���a
� − 1

2
�a
� − �a

� − 2�ca��
cX��

− i�ac�
bd��

c�b
��d

� − vac�
cd�d

�, �3.68�

hich coincide with Eqs. �3.27� and �3.28� for the corresponding coordinates but with the opposite
ign, in the same manner as in the purely bosonic model. These variations do not have the same

ab a
tructure as the variations of the superfields � , ��, and H��, but if we instead consider the
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ppropriate differentials of these fields, we get something more familiar. The differentials in
uestion are related in an obvious way to the superfield differentials e�� and d�a

� and are E��

d̃X��+ i�ab�a
��� d̃�b

��� and d̃�a
�, where d̃=d�i �i denotes a differential operator with respect to

he world-sheet parameters �. The variations of these quantities are

�CE�� = − ��
��X,��E�� − ��

��X,��E�� − ��X,��E��, �3.69�

�C�d̃�a
�� = − ��

��X,��d̃�a
� − 1

2��X,��d̃�a
� − Vd

a���d̃�d
� − 2��,a���E��, �3.70�

hich are similar to Eqs. �3.29� and �3.30� but again with the opposite sign. We see that E��

ransforms as a superprimary quantity while d̃�a
� does not.

In retrospect, what we have done in this section is to generalize the superfield formulation,
hereby incorporating the full superconformal group in the formalism. This is a must in order to
alculate variations of terms involving superfields under such transformations; using the transfor-
ation laws for the component fields would lead us nowhere �we do not even know the explicit

xpressions for the superfields in terms of component fields to all orders�. With the superspace
enerators, we may in a relatively simple and compact way describe the transformations.

We should also comment on the use of superspace-dependent parameter functions in the
ransformation laws. This also facilitates the calculations, since Lorentz and R-symmetry covari-
nce is manifest through the use of tensor notation. They must, however, be applied with care
ince these parameter functions generally do not commute with derivatives. To the best of our
nowledge, this approach to the superconformal transformations of �2,0� superfields has not ap-
eared previously in the literature.

It would be interesting to consider the problem of finding a field theory in the superspace with
ight bosonic and four fermionic dimensions discussed at the end of the preceding section. This
heory would, presumably, incorporate manifest superconformal symmetry and probably yield
ome new insights into the properties of the six-dimensional theory.

. The supersymmetric interaction terms

In this section, we consider the theory describing the supersymmetric coupling of a self-dual
tring to a �2,0� tensor multiplet background.10 As usual, background coupling means that the
ensor multiplet fields are taken to be on shell, i.e., they obey their free equations of motion.

The interaction is described by the action terms

Sint = − �
�

d2�	� · �	− G + �
D

F , �3.71�

here the first term is a Nambu-Goto term where the string tension has been replaced by an
xpression in the superfield �ab discussed in the preceding section. Explicitly, the SO�5� invariant
calar product is defined by

� · � � 1
4�ac�bd�ab�cd, �3.72�

nd its appearance can be understood by considering the relation between the moduli parameters
nd the string tension mentioned in the introduction. Note that the term involves the pull-back of
he superfield �ab to the string world-sheet �. In the second factor of the Nambu-Goto term, G
enotes the determinant of the induced metric in superspace, which may be written as

G = 1
2�ik� jlGijGkl, �3.73�
here
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Gij = 1
2�����Ei

��Ej
��. �3.74�

ere Ei
�� is determined by the relation E��=d�i Ei

��. Naturally, � denotes the string world-sheet.
The second term in Eq. �3.71� is of Wess-Zumino type and involves the pull-back of a certain

uper three-form F to the world-volume of a “Dirac membrane” D attached to the string, satisfying
D=�. For a more elaborate discussion of the Dirac membrane and its properties, we refer to
efs. 10 and 24. D is described, similarly to the string, by embedding fields X�� and �a

�, but these
elds are functions of three parameters instead of two. As an embedding, they naturally transform

n the same way as the string embedding fields, i.e., according to Eqs. �3.67� and �3.68�, under a
uperconformal transformation.

The super three-form F is expressed as

F =
1

6
e�1�2 Ù e�1�2 Ù e�1�2��2�2�1�2

H�1�1
−

i

2
e�1�2 Ù e�1�2 Ù d�a

����1�2�1
��2

a

+
i

2
e�1�2 Ù d�b

� Ù d�a
�����1�2

�ab �3.75�

n terms of the superfields �ab, ��
a , and H��. It was used by us in Ref. 10 but has also appeared

in a slightly different notation� in Refs. 23 and 25. The coefficients in the expression for F make
t a closed form in superspace, i.e., dF=0, where d is the superspace exterior derivative. The last
tatement is only true if the superfields obey the differential constraint �3.56�, but this is always the
ase on shell.

The relative coefficient in Eq. �3.71� is determined by requiring invariance under a local
ermionic �-symmetry, which also removes half of the degrees of freedom contained in �a

�, as
equired by supersymmetry.10 The closure of F is essential for this to work, but it also implies that
he choice of Dirac membrane D, given a string world-sheet �=�D, should have no physical
ignificance.

Next, let us consider a superconformal variation of the interaction �3.71�. The Nambu-Goto
erm is clearly invariant; this is easily seen from the expressions �3.61� and �3.69� for the varia-
ions of �ab and E��, respectively. Since all fields are superprimary, the only thing we really need
o check is that the conformal weights match appropriately.

The variation of the Wess-Zumino term is a bit more involved, mainly because of the terms

nvolving ��,a��� in the transformation laws for d̃�a
�, ��

a , and H��. It turns out that the pull-back
f the super three-form F to the Dirac membrane world-volume D is superconformally invariant if
nd only if the coefficients are chosen as in Eq. �3.75�, i.e., with the same choice of coefficients
hat makes it a closed three-form in superspace! This means that the interaction in Eq. �3.71�
ndeed is superconformally invariant, but only with the specific three-form in Eq. �3.75�. It should
lso be stressed that, out of all the transformations in the superconformal group, it is only the
pecial conformal and the special supersymmetry transformations that put any restrictions on the
oefficients. With another choice, the theory would still be, e.g., supersymmetric. The model is
herefore an example of a theory where special conformal invariance does not follow immediately
rom dilatational, translational and Lorentz invariance.

Summing up, we have found that the requirement of �-symmetry and that of superconformal
nvariance impose equivalent restrictions on the coefficients of the super three-form F, but in
ifferent ways. Note, however, that �-symmetry also determines the relative coefficient between
he Nambu-Goto term and the Wess-Zumino term. The superconformal symmetry of the theory
as no influence on that. The remarkable agreement between superconformal invariance and
-symmetry indicates the uniqueness of the theory: the model is tightly constrained by its sym-

etries. This is arguably the most important result of this paper.
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V. THE POINCARÉ DUAL TO THE STRING WORLD-SHEET

In the preceding section, we worked with an on-shell tensor multiplet. This implied that the
uper three-form F in Eq. �3.75� was closed and lead us to the conclusion that the choice of Dirac
embrane, given a specific string world-sheet �, should have no physical significance.

In this section, we try to relax the requirement that F should be closed, as a step in the process
f finding a theory where the tensor multiplet fields need not be on shell. We will start in the
osonic case, where the motivation for these ideas is found, and then turn to the superconformal
odel and try to generalize the concepts introduced in the bosonic theory.

. The bosonic model

A free two-form gauge field b with a three-form field strength h obeys the Bianchi identity

dh = 0 �4.1�

nd the equations of motion

d � h = 0, �4.2�

here � denotes the Hodge duality operator. For a self-dual three-form h, these two equations
oincide.

If we want to couple this field electromagnetically to a self-dual string �with both magnetic
nd electric charge�, this is done by changing the right-hand sides of the equations above. Explic-
tly, we get

dh = ��,

d � h = ��, �4.3�

here �� denotes a four-form called the Poincaré dual to the string world-sheet �. It is defined by
he relation

�
�

b � �
M

�� Ù b , �4.4�

here the left-hand integral is evaluated over the string world-sheet, while the right-hand integral
s over the entire six-dimensional Minkowski space. We also note that the self-dual piece of h,
xpressed as h+= 1

2 �h+ �h�, obeys an inhomogeneous equation while the anti self-dual piece h−
1
2 �h− �h� is free and therefore decoupled from the theory, as required. It should be emphasized

hat Eq. �4.3� does not imply self-duality, but it is consistent with self-duality.
Explicitly, the Poincaré dual is expressed in terms of the string embedding fields X� and the

pace-time coordinates x� according to

�� =
1

4!
dx� Ù dx� Ù dx� Ù dx��

�

d̃X� Ù d̃X� ���������6��x − X� , �4.5�

here d̃�d�i�i again is the differential with respect to the world-sheet variables �i, i=1,2, and
�6��x−X� is a Dirac delta function in six dimensions. This is somewhat analogous to the coupling
f a dyonic relativistic particle to a Maxwell field in four dimensions, in that sense �� is a
eneralization of the current four-vector.24 In our model, we couple to a string and �� is the dual
f a current two-form.

In order for this four-form to be consistent with Eq. �4.3�, it must be closed. Applying the

xterior derivative to ��, we get that
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d�� =
1

4!
dx� Ù dx� Ù dx� Ù dx� Ù dx��

�

d̃X� Ù d̃X� �����������6��x − X�

= −
2

5!
dx� Ù dx� Ù dx� Ù dx� Ù dx��

�

d̃X� Ù d̃X� �����������6��x − X�

= −
2

5!
dx� Ù dx� Ù dx� Ù dx� Ù dx��

�

d̃�d̃X� ��������
�6��x − X�� = 0, �4.6�

here we used the fact that an antisymmetrization over seven vector indices in six dimensions
lways is zero. The last equality follows since the integrand is a total derivative and the string
orld-sheet � has no boundary.

Next, we are interested in how these relations and quantities behave under �bosonic� confor-
al transformations. Consider the variation of the three-form h, which according to Eq. �2.27�

quals

�Ch =
1

3!
dx� Ù dx� Ù dx�����x���h����x� − 3��

��x�h����x� + 3��x�h����x�� . �4.7�

owever, if we compare this with Eq. �2.6�, we see that

�Ch = �xh , �4.8�

here �x denotes a passive conformal transformation, i.e., one that acts on the space-time coor-
inates rather than on the fields. This means that, when dealing with h as a differential form,
assive and active transformations yield the same result. We will denote such forms as primary
ifferential forms. The statement remains true also when exterior derivatives are applied, i.e.,

C�dh�=�x�dh�, but also for the Hodge dual of h, which means that �C��h�=�x��h�.
Considering Eq. �4.3�, we note that the left-hand sides transform as primary four-forms,

herefore the right-hand sides should transform in the same way. Since �� is an expression in terms
f the embedding field X�, we may calculate its active transformation explicitly. Before doing this,

e want to rewrite the transformation of d̃X� in Eq. �2.32� so that all parameter functions are
xpressed in terms of the space-time coordinates x�, rather than in terms of the embedding field
�. We find that

�C�d̃X�� = − ��
��x�d̃X� − ��x�d̃X� − 2c�d̃��x − X���x − X��� + c�d̃��x − X� · �x − X�� ,

�4.9�

hile the passive variation of this quantity obviously vanishes. We will also need the relation

�C�dx�� = 0 = �x dx� − ��
��x�dx� − ��x�dx�. �4.10�

inally, considering the Dirac delta function we find that

�C���6��x − X�� = − �CX�����6��x − X� = �x���6��x − X�� + 6��x���6��x − X� , �4.11�

here we have used the relation

x�����6��x� = − ��
���6��x� . �4.12�

utting all this together, again using the properties of the Dirac delta function, we arrive at the
onclusion

�C���� = �x���� , �4.13�

eaning that our expression �4.5� for �� transforms as a primary four-form. This shows that Eq.

4.3� is a well-defined equation with respect to conformal symmetry.
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. The superconformal model

Having investigated the bosonic case, we try to generalize these concepts to superspace. We
ote that the on-shell super three-form F in Eq. �3.75� is primary, i.e.,

�CF = �x,�F , �4.14�

here �x,� obviously denotes a passive conformal transformation in superspace. The validity of
his equation is most easily seen from the fact that F yields a superconformally invariant Wess-
umino term, see Sec. III D.

Let us now try to take F off shell, i.e., relax the requirement dF=0. The equation correspond-
ng to Eq. �4.3� is

dF = ��, �4.15�

here d is the exterior derivative in superspace and F is a super three-form, not necessarily equal
o F defined in Eq. �3.75�. The super four-form �� appearing on the right-hand side is supposed
o be a generalization of the Poincaré dual ��. To find such a quantity is nontrivial, since there is
o proper analogue of the Poincaré dual in superspace. The best we can hope for is to find a super
our-form that reduces to �� if all fermionic degrees of freedom are removed, and that transforms
n a nice way under superconformal transformations.

Guided by our previous experience, we try to formulate this four-form in terms of superfields.
he fundamental superfields involving the embedding fields X�� and �a

� are

s�� � x�� − X�� − i�ab�a
����b

���, �4.16�

ta
� � �a

� − �a
�; �4.17�

he superfield properties of these are easily verified. The superfield s�� is a vector and we will,
hen appropriate, use the alternative notation s� for this, employing an SO�5,1� vector index as in

he bosonic case. Some important quantities will be stated twice, using both conventions.
We will also need the differential

ds�� = dx�� − i�ab d�a
����b

��� = e�� − i�ab�� − ��a
��� d�b

���, �4.18�

here the second equation follows from the definition of the superspace differential e��. Similarly,
e may differentiate s�� with respect to the parameters defining the string world-sheet, yielding

d̃s�� = − d̃X�� − i�ab�a
��� d̃�b

��� = − E�� − i�ab�� − ��a
��� d̃�b

���, �4.19�

here E�� as before is the bosonic superspace differential expressed in terms of the embedding
elds X�� and �a

�.
Guided by Eq. �4.5�, we introduce

� =
1

4!
�

�

ds� Ù ds� Ù ds� Ù ds� d̃s� Ù d̃s� ���������6��s� �4.20�

=
1

4!
�

�

ds�1�2 Ù ds�1�2 Ù ds�1�2 Ù ds�1�2 d̃s�1�2 Ù d̃s�1�2��1�2�1�1
��2�1�2�1

��2�1�2�2
��6��s� , �4.21�

here the Dirac delta function with a Grassmannian argument containing both “body” and “soul”
s defined in terms of its Taylor expansion. It is apparent that this candidate for �� reduces to the

osonic �� in Eq. �4.5� if all fermions are put to zero.
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The second requirement on this �� is that it should be closed, as is seen immediately from Eq.
4.15�. The proof for this is similar to the bosonic case in Eq. �4.6�, but slightly more complicated

ince d d̃s�=d̃ ds��0. However, the changes in the proof are minor and therefore omitted in this
ext.

We also want to investigate how �� transforms under superconformal transformations. As in
he bosonic case, we will present the transformations piece by piece. Using the explicit variations
f X�� and �a

� found above, we find that

�C�ds��� = �x,� ds�� − �̃ ds�� + 2�̃�
��� ds���� + d���, �4.22�

�C�d̃s��� = �x,� d̃s�� − �̃ d̃s�� + 2�̃�
��� d̃s���� + d̃���, �4.23�

here we have used the presence of a Dirac delta function in the expression �4.21� to set s��

0. Moreover, �x,� denotes a passive variation in superspace and

�̃�
� � ��

��x,�� + i�cd�c,����td
� −

i

4
�cd�c,����td

���
�, �4.24�

�̃ � ��x,�� +
i

2
�cd�c,����td

�, �4.25�

��� � − �ab�cd�a,����tb
���tc

���td
� − c���ab�cdta

�tb
���tc

���td
�. �4.26�

lternatively, we may write these variations as

�C�ds�� = �x,� ds� − �̃ ds� − �̃�
� ds� + d��, �4.27�

�C�d̃s�� = �x,� d̃s� − �̃ d̃s� − �̃�
� d̃s� + d̃��, �4.28�

here we again have introduced a vector index instead of an antisymmetric pair of SO�5,1� spinor

ndices. We have also introduced �̃�
�, the definition of which is apparent from how 	�

� was defined
rom 	�� in Sec. III A.

The Dirac delta function transforms according to

�C���6��s�� = �x,���6��s� + 6�̃��6��s� + � · ���6��s� , �4.29�

here we as usual have used the properties of the delta function to set s��=0. We have also
mployed the identity

s�������6��s� = − 3
2��

���6��s� , �4.30�

hich is analogous to Eq. �4.12� in the bosonic model.
Putting all this together, using the vector index notation, we find that the superconformal

ariation of �� is

�C�� = �x,��� +
1

3!
�

�

ds� Ù ds� Ù ds� Ù d�� d̃s� Ù d̃s����������6��s�

+
2

4!
�

�

ds� Ù ds� Ù ds� Ù ds� d̃s� Ù d̃�����������6��s�

+
1

4!
� ds� Ù ds� Ù ds� Ù ds� d̃s� Ù d̃s�������� ������6��s� , �4.31�
�
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hich may be rewritten as �our conventions for superderivatives may be found in Ref. 10�

�C�� = �x,��� + d 1

3!
�

�

ds� Ù ds� Ù ds� d̃s� Ù d̃s� �����������6��s��
−

2

4!
�

�

d̃�ds� Ù ds� Ù ds� Ù ds� d̃s� �����������6��s��

+
7

4!
�

�

ds� Ù ds� Ù ds� Ù ds� d̃s� Ù d̃s� ����������������
�6��s� . �4.32�

n this expression, the last line vanishes since it is an antisymmetrization over seven vector indices
n six dimensions, while the second line is zero since it reduces to a boundary term. We are left
ith

�C�� = �x,��� + d��, �4.33�

here the super three-form �� is given by

�� =
1

3!
�

�

ds� Ù ds� Ù ds� d̃s� Ù d̃s� �����������6��s� �4.34�

=
1

3!
�

�

ds�1�2 Ù ds�1�2 Ù ds�1�2 ��1�2 d̃s�1�2 Ù d̃s�1�2��6��s�

����1�2�1�1
��2�1�2�1

��2�1�2�2
−

1

8
��1�2�1�2

��1�2�1�2
��1�2�1�2

� , �4.35�

ut this quantity is obviously only well-defined modulo an exact three-form.
Looking back at Eq. �4.13� for the bosonic model, we see that the introduction of fermionic

egrees of freedom has altered the relation by adding a d-exact term to the right-hand side. This
eans that our candidate �4.20� for �� does not transform exactly as one would expect when

omparing with the bosonic theory, i.e., an active and a passive transformation do not yield the
ame result. We note that �� vanishes if all fermions are removed and that it is localized �by
eans of the Dirac delta function� to the world-sheet of the string.

This means that the simple generalization of the bosonic case that we have tried in this section
id not work out properly. The most probable reason for this failure is that we are required to add
new ingredient, the matrix �̂ab, to ��. This denotes the vacuum expectation value of the field
ab�x�, normalized to unit modulus with respect to the scalar product in Eq. �3.72�. In other words,

ˆ ab is related to the moduli parameters of the theory, denoting the direction in which R-symmetry
s broken by the presence of the tensile string. We have seen the appearance of this quantity
reviously16 in the discussion concerning the �-symmetry of the theory. We will not consider how
o formulate a superspace generalization of the Poincaré dual including �̂ab in this paper, but we
ope to return to the matter in a future presentation.
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riedel theorem for two dimensional relativistic spin-1
2

ystems
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The Friedel sum rule is generalized to relativistic systems of spin-1
2 particles in two

dimensions. The change in energy due to the presence of an impurity is studied.
The relation of the sum rule with the relativistic Levinson theorem is presented.
Density oscillations in such systems are discussed. Since the Friedel theorem has
been of major importance in understanding the impurity scattering in materials, the
present results may be useful to explain some phenomena in two dimensional
fermionic many body systems. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2192268�

. INTRODUCTION

The Friedel sum rule �FSR�1–3 is an important theorem in studying the effects of an impurity
n the electron structure in solids, which sets up the relation between the change of the number of
tates �N around the impurity and the phase shift at Fermi energy. In three dimensional �3D�
ystems, the theorem can be described by

�N =
2

�
�
l=0

�

�2l + 1��l�Ef� , �1�

here �l�Ef� denotes the phase shift of scattered state in the angular-momentum channel l with
nergy at the Fermi surface. The result is one of the most interesting results in the theory of
mpurity. It states that the change of the number of states caused by the potential of an impurity
an be quantified in terms of the scattering phase shift at Fermi energy. The subject was then
tudied by many authors and generalized to include the internal degree of freedom of particles,4,5

hich provides a powerful method in calculating the residual resistance, diamagnetic
usceptibility,2,3 spectral properties of spin-1

2 fermions in the presence of an impurity,6 and so
orth. Recently, based on the Dirac equation, the FSR for relativistic spin-1

2 particles in 3D systems
s proved to be

�N =
1

�
�

�=−�,��0

�

2��������Ef� − ����� + ���− Ef�� − ���− ���

+ ��

��− 1����

2
�sin2 ����� − sin2 ���− ���� , �2�

here ���±E�� and ���±��, classified by the angular momentum �= ± �j+1/2� and ��	1�−1� for
	0 ��
0�, are the phase shifts of scattering states at Fermi energies �E�=Ef and −Ef�� and
ero-momentum �E�= ±��.7 The result may provide a basis for exploring the effect of an impurity

8
y the FSR for 3D relativistic systems. For 1D systems, the nonrelativistic FSR is given by

47, 042302-1022-2488/2006/47�4�/042302/11/$23.00 © 2006 American Institute of Physics
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�N =
2

�
�

p=e,o

�p�Ef� − �p�0� + �p

�

2
sin2 �p�0�� , �3�

here �p�0� is the phase shift at zero momentum, and the phase shifts �p�E�� �p=e ,o� are
lassified by even parity �e� and odd parity �o� of wave functions. Its generalization to relativistic
pin-1

2 particles is shown to relate to the phase shifts �p�E�� of scattering states at Fermi energies
E�=Ef and −Ef�� and zero momentum �E�= ±�� as follows:8

�N =
1

�
�

p=e,o
���p�Ef� − �p��� + �p�− Ef�� − �p�− ��� − �p

�

2
�sin2 �p��� − sin2 �p�− ���� . �4�

here �p=1�−1� for even parity �odd parity�. The result is meaningful in 1D nanostructures since
he relativistic spectra appear naturally as a low energy effective spectra for electrons in 1D

etals.9

Over the past two decades, remarkable phenomena have been observed in the 2D electron gas
2DEG�, such as the integer and fractional quantum Hall effect.10,11 On the other hand, a number
f interesting physical systems, the effective quantum theory is expected to be described by the 2D
irac equation9,12 rather than the Schrödinger equation. The anticipation recently has been con-
rmed by experiments in perfect graphene,13,14 which pose new questions on the nature of the
lectronic properties in such systems and shows a possibility of studying relativistic phenomena in
tabletop experiment. To my knowledge, as one of the most powerful tools in studying effects of

mpurities, the FSR for 2D Dirac fermions is still lacking. It is our aim in the paper to establish the
SR for 2D relativistic spin-1

2 systems. In two dimensions, based on the Schrödinger equation, the
onrelativistic FSR can be proved to be �see the Appendix�

�N =
2

�
�

m=−�

�

��m�Ef� − �m�0�� , �5�

here �m�0� is the phase shift at the zero momentum in the angular-momentum channel m �m
0, ±1, ±2, . . . �. In this paper, we shall generalize the result to relativistic spin-1

2 systems.
This paper is organized as follows. In Sec. II, the 2D FRS is generalized to the relativistic

pin-1
2 particles moving in a short range potential �V�r�� when r
a and V�r�=0 when r�a. The

otal change of the number of states �N around the potential is shown to relate to the phase shifts

j�E�� of scattering states at Fermi energies �E�=Ef and −Ef�� and zero-momentum �E�= ±�� as
ollows:

�N =
1

�
�

j=±1/2,±3/2,. . .
�� j�Ef� − � j��� + � j�− Ef�� − � j�− ��� �6�

here j �j= ±1/2 , ±3/2 , . . . � is the total angular momentum. Section III is used to discuss the
hange in energy of a relativistic spin-1

2 system in the presence of an impurity. In Sec. IV, the
elation between the FSR and the 2D relativistic Levinson theorem15–18 is presented. Density
scillations of relativistic spin-1

2 systems are discussed. The FSR for the massless Dirac fermions
s also presented here. Our conclusions are summarized in Sec. V.

I. FRIEDEL SUM RULE FOR RELATIVISTIC SPIN-1
2 SYSTEMS IN TWO DIMENSIONS

We consider the 2D model. The Dirac equation of a spin-1
2 particle with effective mass �

oving in a cylindrically symmetric potential V�r� specified in the previous is given by

��� · p̂ + 0� + V�r�����r� = E����r� , �7�

here �i=0i �i=1,2� are Dirac matrices. As usual, they are chosen as the Pauli matrices 0

3 1 1 2 2 ˆ ˆ ˆ ˆ
� ,  = i� , and  = i� such that the total angular momentum J=L+S with the spin S
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�i�iji j� /4 is conservative. For our purposes it is very convenient to write the spin wave
unction in a form

���r� = �
j=±1/2,±3/2,. . .

cj��j�r� = �
j=±1/2,±3/2,. . .

cj� f�j�r�
ei�j−1/2��

2�

g�j�r�
ei�j+1/2��

2�
� . �8�

ere cj’s are coefficients dependent on the particular form required for �� and j denotes the

uantum number of the total angular momentum Ĵ. With �8�, it can be shown that the radial
quations for spinors f�j�r� and g�j�r� are


 d

dr
−

j − 1/2

r
� f�j�r� + �E� + � − V�r��g�j�r� = 0, �9�


 d

dr
+

j + 1/2

r
�g�j�r� − �E� − � − V�r��f�j�r� = 0. �10�

t regions of V=0, these equations can be decoupled into

d2

dr2 f�j�r� +
1

r

d

dr
f�j�r� + 
k2 −

�j − 1/2�2

r2 � f�j�r� = 0, �11�

d2

dr2g�j�r� +
1

r

d

dr
g�j�r� + 
k2 −

�j + 1/2�2

r2 �g�j�r� = 0, �12�

ith k=E�
2 −�2�0, which turn out to be the Bessel equations. Thus the solution of scattering

tate of spinor f�j for positive energy �E�	�� and a positive quantum number �j	0� is given by

f�j�r� = �C1�k�Jj−1/2�kr� + C2�k�Nj−1/2�kr�� = Aj�k��sin � j�k�Jj−1/2�kr� + cos � j�k�Nj−1/2�kr�� ,

�13�

here Jj−1/2�x� and Nj−1/2�x� are Bessel functions, � j�k� is the phase shift defined by C1 /C2

tan � j�k� and Aj�k�=C1�k� / sin � j�k�. The explicit form of Aj�k� is determined by the normaliza-
ion condition of ��E�−E��� for free particles, which gives Aj�k�=�E�+�� /2. At large distance
→�, the asymptotic representation of the spinor reads as

f�j�r� →�E� + ��
�kr

sin
kr −
�j − 1/2��

2
−

�

4
+ � j� . �14�

ubstituting this expression into �9�, one obtains

g�j�r� → −�E� − ��
�kr

cos
kr −
�j − 1/2��

2
−

�

4
+ � j� . �15�

imilarly, the entire asymptotic solutions for particle �positive energy� and antiparticle �negative
nergy� are found to be

f�j�r� →��E�� ± ��
�kr

sin
kr −
��

2
−

�

4
+ � j� , �16�
nd
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g�j�r� → ���E�� � ��
�kr

cos
kr −
��

2
−

�

4
+ � j� . �17�

ere �	�j−1/2� and the upper and lower signs indicate the scattering states of the particle
positive energy E�	�� and antiparticle �negative energy E�
−��, respectively. These
symptotic behaviors of spinors will be used to evaluate the change of the number of states around
he potential barrier V�r�. To approach our aim, we consider a large 2D circular area, radius R,
entered on the potential. By multiplying Eq. �7� through by ��

†�r� and the corresponding equation
or ��

†�r� by ���r�, it follows that

�E�� − E����
†�r�����r� = − i � · ���

†�r��� ����r�� . �18�

ntegrating over the whole area, and using the divergence theorem, one obtains

� d2r ��
†�r�����r� =

R

�E�� − E���j

�f�j
* �R�g��j�R� − g�j

* �R�f��j�R�� . �19�

o get the equality, the radial component of �� ,

�� · r

r
= 
 0 ie−i�

− iei� 0
� �20�

s used and one takes cj=1; since we are only interested in the difference of states its complex
ature is of no interest. For free Dirac particles, the above integral can be expanded as

� d2r ��
�0�†�r����

�0��r� =
R

�E�� − E���j

�f�j
�0�*�R�g��j

�0� �R� − g�j
�0�*�R�f��j

�0� �R�� , �21�

ith f�j
�0�= f�j�� j=0�, and g�j

�0�=g�j�� j=0�. In solids, the electron �hole� states are occupied up to the
ermi energy Ef �−Ef��. So the total change of the number of states �N around the potential V�r�

s obtained by integrating up to the Fermi energy Ef �−Ef��,

�N = lim
R→�

lim
E��→E�


�
−Ef�

−�

+ �
�

Ef �dE�� d2r���
†�r�����r� − ��

�0�†�r����
�0��r�� , �22�

here the lower bound of the Fermi surface for an antiparticle is denoted by −Ef� for accounting
f different levels generally. Since at large distances the wave function ���r� must be unchanged,
xcept for the phase shifts in the partial waves, the spinors f�j and g�j in �8� can be replaced by the
symptotic representations of �16� and �17�. It follows that

R

�E�� − E���j

�f�j
* �R�g��j�R� − g�j

* �R�f��j�R� − f�j
�0�*�R�g��j

�0� �R� + g�j
�0�*�R�f��j

�0� �R��

=
C±

�E�� − E���j

2 cos
�k� − k�R +
1

2
�� j� − � j��sin
1

2
�� j� − � j��

+
�− 1��D±

�E�� − E���j
�2 cos��k� + k�R�sin2
1

2
�� j� + � j�� + sin��k� + k�R�sin�� j� + � j�� ,

�23�

here

C± =
�E

 ����E�� ± ����E��� � ���1/2 + ���E�� � ����E��� ± ���1/2� , �24�

2� kk�
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D± =
1

2�kk�
�±���E�� � ����E��� ± ���1/2 � ���E�� ± ����E��� � ���1/2� , �25�

ith �E	1�−1� for E��� �E��−��. Here subscript “�” �“�”� in C± corresponds to the particle
antiparticle�. Taking the limit E��→E�, Eqs. �24� and �25� yield C±→�E /� and D± / �E��−E��

−�E�� /2�k2�, such that

lim
E��→E�

C±

�E�� − E��
2 cos
�k� − k�R +

1

2
�� j� − � j��sin
1

2
�� j� − � j�� →

�E

�

d� j

dE�

�26�

nd

lim
E��→E�

�− 1��D±

�E�� − E���2 cos��k� + k�R�sin2
1

2
�� j� + � j�� + sin��k� + k�R�sin�� j� + � j��

→ �E
− �− 1���

2�k2 �2 cos�2kR�sin2� j + sin�2kR�sin�2� j�� . �27�

ince in 2D space � j�k=0� /� always take integers,16,17 and limR→� cos�2kR� oscillates, the inte-
ral limR→� �dE��cos�2kR�sin2 � j� /k2→0. Moreover, due to the fact that limR→� sin�2kR� /�k
��k�, the integral in the second term in �27� limR→� �dE� sin�2kR�sin�2� j� /�k2→0. Therefore

he difference of the number of states finally can be in terms of the phase shifts at Fermi energies
nd the critical points ±� of zero momentum,

�N =
1

�
�

j=±1/2,±3/2,. . .
�� j�Ef� − � j��� + � j�− Ef�� − � j�− ��� . �28�

his is the FSR for 2D relativistic fermionic systems. One notice that the zero-momentum behav-
or is quite different from that in Eqs. �2� and �4� for 3D and 1D systems, where half bound states
ith phase shifts � /2 are significant.16 Comparing with the nonrelativistic FSR �5�, the antipar-

icle turns out to be significant. A positive �negative� ion will attract �repulse� electrons �holes�,
nd repulse �attract� holes such that the variance of states is together with the effect of two kinds
f particles.

II. THE CHANGE IN ENERGY DUE TO AN IMPURITY IN RELATIVISTIC 2D SYSTEMS

Equations �16� and �17� shows that the wave functions undergo phase shifts. This fact entails
change of the kinetic energy of particles. It can be quantified by the reasonable requirements

�j
�0��r� � B.C.=0 and ���j�r��B.C.=0 on boundary of the Dirichlet condition, and give

kR −
��

2
−

�

4
= n�, n = 1,2, . . . , �29�

or spinor f�j
�0� and

kR −
��

2
−

�

4
=

�2n + 1��
2

, n = 0,1,2, . . . , �30�

or spinor g�j
�0�. Here R is used to denote the boundary of the 2D system. The number dn of allowed

tates between k and k+dk is given by differentiating both members of �29� and �30�, which yield
dk=� dn. Thus, the unperturbed density of states for a definite j reads as

D�k� =
dn

dk
=

R

�
. �31�
n the other hand, the boundary condition for perturbed wave functions that vanish at r=R yield
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kR −
��

2
−

�

4
+ � j�k� = n�, n = 1,2, . . . , �32�

or spinor f�j and

kR −
��

2
−

�

4
+ � j�k� =

�2n + 1��
2

, n = 0,1,2, . . . , �33�

or spinor g�j. From �29�, �32�, �30�, and �33�, one finds that the change of the wave number �k
f an electron with angular momentum j is �k ·R=−� j�k�, and the change in energy is

��E�e− =
k�k

E�

=
− k�� j�k��e−

Rk2 + �2
. �34�

imilarly, the change in energy for an antiparticle reads as

��E�e+ =
k�k

E�

=
k�� j�k��e+

Rk2 + �2
. �35�

ere e− �e+� is used to denote the particle �antiparticle�. Thus, the change in energy due to the
resence of an impurity in 2D relativistic spin-1

2 systems is given by

�E = �
j=±1/2,±3/2,. . .


�
0

kf

��E�e−
R

�
dk − �

0

kf�
��E�e+

R

�
dk�

= − �
j=±1/2,±3/2,. . .


�
0

kf k�� j�k��e−

Rk2 + �2

R

�
dk + �

0

kf� k�� j�k��e+

Rk2 + �2

R

�
dk� , �36�

here R /� is the density of states for j electrons and holes. This result is a 2D relativistic
eneralization of Fumi theorem,19 where the change of the kinetic energy due to the impurity for
onrelativistic systems was studied. It is worthy to note that in the massless limit, the change in
nergy becomes a more compact representation,

�E = −
1

�
�

j=±1/2,±3/2,. . .

�

0

kf

�� j�k��e− dk + �
0

kf�
�� j�k��e+ dk� , �37�

hich states the variance of system’s energy due to the impurity can be completely ascertained as
oon as the phase shifts is decided.

V. DISCUSSIONS

. The relation with the relativistic Levinson theorem

In 1949, Levinson established a theorem in nonrelativistic quantum mechanics.15 Well known
s the Levinson theorem, it clarifies the relation between the phase shifts of a quantum particle
cattered by a short range potential and the number of bound states therein. In 3D systems, the
heorem can be described as

�l�0� = Nl�, l = 0,1,2, . . . , �38�

here �l�0� denotes the phase shift of scattered state with a momentum k at the threshold �k
0� in the angular momentum channel l, and Nl is the total number of bound states in the angular
omentum channel l allowed by the short range potential. When the angular momentum l=0, the
heorem must be modified to
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�0�0� = �N0 + 1/2�� , �39�

ue to the existence of a zero-energy resonance �a half-bound state�.16 The theorem is one of the
ost interesting and beautiful results in nonrelativistic quantum theory. For 2D relativistic spin-1

2
ystems under consideration, there is a very interesting relation between the Levinson theorem and
he Friedel sum rule can be established by noting the relationship of completeness of relativistic
tates,

�
discrete

��j�r���j
† �r�� + �

j

�

−Ef�

−�

+ �
�

Ef �dE� ��j�r���j
† �r�� = ��r − r�� . �40�

ere ��j�r� denotes a discrete bound-state with a definite angular momentum j and energy E�

llowed by the short range potential. Subtracting the relation from the ones of free particle states

�j
�0��r�, setting r=r�, taking trace, and integrating over the 2D plane, we can find the relation

etween the total number of bound states N and the difference of scattering states �N as follows:

N = �
j

Nj = − �N . �41�

he total number of bound states is then given by

N =
1

�
�

j=±1/2,±3/2,. . .
�� j��� − � j�Ef� + � j�− �� − � j�− Ef��� . �42�

he equality implies the bound-state number for a definite channel of angular momentum j is

Nj =
1

�
�� j��� − � j�Ef� + � j�− �� − � j�− Ef��� . �43�

his result is the Levinson theorem for relativistic spin-1
2 particles in 2D many-body systems.

ifferent from the single particle case,17,18

Nj =
1

�
�� j��� + � j�− ��� , �44�

here the upper bound of the phase is ruled out by the relation � j���+� j�−��=0. The phase shifts
t Fermi energy play an important role here. The relation �41� reflects the completeness of the
hole set of states. The total number of states is not altered by an external field, except that some

cattering states are pulled down into the bound state region if the external potential is attractive.
n the other hand, �41� implies that there is an upper bound on �N that depends on the potential
�r�. A finite deep potential may have finite bound states such that the change of the number of
cattering states is finite.

. Density oscillation in relativistic systems

Another way to express the change of the number of states that enables us to indicate the
ariance of the density of states may be expressed as

�N = 2��
0

�

r dr���r� − �0�r�� , �45�

here ��−�0�	�� is the difference of the density of states given as

�� = �
k
kf

d2k

�2��2 �����r��2 − ���
�0��r��2� . �46�
t large distances, with �16� and �17�, it is shown that

                                                                                                            



T
o
−

T
d
o
o
s

C

e
m
o
b

w
b

f

f
c
c
r
p
2

D

d
a
e

E

n
i

042302-8 De-Hone Lin J. Math. Phys. 47, 042302 �2006�

                        
�� =
1

�2��2�
j
�

k
kf

k dk
�− 1��+1�E
2�

�kr
cos�2kr + � j�sin � j� . �47�

he integration about the wave vector is difficult because the phase shifts depend on k. But we can
btain an approximate answer by expending it around the Fermi wave vector as � j=� j�kf�+ �k
kf��d� j /dk�, which yields

lim
r→�

�� =
1

�2��2�
j

�− 1��+1�E�

�

1

r2 sin�2kfr + � j�kf��sin � j�kf� + O
 1

r3� . �48�

he density oscillates with a period of 2kf and decreases in amplitude as r−2, which describes the
ensity oscillation in 2D systems decay less rapidly than r−3 of 3D ones, but more rapidly than r−1

f the 1D case.8 Another remarkable result is that two branches of energy have the opposite
scillating phases. Thus the antiparticle will tend to suppress the oscillation for the same phase
hifts.

. The 2D FSR for massless Dirac fermions

It was pointed out that the Lorentz group often occurs as an approximate symmetry for low
nergy excitation for 2D fermions in semimetals,9,12–14 relativistic spectra appear naturally for
assless conduction electrons in such systems. It is interesting to discuss the FSR in the condition

f the fermion mass tends to zero. From �28�, one see that as the effective mass tends to zero, �N
ecomes

�N = �
j=±1/2,±3/2,. . .

�� j�Ef� + � j�− Ef�� − 2� j�0�� , �49�

hich indicates the phase shifts of the particle and antiparticle at zero momentum merge to
ecome twice. For systems contain only single carrier type, the Friedel sums become

�Nparticle = �
j=±1/2,±3/2,. . .

�� j�Ef� − � j�0�� �50�

or the particle and

�Nantiparticle = �
j=±1/2,±3/2,. . .

�� j�− Ef�� − � j�0�� �51�

or the antiparticle. This is the extreme case of the graphene, where the carrier type can be
ontrolled by the external gate voltage.13,14 Another interesting result about massless fermions
omes from �47�. As the effective mass tends to zero, the difference of the density of states at far
egions turns into a constant, and is independent of the details of the system. This argument
robably enables us to decide the magnitude of effective mass in a nonideal effective relativistic
D system via Friedel oscillation at far zones.

. Extension of the potential to the more general case

Although in the procedure of our proof we assume that the potential must be short range, we
o not specify the radius a beyond which V�r�=0. Hence, we expect that the FSR given in the
rticle should be valid for a very general potential as long as the potential decreases rapidly
nough when r→�.

. The control of the change of the total number of states

Since a specified number of bound states in a quantum dot can be realized in the present-day
anotechniques, it seems to us that we can control the number of states around an impurity. This

20
s due to the fact that quantum dots can be carved out of a 2DEG such that the change of the
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umber of states around them can be counted according to �41�. The fact may be very useful in
ontrolling a spin bus �a controllable coupler of many qubits� via Friedel oscillation of spin
ystems.20

. CONCLUSIONS

In this paper, the 2D Friedel sum rule is generalized to the relativistic spin-1
2 systems. The

hange in energy of the spin-1
2 system due to the presence of an impurity is studied. The relation

f the rule with the 2D relativistic Levinson theorem is presented. Density oscillation is discussed.
ince in 2D semimetals the low energy effective theory for conduction electrons is described by

he Dirac’s relativistic theory,9,12–14 we hope that the result is helpful in studying the effects of
mpurities in the corresponding structures.
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PPENDIX

Here we establish the relation between the Friedel sum rule and Levinson theorem for non-
elativistic particles in 2D systems. Consider the 2D Schrödinger equation in the presence of a
entral potential V�r�

Ĥ� = −
�2

2�
�2� + V�r�� = E� . �A1�

he solution of �A1� may be expanded as

��r,�� = �
m=−�

�

amR�m��r�eim�, �A2�

here Rm�r� satisfies the radial equation,

�2

�r2Rm +
1

r

�

�r
Rm + 
k2 −

2�V

�2 −
m2

r2 �Rm = 0, m = 0,1,2, . . . , �A3�

ith k=2�E /�2 �we preserve � here for the general convention in nonrelativistic quantum
echanics�. Here we need the partial derivative, since Rm is also a function of k. For a short range

otential V�r�=0 when r�a, the independent scattering solution is given by

Rm�kr� = AJm�kr� + BNm�kr� . �A4�

sing the definition of the phase shifts B /A=−tan �m�k�, one can find the asymptotic representa-
ion,

Rm�kr� → 2

�r
cos
kr −

m�

2
−

�

4
+ �m�k�� , �A5�

here the normalization constant is chosen as the function for the free particle normalized to
�k−k��. For simplicity in deriving the FSR, one defines Rm=�m /r such that Eq. �A3� reduces to

�2

�r2�m −
m2 − 1/4

r2 �m + 
k2 −
2�V

�2 ��m = 0. �A6�

he total change of the number of states �N around the potential V�r� is obtained by integrating
2 �0� 2
��� − �� � � from 0 to R and up to the Fermi wave vector kf, which yields

                                                                                                            



w
w
o
�

w
→

T
s

S
c

w
i

T
s

H
t
i

042302-10 De-Hone Lin J. Math. Phys. 47, 042302 �2006�

                        
�N = lim
R→�

�
m=−�

� �
0

kf

dk�
0

R

dr���m�r��2 − ��m
�0��r��2� , �A7�

here �m
�0��r� denotes the state of a free particle with a definite angular momentum channel m and

e have taken am=1 since we are only interested in the difference of states its complex nature is
f no interest. The integration on r can be evaluated by the following procedures. By multiplying
A6� through by �m

* and the corresponding equation for �m
* by �m, it follows that

�

�r

�m

* �k�,r�
�

�r
�m�k,r� − �m�k,r�

�

�x
�m

* �k�,r�� = �k�2 − k2��m
* �k�,r��m�k,r� , �A8�

here the dependence of �m on the variables k ,r is expressed explicitly. By taking the limit k�
k, it can be shown that

��m�r��2 =
1

2k

�

�r

 ��m

�r

��m
*

�k
− �m

�2�m
*

�r �k
� . �A9�

hus, for large r, making use of Eq. �A5� and the boundary condition �m
�0��k ,0�=0, �m�k ,0�=0,

ince the wave function should be finite at r=0; one finds

�
m=−�

� �
0

R

dr���m�r��2 − ��m
�0��r��2�

=
1

�
�

m=−�

� �d�m

dk
+

1

2k
sin
2kR − m� −

�

2
+ 2�m� − sin
2kR − m� −

�

2
��

=
1

�
�

m=−�

� 
d�m

dk
+

�− 1�m

�k
sin2 �m cos�2kR� +

�− 1�m

2
sin�2�m�

sin�2kR�
�k

� . �A10�

ince limR→� sin�2kR� /�k=��k� and limR→� cos�2kR� oscillates, the integration over k in �A7�
an be carried out, which yields the 2D Friedel sum rule,

�N =
2

�
�

m=−�

�

��m�Ef� − �m�0�� , �A11�

here the factor of 2 is spin degeneracy and we have used the fact that �m�0� /� always takes
ntegers in 2D space, such that the integration in the second term in �A10�

lim
R→�

�
0

kf

dk
1

k
sin2 �m cos�2kR� → 0. �A12�

he interesting relation between the number of bound states �LT� and the change in the scattering
tates �N �FSR� can be established by the completeness relationship

�
m=−�

�

�
i=1

Nm

�m,Ei

* �r��m,Ei
�r�� + �

m=−�

� �
0

kf

dk �m
* �k,r��m�k,r�� = ��r − r�� . �A13�

ere Nm and �m,Ei
�r� are the bound-state number and eigenfunction for a definite angular momen-

um channel. Subtracting the relation from the free particles solutions �m
�0��k ,r�, setting r=r� and
ntegrating from 0 to R, we obtain the equality
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N = �
m=−�

�

Nm = − �N , �A14�

hich implies the total number of the bound states

N =
2

�
�

m=−�

�

��m�0� − �m�Ef�� , �A15�

ith

Nm = �m�0� − �m�Ef� . �A16�

his is the Levinson theorem for nonrelativistic particles in 2D many-body systems. Different
rom the single particle case, the phase shifts at Fermi energy play an important role.
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The Cauchy problem is considered for the scalar wave equation in the Schwarzs-
child geometry. We derive an integral spectral representation for the solution and
prove pointwise decay in time. © 2006 American Institute of Physics.
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. INTRODUCTION

Recently pointwise decay was proven for solutions of the scalar wave equation in the Kerr
eometry.1,2 The main difficulties in this proof are due to the fact that the metric is only axisym-
etric. In particular, the classical energy density may be negative inside the ergosphere, a region

utside the event horizon in which the Killing vector corresponding to time translations becomes
pacelike. This makes it necessary to apply special methods �spectral theory in Pontrjagin spaces,
nergy splitting estimates, causality arguments� which are technically demanding and not easily
ccessible. Therefore, it seems worthwile working out the special case of spherical symmetry
Schwarzschild geometry� separately. This is precisely the purpose of the present paper, where we
erive an integral representation for the solution of the Cauchy problem and prove pointwise
ecay for the scalar wave equation in the Schwarzschild geometry. In this case, the classical
nergy density is positive everywhere outside the event horizon. This gives rise to a positive
efinite scalar product, making it possible to apply Hilbert space methods.

Recall that in Schwarzschild coordinates �t ,r ,� ,��, the Schwarzschild metric takes the form

ds2 = gij dxi dxj = �1 −
2M

r
�dt2 − �1 −

2M

r
�−1

dr2 − r2�d�2 + sin2 � d�2� �1.1�

ith r�0, 0����, 0���2�. We often use for the angular variables the short notation x
S2. Obviously, the metric has two singularities at r=0 and r=2M. The latter is called the event

orizon and can be resolved by a simple coordinate transformation. In the following we consider
nly the region r�2M outside the event horizon. The scalar wave equation in the Schwarzschild
eometry is given by

�� ª gij�i� j� =
1

�− g

�

�xi��− ggij �

�xj�� = 0, �1.2�

here g denotes the determinant of the metric gij. We now state our main result.
Theorem 1.1: Consider the Cauchy problem of the scalar wave equation in the Schwarzschild

eometry

�� = 0, ��,i�t���0,r,x� = �0�r,x�

or smooth initial data �0�C0
	��2M ,	�
S2�2 which is compactly supported outside the event

orizon. Then there exists a unique global solution ��t�= ���t� , i�t��t���C	�R
 �2M ,	�
S2�2

�
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hich is compactly supported for all times t. Moreover, for fixed �r ,x� this solution decays as
→	.

There has been considerable work on the wave equation in the Schwarzschild geometry. In
957, Regge and Wheeler3 investigated the linear stability of this geometry. Kay and Wald4 proved
oundedness for solutions of the Klein-Gordon equation in this space-time outside and on the
vent horizon. By heuristic arguments, Price5 got evidence for polynomial decay of solutions of
he scalar wave equation. More recently, Dafermos and Rodnianski6 gave a mathematical proof for
his decay for spherical symmetric initial data. For general initial data they derived decay rates,7

hich are however not sharp. Furthermore, Morawetz and Strichartz type estimates for a massless
calar field without charge in a Reissner Nordstrøm background with naked singularity are devel-
ped in Ref. 8. And in Ref. 9 a Morawetz-type inequality was proven for the semilinear wave
quation in Schwarzschild.

The paper is organized as follows: First, we introduce the Regge-Wheeler variable and rewrite
he wave equation as a first-order Hamiltonian system. The resulting Hamiltonian is a symmetric
perator with respect to the scalar product arising from the conserved energy. Exploiting the
pherical symmetry of the problem, we may consider the problem for fixed angular modes l and m.
e then show that the corresponding Hamiltonian is essentially self-adjoint. More precisely, our

oal is to apply Stone’s formula, which relates the propagator to an integral over the resolvent.
hus in Sec. IV we give an explicit construction for the resolvent. This construction is based on
pecial solutions of the radial equation, which decay exponentially at ±	. In Sec. V we prove the
xistence of these solutions via the formalism of the Jost equation. Moreover, we obtain appro-
riate regularity results for these solutions, which lead to an integral representation of the solution
perators of the Cauchy problem for fixed l and m. According to the theory of symmetric hyper-
olic systems, the Cauchy problem has a unique smooth solution. Thus, summing over the angular
odes yields the desired representation of this solution. Combining this representation with a
obolev imbedding argument, we obtain pointwise decay in time.

I. PRELIMINARIES

In this section we reformulate the wave equation as a first order Hamiltonian system. This will
ake it possible to analyze the dynamics of the waves with Hilbert space methods.

According to �1.1� and �1.2� the scalar wave equation in the Schwarzschild geometry with
espect to Schwarzschild coordinates has the explicit form

� �2

�t2 − �1 −
2M

r
� 1

r2� �

�r
�r2 − 2Mr�

�

�r
+ �S2�	� = 0. �2.1�

ere �S2 denotes the standard Laplacian on the two sphere, which in the coordinates �� ,�� is
iven by

�S2 =
1

sin2 �

�2

��2 +
�

��cos ��
sin2 �

�

��cos ��
. �2.2�

n order to bring the equation �2.1� into a more convenient form, we first introduce the Regge-
heeler coordinate u by

u�r� ª r + 2M log� r

2M
− 1� . �2.3�

he variable u takes values in the whole interval �−	 ,	� as r ranges over �2M ,	�. It satisfies the

elations
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du

dr
=

1

1 −
2M

r

,
�

�u
= �1 −

2M

r
� �

�r
. �2.4�

n what follows the variable r is always implicitly given by u. Using the Regge-Wheeler coordi-
ate, the wave equation �2.1� transforms to

� �2

�t2 −
1

r

�2

�u2r + �1 −
2M

r
��2M

r3 −
�S2

r2 �	� = 0. �2.5�

o simplify this equation we multiply by r and substitute �=r�. This leads us to the Cauchy
roblem

� �2

�t2 −
�2

�u2 + �1 −
2M

r
��2M

r3 −
�S2

r2 �	��t,u,x� = 0,

��,i�t���0,u,x� = 0�u,x� , �2.6�

here the initial data 0�C0
	�R
S2�2 is smooth and compactly supported.

The equation in �2.6� can be reformulated as the Euler-Lagrange equation corresponding to
he action

S = 

−	

	

dt

−	

	

du

−1

1

d�cos ��

0

2�

d� L��,��� , �2.7�

here the Lagrangian is given by

2L = ��t��2 − ��u��2 − �1 −
2M

r
�2M

r3 ���2 − �1 −
2M

r
� 1

r2� 1

sin2 �
�����2 + sin2 ���cos ���2� .

�2.8�

s one sees immediately, the Lagrangian is invariant under time translations, and thus Noether’s
heorem gives rise to a conserved quantity, the energy E,

E��� = 

−	

	

du

−1

1

d�cos ��

0

2� d�

�
E , �2.9�

here E is the energy density

2E = 2� �L
��t

�t − L� = ��t��2 + ��u��2 + �1 −
2M

r
��2M

r3 ���2 +
1

r2� 1

sin2 �
�����2 + sin2 ���cos ���2� .

�2.10�

t is also easy to check directly that the above energy is conserved in time for all smooth solutions
f the wave equation that are compactly supported for all times. Since we consider the wave
quation outside the event horizon, i.e., r�2M, it is clear that the energy density is positive
verywhere.

Next we rewrite the Cauchy problem �2.6� in first-order Hamiltonian form. Letting

 = � �

i�t�
� , �2.11�
he Cauchy problem takes the form
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i�t = H, ��t=0 = 0, �2.12�

here H is the Hamiltonian

�0 1

A 0
� . �2.13�

ere A is the differential operator

A = − �u
2 + �1 −

2M

r
��2M

r3 −
1

r2�S2� . �2.14�

e use the energy E in order to introduce a scalar product such that the Hamiltonian H is
ymmetric with respect to it. More precisely, we endow the space C0

	�R
S2�2 with the energy
calar product �.,.� by polarizing E, thus

�,�� ª 

−	

	

du

−1

1

d�cos ��

0

2� d�

2�
��t��t� + �u��u� + �1 −

2M

r
�


�2M

r3 �̄� +
1

r2� 1

sin2 �
������ + sin2 ��cos ���cos ���	 , �2.15�

here again = �� , i�t��T and �= �� , i�t��T. Energy conservation implies that for a solution  of
he Cauchy problem �2.12� which is compactly supported for all times,

0 =
d

dt
E�� =

d

dt
�,� = �̇,� + �,̇� = i�H,� − i�,H� .

ince the initial data 0�C0
	�R
S2�2 can be chosen arbitrarily, polarization yields

�H,�� = �,H��, for all ,� � C0
	�R 
 S2�2. �2.16�

ence the operator H is symmetric on C0
	�R
S2�2 with respect to �.,.�.

We will now use the spherical symmetry to simplify the problem. More precisely, we make
se of the fact that the angular dependence of the wave equation in the Schwarzschild geometry
nvolves only the Laplacian on the two sphere. It is well known that the spherical harmonics
Ylm�� ,���l�N0,�m��l are smooth eigenfunctions of �S2 with the eigenvalues −l�l+1�. Moreover,
hey form an orthonormal basis of the space L2�S2�. Thus we can decompose an arbitrary 

��1 ,�2�T�C0
	�R
S2�2 in the following way:

�u,�,�� = �
l=0

	

�
�m��l

lm�u�Ylm��,�� , �2.17�

here for each component the sum converges for fixed u in L2�S2�. Since the lm��� 1
lm ,� 2

lm�T

re uniquely determined by � i
lm�u�= �Ylm ,�i�u��L2�S2� it is clear that lm�u��C0

	�R�2 for all l ,m.
sing this decomposition, we rewrite the norm of  corresponding to the energy scalar product as

�,� = 

−	

	

du

−1

1

d�cos ��

0

2� d�

2�
���2�2 + ��u�1�2 + �1�1 −

2M

r
��2M

r3 −
1

r2�S2��1
= �

l=0

	

�
�m��l



−	

	

du��� 2
lm�u��2 + ��u� 1

lm�u��2 + �1 −
2M

r
��2M

r3 +
l�l + 1�

r2 ��� 1
lm�u��2 ,

�2.18�

here in the first equation we have integrated by parts with respect to �� ,��. The second equation

ollows from the properties of the Ylm. As one can immediately see, the integrand for every
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ummand in �2.18� is positive. Hence again by polarizing we obtain for any angular mode l a
calar product �. , . �l on C0

	�R�2 given by

�,��l = 

−	

	

��2�2 + �1��1� + Vl�1�1�du , �2.19�

ith the potential Vl�u� defined as

Vl�u� = �1 −
2M

r
��2M

r3 +
l�l + 1�

r2 � . �2.20�

his definition leads to an isometry

�C0
	�R 
 S2�2,�. , . �� → �

l=0

	

�
�m��l

�C0
	�R�2,�. , . �l� ,

 � lm. �2.21�

sing �2.17�, the Hamiltonian H also decomposes in the following way:

H�u,�,�� = �
l=0

	

�
�m��l

Hl
lm�u�Ylm��,�� .

ere the Hl act on C0
	�R�2 and are given by

Hl = � 0 1

− �u
2 + Vl�u� 0

� . �2.22�

hus for fixed angular modes l and m the Cauchy problem �2.12� simplifies to

i�t
lm = Hl

lm, �lm�t=0 = 0
lm, �2.23�

here the initial data is in C0
	�R�2. Moreover, the Hl are symmetric on C0

	�R�2 with respect to
. , . �l, because for any  ,��C0

	�R�2 the functions �u�Ylm and ��u�Ylm are in C0
	�R
S2�2.

hus

�Hl,��l = �H�Ylm�,�Ylm� = �Ylm,H��Ylm�� = �,Hl��l.

n particular, for solutions of �2.23� with compact support in u for all times, the norm with respect
o �. , . �l is constant. Therefore we again refer to �. , . �l as the energy scalar product.

Our strategy is to solve for a given inital data 0�C0
	�R
S2�2 the Cauchy problem �2.23� for

xed angular modes l and m, and to sum up the solutions afterwards. Therefore, in what follows
e will fix the angular modes l ,m and consider the problem �2.23�. In order to avoid too many

ndices, we usually omit the subscript l in the Hamiltonian and energy scalar product.

II. SPECTRAL PROPERTIES OF THE HAMILTONIAN

In the preceding section we introduced the energy scalar product �,� on the space C0
	�R�2.

ince we cannot expect C0
	�R�2 to be complete with respect to this inner product �and indeed it is

ot, because the energy scalar product in the second component is just the usual L2-scalar prod-
ct�, we define the Hilbert space HVl0

1 �R� as the completion of C0
	�R� within the Hilbert space

HVl

1 �R� = �u with u� � L2�R� and Vl
1/2u � L2�R��
ndowed with the scalar product
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�u,v�1 ª �u�,v��L2 + �Vlu,v�L2.

ote that this coincides with the energy scalar product on the first component. Therefore, we
hoose H�HVl0

1 �R� � L2�R� endowed with the energy scalar product as the underlying Hilbert
pace for our Hamiltonian H.

In the preceding section we have seen that the Hamiltonian H is symmetric on C0
	�R�2. Before

e can use functional analytic methods, we need to construct a self-adjoint extension of H. In fact,
e are able to prove the following lemma.

Lemma 3.1: The operator H with domain D�H�=C0
	�R�2 is essentially self-adjoint in the

ilbert space H.
In order to prove this lemma, we use the following version of Stone’s theorem about strongly

ontinuous one-parameter unitary groups. A proof of this theorem can be found in Ref. 10, Sec.
III.4. �Also see Ref. 11�.

Theorem 3.2: Let U�t� be a strongly continuous one-parameter unitary group on a Hilbert
pace H. Then there is a self-adjoint operator A on H such that U�t�=eitA.

Furthermore, let D be a dense domain which is invariant under U�t� and on which U�t� is
trongly differentiable. Then i−1 times the strong derivative of U�t� is essentially self-adjoint on D,
nd its closure is A.

Now we apply this theorem.
Proof of Lemma 3.1: According to the theory of symmetric hyperbolic systems �cf. Ref. 12,

ec. 5.3� the Cauchy problem

��t
2 − �u

2 + Vl�u����t,u� = 0,

���t=0 = f , �i�t��t=0 = g

ith smooth, compactly supported initial data f ,g�C0
	�R� has a unique solution

�t ,u��C	�R
R� which is also compactly supported in u for all times. Using this solution, we
efine for arbitrary t�R the operators

U�t�:C0
	�R�2 → C0

	�R�2,

� f

g
� � � ��t, . �

i�t��t, . �
� ,

hich leave the dense subspace C0
	�R�2�H invariant for all times t.

Due to the energy conservation, the U�t� are unitary with respect to the energy scalar product
nd hence extend to unitary operators on the entire Hilbert space H. Furthermore, since the
olution is uniquely determined by the initial data, the U�t� have the following properties:

U�0� = Id, U�t + s� = U�t�U�s� for all t,s � R ,

nd thus they form a one-parameter unitary group. Due to the fact that smooth initial data yields
mooth solutions in t and u, this group is strongly continuous on H and strongly differentiable on
he domain C0

	�R�2. Calculating i−1 times the strong derivative one gets

i−1 lim
h↘0

1

h
�U�h�� f

g
� − � f

g
�� = i−1� − ig

i��u
2 − Vl�f

� = − H� f

g
�

or all f ,g�C0
	�R�, and the lemma follows from Theorem 3.2.

�

For the further investigations of the Hamiltonian H, we consider its self-adjoint closure which,
or the sake of simplicity, we again denote by H. For our purposes, it is not important to know the

xact domain of definition D�H� of the self-adjoint extension.
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V. CONSTRUCTION OF THE RESOLVENT

Stone’s formula for the spectral projections of a self-adjoint operator A �cf. Ref. 10 Theorem
II.13�,

1

2
�P�a,b� + P�a,b�� = s-lim

�↘0

1

2�i



a

b

��A − � − i��−1 − �A − � + i��−1�d� , �4.1�

elates the spectral projections to the resolvent �here s-lim denotes the strong limit of operators�.
n view of this relation, it is of interest to derive an explicit representation of the resolvent.

In the preceding section we have seen that there is a domain D�H� such that our Hamiltonian
is self-adjoint in the Hilbert space �H , �,��. From this it immediately follows that the spectrum

�H��R is on the real line and therefore the resolvent �H−��−1 :H→H exists for every
�C \R.

Let us now fix ��C \R. We often denote the �-dependence by a subscript �. We begin by
educing the eigenvalue equation H=� by substituting the equation for the first component in
he second equation. We thus obtain the Schrödinger-type equation

�− �u
2 + V��u����u� = 0 �4.2�

ith the potential

V��u� = − �2 + Vl�u� = − �2 + �1 −
2M

r
��2M

r3 +
l�l + 1�

r2 � . �4.3�

In what follows we refer to this equation simply as the Schrödinger equation. It can be
egarded as the radial equation associated to the wave equation in �2.6�. Our goal is to construct
he resolvent �H−��−1 out of special solutions of this equation. We introduce fundamental solu-
ions �́� and �̀� of the Schrödinger equation �4.2� which satisfy asymptotic boundary conditions
t u= ±	 �the existence of these solutions will be proved in Sec. V�. More precisely, in the case
m����0 we impose that

lim
u→−	

ei�u�́��u� = 1, lim
u→−	

�ei�u�́��u��� = 0, �4.4�

lim
u→+	

e−i�u�̀��u� = 1, lim
u→+	

�e−i�u�̀��u��� = 0, �4.5�

hereas in the case Im����0,

lim
u→−	

e−i�u�́��u� = 1, lim
u→−	

�e−i�u�́��u��� = 0, �4.6�

lim
u→+	

ei�u�̀��u� = 1, lim
u→+	

�ei�u�̀��u��� = 0. �4.7�

Since the resolvent exists, the map �H−�� :D�H�→H is bijective and in particular the kernel
s trivial. Hence the solutions �́�, �̀� are linearly independent �otherwise they would give rise to

vector in the kernel due to the exponential decay�. Thus �́� and �̀� are indeed a system of
undamental solutions with nonvanishing Wronskian

w��́�,�̀�� ª �́��u��̀�� �u� − �́�� �u��̀��u� . �4.8�

ote that the Wronskian is independent of the variable u, as is easily verified by differentiating

ith respect to u and substituting the Schrödinger equation.
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In the next lemma, we use this fundamental system to derive the Green’s function correspond-
ng to �4.2�.

Lemma 4.1: The function

s��u,v� ª −
1

w��́�,�̀��

��́��u��̀��v� , if u � v ,

�́��v��̀��u� , if u � v ,
 �4.9�

atisfies the distributional equations

�−
�2

�u2 + V��u��s��u,v� = ��u − v� = �−
�2

�v2 + V��v��s��u,v� .

Proof: By definition of the distributional derivative we have for every test
function ��C0

	�R�,



−	

	

��u��− �u
2 + V��u��s��u,v�du = 


−	

	

��− �u
2 + V��u����u��s�u,v�du .

t is obvious from its definition that the function s�. ,v� is smooth except at the point u=v, where
ts first derivative has a discontinuity. Thus, after splitting up the integral, we can integrate by parts
wice to obtain



−	

	

��− �u
2 + V��u����u��s�u,v�du = 


−	

v

��u��− �u
2 + V��u��s�u,v�du + lim

u↗v
���u��us�u,v��

+ 

v

	

��u��− �u
2 + V��u��s�u,v�du − lim

u↘v
���u��us�u,v�� .

ince for u�v, s is a solution of �4.2�, the obtained integrals vanish. Computing the limits with
he definition �4.9�, we get



−	

	

��− �u
2 + V��u����u��s�u,v�du = �lim

u↗v
− lim

u↘v
���u��us�u,v�

= −
1

w��́�,�̀��
��v���́�� �v��̀��v� − �̀�� �v��́��v�� = ��v� ,

here in the last step we used the definition of the Wronskian �4.8�. This yields the first equation.
he second equation is proven exactly in the same way.

�

With this function s we are now able to construct the resolvent. More precisely,
Proposition 4.2: For every ��C \R, the resolvent �H−��−1 :H→H can be represented as an

ntegral operator with the integral kernel

k��u,v� = ��u − v��0 0

1 0
� + s��u,v�� � 1

�2 �
� . �4.10�

Proof: We introduce the integral operator S� with the integral kernel k��u ,v� on the domain

D�S�� ª ��H − ��� � C0
	�R�2� .

et us verify that D�S�� is a dense subset of H. Let ��H be an arbitrary vector. Because
f the existence of the resolvent, the operator H−� :D�H�→H is onto, and thus there is a
ector ��D�H� with �H−���=�. Then due to the definition of the closure of H, there

	 2
s a sequence ��n�n�N�C0 �R� with �n→� and H�n→H� as n→	. This shows that
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�H−���n�n�N�D�S�� converges to �H−���=�. We conclude that D�S�� is dense. We now
alculate the operator product S��H−�� on C0

	�R�2. For an arbitrary = ��1 ,�2�T�C0
	�R�2 we

ave

�S��H − �����u� = 

−	

	

k��u,v��H − ����v�dv

= � 0

− ��1 + �2
��u� + 


−	

	

s��u,v�� − �v
2 + V��v� 0

��− �v
2 + V��v�� 0

���1

�2
��v�dv .

ence, according to Lemma 4.1,

S��H − �� = Id on C0
	�R�2.

his yields that S�= �H−��−1 on the dense set D�S��. Since �H−��−1 is a bounded operator, the
laim follows.

�

As mentioned at the beginning of this section, we can now apply Stone’s formula for the
pectral projections of H and get for every �H,

1

2
�P�a,b� + P�a,b�� = lim

�↘0

1

2�i



a

b

��H − �� + i���−1 − �H − �� − i���−1� d� ,

nd this yields together with Proposition 4.2,

= lim
�↘0

1

2�i



a

b �

R

�k�+i��. ,v� − k�−i��. ,v���v�dv�d� , �4.11�

here the limit is with respect to the norm in H. It is therefore of special interest how the kernels

�+i��u ,v� and k�−i��u ,v� behave as �↘0. Since these kernels are given explicitly in terms of the
undamental solutions �́�±i� and �̀�±i�, we will discuss their behavior in the next section.

. THE JOST SOLUTIONS OF THE RADIAL EQUATION

In this section we want to discuss the existence and the behavior of the solutions �́�, �̀� of the
chrödinger equation �4.2�, which in Sec. IV we used for the construction of the resolvent. We will
rove the following theorem.

Theorem 5.1:

i� For every ��D= ���C � Im ��1/4M�, there exists a unique solution �1�� ,u� of the
Schrödinger equation (4.2) satisfying the boundary conditions (4.6) such that for every

fixed u�R the function �1�� ,u� is holomorphic in �� D̊ and continuous in D.

ii� For every angular momentum number l, the solutions �̀� of the Schrödinger equation (4.2)
with boundary conditions (4.7) are well defined and uniquely determined on the set

E = �� � C�Im � � 0,� � 0� .

For each fixed u�R, the function �̀��u� is holomorphic in �� E̊ and continuous in E.

Furthermore, in the case l=0, �̀��u� may be continuously extended to �=0.

Once having proven this theorem, we simply set

�́��u� ª ��1��̄,u� if Im � � 0,

�1��,u� if Im � � 0,
 �5.1�
s well as
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�̀��u� ª �̀�̄�u� if Im � � 0, �5.2�

o obtain the solutions of Sec. IV. For Im ��0 this is clear by definition. But in the case of
m ��0 the above defined �́��u�, �̀��u� are indeed the unique solutions of the Schrödinger
quation �4.2� with the desired boundary conditions �4.4� and �4.5�, respectively. This follows
mmediately by complex conjugation of the Schrödinger equation due to the fact that our potential

l is real.
For the proof of Theorem 5.1 we will formally manipulate the Schrödinger equation with

oundary conditions �4.6� and �4.7� in order to get an appropriate integral equation �which in
ifferent contexts is called the Jost or Lipman-Schwinger equation�. Then we will perform a
erturbation expansion and get estimates for all the terms of the expansion. A reference for this
ethod can be found, e.g., in Ref. 13, Sec. XI.8. Since this reference contains only an outline of

he proof, it seems worth working out the details.
To introduce the method, we begin with the solutions �1�� ,u�. First we write the Schrödinger

quation �4.2� in the form

�−
d2

du2 − �2����u� = − W�u����u� , �5.3�

here W is a potential in L1�R� �later on, W will be replaced by Vl�. Next we define for ��C the
unction G��u� by

G��u� ª �
0 if u � 0,

−
1

�
sin��u� if u � 0 and � � 0,

− u if u � 0 and � = 0.
� �5.4�

simple computation shows that G��u� defines a Green’s function for the operator on the left-
and side of the equation �5.3� in the sense that the distributional equation

�−
d2

du2 − �2�G��u� = ��u�

olds. In order to build in the boundary condition �4.6�, we make in equation �5.3� the substitution

��u�=ei�u+ �̃��u� to obtain

�−
d2

du2 − �2��̃��u� = − W�u����u� .

olving this equation formally by convoluting the right-hand side with G�, we get the formal
olution

�̃��u� = ��− W��� � G���u� � − 

−	

	

G��u − v�W�v����v�dv .

ence ���u� satisfies the equation

���u� = ei�u − 

−	

u

G��u − v�W�v����v�dv , �5.5�

hich is referred to as the Jost equation with boundary conditions at −	. Its significance lies in
he fact that we can now easily perform a perturbation expansion in the potential W. Namely,
aking for �� the ansatz as the perturbation series
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�� = �
k=0

	

��
�k�, �5.6�

e are led to the iteration scheme

��
�0��u� = ei�u,

¯ ,

��
�k+1��u� = − 


−	

u

G��u − v�W�v���
�k��v�dv . �5.7�

his iteration scheme can be used to construct solutions of the Jost equation.
We remark that under certain assumptions on W like continuity, the Jost equation is equivalent

o the corresponding Schrödinger equation with appropriate boundary conditions. We will show
his for our special case W�Vl. A systematic method to rewrite second-order differential equations
ith boundary conditions as integral equations can be found, e.g., in Ref. 13. Sec. XI.8 Appendix
.

We now state a theorem about solutions of the Jost equation. We consider more general
otentials W than we have in our case, because it might be of interest by itself.

Theorem 5.2: Suppose that W is a measurable function obeying for a given u0�0 the
ondition �−	

u0 �W�v��dv�	. Define for u�u0 the function P��u� by

P��u� = 

−	

u 4�v�
1 + ��v�

�W�v��e−�Im �+�Im ���v dv . �5.8�

hen

i� For each ��E= ���C � Im ��0,��0� the Jost equation (5.5) has a unique solution
���u� obeying limu→−	�e−i�u���u���	. Moreover, ���u� is continuously differentiable in
u on �−	 ,u0� with limu→−	e−i�u���u�=1 and limu→−	e−i�u��� �u�= i�. For each fixed u, the

functions ���u� and ��� �u� are holomorphic in E̊ and continuous in E. They satisfy the
bounds

����u� − ei�u� � e−u Im ��eP��u� − 1� , �5.9�

���� �u� − i�ei�u� � e−u Im �eP��u�

−	

u

�W�v��dv . �5.10�

ii� If �−	
u0 �v��W�v��dv�	, for every u�u0 the function ���u� may be continuously extended to

�=0. Moreover, (5.9) and (5.10) hold also at �=0.
iii� If �−	

u0 e−mv�W�v��dv�	, for every u�u0 the function ���u� can be extended to a holomor-
phic function in �� � Im ��

1
2m�, continuous in �� � Im ��

1
2m�. Moreover, in the interval

0� Im ��
1
2m the inequalities (5.9) and (5.10) are replaced by

����u� − ei�u� �
1

���
eu Im �eP��u�


−	

u

e−2v Im ��W�v��dv , �5.11�

���� �u� − i�ei�u� � eu Im �eP��u�

−	

u

e−2v Im ��W�v��dv , �5.12�

¯
n each case, � obeys ���u����� ,u�=��−� ,u�.
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We call this solution � the Jost solution. For the proof of this theorem we need a good
stimate for the Green’s function G�.

Lemma 5.3: For all u�C,

�sin u� �
2�u�

1 + �u�
e�Im u�. �5.13�

n particular, if ��0 and v�u�0,

� 1

�
sin���u − v��� �

4�v�
1 + ��v�

e−v�Im ��−u Im �. �5.14�

Proof: In the case �u��1, the inequality �5.13� follows directly from the Euler formula
in u= �1/2i��eiu−e−iu� and the estimate

�1 + �u���sin u� �
1
2 �1 + �u��2e�Im u� � 2�u�e�Im u�.

In the remaining case �u��1, we again use the Euler formula to obtain

�1 + �u���sin u� =
1

2
�1 + �u���eiu − e−iu� =

1

2
�1 + �u���


−1

1

iueiu� d�� ,

nd hence

�1 + �u���sin u� �
1

2
��u� + �u�2�


−1

1

�eiu��d� �
1

2
��u� + �u�2�2e�Im u�.

ow �5.13� follows by the assumption �u��1.
In order to show �5.14� we use the identity

1

�
sin���u − v�� =

1

�
�sin��u�ei�v − sin��v�ei�u�

nd apply �5.13�,

� 1

�
sin���u − v��� �

1

���
��sin��u�ei�v� + �sin��v�ei�u�� �

�5.13� 2�u�
1 + ��u�

e�u Im ��e−v Im �

+
2�v�

1 + ��v�
e�v Im ��e−u Im �. �5.15�

ue to the assumption 0�u�v, we know that �v�� �u� and thus

2�u�
1 + ��u�

�
2�v�

1 + ��v�
, − u�Im �� − v Im � � − v�Im �� − u Im � .

sing these inequalities in �5.15� the claim follows.
�

Note that the estimate �5.14� remains valid in the limit 0��→0, if one replaces
1/��sin���u−v�� by the function u−v.

Now we are ready to prove Theorem 5.2.
Proof of Theorem 5.2: Using the perturbation expansion �5.6� together with the iteration

cheme �5.7�, one easily sees that we have already found a formal solution. So our goal is to show
hat this series is well defined and has the desired properties. To this end, we shall prove induc-

ively that
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���
�k��u�� � e−u Im � 1

k!
P��u�k for all k � N0, for all �,u �5.16�

uch that P��u� is well defined by �5.8�. Due to the integrability conditions on the potential W in

he statement of the theorem this is the case for u�u0 and for all ��E �cf. �i��, �� Ē �cf. �ii��,
� �Im ��

1
2m� �cf. �iii��, respectively. Furthermore, P��u� is continuous in u as well as in � in

hese domains. The first statement is obvious while the latter is due to the fact that the integrand
n the definition �5.8� is continuous in � and one directly finds an integrable dominating function
uch that one can apply Lebegue’s dominated convergence theorem.

We start the induction with the case k=0 for which �5.16� certainly is satisfied. Thus assume
hat �5.16� holds for a given k. Then, estimating the integral equation in �5.7� using �5.14� and
5.8�, we obtain

���
�k+1��u�� � 


−	

u

�G��u − v���W�v�����
�k��v��dv

� 

−	

u 4�v�
1 + ��v�

e−v�Im ��−u Im ��W�v��e−v Im � 1

k!
P��v�k dv

= e−u Im � 1

k!



−	

u dP�

dv
�v�P��v�k dv = e−u Im � 1

�k + 1�!
P��u�k+1,

here in the last step we used that P��u� vanishes when u goes to −	. This concludes the proof
f �5.16�.

Summing over k, �5.16� yields the inequality

�
k=0

	

���
�k��u�� � e−u Im �eP��u�. �5.17�

ecause of the continuity of P��u�, the series �5.6� converges uniformly for u and � in compact
ets. Using the iteration scheme �5.7�, this series can be written as

�
k=0

	

��
�k��u� = ei�u − �

k=1

	 

−	

u

G��u − v�W�v���
�k−1��v�dv ,

nd the bound �5.17� allows us to apply Lebesgue’s dominated convergence theorem and to
nterchange the sum and the integral. Hence the series is indeed a solution of the Jost equation
5.5�.

Next we want to show that a solution of the Jost equation is continuously differentiable with
espect to u. To this end, we first compute for an arbitrary u�u0 the difference quotient,

1

h
����u + h� − ���u� − ei��u+h� + ei�u� =

�5.5�



−	

u+h 1

h�
�sin���u + h − v�� − sin���u − v���W�v����v�dv �5.18�

+
1

h



u

u+h 1

�
sin���u − v��W�v����v�dv , �5.19�

here h�0. We may restrict attention to the case Im ��0 and h�0 �the other cases are analo-

ous�. Using the estimate
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��u� 1

�
sin���u − v���� = �cos���u − v��� �

1

2
�e−u Im �ev Im � + eu Im � e−v Im ��

ogether with �5.17�, we can apply the mean value theorem to the first integrand to obtain the
ominating function

1

2
�e−��v�Im �ev Im � + e��v�Im �e−v Im ���W�v��e−v Im �eP��v�,

here ��v�� �u ,u+h�. Due to the integrability conditions on W, it is clear that this function is
ntegrable. Hence Lebesgue’s dominated convergence theorem allows us to take the limit h→0 in
5.18�. This gives



−	

u

cos���u − v��W�v����v�dv .

n order to treat the second integral, we choose h�h0, where h0 is so small that

max
v��u,u+h�

� 1

�h
sin���u − v��� � 2 for all h � h0.

his is possible because limh→0�1/�h� sin��h�=1. Thus we can estimate �5.19� by

� 1

h



u

u+h 1

�
sin���u − v��W�v����v�dv� � 2e−�u+h�Im �eP��u+h�


�−	,u0�
�1�u,u+h��v�W�v��dv ,

nd the last integral goes to 0 as h→0 by Lebesgue’s monotone convergence theorem using the
act that W�L1�−	 ,u0�. Hence �5.19� vanishes.

Altogether we conclude that ���u� is differentiable with derivative

��� �u� = i�ei�u + 

−	

u

cos���u − v��W�v����v�dv , �5.20�

hich is continuous on �−	 ,u0� because of the estimate �5.17�.
The estimate �5.9� is a simple consequence of �5.16� together with the perturbation expansion

5.6�. For the proof of �5.10� we use the representation of the derivative �5.20� together with the
nequality �5.17�:

���� �u� − i�ei�u� �
�5.20�


−	

u

�cos���u − v����W�v������v��dv �
�5.17�


−	

u 1

2
�e−u Im �ev Im � + eu Im �e−v Im ��


�W�v��e−v Im �eP��v� dv � e−u Im �eP��u�

−	

u

�W�v��dv ,

here in the last step we used the fact that P��v� and e−v Im � �with Im ��0� are monotone
ncreasing. The estimates �5.11� as well as �5.12� are shown in the same way.

Let us now verify that for any fixed u, the function ���u� is holomorphic in �, and continuous
n the domains as specified in �i�, �ii�, and �iii�. Due to the locally uniform convergence of the
erturbation series, it suffices to show that every ��

�k��u� has the desired properties. We do this
nductively, where the case k=0 is trivial. Let us now assume that ��

�k��u� is holomorphic in
˚ ��Im ��

1
2m�, respectively�. In order to prove that ��

�k+1� is holomorphic, we want to apply
�k+1�
orera’s theorem. Thus we must show that �� �u� is continuous in � and that the integral
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�
�

��
�k+1��u�d� =

�5.7��
�



−	

u 1

�
sin���u − v��W�v���

�k��v�dv d� �5.21�

anishes for every closed contour � in E̊ �or in case �iii�, for every contour in �Im ��
1
2m�,

espectively�. Using the above estimates �5.14� and �5.16� together with the monotonicity of P��u�
n u we get the following bound for the integrand

� 1

�
sin���u − v��W�v���

�k��v�� � �W�v��
4�v�

1 + ��v�
e−u Im �−v�Im ��−v Im � 1

k!
P��u�k. �5.22�

ue to the induction hypothesis, the integrand is continuous in �. Moreover, for a compact
eighborhood K��0� of a fixed �0 contained in the specified domains, �5.22� yields for the family
1/�� sin���u−v��W�v���

�k��v�, ��K��0� the uniformly dominating function

�W�v��
4�v�

1 + �v�min���
e−u Im � −v max��Im ��+Im �� 1

k!
P��u�k,

here the minimum and the maximum are taken in K��0�. This function is integrable for K��0�
hosen sufficiently small due to the integrability conditions on W. This lets us apply Lebesgue’s
ominated convergence theorem to show the continuity in � for ��

�k+1��u�, which is given by the
ntegral �5.7�. Moreover, �5.22� together with the continuity in � of P��u� yield that the integral

�
�



−	

u � 1

�
sin���u − v��W�v���

�k��v��dv d� � 	

xists for an arbitrary closed contour � in E̊ �or �Im ��
1
2m�, respectively�. By the theorem of

ubini, we may interchange the orders of integration in �5.21�. Because of the induction hypoth-
sis, the integrand of �5.21� on the right-hand side is holomorphic. Thus the integral vanishes due
o the Cauchy integral theorem. We conclude that ��

�k� is holomorphic for every k. Since ���u� is
olomorphic, the same argument together with Eq. �5.20� yields that ��� is also holomorphic.

It remains to prove uniqueness. Let ���u� be another solution of the Jost equation obeying
imu→−	�e−i�u���u���	. Then we can find a c�0 with ����u���ce−u Im � for all u�u0. Then as
bove one shows inductively that

����u� − �
l=0

N

��
�k��u�� � ce−u Im � 1

�N + 1�!
P��u�N+1,

nd taking N→	 we obtain ��=��.
The uniqueness also implies that ��� ,u�=��−�̄ ,u�, concluding the proof.

�

Remark 5.4: In order to treat the Schrödinger equation �4.2� with boundary conditions at
nfinity �4.7�, we derive the corresponding Jost equation with boundary conditions at +	 using the
ame procedure as for the solutions �1,

���u� = e−i�u − 

u

	 1

�
sin���u − v��W�v����v�dv . �5.23�

t is obvious that the solution �̃��u� of the Jost equation with boundary conditions at −	 with
otential W�−v� constructed in Theorem 5.2 gives rise to a solution �� of �5.23� by defining

��u�ª �̃��−u�.
With the results of Theorem 5.2 it is now easy to prove Theorem 5.1.
Proof of Theorem 5.1: Let us apply Theorem 5.2 to the potential Vl�u� given by �2.20�, which

s obviously a smooth function in u. Furthermore, it vanishes on the event horizon 2M with the

symptotics Vl=O�r−2M�. Using the definition of the Regge-Wheeler coordinate u �2.3�, this
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eans that Vl�u� decays exponentially as u→−	. More precisely, there is a constant c�0 such
hat

�Vl�u�� � ceu/2M for small u .

heorem 5.2 �iii� yields for u�u0�0 a solution �1�� ,u� of the Jost equation �5.5� with the
esired properties. It remains to show that �1 is also a solution of the Schrödinger equation �4.2�
or u�u0. �Due to the Picard-Lindelöf theorem, this solution of the linear equation can be
niquely extended to u�R; the resulting function is analytic in � due to the analytical dependence
n � from the coefficients and initial conditions.� But this follows immediately by differentiating
quation �5.20� and using that Vl�W is smooth, so that the whole integrand is at least differen-
iable with respect to v. We have then proven the existence of �́�. For the uniqueness, we show
hat in our special case every solution of �4.2� with boundary conditions �4.6� is a solution of �5.5�.
his can be done by integration by parts: let ���u� be such a solution. Then



−	

u 1

�
sin���u − v��Vl�v����v�dv = 


−	

u 1

�
sin���u − v����v

2 + �2����v�dv = ���u� − ei�u,

here the remaining terms vanish due to the boundary conditions. Since we know that the solution
f the Jost equation is uniquely determined, this must be also the case for the solution of the
chrödinger equation. Thus we have proven part �i�.

For the proof of �ii� we refer to Remark 5.4. In contrast to the exponential decay at −	, the
otential Vl�u� has only polynomial decay at +	. More precisely, according to the definition of u,

l�u�=O�l�l+1� /u2� for l�1, V0�u�=O�2M /u3�, respectively, as u→	. Thus we can apply the
nalogs of Theorem 5.2 �i�, �ii�, respectively. This gives the existence and uniqueness of the
olution �̀� for the Schrödinger equation with the stated properties.

�

When taking the limit �↘0 in Stone’s formula �4.11�, the behavior of �̀��u� at �=0 still
auses problems. While in the case l=0 we know from Theorem 5.1 that �̀� can be continuously
xtended there, we do not yet know what happens for l�0. The following theorem settles this
roblem by showing that, after suitable rescaling, the solutions �̀� have a well-defined limit at
=0.

Theorem 5.5: For every angular momentum number l, there is a solution �0 of the
chrödinger equation (4.2) for �=0 with the asymptotics

lim
u→	

ul�0�u� = il 2l��

��1

2
− l� = �− i�l�2l − 1�!!, �5.24�

here

�2l − 1�!! ª ��2l − 1� · �2l − 3� · ¯ · 3 · 1 if l � 0,

1 if l = 0.


his solution can be obtained as a limit of the solutions from Theorem 5.1, in the sense that for all
�R,

�0�u� = lim
E��→0

�l�̀��u� and �0��u� = lim
E��→0

�l�̀�� �u� . �5.25�

Note that the above properties of the solution �0 really coincide in the case l=0 with that of
he solution �̀0 already constructed in Theorem 5.1 �ii�.

For the proof of this theorem we use the same method as in the proof for Theorem 5.1.

owever, the iteration scheme �5.7� does not work for l�0 in the limit �→0, because the integral
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�0
�1��u� = − 


u

	

�u − v�Vl�v�dv

iverges �Vl�u� decays only quadratically at infinity for l�0�. We avoid this problem by adding
he leading asymptotic term of the potential Vl to the unperturbed equation,

�−
d2

du2 − �2 +
�l +

1

2
�2

−
1

4

u2 ����u� = − Wl�u����u� . �5.26�

ow the perturbation term Wl�u�=Vl�u�− �l�l+1� /u2� has the asymptotics Wl�u�=O�log u /u3�.
Fortunately, the unperturbed differential equation corresponding to �5.26� can still be solved

xactly. The solutions can be expressed in terms of Bessel functions. For our further consideration,
he two functions

h1�l,�,u� =���u

2
Jl+�1/2���u�, h2�l,�,u� =���u

2
J−l−�1/2���u� �5.27�

lay an important role. Here the function J��u� is the Bessel function of the first kind �a good
eference for the theory of the Bessel functions is Ref. 14�. It solves Bessel’s differential equation

u2y��u� + uy��u� + �u2 − �2�y�u� = 0.

n addition, it is an analytic function in � and u for all values of � and u�0 �if Re ��0, it can be
nalytically extended even to u=0�. It has the series expansion

J��u� = �
m=0

	
�− 1�m

m!��� + m + 1��u

2
��+2m

�5.28�

nd the following asymptotics for �u��1 �cf. Ref. 14, 7.21�:

J��u� �� 2

�u�cos�u −
�

2
�� +

1

2
�� · �

m=0

	
�− 1�m��,2m�

�2u�2m

− sin�u −
�

2
�� +

1

2
�� · �

m=0

	
�− 1�m��,2m + 1�

�2u�2m+1 	 , �5.29�

here we have used the notation

��,m� ª
��� + m +

1

2
�

m!��� − m +
1

2
� .

oreover, the derivatives satisfy the recurrence formulas

uJ���u� = uJ�−1�u� − �J��u� ,

uJ���u� = �J��u� − uJ�+1�u� .

he Wronskian of the functions J�, J−� �which both solve the same differential equation, since

essel’s differential equation is symmetric in �� is given by the formula
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w�J��u�,J−��u�� = −
2 sin����

�u
. �5.30�

his yields that these functions form a fundamental system for Bessel’s differential equation
rovided that � is not an integer.

In our applications we choose �= l+ 1
2 . Thus the functions h1�l ,� ,u� and h2�l ,� ,u� have the

ollowing asymptotics:

h1�l,�,u� � �cos��u − �l + 1�
�

2
� if ��u� � 1,

��

��3

2
+ l��

�u

2
�l+1

if ��u� � 1,� �5.31�

h2�l,�,u� � � cos��u + l
�

2
� if ��u� � 1,

��

��1

2
− l��

�u

2
�−l

if ��u� � 1.� �5.32�

urthermore, the formula �5.30� for the Wronskian simplifies to

w�h1�l,�,u�,h2�l,�,u�� = �− 1�l+1�, if l is an integer, �5.33�

nd this yields that in the case ��0 the solutions h1, h2 form a fundamental system.
Thus for ��0 we take as the Green’s function for the operator on the left-hand side of �5.26�

he standard formula

S��u,v� = ��v − u�
1

w�h1,h2�
�h1�v�h2�u� − h1�u�h2�v�� , �5.34�

here h1/2�u��h1/2�l ,� ,u� and � denotes the Heaviside function defined by ��x�=1 if x�0 and
�x�=0 otherwise. Note that S� is also well defined in the limit �→0. For this we use the

symptotics and the value of the Wronskian and get for very small �,

lim
�→0

S��u,v� = lim
�→0

�− 1�l+1

�
·

��

2��3

2
+ l���1

2
− l� �vl+1u−l − ul+1v−l�

=
�− 1�l+1�

2�1

2
+ l���1

2
+ l���1

2
− l� �vl+1u−l − ul+1v−l� =

�− 1�l+1� cos��l�
�2l + 1��

�vl+1u−l − ul+1v−l�

= −
1

2l + 1
�vl+1u−l − ul+1v−l� ,

here we have used some elementary properties of the gamma function. This also shows that the
reen’s function converges to the Green’s function S0�u ,v� given by the above formula for the

olutions ul+1, u−l of the unperturbed differential operator on the left-hand side of �5.26� for
=0.
We now proceed with the perturbation series ansatz
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���u� = �
m=0

	

��
�m��u� , �5.35�

hich, as at the beginning of this section, leads to the iteration scheme

��
�m+1��u� = − 


u

	

S��u,v�Wl�v���
�m��v�dv . �5.36�

s initial function we take

��
�0��u� = �le−i�l+1���/2����u

2
Hl+�1/2�

�2� ��u� ,

here H�
�2� is another solution of Bessels equation �called Bessel function of the third kind or

econd Hankel function�. It is related to J� by

H�
�2��u� =

J−��u� − e��iJ��u�
− i sin����

,

nd has for large �u� the asymptotics

H�
�2��u� �� 2

�u
e−i�u−�1/2����+�1/2����

m=0

	
��,m�
�2iu�m . �5.37�

hus our initial function ��
�0��u� solves the unperturbed equation, and we have the relation

��
�0��u� = �l��− i�l+1h1�l,�,u� + ilh2�l,�,u�� �5.38�

ogether with the asymptotics

��
�0��u� = �le−i�u�1 + O�1

u
�� if �u� � 1. �5.39�

oreover, the function ��
�0� converges in the limit �→0 pointwise for all u�u0�0:

lim
�→0

��
�0��u� = il

��

��1

2
− l��

u

2
�−l

. �5.40�

ince we are interested in statements for �=0, it is convenient in what follows to restrict � to the
omain:

F ª �� � C�Im � � 0, ��� � 1� .

he following lemma yields that our perturbation series �5.35� is well defined.
Lemma 5.6: For every u0�0, the iteration scheme �5.35�, �5.36�, and �5.38� converges locally

niformly for all u�u0 and ��F. In particular, the functions ���u� are for fixed u a continuous
amily in ��F. They satisfy the integral equation

���u� = ��
�0��u� − 


u

	

S��u,v�Wl�v����v�dv . �5.41�

Proof: In order to prove the lemma, we need to derive good bounds for the initial function

�
�0��u� as well as for the Green’s function S��u ,v�. To this end, we exploit the asymptotics of
1 ,h2. We thus obtain the bound
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1

C1
� ���

�0��u��e−u Im �� u

1 + ���u�
l

� C1. �5.42�

ikewise, for the Green’s function we have �note that v�u�0�,

�S��u,v�� � C2� u

1 + ���u�
−l� v

1 + ���v�
l+1

if ��v� � 1

nd

�S��u,v�� � C3
v

1 + ���v
ev�Im ��+u Im �, if ��u� � 1.

he last inequality follows from the asymptotics

�S��u,v�� � � 1

�
sin���u − v��� if ��u� � 1,

n the same way as the second inequality of Lemma 5.3. Combining these cases we find a constant
uch that

�S��u,v�� � C4� u

1 + ���u�
−l� v

1 + ���v�
l+1

ev�Im ��+u Im �. �5.43�

ence defining the function Q� by

Q��u� ª C4

u

	 v
1 + ���v

�Wl�v��dv , �5.44�

hich is well defined for all ��F and u�u0�0 due to the asymptotic of Wl, it is straightforward
o show inductively �cf. proof of Theorem 5.2� that for all m�N,

���
�m��u�� � C1� u

1 + ���u�
−l

eu Im �Q��u�m

m!
. �5.45�

ow we proceed exactly as in the proof of Theorem 5.2, where the inequality �5.45� can be
onsidered as the analogue of �5.16�. It follows that the series �5.35� converges locally uniformly
n � and u and satisfies the integral equation �5.41�. Furthermore, one shows inductively applying
ebesgue’s dominated convergence theorem, that for fixed u each ��

�m��u� depends continuously of
�F. It follows that the same is true for the series due to local uniform convergence.

�

We are now ready to prove Theorem 5.5.
Proof of Theorem 5.5: According to Lemma 5.6, our perturbation series �5.35� satisfies the

ntegral equation �5.41�. Using the recurrence formulas for the derivatives of J��u�, one obtains

h1��l,�,u� = −
l

u
h1�l,�,u� + �h1�l − 1,�,u� ,

h2��l,�,u� = −
l

u
h2�l,�,u� − �h2�l − 1,�,u� ,

espectively. This allows us to estimate the behavior of �uS��u ,v�. Exactly as for S��u ,v�, we

btain the following asymptotic formulas:
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��uS��u,v�� � C5� u

1 + ���u�
−l−1� v

1 + ���v�
l+1

ev�Im ��+u Im �.

ollowing the same arguments of the proofs of Theorems 5.1 and 5.2, and combining them with
he above estimates and asymptotic formulas we now have the following results:

1� One can differentiate ���u� with respect to u, and ��� �u� is given by

��� �u� = ���
�0����u� − 


u

	

�uS��u,v�Wl�v����v�dv .

In particular, Lebesgue’s dominated convergence theorem yields that for fixed u, ��� �u� is
continuous in ��F.

2� ���u� and ��� �u� obey the following estimates:

����u� − ��
�0��u�� � C1� u

1 + ���u�
−l

eu Im ��eQ��u� − 1� ,

���� �u� − ���
�0����u�� � C5� u

1 + ���u�
−l−1

eQ��u0�eu Im �

u

	

v�Wl�v��dv .

Thus ���u���le−i�u and ��� �u��−i�l+1e−i�u as u→	.
3� Differentiating ���u� twice with respect to u shows that ���u� is a solution of the

Schrödinger equation �4.2� for all u�u0. Furthermore, from the asymptotics at infinity com-
bined with the uniqueness statement in Theorem 5.1, we know that

���u� = �l�̀��u�, if � � 0,u � u0. �5.46�

Obviously, this extends to all u�R.

Thus we have proven the continuity statement �5.25� for all u�u0. On the other hand, we
now from the Picard-Lindelöf theorem that for u on compact intervals, the solutions depend
ontinuously on �. This yields �5.25� for all u�R.

Finally, the asymptotics �5.24� is a simple consequence of �5.40�.
�

I. AN INTEGRAL SPECTRAL REPRESENTATION

In the preceding section we derived some regularity results for the solutions �́� and �̀�. We
lready know �cf. Sec. IV� that these solutions are a system of fundamental solutions of the
chrödinger equation �4.2� in the cases Im ��0 and Im ��0, respectively. Thus the Wronskian
��́� , �̀�� is nonvanishing in these regions, which implies that the integral kernel k��u ,v� of the

esolvent is well defined. Since our next goal is to get the limit in �4.11�, we prove in the next
emma that the continuous extension of the solutions �́� , �̀� to the real axis again yields a system
f fundamental solutions. More precisely we have the following.

Lemma 6.1: The Wronskian w��́� , �̀�� does not vanish for ��R \ �0�. In particular, �́� , �̀�

re fundamental solutions for the Schrödinger equation �4.2�. In addition, this remains true for the
olutions �́0 and �0 in the case �=0.

Proof: Let us begin with the statement for �́0 ,�0.
´
For �=0, the solutions �0�u� ,�0�u� have the asymptotics
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lim
u→−	

�́0�u� = 1 and lim
u→	

ul�0�u� = �− i�l�2l − 1�!!.

ooking at the construction of these solutions, one sees that �́0 is a real solution, while �0 is either
urely real or imaginary �depending on the value of l�. The Schrödinger equation for �=0 reduces
o ���u�=Vl�u���u� with a everywhere positive potential Vl. Hence, exploiting the special asymp-
otics, the solution �́0 is convex and Re �0 �Im �0, respectively� is either convex or concave
epending on l. In any case, we see that �́0 and �0 are linearly independent, and thus
��́0 ,�0��0.

In order to prove the main part of the lemma, we consider a complex solution z=z1+ iz2 of the
chrödinger equation, where �z1 ,z2� is a fundamental system of real solutions, especially
�z1 ,z2��c�0. Setting y=z� /z, a simple computation shows that

Im y =
w�z1,z2�

�z�2
,

here the right-hand side is well defined because w�z1 ,z2��0 implies that �z��0 everywhere. As
consequence, we have Im y�0 everywhere. Thus it follows that for all u either Im y�u��0 or
0, due to the continuity of the solution z in u.

Applying this result to the solutions �́� and �̀�, respectively, and exploiting their asymptotics,
ne sees that Im ý��u� and Im ỳ��u� have different signs for all u. Therefore,

w��́�,�̀�� = �́��u��̀�� �u� − �́�� �u��̀��u� = �́��u��̀��u��ỳ��u� − ý��u�� � 0.

�

As a consequence we have the following.
Corollary 6.2: The function s��u ,v� given by �4.9� is continuous in �� ,u ,v� for

� �Im ��0�, �u ,v��R2.
Proof: We already know that for fixed u0�0, �́��u0� is continuous in � on �Im ��0�. Thus

s solutions of the linear differential equation �4.2�, which depends analytically on � and smooth
n u, the family �́��u� is �at least� continuous in �� ,u� in the region �Im ��0�
R. Analogously
his holds for �l�̀��u� according to Theorems 5.1 and 5.5. Since s��u ,v� is invariant if we
ubstitute �l�̀��u� for �̀��u�, the preceding lemma yields the claim.

�

Note that the corollary is also true if � is in the upper half plane. The essential statement in
his corollary is that one can extend s��u ,v� continuously in � up to the real axis.

From the definitions �5.1� and �5.2�, we have for �� �Im ��0� the relations

s��u,v� = s�̄�u,v�, hence k��u,v� = k�̄�u,v� .

his allows us to simplify the expression �4.11�. Evaluating for fixed u the right-hand side of
4.11� we obtain for any �H as well as for any bounded interval �a ,b��R,

lim
�↘0

−
1

�



a

b �

R

Im�k�−i��u,v���v�dv�d� .

ccording to the above corollary, we know that Im k��u ,v� is continuous in �� ,u ,v� for
� �Im ��0�, �u ,v��R2. Thus, if we restrict  to the dense set C0

	�R�2, we integrate a con-
inuous integrand over a compact interval. Hence, considering the limit as a pointwise limit for
ny u, we may interchange the limit and integration. Thus for any �C0

	�R�2, �a ,b��R bounded

nd u the right-hand side of �4.11� converges pointwise to
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−
1

�



a

b �

supp �

Im�k��u,v����v�dv�d� .

ence, together with the norm convergence in �4.11�, the spectral projections of H are for every u
escribed by the formula

1

2
�P�a,b� + P�a,b���u� = −

1

�



a

b �

supp �

Im�k��u,v����v�dv�d� . �6.1�

n particular, this representation yields that P�a,b�� P�a,b�.
As an immediate consequence we have the following.
Corollary 6.3: The spectrum ��H� of the operator H is absolutely continuous, i.e.,

�H���ac�H�.
Proof: The corollary is equivalent to the statement that the spectral measure � ,dP� � of

ny �H is absolutely continuous. This is clear by �6.1� for any �C0
	�R�2. But since this

ubset is dense, this also holds on the whole Hilbert space H. �

Next we want to write the integrand in �6.1�, i.e., �supp ¯dv, in a more compact way. We
rst note that for real � the complex conjugates of �́� and �̀� are again solutions of �4.2�. Hence,

or any ��R \ �0� the pair ��́� , �́�� forms a fundamental system for this equation due to the

oundary conditions. Thus we can express �̀� as a linear combination of �́� and �́�,

�̀��u� = �����́��u� + �����́��u� �� � R \ �0�� ,

here � and � are referred to as transmission coefficients. The Wronskian of �́� and �̀� can be
xpressed by

w��́�,�̀�� = ����w��́�,�́�� = − 2i����� ,

here in the last step we used the asymptotics �4.6�. Moreover, we introduce the real fundamental
olutions

��
1 �u� = Re �́��u�, ��

2 �u� = Im �́��u�

nd denote the corresponding eigenvectors of the Hamiltonian H by ��
a �u�= ���

a �u� ,���
a �u��T.

Using the above definitions, a short calculation shows that for ��0 we can express the
maginary part of the Green’s function s��u ,v� by

Im s��u,v� = −
1

2�
�

a,b=1

2

tab�����
a �u���

b �v� , �6.2�

here the coefficients tab��� are given by

t11��� = 1 + Re� �

�
����, t12��� = t21��� = − Im� �

�
���� ,

t22��� = 1 − Re� �

�
���� . �6.3�

ince we know that Im s��u ,v� is continuous for ��R and the expression �6.2� holds for all

�R \ �0�, it extends to �=0. With �6.2�, the integrand in �6.1� can be written as
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−
1

2�
�


supp 
�

a,b=1

2

tab�����
a �u���

b �v�� � 1

�2 �
��v�dv�

= −
1

2�2 �
a,b=1

2

tab�����
a �u��


supp 

�2��
b �v��1�v� + ���

b �v��2�v�dv� ,

here the �i denote the two components of .
Using that ��

b �u� solves the Schrödinger equation �−�v
2 +Vl�v����

b �v�=�2��
b �v� and integrat-

ng by parts, this simplifies to

−
1

2�2 �
a,b=1

2

tab�����
a �u����

b ,� . �6.4�

Note that in this case the energy scalar product of ��
b and  is well defined, because  has

ompact support. Whereas in general this does not exist for arbitrary �H, due to the fact that

�
b �H.�

With �6.4�, we now obtain a more compact representation for the spectral projections. More-
ver, we can use �6.4� to express the solution operators e−itH.

Proposition 6.4: Consider the Cauchy problem �2.23� for compactly supported smooth initial
ata 0�C0

	�R�2. Then the solution has the integral representation

�t� = e−itH0 =
1

2�



R
e−i�t 1

�2 �
a,b=1

2

tab�����
a ���

b ,0�d� . �6.5�

ere the integral converges in norm in the Hilbert space H.
Proof: We use the following variation of Stone’s formula to obtain for any bounded interval

c ,d��R,

1

2
e−itH�P�c,d� + P�c,d�� = lim

�↘0



c

d

e−i�t��H − � − i��−1 − �H − � + i��−1� d� ,

here the limit is with respect to the norm of H. Since we know that P�c,d�� P�c,d�, it follows that
his expression is equal to e−itHP�c,d�. Using the explicit formula for the resolvent, for every
�R the right-hand side is equal to

lim
�↘0

−
1

�



c

d

e−i�t�

R

Im�k�−i��u,v���v�dv�d� . �6.6�

ue to the continuity of the imaginary part of the kernel k��u ,v�, we may take for 0�C0
	�R�2

nd �c ,d� bounded the pointwise limit for any u�R. Hence, using �6.4� we can simplify �6.6� to

1

2�



c

d

e−i�t 1

�2 �
a,b=1

2

tab�����
a �u����

b ,0�d� ,

nd together with the norm convergence it follows that this term is equal to e−itHP�c,d�0�u�.
sing the abstract spectral theorem and that e−itH is a unitary operator, it is clear that

−itHP�−n,n�0→e−itH0 in norm as n→	. �

This proposition extends to the following theorem.
Theorem 6.5: For any fixed u�R the integrand in the representation �6.5� is in L1�R ,C2� as

function of �. In particular, the representation �6.5� of the solutions holds pointwise for every

�R, i.e.,
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�t,u� =
1

2�



R
e−i�t 1

�2 �
a,b=1

2

tab�����
a �u����

b ,0�d� . �6.7�

oreover, for u fixed, the function �t ,u� vanishes as t→	.
Proof: Since we know that the integrand is continuous in �, it is in L1��a ,b� ,C2� for any

ounded interval �a ,b�. Thus it remains to analyze the integrand for large ���.
To this end, we must investigate the asymptotic behavior of the fundamental solutions �́� and

`
� in �. We constructed these solutions with the iteration scheme �5.7� as solutions of the Jost
quation. For the proof of this, the estimate �5.14� played an essential role. Since in this case we
onsider real � with ����1, we can use the simple estimate ��1/��sin���u−v����1/ ��� instead of
5.14�, which now holds for every u ,v�R. Thus, proceeding exactly in the same way as in the
roof of Theorem 5.2, we now obtain the following estimates for the several terms in the series
xpansion �5.6�:

���
�k��u�� �

1

k!
P̂��u�k, where P̂��u� ª 


−	

u 1

���
Vl�v�dv ,

or any k�N and u�R. Thus the solution �́��u� ���0� is given for all u�R by this series
xpansion and obeys the uniform bound

��́��u� − ei�u� � eP̂��u� − 1 � e�1/�����Vl�L1 − 1,

ince Vl�L1�R�. In particular,

��́��u�� � 1 + O� 1

���� for ��� � 1. �6.8�

ext we investigate the �-dependence of ���
b ,0�. We integrate by parts to obtain

���
b ,0� = 


supp 0

��
b �v����2�v� − �1�v�� + Vl�v��1�v��dv ,

here 0= ��1 ,�2�T �note that the boundary terms drop out, because 0�C0
	�R�2�. Since ��

b �u�
s a solution of the Schrödinger equation �4.2�, we substitute �1/�2��−��

b �u��+Vl�u���
b �u�� for

�
b �u� and integrate by parts twice,

=
1

�2

supp 0

��
b �− ���2 − �1� + Vl�1�� + Vl���2 − �1� + Vl�1��dv .

e can now iterate this procedure as often as we like due to the fact that 0�C0
	�R�2 and

l�C	�R�. Thus using the bound �6.8�, we obtain arbitrary polynomial decay in � for ���
b ,0�.

It remains to control the coefficients tab��� for large ���. According to the definition of the
ransmission coefficients ���� and ����, they satisfy the following relations:

w��̀�,�́�� = 2i���� and w��̀�,�́�� = 2i���� .

n order to calculate the Wronskians, we substitute the Jost integral equations �5.5� and �5.23� for
´

� and �̀�, respectively, as well as the corresponding integral equations for the derivatives �for
nstance �5.20� in the case �́�� and obtain immediately

���� = 1 + O� 1

�
�, ���� = O� 1

�
� .
ence the coefficients tab��� remain �at least� bounded, according to their definition �6.3�.
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We conclude that the integrand in �6.7� is in L1�R ,C2� as a function of �. Thus the right-hand
ide in the integral representation �6.5� converges also pointwise and, together with the norm
onvergence, �6.7� follows.

Since for u fixed, �t ,u� is a Fourier transform of a L1-function, the Riemann-Lebesgue
emma applies. Hence �t ,u� vanishes as t→	.

�

In the next step we extend this proposition to the Cauchy problem �2.6�.
Theorem 6.6: Consider the Cauchy problem (2.6) for smooth and compactly supported initial

ata. Then there exists a unique smooth solution, which is compactly supported for all times.
Moreover, decomposing the initial data 0 into spherical harmonics, the solution has the

epresentation

�t,u,�,�� = �
l=0

	

�
�m��l

e−itHl 0
lm�u�Ylm��,�� . �6.9�

Proof: For the existence and uniqueness of such a solution we apply the theory of linear
ymmetric hyperbolic systems �cf. Ref. 12�. Since the equation in �2.6� is defined on R
R
S2

e must work in local coordinates for S2. We demonstrate the idea in the chart �U , �� ,���, where

is an open, relative compact subset of S2 such that �� ,�� are well defined on Ū.
Letting �= ��t� ,�u� ,�cos �� ,��� ,��T we can write the equation as the first order system

A0�t� + A1�u� + A2�cos �� + A3��� + B� = 0,

here the matrices Ai ,B are given by

A0 = diag�1,1,�1 −
2M

r
� 1

r2 sin2,�1 −
2M

r
� 1

r2

1

sin2 �
,1� ,

A1 = �aij
1 � with a12

1 = a21
1 = − 1,

A2 = �aij
2 � with a13

2 = a31
2 = − �1 −

2M

r
� 1

r2sin2 � ,

A3 = �aij
3 � with a14

3 = a41
3 = − �1 −

2M

r
� 1

r2

1

sin2 �
,

B = �bij� with b13 = �1 −
2M

r
� 1

r22 cos � ,

b15 = �1 −
2M

r
�2M

r3 , b51 = − 1,

nd all other coefficients vanish. By multiplying this system with �1− �2M /r��−1r2, we obtain a
inear symmetric hyperbolic system on R
R
U in the sense that the Ai are symmetric and A0 is
niformly positive definite on R
R
U. Since the initial data 0 has compact support, we can
estrict the system to R
V
U, where V�R is an open, relative compact set with supp 0�V.
onsidering the system on this domain, the matrices Ai ,B remain uniformly bounded. Since we
an cover S2 by a finite number of such charts, the theory of symmetric hyperbolic systems yields
n �1�0 such that there is unique and smooth solution ��t ,u ,x� for all t��1 on R
V
S2 with

nitial data 0.
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Moreover, this solution has finite propagation speed, which is independent of u �this is physi-
ally clear from causality; it follows mathematically by considering lens-shaped regions for our
ymmetric hyperbolic systems�. Thus there exists an ��0 �possibly smaller than �1� such that the
olution ��t ,u ,x� has compact support in V
S2 for all times t��. Iterating this argument for the
auchy problem with initial data ���� ,u ,x� , i�t��� ,u ,x�� �and choosing V�R sufficiently large�,
e get a unique and smooth solution ��t ,u ,x� with compact support for all t�2� and so forth.
hus we have proven the existence of a global solution ��t ,u ,x��C	�R
R
S2� which is
nique and compactly supported for all times t.

In order to prove the representation �6.9�, we consider the restriction of the solution
�t ,u ,x�= ���t ,u ,x� , i�t��t ,u ,x��T of the Cauchy problem �2.12� in Hamiltonian form to fixed
odes l ,m

lm�t,u�Ylm��,�� = ��t,u�,Ylm�L2�S2�Ylm��,�� .

hen lm�t ,u�Ylm�� ,�� is a solution of �2.12� with initial data 0
lm�u�Ylm�� ,��, which is smooth

nd compactly supported. Thus lm�t ,u� is a solution of the Cauchy problem �2.23�, and due to
he uniqueness of such solutions

lm�t,u� = e−itHl 0
lm�u� .

ow the uniqueness of the decomposition into spherical harmonics yields �6.9�.
�

We are now ready to prove our main theorem.
Proof of Theorem 1.1: The existence and uniqueness of solutions of the Cauchy problem

ollow directly from Theorem 6.6 after the substitution �=r�. Thus it remains to show the
ointwise decay.

The conserved energy for solutions which are compactly supported for all times t implies that
or every t,

��t,u,�,���2 = �0�u,�,���2 = �
l=0

	

�
�m��l

�0
lm�u��l

2,

here for the second equation we used the isometry �2.21�. Hence, defining

L�t,u,�,�� ª �
l=L

	

�
�m��l

lm�t,u�Ylm��,�� ,

e can find for every ��0 a number L0 such that

�L0�t,u,�,���2 = �
l=L0

	

�
�m��l

�0
lm�u��l

2 � � .

et us now consider the Cauchy problem �2.6� with initial data

H0 = �
l=0

	

�
�m��l

�Hl0
lm�Ylm.

bviously, this data is also smooth and compactly supported and thus gives rise to the solution

�
l=0

	

�
�m��l

�e−itHlHl 0
lm�Ylm = �

l=0

	

�
�m��l

�Hle
−itHl 0

lm�Ylm = H ,

here in the second equation we again used the uniqueness of the decomposition into spherical

armonics. Thus for every ��0 there is a L1 �without restriction �L0� such that
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�HL1�t�� � � for all times t .

roceeding inductively, we find for every number N and for every ��0 a number LN such that

�HnLN�t�� � � for all t and n � N .

et K�R
S2 be an arbitrary compact subset with smooth boundary. Then, due to the definition
f the energy, there exists a constant C0�K��0 such that for LN = �� 1

LN ,� 2
LN�T,

��1
LN�H1�K� + �� 2

LN�L2�K� � C0�K�� LN� .

pplying the same argument to HLN = �� 2
LN ,A� 1

LN�T, where A is the differential operator given
y �2.14�, there is a C1�K��0 such that

�A� 1
LN�L2�K� + �� 2

LN�H1�K� � C1�K��HLN� .

ince the differential operator A is of the form A=−�+X, where X is a first order differential
perator, it is in particular a second order elliptic partial differential operator. Thus, for
�C	�R
S2� and for each U� �V� �R
S2 ��� denotes relative compact� there is an esti-
ate �cf. Ref. 15, p. 379 �11.3��

�u�Hk+2�U� � C�Au�Hk�V� + C�u�Hk+1�V� for all k � 0.

t follows that there exist new constants C0�K� ,C1�K� such that

�� 1
LN�H2�K� + �� 2

LN�H1�K� � C0�K��LN� + C1�K��HLN� .

terating this inequality, we obtain constants C0�K� , . . . ,Ck�K� such that

�� 1
LN�Hk+1�K� + �� 2

LN�Hk�K� � �
n=0

k

Cn�K��HnLN� .

n particular, for every ��0 there is a number L such that

�L�t��H2�K� � � for all t .

hus the Sobolev embedding theorem yields �possibly after enlarging L�

�L�t��L	�K� � � for all t .

urthermore, due to the pointwise decay for fixed modes l ,m which was shown in Theorem 6.5,
e can find for any ��0 and �u ,x��R
S2 a time t0 and a number L such that for the solution
�t ,u ,x� of the Cauchy problem �2.6�,

��t,u,x�� � �
l=0

L−1

�
�m��l

�lm�t,u�Ylm�x�� + �L�t,u,x�� � � for all t � t0.

ince �=r�, this concludes the proof.
�
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We study a model of power-law inflationary inflation using the space-time-matter
theory of gravity for a five-dimensional canonical metric that describes an apparent
vacuum. In this approach the expansion is governed by a single scalar �neutral�
quantum field. In particular, we study the case where the power of expansion of the
universe is p�1. This kind of model is more successful than others in accounting
for galaxy formation. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2186926�

. INTRODUCTION

A standard mechanism for galaxy formation is the amplification of primordial fluctuations by
he evolutionary dynamics of space-time. The inflationary cosmology is based on the dynamics of
quantum field undergoing a phase transition.1 The exponential expansion of the scale parameter
aturally gives a scale-invariant spectrum on cosmological scales, in agreement with experimental
ata. This is one of the many attractive features of the inflationary universe, particulary in regard
o the galaxy formation problem2 and it arises from the fluctuations of the inflaton, the quantum
eld which induces inflation. This field can be semiclassically expanded in terms of its expectation
alue plus other fields, which describe the quantum fluctuations.3 The quantum to classical tran-
ition of quantum fluctuations has been studied thoroughly.4 The infrared matter field fluctuations
re classical and can be described by a coarse-grained field which takes into account only wave-
engths larger than the Hubble radius. The dynamics of this coarse-grained field is described by a
econd order stochastic equation, which can be treated using the Fokker-Planck formalism. This
ssue has been the subject of intense work during the last two decades.5 Because of the success of
his theory to explain the large-scale structure formation, inflation has become a standard ingre-
ient for the description of the early universe. In fact, it is the unique that solves some of the
roblems of the standard big-bang scenario and also makes predictions about cosmic microwave
ackground �CMBR� anisotropies, which are being measured with increasing precision.

On the other hand, recently, extra dimensional theories of gravity have received much interest,
ainly sparked by works in string6 and supergravity theories.7 For the most part, four-dimensional

4D� space-time has been extended by the addition of several extra spatial dimensions, usually
aken to be compact. Other very interesting approaches, developed by Wesson and co-workers8,9

ave given new impetus to the study of five-dimensional �5D� gravity. None of the standard
imensional reduction techniques imposed to reduce the number of space-time dimensions to four,
re adhered to in their approach; indeed, the extra spatial dimension is not necessarily assumed to
e compact. The main question they address in whether the 4D properties of matter can be viewed
s being purely geometrical in origin. This idea is not new, and was originally introduced by
instein.10

In this work we are interested in studying the early inflationary dynamics of the universe from
he STM theory of gravity. In particular, we are aimed to study power-law inflation, where the

�Electronic mail: anabitar@mdp.edu.ar
�
Electronic mail: mbellini@mdp.edu.ar
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cale factor of the universe growth as a� tp, being p�1 the power of expansion during inflation.
o do this, we use the Ponce de Leon metric,11 in the limital case where the power of expansion

s p�1, which describe an asymptotic de Sitter expansion of the universe.

I. BASIC STM EQUATIONS

Following the idea suggested by Wesson and co-workers,8,9 in this section we develop the
nduced 4D equation of state from the 5D vacuum field equations, GAB=0�A ,B=0,1 ,2 ,3 ,4�,
hich give the 4D Einstein equations G��=8�G T���� ,�=0,1 ,2 ,3�. In particular, we consider a
D spatially isotropic and three-dimensional �3D� flat spherically symmetric line element

dS2 = e���,t� dt2 − e���,t� dr2 − e	��,t� d�2, �1�

here dr2=dx2+dy2+dz2 and � is the fifth coordinate. We assume that e�, e�, and e	 are separable
unctions of the variables � and t. The equations for the relevant Einstein tensor elements are

G0
0 = − e−��3�̇2

4
+

3�̇	̇

4
� + e−	� 3�

��

2
+

3�
�2

2
−

3	
�

�
�

4
� , �2�

G0
4 = e−�� 3�

�·

2
+

3�̇�
�

4
−

3�̇�
�

4
−

3	
�

	̇

4
� , �3�

Gi
i = − e−���̈ +

3�̇2

4
+

	̈

2
+

	̇2

4
+

�̇	̇

2
−

�̇�̇

2
−

�̇	̇

4
�

+ e−	��
��

+
3�

�2

4
+

�
��

2
+

�
�2

4
+

�
�

�
�

2
−

	
�

�
�

2
−

�
�

	
�

4
� , �4�

G4
4 = e−��3�̈

2
+

3�̇2

2
−

3�̇�̇

4
� + e−	� 3�

�2

4
+

3�
�

�
�

4
� , �5�

here the overstar and the overdot denote, respectively, � /�� and � /�t, and i=1,2 ,3. We shall use
he signature �+,−,− ,−� for the 4D metric, such that we define T0

0=
t and T1
1=−p, where 
t is the

otal energy density and p is the pressure. The 5D-vacuum conditions �GB
A=0� are given by12

8�G
t = 3
4e−��̇2, �6�

8�Gp = e−�� �̇�̇

2
− �̈ −

3�̇2

4
� , �7�

e�� 3�
�2

4
+

3�
�

�
�

4
� = e	� �̈

2
+

3�̇2

2
−

�̇�̇

4
� . �8�

ence, from Eqs. �6� and �7� and taking �̇=0, we obtain the equation of state for the induced

atter
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p = − �4

3

�̈

�̇2
+ 1	
t. �9�

otice that for �̈ / �̇2�0 and 
�̈ / �̇2 
 �1 �or zero�, this equation describes an inflationary universe.

he particular case �̈ / �̇2=0 corresponds to a 4D de Sitter expansion for the universe.
As in a previous paper,13 we shall consider power-law inflation, which can be obtained from

he metric �1�, when �, �, and 	 are functions of the following coordinates:

� � ����, � � ���,t�, 	 � 	�t� . �10�

ere, e� is a separable function of � and t. The conditions �10� imply that �̇=	
�=0. Furthermore,

e shall consider the case where all the coordinates are independent. The choice �10� implies that
nly the spatial sphere and the fifth coordinate have squared sizes e� and e	, respectively, that
volve with time.

II. THE MODEL

In this paper we shall consider the particular case of choosing for the metric �1�,

e� = �2, e� = � t

t0
	2p

�2p/�p−1�, e	 =
t2

�p − 1�2 , �11�

hich corresponds to the Ponce de Leon metric11

dS2 = �2 dt2 − � t

t0
	2p

�2p/�p−1� dr2 −
t2

�p − 1�2d�2, �12�

or which the absolute value for the determinant of the metric tensor gAB is


�5�g
 = � t3p+1��4p−1�/�p−1�

�p − 1�t0
3p �2

.

urthermore, we shall consider an action that describes a free scalar field minimally coupled to
ravity

I = −� d4x d�� �5�g
�5�g0

�� �5�R

16�G
+ �5�L�,,A�� , �13�

ith a Lagrangian

L = �5�g
�5�g0

L�,,A� , �14�

nd the Lagrangian density

L = 1
2gAB,A,B. �15�

he scalar �0�g0 in the action �13� is given by �0�g
t=t0,�=�0
, such that


�5�g0
 = � t0�0
�4p−1�/�p−1�

�p − 1�
	2

,
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here t0 and �0 are constants. Note that 
�5�g
 and 
�5�g0
 are not well defined for p=1. The
agrange equation is given by

̈ +
3p + 1

t
̇ − � t0

p�1/�1−p�

tp 	2

�2 − �
�p − 1��4p − 1�

t2 ,� − �2 �p − 1�2

t2 ,�� = 0, �16�

here the overdot denotes the derivative with respect to the time and ,�=� /��. In order to
implify the structure of this equation we propose the transformation 
�t0 / t��3p+1�/2��0 /����4p−1�/2�p−1���, such that the equation of motion for � is

�̈ − �2/�1−p�� t0

t
	2p

�2� − �2 �p − 1�2

t2 �,�� +
�31p2 − 14p + 2�

4t2 � = 0. �17�

e propose the following Fourier’s expansion for �:

��t,r�,�� =
1

�2��3/2 � d3kr� dk��akrk�
ei�k�r.r�+k��.���krk�

+ akrk�

† e−i�k�r.r�+k��.���krk�

* � , �18�

here the operators akrk�
and akrk�

† describe the algebra

�akrk�
,akr�k

��
† � = ��3��k�r − k�r����k�� − k����, �akrk�

,akr�k
��
� = �akrk�

† ,akr�k
��

† � = 0.

he dynamics of the time dependent modes �krk�
is given by

�̈krk�
+ ��2/�1−p�� t0

t
	2p

kr
2 +

�2�p − 1�2

t2 �k�
2 +

�31p2 − 14p + 2�
4�p − 1�2�2 − 2ik�

�

��
−

�2

��2	��krk�
= 0.

�19�

he commutator between � and �̇ is

���t,r�,��,�̇�t,r�,���� = i��3��r� − r����� − ��� , �20�

hich complies for �krk�
�t ,���̇krk�

* �t ,���−�krk�

* �t ,����̇krk�
�t ,��= i, that guarantee the normalization

f �krk�
. Furthermore, if we make the transformation �krk�

=e−ik��·�� �̃krk�
, we obtain from Eq. �19� the

quation of motion for �̃krk�
,

�̃
¨

krk�
−

�2

t2 �p − 1�2
�2�̃krk�

��2 + ��2/�1−p�� t0

t
	2p

kr
2 +

�31p2 − 14p + 1�
4t2 ��̃krk�

= 0, �21�

nd the expansion �18� for � can be rewritten as

��t,r�,�� =
1

�2��3/2 � d3kr� dk��akrk�
eik�r.r��̃krk�

+ akrk�

† e−ik�r.r� �̃ krk�

* � . �22�

D dynamics of the inflaton field

Now we consider a foliation �choice of a hypersurface� �=�0 on the metric �12�. On this
oliation, the effective 4D line element is

dS2 → ds2 = �0
2 dt2 − � t

t0
	2p

�0
2p/�p−1� dr2, �23�

here �0 is a dimensionless constant and the scale factor of the universe is given by a
p ¨ ˙ ˙
a0�t / t0� . During inflation p�1, such that a�0 and, for �=2H=2a /a in Eq. �9�, the equation of
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tate describes a quasi-de Sitter �quasivacuum� expansion, p�� 4
3 �Ḣ /H2�+1�
t�−
t. The La-

rangian density �15� can be expanded in the following manner: �5�L= 1
2 �g��,�,�+g��,�,��,

uch that the effective 4D Lagrangian density for the inflaton field on the foliation �=�0 can be
ritten as

�4�L = 1
2g��,�,� − V��
�=�0

, �24�

here V�� is given by

V�� = −
1

2
g��,,�,���=�0

=
�p − 1�2

2t2 � �

��
	2�

�=�0

. �25�

n the other hand, for a foliation �=�0, the dynamics of the inflaton field holds

�̈ +
�3p + 1�

t
̇ − � t0

t
	2p

�2/�1−p��2 − ���p − 1��4p − 1�
t2 ,� +

�2�p − 1�2

t2 ,����
�=�0

= 0,

�26�

o that we can make the following identification:

V��� = �� ̇

t
−

��p − 1��4p − 1�
t2 ,� −

�2�p − 1�2

t2 ,����
�=�0

. �27�

Furthermore, the scalar field � in Eq. �22� on the foliation �=�0 now holds

��t,r�,� = �0� =
1

�2��3/2 � d3kr� dk��akrk�
eik�r.r� �̃krk�

+ c . c . ���k� − k�0
� . �28�

ote that the equation �26� is not separable on the coordinate �. However, in the limit p�1,
hich is relevant to study the inflationary expansion of the early universe, the term

t0 / t�2p�2/�1−p��2 in Eq. �26� tends asymptotically to �t0 / t�2p�2 as p→�. Hence, in this limital
ase the dynamics for  is governed by the equation

̈ +
�3p + 1�

t
̇ − �� t0

t
	2p

�2 − ���p − 1��4p − 1�
t2 ,� +

�2�p − 1�2

t2 ,����
�=�0

= 0, �29�

hich is separable on the variable � and more easily workable. This particular case will be studied
n the next section.

V. INFLATIONARY EXPANSION „Pš1…

We consider the case where p�1, which describes an inflationary power-law expansion in the
ery early universe. In this case the equation for the modes, �21�, can be approximated to

�̃
¨

krk�
−

�2�p − 1�2

t2

�2�̃krk�

��2 + �kr
2� t0

t
	2p

+
�31p2 − 14p + 2�

4t2 ��̃krk�
� 0. �30�

he general solution for this equation on the foliation �=�0 is

�̃krk�
�t,�� = � t

t0
H�

�1��x�t�� , �31�
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here �=�1+4C� /2�p−1�, x�t�=krt0
pt1−p / �p−1�,

� = A1�M1�0
�1/2�+�1/4�+�C/�p−1�2� + M2�0

�1/2�−�1/4�+�C/�p−1�2�� ,

=C1+ ��31p2−14p+2� /4� and C1 ,A1 ,M1, and M2 are constants of integration. Furthermore, the
ormalization condition implies that

4�p − 1�
t0�


�
2 = 1. �32�

o calculate the inflation field fluctuations on the infrared sector, which is relevant for super
ubble scales during inflation, we can make use of the asymptotic representations of the first kind
f Hankel function H�

�1��x� for x�1,

H�
�1��x� �

1

��� + 1�� x

2
	�

+
i

�
����� x

2
	−�

.

ith this representation the squared � fluctuations on cosmological scales are ��2�
IR
�1/2�2��0

�k0dkr kr
2�̃krk�0

�̃krk�0

* where k0�t�= �31p2−14p+2/2t0
p�tp−1 is the wave number that sepa-

ates the infrared �IR� and ultraviolet sectors. Making the calculation, we obtain

��2�
IR =
t

8��p − 1�� 1

�2�� + 1�� �3�31p2 − 14p + 2�t2�p−1�

16�p − 1�t0
2p 	2� 1

�2� + 3�

−
�2���

�2�3 − 2��
�16�p − 1�t0

2pt−2�p−1�

�3�31p2 − 14p + 2�
	2�� , �33�

nd the squared  fluctuations, which are relevant for us, are

�2�
IR =
t−3pt0

�3p+1�

8��p − 1�� 1

�2�� + 1�� �3�31p2 − 14p + 2�t2�p−1�

16�p − 1�t0
2p 	2� 1

�2� + 3�

−
�2���

�2�3 − 2��
�16�p − 1�t0

2pt−2�p−1�

�3�31p2 − 14p + 2�
	2�� , �34�

hich decrease with time as �2�
IR� t−3p. The power spectrum of these fluctuations goes as
�kr��kr

3−2� which is scale invariant for C1= �9�p−1�−2� /8 and hence for C= �61p2− �19p
7�� /8. This result is very interesting because �with an adequate choice of constant values� we can
btain scale invariance for the power spectrum of �2� for any p�1, independently of some
articular value for it.

. FINAL COMMENTS

In this paper we have studied power-law inflation in the limital case p�1 from a STM theory
f gravity using the Ponce de Leon metric. In this approach, the inflationary expansion is governed
y a single scalar field, that, on a foliation �=�0 in the 5D metric �12� can be identified as the
nflaton field evolving on the effective 4D Friedmann-Robertson-Walker metric �23�. In Wesson’s
heory �called space-time-matter �STM� theory�, the, extra dimension is not assumed to be com-
actified, which is a major departure from earlier multidimensional theories where the cylindricity
onditions were imposed. In this theory, the original motivation for assuming the existence of a
arge extra dimension was to achieve the unification of matter and geometry, i.e., to obtain the

roperties of matter as a consequence of the extra dimensions. A very important fact in our

                                                                                                            



a



t
t

A

s

1

1

1

1

042502-7 Space-time matter inflation J. Math. Phys. 47, 042502 �2006�

                        
pproach is that the effective potential V��=− 1
2g���� /���2
�=�0

, has a geometrical origin.
In this paper we have studied with major detail the case p�1, because this is where the field

�t ,r� , t� is separable on the variable � and can be more easily treated. However, for cases where
he power p is of the order of the unity, the fifth coordinate � could play a more important role in
he spectrum of the squared  fluctuations.
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Morse-theoretical analysis of gravitational lensing
y a Kerr-Newman black hole
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Consider, in the domain of outer communication M+ of a Kerr-Newman black hole,
a point p �observation event� and a timelike curve � �worldline of light source�.
Assume that � �i� has no past endpoint, �ii� does not intersect the caustic of the past
light cone of p, and �iii� goes neither to the horizon nor to infinity in the past. We
prove that then for infinitely many positive integers k there is a past-pointing
lightlike geodesic �k of �Morse� index k from p to �, hence an observer at p sees
infinitely many images of �. Moreover, we demonstrate that all lightlike geodesics
from an event to a timelike curve in M+ are confined to a certain spherical shell.
Our characterization of this spherical shell shows that in the Kerr-Newman space-
time the occurrence of infinitely many images is intimately related to the occur-
rence of centrifugal-plus-Coriolis force reversal. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2188209�

. INTRODUCTION

The question of how many images an observer at an event p sees of a light source with
orldline � is equivalent to the question of how many past-pointing lightlike geodesics from p to
exist. In space-times with many symmetries this question can be addressed, in principle, by

irectly integrating the geodesic equation. In the space-time around a nonrotating and uncharged
lack hole of mass m, e.g., which is described by the Schwarzschild metric, all lightlike geodesics
an be explicitly written in terms of elliptic integrals; with the help of these explicit expressions,
t is easy to verify that in the region outside the horizon, i.e., in the region where r�2m, there are
nfinitely many past-pointing lightlike geodesics from any event p to any integral curve of the
illing vector field �t. This was demonstrated already in 1959 by Darwin.1 We may thus say that
Schwarzschild black hole acts as a gravitational lens that produces infinitely many images of any

tatic light source. However, already in the Schwarzschild space-time the problem becomes more
ifficult if we want to consider light sources which are not static, i.e., worldlines � which are not
ntegral curves of �t.

In this paper we want to investigate this problem for the more general case of a charged and
otating black hole, which is described by the Kerr-Newman metric. More precisely, we want to
emonstrate that in the domain of outer communication around a Kerr-Newman black hole, i.e., in
he domain outside of the outer horizon, there are infinitely many past-pointing lightlike geodesics
rom an unspecified event p to an unspecified worldline �, with as little restrictions on � as
ossible. Although the geodesic equation in the Kerr-Newman space-time is completely inte-

�Electronic mail: astrometrie@gmx.de
�
Electronic mail: vper0433@itp.physik.tu-berlin.de
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rable, the mathematical expressions are so involved that it is very difficult to achieve this goal by
xplicitly integrating the geodesic equation. Therefore it is recommendable to use more indirect
ethods.

Such a method is provided by Morse theory. Quite generally, Morse theory relates the number
f solutions to a variational principle to the topology of the space of trial maps. Here we refer to
special variant of Morse theory, developed by Uhlenbeck,2 which is based on a version of

ermat’s principle for a globally hyperbolic Lorentzian manifold �M ,g�. The trial maps are the
ightlike curves joining a point p and a timelike curve � in M, and the solution curves of Fermat’s
rinciple are the lightlike geodesics. If �M ,g� and � satisfy additional conditions, the topology of
he space of trial maps is determined by the topology of M. Uhlenbeck’s work gives criteria that
uarantee the existence of infinitely many past- or future-pointing lightlike geodesics from p to �.
n this paper we will apply her results to the domain of outer communication around a Kerr-
ewman black hole which is, indeed, a globally hyperbolic Lorentzian manifold. We will show

hat the criteria for having infinitely many past-pointing timelike geodesics from p to � are
atisfied for every event p and every timelike curve � in this region, provided that the following
hree conditions are satisfied. First, � must not have a past endpoint; it is obvious that we need a
ondition of this kind because otherwise it would be possible to choose for � an arbitrarily short
ection of a worldline such that trivially the number of past-pointing lightlike geodesics from p to

is zero. Second, � must not intersect the caustic of the past light-cone of p; this excludes all
ases where p sees an extended image, such as an Einstein ring, of �. Third, in the past the
orldline � must not go to the horizon or to infinity. Under these �very mild� restrictions on the
otion of the light source we will see that the Kerr-Newman black hole acts as a gravitational lens

hat produces infinitely many images. Moreover, we will also show that all �past-directed� lightlike
eodesics from p to � are confined to a certain spherical shell. For the characterization of this shell
e will have to discuss a light-convexity property which turns out to be intimately related to the
henomenon of centrifugal �-plus-Coriolis� force reversal. This phenomenon has been discussed,
rst in spherically symmetric static and then in more general space-times, in several papers by
bramowicz with various coauthors; material which is of interest to us can be found, in particular,

n Abramowicz, Carter, and Lasota,3 Abramowicz,4 and Abramowicz, Nurowski, and Wex.5

The paper is organized as follows. In Sec. II we summarize the Morse-theoretical results we
ant to use. Section III is devoted to the notions of centrifugal and Coriolis force in the Kerr-
ewman space-time; in particular, we introduce a potential �+ �respectively, �−� that character-

zes the sum of centrifugal and Coriolis force with respect to corotating �respectively, counter-
otating� observers whose velocity approaches the velocity of light. In Sec. IV we discuss multiple
maging in the Kerr-Newman space-time with the help of the Morse theoretical result quoted in
ec. II and with the help of the potential �± introduced in Sec. III. Our results are summarized and
iscussed in Sec. V.

I. A RESULT FROM MORSE THEORY

In this section we briefly review a Morse-theoretical result that relates the number of lightlike
eodesics between a point p and a timelike curve � in a globally hyperbolic Lorentzian manifold
o the topology of this manifold. This result was found by Uhlenbeck2 and its relevance in view of
ravitational lensing was discussed by McKenzie.6 Uhlenbeck’s work is based on a variational
rinciple for lightlike geodesics �“Fermat principle”� in a globally hyperbolic Lorentzian manifold,
nd her main method of proof is to approximate trial paths by broken geodesics. With the help of
nfinite-dimensional Hilbert manifold techniques Giannoni, Masiello, and Piccione were able to
ederive Uhlenbeck’s result7 and to generalize it to certain subsets-with-boundary of space-times
hat need not be globally hyperbolic.8 In contrast to Uhlenbeck, they start out from a variational
rinciple for lightlike geodesics that is not restricted to globally hyperbolic space-times. �Such a
ermat principle for arbitrary general-relativistic space-times was first formulated by Kovner;9 the
roof that the solution curves of Kovner’s variational principle are, indeed, precisely the lightlike

10
eodesics was given by Perlick �. Although for our purpose the original Uhlenbeck result is
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ufficient, readers who are interested in technical details are encouraged to also consult the papers
y Giannoni, Masiello, and Piccione, in particular because in the Uhlenbeck paper some of the
roofs are not worked out in full detail.

Following Uhlenbeck,2 we consider a four-dimensional Lorentzian manifold �M ,g� that ad-
its a foliation into smooth Cauchy surfaces, i.e., a globally hyperbolic space-time. �For back-

round material on globally hyperbolic space-times the reader may consult, e.g., Hawking and
llis.11 The fact that the original definition of global hyperbolicity is equivalent to the existence of
foliation into smooth Cauchy surfaces was completely proven only recently by Bernal and

ánchez.12� Then M can be written as a product of a three-dimensional manifold S, which serves
s the prototype for each Cauchy surface, and a time axis,

M = S � R . �1�

oreover, this product can be chosen such that the metric g orthogonally splits into a spatial and
temporal part,

g = gij�x,t�dxi dxj − f�x,t�dt2, �2�

here t is the time coordinate given by projecting from M =S�R onto the second factor, x
�x1 ,x2 ,x3� are coordinates on S, and the summation convention is used for italic indices running

rom 1 to 3. �We write �2� in terms of coordinates for notational convenience only. We do not want
o presuppose that S can be covered by a single coordinate system.� We interpret the direction of
ncreasing t as the future direction on M. Again following Uhlenbeck,2 we say that the splitting �2�
atisfies the metric growth condition if for every compact subset of S there is a function F with

�
−�

0 dt

F�t�
= � , �3�

uch that for t�0 the inequality

gij�x,t�viv j � f�x,t�F�t�2Gij�x�viv j �4�

olds for all x in the compact subset and for all �v1 ,v2 ,v3��R3, with a time-independent Rie-
annian metric Gij on S. It is easy to check that the metric growth condition assures that for every

smooth� curve � : �a ,b�→S there is a function T : �a ,b�→R with T�a�=0 such that the curve
: �a ,b�→M =S�R, s���s�= ���s� ,T�s�� is past-pointing and lightlike. In particular, the metric
rowth condition assures that from each point p in M we can find a past-pointing lightlike curve
o every timelike curve that is vertical with respect to the orthogonal splitting chosen. In this sense,
he metric growth condition prohibits the existence of particle horizons, cf. Uhlenbeck2 and

cKenzie.6 Please note that our formulation of the metric growth condition is the same as
cKenzie’s which differs from Uhlenbeck’s by interchanging future and past �i.e., t�−t�. The

eason is that Uhlenbeck in her paper characterizes future-pointing lightlike geodesics from a point
o a timelike curve whereas we, in view of gravitational lensing, are interested in past-pointing
nes.

For formulating Uhlenbeck’s result we have to assume that the reader is familiar with the
otion of conjugate points and with the following facts �see, e.g., Perlick13�. The totality of all
onjugate points, along any lightlike geodesic issuing from a point p into the past, makes up the
austic of the past light-cone of p. A lightlike geodesic is said to have �Morse� index k if it has k
onjugate points in its interior; here and in the following every conjugate point must be counted
ith its multiplicity. For a lightlike geodesic with two endpoints, the index is always finite. It is
ur goal to estimate the number of past-pointing lightlike geodesics of index k from a point p to
timelike curve � that does not meet the caustic of the past light-cone of p. The latter condition

s generically satisfied in the sense that, for any �, the set of all points p for which it is true is

ense in M. This condition makes sure that the past-pointing lightlike geodesics from p to � are
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ountable, i.e., it excludes gravitational lensing situations where the observer sees a continuum of
mages such as an Einstein ring.

As another preparation, we recall how the Betti numbers Bk of the loop space L�M� of a
onnected topological space M are defined. As a realization of L�M� one may take the space of all
ontinuous curves between any two fixed points in M. The kth Betti number Bk is formally defined
s the dimension of the kth homology space of L�M� with coefficients in a field F. �For our
urpose we may choose F=R.� Roughly speaking, B0 counts the connected components of L�M�
nd Bk, for k�0, counts those “holes” in L�M� that prevent a k sphere from being a boundary. If
he reader is not familiar with Betti numbers he or she may consult, e.g., Ref. 14.

After these preparations Uhlenbeck’s result that we want to use later in this paper can now be
hrased in the following way.

Theorem 1 �Uhlenbeck2�: Consider a globally hyperbolic space-time �M ,g� that admits an
rthogonal splitting �1� and �2� satisfying the metric growth condition. Fix a point p�M and a
mooth timelike curve � :R→M which, in terms of the above-mentioned orthogonal splitting,
akes the form ��	�= �
�	� ,	�, with a curve 
 :R→S. Moreover, assume that � does not meet the
austic of the past light-cone of p and that for some sequence �	i�i�N with 	i→−� the sequence

�	i��i�N converges in S. Then the Morse inequalities

Nk � Bk for all k � N0 �5�

nd the Morse relation

�
k=0

�

�− 1�kNk = �
k=0

�

�− 1�kBk �6�

old true, where Nk denotes the number of past-pointing lightlike geodesics with index k from p to
, and Bk denotes the kth Betti number of the loop space of M.

Proof: See Uhlenbeck,2 Sec. IV and Proposition 5.2. �

Please note that the convergence condition on �
�	i��i�N is certainly satisfied if 
 is confined
o a compact subset of S, i.e., if � stays in a spatially compact set.

The sum on the right-hand side of �6� is, by definition, the Euler characteristic � of the loop
pace of M. Hence, �6� can also be written in the form

N+ − N− = � , �7�

here N+ �respectively, N−� denotes the number of past-pointing lightlike geodesics with even
respectively, odd� index from p to �.

The Betti numbers of the loop space of M =S�R are, of course, determined by the topology
f S. Three cases are to be distinguished.

Case A: M is not simply connected. Then the loop space of M has infinitely many connected
omponents, so B0=�. In this situation �5� says that N0=�, i.e., that there are infinitely many
ast-pointing lightlike geodesics from p to � that are free of conjugate points.

Case B: M is simply connected but not contractible to a point. Then for all but finitely many
�N0 we have Bk�0. This was proven in a classical paper by Serre,15 cf. McKenzie.6 In this
ituation �5� implies Nk�0 for all but finitely many k. In other words, for almost every positive
nteger k we can find a past-pointing lightlike geodesic from p to � with k conjugate points in its
nterior. Hence, there must be infinitely many past-pointing lightlike geodesics from p to � and the
austic of the past light-cone of p must be complicated enough such that a past-pointing lightlike
eodesic from p can intersect it arbitrarily often.

Case C: M is contractible to a point. Then the loop space of M is contractible to a point, i.e.,

0=1 and Bk=0 for k�0. In this case �7� takes the form N+−N−=1 which implies that the total

umber N++N−=2N−+1 of past-pointing lightlike geodesics from p to � is �infinite or� odd.
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The domain of outer communication of a Kerr-Newman black hole has topology S2�R2

hich is simply connected but not contractible to a point. So it is Case B we are interested in when
pplying Uhlenbeck’s result to the Kerr-Newman space-time.

II. CENTRIFUGAL AND CORIOLIS FORCE IN THE KERR-NEWMAN SPACE-TIME

The Kerr-Newman metric is given in Boyer-Lindquist coordinates �see, e.g., Misner, Thorne,
nd Wheeler,16 p. 877� by

g = −


�2 �dt − a sin2 � d��2 +
sin2 �

�2 ��r2 + a2�d� − a dt�2 +
�2


dr2 + �2 d�2, �8�

here � and  are defined by

�2 = r2 + a2 cos2 � and  = r2 − 2mr + a2 + q2, �9�

nd m, q, and a are real constants. We shall assume throughout that

0 � m, 0 � a, �a2 + q2 � m . �10�

n this case, the Kerr-Newman metric describes the space-time around a rotating black hole with
ass m, charge q, and specific angular momentum a. The Kerr-Newman metric �8� contains the
err metric �q=0�, the Reissner-Nordström metric �a=0� and the Schwarzschild metric �q=0 and
=0� as special cases which are all discussed, in great detail, in Chandrasekhar;17for the Kerr
etric we also refer to O’Neill.18

By �10�, the equation =0 has two real roots,

r± = m ± �m2 − a2 − q2, �11�

hich determine the two horizons. We shall restrict to the region

M+: r+ � r � � , �12�

hich is usually called the domain of outer communication of the Kerr-Newman black hole. On
M+, the coordinates � and � range over S2, the coordinate t ranges over R, and the coordinate r
anges over an open interval which is diffeomorphic to R; hence M+�S2�R2.

From now on we will consider the space-time �M+ ,g�, where g denotes the restriction of the
err-Newman metric �8� with �10� to the domain M+ given by �12�. For the sake of brevity, we
ill refer to �M+ ,g� as to the exterior Kerr-Newman space-time. As a matter of fact, �M+ ,g� is a
lobally hyperbolic space-time; the Boyer-Lindquist time coordinate t gives a foliation of M+ into
auchy surfaces t=constant. Together with the lines perpendicular to these surfaces, we get an
rthogonal splitting of the form �2�. Observers with worldlines perpendicular to the surfaces t
constant are called zero-angular-momentum observers or locally nonrotating observers. In con-

rast to the worldlines perpendicular to the surfaces t=constant, the integral curves of the Killing
ector field �t are not timelike on all of M+; they become spacelike inside the so-called ergosphere
hich is characterized by the inequality �a2 sin2 �. For a�0 it is impossible to find a Killing
ector field which is timelike on all of M+; in this sense, the exterior Kerr-Newman space-time is
ot a stationary space-time.

In the rest of this section we discuss the notions of centrifugal force and Coriolis force for
bservers on circular orbits around the axis of rotational symmetry in the exterior Kerr-Newman
pace-time �M+ ,g�. For background information on these notions we refer to the work of
bramowicz and his collaborators3–5 which was mentioned already in the introduction. For our
iscussion it will be convenient to introduce on M+ the orthonormal basis

E0 =
1

��r2 + a2��t + a��� ,

��
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E1 =
1

� sin �
��� + a sin2 � �t� ,

E2 =
1

�
��, E3 =

�

�
�r, �13�

hose dual basis is given by the covector fields

− g�E0, · � =
�

�
�dt − a sin2 � d�� ,

g�E1, · � =
sin �

�
��r2 + a2�d� − a dt� ,

g�E2, · � = � d�, g�E3, · � =
�

�
dr . �14�

enceforth we refer to the integral curves of the timelike basis field E0 as to the worldlines of the
tandard observers in �M+ ,g�. For later purpose we list all nonvanishing Lie brackets of the Ei,

�E0,E2� = −
a2

�3 cos � sin � E0,

�E0,E3� = 	 r − m

��
−

r�

�3 
E0 +
2ra sin �

�3 E1,

�E1,E2� =
��2 + a2 sin2 ��cos �

�3 sin �
E1 −

2a� cos �

�3 E0,

�E1,E3� =
r�

�3 E1,

�E2,E3� =
r�

�3 E2 +
a2 cos � sin �

�3 E3. �15�

For every v� �0,1�, the integral curves of the vector field

U =
E0 ± vE1

�1 − v2
�16�

an be interpreted as the worldlines of observers who circle along the �-lines around the axis of
otational symmetry of the Kerr-Newman space-time. The number v gives the velocity �in units of
he velocity of light� of these observers with respect to the standard observers. For the upper sign
n �16�, the motion relative to the standard observers is in the positive �-direction and thus
orotating with the black hole �because of our assumption a�0�, for the negative sign it is in the
egative �-direction and thus counter-rotating. Please note that g�U ,U�=−1, which demonstrates
hat the integral curves of U are parametrized by proper time.

In general, U is nongeodesic, �UU�0, i.e., one needs a thrust to stay on an integral curve of
. Correspondingly, relative to a U-observer a freely falling particle undergoes an “inertial accel-
ration” measured by −�UU. To calculate this quantity, we write
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− g��UU,Ei� = − Ug�U,Ei� + g�U,�UEi� = − Ug�U,Ei� + g�U,�U,Ei�� . �17�

he first term on the right-hand side vanishes, and the second term can be easily calculated with
he help of �16� and �15�, for i=0,1 ,2 ,3. We find

− g��UU, · � = Agrav + ACor + Acent, �18�

here the covector fields

Agrav =
r − �2�r − m�

�2
dr +

a2

�2 sin � cos � d� , �19�

ACor = ±
v

�1 − v2�
2a�

�2 	 r


sin � dr + cos � d�
 , �20�

Acent =
v2

�1 − v2�	2r − �2�r − m�
�2

dr +
��2 + 2a2 sin2 ��cos �

�2 sin �
d�
 �21�

ive, respectively, the gravitational, the Coriolis, and the centrifugal acceleration of a freely falling
article relative to the U observers. �Multiplication with the particle’s mass gives the correspond-
ng “inertial force.”� Here the decomposition of the total inertial acceleration into its three contri-
utions is made according to the same rule as in Newtonian mechanics: The gravitational accel-
ration is independent of v, the Coriolis acceleration is odd with respect to v, and the centrifugal
cceleration is even with respect to v. In Ref. 19 it was shown that, according to this rule,
ravitational, Coriolis, and centrifugal acceleration are unambiguous whenever a timelike
-surface with a timelike vector field has been specified; here we apply this procedure to each
-surface �r ,��=constant with the timelike vector field E0.

Up to the positive factor v / �1−v2�, the sum of Coriolis and centrifugal acceleration is equal
o

Z±�v� = ±
2a�

�2 	 r


sin � dr + cos � d�


+ v	2r − �2�r − m�
�2

dr +
��2 + 2a2 sin2 ��cos �

�2 sin �
d�
 . �22�

f we exclude the Reissner-Nordström case a=0, the Coriolis force dominates the centrifugal force
or small v. To investigate the behavior for v close to the velocity of light, we consider the limit
→1. By a straightforward calculation we find that

Z±�v� →
v→1

sin �

�2�
�r2 + a2 ± a� sin ��2 d�±, �23�

here

d�± =
2r − �r − m��2 ± 2ar� sin �

� sin ��r2 + a2 ± a� sin ��2
dr +

��2 + 2a2 sin2 � ± 2a� sin ��� cos �

sin2 ��r2 + a2 ± a� sin ��2
d�

�24�
s the differential of the function
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�± =

−
1

sin �
�

a
�

r2 + a2

�
± a sin �

. �25�

ecause of sin � in the denominator, both �− and �+ are singular along the axis. �+ is negative
n all of M+ whereas �− is negative outside and positive inside the ergosphere.

From �23� we read that, in the limit v→1, the sum of Coriolis and centrifugal force is
erpendicular to the surfaces �±=constant and points in the direction of increasing �±. In this
imit, we may thus view the function �+ �or �−, respectively� as a Coriolis-plus-centrifugal
otential for corotating �or counter-rotating, respectively� observers. The surfaces �±=constant
re shown in Fig. 1.

It is not difficult to see that �± is independent of the family of observers with respect to which
he inertial accelerations have been defined, as long as their 4-velocity is a linear combination of

t and ��. We have chosen the standard observers; a different choice would lead to different
ormulas for the inertial accelerations �19�–�21�, but to the same �±. For the sake of comparison,
he reader may consult Nayak and Vishveshwara,20 where the inertial accelerations are calculated
ith respect to the zero angular momentum observers. Also, it should be mentioned that the
otentials �+ and �−, or closely related functions, have been used already by other authors. The
uantities �c±, e.g., introduced by de Felice and Usseglio-Tomasset21 in their analysis of physical
ffects related to centrifugal force reversal in the equatorial plane of the Kerr metric, are related to
ur potentials by �c±= ���±��=�/2.

In the Reissner-Nordström case a=0, the Coriolis acceleration �20� vanishes identically and

� = �+ = �− = −
�r2 − 2mr + q2

r2 sin �
�26�

s a potential for the centrifugal acceleration in the sense that Acent is a multiple of d�. In this case,
he surfaces �=constant coincide with what Abramowicz4 calls the von Zeipel cylinders.
bramowicz’s Fig. 1 in Ref. 4, which shows the von Zeipel cylinders in the Schwarzschild

pace-time, coincides with the a→0 limit of our Fig. 1, which shows the surfaces �+=constant
nd �−=constant in the Kerr space-time. �The notion of von Zeipel cylinders has also been
efined in the Kerr metric, see Ref. 22, for observers of a specified angular velocity. However,
hese angular-velocity-dependent von Zeipel cylinders are not related to the potentials �+ and �−

n the Kerr space-time.�
By construction, the function �± has the following property. If we send a lightlike geodesic

angential to a �-line in the positive �respectively, negative� �-direction, it will move away from
his �-line in the direction of the negative gradient of �+ �respectively, �−�. Thus, each zero of the
ifferential d�+ �respectively, d�−� indicates a corotating �respectively, counter-rotating� circular
ightlike geodesic, i.e., a “photon circle.” By �24�, d�± vanishes if

cos � = 0 and 2r − �r − m��2 ± 2ar� sin � = 0. �27�

y writing  and �2 explicitly, we see that �27� is true at �=� /2 and r=r±
ph, where r±

ph is defined
y the equation

�r±
ph�2 − 3mr±

ph + 2a2 + 2q2 = � 2a��r±
ph�2 − 2mr±

ph + a2 + q2. �28�

� 2 2
or 0� a +q �m, �28� has exactly one solution for each sign which satisfies
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IG. 1. The surfaces �+=constant �top� and �−=constant �bottom� are drawn here for the case q=0 and a=0.5m. The
icture shows the �half-�plane �� , t�=constant, with r sin � on the horizontal and r cos � on the vertical axis. The spheres
f radius r+

ph and r−
ph are indicated by dashed lines; they meet the equatorial plane in the photon circles. The boundary of

he ergosphere coincides with the surface �−=0 and is indicated in the bottom figure by a thick line; it meets the equatorial
lane at r=2m.
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r+ � r+
ph �

3m

2
+�9m2

4
− 2q2 � r−

ph � 2m + 2�m2 − q2. �29�

o there is exactly one corotating photon circle in M+, corresponding to the critical point of �+ at

+
ph, and exactly one counter-rotating photon circle in M+, corresponding to the critical point of �−

t r−
ph, see Fig. 1. �The relation of photon circles to centrifugal-plus-Coriolis force in the limit v

1 is also discussed by Stuchlik, Hledik, and Jurán;23 note, however, that their work is restricted
o the equatorial plane of the Kerr-Newman space-time throughout.� In the Reissner-Nordström
ase, a=0, we have

r+
ph = r−

ph =
3m

2
+�9m2

4
− 2q2

cf., e.g., Chandrasekhar,17 p. 218�. If we keep m and q fixed and vary a from 0 to the extreme
alue �m2−q2, r+

ph decreases from 3
2m+��9m2 /4�−2q2 to m whereas r−

ph increases from 3
2m

��9m2 /4�−2q2 to 2m+2�m2−q2. As an aside, we mention that, although r+
ph and r+ both go to

in the extreme case, the proper distance between the corotating photon circle at r+
ph and the

orizon at r+ does not go to zero; for the case q=0 this surprising feature is discussed in Ref. 17,
. 340.

From �24� we can read the sign of �r�± at each point. We immediately find the following
esult.

Proposition 1: Decompose the exterior Kerr space-time into the sets

Min: 2r − �r − m��2 � − 2ar� sin � , �30�

K: − 2ar� sin � � 2r − �r − m��2 � 2ar� sin � , �31�

Mout: 2ar� sin � � 2r − �r − m��2, �32�

o M+=Min�K�Mout, see Fig. 2. Then

�r�+ � 0 and �r�− � 0 on Min, �33�

�r�+ � 0 and �r�− � 0 on the interior of K , �34�

�r�+ � 0 and �r�− � 0 on Mout. �35�

The inequality �r�±�0 is true for both signs if and only if, for v sufficiently large, the sum
f Coriolis and centrifugal force is pointing in the direction of increasing r for corotating and
ounter-rotating observers. An equivalent condition is that the centrifugal force points in the
irection of increasing r and dominates the Coriolis force for v sufficiently large. This is the
ituation we are familiar with from Newtonian physics. According to Proposition 1, however, in
he Kerr-Newman space-time this is true only in the region Mout. In the interior of the intermediate
egion K the direction of centrifugal-plus-Coriolis force for large v is reversed for counter-rotating
bservers while still normal for corotating observers. In the region Min, finally, it is reversed both
or corotating and for counter-rotating observers.

The relevance of the sets Mout, Min, and K in view of lightlike geodesics is demonstrated in the
ollowing proposition.

Proposition 2: �a� In the region Mout, the radius coordinate r cannot have other extrema than
trict local minima along a lightlike geodesic.

�b� In the region Min, the radius coordinate r cannot have other extrema than strict local

axima along a lightlike geodesic.
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�c� Through each point of K there is a spherical lightlike geodesic. (Here “spherical” means
hat the geodesic is completely contained in a sphere r=constant.�

Proof: Let X be a lightlike and geodesic vector field on �M+ ,g�, i.e., g�X ,X�=0 and �XX=0.
o prove �a� and �b�, we must demonstrate that the implication

Xr = 0 Þ XXr � 0 �36�

s true at all points of Mout and that the implication

Xr = 0 Þ XXr � 0 �37�

s true at all points of Min. Here Xr is to be read as “the derivative operator X applied to the
unction r.” The condition �XX=0 implies

XXr = X dr�X� = X	�

�
g�E3,X�
 =

�

�
g��XE3,X� + 	X

�

�

g�E3,X� , �38�

here we have used the basis vector field E3 from �13� and �14�. Using these orthonormal basis
ector fields, we can write X in the form

X = E0 + cos � E1 + sin � E2 �39�

t all points where Xr=0. �A nonzero factor of X is irrelevant because X enters quadratically into

IG. 2. The regions Min, K, and Mout defined in Proposition 1 are shown here for the case q=0 and a=0.5m. Again, as in
ig. 1, we plot r sin � on the horizontal and r cos � on the vertical axis. Some of the spherical lightlike geodesics that fill

he photon region K are indicated. K meets the equatorial plane in the photon circles at r=r+
ph and r=r−

ph and the axis at
adius rc given by rc

3−3rc
2m+rc�a2+2q2�+a2m=0. This picture can also be found as Fig. 21 in the online article �Ref. 29�.
he right-hand side of �38�.� Then �38� takes the form

                                                                                                            



I

N
t
a
o
o

t
�
K
N
s
t

h
fi
m
�
i
m

I

�
i
a

t

d

b

e
t

b
f
i

042503-12 W. Hasse and V. Perlick J. Math. Phys. 47, 042503 �2006�

                        
�

�
XXr = g��E0

E3,E0� + sin � �g��E2
E3,E0� + g��E0

E3,E2�� + cos � �g��E1
E3,E0� + g��E0

E3,E1��

+ sin2 � g��E2
E3,E2� + cos2 � g��E1

E3,E1� = g��E0,E3�,E0� + sin � �g��E2,E3�,E0�

+ g��E0,E3�,E2�� + cos � �g��E1,E3�,E0� + g��E0,E3�,E1�� + sin2 � g��E2,E3�,E2�

+ cos2 � g��E1,E3�,E1� . �40�

f we insert the Lie brackets from �15� we find

�4XXr = 2r − �r − m��2 + 2ar� sin � cos � . �41�

ow we compare this expression with �30�–�32�. If cos � runs through all possible values from −1
o 1, the right-hand side of �41� stays positive on Mout and negative on Min. This proves part �a�
nd part �b�. At each point of K there is exactly one value of cos � such that the right-hand side
f �41� vanishes. This assigns to each point of K a lightlike direction such that the integral curves
f the resulting direction field are spherical lightlike geodesics. This proves part �c�. �

In view of part �c� of Proposition 2 we refer to the closed region K as to the photon region of
he exterior Kerr-Newman space-time. Along each spherical lightlike geodesic in K the
-coordinate oscillates between extremal values �0 and −�0, correponding to boundary points of
, see Fig. 2; the �-coordinate either increases or decreases monotonically. In the Reissner-
ordström case a=0, where �26� is a potential for the centrifugal force, the photon region K

hrinks to the photon sphere r= 3
2m+��9m2 /4�−2q2 and Proposition 1 reduces to the known fact

hat centrifugal force reversal takes place at the photon sphere.
We end this section with a word of caution as to terminology. In part �c� of Proposition 2 we

ave referred to the set r=constant as to a sphere. This is indeed justified in the sense that, for each
xed t, fixing the radius coordinate r gives a two-dimensional submanifold of M+ that is diffeo-
orphic to the 2-sphere. Moreover, in our Figs. 1 and 2 the sets r=constant are represented as

meridional cross sections of� spheres. Note, however, that the Kerr-Newman metric does not
nduce an isotropic metric on these spheres �unless a=0�, so they are not round spheres in the

etrical sense.

V. MULTIPLE IMAGING IN THE KERR-NEWMAN SPACE-TIME

It is now our goal to discuss multiple imaging in the exterior Kerr-Newman space-time
M+ ,g�. To that end we fix a point p and a timelike curve � in M+ and we want to get some
nformation about the past-pointing lightlike geodesics from p to �. The following proposition is
n immediate consequence of Proposition 2.

Proposition 3: Let p be a point and � a timelike curve in the exterior Kerr-Newman space-
ime. Let

�: ra � r � rb �42�

enote the smallest spherical shell, with r+�ra�rb��, such that p, � and the region K defined

y �31� are completely contained in �̄ �=closure of � in M+�. Then all lightlike geodesics that join

p and � are confined within �̄.

Proof: Along a lightlike geodesic that leaves and reenters �̄ the radius coordinate r must have
ither a maximum in the region Mout or a minimum in the region Min. Proposition 2 makes sure
hat this cannot happen. �

By comparison with Proposition 1 we see that, among all spherical shells whose closures in
M+ contain p and �, the shell � of Proposition 3 is the smallest shell such that at all points of the
oundary of � in M+ the gradient of �+ and the gradient of �− are pointing in the direction away
rom �. Based on Proposition 3, we will later see that there is a close relation between multiple

maging and centrifugal-plus-Coriolis force reversal in the Kerr-Newman space-time.
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Proposition 3 tells us to what region the lightlike geodesics between p and � are confined, but
t does not tell us anything about the number of these geodesics. To answer the latter question, we
ow apply Theorem 1 to the exterior Kerr-Newman space-time �M+ ,g�.

Proposition 4: Consider, in the exterior Kerr-Newman space-time �M+ ,g�, a point p and a
mooth future-pointing timelike curve � : �−� ,	a�→M+, with −��	a��, which is parametrized
y the Boyer-Lindquist time coordinate t, i.e., the t-coordinate of the point ��	� is equal to 	.
ssume �i� that � does not meet the caustic of the past light-cone of p, and �ii� that for 	→−� the
adius coordinate r of the point ��	� remains bounded and bounded away from r+. �The last
ondition means that ��	� goes neither to infinity nor to the horizon for 	→−�.� Then there is an
nfinite sequence ��n�n�N of mutually different past-pointing lightlike geodesics from p to �. For
→�, the index of �n goes to infinity. Moreover, if we denote the point where �n meets the curve
by ��	n�, then 	n→−� for n→�.

Proof: We want to apply Theorem 1 to the exterior Kerr-Newman space-time �M+ ,g�. To that
nd, the first thing we must find is an orthogonal splitting of the exterior Kerr-Newman space-time
hat satisfies the metric growth condition. As in the original Boyer-Lindquist coordinates the
-lines are not orthogonal to the surfaces t=constant, we change to new coordinates

x1 = r, x2 = �, x3 = � − u�r,��t, t = t , �43�

ith

u�r,�� =
2mar

�2 + 2mr�r2 + a2�
. �44�

hen the Kerr metric �8� takes the orthogonal splitting form �2�, with

gij�x,t�dxi dxj = �2	dr2


+ d�2


+
sin2 �

�2 ��r2 + a2�2 − a2 sin2 ��	t	 �u�r,��
�r

dr +
�u�r,��

��
d�
 + dx3
2

�45�

nd

f�x,t� =
�2

�r2 + a2�2 − a2 sin2 �
. �46�

learly, if we restrict the range of the coordinates x= �x1 ,x2 ,x3� to a compact set, we can find
ositive constants A and B such that

gij�x,t�viv j

f�x,t�
� �A + B�t��2�ijv

iv j . �47�

s F�t�=A+B�t� satisfies the integral condition �3�, this proves that our orthogonal splitting sat-
sfies the metric growth condition. Our assumptions on � guarantee that we can find a curve
� :R→M+ which, in terms of our orthogonal splitting, is of the form ���	�= �
��	� ,	� such that
��	�=��	� for all �−� ,	b�, with some 	b�R. �Introducing �� is necessary because � need not be
efined on all of R.� As � does not meet the caustic of the past light-cone of p, we may assure that
� does not meet the caustic of the past light-cone of p. As � does not go to the horizon or to

nfinity for 	→−�, the set �
��	� �−��	�	b is confined to a compact region. Hence, for every
equence �	i�i�N with 	i→−� the sequence �
��	i��i�N must have a convergent subsequence. This
hows that all the assumptions of Theorem 1 are satisfied if we replace � with ��. Hence, the
heorem tells us that Nk��Bk, where Nk� is the number of past-pointing lightlike geodesics with
ndex k from p to �� and Bk is the kth Betti number of the loop space of M+�S2�R2. As M+

2 2 15
S �R is simply connected but not contractible to a point, the theorem of Serre guarantees
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hat Bk�0 and, thus, Nk��0 for all but finitely many k�N. Hence, for almost all positive integers
there is a past-pointing lightlike geodesic of index k from p to ��. This gives us an infinite

equence ��n�n�N of mutually different past-pointing lightlike geodesics from p to �� such that the
ndex of �n goes to infinity if n→�. We denote the point where �n meets the curve �� by ���	n�.

hat remains to be shown is that 	n→−� for n→�; as � coincides with �� on �−� ,	b�, this
ould make sure that all but finitely many �n arrive indeed at �. So we must prove that it is

mpossible to select infinitely many 	n that are bounded below. By contradiction, assume that we
an find a common lower bound for infinitely many 	n. As the 	n are obviously bounded above by
he value of the Boyer-Lindquist time coordinate at p, this implies that the 	n have an accumula-
ion point. Hence, for an infinite subsequence of our lightlike geodesics �n the endpoints ���	n�
onverge to some point q on ��. As �� does not meet the caustic of the past light-cone of p, the
ast light-cone of p is an immersed three-dimensional lightlike submanifold near q. We have thus
ound an infinite sequence of points ���	n� that lie in a three-dimensional lightlike submanifold
nd, at the same time, on a timelike curve. Such a sequence can converge to q only if all but
nitely many ���	n� are equal to q. So there are infinitely many �n that terminate at q. As there is
nly one lightlike direction tangent to the past light-cone of p at q, all these infinitely many
ightlike geodesics must have the same tangent direction at q. As there are no periodic lightlike
eodesics in the globally hyperbolic space-time �M+ ,g�, any two lightlike geodesics from p to q
ith a common tangent direction at q must coincide. This contradicts the fact that the �n are
utually different, so our assumption that there is a common lower bound for infinitely many 	n

annot be true. �

The proof shows that in Proposition 4 the condition of ��	� going neither to infinity nor to the
orizon for 	→−� can be a little bit relaxed. It suffices to require that there is a sequence �	i�i�N
f time parameters with 	i→−� for i→� such that the spatial coordinates of ��	i� converge. This
ondition is mathematically weaker than the one given in the proposition, but there are probably
o physically interesting situations where the former is satisfied and the latter is not.

Proposition 4 tells us that a Kerr-Newman black hole produces infinitely many images for an
rbitrary observer, provided that the worldline of the light source satisfies some �mild� conditions.
t the same time, this proposition demonstrates that the past light-cone of every point p in the

xterior Kerr-Newman space-time must have a nonempty and, indeed, rather complicated caustic;
therwise it would not be possible to find a sequence of past-pointing lightlike geodesics �n from

p that intersect this caustic arbitrarily often for n sufficiently large. Please note that the last
entence of Proposition 4 makes clear that for the existence of infinitely many images it is
ssential to assume that the light source exists since arbitrarily early times.

In Proposition 3 we have shown that all lightlike geodesics from p to � are confined to a
pherical shell that contains the photon region K. We can now show that, under the assumptions of
roposition 4, almost all past-pointing lightlike geodesics from p to � come actually arbitrarily
lose to K.

Proposition 5: Let U be any open subset of M+ that contains the region K defined by �31�.
hen, if the assumptions of Proposition 4 are satisfied, all but finitely many past-pointing lightlike
eodesics from p to � intersect U.

Proof: The sequence ��n�n�N of Proposition 4 gives us a sequence �wn�n�N of mutually
ifferent lightlike vectors wn�TpM+ with dt�wn�=−1 and a sequence �sn�n�N of real numbers

n�0 such that expp�snwn� is on � for all n�N. Here expp denotes the exponential map of the
evi-Civita derivative of the Kerr-Newman metric at the point p. Since the 2-sphere consisting of

he lightlike vectors w�TpM+ with dt�w�=−1 �which may be regarded as the observer’s celestial
phere� is compact, a subsequence of �wn�n�N must converge to some lightlike vector w�

TpM+. By Proposition 4, the sequence �expp�snwn��n�N cannot have an accumulation point,
ence sn→� for n→�. Owing to Proposition 3, the radius coordinate r of all points expp�swn�
ith s� �0,sn� is bounded, so the past-pointing past-inextendible lightlike geodesic
��:�0,��→M+�� ,
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s � ���s� = expp�sw�� �48�

annot go to infinity. Let us assume that �� goes to the horizon. By Proposition 3, this is possible
nly in the extreme case a2+q2=m2. Then along �n the radius coordinate r must have local
inima arbitrarily close to r+ for n sufficiently large. As, by Proposition 2, such minima cannot lie

n Min, the geodesic �n must meet K for n sufficiently large and we are done. Therefore, we may
ssume for the rest of the proof that �� does not go to the horizon. So along �� the coordinate r
ust either approach a limit value r� or pass through a maximum and a minimum. In the first case,

oth the first and the second derivative of s�r����s�� must go to zero for s→�. This is possible
nly if �� comes arbitrarily close to K, because, as we know from the proof of Proposition 2, the
mplication �36� holds on Mout and the implication �37� holds on Min. In the second case, again by
roposition 2, the maximum cannot lie in Mout and the minimum cannot lie in Min; hence, both the
aximum and the minimum must lie in K. In both cases we have, thus, found that �� and hence

ll but finitely many �n intersect U. �

. DISCUSSION AND CONCLUDING REMARKS

We have proven, with the help of Morse theory, in Proposition 4 that a Kerr-Newman black
ole acts as a gravitational lens that produces infinitely many images. We emphasize that we made
nly very mild assumptions on the motion of the light source and that we considered the whole
omain of outer communication, including the ergosphere. For the sake of comparison, the reader
ay consult Sec. 7.2 of Ref. 24 where it is shown, with the help of Morse theory, that a Kerr black

ole produces infinitely many images. However, Masiello’s work is based on a special version of
orse theory which applies to stationary space-times only; therefore he had to exclude the ergo-

phere from the discussion, he had to require that the worldline of the light source is an integral
urve of the Killing vector field �t, and he had to restrict to the case of slowly rotating Kerr black
oles, 0�a2�a0

2 with some a0 that remained unspecified, instead of the whole range 0�a2

m2. On the basis of our Proposition 3 one can show that Masiello’s a0 is equal to m /�2; this is
he value of a where the photon region K reaches the ergosphere �see Fig. 2�, i.e., where r+

ph

2m. For a Kerr space-time with m�a�m /�2 we can find an event p and a t-line in
M+\�ergosphere that can be connected by only finitely many lightlike geodesics in
M+\�ergosphere.

If an observer sees infinitely many images of a light source, they must have at least one
ccumulation point on the observer’s celestial sphere. This follows immediately from the com-
actness of the 2-sphere. This accumulation point corresponds to a limit light ray ��. In the proof
f Proposition 5 we have demonstrated that �� comes arbitrarily close to the photon region K and
hat either �� approaches a sphere r=constant or the radius coordinate along �� has a minimum
nd a maximum in K. �In the extreme case a2+q2=m2 the ray �� may go to the inner boundary of

M+.� This is all one can show with the help of Morse theory and the qualitative methods based on
he sign of centrifugal-plus-Coriolis force. Stronger results are possible if one uses the explicit
rst-order form of the lightlike geodesic equation in the Kerr-Newman space-time, making use of

he constants of motion which reflect complete integrability. Then one can show that along a
ightlike geodesic in M+ the radius coordinate is either monotonous or has precisely one turning
oint. �This result can be deduced, e.g., from Calvani and Turolla25�. Thus, the case that there is a
inimum and a maximum in K is, actually, impossible. As a consequence, the limit light ray ��

ecessarily approaches a sphere r=constant. By total integrability it must then approach a lightlike
eodesic with the same constants of motion. Of course, this must be one of the spherical geodesics
n K. �In the extreme case a2+q2=m2 the limit ray �� may approach the circular light ray at r+

ph

m which is outside of M+.�
Also, it follows from Proposition 4 that the limit curve �� meets the caustic of the past light

one of p infinitely many times. This gives, implicitly, some information on the structure of the
austic. For the Kerr case, q=0, it was shown numerically by Rauch and Blandford26 that the
austic consists of infinitely many tubes with astroid cross sections. This result was supported by

27
ecent analytical results by Bozza, de Luca, Scarpetta, and Sereno.
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We have shown, in Proposition 3, that all lightlike geodesics connecting an event p to a
imelike curve � in the exterior Kerr-Newman space-time M+ are confined to the smallest spheri-
al shell that contains p, � and the photon region K. If � satisfies the assumptions of Proposition
, which guarantees infinitely many past-pointing lightlike geodesics from p to �, Proposition 5
ells us that all but finitely many of them come arbitrarily close to the photon region K. Thus, our
esult that a Kerr-Newman black hole produces infinitely many images is crucially related to the
xistence of the photon region. If we restrict to some open subset of M+ whose closure is com-
letely contained in either Mout or Min, then we are left with finitely many images for any choice
f p and �. In Sec. III we have seen that the decomposition of M+ into Min, Mout and the photon
egion K plays an important role in view of centrifugal-plus-Coriolis force reversal; if we restrict
o an open subset of M+ that is contained in either Mout or Min, then we are left with a space-time
n which �r�+ and �r�− have the same sign, i.e., the centrifugal-plus-Coriolis force for large
elocities points either always outwards or always inwards. In an earlier paper28 we have shown
hat in a spherically symmetric and static space-time the occurrence of gravitational lensing with
nfinitely many images is equivalent to the occurrence of centrifugal force reversal. Our new
esults demonstrate that the same equivalence is true for subsets of the exterior Kerr-Newman
pace-time, with the only difference that instead of the centrifugal force alone now we must
onsider the sum of centrifugal and Coriolis force in the limit v→1. It is an interesting problem
o inquire whether this observation carries over to other space-times with two commuting Killing
ector fields �t and �� that span timelike 2-surfaces with cylindrical topology.
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During the 1990s a large amount of work was dedicated to studying general rela-
tivity coupled to non-Abelian Yang-Mills type theories. Several remarkable results
were accomplished. In particular, it was shown that the magnetic monopole, a
solution of the Yang-Mills-Higgs equations can indeed be coupled to gravitation.
For a low Higgs mass it was found that there are regular monopole solutions, and
that for a sufficiently massive monopole the system develops an extremal magnetic
Reissner-Nordström quasihorizon with all the matter fields laying inside the hori-
zon. These latter solutions, called quasi-black holes, although nonsingular, are ar-
bitrarily close to having a horizon, and for an external observer it becomes increas-
ingly difficult to distinguish these from a true black hole as a critical solution is
approached. However, at precisely the critical value the quasi-black hole turns into
a degenerate space-time. On the other hand, for a high Higgs mass, a sufficiently
massive monopole develops also a quasi-black hole, but at a critical value it turns
into an extremal true horizon, now with matter fields showing up outside. One can
also put a small Schwarzschild black hole inside the magnetic monopole, the con-
figuration being an example of a non-Abelian black hole. Surprisingly, Majumdar-
Papapetrou systems, Abelian systems constructed from extremal dust �pressureless
matter with equal charge and energy densities�, also show a resembling behavior.
Previously, we have reported that one can find Majumdar-Papapetrou solutions
which are everywhere nonsingular, but can be arbitrarily close of being a black
hole, displaying the same quasi-black-hole behavior found in the gravitational mag-
netic monopole solutions. With the aim of better understanding the similarities
between gravitational magnetic monopoles and Majumdar-Papapetrou systems,
here we study a particular system, namely a system composed of two extremal
electrically charged spherical shells �or stars, generically� in the Einstein-Maxwell-
Majumdar-Papapetrou theory. We first review the gravitational properties of the
magnetic monopoles, and then compare with the gravitational properties of the
double extremal electric shell system. These quasi-black-hole solutions can help in
the understanding of true black holes, and can give some insight into the nature of
the entropy of black holes in the form of entanglement. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2184766�
47, 042504-1022-2488/2006/47�4�/042504/24/$23.00 © 2006 American Institute of Physics
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. INTRODUCTION

The coupling of general relativity to Yang-Mills SU�2� non-Abelian theories was studied in
etail in the 1990s giving rise to a fuller understanding of the systems involved through a series of
emarkable results. This effort started after the paper by Bartnick and McKinnon,1 which showed
hat Einstein-Yang-Mills theory has one particle solution, the Bartnick-McKinnon particle, in spite
f neither pure gravity nor pure Yang-Mills having a particle solution on their own. Further studies
nserted a black hole inside this particle2,3 with the conclusion that, although unstable, the solution
ould be an instance of no-hair violation, which in turn motivated new works. Similar systems
ere then studied, such as, the Einstein-Skyrme system,4–8 the Einstein-Yang-Mills-dilaton

ystem,5 the Yang-Mills-Proca system,6,9 the Einstein-Yang-Mills-Higgs sphaleron system,6,9

instein-Yang-Mills in anti-de Sitter space-times,10 all these systems have in common that their
lobal electromagnetic type charge is zero, a good review is in Ref. 11. There is yet another very
nteresting system, which concerns us here, the magnetic monopole which is a solution of the
instein-Yang-Mills-Higgs system. Indeed, the ’t Hooft-Polyakov magnetic monopole, is a solu-

ion of the pure Yang-Mills-Higgs system �i.e., Einstein-Yang-Mills-Higgs with zero gravity�,
hen the Yang-Mills and the Higgs fields are in the adjoint SO�3� representation �see the review
aper of Goddard and Olive12�. The ’t Hooft-Polyakov magnetic monopole, at large distances, has
he same structure of the Dirac monopole, however the core is nonsingular.12,13 When one couples
ravitation, at least weakly, the magnetic monopole solution is still there, as was noticed in Ref.
4, now exerting a small gravitational attraction. For strong gravitational fields the system was
tudied much later, in the wake of the Bartnick-McKinnon particle, notably by Ortiz,15 Lee, Nair,
nd Weinberg,16,17 Breitenlohner, Forgács, and Maison,18,19 and Aichelburg and Bizon,20 among
thers. A distinctive feature of this system is that it has a global magnetic charge, which of course
nfluences the properties of the space-time. In addition, the Einstein-Yang-Mills-Higgs system has
wo length scales, one due to the mass of the W particle �the Yang-Mills particle that has eaten
ome mass in the symmetry breaking process�, the other due to the mass of the Higgs. For low
iggs mass, the associated large Compton length scale does not interfere much, and the structure
f the monopole is characterized in great extent by the W field features. For this system, the one
nalyzed in Refs. 15–20, it was found that there are regular solutions, and moreover, for a
ufficiently massive monopole the system turns into an extremal quasi-black hole, developing an
xtremal quasihorizon, with all the nontrivial matter fields inside it. A quasi-black hole is a
onfiguration which is nonsingular but on the verge of having a horizon at some radius r*. More
pecifically, quasi-black holes are nonsingular solutions arbitrarily close to having a horizon. For
n external observer it becomes increasingly difficult to distinguish a quasi-black hole from a true
lack hole as a critical solution is approached. At the critical value one must distinguish two
ituations. In the low Higgs mass situation a horizon never forms, when the configuration has
adius r* the space-time is degenerated, where the time dimension disappears altogether from a
egion of the space-time. The distinction between a quasi-black hole and a true black hole, as well
s the appearance of a degenerated space-time, was not clear in the early works. On the other
and, for high Higgs mass the system behaves differently as was shown later by Lue and
einberg21,22 �see also Ref. 23�. In this case, for a sufficiently massive monopole the system turns

nto a quasi-black hole, and at the critical value, a real extremal magnetic Reissner-Nordström
lack hole appears, developing a true extremal horizon inside the monopole core, and moreover,
on-Abelian matter fields stick out of the horizon, in gross violation of the no-hair conjecture. It
as further found that one could insert a Schwarzschild black hole inside the monopole without
erturbing much its structure, forming a non-Abelian black hole. But when the radius of the
chwarzschild black hole achieved a certain value the horizon would jump into another extremal
uasihorizon. This happens both in the low Higgs mass case, as was found by the original authors,
s well as in the high Higgs mass case, as was shown by Brihaye, Hartmann, and Kunzin24 where
he continuation of the original program has been carried out. Other studies connected with

�Electronic mail: lemos@fisica.ist.utl.pt
�
Electronic mail: zanchin@ccne.ufsm.br
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agnetic monopoles in the Einstein-Yang-Mills-Higgs theory can be mentioned: �i� The thermo-
ynamical properties of these monopole black holes were further studied by Maeda et al.25–27 in
he low Higgs mass case, and by Lue and Weinberg22 for high Higgs mass; �ii� Ridgeway and

einberg found the existence of nonspherically symmetric magnetic monopole configurations;28

iii� dyonic solutions were found by Brihaye et al.;29,30 �iv� monopole solutions in other theories
ere also found, like in a Brans-Dicke theory,31 and in SU�3�, SU�5�, and SU�N� gauge

heories.32–34

Now, in a different context, the study of the Einstein-Maxwell system goes back to the origins
f general relativity where Reissner in 1916 and Nordström in 1918 found the Reissner-Nordström
olution �see Ref. 35 for the appropriate references�, and Weyl studied axisymmetric gravito-
lectric vacuum systems in four dimensions.36 A great development occurred in 1947 when
ajumdar37 and Papapetrou,38 drawing upon Weyl’s results, found new four-dimensional solu-

ions that represent many particles �from one to infinity�, each particle with mass equal to charge,
ocated at any desired position, without spatial symmetry in the most generic case �see Ref. 39 for

generalization of Majumdar’s37 and Papapetrou’s38 works to higher dimensional �d�4� space-
imes�. The idea is borrowed from Newtonian gravitation: A particle with mass equal to charge is
n equilibrium with other mass equal to charge particle, and so with many other such particles,
ince the gravitational attraction is balanced by the electric repulsion. The Majumdar-Papapetrou
olutions are the general relativistic realization of this idea. Now, in Newtonian theory, point
articles are point particles, but in general relativity they can be black holes. This was clarified by
artle and Hawking40 who showed that the vacuum solution represents extremal Reissner-
ordström black holes at any spatial position. A different development was taken by Das,41 who

elying on the work of Majumdar,37 put dust particles on the point particles positions, evading the
lack hole horizons. Several other authors have further analyzed the properties of Majumdar-
apapetrou systems.42–47 Bonnor and collaborators48–52 in a series of papers have shown and
tudied important new solutions of Majumdar-Papapetrou equations and properties of the system.
n particular, in Refs. 49–51, spherical extremal matter stars �where extremal matter stars are
efined as stars composed of matter with charge density equal to the energy density�, with an
xterior extremal Reissner-Nordström metric, were found. These are the Bonnor stars. Bonnor
tars were further developed by Lemos and Weinberg53 where new explicit solutions were found.
t was also found that these new stars, as well as Bonnor stars, develop a quasi-black-hole
ehavior, and there are cases that the solution can even display some kind of hair.53 In addition, in
ef. 54 a thick shell solution was found. In the limit of zero interior radius for this thick shell, the

olution is a Bonnor star, in the limit of the thickness going to zero, the solution is a thin shell.
hese solutions also have quasi-black-hole behavior.

Here we want to explore further the analogy between gravitational magnetic monopoles and
ajumdar-Papapetrou stars. In the previous papers,53,54 the Majumdar-Papapetrou solutions

ound, although complex did not exhibit the full behavior of the gravitational magnetic mono-
oles, where there is an interplay between the W-field scale and the Higgs field scale. We construct
ere a Majumdar-Papapetrou system which shows such a full behavior. Such a system is com-
osed of two infinitesimally thin shells. Majumdar-Papapetrou thin shells have many interesting
roperties. Let us think first of one thin shell to simplify. We will call it the star, it is a regular
olution. Fix the mass of the star, and study the set of formed configurations as one decreases its
adius. For a sufficiently small radius the star develops an extremal Reissner-Nordström quasi-
lack hole. The same happens if instead one fixes the radius and increases the mass. One can go
urther and put another thin shell inside the thin shell star. One can then ask, when the radii of the
ystem are decreased which shell is going to form a quasihorizon first? The usual case is the outer
hell developing a quasihorizon first, the whole system being inside the quasi-black hole. But,
epending on the parameters and constraints, the inner shell can develop a quasihorizon first, in
hich case we have an extremal quasi-black hole in the core of the system, with star matter
oating outside. One can also put an extremal Reissner-Nordström true black hole inside the
egular star �as was done in the gravitational magnetic monopole case, when one puts a small

chwarzschild black hole inside the magnetic monopole� and then increase the black hole radius
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hrough a set of configurations. At a certain point the whole system jumps into a new extremal
eissner-Nordström quasi-black hole. If we exchange star for monopole, the properties of this
ajumdar-Papapetrou system are identical to the properties of the gravitational magnetic mono-

ole system. All these similarities with the gravitational magnetic monopole will be explored in
his paper. A similarity which we do not explore, is that both systems permit nonspherically
ymmetric solutions, in the magnetic monopole case see Ref. 28, in the Majumdar-Papapetrou
ase see Ref. 52. We note that the Majumdar-Papapetrou solutions, such as the extremal Reissner-
ordström black hole solutions and the Bonnor stars, are also of interest in extensions of general

elativity, since the system turns out to be supersymmetric when embedded in a larger theory, such
s N=2 gauged supergravity �see Ref. 55 for a review of Majumdar-Papapetrou solutions in
upergravity and string theories�.

The paper is organized as follows. In Sec. II we overview the properties of gravitational
agnetic monopoles that most interest us, we give the equations and define the important scales,
e review the low Higgs field �low b� case without, and then with, an interior Schwarzschild black
ole, and review also the high b case. In Sec. III we study the properties of the Majumdar-
apapetrou two shell system: we give the equations and length scales, assume some constraints for

he shells and present the solution, study the equivalent low b behavior without and with an
nterior extremal Reissner-Nordström true black hole, and then the equivalent high b behavior. A
emark: when we write a black hole it means a true extremal Reissner-Nordström black hole, when
e write a quasi-black hole it means solutions of matter configurations that are on the verge of
eing a black hole. In some instances, quasi-black holes turn into degenerated space-times,16,53 in
ther instances turn into real black holes.22

I. GRAVITATIONAL BEHAVIOR OF MAGNETIC MONOPOLES, AN OVERVIEW

In this section we overview the solutions for gravitational magnetic monopoles. The logical
resentation of the material reflects in a unified way the work of the authors on this subject and is
uited for comparison with the subsequent analysis on Majumdar-Papapetrou stars.

. The Einstein-Yang-Mills-Higgs magnetic sector

. The action and equations of motion

The action of the Einstein-Yang-Mills-Higgs theory is �G=c=1�

S =� d4x�− g�−
1

16�
R + Lmatter� , �1�

here R is the scalar curvature, and Lmatter is the Yang-Mills-Higgs Lagrangian given by

Lmatter = −
1

4
F��

a Fa�� +
1

2
D��aD��a −

�

2
��a2 − v2�2, �2�

F��
a = ��A�

a − ��A�
a − e�a

bcA�
b A�

c , �3�

D��a = ���a − e�a
bcA�

b �c, �4�

here e is the gauge coupling constant, � the Higgs coupling constant, and v the vacuum expec-
ation value of the Higgs field. The Yang-Mills connection Aa and the Higgs field �a take values
n the Lie algebra of the SU�2� group, with a being an internal index. The potential �� /2���a2

v2�2 in the matter Lagrangian has a family of gauge-equivalent minima, given by �a2=v2, which
reaks spontaneously the SU�2� symmetry down to U�1�. One can choose the vacuum to be in the
hird internal direction �a=v�a3 �for details see Refs. 12 and 23�. The elementary particles of the

heory are the electromagnetic U�1� massless gauge field �a photon�, two massive W particles with
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harge ±e and mass mW=ev, and the neutral massive field �3 with mass mH=1/��v. There is also
he massless graviton.

The monopole configuration is spherically symmetric with metric written generically in terms
f two functions A�r� and B�r� as

ds2 = − B�r�dt2 + A�r�dr2 + r2�d	2 + sin2 	 d�2� , �5�

ith a magnetic Yang-Mills field, written in terms of one function u�r�, as

A0 = 0, Ai
a = �iajr̂

j 1 − u�r�
er

, �6�

nd a Higgs field, written in terms of one function h�r�, as

�a = vr̂ah�r� , �7�

here �iaj is the Levi-Civita tensor, and r̂ is the unit vector in the radial direction. Putting this
nsatz into the Einstein-Yang-Mills-Higgs action and varying the action with relation to the four
unctions yields four equations, two for the gravitational fields B�r� and A�r�, one for the Yang-

ills field u�r�, and one for the Higgs field h�r�. The equations are, respectively �see Ref. 16�,

�AB��
AB

= 16�r� u�2

e2r2 +
1

2
v2h�2� , �8�

	r�1 −
1

A
�
�

= 8�r2	 1

A
� u�2

e2r2 +
1

2
v2h�2� +

�u2 − 1�2

2e2r4 +
u2h2v2

r2 +
�

2
v2�h2 − 1�2
 , �9�

1
�AB

	�ABu�

A

�

=
u�u2 − 1�

r2 + e2uh2v2, �10�

1

r2�AB
	 r2�ABh�

A

�

=
2hu2

r2 + 2�h�h2 − 1�v2. �11�

ometimes, instead of A�r� the mass function m�r�=r�1− �1/A�r��� is used. There are four param-
ters in the theory: G �which we have set equal to one�, e, �, and v. With these parameters one can
orm two dimensionless parameters, 
 and �. Since v is dimensionless, it is already a sought
arameter, 
=v. The other dimensionless parameter is �=�� /e. �In passing, note that in these
tudies of gravitational magnetic monopoles, G is not usually set to one, but rather G=mp

−2= lp
2

�=c=1�, and mp and lp are the Planck mass and the Planck length, respectively. Here we are
etting mp=1 and lp=1, i.e., we are measuring everything in terms of these scales. It is straight-
orward to move from one system of units to the other: Every time one finds a mass one should
ivide by mp, every time one finds a length one should divide by lp, in the end collect all mp’s and

p’s, transform lp into mp by lp=mp
−1, and put back G from mp

−2=G.�

. Some properties and scales of the magnetic monopole

The magnetic monopole solution can be characterized by its mass and radius, and by a
econdary mass and a secondary radius. To understand the effects of gravity it is useful to rewrite
he parameters 
 and �, defined above, in terms of two renewed parameters, a and b, defined
hrough the characteristic masses and radii themselves. Indeed, for a weak gravitational field the

agnetic charge of the monopole is Qm=1/e, its radius is given roughly by the Compton wave-
ength of the Yang-Mills field, rm�1/ev, and its mass by the magnetic energy Mm�Qm

2 /rm
2
v /e. Thus, instead of 
 given above �
=v�, we can define a parameter a �with a�v � as
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a 
Mm

rm
, �12�

hich is a useful characterization when we turn on gravitation, and for later comparison. The other
arameter b can also be written in similar terms: Since there is the Higgs mass scale, the monopole
olution has secondary mass and radius scales. The secondary radius is given by the Compton
avelength of the Higgs field, rm2

�1/��v, and the secondary mass is given by Mm2
�Qm

2 /rm2��v /e2. Thus, instead of � given above ��=�� /e�, we can define a parameter b �with b
� /e2� as

b 
Mm2

/rm2

Mm/rm
, �13�

hich displays the coupling between both, mass over radius scales. There are three parameters v,
, � and four quantities, Mm, rm, Mm2

, rm2
, so there is an equation

Mmrm = Mm2
rm2

, �14�

hich constrains the four quantities. For instance, rm2
can be considered as fixed once the other

hree quantities are known.

. The gravitational behavior as a function of a „gravitation… for low b „low Higgs
ass…

Here, we overview the solutions found in Refs. 15–19 keeping in mind that we will later want
hem for comparison. We present the metric and matter functions as a function of radius, discuss
he naked horizon behavior and the Coulomb character of this type of solutions, put a Schwarzs-
hild black hole inside, and resketch some diagrams covering the space of solutions.

From the preceding section, low b indicates a small Higgs mass mH, or large associated
ompton wavelength, which means that the Higgs does not participate in the dynamics, it has very

ittle influence on the monopole structure. Reinterpreted through Eq. �13� one can also see the low
case as a monopole with small secondary mass Mm2

or large secondary radius rm2
. Given a low

configuration, we want now to understand how the structure changes as gravity is turned on
igher and higher, i.e., as the parameter a=Mm /rm increases.

. The regular magnetic monopole solution: from no gravitation to the extremal quasi-
lack hole

Let us start with a �see Eq. �12�� small. This means a highly dispersed magnetic monopole
ith small mass Mm and large radius rm. As a increases the solution gets more general relativistic

nd eventually should get to a black hole, where a=acrit�1 �for instance, if the configuration
ormed a Schwarzschild black hole acrit=

1
2 , or if it formed an extremal Reissner-Nordström black

ole acrit=1�. It does not happen exactly like this. The solution in the limit of acrit yields a
uasi-black hole as defined in Refs. 22 and 53. To get a grip on the solutions we draw in Fig. 1
iagrams showing the metric functions and the matter field functions as a function of r for two
alues of a, a small, and acrit.

16 The function A signals the existence of a black hole horizon, the
unction B is the redshift function, the product function �AB�1/2 tells whether a horizon is naked or
ot, and the function u and h report on the hair or no-hair of the solution. More specifically: �i�
he function A, or better 1 /A, indicates how strong the curvature is, and in particular indicates the
xistence of a black hole horizon. At r=0, 1 /A should be 1 in order that there are no conical
ingularities, and at r→ should be again 1 for asymptotically flat space-times. Now, for a�0
pace-time is flat and 1/A�1 for all r. For small a there is a small dip at intermediate r as shown
n Fig. 1. For large a the dip is large, and for a=acrit, 1 /A is zero, indicating that a black hole
orizon might have formed, here an extremal one since 1/A gets a double zero. In fact, as was first

oticed in Ref. 22, a true extremal black never forms. Instead, for a configuration with a radius

                                                                                                            



a
t
e
f
p
n
g
r
a
T
b
i
t
R
a
p
→
c
R
d
h
t
f

F
c
e

042504-7 Gravitational monopoles and stars J. Math. Phys. 47, 042504 �2006�

                        
rbitrarily near the critical radius, a quasi-black hole forms �i.e., a matter solution whose gravita-
ional properties are virtual indistinguishable from a black hole22�, and at acrit precisely, a degen-
rate space-time appears as it is found when one looks to the metric function B. �ii� The metric
unction B gives the redshift behavior, or the relative behavior of clocks at different spatial
ositions. It is the function that distinguishes a true black hole from a quasi-black hole, as we will
ow see. For a�0, one has B�1. For small a, B lowers at the origin showing the existence of a
ravitational potential, and goes to 1 at r→. For a=acrit or very near it, B goes again to one at
→, but now it is zero up to the monopole radius. This is odd, the infinite redshift surface is not
surface it is a three-dimensional region. To be a black hole B should go to zero at a given r only.
his means that the solution at a=acrit does not represent a smooth manifold. Thus, the quasi-
lack-hole configuration gives rise to a degenerated space-time. For a very near the critical value
t is very hard to distinguish the quasi-black-hole solution from a true black hole. The radius of
hese quasi-black holes is denoted by r=r*, and is arbitrarily near to the radius of the extremal
eissner-Nordström black hole of same mass and charge, see Fig. 1. �iii� One should also pay
ttention to the behavior of �AB�1/2, which says whether the horizon is naked or not, as it will be
recised below. For a�0 one has �AB�1/2�1. For a small, �AB�1/2 is small at r=0 and 1 at r

. For a=acrit, �AB�1/2 is 0 up to r=r* and then steps into 1, see Fig. 1. It is interesting to
omment further on the behavior of �AB�1/2 and its consequences. For the Schwarzschild and
eissner-Nordström solutions �AB�1/2 is 1 for all radii. However, it is not so here, as can be seen
irectly in Fig. 1. The fact that �AB�1/2→0 for r�r* at the critical solution implies that the black
ole horizon formed has a naked behavior �22�. This means that the components of the Riemann
ensor at the horizon in an orthonormal frame blow up at the horizon. It can be understood as

IG. 1. The graphs of the metric and matter functions, �1/A ,B , �AB�1/2 ,u ,h�, are plotted as a function of r in the low b
ase. The curves a small are typical of small gravitational effects, and the curves a critical give the properties of the
xtremal quasi-black hole. The radius r* is the radius at which the quasihorizon is formed, see text for details.
ollows. Suppose a particle sent in through the monopole, by a distant observer, turns around, and
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omes back to the point where it started. Suppose also the monopole is on the verge of forming a
orizon, i.e., the monopole surface is a quasihorizon. Due to the very small value of �AB�1/2 inside
nd at the quasihorizon �see Fig. 1�, one finds that the proper time the particle takes for the round
rip is given by ���r*�q, where r* is the radius of the quasihorizon, ��1/A�min is a very small
uantity near the critical solution, and q is found by numerical methods to be �0.7–1.0.22 So the
article takes virtual zero time within the quasihorizon. This fact is related to the black hole
akedeness. The Riemann tensor on a particle gives essentially the tidal forces in the particle. It
an be shown that the Riemann tensor in these cases is inversely proportional to the square of the
roper time it takes the particle to cross the region.22 Thus if the proper time is zero, the Riemann
ensor, and thus the tidal forces are huge, giving rise to a naked behavior, the horizon is exposed.
ere Rt̂ît̂î��−2q, where the caret means calculated in the freely falling frame and the indexes i
enote spatial indexes. So, these are naked black holes. Note that for the Schwarzschild, Reissner-
ordström, and extremal Reissner-Nordström black holes, the Riemann tensor calculated in the

rame falling with the particle is well behaved, so the horizon is well behaved, a result that is
nown otherwise. The other interesting time to compute in the round trip is the coordinate time. It
s given by �t�r*�−q. Thus, for a coordinate observer, the particle takes a long time to return. This
oordinate time can be important for entropic considerations.22 �iv� The function u for the Yang-
ills field shows for a small a 1 /r2 fall off for large r, and for a=acrit it disappears for radii

reater than r=r*. �v� The function h of the Higgs field for small a is zero and then grows to pick
p the Higgs vacuum value at large r. For a=acrit it grows from 0 at the origin to 1 at the horizon,
nd stays at 1 up to infinity. This means that there is no hair, outside the horizon, only the trivial
agnetic and vacuum Higgs fields. These quasi-black holes have been termed Coulomb type

uasi-black holes since they show a Coulomb �no hair� field when they form.21

. Nonregular magnetic monopoles: The Schwarzschild black hole solution inside the
onopole

Up to now we have mentioned the behavior of regular gravitating monopoles, i.e., solutions
hat are regular from the origin to infinity. One can now put a small Schwarzschild black hole,
ith mass Mbh and radius rbh, inside the magnetic monopole. This system is an example of a
on-Abelian black hole with hair. One could think that putting a Schwarzschild black hole inside
he monopole would disrupt the structure, and turn the monopole solution into a time-dependent
ne with the Yang-Mills and Higgs fields being accreted onto the black hole. But this is not the
ase, matter, with energy density � and radial pressure component prr, can coexist with an event
orizon at its location as long as �+ prr=0, a result that follows directly from the conservation
quation T��

;�=0. A well-known example is the Schwarzschild-de Sitter solution, where the cos-
ological constant term � can be seen as a fluid which certainly obeys �+ prr=0. Following Refs.

6 and 25 one finds that the non-Abelian structure inside the monopole may be approximated as
uniform vacuum energy density �vac up to the monopole radius rm such that the black hole in this

egion has a metric identical to the Schwarzschild-de Sitter black hole. For small black holes the
ondition �+ prr=0 is obeyed and they can inhabit the center of the monopole, i.e., small black
oles inside do not perturb much the solution. However, when the Schwarzschild black hole is
arge enough, such that its mass is of the order of the mass of the system, the system itself
ollapses giving rise to a magnetically charged extremal Reissner-Nordström quasi-black hole. We
ote that the literature is not clear whether it forms a true extremal black hole or an extremal
uasi-black hole, however by continuity from the regular case one is entitled to infer that it is a
uasi-black hole, followed by a degenerated space-time at the critical value. The appearance of
his quasi-black hole happens for a critical value of the parameter a, with acrit�1, or alternatively,
or a critical value of the total mass M, with M =Mm+Mbh. The behavior is thus analogous to the
egular monopole in the sense that as one increases gravitation, i.e., as the parameter a or the mass

M of the system increases, one finds a a magnetically charged extremal Reissner-Nordström
uasi-black hole.

To understand the generic behavior it is helpful to make a plot of the solution space. One such

lot is given in a Mm�M, where M =Mm+Mbh is the total mass. This is shown in Fig. 2, see also
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ef. 16. There are four areas and three lines. The pure monopole line �the regular solutions
iscussed above� with the total mass equal to the monopole mass, is represented by a line with
lope 1. The top-left region represents naked singularities. The center-left area represents
onopole+Schwarzschild �non-Abelian� black hole solutions mentioned above. At arbitrarily near

he critical mass the solutions are extremal magnetic charged Reissner-Nordström quasi-black
oles �and at precisely the critical mass they turn into degenerated solutions�. To the right there is
region where monopole+Schwarzschild �non-Abelian� black holes coexist with magnetic �Abe-

ian� Reissner-Nordström black holes. Then to the far right and above there is a region of magnetic
Abelian� Reissner-Nordström black holes alone. In this diagram, solutions with a constant black
ole mass are represented by lines parallel to the pure monopole line, i.e., lines of slope 1. Lines
f constant monopole mass are horizontal lines. We show pictorially each representative configu-
ation along a constant monopole mass line. Each numbered point �from 1 to 7� in Fig. 2 is
epresented in the bottom of the figure by a schematic drawing. In this drawing, note that the
orizon area of the solution containing a Schwarzschild black hole surrounded by monopole
atter �numbered 5a� is larger than the horizon area of the pure magnetic Reissner-Nordström

orizon �numbered 5b�. Following the area law, the smaller one is prone to be unstable and decay
o the larger hairy one. This has interesting implications in the ultimate fate of the black hole
hrough Hawking evaporation.17

Another similar but interesting plot is a�rbh diagram, shown in Fig. 3, see also Ref. 18. There
re four areas and four lines. There is the pure monopole line �rbh=0�, which yields the regular
olutions discussed above. The top-left area is the region of no solutions. There is the center-left
rea of monopole+Schwarzschild �non-Abelian� black hole solutions discussed above, there is the
ottom-left area where one finds monopole+Schwarzschild �or non-Abelian� black hole solutions
s well as magnetic �Abelian� Reissner-Nordström black holes, and then the right area of magnetic

IG. 2. The space of solutions in a Mm�M, where M =Mm+Mbh is the total mass, is plotted �see also Ref. 16�. For each
oint 1–7, along a constant monopole mass, in the diagram, the corresponding configuration is pictorially represented in the
ottom part of the figure.
Abelian� Reissner-Nordström black holes. The other lines are boundaries between these areas.
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. The gravitational behavior as a function of a „gravitation… for high b „high Higgs
ass…

High Higgs mass reserves surprises. Here we overview the solutions found in Refs. 21 and 22
till keeping in mind that we will later need them for comparison. High b means b�40.21 From
ec. II A, high b indicates a large Higgs mass mH, or small associated Compton wavelength. This
eans that the Higgs field does participate in the dynamics, and can have great influence on the
onopole structure. Reinterpreted through Eq. �13� one can also see high b as a monopole with

arge secondary mass Mm2
, or small secondary radius rm2

. In order to understand how the structure
hanges as gravity is turned on higher and higher one must increase the parameter a.

. The regular magnetic monopole solution: from no gravitation to the extremal black
ole

For low a there is not much change in relation to the low b case. Low a represents a highly
ispersed magnetic monopole, with small mass Mm and large radius rm. As a increases the solution
ets more general relativistic and eventually gets to a black hole, when a=acrit�1. An important
ifference to the low b case is that instead of passing from a quasihorizon to a degenerate
pace-time, it passes from a quasihorizon to a true horizon, well inside the core at r*2.22 To get a
rip on the solutions we draw in Fig. 4 diagrams showing the metric functions and the matter field
unctions as a function of r for two values of a, a small and acrit. Specifically the behavior of the
unctions is �i� The function 1/A, the metric function that signals the formation of a black hole,
hows that very near acrit there are two radial scales, where horizon could be formed, one at r*2

related to the scale set by the Higgs mass�, the other at r=r* �related to the scale set by the W
ass�, but at acrit the double zero occurs at rr*2, and an extremal horizon appears there. �ii� The
etric function B shows also a zero at r*2 signaling the formation of an infinite redshift surface.
ote now that B is zero at one point only, rr*2, not in a whole region as was the case for low b.
his means that the configuration quasi-black hole with radius very near r*2, turns into a true
xtremal black hole rather than to a degenerate space-time as in the low b case. �iii� The behavior
f �AB�1/2, which tells whether the horizon is naked or not, confirms this behavior. It shows that it
s never zero, meaning the horizon is a regular, not a naked one.22 This means that the components
f the Riemann tensor at the horizon in an orthonormal frame are well behaved. In this case a
article that is sent in through the monopole, turns around, and comes back to the point where it

FIG. 3. The space of solutions in a a�rbh diagram �see also Ref. 18�.
tarted, takes a proper time �� which is finite, nonzero. Thus, since the Riemann tensor is pro-
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ortional to ����−2, as discussed in connection to the low b case, there is no funny behavior at the
orizon and all behaves well. �iv� The function u for the Yang-Mills field shows that for acrit there
s field outside the horizon radius, i.e., there is hair. �v� The function h for the Higgs field, behaves
imilarly to u. In the critical situation, it only acquires the vacuum value for radii much larger than

*2.
There are three points that are worth commenting. First, we comment further on the behavior

f �AB�1/2 and its consequences. In terms of the coordinate time, the particle takes for the round
rip the time �t�r*2�−1/2, where again ��1/A�min is a very small number. Thus the particle
akes, as in the low b case, a long time to return to a coordinate observer, and this is important in
onnection with entropy issues.22 Indeed, in leading order, this time is determined only from the
pace-time geometry. An observer finds that the quasi-black hole has an inside which is inacces-
ible, since probes stay there for an arbitrarily large amount of time, and describes it by a density
atrix �matrix obtained by tracing over the degrees of freedom inside the quasihorizon, yielding an

ntropy S=−Tr ��matrix ln �matrix�. The calculation of the interior entropy of a field inside a spheri-
al box was performed for a scalar field with the result that S=��A /4�, where � is an undeter-
ined factor, and A is the area of the box.56 In this case, the box is the magnetic monopole

uasihorizon configuration on the verge of being a black hole. Since one can give a little push
rom this configuration to the horizon configuration, and in the latter case the entropy is S=A /4
ne can guess by continuity that the coefficient of proportionality in the quasihorizon case has a
ependence on the size of the box �=��rbox� and when a horizon forms, ��r*2�= 1

4 .22 In this sense,
he entropy of the extremal black hole is the number of the entangled degrees of freedom inside
he horizon. This analysis cannot be applied to the low b case because there is never a true

IG. 4. The graphs of the metric and matter functions, �1/A ,B , �AB�1/2 ,u ,h�, are plotted as a function of r in the high b
ase. The curves a small are typical of small gravitational effects, and the curves a critical give the properties of the
xtremal quasi-black hole. The radius r* is the radius at which the quasihorizon is formed, see text for details.
orizon: in the limit, when the object is turning into a black hole it gives a nonsmooth manifold.
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Second, another feature of these monopoles is that they have a charge to mass ratio given by
/M �1. Thus if one drops neutral matter onto a regular magnetic monopole one can form an

xtremal black hole.22 This is contrary to the case of electric Reissner-Nordström black holes with
/M �1, and where one can drop charged matter, with charge q and mass m obeying q /m�1, as
uch as one wants that one never gets an extremal black hole �this is a version of the third law of

lack hole mechanics�.
Third, one can ask what happens for a higher than the critical value. Following Ref. 22 one

nds that there are possibly two branches. One branch is formed of magnetically Abelian charged
eissner-Nordström black holes. The other branch, has non-Abelian matter and hair outside, a
orizon, and regular non-Abelian matter inside. Following theorems by Borde57–59 one finds that
hese regular solutions may have different inside and outside topologies. This issue should be
urther explored.

. The Schwarzschild black hole solution inside the monopole

As in the low b case one can put a Schwarzschild black hole inside. This was done in Ref. 24.
he main feature is that again there is hair outside the true horizon. The results are in line with
hat we have been discussing. Diagrams like those of Figs. 2 and 3 can be drawn, although we
ave not found them in the literature.

. Further discussion

Thus, gravitationally there are two distinct behaviors, the low b case and the high b case, the
arginal case being at b�40. The low b case has the following main features: when one turns on

ravitation �when one increases a� a quasi-black hole appears from the regular monopole, which
urns into a degenerate space-time at the critical value acrit; it has a naked horizon, and shows no
air, i.e., it is of Coulomb type, the nontrivial fields are hidden inside the horizon. In addition, one
an enrich the monopole structure by putting a Schwarzschild black hole inside up to a certain
aximum mass. The high b case has also a regular monopole solution which, when one increases

he gravitational parameter a, turns into a quasi-black hole, and then at acrit a true extremal black
ole appears, with regular horizon and hair. There is a transition between the two cases, a first
rder type transition. When b is in the transition zone, there is a double double zero, one zero at

* and the other at r*2. So, the transition is discontinuous in radius, and thus in entropy. It is,
owever, continuous in mass.21

Other features that are also very interesting but not important in our context are the following:
i� For very low b �b�0.1 say�, the behavior is more complicated near acrit.

18 If one increases a
rom zero, one passes acrit up to an amax. But from acrit to amax there are two solutions, one with
arger mass Mm �larger radius rm�, the other with smaller values. The one with smaller values is the
ne that connects continuously with the low mass solutions. The smaller mass solutions are stable,
nd so the branch which forms black holes is unstable; �ii� for a certain range of the parameters a
nd b, there are multiple node solutions �nodes appearing in the function u�r� of the Yang-Mills
eld� of the type found in the Bartnick-Mckinonn solution;18 �iii� the particular case b→ in the
igh b sector was analyzed in detail by Aichelburg and Bizon.20 The solution has a conical
ingularity at r=0 but apart from that it is well behaved. Perhaps, oddly, core behavior in this limit
as not found, we will comment on this later on.

This program of studying the gravitational behavior of magnetic monopoles has been contin-
ed by Brihaye et al., where the structure of dyonic non-Abelian black holes has been
nalyzed,29,30 and gravitational monopoles in SU�3�, SU�5�, and SU�N� theories have been

32–34
ound.
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II. GRAVITATIONAL BEHAVIOR OF MAJUMDAR-PAPAPETROU MATTER SYSTEMS:
WO CONCENTRIC SPHERICAL THIN SHELLS

. The Majumdar-Papapetrou sector of the Einstein-Maxwell-charged dust system

. The action and equations of motion

We now want to study the Einstein-Maxwell system coupled to some specific electrically
harged dust currents as will be described below. By dust one means a fluid with zero pressure. We
ill compare the configurations found below with the magnetic configurations discussed in Sec. II.
first study in this direction has been done in Ref. 53 �see also Ref. 54�. The action for the

instein-Maxwell-charged dust system is �G=c=1�

S =� d4x�− g� 1

16�
R + Lmatter� , �15�

here R is the scalar curvature, and

Lmatter = LMaxwell + Lcharged dust + Lint. �16�

he Maxwell Lagrangian is

LMaxwell = − 1
4F��F��, �17�

F�� = ��A� − ��A�, �18�

here F�� and A� are the electromagnetic field strength and potential, respectively. The charged
ust Lagrangian, Lcharged dust, is such that the action integral, Sdust=�d4x�−gLdust, gives the energy-
omentum tensor for charged dust, i.e.,

Tcharged dust
�� = −

1

8�

1
�− g

�Scharged dust,

�g�� = �u�u�, �19�

here � is the dust energy density and u� its four-velocity. The interaction Lagrangian Linteraction

s given by

Linteraction = A�j�, �20�

here j�=�eu
�, �e being the electric charge density. The elementary particles are then the elec-

romagnetic massless photon, the massless graviton, and the massive charged dust particles with
nergy density � and charge density �e. The charged dust particles may spread over a given
hree-dimensional region of space, or can be squeezed into a two-dimensional thin membrane, i.e.,
shell. In the latter case the action �15� acquires the form of a bulk action plus a membrane action.
hese bulk plus membrane systems will be treated now.

The configuration we want to discuss is spherically symmetric, a star type configuration, with
etric given again by

ds2 = − B�r�dt2 + A�r�dr2 + r2�d	2 + sin2 	 d�2� , �21�

nd with the electric Maxwell field given by

A0 = ��r�, Ai = 0. �22�

utting this ansatz into the Einstein-Maxwell-charged dust action �15� and varying the action with
elation to the three functions, yields three equations, two for the gravitational field B�r� and A�r�,
nd one for the Maxwell field ��r�. The equations are, respectively,

�AB��
= 8�r�A , �23�
AB
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	r�1 −
1

A
�
�

= 8�r2� +
r

AB
��2, �24�

�B

r2�AB
	 r2

�AB
��
�

= − 4��e. �25�

here are three parameters in the theory: G which we have set equal to one, � and �e. Now, � and

e have dimensions of length to minus two. Thus one can form in principle two length scales. The
atio of these length scales yields a parameter without dimensions. One particular class of solu-
ions, the one we want to treat, sets

�e

�
= 1. �26�

Note that the charge density �e can have two signs, so strictly speaking one should set �e= ±�. In
rder to not carry this � throughout we drop the minus sign, bearing in mind that a � sign can be
oating about.� Matter obeying the condition �26�, i.e., matter with mass equal to charge, can be
alled extremal charged dust in analogy with the extremal Reissner-Nordström black holes. The
ystem of equations �23�–�25� with condition �26� is the Majumdar-Papapetrou system.37,38

Now, in order to show a behavior analogous to the magnetic monopole of the Einstein-Yang-
ills-Higgs system the Majumdar-Papapetrou system per se is not enough, the parameters do not

ive enough structure. In order to get more structure we must add new parameters. First assume a
iven spherical symmetric solution, which we call a star. Then, a new parameter is the radius of
he star, rstar. So now, one has two parameters � and rstar. It is preferable to swap the star’s density

for the star’s mass Mstar, so that the two parameters are Mstar and rstar. Then one can form an
dimensional parameter

a =
Mstar

rstar
. �27�

his is the equivalent to the parameter a in the Einstein-Yang-Mills-Higgs theory, see �12�. To
implify the analysis, and without loss of generality, we can think that the star is made of a thin
hell of extremal charged dust, with Mstar and rstar being now the mass and the radius of the thin
hell. It is not difficult to see that this thin shell is a solution of the Majumdar-Papapetrou
ystem.54 One can now further bring into the problem a new extremal charged thin shell, called the
econdary shell, with two new parameters, the mass M2 and the radius r2. One has then two thin
hells, one inside the other, a configuration that is also a solution of the Majumdar-Papapetrou
ystem, as will be displayed below. One can then form a new dimensionless parameter b given by

b =
M2/r2

Mstar/rstar
. �28�

his is equivalent to the secondary parameter of the Einstein-Yang-Mills-Higgs system appearing
n Eq. �13�. This double shell solution has four parameters Mstar, rstar, M2, r2. In order to produce
he required model one should restrict these four parameters through a constraint equation, as in
he magnetic monopole case. Generically, the two shells are indistinguishable, one cannot say
hether the outer one is the star or the secondary shell. To be definitive, the inner shell is called

he secondary shell, the outer shell is the star, and we keep the secondary shell always inside the
tar, through the constraint

rstar = 2r2. �29�

he factor 2 in �29� was chosen for convenience, any real number greater than 1 will do. Equation
29� is the equivalent to the constraint �14� in the magnetic monopole case. Thus the system we are

oing to work with is a Majumdar-Papapetrou system with two extremal charged shells. This
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imple system mimics a good deal of behavior of the Einstein-Yang-Mills-Higgs system. Instead
f working with thin shells, one could work with the thick shell solutions found in Ref. 54 or with
he Bonnor stars,49–51 but this only complicates the technical analysis of the problem without
urther illuminating it.

. Some properties and scales of the Majumdar-Papapetrou double shell

We are now ready to put a shell within a shell, and simulate the behavior of the gravitational
agnetic monopoles. The star �outer shell� and the secondary shell �inner shell� are considered to

e infinitesimally thin, see Fig. 5. Then, the metric valid from 0�r�, for a Majumdar-
apapetrou space-time with two extremal matter thin shells, is given by

ds2 = −
�1 −

M

rstar
�2�1 −

M2

r2
�2

�1 −
M2

rstar
�2 dt2 + dr2 + r2�d	2 + sin2 	 d�2�, 0 � r � r2, �30�

ds2 = −
�1 −

M

rstar
�2

�1 −
M2

rstar
�2�1 −

M2

r
�2

dt2 +
dr2

�1 −
M2

r
�2 + r2�d	2 + sin2 	 d�2�, r2 � r � rstar,

�31�

ds2 = − �1 −
M

r
�2

dt2 +
dr2

�1 −
M

r
�2 + r2�d	2 + sin2 	 d�2�, rstar � r �  , �32�

here M =Mstar+M2 is the total mass of the system. The constants in the gtt components were

IG. 5. A schematic drawing of the double shell solution in the Majumdar-Papapetrou system, showing the secondary shell
nside the star shell.
hosen so that the metric matches at the shells. The electric field is
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� = 1 −
�1 −

M

rstar
��1 −

M2

r2
�

�1 −
M2

rstar
� , 0 � r � r2, �33�

� = 1 −
�1 −

M

rstar
��1 −

M2

r
�

�1 −
M2

rstar
� , r2 � r � rstar, �34�

� = 1 − �1 −
M

r
� =

M

r
, rstar � r �  . �35�

he fluid field is given by the surface energy densities of the shells. For the secondary thin shell
ne has that the surface energy density �2 is given by

�2 =
M2

4�r2
2 , �36�

ith the corresponding surface electric charge density of the shell �e2
given by �e2

=�2. For the
hin shell star one has that the surface energy density �star is given by

�star =
Mstar

4�rstar
2 , �37�

ith the corresponding surface electric charge density of the shell �estar
given by �estar

=�star. Note
hat the grr component of the metric has a step function at r2 and rstar. This is no problem, one can
mooth it out by considering a shell with small thickness,54 but for the problem we are considering
t is irrelevant.

One important question is which shell, and in which conditions a shell, forms a horizon. We
now that a horizon should form when 1/A=0. Suppose a b is given, and one starts to increase a.
hen it is meaningfull to ask which shell forms first a horizon, the star or the secondary shell? To
nswer it note that

� 1

A
�

r2

= 1 −
M2

r2
= 1 − ab , �38�

� 1

A
�

rstar

= 1 −
M

rstar
= 1 −

Mstar

rstar
�1 +

M2/r2

Mstar/rstar

r2

rstar
� = 1 − a�1 +

b

2
� . �39�

t is then clear that there are three cases:
b�2, when a increases an external horizon forms first at rstar=M, with acrit=1 / �1+b /2�. This

s analogous to the behavior of magnetic monopoles with low b, where an external horizon forms
utside the core.

b�2, when a increases an interior horizon forms first at r2=M2, with acrit=1 /b. This is
nalogous to behavior of magnetic monopoles with high b, where an external horizon forms within
he core.

b=2, when a increases a horizon forms at both shells, interior and exterior with acrit=1 /2.
his divides the two cases above.

As we will show below the solution does not develop a true horizon. Independently of b, upon
ncreasing a, a quasihorizon appears. Then at the critical value one gets a degenerated space-time,

nd for values of a above the critical one there is no static solution, the shell collapses �see Ref.
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0� into a singularity and an extremal Reissner-Nordström black hole forms. In what follows we
tudy each type of configuration. We start with low b, b�2, then we do high b, b�2.

. The gravitational behavior as a function of a for low b

Since b= �M2 /r2� / �Mstar /rstar�, low b can be seen as a relatively small secondary mass M2, or
arge secondary radius r2, which means that the secondary shell has little influence in the structure.
iven a low b configuration, we want to understand how the structure changes as the parameter
=Mstar /rstar increases. We present plots giving the behavior of the metric and matter functions as
function of radius for typical cases, discuss the naked horizon behavior and the Coulomb

haracter of these solutions, put an extremal Reissner-Nordström black hole inside, and sketch
ome diagrams covering the space of solutions.

. The regular Majumdar-Papapetrou double shell solution: from no gravitation to the
xtremal quasi-black hole and beyond

We have seen from Eqs. �38� and �39� that for fixed b, with b�2, an extremal quasihorizon
ppears when the parameter a increases, i.e., when one puts more gravitation into the star shell. A
mall a parameter, i.e., Mstar /rstar small, means that the star shell is very dispersed. As a increases,
ventually it gets to a stage where a kind of an extremal event horizon forms. Using Eqs. �30�–�39�
ne can plot the behavior of the metric and matter functions as a function of radius for two values
f a, a small, and a arbitrarily near acrit, when a quasihorizon forms, see Fig. 6. Specifically, the

1/2

IG. 6. The graphs of the metric and matter functions, �1/A ,B , �AB�1/2 ,� ,��, are plotted as a function of r in the low
�b�2� case. The curves a small �dashed lines� are typical of small gravitational effects, and the curves a critical �full

ines� give the properties of the extremal electrical quasi-black hole. The radius r* is rstar at the quasihorizon �arbitrarily
ear the critical radius�, see text for details. �In the graphs, we have used b=1 as a typical low b case, and have set Mstar=

5
2 ,

M2= 5
4 , and for a small we have set rstar=10, r2=5, while for a critical we have set rstar=

15
4 , r2= 15

8 .�
ehavior of the functions 1/A, B, �AB� , �, and � is: �i� the function 1/A signals the formation
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f a black hole. For a small the function 1/A starts at the value 1 �thus there are no conical
ingularities� drops slightly at the secondary shell, rises and drops again at the star shell, and then
ises again to 1 at infinity. When a=acrit �or arbitrarily near it� the function gets a double zero at
=r* �it would be a double zero had we smoothed out enough of the matter� signaling the
ormation of a kind of an extremal Reissner-Nordström black hole. �ii� The function B, the redshift
unction, has the usual behavior for a small. However, for acrit the whole of the region inside r*

ets infinitely redshifted. This means that the manifold is not smooth. Thus the critical case is not
true black hole, it is a degenerated space-time. �iii� The product function �AB�1/2 is important to
etermine whether the forming horizon is naked or not. We find that a particle on a return trip to
he star takes a proper time given by ���r*�1/2, where r* is the radius of the quasihorizon, and,
ear the critical solution, ��1/A�min is a very small quantity.54 Since this proper time is arbi-
rarily small, the Riemann tensor diverges at the horizon, and the horizon is naked. For complete-
ess we given the coordinate time �t taken by the particle in its trip, �t�r*�−1/2, implying that the
article takes a long time to return for a coordinate observer. �iv� The function � tells whether the
olution has hair or not. It starts constant, then decays with 1/r, with a bump at r2 and at rstar.

hen the horizon forms the field is a pure Coulomb field, showing no-hair. �v� The surface density
unction � of the charged dust is also drawn, for completeness. Outside the quasihorizon at r*

here is no matter.
The case b=0 is worth discussing because it is the simplest one in the low b sector. There is

o secondary shell �M2=0� and so it represents a single thin shell with mass Mstar and radius rstar.
t is interesting because on one hand it has the same properties of any other low b case, on the
ther hand, it is easier to figure out what happens above criticality, i.e., for a�acrit �Mstar�rstar�.
e have seen that when the precise equality holds, a=acrit, the redshift function B is zero not only

t the horizon but also in the whole region inside, meaning that in fact a true black hole does not
orm, since inside there is no smooth manifold. For a�acrit one has now a shell of matter at rstar

nside an extremal electrical Reissner-Nordström black hole at rbh=Mstar, the solution being ev-
rywhere free from curvature singularities. Following a theorem by Borde,57 this means that the
opology of spacelike slices in this black hole space-time would change from a region where they
re noncompact to a region where they are compact, in the interior. In our case this in fact does not
appen, there are no solutions with a�acrit, i.e., m�ro, the shell collapses into a singularity.60

. Nonregular Majumdar-Papapetrou shell solutions: The extremal Reissner-Nordström
lack hole solution inside the thin shell star

One can put a black hole inside the double thin shell and obtain a structure similar to the one
ound when one puts a black hole inside a magnetic monopole. For the double thin shell, the extra
nner black hole must be an extremal Reissner-Nordström black hole, rather than a Schwarzschild
lack hole, to keep the solutions within the Majumdar-Papapetrou system. If one puts a nonex-
remal black hole foreign tensions would develop at the thin shells. So, in order to stick to pure

ajumdar-Papapetrou system we stick to an inner extremal Reissner-Nordström black hole. In
rder to simplify the analysis, we will work with the b=0 which is a good simple case for low b.
or any other small b, such that b�2, the result is analogous. In the b=0 case one has M2=0.
hus the system is formed by the star shell with mass Mstar and radius rstar, and an inner extremal
eissner-Nordström black hole with mass Mbh and radius rbh �Mbh=rbh�. The metric is now

ds2 = − �1 −
Mbh

r
�2 �1 −

M

rstar
�2

�1 −
Mbh

rstar
�2dt2 +

dr2

�1 −
Mbh

r
�2 + r2�d	2 + sin2 	 d�2�, 0 � r � rstar,
�40�
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ds2 = − �1 −
M

r
�2

dt2 +
dr2

�1 −
M

r
�2 + r2�d	2 + sin2 	 d�2�, rstar � r , �41�

here here M =Mstar+Mbh is now the total mass. The electric field ��r� and the charge density
eld ��r�=�star�rstar� profile accordingly.

To understand the generic behavior of this system it is helpful to make a plot of the solution
pace, similar to the plot made for a Schwarzschild black hole inside the magnetic monopole
hown in Fig. 2. We do this in Fig. 7, where we plot the solution space in a Mstar�M diagram for
xed rstar. There are three regions and two lines. The pure star line, i.e., the regular solutions
iscussed above with the total mass equal to the star mass, is represented by a line with slope 1.
he top-left region represents extremal charged naked singularities. The center-left region repre-
ents star+ �extremal Reissner-Nordström black hole� solutions displayed in Eqs. �40� and �41�. At
alues arbitrarily near the critical mass Mcrit the solutions are extremal electric charged Reissner-
ordström quasi-black holes, which degenerate at the critical value. To the right there is a region
f extremal Reissner-Nordström black holes. We show pictorially each representative configura-
ion along a constant star mass line. Each numbered point �from 1 to 5� in Fig. 7 is represented in
he bottom of the figure by a schematic drawing. We see that taking Mstar constant and increasing

M we pass through point 1 where Mstar is greater than M and therefore there is a negative mass at
he center, through point 2 where one finds a thin shell solution with Mstar=M, through point 3
here there is a black hole inside the star, through point 4 which is the case arbitrarily near the

ritical value where Mstar+Mbh=rstar, and thus an extremal quasi-black hole appears at rstar, finally
o point 5 where rstar has collapsed inside the horizon radius to form an extremal black hole. Note
here is a jump in horizon radius from a point infinitesimally to the left of point 4, to a point
nfinitesimally to the right of point 4. Note also that this diagram is done for fixed rstar. For another

IG. 7. The space of solutions in a Mstar�M, where M =Mstar+Mbh is the total mass, is plotted. For each point 1–5, along
constant star mass, in the diagram, the corresponding configuration is pictorially represented in the bottom part of the
gure. This is the graph made in Fig. 2 �see also Ref. 16� adapted to the thin shell Majumdar-Papapetrou system.
alue of rstar, one gets the same diagram, but with the vertical critical line critical shifted, to the
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ight when the new rstar is larger, and to the left when the new rstar is smaller than the original
alue. Comparison of Figs. 2 and 7 shows the similarities between the magnetic monopole and the
ajumdar-Papapetrou system.

One can also translate Fig. 3 into this Majumdar-Papapetrou system. This is done in Fig. 8,
here we display the important regions in a graph a�rbh �where again a=Mstar /rstar�. There are

wo regions and two lines. There is the vertical line, rbh=0, of regular star solutions. There is the
egion where star+ �extremal electric Reissner-Nordström black hole� solutions exist. There is the
ine where the system forms a quasi-black hole �i.e., a solution arbitrarily near the critical degen-
rate case�. Finally there is the region where an extremal electric black hole exists. These are black
oles free from singularities. The naked singularity region, not shown, would appear for negative

bh, i.e., for negative black hole masses, rbh=Mbh�0.

. The gravitational behavior as a function of a for high b

High b can be seen as a relatively large secondary mass M2, or small secondary radius r2,
hich means that the secondary shell has a decisive influence in the structure. Given a high b

onfiguration, we want to understand how the structure changes as the parameter a=Mstar /rstar

ncreases. We present plots giving the behavior of the metric and matter functions as a function of
adius for typical cases, discuss the naked horizon behavior and the non-Coulomb character of
hese solutions, and we briefly comment on putting an extremal Reissner-Nordström black hole
nside the high b double shell system.

. The regular solution: from no gravitation to the extremal quasi-black hole and
eyond

In contrast with low b, in the high b case, an extremal quasihorizon forms at the secondary

IG. 8. The space of solutions in an a�rbh plot. This is the graph made by Fig. 3 �see also Ref. 18� adapted to the thin
hell Majumdar-Papapetrou system.
hell r2, rather than in the star shell. Using Eqs. �30�–�39� one can draw the important field
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unctions as a function of r, for a given high b and for two values of a, a small and a critical, see
ig. 9. The behavior of the functions 1/A, B, �AB�1/2, �, and � is the following: �i� For a small the
unction 1/A starts at the value 1 drops at the secondary shell, rises and drops slightly at the star
hell, and then rises again to 1 at infinity. When a is arbitrarily near acrit the function gets a double
ero at r=r*, now situated at the secondary shell r2, signaling the formation of a quasihorizon. �ii�
or a small, the function B has the usual behavior. For a arbitrarily near acrit, B is arbitrarily near
ero throughout the region inside r2. At a=acrit precisely the manifold is not smooth. Thus again,
he critical case is not a true black hole, it is a degenerate manifold. �iii� The function �AB�1/2 is
ero inside the quasihorizon confirming the existence of a naked behavior. This is not quite the
ame as the high b behavior for the magnetic monopole, since the magnetic system gets in the high
case a non-naked horizon. �iv� At a arbitrarily near acrit, the function � does not have a Coulomb

ype behavior as one can see from Fig. 9, the electric field outside the quasihorizon gets a bump
ue to the presence of the outer shell. Strictly speaking one cannot talk of a no-hair violation since
he no-hair theorem is applied to black holes, not quasi-black holes. �v� The surface density
unction � of the charged dust is also drawn, for completeness.

There are two questions that can be asked. The first one is what happens if one increases a
ast acrit. For a�acrit one gets an extremal electric Reissner-Nordström black hole outside r2. This
econdary shell then collapses, leaving an extremal black hole with a star shell outside. This is
hen analogous to the extremal black hole solution inside the star shell discussed previously in the
ow b case. Upon increasing a further one hits a new critical value, acrit new, where a new horizon

IG. 9. The graphs of the metric and matter functions, �1/A ,B , �AB�1/2 ,� ,��, are plotted as a function of r in the high
�b�2� case. The curves a small �dashed lines� are typical of small gravitational effects, and the curves a critical �full

ines� give the properties of the extremal quasi-black hole. The radius r* is now r2 at the quasihorizon, see text for details.
In the graphs, we have used b=4 as a typical high b case, and have set Mstar=

5
4 , M2= 5

2 , and for a small we have set

star=10, r2=5, while for a critical we have set rstar=5, r2= 5
2 .�
orms at the exterior star shell rstar.
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The second question is what happens when b→. In the magnetic monopole system this case
as been analyzed in Ref. 20. When one increases b, keeping a fixed, one finds that r2 gets
elatively smaller and smaller. The behavior is best displayed by looking into the 1/A plot of Fig.
. For a small and fixed, when one increases b the minimum at r2 is displaced more and more
oward r=0. Eventually at b→ the minimum hits the r=0 line at a point 1 /A less than 1, which

eans that the configuration starts at a conical singularity. This example shows why Ref. 20 did
ot get the high b behavior found in Ref. 21, namely, a smooth black hole formation in the core
f the magnetic monopole. What happens is that for b→ a horizon �a kind of singularity� in the
nner secondary shell does not form at the core because the initial configuration already possesses
t the core �r=0� a conical singularity �another kind of singularity which substitutes the horizon in
his limit b→�. This conical configuration exists for a given typical value of a. Upon increasing

further one hits a critical value for a �corresponding to the acrit new mentioned above� where a
ew quasihorizon forms at the exterior star shell rstar.

. The extremal black hole solution inside the system

As in the low b case, where an extremal black hole was put inside the low b shells, one can
lso put an extremal black hole inside the high b shells. We will not do this here since the behavior
s similar to the previous cases. In the magnetic monopole high b case this was done in Ref. 24.

. Further discussion

�i� The b=2 configuration: We have treated the cases b�2 and b�2. The case b=2 is also
orth commenting as a limiting case. The new feature is that at acritical the function 1/A develops

wo double zeros, one at the secondary shell r2, the other at the star shell rstar. Thus, on going from
�2 to b�2 the quasihorizon jumps discontinuously in radius at some critical a. If the entropy
f this object can be related to the area of the object, as was done in Ref. 22, then the entropy also
umps discontinuously when one passes from b�2 to b�2. In the transition there is no mass
ump, the mass is continuous, so that it is a kind of first order phase transition.

�ii� More complex configurations: One can put a third extremal matter shell inside the other
wo. In this case one has two new parameters, M3 and r3, and a new dimensionless parameter c
an be given. In analogy with a and b of Eqs. �27� and �28�, one finds

c =
M3/r3

M2/r2
. �42�

ssume also as the constraint equation that r2=2r3. Then, one has

� 1

A
�

rstar

= 1 −
M123

rstar
= 1 − a	1 +

b

2
�1 +

c

2
�
 , �43�

� 1

A
�

r2

= 1 −
M23

r2
= 1 − ab�1 +

c

2
� , �44�

� 1

A
�

r3

= 1 −
M3

r3
= 1 − abc , �45�

here M123=Mstar+M2+M3 is the total mass of the system and M23=M2+M3. Then �I� For b
4/ �2+c� and b�4/ �3c−2� a quasihorizon forms first at rstar, with acrit=1 / �1+b /2�1+c /2��. �II�

or b�4/ �2+c� and c�2 a quasihorizon forms first at r2, with acrit=1 /b�1+c /2�. �III� For the
wo cases �i� b�4/ �2+c� and b�4/ �3c−2�, and �ii� b�4/ �2+c� and c�2, a quasihorizon forms
rst at r3 with acrit=1 / �bc�. Equalities mean that the three quasihorizons form together with b

1, c=2, and acrit=1 /2. Two quasihorizons alone cannot form together.
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One can continue to put more shells with the emergence of even more complex behavior in
he function 1/A. This type of behavior should also happen in non-Abelian theories with more
iggs scales.

�iii� Other configurations: Other configurations that could be dealt with are a thick shell
ithin a thin shell, with the thick shell being the solution found in Ref. 54. The behavior is similar

o what we have been discussing. For the low b case it will give for acrit an extremal naked,
oulomb �no-hair�, quasi-black hole. For high b it would give an extremal naked, non-Coulomb

hair�, quasi-black hole. One can also put an extremal black hole inside a thick shell, although
here is no known exact solution for it.

V. CONCLUSIONS

We have shown that gravitational magnetic monopoles and Majumdar-Papapetrou stars, in the
orm of two thin shells, have common properties. We have shown that both systems have extremal
uasi-black-hole solutions, some without hair while others developing some type of hair. Both, the
onopole system and the two shell Majumdar-Papapetrou system, possess solutions with naked

ahavior, i.e., tidal forces tend to infinity at the quasihorizon. At the critical value the interior
olution does not give a smooth manifold, indicating a change of topology. For other parameters
n the space of solutions of the magnetic monopole system, specifically for high Higgs mass, there
re solutions with non-naked behavior, allowing the formation of a true black hole. On the other
and, the two shell Majumdar-Papapetrou system, never shows non-naked behavior, there are only
uasi-black-hole solutions. In both systems one can put a black hole inside the configuration
ithout destabilizing the system, for a range of parameters.
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The scalar field degree of freedom in Einstein’s plus matter field equations is
decoupled for Bianchi type I and V general cosmological models. The source, apart
from the minimally coupled scalar field with arbitrary potential V���, is provided
by a perfect fluid obeying a general equation of state p= p���. The resulting ODE is,
by an appropriate choice of final time gauge affiliated to the scalar field, reduced to
first order, and then the system is completely integrated for arbitrary choices of the
potential and the equation of state. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2188210�

. INTRODUCTION

In the past two decades there has been a growing interest in scalar field cosmological models
rimarily due to the prominent importance of scalar fields for inflationary scenarios.1 The impor-
ance of the coupling between a scalar field and the gravitational field has been further stressed by

adsen,2 who has shown that it can have nontrivial consequences for the spontaneous breaking of
auge symmetries. A dynamical systems approach has been extensively used in the study of scalar
eld cosmologies and their asymptotic behavior.3 See also Ref. 4 for a concise review.

As far as exact solutions of scalar field cosmologies are concerned, Burd and Barrow5 have
tudied homogeneous but anisotropic Bianchi models of types III and VI �as well as Kantowski-
achs models� and have found exact solutions. Lidsey, and Aguirregabiria et al.6 have found exact
olutions for Bianchi type I models. Feinstein and Ibanez7 have found exact solutions for Bianchi
odels of type III and VI, Moss and Wright, Madsen, and Abreut, Crawford, and Mimoso8 have

tudied exact solutions in the setting of conformal scalar field cosmologies. Paul9 has obtained
xact solutions of a higher derivative theory in the presence of an interacting scalar field. The
iscovery of the BTZ black hole has motivated the study of analytic solutions in the context of
calar field cosmology in �2+1� dimensions,10 while Russo11 has obtained the general solution for
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scalar field cosmology in d dimensions with exponential potentials and a flat Robertson-Walker
etric. An early work on exponential potentials has been done by Salopek and Bond12 while

ecent treatments are given by Kehagias and Kofinas13 and Neupane.14

Cosmological models containing both a fluid and a scalar field have also been studied. Chi-
ento and Jakubi15 have given exact solutions of scalar field cosmologies with a perfect fluid and
viscous fluid, respectively. Mendez16 has obtained an exact solution for the case of an imperfect
uid in a FRW space-time. In the so-called scaling scalar field cosmologies, the energy density due

o the scalar field is proportional to the energy density of the perfect fluid. Thus a number of
patially flat, isotropic models in which the energy density of the scalar field is proportional to that
f the perfect fluid have been investigated.17 Billyard, Coley, and van den Hoogen18 have studied
he stability of these scaling solutions within the class of spatially homogeneous cosmological

odels with a barotropic fluid matter content. Furthermore, they have studied the qualitative
ehavior of spatially homogeneous models with a barotropic fluid and a noninteracting scalar field
ith an exponential potential in the class of Bianchi type B models.19 Saha20 has obtained exact

olutions for a Bianchi type I model with a perfect fluid and dark energy content, while Chimento
nd Cossarini have studied exact solutions in 1+1 dimensions using an isotropic perfect fluid
ource.21

In a significant paper, Hawkins and Lidsey22 have shown that, for a flat FRW geometry, the
ynamics of scalar field cosmologies with a perfect fluid matter content can be described by the
onlinear, Ermakov-Pinney equation �which, in turn, leads to tantalizing analogies with the dy-
amics of Bose-Einstein condensates�, while an early work of Barrow also deserves mention in
his context. Exact solutions have been obtained in this description.23 Another kind of decoupling
f the scalar field degree of freedom has been initiated in Ref. 24, where a Robertson-Walker
ackground geometry minimally coupled to the scalar field has been investigated. By use of
ntegrals of the motion and of the Klein-Gordon �KG� equation in the quadratic constraint equa-
ion, a single, higher-order nonlinear differential equation for the scalar field was obtained.

In the present work we generalize this decoupling for the case of general Bianchi type I and
geometries in the presence of a general perfect fluid source. The advantage is that the resulting

DE is fully integrated and this is achieved for arbitrary choices of the scalar field potential and
he fluid equation of state. The paper is organized as follows. In Sec. II the geometry and the

atter description as well as the governing equations for the system are presented. In Sec. III the
ecoupling of the scalar field degree of freedom is performed for Bianchi type I, the reduction of
he resulting ODE is given and the system is completely integrated. The corresponding calcula-
ions for Bianchi type V are given in Sec. IV. Finally, the conclusions and a discussion of the
esults obtained are presented in Sec. V.

Throughout we use geometrized units, i.e., c=8�G=1, while g�� has the signature ��,�,
,��.

I. THE GOVERNING EQUATIONS AND THE MATTER CONTENT

Our starting point is the line element for a spatially homogeneous geometry,

ds2 = �N��t�N��t� − N2�t��dt2 + 2N��t�	i
��x�dxi dt + 
���t�	i

��x�	 j
��x�dxi dxj , �2.1�

here 	i
��x� are the basis one-forms satisfying 	i,j

� �x�−	 j,i
� �x�=2C�


� 	 j
��x�	i


�x� �with C�

� the

tructure constants of the Lie algebra of the corresponding three-dimensional isometry group of
otion acting simply transitively on the spatial hypersurfaces of simultaneity�, N��t� is the shift

ector, N�t� is the lapse function, and 
���t� is the scale factor matrix of the Bianchi type exam-
ned.

As explained in Ref. 25 there are special general coordinate transformations mixing space and
ime in the new space coordinates, whose effect on the line element �2.1� is described by


̃���t� = ����a���t� ,
� �
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Ñ�t� = N�t�

Ñ��t� = ��
��t��N��t� + P��t�
���t�� , �2.2�

here ��
��t�, P��t� satisfy

��
�C�


� = ��
��


	C�	
� , �2.3�

2P�C��
� ��

� = �̇�
� �2.4�

he overdot denoting differentiation with respect to time. Due to �2.3�, ��
��t� belongs to the

utomorphism group of the Bianchi type in question and transformations �2.2� describe the gauge
reedom of the emanating system of Einstein’s field equations in the case of vacuum. So, the three
rbitrary functions of time contained in ��

��t� and P��t� can be used to simplify the line element
2.1� and, thus, also the aforementioned equations. Automorphisms induced by general coordinate
ransformations have also been considered in Ref. 26, while the rigid gauge symmetries have been
nalyzed in Ref. 27. Time-dependent automorphisms, seen as tangent space transformations, have
lso been considered previously,28,29 while the first �known to us� reference of the relevance of
utomorphisms to a systematic analysis of Bianchi cosmologies goes back to 1962.30

The above result also holds true when the matter content is such that the linear constraints Gi
0

o not acquire an extra term Ti
0. For orthogonal perfect fluids and scalar fields depending only on

ime, Ti
0 is indeed zero and therefore we can use the gauge freedom �2.2�–�2.4� to diagonalize

���t� without losing generality. Therefore, the scale factor matrix is taken to be


���t� = diag�a2,b2,c2� �2.5�

hile for the shift vector we have N��t�=0. Our choice of time is specified by the gauge condition
=�det 
��, which is frequently used due to the simplification of the Einstein tensor and whose

mportance for the decoupling is essential.
The matter content is a minimally coupled scalar field with an arbitrary potential V���, thus

aving an energy-momentum tensor

T��
�1� = �,��,� − 1

2g���g��,�,� + 2V���� �2.6�

nd a perfect fluid part

T��
�2� = �p + ��u�u� + pg��, �2.7�

here u� is the unit four-velocity vector and a general equation of state p= p��� is adopted. The
overning Einstein’s field equations are taken to be

R�
� − 1

2��
�R = T�

�, �2.8�

here T��=T��
�1�+T��

�2�, while the scalar field equation �Klein-Gordon� is

1
�− g

����− gg������ − V���� = 0 �2.9�

he prime, from now onwards, denoting differentiation with respect to the argument.
The “equation of motion” for the perfect fluid is the conservation of its energy-momentum

ensor:

T�;�
�2�� = 0. �2.10�

The scalar field energy-momentum tensor is separately conserved by virtue of the Klein-Gordon

quation�.
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II. DECOUPLING OF THE SCALAR DEGREE AND THE SOLUTION SPACE
OR BIANCHI TYPE I

The basis one-forms are 	i
��x�=�i

� and, thus, with �2.5�, zero shift and the chosen time gauge,
he initial form of the metric is given by

g�� =�
− a2b2c2 0 0 0

0 a2 0 0

0 0 b2 0

0 0 0 c2
� . �3.1�

patial homogeneity implies that �=��t� and �=��t�. The nonzero components of the Einstein
ensor G�

�, and the energy-momentum tensors T�
�1��, T�

�2�� �all multiplied by a2b2c2� are given by

G0
0 = −

ȧḃ

ab
−

ȧċ

ac
−

ḃċ

bc
, �3.2�

G1
1 =

ȧḃ

ab
+

ḃ2

b2 +
ȧċ

ac
+

ḃċ

bc
+

ċ2

c2 −
b̈

b
−

c̈

c
, �3.3�

G2
2 =

ȧ2

a2 +
ȧḃ

ab
+

ȧċ

ac
+

ḃċ

bc
+

ċ2

c2 −
ä

a
−

c̈

c
, �3.4�

G3
3 =

ȧ2

a2 +
ȧḃ

ab
+

ḃ2

b2 +
ȧċ

ac
+

ḃċ

bc
−

ä

a
−

b̈

b
, �3.5�

T0
�1�0 = − a2b2c2V��� − 1

2�̇2, �3.6�

T1
�1�1 = T2

�1�2 = T3
�1�3 = − a2b2c2V��� + 1

2�̇2, �3.7�

T0
�2�0 = − a2b2c2��t� , �3.8�

T1
�2�1 = T2

�2�2 = T3
�2�3 = a2b2c2p���t�� . �3.9�

Due to the equalities �3.7� and �3.9�, we can subtract the corresponding Einstein’s equations

�
�=T�

�1��+T�
�2��, i.e., form the differences �all multiplied by a2b2c2� G2

2−G1
1=T2

�1�2+T2
�2�2−T1

�1�1

T1
�2�1 and G3

3−G1
1=T3

�1�3+T3
�2�3−T1

�1�1−T1
�2�1 and get the following equations involving only the

cale factors:

ȧ2

a2 −
ḃ2

b2 −
ä

a
+

b̈

b
= 0, �3.10�

ȧ2

a2 −
ċ2

c2 −
ä

a
+

c̈

c
= 0. �3.11�

hese equations provide the following integrals of motion:

�t
b�t� = e a�t� , �3.12�
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c�t� = e�ta�t� , �3.13�

eaving us with just one undetermined scale factor. At this stage the Klein-Gordon equation �2.9�
ecomes

− V���� −
e−2��+��t�̈�t�

a6�t�
= 0. �3.14�

ow, the conservation of the fluid energy-momentum tensor �continuity equation� gives

3
ȧ

a
+

�̇

p��� + �
+ � + � = 0. �3.15�

It is straightforward to check that the time derivative of the quadratic constraint equation

0
0=T0

�1�0+T0
�2�0 is identically satisfied by virtue of the remaining spatial equation G1

1=T1
�1�1

T1
�2�1, the Klein-Gordon equation and the continuity equation �solved for ä�t�, �̈�t�, �̇�t��, as

xpected from the consistency between the aforementioned constraint with the spatial Einstein and
he matter equations. Therefore, the equations to be solved are the Klein-Gordon equation �3.14�,
he continuity equation �3.15� and the constraint equation which, upon multiplication by
2a6e2��+��t reads

6� ȧ

a
	2

+ 4�� + ��
ȧ

a
+ 2�� − �̇2 − 2e2��+��ta6�V��� + �� = 0. �3.16�

n order to have a closed form for the integral of the continuity Eq. �3.15�, it is convenient to use
he parametrization

p��� =
g���
g����

− � �3.17�

the prime denoting differentiation with respect to the argument� through the use of which one
btains the integral

� = h��0a−3e−��+��t� �3.18�

ith h being the inverse function to g, i.e., satisfying h�g�x��=x.
From the Klein-Gordon equation �3.14� the scale factor and its logarithmic derivative is

xpressed in terms of the scalar field ��t� and its derivatives as well as V���,

a = 
−
e−2��+��t�̈

V����
�1/6

, �3.19�

ȧ

a
=

1

6���

�̈
−

V����
V����

�̇ − 2�� + ��	 . �3.20�

he promised decoupling of the scalar field dynamics from the geometry occurs upon inserting
3.18�–�3.20� into �3.16�. The result is the following nonlinear, third order ODE for ��t�:

���

�̈
−

V����
V����

�̇	2

− 4�� + ��2 + 12�� − 6�̇2 + 12
�̈

V����
V��� + 12

�̈

V����
h
�0�−

�̈

V����
	−1/2�

= 0. �3.21�

t this stage, any solution to this equation determines, through �3.18� and �3.19� a corresponding

olution to the full Einstein plus matter system whose entire space of solution is therefore attained
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rom the solution space of �3.21�. Of course, the price paid, for the moment, is the nonlinearity in
he highest time derivative, which has also been raised to third order. Furthermore, normally one
ould expect that the arbitrary functions h, V need first to be specified before hoping to actually
et a solution. Nevertheless, it is quite interesting that further reduction of the order of �3.21�, and
ubsequent complete integration of the whole system, is possible. To this end, we first observe that
any terms in �3.21�, namely all the nontrivial except the fourth and fifth, are functions of the

ombination −�̈ /V����. We thus define

� = −
�̈

V����
�3.22�

nd write �3.21� as

� �̇

�
	2

− 4�� + ��2 + 12�� − 6f��� − 12�h��0�−1/2� = 0, �3.23�

here

f��� � �̇2 + 2�V��� �3.24�

mplicitly reflects the arbitrariness in choosing V���. Now �3.23� can be integrated and, by judi-
ious choices for f , h, even give ��t� in closed form. Suppose ��t� does indeed solve �3.23�. Then,

ultiplying �3.22� by 2�̇V���� and using �3.24� we get the first order linear differential equation
or f�t�:

df�t�
dt

= 2�̇�t�V�t� �3.25�

nd consequently ��t� is given by

d��t�
dt

= ± �f���t�� − 2��t�V�t� . �3.26�

inally, a change of time variable from t to � �defined in �3.22�� permits the presentation of the
ntire space of solutions to the system under consideration in closed form. Indeed, considering V,

f , � as functions of � one gets from �3.25� and �3.26�, respectively,

df

d�
= 2V��� , �3.27�

d����
d�

�̇�t� = ± �f��� − 2�V��� , �3.28�

here the time derivative of � is given by the constraint �3.23�. The integration of these two
quations is trivial, yielding f , � as

f��� = 	 + 2 V���d� , �3.29�

���� =  ± 1

�
� f��� − 2�V���

4�� + ��2 − 12�� + 6f��� + 12�h��0�−1/2�
d� . �3.30�
he line element in the new time � reads
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ds2 = −
d�2

��4�� + ��2 − 12�� + 6f��� + 12�h��0�−1/2��
+ �e−2��+��t�����1/3 dx2 + �e�4�−2��t�����1/3 dy2

+ �e�−2�+4��t�����1/3 dz2 �3.31�

ith t��� given by the integral form of �3.23�,

t��� = ± 1

��4�� + ��2 − 12�� + 6f��� + 12�h��0�−1/2�
d� �3.32�

hile the density and pressure are given as

���� = h��0�−1/2�, p��� = �0�−1/2h���0�−1/2� − h��0�−1/2� �3.33�

he prime denoting differentiation with respect to the argument. Quite independently of the way
hese solutions were obtained, one can straightforwardly check �through, say, a symbolic comput-
ng facility� that they do satisfy all 10 Einstein’s equations, the generalized KG and the continuity
quation. Furthermore, since no extra ansatz has been involved in the process of integration of the
ystem �2.8�–�2.10�, equations �3.29�–�3.33� represent the full space of solutions to the Einstein
lus matter system considered. The functions V, h can be freely specified to obtain special case
olutions.

V. DECOUPLING OF THE SCALAR DEGREE AND THE SOLUTION SPACE
OR THE BIANCHI TYPE V

In this case the basis one-forms are 	1=e−x dy, 	2=e−x dz, 	3=dx. The G1
0=0 Einstein equa-

ion �due to spatial homogeneity �=��t� and �=��t� and therefore there is no corresponding
omponent of the matter tensor� implies c=ab. Thus the initial metric is taken as

g�� =�
− a3b3 0 0 0

0 ab 0 0

0 0 a2e−2x 0

0 0 0 b2e−2x
� . �4.1�

he nonzero components of the Einstein tensor G�
�, and the energy-momentum tensors T�

�1��, T�
�2��,

ll multiplied by a3b3, are given by

G0
0 = 3a2b2 −

ȧ2

2a2 −
2ȧḃ

ab
−

ḃ2

2b2 , �4.2�

G1
1 = a2b2 +

3ȧ2

2a2 +
2ȧḃ

ab
+

3ḃ2

2b2 −
ä

a
−

b̈

b
, �4.3�

G2
2 = a2b2 +

ȧ2

a2 +
2ȧḃ

ab
+

2ḃ2

b2 −
ä

2a
−

3b̈

2b
, �4.4�

G3
3 = a2b2 +

2ȧ2

a2 +
2ȧḃ

ab
+

ḃ2

b2 −
3ä

2a
−

b̈

2b
, �4.5�

T0
�1�0 = − a3b3V��� − 1

�̇2, �4.6�
2
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T1
�1�1 = T2

�1�2 = T3
�1�3 = − a3b3V��� + 1

2�̇2, �4.7�

T0
�2�0 = − a3b3��t� , �4.8�

T1
�2�1 = T2

�2�2 = T3
�2�3 = a3b3p���t�� . �4.9�

The situation is similar to the type I case, and thus forming the difference �multiplied by a3b3�
2
2−G1

1=T2
�1�2+T2

�2�2−T1
�1�1−T1

�2�1 we get the following equation involving only the scale factors:

−
ȧ2

2a2 +
ḃ2

2b2 +
ä

2a
−

b̈

2b
= 0, �4.10�

hich can be integrated yielding

b�t� = e�ta�t� . �4.11�

he Klein-Gordon equation �2.9� becomes

− V���� −
e−3�t�̈�t�

a6�t�
= 0 �4.12�

hile the conservation of the fluid energy-momentum tensor �continuity equation� gives

3
ȧ

a
+

�̇

p��� + �
+

3

2
� = 0. �4.13�

gain, the only other equation to be solved is the constraint equation which reads

6� ȧ

a
	2

+ 6�
ȧ

a
+ �2 − 6e2�ta4 − �̇2 − 2e3�ta6�V��� + �� = 0, �4.14�

here the fourth term is the only nontrivial difference from the corresponding equation �3.16� and
ts presence is due to the nonvanishing curvature of the spatial slice.

Integrating �4.13� �in the parametrization �3.17�� and solving �4.12� for a�t�, we obtain the
ollowing results for the matter density ��t�, the scale factor a�t� and its logarithmic derivative

� = h��0a−3e−�3/2��t� , �4.15�

a = �−
e−3�t�̈

V����
	1/6

, �4.16�

ȧ

a
=

1

6���

�̈
−

V����
V����

�̇ − 3�	 . �4.17�

se of these equations in the quadratic constraint equation �4.14� �multiplied by −2e3�ta6� yields

���

�̈
−

V����
V����

�̇	2

− 3�2 − 36�−
�̈

V����
	2/3

− 6�̇2 + 12
�̈

V����
V���

+ 12
�̈

V����
h��0�−

�̈

V����
	−1/2	 = 0 �4.18�
hich, with the same definition of �, translates into
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� �̇

�
	2

− 3�2 − 36�2/3 − 6f��� − 12�h��0�−1/2� = 0. �4.19�

y arguments completely analogous to the previous type I case, the final form of the solution is,
n this case

f��� = 	 + 2 V���d� , �4.20�

���� =  ± 1

�
� f��� − 2�V���

3�2 + 36�2/3 + 6f��� + 12�h��0�−1/2�
d� , �4.21�

ds2 = −
d�2

��3�2 + 36�2/3 + 6f��� + 12�h��0�−1/2��
+ �1/3 dx2 + e−�t���−2x�1/3 dy2 + e�t���−2x�1/3 dz2

�4.22�

ith t��� given by the integral form of �4.19�,

t��� = ± 1

��3�2 + 36�2/3 + 6f��� + 12�h��0�−1/2�
d� , �4.23�

hile the density and pressure are given as

���� = h��0�−1/2�, p��� = �0�−1/2h���0�−1/2� − h��0�−1/2� . �4.24�

he remarks at the end of the preceding section apply also here.

. DISCUSSION AND CONCLUSIONS

We have discussed the dynamics of a scalar field with an arbitrary potential, minimally
oupled to a general �anisotropic� Bianchi type I and V geometry, in the presence of a perfect fluid
ource obeying a general equation of state. In the case of vacuum, the rich structure of outer
utomorphisms for these two symmetry groups entails the existence of some integrals of motion:
ndeed, consider the generators of the rigid symmetries �2.3�, i.e., the vector fields in the space of
ependent variables XI=�I�

� 
���� /�
��� where ��
� satisfy �I�

� C�

� =�I�

� C�

� +�I


� C��
� . If one performs

he appropriate change of variables 
��→z�� which brings one �or more, if possible� generator
nto each canonical form, say � /�z11, then Einstein’s field equations written in the new variables
o not explicitly depend on z11. Thus the system becomes of first order in the variable S11 and
herefore an integral of motion arises.

The initial choice of the time gauge in which the lapse is equal to the determinant of the scale
actor matrix has a twofold advantage: First, it enables the corresponding integrals of motion �in
he presence of the matter content chosen� to be revealed. Second, it makes the Klein-Gordon
quation purely algebraic in the scale factor variables. As a result, when the utilization of the
ntegrals of motion has reduced the number of these variables to one, this equation gives this last
cale factor as a function of the second derivative of the scalar field, the derivative of the potential
ith respect to the scalar field, and of time. Substitution of this form of the scale factor into the
nly equation remaining to be solved, i.e., the quadratic constraint, results in a single ODE for the
calar field �without any explicit time dependence�. The utilization of a final time gauge adapted
o the scalar field enables the reduction of this equation to first order and subsequently leads to the
omplete integration of the entire system of Einstein plus matter field equations. The description
f the space of solutions contains, in an integral form, the arbitrary functions of the final time �,
���, and h��0�−1/2�. The presence of this twofold arbitrariness corresponds to the fact that we
ave not specified either the form of the potential �as a function of the scalar field� or the equation

−1/2
f state. It is evident that prescribing V��� and h��0� � implicitly corresponds to a choice of
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otential form and equation of state. For example, the choice h=A��0�−1/2�1+
 gives through �4.24�
p=
�, i.e., the barotropic equation of state. For the scalar field, if we take the particular case �

�=	=h��0�−1/2�=0 �i.e., flat Robertson-Walker with no fluid� the choice V���=C /�� corre-
ponds to the functional form V= ±Ce�3�−��. If, on the other hand, someone insists in prescribing
��� and p���ªp�h� then the situation must be dealt with in the following manner: As far as the
ensity is concerned, the equation giving the pressure becomes the holonomic, first order differ-
ntial equation p�h�=wh��w�−h�w� with w standing for �0�−1/2 which can be straightforwardly
ntegrated. For example, a barotropic equation pª
� gives �=A��0�−1/2�1+
. As far as the matter
eld is concerned, the situation is somewhat more complicated as the results of choosing a
articular form V��� are influenced by the choice of the density h. As an example consider again
he case �=�=	=h��0�−1/2�=0 and an arbitrary potential form V���. Relaxing for a moment
3.30�, we get the following Klein-Gordon equation

−
V����
V���

+
6�

6�2��2���
�2������ − 6�2��3��� + 3������ = 0,

hich may be difficult to solve depending on the choice of V���. This is the price paid for
nsisting on prescribing V��� and not V��� in which case the solution would be given by
3.29�–�3.33� or �4.20�–�4.24� correspondingly. The particular choice V=V0e−�� corresponds to
he case considered in Ref. 11 and the equation above can be dealt with by choosing a new time
=e3�/2, in which the equation becomes the following first order in the derivative ��d� /d�:

48
d�

d�
− 96�3 + 24��2 − 9� = 0.

Finally, there are two cases which, at first sight, need to be separately examined. The first
oncerns the case of a constant potential V����V0, i.e., a cosmological constant term. Then,
����=0 and the definition of the final time � in Eq. �3.32� seems to be precarious. However, the

lein-Gordon Eq. �3.14� then implies that also �̈=0 and, surprisingly enough, � does exist.
ndeed, substituting V����V0 in the solutions �3.29�–�3.33� or �4.20�–�4.24� one can see that the
olution is still valid. This holds true even for V0=0. The second case arises when the ratio
¨ /V����=−1/c6, for, then, the change of time from t to � is not valid. In this case, the remaining
cale factor is given by a�t�=ce−��+��t/3 in the type I case or a�t�=ce−�t/2 in the type V case. The
ontinuity equation ��3.15� or �4.12�, respectively� implies that the pressure and density are con-
tants, say, p0 and �0. The remaining equations dictate ��t�=At+B and V���=V0 and there exists
relation between c, p0, �0, A, and B due to the quadratic constraint.

The general properties of the space of solutions found for both type I and type V cases, e.g.,
sotropization, attractors and self-similarity, and quintessence, will be examined in a forthcoming
aper, in which also particular cases of high interest are to be explicitly elaborated. Possible
pplications of the method exhibited here can be the cases of D+1 spatially homogeneous space-
imes, in which the outer automorphisms are rich enough to provide sufficient integrals of motion.
hen the method will be applicable if the matter content is such that the integrals of motion
ersist.

1 A. H. Guth, Phys. Rev. D 23, 347 �1981�; A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 �1982�; A. D.
Linde, Phys. Lett. B 108, 389 �1982�; G. F. R. Ellis and M. S. Madsen, Class. Quantum Grav. 8, 667 �1991�; J. D.
Barrow, Phys. Rev. D 48, 1585 �1993�; F. E. Schunck and E. W. Mielke, ibid. 50, 4794 �1994�; P. Parsons and J. D.
Barrow, ibid. 51, 6757 �1995�; R. Maartens, D. R. Taylor, and N. Roussos, ibid. 52, 3358 �1995�; I. Chimento and
A. Jakubi, Int. J. Mod. Phys. D 5, 313 �1996�; R. H. Brandenberger, astro-ph/0411671.

2 M. S. Madsen, Class. Quantum Grav. 5, 627 �1988�; G. F. R. Ellis and M. S. Madsen, ibid. 8, 667 �1991�.
3 V. A. Belinskii, L. P. Grishchuk, I. M. Khalatnikov, and Ya. B. Zel’dovich, Phys. Lett. B 155, 232 �1985�; V. A.
Belinskii, L. P. Grishchuk, Ya. B. Zel’dovich, and I. M. Khalatnikov, JETP 62, 195 �1985�; V. A. Belinskii and I. M.
Khalatnikov, ibid. 66, 441 �1987�; Y. Kitada and K. I. Maeda, Phys. Rev. D 45, 1416 �1992�; Y. Kitada and K. Maeda,
Class. Quantum Grav. 10, 703 �1993�; S. Kolitch and B. Hall, gr-qc/9410039; J. Ibanez and I. Olasagasti, J. Math. Phys.
37, 6283 �1996�; A. Coley, J. Ibanez, and R. J. van den Hoogen, ibid. 38, 5256 �1997�; S. Foster, Class. Quantum Grav.

15, 3485 �1998�; J. Ibanez and I. Olasagasti, ibid. 15, 1937 �1998�; R. J. van den Hoogen, A. A. Coley, and D. Wands,

                                                                                                            



1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

042505-11 Decoupling of the general scalar field mode J. Math. Phys. 47, 042505 �2006�

                        
ibid. 16, 1843 �1999�; E. Gunzig et al., ibid. 17, 1783 �2000�; A. P. Billyard and A. A. Coley, Phys. Rev. D 61, 083503
�2000�; A. A. Coley and M. Goliath, ibid. 62, 043526 �2000�; A. A. Clarkson, A. A. Coley, and S. D. Quinlan, ibid. 64,
122003 �2001�.

4 Dynamical Systems in Cosmology, edited by J. Wainwright and G. F. R. Ellis �Cambridge University Press, Cambridge,
1997�.

5 J. D. Barrow, A. B. Burd, and D. Lancaster, Class. Quantum Grav. 3, 551 �1986�; A. B. Burd and J. D. Barrow, Nucl.
Phys. B 308, 929 �1988�.

6 J. E. Lidsey, Class. Quantum Grav. 9, 1239 �1992�; J. M. Aguirregabiria, A. Feinstein, and J. Ibanez, Phys. Rev. D 48,
4662 �1993�.

7 A. Feinstein and J. Ibanez, Class. Quantum Grav. 10, 93 �1993�.
8 I. G. Moss and W. A. Wright, Phys. Rev. D 29, 1067 �1984�; M. S. Madsen, Gen. Relativ. Gravit. 25, 855 �1993�; J. P.
Abreut, P. Crawford, and J. P. Mimoso, Class. Quantum Grav. 11, 1919 �1994�.

9 B. C. Paul, Pramana, J. Phys. 53, 833 �1999�.
0 G. Oliveira-Neto, Braz. J. Phys. 31, 456 �2001�.
1 J. G. Russo, Phys. Lett. B 600, 185 �2004�.
2 D. S. Salopek and J. R. Bond, Phys. Rev. D 42, 3936 �1990�.
3 A. Kehagias and G. Kofinas, Class. Quantum Grav. 21, 3871 �2004�.
4 I. P. Neupane, Class. Quantum Grav. 21, 4383 �2004�; I. P. Neupane and D. L. Wiltshire, hep-th/0504135; I. P. Neupane,
Nucl. Phys. B, Proc. Suppl. 129, 800 �2004�.

5 I. Chimento and A. Jakubi, Int. J. Mod. Phys. D 5, 71 �1996�; 5, 313 �1996�.
6 V. Mendez, Class. Quantum Grav. 13, 3229 �1996�.
7 C. Wetterich, Nucl. Phys. B 302, 668 �1988�; Astron. Astrophys. 301, 321 �1995�; P. G. Ferreira and M. Joyce, Phys.
Rev. Lett. 79, 4740 �1997�; Phys. Rev. D 58, 023503 �1998�; E. J. Copeland, A. R. Liddle, and D. Wands, ibid. 57, 4686
�1998�.

8 A. P. Billyard, A. A. Coley, and R. J. vandenHoogen, Phys. Rev. D 58, 123501 �1998�.
9 A. P. Billyard et al., Class. Quantum Grav. 16, 4035 �1999�.
0 B. Saha, gr-qc/0412078.
1 L. Chimento and A. Cossarini, Class. Quantum Grav. 11, 1177 �1994�.
2 R. M. Hawkins and J. E. Lidsey, Phys. Rev. D 66, 023523 �2002�; J. E. Lidsey, Class. Quantum Grav. 21, 777 �2004�;
J. D. Barrow, Observatory 113, 210 �1993�.

3 F. L. Williams and P. G. Kevrekidis, Class. Quantum Grav. 20, L1 �2003�; A. A. Garcia, M. Cataldo, and S. del Campo,
Phys. Rev. D 68, 124022 �2003�; F. L. Williams, P. G. Kevrekidis, T. Christodoulakis, C. Helias, G. O. Papadopoulos,
and Th. Grammenos, in Progress in General Relativity and Quantum Cosmology Research �Nova Science Publication,
in press�.

4 T. Christodoulakis, C. Helias, P. G. Kevrekidis, I. G. Kevrekidis, and G. O. Papadopoulos, in Non Linear Waves:
Classical and Quantum Aspects, edited by F. Kh. Abdullaev and V. V. Konotop �Kluwer Academic, Berlin, 2004�.

5 T. Christodoulakis, G. Kofinas, E. Korfiatis, G. O. Papadopoulos, and A. Paschos, J. Math. Phys. 42, 3580 �2001�.
6 J. Samuel and A. Ashtekar, Class. Quantum Grav. 8, 2191 �1991�.
7 O. Coussaert and M. Hennaux, Class. Quantum Grav. 10, 1607 �1993�.
8 R. T. Jantzen, Commun. Math. Phys. 64, 211 �1979�; J. Math. Phys. 23, 1137 �1982�.
9 C. Uggla, R. T. Jantzen, and K. Rosquist, Phys. Rev. D 51, 5522 �1995�.
0 O. Heckman and E. Schucking, in Relativistic Cosmology in Gravitation (An Introduction to Current Research), edited
by L. Witten �Wiley, New York, 1962�.
                                                                                                            



I
s

I

a
s
o
o
p

o
p
S
p
i
p
d
p

a

b

JOURNAL OF MATHEMATICAL PHYSICS 47, 042901 �2006�

0

                        
sochronous and partially isochronous Hamiltonian
ystems are not rare
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A technique is provided that allows to associate to a Hamiltonian another,
�-modified, Hamiltonian, which reduces to the original one when the parameter �
vanishes, and for ��0 features an open, hence fully dimensional, region in its
phase space where all its solutions are isochronous, i.e., completely periodic with
the same period. The class of Hamiltonians to which this technique is applicable is
large: it includes for instance the Hamiltonian characterizing the classical many-
body problem with potentials that are translation-invariant but otherwise com-
pletely arbitrary, which is largely used in this paper to illustrate these findings. We
also discuss variants of this technique that yield partially isochronous Hamilto-
nians, which also feature a region in their phase space where all solutions are
isochronous, that region having however a bit less than full dimensionality �for
instance codimension one or two� in phase space. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2188211�

. INTRODUCTION AND OUTLINE OF MAIN FINDINGS

Not too long ago a �so-called� “trick” was introduced,2 characterized by a real parameter �
nd capable of transforming an autonomous dynamical system �belonging to a fairly large class,
ee below� into another, as well autonomous, system. The �-modified dynamical system thereby
btained, while reducing to the original system for �=0, features for ��0 in its phase space an
pen, hence fully dimensional, region in which all motions are completely periodic with the fixed
eriod

T =
2�

�
, �1�

r possibly with a �generally small� integer multiple of this period. Here and hereafter by com-
letely periodic we mean that the periodicity property is shared by all the dependent variables.
ystems featuring such a periodicity property—with a period independent of the initial data
rovided the initial data belong to some open, fully dimensional set of such data—are here called
sochronous; and we call partially isochronous the dynamical systems for which the complete
eriodicity property with a fixed period obtains for a set of initial data having a bit less than full
imensionality in phase space �for instance, for a set of initial data belonging to a manifold in
hase space of codimension one or two, see below�.

This trick has been extensively exploited to identify and investigate isochronous systems.1–38
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ere, to illustrate our main findings, we focus mainly on the dynamical system describing an
-body problem, as characterized by the Hamiltonian

H�p� ,q� � =
1

2�
n=1

N

pn
2 + V�q� � + C , �2�

here the arbitrary constant C has been introduced for convenience �see below� and the potential
�q� ��V�q1 ,q2 , . . . ,qN� shall generally be assumed translation invariant,

V�q� + a� � V�q1 + a,q2 + a, . . . ,qN + a� = V�q� � , �3a�

ith a an arbitrary constant, entailing �for infinitesimal a�

�
n=1

N
�V�q� �
�qn

= 0. �3b�

his is the standard Hamiltonian for the nonrelativistic N-body problem, entailing the standard
amiltonian equations of motion

q̇n = pn, ṗn = −
�V�q� �
�qn

, �4�

s well as the corresponding Newtonian equations of motion

q̈n = −
�V�q� �
�qn

, �5�

he total momentum conservation formula,

P�p� � = �
n=1

N

pn, �6a�

Ṗ = 0, �6b�

nd the “center-of-mass” evolution

Q�q� � =
1

N
�
n=1

N

qn, �7a�

Q�t� = Q�0� +
P

N
t . �7b�

Notation: Here and always below N is a positive integer �N�2�, the �real� independent
ariable t has the significance of physical time, superimposed dots indicate differentiations with
espect to this variable, indices such as n ,m run from 1 to N unless otherwise indicated, underlined
ymbols denote N-vectors, for instance q� ��q1 , . . . ,qN�, and of course we use �here and below� the
hort-hand notation according to which Q�t��Q�q� �t��. Note that, for simplicity, we assume here
ll the particles to have the same mass, and the motions to occur in one-dimensional space; but
hese restrictions can be dispensed with, see Sec. IV.

In the context of this N-body problem the trick consists of the following change of dependent
nd independent variables:

ˇ
qn�t� = exp�i��t�qn��� , �8a�
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� =
exp�i�t� − 1

i�
, �8b�

here � is a constant to be chosen appropriately �see below�. Note that this change of variables
ntails the following relations among the initial data for the “old” dependent variables qn and the
new” dependent variables q̌n:

qn�0� = q̌n�0�, qn��0� = q̇̌�0� − i��q̌n�0� . �9�

ere and hereafter primes denote differentiations with respect to the argument of the function they
re appended to, and of course qn��0� denotes the value of qn�����dqn��� /d� at �=0.

The insertion of this change of variables, �8�, in the �autonomous� dynamical system charac-
erized by the Newtonian equations of motion �5� yields, as it can be easily verified, the �autono-
ous� dynamical system

q̈̌n − �2� + 1�i�q̇̌n − ��� + 1��2q̌n = −
�V�q̌��

�q̌n

, �10a�

rovided the potential V�q� � satisfies the scaling property

V�cq� � = c�V�q� � �10b�

where c is an arbitrary constant and � is the exponent characterizing the scaling property� and
orrespondingly the parameter � is assigned as follows:

� =
2

� − 2
. �10c�

his new system of ODEs �10�, determining the time evolution of the new dependent variables
ˇn� q̌n�t�, is the �-dependent dynamical system and, as we now show, it is generally isochronous
rovided the parameter � is real and rational. Note that � is indeed real and rational provided �,
ee �10b�, is itself real and rational �and different from 2, ��2; see �10c��. Also note that the
ynamical variables q̌n�t� are now necessarily evolving in the complex q̌-plane; this shall be the
ase as well for all the evolutions considered hereafter. Of course in order that derivatives with
espect to complex variables �such as �, see �8b�� make good sense, one must deal �as we shall
lways do� with analytic functions. On the other hand, any evolution of the N complex coordinates

ˇ n�t� is completely equivalent to the evolution of the 2N coordinates that obtain by considering
eparately the real and the imaginary parts of these coordinates; and there are cases �see for
nstance Chap. 4 of Ref. 3� when such an evolution can, as it were “more physically,” be
nterpreted—by identifying the complex plane with a real plane—as the evolution of N “physical”
ointlike particles in a plane �say, N particles the positions of which are identified by real vectors
n the horizontal plane, r�n�t���Re�q̌n�t�� , Im�q̌n�t�� ,0��.

To show that the time evolution entailed by the equations of motion �10� �with � real and
ational� is indeed isochronous we point out to begin with that the change of dependent variable
8b� entails that, as the �real� “physical time” variable t evolves from t=0 onwards, the �complex�
imelike variable � goes round and round, in the complex �-plane, on the circle C centered at i /�
nd having radius 1/� �draw diagram�, traveling a full circle in every time interval T, see �1�.
ence, if the functions qn��� of the complex variable � are holomorphic in the �closed� disk D

nclosed by the circle C, the corresponding variables q̌n�t� �see �8� and �1�� are �-periodic with
eriod T,

q̌n�t + T� = exp�2i���q̌n�t� , �11�

nd this entails that they are indeed periodic with period T if � is an integer, or with a period

hich is an integer multiple of T if � is a �real and� rational number �as we hereafter assume�. On
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he other hand, the functions qn��� are just the analytic continuation for complex time of the
olutions of the Newtonian equations of motion �5�—corresponding to the formal replacement of
he real variable t by the complex variable �, or equivalently to the replacement of the equations
f motion �5� with the analogous equations

qn� = −
�V�q� �
�qn

, �12�

here qn�qn��� and of course appended primes indicate differentiations with respect to the new
complex� independent variable �. It is then clear that, provided the initial data �see �9�� for these
quations of motion are so assigned as to avoid that their right-hand sides be singular �at
=0�—as we shall hereafter assume—their solutions qn��� are certainly holomorphic functions of

he complex variable � for ����R for some R�0, namely �at least� inside a circle of positive radius
, centered at the origin ��=0� in the complex �-plane—as implied by the standard theorem
uaranteeing the existence, uniqueness and analyticity of the solutions of analytic �systems of�
DEs. The �minimum� value of R depends on the initial values of the right-hand sides of the

quations �of motion in the complex timelike variable �� �12�, on the distances in the �complex�
-plane of the initial assignments qn�0� of the dependent variables from the values of these
ariables that cause the right-hand sides of the ODEs �12� to become singular, and on the �moduli
f� the initial assignments qn��0� of the derivatives �see �9��. But it stands to reason �see examples
elow, and in the literature quoted above� that there generally exist an open set of initial data q̌n�0�
nd q̌n�0� having full dimensionality in the �phase� space of these dependent variables such that
via �9��

R �
2

�
. �13�

learly the analysis we just made implies then that the time evolution of the dependent variables
ˇn�t� resulting from such initial data is completely periodic, since this inequality, �13�, implies that
he circle of radius R centered at the origin in the complex �-plane encloses the circular disk D,
mplying the holomorphic character of the functions qn��� in this �closed� disk.

The development reported so far has tersely reproduced—in the specific context of the stan-
ard many-body problem, characterized by the Newtonian equations of motion �5�—the argument
ssociating to a given dynamical system an �-modified system—in this case, characterized by the
ewtonian equations of motions �10�—that has the remarkable property to be isochronous. As

ndicated by the argument reviewed above, the main condition required to obtain such an isoch-
onous system is the validity of the scaling property �10b� with � real and rational ���2�. And let
s reemphasize that, as implied by the above argument and as discussed in detail in the literature
see for instance Refs. 8 and 11�, in order that the �-modified system of Newtonian equations �10�
e isochronous it is by no means required that the original system from which it was obtained
namely, the system of Newtonian equations of motion �5� corresponding to �10� with �=0� be
tself isochronous or integrable.

But note that it is far from obvious—and indeed often not true—that the new �-modified
ewtonian equations of motion �10� be Hamiltonian, i.e., obtainable from a Hamiltonian.

The main contribution of the present paper is to introduce a technique producing, from a given

amiltonian H, an �-modified Hamiltonian H̃ yielding isochronous equations of motion. The
ain requirement on the original Hamiltonian H for the applicability of this technique is that the

ynamics it entails allow the identification of a “collective variable,” explicitly defined in terms of
he Hamiltonian canonical coordinates and momenta, the time evolution of which is essentially
dentical to time itself. If we denote such a variable as 	�p� ,q� �, it will be characterized by the
ormula

�	�p,q�,H�p,q�� = 1. �14�
� � � �
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Notation: Here and hereafter the Poisson bracket �F ,G� of two functions F�p� ,q� � ,G�p� ,q� � of
he canonical coordinates and momenta is defined in the standard manner,

�F�p� ,q� �,G�p� ,q� �� = �
n=1

N � �F�p� ,q� �

�qn

�G�p� ,q� �

�pn
−

�F�p� ,q� �

�pn

�G�p� ,q� �

�qn
	 . �15�

The �-modified Hamiltonian H̃ yielding isochronous motions is then defined as follows:

H̃�p� ,q� ;�� = u�p� ,q� ;��H�p� ,q� � , �16a�

u�p� ,q� ;�� = 1 + i�	�p� ,q� � . �16b�

et us emphasize that hereafter we only consider the time evolution yielded by this �-modified

amiltonian H̃�p� ,q� ;��, and therefore the time evolution of functions of the Hamiltonian variables
pn and qn—such as H�p� ,q� � , P�p� � ,Q�q� � ,u�p� ,q� ;��, see �2�, �6a�, �7a�, and �16b�—obtains via the
ime dependence of these Hamiltonian variables pn� pn�t� ,qn�qn�t� implied by the standard

amiltonian equations �see below� associated with the Hamiltonian H̃�p� ,q� ;��; hence the time
volution of these collective variables is given by the standard formula characterizing the Hamil-
onian evolution of any function F�t�=F�p� �t� ,q� �t�� of the Hamiltonian variables,

Ḟ = �F,H̃� . �17�

n particular it is crucial to note that—as implied by this formula via �16� and �14�—the collective
uantities H�t�, respectively, u�t ;�� evolve now as follows:

Ḣ = − i�H �18a�

ntailing

H�t� = H�0�exp�− i�t� , �18b�

espectively,

u̇ = i�u �19a�

ntailing

u�t;�� = u�0;��exp�i�t� . �19b�

ote the consistency, via �16a�, of the time evolutions �18b� and �19b� with the obvious fact that

he Hamiltonian H̃ is a constant of motion.
To illustrate our findings in a specific context we now focus again on the �unmodified� N-body

amiltonian �2�, taking advantage of the fact that, as a consequence of its Galilean invariance, see
2� and �3�, a collective variable 	 satisfying �14� is provided by the following explicit formula:

	�p� ,q� � =
NQ�q� �

P�p� �
, �20�

ee �6a� and �7a�. Of course to this quantity one could add an arbitrary function of P, and also of
ther quantities, if any, which Poisson commute with the �unmodified� Hamiltonian H and are
herefore constants of motion for the evolution determined by this Hamiltonian; but for simplicity
e refrain from doing so in the following.

In the following Sec. II we demonstrate, for this specific case, the isochronous character of the

-modified Hamilton H̃, as given by �16� with �2� and �20�, �6a� and �7a�. Let us emphasize that,

uite remarkably, to prove the isochronous character of this �-modified Hamiltonian no additional
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roperty of the original N-body Hamiltonian H besides Galilean invariance is required, in par-
icular no scaling property such as that entailed by the condition �10b�—which was instead es-
ential to allow the transformation via the trick �8� from the �autonomous� Newtonian equations of
otion �5� to the �as well autonomous� �-modified Newtonian equations of motion �10�. On the

ther hand the Newtonian equations of motion entailed by the �-modified Hamiltonian H̃, while
aving the appealing property to be themselves evidently Hamiltonian �which opens the possibil-
ty to study the quantized versions of the corresponding N-body problems� and of course to be
sochronous, seem somewhat less susceptible of a “physical interpretation” than the equations, see
10�, yielded by the standard approach based on the application of the trick �8�; indeed these novel
ewtonian equations of motion cannot be generally written in quite explicit form, although the
orresponding Hamiltonian equations can be quite explicitly exhibited and are indeed relatively
eat, see below.

In Sec. III we tersely discuss some specific examples of many-body problems, characterized
y specific assignments of the potential V�q� �. In Sec. IV we outline various generalizations of our
pproach, still in the context of nonrelativistic N-body problems: to the case with different masses,
nd to multidimensional space. In Sec. V we indicate how our approach to generate isochronous
amiltonian systems can be applied in the context of more general Hamiltonian systems than

hose characterizing the nonrelativistic many-body problem. In Sec. VI we consider �different�
ariants of our technique �as applied again to the standard many-body problem, see �2�, �3�, �4�
nd �5��, yielding �partially isochronous� modified Hamiltonians characterized by a time evolution
hat features a set of initial data—having however a bit less than full generality in phase space,
eing restricted to lie on a manifold of nonvanishing �but generally small, and in any case
-independent� codimension—out of which emerge motions all of which are again completely
eriodic with the same, fixed period. The paper is concluded by a Sec. VII entitled Outlook, in
hich we mention further developments �to be pursued in future publications� suggested by the

esults reported in this paper.

I. THE ISOCHRONOUS N-BODY HAMILTONIAN

In this section we demonstrate the isochronous character of the time evolution entailed by the

-modified N-body Hamiltonian H̃�p� ,q� ;�� associated to the classical N-body problem, as defined
n the preceding section by �16� with �2�, �20�, �6a�, and �7a�.

The time evolution associated with the Hamiltonian H̃�p� ,q� ;�� is given by the following
ormulas:

q̇n = �qn,H̃� =
�H̃

�pn
= upn +

�1 − u�H
P

, �21�

ṗn = �pn,H̃� = −
�H̃

�qn
= − u

�V�q� �

�qn
−

i�H

P
. �22�

rom the latter Hamiltonian equations, �22�, we get �via �6a� and �3b��

Ṗ = �P,H̃� = −
Ni�H

P
, �23a�

ntailing, via �18b�,

P�t� = P�0��1 − 
 exp�− i�t�
1 − 


	1/2

. �23b�
ere and often below we use the short-hand notation
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 =
2NH�0�

2NH�0� − P2�0�
. �24�

ikewise, from the Hamiltonian equations of motion �21� and �7a� we get

Q̇ =
uP

N
+

�1 − u�H
P

, �25a�

nd, via �16b�, �20�, and �19b�,

Q�t� = �Q�0�exp�i�t�
P�0�

+
exp�i�t� − 1

Ni�
	P�t� , �25b�

s well as �from �25a�, �16b�, and �20��

H = −

P2
Q̇ − i�Q −
P

N
�

Ni�Q
. �26�

inally we recall that the time evolution of H�t� and u�t ;�� is provided by the explicit expressions
18� and �19�, of course with

H�0� =
1

2�
n=1

N

pn
2�0� + V�q� �0�� + C , �27�

u�0;�� = 1 + Ni�
Q�0�
P�0�

= 1 + i�
�n=1

N
qn�0�

�n=1

N
pn�0�

. �28�

It clearly follows from its explicit expression �23b� that P�t� has �primitive� period T if �
�
1 and has period 2T if �
��1:

P�t + T� = P�t� if �
� � 1, �29a�

P�t + 2T� = P�t� if �
� � 1. �29b�

ote that in the special case when the modulus of 
 is just unity, �
�=1, clearly P�t�, see �23b�,
anishes at some finite �real� value t= ts , P�ts�=0, and clearly at this time ts the equations of
otion �21� and �22� become singular due to the blow-up of their right-hand sides. This is not

urprising, in view of the appearance of P in the denominator in the definition of our Hamiltonian
˜ �p� ,q� ;��, see �16� with �20�. And of course the periodicity properties of P�t� are as well shared
y the center-of-mass coordinate Q�t�, see �25b�,

Q�t + T� = Q�t� if �
� � 1, �30a�

Q�t + 2T� = Q�t� if �
� � 1. �30b�

ence we conclude that the motion of the center of mass of our system is isochronous, the
sochronicity period being T or 2T depending whether the initial data entail that the modulus of the
uantity 
, see �24�, is smaller or larger than unity �but recall that H�t� and u�t ;�� are always
eriodic with period T, see �18� and �19��.
Let us now turn to the relative motion. To this end let us set
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pn,m = pn − pm, qn,m = qn − qm. �31�

ne then notes by a routine computation �see �20�� that

�pn,m,	� = 0, �qn,m,	� = 0, �32�

rom which it immediately follows that

q̇n,m = �qn,m,H̃� = �qn,m,H�u = u�0��qn,m,H�exp�i�t� , �33a�

ṗn,m = �pn,m,H̃� = �pn,m,H�u = u�0��pn,m,H�exp�i�t� . �33b�

ote that we have more ODEs than independent unknowns. However, these ODEs all follow from
he same equations of motion and are hence necessarily consistent: of course only N−1 of the
DEs �33b� are independent, and likewise only N−1 of the ODEs �33a�. To analyze the time

volution of these dependent variables pn,m�t� and qn,m�t� it is now convenient to perform the
ollowing change of �independent and dependent� variables �namely, essentially again the trick,
ee �8�, but in the simpler version with �=0�:

qn,m�t� = �n,m���, pn,m�t� = �n,m��� , �34a�

here the new �complex� timelike variable � is again defined as above �see �8b��,

� =
exp�i�t� − 1

i�
. �34b�

ote that this definition, �34b�, entails that �=0 for t=0, so that, via �34a�, the initial data for the
ew dependent variables �n,m and �n,m coincide with the initial data for the original problem:

�n,m�0� = qn,m�0�, �n,m�0� = pn,m�0� . �35�

The time evolution of the dependent variables �n,m��� and �n,m��� is now given, from �33� via
34�, by the following �autonomous� equations of motion:

�n,m� = u�0;���n,m, �36a�

�n,m� = − u�0;��
�V����
��n,m

, �36b�

here of course appended primes indicate differentiations with respect to the new �complex�
ndependent variable �. �We hope the attentive reader will pardon the abuse entailed by our use of
he notation �V���� /��n,m on the right-hand side of the last equation, and will understand the
ignificance of this notation, which is of course permissible thanks to the translation-invariant
haracter of the potential V�q� �, see �3�, entailing that V�q� � is only a function of the difference of
he particle coordinates, see �31� and �34a��. And now, by the standard argument associated with
he trick—as tersely reviewed in the preceding section, see the discussion following �12�, the
daptation of which to the present circumstances is too obvious to require a detailed treatment—
ne easily concludes that the �nonautonomous� dynamical system characterized by the equations
f motion �33� is isochronous, there being an open set of initial data qn,m�0�, pn,m�0�, having full
imensionality in the space of these data, such that the resulting motions are completely periodic
ith period T,

qn,m�t + T� = qn,m�t�, pn,m�t + T� = pn,m�t� . �37�

To formulate our final result we need coordinates to describe the relative motion. Finding
anonical coordinates that do this is notoriously awkward, but also not necessary for us here. Let

s therefore introduce
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p̃n = pn − P, q̃n = qn − Q , �38�

hich are noncanonical coordinates describing the relative motion. It then follows from �37� that
pn and q̃n are all isochronous, as they are easily expressed in terms of the qn,m and the pn,m:

q̃n�t + T� = q̃n�t�, p̃n�t + T� = p̃n�t� . �39�

nd from this formula, via �38�, �29�, and �30�, we arrive at our fundamental conclusion, namely
hat the time evolution entailed by the �-modified Hamiltonian �16� possesses an open, hence fully
imensional, set of initial data p� �0� ,q� �0� such that the solutions of the corresponding initial-value
roblem are isochronous,

qn�t + T� = qn�t�, pn�t + T� = pn�t� if �
� � 1, �40a�

qn�t + 2T� = qn�t�, pn�t + 2T� = pn�t� if �
� � 1, �40b�

ith the constant 
 defined in terms of the initial data by �24�.
Let us end this section by also exhibiting the Newtonian equations of motion associated with

ur isochronous dynamical system, that are of course obtained by time differentiating the first of
he two Hamiltonian equations, �21�, by then using the second, �22�, as well as �20�, �18b�, and
23a�, to get rid of all time-differentiated terms on the right-hand side of the resulting equations,
nd by finally using again �21� to get rid �to the extent possible, see below� of pn so as to get
ewtonian equations of motion that feature on their left-hand sides the “accelerations” q̈n and on

heir right-hand sides the corresponding “forces” expressed in terms of the positions qm and the
elocities q̇m of the “particles” �moving in the complex q-plane�. We thus obtain the following
quations of motion:

q̈n − i�q̇n = − 
1 + Ni�
Q

P
�2�V�q� �

�qn
+ F , �41a�

F = −
2i�H

P

1 +

N2i�QH

2P3 � = Q̈ − i�Q̇ . �41b�

ote that the “collective force” F acts equally on all the coordinates qn, and it is moreover easily
een from the results reported above that the time dependence of this force is periodic �with period

or 2T, see �18�, �23b�, and �25b��. Moreover, this collective force F induces a collective,
eriodic, motion Q�t� of all the canonical coordinates qn�t�, and likewise a collective periodic
otion P�t� of all the canonical momenta pn�t�, the explicit time dependence of which is exhibited

bove �see �25a� and �23b��.
It should however be noted that these equations, �41�, do not quite have yet the Newtonian

orm, because the right-hand sides of �41a�, namely, the “forces,” are not yet expressed just in
erms of the coordinates qm and the velocities q̇m: a dependence on the canonical momenta pm still
ingers, albeit only via the collective coordinates P� P�p� � and F�F�p� ,q� �, see �6a� and �41b� with
2�. Actually the second of this collective coordinates can be rather neatly expressed in terms of
he first �via �26� and �41��,

F =
P2 − �N�Q̇ − i�Q� − 2P�2

N2Q
. �42�

ut in order to express P in terms of the coordinates qn and of the velocities q̇n—the first of which

ctually only enter via Q�q� � and V�q� �, see �7a� and �2�, while the second enter via Q̇=Q�q̇� � and the

ollective coordinate K,
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K � K�q̇� � =
1

2�
n=1

N

�q̇n�2, �43�

ee below—one should solve the following algebraic equation �of fifth degree in P�, obtained from
2� via �21� with �16b� and �20� �to obtain pn in terms of q̇n ,Q , P ,H� and then via �26� �to express

in terms of P,Q, and Q̇�:

P2�−
NS2

2
+ Ni�Qs�s − 1�S + K = �N�sQ�2�V + C� , �44a�

S = Q̇ − i�sQ = Q̇ − i�Q −
P

N
, �44b�

s = 1 +
P

Ni�Q
. �44c�

ut let us note that, if the initial data entail that

H�0� � H�p� �0�,q� �0�� = 0, �45a�

ielding via �18�,

H�t� = 0, �45b�

he Newtonian equations of motion take instead the much simpler, completely explicit, form

q̈n − i�q̇n = −� �n=1

N
q̇n

�n=1

N
�q̇n − i�qn�	2

�V�q� �
�qn

, �46�

s entailed by �41a� �with F=0, see �41b� with �45� and �25a�� �with �45�, �16b� and �20� yielding

P=N�Q̇− i�Q��; while in the special examples in which the original Hamiltonian H reduces to the
ree Hamiltonian �i.e., V+C=0, see examples below�, the Eq. �44� for P becomes a cubic.

In view of the significant simplification that obtains �here, and see also below� when the initial
ata entail the condition �45a�, let us note that the requirement that this condition holds restricts
he initial data to a hypersurface in the complex phase space of �complex� codimension one. But
his hypersurface can be shifted at will by varying the parameter C in the definition �2� of the
riginal Hamiltonian H. One way to justify this is by considering C itself as an additional dy-

amical variable rather than a given constant; then the absence in the Hamiltonian H̃�p� ,q� ;�� of
he corresponding canonical momentum entails that this quantity C is indeed time independent,
amely that C maintains for all time its initial value; which can then be assigned, together with the
ssignment of all the other initial data, so that �45a� holds. But let us emphasize that, while varying

does not affect the dynamics generated by the original Hamiltonian H, see �2�, it does instead

odify the dynamics yielded by the �-modified Hamiltonian H̃, see �16�.

II. EXAMPLES

In this section we discuss tersely the results reported above for some cases characterized by
pecific choices for the potentials V�q� �, see �2�.

. No potential
The very simplest case obtains for the choice
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V�q� � = 0, �47a�

.e., for the original Hamiltonian

H�p� ,q� � =
1

2�
n=1

N

pn
2 + C , �47b�

nd the �-modified Hamiltonian

H̃�p� ,q� ;�� = �1 + Ni�
Q�q� �

P�p� �	�1

2�
n=1

N

pn
2 + C	 . �47c�

ere and always below the collective coordinates Q and P are of course defined by �7a� and �6a�.
The Hamiltonian, respectively, Newtonian equations of motions yielded by this �-modified

amiltonian, �47c�, read

q̇n = �1 + Ni�
Q

P
	pn −

Ni�QH

P2 , �48a�

ṗn = −
i�H

P
, �48b�

espectively,

q̈n − i�q̇n =
P2 − �N�Q̇ − i�Q� − 2P�2

N2Q
. �48c�

lso, it is easily seen that the solution of the corresponding initial-value problem reads

pn�t� = pn�0� +
P�0�

N
��1 − 
 exp�− i�t�

1 − 

	1/2

− 1 , �49a�

qn�t� = qn�0� +
NQ�0�
P�0�

�exp�i�t�pn�t� − pn�0�� + pn�t�
exp�i�t� − 1

i�
, �49b�

ith 
 given by �24� and of course �see �48a�� with

pn�0� = �1 + Ni�
Q�0�
P�0� 	−1�q̇n�0� +

Ni�Q�0�H�0�
P2�0� 	 �49c�

n the context of the initial-value problem for the Newtonian equation of motions �48c�.
The isochronous character of this Hamiltonian many-body problem is now evident: its phase

pace is divided into two parts, that characterized by �
��1 and by solutions completely periodic
ith period T, see �1�, and that characterized by �
��1 and by solutions completely periodic with
eriod 2T, as stated in �40�, while on the separatrix between these two phase-space regions,
haracterized by the formula

�
� = 1, 
 = exp�i��, Im��� = 0, �50�

he equations of motion become singular at the �real� time ts= �� /��mod�T� due to the vanishing

t that time of the collective coordinate P , P�ts�=0, see �23b� and �48�.
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. Two-body homogeneous potential

Next, let us consider the standard many-body problem characterized by the following two-
ody potentials:

V�q� � =
1

2 �
n,m=1,n�m

N

Vnm�qn − qm�, Vnm�q� =
gnmq2k

2k
, �51�

here the “coupling constants” gnm satisfy the symmetry condition gnm=gmn and k is an arbitrary
nteger �positive or negative, but nonvanishing, and different from unity to exclude the uninterest-
ng “harmonic oscillator” case�. This choice allows a comparison with the isochronous equations
f motion of Newtonian type �10�—obtained via the application of the standard trick to the
ewtonian equations yielded by the original Hamiltonian H, see �2� with �51�—that in this case

ead as follows:

q̈̌n − 
 k + 1

k − 1
�i�q̇̌n − � k

�k − 1�2	q̌n = − �
m=1,m�n

N

gnm�q̌n − q̌m�2k−1. �52�

The �autonomous� Newtonian equations of motion �41� yielded by our approach read instead

q̈n − i�q̇n = − u2 �
m=1,m�n

N

gnm�qn − qm�2k−1 + F , �53�

ith u, respectively, F expressed in terms of Q�Q�q� � , P� P�q� � and H�H�p� ,q� �, see �7a�, �6a�,
nd �2� with �51�, by the formulas �16b� with �20�, respectively, �41b� �except that these are not
eally Newtonian equations of motion, as discussed above; the display of such equations, to the
xtent it is possible, see above, can be left to the diligent reader�.

In this case it is possible to provide explicit conditions on the initial data that are sufficient
but of course not necessary� to guarantee the isochronous behavior of the corresponding solution.
he task to exhibit them can be left to the diligent reader, who will find—if need be—guidance in

he literature �see for instance Refs. 4, 8, 11, 16, 22, 28, and 32, where analogous computations
ave been often performed, in particular explicit formulas providing a lower bound to the radius
, see the discussion before and after �13��.

V. GENERALIZATIONS

In the following two sections we indicate tersely how the treatment of the many-body problem
iven above can be extended to the cases with different masses and with more dimensions.

. Different masses

In this section we tersely indicate how the results reported above can be extended to the case
ith different masses Mn. Since this extension is quite trivial, we simply limit our presentation
ere to exhibiting, for a few of the key equations of our treatment, their corresponding, extended
ersions �which of course reduce to the previous equations by setting all the particle masses Mn to
nity�.

The definition of the unmodified many-body Hamiltonian �see �2�� now reads

H�p� ,q� � = �
n=1

N
pn

2

2Mn
+ V�q� � + C , �54�

nd correspondingly the Hamiltonian, respectively, Newtonian equations of motion �see �4�, re-

pectively, �5�� read now
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q̇n =
pn

Mn
, ṗn = −

�V�q� �
�qn

, �55�

espectively,

Mnq̈n = −
�V�q� �
�qn

. �56�

The definition �7a� of the quantity Q is now replaced by

Q�q� � =
�n=1

N
Mnqn

�n=1

N
Mn

. �57�

e trust the alert reader will have no difficulty to identify which, and how, other equations written
bove, and below, should be analogously modified, hence we do not devote additional space to this
ssue.

. More dimensions

The generalization of the results reported above, and below, to the case with more �say, S�
pace dimensions is sufficiently simple not to require a detailed treatment: the Hamiltonian coor-
inates qn are replaced by S-vectors q�n, and likewise the corresponding Hamiltonian momenta pn

re replaced by S-vectors p�n. Again, we trust the alert reader will have no difficulty to see how the
tandard equations written above, and below, shall be correspondingly modified. But there is one
ssue in this more general context that warrants some discussion, namely the possibility to intro-
uce a more general definition of the collective variable 	, see �20�, characterized by the validity
f the relation �14�.

Let us therefore indicate, without many comments, the relevant generalization of our treat-
ent �limiting consideration, for simplicity, to the equal masses case�. We generalize �2� to read

H�p�� ,q�� � =
1

2�
n=1

N

�p�n · p�n� + V�q�� � + C �58�

of course always with the translation invariant property �3��, and likewise we generalize �16� to
ead

H̃�p�� ,q�� ;a�� ;�� = u�P� �p�� �,Q� �q�� �;a�� ;��H�p�� ,q�� � , �59a�

u�P� ,Q� ;a�� ;�� = 1 + i�	�P� ,Q� ;a�� � �59b�

ith �see �20��

	�P� ,Q� ;a�� � =
N

S
�
s=1

S
Qs

Ps
, �60�

here

Qs = a�s · Q� , Ps = a�s · P� , �61�

nd of course �see �7a� and �6a��

Q� �q�� � =
1

N
�
N

q�n, P� �p�� � = �
N

p�n. �62�

n=1 n=1
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he S constant S-vectors a�s �see �61�� are arbitrary, except for the orthogonality condition �quite
seful to simplify the following formulas�

a�s · a�s� = as
2ss�. �63�

It is then easy to verify that the definition �60� is compatible with the requirement �14�.
herefore the properties �18� and �19� continue to hold.

Let us now discuss, as we did in Sec. II, first, the time evolution of the center-of-mass

oordinates Q� and P� , and then the relative motions.

To discuss the time evolutions of Q� and P� we note first of all that the definitions �61� entail the
ollowing formulas, as can be easily verified using the orthogonality relation �63�:

Q� = �
s=1

S
Qsa�s

as
2 , P� = �

s=1

S
Psa�s

as
2 , �64�

�Qs,Qs�� = ss�as
2, �65�

�NQs

Ps
,H	 = 1. �66�

It is then easy, following the treatment given in the one-dimensional case �see Sec. II�, to
btain the following explicit expressions detailing the time evolution of the quantities Ps�t� and

s�t�:

Ps�t� = Ps�0��1 − 
s exp�− i�t�
1 − 
s

	1/2

, �67a�


s =
2as

2H�0�
1 − 2as

2H�0�
, �67b�

Qs�t� = �Qs�0�
Ps�0�

+
u�0��exp�i�t� − 1�

Ni�
Ps�t� . �68�

t is thereby seen that the quantities Ps�t� and Qs�t� are both periodic, with period T, respectively,

T if �
s��1, respectively, �
s��1. Hence we conclude �see �64�� that the quantities P� �t� and Q� �t�
re both periodic with period T if all the quantities 
s have modulus less than unity,

Q� �t + T� = Q� �t�, P� �t + T� = P� �t� if max
s=1,. . .,S

�
s� � 1, �69a�

nd are periodic with period 2T otherwise,

Q� �t + 2T� = Q� �t�, P� �t + 2T� = P� �t� if max
s=1,. . .,S

�
s� � 1. �69b�

The discussion of the relative motions can then be done just as in the one-dimensional case,
ee Sec. II, since it is easy to verify that the definition �60� entails the vanishing of the following
oisson brackets:

�q�n − q�m,	�P� ,Q� ;a�� �� = 0, �p�n − p�m,	�P� ,Q� ;a�� �� = 0. �70�
ence, following exactly the same reasoning as in Sec. II one arrives at the formulas:
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q�n�t + T� = q�n�t�, p�n�t + T� = p�n�t� if max
s=1,. . .,S

�
s� � 1, �71a�

q�n�t + 2T� = q�n�t�, p�n�t + 2T� = p�n�t� if max
s=1,. . .,S

�
s� � 1. �71b�

We thereby see that our fundamental conclusion about the isochronous character of the dy-
amics entailed by the �-modified Hamiltonian �59� is confirmed.

. GENERAL HAMILTONIANS

In this section we indicate how the approach introduced above can be applied to more general
amiltonians than that describing the nonrelativistic many-body problem, see �2�. This discussion

llows a more explicit display of the essential aspects of our technique to manufacture modified
amiltonians yielding an isochronous dynamics.

Let us therefore consider again an �-modified Hamiltonian defined by �16� with the collective
ariable 	�p� ,q� � satisfying �14�, but now without making any assumption on the original Hamil-
onian H and therefore without being able to provide an explicit form for the dependence of 	 on
he Hamiltonian variables. It is nevertheless clear that the time evolution of H and of u is again
iven by �18� and �19�, and therefore that the Hamiltonian equations can now be written in the
ollowing �nonautonomous� version:

q̇n = i�H�0�exp�− i�t�
�	�p� ,q� �

�pn
+ u�0�exp�i�t�

�H�p� ,q� �

�pn
, �72a�

ṗn = − i�H�0�exp�− i�t�
�	�p� ,q� �

�qn
− u�0�exp�i�t�

�H�p� ,q� �

�qn
. �72b�

Now the first observation is that, if one restricts attention to initial data such that H�0�
anishes, see �45�, one gets again an isochronous behavior, since then these Hamiltonian equations
f motion, �72�, take the simpler form

q̇n = u�0�exp�i�t�
�H�p� ,q� �

�pn
, �73a�

ṗn = − u�0�exp�i�t�
�H�p� ,q� �

�qn
, �73b�

o which the by now familiar trick can be applied, entailing isochronicity. This is however a case
f partial isochronicity �see Sec. I for this terminology�, because the initial data must be restricted
o satisfy the condition �45a�.

Let us emphasize that this observation—possibly associated with the general possibility to add
constant C to the original Hamiltonian �and see in this respect the discussion at the end of Sec.

I of how this possibility can facilitate the implementation of this restriction, �45a��—entails that
he class of Hamiltonians to which our technique can be successfully applied is indeed extremely
arge, at least as regards manufacturing �-modified Hamiltonians which are partially isochronous.

In the more general case when H�0� does not vanish, we conjecture that the motion will be
sochronous in quite general circumstances, but we do not try to prove this in this paper. We rather
estrict attention to systems such that there exists a collective function 	 satisfying �14� that
epends on the Hamiltonian coordinates only via the two “center of mass” coordinates P and Q,

ee �6a� and �7a�:
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	�p� ,q� � = 	�P�p� �,Q�q� �� �74�

this of course limits substantially the class of Hamiltonians to which this approach is applicable�.
hen one easily sees that there hold the relations �32� �with �31��, hence proceeding as in Sec. II
ne concludes that the relative motions are isochronous.

To proceed further it is necessary to gain some knowledge on the time evolution of the global
center of mass” quantities Q�t� and P�t�. This requires additional information on the explicit form
f the function 	�P ,Q�, and moreover on the specific form of the original Hamiltonian, because

the time evolution of these quantities, Q�t� and P�t�, is determined by the evolution equations
�clearly implied by �72��,

Q̇ = i�H�0�exp�− i�t�	P�P,Q� +
u�0�exp�i�t�

N
�
n=1

N �H�p� ,q� �

�pn
, �75a�

Ṗ = −
i�H�0�exp�− i�t�	Q�P,Q�

N
− u�0�exp�i�t��

n=1

N �H�p� ,q� �

�qn
. �75b�

I. PARTIALLY ISOCHRONOUS VARIANTS OF THE MANY-BODY HAMILTONIAN

In this section we discuss—again in the context of the many-body problem characterized by
he Hamiltonian �2�—variants of our technique, yielding modified Hamiltonians with enough
ompletely periodic solutions to justify calling them partially isochronous �see the definition of
his term given in Sec. I�.

Let us take as starting point of our treatment the modified Hamiltonian

H̃�p� ,q� � = U�P,Q�H�p� ,q� � . �76�

otation: largely the same as above, see Secs. I and II, in particular �2�, �6a�, and �7a�. The
ovelty is that, for the time being, we do not commit ourselves to a specific form of the “modi-
ying multiplicative coefficient” U, except for the assumption that it depend on the Hamiltonian
ariables only via the collective coordinates P� P�p� � and Q�Q�q� �; of course for the special

choice U=u �see �16� with �20�, �6a�, and �7a�� the treatment of this section reduces to that given
in Secs. I and II. And let us again emphasize, as we did in Sec. I, that hereafter we consider the

time evolution entailed by the Hamiltonian H̆, both for the Hamiltonian coordinates qn�t� and pn�t�
nd for any collective coordinate—such as P ,Q ,H ,U—the time evolution of which obtains via
he time dependence of the Hamiltonian coordinates.

The following evolution equations are then yielded by this modified Hamiltonian �76�:

Ḣ = −
PUQH

N
, �77�

U̇ =
PUQU

N
, �78�

Ṗ = − UQH , �79�

Q̇ =
UP

N
+ UPH , �80�

˙
qn = Upn + UPH , �81�
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ṗn = − U
�V�q� �

�qn
−

UQH

N
. �82�

ote that here and hereafter we use the short-hand notation UQ and UP to denote the �partial�
erivatives of the �yet to be assigned� function U�P ,Q� with respect to its two arguments:

UQ �
�U

�Q
, UP �

�U

�P
. �83�

From �79� and �77� we get

ṖP = Ḣ , �84�

ntailing

P = �2H − B2�1/2, �85a�

B2 = 2H�0� − P2�0� . �85b�

To proceed further one must make a specific choice for the function U�P ,Q�. We consider
elow various possibilities.

. A simple variant

The first modified Hamiltonian we now consider is characterized by the following
�-modified” variant of the N-body Hamiltonian �2�:

H̆�p� ,q� ;�� = �1 + i�Q�q� ��H�p� ,q� � , �86�

orresponding to �76� with

U�P,Q� � U�Q;�� = 1 + i�Q �87a�

mplying

UQ = i�, UP = 0. �87b�

ur main result is to show that there exists a set of initial data qn�0� and pn�0�—having a bit less
han full dimensionality in phase space, being restricted by the requirement

H�0� � H�p� �0�,q� �0�� = 0 �88�

and see in this connection the discussion at the end of Sec. II�—yielding motions all of which are
ompletely periodic with the period

T̆ =
2�

�
, � =

�P�0�

N
�

�P�p� �0��

N
. �89�

n this formula P�p� � is of course defined by �6a�. Note that this formula entails that the period T̆
oes depend on the initial data, albeit only via the collective variable P�p� �, and of course that we

ust restrict the initial data so that this period T̆, as well as the corresponding circular frequency
, be real. This entails an additional restriction of the initial data pn�0� to a hypersurface of real

odimension one. And one can repeat in this respect a completely analogous discussion to that
iven after �45�, up to replacing the role played in that context by the parameter C with the role
layed in the present context by the parameter �. Note moreover that in this manner—adjusting at

ne’s convenience the value of � �as it were a posteriori, after the initial data pn�0� have been
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ssigned�—one can in fact even impose that T̆ have a given, preassigned value, thereby restoring
he property of yielding isochronous motions—albeit for a set of initial data having a bit less than
ull dimensionality in phase space, being restricted to lie on a manifold of �complex� codimension
wo in phase space �i.e., the intersection of two hypersurfaces each of which of complex codimen-

ion one, that characterized by �88� and that characterized by the requirement that the period T̆, or
quivalently the circular frequency �, see �89�, have a preassigned real value�.

To prove this result we note that the Hamiltonian H̆�p� ,q� ;��, see �86�, entails the following
ime-evolution equations �see �81�, �82�, �80�, �79�, and �77� with �87��:

q̇n = �1 + i�Q�pn, �90a�

ṗn = − �1 + i�Q�
�V�q� �

�qn
− i�H , �90b�

Q̇ =
�1 + i�Q�P

N
, �90c�

Ṗ = − i�H , �90d�

Ḣ = −
i�HP

N
. �90e�

he preceding three equations can be easily integrated for general initial data, but we restrict
ttention here only to the case characterized by the condition �88�, in which case the outcome is
articularly simple,

H�t� = H�0� = 0, �91a�

P�t� = P�0� � P�p� �0�� , �91b�

1 + i�Q�t� = �1 + i�Q�0��exp�i�t� . �91c�

nsertion of the first and last of these formulas in �90a� and �90b� yields the equations that
etermine the time evolution of the dependent variables qn�t� and pn�t�,

q̇n = �1 + i�Q�0��exp�i�t�pn, �92a�

ṗn = − �1 + i�Q�0��exp�i�t�
�V�q� �
�qn

. �92b�

rom these evolution equations, via the, by now usual, argument based on the trick, one easily
oncludes that the assertions made at the beginning of this section are valid.

Let us end this section by pointing out that the Hamiltonian H̆�p� ,q� ;��, see �86�, is perhaps

ore susceptible to a “physical interpretation” than the Hamiltonian H̃�p� ,q� ;��, see �16�, inas-

uch as H̆�p� ,q� ;��, in contrast to H̃�p� ,q� ;��, does not feature momentum variables in the denomi-
ator. This observation is underscored by the possibility to write in this case quite explicitly the

ewtonian equations of motion that correspond to the Hamiltonian equations �90a� and �90b�:
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q̈n =
i�Q̇q̇n

1 + i�Q
− �1 + i�Q�2

�V�q� �

�qn
−

i��1 + i�Q�H

N
, �93�

here of course Q�Q�q� � �see �7a�� and H�H�p� ,q� � �see �2�� with

pn =
q̇n

1 + i�Q
�94�

see �90a��. And note moreover that the last term on the right-hand side of the Newtonian equa-
ions of motion �93� is altogether missing when �88� holds, see �91a�.

. A more general variant

A more general variant—that includes as a special case those treated above—is associated
ith the observation that—quite generally—the evolution equation �77� with �88� entails the
anishing of H for all time, see �91a�, and that—again quite generally, see �79�—the vanishing of

entails that P is time independent, see �91b�. This we assume in this section, as in the previous
ne, hence we consider again a modified Hamiltonian defined by �76� �with �2��, and initial data
estricted so that �88� holds. But now we note that �91c� does not generally follow from �91a� and
91b�; all that one can assert is that, if �91a� and �91b� hold, then �78� and �80� take the following
impler form:

U̇ = −
P�0�UQU

N
, Q̇ =

P�0�U
N

. �95�

To proceed further, an assumption must again be introduced on the assignment of U�P ,Q�,
lthough the time-independence of P entails that we can manage with an ansatz that allows a
ertain generality as regards the dependence on this collective variable. For instance let us set

U = 1 + ��P�Q + ��P�Q2, �96a�

ntailing

UQ = ��P� + 2��P�Q �96b�

of course the results of the preceding section would be reproduced for ��P�= i�, ��P�=0,
lthough this might involve a nontrivial limiting process; and those of Secs. I and II—with
45�—would be reproduced for ��P�=Ni� / P, ��P�=0�. Then one can easily obtain the following
esults:

U�t� = A�sin���t − t0�
2

	−2

, �97a�

A = 1 −
�2�P�
4��P�

, �97b�

� =
P

N
�− �2�P� + 4��P��1/2, �97c�

sin�t0� = � A

1 + ��P�Q�0� + ��P�Q2�0�	1/2

. �97d�
We then note that, via �91a� and �97�, the Hamiltonian equations �81� and �82� now read
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q̇n = A�sin���t − t0�
2

	−2

pn, �98a�

ṗn = − A�sin���t − t0�
2

	−2�V�q� �
�qn

, �98b�

r equivalently

q̇n = �̇p, ṗn = − �̇
�V�q� �

�qn
, �99�

rovided we set

��t� = − 
2A

�
�cot���t − t0�

2
	 . �100�

t is now clear from �99�—via a generalized version of the trick, the details of which can be easily
lled in by the interested reader, being based on the change of independent variables

qn�t� = q̌n���, pn�t� = p̌n��� , �101�

ith the new �complex� variable � related to the �real� time variable t by �100�—that this modified
amiltonian system is partially isochronous �with period 2� /�, see �97c��, the initial data having

o be restricted, in order to entail complete periodicity of the corresponding solutions, by the
equirement that �88�, hence as well �91a�, hold �a restriction of complex codimension one; but see
he remark at the end of Sec. II� and moreover so that � be real �a restriction of real codimension
ne� or have a preassigned fixed value �a restriction of complex codimension one�. This last
estriction could however be lifted for special choices of the functions ��P� and ��P� that
uarantee that � have a fixed real value independent of P, which is clearly the case if

− �2�P� + 4��P� = 
N�

P
�2

, �102�

ielding �=�, see �97c�. Note that this restriction, �102�, is compatible with ��P� and ��P�
eing both real functions �that yield real values whenever their argument, P, is real�, provided
�P� does not vanish identically �as it instead did in the treatment of Secs. I and II, which indeed

nvolved the imaginary function ��P�= i� / P�. In addition—in order to avoid that the equations of
otion run into a singularity as the �real� time t evolves—the initial data should of course exclude

hat the quantity t0 be real �see �97d� and �98��.

. Simple examples „no potential…

In this section we exhibit the explicit solutions of the initial-value problems for the models
hat correspond to the cases treated in the two preceding sections, when the potential is altogether
issing, V�q� �=0. The derivation of these findings is quite straightforward and is therefore left as

n exercise for the diligent reader.
The modified Hamiltonian of the first of the two preceding sections reads now as follows:

Ȟ�p� ,q� ;�� = �1 +
i�

N
�
n=1

N

qn	�1

2�
n=1

N

pn
2 + C	 , �103�
nd, for all initial data satisfying the condition
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1

2�
n=1

N

pn
2�0� + C = 0, �104�

t yields the solution

pn�t� = pn�0�, qn�t� = qn�0� + �1 +
i�

N
�
n=1

N

qn�0�	pn�0�
exp�i�t� − 1

i�
, �105a�

� =
�

N
�
n=1

N

pn�0� , �105b�

hich is clearly completely periodic with period 2� /� provided � is real �and nonvanishing�.
The modified Hamiltonian of the second of the two preceding sections reads now as follows:

H̃�p� ,q� ;�� = �1 + ��P�Q + ��P�Q2��1

2�
n=1

N

pn
2 + C	 , �106�

here of course P� P�p� � and Q�Q�q� �, see �6a� and �7a�. For all initial data satisfying the
ondition �104� it yields the solution

pn�t� = pn�0�, qn�t� = qn�0� −
2A

�
pn�0��cot���t − t0�

2
	 + cot��t0

2
	 . �107a�

n these formulas we are of course using the notation of the second of the two preceding sections,
n particular A, �, and t0 are defined by �97b�–�97d� with P= P�0�. This solution is clearly
ompletely periodic with period 2� /� provided � is real �and nonvanishing� and t0 is instead not
eal.

II. OUTLOOK

Let us note first of all that the results reported in this paper, see in particular Secs. I, II, V, and
I, do justify the assertion contained in its title, inasmuch as we have shown the existence of a
niversal procedure applicable to a very broad class of Hamiltonians and yielding isochronous
ynamics. Indeed let us underline that our treatment entails that the �-modified Hamiltonian

˜ �p� ,q� ;��, see �16�, is isochronous �for ��0, with basic period T, see �1�� irrespective of any

equirement that the original Hamiltonian H�p� ,q� �= H̃�p� ,q� ;0� �namely, the unmodified one, corre-
ponding to �=0� be special �for instance, integrable�: the only essential requirement is that there
xist a collective variable 	�p� ,q� � satisfying �14�. And conversely, the fact that the solutions of the
odified Hamiltonian �with ��0� display an isochronous behavior generally entails no informa-

ion on the behavior of the solutions of the unmodified system, at least whenever the isochronous
haracter of the solutions of the modified system �with ��0, and basic period T, see �1�� prevails
nly in a subregion �having however full dimensionality, as required in order that the system be
ndeed classified as isochronous� of the phase space, but not in the entire phase space �or in the
ntire phase space except for a region of vanishing measure, namely having positive codimension-
lity�. Only if the isochronous character of the solutions of the �- modified Hamiltonian were to
revail �possibly with a period which is a finite integer multiple of the basic period T, see �1�� in
he entire phase space �or at least in the entire phase space except for a region of vanishing

easure, namely having positive codimensionality�, then one might well conjecture that the origi-
al Hamiltonian be special, perhaps indeed integrable.

Two general directions of further research are suggested by the findings reported in this paper.
A first direction, probably of theoretical rather than applicative relevance, is the investigation

f quantized versions of modified Hamiltonian models manufactured via the procedure introduced

n this paper: in particular the simpler systems, such as those discussed in Secs. III A and VI B that
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eature solutions all of which are isochronous �with the possible exception of a set of solutions of
anishing measure in phase space�, as well as other, less trivial, systems that are also isochronous
n the entire phase space �with the possible exception of a set of solutions of vanishing measure in
hase space� such as those obtained by �-modifying integrable Hamiltonian systems �many such
xamples can now be easily manufactured�. It will be of interest to see whether the hunch that
here always exist quantized versions of these models that feature equispaced spectra is confirmed,
nd, if so, whether the corresponding eigenfunctions can be explicitly exhibited. These investiga-
ions are likely to yield some further insight on the quantization issue, which would be further
lluminated by the discovery of new solvable models, especially such models involving an arbi-
rary number of degrees of freedom.

A second direction of research points instead towards the applicative relevance of the findings
eported in this paper, as well as in other recent papers which have emphasized that isochronous
ynamical systems are not rare.11,17,16,18 It is however likely that such applications be more
elevant in other disciplines than physics, and therefore that they will not necessarily involve
amiltonian systems: indeed the domain of natural philosophy that appears to feature the most

triking instances of isochronicity is biology, including key phenomena of human life such as the
egular beating of our hearts and the Circadian clocks that subtend the tempo of our biological
ives.39 Whether mathematical physics results such as those presented in this paper and in previous
nes2,38 will shed any light on this phenomenology remains to be seen; it certainly does point to
n appealing direction of further study.
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The currents induced inside cells by external electric fields in the frequency range
50–60 Hz are studied analytically by accounting for thin cell membranes with
transverse conductivity that is small compared to the conductivity of the saline
fluid. A general perturbation scheme is formulated and applied to two adjacent
spherical cells of equal radii by using a reflection principle and solving a nonlinear
difference equation. The presence of the second cell is found to cause a no more
than 10% increase to the current induced in an isolated spherical cell. © 2006
American Institute of Physics. �DOI: 10.1063/1.2190333�

. INTRODUCTION

Concerns about the possible health effects of electromagnetic fields generated by power lines
ave stimulated theoretical studies of the currents induced in the human body when this is exposed
o external, extremely-low-frequency fields, in the frequency range 50–60 Hz.1–11 Over a decade
go Adair2 asserted that the current induced inside an isolated cell is negligible, because the
esistive cell membrane appears to shield the cell interior from incident low-frequency fields.

More recently, King and Wu4 pointed out that Adair’s conclusion, although correct for spheri-
al cells, may not be valid for elongated, cylindrical cells. In the latter case the induced current
epends on the length of the cell and the polarization of the incident electric field, so that shielding
ffects can be significantly reduced as the cell length increases or the incident field becomes
arallel to the cell axis. For a typical spherical cell with radius 1 �m, membrane thickness �
5 nm, membrane conductivity �m�10−6 S/m, and protoplasm �saline-fluid� conductivity �0

0.5S/m, King and Wu4 calculated the electric field to be reduced by a factor 10−4 inside the cell.
y contrast, the electric field inside the elongated, myelinated cell was calculated4 to be almost
qual to the incident field if the length of the cell roughly exceeds 5 mm and the external field is
long the cell axis.

The purpose of the present study is to extend previous works2,4 to more realistic cases where
he current induced inside a cell is affected by the presence of neighboring cells. As a starting
oint, we treat the geometry with two spherical cells by an analytical technique which is directly
pplicable, although increasingly cumbersome, to many-cell geometries. Our formulation consid-
rs disconnected cells and therefore differs from that of Ref. 5 where cells are connected through
uitable gap junctions.

The main assumptions underlying our analysis are that the cell membrane thickness is small
ompared to �i� the cell radius of curvature, and �ii� the length over which the cell curvature varies.
o, elongated cells with sharp ends may not be included in the analysis. In addition, the cell
urvature is assumed to be a sufficiently smooth and slowly varying function of the surface
oordinates. Following Ref. 4 we also assume that the cell membrane is homogeneous and iso-
ropic, with a scalar conductivity �m in the range 10−5–10−6 S/m. This assumption may pose a
imitation on our model, especially because membranes of actual cells have ion channels12 and
hus act as anisotropic media. To avoid complications due to anisotropies and yet preserve the
ssential physical features of thin membranes we replace the membrane by an “effective” bound-

ry condition that accounts for its thickness and conductivity in the direction transverse to the cell

47, 042902-1022-2488/2006/47�4�/042902/18/$23.00 © 2006 American Institute of Physics
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urface;4 cf. Eq. �9� below. Similarly, the cell interior is considered as homogeneous and isotropic
ith conductivity �0, typically in the range 0.5–0.8 S/m, which is taken to be equal to the

onductivity of the surrounding saline fluid.
One can argue that the reduction of the electric field in the interior of a cell of reasonably

rbitrary shape can be estimated by dimensional analysis. More precisely, the fraction of the
enetrating field is expected to be proportional to the small factor �̃= �r̄c /����m /�0�, where r̄c is
he cell mean radius of curvature, typically in the range 1–10 �m, and � is the membrane
hickness, �=2–5 nm; cf. Fig. 1. This observation motivates the perturbation analysis of this
aper because it indicates the dependence of the induced current on the small dimensionless
arameter �̃. A similar technique is described in Ref. 13 for the cell response to a delta-function
xcitation. The application of perturbation theory, as described below, transcends dimensional
nalysis because it provides �i� a general mathematical framework to treat systematically problems
f low-frequency scattering by cells; and �ii� a closed-form formula for the geometry-dependent
refactor for the field reduction inside a cell for the practically appealing case with two spherical
ells of equal radii.

The paper is organized as follows. In Sec. II we describe the general formulation based on
erturbation theory to determine currents induced inside cells exposed to uniform electric fields. In
ec. III we apply this formulation to the case with two neighboring spherical cells and derive
imple, closed-form formulas for the electric field in the interior of each of the cells. In Sec. IV we
iscuss other cell geometries where the present framework may serve as a basis of detailed studies.
he e−i�t time dependence is suppressed throughout the analysis.

I. PERTURBATION THEORY

. General formulation

We consider a uniform electric field Einc parallel to the z axis, Einc=E0ez, and incident upon
cells of reasonably arbitrary shape, where ez is the z-directed unit vector of the Cartesian

oordinate system, and we take E0=1 without loss of generality; cf. Fig. 1. The cells are immersed
n saline fluid, an isotropic and homogeneous medium with conductivity �0. The interior R j of the
jth cell14 is also assumed to be isotropic and homogeneous with a conductivity �0, equal to that of

IG. 1. Schematic of the geometry of arbitrarily shaped cells. The jth cell has radius of curvature rcj and membrane
hickness � j. The conductivities of the saline fluid and cell membrane are �0 and �m, respectively. The incident electric field
s polarized along the z axis.
he ambient medium. The membrane is sufficiently thin and in principle anisotropic; we take the
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embrane conductivity in the direction normal to the boundary to be �m, which is small compared
o �0, �m��0. At sufficiently low frequencies the effective dielectric constant, �eff, in each me-
ium is dominated by the corresponding conductivity �,

�eff �
i�

�
, �1�

here � is the radial frequency of the incident field.
The electric field inside each cell depends on the relative effective dielectric constant of the

embrane because the requisite boundary conditions for the field on the cell surfaces, through
hich the conductivities enter, are homogeneous; see Appendix A where the problem of a single

pherical cell is revisited. Therefore, for later notational convenience we introduce the dimension-
ess parameter � by

� =
�m

�0
, �2�

here � is a small positive number, 0���1.
The local radius of curvature, rcj, of the jth cell is assumed to be a positive, sufficiently

mooth function of the surface coordinates, and large compared to the membrane thickness � j,
15

r̃ =
rcj

� j
� 1. �3�

ffective boundary conditions at the boundaries of cells with thin membranes involve the param-
ter r̃�.4 In many cell configurations of interest this parameter is small,

r̃� � 1. �4�

ondition �4� is enforced throughout the paper, and enables the application of regular perturbation
heory as described below; see also Appendix A where, by virtue of �4�, a simplified formula is
erived for the current in the interior of an isolated spherical cell.

When the frequency of the incident electromagnetic field is sufficiently low, for instance in the
ange 50–60 Hz, a mathematically convenient quantity to use is the scalar potential, 	�r�, which
atisfies to a good approximation the Laplace equation,

�2	�r� = 0. �5�

he electric field E�r� is approximately decoupled from the magnetic field, and is described by

E = − �	 . �6�

or the incident field Einc=ez the condition for 	�r� at infinity reads

	�r� � − z, r = �r� → 
 . �7�

Despite the simple form of �5� and �6�, mathematical complications may arise because of the
pecial boundary conditions at the membrane separating the cell interior from the saline fluid.
ollowing Ref. 4 we replace the membrane by an effective boundary condition that stems from

reating the membrane thickness, � j, as properly small compared to the membrane radius of
urvature. Next, we rederive briefly and interpret the related result of Ref. 4 by relaxing math-
matical elaboration. By integration of �6� across the membrane, the restriction 	+ of 	 on the cell
oundary from outside the cell and the corresponding restriction 	− from inside the cell should
atisfy 	+−	−=−Em,�� j; Em,� is an appropriate value of the electric field normal to the boundary
nside the membrane and 	± are boundary values of 	 outside the membrane. For suitably thin

+ −
embrane, Em,� satisfies �mEm,�=�0E�=�0E� by Gauss’s law in the absence of surface charge,
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here E�
± denote the boundary values of the transverse electric field outside the membrane. The

elations of this paragraph yield

�	+

��
=

�	−

��
� 	 �	

��
	

�Rj

, �8�

	 �	

��
	

�Rj

=
1

� j
�	+�r� − 	−�r�� , �9�

here �R j is the boundary of region R j, �	 /��=e� ·�	 and e� is the unit vector normal to the
oundary �R j pointing outward; 	+�r� and �	+ /�� are the values of 	 and �	 /�� as r ap-
roaches �R j from outside the cell �r→�R j

+�, and 	−�r� and �	− /�� are the corresponding
alues as r approaches �R j from inside the cell �r→�R j

−�. The parameter � j has dimensions of
ength and is defined by

� j =
� j

�
. �10�

ondition �4� ensures that the � j entering boundary condition �9� is large compared to the radius
f cell curvature, rcj,

rcj � � j . �11�

Next, we describe a perturbation scheme for calculating 	. The starting point is the
xpansion16

	 = 	0 + 	1 + ¯ + 	n + ¯ , n = 0,1, . . . , �12�

here the subscript, n, denotes the perturbation order17 and the ratio of two successive terms is
ssumed to be18

	n

	n−1
= O
 rc1

�1
, . . . ,

rcN

�N
� . �13�

ach term 	n in expansion �12� is determined iteratively as described below.

. Zeroth-order approximation, n=0

In the zeroth-order approximation the right-hand side of �9� is set equal to zero. With 	�r�
	0�r�, 	0 satisfies Laplace’s equation and the Neumann boundary condition on the cell bound-

ries, �R j. The boundary-value problem for the cell exterior thus reads

�2	0�r� = 0, r � , 	 �	0

��
	

�Rj
+

= 0, j = 1,2, . . . ,N , �14�

long with condition �7�, where =R3−� jR j −� j�R j is the exterior of all cells �R j� with exclu-
ion of every �R j; R3 is the Euclidean space. This problem admits a unique solution for 	0�r�.19

he corresponding problem for the cell interior R j has solution

	0�r� = �0j, r � R j , �15�

here �0j �j=1,2 , . . . ,N� are constants to be determined below. Each of these constants enters the
oundary conditions for 	1�r� �in the first-order approximation� and is evaluated as an appropriate

urface integral of 	0�r�; cf. �19� below.
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. First-order approximation, n=1

In this approximation the right-hand side of �9� is replaced by �	0
+−	0

−� /� j, and 	�r�
	0�r�+	1�r� where 	0�r� is known from �14� above. The boundary-value problem for the cell

nterior is described by

�2	1�r� = 0, r � R j, 	 �	1

��
	

r��Rj
−

=
1

� j
�	0

+ − �0j� , �16�

long with the condition that 	1�r� be finite in R j. The Laplace equation with the same boundary
onditions on �R j also apply to the exterior problem. The requisite condition for 	1 at infinity
ecomes

	1�r� → 0, r → 
 . �17�

Because the constant �0j enters the Neumann condition �16�, its value must be consistent with
he Laplace equation.19 By integrating �2	1=0 over R j we obtain

�
�Rj

−
dr

�	1

��
= 0. �18�

y virtue of condition �16�,

�0j =
1

�R j
�

�Rj

dr 	0
+�r� , �19�

here �R j denotes the area of the closed surface �R j.

. nth-order approximation, n=1,2, . . .

It is reasonably straightforward to generalize the first-order approximation in order to carry
ut the calculations to the next orders in rcj /� j. With 	�r���i=0

n 	i�r� and n�1 the boundary-
alue problem for 	n�r� follows from the preceding discussions of the zeroth- and first-order
pproximations via the replacements 0→n−1 and 1→n in the subscripts for 	. In the cell
nterior, 	n satisfies the boundary-value problem

�2	n�r� = 0, r � R j, 	 �	n

��
	

�Rj
−

=
1

� j
�	n−1

+ − 	n−1
− � , �20�

here 	n�r� must be bounded everywhere for n�1. The same differential equation and conditions
n �R j hold for the exterior problem. The condition at infinity reads

	n�r� → 0, r → 
, n � 1. �21�

n the following we restrict the analysis to the zeroth- and first-order approximations for 	.

. Example: Single spherical cell

Next, for comparison and validation purposes we apply the general perturbation scheme of
ec. II A to a single spherical cell with radius a exposed to a uniform field Einc=ez. This proto-

ypical case was studied in Refs. 2 and 4. Here, we derive the same result as in Ref. 4 for the
lectric field inside the cell within the framework of our Sec. II A. For the sake of completeness,
he derivation of Ref. 4 for a single cell is revisited in our Appendix A, via the full set of boundary
onditions by which the cell membrane is taken to have a finite thickness.

. Zeroth-order approximation
The potential 	0 of the exterior problem satisfies
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�2	0�r� = 0, r � a , �22�

nd

�	0

�r
= 0 at r = a, 	0�r,�� � − z, r → 
 . �23�

he solution to �22� and �23� is obtained via a reflection principle in Appendix B. The result is

	0�r,�� = − 
r +
a3

2r2�cos �, r � a . �24�

n particular, for r→a+,

	0�a+,�� = 	0
+ = −

3a

2
cos � . �25�

t follows from �15� and �19� that the potential 	0 vanishes for r�a,

	0�r � a,�� � �0 = 0. �26�

. First-order approximation

In the next order the interior problem is described by

�2	1�r� = 0, r � a , �27�

�	1

�r
=

1

�
	0

+ = −
1

�

3a

2
cos � at r = a, 	1�0,��: finite. �28�

ecall that the parameter � is defined by �10�. Because of rotational symmetry, we apply separa-
ion of variables and write 	1�r ,��=g�r�cos � where, by �27� and �28�, g�r� satisfies

r2d2g

dr2 + 2r
dg

dr
− 2g = 0 for r � a, g�0�: finite, g�a� = −

3a

2�
, �29�

ith solution g�r�=−�3a /2��r. Hence,

	1�r,�� = −
3a

2�
r cos �, r � a , �30�

n agreement with �A9� of Appendix A. The electric field E inside the sphere follows by
=−�	,

E�r,�� =
3a

2�
ez, r � a . �31�

his formula shows that the incident field is reduced by the factor 3a /2� inside the cell.2,4

II. PAIR OF SPHERICAL CELLS

In this section we apply the perturbation scheme introduced in Sec. II to two spherical cells,
enoted A and B, with equal radii; cf. Fig. 2 for the geometry of the problem. The radius of each
phere is a and the distance between their centers, O1 and O2, is 2d. The z axis passes through

1�0,0 ,−d� and O2�0,0 ,d�. The extension of our treatment to two spherical cells with different
adii, or to three or more spherical cells, is straightforward yet increasingly cumbersome and lies

eyond the scope of this paper.
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. Zeroth-order approximation

The zeroth-order potential 	0 satisfies the Neumann boundary condition

�	0

��
= 0, r � �RA � �RB, �32�

here �RA and �RB are the boundaries of spheres RA and RB. In addition, 	0�−r cos � as r

. We apply the reflection principle of Appendix B to the boundary-value problem for 	0 in the

xterior of the cells by replacing the incident electric field by two electric dipoles �sources� of unit
oment, p=ez, located symmetrically with respect to O, at positions �0,0 ,−h� and �0,0 ,h�; cf
ig. 2. The uniform incident field of unit amplitude, Einc=ez, is reproduced by taking the limit
→
 after multiplying each �unit� dipole moment by �h3; cf. �B10� of Appendix B. For finite h,

he source dipoles generate an infinite number of image dipoles, all lying in the z axis, that are
eeded to sustain condition �32� on each spherical surface.

Next, we describe the location of image dipoles and their corresponding moments needed to
atisfy the Neumann condition on the surface of each sphere, applying the results of Appendix B.
ecause each time an image dipole is placed inside a sphere the Neumann condition on the other

phere no longer holds, the procedure of placing image dipoles must be repeated ad infinitum
eading to appropriate sequences of image dipoles inside each sphere. The source dipole at
0 ,0 ,−h� induces image dipoles inside sphere A at positions �0,0 ,−d−b�, �0,0 ,−d
a2� , . . . , �0,0 ,−d+a2j�, and at �0,0 ,−d+b2� , . . . , �0,0 ,−d+b2j�, and inside sphere B at positions

0 ,0 ,d−a1� , . . . , �0,0 ,d−a2j−1� and at �0,0 ,b1� , . . . , �0,0 ,d−b2j−1�, where j here is a positive
nteger and j→
. By symmetry, the dipole at �0,0 ,h� induces images of equal corresponding

oments inside sphere B at �0,0 ,d+b�, �0,0 ,d−a2� , . . . , �0,0 ,d−a2j� and at �0,0 ,d
b2� , . . . , �0,0 ,d−b2j�, and inside sphere A at �0,0 ,−d+a1� , . . . , �0,0 ,−d+a2j+1� and at �0,0 ,
d+b1� , . . . , �0,0 ,−d+b2j+1�. According to �B5� of Appendix B, the distance b is defined by

b =
a2

h − d
. �33�

he distances am and bm, where a0=d−h and b0=−b, separately satisfy the recursion relation

�m =
a2

2d − �m−1
, m = 1,2, . . . , �34�

here �0=a0 or �0=b0=−b. It follows from �B7� of Appendix B that the moments of the image

IG. 2. The geometry of two spherical cells with equal radii, a. The incident, uniform electric field is polarized along the
axis. Two dipoles of moment p=ez are placed symmetrically with respect to the origin O in order to produce the incident
eld in the limit h→
.
ipoles located at distances am from O1 or O2 are
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pm = �− 1�m��
i=1

m

ai

am �
3

, m = 1,2, . . . . �35�

he dipole moments corresponding to distances bm from O1 or O2 are

qm = �− 1�m+1�b�
i=1

m

bi

am+1 �
3

, m = 1,2, . . . ; q0 = − �b/a�3. �36�

The difference equation �34� is solved in Appendix C to yield

�m = a
sinh�m� − ���0��

sinh��m + 1�� − ���0��
, �37�

here

� = ln �, � =
d + �d2 − a2

a
, �38�

���� =
1

2
ln� 1 − �a−1�

1 − ��a�−1�
� . �39�

t follows from Eqs. �35� and �36� that the strengths of the image dipoles are given explicitly by

pm = �− 1�m� sinh�� − ��a0��
sinh��m + 1�� − ��a0���3

, m = 1,2, . . . , �40�

qm = �− 1�m+1� sinh ��b0�
sinh��m + 1�� − ��b0���3

, m = 0,1,2, . . . . �41�

Thus, the zeroth-order potential in the exterior of the cells is furnished by20

4�	d�r;h� =
ez · �hez + r�

�hez + r�3
+

ez · �− hez + r�
�− hez + r�3

−
b3

a3

ez · ��d + b�ez + r�
��d + b�ez + r�3

−
b3

a3

ez · �− �d + b�ez + r�
�− �d + b�ez + r�3

+ �
m=1




pm� �d − am� + ez · r

��d − am�ez + r�3
+

− �d − am� + ez · r

�− �d − am�ez + r�3� + �
m=1




qm� �d − bm� + ez · r

��d − bm�ez + r�3

+
− �d − bm� + ez · r

�− �d − bm�ez + r�3� = �
m=0




�− 1�m� sinh�� − ��a0��
sinh��m + 1�� − ��a0���3 � �d − am� + ez · r

��d − am�ez + r�3

+
− �d − am� + ez · r

�− �d − am�ez + r�3� + �
m=0




�− 1�m+1� sinh ��b0�
sinh��m + 1�� − ��b0���3 � �d − bm� + ez · r

��d − bm�ez + r�3

+
− �d − bm� + ez · r

�− �d − bm�ez + r�3� , �42�

here a0=d−h and b0=−b. Recall that b is defined by �33�.

In the limit h→
 we obtain a0→−
 and b0→0, and in view of �37� and �39� we find
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��a0� � � −
a

h
sinh �, ��b0� �

a

h
sinh � , �43�

nd

am+1 � a
sinh�m��

sinh��m + 1���
� �m, bm � �m. �44�

fter some rearrangement of terms in �42�, the potential for h→
 reduces to

4�	d�r;h� � −
4

h3z − 2
a3

h3 �sinh ��3�
m=0



�− 1�m

�sinh�m + 1���3� d − �m + z

��d − �m�2 + r2 + 2�d − �m�z�3/2

+
− �d − �m� + z

��d − �m�2 + r2 − 2�d − �m�z�3/2� . �45�

The zeroth-order potential 	0�r� is obtained via multiplying 	d above by �h3 so that the
otential at infinity becomes −z:

	0�r� = lim
h→


��h3	d� = − z −
a3

2
�sinh ��3�

m=0



�− 1�m

�sinh�m + 1���3� d − �m + z

��d − �m�2 + r2 + 2�d − �m�z�3/2

+
− �d − �m� + z

��d − �m�2 + r2 − 2�d − �m�z�3/2� . �46�

or nontouching spheres �d�a� the terms of the preceding series approach zero exponentially fast
s m→
.

Equation �46� is simplified considerably when the spheres touch �d→a�. With

� � �2
1 −
a

d
�1/2

→ 0 as d → a , �47�

44� furnishes

�m = a
m

m + 1
. �48�

ccordingly, �46� entails

	0�r� = − z −
a3

2 �
m=0


 � z +
a

m + 1

�r2 +
a2

�m + 1�2 +
2az

m + 1
�3/2 +

z −
a

m + 1

�r2 +
a2

�m + 1�2 −
2az

m + 1
�3/2� �− 1�m

�m + 1�3 .

�49�

t is worthwhile noting that as m→
 terms of this series behave as O�m−3�, ensuring fast, absolute
onvergence.

. First-order approximation

. Formulas for nontouching spheres, d>a
With 	�	0+	1 everywhere the boundary condition for 	1 on each spherical surface reads
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	 �	1

�r�
	

r�=a
=

1

�
��	0 − �0��r�=a, �50�

here �r� ,�� ,��� is the coordinate system with origin at the center of each sphere and �0 is given
y �19�. By expanding 	0 in spherical harmonics according to �D1� and �D2� of Appendix D,
ondition �50� reads

	 �	1

�r�
	

r�=a
=

1

�
�− a cos �� −

a

2�
l=1




DlPl�cos ��� , �51�

here

Dl = Dl
A = �sinh ��3l�

m=0



�− 1�m

�sinh�m + 1���3 �
�m

a
�l−1

+ 
1 +
1

l
�
2d − �m

a
�−l−2� �52�

or sphere A, and

Dl = Dl
B = �sinh ��3�− 1�l−1l�

m=0



�− 1�m

�sinh�m + 1���3 �
�m

a
�l−1

− 
1 +
1

l
�
2d − �m

a
�−l−2� �53�

or sphere B.
Therefore, 	1 is expanded inside each sphere as

	1 = −
a

�
r� cos �� −

a2

2�
�
l=1



Dl

l

 r�

a
�l

Pl�cos ��� + C , �54�

here C is an immaterial constant which is henceforth set to zero, C=0. In view of �52� and �53�
long with �D1�–�D3� of Appendix D, carrying out the summation over l gives

	1 = −
a

�
z� −

a2

2�
�
m=0




�− 1�m �sinh ��3

�sinh�m + 1���3 � r�

a
Tm
��m

r�

a
,��� ± �m

3 r�

a
Tm
��m

r�

a
,���

+ �m
2 Sm
��m

r�

a
,���� , �55�

here the upper �lower� sign corresponds to cell A �B�,

�m =
sinh�m��

sinh��m + 1���
, �m = 
2d − �m

a
�−1

, �56�

Tm�s,��� =
2 cos �� + s

�1 + 2s cos �� + s2

1

1 + �1 + 2s cos �� + s2
, �57�

Sm�s,��� = ln	 2

sin2 ��

1

s
	 + ln	 s + cos �� − cos ���1 + 2s cos �� + s2

1 + �1 + 2s cos �� + s2 	 , �58�

nd �m is defined by �44�.
The electric field, which is proportional to the current, inside each cell is

E1 = − er�
�	1

�r�
− e��

1

r�

�	1

���
, �59�
here
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−
�	1

�r�
=

a

�
cos �� +

a

2�
�
m=0




�− 1�m �sinh ��3

�sinh�m + 1���3

� �Vm
��m
r�

a
,��� ± �m

3 Vm
��m
r�

a
,��� ± �m

3 Tm
��m
r�

a
,���� , �60�

nd

1

r�

�	1

���
=

a

�
sin �� +

a

2�
sin �� �

m=0




�− 1�m �sinh ��3

�sinh�m + 1���3

� �Um
��m
r�

a
,��� ± �m

3 Um
��m
r�

a
,��� ± �m

3 Wm
��m
r�

a
,���� . �61�

n the above,

Um�s,��� =
1

�1 + 2s cos �� + s2�3/2 , �62�

Vm�s,��� =
cos �� + s

�1 + 2s cos �� + s2�3/2 , �63�

Wm�s,��� =
1

�1 + 2s cos �� + s2

2 cos �� + s

cos ���1 + �1 + 2s cos �� + s2� + s
. �64�

In Fig. 3 we show contour plots for the magnitude of E1, normalized by the field 3a /2� inside
n isolated spherical cell of equal radius �cf. Appendix A�, inside cells A and B for a fixed value
f d /a. In Fig. 4 we show plots for the maximum normalized magnitudes as functions of d /a. Two
omments are in order: �i� As expected by close inspection of �59�–�64�, for any d�a the maxi-
um �E1� is attained for ��=0 for both spheres. �ii� This maximum value increases with d in

IG. 3. Contour plots of the magnitude of the normalized electric field, �3a /2��−1�E1�, inside each cell. Maximum
agnitudes are attained at ��=0; �x ,y ,z� is the usual Cartesian coordinate system.
phere A and decreases with d in sphere B; cf. Fig. 4.
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. Touching spheres, d\a

As mentioned above, a close examination of Eqs. �60� and �61� reveals that for fixed distance
the field magnitude attains its maximum at ��=0 inside sphere A �as r� approaches a from left,

�→a−�. A similar situation arises in fluid mechanics.21 This maximum increases as d approaches
when the spheres tend to touch. In this case, d→a, approximation �47� yields

	1 = −
a

�
z� −

a

2�
�
m=0



�− 1�m

�m + 1�3� r�

a
Tm
�

m

m + 1

r�

a
,��� ±

�m + 1�3

�m + 2�3

r�

a
Tm
�

m + 1

m + 2

r�

a
,���

+
�m + 1�2

�m + 2�2 Sm
�
m + 1

m + 2

r�

a
,���� . �65�

The corresponding electric field is derived by invoking

−
�	1

�r�
=

a

�
cos �� +

a

2�
�
m=0



�− 1�m

�m + 1�3�Vm
�
m

m + 1

r�

a
,��� ±

�m + 1�3

�m + 2�3Vm
�
m + 1

m + 2

r�

a
,���

±
�m + 1�3

�m + 2�3 Tm
�
m + 1

m + 2

r�

a
,���� , �66�

nd

1

r�

�	1

���
=

a

�
sin �� +

a

2�
sin ���

m=0



�− 1�m

�m + 1�3�Um
�
m

m + 1

r�

a
,��� ±

�m + 1�3

�m + 2�3 Um
�
m + 1

m + 2

r�

a
,���

±
�m + 1�3

�m + 2�3 Wm
�
m + 1

m + 2

r�

a
,���� . �67�

It follows that for d→a the electric field in sphere A along the z axis becomes E

IG. 4. Plots of the maximum magnitudes of the normalized electric fields inside cells A and B as functions of their
ormalized distance, d /a; 3a /2� is the electric field inside an isolated spherical cell of equal radius.
�a /��E1�z��ez, where E1 is the positive quantity
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E1�z�� = 1 +
1

2 �
m=0



�− 1�m

�m + 1�3
1 −
�z��
a

m

m + 1
�−2

+
1

2 �
m=0



�− 1�m

�m + 2�3
1 −
�z��
a

m + 1

m + 2
�−2

+
1

2 �
m=0



�− 1�m

�m + 2�3
1 −
�z��
a

m + 1

m + 2
�−1

. �68�

ence, E1 attains its maximum for z�=a,

E1,max = 1 +
1

2 �
m=0




�− 1�m
 1

m + 1
+

1

m + 2
+

1

�m + 2�2� = 2 −
�2

24
� 1.5888, �69�

hich is 6% higher than the corresponding value inside the isolated spherical cell of equal radius;
ompare with �31� of Sec. II.

V. CONCLUSION

By use of perturbation theory we studied analytically a mathematical model for the scattering
f extremely low frequency, uniform electric fields from cells of arbitrary shapes. Two main
ssumptions in our derivations were that the cell radius of curvature is a slowly varying function
f surface coordinates and the cell interior is an isotropic and homogeneous medium. Our results
or two spherical cells suggest that the presence of a neighboring cell causes only a small increase
o the electric field inside a single cell of reasonably arbitrary shape.

Our analysis, based on suitable application of regular perturbations along with a reflection
rinciple and exact solution of a nonlinear difference equation, can be extended to geometries of
any cells but becomes increasingly cumbersome with the number of cells. In this case the

olution for the electrostatic potential is obtained by solving a system of tractable difference
quations. It is expected, however, that the presence of additional cells will cause only a minor
ncrease in the induced electric field, being sufficiently bounded in the number of cells. This
roblem is subject of work in progress.
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PPENDIX A: REVISITING THE SINGLE SPHERICAL CELL

In this appendix we review the case with a uniform electric field incident on a single spherical
ell, which is also studied in Refs. 2 and 4. The cell interior consists of two concentric spheres of
adii a and b, where b�a. The effective dielectric constant in the regions 0�r�a and r�b is
aken to be 1 without loss of generality; the region a�r�b corresponds to the cell membrane and
as dielectric constant equal to the � defined by �2�. The real parameter � expresses the relative
ielectric constant for the two media, membrane and protoplasm, and is equal to the ratio of their
onductivities, which enter the equations only through the homogeneous boundary conditions
iven in Eqs. �A5� and �A6� below. For an incident field Einc=ez the scalar potential 	 at infinity
s

	�r,�� � − r cos �, r → 
 , �A1�

here �r ,� ,�� are the usual spherical coordinates. The boundary conditions at r=a ,b dictate
ontinuity of 	 and ���	 /�r� across the spherical boundaries. The scalar potential 	 is thus
ndependent of the azimuthal angle, �, while it satisfies Laplace’s equation in free space. With

	�r,�� = f�r�cos � , �A2�
e obtain the equation
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 d2

dr2 +
2

r

d

dr
−

2

r2� f�r� = 0, �A3�

ith general solution f�r�=Ar+Br−2. More precisely,

f�r� =�
A1r , r � a ,

A2r +
B2

r2 , a � r � b ,

− r +
B3

r2 , r � b , � �A4�

here the boundary condition �A1� has been used. In order to determine the constants A1, A2, B2,
nd B3 we apply the boundary conditions at r=a and r=b, and thus obtain the equations

A1a = A2a +
B2

a2 , A1 = �
A2 −
2B2

a3 � , �A5�

A2b +
B2

b2 = − b +
B3

b2 , �
A2 −
2B2

b3 � = − 1 −
2B3

b3 . �A6�

he electric field inside the cell is −A1ez, where

− A1 =
9�

�1 + 2���2 + �� − 2�1 − ��2�a/b�3 . �A7�

Specifically, if � is small and a=b−�, ��a, then

− A1 �
1

1 +
2

3

�

a�

=
1

1 +
2�

3a

, �A8�

here �=� /�. The right-hand side of the above equation is small if ��a, and can be expanded as
�convergent� geometric series for 3a / �2���1. Specifically,

− A1 �
3a

2�
,

a

�
� 1. �A9�

PPENDIX B: REFLECTION PRINCIPLE WITH NEUMANN CONDITION

In this appendix �i� we derive a reflection principle, involving image dipoles, for the problem
ith a source dipole in the presence of a sphere with Neumann boundary conditions, extending the
nown analysis with a source charge and Dirichlet boundary conditions;20 and �ii� we apply this
rinciple to determine the potential 	 for the case with an insulating sphere and incident uniform
lectric field �cf. Appendix A�.

We consider a z-directed electric dipole of moment p= pez located at r0= �0,0 ,h� in the
resence of a sphere with radius a centered at O. In units where �eff=1, where �eff is the effective
ielectric constant of the infinite medium, the ensuing scalar potential 	�r ;r0 �p� satisfies the
oisson equation

�2	 = p
�

�z
��r − r0�, r � a , �B1�
long with the prescribed Neumann boundary condition
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	 �	

�r
	

r=a
= 0, �B2�

nd 	�r ;r0 �p�→0 as r→
. The potential 	 is thus determined uniquely in the region r�a.
ecall that the potential generated by a dipole of moment p located at the origin is p ·r /4�r3. We
ext express 	 for r�a as a superposition of the �primary� potential 	pr generated by the source
ipole at r0 in the absence of the sphere and the �scattered� potential 	sc of an image dipole with
oment p�=�pez at r1= �0,0 ,h�� where h��a; � and h� are to be determined.

Because of condition �B2� it is advantageous to work directly with the electric field
=−�	. For r�a and �r−r0 � �0,

E�r� = Epr�r� + Esc�r� =
3�p · �r − r0���r − r0� − �r − r0�2p

4��r − r0�5
+ �

3�p� · ��r − r1���r − r1� − �r − r1�2p�

4��r − r1�5

= p
3�r cos � − h��rer − hez� − �r2 + h2 − 2rh cos ��ez

4��r2 + h2 − 2rh cos ��5/2

+ �p
3�r cos � − h���rer − h�ez� − �r2 + h�2 − 2rh� cos ��ez

4��r2 + h�2 − 2rh� cos ��5/2 . �B3�

ence,

− 	 �	�r�
�r

	
r=a

= p
2�a2 + h2�cos � − ah�3 + cos2 ��

4��a2 + h2 − 2ah cos ��5/2 + �p
2�a2 + h�2�cos � − ah��3 + cos2 ��

4��a2 + h�2 − 2ah� cos ��5/2 .

�B4�

he substitution

h�

a
=

a

h
�B5�

ields �r−r1�= �a /h��r−r0� and reduces �B4� to

− 	 �	�r�
�r

	
r=a

= p�1 + �
h

a
�3� 2�a2 + h2�cos � − ah�3 + cos2 ��

4��a2 + h2 − 2ah cos ��5/2 . �B6�

ondition �B2� is satisfied if

� = −
a3

h3 . �B7�

This equation concludes the derivation of the reflection principle for a source dipole and
eumann boundary condition on a neighboring sphere.

Next, we apply this principle in order to derive the electrostatic potential for the case with an
nsulating sphere immersed in a uniform electric field, Einc=E0ez; cf. Appendix A. This potential
atisfies the Laplace equation and condition �B2�, while the condition at infinity reads

	�r� � − E0r cos � as r → 
 . �B8�

The uniform incident field is now viewed as the total field of two dipoles located at �0,0 ,h�
nd �0,0 ,−h� in the limit h→
, where each dipole has moment p= pez.

22 The scalar potential due

o these dipoles in the presence of the insulating sphere and for r�a is
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	�r� =
p

4�h3� r cos � − h


1 −
2r

h
cos � +

r2

h2�3/2 −
a3

r3

r cos � −
a2

h


1 −
2a2

hr
cos � +

a4

r2h2�3/2 +
r cos � + h


1 +
2r

h
cos � +

r2

h2�3/2

−
a3

r3

r cos � +
a2

h


1 +
2a2

hr
cos � +

a4

r2h2�3/2� = −
p

�h3�r +
a3

2r2 + O
a5

r5

a2

h2��cos �

� − E0
r +
a3

2r2�cos �, h → 
 , �B9�

n view of �B8�, where

p = �h3E0, h → 
 . �B10�

PPENDIX C: SOLUTION OF NONLINEAR DIFFERENCE EQUATION

In this appendix, the difference equation

xn =
ã2

1 − xn−1
, n = 1,2, . . . , �C1�

here 0� ã�1/2 and x0�0, is solved exactly. The solution is subsequently simplified for �x0�
1.

The substitution xn= ã�yn /yn+1� recasts �C1� to

yn = ã�yn+1 + yn−1�, n = 1,2, . . . . �C2�

his equation is linear and can be solved via the replacement yn=�n. The variable � satisfies the
quation ã�2−�+ ã=0 with solutions

� = �± =
1 ± �1 − 4ã2

2ã
. �C3�

ote that �+�−=1 and �++�−=1/ ã. It is inferred that �+�1 and 0��−�1. The solution to �C2�
hus reads

yn = c1�+
n + c2�−

n , �C4�

here c1 and c2 are constants. Accordingly,

xn = ã�
c̃�2n − 1

c̃�2�n+1� − 1
, � = �+, c̃ = −

c1

c2
. �C5�

t follows that

c̃ =
ã + �−1�x0�
ã + ��x0�

, 0 � c̃ � 1. �C6�

et

c̃ = e−2�, � = e�, � � 0, � � 0. �C7�
quation �C5� then becomes

                                                                                                            



w

T
O

A

w

f

w
t

I

1

1

042902-17 Low-frequency currents induced in cells J. Math. Phys. 47, 042902 �2006�

                        
xn = ã
sinh�n� − ��

sinh��n + 1�� − ��
, n = 0,1,2, . . . . �C8�

It remains to derive an approximation for xn when ã −1�x0��1. From �C6�,

c̃ � �1 − ã −1�−1x0��1 + ã −1�x0� � 1 + �1 − �−2�ã −1�x0, �C9�

hich in turn leads to

xn � ã
�1 − �1 − e−2��ã −1��x0��en� − e−n�

�1 − �1 − e−2��ã −1��x0��e�n+1�� − e−�n+1�� � ã
sinh n�

sinh�n + 1��
1 − en� sinh �

sinh n�
ã −1�x0��

��1 + ã −1�x0�e�n+1�� sinh �

sinh�n + 1��� � ã
sinh n�

sinh�n + 1��
− � sinh �

sinh�n + 1���2

�x0� . �C10�

his expression becomes a trivial equality for n=0. Note that the coefficient of the correction term
�x0� is bounded uniformly with n.

PPENDIX D: ELEMENTARY EXPANSION IN LEGENDRE POLYNOMIALS

It is known that23

�1 + 2�x + �2�−1/2 = �
l=0




�− 1�lPl�x���l, ��� � 1,

�−l−1, ��� � 1,
� �D1�

here x=cos � and Pl�x� are Legendre polynomials. It follows by differentiation that

x + �

�1 + 2�x + �2�3/2 = �
l=0




�− 1�lPl�x���− l��l−1,

�l + 1��−l−2,
� �D2�

or �� � �1 or �� � �1, respectively.
The term-by-term integration of �D1� yields

�
l=1



�l

l
Pl�x� = �

0

� dt

t 
 1
�1 − 2tx + t2

− 1� , �D3�

here �� � �1. This integral is elementary; by changing the variable to w according to
−x=�1−x2 sinh w we find

�
l=1



�l

l
Pl�x� = ln	 2

1 − x2

1

�

� − x + x�1 − 2�x + �2

1 + �1 − 2�x + �2 	 . �D4�

n the limit x→1− the right-hand side of this formula approaches −ln�1−��, as it should.
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This paper presents some developments related to the idea of covariance in elas-
ticity. The geometric point of view in continuum mechanics is briefly reviewed.
Building on this, regarding the reference configuration and the ambient space as
Riemannian manifolds with their own metrics, a Lagrangian field theory of elastic
bodies with evolving reference configurations is developed. It is shown that even in
this general setting, the Euler-Lagrange equations resulting from horizontal �refer-
ential� variations are equivalent to those resulting from vertical �spatial� variations.
The classical Green-Naghdi-Rivilin theorem is revisited and a material version of it
is discussed. It is shown that energy balance, in general, cannot be invariant under
isometries of the reference configuration, which in this case is identified with a
subset of R3. Transformation properties of balance of energy under rigid transla-
tions and rotations of the reference configuration is obtained. The spatial covariant
theory of elasticity is also revisited. The transformation of balance of energy under
an arbitrary diffeomorphism of the reference configuration is obtained and it is
shown that some nonstandard terms appear in the transformed balance of energy.
Then conditions under which energy balance is materially covariant are obtained. It
is seen that material covariance of energy balance is equivalent to conservation of
mass, isotropy, material Doyle-Ericksen formula and an extra condition that we call
configurational inviscidity. In the last part of the paper, the connection between
Noether’s theorem and covariance is investigated. It is shown that the Doyle-
Ericksen formula can be obtained as a consequence of spatial covariance of
Lagrangian density. Similarly, it is shown that the material Doyle-Ericksen formula
can be obtained from material covariance of Lagrangian density. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2190827�

. INTRODUCTION

Invariance plays an important role in mechanics and in physics. In any continuum theory one
as some conservation laws; i.e., quantities that are constant in time, such as mass and energy or
alance laws, such as balance of linear and angular momentum. One way of building a continuum
heory is to postulate these conservation or balance laws. On the other hand, as we shall recall
ater, conservation laws and even balance laws can be obtained as a result of postulating invari-
nce of a quantity such as energy or Lagrangian density, under some group of transformations.

Traditionally, continuum mechanics is developed using Euclidean space as the ambient space.
his has been motivated by the engineering applications of continuum mechanics and the general

endency of the engineering community to work with the simplest possible spaces. This is of

�
Author to whom correspondence should be addressed. Electronic mail: arash.yavari@ce.gatech.edu

47, 042903-1022-2488/2006/47�4�/042903/53/$23.00 © 2006 American Institute of Physics
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ourse useful and the implicit simplifying assumptions of continuum mechanics have made it
pplicable to many problems of practical importance. However, being restricted to the misleading
nd rigid structure of Euclidean space, one should expect to lose important geometric information.
or example, for many years there were debates on different stress rates and whether one stress
ate is “more objective” than the other one. Putting continuum mechanics in the right geometric
etting, one can clearly see that different stress rates in the literature are simply different repre-
entations of the same Lie derivative.28

Another basic example of the lack of geometry in the traditional formulation of continuum
echanics is the dependence of the well-known balance of linear and angular momenta on the

inear structure of Euclidean space. These laws are written in terms of integrals of some vector
elds. Of course, integrating a vector field has no intrinsic meaning and is dependent on a linear
tructure or a specific coordinate choice. One can argue that a geometric point of view has proven
seful in, for example, building systematic numerical schemes as well as in bridging length and
ime scales. For example, geometry has proven useful in Refs. 25, 6, and 3, although much
emains to be done in the future.

Following Einstein’s idea that physical laws should not depend on any particular choice of
oordinate representation of ambient spaces, Marsden and Hughes28 developed a covariant theory
f elasticity building on ideas originated from the work of Naghdi, Green and Rivilin.19 This work
tarts from balance of energy, which makes sense intrinsically as it is written in terms of integrals
f scalar fields �or more precisely 3-forms�. Then they postulate that balance of energy is invariant
nder arbitrary diffeomorphisms of the ambient space. They observe that this invariance assump-
ion gives all the usual balance laws plus the Doyle-Ericksen formula that relates the stress and the

etric tensor.
Our motivation for studying spatial and material covariant balance laws was to gain a better

nderstanding of the geometry of configurational forces, which are forces that act in the reference
onfiguration. One may ask the following question. What are the consequences of postulating that
alance of energy is materially covariant? In the process of answering this question we discovered
hat such invariance cannot hold in general and this led us to obtain formulas for the way in which
alance of energy transforms under material diffeomorphisms. In this paper we also study the
onnection between spatial and material covariance with Noether’s theorem. It will be shown that
patial and material covariance of a Lagrangian density lead to the spatial and material forms of
he Doyle-Ericksen formula, respectively.

As was mentioned, one of our motivations for this study was to initiate a geometric study of
onfigurational forces. These forces and their balance laws are important in formulating the evo-
ution of defects in solids in the setting of continuum mechanics. Driving �configurational, mate-
ial and so forth� forces in continuum mechanics were introduced by Eshelby,13–15 and many
esearchers have studied them from different points of view. We mention the work of Knowles,22

beyaratneh and Knowles1,2 on driving force on a phase interface, Gurtin’s work20,21 on configu-
ational forces by postulating new balance laws, the work of Maugin31,32 and Maugin and
rimarco33 on pull-back of balance of standard linear momentum to the reference configuration,
tc. However, even after more than five decades after Eshelby’s original work there does not seem
o be a consensus on the nature of configurational forces and their exact role in continuum
echanics and there are still some controversies in the literature. We believe that the geometric

deas in this paper may be helpful in this direction.
This paper is organized as follows. The geometry of continuum mechanics is reviewed in Sec.

I. The Lagrangian field theory of elastic bodies with evolving reference configurations is pre-
ented in Sec. III, where deformed bodies and their reference configurations are treated as Rie-
annian manifolds. Using this setting, the classical Green-Naghdi-Rivilin theorem and a new
aterial version of it are discussed in Sec. IV. Spatial covariant energy balance is revisited in Sec.
. In Sec. VI we obtain the transformation �push-forward� of energy balance under an arbitrary
aterial diffeomorphism. Then, we investigate the consequences of material covariance of energy
alance. Section VII studies the connection between covariance and Noether’s theorem. It is
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hown that spatial and material covariance of a Lagrangian density result in spatial and material
ersions of the Doyle-Ericksen formula, respectively. Conclusions and future directions are given
n Sec. VIII.

I. GEOMETRY OF CONTINUUM MECHANICS

This section recalls some notation from the geometric approach to continuum mechanics that
ill be needed. It is assumed that the reader is familiar with the basic ideas; refer to, for example,
arsden and Hughes28 for details. See also Refs. 30 and 29.

If M is a smooth n-manifold, the tangent space to M at a point p�M is denoted TpM, while
he whole tangent bundle is denoted TM.

We denote by B a reference manifold for our body and by S the space in which the body
oves. We assume that B and S are Riemannian manifolds with metrics denoted by G and g,

espectively. Local coordinates on B are denoted by XI and those on S by xi. The material body
is a subset of the material manifold, i.e., B�B.

A deformation of the body is, for purposes of this paper, a C1 embedding � :B→S. The
angent map of � is denoted F=T� :TB→TS; in the literature it is often called the deformation
radient. In local charts on B and S, the tangent map of � is given by the Jacobian matrix of
artial derivatives of the components of �, which we write as

F = T�:TB → TS, T��X,V� = ���X�,D��X� · V� . �2.1�

If F :B→R is a C1 scalar function, X�B and VX�TXB, then VX�F� denotes the derivative of
at X in the direction of VX, i.e., VX�F�=DF�X� ·V. In local coordinates �XI� on B,

VX�F� =
�F

�XIV
I. �2.2�

For f :S→R, the pull-back of f by � is defined by

�*f = f � � . �2.3�

f F :B→R, the push-forward of F by � is defined by

�*F = F � �−1. �2.4�

If Y is a vector field on B, then �*Y=T� �Y ��−1, or using the F notation, �*Y=F �Y ��−1 is
vector field on ��B� called the push-forward of Y by �. Similarly, if y is a vector field on
�B��S, then �*y=T��−1� �y �� is a vector field on B and is called the pull-back of y by �.

The cotangent bundle of a manifold M is denoted T*M and the fiber at a point p�M �the
ector space of one-forms at p� is denoted by Tp

*M. If � is a one form on S �that is, a section of
he cotangent bundle T*S�, then the one-form on B defined as

��*��X · VX = ���X� · �T� · VX� = ���X� · �F · VX� �2.5�

or X�B and VX�TXB, is called the pull-back of � by �. Likewise, the push-forward of a
ne-form � on B is the one form on ��B� defined by �*�= ��−1�*�.

We can associate a vector field �� to a one-form � on a Riemannian manifold M through the
quation

��x,vx� = ���x
�,vx��x, �2.6�

here �,� denotes the natural pairing between the one-form �x�Tx
*M and the vector vx�TxM and

here ���x
� ,vx��x denotes the inner product between �x

��TxM and vx�TxM. In coordinates, the
� i ij
omponents of � are given by � =g �i.
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Traditionally force is thought of as a vector field in the deformed configuration. For example,
ody force B per unit undeformed mass is a vector field on S and its associated one-form can be
efined as

��x,�w� = ��B,�w��x �2.7�

or all �w�TxS. The pull-back of � is defined as

���*��X,�W�X = ��x,F�W�X = ��B,F�WX��X = ��FTB,�WX��X. �2.8�

herefore FTB is the vector field associated with the pull-back of the one-form associated with B.

A type �pq �-tensor at X�B is a multilinear map,

�2.9�

is said to be contravariant of order p and covariant of order q. In a local coordinate chart,

T��1, . . . ,�p,V1, . . . ,Vq� = Ti1¯ip
j1¯jq

�i1
1
¯ �ip

p V1
j1
¯ Vq

jq, �2.10�

here �k�TX
*B and Vk�TXB.

Suppose � :B→S is a regular map and T is a tensor of type �pq �. Push-forward of T by � is

enoted �*T and is a �pq �-tensor on ��B� defined by

��*T��x���1, . . . ,�p,v1, . . . ,vq� = T�X���*�1, . . . ,�*�p,�*v1, . . . ,�*vq� , �2.11�

here �k�Tx
*S ,vk�TxS ,X=�−1�x� ,�*��k� ·vl=�k · �T� ·vl� and �*�vl�=T��−1�vl. Similarly, pull-

ack of a tensor t defined on ��B� is given by �*t= ��−1�*t. In the setting of continuum mechanics
ush-forward and pull-back of tensors will have the following forms:

��*T�i1¯ip
j1¯jq

�x� = Fi1
I1

�X� ¯ Fip
Ip

�X�TI1¯Ip
J1¯Jq

�F−1�J1
j1

�x� ¯ �F−1�Jq
jq

�x� ,

��*t�I1¯Ip
J1¯Jq

�X� = �F−1�I1
i1

�x� ¯ �F−1�Ip
ip

�x�ti1¯ip
j1¯jq

Fj1
J1

�X� ¯ Fjq
Jq

�X� .

A two-point tensor T of type �q q�

p p� � at X�B over a map � :B→S is a multilinear map,

�2.12�

here x=��X�.
Let w :U→TS be a vector field, where U�S is open. A curve c : I→S, where I is an open

nterval, is an integral curve of w if

dc

dt
�r� = w�c�r�� " r � I . �2.13�

f w depends on time variable explicitly, i.e., w :U� �−� ,��→TS, an integral curve is defined by

dc
= w�c�t�,t� . �2.14�
dt
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Let w :S� I→TS be a vector field. The collection of maps Ft,s such that for each s and x,
�Ft,s�x� is an integral curve of w and Fs,s�x�=x is called the flow of w. Let w be a C1 vector field
n S, Ft,s its flow, and t a C1 tensor field on S. The Lie derivative of t with respect to w is defined
y

Lwt = 	 d

dt
�Ft,s

* t�	
t=s

. �2.15�

f we hold t fixed in t then we denote

£wt = 	 d

dt
�Ft,s

* t�	
t=s

, �2.16�

hich is called the autonomous Lie derivative. Hence

Lwt =
�

�t
t + Lwt . �2.17�

Let v be a vector field on S and � :B→S a regular and orientation preserving C1 map. The
iola transform of v is

V = J�*v , �2.18�

here J is the Jacobian of �. If Y is the Piola transform of y, then the Piola identity holds,

Div Y = J�div y� � � . �2.19�

A k-form on a manifold M is a skew-symmetric �0k �-tensor. The space of k-forms on M is

enoted �k�M�. If � :M→N is a regular and orientation preserving C1 map and ���k���M��,
hen



��M�

� = 

M

�*� . �2.20�

Geometric continuum mechanics: We next review a few of the basic notions of continuum
echanics from the geometric point of view.

A body B is a submanifold of a Riemannian manifold B and a configuration of B is a
apping � :B→S, where S is another Riemannian manifold. The set of all configurations of B is

enoted C. A motion is a curve c :R→C ; t��t in C.
For a fixed t, �t�X�=��X , t� and for a fixed X, �X�t�=��X , t�, where X is position of material

oints in the undeformed configuration B. The material velocity is the map Vt :B→R3 given by

Vt�X� = V�X,t� =
���X,t�

�t
=

d

dt
�X�t� . �2.21�

imilarly, the material acceleration is defined by

At�X� = A�X,t� =
�V�X,t�

�t
=

d

dt
VX�t� . �2.22�

n components

Aa =
�Va

�t
+ �bc

a VbVc, �2.23�

a a
here �bc is the Christoffel symbol of the local coordinate chart �x �.
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Here it is assumed that �t is invertible and regular. The spatial velocity of a regular motion �t

s defined as

vt:�t�B� → R3, vt = Vt � �t
−1, �2.24�

nd the spatial acceleration at is defined as

a = v̇ =
�v

�t
+ �vv . �2.25�

n components

aa =
�va

�t
+

�va

�xb vb + �bc
a vbvc. �2.26�

Let � :B→S be a C1 configuration of B in S, where B and S are manifolds. Recall that the
eformation gradient is denoted F=T�. Thus, at each point X�B, it is a linear map

F�X�:TXB → T��X�S . �2.27�

f �xi� and �XI� are local coordinate charts on S and B, respectively, the components of F are

Fi
J�X� =

��i

�XJ �X� . �2.28�

he deformation gradient may be viewed as a two-point tensor,

F�X�:Tx
*S � TXB → R; ��,V� � ��,TX� · V� . �2.29�

uppose B and S are Riemannian manifolds with inner products ��,��X and ��,��x based at X�B
nd x�S, respectively.

Recall that the transpose of F is defined by

FT:TxS → TXB, ��FV,v��x = ��V,FTv��X �2.30�

or all V�TXB ,v�TxS. In components,

�FT�X��J
i = gij�x�Fj

K�X�GJK�X� , �2.31�

here g and G are metric tensors on S and B, respectively. On the other hand, the dual of F, a
etric independent notion, is defined by

F * �x�:Tx
*S → TX

*B; �F*�x� · �,W� = ��,F�X�W� �2.32�

or all ��Tx
*S ,W�TXB.

Considering bases ea and EA for S and B, respectively, one can define the corresponding dual
ases ea and EA. The matrix representation of F* with respect to the dual bases is the transpose of
a

A. F and F* have the following local representations:

F = Fj
K

�

�xj � dXK, F* = Fj
K dXK

�
�

�xj . �2.33�

he right Cauchy-Green deformation tensor is defined by

C�X�:TXB → TXB, C�X� = F�X�TF�X� . �2.34�
n components,
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CI
J = �FT�I

kF
k
J. �2.35�

t is straightforward to show that

C� = �*�g�, i . e . ,CIJ = �gij � ��Fi
IF

j
J. �2.36�

rom now on, by C we mean the tensor with components CIJ. The Finger tensor is defined as
=�t*G, where G is the metric of the reference configuration.

To make ideas more concrete, a comment is in order. In the geometric treatment of continuum
echanics one assumes that the material body is a Riemannian manifold �B ,G�. Here B is an

mbedding of the material body, i.e., material points are identified with their positions in the
eference configuration. A deformation of the material body is represented by a mapping � :B

S, where �S ,g� is the ambient space, which is another Riemannian manifold. If �=Id, the
eference configuration is a trivial embedding of the material body in the ambient space. Physi-
ally, in the deformation process the relative distance of material points change in general. In other
ords, in terms of material points X ,X+dX and their positions in the deformed configuration
,x+dx we have

dx · dx = C dX · dX � dX · dX . �2.37�

This means that in general

g � �t*G . �2.38�

The following identities will be used frequently in this paper.

�gab

�xc = gad�bc
d + gbd�ac

d , �2.39�

�GAB

�XC = GAD	BC
D + GBD	AC

D , �2.40�

here �bc
d and 	BC

D are the Christoffel symbols associated to the metric tensors g and G, respec-
ively. The covariant derivative of two-point tensors will also be used frequently in this paper. The
ollowing two examples would be useful to clarify the idea. For definition for an arbitrary two-
oint tensor the reader may refer to Marsden and Hughes,28

PaA
�B =

�PaA

�XB + PaC	CB
A + PbAFc

A�bc
a , �2.41�

Qa
A

�B =
�Qa

A

�XB + Qa
C	CB

A − Qb
AFc

A�ca
b . �2.42�

Let �t :B→S be a regular motion of B in S and P�B a k-dimensional submanifold. The
ransport theorem says that for any k-form � on S,

d

dt



�t�P�
� = 


�t�P�
Lv� , �2.43�

here v is the spatial velocity of the motion. In a special case when �= f dv and P=U is an open
et,

d

dt



�t�P�
f dv = 


�t�P�
� � f

�t
+ div�fv�dv . �2.44�
We say that a body B satisfies balance of linear momentum if for every nice open set U�B,
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d

dt



�t�U�

v dv = 


�t�U�

b dv + 


��t�U�
t da , �2.45�

here 
=
�x , t� is mass density, b=b�x , t� is body force vector field and t= t�x , n̂ , t� is the traction
ector. Note that Cauchy’s stress theorem tells us that there is a contravariant second-order tensor
=��x , t� �Cauchy stress tensor� with components �ij such that t= ��� , n̂��. Note that ��,�� is the

nner product induced by the Riemmanian metric g. Equivalently, balance of linear momentum can
e written in the undeformed configuration as

d

dt



U

0V dV = 


U

0B dV + 


�U
��P,N̂��dA , �2.46�

here, P=J�*� �the first Piola-Kirchhoff stress tensor� is the Piola transform of Cauchy stress
ensor. Note that P is a two-point tensor with components PiJ. Note also that this is the balance of
inear momentum in the deformed �physical� space written in terms of some quantities that are
efined with respect to the reference configuration.

As was mentioned before, balance of linear momentum has no intrinsic meaning because
ntegrating a vector field is geometrically meaningless. As is standard in continuum mechanics,
his balance law makes use of the linear �or affine� structure of Euclidean space.

A body B is said to satisfy balance of angular momentum if for every nice open set U�B,

d

dt



�t�U�

x � v dv = 


�t�U�

x � b dv + 


��t�U�
x � ���,n̂��da . �2.47�

As with balance of linear momentum, balance of angular momentum makes use of the linear
tructure of Euclidean space and this does not transform in a covariant way under a general change
f coordinates.

One says that balance of energy holds if, for every nice open set U�B,

d

dt



�t�U�

�e +

1

2
��v,v���dv = 


�t�U�

���b,v�� + r�dv + 


��t�U�
���t,v�� + h�da , �2.48�

here e=e�x , t� ,r=r�x , t� and h=h�x , n̂ , t� are internal energy per unit mass, heat supply per unit
mass and heat flux, respectively.

The geometry of inverse motions: The study of inverse motions in continuum mechanics was
started by Shield38 and further extended by Ericksen10 and Steinmann.43,42 Here the idea is to fix
patial points and look at the evolution of material points under the inverse of the deformation
apping. It is known that in inverse motion, Eshelby’s tensor has a role similar to that of stress

ensor in direct motion. One should note that formulating continuum mechanics in terms of the
nverse motion is simply a change in describing the same physical system and so, in general,
annot have any profound consequences. However, in the general relativistic setting, in which it is
esireable to have the fields to be defined on space-time and take values in a bundle over space-
ime, inverse configurations are preferred; see Ref. 5 and references therein.

II. LAGRANGIAN FIELD THEORY OF ELASTIC BODIES WITH EVOLVING REFERENCE
ONFIGURATIONS

Suppose the reference configuration evolves in time and assume that this evolution can be
epresented by a one-parameter family of mappings that map B�B �reference configuration at
=0� to Bt�B �the reference configuration at time t�,

�t:B → Bt. �3.1�

e call these maps the configurational deformation maps. Note that this is not the most general

orm of reference configuration evolution. In general, one should look at the reference configura-
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ion evolution locally �see Refs. 9 and 8 for some discussions on this�. For the sake of simplicity,
e assume a global reference configuration evolution. The configuration space for the evolution of

he reference configuration is

Cconf = ����:B → Bt� . �3.2�

n evolution of the reference configuration is a curve c : I→Cconf in Cconf. It is important to put the
ight restrictions on �t. It does not seem necessary for �t to be invertible, in general. Here, we
ssume that �t is a diffeomorphism. A standard deformation is represented by a one-parameter
amily of mappings,

�t:Bt → S . �3.3�

he standard configuration space is defined by

C = ����:Bt → S� . �3.4�

gain, a standard deformation is a curve in the standard configuration space. The total deforma-
ion map is the composition of standard and configurational deformation maps,

t = �t � �t:B → S; �3.5�

hat is, the following diagram commutes:

FIG. 1. Configurational and standard deformation maps.
igure 1 below shows the same idea schematically.
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In terms of mapping the material points, xt=�t�Xt�=�t ��t�X�, as is shown in the following
ommutative diagram:

he configuration space for the total deformation is defined as

Ctot = �� = � � �,� � C,� � Cconf� = C � Cconf. �3.6�

deformation is a curve c : I→Ctot in the total configuration space. Note that �t=Id �identity map�
n most of classical continuum mechanics.

Notice that there are two independent deformation mappings �t and �t when reference con-
guration evolves in time �see Fig. 1�. These separate mappings represent independent kinematical
rocesses and hence may correspond to two separate systems of forces, in general.

Definition 3.1 (configurational velocity): The configurational velocity is defined by

V0�X,t� =
��t�X�

�t
. �3.7�

Definition 3.2: The total material velocity is defined by

Ṽ�X,t� = 	 �t�Xt�
�t

	
X fixed

=
��t

�t
+ FV0 = V + FV0, �3.8�

here, as before, F=��t /�Xt is the deformation gradient �holding t fixed�. Note that

Tt = T�t � T�t or F̃ = FF0. �3.9�

hus

F0 = F−1 � F̃ . �3.10�

ow we may think about postulating the conservation of configurational mass and balance of
inear and angular configurational momenta.

Conservation of mass is defined in terms of conservation of mass for deformation mappings

t and �t separately or equivalently for �t and t separately. This makes sense as �t and �t

orrespond to configurational and standard deformations and should preserve the mass of an
rbitrary sub-body.

Definitiion 3.3 (conservation of mass): Suppose B is a body and t=�t ��t is a deformation
ap. We say that the deformation mapping is mass conserving if for every U�B,

d

dt



�t�U�

0�Xt,t�dV = 0 and

d

dt



t�U�

�x,t�dv = 0, �3.11�

here 
0�Xt , t� is the mass density at point Xt�Bt and 
�x , t� is the mass density at the point x
S.

Localization of the above equations gives the local form of conservation of mass, namely

R0�X� = 
0�Xt,t�J0 = 
�x,t�J̃ , �3.12�

here J0=det�F0���det G /�det G0�, F0=T�t is the configurational deformation gradient, G0 is

he fixed metric of B, G is the metric of Bt and R0 is the mass density at X�B and J̃=det�F̃�
� �
� det g / det G�=JJ0. Note that this is equivalent to
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R0 = 
0J0 and 
0 = 
J . �3.13�

One may be tempted to postulate a balance of configurational linear momentum as follows. A
ody B satisfies the balance of configurational linear momentum if for any U��Bt,

d

dt



U�

0V0 dV = 


U�

0B0 dV + 


�U�
P0N dA . �3.14�

ocalization of this balance law and using Cauchy’s theorem gives the following local form of the
alance of configurational linear momentum

Div P0 + 
0B0 = 
0A0. �3.15�

hinking of configurational deformation mapping �t as a deformation of a fixed reference con-
guration, this balance law is similar to the standard balance of linear momentum written in the
eformed configuration. Note that postulating such a balance law requires the introduction of two
ew quantities, namely P0 and B0 and does not seem to be of any use at this point.

It should be noted that a configurational change need not be volume preserving. An example
s a phase transformation from cubic to tetragonal which has the following configurational defor-
ation gradient �this is called Bain strain or matrix in martensitic phase transformations�,

F0 =�
1 0 0

0 1 0

0 0
c

a
� �3.16�

here a=b and c�a are the tetragonal lattice parameters.
The Lagrangian may be regarded as a map L :TC→R, where C is the space of some sections

for technical details see Ref. 28�, associated to the Lagrangian density L and a volume element
V�X� on B and is defined as

L��,�̇� = 

B

L�X,��X�,�̇�X�,F�X�,G�X�,g���X���dV�X� . �3.17�

ote that here we have assumed an explicit dependence of L on the material and spatial metrics
and g. Let us first revisit the classical Lagrangian field theory of elasticity using the above

agrangian density with explicit dependence on material and spatial metrics. The action function
s defined as

S��� = 

t0

t1

L��,�̇�dt . �3.18�

amilton’s principle states that the physical configuration � is the critical point of the action, i.e.,

dS��� · �� = 0. �3.19�

ote that variation in � leaves the material metric unchanged. The statement of Hamilton’s
rinciple can be simplified to read



t0

t1 

B
� �L

��
· �� +

�L
��̇

· ��̇ +
�L
�F

:�F +
�L
�g

:�g�dV�X�dt = 0. �3.20�
fter some manipulations the above integral statement results in
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�L
��a −

�

�t
� �L

��̇
�

a

− � �L
�F

�
a

A

�A
− � �L

�F
�

b

A

Fc
A�ac

b + 2
�L
�gcd

gbd�ac
b = 0. �3.21�

oting that

d

dt
� �L

��̇
�

a

= 
0�gabAb + gbc�ad
c �̇b�̇d� , �3.22�

� �L
�F

�
a

A

= − Pa
A, �3.23�

2
�L
�gcd

= 
0�̇c�̇d − J�cd, �3.24�

q. �3.21� can be written as

Pa
A

�A +
�L
��a + �Fc

APb
A − J�cdgbd��ac

b = 
0gabAb. �3.25�

ote that if L depends on F and g through C, then the term in the parentheses would be zero and
ence

Pa
A

�A +
�L
��a = 
0gabAb, �3.26�

hich is nothing but the familiar equations of motion. �Also note that in �3.25� use was made of
oyle-Ericksen formula �3.24�. However, for arriving at �3.26� there is no need for using Doyle-
ricksen formula.�

Now suppose that during the process of deformation the continuum undergoes a continuous
aterial evolution. This means that the deformation mapping � is the composition of a total

eformation mapping and a referential mapping, i.e.,

� =  � �−1 or  = � � � . �3.27�

ote that defining such a composition is ambiguous because there are infinitely many possibilities
or decomposing a given deformation mapping  into two mappings � and �. The new mappings
an represent part of the standard deformation and material evolution. To make sure that � is the
tandard part of total deformation mapping, the Lagrangian is written as an integral on the current
eference configuration Bt

L��,�̇� = 

Bt

L�X,��X�,�̇�X�,F�X�,G�X�,g���X���dV�X� . �3.28�

t would be more convenient to write the Lagrangian as a functional on B �the fixed initial
eference configuration�. Let us denote points on B by U. Note that

̇�U� = ��̇ � ���U� + T����U�� · �̇�U� or ��̇ � ���U� = ̇�U� − F���U�� · �̇�U� .

�3.29�

lso

F���U�� = F�U�F�
−1���U�� . �3.30�
hus,
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L = L���U�,�U�,̇�U� − F�U�F�
−1���U�� · �̇�U�,F�U�F�

−1���U��,G���U��,g��U���J��U� ,

�3.31�

here

J� = det�T��
�det G
�det G0

, �3.32�

nd where G0 is the fixed metric of the fixed reference configuration and G is the metric of Bt. As
efore, the action is defined as

S��,� = 

t0

t1

L��,�̇,,̇�dt . �3.33�

amilton’s principle states that the physical configurations � and  are the critical points of the
ction, i.e.,

dS��,� · ���,�� = 0. �3.34�

or the sake of clarity, we look at the two independent variations separately.

. Vertical variations

Let us first look at vertical variations; that is, we assume that ��=0 and see if we can recover
he classical Euler-Lagrange equations.

Proposition 3.4: Allowing only vertical variations in Hamilton’s principle, one obtains the
ollowing equations of motion

�L
��a −

d

dt
� �L

��̇ � �
�

a

− � �L
�F

�
a

B

�B
− Fc

B�ac
b � �L

�F
�

b

B

+
�L
�gbc

�gbc

�xa = 0. �3.35�

Proof: The derivative of the action with respect to vertical variations is computed as follows:

dS��,� · �0,�� = 

t0

t1 

B
� �L

�� � �
· � +

�L
��̇ � �

· ��̇ − ��F�U�F�
−1���U�� · �̇�U���

+
�L
�F

:��F�U�F�
−1���U��� +

�L
�g

:�g � �J��U�dV�U�dt = 0. �3.36�

ote that

��FF�
−1 � �� = ��FF�

−1� � � = T��� � �−1�� � � = T�� � �−1� � �

= �T�T�−1� � � = D�F�
−1 � � . �3.37�

et us assume coordinates �U��, �XA�, and �xa� and basis vectors E�, eA, and fa on B, Bt, and S,
espectively. Thus, in coordinates

D� =
��a

�U� fa � E�. �3.38�
he first part of the second term is simplified as
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t0

t1 

B

�L
��̇ � �

�̇J��U�dV�U� = − 

t0

t1 

B
� d

dt
� �L

��̇ � �
�

a

+
�L

��̇ � �
aWB

�B�aJ� dV�U�dt ,

�3.39�

here

W�U� =
d

dt
��U� . �3.40�

he second part of the second term in �3.36� can be simplified to

− 

t0

t1 

B

J�

�L
��̇ � �

D�F�
−1 � � · W dV�U�dt

= 

t0

t1 

B
�� �L

��̇ � �
�

a

J��F�
−1 � ���

BWB
��

�a dV�U�dt

+ 

t0

t1 

B
�J�� �L

��̇ � �
�

b

�F � ��c
A�ac

b WA�a dV�U�dt . �3.41�

sing the Piola identity we have

�� �L
��̇ � �

�
a

J��F�
−1 � ���

BWB
��

= J��� �L
��̇ � �

�
a

WA
�A

. �3.42�

lso

�� �L
��̇ � �

�
a

WA
�A

=
�

�XA� �L
��̇ � �

�
a

WA + � �L
��̇ � �

�
a

WA
�A − � �L

��̇ � �
�

b

WA�ac
b FA

c .

�3.43�

herefore �3.41� is simplified to



t0

t1 

B
� �

�XA� �L
��̇ � �

�
a

WA + � �L
��̇ � �

�
a

WA
�A�aJ�dV�U�dt . �3.44�

ote that

�

�t
� �L

��̇
�

a

=
�

�t
� �L

��̇ � �
�

a

� �−1 −
�

�XA� �L
��̇ � �

�
a

� �−1WA. �3.45�

ence adding �3.39� and �3.44� the term corresponding to �̇ is simplified to



t0

t1 

Bt

−
�

�t
� �L

��̇
�

a

�a � �−1 dV�X� dt . �3.46�

fter some lengthy manipulations, the third term in �3.36� can be written as

− 

t0

t1 

B
�� �L

�F � �
�

a

B

�B
+ Fc

B � �� �L
�F � �

�
a

B

�ac
b �aJ��U�dV�U�dt . �3.47�
he last term is simplified as
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t0

t1 

B

�L
�g � 

:�g � J� dV�U�dt = 

t0

t1 

B

�L
�gbc � 

�gbc

�xa �aJ� dV�U�dt = 

t0

t1 

Bt

�L
�gbc

�gbc

�xa �a

� �−1 dV�X�dt = − 

t0

t1 

Bt

�L
�gbc �gcd�ad

b + gbd�ad
c ��a � �−1 dV�X�dt . �3.48�

herefore, adding the above four simplified terms, we obtain

dS��,� · �0,�� = 

t0

t1 

Bt

� �L
��a −

d

dt
� �L

��̇
�

a

− � �L
�F

�
a

B

�B
− Fc

B�ac
b � �L

�F
�

b

B

+
�L
�gbc

�gbc

�xa �a

� �−1 dV�X�dt . �3.49�

s �a is arbitrary we conclude that

�L
��a −

d

dt
� �L

��̇ � �
�

a

− � �L
�F

�
a

B

�B
− Fc

B�ac
b � �L

�F
�

b

B

+
�L
�gbc

�gbc

�xa = 0, �3.50�

hich gives the stated result. �

. Horizontal variations

Now let us try to find the Euler-Lagrange equations resulting from horizontal variations; that
s, variations of the configurational deformation mapping �.

Proposition 3.5: Allowing only horizontal variations in Hamilton’s principle, one obtains the
ollowing configurational equations of motion:

�L
�XA +

�

�t
�� �L

��̇
�

a

Fa
A − �L�B

A − � �L
�F

�
a

B

Fa
A

�B
+ � �L

�F
�

a

B

Fa
C	AB

C + 2GCD	AB
D

�L
�GBC

= 0,

�3.51�

here 	AB
C is the Christoffel symbol of a local chart in Bt.

Proof: The derivative of the action with respect to horizontal variations is computed as
ollows:

dS��,� · ���,0� = 

t0

t1 

B
�� �L

��
· �� −

�L
��̇ � �

· ��FF�
−1 � � · �̇� +

�L
�F � �

:��FF�
−1 � ��J�

+
�L

�G � �
:�G � � + L�J��dV�U�dt = 0. �3.52�

ote that

��FF�
−1 � �� = F��F�

−1 � �� . �3.53�

ut

��F�
−1 � �� = − F�

−1D����F�
−1 � � . �3.54�

hus

��FF�
−1 � �� = − FF�

−1D����F�
−1 � � = − FD����F�

−1 � � . �3.55�
imilarly
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��FF�
−1 � � · �̇� = − FD����F�

−1 � � · W + F � � ·
d

dt
���� . �3.56�

n coordinates,

D���� =
���A

�U� eA � E�. �3.57�

he second term in �3.52� has two parts which are simplified as follows. The first part is



t0

t1 

B
� �L

��̇ � �
�

a

Fa
A � �

���A

�U� �F�
−1 � ���

BWBJ� dV�U�dt = − 

t0

t1 

B�

�

�XB�� �L
��̇

�
a

Fa
AWB��A

� �−1 dV�X�dt − 

t0

t1 

B�
� �L

��̇
�

a

Fa
AWB

�B��A � �−1 dV�X�dt . �3.58�

imilarly, the second part is simplified as

− 

t0

t1 

B

�L
��̇ � �

· F � � ·
d

dt
����J� dV�U�dt = 


t0

t1 

Bt

d

dt
�� �L

��̇
�

a

Fa
A��A � �−1 dV�X�dt

+ 

t0

t1 

Bt

� �L
��̇

�
a

Fa
AWB

�B��A dV�X�dt . �3.59�

dding �3.58� and �3.59�, the second term of �3.52� can be written as

− 

t0

t1 

B

�L
��̇ � �

��FF�
−1 � � · �̇�J� dV�U�dt = 


t0

t1 

Bt

d

dt
�� �L

��̇
�

a

Fa
A��A � �−1 dV�X�dt .

�3.60�

fter some lengthy manipulations, the third term of �3.52� is simplified to



t0

t1 

B

�L
�F � �

:��FF�
−1 � ��J� dV�U�dt

= 

t0

t1 

Bt

�� �L
�F

�
a

B

Fa
A

�B
��A � �−1 dV�X�dt

+ 

t0

t1 

Bt

� �L
�F

�
a

B

Fa
C	AB

C ��A � �−1 dV�X�dt . �3.61�

he fourth term of �3.52� is simplified to



t0

t1 

B

�L
�G � �

:�G � �J� dV�U�dt = 

t0

t1 

Bt

2GCD	AB
D

�L
�GBC

dV�X�dt . �3.62�

ote that

J� = �det F��� det G

det G0
, �3.63�
here G0 is the fixed Riemannian metric of the fixed reference configuration. Thus,
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�J� = ��det F��� det G

det G0
+ �det F��

� det G

det G0
= J��F�

−1��
B
���B

�U� + �det F��
1

�det G0

��det G

�X
�� .

�3.64�

ote that

��det G

�X
=

1

2
�det GG−1�G

�X
= �det G	AB

B ��A. �3.65�

ence

�J� = J��F�
−1��

B
���B

�U� + J�	AB
B . �3.66�

hus the last term of �3.52� is simplified to



t0

t1 

B

L�J� dV�U�dt = − 

t0

t1 

Bt

�L�A
B��B��A � �−1 dV�X�dt . �3.67�

ow substituting the above five simplified terms into �3.52�, we have

dS��,� · ���,0� = 

t0

t1 

Bt

� �L
�XA +

�

�t
�� �L

��̇
�

a

Fa
A − �L�A

B − � �L
�F

�
a

B

Fa
A

�B
���A

� �−1 dV�X�dt + 

t0

t1 

Bt

�� �L
�F

�
a

B

Fa
C	AB

C + 2GCD	AB
D

�L
�GBC

���A

� �−1 dV�X�dt = 0. �3.68�

ecause ��A is arbitrary, we conclude that

�L
�XA +

�

�t
�� �L

��̇
�

a

Fa
A − �L�A

B − � �L
�F

�
a

B

Fa
A

�B
+ � �L

�F
�

a

B

Fa
C	AB

C + 2GCD	AB
D

�L
�GBC

= 0.

�3.69�

�

We now show that this is equivalent to the classical Euler-Lagrange equations and does not
ive us any new information. After some lengthy manipulations, it can be shown that

�L
�XA +

�

�t
�� �L

��̇
�

a

Fa
A − �L�A

B − � �L
�F

�
a

B

Fa
A

�B
= � �L

��a −
�

�t
� �L

��̇
�

a

− � �L
�F

�
a

A

�A

− � �L
�F

�
b

A

Fc
A�ac

b + 2
�L
�gcd

gbd�ac
b Fa

A − � �L
�F

�
a

B

Fa
C	AB

C − 2GCD	AB
D

�L
�GBC

. �3.70�

�

�It will be seen in Sec. VI that material covariance of internal energy density implies that the
um of the last two terms is zero. In Sec. VII, it will be shown that material covariance of
agrangian density results in the same identity. However, at this point there is no such relation and

he variational principle does not give us any new information.� This result is known for the case
here the underlying metrics are trivial.25 In conclusion, we have proved the following proposi-

ion.
Proposition 3.6: In the absence of discontinuities, i.e., when all the fields are smooth, the

onfigurational and the standard equations of motion are equivalent, even if one is allowed to vary

he referential and spatial metrics.
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V. THE GREEN-NAGHDI-RIVILIN THEOREM

Green, Rivilin, and Naghdi19 realized that conservation of mass and balance of linear and
ngular momenta can be obtained as a result of postulating invariance of energy balance under
sometries of R3, i.e., rigid translations and rotations in the deformed configuration. Later Marsden
nd Hughes28 extended this idea to Riemannian manifolds and diffeomorphisms of the deformed
onfiguration showing that this covariant approach gives the Doyle-Ericksen formula for Cauchy
tress as well as conservation of mass and balance of linear and angular momenta. In another
elevant work, Šilhavý39 considered all the densities in the energy balance to be volume densities
nd assuming �i� invariance of energy balance under Galilean transformations and �ii� bounded-
ess of energy from below, proved the existence of mass, its conservation, balance of linear and
ngular momenta, transformation of body forces and the splitting of total energy into internal and
inetic energies.

Before discussing the covariant approach to elasticity, let us first discuss the classical Green-
aghdi-Rivilin �GNR� theorem and a nonconventional material form of it. We consider two cases:

i� material energy balance invariance under spatial isometries of R3 and �ii� material energy
alance invariance under material isometries of R3. We call �i� and �ii� the spatial-material and
aterial-material GNR theorems, respectively.

. The spatial-material GNR theorem

Consider the material energy balance for a nice subset U�B,

d

dt



U

0�� +

1

2
V · V�dV = 


U

0�B · V + R�dV +


�U
�T · V + H�dA , �4.1�

here �=��t ,X ,F� is the free energy density per unit mass of the undeformed configuration.
Now consider an isometry �t :R3→R3 of R3. We postulate that the material energy balance is
nvariant under �t. For the sake of simplicity we consider translations and rotations separately.

�i� �Rigid translations� A spatial rigid translation is defined by

�t�x� = x + �t − t0�c , �4.2�

where c is some constant vector field. We now postulate that the material balance of
energy holds for the deformation mapping �t�=�t ��t as well. This balance law is still
written on U but with different fields �primed fields� in general,

d

dt



U

0���� +

1

2
V� · V��dV = 


U

0��B� · V� + R��dV + 


�U
�T� · V� + H��dA .

�4.3�

Using Cartan’s space-time theory, the primed fields are related to the unprimed quanti-
ties through the following relations:


0��X� = 
0�X�, R��X� = R�X�, H��X� = H�X� ,

V��t=t0
= 	�

�t
�t�	

t=t0

= �T�tV + c�t=t0
= V + c ,

T��X,N� = T�X,N� . �4.4�
Also because
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b� − a� = �t*�b − a� and B − A = �b − a� � �t. �4.5�

We have

B� − A� = �t
*�b − a� � �t�. �4.6�

Hence

�B� − A��t=t0
= �b − a� � �t = �B − A� . �4.7�

It can be easily shown that

F��X� = F�X� . �4.8�

The free energy density would have the following transformation:

���t,X,F��X�� = ��t,X,F�X�� . �4.9�

Thus,

d

dt
���t,X,F��X�� =

��

�t
. �4.10�

Balance of energy for U�B for the new deformation mapping at t= t0 can be written as



U

�
0

�t
�� +

1

2
�V + c� · �V + c��dV + 


U

0� ��

�t
+ �V + c� · A��t=t0�dV

= 

U


0�B��t=t0
· �V + c� + R�dV +


�U
�T · �V + c� + H�dA , �4.11�

where Div c=0 was used. Subtracting the material energy balance of the deformation
�t for U�B from the above equation and using �4.7� we obtain



U

�
0

�t
�c · V +

1

2
c · c�dV + 


U

0A · c dV =


U

0B · c dV +


�U
T · c dA .

�4.12�

Because U and c are arbitrary one concludes that

�
0

�t
= 0, �4.13�

Div P + 
0B = 
0A . �4.14�

�ii� �Rigid rotations� Now let us consider a rigid rotation in the ambient space, i.e., �t :S
→S, where

�t�x� = e�t−t0��x , �4.15�

for some constant skew-symmetric matrix �. Note that

T�t�t=t0
= e�t−t0���t=t0

= Id and 	 �

�t
	

t=t0

�t�x� = �x . �4.16�
Also
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V��X��t=t0
= V + �x�X� . �4.17�

Subtracting the balance of energy for U for deformation mapping �t from that of �t�
=�t ��t at time t= t0 results in



U


0�x�X� · �A − B�dV =

�U

T�x�X�dA . �4.18�

But



�U

T�x�X�dA = 

U

�Div P · �x + PFT:��dV . �4.19�

Thus

PFT = FPT, �4.20�

where use was made of balance of linear momentum.

. The material-material GNR theorem

To our best knowledge, there is no study of invariance of energy balance under isometries of
he reference configuration in the literature. It turns out that such an invariance does not hold in
eneral, even in Euclidean space. In this section we study the transformation of balance of energy
nder rigid translations and rotations of the reference configuration in the Euclidean space context.
t will be shown that balance of energy is invariant under translations and rotations of the refer-
nce configuration for isotropic materials that satisfy an internal constraint that we call material
nviscidity.

Again we consider rigid translations and rigid rotations of the reference configuration sepa-
ately.

�i� �Rigid translations� Consider a time-dependent rigid translation of the reference con-
figuration �t :B→B�. Let

X� = Xt = �t�X� = X + �t − t0�W , �4.21�

for some constant vector field W. Note that

T�t = Id, X = �t
−1�Xt� = Xt − �t − t0�W . �4.22�

Deformation gradient with respect to the new reference configuration is denoted F� and,

dx = F dX = F� dX�. �4.23�

But, dX�=dX and hence

F dX = F� dX " dX . �4.24�

This means that

F��Xt� = F�X� or F� = F � �t
−1. �4.25�

In the differential geometry language this means that

F� = �t*F = F � �t
−1. �4.26�
The material velocity with respect to the new reference configuration is
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V��Xt� =
�

�t
�t � �t

−1�X�� = V � �t
−1�X�� − FW. �4.27�

Thus at t= t0,

V� = V − FW. �4.28�

Free energy density is assumed to have the following transformation:

���X�,F � �t
−1� = ��X,F� . �4.29�

Or

���X�,F� = ��X,F � �t� . �4.30�

�Note that this does not put any restrictions on the material properties as here all we
assume is that under a change of frame the 3-form 
0� dV is transformed to a 3-form

0��� dV�=�t*�
0� dV�.� More precisely,

�t
*���X�,F� = ��X,F � �t� . �4.31�

Thus

d

dt
���X�,F� =

��

�t
+

��

��F � �t�
:

�F

��t�X�
. W . �4.32�

Hence at t= t0

d

dt
���X�,F� =

��

�t
+

��

�F
:
�F

�X
. W . �4.33�

Material balance of energy for U�B reads



U

�
0

�t
�� +

1

2
��V,V���dV + 


U

0� d

dt
� + ��V,A���dV

= 

U


0�B · V + R�dV +

�U

�T · V + H�dA . �4.34�

Let us assume that material balance of energy for U��B� reads

d

dt



U�

0���� +

1

2
V� · V��dV� = 


U�

0�B� · V� + R��dV� + 


U�
B0� · Wt dV�

+ 

�U�

�T� · V� + H��dA�, �4.35�

for some vector field B0� which will be determined shortly. Note that thinking of the
integrand of the left-hand side of balance of energy as a 3-form �, we have

d

dt



U�
�� = 


U

d

dt
��t

*��� . �4.36�

But �t
*��=
0�X���X ,F ��t�dV, thus material balance of energy for U��B� at t= t0
reads
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U

�
0

�t
�� +

1

2
��V − FW,V − FW���dV + 


U

0�	ddt

	
t=t0

�� + ��V − FW,A��t=t0
���dV

=

U


0�B��t=t0
· �V − FW� + R�dV + 


�U
�T · �V − FW� + H�dA +


U
B0 · W dV ,

�4.37�

where B0 is an unknown vector field at this point. Note that

�B� − A��t=t0
= B − A . �4.38�

Now subtracting the material balance of energy for U�B from that of U��B� at time
t= t0 yields



U
�P:

�F

�X
+ 
0FT�B − A� − B0� · W dV + 


�U
FTT · WdA = 0 " W . �4.39�

Localization leads to the following conclusion:

B0 = Div�FTP� + 
0FT�B − A� + P:
�F

�X
. �4.40�

Note that

P:
�F

�X
= Div��I� −

��

�X
, �4.41�

and

Div�FTP� = FT Div P + P:
�F

�X
. �4.42�

Thus �4.40� is equivalent to

B0 = FT�Div P + 
0�B − A�� + 2P:
�F

�X
= 2P:

�F

�X
. �4.43�

Therefore, the transformed balance of energy is �4.35� with B0�=�t*�B0�.
Invariance of balance of energy under rigid translations of the reference configuration is
equivalent to B0=0, i.e.,

P:
�F

�X
= 0 , �4.44�

which is equivalent to

Div�FTP� = FT Div�P� . �4.45�

Obviously, if F is independent of X, i.e., if the deformation gradient is uniform then this
condition is satisfied but as we will see in the sequel this is not necessary. Note that �4.43�
is independent of balance of linear momentum. It is seen that an additional constraint must
be satisfied for the material energy balance to be invariant under time-dependent rigid
referential translations. This shows the very different natures of material and spatial mani-
folds. We will show at the end of Sec. VI that �4.45� implies that configurational stress
tensor is hydrostatic. For this reason we call �4.45� the configurational inviscidity
constraint.

Example: Consider a Neo-Hookean rod in uniaxial tension. The deformation gradient is
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F = ��−1/2 0 0

0 �−1/2 0

0 0 �
� . �4.46�

It can be easily shown that the first Piola-Kirchhoff stress tensor has the following repre-
sentation:

P =�
0 0 0

0 0 0

0 0 �� −
�

�2
� , �4.47�

where �=��X�. It is now an easy exercise to show that �4.45� is satisfied only if � is
constant, i.e., only if the deformation gradient is uniform. Thus in this case the only
possibility would be a uniform deformation gradient for balance of energy to be invariant
under rigid translations of the reference configuration.
Example: We know that for an isotropic material

SAB = �0GAB + �1CAB + �2CA
DCDB, �4.48�

where �0 ,�1, and �2 are scalar functions of X and SAB are components of the second
Piola-Kirchhoff stress tensor. For the sake of simplicity, suppose �1=�2=0. In terms of P
and F we have

PaA = �0GABFa
B. �4.49�

When the reference configuration and ambient space are Euclidean the condition
Div�FTP�=FT Div�P� is equivalent to

�0Fa
B

�Fa
B

�XA = 0. �4.50�

Or

Fa
B

�Fa
B

�XA = Fa
B

�Fa
A

�XB = 0. �4.51�

Note that, in general, this does not imply that the deformation gradient is uniform and it is
simply an internal constraint.
Example: Consider an incompressible perfect fluid �ideal fluid� for which

�ab = − pgab and J = 1. �4.52�

Thus

PaA = − J�F−1�A
bpgab. �4.53�

Using Piola identity we have

�Div�FTP��A = �− pJGAB��B = − J
�p

�xbFb
BGAB. �4.54�

Also

�FT Div�P��A = − gabFb
BGABJ�pgad��d = − J

�p

�xbFb
BGAB. �4.55�
Thus �4.45� is satisfied for an ideal fluid.
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�ii� �Rigid rotations� Consider a time-dependent rigid rotation of the reference configuration
�t :B→B� defined as

X� = Xt = e�t−t0��X , �4.56�

for some constant skew-symmetric matrix �. Note that

V� = V − F�X, F� = F � �t
−1. �4.57�

Let us assume that material balance of energy for U��B� has the following form:

d

dt



U�

0���� +

1

2
V� · V��dV� = 


U�

0�B� · V� + R��dV� + 


�U�
�T� · V� + H��dA�

+ 

U�

�B0� · �X + C0�:��dV�, �4.58�

where C0�=�t*C0 and C0 is an unknown vector field at this point. Material balance of
energy for U��B� at t= t0 reads



U

�
0

�t
�� +

1

2
��V − F�X,V − F�X���dV

+ 

U


0�	 d

dt
	

t=t0

�� + ��V − F�X,A��t=t0
���dV

= 

U


0�B��t=t0
· �V − F�X� + R�dV +


�U
�T · �V − F�X� + H�dA

+

U

�B0 · �X + C0:��dV . �4.59�

Subtracting the material balance of energy for U�B from that of U��B� at time t= t0
and considering the relation for B0 coming from rigid translations of the reference
configuration yields



U

�FTP − C0�:� dV = 0. �4.60�

This means that

FTP − C0 = �FTP − C0�T. �4.61�

Thus C0=−PTF+S for some symmetric tensor S. This symmetric tensor does not con-
tribute to balance of energy and we can choose it to be S=0. Thus the transformed
balance of energy under rigid rotations of the reference configuration is �4.58� where
C0�=�t*�C0� and C0=−PTF.
In conclusion, we have proved the following proposition.

Proposition 4.1: Balance of energy is invariant under time-dependent translations and rota-
ions of the reference configuration if B0=C0=0, i.e., if the reference configuration is both con-
gurationally inviscid and isotropic.
hus, balance of energy is invariant under material isometries of the reference configuration only
nder some constraints. As an example, it is seen that balance of energy is invariant under material

sometries in the case of ideal fluids.
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. COVARIANT SPATIAL ENERGY BALANCE

In this section we start by a reappraisal of the concept of covariance in elasticity and its
onsequences. We revisit Marsden and Hughes’ theorem28 and clarify some details in their proof.
e then show that the same conclusions can be reached if one assumes that mass density is a

-form instead of a scalar. A proof is then given for converse of Marsden and Hughes’ theorem,
.e., assuming conservation of mass, balance of linear and angular momenta and Doyle-Ericksen
ormula, balance of energy is invariant under arbitrary spatial diffeomorphisms. At the end of this
ection, we show that assuming spatial covariance for material energy balance yields results that
re identical to those obtained by assuming spatial covariance for spatial energy balance.

. Covariance and the Doyle-Ericksen formula

First recall that the general notion of covariance of a set of equations is as follows.
Definition 5.1 (Covariance): Suppose a theory has some tensor fields U ,V , . . . defined on a

pace A and the governing equations of the theory have the form F�U ,V , . . . �=0. These govern-
ng equations are called covariant if for any diffeomorphism � :A→A, �*�F�U ,V , . . . ��
F��*U ,�*V , . . . �. A theory is covariant if all its governing equations are covariant.

The Doyle-Ericksen formula: Doyle and Ericksen7 showed the following interesting relation:

� = 2

�e

�g
, �5.1�

.e., Cauchy’s stress tensor is proportional to the partial derivative of the free energy density with
espect to the Riemannian metric in the deformed configuration. �Note that �see Ref. 28, p. 198�

�e

�g
=

��

�g
. �5.2�

n other words, in Doyle-Ericksen formula internal energy density can be replaced by free energy
ensity because

e = � + �s , �5.3�

here � is absolute temperature and s is entropy density. Thus

�e

�g
=

��

�g
+

��

��

��

�g
+

��

�g
s =

��

�g
, �5.4�

s �� /��=−s�.
Doyle and Ericksen7 looked at changes of spatial frame passively, i.e., as changes of coordi-

ates while Marsden and Hughes28 chose the active point of view. The Doyle-Ericksen formula is
nown to be the essential condition for covariance of energy balance. Later Simo and Marsden40

ound a material version of Doyle-Ericksen formula, which we discuss next. Here by “material
ersion” they mean an analogue of the usual Doyle-Ericksen formula that ensures covariance of
aterial energy balance under spatial diffeomorphisms. �An interesting question to ask would be

he condition�s� that ensures covariance of material energy balance under diffeomorphisms of the
eference configuration. This will be discussed in Sec. VI.� Simo and Marsden consider a general
orm of polar decomposition theorem by first associating two Riemannian metrics G0 and G to B,
here G0 does not change under spatial diffeomorphisms while G does change. The polar decom-
osition theorem states that

F = RU, �5.5�
here
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U�X�:�TXB,G0� → �TXB,G� �5.6�

s the material stretch tensor �a positive-definite symmetric linear map with respect to the given
etrics� and

R�X�:�TXB,G� → �T�t�X�S,g� �5.7�

s, for each X�B, a �G ,g�-orthogonal linear transformation. The metric G is arbitrary and can
hange under spatial diffeomorphisms,

G = R*�g� . �5.8�

he internal energy density per unit mass of the deformed configuration is

e = e�x,t,g�x�� . �5.9�

ow define

E�X,t,G� = e��t�X�,t,R*�G�� . �5.10�

imo and Marsden40 show that

� = 2

�E

�G
, �5.11�

here � is the rotated stress tensor defined as

� = R*� or �AB = �R−1�A
a�ab�R−1�B

b. �5.12�

n this paper we prove a similar theorem by postulating a balance of energy for an arbitrary
eframing of the reference configuration for a special class of materials. It should be noted that
here are four possibilities for a covariant energy balance law.

�i� Spatial energy balance law for any reframing of the deformed configuration: This gives
the usual Doyle-Ericksen formula.

�ii� Material energy balance law for any reframing of the deformed configuration: This gives
the Doyle-Ericksen formula in terms of Kirchhoff stress tensor.

�iii� Material energy balance law for any reframing of the reference configuration: This
should give a material form of Doyle-Ericksen formula for Eshelby’s stress tensor.

�iv� Spatial energy balance for any reframing of the reference configuration: This should
give a spatial form of Doyle-Ericksen formula for Eshelby’s stress tensor.

Note that cases �i� and �ii� and also cases �iii� and �iv� are equivalent as the important thing
ere is the type of the diffeomorphism.

. Revisiting Marsden and Hughes’ theorem

Let us first revisit Marsden and Hughes’ covariant energy balance theory.28 These authors
ostulate a covariant spatial energy balance, i.e., they consider a motion �t :B→S and postulate
hat balance of energy still holds for any spatial change of frame. Marsden and Hughes consider
rbitrary changes of frame for the deformed configuration and postulate that energy balance is
nvariant under these framings. For a given nice subset U�B, the �spatial� balance of energy reads

d

dt



�t�U�

�e +

1

2
��v,v���dv = 


�t�U�

���b,v�� + r�dv + 


��t�U�
���t,v�� + h�da , �5.13�

here e ,r, and h are the internal energy function per unit mass, the heat supply per unit mass and
he heat flux, respectively. Marsden and Hughes then consider an arbitrary reframing of the

eformed configuration, which can be regarded as a motion of S in S, i.e., �t :S→S. Postulating
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he balance of energy �5.13� for such a reframing and considering it for t= t0 they obtain �i�
onservation of mass, �ii� balance of linear momentum, �iii� balance of angular momentum, and
iv� the Doyle-Ericksen formula. Conversely, if �i�, �ii�, �iii�, �iv� and balance of energy hold, then
alance of energy would hold for any change of spatial frame. We will give a proof for the
onverse of the theorem in the sequel.

Proposition 5.2 (Transport theorem in a reframing of the deformed configuration): Suppose
f�=�t*f is a scalar quantity defined on �t��U�, i.e., f� :�t��U�→R and f :�t�U�→R. �Marsden and

ughes have the following transport theorem on p. 166 of Ref. 28 in the second equation after
heir Eq. �2�, which needs to be corrected:

d

dt



�t��U�
f dv = 


�t��U�
� ḟ + f div v�dv�. �5.14�

n fact, the first dv should read dv�.� Then,

	 d

dt
	

t=t0



�t��U�

f� dv� = 

�t�U�

� ḟ + f div v�dv . �5.15�

Proof: The usual transport theorem can be written as

d

dt



�t��U�
f� dv� = 


�t��U�
� ḟ� + f� div� v��dv�, �5.16�

here

ḟ� =
� f�

�t
+

� f�

�x�
· v� =

� f�

�t
+ df� · v�, �5.17�

nd

v� = �t*v + w . �5.18�

herefore,

d

dt



�t��U�
f� dv� = 


�t��U�
� � f�

�t
+ df� · ��t*v + w� + f� div� v�dv�. �5.19�

ote that

�

�x
=

�

�x�
� �T�t� or

�

�x�
= �T�t�−1 �

�

�x
. �5.20�

his means that

	 �

�x�
	

t=t0

=
�

�x
. �5.21�

emma 5.3: If �t :S→S is a diffeomorphism with the properties,

�t�t=t0
= Id, T�t�t=t0

= Id. �5.22�

hen

�div� v� dv���t=t0
= div v dv . �5.23�

Proof: We prove the lemma when S is equipped with an arbitrary volume form �. This will

mply the particular case of a Riemannian manifold with the volume form induced by the Rie-
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annian metric. Recall that the divergence of a vector field X with respect to � is defined as

LX� = �div� X�� . �5.24�

nder the spatial change of frame v�=�t*X+w, ��=�t*�. Thus,

�div�� v���� = Lv���t*�� = �t*�Lv�� , �5.25�

here use was made of Theorem 6.19 of Marsden and Hughes28. Therefore,

�div� v� dv���t=t0
= div v dv . �5.26�

�

One should be careful with partial time derivatives as �f� /�t is not equal to �f /�t at t= t0

ecause the former is partial time derivative for fixed x� while the latter is a partial time derivative
or fixed x. Note that

	 � f�

�t
	

x fixed
=	 � f�

�t
	

x� fixed
+ df� · wt. �5.27�

ence,

�	 � f�

�t
	

x� fixed
�

t=t0

=
� f

�t
− df · w . �5.28�

herefore �5.19� is simplified to

	 d

dt
	

t=t0



�t��U�

f� dv� = 

�t�U�

� ḟ + f div v�dv . �5.29�

�

Now let us take a more natural approach and assume that we are transporting a 3-form. Note
hat this is more general in the sense that we have not chosen a volume form dv a priori.

Proposition 5.4: Suppose ��=�t*� is a 3-form defined on �t��U�. Then,

	 d

dt
	

t=t0



�t��U�

�� = 

�t�U�

Lv� . �5.30�

Proof: Using the usual transport theorem for forms we have

d

dt



�t��U�
�� = 


�t��U�
Lv���. �5.31�

ssuming that � transforms objectively, i.e., ��=�t*�, using Theorem 6.19 of Marsden and
ughes28 we have

Lv��� = �t*Lv� . �5.32�

hus,

d

dt



�t��U�
�� = 


�t��U�
�t*Lv� . �5.33�
herefore,
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	 d

dt
	

t=t0



�t��U�

�� = 

�t�U�

Lv� . �5.34�

�

Now substitute �= f dv, where f is a scalar. Note that

f� dv� = f� Ù dv� = ��t*f� Ù ��t* dv� = �t*�f Ù dv� = �t*�f dv� . �5.35�

he above proposition now reads

	 d

dt
	

t=t0



�t��U�

f� dv� = 

�t0

�U�
Lv�f dv� . �5.36�

ote that L is a derivation and hence

Lv�f dv� = �Lvf�dv + f�Lv dv� = � ḟ + div v�dv . �5.37�

herefore

	 d

dt
	

t=t0



�t��U�

f� dv� = 

�t0

�U�
� ḟ + f div v�dv . �5.38�

hus, this approach recovers the same transport equation �5.15�.

. Energy balance in terms of differential forms

In this section we regard 
 as a 3-form and write the energy balance equation as

d

dt



�t�U�

�e +

1

2
��v,v��� = 


�t�U�

���b,v�� + r� + 


��t�U�
���t,v�� + h�da . �5.39�

Traction can be thought of as a covector-valued 2-form. There are some technical details involved
nd we choose to stick to the usual definition of traction.� Under a spatial diffeomorphism �t :S
S we postulate that

d

dt



�t��U�

��e� +

1

2
��v�,v���� = 


�t��U�

����b�,v��� + r�� + 


��t��U�
���t�,v��� + h��da�.

�5.40�

et f be the scalar multiplying the density 3-form in the first integrand, i.e., fªe+ 1
2 ��v ,v��. Thus

d

dt



�t�U�

f = 


�t�U�
Lv�
f� = 


�t�U�
�
Lvf + fLv
� . �5.41�

ut

Lvf = Lve + Lv� 1
2 ��v,v��� = ė +

�

�t
�1

2
��v,v��� + d�1

2
��v,v��� · v

= ė + ���v

�t
,v�� + ��v,�vv�� = ė + ��v,a�� . �5.42�
lso,
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d

dt



�t��U�

�f� = 


�t�U�
Lv��
�f�� = 


�t��U�
�
�Lv�f� + f�Lv�
�� . �5.43�

ote that v�=�t*v+wt and thus

Lv�
� = �t*�Lv
� . �5.44�

lso,

Lv�f� = e�̇ + ��v�,
�v�

�t
+ �v�v��� = e�̇ + ��v�,a��� . �5.45�

hus

�Lv�f���t=t0
= ė +

�e

�g
:Lwg + ��v + w,a��t=t0

�� , �5.46�

�Lv�
���t=t0
= Lv
 . �5.47�

herefore

	 d

dt
	

t=t0



�t��U�


�f� = 

�t�U�


�ė +
�e

�g
:Lwg + ��v + w,a��t=t0���

+ 

�t�U�

� f + ��v,w�� +
1

2
��w,w���Lv
 . �5.48�

ow subtracting the balance of energy equation for �t�U� from that of �t��U� at t= t0 we obtain



�t�U�


� �e

�g
:Lwg + ��v,a��t=t0

− a�� + ��w,a��t=t0
��� + 


�t�U�
���v,w�� +

1

2
��w,w���Lv


= 

�t�U�

���v,b��t=t0
− b + ��w,b��t=t0

��� + 

��t�U�

��w,t��da . �5.49�

sing the identity �b�−a���t=t0
=b−a we have



�t�U�


� �e

�g
:Lwg + ��w,a − b��� + 


�t�U�
���v,w�� +

1

2
��w,w���Lv
 = 


��t�U�
��w,t��da .

�5.50�

e know that



��t�U�

��w,t��da =

�t�U�

���div �,w�� + �:
1

2
Lwg + �:��dv , �5.51�

here � has the coordinate representation �ab= 1
2 �wa�b−wb�a�. Let us replace 
 by 
 dv in the first
ntegral of Eq. �5.50�,
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�t�U�


� �e

�g
:Lwg + ��w,a − b���dv + 


�t�U�
���v,w�� +

1

2
��w,w���Lv


= 

�t�U�

���div �,w�� + �:
1

2
Lwg + �:��dv . �5.52�

ince w is arbitrary we conclude that

Lv
 = 0, �5.53�

� = 2

�e

�g
, �5.54�

div � + 
b = 
a , �5.55�

�T = � . �5.56�

. Proof of the converse of Marsden and Hughes’ theorem

Marsden and Hughes28 do not give a proof for the converse of the covariant energy balance
heorem, i.e., when Eqs. �5.53�–�5.56� are satisfied then energy balance is invariant under �t :S

S. Such a proof is nontrivial and is given here.
Let us assume that Eqs. �5.53�–�5.56� are satisfied and define

�E��t� =
d

dt



�t��U�

��e� +

1

2
��v�,v���g� − 


�t��U�

����b�,v���g + r�� − 


��t��U�
���t�,v���g + h��da�.

�5.57�

ote that balance of energy for �t�U� can be written as �E�Id�=0. We need to prove that for any
iffeomorphism �t, �E��t�=0. We know that

e��x�,t,g� = e�x,t,�t
*�g�� . �5.58�

et us denote

wt ª
d

dt
�t, Wt = �t

*�wt�, gt = �t
*�g� . �5.59�

ote that by definition



�t��U�


�r� = 

�t�U�


r, 

��t��U�

h� da� = 

��t�U�

h da . �5.60�

lso note that



��t��U�

��t�,v���g da� = 

��t��U�

���t*t,�t*v + wt��g da� = 

��t�U�

��t,v + Wt��gt
da . �5.61�
straightforward computation shows that
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d

dt



�t��U�
�1

2

���v�,v���g − 
���b�,v���g� = 


�t��U�

����t*�a − b�,�t*v + wt��g = 


�t�U�

��a − b,v��gt

+ 

�t�U�


��a − b,Wt��gt
, �5.62�

here use was made of Lv
=0. Note that

d

dt



�t��U�

�e� = 


�t��U�
�
�Lv�e� + e��t*�Lv
�� = 


�t��U�

�Lv�e� = 


�t��U�

�t

*�Lv�e�� .

�5.63�

ut

�t
*�Lv�e�� = ė +

�e

�gt
:LWt

gt. �5.64�

herefore

�E��t� = �E�Id� +

�t�U�

��2

�e

�gt
− ��:

1

2
LWt

gt + �:�tdv − 

�t�U�

��div � + 
�b − a�,Wt��gt
dv

= 0. �5.65�

�

. Spatial covariant material energy balance

Let us consider the material balance of energy

d

dt



U

0�E +

1

2
��V,V��� = 


U

0���B,V�� + R� + 


�U
���T,V�� + H�dA , �5.66�

here we have assumed that 
0 is a 3-form. Physically this is equivalent to the spatial energy
alance; material energy balance is simply the spatial energy balance expressed in terms of
uantities defined with respect to the reference configuration. Let us postulate that the material
nergy balance is invariant with respect to diffeomorphisms �t :S→S. This is physically equiva-
ent to the postulate of covariant spatial energy balance. The material energy balance for �t��U��S
s written as

d

dt



U

0��E� +

1

2
��V�,V���� = 


U

0����B�,V��� + R�� + 


�U
���T�,V��� + H��dA . �5.67�

ote that for both deformations balance of energy is written for the same subset U�B. The
aterial velocity V� is related to V by the following relation:

V��X� = T�t � Vt + wt � �t�X� . �5.68�

hus

�V��t=t0
= V + w � �t0

. �5.69�

e know that

R = J�t
r � �t, R� = J�t�

r� � �t�, r = J�t
r� � �t. �5.70�
ence
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J�t�
r� � �t� = �J�t

r� � �t� � �tJ�t
= J�t

r � �t. �5.71�

hus

R� = R . �5.72�

imilarly

H� = H . �5.73�

ote that looking at densities as 3-forms


0�X,t� = �t
*
�x,t�, 
0��X,t� = ��t��

*
��x�,t� . �5.74�

ut

��t��
*
��x�,t� = ��t � �t�*
��x�,t� = ��t

* � �t
*� � �t*
�x,t� = �t

*
�x,t� . �5.75�

hus


0��X,t� = 
0�X,t� . �5.76�

ecause balance of energy is written for the same subset U�B the same equality holds for
ensities as scalar fields, i.e., one can replace 
0� and 
0 by 
0� dV and 
0 dV, respectively. Define

E�X,t,g� = e��t�X�,t,g � �t�X�� . �5.77�

e know that

e��x�,t,g� = e�x,t,�t
*g� . �5.78�

hus

E��X,t,g� = e��x�,t,g� = e�x,t,�t
*g� = E�X,t,�t

*g� . �5.79�

herefore

	 d

dt
	

t=t0

E� =
�E

�t
+

�E

�g
:Lw��t

�g � �t� . �5.80�

ow the material energy balance for the motion �t� at t= t0 can be written as



U

�
0

�t
�E +

1

2��V + w � �t0
,V + w � �t0���dV + 


U
�
0� �E

�t
+

�E

�g
:Lw��t

�g � �t��
+ �
0��V + w � �t0

,A��t=t0
��dV

= 

U


0���B��t=t0
,V + w � �t0

�� + R� dV + 

�U

���T,V + w � �t0�� + H� dA . �5.81�

ubtracting the balance of energy for the motion �t from �5.81� one arrives at the following

dentity:
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U

�
0

�t
���V,w � �t0�� +

1

2��w � �t0
,w � �t0���dV + 


U

0� �E

�g
:Lw��t

�g � �t� + ��w � �t0
,A���dV

= 

U

��
0B,w � �t0
��dV + 


�U
��T,w � �t0

�� dA . �5.82�

et us denote W=w ��t and note that W is a spatial vector field with components Wa.
Lemma 5.5: The surface integral term in �5.82� is transformed to a volume integral as



�U

��T,W��dA = 

U

���Div P,W�� + � :� + � :k�dV , �5.83�

here, �ab= PaBFB
b is the Kirchhoff stress and � and k have the coordinate representations kab

1
2 �Wa�b+Wb�a� and �ab= 1

2 �Wa�b−Wb�a�.
Proof: The integrand has the following component form:

TagabWb = PaCGCDNDgabWb = �PaCgabWb�GCDND. �5.84�

ow using divergence theorem the surface integral is transformed to an integral on U with an
ntegrand with the following component form:

�PaCgabWb��C = PaC
�CgabWb + PaCgabWb

�C, �5.85�

here use was made of the fact that gab�C=0. Note that

Wb
�C =

�Wb

�XC + �cd
b WcFd

C = Wb
,dFd

C + �cd
b WcFd

C = �Wb
,d + �cd

b Wc�Fd
C = Wb

�dFd
C. �5.86�

herefore,

�PaCgabWb��C = PaC
�CgabWb + PaCWa!dFd

C

= PaC
�CgabWb + PaCFd

C� 1
2 �Wa!d + Wd!a� + 1

2 �Wa!d − Wd!a�� , �5.87�

hich proves the lemma. �

Substituting �5.83� into �5.82� yields



U

�
0

�t
���V,W�� +

1

2
��W,W���dV + 


U
�2
0

�E

�g
− ��:k dV − 


U
� :� dV

− 

U

��Div P + 
0B − 
0A,W�� dV = 0 . �5.88�

s W and U�B are arbitrary we conclude that,

�
0

�t
= 0, �5.89�

� = 2
0
�E

�g
, �5.90�

T
� = � , �5.91�
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Div P + 
0B = 
0A . �5.92�

n conclusion, these computations result in the following proposition.
Proposition 5.6: Energy balance written in material form, but still with the assumption of

patial covariance yields results that are identical to those of energy balance written in spatial
orm, also with covariance under spatial diffeomorphisms.
he converse can be proved similar to what was done in the previous subsection.

I. TRANSFORMATION OF ENERGY BALANCE UNDER MATERIAL DIFFEOMORPHISMS

As was seen in the preceding section, invariance of balance of energy under an arbitrary
hange in spatial frame is equivalent to �1� balance of linear momentum, �2� balance of angular
omentum, �3� conservation of mass, and �4� Doyle-Ericksen formula. To our best knowledge,

here is no material version of this theorem in the literature. Our motivation for studying the
ossibility of material invariance of energy balance was to gain a better understanding of configu-
ational forces as they are believed to be related to rearrangements of the reference configuration.
t turns out that, in general, energy balance cannot be invariant under diffeomorphisms of the
eference configuration and what one should be looking for instead is the way in which energy
alance transforms under material diffeomorphisms. In this section we first obtain such a trans-
ormation formula under an arbitrary time-dependent material diffeomorphism �see Eq. �6.51��
nd then obtain the conditions under which balance of energy is materially covariant.

. The energy balance material transformation formula

We begin with a discussion of how energy balance transforms under material diffeomor-
hisms. Define

E�X,t,G� = ��X,t,C�F�X�,g��t�X���,G� , �6.1�

here �=��X , t ,G ,C� is the material free energy density. Material �Lagrangian� energy balance
an be written as

d

dt



U

0�E +

1

2
��V,V���dV = 


U

0���B,V�� + R�dV + 


�U
���T,V�� + H�dA , �6.2�

hich can be simplified to read



U

d

dt
�
0�E +

1

2
��V,V���dV = 


U

0���B,V�� + R�dV + 


�U
���T,V�� + H�dA , �6.3�

here U is an arbitrary nice subset of the reference configuration B, B is body force per unit
ndeformed mass, V�X , t� is the material velocity, 
0�X , t� is the material density, R�X , t� is the

eat supply per unit undeformed mass, and H�X , t , N̂� is the heat flux across a surface with normal
ˆ in the undeformed configuration �normal to �U at X��U�. It is to be noted that this is balance
f energy for a deformed part of the body written in terms of quantities that are defined with
espect to the undeformed �reference� configuration. Here we assume that we have a material
anifold which is a Riemannian manifold �B ,G� and a given reference configuration B�B.

Change of reference frame: In this paragraph we consider a change of frame for the reference
onfiguration and look at the transformed quantities for the new reference configuration. A refram-
ng of the reference configuration is a diffeomorphism

�t:�B,G� → �B,G�� . �6.4�

change of frame can be thought of as a change of coordinates in the reference configuration
passive definition� or a rearrangement of microstructure �active definition�. Under such a framing,

nice subset U is mapped to another nice subset U�=�t�U� and a material point X is mapped to
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�=�t�X�. Note that X is the position of a particle in the reference configuration, i.e., material
oints are identified with their positions in the reference configuration �which is arbitrary�. The
hange of frame is mathematically a mapping between two manifolds and one would expect to
efine an object on �B ,G�� as push-forward of the corresponding object on �B ,G�.

The deformation mapping for the new reference configuration is �t�=�t ��t
−1. This can be

learly seen in Fig. 2. The material velocity in U� is

V��X�,t� =
�

�t
�t��X�� =

��t

�t
� �t

−1�X�� + T�t �
��t

−1

�t
�X�� . �6.5�

e assume that

�t�t=t0
= Id,

��t

�t
�X� = W�X,t� . �6.6�

ote that W is the infinitesimal generator of the rearrangement �t. It can be shown that at t= t0,

	 ��t
−1

�t
�X��	

t=t0

= − W�X,t� . �6.7�

hus, at t= t0,

V� = V − FW. �6.8�

o find the relation between G and G� we note that the Finger tensor b=�t*G is a spatial tensor
nd hence independent of framing of the reference configuration. Thus,

b = �t*G = ��t��*G�. �6.9�

hat is,

G� = ��t � �t
−1�* � �t*G = ��t

−1�* � �t
* � �t*G = ��t

−1�*G = �t*G = �T�t�−*G�T�t�−1.

�6.10�

FIG. 2. A material reframing and the corresponding deformation maps.
ote that for an arbitrary X0�B,
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F�X0�:TX0
B → T�t�X0�S and F��X0��:TX0�

B → T�t��X0��S .

iven dX�TX0
B,

dx = F�X0� · dX and dX� = T�t · dX .

ence,

dx = F��X0�� · dX� = F��X0�� � T�t · dX = F�X0� · dX

or all dX�TX0
B. Thus,

F� = �t*F , �6.11�

here

�t*F = F � �T�t�−1. �6.12�

he easier way of proving this is the following:

F� = T�t� = T��t � �t
−1� = T�t � ��t�−1 = F � ��t�−1 . �6.13�

he material internal energy density is assumed to have the following tensorial property:

E��X�,t,G�� = E�X,t,G� . �6.14�

ote that this is different from assuming local covariance for internal energy density. This is
imply the material analogue of �5.78�; all that �6.14� says is that internal energy density at X�
valuated by the transformed metric G� is equal to the internal energy density at X evaluated by
he metric G. We know that G�=�t*G, thus

E��X�,t,G� = E�X,t,�t
*G� . �6.15�

his means that

	 d

dt
	

t=t0

E��X�,t,G� =
�E

�t
+

�E

�G
:LWG . �6.16�

Remark: Marsden and Hughes28 defined covariant constitutive equations by looking at isom-
tries of TX0

B at a given point X0�B. This is why they did not need to consider an explicit
ependence of � on G. Another more general way of defining material covariance for the strain
nergy function � is to assume that for any local diffeomorphism � :TX0

B→T��X0���B� that
eaves X0 fixed,

��X0,G,C� = ��X0,�*G,�*C� . �6.17�

ote that this is different from the implication of Cartan’s space-time, e.g.,

��X�,G�,C�� = ��X,�*G�,�*C�� ,

or an arbitrary diffeomorphism � :B→B. We emphasize that this relation and similarly �6.14�
o not put any restrictions on material properties. Ju and Papadopoulos26,27 proved that a conse-
uence of �6.17� is the following infinitesimal covariance condition:

G
��

�G
+ C

��

�C
= 0 , �6.18�
hich is equivalent to
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��

�G
= − G−1C

��

�C
= −

1

2
G−1CS = −

1

2
FTP . �6.19�

e will obtain this condition in the sequel as a consequence of assuming material covariance of
nergy balance.

Example: Consider a �materially uniform� Neo-Hookean material with the following energy
ensity

��X,G,C� = ��tr�C� − 3� = ��CIJG
IJ − 3� . �6.20�

e now show that this is an example of a materially covariant material. Note that

�C
��

�C
�J

I
= �CIKGKJ. �6.21�

lso

�G
��

�C
�J

I
= �GIKCMN

�GMN

�GKJ
= −

�

2
CMNGIK�GMKGJN + GMJGKN� = − �CIKGKJ, �6.22�

.e.,

C
��

�C
+ G

��

�G
= 0 . �6.23�

�

Spatial covariance of strain energy function �material-frame-indifference� can be defined simi-
arly �see Ref. 41�. However, one should note that this is different from Marsden and Hughes point
f departure for developing a covariant theory of elasticity; in Marsden and Hughes’ theory28

alance of energy is assumed to be covariant and not the energy function. In covariant energy
alance, a global diffeomorphism is considered and energy balance is assumed to be invariant
nder this global diffeomorphism.

Balance of energy for reframings of the reference configuration: One way to obtain the
overning balance equations of a continuum is to use the homogeneity of the ambient space and
ostulate that if a deformed body satisfies the balance of energy, any framing of it should satisfy
he balance of energy as well. This is a postulate and cannot be proved. But, one can justify it �or

otivate it� by the fact that the ambient space S is homogeneous. Invariance of energy balance
nder framings of the reference configuration is less obvious and, in general, it turns out not to
old. The following is the main conclusion of this section. Under referential diffeomorphisms,
aterial energy balance has some extra terms in it. The extra terms correspond to some forces

hat contribute to the rate of change of energy when the reference configuration evolves.
Consider a deformation mapping �t :B→S and a referential diffeomorphisms �t :B→B. The

apping �t�=�t ��t
−1 :B�→S, where B�=�t�B�, represents the deformation of the new �evolved�

eference configuration. We are interested in understanding the form of material energy balance for

t�U��B� for any nice U�B. In addition to contributions from the mapping �t�, in general, one
hould expect to see contributions from the referential mapping �t as well, i.e., evolution of
eference configuration may, in general, contribute to the energy balance. Now the balance of
nergy should include the following two groups of terms:

�i� Looking at �t� as the deformation of B� in S, one has the usual material energy balance
for �t�U�. Transformation of fields from �B ,G� to �B ,G�� follows Cartan’s space-time
theory.

�ii� Nonstandard terms may appear to represent the energy associated with the material

evolution.
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Here a comment is in order. The mapping that represents all the physical processes is �t. This
apping is the composition of �t� and �t and hence it is expected that, in general, both �t� and �t

epresent part of the physical processes. This means that standard deformation represented by �t�
nd evolution of microstructure �or any other material evolution� represented by �t should con-
ribute to balance of energy. �This is similar to Gurtin’s idea20,21 of including both standard and
onstandard terms in the expression of working. However, here we consider the full balance of
nergy.� This rough picture should be enough to convince the reader that the lack of invariance of
nergy balance under �t should not be surprising. Lack of invariance implies the appearance of
ome new terms that are work-conjugate to Wt= �� /�t��t. Let us denote the volume and surface
orces conjugate to W by B0 and T0, respectively.

Instead of looking at spatial framings, we fix the deformed configuration and look at framings
f the reference configuration. We postulate that energy balance for each nice subset U� has the
ollowing form:

d

dt



U�
�E� +

1

2

0���V�,V����dV� = 


U�

0����B�,V��� + R��dV� + 


�U�
���T�,V��� + H��dA�

+ 

U�

��B0�,Wt��dV� + 

�U�

��T0�,Wt��dA�, �6.24�

here U�=�t�U� and B0� and T0� are unknown vector fields at this point. Using Cartan’s space-time
heory, it is assumed that the primed quantities have the following relations with the unprimed
uantities

dV� = �t*dV �J��t�dV� = dV�, R��X�,t� = R�X,t� ,


0��X�,t� = 
0�X�, H��X�,N̂�,t� = H�X,N̂,t� , �6.25�

T��X�,N̂�,t� = T�t�X� · T�X,N̂,t� .

e know that

B� − A� = �t*�B − A� . �6.26�

hus

�B� − A���t=t0
= B − A . �6.27�

Note that if � is a 3-form on U, then

	 d

dt
	

t=t0



U�

�� = 

U
	 d

dt
	

t=t0

��t
*��� , �6.28�

here U�=�t�U�. Thus

	 d

dt
	

t=t0



U�

E�dV� = 

U
	 d

dt
	

t=t0

��t
*E��dV = 


U
� �E

�t
+

�E

�G
:LWG�dV . �6.29�
aterial balance of energy for U��B� at t= t0 reads
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U

�
0

�t
�E +

1

2
��V − FW,V − FW���dV + 


U

0� �E

�t
+

�E

�G
:LWG + ��V − FW,A��t=t0

���dV

= 

U


0���B��t=t0
,V − FW�� + R�dV +


�U
���T,V − FW�� + H�dA +


U
��B0,W��dV

+ 

�U

��T0,W��dA . �6.30�

ote that T0 and B0 are defined on B and T0� and B0� are the corresponding quantities defined on

t�B�. Here we assume that T0�=�t*T0 and B0�=�t*B0. Subtracting balance of energy for U from
his and noting that �A�−B��t=t0

=A−B we obtain



U

�
0

�t
�− ��V,FW�� +

1

2
��FW,FW���dV + 


U

0� �E

�G
:LWG − ��FW,A���dV

= − 

U

��
0B,FW��dV − 

�U

��T,FW��dA +

U

��B0,W��dV + 

�U

��T0,W��dA .

�6.31�

auchy’s theorem implies that

��T,FW�� = ��FW,��P,N̂���� , �6.32�

here P is the first Piola-Kirchhoff stress tensor. Similarly

T0 = ��P0,N̂�� . �6.33�

Lemma 6.1: The surface integral in material energy balance has the following transformation:



�U

��FTT,W��dA = 

U

Div��FTP,W��dV = 

U

���Div�FTP�,W�� + FTP:� + FTP:K�dV ,

�6.34�

here

�IJ = 1
2 �GIKWK

�J − GJKWK
�I� = 1

2 �WI!J − WJ!I� , �6.35�

KIJ = 1
2 �GIKWK

�J + GJKWK
�I� = 1

2 �WI!J + WJ!I�, K = 1
2LWG . �6.36�

Proof: In components the integrand can be written as

�FT�A
aTaGABWB. �6.37�

ut

Ta = PaCGCDND. �6.38�

ence in components the integrand reads

��FT�A
aPaCGABWB�GCDND. �6.39�

sing the divergence theorem the surface integral is transformed to an integral on U with the

ollowing integrand in components:
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��FT�A
aPaCGABWB��C = ��FTP�ACGABWB��C = �FTP�AC

�CGABWB + �FTP�ACGABWB
�C

= �FTP�AC
�CGABWB + �FTP�AC� 1

2 �GABWB
�C + GCBWB

�A� + 1
2 �GABWB

�C

− GCBWB
�A�� , �6.40�

here use was made of the fact that GAB�C=0. �

Similarly,



�U

��T0,W��dA = 

U

Div��P0,W��dV = 

U

���Div�P0�,W�� + P0:� + P0:K�dV . �6.41�

y definition, at time t= t0 the transformed balance of energy should be the same as the balance of
nergy for U. Subtracting the material balance of energy for U from the above balance law and
onsidering conservation of mass, we obtain



U


0
�E

�G
:LWGdV + 


U
��
0FT�B − A�,W��dV −


U
��
0B0,W��dV + 


�U
��FTT − T0,W��dA = 0.

�6.42�

hus



U
�2
0

�E

�G
+ FTP − P0�:

1

2
LWGdV + 


U
�FTP − P0�:�dV + 


U
��
0FT�B − A� − B0 + Div�FTP�

− Div P0,W��dV = 0. �6.43�

ow using the balance of linear momentum the identity �6.43� simplifies to



U
�2
0

�E

�G
+ FTP − P0�:

1

2
LWGdV + 


U
�FTP − P0�:�dV + 


U
��Div�FTP − P0� − FTDiv P

− B0,W��dV = 0. �6.44�

ecause U and W are arbitrary

P0 = 2
0
�E

�G
+ FTP , �6.45�

�FTP − P0�T = FTP − P0, �6.46�

B0 = Div�FTP − P0� − FT Div P . �6.47�

ote that �6.46� is trivially satisfied after having �6.45�. Thus we have

P0 = 2
0
�E

�G
+ FTP , �6.48�

B0 = Div�FTP − P0� − FT Div P . �6.49�

ote that P0 is a measure of anisotropy �deviation from material Doyle-Ericksen formula�. This is
n interesting result that in a natural way shows the contribution of some nonstandard terms to
alance of energy when reference configuration evolves.

Thus we have proven the following theorem.
Theorem 6.2: Under a referential diffeomorphism �t :B→B, and assuming that material
nergy density transforms tensorially, i.e.,
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E��X�,t,G� = E�X,t,�t
*G� , �6.50�

aterial energy balance has the following transformation:

d

dt



�t�U�
�E� +

1

2

0���V�,V����dV� = 


�t�U�

0����B�,V��� + R��dV� + 


��t�U�
���T�,V��� + H��dA�

+ 

�t�U�

��B0�,Wt��dV� + 

��t�U�

��T0�,Wt��dA�, �6.51�

here

T0� = �t*���2
0
�E

�G
+ FTP,N̂�� , �6.52�

B0� = �t*�Div�FTP − P0� − FT Div P� , �6.53�

nd the other quantities are already defined.

. Consequences of assuming invariance of energy balance

This section shows the consequences of assuming material covariance of energy balance. It
urns out that energy balance, in general, cannot be materially covariant.

Material energy balance is invariant under material diffeomorphisms if and only if the fol-
owing relations hold between the nonstandard terms:

P0 = 0 or 2
0
�E

�G
= − FTP , �6.54�

B0 = 0 or Div�FTP� = FT Div P . �6.55�

quation �6.54� is the material Doyle-Ericksen formula and �6.55� is the configurational inviscid-
ty constraint, which will be defined in the sequel. Let us now start with the “naive” assumption
hat energy balance is materially covariant and see what its consequences are.

Material covariance of energy balance: Let us postulate that the balance of energy is invariant
nder a diffeomorphism �t :B→B, i.e.,

d

dt



U�

0��E� +

1

2
��V�,V����dV� = 


U�

0����B�,V��� + R��dV� + 


�U�
���T�,V��� + H��dA�.

�6.56�

Proposition 6.3: If material energy balance is invariant under arbitrary material diffeomor-
hisms �t :B→B, then

�
0

�t
= 0, �6.57�

2
0
�E

�G
= − FTP , �6.58�

FTP = PTF , �6.59�

T T
Div�F P� = F Div P . �6.60�
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onversely, if the above four conditions hold, then material energy balance is invariant under any
aterial diffeomorphism.

Proof: Material balance of energy for U��B� at t= t0 reads



U

�
0

�t
�E +

1

2
��V − FW,V − FW���dV + 


U

0� �E

�t
+

�E

�G
:LWG + ��V − FW,A��t=t0

���dV

= 

U


0���B��t=t0
,V − FW�� + R�dV +


�U
���T,V − FW�� + H�dA . �6.61�

ubtracting balance of energy for U�B from this and noting that �A�−B��t=t0
=A−B we obtain



U

�
0

�t
�− ��V,FW�� +

1

2
��FW,FW���dV + 


U

0� �E

�G
:LWG − ��FW,A���dV

= − 

U

��
0B,FW��dV − 

�U

��T,FW��dA . �6.62�

e know that



�U

��FTT,W��dA = 

U
���Div�FTP�,W�� + FTP:� + FTP:

1

2
LWGdV . �6.63�

Thus, �6.62� simplifies to



U

�
0

�t
�− ��V,FW�� +

1

2
��FW,FW���dV + 


U
�2
0

�E

�G
+ FTP�:

1

2
LWG dV + 


U
FTP:� dV

+ 

�U

��Div�FTP� + 
0FT�B − A�,W�� dV = 0. �6.64�

s U and W are arbitrary, we have

�
0

�t
= 0, �6.65�

2
0
�E

�G
= − FTP , �6.66�

FTP = PTF , �6.67�

Div�FTP� + 
0FTB = 
0FTA . �6.68�

quation �6.65� is nothing but material conservation of mass. Equation �6.66� is the material
oyle-Ericksen formula. This is what Lu and Papadopoulos26 call infinitesimal material covari-

nce. Equation �6.67� is balance of configurational angular momentum or isotropy of the material.
Note that if �6.66� holds then �6.67� holds trivially.� Finally, Eq. �6.68� is a condition that must be
atisfied for the balance of energy to be invariant under material diffeomorphisms. This constraint
s equivalent to

Div�FTP� = FT Div P . �6.69�

ssuming the above four conditions, it is easy to show that material energy balance is invariant

nder arbitrary material diffeomorphisms.
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Ideal fluids do satisfy all these conditions. In fact, their transformation properties under ma-
erial diffeomorphisms gives rise to Kelvin’s circulation theorem and it is a key ingredient in the
eometric approach to fluid mechanics; see the introduction to the Marsden and Ratiu book29 for
discussion and references to the literature.

. Material energy balance and defects

We now make a connection between �6.69� and Eshelby’s idea of force on a defect. The idea
f a driving force in continuum mechanics goes back to Eshelby13–15 and this notion is important
n developing evolution laws for the movement of defects, including dislocations, vacancies,
nterfaces, cavities, cracks, etc. Driving forces on these defects cause climb and glide of disloca-
ions, diffusion of point defects, migration of interfaces, changing the shape of cavities and
ropagation of cracks, to mention a few examples. Eshelby defined the force on a defect as the
eneralized force corresponding to position of the defect �in the reference configuration�, which is
hought of as a generalized displacement. Eshelby studied inhomogeneities in elastostatic and
lastodynamic systems by considering the explicit dependence of the elastic energy density on
osition in the reference configuration.

Defect forces: Suppose the elastic energy density has an explicit dependence on X �the posi-
ion of material points in the undeformed configuration�, i.e.,

W = W��,F,X� , �6.70�

here � and F are the deformation mapping and the deformation gradient, respectively. Consider
n open neighborhood � of an isolated defect. Force on the defect in the sense of Eshelby is
efined as

Fdefect = 

�

� �W

�X
�

explicit
dV = 


�

Div E dV = 

��

EN̂ dA , �6.71�

here E=WI−FTP is Eshelby’s energy-momentum tensor. It turns out that for a crack �thought of
s a defect� Fdefect is related to the celebrated J-integral;37 J is the component of Fdefect in the
irection of crack propagation.

The following proposition makes an explicit connection between �6.69� and Eshelby’s idea of
orce on a defect.

Proposition 6.4: Suppose an elastic material in an isothermal and quasistatic deformation
atisfies the internal constraint Div�FTP�=FTDiv P. In the absence of body forces, force on a
efect in the sense of Eshelby would be

Fdefect = 

�

� �W

�X
�

explicit
dV = 


�

Div E dV = 

��

WN̂ dA . �6.72�

Proof: Note that

Fdefect = 

��

EN̂ dA = 

��

WN̂ dA − 

�

FTDiv P dV = 

��

WN̂ dA .

his means that the configurational traction on �� is normal to �� at all points, i.e., the configu-
ational stress is hydrostatic. For this reason we call the internal constraint Div�FTP�=FT Div P,
he configurational inviscidity constraint.

If there is a stationary surface S across which deformation gradient and other quantities have
ump discontinuities, the balance of standard forces reads

�P�N̂ = 0 . �6.73�
ow let us look at the normal jump in Eshelby’s energy-momentum tensor,
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�E�N̂ = ��I − FTP�N̂ = ���N̂ − �FT��P�N̂ − �FT��P�N̂ , �6.74�

here �·� denotes average of inner and outer traces. Using Hadamard’s compatibility equations,

�F�t̂ = 0 for all t̂ such that t̂ · N̂ = 0, �6.75�

t can be easily shown that

N̂ · �E�N̂ = ��� − �F�N̂ · PN̂, t̂ · �E�N̂ = − Ft̂ · �P�N̂ . �6.76�

ow if the balance of standard forces hold one concludes that

t̂ · �E�N̂ = 0. �6.77�

his means that jump in configurational traction on �� is always normal to ��. However, the
revious remark shows that in the absence of body forces the condition Div�FTP�=FT Div P
mplies that the configurational traction itself is normal to ��.

Are configurational forces newtonian?: There have been doubts and discussions concerning
he nature of configurational forces in the literature already starting from Eshelby himself. Eshelby
trongly believed that force on a defect is fictitious and is different from the usual forces in
echanics. He defined force on a defect to be the thermodynamic force conjugate to the general-

zed coordinates defining the defect, for example, the crack tip position in the case of a crack.
shelby16 observed that the configurational force on a disclination in a liquid crystal is a real

orce. A similar observation was made by Nabarro34 for dislocations. Kröner23 and Ericksen11,12

ave similar discussions. Batra4 argues that force on a defect is equal to the standard force exerted
n the boundary of a subbody embracing the defect. Steinmann42 introduces the spatial signature
f a material force. One should note that this viewpoint is not in agreement with Gurtin’s theory
n which standard and configurational forces have their own balance laws.

Batra4 proves a theorem that states that force on a defect is equal to the resultant of tractions
n the boundary of any region enclosing this single defect. This seems to be a very surprising
esult. First of all, if body forces are considered resultant of tractions on different regions em-
odying the defect cannot be independent of the region as in this case stress tensor is not diver-
ence free. Barta suggests that problems involving the J-integral could be reinterpreted using his
heorem. As a matter of fact, the J-integral can serve as a counter example for Batra’s theorem.
he reason is that in the case of a linear elastic material in mode I fracture, for example, the
-integral is quadratic in KI while the stress is linear in KI and hence the resultant of tractions
cting on the boundary of a small region enclosing the crack would be linear in KI. This means
hat the J-integral, which is the component of configurational force in the direction of crack
rowth, cannot be a real force. The incorrectness of Batra’s theorem is because of the way he
efines force on a defect. Force on a defect in the sense of Eshelby is the rate of change of
otential energy of the elastic body with respect to changes in the position of the defect in the
eference configuration. Batra defines force on a defect to be the rate of change of energy with
espect to changes of position of the defect in the current configuration. This is the source of his
urprising result. One should note that direct and inverse motions describe the same physical
rocess and cannot lead to different conclusions regarding forces. Having the duality picture is
seful but one should note that positions of defects in the reference and current configurations are
ot related by the standard deformation mapping as the evolution of defects is an independent
inematical process.

Standard forces in continuum mechanics are one forms in the deformed configuration, i.e., at
ach point x�S, force is an element of Tx

*S. Configurational forces on the other hand are one
orms in the reference configuration, i.e., at each point X�B, configurational force is an element

*
f TXB. Therefore, geometrically it is meaningless to ask if a configurational force is a real force
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ery much like asking whether the deformation gradient �a two-point tensor� is symmetric. This is
hy arguments like the one proposed by Steinmann43 where he defines a spatial signature for a
aterial force do not make sense from the geometric standpoint.

Plasticity and embeddings: A traditional means of introducing configurational forces is based
n remapping the reference configuration of the body. However, this approach tacitly assumes that
he reference configuration can be embedded in Euclidean space. This approach fails when there
s no natural embedding of the reference configuration. A case in point is provided by multiplica-
ive plasticity,24 where the total deformation gradient at a point x has the representation: F�x�
Fe�x�Fp�x�, where Fe�x� and Fp�x� are the elastic and plastic deformation gradients, both of
hich fail to be a gradient in general. The plastic deformation mapping Fp�x� defines an interme-
iate configuration that defines the reference configuration for the elasticity of the material. In
articular, the elastic energy density is assumed to be of the form W�Fe ,x�. Since Fp�x� is not the
erivative of a mapping, the intermediate configuration cannot be embedded in Euclidean space.
herefore, remapping cannot be applied to deriving configurational forces directly from W�Fe ,x�.
y contrast, the present approach can be applied for that purpose, for example, by equipping the

ntermediate configuration with a constant metric.
The derivation of certain conserved integrals, such as the L-integral that gives the configura-

ional torque on isotropic subbodies, relies on the metric structure of the embedding Euclidean
pace. In addition, the conventional formulation of material symmetry also presumes the existence
f an Euclidian embedding. Such an embedding may not be natural or available in certain models
f materials, such as liquid crystals or smectic polymers, where the reference configuration may
nclude a unit director field.

II. NOETHER’S THEOREM AND BALANCE OF CONFIGURATIONAL FORCES

As is well known, there is a strong connection between conservation laws and symmetries. If
he Euler-Lagrange equations are satisfied and the Lagrangian density of a system is invariant
nder a group of transformations, Noether’s theorem gives the corresponding conserved quantity.
n this sense, conservation laws are related to symmetries of a given system. Marsden and
ughes28 consider material invariance in elasticity �in the absence of body forces� and show that

nvariance of Lagrangian density under rigid translations in the reference configuration results in
he following conservation law

�

�t
��̇L · D · W� + DIV��FL · D · W − LW� = 0. �7.1�

his has been obtained assuming that the flow of W is volume-preserving and that L does not
xplicitly depend on X. For a constant W, this equation in our notation reads

Div��� −
1

2

0�V�2�I − FTP = −

�

�t
�
0FTV� . �7.2�

t is seen that this is identical to balance of configurational linear momentum if 
0 and � are
ndependent of X �note that this is stronger that homogeneity of L�. Ignoring the inertial effects,
oether’s theorem results in

Div��I − FTP� = 0 . �7.3�

Roughly speaking, Noether’s theorem states that when the Euler-Lagrange equations are sat-
sfied, any symmetry of the Lagrangian density corresponds to a conserved quantity. Here we
evisit Noether’s theorem for nonlinear elasticity assuming that undeformed and deformed con-
gurations are Riemannian manifolds. Writing action in the reference configuration, Lagrangian

ensity has the following explicit independent variables:
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L = L�XA,�a,�̇a,Fa
A,GAB,gab� . �7.4�

or the sake of clarity, we consider spatial and material symmetries of the Lagrangian density
eparately.

. Spatial covariance of Lagrangian density

Theorem 7.1: If the Lagrangian density is spatially covariant, then the following hold: (i)
patial homogeneity of the Lagrangian density and (ii) the Doyle-Ericksen formula.

Proof: Suppose �s is a flow on S generated by a vector field w, i.e.,

	 d

ds
	

s=0
�s � � = w � � . �7.5�

nvariance of L means that

L�XA,�s
a���,

��s
a

�xb �̇b,
��s

a

�xb Fb
A,GAB,−

��s
c

�xa

��s
d

�xb gcd� = L�XA,�a,�̇a,Fa
A,GAB,gab� . �7.6�

This reminds us of the definition of covariance for internal energy density. So, it would be very
atural to expect some connection between Noether’s theorem and covariant balance laws.� Now
ifferentiating the above relation with respect to s and then evaluating it at s=0 �This is somewhat
imilar to subtracting two balance relations and evaluating the result at t= t0�, one obtains

�L
��awa +

�L
��̇a

�wa

�xb �̇b + � �L
�F

�
a

A�wa

�xb Fb
A − 2

�L
�gab

�wc

�xa gbc = 0. �7.7�

ote that

�L
��̇a

�wa

�xb �̇b =
�

�t
� �L

��̇awa� −
�

�t
� �L

��̇a�wa. �7.8�

fter some manipulations, it can be shown that

� �L
�F

�
a

A�wa

�xb Fb
A = �� �L

�F
�

a

A

wa
�A

− � �L
�F

�
a

A

�A
wa − � �L

�F
�

b

A

�ac
b Fc

Awa. �7.9�

lso

− 2
�L
�gab

�wc

�xa gbc = − �2
�L
�gab

gbc�F−1�a
Awc

�A
+ �2

�L
�gab

gbc�F−1�a
A

�A

wc

+ 2
�L
�gab

gbd�ac
d wc.

�7.10�

herefore, symmetry of L implies that

� �L
��a −

�

�t
� �L

��̇
�

a

− � �L
�F

�
a

A

�A
− � �L

�F
�

b

A

Fc
A�ac

b + 2
�L
�gcd

gbd�ac
b wa +

�

�t
� �L

��̇awa�
+ �� �L

�F
�

a

A

wa
�A

− �2
�L
�gab

gbc�F−1�a
Awc

�A
+ �2

�L
�gab

gbc�F−1�a
A

�A
wc = 0. �7.11�

ote that the term multiplied by wa is zero if the Euler-Lagrange equations are satisfied. Thus,

oether’s theorem states that
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�

�t
� �L

��̇awa� + �� �L
�F

�
a

A

wa
�A

− �2
�L
�gab

gbc�F−1�a
Awc

�A
+ �2

�L
�gab

gbc�F−1�a
A

�A
wc = 0.

�7.12�

ote that

�� �L
�F

�
a

A

wa
�A

= � �L
�F

�
a

A

�A
wa + � �L

�F
�

a

A

Fb
Awa

�b. �7.13�

lso

�2
�L
�gab

gbc�F−1�a
Awc

�A
= �2

�L
�gab

gbc�F−1�a
A

�A
wc + 2

�L
�gab

gbcw
c
�a. �7.14�

herefore �7.12� is simplified to

� �

�t
� �L

��̇a� + � �L
�F

�
a

A

�A
wa + � �L

��̇a� �wa

�t
+ �� �L

�F
�

a

A

Fc
A − 2

�L
�gbc

gabwa
�c = 0. �7.15�

ote that

�wa

�t
=

�wa

�xc �̇c = �̇cwa
�c − �cd

a wd�̇c. �7.16�

herefore statement of Noether’s theorem, Eq. �7.12� can be rewritten as

� �

�t
� �L

��̇a� + � �L
�F

�
a

A

�A
−

�L
��̇d�ac

d �̇cwa + �� �L
�F

�
a

A

Fc
A +

�L
��̇a �̇c − 2

�L
�gbc

gabwa
�c = 0.

�7.17�

ote that

�L
��̇a �̇c = 
0gab�̇b�̇c. �7.18�

f Lagrangian density is covariant, i.e., if w is arbitrary then �7.17� implies that

2
�L
�gab

= gbc� �L
�F

�
c

A

Fa
A + gbc

�L
��̇c �̇a, �7.19�

�

�t
� �L

��̇a� + � �L
�F

�
a

A

�A
−

�L
��̇d�ac

d �̇c = 0. �7.20�

quation �7.19� can be rewritten as

2
�W

�gab
= gbc� �W

�F
�

c

A

Fa
A, �7.21�

hich is nothing but the Doyle-Ericksen formula. �Note that this includes balance of angular

omentum.� Note that
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�

�t
� �L

��̇a� + � �L
�F

�
a

A

�A
−

�L
��̇d�ac

d �̇c =
�L
��a − � �L

�F
�

b

A

Fc
A�ac

b + 2
�L
�gcd

gbd�ac
b −

�L
��̇b �̇c�ac

b .

�7.22�

ut

− � �L
�F

�
b

A

Fc
A + 2

�L
�gcd

gbd =
�L
��̇b �̇c. �7.23�

hus

�

�t
� �L

��̇a� + � �L
�F

�
a

A

�A
−

�L
��̇d�ac

d �̇c =
�L
��a . �7.24�

ence �7.20� implies that

�L
��a = 0. �7.25�

�

Note that this theorem implies that arbitrary flows and in particular rigid translations cannot be
ransitive �in the sense of Gotay et al.17,18� for arbitrary Lagrangian densities.

. Material covariance of Lagrangian density

Let us first consider the case of Euclidean spaces. Consider a flow �s on B generated by a
ector field W. Invariance of L with respect to this flow means that

L��s
A�X�,�a,�̇a,�� ��s

�X
�−1B

A

Fa
B� = L�XA,�a,�̇a,Fa

A� . �7.26�

ifferentiating the above relation with respect to s and evaluating the result at s=0, one obtains

�L
�XAWA −

�L
�Fa

A

�WB

�XA Fa
B = 0. �7.27�

f W is a constant, then

�L
�XA = 0, �7.28�

.e., the Lagrangian density must be materially homogeneous. This is also what Nelson35,36 ob-
ains. After some manipulation and assuming that Euler-Lagrange equations are satisfied �7.27�
an be rewritten as

�

�XA�LWA −
�

�Fa
A

Fa
BWB� −

�

�t
� �L

��̇aFa
AWA� − L�WA

�XA = 0, �7.29�

here use was made of the fact that W is time independent. For a volume-preserving flow this

ives us
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�

�XA�LWA −
�

�Fa
A

Fa
BWB� −

�

�t
� �L

��̇aFa
AWA� = 0, �7.30�

hich is what Marsden and Hughes28 obtain. Now let us consider the general case of Riemannian
anifolds and assume that �s is a flow on the Riemannian manifold �B ,G� generated by a vector
eld W, i.e.,

	 d

ds
	

s=0
�s�X� = W�X�, X � B . �7.31�

Theorem 7.2: If the Lagrangian density is materially covariant then the following hold: �i�
aterial homogeneity of the Lagrangian density and �ii� material Doyle-Ericksen formula.

Proof: Invariance of L with respect to �s means that

L��s
A�X�,�a,�̇a,�� ��s

�X
�−1B

A

Fa
B,gab,�� ��s

�X
�−1C

A
�� ��s

�X
�−1D

B

GCD�
= L�XA,�a,�̇a,Fa

A,gab,GAB� . �7.32�

ifferentiating the above relation with respect to s and evaluating the result at s=0, one obtains

�L
�XAWA −

�L
�Fa

A

�WB

�XA Fa
B − 2

�L
�GDK

GDC
�WC

�XK = 0. �7.33�

ote that

−
�L

�Fa
A

�WB

�XA Fa
B = − �Fa

B

�L
�Fa

A
WB�

�A
+ �Fa

B

�L
�Fa

A
�

�A
WB + Fa

C

�L
�Fa

A
	AB

C WB �7.34�

nd

− 2
�L

�GDK
GDC

�WC

�XK = − �2
�L

�GDK
GDCWC�

�K
+ �2

�L
�GDK

GDC�
�K

WC + 2
�L

�GDK
GBD	CK

B WC.

�7.35�

lso

�Fa
B

�L
�Fa

A
�

�A
WB = � �Fa

B

�XA − Fa
C	BA

C � �L
�Fa

A
WB + Fa

A�� �L
�Fa

B
�

�B
+

�L
�Fb

B
Fc

B�ac
b WA.

�7.36�

ssuming that Euler-Lagrange equations are satisfied and using the above identities after a lengthy
eries of simplifications, one obtains

�LWA −
�L

�Fa
B

WB�
�A

−
�

�t
�Fa

A

�L
��̇aWA� − LWA

�A − �2
�L

�GDK
GDCWC�

�K
+ �2

�L
�GDK

GDC�
�K

WC = 0.

�7.37�

ote that

− �2
�L

�GDK
GDCWC�

�K
+ �2

�L
�GDK

GDC�
�K

WC = − 2
�L

�GDK
GDCW�K

C . �7.38�
herefore in this case Noether’s theorem states that
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�LWA −
�L

�Fa
B

WB�
�A

−
�

�t
�FA

a
�L
��̇aWA� − LWA

�A − 2
�L

�GDK
GDCWC

�K = 0. �7.39�

ote that

�Fa
B

�L
�Fa

A

WB�
�A

=
�

�XA�Fa
B

�L
�Fa

A
�WB + Fa

B

�L
�Fa

A

WB + Fa
B

�L
�Fa

A

�WB	AC
C − WC	CA

B � .

�7.40�

sing the above relation and some lengthy simplifications, one can rewrite �7.39� as

� �L
�XA + � �L

�Fa
C

Fa
B + 2

�L
�GCD

GBC�	AC
B WA − � �L

�Fa
A

Fa
B + 2

�L
�GAC

GBC�WB = 0. �7.41�

f L is materially covariant, i.e., if W is arbitrary, then

�L
�XA + � �L

�Fa
C

Fa
B + 2

�L
�GCD

GBC�	AC
B = 0, �7.42�

�L
�Fa

A

Fa
B + 2

�L
�GAC

GBC = 0. �7.43�

r equivalently

�L
�XA = 0, �7.44�

�W

�Fa
A

Fa
B + 2

�W

�GAC
GBC = 0, �7.45�

here W is the material potential energy density. Note that �7.45� is nothing but the material
oyle-Ericksen formula �6.66�. �

Remarks: There are some differences between covariant energy balance �CEB� and Lagrang-
an density covariance �LDC�:

�i� CEB is global while LDC is local.
�ii� In CEB the arbitrary vector fields w and W are time-dependent �being velocities�, in

general, while in LDC they are time independent.
�iii� In writing balance of energy in CEB for a material diffeomorphism spatial quantities

contribute to energy balance. But in LDC a material flow does not affect the spatial
quantities.

III. CONCLUSIONS AND FUTURE DIRECTIONS

The results of this paper can be summarized as follows.

�i� We studied continuum mechanics of bodies with global referential evolutions by enlarg-
ing the configuration manifold to two Riemannian manifolds with their own metrics. A
deformation is then a pair of referential evolution, i.e., a motion in the referential mani-
fold, and a standard motion. We showed that in the absence of discontinuities, configu-
rational and standard equations of motion are equivalent even if the metrics are allowed

to vary.
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�ii� The classical theorem of Green, Naghdi, and Rivilin19 was revisited and a material
version of it was investigated. We showed that under a referential isometry balance of
energy cannot be invariant, in general, and obtained its transformation.

�iii� The idea of covariance in elasticity was reviewed. We revisited a theorem by Marsden
and Hughes28 and some of the details of its proof were clarified and a proof was given
for its converse. It was also shown that spatial covariance of material energy balance
leads to identical results.

�iv� We posed the question that whether energy balance can be materially covariant. It was
shown that, in general, energy balance cannot be invariant under referential diffeomor-
phisms. We obtained the transformation of energy balance under arbitrary material dif-
feomorphisms. We found conditions under which energy balance is materially covariant.
It was shown that in the absence of body forces the nontrivial condition for material
covariance of balance of energy is equivalent to configurational stress tensor �Eshelby’s
stress tensor� being hydrostatic. It was shown that for ideal fluids energy balance is
materially covariant.

�v� An explicit relation between covariance and Noether’s theorem was found. We showed
that spatial covariance of a Lagrangian density implies spatial homogeneity of the La-
grangian density and the Doyle-Ericksen formula. Similarly, material covariance of a
Lagrangian density implies its material homogeneity and the material Doyle-Ericksen
formula.

In summary, spatial covariance is reasonable and holds for most materials. The transformation
roperties of energy balance under material reframings was obtained. However, material covari-
nce of energy balance only holds for special materials, such as ideal fluids.

The main application of the ideas presented in this paper will be in gaining a better under-
tanding of the continuum theory of defects. In particular, if one repeats some of the developments
resented in this paper in a space-time setting, one should, in principle, be able to obtain dynamic
quations for evolution of defects. Another important relevant problem would be the study of
ovariance and its meaning in discrete systems. This may lead to a better understanding of “stress”
n discrete systems.
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In this paper we prove that the two-dimensional superintegrable systems with qua-
dratic integrals of motion on a manifold can be classified by using the Poisson
algebra of the integrals of motion. There are six general fundamental classes of
superintegrable systems. Analytic formulas for the involved integrals are calculated
in all the cases. All the known superintegrable systems are classified as special
cases of these six general classes. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2192967�

. INTRODUCTION

In classical mechanics, an integrable system on a manifold of N dimensions, is a system which
as N integrals of motion in evolution. Superintegrable �or maximally integrable� system is a
ystem possessing the maximum number of constants of motion, i.e., 2N−1 integrals of motion.

The simplest case is the two-dimensional superintegrable problems with integrals of motion,
hich are linear and quadratic functions of momenta. The investigation of such superintegrable

ystems on a two-dimensional manifold is a quite old problem, dated in the 19th century. Initially
he problem was formulated as a geometry problem. The challenge was to find two-dimensional

anifolds whose geodesics are curves which possess additional integrals than the free Hamil-
onian. This problem was studied in the four volume treatise of Darboux Leçons sur la Théorie
énérale des Surfaces.1 The main result of this study is that, there are five classes of general forms
f metrics, whose geodesics have three integrals of motion �the Hamiltonian and two additional
unctionally independent integrals�. These metrics are called “formes essentielles” and they de-
end on four parameters. All the metrics having more than two integrals of motion can be obtained
s partial cases of these “formes essentielles” by choosing appropriate values of the four param-
ters. The five classes of metrics are tabulated in “Tableau VII” by Koenigs �Ref. 1. Vol. IV,
. 385�.

In classical mechanics language, Darboux and Koenigs results can be translated as searching
anifolds, where the free Hamiltonian accepts quadratic integrals of motion. The evolution of this

roblem is to find superintegrable systems, whose Hamiltonian is the free Hamiltonian plus a
otential and these systems possess additional quadratic integrals of motion.

The simplest integrable and superintegrable systems are the systems defined on the real plane.
comprehensive review of the real two-dimensional integrable classical systems on the plane is

iven in Refs. 2 and 3 The complex superintegrable systems with quadratic moments on a flat
pace were recently catalogued by Kalnins, Miller, Pogosyan et al.4–7 The flat space is a two-
imensional manifold with curvature zero. The Drach potentials are also systems defined on a

�
Electronic mail: daskalo@math.auth.gr

47, 042904-1022-2488/2006/47�4�/042904/38/$23.00 © 2006 American Institute of Physics
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anifold with curvature zero. The Drach systems with quadratic integrals of motion were inves-
igated by Rañada.8 The superintegrable systems on the hyperbolic plane were studied in Refs. 9
nd 10. These systems were studied separately, while they are connected by obvious coordinate
ransformations. Therefore they are naturally connected, i.e., there is a common classification
cheme of all these systems.9,10

The case of nonflat space is under current intensive investigation. The superintegrable systems
n the sphere were studied in Refs. 8, 9, and 11 and they were classified in Ref. 6 The sphere is
special case of manifold with constant curvature. In Refs. 9 and 10 the superintegrable systems

n the sphere and on the hyperbolic plane were studied using a unified formulation.
In the case of manifolds of nonconstant curvature, the known examples of superintegrable

ystems are those which are defined on manifolds which are surfaces of revolution. The corre-
ponding problem of the geodesics with three quadratic integrals of motion on surfaces of revo-
ution was treated by Koenigs in Ref. 1 Vol. IV, p. 377. Recently Kalnins and collaborators
lassified the superintegrable systems on a surface of revolution12,13 using the manifolds which
ere provided by Koenigs.

In two recent papers Kalnins, Kress, and Miller14,15 give a comprehensive study of the two-
imensional superintegrable sytems. In Ref. 15, they prove that the general Koenigs essential
orms of metrics correspond to the most general forms of superintegrable systems. Also they have
hown that every two-dimensional superintegrable system is Stäckel equivalent to a two-
imensional nondegenerate superintegrable system on a constant curvature space.

Kress16 in collaboration with Kalnins and Miller studied the Stäckel equivalence classes of the
uperintegrable systems on the spaces of constant curvature, and they have shown that there are
ix equivalence classes. The general classes of Koenigs classification given by the Table VII in
ef. 1 are five. That means that there is a sixth class which should be added in the Koenigs
lassification scheme. In this paper we investigate this sixth class, which completes the Koenigs
lassification. This class is the nondegenerate superintegrable system generated by the case VI6 of
oenigs.

An interesting question is, whether there could be a general classification scheme of superin-
egrable systems with quadratic integrals of motion, which contains all the equivalence classes of
uperintegrable systems on a manifold with constant curvature and the general classes of mani-
olds, which were introduced by Koenigs. The classification schemes are based on the Darboux
elations derived for the invariants, which are defined on a specific manifold. In this paper we
ropose a classification scheme based on the properties of the Poisson algebra of the integrals of
otion. Then we show that there is indeed such a classification scheme, which determines the

upporting manifold metric. We must notice that the Kress16 equivalence classes are derived by
lassifying the Poisson algebra of integrals of motion. The proposed classes of superintegrable
ystems in this paper correspond to the equivalent classes studied in Ref. 16. Analytic formulas for
he metrics of the permitted manifolds, the potentials and the integrals of motion are calculated.

This paper is organized as follows: In Sec. II the general form of the integrable two-
imensional system with one quadratic integral of motion is derived. The results of this section
orrespond to the Darboux treatise paragraphs �Ref. 1, No. 593, Vol. III, pp. 30 and 31�, but we
ive a brief modern derivation of the formulas including the potentials in our discussion. These
ormulas will be used in the following sections. The carrying manifold is a Liouville or a Lie
urface. Therefore there are two classes of integrable systems. In a specific coordinate system,
hich is called Liouville �or Lie� system, the analytic expressions of the potential and the integrals
f motion are given and the action is calculated. In Sec. III the Poisson algebra of the integrals of
superintegrable two-dimensional system is discussed. This algebra is a quadratic algebra, the

oefficients of the quadratic terms are characteristic of the carrying manifold. In Sec. IV we prove
hat the coefficients of the Poisson algebra impose the classification of the superintegrable systems
ith two quadratic integrals in six fundamental classes. The method of analytic calculation of

orm of the permitted carrying manifolds, the potentials and the integrals of motion are discussed.
n this section we prove that the general form of the superintegrable potential can be written as a

raction V=w�x ,y� /g�x ,y� and the two functions w�x ,y� and the metric g�x ,y� are two solutions of
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he same partial differential equation. The existence of the Poisson algebra was assumed as
bvious by several authors.4–7,17–29 In the Appendix we give a proof of the existence of the Poisson
lgebra, for two-dimensional superintegrable systems with quadratic integrals of motion. In Sec. V
he analytic formulas of the manifolds and integrals are given for all the six fundamental classes
f superintegrable systems. From these analytic formulas we can show that there are new super-
ntegrable systems, because they are defined on manifolds which have not constant curvature and
re not surfaces of revolution. In Sec. VI the superintegrable systems corresponding to the
oenigs essential forms of Table VII are given. In Sec. VII the superintegrable systems on a

urface of revolution are studied. We find that there is a new system which was not revealed by the
ther classification schemes. In Sec. VIII the superintegrable systems on a manifold with curvature
ero are studied and in Sec. IX the systems on a manifold with constant curvature are listed. In
ec. X the systems with a linear and a quadratic integral of motion are discussed. Finally, in Sec.
I the results of the paper are summarized.

I. INTEGRABLE SYSTEMS ON A TWO-DIMENSIONAL MANIFOLD

Let us consider an integrable system defined on a two-dimensional manifold with metric,

ds2 = E�u,v�du2 + 2F�u,v�du dv + G�u,v�dv2.

here is a conformal coordinate system where the metric can be written as

ds2 = g�x,y�dx dy . �1�

he passage from the original coordinate system �u ,v� to the conformal one �x ,y� can be realized
y using the Beltrami partial differential equation. We must notice that the choice of the conformal
oordinate system is not unique, i.e., there are several conformal coordinate systems for a given
etric, these systems are conformally equivalent.

In a conformal coordinate system the general form of the Hamiltonian is

H =
pxpy

g�x,y�
+ V�x,y� , �2�

here the Hamiltonian is a quadratic form of the momenta.
Let us consider an integral of motion which is quadratic in momenta. The most general form

an be written as

I = A�x,y�px
2 + B�x,y�py

2 − 2pxpy
��x,y�
g�x,y�

+ Q�x,y� . �3�

y definition the Poisson bracket between the Hamiltonian and the integral of motion is zero,

�I,H�P =
�I

�x

�H

�px
−

�I

�px

�H

�x
+

�I

�y

�H

�py
−

�I

�py

�H

�y
= 0. �4�

he above equality implies restrictions on the functions involved in Eqs. �2� and �3�. The left-hand
ide of the above equation is an odd function of cubic order in the momenta. The coefficients of

px
3 and py

3 must be zero

�A

�y
= 0 Þ A = A�x� ,

�B

�x
= 0 Þ B = B�y� . �5�

2 2
he coefficients of pxpy and pypx in �4� must be indeed zero,
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��

�y
= A�x�

�g

�x
+

g

2
A��x� , �6�

��

�x
= B�y�

�g

�y
+

g

2
B��y� . �7�

he partial x derivative of the right-hand side in �6� is equal to the y derivative of the right-hand
ide in Eq. �7�, therefore

�A��x� − B��y��g�x,y� + 3A��x�
�g

�x
− 3B��y�

�g

�y
+ 2A�x�

�2g

�x2 − 2B�y�
�2g

�y2 = 0. �8�

The coefficients of px and py in �4� must be zero,

�Q

�y
= 2A�x�

�V

�x
+ 2��x,y�

�V

�y
,

�9�
�Q

�x
= 2B�y�

�V

�y
+ 2��x,y�

�V

�y
.

he above relations imply

g�x,y��2A�x�
�2V

�x2 − 2B�y�
�2V

�y2 + 3A��x�
�V

�x
− 3B��y�

�V

�y
� + 4�A�x�

�g

�x

�V

�x
− B�y�

�g

�y

�V

�y
� = 0.

�10�

t this point we must distinguish two cases. In the first case A�x� and B�y� are both different from
ero, whereas in the second case B�y� is assumed to be zero.

Class I: A�x�B�y��0.
Following the method given in Koenigs original paper, we can choose a new coordinate

ystem

� =	 dx

A�x�

and � =	 dy

B�y�

,

here the associated momenta are

p� = 
A�x�px and p� = 
B�y�py .

n this case the metric is written

ds2 = ĝ��,��d� d�, where ĝ��,�� = g�x,y�
A�x�B�y� .

n these new coordinate system �� ,�� all the above equations are considerably simplified. We can
asily show that the formulas are the same by replacing x→�, y→� and fixing A�x�=1 and
�y�=1. For simplicity reasons we omit the hat on the metric ĝ�� ,��→g�� ,��. Equations �2� and

3� are written

H =
p�p�

g��,��
+ V��,�� ,

�11�

I = p�
2 + p�

2 − 2p�p�

���,��
g��,��

+ Q��,�� .
e call these specific coordinates �� ,�� Liouville coordinates. In Liouville coordinates the Hamil-
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onian H and the integral I are written as it was given in Eq. �11�. In the Liouville coordinates, Eq.
8� is considerably simplified,

�2g

��2 −
�2g

��2 = 0

he general solution is

g��,�� = F�� + �� + G�� − �� ,

here F�u� and G�v� are arbitrary functions. The above metric characterizes a surface which is
alled Liouville surface in the geometry textbooks. Therefore we have shown that a system is
ntegrable in Class I only when the surface is a Liouville surface. The surfaces of constant
urvature or the rotation surfaces are Liouville surfaces, but there are Liouville surfaces which
ave not constant curvature and they are not rotation surfaces.

The function ��� ,�� can be calculated from Eq. �6�,

��

��
=

�g

��
,

��

��
=

�g

��
,

hen

���,�� = F�� + �� − G�� − �� . �12�

he potential V�� ,�� in Liouville coordinates is the solution of Eq. �10�,

�F�� + �� + G�� − ���� �2V

��2 −
�2V

��2� + 2F��� + ��� �V

��
−

�V

��
� + 2G��� − ��� �V

��
+

�V

��
� = 0.

he general solution of the above equation in Liouville coordinates is

V��,�� =
f�� + �� + g�� − ��

F�� + �� + G�� − ��
. �13�

he functions f�u� and g�v� are arbitrary functions. The function Q�� ,�� is determined from Eqs.
9� and the solution is easily calculated,

Q��,�� = 4
f�� + ��G�� − �� − g�� − ��F�� + ��

F�� + �� + G�� − ��
. �14�

sually it is more convenient to use the coordinates u, v, which are defined by

� = u + iv, � = u − iv, p� =
pu − ipv

2
, and p� =

pu + ipv

2
.

he Hamiltonian H and the integral can be written as

H =
pu

2 + pv
2 + 4�f�u� + g�v��

4�F�u� + G�v��
,

I =
pu

2G�v� − pv
2F�u�

F�u� + G�v�
+ 4

f�u�G�v� − g�v�F�u�
F�u� + G�v�

.

he above formula has been investigated in a different context in Ref. 30. In these coordinates the

ction S�u ,v� satisfy the following equations:

                                                                                                            



a

t

I

W
a
a

W
a
i

T

w
b
t

E

042904-6 C. Daskaloyannis and K. Ypsilantis J. Math. Phys. 47, 042904 �2006�

                        
E = H�u,v,pu,pv�, J = I�u,v,pu,pv� ,

�15�

pu =
�S

�u
, pv =

�S

�v
,

nd we can find the action S�u ,v� by separation of variables,

S = − Et +	 
4EF�u� + J − 4f�u�du +	 
4EG�v� − J − 4g�v�dv .

CLass II: B�y�=0.
We can choose a new coordinate system

� =	 dx

A�x�

and � = y

he associated momenta are

p� = 
A�x�px and p� = py .

n this case the metric is written

ds2 = ĝ��,��d� d�, where ĝ��,�� = g�x,y�
A�x� .

e can easily show that the formulas are the same by replacing x→�, y→� and fixing A�x�=1
nd B�y�=0. For simplicity reasons we omit the hat on the metric ĝ�� ,��→g�� ,��. Equations �2�
nd �3� are written

H =
p�p�

g��,��
+ V��,�� ,

�16�

I = p�
2 − 2p�p�

���,��
g��,��

+ Q��,�� .

e call these specific coordinates �� ,�� Lie coordinates. In Lie coordinates the Hamiltonian H
nd the integral I are written as it is given in the above equation �16�. In Lie coordinates Eq. �18�
s written

�2g

��2 = 0.

he general solution is

g��,�� = F���� + G��� ,

here F��� and G��� are arbitrary functions. The above metric characterizes a surface which will
e called Lie surface. Therefore we have shown that a system is integrable in Case 2 only when
he surface is a Lie surface.

Equations �6� imply

�
��

��
=

�g

��

��

��
= 0 � Þ �g��,�� = F���� + G��� ,

���,�� =	 F���d� . � �17�
quation �10� is written
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�F���� + G����
�2V

��2 + 2F���
�V

��
= 0

nd the general solution of the above equation is

V��,�� =
f���� + g���

F���� + G���
. �18�

he functions F���, G���, f���, and g��� are arbitrary functions. In this case the solution of the
ystem of equations �9� is given by

Q��,�� = − 2

�f���� + g���� 	 F���d�

F���� + G���
+ 2	 f���d� . �19�

he action integral in this case can be easily calculated,

S = �
J − 2�	 f���d� − E	 F���d�� −	 d�
g��� − EG���


J − 2�	 f���d� − E	 F���d��

,

here

E = H��,�,p�,p��, J = I��,�,p�,p�� ,

p� =
�S

��
, p� =

�S

��
.

The integrable systems which belong in Classes I and II are well-known integrable systems
see Ref. 12� the supporting manifold is a Liouville or a Lie surface. We must notice that the
amiltonian and the integral of an integrable system determine uniquely the Liouville �or Lie�

oordinate system. Therefore the use of this privileged system is imposed by the notion of inte-
rability. In the next sections we shall work in this special coordinate system, which is denoted
xclusively by the coordinates � and �. In Class I integrable systems the system is separable, while
n Class II systems there is no separation of variables in general.

II. POISSON ALGEBRA OF SUPERINTEGRABLE SYSTEMS WITH TWO QUADRATIC
NTEGRALS OF MOTION

If a system is superintegrable on a two-dimensional manifold, that means that there are three
unctionally independent integrals of motion H, A, and B. In this section, we assume that these
ntegrals of motion are quadratic functions of the momenta and there are no other integrals of

otion, which are linear functions of the momenta. Regarding the Hamiltonian H and the first
ntegral A, we can choose the Liouville coordinate system and in this system,

H =
p�p�

g��,��
+ V��,�� .

s we have shown in the preceding section the system is integrable with a square integral of
otion in two cases. The integral of motion A in the Liouville coordinate system is written.

A = p�
2 + bp�

2 − 2p�p�

���,��
g��,��

+ ���,�� ,
here
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b =1 in Class I, where g��,�� = F�� + �� + G�� − �� �Liouville system� ,

0 in Class II, where g��,�� = F���� + G��� �Lie system� .
�

he integral of motion B is assumed to be indeed a quadratic function of momenta, thus the
eneral form in Liouville coordinates is

B = A���p�
2 + B���p�

2 − 2p�p�

���,��
g��,��

+ Q��,�� .

y definition the following relations are satisfied:

�H,A�P = �H,B�P = 0. �20�

From the integrals of motion A and B, we can construct the integral of motion

C = �A,B�P. �21�

he integral of motion C is not a new independent integral of motion, which is a cubic function of
he momenta. The integral C is not functionally independent from the integrals H, A, and B as it
ill be shown later. The fact that, the integral C is a cubic function of momenta, implies the

mpossibility of expressing C as a polynomial function of the other integrals, which are quadratic
unctions of momenta. We shall prove that the square of this cubic polynomial is indeed a cubic
ombination of the integrals. Starting from the integral of motion C, we can construct the �non-
ndependent� integrals �A ,C�P and �B ,C�P. These integrals are quartic functions of the momenta,
.e., functions of fourth order. In the Appendix we show that these integrals can be expressed as
uadratic combinations of the integrals H ,A, and B. Therefore the following relations are valid:

�A,C�P = �A2 + �B2 + 2�AB + �A + 	B + 
 �22�

nd

�B,C�P = aA2 + bB2 + 2cAB + dA + eB + z . �23�

y taking an appropriate rotation of the integrals A and B we can always consider the case �
0.

The existence of the Poisson algebra �22� and �23� is not evident. The above form was
ssumed as obvious by several authors.4–7,17–29 In Classical mechanics the Poisson algebra was not
onsidered as an important point, but in quantum mechanics the existence of Poisson algebra
ermits the algebraic treatment of the superintegrable system.20 In this paper we prove that the
uperintegrable systems can be classified using the properties of the Poisson algebra. The super-
ntegrability is a global property of the system, and this fact is reflected in the Poisson algebra
tructure, which is indeed a global property. The mathematical proof of the existence of the
lgebra �22� and �23� for the two-dimensional superintegrable systems can be found in the Ap-
endix.

The Jacobi equality for the Poisson brackets induces the relation

�A,�B,C�P�P = �B,�A,C�P�P.

The following relations:

b = − �, c = − �, and e = − �

ust be satisfied.
The integrals A, B, and C satisfy the quadratic Poisson algebra,
�A,B�P = C ,
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�A,C�P = �A2 + 2�AB + �A + 	B + 
 , �24�

�B,C�P = aA2 − �B2 − 2�AB + dA − �B + z ,

here �, �, a are constants and

� = ��H� = �0 + �1H ,

	 = 	�H� = 	0 + 	1H ,


 = 
�H� = 
0 + 
1H + 
2H
2,

d = d�H� = d0 + d1H ,

z = z�H� = z0 + z1H + z2H
2,

here �i, 	i, 
i, di, and zi are constants. The associative algebra, whose generators satisfy Eq. �24�,
s the general form of the closed Poisson algebra of the integrals of superintegrable systems with
ntegrals quadratic in momenta.

The quadratic Poisson algebra �24� possess a Casimir which is a function of momenta of
egree 6 and it is given by

K = C2 − 2�A2B − 2�AB2 − 2�AB − 	B2 − 2
B + 2
3aA3 + dA2 + 2zA = k0 + k1H + k2H

2 + k3H
3.

�25�

bviously

�K,A�P = �K,B�P = �K,C�P = 0.

herefore the integrals of motion of a superintegrable two-dimensional system with quadratic
ntegrals of motion close a constrained classical quadratic Poisson algebra �24�, corresponding to
Casimir equal at most to a cubic function of the Hamiltonian �25�

In Ref. 5 the algebra �24� induced by the Casimir �25� can be equivalently formulated as the
oisson algebra generated by

C2 = 2f�A,B,H�, C = �A,B�P,

�A,C�P =
�f

�B
, �C,B�P =

�f

�A
,

here f�A ,B ,H� is a cubic function of A, B, and H.
In the general case of a superintegrable system the integrals are not necessarily quadratic

unctions of the momenta, but rather polynomial functions of the momenta. The case of the
ystems with a quadratic and a cubic integral of motion are studied by Tsiganov.31,32

V. CLASSES OF SUPERINTEGRABLE SYSTEMS ON A TWO-DIMENSIONAL MANIFOLD
ITH QUADRATIC INTEGRALS OF MOTION

The main result of the preceding section is that the definition of the Casimir of the Poisson
lgebra, given by Eq. �25� determines uniquely the Poisson algebra. This Poisson algebra is
pecific for each superintegrable system, therefore it can be used for the classification of the
ossible superintegrable systems. Usually the proposed classifications of superintegrable systems
ssumed the definition of the manifold metric and the superintegrable systems were fixed for the

iven metric. In this paper we propose a classification which is based on the Poisson algebra. Let
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s consider a superintegrable system, which is described by a Hamiltonian H and two integrals of
otion A and B. The integrability of the system imposes several choices which are determined by

wo Classes I and II of integrable systems, as it has been shown in Sec. II. These classes of
uperintegrable systems are the following.

Class I: This class contains superintegrable systems, whose manifold metric and integrals of
otion are written in a specific coordinate,

ds2 = g��,��d�d�, g��,�� = F�� + �� + G�� − �� , �26�

H =
p�p�

F�� + �� + G�� − ��
+

f�� + �� + g�� − ��
F�� + �� + G�� − ��

, �27�

nd

A = p�
2 + p�

2 − 2p�p�

F�� + �� − G�� − ��
F�� + �� + G�� − ��

+ 4
f�� + ��G�� − �� − g�� − ��F�� + ��

F�� + �� + G�� − ��
. �28�

he second integral of motion has the general form

B = A���p�
2 + B���p�

2 − 2p�p�

���,��
F�� + �� + G�� − ��

+ Q��,�� , �29�

here A��� and B��� are not zero.
Class II: This class contains superintegrable systems, whose manifold metric and integrals of

otion are written in a specific coordinate,

ds2 = g��,��d�d�, g��,�� = F���� + G��� , �30�

H =
p�p�

F���� + G���
+

f���� + g���
F���� + G���

, �31�

nd

A = p�
2 − 2p�p�

	 F���d�

F���� + G���
− 2

�f���� + g���� 	 F���d�

F���� + G���
+ 2	 f���d� . �32�

he second integral of motion has the general form

B = A���p�
2 + B���p�

2 − 2p�p�

���,��
F���� + G���

+ Q��,�� , �33�

here A��� and B��� are not zero. The existence of a second integral of motion B implies that
here is another Liouville coordinate system �X ,Y� corresponding to the pair of integrals H and B.
n this system there are analytic formulas for the second integral of motion. The analytic calcu-
ation of these formulas will be given in the following sections.

The Class I superintegrable system is described by the integrals of motion which are given by
qs. �26�–�29�. Correspondingly, the Class II superintegrable system is described by the integrals
f motion which are given by Eqs. �30�–�33�. These integrals of motion should satisfy the relation
25�, which is an identity relation between polynomials of sixth degree for the momenta. The
oefficients of p�

6 and p�
6 in �25� vanish and the following identities are true:

6�A�����2 = 3�A2��� + 3�A��� − a ,

�34�
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6�B�����2 = 3�B2��� + 3�B��� − a .

n Eq. �29�, the coefficients of p�
2 and p�

2 in the integral B are determined by the solution of the
bove equations �34�.

The superintegrable systems on a manifold can be classified by the possible solutions of Eqs.
34�. The integral of motion A has a standard form, given by Eq. �28�, this form is the Liouville
orm and the coefficients of px

2 and py
2 are equal to 1. The second integral of motion B can be

eplaced by any combination of the form

B → qB + rH + sA ,

here q ,r ,s are arbitrary constants. From this fact we can show that there are six subclasses of
ossible solutions of Eq. �34�.

Subclass I1: This class corresponds to

� = 0, � = 0, a � 0

f we choose a=−6, then

A��� = �, B��� = � .

Subclass I2: This class corresponds to

� = 0, � � 0, a = 0

f we choose �=8, then

A��� = �2, B��� = �2.

Subclass I3: This class corresponds to

� � 0, � = 0, a � 0

f we choose �=2, then we can show that all cases are equivalent to the choice

A��� = �e� + e−��2, B��� = �e� + e−��2.

Subclass II1: This class corresponds to

� = 0, � = 0, a = 0

hen

A��� = 1, B��� = 1.

Subclass II2: This class corresponds to

� = 0, � = 0, a � 0

f we choose a=−6, then

A��� = �, B��� = � .

Subclass II3: This class corresponds to

� = 0, � � 0, a = 0

f we choose �=8, then we can show that

A��� = �2, B��� = �2.
hese classes of solutions will be studied in detail in Sec. V.
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. Class I superintegrable systems

Starting from the definition of functions A��� and B��� we can solve Eqs. �6�–�10� and the
uperintegrable system is fully determined. This procedure will be sketched in detail in the next
aragraphs.

Let us start by the known solutions A���, B��� of Eq. �34�.
Equation �8� is written

�A���� − B������F�� + �� + G�� − ��� + 3A�����F��� + �� + G��� − ��� − 3B�����F��� + ��

− G��� − ��� + 2�A��� − B�����F��� + �� + G��� − ��� = 0. �35�

n the next paragraphs we will show that, the above equation can be separated in two second order
ifferential equations for the involved functions F�u� and G�v�. The general solution of these
quations are given by

F�u� = �1F1�u� + �2F2�u� + �3F3�u� + �4F4�u� ,

�36�
G�v� = �1G1�v� + �2G2�v� + �3G3�v� + �4G4�v� ,

here Fk�u� and Gk�u� are functions which are not generally partial independent solutions of two
econd order differential equation �8�. Between the eight parameters �k and �k for k=1,2 ,3 ,4 only
our among them are independent.

After the calculation of the functions F�u� and G�v� we can calculate the function ��x ,y� from
q. �6�. The general form of the potential V�� ,�� is given by Eq. �13�.

After some elementary �but rather lengthy� algebraic calculation we can show that Eq. �10�
eads to a differential equation for the functions f�u� and g�v� which are involved in the definition
13� of the potential,

f�� + ���− 3B�����F��� + �� − G��� − ��� + 3A�����F��� + �� + G��� − ��� + 2�A��� − B�����F���

+ �� + G��� − ���� + g�� − ���− 3B�����F��� + �� − G��� − ��� + 3A�����F��� + �� + G���

− ��� + 2�A��� − B�����F��� + �� + G��� − ���� − �F�� + �� + G�� − ����− 3B�����f��� + ��

− g��� − ��� + 3A�����f��� + �� + g��� − ��� + 2�A��� − B�����f��� + �� + g��� − ���� = 0.

e can eliminate in the above equation the functions F�u� and G�v� which satisfy Eq. �35� and
nally the functions involved in the definition of the potential satisfy the following equation:

�A���� − B������f�� + �� + g�� − ��� + 3A�����g��� + �� + g��� − ��� − 3B�����g��� + ��

− g��� − ��� + 2�A��� − B�����f��� + �� + g��� − ��� = 0. �37�

his equation is indeed the same as �35� and the general solution has been given by Eq. �36�. Then
e have proved the following general proposition.

Proposition 1: The general form of the potential V�� ,�� in Liouville coordinates for a super-
ntegrable system of Class I is given by the general formula:

V��,�� =
f�� + �� + g�� − ��

F�� + �� + G�� − ��
,

here both pairs of functions f�u�, g�v� and F�u�, G�v� satisfy the same differential equations (35)
nd (37).

Therefore the solutions of Eq. �37� are given by

f�u� = �1F1�u� + �2F2�u� + �3F3�u� + �4F4�u� ,

�38�
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g�v� = r1G1�v� + r2G2�v� + r3G3�v� + r4G4�v� .

he equations of motion do not depend on the shifts of the potential by one constant. This fact
xplains physically the identity of differential equations �35� and �37�.

The calculation of the second integral of motion B is now straightforward. If the functions
�x� and B�y� are fixed as solutions of the characteristic equations �34� then we can introduce the
ew coordinates,

X =	 dx

A�x�

and Y =	 dy

B�y�

. �39�

n these coordinates the metric of the manifold can be written

ds2 = g�x,y�dx dy = g̃�X,Y�dX dY , �40�

here

g̃�X,Y� = g�x,y�
A�x�B�y�

nd

H =
pxpy

g�x,y�
+ V�x,y� =

pXpY

g̃�X,Y�
+ Ṽ�X,Y� .

he integrability of the above Hamiltonian implies

g̃�X,Y� = F̃�X + Y� + G̃�X − Y� . �41�

he above relation implies

g̃�U + V

2
,
U − V

2
� = F̃�U� + G̃�V� ,

g̃�U + d

2
,
U − d

2
� = F̃�U� + G̃�d� ,

g̃� c + V

2
,
c − V

2
� = F̃�c� + G̃�V� ,

g̃� c + d

2
,
c − d

2
� = F̃�c� + G̃�d� ,

here c and d are two arbitrary constants. Therefore the functions F̃�U� and G̃�V� are calculated
p to one constant by

F̃�U� = g̃�U + d

2
,
U − d

2
� −

1

2
g̃� c + d

2
,
c − d

2
� +  ,

�42�

G̃�V� = g̃� c + V

2
,
c − V

2
� −

1

2
g̃� c + d

2
,
c − d

2
� −  ,
here  can be an arbitrary chosen constant. Starting from the well-known form of the potential
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V�x,y� =
w�x,y�
g�x,y�

, w�x,y� = f�x + y� + g�x − y�

e can show that

V�x,y� = Ṽ�X,Y� =
w̃�X,Y�
g̃�X,Y�

,

�43�
w̃�X,Y� = f̃�X + Y� + g̃�X − Y� = w�x,y�
A�x�B�y� .

he functions f̃�U� and g̃�V� are calculated by

f̃�U� = w̃�U + d

2
,
U − d

2
� −

1

2
w̃� c + d

2
,
c − d

2
� ,

g̃�V� = w̃� c + V

2
,
c − V

2
� −

1

2
w̃� c + d

2
,
c − d

2
� .

hen the second integral of motion in the coordinates X ,Y is

B = pX
2 + pY

2 − 2pXpY
F̃�X + Y� − G̃�X − Y�

F̃�X + Y� + G̃�X − Y�
+ 4

f̃�X + Y�G̃�X − Y� − g̃�X − Y�F̃�X + Y�

F̃�X + Y� + G̃�X − Y�
. �44�

fter calculating the above integral in the coordinates X ,Y, we can compute analytically the
econd integral B in the original coordinates x ,y.

. Class II superintegrable systems

Equation �8� is written

�A��x� − B��y���F�y�x + G�y�� + 3A��x�F�y� − 3B��y��F��y�x + G��y��

+ 2�A�x� − B�y���F��y�x + G��y�� = 0. �45�

he general solutions of Eq. �45� are given by

F�y� = �1F1�y� + �2F2�y� + �3F3�y� + �4F4�y� ,

�46�
G�y� = �1G1�y� + �2G2�y� + �3G3�y� + �4G4�y� ,

here Fk�y� and Gk�y� are partial independent solutions of two second order differential equations
ith several constant parameters. Between the eight parameters �k and �k for k=1,2 ,3 ,4 only

our among them are linearly independent.
After the calculation of the functions F�y� and G�y� we can calculate the function ��x ,y� from

q. �17�. The general form of the potential V�x ,y� is given by Eq. �18�. After some elementary
but rather complicated� algebraic calculation we can show that, Eq. �19� leads to a differential
quation for the functions f�y� and g�y�, which are involved in the definition �13� of the potential,

�A��x� − B��y���f�y�x + g�y�� + 3A��x�f�y� − 3B��y��f��y�x + g��y��

+ 2�A�x� − B�y���f��y�x + g��y�� = 0. �47�

hen we have proved the following general proposition.
Proposition 2: The general form of the potential V�� ,�� in Liouville coordinates for a super-
ntegrable system of Class II is given by the general formula
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V��,�� =
f���� + g���

F���� + G���
,

here both the pairs of functions f�u�, g�v� and F�u�, G�v� satisfy the same differential equations
45) and (47).

Therefore the solutions of Eq. �47� are given by

f�y� = �1F1�y� + �2F2�y� + �3F3�y� + �4F4�y� ,

�48�
g�y� = r1G1�y� + r2G2�y� + r3G3�y� + r4G4�y� .

he equations of motion do not depend on the shifts of the potential by one constant. This fact
xplains physically the identity of differential equations �35� �or �45�� and �37� �or �47��.

The calculation of the second integral of motion B is now straightforward and we can use the
ame procedure of solution as it has been described by Eqs. �39�–�44�.

. CLASSIFICATION OF TWO-DIMENSIONAL SUPERINTEGRABLE SYSTEMS
ITH TWO QUADRATIC INTEGRALS OF MOTION

In this section we give the analytical solutions for the different classes of superintegrable
ystems. As we have shown there are two general classes of superintegrable systems, each class
as three subclasses.

. Class I superintegrable systems

. Subclass I1 of superintegrable systems

We have

A��� = �, B��� = � ,

F�u� = 4�u2 + �u + �/2, G�v� = − �v2 + /v2 + �/2,

f�u� = 4�u2 + ku + n/2, g�v� = − �v2 + m/v2 + n/2

ds2 = �F�� + �� + G�� − ���d� d�, H =
p�p� + f�� + �� + g�� − ��

F�� + �� + G�� − ��
. �49�

he other integral of motion is

A = p�
2 + p�

2 − 2p�p�

F�� + �� − G�� − ��
F�� + �� + G�� − ��

+ 4
f�� + ��G�� − �� − g�� − ��F�� + ��

F�� + �� + G�� − ��
.

e introduce the functions

F̃�u� =
�u6

256
+

�u4

128
+

�u2

16
−



u2 ,

G̃�v� = −
�v6

256
−

�v4

128
−

�v2

16
+



v2 ,

�50�

f̃�u� =
lu6

+
ku4

+
nu2

−
m

2 ,

256 128 16 u
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g̃�v� = −
lv6

256
−

kv4

128
−

nv2

16
+

m

v2 .

he second integral of motion is

B = pX
2 + pY

2 − 2pXpY
F̃�X + Y� − G̃�X − Y�

F̃�X + Y� + G̃�X − Y�
+ 4

f̃�X + Y�G̃�X − Y� − g̃�X − Y�F̃�X + Y�

F̃�X + Y� + G̃�X − Y�
,

here

X = 2
�, pX = 
�p�, Y = 2
�, pY = 
�p�.

he constants of the Poisson algebra are

� = 0, � = 0, � = 0, � = 16��H − k�, 	 = 256��H − �� ,


 = − 32��H − k���H − n�, a = − 6, d = 8��H − n� ,

z = 8��H − n�2 − 128��H − ���H − m� ,

K = 32��H − n�3 + 512��H − ���H − m���H − n� − 64��H − k�2�H − m� .

. Subclass I2 of superintegrable systems

We have

A��� = �2, B��� = �2,

F�u� = �u2 +
�

u2 +
�

2
, G�v� = − �v2 +



v2 +
�

2
,

f�u� = �u2 +
k

u2 +
n

2
, g�v� = − �v2 +

m

v2 +
n

2
,

ds2 = �F�� + �� + G�� − ���d� d�, H =
p�p� + f�� + �� + g�� − ��

F�� + �� + G�� − ��
. �51�

he other integral of motion is

A = p�
2 + p�

2 − 2p�p�

F�� + �� − G�� − ��
F�� + �� + G�� − ��

+ 4
f�� + ��G�� − �� − g�� − ��F�� + ��

F�� + �� + G�� − ��
.

e introduce the functions

F̃�u� = 4�e2u + �eu, G̃�v� =
�ev

�1 + ev�2 +
ev

�− 1 + ev�2 ,

�52�

f̃�u� = 4�e2u + neu, g̃�v� =
kev

�1 + ev�2 +
mev

�− 1 + ev�2 .
he second integral of motion is
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B = pX
2 + pY

2 − 2pXpY
F̃�X + Y� − G̃�X − Y�

F̃�X + Y� + G̃�X − Y�
+ 4

f̃�X + Y�G̃�X − Y� − g̃�X − Y�F̃�X + Y�

F̃�X + Y� + G̃�X − Y�
,

here

X = ln �, pX = �p�, Y = ln �, pY = �p�.

he constants of the Poisson algebra are

� = 8, � = 0, � = 0, � = 0, 	 = 256��H − �� ,


 = − 32��H − n�2 + 256��H − ���� − ��H − �m − k�� ,

a = 0, d = 0, z = 32��� + �H − �k + m����H − n� ,

K = 256��H − ����� + �H − �k + m��2 + 128��� − �H − �k − m����H − n�2.

. Subclass I3 of superintegrable systems

We have

A��� = �e� + e−��2, B��� = �e� + e−��2,

F�u� =
�e2u

�− 1 + e2u�2 +
�eu�1 + e2u�
�− 1 + e2u�2 , G�v� =

e2v

�− 1 + e2v�2 +
�ev�1 + e2v�
�− 1 + e2v�2 ,

�53�

f�u� =
ke2u

�− 1 + e2u�2 +
�eu�1 + e2u�
�− 1 + e2u�2 , g�v� =

me2v

�− 1 + e2v�2 +
nev�1 + e2v�
�− 1 + e2v�2 ,

ds2 = �F�� + �� + G�� − ���d� d�, H =
p�p� + f�� + �� + g�� − ��

F�� + �� + G�� − ��
.

he other integral of motion is

A = p�
2 + p�

2 − 2p�p�

F�� + �� − G�� − ��
F�� + �� + G�� − ��

+ 4
f�� + ��G�� − �� − g�� − ��F�� + ��

F�� + �� + G�� − ��
.

e introduce the functions

F̃�u� =
�� + 2��

4
tan2 u +

2� − 

4
cot2 u +

� + �

2
,

G̃�v� =
�2� − ��

4
tan2 v +

 + 2�

4
cot2 v +

� + �

2
,

�54�

f̃�u� =
�k + 2��

tan2 u +
2n − m

cot2 u +
� + n

,

4 4 2
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g̃�v� =
�2� − k�

4
tan2 v +

m + 2n

4
cot2 v +

� + n

2
.

he second integral of motion is

B = pX
2 + pY

2 − 2pXpY
F̃�X + Y� − G̃�X − Y�

F̃�X + Y� + G̃�X − Y�
+ 4

f̃�X + Y�G̃�X − Y� − g̃�X − Y�F̃�X + Y�

F̃�X + Y� + G̃�X − Y�
,

here

X = arctan�e��, pX = �e� + e−��p�, Y = arctan�e��, pY = �e� + e−��p�.

The constants of the Poisson algebra are

� = − 32, � = 0, � = 8, � = 0, 	 = 0, 
 = − 32��H − ����H − n� ,

a = 0, d = 64�k − m� − 64�� − �H ,

z = 32��� − ��H − �� − n��2 − 32���H − k��H − m�� ,

K = 64��H − k���H − n�2 − 64��H − ��2�H − m� .

. Class II superintegrable systems

. Subclass II1 of superintegrable systems

We have

A��� = 1, B��� = 1,

F��� = �� + �, G��� = � + � ,

f��� = k� + �, g��� = m� + n ,

ds2 = g��,��d� d�, g��,�� = �F��� + G��� ,

H =
p�p�

g��,��
+ V��,��, V��,�� =

w��,��
g��,��

, w��,�� = �f��� + g��� . �55�

he other integral of motion is

A = p�
2 −

2p�p�	 F���d�

g��,��
−

2��f��� + g���� 	 F���d�

g��,��
+ 2	 f���d� .

e introduce the functions

F̃�u� =
�u2

+
�� + �u

+
�

,

4 2 2
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G̃�v� = −
�v2

4
+

�� − �v
2

+
�

2
,

�56�

f̃�u� =
ku2

4
+

�� + m�u
2

+
n

2
,

g̃�v� = −
kv2

4
+

�� − m�v
2

+
n

2
.

he second integral of motion is

B = p�
2 + p�

2 − 2p�p�

F̃�� + �� − G̃�� − ��

F̃�� + �� + G̃�� − ��
+ 4

f̃�� + ��G̃�� − �� − g̃�� − ��F̃�� + ��

F̃�� + �� + G̃�� − ��
.

he constants of the Poisson algebra are

� = 0, � = 0, � = 0, � = 8�k − �H�, 	 = 0, 
 = 8��H − ��2,

a = 0, d = 16�k − �H�, z = 8��H − ��2 − �H − m�2,

K = 16��H − n�2��H − k� − 32��H − ���H − m���H − n� .

. Subclass II2 of superintegrable systems

We have

A��� = �, B��� = � ,

F��� =
�


�
+ �, G��� = 3�
� + �� +




�
+ � ,

f��� =
k


�
+ �, g��� = 3k
� + �� +

m

�

+ n ,

ds2 = g��,��d� d�, g��,�� = �F��� + G��� ,

H =
p�p�

g��,��
+ V��,��, V��,�� =

w��,��
g��,��

, w��,�� = �f��� + g��� . �57�

he other integral of motion is

A = p�
2 −

2p�p�	 F���d�

g��,��
−

2��f��� + g���� 	 F���d�

g��,��
+ 2	 f���d� .

e introduce the functions

F̃�u� =
�u4

+
�u3

+
�u2

+
u

,

128 16 16 4
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G̃�v� = −
�v4

128
+

�v3

16
+

v
4

−
�v2

16
,

�58�

f̃�u� =
�u4

128
+

ku3

16
+

nu2

16
+

mu

4
,

g̃�v� = −
�v4

128
+

kv3

16
+

mv
4

−
nv2

16
.

he second integral of motion is

B = pX
2 + pY

2 − 2pXpY
F̃�X + Y� − G̃�X − Y�

F̃�X + Y� + G̃�X − Y�
+ 4

f̃�X + Y�G̃�X − Y� − g̃�X − Y�F̃�X + Y�

F̃�X + Y� + G̃�X − Y�
,

here

X = 2
�, pX = 
�p�, Y = 2
�, pY = 
�p�.

The constants of the Poisson algebra are

� = 0, � = 0, � = 0, � = 4�� − �H�, 	 = 0, 
 = 8��H − k�2,

a = − 6, d = 8��H − n�, z = − 8��H − k��H − m� − 2��H − n�2,

K = 8��H − ���H − m�2 − 16��H − k��H − m���H − n� .

. Subclass II3 of superintegrable systems

We have

A��� = �2, B��� = �2,

F��� = �� +
�

�3 , G��� = � +


�2 ,

f��� = �� +
k

�3 , g��� = n +
m

�2 ,

ds2 = g��,��d� d�, g��,�� = �F��� + G��� ,

H =
p�p�

g��,��
+ V��,��, V��,�� =

w��,��
g��,��

, w��,�� = �f��� + g��� . �59�

he other integral of motion is

A = p�
2 −

2p�p�	 F���d�

g��,��
−

2��f��� + g���� 	 F���d�

g��,��
+ 2	 f���d� .
e introduce the functions
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F̃�u� = �e2u + �eu, G̃�v� = �e2v + ev,

�60�
f̃�u� = �e2u + neu, g̃�v� = ke2v + mev.

he second integral of motion is

B = pX
2 + pY

2 − 2pXpY
F̃�X + Y� − G̃�X − Y�

F̃�X + Y� + G̃�X − Y�
+ 4

f̃�X + Y�G̃�X − Y� − g̃�X − Y�F̃�X + Y�

F̃�X + Y� + G̃�X − Y�
,

here

X = ln �, pX = �p�, Y = ln �, pY = �p�.

he constants of the Poisson algebra are

� = 8, � = 0, � = 0, � = 0, 	 = 0, 
 = 32��H − k���H − �� ,

a = 0, d = 0, z = 32�H − m���H − n� ,

K = 64��H − ���H − m�2 − 64��H − k���H − n�2.

All the above superintegrable systems generally are defined on manifolds which have neither
onstant curvature nor are they surfaces of revolution. All the known superintegrable systems are
efined on manifolds of constant curvature or on surfaces of revolution. Therefore we have proved
hat there are new superintegrable systems, which have not yet been studied.

I. SUPERINTEGRABLE SYSTEMS CORRESPONDING TO KOENIGS ESSENTIAL
ORMS

Class I1: Using the coordinate transformation

� =
1

2
x2, p� =

px

x
, � =

1

2
y2, p� =

py

y
,

he metric of the Class I2 superintegrable systems is reduced to the metric of the essential form
II.4 �Ref. 1, Vol. IV, p. 385�, if

� = 16A2, � = 16A3,  = − A0, � = 4A1.

he corresponding superintegrable system �using the coordinates of Ref. 1� is given by the Hamil-
onian,

H =
pxpy + w�x,y�

g�x,y�
,

g�x,y� = A0� 1

�x + y�2 −
1

�x − y�2� + A1��x + y�2 − �x − y�2� + A2��x + y�4 − �x − y�4�

+ A3��x + y�6 − �x − y�6� ,

w�x,y� = a0� 1

�x + y�2 −
1

�x − y�2� + a1��x + y�2 − �x − y�2� + a2��x + y�4 − �x − y�4�

+ a3��x + y�6 − �x − y�6� ,
here only three of the constants a0, a1, a2, a3 are independent, i.e., we can set one among them
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qual to zero. Using relations �50� we have that in x ,y coordinates the other integral of motion is

A�x,y� =
1

2
px

2 +
1

2
py

2 − pxpy
�̃�x,y� − �̃�x,y�

�̃�x,y� + �̃�x,y�
+ 2

�̃�x,y��̃�x,y� − �̃�x,y��̃�x,y�

�̃�x,y� + �̃�x,y�
,

here

�̃�x,y� = A0
1

�x + y�2 + A1�x + y�2 + A2�x + y�4 + A3�x + y�6,

�̃�x,y� = − A0
1

�x − y�2 − A1�x − y�2 − A2�x − y�4 − A3�x − y�6,

�̃�x,y� = a0
1

�x + y�2 + a1�x + y�2 + a2�x + y�4 + a3�x + y�6,

�̃�x,y� = − a0
1

�x − y�2 − a1�x − y�2 − a2�x − y�4 − a3�x − y�6,

hile using relations �49� we have that in x ,y coordinates the second integral of motion is

B�x,y� =
1

x2 px
2 +

1

y2 py
2 − 2

pxpy

xy

��x,y� − ��x,y�
��x,y� + ��x,y�

+ 4
��x,y���x,y� − ��x,y���x,y�

xy��x,y� + ��x,y�
,

here

��x,y� = 1
2A1��x + y�2 − �x − y�2� + A2��x + y�4 − �x − y�4� + A3���x + y�6 − �x − y�6�

+ �x + y�4�x − y�2 − �x + y�2�x − y�4� ,

��x,y� = A0� 1

�x + y�2 −
1

�x − y�2� +
1

2
A1��x + y�2 − �x − y�2� − A3��x + y�4�x − y�2

− �x + y�2�x − y�4� ,

��x,y� =
1

2
a1��x + y�2 − �x − y�2� + a2��x + y�4 − �x − y�4� + a3���x + y�6 − �x − y�6�

+ �x + y�4�x − y�2 − �x + y�2�x − y�4� ,

��x,y� = a0� 1

�x + y�2 −
1

�x − y�2� +
1

2
a1��x + y�2 − �x − y�2� − a3��x + y�4�x − y�2 − �x + y�2�x − y�4� .

Class I2: Using the coordinate transformation

� = − 1
2 cos�2x�, p� =

px

sin�2x�
, � = − 1

2 cos�2y�, p� =
py

sin�2y�
,

he metric of the Class I2 superintegrable systems is reduced to the metric of the essential form

II.4 �Ref. 1, Vol. IV, p. 385�, if
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� = A1, � = − 8A3,  = − A0, � = − 2A2.

he corresponding superintegrable system �using the coordinates of Ref. 1� is given by the Hamil-
onian,

H =
pxpy + w�x,y�

g�x,y�
,

here

g�x,y� = A0� 1

sin2�x + y�
−

1

sin2�x − y�� + A1� 1

cos2�x + y�
−

1

cos2�x − y��
+ A2�cos 2�x + y� − cos 2�x − y�� + A3�cos 4�x + y� − cos 4�x − y�� ,

w�x,y� = a0� 1

sin2�x + y�
−

1

sin2�x − y�� + a1� 1

cos2�x + y�
−

1

cos2�x − y��
+ a2�cos 2�x + y� − cos 2�x − y�� + a3�cos 4�x + y� − cos 4�x − y�� ,

here only three of the constants a0, a1, a2, a3 are independent, i.e., we can set one among them
qual to zero. Using Relations �52� we have that in x ,y coordinates the other integral of motion is

A�x,y� =
1

4
cot2�2x�px

2 +
1

4
cot2�2y�py

2 −
pxpy

2 tan�2x�tan�2y�
�̃�x,y� − �̃�x,y�

�̃�x,y� + �̃�x,y�

+
1

tan�2x�tan�2y�
�̃�x,y��̃�x,y� − �̃�x,y��̃�x,y�

�̃�x,y� + �̃�x,y�
,

here

�̃�x,y� = A2�cos 2�x + y� − cos 2�x − y�� + A3�cos 4�x + y� − cos 4�x − y�� ,

�̃�x,y� = A0� 1

sin2�x + y�
−

1

sin2�x − y�� + A1� 1

cos2�x + y�
−

1

cos2�x − y�� ,

�̃�x,y� = a2�cos 2�x + y� − cos 2�x − y�� + a3�cos 4�x + y� − cos 4�x − y�� ,

�̃�x,y� = a0� 1

sin2�x + y�
−

1

sin2�x − y�� + a1� 1

cos2�x + y�
−

1

cos2�x − y��
hile using relations �51� we have that in x, y coordinates the second integral of motion is

B�x,y� =
1

sin2�2x�
px

2 +
1

sin2�2y�
py

2 − 2
pxpy

2 sin�2x�sin�2y�
��x,y� − ��x,y�
��x,y� + ��x,y�

+ 4
1

sin�2x�sin�2y�
��x,y���x,y� − ��x,y���x,y�

��x,y� + ��x,y�
,

here

��x,y� = A1� 1

cos2�x + y�
−

1

cos2�x − y�� +
1

2
A2�cos 2�x + y� − cos 2�x − y��

2 2
+ 4A3 cos �x + y�cos �x − y��cos 2�x + y� − cos 2�x − y�� ,
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��x,y� = A0� 1

sin2�x + y�
−

1

sin2�x − y�� +
1

2
A2�cos 2�x + y� − cos 2�x − y��

− 4A3 sin2�x + y�sin2�x − y��cos 2�x + y� − cos 2�x − y�� ,

��x,y� = a1� 1

cos2�x + y�
−

1

cos2�x − y�� +
1

2
a2�cos 2�x + y� − cos 2�x − y��

+ 4a3 cos2�x + y�cos2�x − y��cos 2�x + y� − cos 2�x − y�� ,

��x,y� = a0� 1

sin2�x + y�
−

1

sin2�x − y�� +
1

2
a2�cos 2�x + y� − cos 2�x − y��

− 4a3 sin2�x + y�sin2�x − y��cos 2�x + y� − cos 2�x − y�� .

Class I3: Using the coordinate transformation,

� = ln�
��x� − ���1�

�
− 1

��x� − ���1�
�

+ 1� +
1

2
ln�

���1� − ���2�
�

− 1

���1� − ���2�
�

+ 1�, p� =
��2x� − ���1�

2�
px,

� = ln�
��y� − ���1�

�
− 1

��xy� − ���1�
�

+ 1� +
1

2
ln�

���1� − ���2�
�

− 1

���1� − ���2�
�

+ 1�, p� =
��2y� − ���1�

2�
py ,

here

�2 = ����1� − ���2������1� − ���3�� ,

he metric of the Class I3 superintegrable systems is reduced to the metric of the essential form
II.1 �Ref. 1, Vol. IV, p. 385� if

� = 2�A2 + A3�, � = A2 − A3,  = − 2�A0 + A1�, � = − A0 + A1.

he corresponding superintegrable system �using the coordinates of Ref. 1� is given by the Hamil-
onian,

H =
pxpy + w�x,y�

g�x,y�
,

here

g�x,y� = A0���x + y� − ��x − y�� + A1���x + y + �1� − ��x − y + �1��

+ A2���x + y + �2� − ��x − y + �2�� + A3���x + y + �3� − ��x − y + �3�� ,

w�x,y� = a0���x + y� − ��x − y�� + a1���x + y + �1� − ��x − y + �1��

+ a2���x + y + �2� − ��x − y + �2�� + a3���x + y + �3� − ��x − y + �3�� ,

here only three of the constants a0, a1, a2, a3 are independent, i.e., we can set one among them

qual to zero. Using relations �53� we have that in x, y coordinates the other integral of motion is
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A�x,y� =
1

4�2 ���2x� − ���1��px
2 +

1

4�2 ���2y� − ���1��py
2

−

��2x� − ���1�
��2y� − ���1�pxpy

2�2

��x,y� − ��x,y�
��x,y� + ��x,y�

+

��2x� − ���1�
��2y� − ���1�

�2

��x,y���x,y� − ��x,y���x,y�
��x,y� + ��x,y�

,

here

��x,y� = A2���x + y + �2� − ��x − y + �2�� + A3���x + y + �3� − ��x − y + �3�� ,

��x,y� = A0���x + y� − ��x − y�� + A1���x + y + �1� − ��x − y + �1�� ,

��x,y� = a2���x + y + �2� − ��x − y + �2�� + a3���x + y + �3� − ��x − y + �3�� ,

��x,y� = a0���x + y� − ��x − y�� + a1���x + y + �1� − ��x − y + �1��

hile using relations �54� we have that in x, y coordinates the second integral of motion is

B�x,y� =
1

����3� − ���1������2� − ���3��
���2x� − ���3��px

2

+
1

����3� − ���1������2� − ���3��
���2y� − ���3��py

2

− 2

��2x� − ���3�
��2y� − ���3�pxpy

����3� − ���1������2� − ���3��
�̃�x,y� − �̃�x,y�

�̃�x,y� + �̃�x,y�

+ 4

��2x� − ���3�
��2y� − ���3�
����3� − ���1������2� − ���3��

�̃�x,y��̃�x,y� − �̃�x,y���x,y�

�̃�x,y� + �̃�x,y�
,

here

�̃�x,y� = A1���x + y + �1� − ��x − y + �1�� + A2���x + y + �2� − ��x − y + �2��

−
1

2
�A0 + A1 + A2 + A3�


��2x� − ���3�
��2y� − ���3�
����3� − ���1������2� − ���3��

,

�̃�x,y� = A0���x + y� − ��x − y�� + A3���x + y + �3� − ��x − y + �3��

+
1

2
�A0 + A1 + A2 + A3�


��2x� − ���3�
��2y� − ���3�
����3� − ���1������2� − ���3��

,

�̃�x,y� = a1���x + y + �1� − ��x − y + �1�� + a2���x + y + �2� − ��x − y + �2��

−
1

�a0 + a1 + a2 + a3�

��2x� − ���3�
��2y� − ���3�

,

2 ����3� − ���1������2� − ���3��
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�̃�x,y� = a0���x + y� − ��x − y�� + a3���x + y + �3� − ��x − y + �3��

+
1

2
�a0 + a1 + a2 + a3�


��2x� − ���3�
��2y� − ���3�
����3� − ���1������2� − ���3��

.

lass II1: This case is not covered by Table VII of Koenigs �Ref. 1, Vol. IV, p. 385�. This class
orresponds to the Kress16 equivalence class �0,11� of the nondegenerate superintegrable systems

11, E20 of Ref. 6.
The Hamiltonian is

H =
p�p� + k�� + �� + m� + n

��� + �� + � + �
,

he integrals of motion are

A = p�
2 − 2p�p�

�

2
�2 + ��

��� + �� + � + �
+ 2� k�2

2
+ ��� − 2

��

2
�2 + ����k�� + �� + m� + n�

��� + �� + � + �
,

B = p�
2 + p�

2 − 2p�p�

�

2
��2 + �2� + �� + �

��� + �� + � + �
+ 2� k

2
��2 + �2� + �� + m��

− 2
��

2
��2 + �2� + �� + ���k�� + �� + m� + n�

��� + �� + � + �
.

he case VI6 in Table VI �Ref. 1 Vol. IV, p. 384� of Koenigs studied separately the cases where
=0 and ��0, �==0.

Class II2: Using the coordinate transformation,

� =
1

2
x2, p� =

px

x
, � =

1

2
y2, p� =

py

y
,

he metric of the Class II2 superintegrable systems is reduced to the metric of the essential form
II.5 �Ref. 1 Vol. IV, p. 385� if

� = 2
2A1, � = 16A0,  = 
2A3, � = 4A2.

he corresponding superintegrable system �using the coordinates of Ref. 1� is given by the Hamil-
onian

H =
pxpy + w�x,y�

g�x,y�
,

here

g�x,y� = A0��x + y�4 − �x − y�4� + A1��x + y�3 − �x − y�3� + A2��x + y�2 − �x − y�2�

+ A3��x + y� − �x − y�� ,

w�x,y� = a0��x + y�4 − �x − y�4� + a1��x + y�3 − �x − y�3� + a2��x + y�2 − �x − y�2�

+ a3��x + y� − �x − y�� ,
here only three of the constants a0, a1, a2, a3 are independent, i.e., we can set one among them
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qual to zero. Using relations �58� we have that in x, y coordinates the other integral of motion is

A�x,y� =
1

2
px

2 +
1

2
py

2 − pxpy
�̃�x,y� − �̃�x,y�

�̃�x,y� + �̃�x,y�
+ 2

�̃�x,y��̃�x,y� − �̃�̃�x,y�

�̃�x,y� + �̃�x,y�
,

here

�̃�x,y� = A0�x + y�4 + A1�x + y�3 + A2�x + y�2 + A3�x + y� ,

�̃�x,y� = − A0�x − y�4 − A1�x − y�3 − A2�x − y�2 − A3�x − y� ,

�̃�x,y� = a0�x + y�4 + a1�x + y�3 + a2�x + y�2 + a3�x + y� ,

�̃�x,y� = − a0�x − y�4 − a1�x − y�3 − a2�x − y�2 − a3�x − y� ,

hile using relations �57� we have that in x, y coordinates the second integral of motion is

B�x,y� =
1

sin2�2y�
py

2 − 2
pxpy

g�x,y� 	 ��x�dx − 2
w�x,y�
g�x,y� 	 ��x�dx + 2��x�dx ,

here

��x� = 16A0x + 4A1,��x� = 16a0x + 4a1.

Class II3: Using the coordinate transformation the metric of the Class II3 superintegrable
ystems is reduced to the metric of the essential form VII.3 �Ref. 1, Vol. IV, p. 385�, if

� = 2�A1 + iA0�, � = 2�iA0 − A1�,  = − 1
2 �A3 + iA2�, � = 1

2 �A3 − iA2� ,

here

g�x,y� = A0�sin 4�x + y� − sin 4�x − y�� + A1�cos 4�x + y� − cos 4�x − y��

+ A2�sin 2�x + y� − sin 2�x − y�� + A3�cos 2�x + y� − sin 2�x − y�� ,

w�x,y� = a0�sin 4�x + y� − sin 4�x − y�� + a1�cos 4�x + y� − cos 4�x − y��

+ a2�sin 2�x + y� − sin 2�x − y�� + a3�cos 2�x + y� − sin 2�x − y�� ,

here only three of the constants a0, a1, a2, a3 are independent, i.e., we can set one among them
qual to zero. Using relations �60� we have that in x, y coordinates the other integral of motion is

A�x,y� = −
1

4
px

2 +
1

4
cot2�2y�py

2 +
pxpy

2i tan�2y�
�̃�x,y� − �̃�x,y�

�̃�x,y� + �̃�x,y�

−
1

2i tan�2y�
�̃�x,y��̃�x,y� − �̃�x,y��̃�x,y�

�̃�x,y� + �̃�x,y�
,

here

�̃�x,y� = �A0 + iA1�e4ix sin�4y� + �A2 + iA3�e2ix sin�2y� ,

˜ −4ix −2ix
��x,y� = �A0 − iA1�e sin�4y� + �A2 − iA3�e sin�2y� ,
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�̃�x,y� = �a0 + ia1�e4ix sin�4y� + �a2 + ia3�e2ix sin�2y� ,

�̃�x,y� = �a0 − ia1�e−4ix sin�4y� + �a2 − ia3�e−2ix sin�2y� ,

hile using relations �59� we have that in x, y coordinates the second integral of motion is

B�x,y� =
1

y2 py
2 − 2

pxpy

g�x,y� 	 ��x�dx − 2
w�x,y�
g�x,y� 	 ��x�dx +	 ��x�dx ,

here

��x,y� = − 8A0 cos�4x� + 8A1 sin�4x� ,

��x,y� = − 8a0 cos�4x� + 8a1 sin�4x� .

�Also see Table I.�

II. SUPERINTEGRABLE POTENTIALS ON A SURFACE OF REVOLUTION WITH TWO
UADRATIC INTEGRALS OF MOTION

A manifold which is described by a metric of the form

ds2 = g�x + y�dx dy or ds2 = g�x − y�dx dy

s called a surface of revolution.
The above condition is possible only for a specific choice of the parameters �, �, , and �. In

any cases the superintegrable systems can be calculated by using the general forms which are
tudied in Sec. V. The general forms of these systems by revolution in many instances are given
y the formulas

H =
p�p� + f�� + �� + g�� − ��

F�� + ��
or H =

p�p� + f�� + �� + g�� − ��
G�� − ��

nd

H =
pXpY + f̃�X + Y� + g̃�X − Y�

F̃�X + Y�
or H =

pXpY + f̃�X + Y� + g̃�X − Y�

G̃�X − Y�
.

ut we must notice that the Liouville or the Lie coordinates are not always the appropriate ones
or concluding whether a surface is a surface by revolution. Among the parameters �, �, , and �
he surfaces of revolution are determined by two independent parameters. In Table II these special
alues of the parameters �, �, , and � are shown. We notice the corresponding potentials given

TABLE I. Essential forms of Table VII in Ref. 1 and equivalence classes of Ref. 16.

Class � �  �
Essential

from Ref. 1
Classes

from Ref. 16

I1 16A2 16A3 −A0 4A1 VII.4 �3, 2�
I2 A1 −8A3 −A0 −2A2 VII.2 �21, 2�
I3 2�A2+A3� A2−A3 −2�A0+A1� −A0+A1 VII.1 �111, 1�
II1 �0, 11�
II2 2
2A1 16A0


2A3 4A2 VII.5 �3, 11�
II3 2�A1+ iA0� 2�iA0−A1� − 1

2 �A3+ iA2� 1
2 �A3− iA2� VII.3 �21, 0�
n Refs. 13 and 12. This classification scheme shows that there is the case R11 which is not given
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n the above references and it is a new not known superintegrable system. A detailed description
f the superintegrable systems R1 R11.

R1: Class I1 �=0, �=0: The form of the Hamiltonian in Liouville coordinates is given by

H =
p�p�

� +


�� − ��2

+

k�� + �� + 4��� + ��2 − ��� − ��2 +
m

�� − ��2 + n

� +


�� − ��2

.

y the coordinate transformation

� =
v + iu

2
, � =

v − iu

2
, p� = pv − ipu, p� = pv + ipu

nd setting =−1, �=1, the Hamiltonian 2�A� of Ref. 13 is obtained

H =
u2

u2 + 1
�pu

2 + pv
2 + kv + 4��1

4
u2 + v2� −

m + n

u2 � + n .

R11: Class II2 �=0, =0: The form of the Hamiltonian in Liouville coordinates is given by

H =
p�p�

��� + �� + �
+

n +
m + �
��� + �� + k�3� + ��


�

��� + �� + �

TABLE II. Potentials by revolution with two quadratic integrals of motion, �u ,v� and �� ,�� are the coordi-
nates, used Ref. 13.

Class � �  �
Potentials

from Ref. 13
Potentials

from Ref. 12 � �

R1 I1 0 0 2�A� 1
2 �v+ iu� 1

2 �v− iu�
R2 0 0 �1� u+ iv u− iv

R3 I2 0 0 2�B� 1
2 �v+ iu� 1

2 �v− iu�
R4 0 0 3�B� 1

2 �u+ iv� 1
2 �u− iv�

R5 0 0 4�A� 1
2 �x− iy� 1

2 �x+ iy�
R6 − 0 2�C� u+ iv u− iv

R7 I3 0 0 4�B� v+ iu v− iu

R8 − � 4�C� arcsinh�tan��− i��� arcsinh�tan��+ i���
R9 II1 0  �2� u+ iv u− iv

R10 0 0 3�A� u+ iv u− iv

R11 II2 0 0 new u+ iv u− iv

R12 II3 −� −� 3�D� 2
uv i
u

v

R13 − 0 0 3�C�
v − u


uv

2

uv
y the coordinate transformation
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� = u + iv, � = u − iv, p� = 1
2 �pu − ipv�, p� = 1

2 �pu + ipv�

nd setting �= 1
2 , �=0, we have

H =
pu

2 + pv
2

4u
+

m + �n + 2�u�
u − iv + k�4u − 2iv�

u
u − iv
.

or this Hamiltonian the additional integrals of motion have the form

A = −
i

2
X1 −

K2

2
−

2
u − iv�m

2
+

n
u − iv
2

− ikv�
u

,

B = X2 −

2v�m�iu +
v
2
� + v�n
u − iv

2
− ikv��

u
u − iv
,

here K, X1, X2 are the three integrals of the free motion of Ref. 12,

K = pv, X1 = pupv −
v

2u
�pu

2 + pv
2�, and X2 = pv�vpu − upv� −

v2

4u
�pu

2 + pv
2� .

his system was not included in Ref. 12. Therefore it is a new superintegrable system, which is
tudied here for the first time as far as we know.

III. SUPERINTEGRABLE POTENTIALS ON A MANIFOLD WITH CURVATURE ZERO

Let us consider the manifold corresponding to the metric in the Liouville coordinates;

ds2 = g��,��d� d� ,

he curvature is defined by

K = −
1

2g

�2

����
ln g = 0. �61�

The above constraint imposes restrictions on the choice of the parameters �, �, , and �. In
ables III and IV we can see the possible choices of the values of the above parameters.

In this category there are three families of potentials.
The potentials on the complex E plane corresponding to the Hamiltonian,

H = px
2 + py

2 + V�x,y�;

hese potentials are classified in Ref. 5 and finally the final list of potentials are given in Ref. 6. In
his section we follow the enumeration of the potentials given by this exhaustive list.6

The Drach potentials corresponding to the Hamiltonian,

H = pxpy + V�x,y�;

hese potentials are classified in Ref. 8. In this section we follow the enumeration of this reference
or the Drach potentials with quadratic integrals of motion.

The potentials on the real hyperbolic plane H2 corresponding to the Hamiltonian,

H = px
2 − py

2 + V�x,y�;
hese potentials are classified in Ref. 9.
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Generally the condition �61� restricts the choices of the constants �, �, , and � in one
ndependent parameter. These values characterize the permitted metrics in the classification given
n Sec. V.

X. SUPERINTEGRABLE POTENTIALS ON A MANIFOLD WITH CONSTANT CURVATURE

Let us consider the manifold corresponding to the metric in the Liouville coordinates:

ds2 = g��,��d� d� ,

he curvature is defined by

K = −
1

2g

�2

����
ln g = const. �62�

The above constraint imposes restrictions on the choice of the parameters �, �, , and �. In
ables V and VI we can see the possible choices of the values of the above parameters.

. SUPERINTEGRABLE SYSTEMS WITH A LINEAR AND A QUADRATIC INTEGRAL

In the case of a linear integral of motion and a quadratic integral of motion, there is a

TABLE III. Potentials with curvature zero and two quadratic integrals of motion from Ref. 6.

Class � �  �

Plane
potentials

from Ref. 6 � �

F1 I1 0 0 0 E2 x+ iy x− iy

F2 I2 0 0 0 E1 x+ iy x− iy

F3 0 0 0 E16

x + iy

2

x − iy

2

F4 II1 0 0 0 E20


x + 
x2 + y2 + 
x − 
x2 + y2


2


x + 
x2 + y2 − 
x − 
x2 + y2


2

F5 0 0 0 E11 x+ iy 2
x− iy

F6 II2 0 0 0 E9 x+ iy x− iy

F7 0 0 0 E10 x+ iy −
�x − iy�2

2

F8 II3 0 0 E8 x+ iy x− iy

F9 0 0 E7
1
2 �x+ iy�

x − iy − 
�x − iy�2 + 16�

4�

F10 0 0 E17 2
x− iy 2
x+ iy

F11 0 0 E19 2
x+ iy 
x− iy+
�x− iy�2−4
iouville coordinate system where the Hamiltonian and the linear integral of motion are written as

                                                                                                            



TABLE IV.

C

F1

F2

F3

F4

F5

F6

F7
F8

F9

F10
F11
Potentials with curvature zero and two quadratic integrals of motion from Refs. 8 and 9.

lass � �  �

Drach
potentials
�Ref. 8� � � Ref. 9 � �

I1 0 0 0 �a� �r�0�
x

r y V� x+ iy x− iy

I2 0 0 0 �b� �r�0�
x

r y Vb x+ iy x− iy

0 0 0 �g� �r�0� 
x

r

y Vc 
x + iy

2

x − iy

2

II1 0 0 0 �c� 2
x 2
y Vd


x + 
x2 + y2 + 
x − 
x2 + y2


2


x + 
x2 + y2 − 
x − 
x2 + y2


2

0 0 0 �e� �r=0� x 2
y

II2 0 0 0 �e� �r�0�
x

r y

0 0 0 x y2

II3 0 0 �f� x y

0 0 �i� �r�0� y
x + 
x2 + 4�

2�

0 0 �d� 2
y 2
x
0 0 �h� �r�0� 2
y 2
x+
x2−r2
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I = �p� + p��2 or A = �p� − p��2

nd

H =
p�p�

G�� − ��
+

g�� − ��
G�� − ��

or H =
p�p�

F�� + ��
+

f�� + ��
F�� + ��

.

rom the forms of the integral of motion, which are given in Sec. V we can find all the possible
ubclasses corresponding to a linear and quadratic integral of motion in Liouville coordinates. In
ll the above cases we remark that the potential depends on two parameters among the k, �, m, and
. In Table VII we give the possible cases of superintegrable systems with a linear and a quadratic
ntegral of motion.

In Table VIII, the possible superintegrable systems which are defined on a surface of revolu-
ion with a linear and a quadratic integral of motion are listed.

In Table IX, the possible superintegrable systems which are defined on a surface of zero
urvature with a linear and a quadratic integral of motion are listed.

In Table X, the possible superintegrable systems which are defined on a surface of constant

TABLE V. Potentials with constant curvature and two quadratic integrals of motion from Ref. 6. The coordi-
nates �� ,��= �u ,v� are the horospherical coordinates.

Class � �  � Ref. 6 � �

C1 I1 0 0 1/K 0 S1
ei� tan��

2
� − ei� cot��

2
�

C2 I2 −1/K 0 0 0 S2
−

1

2
iei� cot

�

2
−

1

2
iei� tan

�

2

C3 −1/K 0 1/K 0 S4
2
− iei� cos��

2
� 2
iei� tan��

2
�

C4 I3 0 0 4/K 0

C5 0 0 2/K 1/K S9
ln�ei� tan��

2
�� ln�− ei� cot��

2
��

C6 −2/K −1/K 2/K −1/K S7
arcsinh�− iei� cot��

2
�� arcsinh�− iei� tan��

2
��

C7 −4/K 0 4/K 0 S8

1

2
ln� i�− 1 + 
1 + �� + i��2�

� + i�
� 1

2
ln� i�1 + 
1 + �� − i��2�

� − i�
�

urvature with a linear and a quadratic integral of motion are listed.
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I. DISCUSSION

The findings of this paper are summarized as follows:

1� The superintegrable systems with quadratic integrals of motion can be classified in six
subclasses. Each subclass depends on seven parameters. Four among these parameters ��, �,
, and �� determine the metric of the manifold, on which the system is determined. These
parameters are characteristic of the system’s “kinetic” energy. The remaining three param-
eters define the potential �the potential depends on four parameters k, �, m, and n but only
three among them are independent�. For each subclass, the analytic explicit forms of the

ABLE VI. Potentials with constant curvature �K=1� and two quadratic integrals of motion from Ref. 9.

Class � �  � Ref. 9 � �

1 I1 0 0 1/K 0

2 I2 −1/K 0 0 0

3 −1/K 0 1/K 0

4 I3 0 0 4/K 0 Uc
1

2
ln�− iei� cot��

2
�� 1

2
ln�iei� tan��

2
��

5 0 0 2/K 1/K Ua − i�/4 + ln� 1 + iei� tan��

2
�

1 − iei� tan��

2
�� − i�/4 + ln� 1 − iei� cot��

2
�

1 + iei� cot��

2
��

Ub ln�ei� tan��

2
�� ln�− ei� cot��

2
��

6 −2/K −1/K 2/K −1/K Ue arcsinh�− iei� cot��

2
�� arcsinh�− iei� tan��

2
��

7 −4/K 0 4/K 0

ABLE VII. General superintegrable integrable systems with a linear and a quadratic integral of motion.

Class � �  � k � m n

GL1 I1 0 0 0 0

GL2 0 0 0 0

��GL1� I2 0 0 0 0

GL3 0 0 0 0

GL4 0 0 0 0

GL5 I3 0 0 0 0

��GL1� �= �2� = ±2� k= �2� 0 m= ±2n

GL6 II1 0 �= ± 0 �= ±m

GL7 II2 0 0 0 0

��GL3� II3 0 0 0 0
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manifold metric, the potential and the integrals of motion are calculated. Also the constants
of the quadratic Poisson algebra of integrals of motion are given as functions of the energy
and the eight parameters are given.

2� All the known two-dimensional superintegrable systems are systems defined on surfaces of
constant curvature or on surfaces of revolution. All these systems are classified in these six
classes. Each class is characterized by the values of four parameters �, �, , and �, which are
determined by the form of the assumed manifold. If we fix the manifold, let us suppose that
the manifold is a manifold with negative constant curvature, the possible values of the
parameters �, �, , and � are calculated for each subclass. Therefore we can “guess” the
existence of the permitted superintegrable systems and to classify these systems in tables.
Using this technique we can classify all the possible known superintegrable systems and to
investigate the possible missing potentials. With this method a new superintegrable system
was found for the class I superintegrable systems by revolution, given in Ref. 5.

3� Generally for any values of the parameters �, �, , and � the associated manifolds are
neither surfaces of constant curvature nor surfaces of revolution. Therefore we have inves-
tigated superintegrable systems, which are not yet known. We believe that all the possible
superintegrable systems with two quadratic integrals of motion are investigated.

4� The two-dimensional nondegenerate5 superintegrable systems are classified by the values of
the constants of the Darboux equations9,5 and the constants of the system. The relation of
these constants with the constants of the quadratic Poisson algebra is explained.

5� The six classes of superintegrable systems are the equivalence classes of Stäckel equivalent
systems.

From the above discussion several open problems arise.

i� The superintegrable systems for the case of cubic integrals of motion are under
investigation.8,31–36 The general structure of these systems is recently investigated14 but the
general form and their classification is not yet known for manifolds which carry integrable
systems with one third order integral of motion.

ABLE IX. Potentials with curvature zero and with a linear and a quadratic integral of motion.

Class � �  � k � m n
Potentials

from Ref. 6

L1 I1 0 0 0 0 0 E6

L2 0 0 0 0 0 E5

L3 I2 0 0 0 0 0 E3

L4 0 0 0 0 0 E18

L5 II1 0 0 0 0 0 E4

L6 II2 0 0 0 0 0 E13

L7 II3 0 0 0 0 0 E14

L8 0 0 0 0 E12

ABLE VIII. Potentials by revolution with a linear and a quadratic integral of motion.

Class � �  � k l m n

Potentials
by revolution
from Ref. 13

Potentials
by revolution
from Ref. 12

L1 I1 0 0 0 0 2.2�D�
L2 0 0 0 0 3

L3 I2 0 0 0 0 4.2�D�
L4 II1 0 0 0 0 3.2�E�
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ii� The quantum counterparts of the general six subclasses of superintegrable systems with
quadratic integrals of motion are not yet known. In Sec. II, the separation of variables of
these systems has been explicitly written. The form of the separation of Schrödinger equa-
tion can be written in a Liouville coordinate system. The solutions of the quantum
Schröedinger equation can be calculated. This work is under current investigation. The
form of the Poisson algebra can be generalized in a quadratic associative algebra, whose
energy eigenvalues are generally calculated by using deformed oscillator techniques.18–22

From the form of the Poisson algebra, one can guess that the energy eigenvalues of these
quantum systems are roots of cubic polynomials.

iii� The general form of the three-dimensional superintegrable systems with quadratic integrals
of motion is not yet known. The Poisson algebras and the associated quantum counterparts
for the three-dimensional superintegrable systems are not yet fully studied. Recently37,38 the
quantum quadratic algebras have been written down, which are not generally closed as
polynomial algebras. A systematic calculation of energy eigenvalues with algebraic meth-
ods has not been performed yet.
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PPENDIX: POLYNOMIAL COMBINATIONS OF INTEGRALS

Let consider a superintegrable system with two quadratic integrals of motion. The general
orms of the Hamiltonian and the integrals of motion in Liouville coordinates are

H =
p�p�

g��,��
+ V��,�� ,

A = p�
2 + kp�

2 − 2c��,��
p�p�

g��,��
+ q��,��, k = 0 or 1, �A1�

B = a2���p�
2 + b2���p�

2 − 2���,��
p�p�

g��,��
+ Q��,�� .

n this Appendix we consider that the system has quadratic integrals of motion. We assume that the
ystem has not any linear integral of motion. That assumption excludes the system H=px

2+py
2,

ecause it possesses two linear integrals of motion. In this Appendix, we shall prove the following
roposition.

Proposition 3: Let M be an integral of motion, which is a polynomial function of the momenta

ABLE X. Potentials with constant curvature and with a linear and a quadratic integral of motion.

Class � �  � k l m n

Sphere
potentials

�K=1�
from Ref. 6

I1 0 0 1/K 0 0 0 S5

I2 −1/K 0 0 0 0 0 S3

−1/K 0 1/K 0 0 0 S6
f even order. We assume that this integral contains only monomials of momenta of even order, i.e.,
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M = �
k+�=even

2n

�k,���,��p�
kp�

� . �A2�

hen M is a polynomial of order n of the integrals H ,A ,B.
The existence of three integrals of motion implies that the integral M is functionally depen-

ent integral, i.e., there is some smooth function � �nongenerally a polynomial one� such that

��M,A,B,H� = 0 or M = f�A,B,H�

ut the function f�A ,B ,H� is not evident that it is a polynomial one. From �A1� we can see that

p�
2 =

� A + 2cH − q − 2cV k

B + 2�H − Q − 2�V b2��,��
�

� 1 k

a2��,�� b2��,��
� ,

p�
2 =

� 1 A + 2cH − q − 2cV

a2��,�� B + 2�H − Q − 2�V
�

� 1 k

a2��,�� b2��,��
� ,

p�p� = gH − V .

he above equations imply that the momentum monomials p�
kp�

� inside the sum sign in �A2� can
e written as polynomials of the integrals A ,B ,H with coefficients, which depend on � and �.
herefore the integral of motion M is written

M = �
0�i+j+k�n

cijk��,��AiBjHk.

enerally the coefficients cijk should be constants not depending on the variables � ,�. If these
unctions are nonconstant functions cijk�� ,�� then we choose a fixed value of these parameters

0 ,�0. In general there is an infinity of trajectories passing through these position values �0 ,�0.
ach trajectory is characterized by a special value of the integrals H ,A ,B, therefore M is a
olynomial of fixed constants for an infinity of trajectories. For another pair of parameters �1 ,�1

e have another choice of the coefficients in �A2� therefore there is a relation of the form

�
0�i+j+k�n

�cijk��1,�1� − cijk��0,�0��AiBjHk = 0.

he above relations mean that the integrals of motion H ,A ,B are not functionally independent
unctions, that is a contradiction to assumption initial regarding the independence of the integrals.
herefore we have proved that the polynomial expansion �A2� of the integral M is indeed unique,
hen M is an even polynomial of the momenta.

A direct application of Proposition 3 is the following Proposition.
Proposition 4: Let a superintegrable two-dimensional system have even quadratic integrals of

otion H ,A ,B. If we set C= �A ,B�. The integrals �A ,C� and �B ,C� can written as quadratic
polynomials of the integrals. The integral C2 is a cubic polynomial of the integrals H ,A ,B.

The above proposition was taken as a conjecture in the previous work.18–25 Here we prove that
his assumption is indeed true. A generalization of Proposition 4 is indeed true for superintegrable
wo-dimensional systems with an integral, which is an odd cubic polynomial in momenta.32,31 This

roposition means that the superintegrable two-dimensional systems with even quadratic integrals

                                                                                                            



c
T
p

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

042904-38 C. Daskaloyannis and K. Ypsilantis J. Math. Phys. 47, 042904 �2006�

                        
orrespond to a quadratic Poisson algebra, which is characteristic for the superintegrable system.
he situation in three-dimensional superintegrable systems is not yet clear.37,38 Recently this
roblem is studied in complex flat spaces.39
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This paper considers systems subject to nonholonomic constraints which are not
uniform on the whole configuration manifold. When the constraints change, the
system undergoes a transition in order to comply with the new imposed conditions.
Building on previous work on the Hamiltonian theory of impact, we tackle the
problem of mathematically describing the classes of transitions that can occur. We
propose a comprehensive formulation of the transition principle that encompasses
the various impulsive regimes of Hamiltonian systems. Our formulation is based on
the partial symplectic formalism, which provides a suitable framework for the
dynamics of nonholonomic systems. We pay special attention to mechanical sys-
tems and illustrate the results with several examples. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2192974�

. INTRODUCTION

In this paper we consider the problem of mathematically describing impulsive motions �im-
acts, collisions, reflection, refractions� of Hamiltonian systems subject to nonholonomic con-
traints. An impulsive behavior takes place when one or more of the basic ingredients of the
amiltonian dynamical picture undergoes a drastic change. As an example, one may consider the

nstant of time when the configuration space of the system collapses instantaneously because of an
nelastic collision. Another example is given by a ray of light that splits into reflected and refracted
ays when passing from one optical media to another, and so on. In situations like these, the phase
rajectory of the system becomes discontinuous and the problem of how to describe this discon-
inuity arises.

The problem of describing impulsive motion has been extensively studied in classical books
uch as Refs. 2, 29, 31, 32, and 36. In these references, the emphasis is put on the analysis of
echanical systems subject to impulsive forces, and in particular, the study of rigid body colli-

ions by means of Newton and Poisson laws of impact. Impulsive nonholonomic constraints �i.e.,
onstraints whose reaction force is impulsive� are also considered in Refs. 14, 30, 36, and 42, and,
rom a geometric perspective, in more recent works such as Refs. 13, 20, 23, and 33. If impulsive
onstraints and impulsive forces are present at the same time, Newton and Poisson approaches
ave been revealed to be physically inconsistent in certain cases.8,38 This surprising consequence
f the impact laws is only present when the velocity along the impact surface stops or reverses
uring collision due to the friction. Energetically consistent hypothesis for rigid body collisions
ith slip and friction are proposed in Refs. 37 and 38. From a design point of view, the interest in

ystems subject to impulsive forces is linked to the emergence of nonsmooth and hybrid dynami-
al systems in control theory, i.e., systems where continuous and discrete dynamics coexist, see
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�
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efs. 7–9 and 40 and references therein. Hybrid mechanical systems that locomote by switching
etween different constraint regimes and are subject to elastic impacts are studied in Ref. 10.
yperimpulsive control of mechanical systems is analyzed in Ref. 19.

Here, we aim at a comprehensive analysis of the various situations which can occur concern-
ng impulsive regimes of nonholonomic Hamiltonian systems. In particular, we focus on two
ifferent but complementary cases. The first one deals with a drastic change in the nonholonomic
onstraints imposed on the system. The second one concerns a drastic change of the Hamiltonian
unction and includes, in particular, collisions and impacts of nonholonomic systems. The pro-
osed solution is given in terms of a generalized version of the transition principle. This principle,
ketched for the first time in a series of lectures of the second author6 for discontinuous Hamil-
onians, was recently extended to other nonconstrained situations in Refs. 34 and 35 �see also Ref.
7 for a related discussion in an optimal control setting�. By its very nature, the transition principle
s a direct dynamic interpretation of the geometric data of the problem. This feature distinguishes
t from other approaches. For instance, in classical mechanics, the velocity jumps caused by an
mpact are traditionally derived from some assumptions on the nature of the impulsive forces �see,
or instance, Refs. 2 and 24�. However, these assumptions are not logical consequences of the
undamental dynamical principles and therefore one should really consider them as additional
rinciples for impulsive problems. The distinguishing feature of the transition principle is that it
ives full credit to the geometry of the nonholonomic Hamiltonian system. This seems reasonable
or the impulsive regime, keeping in mind the adequacy of the Hamiltonian description to the
ynamical behavior of the system in the absence of impulsive motions. In addition, there are some
oticeable advantages deriving from the transition principle. First of all, its application gives an
xact and direct description of the post-impact state which is of immediate use for both theoretical
nd computational purposes. Second, it is still valid in some situations where standard methods
an hardly be applied. In particular, this is the case of Hamiltonian systems describing the propa-
ation of singularities of solutions of partial differential equations �consider, for instance, the
xample of geometrical optics�.26,27,41 Clearly, no variational or traditional approach can be ap-
lied to this very important class of systems.

A second contribution of this paper concerns the formulation of the dynamics of nonholo-
omic Hamiltonian systems. We make use of the notion of partial symplectic structures introduced
n Ref. 6 and relate this framework with other modern approaches to nonholonomic systems �see
efs. 3–5, 15, 22, 18, 28, and 39 and references therein�. One advantage of the partial symplectic

ormalism is that it allows us to draw clear analogies between the unconstrained and constrained
ituations. Another advantage is that the treatment of nonlinear constraints can be easily incorpo-
ated.

The paper is organized as follows. Section II introduces some geometric preliminaries on
istributions, constraint submanifolds and partial symplectic structures. In Sec. III we show how
ny nonholonomic Hamiltonian system possesses an associated partial symplectic structure, and
e use this fact to intrinsically formulate the dynamics. We also analyze systems with instanta-
eous nonholonomic constraints and systems exhibiting discontinuities. In Sec. IV, we develop a
ew formulation of the transition principle for systems with constraints. We present the novel
otion of focusing points with respect to a constraint submanifold and we also introduce the
oncept of constrained characteristic. Decisive points are defined for each impulsive regime re-
orting to in, out, and trapping points. Section V presents a detailed study of the concepts intro-
uced in the preceding sections in the case of mechanical systems. We compute the focusing
oints and the characteristic curves, and present various results concerning the decisive points. We
lso prove an appropriate version for generalized constraints of the classical Carnot’s theorem for
ystems subject to impulsive forces: if the constraints are linear, we show that the transition
rinciple always implies a loss of energy. We conclude this section by showing that if the con-
traints are integrable, then our formulation of the transition principle recovers the solution for
ompletely inelastic collisions.35 Section VI presents various examples of the application of the
bove-developed theory. Finally, Sec. VII presents our conclusions and directions for future re-

earch.
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To ease the exposition, below we make use of the standard notation concerning differential
eometry and the Hamiltonian formalism without making explicit reference to any work. In
articular, we denote by �i �respectively, D�M�� the C��M�-module of ith order differential forms
respectively, of vector fields� on a manifold M. We use F*��� to denote the pullback with respect
o a smooth map F of a function or differential form �. If x is a point of M, then the subscript x
efers to the value of the corresponding geometric object at x. For instance, Xx stands for the vector
eld vector X�D�M� evaluated at x. The interested reader may consult classical books such as
efs. 1, 21, and 25 for further reference. We also assume smoothness of all the objects we are
ealing with.

I. PRELIMINARIES

In this paper we deal with Hamiltonian systems defined on the cotangent bundle T*M of an
-dimensional manifold M. In the particular case of a mechanical system, M and T*M are,
espectively, the configuration space and the phase space of the system. As usual, �M: T*M

M �or simply �� stands for the canonical projection from T*M to M, H�C��T*M� for the
amiltonian function and XH�D�M� for the corresponding Hamiltonian vector field. The canoni-

al symplectic structure on T*M is denoted by �=�M. In canonical coordinates �qa , pa�, a
1, . . . ,n of T*M, the symplectic form reads �=dqaÙdpa.

We say that the Hamiltonian system �M ,H� comes from a Lagrangian system �M ,L� on TM
f H= �LL

*�−1�EL�, where EL�C��TM� is the energy function corresponding to the �hyper-regular�
agrangian function L�C��TM� and LL :TM→T*M is the associated Legendre map.

If X is a vector field on T*M, then the map �X :T*M→TM defined by

�X��� = d���X�� � T����, � � T*M ,

enotes the anti-Legendre map associated with X. In standard coordinates, if X=Aa�q , p��� /�qa�
Ba�q , p��� /�pa�, then �X reads �X�qa , pa�= �qa ,Aa�q , p��. For the Hamiltonian vector field X
XH, we write �H instead of �XH

, so that

�H:�q,p� � �q,v =
�H

�p
� .

t is not difficult to see that if the Hamiltonian system �M ,H� comes from a Lagrangian system
M ,L�, then �H=LL

−1.

. Distributions and codistributions

Recall that a distribution �respectively, codistribution� on a manifold M is a vector subbundle
f TM �respectively, of T*M�. The annihilator of a distribution D on M is the codistribution
nn�D� defined by

Ann�D�x = �� � Tx
*M����� = 0, " � � Dx	, x � M .

f D is �n−m�-dimensional, the codistribution Ann�D� is m-dimensional. The dual bundle D* of D
s canonically identified with the cotangent bundle T*M modulo Ann�D�. We will also denote by

� the orthogonal complement of a distribution D on T*M with respect to the symplectic form �,
.e.,

Dy
� = �� � Ty�T*M���y��,	� = 0, " 	 � Dy	, y � T*M .

A vector field X�D�M� belongs to D if Xx�Dx for all x�M. Vector fields belonging to D
onstitute a C��M�-module, denoted by DD�M�, which is a submodule of D�M�. In the partial
ymplectic formalism �see Sec. II C below�, they are interpreted as “constrained” vector fields.

1 � * i
ually, denote by �D�M� the C �M�-module of sections of the bundle D and by �D�M� its ith
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xterior product. These are interpreted as “constrained” differential i-forms. We denote the natural
estriction map from �i�M� to �D

i �M� by rD: �i�M�→�D
i �M�.

The geometric description of nonholonomic systems in the framework of the partial symplec-
ic formalism6 requires a slight “affine” generalization of these standard notions. Namely, an affine
istribution on a manifold M is an affine subbundle 
 of TM. This means that the fiber 
x of 

ver x�M is an affine subspace in TxM. Therefore, 
x can be represented in the form 
x=v

x

0 with v�TxM and 
x
0 being the vector subspace of TxM canonically associated with 
x. In this

epresentation, the displacement vector v is unique modulo 
x
0. The union �x�M
x

0 constitutes a
inear distribution of the tangent bundle TM, denoted by 
0, canonically associated with 
. It is
ot difficult to see that there always exist a vector field Y �D�M� such that Yx is a displacement
ector for 
x. Such vector fields are called displacement vector fields of 
. Obviously, displace-
ent vector fields differ by another vector field belonging to 
. In coordinate terms, an

n−m�-dimensional affine codistribution is described by a system of linear equations �i=0 with
espect to the variables pa, i.e., �i�q , p�=�ia�q�pa+�i0�q�, i=1, . . . ,m.

Similarly, an affine codistribution on M is an affine subbundle C�T*M of the cotangent
undle. As above, one has C=�+C0, where C0 is the unique codistribution on M canonically
ssociated with C, and ���1�M� is a displacement form. Point-wisely this means that Cx=�x

Cx
0, for all x�M.

. Linear constraints

In the case of linear constraints, the analogy between free and constrained systems is particu-
arly clear. In fact, it is natural to interpret an affine distribution �respectively, codistribution� on a
anifold M as the “constrained” tangent �respectively, cotangent� bundle of M. A linearly con-

trained Hamiltonian system is then a triple �M ,H ,C�, with H�C��T*M� and C an affine codis-
ribution on M. Similarly, a triple �M ,L ,
�, with L�C��TM� and 
 an affine distribution on M,
s a linearly constrained Lagrangian system. The anti-Legendre map allows one to pass from a
onstrained Hamiltonian system to the corresponding Lagrangian system and vice versa. More
recisely, if �M ,H ,C� is a linearly constrained Hamiltonian system, the map �H is linear and
M ,H� comes from a Lagrangian system �M ,L�, then the corresponding linearly constrained
agrangian system is �M ,L ,
�, with 
=�H�C�. To go in the opposite direction, one must use the
egendre map LL instead of �H.

Throughout the paper, we distinguish the class of mechanical systems subject to linear con-
traints because of two reasons. First, classically they have been intensively studied. Second, one
an extract from them the motivations for the basic constructions which will be discussed below.

. Nonlinear constraints

In the Hamiltonian setting, the nonholonomic constraints are given by a submanifold �not
ecessarily a vector subbundle� C�T*M. Similarly, nonholonomic Lagrangian or kinematic con-
traints are given by a submanifold C��TM. If the Hamiltonian system �M ,H� comes from a
agrangian system �M ,L�, then C=LL�C�� if and only if C�=�H�C�. In mechanics, these two
pproaches correspond to two possible descriptions of nonholonomic constraints: either as limi-
ations imposed on the momenta or as limitations imposed on the velocities, respectively. The fact
hat C �respectively, C�� represents limitations imposed only on the momenta �respectively, ve-
ocities�, but not on the configurations of the system, implies that the projection � must send C
respectively, C�� surjectivity onto M. However, the assumption of “infinitesimal surjectivity” of
���C is more adequate in this context. This means that ���C is a submersion, i.e., dy����C�: TyC

T��y�M is surjective for all y�C. With this motivation, we adopt the following definition.
Definition 2.1: A set of nonholonomic constraints imposed on a Hamiltonian system �M ,H� is

submanifold C�T*M such that ���C is a submersion. The constrained Hamiltonian system is
enoted by �M ,H ,C�.

Since C and �H�C� are, respectively, interpreted as the constrained cotangent and tangent

undle of the system �M ,H ,C�, we will always assume that they have equal dimensions. It is

                                                                                                            



w
c

f

a

3

C
l
i
s
p
p
i
o

f
o

v
a
i
p
=

B

�

I
c
a
c
t
t
R
d

a
c
g
p

042905-5 Hamiltonian theory of constrained impulsive motion J. Math. Phys. 47, 042905 �2006�

                        
orth stressing that the above definition also makes sense for manifolds with boundary. In such a
ase, the boundary of T*M is �−1��M� and the boundary of C is �C=C��−1��M�.

Remark 2.2: Similarly, nonholonomic Lagrangian constraints are represented by submani-
olds of TM that project regularly onto M.

In what follows, �i�q , p�=0, i=1, . . . ,m, will denote a set of local equations defining C. For
point x�M, we denote by Cx the fiber of C at x,

Cx = C � Tx
*M = �y � C���y� = x	 = ���C�−1�x� .

. Instantaneous nonholonomic constraints

Let N be a hypersurface in M. Consider the induced hypersurface TN
* M =�−1�N� of T*M. Let

�T*M be a set of nonholonomic constraints on M. Instantaneous constraints may be thought as
imitations on the momenta �respectively, velocities� of the system that are imposed only at the
nstant when a trajectory passes through a point of N. Therefore, they are represented by a
ubmanifold Cinst of C�TN

* M. These constraints are assumed to be additional to the ones already
rescribed by C. In order to admit an adequate mechanical interpretation, we also assume that the
rojection � restricted to Cinst is a submersion onto N. From the Lagrangian point of view,
nstantaneous kinematic constraints are naturally interpreted as a submanifold Cinst� of TN. Based
n these considerations, we take the following definition.

Definition 2.3: Let �M ,H ,C� be a constrained Hamiltonian system and let N be a hypersur-
ace of M. A set of instantaneous constraints along N imposed on �M ,H ,C� is a submanifold Cinst

f C�TN
* M such that � restricted to Cinst is a submersion onto N.

It is worth stressing that, in some cases, a set of instantaneous constraints along N additionally
erifies the condition Cinst��H

−1�TN� �here TN is thought to be naturally embedded into TM�. In
n inelastic scenario, where the nonholonomic motion in M is forced to take place in N after the
mpact, this latter condition formalizes the parity between the Hamiltonian and Lagrangian ap-
roaches: if the Hamiltonian system in question comes from a Lagrangian one, then Cinst

LL�Cinst��, with Cinst� being the instantaneous kinematic constraints.

. Dynamics of Hamiltonian systems

As is well known, in the absence of constraints, the dynamics of the Hamiltonian system
M ,H� is given by the Hamiltonian vector field XH, whose coordinate description is

dqa

dt
=

�H

�pa
,

dpa

dt
= −

�H

�qa , a = 1, . . . ,n .

n the presence of constraints, the “free” Hamiltonian vector field XH must be modified along the
onstraint manifold C in order to become tangent to C. In the traditional approach this goal is
chieved by adding to XH another vector field along C, say, R, interpreted as the reaction of
onstraints. From a purely geometrical point of view, the choice of a vector field that makes XH

angent to C is far from being unique. Therefore, a new principle must be invoked to select the one
hat merits being called the “reaction of constraints.” The history of this problem �see, for instance,
ef. 30� shows that its solution is not straightforward. By applying, for instance, the Lagrange-
’Alembert principle �see Refs. 4, 15, and 30�, one gets the following equations of motion:

dqa

dt
=

�H

�pa
,

dpa

dt
= −

�H

�qa + i
��i

�pa
, �i�qa,pa� = 0,

=1, . . . ,n, i=1, . . . ,m, where the “Lagrange multipliers” i’s are to be duly determined. Short-
omings of such an approach are that it is not manifestly intrinsic and does not reveal clearly the
eometric background of the situation. This is why in our further exposition we shall follow a

urely geometric approach, which does not require any discussion of reactions of constraints. It is
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ased on the concept of partial symplectic formalism, which also appears to be more concise from
n algorithmic point of view.

. Partial symplectic structures

The following elementary facts from linear algebra will be most useful. Let V be a vector
pace, W�V a subspace and b :V�V→R a bilinear form on V. Denote by Wb

� the b-orthogonal
omplement of W,

Wb
� = �v � V�b�v,w� = 0, " w � W	 .

ote that W�Wb
�=0 if and only if the restriction �b�W of b to W is nondegenerate. The form b is

aid to be nondegenerate on an affine subspace U of V, U= p0+W, p0�V, if it is nondegenerate
n its associated vector space W. In such a case, U can be uniquely represented in the form U
p1+W with p1�Wb

� due to the fact that U�Wb
�= �p1	. The vector p1 is called the canonical

isplacement of U with respect to b. Consider the associated map

TW,b:W → W*, TW,b�w� = b�w, · �, w � W .

n other words, TW,b�w��w��=b�w ,w��, for all w��W. Obviously, TW,b is an isomorphism if and
nly if �b�W is nondegenerate.

If b is skew-symmetric and nondegenerate on V, and W is a subspace of V with codimension
ne, then the kernel of the restricted form �b�W, ker �b�W is a one-dimensional subspace, i.e., a line
n V contained in W. Therefore, ker �b�W=Wb

�.
Let now 
 be an affine distribution on a manifold Q. A form ���2�Q� is called nondegen-

rate on 
 if b=�x is nondegenerate on U=
x, for all x�Q. In such a case, there exists a unique
ector field Y �D�Q� such that Yx is the canonical displacement of 
x with respect to �x, for all
�Q. The vector field Y =Y
,� is called the canonical displacement of 
 with respect to �. If
��2�Q� is nondegenerate on 
, then one has the isomorphism of vector bundles

� = �
0,�:
0* → 
0, �x = − �T
x
0,�x

�−1:
x
0* → 
x

0.

assing to sections of these bundles, one gets the isomorphism of C��Q�-modules


0,� :�
0
1 �Q�→D
0�Q� defined by

� = �
0,�����x� = ����x��, � � �
0
1 �Q� . �1�

Definition 2.4: A partial symplectic structure on a manifold Q is a pair �
 ,�� consisting of an
ffine distribution 
 on Q and a closed 2-form ���2�Q� which is nondegenerate on 
.

Given a partial symplectic structure �= �
 ,��, we will use the subscript � to denote the
ssociated objects: 
�=
, ��=�, Y�=Y
,�, and 
�

0 for the distribution canonically associated to
. We also write

r� = r

�
0 , D� = D


�
0 �Q�, ��

1 = �


�
0

1 �Q�, �� = �

�
0 ,�:��

1 → D�.

n the partial symplectic formalism, the elements of C��Q�-modules D� and ��
1 may be viewed as

constrained” vector fields and differential forms, respectively. The constrained Hamiltonian vec-
or field associated with a Hamiltonian function H�C��Q� is defined as

XH
� = ���r��dH�� + Y�. �2�

he almost-Poisson bracket associated to the partial symplectic structure � is

�f ,g	� = ���r��df���g� = Xf
� − Y��g�, f ,g � C��Q� .

he wording “almost” here refers to the fact that this bracket does not satisfy in general the Jacobi

dentity. However, it is still skew-symmetric and a bi-derivation.
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Definition 2.5: Let �= �
 ,�� be a partial symplectic structure on a manifold Q. A hypersur-
ace B�Q is transversal to � �or to 
� if the affine subspaces TyB and 
y of TyQ are transversal
or any y�C.

If B is transversal to �, then TyB�
y is of codimension 1 in 
y. If � is a partial symplectic
tructure on C�T*M, we shall extend this terminology by saying that � is transversal to a

ypersurface B̃ in T*M if B̃ is transversal to C, so that B= B̃�C is a hypersurface in C, and B is
ransversal to �.

II. DYNAMICS OF NONHOLONOMIC HAMILTONIAN SYSTEMS

In this section, we formulate the dynamics of nonholonomic Hamiltonian systems using the
artial symplectic formalism. We show how, under some technical conditions, any Hamiltonian
ystem subject to nonholonomic constraints possesses an associated partial symplectic structure.
hen, we analyze the cases of systems with instantaneous nonholonomic constraints, and systems
xhibiting discontinuities.

. The partial symplectic structure associated with a constrained Hamiltonian system

Let �M ,H ,C� be a constrained Hamiltonian system. Our goal is to associate with it a partial
ymplectic structure � on the “constrained” cotangent bundle C in such a way the corresponding
onstrained Hamiltonian field XH

� gives the desired nonholonomic dynamics. With this purpose,
onsider the constrained symplectic form defined by the restriction of the “free” symplectic form

M to C,

�� = j*��M� , �3�

ith j :C�T*M the canonical inclusion. The next step is to construct a suitable affine distribution

� on C. A natural nonsingularity requirement on C is asking for the regularity of the map ��H�C.
his is the reason why we assume that ��H�C is an immersion, i.e., that the differential dy�H is
onsingular for any y�C. Since �H :T*M→TM is fibered, this assumption implies that the map
�H�x :Cx→TM is an immersion for any x�M and vice versa.

Let y�C and x=��y�. Let �y be the affine subspace of TxM tangent to �H�Cx� at z=�H�y�.
ince by the above assumption ��H�C is an immersion, dim �y =dim Cx=n−m. Consider the affine
istribution 
� on C defined by


�y = �� � TyC�dy���� � �y	 � TyC . �4�

ince dy����C� is surjective, the codimension of 
�y
in TyC is equal to the codimension of �y in

xM, i.e., to m. Therefore, dim 
�y
=2�n−m�. It is not difficult to see now that if the form �� is

ondegenerate on the distribution 
�, then ��H�C is an immersion.
Proposition 3.1: Let S= �M ,H ,C� be a constrained Hamiltonian system. Then, ��H�C is an

mmersion if the pair �
� ,��� defined by Eqs. (3) and (4) is a partial symplectic structure.
The converse, however, is in general not true. Since the partial symplectic structure associated

ith S= �M ,H ,C� is determined by H and C, we will simply denote it by ��H ,C�= �
H,C ,�C�.
For most Hamiltonian systems �including those coming from Mechanics�, the anti-Legendre

ap �H is regular not only when restricted to C, but on the whole space T*M. If this is the case,
nd the Hamiltonian system comes from a Lagrangian system, one can indeed show that the
ondition of �� being nondegenerate on the distribution 
� is equivalent to the so-called com-
atibility condition.3,18 Therefore, Proposition 3.1 establishes a link between the classical partial
ymplectic formalism introduced in Ref. 6 and more recent approaches as explained, for instance,
n Ref. 15. Also note that the class of mechanical systems automatically verifies the compatibility
ondition, therefore admitting both formulations. Indeed, for mechanical systems, the conditions
n Proposition 3.1 are equivalent.
Definition 3.2: A nonholonomic Hamiltonian system on a manifold M is a constrained system
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M ,H ,C�, H�C��T*M�, C�T*M such that ��H ,C�= �
H,C ,�C� is a partial symplectic struc-
ure.

The dynamics of a nonholonomic Hamiltonian system is given by the constrained Hamil-
onian vector field XH

� with respect to the partial symplectic structure �=��H ,C� �cf. Eq. �2��.
his vector field will be denoted by XH,C. Under regularity of the map �H, XH,C reads in canonical
oordinates

XH,C =
�H

�pa

�

�qa − � �H

�qa + Cij� �H

�pb

�� j

�qb −
�H

�qb

�� j

�pb
� ��i

�pc
Hca� �

�pa
,

here the matrices �Hab� and �Cij� are defined by

�Hab� = � �2H

�pa�pb
�−1

, �Cij� = � ��i

�pa
Hab

�� j

�pb
�−1

.

bserve that the force of reaction of nonholonomic constraints �see Sec. II B� in the partial
ymplectic framework is defined a posteriori as the difference between the constrained and the
ree Hamiltonian vector fields, XH,C−XH. Also, note that the almost-Poisson bracket associated
ith the partial symplectic structure �H,C coincides with the so-called nonholonomic
racket.15,11,39

Transversality: It is convenient to adapt the terminology related to the notion of transversality
iscussed in Sec. II C to the context of nonholonomic Hamiltonian systems. First, we shall say that
nonholonomic Hamiltonian system S= �M ,H ,C� is transversal to a hypersurface B in T*M if the
nderlying partial symplectic structure ��H ,C� is transversal to B. Second, if N is a hypersurface
n M, we shall say that S is transversal to N if S is transversal to the hypersurface TN

* M. The
ollowing result follows from the definition of the partial symplectic structure ��H ,C�.

Proposition 3.3: A nonholonomic Hamiltonian system �M ,H ,C� is transversal to a hypersur-
ace N�M if and only if �y �T��y�M, the affine subspace of T��y�M tangent to �H�C��y�� at z
�H�y�, is transversal to T��y�N�T��y�M for all y�C.

. Instantaneous partial symplectic structures

It is intuitive to think that when a trajectory of a Hamiltonian system �M ,H ,C� crosses a
ritical hypersurface N in the configuration manifold M, its phase space reduces to T*N. More-
ver, it could possibly be subject to additional instantaneous constraints along N. In the language
f our approach, this idea is naturally expressed by saying that all such critical states constitute a
onholonomic Hamiltonian system on N. Since T*N is not naturally embedded into T*M, a real-
zation of this idea is not completely straightforward. What one really needs is a partial symplectic
tructure on the manifold of instantaneous constraints Cinst which, by definition, is a submanifold
f T*M.

Namely, let Cinst be a set of instantaneous constraints along N imposed on �M ,H ,C� �cf.
efinition 2.3�. Take y�Cinst. Let x=��y� and denote by �y

inst the affine subspace of TxN�TxM
angent to �H�Cx

inst� at �H�y�. Consider the 2-form ��inst and the affine distribution 
�inst on Cinst

efined by

��inst = j*��M�, 
�insty = �� � TyC
inst�dy���� � �y

inst	 � TyC
inst, �5�

ith j :Cinst
�T*M the canonical inclusion. We then have the following definition.

Definition 3.4: Let �M ,H ,C� be a nonholonomic Hamiltonian system and let Cinst be a set of
nstantaneous constraints along a hypersurface N�M. The pair �
�inst ,��inst� defined by (5) is
alled the instantaneous partial symplectic structure along N if ��inst is not degenerate on 
�inst.
f this is the case, Cinst is called a regular set of instantaneous constraints.

Note that this structure is defined by H, Cinst, and N. To highlight this fact, we denote �inst

�inst�H ,Cinst ,N�. Accordingly, we denote by X�H,Cinst,N� the constrained Hamiltonian vector field
�inst

inst

Hinst, with H = �H�Cinst.

                                                                                                            



s
i

n
A
r

i
c
a
2
s
c
c
=

C

a
f
t
a
t

→

�
�
�

e

m

�
i
i

c
S

�

r

=

N

042905-9 Hamiltonian theory of constrained impulsive motion J. Math. Phys. 47, 042905 �2006�

                        
In general, since Cinst�C by definition, one has that ��H�Cinst is an immersion. For mechanical
ystems, this implies that the 2-form ��inst is nondegenerate on 
�inst, and therefore any set of
nstantaneous constraints is regular.

In what follows, we shall only deal with regular instantaneous nonholonomic constraints. A
atural class of instantaneous structures arises in the following situation of particular interest.
ssume that the nonholonomic Hamiltonian system S= �M ,H ,C� is transversal to N and that �H is

egular. Then �H
−1�TN� is transversal to C and, hence,

C�N,H� = �H
−1�TN� � C

s a submanifold of codimension 2 in C. Note that C�N,H� is a set of instantaneous nonholonomic
onstraints on S along N. By construction, the codimension of 
Ny

=
y �Ty�C�N,H�� in 
y is also 2
nd �y is nondegenerate when restricted to 
Ny

. Therefore, the affine distribution 
N and the
-form ���N endow C�N,H� with a partial symplectic structure, which is an instantaneous partial
ymplectic structure along N. We call it the trace of S on N and denote it by S�N,H�. In the special
ase N=�M, we call it the boundary of S, and denote it by �S, i.e., �S=S��M,H�. We will denote the
onstrained Hamiltonian vector field with respect to the trace �respectively, boundary� as Xtr

X�H,C,N�
tr �respectively, X�=X�H,C,�M�

� �.

. Discontinuous nonholonomic systems

An impulsive behavior of a Hamiltonian system occurs when its trajectory “tries” to go across
critical hypersurface N in the configuration space M. In such an instant, the system may be

orced to drastically change its constraints, to pass under the control of another Hamiltonian and/or
o be eventually subject to additional instantaneous constraints. Such situations may be interpreted
s discontinuities on both the constraints and the Hamiltonian of the system. Below, we formalize
hese concepts properly via the notion of cutting-up.

Definition 3.5: Let N�M be a hypersurface of M with N��M =�. A pair �M̂ ,��, � :M̂
M, is called a cutting-up of M along N if

i� N̂=�−1�N���M̂,

ii� � maps M̂ \ N̂ diffeomorphically onto M \N,

iii� ���N̂ : N̂→N is a double covering of N.

Note that, by definition, � is a local diffeomorphism. Cuttings-up for a given N exist and are
quivalent one to each other. If N divides M into two parts, say, M+ and M−, i.e., M =M+�M−,

M+�M−=N, then M̂ may be viewed as the disjoint union of M+ and M−, and � as the map that
atches them together along the common border N. Locally any cutting-up is of this form.

For our purposes, it is important to realize that, if �M̂ ,�� is a cutting-up of M along N, then

T*M̂ ,T*�� is a cutting-up of T*M along the hypersurface TN
* M. Here, T*� denotes the dual of the

nverse of the isomorphism dz� :TzM̂→T��z�M, for all z�M̂. In the following definition, we
ntroduce the class of Hamiltonian systems we shall be dealing with throughout this paper.

Definition 3.6: Let N�M be a hypersurface of M with N��M =� and let �M̂ ,�� be a
utting-up of M along N. A nonholonomic Hamiltonian system discontinuous along N, denoted
= �M ,H ,C �N�, is the direct image with respect to T*� of a nonholonomic Hamiltonian system

M̂ , Ĥ , Ĉ�. Such system is called regular if �M̂ , Ĥ , Ĉ� is transversal to N̂.
A system of instantaneous nonholonomic constraints on S along N is the direct image with

espect to T*� of a set of instantaneous constraints Ĉinst along N̂ on the associated system Ŝ

�M̂ , Ĥ , Ĉ � N̂�. The trace of S on N is the direct image with respect to T*� of the trace of Ŝ along
ˆ .

ˆ * ˆ ˆ * ˆ
According to Definition 3.6, H is a smooth function on T M and C is a submanifold of T M.
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herefore, the direct image of Ĥ along the matching map T*� :T*M̂→T*M may be viewed as a
unction on T*M, which is 1-valued and smooth outside of TN

* M and 2-valued and smooth on

N
* M. We will continue to use the notation H for this function and will refer to it as a discontinuous

amiltonian along N. Similarly, the direct image C=T*��Ĉ� of Ĉ will be referred to as discon-
inuous nonholonomic constraints along N. Outside of TN

* M, C is a “good” smooth submanifold of
*M, whose boundary is an immersed submanifold of TN

* M.
The previous discussion becomes particularly simple when N divides M into two parts, M+

nd M−, as mentioned above. In such a case, TN
* M also divides T*M into two parts, T*M+ and

*M−, whose common boundary is TN
* M. Then, a discontinuous Hamiltonian H along N may be

aturally seen as a pair of Hamiltonians, say, H+ and H−, defined on T*M+ and T*M−, respectively.
imilarly, a set of discontinuous nonholonomic constraints along N is regarded as a pair of sets of
onholonomic constraints C±�T*M±. Since N always divides M locally, this description consti-
utes a local picture of a discontinuous nonholonomic Hamiltonian system along N.

We will continue to use the notation Cinst �respectively, Str� for instantaneous nonholonomic
onstraints �respectively, the trace of S� in the case of discontinuous nonholonomic systems. As
efore, one may interpret Cinst as a 2-valued system of instantaneous nonholonomic constraints
long N. In the case when N divides M into two parts, we will distinguish between the two
ranches using the notation C±

inst, and write also X�H,C±
inst,N� �respectively, X�H,C±,N�

tr �.
Remark 3.7: The impulsive behavior of a Hamiltonian system is not necessarily related to

ome discontinuity. This type of phenomena occurs, for instance, each time that one of its trajec-
ories “strikes” against the boundary �M of the configuration space M. Various kinds of collisions,
mpacts, etc., in mechanical systems are described in this way. Otherwise said, impulsive behavior
s characteristic of Hamiltonian systems with boundary. Moreover, systems with boundary may be
iewed as a “limit” case of discontinuous systems by dropping the requirement N��M =� and
hoosing N=�M, M−=�, M+=M. This allows a unified approach to both situations.

V. THE TRANSITION PRINCIPLE

In this section we discuss the formulation of the transition principle for systems subject to
onholonomic constraints. We first introduce the notions of focusing points, constrained charac-
eristics, and in, out and decisive points. The transition principle builds on these elements to
rescribe the behavior of the Hamiltonian system when one or more of its ingredients undergoes
drastic change.

. Focusing points

The following simple linear result will be key for the subsequent discussion.
Lemma 4.1: Let y�T*M, and let W be an affine subspace in Ty�T*M� such that �y is

ondegenerate on W �hence, dim W=2l for certain l� and dim dy��W�= l. Denote by
0�Ty�T*M� and dy��W�0=dy��W0��T��y�M the linear subspaces associated with the affine

paces W and dy��W�, respectively. Then the affine subspaces W�=y+Ann�dy��W�0� and W�
y+W0�Ty�T��y�

* M� in T��y�
* M passing through y are transversal.

Proof: Since, by hypothesis, dim dy��W�= l, one has

dim W0 � Ty�T��y�
* M� = l and dim dy��W�0 = l .

ow, the dimension of Ann�dy��W�0��T��y�
* M is n− l. Moreover, W0�Ty�T��y�

* M� is transversal
o Ann�dy��W�0� if one identifies the spaces T��y�

* M and Ty�T��y�
* M�. The result now follows. �

Consider now a nonholonomic Hamiltonian system �M ,H ,C�. Let y�C. Denote by 


�H,C� be the affine distribution of the corresponding partial symplectic structure ��H ,C� �cf.
ec. III A�. By Definition 3.2, the affine subspace W=
y satisfies the assumptions of Lemma 4.1
n W �observe that dy��W� is precisely �y in Eq. �4��. Therefore, the subspace W�=
y

� is well

efined and we set
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Ky = Ky�H,C� = 
y
* � T��y�

* M .

oreover, it is not difficult to see that the subspace W�= �
y�� is identical to TyC��y�. This shows
hat Ky is transversal to C at y, and that dim Ky =m. The crown of the nonholonomic Hamiltonian
ystem �M ,H ,C� is the map

� = �H,C:C → Am�T*M�, y � Ky ,

here Ak�T*M� denotes the manifold whose elements are k-dimensional affine submanifolds con-
ained in the fibers of the cotangent bundle T*M. One can see that the graph of the crown �,

Graph��� = ��y,v� � C � T*M�v � Ky	

s a 2n-dimensional smooth submanifold of C�T*M. Note that Graph��� is a fiber bundle over C
ith projection

p = p�H,C�:Graph��� → C, �y,v� � y .

he fiber over y of this bundle is precisely Ky. Since y�Ky, the map

�:C → Graph���, y � �y,y� ,

s a section of p�H,C�. Since the fibers of p�H,C� are affine spaces, the bundle Graph���→C has a
atural vector bundle structure whose zero section is �. Moreover, this vector bundle is canoni-
ally isomorphic to the normal bundle of C in T*M. This is due to the fact that, for any y�C, the
ber Ky is transversal to C at y. The same argument also guarantees that the map

� = ��H,C�:Graph��� → T*M, �y,v� � v ,

nduces a diffeomorphism of a neighborhood of the “zero” section ��C� in Graph��� onto its
mage.

Definition 4.2: Let �M ,H ,C� be a nonholonomic Hamiltonian system. Given a point u
T*M, its �H ,C�-focusing locus F�H,C��u� is the set of all points y�C such that u�Ky. In other

ords,

F�H,C��u� = p�H,C����H,C�
−1 �u�� � C��u�.

point in F�H,C��u� is called focusing for u.
Standard arguments show that ��H,C� is regular, i.e., of maximal rank 2n almost everywhere,

hat is, with the exception of a closed subset without interior points. Therefore, for a generic point
�T*M, the subset ��H,C�

−1 �u� is discrete, and so is F�H,C��u� as well. Note also that if u�C, then
�F�H,C��u�.

Remark 4.3: Focusing points can be understood as nonintegrable analogs of the notion of
educing points considered in Ref. 35 in connection with the transition principle for inelastic
ollisions.

Remark 4.4: It is worth noticing that the concept of a focusing point also makes sense in the
bsence of constraints. Obviously, in this case F�H,C��u�= �u	. Therefore there is no need to dis-
inguish between the constrained and nonconstrained cases in the statement of the transition
rinciple.

If the constraints are linear, i.e., C=�+C0 with C0 a linear codistribution and ���1�M� �the
*
isplacement form�, then for each y�T M,
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T��y�
* M = C��y�

0
� Ann�dy��
y�� ,

here 
=
�H,C�. Denote the corresponding projectors by P :T��y�
* M→C��y�

o and Q :T��y�
* M

Ann�dy��
y��. Given u�T*M, one has that z�F�H,C��u� if and only if z�C and P�z�=P�u�.
ince z=P�z�+Q�z�=P�u�+Q��y�, one has the following result.

Proposition 4.5: Let �M ,H ,C� be a nonholonomic Hamiltonian system with linear con-
traints. Then, for u�Ty

*M, there is a unique focusing point given by F�H,C��u�= �P�u�+Q��y�	.

. Instantaneous focusing points

We will also need an instantaneous version of the notion of a focusing point introduced in the
receding section. For this purpose, it is sufficient to apply the above construction to instantaneous
onstraints instead of to the “usual” ones. Namely, let Cinst be a system of regular instantaneous
onstraints along N �see Sec. II A 3� and 
inst=
�inst be the corresponding affine distribution �see
ec. III B�. Following the same reasoning as above, the affine subspace W=
y

inst�Ty�T*M� sat-
sfies the assumptions of Lemma 4.1. Therefore, the affine subspace Ky

inst= �
inst�� of Ty�T*M� is
ell defined, and we have all the ingredients to define the notion of instantaneous crown and

nstantaneous focusing point of a system subject to instantaneous nonholonomic constraints. For
ompleteness, we state the latter.

Definition 4.6: Let �M ,H ,C� be a nonholonomic Hamiltonian system and let Cinst be a set of
nstantaneous constraints along a hypersurface N�M. Given a point u�TN

* M, its
H ,Cinst ,N�-instantaneous focusing locus F�H,Cinst,N��u� is the set of all points y �Cinst such that
�Ky

inst. In other words,

F�H,Cinst,N��u� = p�H,Cinst����H,Cinst,N�
−1 �u�� � C��u�

inst .

point in F�H,Cinst,N��u� is called instantaneous focusing for u.

As before, if the instantaneous nonholonomic constraints are linear Cinst=�inst+Cinsto, then for
ach y�TN

* M,

T��y�
* M = C��y�

0
� Ann�dy��
y

inst�� ,

here 
inst=
�H,Cinst,N�. Denoting the corresponding projectors by Pinst :T��y�
* M→Cinsto

��y� and
inst :T��y�

* M→Ann�dy��
y
inst��, one has the following result.

Proposition 4.7: Let �M ,H ,C� be a nonholonomic Hamiltonian system and let Cinst be a set of
nstantaneous affine constraints along a hypersurface N�M. Then, for u�Ty

*M, there is a unique
nstantaneous focusing point given by F�H,Cinst,N��u�= �Pinst�u�+Qinst��y

inst�	.

. Constrained characteristics

Consider then a partial symplectic structure �= �
 ,�� on a manifold C which is transversal to
hypersurface B�C �cf. Definition 2.5�. Let 
0 denote the linear distribution associated with 
.
or each y�B, consider the linear space V=
y

0, the hyperplane W=
y
0�TyB of V and the non-

egenerate skew-symmetric form b= ��y�
y
0. The characteristic direction at y�B is defined as

ly = ly��,B� = ker �b�W = ker���y�
y
0�TyB� � 
y

0 � TyB .

he proof of the following result is straightforward.
Lemma 4.8: Given a partial symplectic structure �= �
 ,�� on a manifold C and a hypersur-

ace B�C transversal to it, the distribution y� ly�� ,B� is one dimensional.
Definition 4.9: Given a partial symplectic structure �= �
 ,�� on C and a hypersurface B�C

ransversal to it, y� ly�� ,B� is called the characteristic distribution with respect to �� ,B�, and its

ntegral curves, denoted by �, are the �� ,B�-characteristics.
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We are particularly interested in the case when we have a nonholonomic Hamiltonian system

= �M ,H ,C�, the partial symplectic structure � is �H,C, N is a hypersurface in M and B̃=TN
* M,

=TN
* M �C. We will use the terminology �S �N�-or �H ,C �N�-characteristic as a substitute for

� ,B�-characteristic. It should be emphasized that �H ,C �N� characteristics are only defined when
is transversal to N �see Sec. III A�.

In the absence of constraints, i.e., when �C=T*M, �=�� is a symplectic manifold, and 
 is
he trivial distribution y�TyC on C, the characteristic curves are precisely the characteristics
ntroduced in Ref. 6. We will refer to nonconstrained characteristics and constrained character-
stics when it is necessary to distinguish between the unconstrained and the constrained cases.

Remark 4.10: Just as nonconstrained characteristics play a key role in describing holonomic
lastic collisions, and reflection and refraction phenomena of rays of light,6,34 the constrained
haracteristics will be fundamental in describing the “elastic part” of nonholonomic impulsive
henomena. What is meant by “elastic part” will become clear in Sec. IV E when describing
ecisive points.

If the constraints C are affine, then the �H ,C �N�-characteristics passing through a point y
C, ��y��N, is described in a particularly simple way. Namely, following Proposition 3.3, it is

ot difficult to see that the �H ,C �N�-characteristic passing through y is given by

�y = y + C��y�
0 � Ann�dy�H�C0� � T��y�N� ,

ith C0 being the linear codistribution associated to C. In particular, in the absence of constraints,
=T*M and the characteristics are straight lines in Tx

*M parallel to Ann�TxN�, x�N.

. In, out and trapping points

Here, we first introduce some concepts concerning the behavior of a vector field in a neigh-
orhood of the boundary of its supporting manifold. We then discuss the notions in, out and
rapping points.

Let Q be a manifold with boundary and X a vector field on Q. A point y��Q is called a jth
rder in point for X if there exists a trajectory of X, � : �0,a�→Q, a�0 such that

y = ��0� and ��t� � �Q for 0 � t � a ,

nd � is jth order tangent to �Q at y. A jth order out point for X is a jth order in point for −X. In
he dynamical context we have in mind, in and out points of 0th order are the most important. It
s easy to see that y��Q is a 0th order in point �respectively, out point� for X if the vector Xy is
ransversal to �Q and directed inside �respectively, outside� of Q. A point that lies on a trajectory
f X which is entirely contained in �Q is called a trapping point for X.

Let �Qj =�Qj�X� denote the subset of all points of �Q where X is jth order tangent to �Q, and
Q�

j =�Q�
j �X� �respectively, �Q�

j =�Q�
j �X�� the set of all jth order in points �respectively, out

oints� for X. Note that �Qj ��Qj+1 and

�Qj \ ��Q�
j � �Q�

j � � �Qj+1. �6�

n a generic situation, �Qj is a submanifold �with singularities� of codimension j in �Q, which is
ivided by �Qj+1 into two parts, �Q�

j \�Q�
j+1 and �Q�

j \�Q�
j+1. An analytical description of the

revious discussion is obtained by choosing a smooth function f on Q with f�0 and dzf �0, for
ll z��Q such that �Q= �f =0	 �which always exists locally�. Then

�Qj = �z � Q�f�z� = 0,X�f��z� = 0, . . . ,Xj�f��z� = 0	 ,

�Q�
j \ �Q�

j+1 = �Qj � �z � Q�Xj+1�f��z� � 0	 ,

j j+1 j j+1
�Q� \ �Q� = �Q � �z � Q�X �f��z� � 0	 .
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he vector field X is said to be regular with respect to �Q when the inclusion in Eq. �6� is an
quality for all j�0. This is a generic property of vector fields. In such a case, the chain of
nclusions

�Q = �Q0 � �Q1 � ¯ � �Qj � ¯ � �Qn

s a stratification of �Q whose strata are �Q�
j \�Q�

j+1 and �Q�
j \�Q�

j+1. Note also that the set of
rapping points precisely corresponds to �Qn.

Consider now a discontinuous nonholonomic Hamiltonian system �M ,H ,C �N� and the cor-

esponding cutting-up �M̂ ,��. Then we can resort to the previous discussion with the manifold

= Ĉ�T*M̂ and the vector field X=XĤ,Ĉ. Recall that N̂��M̂ and �Ĉ= Ĉ�T
�M̂

*
M̂.

Definition 4.11: Let S= �M ,H ,C �N� be a discontinuous nonholonomic system and denote by

M̂ ,�� the associated cutting-up. A point y�TN
* M is called an in point �respectively, an out point�

f S if there exists z�TN̂M̂ such that y=��z� and z is an in point (respectively, an out point) of

Ĥ,Ĉ with respect to �Ĉ.

By definition, the map T*� restricted to �Ĉ is an immersion. A point in TN
* M may turn out to

e an in and an out point at the same time. To resolve this ambiguity, the branch of T*� to which
uch a point belongs must be taken into consideration. This distinction is easily described in the
ase when N divides M into two parts. In fact, in this case the system �M ,H ,C �N� may be viewed
s a couple of nonholonomic Hamiltonian systems �M± ,H± ,C±�, with the common boundary
M±=N, and where H±�C��M±� and C±�M± �cf. Sec. III C�. An in �respectively, out, or trap-
ing� point of the vector field XH+,C+

with respect to the boundary �C+ is called a plus-in �respec-
ively, plus-out, or plus-trapping� point. Analogous definitions are established for �=−. In this
ay, the notions of plus-in point, minus-in point, etc., introduced in Ref. 6 for the unconstrained

ituation are generalized to the constrained case. Finally, we observe that N always divides M
ocally, and therefore the previous discussion is always valid locally.

. Decisive points

At this point, we are ready to introduce the key notion of decisive point corresponding to an
ut point. The construction of decisive points depends on two elements: first, the mode �elastic or
nelastic� in which the system passes through the critical state and, second, the continuity and
ifferentiability properties of the Hamiltonian. Below, we will limit our discussion to the two most
elevant situations, just to avoid not very instructive technicalities arising in the most general
ontext. The first one is the case when the Hamiltonian is smooth and only the constraints are
iscontinuous along the critical hypersurface. The second one concerns discontinuous Hamilto-
ians and not necessarily discontinuous constraints. It is worth stressing that the first situation
annot be considered as a particular case of the second one, i.e., that the notion of a decisive point
s not “continuous” in this sense. In what follows, �� �+,−	 and �̄ stands for the opposite sign to
. Throughout the section, instantaneous constraints are assumed to be regular.

. Elastic mode: change of constraints

Here, we deal with a discontinuous nonholonomic system �M ,H ,C �N�, where the Hamil-
onian function is smooth, H�C��M�.

Definition 4.12 (Decisive points for smooth Hamiltonians and discontinuous constraints): Let
M ,H ,C �N� be a regular discontinuous nonholonomic system, with H�C��M� and consider a set
f instantaneous constraints Cinst along N. Let y be an �-out point of the system. A sequence
yi ,�i�, i=0,1 , . . . ,k, with yi�C�TN

* M is called �y ,��-admissibleif it verifies the following con-

itions:

                                                                                                            



�
�

�
�

s

i
f
O
p
i
i

2

s
t
c

H

�

H

�̄

�
r

t
L

�
�
�

H

l
p

s
i
p

b

042905-15 Hamiltonian theory of constrained impulsive motion J. Math. Phys. 47, 042905 �2006�

                        
i� �y0 ,�0�= �y ,��,
ii� for all i�k, yi+1 is a focusing point for yi with respect to either C�i+1

inst or, if instantaneous
constraints are absent, C�i+1

,
iii� yi is an �i-out point for all i�k and yk is either an �k-in point or an �k-trapping point,
iv� the sequence of signs ��i	 alternates, i.e., �i+1= �̄i.

The endpoint of an �y ,��-admissible sequence, �yk ,�k�, is called �y ,��-decisive and the con-
trained Hamiltonian vector field XH,C�k

is referred to as the vector field corresponding to it.

Remark 4.13: The above formal description of decisive points is equivalent to the following
terative procedure. Take, for instance, a plus-out point y. Then, according to Definition 4.12, all
ocusing with respect to C�̄

inst �respectively, to C�̄� minus-in and minus-trapping points are decisive.
n the other hand, the procedure continues by restarting from any of the remaining focusing
oints that are minus-out points, and so on. In some situations, this process may turn out to be
nfinite. At the present time, however, it is not clear whether that kind of phenomena can occur, say
n propagation of singularities or similar processes.

. Elastic mode: discontinuous Hamiltonians

In this case, decisive points are constructed on the basis of an iterative procedure whose single
teps are either of reflective or of refractive type, as described below. Consider a regular discon-
inuous noholonomic system S= �M ,H ,C �N�, which might be subject to additional instantaneous
onstraints Cinst along N. Let y�C�TN

* M be an �-out point.
Reflective step:
First move: yÞz, where z is a point in the constrained characteristic �y�H� ,C�� such that

��z�=H��y�.
Second move: zÞu, where u is a focusing point for z with respect to either C�

inst or, if
-instantaneous constraints are absent, C�.

Refractive step:
First move: yÞz, where z is a point of the constrained characteristic �y�H� ,C�� and such that

�̄�z�=H��y�.
Second move: zÞu, where u is a focusing point for z with respect to either C�̄

inst or, if
-instantaneous constraints are absent, C�̄.

With a slight abuse of language, we shall say that �y ,�� is the initial point of the step and
u ,�� �respectively, �u , �̄�� is the endpoint of the step if the scenario is reflective �respectively,
efractive�.

Definition 4.14 (Decisive points for discontinuous Hamiltonians): Consider a regular discon-
inuous nonholonomic system �M ,H ,C �N�. Let Cinst be a set of instantaneous constraints along N.
et y be an �-out point. A sequence �yi ,�i�, i=0,1 , . . . ,k, is called �y ,��-admissible if

i� �y0 ,�0�= �y ,��,
ii� �yi ,�i� and �yi+1 ,�i+1� are the initial and the endpoints of a step, respectively,
iii� yi is an �i-out point, 0� i�k, and yk is an �k-in point or an �k-trapping point.

The endpoint �yk ,�k� of an admissible sequence is called �y ,��-decisive and the constrained
amiltonian vector field XH,C�k

is referred to as the vector field corresponding to it.

If the Hamiltonian is discontinuous and the constraints are linear, i.e., C�T*M is a smooth
inear submanifold, and the instantaneous constraints are absent, the previous definition of decisive
oints becomes much simpler, as the following result shows.

Proposition 4.15: Let �M ,H ,C �N� be a regular discontinuous nonholonomic Hamiltonian
ystem with smooth linear constraints. Let y be an �-out point. The �y ,��-decisive points are the
n and the trapping points belonging to the intersection of the constrained characteristic �y

assing through y with the set �z�C �H±�z�=H��y�	.
Proof: Let y be an �-out point and denote by �z1 , . . . ,zs	 �respectively, �z̄1 , . . . , z̄s̄	� the points
elonging to the intersection of the constrained characteristic �y passing through y with the set
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z�C �H��z�=H��y�	 �respectively, with �z�C �H�̄�z�=H��y�	�. Since the constraints are smooth,
hen u=z in the second move of both a reflective and a refractive step. Now, for any j

�1, . . . ,s	, the intersection of the constrained characteristic passing �zj
through zj with the set

z�C �H��z�=H��zj�	 �respectively, with �z�C �H�̄�z�=H��y�	� is again �z1 , . . . ,zs	 �respectively,
z̄1 , . . . , z̄s̄	�. The same observation holds for any z̄ j, j� �1, . . . , s̄	. The result now follows from
efinition 4.14. �

Remark 4.16: The introduced terminology remains valid for nonholonomic systems with
oundary �cf. Remark 3.7�. In such a case, one must formally set

M− = 0” , M+ = M, N = �M, H− = �, H+ = H .

his type of geometric data occurs in describing various collision phenomena.

. Inelastic mode: change of constraints

As in the elastic case, we first deal with the case when the Hamiltonian H is smooth. We treat
n inelastic behavior of the system as the passage under the control of either the instantaneous
iscontinuous nonholonomic system or, if instantaneous constraints are absent, the discontinuous
oundary system. In this and subsequent sections, the following shorthand notation will be used
cf. Secs. III B and III C�:

C�
inst,tr = C�

inst � �H�

−1�TN�, X�
inst,tr = X�H�,C

�
inst,tr,N�,

C�
tr = C��N,H��, X�

tr = X�H�,C�,N�
tr .

e also use this notation when the Hamiltonian H is smooth, i.e., H±=H.
Definition 4.17 (Decisive points for smooth Hamiltonians and discontinuous constraints):

onsider a regular discontinuous nonholonomic system �M ,H ,C �N�. Let Cinst be a set of instan-
aneous constraints along N. Let y be an �-out point. An �y ,��-decisive point is a focusing point
or y with respect to either C�

inst,tr or, if the instantaneous constraints are absent, C�̄
tr. The con-

trained Hamiltonian vector field X�̄
inst,tr, respectively, X�̄

tr is referred to as the corresponding vector
eld.

. Inelastic mode: discontinuous Hamiltonians

As in the elastic case, decisive points are constructed on the basis of reflective or refractive
teps, as we now describe.

Reflected falling step:
First move: yÞz, where z is a point of the constrained characteristic �y�H� ,C�� such that

��z�=H��y�.
Second move: zÞu, where u is a focusing point for z with respect to either C�

inst,tr or, if
-instantaneous constraints are absent, C�

tr.
Refracted falling step:
First move: yÞz, where z is a point of the constrained characteristic �y�H� ,C�� such that

�̄�z�=H��y�.
Second move: zÞu, where u is a focusing point for z with respect to C�̄

inst,tr or, if
-instantaneous constraints are absent, C�̄

tr.
We shall refer to �u ,�� �respectively, �u , �̄�� as a reflected �respectively, refracted� falling

oint.
Definition 4.18 (Decisive points for discontinuous Hamiltonians): Consider a regular discon-

inuous nonholonomic system �M ,H ,C �N�. Let Cinst be a set of instantaneous constraints along N.
et y be an �-out point. An �y ,��-decisive point is a falling point for y. The vector field X�

inst,tr

respectively, X�
trif C�

inst=�� is called the vector field corresponding to a reflected falling point. The
ector field X�

inst,tr �respectively, X�̄
tr if C�

inst=�� is called the vector field corresponding to a

efracted falling point.
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. Transition principle

From a physical point of view, the transition principle formulated below is an explicit descrip-
ion of the discontinuity of a trajectory of a regular nonholonomic Hamiltonian system S that
ccurs when it traverses a critical state. Such a discontinuity is interpreted as an impact, collision,
eflection, refraction, etc., depending on the physical situation modeled by the system S. From a
athematical point of view, the transition principle corresponds to the definition of the trajectory

f a regular discontinuous nonholonomic Hamiltonian system.
The elastic or inelastic character of the impulsive motions of an specific physical system must

e taken into account when defining the trajectories. Accordingly, there are two different versions
f the transition principle that distinguish between the two situations. Let S= �M ,H ,C �N� stand for
regular discontinuous nonholonomic system and let Cinst be eventual instantaneous constraints

mposed on S along N. Let �M̂ ,�� be the associated cutting-up of M along N �cf. Sec. III C�. The

egular part of a trajectory of the system Ŝ= �M̂ , Ĥ , Ĉ� is the part of the trajectory of the Hamil-

onian vector field XĤ,Ĉ that lies outside �M̂. The regular part of a trajectory of S is the image by

of the regular part of the corresponding trajectory of Ŝ. At least locally, the regular part may be
iewed as a piece of the trajectory of the vector field XH�,C�

that lies outside the hypersurface TN
* M.

Transition principle: Let S= �M ,H ,C �N� be a regular discontinuous nonholonomic system
nd let Cinst be eventual instantaneous constraints on S along N. If a regular trajectory of the
ector field XH�,C�

, �=± reaches the critical hypersurface TNM at a point y, it then continues its
otion from any �y ,��-decisive point according to the chosen mode, elastic or inelastic, under the

ontrol of the corresponding constrained Hamiltonian vector field.
Some features of the transition principle are worth mentioning. First of all, it prescribes a

plitting of the trajectory when the number of decisive points is greater than one. Of course, it is
ifficult to imagine that a true mechanical system “goes into pieces” when reaching the critical
ypersurface. But it may perfectly happen when a Hamiltonian system describes the propagation
f singularities in a field or a continuum media. A classical example one finds in geometrical
ptics when a light ray passing from one optic medium to another splits into reflected and re-
racted rays �see, for instance, Ref. 34�. The trajectory may also be trapped by the critical hyper-
urface. This happens when an “impact” state y possesses no y-decisive points.

. MECHANICAL SYSTEMS

In this section, we particularize the preceding discussion to mechanical systems subject to
ffine constraints. Let g be a Riemannian metric on M and V�C��M�, and consider the mechani-
al system whose kinetic energy and potential function are T�q ,v�= 1

2g�v ,v� and V, respectively.
he corresponding Lagrangian function is L�q ,v�=T�q ,v�−V�q� and the Hamiltonian one is

H�q,p� = T̂�q,p� + V�q� , �7�

here T̂�q , p�= 1
2G�p , p�, and G is the cometric, i.e., the metric on the cotangent bundle induced by

. In a local chart qa on M, the local expressions of g and G are

g = gab dqa
� dqb, G = gab �

�qa �
�

�qb .

n the mechanical case, the Legendre transform LL :TM→T*M is a linear bundle mapping whose
ocal description is LL�qa , q̇a�= �qa ,gabq̇b�.

Consider an affine distribution C=C0+Y in T*M determining some nonholonomic constraints
n the system �M ,H�. The linearity of �H=LL

−1 implies that the space �H�C�=�H�C0�+�H�Y� is a
istribution of affine spaces on M, or otherwise said, that �H�C0� is a linear distribution on M.
hroughout this section, we will often resort to the shorthand notation D=�H�C0� and �

* 0
�H�Y�. Now, it is easy to verify that TqM =Cq � Ann�D�q, with associated projectors
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Pq:Tq
*M → Cq

0, Qq:Tq
*M → Ann�D�q, q � M .

et �1=�1� dqa , . . . ,�m=�ma dqa be 1-forms such that �locally� Ann�D�=span��1 , . . . ,�m	. De-
ne the local function �i0 :M→R by �i0�q�=−�i���q��. Then �H�C� is locally defined by the
quations

�ia�q�q̇a + �i0�q� = 0, 1 � i � m .

ow, consider the matrices

G = �gab�, J = ��ia�, B = JG−1Jt. �8�

rom the discussion after Proposition 3.1, recall that �
H,C ,�C� is a partial symplectic structure if
nd only if ��H�C is an immersion, or, equivalently, if the compatibility condition is verified.
ollowing Ref. 12, the latter is equivalent to the matrix B being invertible. A direct computation
ives the following local expression for the projectors P and Q:

P�x� = x − Q�x�, Q�x� = JtB−1JG−1x, x � T*M .

inally, let N�M be a hypersurface and assume that the nonholonomic system S= �M ,H ,C� is
ransversal to N. Consider also a set of instantaneous nonholonomic linear constraints Cinst

�Cinsto ,�Cinst� imposed on S along N. Note that Tq
*M =Cq

insto
� Ann�Dinst�q, with associated pro-

ectors

Pq
inst:Tq

*M → Cq
insto, Qq

inst:Tq
*M → Ann�Dinst�q, q � N .

. Focusing points

Since the mechanical system is subject to an affine distribution of constraints, Proposition 4.5
mplies that for a given u�T*M, the focusing locus is F�H,C��u�= �P�u�+Q���	. Regarding the
nstantaneous focusing points, according to Proposition 4.7 one has that F�H,Cinst,N��u�= �Pinst�u�
Qinst��Cinst�	.

. Constrained characteristics

Here we give an explicit description of the characteristic curves. Let N be the critical hyper-
urface, and assume that �locally� N= f−1�0�, with f �C��M� verifying that dqf �0 for all q�N.
onsider the convector field P�df� along N defined as q�P�df�q=Pq�dqf�, q�N. The transver-

ality assumption between C and N implies that P�df�q�0, for all q�N. Clearly P�df��C0. In
ddition, for v�D�TN,

P�df��v� = �df − Q�df���v� = df�v� = 0,

nd one can conclude that C0�Ann�D�TN�=span�P�df�	. Therefore, we have the following
esult.

Lemma 5.1: The constrained characteristic of a mechanical system �M ,H ,C �N� passing
hrough y�C�TN

* M is given by �y =y+span�P�d��y�f�	�C�TN
* M.

Note that in the absence of constraints one recovers the standard nonconstrained characteristic

y =y+span�d��y�f	 passing through y.

. Decisive points: elastic mode

. Change of constraints

Let C±�T*M be two affine constraint submanifolds. Denote by P± and Q± the projectors
*
orresponding to C± and the cometric G. Let y�C��TNM be a �-out point, �� �+,−	. Then,
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ccording to Definition 4.12, an y-admissible sequence, �yi ,�i�, i=0,1 , . . . ,k, is necessarily of the
orm yi+1=P�i+1

�yi�+Q�i+1
��C�i+1

�. If instantaneous constraints are present, then one must use the

rojectors P�
inst and Q�

inst instead of P� and Q�, respectively.
Remark 5.2: Mechanical systems subject to generalized constraints are also treated in Ref. 16

n a somehow different context. The approach taken there makes use of generalized �i.e., noncon-
tant rank� codistributions defining the nonholonomic constraints and a generalized version of
ewton’s second law. Under appropriate regularity conditions, it can be seen that the post-impact
oint in Ref. 16 is a decisive point of the Hamiltonian system according to Definition 4.12.

. Discontinuous Hamiltonian systems

Let C±�T*M be two affine constraint submanifolds. Let g± be a Riemannian metric on M±

nd V±�C��M±� such that

H±�q,p� = T̂±�q,p� + V±�q�, T̂±�q,p� = 1
2G±�p,p� . �9�

or simplicity, we only treat the case V±= �V�M±
, V�C��M�. We denote by P± and Q± the pro-

ectors corresponding to C± and the cometric G±. Additionally, let C±
inst�TN

* M be affine constraint
ubmanifolds corresponding to some instantaneous constraints imposed along N. Denote by P±

inst

nd Q±
inst the projectors corresponding to C±

inst and the cometric G±.
Let y�C��TN

* M be an �-out point. Following Definition 4.14, we first describe the reflective
nd refractive steps with initial point �y ,��. According to Lemma 5.1, we must look for points of
he form

x = y + cP��dqf�, q = ��y� ,

or some c, which in addition belong to the same H-energy level as y.
Reflective step: Concerning the first move, note that y+cP��dqf� and y belong to Tq

*M. Then,

he equality H��y+cP��dqf��=H��y� implies that T̂��y+cP��dqf��= T̂��y�. Now,

T̂��y + cP��dqf�� = T̂��y� + cG��y,P��dqf�� +
c2

2
G��P��dqf�,P��dqf�� ,

nd, therefore, we have

c�G��y,P��dqf�� +
c

2
G��P��dqf�,P��dqf��� = 0,

ith solutions

c�,1 = 0, c�,2 = −
2G��y,P��dqf��

G��P��dqf�,P��dqf��
. �10�

An important property of these points is contained in the following lemma.
Lemma 5.3: Let y�C��TN

* M and c�,2 be the constant given by �10�. Then,

G��y,dqf� = G��P��y� + Q���q�,dqf� ,

G��y + c�,2P��dqf�,dqf� = G��− P��y� + Q���q�,dqf� .

Proof: The first statement follows by noting that if y�Cq, then y=P��y�+Q���q�. For the

econd one, notice that
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G��y + c�,2P��dqf�,dqf� = G��y,dqf� + c�,2G��P��dqf�,P��dqf�� = G��y,dqf − 2P��dqf��

= − G��P��y�,P��dqf�� + G��Q��y�,dqf� = G��− P��y� + Q���q�,dqf� ,

hich gives the desired result. �

The second move simply consists of determining the focusing points for points �10� with
espect to C�

inst or, if � instantaneous constraints are absent, with respect to C�. This is done in
erms of the corresponding projectors, exactly as explained in Sec. V A above.

Refractive step: Concerning the first move, the equality H�̄�y+cP��dqf��=H��y� implies
ˆ
�̄�y+cP��dqf��= T̂��y�. Now,

T̂�̄�y + cP��dqf�� = T̂�̄�y� + cG�̄�y,P��dqf�� +
c2

2
G�̄�P��dqf�,P��dqf�� .

herefore, one has

c�G�̄�y,P��dqf�� +
c

2
G�̄�P��dqf�,P��dqf��� + T̂�̄�y� − T̂��y� = 0,

ith solutions i=1,2,

c�̄,i =
1

G�̄�P��dqf�,P��dqf��
�− G�̄�y,P��dqf��

± 
G�̄�y,P��dqf��2 − 2G�̄�P��dqf�,P��dqf���T̂�̄�y� − T̂��y��� . �11�

As before, the second move simply consists of computing the focusing points for the solutions
11� with regards to C�̄

inst or, if �̄-instantaneous constraints are absent, C�̄. This is done in terms of
he corresponding projectors according to Sec. V A.

Discontinuous Hamiltonian systems with smooth constraints: In this situation, there is a single
onstraint submanifold C, and a discontinuous Hamiltonian H± on T*M. Denote by P± and Q± the
rojectors corresponding to C and the cometrics G±, respectively. According to Proposition 4.15,
he decisive points for a given �-out point y�C�TN

* M are simply the in and trapping points
elonging to the intersection of the constrained characteristic �y passing through y with the set
z�C �H±�z�=H��y�	. Therefore, as candidate �-decisive points we have the solution correspond-
ng to c�,2 in �10�, and as candidate �̄-decisive points we have the solutions corresponding to c�̄,i,
=1 ,2, in �11�.

Proposition 5.4: Let y�C��TN
* M be a �-out point. If the constraints are linear, C=C0, then

he solution corresponding to c�,2 in �10� is a �-decisive point for y.
Proof: The basic observation is the second order character of the dynamics, both in the

resence and in the absence of nonholonomic constraints. This implies that for any y�T*M and
ny distribution of affine constraints C, we have XH�f��y�=XH,C�f��y�, since f is only a function of
he configurations. Note that if H is of mechanical type, then XH�f��x�=G�x ,dqf�, for any x

Tq
*M. Now, from Lemma 5.3, taking H=H�, one gets

G��y + c2P��dqf�,dqf� = − G��y,dqf� .

ince y is a �-out point, then G��y ,dqf��0. Consequently, XH+
�f��y+c2P+�dqf��=−G+�dqf ,y� has

he opposite sign, and hence it is an in point. �

. Decisive points: inelastic mode

. Change of constraints

Let C±�T*M be two affine constraint submanifolds and let Cinst be a set of instantaneous
ffine constraints. We denote by P±

inst and Q±
inst the projectors corresponding to C±

inst and the

ometric G. If the instantaneous constraints are absent, denote by P± and Q± the projectors
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orresponding to C±
tr and the cometric G. Let y�C��TN

* M be a �-out point, �� �+,−	. Then,
ccording to Definition 4.17, the unique y-decisive point is P�̄

inst�y�+Q�̄
inst��C�̄

� �or, if there are no

nstantaneous constraints, P�̄�y�+Q�̄��C�̄
��.

. Discontinuous Hamiltonian systems

As in Sec. V C 2, let C±�T*M be two affine constraint submanifolds, g± a Riemannian metric
n M± and V±�C��M±� such that Eq. �9� is verified. For simplicity, we only treat the case V±

�V�M±
, V�C��M�. We denote by P± and Q± the projectors corresponding to C± and the cometric

±. Additionally, let C±
inst�TN

* M be affine constraint submanifolds corresponding to some instan-
aneous constraints imposed along N. We denote by P�

inst,tr and Q�
inst,tr the projectors associated

ith the submanifold C�
inst,tr and the cometric G�. In the absence of instantaneous constraints, we

enote by P�
tr and Q�

tr the projectors associated with the submanifold C�
tr and the cometric G�. In

ase N=�M, we denote the latter with the superscript “�” instead of “tr.”
Let y�C��TN

* M be an �-out point. The points associated with y resulting from the first
oves in a reflected or a refracted falling step are given, respectively, by Eqs. �10� and �11�. As

efore, the second move simply consists of computing the focusing points for these solutions with
espect to C�

inst,tr for a reflected falling step �respectively, C�̄
inst,tr for a refracted falling step� or, if

he instantaneous constraints are absent, C�
tr �respectively, C�̄

tr�. This is done in terms of the corre-
ponding projectors according to Sec. V A. According to Definition 4.18, this gives all the

y-decisive points.
Proposition 5.5: Let y�C��TN

* M be an �-out point and assume that the constraints are
inear. For N=�M, the unique y-reflected falling point is given by P�

inst,��y� �or, in the absence of
-instantaneous nonholonomic constraints, P�

��y��.
Proof: From the previous discussion, we know that the points in the constrained characteristic

assing through y with the same H�-energy level are y itself and y+c�,2P��dqf�, q=��y� �cf. Eq.
10��. Now, note that dqf belongs to the G�-orthogonal complement of �H�

−1�T��M��, i.e.,

G��dqf ,�� = dqf��H�
���� = 0, � � �H�

−1�T��M�� .

sing the equality C�
� =C���H�

−1�T��M��, we have that dqf ��H�

−1�T��M���� implies

�
inst,��P��dqf��=0 and P�

��P��dqf��=0. The result is then a consequence of Definition 4.18. �

. Energy behavior

In this section, we discuss the consequences regarding the energy behavior of the system that
esult from the application of the transition principle.

Lemma 5.6: Given y�TN
* M, let x=P�y�+Q��q�, q=��y�, be the associated y-focusing point

ith respect to a submanifold C�T*M. Then

T̂�x� � T̂�y� + T̂�Q��q�,Q��q�� ,

nd the equality holds if and only if y belongs to C0.
Proof: Note that

G�P�y� + Q��q�,P�y� + Q��q�� = G�P�y�,P�y�� + G��Q��q�,Q��q���

� G�P�y�,P�y�� + G�Q�y�,Q�y�� + G�Q��q�,Q��q��

= G�y,y� + G�Q��q�,Q��q�� ,

here we have used that G is positive-definite, and the fact that C0 and Ann�D� are orthogonal
paces with respect to the cometric G. If the equality holds, then G�Q�y� ,Q�y��=0, which is

0
quivalent to y�C . �
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As a consequence of this simple lemma we can conclude that in the case of linear constraints
he transition principle always implies a loss of energy. This is a suitable generalization to con-
trained systems of the classical Carnot theorem for systems subject to impulsive forces.36

Theorem 5.7 (Carnot’s theorem for generalized linear constraints): Suppose that the
amiltonian system is subject to nonholonomic constraints given by a linear distribution. Then the

ransition principle implies always a loss of energy as the result of an “impact.”

Proof: Under linear constraints, note that �=0. From Lemma 5.6, we get T̂�x�� T̂�y� with

�H,C��y�= �x	. The result now follows from the formulation of the transition principle and the
efinitions of decisive points in Sec. IV E �cf. Definitions 4.12–4.18�. �

Under linear constraints, the trajectory of the system maintains the same energy level after the
pplication of the transition principle in the following cases:

i� when the decisive points are determined according to Definitions 4.12 and 4.17 and the
impact point y�TN

* M belongs to C+�C−; and
ii� when the constraints are smooth, and therefore the decisive points are determined according

to Proposition 4.15.

If the decisive points are determined according to Definitions 4.14 and 4.18, then nothing can
e said in general. The refractive steps will typically imply an energy decrease.

Remark 5.8: This type of energy arguments also allows to discard as follows the possibility of
hattering when computing the y-decisive points if the constraints change �see Definition 4.12 and
emark 4.13 above�. Let N= �y�T*M � f�y�=0	. Assume there is an infinite y-admissible sequence

yi ,�i�, i=0, . . . ,�. For each i, we have that yi�yi+1, since otherwise

XH,C�i+1

l �f��yi+1� = XH
l �f��yi+1� = XH,C�i

l �f��yi� for all l ,

hich together with the fact that yi is a �i-out point, implies that yi+1 is a �i+1-in point. The latter
ontradicts the definition of admissible sequence. As a consequence of Lemma 5.6, we then have

T̂�y0� � T̂�y1� � T̂�y2� � ¯ � T̂�yi� � 0.

he limit of this sequence is zero, which implies that the y-decisive point corresponding to such
sequence would be 0, that is, the trajectory would get stuck when reaching N.

. Integrable constraints

The integrability of the constraints simplifies the application of the transition principle. Con-
ider, for instance, the situation when the mechanical system is unconstrained on M− and is subject
o some generalized linear constraints C=C0 on M+ that turn out to be holonomic, i.e., �H�C0�
D is integrable. Denote by �S�	, � being an m-dimensional parameter, the foliation of M+

nduced by D. Locally this foliation is described by m functions f i�C��M� such that

q � S� Û f i�q� = �i, 1 � i � m .

similar situation has been treated in Ref. 35 in the context of totally inelastic collisions �note,
owever, that in Ref. 35 the integrable distribution is defined only on N, whereas here D is defined
n M+�. The integrable constraints imposed by D can be interpreted as an abrupt reduction of the
hase space of the mechanical system.

By definition, one has that Ann�D�=span�df1 , . . . ,dfm	. The matrix J in �8� is then given by
= ��f i /�qa� and the projector P is P�x�= �1−JtB−1JG−1�x. Let y�C−�TN

* M be the impact state
f a trajectory q�t� coming from M−. From the discussion in Sec. V C, we obtain that the unique
ocusing point associated to y is x= �1−JtB−1JG−1�y. The trajectory will continue its motion in M+,

M− or N depending on the in/out/trapping character of the focusing point x. If it evolves in M+

more precisely, in S��M+ with � such that x�S��, we call it the refraction of the original

rajectory. If it evolves in M−, we call it the reflection of the original trajectory.
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I. EXAMPLES

In this section we consider four examples to illustrate the theory exposed above. They all
resent the example of a rolling sphere considered in various constrained situations. The first one
s taken from Ref. 16 and is treated here in order to provide a further comparison with previous
pproaches. The second one combines the presence of smooth nonholonomic constraints with
iscontinuous Hamiltonians and instantaneous constraints acting on the system along a hypersur-
ace. The third one consists of a ball rolling on a rotating surface whose angular velocity is
uddenly changed to a different value, and this is modeled via a discontinuous affine distribution
f constraints. Finally, the fourth one presents a two-wheeled system with a rod of variable length
nd illustrates the application of the transition principle in both the elastic and the inelastic modes.

. A rolling sphere

Consider a homogeneous sphere rolling on a plane. Assume it has unit mass �m=1� and let k2

e its inertia about any axis. Let �x ,y� denote the position of the center of the sphere and let
� ,� , � denote the Eulerian angles. The configuration space is therefore Q=R2�SO�3�. Assume
hat the plane is smooth if x�0 and absolutely rough if x�0 �see Fig. 1�. On the smooth
alf-plane, the motion of the sphere is assumed free, that is, the sphere can slip. On the rough
alf-plane, the sphere should roll without slipping due to the constraints imposed by the rough-
ess. We are interested in determining the eventual sudden changes in the trajectories of the sphere
hen it reaches the line separating the smooth and the rough half-planes.

The kinetic energy of the sphere is

T = 1
2 �ẋ2 + ẏ2 + k2��x

2 + �y
2 + �z

2�� , �12�

here �x, �y, and �z are the angular velocities with respect to the inertial frame, given by

�x = �̇ cos  + �̇ sin � sin  , �y = �̇ sin  − �̇ sin � cos  , �z = �̇ cos � +  ̇ .

The condition of rolling without sliding of the sphere when x�0 implies that the point of
ontact of the sphere and the plane has zero velocity

!1 = ẋ − r�y = 0, !2 = ẏ + r�x = 0,

here r is the radius of the sphere.
Following the classical procedure,30 we introduce quasicoordinates q1, q2, and q3 such that

˙1=�x, q̇2=�y, and q̇3=�z. The latter merely have a symbolic meaning in the sense that in the
resent example, for instance, the partial derivative operators � /�qi should be interpreted as linear
ombinations of the partial derivatives with respect to Euler’s angles. Also to the differential forms
qi one should attach the appropriate meaning, i.e., they do not represent exact differentials but,
nstead, we should read them as dq1=cos  d�+sin � sin  d�, etc.

The singular hypersurface N is defined by N= �x=0	. In this case, the constraints are linear and

FIG. 1. The rolling sphere on a special surface.
he nonholonomic distribution �H�C�=D on M+ is given by
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D�x,y,q1,q2,q3� = span�r
�

�x
+

�

�q2 ,− r
�

�y
+

�

�q1 ,
�

�q3� .

ere we are dealing with a single distribution which constrains the motion on M+.
In the following we compute the decisive points for this example. Let �C−�T*M be a

inus-out point. A direct computation shows that the expression of the projector P :T*M→C in
ocal coordinates is

P =
r2

r2 + k2 0 0
r

r2 + k2 0

0
r2

r2 + k2 −
r

r2 + k2 0 0

0
− rk2

r2 + k2

k2

r2 + k2 0 0

rk2

r2 + k2 0 0
k2

r2 + k2 0

0 0 0 0 1

� . �13�

herefore, the single focusing point for �TN
* M is given by x=P���C�TN

* M. If we denote
= �x0 ,y0 ,q0

1 ,q0
2 ,q0

3 , �px�0 , �py�0 , �p1�0 , �p2�0 , �p3�0� and x= �x ,y ,q1 ,q2 ,q3 , px , py , p1 , p2 , p3�, we get

px =
r2�px�0 + r�p2�0

r2 + k2 ,

py =
r2�py�0 − r�p1�0

r2 + k2 ,

p1 =
rk2�py�0 + k2�p1�0

r2 + k2 ,

p2 =
rk2�px�0 + k2�p2�0

r2 + k2 ,

p3 = �p3�0.

ote also that the focusing point with respect to C−=T*M associated with x is x itself. Therefore,
f x is a plus-out point, the only admissible sequence for  is �� ,−� , �x , + � , �x ,−�	. If x is either
plus-in or a plus-trapping point, then the only admissible sequence for  is �� ,−� , �x , + �	. The

set of plus-trapping points for the dynamics XH,C+
is ��T*M�n= ���T*M �x=0, px=0	. Conse-

uently, the trajectory is refracted, i.e., the sphere follows its motion on M+ under the dynamics

H,C+
�rolling without slipping� if px�0. Otherwise �i.e., if px�0�, the trajectory is reflected by

he “roughness” and continues in M− under the dynamics XH starting from x.

. A rolling sphere hitting a wall

This is a classical example13,20,30 that we treat here for the sake of completeness. Consider
gain a homogeneous sphere of radius r and unit mass. Assume that the sphere rolls without
liding on a horizontal table, and that at a certain instant of time it hits a wall determined by the
lane x=d�0 �cf. Fig. 2�. When this happens, the following constraint is instantaneously imposed

n the system:
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 = ẏ − r�z = 0.

herefore, we are in the situation explained in Remark 4.16. The configuration space of the system
s M =M+= �x�d	, with the boundary N= �x=d	, and the linear constraint submanifold C
C+�T*M is given by �H�C�=D,

D = span�r
�

�x
+

�

�q2 ,− r
�

�y
+

�

�q1 ,
�

�q3� .

he expression for the projector P :T*M→C is given by Eq. �13�. The submanifold giving the
nstantaneous constraints along N is

Cinst = � � C� ��H��� = 0	 .

he projector Pinst=P+
inst :T*M→Cinst is

Pinst�� =
rx + 2

r2 + k2 �	 dx + k2 dq2� +
− ry + 1 − 3

r2 + 2k2 �− 	 dy + k2 dq1 − k2 dq3� . �14�

Let = �x0 ,y0 ,q0
1 ,q0

2 ,q0
3 , �px�0 , �py�0 , �p1�0 , �p2�0 , �p3�0��C+�TN

* M �T*M be a plus-out point,
.e., G� ,dx��0. We first consider an elastic impact. Since H−=�, we only compute the outcome
f a reflective step. According to �10�, the points in the constrained characteristic passing through
within the same H+-energy level are

 and  + c+,2P�dx�, with c+,2 = − 2
r2 + k2

r2 �px�0.

he associated focusing points are given by

Pinst�� and Pinst�� + c+,2Pinst�P�dx�� . �15�

ote that Pinst�P�dx��=Pinst�dx�=P�dx�, and therefore the points in �15� belong to the same
onstrained characteristic and to the same H+-energy level. Denoting the coordinates of the point
inst�� by �x ,y ,q1 ,q2 ,q3 , px , py , p1 , p2 , p3�, we get

px = �px�0,

py =
�r2 + k2��py�0 + r�p3�0

2 2 ,

FIG. 2. A rolling sphere that eventually hits a wall.
r + 2k

                                                                                                            



f

q

b

P
s

C

w
a
w
i
i
a
s
a
s

t

T

w

042905-26 J. Cortés and A. M. Vinogradov J. Math. Phys. 47, 042905 �2006�

                        
p1 = − k2 �r2 + k2��py�0 + r�p3�0

r�r2 + 2k2�
,

p2 = k2 �px�0

r
,

p3 = k2 �r2 + k2��py�0 + r�p3�0

r�r2 + 2k2�
.

Now, notice that Pinst�� is a plus-out point, because G�Pinst�� ,dx�=G� ,dx��0. Therefore,
ollowing Proposition 5.4, we conclude that the sequence ��� , + � ,Pinst��+c+,2Pinst�dx� , + �	 is
-admissible, and Pinst��+c+,2Pinst�dx� is a decisive point. The other possible -admissible se-
uence corresponds to

��, + �,Pinst��,Pinst�� + c+,2Pinst�dx�,� + �	 ,

ut renders the same decisive point.
In the case of an inelastic impact, Proposition 5.5 yields that the unique -decisive point is

inst,���. After the impact, the ball continues its motion along the wall under the dynamics
pecified by the vector field X+

inst,�.

. A rolling sphere on a rotating table

Consider again a homogeneous sphere of radius r and unit mass. Assume that the sphere rolls
ithout sliding on a horizontal table which is rotating with certain constant angular velocity about
vertical axis through one of its points �see Fig. 3�. Let �− and �+ be two angular velocities. Here
e consider the following situation: each time the sphere reaches the hypersurface x=y, an

mpulsive force is exerted on the table to put it spinning with a different angular velocity. That is,
f the angular velocity of the table was �−, the force applied on its rotation axis changes it to �+

nd vice versa. We assume that �−��+. This can be modeled as thinking of a system which is
ubject to two different affine constraint distributions. In order for this model to be consistent, we
lso assume that the surface of the table is rough enough so that the sphere is rolling without
lipping at all times.

The Lagrangian is again given by Eq. �12�. The nonholonomic constraints are now affine in
he velocities,

ẋ − r�y = − �y, ẏ + r�x = �x .

he constraint space �H�C� is then described by

�H�C� = D + Y = span�r
�

�x
+

�

�q2 ,− r
�

�y
+

�

�q1 ,
�

�q3� + Y ,

FIG. 3. A rolling sphere on a rotating table.
here Y is the vector field defined by
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Y = − �y
�

�x
+ �x

�

�y
.

ote that the projection of �=LL�Y� to Ann�D� is given by

Q��� =
�k2

r2 + k2 �− y dx + x dy − xr dq1 − yr dq2� .

ollowing the discussion for the case of affine constraints, given y�T*M, the focusing point with
espect to C± is given by

x = P�y� + Q��±� ,

here P is the projector in �13�.
Assume that the sphere is rolling on the hyperplane M−= �x�y	 and that the constant angular

elocity of the table is �−. Consider the case when the sphere “hits” the hypersurface N= �x=y	
ith the impact state

 = �x0,y0,q0
1,q0

2,q0
3,�px�0,�py�0,�p1�0,�p2�0,�p3�0� � C− = C−

0 + �−.

enote the coordinates of the associated focusing point by

x = P�� + Q��+� = �x,y,q1,q2,q3,px,py,p1,p2,p3� .

hen

G�df ,x� = px − py = �px�0 − �py�0 +
k2

r2 + k2 �x0 + y0���− − �+� . �16�

iven that  is an minus-out point, we have that G�df ,�= �px�0− �py�0�0. If x0=y0�0, then the
econd term in �16� is also positive, and �� ,−� , �x , + �	 is the unique admissible sequence for . In
his case, x is the -decisive point. On the contrary, for certain values of x0=y0�0, it might
appen that G�df ,x� is negative, i.e., that x is a plus-out point. Now, note that the focusing point
ssociated with x is  itself, since

P�x� + Q��−� = P�P��� + Q��−� = P�� + Q��−� =  .

s a consequence, in this case there would not be any -decisive point. This problem stems from
he fact the modeling of this example as a system subject to affine constraints does not take into
ccount that the jump in the angular velocity of the table takes place no matter what. Therefore,
fter the impact, we should really regard C+ as the new set of affine constraints acting on the
hole configuration manifold. With this interpretation, x would obviously be a plus-in point �and
ence decisive�. In other words, the trajectory of the ball gets reflected back by the blow of the
reater velocity �+.

. A two-wheeled system with a rod of variable length

Consider a system composed of two wheels of different radii, r1�r2, connected by a massless
od of variable length � �see Fig. 4�. For simplicity, assume that the two-wheeled system moves
long a line, and that both the masses and the momenta of inertia of the wheels are unitary. The
heels are subject to the standard constraints of nonslipping. Assume that the length � of the rod

s constrained between a minimum length a and a maximum length b. Here we consider the
ollowing two situations: �i� when the length � of the rod becomes extreme, an elastic impact
ccurs; �ii� when the length � of the rod becomes extreme, an arresting device fixes it, and
herefore an inelastic impact occurs.
The Lagrangian of the system is given by the kinetic energy of the wheels
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L = 1
2 ��̇1

2 + �̇2
2 + ẋ1

2 + ẋ2
2� .

he conditions of rolling without sliding are encoded in the constraints

ẋ1 − r1�̇1 = 0, ẋ2 − r2�̇2 = 0,

hich, since we are considering the motion of the two-wheeled system only along a line, turn out
o be holonomic. The constraint on the length of the rod is given by

a � � = 
�r2 − r1�2 + �x2 − x1�2 � b .

ollowing Remark 4.16, we set M−=�, M+=M = ��x1 ,x2 ,�1 ,�2��R2�S1�S1 �a
��x1 ,x2 ,�1 ,�2��b	, with boundary set N=�M = ��x1 ,x2 ,�1 ,�2��R2�S1�S1 ���x1 ,x2 ,�1 ,�2�

a or ��x1 ,x2 ,�1 ,�2�=b	, and linear constraint submanifold C=C+�T*M given by �H�C�=D,

D = span�r1
�

�x1
+

�

��1
,r2

�

�x2
+

�

��2
� .

he expression for the projector P :T*M→C in local coordinates is given by the following matrix:

P =
r1

2

1 + r1
2 0

r1

1 + r1
2 0

0
r2

2

1 + r2
2 0

r2

1 + r2
2

r1

1 + r1
2 0

1

1 + r1
2 0

0
r2

1 + r2
2 0

1

1 + r2
2

� .

et �T*M+ be a plus-out point with ���=b and G� ,d���0. Since H−=�, we only compute
he outcome of a reflective step. Following Eq. �10�, the points in the constrained characteristic
assing through  with the same H+-energy level are  and +c+,2P�d��, with

c+,2 = −
2G�,P�d���

G�P�d��,P�d���
. �17�

ccording to Proposition 5.4, the point +c+,2P�d�� is "-decisive.
Consider now an inelastic impact, i.e., the case when the length � of the rod becomes fixed

fter the impact. Since there are no additional instantaneous constraints imposed on the system at
he impact state, we compute the decisive points with regards to the boundary of the constraint

FIG. 4. A two-wheeled system with a rod of variable length.
anifold,
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C� = C � �H+

−1 �T�M� = ��x1,x2,�1,�2,px1
,px2

,p�1
,p�2

� � T*M�px1
= px2

, px1
= r1p�1

, px2

= r2p�2
, ��x1,x2,�1,�2� = a or ��x1,x2,�1,�2� = b	 .

s before, we only compute the outcome of a reflective step. Following Proposition 5.5, we
educe that the unique decisive point is P���. After the inelastic impact, the length of the rod is
xed forever after, the velocities of the two wheels of the system are reset according to P��� and
volve according to X�H,C,N�

� .

II. CONCLUSIONS

We have developed a generalization of the transition principle to deal with impulsive regimes
n general nonholonomic systems, and particularized our discussion to the case of mechanical
ystems with affine constraints. We have also provided a geometric formulation of the dynamics of
onholonomic Hamiltonian systems via partial symplectic structures. Future work will be devoted
o the development of a suitable version of the transition principle for optimal control problems,
he comparison of quantitative and qualitative predictions made by the transition principle in
pecific examples, and the implementation of the results obtained here in numerical schemes for
mpulsive nonholonomic systems.
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In this paper we analyze the acoustic flow in periodic structures for general time-
dependent problems. Mathematically, the acoustic problem reduces to analysis of
the linearized Helmholtz equations of an ideal barotropic fluid in the neighbour-
hood of the stationary background flow. We show that in the linear approximation
stationary flows are generally unstable. Explicit unbounded solutions are deter-
mined and, in some cases, expressions for the general solution of the acoustic
problem are stated. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2192969�

. INTRODUCTION

In periodic structures such as water-air mixtures, the following phenomenon has been ob-
erved: due to special arrangement of the two materials, the speed of sound in the mixed structure
an drop drastically17 allowing for several possible applications, see, e.g., Refs. 5, 10, and 13. In
ef. 19, the Bloch theory of acoustic wave propagation in periodically arranged materials has been
xtended to include the case where a fluid flows in one of the two constituent media. The fluid
ow velocity has been assumed to be any function of the coordinates perpendicular to the direc-

ion of the flow, i.e., v0= �0,0 ,v0�x1 ,x2�� in Cartesian coordinates x1 ,x2 ,x3, while the acoustic
aterials have been arranged periodically perpendicular to the flow direction.

In this paper we analyze stability of acoustic flows in the general case of flow propagation
ith respect to the material periodicity and for general time-dependent problems. We consider two

ases: when the acoustic materials are arranged perpendicular to the flow direction �homogeneity
pplies along the flow direction�, and when the acoustic materials are arranged periodically also
long the flow direction.

Mathematically, the acoustic problem reduces to analysis of the linearized Helmholtz equation
f an ideal barotropic fluid �i.e., assuming fluid pressure to be a function of density only� in the
eighborhood of the stationary background flow. There have been many works devoted to analysis
f stability of stationary fluid flows and loss of smoothness of solutions for incompressible fluids,
ee, e.g., Refs. 11, 8, 14, 9, and 20, and references therein.

For the case, when the acoustic materials are arranged perpendicular to the flow direction, we
tudy the so-called short-wave asymptotics of perturbations of stationary flows. It has been
hown,2 by studying the Jordan form of the equations, that for incompressible fluids the solutions
o linearized equations can be unbounded. We find explicitly these unbounded solutions for our
ystem, and we also expand these results for barotropic fluids: the stationary background flows
nder consideration are linearly unstable subject to �acoustic� disturbances. In particular, we find
hat whenever the frequency is an integer times the local flow velocity, unstable solutions to the
eriodic lattice problem exist in agreement with previous results.19 In case when the acoustic

�Electronic mail: mikhail@mci.sdu.dk
�
Electronic mail: Willatzen@mci.sdu.dk

47, 043101-1022-2488/2006/47�4�/043101/12/$23.00 © 2006 American Institute of Physics
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aterials are arranged periodically along the flow direction, we also find explicitly the unbounded
olutions, and show that the absence of the so-called monofrequency solutions may lead to loss of
moothness of solutions.

In the present analysis, we consider small flows such that pressure drops are negligible, i.e.,
e consider the ideal case where all flow variables, to a good approximation, can be treated as
eriodic quantities. At higher flow values this assumption is, however, difficult to establish in
ractice due to the formation of viscous wakes behind objects.

The instability mechanism in our examples is advective in character, and the growth of
olutions is linear �similar to Ref. 2�. Usually, the linear growth of solutions to linearized equations
s not enough to conclude instability in the nonlinear case. However, here the nonlinear system is
lso Lyapunov-unstable, and we demonstrate this in the Appendix.

I. MAIN EQUATIONS

Let an ideal compressible barotropic fluid flow on a manifold M =R2�S1, i.e., we assume that
he flow velocity and density is periodic in one direction.

We consider the Euler equations in the Helmholtz, or vortex form, see, e.g., Ref. 12,

��

�t
+ div��v� = 0,

�w

�t
+ �w,v� = 0, �1�

here � is the fluid density, v is the velocity vector field, w= �1/��curl v and �w ,v�i

wj��vi /�xj�−v j��wi /�xj� is the commutator of the vector fields.
We assume that the metric on the manifold M is flat. Let x1 ,x2 ;x3�mod 2�� be the �local�

artesian coordinates on M, thus the volume element being dx1 dx2 dx3.
Let �0, v0 be the stationary flow of the following type:

v0 = �0,0,v0�x1,x2��, �0 = �0�x1,x2� . �2�

tationary flow �2� will be referred to as a background flow. Note that, as div v0�0, the derivative
�0 /�x3=0. The functions v0�x1 ,x2� and �0�x1 ,x2� can be chosen independently. In our coordinate
ystem the vorticity vector equals

w0 =
1

�0
curl v0 =

1

�0
� �v0

�x2
,−

�v0

�x1
,0� .

Remark: The Helmholtz equations �1� are not equivalent to the Euler equations

�
�v

�t
+ ��v,��v = �h��� ,

s there are solutions to the Helmholtz equations that are not the solutions to the Euler equations
but, of course, all solutions to the Euler equation are also solutions to the Helmholtz equations�,
rovided the pressure function h��� is given. For example, our stationary flow is the solution to the
uler equations either if �0=const, or if the pressure function h��� is a constant.

We now denote

s = w − w0, r = � − �0,

nd write down the linearized system,

�r
+ div�rv0 + �0 curl−1�rw0 + �0s�� = 0,
�t
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�s

�t
+ �s,v0� + �w0,curl−1�rw0 + �0s�� = 0. �3�

his is the general setup for the flow acoustic problem, see Ref. 19. In writing Eq. �3�, we have
mplicitly assumed that div�rw0+�0s�=0 such that curl−1�rw0+�0s� is meaningful.

II. INSTABILITY OF LINEARIZED EQUATIONS

We first notice �see, e.g., Ref. 4, Chap. II, and the discussion following Eq. �9�� that, as �s ,v0�
s the “strongest” linear operator, comparing with the one containing curl−1, it is reasonable to
onsider the “shortened” equation

�r

�t
+ div�rv0� = 0,

�s

�t
+ �s,v0� = 0. �4�

Proposition 1: For nonuniform background flows (i.e., for v0�const), almost all solutions to
he shortened equation (4) grow linearly in time.

Thus the stationary solution �2� is unstable in the linear approximation. Proposition 1 can be
educed from Proposition 5.2 in Ref. 4, Chap. II, if we assume the existence of the “action-angle”
ariables. We give an independent proof in the Appendix.

Theorem 1: Let w0�const or �0�const. Then Eqs. (3) have a solution that grows linearly in
ime.

Proof: We search for a solution in the following form:

u = �c1,c2,u3�x1,x2,t��, r = r�x1,x2,t� ,

here u=curl−1�rw0+�0s�. Then

s =
1

�0
curl u −

r

�0
w0. �5�

rom Eq. �3�, we formally get that

s1 = − �c1
�w1

�x1
+ c2

�w1

�x2
�t, s2 = − �c1

�w2

�x1
+ c2

�w2

�x2
�t, s3 = 0,

r = − �c1
��0

�x1
+ c2

��0

�x2
�t ,

here

w1 =
1

�0

�v0

�x2
, w2 = −

1

�0

�v0

�x1

re the components of the background vorticity. Thus we have found a solution that grows linearly
n time, and is zero when t=0. To complete the proof, it is enough to show that from relation �5�
he value u3 can be determined �which means that what we have is actually a solution�. From �5�
ollows that

curl u = �0s + rw0 = ��0s1 + rw1,�0s2 + rw2,0� .

ne can verify directly that the divergence of the right-hand side is zero. �

In the Appendix we use the same construction as in Theorem 1 to find an unstable solution for
he nonlinear �compressible� case, and to prove the �nonlinear� Lyapunov instability of shear flows
n a 3-torus, considered in the linear approximation in Refs. 2 and 4.

Remark: Proposition 1 and Theorem 1 describe a known effect that acoustic waves change

heir frequency and magnitude while propagating through nonuniform flow, however, the effect is
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imited to the area where the flow is really nonuniform, see, e.g., Refs. 6, 7, 15, and 16.

V. SHORT-WAVE ASYMPTOTICS

We next return to the full set of Eqs. �3�. Let us consider periodic solutions �being a subset of
ossible Bloch solutions for acoustic quantities in the linear approximation�. Hence, we expand
oth s and r as Fourier series in x3,

s = �
m

�Am�x1,x2,t�,Bm�x1,x2,t�,Cm�x1,x2,t��exp imx3,

r = �
m

Dm�x1,x2,t�exp imx3. �6�

he functions Am ,Bm ,Cm ,Dm cannot be arbitrary: the vector rw0+�0s should be divergence-free
s mentioned above.

As we are interested in short-wave asymptotics, we take m�0. The divergence of the mth
erm in the series representation of rw0+�0s is

div�� 1

�0
Dm

�v0

�x2
+ �0Am,−

1

�0
Dm

�v0

�x1
+ �0Bm,�0Cm�exp imx3� = 0,

s the mth term of rw0+�0s reads

rw0 + �0s = �Dm
1

�0

�v0

�x2
+ �0Am,− Dm

1

�0

�v0

�x1
+ �0Bm,�0Cm� .

hus,

�Dm

�x1

1

�0

�v0

�x2
+ Am

��0

�x1
− Dm

��0

�x1

1

�0
2

�v0

�x2
+ �0

�Am

�x1
+ Dm

1

�0

�2v0

�x1�x2
−

�Dm

�x2

1

�0

�v0

�x1
+ Bm

��0

�x2

+ Dm
��0

�x2

1

�0
2

�v0

�x1
+ �0

�Bm

�x2
− Dm

1

�0

�2v0

�x1�x2
+ im�0Cm = 0. �7�

herefore one can express Cm as the function of Am, Bm, and Dm

Cm = −
i

m�0
� �Dm

�x1

1

�0

�v0

�x2
+ Am

��0

�x1
− Dm

��0

�x1

1

�0
2

�v0

�x2
+ �0

�Am

�x1
−

�Dm

�x2

1

�0

�v0

�x1

+ Bm
��0

�x2
+ Dm

��0

�x2

1

�0
2

�v0

�x1
+ �0

�Bm

�x2
� . �8�

e next write a curl−1 operator in Am ,Bm ,Dm coordinates.
Let curl �=rw0+�0s, and we also assume that

� = ��1�x1,x2,t�,�2�x1,x2,t�,�3�x1,x2,t��exp imx3.

hen

curl � = � ��3

�x2
− im�2,−

��3

�x1
+ im�1,

��2

�x1
−

��1

�x2
�exp imx3.

he operator curl−1 is defined up to a gradient of a function �the solution to the Euler equations is
hus determined by the choice of the pressure function, the boundary conditions and initial con-
itions, which specify the unique form of the curl−1 operator�. Here, for simplicity, we choose

3�0 �which is the correct choice for the incompressible case, as we will see later�. In this case

e get
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�1 =
i

m
�Dm

1

�0

�v0

�x1
− �0Bm�, �2 =

i

m
�Dm

1

�0

�v0

�x2
+ �0Am� . �9�

Remark: The expression for curl−1 certifies our assumption that �s ,v0� is the “strongest” linear
perator, compared with the one that contains curl−1: for large values of m the operator curl−1 is of
rder 1 /m, while �s ,v0� is of order 1.

We can now write down the linear system for the Fourier coefficients �Eqs. �3��

�Dm

�t
+ imv0Dm +

��0

�x1
�1 + �0

��1

�x1
+

��0

�x2
�2 + �0

��2

�x2
= 0,

�Am

�t
+ imv0Am +

1

�0

�v0

�x2

��1

�x1
−

1

�0

�v0

�x1

��1

�x2
− �1

�

�x1
� 1

�0

�v0

�x2
� − �2

�

�x2
� 1

�0

�v0

�x2
� = 0,

�Bm

�t
+ imv0Bm +

1

�0

�v0

�x2

��2

�x1
−

1

�0

�v0

�x1

��2

�x2
+ �1

�

�x1
� 1

�0

�v0

�x1
� + �2

�

�x2
� 1

�0

�v0

�x1
� = 0. �10�

s we have set �3=0, the system of Eqs. �10� is a homogeneous linear system in Am , Bm and Dm.
hese equations are the most interesting from an acoustic point of view.

We first assume that �0=const. Thus we can neglect the terms that contain partial derivatives
�0 /�x. One can check that Eq. �10� has an “incompressible” solution, Dm=0,

Am =
�v0

�x1
e−imv0t, Bm =

�v0

�x2
e−imv0t.

nder our assumptions

Cm =
i

m
� �Am

�x1
+

�Bm

�x2
� = �� �v0

�x1
�2

t + � �v0

�x2
�2

t + ¯ �e−imv0t,

herefore our solution grows at least linearly in time. This solution is indeed incompressible under
ur choice of the operator curl−1, as

div � =
i�0

m
�−

�Bm

�x1
+

�Am

�x2
�eimx3 � 0.

his is an exact solution, that grows linearly in time, which existence was proved in Ref. 2 for a
imilar system, by studying the Jordan normal form.

Consider now the case when v0=const. Then Eqs. �10� becomes

�Dm

�t
+ imv0Dm +

��0

�x1
�1 + �0

��1

�x1
+

��0

�x2
�2 + �0

��2

�x2
= 0,

�Am

�t
+ imv0Am = 0,

�Bm

�t
+ imv0Bm = 0. �11�

f we have chosen the operator curl−1 differently, then the last two equations in system �11� remain
he same, but the first one acquires an extra term

�Dm

�t
+ imv0Dm +

��0

�x1
�1 + �0

��1

�x1
+

��0

�x2
�2 + �0

��2

�x2
+ im�0�3 = 0,

�Am + imv0Am = 0,
�Bm + imv0Bm = 0. �12�
�t �t
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Proposition 2: For almost any choice of the operator curl−1, the general solution to system
12) grows linearly in time.

Proof. All the equations in system �12� are ordinary differential equations, where the coordi-
ates x1 and x2 serve as parameters. Instability of the general solution follows from the Jordan
orm of the system. �

At this point we note that our result giving unstable acoustic solutions whenever m�0 is in
erfect agreement with previous results obtained in Ref. 19, Eq. �17�. In the latter case, it was
hown that no stable acoustic solution exists if the wave-vector component m along the flow
irection �which is � in the notation of Ref. 19� multiplied by the background flow v0 equals the
ound frequency �. While the work in Ref. 19 gives emphasis to the small-flow case with large
ltrasound frequencies where 	�v0 	 �� such that acoustic instability is not an issue, the present
ork is dedicated to the study of acoustic instability in periodic media with background flows.

. FLOW ACROSS THE PERIODIC STRUCTURE. LINEARIZED EQUATIONS

We consider next the case with flow along the periodic structure which consists of identical
nfinite cylindrical surfaces, arranged in a periodic rectangular lattice. We assume that both the
ackground flow and the acoustic flow are two dimensional.

We will mostly consider the flows that respect the periodic structure in a sense that they are
ouble periodic, or, formally saying, are invariant under the action of the group Z2. Thus we can
estrict ourselves to studying acoustic flows on 2-tori T2=R2 /Z2.

In two dimensions, the Helmholtz equation,

�w

�t
+ �w,v� = 0,

educes to one scalar equation for the vorticity function �=�	 and

v = �vx,vy� = �−
�	

�y
,
�	

�x
� ,

��

�t
+ Lv� = 0, �13�

ith Lv�=vx��� /�x�+vy��� /�y�. Note that although the stream function 	 may not be defined
lobally on the torus, Eq. �13� is well defined.

We consider the classical case, when the background flow is potential. To construct such a
ow one should solve the Laplace equation with certain boundary conditions. For a special shape
f the base of the cylindrical surface this can be done explicitly, see the Appendix: there we give
he analytic expression for the background flow in terms of the Weierstrass zeta functions �we first
mploy the vortex approximation to a flow of an ideal fluid on the 2-torus, and then construct the
esired flow�.

The flow pattern is shown in Fig. 1. The separatrices form a “
”-shape, turned by � /2. In the
xterior of the “
” figure we get the background flow.

Let v0 denote the background potential flow. In our flow region, i.e., in the exterior of the “
”
gure, curl v0=0, thus in the linear approximation the Helmholtz equation �13� becomes

��

�t
+ Lv0

� = 0. �14�

ut this means that the function � is transported by the flow of the field v0 �or “frozen” in the

ow�, which implies that Eq. �14� can be integrated,
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��z,t� = �*�gv0

−tz� , �15�

here �*�z� is a function on the torus, and gv0

t is the phase flow of the vector field v0.
Let us denote r=�−�0. We first note that the density function of the background flow �0 is

rozen in the flow just like �. However, from physical considerations, it is natural to consider
ensity as being time independent, as the background flow itself is stationary. Thus �0�z� is a first
ntegral of the flow gv0

t .
Remark: The operator curl−1 on the plane is defined for an arbitrary function. However this is

ot the case for the torus. The reason is that on the torus there are closed 2-forms, that are not
xact. As the 2-form �0�* dxÙdy should be exact �otherwise the d−1 operator on forms, that
orrespond to curl−1, cannot be defined�, the integral of the function �0�* over the torus should
qual zero—by virtue of the Stokes theorem.

Consider the equation that describes the evolution of r,

�r

�t
+ Lv0

r + div��0 curl−1��0��� = 0. �16�

e denote div��0 curl−1��0���= f and note again that the function f�z , t� should be double periodic
n z.

Proposition 3: Let �f /�t=0. The general solution to Eq. (16) is given by

r�z,t� = r*�gv0

−sz� + 

0

s

f�z����d� − sF�gv0

−sz� + tF�gv0

−sz� ,

here s is time passing in going along the phase curve gv0

� z, that passes through z, from z to the
ine x=0 (the integral is also taken along this phase curve), and

F�y� = 

0

T�z�

f�z����d� ,

here T�z� is the period of motion along this phase curve.
Proof: The proposition follows from the general theory of first-order partial differential equa-

ions, see, e.g., Ref. 3. The term sF�gv0

−sz� ensures that the function �0
s f�z����d�−sF�gv0

−sz� is double
eriodic in z. �

In general, Eq. �16� has solutions that grow linearly in time. To see this, assume that �0

const and �=0, while

curl−1��0�� = �0,cos y� ,

hich means that the perturbed flow is potential, but not volume-preserving. The equation for r

FIG. 1. Flow about the obstacle.
ecomes
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�r

�t
+ Lv0

r − sin y = 0. �17�

or any point z �which does not lie on a separatrix�, take a phase curve of the field v0, that passes
hrough it. Now,

F�y� = 

0

T�z�

sin y���d� ,

long this curve. The output function F is the function of y only, as the phase curves can be
umerated by the y coordinate. Obviously F is not identically zero.

The general solution to Eq. �17� contains the term

tF�gv0

−sz� � 0,

hus we have found an unbounded solution.

I. MONOFREQUENCY SOLUTIONS

The usual form for partial solutions to acoustic equations is monofrequency solutions of the
ype �=��z�exp i�t, where �=const, see, e.g., Ref. 19.

Proposition 4: Equation (14) has no smooth (nonzero) monofrequency solutions given by a
ingle-valued function on the torus.

Proof: Let us assume that �=��z�exp i�t. Then ��z� satisfies the following equation:

i�� + Lv0
� = 0. �18�

his equation can be integrated,

��z� = ei�u�z��*�gv0

−sz� , �19�

here ��0,x�=�*�y�, and u�z� is a solution to equation

Lv0
u = 1.

olving the latter equation, we get that u�z�=s is the time of the motion along the phase curve gv0

� z
rom the point z to the line x=0.

If we are looking for a single-valued solution on the torus, we must demand that

ei�u�2�,y� = ei�u�0,y�,

.e., �u�2� ,y�=�u�0,y�+2�n, n�Z which for any given point y, is wrong for almost all values
f �. Thus on the torus there are no monofrequency solutions. �

On the other hand, if we let � depend on the space coordinates, there may be solutions of the
orm �19�.

First we notice that if �=��z� is a first integral of the flow gv0

t , then the formula �19� does give
he solution to Eq. �18�. We can now choose � such that on each phase curve � equals 1 /T, where

is the period. Then solution �19� is well defined on the torus.
Solutions containing terms of the form exp�i��z�t�, may lose smoothness for t→: indeed,

heir derivative may contain the terms, linear in t �cf. Ref. 20�, which, in our case, provides
nother source of instability in acoustic flows.

II. CONCLUSIONS

In this paper we have analyzed the acoustic flow in the general situation, i.e., without assump-
ions on the monofrequency character of solutions. We have shown that monofrequency solutions,

iven by single-valued functions on the fluid flow domain, may not exist. We have proved that
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eneral solutions to acoustic equations �that are linearized ideal barotropic fluid equations� usually
row linearly in time. We have found such unbounded solutions explicitly, and in some cases exact
xpression for the general solution of the acoustic problem were given.

PPENDIX

roof of Proposition 1

We first write Eq. �4� in our local coordinates,

�r

�t
+ v0

�r

�x3
= 0

�s1

�t
+ v0

�s1

�x3
= 0,

�s2

�t
+ v0

�s2

�x3
= 0,

�s3

�t
+ v0

�s3

�x3
− s1

�v0

�x1
− s2

�v0

�x2
= 0, �A1�

quation system �A1� has a “wave”-like solution

r = r̃�x3 − tv0�x1,x2�� ,

s1 = s̃1�x3 − tv0�x1,x2��, s2 = s̃2�x3 − tv0�x1,x2�� ,

s3 = s̃3�x3 − tv0�x1,x2�� + ts̃1�x3 − tv0�x1,x2��
�v0

�x1
+ ts̃2�x3 − tv0�x1,x2��

�v0

�x2
, �A2�

or arbitrary 2�-periodic functions r̃�x� , s̃1�x� , s̃2�x� , s̃3�x�. If we now assume that either s̃1�v0 /�x1

r s̃2�v0 /�x2 are not identically zero, we get that the function s grows linearly in time. Thus almost
ll solutions to the shortened Eq. �4� grow linearly in time. �

onlinear instability

We have shown in Sec. III, that the stationary flow under consideration is generally linearly
nstable. In this Appendix, we prove the actual nonlinear instability.

Theorem 2: Let v0�const. Then the stationary solution (2) is Lyapunov-unstable.
Proof: We search for a solution to the Helmholtz equations of the following form: v

�c1 ,c2 ,v3�x1 ,x2 , t��, �=��x1 ,x2 , t�. One can see that for any values of the constants c1 and c2, the
unctions

� = �0�x1 − c1t,x2 − c2t�, v3 = v0�x1 − c1t,x2 − c2t� , �A3�

rovide a solution to Eqs. �1�. In fact, one can take two arbitrary functions of two variables instead
f �0 and v0. Indeed, the equation for the density reads

��

�t
+ c1

��

�x1
+ c2

��

�x2
= 0,

nd it follows that any function ��x1−c1t ,x2−c2t� provides a solution. The same for the vorticity
art of Eqs. �1�, but now the vector w�x1−c1t ,x2−c2t� cannot be arbitrary, as the condition
iv �w=0 should be satisfied. As this condition is satisfied for the stationary solution, we choose
=�0�x1−c1t ,x2−c2t� and w=w0�x1−c1t ,x2−c2t�.

Now, for any ��0, choose c1 and c2 such that �c�2=c1
2+c2

2=�2. Then the solution �A3� is

-close to the stationary solution �2� at t=0, but then diverges from it for t=1/�. �
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The same result holds for flows on a 3-torus, i.e., when we assume that the velocity and
ensity are periodic in three directions.

Remark: The partial solution we use can be regarded as a special case of solutions studied in
ef. 9 and 18 for incompressible flows. These are solutions that allow decomposition into the
horizontal” and “vertical” components, where both depend only on the “horizontal” coordinates;
n our case the “horizontal” component is �c1 ,c2 ,0�, and the “vertical” component is
0 ,0 ,v3�x1 ,x2 , t��.

Finding a partial solution in the above form is a useful trick: it provides a simple proof for
nstability of the given stationary solution. As an example, we consider shear flows, studied in Ref.

in the linear approximation.
We assume that the flow is incompressible, the flow domain is a 3-torus T3, and that the

tationary solution v0 is a non-Beltrami solution �the velocity is not proportional to the vorticity�.
hen both the velocity and vorticity lines lie on 2-tori. We suppose that the 3-torus T3 is foliated

nto these 2-tori, and one can choose �local� coordinates �1 ,�2 ,z, �mod 2��, such that the volume
lement on T3 is d�1 d�2 dz, and

v0 = �v10
�z�,v20

�z�,0� .

onsider solution to the Euler equation, v= �v1�z , t ,�� ,v2�z , t ,�� ,��,

�vi

�t
+ �

�vi

�z
= 0, i = 1,2,

uch that vi�0,z�=vi0
�z�. Then

v1 = v10
�z − �t�, v2 = v20

�z − �t� .

s above, this solution escapes from the vicinity of the stationary solution, proving that the latter
s Lyapunov-unstable. Moreover, the following result is true.

Proposition 5: Let v0�const, and let the ratio v10
/v20

be irrational for z=z0. Then for almost
ll values of �, there are trajectories of the vector field v= �v1�z−�t� ,v2�z−�t� ,��, that are every-
here dense on the torus T3.

This proposition proves the nonlinear instability for shear flows in Ref. 2. Notice that the flow
an no longer be decomposed into the “horizontal” and “vertical” components as in Ref. 9 and 20.

Proof: Indeed, the equations

�̇1 = v10
�z − �t�, �̇2 = v20

�z − �t�, ż = �

ave a solution z=z0+�t, �1,2=v1,20
�z0�t, which is everywhere dense for almost all �. �

Thus, in general, the trajectories of the velocity field lie no longer on 2-tori. However, all
he trajectories of the vorticity vector field for the perturbed velocity solution still lie on the
ame 2-tori, as the original ones �z=const�, although for big t this field is not close to the vorticity
f the stationary flow. Indeed, the z-component of the perturbed vorticity is identically zero:
url v= �−�v2 /�z ,�v1 /�z ,0�.

he vortex approximation to a flow of an ideal fluid

Let z= �x�mod 2�� ,y�mod 2��� be local coordinates on the torus. It is convenient to think of
as a complex number, the velocity v being a complex-valued function.

In the vortex approximation we assume that the vorticity function is a collection of the Dirac

elta functions,
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��z� = �
i=1

N

ki��z − zi� ,

here zi is the coordinate of the ith vortex. The position of the vortices at any given moment of
ime defines uniquely the fluid velocity field. Assume that the sum �iki=0. Then the �complex
onjugate� velocity field of the fluid is given by a sum of the Weierstrass zeta functions,

dz̄

dt
=

1

2�i
�
i=1

N

ki��z − zi� + CN,
dz

dt
= v , �A4�

here CN does not depend on z, but may depend on instantaneous vortex configuration, see, e.g.,
ef. 1, where the exact expression for this constant is provided. Note that although the Weierstrass
eta function is quasiperiodic �i.e., ��z+2�m+2�in�=��z�+mp1+np2, where the constants p1 and

p2 do not depend on z�, their sum is periodic—due to the condition �iki=0, thus the velocity is a
ell-defined function on the torus.

The dynamics of the vortices is given by the Hamilton equations

dz̄i

dt
=

1

2�i
�
j�i

N

kj��zi − zj� + CN.

nalytic expression for the background flow

Let us now consider the velocity field, created by two vortices with intensities k1=−k2=k
0. We assume that the vortices are placed in the points z0= �0,y0� and z̄0= �0,−y0�, and that they

o not move themselves. Using the expression for the fluid velocity Eq. �A4�, we get

dz̄

dt
=

k

2�i
���z − z0� − ��z + z0� + ��2z0�� . �A5�

ote that there is no single-valued Hamilton function on the torus for our flow.
Remark: The two vortices that we have considered, move with a constant velocity, that equals

k /2�i��2z0�+CN�z0 , z̄0�. As we have subtracted this term, we change the coordinate system to the
ne that moves together with the vortices.

The elliptic function in Eq. �A5� is even �v�z�=v�−z��, thus if z=z1 is zero of this function,
hen z=−z1 is also a zero. The number of zero orders of an elliptic function equals the number of
ole orders, see, e.g., Ref. 18. Our function v�z� has two first-order poles, thus it has two zeroes
one zero would be z1=0, but one can check that this is not a solution�.

We show now explicitly that if v�z1�=0, then Im z1=0. Indeed, as �̄�z�=��z̄�, Re ��iy�=0,

2�i

k
v̄�z1� = ��x1 + i�y1 − y0�� − ��x1 + i�y1 + y0�� + ��2iy0� = �̄�x1 − i�y1 − y0�� − �̄�x1 − i�y1 + y0��

− �̄�2iy0� = − �̄�− x1 + i�y1 − y0�� + �̄�− x1 + i�y1 + y0�� − �̄�2iy0� = −
2�i

k
v�− z̄1� = 0.

hus, if v�z1�=0, then v�z̄1�=0. If Im z1�0, then we get four distinct points, where our elliptic
unction satisfies v�z�=0, which is impossible.

In a similar way as above, one can show that if Im z=0, then Im v�z�=0. As the order of both
eroes of the function v�z� is one, these are nondegenerate stationary points. Similalry, one can
how that if Imz=0, then Im v�z�=0, thus two separatrices, that connect these points, are given by

y=0. Together with the to other separatrices, they form a characteristic “
”-shape, turned by � /2,

ee Fig. 1. In the exterior of the “
” figure we get the desired flow about the obstacle.
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This way one can describe the potential fluid flow motion about a cylindrical surface. Note
hat the cross section of this surface is not a circle, still being an analytic curve.
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We consider the long time behavior of the coupled Hamilton system of one-
dimensional string and nonlinear oscillator, in contact with a heat bath modeled by
the white noise. For any temperature the system converges to a statistical equilib-
rium described by the Boltzmann equilibrium measure. The convergence is caused
by radiation provided by the nonlinear coupling. If the oscillator potential has more
than one well and the temperature is small, the relaxation time is large, and the
system goes through a sequence of metastable states located near local minima of
the potential. When both, the temperature and the radiation rate are small, the
metastable states are distributions among the minima of the potential. © 2006
American Institute of Physics. �DOI: 10.1063/1.2189198�

. STRING COUPLED TO A NONLINEAR OSCILLATOR

We will consider a nonlinear oscillator coupled to a heat bath and to a one-dimensional �1D�
tring. The string is governed by the 1D wave equation

�ü�x,t� = Tu��x,t�, x � R \ �0� , �1.1�

here u�x , t� is the real function, ��0 is the string density, and T�0 is its tension. The oscillator
s a particle of mass m�0 attached to the string at the point x=0, so

u�0,t� = q�t�, t � R , �1.2�

here q�t� is the deviation of the oscillator. The heat bath is modeled as white noise, so the
scillator is governed by the stochastic equation

mq̈�t� = F�q�t�� + T�u��0 + ,t� − u��0 − ,t�� + ��Ẇ�t�; q�t� � u�0,t� , �1.3�

here F�q� stands for the oscillator force function, W�t� is the standard one-dimensional Wiener
rocess, and ��0 is the temperature of the heat bath. The middle term on the right-hand side of
1.3� descibes the string-oscillator interaction. Roughly speaking, Tu��0+ , t�, respectively,
Tu��0+ , t� is the “vertical projection” of the tension of the string to the right-handside, respec-

ively, to the left-handside of the oscillator �see Fig. 1�.
The system �1.1�–�1.3� is formally equivalent to a one-dimensional nonlinear wave equation

ith the nonlinear term concentrated at the single point x=0 and with a mass m concentrated at the
ame point,
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�� + m��x��ü�x,t� = Tu��x,t� + ��x��F�u�x,t�� + ��Ẇ�t��, �x,t� � R2. �1.4�

amely, the equation �1.1� follows from �1.4� with x�0, while �1.3� follows by equating the
oefficients at the delta function in both sides of �1.4�.

For the linear oscillator when F�q�=−�2q the system �1.1�, �1.3� with �=0 was considered
riginally by Lamb.11 For general nonlinear force function F�q� and �=0 the system was analyzed
n Refs. 8 and 9 �see also Ref. 10, pp. 26–37� where the convergence to stationary states has been
roved for all finite energy solutions in the long-time limit t→ ±�.

In the present paper we consider the long-time behavior of the Lamb system �1.1�–�1.3� with
�0 modeling the interaction with a heat bath of the temperature �. We consider the Cauchy
roblem for the system �1.1�–�1.3� with the initial conditions

u	t=0 = u0�x�, u̇	t=0 = v0�x�, q̇	t=0 = p0. �1.5�

e assume that initial functions are compactly supported or decreasing fast enough at infinity.
hen one can expect that, due to interplay between the energy dissipation caused by radiation and

he incident energy flow from the heat bath, a stationary regime will be established in large time.
f the potential U�q�ª−
F�q�dq has more than one well and the temperature � is small, the
elaxation time is large, and the system goes through a sequence of metastable states.

In generic situation, for a given time scale and an initial point, the system will be situated near
ertain local minimum of the potential. We consider also the situation when both, the temperature

and the radiation rate �which can be characterized by the product of the string density and its
ension�, are small. An “additional stochasticity” appears in this case due to instability near the
ocal maximums of potential. Therefore, even for generic potential, the metastable states are
istributions among the minima of the potential. We calculate these limiting distributions.

I. NOTATIONS AND DYNAMICS

Write the Cauchy problem �1.4� and �1.5� in the form

Ẏ�t� = F�Y�t�,t�, t � R, Y�0� = Y0, �2.1�

here Y0= �u0 ,v0 , p0� and Y�t�= �u�t� ,v�t� , q̇�t��.
Let us introduce a phase space E of finite energy states for the system �1.1�–�1.3�. Denote by

· �, respectively, � · �R the norm in the Hilbert space L2
ªL2�R�, respectively, L2�−R ,R�.

Definition 2.1: �i� E is the Hilbert space of the triples �u�x� ,v�x� , p��C�R� � L2 � R with
��x��L2 and the global energy norm

��u,v,p��E = �u�� + 	u�0�	 + �v� + 	p	 . �2.2�

FIG. 1. String with the oscillator.
ii� EF is the space E endowed with the Fréchet topology defined by the local energy seminorms
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��u,v,p��E,R � �u��R + 	u�0�	 + �v�R + 	p	, R � 0. �2.3�

iii� Yn→
EF

Y if f �Yn−Y�E,R→0, "R�0.
Remark 2.2: This convergence is equivalent to the convergence with respect to the metric

��X,Y� = �
R=1

�

2−R �X − Y�E,R

1 + �X − Y�E,R
, X,Y � E . �2.4�

e assume that

F�q� � C1�R� , �2.5�

U�q� ª − F�q�dq → + � , 	q	 → � . �2.6�

hen the system �1.1�–�1.3� for �=0 is formally Hamiltonian with the Hamilton functional

H�u,v,p� =
1

2
 �	v�x�	2 + 	u��x�	2�dx + m

	p	2

2
+ U�u�0�� �2.7�

or �u ,v , p��E. We consider solutions u�x , t� such that Y�t�= �u�· , t� , u̇�· , t� , q̇�t���C�0, � ;E�.
Let us discuss the definition of the Cauchy problem �2.1� for the functions Y�t��C�0, � ;E�.

At first, u�x , t��C�R2� due to Y�t��C�0, � ;E�. Then the wave equation �1.1� is understood in the
ense of distributions. This is equivalent to the d’Alembert decomposition

u�x,t� = f±�x − at� + g±�x + at�, ± x � 0, �2.8�

here a=�T /��0, and f−�C�−� ,0�, g+�C�0, � �, and f+ ,g−�C�−� , � �. Therefore,

u̇�x,t� = − f±��x − at� + g±��x + at�, u��x,t� = f±��x − at� + g±��x + at� for ± x � 0, t � R ,

�2.9�

here all the derivatives are understood in the sense of distributions. The condition Y�t�
C�0, � ;E� implies that

f±�,g±� � Lloc
2 �R� . �2.10�

e now explain the second equation �1.3�.
Definition 2.3: In the equation �1.3� set

u��0 ± ,t� � f±��− at� + g±��at� � Lloc
2 �0, � � , �2.11�

hile the derivative q̈�t� of q�t��u�0, t��C�0, � � �or of q̇�t��Lloc
2 �0, � � by �2.10�� is understood

n the sense of distributions.
Note that the functions f± and g± in �2.8� are unique up to an additive constant. Hence

efinition �2.11� is unambiguous.
Proposition 2.4: �Ref. 9� Let the conditions �2.5�, �2.6� be fulfilled, and W�t��C�0, � ;R� is a

xed function. Then

�i� For every Y0�E the Cauchy problem �2.1� admits a unique solution Y�t��C�0, � ;E�.
�ii� The map U�t� :Y0�Y�t� is continuous in E and EF.

The proposition is proved in Ref. 9 for the case W�t��0. The proof for the general case is

ery similar.
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II. GLOBAL ATTRACTOR FOR ZERO TEMPERATURE

The stationary states S= �s�x� ,0 ,0��E for �1.1�–�1.3� with �=0 are evidently determined. We
efine for every c�R the constant function

sc�x� = c, x � R . �3.1�

hen the set S of all stationary states S�E is given by

S = �Sz = �sz�·�,0,0�: z � Z� , �3.2�

here Z= �z�R : F�z�=0�.
The set S is a global attractor for the Lamb system �1.1�–�1.3� with �=0.9 Our main goal in

his paper is to describe the convergence to the statistical equilibrium for the Lamb system with
�0, and metastable rejimes for small ��0 and m�0.

V. REDUCED EQUATION FOR POSITIVE TEMPERATURE

The Lamb system �1.1�–�1.3� is equivalent to the following reduced equation:

mq̈�t� = F�q�t�� −
2T

a
q̇�t� +

2

a
ẇin�t� + ��Ẇ�t�, t � 0, �4.1�

here win�t��C�0, � � is determined by the initial conditions �1.5� and the equation is understood
n the sense of the corresponding integral equation �or distributions�.9,10

For 	x 	 �at�0 at the solution of the system �1.1�–�1.3� is determined uniquely by the initial
unctions and is expressed by the d’Alembert formula

u�x,t� =
u0�x − at� + u0�x + at�

2
+

1

2


x−at

x+at

v0�y�dy, 	x	 � at � 0. �4.2�

or 	x 	 	at the solution cannot be expressed in the initial functions. Indeed, the waves f+�x−at�,
espectively, g−�x+at� �see �2.8�� in the regions 0
x
at, respectively, −at
x
0 are the re-
ected waves and are not determined by the initial conditions. To determine both these two
eflected waves we need two equations: first is the gluing equation u�0+ , t�=u�0− , t�, and the
econd is the “jump equation” �1.3�. Substituting the d’Alembert representations �2.8� to the
quations, we get �see Ref. 9 or Ref. 10, Chap. 1, Lemma 4.6� the reduced equation �4.1�, where

in�t� is the sum of the incident waves g+�x+at� and f−�x−at� at the point x=0:

win�t� = g+�at� + f−�− at�, t � 0. �4.3�

or this function we have

ẇin�t� � L2�0, � � �4.4�

ince the initial functions belong to the phase space of finite energy states. Moreover, we get the
xpressions �see Ref. 10, Chap. 1, �4.33��

u�x,t� = ��q�t − x/a� + g+�x + at� − g+�at − x� , 0 
 x 
 at

q�t + x/a� + f−�x − at� − f−�− x − at� , − at 
 x 
 0
��, t � 0. �4.5�

t is important to note that this formula contains only the incident waves which are constant for
arge time if the initial functions are constant for large 	x	. Namely, let us consider the initial
unctions in �1.5� with

u0�x� = C±, v0�x� = 0, ± x � R0. �4.6�
hen g+�z�=c+ for z�R0, and f−�z�=c− for z
−R0. Hence �4.3� implies that
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win�t� = 0, t � R0/a . �4.7�

espectively, �4.1� becomes

mq̈�t� = F�q�t�� −
2T

a
q̇�t� + ��Ẇ�t�, t � R0/a , �4.8�

nd �4.5� implies that

u�x,t� = q�t − 	x	/a�, 	x	 
 R, t �
R + R0

a
�4.9�

or every R�0. Finally, take into account the value of a. Then �4.8� reads

mq̈�t� = F�q�t�� − 2��Tq̇�t� + ��Ẇ�t�, t � R0/a . �4.10�

ur goal is to describe a long-time behavior of the solution for the cases

m � ��T � 1, �� � 1. �4.11�

. CONVERGENCE TO EQUILIBRIUM DISTRIBUTION

If the supports of the initial functions u0�x� and v0�x� belong to a finite interval 	x 	 
R0
�,
hen, at least after time t0=R0 /a, no incident waves come to the origin. So the evolution of the
scillator can be described by Eq. �4.10� which is equivalent to the following system:

q̇�t� = p�t� ,

�5.1�
mṗ�t� = − U��q�t�� − 2��Tp�t� + ��Ẇ�t�, t � t0.

he values q�t0� and p�t0� are defined by the initial condition and by the trajectory W�t� for 0
t	 t0.

The stochastic process �q�t� , p�t�� defined by �5.1� is a �degenerate� diffusion process gov-
rned by the differential operator

Lu�q,p� = p
�u

�q
−

1

m
�U��q� + 2p��T�

�u

�p
+

�

2m2

�2u

�p2 . �5.2�

olving the stationary Fokker-Planck �forward Kolmogorov� equation L*v�q , p�=0, we find the
tationary Boltzman distribution

v�q,p� =
1

Z
exp�−

4��T

�
�mp2

2
+ U�q��� , �5.3�

here Z is a normalizing constant,

Z = 
−�

� 
−�

�

exp�−
4��T

�
�mp2

2
+ U�q���dp dq .

Assume that the following condition �*� is satisfied: for some Q0�0,

U��q� sign q � � � 0 for 	q	 � Q0 . �*�

his condition, in particular, provides finiteness of the normalizing constant Z.
Proposition 5.1: Let condition �*� be satisfied. Then

¯ ¯
�i� There exists a unique stationary solution �q�t� , p�t�� of system �5.1�. For any t, the
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distribution of �q̄t , p̄t� is given by �5.3�.
�ii� The solution �q�t� , p�t�� of system �5.1� with any initial condition q�0�=q0 , p�0�= p0,

converges to �q̄t , p̄t� as time tends to infinity, i.e.

For every A�0, the distribution of the random process �g�T+s� , p�T+s�� ,0	s	A, in C0,A

onverges weakly to the distribution of �q̄s , p̄s� as T→�.
Proof: Without loss of generality, we can assume, that m=2��T=�=1. Then the function

v�q,p� =
p2

2
+ �q −  arctan q�p + v�q� + 

0

q

�s −  arctan s�ds + k

or a suitable choice of parameters ,k satisfies the conditions �see Ref. 7, Sec. 3.5� v�q , p�
0,Lv�q , p�
−�
0 for 	p 	 + 	q	 large enough, lim	p	+	q	→� v�q , p�=�. Here L is defined in �5.2�

nd � is a positive constant from �*�.
As we already mentioned, the Boltzman distribution is invariant for the equation �5.1�. To

rove uniqueness of the stationary distribution and convergence, one can use the standard con-
truction which goes back to Ref. 7. Therefore we give just a sketch of the proof.

Let A ,A�0 be the boundary of the square ��q , p��R2 : 	q 	 
A , 	p 	 
A� ,�A=A+1. Consider
Markov chain Zn with the state space A which is defined as follows: Starting from any point

0= �q0 , p0��A, the trajectory of the process Xt= �qt , pt� hits at some time �A and then comes
ack to A. Let � be the first time when Xt comes to A after hitting �A. Existence of the function
�q , p� constructed above implies that the random variable � is finite with probability 1, and the
xpected value E�
�, at least, if A is large enough. Set Z1=X�, so that the chain Zn in one step
umps from Z0 to Z1=X�. The standard proof of uniqueness of the stationary distribution and
onvergence to it is given under nondegeneracy assumption of the operator L.

In our case L is degenerate. But it satisfies the Hörmander conditions, providing the existence
f a positive density for Xt. Moreover, one can check that, due to the structure of the operator L,
oeblin conditions for the chain Zn are satisfied �Ref. 2, Sec. 6.2�. This implies that the chain Zn

n A has a unique stationary distribution which is also the limiting distribution for Zn.
The last property provides uniqueness of the stationary distribution for process �qt , pt� and

onvergence to this distribution �which is the Boltzman distribution� as t→�. This implies exis-
ence and uniqueness of a stationary process �q̄t , p̄t� satisfying equations �5.1� and the last state-

ent of Proposition 5.1. The stationary process �q̄t , p̄t� is the solution of �5.1� with the initial point
istributed according to the Boltzman distribution.

Theorem 5.1: Let �*� be satisfied, and the initial functions �1.5� have a compact support.
hen, we have the following:

�i� There exists a unique random field ū�t ,x�, t� �−� , � �, x�R1, such that ū�t ,x� is a
solution of equation

�
�2ū

�t2 = T
�2ū

�x2 , t � �− � , � �, x � R1 \ �0�; �5.4�

at x=0 the gluing conditions �1.2� and �1.3� are satisfied. The distribution of ū�t ,x� is
invariant with respect to time shifts: for any h�R1, ū�t+h ,x� and ū�t ,x� have the same
distribution in the space of continuous functions ��t ,x�, t� �−� , � � ,x�R1.

�ii� This unique solution is given by the formula �cf. �4.9��

ū�t,x� = q̄�t −
	x	
a
�, �x,t� � R2, �5.5�

where a=�T /�.
�iii� For every initial condition with a compact support, the solution u�t ,x� of problem

¯
�1.1�–�1.3� converges to the stationary solution u�t ,x�.
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For any A�0, the random process ũT�t ,x�=u�T+ t ,x� ,0	 t	A , 	x 	 	A, converges weakly to
u�t ,x� as T→� in the space of continuous functions on �0,A�� �	x 	 	A� provided with uniform
opology.

Proof: As it follows from Proposition 5.1, if condition �*� is satisfied, a unique stationary
olution �q̄t , p̄t� of problem �5.1� exists. Then the function �5.5� satisfies equation �5.4� and the
luing conditions at x=0. Since the stochastic process q̄t is invariant with respect to the time shifts,

o is the function ū�t ,x�. If another time shift invariant solution ū̄�t ,x� exists, then ū̄�t ,0� should
oincide in distribution with q̄t, since problem �5.1� has a unique stationary solution. Convergence
f the solution of problem �1.1�–�1.3� with compactly supported initial functions to ū�t ,x� follows
y the formula �4.9� from the convergence of q�t� to q̄t.

I. LOW TEMPERATURE LIMIT

Let us note that the Boltzman equilibrium distribution �5.3� corresponds to the temperature
roportional to

�

��T
. �6.1�

ere we discuss low temperature behavior in the Lamb system �1.1�–�1.3�, when �→0 for fixed
and T.

If the potential U�q� has more than one well, and ��1, the convergence to the stationary
egime will be slow, and the system will go through a sequence of metastable regimes, where it
pends a long time before approaching the stationary solution described above.

The sequence of metastable regimes depends on the equilibrium state of equations �5.1� with
=0, to which the system was brought by the initial conditions �1.5�. Since we assume that the

nitial conditions have a compact support, say, they are equal to zero for 	x 	 ��, no incident waves
ome to the origin x=0 after time t0=� /a. Set u�t0 ,0�=q0

*, u̇�t0 ,0�= p0
*.

Assume that, for system �5.1� with �=0, the initial point �q0
* , p0

*� is attracted to the stable
quilibrium Ok�q0

*,p0
*�. The point Ok�q0

*,p0
*� in the phase space R2 has coordinates �qk�q0

*,p0
*� ,0�; qk�q0

*,p0
*�

s a local minimum of the potential U�q�.
If �=0, then the solution of system �5.1� with initial point �q0

* , p0
*� will stay near Ok�q0

*,p0
*�

orever. In the case 0
��1, the trajectory �qt
� , pt

�� of system �5.1� will stay in a neighborhood of

k�q0
*,p0

*� a time of order exp�const/��, and then will switch to another equilibrium of system �5.1�
ith �=0. It will stay there a long time and then again switches to the basin of another equilibrium

nd so on. It is important to underline that, in the generic case, for each stable equilibrium Ok,
here exists exactly one �nonrandom� equilibrium Ok�, such that, with probability close to 1 for �
mall enough, the system switches from Ok to Ok�. Since we assume that there are just a finite
umber of minima of U�q�, the sequence of transitions, after some time, becomes periodic �see
efs. 3 and 4�. Thus we will have a decomposition of the set of local minima of U�q� in cycles of

ank 1. Moreover, the transition time Tk,k�
� between the basins of Ok and Ok� is a random variable,

ut its logarithmic asymptotics as �↓0 is not random.3 In time scale larger than transition time in
rst rank cycles, transitions between the 1-cycles begin. So that in larger time scale, cycles of rank
appear, then cycles of rank 3, and so on, until all stable equilibriums of the nonperturbed system
ill be involved in the transitions.

The cycles of higher rank, as well as the logarithmic asymptotics of transition times between
hem, are also not random. So that one can speak on quasideterministic approximation for the
ong-time behavior of a dynamical system perturbed by a small noise. This hierarchy of cycles in

rather general situation was described in Refs. 3 and 4. The construction based on the large
eviation theory for dynamical system perturbed by a small noise.6

1
Denote by E�Ok ,E�, E�U�Ok�, the connected component of the set �q�R :U�q�	E� con-
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aining the stable equilibrium Ok. Let Ok*�k,E� be the point of E�Ok ,E� such that min�U�q� :q
E�Ok ,E��=U�Ok*�k,E��. We assume that the potential U�q� is generic. Then the equilibrium

k*�k,E� is defined in a unique way.
It is clear that for E close enough to U�Ok�, Ok*�k,E�=Ok. If the potential is generic, and Ok is

ust a local, but not global, minimum of U�q�, then one can find E1 such that Ok*�k,E�=Ok for E
�U�Ok� ,E1�, and Ok*�k,E��Ok for E�E1. In general, E1
E2
 ¯ 
Em exist such that Ok*�k,E�

Ok̄, k̄= k̄�k ,Ei ,Ei+1�=const for E� �Ei ,Ei+1�, i� �0, . . . ,m�, E0=U�Ok�, Em+1=�. Such an in-
reasing sequence Ei can be defined for any stable equilibrium Ok. If U�Ok�=min�U�q� :q�R1�,
hen set E1=�.

For example, for the potential shown in Fig. 2 and Ok=O5, E1=U�O6�, E2=U�O4�, E3

U�O2�, and E4=�; k̄�5,U�O5� ,E1�=5, k̄�5,E1 ,E2�=7, k̄�5,E2 ,E3�=3, k̄�5,E3 ,E4�=1.
Set �1=E1−U�Ok�, �2=E2−U�Ok̄�E1,E2�� , . . . ,�l=El−U�Ok̄�k,El−1,El�

� , . . . ,�m=Em

U�Ok̄�k,Em−1,Em��. It is easy to see that �1
�2
 ¯ 
�m.
It follows from Refs. 6 and 4 that in the time scale T��e�/�, �l
�
�l+1 �here “�” is the sign

f logarithmic equivalency as �↓0�, trajectory �qt , pt� of system �5.1� starting at a point from the
asin of Ok spends most of the time as a↓0 in a small neighborhood of Ok̄�El,El+1�: For each �
0, the random variable,

��
� =

1

T� Ù �t � �0,T��:d��qt,pt�,Ok̄�k,ElEl+1�� � �� ,

here Ù�·� stands for the Lebesgue measure in R1, and d�· , · � is Euclidian distance in R2, tends to
ero in probability as �↓0.

This and formula �4.9� imply the following result.

FIG. 2. Potential.
Theorem 6.1: Let condition �*� be satisfied and the initial functions �1.5� have a compact
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upport: u0�x�=v0�x�=0 for 	x 	 �R0. Suppose the point �u�� /a ,0� , u̇�� /a ,0�� belongs to the basin
f a stable equilibrium Ok. Let T��e−�/�, �� ��l ,�l+1�, Ok̄�k,ElEl+1�= �qk̄�k,El,El+1� ,0�. Then, for every
�0,


−A

A

dx
0

A

	u�tT�,x� − qk̄�k,El,El+1�	2 dt

ends to zero in probability as �↓0.

II. LOW TEMPERATURE AND RADIATION LIMIT

Consider now the case

m � 1, 2m−1�T� � 1, k =
�

m
� 1. �7.1�

hen the Eq. �4.10� can be written as follows:

q̈�t� = −
1

m
U��q�t�� − q̇�t� +� �

m
Ẇt. �7.2�

ence, the first two conditions in �7.1� mean that the Hamiltonian vector field is large with respect
o the “radiative effects” described by the friction term in �7.2�, so we can apply the averaging
rguments. The last two conditions in �7.1� mean the low temperature limit �→0, as above �see
6.1��.

In the preceding section, under certain conditions, we described metastable regimes of our
ystem: For a given initial state and a time scale, the system spends most of the time near certain
tationary state of the system without noise �zero temperature�. Under conditions of this section,
he metastable state, in general, is not a stationary state of the zero temperature system, but a
ertain distribution among such states. This distribution is determined by the initial conditions and
he time scale.

To be specific, we assume that the potential has four minima. Then the Hamiltonian H�p ,q�
p2 /2m+U�q� has the wells as it is shown in Fig. 3. The case of general potential can be treated

imilarly.
The level set C�z�= ��q , p� :H�q , p�=z� consists, in general of several connected components

k�z� :C�z�=�k=1
N Ck�z�. We denote by Gk�z� the domain bounded by Ck�z� �compare with Ref. 6,

hap. 8�. Let � be the graph homeomorphic to the set of connected components of all level sets
f the Hamiltonian H�q , p� �Fig. 3�b�� provided with natural topology.

The connected component of the level set of a saddle point O2, containing O2, is an eight-
haped curve  �Fig. 3�c� and 3�d�� consisting of two parts G1 and G2.

Equation �7.2� can be written as the system

q̇m,��t� =
1

�m
pm,��t� ,

�7.3�

ṗm,��t� = −
1

�m
U��qm,��t�� − pm,��t� + ��Ẇ�t� .

et, first, m→0, then we are in the situation when the averaging principle should be applied. The
ast component of the process �qm,��t� , pm,��t�� is, roughly speaking, the motion along the trajec-

ories of the Hamiltonian system with

                                                                                                            



a
g
I
t
p
a

w
p
s
p

T
T
t

w

t

043301-10 M. Freidlin and A. Komech J. Math. Phys. 47, 043301 �2006�

                        
H =
p2

2
+ U�q� ,

nd the slow component is the projection Y�qm,��t� , pm,��t�� on the graph �: Y�x� is the point of the
raph corresponding to the connected component of H�x�-level set containing the point x�R2.5,6

t is shown in Ref. 5 that Y�qm,��t�, pm,��t�� converges weakly �in the space of continuous func-
ions on any finite time interval �0,M� with the values in �� to a diffusion process Y��t� on �. The
rocess Y��t� is defined by the family of second order operators Lk

�, one on each edge of the graph,
nd by gluing conditions at the vertices.

The operator Lk
� on the edge Ik has the form

Lk
��q,p�f�z� =

�

2Tk�z�
d

dz
�āk�z�

df

dz
� −

�̄k�z�
Tk�z�

df

dz
,

here Tk�z� is the period of rotation along the level set component Ck�z� corresponding to the
oint �z ,k� of the graph: k is the number of the edge containing this point, and z is the corre-
ponding value of the Hamiltonian H�q , p� on the level set of component corresponding to the
oint of �.

Further, Tk�z�=S��z�, where Sk�z� is the area of the domain Gk�z� bounded by Ck�z�, and

āk�z� = �̄k�z� = Sk�z� .

o define the process Y��t� on � in a unique way one should add gluing conditions at the vertices.
hese conditions were calculated in Ref. 5, but we do not need their form, so we will not describe

hem here.
Now we want to take � to zero in the process Y��t� on �. Then �see Ref. 1� Y��t� converges

eakly as �→0 to a process Y�t� on �, which has the following structure. Inside an edge Ik��,
¯

FIG. 3. Hamiltonian, graphs and level sets.
his is a nonrandom motion with the speed −�k�z� /Tk�z�=−Sk�z� /Sk��z�. When a trajectory comes
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o a vertex O corresponding to a saddle point �vertices O2, O4, and O6 in Fig. 3�, it proceeds
ithout any delay at O in one of the edges below �in energy� of O with certain probabilities P1�O�

nd P2�O�, P1�O�+ P2�O�=1. To find these probabilities, one should consider the eight-shaped
urve �O� corresponding to the vertex O �see Fig. 3�d��. It has two components G1�O� and

2�O�. Then

Pi�O� =
S�Gi�

S�G1� + S�G2�
, i = 1,2,

�Gi� being the area of Gi.
Assume that at time t0 the oscillator has the energy H0 greater than the level set of the highest

addle point �H0�H�O4� in Fig. 3�. Then because of “friction” �=radiation� it will lose the energy
ntil it comes to the level H�O4�; this will happen in a finite time. Then trajectory goes to the left
to the edge �O2 ,O4�� with probability

P1�O4� =
S�G1�O4��

S�G1�O4�� + S�G2�O4��
,

nd to the right �to �O4 ,O6�� with probability

P2�O4� =
S�G2�O4��

S�G1�O4�� + S�G2�O4��
.

rajectory Y�t� proceeds to go down until it meets the next saddle point �O2 or O6�. It is scattered
n those saddle points and eventually approaches one of the local minima of the potential. In a
nite time for every ��0 it approaches the � neighborhood of one of the local minima and stays

n the corresponding well a time of order eC/�, where

C = min�U�O2� − U�O1�,U�O2� − U�O3�,U�O6� − U�O5�,U�O6� − U�O7�� .

hus if we observe �qt
m,� , pt

m,�� on the time interval 1� t
TE
� =eE/� with 0
E
C, it is distributed

mong the local minima O1,O3,O5,O7 with probabilities, respectively, equal to

m1 =
S�G1�O4��

S�G1�O4�� + S�G2�O4��
·

S�G1�O2��
S�G1�O2�� + S�G2�O2��

,

m3 =
S�G1�O4��

S�G1�O4�� + S�G2�O4��
·

S�G2�O2��
S�G1�O2�� + S�G2�O2��

,

�7.4�

m5 =
S�G2�O4��

S�G1�O4�� + S�G2�O4��
·

S�G1�O6��
S�G1�O6�� + S�G2�O6��

,

m7 =
S�G2�O4��

S�G1�O4�� + S�G2�O4��
·

S�G2�O6��
S�G1�O6�� + S�G2�O6��

,

f, first, m↓0 and then �↓0. This is metastable distribution in the time scale TE
� =eE/� for E
C. In

arger time scales, the support of this limiting distribution will become smaller and smaller. To be
pecific, assume that

U�O6� − U�O7� 
 U�O6� − U�O5� 
 U�O4� − U�O5� 
 U�O2� − U�O1� 
 U�O2� − U�O3� .

�7.5�

hen if U�O6�−U�O7�
E
U�O6�−U�O5�, trajectory already have enough time to leave O7 so
hat the metastable distribution among O1,O3,O5,O7 in this time scale is �m1 ,m3 ,m5+m7 ,0�. If

� �U�O4�−U�O5� ,U�O2�−U�O1��, the metastable distribution is
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� S�G1�O2��
S�G1�O2�� + S�G2�O2��

,
S�G2�O2��

S�G1�O2�� + S�G2�O2��
,0,0� .

ventually, if E�U�O2�−U�O1�, then the distribution is concentrated at point O3, which is the
bsolute minimum of the potential.

Together with the equality u�t ,x�=um,��t ,x�=qm,��t− 	x 	 /a�, a=T /m, which holds for any x
R1 and t large enough, this implies the following result.

Theorem 7.1: Let condition �*� be satisfied, and initial functions �1.5� have a compact support
elonging to �	x 	 
���R1. Let the Hamiltonian H�p ,q�= p2 /2+U�q� be as shown in Fig. 3. Let
he energy of the oscillator with �=0 be greater than U�O4� at time t0=� /a:

m

2
� �um,0�t0,0�

�t
�2

+ U�um,0�t0,0�� � U�O4� .

ssume that inequalities �7.5� are satisfied. Then for any A, E�0 and TE
� �exp�E /��, the random

unction um,��TE
�t ,x�, t� �0,A�, x� �−A ,A�, converges weakly in L�0,A���−A,A�

2 to a random variable

E as, first, m↓0 and then �↓0.
The random variable �E has values O1,O3,O5,O7 with probabilities m1,m3,m5,m7, respectively,

f 0
E
C, with probabilities �m1 ,m3 ,m5+m7 ,0� if E� �U�O6�−U�O7� ,U�O6� ,−U�O5��, with
robabilities m1+m3 ,m5+m7 ,0 ,0� if E� �U�O4�−U�O5� ,U�O2�−U�O1��, and P��E=O3�=1 if
�U�O2�−U�O1�.
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By following a strategy introduced in previous works, quantum extensions of the
classical electron-phonon scattering operator are deduced from first principles.
These quantum collision operators satisfy a quantum H-theorem and relax towards
quantum equilibria. Then, under an assumption of dominant elastic interactions, a
hierarchy of quantum spherical harmonic expansion �SHE� models is derived by a
diffusive approximation of collisional Wigner equations. These models are proven
entropic and their expansions into powers of the reduced Planck constant � are
calculated, leading to �2 corrections for the classical SHE model. © 2006 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2192968�

. INTRODUCTION

The transport of charged particles in electronic devices is generally described by kinetic
odels such as Boltzmann-type equations or macroscopic models of hydrodynamic or diffusion

ype. Due to the ongoing miniaturization of these devices, reaching the nanometric scale, the
eliability of these classical models becomes doubtful as quantum effects become important.
ince, at an intermediate scale, collision phenomena remain significant, one of the most challeng-

ng areas of investigation in semiconductor modelling deals with the setting-up of quantum trans-
ort models which take into account scattering effects. Though many works are concerned with
he numerical simulation of ballistic quantum transport models for semiconductors �see, e.g., Refs.
6, 37, 42, 25, 15, and 44�, a quantum theory of collisions is still under development �among other
orks on the quantum theory of scattering, see, e.g., Refs. 3, 12, 24, 38, and 45 and, more recently,
efs. 4, 5, and 27�. Furthermore, several attempts were made to adapt existing classical macro-

copic models to quantum mechanics1,2,30–33 but, generally, the link between the so-obtained
odels and a microscopic quantum description of the particle transport is to a large extent phe-

omenological.
Recently, a strategy for deriving quantum macroscopic models was introduced in Refs. 21 and

2. It relies on the notion of a quantum local equilibrium �called “quantum Maxwellian”�, defined
hrough a Gibbs principle as the minimizer of the quantum entropy under local moment con-
traints. This approach enabled to write prototypes of collision operators which decrease the
uantum entropy and relax towards the quantum local equilibria. By introducing such collision
perators in the Wigner equation and by performing formally a hydrodynamic �respectively, dif-
usive� limit, quantum hydrodynamic �respectively, quantum diffusive� models were derived in
efs. 21 and 19 �these two papers are reviewed in Ref. 20�. As a by-product of the method, these

�Electronic mail: bourgade@mip.ups-tlse.fr
�Electronic mail: degond@mip.ups-tlse.fr
�Electronic mail: mehats@mip.ups-tlse.fr
�
Electronic mail: ringhofer@asu.edu
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uantum macroscopic models display some interesting physical properties, such as the preserva-
ion of the positivity of the density or an entropy dissipation. The numerical resolution of the
implest of these models, the quantum drift-diffusion model, is investigated in Refs. 28 and 29.

The small size of current semiconductor devices raises another problem. In some regimes, the
elevant time and length scales are too small for the cloud of electrons to reach a thermodynamical
quilibrium. Therefore, an accurate description of these devices cannot be achieved by models
hich, like drift-diffusion or hydrodynamic models, rely on the assumption that the system has
een driven to an equilibrium with a given profile �of Maxwellian or of Fermi-Dirac type�.
ntermediate models have been recently introduced, in a classical setting, to fill the gap between
recise but numerically expensive models �kinetic models for instance� and numerically affordable
ut less accurate models such as drift-diffusion models: among others are the spherical harmonics
xpansion �SHE� models �see, Refs. 6 and 13 for a mathematical description and references�.
hese models are diffusion models in the position-energy space. They have been applied to
emiconductor physics,34,10,11,7,8 neutronics,35 gas discharge,46 and plasma physics.23 Numerical
omputations have established the relevance of the classical SHE models.17,9 These models are
lso referred to as Fokker-Planck models. They consist of a mass balance equation �the continuity
quation� for the energy distribution function, and of a constitutive law for the current of particles
f given energy. The former governs the transport of the density and the latter describes the effects
f the diffusion due to the particle scattering.

The goal of this paper is twofold. On the one hand, following the strategy, described above,
hich leads to deriving quantum versions of the hydrodynamic �HD�, energy-transport �ET�, and
rift-diffusion �DD� models, we propose quantum SHE models. These models are expected to be
etter adapted than classical SHE models to situations where quantum phenomena are predomi-
ant. Moreover, as in the classical case where SHE models appear as intermediate models between
inetic and macroscopic equations, quantum SHE models fit systems far from Maxwellian-type
quilibria better than quantum HD, ET, and DD models.

The derivation of quantum SHE models by a diffusion approximation procedure makes the
ntroduction of quantum collision operators at the kinetic level necessary: this constitutes the
econd goal of this work. A quantum collision operator is built following ideas first introduced in
efs. 21, 22, and 19 and generalizing the classical electron-phonon scattering operator.40 Then, in

he regime of dominant elastic scattering, several other operators are proposed. All these operators
re consistent with the elementary properties which are sought to describe collisions with phonons
conservations, equilibrium states, quantum entropy dissipation�.

The paper is organized as follows. Section II recalls some well-known results about the
erivation of classical SHE models and emphasizes the importance of the entropy dissipation of
he collision operator to obtain an entropic structure for the macroscopic model. Classical features
f the linearized electron-phonon collision operator are also recalled. Section III is a first step
owards the derivation of a quantum SHE model: we consider the Wigner equation equipped with
classical collision operator and perform the derivation in this setting, which leads to the quasi-

uantum SHE model. This model does not account for quantum diffusion. Quantum collision
perators are introduced in Sec. IV following a heuristic analogy: these operators must fulfill
roperties analogue to those satisfied by the classical operators given in Sec. II. For this sake, a
uantum entropy is given and quantum thermodynamical equilibria are defined as minimizers of
his entropy, allowing the introduction of quantum relaxation operators. Then the derivation of a
ully quantum SHE model can be performed and this is achieved in Sec. V.

The quantum SHE and quasiquantum SHE models involve pseudodifferential operators and
isplay a nonlocal character. In order to obtain models easier to handle, a formal expansion of
hese equations with respect to the reduced Planck constant � are given in Secs. III and V. As it
as done in Ref. 19 for the quantum energy-transport and the quantum drift-diffusion models, by
eeping only the terms up to second order in � in this expansion, we derive quantum correction

erms for the classical SHE model.
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I. CLASSICAL MODELLING OF ELECTRON-PHONON SCATTERING IN
EMICONDUCTOR DEVICES: A SHORT REVIEW

In this section, we review some well-known features concerning electron-phonon scattering in
lassical kinetic models. Indeed, having this review in mind will help understand our methodology
or establishing quantum collision operators and deriving various quantum SHE models.

. The Boltzmann equation

The evolution of electrons in semiconductor devices can be described at a microscopic level
hrough classical kinetic equations of Boltzmann type as long as quantum effects are neglected. To
hat purpose, one introduces the distribution function f�t ,x , p� of the electrons. Then f is given as
he solution of the initial value problem

�t f + p · �xf − �xV · �pf = C�f�, x � R3, p � R3, t � 0,

f�0,x,p� = f I�x,p� ,
�2.1�

here V=V�x� is a given potential and f I an initial condition. The collision operator C models the
nteractions of the electrons with the medium. All the quantities that will be considered in the
equel are dimensionless. The equation is adimensioned and we set the temperature equal to 1 and
he electron mass and elementary charge equal to 1 and −1, respectively. We will note

L = p · �x − �xV · �p

he classical transport �Liouville� operator. The classical relative entropy usually associated to this
ind of equation is

HC�f� = �
R6

f�ln f − 1 +
�p�2

2
+ V�x��dx dp = �

R6
f�ln

f

M
− 1�dx dp

here the global Maxwellian M is defined by

M�x,p� = exp�−
�p�2

2
− V�x�� . �2.2�

hen the context is clear, we will note as well M�x ,��=exp�−�−V�x��, where � denotes the
nergy variable ���0�. The following lemma is a classical result on HC. Its proof is straightfor-
ard.

Lemma 2.1: Let C in �2.1� be such that, for any positive measurable function g, this inequality
olds,

−� C�g�ln� g

M�dx dp � 0. �2.3�

hen, if f is a positive solution of Eq. �2.1�, the associated entropy satisfies

dHC�f�
dt

� 0. �2.4�

According to this lemma, the study of the entropic structure of equations of type �2.1� reduces
o proving an inequality on the collision operator C. In this section, several collision operators are
ntroduced in order to model the scattering of electrons in semiconductors. The classical electron-
honon collision operator is introduced and some of its properties are recalled. The limit of a
anishing phonon energy is performed and yields an elastic collision operator. Then, the derivation
f a classical SHE model is set out �following Refs. 6 and 13� and its entropic structure is

mphasized.
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Before achieving these tasks, we introduce the spherical coordinates in momentum space: �
p / �p � �S2, �= �p�2 /2�0, where S2 denotes the unit sphere in R3. For any function f , we note
qually f�p�= f�� ,�� and, when the context is unambiguous, f = f�p� and f�= f�p��. The following
ormula holds for any integrable function f:

�
R3

f�p�dp = �
�0,���S2

f��,��	2�d� d�

nd we define

�
R3

f�p��	��p��2/2 − ��dp� = �
�0,���S2

f���,���	��� − ��	2��d�� d� ª
	2��

S2
f��,���d��.

Let Lx,p
2 =L2�R6� denote the space of square integrable functions on the phase space R6. The

losed subspace of energy dependent functions will be of considerable interest in the remainder of
he paper and is denoted by

E = 
f � Lx,p
2 :f�x,p� = f�x, �p��a . e . �

nd the space orthogonal to E in Lx,p
2 is denoted by E�. The projectors on E and on E� are,

espectively, denoted by P and P� and, for any 
 in Lx,p
2 , they are given by

P�
���� =
1

N����R3

���,���	��� − ��dp�, P�
 = �Id − P�
 ,

here Id denotes the identity operator on Lx,p
2 and N���, the density of state, is defined by

N��� = �
R3

	��p��2/2 − ��dp� = 4�	2� ,

o that the projector P can be written equivalently as

P�
���� =
1

4�
�

S2

��,���d��.

ote that, for any f and 
, P�
f�=
P�f� and P�
=0 as soon as 
 is a function of the energy �
nly. Moreover, E� is spanned by functions of null angular average.

. The classical electron-phonon collision operator

We now focus on the expression of the collisions operator C�f�. In semiconductors, electrons
ndergo mainly three types of collisions against ionized impurities, acoustic phonons, and optical
honons.47 At large enough energies, optical phonon collisions are dominant and we shall discard
he other types of collisions.

Classically �see Ref. 41 for instance�, in a low density case, the electron-optical phonon
ollision operator is linear and can be written, after an appropriate scaling, according to

Ce��f��p� =� �p,p��
��N0 + 1�	�� − �� + �� + N0	�� − � − ���f�p��

− ��N0 + 1�	��� − � + �� + N0	��� − � − ���f�p�dp�
ith � the scaled phonon energy �which is a constant�, �p , p�� a symmetric function of the form
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�p,p�� = Copt�� 1

�p − p��2
�polar interactions� ,

1 �nonpolar interactions� ,
 �2.5�

here Copt is an appropriate constant. The phonon occupation number N0 for a lattice temperature
=1 is given by the Bose-Einstein statistics as

N0 =
1

e� − 1
. �2.6�

he collision operator can also be written

Ce��f� =� S�p,p���	��� − � − �� + 	��� − � + ���� f�p��
M����

−
f�p�

M���
�dp� �2.7�

ith M =M���=exp�−�� the Maxwellian and

S�p,p�� = �p,p��N0e−��+���/2e�/2,

hich is a symmetric function. The following result can be found in Ref. 40.
Proposition 2.2: The collision operator Ce� defined by �2.7� satisfies the following properties:

�i� Mass conservation: �Ce��f�dp=0 for any measurable function f .
�ii� Equilibrium states: for any measurable function f�x , p�, we have Ce��f�=0 if and only if

f�x,p� = M��p�2/2�F�x, �p�2/2� ,

where F is such that F�x ,�+��=F�x ,��.
�iii� Entropy dissipation: −�Ce��f�ln�f /M�dp�0 for any positive integrable function f .

Typically, the electron energy in a semiconductor device is of the same order of magnitude as
he applied bias, i.e., of the order of 1 V. This is very large compared with the typical optical
honon energy, which is of the order of 10−2 V. Therefore, the scaled parameter ��10−2 is very
mall and it is meaningful to consider the elastic limit �→0 of the electron-phonon collision
perator.

The following operator Cel can be obtained as the limit of Ce� as �→0:

Cel�f��p� = N��p�2/2�
P�S̃�p, · �f�·�� − P�S̃�p, · ��f�p�� , �2.8�

here

S̃�p,p�� = 2Copt� 1

�p − p��2
�polar interactions� ,

1 �nonpolar interactions� .
 �2.9�

rom now on, we drop the tildes. It is straightforward to prove the following.
Proposition 2.3: The collision operator Cel defined by �2.8� satisfies the following properties:

�i� Mass conservation: �Cel�f�dp=0 for any measurable function f .
�ii� Equilibrium states: for any function f in Lx,p

2 , we have Cel�f�=0 if and only if

f�x,p� = F�x, �p�2/2� ,

where F lies in E.

�iii� Entropy dissipation: −�Cel�f�ln�f /M�dp�0 for any positive integrable function f .
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. Derivation of the classical SHE model „CSHE…

Classical SHE models �CSHE� �also referred to as Fokker-Planck models� are obtained as
symptotic limits of the Boltzmann equation under the assumption of dominant elastic scattering,
.e., when the collision operator �of the type �2.8�� is supposed to be large, say of order 1 /� where

is a measure of the collision mean-free path in scaled units. We also need to observe the system
ver large periods of time, i.e., we must rescale the time variable t→ t /� in order to capture the
ignificant dynamics, which is of diffusion type. In this new set of units, the classical Boltzmann
quation becomes

��t f
� + �p · �x − �xV · �p�f� =

1

�
Cel�f� . �2.10�

o ensure boundedness and positivity for the collision operator, we assume the following.
Assumption 2.4: There exist two positive constants K ,K� such that K�S�K�.
Under this assumption, operator Cel is an isomorphism from E� onto E� �see Ref. 6 for

nstance�. Then, Eq. �2.10� has solutions according to the Hille-Yosida theorem.
Lemma 2.5: Under regularity assumptions on the potential V and Assumption 2.4, Eq. �2.10�

ith initial datum fI in D�L�ª 
f �Lx,p
2 :Lf �Lx,p

2 � has a unique solution f� in
1��0,T� ,Lx,p

2 ��C0��0,T� ,D�L��.
We do not enter into details regarding sufficient assumptions on V since the differential

perator �xV ·�p will not be used in this paper, but, instead, an L2 bounded pseudodifferential
perator. The �possibly not optimal� regularity required for V in the quantum case is stated in
ssumption 3.2 below.

Proposition 2.6 summarizes some results on the derivation of the CSHE model �see Refs. 6
nd 13 for this proposition as well as for precise regularity requirements on the potential V�.

Proposition 2.6: Assumption 2.4 is made and V is supposed regular enough.
We consider Eq. �2.10� with initial datum fI

� such that the sequence �f I
�� converges in Lx,p

2 to
n element Fin of E as �→0. By Lemma 2.5, this problem has a unique solution f� for all �
0.

The formal limit F of f� as �→0 is the solution of the classical SHE (CSHE) model,

N����tF − �̃ · �D�̃F� = 0,

F�0,x,�� = Fin�x,�� , �2.11�

�̃ = �x − �xV��,

D = P�Cel
−1�p� � p� =

�p�2

4�
�

S2
Cel

−1��� � � d� . �2.12�

ore precisely, the sequence �f��� can be rigorously proved to converge weakly in L���0,T� ,Lx,p
2 �

o a limit F�L���0,T� ,E� which is a weak solution of �2.11�, and F�0. Moreover, the following
xpression:

HCSHE�F� =� F�ln
F

M
− 1�N���d� dx

s a decreasing function of time.
Proof: The proof of the derivation itself can be found in Refs. 6 and 13 �formal proof� and

ef. 14, for a rigorous proof in the case of a null potential V. When the potential does not vanish,

he proof can be adapted from Ref. 18 where the diffusion is driven by particle-wall scattering.�
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An interesting case is when the collision kernel is isotropic: S�p , p��=S��p � , �p� � �.Then, set-
ing S��p � , �p � �N��p�2 /2�=�, the collision operator reads

Cel�f� = ��Pf − f� �2.13�

nd the diffusion matrix is a scalar given by

D =
4�

3�
�2��3/2. �2.14�

Remark 2.7: The classical SHE model given by Eq. �2.11� is a degenerate parabolic equa-
ion. �

Remark 2.8: Note that, in the definition of this operator �2.13�, the projection term Pf can be
btained as the minimizer of the classical entropy HC�g� under the constraint P�g− f�=0. The
efinition of a quantum analogue of this relaxation operator in Sec. IV B is inspired by this
emark. �

II. CLASSICAL COLLISION OPERATORS AND QUASIQUANTUM SHE MODEL

As a first attempt to introduce quantum phenomenology in the SHE model, the Wigner
quation can be substituted to the left-hand side of the Boltzmann equation �2.1�. This is our goal
n the present section. First, the Wigner-Boltzmann equation �i.e., the Wigner equation with a
ollisional source term� is introduced. Some notations and properties are given and the resolution
f the Cauchy problem for this equation is recalled. Note that in this section, we will focus on the
nfluence of the quantum transport operator. The scattering phenomena are still modeled by a
lassical collision operator. We emphasize that this approach lacks consistency, as we use a
uantum model for transport and still a classical model for collisions. In order to remedy to this
nconsistency, we introduce quantum collision operators in Sec. IV.

The so-called quasiquantum SHE �QQSHE� model is rigorously derived from the Wigner-
oltzmann equation in a diffusion asymptotics. As the Wigner equation, the QQSHE model
epends on the Planck constant. The expansion of this model with respect to � is investigated and
focus is made on the QQSHE2 model, that is, the expanded model up to second order terms in
. This model is of interest since it introduces correction terms to the CSHE model and may lead

o a cheap yet accurate way to introduce quantum corrections in classical SHE models.

. The Wigner-Boltzmann equation

Let us introduce the Wigner transform and its properties. All the results of this section are
iven without proof �one can refer to Ref. 39 for instance�. To any complex number z we associate
ts complex conjugate z. We adopt the following conventions for the Fourier transform F and the
nverse Fourier transform F−1 �in dimension 3�:

F�f���� =� f�p�e−ip·�/�dp, F−1�g��p� =� g���eip·�/� d�

�2� � �3 ,

here � is the reduced Planck constant. Let � denote a trace class non-negative Hermitian operator
n L2�R3� and let ��x ,y� be its integral kernel. Then its Wigner transform is

W����x,p� = �
R3

��x −
�

2
,x +

�

2
�ei�·p/� d� ,
hereas the Weyl quantization of any symbol a�x , p� defines an operator Op�a�,
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Op�a�
 = �2� � �−3�
R6

a� x + y

2
,p�
�y�eip·�x−y�/� dp dy .

hen Op and W are formally inverse operations to one another,

Op�W���� = �, W�Op�a�� = a .

or any trace class operator �, we denote by Tr � its trace and by �† its Hermitian adjoint. We
ummarize some classical properties of Op and W in the following lemma. We recall that an
perator K is a Hilbert-Schmidt operator if there exists a kernel k�Lx,p

2 such that, for any 

Lx,p

2 , K�
��y�=�k�x ,y�
�y�dy. We note K�HS.
Lemma 3.1: �Properties of W and Op�

�i� The Weyl quantization Op(a) of a symbol a is a Hilbert-Schmidt operator if and only if
a is in Lx,p

2 . Moreover, Op is an isometry from Lx,p
2 onto HS.

�ii� An operator � is Hermitian if and only if W��� is real valued. The Wigner transform W,
defined from HS onto Lx,p

2 is the inverse transform to the Weyl quantization.
�iii� For two Hilbert-Schmidt operators � and �, the following formula is a consequence of

Plancherel’s identity

Tr
��†� =
1

�2� � �3 � W���W���dx dp . �3.1�

�iv� Let H=−��2 /2��+V denote the particle Hamiltonian. Then, for any Hilbert-Schmidt
operator �, we formally have

i

�
W�H,�� = �p · �x − ��V���W���� , �3.2�

where ��V� denotes the pseudodifferential operator associated with the potential V�x�,

��V�f = F−1�i

V�x +
�

2
� − V�x −

�

2
�

�
F�f��

=
i

�2��3�
R6

V�x +
�

2
�� − V�x −

�

2
��

�
f�t,x,p��ei�p−p��·� d� dp�, �3.3�

and �� ,��=��−�� is the commutator of two operators � and �.
�v� Op��p�2�=−�2� and, for any symbol s depending only on x, Op�s� is the s-multiplication

operator: Op�s�� :x→s�x���x�.

Now we recall the link between the Wigner and the von Neumann equations. The density
atrix � satisfies the von Neumann equation

i � �t� = �H,�� �3.4�

f and only if its Wigner transform f =W��� satisfies the Wigner equation

�t f + p · �xf − ��V�f = 0 �3.5�

s can be seen thanks to Eq. �3.2�. The function f cannot be easily interpreted as a distribution
unction �for instance, it is not necessarily positive�, but the classical transport equation �t f
�p ·�x−�xV ·�p�f =0 can be obtained as the semiclassical limit of the Wigner equation as � tends

o 0 �see Ref. 39�.

Lemma 3.3 gives some information on the operator ��V� if we assume the following.
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Assumption 3.2: The potential V lies in W2,��R3�.
Lemma 3.3: If the potential V satisfies Assumption 3.2, then

�i� ��V� is a bounded skew-adjoint operator from Lx,p
2 to Lx,p

2 ,
�ii� for any function f �W2,2�Rx

3 ;L2�Rp
3��,

��V��f� � W2,2�Rx
3,L2�Rp

3�� ,

and, for f �W1,2�Rx
3 ;L2�Rp

3��,

�x��V�f = ���xV��f� + ��V���xf� ,

where ���xV��f� and ��V���xf� denote, respectively, the two vectors of components
���xi

V��f� and ��V���xi
f�, for i=1,2 ,3,

�iii� for any function f �Lx,p
2 such that pf � �Lx,p

2 �3, p��V��f� is in Lx,p
2 ,

�iv� for any function F�E, ��V�F belongs to E�.

Equation �3.5� does not take collision phenomena into account. In the remainder of Sec. III it
s assumed that the scattering can be modeled through a classical elastic collision operator. There-
ore, the collision operator is still Cel, as defined in �2.8�. This leads to the following Wigner-
oltzmann equation �after rescaling�:

��t f
� + �p · �x − ��V��f� =

1

�
Cel�f�� . �3.6�

e denote by � the Wigner operator of domain D���= 
g�Lx,p
2 : p ·�xg�Lx,p

2 � and defined by

�:D��� → Lx,p
2 ,

g → �p · �x − ��V��g .

ote that, since ��V� is skew-adjoint on Lx,p
2 , so is � on D���.

Remark 3.4: It is not clear whether the Wigner-Boltzmann equation equipped with the classi-
al relaxation operator Cel preserves positivity. In this sense, it is not a consistent quantum
odel. �

For the study of the QQSHE model, we introduce the following functional spaces:

LNk
2 = �h�x,�� − measurable:�

Rx
3
�

��0
�h�x,���2�N����k d� dx � � � , �3.7�

ith N���=	2� and k�Z. So E=LN
2 .

Now, we give an existence result for the Wigner-Boltzmann equation �3.6�.
Lemma 3.5: Suppose Assumptions 2.4 and 3.2 hold true.
Then, for any value of the parameter ��0, any initial condition fI

��D��� and any time T
0, there exists a unique solution f��C1��0,T� ;Lx,p

2 ��C0��0,T� ;D���� to the initial value prob-
em �3.6�, f�t=0,x , p�= fI

�.
Proof: This is a straightforward consequence of the classical semigroup theory—see, e.g.,

efs. 36 and 48. Indeed, � is a skew-adjoint operator and generates a unitary group by Stone’s
heorem. Since Cel is a bounded perturbation of �, Cel+� with domain D��� generates a group of
perators. �

. The quasiquantum SHE model „QQSHE…

This section is dedicated to the investigation of the limit �→0 in �3.6�. The collision phe-
omena are modeled by the collision operator Cel defined by �2.13�. For the sake of simplicity, we
ssume that the collision frequency � is constant. The main result of this section is the following.

Theorem 3.6: Assumptions 2.4 and 3.2 are supposed to hold true.
� 2 2
Let fI �Lx,p be a convergent sequence such that the limit fI be in E. We note FI�x , �p� /2�
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f I�x , p�. Therefore, FI is in LN
2 . We assume that the collision frequency � is constant.

Let f� denote the solution of �3.6�, with initial condition f��t=0,x , p�= f I
��x , p�, and with the

elaxation operator Cel�f�=��P�f�− f�. Then, as �→0, the sequence �f����0 converges �up to the
xtraction of a subsequence� weakly in L2�0,T ;Lx,p

2 � to a limit f �L2�0,T ;E�. We note
�t ,x , �p�2 /2�= f�t ,x , p�, so that F�L2�0,T ;LN

2 �. In addition, F is a weak solution of

�tF −
1

�
P�����F��� = 0, �3.8�

F�t = 0,x,�� = FI�x,�� . �3.9�

Remark 3.7: If the collisions are modeled by the more general collision operator �2.8�, then
ne can prove that the limit equation satisfied by F is

�tF − P���Cel
−1���F���� = 0, �3.10�

nder the condition that the following set of test functions is dense in L��0,T ;LN
2 �:

H = 
� � W1,��0,T;Cc
��R3 � R+��:P���Cel

−1������ � L��0,T;LN
2 �� .

his condition is obviously fulfilled when Cel=��Pf − f�.
It is possible to insert the expression of � into �3.8� �or �3.10��, in order to get a more explicit

orm of the equation. However, this expression is quite complicated and not very illuminating. We
hall derive an explicit expression after using an expansion of � in powers of � at Sec. III C. �

Remark 3.8: The quantum �Wigner� transport operator does not preserve the classical entropy.
herefore, there is no �obvious� classical entropy dissipation for the quasiquantum SHE model.
lso, the classical relaxation operator Cel does not decay the quantum entropy introduced below in
ec. IV. This leaves little hope to find a simple entropic structure for this model, at least in the
ramework presented in this paper.

We have to mention that, unlike the classical SHE model, the QQSHE model has not a clear
arabolic �or even degenerate parabolic� structure. Indeed, the Wigner transport operator is a
seudodifferential operator, not a true partial differential operator.

Last, but not least, the quantum relevance of this model is weak since there is no indication
hether it admits positive solutions �in the sense of operator positivity�. �

Proof: We start from �3.6�. We multiply by f� and integrate with respect to t, x, and p. This
ields

� f��t��
Lx,p

2
2 +

1

�2�
0

t

�P�f��s��
Lx,p

2
2 ds = � f I

��
Lx,p

2
2 . �3.11�

herefore, the sequence �f�� is bounded in Lx,p
2 since �f I

�� is bounded. There exists f in
��0,T ;Lx,p

2 � such that f�
⇀ f weakly * in L��0,T ;Lx,p

2 �. Moreover, the same estimate �3.11� shows
hat P�f� tends strongly to 0 as �→0 in the same space. Consequently, the limit f belongs to E
nd we can note F�t ,x , �p�2 /2�= f�t ,x , p�.

The Wigner-Boltzmann equation can be written in a weak form, by introducing the following
et of test functions:

S = 
� � W1,��0,T;Lx,p
2 � � L��0,T;D����: ��T,x,p� = 0� .

he weak solutions of �3.6� satisfy

"� � S �
6

f���t� +
1

�
�� +

1

�2Cel��dt dx dp =�
R6

f I
���0,x,p�dx dp . �3.12�
�0,T��R
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In order to prove that F is a weak solution of �3.8�, let us introduce a test function ��t ,x ,��
or this equation, in W1,��0,T ;Cc

��R3�R+��. Obviously the function �1�t ,x , p� defined by

1�t ,x , p�=��t ,x , �p�2 /2� belongs to S and can be taken as a test function in �3.12�. We consider
he asymptotic behavior of each term in �3.12� as �→0, in this special case where the test function

1 is a function of �t ,x , �p�2 /2�. The weak convergence of f� implies

� f��t�1�t,x,p�dt dx dp →� N���F�t,x,���t��t,x,��dt dx d�

nd

� f I
��1�0,x,p�dx dp →� N���FI�x,����0,x,��dx d� .

n the other hand, since �1�t , · , · ��E, necessarily �f�Cel�1 dt dx dp=0.
Let us decompose f� as follows:

f� = F� + �g�,

ith F�=Pf� and g�=P�f� /�. According to Lemma 3.3 �iv�, ��1 lies in E�. Therefore,
F���1 dt dx dp=0 since F��E and

1

�
� f���1 dt dx dp =� g���1 dt dx dp . �3.13�

e are thus led to investigate the behavior of g� as �→0. According to Eq. �3.11�, and using the
efinition of g�, we have

�
0

t

�g��s��Lx,p
2 ds � C .

herefore, there exists g such that g�
⇀g weakly * in L��0,T ;Lx,p

2 � and,

1

�
� f���1 dt dx dp =� g���1 dt dx dp →� g��1 dt dx dp �3.14�

s �→0. It remains to relate the last integral in �3.14� to F.
To this aim, we come back to �3.12�, that we write with another particular test function �2

specified below�. Equation �3.12� can be written in terms of g� and F�. Since the sequences F�

nd g� are bounded, keeping only the leading order terms in this equation leads to

� g�Cel�2 dt dx dp = −� F���2 dt dx dp + O��� ,

r, letting �→0,

� gCel�2 dt dx dp = −� F��2 dt dx dp . �3.15�

ow, by choosing

�2 = �Cel�−1���1� ,
e deduce that the last integral in �3.14� can be rewritten
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� g��1 dt dx dp =� gCel�2 dt dx dp

nd straightforward calculations lead to

� g��1 dt dx dp = −� NFP����Cel�−1���1���dt dx d� .

inally, we get

� NF��t� − P����Cel�−1���1����dt dx d� =� NFI��0,x,��dx d� �3.16�

hich is obviously the weak form of �3.10�. It remains to check that this formal identification can
e made rigorous. Namely, we must prove that, if ��W1,��0,T ;Cc

��R3�R+��, then �2

�Cel�−1���1� is an admissible test function for �3.12�. By Lemma 3.3 �under Assumption 3.2�, it
s an easy task, since we have

�Cel�−1���1� = −
1

�
��1.

�

. The QQSHE2 model: quantum corrections to the classical SHE model

The explicit form of the diffusion term P����F��N��� /� in �3.8� is not easy to handle. As in
ef. 19 we give the expansion of this model in �, up to second order terms. This leads to the
lassical SHE model enriched with quantum correction terms.

In the remainder of this paper, when a function F depends on p through the energy �p�2 /2 only,
e note equally F��p�2 /2�=F�p� when the context is clear.

The Wigner transport operator � depends on the reduced Planck constant. At usual macro-
copic scales, this constant is negligible and the transport operator � can be expanded in powers
f �. Formally, one has

� = L + �2L�2� + O��4� , �3.17�

here L= p ·�x−�xV ·�p is the classical transport operator and L�2� is a third order differential
perator given by

L�2� = 1
24�x

�3V � �p
�3.

ere the third order tensors are defined as ��x
�3�i,j,k=�xi,xj,xk

3 �and analogously for �p
�3� and �

enotes the third order tensor product. Formula �3.17� gives the leading and second order terms of
he so-called Wigner-Moyal expansion �see Ref. 43�.

Then the diffusion term becomes

N���P����F�� = N���P�L�LF�� + �2N����P�L�2��LF�� + P�L�L�2�F��� + O��4� .

ote that P�L�LF�� is the diffusion term that is involved in the CSHE model �2.11�, �2.14�.
ndeed, when F is a function of the position and energy only LF= p · �̃F, where �̃ is the “twisted”

radient operator defined at �2.12�. Therefore, L�LF�= p�2 : �̃�2F−�xV · �̃F. Applying projector P
ields

N���P�L�LF�� = 4�
�2��3/2

3
�̃ · �̃F − 4��2��1/2�xV · �̃F
nd one can check that the right-hand side of this equation can be written
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4��̃ · � �2��3/2

3
�̃F�

hich is the diffusion term in the classical SHE model.
For the computation of the other terms, we refer the reader to Appendix A. They are summa-

ized in the following formal lemma.
Lemma 3.9: We assume that the collision operator is given by �2.13�. Up to second order

erms in �, the QQSHE model can be formally approached by the following QQSHE2 model �in
he case where � is a constant independent of ��:

N����tF −
4�

�
�̃ · � �2��3/2

3
�̃F� −

4��2

24�
� �2

��2� �2��5/2

5
�x��V� · ���̃F�

+
�

��
�̃ · � �2��5/2

5
�x��V���

2F�� = 0. �3.18�

Remark 3.10: Compared with the CSHE model �2.11�, additional terms involving fourth order
erivatives appear. They are multiplied by factors involving third order derivatives of the poten-
ial, which is natural since these factors appear in the first correction to the classical limit in the

igner-Moyal expansion.43 Also, these fourth order derivatives of F involve cross-diffusion terms
ixing space and energy derivatives. This is to be related with the cross-diffusion terms that

ppear in the Fokker-Planck equation used in Ref. 4. �

Given that the coefficients of the fourth order derivatives have no fixed sign, one can wonder
bout the stability and well-posedness of this model. As for the QQSHE model, there is no clear
ntropic structure for the QQSHE2 model. Therefore, no clear indication is given why this model
hould be well-posed. A linearized stability analysis of this model is in progress to try to answer
his question. If the model is found linearly stable, there is good hope that it can be used to
fficiently simulate quantum semiconductor devices numerically. �

V. QUANTUM COLLISION OPERATORS

All the results given in the following section are formal. In Sec. III, the SHE models are of a
ybrid type since they are derived from a microscopic equation with a quantum transport term and
classical collision operator. To remedy to this inconsistency, we need to develop a notion of

uantum collision operator which allows us to perform the program leading to SHE-type models.
An important property of the collision operators used in classical kinetic theory is the entropy

issipation. Therefore, a natural requirement of a quantum collision operator Q is that it dissipates
uantum entropy and that a quantum kinetic equation such as the Wigner-Boltzmann equation

�t f + p · �xf − ��V�f = Q�f� �4.1�

atisfies a quantum analogue to Lemma 2.1.
The collision operator Q will be derived as a quantum counterpart of the classical electron-

honon collision operator �or its elastic approximation�. Therefore, the equilibrium states of this
uantum operator will be “quantum” Maxwellian, as the classical operator had �“classical”� Max-
ellian equilibria. Consequently, the quantum relative entropy associated with the von Neumann

quation �3.4� is defined by HQ���=Tr
��ln �−1+H�� where H=−��2 /2��+V is the particle
amiltonian. Lemma 3.1 allows to deduce the expression of quantum entropy in the Wigner

ramework by

HQ�f� =
1

�2� � �3 � f�Ln�f� +
�p�2

2
+ V − 1�dp dx , �4.2�
here the “quantum logarithm” Ln is defined by
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Ln�f� = W�ln�Op�f��� ,

ssuming that Op�f��0. Analogously, we define the “quantum exponential” and the quantum
axwellian Max, respectively, by

Exp�f� = W�exp�Op�f��� ,

Max�x,p� = W�exp�Op�−
�p�2

2
− V�x���� = Exp�− �p�2/2 − V� .

ote that Ln and Exp are formal inverses and that −�p�2 /2−V=Ln�Max�x , p��.
Then �4.2� is equivalently written �up to a constant multiplier �2�� �2�

HQ�f� =� f�Ln�f� − Ln�Max� − 1�dp dx

nd appears as the quantum relative entropy with respect to quantum Maxwellian steady states.
he following lemma gives a criterion on Q for Eq. �4.1� to be consistent with the quantum
ntropy HQ.

Lemma 4.1: Let Q in �4.1� be such that, for any function g, we have

−� Q�g��Ln�g� − Ln�Max��dx dp � 0. �4.3�

hen, if f is a solution of Eq. �4.1�, the associated quantum entropy satisfies

dHQ�f�
dt

� 0. �4.4�

Proof: To begin with, we recall that HQ is Gâteaux differentiable and its Gâteaux derivative at
f in the direction 	f is �see Ref. 21�

HQ� �f�	f = �2� � �3 Tr
�ln Op�f� + H�Op�	f��

r,

HQ� �f�	f =� �Ln f +
�p�2

2
+ V�	f dp dx .

herefore, if f is a solution of �4.1�,

dHQ�f�
dt

=� �Ln f +
�p�2

2
+ V��t f dp dx = −� �Ln f +

�p�2

2
+ V��f dp dx

−� �Ln f +
�p�2

2
+ V�Q�f�dp dx

= −� ��W�ln�Op�f��� + W�H��
i

�
W�H Op�f� − Op�f�H��dp dx

−� �Ln�f� − Ln�Max��Q�f�dp dx �4.5�

hanks to Lemma �3.1� �iv�. Now, using �3.1� �iii�, the first integral on the right-hand side can be

ritten
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�2��3i�2 Tr
�ln�Op�f�� + H��H,Op�f���

r, using the cyclicity of the trace,

�2��3i�2 Tr
�Op�f�, ln�Op�f���H + �H,H�Op�f��

nd this trace is obviously null. Finally, the second integral on the right-hand side of �4.5� is
on-negative according to �4.3�, which completes the proof. �

Consequently, after Ref. 22, what is meant in this paper by quantum collision operators is a
lass of collision operators Q that satisfy the following formal properties: for any function f�x , p�,

Mass conservation:� Q�f��p�dx dp = 0,

Entropy dissipation:−� Q�f��Ln�f� − Ln�Max��dx dp � 0.

. The quantum electron-phonon collision operator

In this section, quantum counterparts of the classical collision operator Ce� and of its elastic
pproximation Cel are introduced. They may lead to possibly interesting quantum models for
lectron-phonon scattering. Moreover, the derivation of a quantum SHE model in Sec. V is
erformed from a quantum kinetic equation with a relaxation collision operator which can be
nderstood as a relaxation approximation of the operators studied in this section.

Keeping Lemma 4.1 in mind, we introduce the following quantum version of the electron-
honon collision operator Ce� described in Sec. II B �we recall that � is the phonon energy in
caled variables�:

Qe��f� =� S�p,p���	��� − � − �� + 	��� − � + ����A�f��
M�

−
A�f�

M
�dp�, �4.6�

here

A�f� = exp W�ln Op�f�� = exp Ln f , �4.7�

amely Ln f =ln A�f� where ln is the ordinary logarithm. Note that it is not clear what conditions
f should satisfy for A�f� to be a well-defined function. Therefore, the definition of Qe� is purely
ormal at this point and all the results stated in this section are formal.

However, we claim that this operator is a natural extension of the classical phonon operator to
uantum systems, and that it is consistent with quantum entropy relaxation. Indeed, we have the
ollowing.

Proposition 4.2: The collision operator Qe� defined by �4.6� satisfies the following properties:

�i� Mass conservation: �Qe��f�dp=0 for any measurable function f .
�ii� Equilibrium states: for any measurable function f�x , p�, we have Qe��f�=0 if and only if

f�x,p� = Exp� � · �2

2
+ ln F� � · �2

2
���x,p� = W�exp�−

�2

2
� + Op�ln F���,�x,p�

where F=F��� is such that F��+��=F���.
�iii� Entropy dissipation: −�Qe��f��Ln�f�−Ln�Max��dp�0 for any function f .

Proof: The mass conservation follows from the symmetry of S�p , p��. The equilibria of op-
rator Qe� can be easily deduced from those of operator Ce� by remarking that Qe��f�

Ce��A�f��. On the other hand, it follows from the symmetry of S that
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−� Qe��f��Ln�f� − Ln�Max��dp

=
1

2
� S�p,p���	+ + 	−��A�f��

M�
−

A�f�
M

��ln
A�f��

M�
− ln

A�f�
M

�dp dp� dx

hich is non-negative since ln is an increasing function. �

Like in the case of the classical electron-phonon scattering, we are interested in the elastic
imit �→0 of the operator Qe�. More precisely, we let �0 tend to zero and get

Qel�f��p� = N��p�2/2�
P�S̃�p, · �A�f��·�� − P�S̃�p, · ��A�f��p�� , �4.8�

here S̃ is defined as in Sec. II B by formula �2.9�. We drop the tildes in the remainder of the
aper. This operator has the properties of a quantum collision operator.

Proposition 4.3: The collision operator Qel defined by �4.8� satisfies the following properties:

�i� Mass conservation: �Qel�f�dp=0 for any measurable function f .
�ii� Equilibrium states: for any measurable function f�x , p�, we have Qel�f�=0 if and only if

there exists a function ��x ,�� of position and energy only such that

f�x,p� = Exp��̃��x,p� ,

where �̃�x , p�=��x , �p�2 /2�.
�iii� Entropy dissipation: −�Qel�f��Ln�f�−Ln�Max��dp�0 for any function f .

Remark 4.4: Note that f , unlike �, is not a function of the energy only in general. Indeed, it is
ot clear that the quantum exponential of a function of position and energy �x ,��p�� remains a

function of �x ,��p�� �with ��p�= �p�2 /2�. �

Proof: Mass conservation and entropy dissipation can be proven in the same way as for Qe�.
or �ii�, we consider

−� Qel�f��p�A�f��p�dp =
1

2
� 	� �p��2

2
−

�p�2

2
�S�p,p���A�f��p��

− A�f��p��2 dp� dp�0,

here A is defined by �4.7�.
Obviously, if Qel�f�=0, then one necessarily has A�f��x , p�=A�f��x , p�� whenever �p � = �p��.

herefore, A�f� is a function of x and �p�2 /2 only. Consequently, ln A�f� depends only on �p�2 /2
oo and, finally, one can set ����=ln A�f�=Ln f , or f =Exp �. �

. The quantum relaxation operator

In classical kinetic theory, an important class of collision operators is constituted by the
elaxation operators. The mathematical study of these operators is simpler than for Boltzmann-
ype collision operators although they share many important properties with them, such as entropy
issipation, mass conservation and the expression of their equilibrium states.

The task in this section is to introduce a consistent notion of quantum relaxation operator that
atisfies properties �i�, �ii�, and �iii� of Proposition 4.3. To this aim, we introduce the following

inimization problem:
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Given f , find E f such that:

HQ�E f� = Min
HQ�g�/P�f − g� = 0� . �4.9�

ssuming that, for f in a suitable space, a solution E f to this problem exists, we set

Qrel�f� = ��E f − f� , �4.10�

here � is assumed to be constant in the sequel.
It remains to prove that such an operator has the required properties. We have the following.
Proposition 4.5 The collision operator Qrel defined by �4.10� satisfies the following properties:

�i� Mass conservation: �Qrel�f�dp=0 for any measurable function f .
�ii� Equilibrium states: for any measurable function f�x , p�, we have Qrel�f�=0 if and only if

there exists a function ��x ,�� of x and the energy only such that

f�x,p� = Exp��̃��x,p� ,

where �̃�x , p�=��x , �p�2 /2�.
�iii� Entropy dissipation: −�Qrel�f��Ln�f�−Ln�Max��dp�0 for any function f .

Before proving Proposition 4.5, we state an important property of the solutions of the mini-
ization problem �4.9�.

Lemma 4.6: Let f be a function such that a solution of the minimization problem �4.9� exists.
e denote such a solution by Ef. Then, there exists a function ��x ,�� such that

E f�x,p� = Exp����x,p� .

Proof: Since E f is the minimizer of HQ�g� under the constraint P�f −g�=0, there exists a
agrange multiplier ��x ,�� such that HQ� �f�g+�P�g�=0 for all g. This means that, for all g,

� �Ln�f� +
�p�2

2
+ V − ��x, �p�2/2��g�x,p�dp dx = 0,

hat is f =Exp���x ,��� with ��x ,��=��x ,��−�−V�x�. �

Proof of Proposition 4.5: Point �i� is obvious since the definition of Ef implies that P�f
E f�=0. Point �ii� is a straightforward consequence of Lemma 4.6. The proof of point �iii� is

nspired from Ref. 19. We introduce

�:� � �0,1� → �
R6

��x,��h��1 − ��E f + �f�dx dp

ith h : f → f�Ln f −1+ �p�2 /2+V�. Deriving � by a chain rule yields

d�

d�
��� = �

R6
��x,�p��f − E f��Ln��1 − ��E f + �f� + �p�2/2 + V�dx dp .

he convexity of h implies that � is also convex so that �d� /d���1����1�−��0�, which in turn
ives

−� Qrel�f��Ln�f� + �p�2/2 + V�dxdp � ��HQ�f� − HQ�E f�� � 0
ince E f is a minimizer of HQ and � is a constant. �
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Before turning to the derivation of a fully quantum SHE type model, it is important to
nderline that the collisional Wigner equation equipped with relaxation type operator Qrel is a
onsistent quantum model in the sense that it �formally� preserves positivity. Precisely, the fol-
owing proposition holds true.

Proposition 4.7: Let the initial datum fI be positive [in the sense of operators, i.e., �I

Op�f I� is a positive operator]. If the following initial value problem,

�t f + �f = Qrelf , f�t = 0,x,p� = f I�x,p� ,

as a solution f�t ,x , p�, then this solution is positive �i.e., ��t�=Op�f��t� is a positive operator� for
ll time.

Proof: The proof is very close to the proof of Lemma 2.1 in Ref. 19. We just emphasize on the
ositivity of operator Op�E f�. Indeed, according to Lemma 4.6, to any given function f there can
e associated an energy dependent function � f such that

E f = Exp�� f� .

onsequently, Op�E f�=Op�W�exp Op�� f���=exp Op�� f� which obviously is a positive operator.�
This quantum relaxation collision operator will be used for the derivation of the full quantum

HE model. Note that at this point, the existence of a minimizer for �4.9� is an open problem.

. THE FULL QUANTUM SHE MODEL „QSHE…

In this section, we formally investigate the limit �→0 in the following rescaled Wigner-
uantum relaxation equation:

��t f
� + �f� =

1

�
Qrel�f�� , �5.1�

here we recall that �= p ·�x−��V� is the Wigner operator. In the sequel, we assume the follow-
ng.

Assumption 5.1: For any given function f , there exists a solution E f to the minimization
roblem �4.9�, and this solution is unique.

The following formal result holds.
Theorem 5.2: If �5.1� admits a solution f� for all �, and if the so-obtained sequence f� admits

convergent subsequence, then the limit is denoted by F and there exists a function � such that

: �t ,x , p�→��t ,x , �p�2 /2� satisfies

F�t,x,p� = Exp��̃��t,x,p� ,

�5.2�

N����tP�Exp��̃�� − N���P���1

�
��Exp��̃���� = 0.

urthermore, the quantum entropy decreases with time,

d

dt
HQSHE�F� � 0, HQSHE�F� =� P�F��� + � + V − 1�N���d� dx . �5.3�

Remark 5.3: The main difference between the QQSHE and QSHE models is that the unknown

in the QQSHE model �which is a function of position and energy� is replaced by Exp �̃ in the
SHE model, where � is a function of position and energy. This is a true difference since F
Exp �̃ is in general not a function of position and energy only. This difference makes the QSHE
odel consistent with quantum entropy decay �5.3� rather than classical entropy decay. Again, we

o not make this equation more explicit. Indeed, here, it is not possible to make the relation
˜
etween Exp � and � explicit because Exp is a nonlinear nonlocal operator. �
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Remark 5.4: Equation �5.2� is closed provided the minimization problem �4.9� is uniquely
olvable. Indeed, in this case, there is a one to one correspondence between the intensive quantity

and the extensive quantity P�Exp ��. �

Proof: First, letting �→0 in Eq. �5.1� leads to Qrel�F�=0 so that, according to Proposition

.5, there exists ��x ,�� such that F=Exp �̃. Now, the Chapman-Enskog expansion of f� is written

f� = E f� + �g�

ince f� is close to the equilibrium when � is small. We assume that E f� and g� are bounded with
espect to � in a suitable topology �see Remark 5.5 below�. Then, introducing this expansion in
q. �5.1� yields, at first order in �,

P��tE f� + �g�� = O��� �5.4�

nd, at zeroth order in �,

�E f� = − �g� + O��� �5.5�

ince Qrel�f��=��E f� − �E f� +�g���=−��g�. According to �5.5�, Eq. �5.4� becomes

P��tE f� − ��1

�
�E f��� = O��� . �5.6�

e recall that E f�→Exp �̃ as �→0. Letting �→0 in �5.6� leads to �5.2�. The entropy decay is
btained by taking the limit �→0 in �4.4�. �

Remark 5.5: At this stage of investigation, any rigorous convergence proof remains specula-
ive. However, in simpler situations, if any, a reasonable proof would at least require that se-
uences E f� and g� be bounded with respect to � in a suitable topology �precisely the topology in
hich convergence of sequence f� would be proven to hold�. �

From now on, we drop the tildes and identify � to �̃. As in the case of the quasiquantum SHE
odel, it is interesting to expand the quantum SHE model in powers of � up to second order

erms. We recall that �=L+�2L�2�+O��4� where L= p ·�x−�xV ·�p is the classical transport op-
rator and L�2�= �1/24��x

�3V��p
�3. However, unlike in the case of the quasiquantum SHE model,

ere not only does � depend on �, but also Exp �. After Ref. 19, the quantum exponential of any
unction f�x , p� can be written

Exp f = exp f�1 + �2Tf + O��4�� , �5.7�

Tf = 1
8��x

�2f:�p
�2f − �x�pf:�p�xf + 1

3 ��x
�2f:�pf�pf − 2�x�pf:�pf�xf + �p

�2f:�xf�xf�� .

�5.8�

herefore, the QSHE model is formally approached, up to second order terms, by

N����tF − N���P�L�1

�
L�F��� + �2N����t�P�FT�ln F���

− �2N���P��L�1

�
L�2�� + L�2��1

�
L���F� − L�1

�
L�FT�ln F���� = 0. �5.9�

here we have set F=exp �.
We recall that � is a constant coefficient. Using the computations already performed to prove

emma 3.9, we obtain

N����tF −
4�

�̃ · � �2��3/2

�̃F�

� 3
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−
4��2

24�
� �2

��2� �2��5/2

5
�x��V� · ���̃F� +

�

��
�̃ · � �2��5/2

5
�x��V���

2F��
+ �2N����t�P�FT�ln F��� +

�2N���
�

P�L�L�FT�ln F���� = 0.

ote that, in this equation, the two first lines correspond to the left-hand side of the QQSHE2

quation �3.18�. Other second order terms appear due to the expansion of the quantum exponential
xp into powers of �. Since � is a function of the position and the energy only, after �5.8� T� can
e written as

T� = 1
8
����� + p�2:��x

�2���
2� − �x������x������ + 1

3 �p�2:��x
�2������2 − ����x��x�����

+ �x��x���
2�� + ��x��2����� . �5.10�

ccording to �5.10�, T� takes the following form:

1
8 �I��� + p�2:J���� , �5.11�

here

I��� = ����� + 1
3 ��x��2��� , �5.12�

J��� = �x
�2���

2� − �x������x����� + 1
3 ��x

�2������2 − ����x��x����� + �x��x���
2�� .

�5.13�

herefore, the second order terms in the formal expansion of the QSHE model can be expressed
n terms of I and J.

Lemma 5.6: We assume that the collision operator is given by �4.10�. Up to second order
erms in �, the QSHE model can be formally approached by the following QSHE2 model (in the
ase where � is a constant):

N����tF −
4�

�
�̃ · � �2��3/2

3
�̃F�

−
4��2

24�
� �2

��2� �2��5/2

5
�x��V� · ���̃F� +

�

��
�̃ · � �2��5/2

5
�x��V���

2F��
+

4��2

8
��t�F�	2�I�ln F� +

�2��2/3

3
Trace J�ln F����

+
1

�
��̃ · � �2��3/2

3
�̃�FI�ln F��� + 2�̃�2:

�2��5/2

15
�FJ�ln F��

���̃ · � �2��5/2

3
�̃�F Trace J�ln F����� = 0,

here I and J are given by �5.12� and �5.13�, respectively, and Trace J denotes the trace of the
econd order tensor J, namely

Trace J = �� ��
2� − ��x������2 + 1

3 ��������2 − �����x��2���� + ��x��2��
2�� . �5.14�
Remark 5.7: In this equation, we first find the terms involved in the QQSHE2 model �3.18�
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the first two lines�. Then, additional terms arise due to the nonlinear relation between F and

xp �̃. They still are fourth order terms, but now they are nonlinear. They still involve crossed
erivatives. The same stability questions as for the QQSHE2 model can be posed for this model,
ompleted by the fact that it is now a nonlinear model. The answer to the stability question is
herefore even more complex. That this model can be effective for practical computations is not
lear. Probably, a direct numerical resolution of the full QSHE model will be more efficient, as it
s the case for drift diffusion models �see, e.g., Refs. 28, 29, and 16�. �

I. CONCLUSION

In this paper, we have investigated possible quantum extensions of classical SHE �or Fokker-
lanck� models. After a review of the derivation of classical SHE models, two possible extensions
ave been given: one by using a classical operator at the right-hand side of a quantum Wigner
quation, a second one, by using a quantum version of a relaxation operator. The first approach
bviously lacks consistency but gives rise to a seemingly tractable equation. The second approach,
lthough more consistent, gives rise to a rather complex model, the practical effectiveness of
hich is not clear. More work is required to settle the question of stability of these models and to

ry to find more tractable expressions of them.

PPENDIX A: THE QQSHE2 MODEL

In the sequel, the following identities are needed �a denotes a fourth order tensor and Ein-
tein’s convention is used�:

P�1� = 1, P�p� = 0, P�p�2���� =
2�

3
	 , �A1�

�P�p�4�::a���� =
�2��2

15
�ai,i,j,j + ai,j,i,j + ai,j,j,i� , �A2�

here 	 denotes the second order tensor the components of which are 	 j
i �	 j

i is the Kronecker
ymbol�. No confusion should arise with the Dirac measure 	. Moreover, :: denotes the fourth
rder tensor product, defined by

a::b = ai,j,k,lbi,j,k,l,

or two fourth order tensors a and b.

The trace of any second order tensor G is denoted by Trace G. We recall that we note �̃
�x−�xV��.

We first compute the term P�L�L�2�F��, where F depends on p only through the kinetic energy
p�2 /2. Obviously then, �pF= p��F. Then,

�p
�3F = �p � ��p � �p��F��

=�p � �	��F + p � p��
2F�

=�2	 � p + p � 	���
2F + p�3��

3F

nd, since �x
�3V is a symmetric tensor, we have

�x
�3V � �p

�3F = 3�x
�3V � p � 	��

2F + �x
�3V � p�3��

3F = 3p · �x��V���
2F + �x

�3V � p�3��
3F

�A3�
�3 �3
ince G :	=Trace�G� for any second order tensor. Now, apply L to �x V��p F. First, by �A3�,
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p · �x��x
�3V � �p

�3F� = 3p�2:�x��x��V���
2F� + p�4::�x��x

�3V��
3F� �A4�

nd, on the other hand,

�xV · �p��x
�3V � �p

�3F� = 3�xV�x��V�:�p�p��
2F� + �xV�x

�3V::�p�p�3��
3F�

= 3�xV�x��V�:�	��
2F + p�2��

3F�

+ �xV�x
�3V::��	p�2 + 2p�2	���

3F + p�4��
4F� . �A5�

e recall that N���=4�	2� and that, for any function f�p� and any function 
 independent of p
r depending on p only through the energy �p�2 /2, we have P�f
�=P�f�
. Based on this, the
rojection on E takes the form

N���P�p · �x��x
�3V � �p

�3F�����

=N���P�3p�2�:�x��x��V���
2F� + N���P�p�4�::�x��x

�3V��
3F�

=4���2��3/2�x · ��x��V���
2F� +

�2��5/2

5
�x · ��x��V���

3F��
=4�

�

��
�x · � �2��5/2

5
��x��V���

2F�� ,

ccording to �A4� �we have used �A1� and �A2��. Following �A5�, we deduce

N���P��xV · �p��x
�3V � �p

�3F�����

=N����3�xV�x��V�:�	��
2F + P�p�2���

3F�

+ �xV�x
�3V::��	P�p�2� + 2P�p�2�	���

3F + P�p�4���
4F�

=4�
�

��
��2��3/2�xV · �x��V���

2F +
�2��5/2

5
�xV · �x��V���

3F�
=4�

�

��
�xV ·

�

��
� �2��5/2

5
�x��V���

2F� ,

here we have used �A1�, �A2� and the symmetries of �x
3V. Therefore,

N���P�L�L�2�F����� =
4�

24

�

��
�̃ · � �2��5/2

5
�x��V���

2F� .

Let us turn to P�L�2��LF��. First, note that, for any vector G�x ,�� depending only on the

osition and the energy �such as �̃F and its derivatives with respect to ��, one can write

�p�p · G� = G + p�p · ��G� . �A6�

his will be useful in the following computations. We start from LF= p · �̃F and apply �p
�3. Using

A6�, this gives

�p
�3�p · �̃F� = �p

�2��̃F + p�p · ���̃F��

=�p�p���̃F� + �p�	�p · ���̃F�� + �p�p���̃F� + �p�p�2�p · �2�̃F��
�
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=3	���̃F + 3p�2��
2�̃F + �2	p + p	��p · ��

2�̃F� + p�3�p · ��
3�̃F� .

sing the symmetry of the third order tensor �x
�3V, we get

24L�2��LF� = 3���̃F · �x��V� + 3�x
�3V � p�2��

2�̃F

+ 3p�2:��
2�̃F�x��V� + p�4::�x

�3V��
3�̃F .

eminding �A1� and �A2�, we have

24P�L�2��LF�� = N����3�x��V� · ���̃F� + 3N���P�p�2�:���
2�̃F�x��V��

+ 3N���P�p�2���
2�̃F � �x

�3V + N���P�p�4�::��
3�̃F�x

�3V

=4�
3�2��1/2�x��V� · ���̃F + �2��3/2�2�x��V� · ��
2�̃F�

+
�2��5/2

5
��̃��V� · ��

3�̃F� ,

hich finally gives

N���P�L�2��LF����� =
4�

24

�2

��2� �2��5/2

5
�x��V� · ���̃F� .

PPENDIX B: THE QSHE2 MODEL

Let us note �=ln F as in Theorem 5.2. The function � is a function of x and � only. We shall
dentify the functions �x , p�→��x , �p�2 /2� and � when no confusion arises. We recall that, for
f�x , p�=��x , �p�2 /2�, formula �5.8� can be rewritten as

T��x,p� = 1
8 �I + p�2:J� ,

here I and J are given by �5.12� and �5.13�, respectively. The expression of the trace of the
econd order tensor J is given by �5.14�.

The terms to compute are P�FT�ln F�� and P�L�L�FT�ln F����. Since F is a function of the
nergy only, the first term is equal to FP�T�ln F��.

. Computation of NFP„T„ln F……

Here, we only have to project Eq. �5.10�. Using formulas �A1� and �A2�, this equation be-
omes �we recall that N���=4��2��1/2�:

N���P�T�� =
4�

8
�	2�I +

�2��3/2

3
Trace J� ,

here Trace J is explicited in �5.14�.

. Computation of NP„L„L„FT„ln F…………

We first give some expressions valid for any function G and second order tensor G that depend
˜
nly on the energy. It has been seen that LG= p ·�G. Then a straightforward computation yields
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L�LG� = L�p · �̃G� = p�2:�̃�2G − �xV · �̃G ,

here L�p�=−�xV has been used. Recalling that N���=4�	2�, formula �A1� gives

N���P�L�LG�� = 4�� �2��3/2

3
�̃ · �̃�G� − 	2��xV · �̃G�

nd, since �̃�2���k+1�/2= �k+1��2��k/2�xV,

N���P�L�LG�� = 4��̃ · � �2��3/2

3
�̃G� . �B1�

n the other hand, since L is a first order tensor, we have

L�L�p�2:G�� = L�L�p�2��:G + 2L�p�2�:L�G� + p�2:L�L�G�� .

bviously, Lp=−�xV and L��xV�= p ·�x��xV�. Therefore,

L�L�p�2�� = L�− �xVp − p�xV�
=�− p · �x��xV��p − p�p · �x��xV�� + 2�xV�xV .

�B2�

ince G depends only on the energy, we have LG= p · �̃�G� and, consequently,

L�L�G�� = �p�2:�̃�2�G − �xV · �̃�G� . �B3�

herefore, reminding that L�p�=−�xV, LG= p · �̃�G�, that G is symmetric, and using �B2� and �B3�,
e obtain

L�L�p�2:G�� = �− �2p · �x��xV��p + 2�xV�xV�:G

+ 4�− �xV�p:p · �̃�G� + p�4::�̃�2G − p�2:�xV · �̃�G� ,

hich, according to �A1� and �A2�, yields

N���P�L�L�p�2:G��� = 4��2�−
�2��3/2

3
�x

�2V + 	2��xV�xV�:G�
+ 4

�2��3/2

3
�− �xV�̃�:G +

�2��5/2

15
��̃ · �̃�Trace G� + 2�̃�2:G�

� −
�2��3/2

3
�xV · �̃�Trace G�� .

inally, using again �̃�2���k+1�/2= �k+1��2��k/2�xV, we have

N���P�L�L�p�2:G��� = 4��2�̃�2:
�2��5/2

15
G + �̃ · � �2��5/2

3
�̃ Trace G�� . �B4�

Let us go back to the computation of NP�L�L�FT�ln F����. Taking for G the function FI and,
or G, the second order tensor FJ, Eqs. �B1� and �B4� allow to conclude that

NP�L�L�FT�ln F���� =
4���̃ · � �2��3/2

�̃�FI�� + 2�̃�2:
�2��5/2

�FJ��

8 3 15
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� + �̃ · � �2��5/2

3
�̃�F Trace J��� ,

ince by �5.11� we have FT�ln F�=FI+ p�2 :FJ.
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In this paper, first, the ETM is applied to obtain variable separation solutions of
�2+1�-dimensional systems. A common formula with some arbitrary functions is
derived to describe suitable physical quantities for some �2+1�-dimensional models
such as the generalized Nizhnik-Novikov-Veselov, Davey-Stewartson, Broer-Kaup-
Kupershmidt, Boiti-Leon-Pempinelli, integrable Kortweg-de Vries �KdV�, breaking
soliton and Burgers models. The universal formula in Tang, Lou, and Zhang �Phys.
Rev. E 66, 046601 �2002�� can be simplified to the common formula in the present
paper, which indicates that redundant process is included there since the easier
variable separation form can be employed without loss of generality. Second, this
method is successfully generalized to �1+1�-dimensional systems, such as coupled
integrable dispersionless, long-wave–short-wave resonance interaction and nega-
tive KdV models, and obtain another common formula to describe suitable physical
fields or potentials of these �1+1�-dimensional models, which is similar to the one
in �2+1�-dimensional systems. Moreover, it also is extended to �3+1�-dimensional
Burgers system, and find that the common formula in �2+1�-dimensional systems
is also appropriate to describe the �3+1�-dimensional Burgers system. The only
differences are that the function q is a solution of a constraint equation and p is an
arbitrary function of three independent variables. Finally, based on the common
formula for �2+1�-dimensional systems and by selecting appropriate multivalued
functions, interactions among special dromion, special peakon and foldon are in-
vestigated. The interactions between two special dromions, and between two spe-
cial peakons, both possess novel properties, that is, there exist a multivalued foldon
in the process of their collision, which is different from the reported cases in
previous literature. Furthermore, the explicit phase shifts for all the local excita-
tions offered by the common formula have been given, and are applied to these
novel interactions in detail. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2186255�

. INTRODUCTION

In recent years, increasing attention has been paid to the study of the soliton theory in many
atural sciences such as chemistry, biology, mathematics, communication, and particularly in
lmost all branches of physics like the fluid dynamics, plasma physics, field theory, nonlinear

�
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ptics, and condensed matter physics, etc. How to derive possible exact solutions to a nonlinear
odel arising from the field of mathematical physics is a popular topic, but solving nonlinear

hysics problems is much more difficult than solving the linear ones.
In linear physics, it is generally recognized that both the Fourier transformation and the

ariable separation approach �VSA� are the most universal and powerful means for the study of
inear partial differential equations �PDEs�. The celebrated inverse scattering transformation, con-
idered as an extension of the Fourier transformation in nonlinear physics, plays an important role
n the nonlinear domain.1 Meanwhile the extension of the variable separation approach to nonlin-
ar field has been a highlight, and there come out some methods: the classical method,2 the
ifferential Stäckel matrix approach,3 the ansatz-based method,2–8 etc. To our excitement, three
inds of “variable separation” procedures have been presented recently. The first method is called
he “formal variable separation approach” �FVSA�,4 or equivalently the symmetry constraints.5

he second one is the procedure to seek for the functional separable solutions6 and the derivative-
ependent functional separable solutions7 to a PDE via the generalized conditional symmetries.8

he last one is now called the multilinear variable separation approach �MLVSA� established first
n 1996 for the Davey-Stewartsen �DS� equation.9

Recently, the MLVSA is developed, and Tang et al.10 presented a universal formula

U1 �
2�a1a2 − a0a3�PxQy

�a0 + a1P + a2Q + a3PQ�2 , �1�

here P� P�x , t� is an arbitrary function of �x , t�, Q�Q�y , t� may be either an arbitrary function
f �y , t� for some models like the DS, generalized Nizhnik-Novikov-Veselov �GNNV� and 2DsG
ystems or an arbitrary solution of a Riccati equation for some other models such as the asym-
etric NNV �ANNV�, ADS, and the generalized �N+M�-component Ablowitz-Kaup-Newell-
egur �AKNS� system. In Ref. 10, a0, a1, a2, and a3 are taken as arbitrary constants. However, it

s clear that a0, a1, a2, and a3 should satisfy a0a3�a1a2, otherwise the quantity U1=0. More
ecently, a differential-difference form of the universal formula �1� has also been given for a
pecial differential-difference Toda system and the differential-difference ANNV system.11 More-
ver, The MLVSA is generalized to �3+1�-dimensional systems.12,13 In the past several years, one
hought that it is difficult to extend MLVSA to the �1+1�-dimensional nonlinear physics systems
ecause the independent variables must be totally separated. However, there are some develop-
ent recently. This extension of the MLVSA to �1+1�-dimensional nonlinear models was pre-

ented first by Xu and Zhang in Ref. 14. And then the method was developed to the
1+1�-dimensional long-wave–short-wave resonant interaction equation.15 Shen et al. also suc-
essfully extended MLVSA to �1+1�-dimensional Boiti system16 and �N+M�-component disper-
ionless system.17

In addition, many simple and effective direct methods are developed to solve the nonlinear
volution equations such as the tanh-function method,18 the sech-function method and the
acobian-function method,19 the ETM �ETM� based on mapping method.20 Now a natural and
mportant issue is whether the variable separation solution based on the former MLVSA can be
erived by the latter ETM, which is usually used to search for travelling wave solutions. The
rucial question is how to obtain solutions with certain arbitrary functions. Recently, along with
ariable separation ideas, Zheng et al.21,22 have realized variable separation for the Broer-Kaup-
upershmidt �BKK� system and dispersive long-wave �DLW� equation by the ETM. However,

hey actually derived variable separation solutions only for the same kind of �2+1�-dimensional
ystem, because the BKK system can be transformed to the DLW equation by using some suitable
ependent and independent variable transformations. One finds that it is too difficult to generalize
his ETM to obtain variable separation solutions for other �2+1�-dimensional systems in virtue of
he complexity to solving the over-determined partial differential equations. Therefore, one thinks
hat this method is not an excellent approach to realize variable separation.
In this paper, we successfully generalize the ETM based on a mapping method to obtain
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ariable separation solutions of �1+1�-dimensional, �2+1�-dimensional, and �3+1�-dimensional
athematical physics models. Through careful analysis, we first find that there also exists a

ommon formula in �2+1�-dimensional models via this method

U2 �
2pxqy

�p + q�2 , �2�

here p�p�x , t� is an arbitrary function of �x , t�, q is an arbitrary function of �y , t� for some kinds
f models like the GNNV and DS systems, or an arbitrary function of �y� for the BKK, Boiti-
eon-Pempinelli �BLP� systems, or an arbitrary solution of a constraint equation for integrable
ortweg-de Vries �KdV�, breaking soliton �BS� and Burgers models. For nonintegrable KdV

quation, neither p or q is arbitrary function, and they must satisfy some constraint equations.
herefore, we can define the solvable models by the ETM: these kinds of models should not be

ess than an arbitrary function �p or q�. The nonintegrable models are also not the solvable models
y the ETM. Moreover, there exists also a common formula, which is similar to the formula �2�,
o describe suitable physical fields or potentials of some �1+1�-dimensional models. The universal
ormula �2� is also appropriate to describe the �3+1�-dimensional Burgers system. The only
ifferences are that the function q is a solution of a constraint equation and p is an arbitrary
unction of three independent variables.

Because some arbitrary characteristics, lower dimensional functions �like p�, have been in-
luded in the universal formula �2�, by selecting them appropriately, abundant stable localized
tructures can be revealed for these models. If the boundary �or initial� conditions of the given
ocalized excitations are considered, one can find that all the �2+1�-dimensional localized solu-
ions of these models are caused by the suitable boundary �or initial� conditions. Namely, the
ichness of the localized excitations of the �2+1�-dimensional models results from the fact that
rbitrary exotic behaviors can propagate along some special characteristics of the models. All rich
ocalized coherent structures discussed by the quantities U1 expressed by �1�, such as nonpropa-
ating solitons, dromion, peakon, compacton, foldon, instanton, ghoston, ring soliton, and the
nteraction between these solitons, can be rederived by the quantities U2 expressed by �2�.

In the real natural phenomena, there exist very complicated folded phenomena such as the
olded protein,23 folded brain, and skin surfaces, and many other kinds of folded biologic
ystems.24 The simplest multivalued �folded� waves may be the bubbles on �or under� a fluid
urface. Various ocean waves are really folded waves, too. In Ref. 25 and 26 the authors discussed
ome simpler cases of multiple-valued solitary waves �folded in all directions and semifoldon�.
owever, nature is extremely colorful and may exhibit quite complicated structures. Of course, at

he present stage, it is impossible to make satisfactory analytic descriptions for such complicated
olded natural phenomena. But, it is still worth starting with some simpler cases. Dromion and
eakon are the focus in the previous discussions. Usually, dromion solutions are driven by two or
ore nonparallel straight-line ghost solitons. Even more generalized dromion solutions have been

ound, which are driven by curved and straight line, or curved and curved soliton solutions for
ome types of �2+1�-dimensional nonlinear models.9,27 The so-called peakon solution �u
c exp�−�x−ct���, which is discontinuous at its crest and refers to a weak solution of the celebrated

1+1�-dimensional Camassa-Holm equation, was first given by Camassa and Holm.28 Within our
nowledge, studying the interaction among dromion, peakon and foldon constructed by multival-
ed functions in higher dimensional physical models is still open. Here we mainly focus on some
ovel localized coherent structures about multivalued functions, i.e., special dromion, special
eakon and foldon, and the interactions among them. The interactions between two special dro-
ions, and between two special peakons, both posses novel properties, that is, there exist a
ultivalued foldon in the process of their collision, which is different from the reported cases in

revious literature. The explicit phase shifts for all the local excitations offered by the common
ormula have been given, and are applied to these novel interactions in detail.

The paper is arranged as follows. In Sec. II, a remark to MLVSA and ETM is given. In Sec.

II, we obtain the variable separation solutions of the GNNV system in detail via the ETM, and list
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he known models that can be solved by this method. In Sec. IV, we generalize the ETM to �1
1�-dimensional systems, and obtain a universal formula. By means of the ETM, variable sepa-

ation solution of �3+1�-dimensional Burgers system is obtained in Sec. V. Three kind of coherent
ocalized structures and interactions among them are discussed in Sec. VI. Finally, a short sum-
ary is presented.

I. REMARK TO MLVSA AND ETM

. Comments on MLVSA

So far, the procedure of the MLVSA has been established: at first, one may obtain the Bäck-
und transformation relation via standard Painlevé expansion. Second, change the model to a
ultilinear variant form with an arbitrary seed solution. Third, extend the Hirota’s two-soliton

olution to a general variable separation ansatz f =a0+a1P+a2Q+a3PQ �see Ref. 10 in detail�.
inally, by substituting the variable separation ansatz to the original model and selecting the seed
olution appropriately, one may find some nontrivial variable separated solutions. All of the ob-
ained results via MLVSA are remarkable, and it is a very effective method to construct rich
ocalized coherent structures, including dromion,9 peakon,10 compacton,29 foldon,25 ghoston,30

ing soliton,10 and the interaction between these solitons.10,25,26 Moreover, nonpropagating
olitons,31 chaotic, and fractal patterns,10 periodic and quasi-periodic wave32 can be obtained
ased on the universal formula �1�.

In fact, the universal formula �1� obtained via MLVSA can be simplified to another equivalent
nd terse form

U1 �
2	a0 + a1P

a2 + a3P



x

Qy

	a0 + a1P

a2 + a3P
+ Q
2 =

def 2pxqy

�p + q�2 , �3�

here p�x , t���a0+a1P� / �a2+a3P�, q�y , t��Q. Equation �3� implies that we can substitute the
omplicated variable separation forms a0+a1P+a2Q+a3PQ in Ref. 10 as the simple and direct
ne p+q, which will greatly simplify the operation, and bring some terser constraint conditions
han Ricatti equation to some models, such as �2+1�-dimensional DS system, LSRI system and so
n. Moreover, the seed solution is very important in MLVSA, because Tang et al. employ a smart
ethod to transfer the constraints about arbitrary functions p and q into the constraints about the

eed solution in order to preserve the arbitrariness of the arbitrary functions �p or q� in some
odels. However, it is difficult to seek the seed solution at times. The difficulty can be taken over

ia ETM, by means of which the variable separation solutions can be derived without considering
he seed solution.

. Comments on ETM

The basic idea of the ETM is that for a given nonlinear partial differential equation �NPDE�
ith independent variables x= �x0= t ,x1 ,x2 , . . . ,xm�, and dependent variable u,

L�u,ut,uxi
,uxixj

, . . . � = 0, �4�

here L is in general a polynomial function of its argument, and the subscripts denote the partial
erivatives. One assumes that Eq. �4� possesses the following ansatz:

u = u���, � = �
i=0

m

Kixi or � = R�xi� , �5�

here Ki, i=0, . . . ,m are all arbitrary constants. Substituting Eq. �5� into Eq. �4� yields an ordinary
ifferential equation �ODE�: O�u��� ,u���� ,u����� , . . . �=0. Then u��� is expanded into a polyno-

ial in ����,
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u��� = F������ = �
j=0

n

aj���� j , �6�

here aj are constants or arbitrary functions of �xi� to be determined and n is fixed by balancing
he linear term of the highest order with the nonlinear term in Eq. �4�. If we suppose ����
tanh���, ����=sech��� and ����=sn��� or ����=cn���, respectively, then the corresponding ap-
roach is usually called the tanh-function method, the sech-function method, and the Jacobian-
unction method. Although the Jacobian elliptic function method is more improved than the
anh-function method and the sech-function method, the repeated calculations are often tedious
ince the different function ���� should be treated in a repeated way. However, this shortcoming
s overcome by the ETM based on mapping method, whose virtue is that, without much compli-
ated and repeated calculations, we circumvent integration to directly get solutions in a uniform
ay. The crucial idea of this ETM is that, ���� is not assumed to be a specific function, such as

anh, sech, sn, and cn, etc., but a solution of a mapping equation such as the Riccati equation

d�

dR
= l0 + �2, �7�

ith its solutions

� =�
− − l0 tanh�− l0R� , l0 � 0,

− − l0 coth�− l0R� , l0 � 0,

l0 tan�l0R� , l0 � 0,

− l0 cot�l0R� , l0 � 0,

−
1

R
, l0 = 0,

� �8�

here l0 is constant. By means of the mapping relation �7� and the solutions �8�, one can obtain
any explicit and exact travelling wave solutions or variable separation solutions of system �4�.

Actually, these solutions in �8� are not all independent, which can be concluded from the
ariable separation solutions obtained by Zheng et al. for �2+1�-dimensional BKK,21 DLW,22

LP,33 GBK,34 and so on. In these solutions of Ref. 21, 22, 33, and 34, only the solutions related
o Eq. �2� is essentially effective, while other solutions related to tan, cot, tanh, and coth functions
re special cases of Eq. �2�. We take the solutions in Ref. 21, for example. Note that there is also
ome misprints in Ref. 21, and the solutions of the BKK system there should be

H1 = −
�t + �xx

2�x
+ �x

− � tanh�− a�� + ��� , �9�

v1 = − �x�y� + �x�y� tanh2�− ��� + ��� , �10�

H2 = −
�t + �xx

2�x
+ �x

− � coth�− ��� + ��� , �11�

v2 = − �x�y� + �x�y� coth2�− ��� + ��� , �12�

H3 = −
�t + �xx

2�x
− �x

� tan���� + ��� , �13�

2 
v3 = − �x�y� − �x�y� tan � ��� + ��� , �14�
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H4 = −
�t + �xx

2�x
+ �x

� cot���� + ��� , �15�

v4 = − �x�y� − �x�y� cot2���� + ��� , �16�

H5 = −
�t + �xx

2�x
+

�x

� + �
, �17�

v5 =
− �x�y

�� + ��2 , �18�

ith two arbitrary functions ��x , t�, ��y�. The � in solutions �9�–�18� is just l0 in �8�. By careful
nalysis, we find that when redefining �=exp�−2−���, �=exp�2−��� in solutions �17� and
18�, solutions �9� and �10� can be obtained. Similarly, if taking �=−exp�−2−���, �
exp�2−��� in solutions �17� and �18�, solutions �11� and �12� can be recovered. When consid-
ring �=exp�−2i���, �=exp�2i��� in solutions �17� and �18�, solutions �13� and �14� can be
btained. If letting �=−exp�−2i���, �=exp�2i��� in solutions �17� and �18�, solutions �15�
nd �16� can be recovered. Other results for DLW,22 BLP,33 and GBK34 systems have similar
elations.

By study, we find that ETM is an alternative approach to derive variable separation solutions
ithout considering the seed solutions, and it is easier to handle than MLVSA to those readers
nacquainted with MLVSA. In the following paper, via ETM, we also discuss the variable sepa-
ation solutions for �1+1�-dimensional and �3+1�-dimensional mathematical physics models, be-
ides �2+1�-dimensional systems.

II. VARIABLE SEPARATION SOLUTIONS FOR THE „2+1…-DIMENSIONAL SYSTEMS

. „2+1…-dimensional generalized Nizhnik-Novikov-Veselov system

The �2+1�-dimensional generalized Nizhnik-Novikov-Veselov �NNV� equation reads

ut + auxxx + buyyy + cux + duy − 3a�uv�x − 3b�uw�y = 0, �19�

ux = vy, uy = wx, �20�

here a, b, c, and d are arbitrary constants. For c=d=0, the GNNV system will be degenerated to
he usual two-dimensional NNV system, which is an isotropic Lax extension of the classical �1
1�-dimensional shallow water-wave KdV model. When a=1, b=c=d=0 in Eq. �19�, we get the
symmetric NNV equation, which may be considered as a model for an incompressible fluid.
ome types of the soliton solutions of the GNNV equation have been studied by many authors.
or instance, Boiti et al.35 solved the GNNV equation via the inverse scattering transformation.
hang obtained many exact solution of this system based on an extended homogeneous balance
pproach.36 Two new coherent structures for the GNNV equation are discussed in Ref. 37. Re-
ently, a general solution including two arbitrary functions is first obtained for the generalized
NV equation by means of WTC truncation method.38

Along with the ETM, we assume that the �2+1�-dimensional NNV equation �19� and �20�
ossess the solutions of the following form:

u�x,y,t� = �
i=0

l

ai�
i�R�, v�x,y,t� = �

j=0

m

bj�
j�R�, w�x,y,t� = �

k=0

n

ck�
k�R� , �21�

here � satisfies Eq. �7� with Eq. �8� and R�R�x ,y , t�, ai�ai�x ,y , t�, �i=0,1 , . . . , l�, bj
bj�x ,y , t�, �j=0,1 , . . . ,m�, ck�ck�x ,y , t�, �k=0,1 , . . . ,n� and l0 is an arbitrary real constant,
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hile l=m=n=2 is obtained by balancing the highest-order derivative terms with the nonlinear
erms in Eqs. �19� and �20�. Inserting Eqs. �21� and �7� with l=m=n=2 into Eqs. �19� and �20�,
electing the variable separation ansatz,

R = p�x,t� + q�y,t� , �22�

nd eliminating all the coefficients of polynomials of �, one gets a set of partial differential
quations

12a2�apx�2px
2 − b2� + bqy�2qy

2 − c2�� = 0, �23�

�6bqyqyy − 2apxb1 − a�b1px + b2,x� − 2bqyc1 + 6apxpxx − b�c1qy + c2y��a2

+ 2�apx
3 + bqy

3 − 3apxb2 − 3bqyc2�a1 − aa2xb2 + 6aa2xpx
2 + 6ba2yqy

2 − ba2yc2 = 0,

�24�

− 6�ab2px + bc2qy�a0 + 3�2apxpxx − 2ab1px − bc2y − 2bc1qy − ab2x + 2bqyqyy�a1

+ �2py + 40bl0qy
3 + 2cpx + 2qt − 12ab2l0px − 6apxb0 − 6bqyc0 + 40al0px

3 − 12bc2l0qy + 2dqy

+ 2bqyyy − 3bc1y + 2apxxx − 3ab1x�a2 + 6ba2yqyy − 3bc2a1y + 6aa2xxpx + 6aa1xpx
2 − 3ab1a2x

− 3bc1a2y + 6aa2xpxx + 6ba1yqy
2 + 6ba2yyqy − 3ab2a1x = 0, �25�

2a2px − 2b2qy = 0, �26�

2a2qy − 2c2px = 0, �27�

− 3�bc1qy + bc2y + ab1px + ab2x�a0 + �apxxx − 3bqyc0 − 9bc2l0qy − 9ab2l0px − 3ab1x + cpx + 8al0px
3

+ dqy − 3bc1y − 3apxb0 + bqyyy + 8bl0qy
3 + pt + qt�a1 − 3�ab0x − 8bl0qyqyy + bc0y − 8al0pxpxx

+ 3ab1l0px + 3bc1l0qy�a2 + a2t + 3ba1yyqy − 3ab2a0x + 24ba2yl0qy
2 + 3aa1,xpxx + 24aa2xl0px

2

+ 3ba1yqyy − 3ab0a2x − 3bc0a2y + da2y + aa2xxx + 3aa1xxpx − 3bc1a1y − 3ab1a1x − 3bc2a0y

+ ba2yyy + ca2x = 0, �28�

a2x − b2y + a1px − b1qy = 0, �29�

a2y − c2x + a1qy − c1px = 0, �30�

− 3�2ab2l0px + ab1x + bc1y + 2bc2l0qy�a0 − 3�ab0x + 2ab1l0px + bc0y − 2al0pxpxx − 2bl0qyqyy

+ 2bc1l0qy�a1 + 2�al0pxxx + bl0qyyy − 3bc0l0qy + cl0px + dl0qy − 3ab0l0px + 8bly
2qy

3 + l0pt + l0qt

+ 8al0
2px

3�a2 − 3ab0a1x + 6aa2xl0pxx + 6aa2xxl0px + aa1xxx + ba1yyy + ca1x + 6ba1yl0qy
2

+ 6aa1xl0px
2 − 3ab1a0x + 6ba2yl0qyy + a1t + 6ba2yyl0qy + da1y − 3bc0a1y − 3bc1a0y = 0, �31�

− 3�bc1l0qy + ab0x + bc0y + ab1l0px�a0 + �cl0px + dl0qy + 2bl0
2qy

3 + bl0qyyy − 3bc0l0qy + al0pxxx

+ l0qt + l0pt − 3ab0l0px + 2al0
2px

3�a1 + 6�al0
2pxpxx + bl0

2qyqyy�a2 + da0y + ca0,x + aa0xxx

+ ba0yyy + 3aa1xl0pxx + a0t + 6aa2xl0
2px

2 + 3aa1xxl0px + 3ba1yyl0qy − 3ab0a0x + 3ba1yl0qyy

+ 6ba2yl
2q 2 − 3bc0a0y = 0, �32�
0 y
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a1y − c1x + 2a2l0qy − 2c2l0px = 0, �33�

a1x − b1y − 2b2l0qy + 2a2l0px = 0, �34�

a0x − b1l0qy + a1l0px − b0y = 0, �35�

a0y − c1l0px + a1l0qy − c0x = 0. �36�

It is very difficult to solve these prolix and complicated differential equations. Fortunately, by
areful analysis and calculation, we derive the special solutions of Eqs. �23�–�36�. Based on Eqs.
23�, �26�, and �27�, we obtain

a2 = 2pxqy, b2 = 2px
2, c2 = 2qy

2. �37�

Inserting Eq. �37� into Eqs. �24�, �29�, and �30� yields

a1 = 0, b1 = 2pxx, c1 = 2qyy . �38�

Substituting Eqs. �37� and �38� into other partial differential equations, we have

a0 = 2l0pxqy, b0 = �3apx�−1�pt + apxxx + 2al0px
3 + cpx�, c0 = �3bqy�−1�qt + bqyyy + 2bl0qy

3 + dqy� .

�39�

Therefore, from Eqs. �21�, �8�, and �37�–�39�, the new types of variable separation solutions of
he �2+1�-dimensional GNNV equation are of the following form:

Case 1: For l0�0,

u1 = 2l0pxqy − 2l0pxqy tanh2�− l0�p + q�� ,

v1 =
pt + apxxx + cpx + 2al0px

3

3apx
− 2− l0pxx tanh�− l0�p + q�� − 2l0px

2 tanh2�− l0�p + q�� ,

w1 =
qt + bqyyy + dqy + 2bl0qy

3

3bqy
− 2− l0qyy tanh�− l0�p + q�� − 2l0qy

2 tanh2�− l0�p + q�� ,

�40�

u2 = 2l0pxqy − 2l0pxqy coth2�− l0�p + q�� ,

v2 =
pt + apxxx + cpx + 2al0px

3

3apx
− 2− l0pxx coth�− l0�p + q�� − 2l0px

2 coth2�− l0�p + q�� ,

w2 =
qt + bqyyy + dqy + 2bl0qy

3

3bqy
− 2− l0qyy coth�− l0�p + q�� − 2l0qy

2 coth2�− l0�p + q�� .

�41�

ase 2: For l0=0,

u3 = U2 =
2pxqy

2 , �42�

�p + q�
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v3 =
pt + apxxx + cpx

3apx
−

2pxx

p + q
+

2px
2

�p + q�2 ,

w3 =
qt + bqyyy + dqy

3bqy
−

2qyy

p + q
+

2qy
2

�p + q�2 , �43�

here p and q are arbitrary functions of �x , t� and �y , t�, respectively. Here we omit the solutions
s l0�0, because they are of fewer significance in soliton theory. The solutions �42� and �43� is
imilar to the solution given by Darboux transformation in Ref. 39. According to the discussion in
ec. II B, the solutions �40� and �41� are the special examples of solutions �42� and �43�. When
edefining p=exp�−2−l0p�, q=exp�2−l0q� in solutions �42� and �43�, solution �40� can be

btained. Similarly, if taking p=−exp�−2−l0p�, q=exp�2−l0q� in solutions �42� and �43�, solu-
ion �41� can be recovered. Here we again prove the viewpoint in Sec. II B. Therefore, we only list
he variable separation solutions for l0=0 in the following mathematical physics models.

. „2+1…-dimensional complex systems

�2+1�-dimensional Davey-Stewartson equation. The �2+1�-dimensional DS equation,

iUt + 1
2 �Uxx + Uyy� − ��U�2U − UV = 0,

Vxx − Vyy − 2���U�2�xx = 0, �44�

an be derived from the plasma physics40 and from the self-dual Yang-Mills field.41 The DS
ystem has also been proposed as a �2+1�-dimensional model for quantum field theory.42 The DS
quation is an isotropic Lax integrable extension of the well-known �1+1�-dimensional nonlinear
chrödinger equation, and it is IST and Painlevé integrable.

To find some exact solutions with some arbitrary functions of the DS equation, new coordi-
ates X ,Y are defined by

X = �x + y�/2, Y = �x − y�/2, �45�

nd the transformed DS will be

iUt + 1
2 �UXX + UYY� − ��U�2U − UV = 0,

2VXY − ���U�2�XX − ���U�2�YY − 2���U�2�XY = 0. �46�

Introducing the transforms

U = u exp�i�r + s��, V = v , �47�

hen Eq. �46� changes into

− u�rt + st� + 1
2 �uXX + uYY� − 1

2u�rX
2 + sY

2� + �u3 − vu = 0,

ut + uXrX + uYsY + 1
2u�rXX + sYY� = 0,

vXY − ��uX
2 + uuXX + uY

2 + uuYY + 2uXuY + 2uuXY� = 0, �48�

here u, v are arbitrary function of �X ,Y , t�, r and s are arbitrary functions of �X , t� and �Y , t�,
espectively.

Similar to the procedure to solve GNNV system, the special variable separation solution of

ystem �46� has the form
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U =
	2�−1pXqY

p + q
exp�i�r + s��, 	2 = 1, �49�

V = V0�x,y,t� −
pXXqYY

p + q
+

�pXqY�2

�p + q�2 , �50�

ith

V0�x,y,t� =
pXXX

4pX
+

qYYY

4qY
−

pXX
2

8pX
2 −

qYY
2

8qY
2 − rt − st −

1

2
rX

2 −
1

2
sY

2 , �51�

nd r, s satisfy

rX = −
pt

pX
, sY = −

qt

qX
, �52�

here p and q are arbitrary functions of �X , t� and �Y , t�, respectively. Moreover, the real condition
f solution �49� requires

2�−1pXqY 
 0. �53�

Especially, for the module square of the field U reads

�U�2 = �−1U2 =
2�−1pXqY

�p + q�2 . �54�

Clearly, the arbitrary constants a0�a3, which are introduced in MLVSA in Ref. 10, increase
he complexity of the constraint conditions to r and s in DS model. However, the terse expressions
f the constraint conditions to r and s in �52� make us easily obtain their concrete form.

�2+1�-dimensional long-wave–short-wave resonance interaction equation. The �2+1�-
imensional LSRI equation is of the form

i�St + Sy� − Sxx + LS = 0,

Lt − 2��S�2�x = 0, �55�

here the fields S and L denote short surface wave packets and long interfacial waves, respec-
ively. This system describe the long and short waves propagating at an angle to each other in a
wo-layer fluid. The above equation has recently been studied43,44 and its position and one dromion
olutions have been generated through the method of coalescence of eigenvalues or wave
umbers.45

Similar to the procedure to solve DS equation, the special variable separation solution of
ystem �55� reads

S =
	pxqt

p + q
exp�i�r1 + r2��, 	2 = 1,

L =
4px

2�r1y − r1x
2 � − pxx

2 + 2pxpxxx

4px
2 −

2pxx

p + q
+

2px
2

�p + q�2 , �56�
here r1 satisfies
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r1x =
py + cy

2px
, �57�

nd r2�r2�y− t�, q=F�y− t�+c�y�, and p is an arbitrary function of �x ,y�. Moreover, the real
ondition of solution �56� requires

pxqt 
 0. �58�

. Other „2+1…-dimensional integrable systems

In this section, some known models which can be solved via the ETM are listed. With some
uitable modifications, they possess a common quantity expressed as Eq. �2�.

BKK system: The BKK system,

Hty − Hxxy + 2�HHx�y + 2Gxx = 0,

Gt + Gxx + 2�HG�x = 0, �59�

ay be derived from the inner parameter-dependent symmetry constraint of the Kadomtsev-
etviashvili �KP� equation.46 Using some suitable dependent and independent variable transfor-
ations, Chen and Li47 have proved that the �2+1�-dimensional BKKE can be transformed to the

2+1�-dimensional integrable dispersive long-wave equation �DLWE�

uty = − �xx − 1
2 �u2�xy ,

�t = − �u� + u + uxy�x, �60�

nd the �2+1�-dimensional integrable Ablowitz-Kaup-Newell-Segur equation �AKNSE�

�t = − �xx + �u ,

�t = �xx − �u ,

uy = �� . �61�

hen we take y=x, the �2+1�-dimensional BKKE is reduced to the usual �1+1�-dimensional
KKE, which can be used to describe the propagation of long wave in shallow water.48

For the BKK system, there are special variable solution in the form

H = −
pxx + pt

2px
+

px

p + q
,

G =
U2

2
=

pxqy

�p + q�2 , �62�

here p and q are arbitrary functions of �x , t� and �y�, respectively.
Boiti-Leon-Pempinelli system: For the Boiti-Leon-Pempinelli system49–51

uty − �u2 − ux�xy + 2vxxx = 0,

vt − vxx + 2uvx = 0, �63�
pecial variable separation solutions read
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u = −
pxx − pt

2px
+

px

p + q
,

v =
qy

p + q
, �64�

here p and q are arbitrary functions of �x , t� and �y�, respectively.
From solution �64�, the potential vx satisfies the universal formula, i.e.,

vx = −
U2

2
= −

pxqy

�p + q�2 . �65�

2+1�-dimensional KdV equation: The �2+1�-dimensional KdV equation,

ut + buxxx + 4b�uv�x = 0,

vy = ux, �66�

as first derived by Boiti et al.35 using the idea of the weak Lax pair. Equation �69� can also be
educed from Jimbo and Miwa hierarchy of nonlinear partial differential equations.52 The Pain-
evé property of �69� has been proved by Dorizzi et al.53 The infinite-dimensional symmetries and
ie algebraic structure have been studied.54

The variable separation solutions of the �2+1�-dimensional KdV equation �69� possess the
orm

u = −
3

4
U2 = −

3pxqy

2�p + q�2 , �67�

v = −
pt + bpxxx + ct

4bpx
+

3pxx

2�p + q�
−

3px
2

2�p + q�2 , �68�

here p is an arbitrary functions of �x , t�, and q�y , t�=F�y�+c�t�.
�2+1�-dimensional breaking soliton equation: The �2+1�-dimensional BS equation55–57

ut + buxxx + 4b�uv�x = 0,

uy = vx, �69�

ave a special variable separation solution

u = −
bpxxx + cpx

4bpx
+

3pxx

2�p + q�
−

3px
2

2�p + q�2 , �70�

v = −
3

4
U2 = −

3pxqy

2�p + q�2 , �71�

here p is an arbitrary function of �x , t� and q�y , t�=q�y+ct�.
�2+1�-dimensional Burgers equation: The �2+1�-dimensional Burgers equation58–60

ut = uuy + avux + buyy + abuxx = 0,

vy = ux, �72�
ave a special variable separation solution
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u = −
2bqy

p + q
, �73�

v = −
2bpx

p + q
+

pt − abpxx

apx
, �74�

here p is an arbitrary function of �x , t�, and q�y , t� satisfies qt=bqyy.
From solution �73�, the potential ux satisfies the universal formula, i.e.,

ux = bU2 =
2bpxqy

�p + q�2 . �75�

. „2+1…-dimensional nonintegrable KdV system

The �2+1�-dimensional nonintegrable KdV equation,

ut + uxxx − auvx − bvux = 0,

vy = ux, �76�

s one of the extensions of a �1+1�-dimensional shallow water wave equation.61 In the real physics
roblems, a and b in Eq. �76� may be arbitrary constant. This model is completely integrable only
or a=b.35

The variable separation solutions of the �2+1�-dimensional nonintegrable KdV equation �76�
ossess the form

u =
6

a + b
U2 =

12pxqy

�a + b��p + q�2 , �77�

v = v0�x,y,t� −
12pxx

�a + b��p + q�
+

12px
2

�a + b��p + q�2 , �78�

ith

v0�x,y,t� =
1

bpx
�pt +

3�a − b�pxx
2

�a + b�px
−

2�a − 2b��pxxx� − K�t�
a + b

� , �79�

here q satisfies

qt = K�t� , �80�

nd p satisfies

�a + b��apxv0x + av0pxx − ptx − pxxxx� − 2bl0px
2pxx = 0. �81�

In conclusion, from the solutions �42�, �62�, �65�, �67�, �75�, �54�, and �77�, we know that the
eld quantity satisfy the universal formula U2 for the GNNV, BKK, integrable KdV, BS, and
onintegrable KdV models, while the potential satisfy the universal formula U2 for BLP and
urgers models, or the module square of the field quantity satisfy the universal formula U2 for DS
odel. For integrable models, such as GNNV, BKK, BLP, integrable KdV, BS, Burgers, DS, and
SRI models, there are not less than an arbitrary function �p or q�, while some additional condi-

ions must be introduced to reduce the arbitrariness of the arbitrary functions �both p and q� for the
onintegrable KdV model. Thus we can define the solvable models by the ETM: these kinds of
odels should not be less than an arbitrary function �p or q�. The nonintegrable models are also
ot the solvable models by the ETM.
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Now a subsequent intriguing issue is whether we can generalize the extended tanh-method to
he lower �1+1�-dimensional and the higher �3+1�-dimensional systems? To answer this question,
e take the �1+1�-dimensional CID, LSRI, negative KdV models and �3+1�-dimensional Burgers

ystem as concrete examples.

V. VARIABLE SEPARATION SOLUTIONS FOR THE „1+1…-DIMENSIONAL SYSTEMS

Coupled integrable dispersionless equations: The coupled integrable dispersionless �CID�
quations have the form

uxt + �vw�x = 0, vxt − 2uxv = 0, wxt − 2uxw = 0. �82�

These equations were presented and solved by the inverse scattering method.62 It is shown that
he CID systems possess Painlevé property.63 Starting from the Lagrangian of coupled integrable
ispersionless equations, Kakuhata et al.64 derived the Hamiltonian, and conserved quantities
ssociated with the symmetries of the Lagrangian were obtained, which cannot be derived by the
nverse scattering method. Alagesan et al.65 investigated the singularity structure analysis of this
ystem. The associated Bäcklund transformation was constructed and Hirota’s bilinearization was
lso obtained through dependent variable transformations.

As in �2+1�-dimensional cases, by standard leading term analysis, the ansatz of CID systems
s

u = a0�x,t� + a1�x,t���R�, v = b0�x,t� + b1�x,t���R�, w = c0�x,t� + c1�x,t���R� , �83�

here ��R� satisfies Eq. �7� with R=R�x , t�. Inserting Eq. �83� with Eq. �7� into Eq. �82�, yields a
eries of partial differential equations, from which we can obtain the variable separation solutions
f the �1+1�-dimensional coupled integrable dispersionless equations �82�,

u = −
qt

p + q
+ u0�t� , �84�

v =
aqt

p + q
−

aqtt

2qt
, �85�

w =
bqt

p + q
−

bqtt

2qt
, �86�

here q�t�, u0�t� are the arbitrary functions of �t�, p�x� is an arbitrary function of �x� and ab
−1.

From the solutions �84�–�86�, the potential function G�=ux=−vx /a=−wx /b�

G =
pxqt

�p + q�2 . �87�

ong-wave–short-wave resonant interaction equation: The procedure for the long-wave–short-
ave resonant interaction equation �LSRI� reads

iSt + Sxx = �LS ,

Lt + ��SS*�x = 0, �88�

here L is the profile of the long wave and S is the envelope of the short wave. �, , and � are
ositive real model constant. Equations �88� were proposed for the time by Zakharov to describe
he interaction of Langmuir oscillations with ionic sound in a plasma. The universal equations

66
ere obtained for waves on the water surface by Djordjevic and Redekopp and for the model of
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molecular chain in the form of an �-helix by Davydov.67 The equations were also derived in
ubbly liquids by Akhatov and Khismatullin.68 Reference 69 discussed the Cauahy problem and
lobal solution for this equation.

A general excitation of LSRI system has the form

S�x,t� = ±
− 2����−1pxqt

p + q
exp�i�c0 + c1t − k� �2px�−1 dx�� , �89�

L�x,t� =
− 2pxx

��p + q�
+

2px
2

��p + q�2 +
2�2pxxxpx − pxx

2 � − k2

4�px
2 − �−1c1, �90�

here k ,c0 ,c1 are arbitrary real constants, p is the arbitrary function of �x�, and q can be expressed
y qt=k. Moreover, the real condition of solution �89� requires

− 2����−1pxqt 
 0. �91�

Especially, the module square of S can also be expressed as

G = �S�2 =
− 2pxqt

���p + q�2 . �92�

egative KdV model: The negative KdV hierarchy

�xx + u� − �� = 0, ut = ��n�x, �93�

here �=��x , t�, u=u�x , t�, � and n are arbitrary constants. This model relates to Schrödinger
quation70,71 and has also been proved to relate to the sine-Gordon equation by Miura
ransformation.72 By means of the Schrödinger operator, the negative KdV hierarchy can be
ewritten to an equivalent differential equation system. As n=1,2, Eq. �93� is called KdV�−1� and
dV�−2� equations, respectively.

KdV�−1� model: As n=1, Eq. �93� is simplified as

�xx + u� − �� = 0, ut = �x. �94�

he general excitation of system �94� has the form

��x,t� =
− 6pxqt

�p + q�2 , �95�

u�x,t� = −
6px

2

�p + q�2 +
6pxx

p + q
−

pxxx

px
+ � , �96�

here p is the arbitrary function of �x�, and q is the arbitrary function of �t�.
KdV�−2� model: As n=2, Eq. �93� is simplified as

�xx + u� − �� = 0, ut = ��2�x. �97�

special variable separation solution of system �97� reads

��x,t� = ±
− 2pxqt , �98�
p + q
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u�x,t� = −
2px

2

�p + q�2 +
2pxx

p + q
+

pxx
2 − 2pxxxpx

4px
2 + � , �99�

here p is the arbitrary function of �x�, and q is the arbitrary function of �t�. From expression �98�,
ecause the real condition of �,

− 2pxqt 
 0, �100�

e must put a constraint on the selections of the functions p, q. In Ref. 14, another special variable
eparation solution was discussed in detail by MLVSA.

In short, we successfully generalize the ETM to �1+1�-dimensional systems. From the ex-
ressions �87�, �92�, �95�, and �98�, we find that there also exists a common formula

U2� �
pxqt

�p + q�2 , �101�

o describe suitable physical fields or potentials for some �1+1�-dimensional models. This formula
s similar to the formula U2 in �2+1�-dimensional models.

. VARIABLE SEPARATION SOLUTION FOR THE „3+1…-DIMENSIONAL BURGERS
YSTEM

The ETM has been successfully generalized to �1+1�-dimensional systems, and whether it
an be extended to �3+1�-dimensional systems? To answer this question, we take the
3+1�-dimensional Burgers system,

ut = 2uuy + 2vux + 2wux + uxx + uyy + uzz,

ux = vy ,

uz = wy , �102�

s a concrete example. If u is z independent �or z=x; w=u�, �102� will be degenerated to the
nown �2+1�-dimensional Burgers equation �72�. Furthermore, if u is both z independent and y
ndependent �or y=z=x; v=w=u�, Eq. �102� is just the well-known �1+1�-dimensional Burgers
quation which is widely applied in many scientific fields. An alternative potential form of Eq.
102� is obtained from the invertible deformation of the heat conduction equation.73 In Refs. 12
nd 13, the authors extended the VSA to this system.

As in �2+1�-dimensional cases, by standard leading term analysis, the ansatz of Burgers
ystem is

u = a0�x,y,z,t� + a1�x,y,z,t���R�, v = b0�x,y,z,t� + b1�x,y,z,t���R� ,

w = c0�x,y,z,t� + c1�x,y,z,t���R� , �103�

here ��R� satisfies Eq. �7� with R=R�x ,y ,z , t�. Inserting Eq. �103� with Eq. �7� into Eq. �102�,
ields a series of partial differential equations, from which we can obtain the variable separation
olution of the �3+1�-dimensional Burgers system �102� for l0=0,

u =
qy

p + q
, �104�

v =
px +

pt − pxx , �105�

p + q 2px
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w =
pz

p + q
−

pzz

2pz
, �106�

here p is the arbitrary functions of �x ,z , t�, q is an function of �y , t� and satisfies qt=qyy.
One of the most important things may be that for the potential G�=ux=vy�, we have

G = − U2 = −
pxqy

�p + q�2 , �107�

hich satisfies the completely same form as the universal quantity �2� in �2+1�-dimensional
ystems.

I. SPECIAL LOCALIZED COHERENT STRUCTURES FOR THE COMMON FORMULA
2…

In this section, we will discuss some special types of interesting localized structures for the
uantities U2 expressed by �2�. From �2�, we know that for general selections of p and q there may
e some singularities for the quantity U2. However, when the arbitrary functions p and q are
elected appropriately to avoid the singularities, there may exist abundant excitations for U2. All
ich localized coherent structures discussed by the quantities U1 expressed by �1�, such as non-
ropagating solitons, dromion, peakon, compacton, foldon, instanton, ghoston, ring soliton, and
he interaction between these solitons, can be rederived by the quantities U2 expressed by �2�.

oreover, if p or q is considered to be a periodic function or a solution of a chaos system like the
orenz chaos system, then solitons possess periodic or chaotic behaviors. It is well known that

here are some lower-dimensional stochastic fractal functions, which may be used to construct
igher-dimensional stochastic fractal dromion and lump excitations by the quantities U2 expressed
y �2�. Since these similar situations have been widely discussed in some previous
iterature,9,10,12–15,26,37,49 the related plots are neglected in our present paper. Here we focus on
ome novel localized coherent structures about multivalued functions and their interaction cases.
or simplification in the following discussions, we merely analyze the expression U2 without any
onstraints to p and q.

. Special dromion, special peakon, and foldon

It is well known that in universal formula �2�, dromion, peakon, and foldon can be obtained by
electing p or q single-valued function, piecewise function, and multivalued function, respectively.
owever, in fact, the single-valued structures, i.e., dromion and peakon can also be derived by

electing p or q multivalued function.74 Based on the physical quantity �2�, special dromion,
pecial peakon, and foldon can be constructed if we select both p and q as the following relations:

px = �
i=1

N

�i�� − cit�, x = � + �
i=1

N

�i�� − cit� , �108�

qy = �
j=1

M

� j�� − djt�, y = � + �
j=1

M

� j�� − djt� , �109�

here ci�i=1,2 , . . . ,N�, dj�j=1,2 , . . . ,M� are arbitrary constants, �i and �i, � j and � j are local-
zed excitations with the properties �i�±��=0, �i�±��=const, � j�±��=0, � j�±��=const. From
qs. �108� and �109�, one can know that � �or �� may be a multivalued function in some suitable

egions of x �or y� by choosing the functions �i �or � j� appropriately. Therefore, the function px �or

y�, which is obviously an interaction solution of N �or M� localized excitations due to the
roperty ���x→�→� �or ���y→�→��, may be a multivalued function of x �or y� in these areas,
hough it is a single valued function of � �or ��.
Concretely, p and q are chosen
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px = sech2�� − t�, x = � − A tanh��� , �110�

qy = sech2�� − t�, y = � − C tanh��� , �111�

here A and C are characteristic parameters, whose difference brings the different localized
tructures. When their values are chosen between 0 and 0.9, 0.9 and 1, and bigger than 1, special
romion, special peakon, and foldon can be derived. Figures 1�a�–1�c� describe three localized
tructures, special dromion, special peakon, and foldon with A=C=0.05,0.95,1.5, respectively.

. Asymptotic behaviors of the localized excitations produced
rom the formula „2…

In order to discuss the interaction property of these localized excitations related to the physical
uantity �2�, we first study the asymptotic behaviors of the localized excitations produced from the
ormula �2� when t→�.

In general, if the function p and q �considering Eqs. �108� and �109�� are selected as multilo-
alized solitonic excitations with �zi��−cit, Zj��−djt�

�p�t→�� = �
i=1

N

pi
�,pi

��zi� � pi�� − cit� � � ��i dx�zi→��, �112�

�q�t→�� = �
j=1

N

qj
�,qj

��Zj� � qj�� − djt� � � �� j dy�Zj→��, �113�

here �pi ,qj�" i and j are localized functions, then the physical quantity expressed by Eq. �2�
elivers M �N �2+1�-dimensional localized excitations with the asymptotic behavior,

�U2�t→�� → �
i=1

N

�
j=1

M pizi

�qjZj

�

�1 + �izi

���1 + � jZj

� ���pi
��zi� + p̃i

�� + �qj
��Zj� + q̃j

���2 � �
i=1

N

�
j=1

M

U2,ij
� ,

�114�

�x�t→�� → � + 	i
� + �i

��zi� , �115�

�y�t→�� → � + � j
� + � j

��Zi� , �116�

ith

p̃i
� = �

j�i

pj���� + �
j�i

pj���� , �117�

q̃i
� = � qj���� + � qj�±�� , �118�

IG. 1. Special dromion, special peakon and foldon structures for U2 with conditions �110� and �112�, �a� A=C=0.05, �b�
=C=0.95, �c� A=C=1.5 at t=0.
j�i j�i
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	i
� = �

j�i

� j���� + �
j�i

� j�±�� , �119�

� j
� = �

j�i

� j���� + �
j�i

� j�±�� . �120�

n the above discussion, it has been assumed, without loss of generality, that ci�cj, di�dj if i
j. From the asymptotic result �114�, we discover some important and interesting facts. �i� The

jth localized excitation U2,ij is a travelling wave moving with the velocity ci along the positive
ci�0� or negative �ci�0� x direction, and dj along the positive �dj�0� or negative �dj�0� y
irection; �ii� the properties of the ijth localized excitation U2,ij is only determined by pi of Eq.
112� and qj of Eq. �113�; �iii� the shape of the ijth localized excitation U2,ij will be changed
noncompletely elastic or completely inelastic interaction� if

p̃i
+ � p̃i

−, �121�

nd �or�

q̃j
+ � q̃j

−, �122�

ollowing the interaction. On the contrary, it will preserve its shape �completely elastic interaction�
uring the interaction if

p̃i
+ = p̃i

−, �123�

q̃j
+ = q̃j

−. �124�

iv� The phase shift of the ijth localized excitation U2,ij reads

	i
+ − 	i

−, �125�

n the x direction and

� j
+ − � j

−. �126�

n the y direction.
The above discussions indicate that localized solitonic excitations for the common quantity U2

an be produced from the �1+1�-dimensional multivalued functions with the properties �112�,
113�, and �121�–�124�. In general terms, if the functions p or q are taken as multiple localized
xcitations that possess the phase shifts of �1+1�-dimensional models then the �2+1�-dimensional
ocalized excitations involving formula �2� inherit phase shifts structures.

. Interaction between the localized coherent excitations produced by multivalued
unctions

Now we discuss some novel coherent structures for the physical quantity U2, and focus our
ttention on interaction between the localized coherent excitations produced by multivalued func-
ions. In Sec. VI A, we present three interesting coherent excitations, i.e., special dromion, special
eakon, and foldon. Here we discuss some novel interactions between them. In order to discuss
hem expediently and reveal the phase shift more clearly and visually, it has proved convenient to
x the one possessing zero velocity. That is to say, if we take the concrete choice N=2, M =1,

1=0.25, c2=0, d1=0 in Eqs. �112� and �113�, one has

2 2
px = 0.5 sech �� − 0.25t� + 0.8 sech ���, x = � − A tanh�� − 0.25t� − B tanh��� , �127�
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qy = sech2���, y = � − C tanh��� , �128�

here A, B, and C are characteristic parameters, which determine the type of interactions.

. Interaction between special dromions

If we take the concrete values A=B=C=0.65 in Eqs. �127� and �128�, then we successfully
onstruct interaction between special dromions that possess phase shifts for the physical quantity

2 depicted in Fig. 2. From Fig. 2, we can see that the two special dromion localized excitations
ossess novel properties, that is, there exists a multivalued foldon in the process of their collision,
hich is different from the reported cases in previous literature.75 Moreover, one can find that the

nteraction between them may exhibit a novel property, which is noncompletely elastic since their
hapes are not completely preserved after interaction. Actually, the completely elastic interaction
ondition �123� and �124� is not satisfied for the common formula �2� with �127� and �128�. For
he static large dromion,

p̃2
+ − p̃2

− = p1�+ �� − p1�− �� = 17
30 � 0. �129�

or the moving small dromion,

p̃1
+ − p̃1

− = p2�− �� − p2�+ �� = − 68
75 � 0. �130�

he phase shift can also be observed. Prior to interaction, the large dromion has been set to be
v0x=c2=0, v0y =0�, however, the position located by large dromion is still altered about from x
−0.65 to x=0.65, then stops at x=0.65 and preserves its initial velocities �vx=v0x, vy =v0y� after

nteraction. Therefore the phase shift of the static large dromion is 	2
+−	2

−=�1�−��−�1�+��=1.3.
he final velocities Vx and Vy of the moving small dromion also completely preserved its initial
elocities �Vx=V0x=c1=0.25, Vy =V0y =0�. The phase shift of the moving small dromion is 	1

+

	1
−=�2�+��−�2�−��=−1.3.

. Interaction between special peakons

When we fix the concrete values A=B=C=0.95 in Eqs. �127� and �128�, then we successfully
onstruct interaction between special peakons that possess phase shifts for the physical quantity

2 depicted in Fig. 3. From Fig. 3, we can see that the two special peakon localized excitations

IG. 2. Interaction between special dromions for U2 with conditions �127� and �128� and A=B=C=0.65, �a� t=−22, �b�
=0.04, �c� t=22. �d� The corresponding sectional view at y=0 �dotted, solid, and dashed line denotes before, in, and after
ollision, respectively�.

IG. 3. Interaction between special peakons for U2 with conditions �127� and �128� and A=B=C=0.95, �a� t=−22, �b�
=0.5, �c� t=22. �d� The corresponding sectional view at y=0 �dotted, solid, and dashed line denotes before, in, and after

ollision, respectively�.
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ossess novel properties, that is, it is noncompletely elastic since their shapes are not completely
reserved after interaction and there also exists a multivalued foldon in the process of their
ollision, which is different from the reported cases in previous literature.10 The analytical analysis
o noncompletely interaction is similar to the case in Sec. VI C 1. For the static large peakon,
p2

+− p̃2
−= 2

5 �0. For the moving small peakon, p̃1
+− p̃1

−=− 16
25 �0. The phase shift can also be ob-

erved. Before interaction, the static large peakon is located at x=−0.95 and after the interaction,
t is shifted to x=0.95. Then it stops at x=0.95 and preserves its initial velocities �vx=v0x=0,

y =v0y =0� after interaction. Whereas the moving small peakon also completely preserved its
nitial velocities �Vx=V0x=c1=0.25, Vy =V0y =0�. By careful analysis similar to Sec. VI C 1, we
now that the phase shift of the static large peakon is 1.9, and the moving small peakon exists in
he phase shift −1.9. These properties are analogous to the case in Sec. VI C 1.

. Interactions among special dromion, special peakon, and foldon

Along the above ideas and performing a similar analysis, if A=0.95, B=C=0.05, or A=1.5,
=C=0.05, or A=1.5, B=C=0.95 in Eqs. �127� and �128�, interactions between special dromion

nd special peakon, special dromion and foldon, special peakon and foldon can be constructed for
he physical quantity U2 depicted in Figs. 4–6, respectively. From these evolution profiles, one can
now that they are all noncompletely elastic since their shapes are not completely preserved after
nteraction. Moreover, the phase shift can also be observed. In Fig. 4, the phase shift of the static
romion is 	2

+−	2
−=�1�−��−�1�+��=1.9, and the moving peakon exists phase shift 	1

+−	1
−

�2�+��−�2�−��=−0.1. In Fig. 5, the phase shift of the static dromion is 3, and the moving
oldon exists of phase shift −0.1. In Fig. 6, the phase shift of the static peakon is 3, and the moving
oldon exists of phase shift −1.9.

II. SUMMARY AND DISCUSSION

In summary, the ETM is applied to obtain variable separation solutions of �1+1�-dimensional,
2+1�-dimensional, and �3+1�-dimensional systems. For some �2+1�-dimensional integrable
odels such as the GNNV, DS, BKK, BLP, integrable KdV, BS, and Burgers models, some lower

imensional arbitrary functions can be included in their exact solutions. A common variable
eparation formula is valid for all these models. For these integrable models, there are not less than
n arbitrary function �p or q�, whereas for nonintegrable KdV equation, neither p or q is an

IG. 4. Interaction between special dromion and peakon for U2 with conditions �127� and �128� and A=0.95, B=C
0.05, �a� t=−22, �b� t=0.1, �c� t=22. �d� The corresponding sectional view at y=0 �dotted, solid, and dashed line denotes
efore, in, and after collision, respectively�.

IG. 5. Interaction between special dromion and foldon for U2 with conditions �127� and �128� and A=1.5, B=C=0.05, �a�
=−22, �b� t=0.1, �c� t=22. �d� The corresponding sectional view at y=0 �dotted, solid, and dashed line denotes before, in,

nd after collision, respectively�.
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rbitrary function, and they must satisfy some constraint equations. Therefore, we can define the
olvable models by the ETM: these kinds of models should not be less than an arbitrary function
p or q�. The nonintegrable models are also not the solvable models by the ETM. Moreover, there
xists also a common formula, which is similar to the formula �2�, to describe suitable physical
elds or potentials of some �1+1�-dimensional models. The universal formula �2� is suitable to
escribe the �3+1�-dimensional Burgers. The only differences are that the function q is a solution
f a constraint equation and p is an arbitrary function of three independent variables. In fact, the
ommon formula �2� is a simplified form of the universal formula �4�, i.e., through the transfor-
ation p= �a0+a1P� / �a2+a3P�, q=Q, we have U2=U1.

Starting from the common formula �2�, all sorts of localized coherent structures discussed by
he universal formula �1�, such as nonpropagating solitons, dromion, peakon, compaction, foldon,
nstanton, ghoston, ring soliton, and the interaction between these solitons, can be rederived.

oreover, abundant local excitations with and without completely elastic interaction properties
re constructed readily by suitable selecting the arbitrary multivalued functions according the
symptotic result �114�. Especially, some novel interactions among special dromion, special pea-
on, and foldon are investigated both analytically and graphically. The interactions between two
pecial dromions, and between two special peakons, both possess novel properties, that is, there
xist a multivalued foldon in the process of their collision, which is different from the reported
ases in previous literature. The explicit phase shifts for all the local excitations offered by the
ommon formula have been given, and are applied to these novel interactions in detail.

What we have obtained is also further verification that the ETM is quite useful to generate
bundant localized excitations for many models. Besides these systems listed in this paper, we can
lso obtain the variable separation solutions of �2+1�-dimensional Maccari system,76

2+1�-dimensional nonlinear Schrödinger equation,77 �2+1�-dimensional generalized AKNS
ystem,78 �2+1�-dimensional generalized Burgers system,79 and �1+1�-dimensional Boiti
ystem,16 and the like. For the limit of length, we do not list them here. It is also known that the
S and the KP equations are the reductions of the self-dual Yang-Mills �SDYM� equation. So both

he KP and the SDYM equations may possess quite rich nonlinear excitations with some arbitrary
haracteristics. The KP equation and �2+1�-dimensional Boussinesq equation80 are other types of
mportant integrable models in the study of integrable models. However, we have not yet found its
ontrivial variable separation solutions by ETM. The same cases happen in some known
1+1�-dimensional models such as nonlinear Schrödinger equation and KdV, etc. Therefore, how
o find the variable separation solutions of these models is an open question. In our future work,
e will devote to generalizing this method to these nonlinear systems, the differential-difference

quations and other �3+1�-dimensional nonlinear systems.
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We present a new formulation of the maximum clique problem of a graph in
complex space. We start observing that the adjacency matrix A of a graph can
always be written in the form A=B2 where B is a complex, symmetric matrix
formed by vectors of zero length �null vectors� and the maximum clique problem
can be transformed in a geometrical problem for these vectors. This problem, in
turn, is translated in spinorial language and we show that each graph uniquely
identifies a set of pure spinors, that is vectors of the endomorphism space of
Clifford algebras, and the maximum clique problem is formalized in this setting so
that, this much studied problem, may take advantage from recent progresses of pure
spinor geometry. © 2006 American Institute of Physics. �DOI: 10.1063/1.2186256�

. INTRODUCTION

In this paper we propose a new representation of the maximum clique problem in complex
pace. After a brief review of this famous NP-complete problem, we show how the adjacency
atrix of a graph can be expressed as the square of a symmetric complex matrix. The vectors

orming this matrix have zero length and Cartan has shown that this geometry can be treated
legantly with spinors. After a brief remind of spinor properties, we show that the adjacency
atrix is better decomposed in the Witt basis of complex space. We finish with a formulation of

he maximum clique problem in this formalism and show that each graph uniquely identifies a
pinor whose properties surely deserve deeper studies.

I. THE MAXIMUM CLIQUE PROBLEM

. A brief review

Given a graph of size n, a clique is a subgraph with pairwise adjacent vertices and the
aximum clique �MC� problem is that of finding the size k of the largest clique. It is a well studied
P-complete problem and there are reviews with hundreds references �see, e.g., Refs. 4 and 16�.

Given a graph let A be its n�n adjacency matrix with elements in �0,1� and zero diagonal; we
ill consider only undirected graphs for which A is symmetric. Furthermore, since every undi-

ected graph can be subdivided in connected graphs, we discuss only connected graphs that have
rreducible adjacency matrices.

The quadratic form on A ��indicates transposition, bold characters, vectors� is bounded by

�Electronic mail: mbh@ts.infn.it
�
Electronic mail: fit@ictp.trieste.it
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0 � x�Ax � 1 −
1

n
for x � Kn,

here the simplex Kn= �x�Rn :xi�0" i and e�x=1� and e�= �1,1 , . . . ,1�.
A subgraph with r vertices is uniquely determined by its characteristic vector that is an n

imensional vector whose ith component, by taking values 1/r or 0, indicates whether the ith
lement belongs or not to the subgraph. Characteristic vectors belong to Kn.

In 1965 Motzkin and Straus14 proved the following.
Theorem 1: If the MC of graph A has size k then

max
x�Kn

x�Ax = 1 −
1

k
�1�

nd if xk is the characteristic vector of a MC then xk�Axk=1−1/k.
Bomze3 sharpened this result showing that, if I represents the identity matrix, maxx�Kn

x��A
1
2 I�x=1−1/2k and moreover that this quadratic form reaches its maximum if and only if x is the

haracteristic vector of a MC.
With this formulation the, essentially combinatorial, MC problem is transposed to the search

f the maximum of a quadratic function in a bounded region: a continuous optimization problem
ith linear constraints. Several authors11,15,17 used this formulation to find approximate solutions

o the MC problem.

. Decomposition of the adjacency matrix

Any symmetric matrix like A may be expressed in the form �see Appendix for details�

A = B�B = BB = B2, �2�

here B is a complex, symmetric matrix that we can think as formed by n complex column
ectors zi�Cn,

B = �z1,z2, . . . ,zn�, ajk = �B�B� jk = z j�zk �3�

hese vectors are called null vectors since they have zero length since ajj =z j
2=0. Let n0 be the

umber of zero eigenvalues of A, then rank A=rank B=n−n0 and this is also the dimension of the
pace V spanned by the vectors z. With B the quadratic form on A becomes

x�Ax = x�B�Bx = �Bx�2: = Z2,

here Z=Bx=�ixizi�Cn is a complex vector with which the MC problem may be reformulated
nd �1� can be written

max
x�Kn

Z2 = 1 −
1

k

his is the problem of finding the vector of maximum length that can be formed by a convex
ombination of the z’s. In real space this is the problem of finding the point�s� of the convex hull
f the z’s with maximum distance from the origin. We remark that Z2 is real since xi and z j�zk

ajk are all real.

. Another formulation of the maximum clique problem

The MC problem is tightly connected to the problem of the maximum independent set that is
he problem of finding the size of the largest subgraph whose vertices are pairwise nonadjacent.

et Ā represent the adjacency matrix of the complementary graph of A, i.e., the graph with the

ame vertices and complementary edges; if J is the matrix whose elements are all 1 then Ā=J

I−A. It is simple to verify that every subset of vertices of A that forms a clique form also an
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ndependent set of Ā and vice versa. The cliques of A are thus in one to one correspondence to the

ndependent sets of Ā and if xk is the characteristic vector of a clique of A then it is also the

haracteristic vector of an independent set of Ā and xk�Āxk=0.
There are several ways to formulate the MC problem of A as the problem of the maximum

ndependent set of Ā.13,16 Indicating Z̄= B̄x �from now on we use overstriked symbols to indicate

uantities relative to Ā� a formulation with appealing properties is

max
x���0,1�n:Z̄2=0�

x�x = k . �4�

his problem has the following geometrical interpretation: the null vectors z̄ span the space V�Cn

nd any couple of linearly independent vectors z̄ j and z̄k span a two-dimensional space contained
n V. If z̄ j�z̄k= ājk=0 it is easy to verify that this space has the property that all of its elements are

ull vectors and are all mutually orthogonal: this space is called a totally null plane �TNP�. If Ā
ontains at least one nondiagonal zero element, then V contains at least one two-dimensional TNP.

The solution of the MC problem provides the largest subset z̄ j1
, z̄ j2

, . . . , z̄ jk
of z̄’s which define

TNP contained in V. We note that, since for any two of them z̄ jr
� z̄ js

= ājrjs
=0, then not only

l=1,kz̄ jl
, but any of their linear combinations

Z̄ = �l=1,k
xjlz̄ jl

s a particular null vector that satisfy the constraint Z̄2=0. Since Cn cannot contain a TNP of more
han n /2 dimensions9 this formulation have already been used to calculate an upper bound for the
ize of the MC.5

II. A BRIEF REVIEW OF SPINORS

It was Cartan who first has shown how the geometry of null vectors may be best dealt with in
erms of spinors, nowadays defined as vectors of the representation space of Clifford algebras,
hose components are equal �up to a sign� to the square root of linear combinations of null vector

omponents �loosely speaking, spinors are square roots of null vectors�. He furthermore has shown
ow Euclidean geometry may be derived from spinor geometry which then could be the funda-
ental geometry of space-time and of natural phenomena also because it has the property of

inearizing tensor equations, like, for example, Dirac equation linearizes Klein-Gordon equation. It
s then appropriate to attempt to reformulate the MC problem in spinorial form.

Following Chevalley10 spinors may be dealt with in the frame of Clifford algebras.1,7 Given a
n dimensional complex space C2n, with Euclidean quadratic form and the corresponding Clifford
lgebra Cl�2n�, let �1 ,�2 , . . . ,�2n be the generators of Cl�2n� with the property

�� j,�k�+: = � j�k + �k� j = 2� jkI, j,k = 1,2, . . . ,2n .

l�2n� may be conceived as a direct sum of tensor spaces

Cl�2n� = V�0�
� V�1�

� ¯ � V�2n�

nd one can identify V�1� as the image of the vector space C2n simply substituting the anticom-
utator with a scalar product and the � j with the unit vectors e j of a standard orthonormal basis

f C2n with coordinates �e j�k=� jk.
A remark about notation: we indicated usual vectors in bold, so v represents a proper vector

f C2n while with v we represent the corresponding element of the Clifford algebra Cl�2n� be-
onging to tensor space V�1�.

A spinor � is a vector belonging to the spaces S of endomorphism of Cl�2n�=End S and is

efined by the Cartan’s equation,
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v� = ��
j=1

2n

v j� j	� = 0, �5�

here v j are the orthonormal components of v �and also of v�C2n� and v� is a Clifford product
�=v��+vÙ�.

. The Witt basis of Cl„2n… and the Fock basis of the associated spinor �

Let us define the null, or Witt, basis Cl�2n� as follows:

pj = 1
2 ��2j−1 + i�2j� and qj = 1

2 ��2j−1 − i�2j�, j = 1,2, . . . ,n �6�

ith the properties

�pj,pk�+ = �qj,qk�+ = 0 and �pj,qk�+ = � jkI . �7�

ith this basis C2n is easily seen as the direct sum of two maximal TNP P and Q spanned by null
ectors �p j� and �q j�, respectively,

C2n = P � Q ,

ince P�Q=� each vector v�C2n may be expressed in the form v=�i=1
n ��ipi+�iqi� with �i and

i arbitrary complex numbers.
A spinor ��S, defined by Cartan equation �5�, may be represented by minimal left ideals

MLI� of Cl�2n�.10 Consider the 2n MLI that form the Fock basis in spinor space8

	0 = p1p2 . . . pn,

	1 = q1	0, 	2 = q2	0, 	4 = q3	0, . . . , 	2n−1 = qn	0,

	3 = q1q2	0, 	5 = q1q3	0, . . . , �8�

. . . ,

	2n−1 = q1q2 . . . qn	0

n which the indexes of the q’s always appear in ascending order and the interpretation of the 2n

alues of the spinor index s of 	s is immediate thinking of s as of a binary number of n digits
here the jth digit from the right, taking the value 1 or 0, indicates wether qj is present or not in

s. Any spinor � may be uniquely expressed in terms of the elements of the Fock basis �8�,

� = �
s=0

2n−1


s	s, �9�

here the 
s are the 2n complex components of the spinor.

. Cartan equation in the Fock basis
When we write the Cartan equation �5� in the basis, defined in �6� and �9�, we get
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v� = ��
i=1

n

�ipi + �iqi	� �
s=0

2n−1


s	s	 = 0 �10�

nd this equation can be read in two ways depending on whether v or � plays the role of the
nknown. For example, if �=
0	0, i.e., �= �
0 ,0 , . . . ,0� �the spinor represented by the MLI 	0

as named standard by Cartan� it becomes

��
i=1

n

�ipi + �iqi	
0	0 = ��
i=1

n

�ipi + �iqi	
0p1p2 ¯ pn = 0

nd, remembering that from �7� we have,

pipi = 0 = qiqi, piqi = I − qipi, �11�

ne easily finds that the equation is satisfied, for 
�0, if, and only if, all the �i are zero. Moreover
he equation holds for every value taken by the �i, i.e., for every point of the subspace P
Span�p1 ,p2 , . . . ,pn�. It is also simple to work this example the other way round, i.e., given a

ubspace whose generic vector has the form v=�i=1
n xipi one finds that the spinor that satisfies �10�

s of the form �= �
0 ,0 , . . . ,0�=
0	0 "
0�C.
This shows explicitly the correspondence, set up by Cartan equation �10�, between spinors and

NP’s, in this example between 	0 and the maximal TNP P of C2n. Similarly one can find that the
NP corresponding to 	1 is x1q1+�i=2

n xipi and so on. More generally left-multiplying �10� by v it
ecomes

v2� = 0

howing that v2 is null for ��0 and Eqs. �5� and �10� are linearizations of this relation. Let v� be
nother solution of v��=0 for the same �, left-multiplying �10� by v� we get

v�v� = 0 and similarly vv�� = 0

rom which easily derives that

�v�,v�+ = 0

o v� and v, besides being null, are mutually orthogonal and thus form a TNP.
In general, given a spinor �, all the vectors v satisfying �10� are null and mutually orthogonal

nd define a TNP that we call Mk��� where k�n indicates its dimensions. If k=n, that is, the
imension of Mk��� is maximal, the corresponding spinor was called simple by Cartan9 and pure
y Chevalley,10 a name now prevailing in the literature. Each one of the 2n spinors of the Fock
asis �8� is pure.

Consequently, from now on, when we indicate with v the solution of v�=0 we actually refer
o the entire subspace Mk��� and not just to one of its vectors.

Pure spinors, as stressed by Cartan, are equivalent, up to a sign, to the corresponding maximal
NP whose null vectors may be bilinearly expressed in terms of them. This equivalence estab-

ishes a link between spinors and projective Euclidean geometry �of null vectors� which, being
ery simple and elegant, might have a crucial role for the explanation of several phenomena in
hysics. However there is a basic obstacle for setting in evidence this equivalence: while the
imensions of the TNP increase with n, that of the equivalent spinor increase with 2n and conse-
uently, for large n, their components will have to be subject to O�2n� constraint relations. In order
o overcome this difficulty, Cartan, when discussing the elegant properties and proving the theo-
ems of pure spinor geometry, introduced the concept of standard pure spinors with only one

omponent and therefore not subject to constraint relations.
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V. SPINORIAL FORMULATION OF THE MAXIMUM CLIQUE PROBLEM

We are now ready to give a spinorial formulation of the MC problem and start by introducing

he vectors z̄i of the matrix B̄ defined above, in the Witt basis of Cl�2n� with the scalar product
tanding for an anticommutator,

z̄i = pi + �
j=1

n

āijq j, i = 1,2, . . . ,n .

hese n vectors have the following properties �immediate to prove�:

�i� belong to C2n and are linearly independent �because of the pi�;
�ii� are null, i.e. z̄i�z̄i=0 since āii=0;
�iii� satisfy �3� for the complementary matrix, i.e., z̄i�z̄ j = āij.

n general they span an n dimensional subspace V, which will be partially null. Precisely each
ij =0 will imply the existence of a two-dimensional TNP in V. V will be totally null only if āij

0 " ij in which case z̄i=pi and V= P=Span�p1 ,p2 , . . . ,pn�. Differently from �3� now B̄ is a 2n

n matrix formed by n linearly independent vectors such that Ā= B̄�B̄.
To fully exploit the spinorial formulation we will consider the z̄i vectors as representative of

he subspace they induce, i.e., Span�pi , āi1q1 , . . . , āinqn� of dimension � j=1
n āij +1. We do this in-

roducing in the definition arbitrary coefficients �,

z̄i = �ipi + �
j=1

n

āij� jq j, i = 1,2, . . . ,n �12�

nd we can always get back the representative vectors setting all �=1.

The equation Z̄2=0, representing the constraints of the MC problem in �4�, may be linearized
ormulating the problem in spinorial form:

Z̄� = B̄x� = ��
i=1

n

xiz̄i	� = 0 �13�

r with z̄i from �12�,


�
i=1

n

xi��ip̄i + �
j=1

n

� jāijq j	�� = 0 �14�

f the form �10�. In this equation, in general, xi must be interpreted as complex variables, restricted
o values in �0,1� in the traditional formulation of the MC problem �4�.

We thus have a set of n vectors z̄i defining an n-dimensional subspace of C2n and we will look
or the spinors � that satisfy �13�.

. Some properties of Cartan equation

Before analyzing in detail �14�, devoted to graphs, we step back to the general form of Cartan
quation �10� and derive some of its properties. First we study the case in which the TNP is not
aximal.

Proposition 1: Given a TNP of dimension k�n, the corresponding spinor �, solution of the
artan equation �10�, has at least 2n−k nonzero coordinates in the Fock basis.

Without loss of generality we take Span�p1 ,p2 , . . . ,pk� as a TNP of dimension k, since given
ny TNP of dimension k it is always possible, by a proper choice of the basis, make it coincide

ith Span�p1 ,p2 , . . . ,pk� �see, e.g, Ref. 8�.
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We will prove the proposition by induction: we already know that when the TNP is maximal,
.e., of dimension n as in the example in paragraph 3.2, the corresponding spinor can have one
omponent �actually it may have at most two components, see proposition 5 in Ref. 8� and thus
atisfies the proposition.

Let us suppose now that we have a TNP of dimension k and that the corresponding spinor �
as m nonzero components: we will show that when reducing the dimension of the TNP to k−1
he new spinor has at least 2m components. So let us suppose that our spinor � has m nonzero
omponents and satisfy

��
i=1

k

xipi	� = ��
i=1

k−1

xipi + xkpk	� = 0.

ince this relation holds for any value of the xi it must hold in particular for xk=0 so that we have

��
i=1

k−1

xipi	� = 0

rom which necessarily derives pk�=0. This implies that qk does not appear in all the m 	’s that
re the nonzero components of �. Assuming the contrary we could write

xkpk�
s


s	s = xkpk� �
s��qk�


s	s + �
s��q̄k�


s	s	 = xkpk �
s��qk�


s	s = 0,

here by s� �qk� we indicate the subset of the m values of s such that the term qk do appear in 	s

nd by s� �q̄k� the complementary subset in which the term qk do not appear; obviously this
econd sum vanish when left multiplied by pk. The generic term of the surviving sum can be easily
alculated with �11� and reduces to

xk �
s��qk�


s�− 1�ls�I − qkpk�	s−2k = xk �
s��qk�


s�− 1�ls	s−2k = 0

hen qk is the lsth of the q’s present in 	s. But this relation cannot hold because it would imply
hat the components of the Fock basis are linearly dependent �remark that 	s−2k are all different�.
hus we proved that none of the m components of � can contain qk.

Returning to our argument we observe that when we reduce the size of the TNP by 1, setting

k�0, we have

��
i=1

k−1

xipi	� = 0

ut also

��
i=1

k−1

xipi	�� + qk�� = 0

nd since no component of � contains qk all components of qk� are different from those of � and
he spinor �+qk� has 2m nonzero components. This concludes the induction argument proving
he proposition. �

An immediate consequence of the arguments of the proof is that � relative to
pan�p1 ,p2 , . . . ,pk� cannot have components with any of the �q1 ,q2 , . . . ,qk�. This allows us to
rite � explicitly: its components are all and only the 2n−k not containing any element of
q1 ,q2 , . . . ,qk�. This generalizes easily to the case of a TNP of size k of the more general form
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��
i

xipi + �
j

xjqj	� = 0

he corresponding spinor components are all and only the 2n−k components not containing any
lement of �qi� and containing all of the elements of �qj�.

We now consider the more general case of a TNP formed by the span of k null vectors v and
how a way to express the corresponding spinor.

Proposition 2: Given a TNP V=Span�v1 , . . . ,vk�, of dimension k, the corresponding spinor
�v1 , . . . ,vk�, satisfying the Cartan equation �10�, can be calculated with

��v1, . . . ,vk� = v1 ¯ vk��I� , �15�

here with ��I� we represent the most general spinor �9� expressed in the Fock basis.
We start by proving the simpler case in which there is just one vector and moreover this vector

oincides with one of the basis, i.e., v= pj and we prove that

��pj� = pj��I� .

o calculate pj��I�, as in the previous proof, we split the sum over the Fock basis into two parts
nd get

pj��I� = pj �
s��qj�


s	s + pj �
s��q̄j�


s	s = pj �
s��qj�


s	s

= �
s��qj�


s�− 1�ls�I − qjpj�	s−2j = �
s��qj�


s�− 1�ls	s−2j

= �
s��q̄j�


s+2j�− 1�ls+2 j	s

hat show that pj��I� obviously satisfy pj��pj�=0 and has for components the 2n−1 in which qj do
ot appear in 	s and thus, given the arbitrary values of the coefficients 
s, represents the most
eneral expression for ��pj�, as shown in Proposition 1.

To prove the general proposition we proceed by induction and first extend the proof to a more
eneral null vector v1=�i�ipi+� j� jqj,

��v1� = v1��I� = �
i

�i��pi� + �
j

� j��qj�

nd

v1��v1� = v1
2��I� = 0

ince, by hypothesis, v1 is null. Now suppose that we already have

��v1, . . . ,v j−1� = v1 ¯ v j−1��I�

nd we add v j that form a TNP with previous vectors, we have

�xjv j + �
i=1

j−1

xivi	v j��v1, . . . ,v j−1� = − v j��
i=1

j−1

xivi	��v1, . . . ,v j−1� = 0,

here we have used the relations v j
2=0 and viv j =−v jvi for i� j deriving from the hypothesis that

he v’s form a TNP. This completes the proof showing also that the order of multiplication of v’s
n �15� is irrelevant since it can only affect the global sign of the sign of the spinor. �
We conclude with the general case.
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Proposition 3: Given V : =Span�v1 , . . . ,vk�, there exists a spinor �, satisfying the Cartan
quation for all values of the coefficients x1 , . . . ,xk,

��
i=1

k

xivi	� = 0

f, and only if, V is a TNP.
To prove it let us suppose the contrary, i.e., that there exists a non-null vector v and ��0

atisfying Cartan equation; left-multiplying by v we would get

v2� = 0

ut since v2�0 this implies �=0 contradicting the initial hypothesis. On the other hand, for any
ull vector v the spinor ��v�=v��I� satisfies the Cartan equation since v��v�=v2��I�=0. �

. Back to the graph maximum clique problem

We get back to our form of Cartan equation �14� with an example: let us suppose that ā12

0, this means that z̄1 and z̄2 form a TNP and, setting x3=x4= ¯ =xn=0, with �12� and Proposi-
ion 2 we get

�x1z̄1 + x2z̄2���z̄1z̄2� = �x1z̄1 + x2z̄2�p1p2 ¯ qi ¯ ��I� = 0,

here with the notation ¯qi¯ we indicate all different qi that appear in z̄1 and z̄2. This example
hows that it is simple to get particular solutions to �14� the real problem being to find the set of
ll solutions, for which we have the following.

Proposition 4: The set of nonzero spinors that solve the Cartan equation �14� is isomorphic
o the set of cliques of A.

Given a solution of �14� with ��0 we will have corresponding values for the coefficients

1 , . . . ,xn. For all xi�0 we can redefine the arbitrary � coefficients in �14� so that xi=1 and the
olution can be written in the form xi� �0,1�. The z̄i corresponding to xi=1 form necessarily a
lique since for any couple of them their scalar product is null. Vice versa given a clique z̄i1

, . . . , z̄ik
he corresponding coefficients xi� �0,1� and the corresponding spinor ��z̄i1

, . . . , z̄ik
� satisfy the

artan equation. �

We can now reformulate our initial MC problem �4�: it will correspond to that solution of �14�
ith the maximum intersection with P, i.e.,

k = max

�:��
i=1

n
xiz̄i	�=0

dim�P � M���� . �16�

his shows also that the problem of finding all possible spinor solutions of �14� is NP complete
ince, given the set of all solutions, one gets also the solution of the MC problem. With respect to
he MC formulation �4� we remark two main differences: the first is that the demanding restriction
� �0,1�n can be relaxed since all solutions of �14� necessarily have binary xi. The second is that

he quadratic constraint Z̄2=0 of �4� is linearized here to Z̄�=0.

. Definition of the spinor �„Ā… corresponding to graph A

Even if we cannot determine in general the set of all solutions to our problem �that would
ean solving an NP-complete problem� we can try to better characterize the set of spinors satis-

ying �14�. Let us define a null vector Z̄k, sum of k vectors z̄i,

Z̄k = z̄ j1
+ z̄ j2

+ ¯ + z̄ jk
= Span�p j1

,p j2
, . . . ,p jk

, . . . ,qi . . . � .

¯
s saturated if it is null and if no other zi can be added to it without destroying its nullness. In
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ther words Z̄k is saturated if, in its expression, appear exactly n of the pi and qi vectors all with
ifferent indexes. A clique is said to be maximal if no other vertex can be added obtaining a new
lique �obviously a maximum clique is also maximal�. We show that the concepts are identical.

Proposition 5: The set of saturated vectors formed with the z̄i is isomorphic to that of the
aximal cliques of the corresponding graph.

Let us suppose that the null vector Z̄k is saturated, obviously the set of its p ji
vectors uniquely

dentify a subgraph. From its nullness we have z̄ ji
� z̄ jl

= ājijl
=0 for every jijl and the identified

ubgraph is a clique. To prove that this clique is also maximal let us suppose the contrary, i.e., that
he vertex jk+1 can be added to it obtaining a larger clique. Then we would necessarily have

jijk+1
=0 for all ji that would mean that the vector q jk+1

would be missing from Z̄k violating the

ypothesis that Z̄k is saturated.
To prove the second part of the proposition let us suppose that we have a maximal clique

dentified by a vector xk� �0,1�n; the vector Z̄k= B̄xk is null since 0= ājijl
= z̄ ji

�z jl
for every jijl. Also

−k of the qi appear in it otherwise, as in the preceding part, one can easily contradict the

ypothesis that the starting clique is maximal. It follows that Z̄k is saturated. �

Each saturated vector Z̄k, made up by k z̄i’s, can be thought of as a k-dimensional TNP
remember z̄i’s are linearly independent� but also, using the more general definition �12�, one can

se the p’s and q’s that appear in Z̄k to build a maximal TNP whose spinor is pure and given by

��Z̄k� = p j1
¯ p jk

¯ q¯��I�: = 	Z̄k
�17�

o that each saturated vector uniquely identifies one of the pure spinors of the Fock basis �8�.
hus, in our formulation, every maximal clique corresponds to a saturated vector Z̄k which in turn

dentifies one of the components of the Fock basis �8�.
We remark that the M���Z̄k�� has dimension n and the set of the pi of Z̄k always allow to

ndicate unambiguously the maximal clique associated with it. In other words, each maximal TNP

M���Z̄k�� contain one and only one of the saturated vectors and thus just one maximal clique.
We show now the equivalence of the formulation of the Cartan equation.
Proposition 6: Given a set of xji

that give a solution of the Cartan equation �14� and calling
¯

1 , . . . , Z̄p all the saturated vectors such that each of them contains all the z̄ ji
we are considering,

hen

��
i=1

k

xji
z̄ ji	��

l=1

p

��Z̄l�	 = 0.

First of all we observe that p�1 since the set of z̄ ji
form a TNP and are thus contained in at

east one maximal clique how shown in the constructive proof of Proposition 7. By �17� all ��Z̄l�
ontain all the z̄ ji

of the first sum and the proposition is proved. �

Since, as we prove in the Appendix, each graph is uniquely identified by the set of its maximal

liques it is possible to define uniquely a spinor ��Ā� associated to a given graph A: the set of all

ts maximal cliques defines uniquely a set of saturated vectors �Z̄l�. This set defines in turn a

orresponding set �	Zl
� in the Fock basis and therefore also a spinor ��Ā� of the form �9� uniquely

efined by Ā,

��Ā� = �
l


l��Z̄l� = �
l


l	Z̄l
. �18�

We note that in this formulations not all components are different from zero for all the values

f the xi and we can render explicit this characteristic adding to each components a product of
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ronecker delta that set it to zero when one of the components having positive scalar products

ith one of the Z̄l is present so, calling Ql the set of the indices of qi appearing in Z̄l, we get:

��Ā� = �
l


l	Z̄l
�l,x1,x2, . . . ,xn�

ith

�l,x1,x2, . . . ,xn� = 
j�Ql

�xj,0

nd with this definition we can now rewrite �13� as

��
i=1

n

xiz̄i	��Ā� = 0.

For example, if Ā=0, ��Ā�=	0 while for Ā=J− I , ��Ā�=
1	1+
2	2+
4	4+ . . . +
2n−1	2n−1.

n general ��Ā� will have a number of nonzero components lower than 2n but there exist graphs
ith an exponential number of maximal cliques.

While Ā uniquely determines ��Ā�, not every spinor may be conceived as generated by a

raph. As an example a spinor ��Ā� may not obviously contain components in �	1 ,	3 ,	7 , . . . �.
he spinors ��Ā� generated by graphs build up a subclass of spinors whose properties should be

urther analyzed and they will be certainly interesting also for other fields of application of pure
pinor geometry, one can conjecture that they fall in the class of generalized spinors studied in
ef. 18.

. CONCLUSIONS

Spinors were discovered by Cartan in 1913 and soon after introduced in physics for the
epresentation of the electron �and fermions� by Dirac and Weyl. However the geometry of pure
pinors was practically ignored after the publication of Chevalley book in 1954.10 The main
otivation is that general spinors are too difficult to deal with because of the exponentially many

onstraint relations, for large n.
However now, after 50 years, the scenario may change and pure spinors might attract the

ttention of both theoretical physicists and mathematicians. The main reason of this change is that
heoretical physics, since several decades, is facing insormountable difficulties in some of its
entral sectors like the quantization of the gravitational field or the explanation of some aspects of
lementary particles phenomenology �origin of charges, families, etc.�. Recently, pure spinors
ave been discovered to allow to overcome, somehow miraculously, some of these difficulties2

nd to allow to shed some light on some aspects of the obscure phenomenology of elementary
articles.6

As shown by Cartan the geometry of pure spinors is correlated to that of null vectors and
otally null planes, and shares the elegance and simplicity of projective geometry. We have shown
hat null vectors and TNP are deeply connected to graphs and formulating the MC problem in
pinorial language establishes a bridge between these two worlds that, we hope, will allow to
ross-fertilize both the fields. If and when, the certainly rich and elegant geometry of the pure
pinors will be better known, it might contribute also to the MC problem, once this is formulated
n the frame of that geometry, as proposed here.

In this paper, establishing a correspondence between totally null planes and maximal cliques,
e have been able to reformulate neatly �16� the maximum clique problem and to define spinors

orresponding to graphs �18�. Another interesting aspect, which emerges already in this prelimi-
ary approach, is that the pure spinor defined by graphs might belong to a subclass less prone to

onstraint relations.
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PPENDIX

Any symmetric matrix like A may be expressed as A=B2 where B is a complex symmetric
atrix. Since A is symmetric its eigenvalues are real and it can be diagonalized A=O��O with
�O=OO�= I where � is the diagonal matrix of the eigenvalues �i and O� is the orthogonal, real,
atrix of the eigenvectors. Then, as it is easy to verify, a possible definition of the “square root”

f A is B=O���O where �� is the diagonal matrix whose elements are the square roots of the
igenvalues of A.12

We observe that, unless A is semipositive definite ��i�0�, B is complex and the choice of the
igns of the diagonal elements of �� is arbitrary so, in general, there are at least 2n different
ossible B satisfying �2�: Moreover when A has multiple eigenvalues, there are infinitely many
ossible choices of the corresponding eigenvectors, and there are, accordingly, infinitely many
ossible choices for B.

We conclude by proving the following.
Proposition 7: Each graph is uniquely identified by the set of its maximal cliques.
To prove this assertion we provide a constructive algorithm to build A from the set of its

aximal cliques. One starts from A=0 and add to it �in a Boolean logic fashion� all the links of
ach maximal clique; it is sufficient to add only the links between the nodes of a maximal clique
nd these links are all known, since one knows the subset of vertices that forms a maximal clique.
his procedure brings to the adjacency matrix of the graph since each link appears in at least one
f the maximal cliques. This last statement is proved observing that each maximal clique can be
uilt starting from any link, and the corresponding two nodes, and adding to them, one at the time,
ther fully connected nodes. This proves that any link must appear in at least one maximal clique
nd thus the proposition. �
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Let G /K be a simply connected spin compact inner irreducible symmetric space,
endowed with the metric induced by the Killing form of G sign-changed. We give
a formula for the square of the first eigenvalue of the Dirac operator in terms of a
root system of G. As an example of application, we give the list of the first eigen-
values for the spin compact irreducible symmetric spaces endowed with a
quaternion-Kähler structure. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2186924�

. INTRODUCTION

Let G /K be a compact, simply connected, n-dimensional irreducible symmetric space with G
ompact and simply connected, endowed with the metric induced by the Killing form of G
ign-changed. Assume that G and K have the same rank and that G /K has a spin structure. Let T
e a common maximal torus of G and K, and let �k, k=1, . . . , p, be the K-dominant weights with
espect to T, occurring in the decomposition into irreducible components of the spin representation
nder the action of K. In a previous paper, cf. Ref. 9, we proved that the first eigenvalue � of the
irac operator verifies

�2 = 2 min
1�k�p

��k�2 + n/8, �1�

here � · � is the norm associated to the scalar product induced by the Killing form of G sign-
hanged.

The proof was based on a lemma of Parthasarathy in Ref. 10 which allows to express the
esult in the following way.

Let � be the set of nonzero roots of G with respect to T. Let �G
+ be the set of positive roots

f G, �K
+ be the set of positive roots of K, with respect to a fixed lexicographic ordering in �. Let

G �respectively, �K� be the half-sum of the positive roots of G �respectively, K�. Then the square
f the first eigenvalue of the Dirac operator is given by

�2 = 2min
w�W

�w · �G − �K�2 + n/8, �2�

here W is the subset of the Weyl group WG defined by

W ª �w � WG;w · �G
+ � �K

+� . �3�

n order to avoid the determination of the subset W for applications, we prove in the following that
he square of the first eigenvalue of the Dirac operator is indeed given by

�
Electronic mail: milhorat@math.univ-nantes.fr
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�2 = 2 min
w�WG

�w · �G − �K�2 + n/8. �4�

We then give a different expression to use the formula for explicit computations. We obtain

�2 = 2��G − �K�2 + 4 �
���

	�,�K
 + n/8, �5�

here � is the set

� ª �� � �G
+ ;	�,�K
 � 0� .

As an example of application of the above formula, we obtain the list of the first eigenvalues
f the Dirac operator for the spin compact irreducible symmetric spaces endowed with a
uaternion-Kähler structure. By definition, a Riemannian manifold has a quaternion-Kähler struc-
ure if its holonomy group is contained in the group SpmSp1. In Ref. 13, Wolf gave the classifi-
ation of compact quaternion-Kähler symmetric spaces �see Table I�.

Note furthermore that all the symmetric spaces in Table I are “inner.”
Endowing each symmetric space with the metric induced by the Killing form of G sign-

hanged, we obtain Table II.
The result was already known for quaternionic projective spaces HPn,7 for the Grassmannians

r2�Cm+2�,8 and for the symmetric space G2 /SO4.11 To our knowledge, the other results are new.

TABLE I. Compact Quaternion-Kähler Symmetric Spaces

G K G /K dim G /K
Spin structure

�cf. Ref. 4�

Spm+1 Spm	Sp1 Quaternionic
projective
space HPm

4m�m
1� Yes �unique�

SUm+2 S�Um	U2� Grassmannian
Gr2�Cm+2�

4m�m
1� iff m even
unique in that case

Spinm+4 SpinmSpin4 Grassmannian

Gr˜

4�Rm+4�
4m�m
3� iff m even,

unique in that case

G2 SO4 8 Yes �unique�
F4 Sp3SU2 28 No
E6 SU6SU2 40 Yes �unique�
E7 Spin12SU2 64 Yes �unique�
E8 E7SU2 112 Yes �unique�

ABLE II. First Eigenvalue of the Dirac Operator on Spin Compact Quaternion-Kähler Symmetric Spaces

/K Square of the first eigenvalue of D

Pn=Spm+1 / �Spm	Sp1� �m+3/m+2��m /2�= �m+3/m+2��Scal/4�
r2�Cm+2�=SUm+2 /S�Um	U2�

�m even�
�m+4/m+2��m /2�= �m+4/m+2��Scal/4�

r4�Rm+4�=Spinm+4 /SpinmSpin4

�m even�
��m2+6m−4� /m�m+2���m /2�= ��m2+6m−4� /

m�m+2���Scal/4�

2 /SO4 3/2= �3/2��Scal/4�

6 / �SU6SU2� 41/6= �41/30��Scal/4�

7 / �Spin12SU2� 95/9= �95/72��Scal/4�

8 / �E7SU2� 269/15= �269/210��Scal/4�
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I. PROOF OF FORMULA „4…

With the notations of the introduction, and since the scalar product is WG-invariant, one has
or any w�WG,

�w · �G − �K�2 = ��G�2 + ��K�2 − 2	w · �G,�K
 , �6�

ence

min
w�W

�w · �G − �K�2 = ��G�2 + ��K�2 − 2max
w�W

	w · �G,�K


nd

min
w�WG

�w · �G − �K�2 = ��G�2 + ��K�2 − 2 max
w�WG

	w · �G,�K
 .

o we must prove that

max
w�W

	w · �G,�K
 = max
w�WG

	w · �G,�K
 . �7�

et

�G ª ��1, . . . ,�r� � �G
+ , �8�

e the set of G-simple roots and let

�K ª ��1�, . . . ,�l�� � �K
+ , �9�

e the set of K-simple roots.
Let w0�WG such that

	w0 · �G,�K
 = max
w�WG

	w · �G,�K
 . �10�

uppose that w0�W. Then we claim that there exists a K-simple root �i� such that w0
−1 ·�i���G

+ .
therwise, if for any K-simple root �i�, w0

−1 ·�i���G
+ , then since any K-positive root is a linear

ombination with non-negative coefficients of K-simple roots, we would have "����K
+,

0
−1 ·����G

+ , contradicting the assumption made on w0.
Now let �i� be the reflection across the hyperplane �i�

�. Since �i� ·�K=�K−�i�, �cf. for instance
orollary of Lemma B, Sec. 10.3 in Ref. 6�, one gets by the WG-invariance of the scalar product

	�i�w0 · �G,�K
 = 	w0 · �G,�i� · �K
 = 	w0 · �G,�K − �i�


=	w0 · �G,�K
 − 	�G,w0
−1 · �i�
 .

ut since w0
−1 ·�i� is a negative root of G, one has

w0
−1 · �i� = − � kj� j, kj � N .

ince for any G-simple root � j, � j ·�G=�G−� j, where � j is the reflection across the hyperplane � j
�,

ne has 	� j ,�G
=2	� j ,� j
0, so

− 	�G,w0
−1 · �i�
 = � kj	�G,� j
  0,

ence

	�i�w0 · �G,�K
  	w0 · �G,�K
 ,
ut that is in contradiction with the definition �10� of w0, hence w0�W and
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maxw�WG
	w · �G,�K
 = 	w0 · �G,�K
 � maxw�W	w · �G,�K
 � maxw�WG

	w · �G,�K
 ,

ence the result.

II. PROOF OF FORMULA „5…

In order to obtain the formula we will use the following result.
Lemma 3.1: For any element w of the Weyl group WG,

w · �G = �G − �
���G

+

k��, k� = 0 or 1.

Proof: Let w�WG. With the same notations as in the above proof, we write w in reduced form

w = �i1
¯ �ik

, �11�

here �i is the reflection across the hyperplane �i
�, �i��G, and k is minimal.

Since �ik
·�G=�G−�ik

, one has

w · �G = �i1
¯ �ik−1

��ik
· �G� = �i1

¯ �ik−1
��G� − �i1

¯ �ik−1
��ik

� .

ow, since the expression of w is reduced, w��ik
� is a negative root, cf. for instance corollary of

emma C, Sec. 10.3 in Ref. 6. But w��ik
�=−�i1

¯�ik−1
��ik

�, hence �i1
¯�ik−1

��ik
� is a positive

oot.
Now the element �i1

¯�ik−1
�WG is written in reduced form, otherwise the expression �11� of

would not be reduced. Hence we may conclude as above that

�i1
¯ �ik−1

��G� = �i1
¯ �ik−2

��G� − �i1
¯ �ik−2

��ik−1
� ,

here �i1
¯�ik−2

��ik−1
� is a positive root.

Proceeding inductively we get

w · �G = �G − �
���G

+

k��, k� � N .

n order to conclude, we must prove that if a G-positive root � appears in the above sum, then it
ppears only once.

Suppose that a G-positive root appears at least twice in the above sum, then there exist two
ntegers p and q, 1� p�q�k−1 such that

�i1
¯ �ip

��ip+1
� = �i1

¯ �iq
��iq+1

�

pplying �ip+1
�ip

¯�i1
to the two members of the above equation, we get

− �ip+1
= �ip+2

¯ �iq
��iq+1

� if p + 1 � q ,

− �iq
= �iq+1

if p + 1 = q .

o we get a contradiction, even in the first case, since �ip+2
¯�iq

�iq+1
�WG is expressed in reduced

orm �otherwise the expression �11� of w would not be reduced�, hence �ip+2
¯�iq

��iq+1
� is a

ositive root. �

From the above result we deduce the following.
Lemma 3.2: Let � be the set

� ª �� � �G
+ ;	�,�K
 � 0� . �12�
ne has
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max
w�WG

	w · �G,�K
 = 	�G,�K
 − �
���

	�,�K
 ,

setting ����	� ,�K
=0, if �=�).
Proof: Suppose ���. We first prove that there exists w0�WG such that

w0 · �G = �G − �
���

� .

et

�n
+
ª �G

+ \ �K
+ .

e first remark that any root in � belongs to �n
+. Otherwise, if there exists �����K

+, then since
is a combination with non-negative coefficients of simple K-roots, and since 	�K ,�i�
0, for any
-simple root �i�, we would have 	�K ,�

0, contradicting the fact that ���.

Now, consider

�n ª
1

2 �
���n

+

� = �G − �K.

hen

�G − �
���

� = �K + ��n − �
���

�� .

ut,

� ª �n − �
���

� ,

s a weight of the decomposition of the spin representation under the action of K, cf. Sec. 2 in Ref.
0: the weights are just the elements of the form �n−�����, where � is a subset of �n

+.
In fact � is the highest weight of an irreducible component in the decomposition, otherwise

e would have

� + � = �n − �
���

� ,

here � is a K-positive root and � is a subset of �n
+.

Hence setting ��ª� \� and ��ª� \�, we would have

− �
����

� + � = − �
����

� .

ut since ���� and � is a K-positive root,

	− �
����

� + �,�K
  0,

hereas since ����n
+ \�,

	− �
����

�,�K
 � 0,

ence a contradiction.
Now by the result of Lemma 2.2 in Ref. 10, any highest weight in the decomposition of the
pin representation has the form
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w · �G − �K,

here w belongs to the subset W of WG defined in �3�. Hence there exists a w0�W such that

� = w0 · �G − �K,

ence

�G − �
���

� = �K + � = w0 · �G,

ence the result.
Now let w be any element in WG. By the above lemma,

w · �G = �G − �
���G

+

k��, k� = 0 or 1,

=�G − �
���

k�� − �
���G

+ \�

k�� .

ence by the definition of �,

	w · �G,�K
 � 	�G − �
���

k��,�K
 � 	�G − �
���

�,�K
 .

hus

max
w�WG

	w · �G,�K
 � 	�G,�K
 − �
���

	�,�K
 = 	w0 · �G,�K


� max
w�WG

	w · �G,�K
 ,

ence the result. �

Now going back to formula �4�, we get immediately from �6� the following.
Corollary 3.3: The first eigenvalue � of the Dirac operator verifies

�2 = 2��G − �K�2 + 4 �
���

	�,�K
 + n/8.

V. PROOF OF THE RESULTS OF TABLE I

In the following, we note for any integer n
1, �e1 , . . . ,en�, the standard basis of Kn, K=R, C
r H, and by �Eij�, 1� i , j�n, the standard basis of the space Mn�K� of �n ,n� matrices with
oefficients in K.

. Quaternionic projective spaces HPn

Here G=Spm+1 and K=Spm	Sp1, where Spm+1 is the group of symplectic matrices acting on
he left on Hn+1, �viewed as a right vector space on H�, and Spm	Sp1 is the subgroup of G formed
y matrices of the form � A

0
0
q

�, where A is a �n ,n� symplectic matrix and q a unit quaternion.
The decomposition of the spin representation into irreducible components under the action of

is known �see Refs. 1 and 12 or 7�, so we may conclude with formula �1�. However the result

ay be also simply concluded with formula �5�.
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We consider the standard maximal torus T of G, which is a common maximal torus of G and
. We denote by �x1 , . . . ,xm+1�, the basis dual to the standard basis of the Lie algebra T of T, and
y �x̂1 , . . . , x̂m+1�, the corresponding basis of iT*. Any vector �� iT* is simply denoted by the
m+1�-tuple of its components in this basis: �= ��1 ,�2 , . . . ,�m+1�.

The restriction to T of the Killing form B of G is given by

"X � T, " Y � T, B�X,Y� = 4�m + 2�R�tr�XY�� .

Hence the scalar product on iT* induced by the Killing form sign-changed is given by

"� = ��1, . . . ,�m+1� � iT*,

"�� = ��1�, . . . ,�m+1� � � iT*,
	�,��
 =

1

4�m + 2� �
k=1

m+1

�k�k�. �13�

Now, considering the root-spaces decomposition of the complexified Lie algebra of G under
he action of T, we may choose as sets of positive roots,

�G
+ = x̂i + x̂j ,

x̂i − x̂j ,
1 � i � j � m + 1;2x̂i, 1 � i � m + 1� ,

nd

�K
+ = x̂i + x̂j ,

x̂i − x̂j ,
1 � i � j � m;2x̂i, 1 � i � m + 1� .

hen

�G = �
k=1

m+1

�m + 2 − k�x̂k = �m + 1,m, . . . ,2,1�

nd

�K = �
k=1

m

�m + 1 − k�x̂k + x̂m+1 = �m,m − 1, . . . ,1,1� .

ence �G−�K=�k=1
m x̂k= �1,1 , . . . ,1 ,0�, so ��G−�K�2=m / �4�m+2��.

On the other hand, it is easy to verify that the set �ª ����G
+ ; 	� ,�K
�0� is empty, hence by

ormula �5�, the square of the first eigenvalue � of the Dirac operator is given by

�2 =
m

2�m + 2�
+

m

2
=

m + 3

m + 2

m

2
.

. Grassmannians Gr2„Cm+2
…, m even Ð2

Here G=SUm+2 is the group of unitary matrices with determinant 1, and K is the subgroup
�Um	U2� formed by matrices of the form � A

0
0
B

�, where A and B are unitary matrices with
espective sizes �m ,m� and �2,2� such that det A det B=1.

Here again, the decomposition into irreducible components of the spin representation under
he action of K is known,8 hence the result may be obtained from formula �1�. However the result
ay be also simply concluded with formula �5�. The standard maximal torus T of SUm+2 is a

ommon maximal torus of G and K. We denote by �x1 , . . . ,xm+1�, the basis dual to the basis of the
ie algebra T of T defined by the vectors i�Eii−Em+2m+2�, 1� i�m+1, and by �x̂1 , . . . , x̂m+1�, the
orresponding basis of iT*. Any vector �� iT* is denoted by the �m+1�-tuple of its components
n this basis: �= ��1 ,�2 , . . . ,�m+1�.
The restriction to T of the Killing form B of G is given by
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"X � T, " Y � T, B�X,Y� = 2�m + 2�R�tr�XY�� .

ence the scalar product on iT* induced by the Killing form sign changed is given by

"� = ��1, . . . ,�m+1� � iT*, " �� = ��1�, . . . ,�m+1� � � iT*,

	�,��
 =
1

2�m + 2� �
k=1

m+1

�k�k� −
1

2�m + 2�2��
k=1

m+1

�k���
k=1

m+1

�k�� . �14�

Now, considering the root-spaces decomposition of the complexified Lie algebra of G under
he action of T, we may choose as sets of positive roots

�G
+ = x̂i − x̂j,1 � i � m + 1; x̂i + �

k=1

m+1

x̂k,1 � i � m + 1� ,

nd

�K
+ = x̂i − x̂j,1 � i � m; x̂m+1 + �

k=1

m+1

x̂k� .

hen

�G = �
k=1

m+1

�m + 2 − k�x̂k = �m + 1,m, . . . ,2,1�

nd

�K =
1

2
��

k=1

m

�m + 2 − 2k�x̂k + 2x̂m+1� =
1

2
�m,m − 2,m − 4, . . . ,2 − m,2� .

ence �G−�K= 1
2 �m+2��k=1

m x̂k= 1
2 �m+2��1,1 , . . . ,1 ,0�, so ��G−�K�2=m /4.

We now determine the set �ª ����G
+ ; 	� ,�K
�0�. Recall that from the proof of Lemma 3.2,

f � is nonempty, then any ��� belongs to �G
+ \�K

+. It is then easy to verify that the elements of
are

x̂j − x̂m+1,
m

2
+ 1 � j � m, 	x̂j − x̂m+1,�K
 =

1

2�m + 2��m

2
− j� ,

x̂j + �
k=1

m+1

x̂k,
m

2
+ 2 � j � m, 	x̂j + �

k=1

m+1

x̂k,�K
 =
1

2�m + 2��m

2
+ 1 − j� .

o

�
���

	�,�K
 = −
m2

8�m + 2�
.

ence, by formula �5�, the square of the first eigenvalue � of the Dirac operator is given by

�2 =
m

−
m2

+
m

=
m + 4 m

.

2 2�m + 2� 2 m + 2 2
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. Grassmannians Gr˜

4„Rm+4
…, m even Ð4

Here G=Spinm+4 and, identifying Rm with the subspace of Rm+4 spanned by e1 , . . . ,em, and R4

ith the subspace spanned by em+1 , . . . ,em+4, K is the subgroup of G defined by

Spinm Spin4 ª �� � Spinm+4;� = ��,� � Spinm,� � Spin4� .

e consider the common maximal torus of G and K defined by

T =  �
k=1

�m/2�+2

�cos��k� + sin��k�e2k−1 · e2k�;�1, . . . ,��m/2�+2 � R� .

e denote by �x1 , . . . ,x�m/2�+2� the basis dual to the basis �e2j−1 ·e2j�, 1� j� �m /2�+2, of the Lie
lgebra T of T, and by �x̂1 , . . . , x̂�m/2�+2� the basis of iT* defined by

x̂k ª 2ixk, k = 1, . . . ,
m

2
+ 2.

ny vector �� iT* is denoted by the �m /2�+2-tuple of its components in this basis, �
��1 ,�2 , . . . ,��m/2�+2�.

The restriction to T of the Killing form B of G is given by

B�e2k−1 · e2k,e2l−1 · e2l� = − 8�m + 2��kl.

ence the scalar product on iT* induced by the Killing form sign-changed is given by

"� = ��1, . . . ,�m
2

+2� � iT*,

"�� = ��1�, . . . ,�m
2

+2
� � � iT*,

	�,��
 =
1

2�m + 2� �
k=1

�m/2�+2

�k�k�. �15�

onsidering the root-spaces decomposition of the complexified Lie algebra of G under the action
f T, we may choose as sets of positive roots

�G
+ = x̂i + x̂j, x̂i − x̂j,1 � i � j �

m

2
+ 2� ,

nd

�K
+ = x̂i + x̂j, x̂i − x̂j,1 � i � j �

m

2
, x̂�m/2�+1 + x̂�m/2�+2, x̂�m/2�+1 − x̂�m/2�+2� .

hen

�G = �
k=1

�m/2�+2 �m

2
+ 2 − k�x̂k = �m

2
+ 1,

m

2
, . . . ,1,0�

nd

�K = �
k=1

�m/2� �m

2
− k�x̂k + x̂�m/2�+1 = �m

2
− 1,

m

2
− 2, . . . ,1,0� .

ence �G−�K=2�k=1
m/2x̂k=2�1,1 , . . . ,1 ,0 ,0�, so ��G−�K�2=m / �m+2�.
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n the other hand, it is easy to verify that the set �ª ����G
+ ; 	� ,�K
�0� has only one element,

amely

x̂�m/2� − x̂�m/2�+1, with 	x̂�m/2� − x̂�m/2�+1,�K
 = − 1.

ence, by formula �5�, the square of the first eigenvalue � of the Dirac operator is given by

�2 =
2m

m + 2
−

2

m + 2
+

m

2
=

m2 + 6m − 4

2�m + 2�
.

. The four exceptional cases

Note first that since all the groups G we consider are simple, their roots system are irreducible
o, up to a constant, there is only one WG-invariant scalar product on the subspace generated by
he set of roots, cf. for instance Remark �5.10�, Sec. V in Ref. 3.

We use the description of root systems given in Ref. 2. Those root systems are expressed in
he simple root basis ��i�. Note that the WG-invariant scalar product �,� used there is such that
� ,��=2 for any long root �. In order to compare it with the scalar product 	,
 induced by the
illing form sign-changed, we use the “strange formula” of Freudenthal and de Vries, �cf. 47-11

n Ref. 5�:

	�G,�G
 = 1
24 dim G . �16�

To determine the set of K-positive roots, we use Theorem 13, Theorem 14, and the proof of
heorem 18 in Ref. 4. By those results, the set �K

+ may be defined as follows. Let �=�mi�i be the
ighest root. In all cases considered, there exists an index j such that mj =2. Then

�K
+ = �� ni�i;nj � 1� .

. The symmetric space G2 /SO4

Using the results of pages 18 and 64 in Ref. 2, we get

�G = 3�1 + 5�2.

y the expression of the Cartan matrix, the scalar product matrix is, in the basis ��1 ,�2�, � 2
−1

−1
2/3

�,
ence ��G��,�

2 = 14
3 . On the other hand, by the formula of Freudenthal and de Vries, ��G�	,


2 = 7
12, so

,
= 1
8 �,�.
The set of K-positive roots is �K

+ = �2�1+3�2 ,�2�, hence �K=�1+2�2, so �G−�K=2�1+3�2.
ence

��G − �K�	,

2 = 1

8 ��G − �K��,�
2 = 1

4 .

inally, it is easy to verify that the set �ª ����G
+ ; 	� ,�K
�0� is empty, hence by formula �5�,

he square of the first eigenvalue � of the Dirac operator is given by

�2 = 1
2 + 1 = 3

2 .

. The symmetric space E6 / „SU6SU2…

Using the results of pages 14 and 60 in Ref. 2, we get

�G = 8�1 + 15�2 + 21�3 + 15�4 + 8�5 + 11�6.
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ince all roots have same length equal to 2, we may introduce the fundamental weight basis ��i�
ecause ��i ,� j�=�ij.

Since �G=��i, we get ��G��,�
2 =78, whereas by the formula of Freudenthal and de Vries,

�G�	,

2 = 78

24 , so 	,
= 1
24�,�.

The set of K-positive roots may be defined by �K
+ = ��i=1

6 ni�i ;n6�1�.
Then �K=3�1+5�2+6�3+5�4+3�5+�6=�1+�2+�3+�4+�5−4�6.
Hence �G−�K=5�1+10�2+15�3+10�4+5�5+10�6=5�6. So

��G − �K�	,

2 = 1

24��G − �K��,�
2 = 25

12 .

n the other hand, it is easy to verify that the set �ª ����G
+ ; 	� ,�K
�0� has seven elements,

nd that

�
���

	�,�K
 = 1
24 �

���

��,�K� = − 7
12 .

o by formula �5�, the square of the first eigenvalue � of the Dirac operator is given by

�2 = 50
12 − 28

12 + 5 = 41
6 .

. The symmetric space E7 / „Spin12SU2…

By the results of pages 15 and 61 in Ref. 2, we get

�G = 1
2 �34�1 + 66�2 + 96�3 + 75�4 + 52�5 + 27�6 + 49�7� .

ere again, since all roots have the same length equal to 2, we may consider the fundamental
eight basis ��i�. We get ��G��,�

2 = 399
2 , whereas by the formula of Freudenthal and de Vries,

�G�	,

2 = 133

24 , so 	,
= 1
36�,�.

The set of K-positive roots may be defined by �K
+ = ��i=1

7 ni�i ;n1�1�. Then

�K = 1
2 �2�1 + 18�2 + 32�3 + 27�4 + 20�5 + 11�6 + 17�7�

=− 7�1 + �2 + �3 + �4 + �5 + �6 + �7.

ence �G−�K=16�1+24�2+32�3+24�4+16�5+8�6+16�7=8�6. So

��G − �K�	,

2 = 1

36��G − �K��,�
2 = 32

9 .

n the other hand, it can be verified that the set �ª ����G
+ ; 	� ,�K
�0� has 13 elements, and

hat

�
���

	�,�K
 =
1

36 �
���

��,�K� = −
41

36
.

o by formula �5�, the square of the first eigenvalue � of the Dirac operator is given by

�2 = 64
9 − 41

9 + 8 = 95
9 .

. The symmetric space E8 / „E7SU2…
By the results of pages 16, 62, and 63 in Ref. 2, we get
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�G = 29�1 + 57�2 + 84�3 + 110�4 + 135�5 + 91�6 + 46�7 + 68�8.

ere again, since all roots have the same length equal to 2, we may consider the fundamental
eight basis ��i�. We get ��G��,�

2 =620, whereas by the formula of Freudenthal and de Vries,

�G�	,

2 = 31

3 , so 	,
= 1
60�,�.

The set of K-positive roots may be defined by �K
+ = ��i=1

8 ni�i ;n1�1�. Then

�K = �1 + 15 �2 + 28�3 + 40�4 + 51�5 + 35�6 + 18�7 + 26�8

=− 13�1 + �2 + �3 + �4 + �5 + �6 + �7 + �8.

ence

�G − �K = 28�1 + 42�2 + 56�3 + 70�4 + 84�5 + 56�6 + 28�7 + 42�8 = 14�6.

o

��G − �K�	,

2 = 1

60��G − �K��,�
2 = 98

15 .

n the other hand, it can be verified that the set �ª ����G
+ ; 	� ,�K
�0� has 25 elements, and

hat

�
���

	�,�K
 =
1

60 �
���

��,�K� = −
137

60
.

o by formula �5�, the square of the first eigenvalue � of the Dirac operator is given by

�2 = 196
15 − 137

15 + 14 = 269
15 .
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race functions as Laplace transforms
Frank Hansen
Institute of Economics, University of Copenhagen, Studiestraede 6,
DK-1455 Copenhagen K, Denmark
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We study trace functions on the form t→Tr f�A+ tB� where f is a real function
defined on the positive half-line, and A and B are matrices such that A is positive
definite and B is positive semidefinite. If f is non-negative and operator monotone
decreasing, then such a trace function can be written as the Laplace transform of a
positive measure. The question is related to the Bessis-Moussa-Villani
conjecture. © 2006 American Institute of Physics. �DOI: 10.1063/1.2186925�

. INTRODUCTION

The Gibbs density matrix of a system with Hamiltonian H in equilibrium and temperature
T=1/� is given by exp�−�H�. One would like to study perturbations H0+�H1 of an exactly
olvable Hamiltonian H0 and see how the thermodynamical quantities are changed. This question
as studied by Bessis, Moussa and Villani in Ref. 2 where it is noted that the Padé approximant

o the partition function Z���=Tr exp�−��H0+�H1�� may be efficiently calculated, if the function

� → Tr exp�− ��H0 + �H1��

s the Laplace transform of a positive measure. The authors then noted that this is indeed true for
system of spinless particles with local interactions bounded from below. The statement also

olds if H0 and H1 are commuting operators, or if they are just 2�2 matrices. These observations
ed to the formulation of the following conjecture:

Conjecture �BMV): Let A and B be n�n matrices for some natural number n, and suppose
hat A is self-adjoint and B is positive semidefinite. Then there is a positive measure � with
upport in the closed positive half-axis such that

Tr exp�A − tB� =�
0

�

e−ts d��s�

or every t�0.
The Bessis-Moussa-Villani �BMV� conjecture may be reformulated as an infinite series of

nequalities.
Theorem (Bernstein): Let f be a real C�-function defined on the positive half-axis. If f is

ompletely monotone, that is

�− 1�nf �n��t� � 0, t � 0, n = 0,1,2, . . . ,

hen there exists a positive measure � on the positive half-axis such that

f�t� = �
0

�

e−st d��s�

or every t�0.

The BMV conjecture is thus equivalent to saying that the function

47, 043504-1022-2488/2006/47�4�/043504/11/$23.00 © 2006 American Institute of Physics
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f�t� = Tr exp�A − tB�, t � 0

s completely monotone. A proof of Bernstein’s theorem can be found in Ref. 4.
Assuming the BMV conjecture one may derive a similar statement for free semicircularly

istributed elements in a type II1 von Neumann algebra with a faithful trace. This consequence of
he conjecture has been proved by Fannes and Petz.6 A hypergeometric approach by Drmota,
chachermayer, and Teichmann5 gives a proof of the BMV-conjecture for some types of 3�3
atrices.

Equivalent formulations: The BMV conjecture can be stated in several equivalent forms.
Theorem 1.1: The following conditions are equivalent:

i� For arbitrary n�n matrices A and B such that A is self-adjoint and B is positive semidefi-
nite the function f�t�=Tr exp�A− tB�, defined on the positive half-axis, is the Laplace trans-
form of a positive measure supported in �0, � �.

ii� For arbitrary n�n matrices A and B such that A is self-adjoint and B is positive semidefi-
nite the function g�t�=Tr exp�A+ itB�, defined on the positive half-axis, is of positive type.

iii� For arbitrary positive definite n�n matrices A and B the polynomial P�t�=Tr�A+ tB�p has
non-negative coefficients for any p=1,2 , . . . .

iv� For arbitrary positive definite n�n matrices A and B the function ��t�=Tr exp�A+ tB� is
m-positive on some open interval of the form �−	 ,	�.

The first statement is the BMV-conjecture, and it readily implies the second statement by
nalytic continuation. The sufficiency of the second statement is essentially Bochner’s theorem.
he implication �iii�Þ �i� is obtained by applying Bernstein’s theorem and approximation of the
xponential function by its Taylor expansion. The implication �i�Þ �iii� was proved by Lieb and
eiringer.15 A function � : �−	 ,	�→R is said to be m-positive, if for arbitrary self-adjoint k�k
atrices X with non-negative entries and spectra contained in �−	 ,	� the matrix ��X� has non-

egative entries. The implication �iii�Þ �iv� follows by approximation, while the implication
iv�Þ �i� follows by Bernstein’s theorem and Ref. 8. Theorem 3.3 which states that an m-positive
unction is real analytic with non-negative derivatives in zero.

I. PRELIMINARIES AND MAIN RESULT

Let f be a real function of one variable defined on a real interval I. We consider for each
atural number n the associated matrix function x→ f�x� defined on the set of self-adjoint matrices
f order n with spectra in I. The matrix function is defined by setting

f�x� = �
i=1

p

f��i�Pi, where x = �
i=1

p

�iPi

s the spectral resolution of x. The matrix function x→ f�x� is Fréchet differentiable7 if I is open
nd f is continuously differentiable.3 The norm of the Fréchet differential df�x� may be an un-
ounded function of the order n, cf. Refs. 19 and 18. If however f is assumed to be twice
ifferentiable, then the norm of df�x� is bounded independently of the order n for all self-adjoint
atrices x with spectra contained in a fixed compact subset of I, cf. Ref. 9 Corollary 2.9 and Ref.

2. We consider in this paper the function

��x� = Tr f�x�

efined on the set of self-adjoint matrices of order n with spectra in I. The Fréchet differential is
iven by d��x�=Tr df�x�, cf. Ref. 10.

The BMV property:
Definition 2.1: A function f :R+→R is said to have the BMV property, if to each n=1,2 , . . .

nd each pair of n�n matrices A and B, such that A is positive definite and B is positive

emidefinite, there is a positive measure � with support in �0, � � such that
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Tr f�A + tB� =�
0

�

e−st d��s�

or every t�0.
The BMV-conjecture is thus equivalent to the statement that the function t→exp�−t� has the

MV property. The main contribution of this paper is the following result.
Main Theorem: Every non-negative operator monotone decreasing function defined on the

pen positive half-line has the BMV property.

II. DIFFERENTIAL ANALYSIS

A simple proof of the following result can be found in Ref. 12, Proposition 1.3.
Proposition 3.1: The Fréchet differential of the exponential operator function x→exp�x� is

iven by

d exp�x�h =�
0

1

exp�sx�h exp��1 − s�x�ds =�
0

1

A�s�exp�x�ds ,

here A�s�=exp�sx�h exp�−sx� for s�R.
This is only a small part of the Dyson formula which contains formalisms developed earlier

y Tomonaga, Schwinger, and Feynman. The subject was given a rigorous mathematical treatment
y Araki in terms of expansionals in Banach algebras. In particular Ref. 1, Theorem 3, the
xpansional

Er�h;x� = �
n=0

� �
0

1 �
0

s1

¯ �
0

sn−1

A�sn�A�sn−1� ¯ A�s1�dsn dsn−1 ¯ ds1

s absolutely convergent in the norm topology with limit

Er�h;x� = exp�x + h�exp�− x� .

e therefore obtain the pth Fréchet differential of the exponential operator function by the ex-
ression

dp exp�x�hp = p! �
0

1 �
0

s1

¯ �
0

sp−1

A�sp�A�sp−1� ¯ A�s1�exp�x�dsp dsp−1 ¯ ds1.

Divided differences: The following representation of divided differences is due to Hermite,13

onfer also Refs. 17 and 16.
Proposition 3.2: Divided differences can be written in the following form:

�x0,x1� f = �
0

1

f���1 − t1�x0 + t1x1�dt1,

�x0,x1,x2� f = �
0

1 �
0

t1

f���1 − t1�x0 + �t1 − t2�x1 + t2x2�dt2 dt1,

]

�x0,x1, . . . ,xn� f = �
0

1 �
0

t1

¯ �
0

tn−1

f �n���1 − t1�x0 + �t1 − t2�x1 + ¯
+ �tn−1 − tn�xn−1 + tnxn�dtn ¯ dt2 dt1,
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here f is an n-times continuously differential function defined on an open interval I, and

0 ,x1 , . . . ,xn are �not necessarily distinct� points in I.
Lemma 3.3: For k=1,2 , . . . and real numbers �1 , . . . ,�k we have

�
0

t

e−�s�s�1, . . . ,s�k�exp sk−1 ds = tke−�t �t�1, ¯ ,t�k,t��exp

or any real � and t�0.
Proof: For k=1 we calculate

�
0

t

e−�s�s�1�exp ds = �
0

t

es��1−�� ds = t e−�t �t�1,t��exp.

ssuming the formula valid for k we obtain for k+1 the expression

�
0

t

e−�s �s�1, . . . ,s�k+1�exp sk ds

=�
0

t

e−�s �s�1, . . . ,s�k�exp − �s�2, . . . ,s�k+1�exp

s�1 − s�k+1
sk ds

=
1

�1 − �k+1
�tke−�t �t�1, . . . ,t�k,t��exp − tke−�t �t�2, . . . ,t�k+1,t��exp�

=tk+1e−�t �t�1, . . . ,t�k+1,t��exp

rovided �1��k+1. The case �1=�k+1 then follows by continuity, and the lemma is proved by
nduction. Q.E.D.

Theorem 3.4: Let x and h be operators on a Hilbert space of finite dimension n written on the
orm

x = �
i=1

n

�ieii and h = �
i,j=1

n

hijeij ,

here �eij�i,j=1
n is a system of matrix units, and �1 , . . . ,�n and hi,j for i , j=1, . . . ,n are complex

umbers. Then the pth derivative

	 dp

dtpTr exp�x + th�	
t=0

=p! �
i1=1

n

¯ �
ip=1

n

hipip−1
¯ hi2i1

hi1ip
��i1

,�i2
, . . . ,�ip

,�ip
�exp,

here ��i1
,�i2

, . . . ,�ip
,�ip

�exp are divided differences of order p+1 of the exponential function.
Proof: We first prove the formulas

Ik�s0� = �
0

s0 �
0

s1

¯ �
0

sk−1

A�sk�A�sk−1� ¯ A�s1�dsk dsk−1 ¯ ds1

= s0
k�

j=1

n

�
i1=1

n

¯ �
ik=1

n

hikik−1
hik−1ik−2

¯ hi2i1
hi1j e−s0�j�s0�i1

, . . . ,s0�ik
,s0� j�exp eikj �1�
or natural numbers k=1, . . . , p and real numbers s0�0. For k=1 we calculate the integral
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I1�s0� = �
0

s0

A�s1�ds1

=�
0

s0

exp�s1x�h exp�− s1x�ds1

= �
i1=1

n

�
j=1

n

hi1j�
0

s0

exp�s1x�ei1j exp�− s1x�ds1

= �
i1=1

n

�
j=1

n

hi1j�
0

s0

exp�s1��i1
− � j��ei1j ds1

=s0�
j=1

n

�
i1=1

n

hi1je
−s0�j�s0�i1

,s0� j�exp ei1j

n accordance with �1�. For k�2 and assuming the formulas �1� valid for k−1 we obtain the
xpression

Ik�s0� = �
0

s0 �
0

s1

¯ �
0

sk−1

A�sk�A�sk−1� ¯ A�s1�dsk ¯ ds2 ds1

=�
0

s0

Ik−1�s1�A�s1�ds1

=�
0

s0

s1
k−1 �

m,i2,¯,ik=1

n

hikik−1
¯ hi3i2

hi2m e−s1�m�s1�i2
, . . . ,s1�ik

,s1�m�exp eikm A�s1�ds1.

e then insert

A�s1� = �
i1=1

n

�
j=1

n

hi1j exp�s1��i1
− � j��ei1j

nd using eikmei1j =
�m , i1�eikj and the symmetry of the divided difference we obtain the expression

�
j,i1,i2,. . .,ik=1

n

hikik−1
¯ hi2i1

hi1j�
0

s0

e−s1�j�s1�i1
,s1�i2

, . . . ,s1�ik
�exp s1

k−1 ds1 eikj

or Ik�s0�. Finally, using Lemma 3.3 we calculate

Ik�s0� = s0
k �

j,i1,i2,. . .,ik=1

n

hikik−1
¯ hi2i1

hi1je
−s0�j �s0�i1

, . . . ,s0�ik
,s0� j�exp eikj

hich proves �1� by induction. We next observe that

dp exp�x�hp = p! Ip�1�exp�x� ,

here differentiation is with respect to x when nothing else is indicated. Finally, since

dp

dtp exp�x + th� = dx+th
p exp�x + th�hp
e obtain
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	 dp

dtpTr exp�x + th�	
t=0

= Tr�dp exp�x�hp� = p! Tr�Ip�1�exp�x��

=p! Tr
 �
j,i1,i2,. . .,ip=1

n

hipip−1
¯ hi2i1

hi1je
−�j��i1

, . . . ,�ip
,� j�exp eipj exp �x��

=p! �
i1,i2,. . .,ip=1

n

hipip−1
¯ hi2i1

hi1ip
��i1

, . . . ,�ip
,�ip

�exp

hich is the statement of the theorem. Q.E.D.
Lemma 3.5: Let f �C��R�, and let x and h be self-adjoint operators on a �possibly infinite

imensional� Hilbert space H. Then the operator function x→ f�x� is infinitely Fréchet differen-
iable and the pth Fréchet differential is for p�1 given by

dpf�x�hp = �
−�

�

dx
p exp�− isx�hpf̃�s�ds ,

here dx indicates differentiation with respect to x and

f̃�s� =
1

2�
�

−�

�

exp�its�f�t�dt

s the Fourier transform of f .
Proof: We note that the statement is true for p=1 by Ref. 12, Theorem 1.5 and assume the

tatement of the lemma to be valid for p. It follows from the definition of the Fréchet differential
hat the expression

dx+h
p exp�− is�x + h��hp − dx

p exp�− isx�hp − dx�dx
p exp�− isx�hp�h

ven after division by �h� tend to zero as h→0. We then multiply the above expression by the

ourier transform f̃ and integrate. By Lebesgues’s theorem of dominated convergence we there-
ore obtain that also the expression

dx+h
p f�x + h�hp − dx

p f�x�hp − �
−�

�

dx�dx
p exp�− isx�hp�hf̃�s�ds ,

ven after division by �h�, tend to zero as h→0. Hence

dx
p+1f�x�hp+1 = �

−�

�

dx
p+1 exp�− isx�hp+1 f̃�s�ds

nd the lemma is proved by induction. Q.E.D.
In the next corollary we need the identity,

tp−1�t�1, . . . ,t�p� f = ��1, . . . ,�p� f t
, where f t�s� = f�ts� , �2�

alid for p times continuously differentiable functions f . The statement is easily proved by induc-
ion after p.

Corollary 3.6: Let f : I→R be a C�-function defined on an open and bounded interval I, and
et x and h be self-adjoint operators on a Hilbert space of finite dimension n written in the forms

x = �
i=1

n

�ieii and h = �
i,j=1

n

hijeij ,

n
here �eij�i,j=1 is a system of matrix units, and �1 , . . . ,�n are the eigenvalues of x counted with
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ultiplicity. If the spectrum of x is in I, then the trace function t→Tr f�x+ th� is infinitely differ-
ntiable in a neighborhood of zero and the pth derivative

	 dp

dtpTr f�x + th�	
t=0

=p! �
i1=1

n

¯ �
ip=1

n

hi1i2
hi2i3

¯ hip−1ip
hipi1

��i1
,�i2

, ¯ ,�ip
,�i1

� f ,

here ��i1
,�i2

, . . . ,�ip
,�i1

� f are divided differences of order p+1 of the function f .
Proof: Since the spectrum Sp�x� is compact, there is an open and bounded interval J such that

Sp�x� � J � J̄ � I

nd we may extend the restriction f J to a function g�C��R�. Since the spectrum Sp�x+ th� is
ontained in J for small t we obtain

	 dp

dtpTr f�x + th�	
t=0

= 	 dp

dtpTr g�x + th�	
t=0

=	�
−�

� dp

dtpTr exp�− isx − isth�	
t=0

g̃�s�ds

=�
−�

�

p! �
i1=1

n

¯ �
ip=1

n

�− is�phipip−1
¯ hi2i1

hi1ip

��− is�i1
, . . . ,− is�ip

,− is�ip
�exp g̃�s�ds

=p! �
i1=1

n

¯ �
ip=1

n

hipip−1
¯ hi2i1

hi1ip�
−�

�

��i1
, . . . ,�ip

,�ip
�exp�−is·�g̃�s�ds

=p! �
i1=1

n

¯ �
ip=1

n

hipip−1
¯ hi2i1

hi1ip
��i1

, . . . ,�ip
,�ip

�g ds ,

here g̃ is the Fourier transform of g, and we used �2� and the linearity in g of arbitrary divided
ifferences ��1 , . . . ,�p�g. The statement now follows by noting that f =g in a neighborhood of the
pectrum of x. Q.E.D.

V. PROOF OF THE MAIN THEOREM

Proposition 4.1: Consider for a constant c�0 the function

g�t� =
1

c + t
, t � 0.

or arbitrary n�n matrices x and h such that x is positive definite and h is positive semidefinite
e have

	�− 1�p dp

dtpTr g�x + th�	
t=0

� 0

or p=1,2 , . . . .

Proof: We first note that the divided differences of g are of the form
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��1,�2, . . . ,�p�g = �− 1�p−1g��1�g��2� ¯ g��p�, p = 1,2, . . . �3�

or arbitrary positive numbers �1 ,�2 , . . . ,�p. There is nothing to prove for p=1. Assume the
tatement true for p�2 and notice that

g��� − g���
� − �

=
�c + ��−1 − �c + ��−1

� − �
= − g���g���

or ���. Therefore

��1, . . . ,�p,�p+1�g =
��1, . . . ,�p�g − ��2, . . . ,�p+1�g

�1 − �p+1

=�− 1�p−1g��2� ¯ g��p�
g��1� − g��p+1�

�1 − �p+1

=�− 1�pg��1� ¯ g��p�g��p+1�

or �1��p+1 and the general case follows by approximation. Next, applying Corollary 3.6 we
btain

	 dp

dtpTr g�x + th�	
t=0

=p! �
i1=1

n

¯ �
ip=1

n

hi1i2
hi2i3

¯ hip−1ip
hipi1

��i1
,�i2

, . . . ,�ip
,�i1

�g

=�− 1�pp! �
i1=1

n

¯ �
ip=1

n

hi1i2
hi2i3

¯ hip−1ip
hipi1

g��i1
�g��i2

� ¯ g��ip
�g��i1

� .

ince h is positive semidefinite, it is of the form h=aa* for some matrix a and therefore

hij = �
m=1

n

aimamj
* = �

m=1

n

aimājm = �aiaj�, i, j = 1, . . . ,n ,

here

ai = �ai1 ¯ ain� � Cn

s the ith row in the matrix a. We then set �i=g��i�ai and bi=g��i�1/2ai for i=1, . . . ,n and calculate

	 �− 1�p

p!

dp

dtpTr g�x + th�	
t=0

= �
i1=1

n

¯ �
ip=1

n

hi1i2
hi2i3

¯ hip−1ip
hipi1

g��i1
�g��i2

� ¯ g��ip
�g��i1

�

= �
i1=1

n

¯ �
ip=1

n

��i1
bi2

��bi2
bi3

� ¯ �bip−1
bip

��bip
�i1

� .

ut any sum of the form

S = �
i2=1

n

¯ �
ip=1

n

��bi2
��bi2

bi3
� ¯ �bip−1

bip
��bip

��
s non-negative. It is obvious for p=2 since then
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S = �
i2=1

n

��bi2
��bi2

�� ,

nd for p=3 since then

�
i2=1

n

�
i3=1

n

��bi2
��bi2

bi3
��bi3

�� = ��
i2=1

n

��bi2
�bi2

�
i3=1

n

��bi3
�bi3� .

or p�4 we may therefore use induction over either the even or the odd natural numbers by
oting that

S = �
i2=1

n

¯ �
ip=1

n

��bi2
��bi2

bi3
� ¯ �bip−1

bip
��bip

��

= �
i3=1

n

¯ �
ip−1=1

n

�bi3
��bi3

bi4
� ¯ �bip−2

bip−1
��bip−1

� ,

here the vector

 = �
i=1

n

��bi�bi.

his concludes the proof of the statement. Q.E.D.
Proof of the main theorem: Consider again the function

g�t� =
1

c + t
, t � 0

or c�0 and arbitrary n�n matrices x and h such that x is positive definite and h is positive
emidefinite. We first note that

	 dp

dtpTr g�x + th�	
t=t0

= 	 dp

d�pTr g�x + t0h + �h�	
�=0

or p=1,2 , . . . and t0�0. The function t→Tr g�x+ th� is therefore completely monotone. Let now
f :R+→R be a non-negative operator monotone decreasing function. Any operator monotone
ecreasing function defined on the open positive half-line, thus in particular the function f , is
ecessarily of the form

f�t� = 	t + � + �
0

� � 1

c + t
−

c

c2 + 1
�d��c� , �4�

here 	�0 and � is some positive Borel measure with support in �0, � � such that the integral
�c2+1�−1 d��c� is finite, cf. Ref. 4 Chap. II, Theorem 1 and Lemma 2. Note that we may write

�
0

� � 1

c + t
−

c

c2 + 1
�d��c� = �

0

� 1 − ct

c + t
· �c2 + 1�−1 d��c� ,

here for each t�0 the function c→ �1−ct��c+ t�−1 is decreasing and bounded between −t and t−1.
ince f has a finite limit for t→� one may derive that 	=0, and by appealing to Lebesgues’s

heorem of monotone convergence we also obtain �c�c2+1�−1 d��c���, hence f allows the rep-

esentation
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f�t� = � + �
0

� 1

c + t
d��c� ,

here we have incorporated the constant contribution from the integral in �4� into � such that

� = lim
t→�

f�t� � 0.

e conclude that the function t→Tr f�x+ th� is completely monotone and thus by Bernstein’s
heorem is the Laplace transform of a positive measure with support in �0, � �. Q.E.D.

Further analysis: One may try to use the Hermite expression in Proposition 3.2 to obtain a
roof of the BMV conjecture. Applying Theorem 3.4 and calculating the third derivative of the
race function we obtain

	− 1

3!

d3

dt3Tr exp�x − th�	
t=0

= �
p,i,j=1

n

�apai��aiaj��ajap���p�i� j�p�exp

=�
0

1 �
0

t1 �
0

t2

�
p,i,j=1

n

�apai��aiaj��ajap�exp��1 − �t1 − t3���p

+ �t1 − t2��i + �t2 − t3�� j�dt3 dt2 dt1,

here h=aa* and ai is the ith row in a. Assuming the BMV conjecture this integral should be
on-negative, and this would obviously be the case if the integrand is a non-negative function.

Example 4.2: If we evaluate the above integrand in t1= t2=1 and t3=1/3 we obtain

S = �
p,i,j=1

n

�apai��aiaj��ajap�exp��p + 2� j

3
�dt3 dt2 dt1.

f we in addition set

a1 = �1000,− 10,1� ,

a2 = �− 10,10 000,1000� ,

a3 = �1,1000,202 139�

nd ��1 ,�2 ,�3�=3 log 2· �23,11,0�, then the sum is an integer with value

S = − 487 062 506 352 658 941 731 358 505 750.

he values of S are extremely sensitive to the chosen figures, and they tend to be overwhelmingly
ositive. If for example, the third entry in a3 is changed from 202 139 to 202 138, then

S = 376 189 230 591 238 013 538 921 396 773.

he result is equally sensitive to changes in the values of ��1 ,�2 ,�3�.
The above example has not been found by simulation. In fact, millions of simulations with

andomly chosen entries have been carried out, without ever hitting a negative value of S. Instead,
he example has been obtained by the study and proper modification of an example in Ref. 14 of
wo positive definite 3�3 matrices A and B such that Tr�BABAAB�=−3164.

Another way forward would be to examine the value of loops of the form

�a1a2��a2a3� ¯ �ap−1ap��apa1�

ince they, apart from an alternating sign, are the only possible negative factors in the expression

f the derivatives of the trace functions. The value of a loop is a homogeneous function of degree
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wo in the norm of the vectors, so we only need to consider unit vectors. The value of such a loop
s furthermore invariant under unitary transformations and thus takes the minimal value in any
ubspace of dimension p. By applying a variational principle the lower bound

− cosp��

p
� � �a1a2��a2a3� ¯ �ap−1ap��apa1�

as established in Ref. 11. The lower bound converges very slowly to −1 as p tends to infinity,
nd it is attained essentially only when all the vectors form a “fan” in a two-dimensional subspace.

Remark 4.3: If we only consider one-dimensional perturbations, that is if h=cP for a constant

�0 and a one-dimensional projection P, then h is of the form h= ��i�̄ j�i,j=1,. . .,n for some vector
= ��1 , . . . ,�n� and each loop

hi1i2
hi2i3

¯ hip−1ip
hipi1

= ��i1
�2
¯ ��ip

�2

s manifestly real and non-negative. This implies that the trace function

t → Tr exp�− �x + th�� ,

or any self-adjoint n�n matrix x, is the Laplace transform of a positive measure with support in
0, � �. The same statement holds, with x positive definite, for the trace function t→Tr f�x+ th�
ssociated with an arbitrary completely monotone function f .
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A method to construct tri-Hamiltonian extensions of a separable system is pre-
sented. The procedure is tested for systems, with a Hamiltonian quadratic in the
momenta, separable in classical sense in any of the four sets of orthogonal sepa-
rable coordinates on the Euclidean plane. Some explicit examples are constructed.
Finally a conjecture on possible generalizations to other classes of systems is dis-
cussed: in particular, the method can be adapted to the 11 orthogonal separable
coordinate sets of the Euclidean three-space. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2188227�

. INTRODUCTION

Separation of variables for Hamilton-Jacobi equation is a very effective method to solve
amiltonian systems. In recent years an increasing interest rose towards this classical topic in

nalytical mechanics, dated back to the pioneering works of Stäckel, Levi-Civita, and Eisenhart.12

tarting from these foundations, a number of applications and new results, together with reinter-
retations of old ones, have been constructed. A rich and coordinates-independent characterization
f separation in the classical framework of cotangent bundles of a Riemannian manifold was
eveloped �see Refs. 2, 9, and 8 and references therein�, and some generalizations were proposed.
n Ref. 11, Sklyanin presented a recipe to find a separable set of coordinates for systems admitting
Lax matrix with parameter and a corresponding spectral curve. Besides, in Ref. 6 the conditions
nder which a bi-Hamiltonian system is separable, in the so-called Darboux-Nijenhuis coordi-
ates, are stated. In both these approaches the separation coordinates are general canonical coor-
inates �qi , pi� on a 2n-dimensional symplectic manifold, instead of the coordinates on a Riemann-
an manifold and their conjugate momenta, as in the classical approach. Moreover, the separability
f a family of n Hamiltonians �hk� is characterized through the existence of n function Wi such that

W1�q1,p1;�hk�� = 0,

¯ ,

Wn�qn,pn;�hk�� = 0. �1�

The bi-Hamiltonian point of view inspires the results presented in Ref. 5. In this paper it is
hown that, given three mutually compatible Poisson tensors P, Q, and R �a tri-Hamiltonian
tructure� with rank 2n, such that the two Poisson pencils Q−�P and R−�P admit a unique
olynomial Casimir function f�� ,�� common to both the pencils, it is possible to find a set of
anonical coordinates ��i ,�i� that satisfies the relationship

�
Electronic mail: degio@dm.unito.it
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f��i,�i;�hk�� = ri��i,�i� " i = 1, . . . n , �2�

here Hk are the coefficients of f�� ,�� �restricted to a given symplectic leaf of P�, and ri�� ,�� are
onstant functions. This implies that ��i ,�i� are separation coordinates �in the generalized sense�
or the Hamiltonians hk, the functions Wi being strictly related to the common Casimir function

f�� ,��. In the same article5 a class of systems is presented, admitting a Lax matrix with spectral
arameter and such that the Casimir function f�� ,�� is the polynomial defining the spectral curve
f the system. This result links the multi-Hamiltonian approach to the Sklyanin one.

Another theory inspired by the bi-Hamiltonian point of view is reviewed in Ref. 3. In that
aper the attention is drawn to separable systems in which any conjugate pair of separation
oordinates consists of roots of a polynomial. The curve defined by this polynomial is called
eparation curve. A standard form �in separation coordinates� is found for this kind of system, and
pair of compatible Poisson tensors P and Q setting the coefficients of the polynomial in a Lenard

ecurrence relation are constructed. The standard form and the Poisson structures depend on the
umber and the position of the Casimir functions for P inside the recurrence relation between the
oefficients: in split type systems the recurrence relation can be divided in different Lenard chains,
therwise one has unsplit type systems.

The aim of the present work is to introduce, in the simple case of the Euclidean plane, a recipe
or constructing tri-Hamiltonian �and consequently bi-Hamiltonian� extensions of an orthogonally
eparable natural Hamiltonian. Although referred to a particular case, the results of the present
aper give hints on more general issues.

First, the similarities between the two approaches presented in Refs. 3 and 5 raise a natural
uestion about the relation between the separation curve and the common Casimir function of a
ri-Hamiltonian structure. The present work shows a link between the two approaches: at least in
he Euclidean plane, the separation curve can be obtained through a reduction procedure from the
ommon Casimir function associated to a tri-Hamiltonian structure.

Second, starting from a tri-Hamiltonian extension of a separable system in the plane, it is
ossible to construct two different bi-Hamiltonian extensions, whose recursion relations are in a
ase of unsplit type, while in the other case of split type. This suggests the possibility to deal with
oth cases in a unified way.

Third, until now very few examples of tri-Hamiltonian systems are known: the recipe pro-
osed in this paper can, in principle, produce a whole class of them, starting from any separable
ystem. Moreover, if one of the questions answered in Ref. 5 was “how to construct separable
oordinates for a tri-Hamiltonian system?,” this paper gives a partial answer to the opposite
uestion: “does any separable system admit a tri-Hamiltonian interpretation?”

Eventually, the properties of the tri-Hamiltonian systems obtained in this paper cast light on
he general theory of tri-Hamiltonian separability: in fact only the Hamiltonians separable in
symmetric coordinate systems �parabolic and elliptic-hyperbolic� produce a tri-Hamiltonian
tructure admitting a unique common Casimir function such that �2� holds; but the explained
rocedure can be applied even to systems separable in symmetric coordinate systems �Cartesian
nd polar�, and the tri-Hamiltonian structures obtained in these cases admit more Casimir func-
ions. This indicates a possible generalization of the method to find separation coordinates for a
ri-Hamiltonian system.

The main open question is the possibility of extending the partial results presented in the
aper: although the method looks promising also for the separable coordinate systems of the
uclidean three-space, the extension of the procedure to any orthogonally separable system has
till to be performed.

The paper is organized in the following way: in the second section the general separation
heory in the classical framework is briefly reviewed. The four separable sets of coordinates on the
uclidean plane are presented together with the associated pairs of quadratic Hamiltonians. These
ystems are, in different coordinates, the four types of integrable systems in the plane with two
uadratic first integrals listed in Ref. 10. In Sec. III the basic concepts of the bi-Hamiltonian and

ri-Hamiltonian framework are summarized. The procedure for constructing a tri-Hamiltonian
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xtension is presented first for the two asymmetric coordinate systems, and then for the two
ymmetric ones. Finally, in Sec. IV some explicit examples are shown. In particular the one-
asimir extensions of Hénon-Heiles and Kepler systems presented in Ref. 3 is recovered from a

ri-Hamiltonian point of view and it is shown, in the Kepler case, how multiple sets of separation
oordinates lead to different tri-Hamiltonian extensions of the same Hamiltonian. The paper ends
ith an appendix that shows how to adapt to the extension method the Stäckel matrices for the sets
f orthogonally separable coordinates in the Euclidean space.

I. ORTHOGONAL SEPARATION OF VARIABLES

. General theory

Let �Q ,g� be a n-dimensional Riemannian manifold with coordinates q= �q1 , . . .qn�, T*Q is its
otangent bundle, with canonical coordinates given by �qi� and by the momenta p= �p1 , . . . , pn�. In
his paper only Hamiltonian functions depending quadratically on the momenta are considered.
he Hamiltonian functions constructed with the metric tensor

H�q,p� = 1
2gijpipj + V�q� = G�q,p� + V�q� , �3�

re particularly important and are called natural. The function G is called the geodesic part of the
amiltonian. One should observe that a point transformation of coordinates,

Qi = Qi�q�, Pi =
�qj

�Qi pj

ends any natural Hamiltonian in a natural one. In this paper only this kind of transformation is
onsidered.

In the following the basic facts about the classical theory of separation of variables are
ecalled. Proofs and a more systematic review can be found in Refs. 2 and 4.

A complete solution W�q ; �ai�� of the �time-independent� Hamilton-Jacobi equation

H�q,
�W

�q
� = E

ssociated to a natural Hamiltonian is called separated in the coordinates �qi� if W=	iWi�qi�
here any function Wi depends only on the coordinate qi. A separated change of coordinates �i.e.,
transformation such that any new coordinate Qi depends only on the old coordinate qi� sends a

eparated solution of the Hamilton-Jacobi equation in another separated solution. Thus, instead of
coordinate system, it is more appropriate to consider the associated web, i.e., the n families of

ypersurfaces given by the level set of the coordinates: webs, indeed, are invariant under separated
hange of variables.

The natural Hamiltonian �3� is separable in a given set of coordinates only if its geodesic part
is separable. Therefore it is possible to determine the sets of coordinates in which a certain

amiltonian may be separated through the study of all separable coordinate systems associated to
he metric g. If the separation is performed in an orthogonal set of coordinates, then it is called
rthogonal separation, otherwise it is called general separation. Orthogonal separation is quite
mportant not only because it is simpler, but even because general separation is always equivalent
o orthogonal separation in a Riemannian manifold of constant curvature.

The keystone of the separability theory of Stäckel and Eisenhart12 is the concept of Stäckel
atrix: Stäckel proved that a geodetic Hamiltonian is separable in a set of orthogonal coordinates

f and only if an invertible n�n matrix S exists, such that each element Si
j belonging to the ith row

f the matrix depends only on the coordinate qi, and the diagonal controvariant components gii of

he metric tensor form a row of the inverse of S,
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gii = �S−1� j
i for a fixed j .

he existence of a Stäckel matrix is equivalent to the existence of a family of n−1 Killing tensors

�l� that together with the metric g have n common normal eigenvectors. The vector space spanned
y g and this family is the Killing-Stäckel algebra associated to the orthogonal coordinate systems.
onversely, from a Killing-Stäckel algebra it is possible to reconstruct the Stäckel matrix of the
oordinate system. Finally, also the separability of a natural Hamiltonian with potential, H=G
V, can be related to the Stäckel matrix: the Killing-Stäckel algebra allows to construct a family
f n−1 potentials V�l� such that the Hamiltonians

H�l� = K�l�
ij pipj + V�l�

re in involution both mutually and with H. An alternative way to restate these results is the
ollowing: a family of n Hamiltonians Hi is orthogonally separable if and only if there exists a
täckel matrix S and a set of n functions �i, each depending only on the ith coordinate and its
omentum and forming the so-called Stäckel vector, such that

S
H1

]

Hn
� = 
�1�q1,p1�

]

�n�qn,pn�
� . �4�

t is important to remark that, if a family of Hamiltonians is separable in a set of coordinates, then
ny their linear combination is separable in the same coordinates. Therefore the separability is a
roperty related not just to a given metric tensor g, and to the associated natural Hamiltonian, but
o the whole Killing-Stäckel algebra.

These classical results have been set in a more handy form in Ref. 1, where it has been proved
hat a natural Hamiltonian is orthogonally separable if and only if a Killing tensor K with n normal
nd simple eigenvalues exists such that d�K dV�=0. A stronger result can be proved if Q is also
quipped with a conformal Killing tensor with vanishing Nijenhuis torsion, i.e., a tensor L of type
1,1� satisfying

�LX,LY� − L�LX,Y� − L�X,LY� + L2�X,Y� = 0

or all vector fields X and Y on Q, and

�Lijpipj,g
ijpipj� = cgijpipj .

n this case, indeed, the whole Killing-Stäckel algebra can be generated by a recursion formula.
his kind of systems are called Benenti systems or L-systems.

. Orthogonal separable systems in the plane

It is well known that in the Euclidean plane only four systems of orthogonal coordinates exist,
hat allow the separation of the Hamilton-Jacobi equation associated to a natural Hamiltonian �see,
or example, Ref. 4�. If x and y denote the Cartesian coordinates then the other three coordinate
ystems are

i� parabolic coordinates,

x =
u + v

2
, u = x + �x2 + y2,

y = �− uv, v = x − �x2 + y2

with a web made up of two families of confocal parabolae with focus in the origin and

symmetric with respect to the x axis;
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ii� elliptic-hyperbolic coordinates,

x =
ds

2k
, s = ��x + k/2�2 + y2 + ��x − k/2�2 + y2,

y =
�− �d2 − k2��s2 − k2�

2k
, d = ��x + k/2�2 + y2 − ��x − k/2�2 + y2

with a web made up of a family of confocal hyperbolas and a family of confocal ellipses.
The common foci of these conic sections lie on the x axis with coordinate ±k /2;

iii� polar coordinates,

x = r cos �, r = �x2 + y2,

y = r sin �, � = arctan�y/x� ,

centered at the origin.

A pair of Hamiltonian functions, H and K, can be constructed for each separable coordinate
ystem �more precisely for each web underlying the coordinate system�, through the associated
illing tensors.4 These functions are in involution with respect to the canonical Poisson bracket on

he contangent bundle of R2: hence they define four canonical types of completely integrable
ystem. Both H and K are separable in the given coordinates, as it is ensured by the Stäckel
elation.

. Cartesian coordinates

Hamiltonian functions,

H = 1
2 px

2 + �1�x� ,

K = 1
2 py

2 + �2�y� .

Stäckel relation,

�1 0

0 1
��H

K
� = � 1

2 px
2 + �1�x�

1
2 py

2 + �2�y�
� . �5�

. Parabolic coordinates

Hamiltonian functions,

H =
� 1

2 pu
2 + �1�u��u − � 1

2 pv
2 + �2�v��v

u − v
,

K =
� 1

2 pv
2 − 1

2 pu
2 + �2�v� − �1�u��uv

u − v
.

Stäckel relation,


1
1

u

1
1 ��H

K
� = � 1

2 pu
2 + �1�u�

1
2 pv

2 + �2�v�
� . �6�
v
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. Elliptic-hyperbolic coordinates

Hamiltonian functions,

H =
� 1

2 ps
2 + �1�s���s2 − k2� − � 1

2 pd
2 + �2�d���d2 − k2�

s2 − d2 ,

K =
� 1

2 pd
2 − 1

2 ps
2 + �2�d� − �1�s���s2 − k2��d2 − k2�

s2 − d2 .

Stäckel relation,


1
1

s2 − k2

1
1

d2 − k2
��H

K
� = � 1

2 ps
2 + �1�s�

1
2 pd

2 + �2�d�
� . �7�

. Polar coordinates

Hamiltonian functions,

H =
1

2
pr

2 + �1�r� +
1

r2�1

2
p�

2 + �2���� ,

K = − 1
2 p�

2 − �2��� .

Stäckel relation,


1
1

r2

0 1
��H

K
� = � 1

2 pr
2 + �1�r�

− 1
2 p�

2 − �2���
� . �8�

n Cartesian coordinates, the two alternative Hamiltonian functions,

Ĥ = 1
2 �px

2 + py
2� + �1�x� + �2�y� ,

K̂ = 1
2 py

2 + �2�y� ,

ith Stäckel matrix

S = �1 − 1

0 1
�

re sometimes preferred. Indeed Ĥ is a natural Hamiltonian associated to the Euclidean metric,
hile H is not natural. The Hamiltonians H and K used in the present work are trivial recombi-

ations of the Hamiltonians Ĥ and K̂, hence they are still separable in Cartesian coordinates. The

eason for choosing the two Hamiltonians H and K, instead of Ĥ and K̂, is to put the Stäckel
atrix in a form such that in the ith row only different powers of a suitable function of the

oordinate qi appear. In order to extend the procedure presented in this paper to more general
ases, one of the key points is to characterize the class of Stäckel matrix that can be put in this
orm.

The method to construct a tri-Hamiltonian extension of the previous systems is slightly dif-

erent for the asymmetric coordinate systems �parabolic and elliptic-hyperbolic� and for the sym-

                                                                                                            



m
c
t
d
a

I

A

o
t
R
2
R
p
a
h
i

�
�

�

I
a

f
c

F
s

B

v

f

f

043505-7 Tri-Hamiltonian extensions J. Math. Phys. 47, 043505 �2006�

                        
etric ones �polar and Cartesian�. This is due to the different form of the Stäckel matrix in the two
ases, as it can be seen in the formulas from �5�–�8�. In fact, for asymmetric coordinate systems all
he rows of the Stäckel matrix have the same form, whereas for symmetric coordinate systems
ifferent rows of the Stäckel matrix have different forms. Therefore, the algorithm used in the
symmetric case needs to be adapted to each symmetric coordinate system in a specific way.

II. TRI-HAMILTONIAN EXTENSION

. Separation of tri-Hamiltonian systems

The idea of a tri-Hamiltonian extension of separable systems is suggested by the construction
f bi-Hamiltonian extension of Benenti systems presented in Ref. 7, and by some results about
ri-Hamiltonian systems, briefly summarized in this section �see Ref. 5 for proofs�. Let P, Q, and

be three Poisson structures mutually compatible, with rank 2n, on a manifold of dimension
n+k. Let, moreover, f be a simultaneous Casimir function for the two Poisson pencils Q−�P and
−�P, and a polynomial in � and �. Then, it can be proved that all the coefficients hk of this
olynomial are functions mutually in involution with respect to all the three Poisson structures,
nd satisfy a recurrence scheme determined by the form of the polynomial f . Under some further
ypotheses, it is possible to find out a set of coordinates ��i ,�i ,c�� with the following character-
stics:

1� c� are k Casimir functions for P;
2� �i, �i are 2n Darboux-Nijenhuis coordinates for both the Nijenhuis tensors obtained, through

a deformation procedure, from the two Poisson pencils Q−�P and R−�P;
3� �i , �i satisfy the n relations,

f��i,�i;�hk�,c�� = ri��i,�i� �9�

in which the functions ri�� ,�� are constant functions on the manifold.

The relations �9� imply the separability, in the sense �1� of Sklyanin, of the Hamiltonians hk.
t is then natural to ask if it is possible, starting from a classical separable system, to obtain an
dapted tri-Hamiltonian structure.

A special case is important for the next sections: set n=2 and consider the common Casimir

unction f =h1+�h2+ f̂�� ,� ; �c���, where f̂ is a polynomial in �, � and in the Casimir functions

�, then the relations �9� become

h1 + �1h2 + f̂��1,�1;�c��� = r1��1,�1� ,

�10�
h1 + �2h2 + f̂��2,�2;�c��� = r2��2,�2� .

or any fixed value of the Casimir functions c� the formula �10� gives a separation relation in the
ense of �1�.

. Asymmetric coordinate systems

The separation relations encoded by the Stäckel matrix in asymmetric coordinate systems are
ery similar to relations �10�. Indeed with the symplectic �and separated� transformations:

�1 = u, �2 = v, �1 = pu, �2 = pv

or parabolic coordinates and

�1 = s2 − k2, �2 = d2 − k2, �1 =
ps

2s
, �2 =

pd

2d
or elliptic-hyperbolic coordinates, the relations extracted from Stäckel matrix become
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��1 1

�2 1
��H

K
� = �r1��1,�1�

r2��1,�1�
� ,

hat is

K + �iH = ri��i,�i� , �11�

here the functions ri�� ,�� are, respectively, in the two coordinate systems,

ri��,�� = 1
2��2 + ��i��� , �12�

ri��,�� = 2�2��2 + �k2� + ��i��� + k2� . �13�

Relations �10� and �11� differ only in the lack of the Casimir function c� in �11�. A set of
asimir functions are also necessary to construct a recurrence relation with a finite number of
lements. In order to add Casimir functions and to obtain a set of relations analogous to �10�, it is
ecessary to extend the phase space of the system R4=T*R2 to R4+k, with k extra coordinates c�.
bviously the phase space R4 can be identified with the level surface S= �c�=0� of the extended

pace. On R4+k, a Poisson structure P should be defined such that the new coordinates c� are its
asimir functions, and the reduction of P on the symplectic leaf S gives the canonical Poisson
racket of R4. An extension of a given function g on R2 is any function g̃ on R4+k such that g̃S=g.
n this framework the relations �11� can be thought of as a restriction of relations �10� on the
ymplectic leaf S.

The simplest tri-Hamiltonian recursion relation involving two vector fields and compatible
ith the relations �11� is

�14�
here H̃ and K̃ are extensions of the Hamiltonians H and K and three extra coordinates are

ntroduced. The recurrence scheme �14� corresponds to the common Casimir function.

f = K̃ + �H̃ + c1�2 + �c2 + ��c3. �15�

P =

0 0 1 0 0 0 0

0 0 0 1 0 0 0

− 1 0 0 0 0 0 0

0 − 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

� . �16�

The next step of the procedure is to require that �i ,�i satisfy the two relations �10�. This
˜ ˜
mplies that H and K must solve the linear system
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f��i,�i;K̃,H̃,c�� = ri��i,�i� .

herefore the solution, using the function �15�, is

H̃ =
r2��2,�2� − r1��1,�1�

�2 − �1
− ��1 + �2�c1 +

��2 − �1�
�1 − �2

c2 +
��2�2 − �1�1�

�1 − �2
c3, �17�

K̃ =
�2r1��1,�1� − �1r2��2,�2�

�2 − �1
+ �2�1c1 +

��2�1 − �2�1�
�1 − �2

c2 +
�2�1��2 − �1�

�2 − �1
c3, �18�

here the two functions ri are related to the two arbitrary functions �i by the expression �12� in
he case of parabolic coordinates, and by the expression �13� in the case of elliptic-hyperbolic
oordinates.

It is important to point out some aspects of the construction just presented. First, it is possible
o reduce the number of new coordinates needed, by omitting the “vertical” part of the recurrence
cheme and looking for a function in the form

f = K̃ + �H̃ + �2c1.

his approach is followed in Refs. 7 and 3, but it allows to obtain only a bi-Hamiltonian recursion.
his bi-Hamiltonian extension can be recovered in the tri-Hamiltonian approach through a reduc-

ion process.
Second, it is possible, both in the bi-Hamiltonian �as in Ref. 3� and in the tri-Hamiltonian

ase, to add to the function �15� a “redundant” Casimir function common to all the Poisson
tructures, by setting

f̄ = f + �nc4 with n � 2.

n this way another pair of extended Hamiltonians H̃ and K̃ and a new tri-Hamiltonian structure
re constructed. The new Hamiltonians and Poisson structures can be related to the old ones,
hrough the reduction on the level set c4=0.

Besides these digressions, the last step, in order to obtain the desired recursion scheme, is to
onstruct two further Poisson structures. For this purpose a method similar to Ref. 5 is imple-
ented. One starts by defining the two Poisson tensors represented by the 7�7 matrices

Qd = 
 0 	 0

− 	 0 0

0 0 0
�, Rd = 
 0 M 0

− M 0 0

0 0 0
� ,

here the null matrices have the appropriate dimensions and

	 = ��1 0

0 �2
�, M = ��1 0

0 �2
� .

hen, one constructs the two vector fields,

XQ = 	
�

F�

�

�c�

, XR = 	
�

G�

�

�c�

, �19�

here the functions F� and G� satisfy the relations P dF�=Q dc� and P dG�=R dc� in the recur-

ence scheme �14�. Hence one has F1= H̃, F2=F3=0 and G1=0, F2= K̃, F3= H̃, and the two vector

elds become
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XQ = H̃
�

�c1
, XR = K̃

�

�c2
+ H̃

�

�c3
,

here the Hamiltonians H̃ and K̃ are already known by formulas �17� and �18�.
Eventually, the two further tensors needed to realize the recursion scheme �14� are given by

Q = Qd − LXQ
P , R = Rd − LXR

P . �20�

he surprising result of this complicated construction is the following fact, proved by direct
omputation.

Fact 1: The tensors Q and R, defined by (20), are compatible Poisson tensors independently
f the choice of the functions ri�� ,��. Moreover, the function f given by (15) is a common Casimir
unction for the two Poisson pencils Q−�P and R−�P, thus realizing the recursion scheme (14).

Since c2 and c3 are Casimir functions for both P and Q, these two Poisson structures can be
educed on the level surface �c2=c3=0�. On this surface the function �15� reduces to

K̃ + �H̃ + �2c1

nd the tri-Hamiltonian recursion scheme �14� becomes a simply bi-Hamiltonian one. Moreover,
ince the separation relations �10� for the reduced system become

K̃ + �1H̃ + �1
2c1 = r1��1,�1� ,

K̃ + �2H̃ + �2
2c1 = r2��2,�2� ,

f �1=�2 �and so r1=r2=r� then the function

K̃ + �H̃ + �2c1 − r��,��

efines an unsplitted separation curve in the sense of Ref. 3.
Conversely, a splitted bi-Hamiltonian recursion chain is obtained by reducing the function f

nd the Poisson structures P and R on the level surface �c1=0� of their common Casimir
unction c1.

. Symmetric coordinate systems

The procedure described above cannot be directly applied to Hamiltonians that are separable
n a symmetric coordinate system, i.e., in polar or Cartesian coordinates. In these cases, actually,
he rows of the Stäckel matrix are of different form, and therefore do not identify an unique
olynomial, from whom to construct a Casimir function common to the two Poisson pencils
−�P and R−�P. This difficulty can be overcome by observing that a tri-Hamiltonian structure

oes not admit necessarily only one common Casimir function for the two Poisson pencils.
herefore, it will be sufficient to build a different common Casimir function for each of the
ifferent polynomial relations generated by the Stäckel matrix.

In the case of polar coordinates, through the symplectic transformations,

�1 = r2, �2 = tan �, �1 =
pr

2r
, �2 = cos2 �p�

he Stäckel relationships can be rewritten with the two equations

K + �1H = r1��1,�1� ,

�21�
K = r2��2,�2� ,
here the functions ri�� ,�� are
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r1��,�� = 2�2�2 + ��1���� ,

r2��,�� = − 1
2 �1 + �2�2�2 − �2�arctan �� .

ence it is necessary to build two functions in the form

f1 = K̃ + �H̃ + �2c1 + �c2 + ��c3,

�22�
f2 = K̃ + �c4 + �c2

hat realize the tri-Hamiltonian recursion scheme:

�23�

he expressions for H̃ and K̃ can be obtained solving the system

K̃ + �1H̃ + �1
2c1 + �1c2 + �1�1c3 = r1��1,�1� ,

K̃ + �2c4 + �2c2 = r2��2,�2� ,

hose solution is

H̃ =
r1��1,�1� − r2��2,�2�

�1
− �1c1 +

�2 − �1

�1
c2 − �1c3 +

�2

�1
c4, �24�

K̃ = r2��2,�2� − �2c2 − �2c4. �25�

he Poisson tensor P used in this case is analogous to �16� but it has four Casimir functions. The
tructures Q and R are obtained, similarly to the asymmetric case

Q = Qd − LXQ
P , R = Rd − LXR

P , �26�

here the vector fields XQ and XR are again constructed according to the formulas �19�, but using
he four functions c1 , . . . ,c4. Hence from the recursion scheme �23� one obtains

XQ = H̃
�

�c1
+ K̃

�

�c4
, XR = K̃

�

�c2
+ H̃

�

�c3
. �27�

y direct computation the following fact can be proved:
Fact 2: The tensors Q and R, defined by (26) with vector fields (27), are compatible Poisson

ensors independently of the choice of the functions ri�� ,��. Moreover, the functions f1 and f2

iven by (22) are two common Casimir functions for the two Poisson pencils Q−�P and R−�P,
hus realizing the recursion scheme (23).

Finally, in the case of Cartesian coordinates, the starting point is the construction of two
unctions of the form

f1 = H̃ + c1� + �c2,

�28�
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f2 = K̃ + �c3 + �c4,

hat realize the tri-Hamiltonian recursion scheme,

�29�

y solving the linear system,

H̃ + c1�1 + �1c2 = r1��1,�1� ,

K̃ + �2c3 + �2c4 = r2��2,�2� ,

ne finds out the Hamiltonians

H̃ = r1��1,�1� − c1�1 − �1c2, �30�

K̃ = r2��2,�2� − �2c3 − �2c4, �31�

here the arbitrary functions r1, r2 are linked to the functions �1, �2 in �5� by

r1��1�x�,�1�px,x�� = 1
2 px

2 + �1�x� ,

r2��2�y�,�2�py,y�� = 1
2 py

2 + �2�y� .

he vector fields obtained from the recursion scheme �29� are the following:

XQ = H̃
�

�c1
+ K̃

�

�c3
, XR = H̃

�

�c2
+ K̃

�

�c4
. �32�

result analogous to Fact 1 and Fact 2 is true also in this case, and it takes the following form.
Fact 3: The tensors Q and R, defined by (26) with vector fields (32), are compatible Poisson

ensors independently of the choice of the functions ri�� ,��. Moreover, the functions f1 and f2

iven by (28) are two common Casimir functions for the two Poisson pencils Q−�P and R−�P,
hus realizing the recursion scheme (29).

V. EXAMPLES

. Tri-Hamiltonian extension of Hénon-Heiles system

An application of the recipe presented above is given by the Hénon-Heiles system, already
onsidered in Ref. 3. Its Hamiltonian expressed in natural coordinates is

H = 1 �p1
2 + p2

2� + V, V = 1 q1q2
2 + q1

3. �33�
2 2
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his system is separable in the parabolic coordinate system given by

q1 = �1 + �2, q2 = 2�− �1�2,

p1 =
�1�1 − �2�2

�1 − �2
, p2 = �− �1�2

�1 − �2

�1 − �2
.

f the Hénon-Heiles Hamiltonian �33� is compared with the general Hamiltonian �17�, with

1=c2=c3=0, one finds

V��1,�2� =
�2���2� − �1���1�

�2 − �1
.

ny choice of the two functions �1 and �2 gives a separable potential and a suitable tri-
amiltonian extension. On the contrary, a pair of functions �1, �2 is associated to any potential

eparable in the coordinates ��i ,�i�, also if the potential contains additional terms with respect to
33�. Under the assumption that both �i�z� are continuous for z=0 one has

�1�z� = V�z,0� , �2�z� = V�0,z� .

ne should observe that the choice of the arbitrary functions is not unique: in fact, the pair

i�z�+ �k /z� produce the same potential as the pair �i�z�. The potential �33� is obtained by choos-
ng

�1�z� = �2�z� = z3.

he corresponding extended Hamiltonians are found by substituting in the general formulas �17�
nd �18�:

H̃ =
1

2
�p1

2 + p2
2� +

1

2
q1q2

2 + q1
3 − q1c1 − 2

p2

q2
c2 − p1c3,

K̃ =
1

2
�q2p1p2 − q1p2

2� +
1

4
q1

2q2
2 +

1

16
q2

4 −
1

4
q2

2c1 + �2
q1p2

q2
− p1�c2 −

1

2
q2p2c3.

hey are set in the recursion scheme �14� by the three Poisson structures,

P = 
 02�2 12�2 02�3

− 12�2 02�2 02�3� ,
03�2 03�2 03�3
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Q =

0 0 q1

1

2
q2 p1 − c3 0 0

0 0
1

2
q2 0 p2 − 2

c2

q2
0 0

− q1 −
1

2
q2 0

1

2
p2 c1 − 3q1

2 −
1

2
q2

2 0 0

−
1

2
q2 0 −

1

2
p2 0 − q1q2 − 2

p2

q2
2 c2 0 0

c3 − p1 2
c2

q2
− p2 3q1

2 +
1

2
q2

2 − c1 q1q2 + 2
p2

q2
2 c2 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

� ,

R =

0 0 p1 p2 0 Y1 X1

0 0 p2 p1 − 2
p2q1

q2
0 Y2 X2

− p1 − p2 0
p2

2

q2

0 Y3 X3

− p2 2
q1p2

q2
− p1 −

p2
2

q2

0 0 Y4 X4

0 0 0 0 0 0 0

− Y1 − Y2 − Y3 − Y4 0 0 0

− X1 − X2 − X3 − X4 0 0 0

� ,

here X=XH̃= P dH̃ and Y =XK̃= P dK̃. It is worth to observe that both P and Q can be reduced by
estriction on the level surface c2=c3=0 and the reduced Hamiltonians and Poisson structures are
hose considered in Ref. 3. On the contrary the structure R is not reducible, so the reduced system
ppears to be just a one-Casimir bi-Hamiltonian extension of the Hénon-Heiles system. An ad-
antage of the knowledge of a tri-Hamiltonian extension of the system is the possibility to perform
reduction on the level set c1=0, thus producing a different, two-Casimir bi-Hamiltonian exten-

ion of the system, whose Poisson structures are the reductions of P and R.

. Tri-Hamiltonian extension of Kepler system in the plane

The Kepler system in the plane is separable in three different sets of coordinates: the para-
olic, the elliptic-hyperbolic and the polar coordinate systems. A different second constant of
otion �related to the Killing tensor of the coordinate system� and a different tri-Hamiltonian

xtension can be associated to each of these coordinate systems.
In the case of parabolic coordinates, the transformation between the natural and the ��i ,�i�

oordinates is given by

q1 = 2�− �1�2, q2 = �1 + �2,

p1 =
�− �1�2��1 − �2�

�1 − �2
, p2 =

�1�1 − �2�2

�1 − �2
.

f one sets
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�1�z� =
a

2z
, �2�z� = −

a

2z
,

he extended Hamiltonians �17� and �18� become

H̃ =
1

2
�p1

2 − p2
2� −

a

�q1
2 + q2

2
− q2c1 − 2

p1

q1
c2 − p2c3,

K̃ =
1

2
�q1p1p2 − q2p1

2� +
aq2

2�q1
2 + q2

2
−

1

4
q1

2c1 +
2q2p1 − q1p2

q1
c2 −

1

2
q1p1c3.

hey are set in the recursion scheme �14� by the three Poisson structures,

P = 
 02�2 12�2 02�3

− 12�2 02�2 02�3

03�2 03�2 03�3
� ,

Q =

0 0 0

1

2
q1 X1 0 0

0 0
1

2
q1 q2 X2 0 0

0 −
1

2
q1 0 −

1

2
p1 X3 0 0

−
1

2
q1 − q2

1

2
p1 0 X4 0 0

− X1 − X2 − X3 − X4 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

� ,

R =

0 0 p2 − 2

p1q2

q1
p1 0 Y1 X1

0 0 p1 p2 0 Y2 X2

2
p1q2

q1
− p2 − p1 0 −

p1
2

q1

0 Y3 X3

− p1 − p2
p1

2

q1

0 0 Y4 X4

0 0 0 0 0 0 0

− Y1 − Y2 − Y3 − Y4 0 0 0

− X1 − X2 − X3 − X4 0 0 0

� ,

here X=XH̃= P dH̃ and Y =XK̃= P dK̃. As it can be easily seen, the one-Casimir extension con-
idered in Ref. 3 is obtained by reducing the Poisson structures P and Q and the Hamiltonians on
he level set c2=c3=0. It is important to observe that the separation coordinates used do not seem
o originate a unique “separation curve” because the two functions �1 and �2 are different.

In the case of the elliptic-hyperbolic coordinates, the transformation from the natural coordi-

ates is

                                                                                                            



a

T

a

w

�

043505-16 Luca Degiovanni J. Math. Phys. 47, 043505 �2006�

                        
q2 =
�− �1�2

k
, q1 =

���1 + k2���2 + k2�
k

+ k ,

p1 = 2
��1�1 − �2�2����1 + k2���2 + k2�

k��1 − �2�
, p2 = 2

�1��1 + k2� − �2��2 + k2�
k��1 − �2�

�− �1�2

nd the two arbitrary functions are

�1�z� = �2�z� =
az

k2 − z2 .

he two extended Hamiltonians �17� and �18� turn out to be

H̃ =
1

2
�p1

2 + p2
2� −

a

�q1
2 + q2

2
− �q1

2 + q2
2 − 2q1k�c1 +

1

2k2� p1

�q1 − k�
−

p2

q2
�c2 −

p1

2�q1 − k�
c3,

K̃ = �q1 − k�q2p1p2 −
1

2
q1�q1 − 2k�p2

2 −
1

2
q2

2p1
2 −

akq1

�q1
2 + q2

2
− q2

2k2c1 +
1

2k2�q1
2 + q2

2 − 2q1k

q2
p2

−
�q1 − k�2 + q2

2

�q1 − k�
p1�c2 +

1

2
� q2

2p1

q1 − k
− q2p2�c3,

nd the three Poisson structures are

P = 
 02�2 12�2 02�3

− 12�2 02�2 02�3

03�2 03�2 03�3
� ,

Q =

0 0 q1�q1 − 2k� �q1 − k�q2 X1 0 0

0 0 �q1 − k�q2 q2
2 X2 0 0

q1�2k − q1� �k − q1�q2 0 �q1 − k�p2 − q2p1 X3 0 0

�k − q1�q2 − q2
2 �k − q1�p2 + q2p1 0 X4 0 0

− X1 − X2 − X3 − X4 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

� ,

R =

0 0

�q2
2 + k2�p1

2k2�q1 − k�
−

q2p2

2k2

�q1 − k�p2 − q2p1

2k2 0 Y1 X1

0 0 −
�q1 − k�p2 − q2p1

2k2

�q1 − k�p1

2k2 −
q1�q1 − 2k�p2

2q2k2 0 Y2 X2

�q2
2 + k2�p1

2k2�k − q1�
+

q2p2

2k2

�k − q1�p2 + q2p1

2k2 0
�q1 − k�2p2

2 + p1
2q2

2

2q2k2�q1 − k�
−

p2p1

k2 0 Y3 X3

�k − q1�p2 + q2p1

2k2

�k − q1�p1

2k2 +
q1�q1 − 2k�p2

2q2k2

�q1 − k�2p2
2 + p1

2q2
2

2k2q2�q1 − k�
+

p2p1

k2 0 0 Y4 X4

0 0 0 0 0 0 0

− Y1 − Y2 − Y3 − Y4 0 0 0

− X1 − X2 − X3 − X4 0 0 0

� ,

here X=XH̃= P dH̃ and Y =XK̃= P dK̃.
Finally, in the case of polar coordinates, the transformation between the natural and the
�i ,�i� coordinates is given by
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q1 =� �1

1 + �2
2 , q2 = �2� �1

1 + �2
2 ,

p1 =
2�1�1 − �2�2

3 − �2�2

��1�1 + �2
2�

, p2 =
�2�2

2 + 2�1�2�1 + �2

��1�1 + �2
2�

.

ith the choice

�1�z� = −
a

z
, �2�z� = 0

he extended Hamiltonians �24� and �25� become

H̃ =
1

2
�p1

2 + p2
2� −

a

�q1
2 + q2

2
− �q1

2 + q2
2�c1 −

q1p1 + q2p2 − 2q1
2�q1p2 − q2p1�

2�q1
2 + q2

2�2 c2 −
q1p1 + q2p2

2�q1
2 + q2

2�2 c3

+
q2c4

q1�q1
2 + q2

2�
,

K̃ = q1q2p1p2 −
1

2
�q2

2p1
2 + q1

2p2
2� − q1

2q1p2 − q2p1

q1
2 + q2

2 c2 −
q2

q1
c4.

hey are set in the recursion scheme �23� by the three Poisson structures,

P = 
 02�2 12�2 02�4

− 12�2 02�2 02�4

04�2 04�2 04�4
� ,

Q =

0 0 q1

2 +
q2

3

q1�q1
2 + q2

2�
q1q2 −

q2
2

q1
2 + q2

2 X1 0 0 Y1

0 0 q1q2 −
q2

2

q1
2 + q2

2
q2

2 +
q1q2

q1
2 + q2

2 X2 0 0 Y2

− q1
2 −

q2
3

q1�q1
2 + q2

2�
q2

2

q1
2 + q2

2 − q1q2 0 q1p2 − q2p1 −
q2�q1p2 − q2p1�

q1�q1
2 + q2

2�
X3 0 0 Y3

q2
2

q1
2 + q2

2 − q1q2 − q2
2 −

q1q2

q1
2 + q2

2 q2p1 − q1p2 −
q2�q2p1 − q1p2�

q1�q1
2 + q2

2�
0 X4 0 0 Y4

− X1 − X2 − X3 − X4 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

− Y1 − Y2 − Y3 − Y4 0 0 0 0

� ,

R =

0 0 A B 0 Y1 X1 0

0 0 B C 0 Y2 X2 0

− A − B 0 D 0 Y3 X3 0

− B − C − D 0 0 Y4 X4 0

0 0 0 0 0 0 0 0

− Y1 − Y2 − Y3 − Y4 0 0 0 0

− X1 − X2 − X3 − X4 0 0 0 0

0 0 0 0 0 0 0 0

� ,

˜ ˜ ˜ ˜
here X=XH= P dH, Y =XK= P dK, and
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A = q1
2q1p1 + q2p2 + 2q2

2�q1p2 − q2p1�
2�q1

2 + q2
2�2 ,

B = q1q2
q1p1 + q2p2 − 2q1

2�q1p2 − q2p1�
2�q1

2 + q2
2�2 ,

C =
q2

2�q1p1 + q2p2� + 2q1
4�q1p2 − q2p1�

2�q1
2 + q2

2�2 ,

D = �q1p2 − q2p1�
q1p1 + q2p2 − 2q1

2�q1p2 − q2p1�
2�q1

2 + q2
2�2 .

. FINAL REMARKS

In this paper a procedure to construct tri-Hamiltonian extensions of classical separable sys-
ems has been presented. This procedure has been tested in the particularly simple case of the
uclidean plane; however in principle it may be applied also to more general cases. It is articu-

ated in the following steps:

1� Write down the separation relations of a given system with n degree of freedom in the form
involving the Stäckel matrix of the separation coordinates,



a11�q1� ¯ a1n�q1�
a21�q2� ¯ a2n�q2�

] ]

an1�qn� ¯ ann�qn�
�


Ĥ1��pi,qi��

Ĥ2��pi,qi��
]

Ĥn��pi,qi��
� =


�1�p1,q1�
�2�p2,q2�

]

�n�pn,qn�
� .

2� Transform, through a transformation to a suitable system of coordinates ��i ,�i� �and in some
case a linear combination of the Hamiltonians� the Stäckel relation in such a way that the ith
row contains only different powers of �i. This is the most troublesome step: in fact it is not
clear if all the Stäckel matrix can be put in this form. However this is possible for all the 11
orthogonal separable webs in R3, as it is shown in the Appendix.

3� The separation relation encoded by the ith row of Stäckel matrix is now given by a polyno-
mial in the coordinate �i: its coefficients are a set of Hamiltonians Hj obtained from the

recombination of the Ĥj. These polynomials can be grouped on the basis of their form: a
polynomial function is associated to each different form, together with the corresponding
tri-Hamiltonian recursion scheme between the Hj. In general there will be m
n of such
functions, labeled f1 , . . . , fm. The coefficients of the polynomial functions f l are the extended

Hamiltonians H̃j and a suitable number of Casimir functions.
4� Solve the n equations �linear in the n extended Hamiltonians�

f1��1;�H̃j�� = r1��1,�1� , ¯ , fm��n;�H̃j�� = rn��n,�n�

so that the explicit form of the extended Hamiltonians is obtained.
5� The Poisson tensor P on the extended space is obtained in a trivial way from the canonical

Poisson tensor. Moreover, from the extended Hamiltonian and the recursion scheme, it is
possible to construct the two vector fields XQ and XR, and then the two tensors Q=Qd
−LXQ,P and R=Rd−LXR,P.

The conjecture �proved in the Euclidean plane� suggested by this recipe is that the three

ensors P, Q, and R are Poisson tensors mutually compatible; and that, moreover, the m functions
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f l�� ,�� are common Casimir functions for the two Poisson pencils Q−�P and R−�P. As a

onsequence, the extended Hamiltonians H̃j satisfy the required tri-Hamiltonian recursion scheme.

CKNOWLEDGMENTS

The author thanks Professor Guido Magnano and Dr. Claudia Chanu for help, useful discus-
ions, remarks and suggestions that they gave during the work for this paper.

PPENDIX: STÄCKEL MATRICES IN R3

The aim of this appendix is only to show how to set the Stäckel matrices, for the orthogonally
eparable coordinate systems in R3 with the Euclidean metric, in a form suitable for the applica-
ion of the extension method. The existence of a tri-Hamiltonian extension will not be discussed.
ctually, this issue is a particular case of the more general conjecture suggested by the results in

he Euclidean plane. In the following list on the left-hand side there are the standard Stäckel
atrix and separable Hamiltonians �derived, with minor modifications, from Ref. 4�, while on the

ight-hand side there is the form adapted to the extension algorithm. The Stäckel vector is omitted.
n most cases the transformations in the ith row of the Stäckel matrix is multiplied by a suitable
unction of the ith coordinate only, this operation preserves the separation relation.

Cartesian coordinates,


1 1 − 1

1 − 1 − 1

0 0 1
�
Ĥ1

Ĥ2

Ĥ3

�→ 
1 0 0

0 1 0

0 0 1
�
H1

H2

H3
� ,

here the new Hamiltonians are H1= Ĥ1+ Ĥ2− Ĥ3, H2= Ĥ1− Ĥ2− Ĥ3, H3= Ĥ3. The coordinates are
ust renamed.

Elliptic-hyperbolic cylindrical coordinates,


1
1

d2 − k2

d2 + 3k2

d2 − k2

1
1

s2 − k2

s2 + 3k2

s2 − k2

0 0 1
�
Ĥ1

Ĥ2

Ĥ3

�→ 
�1 1 0

�2 1 0

0 0 1
�
H1

H2

H3
� ,

here the new Hamiltonians are H1= Ĥ1+ Ĥ3, H2= Ĥ2+4k2Ĥ3, H3= Ĥ3. It is also set �1=d2−k2,

2=s2−k2.
Circular cylindrical coordinates,


1
1

r2

1 + r2

r2

1 1 1

0 0 1
�
Ĥ1

Ĥ2

Ĥ3

�→ 
�1 1 0

0 1 0

0 0 1
�
H1

H2

H3
� ,

ˆ ˆ ˆ ˆ ˆ 2
here the new Hamiltonians are H1=H1+H3, H2=H2+H3, H3=H3. It is also set �1=r .
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Parabolic cylindrical coordinates,


1
1

d+
1

1
1

d−
1

0 0 1
�
Ĥ1

Ĥ2

Ĥ3

�→ 
�1 1 0

�2 1 0

0 0 1
�
H1

H2

H3
� ,

here the new Hamiltonians are H1= Ĥ1+ Ĥ3, H2= Ĥ2, H3= Ĥ3. The coordinates are just renamed.
Prolate spheroidal coordinates,



d2

d2 − k2

1

d2 − k2

1

�d2 − k2�2

s2

s2 − k2

1

s2 − k2

1

�s2 − k2�2

0 0 1
�
Ĥ1

Ĥ2

Ĥ3

�→ 
�1
2 �1 1

�2
2 �2 1

0 0 1
�
H1

H2

H3
� ,

here the new Hamiltonians are H1= Ĥ1, H2= Ĥ2+k2Ĥ1, H3= Ĥ3. It is also set �1=d2−k2, �2

s2−k2.
Oblate spheroidal coordinates,


1
1

d2 − k2

1

d2�d2 − k2�

1
1

s2 − k2

1

s2�s2 − k2�
0 0 1

�
Ĥ1

Ĥ2

Ĥ3

�
ultiplying the first row by d2�d2−k2� and the second by s2�s2−k2�, the Stäckel relation is equiva-

ent to


d4 − k2d2 d2 1

s4 − k2s2 s2 1

0 0 1
�
Ĥ1

Ĥ2

Ĥ3

�→ 
�1
2 �1 1

�2
2 �2 1

0 0 1
�
H1

H2

H3
� ,

here the new Hamiltonians are H1= Ĥ1, H2= Ĥ2−k2Ĥ1, H3= Ĥ3. It is also set �1=d2, �2=s2.
Spherical coordinates,


1
1

r2 0

0 1
1

sin2 �

0 0 1
�
Ĥ1

Ĥ2

Ĥ3

�→ 
�1 1 0

0 1 �2

0 0 1
�
H1

H2

H3
� ,

2 2
here it is set �1=r , �2=sin �.
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Parabolic coordinates,


1
1

d+

1

d+
2

1
1

d−

1

d−
2

0 0 1
�
Ĥ1

Ĥ2

Ĥ3

�→ 
�1 1 0

�2 1 0

0 0 1
�
H1

H2

H3
� ,

here the coordinates are just renamed.
Ellipsoidal coordinates,



u2

�i�u − ai�
u

�i�u − ai�
1

�i�u − ai�
v2

�i�v − ai�
v

�i�v − ai�
1

�i�v − ai�
w2

�i�w − ai�
w

�i�w − ai�
1

�i�w − ai�
�
Ĥ1

Ĥ2

Ĥ3

�→ 
�1
2 �1 1

�2
2 �2 1

�3
2 �3 1

�
H1

H2

H3
� ,

here the coordinates are just renamed.
Paraboloidal coordinates,



u2

�u2 − k2�
u

�u2 − k2�
1

�u2 − k2�
v2

�v2 − k2�
v

�v2 − k2�
1

�v2 − k2�
w2

�w2 − k2�
w

�w2 − k2�
1

�w2 − k2�
�
Ĥ1

Ĥ2

Ĥ3

�→ 
�1
2 �1 1

�2
2 �2 1

�3
2 �3 1

�
H1

H2

H3
� ,

here the coordinates are just renamed.
Spherical-conical coordinates,



0

u

�i�u − ai�
1

�i�u − ai�

0
v

�i�v − ai�
1

�i�v − ai�
1

w

1

w2 0
�
Ĥ1

Ĥ2

Ĥ3

�→ 
 0 �1 1

0 �2 1

�3 1 0
�
H1

H2

H3
� ,

here the coordinates are just renamed.
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In this paper we analyze the resolvent, the heat kernel and the spectral zeta function
of the operator −d2/dr2−1/ �4r2� over the finite interval. The structural properties
of these spectral functions depend strongly on the chosen self-adjoint realization of
the operator, a choice being made necessary because of the singular potential
present. Only for the Friedrichs realization standard properties are reproduced, for
all other realizations highly nonstandard properties are observed. In particular, for
k�N we find terms like �log t�−k in the small-t asymptotic expansion of the heat
kernel. Furthermore, the zeta function has s=0 as a logarithmic branch point.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2189194�

. INTRODUCTION

. Zeta functions and an unusual example

It is well known that the zeta function of a Laplacian over a smooth compact manifold, with
r without boundary, defines a meromorphic function on C with simple poles at prescribed half-
nteger values depending on the dimension of the manifold.21 �For a manifold with boundary, we
ut local boundary conditions, e.g., Dirichlet conditions.� These properties have far reaching
pplications in physics as well as mathematics, e.g., in the context of Casimir energies, effective
ctions and analytic torsion; see, for example, Refs. 12–14, 25, 28, and 41.

Surprisingly, there is a completely natural example of a zeta function for which the described
roperties break down and which has no meromorphic extension to C. Let ��R2 be any compact
egion and take polar coordinates �x ,y�↔ �r ,�� centered at any fixed point in �. Then in these
oordinates, the standard Laplacian on R2 takes the form

�R2 = − �x
2 − �y

2 = − �r
2 −

1

r
�r −

1

r2��
2,

nd the measure transforms to dx dy=r dr d�. A short computation shows that

�Electronic mail: klaus�Kirsten@baylor.edu
�Electronic mail: paul@math.binghamton.edu
�
Electronic mail: jinsung@kias.re.kr
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�R2� = �− �r
2 −

1

r
�r −

1

r2��
2�� = R−1�− �r

2 +
1

r2�− ��
2 −

1

4
��R� ,

here R is the multiplication map by r1/2, which is an isometry from L2�� ,r dr d�� to
2�� ,dr d��. Hence, the following two operators are equivalent under R:

�R2 ↔ − �r
2 +

1

r2A, where A = − ��
2 −

1

4
.

n the zero eigenspace of −��
2, we obtain the operator of the form −�r

2− �1/4r2�. Then this Laplace
ype operator has many different self-adjoint realizations parametrized by angles �� �0,��; the
ngle �=� /2 corresponds to the so-called Friedrichs realization. Each realization has a discrete
pectrum.35 Consider any one of the realizations, say ��, with ��� /2 and form the corresponding
eta function,

��s,��� ª �
�j�0

1

� j
s ,

here the � j’s are the eigenvalues of ��. The shocking fact is that every such zeta function
orresponding to an angle �� �0,��, except �=� /2, does not have a meromorphic extension to C;
n fact each such zeta function has a logarithmic branch cut with s=0 as the branch point.

. Self-adjoint realizations

The properties of the Laplace operator considered above boil down to the main object of
onsideration in this paper,

� ª −
d2

dr2 −
1

4r2 over �0,R� . �1.1�

n Sec. II we work out an explicit description of the maximal domain of �. In order to choose a
elf-adjoint realization of �, we first fix a boundary condition for � at r=R; it turns out that any
uch boundary condition for ��Dmax��� must be of the form �see Sec. IV�

cos �2���R� + sin �2��R� = 0. �1.2�

n other words, the boundary conditions we can choose at r=R are parametrized by angles �2

�0,��. Note that the Dirichlet condition is when �2=� /2 and the Neumann condition is when

2=0. Let us henceforth fix an angle �2� �0,�� and consider � with the condition in �1.2�. At r
0, the operator � is singular and a limiting procedure r→0 must be used to define boundary
onditions. As shown in Sec. III �see also Sec. IV�, the self-adjoint realizations of � with the
ondition �1.2� are again parametrized by angles �1� �0,��; the paper by Kochube�31 is perhaps
ne of the earliest references to contain such a parametrization. It turns out that �1=� /2 corre-
ponds to the Friedrichs realization.

As we will show in Theorem 2.1, ��Dmax��� if and only if it can be written in the form

� = c1���r1/2 + c2���r1/2 log r + O�r3/2� ,

here c1��� and c2��� are constants depending on �. In terms of these constants, given angles

1 ,�2� �0,��, we consider the operator

�L ª �:DL → L2��0,R�� ,
here
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DL = �� � Dmax���	cos �1c1��� + sin �1c2��� = 0,cos �2���R� + sin �2��R� = 0
 .

ere, the subscript “L” represents the two-dimensional subspace L�C4 defined by

L ª ��z1,z2,z3,z4� � C4	cos �1z1 + sin �1z2 = 0,cos �2z3 + sin �2z4 = 0
 .

his vector space is a Lagrangian subspace of C4 with respect to a natural Hermitian symplectic
orm intimately related to self-adjoint realizations of �; see Sec. III. For general references on this
elation see; Refs. 23, 24, 27, and 31–34. For a study of adjoints of “cone operators” �in the sense
f Schulze� see Ref. 19. For properties of resolvents of cone operators see, for example, Refs. 20
nd 42.

. The resolvent, heat kernel, and zeta function

When �1=� /2 �the Friedrichs realization�, the following properties concerning the resolvent,
eat kernel, and zeta function are well known; see for example, Brüning and Seeley,7,8 Falomir
t al.,15 or Mooers.38 With �1=� /2, the following properties hold.

Theorem 1.1 �cf. Refs. 8, 15, and 38�: Fixing a boundary condition �1.2� at r=R, let �L

enote the corresponding Friedrichs realization �that is, take �1=� /2�. Then

1� Let ��C be any sector (solid angle) not intersecting the positive real axis. Then as 	�	
→	 with ���, we have

Tr��L − ��−1 � �
k=1

	

ak�− ��−k/2.

2� As t→0, we have

Tr�e−t�L� � �
k=0

	


kt
�k−1�/2.

3� The zeta function

��s,�L� = Tr��L
−s�

extends from Rs�1/2 to a meromorphic function on C with poles at s=1/2−k for k
=0,1 ,2 , . . ..

These properties are “usual” in that they remain valid, with appropriate changes, to Laplace-
ype operators on compact manifolds �with or without boundary�; see for example, Gilkey’s
ook21 for a thorough treatment. The first result of this paper shows that for any other realization,
hese properties are completely destroyed; see also Ref. 29.

Theorem 1.2: With any boundary condition �1.2� fixed at r=R, choose a self-adjoint realiza-
ion �L of the resulting operator that is not the Friedrichs realization. �That is, take �1�� /2�. Let
=log 2−−tan �1 where  is the Euler constant. Then the following properties hold:

1� Let ��C be any sector (solid angle) not intersecting the positive real axis. Then as 	�	
→	 with ���, we have

Tr��L − ��−1 �
1

�− ���log�− �� − 2��
+ �

k=1

	

bk�− ��−k/2.

2� As t→0, we have �here I denotes “imaginary part of”�

Tr�e−t�L� �
1

�
I��	

e−tx 1

x�log x + i� − 2��
dx� + �

	


kt
�k−1�/2.
1 k=0
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3� The zeta function ��s ,�L� can be written in the form

��s,�L� = −
e−2s� sin �s

�
log s + �L�s� ,

where �L�s� extends from Rs�1/2 to a holomorphic function on C with poles at s=1/2
−k for k=0,1 ,2 , . . .. In particular, ��s ,�L� has s=0 as a logarithmic branch point

Remark 1.3: The authors have never seen a natural geometric differential operator with dis-
rete spectrum on a compact manifold having a spectral zeta function with properties of the sort
escribed in this theorem.

Remark 1.4: The first term in assertion �1� can be expanded further if needed. In the formu-
ation of this theorem we leave it in this more useful compact form.

Remark 1.5: The same kind of remark holds for the first term in assertion �2�. Expanding
urther we obtain the following expansion: As t→0, we have

Tr�e−t�L� � �
k=1

	

�k�log t�−k + �
k=0

	


kt
�k−1�/2 �1.3�

ith the �k’s depending on � via �here I denotes “imaginary part of”�

�k = −
1

k�
I��

1

	

e−x�log x + i� − 2��k dx�, k = 1,2,3, . . . .

he expansion �1.3� is misleading as written because for k�1, the terms 
kt
�k−1�/2 are subleading

o any of the inverse log terms. However, we interpret the first sum in the expansion �1.3� to mean
hat for all N, we have

1

�
I��

1

	

e−tx 1

x�log x + i� − 2��
dx� = �

k=1

N

�k�log t�−k + O��log t�−N−1� .

. Explicit formula for the zeta determinant

Our second result is an explicit formula for a regularized determinant. For concreteness, we
hall impose the Dirichlet boundary condition at r=R. That is, given an angle �� �0,�� with �

� /2, we consider the operator

�� ª �:D� → L2��0,R�� ,

here

D� = �� � Dmax���	cos �c1��� + sin �c2��� = 0,��R� = 0
 .

hen from Theorem 1.2, the zeta function ��s ,��� has the following form:

��s,��� = −
e−2s� sin �s

�
log s + ���s� ,

here ���s� extends from Rs�1/2 to a holomorphic function on C with poles at s=1/2−k for

=0,1 ,2 , . . . .
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n particular, ��s ,��� has the form

��s,��� � − s log s + O�s2 log s� + holomorphic as s → 0. �1.4�

n particular,

���s,��� � − log s + O�s log s� + holomorphic as s → 0,

o the �-regularized determinant det����ªexp�−���0,���� is not defined However, from �1.4�, we
ee that

�reg�s,��� ª ��s,��� + s log s

oes have a well-defined derivative at s=0. For this reason, we define

detreg���� ª exp�− �reg� �0,���� .

n the following theorem, we give a beautiful explicit formula for this regularized determinant.
Theorem 1.6: For any �� �0,�� with ��� /2, we have

detreg���� = 2�2�Re�tan � − log R� , tan � � log R ,

��R

2
eR2, tan � = log R . �

We remark that when �=� /2, the zeta function ��s ,��� is regular at s=0 and we can also
ompute the �usual� �-regularized determinant: For �=� /2, we have

det���� = �2�R ,

well known result, see, e.g., Theorem 2.3 of Ref. 36, Proposition 5.2 of Ref. 37.
We now outline this article. In Secs. II–IV we study the self-adjoint realizations of our main

perator using the Hermitian symplectic theory due to Gelfand �Ref. 39, p. 1�; cf. also Refs. 15,
1–33, 37, 38, and 40. Although some of this material can be found piecemeal throughout the
iterature, we present all the details here in order to keep our paper elementary, self-contained, and
user-friendly.” In Secs. V–VIII we prove Theorem 1.2 in the special case that the Dirichlet
oundary condition is chosen at r=R and in Sec. IX we prove Theorem 6, all using the contour
ntegration method developed in Refs. 3–5. In Sec. X we prove Theorem 1.2 in full generality.
inally, in the Appendix, we explicitly calculate the resolvent of ��, which is needed at various
laces in our analysis.

I. THE MAXIMAL DOMAIN

Our first order of business is to characterize the self-adjoint realizations of the operator in
1.1�; for general references on self-adjoint realizations and their applications to physics see, e.g.,
efs. 2, 6, 10, 11, 16–18, 31–34, 40, and 44 To do so, we first need to determine the maximal
omain of �:

Dmax��� ª �� � L2��0,R��	�� � L2��0,R��
 .

or a quick review, �� is understood in the distributional sense; thus, �� is the functional on test
unctions Cc

	��0,R�� defined by

������� ª �
0

R

���r���r�dr for all � � Cc
	��0,R�� .

hen ���L2��0,R�� means that the distribution �� :Cc
	��0,R��→C is represented by an L2

2
unction in the sense that there is a function f �L ��0,R�� such that
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�
0

R

���r���r�dr = ��, f� for all � � Cc
	��0,R�� ,

here �·,·� denotes the L2 inner product �conjugate linear in the second slot� on L2��0,R��. The
ollowing theorem is inspired by Falomir et al. �Ref. 15, Lemma 2.1�.

Theorem 2.1: ��Dmax��� if and only if � can be written in the form

� = c1���r1/2 + c2���r1/2 log r + �̃ , �2.1�

here c1��� ,c2��� are constants and �̃ is a continuously differentiable function on �0,R� such
hat �̃�r�=O�r3/2�, �̃��r�=O�r1/2�, and ��̃�L2��0,R��.

Proof: Since

��c1r1/2 + c2r1/2 log r� = 0,

t follows that any � of the stated form is in Dmax���. Now let ��Dmax���; then ��= f
L2��0,R��. Let us define �ªr−1/2� so that �=r1/2�. Then

f = − �� −
1

4r2� =
1

4
r−3/2� − r−1/2�� − r1/2�� −

1

4
r−3/2� = − r−1/2�� − r1/2��.

fter multiplication by r1/2, we get

�� + r�� = − r1/2f Þ �r���� = − r1/2f .

ince r1/2 and f are in L2��0,R��, by the Cauchy-Schwartz inequality, we know that r1/2f is in
1��0,R��, therefore we can conclude that

�� =
c2

r
−

1

r
�

0

r

t1/2f�t�dt . �2.2�

otice that by Cauchy-Schwartz,

��
0

r

t1/2f�t�dt� ���
0

r

t dt · �f�2 =
r

�2
�f�2. �2.3�

hus, the second term on the right-hand side in �2.2� is in L1��0,R��. Therefore, from �2.2� we see
hat

��r� = c1 + c2 log r − �
0

r 1

x
�

0

x

t1/2f�t�dt dx ,

r, since �=r1/2�, we get

��r� = c1r1/2 + c2r1/2 log r + �̃, �̃ ª − r1/2�
0

r 1

x
�

0

x

t1/2f�t�dt dx .

y �2.3�, we have

��
0

r 1

x
�

0

x

t1/2f�t�dt dx� � �
0

r 1
�2

�f�2 dx =
r

�2
�f�2.

˜ 3/2 ˜ 1/2
rom this estimate, it follows that ��r�=O�r � and ���r�=O�r �. �
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II. SELF-ADJOINT REALIZATIONS

Choosing a linear subspace D�Dmax���, we say that

�D ª �:D → L2��0,R��

s self-adjoint �in which case �D is called a self-adjoint realization of �� if

�� � Dmax���	���,�� = ��,��� for all � � D
 = D;

n other words, � is symmetric on D and adding any elements to D will destroy this symmetry.
In order to determine if � has any self-adjoint realization, we need to analyze the quadratic

orm

��,��� − ���,�� for �,� � Dmax��� .

t turns out that this difference is related to finite-dimensional symplectic linear algebra. Let us
efine

�:C4 � C4 → C

y

��v,w� ª v1w2 − v2w1 + v3w4 − v4w3. �3.1�

he function � is Hermitian antisymmetric and nondegenerate; for this reason, � is called a
ermitian symplectic form.

Theorem 3.1: Let � ,��Dmax��� be written in the form �2.1�, i.e.,

� = c1���r1/2 + c2���r1/2 log r + �̃ ,

here �̃ is continuously differentiable with �̃�r�=O�r3/2�, �̃��r�=O�r1/2�, and ��̃�L2��0,R��,
nd with a similar formula holding for �. Then,

��,��� − ���,�� = ���� ,�� � ,

here � is the Hermitian symplectic form defined above and �� ,�� �C4 are the vectors

�� ª �c1���,c2���,���R�,��R��, �� ª �c1���,c2���,���R�,��R�� .

Proof: We have

��,��� − ���,�� = lim
�→0

�
�

R

���r����r� − ���r���r��dr = lim
�→0

�
�

R d

dr
�− ��r����r� + ���r���r��dr

= lim
�→0

���������� − ���������� + ����R���R� − ��R����R�� . �3.2�

ecall that

� = c1���r1/2 + c2���r1/2 log r + �̃, � = c1���r1/2 + c2���r1/2 log r + �̃ ,

here �̃ and �̃ are continuously differentiable functions on �0,R� such that �̃�r� , �̃�r�=O�r3/2�,
˜ ��r� , �̃��r�=O�r1/2�. Taking derivatives, we get

�� =
c1���

2
r−1/2 +

c2���
2

r−1/2�log r + 2� + �̃�
nd similarly for ��. It follows that
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��������� =
c1���c1���

2
+

c1���c2���
2

�log � + 2� +
c2���c1���

2
log � +

c2���c2���
2

log ��log � + 2�

+ o�1�

nd similarly for ���������. Subtracting, we get

��������� − ��������� = c1���c2��� − c2���c1��� + o�1� .

ombining this with �3.2� proves our result. �

Recall that a subspace L�C4 is called Lagrangian if L�� =L where L�� is the orthogonal
omplement of L with respect to �; explicitly, L is Lagrangian means

�w � C4	��v,w� = 0 for all v � L
 = L .

e now have our main result.
Theorem 3.2: Self-adjoint realizations of � are in one-to-one correspondence with Lagrang-

an subspaces of C4 in the sense that given any Lagrangian subspace L�C4, defining

DL ª �� � Dmax���	�� � L


he operator

�L ª �:DL → L2��0,R��

s self-adjoint and any self-adjoint realization of � is of the form DL for some Lagrangian L�C4.
Proof: By definition,

�D ª �:D → L2��0,R��

s self-adjoint means

�� � Dmax���	���,�� = ��,��� for all � � D
 = D .

y Theorem 3.1, we can write this as: �D is self-adjoint if and only if

���� ,�� � = 0 for all � � D Û � � D . �3.3�

Suppose that �D is self-adjoint and define Lª ��� �C4 	��D
; we shall prove that L is

agrangian. Let w�L and choose ��D such that �� =w. Then by �3.3�, ���� ,w�=0 for all �
D. Therefore, ��v ,w�=0 for all v�L. Conversely, let w�C4 and assume that ��v ,w�=0 for all

�L. Choose ��Dmax��� such that �� =w; e.g., if w= �w1 ,w2 ,w3 ,w4�, then

� ª w1r1/2 + w2r1/2 log r + �w3 − w4��r − R� + w4r �3.4�

ill do. Then ��v ,w�=0 for all v�L implies that ���� ,�� �=0 for all ��D, which by �3.3�,
mplies that ��D, which further implies that w=�� �L.

Now let L�C4 be Lagrangian; we shall prove that �L is self-adjoint, that is, �3.3� holds. Let

�DL. Then, since L is Lagrangian, we automatically have ���� ,�� �=0 for all ��DL. Con-

ersely, let ��Dmax��� and assume that ���� ,�� �=0 for all ��DL. By the construction �3.4�
iven any v�L we can find a ��Dmax��� such that �� =v. Therefore, ���� ,�� �=0 for all �

DL implies that ��v ,�� �=0 for all v�L, which by the Lagrangian condition on L, implies that
� �L. This shows that ��DL and our proof is complete. �

V. MORE ON LAGRANGIAN SUBSPACES

4 4
The symplectic form � :C �C →C defined in �3.1� is naturally separated into two parts:
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��v,w� = �0��v1,v2�,�w1,w2�� + �0��v3,v4�,�w3,w4�� , �4.1�

here

�0:C2 � C2 → C is defined by �0�v,w� = v1w2 − v2w1.

he first �0 appearing in �4.1� corresponds to the singularity at r=0 and the second �0 in �4.1�
orresponds to the boundary r=R. For this reason, it is natural to focus on Lagrangian subspaces
�C4 of the form L=L1 � L2 where Li�C2 is Lagrangian with respect to �0. With this in mind,

et us characterize all such Lagrangian subspaces of C2. First, we observe the following.
Lemma 4.1: We can write

�0�v,w� = �Gv,w� for all v,w � C2,

here �,� denotes the inner product on C2 and G= � 0 −1
1 0

�.
Recalling that L�C2 is Lagrangian means that

�w � C2	�0�v,w� = 0 for all v � L
 = L ,

rom this lemma, it is straightforward to show that

L � C2 is Lagrangian if and only if GL� = L ,

here L� is the orthogonal complement of L with respect to the inner product �,�. From this, one
an easily prove the following main result in this section.

Theorem 4.2: L�C2 is Lagrangian if and only if L=L� for some ��R where

L� = ��x,y� � C2	cos �x + sin �y = 0
 .

Notice that we can restrict to 0���� in Theorem 4.2. Let �1 ,�2 be two such angles and set
ªL�1

� L�2
. As in �2.1�, we write ��Dmax��� as

� = c1���r1/2 + c2���r1/2 log r + �̃ ,

here �̃ is continuously differentiable with �̃�r�=O�r3/2�, �̃��r�=O�r1/2�, and ��̃�L2��0,R��.
hen as a consequence of Theorem 3.2, we know that

�L ª �:DL → L2��0,R�� �4.2�

s self-adjoint, where

DL = �� � Dmax���	cos �1c1��� + sin �1c2��� = 0,cos �2���R� + sin �2��R� = 0
 .

hen �1=� /2, then we are requiring c2��� vanish so that near r=0, we have

� = c1���r1/2 + �̃;

hat is, no log terms; in Ref. 8, Brüning and Seeley prove that �1=� /2 is the Friedrichs realization
f the operator � acting on smooth functions supported away from r=0 with the boundary
ondition cos �2���R�+sin �2��R�=0 at r=R. As seen in Theorem 1.1 in the Introduction, this
elf-adjoint realization gives rise to the “usual” resolvent, heat kernel, and zeta function properties.

hen �1�� /2, we get very pathological properties as shown in Theorem 1.2. In the following

ections we enter in the proof of Theorem 1.2.
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. EIGENVALUES WITH DIRICHLET CONDITIONS AT r=R

As shown in detail in Sec. X, the strange behaviors depicted in Theorem 1.2 do not depend on
he choice of the Lagrangian L2 �that is, the choice of boundary condition at r=R�. For this reason,
e shall use �2=0 for the Lagrangian L2 in �4.2�; thus, we shall consider the self-adjoint operator

�ª� :D�→L2��0,R��, where 0���� and ��� /2, and

D� = �� � Dmax���	cos �c1��� + sin �c2��� = 0,��R� = 0
;

o we are simply imposing the Dirichlet condition at r=R.
We now find an explicit formula for the eigenfunctions and a transcendental equation, which

etermines the spectrum of ��. We begin with the following eigenvalue equation:

��� − �2�� = 0 Û �� +
1

4r2� + �2� = 0.

e can turn this into a Bessel equation via the usual trick by setting �=r1/2���r�. Then,

�� = − 1
4r−3/2���r� + �r−1/2����r� + �2r1/2����r� ,

o

�� +
1

4r2� + �2� = 0 Û �r−1/2����r� + �2r1/2����r� + �2r1/2���r� = 0,

r

��r�2����r� + ��r�����r� + ��r�2���r� = 0.

or fixed �, the solutions to this equation are linear combinations of J0 and Y0 �with Y0 the Bessel
unction of the second kind�, so

� = C1r1/2J0��r� + C2r1/2Y0��r� .

sing that �Ref. 1, p. 360�

�

2
Y0�z� ª �log z − log 2 + �J0�z� − �

k=1

	 Hk�−
1

4
z2�k

�k!�2 , �5.1�

here Hkª1+ 1
2 + ¯ + �1/k�, the form �2.1� for ��Dmax��� is obtained by choosing the constants

1 and C2 in such a way that

� = c1���r1/2J0��r� + c2���r1/2��

2
Y0��r� − �log � − log 2 + �J0��r�� .

y definition of the Bessel function �Ref. 1, p. 360� we have as z→0,

Jv�z� =
zv

2v�
k=0

	 �−
1

4
z2�k

k!��v + k + 1�
=

zv

2v��1 + v��1 −
z2

4�1 + v�
+

z4

32�1 + v��2 + v�
− + ¯ �

�5.2�
nd by �5.1��, we see that
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� = c1���r1/2 + c2���r1/2 log r + O���r�2� ,

here O���r�2� is a power series in ��r�2 vanishing like ��r�2 as r→0. Therefore, by definition
f D�, we have

cos �c1��� + sin �c2��� = 0. �5.3�

o satisfy the Dirichlet condition at r=R, we must have

c1���J0��R� + c2�����

2
Y0��R� − �log � − log 2 + �J0��R�� = 0.

t follows that

det� cos � sin �

J0��R�
�

2
Y0��R� − �log � − log 2 + �J0��R� � = 0,

r �� /2�Y0��R�− �log �−log 2+�J0��R�=tan �J0��R�. We summarize our findings in the fol-
owing proposition.

Proposition 5.1: The transcendental equation,

F��� ª
�

2
Y0��R� − �log � − ��J0��R� = 0, � = log 2 −  − tan � , �5.4�

etermines the eigenvalues of ��.
In the following theorem we state various properties of the eigenvalues of ��; note that in Ref.

5, p. 4572 it is stated that there are no negative eigenvalues; however, it turns out that, for
xample, when � /2���� and R�1, there is always a negative eigenvalue.

Theorem 5.2: For 0���� with ��� /2,

1� �� has a zero eigenvalue if and only if log R=tan �.
2� �� has a unique negative eigenvalue if and only if tan �� log R.

Proof: Using �5.1� and the expansion

J0�z� = �
k=0

	 �−
1

4
z2�k

�k!�2 , �5.5�

he eigenvalue equation �� /2�Y0��R�− �log �−log 2+�J0��R�=tan �J0��R� can be written as

− �
k=1

	 Hk�−
1

4
�2R2�k

�k!�2 = �− log R + tan ���
k=0

	 �−
1

4
�2R2�k

�k!�2 . �5.6�

hus, �=0 solves this equation if and only if log R=tan �.
Now �� has a negative eigenvalue means that �= ix for x real solves �5.6�:

− �
k=1

	 Hk�1

4
x2R2�k

�k!�2 = �− log R + tan ���
k=0

	 �1

4
x2R2�k

�k!�2 . �5.7�

f �−log R+tan ���0, then �5.7� has no solutions because the right-hand side of �5.7� will be
trictly positive for all real x while the left-hand side of �5.7� is nonpositive. Thus, we may assume

hat �ª log R−tan ��0. Then we can write �5.7� as
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f�xR� = 0 where f�x� = �
k=1

	
Hkx

2k

4k�k!�2 − �
k=0

	
�x2k

4k�k!�2 ;

hus, we just have to prove that f�x�=0 has a unique solution. To prove this, observe that since the
armonic series 1+ 1

2 + 1
3 +¯ diverges, we can choose N�N such that HN���HN−1. We now

rite

f�x� = �
k=N

	
�Hk − ��x2k

4k�k!�2 − ��
k=0

N−1
�� − Hk�x2k

4k�k!�2 � ,

here H0ª0, and note that f�x�=0 if and only if g�x�=0 where

g�x� ª x−2Nf�x� = �
k=N

	
�Hk − ��x2�k−N�

4k�k!�2 − ��
k=0

N−1
�� − Hk�

4k�k!�2x2�N−k�� .

ecause of the powers of x in the denominator the second sum on the right-hand side, we see that
�0+ �=−	 while because of the first sum on the right-hand side, we see that limx→	 g�x�=	. In
articular, by the intermediate value theorem, g�x�=0 for some 0�x�	. Since

g��x� = �
k=N+1

	
�Hk − ��2�k − N�x2�k−N�−1

4k�k!�2 + ��
k=0

N−1
2�N − k��� − Hk�
4k�k!�2x2�N−k�+1 � � 0

he function g is strictly increasing, so there is only one x�0 such that g�x�=0. It follows that
f�x�=0 for a unique x�0 and our proof is now complete. A graph of f�x� for R=1 and tan �=

2 is shown in Fig. 1. �

I. THE �-FUNCTION WITH DIRICHLET CONDITIONS AT r=R

Let 0���� with ��� /2. We now analyze the zeta function using the contour integral
echniques developed in Refs. 4, 5, 28, and 30.

In the Appendix, Theorem A.1, we have shown that

Tr��� − �2�−1 = −
1

2�

d

d�
log F��� .

herefore, for Rs�1/2, by definition the zeta function is given by

��s,��� =
1

2�i
�



�−2s d

d�
log F���d� =

1

2�i
�



�−2sF����
F���

d� , �6.1�

here  is a contour in the plane shown in Fig. 2.

FIG. 1. �Color online� Graph of f�x� when R=1 and tan �=−2.
To analyze properties of the zeta function, we need the following technical lemma.
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Lemma 6.1: Let 0���� with ��� /2 and ��C be a sector (closed angle) in the right-half
lane. Then as 	x	→	 with x��, we have

F�ix� � −
1

�2�
�log x − ���xR�−1/2exR�1 +

1

8xR
+

9

2�8xR�2 + O�x−3�� , �6.2�

here O�x−3� is a power series in x−1 starting from x−3, and

d

dx
log F�ix� �

1

x�log x − ��
+ R −

1

2x
−

1

8x2R
+ O�x−3� , �6.3�

ith the same meaning for O�x−3�. Finally, F��� is an even function of �, and as �→0, we have

F��� � �log R − tan �� +
1

4
�2R2�1 + tan � − log R� + O��4� . �6.4�

Proof: From �5.1�, we have

�

2
Y0�ix� = �log�ix� − log 2 + �J0�ix� − �

k=1

	 Hk�−
1

4
�ix�2�k

�k!�2

= �log x + i
�

2
− log 2 + �I0�x� − �

k=1

	 Hk�1

4
x2�k

�k!�2 = i
�

2
I0�x� − K0�x� ,

here I0�x� is the modified Bessel function of the first kind, and

K0�x� ª − �log x − log 2 + �I0�x� + �
k=1

	 Hk�1

4
x2�k

�k!�2

s the modified Bessel function of the second kind. Therefore,

F�ix� =
�

2
Y0�ixR� − �log�ix� − ��J0�ixR� = i

�

2
I0�xR� − K0�xR� − �log x + i

�

2
− ��I0�xR�

= − �log x − ��I0�xR� − K0�xR� .

IG. 2. The contour  for the zeta function. The �’s represent the zeros of F���. The squares of the �’s on the imaginary
xis represent the negative eigenvalues of ��. Here, t is on the imaginary axis and is larger in absolute value than the
bsolute value of the negative eigenvalue of �� �if one exists�. The contour t goes from t to −t.
y Ref. 1, p. 377, as 	x	→	 for x��, we have
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I0�x� �
ex

�2�x
�1 +

1

8x
+

9

2�8x�2 + O�x−3�� ,

here O�x−3� is a power series in x−1 starting with x−3; furthermore �Ref. 1, p. 378�, as 	x	→	 for
��,

K0�x� �� 2

�x
e−x�1 −

1

8x
+

9

2�8x�2 + O�x−3�� .

herefore, as 	x	→	 for x��, we have

F�ix� � − �log x − ��I0�xR� � −
1

�2�
�log x − ���xR�−1/2exR�1 +

1

8xR
+

9

2�8xR�2 + O�x−3�� ,

hich proves �6.2�. Taking logarithms, we see that as 	x	→	 for x��, we have

log F�ix� � c + log�log x − �� −
1

2
log x + xR + log�1 +

1

8xR
+

9

2�8xR�2 + O�x−3�� ,

here c is a constant. Since log�1+z�=z− �z2 /2�+ �z3 /3�− + . . . , we have

log F�ix� � c + log�log x − �� −
1

2
log x + xR +

1

8xR
+ O�x−2� .

aking the derivative of this we get �6.3�.
To determine the asymptotics as �→0, recalling that �=log 2−−tan �, we see that

F��� =
�

2
Y0��R� − �log � − ��J0��R� =

�

2
Y0��R� − �log � − log 2 + �J0��R� − tan �J0��R�

=
1

4
�2R2 + �log R − tan �� + �tan � − log R� ·

1

4
�2R2 + O��4�

= �log R − tan �� +
1

4
�2R2�1 + tan � − log R� + O��4� ,

here we used �5.1� and �5.5� in passing from the second to the third line. In particular, the second
ine with �5.1� and �5.5� shows that F��� is an even function of �. This completes our proof. �

We need one more lemma.
Lemma 6.2: We have

�
	t	

	

x−2s 1

x�log x − ��
dx = − e−2s� log s − e−2s�� + log�2�log	t	 − ��� + O�s�� ,

here O�s� is an entire function of s that is O�s� at s=0.
Proof: In the integral we assume that log	t	�� so that the integral is well defined. Now to

nalyze this integral we make the change of variables u=log x−� or x=e�eu, and obtain

�
	t	

	

x−2s 1

x�log x − ��
dx = e−2s��

log	t	−�

	

e−2sudu

u
.

aking the change of variables y=2su, we get

�
	t	

	

x−2s 1

x�log x − ��
dx = e−2s��

2s�log	t	−��

	

e−y dy

y
.

ecall that the exponential integral is defined by �see Ref. 22, Sec. 8.2�
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Ei�z� ª − �
−z

	

e−y dy

y
.

herefore,

�
	t	

	

x−2s 1

x�log x − ��
dx = − e−2s� Ei�− 2s�log	t	 − ��� .

lso from Ref. 22, p. 877, we have

Ei�z� =  + log�− z� + �
k=1

	
zk

k · k!
,

herefore

�
	t	

	

x−2s 1

x�log x − ��
dx = − e−2s�� + log�2s�log	t	 − ��� + O�s��

= − e−2s� log s − e−2s�� + log�2�log	t	 − ��� + O�s�� , �6.5�

here O�s� is an entire function of s that is O�s� at s=0. This completes our proof. �

We now determine the structure of the zeta function.
Proposition 6.3: The zeta function ��s ,��� can be written in the form

��s,��� = −
e−2s� sin �s

�
log s + ���s� ,

here �=log 2−−tan � and ���s� extends from Rs�1/2 to a holomorphic function on C with
oles at s=1/2−k for k=0,1 ,2 , . . .. In particular, ��s ,��� has s=0 as a logarithmic branch point.

Proof: Recalling �6.1�, we write

�


= − �
t

0+i	

+ �
−t

0−i	

+ �
t

,

here t is the part of  from t to −t, and using that

i−2s = �ei�/2�−2s = e−i�s and �− i�−2s = �e−i�/2�−2s = ei�s,

e obtain the integral

��s,��� =
1

2�i
�



�−2s d

d�
log F���d� =

1

2�i�− �
	t	

	

�ix�−2s d

dx
log F�ix�dx

+ �
	t	

	

�− ix�−2s d

dx
log F�− ix�dx� +

1

2�i
�

t

�−2sF����
F���

d�

=
1

2�i
�− e−i�s + ei�s��

	t	

	

x−2s d

dx
log F�ix�dx +

1

2�i
�

t

�−2sF����
F���

d� ,
r,
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��s,��� =
sin �s

�
�

	t	

	

x−2s d

dx
log F�ix�dx +

1

2�i
�

t

�−2sF����
F���

d� , �6.6�

formula that will be analyzed in a moment. The second integral here is over a finite contour so
n entire function of s�C, so we are left to analyze the analytic properties of the first integral. To
o so, recall from �6.3� that for x→	, we have

d

dx
log F�ix� �

1

x�log x − ��
+ �

k=0

	


kx
−k,

or some constants 
k. Since

sin �s

�
�

	t	

	

x−2s−k dx =
sin �s

�
� x−2s−k+1

− 2s − k + 1
�

x=	t	

	

=
sin �s

�

	t	−2s−k+1

2s + k − 1

hich has poles at s= �1−k� /2 for s�Z, it follows that the expansion �k=0
	 
kx

−k will contribute to
he function ���s� in the statement of this proposition where ���s� extends from Rs�1/2 to a
olomorphic function on C with poles at s=1/2−k for k=0,1 ,2 , . . . . Lemma 6.2 applied to the
ntegral

sin �s

�
�

	t	

	

x−2s 1

x�log x − ��
dx

ow completes our proof. �

Remark 6.4: The existence of the logarithmic branch point at s=0 has been missed in Ref. 15.
he error occurs in Eq. (A13) where certain antiderivatives [specifically xY1�x� and x2Y1

2] were
ccidentally set equal to zero at s=0.

II. TRACE OF THE RESOLVENT WITH DIRICHLET CONDITIONS AT r=R

Using the Theorem A.1, we can now prove Theorem 1.2 �1� for ��. We have chosen to present
he results in a form where the first term has been expanded further; Theorem 1.2 �1� is contained
n Eq. �7.1� of the proof and the explanation of the meaning of the expansion is similar to that
ound in Remark 1.5.

Proposition 7.1: Let ��� /2 and �=log 2−−tan �, furthermore let ��C be any sector
solid angle) not intersecting the positive real axis. Then as 	�	→	 with ���, we have

Tr��� − ��−1 � �− ��−1�
k=0

	

ak�log�− ���−k−1 + �
k=1

	

bk�− ��−k/2,

here ak= �2��k for k=0,1 ,2 , . . . (in particular, a0=1�0).
Proof: Setting �=−x2 with x���C a sector in the right-half plane, it suffices to prove that

s 	x	→	 with x��, we have

Tr��� + x2�−1 � x−2�
k=0

	
�k

2
�log x�−k−1 + x−1�

k=0

	

bkx
−k,

r after multiplication by 2x, we just have to prove that

2x Tr��� + x2�−1 � x−1�
k=1

	

�k�log x�−k−1 + �
k=0

	


kx
−k.
o prove this, we recall from Theorem A.1 that
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2x Tr��� + x2�−1 =
d

dx
log F�ix� .

y Lemma 6.1 �see �6.3�� we know that as 	x	→	 for x��,

d

dx
log F�ix� �

1

x�log x − ��
+ �

k=0

	


kx
−k. �7.1�

inally, the expansion

1

x�log x − ��
=

1

x log x
·

1

�1 − ��log x�−1�
=

1

x log x
�
k=0

	

�k�log x�−k = x−1�
k=0

	

�k�log x�−k−1,

oncludes our result. �

As shown in the proof, for 	x	→	 with x��, where � is a sector in the right-half plane, we
ave

2x Tr��� + x2�−1 =
d

dx
log F�ix� �

1

x�log x − ��
+ �

k=0

	


kx
−k, �7.2�

r with �=−x2, as 	�	→	 with ����C, a sector not intersecting the positive real axis, we have

Tr��� − ��−1 �
1

�− ���log�− �� − 2��
+ �

k=1

	

bk�− ��−k/2. �7.3�

his fact will be used in the next section.

III. THE HEAT TRACE WITH DIRICHLET CONDITIONS AT r=R

To determine the small-time heat asymptotics, we write

Tr�e−t��� =
i

2�
�



e−t� Tr��� − ��−1 d� ,

here  is a counter-clockwise contour in the plane surrounding the eigenvalues of ��; see Fig. 3.
his is the starting point to show Theorem 1.2 �2� for ��. Again we have chosen to present the

esults in a form where the first term has been expanded further. This makes the actual structure of
he small-t expansion more explicit; Theorem 1.2 �2� is contained in Eq. �8.2� of the proof.

Proposition 8.1: As t→0, we have

Tr�e−t��� � �
k=1

	

�k�log t�−k + �
k=0

	


kt
�k−1�/2

FIG. 3. The contour .
ith the �k’s depending on � via
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�k = −
1

k�
I��

0

	

e−x�log x + i� − 2��k dx� .

Proof: The small-time asymptotics are determined by the large-spectral parameter asymptotics
f the resolvent. Now recall from �7.3� that as 	�	→	 with � in a sector not intersecting the
ositive real axis, we have

Tr��� − ��−1 �
1

�− ���log�− �� − 2��
+ �

k=1

	

bk�− ��−k/2.

ince �making the change of variables �� t−1��

� e−t��− ��−k/2 d� = t−1+k/2� e−��− ��−k/2 d�

he series �k=1
	 bk�−��−k/2 gives rise to a small time expansion

�
k=1

	


kt
−1+k/2.

herefore, we just have to analyze the behavior of

i

2�
�



e−t� 1

�− ���log�− �� − 2��
d� .

eforming  to the real line, the integral here is, modulo a term that is a smooth function of t at
=0, equal to

− �
1

	

e−tx 1

�− x��log�− �x + i0�� − 2��
dx + �

1

	

e−tx 1

�− x��log�− �x − i0�� − 2��
dx ,

r after simplification, this sum becomes

�
1

	

e−tx 1

x�log x − i� − 2��
dx − �

1

	

e−tx 1

x�log x + i� − 2��
dx .

The reason we start at x=1 is that 1 / �x�log x± i�−2��� is not integrable near x=0.� Since for any
omplex number z, we have i�z̄−z�=2Iz, we see that modulo a term that is a smooth function of
at t=0,

i

2�
�



e−t� 1

�− ���log�− �� − 2��
d� �

1

�
I��

1

	

e−tx 1

x�log x + i� − 2��
dx� =

1

�
I��t� , �8.1�

here

��t� ª�
1

	

e−tx 1

x�log x + i� − 2��
dx .

n summary, we have proved that

Tr�e−t��� �
1

�
I��t� + �

k=0

	


kt
�k−1�/2, �8.2�

hich is exactly the statement of Theorem 1.2 �2�.

We shall compute the asymptotics of ��t� as t→0. To do so, observe that
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���t� ª − �
1

	

e−tx 1

�log x + i� − 2��
dx .

ow 1/ log x is integrable near x=0, so we can write

���t� = f�t� + g�t� ,

here

f�t� ª −�
0

	

e−tx 1

�log x + i� − 2��
dx, g�t� ª�

0

1

e−tx 1

�log x + i� − 2��
dx .

ote that g�t� is smooth at t=0. We will now determine the asymptotics of f�t� near t=0. To this
nd, we make the change of variables x� t−1x,

f�t� = − t−1�
0

	

e−x 1

�log�x/t� + i� − 2��
dx = t−1�log t�−1�

0

	

e−x 1

1 −
log x + i� − 2�

log t

dx .

ince �1−r�−1=�k=0
N rk+rN+1�1−r�−1 for any N�N, we see that for any N�N,

f�t� = t−1�log t�−1�
k=0

N

�log t�−k�
0

	

e−x�log x + i� − 2��k dx

+ t−1�log t�−1 · �log t�−N−1�
0

	

e−x �log x + i� − 2��N+1

1 −
log x + i� − 2�

log t

dx .

he last integral here is bounded in t as t→0. Since N is arbitrary, it follows that

f�t� � t−1�
k=0

	

�log t�−k−1�
0

	

e−x�log x + i� − 2��k dx .

herefore, since ���t�= f�t�+g�t�, as t→0 we have

���t� � t−1�
k=0

	

�log t�−k−1�
0

	

e−x�log x + i� − 2��k dx + �
k=0

	

kt
k.

ntegrating both sides, using that

� t−1�log t�−1 dt = log	log t	, � t−1�log t�−k−1 dt = −
1

k
�log t�−k for k � 0,

e get

��t� � log	log t	 − �
k=1

	
1

k
�log t�−k�

0

	

e−x�log x + i� − 2��k dx + �
k=0

	

�kt
k.
inally, in view of �8.1�, we see that as t→0,
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i

2�
�



e−t� 1

�− ���log�− �� − 2��
d� �

1

�
I��t� � − �

k=1

	
1

k�
�log t�−kI��

0

	

e−x�log x + i� − 2��k dx�
+ �

k=0

	

�kt
k.

�

X. THE ZETA DETERMINANT

By Proposition 6.3, we have

��s,��� = −
e−2s� sin �s

�
log s + ���s� ,

here ���s� extends from Rs�1/2 to a holomorphic function on C with poles at s=1/2−k for
=0,1 ,2 , . . . . Since e−2s� sin �s /�=s+O�s2�, it follows that

�reg�s,��� ª ��s,��� + s log s

as a derivative at s=0. Therefore, we can define

detreg���� ª exp�− �reg� �0,���� ,

hich is computed in this section.
Recall that 0���� with ��� /2. The idea here is to make the first term in

��s,��� =
sin �s

�
�

	t	

	

x−2s d

dx
log F�ix�dx +

1

2�i
�

t

�−2sF����
F���

d�

egular at s=0, as the second term �being entire� is already regular at s=0. In order to analytically
ontinue the first term, we add and subtract off the leading asymptotics of F�ix�. Thus, recalling
emma 6.1 �see �6.3��

F�ix� � C0�log x − ��x−1/2exR�1 + O�1

x
�� as x → 	 ,

here C0=−1/�2�R, we consider

�
	t	

	

x−2s d

dx
log F�ix�dx = �

	t	

	

x−2s d

dx
log� F�ix�

C0�log x − ��x−1/2exR�dx + �
	t	

	

x−2s d

dx
log�C0�log x

− ��x−1/2exR�dx .

he second integral can be computed explicitly,

�
	t	

	

x−2s d

dx
log�C0�log x − ��x−1/2exR�dx = �

	t	

	

x−2s 1

x�log x − ��
dx −

	t	−2s

4s
+

	t	−2s+1

2s − 1
R .
herefore,
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��s,��� =
sin �s

�
�

	t	

	

x−2s d

dx
log� F�ix�

C0�log x − ��x−1/2exR�dx +
sin �s

�
�

	t	

	

x−2s 1

x�log x − ��
dx

−
sin �s

�

	t	−2s

4s
+

sin �s

�

	t	−2s+1

2s − 1
R +

1

2�i
�

t

�−2sF����
F���

d� .

ence, as �reg�s ,���=��s ,���+s log s, we see that

�reg�s,��� =
sin �s

�
�

	t	

	

x−2s d

dx
log� F�ix�

C0�log x − ��x−1/2exR�dx +
sin �s

�
�

	t	

	

x−2s 1

x�log x − ��
dx

+ s log s −
sin �s

�

	t	−2s

4s
+

sin �s

�

	t	−2s+1

2s − 1
R +

1

2�i
�

t

�−2sF����
F���

d� .

y Lemma 6.2, we have

sin �s

�
�

	t	

	

x−2s 1

x�log x − ��
dx = −

e−2s� sin �s

�
log s −

e−2s� sin �s

�
� + log�2�log	t	 − ��� + O�s��

= − s log s − s� + log�2�log	t	 − ��� + O�s log s�� .

hus,

�reg�s,��� =
sin �s

�
�

	t	

	

x−2s d

dx
log� F�ix�

C0�log x − ��x−1/2exR�dx − s� + log�2�log	t	 − ���

+ O�s2 log s�� −
sin �s

�

	t	−2s

4s
+

sin �s

�

	t	−2s+1

2s − 1
R +

1

2�i
�

t

�−2sF����
F���

d� .

he first integral on the right-hand side is regular at s=0 due to the asymptotics found in Lemma
.1. Therefore, using that

� sin��s�
�

�
s=0

= 0,
d

ds
� sin��s�

�
�

s=0
= 1, � sin��s�

�s
�

s=0
= 1,

d

ds
� sin��s�

�s
�

s=0
= 0,

e see that

�reg� �0,��� = �
	t	

	 d

dx
log� F�ix�

C0�log x − ��x−1/2exR�dx − � + log�2�log	t	 − ���� +
1

2
log	t	 − 	t	R

−
1

�i
�

t

log �
F����
F���

d� = − log�F�i	t	�
C0

� −  − log 2 −
1

�i
�

t

log �
F����
F���

d� .

herefore,

detreg���� = 2eF�t�
C0

· exp� 1

�i
�

t

log �
F����
F���

d�� . �9.1�

his formula is derived, a priori, when t is on the upper half of the imaginary axis. However, the
ight-hand side is a holomorphic function of t�D, where D is the set of complex numbers minus
he negative real axis and the zeros of F���. Therefore �9.1� holds for all t�D. Here, we recall
hat t is any curve in D from t to −t. As before, the trick now is to let t→0 in �9.1�.

First, assume that log R−tan ��0 so that �� has no zero eigenvalue by Theorem 5.2. We
etermine the limit as t→0 of the exponential exp�1/�i��t

log ��F���� /F����d��. Let’s take t

0 in D from the upper half plane as shown in Fig. 4. In view of Fig. 4, it follows that
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exp� 1

�i
�

t

log �
F����
F���

d�� → exp�0� = 1.

ecalling �6.4�, as �→0, we have

F��� � �log R − tan �� + 1
4�2R2�1 + tan � − log R� + O��4� .

n this case F�0�=log R−tan �. In conclusion, taking t→0 in �9.1�, we see that

detreg���� = 2�2�Re�tan � − log R� . �9.2�

econd, assume now that log R−tan �=0 so that as �→0, we have

F��� � 1
4�2R2�1 + O��2�� .

et us set

F̃��� ª
F���
�2 ;

hen F̃��� is nonzero at �=0 with value R2 /4, and

��s,��� =
sin �s

�
�

	t	

	

x−2s d

dx
log F̃�ix�dx +

1

2�i
�

t

�−2s F̃����

F̃���
d� .

y Lemma 6.1 �see �6.2��, we have

F̃�ix� �
C0�log x − ��x−1/2exR

− x2 = C̃0�log x − ��x−5/2exR, where C̃0 =
1

�2�R
.

ow following the argument above used to prove �9.1�, we can show

detreg���� = 2e F̃�t�

C̃0

· exp� 1

�i
�

t

log �
F̃����

F̃���
d�� .

inally, taking t→0 as we did before, yields in the tan �=log R case, the result

detreg���� = 2e R2

4C̃0

=
R2

2
e�2�R =��R

2
eR2.

. GENERAL BOUNDARY CONDITIONS AT r=R

We now prove Theorem 1.2. Let us briefly recall the setup. Let 0��1 ,�2�� with �1�� /2

FIG. 4. The contour t as we let t→0 in D from the upper half plane.
nd set LªL�1
� L�2

. Then as a consequence of Theorem 3.2, we know that
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�L ª �:DL → L2��0,R��

s self-adjoint, where

DL = �� � Dmax���	cos �1c1��� + sin �1c2��� = 0,cos �2���R� + sin �2��R� = 0
 .

he trick to proving Theorem 1.2 is to write the resolvent ��L−��−1 in terms of ���1
−��−1

same self-adjoint condition at r=0 but with the Dirichlet condition at r=R�. To do so, let ��r�
C	��−	 ,	�� be a nondecreasing function such that ��r�=0 for r�1/4 and ��r�=1 for r
3/4. Given any real numbers ��
, we define

��,
�r� ª ���r − ��/�
 − ��� . �10.1�

hen ��,
�r�=0 on a neighborhood of �r��
 and ��,
�r�=1 on a neighborhood of �r�

. We
efine

�1�r� = �R/2,3R/4�r�, �2�r� = 1 − �1�r� ,

�1�r� = �R/4,R/2�r�, �2�r� = 1 − �3R/4,R�r� . �10.2�

et ��ª−�d2 /dr2�− �1/4r2� over �R /4 ,R� with the Dirichlet condition at r=R /4 and the condi-
ion cos �2���R�+sin �2��R�=0 at r=R; note that since r�R /4 over �R /4 ,R�, the operator �� is
true smooth elliptic operator over this interval with no singularities. We define

Q��� ª �1��� − ��−1�1 + �2���1
− ��−1�2. �10.3�

t follows that Q��� maps into the domain DL of �L, and

��L − ��Q��� = ��L − ���1��� − ��−1�1 + ��L − ���2���1
− ��−1�2

= �1��� − ����� − ��−1�1 + �2���1
− �����1

− ��−1�2 + K0���

= �1 + �2 + K0��� = Id + K0��� ,

here

K0��� = ��,�1���� − ��−1�1 + ��,�2����1
− ��−1�2.

ecause the supports of �� ,�i� and �i, where i=1,2, are disjoint, using the explicit formula �A3�
or the resolvent ���1

−��−1 and the properties of the resolvent of ���−��−1 found in the work of
eeley43 it is straightforward to check that K0��� is trace-class operator that vanishes to infinite
rder as 	�	→	 for � in any sector � of C not intersecting the positive real axis; we shall fix such
sector � from now on. In particular, forming the Neumann series, it follows that Id+K0��� is

nvertible for 	�	 large with ��� with

�Id + K0����−1 = Id + K��� ,

here K��� has the same properties as K0���. Thus, multiplying both sides of ��L−��Q���=Id
K0��� by Id+K���, we see that

��L − ��−1 = Q��� + Q���K��� .

herefore, as 	�	→	 for ���, we see that Proposition 7.1 holds also for Tr��L−��−1. Now using
he resolvent asymptotics, we can proceed to copy the proofs of Proposition 8.1 and 6.3. The proof

f Theorem 1.2 is now complete.

                                                                                                            



A

C

A

k
�
4

w
a
s

T

T

w
s

T

T

T

w

043506-24 Kirsten, Loya, and Park J. Math. Phys. 47, 043506 �2006�

                        
CKNOWLEDGMENTS

One of the authors �K.K.� was supported in part by funds from the Baylor University Research
ommittee and by the Max-Planck-Institute for Mathematics in the Sciences �Leipzig, Germany�.

PPENDIX: THE RESOLVENT WITH DIRICHLET CONDITIONS AT r=R

In this Appendix, we compute the trace of the resolvent by explicitly finding the Schwartz
ernel of the Bessel function. To do so, recall that the resolvent kernel of the differential operator

�−�2 with given boundary conditions at r=0 and r=R can be expressed as follows �see Lemma
.1 in Ref. 9 or Ref. 26, Sec. 3.3 for an elementary account�:

− 1

W�p,q��p�r,��q�s,�� for r � s ,

p�s,��q�r,�� for r � s ,
�

here p�r ,�� and q�r ,�� are solutions of ��L−�2��=0 satisfying the given boundary conditions
t r=0 and r=R, respectively and where W�p ,q� is the Wronskian of �p ,q�. Recall that the general
olution to ��L−�2��=0 is

� = c1���r1/2J0��r� + c2���r1/2��

2
Y0��r� − �log � − log 2 + �J0��r�� .

o satisfy the boundary condition at r=0, we must have �see �5.3��:

cos �c1��� + sin �c2��� = 0.

hus, we can take c2���=1 and c1���=−tan �; this gives

p�r,�� = r1/2��

2
Y0��r� − �log � − ��J0��r�� , �A1�

here �=log 2−−tan �. To determine q�r ,�� we use the less fancy formulation of the general
olution:

� = C1r1/2J0��r� + C2r1/2Y0��r� .

o satisfy the Dirichlet condition at r=R, we therefore take

q�r,�� = r1/2�Y0��R�J0��r� − J0��R�Y0��r�� . �A2�

he Wronskian is easily computed using that W�r1/2J0��r� ,r1/2Y0��r��=2/� �see Ref. 45�:

W�p,q� =
�

2
Y0��R�W�r1/2Y0��r�,r1/2J0��r�� + �log � − ��J0��R�W�r1/2J0��r�,r1/2Y0��r��

= − Y0��R� +
2

�
�log � − ��J0��R� .

herefore,

��� − �2�−1�r,s� =
1

F����p�r,��q�s,�� for r � s ,

p�s,��q�r,�� for r � s ,
� �A3�

here p and q are given in �A1� and �A2�, respectively, and where

F��� ª Y0��R� −
2

�log � − ��J0��R� .

�

                                                                                                            



W

W

w
=
e

w

T

P

043506-25 A very unusual zeta function J. Math. Phys. 47, 043506 �2006�

                        
e now need to compute �0
Rp�r ,��q�r ,��dr; that is,

�
0

R

r��

2
Y0��r� − �log � − ��J0��r���Y0��R�J0��r� − J0��R�Y0��r��dr

=
�

2
Y0��R��

0

R

rY0��r�J0��r�dr −
�

2
J0��R��

0

R

rY0��r�2 dr + �log �

− ��J0��R��
0

R

rJ0��r�Y0��r�dr − �log � − ��Y0��R��
0

R

rJ0��r�2 dr . �A4�

e next use the indefinite integrals

� rJ0��r�2 dr =
r2

2
�J0��r�2 + J1��r�2� ,

� rY0��r�2 dr =
r2

2
�Y0��r�2 + Y1��r�2� ,

� rY0��r�J0��r�dr =
r2

2
�Y0��r�J0��r� + Y1��r�J1��r�� ,

hich we need to evaluate between r=0 and r=R. Recalling �5.2�, zJ0�z� and zJ1�z� vanish at z
0. Also, by �5.1� zY0�z� also vanishes at z=0. However, it is a remarkable fact, which may be
asily overlooked, that since

�

2
Y1�z� = −

1

z
J0�z� + �log z − log 2 + �J1�z� −

1

2
z�

k=1

	 kHk�−
1

4
z2�k−1

�k!�2 ,

here we used that Y1�z�=−Y0��z� and J1�z�=−J0��z� from Ref. 1 p. 361, we have

	�zY1�z��	z=0 = −
2

�
Þ 	�z2Y1�z�2�	z=0 =

4

�2 .

herefore,

�
0

R

rJ0��r�2 dr =
R2

2
�J0��R�2 + J1��R�2�

�
0

R

rY0��r�2 dr =
R2

2
�Y0��R�2 + Y1��R�2� −

1

2
�	�r2Y1��r�2�	r=0�

=
R2

2
�Y0��R�2 + Y1��R�2� −

2

�2�2

�
0

R

rY0��r�J0��r�dr =
R2

2
�Y0��R�J0��R� + Y1��R�J1��R�� .
lugging these integrals into �A4� and using the identity �Ref. 1, p. 360�
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J1�z�Y0�z� − J0�z�Y1�z� =
2

�z

o simplify the expression obtained, we eventually arrive that

�
0

R

p�r,��q�r,��dr =
R

2�
�Y1��R� −

2

�
�log � − ��J1��R�� +

1

��2J0��R�

=
R

2�
�Y1��R� −

2

�
�log � − ��J1��R� +

2

��R
J0��R�� .

sing the fact that J0��z�=−J1�z� and Y0��z�=−Y1�z�, we can write this as

�
0

R

p�r,��q�r,��dr = −
1

2�

d

d�
�Y0��R� −

2

�
�log � − ��J0��R�� = −

1

2�

d

d�
F��� ,

here we recall that

F��� ª Y0��R� −
2

�
�log � − ��J0��R� .

ince �see �A3��

��� − �2�−1�r,s� =
1

F����p�r,��q�s,�� for r � s ,

p�s,��q�r,�� for r � s ,
�

e have proved the following theorem.
Theorem A.1: With F���ªY0��R�− �2/���log �−��J0��R�, we have

Tr��� − �2�−1 = −
1

2�

1

F���
d

d�
F��� = −

1

2�

d

d�
log F��� .

This theorem has been used to analyze the zeta function, resolvent, and heat kernel of �� in
ecs. VI–VIII.
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Cayley-Dickson doubling procedure is used to construct the root systems of some
celebrated Lie algebras in terms of the integer elements of the division algebras of
real numbers, complex numbers, quaternions, and octonions. Starting with the roots
and weights of SU�2� expressed as the real numbers one can construct the root
systems of the Lie algebras of SO�4� , SP�2��SO�5� , SO�8� , SO�9� , F4 and E8

in terms of the discrete elements of the division algebras. The roots themselves
display the groups structures besides the octonionic roots of E8 which form a closed
octonion algebra. The automorphism group Aut�F4� of the Dynkin diagram of F4 of
order 2304, the largest crystallographic group in four-dimensional Euclidean space,
is realized as the direct product of two binary octahedral group of quaternions
preserving the quaternionic root system of F4. The Weyl groups of many Lie
algebras, such as, G2 , SO�7� , SO�8� , SO�9� , SU�3�XSU�3�, and SP�3��SU�2�
have been constructed as the subgroups of Aut�F4�. We have also classified the
other non-parabolic subgroups of Aut�F4� which are not Weyl groups. Two sub-
groups of orders 192 with different conjugacy classes occur as maximal subgroups
in the finite subgroups of the Lie group G2 of orders 12096 and 1344 and proves to
be useful in their constructions. The triality of SO�8� manifesting itself as the cyclic
symmetry of the quaternionic imaginary units e1 , e2 , e3 is used to show that SO�7�
and SO�9� can be embedded, triply symmetric way in SO�8� and F4 in
respectively. © 2006 American Institute of Physics. �DOI: 10.1063/1.2190334�

. INTRODUCTION

There are a few celebrated Lie algebras which seem to be playing important roles in under-
tanding the underlying symmetries of the unified theory of all interactions. The most popular ones
re the exceptional Lie groups G2, F4, E6, E7, and E8 and the related groups.1 The groups Spin7
nd G2 are proposed as the holonomy groups for the compactification of the M-theory from 11 to
our dimensional space-time.2 It is also well known that two orthogonal groups SO�8� and SO�9�
re the little groups of the massless particles of string theories in 10-dimensions and the M-theory
n 11-dimensions, respectively. The fact that SO�9� can be embedded in the exceptional Lie group

4 in a triply symmetric way and the noncompact F4�−25� can be embedded in the Lorenz group
O�25,1� indicates the importance of the exceptional group F4.3 The largest exceptional group E8

hich had been suggested as the unified theory of the electroweak and strong interactions with
hree generations of lepton-quark families4 naturally occurred as the gauge symmetry of the E8

E8 heterotic string theory.5 It has many novel mathematical aspects6 which has not been ex-
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loited in physics. It was known that a non-compact version of E7 manifests itself as a global
ymmetry of the 11-dimensional supergravity.7 Some of its maximal subgroups show themselves
s local symmetries.8 The E6 has been suggested as a unified theory of electroweak and strong
nteractions.9

The Weyl groups of these groups are also important for the invariants of the Lie groups can be
educed using the related Weyl groups. The Weyl groups of the exceptional Lie groups F4, E6, E7,
nd E8 correspond to some finite subgroups of the Lie groups of O�4�, O�6�, O�7�, and O�8�,
espectively.10

It has been shown in some details that the finite subgroups of O�4� can be classified as direct
roducts of finite subgroups of quaternions,11 isomorphic to the finite subgroups of SU�2�, which
s the double cover of SO�3�. Therefore the relevant Weyl groups of the Lie groups F4 , SO�9�,
nd SO�8� correspond to some finite subgroups of O�4�.12 Similarly, the Weyl groups of some
ank-3 Lie algebras can be obtained from the finite subgroups of O�3�. Interestingly enough, the
elevant root systems can be represented as discrete quaternions and the Weyl groups can be
ealized as the left-right actions of the quaternions on the root systems. When one considers the
nite subgroups of O�8� it is natural to encounter with the discrete octonions which represent the
oot system of E8 where the root system of E7 is described by imaginary octonions.13 The auto-
orphism group of octonionionic root system of E7 turns out to be a finite subgroup of G2 of order

2096.14 In what follows we will restrict ourselves to the quaternionic root system of

4 , SO�9� , SO�8� , SO�7� , SP�3� and construct explicitly their Weyl groups as finite subgroups
f O�4�. The largest group of interest here is the Aut�F4� of order 2304=48�48 which is the
irect product of the binary octahedral group with itself.15 We follow a chain of decomposition of
ut�F4� into its relevant subgroups, some of which are maximal subgroups in the finite subgroups
f G2 of orders 12096 and 1344.16

The paper is organized as follows. In Sec. II we start with the scaled roots ±1 0 and the
eights ± 1

2 of SU�2� and using the Cayley-Dickson doubling procedure we construct the roots of
O�4� and SP�2��SO�5� in terms of complex numbers. Further doubling of the roots of SP�2�
SO�5� leads to the quaternionic roots of SO�8�.13,16 The eight-dimensional vector and spinor

epresentations of Spin-8 constitute the short roots of F4. Doubling of two sets of quaternionic
oots of F4 leads to the octonionic roots of E8. The triality of SO�8� is then coded in the cyclic
ymmetry of the quaternionic imaginary units. In Sec. III we introduce the finite subgroups of
U�2� in terms of quaternions and explain their geometric properties. We explain how to construct

he Aut�F4� and the Weyl groups of F4 , SO�9�, and SO�8�.15In Sec. IV we construct the root
ystems of SO�7� and G2 by folding the Coxeter-Dynkin diagram of SO�8�,17 which displays the
hreefold embeddings of SO�7� into SO�8�. The Weyl groups of SO�7� , G2, and SP�3� are con-
tructed in terms of quaternions. In Sec. V we discuss the subgroup chains of Aut�F4� and find out
he explicit expressions of the groups down to the groups of order 192. A particular emphasis is
iven to two groups of orders 192 since they appear as the maximal subgroups in the finite
ubgroups of G2 of orders 12096 and 1344. Finally in Sec. VI we further elaborate the geometric
spects of the symmetries discussed in the preceding sections.

I. ROOT SYSTEMS WITH THE CAYLEY-DICKSON DOUBLING PROCEDURE

The Cayley-Dickson doubling is a procedure to build the elements of division algebras start-
ng with the real numbers. Let us denote by p , q , r , s the elements of a division algebra other
han the octonions. Then the pairs �p ,q� and �r ,s� with the multiplication rule

�p,q��r,s� = �pr − sq̄,rq + p̄s� �1�

onstitute the elements of a division algebra in higher dimension. The celebrated Hurwitz’s
heorem18 states that there are only four division algebras, namely, real numbers, complex num-
ers, quaternions, and octonions. Starting with the complex numbers at every higher level of
ivision algebras one introduces one complex number, say, e1, e2, and e7 which anticommute with

2 2 2
ach other and satisfy the relation e1=e2=e7=−1. Doubling of the real numbers constitutes the
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omplex numbers, two sets of complex numbers define the quaternions and finally a pair of
uaternions defines the octonions under the definition �1�. Let us revise the work of Ref. 13 by
tarting with the roots ±1 0 and the weights ± 1

2 of SU�2�. A pair of set ±1 0 leads to the roots of
O�4�:

�±1,0� = ± 1,�0, ± 1� = ± e1�we use e1 for the imaginary number i� . �2�

he nonzero roots ±1 ±e1 of SO�4� form a cyclic group of order 4. The weights of the spinor
epresentation �2,2� of SO�4� can be taken as

�± 1
2 , ± 1

2� = 1
2 �±1 ± e1� . �3�

he roots in �2� and the weights in �3� constitute the scaled roots of SP�2��SO�5�,

SP�2� � SO�5�: ± 1, ± e1, 1
2 �±1 ± e1� . �4�

When the short roots are scaled to the unit norm then the roots of SP�2� form a cyclic group
f order 8. A nontrivial structure will arise when two sets of the roots of SP�2� are paired as
SP�2� ,SP�2�� where the long roots match with the zero roots while the short roots match with the
hort roots leading to the quaternionic roots of SO�8�:

T:�±1, ± e1, ± e2, ± e3, 1
2 �±1 ± e1 ± e2 ± e3�� , �5�

here we have used e3e1=−e1e3=e2. If we include the pairing of the short roots with the zero
oots we obtain

V1�:� 1
2 �±1 ± e1�,0� = 1

2 �±1 ± e1�,�0, 1
2 �±1 ± e1�� = 1

2 �±e2 ± e3� . �6�

These are the weights of the eight-dimensional representation of SO�8� and together with the
oots in �5� they represent the roots of SO�9�. The cyclic symmetry of the quaternionic imaginary
nits would lead to the weights of the two eight-dimensional spinor representations of SO�8�
hich represent the weights of the 16-dimensional spinor representation of SO�9�:

V2�:� 1
2 �±1 ± e2�, 1

2 �±e3 ± e1�� ,

�7�
V3�:� 1

2 �±1 ± e3�, 1
2 �±e1 ± e2�� .

he set of quaternions in �5�–�7� constitutes the scaled roots of F4. A further doubling the set of
oots of F4 will lead to the octonionic roots of E8,13

�T,0� = T, �0,T� = e7T ,

�V1�,V1�� = V1� + e7V1�,

�8�
�V2�,V3�� = V2� + e7V3�,

�V3�,V2�� = V3� + e7V2�,

here one can define e4=e7e1, e5=e7e2, e6=e7e3. We note that when the roots in �6� and �7� are
ultiplied by �2 to make the norm 1 then the 48 sets of quaternions are the elements of the binary

ctahedral group O of SU�2� where T represents the binary tetrahedral subgroup of order 24.

II. BINARY OCTAHEDRAL GROUP AND THE Aut„F4…

Some of the material of this section have been discussed in Ref. 12. The finite subgroups of
O�3� are well known: icosahedral group of order 60, octahedral group of order 24, tetrahedral

19
roup of order 12, and dihedral and cyclic groups of various orders. Their double covers are the
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nite subgroups of quaternions which are related to the ADE series of the Lie algebras through the
cKay correspondence.20 Our interests here solely are constrained to the binary octahedral group
hose direct product with itself is isomorphic to the Aut�F4� which can be realized as the left and

ight actions of the quaternionic elements on the quaternionic roots of F4. The root system of F4

as very interesting geometrical structures which has not been discussed in the literature. We
lassify the elements of the binary octahedral group as sets of the hyperoctahedra in four
imensions,21

T:

V0 = �±1, ± e1, ± e2, ± e3�
V+ = � 1

2 ± 1 ± e1 ± e2 ± e3�, even number of �+ � signs

V− = V+ = � 1
2 ± 1 ± e1 ± e2 ± e3�, odd number of �+ � signs,

�9�

here V+ is the quaternionic conjugate of V+.

T�:

V1 = 	 1
�2

�±1 ± e1�,
1
�2

�±e2 ± e3�

V2 = 	 1

�2
�±1 ± e2�,

1
�2

�±e3 ± e1�

V3 = 	 1

�2
�±1 ± e3�,

1
�2

�±e1 ± e2�

�10�

O:T � T�. �11�

Here each of V0, V+, and V− represents the vertices of a hyperoctahedron in four-dimensions
nd any two hyperoctahedra form a hypercube in four dimensions with 16 vertices. The set of
uaternions T in �9� not only constitute the nonzero roots of SO�8� but also represent a polytope
,4 ,5 called 24-cell.21 The set of quaternions in T� are the duals of T; consequently any Vi�i
1,2 ,3� is a hyperoctahedron and any two hyperoctahedra form the vertices of a hypercube. We
ive the multiplication table of these sets of quaternions in Table I to understand the structure of
he binary octahedral group. Here V0 is the quaternion group and forms an invariant subgroup both
n T and O.

A general element of O�4��SU�2��SU�2� can be defined as follows. Denote by p ,q the
uaternions of unit norm acting on an arbitrary quaternion r=r0+r1e1+r2e2+r3e3,

�29�r → prq:�p,q� , �12�

r → pr̄q:�p,q�*, �13�

here r̄ is the quaternion conjugate r̄=r0−r1e1−r2e2−r3e3. For arbitrary quaternions p ,q with unit
orm the elements �p ,q� and �p ,q�* form a six parameter group leaving the norm rr̄= r̄r invariant.

*

TABLE I. Multiplication table of the binary octahedral group.

V0 V+ V− V1 V2 V3

V0 V0 V+ V− V1 V2 V3

V+ V+ V− V0 V3 V1 V2

V− V− V0 V+ V2 V3 V1

V1 V1 V2 V3 V0 V+ V−

V2 V2 V3 V1 V− V0 V+

V3 V3 V1 V2 V+ V− V0
hen written in terms of matrices the group elements �p ,q� and �p ,q� have determinants +1 and
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1, respectively. Therefore the elements �p ,q� form a subgroup SO�4��SU�2��SU�2� /Z2 of
�4�. In Ref. 12 we have proven that the Weyl group W�F4� can be compactly written as the union
f elements,

W�F4� = �T,T� � �T�,T�� � �T,T�*
� �T�,T��*. �14�

he automorphism group Aut�F4� is the semidirect product of the Weyl group W�F4� with the Z2

ymmetry of the Coxeter-Dynkin diagram of F4,

�30�Aut�F4� � �O,O� � �O,O�* � W�F4�:Z2. �15�

he generators of Aut�F4� can be obtained from the Coxeter-Dynkin diagram of F4 where the
imple roots are given in terms of scaled quaternions �Fig. 1�.

The regular simple roots �i are related to �i� by �i=�2�i��i=1,2 ,3 ,4�. The Aut�F4� is gen-
rated by the elements

��1�,− �1��
*,��2�,− �2��

*,��3,− �3�*,��4,− �4�*,� 1
�2

�e2 + e3�,− e2 . �16�

The first four generators in �16� represent the reflections in the roots �i�i=1,2 ,3 ,4� and
enerate the Weyl group W�F4� and the last term stands for the diagram symmetry of F4 which
ransforms, by conjugation, �1�↔�4� and �2�↔�3�. An extended Coxeter-Dynkin diagram of F4 can
e used to obtain the Coxeter-Dynkin diagrams of its maximal Lie algebras. We will discuss all
tarting with SO�9�.

. The parabolic subgroups of F4

. SO„9…

We have shown in Ref. 12 that the Weyl group W�SO�9�� can be represented by the set of
roup elements

�V0,V0�,�V+,V+�,�V−,V−�,�V0,V0�*,�V+,V+�*,�V−,V−�*, �17�

�V1,V1�,�V2,V3�,�V3,V2�,�V1,V1�*,�V2,V3�*,�V3,V2�*. �18�

This is a group of order 384. The W�SO�9�� can be embedded in the W�F4� triply symmetric
ay by permuting the quaternionic imaginary units e1 , e2 , e3 in the cyclic order. It is an inner

utomorphism of W�F4� which replaces the elements in �18� by the corresponding elements where
he indices 1,2,3 are permuted in the cyclic order. This permutation of the indices leaves the set of
lements in �17� invariant as expected. Actually the set of elements in �17� constitute the elements
f the Weyl group W�SO�8��. The Weyl group W�SO�9�� has a very interesting geometrical aspect;
t is the largest symmetry preserving the four-dimensional hyperoctahedron. One can show that the
roup elements in �17� and �18� leave the set of elements in V1 invariant which is one of those six
yperoctahedra of the 48 roots of F4. This must be expected anyway because the set of roots

�

FIG. 1. The Coxeter-Dynkin diagram of F4.
1 / 2 are the short roots of SO�9� and must be rotated to each other by the elements of W�SO�9��.
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ince the weights of the 16-dimensional spinor representation are represented by the quaternions
1/�2��V2+V3� corresponding to the vertices of a cube in four-dimensions they are also preserved
y the elements of W�SO�9�� in �14�. Embedding W�SO�9�� in Aut�F4� can be made with a sixfold
yclic symmetry under the conjugation, say, by �V+ ,V1�W�SO�9���V− ,V1� where �V+ ,V1�6

�V0 ,V0�. This leads to six conjugate representations of W�SO�9�� in Aut�F4� in each of which
ne of the six hyperoctahedra V0 ,V± ,Vi�i=1,2 ,3� is left invariant by W�SO�9��. There are other
ubgroups of Aut�F4� of order 384 not isomorphic to the Weyl group W�SO�9��. We will discuss
hem in Sec. V. Now we discuss the Weyl group of the maximal subalgebra SU�2��SP�3� of F4.

. SU„2…ÃSP„3…

The algebra SU�2��SP�3� can be represented by the Coxeter-Dynkin diagram shown in Fig.
.

The reflection generators on the simple roots are represented by

r0 = �1,− 1�*, r1 = �e3,− e3�*, r2 = � 1
�2

�e2 − e3�,−
1
�2

�e2 − e3�*

,

r3 = � 1
�2

�e1 − e2�,−
1
�2

�e1 − e2�*

�19�

nd will generate the set of roots

SU�2� SP�3�
±1 ±e1, ± e2, ± e3

1
2 �±e1 ± e2�
1
2 �±e2 ± e3�
1
2 �±e3 ± e1� .

�20�

The long roots ±e1 , ±e2 , ±e3 of SP�3� form the vertices of an octahedron. Therefore the
eyl group W�SP�3�� is the symmetry of the octahedron in three-dimensions. Since the product of

wo reflections is a rotation around some axis the proper rotation subgroup of W�SP�3�� is gen-
rated by

R = r1r2 = � 1
�2

�1 − e1�,
1
�2

�1 + e1�,S = r2r3 = �t̄,t� �21�

ith t= 1
2 �1+e1+e2+e3�. Here the generators satisfy the generation relations of an octahedral

roup23

R4 = S3 = �RS�2 = �1,1� . �22�

It is one of the finite subgroups of SO�3� isomorphic to the symmetric group S4. Another
enerator �r1r2r3�3= �1,1�* commutes with the generators R and S so that the maximal group of the
P�3� roots is the group W�SP�3���S4�Z2, a group of order 48. The Z2 group of W�SU�2�� is
enerated by �1,−1�* which commutes with the generators of W�SP�3��. Therefore the Weyl group
�SU�2���W�SP�3�� is isomorphic to the group S4�Z2

2 of order 96. The group elements are
epresented by the pair of quaternions

¯ ¯ ¯ * ¯

FIG. 2. The Coxeter-Dynkin diagram of SU�2��SP�3�.
�p, ± p�,�p�, ± p��,�p, ± p� ,�p�, ± p��;p � T,p� � T�. �23�
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Since the vertices of the octahedron are represented by the imaginary quaternions
e1 , ±e2 , ±e3 one can naturally ask the question: what is the maximal group which preserves the
uaternion algebra of the set of quaternions ±e1 , ±e2 , ±e3? It is well known that when p is the unit
uaternion with nonzero real component then the transformation ei�= peip̄ is the only transforma-
ion which preserves the quaternion algebra and is isomorphic to the group SO�3�. This implies
hat the finite subgroup of SO�3� which preserves the set of quaternions ±e1 , ±e2 , ±e3 is the
ctahedral group represented by the elements �p , p̄� , �p� , p̄� which is isomorphic to the symmetric
roup S4.

. SU„3…ÃSU„3…

From the extended Coxeter-Dynkin diagram of F4 we obtain the Coxeter-Dynkin diagram of
U�3��SU�3� �Fig. 3�.

Note that one of the SU�3� is represented by the short roots. The nonzero roots of SU�3�
SU�3� are given by

±1, ± t, ± t̄, ± s1�, ± s2�, ± s3�, �24�

here s3�= 1
2 �e3−e1�. Using the standard technique one can form the elements of W�SU�3��

W�SU�3�� of order 36 which is the direct product of two symmetric groups S3. A further
ymmetry is the diagram automorphism of SU�3��SU�3� which can be made by an element c
�1, �1/�2��e1−e2�� which permutes the simple roots and preserve the Cartan matrix of the
lgebra SU�3��SU�3�. An extension of the Weyl group W�SU�3���W�SU�3�� by the element
= �1, �1/�2��e1−e2�� leads to, up to conjugation, the group Aut�SU�3��SU�3����W�SU�3��
W�SU�3��� :Z4 �Ref. 24� where Z4 is the cyclic group of order 4 generated by the element c. The

et of elements can be represented by �p ,q� � �p ,q�* where p ,q take arbitrary values from the set
f scaled roots p ,q� �±1, ± t , ± t̄ , ±s1 , ±s2 , ±s3� where si=�2si��i=1,2 ,3�.

V. SO„8… AND ITS SUBGROUPS

The SO�8� algebra plays a special role when embedding in F4 since the long roots of F4 are
he roots of SO�8�. Its Coxeter-Dynkin diagram illustrates the triality in terms of the cyclic
ymmetry of the quaternionic imaginary units.

The Weyl group W�SO�8�� is represented by the set of elements �17� and the Aut�S�O�8�� is
somorphic to the Weyl group W�F4�. Since in Ref. 12 we have worked SO�8� in some detail here
e will deal with its two special subgroups SO�7� and G2 �Fig. 4�.

. SO„7…

The SO�7� diagram can be obtained from that of SO�8� by folding two branches and averag-
ng the corresponding simple roots.17

Denote by the reflection generators r1 ,r2 ,r3 of SO�7� �Fig. 5� corresponding to the simple
oots e1, t̄= 1

2 �1−e1−e2−e3�, 1
2 �e2+e3�, respectively, which can be expressed as

FIG. 3. The Coxeter-Dynkin diagram of SU�3��SU�3�. Here t̄= 1
2 �1−e1−e2−e3�, s1�= 1

2 �e1−e2�, and s2�= 1
2 �e2−e3�.
FIG. 4. The Coxeter-Dynkin diagram of SO�8�.
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r1 = �e1,− e1�*, r2 = �t̄,− t̄�*, r3 = � 1
�2

�e2 + e3�,−
1
�2

�e2 + e3�*

. �25�

One can also express r3 in terms of the simple roots of SO�8� as the product of reflection
enerators corresponding to e2 and e3 rather than the one in �25�. That would give us r3= �e2 ,
e2�*�e3 ,−e3�*= �e1 ,−e1� which gives the same result when acting on the roots of SO�7�. If we
efine d1= �1/�2��e2−e3� then we can write the W�SO�7�� generators as

r1 = �e1,− d1ē1d̄1�*, r2 = �t̄,− d1td̄1�*, r3 = �e1,− d1ē1d̄1� . �26�

he generators a=r1r2 and b= �r1r2r3�2 satisfy the generation relation

a3 = b3 = �ab�2 = �1,1� �27�

hich is the generation relation of the tedrahedral group of order 12 isomorphic to the group A4 of
he even permutations of four letters.23 The group elements can be written as

�p,d1p̄d̄1�,p � T . �28�

One can check that the elements

�1,− 1�,�1, ± 1�* �29�

reserve the simple roots by conjugation. This means that the tetrahedral group in �28� can be
xtended by the elements in �29� so that the whole set of elements will read

�p, ± d1p̄d̄1�,�p, ± d1p̄d̄1�*. �30�

e note that the set of elements

�p,d1p̄d̄1�,�p,d1p̄d̄1�* �31�

orm a group isomorphic to the octahedral group S4. The element �1,−1� commutes with the
lements of S4 in �31�. Therefore the set of elements represent a group isomorphic to the group

4�Z2 which is the Weyl group W�SO�7�� of order 48. This is the group isomorphic to W�SP�3��
epresented by �30� and �31�. We could have different foldings of SO�8� diagram other than the
ne shown in Fig. 5. This would lead to replacing the quaternion d1 in �30� by d2= 1

2 �e3−e1� and

3= 1
2 �e1−e2�. By replacing d1 by d2 and d3 in �30� we obtain three different embeddings of SO�7�

n SO�8�. When we stick to the representation of W�SO�7�� in �30� we can show that the 24
onzero roots of SO�8� can be decomposed as

±1, ± e1,e2,− e3, 1
2 �±1 ± e1 ± �e2 + e3��, 1

2 �±1 ± e1 + �e2 − e3�� �32�

hich represent 18 nonzero roots of SO�7� and the remaining ones are the six nonzero weights of
he seven-dimensional representation of SO�7�,

− e2,e3, 1
2 �±1 ± e1 − �e2 − e3�� . �33�

hree different embeddings of SO�7� in SO�8� can be realized by permuting the indices �1,2 ,3�

FIG. 5. The Coxeter-Dynkin diagram of SO�7�.
n �32� and �33� in the cyclic order.

                                                                                                            



B

b

b
=
o
w

e
S

V

o
d
s
m
d
c
e
c
c
e
d
t
s
w

A

1

q

N

043507-9 Quaternionic root systems J. Math. Phys. 47, 043507 �2006�

                        
. G2

The Coxeter-Dynkin diagram of G2 can be obtained from that of SO�8� by folding three
ranches and taking the average of the outer simple roots17 �Fig. 6�.

Let us denote by I= �1/�3��e1+e2+e3� with I2=−1. The simple roots scaled by �2 are given
y �1= 1

2 �1−�3I�=e−��/3�I, �2= I /�3 and the reflection generators read r1= �e−��/3�I ,−e−�I/3�*, r2

�I ,−I�*. The group W�G2� generated by r1 and r2 is the dihedral group D6 of order 12. One can
btain the 12 nonzero roots of G2 by acting the generators r1 and r2 on the simple roots. The
eights of the seven-dimensional representation can be obtained from the highest weight�2

3e��/6�I.
A remark is in order. We can summarize the discussion in this section that the SO�7� can be

mbedded in SO�8� triply symmetric way and the G2 takes place in the intersection of these three
O�7� in SO�8� �Fig. 7�.25

. NONPARABOLIC SUBGROUPS OF Aut„F4…

So far we have discussed the parabolic subgroups of Aut�F4� related with the Lie subalgebras
f F4. As we have mentioned before the Aut�F4� is the largest crystallographic group in four
imensions and deserves further analysis regarding its chain decomposition through its maximal
ubgroups which could be useful for the crystallography in four dimensions. First we discuss the
aximal subgroups of Aut�F4�. We will give the group elements in terms of quaternions and

istinguish the groups by their orders and conjugacy classes. The group orders and conjugacy
lasses are not sufficient to understand the group structures. Since we will write down the group
lements explicitly in terms of quaternions the distinguishing the groups of the same order will not
reate a problem. Nevertheless we will denote a group of interest with its order together with its
onjugacy classes in a parentheses and display the group elements in terms of quaternions. For
xample, the group Aut�F4�, being of order 2304 with 29 conjugacy classes will be shortly
enoted by 2304�29� and its quaternionic representation will follow the group notation. We know
hat this is not a proper group notation; it should rather have a decomposition involving invariant
ubgroups. Since we denote each group by their elements the order with the conjugacy classes
ould be sufficient.

. Maximal subgroups of Aut„F4…

We have three maximal subgroups of Aut�F4� of order 1152.

. W„F4… of order 1152„25…

It is a subgroup of O�4�. We have discussed this group in details which was represented by the
uaternions in �14�,

W�F4� = �T,T� � �T�,T�� � �T,T�*
� �T�,T��*.

ote that the group W�F4� is invariant under the transformation T↔T�.

FIG. 6. The Coxeter-Dynkin diagram of G2.
FIG. 7. Threefold embedding of SO�7� in SO�8�.
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. The group 1152„19…

It is a subgroup of O�4� and its quaternionic structure can be written as follows:

�T,T� � �T�,T�� � �T,T��*
� �T�,T�*. �34�

e know that the first two sets of elements form a subgroup of order 576. One can show that the
et of elements in �30� is closed by noting that

�T,T��*�T,T��* = �T�,T�*�T�,T�* = �T,T�, �T,T��*�T�,T�* = �T�,T�� . �35�

t is clear that it is a maximal subgroup of Aut�F4� and will be left invariant under the transfor-
ation T↔T�.

. The group 1152„34…

This is the largest crystallographic group in four dimensions with proper rotations. That means
t is a finite subgroup of SO�4�. Naturally, it involves only nonstar elements of Aut�F4�

�T,T� � �T�,T�� � �T,T�� � �T�,T� . �36�

Its closure property is straightforward. Some of its subgroups of order 192 will be of our
pecial interest for they appear as maximal subgroups in some of the finite subgroups of the Lie
roup G2.26 It is also invariant under the transformation T↔T�.

Now we discuss, in turn, the maximal subgroups classified under the subclasses A, B, C.

. The maximal subgroups of W„F4…

Its parabolic subgroups have been already discussed in Sec. IV. Besides those groups there are
wo maximal subgroups of order 576 with the conjugacy classes 20 and 23. The group 576�23� is
he extension of the Weyl group W�SO�8�� by a cyclic symmetry of the simple roots represented
y imaginary quaternions. The group 576�20� is also a maximal subgroup of the groups 1152�19�
nd 1152�34�.

. The group 576„23…

It is the extension of the group W�SO�8�� by a cyclic group of order 3 and its elements can be
ritten as

�T,T� � �T,T�* � �T,T� � �T�,T��*. �37�

t can be shown that the group can be written as a semidirect product of the Weyl group of SO�8�
nd the cyclic group Z3,

W�SO�8��:Z3,

here the cyclic symmetry permutes the outer simple roots of SO�8�.

. The group 576„20…

It has the structure

�T,T� � �T�,T�� . �38�

It is also a maximal subgroup in the crystallographic subgroup of SO�4� denoted by 1152�34�
nd the group 1152�19�. No doubt that the elements in �38� closes under multiplication. We simply
ote the nontrivial case, namely,

2
�T�,T�� = �T,T� .
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. The maximal subgroups of the group 1152„19…

. The group 576„20…

This group is just discussed in the above.

. The group 192„17…

This group occurs also in the subgroup decomposition of the group 1152�34� and will be
iscussed in the following.

. The maximal subgroups of the group 1152„34…

. The group 576„29…

It has the structure

�T,T� � �T,T�� � �T,T� � �T�,T� . �39�

Since the group 576�29� is an index 2 group in the group 1152�34� it should have two
onjugates subgroups which is reflected in the isomorphism above.

. The group 384„31…

We have the following structure of the group:

�V0,T� � �V1,T� � �V0,T�� � �V1,T�� . �40�

This is certainly a maximal subgroup of the group 1152�34� because V0 � V1 form a maximal
ubgroup of order 16 in the binary octahedral group T � T�. It can be embedded in the group
152�34� triply symmetric way by replacing V1 by V2 and V3 in �40� in a similar manner where
�SO�9�� is embedded in W�F4�.

. The group 288„24…

When we examine the parent group �O ,O� we know that the binary octahedral group O has
any maximal subgroups, one of which is the dicyclic group �binary dihedral group� of order 12.

t can be generated by two elements a= 1
2 �1−e1−e2−e3� and b= �1/�2��e1−e2� where a6=b4=1

atisfying the generation relation banb̄= ān�n=1, . . . ,6�. The group can be denoted by 2D3 where

3 is the dihedral group of order 6. When 2D3 acts on the left and the binary octahedral group acts
n the right we obtain the group 288�24� which reads in our notation

�2D3,O� . �41�

e can further continue to determine the maximal subgroups of the groups discussed in the series
, B, and C.

. The maximal subgroups of W„SO„8…… :Z3

A1.1. The group 288�25�:This is the group �T ,T� occurring in many groups discussed above.
A1.2. The group 192�13��W�SO�8��: It has been discussed before and shown to be the Weyl

roup of SO�8�

�V0,V0� � �V+,V+� � �V−,V−� � �V0,V0�*
� �V+,V+�*

� �V−,V−�* �42�

hich is invariant under the cyclic symmetry Z3. The action of the group elements on the hyper-
ctahedra V0 , V+ , V− are as follows:

�i� �V0 ,V0� leaves each hyperoctahedra invariant.
�ii� �V+ ,V+� permutes the three octahedra in the cycylic order and �V− ,V−� does the same in
the reverse order.
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�iii� The element �Vi ,Vi�*�i=0, + ,−� leaves the hyperoctahedron Vi invariant but inter-
changes the other two. These properties indicate that the �V0 ,V0� form an invariant
subgroup where the factor group is the symmetric group of order 6,

W�SO�8��
�V0,V0�

� S3.

The group 192(16): It can be represented in three equivalent ways and can be proven that they
re the conjugate groups

�i� �V0 ,V0� � �V+ ,V−� � �V− ,V+� � �V0 ,V0�* � �V+ ,V−�* � �V− ,V+�*,
�ii� �V0 ,V0� � �V+ ,V−� � �V− ,V+� � �V+ ,V+�* � �V− ,V0�* � �V0 ,V−�*,
�iii� �V0 ,V0� � �V+ ,V−� � �V− ,V+� � �V− ,V−�* � �V+ ,V0�* � �V0 ,V+�*.

Interestingly enough that each of these conjugate groups leaves one of the hyperoctahedra
nvariant. One can easily show that the groups in �i�, �ii�, and �iii� leave V0, V+, and V− invariant,
espectively. Embedding of the group 192�16� in the group W�SO�8�� :Z3 follows the cyclic sym-
etry of quaternionic units e1 ,e2 ,e3.

. The maximal subgroups of the group 576„20…

B1.1. The group 288(25): It has been discussed in Sec. Vd4a.
B1.2. The group 288(24): This group was discussed in Sec. Vd3a.
B1.3. The group 192��13�: It has the same order and the same number of conjugacy classes

ith W�SO�8�� but not isomorphic to it. It has the structure

�V0,V0� � �V+,V+� � �V−,V−� � �V1,V1� � �V2,V3� � �V3,V2� . �43�

An important difference is that W�SO�8�� is a subgroup of O�4� whereas this group is a
ubgroup of SO�4�. The group 192��13� has an index 6 in the group 1152�34�. Its conjugate groups
an be obtained by the conjugation of the element �V+ ,V1� which permutes the six hyperoctahedra
n the cyclic order V0→V3→V−→V1→V+→V2→V0. This would yield the six conjugate repre-
entations of �43�. This group turns out to be a maximal subgroup of the finite subgroup of G2 of
rder 1344 preserving the octonion algebra of the set ±ei�i=1,2 , . . . ,7�.26

. Maximal subgroups of the group 576„29…

All its maximal subgroups which have not been discussed so far also occur as the maximal
ubgroups of the group 384�31� and will be discussed below.

. Maximal subgroups of the group 384„31…

C2.1. The group 192(26): It has the structure

�V0,T� � �V1,T� . �44�

C2.2. The group 192(23)It can be represented by

�V0,T� � �V0,T�� . �45�

C2.3. The group 192(20): This group has an interesting structure which can be written as

�a,T� � �b,T�� , �46�

here the set of elements of a is generated by �1/�2��1+e1� and the set b=e3a. The set �a ,T�
orms an invariant subgroup of order 96. The set of elements a and b generate a dicyclic group of
rder 16 as we discussed before, however, as a and b are paired with different subsets of the
inary octahedral group the dicyclic group is not a subgroup of the group 192�20�. The set of

lements of a and b are given by
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a = 	±1, ± e1,
1
�2

�±1 ± e1�
, b = 	±e2, ± e3,
1
�2

�±e2 ± e3�
 . �47�

C2.4. The group 192(17): It can be represented by

�V0,T� � �V1,T�� �48�

hich is also a subgroup of the group 576�20�. It is one of the maximal subgroup of the finite
ubgroup of the Lie group of G2 order 12096 which leaves the quaternion decomposition of the
ctonionic root system of the exceptional Lie algebra E7 �Ref. 26� invariant.

I. CONCLUSION

The automorphism group Aut�F4� of the root system of the exceptional Lie algebra F4 is the
argest crystallographic group in four-dimensions which has not been discussed in the literature
sing quaternions. This work not only relates this crystallographic group to the Coxeter-Dynkin
iagram of F4 but also discusses its relevance to other Lie algebraic structures as well as to the
our-dimensional Euclidean geometry. We have discussed the decomposition of Aut�F4� down to
he groups of order 192 and shown that a number of groups of order 192 have different structures
elated to different geometries. It is perhaps also interesting to continue the same decomposition to
etermine the groups acting in three-dimensions. In this context we have discussed only the Weyl
roups W�S�7���W�SP�3��.

We have noted that two groups of order 192, namely, the groups 192��13� and 192�17�, occur
s maximal subgroups in the finite subgroups of the Lie group G2. The group 192��13� is a
aximal subgroup of a group Z2

3 · PSL2�7� of order 1344 which is a finite subgroup of G2 preserv-
ng the set of imaginary octonions ±ei�i ,1 ,2 , . . . ,7�.16 Here PSL2�7� is the famous Klein’s simple
roup of order 168 and Z2

3=Z2�Z2�Z2 is the elementary Abelian group of order 8. The group
92�17� is the maximal subgroup of the Chevalley group G2�2� of order 12096 which leaves the
ctonionic roots of the Lie algebra E7 invariant.

The Weyl group W�SO�8�� which is the group 192�13� is also a maximal subgroup of a group

2
3 : PSL2�7� of order 1344 which is, in turn, a maximal subgroup of the simple group A8, even
ermutations of eight letters. The group A8 is related to the Weyl group W�E7� through W�SU�8��
nd is a maximal subgroup of the Chevalley group SO7�2�.27 It is also interesting to note that some
nite subgroups of SO�4� also occur in the phase transitions of the liquid helium 3He.28

We believe that the group structures and their quaternionic representations will be useful in
arious fields of physics which may need the finite subgroups of O�4�.29,30
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RST quantization of quasisymplectic manifolds
nd beyond
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We consider a class of factorizable Poisson brackets which includes almost all
reasonable Poisson structures. A particular case of the factorizable brackets are
those associated with symplectic Lie algebroids. The BRST theory is applied to
describe the geometry underlying these brackets as well as to develop a deforma-
tion quantization procedure in this particular case. This can be viewed as an exten-
sion of the Fedosov deformation quantization to a wide class of irregular Poisson
structures. In a more general case, the factorizable Poisson brackets are shown to be
closely connected with the notion of n-algebroid. A simple description is suggested
for the geometry underlying the factorizable Poisson brackets based on construction
of an odd Poisson algebra bundle equipped with an Abelian connection. It is shown
that the zero-curvature condition for this connection generates all the structure
relations for the n-algebroid as well as a generalization of the Yang-Baxter equation
for the symplectic structure. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2190775�

. INTRODUCTION

The deformation quantization of a Poisson manifold �M , �· , · �� is the construction of a local
ne-parameter deformation of the commutative algebra of functions C��M� respecting
ssociativity.1,2 The deformed product is usually denoted by �, and the deformation parameter is
he Plank constant �. In each order in � the �-product is given by a bidifferential operator
locality� and the skew-symmetric part of the first � order coincides with the Poisson bracket of
unctions �correspondence principle�.

Very early it appeared that the complexity of the deformation quantization program essentially
epends on whether a given Poisson manifold is regular or not. In the regular case, i.e., where the
ank of the Poisson tensor is constant, one can introduce an affine symmetric connection respect-
ng the Poisson structure �a Poisson connection�. Clearly, in the irregular case such a connection
annot exist. The relevance of the Poisson connection for constructing �-products had been al-
eady discussed in Ref. 2, but in its full strength, the connection was first exploited by Fedosov in
is seminal paper3 on the deformation quantization of symplectic and regular Poisson manifolds
see also Ref. 4�.

The existence of deformation quantization for general Poisson manifolds, not necessarily
egular, was proved by Kontsevich5 as a consequence of his Formality Theorem. An explicitly
ovariant version of the Kontsevich quantization has been given in Ref. 6 �see also Ref. 7, where
oth covariant and equivariant versions of the formality theorem have been presented�. It should
e noted that the Kontsevich quantization is based on completely different ideas and involves a

�Electronic mail: sll@phys.tsu.ru
�
Electronic mail: sharapov@phys.tsu.ru
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ore complicated algebraic technique as compared to the Fedosov quantization. A nice “physical
xplanation” of the Kontsevich quantization formula was given in Ref. 8 by applying the BV
uantization method9 to the Poisson sigma model.

Recently, it was recognized that the method of Fedosov’s quantization can further be extended
o include a certain class of irregular Poisson manifolds even though no Poisson connection can
xist in this case. To give an idea about the manifolds in question let us write the following
xpression describing the general structure of the corresponding Poisson brackets:

�f ,g� = �ab�Xa
���f��Xb

���g�, det��ab� � 0. �1.1�

he matrices X and � are subject to certain conditions ensuring the Jacobi identity. The geometric
eaning of these conditions as well as the precise mathematical status of X and � will be

xplained in the next section. Here we would like to mention that, no a priori assumption is made
bout the rank of the matrix X, so the Poisson brackets �1.1� may well be irregular.

In the case where the matrix X is the anchor of a Lie algebroid the manifolds under consid-
ration are something intermediate between symplectic and general Poisson manifolds. For this
eason, we refer to them as quasisymplectic Poisson manifolds �not to be confused with the
uasi-Poisson manifolds introduced in Ref. 10�. Being closely related with the notion of a dy-
amical r-matrix, these manifolds may be of immediate interest in the theory of integrable sys-
ems.

The generalization of the Fedosov deformation quantization to the case of symplectic Lie
lgebroids was first given by Nest and Tsygan.11 They also proved corresponding classification
heorems. Fedosov’s quantization method was also described in the work12 for the same class of

anifolds in the language of symplectic ringed spaces. Particular classes of quasisymplectic
anifolds have been quantized in Refs. 13–15 making use of various ideas, including BRST

heory.
The aim of this work is twofold. In the first part of the paper we put the deformation quan-

ization of quasisymplectic manifolds in the framework of BFV-BRST theory.16–18 For the �con-
trained� Hamiltonian systems on symplectic manifolds, the relationship has been already estab-
ished between the BFV-BRST and the Fedosov quantizations.19,20 Here we reshape this
echnology to make it work in a more general case of quasisymplectic manifolds. The second part
f the paper is devoted to a possible generalization of the notion of a quasisymplectic manifold to
he case of n algebroids or, in other terminology, NQ manifolds.21–24 This generalization essen-
ially relaxes the restrictions on the structure functions X and �, entering factorization �1.1�, and
overs almost all reasonable Poisson structures.

The paper is organized as follows. In Sec. II we give the definition of a quasisymplectic
oisson manifold and discuss some examples. Here we also construct a simple counterexample to
xistence of a quasisymplectic representation for any Poisson bracket. Section III deals with
ealization of quasisymplectic manifolds as coisotropic surfaces in the total space of vector
undles associated with symplectic Lie algebroids. In Sec. IV this realization is exploited to
erform the BRST quantization of the resulting gauge system. We prove that the quantum multi-
lication in the algebra of physical observables induces an associative �-product on the initial
uasisymplectic manifold. In Sec. V we generalize the notion of a quasisymplectic manifold to a
ider class of factorizable Poisson brackets. Under reasonable restrictions this class of Poisson

tructures is proved to be closely connected with n algebroids. Using the 2-algebroid as an
xample, we show how the geometry underlying factorizable Poisson brackets can be described in
erms of a supervector bundle equipped with a fiberwise odd Poisson structure and a compatible
belian connection.

I. QUASISYMPLECTIC MANIFOLDS: DEFINITION AND EXAMPLES

The most concise and geometrically transparent way to define the quasisymplectic manifolds
25
s to use the notion of a Lie algebroid.
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Definition: A Lie algebroid over a manifold M is a �real� vector bundle E→M equipped with
he following additional structures:

1� There is a �real� Lie algebra structure on the linear space of sections ��E�.
2� There is a bundle map � :E→TM such that the Lie algebra and C��M�-module structures on

��E� are compatible in the following sense:

�s1, fs2� = f�s1,s2� + ��*�s1�f�s2, " f � C��M�, " s1,s2 � ��E� . �2.1�

he map � is called the anchor of the Lie algebroid E→M.
The last relation can be viewed as the Leibniz rule for the Lie algebroid bracket. Using this

elation and the Jacobi identity for the bracket it is not hard to see that the anchor map � :E
TM defines a Lie algebra homomorphism on sections, i.e.,

�*��s1,s2�� = ��*�s1�,�*�s2��, " s1,s2 � ��E� , �2.2�

here the brackets on the right-hand side �rhs� stand for the commutator of vector fields.
It is instructive to look at the local coordinate expression of the above relations. Let x� be a

oordinate system on a trivializing chart U�M and let sa be a frame of �E�U. By definition, we
ave

�sa,sb� = fab
c �x�sc, �*�sa� = Xa

��x���,

�2.3�
� = 1, . . . ,dim M, a = 1, . . . ,rank E .

n view of Relations �2.2� and �2.1� the structure functions fab
c , Xa

��C��U� meet the following
onditions:

�Xa,Xb��
ª Xa

���Xb
� − Xb

���Xa
� = fab

c Xc
�, �2.4�

fab
d fdc

e − Xc
���fab

e + cycle�a,b,c� = 0. �2.5�

otice that the second relation is automatically satisfied for any vector bundle E of rank 1 or 2,
hereas in the case of rank E�2 it becomes an actual restriction on the structure functions fab

c .
In general, ��E� is not a smooth subbundle of TM as the rank of the distribution ��E� may vary

rom point to point. Nonetheless, in view of �2.2�, ��E� generates a �singular� integrable distribu-
ion in the sense of Sussman:26 for each p�M there is a smooth submanifold 	p�M such that

p�	p and Tq	p=��Eq� for any q�	p. The corresponding foliation will be denoted by F�M�.
Example: Any tangent bundle TM may be viewed as a Lie algebroid with the Lie bracket

iven by the commutator of vector fields and the anchor �=id:TM→TM.

. Differential geometry of Lie algebroids

One can regard the concept of a Lie algebroid as a tool for transferring all the usual
ifferential-geometric constructions from a tangent bundle to an abstract vector bundle. In par-
icular, it is possible to define the Lie-algebroid counterpart of the exterior calculus. Denote by
�E�= � 
p�E� the exterior algebra of sections ��Ù•E*�, E* being the bundle dual to E. Consider

p p+1
he following nilpotent operator d :
 �E�→
 �E�:
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d��s0, . . . ,sp� = �
k=0

p

�− 1�k�*�sk����s0, . . . , ŝk, . . . ,sp��

+ �
k�n=1

p

�− 1�k+n���sk,sn�,s0, . . . , ŝk, . . . , ŝn, . . . ,sp� , �2.6�

or all s0 ,s1 , . . . ,sp���E�. Since d2=0, we have a generalization of the De Rham complex. We
ill refer to elements of 
p�E� as E-p-forms, or just p-forms when it cannot lead to confusion.
ote that 
0�E� is naturally identified with C��M�.

More generally, one may consider the tensor product E � V, where V→M is a vector bundle
ith connection �. Then, � induces the covariant derivative �� :
p�E ,V�→
p+1�E ,V� on the

pace 
�M ,E�=
�E� � ��V� of ��V�-valued E forms,

����s0, . . . ,sp� = �
k=0

p

�− 1�k��*�sk����s0, . . . , ŝk, . . . ,sp��

+ �
k�n=1

p

�− 1�k+n���sk,sn�,s0, . . . , ŝk, . . . , ŝn, . . . ,sp� . �2.7�

he curvature of �� is defined in the usual way,

R = �p
2:��V� → 
2�E,V� . �2.8�

ne may verify that

R�fu� = fRu, " f � C��M�, " u � E , �2.9�

o that in each coordinate chart the curvature R is given by a matrix-valued 2-form determining a
��M�-linear automorphism of ��V�. Like the curvature of the bundle connection �, R satisfies

he Bianchi identity,

���,��
2� = 0 Û ��R = 0. �2.10�

To write the last formula we extend the action of � from V to the tensor product V � V* by the
sual formulas of differential geometry.�

In what follows we will mostly deal with the case V=E. Then, in addition to the curvature, one
ore covariant of the connection can be introduced. The torsion T of a Lie algebroid connection

� is an element of 
2�E ,E� defined by the rule

��E� � T�u,v� = ��*�u�v − ��*�v�u − �u,v�, " u,v � ��E� . �2.11�

If ��b
a are coefficients of the connection � with respect to local coordinates x� and a frame sa,

hen the components of the torsion tensor read

Tab
c = Xa

���b
c − Xb

���a
c − fab

c . �2.12�

he components of the curvature tensor R are

Rabc
d = Xa

�Xb
�R��c

d , �2.13�

here

R��c
d = ����c

d − ����c
d + ��a

d ��c
a − ��a

d ��c
a �2.14�
s the curvature of �. There is a simple formula relating the exterior and covariant derivatives:
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d��s0, . . . ,sp� = �
k=0

p

�− 1�k���*�sk����s0, . . . , ŝk, . . . ,sp�

+ �
k�n=1

p

�− 1�k+n��T�sk,sn�,s0, . . . , ŝk, . . . , ŝn, . . . ,sp�; �2.15�

ere we use the isomorphism 
p�E�	
0�E ,ÙpE�. A straightforward computation yields the tor-
ion Bianchi identity

�cTab
d + Rabc

d + cycle�a,b,c� = 0, �2.16�

here �aª��*�sa�.
In this paper we are interested in the Lie algebroids endowed with a closed and nondegenerate

-form ��
2�E�. A 2-form � is called nondegenerate if the equality

��u,v� = 0, " u � ��E� , �2.17�

mplies v=0. In terms of local coordinates the closedness condition d�=0 reads

Xc
����ab + �cdfab

d + cycle�a,b,c� = 0, �2.18�

here �abª��sa ,sb�. Extending the analogy with classical differential geometry, we refer to � as
he symplectic form and call the triple �E ,� ,�� the symplectic Lie algebroid. �This is a particular
xample of triangular Lie bialgebroids studied in Ref. 27.�

. Quasisymplectic manifolds

It is well known that any symplectic structure on a Lie algebroid E→M gives rise to a Poisson
tructure on the base manifold M. It is this Poisson structure we are going to quantize by the
FV-BRST method.

Proposition 2.1: Let �E ,� ,�� be a symplectic Lie algebroid, then M is a Poisson manifold
ith respect to the following Poisson bracket:

�f ,g� = �−1�df ,dg�, " f ,g � C��M� 	 
0�E�; �2.19�

ere �−1 is the bisection inverse to the symplectic form ��
2�E� and df , dg�
1�E� are the
ifferentials defined by (2.6).

Proof: In terms of local coordinates the Poisson bivector determining the bracket �2.19� has
he form

� = �abca Ù Xb � Ù2TM, �f ,g� = �����f��g , �2.20�

here XaªXa
���, �ac�cb=b

a, and ���=�abXa
�Xb

�. The Jacobi identity for � follows immediately
rom the Lie algebroid relations �2.4� and the closedness condition �2.18�. Indeed, using the
eibniz rule for the Schouten bracket of � with itself, we get

1
4 ��,�� = �ab�cdXa Ù �Xb,Xc� Ù Xd + �ab�Xb,�cd�Xa Ù Xc Ù Xd

= ��amfmn
b �nc + �amXm

u ���bc�Xa Ù Xb Ù Xc = �d��abcX
a Ù Xb Ù Xc = 0. �2.21�

he indices are lowered and raised with the help of the symplectic form � and its inverse.
Since the rank of the anchor distribution may vary through M, the induced Poisson structure

2.20� is irregular in general �though it involves a nondegenerate bivector �−1�Ù2E�. For this
eason and following the terminology of Ref. 12 we refer to �M ,�� as the quasisymplectic mani-
old. Accordingly, relation �2.19� is said to define a quasisymplectic representation for the Poisson

ivector �.
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Given a symplectic Lie algebroid, we have two �singular� foliations on M: the anchor foliation
�M� and the symplectic foliation S�M� associated with the induced Poisson structure �2.20�.
learly, the latter foliation is subordinated to the former one in the sense that any symplectic leaf
elongs to a leaf of the anchor foliation.

Remark: A natural question to ask is as follows: Given a Poisson bivector �2.20�, where �ab is
ome nondegenerate 2-form and Xa is an integrable distribution, are these data sufficient to define
symplectic Lie algebroid? In general, the answer is negative, since we do not require the local

ector fields Xa to be linearly independent. Nonetheless, if X’s are linearly independent on an
verywhere dense domain in M, the answer is positive. In that case the structure equations �2.5�
nd �2.18� follow immediately from the Jacobi identities for the Schouten commutators of the
ocal vector fields �2.4� and the Poisson bivector �2.20�. We will discuss this question in more
etail in Sec. V.

. Symplectic connection and curvature

The deformation quantization of quasisymplectic Poisson manifolds to be developed in the
ext sections involves one more geometric ingredient, a symplectic connection. This is defined as
torsion-free Lie-algebroid connection respecting a symplectic 2-form, i.e.,

��� = 0. �2.22�

ere we consider � as a section of 
0�E ,Ù2E�.
Proposition 2.2: Any symplectic Lie algebroid admits a symplectic connection.
Proof: We are looking for a symplectic connection of the form �+��, where � is an arbitrary

onnection and �����E � E* � E*�. In terms of local coordinates the compatibility condition
2.22� reads

�c�ab = ��cab − ��cba, �2.23�

here ��abc=��ab
d �dc. Obviously, these equations cannot have a unique solution: any tensor

�abc� , symmetric in bc, satisfies the homogeneous equation and therefore it can be added to a
iven solution ��abc to produce another one. A particular solution to Eq. �2.23� is given by

��ab
c = − 1

2�cd�a�db. �2.24�

Now let �� be an arbitrary Lie-algebroid connection which respects � and has torsion T. By
aking use of the aforementioned ambiguity, one can define the new connection ���=��+���,

��abc� = − 1
3 �Tabc + Tacb�, Tabc = Tab

d �dc, �2.25�

hich is also compatible with �. By definition �2.12�, we have

Tab�
c = Tab

c + ��ab�
c − ��ba�

c . �2.26�

ubstituting �2.25� into �2.26� and lowering the upper index with the help of � we get

Tabc� = Tacb + cycle�a,b,c� = 0. �2.27�

he last equality follows immediately from �2.15� with � in place of �. Thus, ��� is a symplectic
onnection.

Let Rabc
d be the curvature of a symplectic connection. By analogy with Riemannian geometry

e can define the covariant curvature tensor just lowering upper index with the help of the
ymplectic 2-form, Rabcd=Rabc

n �nd. The following symmetry properties take place:

Rabcd = − Rbacd, Rabcd = Rabdc, Rabcd + Rbcad + Rcabd = 0. �2.28�

he first equality is obvious, the second one follows from the definition �2.8� and the fact that ��
espects �, the third equality is just the Bianchi identity �2.16�.
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. Examples

Let us give some examples of symplectic Lie algebroids and the corresponding quasisymplec-
ic Poisson brackets. More examples of Lie algebroids, with or without symplectic structure, can
e found in Refs. 12 and 25.

Example 1: Any symplectic manifold �M ,�� gives rise to the symplectic Lie algebroid �TM,
d, ��. The quasisymplectic Poisson structure is given by

� = ��−1����� Ù ��. �2.29�

To get a less trivial quasisymplectic representation for � consider an almost complex structure
compatible with �. Recall that an almost complex structure is a smooth field of automorphisms
:TM→TM obeying conditions

J2 = − id, ��JX,JY� = ��X,Y� , �2.30�

here X ,Y are arbitrary vector fields. J being nondegenerate, we get a quasisymplectic represen-
ation for the Poisson bivector � associated with the symplectic Lie algebroid �TM ,J ,��,

� = ��−1���J� Ù J�. �2.31�

ere J=dx�J�
� �� and J�=J�

� ��.
Example 2: Generalizing the previous example, consider a pair of Schouten-commuting bivec-

ors � and �, where the former is a Poisson one and the latter is nondegenerate. The triple
T*M ,� ,�� defines a symplectic Lie algebroid with the structure functions

���dx��,��dx��� = �������dx��, ��dx�� = �����.

he induced Poisson structure on M is given by

� = ��−1����������� Ù ��. �2.32�

xample 3: Recall that a Lie algebra L is called quasi-Frobenius28 if it admits a nondegenerate
entral extension Lc of the form

�pa,pb� = fab
d pd + �abc, �c,pa� = 0, det��ab� � 0.

he Jacobi identity for Lc requires the nondegenerate matrix �ab, determining the central exten-
ion, to be a 2-cocycle of the Lie algebra L	Lc /c.

Given an action � :L→Vect�M� of the Lie algebra L on M by smooth vector fields Xa

��pa�, one can define a symplectic Lie algebroid associated with the trivial vector bundle M
� L, anchor �, and symplectic form �ab. The induced quasisymplectic structure on M reads

� = �abXa Ù Xb, �ac�cd = d
a. �2.33�

simple quantization procedure for such Poisson brackets has been proposed in Ref. 15.
Example 4: Let �M ,�� be a two-dimensional Poisson manifold. We say that the bivector � is

uasihomogeneous if there exist a volume form � and a vector field Y such that the function h
���� obeys condition Yh=h.

It turns out that any quasihomogeneous Poisson manifold is also a quasisymplectic one.
amely, a simple computation yields

� = X Ù Y, �X,Y� = �1 − div� Y�X . �2.34�

ere X is the Hamiltonian vector field associated with the Hamiltonian h and the symplectic
volume� form �. The structure equations �2.5� and �2.18� are automatically satisfied by the reason
f dimension and we get a symplectic Lie algebroid associated with the trivial vector bundle M

� R2.

For instance, the following polynomial Poisson brackets on 2-plane,
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�x,y� = xmyn + xkyl,

�2.35�
 = nk − lm � 0, m,n,k,l � N ,

re quasihomogeneous with respect to �=dxÙdy and

Y = −1�n − l�x�x + −1�k − m�y�y ,

�2.36�
X = �mxm−1yn + kxk−1yl��y − �nxmyn−1 + lxkyl−1��x.

n accordance with �2.34�,

�Y,X� = �1 − −1�n + k − l − m��X , �2.37�

nd we arrive at the symplectic Lie algebroid associated with the two-dimensional quasi-Frobenius
ie algebra �2.37� �see the previous example�.

. Counterexample

As we have seen the quasisymplectic manifolds constitute a wide class of Poisson manifolds.
ere is an example of a Poisson manifold that does not admit any quasisymplectic representation

even locally�.
Proposition 2.3: The Lie-Poisson bracket on the dual of so�3� algebra does not admit a

uasisymplectic representation.
Proof: The Poisson bracket in question is of the form

�xi,xj� = �
k

�ijkxk, �2.38�

here xi are linear coordinates in R3 and �ijk is the Levi-Civita tensor. The only irregular point is
�R3, where the rank of the Poisson bracket is equal to zero; at the other points the rank equals
. The leaves of the symplectic foliation S�R3� are exactly the level sets of the Casimir function
x1�2+ �x2�2+ �x3�2, i.e., spheres centered at the origin.

Since any vector bundle E over R3 is trivial, we may look for an anchor being just an
ntegrable vector distribution Xa�Vect�R3�. For the same reason, any symplectic 2-E-form is
iven by an invertible skew-symmetric matrix �ab�x� on R3. Clearly, each sphere from S�R3� is
ntirely contained in some leaf of the anchor foliation F�R3�; so, we write S�R3��F�R3�. The
xistence of a quasisymplectic representation is expressed by the equality

Xa
i �abXb

j = �
k

�ijkxk. �2.39�

he key to the analysis of this equation lies with the rank r of the vector distribution at the origin.
priori, r may take any value from 0 to 3. Let us show that any assumption about r leads to a

ontradiction.
The case r=0: This possibility is ruled out by comparing the order of zero on both sides of the

quality �2.39�. Indeed, since all X’s must vanish at x=0, the order of zero on the left-hand side
lhs� is of at least 2, while the rhs tends to zero linearly.

The cases r=1,2: There is an integral leaf of dimension 1 or 2 passing through the origin and
ntersecting transversally at least one of the symplectic spheres. �Otherwise, this leaf would be
ntirely contained in one of the spheres, and thus, could not reach the origin.� But this contradicts
o the inclusion S�R3��F�R3�.

The case r=3: Passing, if necessary, to another basis we may assume that Xa= �Xi ,X��, where
ab
i=�i and X�=0. Then the matrix � takes the block form
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�ij �i�

��j ��� � �2.40�

ith �ij =��ijkxk. Among various equations on the matrix elements of �2.40�, expressing the fact
f closedness of �, one can find the following one:

��k�k�
ij + �ik�k�

j� − � jk�k�
i� = 0. �2.41�

ince �ij�0�=0 and �k�
ij�0�=�ijk, the last equation implies that ��i�0�=0, and hence the entire

atrix �2.40� must degenerate at the origin. This contradiction concludes the proof.

II. POISSON DESCRIPTION OF SYMPLECTIC LIE ALGEBROIDS

In order to construct as well as physically interpret the deformation quantization of quasisym-
lectic manifolds it is convenient to think of �M ,�� as the phase space of some �gauge invariant�
echanical system with zero Hamiltonian. In what follows we will use the standard terminology

rom the theory of constrained systems: first and second class constraints, gauge-fixing conditions,
host variables, BRST charge, etc.18 It should be noted that unlike the common practice we will
onsider Hamiltonian constraints that are defined by a section of some vector bundle E→M rather
han scalar functions on M. To provide the covariance of the quantization with respect to the
undle automorphisms an appropriate linear connection is needed, and that requires some modi-
cation of the conventional BRST formalism.16–18 In particular, it will be convenient to use
oncanonical commutation relations for ghost variables. The details will be explained below.

Now let us outline the basic steps of our approach. The main idea is to quantize a quasisym-
lectic manifold M by means of its suitable embedding into a certain supermanifold endowed with
a more simple” Poisson structure. The construction of such an embedding involves a quite
tandard machinery of the Hamiltonian BRST theory;17,18,29 it can be subdivided into three steps.
irst, using the Lie algebroid structure, we represent �M ,�� as a second-class constrained system
n the vector bundle E* dual to the Lie algebroid E. As the next step, the second-class constrained
ystem on E* is converted into an equivalent gauge system on the direct sum of vector bundles

=E* � E. The equivalence just means that the Poisson algebra of physical observables on N is
somorphic to the Poisson algebra of smooth functions on �M ,��. Finally, the classical gauge
ystem is covariantly quantized by the BFV-BRST method. The key point is that the space of
hysical observables on N, being identified with a certain BFV-BRST cohomology in ghost
umber zero, carries a simple Poisson structure which can easily be quantized. By construction,
he associative product on the algebra of quantum observables on N induces a �-product on the
riginal quasisymplectic manifold �M ,��.

For the case of symplectic manifolds, including second-class constrained system, such a
rogram was first implemented in Refs. 19 and 20 establishing detailed correspondence between
he key ingredients of the BRST theory and the Fedosov deformation quantization.

. Symplectic embedding

We start with the description of a sympletic embedding of �M ,�� into the dual bundle of the
orresponding Lie algebroid. It is well known that E* carries a natural Poisson structure, which is
ual to the Lie algebroid structure.25,30 A proper modification of this Poisson structure in the
resence of a symplectic 2-form is offered by the next proposition.

Proposition 3.1: Let �E ,� ,�� be a symplectic Lie algebroid corresponding to a quasisymplec-
ic manifold �M ,��. Then C��E*� can be equipped with the following Poisson brackets:

�x�,x�� = 0, �pa,x�� = Xa
�, �pa,pb� = fab

c pc + �ab. �3.1�

ere x� are local coordinates on M and pa are linear coordinates on the fibers of E*. The Poisson
anifold �M ,�� is symplectically imbedded into E* as zero section.

Remark: Although the definition of the brackets on E* involves local coordinates, the Poisson

tructure �3.1� is actually coordinate independent, so the relationship between the Lie algebroid
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tructure on E and the Poisson bivector on E* is intrinsic. The Jacobi identity for �3.1� generates
he full set of the Lie algebroid axioms as well as the closedness condition for the symplectic
tructure.

In terms of local coordinates �x� , pa� one may identify the base manifold M with those points
f E* for which

pa = 0. �3.2�

ince

det���pa,pb���p=0 = det��ab� � 0, �3.3�

he canonical imbedding M�E* defined by �3.2� is symplectic, and the induced Poisson structure
n M reads

�f ,g� = �ab�Xa
���f��Xb

���g�, " f ,g � C��M� . �3.4�

rom the physical viewpoint, this bracket can be thought of as the Dirac bracket associated with
he second-class constraints �3.2�, where f and g are taken to be p-independent functions on E*.

. Classical conversion

Choosing a symplectic connection ��, one can extend the Poisson structure �3.1� on E* to that
n the direct sum N=E � E*. Namely, if ya are linear coordinates on the fibers of E, then the
orresponding Poisson brackets read

�x�,x�� = 0, �pa,x�� = Xa
��x� ,

�x�,ya� = 0, �pa,yb� = − �ac
b �x�yc, �3.5�

�ya,yb� = �ab�x�, �pa,pb� = �ab�x� + fab
c �x�pc − 1

2Rabcd�x�ycyd.

ere �ab
c are the coefficients of the connection �� and Rabcd is the corresponding curvature tensor.

The brackets �3.5� are well defined and meet the Jacobi identity. Verifying the Jacobi identity,
ne gets the compatibility condition �2.22�, the definition of the curvature tensor �2.13�, the
ianchi identity �2.10�, and the axioms of a symplectic Lie algebroid.

Now we aim to replace the second-class constrained system �3.1� and �3.2� on E* with an
quivalent gauge system on the extended Poisson manifold N. In the Hamiltonian formalism a
eparametrization invariant gauge system is completely specified by a set of first class constraints

a=0 defining some coisotropic submanifold 	�N �a constraint surface�. The quotient of 	 by
he Hamiltonian action of T’s is assumed to be isomorphic to the quasisymplectic manifold �M ,��
nd this is the sense in which the equivalence will be established between the original Poisson
anifold and the effective gauge theory. In fact, for the purposes of deformation quantization it is

ufficient to work with a formal gauge system on N in the sense that the first class constraints Ta

re allowed to be given by formal power series in y’s. It is required, however, that the canonical
rojection of the formal coisotropic submanifold 	 onto E* to coincide with the well-defined
onstraint surface �3.2�, i.e., with M. This allows one to assign a precise meaning to the Hamil-
onian reduction by the formal first class constraints.

Thus, we are looking for a set of Hamiltonian constraints Ta�x , p ,y� obeying conditions

�Ta,Tb� = Uab
c Tc, �Ta�x,p,y��E = Ta�x,p,0� = pa, �3.6�

here Uab
c �x , p ,y� are some structure functions. Geometrically, one can think of T’s as a section of

he vector bundle � :E � E*→E over the base E, with � being the canonical projection onto the
rst factor.
Proposition 3.2: The equations (3.6) have a solution of the form
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Ta = pa + �
n=1

�

Ta
n, Ta

n = tab1¯bn
�x�yb1

¯ ybn, �3.7�

here the coefficients tab1¯bn
�x� do not depend on p’s.

Remark: In the physical literature, the passage from a given second-class constrained system
o an equivalent first-class one is known as the conversion procedure; accordingly, y’s are called
onversion variables. In the local setting, i.e., for a sufficiently small domain in the extended
hase space, the existence of the conversion is ensured by a fairly general theorem.29 Moreover,
assing, if necessary, to an equivalent basis of second class constraints, it is possible to have a
olution with Uab

c =0 �Abelian conversion�. Here, however, we concern with account of global
eometry that requires to consider a non-Abelian conversion in general.

Proof: Substituting the expansion �3.7� into the involution relations �3.6� and extracting con-
ribution to zero order in y’s, we find

�fab
c − Uab

c �pc + tan�nmtbm + �ab = 0. �3.8�

particular solution to this equation is obvious

Uab
c = fab

c , tab = − �ab. �3.9�

aking this solution, one gets the following chain of equations for higher orders in y’s:

Fab
s
ª ��a�T�b�

s+1 − Bab
s = 0, s � 1, �3.10�

here

Bab
1 = �X�a�

i �i��b�c + �d�a���b�c
d + fab

d �dc�yc,

Bab
2 = �p�a�,T�b�

2 � + fab
c Tc

2 − 1
2Rabcdycyd, �3.11�

Bab
s = �p�a�,T�b�

s � + fab
c Tc

s + �
n=2

s

�Ta
n,Tb

s+2−n�, s � 3.

ereinafter the square brackets denote antisymmetrization of indices and �a is the partial deriva-
ive with respect to ya. The form of the equations �3.10� suggests to interpret Ta

s as the components
f 1-form Ts=Ta

s dya defined on the linear space of y’s. Thus, we can write

Fs = dTs+1 − Bs = 0, s � 1, �3.12�

here d is the usual exterior differential with respect to y’s, and Bs is a given 2-form provided the
-forms T1 , . . . ,Ts have been already determined. According to the Poincaré lemma, Eqs. �3.12�
re consistent iff the 2-forms Bs are closed. In this case, the general solution to �3.10� reads

Ta
s+1 =

1

s + 2
ybBba

s + �aCs, �3.13�

s being an arbitrary monomial of degree s+2. The closedness of B’s is now proved by induction
n s. Consider the identity

�T̄a
s ,T̄b

s� − fab
d T̄d

s = �
n=0

s−1

Fab
n + Bab

s + ¯ , �3.14�

here T̄a
s = pa+�n=1

s Ta
n and dots stand for the terms of order higher than s. Taking the Poisson

¯s
racket of this relation with Tc and using the Jacobi identity
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��T̄a
s ,T̄b

s�,T̄c
s� + cycle�a,b,c� = 0, �3.15�

e can write

�fab
d �T̄c

s,T̄d
s� + �T̄c, fab

d �T̄d�dya Ù dyb Ù dyc = 
�
n=0

s−1

�Fab
n ,T̄c

s� − �Bab
s ,T̄c

s� + ¯ �dya Ù dyb Ù dyc.

�3.16�

ith account of �3.5� and the Lie algebroid relations �2.5�, the contribution to the �s−1�th order of
he last equation is given by

dBs = 
 fab
d Fdc

s−1 + �
n=0

s−1

�Fab
n ,Tc

s−n+2��dya Ù dyb Ù dyc. �3.17�

ut the rhs of this relation vanishes by the induction hypothesis. Thus, Bs is a closed 2-form and
he recurrent formula �3.13� gives the general solution for Ta.

Notice that the ambiguity concerning the choice of arbitrary functions Cs, entering the general
olution for Ta, can be removed by imposing the y-transversality condition

yaTa
s = 0, s � 1. �3.18�

hen it follows from Eq. �3.13� that

ya�aCs�x,y� = �s + 2�Cs�x,y� = 0 Þ Cs�x,y� = 0.

emark: For the case of symplectic manifolds, the convergence of the series �3.7� in a tubular
eighborhood of M was proved in Ref. 31 under assumptions of analyticity and compactness. It
eems that the same arguments are applicable to any quasisymplectic manifold provided all the
tructure functions are real-analytical and M is compact.

Now to see the equivalence of the constructed gauge system on N to the original Hamiltonian
ystem on M it suffices to note that equations �a

ªya=0 are well-defined gauge-fixing conditions
or the first class constraints Ta=0. Indeed,

det�
�Ta,Tc� �Ta,�d�
��b,Tc� ��b,�d�

��
T=�=0

= det
 0 − a
d

c
b �bd � = 1. �3.19�

herefore, the reduced Poisson manifold �physical phase space� is isomorphic to the constraint
urface Ta=�b=0. The last equations are obviously equivalent to pa=ya=0, i.e., defines the ca-
onical projection � :N→M. The explicit description of the resulting Poisson structure on M can
e obtained by introducing the Dirac bracket for the second-class constraints �Ta ,�b�. Identifying
he space of smooth functions on M with the subspace of p- and y-independent functions on N, it
s easy to see that � :N→M is a Poisson map relating the Dirac bracket �· , · �D on N with the
nitial quasisymplectic bracket on M, i.e.,

�*��f ,g�D� = ��*�f�,�*�g��M . �3.20�

V. QUANTIZATION

Having realized the quasisymplectic manifold �M ,�� as a formal gauge system on N we are
eady to perform its BRST quantization. As usual, this implies further enlargement of the phase
pace of the system by ghost variables, constructing a nilpotent BRST charge, and identifying

hysical observables with certain BRST cohomology classes.
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. Ghost variables and the classical BRST charge

With each first class constraint Ta we associate the pair of anticommuting �Grassman odd�
host variables �Ca ,Pb� subject to the canonical Poisson bracket relations

�Ca,Pb� = b
a, �Ca,Cb� = �Pa,Pb� = 0. �4.1�

t is quite natural to treat Ca and Pb as linear coordinates on the fibers of the vector bundles �E
nd �E*, respectively. Here by � we denote the parity reversion operation: being applied to a
ector bundle it transforms the bundle into the supervector bundle with the same base manifold
nd transition functions, and the fibers being the Grassman odd vector spaces. Thus, the phase
pace of our gauge system is extended to the direct sum of �super-�vector bundles M=N � �N.
his geometric interpretation places the ghosts on equal footing with the conversion variables y’s
nd suggests the following extension of the Poisson structure from N to M:

�pa,Cb� = − �ac
b �x�Cc, �pa,Pb� = �ab

c �x�Pc. �4.2�

he brackets of the ghosts with x� and ya are equal to zero. To meet the Jacobi identity one must
odify the Poisson brackets of p’s by ghost terms as follows:

�pa,pb� = �ab�x� + fab
c �x�pc − 1

2Rabcd�x�ycyd − Rabc
d �x�CcPd. �4.3�

he other Poisson brackets �3.5� remain intact.
Remark: At this point we slightly deviate from the usual line of the BRST scheme, where the

host variables are assumed to Poisson commute with functions on the original phase space �N in
ur case� and, in particular, with the first class constraints. In principle, it is possible to work with
he canonical Poisson brackets for ghosts, setting the rhs of �4.2� to zero and omitting the last term
n �4.3�, but this leads to nonlinear transformations of pa under bundle automorphisms �p’s are
ixed with the ghost bilinears CaPb�. We refer to Ref. 19 for the details of this construction in the

ase where M is a symplectic manifold �2.29�. As we will see below, these noncanonical Poisson
rackets of ghosts can be naturally incorporated into the BRST quantization procedure making it
xplicitly covariant.

Let F�M� denote the super-Poisson algebra of functions on the supermanifold M; the ele-
ents of F�M� are superfunctions of the form �in what follows we omit the prefix “super”
henever possible�

A�x,p,y,C,P� = � Aa1¯akd1¯dn

b1¯bm �x�ya1
¯ yakCd1

¯ CdnPb1
¯ Pbm

, �4.4�

here Aa1¯akd1¯dn

b1¯bm �x� are E tensors. In addition to the usual Z2 grading, associated with the
rassman parity,

��Ca� = ��Pb� = 1, ��xi� = ��pa� = ��yb� = 0 �mod 2� , �4.5�

he space F�M� is endowed with an additional Z grading by prescribing the following ghost
umbers to the local coordinates:

gh�Ca� = 1, gh�Pa� = − 1, gh�xi� = gh�pa� = gh�ya� = 0. �4.6�

he ghost number just counts the difference between powers of C’s and P’s, entering homoge-
eous elements of F�M�, and is additive with respect to the Poisson algebra operations,

gh�AB� = gh�A� + gh�B�, gh��A,B�� = gh�A� + gh�B� . �4.7�

n particular, functions with zero ghost number form a subalgebra in the Poisson algebra F�M�.
The classical BRST charge Q�F�M� is defined as an odd function of ghost number 1
beying the classical master equation
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�Q,Q� = 0, �4.8�

nd the standard boundary conditions

�Q�P=0 = CaTa. �4.9�

function A�F�M� is said to be BRST invariant if

DA ª �Q,A� = 0, gh�A� = 0. �4.10�

learly, D2=0. The space of physical observables is identified with the zero-ghost-number coho-
ology of the BRST operator D. The Poisson algebra structure on F�M� induces that on the

pace of physical observables.
According to general theorems of the BRST theory,18 �i� Eq. �4.8� is always soluble, and �ii�

he Poisson algebra of physical observables is isomorphic to that obtained by the Hamiltonian
eduction by the first class constraints. In the case at hand, these statements can be refined as
ollows.

Proposition 4.1: The classical master equation (4.8) admits the following solution:

Q = CaTa. �4.11�

he Poisson algebra of physical observables on M is isomorphic to that on the quasisymplectic
anifold �M ,��. Each physical observable can be represented by a BRST invariant element from
�M� that does not depend on the ghost variables.

Proof: The first part of the proposition is easily verified by straightforward calculations.
otice that, unlike what one has in the standard BRST theory, the first class constraints Ta are no

onger in involution as we have modified the Poisson brackets of p’s by the ghost-dependent term
4.3�. Luckily, this term does not contribute to the nilpotency condition due to the symmetry
roperties of the curvature tensor �2.28�.

The rest of the proposition will follow from the classical limit of the analogous statement for
he quantum BRST observables to be considered in the next section. Here we just show that each
hysical observable A�x , p ,y ,C ,P� on M is uniquely determined by its projection A�x ,0 ,0 ,0 ,0�
n M. Speaking informally, this implies that the space of physical observables is not larger than
��M�. In order to see this, let us introduce the following homotopy operator h :F�M�
F�M�:

h = Pa
�

�p̄a

+ ya �

�Ca , �4.12�

here p̄aªpa−�abyb. From the explicit expression for the BRST charge �4.11� it follows that

D = p̄a
�

�Pa
+ Ca �

�ya + ¯ . �4.13�

ere the dots stand for the terms that increase the total degree when acting on monomials in y, C,
, and p. Then

Dh + hD = N , �4.14�

here N=N0+¯, and

N0 = ya �

�ya + p̄a
�

�p̄a

+ Ca �

�Ca + Pa
�

�Pa
. �4.15�

bviously, ker N0=C��M��F�M�, and hence the operator N0 is invertible on the subspace F0

F�M� \C��M� and so is the operator N. This implies that the BRST cohomology is centered in
�
he subspace C �M�; for any BRST invariant B from the complementary subspace F0 we have
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B = DC, C = h��N�F0
�−1B . �4.16�

To conclude this section, let us depict the diagram of maps describing the path from the
riginal quasisymplectic manifold �M ,�� to the super-Poisson manifold M,

M = N � �N → N = E � E* → E → M . �4.17�

ll the arrows are canonical projections.

. Quantization of the super-Poisson manifold M

In the general case, it is not easy to quantize the irregular Poisson brackets �3.5� and �4.1�–
4.3�. Fortunately, for our purposes, it is sufficient to deal with a special Poisson subalgebra

�F�M�. This is given by functions of x�, ya, Ca and pªCapa. Since p2=0, the generic element
f A has the form

A�x,y,p,C� = a�x,y,C� + b�x,y,C�p , �4.18�

here a, b belong to the Poisson subalgebra A0 of p-independent elements of A. The elements of

0 are given thus by formal power series in y’s and C’s with coefficients in 
�E ,S�E��, S�E� being
he space of symmetric tensor powers of E. With this geometrical interpretation the basic Poisson
racket relations in A can be written as

�p,p� = R + �, �p,a� = �a, �a,b� = �cd �a

�yc

�b

�yd , a,b � A0. �4.19�

ere

�a = Cd�da = Ca
Xa
� �

�x� − yb�ab
d �

�yd − Cb�ab
d �

�Cd�a �4.20�

s the covariant derivative in A0 induced by the symplectic connection �� on 
�E ,S�E��, and

R = − 1
2RabcdCaCbycyd, � = �abCaCb, R,� � A0, �4.21�

re the covariant curvature tensor and the symplectic form written in the frame �ya ,Ca�.
In view of Proposition �4.1�, the algebra A contains the classical BRST charge �5.23� as well

s all the physical observables of the effective gauge system. It is the reason why one can restrict
onsideration to the subalgebra A when the goal is to quantize the algebra of physical observables.

Proceeding to quantization, we introduce the formal deformation parameter � and extend the
oisson algebra A to the tensor product

Â = A � ����� , �4.22�

here ����� denotes the space of formal power series in � with coefficients in C. Accordingly,

enote by Â0ªA0 � ����� the subalgebra of p-independent elements of Â. There is an almost

bvious quantum product giving rise to deformation quantization of the Poisson algebra Â. For

ny two elements a, b�Â0 we just use the Weyl-Moyal formula

�a � b��x,y,C,�� = exp
−
i�

2
�ab �

�ya

�

�zb�a�x,y,C,���b�x,z,C,���y=z, �4.23�

nd then extend this �-product to the whole algebra Â by associativity setting

p � a = pa − i� � a, a � p = ap, p � p = − i��R + �� . �4.24�
learly, the �-product respects both the Grassman and the ghost-number gradings.
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As for any graded associative algebra, we can endow Â with the structure of super-Lie algebra
ith respect to the supercommutator

�A,B� = A � B − �− 1���A���B�B � A , �4.25�

, B being homogeneous elements of Â.

For further purposes let us introduce one more useful grading on Â by prescribing the fol-
owing degrees to the variables:

deg�x�� = deg�Ca� = 0, deg�ya� = 1, deg�p� = deg��� = 2. �4.26�

ince this grading involves essentially the deformation parameter we will refer to it as �-grading.

. Quantum BRST charge

This is defined as an element Q̂�Â of ghost number 1 satisfying the quantum master equa-
ion

�Q̂,Q̂� = 2Q̂ � Q̂ = 0 �4.27�

ith the boundary condition

�Q̂�P=�=0 = CaTa. �4.28�

he adjoint action of Q̂ defines the nilpotent derivation D̂ :Â→Â:

D̂a =
i

�
�Q̂,a�, a � Â . �4.29�

he operator D̂ increases the ghost number by 1 preserving the subalgebra Â0.
By definition, the space of quantum physical observables is identified with the zero-ghost-

umber cohomology of the operator D̂.

Let us show the existence of a quantum BRST charge Q̂ whose classical limit coincides with
he classical BRST charge Q. Technically, instead of finding � corrections to Q, it is more

onvenient to build up Q̂ using recursion on the total � degree �4.26�. In order to do this we
ntroduce the pair of Fedosov’s operators changing the � degree by 1 unit. The first operator is
iven by

a = Ca �a

�ya , 2 = 0 �4.30�

or any a�Â0. Since

a =
i

�
�Ca�abyb,a� , �4.31�

t is an internal derivation of Â0. The second operator is defined by its action on homogeneous

unctions,
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*amn =
1

n + m
ya �a

�Ca , n + m � 0,

�4.32�
*a00 = 0,

here anm=aa1¯an,b1¯bm
�x ,��ya1

¯yanCb1
¯Cbm. Like , the operator * is nilpotent, though it is

ot a derivation of the �-product. One can regard * as a homotopy operator:

�a�C=y=0 + *a + *a = a, " a � Â0. �4.33�

he last relation resembles the usual Hodge-De Rham decomposition for the exterior algebra of
ifferential forms.

Proposition 4.2: The quantum master equation (4.27) has a solution of the form

Q̂ = �
r=1

�

Qr, deg�Qr� = r , �4.34�

here

Q1 = − Ca�abyb, Q2, = p, and Qr � Â0, " r � 2, �4.35�

hich is unique if we require

*Qr = 0, " r � 2. �4.36�

roof: The first three terms in the expansion �4.34� coincide with those in the classical BRST
harge �4.11�, and this proves the validity of Eq. �4.27� in the lowest order in � degree. For r
4 Eq. �4.27� implies

Qr+1 = Br, �4.37�

here

Br = −
i

2�
�
s=0

r−2

�Qr+2,Qr−s�, deg�Br� = r . �4.38�

n view of the Hodge-De Rham decomposition �4.33�, Eq. �4.37� is soluble iff Br=0. In this case
e have the unique solution

Qr+1 = *Br �4.39�

ubject to the extra condition *Qr+1=0. So, it remains to show that Br=0. Proceeding by
nduction, we assume that Eq. �4.27� is valid up to the sth order in � degree. Then, extracting the
s+3�-order in the Jacobi identity

�Qs,�Qs,Qs�� = 0, Qs = �
k=1

s

Qk, �4.40�

ne gets Bs=0, that completes the proof.
Since gh�Q�=1, the ansatz �4.34� implies the following structure of the quantum BRST

harge: Q=CaT̂a�x ,y ,��, where T̂a are the “quantum” first class constraints. Then relation �4.36� is
ust another form of the y-transversality condition �3.18�, which allows one to extract a unique

olution both at the classical and quantum levels.
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. Quantum observables and star-product

In Sec. IV A we have shown that the space of physical observables of the classical gauge
ystem on N is not larger than C��M� in the sense that any physical observable is uniquely
etermined by its projection on M. In this section we prove the inverse: any physical observable
n M has a unique BRST-invariant extension to a zero-ghost-number function from A0. Moreover,
his picture takes place at the quantum level as well if we replace C��M�→C��M� � ����� and

0→Â0. Therefore, it is sufficient to consider only the quantum case, the classical statement will
ollow from the classical limit.

Proposition 4.3: For any a�C��M� there is a unique â�Â0 obeying conditions

�Q̂, â� = 0, �â�y=0 = a . �4.41�

roof: Consider the expansion of â�Â0 according to the � degree,

â = �
s=0

�

as, deg�as� = s . �4.42�

he second condition in �4.41� says that a0=a�x�. Substituting this expansion into the first equa-
ion, one gets

as+1 = Bs, s � 1, �4.43�

here

Bs =
i

�
�
k=0

s−2

�Qk+2,as−k�, deg�Bs� = s . �4.44�

n view of the Hodge-De Rham decomposition �4.33� and the boundary condition �4.41�, Eq.
4.43� has the unique solution

as+1 = *Bs, �4.45�

rovided the rhs is -closed. The equality Bs=0 follows by induction from the �s+3�-order of the
dentity

�Q̂,�Q̂, â�� = 0. �4.46�

orollary: There is a linear isomorphism between the spaces of quantum observables on M, i.e.,
��M� � �����, and the zero-ghost-number cohomology of the BRST-differential D̂ :Â0→Â0.

Proof: Equation �4.41�, being linear, has a unique solution even though we allow â � y=0 to
epend formally on �. Therefore, we can replace C��M� with C��M� � �����.

Clearly, the �-product on Â0 descends to the BRST cohomology and, in view of the corollary,
nduces an associative �-product on C��M� � �����. Explicitly,

a � b = ��â � b̂��y=0 = �
n=1

�

�nDn�a,b�, " a,b � C��M� � ����� , �4.47�

here

D0�a,b� = ab, D1�a,b� = −
i

2
�a,b�M , �4.48�

nd the “hat” stands for the BRST-invariant lift from M to M �the existence and uniqueness of
uch a lift are ensured by Proposition 4.3�. The higher orders in �, being recurrently constructed

y �4.39� and �4.45�, involve also the symplectic connection and curvature.
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Remark: By construction, the bidifferential operators Dn entering the �-product �4.47� have a
ather peculiar structure. Namely, they are determined by repeated differentiations along the an-
hor distribution �Xa�,

Dn�a,b� = �
k,l�n

Dn
c1¯ckd1¯dl�x��Xc1

¯ Xck
a��Xd1

¯ Xdl
b� . �4.49�

ere the structure functions Dc1¯ckd1¯dl�x� are universally expressed via the data of a symplectic
ie algebroid and a Lie algebroid connection. The differential operators of the form �4.49� are
alled the E-differential operators; accordingly, the �-product �4.47� is called the E-deformation of

M. As was shown in Ref. 11, any E deformation of M can be induced by an E deformation of the
ommutative algebra of E jets. Conversely, the E deformation of M, given by the formula �4.47�,
dmits a canonical extension to the space of E jets �by universality�. In Ref. 15 such an extension
as used to derive the universal deformation formula for triangular Lie bialgebras.

. FACTORIZABLE POISSON BRACKETS BEYOND SYMPLECTIC LIE ALGEBROIDS

As we have seen, the concept of a symplectic Lie algebroid gives rise to an interesting class
f Poisson brackets. Not any Poisson bracket comes in this way, but when it does, we have a
imple quantization procedure generalizing the Fedosov quantization. In this section we would
ike to discuss, in a sense, an inverse problem: To what extent the factorization �2.20� of a Poisson
ivector � defines a symplectic Lie algebroid?

The precise formulation of the problem is as follows. Let E→M be a vector bundle over a
mooth manifold M, � a section of EÙE, and X a section of E* � TM. By a slight abuse of
otation, we will use the same letters � and X to denote the corresponding bundle homomor-
hisms � :E*→E and X :E→TM. Let us also suppose that the E-bivector � is nondegenerate
defines an isomorphism between E and its dual E*� and X is involutive. The latter means that in
ach trivializing coordinate chart U�M with frame s�����E�U�, the local vector fields X�=X�

i �i

Vect�U� form an involutive distribution,

�X�,X�� = f��
� X�, �5.1�

f��
� being smooth functions on U. Clearly, the property of �X�� to be involutive does not depend on
frame, and hence, �Xa� generates a �singular� foliation F�M�. Suppose now that the bivector

� = ���X� Ù X� � Ù2TM �5.2�

atisfies the Jacobi identity

��,�� = 0. �5.3�

uestion: What is the most general geometric structure underlying Eqs. (5.1)–(5.3).
A particular solution to these equations is delivered by a symplectic Lie algebroid E→M with

nchor X and symplectic 2-form �. In this case �M ,�� is just a quasisymplectic manifold consid-
red in the preceding sections.

Explicitly, the Jacobi identities for the local vector fields Xa and the Poisson bivector � read

�f��
 f�

� − X�f��
� + cycle��,�,���X� = 0, �5.4�

���f��
 − X�����X� Ù X� Ù X� = 0,

�5.5�
X� = ���X�, ������ = �

�.

f the map X :E→TM is injective on an everywhere dense domain in M, the expressions in
arentheses �5.5� must vanish by continuity, and we arrive at a symplectic Lie algebroid �E ,X ,��.

n the opposite case the lhs of Eqs. �5.4� and �5.5� cannot be “divided” by Xa so simply, and thus,
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ore general solutions for the structure functions f��
� , ���, and X�

i are possible. To further study
hese equations, we impose a certain regularity condition on X. In what follows we will assume
hat the space ��TM�, considered as a C��M�-module, admits a resolution of the form

0 ← TM ←——
d1

E1 ←——
d2

E2 ← ¯ ← En−1 ←——
dn

En ← 0, �5.6�

here Ek→M and dk are sequences of vector bundles over M and their M-morphisms with E1

E and d1=X. �A sequence of homomorphisms of modules �5.6� is called a resolution of the
odule ��TM�, if im dk+1=ker dk. In other words, the sequence �5.6� is just a cochain complex,
hich is exact, exclusive of maybe the first term.� Here we do not require the morphisms dk to
ave constant ranks, but since n��, their ranks must be constant on an open everywhere dense
omain in M. In particular, the last structure map dk :Ek→Ek−1 should be injective on an every-
here dense domain in M. By analogy with ordinary Lie algebroids, we will refer to the first

tructure map d1=X as anchor.
In order to clarify the meaning of the regularity condition, let us choose an open domain

�M such that for all k=1, . . . ,n, Ek �U is a trivial vector bundle with frame s�k
. Upon restriction

n U, the morphisms dk are represented by matrices d�k

�k−1, so that d�k

�k−1d�k+1

�k =0. Since the complex
5.6� is exact starting with E1, the equality f�kd�k

�k−1 =0, f�k being a section of Ek, implies that f�k

g�k+1d�k+1

�k for some section g�k+1 of Ek+1.
Example 0: Consider the adjoint representation of so�3�. Identifying the carrier space so�3�

ith R3 we get a set of three linear vector fields on R3 generating the so�3�-algebra action:

adi = �ijkxj�k, �adi,adj� = − �ijk adk. �5.7�

learly, the rank of the anchor ad:R3�so�3�→TR3 equals 2 in general position and vanishes at
he origin 0�R3. Since the equation f i�x�adi=0 implies f i�x�=g�x�xi, for some smooth function g,
hile the equation xih�x�=0 has the unique solution h=0, we get the following resolution:

0 ← TR3 ←——
ad

R3 � so�3� ←——
d2

E2 ← 0, �5.8�

ere E2 is a linear bundle over R3 and d2= �xi�.
Given an anchor X satisfying the regularity condition, one can solve the Jacobi identity �5.4�

n the following form:

f��
 f�

� − X�f��
� + cycle��,�,�� = f���

a da
�, �5.9�

here f���
� are smooth functions on U, skew-symmetric in ���, and da

� is the matrix of the second
tructure map d2 in �5.6�. By definition, we have

da
�X� = 0. �5.10�

n order to solve the Jacobi identity for �, we assume the anchor foliation F�M� to be regular �this
echnical restriction can be weakened�, i.e., im X is an integrable subbundle of TM. Then

��f��
 − X���� + cycle��,�,�� = W��

a da� + cycle��,�,��, da� = ���da
�, �5.11�

��
a =−W��

a being smooth functions on U. Examining compatibility of these equations with the
nvolution relations �5.1�, one obtains an infinite set of higher structure functions and structure
elations to be studied below.

Let us forget for a moment about the Poisson bivector �, focusing at the anchor distribution
. Commuting �5.10� with X�, we find

X�da
� + f��

� da
� = − f�a

b db
�, �5.12�

fba
� being local functions. Contracting the last identity with dc

� and symmetrizing in the indices ac,

e get
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dc
�f�a

b + da
�f�c

d = fca
A dA

b , �5.13�

here dA
b is the matrix of the third structure map in �5.6�, so that dA

bdb
�=0. Proceeding in the same

anner one can derive the other structure relations.
There is a nice way to generate all these relations systematically using the language of NQ

anifolds. Let us recall the basic definitions.21–24 An N manifold is a non-negatively integer
raded supermanifold, whose N grading is compatible with the underlying Z2 grading �Grassman
arity�. In other words, an N manifold is just a supermanifold with a privileged class of atlases in
hich particular coordinates are assigned non-negative integer degrees �even coordinates have

ven degrees, while odd ones have odd degrees� so that the changes of coordinates respect these
egrees. The highest degree of coordinates is called the degree of an N manifold. For example, if
eg M =0, then M is just an ordinary manifold. Finally, an NQ manifold is an N manifold endowed
ith integrable vector field Q of degree 1, called a homological vector field. Since Q is odd, the

ntegrability condition �Q ,Q�=2Q2=0 is nontrivial. The classical example of an NQ manifold of
egree 1 is the anticotangent bundle �TM �cotangent bundle with the reverse parity of fibers�. The
unctions on �TM are just inhomogeneous differential forms on M and Q is the usual exterior
ifferential. More generally, an NQ manifold of degree 1 is the same as Lie algebroid. For this
eason it is natural to name the NQ manifolds of degree n as n algebroids.24

A general homological vector field looks like �all derivatives are assumed to be acting on the
eft�

Q = c�1X�1

i �x�
�

�xi + �
k=1

deg M

c�k+1d�k+1

�k �x�
�

�c�k
+ ¯ , �5.14�

here deg�xi�=0, deg�c�k�=k, and dots stand for higher orders in the positively graded variables
�k. Evaluating the equation Q2=0 at the first order in c’s one recovers the cochain complex
xioms d�m

�m−1d�m+1

�m =0, the second order in c�1 reproduces the involution relations �5.1�, relation
5.9� contributes to the cubic order, and so on. �Notice, that any n algebroid can also be viewed as
n �n+1�-algebroid whose higher structure functions are just equal to zero.� Thus, we see that the
esolution �5.6� for the involutive distribution X :E→TM is just a regular n algebroid.

Although the language of NQ manifolds is quite convenient to describe the structure of n
lgebroids as such, it becomes unappropriated when one tries to incorporate the symplectic struc-
ure entering the factorization �2.20�. Here we would like to present a new geometric framework
roviding a uniform description for both n-algebroid and symplectic structures underlying factor-
zable Poisson brackets. For the sake of simplicity we restrict our consideration to the case of
-algebroids. The general construction will be developed elsewhere. Before going into details let
s give two examples which are of interest by themselves.

Example 1: �Poisson-Lie algebras.� Consider an invariant Poisson bracket on a Lie group G
ssociated with the bivector

� = rij�Li Ù Lj − Ri Ù Rj� . �5.15�

ere Li, Rj are left and right invariant vector fields on G, and the matrix �rij� obeys the Yang-
axter equation

fml
i �rjnfns

l rsk + cycle�j,l,k�� + cycle�i, j,k� = 0, �5.16�

f ij
k being the structure constants of the corresponding Lie algebra L�G�. If det�rij��0, we have the
oisson bivector � associated with the symplectic structure rij and the 2-algebroid,

0 ← TG ←——
�L,R�

TG � TG ←——
d2

TG ← 0, �5.17�

here d2= �1,A�, and A is the automorphism of the tangent bundle TG relating the left and right
j
nvariant vector fields, Li=AiRj.
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Example 2: �Universal factorization.� Any Poisson bivector �=�ij�iÙ� j can be factorized in a
kew-symmetric product of Hamiltonian and coordinate vector fields,

� = Pi Ù Qi, Pi = �i, Qi = �ij� j . �5.18�

he local vector distribution �Pj ,Q
j� is obviously transitive and hence involutive. Moreover, there

s a one-parameter ambiguity in writing the involution relations,

�Pi,Pj� = 0,

�Pi,Q
j� = �i�

jkPk, �5.19�

�Qi,Qj� = t�k�
ijQk + �1 − t��k�

ij�knPn, t � R .

his ambiguity is due to linear dependence of the local vector fields,

Qi = �ijPj . �5.20�

he last equations are already independent and we arrive at the following cochain complex:

0 ← TM ←——
�P,Q�

TM � T*M ←——
�1,��

TM ← 0, �5.21�

hich is exact provided � is nondegenerate on an everywhere dense domain in M.
Consider now a general NQ-manifold M of degree 2. As for usual manifolds, the structure of
can be described in terms of coordinate charts and transition functions gluing together indi-

idual N-graded domains U�M. Without loss of generality we can assume that each U is given
y a direct product U�R1

n�R2
m, where U�M is an open contractible domain on the base mani-

old with local coordinates xi, R1
n and R2

m are vector spaces with linear coordinates c� and ca,
espectively. We set deg�xi�=0, deg�c��=1, deg�ca�=2, so that xi and ca are commuting, while c�

re anticommuting coordinates on U�M. If now U and U� are two graded domains with non-
mpty intersection, then the most general form of transition functions, compatible with the N
rading, is given by

x�i = f i�x�, c�� = A�
��x�c�, c�a = Bb

a�x�cb + 1
2F��

a �x�c�c�, �5.22�

f i, A�
�, Bb

a and F��
a are smooth functions on U�U�. The first equation defines transformation of

ocal coordinates on the base manifold M. Disregarding the F term, we see that the second and
hird equations are similar to those defining transition functions for �graded� vector bundles.

oreover, the matrix-valued functions A and B do really obey the standard cocycle conditions on
verlaps of two and three coordinate charts, defining thus the direct sum E1 � E2 of two graded
ector bundles.

In terms of local coordinates the most general homological vector field on M reads

Q = c�X�
i �

�xi + cada
� �

�c� +
1

2
c�c�f��

� �

�c� + c�caf�a
b �

�cb + c�c�c�f���
a �

�ca . �5.23�

sing relations �5.22� one can derive transformation properties for the structure functions X�
i , da

�,
f��

� , fa�
b , f���

a �C��U� under coordinate changes. In particular, the F term induces the shift

f��
� → f��

� + F��
a da

�, �5.24�

hich reflects an inherent ambiguity concerning the choice of the structure functions �5.1� when-
ver X� are linearly dependent. Also, it is not hard to see that X�

i and da
� transform homogeneously,

.e., as sections of the associated vector bundles E1
*

� TM and E2
*

� E1.
Now suppose that M defines a 2-algebroid factorizing a Poisson bivector �. Our aim is to
ive a unified description for both the 2-algebroid and the symplectic structure entering this
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actorization. It turns out that all structure relations underlying the factorization �5.2� can be
escribed in terms of an Abelian connection �covariant derivative� acting on a bundle of odd
oisson algebras over M. The construction goes as follows.

Let E0 � E1 be a Z2-graded vector bundle over M defined by the aforementioned gluing
ocycles A and �B−1�*, that is E1=E1, E0=E2

*. If c� and �a are linear coordinates in the fibers of E1

nd E0 over a trivializing domain U�M, we set ��c��=1, ���a�=��xi�=0. It is convenient to think
f this bundle as a formal supermanifold N with even coordinates xi, �a and odd coordinates c�.
he word “formal” reflects the fact that we allow the functions on N to be given by formal power
eries in �’s. These functions form a supercommutative algebra F with the generic element

f�x,c,�� = �
k,n

f�1¯�n

a1¯ak �x��a1
¯ �ak

c�1
¯ c�n. �5.25�

he algebra F= � Fn,m is naturally bigraded with respect to powers of c’s and �’s and is isomor-
hic to the tensor algebra of sections of the associated vector bundle S•E0

*
� 
•E1

*.
The space F can also be endowed with the structure of odd Poisson algebra. To this end, we

ntroduce the odd Laplacian � :Fm,n→Fm−1,n−1,

�f = da
��x�

�2f

�c���a
. �5.26�

learly, �2=0. The odd Poisson bracket �· , · � :Fn,m � Fk,l→Fn+k−1,m+l−1 is defined by the rule

�− 1���f��f ,g� = ��f · g� − �f · g − �− 1���f�f · �g . �5.27�

t obeys the standard identities which may be taken as the axioms of an odd Poisson manifold,

��f ,g� = ��f� + ��g� + 1 �mod 2� ,

�f ,g� = − �g, f��− 1����f�+1����g�+1� �symmetry� ,

�5.28�
�f ,gh� = �f ,g�h + �f ,h�g�− 1���g���h� �Leibnitz rule� ,

�f ,�g,h���− 1����f�+1����h�+1� + cycle�f ,g,h� = 0 �Jacobi identity� .

otice that � respects the odd Poisson bracket �5.27� in the sense that

��f ,g� = ��f ,g� + �− 1���f�+1�f ,�g� . �5.29�

he algebra F contains a special element �= 1
2���c�c��F2,0 associated with the symplectic

tructure. The adjoint action of � gives rise to the nilpotent differentiation  :Fn,m→Fn+1,m−1,

f = ��, f� = − c����da
� �f

��a
, 2 = 0. �5.30�

t is easy to see that the -cohomology is trivial when evaluated on F•,k with k�0.
Now we would like to endow the bundle of odd Poisson algebras F with a sort of partial

onnection � :Fm,n→Fm+1,n making possible parallel transport along the leaves of the anchor
oliation F�M�. Treating � as an odd vector field on N, we set

�a = c�
X�
i �

�xi +
1

2
c�f��

� �

�c� + �af�b
� �

��b
�a + �W1,a� , �5.31�

here the structure functions X�
i , f��

� , f�b
a are the same as in Eq. �5.23� and W1=c�c�W��

a �a
F2,1 is given by the rhs of Eq. �5.11�. Using the definition of �, one can rewrite Eq. �5.11� as
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�� = 0 �5.32�

r, equivalently,

� +  � = 0. �5.33�

he main property of the local vector field � is that it respects the odd Poisson bracket, i.e.,

��f ,g� = − ��f ,g� + �− 1���f�+1�f ,�g� , �5.34�

or any f ,g� �F�U. Squaring �, we get an internal derivation of the odd Poisson algebra,

�2f = �R, f� , �5.35�

here one can thought of the odd function R=c�c�c�f���
a �a�F3,1 as the curvature of �. Like a

urvature, R obeys the Bianchi identity

�R = 0. �5.36�

Now we can extend � from a local coordinate chart U to the whole N. To this end, we choose
trivializing covering �Ui� of M together with local connections �i on �E0 � E1� �Ui

. It follows from
5.32� that on each nonempty intersection Ui�U j,

�i − � j = ��ij, · � , �5.37�

or some �ij � �F1,2�Ui�Uj
. Then, on each nonempty intersection Ui�U j �Uk the functions �ij

atisfy the relation

��ij + � jk + �ki� = 0. �5.38�

ince the -cohomology is trivial on F1,2 we conclude that

�ij + � jk + �ki = �ijk on Ui � U j � Uk, �5.39�

or some �ijk� �F0,3�Ui�Uj�Uk
. Again, from the last equation it follows that on each nonempty

ntersection Ui�U j �Uk�Ul of four domains one has

�ijk − � jkl + �kli − �lij = 0. �5.40�

otice that Eq. �5.37� does not define �ij uniquely as we are free to add to them any -closed
erms �ij �F1,2. This modifies the rhs of Eq. �5.39� as follows:

�ijk → �ijk − ��ij + � jk + �ki� . �5.41�

quations �5.40� and �5.41� imply that to any collection of local connections �i we have associ-
ted an element � of the second Čech cohomology group with coefficients in F0,3. Since this
roup is completely determined by the second De Rham’s cohomology group of M we can think
f � as an element of H2�M�.

Given a partition of unity �hi� subordinated to the covering �Ui�, we set

�i = �ijh
j . �5.42�

t is not hard to check, using relation �5.39�, that the new local connections �i�=�i− ��i , · �
lready coincide on each intersection Ui�U j��. Thus, there are no topological obstructions to
ntroducing a partial connection of the form �5.31� and we can regard ��H2�M� as an invariant
f �.

Combining now the action of � with internal differentiations of the odd Poisson algebra F,

ne can construct a more general connection D :Fn,•→Fn+1,•,
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Da = a + �a − �W,a� = �a + �� − W,a� , �5.43�

being an element of F2,•, if D2=0, we refer to D as an Abelian connection. The condition of D
o be an Abelian connection is equivalent to the following equation:

W = R + �W + 1
2 �W,W� . �5.44�

he existence of an Abelian connection follows from the solubility of �5.44�. Indeed, substituting
xpansion

W = �
k=2

�

Wk, Wk � F2,k, �5.45�

nto �5.44� one gets

W2 = R ,

�5.46�

Wn+1 = �Wn +
1

2�
k=2

n

�Wn−k+2,Wk�, n � 2.

ince the -cohomology is trivial when evaluated on F2,k with k�0, the first equation is soluble
rovided R=0. But the last condition immediately follows from the identities 0=�2�= �R ,��
−R. Proceeding by induction, one can see that the rhs of the �n+1�th equation is  closed �and

hus is  exact� provided all the previous equations for W2 , . . . ,Wn have been satisfied.
The main results of this section can be summarized as follows.
Proposition 5.1: Suppose we are given the following data:

1� a short exact sequence

0 → E2 ——→
d

E1 ——→
X

F → 0,

where E1→M, E2→M are vector bundles over a smooth manifold M, F is an integrable
subbundle of the tangent bundle TM, and d, X are M-morphisms of the vector bundles (not
necessarily of constant rank);

2� a nondegenerate, skew-symmetric, bilinear form � on E1 inducing a Poisson bivector field on
the base manifold,

� = �,X Ù X� � Ù2TM, ��,�� = 0.

(Here we identify X :E1→F�TM with a section of E1
*

� TM.)

Then to each set of such data one can associate

1� an invariant � taking value in the second group of De Rham’s cohomology of M, and
2� a bundle of odd Poisson algebras F over M together with an Abelian connection D differ-

entiating F such that the condition D2=0 generates all structure relations arising from the
integrability of F and the Jacobi identity for �.

The generating procedure stated above could be viewed as starting point for quantizing gen-
ral factorizable brackets associated with symplectic 2-algebroids along the lines of Secs. III and
V.
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We expand a partial difference equation �P�E� on multiple lattices and obtain the
P�E which governs its far field behavior. The perturbative-reductive approach is
here performed on well-known nonlinear P�Es, both integrable and nonintegrable.
We study the cases of the lattice modified Korteweg-de Vries �mKdV� equation, the
Hietarinta equation, the lattice Volterra-Kac-Van Moerbeke equation and a nonin-
tegrable lattice KdV equation. Such reductions allow us to obtain many new P�Es
of the nonlinear Schrödinger type. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2190776�

. INTRODUCTION

Problems involving the evolution of nonlinear phenomena, both continuous and discrete, have
ecome of increasing interest in various branches of science and engineering. Nonlinear waves,
ithout dissipation and dispersion give rise in a finite time to a discontinuity. A typical example of
onlinear wave is the shock wave produced by a supersonic object. Dissipation and dispersion
lay an important role in balancing the steepening due to nonlinearity, so that when these effects
re present, a steep but smooth solitary wave may be formed and then propagates for all times.
he solitary wave phenomenon has actually been observed for many years in the form of a surface
ave in shallow water. A model equation of nonlinear dispersive phenomena may, in general, be
ery complicated. The soliton may appear only in the asymptotics, after a long transient period.
hus to be able to put in evidence the solitons, Taniuti and collaborators11,12 introduced an
symptotic method which makes it possible to reduce general nonlinear evolution equations to
ome more tractable nonlinear equations. This method go under the denomination of reductive
erturbation technique. Under the assumption that the amplitude of the waves are small, one is
ble to reduce the starting hyperbolic system to a few simple equations, such as the Burgers
quation, the Korteweg-de Vries equation, the nonlinear Schrödinger equation and few others.

In the reductive perturbation method, the space and time coordinates are stretched in terms of
small expansion parameter and we introduce the concept of far field, as the field governing the

symptotic behavior of the reduced equation. To give a simple idea of the reasoning underlining
his concept, let us consider, as an example, the familiar wave equation in two variables:

�,tt − �,xx = 0. �1�

he general solution of Eq. �1� can be expressed as the superposition of waves moving to the right
nd to the left. In general these two waves are excited simultaneously by an arbitrary initial
ondition. However, if the initial condition is localized, after a certain finite time the disturbance
eparates in a progressive wave propagating to the right and one to the left, and they are solutions

�Electronic mail: levi@fis.uniroma3.it
�
Electronic mail: petrera@fis.uniroma3.it
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o a first order equation, i.e., an equation of one fewer degree of freedom:

�,x ± �,t = 0.

e call the solutions of the first order equation the far field solutions of the original wave
quation. The concept of far field came from the idea of finding properties of a given evolution
quation which do not depend in a sensitive manner on the details of the initial conditions, but
orrespond to a wide class of initial conditions.

As an example of the simplification obtained by considering the reductive perturbation
ethod, let us consider a Riemann wave,

�,t + �����,x = 0. �2�

hen the wave function is small we may find the solution � by a perturbation calculation. Let �
e a small parameter and let us expand the solution around the constant solution ��0�,

� = ��0� + ���1� + O��2� .

xpanding in powers of � we get from Eq. �2� the following results:

�0, �,t
�1� + �0�,x

�1� = 0,

�1, �,t
�2� + �0�,x

�2� = − �,��0���1��,x
�1�,

ith

�0 � ����0��, �,��0� � � d�

d�
�

�=��0�
.

ntroducing the new variables x�=x−�0t, t�=�t, we can rewrite Eq. �2�, up to the second order in
, as

�,t�
�1� + �,��0���1��,x�

�1� = 0. �3�

If we consider a nonlinear dispersive system, like, for example, the Euler equation, instead of
q. �3� we get

�,t� = �,x�x�x� + 6��,x�, �4�

hat is the Korteweg-de Vries �KdV� equation.
The nonlinear system at the lowest order approximation can admit a solution given by

onocromatic wave packets, i.e., ��0�=A exp�kx−��k�t�. Then it is reasonable to consider pertur-
ations of such solution and to turn the nonlinear system into a set of equations for the complex
nvelope of these packets. The characteristic packet size and wavelength play the role of different
cales for this system.

Let us consider, for example, the KdV equation �4� for a small amplitude field � of order �.
he linear equations admits a monocromatic solution with dispersion relation ��k�=−k3. Then the
olution of the KdV equation can be written as

� = �
n=−�

+�

���n�vn�x�,t��ein�kx−��k�t�, vn
* = v−n,

ith

2 2
x� = ��x + 3k t�, t� = − 6� kt ,
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�0 = 1, �n = n − 1, n � 1,

nd v1 will satisfy the well-known integrable nonlinear Schrödinger �NLS� equation

v1,t� + 1
2v1,x�x� − k2v1�v1�2 = 0. �5�

It is important to notice that these multiscale expansions are structurally strong and can be
pplied to both integrable and nonintegrable systems. Zakharov and Kuznetsov in the introduction
f their paper14 say: If the initial system is not integrable, the result can be both integrable and
onintegrable. But if we treat the integrable system properly, we again must get from it an
ntegrable system.

Calogero and Eckhaus3 used similar ideas starting from generic hyperbolic systems to prove
n 1987 the necessary conditions for the integrability of nonlinear partial differential equations
PDEs�. Later Degasperis and Procesi4 introduced the notion of asymptotic integrability of order

by requiring that the multiscale expansion be verified up to order n.
Also in the case of differential equations on a lattice, we would like to have a reliable

eductive perturbative method which would produce reduced discrete systems. As the far field
olution implies the introduction of a new variable which combines the continuous time with the
iscrete lattice, it is natural to get from a differential-difference equation by the reductive pertur-
ation technique a continuous NLS equation �5�. Leon and Manna7 and later Levi and Heredero9

roposed a set of tools which allows to perform multiscale analysis for a discrete evolution
quation. These tools rely on the definition of a large grid scale via the comparison of the
agnitude of related difference operators and on the introduction of a slow varying condition for

unctions defined on the lattice. Their results, however, are not very promising as the reduced
odels are neither simpler nor as integrable as the original ones. Starting from an integrable
odel, like the Toda lattice, Leon and Manna7 produce a nonintegrable differential-difference

quation of the discrete NLS type. Levi and Heredero9 from the integrable differential-difference
LS equation obtain a nonintegrable system of differential-difference equations of KdV type.

In the present paper we consider the case of nonlinear partial difference equations �P�Es�. To
e able to carry out the discrete reductive perturbation technique, in Sec. II we introduce multiple
attice variables and give a definition of slow varying functions on the lattice. Section III is
evoted to the application of the perturbative expansions introduced to the case of a set of
ntegrable and nonintegrable equations, i.e., the lattice modified Korteweg-de Vries �mKdV� equa-
ion, the Hietarinta equation, the lattice Volterra-Kac-Van Moerbeke �VKVM� equation and a
onintegrable lattice KdV equation. Section IV is devoted to some conclusive remarks.

I. MULTIPLE SCALES ON THE LATTICE AND FUNCTIONAL VARIATION ON THEM

The aim of this section is to fix the notation and to introduce the mathematical formulas
ecessary to reduce integrable and nonintegrable lattice equations in the framework of the
erturbative-reductive approach. In doing so we will partly follow Ref. 8, trying to present a
learer and simpler derivation of all necessary formulas.

. Slow varying variables on the lattice

Given a lattice defined by a constant lattice spacing h, we will denote by n the running index
f the points separated by h. In correspondence with the lattice variable n, we can introduce the
eal variables x=hn.

We can define on the same lattice a set of slow varying variables by introducing a small
arameter �=N−1 and requiring that

nj = � jn . �6�

his is equivalent to sampling points from the original variables which are situated at a distance of
jh between them and then setting them on a lattice of spacing h. The corresponding slowly

j
arying real variables xj are related to the variable x by the equation xj =� x.
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. Expansion of slowly varying functions

Let us study the relation between functions living on the different lattices defined in Sec. II A.
e consider a function f � fn defined on the points of a lattice of index n. Let us assume that

fn=gn1,n2,. . .,nK
, i.e., f depends on a finite number K of slow varying lattice variables nj j

1,2 , . . . ,K defined as in �6�. We want to get explicit expressions for, say, fn+1 in terms of

n1,n2,. . .,nK
evaluated on the points of the n1 ,n2 , . . . ,nK lattices. At first let us consider the case,

tudied in Ref. 6, when we have only two different lattices, i.e., K=1. Using the results obtained
n this case we will then consider the case corresponding to K=2. The general case will then be
bvious.

�I� K=1 �fn=gn1
�: In this case we use the following result presented in Ref. 6:

�kgn1
� �

i=0

k

�− 1�k−i�k

i
�gn1+i = �

i=k

�
k!

i!
P�i,k��i fn. �7�

ere the coefficients P�i ,k� are given by

P�i, j� = �
�=j

i

��Si
�
S�

j , �8�

here � is the ratio of the increment in the lattice of variable n with respect to that of variable n1.
n this case, taking into account Eq. �6�, �=N. The coefficients Si

� and S�
j are the Stirling numbers

f the first and second kind, respectively.2 Formula �7� allow us to express a difference of order k
n the lattice of variable n1 in terms of an infinite number of differences on the lattice of variable
. The result �7� can be inverted and we get

�kfn = �
i=k

�
k!

i!
Q�i,k��ign1

, �9�

here the coefficients Q�i ,k� are given by �8� with �=N−1=�.
To get from Eqs. �7� and �9� a finite approximation of the variation of gn1

� fn we need to
runcate the expansion on the right-hand side �rhs� by requiring a slow varying condition for the
unction fn. Let us introduce the following definition.

Definition: The function fn is a slow varying function of order p iff �p+1 fn=0.
From Sec. II A it follows that a slow varying function of order p is a polynomial of degree p

n n. From Eqs. �7� and �9� we see that also the following statement holds.
Theorem: fn is a slow varying function of order p iff �p+1 gn1

=0, namely gn1
, is of order p.

Equation �9� provides us with the formulas for fn+1 in terms of gn1
and its neighboring points

n the case of slow varying functions of any order. Let us write down explicitly these expressions
n the case of gn1

of order 1, 2, and 3.

i� p=1. The formula �9� reduces to

�fn =
1

N
�gn1

,

i.e., fn+1 reads

fn+1 = gn1
+

1

N
�gn1+1 − gn1

� + O�N−2� .
ii� p=2: From Eq. �9� we get
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�fn =
1

N
�gn1

+
1 − N

2N2 �2gn1
,

and thus fn+1 reads

fn+1 = gn1
+

1

2N
�− gn1+2 + 4gn1+1 − 3gn1

� +
1

2N2 �gn1+2 − 2gn1+1 + gn1
� + O�N−3� . �10�

iii� p=3: From Eq. �9� we get

�fn =
1

N
�gn1

+
1 − N

2N2 �2gn1
+

�1 − N��1 − 2N�
6N3 �3gn1

,

and thus fn+1 reads

fn+1 = gn1
+

1

6N
�2gn1+3 − 9gn1+2 + 13gn1+1 − 6gn1

� +
1

2N2 �− gn1+3 + 4gn1+2 − 5gn1+1 + 2gn1
�

+
1

6N3 �gn1+3 − 3gn1+2 + 3gn1+1 − gn1
� + O�N−4� .

In the next sections we will consider mainly the reduction of integrable discrete equations and
e will be interested in obtaining from them integrable discrete equations. It is known13 that a

calar differential-difference equation can possess higher conservation laws and thus be integrable
nly if it depends symmetrically on the discrete variable, i.e., if the discrete equation is invariant
ith respect to the inversion of the lattice index. The results contained in �9� do not provide us
ith symmetric formulas. To get symmetric formulas we start from Eq. �7� and take into account

he following remarks:

1� Formula �7� holds also if h is negative;
2� For a slow varying function of order p, we have �pfn=�pfn+�, for all ��Z.

When fn is a slow varying function of odd order we are not able to construct completely
ymmetric derivatives using just an odd number of points centered around the n1 point and thus

fn±1 can never be expressed in a symmetric form.
Using the above remarks we can construct the symmetric version of �10�. From �7� we get

gn1+1 = gn1
+ N�fn + 1

2N�N − 1��2fn, �11�

here �2fn= fn+1−2fn+ fn−1 thanks to the remark 2. Using the remark 1 we can also write

gn1−1 = gn1
+ N�−1fn + 1

2N�N − 1��2fn, �12�

here �−1fn� fn−1− fn. From Eqs. �11� and �12� we obtain the following form for fn+1:

fn+1 = gn1
+

1

2N
�gn1+1 − gn1−1� +

1

2N2 �gn1+1 − 2gn1
+ gn1−1� + O�N−3� . �13�

�II� K=2 �fn=gn1,n2
�: The derivation of the formulas in this case is done in the same spirit as

or the symmetric expansion presented above, see Eq. �13�. Let us just consider the case when
p=2, as this is the lowest value of p for which we can consider fn as a function of the two scales

1 and n2. From Eq. �11� we get

gn +1,n = gn ,n + N�1fn,n + 1
2N�N − 1��1

2fn,n, �14�

1 2 1 2
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gn1,n2+1 = gn1,n2
+ N2�2fn,n + 1

2N2�N2 − 1��2
2fn,n. �15�

ere the symbols �1 and �2 denote difference operators which acts on the first and, respectively,
n the second index of the function fn,n�gn1,n2

, e.g., �1fn,n� fn+1,n− fn,n and �2fn,n= fn,n+1− fn,n.
Let us now consider a function gn1,n2

where one shifts both indices by 1. From Eq. �14�, taking
nto account that, from Eq. �6�, for example, gn1+1,n2

= fn+N,n, one has

gn1+1,n2+1 = gn1,n2+1 + N�1fn,n+N2 + 1
2N�N − 1��1

2fn,n+N2, �16�

nd using the result �15� we can write Eq. �16� as

gn1+1,n2+1 = gn1,n2
+ N2�2fn,n + 1

2N2�N2 − 1��2
2fn,n + N�1� fn,n + N2�2fn,n + 1

2N2�N2 − 1��2
2fn,n�

+ 1
2N�N − 1��1

2� fn,n + N2�2fn,n + 1
2N2�N2 − 1��2

2fn,n�
= gn1,n2

+ N2�2fn,n + 1
2N2�N2 − 1��2

2fn,n + N�1fn,n + N3�1�2fn,n + 1
2N3�N2 − 1��1�2

2fn,n

+ 1
2N�N − 1��1

2fn,n + N3�N − 1��1
2�2fn,n + 1

4N3�N2 − 1��N − 1��1
2�2

2fn,n. �17�

s, using the second remark, the second difference of fn,n depends just on its nearest neighboring
oints, the right-hand side of Eq. �17� depends, apart from fn,n=gn1,n2

, on fn,n+1, fn,n−1, fn+1,n,
fn−1,n, fn+1,n+1, fn+1,n−1, fn−1,n+1, and fn−1,n−1, i.e., eight unknowns. Starting from Eqs. �14�, �15�,
nd �17� we can write down eight equations, using the first remark, which defines gn1+1,n2

, gn1−1,n2
,

n1,n2+1, gn1,n2−1, gn1+1,n2+1, gn1+1,n2−1, gn1−1,n2+1, and gn1−1,n2−1 in terms of the functions fn+i,n+j with
i , j�=0, ±1. Inverting this system of equations we get fn±1 in term of gn1,n2

and its shifted values:

fn±1 = gn1,n2
±

1

2N
�gn1+1,n2

− gn1−1,n2
� +

1

2N2 �gn1+1,n2
− 2gn1,n2

+ gn1−1,n2
� ±

1

2N2 �gn1,n1+1 − gn1,n2−1�

+
1

4N3 �gn1+1,n2+1 − gn1−1,n2+1 − gn1+1,n2−1 + gn1−1,n2−1� + O�N−4� . �18�

t is worthwhile to notice that the two lowest order �in N−1� terms of the expansion �18� are just the
um of the first symmetric differences of gn1

and gn2
. Thus in the continuous limit, when we divide

y h and send h to zero in such a way that x=hn, x1=hn1, and x2=hn2 be finite, we will have

f ,x = �gx1
+ �2gx2

.

xtra terms appear at the order N−3 and contain shifts in both n1 and n2.
When fn is a slow varying function of order 2 in n1 it can also be of order 1 in n2. In such a

ase Eq. �15� is given by

gn1,n2+1 = gn1,n2
+ N�2fn,n. �19�

tarting from Eqs. �14� and �19� and a modified �17� we can get a set of eight equations which
llows us to get fn±1 in terms of gn1,n2

and its shifted values. In such a case fn±1 reads

fn±1 = gn1,n2
±

1

2N
�gn1+1,n2

− gn1−1,n2
� +

1

N2 �gn1,n2±1 − gn1,n2
� +

1

2N2 �gn1+1,n2
− 2gn1,n2

+ gn1−1,n2
�

+ O�N−3� . �20�
It is possible to introduce two parameters in the definition of n1 ,n2 in terms of n. Let us define
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n1 =
nM1

N
, n2 =

nM2

N2 ,

here M1 and M2 are divisors of N and N2 so that n1 and n2 are integers numbers. In such a case,
q. �18� reads

fn±1 = gn1,n2
±

M1

2N
�gn1+1,n2

− gn1−1,n2
� +

M1
2

2N2 �gn1+1,n2
− 2gn1,n2

+ gn1−1,n2
� ±

M2

2N2 �gn1,n2+1 − gn1,n2−1�

+
M1M2

4N3 �gn1+1,n2+1 − gn1−1,n2+1 − gn1+1,n2−1 + gn1−1,n2−1� + O�N−4� �21�

nd Eq. �20� accordingly.
When we consider partial difference equations we have more than one independent variable.

et us consider the case of two independent lattices and a function fn,m defined on them. As the
wo lattices are independent the formulas presented above apply independently on each of the
attice variables. So, for instance, the variation fn+1,m when the function fn,m is a slowly varying
unction of order 2 of a lattice variable n1 reads

fn+1,m = gn1,m +
1

2N
�gn1+1,m − gn1−1,m� +

1

2N2 �gn1+1,m − 2gn1,m + gn1−1,m� + O�N−3� . �22�

A slightly less obvious situation appears when we consider fn+1,m+1, as new terms will appear.
e consider here just the case we will need later when

n1 =
M1n

N
, m1 =

M2m

N
, m2 =

n

N2 . �23�

f fn,m is a slow varying function of first order in m2 and of second order in both n1 and m1, from
qs. �21� and �22� the variation fn+1,m+1 reads

fn+1,m+1 = gn1,m1,m2
+

M1

2N
�gn1+1,m1,m2

− gn1−1,m1,m2
� +

M2

2N
�gn1,m1+1,m2

− gn1,m1−1,m2
� +

M1
2

2N2 �gn1+1,m1,m2

+ gn1−1,m1,m2
− 2gn1,m1,m2

� +
M2

2

2N2 �gn1,m1+1,m2
+ gn1,m1−1,m2

− 2gn1,m1,m2
�

+
M1M2

4N2 �gn1+1,m1+1,m2
+ gn1−1,m1−1,m2

− gn1+1,m1−1,m2
− gn1−1,m1+1,m2

� +
1

N2 �gn1,m1,m2+1

− gn1,m1,m2
� + O�N−3� .

II. MULTISCALE REDUCTION OF NONLINEAR PARTIAL DIFFERENCE EQUATIONS

In the following we will apply the formulas obtained in Sec. II to some well-known partial
ifference equations. Some of those are known to have a Lax pair and are associated to integrable
artial differential equations. Others are concocted so as to have a real dispersion relation but with
o particular reason why they should be integrable. The integrable equations we will consider
ere, the lattice modified KdV �mKdV�, presented in Sec. III A, the Hietarinta equation, presented
n Sec. III B and the lattice Volterra-Kac-Van Moerbeke �VKVM� equation, presented in Sec.
II C, are defined on four lattice points and are P�Es consistent around a cube.5 From this
roperty one can derive their Lax equation.

The lattice mKdV is an integrable equation of the same class of the lattice potential KdV and
dV �Ref. 3� and it possesses a Lax pair.10 As from KdV we get by multiscale reduction the

14
LS, the same we may expect here. To get an integrable discrete equation we expect a resulting
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iscrete equation which is somehow symmetric. At least when ht→0 with t=mht the differential
ifference equation we obtain must be symmetric in terms of the inversion of nj, i.e., if it contains

j+k it will contain also nj−k.
The nonintegrable KdV equation presented in Sec. III D is obtained by a straightforward

iscretization using the symmetric representation of the derivatives so as to get a real dispersion
elation.

In all the cases considered we will expand the solution of the nonlinear lattice equation around
wave solution of the linear part. In doing so we require that the wave solution be always

ounded so that a perturbative expansion with slowly variable coefficients is meaningful. This can
e always achieved if the dispersion relation is real. This is always true if the equation can be
ewritten in terms of symmetric derivatives. Moreover to get a meaningful reduction we need to
ave a nontrivial nonlinear dispersion relation.

. Reduction of the lattice mKdV

The discrete analogue of the modified Korteweg-de Vries �mKdV� equation is given by the
ollowing nonlinear P�E:10

p�un,mun,m+1 − un+1,mun+1,m+1� − q�un,mun+1,m − un,m+1un+1,m+1� = 0. �24�

his equation involves just four points which lay on two orthogonal infinite lattices and are the
ertices of an elementary square. In Eq. �24� un,m is the dynamical field �real� variable at site
m ,n��Z	Z and p ,q�R are the lattice parameters. These are assumed different from zero and
ill go to zero in the continuous limit so as to get the continuous mKdV.

Carrying out the change of variable un,m�1+un,m, one can separate the linear and nonlinear
arts of Eq. �24�,

p�un,m + un,m+1 − un+1,m − un+1,m+1� − q�un,m + un+1,m − un,m+1 − un+1,m+1�

= q�un,mun+1,m − un,m+1un+1,m+1� − p�un,mun,m+1 − un+1,mun+1,m+1� . �25�

Let us consider the linear part of Eq. �25�, namely

p�un,m + un,m+1 − un+1,m − un+1,m+1� − q�un,m + un+1,m − un,m+1 − un+1,m+1� = 0. �26�

iven any initial condition un,0 the general solution of Eq. �26� is given by

un,m =
1

2
i
�

j=−�

�

uj,0	
�z�=1


 �p − q� − �p + q�z
�p − q�z − �p + q��m

zn−j−1 dz . �27�

quation �27� can be rewritten in a more natural way �from the continuous point of view� by
efining

z � eik, � � e−i� =
�p − q� − �p + q�z
�p − q�z − �p + q�

. �28�

n such a case the solution �27� is written as a superposition of linear waves

En,m = ei�kn−��k�m� = zn�m. �29�

he dispersion relation for these linear waves is given by

� = − 2 arctan
 p

q
tan� k

2
�� , �30�

he same as for the lattice potential KdV �pKdV� equation.8 From Eqs. �28� and �30�, by differ-

ntiation with respect to k, we get the group velocity �,k,
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�,k =
4pqz

��p − q�z − �p + q����p + q�z − �p − q��
=

2pq

p2 + q2 − �p2 − q2�cos k
. �31�

he linear part of the P�E �25�, i.e., Eq. �26�, is solved in terms of harmonics �29� if � is given
y �30�. The nonlinearity will couple the harmonics. This suggests to look for solutions of the P�E
25� written as a combination of modulated waves,

un,m = �
s=0

�

��sn,m
�s� �En,m�s + �

s=1

�

��s̄n,m
�s� �Ēn,m�s, �32�

here the functions n,m
�s� are slowly varying functions on the lattice, i.e., n,m

�s� =n1,m1,m2

�s� and ��

N−1. By b̄ we mean the complex conjugate of a complex quantity b so that, for example, Ēn,m

�En,m�−1. The positive numbers �s are to be determined in such a way that

1� �1��s "s=0,2 ,3 , . . . ,�. In general it is possible to set �1=1.
2� In the equation for n,m

�1� =n,m, we require that the lowest order nonlinear terms should match
the slow time derivative of the linear part after having solved all linear equations. This will
provide a relation between � and the �s.

The fact that the second summation in Eq. �32� starts from s=1 and contains the complex
onjugates of the terms of the first summation is due to the reality condition for the solutions of the
�E �24�.

After introducing the expansion �32� in the P�E �25� and analyzing the coefficients of the
arious harmonics �En,m�s for s=1, s=2, and s=0 �as, assuming that �s increases with s, the
onlinear terms will depend only on the lowest s terms� we came to the conclusion that we can
hoose

� = 1, �0 = 2, �s = s, s � 1. �33�

he discrete slow varying variables n1, m1, and m2 are defined in terms of n and m by Eq. �23�.
Having fixed the constants �s according to Eq. �33� we can introduce the ansatz �32� into Eq.

25� and get the determining equations.
For s=1 we get, at lowest order in �,

n1,m1,m2
��q − p��1 − z�� − �p + q��� − z�� = 0,

hich is identically solved by the dispersion relation �28�.
At �2 we get the linear equation

M1z��p − q�� + �p + q���n1+1,m1,m2
− n1−1,m1,m2

� + M2���p − q�z − �p + q���n1,m1+1,m2

− n1,m1−1,m2
� = 0, �34�

hose solution is given by

n1,m1,m2
= �n2,m2

, n2 = n1 − m1.

rovided that the integers M1 and M2 are chosen as

M1 = S���p − q�z − �p + q��, M2 = Sz��p − q�� + �p + q�� , �35�

here S�C is a constant; S cannot be completely arbitrary since M1 and M2 are to be integer
umbers. We will show in Appendix A how it is possible to choose the complex constant S in such
way that M1 and M2 are in fact integer numbers as required by Eq. �23�. Substituting the
xpression of � given in �28� into Eq. �35�, we can rewrite M1 and M2 as
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M1 = − S��p + q�z − �p − q��, M2 =
4pqSz

��p + q� − z�p − q��
. �36�

rom Eqs. �31� and �36� we get

�,k =
M2

M1
, �37�

.e., the ratio M2 /M1 is the group velocity. As M1 and M2 are integers, it follows that not all values
f k are admissible as �,k�Q. Let us notice that also n2=n1+m1 solves Eq. �34� by an appropriate
hoice of M1 and M2.

At �3 we get a nonlinear equation for �n2,m2
which depends on n2,m2

�2� ,

�n2,m2+1 − �n2,m2
+ c1��n2+2,m2

+ �n2−2,m2
− 2�n2,m2

� + c2��n2+1,m2
+ �n2−1,m2

− 2�n2,m2
�

+ c3n2,m2

�2� �̄n2,m2
= 0, �38�

here

c1 = pq�p − q�S2z2 �p − q� − �p + q�z
��p − q�z − �p + q��2 ,

c2 = 2pq�p − q�S2z
�p + q��1 + z2� − 2�p − q�z

��p − q�z − �p + q��2 ,

c3 =
2pq�p2 − q2��1 − z2�3

z��p − q�z − �p + q��2��p + q�z − �p − q��2 . �39�

sing the form of the complex constant S obtained in Appendix A, the coefficients �39� read

c1 = −
M2

2�p − q�
16pq

��p + q��cos k + i sin k� − �p − q�� ,

c2 =
M2

2�p − q�
4pq

��p + q�cos k − �p − q�� ,

c3 = i
2pq�p2 − q2�sin3 k

��p2 + q2� − �p2 − q2�cos k�2 . �40�

he coefficients �40� depend on the integer constant M2. The integer M1 is then written out in
erms of M2 and reads

M1 = M2
p2 + q2 − �p2 − q2�cos k

2pq
,

o that not all values of k are admissible as M1 must be also an integer. See Appendix A for
etails.

The lowest order equations for the harmonic s=2 appear at �2 and give

n2,m2

�2� = 1
2 ��n2,m2

�2.

t is easy to see that the choice �33� implies that the coefficients of all other harmonics are
¯
xpressed in terms of �n2,m2

and �n2,m2
.
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Taking these results into account the nonlinear equation P�E �38� for �n2,m2
reads

i��n2,m2+1 − �n2,m2
� = C1��n2+2,m2

+ �n2−2,m2
− 2�n2,m2

� + C2��n2+1,m2
+ �n2−1,m2

− 2�n2,m2
�

+ C3�n2,m2
��n2,m2

�2, �41�

here Ci=−ici, i=1,2, C3=−ic3 /2, and the coefficients ci’s are given by Eq. �40�. It is easy to see
hat C3 is a real coefficient.

The P�E �41� is a completely discrete and local NLS equation depending on the first and
econd neighboring lattice points. At difference from the Ablowitz and Ladik1 discrete NLS, the
onlinear term in �41� is completely local. The P�E �41� has a natural semicontinuous limit when

2→� as H2→0 in such a way that t2=m2 H2�R is finite. Setting n2�n and t2� t one gets the
ollowing nonlinear differential-difference equation:

i
��n

�t
= C1��n+2 + �n−2 − 2�n� + C2��n+1 + �n−1 − 2�n� + C3�n��n�2. �42�

he continuous limit of the P�E �41� is obtained if we consider in Eq. �42� the limit n→� as

1→0 in such a way that x=nH1�R is finite. The resulting NLS equation reads

i�,t = �4C1 + C2��,xx + C3����2, �43�

here

4C1 + C2 = −
M2

2�p2 − q2�sin k

4pq
. �44�

s the coefficient �44� is real, Eq. �43� is just the well-known integrable NLS equation.

. Reduction of the Hietarinta equation

In Ref. 5 Hietarinta introduces a new consistent around a cube P�E,

un,m + e2

un,m + e1

un+1,m+1 + o2

un+1,m+1 + o1
−

un+1,m + e2

un+1,m + o1

un,m+1 + o2

un,m+1 + e1
= 0, �45�

here the four constants ei ,oi�R, 1� i�2, are lattice parameters.
By a direct calculation one can separate the linear and the nonlinear parts of Eq. �45�,

o1o2�e1 − e2�un,m + e1e2�o1 − o2�un+1,m+1 + e1o2�e2 − o1�un+1,m + e2o1�o2 − e1�un,m+1

= ��o2 − e1�un+1,m + �e2 − o1�un,m+1�un,mun+1,m+1 + ��o1 − o2�un,m + �e1 − e2�un+1,m+1�un+1,mun,m+1

+ �o1�e2 − o2�un,m+1 + o2�o1 − e1�un+1,m�un,m + �e2�e1 − o1�un,m+1 + e1�o2 − e2�un+1,m�un+1,m+1

+ �o2e2 − o1e1��un,mun+1,m+1 − un+1,mun,m+1� . �46�

Let us now solve the linear part of the P�E �46�,

o1o2�e1 − e2�un,m + e1e2�o1 − o2�un+1,m+1 + e1o1�e2 − o2�un+1,m + e2o2�o1 − e1�un,m+1 = 0.

�47�

efining

z � eik, � � e−i� =
o2�e1�e2 − o1�z + o1�e1 − e2��
e2�e1�o2 − o1�z + o1�e1 − o2��

,

he �complex� dispersion relation for these linear waves is given by
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� = 2 arctan� ie1o1�o2 − e2�tan�k/2�
�o1o2�e1 − e2� + e1e2�o1 − o2��tan�k/2� + ie2o2�e1 − o1� .

he dispersion relation is a real function of k if the following condition holds:

o1o2�e1 − e2� + e1e2�o1 − o2� = 0. �48�

o give a meaning to the expansion �32� we must require that the dispersion relation ��k� be a real
unction for k real. From Eq. �48� we can write o2 in terms of o1, e1, e2, and get

� � e−i� =
e1�e2 − o1�z + o1�e1 − e2�
o1�e1 − e2�z + e1�e2 − o1�

, �49�

o that the real dispersion relation reads

� = 2 arctan
 e2�e1 + o1� − 2e1o1

e2�o1 − e1�
tan� k

2
�� . �50�

rom Eq. �49�, by differentiation with respect to k, we get the real group velocity �,k,

�,k =
e2�o1 − e1��2e1o1 − e2�e1 + o1��z

�e1�o1 − e2�z + o1�e2 − e1���o1�e1 − e2�z + e1�e2 − o1��
. �51�

The P�E �47� has a bounded wave solution given by Eq. �29�, where � is given by Eq. �49�.
o we can look for solutions of the P�E �46� in the form of a combination of modulated waves
32�, where the functions n,m

�s� are slowly varying functions on the lattice, i.e., n,m
�s� =n1,m1,m2

�s� and
�=N−1.

Introducing the expansion �32� in the Hietarinta equation �46� and considering the equations
or s=1, s=2, and s=0 harmonics we deduce that the choice �33� is still valid. Moreover, the
iscrete slow varying variables n1, m1 and m2 are defined in terms of n and m by Eq. �23�.

Having fixed the constants �s we can now introduce the ansatz �32� into Eq. �46� and pick out
he coefficients of the various harmonics �En,m�s to get the determining equations.

For s=1, having defined n,m
�1�

�n,m, we obtain an equation at the first order in � which is
dentically solved by the dispersion relation �50�.

At �2 we get the linear equation

M1z�o1�e1 − e2�� + e1�o1 − e2���n1+1,m1,m2
− n1−1,m1,m2

� + M2��o1�e1 − e2�z − e1�o1 − e2��

	�n1,m1+1,m2
− n1,m1−1,m2

� = 0,

hose solution is given by

n1,m1,m2
= �n2,m2

, n2 = n1 − m1

rovided that the integers M1 and M2 are chosen as

M1 = S��o1�e1 − e2�z − e1�o1 − e2��, M2 = Sz�o1�e1 − e2�� + e1�o1 − e2�� , �52�

here S�C is a constant. Inserting � given by Eq. �49� in Eq. �52� we can show that the ratio
M2 /M1 coincides with the group velocity �51�.

3 �0� �2�
At � we get a nonlinear equation for �n2,m2
which depends on n2,m2

and n2,m2
. It reads
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�n2,m2+1 − �n2,m2
+ c1��n2+2,m2

+ �n2−2,m2
− 2�n2,m2

� + c2��n2+1,m2
+ �n2−1,m2

− 2�n2,m2
�

+ c3�n2,m2
��n2,m2

�2 + c4n2,m2

�0� �n2,m2
+ c5n2,m2

�2� �̄n2,m2
= 0, �53�

here the coefficients ci, 1� i�5, depend on z, S and the lattice parameters e1, e2, o1 and are
iven in Appendix B as their expressions are rather complicated.

The functions n2,m2

�0� and n2,m2

�2� that appear in Eq. �53� are obtained by considering the equa-
ions for the harmonics s=0, at the third order in �, and s=2 at the second one. From them we get

n2,m2

�2� = p1��n2,m2
�2, �54�

n2+1,m2

�0� − n2−1,m2

�0� = p2��̄n2,m2
��n2+1,m2

− �n2−1,m2
� + �n2,m2

��̄n2+1,m2
− �̄n2−1,m2

�� , �55�

ith

p1 =
e1z − o1

e1o1�z − 1�
, p2 =

e1 + o1

e1o1
.

rom Eqs. �54� and �55� we evince that both n2,m2

�0� and n2,m2

�2� are expressed in term of �n2,m2
. In

articular, we notice that n2,m2

�2� depends from �n2,m2
in a local way while n2,m2

�0� depends from

n2,m2
in a nonlocal way through a summation, namely

n2,m2

�0� = �− 1�n2
w1 + p2 �
j=n2

�

�− 1� j��̄ j,m2
� j+1,m2

+ � j,m2
�̄ j+1,m2

�� + w2, �56�

here w1 ,w2 are two arbitrary summation constants.
Inserting n2,m2

�2� given by Eq. �54� in Eq. �53� we get

�n2m2+1 − �n2,m2
+ c1��n2+2,m2

+ �n2−2,m2
− 2�n2,m2

� + c2��n2+1,m2
+ �n2−1,m2

− 2�n2,m2
�

+ ĉ3�n2,m2
��n2,m2

�2 + c4n2,m2

�0� �n2,m2
= 0, �57�

here, using the form of the complex constant S, see Appendix A, and the fact that z�eik, the
oefficients are

c1 =
P2�P1�cos k + i sin k� + P2�

4�P2
2 − P1

2�
M2

2,

c2 =
P2�P1 cos k + P2�

P2
2 − P1

2 M2
2,

ĉ3 =
2�P1 − P2��P1�e1 − e2� + P2�e2 − o1���cos k − 1�

e2�o1e2 + P2��P1
2 + P2

2 + 2P1P2 cos k�
,

c4 = −
2�P1 − P2��P1 − e2

2 + o1e2��cos k − 1�
e2�P1

2 + P2
2 + 2P1P2 cos k�

,

ith

P1 = e1�e2 − o1�, P2 = o1�e1 − e2� .
ere M2 is an arbitrary integer number, while M1 is given by �see Appendix A�
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M1 = M2
P1

2 + P2
2 + 2P1P2 cos k

P2
2 − P1

2 .

. Reduction of the lattice VKVM equation

The completely discrete version of the Volterra-Kac-Van Moerbeke �VKVM� equation is
iven by the following P�E:10

un,m+1

un+1,m
=

�un,m − 1

�un+1,m+1 − 1
. �58�

ere � is a real lattice parameter and un,m is a real field.
The dispersion relation of the linear part of Eq. �58� is trivial. So, we carry out the change of

ariable un,m�1+un,m. Then one can split Eq. �58� into the linear and nonlinear parts:

��un+1,m+1 − un,m� + �1 − ���un+1,m − un,m+1� = ��un,mun+1,m − un+1,m+1un,m+1� . �59�

The dispersion relation for the linear waves is given by

� =
��z + 1� − z

��z + 1� − 1
, � = arctan
 �2� − 1�sin k

�2�2 − 2� + 1�cos k + 2��� − 1�� . �60�

rom Eq. �60�, by differentiation with respect to k, we get the group velocity �,k,

�,k =
�2� − 1�z

���z + 1� − z����z + 1� − 1�
=

�2� − 1�
2��� − 1��cos k + 1� + 1

. �61�

We now consider a solution of the P�E �59� in the form of a combination of modulated
aves, see Eq. �32�, where En,m is given by Eq. �29� with � as in Eq. �60�. As in the previous

ases the functions n,m
�s� are to be slowly varying functions on the lattice, i.e., n,m

�s� =n1,m1,m2

�s� and
�=N−1.

Introducing the expansion �32� in the lattice VKVM equation �59� and considering the equa-
ions for s=1, s=2, and s=0 we deduce that the choice �33� is still valid. The discrete slow
arying variables n1, m1 and m2 are defined in terms of n and m by the positions �23�, where

M1 ,M2�Z.
For s=1 we obtain an equation at the first order in � which is identically solved by the

ispersion relation �60�.
At �2 we get a linear equation

M1z���� − 1� + 1��n1+1,m1,m2
− n1−1,m1,m2

� + M2����z + 1� − 1��n1,m1+1,m2
− n1,m1−1,m2

� = 0,

hose solution is given by

n1,m1,m2
= �n2,m2

, n2 = n1 − m1

rovided that the integers M1 and M2 are chosen as

M1 = S����z + 1� − 1�, M2 = Sz���� − 1� + 1� , �62�

here S�C is a constant. Inserting � given by Eq. �60� in Eq. �62� we get that the ratio M2 /M1

oincides with the group velocity �61�. As shown in Appendix A it is possible to choose the
omplex constant S in such a way that M1 and M2 are in fact integer numbers.

3 �0� �2�
At � we get a nonlinear equation for �n2,m2
which depends on n2,m2

and n2,m2
. It reads
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�n2,m2+1 − �n2,m2
+ c1��n2+2,m2

+ �n2−2,m2
− 2�n2,m2

� + c2��n2+1,m2
+ �n2−1,m2

− 2�n2,m2
�

+ c3n2,m2

�0� �n2,m2
+ c4n2,m2

�2� �̄n2,m2
= 0, �63�

here the coefficients ci, 1� i�4, are

c1 = �S2z2 �1 − 2�����z + 1� − z�
4���z + 1� − 1�2 ,

c2 = �S2z
�2� − 1����z + 1�2 − z2 − 1�

2���z + 1� − 1�2 ,

c3 =
��1 − z2�

���z + 1� − z����z + 1� − 1�
,

c4 =
��1 − z2��z2 − z + 1�

���z + 1� − z����z + 1� − 1�z
.

The functions n2,m2

�0� and n2,m2

�2� that appear in Eq. �63� are obtained by considering the equa-
ions for the harmonics s=0, at the second order in �, and s=2, at the third one. We get the
ollowing equations:

n2,m2

�2� = p1��n2,m2
�2, �64�

n2+1,m2

�0� − n2−1,m2

�0� = p2��̄n2,m2
��n2+1,m2

− �n2−1,m2
� + �n2,m2

��̄n2+1,m2
− �̄n2−1,m2

�� , �65�

ith

p1 =
�1 − 2��z

��z + 1�2 − z2 − 1
, p2 =

2��1 + z2� − z2 − 1

�1 − z2��� − 1�
.

rom Eqs. �64� and �65� we evince that both n2,m2

�0� and n2,m2

�2� are expressed in term of �n2,m2
. In

articular n2,m2

�0� admits a nonlocal expansion as in Eq. �56�. Inserting n2,m2

�2� given by Eq. �64� in
q. �63� we get

�n2,m2+1 − �n2,m2
+ c1��n2+2,m2

+ �n2−2,m2
− 2�n2,m2

� + c2��n2+1,m2
+ �n2−1,m2

− 2�n2,m2
�

+ c3n2,m2

�0� �n2,m2
+ ĉ4�n2,m2

��n2,m2
�2 = 0, �66�

here ĉ4=c4p1.
Let us write the coefficients that appear in Eq. �66�, i.e., c1 ,c2 ,c3 , ĉ4, using the form of the

omplex constant S, see Appendix A, and the fact that z�eik. We get

c1 = − �
�� − 1��cos k + i sin k� + �

4�2� − 1�
M2

2,

c2 = �
�� − 1�cos k + �

2� − 1
M2

2,

c3 = − i
2� sin k

,

2��� − 1��cos k + 1� + 1
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ĉ4 = i
�2 cos k − 1�sin k

�� − 1��cos k − 1��2��� − 1��cos k + 1� + 1�
.

s in the previous cases we can choose the integer number M2, while M1 is given by �see
ppendix A�

M1 = M2
2��� − 1��cos k + 1� + 1

2� − 1
.

. Reduction of a nonintegrable lattice KdV equation

Let us now consider the following nonintegrable lattice KdV equation:

un,m+1 − un,m−1 =
�

4
�un+3,m − 3un+1,m + 3un−1,m − un−3,m� + ���un+1,m�2 − �un−1,m�2� , �67�

here � ,��R are the lattice parameters and un,m is a real field.
As we did for previous cases we apply the standard discrete Fourier transform procedure

ntroducing un,m=zn�m into the linear part of the lattice equation �67�. Here z�eik and ��e−i�.
e easily get

� − �−1 =
�

4
�z − z−1�3. �68�

ence the dispersion relation reads

� = arcsin�� sin3 k�

nd the corresponding group velocity is

�,k = −
3

4

��

1 + �2

�z4 − 1��z2 − 1�
z3 =

3� cos k sin2 k
�1 − �2 sin6 k

. �69�

Introducing the expansion �32� into the P�E �67�, where En,m is given by Eq. �29� and taking
nto account that

fn±k = gn1
±

k

2N
�gn1+1 − gn1−1� +

k2

4N2 �gn1+1 + gn1−1 − 2gn1
� + O�N−3� ,

e get the standard choice �33�.
Let us consider now the equations for the harmonics s=1. The equation at the order � is

dentically satisfied by taking into account the dispersion relation �68�. The equation at the order
2 is satisfied if we introduce the index n2=n1−m1 when M1 and M2 are chosen as

M1 = S�� +
1

�
�, M2 = −

3

4
S�

�z4 − 1��z2 − 1�
z3 . �70�

e notice that the group velocity �,k �69� coincides again with the ratio M2 /M1, as in Eq. �37�.
rom Eq. �70�, using the fact that z�eik and ��e−i�, we obtain

M1 = − 2S cos �, M2 = − 6S� cos k sin2 k .

e can now fix the �real� constant S in such a way that M1 is an integer number; M2 will be an
nteger if the group velocity is a rational number. Hence not all values of k are admissible, but only
hose which make �,k �69� rational.

3
The equation at the order � is given by
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�n2m2+1 − �n2,m2
+ c1��n2+1,m2

+ �n2−1,m2
− 2�n2,m2

� + c2��n2,m2
�n2,m2

�0� + �̄n2,m2
�n2,m2

�2� � = 0,

�71�

here �n2,m2
=n1,m1,m2

, n2=n1−m1, and c1 ,c2 are known, easy to compute but too complicated to
rite down, complex coefficients depending on z and on the lattice parameter �. The functions

n2,m2

�0� and n2,m2

�2� that appear in Eq. �71� are obtained by considering the equations for the har-
onics s=0, at the third order in �, and s=2, at the second one. We get the following equations:

n2,m2

�2� = p1��n2,m2
�2, �72�

n2+1,m2

�0� − n2−1,m2

�0� = p2��̄n2,m2
��n2+1,m2

− �n2−1,m2
� + �n2,m2

��̄n2+1,m2
− �̄n2−1,m2

�� , �73�

here p1 , p2 are known complex coefficients depending on z and on the lattice parameters. From
qs. �72� and �73� we evince that both n2,m2

�0� and n2,m2

�2� are expressed in term of �n2,m2
. As in the

revious cases n2,m2

�0� admits a nonlocal expansion as in Eq. �56�. Hence the P�E �71� is a
ell-defined lattice equation in the field variable �n2,m2

.

V. CONCLUSIVE REMARKS

In this paper we have shown that we can construct a well-defined procedure to carry out the
eductive perturbation technique on the lattice. In this case, at difference with respect to the
ifferential-difference case, we are able to solve all linear equations and thus can obtain a final
onlinear difference equation. To do so we had to apply some nontrivial but at the end obvious
ricks which consist in the introduction of appropriate lattice variables so as to be able to perform
he symmetric reduction of the linear discrete wave equation.

Applying the perturbative-reductive technique to some integrable and nonintegrable equations
e obtain some new completely discrete NLS equations. As some of these equations �41�, �57�,

nd �66� come from the reduction of integrable equations we expect them to be also integrable.
owever they are very different from the Ablowitz-Ladik discrete-discrete NLS �Ref. 1� as all

ontains, apart from the nearest neighboring points, also the points n±2 and either they are
ompletely local or they have nonlocal completely irregular terms �depending on �−1�n�.

So we are at the moment, from one side extending our analysis to other well-known integrable
quations, like the discrete time Toda lattice, the sine-Gordon and the Volterra equations and from
he other using the integrability properties of the starting nonlinear equations �i.e., Lax pairs or
eneralized symmetries� to show the integrability of the derived equations. If our equation are
ntegrable than we have presented a very important tool for obtaining new integrable equations
nd for analyzing the far field behavior of physical problems described by differential-difference
r partial difference equations.

In the derivation we introduced the request that the far field expansion of a slow varying
unction on the lattice should depend on the discrete asymptotic variables in a symmetric way. As
consequence of this ansatz we find that the nonlocal resulting equation depends on �−1�n. This
ay not be a necessary ansatz and work is in progress in this direction.
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PPENDIX A

From Eqs. �35�, �52�, and �62� we get that the coefficients M1 and M2 can always be written
n the following general form:

M1 = S��Pz − Q�, M2 = Sz�P� + Q� , �A1�

here S�C is a suitable constant such that M1 ,M2�Z, ��e−i�, z�eik and P ,Q�R are given
y

P = p − q, Q = p + q, lattice mKdV equation,

P = o1�e1 − e2�, Q = e1�o1 − e2�, Hietarinta equation,

P = �, Q = 1 − �, lattice VKVM equation.

he �real� dispersion relation for the linear parts of the above lattice equations can be written in
he form

� =
P − Qz

Pz − Q
. �A2�

et us now define the complex constant S as S��ei�, with ��R+ and −
���
. From Eqs. �A1�
nd �A2� we get

Re�M1� = ��P cos��� − Q cos�� + k�� , �A3�

Im�M1� = ��P sin��� − Q sin�� + k�� , �A4�

Re�M2� =
��P2 − Q2�

P2 + Q2 − 2PQ cos k
�P cos��� − Q cos�� + k�� , �A5�

Im�M2� =
��P2 − Q2�

P2 + Q2 − 2PQ cos k
�P sin��� − Q sin�� + k�� . �A6�

ince M1 ,M2�Z we must require that Im�M1�=Im�M2�=0. From Eqs. �A4� and �A6� we obtain

� = − arctan� Q sin k

Q cos k − P
� + �
, � � Z . �A7�

e must now require that M1=Re�M1�, M2=Re�M2��Z. According to Eqs. �A3�, �A5�, and �A7�,
e get

M1 = �− 1����P2 + Q2 − 2PQ cos k�1/2, �A8�

M2 = �− 1���
�P2 − Q2�

�P2 + Q2 − 2PQ cos k�1/2 . �A9�

e can fix arbitrarily the integer number M2 �or equivalently M1� and express M1 �or M2� in terms
f it,

M1 = M2
P2 + Q2 − 2PQ cos k

P2 − Q2 . �A10�
rom �A10� we can see that not all values of k are admissible since M1 must be integer.
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Let us finally notice that the fact that Eq. �A10� contains cos�k� implies that the ratios M2 /M1

nd P /Q are constrained as −1�cos�k��1. We have the following cases �see Fig. 1�:

P/Q � �1,�� Þ M2/M1 � ��P/Q − 1�/�P/Q + 1�,�P/Q + 1�/�P/Q − 1�� � Q ,

P/Q � �0,1� Þ M2/M1 � ��P/Q + 1�/�P/Q − 1�,�P/Q − 1�/�P/Q + 1�� � Q ,

P/Q � �− 1,0� Þ M2/M1 � ��P/Q − 1�/�P/Q + 1�,�P/Q + 1�/�P/Q − 1�� � Q ,

P/Q � �− �,− 1� Þ M2/M1 � ��P/Q + 1�/�P/Q − 1�,�P/Q − 1�/�P/Q + 1�� � Q .

PPENDIX B

The coefficients ci, 1� i�5 that appear in Eq. �53� are

c1 = S2z2 P2�P1
2 − P2

2��P1z + P2�
4�P1 + P2z�2 ,

c2 = − S2z
P2�P1

2 − P2
2��P1�1 + z2� + 2P2z�

2�P1 + P2z�2 ,

c3 =
�z − 1��P1 − P2��Q1z5 + Q2z4 + Q3z3 + Q4z2 + Q5z + Q6�

e2�P1 − e1e2��P1 + P2z�2�P1z + P2�2z
,

c4 =
�z − 1�2�P1 − P2��e2

2 − e1e2 + P2�
,

FIG. 1. The grey zones denote the allowed regions for the ratio M2 /M1 in terms of the ratio P /Q.
e2�P2z + P1��P1z + P2�
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c5 =
�z − 1�2�P1 − P2��R1z4 + R2z3 + R3z + R4�

e2�P1 + P2z�2�P1z + P2�2z
,

ith

P1 = e1�e2 − o1� ,

P2 = o1�e1 − e2� ,

Q1 = P1P2�P1e1 + P2e2� ,

Q2 = P1
3�e1 − e2� + P2

3�e2 − o1� + P1P2�P2e1 + 2P1e2 − P1o1� ,

Q3 = − P1�P1
2�e1 − e2� + P2

2�e1 + 4o1 − 3e2� + P1P2�3e2 − e1�� ,

Q4 = − P2�P1
2�4e1 − 3e2 + o1� + P2

2�o1 − e2� + P1P2�3e2 − o1�� ,

Q5 = − P1
3�e1 − e2� − P2

3�e2 − o1� − P1P2�P2e1 − 2P1e2 − P1o1� ,

Q6 = P1P2�P1e2 + P2o1� ,

R1 = P2�P1
2 + P2

2 + P1P2 + P2�e2
2 − e1e2�� ,

R2 = P2
3 + �e2

2 − e1e2��P2
2 − P1

2� + P1P2�e2
2 − e1e2 + P1 + 3P2� ,

R3 = − P2
3 − �e2

2 − e1e2��P2
2 − P1

2� − P1P2�e2
2 − e1e2 + P1 + P2� ,

R4 = P1�P1e2
2 − P2

2 − P1e1e2� .
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In this paper we reconsider the problem of the Euler parametrization for the unitary
groups. After constructing the generic group element in terms of generalized
angles, we compute the invariant measure on SU�N� and then we determine the full
range of the parameters, using both topological and geometrical methods. In par-
ticular, we show that the given parametrization realizes the group SU�N+1� as a
fibration of U�N� over the complex projective space CPn. This justifies the inter-
pretation of the parameters as generalized Euler angles. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2190898�

. INTRODUCTION

The importance of group theory in all branches of physics is a well-known fact. Explicit
ealizations of group representations are often necessary technical tools. Often it is finite dimen-
ional and compact Lie groups and then the knowledge of the associated algebra, which describes
he group in a neighborhood of the identity, is enough for this purpose.

There are however cases where an explicit expression of the full global group structure is
eeded, as, for example, when nonperturbative computations come into play. In most of these
ases, the main objectives are two: First, one would like to find a relative simple parametrization,
aking all the computations manageable. Second, one needs to determine the full range of the

arameters, in order to be able to handle global questions.
If both such points can seem unnecessary at an abstract level, they become essential at a most

oncrete level, e.g., in instantonic calculus or in nonperturbative lattice gauge theory computa-
ions. The necessary computer memory for simulations is in fact drastically diminished.

The case of SU�N� was first considered and solved by Tilma and Sudarshan, in Ref. 1. There,
hey provide a parametrization, in terms of angular parameters, for the unitary groups. In particu-
ar, in the first paper they consider special groups, SU�N�, together with some applications to qubit
nd qutrit configurations. In the second paper, they give an extension to U�N� groups, using the
bration structure of SU�N+1� as U�N� fiber over the complex projective space CPn.

In this paper we reconsider the problem of finding a generalized Euler parametrization for
pecial unitary groups. The intent is to provide a fully explicit and elementary �which does not
ean short� proof of the beautiful results of Ref. 1. Our motivation is that the determination of the

ange of the parameters is a quite difficult task, so that disagreements are present in the literature
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�Electronic mail: sergio.cacciatori@mi.infn.it
�
Electronic mail: blcerchiai@lbl.gov
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ven for SU�3� �for example, in Ref. 2�. Therefore, we think that a careful deduction is necessary
n order to corroborate the results of Tilma and Sudarshan. Also, all our proofs based essentially on
nductive procedures, and they are explicit, in order to be easily accessible to anyone who needs
hem.

Our construction is quite different from Ref. 1, and as a result our parametrization differs
lightly from theirs. However, this does not affect the final expression of the invariant measure.

To illustrate the spirit of our construction, let us start by taking a look at the Euler parametri-
ation for SU�2�.

Starting from the Pauli matrices

�1 = �0 1

1 0
�, �2 = �0 − i

i 0
�, �3 = �1 0

0 − 1
� , �1.1�

t is known that the generic element of SU�2� can be written as

g = ei��3ei��2ei��3. �1.2�

ere �� �0,��, �� �0,� /2�, �� �0,2�� are the so-called Euler angles for SU�2�. They are
elated to the well-known Euler angles traditionally used in classical mechanics to describe the
otion of a spin. From the point of view of the structure of the representation, �1.2� is obtained

tarting from a one parameter subgroup exp�i��2� and then acting on it both from the left and from
he right with a maximal subgroup of SU�2� which does not contain the first subgroup. We can
ewrite it in the schematic form g=U�1�exp�i��2�U�1�. On the other hand, the group SU�2� is
opologically equivalent to the three-sphere S3, and admits a Hopf fibration structure with fiber S1

ver the base S2�CP1.
To recognize this fibration structure in �1.2�, we can apply the methods used in Refs. 3 and 4.

fter introducing the metric �A 	B
= 1
2Tr�AB� on the algebra, the metric on the group can be

omputed as ds2= 1
2 Tr J � J, where J=−ig−1 dg are the left-invariant currents. Following Ref. 3, it

s possible to separate the fiber from the base by writing g=hU�1�, where h=ei��3ei��2 and
�1�=ei��3. To find the metric on the fiber, let us fix the point on the base and compute the

urrents along the fiber, JF=−iU�1�−1dU�1�=d��3. The metric on the fiber is then simply given
y dsF

2 =d�2. To determine the metric on the base, we first must project out from the current

B=−ih−1 dh the component along the fiber, in order to be left with the reduced current on the

asis J̃B=d��2+sin�2��d� �1, which then in turn provides the metric

dsB
2 = 1

4 �d�2��2 + sin2�2��d�2��2� . �1.3�

his corresponds in fact with the metric of a sphere of radius 1
2 . It is easy to see that, introducing

he complex coordinates z=tan �ei� and their complex conjugates, the metric dsB
2 reduces to the

tandard Fubini-Study metric for CP1.
This shows that the Euler parametrization captures the Hopf fibration structure of SU�2�,

hich is the starting point for our construction. Mimicking what we said about SU�2�, let us write
he generic element of SU�N+1� as g=U�N�e���U�N�, where e��� is a one parameter subgroup
ot contained in U�N�. The first difficulty we must face here is that this expression for a generic
U�N+1� group has redundancies, which must be eliminated. After this problem is solved, we

hen must show that the parametrization respects the Hopf fibration structure of SU�N+1�.

I. THE SU„N… ALGEBRA

The generators of su�N� are all the N�N traceless Hermitian matrices. A convenient choice
or a base are the generalized Gell-Mann matrices as explained in Ref. 1. Let us remind how they

an be constructed using an inductive procedure. Let ��i�i=1
N2−1 be the Gell-Mann base for su�N�:
hey are N�N matrices which can be embedded in su�N+1� adding a null column and a null row
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�̃i = ��i 0�

0� 0
� . �2.1�

e will omit the tilde from now on. The dimension of SU�N� being �N+1�2−1, we must add
N+1 matrices to obtain a Gell-Mann base for su�N+1�. This can be done as follows: Set

��N2+2a−2��	 = 
�,a
	,N+1 + 
�,N+1
	,a,

�2.2�
��N2+2a−1��	 = i�− 
�,a
	,N+1 + 
�,N+1
	,a� ,

or a=1, . . . ,N. The last matrix we need is diagonal and traceless so that we can take ��N + 1�2−1

�N+1 diag�1, . . . ,1 ,−N�.
One can easily verify that the base of matrices ��I�I=1

�N + 1�2−1 so obtained satisfies the normal-

zation condition Trace��I�J�=2
IJ if we choose �N+1=2/ ��N+1�2− �N+1��.
These are exactly the matrices we need to generate the group elements.

II. THE EULER PARAMETRIZATION FOR SU„N+1…: INDUCTIVE CONSTRUCTION

It is a well-known fact that special unitary groups SU�N+1� can be geometrically understood
s U�N� fibration over the complex projective space CPN. Now U�N� is generated by the first
2−1 generalized Gell-Mann matrices plus the last one ��N + 1�2−1. Using the fact that all the

emaining generators of SU�N+1� can be obtained from the commutators of these matrices with

N2+1, one is tempted to write the general element of SU�N+1� in the form

SU�N + 1� = U�N�eix�N2+1U�N� . �3.1�

owever to describe SU�N+1� we need �N+1�2−1 parameters, while in the rhs they are
N2+1: There are �N−1�2 redundancies. Inspired at first by dimensional arguments, we propose
hat an U�N−1� subgroup can be subtracted from the left U�N� in the following way. Let us write
�N� in the form U�N�=SU�N�ei���N + 1�2−1. Inductively, we can think that also SU�N� can be

ecovered from U�N−1�ei���N − 1�2+1 U�N−1� eliminating the redundant parameters, so that it will
ave the form SU�N�=hei���N − 1�2+1 SU�N−1�ei��N2−1. We then choose to eliminate the appearing
U�N−1� together with the phase ei���N + 1�2−1. In this way the SU�N+1� group element can be
ritten in the form SU�N+1�=hei���N − 1�2+1ei��N2−1eix�N2+1 U�N�. By induction, assuming N�2 we

rrive to the final form of our Ansatz about the parametrization of the general element g
SU�N+1�,

g = ei�1�3ei�1�2�
a=2

N

�ei��a/�a��a2−1ei�a�a2+1�U�N���1, . . . ,�N2� , �3.2�

here U�N���1 , . . . ,�N2� is a parametrization of U�N� which in turn can be obtained inductively
sing the fact

U�N� = �SU�N� � U�1��/ZN. �3.3�

he Ansatz �3.2� contains the correct number of parameters. However, we need to show that it is
good Ansatz, meaning that at least locally it must generate the whole tangent space to the

dentity. Using the Backer-Campbell-Hausdorff formula and some properties of the Gell-Mann
atrices, �essentially the fact that the commutators of ��k − 1�2+1 with the first �k−1�2−1 matrices
enerate all the remaining matrices of the su�k� algebra but the last one� it is easy to show that
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ei�1�1ei�1�3�
a=2

N

�ei��a/�a��a2−1ei�a�a2+1� = ei�j=1
�N + 1�2−2aj�j , �3.4�

here aj are all nonvanishing functions of the 2N parameters �a ,�a. Thus in a change of coordi-
ates �from the �a ,�a to the aj� only 2N of the aj can be chosen as independent parameters. We

ould choose the last ones, corresponding to the coefficients of the matrices ��k�k=N2
N2+2N−1. In this

ay, the N2 free parameters for the remaining matrices come out exactly from the U�N� factors in
3.2�.

We have not entered into details here because a second simple proof of the validity of this
arametrization will be given by constructing a nonsingular invariant measure from our Ansatz.

V. INVARIANT MEASURE AND THE RANGE OF THE PARAMETERS

. The invariant measure

To construct the invariant measure for the group starting from �3.2�, we will adopt the same
ethod used in Ref. 3, with UªU�N� as the fiber group. Let us then write �3.2� as

g = h · U . �4.1�

tarting from the computation of the left invariant currents jh=−ih−1 dh, we can define the one
orms

el
ª

1
2Tr�jh · �N2+l−1�, l = 1, . . . ,2N , �4.2�

hich turns out to give the Vielbein one forms of the base space of the fibration. If e� denotes the
orresponding Vielbein matrix, the invariant measure for SU�N+1� will then take the form

dSU�N+1� = det e� · dU�N�, �4.3�

U�N� being the invariant measure for U�N�. Using �3.3� with U�1�=ei��/�N+1���N + 1�2−1 we obtain
he recursion relation �note that here � is allowed to vary in the range �0,2� /N��

dSU�N+1� = det e� · dSU�N�
d�

�N+1
. �4.4�

hen we will concentrate on the det e� term. To this end let us write �3.2� in the form

g = hN+1��a,�a� · U��i� . �4.5�

ere we will consider N�3 so that the relation

hN+1 = hNei��N/�N��N2−1ei�N�N2+1, �4.6�

s true. If we introduce the right currents JhN+1
=−ihN+1

−1 dhN+1 then the Vielbein �4.2� takes the form

el
�N� =

1

2
Tr�JhN+1

�l� = d�N
l,N2+1 +
1

2�N
d�N Tr�e−i�N�N2+1�N2−1e

i�N�N2+1�N2+l�

+
1

2
Tr�e−i��N/�N��N2−1JhN

ei��N/�N��N2−1ei�N�N2+1�N2+le
−i�N�N2+1� , �4.7�
nd using the relations in Appendix A we find
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e� �N� =�
d�N 0 0

0 sin �N cos �N d�N sin �N cos �N
1

2�
a=2

N

Tr� 1

�a
JhN

�a2−1�
0 0

1

2
sin �N Tr�e−i��N/�N��N2−1JhN

ei��N/�N��N2−1M� �
� , �4.8�

here we introduced the �N� index to remember that this is a 2N�2N matrix associated to the
roup SU�N+1�. Here M� is a column of matrices, M2j−1=� j2+1, M2j=� j2, j=1,2 , . . . ,N−1. For-
ula �4.8� then reads as follows: JhN

is a 1-form with components JhN,c, c=1,2 , . . . ,2n−2, with
espects to the coordinates Xc, defined as X2j−1=� j, X2j=� j. To find the component �r ,c� of �4.8�
ne must then take the cth component of JhN,c and the rth component of M� before to compute the
race.

The invariant measure is then

det e� �N� = d�N d�N cos �N sin2N−1 �N det�1

2
Tr�e−i��N/�N��N2−1JhN

ei��N/�N��N2−1M� �� . �4.9�

e now use the recurrence relation

JhN
= ��N − 1�2+1 d�N−1 +

1

�N−1
e−i�N−1��N − 1�2+1��N − 1�2−1e

i�N−1��N − 1�2+1 d�N−1

+ e−i�N−1��N − 1�2+1e−i��N−1/�N−1���N − 1�2−1JhN−1
ei��N−1/�N−1���N − 1�2−1ei�N−1��N − 1�2+1. �4.10�

omputing the traces different cases arise depending on whether j=N−1 or j�N−1; using again
he relations in Appendix A it is not too difficult to show that the last determinant is equal to

det�d�N−1 cos�N�N� −
1

2
sin�N�N�sin�2�N−1�d�N−1

d�N−1 sin�N�N�
1

2
cos�N�N�sin�2�N−1�d�N−1

�
� det�1

2
cos �N−1 Tr�e−i��N−1/�N−1���N − 1�2−1JhN−1

ei��N−1/�N−1���N − 1�2−1M� �� ,

hich set into �4.9� in turn yields the recurrence relation

det e� �N� = d�N d�N
sin2N−1 �N

tan2N−4 �N−1
det e� �N−1�, �4.11�

hich can be solved to give

det e� �N� = 2 d�N d�N cos �N sin2N−1 �N�
a=1

N−1

�sin �a cos2a−1 �a d�a d�a� . �4.12�

his is the same result as found in Ref. 1.

. The range of the parameters

At this point we are able to determine the range of the parameters in such a way as to cover
he whole group. We will do this only for the base space: The remaining ranges for the fiber can
e determined recursively, as discussed above, remembering in particular that the U�1� phase in
�k� can be taken in �0,2� /k�.

We then proceed as in Ref. 3. We first choose the ranges so as to generate a closed
2
�N+1� −1�-dimensional closed manifold which then must wrap around the group manifold of
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U�N+1� an integer number of times. This can be done by looking at the measure �4.12� on the
ase manifold and noticing that it is nonsingular when 0��a�� /2, whereas �a can take all the
eriod values �a� �0,2��, for all a=1, . . . ,N. However, note that the angles �1 ,�1 ,�2 generate the
hole SU�2� group when 0��1��, 0��a�� /2 and 0��2�2�. We can then restrict �1

�0,��. The rest of the variety is generated by the remaining U�N� part.
If we call VN+1 the manifold obtained this way we then find

Vol�VN+1/U�N�� = �
0

�

d��
a=2

N �
0

2�

d�a�
b=1

N �
0

�/2

d�b�cos �N sin2N−1 �N�
c=1

N−1

�sin �c cos2c−1 �c��
=

�N

N!
, �4.13�

r equivalently

Vol�VN+1� = Vol�U�N��
�N

N!
. �4.14�

his is exactly the recursion relation found in Appendix B. Therefore, it is the correct range of the
arameters for every N�2, if we have V3=SU�3�, as can be easily checked directly or by com-
arison with the results given in Appendix A of Ref. 2 �see also Appendix B of Ref. 4�. The next
tep is to determine the parametrization of SU�N+1� for every value of N. It is given by �3.2� with

0 � �1 � �, 0 � �a � 2�,a = 2, . . . ,N ,

0 � � �
2�

N
, 0 � �a �

�

2
,a = 1, . . . ,N , �4.15�

nd the remaining parameters which cover SU�N� �determined inductively�.
To prove that our parametrization is well defined we can do more: We are in fact able to show

hat the induced metric on the base manifold is exactly the Fubini-Study metric over CPN.

. THE GEOMETRIC ANALYSIS OF THE FIBRATION

We will now show that the metric induced on the base space takes exactly the form of the
ubini-Study metric in trigonometric coordinates as given in Appendix C. To do so we will again
se inductive arguments.

The metric on the base is dsB
2 = �e� �N��T � e� �N�, where T indicates transposition and e� �N� is given

n �4.8�. Using the relations in Appendix A and defining

XN =
1

2�
a=2

N

Tr�JhN
�a�a2−1� �5.1�

he metric takes the form

dsB
2 = d2�N + sin2 �N��d�N + XN�2 + �

j=1

N−1 �1

2
Tr�e−i��N/�N��N2−1JhN

ei��N/�N��N2−1�� j2�2

+ �
j=1

N−1 �1

2
Tr�e−i��N/�N��N2−1JhN

ei��N/�N��N2−1�� j2+1�2� − sin4 �N�d�N + XN�2. �5.2�

his is an encouraging form, which upon comparison with �C3� suggests the identification �
�N. With this identification in mind, let us first remark that the following recursion relation

olds:
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XN = cos2 �N−1�d�N−1 + XN−1� , �5.3�

hich can be shown by inserting �4.10� in �5.1� and then applying �A6� and �A11�. A direct
omputation yields

X3 = cos2 �2�d�2 + cos�2�1�d�1� , �5.4�

rom which, through repeated application of the recurrence relation �5.3�, we obtain

XN = �
k=1

N−3 ��
i=1

k

cos2 �N−i�d�N−k + ��
i=1

N−2

cos2 �N−i��d�2 + cos�2�1�d�1� . �5.5�

t this point we must to compare d�N+XN with the coefficient of sin4 � in �C3�. In fact, to bring

�N+XN to the desired form �i=1
N �R̃i�2 d�i, one is tempted to just set �i=�i and �=�. However,

his cannot be the case because the R̃i does not satisfy the condition ��R̃i�2=1.
These observations, together with explicit calculations for the case N=4 and N=5, suggest

hat we should simply take some linear combination �i=�i�� j�. This can be done as follows: Let

s introduce new variables �̃K, k=1, . . . ,N, such that

�̃N = �N, �N−k = �̃N−k − �̃N−k+1, k = 1, . . . ,N − 3,

�5.6�
�1 + �2 = �̃1 − �̃3, �1 − �2 = �̃3 − �̃2.

n this way d�N+XN takes the desired form

d�N + XN = �
i=1

N

�Ri����2 d�i �5.7�

ith �=�, =1, . . .N−1, �i= �̃N−i+1, i=1, . . . ,N and

R1 = sin �N−1, Rk = sin �N−k�
i=1

k−1

cos �N−i, k = 2, . . . ,N − 1,

�5.8�

RN = �
i=1

N−1

cos �N−i.

hese formulas agree with the expressions in Appendix C. As the last step, in Appendix D we
nally show that, after performing the change of variables described above, the coefficients of
in2 � and sin2 �N also agree. This proves that the metric induced on the base CPN of the U�N�
bration by the invariant metric on SU�N+1� is nothing else but the natural Fubini-Study metric

n trigonometric coordinates.
We can now use this result as a different method to fix the range of the parameters. In fact,

R1 , . . . ,RN� parametrize the positive orthant of a sphere, if 0��i�� /2, i=1, . . . ,N−1. More-
ver, the identification of �N with � yields �� �0,� /2�. Finally, it is easy to show that the

onditions �̃i� �0,2�� are equivalent to �1� �0,�� and �i� �0,2��, i=2, . . . ,N. These are the
ame results obtained in �4.15�.

I. CONCLUSIONS

In this paper, we have reconsidered the problem of constructing a generalized Euler param-
trization for SU�N�. The parametrization we find differs slightly from the one described by Tilma

nd Sudarshan. In fact, comparing our results with the expression �18� in Ref. 1, it is possible to
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ee that we have chosen ��k − 1�2−1 instead of �3. Furthermore, we have computed the corresponding
nvariant measure, which turns out to coincide with the result in Ref. 1, despite the slight differ-
nces in the choice of the parametrization.

To determine the range of the parameters, we have used two distinct methods, both yielding
he same result. To better motivate the name “Euler angles,” we have carefully shown that the
arametrization captures the Hopf fibration structure of the SU�N� groups. In particular the change
f coordinate we found to evidentiate the fibrations, gives an explicit map between the Euler
oordinates introduced starting from the generalized Gell-Mann matrices, and the ones introduced
n Ref. 5 using geometrical considerations.

We have given a quite explicit proof of every assertion. Apart from corroborating the results
f Tilma and Sudarshan, we think that our work is providing a complete toolbox of computation
echniques useful in applied theoretical physics as well as for experimental physicists.
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PPENDIX A: SOME COMMUTATORS

Using the explicit form of the generalized Gell-Mann matrices constructed with the conven-
ions of Sec. II, we find the useful commutators

��N2+1,�N2+2j� = − i� j2,

�A1�
��N2+1,�N2+2j+1� = i� j2+1,

hen j=1, . . . ,N−1.
Others interesting relations easy to check are

��N2+1,�N2� = − i�N + 1��N+1��N + 1�2−1 − i�
a=2

N

�a�a2−1,

��N2+1,�a2−1� = i�a�N2, �A2�

��N2+1,��N + 1�2−1� = i�N + 1��N+1�N2,

here a=1, . . . ,N, from which remembering that �k=2/k�k−1�, one also finds

��N2+1,��N2+1,�N2�� = 4�N2. �A3�

rom the first two commutators we find the very useful relations

eix�N2+1� j2+1e
−ix�N2+1 =

1
�N2+2j+1 −

1
eix�N2+1�N2+2j+1e

−ix�N2+1,

sin x tan x
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eix�N2+1� j2e
−ix�N2+1 = −

1

sin x
�N2+2j +

1

tan x
eix�N2+1�N2+2je

−ix�N2+1, �A4�

hen j=1, . . . ,N−1.
Other useful relations easy to prove using the previous relations are

�
a=2

N

�a
2 + �N + 1�2�N+1

2 = 4, �A5�

�
a=2

N

�a
2 + �N + 1��N+1

2 = 2, �A6�

Tr�e−ix�N2+1�N2−1e
ix�N2+1�N2+I� = �N
I0 sin�2x� , �A7�

1

2
Tr��ae

ix�N2+1�N2+2ie
−ix�N2+1� = 
a,i2 sin x, a � N2 − 1, i = 1, . . . ,N − 1, �A8�

1

2
Tr��ae

ix�N2+1�N2+2i−1e
−ix�N2+1� = − 
a,i2+1 sin x, a � N2 − 1, i = 1, . . . ,N − 1, �A9�

1

2
Tr�eix�N2+1�N2e−ix�N2+1 �

a=1

N2−1

Ca�a� = sin�2x�
1

2�
b=2

N

Tr�Cb2−1�b2−1� , �A10�

�
a=2

N

Tr�Aeix��N − 1�2+1�a2−1e
−ix��N − 1�2+1� = cos2 x�

a=2

N

Tr�A�a�a2−1� , �A11�

eix�N2−1��N − 1�2e−ix�N2−1 = cos�N�Nx���N − 1�2 − sin�N�Nx���N − 1�2+1, �A12�

eix�N2−1��N − 1�2+1e
−ix�N2−1 = cos�N�Nx���N − 1�2+1 + sin�N�Nx���N − 1�2, �A13�

here we used Aª�i=1
�N − 1�2−1 Ai�i.

PPENDIX B: THE TOTAL VOLUME OF SU„k…

The total volume for the groups SU�k� can be found following Macdonald in Ref. 6. First
emember that, in the sense of rational cohomology, SU�k� is equivalent to the product of odd
imensional spheres

SU�k + 1� � �
j=1

k

S2i+1, �B1�

here we choosen k+1 to obtain recursive relations. The total volume of the group is then
niquely determined when a metric is established on the Lie algebra. We chose the metric induced
y the scalar product �A 	B�= 1

2Tr�AB�, for A ,B�su�k+1�. In this way the Gell-Mann generators

re orthonormal. The formula for the total volume is �Ref. 6�

                                                                                                            



w
g

w

i

F

w
e
�

A

i
k

N
p
c

r

H
�
p
m
fi

043510-10 Cerchiai, Bertini, and Cacciatori J. Math. Phys. 47, 043510 �2006�

                        
Vol�SU�k + 1�� = �
j=1

k

Vol�S2i+1� · Vol�Tk� �
��0

	�Ú	2, �B2�

here �Ú are the coroots associated to positive roots and Vol�Tk� is the volume of the torus
enerated by the simple coroots.

For su�k+1� the simple coroots are si=Li−Li+1, i=1, . . . ,k where Li is the diagonal matrix
ith the only nonvanishing entry �Li�ii=1. After writing si in terms of � j, as

si = �
a=1

k
1

2
Tr�si��a + 1�2−1���a + 1�2−1, �B3�

t is easy to prove the recursive relation

Vol�Tk� =k + 1

2k
Vol�Tk−1� . �B4�

rom this we find

Vol�SU�k + 1�� = Vol�SU�k��2
�k+1

k!
k + 1

2k
, �B5�

here we used the fact that all the positive coroots have unitary length. If we note that the phase
i��k/�k���k + 1�2−1 generates a U�1� group of volume 2�k�k+1� /2 and that U�k�= �SU�k�
U�1�� /Zk, we can finally write

Vol�SU�k + 1�� = Vol�U�k��
�k

k!
, �B6�

PPENDIX C: THE FUBINI-STUDY METRIC FOR CPN

CPN is a Kähler manifold of complex dimension N. In a local chart, which uses holomorphic
nhomogeneous coordinates �zi�i=1

N �C, the Kähler potential is K�zi , z̄ j�=k /2 log�1+�i=1
N 	zi	2� with

a constant. The associated Kähler metric gij̄=�2K /�zi�z̄ j is then

dsCPN
2 = k� �i=1

N
dzi dz̄i

1 + �i=1

N
	zi	2

−
�i,j=1

N
zi dz̄i z̄ j dzj

�1 + �i=1

N
	zi	2�2 � . �C1�

otice that obviously it is not possible to cover the whole space with a single chart, but the set of
oints which cannot be covered has vanishing measure. For our purpose it is therefore enough to
onsider a single chart.

Let us now search for a trigonometric coordinatization. To this aim let us introduce the new
eal coordinates � ,� ,�i, =1, . . . ,N−1, i=1, . . . ,N, such that

zi = tan �Ri���ei�i. �C2�

ere Ri��� is a parametrization of the unit sphere Sn−1, construced as an immersion in RN, where

i=1
N �Ri�2=1 and � are the angles of the sphere. However, notice that we are restricted to the
ositive orthant only: Ri�0. If � are the standard angles �starting, for example, with the azi-
uthal one �1�, then �� �0,� /2�, �� �0,� /2�, and �i� �0,2��. This choice of coordinates

nally gives
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dsCPN
2 = d�2 + sin2 ���

i=1

N

dRi dRi + �
i=1

N

�Ri�2d2�i� − sin4 ���
i=1

N

�Ri�2 d�i�2

. �C3�

n particular notice that the coefficient of sin2 � yields a metric for �the positive orthant of� the
phere SN−1.

PPENDIX D: FINAL CHECKS

Here we verify that the change of variables introduced in Sec. V transforms the terms

�d�N + XN�2 + �
j=1

N−1 �1

2
Tr�e−i��N/�N��N2−1JhN

ei��N/�N��N2−1�� j2�2

+ �
j=1

N−1 �1

2
Tr�e−i��N/�N��N2−1JhN

ei��N/�N��N2−1�� j2+1�2

, �D1�

nto the coefficient of sin2 � in �C3�.
First, using �4.10� and the relations in Appendix A, it is possible to show that

Tr�e−i��N/�N��N2−1JhN
ei��N/�N��N2−1� j2�

= cos �N−1 Tr�e−i��N−1/�N−1���N − 1�2−1JhN−1
ei��N−1/�N−1���N2−1�−1� j2�, j � N − 1,

Tr�e−i��N/�N��N2−1JhN
ei��N/�N��N2−1� j2+1�

= cos�N−1Tr�e−i��N−1/�N−1���N − 1�2−1JhN−1
ei��N−1/�N−1���N − 1�2−1� j2+1�, j � N − 1,

Tr�e−i��N/�N��N2−1JhN
ei��N/�N��N2−1��N − 1�2� = sin�2�N−1�cos�N�N��d�N−1 + XN−1� − 2 sin�N�N�d�N−1,

Tr�e−i��N/�N��N2−1JhN
ei��N/�N��N2−1��N − 1�2+1� = sin�2�N−1�sin�N�N��d�N−1 + XN−1� + 2 cos�N�N�d�N−1.

�D2�

ote that these are true for N�3, if we define X2ªcos�2�1�d�1. From these relations we find

Tr�e−i��N/�N��N2−1JhN
ei��N/�N��N2−1� j2� = � �

k=j+1

N−1

cos �k��sin�2� j�cos��j + 1�� j+1��d� j + Xj�

− 2 sin��j + 1�� j+1�d� j� ,

Tr�e−i��N/�N��N2−1JhN
ei��N/�N��N2−1� j2+1� = � �

k=j+1

N−1

cos �k��sin�2� j�sin��j + 1�� j+1��d� j + Xj�

+ 2 cos��j + 1�� j+1�d� j� ,

ith j=2, . . . ,N−1. For j=1,

Tr�e−i��N/�N��N2−1JhN
ei��N/�N��N2−1�1� = ��

N−1

cos �k��sin�2�1�cos�2�2�d�1 − sin�2�2�d�1� ,

k=2
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Tr�e−i��N/�N��N2−1JhN
ei��N/�N��N2−1�2� = ��

k=2

N−1

cos �k��sin�2�1�sin�2�2�d�1 + cos�2�2�d�1� .

hus we see that �D2� takes the form SN+UN, where

SN = d�N−1
2 + �

j=1

N−2 � �
k=j+1

N−1

cos2 �k�d� j
2, �D3�

UN = �d�N + XN�2 + �
j=2

N−1

sin2 � j��
k=j

N−1

cos2 �k��d� j + Xj�2 + �
k=2

N−1

cos2 �k sin2�2�1�d�1
2.

�D4�

irst, we show that

SN = �
j=1

N

dRjdRj , �D5�

ith Rj as in �5.8�. To this aim let us define the N-dimensional vector R� N= �R1 , . . . ,RN�. Such a

ector has unit length, and satisfies the recurrence relation R� N= �sin �N−1 ,cos �N−1R� N−1�, from
hich we find

dR� N · dR� N = d�N−1
2 + cos2 �N−1 dR� N−1 · dR� N−1. �D6�

ere the dot indicates the scalar product in N dimensions. Now, from �D3�, we also have

SN = d�N−1
2 + cos2 �N−1SN−1. �D7�

s SN and dR� N ·dR� N both satisfy the same recurrence relation, the thesis follows because of S2

dR� 2 ·dR� 2.
The second and last step of our proof consists in showing that after the change of coordinates

5.6� the Eq. �D4� takes the form

UN = �
i=1

N

�Ri�2d�i
2. �D8�

he structure of �D4� suggests that it is convenient to make the change of variables starting from

N and �N−1 step by step. Note that XN−1 is invariant under this transformation, so that we have

�d�N + XN�2 + sin2 �N−1 cos2 �N−1�d�N−1 + XN−1�2 = sin2 �N−1d�̃N
2 + cos2 �N−1�d�̃N−1 + XN−1�2.

�D9�

ere we have used �5.3� to express XN in terms of XN−1. Then UN takes the form

UN = sin2 �N−1d�̃N
2 + cos2 �N−1��d�̃N−1 + XN−1�2 + sin2 �N−2 cos2 �N−2�d�N−2 + XN−2�2� + ¯ .

�D10�

ow it is possible to use �D9� with N−1 in place of N in order to write �N−2 in terms of �̃N−2. In

act, this relation can be applied recursively up to d�3, obtaining
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UN = sin2 �N−1 d�̃N
2 + �

j=2

N−4

sin2 �N−j� �
l=N−j+1

N−1

cos2 �l�d�̃N−j+1
2 + ��

l=3

N−1

cos2 �l��d�̃3 + X3�2

+ sin2 �2��
k=2

N−1

cos2 �k��d�2 + cos�2�1�d�1�2 + ��
k=2

N−1

cos2 �k�sin2�2�1��1
2. �D11�

t this point we can perform the last two changes of coordinates in �5.6�, to show that

d�̃3 + X3 = sin2 �2 d�̃3 + cos2 �2�sin2 �1�̃2 + cos2 �1 d�̃1� , �D12�

nd this completes the proof.
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A class of two-dimensional superintegrable systems on a constant curvature surface
is considered as the natural generalization of some well known one-dimensional
factorized systems. By using standard methods to find the shape-invariant inter-
twining operators we arrive at a so�6� dynamical algebra and its Hamiltonian hier-
archies. We pay attention to those associated to certain unitary irreducible repre-
sentations that can be displayed by means of three-dimensional polyhedral lattices.
We also discuss the role of superpotentials in this new context. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2191360�

. INTRODUCTION

This work deals with a class of superintegrable Hamiltonian systems, in the framework of the
chrödinger equation of quantum mechanics, and its connections with the factorization method.
e will restrict ourselves to a particular case where the underlying symmetry is the Lie algebra

�3�, but its main features can be directly implemented to higher dimensional systems.
The main objective of this study is to show a natural extension to higher dimensional spaces

f the intertwining �or Darboux� transformations from a well known class of one-dimensional
actorized systems. In fact, we want to set the higher rank u�n� systems corresponding to those
aving as dynamical algebra the Lie algebra u�2�. We will show in detail that the application of
rocedures familiar in one dimension to a concrete two-dimensional system will lead us to a wide
et of operators closing a dynamical Lie algebra. We also consider discrete symmetry operators
uite important to perform equivalences. All these operators connect eigenstates that can be drawn
s points in a three-dimensional lattice giving rise to polyhedrons representing degenerate series of
�3� irreducible representations. Each of these series corresponds to the same energy and can be
mbedded in just one representation of the Lie algebra so�6�.

The notion of superpotential will also be re-examined inside the higher rank formalism. Thus,
he usual procedure to look for solutions with separable variables can be better appreciated under
his point of view.

Thus, we try to implement the program of generalization of the factorizable one-dimensional
ystems involving Lie algebras of rank one as dynamical algebras, as can be seen, for instance, in
he classical paper by Infeld and Hull.1 We also hope that this work will be useful when dealing
ith other integrable systems, but not necessarily maximally integrable, for instance not enjoing

o many factorizations, or even not having a system of separable variables, but still allowing for
lgebraic methods.2–7
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�
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The organization of this article is as follows. In Sec. II we will introduce a two-dimensional
uperintegrable system and find some separable solutions by standard procedures. Although these
olynomial solutions are known and can be found in other references, this will serve us to recall
ome aspects of the usual factorization technique and to specify the operators of the Lie algebra
�2� related with the Lie algebra so�4�, and their support spaces. Next, in Sec. III, we will look for
ther sets of intertwining operators, corresponding to the Lie algebras u�3� and so�6�, taking also
nto account discrete symmetries. We characterize the eigenfunctions belonging to irreducible
epresentations that will be depicted as the points on octahedrons and the interpretation of some of
ts planar sections. The analog of the superpotentials and their relation with certain types of
olutions will be considered in Sec. IV. Some conclusions and perspective for future work will
lose the article.

I. A SUPERINTEGRABLE u„3…-HAMILTONIAN SYSTEM

We will fix our attention on a superintegrable Hamiltonian system defined inside a three-
imensional Euclidean ambient space.8–11 In fact, our system lives on the two-sphere S

S � �s0�2 + �s1�2 + �s2�2 = 1, �s0,s1,s2� � R3.

n the frame of the Schrödinger equation, this Hamiltonian takes the form

H = − �J0
2 + J1

2 + J2
2� +

l0
2 − 1/4

�s0�2 +
l1
2 − 1/4

�s1�2 +
l2
2 − 1/4

�s2�2 , �2.1�

here �l0 , l1 , l2��R3, and Ji=−�ijksj�k �note that the Ji’s operators generate the rotation Lie alge-
ra so�3��. We can parameterize S by means of spherical coordinates ��1 ,�2� around the s2 axis
iven by

s0 = cos �2 cos �1, s1 = cos �2 sin �1, s2 = sin �2. �2.2�

hen, the eigenvalue problem

H� = E�

fter substituting the coordinates �2.2�, takes the form of a separable differential equation

�− ��2

2 + tan �2��2
+

l2
2 − 1/4

sin2 �2
+

1

cos2 �2
�− ��1

2 +
l0
2 − 1/4

cos2 �1
+

l1
2 − 1/4

sin2 �1
��� = E� . �2.3�

he solutions separated in the variables �1 and �2, i.e.

���1,�2� = f��1�g��2�

fter replacing in �2.3� originate the equations

�− ��1

2 +
l0
2 − 1/4

cos2 �1
+

l1
2 − 1/4

sin2 �1
� f��1� = �f��1� , �2.4�

�− ��2

2 + tan �2��2
+

�

cos2 �2
+

l2
2 − 1/4

sin2 �2
�g��2� = Eg��2� , �2.5�

here � is a separating constant. Next we will solve each of these two equations through standard
actorizations giving rise to polynomials. The key point is that the results obtained for the first

quation will match in a certain way with those of the second one originating degenerate levels.
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. The �1 factorization

The one-dimensional Hamiltonian �2.4� in the variable �1 is a well known example in the
heory of factorizations.1 So, in the following we will restrict ourselves to give a list of the relevant
esults. We will see later, in Sec. III, how to make use of these considerations in a broader context.

The second order operator at the left-hand side of Eq. �2.4� can be cast as a product of first
rder operators

H�0�
�1 = A0

+A0
− + �0

eing

A0
± = ± ��1

− �l0 + 1/2�tan �1 + �l1 + 1/2�cot �1, �0 = �l0 + l1 + 1�2.

hese elements are part of a family of operators �Am
+ ,Am

− ,�m ,H�m�
�1 	, m�Z, where

Am
± = ± ��1

− �l0 + m + 1/2�tan �1 + �l1 + m + 1/2�cot �1, �2.6�

�m = �l0 + l1 + 2m + 1�2,

H�m�
�1 = − ��1

2 +
�l0 + m�2 − 1/4

cos2 �1
+

�l1 + m�2 − 1/4

sin2 �1
. �2.7�

hey originate the one-dimensional Hamiltonian hierarchy �2.7�, starting from H�0�
�1. The Hamil-

onians H�m�
�1 satisfy the fundamental relation

H�m�
�1 = Am

+ Am
− + �m = Am−1

− Am−1
+ + �m−1 �2.8�

o that Am
± are shape invariant intertwining operators, i.e.,

Am
− H�m�

�1 = H�m+1�
�1 Am

− , Am
+ H�m+1�

�1 = H�m�
�1 Am

+ . �2.9�

ence, from a formal point of view, the operators Am
± acting on a Hamiltonian eigenfunction will

ive another eigenfunction of a consecutive Hamiltonian in the hierarchy with the same eigen-
alue. If we design the eigenfunction spaces of H�m�

�1 �as differential operators� by Hm
�1, then we

ave

Am
− :Hm

�1 → Hm+1
�1 , Am

+ :Hm+1
�1 → Hm

�1.

n principle, the discrete spectrum and the physical eigenstates of H�0�
�1 could be obtained from the

undamental states f �m�
0 and their eigenvalues of all the Hamiltonians in the hierarchy �H�m�

�1 	. These
undamental states are determined by Am

− f �m�
0 =0, giving the solutions �up to a normalization con-

tant�

f �m�
0 ��1� = cosl0+m+1/2 �1 sinl1+m+1/2 �1

ith eigenvalues �m= �l0+ l1+2m+1�2. Often the intertwining operators �2.6� are written in the
orm

Am
± = ± ��1

+ �m��1�, �m��1� =
��1

f �m�
0 ��1�

f �m�
0 ��1�

, �2.10�
here �m��1� is called superpotential function.
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In order to go from the ground eigenstate, f �m�
0 of H�m�

�1 , up to the excited eigenfunction, f �0�
m of

�0�
�1, with the same eigenvalue, we apply consecutive operators A+

f �0�
m = A0

+A1
+
¯ Am−1

+ f �m�
0 �2.11�

btaining explicitly

f �0�
m = N sinl1+1/2 �1 cosl0+1/2 �1Pm

�l1,l0��cos�2�1�� , �2.12�

here Pn
�a,b��x� are Jacobi polynomials and N is a normalization constant. Therefore, the spectrum

f the first separating Hamiltonian �2.4� is given by

� = �m = �l0 + l1 + 2m + 1�2, m � Z+. �2.13�

he following two subsections are devoted to characterize the Lie algebras of shape invariant
ntertwining operators for the one-dimensional Hamiltonian hierarchies. They will constitute a
seful pattern for the two-dimensional Hamiltonians of Sec. III.

. The dynamical algebra u„2…

Starting from the operators Am
± let us define free-index operators A± acting inside the total

pace �mHm, in the following way:12,13

A+f �m+1� ª
1
2Am

+ f �m+1� � f̃ �m�,

A−f �m� ª
1
2Am

− f �m� � f̃ �m+1�, �2.14�

Af �m� ª − 1
2 �l0 + l1 + 2m�f �m� � f �m�,

here f �m� �or f̃ �m�� denotes an eigenfunction of H�m�. This action can be extended to linear
ombinations of eigenfunctions by linearity. With this convention we can rewrite �2.8� and �2.14�
imply as the commutators

�A,A±� = ± A±, �A−,A+� = − 2A �2.15�

ssuming that the action is on any �linear combination of� f �m�. The commutators �2.15� close the
ie algebra su�2�, whose Casimir element is given by C=A+A−+A�A−1�. The eigenvalues of C,

abeling the irreducible unitary representations �IUR�, are j�j+1�, where 2j�Z+. The dimension
f the support spaces of these IURs is, obviously, 2j+1. We make use of the standard notation
j ,s� for an A eigenvector with eigenvalue s, inside the “j-representation.”

Now, we can identify the eigenstates of the Hamiltonians H�m�
�1 in terms of representation

ectors 
j ,s�. First, let us consider the ground states f �m�
0 characterized by

A−f �m�
0 = 0, Af �m�

0 = − ��l0 + l1 + 2m�/2�f �m�
0 �2.16�

ollowing notation �2.14�. These relations suggest the identification �up to a normalization con-
tant�

f �m�
0 = 
jm,− jm�, jm = �l0 + l1 + 2m�/2.

o see that indeed this is the case we need to define the whole representation space as well as an
nner product. Thus, consider the space L2�0,� /2� of square integrable functions in the interval
0 ,� /2�. Then, the wave functions obtained from the ground state f �m�

0 by the consecutive action
f the operator A+ will span the representation space of a jm representation, with jm= �l0+ l1

+
2m� /2, provided that both l0+m and l1+m belong to Z . The wave functions of the space so
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enerated vanish at the end points, and the hermiticity relations �A−�†=A+, A†=A are implemented
n all the space. Hence, under these conditions, �A+�kf �m�

0 can be identified, up to normalization,
ith the vector state 
jm ,−jm+k�.

As a consequence, the excited states obtained in this way for any Hamiltonian in a factoriza-
ion hierarchy where l0 and l1 are positive integers, correspond to IUR-vector states. For instance,
he eigenstate of the kth excited level of H�0�

�1 is

f �0�
k � 
jk + k,− jk + k�, jk = �l0 + l1 + 2k�/2, k = 0,1,2, . . . ,

nd H�0�
�1 �as well as any H�m�

�1 � can be expressed in terms of the su�2�-Casimir C acting on such
epresentations

H�0�
�1 = 4�C + 1/4� .

herefore, the eigenvalue equation for any of the excited states can be written as follows

H�0�
�1 f �0�

k � 4�C + 1/4�
j0 + k,− j0 + k� = 4�j0 + k + 1/2�2
j0 + k,− j0 + k� = �l0 + l1 + 2k + 1�2f �0�
k

ith k=0,1 ,2 , . . ..
It will be convenient to consider a new diagonal operator D, to be added to the generators of

u�2� �2.14�, defined by

Df �m� ª �l0 − l1�f �m�.

t is immediate to see that D commutes with any other operator of su�2� giving rise to the Lie
lgebra u�2�. In this way any eigenstate in the Hamiltonian hierarchy can be characterized com-
letely by an eigenfunction of an u�2�-IUR. Without D we would have an ambiguity due to the
act that different fundamental states with values of l0 and l1 giving the same j0= �l0+ l1� /2 would
ead to the same j representation of su�2�.

It is worth noting that when l0 or l1 are not in Z+ the eigenfunctions and spectrum of the
amiltonian hierarchies are still given by �2.12� and �2.13�, but these states belong to nonunitary

epresentations of u�2�.

. The dynamical algebra so„4…

As we have just seen in the previous subsection the eigenstates sharing the same energy of the
ne-dimensional Hamiltonian hierarchies in the variable �1 are given in terms of IURs of the
ynamical algebra u�2�. However, in this respect, there is a point not quite satisfactory: different
�2� IURs may correspond to states with the same energy. We would prefer a larger dynamical
lgebra with a simpler correspondence, i.e., such that only one of its IURs gives all the eigenstates
ith the same energy in the hierarchy.

In order to build up a dynamical algebra having these properties, let us introduce the two-
imensional parameter space �l0 , l1�. Any operator with one subindex defined in Secs. II A and
I B will change to a two-subindex notation in the following way.

1� The one-dimensional Hamiltonian �2.4� will be denoted by H�l0,l1�

H�l0,l1�
�1 = − ��1

2 +
l0
2 − 1/4

cos2 �1
+

l1
2 − 1/4

sin2 �1
.

Its eigenfunctions will be designed by f �l0,l1�.
2� The factor operators A0

± in �2.6� will be rewritten as A�l0,l1�
±

A�l0,l1�
± = ± ��1

− �l0 + 1/2�tan �1 + �l1 + 1/2�cot �1, A�l0,l1� = − 1
2 �l0 + l1� .
ow, in this way, relations �2.9� can be expressed as
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A�l0,l1�
− H�l0,l1�

�1 = H�l0+1,l1+1�
�1 A�l0,l1�

− , A�l0,l1�
+ H�l0+1,l1+1�

�1 = H�l0,l1�
�1 A�l0,l1�

+ . �2.17�

ith this convention we can also define the free-subindex operators A±, A, D as in �2.14�.
On the other hand, notice that each two-parameter Hamiltonian H�l0,l1�

�1 is invariant under the
eflections

I0 ª �l0,l1� → �− l0,l1�, I1:�l0,l1� → �l0,− l1� .

his property gives rise to a second factorization �see also Refs. 14–16� via conjugation of the
perators of the first factorization by the reflection operators

I0A
±I0 = Ã±, I0AI0 = Ã, I0DI0 = D̃ ,

Ĩ1A
±I1 = Ã	, I1AI1 = − Ã, I1DI1 = − D̃ .

xplicitly

Ã�l0,l1�
± = ± ��1

+ �l0 − 1/2�tan �1 + �l1 + 1/2�cot �1, Ã�l0,l1� = − 1
2 �− l0 + l1� . �2.18�

he above-mentioned operators �Ã , Ã±	 generate a Lie algebra isomorphic to su�2� denoted by

ũ�2�. Since su�2� and sũ�2� commute and, essentially, D and D̃ coincide with Ã and A, respec-
ively, the complete dynamical algebra has the structure of a direct sum su�2� � sũ�2��so�4�.

If we allow to act with the so�4� generators on an Hamiltonian H�l0,l1� we will get a two-
imensional parameter lattice of Hamiltonians which constitute a so�4� hierarchy fixed by the
nitial values �l0 , l1�: �Hl0−n+m,l1+n+m	, m, n�Z. Each energy level of this Hamiltonian hierarchy is
egenerated and the eigenstates belong to so�4� representations.

Let us concentrate on the hierarchies associated to IURs of so�4�. Now, these so�4� IURs are
xed by the fundamental �or lowest weight� states satisfying

A�l0,l1�
− f �l0,l1�

0 = Ã�l0,l1�
− f �l0,l1�

0 = 0. �2.19�

hese are realized, up to a constant, by the wave functions

f �0,n�
0 = cos1/2 �1 sinn+1/2 �1, n � Z+, �2.20�

here we have taken l0=0 and l1=n. We see also that the state �2.20� is stable under I0 �i.e.,

0f �l0,l1�
0 = f �l0,l1�

0 �, and comes into the other fundamental state �annihilated by A+ and Ã+: the highest
eight� of the same representation. Hence, these representations will be invariant under I0 and I1.
herefore, the so�4� IURs obtained from �2.20� are symmetric tensor products that can be denoted
y

j � j, j = l1/2 = n/2, n � Z
0,

here “j” stands for a j representation of su�2�. In this way the degenerancy of the nth energy
evel is �n+1�� �n+1�, which is composed of n+1 IURs of u�2� each of them of dimension n
1.

The Hamiltonians in this hierarchy can be expressed in terms of any of the su�2� �or sũ�2��
asimir operators H�l0,l1�=4�C+1/4�=4�C̃+1/4�. With the help of all the discrete reflections we
et directly its expression also in terms of the so�4� Casimir

H�l0,l1� = �C + 1/4� + I0�C + 1/4�I0 + I1�C + 1/4�I1 + I0I1�C + 1/4�I0I1

= �A+,A−	 + 2A2 + �Ã+,Ã−	 + 2Ã2 + 1 = �A+,A−	 + �Ã+,Ã−	 + L0
2 + L1

2 + 1,
here the diagonal operators L0 and L1 are defined by
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L0f �l0,l1� = l0f �l0,l1�, L1f �l0,l1� = l1f �l0,l1�.

ertainly, some so�4� hierarchies �those corresponding to the IURs previously described� may
ave Hamiltonians whose explicit expressions coincide

H�l0,l1� = H�−l0,l1� = H�l0,−l1�

nd the same happens with their corresponding eigenstates. But we cannot get rid of this multi-
licity unless we enlarge the ambient space.

Another natural question is whether there are other intertwining shape-invariant operators
nside the so�4� hierarchy. We can build, for instance, other pairs of operators through the com-
osition of those already known

X± = A±Ã±, Y± = A±Ã	.

hese kinds of shape-invariant operators change two units, either the parameter l0 or l1 �but not
oth at the same time�. When we restrict to l0=0 or l1=0 there are also first order intertwining
perators changing one unit the nonvanishing parameter. This feature is not so special; it is also
hared by the “radial oscillator” hierarchies17 �which are closely related to the ones presented
ere�.

For other Hamiltonian so�4� hierarchies the physical eigenstates are described by nonunitary
epresentations that are not invariant under both reflections. In this respect, their description
ecomes more involved, so that one must be very careful in these cases.

. The �2 factorization

Now, let us return to the separation process started in Sec. II A. The second equation �2.5�
btained from the initial separation of variables can be dealt with along the same lines, substituting
he eigenvalues obtained from the previous factorization, �=�m= �l0+ l1+2m�2. The most relevant
act, here, is that the new factorization leads to a degeneration of the energy levels which suggest
hat the underlying dynamical symmetry could be larger, as it will be confirmed in the next
ection. Thus, substituting in �2.5�, we have

H�0�
�2 = − ��2

2 + tan��2���2
+

�l0 + l1 + 2m + 1�2

cos2��2�
+

�l2
2 − 1/4�

sin2��2�

= ���2
− �l0 + l1 + 2�m + 1��tan��2� + �l2 + 1/2�cot��2�	

� �− ��2
− �l0 + l1 + 2m + 1�tan��2� + �l2 + 1/2�cot��2�	

+ �l2 + l0 + l1 + 2m + 3/2��l2 + l0 + l1 + 2m + 5/2�

�M0
+M0

− + �0. �2.21�

his is the first one of the Hamiltonian hierarchy H�n�
�2 in the variable �2,

H�n�
�2 = Mn

+Mn
− + �n = Mn−1

− Mn−1
+ + �n−1,

here

Mn
± = ± ��2

− �l0 + l1 + 2�m + 1� + n�tan��2� + �l2 + n + 1/2�cot��2� ,

�n = �l1 + l0 + l2 + 2n + 2m + 3/2��l2 + l1 + l0 + 2n + 2m + 5/2� .
ow, the values for the energy �closely following the same arguments in Sec. II A� are given by
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E = �n = �l1 + l0 + l2 + 2n + 2m + 3/2��l2 + l1 + l0 + 2n + 2m + 5/2� . �2.22�

he fundamental states g�n�
0 for this factorization are

g�n�
0 ��2� = N cosl1+l0+2m+1 �2 sinl2+n+1/2 �2

nd the eigenfunctions g�0�
n of the initial Hamiltonian �2.21� can be written in the form

g�0�
n ��2� = cosl1+l0+2m+1 �2 sinl2+1/2 �2Pn

�l2+1/2,l1+l0+2m+1��cos 2�2� . �2.23�

he commutation relation for the relevant free-index operators M±, defined in a similar way as A±

n �2.14�, is again that of su�2�,

�M−,M+� = − 4�l1 + l0 + l2 + 2m + 2n + 1� � − 2M .

igenfunctions �2.23� are square integrable, but the representations are unitary provided that,
esides the previous conditions on l0 and l1, the parameter l2 be also a positive integer number.

In summary, if we finally join the results of both factorizations, the square integrable eigen-
unctions of Hamiltonian �2.3� in the separable variables ��1 ,�2� are given by the products

�m,n��1,�2� = f �0�
m ��1�g�0�

n ��2�, m,n � Z+, �2.24�

here the components have the polynomial expressions �2.12� and �2.23�. The corresponding
igenvalues given in �2.22� are degenerated for those values of m and n whose sum m+n keeps
onstant �see also, for instance, Ref. 11�.

II. DYNAMICAL SYMMETRIES

The spectrum obtained by the methods of Sec. II suggests the existence of a bigger dynamical
lgebra of the Hamiltonian hierarchy. This is the point that we want to address here developing
xhaustively the concept of intertwining �shape invariant� operators for this kind of Hamiltonians.
uch operators will supply us with a more consistent picture of the spectrum and eigenfunctions.
hus, based on the considerations of Secs. II B and II C, we will introduce three sets of intertwin-

ng operators closing the Lie algebra u�3�. Then, in the following subsection, we will enlarge this
lgebra to so�6� by means of the relevant reflections.

. The Hamiltonian u„3… hierarchies

. The set ˆA+ ,A− ,A‰

As we will use some properties of Sec. II in a different direction, it is convenient to introduce
nother notation more appropriate to rewrite some previous results. The Hamiltonian �2.1� char-
cterized by the parameters ���l0 , l1 , l2� will be referred to as H�l0,l1,l2�, and the operators defined
y �2.6� will be taken henceforth with a threefold subindex

A�l0,l1,l2�
± = ± ��1

− �l0 + 1/2�tan �1 + �l1 + 1/2�cot �1. �3.1�

s differential operators �2.6� and �3.1� depend only on the variable �1, they do not affect the part
n the total Hamiltonian �2.1� depending on the second separable variable �2. So that, in the same
ay as �2.17� we have the intertwining relations

A�l ,l ,l �
− H�l ,l ,l � = H�l +1,l +1,l �A�l ,l ,l �

− ,

0 1 2 0 1 2 0 1 2 0 1 2
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A�l0,l1,l2�
+ H�l0+1,l1+1,l2� = H�l0,l1,l2�A�l0,l1,l2�

+ .

his means that now A�l0,l1,l2�
− is acting on eigenstates of H�l0,l1,l2� leading to eigenstates of

�l0+1,l1+1,l2� whereas A�l0,l1,l2�
+ does it in the opposite way �later we will comment on the square-

ntegrability conditions through unitary representations�.
If we include the normalizing constant just as in �2.14�, and define global operators acting on

igenfunctions of this class of Hamiltonians in the forms

A+��l0+1,l1+1,l2� ª
1
2A�l0,l1,l2�

+ ��l0+1,l1+1,l2� � �̃�l0,l1,l2�,

A−��l0,l1,l2� ª
1
2A�l0,l1,l2�

− ��l0,l1,l2� � �̃�l0+1,l1+1,l2�,

A��l0,l1,l2� ª − 1
2 �l0 + l1���l0,l1,l2�,

e are led to the standard su�2� commutators �2.15�. Here, we want to stress again that now these
perators are acting on the total wave function of complete Hamiltonians like H�l0,l1,l2�, not just on
factor function in only one variable.

In order to introduce other sets of operators we will use the fact that the Hamiltonian �2.1� can
e separated in other coordinate systems. Since the axes �s0 ,s1 ,s2� play a symmetric role in the
amiltonian, we will take their cyclic rotations to get two other sets of coordinates and, hence,
ew sets of intertwining operators.

. The set ˆB+ ,B− ,B‰

We will take the spherical coordinates choosing as third axis not s2, but s1, i.e.,

s2 = cos 2 cos 1, s0 = cos 2 sin 1, s1 = sin 2. �3.2�

hen, the initial Hamiltonian is also separated in the coordinates �1 ,2�. In particular, we can
uild the operators B�l0,l1,l2�

± in a similar way as A�l0,l1,l2�
± . From coordinate systems �2.2� and �3.2�

e easily arrive at the following expressions for the new set in terms of the initial coordinates
�1 ,�2�:

B�l0,l1,l2�
± = ± �sin �1 tan �2��1

+ cos �1��2
� − �l2 + 1/2�cos �1 cot �2 + �l0 + 1/2�sec �1 tan �2.

�3.3�

hese operators intertwine the pair of Hamiltonians

B�l0,l1,l2�
− H�l0,l1,l2� = H�l0+1,l1,l2+1�B�l0,l1,l2�

− ,

B�l0,l1,l2�
+ H�l0+1,l1,l2+1� = H�l0,l1,l2�B�l0,l1,l2�

+ .

he “global” operators, defined by

B+��l0+1,l1,l2+1� ª
1
2B�l0,l1,l2�

+ ��l0+1,l1,l2+1� � �̃�l0,l1,l2�,

B−��l0,l1,l2� ª
1
2B�l0,l1,l2�

− ��l0,l1,l2� � �̃�l0+1,l1,l2+1�,

B��l0,l1,l2� ª − 1
2 �l0 + l2���l0,l1,l2�,
lso close a new su�2�.
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. The set ˆC+ ,C− ,C‰

Finally, taking the spherical coordinates around the s0 axis,

s1 = cos �2 cos �1, s2 = cos �2 sin �1, s0 = sin �2

he Hamiltonian is also separated in the variables ��1 ,�2	 and we get a new pair of operators, that
ritten in terms of the initial �1 and �2 variable, take the expression

C�l0,l1,l2�
± = ± �cos �1 tan �2��1

− sin �1��2
� + �l1 − 1/2�csc �1 tan �2 + �l2 + 1/2�sin �1 cot �2.

�3.4�

hese operators act as intertwiners of the Hamiltonians in the following way:

C�l0,l1,l2�
− H�l0,l1,l2� = H�l0,l1−1,l2+1�C�l0,l1,l2�

− ,

C�l0,l1,l2�
+ H�l0,l1−1,l2+1� = H�l0,l1,l2�C�l0,l1,l2�

+ .

he global operators are defined by

C+��l0,l1−1,l2+1� ª
1
2C�l0,l1,l2�

+ ��l0,l1−1,l2+1� � �̃�l0,l1,l2�,

C−��l0,l1,l2� ª
1
2C�l0,l1,l2�

− ��l0,l1,l2� � �̃�l0,l1−1,l2+1�,

C��l0,l1,l2� ª − 1
2 �− l1 + l2���l0,l1,l2�,

losing the third algebra su�2�. Notice that C=B−A.
In fact, as we saw in Sec. II, each separable system gives rise to two sets of intertwining

perators �in that section distinguished by means of the tilde�. However, here we have made a
good” choice of the previous three sets that will close a Lie algebra �on this point see Sec. III B�.

. The complete algebra u„3…

Now, we can join all the above-defined transformations, A±, A, B±, B, C±, C, and commute any
wo of them to check that indeed they close a Lie algebra su�3�. The nonvanishing commutators
re

�A3,A±� = ± A±, �A−,A+� = 2A, �A+,B−� = C−, �A+,B� = − A+/2,

�A+,C+� = − B+, �A+,C� = A+/2, �A−,B+� = − C+, �A−,B� = A−/2,

�A+,C+� = B−, �A−,C� = − A−/2, �A,B+� = B+/2, �A,C+� = − C+/2,

�A,C−� = C−/2, �B,B±� = ± B±, �B−,B+� = 2B, �B+,C−� = − A+,

�B+,C� = − B+/2, �B−,C+� = C+/2, �B−,C� = B−/2, �B,C+� = C+/2,

�B,C−� = C−/2, �C,C±� = ± C±, �C+,C−� = 2C, �A−,C−� = B−.
he Casimir operator is given by
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C = A+A− + B+B− + C+C− + 2
3A�A − 3/2� + 2

3B�B − 3/2� + 2
3C�C − 3/2� . �3.5�

n order to complete an algebra u�3� we can add a diagonal operator D commuting with all the
bove-mentioned transformations. It is a central operator, i.e.,

D ª l0 − l1 − l2, �D, · � = 0.

e can also adopt the global operator convention H for the Hamiltonians in the hierarchy by
efining its action on the eigenfunctions ��l1,l2,l3� of H�l1,l2,l3� by

H��l1,l2,l3� ª H�l1,l2,l3���l1,l2,l3�.

n this way we can express the Hamiltonian H in terms of both operators C and D

H = 4C − 1
3D2 + 15

4 . �3.6�

n the case of one-dimensional systems, one �first order� intertwining set �A±	 for the Hamiltonian
ives rise to its factorization. However, for Hamiltonians with more degrees of freedom �more
omponents, or in more dimensions� the relationship of H with these operators, in general, turns
ut to be more complex. In our case the set �A± ,B± ,C±	 according to expressions �3.5� and �3.6�
s enough to express the Hamiltonian as a certain quadratic function H=h�A+A− ,B+B− ,C+C−�
eneralizing the usual factorization.

In summary, we have built an algebra u�3� of intertwining operators that, once fixed the initial
amiltonian with parameter values �l0 , l1 , l2�, gives rise to a two-parameter Hamiltonian hierarchy

�H�l0+m,l1+m−n,l2+n�	, m,n � Z

here the points �l0+m , l1+m−n , l2+n� lie on a certain plane D=d0. In this subsection we will
onsider this special hierarchy, together with its eigenstates, connected to the IURs of u�3�. The
tates of such representations are square integrable and, therefore, should take part of the physical
igenfunctions whose energy eigenvalues belong to the spectrum.

In order to build an IUR we start from a fundamental state � annihilated by A− and C− �two
imple roots of su�3��

A�
−�� = C�

−�� = 0 �3.7�

ith �= �l0 , l1 , l2�. Such states exist only when l1=0, taking the explicit form

����1,�2� = N cosl0+1/2 �1 sin1/2 �1 cosl0+1 �2 sinl2+1/2 �2, �3.8�

here N is a normalizing constant. The diagonal operators A and C act on �� as

A�� = − l0/2��, l0 = m, l1 = 0, m = 0,1,2, . . . ,

C�� = − l2/2��, l2 = n, n = 0,1,2, . . . . �3.9�

his means that �� is a fundamental state of the representations j1=m /2 of the subalgebra su�2�
enerated by �A± ,A	, and j2=n /2 of the corresponding su�2� determined by �C± ,C	. Such a
epresentation of su�3� will be denoted �m ,n� with m ,n�Z+. The points labeling the states of this
epresentation obtained from �� lie on the plane D=m−n inside the �-parameter space.

The energy for the states of the IURs determined by the fundamental state �3.9� with the
arameters �l0 ,0 , l2�, according to �3.6� is given by

E = �l0 + l2 + 3/2��l0 + l2 + 5/2� = �m + n + 3/2��m + n + 5/2� . �3.10�

herefore, the IURs fixed by �m ,n� with the same value m+n will lead to states with the same
nergy. We call such IURs an isoenergy series and they will be examined under the light of the

lgebra so�6� in the following section. The values for the energy �3.10� coincide with the ones
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omputed by the method of variable separation of Sec. II, as can be seen from �2.22� once the
eplacement l1=1/2 is performed. We can also check that in this case the ground state �2.24�
oincides with those fixing an IUR �3.8�.

. The so„6… hierarchy

Following the pattern and motivation of Sec. II C, we will consider the relevant discrete
ymmetries in order to find a larger dynamical algebra.

It is obvious that the Hamiltonian H�l0,l1,l2� is invariant under reflections in the parameter space
�l0 , l1 , l2�	

I0:�l0,l1,l2� → �− l0,l1,l2�, I1:�l0,l1,l2� → �l0,− l1,l2�, I2:�l0,l1,l2� → �l0,l1,− l2� .

ach of these symmetries can be directly implemented in the eigenfunction space, leading through
onjugation to another set of intertwining operators that close a Lie algebra isomorphic to u�3� and
enoted by iu�3�

iX = IiXIi, X � u�3�, iX � iu�3�, i = 0,1,2.

he intertwining operators of iu�3� connect eigenstates of Hamiltonians whose parameters
l0 , l1 , l2� belong to the planes iD=ki, ki being certain real constants. We will choose the following
onvention for the resulting generators

�A±,B±,C±	 ——→
I0

�Ã	,B̃	,C±	 ,

�A±,B±,C±	 ——→
I1

�Ã±,B±,C̃±	 ,

�A±,B±,C±	 ——→
I2

�A±,B̃±,C̃		 ,

here, for instance, the sets �A± ,A	 and �Ã± , Ã	 close the two commuting Lie algebras su�2� of
ec. II. The explicit expression for the new operators �labeled with a tilde� can be easily obtained

n the same way as it was done in �2.18�. The set of all the generators obtained in this process
lose the Lie algebra of rank 3, so�6�. In the eigenfunction space it is enough to consider three
ndependent diagonal operators �L0 ,L1 ,L2	 defined by

Li��l0,l1,l2� = li��l0,l1,l2�.

he Hamiltonian can be expressed in terms of the so�6�-Casimir operator by means of the “sym-
etrization” of the u�3� Hamiltonian �3.6�

Hso�6� = 1
8 �Hu�3� + 

j

IjHu�3�Ij + 
j�k

IjIkHu�3�IjIk + I0I1I2Hu�3�I0I1I2�

= �A+,A−	 + �B+,B−	 + �C+,C−	 + �Ã+,Ã−	 + �B̃+,B̃−	 + �C̃+,C̃−	 + L0
2 + L1

2 + L2
2 + 41

12 .

enceforth we remove the subindex so�6� of the Hamiltonian.
The intertwining generators of so�6� give rise to larger three-dimensional Hamiltonian hier-

rchies

�H�l0+m+p,l1+m−n−p,l2+n�	, m,n,p � Z ,

ach one including a class of the previous ones coming from u�3�. The eigenstates of these
amiltonian hierarchies can be classified in terms of so�6� representations. Let us fix our attention

n those determined by the so�6� IURs. These IURs are built from the fundamental states annihi-
− − ˜ −
ated by the simple roots A ,C ,A
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A−��
�0� = C−��

�0� = Ã−��
�0� = 0.

he equations for the operators A− and C− have been used in �3.7�, whereas the one for Ã− were
lready applied in �2.19�. Therefore, the wave functions of the highest weight vectors take the
orm

��
�0���1,�2� = N cos1/2 �1 sin1/2 �1 cos �2 sinl2+1/2 �2

haracterized by the eigenvalues of the diagonal operators,

L0�� = L1�� = 0, L2�� = n��, n � Z+.

his fundamental state is invariant under the inversions I0 and I1, and the representation, so
btained, is also invariant under I2. Thus, in this way we arrive at two classes of symmetric IURs
f so�6�

a� �l0=0, l1=0, l2=0�; �H�m+p,m−n−p,n�	, n, m, p�Z �even IURs� and
b� �l0=0, l1=0, l2=1�; �H�m+p,m−n−p,1+n�	, n, m, p�Z �odd IURs�.

ach of these IURs is described in the parameter space by an octahedral lattice of points such that
t will include an isoenergy su�3� �or isu�3�� series of representations, quoted in the previous
ubsection, which correspond to parallel exterior faces of the octahedron and some of its sections.
uch sections are determined by the values of the diagonal operator D �or iD� whose values fix the
orresponding u�3� representations.

For instance, the so�6� representation labeled by q=1, corresponding to the odd hierarchy,
ncludes the first su�3� series, �1, 0� and �0, 1� described by the opposite faces of an elemental
ctahedron. The so�6� representation of the even hierarchy fixed by q=2 includes the su�3� series
ade of �2, 0�, �1, 1�, and �0, 2�. Those associated to �2, 0� and �0, 2� correspond to opposite

riangular faces, whereas �1, 1� is described by the parallel hexagonal section through the origin.
hese features can be better appreciated in Figs. 1 and 2.

In general, the so�6� IURs fixed by the parameter q will include the isoenergy series of the
u�3� representations labeled by �m ,n� with m+n=q. This is the degeneration explained by the
arger algebra so�6�. A similar discussion can be done with respect to the representations of the

˜

IG. 1. Plot of the points representing the states of two odd IURs with �left� q=1 and �right� q=3. The 6 �q=1� eigenstates
hare the energy E= 5

2 · 3
2 . The 50 �q=3� eigenstates share the energy E= 7

2 · 5
2 �the points corresponding to q=3 include those

f q=1, of the inner octahedron, which are doubly degenerated�.
u�2� � su�2� subalgebra. They can be identified with square sections of the octahedron.
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V. EIGENSTATES AND FACTORIZATIONS

Let H� and H�� be two Hamiltonians related by means of a differential operator X in the
ollowing form

XH� = H��X Þ X†H�� = H�X
†, �4.1�

here the dagger denotes adjoint differential operators. Then, it is said that X is an intertwining
perator connecting H� with H��.

In a formal way, the eigenfunctions of H� are transformed by X into eigenfunctions of H��, but
ne must be careful about the behavior of some properties, such as square-integrability, singulari-
ies, or boundary conditions, which might be altered by X. The intertwining problem just as
ntroduced in �4.1�, which applies to the u�3� system of Sec. III, takes into account shape invari-
nce, in the sense that the partner Hamiltonian H�� differs from the initial H� simply by changing
he values of the parameters: �→��. In general, shape invariance leads to an algebraic structure of
he intertwining operators as it happens in our present case.

Now, we will discuss in this section the form of the su�3� intertwining operators of Sec. III and
ts relation to certain eigenstates �similar considerations also apply to so�6��. First of all, note that
e can write such operators �see expressions �3.1�, �3.3�, and �3.4�� as

A�
± = a± + ��, B�

± = b± + ��, C�
± = c± + �� �4.2�

here a±, b±, and c± stand for vector fields �expressed, for instance, in the variables �1, �2�
efined on the sphere and ��, ��, �� design functions also defined on the sphere. Notice that

a+ = �a−�† = J2, b+ = �b−�† = J1, c+ = �c−�† = J0

here J0, J1, and J2 close the rotation algebra so�3�. Moreover, taking the hermitian conjugate we
ave made use of the invariant measure on the sphere. If we write the Hamiltonians in the
ierarchy displaying the kinetic �or free� part and the potential as

H� = H�kin� + V�

e see that the vector fields originate the kinetic term, i.e.,

H�kin� = a+a− + b+b− + c+c−

nd the components ��, ��, and �� �defined on the sphere� give rise to the potential V���1 ,�2�,
abeled by the parameters ���l0 , l1 , l2�. Substituting �4.2� into Hamiltonian �3.6� and taking into

IG. 2. �Left� q=1 IUR of so�6� where the triangular opposite faces correspond to two IURs of su�3�. �Right� Points of a
=3 IUR of so�6�. The three sections describe three IURs of su�3�.
ccount �3.5�, we get the expression
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V���1,�2� = �a��2 + �a+��� + ����2 + �b+��� + ����2 + �c+��� + ��, �4.3�

here �� is a number depending on l0, l1, l2. Equation �4.3� can be considered as a nonlinear
artial differential equation linking the unknowns ��� ,�� ,��	 with the potential, in a quite similar
ay to the Riccati equation for the superpotential � in the one-dimensional Schrödinger equation.
or this reason, we sometimes will refer to ��� ,�� ,��	 as superpotential functions. This is in
greement with a more general result2,3 where the first order intertwining is built by dressing the
ymmetries of the Laplacian operator with certain functions.

The basic property of the one-dimensional superpotential � was that it could be considered as
he logarithmic derivative of a Hamiltonian eigenstate �see �2.10��. Here, we have something
imilar with respect to the superpotentials ��� ,�� ,��	 but first we want to settle this problem in
eneral terms. If we know an intertwining operator X satisfying �4.1� it can help us in computing
ertain eigenfunctions of H�. Notice that if we define the kernel, KX, of X as the linear manifold
f wave-functions annihilated by X,

X� = 0, " � � KX

hen, such a space is invariant under the Hamiltonian operator H�. Thus, we can look for eigen-
unctions inside KX, in general a much simpler problem. But, in the case of X being a partial
ifferential operator, its kernel includes certain arbitrary functions, so it is still an infinite dimen-
ional space. This is in sharp contrast with ordinary first order differential operators where the
ernel is one-dimensional.

Another option we have at hand is the following. The intertwining relation �4.1� implies the
ommutation

X†XH� = H�X
†X .

his means that we can look for eigenfunctions of H� inside any eigenfunction space of X†X, not
ecessarily that one annihilated by X, as was the case just considered previously. In this case,
owever, a similar expression to �2.10� in terms of such eigenfunctions is no longer valid for �.
hen we know several intertwining operators, as in the present case, we can apply them in

ifferent ways according to the above-mentioned comments.

i� Superpotentials associated to a global fundamental eigenstate of �A− ,B− ,C−	. We consider
the intersection of the kernels of all the intertwining operators. Assuming that this subspace
is one-dimensional we have just one eigenstate �up to a factor� �0 annihilated by all the
lowering operators �A− ,B− ,C−	, so that we obtain the following expressions quite similar to
�2.10�

�� = −
�a−�0�

�0
, �� = −

�b−�0�
�0

, �� = −
�c−�0�

�0
. �4.4�

This mechanism corresponds to the IURs characterized in Sec. III.
ii� Superpotentials associated to a partial fundamental eigenstate. If the previous subspace is

the trivial null space, we can still restrict ourselves to the kernel subspace of anyone of the
intertwining operators, for example A−. Thus, let � be an eigenfunction of H� with �
�KA−, i.e., A−�=0. This allows us to set

�� = − �a−��/� .

From this equation we can also separate variables in �, so that the eigenfunction equation
H�=E� leads to a second order ordinary differential equation whose solution can be
easily obtained.
However, we must outline that in this case the remaining superpotential functions ��, ��
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have not a simultaneous expression �4.4� in terms of the same �, they need different eigen-
functions. Under this point of view, Sec. II constitutes an illustration of how this option leads
to eigenfunctions separated in the variables �1, �2.

iii� Other excited eigenstates. The second option is to solve, for instance, the eigenvalue prob-
lem A+A−�=��, requiring at the same time � to be also a Hamiltonian eigenfunction. In
terms of the ambient coordinates s0, s1, s2 this equation is �see also Ref. 11�

�− �s1
�

�s0
− s0

�

�s1
�2

+ �l0 − 1/4�
s0

2 + s1
2

s0
2 + �l1 − 1/4�

s0
2 + s1

2

s1
2 �� = �� .

The same procedure can be applied with other more general sets of operators commuting
with the Hamiltonian. For instance, we can diagonalize H inside the subspace

�e2A
+A− + e1B

+B− + e0C
+C−�� = ��

where the ei’s are constant coefficients. This leads to eigenfunctions separated in elliptic
coordinates, that we do not consider here.11

. CONCLUSIONS

We have shown how to deal with the u�3� �and the general u�n� case9,18 follows the same
attern19� analog of a class of factorizable one-dimensional potentials with underlying dynamical
lgebra u�2�. The higher rank systems in consideration are well known inside the class of super-
ntegrable Hamiltonians and, of course, our objective was not to compute original eigenfunctions.
ur interest was to apply a different point of view to understand some properties in a new context.
or instance, the classification of the irreducible representations of su�3� in series corresponding to
o�6� octahedrons, and the relations involved in this framework is a nontrivial result that could be
est appreciated inside the intertwining technique. The relation of the unitary representations with
special form of the superpotential functions, or the separable eigensolutions determined in terms
f intertwining operators clarifies some of the known procedures.

We have seen how the elements of one-dimensional factorizations must be adapted to the new
ontext. For example, the relation of superpotentials and a whole class of eigenfunctions �not just
ne�, the expression of the Hamiltonian operator is not just a simple factorization, the lattice of
tates must be drawn in a three-dimensional space, etc.

There are several problems that can be addressed using the present procedure. The systems
nderlying noncompact algebras u�p ,q�, inhomogeneous Lie algebras iu�p ,q� and contracted
lgebras20 are among the first applications that we expect to report in a near future. But, in general,
ther integrable Hamiltonian systems could also allow for this treatment, with or without variable
eparation. This application would be of most interest.
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iscrete and continuous sine transform generalized
o semisimple Lie groups of rank two
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A new continuous group transform, together with its discretization over a lattice of
any density and admissible symmetry, is defined and described for the four compact
semisimple Lie groups of rank 2. In the case of rank 1, the discrete version is the
sine transform. Properties of the expansion functions of the transform, called
S-functions, are studied. Digital data processing is our motivating application.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2191361�

. INTRODUCTION

The present paper is the concluding but independent part of a series of three articles.1,2

revious papers, which also include Refs. 3–7, dealt with properties of C-functions �see Eq. �3.2��.
eneral comments and motivation to our study are found in those papers. Originally the
-functions of this paper were called “orbit functions” or “orbit sums.”8

Our subject in this paper are analogous properties of S-functions �see Eq. �3.1��. Both types of
unctions are based on compact semisimple Lie groups. The rank of the group is the number of
ontinuous variables of the C- and S-functions. Since our main motivation are two-dimensional
pplications, we are focused on Lie groups of rank 2, although most of the properties of
-functions described in Sec. III are general as to the type and rank of semisimple compact Lie
roup.

The S-functions are known in Lie theory mainly from the Weyl character formula, where an
rreducible character of a representation labeled by its highest weight �, is written as the ratio of
wo S-functions, say S�+� and S�, where � is the half-sum of positive roots of the Lie group. In this
rticle we make use of the S-functions in a very different way. Apparently, no group transforms
ased on S-functions, either continuous or discrete, have been considered elsewhere in the litera-
ure �except in Ref. 9�.

Let us point out that recently a third type of generalization of one-dimensional group trans-
orms was introduced.9 The expansion functions in that case, called E-functions, are multidimen-
ional generalizations of the exponential function. Their properties will be studied elsewhere.10

Among the possible applications, the most interesting to us in this paper, is decomposition of
lass functions on a compact semisimple Lie group. Such a decomposition takes place on the
undamental region F of the Lie group where each conjugacy class of the group is represented by
recisely one point. It is a basic problem of Fourier analysis which in theory is solved by decom-
osition of the functions into series of irreducible characters of the group. In practice that is hardly
ver done even in one dimension for a number of reasons. Let us point out at least two of them.

First, characters are complicated functions. Their complexity rapidly increases without limits,
he higher is the underlying irreducible representation. They are built either as a ratio of polyno-

�Electronic mail: patera@crm.umontreal.ca
�
Electronic mail: zaratsyan@crm.umontreal.ca
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ials of ever increasing degree, or as integer linear combination of C-functions.7 Coefficients of
he linear combinations are the multiplicities of dominant weights. Finding the coefficients is a
aborious computational task. Look-up tables11 offer only limited help.

Our second objection is related to the behavior of irreducible characters �and also C-functions�
t the boundary �F of F. Both are symmetric with respect to reflection in any side of F of maximal
imension, i.e., n−1. Thus both being continuous functions, their normal derivative at �F must be
ero �Neumann conditions�. Clearly functions on F which have a different behavior at �F cannot
e satisfactorily decomposed either into series of irreducible characters or C-functions. The
-functions are antisymmetric with respect to reflections in the sides of F. Therefore, being
ontinuous, they go through zero at �F.

In two dimensions there are four families of C-functions and four families of S-functions. The
amilies are determined by compact semisimple Lie groups.

There are three compact simple Lie groups of rank 2, namely the following: SU�3�, O�5� or
p�4�, and G�2�. There is only one nonsimple but semisimple compact Lie group: SU�2�
SU�2�. In this article, we use the notation more familiar in Lie algebra theory:

A1 ↔ SU�2� ,

nd

A1 � A1 ↔ SU�2� � SU�2�, A2 ↔ SU�3� ,

C2 ↔ O�5� or Sp�4�, G2 ↔ G�2� .

n principle, one could also consider the compact Lie groups of rank 2 U�1��U�1� and U�1�
SU�2�, which are not semisimple, and which only lead to the traditional Fourier decomposi-

ions. Here we disregard those cases.
Two and two of the four groups of rank 2 are related by their root and weight lattices.

pecifically, for A1�A1 and C2 the lattices are rectangular, whereas they are triangular for A2 and

2.
Discrete expansions of functions given on the fundamental region of a compact semisimple

ie group in terms of S-functions are described here for the first time. It turns out that the
iscretization of C-function expansions laid out in Ref. 8 is valid also for S-functions with only
inimal modifications. In the one-dimensional case the transforms are known and are called

osine and sine transforms, respectively.12

The main goal of this article is to describe properties of the S-functions, and their exploitation
or continuous and discrete expansions of class functions of the corresponding Lie group of rank
, into a series of S-functions. We provide such a description in an explicit ready-to-use form.
pparently such expansions have not been considered in the literature. Crucial property for the

xpansions is the orthogonality of S-functions, both continuous and discrete. For rank 2 that is
hown by direct computation. In general, for compact semisimple Lie groups of any rank n��, it
s proven elsewhere.13

In one dimension the underlying group is the group A1. Expansion functions in this case are
he familiar ones:

C-functions of A1: Cm�z� =
def

2 cos��mz�, m � Z�0,z � R ,

S-functions of A1: Sm�z� =
def

2i sin��mz�, m � N,z � R .

In higher dimensions, C-functions generalize cosines, whereas the S-functions generalize

ines. From that we take the terms C- and S-functions.
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An observation, important for the generalization, is that in 1-dimension the functions inside of
ither family are orthogonal not only when integrated over 0�z�2, but already when they are
ntegrated over 0�z�1. That range of z is the fundamental region F of A1.

Let us point out properties of the �continuous� C- and S-functions which they have in common
nd where they differ.

�a� Minimal domains of their orthogonality coincide. It is the fundamental region F of the
corresponding Lie group.

�b� C- and S-functions with the same dominant weight have the same number of exponential
constituents.

�c� The symmetry properties of C- and S-functions with respect of the affine Weyl group
coincide up to a sign.

�d� C- and S- functions are eigenfunctions of the same Laplace operators. Their eigenvalues
are up to a constant equal to the square length of their dominant weights.

�e� Discretizations of both families is made on identically defined grids in F.
�f� Products of any two C-functions decompose into a sum of C-functions with positive

integer coefficients. Products of any C- and S-function decomposes into a sum of
S-functions with positive integer coefficients. Products of any two S-functions decompose
into a sum of C-functions with integer coefficients. Only the highest and the lowest terms
in such decompositions are easily determined. Efficient and general algorithms for the
decompositions are yet to be found.

�g� Dominant weights labeling C-functions are in the positive Weyl chamber P+ of the weight
lattice P. Dominant weights labeling S-functions are restricted to the interior P++ of P+.
More precisely, S-functions with dominant weight at the boundary of P+ turn out to be
zero. One has P++� P+� P.

Let us underline some notations used throughout the article. The symbols C , R , Z, and N
enote complex, real, integer, and positive integer numbers, respectively. In a real Euclidean space
2 of dimension two the form �a �b� denotes the scalar product of a ,b�R2, whereas in the

omplex space of functions, it denotes a Hermitian form.
In Sec. II we present a brief introduction to one-dimensional S-functions and an overview of

he one-dimensional S-function transform; Sec. III describes the S-functions in the general case,
hereas the cases for the four compact semisimple groups of rank two are described in Sec. IV;
olynomials derived from C- and S-functions are briefly presented in Sec. V; Sec. VI contains the
iscretization of the S-function transforms for all the two-dimensional cases; some comparative
xamples are given in Sec. VII; and, finally, the concluding remarks are found in Sec. VIII.

I. THE GROUP A1

The rank 1 case is transparent without reference to the underlying simple Lie group A1.

. The continuous case

The S-functions of A1 happen to be the familiar periodic functions

Sm�z� = 2i sin��mz�, m � N, z � R . �2.1�

n particular

Sm�0� = Sm�1� = ¯ = Sm�k� = 0, " k � Z .

ote that m=0 is excluded from consideration in Eq. �2.1�. The functions are pairwise orthogonal.

ndeed, the Hermitian form of two S-functions
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�Sm�z��Sm��z�� =
def�

0

1

Sm�z�Sm��z�dz = �
0

1

4 sin��mz�sin��m�z�dz 	 	m,m�.

onsequently, the continuous sine transform is the expansion of functions over 0�z�1 and its
nversion,

f�z� = 

m=1

�

dmSm�z� ,

here the expansion coefficients dm are obtained from

dm 	 �f�z��Sm�z�� = �
0

1

f�z� · �− 2i sin��mz��dz .

omewhat more generally, the expansion and its inversion would hold for any a�z�a+1 with
�R.

We refrain from recalling well known properties of S-functions in this case even if they
ecome rather non-trivial in subsequent generalizations.

. Discretization in one dimension

Fixing M �N, determines an equidistant grid of M +1 points FM

FM =
def�s =

s1

M
� s0 + s1 = M 
 0,s0, s1 � Z�0�

y running the values of nonnegative integers s0 and s1 through their admissible values. Thus we
ave explicitly

FM = �0,
1

M
,

2

M
,

3

M
, . . . ,

M − 1

M
,1� .

The values of S-functions on the points of the grid FM are thus

Sm�s� = 2i sin��ms�, s � FM, m � N .

ince the values of the S-functions are always equal to 0 on the points k� , k�Z, it makes sense
o exclude such points from FM. Thus we obtain a grid of M −1 points which we define by FM

−

FM
− =

def�s =
s1

M
� s0 + s1 = M, s0,s1 � N� = FM \ �F .

iscrete orthogonality for 0�m ,m��M is defined on FM
− using a discrete version of the Hermit-

an form

�Sm�Sm��M =
def



s�FM

−

Sm�s�Sm��s� = 2M	m,m�.

Our aim in developing the formalism so far, is to use it for expansion of functions f�s�, given
y its values on the grid FM

−.
We have the discrete sine transform of A1,

f�s� = 

m=1

M−1

amSm�s�, am =
1

2M



s�FM
−

f�s�Sm�s� , �2.2�
nd its continuous extension
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f�z� = 

m=1

M−1

amSm�z�, for z � R . �2.3�

A remarkable property of the continuous extension �Eq. �2.3�� is how smoothly it interpolates
he values of f�s� between the points of the grid FM

−. Analogous property of continuous extension
f cosine transform was established in Refs. 3, 14, and 15, see also Refs. 1 and 2.

II. HIGHER RANK CASES IN GENERAL

Most of the tools and properties we need can be presented in a uniform way for any dimension
��. In this section we recall to some of the facts brought forward in the first two parts of the
eries.1,2

Such are �- and �-bases, the bases of simple roots and fundamental weights, respectively,
heir duals, whenever those are different, corresponding root and weight lattices, Q and P, respec-
ively, the positive chamber P+� P; the finite Weyl groups W and their orbits W�, the infinite
ffine Weyl groups Waff and its fundamental region F �colloquially called also the fundamental
egion of the Lie group�.

. Definition of S-functions „Ref. 9…

The definitions of S- and C-function, S��z� and C��z�, respectively, involve both �� P+ and
�Rn. It requires also the W-orbit W� of �. The compact semisimple Lie group enters only
hrough its Weyl group and through the fact that the functions are formed as sums of exponential
unctions, constituents of irreducible characters. One has,

S�+��z� =
def



�W�+�

�− 1�p��e2�i��z�, �3.1�

C��z� =
def



�W�

e2�i��z�, � � P+, z � Rn. �3.2�

ere p�� is the number of elementary reflections of W one needs to transform �+� to . The
ymbol � is the half-sum of positive roots of the Lie group. Relative to the �-basis, it happens to
e the vector

� = 

k=1

n

�k = �1,1, . . . ,1�

or every semisimple Lie group of rank 1�n��.
The number of summands in Eqs. �3.1� and �3.2� is finite. It is equal to the number of weights

n the corresponding Weyl group orbit. That number varies for C-functions �it is always one of the
ivisors of the order of the Weyl group�. More precisely, the number of terms in W� is equal to the
atio

�W�� =
�W�

�StabW��
.

owever, for S-functions, the number of summands in Eq. �3.1� always coincides with the order
f the Weyl group because the stabilizer of �+� is always 1. That is, a weight �+�, with �
P+, has only the trivial stabilizer in W.

. Orthogonality of S- and C-functions

Suppose that the S- and C-functions belong to the same Weyl group �equivalently to the same

ompact semisimple Lie group�. Then we have the orthogonality relations:
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�S�+��z��S��+��z�� =
def�

F

S�+��z�S��+��z�dz 	 	�,��,

�C��z��C���z�� =
def�

F

C��z�C���z�dz 	 	�,��,

here the overbar denotes complex conjugation.

. Decomposition of functions on F

Continuous S-transform of a function f�z� on F, is the decomposition

f�z� = 

��P+

b�S�+��z� = 

��P++

b�S�+��z�, for z � F

nd its inversion

b� =
1

�S�+��S�+���F

f�z�S�+��z�dF .

Since S�+��z�=0 when z is at the boundary �F of F, the S-transform is appropriate for
unctions f�z� having zero values at �F.

. Weyl group antisymmetries of S-functions

Important antisymmetry properties of S-functions are the following three:

S�+��rkz� = − S�+��z�, k = 1,2, . . . ,n ,

S�+��rjrkz� = S�+��z�, j,k = 1,2, . . . ,n ,

S�+��R�hz� = − S�+��z� ,

here rk , k=1,2 , . . . ,n are the Weyl group reflections and R�h
is the affine reflection with respect

o the highest root �h, see Refs. 1 and 2.

. Laplace operator

The C- and S-functions are eigenfunctions of the same Laplace operator. Moreover, the ei-
envalues of C�z� and S�+��z�, coincide if =�+�. They are determined, up to a constant, by the
quare length of the weight of the Weyl group orbit.

Special cases of type A2 �in our notation� are found in the literature, see Refs. 16–19.
Consider the application of the following operator on S-functions:

LS�+��z� = 

k=1

n

�k�k�2

S�+��z� = 

j=1

n



k=1

n

�� j��k�� j�kS�+��z� = − 4�2�� + ��� + ��S�+��z� .

ere we take �k as acting on the kth coordinates of z in �̌-basis.
On the boundary �F of F one has
S�+��z� = 0, z � �F .
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. Decomposition of products of S- and C-functions

Products of S- and C-functions referring to the same Lie group and for the same z are
ompletely decomposable into their linear combination. More precisely, products of S- and
-functions decompose into finite sums of S-functions,

S�+�C�� = S�+��+� + ¯

t is a computational problem to find the remaining terms of the sum and their multiplicities in
ach case.

Products of two S-functions decompose into finite linear combinations of C-functions with
nteger coefficients of both signs, in general.

S�+�S��+� = C�+��+2� + ¯

We have seen in Refs. 1 and 2 that also products of C-functions decompose into sums of
-functions

C�C�� = C�+�� + ¯

ith positive integer coefficients.

V. THE TWO-DIMENSIONAL CONTINUOUS CASES

. The group A1ÃA1

This is a straightforward concatenation of two A1 cases of Sec. II.
Lengths and angles of the simple roots are given by the scalar products

��1��2� = 0, ��1��1� = ��2��2� = 2.

he Cartan matrix and its inverse are

C = 2 0

0 2
�, C−1 =  1

2 0

0 1
2

� .

onsequently, �1=2�1 and �2=2�2. Also �̌ j =� j and �̌ j =� j for j=1,2. Further, the root system
= �±�1 , ±�2� geometrically represents vertices of a square, see Fig. 1. The fundamental region F

s the Cartesian product of two fundamental regions of A1, namely, the square �0,1�� �0,1�.
The S-functions are defined for W�-orbits with only a trivial stabilizer in W, i.e., such that

++ +

IG. 1. The simple roots, the fundamental weights, along with their duals, and the fundamental region for the cases A1

A1 and C2. The thick line square encloses the proximity cell to origin of the dual root lattice in each case. The dots are
oints of a generic Weyl group orbit for a , b not integers.
=a�1+b�2� P � P , where a ,b�N. Then the Weyl group orbit W� is given by

                                                                                                            



T
A

T

B

t

C

T
m

f

w

T

C

043512-8 J. Patera and A. Zaratsyan J. Math. Phys. 47, 043512 �2006�

                        
W� � W�a,b� = �±�a,b�, ± �a,− b�� .

he S-functions of A1�A1, with �=a�1+b�2 and z=x�1+y�2 are products of two S-functions of

1

S�a,b��x,y� = Sa�x�Sb�y� = − 4 sin��ax�sin��by�, a,b � N and x,y � R .

he orthogonality relation of the S-functions of A1�A1 is expressed by the following:

�
F

S�a,b��x,y�S�c,d��x,y�dF =�
0

1

dx�
0

1

dyS�a,b��x,y�S�c,d��x,y� = 4	a,c	b,d.

. The group C2

First we recall standard information about �- and �-bases in this case. Lengths and angles of
he simple roots are given by

��1��2� = − 1, ��1��1� = 1, ��2��2� = 2.

The Cartan matrix and its inverse are

C = 2 − 1

− 2 2
�, C−1 = 1 1

2

1 1
� .

onsequently,

�1 = 2�1 − �2, �1 = �1 + 1
2�2, �̌1 = 2�1,

�2 = − 2�2 + 2�2, �2 = �1 + �2, �̌2 = �2.

he root system �= �±�2�1+�2� , ± ��1+�2� , ±�1 , ±�2� geometrically represents vertices and
idpoints of a square. The highest root is �h=2�1+�2.

Put �=a�1+b�2� P++. Then the Weyl group orbit W� consists of the following eight points:

W� � W�a,b� = �±�a,b�, ± �− a,a + b�, ± �a + 2b,− b�, ± �a + 2b,− a − b�� .

The S-functions of C2, with �=a�1+b�2 and z=x�̌1+y�̌2, are all real-valued, namely the
ollowing:

S�a,b��x,y� = 2 cos���2�a + b�x + �a + 2b�y�� − 2 cos���2�a + b�x� + ay�

− 2 cos���2bx + �a + 2b�y�� + 2 cos���− 2bx + ay�� ,

here a ,b�N and x ,y�R.
The fundamental region F�C2� is described by

F�C2� = �x�̌1 + y�̌2 � 0 � x,y ; 1 � 2x + y� .

he orthogonality relation of the S-functions of C2 is expressed by the following:

�
F

S�a,b��x,y�S�c,d��x,y�dF =�
0

1/2

dx�
0

1−2x

S�a,b��x,y�S�c,d��x,y�dy = 2	a,c	b,d.

. The group A2
Lengths and angles of the simple roots are given by
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��1��2� = − 1, ��1��1� = ��2��2� = 2.

he Cartan matrix and its inverse are

C = 2 − 1

− 1 2
�, C−1 = 1

32 1

1 2
� .

onsequently,

�1 = 2�1 − �2, �1 = 1
3 �2�1 + �2� ,

�2 = − �2 + 2�2, �2 = 1
3 ��1 + 2�2� .

lso �̌ j =� j and �̌ j =� j for j=1,2.
The root system �= �±��1+�2� , ±�1 , ±�2� geometrically represents vertices of a regular

exagon, see Fig. 2.
Put �=a�1+b�2� P++. Then the Weyl group orbit W� consists of the points given here in

-basis

W� � W�a,b� = ��a,b�,�− a,a + b�,�a + b,− b�,�− b,− a�,�b,− a − b�,�− a − b,a�� .

he S-functions of A2 are then defined

S�a,b��x,y� = e�2�i/3���2a+b�x+�a+2b�y� − e�2�i/3���−a+b�x+�a+2b�y�

− e�2�i/3���2a+b�x+�a−b�y� + e−�2�i/3���a−b�x+�2a+b�y�

+ e−�2�i/3���a+2b�x+�b−a�y� − e−�2�i/3���2b+a�x+�b+2a�y�,

S�a,a��x,y� = − 2i�sin�2�ay� + sin�2�ay� − 2 sin�2�a�x + y��� ,

here a ,b�N and x ,y�R.
The fundamental region F�A2� is described by

IG. 2. The simple roots, the fundamental weights, along with their duals, and the fundamental region for the cases A2 and

2. The thick line hexagon encloses the proximity cell to origin of the dual root lattice in each case. The dots are points
f a generic Weyl group orbit for a , b not integers.
F�A2� = �x�1 + y�2 � 0 � x,y ; 1 � x + y� .
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The orthogonality relation of the S-functions of A2 is expressed by

�
F

S�a,b��x,y�S�c,d��x,y�dxdy =
1
�3
�

0

1

dx�
0

1−x

S�a,b��x,y�S�c,d��x,y�dy = �3	a,c	b,d.

ecall that for A2 complex conjugation, denoted here by overbar, is also achieved by interchange
f the subscripts, S�a,b��x ,y�=S�b,a��x ,y�.

. The group G2

Lengths and angles of the simple roots are given by

��1��2� = − 1, ��1��1� = 2, ��2��2� = 2
3 .

he Cartan matrix and its inverse are

C = 2 − 3

− 1 2
�, C−1 = 2 3

1 2
� .

onsequently,

�1 = 2�1 − 3�2, �1 = 2�1 + 3�2, �̌1 = �1, �̌1 = �1,

�2 = − �2 + 2�2, �2 = �1 + 2�2, �̌2 = 3�2, �̌2 = 3�2.

ote that in this case, �1 , �2� P. Hence the root and weight lattices coincide.
The root system

� = �±�2�1 + 3�2�, ± ��1 + 3�2�, ± ��1 + 2�2�, ± ��1 + �2�, ± �1, ± �2�

eometrically represents the twelve vertices of a regular hexagonal star, see Fig. 2.
Let �=a�1+b�2� P++. Then the Weyl group orbit W� is given by

W� � W�a,b� = �±�a,b�, ± �− a,3a + b�, ± �a + b,− b� ,

±�2a + b,− 3a − b�, ± �− a − b,− 3a + 2b�, ± �2a + b,− 3a − 2b� � .

The S-functions of G2, with �=a�1+b�2 and z=x�̌1+y�̌2, are all real:

S�a,b��x,y� = 2 cos�2���a + b�x + by�� + 2 cos�2���2a + b�x + �3a + 2b�y��

− 2 cos�2��ax − by�� − 2 cos�2���a + b�x + �3a + 2b�y��

− 2 cos�2���2a + b�x + �3a + b�y�� + 2 cos�2��ax + �3a + b�y�� ,

here a ,b�N and x ,y�R.
The fundamental region F�G2� is described by

F�G2� = �x�̌1 + y�̌2 �0 � x,y ; 1 � 2x + 3y� .

he orthogonality relation of the S-functions of G2 is expressed by the following:

� S�a,b��x,y�S�c,d��x,y�dF = �3�1/2

dx�2/3−�1/2�x

S�a,b��x,y�S�c,d��x,y�dy = �3	a,c	b,d.

F 0 0
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. C- AND S-POLYNOMIALS IN TWO VARIABLES

The C- and S-functions can be viewed also as polynomials.1,2,7 From a narrow perspective of
ur functions, variables of such polynomials take values on an n-dimensional torus. However, it is
atural to enlarge one’s perspective and consider the variables as taking any complex values.

In general, properties of the polynomials arising from the C-, S-, and E-functions9,10 will be
tudied elsewhere. In here we just point out the structure of these polynomials and their relation to
emisimple Lie groups. For a more general approach, see Refs. 20 and 21.

. S-polynomials

Assuming that a ,b�N, and after a suitable substitution of variables, the S-functions are
onverted to polynomials, say in X and Y. Thus, for example, the substitutions

X = e�2�i/3��2x+y�, Y = e�2�i/3��x+2y�, for x,y � R ,

onvert the generic S-function of A2 into the corresponding polynomial.
The S-polynomials S�a,b��X ,Y� of compact semisimple Lie groups of rank two are the follow-

ng ones.

A1 � A1: XaYb − X−aYb − XaY−b + X−aY−b,

A2: XaYb − X−aYa+b − Xa+bY−b + XbY−a−b

+ X−a−bYa − X−bY−a,

C2: XaYb − X−aYa+b − Xa+2bY−b

+ Xa+2bY−a−b + X−a−2bYa+b

− X−a−2bYb − XaY−a−b + X−aY−b,

G2: XaYb − X−aY3a+b − Xa+bY−b + X2a+bY−3a−b

+ Xa−bY3a+2b − X−2a−bY3a+2b − X−2a−bY3a+b

+ X−a+bY−3a−b + X2a+bY−3a−2b − X−a−bYb

− XaY−3a−b + X−aY−b.

Although the S-functions are defined for a and b strictly positive, one sees from the above
olynomials that they turn to zero whenever either a=0 or b=0.

. C-polynomials

A C-polynomial C��z� differs from an S-polynomial S��z� for the same group of rank 2, in two
ays. Both are formed by the same monomials, but in the case of C��z� all signs are positive.
econd, C��z� is also different from zero for �= �0,b� , �a ,0�, and �0,0�.

I. DISCRETIZATION OF 2-DIMENSIONAL TRANSFORMS

We recall the essentials of the discretization in the case of S-functions even if it closely
arallels that of C-functions.1,2 In fact it is noticeably simpler. That is related to S��z� being equal
o zero when z��F. Therefore points z at the boundary of F do not contribute to the value of a
calar product �or Hermitian form if the values are complex� of two S-functions.

. Equidistant grids of points in the fundamental region

The fundamental region F can be used to tile the entire plane R2 by reflecting it repeatedly in
ts sides. A grid FM of discrete points in F of any density is fixed by a positive integer M. One

2
equires that the grid extends to a lattice during the tiling of R by copies of F.
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The points zs�FM are conveniently described in barycentric coordinates. That is, by fixing
onnegative integers, s0 , s1, and s2 such that

FM =
def� s1

M
,
s2

M
� � s0,s1,s2 � Z�0, s0 + q1s1 + q2s2 = M 
 0� ,

here zs= �s1 /M ,s2 /M�= �s1 /M��̌1+ �s2 /M��̌2. The constants q1 and q2 are given by the highest
oot �h=q1�1+q2�2 of the group. Specifically,

A2: q1 = q2 = 1,

C2: q1 = 2, q2 = 1,

G2: q1 = 2, q2 = 3.

Since the S-functions are always equal to 0 on the boundary �F of the fundamental region F,
t makes sense to exclude those points from FM. Thus we obtain a subgrid of points which we
efine by FM

−

FM
− =

def� s1

M
,
s2

M
� � s0,s1,s2 � N, s0 + q1s1 + q2s2 = M� = �s � FM, where s � �F� . �6.1�

ee Figs. 3 and 4 for examples of such grids.

. Sesquilinear form on FM

Given the set of points FM in the fundamental region, and two functions f�s� and h�s� given
y their values at the points s�FM. One defines a Hermitian form as follows.

�f �h�M =
def



s�FM

csf�s�h�s� .

he overbar stands for complex conjugation. The coefficients cs are positive integers specific for
ach Lie group. They are listed in Refs. 1 and 2 for the groups of rank 2. They do not intervene
n this article because they are all equal on FM

− to the order of the Weyl group,

FIG. 3. The lattice points of F4
−, F5

−, F6
−, and F7

− in the fundamental region F for the cases A1�A1 and C2.

− − − − −
FIG. 4. The lattice points of F6 , F7 , F8 , F9 , and F10 in the fundamental region F for the cases A2 and G2.
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cs � c, s � FM
− ,

ence would influence only the normalization of the form.
Besides, since S� are always 0 on the boundary �F of F, therefore, for the purpose of dis-

retization in this paper, we can freely use

�f �h�M = c 

s�FM

−

f�s�h�s�

or any functions f and h.

. Discrete orthogonality of S-functions

For a fixed value of M �N, the crucial property of S-functions is their discrete orthogonality
n FM

− �F:

�S�a,b��S�a�,b���M = c 

s�FM

−

S�a,b��s�S�a�,b���s� = 	a,a�	b,b��S�a,b��S�a,b��M . �6.2�

t holds for �a ,b�, �a� ,b�� from a finite subset SM
− of S-functions. One has Sa,b�SM

−, provided a
nd b satisfy the inequality

a,b � N, aq2 + bq1 � M Û S�a,b� � SM
− ,

he numbers �S�a,b� �S�a,b��M in Eq. �6.2� take only integer multiples of M2 for each M. Subse-
uently we provide them for all of the cases considered in this article and for all 0�a ,b��.

. Discretization in the case of A1ÃA1

This is a simple combination of two A1-discretizations already described in Sec. II, in two
rthogonal directions.

In the general case, the density of points s�FM,M�
− is chosen by fixing positive integers M and

M�. A rectangular lattice FM,M�
− , of orders M in the �1-direction and M� in the �2-direction, is built

n F the following way:

FM,M�
− �A1 � A1� = � s1

M
�1 +

s1�

M�
�2 � s0 + s1 = M, s0� + s1� = M�, s0,s1,s0�,s1� � N� .

In this case the coefficient c=4.
The S-functions are discretely orthogonal, i.e., for S�a,b� ,S�a�,b���SM,M�

− �A1�A1�
�S�a,b� �a ,b�N ,a�M ,b�M��:

�S�a,b��S�a�,b���M,M� = 4 

s�F

M,M�
−

S�a,b��s�S�a�,b���s� = �0 if a � a� or b � b�

16MM� otherwise,
�

ith the higher S-functions repeating the values of the functions in SM,M�
− .

For simplicity, we choose M =M� in our examples, and for simplicity, in such cases we denote
he FM,M�

− by only FM
− and SM,M�

− by SM
−.

Examples: F4
−�A1�A1� is a square grid with M =M�=4 that consists of the nine points �see
ig. 3� given as �s0 ,s1� , �s0� ,s1��= �s1 /4 ,s1� /4�:

                                                                                                            



w

S

E

t

v

043512-14 J. Patera and A. Zaratsyan J. Math. Phys. 47, 043512 �2006�

                        
�3,1�,�3,1� = � 1
4 , 1

4� , �3,1�,�2,2� = � 1
4 , 1

2� , �3,1�,�1,3� = � 1
4 , 3

4� ,

�2,2�,�3,1� = � 1
2 , 1

4� , �2,2�,�2,2� = � 1
2 , 1

2� , �2,2�,�1,3� = � 1
2 , 3

4� ,

�1,3�,�3,1� = � 3
4 , 1

4� , �1,3�,�2,2� = � 3
4 , 1

2� , �1,3�,�1,3� = � 3
4 , 3

4� ,

hereas F3
−�A1�A1� has only four points:

�2,1�,�2,1� = � 1
3 , 1

3�, �1,2�,�2,1� = � 2
3 , 1

3�, �2,1�,�1,2� = � 1
3 , 2

3�, �1,2�,�1,2� = � 2
3 , 2

3� .

ee Fig. 5 for examples of S-functions of A1�A1.

. Discretization in the case of A2

Individual points s�FM
− are given by triplets s= �s0 ,s1 ,s2���s1 /M ,s2 /M� of positive integers

hat satisfy the following A2 sum rule:

s0 + s1 + s2 = M, s0,s1,s2 � N . �6.3�

All points of FM
− �F are obtained by letting the three positive integers run through all the

alues compatible with Eq. �6.3�. Equivalently,

FM
−�A2� = � s1

M
�1 +

s2

M
�2 � s0,s1,s2 � N,s0 + s1 + s2 = M� .

FIG. 5. The set of nine lowest pairwise orthogonal S-functions of A1�A1 for the grid F4
−�A1�A1�.
In this case the coefficient c=6.
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The S-functions are discretely orthogonal, i.e., for S�a,b� ,S�a�,b���SM
−�A2�= �S�a,b� �a ,b�N ,a

b�M�:

�S�a,b��S�a�,b���M = �0 if a � a� or b � b�

18M2 otherwise,
�

ith the higher S-functions repeating the values of the functions in SM
−.

Examples: F5
−�A2� consists of the following six points �see Fig. 4� given as �s0 ,s1 ,s2�

�s1 /M ,s2 /M�:

TABLE I. Values of several S-functions of A2 at the six points of F5
−�A2�.

Notation: �=2i�−2 sin�2� /5�+sin�� /5�� , �=−2i�sin�2� /5�+2 sin�� /5��,
and �=e2�i/6.

zs �1

5
,
1

5 � �1

5
,
2

5 � �1

5
,
3

5 � �2

5
,
1

5 � �2

5
,
2

5 � �3

5
,
1

5 �
S�1,1��zs� � � � � � �

S�1,2��zs� � ��5 ��4 �� ��3 ��2

S�1,3��zs� � ��4 ��2 ��2 � ��4

S�2,1��zs� � �� ��2 ��5 ��3 ��4

S�2,2��zs� � ��3 � ��3 ��3 �

S�3,1��zs� � ��2 ��4 ��4 � ��2

S�4,2��zs� � ��2 ��4 ��4 � ��2

S�3,3��zs� � ��3 � ��3 ��3 �

S�4,3��zs� � �� ��2 ��5 ��3 ��4

S�2,4��zs� � ��4 ��2 ��2 � ��4

S�3,4��zs� � ��5 ��4 �� ��3 ��2

S�4,4��zs� � � � � � �

FIG. 6. The set of six lowest S-functions of A2 which are pairwise orthogonal on the grid F5
−�A2�.
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�1,1,3� = � 1
5 , 3

5� , �1,2,2� = � 2
5 , 2

5� , �1,3,1� = � 3
5 , 1

5� ,

�2,1,2� = � 1
5 , 2

5� , �2,2,1� = � 2
5 , 1

5� , �3,1,1� = � 1
5 , 1

5� .

In Table I several S-functions are found along with their values at the points of F5
−�A2�. The

rst six belong to S5
−�A2�. However, a closer inspection reveals presence of another orthogonal set

btained from S5
−�A2� by affine reflection R�5,5� applied to all its elements.

Using the entries of Table I, where �=2i�−2 sin�2� /5�+sin�� /5�� , �=−2i�sin�2� /5�
2 sin�� /5��, and �=e2�i/6, let us calculate the products:

�S1,1�S1,2�5 = 6�� · �̄ + � · ��5 + � · ��4 + � · �� + � · ��3 + � · ��2�

=6��� · �1 + �2 + �4� + �� · �� + �3 + �5�� = 0;

�S1,2�S1,2�5 = 6�� · �̄ + ��5 · ��5 + ��4 · ��4 + �� · �� + ��3 · ��3 + ��2 · ��2�

=6.3���̄ + ��̄� = 18�20�sin�2�/5��2 + 20�sin��/5��2�

=18 · 25 = 450.

ee Fig. 6 for examples of S-functions of A2.

. Discretization in the case of C2

The highest root of C2 is �h , =2�1+2�2, therefore the individual points s�FM
− are given by

riplets s= �s0 ,s1 ,s2�= �s1 /M ,s2 /M� of positive integers that satisfy the following C2 sum rule:

s0 + 2s1 + s2 = M, s0,s1,s2 � N . �6.4�

All points of FM
− �F are obtained by letting the three positive integers run through all the

alues compatible with Eq. �6.4�. Equivalently,

−
FIG. 7. The set of nine lowest S-functions of C2 which are pairwise orthogonal on the grid F8 �C2�.
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FM
−�C2� = � s1

M
�̌1 +

s2

M
�̌2 � s0,s1,s2 � N, s0 + 2s1 + s2 = M� .

In this case the coefficient c=8.
The S-functions are discretely orthogonal, i.e., for S�a,b� ,S�a�,b���SM

−�C2�= �S�a,b� �a ,b�N ,a
2b�M�:

�S�a,b��S�a�,b���M = �0 if a � a� or b � b�

16M2 otherwise,
�

ith the higher S-functions repeating the values of the functions in SM
−.

Examples: F7
− �C2� consists of the following six points given as �s0 ,s1 ,s2���s1 /M ,s2 /M�:

�1,1,4� = � 1
7 , 4

7� , �1,2,2� = � 2
7 , 2

7� , �2,1,3� = � 1
7 , 3

7� ,

�2,2,1� = � 2
7 , 1

7� , �3,1,2� = � 1
7 , 2

7� , �4,1,1� = � 1
7 , 1

7� .

ee Fig. 7 for examples of S-functions of C2.

. Discretization in the case of G2

As before, the value of M fixes the grid of discretization. The highest root of G2 is �h=2�1

3�2, therefore the individual points s�FM
− are given by triplets s= �s0 ,s1 ,s2���s1 /M ,s2 /M� of

ositive integers that satisfy the following G2 sum rule:

s0 + 2s1 + 3s2 = M, s0,s1,s2, � N . �6.5�

All points of FM
− �F are obtained by letting the three positive integers run through all the

alues compatible with Eq. �6.5�. Equivalently,

FM
−�G2� = � s1

M
�̌1 +

s2

M
�̌2 � s0,s1,s2 � N, s0 + 2s1 + 3s2 = M� .

In this case the coefficient c is equal to 12.
The S-functions are discretely orthogonal, i.e., for S�a,b� ,S�a�,b�� , �SM

−�G2�= �S�a,b� �a ,b
N ,3a+2b�M�:

�S�a,b��S�a�,b���M = �0 if a � a� or b � b�

12M2 otherwise,
�

ith the higher S-functions repeating the values of the functions in SM
−.

−
FIG. 8. The set of seven lowest S-functions of G2 which are pairwise orthogonal on the grid F12�G2�.
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Examples: F14
− �G2� consists of the following ten points given as �s0 ,s1 ,s2���s1 /M ,s2 /M�:

�1,2,3� = � 1
7 , 3

14� , �1,5,1� = � 5
14 , 1

14� , �2,3,2� = � 3
14 , 1

7� , �3,1,3� = � 1
14 , 3

14� ,

�3,4,1� = � 2
7 , 1

14� , �4,2,2� = � 1
7 , 1

7� , �5,3,1� = � 3
14 , 1

14� , �6,1,2� = � 1
14 , 1

7� ,

�7,2,1� = � 1
7 , 1

14� , �9,1,1� = � 1
14 , 1

14� .

ee Fig. 8 for examples of S—functions of G2.

II. MOTIVATING EXAMPLES

Comparison of expansions of class functions into series of S-functions of all groups consid-
red here will require further study. Related results/questions are illustrated by the following
xamples.

There are two examples shown in this section, involving decomposition of the square function
fsq�x ,y� and a triangular function f tr�x ,y� into series of S-functions of A1�A1 and C2, and A2 and

2, respectively. The goal of the examples is: �i� to illustrate discrete decomposition of a given
unction followed by the continuous extension and �ii� to compare the continuous extensions in
oth cases at compatible densities of the grids.

In order to make the comparison, for the cases A1�A1 and C2 we set up the vertices of the
wo fundamental regions as follows �relative to an orthonormal basis�,

F�A1 � A1� = ��0,0�,�0,1�,�1,1�,�1,0�� ,

F�C2� = ��0,0�,�1,1�,�1,0�� .

hus, the area of F�A1�A1� is exactly half of the area of F�C2�.
We choose for fsq�x ,y� a square step function with sharp edges with vertices in

0 ,0� , �0, 1
2

� , � 1
2 , 1

2
�, and � 1

2 ,0�:

fsq�x,y� = �1 for �x,y� � ��0,0� ,�0, 1
2�,� 1

2 , 1
2�,� 1

2 ,0��
0 elsewhere in F .

� �7.1�

For the cases A2 and G2, we set up the vertices of the two fundamental regions as follows
relative to an orthonormal basis�:

FIG. 9. The triangular step function �Eq. �7.2�� placed in the fundamental regions of A2 and G2.
FIG. 10. The square step function �Eq. �7.1�� placed in the fundamental regions of A1�A1 and C2.

                                                                                                            



T

�

s
g
d
t
i

a

F
�

F
t

043512-19 Sine transform on Lie groups of rank 2 J. Math. Phys. 47, 043512 �2006�

                        
F�A2� = ��0,0�,�1,0�,� 1
2 ,

�3
2 ��

F�G2� = ��− 1
4 ,

�3
4 �,� 3

4 ,
�3
4 �,� 3

4 ,
�3−2

4 ��
hus, the area of F�G2� is also exactly half of the area of F�A2�.

Here, we choose for f tr�x ,y� a triangular step function with sharp edges with vertices in � 1
4 ,

�3
4

�,
3
4 ,

�3
4

�, and � 1
2 ,0�:

f tr�x,y� = �1 for �x,y� � �� 1
4 ,

�3
4 �,� 3

4 ,
�3
4 �,� 1

2 ,0��
0 elsewhere in F .

� �7.2�

Chosen as such, f tr�x ,y� and fsq�x ,y� fit into the fundamental regions F of the four groups as
hown in Figs. 9 and 10. Further, in order to have the same density of grid points, the orders of the
rids are taken with the ratio MA1�A1

=MC2
and MG2

=2MA2
. Figures 3 and 4 demonstrate the

ifference of densities of the grids of the same order for the four cases. It also helps to demonstrate
he reason of the choice of the example functions and their placement into the fundamental regions
n order to ensure a fair comparison of the cases.

Figures 11–14 contain results of our two examples. The values of the two functions fsq�x ,y�
nd f tr�x ,y� are sampled at the points s of the grids FM

− 6.1 and taken as our digital data fsq�s� and
f tr�x ,y�. Then the functions are expanded 2.2 into S-functions on the corresponding grids FM

−, i.e.,

IG. 11. Decomposition and continuous extension of a square step function placed in the fundamental region of A1

A1 on the grids of orders M =4, 8 , 16, and 32.

IG. 12. Decomposition and continuous extension of a triangular step function placed in the fundamental region of C2 on

he grids of orders M =4, 8 , 16, and 32.
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xpansion coefficients are calculated. After that, continuous extensions of the discrete expansions
f fsq�s� and f tr�x ,y� are made 2.3 by replacing the S-functions of the discrete argument s in the
xpansions by the same functions of the continuous argument, while keeping the expansion coef-
cients unchanged. Figures 11–14 show the functions fsq cont�x ,y� and f tr cont�x ,y� resulting from

he continuous extension of discrete expansions. More precisely, four different continuous exten-
ions are shown. They differ by the densities of the grid FM

−, namely MA1�A1
=4, 8 , 16, 32,

MC2
=4, 8 , 16, 32, MA2

=4, 8 , 16, 32, and MG2
=8, 16, 32, 64, from which the continuous

xtension is made. For these values the densities of grid points in the sample function are the
ame. The points of the grids are not shown in Figs. 11–14.

Inspecting and comparing the results, one readily observes the following:

1. As in Ref. 1, increasing density of the grid, i.e., increasing the value M, makes the
continuous extension to match more closely the given model functions fsq�x ,y� of Eq.
�7.1� and f tr�x ,y� of Eq. �7.2�.

2. Quality of the extension, i.e., the match between the continuous extensions
fsq cont�x ,y� , f tr cont�x ,y�, and the original functions fsq�x ,y� , f tr�x ,y�, is comparable for
the same density of the grid in both cases, though C2 and G2 expansion may be slightly
superior, as noticeable by comparing the two at the highest values of M in Figs. 11–14.

IG. 13. Decomposition and continuous extension of a triangular step function placed in the fundamental region of A2 on
he grids of orders M =4, 8 , 16, and 32.

IG. 14. Decomposition and continuous extension of a triangular step function placed in the fundamental region of G2 on

he grids of orders M =8, 16, 32 and 64.

                                                                                                            



V

S
c
c

F
i
a
c
o

W
a
f
a
S
m
w
R

C
o
f

o
d
m
v
a
s

a
c
p

r
w
d

A

C
G

043512-21 Sine transform on Lie groups of rank 2 J. Math. Phys. 47, 043512 �2006�

                        
3. The calculations of complex-valued functions in the case of A2 took much longer time
compared to the other cases, which gives them an obvious advantage in the discretization
of real-valued functions, whereas A2 is more useful for processing complex-valued
information.

III. CONCLUDING COMMENTS

Comparison of the properties of C-functions of Refs. 1 and 2 with the properties of
-functions in this article reveals a far going parallel. Both families were described in the special
ase of two dimensions only, but both generalize to any finite dimension through the underlying
ompact semisimple Lie group G. The number of variables/dimension equals the rank of G.

Discretization in both families coincide: Identical grids are defined in the fundamental region
of G. Their symmetry is determined by the choice of G, their density is fixed by the positive

nteger M. Extended by the action of the affine Weyl group into the entire space, the grids
utomatically form a lattice because the points of FM can also be interpreted22 as representative of
onjugacy classes of an Abelian subgroup of the maximal torus of G generated by the elements of
rder M.

The difference between the two families stems from their behavior under the action of the
eyl group W of G. Although C-functions are symmetric with respect to the reflections r, gener-

ting W, the S-functions are antisymmetric. Geometrically it is equivalent to the behavior of the
unctions with respect to their reflections in any side of F. Flipping C��z� values for z�F to its
djacent copy of F, flips also their values, C��rz�=C��z� , r�W. Under the same operations the
-functions are antisymmetric, S��rz�=−S��z�. Thus, one is justified taking C- and S-functions as
ultidimensional generalizations of cosine and sine, respectively. A natural question of what then
ould be the multidimensional generalization of the exponential function has been answered in
ef. 9. Properties of E-functions of compact semisimple Lie groups will be studied elsewhere.10

Since our motivating application has been the decomposition of functions on F into a series of
- and/or S-functions, practically important for us is the behavior of the functions on the boundary
f F. The C-transform requires that the normal derivatives at �F are zero, whereas the S trans-
orms apply to functions that take zero value at �F.

Comparison of various decompositions of functions of two variables, using C- and S-functions
f different groups is evidently of practical interest. In order to get an idea of the efficiency of the
ecomposition, we choose to consider continuous extension of model functions with sharp edges,
ore precisely cylinders, with zero value in the neighborhood of the boundary �F of F. Thus the

alue of the model function and its normal derivatives are both zero at �F. Sampling the functions
t grids of comparable densities yields digital model data to work with. Continuous extension of
uch model data can then be visually inspected and compared.

Comparison of the functions plotted on Figs. 5 and 6 of Ref. 1 and Figs. 9 and 10 here, as well
s the functions on Figs. 6 and 7 of Ref. 2 with Figs. 13 and 14 here, leads one to a qualitative
onclusion that for the same grids �same value of M� the C- and S-functions are equally appro-
riate and, more importantly, that the interpolation of the digital data in both cases is equally good.

Similarly as with common discrete Fourier expansions one has continuous expansions �Fou-
ier integral�, it would be interesting to explore integral expansions based on C- or S-functions,
here the variable � takes continuous values from the n dimensional space rather than from an n
imensional lattice.
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. INTRODUCTION

Lie conformal superalgebras encode the singular part of the operator product expansion of
hiral fields in two-dimensional quantum field theory.8 On the other hand, they are closely con-
ected to the notion of formal distribution Lie superalgebra �g ,F�, that is a Lie superalgebra g

panned by the coefficients of a family F of mutually local formal distributions. Namely, to a Lie
onformal superalgebra R one can associate a formal distribution Lie superalgebra �Lie R ,R�
hich establishes an equivalence between the category of Lie conformal superalgebras and the

ategory of equivalence classes of formal distribution Lie superalgebras obtained as quotients of
ie R by irregular ideals.8

Finite simple Lie conformal algebras were classified in Ref. 6 and all their finite irreducible
epresentations were constructed in Ref. 4. According to Ref. 6, any finite simple Lie conformal
lgebra is isomorphic either to the current Lie conformal algebra Curg, where g is a simple
nite-dimensional Lie algebra, or to the Virasoro conformal algebra.

However, the list of finite simple Lie conformal superalgebras is much richer, mainly due to
xistence of several series of super extensions of the Virasoro conformal algebra. The complete
lassification of finite simple Lie conformal superalgebras was obtained in Ref. 7. The list consists
f current Lie conformal superalgebras Curg, where g is a simple finite-dimensional Lie superal-

ebra, four series of “Virasoro like” Lie conformal superalgebras Wn �n�0�, Sn,b and S̃n �n
2,b�C�, Kn �n�0�, and the exceptional Lie conformal superalgebra CK6.

All finite irreducible representations of the simple Lie conformal superalgebras Curg, K0

Vir and K1 were constructed in Ref. 4 and those of S2,0, W1=K2, K3, K4 in Ref. 5.
The main result of the present paper is the construction of all finite irreducible modules over

he Lie conformal superalgebras Wn, Sn,b, and S̃n. The proof relies on the method developed in Ref.
, that is, the observation that representation theory of Lie conformal superalgebras is controlled
y the representation theory of the �extended� annihilation superalgebra, and a lemma from Ref. 1.
n our cases, this reduces to the study of certain representations of the Lie superalgebra W�1,n�+
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f all vector fields on a superline �an affine superspace of dimension �1 �n�� and the Lie superal-
ebra S�1,n�+ of such vector fields with zero divergence. As in Refs. 9 and 10, we follow the
pproach developed for representations of infinite-dimensional simple linearly compact Lie alge-
ras by A.R. in Ref. 11. The problem reduces to the description of the so-called degenerate
odules, and for the latter we have to study singular vectors.

The paper is organized as follows. In Sec. II, we recall the notions and some basic facts on
ormal distributions, Lie conformal superalgebras, and their modules. In Sec. III, we recall some
imple facts of the representation theory of infinite-dimensional simple linearly compact Lie
uperalgebras. In Sec. IV, we describe the conformal Lie superalgebra Wn and we classify its finite
rreducible conformal modules by studying the corresponding singular vectors. In Sec. V, we
btain similar results for the Lie conformal superalgebra Sn=Sn,0. Finally, in Sec. VI, we complete

he cases Sn,b and S̃n. In all cases �as in Ref. 11� the answer has a geometric meaning: all finite
rreducible modules are either “nondegenerate” tensor modules, or occur as cokernels of the
ifferential in the conformal de Rham complex, or are duals of the latter.

Note that similar results for arbitrary non-super Lie pseudoalgebras of types W and S have
een obtained in Ref. 2.

The remaining cases of the Lie conformal superalgebras Kn and CK6 will be worked out in the
ubsequent publication.

I. FORMAL DISTRIBUTIONS, LIE CONFORMAL SUPERALGEBRAS, AND THEIR
ODULES

First we introduce the basic definitions and notations, see Refs. 8 and 6. Let g be a Lie
uperalgebra. A g-valued formal distribution in one indeterminate z is a series in the indeterminate
,

a�z� = �
n�Z

anz−n−1, an � g .

he vector superspace of all formal distributions, g��z ,z−1��, has a natural structure of a
��z�-module. We define

Resza�z� = a0.

Let a�z� ,b�z� be two g-valued formal distributions. They are called local if

�z − w�N�a�z�,b�w�� = 0 for N � 0.

Let g be a Lie superalgebra, a family F of g-valued formal distributions is called a local
amily if all pairs of formal distributions from F are local. Then, the pair �g ,F� is called a formal
istribution Lie superalgebra if F is a local family of g-valued formal distributions and g is
panned by the coefficients of all formal distributions in F. We define the formal �-function by

��z − w� = z−1 �
n�Z

�w

z
�n

.

hen it is easy to show �Ref. 8, Corollary 2.2�, that two local formal distributions are local if and
nly if the bracket can be represented as a finite sum of the form

�a�z�,b�w�� = �
j

�a�z��j�b�w���w
j ��z − w�/j ! ,

here �a�z��j�b�w��=Resz�z−w� j�a�z� ,b�w��. This is called the operator product expansion. Then
e obtain a family of operations �n�, n�Z+, on the space of formal distributions. By taking the

enerating series of these operations, we define the �-bracket:
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�a�b� = �
n�Z+

�n

n!
�a�n�b� .

he properties of the �-bracket motivate the following definition:
Definition 2.1: A Lie conformal superalgebra R is a left Z /2Z-graded C���-module endowed

ith a C-linear map,

R � R → C��� � R, a � b � �a�b�

alled the �-bracket, and satisfying the following axioms �a ,b ,c�R�,

Conformal sesquilinearity ��a�b� = − ��a�b�, �a� � b� = �� + ���a�b� ,

Skew-symmetry �a�b� = − �− 1�p�a�p�b��b−�−� a� ,

Jacobi identity �a��b�c�� = ��a�b��+�c� + �− 1�p�a�p�b��b��a�c�� .

Here and further p�a��Z /2Z is the parity of a.
A Lie conformal superalgebra is called finite if it has finite rank as a C���-module. The

otions of homomorphism, ideal and subalgebras of a Lie conformal superalgebra are defined in
he usual way. A Lie conformal superalgebra R is simple if �R�R��0 and contains no ideals
xcept for zero and itself.

Given a formal distribution Lie superalgebra �g ,F� denote by F̄ the minimal subspace of
��z ,z−1�� which contains F and is closed under all jth products and invariant under �z. Due to

ong’s lemma, we know that F̄ is a local family as well. Then Conf�g ,F�ª F̄ is the Lie confor-
al superalgebra associated to the formal distribution Lie superalgebra �g ,F�.

In order to give the �more or less� reverse functorial construction, we need the notion of

ffinization R̃ of a conformal algebra R �which is a generalization of that for vertex algebras3�. We

et R̃=R�t , t−1� with �̃=�+�t and the �-bracket:8

�af�t��bg�t�� = �a�+�t
b�f�t�g�t���t�=t. �2.1�

he 0-th product is

�at�0�
n btm� = �

j�Z+

�m

j
��ajb�tm+n−j . �2.2�

bserve that �̃R̃ is an ideal of R̃ with respect to the 0-th product. We let AlgR= R̃ / �̃R̃ with the 0-th
roduct and let

R = 	�
n�Z

�atn�z−n−1 = a��t − z��a � R
 .

hen �AlgR ,R� is a formal distribution Lie superalgebra. Note that Alg is a functor from the
ategory of Lie conformal superalgebras to the category of formal distribution Lie superalgebras.
ne has8

Conf�AlgR� = R, Alg�Conf�g,F�� = �AlgF̄,F̄� .

ote also that �AlgR ,R� is the maximal formal distribution superalgebra associated to the con-
ormal superalgebra R, in the sense that all formal distribution Lie superalgebras �g ,F� with
onf�g ,F�=R are quotients of �AlgR ,R� by irregular ideals �that is, an ideal I in g with no
onzero b�z��R such that bn� I�. Such formal distribution Lie superalgebras are called
quivalent.

We thus have an equivalence of categories of conformal Lie superalgebras and equivalence
lasses of formal distribution Lie superalgebras. So the study of formal distribution Lie superal-

ebras reduces to the study of conformal Lie superalgebras.
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An important tool for the study of Lie conformal superalgebras and their modules is the
extended� annihilation algebra. The annihilation algebra of a Lie conformal superalgebra R is the
ubalgebra A�R� �also denoted by �AlgR�+� of the Lie superalgebra AlgR spanned by all elements
tn, where a�R ,n�Z+. It is clear from �2.2� that this is a subalgebra, which is invariant with
espect to the derivation �=−�t of AlgR. The extended annihilation algebra is defined as

A�R�e = �AlgR�+
ª C � › �AlgR�+.

ntroducing the generating series

a� = �
j�Z+

� j

j!
�atj� , �2.3�

e obtain from �2.2�:

�a�,b�� = �a�b��+�, � �a�� = ��a�� = ��a�� . �2.4�

Now let g be a Lie superalgebra, and let V be a g-module. Given a g-valued formal distribu-
ion a�z� and a V-valued formal distribution v�z� we may consider the formal distribution a�z�v�w�
nd the pair �a�z� ,v�z�� is called local if �z−w�N�a�z�v�w��=0 for N�0. As before, we have an
xpansion of the form:

a�z�v�w� = �
j

�a�z��j�v�w���w
j ��z − w�/j ! ,

here a�w��j�v�w�=Resz�z−w� ja�z�v�w� and the sum is finite. By taking the generating series of
hese operations, we define the �-action of g on V:

a�w��v�w� = �
n�Z+

�n

n!
�a�w��n�v�w�� �finite sum� .

t has the following properties:

�za�z��v�z� = − �a�z��v�z�, a�z���zv�z� = ��z + ���a�z��v�z�� ,

nd

�a�z��,b�z���v�z� = �a�z��b�z���+�v�z� .

his motivates the following definition:
Definition 2.2: A module M over a Lie conformal superalgebra R is a Z /2Z-graded

���-module endowed with a C-linear map R � M→C��� � M, a � v�a�
Mv, satisfying the follow-

ng axioms �a ,b�M; v�M�,

�M1�� ��a��
Mv = ��M,a�

M�v = − �a�
Mv ,

�M2�� �a�
M,b�

M�v = �a�b��+�
M v .

An R-module M is called finite if it is finitely generated over C���. An R-module M is called
rreducible if it contains no nontrivial submodule, where the notion of submodule is the usual one.

As before, if F�g��z ,z−1�� is a local family and E�V��z ,z−1�� is such that all pairs

a�z� ,v�z��, where a�z��F and v�z��E, are local, let Ē be the minimal subspace of V��z ,z−1��
hich contains E and all a�z��j�v�z� for a�z��F and v�z��E, and is �z-invariant. Then it is easy

o show that all pairs �a�z� ,v�z��, where a�z�� F̄ and v�z�� Ē, are local and a�z��j��Ē�� Ē for all

�z�� F̄.
Let F be a local family that spans g and let E�V��z ,z−1�� be a family that span V. Then �V ,E�

s called a formal distribution module over the formal distribution Lie superalgebra �g ,F� if all

airs �a�z� ,v�z��, where a�z��F and v�z��E, are local. It follows that a formal distribution
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odule �V ,E� over a formal distribution Lie superalgebra �g ,F� gives rise to a module

onf�V ,E�ª Ē over the conformal Lie superalgebra Conf�g ,F�.
In the same way as above, we have an equivalence of categories of modules over a Lie

onformal superalgebra R and equivalence classes of formal distribution modules over the Lie

uperalgebra AlgR. Namely, given an R-module M, one defines its affinization M̃ =M�t , t−1� as an

-module with �̃=�+�t and the �-action similar to �2.1�:

af�t��vg�t� = �a�+�t
v�f�t�g�t���t�=t. �2.5�

he 0-th action is

at�0�
n vtm = �

j�Z+

�m

j
��ajv�tm+n−j . �2.6�

Observe that �̃M̃ is invariant with respect to the 0-th action and ��̃R̃��0�M̃ =0, hence the 0-th

ction of R̃ on M̃ induces a representation of the Lie superalgebra AlgR= R̃ / �̃R̃ on V�M�
M̃ / �̃M̃. Let M= �v��z− t� �v�M�. Then �V�M� ,M� is a formal distribution module over the

ormal distribution Lie superalgebra �AlgR ,R�, which is maximal in the sense that all conformal

AlgR ,R� modules �V ,E� such that ĒM as R-modules are quotients of �V�M� ,M� by irregular
ubmodules. Such formal distribution modules are called equivalent, and we get an equivalence of
ategories of R-modules and equivalence classes of formal distribution �AlgR ,R�-modules.

Formula �2.4� implies the following important proposition relating modules over a Lie con-
ormal superalgebra R to continuous modules over the corresponding extended annihilation Lie
uperalgebra �AlgR�+.

Proposition 2.3: (Ref. 4) A module over a Lie conformal superalgebra R is the same as a
ontinuous module over the Lie superalgebra �AlgR�+, i.e. it is an �AlgR�+-module satisfying the
roperty

a�m � C��� � M for any a � R,m � M . �2.7�

One just views the action of the generating series a� of �AlgR�+ as the �-action of a�R�.
Denote by V�M�+ the span of elements �vtn �v�M ,n�Z+� in V�M�. It is clear from �2.5� that

�M�+ is an �AlgR�+ submodule, hence an R -module by Proposition 2.3. We denote by V�M�+
* the

estricted dual of V�M�+, i.e., the space of all linear functions on V�M�+ which vanish on all but
nite number of subspaces Mtn, with n�Z+. This is an �AlgR�+-module and hence an R-module
s well. The conformal dual M* to an R-module M is defined as

M* = �f�:M → C����f���m� = �f��m�� ,

ith the structure of C���-module ��f���m�=−�f��m�, with the following �-action of R:

�a�f���m� = − �− 1�p�a��p�f�+1�f�−��a�m�, a � R,m � M .

Given a homomorphism of conformal R-modules T :M→N, we define the transpose homo-
orphism T* :N*→M* by

�T*�f����m� = − f��T�m�� .

Proposition 2.4: Let T :M→N be an injective homomorphism of R-modules such that N / Im T
s finitely generated torsion-free C���-module. Then T* is surjective.

Proof: Since L=N / Im T is finitely generated torsion-free, then it is free and therefore a
rojective C���-module. Hence, the short exact sequence 0→ Im T→N→N / Im T→0 is split and

* *
=Im T � L as C���-module. Now, given ��M , we define ��N as follows:

                                                                                                            



T
C

=
f

T
o

g

�
i

�

T

a

H

p

i

f
d

I

I

043513-6 Boyallian et al. J. Math. Phys. 47, 043513 �2006�

                        
���T�m�� = ���m�, m � M, ���l� = 0, l � L .

hen � is well-defined since T is injective and � belongs to N* since L is a complementary
���-submodule, finishing the proof. �

Remark 2.5: Observe that the injectivity is not enough �cf. Remark 4.12�. Namely, let R
Vir=C���L be the Virasoro conformal algebra with �-bracket �L�L�= �2�+��L. Consider the

ollowing Vir-modules:

�0 = C���m, with L�m = �� + ��m, �1 = C���n with L�n = �n .

hen it is easy to see that the map d :�0→�1 given by d�m�=�n is an injective homomorphism
f R-modules, but the dual map d* :�1

*→�0
* given by d*�m*�=�n* is not surjective.

Proposition 2.6: Let T :M→N be a homomorphism of R-modules such that N / Im T is finitely
enerated torsion-free C���-module. Then the standard map 	 :N* /Ker T*→ �M /Ker T�*, given by

	� f̄����m̄�= f��T�m�� �where by the bar we denote the corresponding class in the quotient� is an
somorphism of R-modules.

Proof: Using Proposition 2.4 the proof follows by standard arguments. �

Proposition 2.7: If M is an R-module finitely generated �over C����, then M**M.
Proof: Let M = � C���mi �finite sum�, with a�mj =�kPjk�� ,��mk. Then M*= � C���mi

*, with
mi

*���mk�=�i,k and

�a�mi
*���mj� = − �mi

*��−��a�mj� = − �
k

�mi
*��−��Pjk��,��mk� = Pji��,� − �� .

herefore,

�a�mi
*� = − �

j

Pji��,− �− ��mj
*,

nd the last formula shows that by taking the dual again we obtain

�a�mi
**� = �

j

Pij��,��mj
**.

ence the map mi�mi
** gives us the isomorphism between M and M**. �

Proposition 2.8: �a� The map M→V�M� /V�M�+ given by v�vt−1 mod V�M�+ is an isomor-
hism of �AlgR�+- �and R-�modules.

�b� The map V�M�+
* →M* defined by f � f�, where

f��m� = �
j�Z+

�− �� j

j!
f�mtj� ,

s an isomorphism of �AlgR�+- �and R-�modules.
Proof: A direct verification. �

Assuming that R is finite, choose a finite set of generators of this C���-module: �ai � i� I�, and
or each m�Z+, denote by �AlgR��m�

+ the C-span of all elements aitj , i� I , j�m of �AlgR�+. This
efines a descending filtration of �AlgR�+ by subspaces of finite codimension:

�AlgR�+ � �AlgR�+ = �AlgR��0� � �AlgR��1� � . . . . �2.8�

t is easy to see from �2.2� that there exists s�Z+ such that for all k ,r�Z+ one has

��AlgR��k�,�AlgR��r�� � �AlgR��k+r−s�. �2.9�

n particular, �AlgR�rª �AlgR��r+s� is a filtration of �AlgR�+ by subalgebras of finite codimension.
+
Given an R-module M, it is an �AlgR� -module �by Proposition 2.3�, and we let for j�Z+:
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M�j� = �v � M��AlgR��j�v = 0� . �2.10�

he subspaces M�j� form an ascending filtration of M by �AlgR�0-invariant subspaces. The fol-
owing proposition is a special case of Lemma 14.4 from Ref. 1.

Proposition 2.9: Let R be a finite Lie conformal superalgebra and let M be a finite R-module
uch that

MR = �m � M�R�m = 0��=M�0��

s finite dimensional �over C�. Then all subspaces M�j� are finite-dimensional. In particular M is
ocally finite as an �AlgR�0-module, meaning that any m�M is contained in a finite-dimensional
AlgR�0-invariant subspace.

This Proposition together with the results of the following section will provide a character-
zation of all finite irreducible modules over a finite Lie conformal superalgebra in terms of certain
quotients of� induced modules over the extended annihilation algebra.

II. GENERAL REMARKS ON REPRESENTATIONS OF LINEARLY COMPACT LIE
UPERALGEBRAS

We follow the approach developed for representations of infinite-dimensional simple linearly
ompact Lie algebras by A.R. in Ref. 11. In this section we will follow Ref. 9.

We shall consider continuous representations in spaces with discrete topology. The continuity
f a representation of a linearly compact Lie superalgebra L in a vector space V with discrete
opology means that the stabilizer Lv= �g�L �gv=0� of any v�V is an open �hence of finite
odimension� subalgebra of L.

Let L be a simple linearly compact Lie superalgebra. In some cases �the examples studied in
he following sections�, L has a Z-gradation of the form

L = �m�−1Lm, �3.1�

his gives a triangular decomposition

L = L− � L0 � L+ with L± = �±m
0Lm. �3.2�

et L�0=L
0 � L0. Denote by P�L ,L�0� the category of all continuous L-modules V, where V is
vector space with discrete topology, that are L�0-locally finite, that is any v�V is contained in
finite-dimensional L�0-invariant subspace. When talking about representations of L, we shall

lways mean modules from P�L ,L�0�. Modules in this category are called finite continuous
-modules.

In most cases of simple L, for example if L is of W or S type, by taking L�0 certain maximal
pen subalgebra, one can choose L− to be a subalgebra. Taking an ordered basis of L−, we denote
y U�L−� the span of all PBW monomials in this basis. We have U�L�=U�L−� � U�L�0�, as vector
paces �here and in the following U�L� stands for the universal enveloping algebra of the Lie
uperalgebra L�. It follows that any irreducible L-module V in the category P�L ,L�0� is finitely
enerated over U�L−�:

V = U�L−�E

or some finite-dimensional subspace E. This property is very important in the theory of conformal
odules.4

Given an L�0-module F, we may consider the associated induced L-module

M�F� = IndL�0

L F = U�L��U�L�0�F ,

alled the generalized Verma module associated to F. Sometimes, we shall omit L and L�0, and
imply denote it as Ind F.
Let V be an L-module. The elements of the subspace

                                                                                                            



a
i
s
U

a

s

F
a

h

i
S
u
h
p

I

A

w

e

b

w
d

w
�

T

T

043513-8 Boyallian et al. J. Math. Phys. 47, 043513 �2006�

                        
Sing�V� ª �v � V�L
0v = 0�

re called singular vectors. For us the most important case is when V=M�F�. The L�0-module F
s canonically an L�0-submodule of M�F�, and Sing�F� is a subspace of Sing�M�F��, called the
ubspace of trivial singular vectors. Observe that M�F�=F � F+, where F+=U+�L−� � F and

+�L−� is the augmentation ideal in the symmetric algebra U�L−�. Then

Sing+�M�F�� ª Sing�M�F�� � F+

re called the nontrivial singular vectors.
Theorem 3.1: (Refs. 9 and 11) �a� If F is a finite-dimensional L�0-module, then M�F� is in

P�L ,L�0�.
�b� In any irreducible finite-dimensional L�0-module F the subalgebra L+ acts trivially.
�c� If F is an irreducible finite-dimensional L�0-module, then M�F� has a unique maximal

ubmodule.
�d� Denote by I�F� the quotient by the unique maximal submodule of M�F�. Then the map

� I�F� defines a bijective correspondence between irreducible finite-dimensional L0-modules
nd irreducible L-modules in P�L ,L�0�, the inverse map being V�Sing�V�.

�e� An L-module M�F� is irreducible if and only if the L0-module F is irreducible and M�F�
as no nontrivial singular vectors.

Remark 3.2: The correspondence defined in Theorem 3.1�d� provides the classification of
rreducible modules of the category P�L ,L�0�. Also, we would like to remark that in general
ing+�M�F�� generates a proper submodule in the L-module M�F�, but the factor by this submod-
le is not necessarily irreducible, there could appear new nontrivial singular vectors. However this
appens very rarely �see Ref. 10 for an example and cf. Remark 4.8� and in most cases it can be
roven that the factor module will be irreducible.

V. LIE CONFORMAL SUPERALGEBRA Wn AND ITS FINITE IRREDUCIBLE MODULES

. Definition of Wn and the induced modules

According to Ref. 6, any finite simple Lie conformal algebra is isomorphic either to Curg,
here g is a simple finite-dimensional Lie algebra, or to the Virasoro conformal algebra.

However, the list of finite simple Lie conformal superalgebras is much richer, mainly due to
xistence of several series of super extensions of the Virasoro conformal algebra, see Ref. 7.

The first series is associated to the Lie superalgebra W�1,n� �n�1�. More precisely, let ��n�
e the Grassmann superalgebra in the n odd indeterminates �1 ,�2 , . . . ,�n. Set ��1,n�=C�t , t−1�

� ��n�, then

W�1,n� = 	a�t + �
i=1

n

ai�i�a,ai � ��1,n�
 , �4.1�

here �i=� /��i and �t=� /�t are odd and even derivations, respectively. Then W�1,n� is a formal
istribution Lie superalgebra with spanning family of �pairwise local� formal distributions:

F = ���t − z�a�a � W�n�� � ���t − z�f�t�f � ��n�� ,

here W�n�= ��i=1
n ai�i �ai���n�� is the �finite-dimensional� Lie superalgebra of all derivations of

�n�. The associated Lie conformal superalgebra Wn is defined as

Wn = C��� � �W�n� � ��n�� . �4.2�

he �-bracket is defined as follows �a ,b�W�n� ; f ,g���n��:

�a�b� = �a,b�, �a�f� = a�f� − �− 1�p�a�p�f��fa, �f�g� = − �� + 2��fg . �4.3�
n
he Lie conformal algebra Wn is simple for n�0 and has rank �n+1�2 .
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The annihilation subalgebra is

A�Wn� = W�1,n�+ = 	a�t + �
i=1

n

ai�i�a,ai � ��1,n�+
 , �4.4�

here ��1,n�+=C�t� � ��n�. The extended annihilation subalgebra is

A�Wn�e = W�1,n�+ = C�t › W�1,n�+,

nd therefore it is isomorphic to the direct sum of W�1,n�+ and a commutative one-dimensional
ie algebra.

The Z-gradation in �3.1� is obtained by letting

deg t = deg �i = 1 = − deg �t = − deg �i.

f L=W�1,n�+, then L−1= ��t ,�1 , . . . ,�n�, where �t is an even element and �1 , . . . ,�n are odd ele-
ents of a basis in L−1. Note also that L0gl�1 �n�.

From now on, we shall use the notation �0=�t. Explicitly, we have

L0 = ��t�i,�i� j:0  i, j  n�� .

n order to write explicitly weights for vectors in W�1,n�+-modules, we would consider the basis

t�0;t�0 + �1�1, . . . ,t�0 + �n�n

or the Cartan subalgebra H in W�1,n�+, and we write the weight of an eigenvector for the Cartan
ubalgebra H as a tuple

�̄ = ��;�1, . . . ,�n�

or the corresponding eigenvalues of the basis.

. Modules of Laurent differential forms

. Restricted dual

Our algebra L=W�1,n�+, and in the last section S�1,n�+, are Z-graded �super�algebras and the
odules we intend to study are graded modules, i.e., an L-module V is a direct sum V=

�m�ZVm of finite-dimensional subspaces Vm, and Lk ·Vm�Vk+m. For a graded module V we define
he restricted dual module V# as

V# = �m�Z�Vm�*.

ence V# is a subspace of V* and it is invariant with respect to the contragradient action, so it
efines an L-module structure. Observe that �V#�#=V.

In our situation, we have L−1= ��0 ,�1 , . . . ,�n�, then any L-module becomes a
��0 ,�1 , . . . ,�n�-module. Hence, a module V is a free C��0 ,�1 , . . . ,�n�-module if and only if V# is
cofree module, i.e., it is isomorphic to a direct sum of copies of the standard module

�z ,�1 , . . . ,�n�, with �0 · f = �� /�z�f , and �i · f = �� /��i�f .
An induced module IndL�0

L F is by definition a free C��0 ,�1 , . . . ,�n�-module, so the co-induced
or produced� module

CndF# = �IndF�#
ill be cofree.

                                                                                                            



2

d
a

G

w

T
t

W

m

A
�

i

O

p

t
�
d

P
t

s

043513-10 Boyallian et al. J. Math. Phys. 47, 043513 �2006�

                        
. Differential forms modules

In order to define the differential forms one considers an odd variable dt and even variables
�1 , . . . ,d�n and defines the differential forms to be the �super�commutative algebra freely gener-
ted by these variables over ��1,n�+=C�t� � ��n�, or

�+ = ��1,n�+�d�1, . . . ,d�n� � ��dt� .

enerally speaking �+ is just a polynomial �super�algebra over a big set of variables

t,�1, . . . ,�n,dt,d�1, . . . ,d�n,

here the parity is

p�t� = 0, p��i� = 1, p�dt� = 1, p�d�i� = 0.

hese are called �polynomial� differential forms, and we define the Laurent differential forms to be
he same algebra over ��1,n�=C�t , t−1� � ��n�:

� = ��1,n��d�1, . . . ,d�n� � ��dt� .

e would like to consider a fixed complementary subspace �− to �+ in � chosen as follows:

�− = t−1C�t−1� � ��n� � C�d�1, . . . ,d�n� � ��dt� .

For the differential forms we need the usual differential degree that measure only the involve-
ent of the differential variables dt ,d�1 , . . . ,d�n, that is

deg t = 0, deg �i = 0, deg dt = 1, deg d�i = 1.

s a result, the degree of a function is zero and it gives us the standard Z-gradation both on � and

±. As usual, we denote by �k ,�±
k the corresponding graded components.

We denote by �c
k the special subspace of differential forms with constant coefficients in �k.

The operator d is defined on � as usual by the rules d · t=dt ,d ·�i=d�i ,d ·d�i=0, and the
dentity

d�fg� = �df�g + �− 1�p�f�fdg .

bserve that d maps both �+ and �− into themselves.
As usual, we extend the natural action of W�1,n�+ on ��1,n� to the whole � by imposing the

roperty

D · d = �− 1�p�D�d · D, D � W�1,n�+,

hat is, D �super�commutes with d. It is clear that �+ and all the subspaces �k are invariant. Hence

+
k and �k are W�1,n�+-modules, which are called the natural representations of W�1,n�+ in

ifferential forms.
We define the action of W�1,n�+ on �− via the isomorphism of �− with the factor of � by �+.

ractically this means that in order to compute D · f , where f ��−, we apply D to f and “disregard
erms with non-negative powers of t.”

The operator d restricted to �±
k defines an odd morphism between the corresponding repre-

entations. Clearly the image and the kernel of such a morphism are submodules in �±
k .

Let �c
k= ��c

k�# and �+
k = ��+

k�#. In the rest of this section, we consider L=W�1,n�+.
Proposition 4.1: For L=W�1,n�+ we have:
�1� The L0-module �c

k ,k�0 is irreducible with highest weight

�0;0, . . . ,0,− k�, k � 0.

k k
�2� The L-module �+ , k�0 contains �c and this inclusion induces the isomorphism
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�+
k = Ind �c

k.

�3� The dual maps d# :�+
k+1→�+

k are morphisms of L-modules. The kernel of one of them is
qual to the image of the next one and it is a nontrivial proper submodule in �+

k .
Proof: �1� It is well known that �c

k are irreducible and thus �+
k are also irreducible. Observe

hat the lowest vector in �c
k is �d�n�k and it has the weight �0;0 , . . . ,0 ,k�. Now the sign changes

s we go to the dual module and so we get the highest weight of �c
k.

�2� By the definition of the restricted dual, it is the sum of the dual of all the graded compo-
ents of the initial module. In our case �c

k is the component of the minimal degree in �+
k , so �c

k

ecomes the component of the maximal degree in �+
k . This implies that L
0 acts trivially on �c

k,
o the morphism Ind �c

k→�+
k is defined. Clearly �+

k is isomorphic to

�c
k

� C�t,�1, . . . ,�n� ,

o it is a cofree module. Then the module �+
k is a free C��0 ,�1 , . . . ,�n�-module and the morphism

Ind �c
k → �+

k

s therefore an isomorphism.
�3� This statement follows immediately from the fact that d commutes with the action of

ector fields. �

Corollary 4.2: The W�1,n�+-modules �+
k of differential forms are isomorphic to the co-

nduced modules

�+
k = Cnd �c

k.

Let us now study the L=W�1,n�+-modules �−
k . First, notice that these modules are free as

��0 ,�1 , . . . ,�n�-modules. Let

�* = �1 ¯ �n, and �̄c
k = t−1�*�c

k � �−
k . �4.5�

Proposition 4.3: For L=W�1,n�+, we have:

�1� �̄c
k is an irreducible L0-submodule in �−

k with highest weight

�− 1;0,0, . . . ,0� for k = 0,

�0;k,1, . . . ,1� for k 
 0,

nd L
0 acts trivially on �̄c
k.

�2� There is an isomorphism �−
k =IndL�0

L �̄c
k.

�3� The differential d gives us L-module morphisms on �−
k and the kernel and image of d are

-submodules in �−
k .

�4� The kernel of d and image of d in �−
k for k�2 coincide, in �−

1 we have Ker d=C�t−1dt�
Im d, and in �−

0, we have Ker d=0 �and the image does not exist�.
Proof: �1� First of all, �̄c

k is the maximum total degree component in �−
k , so any element from


0 moves it to zero. Also, as L0-module �̄c
k is isomorphic to �c

k multiplied by the one-
imensional module �t−1�*�. This permits us to see that its highest vectors are

�t−1�*� for k = 0,

�t−1�*dt� for k = 1,

�t−1�*dt�d�1�k−1� for k 
 1.

he values of the highest weights are easy to compute.
�2� It is straightforward to see that �−

0 is a free rank 1 C��0 ,�1 , . . . ,�n�-module. Now, the
k k
ction of �0 ,�1 , . . . ,�n on �− is coefficient-wise and the fact that �− is a free
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��0 ,�1 , . . . ,�n�-module follows. This gives us the isomorphism �−
k =IndL�0

L �̄c
k. Parts �3� and �4�

re left to the reader. �

The above statement shows us that there are nontrivial submodules in �±
k and �+

k . In fact,
hese are “almost all” proper submodules and the respective factors are irreducible. These results
re discussed in Sec. IV D. In order to get this result we need to study singular vectors.

. Singular vectors of Wn-modules

Having in mind the results of Sec. III, we introduce the following modules. Given a
l�1 �n�-module V, we have the associated tensor field W�1,n�-module C�t , t−1� � ��n� � V, which
s a formal distribution module spanned by a collection of fields E= ���t−z�fv � f ���n� ,v�V�.
he associated conformal Wn-module is

Tens�V� = C��� � ���n� � V� �4.6�

ith the following �-action:

a��g � v� = a�g� � v + �− 1�p�a��i,j=1

n
��i f j�g � �Eij − �ij��v� − ��− 1�p�g�� j=1

n
f jg � E0j�v� ,

�4.7�

f��g � v� = �− ���fg � v� + �− 1�p�fg��i=1

n
��i f�g � Ei0�v� + ��fg � E00�v�� , �4.8�

here a=�i=1
n f i�i�W�n� , f ,g���n� ,v�V, and Eij �gl�1 �n� are matrix units �they correspond to

he level 0 elements �i� j with the notation �0= t and �0=�t�.
In this case, the modules M�F�=IndL�0

L F defined in Sec. III, correspond to the Wn-module
ens�F�, with F a finite-dimensional �irreducible� gl�1 �n�-module. When we discuss the highest
eight of vectors and singular vectors, we always mean with respect to the upper Borel subalgebra

n L=W�1,n�+ generated by L
0 and the elements of L0:

t�i, �i� j i � j . �4.9�

Therefore, in the module M�V�, viewed as a module over the annihilation algebra W�1,n�+

see Proposition 2.3�, a vector m�M�V� is a singular vector if and only if the following conditions
re satisfied �g=�i1

¯�is
���n�, and �0=�t�

�s1� tng�i · m = 0 for n 
 1,

�s2� t1g�i · m = 0 except for g = 1 and i = 0, �4.10�

�s3� t0g� j · m = 0 for s 
 1 or g = �i with i � j .

We shall frequently use the notation

�I = �i1
¯ �is

� ��n�, with I = �i1, . . . ,is� . �4.11�

herefore, these conditions on a singular vector m�Tens�V� translate in terms of the �-action to
cf. �2.3��:

�S1� d2� d�2 �f�m�=0 for all f ���n�,
�S2� d � d� �a�m�=0 for all a�W�n�,
�S3� d � d� �f�m���=0=0 for all f ���n� with f �1,
�S4� �a�m���=0=0 for all a=�I� j �W�n� with �I � 
1 or a=�i� j with i� j,
�S5� �f�m���=0=0 for all f =�I���n� with �I � 
1.
In order to classify the finite irreducible Wn-modules we should solve these equations �S1–5�
o obtain the singular vectors.
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Let m�Tens�V�=C��� � ��n� � V, then

m = �
k=0

N

�
I

�k��I � vI,k� with vI,k � V . �4.12�

In order to obtain the singular vectors, we need some reduction lemmas:
Lemma 4.4: If m�Tens�V� is a singular vector, then the degree of m in � is at most 1.
Proof: Using �4.7�, we have for a=�i=1

n f i�i that

d

d�
�a�m� = �k=1

N �I
k�� + ��k−1�a��I� � vI,k + �− 1�p�a��i,j=1

n
��i f j��I � �Eij − �ij��vI,k�

− ��− 1��I�� j=1

n
f j�I � E0j�vI,k�� − �k=0

N �I
�� + ��k�− 1��I�� j=1

N
f j�I � E0j�vI,k� .

�4.13�

aking a=� j, condition �S2� becomes

0 = �k=1

N �I�j�I
k�� + ��k−1��i1

¯ �̂ j ¯ �is
� vI,k� − ��k=1

n �I
�− 1��I�k�� + ��k−1��I � E0j�vI,k��

− �k=0

N �I
�� + ��k�− 1��I���I � E0j�vI,k�� . �4.14�

ow, viewed as a polynomial in �, we obtain

E0j�vI,k� = 0, " I,k = 1, . . . ,N, and j = 1, . . . ,n . �4.15�

sing it in �4.14� and taking the coefficients in �+�, we get

vI,k = 0 for all I � � , and k � 2.

ence, m=�k=0
1 �I�

k��I � vI,k�+�k=2
N �k�1 � v�,k�.

Using �4.8� and condition �S1� for f =1, we have

0 =
d2

d�2 �f�m� = 2�I
��I � E00�vI,1�� − �k=2

N
�k − 1�k�� + ��k−2 � �1 � v�,k�

+ �k=2

N
�2k�� + ��k−1 + �k�k − 1��� + ��k−2��1 � E00�v�,k�� . �4.16�

hen, viewed as a polynomial in �, we have E00�v�,k�=0 for all k�2. Hence the last term in
4.16� is 0. Now, viewed as a polynomial in ��+��, we obtain v�,k=0 for all k�2, finishing the
roof. �

Observe that the coefficient in ��+��0 in �4.16�, gives us the following useful identity:

E00�vI,1� = 0 for all I . �4.17�

We will use the following notation: �1,n�= �1, . . . ,n�.
Lemma 4.5: If m is a singular vector, then

m = ����1,n� � w� + �
l=1

n

���1,n�−�l� � vl� + ��1,n� � v0.

Proof: By the previous lemma, we have

m = �
I

����I � vI,1� + ��I � vI,0�� .
ow �S5� gives us
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0 = �f�m���=0
= �I

��− ���f�I � vI,0� − �− 1��I��i=1

n
��i f��I � Ei0�vI,0��

+ �I
��− �2��f�I � vI,1� − �− 1��I��i=1

n
� ���i f��I � Ei0�vI,1��� �4.18�

or any f =�J with �J � 
1. Considering the coefficient of �2 and taking f =�l�k, we obtain vI,1=0 for
ll I with �I � n−2. Using this and considering the coefficient of � with f =�l�k�s, we obtain

I,0=0 for all I with �I � n−3. With this reduction, the coefficient of � with f =�i� j �i� j� is

0 = − ���1,n� � v�1,n�−�i,j�,0� + �− 1�n−1���1,n� � Ei0�v�1,n�−�j�,1�� ,

btaining

Ei0�v�1,n�−�j�,1� = �− 1�n−1v�1,n�−�i,j�,0 for all i � j . �4.19�

Computing �S3�, we have

0 =
d

d�
�f�m���=0

= ��I��n−1
��− ���f�I � vI,1� − �− 1��I��i=1

n
��i f��I � Ei0�vI,1��

+ ���I��n−1
f�I � E00�vI,1� + ��I��n−2

f�I � E00�vI,0� .

ow, taking f =�i, using �4.17�, and considering the coefficient in �, we have

vI,1 = 0 for all �I� = n − 1,

nd using it in �4.19�, we have

vI,0 = 0 for all �I� = n − 2,

nishing the proof. �

Let �*ª��1,n� and �l
ª��1,n�−�l�. Due to the previous lemma, any singular vector has the form

m = ���* � w� + �
l=1

n

��l
� vl� + �* � v0.

hen, it is easy to see that conditions �s1–3� are equivalent to the following list
�s1�:

E00�w� = 0, �4.20�

E0i�w� = 0, i = 1, . . . ,n . �4.21�

�s2�:

Eji�w� + E0i�v j� = 0, i, j = 1, . . . ,n , �4.22�

E0i�v0� = 0, i = 1, . . . ,n , �4.23�

E0i�v j� = 0, i, j = 1, . . . ,n, i � j , �4.24�

E0j�v j� = − w, j = 1, . . . ,n . �4.25�
Ei0�w� = E00�vi�, i = 1, . . . ,n . �4.26�
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�s3�:

Ei0�v j� = Ej0�vi�, i, j = 1, . . . ,n, i � j . �4.27�

Eij�vl� = Elj�vi�, i, j,l = 1, . . . ,n, i � l . �4.28�

Eij�w� = 0, i, j = 1, . . . ,n, i � j , �4.29�

Eij�v0� = 0, i, j = 1, . . . ,n, i � j , �4.30�

Eij�vl� = 0, i, j,l = 1, . . . ,n, i � j,l � j , �4.31�

Eij�v j� = vi, i, j = 1, . . . ,n, i � j . �4.32�

Now replacing �4.24� and �4.25� on �4.22�, we obtain

Eij�w� = �ijw, i, j = 1, . . . ,n . �4.33�

Recall that we are considering the basis ��0=�t�

t�0;t�0 + �1�1, . . . ,t�0 + �n�n

or the Cartan subalgebra H in W�1,n�+, and we write the weight of an eigenvector for the Cartan
ubalgebra H as a tuple

�̄ = ��;�1, . . . ,�n� �4.34�

or the corresponding eigenvalues of the basis.
Using the above conditions, we can prove the following:
Proposition 4.6: Let n�2 and m be a nontrivial singular vector in Tens V with weight �̄m,

hen we have one of the following:
�a� m=�n � vn, �̄m= �0;0 , . . . ,0 ,−k� with k�0, vn is a highest weight vector in V with weight

0;0 , . . . ,0 ,−k−1�, and m is uniquely defined by vn.
�b� m=�l=1

n �l � vl, �̄m= �0;k ,1 , . . . ,1� with k�2, v1 is a highest weight vector in V with
eight �0;k−1,1 , . . . ,1�, and m is uniquely defined by v1.

�c� m=���* � w�+�l=1
n �l � vl, �̄m= �−1;0 , . . . ,0�, w is a highest weight vector in V with weight

0;1 , . . . ,1�, and m is uniquely defined by w.
Proof: By computing E00·m= �t� � ·m and using �4.20� and �4.26� on it, we obtain the follow-

ng conditions:
If w=0, then

E00 · m = 0 and E00�v0� = 0. �4.35�

f w�0, then

E00 · m = − m , �4.36�

E00�vl� = − vl, l = 0, . . . ,n , �4.37�

nd using �4.26�, in this case �w�0� we have

Ei0�w� = − vi, i = 1, . . . ,n . �4.38�

Similarly, observe that Eii ·m= ��i�i� ·m. Now this action can be easily computed, and using
4.33� on it, we have the following:
If w�0, then
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Eii · m = m, i = 1, . . . ,n ,

Eii�vl� = vl, l,i = 1, . . . ,n,l � i ,

�4.39�
Eii�vi� = 2vi, i = 1, . . . ,n ,

Eii�v0� = v0, i = 1, . . . ,n .

sing this and Eqs. �4.36�, �4.20�, and �4.33�, we obtain for the case w�0, that the corresponding
eights are

�̄m = �− 1;0, . . . ,0� and �̄w = �0;1, . . . ,1� .

his result together with �4.38� give us the proof of case �c� in the proposition.
For the rest of the proof, we assume w=0, let us show that the only possible cases are �a� and

b�.
Observe that replacing �4.32� in �4.28�, we get

Ejj�vi� = vi " i � j . �4.40�

Now, Eq. �4.32� shows that if vl=0 for some l with 1 ln, then v j =0 for all j� l. In order
o finish the proof, we should show that only the two extreme cases are possible, that is vl�0 for
ll l or vl=0 except for l=n.

Now, suppose that there exist l
1 such that v j =0 for all j� l and vl�0, then using �4.28� we
ave that

Eii�vk� = 0, i � l  k . �4.41�

hen by �4.41� and �4.40�, we obtain that

Eii · m = �m with � = 0 or 1, if i � l or i 
 l, respectively.

herefore, using this and �4.35� we get

�̄m = �0;0, . . . ,0,k,1, . . . ,1�

here Ell ·m=km. But the space V, from which we are inducing is finite-dimensional and a
ingular vector generates a finite-dimensional L0-submodule, then �recall notation �4.34��

�1 � �2 � ¯ � �n

s a highest weight, and because of that only two extreme positions of k are possible �recall that

1�. This gives us the cases �a� and �b�. In order to finish the proof we need to complete the
omputation of weights in each case.

If v1�0, then using �4.26� and �4.40� we obtain

�̄m = �0;k,1, . . . ,1� and �̄v1
= �0;k − 1,1, . . . ,1� with k � 1,

etting case �b�.
If vl=0 except for l=n, then using �4.26� and �4.41� we obtain

�̄m = �0;0, . . . ,0,k� and �̄vn
= �0;0, . . . ,0,k − 1� with k  0
btaining case �c�. Case �d� is immediate. �

                                                                                                            



D

L

t

n
a

I
�
a

n
P

h
m

c
t
m
o
i
i

W
L
t

E

R
t

T
t

w
C
e

a
r

T
d

043513-17 Representations of Lie conformal superalgebras J. Math. Phys. 47, 043513 �2006�

                        
. Irreducible induced W„1,n…+-modules

In this section we consider L=W�1,n�+, with n�2. Now, we have the following:
Theorem 4.7: Let n�2 and F be an irreducible L0-module with highest weight �̄*. Then the

-modules IndL�0

L F are irreducible finite continuous modules except for the following cases:
�a� �̄*= �0;0 , . . . ,0 ,−m� ,m�0, where IndL�0

L F=�+
m and the image d#�+

m+1 is the only non-
rivial proper submodule.

�b� �̄*= �0;k ,1 , . . . ,1� ,k�1, where IndL�0

L F=�−
k . For k�2 the image d�−

k−1 is the only
ontrivial proper submodule. For k=1, both Im�d� and Ker�d� are proper submodules. Ker�d� is
maximal submodule.

Remark 4.8: Let F be an irreducible L0-module with highest weight �̄*= �−1;0 , . . . ,0�. Then
ndL�0

L F=�−
0 is an irreducible L-module. Note that the image of d :�−

0 →�−
1 is the submodule in

−
1 generated by the singular vector corresponding to the case �c� in Proposition 4.6, but it is not
maximal submodule �see Proposition 4.3 �4��.

Proof: We know from Theorem 3.1 that in order for IndL�0

L F to be reducible it has to have
ontrivial singular vectors and the possible highest weights of F in this situation are listed in
roposition 4.6 above.

The fact that the induced modules are actually reducible in those cases is known because we
ave got nice realizations for these induced modules in Propositions 4.1 and 4.3 together with
orphisms defined by d ,d#, so kernels and images of these morphisms become submodules.

The subtle thing is to prove that a submodule is really a maximal one. We notice that in each
ase the factor is isomorphic to a submodule in another induced module so it is enough to show
hat the submodule is irreducible. This can be proved as follows, a submodule in the induced
odule is irreducible if it is generated by any highest singular vector that it contains. We see from

ur list of nontrivial singular vectors that there is at most one such vector for each case and the
mages and kernels in question are exactly generated by those vectors, hence they are irreduc-
ble. �

Corollary 4.9: The theorem gives us a description of finite continuous irreducible
�1,n�+-modules for n�2. Such a module is either IndL�0

L F for an irreducible finite-dimensional

0-module F where the highest weight of F does not belong to the types listed in (a), (b) of the
heorem or the factor of an induced module from (a), (b) by its submodule Ker�d�.

. Finite irreducible Wn-modules

In order to give an explicit construction and classification, we need the following notation.
ecall that W�1,n� acts by derivations on the algebra of differential forms �=��1,n�, and note

hat this is a conformal module by taking the family of formal distributions

E = ���z − t�� and ��z − t��dt�� � ��n�� .

ranslating this and all other attributes of differential forms, like de Rham differential, etc., into
he conformal algebra language, we arrive at the following definitions.

Recall that given an algebra A, the associated current formal distribution algebra is A�t , t−1�
ith the local family F= �a�z�=�n�Z�atn�z−n−1=a��z− t��a�A. The associated conformal algebra is
urA=C��� � A with multiplication defined by a�b=ab for a ,b�A and extended using sesquilin-
arity. This is called the current conformal algebra, see Ref. 8 for details.

The conformal algebra of differential forms �n is the current algebra over the commutative
ssociative superalgebra ��n�+��n�dt with the obvious multiplication and parity, subject to the
elation �dt�2=0:

�n = Cur���n� + ��n�dt� .

he de Rham differential d̃ of �n �we use the tilde in order to distinguish it from the de Rham

ifferential d on ��n�� is a derivation of the conformal algebra �n such that

                                                                                                            



H

d

s

H
d

p

c
�

O

T

�
a

d

043513-18 Boyallian et al. J. Math. Phys. 47, 043513 �2006�

                        
d̃��1 + �2dt� = d�1 + d�2dt − �− 1�p��1� � ��1dt� . �4.42�

ere and further �i���n�.
The standard Z+-gradation ��n�= � j�Z+

��n� j of the superalgebra of differential forms by their
egree induces a Z+-gradation

�n = � j�Z+
�n

j , where �n
j = C��� � ���n� j + ��n� j−1dt� ,

o that d̃ :�n
j →�n

j+1.
The contraction �D for D=a+ f �Wn is a conformal derivation of �n such that:

�ia + f�� ��1 + �2dt� = ia�1 + �− 1�p�f�f�2.

ere and further, as before, a�W�n�, f ���n�. The Lie derivative L̃D for D�Wn is a conformal
erivation of �n such that:

�L̃a����1 + �2dt� = La�1 + �La�2�dt ,

�L̃f��� = − �� + ���f�� , �4.43�

�L̃f����dt� = �− 1�p�f�+p����df�� − ��f�dt� .

The properties of ��1,n� imply the corresponding properties of �n given by the following
roposition.

Proposition 4.10:

�a� d̃2=0.

�b� The complex ��n , d̃�= �0→�n
0→¯→�n

j →¯ � is exact at all terms �n
j , except for j

=1. One has: Ker d̃��n
1 = d̃�n

0
� Cdt.

�c� �D1
�D2

+ p�D1 ,D2��D2
�D1

=0.

�d� L̃Dd̃= �−1�p�D�d̃L̃D.

�e� L̃D= d̃�D+ �−1�p�D��Dd̃.

�f� The map D� L̃D defines a Wn-module structures on �n, preserving the Z+-gradation and

commuting with d̃.

Proof: Only the proof of �b� requires a comment. Following Proposition 3.2.2 of Ref. 8, we
onstruct C���-linear maps K :�n→�n �a homotopy operator� and � :�n→�n by the formulas
����n�+��n�dt�:

K�d�n�� = �n�, K��� = 0 if � does not involve d�n,

��d�n�� = ���n�� = 0, ���� = � if � does not involve both d�n and �n.

ne checks directly that

Kd̃ + d̃K = 1 − � .

herefore, if ���n is a closed form, we get �= d̃�K��+����. It follows by induction on n that

= d̃�1+ P���dt for some �1��n and a polynomial P���. But it is clear from �4.42� that P���dt is
lways closed, and it is exact iff P��� is divisible by �. �

Since the extended annihilation algebra W�1,n�+ is a direct sum of W�1,n�+ and a one-
imensional Lie algebra Ca, any irreducible W�1,n�+-module is obtained from a W�1,n�+-module

+
M by extending to W�1,n� , letting a�−�, where ��C. Translating into the conformal language
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see Proposition 2.3�, we see that all Wn-modules are obtained from conformal W�1,n�+-modules
y taking for the action of � the action of −�t+�I ,��C. We denote by Tens�V and �k,� ,��C,
he Wn-modules obtained from Tens V and �k by replacing in �4.7� and �4.8�, respectively, � by
+�.

Now, Theorem 4.7 and Corollary 4.9, along with Sec. III and Propositions 2.3, 2.8, 2.6, and
.9 give us a complete description of finite irreducible Wn-modules.

Theorem 4.11: The following is a complete list of nontrivial finite irreducible Wn-modules
n�2,��C�:

�a� Tens�V, where V is a finite-dimensional irreducible gl�1 �n�-module different from

�k�C1�n�*, k=1,2 , . . . and �̄c
k �see �4.5��, k=1,2 , . . .,

�b� �k,�
* /Ker d̃* ,k=1,2 , . . ., and the same modules with reversed parity,

�c� Wn-modules dual to �b�, with k
1.

Remark 4.12: �a� Using Proposition 4.3, we have that the kernel of d̃ and the image of d̃

oincide in �k for k�2. Now, since �k+2 is a free C���-module of finite rank and �k+1 / Im d̃

�k+1 /Ker d̃ Im d̃��k+2, we obtain that �k+1 / Im d̃ is a finitely generated free C���-module.
herefore, we can apply Proposition 2.6, and we have that

�k+1,�
* /Ker d̃*  ��k,�/Ker d̃�*. �4.44�

or k�1.
�b� Observe that we cannot apply the previous argument for k=0 since, by Proposition 4.3, the

mage of d̃ has codimension one �over C� in Ker d̃. In fact, �4.44� is not true for k=0. For example,
his can be easily seen for W0=Vir using the differential map which is explicitly written in Remark
.5.

�c� Observe that �0,� is an irreducible tensor module �Ker d̃=0, cf. Proposition 4.3�, that is
hy this module is included in case �a� of Theorem 4.11.

�d� Since for a finite rank module M over a Lie conformal superalgebra we have M**=M �see

roposition 2.7�, the Wn-modules in case �c� of Theorem 4.11 are isomorphic to �k,� /kerd̃, k
2,3 , . . . .

�e� Observe that �Tens V�* is not isomorphic to Tens V*. For example, consider the case of W1.
e have, using the notation below, that M�a ,b�=TensVa,b. It is easy to see that for the case a
b�0, �TensVa,b�*=TensV−a,−b, but �Va,b�*=V1−a,−b−1.

Now we will present the case n=1 in detail and we shall see that our result agrees with the
lassification given in Ref. 5 for K2W1. Let us fix some notations. We have

W1 = C��� � ���1� � W�1�� = C����1,�,�1,��1� .

n Ref. 5, the conformal Lie superalgebra K2 is presented as the freely generated module over C���
y �L ,J ,G±�. An isomorphism between K2 and W1 is explicitly given by

L � − 1 +
1

2
� ��1, J � ��1, G+ � 2�, G− � − �1. �4.45�

The irreducible modules of W1 are parametrized by finite-dimensional irreducible representa-
ions of gl�1,1� �and the additional twist by alpha that, for simplicity, shall be omitted in the
ormulas to follow�. The irreducible representations of gl�1,1�, denoted by Va,b, are parametrized
y a and b, the corresponding eigenvalues of e11 and e22 on the highest weight vector.

If both parameters are equal to zero, the representation is trivial one-dimensional. Otherwise,
ither a+b=0, the dimension of the gl�1,1�-representation is 1, and the corresponding represen-
ation of W1 is one of the tensor modules of rank 2. Or else a+b is nonzero, the dimension of the

l�1,1�-representation is 2, and the corresponding tensor module has rank 4.
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Explicitly, consider the set of C���-generators of W1�1,� ,�1 ,��1�. Let a and b such that a
b�0. Let Va,b=C−span�v0 ,v1�, where v0 is a highest weight vector. Let M�a ,b�=M�Va,b�
C����v0 ,v1 ,w1=�1v0 ,w0=�1v1� be the tensor W1-module and denote by L�a ,b� the irreducible
uotient. The action of W1 in M�a ,b� is given explicitly by the following formulas:

1�v0 = �a� − ��v0, 1�v1 = ��a − 1�� − ��v1,

1�w1 = �a� − ��w1, 1�w0 = ��a − 1�� − ��w0,

��v0 = v1, ��v1 = 0,

��w1 = �a� − ��v0 − w0, ��w0 = ��a − 1�� − ��v1,

�4.46�
�1�v0 = w1, �1�v1 = �a + b��v0 + w0,

�1�w1 = 0, �1�w0 = − �a + b��w1

��1�v0 = bv0, ��1�v1 = �b + 1�v1,

��1�w1 = �b − 1�w1, ��1�w0 = − �a + b��v0 + bw0.

If a+b�0 and a�0, then M�a ,b� is irreducible of rank 4, and the explicit action is given by
4.45�. The proof of this statement is in the following way �the proof of the other statements below
re much simpler�: Take v= p���v0+q���w0+r���v1+s���w1 in a submodule of M�a ,b�. Denote by

the coefficient of the highest power in � of ��v and by y the coefficient of the highest power in
of ��w.

If a�1 then y=v1 �up to a constant factor�, therefore v1 lies in the submodule. If a=1, then
y taking the coefficient of the highest power in � of ��1�y and using that in this case b�−1, we
lso obtain that v1 lies in the submodule.

Therefore, in any case we have that v1 lies in any submodule, and by the formulas for the
ctions on v1 it is immediate that the other generators also belong to any submodule, proving that

M�a ,b� is irreducible in this case.
If a+b�0 but a=0, it is easy to show as above that N=C���w1 � C�����v0+w0� is a submod-

le of M�0,b�. The irreducible quotient of M�0,b� by N is L�0,b�=C���v0 � C���v1, of rank 2, and
he action here is explicitly, as follows:

1�v0 = �− ��v0, 1�v1 = �− � − ��v1,

��v0 = v1, ��v1 = 0,

�4.47�
�1�v0 = 0, �1�v1 = �b� − ��v0,

��1�v0 = bv0, ��1�v1 = �b + 1�v1.

If a+b=0, but a�0, it is easy to show as above that M�a ,−a�=C����v0 ,w1� is irreducible of
ank 2 and the action of W1 here is given by

1�v0 = �a� − ��v0, 1�w1 = �a� − ��w1,

��v0 = 0, ��w1 = �a� − ��v0,

�4.48�
�1�v0 = w1, �1�w1 = 0,

��1�v0 = − av0, ��1�w1 = �− a − 1�w1.
Thus we obtain
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Corollary 4.13: The W1-module L�a ,b� as a C���-module has rank: 4 if a+b�0 and a�0, 2
f a+b�0 and a=0, 2 if a+b=0 and a�0, 0 if a=b=0. These are all nontrivial finite irreducible

W1-modules.
Remark 4.14: In Ref. 5, the irreducible representations of K2 are classified in terms of param-

ters � and �. Using the isomorphism between K2 and W1 in �4.45�, these parameters are related
o ours as follows:

a = − � −
�

2
, b = � .

hen it can be easily checked that the above corollary corresponds to Theorem 4.1 in Ref. 5, and
xplicit formulas for the �-action given at the end of Sec. IV in Ref. 5, corresponds to ours in each
ase.

. LIE CONFORMAL SUPERALGEBRA Sn AND ITS FINITE IRREDUCIBLE MODULES

Recall that the divergence of a differential operator D=�i=0
n ai�i�W�1,n�, with ai���1,n�

nd �0=�t is defined by the formula

div D = �0a0 + �
i=1

n

�− 1�p�ai��iai.

he basic property of the divergence is �D1 ,D2�W�1,n��

div�D1,D2� = D1�div D2� − �− 1�p�D1�p�D2�D2�div D1� .

t follows that

S�1,n� = �D � W�1,n�:div D = 0�

s a subalgebra of the Lie superalgebra W�1,n�. Similarly,

S�1,n�+ = �D � W�1,n�+:div D = 0�

s a subalgebra of W�1,n�+. We have

S�1,n� �respectively, S�1,n�+� = S�1,n�� �respectively, S�1,n�+�� � C�1 ¯ �n�0, �5.1�

here S�1,n�� �respectively, S�1,n�+� � denotes the derived subalgebra. It is easy to see that
�1,n�� is a formal distribution Lie superalgebra, see Ref. 7, Example 3.5.

In order to describe the associated Lie conformal superalgebra, we need to translate the notion
f divergence to the “conformal” language as follows. It is a C���-module map
iv:Wn→Cur ��n�, given by

div a = �
i=1

�− 1�p�f i��i f i, div f = − � � f ,

here a=�i=1
n f i�i�W�n� and f ���n�. The following identity holds in C��� � ��n�, where

1 ,D2�Wn:

div�D1�D2� = �D1���div D2� − �− 1�p�D1�p�D2��D2�−�−��div D1� . �5.2�

herefore,

Sn = �D � Wn:div D = 0�

s a subalgebra of the Lie conformal superalgebra Wn. It is known that Sn is simple for n�2, and
n
nite of rank n2 . Furthermore, it is the Lie conformal superalgebra associated to the formal
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istribution Lie superalgebra S�1,n��. The annihilation algebra and the extended annihilation
lgebra is given by

A�Sn� = S�1,n�+� and A�Sn�e = Cad��0� › S�1,n�+� .

Now, we have to study representations of S�1,n�+ and of its derived algebra S�1,n�+� which
as codimension 1. Observe that S�1,n�+ inherits the Z-gradation in W�1,n�+, and denoting by
=S�1,n�+ �for the rest of this section�, we have that L−1= ��0 , . . . ,�n� as in W�1,n�+ but the other
raded components are strictly smaller than these of W�1,n�+. Observe that L0=sl�1 �n�.

In order to consider weights of vectors in S�1,n�+-modules, we take the basis

t�0 + �1�1, . . . ,t�0 + �n�n

or the Cartan subalgebra. And the weights are written as �̄= ��1 , . . . ,�n� for the corresponding
igenvalues.

Propositions 4.1 and 4.3, and Corollary 4.2 hold for L=S�1,n�+ with the following minor
odification: all highest weights are the same as in the W case, except for the first coordinate that

hould be removed.
Similarly, if V is an sl�1 �n�-module, then formulas �4.7� and �4.8� define an Sn-module struc-

ure in Tens�V�. Indeed, elements �−1�p�f�� �f�i�+�i f , with f ���n� generate Sn as a C���-module,
nd it is easy to see that for the action of these elements defined by �4.7� and �4.8�, one needs only

ij�v� for i� j and �E00+Eii��v� for i
0.
As in the W-case, the classification is reduced to the study of singular vectors in Tens�V�,

here V is an sl�1 �n�-module. Observe that the reduction Lemma 4.4 hold in this case, and the
roof is basically the same. Therefore, analogous computations give as the following

Proposition 5.1: Let n�2 and V an irreducible finite-dimensional sl�1 �n�-module. If m is a

ontrivial singular vector in the S�1,n�+-module Tens V with weight �̄m, then we have one of the
ollowing:

�a� m=�n � vn, �̄m= �0, . . . ,0 ,−k� with k�0, vn is a highest weight vector in V with weight
0, . . . ,0 ,−k−1�, and m is uniquely defined by vn.

�b� m=�l=1
n �l � vl, �̄m= �k ,1 , . . . ,1� with k�2, v1 is a highest weight vector in V with weight

k−1,1 , . . . ,1�, and m is uniquely defined by v1.

�c� m=���* � w�+�l=1
n �l � vl, �̄m= �0, . . . ,0�, w is a highest weight vector in V with weight

1, . . . ,1�, and m is uniquely defined by w.

�d� m=���n � w�+�l=1
n−1��l,n�−�l,n� � vl+�n � vn, �̄m= �0, . . . ,0 ,−1�, w is a highest weight vector

n V with weight �1, . . . ,1�, and m is uniquely defined by w.
Using the above proposition, we have
Theorem 5.2: Let L=S�1,n�+ �n�2� and F be an irreducible L0-module with highest weight

*. Then the L-modules IndL�0

L F are irreducible finite continuous modules except for the following
ases:

�a� �̄*= �0, . . . ,0 ,−p� , p�0, where IndL�0

L F=�+
p and the image d#�+

p+1 is the only nontrivial
roper submodule.

�b� �̄*= �q ,1 , . . . ,1� ,q�1, where IndL�0

L F=�−
q. For q�2 the image d�−

q−1 is the only non-
rivial proper submodule. For q=1, the proper submodules are Im�d�, Ker�d� and Im���, where �
s the composition

�:�+
1→

d#

�+
0  �−

0→
d

�−
1 ,

nd Ker�d� is the maximal proper submodule.
Proof: Similar to the case of W�1,n�+, the modules IndL�0

L F are irreducible except when they
ave a singular vector and the highest weights of such F, when it could happen, are listed in �a�,

b�, �c�, and �d� of the above Proposition 5.1. The weight �1, . . . ,1� is special here because it is
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elevant to �b�, �c�, and �d�. There are three types of singular vectors possible in this case. The
orresponding module Ind�F�=�−

1 has three different submodules and all three vectors are present.
he same argument as for W�1,n�+-modules allows us easily to conclude that the listed submod-
les are the only ones and the factors are irreducible. �

Corollary 5.3: The theorem gives us a description of finite continuous irreducible
�1,n�+-modules when n�2. Such a module is either IndL�0

L F for an irreducible finite-dimensional

0-module F where the highest weight of F does not belong to the types listed in �a�, �b� of the
heorem or the factor of an induced module from �a�, �b� by the submodule Ker�d�.

Corollary 5.4: The Lie superalgebras S�1,n�+ and S�1,n�+� have the same finite continuous
rreducible modules, and they are described by the previous corollary.

Proof: In order to see that Theorem 5.2 also holds for S�1,n�+�, it is basically enough to see
hat Proposition 5.1 holds in this case. But, if we check the proof in the classification of singular
ectors, we see that the element �1¯�n�0 �cf. �5.1�� appears only in the condition �s3� in �4.10� in
he special case g=�1¯�n and j=0. If we track the details of the proof, we see that this special
onstraint only produces Eq. �4.27� for n=2, but in any case, this equation is not used in the rest
f the proof. Therefore, the singular vectors are the same for both Lie superalgebras S�1,n�+� and
�1,n�+, finishing the proof. �

Now, as in the Wn case, Theorem 5.2 and Corollary 5.4, along with Sec. III and Propositions
.3, 2.8, and 2.9 give us a complete description of finite irreducible Sn-modules �n�2�: it is given
y Theorem 4.11 in which Wn is replaced by Sn and gl�1 �n� is replaced by sl�1 �n�.

Remark 5.5: Under the standard isomorphism between S2 and small N=4 conformal superal-
ebra it is easy to see that our result agrees with the classification given in Ref. 5. Indeed, in Ref.
�Theorem 6.1� the classification of irreducible modules was given in terms of parameters � and
, and these parameters are related to ours as follows:

�1 = − � +
�

2
, �5.3�

�2 = − � −
�

2
. �5.4�

herefore, the case 2�−�=0 ���Z+� corresponds to the family ��,�
* /Ker d̃* of rank 4�, and the

ase 2�+�+2=0 ���Z+� corresponds to ��+1,� /Ker d̃ of rank 4�+8. Therefore, we have one

odule of rank 4 that corresponds to �1
* /Ker d̃*, and by Remark 4.12, the dual of this module is

0 �Ker is trivial in this case� and �using Proposition 4.3� �0 is the tensor module Tens�V� where
is the trivial representation, therefore it is reducible with a maximal submodule of codimension
�over C�.

I. LIE CONFORMAL SUPERALGEBRAS Sn,b AND S̃n, AND THEIR FINITE IRREDUCIBLE
ODULES

Case Sn,b:
For any b�C, b�0, we take

S�1,n,b� = �D � W�1,n��div�ebxD� = 0� .

his is a formal distribution subalgebra of W�1,n�. The associated Lie conformal superalgebra is
onstructed explicitly as follows. Let D=�i=1

n Pi�� ,���i+ f�� ,�� be an element of Wn. We define the
eformed divergence as

divbD = div D + bf .
t still satisfies Eq. �5.2�, therefore
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Sn,b = �D � Wn�divbD = 0�

s a subalgebra of Wn, which is simple for n�2 and has rank n2n. Since Sn,0=Sn has been
iscussed in the previous section, we can �and will� assume that b�0.

If b�0, the extended annihilation algebra is given by

�Alg�Sn,b��+ = Cad��0 − b�
i=1

n

�i�i� › S�1,n�+  CS�1,n�+�

here CS�1,n�+� is obtained from S�1,n�+� by enlarging sl�1,n� to gl�1,n� in the 0-th-component.
Therefore, the construction of all finite irreducible modules over Sn,b is the same as that for

n, but without twisting by �. Hence, using Theorem 4.11, we have
Theorem 6.1: The following is a complete list of finite irreducible Sn,b-modules �n�2,b

C ,b�0�:

�a� Tens V, where V is a finite-dimensional irreducible gl�1 �n�-module different from
�k�C1�n�*, k=1,2 , . . . and �k�C1�n�, k=0,1 ,2 , . . . ,

�b� �k
* /Ker d̃*, k=1,2 , . . ., and the same modules with reversed parity,

�c� Sn,b-modules dual to �b�, with k
1.

Case S̃n:
Let n�Z+ be an even integer. We take

S̃�1,n� = �D � W�1,n��div��1 + �1 . . . �n�D� = 0� .

his is a formal distribution subalgebra of W�1,n�. The associated Lie conformal superalgebra S̃n

s constructed explicitly as follows:

S̃n = �D � Wn�div��1 + �1 . . . �n�D� = 0� = �1 − �1 . . . �n�Sn.

he Lie conformal superalgebra S̃n is simple for n�2 and has rank n2n.
The extended annihilation algebra is given by

�Alg�S̃n��+ = Cad��0 − �1 . . . �n�0� › S�1,n�+�  S�1,n�+.

Therefore, the construction of all finite irreducible modules over S̃n is the same as that for Sn,
ut without the twist by �.
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This article is one of a series that lays the groundwork for a structure and classifi-
cation theory of second order superintegrable systems, both classical and quantum,
in conformally flat spaces. In the first part of the article we study the Stäckel
transform �or coupling constant metamorphosis� as an invertible mapping between
classical superintegrable systems on different three-dimensional spaces. We show
first that all superintegrable systems with nondegenerate potentials are multisepa-
rable and then that each such system on any conformally flat space is Stäckel
equivalent to a system on a constant curvature space. In the second part of the
article we classify all the superintegrable systems that admit separation in generic
coordinates. We find that there are eight families of these systems. © 2006 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2191789�

. INTRODUCTION

This is a continuation of the series1–3 whose purpose is to lay the groundwork for a structure
nd classification theory of second order superintegrable systems, both classical and quantum, in
omplex conformally flat spaces. Real spaces are considered as restrictions of these to the various
eal forms. In Refs. 1 and 3 we have given examples in two and three dimensions, described the
ackground as well as the interest and importance of these systems in mathematical physics and
iven many applications relevant to such systems on conformally flat spaces. Observed features of
he systems are multiseparability, closure of the quadratic algebra of second order symmetries at
rder 6, use of representation theory of the quadratic algebra to derive spectral properties of the
uantum Schrödinger operator, and a close relationship with exactly solvable and quasiexactly
olvable problems. Our approach is, rather than focus on particular spaces and systems, to use a
eneral theoretical method based on integrability conditions to derive structure common to all
ystems. In distinction to the two-dimensional �2D� case, there are relatively few papers consid-
ring superintegrability on spaces of dimension �3. A few exceptions are Refs. 4–13. Except for
ur own work, no one appears to have studied the detailed structure and classification theory for
hese higher dimensional systems.

In the first part of this article we study the Stäckel transform, or coupling constant
etamorphosis,14,15 for three-dimensional �3D� classical superintegrable systems. Recall that for a

lassical 3D system on a conformally flat space we can always choose local coordinates x , y , z,
ot unique, such that the Hamiltonian takes the form H= �p1

2+ p2
2+ p3

2� /��x ,y ,z�+V�x ,y ,z�. This

�
Electronic mail: j.kress@unsw.edu.au
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ystem is second order superintegrable with nondegenerate potential V=V�x ,y ,z ,� ,� ,� ,�� if it
dmits five functionally independent quadratic constants of the motion �i.e., generalized symme-
ries� Sk=�ija�k�

ij pipj +W�k��x ,y ,� ,� ,��. As described in Ref. 3, the potential V is nondegenerate if
t satisfies a system of coupled partial differential equations of the form

V22 = V11 + A22V1 + B22V2 + C22V3, V33 = V11 + A33V1 + B33V2 + C33V3,

V12 = A12V1 + B12V2 + C12V3, V13 = A13V1 + B13V2 + C13V3, �1�

V23 = A23V1 + B23V2 + C23V3,

hose integrability conditions are satisfied identically. The analytic functions Aij ,Bij ,Cij are de-
ermined uniquely from the Bertrand-Darboux equations for the five constants of the motion and
re analytic except for a finite number of poles. At any regular point x0= �x0 ,y0 ,z0�, i.e., a point
here the Aij, Bij, and Cij are defined and analytic and the constants of the motion are functionally

ndependent, we can prescribe the values of V�x0� ,V1�x0� ,V2�x0� ,V3�x0� ,V11�x0� arbitrarily and
btain a unique solution of �1�. Here, V1=�V /�x, V2=�V /�y, etc. The four parameters for a
ondegenerate potential �in addition to the usual additive constant� are the maximum number of
arameters that can appear in a superintegrable system. If the number of parameters is fewer than
our, we say that the superintegrable potential is degenerate.

The 3D Stäckel transform is a conformal transformation of a superintegrable system on one
onformally flat 3D space to a superintegrable system on another such space. We discuss some of
he properties of this transform for a classical system and then prove two fundamental results: �1�

e show that every superintegrable system with nondegenerate potential is multiseparable. This
esult uses the structure theory for such systems that we worked out in Ref. 3. �2� We prove that
ll nondegenerate 3D superintegrable systems are Stäckel transforms of constant curvature sys-
ems. Thus, to obtain all nondegenerate conformally flat superintegrable systems, it is sufficient to
lassify those of constant curvature. The proofs of these fundamental results rest on results ob-
ained in Ref. 3, and the careful reader of this article will need to keep Ref. 3 at hand.

In the second part of the article we use the results of the first part and our explicit knowledge
f all separable coordinate systems on 3D constant curvature spaces to make a major advance in
he classification of all separable systems with nondegenerate potential on a conformally flat
pace. Among the separable systems for 3D complex Euclidean space there are seven that are
generic.” We give a precise definition later, but, essentially this means that the coordinates belong
o a multiparameter family. The ultimate generic coordinates are the Jacobi elliptic coordinates
rom which all others can be obtained by limiting processes.16,17 We show that each of the generic
eparable systems uniquely determines a nondegenerate superintegrable system that contains it.
e obtain a similar result for the five generic separable systems on the complex three-sphere.
owever, four of these turn out to be Stäckel transforms of Euclidean generic systems. Thus we
nd eight Stäckel inequivalent generic systems on constant curvature spaces and all generic
ystems on 3D conformally flat spaces must be Stäckel equivalent to one of these. �In addition
here are two nondegenerate superintegrable systems in Euclidean space that are only weakly
unctionally independent and these give rise to similar systems on a variety of conformally flat
paces.� Thus we exhibit ten families of superintegrable systems in conformally flat spaces. This
oes not solve the classification problem completely, but it is a major advance. Any remaining
ondegenerate superintegrable systems must be multiseparable but separate only in degenerate
eparable coordinates. This remaining problem is still complicated, but much less so than the
riginal problem. This is a technically detailed proof, but the results are quite explicit and easy to
rasp. We derive and give a simple characterization of eight families of separable systems whose
täckel transforms yield nondegenerate superintegrable systems on a variety of conformally flat
paces.

The next article in this series will extend all of our classical 2D and 3D results to the quantum

ase. This is very easy in the 2D case but requires some machinery in 3D.
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Second order conformal Killing tensors: There is a close relationship between the second-
rder Killing tensors of a conformally flat space in 3D and the second order conformal Killing
ensors of flat space. A second order conformal Killing tensor for a space M3 with metric ds2

��x1 ,x2 ,x3��dx1
2+dx2

2+dx3
2� and free Hamiltonian H= �p1

2+ p2
2+ p3

2� /� is a quadratic form S
�aij�x1 ,x2 ,x3�pipj such that �H ,S�= f�x1 ,x2 ,x3�H, for some function f . Since f is arbitrary, it is
asy to see that S is a conformal Killing tensor for M3 if and only if it is a conformal Killing
ensor for flat space dx1

2+dx2
2+dx3

2. The conformal Killing tensors for flat space are very well
nown, e.g., Ref. 18. The space of conformal Killing tensors is infinite dimensional.19 It is
panned by products of the conformal Killing vectors

p1, p2, p3, x3p2 − x2p3, x1p3 − x3p1, x2p1 − x1p2, x1p1 + x2p2 + x3p3,

�x1
2 − x2

2 − x3
2�p1 + 2x1x3p3 + 2x1x2p2, �x2

2 − x1
2 − x3

2�p2 + 2x2x3p3 + 2x2x1p1,

�x3
2 − x1

2 − x2
2�p3 + 2x3x1p1 + 2x3x2p2,

nd terms g�x1 ,x2 ,x3��p1
2+ p2

2+ p3
2�, where g is an arbitrary function. Since every Killing tensor is

lso a conformal Killing tensor, we see that every second-order Killing tensor for M3 can be
xpressed as a linear combination of these second-order generating elements though, of course, the
pace of Killing tensors is only finite dimensional. This shows in particular that every aij and every
ii−ajj with i� j is a polynomial of order at most four in x1 , x2 , x3, no matter what is the choice
f �.

A straightforward, though tedious, computation from the above-mentioned results yields the
xpressions

a11
12 = − a22

12 = �3�x1
2 − x2

2� + ��1 + �2�x1x2 − �1x1x3 − �2x2x3 + �3x1 + �3x2 + 	3x3 + 
3,

a11
13 = − a33

13 = �2�x1
2 − x3

2� − �1x1x2 + �2x1x3 − �3x2x3 + �2x1 + �2x2 + 	2x3 + 
2, �2�

�33
23 = − a22

23 = �1�x2
2 − x3

2� − �2x1x2 + �3x1x3 + �1x2x3 + �1x1 + �1x2 + 	1x3 + 
1,

here � j, � j, � j, � j, � j, 	 j, and 
 j are constants. Further �aii−ajj�i=2aj
ij for i� j, and a3

12+a2
13

a1
23=0.

It is useful to pass to new variables a11, a24, a34, a12, a13, a23 for the Killing tensor, where
24=a22−a11, a34=a33−a11. Then we see that a24, a34, a12, a13, a23 are polynomials of order �4.
he remaining conditions can be expressed in the form

�a11��1 = − �2a12 − �3a13, �a11��2 = − �1a12 − �a24��2 − �3a23,

�3�
�a11��3 = − �1a13 − �2a23 − �a34��3.

Theorem 1: Necessary and sufficient conditions that the quadratic form S=�ija
ijpipj +W be

second order constant of the motion for the space with metric ds2=��dx1
2+dx2

2+dx3
2� and poten-

ial V are

1� �ija
ijpipj is a conformal Killing tensor on the flat space with metric dx1

2+dx2
2+dx3

2.
2� The integrability conditions for (3) hold:

��2a12 + �3a13�2 = ��1a12 + �a24��2 + �3a23�1,

��2a12 + �3a13�3 = ��1a13 + �2a23 + �a34��3�1, �4�

��1a12 + �a24��2 + �3a23�3 = ��1a13 + �2a23 + �a34��3�2.
3� The Bertrand-Darboux conditions for the potential hold:
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�
s=1

3

�Vsj�as� − Vs��asj + Vs���as�� j − ��asj���� = 0. �5�

These are just the conditions �x�
Wj =�xj

W� for j��.

I. THE STÄCKEL TRANSFORM FOR 3D SYSTEMS

The Stäckel transform14 or coupling constant metamorphosis15 plays a fundamental role in
elating superintegrable systems on different manifolds. Suppose we have a superintegrable sys-
em

H =
p1

2 + p2
2 + p3

2

��x,y,z�
+ V�x,y,z� �6�

n local orthogonal coordinates, with nondegenerate potential V�x ,y ,z�:

V33 = V11 + A33V1 + B33V2 + C33V3, V22 = V11 + A22V1 + B22V2 + C22V3,

V23 = A23V1 + B23V2 + C23V3, V13 = A13V1 + B13V2 + C13V3, �7�

V12 = A12V1 + B12V2 + C12V3

nd suppose U�x ,y ,z� is a particular solution of Eqs. �7�, nonzero in an open set. Then the

ransformed system H̃= �p1
2+ p2

2+ p3
2� / �̃+ Ṽ with nondegenerate potential Ṽ�x ,y ,z�:

Ṽ33 = Ṽ11 + Ã33Ṽ1 + B̃33Ṽ2 + C̃33Ṽ3, Ṽ22 = Ṽ11 + Ã22Ṽ1 + B̃22Ṽ2 + C̃22Ṽ3,

Ṽ23 = Ã23Ṽ1 + B̃23Ṽ2 + C̃23Ṽ3, Ṽ13 = Ã13Ṽ1 + B̃13Ṽ2 + C̃13Ṽ3, �8�

Ṽ12 = Ã12Ṽ1 + B̃12Ṽ2 + C̃12Ṽ3,

s also superintegrable, where

�̃ = �U, Ṽ =
V

U
, Ã33 = A33 + 2

U1

U
, C̃33 = C33 − 2

U3

U
,

Ã22 = A22 + 2
U1

U
, B̃22 = B22 − 2

U2

U
, B̃23 = B23 −

U3

U
, C̃23 = C23 −

U2

U
,

Ã13 = A13 −
U3

U
, C̃13 = C13 −

U1

U
, Ã12 = A12 −

U2

U
, B̃12 = B12 −

U1

U
,

nd Ã23=A23, B̃33=B33, B̃13=B13, C̃22=C224, C̃12=C12. Let S=�aijpipj +W=S0+W be a second
rder symmetry of H and SU=�aijpipj +WU=S0+WU be the special case that is in involution with

p1
2+ p2

2+ p3
2� /�+U. Then S̃=S0− �WU /U�H+ �1/U�H is the corresponding symmetry of H̃. Since

ne can always add a constant to a nondegenerate potential, it follows that 1 /U defines an inverse

täckel transform of H̃ to H. See Ref. 14 for many examples of this transform.

II. MULTISEPARABILITY AND STÄCKEL EQUIVALENCE

From the general theory of variable separation for Hamilton-Jacobi equations, e.g., Refs. 20

nd 21 we know that second order symmetries L1 ,L2 define a separable system for the equation
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H =
px

2 + py
2 + pz

2

��x,y,z�
+ V�x,y,z� = E

f and only if �1� the symmetries H , L1 , L2 form a linearly independent set as quadratic forms, �2�
L1 ,L2�=0, and, �3� the three quadratic forms have a common eigenbasis of differential forms.
his last requirement means that, expressed in coordinates x, y, and z, at least one of the matrices

�j��x� �of the quadratic form associated with Lj� can be diagonalized by conjugacy transforms in
neighborhood of a regular point and that �A�2��x� ,A�1��x��=0. However, for nondegenerate

uperintegrable potentials in a conformally flat space we see that �L1 ,L2�=0↔ �A�2��x0� ,A�1�
�x0��=0, F�x0�=0 at a single regular point x0, see Sec. V of Ref. 3, so that the intrinsic

onditions for the existence of a separable coordinate system are simplified.
Let A=�i�ja

ijAij, B=�i�jb
ijAij, be the matrices of two symmetries at the point x0. Here,

ij = 1
2 �Eij +E ji� where Eij is the 3�3 matrix with matrix element 1 in row i, column j, and 0

verywhere else. From the table in Sec. V of Ref. 3 we see that the corresponding symmetries are
n involution if and only if the matrices A ,B commute and the additional condition

�a12b11 − b12a11��C33 − B23 − A13� + �a22b12 − a12b22��C33 − 2B23�

+ �a13b11 − a11b13��B33 + 2A12 − B22� + �a33b13 − a13b33��2B33 + 2A12 − B22�

+ �a23b22 − a22b23��− 2B12 − A33� + �a33b23 − b33a23��− 2B12 + A22 − 2A33�

+ 2�a11b22 − a22b11 + a33b11 − a11b33 + a22b33 − a33b22�A23 + �a23b11 − a11b23��A22 − A33�

+ �a33b12 − a12b33��B23 − A13� + �a13b22 − a22b13�B33 = 0 �9�

olds. Note that the metric G does not appear in these conditions.
Theorem 2: Let V be a superintegrable nondegenerate potential in a 3D conformally flat

pace. Then V defines a multiseparable system.
Proof: From �9� we see that the second order symmetries with matrices A�33� and �A�11�

�A�12� will be in involution if and only if 2�A23+��B23−A13�=0 at the regular point x0. If
23�x0�=0 we can set �=1, �=0 and the symmetries A�33�, A11 will define a separable system. If
23�x0��0 we can set �=−�B23−A13� /2A23, �=1. Then the symmetries with nonzero matrices
�33� and �A�11�+�A�12� will be in involution. The second case must occur for some regular point

0 unless A23�x�=0 for all x. In this last eventuality we can perform a suitable Euclidean rotation
with arbitrarily small complex rotation angle� so that A23 does not vanish identically in the rotated
oordinate system. It is a straightforward exercise to show that this transformation is not possible
f and only if

B33 = C22 = 0, A13 = B23, A12 = C23, A22 = A33. �10�

n this eventuality, we can set �=0, �=1 and find a solution. Thus we can always find a linear
ombination of these matrices, corresponding to �=1 and with three distinct eigenvalues, so they
ill determine separable coordinates. We could have carried through this same construction for the

econd order symmetries with matrices A�22� and �A�11�+�A�13� and for the second order sym-
etries with matrices A�11� and 	A�22�+�A�23� and shown that we could always find solutions
ith �=�=1. Thus the system is multiseparable �in at least three coordinate systems�. Q.E.D.

Corollary 1: Let V be a superintegrable nondegenerate potential in a 3D conformally flat
pace. Then there is a continuous one-parameter (or multiparameter) family of separable systems
or V, spanning at least a five-dimensional subspace of symmetries.

Proof: We follow the method of proof of the theorem.
23
Case I: Suppose A �x0��0. From �9� we can verify that the symmetries with matrices
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A = �0 0 0

0 f2 − f

0 − f 1
	, B = � g 1/2 f/2

1/2 0 0

f/2 0 0
	 , �11�

re in involution provided

− 4f2B23 + 2f2C33 + 3fB33 + 4fA12 − 2fB22 + fB23 − 4f2gA23 − 4fgA22

+ 4fgA33 + 4gA23 + 2B23 − 2A13 − 2f3B33 = 0.

s A23�x0��0 this equation can be solved for g as a function of f for f in some open set. The
esulting symmetries A ,B are in involution and have eigenvalues �0,0 , f2+1� and �0, 1

2 �g

f2+g2+1� , 1

2 �g−
f2+g2+1��, respectively. Thus they determine a one-parameter family of
eparable coordinates. Moreover, as f varies in an open set, the space spanned by the symmetries
including the Hamiltonian� has dimension six.

Case II: If A23�x0�=0, we can assume that Eq. �10� holds. Then the problem breaks up into a
eries of special cases. Suppose first that C33−2A13=��0. Then we can verify that the symmetries
ith matrices

A = �0 2gk/K 0

2gk/K 1 − g/K

0 − g/K g2/K
	, B = � f g/2 1/2

g/2 0 0

1/2 0 k
	 , �12�

re in involution provided K=1−4fk�0 and g satisfies

− g�2A12 − B22� + 2k�A22 + 2B12� = � .

f 2A12−B22�0 then there is a nonzero solution expression g as a function of k. Since f ,k are
ssentially arbitrary, they determine a five-dimensional space spanned by the symmetries and a
wo-parameter family of separable coordinates. If 2A12−B22=0, A22+2B12�0 then k is a nonzero
onstant and f ,g are essentially arbitrary, so they again determine a five-dimensional space
panned by the symmetries and a two-parameter family of separable coordinates. If 2A12−B22

0, A22+2B12=0, then the symmetries with matrices

A = �0 H/K 0

H/K 1 0

0 0 L/K
	, B = � f g/2 1/2

g/2 0 h/2

1/2 h/2 k
	 , �13�

here K=1−4fk−h2−2hgf �0, and

H = − h + 2gk + hg2, G = − g + 2fh + gh2, L = g2 − h2 + 2hg�k − f� ,

re in involution provided f = �g /2h−h /2g�. �This implies G=0 and L=Hh.� They determine a
ix-dimensional space spanned by the symmetries and a three-parameter family of separable
oordinates. This covers all cases where ��0.

Now suppose �=0, i.e., C33=2A13. Then the symmetries with matrices �13� are in involution
rovided

�2A12 − B22��h2 − g2 + 2hgf − 2hkg� + �A22 + 2B12��− h + 2kg + hg2� = 0.

f 2A12−B22�0 then we can solve this equation to express f as a nonzero function of g ,h ,k. This
ields at least a five-dimensional space spanned by the symmetries and a three-parameter family of
eparable coordinates. Finally, suppose in addition that 2A12−B22=0. Then we can verify that the

ymmetries with matrices
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A = �0 0 0

0 f2 − f

0 − f 1
	, B = �g 1/2 f/2

1/2 0 0

f/2 0 0
	 , �14�

re in involution with no conditions on f ,g. Again, as f ,g vary in an open set, the space spanned
y the symmetries �including the Hamiltonian� has dimension six. Q.E.D.

In Ref. 17 the following result was obtained.
Theorem 3: Let u1 ,u2 ,u3 be an orthogonal separable coordinate system for a 3D conformally

at space with metric ds̃2. Then there is a function f such that fds̃2=ds2 where ds2 is a constant
urvature space metric and ds2 is orthogonally separable in exactly these same coordinates

1 ,u2 ,u3. The function f is called a Stäckel multiplier with respect to this coordinate system.
Thus the possible separable coordinate systems for a conformally flat space are all obtained,

odulo a Stäckel multiplier, from separable systems on 3D flat space or on the three sphere.
Theorem 4: Every superintegrable system with nondegenerate potential on a 3D conformally

at space is Stäckel equivalent to a superintegrable system on either 3D flat space or the three
phere.

Proof: Suppose we have a superintegrable system with nondegenerate potential on a confor-
ally flat space. Then by Corollary 1 this system separates in a one- or multiparameter family of

oordinate systems spanning a five-dimensional subspace of symmetries. By Theorem 3 each of
hese three systems is conformal to a separable system in flat space or on the three sphere. Thus
rom Ref. 19, p. 85, the metric for the space in standard Cartesian-like coordinates x , y , z is
imultaneously conformal to three systems corresponding to the following possible choices for the
etric function ��x ,y ,z�, namely

1, 1/�x + iy�2, 1/r4 �flatspace�; 1/x2, 1/�1 + r2/4�2 �three sphere�; �15�

n the same coordinates, and each of the conformal factors is a Stäckel multiplier with respect to
he corresponding separable coordinates. From the Corollary we see that we can find two sepa-
able systems such that the factor �15� is the same, i.e., the metric must take the form ds̃2= fds2,
here ds2 is the metric on a single constant curvature space, either 3D flat space or the three

phere, and the constant curvature space separates in these same two coordinate systems. Further
he space of symmetries spanned by the two sets is at least five dimensional.

Then we have �H̃+ Ṽ� / f =H+V, where H̃+ Ṽ is the original superintegrable system, H is the
amiltonian on a constant curvature space, and V is the induced multiparameter potential. Under

he transform f each of the commuting second order symmetries S of the original system that
efines a coordinate separation transforms to a symmetry of the form S+gSH for gS a function.
here are at least five such functionally linearly independent symmetries arising from separation

n two coordinate systems, so the constant curvature space system admits five functionally linearly
ndependent symmetries. Thus the potential V must satisfy the Bertrand–Darboux equations for
hese symmetries. It follows that V is nondegenerate and by Theorem 2 of Ref. 3 that the system

+V is itself superintegrable with nondegenerate potential. The function f is simultaneously a
täckel multiplier with respect to the two coordinate systems whose symmetries completely char-
cterize the superintegrable system H+V. That is, f satisfies the Bertrand–Darboux equations for
ve functionally linearly independent symmetries. Hence f itself satisfies the equations that de-

ermine the nondegenerate potential V. This means that the system H̃+ Ṽ is Stäckel equivalent to
he constant curvature space superintegrable system. Q.E.D.

V. CLASSIFICATION OF NONDEGENERATE SYSTEMS

. Separable systems in complex Euclidean space

It is a difficult task to list all 3D conformally flat superintegrable systems with nondegenerate
otential and to show that the classification is complete. However, we now have tools to simplify
he problem. First, as every such system is Stäckel equivalent to a system on Euclidean space or

he complex sphere, we can restrict ourselves to those two spaces. Second, since every such
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ystem is multiseparable, we can bring to bear our knowledge of all orthogonal separable coordi-
ates on these spaces. These results can be gleaned from the books20,16 and many papers of the
uthors, e.g., Ref. 17. Thus in principle, we have enough information to accomplish our task,
hough the details are formidably complicated.

We begin by summarizing the full list of orthogonal separable systems in complex Euclidean
pace and the associated symmetry operators. Here, a “natural” basis for first order symmetries is
iven by p1� px, p2� py, p3� pz, J1=ypz−zpy, J2=zpx−xpz, J3=xpy −ypx in the classical case and

p1=�x, p2=�y, p3=�z, J1=y�z−z�y, J2=z�x−x�z, J3=x�y −y�x in the quantum case. �In the operator
haracterizations for the quantum case, the classical product of two constants of the motion is
eplaced by the symmetrized product of the corresponding operator symmetries.� The Hamiltonian
s H= p1

2+ p2
2+ p3

2. In each case below we list the coordinates followed by the constants of the
otion that characterize them.

Note: The bracket notation used to describe generic coordinates in three-dimensional Euclid-
an space is due to Bôcher and is an adaptation of the notation used to describe the elementary
ivisors of two quadratic forms one of which is the quadratic form associated with Euclidean
pace and the second with the quadratic form of the coordinate curves describing the coordinate
ystem. In order to do this in three dimensions and also deal with separable solutions of Laplace’s
quation we use the symbol �p0 , p1 , . . . , pr� where �i=0

r pi=5 and p0�2. �See Ref. 16 for further
etails�. This determines a coordinate system whose infinitesimal distance is of the form

ds2 =
1

�u − v��u − w�
P�u�pu

2 +
1

�v − u��v − w�
P�v�pv

2 +
1

�w − v��w − u�
P�w�pw

2 ,

here P���= ��−e1�p1
¯ ��−er�pr. The index p0 is associated with .

�2111� x2 = c2 �u − e1��v − e1��w − e1�
�e1 − e2��e1 − e3�

, y2 = c2 �u − e2��v − e2��w − e2�
�e2 − e1��e2 − e3�

,

z2 = c2 �u − e3��v − e3��w − e3�
�e3 − e1��e3 − e2�

,

L1 = J1
2 + J2

2 + J3
2 + c2��e1 + e2�p3

2 + �e1 + e3�p2
2 + �e3 + e2�p1

2� ,

L2 = e1J1
2 + e2J2

2 + e3J3
2 + c2�e1e2p3

2 + e1e3p2
2 + e3e2p1

2� .

�211� x2 + y2 = − c2� �u − e1��v − e1��w − e1�
�e1 − e2�2 

−
c2

e1 − e2
��u − e1��v − e1� + �u − e1��w − e1� + �v − e1��w − e1�� ,

�x − iy�2 = c2 �u − e1��v − e1��w − e1�
e1 − e2

, z2 = c2 �u − e2��v − e2��w − e2�
�e2 − e1�2 .

L1 = J1
2 + J2

2 + J3
2 + c2��e1 − e2��p1 + ip2�2 + 2e2p3

2 + �e1 + e2��p1
2 + p2

2�� ,

L2 = e2�J1
2 + J2

2� + �e2 − e1��J1 + iJ2�2 + e1J3
2 + c2��e1e2�p1

2 + p2
2� + e1�e1 − e2��p1 + ip2�2 + e2

2p3
2�� .

�23� x − iy =
1

c�u2 + v2 + w2

−
1 u2v2 + u2w2 + v2w2

3 3 3 � ,

2 uvw 2 u v w
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z =
1

2
c�uv

w
+

uw

v
+

vw

u
�, x + iy = cuvw .

L1 = J1
2 + J2

2 + J3
2 + 2c2�p1 + ip2�p3, L2 = − 2J3�J1 + iJ2� + c2�p1 + ip2�2.

�311� x =
c

4
�u2 + v2 + w2 +

1

u2 +
1

v2 +
1

w2� +
3

2
c ,

y = −
c

4

�u2 − 1��v2 − 1��w2 − 1�
uvw

, z = i
c

4

�u2 + 1��v2 + 1��w2 + 1�
uvw

.

L1 = c�J3p2 − J2p3� + c2�p1
2 − p2

2�, L2 = −
1

4
J1

2 − cJ2p3 − c2p3
2.

�32� x + iy = uvw, x − iy = − �uv
w

+
uw

v
+

vw

u
�, z =

1

2
�u2 + v2 + w2� .

L1 = − c�J2 + iJ1��p1 + ip2� − c�J2 − iJ1��p1 − ip2� − c2�p1 + ip2�2,

L2 = J3
2 − 2c�J2 − iJ1��p1 + ip2� .

�41� x + iy = u2v2 + u2w2 + v2w2 − 1
2 �u4 + v4 + w4�, x − iy = c2�u2 + v2 + w2�, z = 2icuvw .

he symmetries that describe this system are

L1 = − iJ3�p1 − ip2� + �J2 + iJ1�p3 + 1
4c4�p1 + ip2�2, L2 = − �J1 − iJ2�2 − 2ic4�J1 + iJ2�p3.

�5� x + iy = c�u + v + w�, x − iy =
c

4
�u − v − w��u + v − w��u + w − v� ,

z = −
c

4
�u2 + v2 + w2 − 2�uv + uw + vw�� .

L1 = iJ3�p1 + ip2� + �J2 − iJ1�p3 + cp3�p1 − ip2� ,

L2 =
1

4
�J2 − iJ1�2 − c�2�J2 + iJ1i�p1 + ip2� + i�p1 − ip2��J1 + iJ2��� +

c2

4
�p1 − ip2�2.

e summarize the remaining degenerate separable coordinates:
Euclidean coordinates: All of these have one symmetry in common: L1= p3

2. The seven sys-
ems are, polar, Cartesian, light cone, elliptic, parabolic, hyperbolic, and semihyperbolic.

Complex sphere coordinates: These all have the symmetry L1=J1
2+J2

2+J3
2 in common. The

ve systems are spherical, horospherical, elliptical, hyperbolic, and semicircular parabolic.
Rotational types of coordinates: There are three of these systems, each of which is character-

zed by the fact that one defining symmetry is a perfect square.
Nonorthogonal heat type coordinates: Each of these nonorthogonal systems corresponds to
ne first order symmetry. Hence it cannot arise for systems with nondegenerate potentials.
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Note that the first seven separable systems are generic, i.e., they occur in one-, two- or
hree-parameter families, whereas the remaining systems are special limiting cases of the generic
nes. We shall show that each of the generic separable systems uniquely determines a nondegen-
rate superintegrable system.

. Generic 3D Euclidean superintegrable systems

Each of the seven generic Euclidean separable systems depends on a scaling parameter c and
p to three parameters e1 , e2 , e3. For each such set of coordinates we shall show that there is
xactly one nondegenerate superintegrable system that admits separation in these coordinates
imultaneously for all values of the parameters c , ej.

Consider the system in Ref. 23, for example. If a nondegenerate superintegrable system
eparates in these coordinates for all values of the parameter c, then the space of second order
ymmetries must contain the five symmetries

H = px
2 + py

2 + pz
2 + V, S1 = J1

2 + J2
2 + J3

2 + f1, S2 = J3�J1 + iJ2� + f2,

S3 = �px + ipy�2 + f3, S4 = pz�px + ipy� + f4.

t is straightforward to check that the 12�5 matrix of coefficients of the second derivative terms
n the twelve Bertrand-Darboux equations associated with symmetries S1 , . . . ,S4 has rank five in
eneral. Thus, there is at most one nondegenerate superintegrable system admitting these symme-
ries. Solving the Bertrand-Darboux equations for the potential we find the unique solution

V�x� ª ��x2 + y2 + z2� +
�

�x + iy�2 +
�z

�x + iy�3 +
��x2 + y2 − 3z2�

�x + iy�4 .

inally, we can use the symmetry conditions for this potential to obtain the full six-dimensional
pace of second order symmetries. This is the superintegrable system III on the following table.
he other six cases yield corresponding results.

Theorem 5: Each of the seven generic Euclidean separable systems determines a unique
ondegenerate superintegrable system that permits separation simultaneously for all values of the
caling parameter c and any other defining parameters ej. For each of these systems there is a
asis of five (strongly) functionally independent and six linearly independent second order sym-
etries. The corresponding nondegenerate potentials and basis of symmetries are (the f j are

unctions of x1 , x2 , x3�:

I �2111� V =
�1

x2 +
�2

y2 +
�3

z2 + ��x2 + y2 + z2� , �16�

Pi = �xi

2 + �xi
2 +

�i

xi
2 , Jij = �xipxj

− xjpxi
�2 + �i

2xj
2

xi
2 + � j

2xi
2

xj
2 , i � j .

II �221� V = ��x2 + y2 + z2� + �
x − iy

�x + iy�3 +
�

�x + iy�2 +
�

z2 , �17�

S1 = J · J + f1, S2 = pz
2 + f2, S3 = J3

2 + f3,

2 2
S4 = �px + ipy� + f4, L5 = �J2 − iJ1� + f5.
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III �23� V = ��x2 + y2 + z2� +
�

�x + iy�2 +
�z

�x + iy�3 +
��x2 + y2 − 3z2�

�x + iy�4 , �18�

S1 = J · J + f1, S2 = �J2 − iJ1�2 + f2, S3 = J3�J2 − iJ1� + f3,

S4 = �px + ipy�2 + f4, S5 = pz�px + ipy� + f5.

IV �311� V = ��4x2 + y2 + z2� + �x +
�

y2 +
�

z2 , �19�

S1 = px
2 + f1, S2 = py

2 + f2, S3 = pzJ2 + f3,

S4 = pyJ3 + f4, S5 = J1
2 + f5.

V �32� V = ��4x2 + y2 + z2� + �x +
�

�y + iz�2 +
��y − iz�
�y + iz�3 , �20�

S1 = px
2 + f1, S2 = J1

2 + f2, S3 = �pz − ipy��J2 + iJ3� + f3,

S4 = pzJ2 − pyJ3 + f4, S5 = �pz − ipy�2 + f5.

VI �41� V = ��z2 − 2�x − iy�3 + 4�x2 + y2�� + ��2�x + iy� − 3�x − iy�2� + ��x − iy� +
�

z2 ,

�21�

S1 = �px − ipy�2 + f1, S2 = pz
2 + f2, S3 = pz�J2 + iJ1� + f3,

S4 = J3�px − ipy� −
i

4
�px + ipy�2 + f4, S5 = �J2 + iJ1�2 + 4ipzJ1 + f5.

VII �5� V = ��x + iy� + �� 3
4 �x + iy�2 + 1

4z� + ���x + iy�3 + 1
16�x − iy� + 3

4 �x + iy�z�
+ �� 5

16�x + iy�4 + 1
16�x2 + y2 + z2� + 3

8 �x + iy�2z� , �22�

S1 = �J1 + iJ2�2 + 2iJ1�px + ipy� − J2�px + ipy� + 1
4 �py

2 − pz
2� − iJ3pz + f1,

S2 = J2pz − J3py + i�J3px − J1pz� −
i

2
pypz + f2, S3 = �px + ipy�2 + f4,

S4 = J3pz + iJ1py + iJ2px + 2J1px +
i

4
pz

2 + f3, S5 = pz�px + ipy� + f5.

Note that in the complete list of orthogonal separable coordinate systems for complex 3D

uclidean space there are some other systems besides the first seven that have parameter depen-
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ence, e.g., cylindrical elliptic coordinates L1= p3
2, L2=J3

2+c2p1
2. However, for all of these other

oordinates the corresponding Bertrand-Darboux equations have only rank four, hence they do not
niquely determine a possible superintegrable system.

. Interbasis expansions for Euclidean systems

To proceed with the classification of nondegenerate Euclidean superintegrable systems we
eed to look more closely at the relationship between a standard basis of symmetries for such a
ystem and the natural basis written in terms of the linear and angular momentum generators

pk , Jk, k=1, . . . ,3.
Let us denote our preferred Cartesian coordinate system by x= �u ,v ,w� and let x0= �x ,y ,z�, be

fixed regular point. We define the translated Cartesian coordinates �X ,Y ,Z� by u=x+X, v=y
Y, w=z+Z. Then, near the regular point �x ,y ,z� we have a basis of “natural symmetries” p1

pX, p2= pY, p3= pZ, J1=Ypz−ZpY, J2=ZpX−XpZ, J3=XpY −YpX. Now suppose we have a Euclid-
an superintegrable system with nondegenerate potential. Then there will exist fifteen rational
unctions Aij�x ,y ,z�, Bij�x ,y ,z�, Cij�x ,y ,z�, that completely characterize the superintegrable sys-
em. In particular, only 10 of these are linearly independent �see relations �A2��,

A22, A33, B22, B33, C33, A12, B12, A13, A23, B23, �23�

nd they are subject to the five quadratic conditions �A3� with G�0. These functions are related
o the symmetries S=�aijpipj +W via the conditions �A1�. Recall that the second order basis
ymmetries at the regular point Sx0

��m��x�=�a��m�
ij �x�pipj + f ��m� take the form Sx0

��m��x0�= pipj

f ��m��x0� when evaluated at the point. Thus we can expand each standard basis symmetry in
erms of the natural basis at the point via

Sx0

��m� = p�pm + �3
��m�J1

2 + �4
��m�J2

2 + �5
��m�J3

2 + �6
��m�p1J1 + �7

��m�p2J2 + �8
��m�p1J2 + �9

��m�p1J3

+ �10
��m�p2J1 + �11

��m�p2J3 + �12
��m�p3J1 + �13

��m�p3J2 + �14
��m�J1J2 + �15

��m�J1J3

+ �16
��m�J2J3 + W��m��x� , �24�

here the �k
��m� are constants in X ,Y ,Z but rational functions of the parameters x , y , z of the

egular point. �This notation for the expansion coefficients �s is not completely logical, but since
ll of our software programs use the same notation we continue to use it to avoid �our� confusion.�

We conclude that all of the expansion constants �k
��m� can be expressed in terms of the ten

umbers �23�. However, we shall not embark on this straightforward task but instead restrict
urselves to expanding the two symmetries

Sx0

�12� = p1p2 + �3J1
2 + �4J2

2 + �5J3
2 + �6p1J1 + �7p2J2 + �8p1J2 + �9p1J3 + �10p2J1 + �11p2J3

+ �12p3J1 + �13p3J2 + �14J1J2 + �15J1J3 + �16J2J3 + W�12��x� , �25�

Sx0

�13� = p1p3 + �3�J1
2 + �4�J2

2 + �5�J3
2 + �6�p1J1 + �7�p2J2 + �8�p1J2 + �9�p1J3 + �10� p2J1 + �11� p2J3

+ �12� p3J1 + �13� p3J2 + �14� J1J2 + �15� J1J3 + �16� J2J3 + W�13��x� . �26�

Here, �s=�s
�12�, �s�=�s

�13�.� Indeed it is easy to verify that the six Bertrand-Darboux equations for
hese two symmetries have rank five �an illustration of Lemma 1 of Ref. 3�. Thus these two
ymmetries completely determine the Aij, Bij, Cij, hence the superintegrable system.

If aij�x� is the quadratic form associated with S�12��x� it is straightforward to verify that

a1
11�x0� = 0, a2

11�x0� = − �9, a3
11�x0� = �8,

a22�x0� = �11, a22�x0� = 0, a22�x0� = − �10,
1 2 3
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a1
33�x0� = − �13, a2

33�x0� = �12, a3
33�x0� = 0,

�27�
a1

12�x0� = 1
2�9, a2

12�x0� = − 1
2�11, a3

12�x0� = 1
2 ��7 − �6� ,

a1
13�x0� = − 1

2�8, a2
13�x0� = 1

2�6, a3
13�x0� = 1

2�13,

a1
23�x0� = − 1

2�7, a2
23�x0� = 1

2�10, a3
23�x0� = − 1

2�12,

here ak
ij�x0�= ��ka

ij�x��x0
. There are identical relations for the other symmetries S��m��x�. Using

27� and the identities �A2� and �A1� we can express the expansion coefficients �6 , . . . ,�13 in
erms of the ten numbers �23� at x0:

�6 = 1
3 �2A13 − B23�, �7 = 1

3 �A13 − 2B23�, �8 = − 1
3A23,

�9 = 1
3A22, �10 = 1

3A23, �11 = 1
3B22, �28�

�12 = 1
3 �B12 − A22 + A33�, �13 = − 1

3 �B33 + A12� .

he corresponding results for the expansion coefficients �6� , . . . ,�13� of S�13� are

�6� = − 1
3 �2A12 + B33�, �7� = − 1

3 �A12 + 2B23�, �8� = − 1
3A33,

�9� = 1
3A23, �10� = − 1

3B12, �11� = 1
3B23, �29�

�12� = − 1
3A23, �13� = − 1

3C33.

The expansion coefficients of the terms of the form J�Jm, i.e., �3 ,�4 ,�5 ,�14,�15,�16 can be
xpressed in terms of second derivatives of the associated quadratic form, evaluated at the regular
oint x0. For example, �14=2a23

13�x0�=−a33
12�x0�=−a12

33�x0�. For a superintegrable system the inte-
rability conditions for the symmetry relations �A1� are satisfied identically, so these equations can
e differentiated to compute the second derivatives ak�

ij �x0� as a quadratic expression in the ten
asic constants �subject to the five quadratic identities �A3��. Though straightforward, these com-
utations are tedious. The only relations that we will use here are those for the expansion coeffi-
ients �14

��m�. We have

�14
�11� = 1

9 �4A23�B33 − B22� − 4B23�A23 − A22� − 2A13B12 + 2A12A23� ,

�14
�22� = 1

9 �4A12A23 + 2B12B23 + 2A23B33 − 2A13B12 − 2B23A33 + 2B23A22 − 4B12B23� ,

�14
�33� = 1

9 �2B23�A22 − A33 + B12� − 4A13B12 + 2A23�A12 − 2B22 + B33�� ,

�30�
�14

�12� = 1
9 ��2B23 − A13��B33 − B22� − 2�B33 + A12 − B22�B23

− A23B12 + �2B23 + A13�A12 + 2B33A13 − A23A33� ,

�14
�13� = 1

18�7�B33�2 + �A33�2 − 2A22B12 − �A23�2 + 4A12B33 − A13C33 − 3�A12�2 − 5�B12�2 − 4A33B12

22 33 23 33 13 23 23 2 22 33
− 7B B − 7B C + 2A B + 7�B � − A A � ,
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�14
�23� = 1

9 �A23�− B23 + C33� + �A23 − A22 + B12��A12 + B22 − B33�� .

ote that since the Hamiltonian is S�11�+S�22�+S�33� and the coefficient of J1J2 in the Hamiltonian
s 0, we must have �14

�11�+�14
�22�+�14

�33�=0, which can be verified directly from the above-mentioned
xpressions.

As a result of the previous discussion we have the result
Theorem 6: For a nondegenerate superintegrable system the expansion coefficients �k

��m�

xpressing the standard basis S�m in terms of the natural basis phpk , phJk , JhJk are explicit linear
nd quadratic expressions in the ten terms (23).

. The significance of generic Euclidean systems

Suppose we have a nondegenerate Euclidean superintegrable system with potential V that is
eparable with respect to some orthogonal coordinates. �Since every superintegrable system is
ultiseparable, we know that such coordinates exist.� By performing an Euclidean transformation,

f necessary, we can assume that the separable coordinates are in a standard form determined by
wo constants of the motion in involution,

L1 = � aijpipj + f1, L2 = � bijpipj + f2.

learly, L1 and L2 lie in the six-dimensional space of second order symmetries for the superinte-
rable system. Thus, the quadratic form aij, for example, satisfies the three Bertrand-Darboux
quations for potential V. Since V is nondegenerate we can express the second derivatives Vjj

Vkk and Vjk with j�k in the Bertrand-Darboux equations as linear combinations of the first
erivatives Vh. Equating coefficients of V1 ,V2 ,V3 separately in each of the three equations, we end
p with nine linear conditions for the ten constants A22, . . . ,B23 at each regular point. A typical
xample of one of these conditions is

A13�3a11 − 3a33� + B23�0� + A23�− 3a12� + A22�0� + B22�0� + B12�0� + A33�− 3a13� + B33�0�

+ A12�− 3a23� + C33�0� = − a1
13 + a3

11.

ere, B23�0�=0, etc. For the second symmetry there will be nine more linear conditions with aij

eplaced by bij. Thus we will have eighteen linear equations �not linearly independent� for the ten
uantities A22, . . . ,B23. Another source of conditions is obtained by writing the symmetry L1 in
erms of the standard basis:

aij�x� = �
��m

a�m�x0�A��,m�
ij �x� ,

here A��,m�
ij is the quadratic form associated with the standard basis symmetry S��,m� at x0.

xpanding both sides of this equation in terms of the natural basis we obtain linear and quadratic
onditions on the ten basic quantities. For example if we equate coefficients of the natural basis
lement J1J2 we find the quadratic conditions for L1 and L2:

2a23
13�x0� = �

��m

a�m�x0��14
��m�, 2b23

13�x0� = �
��m

b�m�x0��14
��m�. �31�

hough there are many other quadratic conditions for L1 , L2 to belong to the symmetry algebra,
e shall use only these two and the five fundamental quadratic identities �A3� that hold indepen-
ent of any choice of L1 , L2. Note that by equating coefficients of natural basis elements of the
orm piJk we could obtain linear identities. However, these are equivalent to the linear conditions
or aij ,bij already discussed previously.

We give an example to show how this works. Suppose we have a nondegenerate superinte-
rable system that admits separation for some special choice of ellipsoidal coordinates �2111�.
Here we do not assume that the system separates for all values of the parameters c , e1 , e2 , e3,

ut only for one value.� By performing an Euclidean transformation and a change of scale we can
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ssume that the coordinates are in the standard form �2111� in our table and that c=1, e1=0, e2

1, and e3=a where a is any fixed complex number such that a�a−1��0. It follows that

a11 = y2 + z2 + a + 1, a22 = x2 + z2 + a, a33 = x2 + y2 + 1,

a12 = − xy, a13 = − xz, a23 = − yz, b11 = ay2 + z2 + a ,

b22 = ax2, b33 = x2, b12 = − axy, b13 = − xz, b23 = 0,

t any regular point with coordinates �x ,y ,z�. Substituting these expressions into the 18 linear
onditions discussed previously, with the help of the computer algebra system MAPLE, we find that
here are exactly seven independent linear conditions. Thus the ten quantities A22, . . . ,B23 can be
xpressed linearly in terms of three of these quantities. Substituting this result into the five
undamental quadratic identities �A3� we find that these identities yield a single linear relation for
he remaining three unknowns. Finally we substitute our expressions in terms of the three un-
nowns and �30� into �50� and obtain �with the help of MAPLE� two more independent linear
onditions. Thus we end up with ten independent linear conditions for our ten unknowns, and we
btain the unique solution

A12 = B12 = A23 = B23 = A13 = B33 = 0, A33 = A22 =
3

x
, C33 = −

3

z
, B22 = −

3

y
,

hich corresponds to the nondegenerate potential �I�,

V =
�

x2 +
�

y2 +
�

z2 + ��x2 + y2 + z2� .

ote that it was obvious that our conditions would have solutions, since we already knew that
ystem �I� separated simultaneously for all choices of the parameters c , e1 , e2 , e3. What was far
rom obvious is the fact that no other nondegenerate superintegrable system separates for any
pecial case of ellipsoidal coordinates.

Theorem 7: A 3D Euclidean nondegenerate superintegrable system admits separation in a
pecial case of the generic coordinates [2111], [221], [23], [311], [32], [41], or [5], respectively,
f and only if it is equivalent via a Euclidean transformation to system [I], [II], [III], [IV], [V],
VI], or [VII], respectively.

The proof �complicated but straightforward� proceeds exactly as the case �2111� described
reviously. For each case �221�–�5� we use the symmetries aij , bij listed. The eighteen linear
onditions discussed previously reduce to exactly seven independent linear conditions. Thus al-
ays the ten quantities A22, . . . ,B23 can be expressed linearly in terms of three of these quantities.
ubstituting into the five fundamental quadratic identities �A3� we find that these identities yield
single linear relation for the remaining three unknowns. Substituting our expressions in terms of

he three unknowns and �30� into �50� we obtain two more independent linear conditions. Thus we
nd up with ten independent linear conditions for our ten unknowns, and a unique solution, the
orresponding generic superintegrable system.

This does not settle the problem of classifying all 3D nondegenerate superintegrable systems
n complex Euclidean space, for we have not excluded the possibility of such systems that separate
nly in degenerate separable coordinates. In fact we have already studied two such systems in:3

�O� V�x,y,z� = �x + �y + �z + ��x2 + y2 + z2� ,

�OO� V�x,y,z� =
��x2 + y2 +

1
z2� + �x + �y +

�
2 . �32�
2 4 z
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owever, both of these nondegenerate superintegrable systems are only weakly functionally in-
ependent, in contrast to systems �I�–�VII�. Thus we consider �O� and �OO� as associate members
f the superintegrable family, not regular members. An investigation of other possible Euclidean
ystems is in progress.

. Generic superintegrable systems on the three sphere

An important task remaining is to classify the possible systems on the three sphere �particu-
arly those three-sphere systems not Stäckel equivalent to a flat space system�. We choose a
tandardized Cartesian-like coordinate system �x ,y ,z� on the three sphere such that the metric and
amiltonian are

ds2 =
1

�1 + r2

4 �2 �dx2 + dy2 + dz2�, H = �1 +
r2

4
�2

�px
2 + py

2 + pz
2� + V , �33�

here r2=x2+y2+z2. These coordinates can be related to the standard realization of the sphere via
omplex coordinates s= �s1 ,s2 ,s3 ,s4� such that � j=1

4 sj
2=1 and ds2=� jdsj

2 via

s1 =
4x

4 + r2 , s2 =
4y

4 + r2 , s3 =
4z

4 + r2 , s4 =
4 − r2

4 + r2 �34�

ith inverse x=2s1 / �1+s4�, y=2s2 / �1+s4�, z=2s3 / �1+s4�. Here x ,y ,z are local coordinates in a
eighborhood of the pole P= �0,0 ,0 ,1� on the three sphere. A basis of Killing vectors for the zero
otential system is Jh, Kh, h=1,2 ,3 where

J1 = ypz − zpy, J2 = zpx − xpz, J3 = xpy − ypx,

K1 = �1 +
x2 − y2 − z2

4
�px +

xy

2
py +

xz

2
pz, K2 = �1 +

y2 − x2 − z2

4
�py +

xy

2
px +

yz

2
pz, �35�

K3 = �1 +
z2 − x2 − y2

4
�pz +

xz

2
px +

yz

2
py .

he commutation relations are

�J1,J2� = J3, �K1,K2� = J3, �K1,J2� = K3 �36�

nd their cyclic permutations. The relation between this basis and the standard basis of rotation
enerators on the sphere I�m=s�pm−smp�=−Im� is

J1 = I23, J2 = I31, J3 = I12, K1 = I41, K2 = I42, K3 = I43. �37�

e shall use the x ,y ,z coordinates as standard but we also need to see how these coordinates
elate to analogous Cartesian-like coordinates centered at any point T on the sphere. We can
lways find a complex orthogonal matrix O, not unique, such that T=OP. If X ,Y ,Z, �34�, define
ocal Cartesian-like coordinates near P then via t=Os�X ,Y ,Z� they also define local coordinates in

neighborhood of T= �T1 ,T2 ,T3 ,T4�. Moreover, since O is orthogonal we have

ds2 = dt · dt = dOs · dOs = ds · ds =
1

�1 + R2

4 �2 �dX2 + dY2 + dZ2� ,

o we can consider X ,Y ,Z as Cartesian-like coordinates in a neighborhood of T. We can also
equire that the coordinate axes line up so that differentiation of s by X ,Y ,Z, respectively, at P
orresponds to �normalized� differentiation of t by x ,y ,z, respectively, at T, i.e., so that pX

2
orresponds to �1+r /4�px, etc. Thus,
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�� 2

1 + t4
�xt��

t=T
= O�

1

0

0

0
	, �� 2

1 + t4
�yt��

t=T

= O�
0

1

0

0
	 ,

�� 2

1 + t4
�zt��

t=T

= O�
0

0

1

0
	, T = O�

0

0

0

1
	 .

his determines O uniquely, since the column vectors on the left-hand sides of these expressions
re mutually orthogonal unit vectors. We find

OT =�
−

T1
2 − T4 − 1

T4 + 1
−

T2T1

T4 + 1
−

T3T1

T4 + 1
T1

−
T1T2

T4 + 1
−

T2
2 − T4 − 1

T4 + 1
−

T3T2

T4 + 1
T2

−
T1T3

T4 + 1
−

T2T3

T4 + 1
−

T3
2 − T4 − 1

T4 + 1
T3

− T1 − T2 − T3 T4

	 . �38�

n the P-based coordinate system the coordinates of t are u , v , w where u=2t1 / �1+ t4�, v
2t2 / �1+ t4�, w=2t3 / �1+ t4�. From the equation t=OTs we can solve for u , v , w to obtain

u =
4�r2X − 2x�xX + yY + zZ� + 4�x + X� − xR2�

16 − 8�xX + yY + zZ� + r2R2 ,

v =
4�r2Y − 2y�xX + yY + zZ� + 4�y + Y� − yR2�

16 − 8�xX + yY + zZ� + r2R2 , �39�

w =
4�r2Z − 2z�xX + yY + zZ� + 4�z + Z� − zR2�

16 − 8�xX + yY + zZ� + r2R2 .

To recapitulate: t is a point on the complex unit sphere, �x ,y ,z� are the coordinates of T in the
-based system, �u ,v ,w� are the coordinates of t in the P-based system, and �X ,Y ,Z� are the
oordinates of t in the T-based system. Thus, for fixed T, Eq. �39� defines the coordinate trans-
ormation between �u ,v ,w� and �X ,Y ,Z�. We can write Eq. �39� in a simpler form by introducing
he supplementary variables

U =
u − x

1 + r2

4

, V =
v − y

1 + r2

4

, W =
v − z

1 + r2

4

, Q2 = U2 + V2 + W2.

hen

U =
1 − 1

2xX

1 − 1 �xX + yY + zZ� + r2R2 ,

2 16
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V =
1 − 1

2 yY

1 − 1
2 �xX + yY + zZ� + r2R2

16

, W =
1 − 1

2zZ

1 − 1
2 �xX + yY + zZ� + r2R2

16

, �40�

ith inverse

X =
U + x

4Q2

1 + 1
2 �xU + yV + zW� + r2Q2

16

,

Y =
V + y

4Q2

1 + 1
2 �xU + yV + zW� + r2Q2

16

, Z =
W + z

4Q2

1 + 1
2 �xU + yV + zW� + r2Q2

16

. �41�

In Ref. 22 we have determined all orthogonal separable coordinate systems on the complex
nit three sphere. Of the 21 systems listed those that are generic, in the sense we used for
uclidean separable systems, are given as follows with coordinates followed by defining constants
f the motion. �Here we take the Hamiltonian as L0= I12

2 + I13
2 + I14

2 + I23
2 + I24

2 + I34
2 , and we recall the

dentity I23I41+ I31I42+ I12I43=0.�

�1111� �system �17� in Ref. �22��

s1
2 =

�x1 − e1��x2 − e1��x3 − e1�
�e1 − e2��e1 − e3��e1 − e4�

, s2
2 =

�x1 − e2��x2 − e2��x3 − e2�
�e2 − e1��e2 − e3��e2 − e4�

,

s3
2 =

�x1 − e3��x2 − e3��x3 − e3�
�e3 − e1��e3 − e2��e3 − e4�

, s4
2 =

�x1 − e4��x2 − e4��x3 − e4�
�e4 − e2��e4 − e3��e4 − e1�

,

L1 = �e1 + e2�I12
2 + �e1 + e3�I13

2 + �e1 + e4�I14
2 + �e2 + e3�I23

2 + �e2 + e4�I24
2 + �e3 + e4�I34

2 ,

L2 = e1e2I12
2 + e1e3I13

2 + e1e4I14
2 + e2e3I23

2 + e2e4I24
2 + e3e4I34

2 .

211� �system �18� in Ref. �22��

�is1 + s2�2 = − 2
�x1 − e1��x2 − e1��x3 − e1�

�e1 − e3��e1 − e4�
,

s1
2 + s2

2 = − �e1
� �x1 − e1��x2 − e1��x3 − e1�

�e1 − e3��e1 − e4� � ,

s3
2 = −

�x1 − e3��x2 − e3��x3 − e3�
�e3 − e1�2�e3 − e4�

, s4
2 = −

�x1 − e4��x2 − e4��x3 − e4�
�e4 − e1�2�e4 − e3�

;

L1 = �I14 + iI24�2 + �I13 + iI23�2 + 2e1�2I12
2 + I14

2 + I24
2 + I13

2 + I23
2 � + 2e3�I34

2 + I13
2 + I23

2 �

+ 2e4�I14
2 + I24

2 + I34
2 � ,

L2 = e1
2I12

2 + e1e3�I13
2 + I23

2 � + e1e4�I14
2 + I24

2 � + e3e4I34
2 +

e3

2
�I13 + iI23�2 +

e4

2
�I14 + iI24�2.
22� �system �19� in Ref. �22��
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�s1 + is2�2 = − 2
�x1 − e1��x2 − e1��x3 − e1�

�e1 − e3�2 ,

�s3 + is4�2 = − 2
�x1 − e3��x2 − e3��x3 − e3�

�e1 − e3�2 , s1
2 + s2

2 = −
�

�e1
� �x1 − e1��x2 − e1��x3 − e1�

�e1 − e3�2 �;

L1 = − I24
2 + I13

2 + iI13I23 + iI14I24 + iI23I24 + iI13I14 + �e1 − e3��I12
2 − I34

2 � + e2,

L2 = e1
2I12

2 + e3
2I34

2 + e1e3�I13
2 + I24

2 + I14
2 + I23

2 � +
1

4
�I13

2 + I24
2 − I14

2 − I23
2 + 2iI13I23 + 2iI13I14 − 2iI14I24

− 2iI23I24 − 4I13I24 − 2I12I34� +
e1

2
�I13

2 − I24
2 − I14

2 + I23
2 + 2iI13I14 + 2iI23I24� +

e3

2
�− I24

2 + I13
2 + I14

2

− I23
2 + 2iI13I23 + 2iI14I24� .

31� �system �20� in Ref. in �22��

�s1 + is2�2 = − 2
�x1 − e1��x2 − e1��x3 − e1�

�e1 − e4�
, s4

2 = −
�x1 − e4��x2 − e4��x3 − e4�

�e4 − e1�3 ,


2s3�s1 + is2� = −
�

�e1
� �x1 − e1��x2 − e1��x3 − e1�

�e1 − e4� � ,

s1
2 + s2

2 + s3
2 = −

1

2

�2

�e1
2

�x1 − e1��x2 − e1��x3 − e1�
�e1 − e4�

;

L1 = 
2�I14I34 − I12I23 + iI24I34 + iI12I13� + e1�I12
2 + I13

2 + I23
2 � + e4�I34

2 + I14
2 + I24

2 � ,

L2 = −
1

2
I13

2 +
1

2
I23

2 − iI13I23 + e1e4�I34
2 + I14

2 + I24
2 � = e1

2�I12
2 + I13

2 + I23
2 � −

e1


2
�− 2iI12I13 + 2I12I23�

+ 
2e4�I14I34 + iI24I34� .

4� �system �21� in �22��

�s1 + is2�2 = − 2�x1 − e1��x2 − e2��x3 − e3� ,

�s1 + is2��s3 + is4� = −
�

�e1
��x1 − e1��x2 − e1��x3 − e1�� ,

2�s1 + is2��s3 − is4� + �s3 + is4�2 = −
�2

�e1
2 ��x1 − e1��x2 − e1��x3 − e1��;

L1 =
1

2
�2I34I14 + 2I12I14 − 2I23I34 − 2I12I23 − I24

2 + I23
2 − I14

2 + I13
2 + 2iI13I14 + 2iI23I24 + 2iI12I24
+ 2iI13I34 + 2iI24I34 + 2iI12I13� ,
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L2 = − I14
2 − I23I34 −

1

4
I24

2 +
1

4
I23

2 +
1

4
I14

2 −
1

4
I13

2 −
i

2
I13I23 −

i

2
I23I24

i

2
I14I24 +

i

2
I13I14 − iI24I34 + iI13I34

−
1

2
I13I34 −

1

2
I14I23.

We now show that each generic separable system on the three sphere uniquely determines a
uperintegrable system with nondegenerate potential. The proof is, in most part, analogous to that
or the Euclidean case. Consider system �1111�. If we have a superintegrable system that admits
he symmetries L1, L2 for all values of the parameters e1 , . . . ,e4 then it must have the basis of
ymmetries

VIII S0 = I12
2 + f0, S1 = I13

2 + f1, S2 = I14
2 + f2, S3 = I32

2 + f3,

S4 = I24
2 + f4, S5 = I34

2 + f5.

he system of Bertrand-Darboux equations associated with these symmetries has rank five so the
otential is uniquely determined. Solving the Bertrand-Darboux equations we obtain the nonde-
enerate potential on the three sphere

V�s� =
�

s1
2 +

�

s2
2 +

�

s3
2 +

�

s4
2 . �42�

his potential is not Stäckel equivalent to a potential on Euclidean space.
Three of the four remaining systems can be obtained in the same way. However there is an

lternative approach which enables us to obtain systems 2, 3, and 4 from 1 via well defined
imiting processes. These are discussed elsewhere, e.g., Refs. 16 and 17, but we content ourselves
ith an example of how to obtain �211� from �1111�. If we make the transformations

s1 →
1


− �
y1, s2 →

1

�

�y1 + �y2�, � → − 
�2�2, � →
�

�
−

�

2�2

hen we deduce the relations

y1
2 = −

�u − e1��v − e1��w − e1�
�e1 − e2��e1 − e3�

, 2y1y2 =
�

�e1
y1

2.

he coordinates on the sphere can be represented using the identifications y1= �s1+ is2� /
2, y2

�s1− is2� /
2, y3=s3, y4=s4 where 2y1y2+y3
2+y4

2=s1
2+s2

2+s3
2+s4

2=1. We then transform the poten-
ial according to � /s1

2+� /s2
2+� /s3

2+� /s4
2→� /y1

2+�y2 /y1
3+� /y3

2+� /y4
2.

An exactly similar approach leads to the coordinates, constants of the motion and nondegen-
rate potential for the system �22�. Here the limit is taken in the form e2=e1+�, e4=e3+�� where
, ��→0. For the system �31� we set e2=e1+�, e3=e1+�� and allow �, ��→0, whereas for system
4� we set e2=e1+�, e3=e1+�1, e4=e1+�2 and allow �, �1, �2→0. In all cases except �4� the
equirement that we have separation for all values of the parameters ej yields a set of six linearly
ndependent second-order constants of the motion that can be verified to correspond to a nonde-
enerate superintegrable system. In the case �4� the constants of the motion do not depend on e1

nd we have only three independent symmetries. However, there is a unique potential that is
btained as the limit of the nondegenerate potential for case �1111�. By writing down the Bertrand-
arboux equations for this limit potential we can directly verify that it admits six linearly inde-
endent symmetries and is nondegenerate.

Theorem 8: Each of the five generic three-sphere separable systems determines a unique
ondegenerate superintegrable system that permits separation simultaneously for all values of the
arameters ej. For each of these systems there is a basis of five (strongly) functionally independent

nd six linearly independent second order symmetries. In addition to system [VIII] above there are
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he following superintegrable systems (nondegenerate potential, followed by a basis of constants
f the motion):

I� �211� �Stäckel equivalent to the Euclidean superintegrable system �I��

V =
�1

�s1 + is2�2 +
�2�s1 − is2�
�s1 + is2�3 +

�3

s3
2 +

�4

s4
2 ;

S0 = I12
2 + f0, S1 = I34

2 + f1, S2 = I13
2 + I23

2 + f2, �43�

S3 = I14
2 + I24

2 + f3, S4 = I13�I13 + iI23� + f4, S5 = I14�I14 + iI24� + f5.

I� �22� �Stäckel equivalent to the Euclidean superintegrable system �II��

V =
�1

�s1 + is2�2 +
�2�s1 − is2�
�s1 + is2�3 +

�3

�s3 + is4�2 +
�4�s3 − is4�
�s3 + is4�3 ;

S0 = I12
2 + f0, S1 = I34

2 + f1, S2 = I13
2 + I14

2 + I23
2 + I24

2 + f2,

�44�
S3 = I13

2 + I14
2 + i�I13I23 + I14I24� + f3, S4 = I13

2 + I23
2 + i�I13I14 + I23I24� + f4,

S5 = I13
2 + I24

2 + i�I13I14 + I13I23 − I14I24 − I23I24� − 2I13I24 − I12I34 + f5.

V� �31� �Stäckel equivalent to the Euclidean superintegrable system �IV��

V =
�1

�s1 + is2�2 +
�2s3

�s1 + is2�3 +
�3�s1

2 + s2
2 − 3s3

2�
�s1 + is2�4 +

�4

s4
2 ;

S0 = I12
2 + I13

2 + I23
2 + f0, S1 = I14

2 + I24
2 + I34

2 + f1, S2 = �I23 − iI13�2 + f2,

�45�
S3 = I12�I23 − iI13� + f3, S4 = I34�I14 + iI24� + f4,

S5 = I14I34 − I12I23 + i�I24I34 + I12I13� + f5.

I� �4� �Stäckel equivalent to the Euclidean superintegrable system �VI��

V =
�1

�s1 + is2�2 +
�2�s3 + is4�
�s1 + is2�3 +

�3��s1 + is2��s3 − is4� − 3
2 �s3 + is4�2�

�s1 + is2�4

+
�4��s1 + is2��s1

2 + s2
2 − 3

2 �s3
2 + s4

2� + �s3 + is4�3��
�s1 + is2�5 ;

S0 = I12
2 + I13

2 + I14
2 + I23

2 + I24
2 + I34

2 + V ,

S1 = �I13 − I24 + iI23 + iI14�2 + f1,

S2 = 4�I23I34 + I14I34 + I13I24� + 4i�I24I34 − I13I34� + 2i�I13I23 − I14I24 − I13I14 + I23I24� − 2I12I34 + I13
2

+ I2 − I2 − I2 + f2,
24 14 23
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S3 = 2�I12I23 + I23I34 − I12I14 − I14I34� − 2i�I23I24 + I13I14 + I13I34 + I24I34 + I12I24 + I12I13� − I13
2 + I24

2

+ I14
2 − I23

2 + f3,

S4 = �I13 − I24 + iI23 + iI14��I13 + I24 + iI23 − iI14� + f4,

S5 = �I13 − I24 + iI23 + iI14��I34 − I12� + f5. �46�

e also mention that the nongeneric superintegrable system on the three sphere with potential

00� V =
�

�s1 + is2�2 +
�s3

�s1 + is2�3 +
�s4

�s1 + is2�3 +
��1 − 4s3

2 − 4s4
2�

�s1 + is2�4

s Stäckel equivalent to the Euclidean superintegrable system �00�.

. Interbasis expansions for three-sphere systems

In analogy with our treatment of Euclidean systems, to proceed with the classification of
ondegenerate superintegrable systems on the three sphere we need to look more closely at the
elationship between a standard basis of symmetries and the natural basis written in terms of the
ngular momentum generators J�, K� �=1, . . . ,3. Then, near the regular point T, i.e., �x ,y ,z�, we
ave a basis of “natural symmetries” J1=YpZ−ZpY, J2=ZpX−XpZ, J3=XpY −YpX, K1=KX, K2

KY, K3=KZ. At the point itself we have �1+r2 /4�pu= pX, �1+r2 /4�pv= pY, �1+r2 /4�pw= pZ. Now
uppose we have a three-sphere superintegrable system with nondegenerate potential. Then there
ill exist fifteen rational functions Aij�x ,y ,z�, Bij�x ,y ,z�, Cij�x ,y ,z�, �with respect to the �X ,Y ,Z�

oordinates and restricted to the point �X ,Y ,Z�= �0,0 ,0�, that completely characterize the super-
ntegrable system�. In particular, only ten of these, �23�, are linearly independent, see relations
A2�, and they are subject to the five quadratic conditions �A3� with G�X ,Y ,Z�=ln �=−2 ln�1

+R2 /4�. These functions are related to the symmetries S=�aijpipj +W via the conditions �A1�.
he second order basis symmetries at the regular point Sx0

��m��X�=�a��m�
ij �X�pipj + f ��m��X� take the

orm Sx0

��m��0,0 ,0�= pipj + f ��m��0,0 ,0� when evaluated at the point. Thus we can expand each
tandard basis symmetry in a neighborhood of the point �x ,y ,z� in terms of the natural basis at the
oint via

Sx0

��m� = K�Km + �3
��m�J1

2 + �4
��m�J2

2 + �5
��m�J3

2 + �6
��m�K1J1 + �7

��m�K2J2 + �8
��m�K1J2 + �9

��m�K1J3

+ �10
��m�K2J1 + �11

��m�K2J3 + �12
��m�K3J1 + �13

��m�K3J2 + �14
��m�J1J2 + �15

��m�J1J3

+ �16
��m�J2J3 + W��m��X� , �47�

here the �k
��m� are constants in X ,Y ,Z but rational functions of the parameters x ,y ,z of the

egular point. Here we are taking into account the identity �h=1
3 KhJh=0 and the fact that Kh= ph at

he point �X ,Y ,Z�= �0,0 ,0�. Again, nondegenerate superintegrable system is uniquely determined
y the ten numbers �23�, and these numbers themselves are subject to five quadratic identities
A3�. �Note that G and all of its first and second derivatives vanish when X=Y =Z=0, except that

ii=−1, i=1,2 ,3. Further, we can use relations �40� to express the derivatives of V at the regular
oint with respect to the �X ,Y ,Z� coordinates in terms of derivatives with respect to �u ,v ,w�.
hus the numbers �23� can be expressed as linear combinations of the corresponding numbers with

espect to the �u ,v ,w� coordinates.�
Although all of the expansion constants �k

��m� can be expressed in terms of these ten numbers,
e shall restrict ourselves to expanding the two symmetries

Sx0

�12� = K1K2 + �3J1
2 + �4J2

2 + �5J3
2 + �6K1J1 + �7K2J2 + �8K1J2 + �9K1J3 + �10K2J1 + �11K2J3

�12�
+ �12K3J1 + �13K3J2 + �14J1J2 + �15J1J3 + �16J2J3 + W �X� , �48�
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Sx0

�13� = K1K3 + �3�J1
2 + �4�J2

2 + �5�J3
2 + �6�K1J1 + �7�K2J2 + �8�K1J2 + �9�K1J3 + �10� K2J1 + �11� K2J3

+ �12� K3J1 + �13� K3J2 + �14� J1J2 + �15� J1J3 + �16� J2J3 + W�13��X� . �49�

Here, �s=�s
�12�, �s�=�s

�13�.� Since the six Bertrand-Darboux equations for these two symmetries
ave rank five, the symmetries completely determine the Aij, Bij, Cij, hence the superintegrable
ystem.

From �39�–�41� we have �with Jw=upv−vpu and cyclic permutations�

J1 =
1

1 + r2

4

��1 +
x2

4
−

y2

4
−

z2

4
�Ju +

zx

2
Jw +

yx

2
Jv − yKw + zKv� ,

J2 =
1

1 + r2

4

��1 −
x2

4
+

y2

4
−

z2

4
�Jv +

xy

2
Ju +

zy

2
Jw − zKu + xKw� ,

J3 =
1

1 + r2

4

��1 −
x2

4
−

y2

4
+

z2

4
�Jw +

yz

2
Jv +

xz

2
Ju − xKv + yKu� ,

K1 =
1

1 + r2

4

��1 +
x2

4
−

y2

4
−

z2

4
�Ku +

yx

2
Kv +

zx

2
Kw − yJw + zJv� ,

K2 =
1

1 + r2

4

��1 −
x2

4
+

y2

4
−

z2

4
�Kv +

xy

2
Ku +

zy

2
Kw − zJu + xJw� ,

K3 =
1

1 + r2

4

��1 −
x2

4
−

y2

4
+

z2

4
�Kw +

xz

2
Ku +

yz

2
Kv − xJv + yJu� .

he inverse of these relations takes almost exactly the same form. Now, suppose we have a
ondegenerate three-sphere superintegrable system with potential V, that is separable with respect
o some orthogonal coordinates. �As every superintegrable system is multiseparable, we know that
uch coordinates exist.� By performing an Euclidean transformation, if necessary, we can assume
hat the separable coordinates are in some standard form determined by two constants of the
otion in involution, L1=�aijpipj + f1, L2=�bijpipj + f2. Clearly, L1 and L2 lie in the six-

imensional space of second order symmetries for the superintegrable system. Thus, the quadratic
orm aij, for example, satisfies the three Bertrand-Darboux equations for potential V. Since V is
ondegenerate we can express the second derivatives Vjj −Vkk and Vjk with j�k in the Bertrand-
arboux equations as linear combinations of the first derivatives Vh. Equating coefficients of

1 ,V2 ,V3 separately in each of the three equations, we end up with nine linear conditions for the
en constants A22, . . . ,B23 at each regular point. If we choose the Cartesian-like coordinates X ,Y ,Z
hat vanish at the regular point, then we obtain the same 18 conditions as in the Euclidean case.
ndeed, the first derivatives Gi all vanish at the regular point.

For the second symmetry there will be nine more such linear conditions with aij replaced by
ij. Thus we will have eighteen linear equations �not linearly independent� for the ten quantities
22, . . . ,B23.

The five fundamental quadratic identities �A3� are identical to those for the Euclidean case.
his is because the only nonzero terms in the metric for the three sphere are Gii=−1 and all such

erms occur in the form Gii−Gjj =0 in the five quadratic conditions.
Another source of conditions is obtained by writing the symmetry L1 in terms of the standard

asis: aij�x�=���ma�m�x0�A��,m�
ij �x�, where A��,m�

ij is the quadratic form associated with the stan-
��,m�
ard basis symmetry S at x0. Expanding both sides of this equation in terms of the natural
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asis we obtain linear and quadratic conditions on the ten basic quantities. In this case there is a
ifference between the Euclidean and three-sphere expressions. For example if we equate coeffi-
ients of the natural basis element J1J2 we find the quadratic conditions for L1 and L2

− a12
33�x0� = �

��m

a�m�x0��14
��m�, − b12

33�x0� = �
��m

b�m�x0��14
��m�. �50�

t is no longer true that −a12
33=2a23

13 as in the Euclidean case. The expressions for the terms �14
��m�

an be computed from the basic formulas �A1�. They involve the terms Gii and differ from the
uclidean case. For example, from �A1� and formulas for the derivatives �iA

jk, �iB
jk, �iC

jk we can
alculate −a12

33�x0� corresponding to the basis symmetry S�12� and obtain

− 3�14
�12� = 1

3B22C23 − 2
3 �C13�2 − 2

3C13A22 + 1
6 �A23�2 + 1

3C33� 7
2B23 − 2C22� + 3

2 − 1
2 �B33�2 + 5

6B33B22

+ 5
6 �B12�2 + A33B12 − 1

2 �B23�2 + 1
6 �A12�2 − 1

3B33A12 − 1
6A22A33 + 1

6 �A33�2 − 1
6C33A13.

hough there are many other quadratic conditions for L1 ,L2 to belong to the symmetry algebra, we
hall use only these two.

. Significance of generic three-sphere systems

Suppose we have a nondegenerate superintegrable system that admits separation for some
pecial choice of ellipsoidal coordinates �1111�. �Here we do not assume that the system separates
or all values of the parameters c ,e1 ,e2 ,e3 ,e4, but only for one value.� By performing an Euclid-
an transformation and a change of scale we can assume that the coordinates are in the standard
orm �1111� in our table and that e1=0, e2=1, e3=a, and e4=b where a ,b are any fixed complex
umbers such that ab�a−1��b−1��b−a��0. We follow the same method given before in the
uclidean case. We evaluate the aij ,bij at any regular point with coordinates �x ,y ,z�. Substituting

hese expressions into the eighteen linear conditions, with the help of MAPLE, we find that there are
xactly seven independent linear conditions. Thus the ten quantities A22, . . . ,B23 can be expressed
inearly in terms of three of these quantities. Substituting this result into the five fundamental
uadratic identities �A3� we find that these identities yield exactly two solutions. Finally we
ubstitute each of these solutions into �50� and find conditions that rule out one of these solutions.
hus only one solution exists and it must be the one that we already knew: System �VIII� that
eparates simultaneously for all choices of the parameters e1 , . . . ,e4. What was far from obvious is
he fact that no other nondegenerate superintegrable system separates for any special case of
llipsoidal coordinates on the three sphere.

Theorem 9: A three-sphere nondegenerate superintegrable system admits separation in a
pecial case of the generic coordinates [1111], [211], [22], [31], or [4], respectively, if and only
f it is equivalent via a complex rotation to system [VII], �I��, �II��, �IV��, or �VI��, respectively.

We have indicated the proof for coordinates �1111�. The other generic coordinates are Stäckel
ransforms of generic coordinates in Euclidean space so the proof for them follows immediately
rom Theorem 7.

PPENDIX

This is a list of some important results from Ref. 3. Using the nondegenerate potential con-
ition and the Bertrand-Darboux equations we can solve for all of the first partial derivatives ai

jk

f a quadratic symmetry to obtain the defining conditions �with �=exp�G��

a1
11 = − G1a11 − G2a12 − G3a13,

a2
22 = − G1a12 − G2a22 − G3a23,

a33 = − G1a13 − G2a23 − G3a33,
3
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3a1
12 = a12A22 − �a22 − a11�A12 − a23A13 + a13A23 + G2a11 − 2G1a12 − G2a22 − G3a23,

3a2
11 = − 2a12A22 + 2�a22 − a11�A12 + 2a23A13 − 2a13A23 − 2G2a11 + G1a12 − G2a22 − G3a23,

3a3
13 = − a12C23 + �a33 − a11�C13 + a23C12 − a13C33 − G1a11 − G2a12 − 2G3a13 + G1a33,

3a1
33 = 2a12C23 − 2�a33 − a11�C13 − 2a23C12 + 2a13C33 − G1a11 − G2a12 + G3a13 − 2G1a33,

3a2
23 = a23�B33 − B22� − �a33 − a22�B23 − a13B12 + a12B13 − G1a13 − 2G2a23 − G3a33 + G3a22,

3a3
22 = − 2a23�B33 − B22� + 2�a33 − a22�B23 + 2a13B12 − 2a12B13 − G1a13 + G2a23 − G3a33 − 2G3a22,

3a1
13 = − a23A12 + �a11 − a33�A13 + a13A33 + a12A23 − 2G1a13 − G2a23 − G3a33 + G3a11,

3a3
11 = 2a23A12 + 2�a33 − a11�A13 − 2a13A33 − 2a12A23 + G1a13 − G2a23 − G3a33 − 2G3a11,

3a2
33 = − 2a13C12 + 2�a22 − a33�C23 + 2a12C13 − 2a23�C22 − C33� − G1a12 − G2a22 + G3a23 − 2G2a33,

3a3
23 = a13C12 − �a22 − a33�C23 − a12C13 − a23�C33 − C22� − G1a12 − G2a22 − 2G3a23 + G2a33,

3a2
12 = − a13B23 + �a22 − a11�B12 − a12B22 + a23B13 − G1a11 − 2G2a12 − G3a13 + G1a22,

3a1
22 = 2a13B23 − 2�a22 − a11�B12 + 2a12B22 − 2a23B13 − G1a11 + G2a12 − G3a13 − 2G1a22,

3a1
23 = a12�B23 + C22� + a11�B13 + C12� − a22C12 − a33B13 + a13�B33 + C23� − a23�C13 + B12�

− 2G1a23 + G2a13 + G3a12.

3a3
12 = a12�− 2B23 + C22� + a11�C12 − 2B13� − a22C12 + 2a33B13 + a13�− 2B33 + C23�

+ a23�− C13 + 2B12� − 2G3a12 + G2a13 + G1a23.

3a2
13 = a12�B23 − 2C22� + a11�B13 − 2C12� + 2a22C12 − a33B13 + a13�B33 − 2C23� + a23�2C13 − B12�

− 2G2a13 + G1a23 + G3a12, �A1�

lus the linear relations

A23 = B13 = C12, B23 − A31 − C22 = 0,

�A2�
B12 − A22 + A33 − C13 = 0, B33 + A12 − C23 = 0.

sing the linear relations we can express C12, C13, C22, C23, and B13 in terms of the remaining ten
unctions. Finally, requiring that the integrability conditions for �A1� hold identically, we obtain
xactly five quadratic identities for the ten independent functions:

− A23B23 − A12A23 + A13B12 + B22A23 + B23A33 +
1

2
A22G3 −

1

2
A33G3 −

1

2
B12G3 −

1

2
G1G3 −

1

2
A13G1

+
3

G13 −
1

A23G2 − A22B23 = 0, �A3a�

2 2

                                                                                                            



1

1

1

1

1

1

1

1

1

1

2

2

2

043514-26 Kalnins, Kress, and Miller J. Math. Phys. 47, 043514 �2006�

                        
�A33�2 + B12A33 − A33A22 − B33A12 − C33A13 + B22A12 − B12A22 + A13B23 − �A12�2 +
3

2
G22 −

1

2
Gy

2

−
3

2
G33 +

1

2
A13G3 +

1

2
B33G2 −

1

2
A22G1 +

1

2
A33G1 −

1

2
B23G3 −

1

2
B22G2 +

1

2
C33G3 +

1

2
�G3�2 = 0,

�A3b�

− �B33�2 − B33A12 + B33B22 + B12A33 + B23C33 − �B23�2 + �B12�2 +
1

2
�G1�2 −

3

2
G11 +

3

2
G33

−
1

2
B33G2 −

1

2
A33G1 −

1

2
�G3�2 −

1

2
C33G3 = 0, �A3c�

− B12A23 − A33A23 + A13B33 + A12B23 +
3

2
G23 −

1

2
A23G1 −

1

2
A12G3 −

1

2
B23G2 −

1

2
G2G3

−
1

2
B33G3 = 0, �A3d�

A12B12 + C33A23 − A23B23 + B33A22 − B33A33 +
3

2
G12 −

1

2
G1G2 −

1

2
A12G1 −

1

2
B12G2 −

1

2
A23G3 = 0.

�A3e�
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he performance of the OSRC method for concentric
enetrable circular cylinder

Bülent Yılmaza�

Department of Mathematics, Faculty of Sciences and Letters, Marmara University
Göztepe Kampüsü, 34722, Kadiköy, Istanbul, Turkey
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In this paper we consider the scattering of a wave by concentric penetrable circular
cylinder to examine the performance of higher order SRCs up to the L4 operator in
two dimensions. We assume that in the rectangular Cartesian axes, �x ,y ,z�, the z
axis coincides with the axis of a cylinder and an incident wave propagates in a
direction perpendicular to the cylinder. All the field quantities are then independent
of z. © 2006 American Institute of Physics. �DOI: 10.1063/1.2186923�

. INTRODUCTION

Approximate techniques have been introduced to study the scattering of waves by obstacles.
he aim of these methods is to reduce the labor involved in solving an integral equation or any
ppropriate formulation of the problem. The on-surface radiation condition �OSRC� method, has
een devised by Kriegsmann, Taflove, and Umashankar, to investigate electromagnetic scattering
roblems involving cylindrical convex objects. The main concept in this method is the application
f a radiation condition, connecting the field and its normal derivative, directly onto the surface of
he scatterer to determine approximately the surface field or its derivative in terms of the given
eld. The calculation of the scattered field is then reduced to quadratures. As is demonstrated in
eferences for a wide variety of two-dimensional obstacles, results are in confirmity with exact
nalysis or numerical methods over a wide range of frequencies. The approach has been employed
o derive radiation boundary conditions �RBCs�. The method is based on the idea of killing the
erms of the expansion of the scattering field satisfying the Helmholtz equation and Sommerfeld
adiation condition. An nth order RBC operator which annihilates the first n terms in the expansion
s obtained either on a large circular cylinder enclosing a cylindrical convex object, or on a large
phere enclosing a finite convex object, depending on the geometrical dimensions of the problem.
hese RBCs can be generalized so that they can be used in the OSRC method for constructing the
pproximate solution of a scattering problem involving an arbitrary convex object. Until now, only
he first and second order RBCs have been generalized and used in conjunction with the OSRC

ethod.1–9 It seems that the main obstacle to such a generalization is the difficulty in interpreting
he terms properly.

In this work we apply the higher-order SRCs to scattering plane waves by a concentric
enetrable circular cylinder. The results are compared with those of second- and fourth-order
RCs.

This paper is organized as follows. The formulation of the problem is described in Sec. II. In
ec. III the exact and approximate solutions of these equations with OSRC method are presented
nd calculated and the Appendix has some concluding remarks. In the Appendix the higher order
adiation conditions are found.

�
Electronic mail: bulentyilmaz@marmara.edu.tr
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I. FORMULATION

Elliptic boundary value problems governed by the Helmholtz equation in exterior regions
rise in many branches of continuum physics. An example is the scattering of a time harmonic
coustic wave ui by an obstacle occupying the region B2 with a boundary surface �1. Let us
enote the region outside �1 by B1. We assume that B1 is a homogeneous isotropic medium with
ound speed c1 and constant density �1.

The scattering of plane waves by a two-layered penetrable circular cylinder is examined. The
oncentric case is considered. We denote the outer and inner layers by B2 with sound speed c2 and
onstant density �2 and B3 with sound speed c3 and constant density �3, respectively. The interface
etween them is the circular cylinder �2 of radius r2. The radius of the circular cylinder between
he exterior region B1 and the region B2 is r1, i.e., B1= �r�r1�, B2= �r1�r�r2� ,B3= �r�r3�. A
lane wave incident in the direction of the positive x axis can be written as ui=e−ik1r cos �

�n=−�
� Jn�k1r�ein��−��/2��.
The scattering problem for a two layered cylinder is described by the following equations and

oundary conditions:

�2ul + kl
2ul = 0, x � Bl for kl =

w

cl
, l = 1,2,3, �2.1�

u1 + ui = u2 and
�

�r
�u1 + ui� = �1

�u2

�r
on �1, �2.2�

u2 = u3 and
�u2

�r
= �2

�u3

�r
on �2, �2.3�

here 	1=�1 /�2, 	2=�2 /�3. In addition, at infinity the scattered field u1 must have the form of a
adiating wave, i.e., the following Sommerfeld radiation condition must be satisfied:

lim
r→�

r1/2� �u1

�r
+ ik1u1	 = 0. �2.4�

The solutions for u1, u2, and u3 are defined as follows:

u1 = �
n=−�

�

anHn�k1r�ein��−��/2��, �2.5�

u2 = �
n=−�

�

�bnJn�k2r� + cnHn�k2r��ein��−��/2��, �2.6�

u3 = �
n=−�

�

dnJn�k3r�ein��−��/2��. �2.7�

Using boundary conditions �2.2� and �2.3� the coefficients an, bn, cn, and dn are found to be

Jn�k1r1� + anHn�k1r1� = bnJn�k2r1� + cnHn�k2r1� , �2.8�

k1Jn��k1r1� + ank1Hn��k1r1� = �1k2bnJn��k2r1� + �1k2cnHn��k2r1� , �2.9�
bnJn�k2r2� + cnHn�k2r2� = dnJn�k3r2� , �2.10�
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k2bnJn��k2r2� + k2cnHn��k2r2� = �2k3dnJn��k3r2� , �2.11�

an =

1



, bn =


2



, cn =


3



, dn =


4



, �2.12�

here


 = ��1k2Hn�k1r1�Jn��k2r1� − k1Hn��k1r1�Jn�k2r1����2k3Hn�k2r2�Jn��k3r2� − k2Hn��k2r2�Jn�k3r2��

− ��1k2Hn�k1r1�Hn��k2r1� − k1Hn��k1r1�Hn�k2r1����2k3Jn�k2r2�Jn��k3r2� − k2Jn��k2r2�Jn�k3r2�� ,

�2.13�


1 = ��1k2Jn�k1r1�Hn��k2r1� − k1Jn��k1r1�Hn�k2r1����2k3Jn�k2r2�Jn��k3r2� − k2Jn��k2r2�Jn�k3r2��

− ��1k2Jn�k1r1�Jn��k2r1� − k1Jn��k1r1�Jn�k2r1����2k3Hn�k2r2�Jn��k3r2� − k2Hn��k2r2�Jn�k3r2�� ,

�2.14�


2 =
2i

�r1
��2k3Hn�k2r2�Jn��k3r2� − k2Hn��k2r2�Jn�k3r2�� ,


3 =
− 2i

�r1
��2k3Jn�k2r2�Jn��k3r2� − k2Jn��k2r2�Jn�k3r2�� , �2.15�


4 =
− 4

�2r1r2
.

The radiation boundary conditions have been derived at the phase fronts and on these surfaces
stablish approximate �asymptotic� between the derivative of u in the direction of the normal to u
nd their tangential derivatives. Hence these relations will be valid wherever there is a wave front.
riegsmann, Taflove, and Umashankar3 assume that these expressions are also valid on �1 and

eplace � /�n with � /�s at L1u and L2u. Therefore at the representation in two dimensions of the
adiation boundary conditions given replacing � /�s by � /�n and writing u=u1, the following
elation is given between the normal derivative of scattering field and tangential derivative on �1.

The relation

�u1

�n
= ��m�u1, m = 2,3,4 �2.16�

ased on behavior local to a wave front is derived where ��m�u1 denotes all terms out of �u /�s at
adiation boundary conditions. Boundary condition on �1 from �2.4� is

u1 = u2 − ui,
�u1

�n
= 	

�u2

�n
−

�ui

�n
.

hen the relation is obtained as follows:

	
�u2

�n
− ��m�u2 =

�ui

�n
− ��m�ui. �2.17�

2 2
� u2+k2u2=0 and �2.17� defines an interior problem for u2. This condition and
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u2 = u3,
�u2

�n
= 	2

�u3

�n
, on r = r1

onditions constitute an interior elliptic boundary value problem with

�2ul + kl
2ul = 0, x � Bl, l = 2,3

quations. Defining v2���=u2�a ,�� and w2���= �1/k2���u2 /�r� the boundary conditions �2.2� can
e written as

v1 + vi = v2 and k1�w1 + wi� = k2	w2. �2.18�

Using these equations, v1 and w1 can be eliminated from the SRCs given in the Appendix by
A13� to obtain

�1
�m�d

4v2

d�4 + �2
�m�d

2v2

d�2 + �3
�m�v2 −

k2

k1
	
�4

�m�d
2w2

d�2 + �5
�m�w2�

=�1
�m�d

4vi

d�4 + �2
�m�d

2vi

d�2 + �3
�m�vi −

k2

k1
	
�4

�m�d
2wi

d�2 + �5
�m�wi� . �2.19�

he use of SRCs �A13� together with �2.18� yields the impedance conditions �2.19� with 	=�1.
he impedance condition �2.19� together with

�2ul + kl
2ul = 0, x � Bl, l = 2,3, �2.20�

u2 = u3 and
�u2

�r
= �2

�u3

�r
. �2.21�

onstitute an interior boundary value problem for u2 and u3,

u2 = �
n=−�

�

�BnJn�k2r� + CnHn�k2r��ein��−��/2��, �2.22�

u3 = �
n=−�

�

DnJn�k3r�ein��−��/2��. �2.23�

nce u2 and u3 have been determined, v1 and w1 are found from �2.18�. If we use boundary
onditions �2.2� and �2.3� the coefficients Bn, Cn, and Dn are found.

For the approximate solution, the coeffcients Bn ,Cn, and Dn are found using �2.17� and �2.19�
=k1r1�,

��l����BnJn�k2r1� + CnHn�k2r1�� −
k2

k1
�1�BnJn��k2r1� + CnHn��k2r1��

=��l���Jn�� − Jn��� , �2.24�

BnJn�k2r2� + k2CnHn�k2r2� = DnJn�k3r2� , �2.25�

k2BnJ��k2r2� + k2CnH��k2r2� = �2k3DnJ��k3r2� , �2.26�
n n n
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Bn =

̃2


̃
, Cn =


̃3


̃
, Dn =


̃4


̃
, �2.27�

here


̃ = ��1k2Jn��k2r1� − k1��l���Jn�k2r1����2k3Hn�k2r2�Jn��k3r2� − k2Hn��k2r2�Jn�k3r2�� − ��1k2Hn��k2r1�

− k1��l���Hn�k2r1����2k3Jn�k2r2�Jn��k3r2� − k2Jn��k2r2�Jn�k3r2�� , �2.28�


̃2 = − k1���l���Jn�� − Jn������2k3Hn�k2r2�Jn��k3r2� − k2Hn��k2r2�Jn�k3r2�� , �2.29�


̃3 = k1���l���Jn�� − Jn������2k3Jn�k2r2�Jn��k3r2� − k2Jn��k2r2�Jn�k3r2�� �2.30�


̃4 = k1k2���l���Jn�� − Jn�����Jn�k2r2�Hn��k2r2� − Jn��k2r2�Jn�k2r2�� , �2.31�

nd

��m��� = −
n4�1

�m� − n2�2
�m� + �3

�m�

n2�4
�m� − �5

�m� . �2.32�

II. COMPARISON

It is observed that the replacement of ��m��� by Hn��� /Hn�� in the approximate solutions
nd using Hn�z�Jn��z�−Hn��z�Jn�z�=2i /�z the Wronskian relation also yields the exact ones. It is

hown that the expressions 
̃, 
̃2, 
̃3, 
̃4, are transformed to 
, 
2, 
3, 
4. Thus, for the problem
nder consideration the SRC method is equivalent to introducing the approximation

Hn���
Hn��

� ��m��� �3.1�

nd therefore, this result is independent of the boundary conditions prescribed on the surface of the
ircular cylinder �1. Hence, the accuracy of the method for the cylinder problems will depend on
he accuracy of the approximation in �3.1�. Hence, the accuracy of the method for the cylinder
roblems will depend on the accuracy of the approximation in �3.1�.

Comparisons were made between the exact answer of the problem and the SRC solutions. It
s observed that introductions of higher-order radiation conditions improve the approximation
onsiderably in comparison to results obtained by the use of a second-order radiation condition,
specially in cases which creeping waves are less pervasive.

The characterization of the region and the wave within this region given in Fig. 1 and graphs
a� and �b� for =1,10, respectively, are as follows: k3= �c1 /c3�k1, k2= �c1 /c2�k1, �1=�1 /�2, �2

�2 /�3,

�1 = 1.2, c1 = 340, �2 = 1000, c2 = 1480, �3 = 1200, c3 = 1600. �3.2�

Whenever the regions are, respectively, air, water, and a region denser than water from outside
o inside the results of the second and fourth order SRCs for the parameters in �3.2� are depicted
ogether with the exact curve for =1,10. It can be seen that the performance of the higher-order
RCs give better results than the second-order SRC. Note that the existence of dissipation im-
roves the results to a certain extent. It should be noted that in the cases given in the graphs the
oncentric penetrable cylinder behaves nearly as a hard cylinder.10

The characterization of the region and the wave within this region given in Fig. 2 and graphs

a� and �b� for =1,10, respectively, are as follows:
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�1 = 1000, c1 = 1480, �2 = 1.2, c2 = 340, �3 = 1.0, c3 = 280. �3.3�

Figure 2 shows the results of the second- and fourth-order SRCs for the parameters in �3.3� for
=1,10. It can be seen that for =1,10 the performance of the fourth-order SRCs are perfect, and

hey offer an improvement, although in these cases the second-order SRCs also produce quite
ood results. It should be noted that in the cases given in the graphs, the concentric penetrable
ylinder behaves nearly as a soft cylinder.11

In a different manner from Figs. 1 and 2 whenever the densities of the first two regions are
imilar and the density of the smaller third region is greater than those, the case specific param-
ters and graphs �a� and �b� of Figure 3 for =1,10, respectively, are as follows:

�1 = 1,2, c1 = 340, �2 = 1.4, c2 = 400, �3 = 1000, c3 = 1480. �3.4�

As opposed to Fig. 3, whenever the densities of the first two regions are similar between them
nd lower than the third region the case specific parameters and graphs �a� and �b� of Figure 4 for
=1,10, respectively, are as follows:

�1 = 1200, c1 = 1600, �2 = 1000, c2 = 1480, �3 = 1.2, c3 = 340. �3.5�

In Figs. 3 and 4 we see almost the same results of the problem according to the parameters in

FIG. 1.
3.4� and �3.5� as in �3.2� and �3.3�, respectively.
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From all the graphics related to Figs. 1–4 it can be seen that the fourth-order SRC produces
he most accurate results for all of the frequencies. It is known that the creeping waves are less
ervasive for the case in Fig. 1 objects and therefore the results are more accurate in the high-
requency range. Nevertheless the fourth-order SRC improves the SRC approximation consider-
bly for both Figs. 1 and 2 and also for all frequencies.

PPENDIX

It is well known that the solution of the Helmholtz equation satisfying the Sommerfeld
adiation condition can be represented by the series which is convergent in B1 and is

u = H0
�2��kr��

n=0

�
Fn���

rn + H1
�2��kr��

n=0

�
Gn���

rn . �A1�

For large values, the asymptotic expansion for u is

u � 2

�kr
e−i�kr−�/4��

�
fn���
rn . �A2�

FIG. 2.
n=0
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If we want to solve the problem numerically by direct methods; we must first make the region

1 finite. This can be done by means of a �2 curve which includes �1 curve and whose center is
n B2 and has radius r1. With these assumptions the problem is reduced to finding the solution of
he Helmholtz equation on the region bounded by �1 and �2 the solution must satisfy the emped-
nce condition on �1 and the boundary condition must be satisfied on �2 which will play the role
f the Sommerfeld radiation condition. How ever this condition is as yet unknown and the first
hing that comes to mind is to carry the Sommerfeld condition over to �2. That is,

� �u

�r
+ iku	

r=r1

= 0. �A3�

owewer, this is a wrong approach. It can be immediately seen that even for the first term of
xpansion �A2�, �A3� is not definite,

� �

�r
+ ik	 2

�kr
e−i�kr−�/4�f0��� = ��r−3/2� . �A4�

FIG. 3.
f the operator L1= �� /�r�+ ik+ �1/2r� is used instead of ��� /�r�+ ik�
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L1� 2

�kr
e−i�kr−�/4�f0���	 = 0 �A5�

ill be found. This result will be true for

e−i�kr�

kr
F��� , �A6�

here F��� is an arbitrary function and for �A2� the following will be valid:

�L1u�r=r1
= ��r−5/2� �A7�

That is when L1 is applied to u, a result less erroneous then the Sommerfeld radiation condi-
ion is obtained. Similarly, higher order boundary condition operators can be obtained from Ref. 6
nd are given by

Lm = � �

�r
+ ik +

4m − 3

2r
	Lm−1. �A8�

he first four operators in polar coordinates for the Helmholtz equations, which are used in this

FIG. 4.
aper, are
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L1u =
�u

�r
+ iku +

u

2r
, �A9�

L2u = 2�1

r
+ ik	 �u

�r
− �2k2 +

3

4r2 +
3ik

r
	u −

1

r2

�2u

��2 , �A10�

L3u = � 23

4r2 +
12ik

r
− 4k2	 �u

�r
+ � 15

8r3 +
45ik

4r2 −
14k2

r
− 4ik3	u + �− 9

2r3 −
3ik

r2 	 �2u

��2 −
1

r2

�2

��2� �u

�r
	 ,

�A11�

nd

L4u = �22

r3 +
71ik

r2 −
48k2

r
− 8ik3	 �u

�r
+ � 105

16r4 +
105ik

2r3 −
94k2

r2 −
52ik3

r
+ 8k4	u

+ �− 43

2r4 −
30ik

r3 +
8k2

r2 	 �2u

��2 + �− 8

r3 −
4ik

r2 	 �2

��2� �u

�r
	 +

1

r4

�4u

��4 , �A12�

espectively.
For a cylinder the second-, third-, and fourth-order radiation conditions are found to be

�1
�m�d

4v1

d�4 + �2
�m�d

2v1

d�2 + �3
�m�v1 = �4

�m�d
2w1

d�2 + �5
�m�w1, m = 2,3,4, �A13�

here

v1��� = u1�a,�� and w1��� =
1

k1

�u1

�r
�a,�� �A14�

nd �q
�m� are functions of =k1a. In �A13� the superscript m denotes the order. �q

�m� are defined as

�1
�2� = 0, �2

�2� = 1, �3
�2� = −

3

4
− 3i� + 2�2, �4

�2� = 0, �5
�2� = 2��1 + i�� ,

�1
�3� = 0, �2

�3� = − 3i� −
9

2
, �3

�3� =
15

8
+

45

4
i� − 14�2 − 4i�3,

�4
�3� = �, �5

�3� = − ��23

4
+ 12i� − 4�2	 , �A15�

�1
�4� = 1, �2

�4� = −
43

2
− 30i� + 8�2, �3

�4� =
105

16
+

105i�

2
− 94�2 − 52i�3 + 8�4,

�4
�4� = 4��2 + i��, �5

�4� = − ��22 + 71i� − 48�2 − 8i�3� .
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uantum entanglement and geometry of determinantal
arieties
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Quantum entanglement was first recognized as a feature of quantum mechanics in
the famous paper of Einstein, Podolsky, and Rosen. Recently it has been realized
that quantum entanglement is a key ingredient in quantum computation, quantum
communication, and quantum cryptography. In this paper, we introduce algebraic
sets, which are determinantal varieties in the complex projective spaces or the
products of complex projective spaces, for the mixed states on bipartite or multi-
partite quantum systems as their invariants under local unitary transformations.
These invariants are naturally arised from the physical consideration of measuring
mixed states by separable pure states. Our construction has applications in the
following important topics in quantum information theory: �1� separability crite-
rion, it is proved that the algebraic sets must be a union of the linear subspaces if
the mixed states are separable; �2� simulation of Hamiltonians, it is proved that the
simulation of semipositive Hamiltonians of the same rank implies the projective
isomorphisms of the corresponding algebraic sets; �3� construction of bound en-
tangled mixed states, examples of the entangled mixed states which are invariant
under partial transpositions �thus PPT bound entanglement� are constructed system-
atically from our new separability criterion. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2194629�

. INTRODUCTION

A bipartite pure quantum state ����H=HA
m

� HB
n , where HA

m ,HB
n are finite dimensional Hilbert

paces of dimensions m and n, and the tensor inner product is used on H, is called entangled if it
annot be written as ���= ��A� � ��B� for some ��A��HA

m and ��B��HB
n . A mixed state �or a density

atrix� �, which is a semipositive definite operator on H with trace 1, is called entangled if it
annot be written as

� = �ipiP��i
A� � P��i

B�, �1�

or some set of states ��i
A��HA

m , ��i
B��HB

n , and pi�0. Here Pv for a state �unit vector� v means
he �rank 1� projection operator to the vector v. If the mixed state � can be written in the form of
1�, it is called separable �see Refs. 28, 39, and 41�.

For the mixed state � on H=HA
m

� HB
n , we have the following partial transposition �PT and the

artial trace trB��� on HA
m �trA��� on HB

n can be defined similarly� defined as follows:

�ij��PT�kl� = �il���kj� ,

�
Electronic mail: chenhao@fudan.edu.cn
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�i�trB����k� = � j�ij���kj� , �2�

here ��1� , . . . , �m�	 , ��1� , . . . , �n�	 , ��11� , . . . �1n� , . . . �m1� , . . . , �mn�	 are orthogonal bases of HA�HB
n

nd H, respectively. We observe that the partial transposition of a separable mixed state is again a
eparable mixed state, this implies that the partial transposition of a separable mixed state is semi
ositive definite. This is the famous Peres PPT criterion of separability �see Ref. 38�.

For multipartite quantum systems, there are similar definitions of entangled and separable
ixed states �see Refs. 28, 39, and 41�. We restrict ourselves to the tripartite case. Let � be a
ixed state on H=HA

m
� HB

n
� HC

l . � is called separable if it can be written as

� = �ipiP��i
A� � P��i

B� � P��i
C�, �3�

or some set of states ��i
A��HA

m , ��i
B��HB

n , ��i
C��HC

l , and pi�0. If the mixed state � cannot be
ritten in the form of �3�, it is called entangled. Sometimes we also consider the separability

elative to the cut A :BC �B :AC, etc.�, that means � is considered as a mixed state on the bipartite
uantum system H=HA

m
� �HB

n
� HC

l �.
For a n-party quantum system H=HA1

m1 � ¯ � HAn

mn, local unitary transformations �acting on a
ixed state � by U�U†, where † is the adjoint� are those unitary transformations of the form U
UA1

� ¯ � UAn
, where UAi

is a unitary transformation on HAi

mi for i=1, . . . ,n. We can check that
ll eigenvalues �spectra� of � �global spectra� and, trAi1

¯Ail
��� of mixed states �, where i1 , . . . , il

�1, . . . ,n	, �local spectra� are invariant under local unitary transformations, and the invariants in
he examples of Refs. 33 and 34 are more or less spectra-involved. It is clear that separability �or
eing entangled� is an invariant property under local unitary transformations. For a mixed state �,
o judge whether it is entangled or separable and decide its entangled class �i.e., the equivalent
lass of all entangled �or separable� mixed states which are equivalent to � by local unitary
ransformations� is a fundamental problem in the study of quantum entanglement.28,41 Thus for the
urpose to quantify entanglement, any good measure of entanglement must be invariant under
ocal transformations.33,34,28,41 Another important concept is the distillable mixed state, which
eans that some singlets can be extracted from it by local operations and classical communication

LOCC� �see Ref. 28�. A mixed state � on H is distillable if and only if for some t, there exists
rojections PA :HA

� t→H2 and PB :HB
� t→H2, where H2 is a two-dimensional Hilbert space, such

hat the mixed state �PA � PB��� t�PA � PB�† is an entangled state in H2 � H2 �see Ref. 28�. A mixed
tate which cannot be distilled is called bound entangled mixed state.

The phonomenon of quantum entanglement lies at the heart of quantum mechanics since the
amous Einstein, Podolsky, and Rosen16 paper �see Refs. 8, 28, and 39�. Its importance lies not
nly in philosophical consideration of the nature of quantum theory, but also in applications where
t has emerged recently that quantum entanglement is the key ingredient in quantum computation20

nd communication4 and plays an important role in cryptography �Ref. 19�. These new applica-
ions of quantum entanglement have stimulated tremendous studies of quantum entanglements of
oth pure and mixed states from both theoretical and experimental view, for surveys we refer to
efs. 8, 28, 32, 39, and 41.

To find good necessary conditions of separability �separability criterion� is a fundamental
roblem in the study of quantum entanglement.28,41 Bell-type inequalities28 and entropy criterion28

re well-known numerical criterion of separable states. In 1996, Peres38 gave a striking simple
riterion which asserts that a separable mixed state � necessarily has �semi� positive definite
artial transposition �PPT�, which has been proved by Horodeckis25 also a sufficient condition of
eparability in 2�2 and 2�3 systems. The significance of PPT property is also reflected in the
acts that PPT mixed states satisfy Bell inequalities44 and cannot be distilled,28,26 thus the first
everal examples of the PPT entangled mixed states24 indicated the new phenomenon that there is
ound entanglement in nature.26 These examples were constructed from the so-called range crite-
ion of Horodecki �see Refs. 24 and 28�. However, constructing PPT entangled mixed states �thus
ound entanglement� is an exceedingly difficult task,6 and the only known systematic way of such

onstruction is the context of unextendible product base �UPB� in Ref. 6, which works in both the
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ipartite and multipartite case and is also based on Horodecki’s range criterion. The most recent
isorder criterion of separability in Ref. 37, which is stronger than entropy criterion, was proved
y the mathematics of majorization.

It has been realized that the entanglement of tripartite pure quantum states is not a trivial
xtension of the entanglement of bipartite pure quantum states.21 Recently Bennett et al.,5 studied
he exact and asymptotic entanglement measure of multipartite pure states, which showed essential
ifference to that of bipartite pure states. On the other hand Carteret et al.,12 proved a generali-
ation of Schmidt decomposition for pure multipartite states. Basically, the understanding of
ultipartite quantum entanglement for both pure and mixed states, is much less advanced.

It is clear that any separability criterion for bipartite mixed states, such as Peres PPT
riterion38 and Horodecki range criterion,24,28 can be applied to multipartite mixed states for their
eparability under various cuts. For example, from Peres PPT criterion, a separable multipartite
ixed state necessarily has all its partial transpositions semipositive. In Ref. 27, Horodeckis

tudied the separability criterion of multipartite mixed states by linear maps. Classification of
riqubit mixed states was studied in Ref. 2.

There have been many interesting works �Refs. 10, 11, 30, 35, and 43� for understanding
uantum entanglement and related problems from the view of representation theory and topology.

The physical motivation of this paper is as follows. We consider the following situation. Alice
nd Bob share a bipartite quantum system HA

m
� HB

n , and they have a mixed state �. Now they want
o understand the entanglement properties of �. It is certain that they can prepare any separable
ure state ��1� � ��2� separately. Now they measure � with this separable pure state, the expecta-
ion value is ��1 � �2����1 � �2�. If Alice’s pure state ��1� is fixed, then ��1 � �2����1 � �2� is a
ermitian bilinear form on Bob’s pure states �i.e., on HB

n�. We denote this bilinear form by
�1����1�. Intuitively the degenerating locus VA

k ���= ���1�� P�HA
m� : rank���1����1���k	, where

P�HA
m� is the projective space of all pure states in HA

m, should contain the physical information of
and it is almost obvious that these degenerating locus are invariant under local unitary trans-

ormations. For a multipartite quantum system, a similar consideration leads to some Hermitian
ilinear forms on some of its parts and similarly we can consider the degenerating locus of these
ermitian bilinear forms. We prove that these degenerating locus are algebraic sets, which are
eterminantal varieties, for the mixed states on both bipartite and multipartite quantum systems.
hey have the following properties.

�1� When we apply local unitary transformations on the mixed state the corresponding alge-
raic sets are changed by local �unitary� linear transformations, and thus these invariants can be
sed to distinguish inequivalent mixed states under local unitary transformations.

�2� The algebraic sets must be linear �a union of some linear subspaces� if the mixed state is
eparable, and thus we give a new separability criterion.

�3� The algebraic sets are independent of eigenvalues and only measure the positions of
igenvectors of the mixed states.

�4� These algebraic sets can be calculated easily.
From our construction here, we establish a connection between quantum entanglement and

lgebraic geometry. Actually from our results below, we can see that if the Fubini-Study metric of
he projective complex space is used, the metric properties of these algebraic sets are also pre-
erved when local unitary transformations are applied on the mixed state. Hence we establish a
onnection between quantum entanglement and both the algebraic geometry and complex differ-
ntial geometry. Any algebraic geometric or complex differential geometric invariant of the alge-
raic set of the mixed state is an invariant of the mixed state under local unitary transformations.

The determinantal varieties �Ref. 23 Lecture 9 and Ref. 3 Chap. II� have been studied from
ifferent motivations such as geometry of curves,3,18 geometry of determinantal varieties,17 Hodge
heory,22 commutative algebra,15 and even combinatorics.1 It is interesting to see that it can be
seful even in quantum information theory. We refer to Refs. 23 and 3 for the standard facts about
eterminantal varieties.

The paper is organized as follows. We define the algebraic sets of the mixed states and prove

heir basic properties including the separability criteria based on these algebraic sets in Sec. II. In
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ec. III, we indicate briefly how numerical invariants of the bipartite or multipartite mixed states
nder local unitary transformations can be derived from these algebraic sets. As an easiest ex-
mple, Schmidt rank of a pure state on bipartite quantum systems, a classical concept in quantum
ntanglement, is shown to be the codimension of the algebraic set. Many examples of entangled
ixed states corresponding to the famous determinantal varieties in algebraic geometry, such as
egre varieties, rational normal scrolls and generic determinantal varieties are constructed in Sec.
V. We also show that a well-known theorem of Eisenbud17 can help us to construct many en-
angled bipartite mixed states of low ranks. In Sec. V we introduce a family of the generalized
molin states, which is a natural extension of Smolin’s physical construction40 from algebraic-
eometric view. In Secs. VI and VII, it is proved that these algebraic sets are nonempty for low
ank mixed states, and indicate how a finer result with the same idea �Theorem 9�� can be
otentially used to treat the entanglement properties of high rank mixed states. Based on the
lgebraic sets introduced in Sec. II, a necessary condition about the simulating Hamiltonians
fficiently using local unitary transformations is given in Sec. VIII. In Sec. IX, we give a con-
inuous family of bipartite mixed states, tripartite pure states, and bipartite Hamiltonians with the
roperty that the eigenvalues �spectra� of them and their partial traces are constant, however, their
ntanglement properties are distinct. This offers strong evidence that it is hopeless to characterize
he entanglement properties by only using eigenvalue spectra. In Sec. X, we illustrate by an
xplicit example that our separability criterion can be used to construct PPT entangled mixed
tates �thus bound entanglement� systematically.

I. INVARIANTS AND SEPARABILITY CRITERIA

Now we define the invariants and give the coordinate form. Let H=HA
m

� HB
n , ��ij�	, where i

1, . . . ,m and j=1, . . . ,n, be an orthogonal base and � be a mixed state on H. We represent the
atrix of � in the bases ��11� , . . . �1n� , . . . , �m1� , . . . , �mn�	, and consider � as a blocked matrix �
��ij�1�i�m,1�j�m with each block �ij a n�n matrix corresponding to the �i1� , . . . , �in� rows and

he �j1� , . . . , �jn� columns. For any pure state ��1�=r1�1�+ ¯ +rm�m�� P�HA
m� the matrix of the

ermitian linear form ��1����1� with the basis �1� , . . . , �n� is �i,jrirj
*�ij. Thus the degenerating

ocus are as follows.
Definition 1: We define

VA
k ��� = ���1� � P�HA

m�:rank���1����1�� � k	 = ��r1, . . . ,rm� � CPm−1:rank��i,jrirj
*�ij� � k	 ,

�4�

here k=0,1 , . . . ,n−1. Similarly VB
k ����CPn−1, where k=0,1 , . . . ,m−1, can be defined.

Example 1: Let �= �1/mn�Imn be the maximally mixed state, we easily have VA
k ���

��r1 , . . . ,rm� : rank��riri
*In��k	=� for k=0,1 , . . . ,n−1, where � is the complex conjugate.

Example 2: Let H=HA
2

� HB
n , T1 ,T2 be 2 n�n matrices of rank n−1 such that the n� �2n�

atrix �T1 ,T2� has rank n. Let T� be a 2n�2n matrix with 11 block T1, 22 block T2, 12 and 21
locks 0. Its rows correspond to the orthogonal base �11� , . . . , �1n� , �21� , . . . , �2n� of H. Let �
�1/D�TT† �where D is a normalizing constant� be a mixed state on H. It is easy to check that �

s of rank 2n−2 and VA
n−1���= ��r1 ,r2� :r1r2=0	.

Let H=HA
m

� HB
n

� HC
l . Take an orthogonal base of H, �ijk�, where, i=1, . . . ,m, j=1, . . . ,n, and

=1, . . . , l, and � is a mixed state on H. We represent the matrix of � in the base
�111� , . . . �11l� , . . . , �mn1� , . . . , �mnl�	 as �= ��ij,i�j��1�i,i��m,1�j,j��n, and �ij,i�j� is a l� l matrix.
onsider H as a bipartite system as H= �HA

m
� HB

n� � HC
l , then we have VAB

k ���= ��r11, . . . ,rmn�
CPmn−1 : rank��rijri�j�

† �ij,i�j���k	 defined as above. This set is actually the degenerating locus of
he Hermitian bilinear form ��12����12� on HC

l for the given pure state ��12�=�i,j
m,nrij�ij�� P�HA

m

� HB
n�. When the finer cut A :B :C is considered, it is natural to take ��12� as a separable pure state

�12�= ��1� � ��2�, i.e., there exist ��1�=�iri
1�i�� P�HA

m� and ��2�=� jrj
2�j�� P�HB

n� such that rij

ri
1rj

2. In this way the tripartite mixed state � is measured by tripartite separable pure states
�1� � ��2� � ��3�. Thus it is natural that we define VA:B

k ��� as follows. It is the degenerating locus
l
f the bilinear form ��1 � �2����1 � �2� on HC.
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Definition 2: Let � :CPm−1�CPn−1→CPmn−1 be the mapping defined by

��r1
1, . . . rm

1 ,r1
2, . . . ,rn

2� = �r1
1r1

2, . . . ,ri
1rj

2, . . . rm
1 rn

2� �5�

i.e., rij =ri
1rj

2 is introduced).
Then VA:B

k ��� is defined as the preimage �−1�VAB
k ����.

Similarly VB:C
k ��� ,VA:C

k ��� can be defined. In the following statement we just state the result
or VA:B

k ���. The conclusion holds similarly for other V’s.
For the mixed state � on the multipartite system H=HA1

m1 � ¯ � HAk

mk, we want to study the
ntanglement under the cut Ai1

:Ai2
: ¯ :Ail

: �Aj1
¯Ajk−l

�, where �i1 , . . . , il	� �j1 , . . . , jk−l	
�1, . . . ,k	. We can define the set VAi1

:¯:Ail

k ��� similarly.

It is obvious we have the following results about the “invariance” under local unitary trans-
ormations.

Theorem 1: Let T=UA � UB, where UA and UB are the unitary transformations on HA
m and

B
n , respectively. Then VA

k �T����=UA
−1�VA

k ����, that is VA
k ��� �respectively, VB

k ���� is an “invariant”
p to a linear transformation of CPm−1 of the mixed state � under local unitary transformations.

Theorem 1�: Let T=UA � UB � UC, where UA, UB, and UC are unitary transformations on HA
m,

B
n , and HC

l , respectively. Then VA:B
k �T����=UA

−1�UB
−1�VA:B

k ����, that is VA:B
k ��� is an “invariant”

p to a linear transformation of CPm−1�CPn−1 of the mixed state � under local unitary transfor-
ations.

Theorem 1�: Let T=UAi1
� ¯ � UAil

� Uj1¯jk−l
, where UAi1

, . . . ,UAil
,Uj1¯jk−l

are unitary

ransformations on HAi1

mi1 , . . . ,HAil

mil and �HAj1

mj1 � ¯ � HAjk−l

mjk−l�, respectively. Then VAi1
:¯:Ail

k �T����

UAi1

−1 � ¯ �UAil

−1�VAi1
:¯:Ail

k ����.
Remark 1: Since UAi1

−1 � ¯ �UAil

−1 certainly preserves the standard Euclid metric of complex

inear space and hence the �product� Fubini-Study metric of the product of projective complex
paces, all metric properties of VAi1

:¯:Ail

k ��� are preserved when the local unitary transformations

re applied to the mixed state �.
Moreover from the proof it is easy to see that all algebraic-geometric properties �since VA

k ���,
B
k ��� are algebraic sets as proved in Theorem 2� of VA

k ��� �respectively, VB
k ���� are preserved even

nder local linear inversible transformations �i.e., T=TA � TB where TA, TB are just linear invers-
ble operators of HA

m, HB
n�

We observe VA
k ��PT�= �VA

k ����*, here * is the conjugate mapping of CPm−1 defined by
r1 , . . . ,rm�*= �r1

* , . . . ,rm
* �. It is clear that this property holds for other V’s invariants.

Theorem 2: VA
k ��� �respectively, VB

k ���� is an algebraic set in CPm−1 �respectively, CPn−1�.
From Definition 2 and Theorem 2 we immediately have the following result.
Theorem 2�: VA:B

k ��� is an algebraic set in CPm−1�CPn−1.
The general result can be stated as follows.
Theorem 2�: VAi1

:¯:Ail

k ��� is an algebraic set in CPmi1
−1� ¯ �CPmil

−1.

It is easy to see from Definitions that we just need to prove Theorem 2.
Theorem 3: If � is a separable mixed state, VA

k ��� �respectively, VB
k ���� is a linear subset in

Pm−1 �respectively, CPn−1�, i.e., it is a union of the linear subspaces.
In the following statement we give the separability criterion of the mixed state � under the cut

:B :C. The “linear subspace of CPm−1�CPn−1” means the product of a linear subspace in CPm−1

nd a linear subspace in CPn−1.
Theorem 3�: If � is a separable mixed state on H=HA

m
� HB

n
� HC

l under the cut A :B :C,

A:B
k ��� is a linear subset in CPm−1�CPn−1, i.e., it is a union of the linear subspaces.

The general result can be stated as follows.
Theorem 3�: If � is a separable mixed state on H=HA1

m1 � ¯ � HAk

mk under the cut

i1
:Ai2

: ¯ :Ail
: �Aj1

¯Ajk−l
�, VAi1

:¯:Ail

k ��� is a linear subset in CPmi1
−1� ¯ �CPmil

−1, i.e., it is a

nion of the linear subspaces.

We just proved Theorem 3 and Theorem 3�. The proof of Theorem 3� is similar.
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For the purpose to prove Theorems 2 and 3 we need the following lemmas.
Lemma 1: Let �e1 , . . . ,eh	 be an orthogonal base of a h dimension Hilbert space H, �

�l=1
t plPvl

, where vl is unit vector in H for l=1, . . . , t, vl=�k=1
h aklek, and A= �akl�1�k�h,1�l�t is the

� t matrix. Then the matrix of � with the base �e1 , . . . ,eh	 is APA†, where P is the diagonal
atrix with diagonal entries p1 , . . . , pt.

Proof: We note that the matrix of Pvl
with the basis is �l�l

† where �l= �a1l , . . . ,ahl�	 is just the
xpansion of vl with the basis. The conclusion follows immediately.

The following conclusion is a direct matrix computation from Lemma 1 or see Ref. 24.
Corollary 1: Suppose pi
0, then the image of � is the linear span of vectors v1 , . . . ,vt.
From Corollary 1 it is clear that the ranges of the separable mixed states and its partial

ransposition are the linear span of separable pure states. This is the so-called range criterion of
orodecki �see Refs. 24 and 28�.

Now let H be the HA
m

� HB
n , �e1 , . . . ,emn	 be a orthogonal bases

�11� , . . . , �1n� , . . . , �m1� , . . . , �mn�	 and �=�l=1
t plPvl

with positive pl’s be a mixed state on H. We
ay consider the mn� t matrix A as a m�1 blocked matrix with each block Aw, where w
1, . . . ,m, a n� t matrix corresponding to ��w1� , . . . , �wn�	. Then it is easy to see �ij =AiPAj

†,
here i=1, . . . ,m, j=1, . . . ,m. Thus

�rirj
*�ij = ��riAi�P��riAi�†. �6�

Lemma 2: �rirj
*�ij is a (semi) positive definite n�n matrix. Its rank equals the rank of ��riAi�.

Proof: The first conclusion is clear. The matrix �rirj
*�ij is of rank k if and only if there exist

−k linear independent vectors cj = �c1
j , . . . ,cn

j � with the property,

cj��ijrirj
*�ij��cj�* = ��iric

jAi�P��iric
jAi�† = 0. �7�

Since P is a strictly positive definite matrix, our conclusion follows immediately.
Proof of Theorem 2: From Lemma 1, we know that VA

k ��� is the zero locus of all determinants
f �k+1�� �k+1� submatrices of ��riAi�. The conclusion is proved.

Because the determinants of all �k+1�� �k+1� submatrices of ��riAi� are homogeneous poly-
omials of degree k+1, thus VA

k ��� �respectively, VB
k ���� is an algebraic subset �called determinan-

al varieties in algebraic geometry16,17� in CPm−1 �respectively, CPn−1�.
The point here is for different representations of � as �=� jpjPvj

with pj’s positive real
umbers, the determinantal varieties from their corresponding �iriAi’s are the same.

Now suppose that the mixed state � is separable, i.e., there are unit product vectors a1

� b1 ,¼ . ,as � bs such that �=�l=1
s qlPal�bl

, where q1 , . . . ,qs are positive real numbers. Suppose

u=au
1�1�+ ¯ +au

m�m�, bu=bu
1�1�+ ¯ +bu

n�n� for u=1, . . . ,s. Hence the vector representation of

u � bu with the standard basis is au � bu=�ijau
i bu

j �ij�. Consider the corresponding mn�s matrix C
f a1 � b1 , . . . ,as � bs as in Lemma 1, we have �=CQC†, where Q is diagonal matrix with diag-
nal entries q1 , . . . ,qs. As before we consider C as m�1 blocked matrix with blocks Cw, w
1, . . . ,m. Here Cw is a n�s matrix of the form Cw= �aj

wbj
i�1�i�n,1�j�s=BTw, where B

�bj
i�1�i�n,1�j�s is a n�s matrix and Tw is a diagonal matrix with diagonal entries a1

w , . . . ,as
w.

hus from Lemma 1, we have �ij =CiQCj
†=B�TiQTj

†�B†=BTijB
†, where Tij is a diagonal matrix

ith diagonal entries q1a1
i �a1

j �† , . . . ,qsas
i�as

j�†.
Proof of Theorem 3: As in the proof of Theorem 2, we have

�rirj
†�ij = �rirj

†BTijB
† = B��rirj

†Tij�B†. �8�

Here we note �rirj
†Tij is a diagonal matrix with diagonal entries q1��ria1

i �
��ria1

i �† , . . . ,qs��rias
i���rias

i�†. Thus �rirj
*�ij =BGQG†B†, where G is a diagonal matrix with

iagonal entries �ria1
i , . . . ,�rias

i . Because Q is a strictly positive definite matrix, from Lemma 1
e know that �rirj

†�ij is of rank smaller than k+1 if and only if the rank of BG is strictly smaller

han k+1. Note that BG is just the multiplication of s diagonal entries of G �which are linear forms
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f r1 , . . . ,rm� on the s columns of B, thus the determinants of all �k+1�� �k+1� submatrices of BG
in the case s�k+1, otherwise automatically linear� are the multiplications of a constant �possibly
ero� and k+1 linear forms of r1 , . . . ,rm. Thus the conclusion is proved.

From Lemma 1 and the proof of Theorems 2 and 3, �iriAi play a key role. If we take the
tandard �=� j=1

r pjP�j
, where pj ,� j , j=1, . . . ,r are eigenvalues and eigenvectors, the correspond-

ng �iriAi measures the geometric positions of eigenvectors in HA
m

� HB
n . It is obvious from the

roof of Theorem 2, the invariants defined in Definition 1 are independent of p1 , . . . , pr, the global
igenvalue spectra of the mixed states.

Proof of Theorem 3�: We first consider the separability of � under the cut AB :C, i.e., �
� f=1

g pfPaf �cf
, where af �HA

m
� HB

n and cf �HC
l for f =1, . . . ,g. Consider the separability of �

nder the cut A :B :C, we have af =af� � af�, af��CA
m ,af��CB

m. Let af = �af
1 , . . . ,af

mn�, af�
�af�

1 , . . . ,af�
m�, and af�= �af�

1 , . . . ,af�
n� be the coordinate forms with the standard orthogonal basis

�ij�	, ��i�	, and ��j�	, respectively, we have that af
ij =af�

iaf�
j. Recall the proof of Theorem 3, the

iagonal entries of G in the proof of Theorem 3 are

�ijrijaf
ij = �ijri

1af�
irj

2af�
j = ��iri

1af�
i��� jrj

1af�
j� . �9�

Thus as argued in the proof of Theorem 3, VA:B
k ��� must be the zero locus of the multiplica-

ions of the linear forms in �9�. The conclusion is proved.

II. NUMERICAL INVARIANTS

It is a standard fact in algebraic geometry that V’s defined in Sec. II are the sum of irreducible
lgebraic varieties �components�. Suppose VA

k ���=V1� ¯ �Vt. From Theorem 1 and Remark 1,
e know that t is a numerical invariant of � when local linear inversible transformations are

pplied to �. Actually, since there are a lot of numerical algebraic-geometric invariants of these
omponents, e.g., dimensions, cohomology classes �represented by Vi’s in H*�CPm−1��, cohomol-
gy rings of Vi’s, etc. We can get many numerical invariants of the mixed state when local linear
nversible transformations are applied to them. In this way, we get a very powerful tool of
umerical invariants to distinguish the entangled classes of the mixed states in composite quantum
ystems.

On the other hand, if local unitary transformations are applied to the mixed states, it is known
hat even the metric properties of V’s �the metric on V is from the standard Fubini-Study metric of
rojective spaces� are invariant. Thus any complex differential geometric quantity, such as the
olumes of Vi’s, the integrations �over the whole component� of some curvature functions of Vi’s,
re the invariants of the mixed states under local unitary transformations.

For any given pure state �v� on a bipartite quantum system, �v��HA
m

� HB
n , there exist orthogo-

al basis ��1� , . . . , ��m� of HA
m and orthogonal basis ��1� , . . . , ��n� of HB

n , such that �v�=�1��1�
� ��1�+ ¯ +�d��d� � ��d�, where d�min�m ,n	. This is Schmidt decomposition �see Ref. 39�. It is
lear that d is an invariant under local unitary transformations. This number is called the Schmidt
ank of the pure state �v�. It is clear that �v� is separable if and only if its Schmidt rank is 1.
chmidt rank of pure states on a bipartite quantum system is a classical concept in the theory of
uantum entanglement, it is actually the codimension of the invariant VA

0��� for the pure state �
P�v�.

Let �= P�v� be a pure state on HA
m

� HB
n with m�n. From Theorem 1 about the invariance of

A
0���, we can compute it from its Schmidt decomposition �v�=�i=1

d �i��i� � ��i�. It is clear that

A
0���= ��r1 , . . . ,rm��CPm−1 : ��1r1 , . . . ,�drd ,0 , . . . ,0�	=0	.

Proposition 1: For the pure state �= P�v�, d=m if and only if VA
0���=� and d=m−1

dim�VA
0����=n−1−dim�VB

0���� if d�m−1.
In this way we show that the Schmidt rank of a pure state is just the codimension of the

lgebraic set, and thus it seems interesting to study the quantity m−1−dim�VA
k ���� for mixed

tates, since it is nonlocal invariant and the generalization of the classical concept of Schmidt rank
14,42
f pure states.
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V. EXAMPLES

Now we give some examples to show how to use Theorems 1, 2, and 3 to construct and
istinguish the entangled classes of the mixed states.

Example 3: Let H=HA
m

� HB
n and �a1,. . .,an

= �1/n���i=1
n Pai� �i��, where ai, i=1, . . . ,n, are unit

ectors in HA
m. This is a rank n separable mixed state. Suppose ai= �ai

1 , . . . ,ai
m�, i=1, . . . ,n, the

xpansion with respect to the standard basis �1� , . . . , �m� of HA
m. Let li�r1 , . . . ,rm�=ai

1r1+ ¯

ai
mrm for i=1, . . . ,n be n linear forms. It is easy to check that VA

n−1���= ��r1 , . . . ,rm� : l1¯ ln=0	.
Proposition 2: The mixed states �a1,. . .,an

and �b1,. . .,bn
are equivalent under the local unitary

ransformations if and only if there exists a unitary transformation UA on HA
m such that the n

ectors b1 , . . . ,bn are exactly UA�a1� , . . . ,UA�an�, i.e., bi=UA�aij
�, where �i1 , . . . , in	= �1, . . . ,n	.

Proof: The “if” part is clear. Let li��r1 , . . . ,rm�=bi
1r1+ ¯ +bi

mrm for i=1, . . . ,n. Then

A
n−1��a1,. . .,an

� �respectively, VA
n−1��b1,. . .,bn

�� are the union of n hyperplanes defined by li=0 �re-
pectively li�=0� for i=1, . . . ,n. It should be noted here that these hyperplanes are counted with
ultiplicities. From Theorem 1 we get the conclusion.

Segre variety �n,m, which is the image of the following map,  :CPn�CPm→CP�n+1��m+1�−1

here ��X0 , . . . ,Xn� , �Y0 , . . . ,Ym��= �. . . ,XiY j , . . . �, is a famous determinantal variety �see Ref. 23,
p. 25 and 26�. It is clear that Segre variety is irreducible and not a linear subvariety. We consider
he Segre variety �1,m in the case n=1, actually �1,m= ��r1 , . . . ,r2n� : rank�M��1	 where M is the
ollowing matrix:


 r1 r2 ¯ rn

rn+1 rn+2 ¯ r2n
� . �10�

Example 4 (entangled mixed state from Segre variety): Let H=HA
2m

� HB
2 , ��i�= �1/�2���i1�

��m+ i�2�� for i=1, . . . ,m and �= �1/m��P��1
�+ ¯ + P��m��. This is a mixed state of rank m. By

omputing �iriAi as in the proof of Theorem 2, we get VA
1���=�1,m. Thus � is an entangled mixed

tate.
The rank 1 locus Xl,n−l−1= �rank�R��1	 of the following 2� �n−1� matrix R:


r0 . . . rl−1 rl+1 . . . rn−1

r1 . . . rl rl+2 . . . rn
�

s the rational normal scroll �see p. 106 of Ref. 23�. The mixed states corresponding to them are
s follows.

Example 5 (entangled mixed state from rational normal scroll): Let H=HA
n+1

� HB
2 and ��1�

�1/�2���01�+ �12�� , . . . , ��i�= �1/�2����i−1�1�+ �i2�� , . . . , ��l�= �1/�2����l−1�1�+ �l2�� , ��l+1�
�1/�2����l+1�1�+ ��l+2�2�� , . . . , �� j�= �1/�2���j1�+ ��j+1�2�� , . . . , ��n−1�= �1/�2����n−1�1�
�n2��. We consider the mixed state �l= �1/ �n−1���P��1

�+ ¯ + P��n−1�� of rank n−1 on H. It is
lear from Sec. II that VA

1���=Xl,n−l−1�CPn. From the well-known fact in algebraic geometry �see
p. 92 and 93 of Ref. 23� we have the following result.

Proposition 3. The mixed states �l , l=1, . . . , ��n−1� /2� are entangled and �l and �l� for l
l� are not equivalent under local unitary transformations.

We need to recall a well-known result in the theory of determinantal varieties �see Proposition
n p. 67 of Ref. 8�. Let M�m ,n�= ��xij� :1� i�m ,1� j�n	 �isomorphic to CPmn−1� be the pro-
ective space of all m�n matrices. For an integer 0�k�min�m ,n	, M�m ,n�k is defined as the
ocus �A= �xij��M�m ,n� : rank�A��k	. M�m ,n�k is called generic determinantal varieties.

Proposition 4: M�m ,n�k is an irreducible algebriac subvariety of M of codimension �m−k�
�n−k�.

Suppose m�n, we now construct a mixed state � with VA
m−1���=M�m ,n��m−1�.

Example 6 (generic entangled mixed state): Let H=HA
mn

� HB
m, where m�n, and Aij, i

1, . . . ,m, j=1, . . .n be m�n matrix with only nonzero entry at ij position equal to 1. Let A be a
locked mn�1 matrix with ij block Aij. Here the kth row of Aij in A corresponds to the vector

2 †
�ij�k� in the standard basis of H. Hence A is a size m n�n matrix. Let �= �1/D�AA be a mixed
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tate on H. �Here D is a normalizing constant.� It is a rank n mixed state.
It is easy to compute �ijrijAij = �rij�1�i�m,1�j�n �up to a constant�. Thus we have VA

m−1���
M�m ,n��m−1�. From Proposition 4 and Theorem 3, � is an entangled mixed state.

Example 7: Let H=HA
m

� HB
n

� HC
m, ��l�= �1/m��i=1

m �ili� for l=1, . . . ,n and �= �1/n��P��1
�

¯ + P��n�� be a rank n mixed state on H. It is clear that under the cut B :AC, � is separable.
owever, under the cut AB :C, we can check that � is just the mixed state in Example 6 and thus

ntangled. Similarly under the cut A :BC, � is also the mixed state in Example 6 and thus en-
angled. Hence this is a mixed state on tripartite quantum system with the property that it is
eparable under B :AC cut and entangled under AB :C and A :BC cuts.

Example 8 (entangled mixed states from Eisenbud theorem (Ref. 17): Let H=HA
h

� HB
m, where

�nm−m+2 and n�m are positive integers, Ai, i=1, . . . ,h be m�n matrix with the property:
he space M of linear forms �of r1 , . . . ,rh� span by the entries of T�r1 , . . . ,rh�=�iriAi is of dimen-
ion h. Let A be the hm�n matrix with ith block Ai. Here the kth row of Ai in A corresponds to
he vector �ik� in the standard basis of H. Let �= �1/D�AA† �D is a normalizing constant� be a
rank n� mixed state on H. From the proof of Theorem 2 we have VA

m−1���
��r1 , . . . ,rh� : rank�T�r1 , . . . ,rh���m−1	. We observe that when h=mn it is just the mixed state in
xample 6.

Theorem 6: � is an entangled mixed state.
Proof: It is clear that M�m ,n� is 1-generic �see Ref. 17, p. 548�. We can see that the space M

as codimension �in M�m ,n�� smaller or equal to m−1 �here v=n, w=m, k=m−1 as referred to
heorem 2.1 on p. 552 of Ref. 17�. From definition it is clear that VA��� is just Mm−1, which is

educed and irreducible and of codimension n−m+1 in M�m ,n� from Theorem 2.1 of Ref. 17. The
onclusion is proved.

Eisenbud theorem �Theorem 2.1 in Ref. 17 and thus Theorem 6 here� gives us a general
ethod to construct many entangled states of low ranks, since the condition about M is not a very

trong restriction.
Example 9 (Bennett-DiVincenzo-Mor-Shor-Smolin-Terhal mixed state from UPB (Ref. 7)): Let

=HA
2

� HB
2

� HC
2 , ��+�= �1/�2���1�+ �2��, ��−�= �1/�2���1�− �2��. Consider the linear subspace T

paned by the following four vectors �1� � �2� � ��+�, �2� � ��+� � �1�, ��+� � �1� � �2�, ��−� � ��−�
� ��−�. Now P is the projection to the complementary space T� of T and �= �1/D�P is a rank 4
PT mixed state on H for any bipartite cut �see Ref. 7�. It is proved in Ref. 7 that � is entangled
nder the cut A :B :C �thus bound entanglement�, however, it is separable under the cuts
:BC ,B :AC ,C :AB. Now we can compute its invariants VAB

1 ��� and VA:B
1 ���. It is easy to see from

heorem 3 that VAB
1 ��� should be linear, however we can see that VA:B

1 ��� is also linear from our
omputation below, though it is entangled under the cut A :B :C.

It is easy to check that the following four vectors �010�–�011�, �100�–�110�, �001�–�101�, �000�–
111� are the base of T�. Thus the matrix A is of the following form �with rows corresponding to
000�, �001�, �010�, �011�, �100�, �101�, �110�, �111��:


0 0 0 1

0 0 1 0

1 0 0 0

− 1 0 0 0

0 1 0 0

0 0 − 1 0

0 − 1 0 0

0 0 0 − 1

� �11�

nd �ijrijAij is of the following form:


 r01 r10 − r11 0 r00 � . �12�

− r01 0 r00 − r10 − r11
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Thus VAB
1 ��� is the union of the following three points �1:1:0:0�, �0:1:0:1�, �0:0:1:0� in CP3

nd VA:B
1 ��� is union of CP1� �1:0�, �0:1��CP1, and �1:0�� �0:1� in CP1�CP1.

. GENERALIZED SMOLIN STATE

Smolin40 introduced a rank 4 mixed state �= 1
4 �P�v1

�+ P�v2�+ P�v3�+ P�v4�� on 4-party quantum
ystem HA

2
� HB

2
� HC

3
� HD

2 , where

�v1� = 1
2 ��0000� + �0011� + �1100� + �1111�� ,

�v2� = 1
2 ��0000� − �0011� − �1100� + �1111�� ,

�v3� = 1
2 ��0101� + �0110� + �1001� + �1010�� ,

�v4� = 1
2 ��0101� − �0110� − �1001� + �1010�� .

This mixed state � is a bound entangled state when four parties A ,B ,C ,D are isolated.
The following example, which is a continuous family �depending on eight parameters� of

ixed state on the four-party quantum system HA
2

� HB
2

� HC
2

� HD
2 separable for any 2:2 cut but

ntangled for any 1:3 cut �thus bound entangled mixed state when A ,B ,C ,D are isolated�, can be
hought of as a generalization of Smolin’s mixed state in Ref. 40. We prove that the generic

embers in this family of mixed states are not equivalent under local unitary transformations
Theorem 7 below�.

Example 10: Let H=HA
2

� HB
2

� HC
2

� HD
2 and h1 ,h2 ,h3 ,h4 �understood as row vectors� be four

utually orthogonal unit vectors in C4 and a1 ,a2 ,a3 ,a4 ,a5 ,a6 ,a7 ,a8 be eight nonzero real param-
ters satisfying a1a8=a2a7=a3a6=a5a4. Consider the 16�4 matrix T with 16 rows as T
�a1h1

	 ,0 ,0 ,a2h2
	 ,0 ,a3h3

	 ,a4h4
	 ,0 ,0 ,a5h4

	 ,a6h3
	 ,0 ,a7h2

	 ,0 ,0 ,a8h1
	�	. Let ��1��, ��2��, ��3��, ��4�� be

our vectors in H whose expansions with the basis �0000�, �0001�, �0010�, �0011�, �0100�, �0101�,
0110�, �0111�, �1000�, �1001�, �1010�, �1011�, �1100�, �1101�, �1110�, �1111� are exactly the four
olumns of the matrix T. Let �= �1/D�TT† �D is a normalizing constant� be the mixed states
matrix with respect to the standard base of H as above�.

It is easy to check that when h1= �1/�2��1,1 ,0 ,0�, h2= �1/�2��1,−1,0 ,0�, h3= �1/�2�
�0,0 ,1 ,1�, h4= �1/�2��0,0 ,1 ,−1� and all ai’s are 1, it is just the Smolin’s mixed state in Ref.

0.
Now we prove that � is invariant under the partial transposes of the cuts

B :CD ,AC :BD ,AD :BC.
Let the “representation” matrix T= �bijkl

t �i=0,1,j=0,1,k=0,1,l=0,1,t=1,2,3,4 be the matrix with columns
orresponding the expansions of �1 ,�2 ,�3 ,�4. Then we can consider that T= �T1 ,T2 ,T3 ,T4�	 as a
locked matrix of size 4�1 with each block Tij = �bkl

t �k=0,1,l=0,1,=1,2,3,4 a 4�4 matrix, where ij
00,01,10,11. Because h1 ,h2 ,h3 ,h4 are mutually orthogonal unit vectors we can easily check

hat TijTi�j�
† =Ti�j�Tij

† from the condition a1a8=a2a7=a3a6=a5a4. Thus it is invariant when the
artial transpose of the cut AB :CD is applied.

With the same methods we can check that � is invariant when the partial transposes of the cuts
C :BD, AD :BC are applied. Hence � is PPT under the cuts AB :CD, AC :BD ,AD :BC. Thus from
result in Ref. 31 which claims that the PPT mixed states on HT

m
� HS

n with their ranks not bigger
han max�m ,n	 are separable, we know � is separable under these cuts AB :CD, AC :BD ,AD :BC.

Now we want to prove � is entangled under the cut A :BCD by computing VBCD
1 ���. From the

revious arguments, we can check that VBCD
1 ��� is the locus of the condition: a1h1r000+a2h2r011

a3h3r101+a4h4r110 and a7h1r100+a8h2r111+a5h3r001+a6h4r010 are linear dependent. This is
quivalent to the condition that the matrix �8� is of rank 1,


a7r100 a8r111 a5r001 a6r010� .

a1r000 a2r011 a3r101 a4r110
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From Ref. 23, pp. 25 and 26 we can check that VBCD
1 ��� is exactly the famous Segre variety

n algebraic geometry. It is irreducible and thus cannot be linear. From Theorem 3, � is entangled
nder the cut A :BCD. Similarly we can prove that � is entangled under the cuts B :ACD, C :ABD,
:ABC.

Now we compute VA:B
3 ���. From the previous arguments and Definition 2, it is just the locus

f the condition that the vectors h1�a1r0
1r0

2+a7r1
1r1

2�, h3�a3r0
1r1

2+a5r1
1r0

2�, h4�a4r0
1r1

2+a6r1
1r0

2�,
2�a2r0

1r0
2+a8r1

1r1
2� are linear dependent. Since h1 ,h2 ,h3 ,h4 are mutually orthogonal unit vectors,

e have

VA:B
3 ��� = ��r0

1,r1
1,r0

2,r1
2� � CP1 � CP1:

�a1r0
1r0

2 + a7r1
1r1

2��a3r0
1r1

2 + a5r1
1r0

2��a4r0
1r1

2 + a6r1
1r0

2��a2r0
1r0

2 + a8r1
1r1

2� = 0	 .

Set �1=a1 /a7=a2 /a8 and �2=a3 /a5=a4 /a6, we know that VA:B
3 ��� is the union of V1 and V2

ith multiplicity 2, where

V1 = ��r0
1,r1

1,r0
2,r1

2� � CP1 � CP1:r0
1r0

2 − �1r1
1r1

2 = 0	 ,

V2 = ��r0
1,r1

1,r0
2,r1

2� � CP1 � CP1:r0
1r1

2 − �2r1
1r0

2 = 0	 .

From Theorem 3 we know that � is entangled for the cut A :B :CD, A :C :BD, and A :D :BC for
eneric parameters, since r0

1r0
2+�1r1

1r1
2, etc., cannot be factorized to two linear forms for generic

1. This provides another proof that the mixed state is entangled if the four parties are isolated.
Theorem 7: The generic members in this continuous family of mixed states are inequivalent

nder the local unitary transformations on H=HA
2

� HB
2

� HC
2

� HD
2 .

Proof: From the above computation, VA:B
3 ���1,2

� is the union of V1 and V2 with multiplicity 2.
rom Theorem 1�, if ��1,2

and ��1,2� are equivalent by a local operation, there must exist two
ractional linear transformations T1 ,T2 of CP1 such that T=T1�T2 �acting on CP1�CP1� trans-
orms the two varieties V1 ,V2 of ��1,2

to the two varieties V1� ,V2� of ��1,2,� , i.e., T�Vi�=Vj�.
Introduce the inhomogeneous coordinates x1=r0

1 /r1
1, x2=r0

2 /r1
2. Suppose T�Vi�=Vi� i=1,2

ithout loss of generality. Then we have �1�2=1. This means that there are some algebraic
elations of parameters if the T exists. This implies that there are some algebraic relations on
arameters if ��1,2

and ��1,2� are equivalent by local unitary transformations. Hence our conclusion
ollows immediately.

I. NONEMPTY THEOREM

In this section, we prove that the algebraic set invariants introduced in Sec. II are not empty
or low rank mixed states.

Theorem 8: Let H=HA
m

� HB
n be a bipartite quantum system and � is a rank r mixed state on

with r�m+n−2. Then VA
n−1��� and VB

m−1��� are not empty.
Proof: We take “the standard representation” �=�i=1

r piPvi
, where p1 , . . . , pr, v1 , . . . ,vr are

igenvalues and eigenvectors of � and r=rank���. Recall the proof of Theorem 2, VA
n−1��� is the

ocus of the condition that �iriAi �a n�r matrix� has its rank smaller than n. From Proposition 4
he variety of generic n�r matrices of rank less than or equal to n−1 has its codimension smaller
r equal to �n− �n−1���r− �n−1��=r−n+1, we know that the codimension of VA

n−1��� in CPm−1 is
maller or equal to r−n+1. Hence dim�VA�����m−1−r+n−1�0 and VA

n−1��� is not empty. The
onclusion for VB

m−1��� can be proved similarly.

II. A RELATION OF DETERMINANTS

As indicated in Sec. II, we can have the following statement from Lemma 2.
Theorem 9: Let H=HA

m
� HB

n be a bipartite quantum system and �=�l=1
t plPvl

=�l=1
s qlPvl�

be a
ixed state with two “representations” as convex combinations of projections with
p1 , . . . , pt ,q1 , . . . ,qs
0. Let A (respectively, A�) be the mn� t (respectively, mn�s) matrix of
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ectors v1 , . . . ,vt (respectively, v1�, . . . ,vs�) in the standard basis �11� , . . . , �1n� , . . . , �m1� , . . . , �mn�
s in Lemma 1. We represent A (respectively, A�) as m�1 blocked matrix with blocks A1 , . . . ,Am

respectively, A1� , . . . ,Am� ). Then the determinantal varieties defined by the conditions that the
anks of R=�iriAi and R�=�iriAi� are smaller than k ,k=0,1 , . . . ,n−1, are the same.

Actually we can get more information about the determinants of n�n submatrices of �iriAi

nd �iriAi� from the proof of Theorems 2 and 3. This relation seems to be helpful to extract
nformation of �’s one unknown “representation” from its another known “representation,” as in
he proof of Theorem 3.

Theorem 9�: Let H ,� , p1 , . . . pt ,q1 , . . . ,qs ,A ,A� ,R ,R� be as above and Ri1,. . .in
(respectively,

i1�
� , . . . , in�) be the n�n submatrix of R (respectively, R�) consisting of i1� ¯ � in (respectively,

1�� ¯ � in��th columns, where i1 , . . . , in� �1, . . . t	 and i1� , . . . , in�� �1, . . . ,s	 are distinct indices.
hen we have

�i1�¯�in
pi1

¯ pin
�Ri1,. . .,in

�2 = �i1��¯�in�
qi1�

¯ qin�
�Ri1�,. . .,in�

� �2. �13�

The above result follows from the following lemma immediately, since both sides of the
quality are just det��ijrirj

†�ij�.
Lemma 3 (Binet-Cauchy formula): Let B be a n� t matrix with t
n and Bi1,. . .,in

be the n
n submatrix of B consisting of i1� ¯ � in-th columns. Then det�BB†�=�i1�¯�in

�det Bi1,. . .,in
�2.

It is clear that Theorems 2 and 3 follow from Theorem 8� here immediately.
The following result was previously known in Refs. 29 and 31.
Proposition 5: Let H=HA

n
� HB

n , �= �1/n��i=1
n piPai�bi

where a1 , . . . ,an (respectively, b1 , . . . ,bn)
re linearly independent unit vectors in HA

n (respectively, HB
n). Suppose that �= �1/ t��i=1

t qiPci�di
is

nother representation of � as a convex combination with qi’s positive, then actually we have t
n and �a1 � b1 , . . . ,an � bn	= �c1 � d1 , . . . ,cn � dn	.

Proof: We apply Theorem 9� to the 2 “representations” here. First of all, we know that
et��ijrirj

†�ij� is �up to a nonzero constant� the square of the absolute value of a multiplication of
inear forms bi�r1 , . . . ,rn�=� jb1

j rj, where bi=� jbi
j�j� is the coordinate form of bi for i=1, . . . ,n,

rom one known “representation.” Thus we know from Theorem 8� that there are at least n vectors
n �d1 , . . . ,dt	, without loss of generality, suppose they are d1 , . . . ,dn, are just b1 , . . . ,bn. Using
heorem 9� for the second factor and consider the first through nth columns of R�, this implies

hat the multiplication of the linear forms c1�r1 , . . . ,rn� , . . . ,cn�r1 , . . . ,rn� are just the multiplica-
ion of the linear forms a1�r1 , . . . ,rn� , . . . ,an�r1 , . . . ,rn�. Hence we know that the set �c1 , . . . ,cn	
re just the set �a1 , . . . ,an	.

On the other hand, it is easy to see that ai � bj with i� j is not in the linear span of a1

� b1 , . . . ,an � bn, since a1 , . . . ,an �respectively, b1 , . . . ,bn� are linear independent. Thus ci=ai from
orollary 1.

Applying Theorem 9� to other columns of R and R� by a similar argument, we have cj

�a1 , . . . ,an	 and dj � �b1 , . . . ,bn	. Since ai � bj with i� j cannot be in the image of �, cj � dj must
e the form aij

� bij
. The conclusion is proved.

Remark 2: If we compute VA
n−1��� from the representation of �’s standard form, i.e., linear sum

f projections to its eigenvectors, it can be seen that our invariants defined in Sec. II are indepen-
ent of eigenvalues �p1 , . . . , pt in Sec. II�. However the information of p1 , . . . , pt or eigenvalues is
ertainly reflected in Theorem 9� here. Thus Theorem 9� might be more useful in determining
hether a given mixed state is entangled or not, provided that we know how to extract sufficient

nformation from Theorem 9�.
Remark 3: As shown in Example 1, our invariants might be an empty set for high rank mixed

tates, however it seems that Theorem 9� is still useful in determining whether a given high rank
ixed state is entangled or not in this case, provided that we know how to extract information
rom Theorem 9�.
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III. SIMULATION OF HAMILTONIANS

Historically, the idea of simulating Hamiltonian �self-adjoint operators on the Hilbert space
orresponding to the quantum system, see Ref. 39� time evolutions was the first motivation for
uantum computation because of the famous paper of Feynman. Recently the ability of nonlocal
amiltonians to simulate one another is a popular topic, which has applications in quantum

ontrol theory, quantum computation, and the task of generating entanglement. For the general
reatment of this topic and the references, we refer to Ref. 5.

We say, for two bipartite Hamiltonians H and H� on HA
m

� HB
n , H� can be efficiently simulated

y H with local unitary operations, write as H��LUH, if H� can be written as a convex combina-
ion of conjugates of H by local unitary operations, H�= p1�U1 � V1�H�U1 � V1�†+ ¯ + ps�Us

� Vs�H�Us � Vs�†, where p1 , . . . , ps are positive real numbers such that p1+ ¯ + ps=1, U1 , . . . ,Us,
nd V1 , . . . ,Vs are unitary operations on HA

m and HB
n , respectively. Here we use † for the adjoint.

his is equivalent to the notion “infinitesimal simulation” in Ref. 5. In Ref. 5 it is shown that
local terms” like I � KB and KA � I are irrelevant to the simulation problem up to the second
rder, thus they considered the simulation problem for Hamiltonians without local terms’ effect.
ur definition here is more restricted without neglecting the local terms.

We can have the following necessary conditions about the simulation of semipositive Hamil-
onians based on the algebraic set invariants introduced in Sec. II.

Theorem 10: Let H and H� be two semipositive Hamiltonians on the bipartite quantum
ystem HA

m
� HB

n. Suppose H��LUH, that is, H� can be simulated by H efficiently by using local
nitary transformations. Then there are projective isomorphisms U1 of CPm−1 and V1 of CPn−1

uch that U1�VA
k �H����VA

k �H� for k=0, . . . ,n−1 and V1�VB
k �H����VB

k �H� for k=0, . . . ,m−1.
The following observation about the computation of VA

k ��� is the key point of the proof of
heorem 10 and Corollary 3. From Corollary 1 if �=�i

tpiPvi
with pi’s positive real numbers, the

ange of � is the linear span of vectors v1 , . . . ,vt. We take some vectors in the set �v1 , . . . ,vt	, say
hey are v1 , . . . ,vs. Let B be the mn�s matrix with columns corresponding to the s vectors

1 , . . . ,vs’s coordinates in the standard basis of HA
m

� HB
n . We consider B as m�1 blocked matrix

ith blocks B1 , . . . ,Bm n�s matrix as in Sec. II. It is clear that VA
k ��� is an algebraic subset of the

ero locus of the determinants of all �k+1�� �k+1� submatrices of �i
mriBi, since �i

mriBi is a
ubmatrix of �i

mriAi. On the other hand, if v1 , . . . ,vs are linear independent and s
dim�range����, VA

k ��� is just the zero locus of the determinants of all �k+1�� �k+1� submatrices
f �i

mriBi, since any column in �iriAi is a linear combination of columns in �iriBi �rank��iriAi�
k is equivalent to rank��iriBi��k�.

Proof of Theorem 10: Suppose H��LUH, then there exist positive numbers p1 , . . . , ps and local
nitary transformations U1 � V1 , . . . ,Us � Vs, such that �ipiUi � ViH�Ui � Vi�†=H�. Let H
�i

sqiP�i
, where s=dim�range�H��, q1 , . . . ,qs are eigenvalues of H and �1 , . . . ,�s are eigenvectors

f H. Then it is clear that �Ui � Vi�H�Ui � Vi�†=� j
sqjP�Ui�Vi��j

and thus H�=�i,jpiqjP�Ui�Vi��j
. This

s a representation of H� as a convex combination of projections. From our above observation

A
k �H�� is an algebraic subset in VA

k ��U1�V1�H� �which can be computed from vectors �U1

� V1��1 , . . . , �U1 � V1��s�. Thus the conclusion follows from Theorem 1.
Corollary 3 (see Ref. 13): Let H and H� be two semipositive Hamiltonians on the bipartite

uantum system HA
m

� HB
n of the same rank, i.e., dim�range�H��=dim�range�H���. Suppose H�

LUH, that is, H� can be simulated by H efficiently by using local unitary transformations. Then

A
k �H��=VA

k �H� for k=0, . . . ,n−1 and VB
k �H��=VB

k �H� for k=0, . . . ,m−1. Here the equality of the
lgebraic sets means they are isomorphic via projective linear transformations of complex pro-
ective spaces.

Proof: Suppose H��LUH, then there exist positive numbers p1 , . . . , ps and local unitary trans-
ormations U1 � V1 , . . . ,Us � Vs, such that, �ipiUi � ViH�Ui � Vi�†=H�. Let H=�i

sqiP�i
, where s

dim�range�H��, q1 , . . . ,qs are eigenvalues of H and �1 , . . . ,�s are eigenvectors of H. Then it is
lear that �Ui � Vi�H�Ui � Vi�†=� j

sqjP�Ui�Vi��j
and thus H�=�i,jpiqjP�Ui�Vi��j

. This is a representa-
ion of H� as a convex combination of projections. From our above observation VA

k �H�� can be

omputed from vectors �U1 � V1��1 , . . . , �U1 � V1��s, since they are linear independent and s

                                                                                                            



=
l

H
c
T
s
h
n
e
s

V

b

r
d

I
C

�
f
b
s
K
i
s

o

052101-14 Hao Chen J. Math. Phys. 47, 052101 �2006�

                        
dim�range�H���. Hence VA
k �H��=VA

k ��U1 � V1�H� from the definition. Thus the conclusion fol-
ows from Theorem 1.

Let S be the swap operator on the bipartite system HA
n

� HB
n defined by S�ij�= �ji�. For any

amiltonian H, S�H�=SHS† corresponds to the Hamiltonian evolution of H with A and B inter-
hanged. It is very interesting to consider the problem if H can be simulated by S�H� efficiently.
his led to some important consequences in the discussion VII of Ref. 5. For example it was
hown there are examples that H and S�H� cannot be simulated efficiently with one another in
igher dimensions �n�3�. Thus in higher dimensions nonlocal degrees of freedom of Hamilto-
ians cannot be characterized by quantities that are symmetric with respect to A and B, such as
igenvalues. This conclusion is also obtained from our example and Corollary 5 in the next
ection. From Corollary 3 we have the following necessary condition about H�LUS�H�.

Corollary 4: Let H be a semipositive Hamiltonian on HA
n

� HB
n . Suppose H�LUS�H�. Then

A
k �H�=VB

k �H� for k=0, . . . ,n−1.
The following is a Hamiltonian H on 3�3 system for which H cannot be simulated efficiently

y S�H�.
Example 11: H= P��1�+ P��2�+ P��3�, where

��1� =
1
�3

��11� + �21� + �32�� ,

��2� =
1

�1 + �v�2
��12� + v�22�� , �14�

��3� =
1

�1 + ���2
��13� + ��23�� .

Then it is easy to compute that VA
2�H� is the sum of three lines in CP2 defined by r1+r2=0,

1+vr2=0, and r1+�r2=0 for v�� and both v ,� are not 1, and VB
2�H� is the sum of 2 lines in CP2

efined by r2=0 and r3=0. Thus we cannot have H�LUS�H�.

X. A CONTINUOUS FAMILY OF STATES AND HAMILTONIANS RELATED TO ELLIPTIC
URVES

From a physical point of view, it is very interesting to have isospectral �i.e., eigenvalues of
, trA��� , trB��� are the same� mixed states, but they are not equivalent under local unitary trans-

ormations. This phenomenon indicates that we cannot obtain a complete understanding of a
ipartite quantum system by just studying the local and global properties of the spectra of the
ystem. Some examples of such mixed states have been found by several authors �see Nielsen and
empe37 and references therein�. Their result would imply the existence of continuously many

sospectral no-local-equivalent mixed states. Here we give a continuous family of such mixed
tates by the theory of elliptic curves.9

Let H=HA
3

� HB
3 and ��1,�2,�3

= 1
3 �P�v1

�+ P�v2�+ P�v3�� ��1 ,�2 ,�3 are real parameters�, a continu-
us family of mixed states on H, where

�v1� =
1
�3

�ei�1�11� + �22� + �33�� ,

�v2� =
1
�3

�ei�2�12� + �23� + �31�� , �15�

�v3� =
1
�3

�ei�3�13� + �21� + �32�� .
It is easy to calculate that �riAi �up to a constant� is the following 3�3 matrix:
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ei�1r1 r3 r2

r2 ei�2r1 r3

r3 r2 ei�3r1
� .

Thus VA
2���1,�2,�3

� is defined by ei��1+�2+�3�r1
3+r2

3+r3
3− �ei�1 +ei�2 +ei�3�r1r2r3=0 in CP2. With

i��1+�2+�3�/3r1=r1� we have r1�
3+r2

3+r3
3− ��ei�1 +ei�2 +ei�3� / �ei��1+�2+�3�/3��r1�r2r3=0. This is a family

f elliptic curves.
It is easy to check that three nonzero eigenvalues of ��1,�2,�3

, trA���1,�2,�3
� , trB���1,�2,�3

� are all
he same value 1

3 for different parameters. In this case we have a family of isospectral �both global
nd local� mixed states ��1,�2,�3

. Set g��1 ,�2 ,�3�= �ei�1 +ei�2 +ei�3� / �ei��1+�2+�3�/3�.
Theorem 11: ��1,�2,�3

is entangled mixed state when �g��1 ,�2 ,�3��3�27. Moreover ��1,�2,�3

nd ��1�,�2�,�3�
are not equivalent under local unitary transformations if k�g��1 ,�2 ,�3��

k�g��1� ,�2� ,�3���, where k�x�=x3�x3+216�3 / �−x3+27�3 is the moduli function of elliptic curves.
Proof: The conclusion follows from Theorem 3, Theorem 1 and the well-known fact about

lliptic curves �see Ref. 9�.
In Ref. 36 Nielsen gave a beautiful necessary and sufficient condition for the bipartite pure

tate ��� that can be transformed to the pure state ��� by local operations and classical commu-
ication �LOCC� based on the majorization between the eigenvalue vectors of the partial traces of

�� and ���. In Ref. 7 an example was given, from which we know that Nielsen’s criterion cannot
e generalized to multipartite case, 3EPR and 2GHZ are understood as pure states in a 4�4
4 quantum system, they have the same eigenvalue vectors when traced over any subsystem.
owever it is proved that they are LOCC incomparable in Ref. 7.

In the following example, a continuous family ���	�1,�2,�3
� of pure states in tripartite quantum

ystem HA1

3
� HA2

3
� HA3

3 is given, the eigenvalue vectors of trAi
�P���1,�2,�3

�� , trAiAj
�P���1,�2,�3

�� are

ndependent of parameters �1 ,�2 ,�3. However, the generic pure states in this family are entangled
nd LOCC incomparable. This gives stronger evidence that it is hopeless to characterize the
ntanglement properties of multipartite pure states by only using the eigenvalue spectra of their
artial traces.

Let H=HA1

3
� HA2

3
� HA3

3 be a tripartite quantum system and ���1,�2,�3
�= �1/�3���v1� � �1�

�v2� � �2�+ �v3� � �3��, where �v1� , �v2� , �v3� are as in �15�. This is a continuous family of pure
tates in H parametrized by three real parameters. We can check that the eigenvalue vector of any
artial trace of P���1,�2,�3

� is a constant vector. On the other hand, it is clear that trA3
�P���1,�2,�3

��
1
3 �P�v1

�+ P�v2�+ P�v3�� is a rank 3 mixed state in HA1

3
� HA2

3 . ���1,�2,�3
� and ���1�,�2�,�3�

� are not

quivalent under local unitary transformations if k�g��1 ,�2 ,�3���k�g��1� ,�2� ,�3���, since their
orresponding traces over A3 are not equivalent under local unitary transformations of HA1

3

� HA2

3 from Theorem 11. Hence the generic members of this family of pure states in tripartite

uantum system H are entangled and LOCC incomparable from Theorem 1 in Ref. 7.
We can also consider the following continuous family of semipositive Hamiltonians depend-

ng on three real parameters, H�1,�2,�3
= P�v1�+ P�v2�+ P�v3�, where v1 ,v2 ,v3 are as in �15�. As cal-

ulated above, VA
2�H�1,�2,�3

� is just the elliptic curve in CP2 defined by r1
3+r2

3+r3
3− ��ei�1 +ei�2

ei�3� / �ei��1+�2+�3�/3��r1r2r3=0. The elliptic curve VA
2�H�1,�2,�3

� is not isomorphic to the elliptic
urve VA

2�H�1�,�2�,�3�
� if k�g��1 ,�2 ,�3���k�g��1� ,�2� ,�3���. Thus we have the following Corollary of

heorem 9.
Corollary 5: H�1�,�2�,�3�

cannot be simulated by H�1,�2,�3
efficiently by using local unitary

ransformations, i.e., we cannot have H�1�,�2�,�3�
�LUH�1,�2,�3

, if k�g��1 ,�2 ,�3���k�g��1� ,�2� ,�3���,
hough the three nonzero eigenvalues of H�1,�2,�3

, H�1�,�2�,�3�
and their partial traces are all 1.
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. CONSTRUCTING ENTANGLED PPT MIXED STATES

As mentioned in the Introduction, the first several entangled PPT mixed states were con-
tructed in Ref. 24 based on Horodecki’s range criterion of separable states, which asserts that a
eparable mixed state must include sufficiently many separable pure states in its own range �see
efs. 24 and 28�. This range criterion of separable mixed states was also the base to construct PPT
ntangled mixed states in the context of unextendible product base �UPB� studied by Bennett,
iVincenzo, Mor, Shor, Smolin, and Terhal in Ref. 6. �We should mention that unextendible
roduct bases also have other physical significance nonlocality without entanglement, see Refs. 6
nd 28.� It is always interesting and important to have more methods to construct entangled PPT
ixed states. In this section, we give an example to show how our separability criterion Theorem
can be used to construct entangled mixed states which are invariant under partial transposition

thus PPT and bound entanglement� systematically.
In the following example we construct a family of rank 7 mixed states ��e1,e2,e3

	 �e1 ,e2 ,e3 are
eal parameters� with �e1,e2,e3

=�e1,e2,e3

PT �hence PPT automatically� on H=HA
4

� HB
6 . We prove that

hey are entangled by Theorem 3 �thus bound entanglement� for generic parameters e1 ,e2 ,e3 and
arameters �e1 ,e2 ,e3�= �0,0 ,1�. This family and the method used here can be easily generalized to
onstruct entangled mixed states with �=�PT systematically.

Consider the following four 6�7 matrices:

A1 =
1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 2 0 0 1

0 0 0 0 2 0 0

0 0 0 0 0 2 0

� ,

A2 =
0 1 1 − 1 0 0 1

1 0 1 0 0 0 0

1 1 0 0 0 0 0

− 1 0 0 0 1 1 0

0 0 0 1 0 1 0

0 0 0 1 1 0 0

� ,

A3 =
e2 + e3 e1 0 0 0 0 0

e1 e2 e3 0 0 0 0

0 e3 e1 + e2 0 0 0 0

0 0 0 e2 + e3 e1 0 0

0 0 0 e1 e2 e3 0

0 0 0 0 e3 e1 + e2 0

� ,

here e1 ,e2 ,e3 are real parameters, and A4= �I6 ,0�, where I6 is the 6�6 unit matrix.
Let A be a 24�7 matrix with four blocks A1 ,A2 ,A3 ,A4 where the 24 rows correspond to the

tandard basis ��11� , . . . , �16� , . . . , �41� , . . . , �46�	. Let �e1,e2,e3
be �1/D�AA† �where D is a normal-

zing constant�, a mixed state on H. It is easy to check that AiAj
†=AjAi

†, hence �e1,e2,e3
is invariant

nder partial transposition and thus PPT.
Let ��1� , . . . , ��7��HA

4
� HB

6 be seven vectors corresponding to seven columns of the matrix A.

t is clear that the range of �e1,e2,e3

is the linear span of ��1� , . . . , ��7�. When e1=e2=0, e3=1,
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�2�− ��3�= ��1�+ �4�− �2�� � ��2�− �3��. Thus there are some separable pure states in the range of

0,0,1. We will show that �0,0,1 and �e1,e2,e3
for generic parameters e1 ,e2 ,e3 are entangled by our

eparability criterion Theorem 3.
As in the proof of Theorem 2 it is easy to compute F=r1A1+r2A2+r3A3+r4A4,


u1 r2 + e1r3 r2 − r2 0 0 r2

r2 + e1r3 u1� r2 + e3r3 0 0 0 0

r2 r2 + e3r3 u1� 0 0 0 0

− r2 0 0 u2 r2 + e1r3 r2 r1

0 0 0 r2 + e1r3 u2� r2 + e3r3 0

0 0 0 r2 r2 + e3r3 u2� 0

� �16�

here u1=r1+r4+ �e2+e3�r3, u1�=r1+r4+e2r3, u1�=r1+r4+ �e1+e2�r3 and u2=2r1+r4+ �e2+e3�r3,

2�=2r1+r4+e2r3, u2�=2r1+r4+ �e1+e2�r3.
We consider the following matrix F� which is obtained by adding the seventh column of F to

he fourth column of F and adding r2 /r1 of the seventh column to the first column,


v1 r2 + e1r3 r2 0 0 0 r2

r2 + e1r3 u1� r2 + e3r3 0 0 0 0

r2 r2 + e3r3 u1� 0 0 0 0

0 0 0 v2 r2 + e1r3 r2 r1

0 0 0 r2 + e1r3 u2� r2 + e3r3 0

0 0 0 r2 r2 + e3r3 u2� 0

� , �17�

here v1=r1+r4+ �e2+e3�r3+ �r2
2 /r1�, v2=3r1+r4+ �e2+e3�r3.

It is clear that the determinantal varieties defined by F and F� are the same in the affine chart
3 defined by r1�0. Consider the zero locus Z1 defined by the condition that the determinants of

he two diagonal 3�3 submatrices of the first 6�6 submatrix in �17� are zero, locus Z2 defined
y the condition that the first three rows in �17� are linear dependent and the locus Z3 defined by
he condition that the last three rows in �17� are linear dependent, it is clear that VA

5��e1,e2,e3
��C3

s the sum of Z1 ,Z2 ,Z3. We can use the affine coordinates r2�=r2 /r1, r3�=r3 /r1, r4�=r4 /r1 on the
ffine chart C3 of CP3 defined by r1�0. In this affine coordinate system all r2 ,r3 ,r4 should be
eplaced by r2� ,r3� ,r4� and r1 should be replaced by 1 in �17�. Now we analyze VA

5��0,0,1�. It is clear
hat the following two planes H1= ��r2� ,r3� ,r4�� :r2�=r4�+1	, H2= ��r2� ,r3� ,r4�� :r2�=r4�+2	 are in

A
5��0,0,1��C3, since in the case r2�=r4�+1 the second and the third rows of �17� are linearly
ependent and in the case r2�=r4�+2 the fifth and sixth rows of �17� are linearly dependent. The
eterminants of two 3�3 diagonal submatrices of the first 6�6 submatrix of �17� are

�r2� − r4� − 1���r2��
3 + �r2��

2r4� − �r2��
2 + �r4��

2 + r2�r3� + r2�r4� + r3�r4� + r2� + r3� + 2r4� + 1�

nd

�r2� − r4� − 2���r4��
2 − 2�r2��

2 + r2�r3� + r2�r4� + r3�r4� + 3r2� + 2r3� + 5r4� + 6� .

Let X1 and X2 be the zero locus of the second factors of the above two determinants. It is
bvious that X1�X2 is in VA

5��0,0,1��C3, we want to show that X1�X2 \H1�H2 is a curve, not a
ine. Take the point P= �0,2 ,−1��X1�X2�H1, the tangent plane H3 of X2 at P is defined by
r2�+r3�+5r4�=−3. If X1�X2 is a line around the point P, this line is contained in H3�X2. How-
ver we can easily find that H3�X2 is defined by 3�r2��

2+2�r4��
2+4r2�r4�+4r4�=0. This polynomial

s irreducible and thus H3�X2 is a curve around the point P. Thus X1�X2 is a curve around the
oint P. It is easy to check that X1�X2 is not contained in H1 around the point P. This implies that

A
5��e1,e2,e3

��C3 �actually the locus Z1� contains a curve �not a line� for generic parameters
5 3
1 ,e2 ,e3 �including parameters 0,0,1� from algebraic geometry. Thus if VA��e1,e2,e3
��C is the sum
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f �affine� linear subspaces, it must contain a dimension 2 affine linear subspace H4 other than H1

nd H2 of the affine chart C3. Thus the determinants of all 6�6 submatrices of �17� must contain
�fixed� affine linear form �i.e., a degree one polynomial of r2 ,r3 ,r4 which may contain a constant

erm� other than r2−r4−1 and r2−r4−1 as one of their factors. This affine linear form defines that
imension 2 linear affine subspace H4 of C3. However it is easy to check that this is impossible for
eneric parameters e1 ,e2 ,e3 �including parameters 0,0,1�. We know that VA

5��e1,e2,e3
��C3 cannot

e the sum of �affine� linear subspaces of C3 for generic e1 ,e2 ,e3 �including parameters 0,0,1�.
hus from Theorem 3, �e1,e2,e3

is entangled for generic parameters e1 ,e2 ,e3 �including parameters
,0,1�.

Theorem 12: The mixed states �e1,e2,e3
’s, which are invariant under partial transposition, are

ntangled for generic parameters and �e1 ,e2 ,e3�= �0,0 ,1�.
Remark 4: �0,0,1 is the first example of PPT entangled mixed state �thus bound entanglement�

ith some separable pure states in its range.
From the construction in this example we can see if A1 , . . . ,Am are mn� t matrices satisfying

iAj
†=AjAi

†, A is the m�1 matrix with ith block Ai and the rows of A correspond to the basis
11� , . . . , �1n� , . . . , �m1� , . . . , �mn� of HA

m
� HB

n , then the mixed state �= �1/D�AA†, where D is a
ormalized constant, is invariant under partial transpose. It is not very difficult to find such
atrices. For the purpose that the constructed mixed state � is entangled �thus a bound entangled
ixed state�, we just need that the determinantal variety ��r1 , . . . ,rm� : rank��riAi��n−1	 is not

inear. We know from algebraic geometry, it is not very hard to find such matrices A1 , . . . ,Am.
owever, as illustrated in this Example we do need some explicit calculation to prove this point.
hus our separability criterion and the method used in this Example offer a new systematic way to
onstruct PPT bound entangled mixed states.
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In this paper we construct quantum mechanical observables of a single free particle
that lives on the surface of the two-sphere S2 by implementing the Fedosov
�-formalism. The Fedosov � is a generalization of the Moyal star product on an
arbitrary symplectic manifold. After their construction we show that they obey the
standard angular momentum commutation relations in ordinary nonrelativistic
quantum mechanics. The purpose of this paper is threefold. One is to find an exact,
nonperturbative solution of these observables. The other is to verify that the com-
mutation relations of these observables correspond to angular momentum commu-
tation relations. The last is to show a more general computation of the observables
in Fedosov �-formalism; essentially an undeformation of Fedosov’s algorithm. ©
2006 American Institute of Physics. �DOI: 10.1063/1.2195529�

. INTRODUCTION

The Moyal star product formalism is an equivalent way to do quantum mechanics.1 The idea
s that instead of using abstract linear operators on a Hilbert space such as position x̂ and momen-
um p̂, we may use classical variables x and p however we change the product so that the
ommutation relations are the same as in the Hilbert space formalism. Namely,

�x̂a, p̂b� = i��b
a, �x̂a, x̂b� = 0 = �p̂a, p̂b� ,

ecome

�xa,pb�* = i��b
a, �xa,xb�* = 0 = �pa,pb�*

e use the convention that the lower case indices run from 1, . . . ,n and capital ones run from
, . . . ,2n and

�f ,g�* = f � g − g � f ,

here f and g are any 2 functions of x and p.
We note that the limit �→0+ gives the ordinary product of functions.
The definition of the Moyal star for R2n explicitly is

�Electronic mail: phil.tillman@gmail.com
�
Electronic mail: sparling@twistor.org
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f � g = fe�i�/2��AB��A��Bg = fg +
i�

2
�AB��Af���Bg� −

�2

8
�CE�AB��C�Af���E�Bg� + ¯ ,

here �A= �� /�xa ,� /�pa� and the arrow determines the direction that the derivative acts and the
perator �AB��A��B is called the Poisson bracket.

There is an invertible map called the Weyl transform W that translates from the Hilbert space
ormalism to the Moyal formalism. The main property of this transform is that an arbitrary Taylor
eries operator on the Hilbert space �note that this is effectively an arbitrary operator since we can
se the commutators to rearrange each term so that the x’s are to the left and the p’s are to the
ight�:

Â = �
m,n

Aa1¯am

b1¯bnx̂a1
¯ x̂amp̂b1

¯ p̂bn

ecomes by applying the Weyl transform

W�Â� = A = �
m,n

Aa1¯am

b1¯bnxa1 � ¯ � xam � pb1
� ¯ � pbn

n a mechanical way by simply replacing each x̂ with x, p̂ with p and placing stars between each
f them as is done above.1

The trace over an operator of compact support goes to

Tr�Â�↔
W

Tr��A� ª
1

�2���n � �n

n!
A .

o if we are given the Hamiltonian Ĥ and the density matrix �̂ we may map

Ĥ↔
W

H, �̂↔
W

� .

e thus can get the time-independent Schrödinger equation by mapping

Ĥ�̂n = En�̂n, �Ĥ, �̂n� = 0

o

H � �n = En�n, �H,�n�� = 0,

here �n are called the Wigner functions. This also works with the time-dependent Schrödinger
quation. �See Fedosov for clarification.2�

Also expectation values become

Tr��̂Â� ↔ Tr��� � A� .

he Moyal � has been generalized to an arbitrary smooth symplectic manifold �N ,� ,D� endowed
ith a preserved two-form � �called the symplectic form� and a phase-space connection D by
edosov2 �an excellent summary is Ref. 3�. For any such manifold �N ,� ,D� he gives a pertur-
ative expansion for his �-product. However, the convergence issues of the Fedosov �, in general,
emain unknown.

The properties of the Fedosov � are

i� It is an associative �but not commutative� map � :C��N��C��N�→C��N�.
ii� Invariant under all smooth coordinate transformations of the phase-space variables x and p.
iii� No assumed Hamiltonian.
iv� The Fedosov � is given perturbatively given any symplectic manifold �N ,� ,D�.
v� In the limit �→0+, � becomes the ordinary pointwise multiplication of functions on N.

2
vi� To first order in � the commutator is the Poisson bracket �f ,g�*= i��f ,g�+O�� �.

                                                                                                            



�

d
r
t
p
a
c
t
c

�
a
1
F
i
d
c
o
p
a

�
�

�
�
�

�
�

p
t
c
t
t

a
c

m

s
e
�
c
o

052102-3 Fedosov quantization on a sphere J. Math. Phys. 47, 052102 �2006�

                        
vii� When N=T*En �i.e., the phase space or the cotangent bundle of En� �here En stands for
Euclidean n-dimensional space� we get the Moyal �.

In this paper we restrict N to be the cotangent bundle of a manifold with metric g �M ,g�
enoted T*M. �The cotangent bundle of any manifold is known to be a symplectic manifold.� The
eason to do this is that the cotangent bundle of a manifold is the phase space of that manifold �i.e.,
he space of all coordinates x and momentum p�. In quantum mechanics using the Moyal � the
hase space is the arena for quantization by giving proper �-commutation relations between the x’s
nd p’s. The importance of the Fedosov �-formalism is that it is a coordinate invariant way of
onstructing these commutation relations on general T*M in such a way that they patch consis-
ently to any coordinate map of the cotangent bundle. Also another important point is that it can be
onstructed at least perturbatively for any cotangent bundle.

However unlike Fedosov who defines a formulation based on the deformation of covectors
i.e., covectors equipped with a Moyal-type product between them� we will not. We will introduce

Heisenberg algebra generated by s̃ and k̃ ��s̃i , s̃ j�= �k̃i , k̃j�=0, �s̃i , k̃j�= i�� j
i where i and j run from

through 2n� at every point of our phase-space T*M. The motivation to do this instead of
edosov’s way is to make a more direct connection between ordinary quantum mechanics involv-

ng Heisenberg algebras and the state spaces that the algebra acts on called Hilbert spaces. We then
efine this algebra to be linear operators on a Hilbert space which, of course, will eventually
ontain our states. This new construction will still preserve all of the essential properties of the
riginal Fedosov � albeit reformulated so as to apply to different objects. It will be a quantization
rocedure, i.e., a map of the variables on the phase-space x and p to the observables x̂ and p̂ which
re linear operators on the Hilbert space.

The properties of the Fedosov �-quantization in our construction are

i� x̂ and p̂ form an associative but noncommutative algebra.
ii� The map from �x , p�→ �x̂ , p̂� is invariant under all smooth canonical coordinate transforma-

tions of the phase-space variables x and p.
iii� No assumed Hamiltonian.
iv� We can construct the x̂ and p̂ perturbatively given any �T*M ,� ,D�.
v� In the limit �→0+, x̂ and p̂ become x and p, respectively, i.e., the ordinary variables on

T*M.

vi� To first order in � the commutator is the Poisson bracket � f̂ , ĝ�= i�� f̂ , ĝ�+O��2�.
vii� When M=Rn we get the ordinary quantum mechanics.

In the present work we take as our symplectic manifold T*S2, the phase space of a single
article on the 2-sphere, S2. For this space we construct the Fedosov observables nonperturba-
ively. The advantage of choosing S2 is that we had suspected previous to the calculation that the
ommutators are the same as the usual angular momentum commutators in nonrelativistic quan-
um mechanics. Saying in fact that the theory of angular momentum is the quantization of the
wo-sphere without the need for it to be embedded in R3.

Outline: We will follow the basic scheme of keeping derivations sufficiently general so as to
pply to a completely general manifold with metric �M ,g� and then state results from our specific
ase of the sphere.

In Sec. II we introduce the phase-space connection. We introduce the basis of covectors of
atrices/operators ŷA on the cotangent bundle in Sec. III. In Sec. IV we attempt to motivate and

olve for a new derivation D̂. Also we talk a bit about D̂’s ambiguities. Moving into Sec. V we
xplicitly compute the quantities x̂ and p̂. In Sec. VI we compute the commutators �x̂a , x̂b�,
x̂a , p̂b�, and �p̂a , p̂b� using the explicit forms of the operators. Section VII explains how one would
onstruct states of angular momentum on T*S2 by finally introducing the standard Hamiltonian in

rdinary nonrelativistic quantum mechanics. Up until this point no Hamiltonian was assumed.

                                                                                                            



I

�
1

�
a

�

i
=

C
h

b
b
d
t

�
�
�
�

w

T

T

052102-4 P. Tillman and G. Sparling J. Math. Phys. 47, 052102 �2006�

                        
I. THE PHASE-SPACE CONNECTION FOR T*S2

Before we begin, we note the use of the convention that the lower case are the indices of M
these run from 1, . . . ,n� and capital ones are the indices of the phase-space T*M �these run from
, . . . ,2n�.

We start with the phase space of a single classical particle confined to a general manifold
M ,g�. The objects needed are the phase space, T*M which is the cotangent bundle of M, an
ffine connection on the phase space D and the symplectic form � of T*M.

A phase-space connection’s action on all functions f�x , p��T*M and a basis of covectors
A�T*T*M are

Df = df =
�f

�xadxa +
�f

�pa
dpa,

D � �A = 	B
A

� �B = 	BC
A �C

� �B

n such a way as to preserve the symplectic form �=dpaÙdxa on T*S2 �D � �=0� where D
�CDC, DC�A=	BC

A �B and 	BC
A is the Christoffel symbol in this basis.

Additionally we impose that D be torsion-free �D2f =0� and that it corresponds to the Levi-
ivita connection on M when it acts on functions of x and dx. Of course we extend to vectors and
igher tensors by the Leibnitz rule.

In the specific case of S2 �T*S2� we employ the convention that the lower/upper-case indices
e of the embedding space E3 �T*E3� running from 1, 2, 3 �1,¼,6� instead of 1, 2 �1,¼,4�. We note
efore continuing that the calculation of the Fedosov observables is inherently two space-time
imensional. The third coordinate is merely for convenience. We see this fact manifest itself by the
wo conditions �e.g., x� ·x� =1 and x� · p� =0� on the three coordinates every step of the way.

The natural objects and quantities on T*S2 are

i� The induced S2 metric g by the E3 embedding metric �.
ii� The induced T*S2 symplectic form � by the T*E3 embedding symplectic form.
iii� Also the equations defining T*S2 inside of T*E3, x� ·x� =�abxaxb=1 and x� · p� =xapa=0.
iv� A torsion-free phase-space connection D=�ADA on T*S2 that preserves all of the above

conditions along with the symplectic form � and there subsequent derivatives. In other
words,

Dl
� g = Dl

� � = Dl��abxaxb� = Dl�xapa� = 0

for all positive integers l where g=gab dxaÚdxb, �=�AB�AÙ�B, where �A is basis of
forms and Ú, Ù are the symmetric, antisymmetric tensor products, respectively, that we will
omit because it will be clear when we mean the one or the other.

We define a basis of covectors or forms by

�A = �
a,�a� ,

here the 
’s are the first three �’s and the �’s are the last three �’s. 
 and � are defined to be

�� ª x� � dp� ,


� ª x� � dx� .

he metric on S2 is

g = 
� · 
� .

* 2
he phase-space connection we use for T S is

                                                                                                            



a

I

c
a
p
i
a

w

t
2
2
s

T

w
A

c
s
c

T

052102-5 Fedosov quantization on a sphere J. Math. Phys. 47, 052102 �2006�

                        
Dx� ª dx� = 
� � x� ,

Dp� ª dp� = �� � x� − p� � 
� ,

D � 
� = 
� ��
� , �D
�

D � �� = 
� ���� − 2
3 �
� � x�� � �p� · 
� � + 1

3 �p� · 
� � � �
� � x��, �D��

nd its corresponding curvature

D2x� ª 0,

D2p� ª 0,

D2
� 
� = �̃ � �x� � 
� �, �D2
�

D2
� �� = �̃ � �x� � �� � + 1

3 ��� �
� � ·
� � − 
� ��� � ·
� � − 2� � 
� � . �D2��

II. INTRODUCING THE ŷ’s

Following Fedosov, we are going to introduce some machinery namely the operators ŷ’s to
alculate the observables on general manifold M. However, unlike Fedosov who defines these ŷ’s
s covectors equipped with a Moyal-type product between them we choose a different starting
oint. We define the ŷ’s at fixed point to be a Heisenberg algebra �ŷA , ŷB�= i��AB where �AB is the
nverse of �AB with �AB�BC=�C

A. More explicitly ŷ’s are huge �infinite dimensional� matrices that
ct on a Hilbert space

ŷA = 	y11
A �x,p� y12

A �x,p� ¯

y21
A �x,p� y22

A �x,p� ¯

] ] �


 ,

here for each A, j, and kyjk
A �C��T*M�.

To make a connection with a more familiar form of the Heisenberg algebra we use Darboux’s
heorem. Darboux’s theorem says that in the neighborhood of each point of q�T*M there exist
n local coordinates �x̃1 , . . . , x̃n , p̃1 , . . . , p̃n� �note that these 2n coordinates are different from the
n+2 embedding coordinates �x� , p���, called canonical or Darboux coordinates, such that the
ymplectic form � may be written by means of these coordinates as �=dp̃1 dx̃1+ ¯ +dp̃n dx̃n.

hus in this coordinate system at q the ŷ’s are expressed as 2n operators �s̃1 , . . . , s̃n , k̃1 , . . . , k̃n�
hich have the commutators �s̃i , s̃ j�= �k̃i , k̃j�=0, �s̃i , k̃j�= i�� j

i where i and j run from 1 through 2n.
nd so at each point the ŷ’s establish a Heisenberg algebra which acts on a Hilbert space.

Important note: Fedosov actually begins with the ŷ’s as being an arbitrary basis of ordinary
ovectors with a Moyal-type product between themselves.1 We take the point of view that the
pecific form of the product is irrelevant. All that matters is that we have an algebra with the same
ommutation relations and the action of the connection is the same on the ŷ’s.

Defining properties of ŷ,

�ŷA, ŷB� = i��AB,

DŷA = 	A
BŷB = 	A

BC�CŷB, �A = �
a,�a� .

ˆ
he y’s commute with the set of quantities �x , p ,dx ,dp ,g ,� ,� , i� where i is the complex unit.
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Note: The action of the phase-space connection on ŷ is the same as the one on � �D � �A

	BC
A �C � �B� and so we regard it as a basis of operator or matrix-valued covectors. �One may be

empted to quantize the manifold by mapping �x1 ,x2 ,x3 , p1 , p2 , p3� to the matrices
ŷ1 , ŷ2 , ŷ3 , ŷ4 , ŷ5 , ŷ6�, but we want a coordinate independent formalism and, in general, this is not
oordinate independent.� This tells us how to parallel transport the Heisenberg algebra �the ŷ’s� at
ne point to the Heisenberg algebra of every other point in a consistent way.

Introducing terminology: In this paper when we say f is a function/form we define it to be a
omplex Taylor series in its variables. �The set of all of these type of functions is sometimes called
he enveloping algebra of its arguments.� Explicitly,

f�u, . . . ,v� = �
l,j’s

f j1¯jl
uj1

¯ v jl �j ’ s are powers not indices� ,

here f j1¯jl
are constants while u and v could be any of the set �x , p ,dx ,dp ,� ,� , i�.

So if f is a function/form of some subset or all of the quantities x, p, dx, dp, �, �, and i it then
ommutes with the ŷ’s and will be called a complex-valued function/form. On the contrary a
atrix-valued function/form is a complex Taylor series in ŷ and possibly some subset or all of the

uantities x, p, dx, dp, �, �, and i.
So if f �x , p ,dx ,dp ,� ,� , i� is a complex-valued function/form it then commutes with the ŷ’s.

ore explicitly with the matrix indices written

�ŷAŷB� jk = lŷ jl
Aŷlk

B ,

��ŷA, f�� jk ª ŷ jk
A f − f ŷ jk

A = 0.

n the contrary a matrix-valued function/form does not. From now on we will not write the matrix
ndices explicitly.

The end goal: The idea for Fedosov’s introduction of the ŷ’s is to associate to each f�x , p�
C��T*M� a unique observable f̂�x , p , ŷ�,

f̂�x,p, ŷ� = �
l

fA1¯Al
ŷA1

¯ ŷAl, � f̂�

here fA1¯Al
are some unknown functions of x and p to be determined.

Important note: Most of the rest of the sections will be dedicated to finding a solution for f̂
i.e., the coefficients functions fA1¯Al

� for each f�x , p��C��T*S2� up to some “reasonable” ambi-
uity �discussed in Secs. IV and V�.

T*S2 explicitly: Specifically for T*S2 we have the induced symplectic form � of T*R3 onto
*S2 being

� = �� · 
� = ��b
a − xaxb��a
b.

e make the convention

ŷA = �sa,ka� ,

here the s’s are the first three ŷ’s and the k’s are the last three ŷ’s. �Note that the indices go from

to 2n+2 and are different from the 2n operators defined above by �s̃1 , . . . , s̃n , k̃1 , . . . , k̃n�. The
ifference between them is the same as the difference between the embedding coordinates
x1 , . . . ,xn+1 , p1 , . . . , pn+1� and �x̃1 , . . . , x̃n , p̃1 , . . . , p̃n�.� Using the above formulas we then write the
ommutation relations

�sa,sb� = 0 = �ka,kb�, �sa,kb� = i���b
a − xaxb� .

We may assume that x� ·s� =x� ·k� =0 because we observe that the only part of s and k that affect

he commutators are the parts that are perpendicular to x. The irrelevance of the part of s and k
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arallel to x stems from the above relations because �xasa ,kb�=0 and �sa ,kbxb�=0 and so we could
lways subtract off the part of s and k parallel to x and get the same commutators. Since x� ·s�
x� ·k� =0 we have four independent operators which are required �one for each direction on T*S2�.

The action of the connection and curvature acting on s� and k� is written down directly from the
quations �D
�, �D��, �D2
�, and �D2��,

Ds� = 
� � s� ,

Dk� = 
� � k� − 2
3
� � x��p� · s�� + 1

3 �p� · 
� ��s� � x�� ,

D2s� = �̃�x� � s�� ,

D2k� = �̃�x� � k�� + 1
3 ��� �s� · 
� � + �s� · �� �
� − 2�s�� .

V. CONSTRUCTING THE GLOBAL DERIVATION D̂

Following Fedosov, we now introduce a global derivation as a matrix commutator D̂

�Q̂ , · � which is central to constructing the coefficients fA1¯Al
in equation � f̂� for each f�x , p�

C��T*M�. One possible physical motivation for D̂ is that in the next section we will require that

ll observables f̂ must satisfy the equation �D− D̂� f̂�x , p , ŷ�=0. We see that on f̂ D̂ is an infini-
esimal translation matrix operator equivalent to D. We then reason that matrix operators corre-

ponding to infinitesimal translations on the cotangent bundle should exist, i.e., D̂. The reason that
e require that they must exist is because we are constructing the set of all physical matrix
perators on states and certainly infinitesimal translations are in this set. If this reasoning is correct

hen the equation �D− D̂� f̂ =0 must be satisfied for all observables f̂ . Also the case of T*Rn may
rovide some insight since it is the overlap of this formalism and quantum mechanics using the
oyal � �see Appendix D for the example of T*Rn�.

Define the derivation D̂ by the graded commutator �graded commutators have the property

hat �Q̂A�A ,w�= �Q̂A ,w��A= �Q̂Aw−wQ̂A��A where w is an l-form with coefficients wA1¯Al
which

re complex-valued functions of the variables x, p, and ŷ.�

D̂ = �Q̂, · � = �Q̂A�A, · �, �D̂�

Q̂A = �
l

QAA1¯Al
ŷA1

¯ ŷAl,

here �A= �
a ,�a� and QAA1¯Al
are complex-valued functions of x and p that need to be deter-

ined. We reiterate that complex-valued functions are not matrices hence they commute with the
ŷ’s.

Again following Fedosov, we can partially determine the functions QAA1¯Al
by the mysterious

quation

�D − D̂�2ŷA = 0 . �cond D̂�

Fedosov adds an additional condition that makes his D̂ unique from a fixed D being d̂−1r0=0

here d̂−1 is what he calls �−1 �an operator used in a de Rham decomposition� and r0 is the first
erm in the recursive solution. We regard this choice as being artificial and thus omit it from the

aper.�
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The physical motivation for this equation is still unclear and may lurk in the work of Fedosov.
ne reason for the above requirement is that in the next section we want to solve the equation

D− D̂� f̂ =0 for f̂ and the above is an integrability condition for the solvability of this equation.

We now let Q̂ be the sum of two parts the first being the solution in the case of T*Rn

Christoffels=	=0�,

Q̂A�A = �ABŷA�B + r, �Q̂�

here

r = �
l

rAA1¯Al
�AŷA1

¯ ŷAl,

nd rAA1¯Al
are complex-valued functions of x and p that need to be determined. In general, we

ssume that r has terms that are cubic or higher powers in the ŷ’s �see Appendix B and Fedosov2

or clarification�.
We rewrite the condition �cond D̂� as

�D − D̂�2ŷA = �� − Dr + d̂r + r2, ŷA� = 0,

here �ª �1/2i���FNRBCE
F �C�EŷNŷB is the phase-space curvature �D2 � �A=RBCE

A �C�E � �B�
s a commutator and d̂h= �1/ i����ABŷA�B ,h� where h is a matrix-valued function of x p, dx dp,
nd ŷ �see Appendix A for the proof�.

From now on we let

� − Dr + d̂r + r2 = 0, �r�

nd keep it in the back of our minds that we could add something that commutes with all ŷ’s to

−Dr+d̂r+r2.
Important: To emphasize the importance of this equation the reader should note that the whole

edosov �-formalism hinges on this r existing. We know solutions exists perturbatively in general
Fedosov has the recursive solution for it �Ref. 2, p. 144��, however convergence issues still
emain unresolved. On a technical note we have found that solving for r to be the hardest point of
he computation of the Fedosov observables because of the need for the right ansatz and the
onlinear equation �r� above that it must solve.

Specifically for the case of T*S2 the solution for the curvature as a commutator � is

� ª

1
3 ��s� · �� ��s� · 
� � − s2�� + �x� � k�� · s��̃ .

e then verify that it gives the curvature as commutators,

��,s�� = �− k� · �x� � s���̃,s�� = �̃�x� � s�� ,

��,k�� = 1
3 ��� �s� · 
� � + �s� · �� �
� − 2�s�� + �x� � k���̃ .

o simplify the calculations we set i�=1 which we will eventually put back in the end.
Fedosov at this point would implement an algorithm to construct r perturbatively, however

ather than do this we will make an ansatz for r by exploiting the rotational symmetry of the
phere. This will give us an exact solution for r. �On a technical note: we ran the Fedosov
lgorithm a few times to help us see what form the ansatz should take. Also remember that we

equire �−Dr+d̂r+r2=0 modulo terms that commute with the ŷ’s.�

Our ansatz for r is
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r = r0 + f�s2�z� · s��x� � s�� · 
� + g�s2�z� · �x� � s��s� · 
� + h�s2�s� · 
� , �r ansatz�

here z� = p� −x� �k� and r0= 1
3 ��k� ·
� �s2−k� ·s��s� ·
� ��.

We will now state the results of our calculations because the calculations are just too space
onsuming and yet at the same time straightforward. Given the formulas for r and � and per-
orming lengthy calculations eventually we get

Dr = �1

9
−

2g

3
+

f

3
�s2p� · s��̃ + f�� · �x� � s���x� � s�� · 
� − g�s� · �� �s� · 
� ,

d̂r = − � + �2f�s2 + 3f + g�z� · s��̃ − g�s� · �� �s� · 
� + f�� · �x� � s���x� � s�� · 
� ,

r2 = �1

9
−

2g

3
+

f

3
�s2p� · s��̃ + �2gf�s2 + gf − f2 −

2f

3
+

g

3
−

1

9
�s2z� · s��̃ ,

here f�=�f /��s2� for all functions.
Putting these into the equation �r� we obtain a condition for g,

g =
s2�� f + 1

3�2 − 2f�� − 3f

s2�� f + 1
3� + 2s2f�� + 1

hile f and h are left arbitrary as long as g is well defined. This is a necessary and sufficient
ondition for the equation �r� to hold.

We note that f =− 1
3 , g=1 and f =− 1

12, g= 1
4 are the only solutions where f and g are constant.

e will choose to work with the f =− 1
3 g=1, h=0 solution from now on. We choose this solution

or the sake of clarity because it turns out to be the easiest to use in the next few sections.
owever, the reader should note that we calculated the commutators for the general solutions for
, f , and h and obtained the same result for all of them. See Sec. VI for the exact result of the
ommutators for the particular solution f =− 1

3 , g=1, h=0 �and hence the solution for the general
olutions for g f , and h�.

The solution for r for f =− 1
3 , g=1, h=0 is

r = − 1
3 �p� · s����x� � s�� · 
� � + z� · �x� � s��s� · 
� . �r soln�

Ambiguities in r: It is worth while to note that the condition �cond D̂� does not uniquely define
ˆ given a fixed D. �Fedosov adds an additional condition that makes his D̂ unique from a fixed D

eing d̂−1r0=0 where d̂−1 is what he calls �−1 �an operator used in a de Rham decomposition� and

0 is the first term in the recursive solution. We regard this choice as being artificial and thus omit
t from the paper.�

It appears however that most of the ambiguities in constructing D̂ when given a fixed phase
pace connection D can be absorbed by a basis change �in other words a gauge transformation�. It
s easy to see this in a Darboux chart because the connection may be expressed as a commutator,

D̃ŷA = �Q̃, ŷA� ,

here D̃=D− D̂, Q̃=Q− Q̂, and D= �Q , · �. The gauge transformation takes the form

ŷA → ŷnew
A

ª UŷAU−1, D̃ŷA → D̃newŷnew
A

ª �UQ̃U−1,UŷAU−1� = U�D̃ŷA�U−1,

here U is some invertible function of the x’s, p’s, and ŷ’s. Thus the physical content of this
heory is independent of U because the commutators remain unchanged.
This can be seen as follows:
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r → r + r�,

here r is a solution to the equation �r� and r� is some unknown series,

r� = �
l

rAA1¯Al
� �AŷA1

¯ ŷAl.

etting r→r+r� into �r� we obtain

� − D�r + r�� + �s� · �� − k� · 
� ,�r + r��� + �r + r��2 = 0

odulo the equation �r� to get

− Dr� + �s� · �� − k� · 
� ,r�� + �r��2 + �r,r�� = 0 Þ D̃r� − �r��2 = 0.

his tells us that if r� is of the form

r� = �D̃U�U−1

or any U which corresponds to a gauge transformation in the enveloping algebra then the result-
ng rnew=r+r� will solve equation �r�. In other words once we have one solution we have actually
ave huge class of equivalent solutions. We suspect this class of equivalent solutions are all of the
olutions for a simply connected manifold.

Note: There is another source of ambiguity namely the ambiguity in the phase-space connec-
ion D. Given a connection D we may add to it a tensor �BC

A where if we lower by �ABC

�AE�BC
E it is symmetric in all three indices. The new connection still preserves the symplectic

orm �. Our curvature becomes

�D + ��2 = D2 + D��� + �2.

t is unclear what this ambiguity means so we will leave it for a future discussion.

. COMPUTING x̂ AND p̂

At this point in Fedosov’s algorithm we have all the tools in place to associate an observable

f̂ to every f �C��T*M�. Following Fedosov we require that every observable f̂�x , p , ŷ� must
atisfy the equation

�D − D̂� f̂�x,p, ŷ� = 0,

here fA1¯Al
are some unknown functions of x and p such that

�o� f̂�x,p, ŷ�� = f�x,p�

o �short for leading order in ŷ and �� picks out the term which has no ŷ’s and no �’s in it.
xplicitly,

f̂�x,p, ŷ� = f�x,p� + O�ŷ,�� ,

here f has no �’s in it.
And so the condition to solve �we believe unique up to unitary transformations� for an

observable f̂ for every f �C��T*M� is

�D − D̂� f̂�x,p, ŷ� = 0, �o� f̂�x,p, ŷ�� = f�x,p� . �cond f̂�
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f we have determined our D and D̂ we can find solutions for the operators x̂a and p̂a �i.e., their
oefficients bA1¯Al

a and caA1¯Al
�,

x̂a = �
l

bA1¯Al

a ŷA1
¯ ŷAl, �x̂�

p̂a = �
l

caA1¯Al
ŷA1

¯ ŷAl, �p̂�

here bA1¯Al

a and caA1¯Al
are complex-valued functions of x and p �which are the coefficients

fA1¯Al
in equation � f̂� where the first terms in the series is f =ba=xa or f =ca= pa, respectively� and

ill be determined by the equations:

�D − D̂�x̂a = 0, �o�x̂a� = xa, �cond x̂�

�D − D̂�p̂a = 0, �o�p̂a� = pa . �cond p̂�

gain see the example in Appendix D for solutions to x̂ and p̂ in the case of T*Rn where D=d.
If we invert the equations �x̂� and p̂� once we have solved for the coefficients bA1¯Al

a and

A1¯Al

a to get ŷ as matrix-valued function of x, p, x̂, and p̂ �i.e., ŷA= ŷA�x , p , x̂ , p̂�� and then

ubstitute it into the equation for an arbitrary observable � f̂� and get

f̂�x̂, p̂� = �
lm

fa1¯al

b1¯bmx̂a1
¯ x̂alp̂b1

¯ p̂bm
, � f̂ soln�

here fa1¯al

b1¯bm are constant coefficients. �To prove this act D− D̂ on this equation.�
However, once we have our x̂ and p̂ there is the ambiguity of how to order each variable when

ou map a function f�x , p� to f̂�x̂ , p̂�. For example, does the function f�x , p�=x1p1 go to x̂1p̂1, p̂1x̂1

r some linear combination of the two? We should expect this in any well-defined quantization
rocedure because such ordering ambiguities arise in quantum mechanics. We will, for now,

egard the ordering of each f̂ to be undetermined. �Fedosov chooses Weyl ordering.�
T*S2 explicitly: Fedosov at this point would implement an algorithm to construct x̂ and p̂

erturbatively �Ref. 2, p. 146� for our specific case of T*S2. We instead try to find exact solutions
o them. �We, again, ran the Fedosov algorithm a few times to help us see what for the ansatz we
hould take.� Specifically for the case of T*S2 we have the ansatz for both x̂ and p̂ as

x̂� = v�s2�x� + w�s2�x� � s� + y�s2�s� ,

p̂� = �z� · s�t�s2� + z� · �x� � s��q�s2��x� + z�n�s2� + z� � x�u�s2�

ith some functions v, w, y, t, q, n, and u to be determined and the requirements that �o�x̂��=x� and
o�p̂� �= p� .

The conditions �cond x̂� and �cond p̂� become the following equations:

0 = �D − D̂�x̂� = ��− 2v��s2 + 1� + w��s� · 
� � − y�x� � s�� · 
� �x�

+ ��−
v
s2 − 2w��s2 + 1� − w�1 +

1

s2���s� · 
� � − y
1

s2 �x� � s�� · 
��x� � s�

+ �� v
s2 + w

1

s2��x� � s�� · 
� + �− 2y��s2 + 1� − y�1 +
1

s2���s� · 
� ��s�
nd
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0 = �D − D̂�p̂� =		
− 2z� · s�t��s2 + 1� − �z� · s��

1

s2 t − 2z� · �x� � s��q��s2 + 1�

+ z� · �x� � s���1 −
1

s2�q − �z� · s��
1

s2u + z� · �x� � s��
1

s2n 
�s� · 
� �

	− �z� · �x� � s���1 +
1

s2��t + �z� · s��
1

s2q

+ x� · �z� � s��
1

s2u − �z� · s��
1

s2n 
�x� � s�� · 
� 
x�

+ 	� − z� · s�t − z� · �x� � s��q + 2z� · �x� � s��n
− �z� · s��u + 2�z� · s���s2 + 1�u� − 2�z� � x�� · s��s2 + 1�n�

��s� · 
� �

+ z� · �x� � s���x� � s�� · 
�u

 1

s2x� � s�

+ 	� 2z� · �x� � s��u + �z� · s��n
− 2�z� · s���s2 + 1�n� − 2��z� � x�� · s���s2 + 1�u�

�s� · 
�

+ �z� · s�t + z� · �x� � s��q − z� · �x� � s��n��x� � s�� · 
�

 1

s2s� .

o the conditions that D̃x̂� =0 and D̃p̂� =0 becomes 6+6 equations because �s� ·
� �2=0= ��x� �s�� ·
� �2

nd �s� ·
� ��x� �s�� ·
� = �̃ where �̃ab is invertible. We then solve the subsequent differential equations
or the functions v ,w ,y , t ,q ,n, and u along with requiring that they have the correct term with no

ŷ’s ��o�x̂��=x� and �o�p̂� �= p� � in the Taylor expansion to obtain the solutions

x̂� = �x� − x� � s���s2 + 1�−1/2, �x̂ soln�

p̂� = �z� · �x� � s��x� + z���s2 + 1�1/2, �p̂ soln�

here z� = p� −x� �k� with the following conditions holding:

�o�x̂�� = x� , �o�p̂� � = p� ,

p̂� · x̂� = x̂� · p̂� − 2i� = 0.
�x̂p̂ conds�

We note at this point that there is not much insight looking at these formulas except for what we
get for the commutators in the next section.

I. THE COMMUTATORS †x̂a , x̂b
‡, †x̂a , p̂b‡, AND †p̂a , p̂b‡

Once we have x̂a and p̂a, i.e., the coefficients bA1¯Al

a and cA1¯Al

a we work out the commutation
elations �x̂a , x̂b�, �x̂a , p̂b�, and �p̂a , p̂b� using the formulas �x̂� and �p̂� in the previous section in a
rute force calculation. Remember that the �-commutators is the Poisson bracket on T*M to first
rder in �,

� f̂ �x̂, p̂�, ĝ�x̂, p̂�� = ĥ�x̂, p̂�

�f� �x,p�,g��x,p��� = h��x,p� = i��f ,g�M + O��2� ��-comm�

here f̂ , ĝ , ĥ and f� ,g� ,h� are functions defined by:

f̂ �x̂, p̂� = � f ja1¯al

b1¯bm � jx̂a1
¯ ẍa1p̂b1

¯ p̂bm

Im
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f��x,p� = �
Im

f ja1¯al

b1¯bm � jxn1 � ¯ � xa1 � pb1
� ¯ � pbm

here f ja1¯al

b1¯bm are constants.

hese two sets, one of all f�’s �f�� and one of all f̂ ’s � f̂� defined above are isomorphic.
T*S2 explicitly: In our case of T*S2 we find

�x̂a, x̂b� = 0,

�x̂a, p̂b� = i���b
a − x̂ax̂b� ,

�p̂a, p̂b� = 2i�x̂�b�p̂�a�,

x̂� · x̂� = 1, p̂� · x̂� = x̂� · p̂� − 2i� = 0.

e now define L̂� because we argue below that it is a more “natural” momentum,

L̂� ª − p̂� � x̂� = x̂� � p̂� = x� � z� + �z� · s��x� − z� · �x� � s��s�

gain with the computed conditions

L̂� · x̂� = x̂� · L̂� = 0, x̂� · x̂� = 1,

�o�L̂� � = L� = x� � p� .

e easily recognize that L̂� is the more “natural” variable compared to p̂� . This is because p̂� · x̂� =0
nd x̂� · p̂� =2i� are very “unnatural” conditions since there is no physical reason why it should not
e x̂� · p̂� =0 and p̂� · x̂� =−2i�. We could define p̂� new= p̂� +Ax̂� where A is an arbitrary constant and obtain

he same commutators. On the other hand, the symmetry between L̂� · x̂� = x̂� · L̂� =0 seems to suggest

hat L̂� should be the preferred quantity over p̂� . In other words, the relevant component of p̂� is the

ne perpendicular to x̂� which is precisely what L̂� is.
Therefore the part of p̂ parallel to x̂ is irrelevant,

x̂� = �x� − x� � s���s2 + 1�−1/2, �x̂ soln�

L̂� = x� � z� + �z� · s��x� − z� · �x� � s��s�, �L̂ soln�

here z� = p� −x� �k� with conditions

L̂� · x̂� = x̂� · L̂� = 0, x̂� · x̂� = 1 . �x̂L̂ conds�

gain we note at this point that there is not much insight looking at these formulas except for what
e get for the commutators in the remainder of this section.

We compute the commutators,

�x̂a, x̂b� = 0, �xx�

�x̂a,L̂b� = i��a x̂c, �xL�
bc
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�L̂a,L̂b� = i��c
abL̂c, �LL�

long with

x̂� · x̂� = 1,L̂� · x̂� = x̂� · L̂� = 0 . �cond xL�

nce we know these relations we know the whole algebra of functions since the algebra is
ssociative. And thus we are done.

And so in the case of T*S2 a general element f̂ �the function � f̂� we were looking for and the

pecific form of the solution � f̂ soln�� in the space of all observables of x̂ and L̂ is

f̂�x̂,L̂� = �
lm

fa1¯al

b1¯bmx̂a1
¯ x̂alL̂b1

¯ L̂bm
,

here fa1¯al

b1¯bm are constants. This is the enveloping algebra of the operators of angular momentum
nd position on a Hilbert space.

Clearly we see that the L̂’s generate the standard angular momentum algebra and the x̂’s

ransform properly under rotations. However both the x̂’s and the L̂’s form a constrained version
f the standard R3 Euclid algebra with invariant constraints given by the last equations.

II. ANGULAR MOMENTUM STATES

Since we now have the algebra of observables we can ask about Hamiltonians and states. The

ree single quantum particle Hamiltonian in ordinary quantum mechanics is Ĥ= p̂2 /2m

�p̂r
2 /2m�+ �L̂� · L̂� /mr2� where p̂r is the radial component of momentum and L̂� is the angular

omentum. In other words, the natural choice for the Hamiltonian on our S2 �which we are free

o choose� is Ĥ= L̂� · L̂� , r=1,m=1 because it is just the restricted version of the E3 free particle
amiltonian onto S2. We then construct our angular momentum states in the usual way by solving

he eigenvalue equation

Ĥ�� = E��, �Schrödinger�

here E�R.
We will not do it because it is standard physics that one is able to do as an undergraduate

hysics student.

III. CONCLUSIONS

We have explicitly constructed an exact nonperturbative solutions to the observables in the
edosov �-formalism on T*S2 and showed that they obeyed the angular momentum commutation
elations. In other words, we took the phase space of a single classical particle confined to a
phere, quantized it and got the quantum angular momentum algebra �which we expected�. This is
one by starting with a chosen phase-space connection D and constructing an explicit formula for

ˆ . Via the equation �D− D̂� f̂ =0 that defines the algebra, i.e., the algebra of all f̂’s we then
xplicitly constructed x̂� and p̂� �the operator analogues of x� and p� � and computed their commuta-

ors. We realized �by defining L̂� = x̂� � p̂� � that the enveloping algebra of all x̂�’s and p̂� ’s gives the
ngular momentum algebra.

Subsequently we defined a Hamiltonian L̂� · L̂� that would have eigenstates of angular momen-
um, however we did not explicitly construct it because it is standard physics.

Another main point was that most of the ambiguity given a fixed phase-space connection D of

he construction of D̂, it seemed, stemmed from the freedom of a change of basis � f̂ →Uf̂U−1�
iven by the argument in Sec. IV. Finally the matrix form of the ŷ’s did not change anything from

Moyal-type object as is done in deformation quantization.
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We conclude that we would arrive at the same answer given any algebraic object ŷ that had
he same commutators along with the same action of the connection on them. We then view the
edosov �-formalism as a general algebraic construction and less tied to the deformation aspect of

ts original formulation. Thus our formulation using Heisenberg algebras and their subsequent
epresentation spaces �Hilbert spaces� makes a more direct connection to the standard formulation
f ordinary quantum mechanics.4–12
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PPENDIX A

We now show that the equation �D− D̂�2ŷA=0 is equivalent to ��−Dr+d̂r+r2 , ŷA�=0.
Proof:

�D − D̂�2ŷA = �D2 − DD̂ − D̂D + D̂2�ŷA,

�DD̂ + D̂D�ŷA = �D��ABŷA�B + r�, ŷA� = �Dr, ŷA� ,

D̂2ŷA = �Q̂,�Q̂, ŷA�� = Q̂�Q̂ŷA − ŷAQ̂� + �Q̂ŷA − ŷAQ̂�Q̂ = �Q̂2, ŷA�− = ���ABŷA�B + r�2, ŷA�−

= ���ABŷA�B�2 + ��ABŷA�B,r� + r2, ŷA�−,

2��ABŷA�B�2 = ��ABŷA�B,�CEŷC�E� = �ŷA, ŷC��AB�B�CE�E = �AB�A�B

Þ D̂2ŷA = ���ABŷA�B,r� + r2, ŷA�−,

here �A ,B�−=AB−BA for any A and B.
The curvature D2 acting on �A is

D2
� �A = RB

A
� �B.

hus the curvature D2 acting on ŷA is

D2ŷA = RB
AŷB.

nowing this we define � as the curvature D2 acting on ŷA as a commutator, namely,

1

i�
��, ŷA� = RB

AŷB,

e can immediately write a solution for � knowing �ŷA , ŷB�= i��AB, �AB�BC=�C
A and using the

ymmetries of the curvature tensor,

� ª − 1
2�ACRB

AŷBŷC.

hus we may rewrite the condition �D− D̂�2ŷA=0 as

�D − D̂�2ŷA = �� − Dr + d̂r + r2, ŷA� = 0.
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PPENDIX B

Here we present an argument as to why r only has terms that are cubic or higher powers in the
ŷ’s. Given

D̂ = �Q̂, · � = �Q̂A�A, · � ,

Q̂A = �
l

QAA1¯Al
ŷA1

¯ ŷAl,

e require

�D − D̂�2ŷA = 0.

f we let

Q̂A�A = �ABŷA�B + r ,

r = �
l

rAA1¯Al
�AŷA1

¯ ŷAl.

f we want r to be globally defined for all manifolds we must define it out of nondegenerate
ensors namely the metric, the symplectic form and the curvature. This is because � is degree 2 in
he ŷ’s �i.e., �ª− 1

2�ACRB
AŷBŷC has 2 ŷ’s�. The degree is defined by

deg�a� = �number of ŷ ’ s� + 2�number of � ’ s� .

linear r would yield

nd this cannot be zero for ��0. This means that r must have a quadratic term in it.
If r is quadratic �r=�l=0

2 rAA1¯Al
�AŷA1

¯ ŷAl�, in general, there is no way to construct the
egree 2 coefficient rAA1A2

out of invariant tensors. Thus we require that r has terms that are cubic
r higher powers in the ŷ’s. Fedosov mentions this fact also.2

For a specific manifold there might be an r that is quadratic. The argument above is meant for
n r in a general construction for a general manifold and so we give a counterexample in the case
hen the manifold M is En.

There is always the trivial solution to r,

r = − 1
2�CB	C

AŷAŷB,

here 	A
C=	BA

C �B are the Christoffel symbols associated to D. One can easily observe that this is
solution knowing �ŷA , ŷB�= i��AB, �AB�BC=�C

A and using the symmetries of the Christoffel
ymbols. However, the 	’s are not necessarily globally defined and if we find an r in one coor-
inate patch on T*M there is no guarantee that it will be well defined in another. However if

=En then this is a global r.

PPENDIX C

Useful identities,

dp� = �� � x� − p� � 
� ,

a b ˜ abc

 
 = �� xc,
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z� � x� = p� � x� − k� ,

z� = p� − x� � k� ,


a
b = 
�a�
�b� = 1
2�abc�
� � 
� �c = �̃�abcxc,

�v� � w� � � u� = �abv
aw� ub − v� �w� · u� � ,

v� � �w� � u� � = �abv
aw� ub − �v� · w� �u� ,

or all 3D vectors assuming nothing about �va ,wb�, �va ,ub� or �wa ,ub�,

�v� · 
� ��x� � w� � · 
� = �̃�v� · w� �

or all 3D vectors assuming �
a ,vb�= �
a ,wb�=0 and assuming nothing about �va ,wb�. For two
ectors such that v� ·x� =w� ·x� =0 we have the identities

v� � w� = ��v� � w� � · x��x� � x� ,

z� · �x� � s�� = p� · �x� � s�� − t ,

�s2,�x� � k�� · s�� = 0,

saf�k� · s�� = f�k� · s� + 1�sa,

�r0,s�� = 1
3 ��s� · 
� �s� − s2
� � ,

�r0,�s� · 
� �� = 0,

�r0,s2� = 0 = �z� · s�,s2� ,

�r0,k�� = 1
3 �2s��k� · 
� � − 
� t − �s� · 
� �k�� ,

�r0,z�� = 1
3 ��s� · 
� �x� � k� − 
� � x�t − 2x� � s��k� · 
� �� ,

D̃s� = 
� � s� − �1 +
1

s2��s� · 
� �s� −
1

s2 ��x� � s�� · 
� �x� � s� ,

D̃x� = Dx� = 
� � x� =
1

s2 ��x� � s�� · 
� �s� − �s� · 
� �x� � s� ,

D̃z� = 
� � z� + ��z� · s���s� · 
� � − z� · �x� � s����x� � s�� · 
� ��
1

s2s� + 2z� · �x� � s���s� · 
� �
1

s2x� � s� .

PPENDIX D: T*Rn

In the case of T*Rn we solve equation �r� above for r when D � �A=0 therefore DŷA=0 and
ˆ ˆ ˆ
ence �=0 and get the solution r=0. This gives us D by the formulas �D� and �Q�,
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D̂ =
1

i�
��ABŷA�B, · � =

1

i�
�s� · dp� − k� · dx� , · � =

1

i�
��x� + s�� · dp� − �p� + k�� · dx� , · � ,

here s and k are the first n ŷ’s and the last n ŷ’s, respectively �i.e., ŷA= �sa ,ka�� also we have
sa ,sb�=0= �ka ,kb� , �sa ,kb�= i��b

a, and Dsa=0=Dka.
All operators are required to satisfy

� f̂

�xadxa +
� f̂

�pa
dpa − D̂ f̂ = 0

Þ
� f̂

�xadxa +
� f̂

�pa
dpa =

1

i�
��x� + s�� · dp� − �p� + k�� · dx� , f̂� .

his equation is the specific case of the equation �cond f̂� for T*Rn introduced in Sec. II. The

bove equation tells us that f̂ is a function of x̂a=xa+sa and p̂a= pa+ka � f̂ = f̂�x̂ , p̂�� which are

olutions to the equation �cond f̂�, i.e., the coefficients bA1. . .Al

a and caA1. . .Al
in the case of T*Rn

ntroduced in Sec. II when �o� f̂�=xa and �o� f̂�= pa, respectively. The equation above implies that
1 / i���· , p̂a� generates the translation on the cotangent bundle in the xa direction and �1/ i��
�x̂a , · � generates the translation on the cotangent bundle in the pa direction on all observables f̂ .

ee Fedosov for more details on motivating the need for D̂.2 �
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We show that the time evolved Wigner function of a quantum particle under the
action of a smooth potential can be formally expanded in powers of �, where each
term of the expansion can be computed in terms of the corresponding classical flow.
Moreover the solution can be approximated by the N-order truncation with an error
O��N+1�. © 2006 American Institute of Physics. �DOI: 10.1063/1.2200143�

. INTRODUCTION

WKB methods �see, e.g., Refs. 6–8, and references quoted therein� provide an asymptotic
xpansion of the solutions to the Schrödinger equation:

i��t� = −
�2

2
�� + U� , �1.1�

n powers of �=�, �=h /2�, h being the Planck constant. Here we consider a quantum system
hose corresponding classical Hamiltonian is

H�x,p� =
p2

2
+ U�x� , �1.2�

here x�Rd is a configuration of the system. The initial state is usually assumed of the form:

��x� = a�x�eiS�x�/� �1.3�

here a and S are real functions of the configurational space.
The main disadvantage of the WKB methods is that they easily work for a short time, while

xtensions to arbitrary times require significant technical efforts. In fact assuming the solution to
he problem �1.1� of the form

��x,t� = a�x,t�eiS�x,t�/�, �1.4�

e find, at zero order in �, the following equations for a and S:

�ta + 1
2a div��S� + �S · �a = 0, �1.5�

�tS + 1
2 ��S�2 + U = 0. �1.6�

etting u=�S and n=a2, from �1.5� and �1.6� we obtain the pressureless Euler equations:

�tn + div�un� = 0, �1.7�

�tu + u · �u + �U = 0. �1.8�

�
Electronic mail: pulvirenti@mat.uniromal.it

47, 052103-1022-2488/2006/47�5�/052103/12/$23.00 © 2006 American Institute of Physics
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It is well known that Eqs. �1.7� and �1.8� deliver, in general, singularities in a finite time,
herefore we find difficulties in justifying Eq. �1.4� globally in time, even at zero order in �.

On the other hand we can introduce the Wigner transform �see Ref. 11� of a quantum state
escribed by the integral kernel �=��x ;y�. It is a function in the classical phase space defined by

f��x,v� = � 1

2�
�d� dyeiv·y��x −

�

2
y ;x +

�

2
y� �1.9�

educing to

f��x,v� = � 1

2�
�d� dyeiv·y��x −

�

2
y��̄�x +

�

2
y� �1.10�

henever ��x ;y�=�̄�x���y�, that is the quantum state is pure and described by the wave function
. The quantum evolution usually given in terms of the Heisenberg �or the Schrödinger� equation

s equivalently described by the so-called Wigner-Liouville equation which we shall introduce
ater on. At zero order in � such an equation reduces to the classical Liouville equation

��t + v · �x�f + F · �vf = 0, �1.11�

here F=−�U is the force field.
The Wigner transform of the initial state �1.3� is, at zero order in �,

f�x,v� = n�x���v − u�x�� , �1.12�

here u=�S and n=a2. Now, by using the characteristics of the Hamiltonian flow generated by
he Hamiltonian �1.2�, we can construct a global solution to Eq. �1.11�, with initial state �1.12�,
rovided that U is sufficiently smooth. Therefore, at least at zero order in �, the Wigner formalism
orks globally in time. As a consequence it seems natural to go further, namely to find an

symptotic expansion for the solution to the Wigner-Liouville equation, which is expected to work
lobally. However, in doing this we have to pay a price: we cannot pretend to recover the WKB
ave function globally in time. Indeed the solution to Eq. �1.11� has the hydrodynamical repre-

entation

f�x,v;t� = n�x,t���v − u�x,t�� �1.13�

nly locally in time because Eq. �1.13� holds if and only if the pair n ,u solves the problem �1.7�
nd �1.8� which, as we said, has unique smooth solution for a short time only. This is well known
nd has been pointed out in recent works �see, e.g., Ref. 9, and references quoted therein�.

On the other side the loss of a clear wave function picture is compensated by the fact that we
an compute, at least in principle, the asymptotic expansion of the physical observables, which are
oments of the Wigner measure. For instance the current and the current density are given by

n�x� = ���x��2 =� f�x,v�dv , �1.14�

� Im �̄ � ��x� = J�x� =� vf�x,v�dv , �1.15�

espectively.
The formal expansion we present here �see Sec. II� is not new. It corresponds to the well-

nown Egorov theorem and has been previously used by different authors �see, e.g., Refs. 2, 5,
nd 10 and also Ref. 1 for a geometrical description of the propagator of the time evolved Wigner
unction�. However it is somehow surprising that a rigorous analysis of the semiclassical expan-
ion of the Wigner function is apparently absent, as far as we know, from the current literature.

he main purpose of the present paper is to fill this gap.
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We mention that Wigner function approaches have been invoked in connection with compact-
ess methods also to weaken the usual regularity assumptions �see, e.g., Refs. 3 and 4�. Here we
se a different and complementary point of view: we assume smoothness on the potential and
nalyze the coefficients of the formal expansion in power of � of the solution. Then we control the
emainder showing that it is O��N+1� if N is the order of approximation.

We point out that the present method works for a large class of initial states including WKB
nd coherent states.

Our regularity assumptions are severe. We believe that they can be relaxed, however we prefer
o privilege the simplicity in this context.

I. THE FORMAL EXPANSION

The Wigner-Liouville equation for our quantum system described by the Wigner function
f�x ,v� on the classical phase space, reads as

��t + v · �x�f = Tf , �2.1�

here

Tf�x,v� =
i

�
	

	=±1
	� dkÛ�k�eik·xf�x,v +

	

2
�k� . �2.2�

e find it convenient to express T in the following equivalent divergence form, namely,

T = i�
−1/2

1/2

d
� dkÛ�k�eik·xk · �vf�x,v + �
k� . �2.3�

y using the Taylor formula:

f�x,v + �
k� = 	
n=0

N

�k · �v�nf�x,v�
��
�n

n!
+

���N+1

N!
�

0




d��k · �v�N+1f�x,v + ��k��N, �2.4�

e expand T in the formal power series in �,

T = T0 + �T1 + �2T2 + ¯ , �2.5�

here

T2n = i�1

2
�2n 1

�2n + 1�! � dkÛ�k�eik·x�k · �v�2n+1f�x,v�, n = 0,1 . . . �2.6�

nd

T2n+1 = 0, n = 0,1 . . . . �2.7�

ote that odd powers vanish and that:

T0 = �xU · �vf �2.8�

s the classical interaction part of the Liouville operator.
Now let f0 be the initial state. We assume that f0 has the following formal power expansion:

f0 = f0
�0� + �f0

�1� + �2f0
�2� + ¯ . �2.9�

e expand also the solution f�t� to Eq. �2.1� accordingly

f�t� = f �0��t� + �f �1��t� + �2f �2��t� + ¯ �2.10�
nd, using �2.5� in �2.1�, we find at zero order:
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��t + v · �x�f �0� = T0f �0�, �2.11�

hat is the classical Liouville equation with initial condition f0
�0�. More generally at order �n we

ave

��t + v · �x�f �n� = T0f �n� + 	
k=1

n

Tkf �n−k�, �2.12�

ith initial condition f0
�n�.

Equation �2.11� has the solution expressed in terms of the classical Hamiltonian flow �t�x ,v�
enerated by the Hamiltonian �1.2�, namely �t�x ,v�= �x�t� ,v�t�� where

ẋ�t� = v�t�, v̇�t� = − �xU�x�t�� , �2.13�

ith initial condition x�0�=x, v�0�=v. Then the solution to �2.11� is

f �0��x,v;t� = f0
�0���−t�x,v�� . �2.14�

Equation �2.12� can be solved for n0 by recurrence. In fact the Duhamel formula gives us

f �n��x,v;t� = f0
�n���−t�x,v�� + �

0

t

d�Sn��−�t−��,�� , �2.15�

here

Sn = 	
k=1

n

Tkf �n−k� �2.16�

s known by the previous steps.
It is remarkable that each term of the expansion can be computed in terms of the classical flow

t�x ,v� and its derivative with respect to the initial velocities.
The formal algebra we present in this section corresponds to the semiclassical Egorov theorem

see, e.g., Ref. 8�. It gives the formal expansion, in power of �, of the symbol of the time evolution
f a quantum observable. In other words the Weyl quantization formula �see Eq. �4.1�� of Eq.
2.10� yields the power expansion of the time evolved quantum density matrix.

II. INITIAL STATES

The expansions introduced in the previous section are formal and presumably diverging as a
ower series in �. For a rigorous analysis we truncate the series and estimate the remainder. To do
his, however, we first want to see which reasonable hypotheses we have to do on the expansion
t time zero. If it is given by a wave function � not depending on �, the Wigner transform f0

f� given by Eq. �1.10� is gently varying with � and has a series expansion

f0 = f0
�0� + �f0

�1� + �2f0
�2� + ¯ �3.1�

n which all the coefficients f0
�k� are smooth. These initial data, however, do not exhaust all cases

f physical interest. For instance WKB states have a quickly oscillating phase. Let us compute the
oefficient of the expansion �3.1� starting with the simplest case, namely the one in which the
hase is a linear function of the configuration:

S�x� = p · x, p � Rd. �3.2�
hen the Wigner transform of the wave function �1.3� is
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f0�x,v� = � 1

2�
�d� dyei�v−p�·ya�x −

�

2
y�a�x +

�

2
y� �3.3�

assuming a real�. Inserting in �3.3� the Taylor expansion

a�x ±
�

2
y� = 	

n�0
�y · �x�na�x�

�±1�n

n!
��

2
�n

�3.4�

e find

f0�x,v� = 	
n�0

��

2
�n

	
k�n

�− 1�k

k!

1

�n − k�!

� 	
j1. . .jn=1

d
�k

�xj1
. . . �xjk

a�x�
�n−k

�xjk+1
. . . �xjn

a�x� � dyyj1
. . . yjn

ei�v−p�·y . �3.5�

herefore the coefficients, which are explicitly given by

f0
�n��x,v� = �− i

2
�n

	
k=0

n
1

k!

1

�n − k�!
�− 1�k 	

j1. . .jn

�k

�xj1
. . . �xjk

a�x�
�n−k

�xjk+1
. . . �xjn

a�x�
�n

�vj1
. . . �vjn

��v − p� ,

�3.6�

re distributions in v, no matter how a is assumed smooth.
When S is not a linear function of x, we can proceed analogously by expanding also the

xponential of the oscillating phase. The calculations are slightly more involved but again the
oefficients are smooth as regards the x dependence and derivatives of � functions as regards the

dependence. The explicit form of the coefficients is not particularly relevant in the present
ontext and hence we omit the details.

Let us now analyze the case of a coherent state of the form:

��x� = � 1

��
�d/4

e�i/��v0·x exp� �x − x0�2

2�
� �3.7�

hose Wigner transform is

f��x,v� = � 1

��
�d

exp�−
�x − x0�2

2�
�exp�−

�v − v0�2

2�
� . �3.8�

iven a test function ��x ,v�, setting z= �x ,v� and z0= �x0 ,v0�, we obtain


f�,�� = � 1

�
�d�

R2d
dze−z2

��z0 + ��z� = � 1

�
�d

	
n�0

1

�2n�!
�n�

R2d
dze−z2

�z · �z�2n��z0� . �3.9�

ence:

f��x,v� = ��x − x0���v − v0� + �	
i=1

d � �2

�xi
2 +

�2

�vi
2���x − x0���v − v0� + ¯ . �3.10�

hus the expansion at order n of the Wigner function of a coherent state involved derivatives of
rder 2n of � functions. On the other hand a mixture of coherent states by means of a smooth
robability density on �x0 ,v0� can be expanded in terms of smooth coefficients. Therefore we are

ed to consider initial expansions �2.9� with smooth and distributional coefficients.
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V. Hs ESTIMATES FOR THE WIGNER FUNCTION

We start by reviewing some well-known facts concerning the solution to the Wigner-Liouville
q. �2.1�.

Equation �1.9� can be inverted, namely we have

��x,y� = � 1

2�
�d� dvei�v/���x−y�f� x + y

2
;v� . �4.1�

ctually the operator �̂, whose integral kernel is given by �4.1�, is the Weyl quantization of the
lassical observable f defined on the phase space.

Consider now the Hamiltonian H=−��2 /2��+U. Under a suitable assumption on U �for
nstance U�L�� H is self-adjoint on a suitable domain and V�t�=exp�it /��H is a strongly con-
inuous group of unitaries in L2�Rd�. The time evolution of �̂ is �̂�t�=V�t��̂V�−t�. Therefore, given
f �L2�x ,v� we can define the time evolution mapping f → f�t� by means of the following steps:

f → �̂ → �̂�t� → f�t�  ��t�f

here the above actions are the Weyl quantization �4.1�, the quantum time evolution and the
igner transform, respectively. The family of transformations ��t� is a one-parameter group of

nitaries whose generator extends −v ·�+T as an anti-self-adjoint operator. Therefore Eq. �2.1�
ay be seen as an equation in L2�x ,v�.

Remark: Here f is considered as a classical observable and �̂ a quantum observable obtained
y means of the Weyl quantization. Of course a probability density f does not correspond neces-
arily to a physical admissible state. Conversely the Wigner transform of a quantum state is not, in
eneral, a probability density.

Now we look for further regularity. Let f = f�x ,v ; t� be the solution to the Wigner-Liouville
quation, with initial datum f0�Hs�x ,v�, where Hs�x ,v� is the Sobolev space of order s and s is
positive integer. In this section we show that f�t��Hs�x ,v�, provided that the potential energy U

s sufficiently smooth. In proving this we exploit the antisymmetry of the operators v ·�x and T
sing straightforward L2 estimates.

For any multi-index �= ��1 . . .�d�, we introduce the standard notation:

Dx
� =

����

��1x1 . . . ��dxd
, �4.2�

here ���=	 j� j. Analogously we set:

Dv
� =

����

��1v1 . . . ��dvd
, �4.3�

nd define the scalar product:

�f ,g�n = 	
�,�:

���+����n

�Dv
�Dx

�f ,Dv
�Dx

�g�L2�x,v�, �4.4�

nd the associated norm �f�n=��f , f�n. The Hilbert space equipped with the scalar product �4.4� is
enoted by Hn.

� �
In order to estimate �f�t��n we compute �tDvDx f with ���+ ����n. We have
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�tDv
�Dx

�f = Dv
�Dx

��− v · �x + T�f = �− v · �x + T�Dv
�Dx

�f + 	
����:

����=1

C�,��Dv
��v · �xDv

�−��Dx
�f

+ i 	
����:

����0

C�,���
−1/2

1/2

d
� dkÛ�k�Dx
��eik·x�k · �v�Dv

�Dx
�−��f�x,v + �
k� , �4.5�

here C�,�� is a suitable combinatorial coefficient and ���� means � j��� j with ����� ���.
inally �−��= �� j −� j�� j=1

d .
Note that the second term on the right-hand side of �4.5� is absent when ���=0.
We have now that

�g,v · �xg�L2�x,v� = �g,Tg�L2�x,v� = 0 �4.6�

or any g smooth enough. Then, for f real:

1

2

d

dt
�Dv

�Dx
�f ,Dv

�Dx
�f�L2�x,v� = �Dv

�Dx
�f ,Dv

�Dx
�f�t f�L2�x,v�. �4.7�

nserting �4.5� in �4.7� we realize that, by virtue of �4.6�, the first term on the right-hand side of
4.5� �namely that with higher order derivatives� does not give any contribution. By the Schwarz
nequality, for ����1:

�Dv
�Dx

�f ,Dv
��v · �xDv

�−��Dx
�f�L2

� C�f�n
2, �4.8�

ecause ���− ����+ ���+1�n. Analogously the last term on the right-hand side of �4.5� is bounded
n the L2 norm, by

� dk�Û�k���k������+1���vDv
�Dx

�−��f�L2
� C�f�n �4.9�

ecause ���+ ���− ����+1�n. In conclusion,

d

dt
�f�n

2 � C�f�n
2, �4.10�

rovided that

� dk�Û�k���k�n � C � + � . �4.11�

Summarizing we proved the following.
Theorem 4.1: Let f = f�t� be the solution to Eq. �2.1� with initial datum f0�Hn�x ,v� with n

0 and suppose that the potential U satisfies condition �4.11�. Then f�t��Hn�x ,v� and

�f�t��n � �f0�neCt,

here the constant C �which depends on n� is independent of �. For n=0 we have C=1, namely

he L2 norm is conserved.
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. CONTROLLING THE REMAINDER

In this section we present the main results of this paper. We show that the formal expansion
2.10� can be truncated at an arbitrary order N and the error we make is O��N+1�.

The discussion in Sec. III on the initial data suggests to consider separately the case of smooth
nd distributional coefficients �for instance when dealing with a suitable mixture of coherent states
nd WKB or coherent pure states, respectively�. We need first to establish a few preliminary
stimates. We introduce the operator TN by

TN = T − 	
j=0

N

Tj�
j = i�N+1� dkÛ�k�eik·x�

−1/2

1/2

d
�
0




d�
�N

N!
�k · �v�N+2f�x,v + ��k� �5.1�

nd set:

u�n� =� dk�Û�k���1 + �k��n. �5.2�

hen if g�HN+s+2�x ,v� and if U is sufficiently smooth, from �5.1� we get

�TNg�s � C�N+1u�s + N + 2��g�N+s+2. �5.3�

ere and in the sequel C denotes any positive constant depending on N, the Sobolev indices
,s , . . . and time, but not on �. Estimate �5.3� follows easily by the definition. In the same way we
btain

�Tng�s � Cu�s + n + 1��g�n+s+1. �5.4�

inally setting

D̃ = �
s�N+

Hs�x,v� , �5.5�

e can prove the following:
Theorem 5.1: Consider f�t� the solution to the initial value problem �2.1� with initial condi-

ion

f0 = 	
n=0

N

�nf0
�n� + RN�0� , �5.6�

or some integer N�1. Assume that f0
�n��D̃ for all n�0. . .N and that RN�0��D̃ with the bound

�RN�0��s � C�N+1, s = 0,1, . . . . �5.7�

f u�n��Cn� +� for any n�1, then

f�t� = 	
n=0

N

�nf �n��t� + RN�t� �5.8�

ith f �n��t� given by �2.14�. Furthermore the following bound on the remainder holds:

�RN�t��s � C�N+1 �5.9�

or any s�0.

Proof: By Eq. �2.1�, assuming for the solution the representation �5.8�, we have
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��t + v · �x�	
n=0

N

�nf �n� + ��t + v · �x�RN = 	
n=0

N

�nTf �n� + TRN = 	
s,n=0:

s+n�N

N

�n+sTsf
�n� + 	

n=0

N

�nTNf �n�

+ 	
s,n=0:

s+nN

N

�n+sTsf
�n� + TRN. �5.10�

y construction the first terms on the left- and right-hand sides of �5.10� compensate, so that the
quation for the remainder RN�t� is

��t + v · �x�RN�t� = TRN�t� + SN
R�t� , �5.11�

here

SN
R = 	

n=0

N

�nTNf �n� + 	
s,n=0:

s+nN

N

�n+sTsf
�n�. �5.12�

y Eq. �2.15� and Theorem 4.1 we have, for any s�0,

�f �n��t��s � C�f0
�n��s + C�

0

t

d��Sn����s. �5.13�

oreover, by �2.16� and �5.4�:

�Sn����s = 	
k=1

n

�Tkf �n−k�����s � C	
k=1

n

�f �n−k�����s+k+1. �5.14�

herefore supt�t0
�f �n��t��s�C for all s�0 provided that the same estimate holds for 0 ,1 , . . .n

1. By Theorem 4.1 if f0
�0��D̃ then supt�t0

�f �0��t��s�C for all s�0. Therefore we can inductively
onclude that

sup
t�t0

�f �n��t��s � C

or all s and n.
By �5.11� and the Duhamel formula:

RN�t� = ��t�RN�0� + �
0

t

d���t − ��SN
R��� . �5.15�

y Theorem 4.1 we have

�RN�t��s � C�RN�0��s + C�
0

t

d��SN
R����s �5.16�

nd finally, by �5.12�, �5.3�, and �5.4�:

�SN
R����s � 	

n=0

N

�n�TNf �n�����s + 	
s,n=0:

s+nN

N

�n+s�Tsf
�n�����s � C�N+1. �5.17�
This concludes the proof. �
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We remark that the hypotheses under which we proved Theorem 5.1 could be considerably
elaxed. Indeed if N is not arbitrary but given, we can prove �5.9� with s=0, provided that f0

�n�

HN+1 for all n�N and u�N+1��C.
We now rephrase Theorem 5.1 for Sobolev spaces with negative indices to include WKB or

oherent states.
We start by observing that H−s solutions to Eq. �2.1�, for initial condition f0�H−s, can be

efined by duality:

�g, f�t�� = ���− t�g, f0� �5.18�

or all g�Hs. Theorem 4.1 makes the above definition meaningful and provides the bound

�f�t��−s � C�f0�−s. �5.19�

e can also extend estimates �5.3� and �5.4� by duality:

�TNg�−s � C�N+1u�s + N + 2��g�−�s−N−2�, �5.20�

�Tng�s � Cu�s + n + 1��g�−�s−n−1�. �5.21�

bviously Eqs. �5.20� and �5.21� make sense provided that g�H−�s−N−2� and g�H−�s−n−1�, respec-
ively.

Theorem 5.2: Let f�t� be the solution to the initial value problem �2.1� with initial condition

f0 = 	
n=0

N

�nf0
�n� + RN�0� , �5.22�

or some integer N�1. Assume that f0
�n��H−�r+2n�, for some r�0 and all n�0. . .N and that

N�0��H−�r+4N� with the bound

�RN�0��−�r+4N� � C�N+1. �5.23�

f u�r+4N+2��C� +�, then

f�t� = 	
n=0

N

�nf �n��t� + RN�t� �5.24�

ith f �n��t� given by �2.15�. Furthermore:

�RN�t��−�r+4N� � C�N+1. �5.25�

Proof: We proceed as in the proof of Theorem 5.1. By �2.15� and �5.22�, for fixed arbitrary t0,
f t� t0:

�f �n��t��−�r+2n� � C�f0
�n��−�r+2n� + C sup

��t0

�Sn����−�r+2n�. �5.26�

oreover, by �2.16� and �5.21�:

�Sn����−�r+2n� � 	
k=1

n

�Tkf �n−k�����−�r+2n� � C	
k=1

n

�f �n−k�����−�r+2n−k−1�. �5.27�
ssuming, by inductive hypothesis, that for all k�n,
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sup
t�t0

�f �k��t��−�r+2k� = C �5.28�

note that Eq. �5.28� is known to hold for k=0 by �5.19�� then, using �5.28� in �5.27�, we conclude
hat

�Sn����−�r+2n� � C	
k=1

n

�f �n−k�����−�r+2�n−k�� � C �5.29�

nd hence �5.28� holds for any k�N.
Furthermore by �5.15�, �5.11�, and �5.12�:

�RN�t��−�r+4N� � C�RN�0��−�r+4N� + C sup
t�t0

�SN
R����−�r+4N�, �5.30�

�SN
R����−�r+4N� � 	

n=0

N

�n�TNf �n�����−�r+4N� + 	
s,n=0:

s+nN

N

�n+s�Tsf
�n�����−�r+4N�

� �N+1 	
s,n=0

N

�f �n�����−�r+2n� � �N+1. �5.31�

his concludes the proof. �

To comment on the result we note that if A is a quantum observable with kernel A�x ,y� and
ymbol a�x ,v�, then:

��,A��L2�x� = �f�,a�L2�x,v� �5.32�

here

a�x,v� = � �

2�
�3� dyeiv·yA�x + �

y

2
;x − �

y

2
� , �5.33�

here a is the symbol of A �which is its Weyl quantization�. For many fundamental observables
like momentum, energy, angular momentum, etc.� the symbol a is independent of �. In this case
� ,A��L2�x� can be easily expanded:

��,A��L2�x� = 	
n

An�t��n, �5.34�

here

An�t� =� dx� dva�x,v�f�
�n��x,v;t� . �5.35�

or instance for the current density we have

J�x,t� = 	
n

Jn�x,t��n,

here

Jn�x,t� =� dvvf�
�n��x,v;t� .

However, in principle, other observables A can have symbols which depend on �. In this case

e have to combine the semiclassical expansion of the symbol:
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a�x,v,�� = 	
n

an�x,v��n

ith the expansion �2.10� for f�, namely we have to replace �5.35� by

An�t� = 	
k=0

n � dx� dvak�x,v�f�
�n−k��x,v;t� . �5.36�
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The spreading of the quantum-mechanical probability distribution density of
D-dimensional hydrogenic orbitals is quantitatively determined by means of the
local information-theoretic quantity of Fisher in both position and momentum
spaces. The Fisher information is found in closed form in terms of the quantum
numbers of the orbital. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2190335�

. INTRODUCTION

The Fisher information, originally introduced by R. A. Fisher in the theory of statistical
stimation,1,2 is the main theoretic tool of the extreme physical information principle, a general
ariational principle which allows one to derive numerous fundamental equations of physics:3–5

axwell equations, the Einstein field equations, the Dirac and Klein-Gordon equations, various
aws of statistical physics and some laws governing nearly incompressible turbulent fluid flows.
pplications to a large variety of problems in theoretical physics have received a strong impulse
hen it was realized that the spatial distribution of the single-particle probability density ��r�� of a
any-particle system, which is the basic variable of the density functional theory,6,7 can be

uantitatively measured by its translationally invariant Fisher information in a different and
omplementary manner as the Shannon entropy. Both quantities characterize the information-
heoretic content of the density ��r�� which describes the physical state under consideration. The
hannon entropy8,9 is a logarithmic functional of the density, so that it is a global measure of
isorder or smoothness of ��r��. The Fisher information is the gradient functional of the density

I� = �
R3

��� ��r���2

��r��
dr� , �1�

o it has a property of locality because it is sensitive to local rearrangements of the position
ariable r�.3,10 The higher this quantity is, the more concentrated the single-particle density, the
maller the uncertainty and the higher the accuracy is in predicting the localization for the
article.3,11

The Fisher information I� has been shown to be closely connected with other density func-
ionals which characterize a number of macroscopic properties of fundamental character as well as
hysical observables;3,7,12,13 in particular, it represents, a constant apart, the Weiszäcker energy
unctional of the many-particle system.7,13 Moreover, it has been used �i� to build up uncertainty
elations stronger than the variance-based Heisenberg principle �e.g., the Cramer-Rao

�
Electronic mail: dehesa@ugr.es

47, 052104-1022-2488/2006/47�5�/052104/13/$23.00 © 2006 American Institute of Physics
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elation�,3,11,14 �ii� to analyze the correlation problem of the many-electron systems,15 and �iii� to
dentify the most distinctive nonlinear spectral phenomena �the avoided crossings� of electronic
ystems in external fields.16

However, the analytical determination of the Fisher information from first principles has not
een undertaken yet, even for single-particle systems. In this paper we shall calculate the Fisher
nformation of a D-dimensional hydrogenic system in terms of D quantum numbers which char-
cterize its orbitals not only in the position but also in the momentum representation. Emphasis
ill be on momentum hydrogenic orbitals, i.e., the solution to the nonrelativistic, time-

ndependent Schrödinger equation in momentum space describing the quantum-mechanics for the
otion of an electron in the Coulomb field of a nucleus with charge +Ze. This is not only because

he momentum orbitals have usually been avoided in favor of the position orbitals but also because
f �i� their conceptual importance, �ii� the distribution of momenta for real �D=3� atomic systems
nd specifically for hydrogen atom17–19 is nowadays experimentally accessible in atomic, molecu-
ar, and nuclear experiments, especially since the advent of the modern spectroscopy �e ,e��,19 �iii�
he scattering phenomena are most conveniently viewed in numerical simulations by means of

omentum orbitals �see, e.g., Ref. 20�, and �iv� they play a very relevant role in numerous other
hysical processes with atoms and molecules which are governed by simple functions of the
omentum transfer.21,22 Moreover, the D-dimensional hydrogenic orbitals are of interest as many-

lectron Sturmians.23,24 For further details and motivation see Refs. 25–38.
The position and momentum hydrogenic orbitals in D-dimensions in polar coordinates are

nown to be composed of an angular part and a radial part.25,39–42 The angular part, which is
ommon to both position and momentum cases, corresponds to hyperspherical harmonics because
f the radially symmetric character of the Coulomb potential. The radial part is controlled by the
aguerre and Gegenbauer polynomials in the position and momentum representations, respec-

ively. This is not accidental; it is associated with the well-known O�3� and O�4� symmetries of
he hydrogen atom.43–46

The paper is structured as follows. First in Sec. II the known position and momentum wave
unctions of the hydrogenic system in D dimensions are described in detail, and the corresponding
robability densities are explicitly shown. Then in Secs. III and IV we find closed expressions for
he Fisher information of the hydrogenic orbitals in terms of the D quantum numbers which
haracterize them in position and momentum spaces, respectively. Finally, some concluding re-
arks are given.

I. THE HYDROGENIC PROBLEM IN D DIMENSIONS

In the following we fix our notation and we describe in hyperspherical polar coordinates the
ave functions of the D-dimensional hydrogenic orbitals �i.e., the solutions to the nonrelativistic,

ime-independent Schrödinger equation in D dimensions describing the quantum mechanics for
he motion of an electron in the Coulomb field of a nucleus with charge +Ze� in the configuration
or position� and momentum spaces, as well as the associated probability densities.

. D-dimensional position orbitals

The position hydrogenic orbitals ��r�� are the solutions of the Schrödinger equation

�−
�2

2�
�� D

2 −
Ze2

r
���r�� = E��r�� , �2�

here � is the reduced mass, the position vector r�= �x1 ,x2 , . . . ,xD�, and �� D
2 is the Laplacian

perator in the D-dimensional space, D�2. By use of the polar coordinates �r ,�1 ,�2 , . . . ,�D−2 ,��
efined by
x1 = r sin �1 sin �2 . . . sin �D−2 cos � ,
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x2 = r sin �1 sin �2 . . . sin �D−2 sin � ,

x3 = r sin �1 sin �2 . . . cos �D−2,

]

xD−1 = r sin �1 cos �2,

xD = r cos �1,

ith 0�� j �	, j=1, . . . ,D−2, and 0���2	, one has that Eq. �2� transforms as

�−
�2

2�e
� d2

dr2 +
D − 1

r

d

dr
−


2

r2 � −
Ze2

r
	��r�� = E��r�� ,

here 
2 is the D-dimensional generalization of the square of the angular momentum
perator26,40,47 which only depends on the D−1 angular coordinates �1 ,�2 , . . . ,�D−2, and � of a
-dimensional sphere. The technique of separation of variables is known to provide the bound

tate solutions 
E ,��r��� for this problem. The energies are given �see, e.g., Ref. 36� by

E = −
Z2e2

a�

1

2�2 = −
Z2e2

a0

�

me

1

2�2 , �3�

here a�=�2 /�e2= �me /��a0, and a0=�2 /mee
2 is the Bohr radius, and

� = n +
D − 3

2
, n = 1,2,3, . . . . �4�

he associated eigenfunctions ��r�� have a radial part R�r� and an angular part Y��D−1� so that

��r�� = R�r�Y��D−1� , �5�

here Y��D−1� are the hyperspherical harmonics, i.e., the eigenfunctions of the nonradial part of
he Hamiltonian, 
2, i.e.,


2Yl,
����D−1� = l�l + D − 2�Yl,
����D−1�, l = 0,1,2, . . . .

Each hyperspherical harmonic is determined by the D−1 quantum numbers �l
�1 ,�2 , . . . ,�D−1���l , 
���, which may have all values consistent with the inequalities l��1

�2� . . . ��D−1�m�0. These functions have the form

Yl,
����D−1� =
1

�2	
Al,
��e

im��
j=1

D−2

C�j−�j+1

j+�j+1�cos � j��sin � j��j+1 �
1

�2	
eim��

j=1

D−2

Y�j,�j+1

�j� �� j� , �6�

ith the normalization constant

Al,
��2 = �
j=1

D−2
� j + � j��� j − � j+1�!��� j + � j+1��2

	21−2j−2�j+1��2 j + � j + � j+1�
� �

j=1

D−2

A�j,�j+1

�j� , �7�

here 2 j =D− j−1 and Ck
��t� is the Gegenbauer polynomial of degree k and parameter �. In
ddition, we have used the notation
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Y�j,�j+1

�j� �� j� = A�j,�j+1

�j� C�j−�j+1

j+�j+1�cos � j��sin � j��j+1.

emark that for D=2 there are no products, so that the corresponding spherical harmonic is just
im� / �2	�. The spherical harmonics satisfy the orthonormalization condition

�
−1

1

d�D−1Yl�,
�����D−1�Yl,
����D−1� = �ll��
��
���. �8�

The radial eigenfunctions R�r�, i.e., the solutions of the radial Schrödinger equation

�−
�2

2�
� d2

dr2 +
D − 1

r

d

dr
−

l�l + D − 2�
r2 � −

Ze2

r
	R�r� = ER�r� , �9�

ave the form

R�,L�r� = N�,L��2L+1�r̃�
r̃D−2 	1/2

L�−L−1
2L+1 �r̃� , �10�

here the grand orbital angular momentum quantum number L and the adimensional parameter r̃
re

L = l +
D − 3

2
, l = 0,1,2, . . . ,

r̃ =
r

�
with � =

��2

2Z�e2 =
�a�

2Z
,

nd ��r̃�= r̃e−r̃ denotes the weight function with respect to which the Laguerre polynomials

k
�r̃� are orthogonal on the interval �0,��. And the normalization constant is given by

N�,L = �−D/2� �� − L − 1�!
2���� + L�!�3�1/2

= �� 2Z

a��n +
D − 3

2
��

D �n − l − 1�!

2�n +
D − 3

2
���n + l + D − 3�!�3�

1/2

� Nn,l.

Then, the complete energy eigenfunctions of the D-dimensional hydrogen atom are

��,L,
���r�� = R�,L�r�YL,
����D−1� = N�,L��2L+1�r̃�
r̃D−2 	1/2

L�−L−1
2L+1 �r̃�YL,
����D−1� ,

r, also the form

�n,l,
���r�� = Rn,l�r�Yl,
����D−1� = Nn,l� r

�
�l

e−�r/2��Ln−l−1
2l+D−2� r

�
�Yl,
����D−1� . �11�

So, the probability density of the system in the configuration space ��r��= ��r��2 has the form

��r�� = Rnl
2 Yl,
����D−1�2 = N�,L

2 ��2L+1�r̃�
r̃D−2 	�L�−L−1

2L+1 �r̃��2YL,
����D−1�2

= Nn,l
2 r̃2le−r̃�Ln−l−1

2l+D−2�r̃��2Yl,
����D−1�2, �12�

here Eqs. �5�, �10�, and �11� were taken into account, and the notation r̃=r /� given by Eq. �9�
as been used. It is worth noticing that this expression reduces to the well-known position eigen-

unctions for the three-dimensional hydrogenic atom when D=3.
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. D-dimensional momentum orbitals

By means of a generalization of the Fock method48 �see also Refs. 40–42 and 49� to
-dimensional hydrogenic atoms or, alternatively, by computing the D-dimensional Fourier trans-

orm of the configuration eigenfunction �nl
���r��25,50,51 it is obtained that the D-dimensional
ydrogen eigenfunction in momentum space �nl
���p�� has the form

�nl
���p�� = M�,L�p�Yl
����D−1� , �13�

hen

M�,l�p� = K�,L
��p�l

�1 + �2p2�L+2C�−L−1
L+1 �1 − �2p2

1 + �2p2� . �14�

ere the electron momentum p is assumed to be expressed in units of Zp�, where p�= �� /m�p0,
ith the atomic momentum unit p0=� /a0. And the normalization constant

K�,L = � �� − L − 1�!
2	�� + L�! �

1/2

22L+3��L + 1���D+1�/2. �15�

Then, the corresponding probability density in momentum space ��p��= �nl
���p��2 is ex-
ressed as

��p�� = Knl
2 ��p�2l

�1 + �2p2�2l+D+1�Cn−l−1
l+�D−1�/2�1 − �2p2

1 + �2p2�	2

Yl
����D�2.

Here again, for D=3 this expression reduces to the corresponding momentum density of the
hree-dimensional hydrogenic atom.52

II. THE FISHER INFORMATION IN POSITION SPACE

In this section we compute the Fisher information of the D-dimensional hydrogenic orbital in
onfiguration space, characterized by the quantum numbers �n , l ,�2 , . . . ,�D−1���n , l , 
���, i.e.,

I��D� ª �
RD

��� D��r���2

��r��
dDr , �16�

here ��r�� is the position probability density of the orbital as given by Eq. �12�, �� D denotes the
-dimensional gradient operator given by

�� D =
�

�r
r̂ +

1

r
�
i=1

D−2
1

�
k=1

i−1

sin �k

�

��i
�i +

1

r�
i=1

D−2

sin �i

�

��
�̂ , �17�

n the polar coordinates �r ,�1 ,�2 , . . . ,�D−2 ,��, and the volume element in the D-dimensional
pace is

dr� = rD−1drd�D−1;d�D−1 = ��
j=1

D−2

�sin � j�2jd� j�d� .

Taking into account that

��r�� = �n,l,
���r,�1,�2, . . . ,�D−2,��2 = �n,l,
���r,�1,�2, . . . ,�D−2,0�2,
ne has that
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I��D� = 4�
R

D
��� D�n,l,
���r,�1,�2, . . . ,�D−2,0��2dDr . �18�

The use of Eqs. �11� and �17� into this expression allows us to write that

I��D� = 4�
0

� � �

�r
Rnl�r�	2

rD−1dr + 4�
0

�

r−2Rnl
2 �r�rD−1dr

��
i=1

D−2 �
�D−1 � 1

�
k=1

i−1

sin �k

�

��i
Yl,
����1,�2, . . . ,�D−2,0��

2

d�D−1

� IR�D� + �r−2��
i=1

D−2

I�i
�D� , �19�

here we have used the orthonormalization condition �8� of the hyperspherical harmonics in the
rst equality, and the expectation value

�f�r�� = �
R

D
f�r���r��dDr = �

0

�

f�r�Rnl
2 �r�rD−1dr , �20�

or f�r�=r−2 in the second equality. As well we have used the notations

IR�D� � 4�
0

� � d

dr
Rnl�r�	2

rD−1dr , �21�

or the radial component of the Fisher information I��D�, and

I�i
�D� � 4�

�D−1 � 1

�
k=1

i−1

sin �k

�

��i
Yl,
����1,�2, . . . ,�D−2,0��

2

d�D−1, �22�

or the ith part of the angular component.
In the following we are going to show that the radial integral IR�D� has the value

IR�D� =
4Z2

a�
2 �3�� − 2

l�l + D − 2�
2l + D − 2

	 =
4Z2

a�
2 �3�� −

2

2L + 1
�L�L + 1� −

1

4
�D − 1��D − 3�	� ,

�23�

here we have used that l�l+D−2�=L�L+1�− 1
4 �D−1��D−3�, and that the angular component

�i
�D� is given by

I�i
�D� = 4��i��i + D − i − 1� − �i+1��i+1 + D − i − 2�

2�i + D − i − 1

2�i+1 + D − i − 2
	 � �

k=1

i−1
2�k + D − k − 1

2�k+1 + D − k − 2
.

�24�

aking into account that the product

�
k=1

i−1
2�k + D − k − 1

2�k+1 + D − k − 2
=

2�1 + D − 2

2�i + D − i − 1
, �25�
ne has that Eq. �24� reduces as
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I�i
�D� = 4��i��i + D − i − 1� − �i+1��i+1 + D − i − 2�

2�i + D − i − 1

2�i+1 + D − i − 2
	 �

2�1 + D − 2

2�i + D − i − 1
.

�26�

Consideration of Eqs. �19�, �23�, and �26�, and that the expectation value

�r−2� =
2Z2

a�
2 �3

1

2l + D − 2
=

2Z2

a�
2 �3

1

2L + 1
, �27�

e have found the following value for the Fisher information of the D-dimensional hydrogenic
rbital in the configuration space:

I��D� =
4Z2

a�
2 �3�� −

2

2L + 1�L�L + 1� −
1

4
�D − 1��D − 3�

− �
i=1

D−2 ��i��i + D − i − 1� −
�i+1��i+1 + D − i − 2��2�i + D − i − 1�

2�i+1 + D − i − 2
� �

2�1 + D − 2

2�i + D − i − 1	� .

�28�

traightforward algebraic manipulations lead to the following simple expression for the
-dimensional position Fisher information

I��D� =
4Z2

a�
2 �3 �� − �D−1� , �29�

alid for D�2. Remark that for D=2, the summation is empty, so that it does not contribute.
It is observed that the Fisher information, as the ionization energy �see Eq. �3��, behaves as

−2 with respect to the generalized principal quantum number � �see Eq. �4��. Remark that the
isher information depends on the grand principal quantum number � and the grand magnetic
uantum number �D−1= m. It is worth noticing that for D=3 this expression boils down to

I��D = 3� =
4Z2

a�
2

n − m
n3 ,

ecently obtained by other means.53,54 One observes that the Fisher information of the real hydro-
enic system, as well as the level energy, does not depend on the familiar orbital quantum number,
ut it does depend on the magnetic quantum number m.

Let us first compute the radial integral IR�D� given by Eq. �21�. The integration by parts leads
s to the expression

IR�D� = 4�
0

�

rD−1R�dR = − 4�D − 1��
0

�

rD−2RR�dr − 4�
0

�

rD−1RR�dr .

he use of the radial Schrödinger equation �9� expressed as

R��r� = a1�r�R��r� + a2�r�R�r� , �30�

ith

a1�r� =
1 − D

, �31�

r
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a2�r� =
2Z

a�r
+

2E

a�e2 −
l�l + D − 2�

r2 , �32�

llows us to write

IR�D� = − 4�D − 1��
0

�

rD−2RR�dr − 4�
0

�

rD−1R�a1�r�R� + a2�r�R�dr

= − 4�
0

�

��D − 1�rD−2 + a1�r�rD−1�RR�dr − 4�
0

�

a2�r�R2rD−1dr

= − 2�
0

�

��D − 1�rD−2 + a1�r�rD−1�dR2 − 4�
0

�

a2�r�R2rD−1dr .

nd the integration by parts in the first integral gives rise to

IR�D� = �
0

� �2�D − 1���D − 2�r−2 +
a1�r�

r
	 + 2a1��r� − 4a2�r��R2rD−1dr

= �2�D − 1���D − 2�r−2 +
a1�r�

r
	 + 2a1��r� − 4a2�r��

= 2�D − 1���D − 2��r−2� + � a1�r�
r
�	 + 2�a1��r�� − 4�a2�r�� , �33�

here we have used of the expectation value of f�r� given by Eq. �20�.
The use of Eqs. �31� and �32� allows us to write

� a1�r�
r
� = �1 − D��r−2�, �a1��r�� = �D − 1��r−2��a2�r�� =

2Z

a�

�r−1� +
2E

a�e2 − l�l + D − 2��r−2� ,

o that the radial integral IR�D� is equal to

IR�D� =
8Z

a�

�r−1� +
8E

a�e2 − 4l�l + D − 2��r−2� .

nd taking into account the virial theorem

E = −
Ze2

2
�r−1� ,

ne has that

IR�D� =
8Z

2a�

�r−1� − 4l�l + D − 2��r−2� . �34�

Then, since �r−1�=Z /a��2 and �r−2� has the value �27�, it is straightforward to obtain the
earched expression �23� for the radical position Fisher information of the hydrogenic orbital.

Let us now compute the angular integral I�i
�D� given by Eq. �22�. To do that, according to Eq.

6� we express the involved hyperspherical harmonics as

Yl,
����1,�2, . . . ,�D−2,0� =
1

2	
�
j=1

D−2

Y�j,�j+1

�j� �� j� ,
here
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Y�j,�j+1

�j� �� j� � A�j,�j+1

�j� C�j−�j+1

j+�j+1�cos � j��sin � j��j+1,

here the constant A�j,�j+1

�j� was defined by Eq. �7�.
These functions satisfy the following properties: the normalization condition

�
0

	

�Y�j,�j+1

�j� �� j��2�sin � j�D−j−1d� j = 1,

nd the differential equation �see, e.g., Ref 26�:

�

�� j
��sin � j�D−j−1 �

�� j
Y�j,�j+1

�j� �� j�	
= − �sin � j�D−j−1�� j�� j + D − j − 1� −

� j+1�� j+1 + D − j − 2�
sin2 � j

	Y�j,�j+1

�j� �� j� .

se of these considerations into Eq. �22� allows us to write

I�i
�D� = I�i

�1��D� · �
k=1

i−1 �
0

	

�Y�k,�k+1

�k� ��k��2�sin �k�D−k−3d�k

here

I�i

�1��D� = �
0

	 � �

��i
Y�i,�i+1

�i� ��i�	2

�sin �i�D−i−1d�i = − �
0

	 �

��i
��sin �i�D−i−1 �

��i
Y�i,�i+1

�i� ��i�	Yl,
��
i d�i

= �i��i + D − i − 1��
0

	

�Y�i,�i+1

�i� ��i��2�sin �i�D−i−1d�i

− �i+1��i+1 + D − i − 2��
0

	

�Y�i,�i+1

�i� ��i��2�sin �i�D−i−3d�i,

here an integration by parts has been performed in the second equality, and the orthogonalization
ondition of the harmonics Y�i,�i+1

�i� ��i� were taken into account in the second equality. The nor-
alization of these functions and the value of the integral

�
0

	

�Y�i,�i+1

�i� ��i��2�sin �i�D−i−3d�i =
2�i + D − i − 1

2�i+1 + D − i − 2
, �35�

as allowed us to find the value given by Eq. �24� for the searched angular integral I�i
�D�. The

ntegral �35� can be obtained by the use of the relation between the involved spherical harmonics
nd the associated Legendre function Pn

m�x�, together with the expression

�
−1

+1

�1 − x2�−1�pn
m�x��2dx =

�n + m�!
m�n − m�!

.

V. THE FISHER INFORMATION IN MOMENTUM SPACE

Here we calculate the Fisher information of D-dimensional hydrogenic orbital in momentum

pace given by
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I��D� ª �
R

D

�� D��p��2

��p��
dDp , �36�

here

��p�� = ��,l,
���p��2 = ��,l,
���p,�1,�2, . . . ,�D−1�2 = ���,l,
���p,�1,�2, . . . ,�D−2,0��2,

o that, after an integration by parts, one has

I��D� = 4�
R

D
��� D��,l,
���p,�1,�2, . . . ,�D−2,0��2dDp .

Remark that the spherical polar angles of the momentum vector p� are denoted with the same
ymbols as in the position vector. The D-dimensional gradient operator in momentum space has
he same formal expression as given by Eq. �17� with the only change r↔p, so that

I��D� = 4�
0

� � d

dp
M�,L�p�	2

pD−1dp + 4�
0

�

p−2M�,L
2 �p�pD−1dp

��
i=1

D−2 �
�D−1 � 1

�
k=1

i−1

sin �k

�

��i
Yl,
����1,�2, . . . ,�D−2,0��

2

d�D−1

� 4JR�D� + 4�p−2��
i=1

D−2

I�i
�D� , �37�

here the angular integral I�i
�D� has been shown to have the value �26� in the previous section and

he expectation value �p−2� is given by

�p−2� = �
0

�

p−2M�,L
2 �p�pD−1dp = �28� − 6L − 3

�2L + 1�
. �38�

Let us now compute the radial integral JR�D� given by

JR�D� = �
0

� � d

dp
M�,L�p�	2

pD−1dp = � 1

�
�D−2�

0

� �dM�,L�x�
dx

	2

xD−1dx ,

here x=�p, and

M�,L�x� = Kn,l
xl

�1 + x2�L+2C�−L−1
L+1 �1 − x2

1 + x2� .

The change of the variable x→y :y= �1−x2� / �1+x2�, so that dx= �1−y�−3/2�1+y�−1/2dy, allows
s to write

JR�D� = � 1

�
�D−2�

−1

+1 �dM�,L�y�
dy

	2

�1 + y�D/2�1 − y�−�D−4�/2dy , �39�

here

M�,L�y� =
K�,L

L+2 �1 + y�L/2−�D−3�/4�1 − y�L/2+�D−5�/4C�−L−1
L+1 �y� . �40�
2
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This integral can be decomposed into a sum of functionals of Gegenbauer polynomials whose
embers can be calculated following a modus operandi similar to that described in Ref. 51. This

s done in the Appendix. We have found the value

JR�D� = �2 ��2L − D + 3��2L + D − 1��6L − 8� + 3��
4�2L + 1�

+
�2

2
�1 + 5�2 − 3L�L + 1�� . �41�

Gathering together in Eq. �37� the values for the radial integral JR�D�, the expectation value
p−2� and the angular integral I�i

�D� given by Eqs. �41�, �38�, and �26�, respectively, one finally
btains the following expression for the Fisher information of a D-dimensional hydrogenic orbital
n momentum space �see Eq. �36��:

I��D� = �2���2L − D + 3��2L + D − 1��6L − 8� + 3��
�2L + 1�

+ 2�1 + 5�2 − 3L�L + 1�� + 4
8� − 6L − 3

2L + 1
·

� �
i=1

D−2 ��i��i + D − i − 1� − �i+1��i+1 + D − i − 2�
2�i + D − i − 1

2�i+1 + D − i − 2
	 �

2�1 + D − 2

2�i + D − i − 1� .

�42�

straightforward algrebraic manipulation leads to the more compact expression

I��D� = 2�2�5�2 − 3L�L + 1� − �8� − 6L − 3��D−1� ,

alid for D�2. Here again for D=2 the term containing the summation does not contribute since
he sum is empty. In the case D=3 this expression reduces as

I��D = 3� = 2n2�5n2 + 1 − 3l�l + 1� + 3�2l + 1�m − 8nm� ,

hich provides the Fisher information of the momentum distribution of a hydrogenic state char-
cterized by the quantum numbers �n , l ,m�, already found by other means.54

. CONCLUDING REMARKS

The translationally invariant Fisher information for D-dimensional hydrogenic systems, which
s an information-theoretic measure of the localization of the quantum-mechanical distribution
ensity of these systems all over the space, has been determined in a closed and compact form for
oth position and momentum spaces in terms of the dimension parameter D, the nuclear charge Z
nd the quantum numbers �, L and �D−1= m of the physical state under consideration.

Finally, let us point out that this information-theoretic quantity remains to be calculated for
ultidimensional hydrogenic Sturmians of nonspherical character �e.g., parabolic, elliptic�55–57 in

he two complementary spaces. This work is presently being done by the authors.
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PPENDIX: CALCULATION OF THE MOMENTUM RADIAL INTEGRAL JR„D…

Here we shall prove that the radial integral JR�D� given by Eqs. �39� and �40� has the value
iven by Eq. �41�. From Eqs. �39� and �40� one has that JR�D� can be decomposed into six
ifferent integrals as

JR�D� = JR + JR + JR + JR + JR + JR . �A1�

1 2 3 4 5 6
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With the notation �L+1�y�= �1−y2�L+1/2 for the weight function of the Gegenbauer polynomials

m
L+1�y�, these integrals have the following values:

JR1
=

K�,L
2

22L+4� 1

�
�D−2

�2L − D + 3�2�
−1

+1

�C�−L−1
L+1 �y��2�L+1�y��1 + y�−1dy =

2�3�2L − D + 3�2

2L + 1
,

JR2
=

K�,L
2

22L+4� 1

�
�D−2� �D + 1�2

4
− �2L − D + 3�2	�

−1

+1

�C�−L−1
L+1 �y��2�L+1�y�dy

= �2� �D + 1�2

4
− �2L − D + 3�2	 ,

JR3
=

K�,L
2

22L+4� 1

�
�D−2

�L�D − 3L − 11� + 2D − 10� � �
−1

+1

�C�−L−1
L+1 �y��2�L+1�y�y2dy

=
�2

2
�L�D − 3L − 11� + 2D − 10�

�2 − 1 − L�L + 1�
�2 − 1

,

JR4
=

K�,L
2

22L+2� 1

�
�D−2

�L + 1�2�
−1

+1

�C�−L−2
L+2 �y��2�L+2�y��1 − y�3dy

= �2��2 − �L + 1�2��1 +
3

2

�2 − 3 − L�L + 3�
�2 − 1

	 ,

JR5
= − 8

K�,L
2

22L+4� 1

�
�D−2

�2L − D + 3��L + 1��
−1

+1

�C�−L−1
L+1 �y���C�−L−2

L+2 �y���L+1�y�ydy

= − 4�2�2L − D + 3��� − L − 1� ,

nd

JR6
= 2

K�,L
2

22L+4� 1

�
�D−2

�6L − D + 11��L + 1��
−1

+1

�C�−L−1
L+1 �y���C�−L−2

L+2 �y���L+2�y�ydy

=
�2

2
�6L − D + 11��L + 1�

�2 − �L + 1�2

�2 − 1
.

o compute the integrals included in the six expressions considered above, we have made an
ntensive use of the special properties which characterize the Gegenbauer polynomials �e.g., the
hree-term recurrence relation, the orthogonality relation, etc.�.

Gathering all these J-expressions together in Eq. �A1�, one obtains the searched value given
y Eq. �41� for JR�D�; namely,

JR�D� = �2 ��2L − D + 3��2L + D − 1��6L − 8� + 3��
4�2L + 1�

+
�2

2
�1 + 5�2 − 3L�L + 1�� .
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We use a coproduct on the time-ordered algebra of field operators to derive simple
relations between complete, connected and 1-particle irreducible n-point functions.
Compared to traditional functional methods our approach is much more intrinsic
and leads to efficient algorithms suitable for concrete computations. It may also be
used to efficiently perform tree level computations. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2196239�

. INTRODUCTION

It may be said that time-ordered n-point functions are at the heart of �perturbative� quantum
eld theory. These determine the S-matrix that in turn allows to calculate experimentally observ-
ble scattering cross sections. Besides the complete n-point functions which are expectation values
f time-ordered products of field operators, a key role is played by connected and by 1-particle
rreducible �1PI� n-point functions. In particular, the latter play a prominent role in the process of
enormalization, as it is enough to renormalize 1PI n-point functions. Furthermore, they are inti-
ately related to the effective action. The different classes of n-point functions correspond directly

o different sums over Feynman graphs, namely all graphs �excluding vacuum graphs�, connected
raphs and 1PI graphs.

The relations between these different classes of n-point functions �and thus sums over Feyn-
an graphs� are traditionally expressed by using functional methods. While having an undeniable

legance, a disadvantage of these methods is the need for auxiliary sources and associated gener-
ting functions. These, as well as functional derivatives used in the process are often purely formal
nd have no rigorous mathematical existence. Consequently, they are only indirectly related to
oncrete calculations of n-point functions one may wish to perform.

In the present paper we describe the relation between these classes of n-point functions
irectly on the level of the algebra of time-ordered field operators. The key structure we will make
se of is the natural coproduct on this algebra, making it into a Hopf algebra. Ensembles of
ime-ordered n-point functions are simply linear forms on this algebra. We show that the convo-
ution product �induced by the coproduct� provides an extremely concise and elegant way of
elating complete and connected n-point functions. Indeed, this relation is simply given by the
onvolution exponential �or, conversely, the logarithm�.

Our second �and perhaps main� result concerns the relation of connected and 1PI n-point
unctions. As is well known, the former are expressible in terms of the latter as the sum over all
ree graphs with 1PI vertices. We present a simple recursion formula using the coproduct, which
enerates exactly all tree diagrams. Moreover, the result takes an algebraic form which can be
irectly evaluated on 1PI functions so as to yield the connected functions. We proceed to derive an
lternative recursion formula which relates directly components of connected n-point functions

�Electronic mail: mestre@matmor.unam.mx
�
Electronic mail: robert@matmor.unam.mx
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rdered by vertex number. Moreover, these same formulas can be alternatively applied to calculate
he tree level contribution to the connected n-point functions, using the interaction terms of the
agrangian.

A key feature of our results is their close relation to algorithmic descriptions of the compu-
ations involved. Indeed, it is easy to read off from our recursion relations not only algorithms to
erform the computations, but even data structures relevant for an implementation. Our algorithm
or generating trees also seems to be particular efficient as it allows to impose a lower bound on
he number of legs per vertex from the outset.

The present paper may be seen as part of a program laid out in Ref. 1 and rooted in Ref. 2–4,
ith the aim of formulating and understanding the key structures of quantum field theory and their

ombinatorics in terms of the Hopf algebra of field operators. The focus of Ref. 1 were the
ifferent products of field operators �normal product, canonical product, and time-ordered prod-
ct�, uncovering their relation through Drinfeld twists via certain 2-cocycles in Hopf algebra
ohomology. At the same time the relation between products and associated n-point functions was
lucidated, again using Hopf algebra cohomology. The present paper complements this by inves-
igating with the same means the relation between different classes of n-point functions that
orrespond to different classes of Feynman diagrams.

While Hopf algebras and coproducts have a long history in combinatorics, their use in com-
inatorial problems in quantum field theory is rather recent. The first instance probably was
reimer’s Hopf algebraic explanation of the Bogoliubov formula of renormalization and of Zim-
ermann’s solution,5 subsequently developed together with Connes.6 We caution the reader, how-

ver, that the Hopf algebras used by Kreimer and Connes, while also being related to Feynman
raphs, are quite distinct from the Hopf algebra of field operators used here.

Section II starts with recalling the different classes of n-point functions and their relation to
eynman graphs. Then, the basic algebraic formalism used in this paper is introduced, in particular

he coproduct. Section III deals with the relation between complete and connected n-point func-
ion, Sec. IV with that between connected and 1PI n-point functions. An alternative recursion
ormula for the latter is derived in Sec. V. In Sec. VI various generalizations �e.g., tree level
alculations� and related issues are discussed. Some Conclusions are offered in Sec. VII. The
ppendix shows all tree graphs with up to seven vertices with weight factors computed according
o Sec. IV.

No knowledge of Hopf algebras is required to read this paper.

I. BASIC DEFINITIONS

We shall be concerned in the following with a generic perturbative quantum field theory. We
enote the basic field operators by ��x�, where x represents a label that completely determines the
perator. In a position representation x would specify a point in Minkowski space, possibly
ogether with internal indices. While our notation suggests a field theory with a single scalar field,
his is just a convenience. Although our results are general, we limit ourselves in the following
xposition to a purely bosonic theory for simplicity. We return in Sec. VI D to a discussion of the
eneral case, including fermionic fields.

. Feynman graphs and n-point functions

We review here essentials about �classes of� Feynman graphs and n-point functions. For more
nformation on these and the standard functional approach used to manipulate them we refer the
eader to standard textbooks such as Ref. 7.

Definition 1: A graph is a finite collection of vertices and edges �also called legs�, such that
ny end of an edge may be connected to a vertex. Edges that are connected to vertices at both ends
re called internal, while edges with at least one free end are called external. The valence of a
ertex is the number of ends of edges connected to the vertex. A tree (graph) is a connected graph

hat has no cycles.
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Feynman graphs are graphs that carry certain labels on vertices and edges. The former corre-
pond to the interaction terms of the Lagrangian while the latter may correspond to momenta and
nternal indices �usually indicated by different styles of lines, e.g., straight for fermions, wiggly for
osons, etc.�. We shall only consider labels attached to �open ends� of external legs, assuming
nternal labels to be summed or integrated over.

Definition 2: A labeled graph is a graph whose (ends of) external legs are labeled by field
perator labels.

In the following we shall consider only such labeled graphs, i.e., from now on graph really
eans labeled graph. A Feynman graph has a �usually complex� value as a function of the labels

n the external legs.
We denote by G�n��x1 , . . . ,xn� the complete n-point function. This is the vacuum expectation

alue of the time-ordered product of n field operators, i.e.,

G�n��x1, . . . ,xn� = �0�T��x1� ¯ ��xn��0� .

n terms of Feynman graphs it is the sum of the values of all graphs with external legs labeled by

1 , . . . ,xn. Let us denote by �n the set of all Feynman graphs of the given theory with n legs �with
acuum graphs, i.e., graphs containing pieces not connected to any external leg already excluded�.
Whether one considers the bare or renormalized �including counter terms� theory does not matter
o us here. Of course, in the former case quantities might be infinite and manipulations therefore
ormal.� For a given graph ���n we denote by ��x1 , . . . ,xn� its value for the given labelings.
hen,

G�n��x1, . . . ,xn� = �
���n

��x1, . . . ,xn� . �1�

Of particular importance is the Feynman propagator GF�x ,y� which is the value of the graph
hat consists of an edge only, its two ends labeled by x and y, respectively. Note that the Feynman
ropagator is symmetric in its arguments GF�x ,y�=GF�y ,x� as suggested by the corresponding
ymmetry of the graph. We also define its inverse GF

−1 which is determined by the equation

	 dyGF�x,y�GF
−1�y,z� = ��x,z� . �2�

�Here as in the following we use a notation that suggests merely an integration over space–
ime. However, appropriate summations over internal indices are also implied, but not written
xplicitly.�

Consider the restricted class �c of Feynman graphs that are connected. The n-point functions

c
�n� defined by the corresponding restriction of �1� are called the connected n-point functions. The

elation between complete and connected n-point functions can be described in a simple way.
artition the set of external legs of the complete n-point function in all possible ways. The sum
ver the product of connected functions for each partition yields the complete n-point function,

G�n��x1, . . . ,xn� = �
k=1

n

�
I1�¯�Ik=
x1,. . .,xn�

�
j=1

k

Gc�Ij� . �3�

ere I1 , . . . , Ik denote nonempty subsets of 
x1 , . . . ,xn� forming a partition. Note also that the

FIG. 1. Decomposition of the complete 4-point function in terms of connected functions.
artitions are unordered, i.e., the subsets I1 , . . . , Ik are not distinguished. As an example, Fig. 1
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hows the decomposition of the complete 4-point function in terms of connected functions. The
ormer is indicated by an empty circle, while the latter are indicated by circles carrying the letter
c.”

We turn to consider the restriction of the class of connected Feynman graphs to that of
-particle irreducible (1PI) Feynman graphs, denoted by �1PI. These are Feynman graphs which
re connected and remain connected when any one of their internal edges is cut. We define G1PI in
nalogy to �1� for this restricted class. The relation between 1PI functions and connected ones may
ow be described as follows. The connected n-point function is the sum over all tree graphs with
he given external legs, where the value of each vertex is given by G1PI. Since the latter carry
eynman propagators on all their legs, internal edges connecting two vertices need to carry the

nverse Feynman propagator GF
−1 to cancel one superfluous Feynman propagator. As an example,

ig. 2 shows the infinite decomposition of the connected 2-point function �propagator� in terms of
PI ones. The 1PI vertices are drawn as shaded discs.

One variant of the 1PI functions is of interest. Namely, replace the Feynman propagator GF on
he external legs of a 1PI function by the connected propagator Gc

�2�. We denote these modified 1PI

unctions by Ĝ1PI. The relation between Gc and Ĝ1PI is the same as that between Gc and G1PI

escribed above, except that internal edges now carry the inverse �Gc
�2��−1 of the connected propa-

ator �defined analogous to �2��. A crucial property of the modified 1PI functions is that the

-point function Ĝ1PI
�2� vanishes by definition. This means that only trees with vertices that have

alence at least three can occur in the sum. In particular, this makes the sum over trees finite for
ny given set of external legs. Figure 3 shows the decomposition of the connected 4-point function
n terms of modified 1PI functions. The fact that the legs now carry the connected propagator is
ndicated with little circles.

Note that we assume all 1-point functions to vanish.

. Field operator algebra and coproduct

We turn to introduce the basic algebraic definitions and elementary formalism employed in
his paper. While our basic setup is largely the same as that in Ref. 1 we give an adapted and
elf-contained description here.

Let V be the vector space of linear combinations of elementary field operators ��x�. That is,
lements of V take the form �1��x1�+�2��x2�+ ¯ +�n��xn�, where �i are complex numbers and

i denote field operator labels. Consider now the commutative algebra S�V� generated by those
eld operators with the time-ordered product. In Ref. 1 the same algebra was considered, but with

he normal ordered product. This makes no difference to its structure. It is just more convenient in
he present context to start immediately with time-ordered product. A general element in S�V�
akes the form

�1��x1,1���x1,2� ¯ ��x1,k1
� + �2��x2,1���x2,2� ¯ ��x2,k2

� + ¯ .

ote that we do not explicitly indicate the time-ordering prescription, but it is always understood.
et us denote by Vk the vector space of k-fold products of field operator. Then, S�V� is the direct
um of the spaces Vk, i.e., S�V�= �k=0

� Vk. We denote the identity operator spanning V0 by 1.

FIG. 2. Decomposition of the connected propagator in terms of 1PI functions. Only part of the infinite sum is shown.
FIG. 3. Decomposition of the complete 4-point function in terms of modified 1PI functions.
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In mathematical terms, S�V� is called the symmetric algebra over V. In our current notation a
ime-ordered n-point function is a linear map Vn→C. Thus, the ensemble of time-ordered n-point
unctions �of a given type� determines a linear map S�V�→C. Recalling the various types of
-point functions introduced in the preceding section we denote the corresponding linear maps
�V�→C as follows:

����x1� ¯ ��xn�� ª G�n��x1, . . . ,xn� ,

����x1� ¯ ��xn�� ª Gc
�n��x1, . . . ,xn� ,

	���x1� ¯ ��xn�� ª G1PI
�n� �x1, . . . ,xn� ,

	̂���x1� ¯ ��xn�� ª Ĝ1PI
�n� �x1, . . . ,xn� .

he assumption that all 1-point functions vanish means that ����x��=����x��=	���x��= 	̂���x��
0. For completeness, we also need to define 0-point functions. Since ��1�= �0 �0� we need to set
�1�=1. We shall see that the consistent choice for the other 0-point functions is ��1�=	�1�
	̂�1�=0. Also, the 2-point function 	̂���x���y�� vanishes by construction.

S�V� is not only an algebra, but also a coalgebra in a natural way. This means that there exists
linear coproduct map 
 :S�V�→S�V� � S�V� with certain properties. One way to think about

his coproduct map is as a way to split a product of field operators into two parts in all possible
ays. For example,


�1� = 1 � 1 , �4�


���x�� = ��x� � 1 + 1 � ��x� , �5�


���x���y�� = ��x���y� � 1 + ��x� � ��y� + ��y� � ��x� + 1 � ��x���y� . �6�

he general formula for the coproduct is


���x1� ¯ ��xn�� = �
I1�I2=
��x1�,. . .,��xn��

T�I1� � T�I2� . �7�

ere the sum runs over partitions of the set of field operators 
��x1� , . . . ,��xn�� into two sets I1

nd I2. T denotes the time-ordered product of the field operators in the corresponding partition.
The coproduct has the property that it is an algebra map. This means that 
���x1�¯��xn��


���x1�¯��xk�� ·
���xk+1�¯��xn��. Here, the product in S�V� is extended to a product in
�V� � S�V� in the obvious way. The property of the coproduct to be an algebra map together with

4� and �5� completely determines it. Formula �7� can be derived from these properties.
Another important structure is the counit � :S�V�→C. It is defined by ��1�=1 and

���x1�¯��xn��=0 for n�0. The characterizing property of the counit is the equality �� � id�

=id= �id � �� �
. The algebra S�V� together with unit, counit, coproduct, and antipode �which is
nother map that we do not need here� forms a Hopf algebra, see Ref. 1.

We shall also need iterated coproducts. First note that the coproduct satisfies the equality

 � id� �
= �id � 
� �
. That is, after applying the coproduct once, a second application either on
he first or on the second component yield the same result. This is called coassociativity. We define
he map 
k :S�V�→S�V��k+1 as the k-fold application of the coproduct. Here, S�V��k+1 denotes
he �k+1�-fold tensor product of S�V�. Thus, 
0=id and 
k+1= �
 � id�k� �
k. Here, the latter
quation could be written in k+1 different ways �corresponding to different positions of the
pplication of the coproduct� which are all equivalent due to coassociativity. The map 
k gener-

lizes �7� as follows:
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k���x1� ¯ ��xn�� = �
I1�¯�Ik+1=
��x1�,. . .,��xn��

T�I1� � ¯ � T�Ik+1� . �8�

he difference to the single coproduct is that the set of field operators is now split into k+1
artitions. Note also that the partitions are ordered, i.e., the sets I1 . . . Ik+1 are distinguishable.

A further definition we will require is the following. Given linear maps  :S�V�→C and
:S�V�→C their convolution product is the map �� :S�V�→C defined by � � �� �
. That is,
e apply the coproduct followed by the application of  to its first and � to its second component.
ote that the coassociativity of the coproduct implies associativity of the convolution product.
hus, we can write multiple convolution products without needing to specify brackets. In particu-

ar, we may write an iterated convolution product using the iterated coproduct,

1 � ¯ � k = �1 � ¯ � k� � 
k−1. �9�

he convolution product makes �S�V��*, the space of complex linear functions on S�V�, into an
lgebra. This algebra has a unit which is given by the counit � of S�V�. Furthermore, any element

which satisfies �1��0 is invertible in this algebra, i.e., has an inverse with respect to the
onvolution product.

II. COMPLETE AND CONNECTED n-POINT FUNCTIONS

The first instance where we shall apply the Hopf algebraic approach to capture the combina-
orics of quantum field theory is in the relation between the complete and the connected n-point
unctions.

As the �iterated� coproduct �8� is intimately related to partitions it seems predestined to
xpress the relation between complete and connected n-point functions �3�. Indeed, the relation
etween the two is very compactly and elegantly expressed using the convolution product �and
hus implicitly the coproduct�.

Proposition 3: The complete n-point functions may be expressed in terms of the connected
nes through the convolution exponential, �=exp��. The convolution exponential is defined in
erms of its power series expansion.

Proof: We explicitly perform the power series expansion on a given argument in the subspace
n�S�V��n�0�,

�exp��������x1� ¯ ��xn�� = �
k=0

�
1

k!
��k���x1� ¯ ��xn��

=�
k=1

�
1

k!
�� � ¯ � �� � 
k−1���x1� ¯ ��xn��

=�
k=1

n
1

k! �
I1�¯�Ik=
��x1�,. . .,��xn��

�
j=1

k

��T�Ij�� .

ere, ��k denotes the k-fold convolution product of � with itself. In particular, ��0=� by defini-
ion. Since ����x1�¯��xn��=0 the first summand is zero in the first line and we may omit it. In
oing from the second to the third line we insert the definition of the iterated coproduct �8�. Note
hat by definition ��1�=0. This implies that all partitions where at least one partitioning set Ij is
mpty do not contribute. In particular, all summands of the outer sum with k�n must vanish. The
nly difference to the partitioning in �3� is that the latter are unordered. However, the number of
ccurrences of each unordered partition in the set of ordered ones is exactly k!. Thus, the factor
/k! establishes equality with ����x1�¯��xn��. To complete the proof, note that ��1�=��0�1�

�k
��1�=1 since ��1�=0 and thus � �1�=0 for k�0. �
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Let us emphasize that although the power series defining the exponential is formally infinite,
n any given element of S�V� it is truncated to a finite and thus well defined sum as shown in the
roof above. Thus, the relation �=exp� � is completely well-defined algebraically. Indeed, we
ay even invert it.

Corollary 4: The connected n-point functions may be expressed in terms of the complete ones
hrough the convolution logarithm, �=log� 0. The convolution logarithm is defined in terms of its
ower series expansion in �−�.

Proof: By definition

log� � = �
k=0

�

�− 1�k1

k
�� − ���k.

ote that ��−���1�=0. This implies as in the proof of Proposition 3 that the sum truncates to a
nite sum on any given element in S�V�. One may show that the operations exp� and log� are
utually inverse by inserting one power series into the other. Since the procedure and result is

xactly the same as in the usual arithmetic of complex numbers �say� we do not perform it
xplicitly here. However, it is crucial that the truncation of the power series for any given argu-
ent in S�V� makes it algebraically well defined in the present context. �

The attentive reader will notice that the present method of relating the complete and connected
-point functions shows certain similarities to the conventional one. Namely, in the conventional
ethod one also finds that the relation is given by the exponential and the logarithm respectively,

ee e.g., Ref. 7. The difference is of course that the conventional method uses sources while the
resent one uses the coproduct to define exponential and logarithm.

V. CONNECTED AND 1PI n-POINT FUNCTIONS

We now turn to the relation between connected and 1PI n-point functions. To state our Hopf
lgebraic formulation of this relation we need to define a few auxiliary structures first.

Define the formal element R�S�V� � S�V� using the inverse Feynman propagator �2� as
ollows �R is formal insofar as it really lives in a completion of the tensor product S�V� � S�V�.
owever, this fact is largely irrelevant for our purposes�:

R ª	 dx dy GF
−1�x,y����x� � ��y�� . �10�

sing the product in S�V� � S�V� we may view R as an operator acting on this space by multi-
lication. Define now the map Q :S�V�→S�V� � S�V� as the composition of R with the coproduct
ogether with a factor of 1 /2:

Q ª

1
2R � 
 . �11�

e generalize Q to maps Qi :S�V��k→S�V��k+1. Namely, let Qi be the application of Q on the ith
omponent only, i.e.,

Qi ª id� i−1
� Q � id�k−i.

inally, we define maps �k :S�V�→S�V��k+1 for k�N0 recursively as follows:

�0
ª id,

�k
ª

1

k
�
i=1

k

Qi � �k−1. �12�
We are now ready to state our main result.
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Theorem 5: The connected n-point functions may be expressed in terms of the 1PI ones
hrough the formula

� = �
k=1

�

�k, with �k
ª 	�k � �k−1. �13�

The remainder of this section will be devoted to the proof of this result.
Recall from the description in Sec. II A that the connected n-point functions are expressible as

he sum over all tree graphs with 1PI n-point functions as vertices. Since the latter are represented
y 	 we see that the sum in formula �13� must correspond to the sum over the number of such
ertices k. In turn, the map �k must contain the information about all tree graphs with k vertices.
e proceed to explain this.

We first generalize the definition of R given in �10� to an element �or operator� Ri,j

S�V��k with 1� i� j�k via

Ri,j ª	 dx dy GF
−1�x,y��1� i−1

� ��x� � 1� j−i−1
� ��y� � 1�k−j� . �14�

n other words, the field operators ��x� and ��y� are inserted at the ith and jth position, respec-
ively.

We proceed to establish a correspondence between graphs with k vertices and certain elements
f S�V��k. Each tensor factor of S�V��k corresponds to one vertex. A product ��x1�¯��xn� in a
iven tensor factor corresponds to external legs labeled by x1 , . . . ,xn. The element Ri,j �S�V��k

orresponds to an internal edge connecting the ith vertex with the jth vertex. Combining several
nternal edges and external legs by multiplying the respective expressions in S�V��k allows to
uild arbitrary graphs with k vertices. Figure 4 shows some examples. Applying 	�k to the result-
ng expression obviously yields the value of the respective graph with the vertices being 1PI
unctions. Thus, the graphs we just discussed are exactly those that are to enter into expressing the
onnected functions in terms of the 1PI ones.

The ordering of the tensor factors of S�V��k induces an ordering of the vertices of the graph,
.e., we may think of them as labeled with numbers 1 , . . . ,k. However, when applying 	�k the
rdering is “forgotten.” Indeed, it is not relevant for the interpretation of graphs, but only plays a
ole at the level of their algebraic representation here. For short, we call a graph ordered if its
ertices are ordered. In the following, we will encounter elements of S�V��k that are linear
ombinations of expressions corresponding to ordered graphs. Alternatively, we might think of
uch elements as linear combinations of unordered graphs by considering different ordered graphs
hat correspond to the same unordered graph as the same. We call weight of the graph the scalar

ultiplying the expression for a given graph. Clearly, the weight of an unordered graph is the sum
f the weights of all corresponding ordered graphs.

We see now what is required to prove Theorem 5. Namely, we need to show that
k−1���x1�¯��xn���S�V��k corresponds exactly to the sum over all tree graphs with k �unor-

FIG. 4. Examples for the correspondence of graphs with elements of S�V��k.
ered� vertices and external legs labeled by x1 , . . . ,xn, each with weight one. Actually, we need to
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how something slightly weaker, namely, the statement needs to apply only to graphs where all of
he vertices have valence at least two. This is because the 0-point and 1-point 1PI functions are
ero. Indeed, we will see in the process that the more general statement is false.

Consider the coproduct applied to the ith component of S�V��k, i,e., 
iª id� i−1 � 
 � id�k−i as
map S�V��k→S�V��k+1. Recalling the formula �7� we see that 
i converts a graph with k

ertices into a sum over graphs with k+1 vertices by splitting the ith vertex into two in all possible
ays. That is, the ith vertex is replaced by two vertices �numbered i and i+1� and its legs

considered as distinguishable� are distributed between the two new vertices in all possible ways.
ote that the two new vertices are distinguished due to the ordering of the tensor factors. Thus, to
btain the corresponding operation for unordered graphs we need to divide by a factor of 2. This
actor corresponds to the two different relative orderings of the new vertices with which each
nordered configuration occurs. The only exception to this is the case when the split vertex has no
egs at all. No overcounting happens in this case. The meaning of the map Qi given by �11�
ecomes clear now in terms of graphs. Namely, it splits the ith vertex into two and subsequently
econnects the two new vertices with an edge. Dividing by 2 compensates for the double counting
s described above if we are interested in unordered graphs �assuming the set of legs of the split
ertex is not empty�.

Lemma 6: Fix integers k�1 and n�0 as well as field operator labels x1 , . . . ,xn. �a�
k−1���x1�¯��xn�� corresponds in the manner described above to a sum of weighted graph with
vertices and n external legs labeled by x1 , . . . ,xn. (b) Each of these graphs is connected. (c) Each
f these graphs is a tree graph. (d) Any free graph with k unlabeled vertices and the given external
egs occurs in �k−1���x1�¯��xn�� with some positive weight.

Proof: First, it is clear that �0���x1�¯��xn�� corresponds to the graph with one vertex and
he external legs labeled by x1 , . . . ,xn. Second, �k−1���x1�¯��xn�� is generated from this by sums
f multiple applications of maps Qi and scalar factors. But Qi converts a term corresponding to a
raph to a sum over terms corresponding to graphs. Thus, �k−1���x1�¯��xn�� is a sum of terms
ach of which corresponds to a graph �with some weight�. This completes the proof of �a�.

Given a connected graphs, splitting a vertex produces at most two disconnected pieces. Re-
onnecting the new vertices with an edge yields again a connected graph. Thus, Qi produces
onnected graphs from connected ones. Evidently, �0���x1�¯��xn�� corresponds to a connected
raph. This proves �b�.

Splitting a vertex of a tree graph necessarily yields two disconnected graphs. Reconnecting the
ew vertices with an edge thus cannot introduce a cycle. Therefore, Qi produces tree graphs from
ree graphs. Evidently, �0���x1�¯��xn�� corresponds to a tree graph. This proves �c�.

To prove �d� we use a recursive argument. Evidently, for k=1 the statement is true. Now
ssume that any tree graph with k−1 unlabeled vertices and the given external legs occurs in
k−2���x1�¯��xn�� with positive weight. Consider a tree graph with k unlabeled vertices and the
iven external legs. Choose an arbitrary internal edge. Shrinking this edge and fusing the vertices
t connects yields a tree graph that corresponds by assumption to a term in �k−2���x1�¯��xn��.
ay, the fused vertex has position i. Applying Qi to this term will yield a sum over terms one of
hich will correspond to the original tree graph. By the recursive definition of
k−1���x1�¯��xn�� it thus contains this term with positive weight. This completes the proof. �

What remains in order to prove Theorem 5 is to show that the term corresponding to each tree
raph �with all vertices of valence at least two� has weight exactly 1. We start with a more
estricted result.

Lemma 7: Fix integers k�1 and n�k and field operator labels x1 , . . . ,xn. Consider a tree
ith k vertices, external legs labeled by x1 , . . . ,xn and the property that each vertex has at least
ne external leg. Then, the term in �k−1���x1�¯��xn�� corresponding to that tree has weight 1.

Proof: We proceed by induction on the number of vertices. Clearly, the statement is true for
=1. Now assume that �k−2���x1�¯��xn�� contains each tree graph with k−1 vertices and ex-

ernal legs labeled by x1 , . . . ,xn and the property that each vertex carries at least one external leg
ith weight exactly 1. �Of course it may in addition contain terms corresponding to other graphs.�

onsider a tree graph � with k vertices, external legs labeled by x1 , . . . ,xn and the property that
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ach vertex carries at least one external leg. We proceed to show that it occurs with weight exactly
in �k−1���x1�¯��xn��. To this end we check from which graphs with k−1 vertices � is gener-

ted by the recursion formula �12� and in how many ways. Translated into the language of graphs,
he formula prescribes that a given graph is split and reconnected at every of its vertices. The
esulting terms are summed over and multiplied by 1/k. Conversely, this implies that � is gener-
ted from all the graphs that are obtained by shrinking one of its internal edges. Since there are k
dges these are a priori k graphs. These graphs are indeed all distinct, since the external legs
ttached to each vertex force them to be distinguishable. Furthermore, each of these graphs
enerates � in only one way, i.e., as one resulting graph in the splitting and reconnecting of only
ne of its vertices �again due to the forced distinguishability of the vertices�. Since by assumption
ach generating graph has weight one, the multiplicity k cancels exactly with the factor 1 /k in �12�
o produce weight 1 for �. This completes the proof. �

To describe the weight of arbitrary tree graphs we will need to consider symmetries of graphs.
Definition 8: Consider a tree graph � with ordered vertices. A symmetry of � is a permutation

f the ordering of its vertices that yields the (topologically) same ordered graph. The number of
ymmetries, i.e., order of the group of permutations leaving the graph invariant, is called the
ymmetry factor of the graph.

Since the symmetry factor is the same for any ordering of the vertices of a graph the concept
akes sense for unordered graphs as well.

We also need the following property of �k.
Lemma 9: Fix integers k ,n�0 and operator labels x1 , . . . ,xn. Then, �k satisfies the factor-

zation property

�k���x1� ¯ ��xn�� = �k�1� · 
k���x1� ¯ ��xn�� .

Proof: This follows immediately from the multiplicativity of the coproduct and the recursive
efinition �12�. �

We can now state the generalization of Lemma 7.
Lemma 10: Fix integers k�1 and n�0 and field operator labels x1 , . . . ,xn. Consider a tree

with k vertices and external legs labeled by x1 , . . . ,xn. Let s be the symmetry factor of �. Then,
he term in �k−1���x1�¯��xn�� corresponding to that tree has weight 1/s.

Proof: If � has external legs attached to every of its vertices we simply recall Lemma 7 and
ote that a graph with this property has no nontrivial symmetries. Thus, we may now assume that
has m vertices to which no external leg is attached. Consider a graph �� which is constructed

rom � by attaching an external leg to every vertex without external legs, choosing arbitrary but
xed labels y1 , . . . ,ym for the legs in the process. By Lemma 9 and the multiplicativity of 
 and

hus 
 j we have

�k−1���x1� ¯ ��xn���y1� ¯ ��ym�� = �k−1���x1� ¯ ��xn�� · 
k−1���y1� ¯ ��ym�� .

y Lemma 7, the graph �� occurs in the term on left-hand side with weight 1. By Lemma 6, the
raph � occurs in the first factor on the right-hand side with some nonzero weight, say . Every
ummand of 
k−1���y1�¯��ym�� �recall the formula �8�� which places the external legs at the
esignated vertices of � to produce �� contributes to the weight of �� in terms of that of �. Any
ifferent ways this can happen define a symmetry of �. Furthermore, � can have no more than
hese symmetries, since its vertices that already carry external legs are distinguishable and thus
eld fixed under any symmetry. Therefore, we obtain the formula 1= ·s for the weights, or 
1/s. This completes the proof. �

The appendix shows the result of computing all tree graphs without external legs as weighted
ontributions to �k−1�1�, for vertex number k�7.

The proof of Theorem 5 is completed with the following lemma.
Lemma 11: Consider a tree graph �, all of whose vertices have valence at least two. Then, �

as no nontrivial, symmetries.

Proof: Consider a vertex v of �. We show that any symmetry must leave v invariant. If v
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arries an external leg it must be invariant since it is distinguishable. Thus, assume v carries no
xternal leg. Choose one internal edge e connected to v. Cut � into two by removing e. This yields
wo tree graphs �1 and �2. Each of these must have at least one external leg to satisfy the valence
equirement. Say e1 is an external leg of �1 and e2 an external leg of �2. Since � is a tree there is
xactly one path to connect e1 with e2. Since the vertices connected with e1 and e2 are held fixed
nder any symmetry so is the whole chain of vertices formed by the path. However, v is part of
his chain by construction and thus held fixed by any symmetry. �

. FURTHER RECURSION RELATIONS

We may extend the results of the preceding section to obtain further interesting recursion
elations. Recall from �13� the decomposition of � into components �k according to vertex number
.

Proposition 12: �k may be determined recursively via �1=	 and with the recursion equation
or k�1,

�k =
1

k − 1�
i=1

k−1

��i
� �k−i� � Q .

Given the definition of �k in �13� Proposition 12 is implied by the following lemma.
Lemma 13:

�k−1 =
1

k − 1�
i=1

k−1

��i−1
� �k−i−1� � Q " k � 1.

Proof: As a first step to the proof, we “commute” the R-operator contained in Q through the
ensor product �i−1 � �k−i−1. To this end, recall the multiplicativity of the �iterated coproduct�
ogether with the factorization property of � �Lemma 9�. We obtain the equivalent expression

�k−1 =
1

2�k − 1��i=1

k−1

��
i−1
� 
k−i−1�R� · ��i−1

� �k−i−1� � 


=
1

2�k − 1��i=1

k−1 �
a=1

i

�
b=i+1

k

Ra,b� · ��i−1
� �k−i−1� � 
 . �15�

efore proceeding with the proof we note that this formula has a straight forward interpretation in
erms of sums over weighted tree diagrams following the correspondence of Sec. IV. Namely, the
ormula states that the weighted sum over trees with k vertices is given by summing over all
rdered pairs of weighted trees with total number of vertices equal to k, connecting them in all
ossible ways with an edge and dividing by 2�k−1�. �Indeed, it would be possible to base the
roof of Lemma 7 on the recursion formula for � given here instead of �12�. The argument would
hen roughly proceed by considering all k−1 ways to cut a tree with k vertices into two by
emoving an internal edge. The factor 2 accounts for the relative ordering of the two subtrees.�

The equation �15� is proved by induction. We verify it for k=2,

�1 =
1

2
R · ��0

� �0� � 
 =
1

2
R · 
 ,
nd assume it hold for general order k. Then, �12� yields
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�k =
1

k
�

j=1

k

Qj� � �k−1

=
1

k
�

j=1

k

Qj� 1

2�k − 1��
i=1

k−1 �
a=1

i

�
b=i+1

k

Ra,b� · ��i−1
� �k−i−1�� � 


=
1

2k�k − 1��i=1

k−1 �
j=1

i

Qj��
a=1

i

�
b=i+1

k

Ra,b� · ��i−1
� �k−1−i���

+ � �
j=i+1

k

Qj��
a=1

i

�
b=i+1

k

Ra,b� · ��i−1
� �k−1−i��� � 


=
1

2k�k − 1��i=1

k−1 �
j=1

i 
 j�
a=1

i

�
b=i+1

k

Ra,b� · Qj� · ��i−1
� �k−1−i��

+ � �
j=i+1

k 
 j�
a=1

i

�
b=i+1

k

Ra,b� · Qj� · ��i−1
� �k−1−i�� � 


=
1

2k�k − 1��i=1

k−1 i�
a=1

i+1

�
b=i+2

k+1

Ra,b� · ��i
� �k−1−i��

+ ��k − i��
a=1

i

�
b=i+1

k+1

Ra,b� · ��i−1
� �k−i�� � 


=
1

2k
�

a=1

k

Ra,k+1� · ��k−1
� �0� + �

i=2

k−1 �
a=1

i

�
b=i+1

k+1

Ra,b� · ��i−1
� �k−i��

+ ��
b=2

k+1

R1,b� · ��0
� �k−1�� � 


=
1

2k
�
i=1

k �
a=1

i

�
b=i+1

k+1

Ra,b� · ��i−1
� �k−i� � 
 .

�

I. EXTENSIONS AND APPLICATIONS

. Modified 1PI functions

In Sec. II A we have discussed two versions of 1PI functions, the standard one, denoted G1PI,

nd a modified one, denoted Ĝ1PI. Recall that the connected n-point functions Gc are expressible

n terms of G1PI and of Ĝ1PI essentially in the same way, as a sum over all tree graphs, the

ifference being that for Ĝ1PI the �inverse� Feynman propagator GF is replaced by the �inverse�
onnected propagator Gc

�2� for all edges. Thus, the results of Secs. IV and V immediately carry
ver to the relation between connected functions and modified 1PI functions. We only need to

odify the definition of R by replacing GF
−1 with Gc

�2�−1 in �10�; call the new version R̂. We denote

he induced modifications of Q and � by Q̂ and �̂, respectively.
Corollary 14: The connected n-point functions may be expressed in terms of the modified 1PI

nes through the formula

� = �
�

�̂k, with �̂k
ª 	̂�k � �̂k−1. �16�
k=1
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Corollary 15: �̂k may be determined recursively via �̂1= 	̂ and with the recursion equation for
�1,

�̂k =
1

k − 1�
i=1

k−1

��̂i
� �̂k−i� � Q̂ .

Recall that for the modified 1PI functions not only 0- and 1-point functions vanish, but also
-point functions. This implies that only trees contribute which have the property that all their
ertices have valence at least three. For a given number of external legs, there are only finitely
any such trees. Thus, in contrast to �13� the sum in �16� is finite for each given set of external

egs, i.e., for each element of S�V� to which it is applied.

. Tree level contributions

Another context in quantum field theory, where we sum over all tree diagrams is of course
hen we wish to evaluate merely the tree level contribution to an n-point function. Let us indicate

he tree level contribution by a lower index “T.” Thus, the tree level contributions to the algebraic
-point functions are denoted �T ,�T, and 	T for the complete, connected and 1PI n-point functions,
espectively. Of course, the latter are now nothing but the interaction terms of the Lagrangian. The
esults of Sec. III carry over immediately.

Corollary 16: �T=exp� �T, where the convolution exponential is defined in terms of its power
eries expansion.

Corollary 17: �T=log� �T, where the convolution logarithm is defined in terms of its power
eries expansion in �T−�.

The results of Secs. IV and V take the following form.
Corollary 18: The tree level connected n-point functions may be expressed in terms of the

nteraction vertices through the formula

�T = �
k=1

�

�T
k with �T

k
ª 	T

�k � �k−1. �17�

Corollary 19: �T
k may be determined recursively via �T

1 =	T and with the recursion equation
or k�1,

�T
k =

1

k − 1�
i=1

k−1

��T
i

� �T
k−i� � Q .

Not only the 0- and 1-point, but also the 2-point contribution to 	T vanishes by definition.
hus, as in the case of the modified 1PI functions, only finitely many tree graphs with given
xternal legs contribute and the sum �17� is finite on any given element of S�V�.

. Algorithmic considerations

A key feature of the Hopf algebraic approach to n-point functions presented here is the close
elation of the obtained algebraic relations to concrete algorithms. In Sec. IV the recursive defi-
ition �12� mirrors an algorithm to construct all tree graphs. Tree graphs with k+1 vertices are
reated from those with k vertices by taking each graph in turn and applying the following
rocedure: Take every vertex of the graph in turn and split it into two vertices, distributing the legs
n all possible ways and reconnecting the two new vertices.

Of course, the actual algorithm is slightly more complicated as symmetries have to be taken
nto account and the correct weights must be obtained. However, the recursion relation �12� even
uggests an implementation of data structures. For example, we may represent S�V��n by an array,
ach element of which corresponds to a graph in the sense of Sec. IV. Such an element would

ontain a rational scalar �the weight� and an array, each element of which would correspond to one
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ensor factor in S�V��n or equivalently to one vertex. In turn each element would be a set of
ymbolic elements representing external or internal legs. The coproduct and the R-operator are
hen very simple operations distributing or adding pairs of symbolic elements.

In this context a certain property of the recursion algorithm represented by �12� is rather
nteresting. Namely, it is easy to see that a graph containing at least one vertex with valence 1 will
n a recursion step only generate graphs that contain at least one vertex with valence 1. Con-
ersely, this means that if we are not interested in such graphs we may exclude them at each
ecursion step without losing any relevant graphs. What is more, we may implement this removal
f “irrelevant” graphs through a truncated coproduct. Recall from �7� that the coproduct restricted
o the subspace Vn�S�V� is a map Vn→ � i=0

n Vi � Vn−i. Removing those components of the direct
um where at least one of the target tensor factors is V0 we obtain a map Vn→ � i=0

n−1Vi � Vn−i. We
all this the truncated coproduct 
�1. For example,


�1�1� = 0, 
�1���x�� = 0,


�1���x���y�� = ��x� � ��y� + ��y� � ��x� .

n the recursion process �12� the number of legs of a vertex changes when the Q-operator is
pplied to it. The only terms corresponding to 1-point vertices arise from those terms in the
oproduct where one of the new vertices receives no legs at all and has thus, after reconnecting
ith R, only one leg. Thus, replacing the coproduct 
 by the truncated coproduct 
�1 exactly

liminates the irrelevant trees with 1-point vertices.
If we limit the allowed valence of vertices even more, we can push the truncation prescription

ven further. Assume we are interested only in trees with vertices of valence at least three �as in
he case of modified 1PI functions or tree level calculations�. By extension of the above discussion
t is clear that the removal of all irrelevant trees is achieved by a further truncation of the
oproduct. Namely, remove from the coproduct map Vn→ � i=0

n Vi � Vn−i the components with
ensor factors V0 and V1. We denote the truncated coproduct defined in this way by 
�2. It is then
bvious that using this truncated coproduct to define Q and in turn � produces only trees all of
hose vertices have valence at least three. In particular, this means that for given external legs the

lgorithm sketched above for calculating all trees terminates after finitely many steps. As in the
bove case, it never creates a tree that would need to be discarded later. Note that this procedure
ay be extended to any lower bound n on the valence of vertices by using the corresponding

n−1�-truncated coproduct 
�n−1 defined in the obvious way.

. Fermions

Recall that we have limited ourselves above to a purely bosonic theory. However, as already
entioned, this limitation is purely one of convenience and simplicity. Indeed, all of our argu-
ents and results apply equally to fermionic fields. However, the underlying formalism becomes

lightly more complicated. The vector space V will in general be a Z2-graded vector space, a direct
um of a bosonic and a fermionic part. In turn, the algebra S�V� is the Z2-graded symmetric
lgebra over V. As special cases, if V is completely bosonic we recover the usual commutative
ymmetric algebra �as above�; if V is completely fermionic we recover the usual anticommutative
xterior algebra. As a Hopf algebra S�V� is in general a Z2-graded or super-Hopf algebra. In
articular, the coproduct becomes graded. This simply means that a minus sign appears as soon as
dd elements are commuted, e.g.,


�ab� = ab � 1 + 1 � ab + a � b + �− 1��a��b�b � a .

ere, �a� is defined to be 0 or 1 depending on whether a is bosonic or fermionic. We refer to Ref.
for more details on the structure of S�V� in general.

However, all formulas appearing in Theorems, Propositions, and Corollaries generalize com-
letely unchanged. The graded structure is completely implicit there. The only explicitly changing

ormulas are indeed those that involve explicit evaluations of the coproduct such as �6�–�8�. The
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nderlying reason is that our constructions are completely “functorial” and could indeed be gen-
ralized to arbitrary �reasonable� symmetric categories. �For a generalization of certain n-point
unctions to nonsymmetric categories see Ref. 4.�

II. CONCLUSIONS

Functional methods used to handle the combinatorics of quantum field theory, while having a
ertain elegance, have some serious drawbacks. While appearing to be analytic, they are really
ormal as the mathematical objects involved usually do not actually exist. In particular, the source
erms appearing in functional expressions are usually merely a book keeping device, rather than
ctual mathematical �or physical� entities. We hope to have convinced the reader that at least
ertain combinatorial aspects of quantum field theory can be handled in a much more intrinsic and
we think� at least as elegant language. Indeed, our main object is nothing but the rather concrete
ime-ordered algebra of field operators. Its coproduct, while perhaps an unusual structure for
uantum field theorists, is well known to mathematicians. It is thus natural to use it instead of
ore indirect and formal functional methods.

Another advantage of our algebraic approach over a functional one is its closeness to algo-
ithmic descriptions of the processes involved. Recall from Sec. VI C how easy it is to translate
he recursion relation underlying the correspondence between connected and 1PI n-point functions
nto an algorithm, which moreover appears to be rather efficient.

As mentioned in the introduction, the present paper shares a common program with Ref. 1,
amely to employ the full Hopf algebraic structure of the algebra of field operators in describing
nd understanding quantum field theory. Thus, it is natural to combine the results of the present
aper with those of Ref. 1. Indeed, the functorial nature of the Drinfeld twist employed in Ref. 1
o relate different products and their �complete� n-point functions should make it possible to
nduce the corresponding transformation on the corresponding connected or 1PI n-point functions
sing the results presented here. This, of course, goes beyond the scope of the present paper.
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PPENDIX

This appendix shows all tree graphs without external legs and with up to seven vertices,
omputed as contributions to �k�1� via �12�. The factors in front are the inverses of the symmetry
actors of Definition 8, see Lemma 10.
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We study soliton solutions of the Nicole model—a non-linear four-dimensional
field theory consisting of the CP1 Lagrangian density to the non-integer power
3
2—using an ansatz within toroidal coordinates, which is indicated by the conformal
symmetry of the static equations of motion. We calculate the soliton energies nu-
merically and find that they grow linearly with the topological charge �Hopf index�.
Further we prove this behavior to hold exactly for the ansatz. On the other hand, for
the full three-dimensional system without symmetry reduction we prove a sub-
linear upper bound, analogously to the case of the Faddeev–Niemi model. It fol-
lows that symmetric solitons cannot be true minimizers of the energy for suffi-
ciently large Hopf index, again in analogy to the Faddeev–Niemi model. © 2006
American Institute of Physics. �DOI: 10.1063/1.2199089�

. INTRODUCTION

In the last few years there has been rising interest in non-linear field theories which allow for
he existence of ringlike, or, more generally, knotlike solitons. On the one hand, this interest is due
o the fact that there may exist physical applications for such models, as is the case, for instance,
or the Faddeev–Niemi model, which finds some applications both as a candidate for a low-energy
ffective theory for Yang-Mills theory and in condensed matter physics. On the other hand, the
ising interest is related to the advance of more powerful computer facilities which allow for
eliable numerical calculations of those solitons in cases when an analytical solution is not avail-
ble �which happens quite often�. In addition, there is some intrinsical mathematical interest in
heories with knot solitons.

In the simplest case the field of the theory describes a map from one-point compactified
hree-dimensional space R0

3 to the two-sphere S2. R0
3 is topologically equivalent to the three-sphere

3, therefore such maps are characterized by the third homotopy group of the target space S2,
hich is nontrivial, �3�S2�=Z. As a consequence, fields which describe maps R0

3→S2 fall into
ifferent homotopy classes, and a soliton is a field configuration which minimizes a given energy
unctional within a fixed homotopy class. The topological index characterizing the homotopy class
s called Hopf index, the corresponding map is called a Hopf map, and the minimizers are
ometimes called Hopf solitons. For details on the Hopf map we refer to Appendix A.

The probably best-known theory which allows for Hopf solitons is the Faddeev–Niemi
odel1,2 with Lagrangian density

�Electronic mail: adam@fpaxp1.usc.es
�Electronic mail: joaquin@fpaxp1.usc.es
�Electronic mail: vazquez@fpaxp1.usc.es
�
Electronic mail: wereszczynski@th.if.uj.edu.pl
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LFN = L2 − �L4, �1�

here � is a dimensionful coupling constant, L2 is

L2 = 4
��u��ū

�1 + uū�2 , �2�

nd L4 is

L4 = 4
���u��ū�2 − ���u��u����ū��ū�

�1 + uū�4 . �3�

urther, u is a complex field which parametrizes the stereographic projection of the target S2, see
ppendix A. The Faddeev–Niemi model is the S2 restriction of Skyrme theory and so circumvents
errick’s theorem, because it consists of two terms such that their corresponding energies behave
ppositely under a scale transformation. The existence of �static� soliton solutions for the lowest
opf indices has been confirmed by numerical calculations.3–6

There are two more models which can be constructed from the two Lagrangian densities L2

nd L4 separately by choosing appropriate �non-integer� powers of these Lagrangians such that the
orresponding energies are scale invariant. For L4 the appropriate choice is

LAFZ = − �L4�3/4 �4�

nd for this model infinitely many analytic soliton solutions were found by Aratyn, Ferreira, and
imerman �AFZ� by using an ansatz with toroidal coordinates.7,8 We shall, therefore, refer to this
odel as the AFZ model in the sequel. The analysis of the AFZ model was carried further in Ref.

, where, among other results, all the space-time and �geometric� target space symmetries of the
FZ model were determined, and, further, the use of the ansatz with toroidal coordinates was

elated to the conformal symmetry of the model �more precisely, of the static equations of motion�.
t turns out that the AFZ model has infinitely many target space symmetries and, moreover,
ealizes the notion of classical integrability in a rather strict sense, because the static equations of
otion �e.o.m.� resulting from the ansatz with toroidal coordinates may be solved by simple

ntegration. Let us also mention here that the model with Lagrangian L4 has the same �infinitely
any� target space symmetries and, in addition, a scale invariant action, leading thereby to ana-

ytic time-dependent solutions10.
The other model is

LNi = �L2�3/2. �5�

his model was first proposed by Nicole,11 and it was shown in the same paper that the simplest
opf map with Hopf index 1 is a soliton solution for this model. We, therefore, call this model the
icole �Ni� model in this paper. This model is, in fact, the restriction to S2 target space of a
onpolynomial SU�2� model which was studied first in Ref. 12 as a possible candidate for a pion
odel. The Nicole model shares the conformal symmetry with the AFZ model, therefore, again

he ansatz with toroidal coordinates may be used to simplify the static e.o.m. �to reduce them to an
rdinary differential equation�. However, the Nicole model only has the obvious symmetries—the
onformal base space symmetries �in the static case� and the modular target space symmetries, see
ef. 13. Consequently, the e.o.m. are no longer integrable, and the solutions are no longer avail-
ble in closed, analytic form �except for the simplest case with Hopf index one—exact solitons
ith higher Hopf index have been found in modified Nicole models14�. It is the main purpose of

his paper to analyze these soliton solutions with higher Hopf index by developing the analytical
reatment as far as possible and by performing numerical calculations where it is necessary.

The AFZ and Nicole models currently do not have direct physical applications, but they can
erve as useful test labors for the understanding of generic features of models with knot solitons.

his is all the more true as analytic results—already for solitons, but even more so for time-
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ependent problems like soliton scattering—are notoriously difficult to obtain for realistic models
ike the Faddeev–Niemi model. Both the AFZ and the Nicole model are much easier to treat, and
or time-dependent problems the Nicole model even has one advantage over the AFZ model. The
nfinitely many symmetries of the former—which provide its integrability on the one hand—imply
hat the moduli space for multi-soliton configurations is infinite dimensional. This most likely
akes an adiabatic treatment of soliton scattering problematic. On the other hand, that problem is

bsent for the Nicole model which may, therefore, probably serve as a natural test labor for an
diabatic study of the scattering of knot-like solitons. A further issue which may be useful for the
tudy of time-dependent problems is provided by the observation that all field configurations
ithin the toroidal ansatz belong to an integrable subsector of the Nicole model �i.e., to a sector
ith infinitely many conservad currents�, see Sec. III.

The paper is organized as follows. In Sec. II we provide the static e.o.m. of the Nicole model
s well as the non-linear ODE resulting from the ansatz with toroidal coordinates. Then we
nalyze the latter equation in detail, establishing some properties analytically. In a next step we
alculate the energies of the corresponding solitons numerically with high precision. We provide
ll energies for solitons with sufficiently small Hopf index. Further, we calculate some energies for
arger Hopf index in order to establish some generic behavior. We prove that this generic behavior
s in accordance with exact energy estimates for the ansatz in toroidal coordinates.

In Sec. III we show that for all the solutions of Sec. II there exist infinitely many conserved
urrents, that is to say, all these field configurations belong to an integrable subsector of the Nicole
odel.

In Sec. IV A we prove an upper bound for the energies of field configurations with given Hopf
ndex, of the type EQ�C2Q

3/4, and provide an explicit value for the constant C2. In Sec. IV B we
erive an analogous bound for the AFZ and Faddeev–Niemi model, which is easily achieved with
he help of the results of Sec. IV A. The discussion of the possibility to find a corresponding lower
ound EQ�C1Q

3/4 for the Nicole model, analogous to the Vakulenko-Kapitansky bound for the
addeev–Niemi model, is presented in Appendix C. We show where a Vakulenko-Kapitansky type
roof needs to be refined for the Nicole �and also for the AFZ� model and leave this lower bound
s a conjecture for the moment.

Section V contains our conclusions, where we comment on the relevance of our results for
ssues like stability, and on the relation to the corresponding results for the other two models
Faddeev–Niemi and AFZ�. In Appendix A we collect useful results and facts about Hopf maps
hich we use throughout the paper. Appendix B contains some proofs which we need in the main

ections. In Appendix C we discuss the lower energy bound.

I. SOLITONS IN THE NICOLE MODEL

. Equation of motion

The static e.o.m. for the Nicole model �5� is

1

2
�ujkūjuk + ūjkujuk� + ujūjukk −

ujūj

1 + uū
�ukūku + 3ukukū� = 0, �6�

here uk���u, etc., and the Einstein summation convention is understood. We now introduce
oroidal coordinates �� ,� ,	� via

x = q−1 sinh � cos 	, y = q−1 sinh � sin 	 ,

�7�
z = q−1 sin �, q = cosh � − cos � .
urther, we choose for u the ansatz
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u = f���eim	+in�, m,n � Z , �8�

hich is compatible with the e.o.m. for the Nicole model as well as for the AFZ model. The reason
or this ansatz may, in fact, be understood from the symmetries of the model. More precisely, the
resence of the conformal symmetry on base space implies that the ansatz �8� is an “educated
uess” for a solution to Eq. �6� in the sense of the Lie theory of symmetry. That is to say, if we
hoose a rotation about the z axis and a certain combination of proper conformal transformation
long the z axis and translation along the z axis as a maximal set of two commuting base space
ransformations, then the corresponding infinitesimal symmetry generators �vectors vi� are pre-
isely given by the tangent vectors along 	 and �, v1=�	, and v2=��. The ansatz �8� is invariant
nder a combination of these base space transformations and phase transformations of the target
pace variable u, i.e., under the action of the vector fields ṽ1=�	− imu�u and ṽ2=��− inu�u, which
rovides precisely the educated guess according to Lie. A concise discussion of these points can be
ound in Ref. 9, where the symmetries of the AFZ model are discussed in great detail.

We need the gradient in toroidal coordinates

� = ������ + ������ + ��	��	 = q�ê��� + ê��� +
1

sinh �
ê	�	� , �9�

here �ê� , ê� , ê	� form an orthonormal frame in R3. Further we need the relations

� · ê� = − sinh � +
1 − cosh � cos �

sinh �
, � · ê� = − 2 sin �, � · ê	 = 0. �10�

nserting now the ansatz �8� into the static e.o.m. �6� we find, after a straight-forward calculation,
hat the ansatz is indeed compatible with the static e.o.m. and that f has to obey the non-linear
DE

2f�f�2 + f�f2�n2 +
m2

sinh2 �
� + �f�3 + n2f�f2�

cosh �

sinh �
− f3�n2 +

m2

sinh2 �
�2

− f

f�2 + f2�n2 +
m2

sinh2 �
�

1 + f2 �4f�2 − 2f2�n2 +
m2

sinh2 �
�� = 0, �11�

here f����f , etc. It may be checked without difficulty that the simplest Hopf map

u = sinh �ei�+i	 Þ f = sinh �, m = n = 1 �12�

ndeed solves the above equation.
For technical reasons it is preferable to introduce the new variable

t � sinh � �13�

n terms of which the above-noted e.o.m. can be expressed as a pure polynomial in the indepen-
ent and dependent variables t , f , f t , f tt,

F�t, f , f t, f tt� � t2�1 + t2��1 + f2��2t2�1 + t2�f t
2 + �n2t2 + m2�f2�f tt − 4t4�1 + t2�2f f t

4 + t3�1

+ 3t2��1 + t2��1 + f2�f t
3 − 2t2�1 + t2��n2t2 + m2�f3f t

2

+ t3�m2 + n2�1 + 2t2���1 + f2�f2f t − �n2t2 + m2�2f3�1 − f2� = 0 �14�

here f t��t f , etc. Further, we need the energy functional E�f� which results for the ansatz �8�
fter the integration with respect to the variables � ,	. With

dV � d3r = q−3 sinh � d� d� d	 �15�
e find
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E�f� = 32�2�
0




d� sinh �

� f�
2 + f2�n2 +

m2

sinh2 �
��3/2

�1 + f2�3

= 32�2�
0




dt t�1 + t2�
� f t

2 + �n2 +
m2

t2 � f2

1 + t2�3/2

�1 + f2�3 . �16�

or n=m=1 for the solution f�t�= t the energy may be calculated analytically,

E = 32�223/2�
0


 dtt

�1 + t2�2 = 32�2	2. �17�

f we calculate the energy for the field configuration f�t�=ct instead, we find

E = 32�2	2
1

2
�c +

1

c
� , �18�

hich certainly has a minimum at c=1 but also shows clearly that the one-soliton sector is indeed
eparated from the trivial sector �with Hopf index zero� by an infinite energy barrier.

Next we have to fix the boundary conditions which f has to obey. The u of Eq. �8� has to take
alues in the whole target space C0 in order to be a Hopf map. This implies that f has to take
alues in the whole positive real numbers, including zero, i.e., in the whole R+0. It follows that the
ossible boundary conditions on f are restricted to one of the two following options. Either

f�0�=0, f�
�=
 or f�0�=
, f�
�=0. The reason for this is that the values f =0 and f =
 corre-
pond to the north and south pole of the target space S2, respectively. Consequently, their pre-
mages in the base space R0

3 must be one-dimensional objects �closed lines�. But the only two
alues �=�0=const �or t= t0=const� which correspond to lines rather than surfaces �tori� are the
alues �=0 �t=0� and �=
 �t=
�. Therefore we assume

f�� = 0� = f�t = 0� = 0, f�� = 
� = f�t = 
� = 
 , �19�

hich is general, because the other option is related to this one by a symmetry transformation.

. Asymptotic behavior and numerical evaluation

In a next step we want to determine the asymptotic behavior of the function f�t� for small and
arge values of t from the differential equation �14�. For small t we assume that f�t�
 t�+o�t��
here ��0. From Eq. �14� we get

F�t, f , f t, f tt� 
 �2�4 − �3 + �2m2 − �m2 − m4�t3� + o�t3�+2� + o�t3�� � 0. �20�

he condition that the leading �i.e., smallest� order t3� is absent therefore leads to

2�4 − �3 + �2m2 − �m2 − m4 = 0, �21�

hich has four solutions for � of which only one is acceptable �real and positive�, namely

�m � 1
4 �1 + 	8m2 + 1� . �22�

n the same fashion we may determine the subleading �higher order� contributions to f for small
in an iterative manner. We find

f = t�mP�0��t,t�m� for t � 1, �23�

here P�0��t , t�m� is a polynomial of its arguments, which is determined up to a multiplicative

onstant,
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P�0��t,t�m� = �
k,l=0




ckl
�0�tktl�m. �24�

ere it is possible to determine the higher coefficients ckl
�0� in terms of m, n, and c00

�0�. Unfortunately,
t is not possible to determine c00

�0�, i.e., an overall constant remains undetermined by this
symptotic analysis.

We repeat the same asymptotic analysis for large values of t. We assume that f�t�
 t�

o�t�� where now ��0 and find

F�t, f , f t, f tt� 
 �2�4 − �3 + �2n2 − �n2 − n4�t5�+4 + o�t5�+2� + o�t5�+4� � 0 �25�

nd therefore the same condition for � like for small t with the only replacement m→n. We may
gain determine f asymptotically up to an overall constant,

f = t�nP�
��t−1,t−�n� for t � 1, �26�

here

P�
��t−1,t−�n� = �
k,l=0




ckl
�
�t−kt−l�n �27�

nd again the higher coefficients ckl
�
� are determined in terms of m, n, and c00

�
�. Again, c00
�
� remains

ndetermined.
Next we turn to the numerical evaluation of the soliton energies for general m, n. For this

urpose it is preferable to minimize the energy functional �16�. The problem is that standard
volution procedures for the differential equation �14� cannot be used because of the singular
ature of this equation at t=0. We proceed as follows with the minimization. We first factorize the
eading behavior, e.g., we choose

f�t� � t�m�1 + t2���n−�m�/2g�t� , �28�

here g obeys

g  0 " t, g�0� = g0, g�
� = g
. �29�

hen we make a finite parameter ansatz for g of the form

g�t� =
g0 + g
t2

1 + t2

1 + �i=1

k
ait

2i + tk+2

1 + � j=1

k
bjt

2j + tk+2
, �30�

here g0, g
, ai, and bj are the parameters with respect to which we minimize the energy func-
ional �16�. For each value of m, n we increase the number of parameters �i.e., the integer number
�, until we reach stability �i.e., until the energies do not change further with the increase of the
umber of parameters�. We do not choose a full numerical minimization of the energy functional
or the following reason. It turns out that the leading behavior �i.e., g�t�=const�, already provides
ather good results for the corresponding energies. This implies that the energy functional, when
iewed as a functional of g, is rather shallow. As a consequence, a full numerical minimization
hich implements the derivatives numerically has the tendency to produce false minima unless the
umerical minimization grid is chosen very finely �and consumes a lot of computer time�. On the
ther hand, within our finite parameter ansatz we are able to perform the derivatives analytically,
nd therefore this problem is absent.

We show our numerical results in Table I for all �m ,n�= �1,1� , . . . , �5,5� as well as for some
igher values. Further we plot the energies versus the Hopf index Q=mn in Fig. 1. From our

results it is obvious that the energies grow linearly in Q to a very good accuracy. More precisely,

the energies for m=n lie on a straight line in Fig. 1 almost exactly. The energies for m�n lie

                                                                                                            



s
g
s

F
s

052302-7 Investigation of the Nicole model J. Math. Phys. 47, 052302 �2006�

                        
lightly above, whereas no energy lies below this line. It is in fact possible to prove the linear
rowth of energies with the Hopf charge for solutions of the ansatz �8�. This we show for the
implest case m=n in the next section.

TABLE I. The rescaled energies E*= �32�2�−1E of solutions for selected
values of m and n.

n m E* n m E*

1 1 1.413 621 93 4 1 6.524 502 66
1 2 2.626 150 91 4 2 9.033 849 01
1 3 4.133 387 23 4 3 12.743 662 4
1 4 5.373 494 09 4 4 16.789 796
1 5 7.541 507 89 4 5 20.886 948
2 1 2.647 535 48 5 1 9.486 800 75
2 2 4.522 499 73 5 2 11.890 141 5
2 3 6.629 259 43 5 3 15.978 639 9
2 4 8.853 709 29 5 4 20.893 791 5
2 5 10.951 318 4 5 5 25.975 942
3 1 4.282 322 66 6 6 37.201 786 9
3 2 6.649 418 01 8 8 65.771 712
3 3 9.640 594 35 9 9 83.116 75
3 4 12.730 713 6 10 10 102.501 125
3 5 15.867 283 6 20 20 408.581 244

5 10 51.899 074 7
6 15 96.058 593 3

14 7 103.670 713

IG. 1. �Color online� The rescaled energies E*= �32�2�−1E �vertical axis� are plotted vs the Hopf index Q=mn. The

traight line connects energies for m=n. The energies for m�n lie slightly above this line.
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On the other hand, for the full model the sublinear upper bound E�C2Q
3/4 holds, which we

rove in Sec. IV. It follows that the solutions we found for the symmetric ansatz �8� cannot be true
olitons, i.e., global minima of topological sectors with fixed Q for sufficiently large values of Q.
his is akin to the situation in the Faddeev–Niemi model and differs from the situation in the AFZ
odel �see our discussion in Sec. V�.

. Upper and lower bounds for the torus ansatz

In this section we prove the bounds c1Q�E�fm,n� and, for the special case m=n, E�fm,m�
c2m

2 �with explicit values for the constants c1 and c2� in order to further support our numerical
esults. Here E�f� is the energy functional �16� and fm,n is the corresponding solution of the
quation of motion. We first prove the lower bound. We use the inequality

�a + b�3/2 �
3	3

2
a1/2b for a,b � 0, �31�

hich we prove in Appendix B �here 3	3/2 is an optimal value�. We choose a= f t
2 and b= �n2

m2 / t2�f2 / �1+ t2� and introduce

Q = mn, � =
m

n
�32�

o get

E�f� = 32�2�
0




dtt�1 + t2�
� f t

2 + Q� 1

�
+

�

t2� f2

1 + t2�3/2

�1 + f2�3

� 32�2Q
3	3

2
�

0




dt� t

�
+

�

t
��f t�

f2

�1 + f2�3

� 32�2Q3	3�
0




dtf t
f2

�1 + f2�3 � Ẽ�f� , �33�

here we used �t /�+� / t��2. Up to now we have in fact used inequalities for the energy
ensities, i.e., these inequalities hold for given, fixed functions f . However, if we evaluate the last
xpression for its minimizer fmin then the inequality holds for arbitrary f and, consequently, for the
olutions fm,n. The minimization of the last expression is simplified by the observation that it is a
otal derivative. Therefore it is minimized for all f which obey the required boundary conditions
f�0�=0 and f�
�=
. Explicitly we get

Ẽ�f� = 32�2Q3	3−
f

4�1 + f2�2 +
f

8�1 + f2�
+

1

8
arctan f�

f=0

f=


= 32�2Q3	3
�

16
= 1.02 � 32�2Q .

�34�

omparing with Table I, we see that for larger values of m, n our lower bound gets very close to
he numerical values, especially for m=n �e.g., better than 1% for m=n=10 or m=n=20�. This
emonstrates the very good accuracy of our numerical results.

For the derivation of an upper bound we restrict to the simpler case m=n. We simply insert a
rial function fm,m

tr into the energy functional E�f�. Concretely we choose fm,m
tr = tm and get

E�tm� = 32�2�
0




dtt�1 + t2�
m3t3m−323/2

�1 + t2m�3 �35�

m
nd, with the substitution u= t ,

                                                                                                            



T
f

w

w
m
n

=

I

m
c
c
m
i
s

w

a
c

w
f

F

w

g

052302-9 Investigation of the Nicole model J. Math. Phys. 47, 052302 �2006�

                        
E�tm� = 32�2m223/2�
0




du�u1/m + u−1/m�
u2

�1 + u2�3 = 32�2m223/21

8
�1 −

1

m2� �

cos
�

2m

. �36�

he function �1−1/m2� / �cos�� /2m�� is a monotonously decreasing function in m and may, there-
ore, be estimated by its value at m=2 for the range m�2. With

�1 −
1

4
� 1

cos
�

4

=
3

4
	2 �37�

e therefore get

E�tm� � 32�2m23�

8
= 1.18 � 32�2m2 for m � 2 �38�

hich, for large m, is about 15% above the numerical value. By using Eq. �36� instead of the order
2 estimate �38�, we get slightly better results which, for large m, are less than 10% above the
umerical values.

In short, we established the bounds c1m
2�E�fm,m��c2m

2 with c1=1.02�32�2 and c2

1.18�32�2, as announced.

II. INFINITELY MANY CONSERVED CURRENTS

In this section we want to demonstrate that the ansatz �8� belongs to a subsector of the Nicole
odel with infinitely many conserved currents for arbitrary profile function f���. The integrability

ondition defining this subsector exists for a wide class of models, and discussing it for the whole
lass does not complicate matters �for a more detailed discussion, and especially for the geometric
eaning of the integrability condition, we refer to Ref. 15; the concept of higher dimensional

ntegrability, which is at the basis of these discussions, was introduced in Ref. 16�. Therefore, we
tart with the general class of Lagrangian densities

L�u, ū,u�, ū�� = F�a,b,c� , �39�

here

a = uū, b = u�ū�, c = �u�ū��2 − u�
2 ū�

2 �40�

nd F is an arbitrary real function of its arguments. Obviously, the Nicole model belongs to this
lass, LNi= �4�1+a�−1b�3/2.

Further, we define the currents

K� = h�a��̄�, �41�

here h is an arbitrary given real function of its argument, and �� and �̄� are the conjugate
our-momenta of u and ū, i.e.,

�� � Lu� = ū�Fb + 2�u�ū�ū� − ū�
2u��Fc. �42�

inally, we define the infinitely many Noether currents

J�
G = i�GuK� − GūK̄�� , �43�

here G is an arbitrary real function of u and ū, and Gu��uG.
Now we want to study the conditions which one has to impose in order to make the diver-

� G
ence � J� vanish. A simple calculation reveals
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��J�
G = ih��h�

h
ūGu + Guu�u�

2 − �h�

h
uGū + Gūū�ū�

2�Fb + �uGu − ūGū�h�

h
�bFb + 2cFc� + Fa�� ,

�44�

here the prime denotes the derivative with respect to a.
The second term at the right-hand side of Eq. �44� certainly vanishes if

uGu − ūGū = 0 �45�

ith the general solution

G�u, ū� = G̃�uū� � G̃�a� . �46�

ithout taking condition �46� into account, the first term on the right-hand side of Eq. �44�
anishes for the integrability condition

u�
2 = 0, �47�

.e., the complex eikonal equation �it also vanishes for some more complicated integrability con-
itions which we do not discuss here, see Refs. 17 and 18�. However, by using condition �46� we
ay re-express the first term like

�h�G� + hG��Fb�ū2u�
2 − u2ū�

2 � �48�

nd, therefore, we find, instead of the complex eikonal equation, the weaker integrability condition

ū2u�
2 − u2ū�

2 = 0. �49�

he meaning of this condition becomes especially transparent when we re-express u in terms of its
odulus and phase like

u = exp�� + i�� . �50�

hen the complex eikonal equation is equivalent to the two real equations

��
2 = ��

2 �51�

nd

���� = 0 �52�

hereas the weaker condition �49� becomes Eq. �52� alone or, for time-independent u,

���� · ���� = 0. �53�

Remark: The condition G�u , ū�= G̃�uū�, Eq. �46�, restricts the space of allowed G to a sub-
pace which is still infinite-dimensional, therefore the integrability condition �49� really defines a
ubsector with infinitely many conserved currents.

Remark: The ansatz �8� obeys the integrability condition �53� for arbitrary profile function
f���, as is obvious from the orthonormality of the basis vectors �ê� , ê� , ê	�. Therefore, all our
olutions of Sec. II really belong to the subsector of the Nicole model defined by condition �49�
ith infinitely many conserved currents. This is in contrast to the complex eikonal equation �47�,
hich leads to a non-linear ODE for the profile function which is not compatible with the Nicole
odel field equation except for the simplest Hopf map m=n=1, see Ref. 19.

Remark: Both condition �46� and the integrability condition �49� do not restrict the Lagrang-
an density, therefore the corresponding integrable subsectors with infinitely many conservation
aws exist for all Lagrangians of the type �39�. So they may be of interest for other models like,

.g., the Faddeev–Niemi model.
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V. ENERGY ESTIMATES FOR THE FULL MODEL

In this section we study upper bounds on the energies of solitons with a given Hopf index, of
he type EQ�C2Q

3/4. In Sec. IV A we prove the upper bound EQ�C2Q
3/4 by following the

ethod used in Ref. 20 for the Faddeev–Niemi model. Further, we provide an explicit value for
he constant C2. In Sec. IV B, we briefly derive the analogous upper bounds for the AFZ and the
addeev–Niemi models, again with explicit values for the constants C2. They easily follow from
ur results from Sec. IV A. The issue of a lower bound C1Q

3/4�EQ is discussed in Appendix C.
here we show where a naive Vakulenko-Kapitansky type proof does not work and needs some

efinement in our case, leaving open for the moment the problem of rigorously establishing such
lower bound.

. The estimate EQÏC2Q3/4

In this section we use the unit vector n� to denote Hopf maps, because this has some technical
dvantages �components of the vector n� can be easily estimated, whereas the complex function u
ay take arbitrary values�. In our proof we will closely follow the method used in Ref. 20 for the

roof of an analogous result for the Faddeev–Niemi model. However, we will use explicit expres-
ions for certain functions instead of using just their existence, which enables us to provide an
xplicit value for the constant C2 in our estimate.

For a Hopf index which is a square, Q= l2, a Hopf map is constructed in Ref. 20 which is a

omposition of a Hopf map n��r�� with Hopf index 1 and a map N� �n�� :S2→S2 with winding number
= l. The Hopf map n��r�� is constructed such that it varies smoothly from n� = �0,0 ,1� at r�=0 to

� = �0,0 ,−1� at �r��=R and remains at this value for rR. This implies, by Eq. �A20�, that it has
ndeed Hopf index 1. Further, the gradient ��R3

n� � may be estimated like ��R3
n� ��c /R for r�R and

y ��R3
n� �=0 for rR �here and below c denotes an unspecified constant�. The map N� �n�� :S2

S2 is constructed such that N� varies smoothly over l nonintersecting geodesic discs covering the

ase S2, where N� = �0,0 ,1� in the center of each disc and N� = �0,0 ,−1� at the boundary of each disc

nd between the discs. Each disc contributes a winding number 1 for the map N� �n��, therefore the
otal winding number is l. Further, the geodesic radius of each disc can be chosen �not larger than�
g=cl−1/2 in order to be able to put l nonintersecting discs on one unit S2. The gradient may be

gain estimated by the inverse �geodesic� radius, ��S2
N� �n����cl1/2, and with the help of the chain

ule one finds for the gradient of N� that ��R0
3
N� �n��r�����cR−1l1/2 and for the energy density

Ni�r��
��R0
3
N� �3�cR−3l3/2. The energy ENi, which is the integral over all space of ENi�r��, may in

he case at hand be calculated by integrating over the ball BR of radius R with the result that

Ni�cl3/2�cQ3/4 which is the announced estimate for Q= l2.
Before rederiving this result in more detail and with explicit choices for the above described

aps, it may be useful to have a geometric picture of the above-noted composition of maps. In

act, the map N� �n��r��� describes l nonintersecting, full tori confined to the ball BR, where, in
ddition, each full torus is linked with all other tori. In the center of each torus there is a closed

ine along which N� takes the value N� = �0,0 ,1�. From the center to the surface of each full torus,
� varies smoothly from N� = �0,0 ,1� to N� = �0,0 ,−1�. At the surface of each full torus �which has
he topology of the two-torus T2� as well as in the space between the tori and outside the ball BR,
� remains at the value N� = �0,0 ,−1�.

Now for the detailed derivation, where we still assume Q= l2 for the moment. For the map
��r��= �sin � cos � , sin � sin � , cos �� with Hopf index 1 we assume that it has cylindrical sym-

etry, as in Eq. �A24�. For the profile function ��r� we want to find a choice which varies as
moothly as possible from 0 to � as r varies from 0 to R, in order to be able to estimate it with a
umber as small as possible. The smoothest choice �=�r /R for r�R and �=� for rR does not
ave a continuous first derivative at r=R, which we need for the energy density, but there is a

imple generalization which does have one. We choose
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���r� = �F��x�, x �
r

R
, �54�

here

F��x� = F�
��x� �

2

2 − �
x for 0 � x � 1 − � ,

F��x� = F�
�x� � 1 −

1

��2 − ��
�x − 1�2 for 1 − � � x � 1, �55�

F��x� = 1 for x  1,

nd � is a sufficiently small, positive nonzero parameter. It may be checked easily that ���r� is
ontinuous and has continuous first derivatives everywhere. Further, the following estimates hold:

�F��x�� � k���x for 0 � x � 1,

�F��x�� � k��� for 1 � x � 
 , �56�

�F���x�� � k��� for 0 � x � 
 ,

here

k��� �
2

2 − �
 0. �57�

For the map N� �n�� with winding number l we choose l nonintersecting geodesic discs on the

ase S2 such that N� varies smoothly from N� = �0,0 ,1� in the center of each disc to N� = �0,0 ,−1� at
he boundary of each disc and remains at this value in between the discs. The geodesic radius �0

f these geodesic discs has to be chosen sufficiently small so that it is possible to put l noninter-
ecting discs with this geodesic radius on the base S2. We prove in Appendix B that the choice

�0 =
�

4	l
�58�

s sufficient. Next we give an explicit expression for the map N� for one geodesic disc which is
hosen symmetric about the north pole. With

N� = �sin � cos �,sin � sin �,cos �� �59�

nd

n� = �sin � cos �,sin � sin �,cos �� �60�

e get

���� = �F���̃�, �̃ �
�

�0
�61�
nd
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� = � , �62�

here F��·� is defined in �55� �with the additional restriction that here �̃�4	l because ����. The

bove-defined N� has winding number 1, and to reach winding number l we have to require that it
s nonconstant over l−1 further geodesic discs. We do not need, however, explicit expressions for

he contribution of these further discs to N� , because their gradients on S2, ��S2
N� � can be estimated

y the same majorants as the above explicit expression. The reason for this is that the above-noted
ymmetrically chosen disc is related to an arbitrary disc with the same geodesic radius by a

otation of the base space S2, and the gradient ��S2
N� � is invariant under such rotations. All that

hanges is that more regions of the base S2 provide nonzero contributions to the gradient.

Next we want to estimate the energy density ENi�r��
��N� �3. Here we first estimate �Einstein
ummation convention is understood, k ,a=1, . . . ,3�

��N� �2 = ��kN
a�2 = ��

2 ��k��2 + sin2 ���k��2, �63�

here we used �59�, and ������. The first term may be estimated by

��
2 � � �

�0
�2

k���2 �64�

nd, with the help of spherical polar coordinates, by

��k��2 = �r
2 +

1

r2��
2 =

4�r
2 cos2 � sin2 �

1 − sin2 � sin2 �
+

sin2 �

r2

4 cos2 �

1 − sin2 � sin2 �
� 4�r

2 + 4
�2

r2 � 8�2k���2

R2 ,

�65�

here we used

cos2 �

1 − sin2 � sin2 �
� 1, sin � � � �66�

s well as Eqs. �54� and �56�. For the second term we find

sin2 � � sin2��k���
�

�0
� � ��k���

�0
�2

sin2 � , �67�

here we used

sin ax � a sin x for a � 1, x � 0,
�

2
� �68�

hich we prove in Appendix B. Further we find, using �=� and the expression for � in Eq. �A24�

sin2 ���k��2 = 4 sin2 � sin2 ��1 − sin2 � sin2 �� �69�

·� 1

r2 sin2 �
+

�r
2 cos2 � + �1/r2�cos2 � sin2 � sin2 �

�1 − sin2 � sin2 ��2 � �70�

=4
sin2 �

r2 �1 − sin2 � sin2 �� �71�

+ 4 sin2 � sin2 ��r
2 cos2 �

2 2 �72�

1 − sin � sin �
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+ 4 sin2 � sin4 �
sin2 �

r2

cos2 �

1 − sin2 � sin2 �
�73�

�4��k���
R

�2

+ 4��k���
R

�2

+ 4��k���
R

�2

= 12��k���
R

�2

. �74�

utting everything together, we therefore find

��N� �2 � 20��2k���2

�0R
�2

= 20l�4�k���2

R
�2

. �75�

aking the power of 3
2 and integrating over the ball BR we estimate the energy by

ENi =� d3r��N� �3 � �
BR

d3r53/2l3/2�8�k���2

R
�3

=
4�

3
53/2l3/2�8�k���2�3. �76�

inally, for the estimate it is sufficient if the estimating field configuration is a distribution.
herefore we may now perform the limit lim�→0k���=1 and get, for Q= l2,

ENi �
4�

3
�8��353/2l3/2. �77�

In the cases when the Hopf index Q is not a square, we shall find a slightly weaker bound �i.e.,
slightly larger value for the constant C2�. Again following Ref. 20, we write Q as

Q = l2 + m, m � �1,2l� �78�

nd estimate the energy by the following Hopf map. It maps the ball BR with radius R about the
rigin to the two-sphere with a contribution of l2 to the Hopf index in exactly the way constructed
bove for the case Q= l2. Further, it maps m balls Bi

1, i=1, . . . ,m with unit radius to the S2 such
hat each ball contributes one unit to the Hopf index. Here the m unit balls are chosen such that
hey intersect neither each other nor the ball BR. The map from BR contributes exactly the above-
alculated expression �77� to the energy, whereas the m maps from the Bi

1 contribute the energy of
unit Hopf map each. One might think to take just the energy �77� with l=1 for each energy

ontribution, but we can do better. The reason is that we were forced to choose �0 rather small in
q. �58� to ensure that we can put l geodesic discs on one S2. But here we are only interested in
map with winding number one, therefore we can choose the “geodesic disc” equal to the full S2,

.e., �0=�. This leads to the following energy estimate:

ENi �
4�

3
�8��353/2l3/2 +

4�

3
�2��353/2m , �79�

hich we want to estimate in terms of Q again, i.e.,

c2l
3/2 + c3m � c4�l2 + m�3/4. �80�

ere the left-hand side grows linearly in m, whereas the right-hand side grows sublinearly, there-
ore the inequality certainly holds for all m� �1,2l� if it holds for the maximum value m=2l, i.e.,

c2l
3/2 + 2c3l � c4�l2 + 2l�3/4. �81�
ith the help of the inequality
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c2 + 2c3l
−1/2 � c2 + 2c3 � �c2 + 2c3��1 +

2

l
�3/4

�82�

e see that the above-noted inequality certainly holds for c4=c2+2c3. Inserting the concrete
umbers from �79� we therefore get

ENi �
4�

3
�2��3�43 + 2�53/2Q3/4 �83�

s our final estimate for general Q.

. Upper bounds for the AFZ and Faddeev–Niemi models

We may use our result to obtain upper bounds for the energies of the AFZ and Faddeev–Niemi
odels, as well. For the bound on the AFZ model we use the simple inequality for the energy

ensities

E4 �
1
2E2

2, �84�

hich is obvious from the �� ,�� parametrization, see Eqs. �A25� and �A26�. It follows immedi-
tely that EAFZ� � 1

2
�3/4 ENi and, therefore,

EAFZ � �1

2
�3/44�

3
�2��3�43 + 2�53/2Q3/4. �85�

For the Faddeev–Niemi model with energy density EFN=E2+�E4 we consider the case Q= l2

f a square Hopf index first. We use Eq. �75� for the density E2 and the inequality �84� and find

EFN = �
BR

d3r�E2 + �E4� � �
BR

d3r�20l�4�

R
�2

+
�

2
�20l�2�4�

R
�4�

=
4�

3
R3�20l�4�

R
�2

+
�

2
�20l�2�4�

R
�4� �86�

nd, with the choice

R = R0
	l , �87�

e get

EFN � 20
4�

3
�4��2l3/2�R0 + 10�4��2 �

R0
� . �88�

or a neat estimate we now minimize the expression in brackets with respect to R0 which leads to

R0 = 4�	10� �89�

nd to

EFN � 40
4�

3
�4��3	10�l3/2. �90�

ere we have separated a factor �4��3 because it can be replaced by �3 for winding number one,
xactly as in the estimate for the Nicole model, which we need for general Q. Again we write

2
= l +m and estimate
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EFN � 40
4�

3
�4��3	10�l3/2 + 40

4�

3
�3	10�m �91�

nd finally by

EFN � 40
4�

3
�3	10��43 + 2�Q3/4 �92�

n complete analogy to the Nicole model.
Note added: after finishing this paper we became aware of Ref. 21, where an analogous bound

FN�C2Q
3/4 was derived for the Faddeev–Niemi model. There the authors found a better �i.e.,

ower� value for C2 by a combination of analytical and numerical methods.

. CONCLUSIONS

Combining numerical and analytical techniques, we found the energies for static solutions of
he Nicole model within the symmetric ansatz �8� for a wide �in principle arbitrary� range of the
ntegers m and n. It turns out that the energies of these symmetric solutions grow linearly with the
opf index Q=mn within a very good accuracy. Together with the sublinear growth inequality of
ec. IV, E�C2Q

3/4 this implies that, for sufficiently large values of Q, the symmetric solutions we
ound cannot be global minima within their respective topological sectors with fixed Hopf index
. It is of some interest to compare this result with the corresponding results for the AFZ and
addeev–Niemi models.

For the AFZ model all solutions for the symmetric ansatz �8� and their corresponding energies
an be calculated exactly.8 The energies are

EAFZ = 8	2�2	�m��n���m� + �n�� = 8	2�2Q3/4	� +
1

�
, �2 � �m

n
� �93�

nd, for m=n ��=1� perfectly fit within the upper bound EAFZ�C2Q
3/4 which holds also for the

FZ model �see Sec. IV�. It is, therefore, plausible to conjecture that these solutions might be true
inima for m=n �and, maybe, even for m�n provided that m and n do not differ too much�.

For the Faddeev–Niemi model the ansatz �8� is not compatible with the equations of motion
due to the lack of conformal symmetry of the latter�, but the cylindrically symmetric ansatz

u = f��,��eim	 �94�

or complex f is compatible and leads to an equation in the two independent variables � and �.
umerical investigation of the full e.o.m. in three variables shows that the solutions for the ansatz

94� are true minima only for the lowest values Q=1,2 of the Hopf index.4 In this respect,
herefore, the Nicole model bears more similarity with the Faddeev–Niemi model than with the
FZ model. It is tempting to speculate at this instant that the different behavior of the AFZ
odel—i.e., the possibility that the symmetric solutions �93� are true minima for arbitrary Q—is

elated to the integrability properties of the latter. But at the moment this is, of course, only
peculation which deserves further investigation.
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PPENDIX A: FACTS ABOUT HOPF MAPS

A Hopf map is a map from the three-sphere S3 to the two-sphere S2. The third homotopy
roup of the two-sphere is nontrivial, �3�S2�=Z, therefore Hopf maps are characterized by an
nteger topological index, the so-called Hopf index Q. The three-sphere is topologically equivalent
o one-point compactified three-dimensional Euclidean space R0

3, therefore, for each Hopf map
3→S2 there exists a corresponding map R0

3→S2, which we shall call Hopf map, as well, and
hich has the same Hopf index �due to the metric independence of a topological index�. Explic-

tly, a Hopf map R0
3→S2 may be given by a three-component unit vector field

n��r��:R0
3 → S2, n�2 = 1, lim

r�→

= n�0 = const, �A1�

here the tip of the unit vector field spans the unit two-sphere, or via stereographic projection

n� =
1

1 + �u�2
�u + ū,− i�u − ū�,1 − uū�, u =

n1 + in2

1 + n3
�A2�

y a complex field

u�r��:R0
3 → C0, lim

r�→

= u0 = const, �A3�

here our conventions are such that the projection is from the south pole to the equatorial plane
f the two-sphere. Further, C0 is the one-point compactified complex plane. A third possibility to
arametrize a Hopf map is by the spherical angles �� �0,2��, �� �0,��, which are related to the
nit vector n� and complex field u via

u = tan
�

2
ei�, n� = �sin � cos �,sin � sin �,cos �� . �A4�

The geometry behind the Hopf map may be visualized as follows. The pre-images under the
nverse of the Hopf map u of points in the target space S2 �or, equivalently, C0� are closed curves
n R0

3 �in general, knots�, where each two curves corresponding to two different points in target
pace are linked exactly Q times. An analytic expression for the Hopf index Q is

Q =
1

16�2 � d3rA� · B� , �A5�

here B� is the Hopf curvature

B� =
2

i

�u � �ū

�1 + uū�2 = −
1

2
�abcna � nb � �nc = − sin � � � � �� �A6�

nd A� is the gauge potential for the “magnetic field” B� , B� =��A� . There is no local expression for
� in terms of the Hopf map u alone �however, there certainly exist nonlocal expressions for
ertain gauges, as is obvious from the analogy with electrodynamics, by choosing, e.g., the Cou-

oumb gauge � ·A� =0 which implies A� =���d3r��−1�r�−r���B� �r����.
Geometrically, B� is the Hodge dual of the pullback of the area two-form on S2 under the Hopf

ap u, i.e.,

B � Bkdrk = � F , �A7�

F � 1
2F jkdrjdrk, Bk = �klmFlm, �A8�
here
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F = u*���, � =
2

i

d�d�̄

�1 + ��̄�2
, �

S2
� = 4� . �A9�

he second cohomology group of the three-sphere is trivial, H2�S3�=0, therefore the closed two-

orm F must be exact, F=dA. It follows that the gauge potential A� is globally well-defined for
ppropriately chosen gauges �e.g., in the Couloumb gauge�.

The simplest Hopf map with Hopf index 1 is

u = i
2�x + iy�

2z + i�r2 − 1�
�A10�

the irrelevant factor i has been introduced to be in exact agreement with the simplest Hopf map
f Eq. �12��. Its level curves �i.e., the pre-images of points u=const� are circles which lie on tori,
nd each two different circles are linked precisely once.

There are different ways to construct Hopf maps explicitly. One method which we shall need
s to compose a given Hopf map with a map S2→S2,

N� �n��r���:R0
3 ——→

n��r��

S2 ——→
N� �n��

S2. �A11�

f the Hopf map n��r�� has Hopf index Q and the map N� �n�� has winding number w, then the

omposition map N� �n��r��� has Hopf index Q�=w2Q.
A method to construct all possible Hopf maps starts from maps S3→S3 �or, equivalently, maps

0
3→S3�. The third homotopy group of S3 is nontrivial, �3�S3�=Z, therefore such maps are

lassified by a topological index, the winding number W. It is possible to construct Hopf maps

0
3→S2 from maps R0

3→S3 such that the Hopf index equals the winding number. Explicitly a map

0
3→S3 may be given by a four component unit vector field

�e1�r��,e2�r��,e3�r��,e4�r���:R0
3 → S3, e�e� = 1, � = 1, . . . ,4 �A12�

lim
r�→


e� = e�
0 = const �A13�

hen the corresponding Hopf map is given in terms of u as

u =
e1 + ie2

e3 + ie4
�A14�

r in terms of n� as

n� = �2e1e3 + 2e2e4,− 2e1e4 + 2e2e3,e3
2 + e4

2 − e1
2 − e2

2� . �A15�

urther, it is now possible to give an explicit, local expression for the gauge potential A� , in terms
f the e�, as

A� =
2

i
��e1 − ie2� � �e1 + ie2� + �e3 − ie4� � �e3 + ie4�� . �A16�

t may be checked without difficulty that indeed ��A� =B� where B� is the Hopf curvature �A6�.
As the group manifold of SU�2� is equivalent to the three-sphere S3, we may use maps R0

3

SU�2� instead. Indeed, with the group element

U = e4 − ie� · �� � exp�− i�k� · �� �, lim
�

U = U0 = const �A17�

r→
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e4 = cos �, e� = sin �k�, k�2 = 1 �A18�

where e� = �e1 ,e2 ,e3� and �� are the Pauli matrices� the Hopf map �A15� may be expressed like

n� = 1
2 tr�3U

†��U . �A19�

his latter representation may be used to produce ansaetze for Hopf maps with cylindrical sym-
etry from maps R0

3→SU�2� with rotational symmetry. Indeed, for

k� = r̂ � r�/r, � = ��r�, ��0� = 0, lim
r→


� = �W, W � Z �A20�

the conditions on ��r� are to ensure a well-defined U on all R0
3, and they provide, at the same

ime, a winding number equal to W for the corresponding map R0
3→S3 or R0

3→SU�2��, the
esulting group element U���r� , r̂� is rotationally invariant in the sense that any rotation in R0

3 can
e compensated by a SU�2� transformation,

U���r�,Or̂� � cos ��r� − i sin���r��� � · �Or̂� = V†U���r�, r̂�V , �A21�

here O is a rotation matrix acting on r̂ and V is the SU�2� matrix corresponding to the rotation
. Within this ansatz, and using spherical polar coordinates r̂= �sin � cos 	 , sin � sin 	 , cos ��, we
et for the complex field u

u =
sin � sin �ei	

sin � cos � + i cos �
, �A22�

hich has cylindrical symmetry in the sense that any rotation 	→	+	0 can be compensated by
phase transformation u→ei	0u. Further, u is a Hopf map with Hopf index equal to the winding

umber W. For technical reasons we prefer to use a u which is multiplied by −i in our main
alculation, i.e.,

u = − i
e1 + ie2

e3 + ie4
=

sin � sin �

	sin2 � cos2 � + cos2 �
ei	+i arctan�tan � cos ��. �A23�

ith u=tan�� /2�ei� this leads to

sin � = 2 sin � sin �	1 − sin2 � sin2 �, � = 	 + arctan�tan � cos �� . �A24�

inally, we display the energy densities of the Nicole and AFZ models in the three different
arametrizations, ENi=E2

3/2 with

E2 = ��n� �2 � ��kn
a�2 = 4

�u · �ū

�1 + uū�2 = ����2 + sin2 �����2 �A25�

nd EAFZ=E4
3/4 with

E4 = B� 2 =
1

2
���nb · �nb�2 − ��nb · �nc�2�

= 4
��u · �ū�2 − ��u�2��ū�2

�1 + uū�4 = sin2 ������2����2 − ��� · ���2� . �A26�
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PPENDIX B

Proof that

�a + b�3/2 � ca1/2b for a,b � 0, c � 	3
3

2
. �B1�

y squaring the above expression and subtracting the right-hand side we get

a3 + 3a2b + 3�1 − d2�ab2 + b3 � 0, d2 �
c2

3
�B2�

r, by introducing the variable x=a /b,

h�x� � x3 + 3x2 + 3�1 − d2�x + 1 � 0 for x � 0. �B3�

his problem we solve by first calculating the minimum xmin of h�x� for x�0, and by then
equiring that h�xmin�=0. The minimum is at

h��x� = 3�x2 + 2x + �1 − d2�� � 0 Þ xmin = d − 1 �B4�

nd the condition h�xmin�=0 finally leads to

h�xmin� = d2�3 − 2d� � 0 Ù d � 1 Þ d = 3
2 �B5�

hich implies �B1�. QED
Proof that one may cover the unit sphere with l nonintersecting discs with geodesic radius

0=� /4	l. First we study the case where l is a square, l=k2. We divide the northern hemisphere
f the two-sphere into segments by circles which are concentric about the north pole and are given
y

� =
m�

2k
, m = 1, . . . ,k . �B6�

his divides the northern hemisphere into one disc with geodesic radius � /2k about the north pole
on which one geodesic disc with geodesic radius �0=� /4k certainly does fit� and into sphere
egments such that the boundary circles have a geodesic distance of � /2k. Therefore discs with
eodesic diameter 2�0=� /2k exactly fit in between. Further, 2m+1 geodesic discs fit on the
egment between the circles at �=m� /2k and at �= ��m+1��� /2k. This is because the central
ircle of the segment has a circumference which is bigger than the sum of m+1 diameters of the
eodesic discs, i.e.,

2� sin��m +
1

2
� �

2k
� � 2�

2

�
��m +

1

2
� �

2k
� = �2m + 1�

�

k
� �2m + 1�

�

2k
, �B7�

here we used

sin x �
2

�
x for x � 0,

�

2
� . �B8�

inally, summing over all discs on all segments �including the first disc at the segment which is
tself a disc� we find

�
m=0

k−1

�2m + 1� = �
m=1

k

�2m − 1� = k2, �B9�

herefore we may indeed distribute k2 nonintersecting geodesic discs with geodesic radius �0
� /4k on the northern hemisphere.
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It remains to study the case where l is not a square. Then we write l=k2+ j. We distribute the
2 discs on the northern hemisphere as just described. Further, we distribute the remaining j discs
n the southern hemisphere. This is obviously possible as long as k2� j. So we cover all cases
xcept the case l=3. This latter case may be proven easily with the help of elementary geom-
try. QED

Proof that

sin ax � a sin x for a � 1, x � 0,
�

2
� . �B10�

e introduce a�1+�, ��0 and write

sin��1 + ��x� = sin x cos �x + cos x sin �x � sin x + �x cos x � sin x + � sin x � a sin x ,

�B11�

here we used cos x�1, sin x�x for x�0, and

x cos x � sin x Þ tan x � x for x � 0,
�

2
� �B12�

hich is obviously true. QED

PPENDIX C: ON THE POSSIBILITY OF A LOWER BOUND C1Q3/4ÏEQ

It may be useful to briefly comment on the problem of deriving a lower bound for the energy
f the type C1Q

3/4�EQ, analogously to the case of the Faddeev–Niemi model, where this bound
an be proven �Vakulenko-Kapitansky bound, see, e.g., Refs. 22–24�. In the case of the Faddeev–
iemi model, the first step in the proof is Hoelder’s inequality �we use the conventions of Ref. 25,

here all inequalities of this appendix can be found; further, we assume that A� and B� belong to
he appropriate Sobolev spaces such that all integrals below exist�

16�2Q �� d3rA� · B� � �� d3r�A� �p�1/p�� d3r�B� �q�1/q

�C1�

1

p
+

1

q
= 1. �C2�

or the Faddeev–Niemi model one has to choose p=6, q= 6
5 and may estimate the first term with

he help of the Gagliardo-Nirenberg-Sobolev �GNS� inequality,

�� d3r�A� �6�1/6

� c�� d3r���A� ��2�1/2

�C3�

here and below c is an unspecified constant� and, when the Couloumb gauge condition � ·A�
0 is imposed, the integrand can be reexpressed like

���A� ��2 � c��
jk

� jAk�2
= c��� � A� �2 + � · �� � , �C4�

here

�1 = �A2�2 + A3�3�A1 − A1��2A2 + �3A3� �C5�

nd �2, �3 follow by permutation. Therefore, the integrand is the sum of B� 2 and a total divergence

hich does not contribute to the integral �for A� which decay sufficiently fast in the limit �r��

; this is automatically satisfied by the class of A� we consider�. The proof continues with the
nterpolation inequality
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�� d3r�B� �6/5�5/6

� �� d3r�B� ��2/3�� d3r�B� �2�1/6

�C6�

or the second term. This leads to

16�2Q � c�� d3r�B� �2�2/3�� d3r�B� ��2/3

�C7�

nd, together with �B� �2=E4 and �B� �� �1/	2�E2, to

16�2Q � c�−2/3��� d3rE4�1/2�� d3rE2�1/2�4/3

� c�−2/3�� d3rE4 +� d3rE2�4/3

,

�C8�

here we used Cauchy’s inequality in the last step. The Vakulenko–Kapitansky bound follows
mmediately by taking the above inequality to the power 3

4 .
Now let us point out where the analogous proof fails for the AFZ and Nicole models. One

gain starts with Hoelder’s inequality �C1�, but now one would have to choose p=3 and q= 3
2 .

ith the GNS inequality one can again estimate the first term

�� d3r�A� �3�1/3

� c�� d3r���A� ��3/2�2/3

�C9�
ut now the integrand is

���A� ��3/2 � c��
jk

� jAk�3/2
= c��� � A� �2 + � · �� �3/4 �C10�

nd therefore no longer a total derivative, and we cannot express the integrand in terms of the
opf curvature alone. We have not been able to overcome this difficulty. For our main results,
owever, the upper bound is more important, which shows that for sufficiently high Hopf index
ur solutions of Sec. II cannot be true minimizers of the energy.
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We study the �� /4 ! ��4 massless scalar field theory in a four-dimensional Euclidean
space, where all but one of the coordinates are unbounded. We are considering
Dirichlet boundary conditions in two hyperplanes, breaking the translation invari-
ance of the system. We show how to implement the perturbative renormalization up
to two-loop level of the theory. First, analyzing the full two and four-point func-
tions at the one-loop level, we show that the bulk counterterms are sufficient to
render the theory finite. Meanwhile, at the two-loop level, we must also introduce
surface counterterms in the bare Lagrangian in order to make finite the full two and
also four-point Schwinger functions. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2194632�

. INTRODUCTION

In this paper we are interested to show how to implement the renormalization procedure up to
wo-loop level in the massless �� /4 ! ��4 scalar field theory, defined in a four-dimensional Euclid-
an space with one compactified dimension. Our aim is to shed light on the renormalization
rocedure in a system defined in a domain where translational symmetry is broken, which must be
one, for example, in the high temperature dimensional reduced quantum chromodynamics
QCD�, defined in a finite region.

Quantum chromodynamics is a non-Abelian Yang-Mills theory with gauge group SU�3�.
ince it is assumed that the fermions of the theory transform according to the fundamental rep-
esentation of the gauge group, each flavor of quark is a triplet of the color group SU�3�. Gauge
osons transform according to the adjoint representation. The interaction between the quarks is
ediated by the gluons. Due to the non-Abelian structure of the theory, the gluons couple not only
ith the quarks but have also cubic and quartic self-interaction. The self-interaction of the gluons
rovides the antiscreening of the color charge in QCD. This is responsible for asymptotic freedom
nd presumably confinement.

The confinement-deconfinement phase transition in QCD may occur in usual matter at suffi-
iently high temperature or if it is strongly compressed.1–3 In ultrarelativistic heavy ion collisions,
e expect that the plasma of quarks and gluons can be produced. We would like to stress that,

lthough nonequilibrium processes occur in the quark-gluon plasma in the heavy ion collisions, for
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implicity in a first approximation we can assume a static situation. Just after the collision hot and
ompressed nuclear matter is confined in a small region of the space and in such circumstances the
olume and surface effects become very important.

In the above described physical situation there are two important points: the first one is that
he thermodynamic limit of the infinite volume system cannot be used and therefore finite volume
ffects should be investigated and taken into account. The second point is that the quark-gluon
lasma exists in a situation of high temperature, where using the Matsubara formalism to describe
igh temperature QCD, dimensional reduction must occur.4–7 Dimensional reduction is based on
he Appelquist-Carrazone decoupling theorem.8 From a more fundamental theory, the effective
agrangian density of this theory can be obtained as some low-energy limit of the fundamental

heory where the heavy modes have been removed. There are some interesting physical situations
here the decoupling theorem can be used. First, for scalar fields without spontaneous symmetry
reaking. Second, in quantum electrodynamics, where a derivative expansion of the photon effec-
ive action can be obtained by integrating out the fermionic fields. Also in QCD at least in lowest
rder in perturbation theory the decoupling theorem works. The decoupling theorem is not valid,
or example, in spontaneous broken gauge theories. It is important to stress that the nonvalidity of
he decoupling theorem means that low-energy experiments can provide information about the
igh energy physics.

Going back to the heavy-ions collision situation, we can assume that the following scenario
ppears: in the situation where dimensional reduction occurs, we have an effective theory for the
luons field and also finite size effects for these bosonic fields. To shed light on the renormaliza-
ion procedure in systems defined in domain where translational symmetry is broken, as for
xample, the high temperature dimensional reduced QCD, in this paper we are interested to
nvestigate scalar models, impose classical boundary condition over the fields. We hope that this
tudy will give us some insight over the most interesting and also more complicated situation as
he one mentioned above. Therefore, in this paper we analyze how to implement the perturbative
enormalization up to two-loop level of �� /4 ! ��4 massless scalar field model defined in a four-
imensional Euclidean space with one compactified dimension.

Finite size effects and the presence of macroscopic structures in different field theory models
ave been extensively studied in the literature. The critical behavior of the O�N� model in the
resence of a surface was a target of intense investigations.9 The same O�N� model was studied in
wo different geometries: the periodic cube and the cylinder along one dimension �the time� and
nite and periodic in the �d−1� remaining dimensions by Brezin and Zinn-Justin.10 Finite size
ffects in QCD11 and also in different field theory models have also been extensively studied in the
iterature. Assuming periodic or antiperiodic boundary conditions for bosonic and fermionic mod-
ls, respectively, the translation symmetry is maintained, and surface effects are avoided. There-
ore, to avoid surface effects, quantum fields defined in manifolds with periodic or anti-periodic
oundary conditions in the spatial section were preferred by many authors.12 Nevertheless, the
ase of boundaries conditions that break the translational symmetry deserves our attention.

In the case of hard boundary conditions as, for example, Dirichlet-Dirichlet �DD� or
eumann-Neumann �NN�, the translational invariance is lacking. This fact makes the Feynman
iagrams harder to compute than in an unbounded space. Moreover the renormalization program
s implemented in a different way from unbounded or translational invariance systems since some
urface divergence appears.13 For translational invariant systems, one can use the momentum
pace representation, which is a more convenient framework to analyze the ultraviolet divergences
f a theory. Translational invariance is preserved for momentum conservation conditions. For
ontranslational invariant systems a more convenient representation for the n-point Schwinger
unctions is a mixed momentum coordinate space.

Fosco and Svaiter considered the anisotropic scalar model in a d-dimensional Euclidean
pace, where all but one of the coordinates are unbounded. Translational invariance along the
ounded coordinate which lies in the interval �0,L� is broken because the choice of boundary
ondition chosen for the hyperplanes at z=0 and z=L. Two different possibilities of boundary

onditions were considered: �DD� and also �NN�, and the renormalization of the two-point func-
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ion was achieved in the one-loop approximation.14 Further, the renormalization of the four-point
unction was achieved in the one-loop approximation by Caicedo and Svaiter.15 Finally Svaiter16

tudied the renormalization of the �� /4 ! ��4 massless scalar field model in the one-loop approxi-
ation in finite size systems assuming that the system is in thermal equilibrium with a reservoir.
lso, still studying surface, edge, and corners effects, Rodrigues and Svaiter17 analyzed first the

enormalized vacuum fluctuations associated with a massless real scalar field, confined in the
nterior or a rectangular infinitely long waveguide. A closed form of the analytic continuation of
he local zeta function in the interior of the waveguide was obtained and a detailed study of the
urface and edge divergences was presented. Next, these authors18 studied the renormalized stress
ensor associated with an electromagnetic field in the interior of a rectangular infinitely long
aveguide.

In this paper we will consider an interacting massless scalar model, in a four-dimensional
uclidean space, where the first three coordinates are unbounded and the last one lies in the

nterval �0,L�. We analyze only DD boundary conditions. First, we present an algebraic expression
n coordinate space for the free propagator which let us identify the divergences of the n-point
chwinger functions for the interacting theory. This algebraic expression agrees with the result
btained by Lukosz.19 We would like to stress that instead of assuming hard boundary conditions,
ome authors assumed soft boundary conditions and also treated the boundary as a quantum
echanical object.20 Here, we prefer to keep hard classical boundary conditions.

The organization of the paper is as follows: In Sec. II we discuss the slab configurations,
btaining some important expressions for the free propagator in order to understand some proce-
ures in the divergence identification. In Sec. III the regularization program is implemented in the
ne-loop approximation. In Sec. IV the regularization program is implemented in the two-loop
pproximation. Section V contains our conclusions. In the Appendix, an expression for the free
ropagator is introduced. Throughout this paper we use �=c=1.

I. CLASSICAL BOUNDARY CONDITIONS AND SOME PROPERTIES OF THE FREE
ROPAGATOR

Let us consider a neutral scalar field with a ���4� self-interaction, defined in a d-dimensional
inkowski space-time. The vacuum persistence functional is the generating functional of all

acuum expectation value of time-ordered products of the theory. The Euclidean field theory can
e obtained by analytic continuation to imaginary time allowed by the positive energy condition
or the relativistic field theory. In the Euclidean field theory, we have the Euclidean counterpart for
he vacuum persistence functional, that is, the generating functional of complete Schwinger func-
ions. The ���4�d Euclidean theory is defined by these Euclidean Green’s functions. The Euclidean
enerating functional Z�h� is formally defined by the following functional integral:

Z�h� =� �d��exp�− S0 − SI +� ddxh�x���x�� , �1�

here the action that describes a free scalar field is

S0��� =� ddx�1

2
����2 +

1

2
m0

2�2�x�� , �2�

nd the interacting part, defined by the non-Gaussian contribution, is

SI��� =� ddx
�

4!
�4�x� . �3�

In Eq. �1�, �d�� is a translational invariant measure, formally given by �d� � =	x d��x�. The
2
erms � and m0 are, respectively, the bare coupling constant and mass squared of the model.
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inally, h�x� is a smooth function that we introduce to generate the Schwinger functions of the
heory by means of functional derivatives. Note that we are using the same notation for functionals
nd functions, for example, Z�h� instead of the usual notation Z�h�.

In the weak-coupling perturbative expansion, we perform a formal perturbative expansion
ith respect to the non-Gaussian terms of the action. As a consequence of this formal expansion,

ll the n-point unrenormalized Schwinger functions are expressed in a power series of the bare
oupling constant g0. Let us summarize how to perform the weak-coupling perturbative expansion
n the ���4�d theory. The Gaussian functional integral Z0�h� associated with the Euclidean gener-
ting functional Z�h� is

Z0�h� = N� �d�� exp�−
1

2
�K� + h�� . �4�

e are using a compact notation and the first term on the right-hand side of Eq. �4� is given by

�K� =� ddx� ddy��x�K�m0;x,y���y� . �5�

he term that couples linearly the field with the external source is

h� =� ddx��x�h�x� . �6�

As usual N is a normalization factor and the symmetric kernel K�m0 ;x ,y� is defined by

K�m0;x,y� = �− � + m0
2��d�x − y� , �7�

here � denotes the Laplacian in the Euclidean space Rd. As usual, the normalization factor is
efined using the condition Z0�h��h=0=1. Therefore N= �det�−�+m0

2��1/2 but, in the following, we
re absorbing this normalization factor in the functional measure. It is convenient to introduce the
nverse kernel, i.e., the free two-point Schwinger function G0�m0 ;x−y� which satisfies the identity

� ddzG0�m0;x − z�K�m0;z − y� = �d�x − y� . �8�

ince Eq. �4� is a Gaussian functional integral, simple manipulations, performing only Gaussian
ntegrals, gives

� �d��e−S0+
ddxh�x���x� = exp�1

2
� ddx� ddyh�x�G0

�2��m0;x − y�h�y�� . �9�

herefore, we have an expression for Z0�h� in terms of the inverse kernel G0
�2��m0 ;x−y�, i.e., in

erms of the free two-point Schwinger function. This construction is fundamental to perform the
eak-coupling perturbative expansion with the Feynman diagramatic representation of the pertur-
ative series. The non-Gaussian contribution in a perturbation with regard to the remaining terms
f the action. It is important to point out that the weak-coupling perturbative expansion can be
efined in arbitrary geometries, and classical boundary conditions must be implemented in the
wo-point Schwinger function. Another way is to restrict the space of functions that appear in the
unctional integral.

We are interested in studying finite size systems, where the translational invariance is broken.
n this situation, we are analyzing the perturbative renormalization for the �� /4 ! ��4 massless
calar field model, in the two-loop approximation. Therefore, let us assume boundary conditions
ver the plates for the massless field ��x�. For simplicity we are assuming Dirichlet-Dirichlet

oundary conditions, i.e.,
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��r�,z��z=0 = ��r�,z��z=L = 0, �10�

or the free field. Since the translational invariance is not preserved, let us use a Fourier expansion
f the fields in the following form:

��r�,z� =
1

�2���d−1�/2 � dd−1p
n

�n�p��eip� ,r�un�z� , �11�

here the set un�z� are the orthonormalized eigenfunctions associated to the operator −d2 /dz2 ,
−d /dz2un�z�=kn

2un�z��, and kn=n� /L, n=1,2 , . . . . The orthonormal set corresponding to the
igenfunctions of the Hermitian operator −d2 /dz2 defined on a finite interval is given by

un�z� =�2

L
sin�n�z

L
�, n = 1,2, . . . . �12�

hese eigenfunctions satisfy the completeness and orthonormality relations, i.e.,


n

un�z�un
*�z�� = ��z − z�� �13�

nd

�
0

L

dz un�z�un�
* �z� = �n,n�. �14�

ince we are interested in performing the weak coupling expansion, let us first write the free
wo-point Schwinger function. This free two-point Schwinger function can be expressed in the
ollowing form:

G0
�2��r�,z,z�� =

1

�2��d−1 � dd−1p
n

eip� .r�un�z�un
*�z��G0,n�p�� , �15�

here G0,n�p�� is given by

G0,n�p�� = �p�2 + kn
2 + m2�−1. �16�

ext, we will present some properties of the two-point free Schwinger function in order to
nderstand the behavior of the interacting field theory in the presence of macroscopic structures.
herefore, in order to understand some procedures used in the identification of the divergences in

he Schwinger functions that will appear in the next section, let us analyze some properties of the
ree two-point Schwinger function. Substituting Eq. �12� and Eq. �16� in Eq. �15� we get that the
ree propagator G0

�2��r�1−r�2 ,z1 ,z2� can be written as

G0
�2��r�1 − r�2,z1,z2� =

2

L

n=1

�

sin�n�z1

L
�sin�n�z2

L
� � dd−1p

�2��d−1

eip� .�r�1−r�2�

�p�2 + �n�

L
�2

+ m2� . �17�

he next step is to show that the two-point free Schwinger function can be written in terms of the
ariables: r12,z12

− and finally z12
+ , where r12= ��r�1−r�2 � � /L, z12

− = �z1−z2� /L, and z12
+ = �z1+z2� /L, re-

pectively. Working in the four-dimensional case and also in the massless situation, a straightfor-
�2� � �
ard calculation �see the Appendix� gives us that G0 �r1−r2 ,z1 ,z2� can be written as
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G0
�2��r�1 − r�2,z1,z2� =

1

16�2L2 
k=−�

�

� 1

�k −
�z12

− �
2
�2

+ � r12

2
�2

−
1

�k −
�z12

+ �
2
�2

+ � r12

2
�2� . �18�

he former expression for the two-point Schwinger function was obtained also by Lukosz19 using
he image method. Performing the summations in Eq. �18� �see the Appendix�, it is possible to find
closed expression for G0

�2��r�1−r�2 ,z1 ,z2�. We get

G0
�2��r�1 − r�2,z1,z2� =

sinh��r12�
16�L2r12 � sin��z1

L �sin��z2

L �
�sinh2��r12

2
� + sin2��z12

−

2
���sinh2��r12

2
� + sin2��z12

+

2
��� .

�19�

t is not difficult to show that the two-point Schwinger function G0
�2��r�1−r�2 ,z1 ,z2� satisfies the

ollowing properties:

�i� The free two-point Schwinger function is not negative, i.e., G0
�2��r�1−r�2 ,z1 ,z2�	0, for

z1 ,z2� �0,L� and r�1, r�2�R3, since we are working in a Euclidean space.
�ii� The free two-point Schwinger function is zero when one of its points are evaluated on the

boundaries

G0
�2��r�1 − r�2,0,z2� = G0

�2��r�1 − r�2,L,z2� = G0
�2��r�1 − r�2,z1,0� = G0

�2��r�1 − r�2,z1,L� = 0,

since we are assuming Dirichlet boundary conditions.
�iii� The free two-point Schwinger function contain the usual bulk divergences, i.e., when

�r�1 ,z1�= �r�2 ,z2�, it is singular. From Eq. �18� we can identify three singular terms. Split-
ting the free two-point Schwinger function in the singular and regular terms we have

G0
�2��r�1 − r�2,z1,z2� =

1

4�2L2� 1

�z12
− �2 + r12

2 −
1

�z12
+ �2 + r12

2 −
1

�2 − z12
+ �2 + r12

2 �
+

1

4�2L2� 
k=−�

k�0

�
1

�2k − �z12
− ��2 + r12

2 − 
k=−�

k�0

�
1

�2k − �z12
+ ��2 + r12

2 � . �20�

The first term on the right-side of the last equation, is singular only when r�1=r2
� and z1

=z2. This is the term that carries the usual bulk divergences. The second term is singular
only when z1=z2=0 and r�1=r�2. The third term is singular only when z1=z2=L and r�1
=r�2. These two terms mentioned previously carries surface divergences. Finally the two
last terms do not have singularities.

�iv� When �r�1−r�2 � /L
1 the free propagator behaves like

G0
�2��r�1 − r�2,z1,z2� �

1

2�L2

e−�r12

r12
sin��z1

L
�sin��z2

L
� , �21�

which shows an exponential convergence behavior.
�v� The integral of the variable �r� ,z� on a neighborhood around �r�� ,z�� of the free propagator

is finite, i.e., 
Rd3r dz G0
�2��r�−r�� ,z ,z����. See Fig. 1.

Property �v� allows us to show that the external legs of the Feynman diagrams do not create

ivergences. Let us suppose we have the integral corresponding to some Feynman diagram,
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�
R

d3r dz G0
�2��r� − r��,z,z��F�r��,z�� , �22�

here G0
�2��r�−r�� ,z ,z�� is some external leg and F�r�� ,z�� describes the remainder part of the

iagram. Now in order to proceed we must use the following statement: for two continuous and

ositives functions f�x�� and g�x�� defined in a finite region R with the exception of the point x1
�

here f�x�� diverges, then the integral I=
Rddxf�x��g�x�� is finite, if and only if I�=
Vddxf�x�� is
nite on some neighborhoods V of the point x�1. With the property �v� and the statement before we
an see that external legs from the Feynman diagrams do not generate divergences.

II. REGULARIZED TWO- AND FOUR-POINT SCHWINGER FUNCTIONS AT ONE-LOOP
RDER

In this section we identify the divergent contribution in the two- and four-point Schwinger
unction at one-loop level. Essentially we use Eq. �20� in the 1PI diagrams of the Green functions
onsidering their external legs, and the integrations in the coordinate space. We write Eq. �20� as

G0
�2��r�1 − r�2,z1,z2� =

1

4�2L2� 1

�z12
− �2 + r12

2 −
1

�z12
+ �2 + r12

2 −
1

�2 − z12
+ �2 + r12

2 + h�r12,z1,z2�� ,

�23�

here h�r12,z1 ,z2� is given by

h�r12,z1,z2� =
1

4 
k=−�

k�0

�
1

�k −
�z12

− �
2
�2

+ � r12

2
2� −

1

4 
k=−�

k�0,1

�
1

�k −
z12

+

2
�2

+ � r12

2
2� . �24�

rom the property �iii� we see that the three first contributions on the right-hand side of Eq. �23�
ave singularities. Otherwise, the last term is finite in the whole domain where we defined the
odel. After this brief introduction, we are able to study the interacting theory. Let us start

nalyzing the tadpole diagram, displayed in Fig. 2, from which we can write the expression for the

FIG. 1. The integral of the variable �r� ,z� on a neighborhood around �r�� ;z��.
FIG. 2. The two-point function at one-loop level.
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ne-loop two-point Schwinger function G1
�2��r�1−r�2 ,z1 ,z2�. We have that

G1
�2��r�1 − r�2,z1,z2� =

�

2
� d3r dz G0

�2��r�1 − r�,z1,z�G0
�2��0,z,z�G0

�2��r�2 − r�,z2,z� . �25�

n the following we are generalizing the results obtained by Fosco and Svaiter.14 Let us begin
tudying the quantity G0

�2��0,z ,z� that appears in the tadpole defined in Eq. �25�. From Eq. �20� we
et that G0

�2��0,z ,z� can be written as

G0
�2� = �0,z,z� =

1

4�2L2�A −
1

�2z/L�2 −
1

�2 − 2z/L�2 + 
k=−�

k�0

�
1

�2k�2 − 
k=−�

k�0,1

�
1

�2k − 2z/L�2� , �26�

here A is given by

A = lim
�z1,r�1�→�z2,r�2�

L2

�z1 − z2�2 + �r�1 − r�2�2

= lim
�→�

L2S4

8�2 �2, �27�

d= �2�d/2 /�d /2�� and � is an ultraviolet cutoff. In the same way, from Eq. �26� by performing
he summations, we-get for G0

�2��0,z ,z�,

G0
�2��0,z,z� =

1

4�2L2�A +
�2

12
−

�2

4

1

sin2��z/L�� . �28�

ubstituting Eq. �27� in Eq. �28� we obtain

G0
�2��0,z,z� = lim

�→�

S4

32�4�2 +
1

48L2 −
1

16L2

1

sin2��z/L�
. �29�

he first term in Eq. �29� is a bulk divergence. Substituting Eq. �29� in Eq. �25� we get

G1
�2��r�1 − r�2,z1,z2� = lim

�→�

�S4

64�4�2�
R

d3r dz G0
�2��r�1 − r�,z1,z�G0

�2��r�2 − r�,z2,z�

+
�

96L2�
R

d3r dz G0
�2��r�1 − r�,z1,z�G0

�2��r�2 − r�,z2,z�

−
�

32L2�
R

d3r dz
G0

�2��r�1 − r�,z1,z�G0
�2��r�2 − r�,z2,z�

sin2��z/L�
�30�

he first term on the right-hand side carries a bulk divergence. The second term is finite. To see
his we analyze the integral by sectors. Therefore we have

�
R

d3r dz G0
�2��r�1 − r�,z1,z�G0

�2��r�2 − r�,z2,z� = �
R1

+ �
R2

+ �
R3

+ �
R4

+ �
R5

, �31�

here each integral is defined in different regions displayed in Fig. 3, where the points �r�1 ,z1� and
r�2 ,z2� are the centers of the regions R1 and R2, respectively. Using the property �v� we have that
he integrals on R1 and R2 are finite. Since the free propagators G0

�2��r�1−r� ,z1 ,z� and G0
�2��r�2

r� ,z2 ,z� presented in Eq. �31� do not have divergences on R3 and this region is compact, then the
ntegral on R3 is finite. The integrals defined in regions R4 and R5 also are finite since from the

roperty �iv� the propagator decreases exponentially when one of its points becomes far from the
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ther. Thus the integral defined by Eq. �31� is finite. Finally we must study the third integral on the
ight-hand side of Eq. �30�. Note that the term 1/sin2��z /L� diverges when z is evaluated on the
oundaries.

Nevertheless this integral is convergent, because the products of G0
�2��r�1−r� ,z1 ,z� and G0

�2�

�r�2−r� ,z2 ,z� take away the divergence. Using Eq. �19�, we have that the third integral on the
ight-hand side of Eq. �30� is finite. Therefore the one-loop two-point Schwinger function only has
ulk divergence.

Our next step is to analyze the four-point Schwinger function in the one-loop level �see Fig.
�. Since the free propagator only has singularities when its two points are equal or also when the
wo points joined are evaluated at the boundaries, we continue our analysis of the integrals only in
he domains where the two external points of the free propagators take the same values. The
omplete four-point function at one-loop level is given by

G1
�4��r�1,z1,r�2,z2,r�3,z3,r�4,z4� =

�2

2
� dd−1r� dd−1r��

0

L

dz�
0

L

dz� G0
�2��r�1 − r�,z1,z�G0

�2��r�2 − r�,z2,z�

� �G0
�2��r� − r��,z,z���2G0

�2��r�3 − r��,z3,z��G0
�2��r�4 − r��,z4,z�� . �32�

or simplicity, in Fig. 5 we define three different regions between the boundaries. The first one, R1

s concerned when �r�� ,z�� is close to �r� ,z�. In this region the contribution coming from �G0
�2��r�

r�� ,z ,z���2 is singular. Nevertheless, we still must analyze if this divergent behavior will appear
n the integral defined by Eq. �32�. We will show that the singularities will appear only as bulk
ivergences. In the region R2 �z ,z�→0 and r��→r�� the term �G0

�2��r�−r�� ,z ,z���2 is also divergent.
s we will see, this divergent behavior disappears when we compute the complete four-point

unction at one-loop order, defined by Eq. �32�. In the region R3 �z ,z�→L and r��→r�� the situation
s identical as in the region R2. Using the same argument that we used before to analyze the
onvergence of the integral denned by Eq. �22�, we can study the convergence of the integral
efined by Eq. �32� with the amputated external legs. Therefore we must study Eq. �32� with the
xternal legs amputated. Therefore we must study the quantity 
d3r dz d3r� dz��G0

�2��r��
r� ,z� ,z��2. Substituting Eq. �23� in the former equation we get

FIG. 3. Regions of integration Ri.
FIG. 4. The four-point function at one loop.
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� d3r dz d3r� dz��G0
�2��r�� − r�,z�,z��2 =

1

�4�2L2�2�I1 + I2 + I3 + I4 + I5� + finite part, �33�

here the integrals Ii , i=1,2 , . . . , are given by

I1 =� d3r� dz d3r� dz�
1

��z12
− �2 + r12

2 �2 , �34�

I2 =� d3r dz d3r� dz��−
1

��z12
+ �2 + r12

2 �2 +
1

��2 − z12
+ �2 + r12

2 �2� , �35�

I3 =� d3r dz d3r� dz��−
2

��z12
− �2 + r12

2 ���z12
+ �2 + r12

2 � −
2

��z12
− �2 + r12

2 ���2 − z12
+ �2 + r12

2 �� �36�

I4 =� d3r dz d3r� dz�
2

��z12
+ �2 + r12

2 ���2 − z12
+ �2 + r12

2 � , �37�

I5 =� d3r dz d3r� dz�� 1

�z12
− �2 + r12

2 −
1

�z12
+ �2 + r12

2 −
1

�2 − z12
+ � + r12

2 �h�r12,z1,z2� . �38�

et us investigate each term of Eq. �33�. The integral I1 must be analyzed only in the region R1.
or this purpose we need an auxiliary result. We can prove that a continuous and positive function

f�x� which does not have singularities except for x=0, and M =
−��
�� ddxf�w2� where w2= �w� �2, then

here exist �� such that M =Sd
0
��dw wd−1f�w2� where ������d�. Then we get

I1 = �
R1

d3r� dz�
1

��z12
− �2 + r12

2 �2 = �
r�−��

r�+��

d3r��
z−�

z+�

dz�
1

��z − z��2 + �r� − r���2�2

=�
−��

�� d4w

w4 = S4�
0

��
dw

w3

w4 = S4 ln w �0��. �39�

herefore I1 contributes with a bulk divergence of the type as the one that appears in the theory
ithout boundaries. In the usual renormalization procedure, the contribution coming from I1 can
e eliminated by the usual counterterms. Concerning the contribution coming from I2 we have that
he first term 1/ ��z12

+ �2+r12
2 �2 is not singular in the region R1. In the region R2, using the same

uxiliary result that we used before, we can obtain an upper bound to the contribution coming

FIG. 5. Regions of integration for the four-point function.
rom this term. We get
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�
R2

d3r dz d3r dz�
1

��z + z��2 + �r� − r���2�2 �� d3r�
r�−��

r�+��

d3r��
0

� �
0

�

dz dz�
1

�z2 + z�2 + �r� − r���2�2

�
1

4
� d3r�

−��

��

d5w
1

w2 =
1

12
S5��3�

R�
d3r . �40�

ince the region R��R2 is finite this integral is convergent. Next, let us analyze the term 1/ ��2
z12

+ �2+r12
2 �2 of I2 in the region R3. Since the behavior of the field in each plates �for z=0 and

=L� is the same, then the analysis follows the same lines as previous ones and therefore this
ontribution is also finite. To study I3, we consider first the term 2/ ��z12

− �2+r12
2 ���z12

+ �2+r12
2 �. This

xpression must be studied in the regions R1 and R2, respectively. In R1 we can see that the
onvergence of

�41�

epends on the convergence of

�
R1

d3r dz d3r� dz�
1

�z − z��2 + �r� − r���2
. �42�

rom the above arguments we have that Eq. �42� can be written as

�
−��

�� d4w

w2 = S4�
0

��
dw w =

S4��2

2
, �43�

hus Eq. �42� gives a finite contribution. Now we consider the first term of I3 in the region R2. For
his purpose we will use the following property. Let us take a continuous and positive function f�x�
hich does not have singularities except for x=0, and N=
0

��
0
��dlydmzf�y2+z2� then there exist ��

n such a way that N= �Sl+m+2 /Sl+1Sm+1�
0
��dw wl+m+1f�w2� where ���0. Using this property, we

ave for the first term of Eq. �35�, in the region R2, that

� d3r�
0

�

dz�
z

z+�

dz��
r�−��

r�+��

d3r�
1

��z − z��2 + �r� − r���2���z + z��2 + �r� − r���2�

�� d3r�
0

�

dz�
0

�

du�
−��

��

d3v
1

�u2 + v2��z2 + u2 + v2�

�
1

4
S4� d3r�

0

�

dz�
0

��
dw

w

�z2 + w2�
=

S3S4

2S1S2
��. �44�

herefore the first term of I3 is also finite in R2. The second term 2/ ���z12
− �2+r12

2 ���2−z12
+ �2

r12
2 �� in I3 must be analyzed also in the regions R1 and R3. This analysis follows the same lines

s the last case, therefore the contribution coming from this term is also finite.
We have now to study the term I4. Note that 2 / ���z12

+ �2+r12
2 ���2−z12

+ �2+r12
2 �� must be analyzed

n the regions R2 and R3, respectively. Let us start with the region R2. Using previous arguments

e have that the convergence of I4 depends on the convergence of the following expression:
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�
0

� �
0

�

dz dz��
r�−��

r�+��

d3r�
1

z2 + z�2 + �r� − r���2
=

S5

4
�

0

��
dw

w4

w2 =
S5

12
��3, �45�

hich is finite. In the region R3 our analysis follows the same lines as in the region R2, thus the
ntegral in the region. R3 is also finite.

Using the same argument that we used before, it is not difficult to show that the contribution
oming from I5 is also finite. We conclude that the integrals given by Eq. �32� only have bulk
ivergences. In this way we can conclude that at the one-loop level the bulk counterterms are
ufficient to render the complete connected Schwinger functions finite. In the next section we will
dentify the divergent contribution in the connected two-point Schwinger functions at the two-loop
rder.

V. THE DIVERGENCES IN THE TWO-POINT SCHWINGER FUNCTIONS AT TWO-LOOP
EVEL

In this section we will generalize some results obtained by Fosco and Svaiter14 and also by
aicedo and Svaiter.15 We will identify the divergent contribution in the connected two-point
chwinger functions at the two-loop order. The diagrams that we are interested to analyze are
isplayed in Fig. 6. The expression that corresponds to Fig. 6�a� is given by

�2

4
� d3r� dz� d3r dz G0

�2��r�1 − r��,z1,z���G0
�2��r�� − r�,z�,z��2G0

�2��0,z,z�G0
�2��r�2 − r��,z2,z�� .

�46�

ince the external legs in Eq. �46� do not contribute to generate divergences, let us consider only
he following integral:

� d3r dz�G0
�2��r�� − r�,z�,z��2G0

�2��0,z,z� . �47�

eplacing Eq. �29� in Eq. �47� we get

� d3r dz�G0
�2��r�� − r�,z�,z��2G0

�2��0,z,z� = lim
�→�

S4

32�4�2� d3r dz�G0
�2��r�� − r�,z�,z��2

+
1

48L2 � d3r dz�G0
�2��r�� − r�,z�,z��2

−
1

16L2 � d3r dz�G0
�2��r�� − r�,z�,z��2 1

sin2��z/L�
.

�48�

he first term and the second one in Eq. �48� can be renormalized introducing only bulk counter-
erms. The most interesting behavior appears in the last term of this equation. Note that this

FIG. 6. Two-point Schwinger functions at two-loop level.
nrenormalized quantity contains only bulk divercences, since the contribution coming from
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G0
�2��r��− r̄ ,z� ,z��2 cancels the surface divergent behavior generated by the 1/sin2��z /L� term.

evertheless, after the introduction of a bulk counterterm to render the contribution �G0
�2��r��

r� ,z� ,z��2 finite between the plates, surface divergences appear. Thus this surface divergence must
e renormalized. After the introduction of surface and bulk counterterms, the finite contribution
oming from the last term of Eq. �48�, up to a finite renormalization constant, is given by

1

16L2 � d3r dz��G0
�2��r�� − r�,z�,z��2 −

1

�4�2L2�2

1

��z12
− �2 + r12

2 �2�� 1

sin2��z/L�
−

L2

��z�2 −
L2

�2�L − z�2� .

�49�

herefore this term contains an overlapping between bulk and surface counterterms.
We still must analyze the sunset diagram. The expression corresponding to Fig. 6�b� is given

y

�2

6
� d3r� dz� d3r dz G0

�2��r1
� − r��,z1z���G0

�2��r�� − r�,z�,z��3G0
�2��r�2 − r��,z2,z�� . �50�

gain, the external legs do not contribute to generate divergences, and therefore let us study the
mputated diagram, i.e., without external legs. We have

� d3r dz d3r� dz��G0
�2��r�� − r�,z�,z��3 =

1

�4�2L2�3 �I1 + I2 + ¯ + I12� + finite part, �51�

here

I1 =� d3r dz d3r� dz�
1

��z12
− �2 + r12

2 �3 , �52�

I2 =� d3r dz d3r� dz�
1

��z12
+ �2 + r12

2 �3 , �53�

I3 =� d3r dz d3r� dz�
1

��2 − z12
+ �2 + r12

2 �3 , �54�

I4 =� d3r dz d3r� dz�
2

��z12
− �2 + r12

2 �2��z12
+ �2 + r12

2 �
, �55�

I5 =� d3r dz d3r�dz�
2

��z12
− �2 + r12

2 �2��2 − z12
+ �2 + r12

2 �
, �56�

I6 =� d3r dz d3r� dz�
2

��z12
− �2 + r12

2 ���z12
+ �2 + r12

2 �2 , �57�

I7 =� d3r dz d3r� dz�
2

��z12
− �2 + r12

2 ���2 − z12
+ �2 + r12

2 �2 , �58�

I8 =� d3r dz d3r� dz�
2

��z+ �2 + r2 �2��2 − z+ �2 + r2 �
, �59�
12 12 12 12
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I9 =� d3r dz d3r� dz�
2

��z12
+ �2 + r12

2 ���2 − z12
+ �2 + r12

2 �2 , �60�

I10 =� d3r dz d3r� dz�
6

��z12
− �2 + r12

2 ���z12
+ �2 + r12

2 ���2 − z12
+ �2 + r12

2 �
,

�61�

I11 =� d3r dz d3r� dz�� 1

�z12
− �2 + r12

2 −
1

�z12
+ �2 + r12

2

−
1

�2 − z12
+ �2 + r12

2 �2

h�r12,z1,z2� , �62�

I12 =� d3r dz d3r� dz�� 1

�z12
− �2 + r12

2 −
1

�z12
+ �2 + r12

2

−
1

�2 − z12
+ �2 + r12

2 �h2�r12,z1,z2� , �63�

et us analyze each contribution coming from each term of Eq. �51�. The first integral I1 given by
q. �52� is divergent in R1. In general we can show that

�
R1

d3r� dz�
1

��z12
− �2 + r12

2 �n = �finite, n � 2,

� , n 	 2.
� �64�

sing the above result we can see that the integrals I3 , I4 and the first integral of I11 are divergent.
hese integrals contain bulk divergences which must be removed introducing bulk counterterms.
ext let us analyze the contribution coming from the integral I2 in the region R2. Using previous

rguments and considering the external legs we get

�
R2

d3r dz d3r� dz�
zz�

��z12
+ �2 + r12

2 �3 �� d3r�
−��

�� �
0

� �
0

�

d3u dz dz�
zz�

�z2 + z�2 + w2�3 �
S7

S2
2��� d3r .

�65�

herefore this term gives a finite contribution to Eq. �50�. The contribution from the integral I6 to
he integral must be studied in region R2. In this case we must consider the external legs, and the
roperty: let us take a function f�x ,y� positive which does not have singularities except for
x ,y�= �0,0� , I=
0

�
0
�dx dy f�x ,y� then, I�
0

�dx
x
x+�dy f�x ,y�+
0

�dy
y
y+�dyf�x ,y�, we get

�
R2

d3r dz d3r� dz�
zz�

��z12
− �2 + r12

2 ���z12
+ �2 + r12

2 �2

� 2� d3r�
−��

��

d3w�
0

�

dz�
0

�

du
z�z + u�

�u2 + w2��u2 + z2 + w2�2 . �66�

rom the above arguments we have that the contribution from the integral I6 is smaller than

S4� d3r��

dz���
ds

z2s

�s2 + z2�2 + 2S3� d3r��

dz��

du���
ds

zus2

�u2 + s2��u2 + s2 + z2�2

0 0 0 0 0
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�
S4S5

S2S3
��� d3r + 2

�S5�2

�S2�2S3
� d3r�

0

��
dw

w4

w4 � �S4S5

S2S3
�� + 2

�S5�2

�S2�2S3
��� � d3r . �67�

e conclude that the integral I6 is finite. Also integrating the contribution coming from the term

8 on R2 we get

�68�

sing the fact that the integral 
R2
d3r dz d3r� dz� 1/ ��z12

+ �2+r12
2 �2 is finite, we have that this inte-

ral also is convergent in R2. The contribution from the term I10 on R2 is given by

�69�

ince the integral 
R2
d3r dz d3r� dz�

1
��z12

− �2+r12
2 ���x12

+ �+r12
2 � is finite, then the integral defined by Eq. �69�

s convergent in R2. The contribution coming from the terms I11 contain only a bulk divergence.
therwise, the contributions coming from the terms I12 are finite. We conclude that we need only
ulk counterterms to render the integral defined by Eq. �50� finite. The same analysis can be done
or the four-point Schwinger function in the two-loop approximation. We obtained that only bulk
ivergences appear in the full four-point function.

. CONCLUSIONS

In this paper we are interested to show how to implement the renormalization procedure in
ystems where the translational invariance is broken by the presence of macroscopic structures.
or the sake of simplicity we are studying the self-interacting massless scalar field theory in a
our-dimensional Euclidean space. We impose that one coordinate is defined in a compact domain,
ntroducing two parallel mirrors where we are assuming Dirichlet-Dirichlet boundary conditions.
ote that although that there are some similarities with the finite temperature field theory using the
atsubara formalism, in thermal systems there appears only bulk divergences, as for example, in

he case of the system where we assume periodic boundary conditions. In nontranslational invari-
nt systems, in general, to render the theory finite it is necessary to introduce surface counterterms.

In this work we generalize some results obtained by Fosco and Svaiter14 and also by Caicedo
nd Svaiter.15 We identify the divergences of the Schwinger functions in the massless self-
nteracting scalar field theory up to the two-loop approximation. First, analyzing the full two- and
our-point Schwinger functions at the one-loop level, we show that the bulk counterterms are
ufficient to render the theory finite. Second, at the two-loop level, we must introduce surface
ounterterms in the bare Lagrangian in order to make finite the full two- and also four-point
chwinger functions. The most interesting behavior appears in the “double scoop” diagram given
y Eq. �46�. The amputated diagram is given by Eq. �47� and we are interested in the last term of
q. �48�. This unrenormalized quantity contains only bulk divergences. Nevertheless, after the

ntroduction of a bulk counterterm to render the contribution finite between the plates, surface
ivergences appear. Thus this surface divergence must be renormalized. Therefore this term con-
ains an overlapping between bulk and surface counterterms. This procedure can be generalized to
he n-loop level. The inclusion of the counterterm in the Lagrangian up to two-loop level with the
ull renormalized action and the general algorithm to identify the surface and bulk conterterms in

he n-loop level will be left to future work.
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PPENDIX

In this Appendix we will derive a useful representation for the free two-point Schwinger
unction. Starting from Eq. �17�, we have that G0

�2��r�1−r�2 ,z1 ,z2� is given by

G0
�2��r�1 − r�2,z1,z2� =

2

�2��d−1L

n=1

� � dd−1p sin�n�z1

L
�sin�n�z2

L
� eip� · �r�1 − r�2�

�p�2 + �n�

L
�2

+ m2� .

�A1�

sing the variables u= �z1−z2� /L and v= �z1+z2� /L defined, respectively, in the region
� �−1,1� and v� �0,2�, and also making use of a trigonometric identity and performing the sum

hat appears in Eq. �A1� we obtain21

G0
�2��r�1 − r�2,z1,z2� =

1

2
� dd−1p

�2��d−1

eip� · �r�1 − r�2�
�p�2 + m2�1/2 � cosh�L�1 − �u���p�2 + m2�1/2�

sinh�L�p�2 + m2�1/2�

−
cosh�L�1 − v��p�2 + m2�1/2�

sinh�L�p�2 + m2�1/2�
� . �A2�

aking m=0,d=4, and integrating the angular part, it is possible to show that G0
�2��r�1−r�2 ,z1 ,z2�

an be written as

G0
�2��r�1 − r�2,z1,z2� =

− i

2�2��2r�L2�
0

�

dx�eixr� − e−ixr��� cosh��1 − �u��x�
sinh x

−
cosh��1 − v�x�

sinh x
� ,

�A3�

here the variable r� is defined by r����r�1−r�2 � � /L. Making use of the following integral repre-
entation of the product between the gamma function and the Riemann zeta function21

�
0

�

dx
xz−1e−�x

epx − 1
=

�z�
pz ��z,

�

p
+ 1� , �A4�

here Re�z��1,Re�� /p��−1 and the Riemann zeta function ��z ,q� is defined by

��z,q� = 
k=0

�
1

�k + q�z , q � 0,− 1,− 2, . . . , �A5�

hen, it is possible to write G0
�2��r�1−r�2 ,z1 ,z2� as

G0
�2��r�1 − r�2,z1,z2� =

1

16�2L2� 
k=−�

�
1

�k −
�u�
2
�2

+ � r�

2
�2 − 

k=−�

�
1

�k −
v
2
�2

+ � r�

2
�2� . �A6�
inally, using the following identity:
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k=−�

�
1

�k − z�2 + r2 =
�

2r

sinh�2�r�
sinh2��r� + sin2��z�

, �A7�

e obtain the expression for the two-point Schwinger function that we need to proceed in our
nalysis. Using the above equation in Eq. �A6� we get

G0
�2��r�1 − r�2,z1,z2� =

sinh��r��
16�L2r�

� sin��z1

L �sin��z2

L �
�sinh2��r�

2 � + sin2��u
2 ���sinh2��r�

2 � + sin2��v
2 ��� . �A8�
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This paper revisits the quantum mechanics for one photon from the modern view-
point and by the geometrical method. Especially, besides the ordinary �rectangular�
momentum representation, we provide an explicit derivation for the other two
important representations, called the cylindrically symmetrical representation and
the spherically symmetrical representation, respectively. These other two represen-
tations are relevant to some current photon experiments in quantum optics. In
addition, the latter is useful for us to extract the information on the quantized black
holes. The framework and approach presented here are also applicable to other
particles with arbitrary mass and spin, such as the particle with spin 1

2 . © 2006
American Institute of Physics. �DOI: 10.1063/1.2200572�

. INTRODUCTION

From the modern viewpoint, relativistic quantum mechanics originates from the natural mar-
iage of special relativity and quantum theory: The Hilbert space for one particle quantum wave
unctions forms the unitary representation of the Poincare group, which is the isometric transfor-
ation group of the Minkowski spacetime. Especially, as realized on the Minkowski spacetime,

he quantum wave functions need to satisfy the field equation of motion.1–5 Not only does it
rovide a basis for relativistic quantum field, i.e., the quantum field operator is just defined on the
ock space associated with the Hilbert space of one particle states, but relativistic quantum
echanics itself is of significance in those cases which do not involve particle creation and

nnihilation, such as free propagations for in states before interaction and out states after interac-
ion. It is here that relativistic quantum mechanics demonstrates its most striking properties such
s quantum superposition and quantum entanglement, and thus acquires many invaluable applica-
ions such as quantum information and quantum computation.6 Moreover, the information on the
nteraction can be extracted by comparing out states with in states.

Obviously, light occupies a special position in our attempts to understand nature both relativ-
stically and quantum mechanically. It was light that initiated the great birth of both special
elativity and quantum theory. Furthermore, the quantum mechanics on the photon and its inter-
ction with matters has been developed into an individual discipline with wide applications, now
alled quantum optics.7 By the geometric method, this paper is mainly intended to revisit the
uantum mechanics for one photon from the modern viewpoint mentioned in the beginning. In
articular, besides the momentum representation, we explicitly provide the other two important

�Electronic mail: yphu@mail.bnu.edu.cn
�Electronic mail: wgqiu@hutc.zj.cn
�
Electronic mail: hbzhang@pkuaa.edu.cn
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epresentations, i.e., the cylindrically symmetrical representation and the spherically symmetrical
ne. These other two representations are very relevant to some of the current research in quantum
ptics.8–11 Especially, the latter is significant to the multi-pole radiation and electro-magnetic
cattering around such a central potential as the Schwarzschild black hole. Furthermore, based on
od’s corresponding principle, it acquires a new application in the quantized black holes.12

It is worth noting that although all the three representations are known, they are treated here
n a uniform framework and on an equal footing. �The first and third can be found in many of
dvanced textbooks such as Ref. 13, but the second was obtained for the first time in Ref. 14.�
specially, for the derivation of the later two representations, our method is obviously different

rom that used before.13,14 We here employ the spin weighted harmonics functions and the corre-
ponding spin weighted raising�lowering� operators, which have advantage of providing a straight-
orward and unified formalism applicable to particles of any spin.

The paper is organized as follows. In the next section, we construct the Hilbert space for one
hoton states from the solutions to the Maxwell equation. Based on the Killing field realization of
he Poincare Lie algebra, Sec. III well defines the relevant conserved observables on the Hilbert
pace for one photon states, which is thus indicated to form the unitary representation of the
oincare group. The three representations are presented in Sec. IV, where the explicit derivation is
iven. We conclude with some implications and extensions in Sec. V.

Our notation and conventions follow those in Ref. 3. In particular, the index is raised or
owered by the Minkowski metric �ab. We denote the covariant derivative and volume element
ompatible with the metric by �a and �abcd, respectively. The d’Alembertian is defined as �

�a�
a. The Lorentz coordinate system is specially denoted by �x� ��=0,1 ,2 ,3�, and the spatial

ectors are indicated by letters in boldface.

I. THE HILBERT SPACE FOR ONE PHOTON STATES

Start with the source free Maxwell equation on the Minkowski spacetime

��aF�bc� = 0,

�1�
�aFab = 0,

here Fab is a skew tensor field, called field strength. It is obvious that the solutions to the
axwell equation form a complex vector space, denoted by H. �More precisely, we define H to be

he complex vector space of solutions which vanish rapidly at spatial infinity.� To introduce an
nner product on our complex vector space, we first define a conserved current as

ja�A,A�� = i�F̄abA�b − ĀbFab� � , �2�

here Aa is the vector potential, satisfying

Fab = 2 � �aAb� . �3�

hence the inner product can be defined as

�F,F�� = �A,A�� = �
�

ja�A,A���abcd. �4�

ote that the conservation of ja�A ,A�� implies that this inner product is independent of choice of
he Cauchy surface �. �This point also implies the unitarity of the evolution of source free fields.�
hus, for later convenience, we choose the surface of constant x0 as � once and for all. Moreover,

q. �4� can be written as
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�F,F�� = �A,A�� = �
�

	 �

�x0
a

ja�A,A���̃bcd, �5�

here �̃bcd= �� /�x0�a�abcd is the induced spatial volume element on �.
In addition, by Eq. �2�, Eq. �5�, and the second part of Eq. �1�, the Stokes theorem shows that

he inner product is invariant under gauge transformations

Aa → Aa + �a� ,

�6�
Aa� → Aa� + �a��,

here � and �� are both arbitrary scalar fields. However, this inner product is not always non-
egative on our whole complex vector space. We next restrict H to its subvector space which
uarantees the non-negativity of the above inner product. We denote this subvector space by H+,
hich is just the Hilbert space for one photon states.

II. CONSERVED OBSERVABLES FROM THE POINCARE LIE ALGEBRA

As is well known, the Poincare Lie algebra can be realized by the Killing vector fields on the
inkowski spacetime as follows:

P� = i	 �

�x�
a

,

�7�

M�� = i�x�	 �

�x�
a

− x�	 �

�x�
a� .

ccording to the fact that the covariant derivative commutes with the Lie derivatives via Killing
ector fields, the operators from the Poincare Lie algebra, i.e.,

P̂�Fab = LP�Fab,

�8�
M̂��Fab = LM��

Fab,

re well defined on H. Moreover, it can also be shown that they are well defined on the Hilbert
pace for one photon states indeed. �It seems easier to prove in the rectangular momentum repre-
entation.� Later, employing the Leibnitz rule, the conservation of ja�A ,A��, and the Stokes theo-
em, we find that the above operators are Hermitian with respect to the inner product �5�. In
ddition, since the inner product �5� is independent of the choice of �, the above-noted operators
re also conserved observables. Furthermore, taking into account �Lu ,Lv�=L�u,v� with u and v
rbitrary vector fields, we can obtain

�P̂�, P̂�� = 0, �9�

�P̂�,M̂��� = 2i����P̂��, �10�

�M̂��,M̂��� = 2i�����M̂��� − ����M̂���� . �11�

ˆ �
ere, P is the four-momentum operator. By Eq. �1�, we have
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P̂�P̂� = − � = 0, �12�

hich shows that the eigenvalue of the four-momentum operator is null. Furthermore, �L̂1

M̂23, L̂2M̂31, L̂3M̂12� are the total angular momentum operators.
We next introduce the Pauli-Lubanski spin vector operator

Ŝ� = 1
2�����P̂�M̂��. �13�

esorting to Eq. �1� and after a straightforward calculation, we can obtain �the reader is suggested
o follow the steps described in Ref. 15�

Ŝ� = P̂�Ŝ , �14�

here Ŝ is the helicity operator, defined by

ŜFab = �− i�*Fab = −
i

2
�abcdF

cd. �15�

ased on the fact that the Lie derivatives via Killing vector fields annihilate the volume element,
ˆ commutes with both P̂� and M̂��. Furthermore, we have

Ŝ2 = 1, �16�

hich implies that the possible eigenvalue of the helicity operator takes ±1.

V. THREE REPRESENTATIONS IN THE COULOMB GAUGE

In this section, we shall employ the vector potential in the Coulomb gauge. In terms of the
ector potential, the Maxwell equation can be written as

�Aa = 0, �17�

here the Coulomb gauge

�aAa = 0,

�18�

	 �

�x0
a

Aa = 0,

as been employed. In this case, the inner product �5� is equivalent to

�F,F�� = �A,A�� = �
�

	 �

�x0
a

ja��A,A���̃bcd, �19�

here the conserved current

ja��A,A�� = i��aĀb�A�b − Āb�aAb�� . �20�

Later, according to the commutation relations in the last section, we can choose �P̂1 , P̂2 , P̂3 , Ŝ�
s a complete observable set, which forms the ordinary rectangular momentum representation.

imilarly, the complete observable set �P̂0 , P̂3 , L̂3 , Ŝ� forms the cylindrically symmetrical repre-
ˆ 0 ˆ 2 ˆ ˆ
entation, and �P ,L ,L3 ,S� forms the spherically symmetrical representation.
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. The rectangular momentum representation

Since the details of the rectangular momentum representation have appeared in the literature,
e will only recall the main results without entering into the explicit derivations. First, according

o Eqs. �17� and �18�, any vector potential can be written as

Aa�x� =
1

��2	�3��
p0
0

d3p

p0 �Á+�p���+�a�p� + Á−�p���−�a�p��e−ipbxb

+ �
p0�0

d3p

p0 �À+�p���+�a�p� + À−�p���−�a�p��e−ipbxb� . �21�

ere pa=pu�� /�x��a is a constant real null vector field, and xa=x��� /�x��a is the position vector
eld. In addition, ��±�a�p� are constant null fields and complex conjugate with each other, satis-
ying

pa��±�a�p� = 0,

	 �

�x0
a

��±�a�p� = 0, �22�

�abcd = −
i

p0 �dx0�a Ù pb Ù ��+�c�p� Ù ��−�d�p� .

ater, substituting Eq. �21� into Eq. �19�, we have

�F,F�� = �A,A�� =� d3x	 �

�x0
aja��A,A��

= 2��
p0
0

d3p

p0 �Á¯ +�p�Á+��p� + Á
¯

−�p�Á−��p��

+ �
p0�0

d3p

p0 �À¯ +�p�À+��p� + À
¯

−�p�À−��p��� . �23�

hence H+ is just the positive energy solutions to the Maxwell equation, as is also what we
xpect. Therefore, we shall restrict ourselves to the case of p0
0 in all of the following discus-
ions. Furthermore, the orthonormal basis for H+ in the rectangular momentum representation is
iven by

�p,s = ± 1� =
1

��2	�3

1
�2p0

��±�a�p�e−ipbxb
, �24�

here p is the eigenvalue of three-momentum operator, and s is the eigenvalue of the helicity
perator.

. The cylindrically symmetrical representation

It is convenient to provide the cylindrically symmetrical representation in the cylindrical
oordinate system, i.e.,

x0 = t ,

1
x = � cos  ,
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x2 = � sin  ,

x3 = z . �25�

hence the Minkowski metric reads

ds2 = dt2 − dz2 − d�2 − �2d2, �26�

nd

P0 = i	 �

�t

a

,

P3 = − i	 �

�z

a

, �27�

L3 = − i	 �

�

a

.

Define a pair of null covariant vector fields as

����a =
1
�2

��d��a ± i��d�a� , �28�

hen according to the second part in Eq. �18�, any vector potential can be written as

Aa = Az�dz�a + A−��−�a + A+��+�a, �29�

here, Az has spin weight 0, A− with spin weight −1, and A+ with spin weight 1.16 From

�a�dz�b = 0,

�a��−�b =
1

�2�
���+�a − ��−�a���−�b, �30�

�a��+�b =
1

�2�
���−�a − ��+�a���+�b,

t can be shown that the Maxwell equation reads

�Aa = 	− ð̄ ð Az +
�2Az

�t2 −
�2Az

�z2 
�dz�a

+ 	− ð̄ ð A− +
�2A−

�t2 −
�2A−

�z2 
��−�a + 	− ð̄ ð A+ +
�2A+

�t2 −
�2A+

�z2 
��+�a = 0, �31�

ogether with

�aAa = −
�Az

�z
+

1
�2

�ðA− + ð̄A+� = 0. �32�

ere ð , ð̄ are operators acting on a quantity f with spin weight n, i.e.,

ð f = − 	 �
+

i �
−

n 
 f ,

�� � � �
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ð̄ f = − 	 �

��
−

i

�

�

�
+

n

�

 f . �33�

hen, ðf and ð̄f have spin weight n+1 and n−1, respectively.16 Later, it is easy to check that the
ie derivatives of ��dz�a , ����a� via �P0 , P3 ,L3� all vanish, thus the simultaneous eigensolutions of

P̂0 , P̂3 , L̂3� to Eq. �31� with the corresponding eigenvalue �p0 ,p3 ,m� must take the form

Az = a00Z�m��,�e−i�p0t+p3z�,

A− = a−−1Z�m��,�e−i�p0t+p3z�, �34�

A+ = a+1Z�m��,�e−i�p0t+p3z�,

here a0, a−, and a+ are all constant coefficients; nZ�m is the spin-weighted cylindrical harmonics
ith spin weight n such that16

ðnZ�m = �n+1Z�m,

ð̄nZ�m = − �n−1Z�m, �35�

L̂3nZ�m = mnZ�m

ith �=�p0
2−p3

2. Moreover, by the boundary condition, here p3 is a real constant, and

nZ�m = Jm+n����eim, �36�

here Jm+n is the first kind of Bessel function of order m+n with ��0 and m an integer.
Substituting Eq. �34� into Eq. �32�, we have

ip3a0 +
�

�2
�a− − a+� = 0. �37�

ext combine it with the eigenequations of the helicity operator, i.e.,

ip0a0 − s
�

�2
�a− + a+� = 0,

i�p0 − sp3�a+ + s
�

�2
a0 = 0, �38�

i�p0 + sp3�a− + s
�

�2
a0 = 0,

here s= ±1 is the eigenvalue of the helicity operator. Thus we have

a− =
isa0

�2�
�p0 − sp3� ,

�39�

a+ =
isa0

�2�
�p0 + sp3� .
urthermore, note
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�
0

�

d��Jm����Jm����� =
1

�
��� − ��� �40�

ith ����.20 Then it follows that the orthonormal basis with respect to the inner product �19� in
he cylindrically symmetrical representation reads

�p0,p3,m,s� =
�

4	p0
�Jm����eime−i�p0t+p3z��dz�a +

i
�2�

��sp0 − p3�Jm−1����eime−i�p0t+p3z���−�a

+ �sp0 + p3�Jm+1����eime−i�p0t+p3z���+�a�� , �41�

hich satisfies

�p0,p3,m,s�p�0,p�3,m�,s�� = ��p0 − p�0���p3 − p�3��mm��ss�. �42�

inally, we would like to point out that �p0 ,p3 ,m ,s� vanishes for m� ±1 in the case of �=0.

. The spherically symmetrical representation

To provide the spherically symmetrical representation, we would like to use the spherical
oordinate system, i.e.,

x0 = t ,

x1 = r sin � cos � ,

�43�
x2 = r sin � sin � ,

x3 = r cos � .

n this case, the Minkowski metric takes the form

ds2 = dt2 − dr2 − r2�d�2 + sin2 � d�2� , �44�

nd

P0 = i	 �

�t

a

,

L±  L1 ± iL2 = ± e±i��	 �

��

a

± i cot �	 �

��

a� , �45�

L3 = − i	 �

��

a

.

Define a pair of null covariant vector fields as

����a =
r

�2
��d��a ± i sin ��d��a� , �46�

hen from the second part in Eq. �18�, any vector potential reads

Aa = Ar�dr�a + A−��−�a + A+��+�a, �47�
17–19
here Ar has spin weight 0, A− with −1, and A+ with 1. Using
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�a�dr�b =
1

r
���−�a��+�b + ��+�a��−�b� ,

�a��−�b =
1

r� cot �

�2
���+�a − ��−�a���−�b − ��−�a�dr�b� , �48�

�a��+�b =
1

r� cot �

�2
���−�a − ��+�a���+�b − ��+�a�dr�b� ,

t follows that

�Aa = �− 1

2r2 �ðð̄ + ð̄ ð �Ar +
�2Ar

�t2 − 	 �2

�r2 +
2

r

�

�r
−

2

r2
Ar −
�2

r2 �ðA− + ð̄A+���dr�a

+ �− 1

2r2 �ðð̄ + ð̄ ð �A− +
�2A−

�t2 − 	 �2

�r2 +
2

r

�

�r
−

1

r2
A− +
�2

r2 ð̄Ar���−�a

+ �− 1

2r2 �ðð̄ + ð̄ ð �A+ +
�2A+

�t2 − 	 �2

�r2 +
2

r

�

�r
−

1

r2
A+ +
�2

r2 ð Ar���+�a = 0, �49�

nd

�aA
a = − 	 �

�r
+

2

r

Ar +

1
�2r

�ðA− + ð̄A+� = 0. �50�

ere ð , ð̄ are operators acting on a quantity f with spin weight n, i.e.,

ð f = − 	 �

��
+ i csc �

�

��
− n cot �
 f ,

�51�

ð̄ f = − 	 �

��
− i csc �

�

��
+ n cot �
 f .

hen, ðf and ð̄f have spin weight n+1 and n−1, respectively.19

On the other hand, we have

L̂±�dr�a = L±
b�b�dr�a + �dr�b�aL±

b = 0,

L̂±��−�a = L±
b�b��−�a + ��−�b�aL±

b = e±i���−�a, �52�

L̂±��+�a = L±
b�b��+�a + ��+�b�aL±

b = − e±i��e+�a,

here �a is the ordinary derivative associated with the spherical coordinate system. Thus

L̂±Aa = �L̂±Ar��dr�a + �L̂±A− + e±i� csc �A−���−�a + �L̂±A+ − e±i� csc �A+���+�a. �53�

imilar, it is easy to check that the Lie derivatives of ��dr�a , ��±�a� via �P0 ,L3� all vanish. Whence

he simultaneous eigensolutions of �P̂0 , L̂2 , L̂3� to Eq. �49� with the corresponding eigenvalue
p0 , l�l+1� ,m� must satisfy

−ip0t
Ar = R0�r�0Ylm��,��e ,
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A− = R−�r�−1Ylm��,��e−ip0t,

A+ = R+�r�1Ylm��,��e−ip0t. �54�

ere nYlm is the spin weighted spherical harmonics with l non-negative integers and m=−l ,−l
1, . . . , l, such that

0Ylm = Ylm,

ðnYlm = ��l − n��l + n + 1�n+1Ylm,

ð̄nYlm = − ��l + n��l − n + 1�n−1Ylm, �55�

�L̂± − ne±i� csc ��nYlm = ��l � m��l ± m + 1�nYlm±1,

L̂3nYlm = mnYlm,

here Ylm is the ordinary spherical harmonics, and nYlm with l� �n� vanishes.19

We next substitute Eq. �54� into Eq. �49� to obtain the radial equations

	 d2

dr2 +
2

r

d

dr
−

2

r2
R0 + p0
2R0 −

l�l + 1�
r2 R0 +

�2l�l + 1�
r2 �R− − R+� = 0,

	 d2

dr2 +
2

r

d

dr

R− + p0

2R− −
l�l + 1�

r2 R− +
�2l�l + 1�

r2 R0 = 0, �56�

	 d2

dr2 +
2

r

d

dr

R+ + p0

2R+ −
l�l + 1�

r2 R+ −
�2l�l + 1�

r2 R0 = 0.

urthermore, Eq. �50� requires

− 	 d

dr
+

2

r

R0 +

�l�l + 1�
�2r

�R− − R+� = 0. �57�

t can be shown that Eqs. �56� and �57� are equivalent to

	 d2

dr2 +
2

r

d

dr

�R− + R+� + p0

2�R− + R+� −
l�l + 1�

r2 �R− + R+� = 0,

	 d2

dr2 +
4

r

d

dr
+

2

r2
R0 + p0
2R0 −

l�l + 1�
r2 R0 = 0, �58�

R− − R+ −
�2r 	 d

+
2
R0 = 0.
�l�l + 1� dr r
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y the boundary condition, the solutions to Eq. �58� are given by

R− + R+ = b
jl+1/2�p0r�

�p0r
,

R0 = b0
jl+1/2�p0r�
��p0r�3

,

R− − R+ = b0

�2
�l�l + 1�

� Jl−1/2�p0r�
�p0r

− l
Jl+1/2�p0r�

��p0r�3 � , �59�

here b and b0 are both constant coefficients; Jl±1/2 is the first kind of Bessel function of order
±1/2.20

Substituting Eq. �59� into the eigenequations of the helicity operator with the eigenvalue s
±1, i.e.,

ip0R0 − s
�l�l + 1�

�2r
�R− + R+� = 0,

ip0R− + s
�l�l + 1�

�2r
R0 − s	 d

dr
+

1

r

R− = 0, �60�

ip0R+ + s
�l�l + 1�

�2r
R0 + s	 d

dr
+

1

r

R+ = 0.

e obtain

b = isb0

�2
�l�l + 1�

. �61�

ote

�
4	

d�d� sin �nȲlmnYl�m� = �ll��mm� �62�

ith l� �n�,19 and

�
0

�

drrJl+1/2�p0r�Jl+1/2�p0�r� =
1

p0
��p0 − p0�� ,

�
0

�

dr
1

r
Jl+1/2�p0r�Jl+1/2�p0�r� =

1

2l + 1
	 p0

p0�

l+1/2

,

�
0

�

drJl−1/2�p0r�Jl+1/2�p0�r� =
1

p0
	 p0

p0�

l+1/2

, �63�

��

drJl−1/2�p0�r�Jl+1/2�p0r� = 0,

0
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�
0

�

drJl−1/2�p0r�Jl+1/2�p0r� =
1

2p0

ith p0�p0�.
20 Thus it follows that the orthonormal basis with respect to the inner product �19� in

he spherical symmetrical representation reads

�p0,l,m,s� =
�l�l + 1�

2�r
� Jl+1/2�p0r�

p0r
0Ylm��,��e−ip0t�dr�a�

+
1

�2l�l + 1�
�	 isp0r − l

p0r
Jl+ 1

2
�p0r� + Jl− 1

2
�p0r�
−1Ylm��,��eip0t��−�a
��

+ 	 isp0r + l

p0r
Jl+ 1

2
�p0r� − Jl− 1

2
�p0r�
1Ylm��,��e−ip0t��+�a�� , �64�

hich satisfies

�p0,l,m,s�p�0,l�,m�,s�� = ��p0 − p�0��ll��mm��ss�. �65�

t is obvious that �p0 , l ,m ,s� vanishes in the case of l=0, which implies that the angular quantum
umber l of one photon only takes positive integers.

. DISCUSSIONS

We would like to stress that the framework and method presented here are also applicable to
ther particles with arbitrary mass and spin such as neutrino and electron. In addition, after a
imple modification, our results obtained here are easy to be generalized to those cavities with the
uitable boundaries, which is important not only to the investigation of the Casimir effect, but also
o understanding the relationship between the holographic entropy bound and local quantum field
heory.21
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The space of Dirac operators for the Connes-Chamseddine spectral action for the
standard model of particle physics coupled to gravity is studied. The model is
extended by including right-handed neutrino states, and the S0-reality axiom is not
assumed. The possibility of allowing more general fluctuations than the inner fluc-
tuations of the vacuum is proposed. The maximal case of all possible fluctuations is
studied by considering the equations of motion for the vacuum. While there are
interesting nontrivial vacua with Majorana-type mass terms for the leptons, the
conclusion is that the equations are too restrictive to allow solutions with the
standard model mass matrix. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2200880�

. INTRODUCTION

. The noncommutative geometry of the standard model

Connes discovered a geometric principle which unifies the metric tensor of general relativity
ith the classical fields of particle physics—both bosons and fermions—in one geometric

tructure.1 The principle is similar to the Kaluza and Klein idea of extending Einstein’s space–time
eometry to incorporate an internal space at each point in space–time so that the geometry of the
xtra dimensions is determined by the matter fields of particle physics.2 Connes’ principle is both
generalization of this idea and a simplification. It is more general because the internal space is

llowed to be a noncommutative space, whereas it is at the same time simpler because the internal
pace is 0-dimensional. This is possible because in the noncommutative world 0-dimensional
paces have a much richer structure than in the commutative world of Kaluza and Klein, for whom
0-dimensional space would have been merely an uninteresting discrete set of points. A noncom-
utative 0-dimensional space is characterized by a finite-dimensional matrix algebra, which turns

ut to be just what is required to produce non-Abelian gauge fields.
In fact, noncommutative geometry explains the geometrical structure of the standard model of

article physics.3 One of the most striking features of this is the discovery that the Higgs field and
he gauge bosons are both part of a connection on the total geometry—space–time plus internal
pace. The Higgs field is the part of the connection in the internal space directions. These direc-
ions are actually discrete, so one can think of the Higgs field as providing the parallel transport for
ops from left-to right-handed particles, and vice-versa. This geometrical picture extends to a
nified formula for the particle physics action, the famous quartic “mexican hat” potential for the
iggs being nothing other than part of the �quartic� Yang-Mills action for the connection on the

otal geometry. Another striking feature is the extension of the Yang-Mills gauge group to a matrix
lgebra. For example, SU�3� becomes M3�C�, the algebra of all 3�3 matrices, which contains
U�3�, but has a more restricted representation theory. The fact that the fermions fall into repre-
entations of the matrix algebra provides a deep explanation of the ad hoc pattern of charges which

�Electronic mail: john.barrett@nottingham.ac.uk
�
Electronic mail: rachel.dawe@maths.nottingham.ac.uk
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ppears in the usual formulation of the standard model. These insights are very striking and
uggest that noncommutative geometry is an important part of particle physics.

Connes’ spectral triple formulation of a noncommutative geometry contains the following
lements: A Hilbert space H with an involution � and an antilinear involution J, a real *-algebra

of bounded operators in H, and a Dirac operator D. Here we would like to give a brief
escription of these for the standard model; more details are given below in Sec. II.

The Hilbert space H is the space of classical fermion fields on the space–time manifold M.
his is a finite number of Dirac spinors, one for each elementary fermion �left-handed leptons and
uarks, right-handed leptons and quarks, and their antiparticles�. Thus H=HM � HF, where HM is
he Hilbert space of Dirac spinors on M and HF is the finite-dimensional Hilbert space with the
asis of the elementary fermions.

The algebra A=AM � AF is the algebra of coordinates on the total space, the product of the
pace–time with the internal space. While the functions on space–time AM commute as usual, the
nternal space is noncommutative, so that its algebra of coordinates AF is a matrix algebra. The
perator J is charge conjugation, while � is the chirality operator. Finally the Dirac operator
ontains all the bosonic fields �metric, gauge fields and Higgs�, as well as the parameters for the
ermion masses and their mixing angles.

In Ref. 4, Connes and Chamseddine formulated a very simple formula for the action for this
ata, called the spectral action. The action is

Tr���D2�� + ��,D�� �1�

ith ��H the fermion field and � a cutoff function on the spectrum of D2 which interpolates
etween 1 below a very high-energy cutoff scale �possibly the Planck scale�, and 0 above it.
mazingly, there is a class of Dirac operators for which this unpacks to give the very long formula

or the full standard model Lagrangian coupled to gravity.
Impressive as this is, there are a number of issues that need to be resolved before it can have

greater impact in particle physics. In the Lagrangian of Ref. 4.

1� The space–time metric has Euclidean signature.
2� The fermions are quadrupled. For example, there are separate Dirac spinors for the left-

handed electron, right-handed electron and their antiparticles, whereas physically there
should be only one.5,6

3� The bare Weinberg angle is predicted as sin2 �= 3
8 . In Ref. 4 this is assumed to be the high

energy value, which changes under renormalization. However renormalization does not give
the correct experimental value.7

4� The neutrinos are massless. While this is correct for the standard model, observational
evidence shows that neutrinos have mass, and so the noncommutative geometry should be
extended to account for neutrino masses.

In addition to this, there are some further theoretical puzzles about seemingly ad hoc features
of the action. In contrast to the above, these points do not indicate problems with the physics of
the model, but raise questions about the mathematical formulation and about the understanding of
the standard model in terms of noncommutative geometry.

5� To obtain the standard model, it is necessary to remove a U�1� gauge field in D by the
unimodularity constraint.1,8,9 It is known that this is equivalent to the requirement that the
resulting quantum field theory is anomaly free,10,11 but the reason for this equivalence is
mysterious.

6� To obtain the standard model, a particular vacuum Dirac operator D0 is chosen. Are there any
theoretical constraints on this choice, or are there many other �nonphysical� variants of the
standard model?

7� Is there an intrinsic definition �in terms of noncommutative geometry� of the set of Dirac

operators that the action �1� applies to?
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. Sets of Dirac operators

Our main observation is that the theoretical puzzles are all questions about which is the set of
irac operators to which the spectral action should be applied. Our contribution is to study what
appens when the set of Dirac operators is enlarged to the maximum extent allowed by the
xioms.

Accordingly, we first explain the class of Dirac operators which appears in Connes’ standard
odel. In Connes’ construction, given a metric �and spin structure� g on M, a vacuum geometry is

efined by the Dirac operator on H=HM � HF,

D0 = DM � I + �M � DF, �2�

here DM is the usual Dirac first-order differential operator of g with the Levi-Civita connection,

M is the chirality operator on �M ,g� �often denoted �5� and DF is a certain matrix which encodes
he vacuum Higgs fields and the fermion mass matrix. The details of DF are explained below in
ec. II. Then the gauge and Higgs fields for this metric are obtained by the process of internal
uctuations determined by the 1-forms A=A*=�iai�D0 ,bi� given a finite set of elements ai ,bi

A. The result is the set of Dirac operators

Dg = �D0 + A + JAJ−1� . �3�

ote: in an arbitrary dimension the correct formula is D0+A+��JAJ−1, where ��= ±1 is deter-
ined by JDJ−1=��D; ��=1 in all even dimensions. However the unimodular condition must be

aken account of. This restricts to a smaller set of Dirac operators D�g�Dg obtained by removing
U�1� gauge field that has charge +1 for all quarks, 0 for leptons, and −1 for antiquarks. Finally,

he set of all Dirac operators for the Connes-Chamseddine spectral action is the union of these for
ll metrics and spin structures,

DCC = �
g
D�g.

It appears that a similar construction could be carried out starting with any matrix DF. The
nly difficulty would be deciding exactly how the unimodularity condition generalizes; the most
hysical generalization would be a condition that guarantees the absence of anomalies in the
orresponding perturbative quantum field theory.

An answer to question �6� is provided by the observation that the vacuum Dirac operator
hould be a stationary point for the spectral action. Therefore there are equations which restrict D0.
hese equations require that the Higgs fields in DF are actually at a stationary point of the Higgs
otential. There are no constraints on the parameters of the fermion mass matrix.

From the point of view of noncommutative geometry, the Connes-Chamseddine class of Dirac
perators is very strange, as its description uses the underlying commutative description of the
elds and requires an unexplained choice of DF which is rather special. From the point of view of
hysics one can describe this by saying that the Connes-Chamseddine class of Dirac operators
reats the gravitational and the bosonic matter degrees of freedom differently; for the bosons the
nternal fluctuations are used but for the gravitational degrees of freedom, all possible fluctuations
f the Dirac operator are used, the internal fluctuations being trivial. This undermines the idea of
geometric unification of matter and gravity.

A much more natural class of operators �alluded to in Ref. 1� is the set D of all Dirac operators
or the standard model A and H. From a physical point of view, this class is almost certainly too
ig; however understanding the consequences of choosing D for the spectral action is a necessary
rst step towards investigating whether there is a natural class which is larger than DCC but
maller than D.

Enlarging the set of Dirac operators for the action has two effects. First, some of the param-
ters in D0 which were previously constants now become variables. Second, there are an equal
umber of new equations of motion which, in the generic situation, will therefore fix the vacuum

alues of this number of constants. So, for example, taking the extreme case where the set of Dirac
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perators is just one Dirac operator, �D0�, then there are no equations of motion and so no
onstraints on any of the parameters in DF. Then enlarging the class of Dirac operators to the set
g given by the internal fluctuations of a vacuum D0, results in promoting the Higgs vacuum

arameters to fields. The corresponding new equations of motion, as noted above, demand that the
acuum values of these parameters lie at the stationary points of the Higgs potential, which is a
ignificant constraint. The gauge fields have equations of motion of course, but these are all
ompatible with the vacuum values zero, and the unimodularity constraint does not affect the
acuum either. Looking at the class DCC, one has in addition the Einstein equations for the
ariation of the metric g.

Enlarging the class further brings the prospect of further Higgs fields and further constraint
quations. The danger is that the additional equations may rule out the standard model vacuum, or
rovide additional fields which contradict phenomenology. However if these dangers do not ma-
erialize, there is the major benefit that further equations will provide previously unknown rela-
ions between the parameters of the standard model in the fermion mass matrix, and in models
hich are extended to allow neutrino masses, may have predictive power in constraining the form
f the neutrino sector.

In this paper we consider the set D of all Dirac operators for the given H and A for the
tandard model, and also for the model where H is enlarged to allow a right-handed neutrino. This
pproach contrasts with that of Ref. 12, where enlarging the set of Dirac operators was considered
y enlarging the algebra A but staying with the class of inner fluctuations. We assume the vacuum
s of the form �2�, with g a flat metric. Thus we are essentially ignoring the Einstein equations,
hich of course would be important on a macroscopic scale �e.g., in cosmology�, but not micro-

copically. We calculate the equations of motion for DF by requiring that it is stationary for all
ariations of the action in this class and classify the possible vacua under some simplifying
ssumptions. Finally the physical relevance of the equations and the vacua we have found is
ddressed in the concluding remarks.

I. DETAILS OF THE STANDARD MODEL

The internal Hilbert space is

HF = HL � HR � HL
c

� HR
c , �4�

here

HL = �C2
� Cn

� C3� � �C2
� Cn� ,

HR = ��C � C� � Cn
� C3� � �C � Cn� .

basis of HF is labelled by the elementary fermions and their antiparticles. The symbol c is used
o indicate the subspace represented by the antiparticles, which duplicates the particle space. In
ither case of HL and HR, the first direct summand is the quarks and the second, the leptons. The
rst factor in the tensor product is the down/up �or electron/neutrino� doublet, the second factor is

he space of n generations, and the third factor, for quarks, is color.
Since the fermions are left or right handed, HF is Z /2 graded by the chirality operator �F

diag�1,−1,1 ,−1�, using the decomposition �4�. The right-handed neutrino �R does not occur in
he standard model, but we include it as an extension of the standard model which allows neutrino

asses. Results for models without the right-handed neutrino can be easily obtained by setting the
elevant matrix entries in DF to zero and dropping the equations obtained by varying them. In the
ollowing, explicit matrices are written and so we need a convention for the order of the rows and
olumns: the quark basis is �dL ,uL ,dR ,uR�, each of which is reproduced in three colors, and a
imilar basis of singlets for the leptons �eL ,�L ,eR ,�R�. The antiparticle bases are correspondingly
dL

c ,uL
c ,dR

c ,uR
c � and �eL

c ,�L
c ,eR

c ,�R
c �.
The standard model algebra is
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AF = H � C � M3�C� ,

here H are the quaternions. The action of an element �q ,� ,m� of AF is

	 =�
	L 0 0 0

0 	R 0 0

0 0 	L
c 0

0 0 0 	R
c
	 , �5�

here 	L=q acting on isospin, 	R=
= � �̄0
0�

� acting on the two isospin scalars, �dR ,uR� or �eR ,�R�.
he action on the antiparticles is 	L

c =	R
c =m acting on the color index for quarks, and 	L

c =	R
c =� for

eptons. The action is the same for each generation, and we refer to the analogs of the down, up,
lectron and neutrino in the other generations by the same names.

A real spectral triple possesses a real structure given by an operator J that takes particles into
ntiparticles and charge conjugation,

J
�1

�2
c � = 
�̄2

c

�̄1

� � H .

t turns the Hilbert space into a bimodule,

a�b = aJb*J−1� . �6�

ote that

�a,Jb*J−1� = 0. �7�

lso, J commutes with �=�M � �F.
This data satisfies an axiom called Poincaré duality, which is the generalization of the familiar

oincaré duality of manifolds to noncommutative geometry. While this axiom is a natural gener-
lization from the mathematical point of view, its physical meaning for the internal space is
nclear. Applied to the internal geometry, the axiom is satified for the standard model but not if
here is the same number of left- and right-handed neutrinos.13 However it is satisfied if one of the
enerations does not have a right-handed neutrino but the other two do. In the following we do not
equire that the Poincaré duality axiom holds.

So far, we have explained some of the axioms relating to the Hilbert space and the algebra for
he standard model finite triple. The final ingredient is the Dirac operator. A Dirac operator must
atisfy the first order condition:

��D,a�,Jb*J−1� = 0 �8�

or all a ,b�A in order that D be a first order differential operator.14 Note that due to �7�, this
mplies that also ��D ,Jb*J−1� ,a�=0.

The choice made for DF in Ref. 4 in order that the spectral action principle reproduces the
tandard model is

DF = �
0 M* 0 0

M 0 0 0

0 0 0 MT

0 0 M̄ 0
	 , �9�
here M =Q � 13 � L
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Q* = 
kd�1 ku�2

kd�2 − ku�1
� ,

L* = 
ke�1 0

ke�2 0
� ,

ith

ku = �mu 0 0

0 mc 0

0 0 mt
	, kd = VCKM�md 0 0

0 ms 0

0 0 mb
	 ,

ke = �me 0 0

0 m� 0

0 0 m

	 .

MT denotes the transpose, M* denotes Hermitian conjugate, M̄ denotes the complex conjugate
atrix, mx are the Yukawa couplings of the elementary fermions, VCKM is the Cabibbo-Kobayashi-
askawa generation mixing matrix, and ��1 ,�2� is the Higgs scalar doublet.

II. THE GENERAL DF

The problem of finding the vacua reduces in essence to considering a single point of space–
ime. We simplify the action formula �1� by removing all terms involving the space–time curva-
ure, and all kinetic terms, and set the gauge fields to zero. This is equivalent to varying the Dirac
perator over all operators of the form �2�, with a fixed DM. By inspecting the heat expansion
etailed in Ref. 15 we find that the action we are looking for is

S = Tr�DF
4 − 2DF

2� . �10�

his formula gives the Higgs potential for internal fluctuations of the standard model vacuum.
owever it applies to the wider class of operators D.

In order to find the most general DF for the standard model internal space, we employ the
onstraints given by the axioms for a 0-dimensional noncommutative space. Only the axioms
nvolving the Dirac operator are listed here.

i� Self-adjointness, DF=DF
* .

ii� Reality, �DF ,J�=0.
These first two imply that, splitting the Dirac operator into four blocks corresponding to the
particle/antiparticle split of the basis,

DF = 
Y Z

Z̄ Ȳ
� , �11�

where Y =Y* and Z=ZT.

iii� Orientability, DF�F+�FDF=0, implies that
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DF = 
Y Z

Z̄ Ȳ
� =�

0 M* 0 G

M 0 GT 0

0 Ḡ 0 MT

G* 0 M̄ 0
	 �12�

using a further split of each block into the left/right subspaces. In this formula M and G are
general matrices with complex coefficients, M giving a generalization of the mass matrix of
the standard model and G having the interpretation of Majorana mass terms and other
interactions.
If the vacuum Dirac operator generates Majorana masses then the model is no longer the
standard model but a modification of it. In this modified model, the generation of Majorana
masses involves symmetry breaking with new scalar fields, in addition to the Higgs fields.
This introduction of new fields is not necessarily undesirable because any new physics of
fermion masses must necessarily go beyond the standard model.
The remaining axiom is the following.

iv� First order condition, ��DF ,a� ,Jb*J−1�=0. The effect of applying the first order condition to
�12� is to determine which elements of M and G are nonzero.

In Ref. 16, Krajewski shows that for any finite dimensional spectral triple, the Dirac operator
olves the first order condition uniquely in the form of the sum, DF=DL+DR where DR commutes
ith any element bo=Jb*J−1 in the opposite algebra and DL commutes with any element in the

lgebra. See also Ref. 17. Using these formulas

DLa − aDL = 0, DRbo − boDR = 0 �13�

nd using the representation as given above �5� we find that

DL =�
0 0 0 0

0 0 GT 0

0 Ḡ 0 MT

0 0 M̄ 0
	 �14�

nd

DR =�
0 M* 0 G

M 0 0 0

0 0 0 0

G* 0 0 0
	 �15�

ith M =Q � 13 � L, a direct sum of a quark matrix Q which commutes with color, and a lepton
atrix L. Both Q and L are arbitrary 4�4 complex matrices �for one generation�. For three

enerations, these become arbitrary 12�12 matrices. The other matrix is in block form

G = 
0 0 0 0

0 U 0 N
� , �16�

sing the basis explained in Sec. II, i.e., a map �dR
c ,uR

c ,eR
c ,�R

c �� �dL ,uL ,eL ,�L�. The nonzero
ntries are the blocks U and N. These are maps

U:uR
c � �eL,�L�
nd

                                                                                                            



T
o

z
u

�

s

F

g

p
t

T
d
h
m
r

T
M
w
t
o
H
r

I

i
i
a

052305-8 J. W. Barrett and R. A. Dawe Martins J. Math. Phys. 47, 052305 �2006�

                        
N:�R
c � �eL,�L� .

heir appearance results from the fact that uR
c , �R

c , and eL and �L are all in the same representation
f the opposite algebra Ao, multiplication by the complex number �. The other entries of G are

ero because they are intertwining inequivalent representations. Note that the matrix Ḡ gives maps

R� �eL
c ,�L

c� and �R� �eL
c ,�L

c�.
Explicitly, for one generation we use the matrices

Q = 
d c

b a
�, L = 
q r

s t
� , �17�

U = 
x u g

y v h
�, N = 
 j

l
� , �18�

x ,u ,g�, �y ,v ,h� are three-dimensional color vectors and j, l are color singlets.
It is also convenient to split Q and L into smaller blocks corresponding to the gauge-invariant

plit of the right-handed fermions into down/up or electron/neutrino:

Q = 
Qd

Qu
�, L = 
Le

L�
� . �19�

or example, for one generation this means that Le= �q r�, etc.
The nonzero entries give rise to terms in the fermionic part of the action �1� given, for one

eneration, by

��L
c ,Ḡ�R� = �eL

c ,�x̄, ū, ḡ� · uR� + ��L
c ,�ȳ, v̄, h̄� · uR� + �eL

c , j̄�R� + ��L
c , l̄�R� ,

��R
c ,G*�L� = ��R

c , j̄eL� + ��R
c , l̄�L� + �uR

c ,�x̄, ū, ḡ�eL� + �uR
c ,�ȳ, v̄, h̄��L� ,

lus the Hermitian conjugate of each term, which are ��R ,GT�L
c� and ��L ,G�R

c �, respectively. Thus
he action contains, for example,

��R
c , l̄�L� + ��L

c , l̄�R� + ��L,l�R
c � + ��R,l�L

c� .

his action is plausibly the Euclidean analog of a Majorana mass term; but note that significant
ifferences between the Euclidean and Minkowskian formulation mean that this is somewhat
euristic. The fields U have been studied before in the context of the noncommutative standard
odel and are called leptoquarks,18 while the N are new fields which are of course absent if the

ight-handed neutrino is not included in the model.
Relatively recently there has been new experimental evidence for neutrinos being massive.

here are two possibilities for theoretical neutrino mass generation, the Dirac mass and the
ajorana mass term. For a particle to have a Dirac mass, both chiralities must be present, so this
ould require �R and thus a modification of the standard model. To justify existence of the �R,

here must be an explanation as to why it remains undetected; it must either be extremely massive
r sterile �not interacting�. A Majorana mass term is possible without �R, but it requires an SU�2�
iggs triplet; many models include �R and a combination of Majorana and Dirac mass terms to

ender �R very heavy while leaving �L relatively light.

V. EQUATIONS OF MOTION

The overall aim is to see if the standard model vacuum DF can be found as a solution of the
nternal space equations without making any assumptions other than the axioms themselves,
nstead of making the choice �9� motivated from laboratory evidence. To this end, we need to vary

ll the degrees of freedom of DF which means that the Yukawa couplings, and generation mixing
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ngles �plus all the other fluctuations� are no longer viewed as constants but as dynamical vari-
bles. In other words, we let D= �DF� form the configuration space of the theory and calculate the
nternal space equations of motion.

To calculate the internal space equations of motion, we minimize the action �10� with respect
o the degrees of freedom of both M and G. The action is

S = Tr�− 2DF
2 + �DF�4�

= Tr�− 2�G*G + M*M� + �M*M�2 + �G*G�2 + 2�M*MGG* + MM*GTḠ + MGM̄Ḡ��

= Tr�− �LL* + 3QQ* + UU* + NN*� + 1
2 ��L*L�2 + 3�Q*Q�2 + �UU* + NN*�2�

+ L*L�UU* + NN*� + L�L�
*NTN̄ + �QuQu

*
� I3�UTŪ� . �20�

The results for varying with respect to Q, L, U, and N are, respectively,

Q*
− 3I + 3QQ* + 
0 0

0 Trcol�UTŪ�
�� = 0, �21�

− L* + L*LL* + �UU* + NN*�L* + �0 L�
*NTN̄� + �0 NL̄�N̄� = 0, �22�

U*�− I + UU* + NN* + L*L� + �Q̄uQu
T

� I3�U* = 0, �23�

− N* + N*UU* + N*NN* + N*L*L + L̄�L�
TN* + L̄�N̄L� = 0. �24�

n Eq. �21�, the matrix is split into blocks according to the down/up split of the basis, and Trcol

enotes the trace over color degrees of freedom. Thus each matrix block has size n�n, where n
s the number of generations.

In the following we analyze the solutions of these equation in various special cases, and then
ake some remarks about the general case.

. SOLUTIONS WITH G=0

With U=0 and N=0, the equations of motion reduce to

Q*�QQ* − I� = 0, �25�

L*�LL* − I� = 0. �26�

y multiplying �25� on the left by Q, we see that QQ* is a self-adjoint projection, and by
ultiplying the conjugate on the left by Q* that Q*Q is also a projector. Therefore, by definition,
�Mn�C� is a partial isometry. Another characterization of a partial isometry is that it is a

rojector multiplied by a unitary matrix. Obviously the same conclusion applies for L.
These equations are the same as the ones obtained from assuming the additional S0-reality

xiom,3 which has the effect that U and N are equal to zero in the action.
The standard model vacuum �9� is clearly not a solution of our equations. To see this, we write

*
own MM ,
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�
kd

*kd���1�2 + ��2�2� 0 0

0 ku
*ku���1�2 + ��2�2� 0

0 0 ke
*ke���1�2 + ��2�2�

0 0 0
	 �27�

o the vacua satisfying our equations of motion have degenerate fermion masses that are either 0
r 1 �times a constant, which has been omitted from the action�. We note that in the case in which

R is absent, the left-handed neutrino is necessarily massless. This is a consequence of the fact that
is not a square matrix in that case.

The impact of the following sections is to explore the way in which lifting the assumption of
0-reality allows further vacua with U or N not equal to zero.

I. SOLUTIONS WITH GÅ0

. General

Throughout we assume that the quark mass matrix Q is nondegenerate. This means that Q*

an be cancelled from �21� to give

− 3I + 3QQ* + 
0 0

0 Trcol�UTŪ�
� = 0. �28�

his equation can be solved for QQ*, and thus for Q, up to multiplication on the right-hand side
y a unitary operator, which is a symmetry. One very important feature �not always shared by the
egenerate case� is that QQ* is block diagonal. This is an important feature of the standard model
acuum. Indeed, using the split �19�, the equation becomes the three equations

QdQd
* = I ,

QdQu
* = 0,

QuQu
* = I − 1

3Trcol�UTŪ�

hich shows that the down-quark masses are all equal to 1, the block-diagonal feature, and that
he up-quark masses are split by a nonzero U. It is worth noting that the condition QdQu

*=0 fixes
he form of Qu in the standard model vacuum �9� if Qd is given the correct form. However there
s no equation which constrains Qd to have the special form of �9�.

. One generation

For one generation of fermions, we use the explicit matrices of �17� and �18�. The equations
f motion are written out in the appendix. Equation �21� becomes �A1�–�A4� and �22� becomes
A5�–�A8� and �23� becomes �A9�–�A14� and �24� becomes �A15� and �A16�.

The equation �28� becomes the following:

�c�2 + �d�2 − 1 = 0, �29�

ac̄ + b̄d = 0, �30�

3�a�2 + 3�b�2 + �g�2 + �u�2 + �x�2 + �h�2 + �v�2 + �y�2 − 3 = 0. �31�
*
s above, �30� implies that QQ is a diagonal matrix.
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. Solutions with U=0, NÅ0

In this case, Q decouples from the other fields and its equation reduces to �25�. Thus Q is a
nitary matrix and the quark masses are all equal to 1. To present the solutions to these equations
e have used the symmetry afforded by a 2�2 unitary matrix acting on eL and �L to simplify one
f the vectors �q ,r�, �s , t� or �j , l�.

The possible solutions are all equivalent to

i� q=1, s= t=r=0, j=0, �l�=1,
ii� q=r=s=0, �t�2+ �j�2=1, l=0,
iii� q=1, s=r=0, �t�=1/2, j=0, �l�=1/2,
iv� q=0, s=r=0, �t�=1/2, j=0,�l�=1/2,
v� r=s= t=0, �q�2+ �j�2=1, l=0.

The proof that these are the only solutions is to consider combining the equations
*�22�– �24�L*. This leads to a set of algebraic conditions which reduce to the given solutions
hen substituted into the full equations of motion.

. Solutions with UÅ0

We have been unable to find any explicit one-generation solutions with nonzero leptoquarks
. For the case where the quark and electron masses in the mass matrix M are nonzero, we can
rove that there are no such solutions. This has the corollary that there are no solutions where the
atrix M takes the form of a one-generation version of the standard model vacuum �9�.

The argument is as follows. Using a symmetry as above, we may assume that r=0 and q
0. Combining �A6�, �A5�, and �A9� shows that g=0, since �a�2+ �b�2�0. Similarly, u=x=0.

hen �A10� and �31� imply either h=0 or 2
3 ��v�2+ �h�2+ �y�2�+ �l�2+ �t�2=0, which also implies h

0. A similar argument shows v=y=0. Hence U=0.
If additionally, N=0, then the same conclusion also holds if the electron mass q=0 �see Sec.

I C below�.
It is worth noting that the solutions considered here in the case that L�=0 are the same as for

he system obtained by omitting the right-handed neutrino �R from the action.

. Three generations

For three generations we do not have complete results but note that the equations are of course
olved by aggregating three one-generation solutions. In addition we outline some general features
f the solutions. We continue to assume that the quark masses are all nonzero; thus the remarks of
ec. VI A continue to hold. A general feature of the solutions to the equations can be found by

aking the combination of equations U*�22�– �23�L*. This gives the equation

LeU = 0.

n the case where N=0, it also shows that

L�U = 0

nd Eq. �23� reduces to

�U*U − 1
3Trcol�U*U� � I3�U* = 0

rom which follows that

U*U = C � I3
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or some 3�3 matrix C. Since the rank of U*U is at most 6, C has rank at most 2. As a
onsequence, only two out of the three up quarks, charm and top are given different masses from
hat of the three down-family quarks.

The corresponding argument for one generation shows that the rank of U*U is at most 2, and
ence C must be zero. This agrees with the result found explicitly in the preceding section, and
olds even if q=0.

II. CONCLUSIONS

We have attempted to understand the standard model vacuum from a fundamental point of
iew involving noncommutative geometry. In particular, the question is: why does nature pick one
articular vacuum geometry, i.e., one particular set of parameters in the fermion mass matrix? To
ttack this question, we investigated the simplest possible Ansatz for the set of Dirac operators in
he action which is to promote all the degrees of freedom of the internal geometry, including the
ass parameters, to be dynamical fields. This gives additional equations of motion which comple-
ent the usual Einstein and matter equations. The conclusion is that these equations exclude the

tandard model vacuum. Therefore there is something unexplained about either the physics of the
tandard model or the geometry of spectral triples. This is our overall conclusion.

The main problem is that the simplest solutions involve an unwanted degeneracy in the
asses of the fermions. However there are some quite complicated vacua in which this problem is

artially alleviated. Allowing an extension of the model to include a right-handed neutrino lifts the
egeneracy of the lepton Dirac masses via Eq. �22� in some solutions. The potential occurence of
eptoquark fields lifts the degeneracy of the up-quark Dirac masses to some extent, but the degen-
racy of the down quarks remains. In practice it seems to be hard to find vacua with nonzero
alues of the leptoquark field. With one generation and reasonable assumptions, the leptoquarks
re always equal to zero. This is in a sense reassuring because the leptoquarks would break color
ymmetry, but it does not help with the problem of quark mass degeneracy. With three generations,
eptoquark fields are possible but we have found solutions affecting at most two out of the three
enerations, thus giving some sort of consistency with the one-generation result.

Some features of the very special standard model vacuum are automatically incorporated,
hereas others are not. In particular there are typically many Higgs fields and there appears to be
o constraint which forces the Higgs for the leptons and the quarks to be the same field. One can
ee this in our results for one generation. Since it is not possible to diagonalize both Q and L with
single unitary transformation, the parameters q, r, a, and b are independent, providing two Higgs
oublets.

The extension to include the right-handed neutrino also introduces potential Majorana mass
erms for the leptons. The explicit solutions we found allow �i� a Dirac mass for the electron and
Majorana mass for the neutrino, �ii� a Dirac mass for the neutrino and a mixing between �R and

L, �iii� a Dirac mass for the electron and a neutrino with both Dirac and Majorana mass terms, �iv�
massless electron with a neutrino with both Dirac and Majorana mass terms, and �v� a Dirac
ass for the electron and a massless neutrino with a mixing between �R and eL. Further calcula-

ions show that in each case the Majorana term is such that the eigenvalues of D always remain 0
r �/�1. However it is worth emphasizing that there are differences between the Euclidean and
orenzian formulations for fermions which make it difficult to draw conclusions from this for the
hysical Lorentzian case. In spite of this our overall conclusion that the masses are too degenerate
tands, and this points to the need for modifications to the formalism if the overall objectives are
o be retained. In the future this could possibly be carried out by adding more constraints to the
pace of Dirac operators or by additional terms to the spectral action.
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PPENDIX

The equations of motion for one generation and three colored quarks are the following:

ā�3�a�2 + 3�c�2 + 3�b�2 + �g�2 + �u�2 + �x�2 + �h�2 + �v�2 + �y�2 − 3� + 3c̄b̄d = 0, �A1�

b̄�3�b�2 + 3�d�2 + �g�2 + �u�2 + �x�2 + �h�2 + �v�2 + �y�2 + 3�a�2 − 3� + 3ād̄c = 0, �A2�

c̄��a�2 + �c�2 + �d�2 − 1� + ād̄b = 0, �A3�

d̄��b�2 + �d�2 + �c�2 − 1� + c̄b̄a = 0, �A4�

q̄��q�2 + �s�2 + �r�2 + �g�2 + �u�2 + �x�2 + �j�2 − 1� + r̄�h̄g + v̄u + ȳx + l̄ j + s̄t� = 0, �A5�

r̄��r�2 + �t�2 + �q�2 + �h�2 + �v�2 + �y�2 + �l�2 − 1� + q̄�ḡh + ūv + x̄y + j̄l + t̄s� = 0, �A6�

s̄�3�j�2 + �q�2 + �s�2 + �t�2 + �g�2 + �u�2 + �x�2 + �l�2 − 1� + t̄�h̄g + v̄u + ȳx + 2l̄ j + q̄r� = 0, �A7�

t̄�3�l�2 + �r�2 + �t�2 + �s�2 + �h�2 + �v�2 + �y�2 + �j�2 − 1� + s̄�ḡh + ūv + x̄y + 2 j̄l + r̄q� = 0, �A8�

ḡ��g�2 + �u�2 + �x�2 + �h�2 + �j�2 + �q�2 + �s�2 + �a�2 + �b�2 − 1� + h̄�r̄q + x̄y + ūv + t̄s + j̄l� = 0,

�A9�

h̄��g�2 + �v�2 + �h�2 + �y�2 + �l�2 + �r�2 + �t�2 + �a�2 + �b�2 − 1� + ḡ�q̄r + ȳx + v̄u + s̄t + l̄ j� = 0,

�A10�

ū��u�2 + �g�2 + �x�2 + �v�2 + �j�2 + �q�2 + �s�2 + �a�2 + �b�2 − 1� + v̄�r̄q + x̄y + ḡh + t̄s + j̄l� = 0,

�A11�

v̄��u�2 + �v�2 + �h�2 + �y�2 + �l�2 + �r�2 + �t�2 + �a�2 + �b�2 − 1� + ū�q̄r + ȳx + h̄g + s̄t + l̄ j� = 0,

�A12�

x̄��u�2 + �g�2 + �x�2 + �y�2 + �j�2 + �q�2 + �s�2 + �a�2 + �b�2 − 1� + ȳ�r̄q + ūv + ḡh + t̄s + j̄l� = 0,

�A13�

ȳ��x�2 + �v�2 + �h�2 + �y�2 + �l�2 + �r�2 + �t�2 + �a�2 + �b�2 − 1� + x̄�q̄r + v̄u + h̄g + s̄t + l̄ j� = 0,

�A14�

j̄�3�s�2 + �j�2 + �g�2 + �u�2 + �x�2 + �l�2 + �t�2 + �q�2 − 1� + l̄�r̄q + 2t̄s + ḡh + ūv + x̄y� = 0,
�A15�
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l̄�3�t�2 + �h�2 + �v�2 + �y�2 + �j�2 + �l�2 + �r�2 + �s�2 − 1� + j̄�q̄r + 2s̄t + h̄g + v̄u + ȳx� = 0.

�A16�
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Path and path deviation equations for charged, spinning and spinning charged ob-
jects in different versions of Kaluza-Klein �KK� theory using a modified Bazanski
Lagrangian have been derived. The significance of motion in five dimensions,
especially for a charged spinning object, has been examined. We have also ex-
tended the modified Bazanski approach to derive the path and path deviation equa-
tions of a test particle in a version of non-symmetric KK theory. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2196749�

. INTRODUCTION

In an attempt to unify gravity and electromagnetism Kaluza �1921� introduced a fifth dimen-
ion to describe electromagnetism. Klein �1926� added a stringent cylindrical condition, which
eeps the extra dimension compact.1 Following the scheme of compactification many theories
ave developed Kaluza-Klein �KK� ideas and extended the process of compactification to include
igher dimensions as a way to unify many fields.2 However, Wesson et al.3 have considered
nification of geometry with matter by dropping the cylindrical condition, and introducing non-
ompact theories of higher dimensions based geometrically on the Campbell-Magaard theorem.
his approach has been emerged into two classes of non-compact theories: brane theories4 and
pace-time-matter theories.5

From this perspective, path and path deviation equations play a vital part to interpret the
ehavior of any particle describing any of the above-mentioned theories. These equations offer a
ay to test the new physics coming from the introduction of extra dimensions.6 The behavior of

est particles and extended objects could be used for examining additional phenomena embedded
n higher dimensions. Accordingly, we present a study of path and path deviation equations for
harged, spinning, and spinning charged objects using different theories of KK. The path and path
eviation equations could also be used to detect the cosmological variation of spin, and to study
he evolution of the angular momentum of galaxies, pulsars, and high energy primordial objects7

sing a gyroscopic motion in five dimensions. KK theories have been extended to include different
ypes of non-symmetric theory of gravity. One such trial has been done by Kalinowski to unify
ravity and gauge fields using a multidimensional manifold in the Jordan-Thirry manner.8

The aim of the present work is to extend the Bazanski approach9 into five dimensions �5D� in
rder to derive some versions of path and path deviation equations in multidimensional space for
ifferent objects such as charged, spinning, and spinning charged particles, with taking the status
f extra dimension as either compact or non-compact. The paper is organized into the following
teps:

�1� Describing path equations and their corresponding path deviation equations in four di-
mensions �4D�.

�2� Extending these equations into 5D.

�
Electronic mail: kahil@aucegypt.edu
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I. MOTION IN 4D

. Path and path deviation equations in Riemannian geometry

Geodesic and geodesic deviation equations can be obtained simultaneously by applying the
ction principle on the Bazanski Lagrangian:9

L = g��U�D��

Ds
, �1�

here D /Ds is the covariant derivative. This can be done if one takes the variation with respect to
he deviation vector �� in order to derive the geodesic equation:

dU�

ds
+ � �

��
�U�U� = 0, �2�

here � �
��

� is the Christoffel symbol. If one takes the variation with respect to the unit tangent
ector U�, one derives the geodesic deviation equation:

D2��

Ds2 = R.���
� U�U���, �3�

here R���
� is the Riemann-Christoffel curvature tensor. It is worth mentioning that the Bazanski

pproach has been successfully applied in geometries different from the Riemannian.10,11 Now,
agrangian �1� can be amended to describe path and path deviation equations of charged, spin-
ing, and spinning charged particles if we introduce the following Lagrangian:

L = g��U�D��

Ds
+ f��� �4�

uch that

f� = a1F��U� + a2R����S
��U�,

here a1 and a2 are parameters that may take the values e /m and 1/2m, respectively, F.�
� is an

lectromagnetic tensor and S�� is the spin tensor. These parameters have to be adjusted with their
ounterparts in the original Lorentz force equation,12 the Papapetrou equation,13 and the Dixon
quation.14

Applying the Bazanski approach for obtaining path and path deviation equations on Lagrang-
an �4� we get the following.

�i� The Lorentz charged equation �for a1=e /m and a2=0�,

dU�

ds
+ � �

��
�U�U� =

e

m
F.�

�U�, �5�

nd the charged deviation equation:15

D2��

Ds2 = R.���
� U�U��� +

e

m
	F.�

� D��

Ds
+ F.�;�

� U���
 . �6�

�ii� The Papapetrou equation for spinning objects �for a1=0 and a2=1/2m�

dU�

ds
+ � �

��
�U�U� =

1

2m
R.���

� S��U�. �7�

16
he spinning deviation equation becomes
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D2��

Ds2 = R.���
� U�U��� +

1

2m
	R.���

� S��D��

Ds
+ R��	

� S.;�
�	U��� + R��	;�

� S�	U���
 . �8�

�iii� The Dixon equation for spinning charged objects �for a1=e /m and a2=1/2m�14

dU�

ds
+ � �

��
�U�U� =

e

m
F.�

�U� +
1

2m
R.���

� S��U�, �9�

nd its spinning charged deviation equation becomes

D2��

Ds2 = R.���
� U�U��� +

e

m
	F.�

� D��

Ds
+ F.�;�

� U���

+

1

2m
	R.���

� S��D��

Ds
+ R.��	;�

� S�	U��� + R.��	
� S�	

;�U
���
 . �10�

Papapetrou17 has derived an equation describing a spinning object which is able to precess:

D

Ds
	mU� + U�

DS��

Ds

 =

1

2
R.���

� S��U�. �11�

Using the Bazanski approach, we can suggest the following Lagrangian:

L = g��	mU� + U�

DS��

Ds

D��

Ds
+ R����S

��U���, �12�

hich can be used to derive Eq. �11� and to obtain its corresponding deviation equation in the
ollowing way:

D2��

Ds2 = R.���
� U�	mU� + U�

DS��

Ds

�� + g�
g�		mU	 + U�

DS	�

Ds



;


D��

Ds
+ R.���

� S��D��

Ds

+ R��	
� S.;�

�	U��� + R��	;�
� S�	U���. �13�

. Path and path deviation equations in non-symmetric geometries

Path equations in one of the versions of non-symmetric geometries, e.g., Legaré and Moffat,
ave been derived from following Lagrangian:18

L = g����U
�U� + 	Â�U

�, �14�

y taking the variation with respect to U
 to give

dU�

ds
+ � �

��
�U�U� = 	g����f ����U

�, �15�

here g���� is the symmetric part of the gravitational potential tensor, 	 is a parameter and,

f ����= Â�,�− Â�,� is a skew symmetric tensor related to the Yukawa force.
Applying the Bazanski approach, we can derive �15� from the following Lagrangian:

L = g����U
�D��

Ds
+ 	f����U�. �16�

sing the same approach, we can show its corresponding deviation equation to be

D2��

2 = R.���
� U�U��� + 		 f .�

� D��

+ f .�;�
� U���
 . �17�
Ds Ds
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But, if we consider the following Lagrangian:

L = g��U
�D��

D�
+ 	f����U�, �18�

here g��=g����+g����, and follow the Bazanski approach to get the path and path deviation
quations related to this type of geometry by taking the variation with respect to �
 and U
,
espectively, we can obtain:

dU�

ds
+ � �

��
�U�U� = 	g��f ����U

� + g�
g��
�;�U
�U�, �19�

nd the path deviation equation becomes

D2��

Ds2 = R.���
� U�U��� + 2g
��g���
�;���

D��

Ds
U� + 		 f .�

� D��

Ds
+ f .�;�

� U���
 . �20�

t is clear that the difference between �15� and �19� is related to absence of the spin of the source
n �15�. Thus, from �19� it is possible to find an interaction between the spin of the source and the
kew field.19 Kalinowski20 has extended Moffat’s version21 which is described in Einstin-Cartan
eometry, to establish a relation between the mass and fermion current curve space-time while the
pin of the source is twisting it.

Moreover, Wanas and Kahil have extended the Bazanski approach, applying it in Einstein
on-symmetric geometries22 to reach the conclusion that paths in these geometries are naturally
uantized �in the Planck sense of quantization�.10 This type of natural quantization of paths exists
n absolute parallelism geometries as well.11

II. MOTION IN 5D

The problem of motion in higher dimensions is an intriguing problem. The significance of
otion in higher dimensions may yield some indications with regards to the principles that should

e followed when describing motion in 4D, i.e., an equation which governs the motion in 4D6. In
he present work, we will examine the effect of non gravitational forces on the current motion, i.e.,
hould this motion be absorbed into the extra dimension or remain unchanged from the usual
quation of motion in 4D space apart from increasing the dimensions?

. The Bazanski approach in five dimensions

In an attempt to derive path and path deviation equations in five dimensions, we extend the
azanski Lagrangian to 5D:

L = gABUAD�B

DS
�21�

here �A=1,2 ,3 ,4 ,5�. By taking the variation with respect to the deviation vector �C and the
angent vector UC, we obtain the geodesic and geodesic deviation equations, respectively,

dUC

dS
+ � C

AB
�UAUB = 0, �22�

nd

D2�C

2 = R.ABD
C �DUAUB. �23�
DS
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. Compact spaces

The process to unify electromagnetism �gauge fields� and gravity depends on extra compo-
ent�s� of the metric using the cylinder condition.1 Some authors believe that compact dimensions
an be tested, for example, by examining the rate of energy released as a result of gravitational
aves from binary pulsars.23

In our study, we derive the same geodesic and geodesic deviation equations given by Kerner
t al.15 using the Bazanski approach:

dU�

dS
+ � �

�	
�U�U	 + 	dx5

dS
+ A�

dx�

dS

F.	

.�U	 = 0, �24�

d

dS
	dx5

dS
+ A�

dx�

dS

 = 0. �25�

here Q�dx5 /dS+A�dx� /dS is constant along the 5D geodesics, i.e.,

q

m
=

dx5

dS
+ A�

dx�

dS
.

onsequently, �24� becomes

dU�

dS
+ � �

�	
�U�U	 +

q

m
F	

.�U� = 0, �26�

ith ds2= �1−Q2�dS2 and its corresponding path deviation equation becomes:

D2��

DS2 = R.��	
� U�U��	 +

q

m
	F.�;�

� U��� + F.�
� D��

DS

 + F.	

� U		 d

dS
�A	�	 + �5� + F��U

���

�27�

nd

d

dS
���5 + A	�	� + F	�U

��	� = 0 �28�

charged particle whose behavior is described by the Lorentz equation in 4D behaves as a test
article moving on a geodesic in 5D. This result is obtained from the usual Basanski method in 5D
ather than its modified method in 4D.

. Noncompact spaces

In an attempt to unify geometry and matter, Wesson and his collaborators3 have assumed that

AB,5�0, which is applied in the brane world models4 and space-time-matter theories.5 The idea of
on-compact spaces is based upon the Campbell-Maagard theorem.24 Using this approach,
esson25 has found that: �1� Massive particles traveling on a time-like geodesic in 4D can be

egarded as traveling on a null-geodesic in 5D. This is obvious as an implication of the behavior
f wave-like particles in a double slits experiment.

�2� Massive particles traveling on any path may exhibit changes their rest mass because there
s a direct contact with the fifth force. In this case, the path equation will be a generalization of the
roblem of moving particles having variable mass in classical mechanics.

It is well known that the path equation of a charged object described in non-compact space26
s given by
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dU�

dS
+ � �

��
�U�U� = nF�

�U�U� + �n2;�

3 − A�dn

dS
− g�	

dx5

dS
	nA	,5 + g	�,5

dx�

dS

 �29�

nd

d

dS
�2	dx5

dS
+ A�

dx�

dS

 = 0, �30�

here n=�2�dx5 /dS+A�U��,  is a scalar potential, and �= ±1 depending on whether the extra
imension is space-like or time-like, respectively. This leads to q /m=�2�dx5 /dS+A�U�� in
hich its scalar field affects the ratio of charge to mass.

However, the above equation has two main defects: it is not gauge invariant, and the addi-
ional extra force from an extra dimension is parallel to the four vector velocity i.e., f�U��0.

Ponce de Leon26 has dealt with these two defects by using various types of transformations in
rder to make �29� and �30� like the geodesic equation in its usual form:

d2�A

dS2 + � A

BC
�d�B

dS

d�C

dS
= 0, �31�

here �A is the projected 5D velocity. This allows us to introduce its corresponding Bazanski
agrangian:

L = gAB
d�A

dS

D�B

DS
�32�

hich gives its geodesic deviation equation as

D2�A

DS2 = 0 �33�

. Path and path deviation equations of nonsymmetric geometries in 5D

We now consider the following Lagrangian:

L = gABUAD�B

DS
+ 	fCE�CUE, �34�

Applying the Bazanski approach to derive the path and path deviation equations by taking the
ariation with respect to �D and UD, respectively, we obtain:

dUA

dS
+ � A

BC
�UBUC = 	gADf �DC�U

C + gADg�CD�;MUCUM , �35�

nd

D2�A

DS2 = R.BCD
A UBUC�D + 2gDA�g�A�D�;M��

D�C

DS
UM + 	gDA	 fA.C

D�C

Ds
+ fAC;MUC�M
 .

�36�

n one version of KK Non-symmetric theory of gravity, Kalinowski8 has summarized the role of
he extra dimension in the following matter: mass and fermion current curve the four dimensions,

he spin of the source and the electromagnetic potential twist the fifth dimension.
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V. ROTATION IN 5D

The concept of rotation in higher dimensions is related to obtaining the governing equation of
he current spinning object.27 For a spinning gyroscope it is well known that the fifth equation is
esting the rate of precession.28 Some authors believe that the study of two nearby free-falling
yroscopes could be used to examine the question of the existence of gravitational waves.16

We may apply the Bazanski approach on the following Lagrangian:

L = gABUAD�B

DS
+

1

2m
RABCDSCDUB�A �37�

o derive the path equation of a spinning object in 5D:

dUC

dS
+ � C

AB
�UAUB =

1

2m
R.ABD

C SBDUA. �38�

The above equation describes spinning objects in compact spaces which satisfy the cylinder
ondition, i.e., gAB,5=0. This is identical to the Dixon equation if we project it into four dimen-
ions. The fifth coordinate will contribute the electromagnetic tensor, which has already appeared
n the Dixon equation.

Also, the original Papapetrou equation in 5D will be as follows:

D

DS
	mUA + UE

DSAE

DS

 =

1

2
R.BCD

A SCDUB �39�

nd its corresponding deviation equation will take the following form:

D2�A

DS2 = R.BCD
A UB	mUC + UE

DSCE

DS

�D + gACgBE	mUE + UO

DSEO

DS



;C

D�B

DS
+ R.BCD

A SCDD�B

DS

+ RBCE
A S.;D

CEUB�D + RBCE;D
A SCEUB�D. �40�

hese equations could be used to study the behavior of spinning charged objects that exhibit
recession, e.g., neutron stars, compact objects, etc.

In non-compact spaces with RABCD=0, it is found that a spinning particle is moving on a
eodesic in 5D rather than the Papapetrou equation.29 This leads us to suggest that in non-compact
paces, satisfying the Campbell-Magaard theorem, spinning particles and spinning charged par-
icles as well as test particles are moving along geodesics in 5D. But if we consider the original
apapetrou equation in 5D, we can find out that it is different from the usual geodesic equation,

.e.,

D

DS
	mUA + UB

DSAB

DS

 = 0. �41�

n the contrary, its corresponding deviation equation is identical to �33�.

. DISCUSSION AND CONCLUSION

The Lagrangian required to derive the path and path deviation equations in higher dimensions
ecomes the conventional Bazanski Lagrangian if the extra fields are described in the fifth �higher�
imension. Path equations of different particles in 4D can be considered as the projection of the
eodesic equation in 5D on 4D. But if the extra effect, non-gravitational force, is not totally
bsorbed in the higher dimensional equations then the Bazanski Lagrangian should be amended

ike their counterparts in four-dimension, which is seen in the 5D Papapertrou’s equation �38�.
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It has been shown in this paper that the effect of the compactness of the extra dimension�s�
an be clearly perceived on moving objects. Also, we find that the effect of precession may
istinguish between tops and test particles moving in a background whose 5D curvature has
anished.

In our study we have shown that the apparent Papapetrou equation in 5D is merely the
rojection of the Dixon equation in 4D. But if the space does not include electromagnetism as an
xtra dimension, the Papapetrou equation in 4D remains the same in 5D unless the extra dimen-
ion space is not compact satisfying the Campbell-Magaard theorem. Also, as can be seen from
25� and �30� the path equations in compact and non-compact spaces display a contradictory
spect: the ratio of charge to mass is constant in the case of compact space, while it is variable
epending on the scalar field in case of non-compact spaces, which can be explored due to the
ffect of the cylinder condition on higher dimensions.

It was shown that in 4D, the Bazanski Lagrangian can be modified to describe path equations
or charged, spinning, and spinning charged particles, as well as for spinning objects with preces-
ion and their corresponding path deviation equation. In an attempt to find the path and path
eviation equations of the above-mentioned particles in 5D, we have found that the Bazanski
agrangian could remain unmodified if the non-gravitational force could be absorbed into the
igher dimension. Otherwise, the Bazanski Lagrangian must be amended.

In our study, we have also found that in non-compact spaces, spinning objects and the non-
recessing ones are not following the same trajectory, although their path deviation equations are
he same.

We have applied the Bazanski approach to determine path and path deviation equations of one
ersion of the Einstein non-symmetric theories of gravity in 5D. This work could be extended to
tudy the effect of compactness on the path equations in our future work.
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The electric and the magnetic part of the Weyl tensor, as well as the invariants
obtained from them, are calculated for the Bondi vacuum metric. One of the in-
variants vanishes identically and the other only exhibits contributions from terms of
the Weyl tensor containing the static part of the field. It is shown that the necessary
and sufficient condition for the spacetime to be purely electric is that such space-
time be static. It is also shown that the vanishing of the electric part implies
Minkowski spacetime. Unlike the electric part, the magnetic part does not contain
contributions from the static field. Finally a speculation about the link between the
vorticity of world lines of observers at rest in a Bondi frame, and gravitational
radiation, is presented. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2199027�

. INTRODUCTION

The study of the electric E�� and magnetic H�� parts of Weyl tensor has attracted the attention
f researchers for many years �see Refs. 1–19, and references therein�.

Particularly intriguing is the eventual relationship of the magnetic part of the Weyl tensor,
ith rotation2,9 and with gravitational radiation.1,5,8,10–12

On the other hand, the link has been established between gravitational radiation and vorticity
f world lines of observers at rest in a Bondi spacetime.20,21 Specifically, it has been shown that
he leading term in the vorticity �in an expansion of powers of 1 /r� is expressed through the news
unction in such a way that it will vanish if and only if there is no news �no radiation�. This
uggests the possibility of detecting gravitational waves by means of gyroscopes.20,22

In order to delve deeper into these issues, we shall calculate in this work the electric and the
agnetic part of the Weyl tensor, as well as the two invariants obtained from them, in the field of

ravitational radiation.
From the obtained expressions, it follows that the vanishing of the magnetic part, implies the

anishing of the news function and also the vanishing of nonradiative but time-dependent field,
xcept for a very peculiar class of solutions, called by Bondi “non-natural, non-radiative moving
ystems.” This result, together with the known fact6 that static Weyl metrics are purely electric,
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mplies, if we exclude by physical reasons the class of solutions mentioned before, that the
ecessary and sufficient condition for a Bondi spacetime to be purely electric is that such space-
ime be static.

The vanishing of the electric part of the Weyl tensor is shown to imply that the spacetime is
inkowski. Thus there is no purely magnetic vacuum Bondi spacetimes, in agreement with the

onjecture that purely magnetic vacuum spacetimes do no exist.6,7,9,18,19

It is also obtained that one of the invariants �Q�E��H��� vanishes identically whereas the
ther �L�E��E��−H��H��� has a leading term with contributions only from the coefficients in
he expansion of the Weyl tensor which contain the static part of the field. Coefficients containing
urely radiative and/or nonradiative but time-dependent part of the field, do not enter in L.

Finally, we shall speculate that the fact that gravitational radiation produces vorticity of a
ime-like congruence might be explained by a mechanism similar to the one suggested to explain
he vorticity of a time-like congruence in the field of a charged static magnetic dipole.23

We shall carry out our calculations using the Bondi’s formalism24 which has, among other
hings, the virtue of providing a clear and precise criterion for the existence of gravitational
adiation �see also Ref. 25�. Namely, if the news function is zero over a time interval, then there
s no radiation during that interval.

The formalism has as its main drawback26 the fact that it is based on a series expansion which
ould not give closed solutions and which raises unanswered questions about convergence and
ppropriateness of the expansion.

However we shall restrain ourselves to a region sufficiently far from the source, so that we
hall need in our calculations only the leading terms in the expansion of metric functions. Fur-
hermore, since the source is assumed to radiate during a finite interval, then no problem of
onvergence appears.27

A brief resume of Bondi’s formalism is given in the next section, together with the expression
f the vorticity of a time-like congruence of observers at rest in a Bondi frame. In Sec. III we
resent the result of the calculations of the electric and a magnetic part as well as the invariants Q
nd L, and in the last section results are discussed.

I. BONDI’S FORMALISM

The general form of an axially and reflection symmetric asymptotically flat metric given by
ondi is24

ds2 = �V

r
e2� − U2r2e2��du2 + 2e2�dudr + 2Ur2e2�dud� − r2�e2�d�2 + e−2�sin2 �d�2� , �1�

here V ,� ,U, and � are functions of u ,r, and �.
We number the coordinates x0,1,2,3=u ,r ,� ,�, respectively. u is a timelike coordinate such that

=constant defines a null surface. In flat spacetime this surface coincides with the null light cone
pen to the future. r is a null coordinate �grr=0� and � and � are two angle coordinates �see Ref.
4 for details�.

Regularity conditions in the neighborhood of the polar axis �sin �=0�, imply that as
in �− �0,

V,�,U/sin �,�/sin2 � , �2�

ach equals a function of cos � regular on the polar axis.
The four metric functions are assumed to be expanded in series of 1 /r, then using the field

quations Bondi gets

� = cr−1 + �C − 1
6c3�r−3 + ¯ , �3�
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U = − �c� + 2c cot ��r−2 + �2N + 3cc� + 4c2cot ��r−3
¯ , �4�

V = r − 2M − �N� + N cot � − c�
2 − 4cc� cot � − 1

2c2�1 + 8 cot2 ���r−1 + ¯ , �5�

� = − 1
4c2r−2 + ¯ , �6�

here c, C, N, and M are functions of u and �, letters as subscripts denote derivatives, and

4Cu = 2c2cu + 2cM + N cot � − N�. �7�

The three functions c ,M, and N are further related by the supplementary conditions

Mu = − cu
2 + 1

2 �c�� + 3c� cot � − 2c�u, �8�

− 3Nu = M� + 3ccu� + 4ccu cot � + cuc�. �9�

In the static case M equals the mass of the system whereas N and C are closely related to the
ipole and quadrupole moment, respectively.

Next, Bondi defines the mass m�u� of the system as

m�u� =
1

2
�

0

�

M sin �d� �10�

hich by virtue of �8� and �2� yields

mu = −
1

2
�

0

�

cu
2 sin �d� . �11�

Let us now recall the main conclusions emerging from Bondi’s approach.

1. If � ,M, and N are known for some u=a �constant� and cu �the news function� is known
for all u in the interval a�u�b, then the system is fully determined in that interval. In
other words, whatever happens at the source, leading to changes in the field, it can only do
so by affecting cu and vice versa. In the light of this comment the relationship between
news function and the occurrence of radiation becomes clear.

2. As it follows from �11�, the mass of a system is constant if and only if there are no news.

Now, for an observer at rest in the frame of �1�, the four-velocity vector has components

u� = � 1

A
,0,0,0� �12�

ith

A � �V

r
e2� − U2r2e2��1/2

. �13�

Then, it can be shown that for such an observer the vorticity vector may be written as �see
ef. 20 for details�

	� = �0,0,0,	�� �14�
ith
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	� = −
e−2�

2r2 sin �
	2��e2� −

2e2�A�

A
− �Ur2e2��r +

2Ur2e2�

A
Ar +

e2��Ur2e2��u

A2 −
Ur2e2�

A2 2�ue2�

�15�

nd for the absolute value of 	� we get


 � �− 	�	��1/2

=
e−2�−�

2r
	2��e2� − 2e2�A�

A
− �Ur2e2��r + 2Ur2e2�Ar

A
+

e2�

A2 �Ur2e2��u − 2�u
e2�

A2 Ur2e2�
 .

�16�

eeding back �3�–�6� into �16� and keeping only the two leading terms, we obtain


 = −
1

2r
�cu� + 2cu cot �� +

1

r2 �M� − M�cu� + 2cu cot �� − ccu� + 6ccu cot � + 2cuc�� . �17�

Therefore, up to order 1 /r, a gyroscope at rest in �1� will precess as long as the system
adiates �cu�0�. Observe that if

cu� + 2cu cot � = 0 �18�

hen

cu =
F�u�
sin2 �

, �19�

hich implies

F�u� = 0 Þ cu = 0 �20�

n order to ensure regularity conditions, mentioned earlier, in the neighborhood of the polar axis
sin �=0�. Thus the leading term in �17� will vanish if and only if cu=0.

The order 1 /r2 contains, beside the terms involving cu, a term not involving news, namely M�.
his last term represents the class of nonradiative motions discussed by Bondi24 and may be

hought of as corresponding to the tail of the wave, appearing after the radiation process.26

Let us now assume that initially �before some u=u0=constant� the system is static, in which
ase

Nu = cu = 0 �21�

hich implies, because of �9�,

M� = 0 �22�

nd 
=0 �actually, in this case 
=0 at any order� as expected for a static field �for the electro-
acuum case however, this may change23�. Then let us suppose that at u=u0 the system starts to
adiate �cu�0� until u=uf, when the news vanish again. For u�uf the system is not radiating
lthough �in general� M��0 implying �see for example �9�� time dependence of metric functions
nonradiative motions24�.

For u�uf there is a vorticity term of order 1 /r2 describing the effect of the tail of the wave.
his in turn provides “observational” evidence for the violation of the Huygens’s principle, a
roblem largely discussed in the literature �see, for example Refs. 24 and 26, and references

herein�.
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II. THE ELECTRIC AND MAGNETIC PARTS OF WEYL TENSOR

The electric and magnetic parts of Weyl tensor, E�� and H��, respectively, are formed from

he Weyl tensor C���� and its dual C̃���� by contraction with the four velocity vector given by
12�:28

E�� = C����u�u�, �23�

H�� = C̃����u�u� = 1
2�����C�

�� u�u, ����� � �− g�����, �24�

here �����= +1 for �, �, �, � in even order, −1 for � ,� ,� ,� in odd order, and 0 otherwise. Also
ote that

�− g = r2 sin �e2� � r2 sin � exp�−
c2

2r2� � r2 sin � + O�1� .

Since the obtained expressions are fairly long, in order to check our results we have calculated
he magnetic and electric parts in two different ways and then compared results, excluding thereby
ny possible error. On the one hand we have calculated with MAPLE the components of Weyl
ensor and from them, “by hand” its electric and magnetic part from �23� and �24�. We do not
nclude here the detailed expressions of Weyl components, but they are available upon request.
he only nonvanishing components of Weyl tensor are

C0101,C0102,C0112,C0202,C0212,C0303,

C0313,C0323,C1212,C1313,C1323,C2323.

owever they are not independent, since the following relations between them exist:

r4 sin2 �

e2� C1010 = e2��V − r4e2�−2��C1313 − 2r2e2�C0313, �25�

r2 sin2 �

e2� C0112 = e2�C1323 − r2e2�C1313, �26�

2r2 sin2 �

e2� C0212 = e2�C2323 − re2�C1313, �27�

sin2 �C1212 = − e4�C1313. �28�

On the other hand, we have calculated the magnetic and electric part using GRTENSOR.
Thus, one has for the components of the magnetic Weyl tensor, up to the order 1 /r3:

H0
0 = H1

0 = H2
0 = H0

1 = H1
1 = H2

1 = H0
2 = H1

2 = H2
2 = H0

3 = H3
3 = 0, �29�

H3
0 = −

1

r
�2cu cos � + c�u sin ��

+
1

r24cu�c − M�cos � + 	3

2
�Nu + M� + cuc�� +

7

2
cc�u − 2Mc�u
sin ��

+
1
3−

N
�1 + 2cu� + 	8Mcu�c − M� + N��1 − 2cu� +

5
c2cu − Nc�u − Pu − 4Mc

r sin � 2

                                                                                                            



052502-6 Herrera, Santos, and Carot J. Math. Phys. 47, 052502 �2006�

                        
�cos �+ 	2�N − Mc�� − c�u�7Mc − 4M2 − N� −
7

4
c2� + 3M�Nu + M��

−
1

2
P�u− 3cM� + N�� + cu�8N + 3Mc� +

5

2
cc��
sin �� , �30�

H3
1 =

1

r
��c�cuu + c�u�sin � + 2�ccuu + cu�cos �� +

1

r24ccu cos �

sin2 �
+

2cuc� − cc�u

sin �

+ 	−
1

2
c�c��u + �2M − 3c�c�cuu −

5

2
�cc�u + cuc�� − 2Ncuu −

3

2
�Nu + M��


�sin �+ 	− 6ccu + 4c�M − c�cuu −
1

2
c�c�u − cc��u
cos ��

+
1

r38ccu�M − c�cos �

sin2 �
+

1

sin �
�cuc��4M − 3c� + N − 2cNu + 2Nccuu

+ cc�u�7c − 2M� − 4cuN − cM�� + 	1

2
P�u − N�� − 2N + 4cM� − 4cuN + 2cNu

+ cuc��−
9

2
c − M + ccu +

1

2
c��� + c��2M − cMu + Puu + N�u +

1

2
M���

+ c�u�−
19

4
c2 + 2c�

2 + 2Mc� + c��u�N + 3cc� − Mc��

+ c�cuu�− 6Mc +
1

2
c2 + N� + 4M2� − 2Ncuu�c + 2M�
sin �

+ 	2c�2M + N�u + Puu − cMu +
1

2
M��� + cu�− 2Mc −

3

2
c2 + 2c2cu +

3

2
c�

2 + cc���
+ c�u�N − Mc� + 8cc�� + cuu�c3 + 2cN� + Nc� − 8Mc2 + 8M2c�

+ cc��u�5c − 2M� − c��1

2
M� + Nu� + Pu − N�
cos �� , �31�

H3
2 =

1

r
�sin �cuu� +

1

r2 2cu

sin �
−

1

2
c�u cos � + 	2cuu�M − c� − cu −

1

2
c��u
sin ��

+
1

r34cu
M − c

sin �
+ 	3

2
cuc� − Nu −

1

2
M� + Ncuu + �7

2
c − M�c�u
cos �

+ 	�5

2
c − M�c��u + �1

2
c�� − M�cu + 2c�c�u + cuu

��2c2 + 4M2 − 4Mc + N�� +
1

2
M�� − cMu + N�u + Puu + ccu

2
sin �� , �32�

H1
3 =

1
3

2cu cos � + c�u sin �
2 , �33�
r sin �
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H2
3 =

1

r

cuu

sin �
+

1

r2 sin �
	2cuu�c + M� − cu −

1

2
c��u −

1

2
cot �c�u + 2

cu

sin2 �



+
1

r3 sin �
 4Mcu

sin2 �
+ cot �	− Nu + Ncuu −

1

2
cuc� − �1

2
c + M�c�u −

1

2
M�


+ cuu�N� + 4Mc + 4M2 + 2c2� + ccu
2 + �1

2
c�� − M�cu + �1

2
c − M�c��u

+ Puu +
1

2
M�� + c�c�u − cMu + N�u� . �34�

egarding the electric part, one gets, up to the order 1 /r3:

E0
0 = E3

0 = E0
1 = E3

1 = E0
2 = E3

2 = E0
3 = E1

3 = E2
3 = 0, �35�

E1
0 =

2�ccu + M�
r3 , �36�

E2
0 =

2cu cos � + c�u sin �

r sin �
+

1

2 sin �r2

��8Mcu cos � + �c�u�4M − 3c� − 3�M� + cuc� + Nu��sin ��

+
1

4r3�1 + 2cu�
4N

sin2 �
+ cot ��4�Nc�u + Pu − N�� + cu�32M2 + 8N� − 42c2��

+ 4�N − 3cNu − N��� − 12M�M� + Nu� + c�u�4N� + 16M2 − 13c2 − 12Mc�

− cu�30cc� + 12Mc� + 32N� + 2P�u� , �37�

E1
1 = −

2ccu�1 + cos2 �� + �c�c�u + 2M�sin2 � + 2 sin � cos ��cuc� + cc�u�
r3 sin2 �

, �38�

E2
1 = −

2�ccuu + cu�cos � + �c�cuu + c�u�sin �

r sin �
+

1

2r2

�3�Nu + M�� + cuu�2cc� − 4Mc� + 4N� + 5c�cu + c�c��u + cc�u

+ cot ��2c�c��u + 2cu − 4Mcuu� + c�c�u� +
2

sin2 �
�cc�u − 2c�cu� −

8

sin3 �
ccu cos ��

−
1

r38ccu�M − c�
cos �

sin3 �
+

1

sin2 �
��4M − 7c�cuc� − 4cuN + 2Nccuu

+ �c2 − 2Mc�c�u+ N − c�M� + 2Nu�� + cot �	cu�−
1

2
c�

2 − 2Mc + cc�� + 2c2cu −
15

2
c2�

+ c��cuuN + �3c − M�c�u − Nu −
1

2
M�� + ccuu�8M2 − 3c2 + 2N��

+ cc��u�3c − 2M�+ c�uN + cM�� + Pu − N� + 2c�Puu + N�u − M − cMu�

+ cuu	c��−

7
c2 + N� − 2Mc + 4M2� − 6Nc − 4MN

2
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+ cu	c��1

2
c�� −

9

2
c − M + ccu� − 4N
+ c�u�c�

2 + 2Mc −
15

4
c2� + c��u�N − Mc� + 2cc��

+ c��1

2
M�� − M + N�u + Puu − Muc�− N�� +

1

2
P�u − cNu + N + cM�� , �39�

E1
2 = −

2cu cos � + c�u sin �

r3 sin �
, �40�

E2
2 = −

cuu

r
+

1

2r2�c��u − 4Mcuu + 2cu + cot �c�u −
4cu

sin2 �
�

+
1

r3Muc −
1

2
M�� + M − N�u − Puu+ cot �	Mc�u +

1

2
M� + Nu −

1

2
cc�u +

1

2
c�cu − Ncuu


+ cu	4�c − M�
sin2 �

+ M − c − ccu −
1

2
c��
 − cuu�4M2 + N�� − c�c�u + c��u�M −

3

2
c�� , �41�

E3
3 =

cuu

r
−

1

2r2�c��u − 4Mcuu + 2cu + cot �c�u −
4cu

sin2 �
�

+
1

r3M + N�u + Puu +
1

2
M�� − cMu+ cot �	5

2
cc�u −

1

2
M� − Nu + Ncuu − Mc�u +

3

2
cuc�


+ cu	 4M

sin2 �
+ ccu − M +

1

2
c�� − c
 + cuu�4M2 + N�� + 2c�c�u + �3

2
c − M�c��u� , �42�

here

P � C −
c3

6
. �43�

We shall now provide expressions for the two algebraic invariants associated to the electric
nd magnetic parts of the Weyl tensor, namely

Q = H�
�E�

�, L = E�
�E�

� − H�
�H�

�. �44�

As it turns out, the invariant Q vanishes identically, i.e.,

Q = 0, �45�

hereas the first nonvanishing order in L is 1 /r6 and one then has

L =
2

r6�3�ccu + M�2 + �c3 + 6P�cuu + 6N�c�u + 2cu cot ��� + O�1/r7� . �46�

V. DISCUSSION

We are now ready to try to answer the main questions which motivated this work, in the
ontext of the Bondi metric, namely:

• What consequences emerge from the vanishing of the magnetic part of the Weyl tensor?
• What consequences emerge from the vanishing of the electric part of the Weyl tensor?
• How do different types of fields �radiative, nonradiative but time dependent, and static�

enter into the electric and magnetic part of the Weyl tensor, and into the corresponding

invariants?
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• Why does gravitational radiation produce vorticity?

Let us start with the first question. If we put H�
�=0 then it follows from the coefficient of 1 /r

n �30� that

c�u sin � + 2cu cos � = 0, �47�

hich according to �19� and �20� implies

cu = 0. �48�

hus the field is nonradiative. Next, the vanishing of the coefficient 1 /r2 in �30� implies in turn
hat

M� = Nu = 0, �49�

here we have used �9�.
Finally from the vanishing of the coefficient of the 1/r3 in �30� it follows that

N�� sin2 � + N� sin � cos � − N cos 2 � − �2cM sin2 ��� = 0 �50�

hose general solution is

N = �� 2cM

sin �
d� + ��sin � �51�

here � is a constant.
Feeding back �51� into �7� and using �48�, it follows that

Cu = 0. �52�

t can be easily checked that no further information can be obtained from �31� and �34�. Therefore
p to order 1 /r3 in �, the metric is static, and the mass, the “dipole” �N�, and the “quadrupole” �C�
oments correspond to a static situation. However, the time dependence might enter through

oefficients of higher order in �, giving rise to what Bondi calls “non-natural non-radiative mov-
ng system” �nnnrms�. In this later case, the system keeps the three first moments independent of
ime, but allows for time dependence of higher moments. As unlikely as this situation may be from
he physical point of view, we were not able not rule it out mathematically. On the other hand it
s known that static spacetimes are purely electric. Accordingly, we conclude that, excluding
nnrms, the necessary and sufficient condition for a Bondi metric to be purely electric is to be
tatic.

The second question has a simple answer. Indeed assuming E�
�=0 and using regularity con-

itions, we find from the coefficient of order 1 /r in �37�

cu = 0, �53�

hen it follows at once from �36� that M =0. If we exclude the possibility of negative masses, then
he spacetime must be Minkowski, giving further support to the conjecture that there are no purely

agnetic vacuum spacetimes.9

The third question also has a simple answer. The electric part contains all kinds of contribu-
ions, radiative, nonradiative but time dependent �nrtd�, and static. At order 1 /r only radiative
ontributions appear, whereas nrtd terms appear at order 1 /r2, and higher and contributions from
he static field enter in the 1/r3 order, and higher. However the magnetic part does not contain
ontribution from the static field. Only radiative �at order 1 /r and higher� and nrtd terms �at order
/r2 and higher� appear.28

On the other hand, the only nonvanishing invariant �L� has a leading term of order 1 /r6

mplying that purely radiative and nrtd terms in the Weyl tensor do not contribute to L. This is in
8
greement with the fact that for purely radiative spacetimes, both invariants Q and L vanish.

                                                                                                            



r
d
s
e
s
r

r
u
r

R

g
n
s
t
s

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

052502-10 Herrera, Santos, and Carot J. Math. Phys. 47, 052502 �2006�

                        
Finally, let us consider the last question. With this purpose in mind, it is worth recalling a
esult obtained by Bonnor23 concerning the dragging of inertial frames by a charged magnetic
ipole. To explain the appearance of vorticity in such spacetimes, Bonnor notices that the corre-
ponding electromagnetic Poynting vector has a nonvanishing component, describing a flow of
lectromagnetic energy round in circles where frame-dragging occurs.29 He then suggests that
uch a flow of energy affects inertial frames by producing vorticity of congruences of particles,
elative to the compass of inertia.

One could speculate about a similar mechanism in our case, i.e., a flow of gravitational
adiation in the � direction. However for testing such a conjecture we should have available a
nique expression for a “gravitational” Poynting vector, which is still an open question in general
elativity.

Thus for example, the super-Poynting vector based on the Bel–Robinson tensor, as defined in
ef. 15, is

P� = �����E
�H�u� �54�

iving in our case P�=0. However, besides the ambiguity problem in the definition of energy, this
egative result may be caused by the reflection symmetry of the Bondi metric, which intuitively
eems to be incompatible with the presence of a circular flow of energy in the � direction. In order
o clarify this situation, P� should be calculated for the general radiative metric without reflection
ymmetry,30 but this of course is out of the scope of the present work.
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We prove the local existence of solutions of nonlinear Dirac and Dirac-Klein-
Gordon equations in Kerr metric with regular Cauchy initial datas. © 2006 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2196240�

. INTRODUCTION

This paper deals with the Cauchy problem for nonlinear Dirac and Dirac-Klein-Gordon equa-
ions in Kerr space–time. This curved space–time is one of physical relevant space–time solution
f Einstein equations in vacuum. More precisely in Boyer-Lindquist coordinates on MªRt

Rr�S�
2 , we have

g�� dx� dx� = �1 −
2Mr

�2 �dt2 +
4aMr sin2 �

�2 dt d� −
�2

�
dr2 − �2 d�2 −

	2

�2 sin2 � d�2,

	2
ª �r2 + a2��2 + 2Mra2 sin2 �, � ª r2 − 2Mr + a2,

�2
ª r2 + a2 cos2 � . �1�

he manifold �M ,g� describes a rotating uncharged black hole where M is its mass and a is its
ngular momentum per unit mass. Briefly, we remark that we have two types of singularities: a
rue curvature singularity, the space of points �� ;�2=0�, and the coordinates singularities, the
phere�s� where � vanishes. This last property defines the horizon of the black-hole. Roughly
peaking the sphere-horizon are the regions for which an observer does not cross and comes back
hem without a speed greater than the light. Finally the number of real roots of � �
2� define three
ypes of Kerr black hole:

i� � has no real root, i.e., for 	a	�M, there are no horizon and the ring �� ;�2=0� is a naked
singularity.

ii� � has double root, i.e., for 	a	=M, �r=M� is the only horizon, this is the extreme Kerr
space–time.

iii� For 0� 	a	�M, � has two real roots,

r± = M ± 
M2 − a2, �2�

so there are two horizons �r=r−� and �r=r+�. This is the slow Kerr space–time.

In the sequel we consider this last type of Kerr black-hole. Hence the two horizons define
hree regions of the space–time. The block III �BIII�, �r�r−� contains the ring singularity and a
ime machine. The block II �BII�, �r−�r�r+�, is a dynamic region where an inertial observer is
ragged toward the horizon �r=r−�. The block I �BI�, �r�r+� is the exterior of the black-hole.

�
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oreover, BI is not stationary, i.e., the killing vector field Kª� /�t is not timelike in all block I.
he region E�BI where K is spacelike in BI �gtt�0� is called the ergosphere,

E ª ��t,r,�,��:r+ � r � M + 
M2 − a2 cos2 �� .

e study on �BI ,g� the solutions of the nonlinear Dirac equation �NLD�:

i���� − md� = k��*V1��� , �3�

here md�0 is the mass of the spin-1 /2 field, V1 a matrix and k�L��BI�. � are the Dirac
atrices. We also study the Dirac-Klein-Gordon system �DKG�,

i���� − md� = �V2� ,

�g� + mkg
2 � = �*V3� , �4�

here mkg�0 is the mass of the spin-0 field, V2, V3 two matrices and �g the Laplacian for the
orentzian metric g.

The difficulties of these studies on this type of space–time are principally due to the fact that
e must work with a curved manifold with less symmetries than flat space–time. Moreover in BI

f Kerr black-hole and for the spin-0 fields �wave, Klein-Gordon equations� the phenomenon of
he super-radiance takes place. It is a consequence of the absence of globally defined timelike
illing vector field that implies the nonexistence of positive-definite conserved quantities useful to
efine a functional framework to study the field equation. The super-radiance is the analogue for
pin-0 fields of the Penrose experience of extraction of energy from the ergosphere. On the other
and, the spin-1 /2 field always possess a conserved current inducing a positive-definite inner
roduct. Therefore the super-radiance seems not to be a real problem to prove the existence of the
olutions of �3� unlike of �4� since the system consists in the Klein-Gordon field of spin-0.

The first paper about Cauchy problem for a nonlinear field equation in the black-hole back-
round concerns the Klein-Gordon equation.32 Later, the author extended in Ref. 34 his first work
or the nonlinear Klein-Gordon equation in Schwarzschild metric �a=0 in �1�� to the Kerr metric.
o overcome the problem of the super-radiance, he used the geometrical 3+1 decomposition
ADM� of the Block I. It consists in adopt the coordinates of fixed observer with the respect to
nfinity. Indeed, we recall that the exterior of the black-hole BI is dynamic, i.e., an inertial observer
urns with the black hole. Using the ADM decomposition we have outside the black hole

BI = R� � �, g = N2 d�2 − h��� , �5�

here N is called the lapse function and h is the spacelike metric. We prove that N→0 at the
orizon and that h��� is equivalent uniform in space and locally uniform in time to the euclidean

etric outside a unit closed ball in R3 ���R3 \ B̄�0,1��. In this framework the Klein-Gordon
quation �but also our equations �3� and �4�� have the form of an evolution problem on natural
ilbert space. The norm of this Hilbert space is not a priori conserved but it is controlled by an

nergy estimate. The author of Ref. 34 proves the global existence and the uniqueness for weakly
egular initial data �energy data H1 � L2�. Indeed this regularity is sufficient to give sense of an
quivalent integral formulation of the nonlinear Cauchy problem since we have a cubic nonlin-
arity and the Sobolev embedding H1

�L6. Moreover the globalization is obtained thanks to an
nergy estimate.

For our problems, the charge spaces are L2 for �NLD� and L2 � H1 � L2 for �DKG�. These
egularities do not allow us to control the nonlinear terms of the equations. Hence, we take the
ore regular data for our study: H2 for �NLD� and H2 � H2 � H1 for �DKG�. The important

roperty that h�t� is equivalent to the euclidean metric outside a unit closed ball gives, thanks to
he flat Sobolev embedding in R3 ,H2

�L�, the same embedding for the curved space. This allows
s to control the nonlinear terms. The global existence is much more difficult since for our

2 2 2
quations, we do not have the conservation or control of the norm H for �NLD� or H � H
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� H1 for �DKG�. Usually for �3� and �4� in the flat space-time, we obtain the global existence for
he sufficiently small initial data in often using the sharper estimations. See this as well as possible
xhaustive list of papers: For Dirac semilinear equation, Refs. 35, 36, and 19. For nonlinear Dirac
quation, Refs. 30, 27, 28, 37, 31, 15, 4, 5, 27, 16, 17, 14, 13, 12, and 11. For Dirac-Klein-Gordon,
efs. 20, 29, 26, 8, 7, 6, 40, 18, 3, 2, 1, 39, 38, 10, and 9. Obviously the sharp estimates in curved

pace–time �like Strichartz� are a problem of great complexity, and in ours case there are not
roved.

The paper is organized as follows. The second section concerns the 3+1 decomposition. In the
hird and fourth we treat, respectively, of Cauchy problem for Dirac and Dirac-Klein-Gordon
quation.

I. THE ADM 3+1 DECOMPOSITION OF THE KERR BLOCK I

Usually, to describe the Kerr space-time we adopt the Boyer-Lindquist coordinates �t ,r ,��
Rt�Rr

+�S�
2 . We have a time function t globally defined in Block I, i.e., �t is a timelike future

riented vector field in BI. This function provides a foliation ��t�t�R of BI by its level Cauchy
ypersurfaces. Moreover, K=a .� /�t, a�R, is the only Killing vector field timelike near spacelike
nfinity. It fixes the product structure BIªRt��, i.e., the identification of points of �t along the
ntegral lines of K. We remark that � /�t is not timelike everywhere in BI. Indeed, gtt
0 if
t ,r ,���E and gtt�0 if �t ,r ,���BI \E. Hence, there exists no global timelike Killing vector field
n BI. Therefore, this space–time is not stationary. We know that the function t of the Boyer-
indquist coordinates is a time function. Hence t can be used as time parameter in an evolution
quation on BI=Rt��,

� = � r+, + �� � S�
2 . �6�

ince the metric g is time independent in the Boyer Lindquist coordinates �� /�t is a Killing vector
eld�, then the coefficients of the field equation are also time independent.

Now, we point out the difficulties linked to the Boyer-Lindquist coordinates to study a Cauchy
roblem for equations �3� and �4�. These difficulties are mainly due to the nonglobally timelike
efinition of the Killing vector field � /�t. Indeed, we consider T�� the stress-energy-momentum
ensor for the following scalar field u such that

�gu + m2u = 0, ��T�� = 0. �7�

ince � /�t is a Killing vector then the 1-form T�0 dx� is closed. Now, we denote by T the unit
uture oriented vector field which is normal to �t such that

T� �

�x� =
 	2

��2� �

�t
+

2aMr

	2

�

��
� . �8�

hen the energy of the field measured by an observer �static at infinity� whose 4-velocity vector is
/�t is given by

E�u,t� ª �
�t

T�T�0dVol, dVol =
�2	2

�
dr d� �9�

here dVol is the volume measure on �. Hence,

E�u,t� = �
�

�	�tu�t�	2 +
�2

	2 	�ru�t�	2 +
�

	2 	��u�t�	2 +
�2 − 2Mr

	2 sin2 �
	��u�t�	2 +

��2m2

	2 	u�t�	2�	2

�
dr d� .

�10�

learly, the fourth term is positive outside the ergosphere and negative inside. Hence the energy is

ot positive definite in all BI. This property allows superradiance to take place outside the black
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ole. Hence we do not choose this energy space to study the Cauchy problem with a system which
ontains a spin-0 field as �4�. Then, the study is more difficult but not impossible, see, for example,
he strategy used in Ref. 24. Roughly speaking, it consists in finding a new energy norm positive
efinite such that its growth is controlled by an energy estimate. Finally in the sequel, we adopt
his approach but the choice of the new energy space is naturally given by the geometry thanks to
he 3+1 decomposition. Although in the case of the spin-1 /2 the phenomenon of superradiance
oes not take place, we show in the following paragraph that the 3+1 decomposition is neverthe-
ess useful for this field.

The space–time �BI ,g� is globally hyperbolic. This means that there exists a time function t
lobally defined on BI �providing of foliation of BI by the hypersurfaces �t� and that any points of

I can be reached from �t0
along a nonspacelike curve �see Geroch22�. Each �t are homeomorphic

o a given 3-manifold �. Now, we choose T the unit timelike oriented vector normal to �t defined
n �8� to fixed the product structure BI=R��, i.e., the points on different hypersurfaces �t are
dentified along the integral lines of T. This construction induces an explicit system of coordinates
hat is referred to as the point of view of locally non rotating observers:

� = t, R = r, � = �, � = � − t�, � ª −
gt�

g��

=
2aMr

	2 . �11�

ow, we decompose the metric g as the sum of its orthogonal projection along T and �T��

Tp�t,

g�� dx� dx� = N2 d�2 − h���, N ª
gtt −
gt�

2

g��

=
��2

	2 , �12�

here N is the lapse function, and

h��� = − grr dR2 − g�� d�2 − g���d� + �
��

�R
dR + �

��

��
d��2

. �13�

he definition of g in these new coordinates leads to simple form of hyperbolic evolution equation
ithout crossed terms depending on t and � since gt�=0 �unlike to the Boyer-Lindquist coordi-
ates form for g�. This is the main motivation to use the 3+1 decomposition for spin-1 /2 fields.
ut we remark that the metric is not time independent anymore. Henceforth, the evolution equa-

ion is defined with the help of time-dependent Hamiltonian. The following proposition state that
he dependence on t is rather nice �see Ref. 33.�

Proposition 2.1:

i� ��= �� ,h���� is a C�-Riemannian manifold for all ��R with smooth boundary ��= �r+�
�S�

2 .
ii� The lapse function N is strictly positive on �, vanishes on ��, is independent of �, C� and

uniformly bounded on �̄ as well as all its derivatives.
iii� h���C��R� ;Cb

��� ;T��M��, h���C��R� ;Cb
��� ;T��M��. All slice �� have the same ge-

ometry (g is independent of t in Boyer-Lindquist coordinates) and h��� is obtained from
h�0� by a rotation around the axis of the black hole whose angle is �� with � defined in
(11).

h�0� =
�2

R2du2 +
�2

�1 + u�2 �1 + u�2 d�2 +
�R2 + a2��2 + 2MRa2 sin2 �

�2�1 + u�2 �1 + u�2 sin2 � d�2

�14�
with u the h-distance to the horizon such that

                                                                                                            



�

I
B

t
e
D

�
d
c

S̄
p

W

O

O

H

w
v
m


T
E

F

052503-5 Local Cauchy problem on Kerr space-time J. Math. Phys. 47, 052503 �2006�

                        
u:r+, + �R � R, u�R� ª �
r+

R s

�

ds . �15�

Hence, we remark that h��� is equivalent to the Euclidian metric on R3 \ B̄�0,1�,

du2 + �1 + u�2 d�2 + �1 + u�2 sin2 � d�2. �16�

iv� 	h	, the determinant of the metric h���, is independent of � and 	g	ª	det g	=−N2	h	.

II. LOCAL CAUCHY PROBLEM FOR NONLINEAR DIRAC EQUATION OUTSIDE A KERR
LACK HOLE

In this section we study the local Cauchy problem for the nonlinear Dirac equation �3�. We use
he 3+1 decomposition to defined an evolution problem in BI. A result of Nicolas33 gives the
xistence of a propagator for a solution of the linear part of �3�. For the nonlinear equation, a
uhamel formula and a Sobolev embedding H2

�L� are useful to obtain the result.
We describe more precisely the Dirac equation in 3+1 decomposition framework. Since

BI ,g� is a globally hyperbolic spacetime then it admits a spin structure �Refs. 21 and 23�. We

enote by S the bundle over BI of negative spinors and by S̄ the bundle of positive spinors i.e., the
omplex structure in S simply replaced by its opposite. We also, respectively, denote by the S* and
* the dual of S and S̄. Finally the complexified tangent bundle to BI is recovered as the tensor

roduct of S and S̄,

TBI � C = S � S̄, T*BI � C = S*
� S̄*. �17�

e define the Dirac equation on the block I. The bundle of Dirac spinors on BI is described as

SD ª S*
� S̄ . �18�

n space–time BI, we choose a local orthogonal Lorentz frame �e0 ,e1 ,e2 ,e3� such that

g�e0,e0� = 1, g�ea,ea� = − 1, a = 1,2,3, g�ea,eb� = 0, a � b . �19�

bviously in the 3+1 decomposition framework, we choose for the basis �e0 ,e1 ,e2 ,e3�

e0
a
ª

1

2

Ta, e1,e2,e3 � T�t. �20�

ence, we define the Dirac operator on BI by

D ª �
a=0

3

ea . �ea
�21�

here �ea
is the directional convariante derivative along ea and ea. The Clifford product by the

ector ea. More presicely by a choice of spin-frame or Newman-Penrose tetrad, the Clifford
ultiplication of a Dirac spinor ��SD by ea is described as the multiplication by a Dirac matrices

a satisfying the following relation:

�� + �� = 2g��14, �,� = 0,1,2,3,4. �22�

he Dirac equation for a spin-1 /2 particle with mass md�0 takes the following form with
instein notation:

i��e�
� − md� = �D − md�� = 0. �23�
rom �20� and �23�, we write the Dirac equation as an evolution system
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ie0 . �e0
� = − i�

a=1

3

ea . �ea
� + md� �24�

r

�e0
� = − �

a=1

3

e0 . ea . �ea
� − imd� . �25�

e introduce the Dirac-Witten operator Dw��� on �� �extrinsic geometry� such that

Dw��� = �
a=1

3

ea . �ea
. �26�

e also define D���� the Dirac operator associated to the Levi-Civita connection on ��� ,h����
uch that

Dw��� = D���� +
1

2
2
Ke0, �27�

here K is the 
2 times the trace of the extrinsic curvature. This operator is symmetric on

0
���t ,SD� for the inner product

��,��L
��

2 ª �
�

��,��dVolh�
, �28�

here

��,�� ª �1�̄1 + �2�̄2 + �3�̄3 + �4�̄4 �29�

hen we choose a spin-frames adapted to the foliation ��. According to Proposition 2.1, this inner
roduct is in fact �-independent since the determinent of g is also �-independent. Finally, we write
he Dirac equation in the following form, i.e., as a first order symmetric hyperbolic system on �,

�e0
� = − e0 · D����� −

1

2
2
K� − imd� , �30�

nd the operator

DD ª e0 · D����, e0 =
1

2

T��� �31�

eing formally skew-adjoint on L2�� ;SD�. By choosing a adapted Newman-Penrose tetrad �a spin
rame adapted to foliation ��� equation �30� becomes �see Appendix A in Ref. 33�

��

��
= AD����, AD��� ª −

N

2

�D���� +
1

2
2
K + imd0 + B���� , �32�

here B is a matrix containing the connections terms of �a0
, N the lapse function and

0 = i� 0 12

− 12 0
� . �33�

e introduce the functional framework. On ��, we define the Sobolev space H0
k��� ;SD� as the

�
ompletion of C0 �� ;SD� for the norm
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���H0
k���� = ��

p=0

k �
�

��D��p�,�D��p��dVolh�1/2

, �34�

here D� is the Levi-Civita connection on �� ,h����. According Proposition 2.1, we remark that
or all ��R, dVolh=dVolh��� and the norms in H0

k��� ;SD� and H0
k���0

;SD� are locally uniformly in
ime equivalent �the constants in the norms estimates are time dependent and locally bounded in
ime�. Hence, we simply denote by H0

k�� ,SD� the Sobolev space associated with the norm

� . ��k� ª � . �H0
k���0

�

nd the metric h��0�.
Proposition 3.1:
We define the following norm for all ��R:

���k,� ª ��
p=0

k �
�

��D��p����,�D��p�����dVolh�1/2

, " � � H0
k��;SD� . �35�

hen the norm � · ��k� and � · �k,� are locally uniformly in time equivalent on H0
k�� ;SD�.

This proposition is a consequence of Proposition 2.1 and the Bochner-Lichnerowicz-
eitzenböck formula

�D�����*D���� = �D��2 = D�
*D� + 1

4Rh��� = − �h��� + 1
4Rh���, �36�

here Rh��� is the scalar curvature of �� ,h����. The following theorem concerns the Cauchy
roblem on Block I for the linear equation �32� �see Ref. 33�.

Theorem 3.1: For any initial data �0�H0
k�� ;SD�, k�N, the system (32) has a unique

olution � satisfying

� � �
l=0

k

Cl�R�;H0
k−l��;SD�� . �37�

oreover, there exits a propagator UD such that

i� UD�� ,�0� :�0�����.
ii� "t ,sR, UD�t ,s��L�H0

k�� ;SD��, UD is strongly continuous on Rts
2 to L�H0

k�� ;SD��.
iii� UD�t , t�=Id, UD�t ,s�=UD�t ,r�UD�r ,s� for all t ,s ,r�R.
iv� we have in the sense of distributions on R��,

�

��
UD��,�0��0 = AD���UD��,�0��0, �38�

�

��0
UD��,�0��0 = − UD��,�0�AD��0��0, �39�

v� We have also the unitary evolution in L2�� ;SD�,

������L2��;SD� = ��0�L2��;SD�. �40�

vi� There exists a continuous, strictly positive function �k such that

������k,� 
 �k��,�0���0�k,�0
, �k��,�� = 1, �41�
and a continuous, strictly positive function � such that
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�������k� 
 �k��,�0���0��k�, �k��,�� = 1, �42�

According to the 3+1 decomposition, we consider the nonlinear problem �3� in the new
equivalent form

��

��
= AD���� + JD���, JD��� ª i

N

2

k��*0��0� . �43�

In the sequel, we present a proof of the local Cauchy problem for the previous nonlinear
equation with H0

2�� ;SD� initial data. First, we prove the following lemma.

Lemma 3.1: There exists a constant C�0 such that,

�JD�����2� 
 C����2�
3 , �,� � H0

2��;SD� , �44�

�JD��� − JD�����2� 
 C�����2�
2 + ����2�

2 ��� − ���2�, �45�

Proof: We only prove �45�, since �44� is �45� with ��0. We have

JD��� − JD��� =
N

2

k���*0��0� − ��*0��0� + ��*0��0� + ��*0��0�

− ��*0��0� − ��*0��0�� ,

=
N

2

k����* − �*�0��0� + ��*0�� − ���0� + ��*0��0�� − ��� . �46�

ow, we remark that H2�R3��L��R3�. Then, since h��� is equivalent to the Euclidian metric on
3 \ B̄�0,1�, we have for ��H0

2�� ;SD�

���L���;SD� 
 C1����2�, C1 � 0. �47�

herefore, according to �46� and �47�, since N ,k�L�, we have

�JD��� − JD�����2� 
 C3����L���;SD�
2 + ���L���;SD����L���;SD� + ���L���;SD�

2 ��� − ���2�


 C�����2�
2 + ����2�

2 ��� − ���2�, C3,C � 0. �48�

�

Now, we study the following problem:

���� = S������ ,

S������ ª UD��,�0��0 + �
�0

�

UD��,s�JD���s��ds, � � C0���0,�0 + T��,H0
2��;SD�� .

�49�

o solve the local Cauchy problem

��

��
= AD���� + JD��� ,

�50�
2 0 2
���0� = �0 � H0��;SD�, � � C ���0,�0 + T��,H0��;SD�� .
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Theorem 3.2: For �0�H0
2�� ;SD�, there exists T���0��2���0 such that (43) admits a unique

olution � such that

���0� = �0 � H0
2��;SD�, � � C0���0,�0 + T��,H0

2��;SD�� . �51�

Proof: The operator S in �49� is well defined if �0�H0
2�� ;SD�. Indeed, if �0�H0

2�� ;SD�
hen UD�� ,�0��0�H0

2�� ;SD� by �42� and

�UD��,s + h�JD���s + h�� − UD��,s�JD���s����2�, K ª max��2�	,��,	,� � ��0,�0 + T�� ,


�UD��,s + h��JD���s + h�� − JD���s�����2� + ��UD��,s + h� − UD��,s��JD����s�����2�


 K�JD���s + h�� − JD���s����2� + K��UD�s,s + h� − 1�JD���s����2�.

ence s�UD�� ,s�JD���s�� is continuous on H0
2�� ;SD�, thanks to �44� and �45� and since UD is

trongly continuous on H0
2�� ;SD�.

Moreover, C0���0 ,�0+T�� ,H0
2�� ;SD�� is stable by S,

�S����� + h� − S��������2� 
 �UD�� + h,�0��0 − UD��,�0��0��2� + �
�0

�

�UD�� + h,s�JD���s��

− UD��,s�JD���s����2� ds + �
�+h

�

�UD�� + h,s�JD���s����2� ds

�52�

his norm vanishes as h→0, since U is strongly continuous on H0
2�� ;SD� for the first term on

ight on side, thanks to the same property, the Lebesgue theorem and �45� for the second. The last
s bounded by Kh sups���,�+h����s��H0

2��;SD�
3 , Kªmax��2�	 ,�� ,	 ,�� ��0 ,�0+T�� thanks to �44�.

Now, we define the convex closed of C0���0 ,�0+T�� ,H0
2�� ;SD��,

VT,�0
ª �� � C0���0,�0 + T��,H0

2��;SD��;���0� = �0, ���T 
 2K��0��2�� , �53�

K ª max��2�	,��,	,� � �s,s + T�� , �54�

ith

���T = sup
��0,�0 + T��

����2�. �55�

or T small S�VT,�0
��VT,�0

. Indeed, according to �45� and �53�, we have

�S����T 
 K�1 + 8TCK2��0��2�
2 ���0��2�, � � VT,�0

, �56�

nd we choose

T � �8CK2��0��2�
2 �−1. �57�

oreover, we obtain with �45�.

�S��� − S����T 
 TK�JD��� − JD����T 
 4TK2C��0��2�
2 �� − ��T, �,� � VT,�0

. �58�

hen, if we choose

T � min�8CK2��0��2�
2 �−1, ��4TK2C��0��2�

2 �−1� �59�
y the Banach fixed point theorem there exists a solution of �49�.
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Now we study the uniqueness of this problem. Given T�0, �0�H0
2�� ;SD� and two solutions

1 ,�2�C0���0 ,�0+T�� ,H0
2�� ;SD�� associated to �0, then with Kªmax��2�	 ,�� ,	 ,�� ��0 ,�0

T��

��1��� − �2�����2� 
 K�
�0

�

�JD��1�s�� − JD��2�s����2� ds 
 K����T
2 + ���T

2�

��
�0

�

��1�s� − �2�s���2� ds . �60�

hen by Gronwall lemma we have �1=�2.
First, we prove that the problems �49� and �50� are equivalent. If � is solution of �49� then �,

atisfies equation �50�. Indeed, according to the properties of UD we have

��

��
��� = AD���UD��,�0�� + �

�0

�

AD���UD��,s�JD���s��ds + JD�i���� = AD������� + JD������

ince s�AD���UD�� ,s�JD���s�� is bounded on H0
2�� ;SD� by �44� and �42� and also AD��� is

losed for each �. The inverse is straightforward. The uniqueness follows from the Gronwall
emma. �

Remark 3.1:

1� Theorem 3.2 is in fact valid for �0�H0
s�� ;SD�, s�2. Indeed, it is easy to prove thanks to

the Sobolev embedding Hs�R3��L��R3� an equivalent lemma of Lemma 3.1 for H0
s�� ;SD�.

The proof of the theorem with �0�H0
s�� ;SD� is essentially the same.

2� Theorem 3.2 is still valid with the following non linearity,

JD
p ��� ª i

N

2

k	��*0��	�p−1�/20�, p � 3. �61�

Then, we obtain the following estimates:

�JD
p �����s� 
 C����s�

p , �,� � H0
s��;SD� , �62�

�JD
p ��� − JD

p �����s� 
 C�����s�
p−1 + ����s�

p−1��� − ���s�. �63�

As above, the proof with this nonlinearity remains essentially the same.

V. LOCAL CAUCHY PROBLEM FOR THE DIRAC-KLEIN-GORDON EQUATION OUTSIDE
KERR BLACK HOLE

In this section we study the local Cauchy problem for the Dirac-Klein-Gordon equation �4�.
s above, we use the 3+1 decomposition to defined an evolution problem in BI. To prove the

xistence of local solutions, we use a Duhamel formula and a Sobolev embedding
s�R3��L��R3�, s�2.

According to the 3+1 decomposition, the preceding section and the following definition:

�g =
1


	g	
�

�x��
	g	g�� �

�x�� , �64�

q. �4� is equivalent to

��
= AD���� + i

N
�0V2� , �65�
�� 
2
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�2�

��2 = AKG���� + N2�*V3�, AKG��� ª N2�h − N2mkg
2 , �66�

here

�h ª
1

N
	h	
�

�xa�N
	h	hab �

�xb� �67�

nd AD��� defined in �32�. Now we put this equation in Hamiltonian form such that

�U

��
= ADKG���U + JDKG�U�, U=t��,�,���� , �68�

here

ADKG��� ª �AD��� 0 0

0 0 1

0 AKG��� 0
�, JDKG�U� ª�i

N

2

�0V2�

0

N2�*V3�
� . �69�

irst, we remark some properties for the linear part of the equation �66� �i.e., V3=0�. According to
result due to Leray,25 we have for this linear equation.

Theorem 4.1: For initial data �0 ,�1�C0
���� in �0�R, the equation (66) with V3=0 has a

olution ��C��R� ,C0
����� satisfying ���0�=�0 and �����0�=�1.

The proof of the following proposition consists in multiplying the equation by ��� and
ntegrating by part on ��0 ,����:

Proposition 4.1: There exists a continuous, strictly positive function � such that ��� ,��=1 and
or each ��C��R� ,C0

����� solution of the equation (68) with V3=0, we have for any � ,�0�R

E3+1��,�� 
 ���,�0�E3+1��,�0� �70�

ith

E3+1��,�� ª �
��

�	�t�	2 + N2hab�a��b�̄ + N2mkg
2 	�	2�

1

N
dVol. �71�

ccording to Proposition 2.1, we consider �=h�0� on �̄ and we introduce the Hilbert space

0
1,0��� as the completion of C0

���� � C0
���� for the norm

��u,v���1,0�
2

ª �
�

�	v	2 − AKGuū�
1

N
dVol = �

�

�	v	2 + N2	�u	2 + N2mkg
2 	u	2�

1

N
dVol,

�72�
	�u	2 = �ab�au�bū .
ith these two last results, we deduce the following.
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Proposition 4.2: For any initial data U0ª
t��0 ,�1��H0

1,0��� in �0�R, the equation (66)
ith V3=0 has an unique solution U�C0�R� ,H0

1,0���� satisfying U��0�= t��0 ,�1�. Moreover, we
ave the existence of a propagator UKG such that:

i� For all � ,	�R, UKG�� ,	��L�H0
1,0�, �UKG�� ,	��L�H0

1,0����
��	 ,�� where � is the function
defined in (70).

ii� UKG�� ,��=1, UKG�� ,s�=UKG�t ,r�UKG�r ,s� for all t ,s ,r�R.
iii� We have in the sense of distributions on R��,

�

��
UKG��,�0�U0 = MAKG

���UKG��,�0�U0, MAKG
= � 0 1

AKG 0
� , �73�

�

��0
UKG��,�0�U0 = − UKG��,�0�MAKG

��0�U0. �74�

We introduce ÃKG such that

ÃKG ª N2�� − 1. �75�

ow, we define H0
2,1��� as the completion of C0

���� � C0
���� for the norm

��u,v���2,1�
2

ª �
�

�	ÃKGu	2 − AKGuū − AKGvv̄�
1

N
dVol,

=�
�

�N2	�v	2 + N2mkg
2 	v	2 + 	N2��u − u	2 + N2	�u	2 + N2mkg

2 	u	2�
1

N
dVol = �

�

�N2	�v	2 + N2mkg
2 	v	2

+ N4	��u	2 + �1 + mkg
2 �N2	�u	2 + �mkg

2 N2 + 1�	u	2�
1

N
dVol.

ut, for a regular solution UKG of �66� with V3=0 associated to the initial data U0
KG�C0

����
� C0

����, we have

���MÃKG
���UKG���� = MAKG

����MÃKG
���UKG����

+ ����MAKG
���� + �MAKG

���,MĀKG
�����UKG���

here

�MAKG
���,MÃKG

���� = �ÃKG − AKG 0

0 AKG − ÃKG,
� = �N2 − 1��− 1 0

0 1
� . �76�

ence, we obtain the integral formula

MÃKG
���UKG��� = UKG��,�0��MÃKG

�au0�UKG��0�� + �
�0

�

UKG��,	�G�	�d	 , �77�

ith

G�	� ª ����MAKG
�	�� + �MAKG

���,MÃKG
�����UKG�	� . �78�
ut thanks to Proposition 2.1 we have
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�G�	���1,0� 
 C�	��UKG�	���2,1�, �79�

here C is a continuous positive function on R independent of UKG. Hence, by formula �77� and
he Gronwall lemma we obtain the estimate

�UKG�����2,1� 
 C���,�0��U0
KG��2,1�, �80�

here C� is a continuous function such that C��� ,��=1. Now, we introduce H0
2,1��� as the comple-

ion of C0
���� � C0

���� for the norm

��u,v���2,1�
2

ª �
�

�N2	�v	2 + 	v	2 + N4	��u	2 + N2	�u	2 + 	u	2�
1

N
dVol. �81�

his space, smaller than H0
2,1��� allow us to use the Sobolev embedding. Clearly

0
2,1����H0

2,1���. Moreover, if we consider the initial data U0
KG�C0

���� � C0
���� in some initial

ime �0�R, we have UKG�C��R� ;C0
���� � C0

����� and

�UKG�����2,1� 
 C1��UKG�����2,1� + ������L2��;N−1 dVol� + ��������L2��;N−1 dVol��, C1 � 0.

�82�

ut

������L2��;N−1 dVol� 
 ����0��L2��;N−1 dVol� + �
�0

�

�����	��L2��;N−1 dVol�d	 �83�


�UKG��0���2,1� + �
�0

�

�UKG�	���2,1� d	 �84�

nd

��������L2��;N−1 dVol� 
 ������0��L2��;N−1 dVol� + �
�0

�

���
2��	��L2��;N−1 dVol�d	 �85�


�UKG��0���2,1� + �
�0

�

�AKG��	��L2��;N−1 dVol�d	 �86�


�UKG��0���2,1� + �
�0

�

�UKG�	���2,1�d	 . �87�

ence, thanks to �80� and the two previous estimates, we deduce with �82� that

�UKG�����2,1� 
 C���,�0��UKG��0���2,1� + C2�UKG��0���2,1� + C2�
�0

�

�UKG�	���2,1�d	, C2 � 0

�88�

nd by the Gronwall lemma

�UKG�����2,1� 
 C���,�0��U0
KG��2,1�, �89�

ith C� a continuous positive function on R independent of UKG. This last estimate allows us to
xtend UKG as a propagator on H0

2,1���. Hence, with the Theorem 3.1 and the preview result we
educe the existence of a progator for the linear part of equation �68� on H0

2�� ;SD� � H0
2,1���:

2 2,1
Proposition 4.3: For any initial data U0�H0�� ;SD� � H0 ���, the system (68) with JDKG

                                                                                                            



=

�
�
�
�
�

�

W
o

S
i

M

a

T
t

H

052503-14 Fabrice Melnyk J. Math. Phys. 47, 052503 �2006�

                        
0 has a unique solution U satisfying

U � C0�R�;H0
2��;SD� � H0

2,1���� . �90�

Moreover, there exits a propagator UDKG such that

i� UDKG�� ,�0� :U0�U���, UDKGª
t�UD ,UKG�.

ii� "t ,s�R, UDKG�t ,s��L�H0
2�� ;SD� � H0

2,1����.
iii� UDKG is strongly continuous on Rts

2 to L�H0
2�� ;SD� � H0

2,1����.
iv� UDKG�t , t�=Id, UDKG�t ,s�=UDKG�t ,r�UDKG�r ,s� for all t ,s ,r�R.
iv� There exists a continuous, strictly positive function �DKG such that

�U�����2,2,1� ª �������2� + ������,���������2,1� 
 �DKG��,�0��U0��2,2,1�, �DKG��,�� = 1.

�91�

To study the nonlinear Cauchy problem for �DKG�, we establish the following lemma
about the continuity of JDKG on H0

2�� ;SD� � H0
2,1���.

Lemma 4.1: There exists a constant C�0 such that, Ui= ��i ,Vi�= ��i ,�i ,���i�
H0

2�� ;SD� � H0
2,1��� and �i supp��i�� �R , +���S�, R�0,

�JDKG�U1���2,2,1� 
 C�U1��2,2,1�
2 , �92�

�JDKG�U1� − JDKG�U2���2,2,1� 
 C��U1��2,2,1� + �U2��2,2,1���U1 − U2��2,2,1�. �93�

Proof: We prove �93�, indeed �92� is �93� with U2�0. We have

JDKG�U1� − JDKG�U2� =�i
N

2

��20V2��1 − �2� + ��1 − �2�0V2�1�

0

N2��2
*V3��1 − �2� + ��1

* − �2
*�V3�1�

� . �94�

e estimate the first component of the previous difference. We introduce H0
2��� as the completion

f C0
���� in the norm

���H2��� ª �
�

	�	2 + 	��	2 + 	�� �	2 dVol, �� � ª
1


	�	
�

�xa�
	�	�ab �

�xb� . �95�

ince H2�R3��L��R3� and h��� is equivalent to the Euclidian metric on R3 \ B̄�0,1�, we obtain as
n Lemma 3.1,

���L���� 
 C1���H2���, C1 � 0, � � H0
2��� . �96�

oreover, for ��C0
����,

N��� = N�� �� + �N . �� �97�

nd

�� ��N�� = N�� �� + 2 � N . �� + ��� �N�� . �98�

herefore, for V= t�� ,�����H0
2,1��� with supp���� �R , +���S� ,R�0 and since on supp���

here exists Ci�0 such that C1
N
C2, we have

�N��L���� 
 C2�V��2,1�, C2 � 0, V = t��,���� � H0
2,1��� . �99�
ence
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�i
N

2

��2V2��1 − �2� + ��1 − �2�V2�1��
�2�


 C2��V2��2,1���1 − �2��2� + �V1 − V2��2,1���1��2��


 C2��U1��2,2,1� + �U2��2,2,1���U1 − U2��2,2,1�.

�100�

oreover with �47�, we have

��0,N2��2
*0V3��1 − �2� + ��1

* − �2
*�0V3�1����2,1� 
 C3��U1��2,2,1� + �U2��2,2,1���U1 − U2��2,2,1�,

�101�

C3 � 0

nd with �100� we deduce the result. �

According to Theorem 4.3, UDKG�L�H0
2�� ;SD� � H0

2,1���� and satisfies �91�. Moreover, for

0ª ��0 ,�0 ,�1��H0
2�� ;SD� � H0

2,1��� at �0�0 and �i supp��i�� �R , +���S�, R�0, we have
upp�U�� ,�0�U0�� �R��R ,� ,�0�, +���S�, R��R ,� ,�0��R since the system �68� with JDKG=0 is
yperbolic. Hence, in the integral formulation of the Cauchy problem, we can apply Lemma 4.1
or U�� ,�0�U0. By an identical proof of Theorem 3.2, we have the following theorem.

Theorem 4.2: For U0ª ��0 ,�0 ,�1��H0
2�� ;SD� � H0

2,1��� at �0�0 and �i supp��i�� �R ,
���S�, R�0, there exists T��U0��2,2,1���0 such that system (68) admits a unique solution U

uch that

U��0� = U0 � H0
2��;SD� � H0

2,1���, U � C0���0,�0 + T��,H0
2��;SD� � H0

2,1���� . �102�
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he determination of all syzygies for the dependent
olynomial invariants of the Riemann tensor. II. Mixed

nvariants of even degree in the Ricci spinor
J. Carminati and A. E. K. Lim
Mathematics and Computational Theory Group, School of Information Technology,
Deakin University, Waurn Ponds, Victoria 3217, Australia
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We continue our analysis of the polynomial invariants of the Riemann tensor in a
four-dimensional Lorentzian space. We concentrate on the mixed invariants of even
degree in the Ricci spinor �ABȦḂ and show how, using constructive graph-theoretic
methods, arbitrary scalar contractions between copies of the Weyl spinor �ABCD, its

conjugate �̄ȦḂĊḊ and an even number of Ricci spinors can be expressed in terms
of paired contractions between these spinors. This leads to an algorithm for the
explicit expression of dependent invariants as polynomials of members of the com-
plete set. Finally, we rigorously prove that the complete set as given by Sneddon
�J. Math. Phys. 39, 1659–1679 �1998�� for this case is both complete and minimal.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2192976�

. INTRODUCTION

This paper continues our recent work on the classic problem of determining a complete set of
olynomial invariants of the Riemann tensor in a four-dimensional Lorentzian space.1 Recall that
set, I= �I1 , I2 , . . . In�, of invariants is said to be a complete set in the usual classical sense if any

olynomial invariant can be expressed as a polynomial in I1 , I2 , . . . In, and no invariant in the set
an be so expressed in terms of the remaining Ii. It then seems natural to ask the following
uestions:

i� How does one find a complete set of invariants for the Riemann tensor, and prove that this
set is both complete and minimal?

ii� How does one construct the polynomial syzygies2 relating any other invariant to the mem-
bers of this set?

The first question has received a significant amount of attention recently.3–11 However, none of
he existing work fully solves the problem without introducing additional restrictions.

It will be convenient to partition the set of Riemann tensor invariants into two subsets. The set
consists of invariants that are even in polynomial degree in the Ricci spinor, and the set O

onsists of invariants that are odd in polynomial degree in the Ricci spinor. We shall refer to
embers of E and O as “even invariants” and “odd invariants,” respectively. The pure Weyl

nvariants, W, and the even-degree pure Ricci invariants are subsets of E, whereas the odd-degree
ure Ricci invariants form a subset of O.

Bonanos investigated the subset of even invariants formed by contractions between arbitrary

roducts of �ABCD and the Weyl-type square of the Ricci spinor, ��AB�
ĊḊ��CD�ĊḊ, with the addi-

ional requirement that all contractions involve pairs of indices.11 All such invariants could be
xpressed in terms of traces of products of two symmetric matrices, and the problem was reduced
o finding a complete set for these traces. Bonanos also conjectured that scalars formed via

ifferent types of spinor index contractions between �ABCD and ��AB�
ĊḊ��CD�ĊḊ can be expressed

12
n terms of these traces.

47, 052504-1022-2488/2006/47�5�/052504/24/$23.00 © 2006 American Institute of Physics
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Sneddon’s work on the even invariants was also similarly restricted to scalars formed solely

ia paired index contractions between �ABCD, �ABȦḂ�CD
ȦḂ, �ABȦḂ�̄ȦḂ

ĊḊ
�CD

ĊḊ,

ABȦḂ�̄ȦḂ
ĊḊ

�̄ĊḊ
ĖḞ

�CD
ĖḞ and their complex conjugates.7,8 The problem of expressing even in-

ariants formed via different types of spinor index contractions in terms of this subset was not
xplicitly addressed. In a subsequent work, Sneddon argued that the odd invariants are expressible
n terms of the restricted even invariants and a subset of the odd invariants. This subset of odd
nvariants contains invariants which have exactly one factor of �ABC and exactly one factor of
ȦḂĊ, where A, B, and C are rotor �bivector� indices that run from 1 to 3.9 It is still unclear how
o construct the functions relating arbitrary invariants to these subsets.

The algebraically complete set of Carminati and Zakhary is complete in a less restrictive
ense: no invariant in their set can be expressed in an algebraic, as opposed to polynomial, relation
ith the remaining elements of the set.3–5

The second question has hardly been addressed at all in the literature. With the exception of
onanos,11 these existing results established completeness using nonconstructive methods and

herefore provide no insight on how to relate invariants outside the complete sets to those within
hese sets.

In the first part of this series, which will be referred to throughout this paper as “paper I,” we
ntroduced a correspondence between directed multigraphs and pure Weyl and pure Ricci
nvariants.1 This correspondence allowed the development of a graph-theoretic algorithm for the
onstruction of syzygies relating any pure invariant in terms of members of their complete sets. A
onstructive proof of Bonanos’ conjecture for the special case of the pure Weyl invariants is a
orollary of these results.1

In this paper, we extend the graphical representation of invariants to cover mixed invariants,
nd investigate the completeness problem for mixed invariants which are of even degree in the
icci spinor. Unless otherwise stated, the notation and terminology used is that of our previous
aper.1

I. GRAPHICAL REPRESENTATION OF MIXED INVARIANTS

In the case of the mixed invariants, we need to uniquely associate the invariants with directed
ultigraphs possessing three distinct classes of vertices corresponding to the Ricci spinor, the
eyl spinor and the conjugate Weyl spinor. We accomplish this using the following definition:

Definition 1: The directed multigraph GN uniquely associated with each invariant N consists
f the following:

i� A vertex set V= �v1 ,v2 , . . . ,vn�, where each element of V is uniquely associated with each
spinor contracted to form N.

ii� A vertex characteristic function � :V→ �4,4i ,2+2i� such that

��v j� = �2 + 2i , if f v j is a Ricci spinor

4, if f v j is a Weyl spinor

4i , if f v j is a conjugate Weyl spinor,
�

iii� An arc set E=V�V, and
iv� Two multiplicity functions, mS :V�V→ �0,1 ,2 ,3 ,4�, and mD :V�V→ �0,1 ,2 ,3 ,4�, such

that each arc �v j ,vk��E is associated with two multiplicities: the number of contractions
between lower undotted indices on the spinor v j and upper undotted indices on the spinor
vk is mS�v j ,vk�, whereas the number of contractions between lower dotted indices on the
spinor v j and upper dotted indices on the spinor vk is mD�v j ,vk�.

In the figures, vertices of characteristic 4, 4i and 2+2i are depicted using the symbols �,
¯ , and �, respectively. Recall that we use two types of arcs to depict the two multiplicity
unctions: contractions between undotted indices are represented by solid arcs, and contractions

etween dotted indices are represented by dashed arcs. For example, the invariants I1
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�A
B

DE�DE
Ȧ

Ḃ�̄
Ḃ

Ċ
ḊĖ

�B
CḊĖ�C

A
Ċ

Ȧ, I2=�AB
CD�CD

EF�EF
ĖḞ

�̄ĖḞ
ĊḊ

�AB
ĊḊ, and I3=�ABCD

AEȦḂ�B
EȦĊ

�CFĊḊ�D
FḊḂ

are associated with the graphs GI1
, GI2

, and GI3
, respectively, in Fig. 1.

Adopting vertex orderings as given in the contraction sequences of I1, I2, and I3 in the
receding paragraph, we can represent these graphs as their adjacency matrices, where the entry in
ow j and column k is the total multiplicity of the arcs from vertex j to vertex k. The generalized
efinition of total multiplicity given in paper I is applicable to the mixed invariants.1

A�GN� = �ajk� ,

ajk = m�v j,vk� = mS�v j,vk� + imD�v j,vk�, j,k = 1,2, . . . ,n , �1�

A�GI1
� = 	

0 2 0 0 1

0 0 0 0 i

0 i 0 2i 0

1 0 0 0 0

0 0 i 1 0

 ,

A�GI2
� = 	

0 2 0 0 0

0 0 2 0 0

0 0 0 2i 0

0 0 0 0 2i

2 0 0 0 0

 ,

A�GI3
� = 	

0 1 1 1 1

0 0 0 0 0

0 1 + i 0 i 0

0 0 0 0 0

0 i 0 1 + i 0

 .

We can assume without loss of generality that no loops are present in these graphs, i.e., for all

j �V�GN� ,ajj =m�v j ,v j�=0, because self-contracted Weyl and Ricci spinors are identically zero.
sing the convention introduced in our previous paper, the sum of the outdegrees and the inde-
rees at each vertex depends on whether it is associated with a Ricci spinor, Weyl spinor, or
onjugate Weyl spinor. The following condition holds for the sum of outdegrees and indegrees at

j:

�
n

�ajk + akj� = ��v j�, j = 1,2, . . . ,n . �2�

FIG. 1. Directed multigraphs associated with the invariants I1, I2, and I3.
k=1
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Equivalently, the degrees of the vertices of the underlying undirected graph, UN, of GN are
qual to their respective characteristics.

As per our previous paper, we associate each invariant N with its oriented form N� by
eorienting arcs in GN to form GN�, which satisfies the condition m�v j ,vk�=0 whenever
�vk ,v j��0 for all j�k. N� is equivalent to N up to a sign, depending on whether the number of

rcs reoriented to form GN� from GN is even or odd.
We say that the graph GN, which possesses two types of arcs, is connected iff at least one path

xists between any pair of vertices when the types and the directions of the arcs are both disre-
arded. We can now describe an invariant N as being connected iff GN is a connected graph.

By directly extending Definition 1 in an obvious manner, we can use graphs to represent
pinors with free indices, up to a sign. While the directions of contractions between pairs of
ndices are specified, we note that the correspondence in Definition 1 would not provide any
nformation on the covariant or contravariant nature of the free indices. It is possible to augment
he correspondence to account for the nature of these indices. However, we shall not do so here as
his is not required in any of the subsequent discussion in this paper.

Unlike the graphs associated with the invariants, the graph G� associated with the p-spinor �
ossesses deficient vertices, which are associated with the component spinors of � that possess free
ndices. Assuming � is formed via contractions between the Weyl, conjugate Weyl and Ricci
pinors, we may associate with each vertex of G� a vertex deficiency, D :V

�0,1 ,2 ,3 ,4 , i ,2i ,3i ,4i ,1+ i ,1+2i ,2+ i ,2+2i�, where

D�v j� = ��v j� − �
k=1

n

�ajk + akj�, j = 1,2, . . . ,n .

Re�D�v j�� and Im�D�v j�� are the number of free undotted and dotted indices on the spinor
ssociated with v j, respectively. It immediately follows that

�
j=1

n

�Re�D�v j�� + Im�D�v j��� = p .

We are now in a position to state that � is connected iff G� is connected. A disconnected spinor
ay be expressed as a product of connected spinors and invariants, where each factor corresponds

o a connected subgraph of G�. For example, �ABEF�CGH
E�D

FGH is connected, whereas

AEFG�BHḂḢ�C
EFG�D

HḂḢ is disconnected, and is the product of two connected spinors,

AEFG�C
EFG and �BHḂḢ�D

HḂḢ.
The following result holds for oriented graphs associated with any mixed invariant.
Lemma 1: The total number of odd-multiplicity arcs of a given type which are incident with

ach vertex of GN� is even (or zero).
Proof: Each vertex of GN� is incident with an even number of �or zero� arcs of either type. It

mmediately follows that any vertex of GN� cannot be incident with an odd number of odd-
ultiplicity arcs of either type. �

We introduced unpaired subgraphs in paper I when discussing the construction of syzygies
nvolving the pure Weyl invariants.1 The concept is readily extendable to the mixed case: consider
he subgraphs, SN�

S and SN�
D , of the oriented directed graph, GN� where mS

N�
S �v j ,vk�=1 iff

e�mGN�
�v j ,vk�� is odd, and mS

N�
S �v j ,vk�=0 otherwise; while mS

N�
D �v j ,vk�= i iff Im�mGN�

�v j ,vk�� is

dd, and mS
N�
D �v j ,vk�=0 otherwise. Thus, the oriented graph GN� associated with a mixed invariant

ay be considered to be the union of three edge-disjoint subgraphs: GN�=SN�
S �SN�

D �GN�
S , where

he subgraph GN�
S consists solely of solid and dashed arcs of even multiplicity. The adjacency

atrices of these subgraphs satisfy the following conditions:

A�SS � = �Re�ajk� � mod 2� ,
N�
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A�SN�
D � = �i�Im�ajk� � mod 2�� , �3�

A�GN�
S � = A�GN�� − �A�SN�

S � + A�SN�
D �� ,

nd the subgraphs SN�
S and SN�

D satisfy the following property.
Lemma 2: The arcs in SN�

S and SN�
D may be reoriented to form SN�

S and SN�
D respectively, such

hat each connected component of SN�
S and SN�

D has a directed Euler circuit.
Proof: This immediately follows from Lemma 1, which implies that the degrees of every

ertex of SN�
S and SN�

D are divisible by two. �

II. PROPERTIES OF EVEN AND ODD INVARIANTS

Consider the sets Ec�E and Oc�O, which are the connected invariants within E and O,
espectively. We observe that an invariant N�E either belongs to Ec or is the product of elements
f Ec and/or an even number of elements of Oc, whereas an invariant N�O either belongs to Oc

r is the product of an element of Oc and an element of E.
Lemma 3: When N�E, GN possesses an even number of solid arcs and an even number of

ashed arcs. Furthermore, the number of distinct odd-multiplicity arcs of each type in GN� is
ither zero, or even and greater than or equal to four.

Proof: N has the general form �n�2m�̄p. The sum of the degrees of all vertices in the
nderlying undirected graph, UN, of GN is 4n+2m�2+2i�+ �4p�i. It follows that the sums of all
olid arc multiplicities, and of all dashed arc multiplicities in GN are even, being 2�n+m� and
�m+ p�, respectively. Hence, there must be an even number of �or zero� odd-multiplicity arcs of
ach type in GN. Suppose we had some GN� possessing only two odd-multiplicity arcs of a given
ype. By Lemma 2, it follows that both these arcs must connect one pair of vertices v j and vk,
here both m�v j ,vk� and m�vk ,v j� are odd. This contradicts the fact that GN� is oriented. Thus, if

he number of distinct odd-multiplicity arcs of a given type in GN� is nonzero, the minimum
umber of such odd-multiplicity arcs is four. �

Lemma 4: When N�O, GN possesses an odd number of solid arcs and an odd number of
ashed arcs. Furthermore, the number of distinct odd-multiplicity arcs of each type in GN� is odd
nd greater than or equal to three.

Proof: N has the form �n�2m+1�̄p. The sum of the degrees of all vertices in the underlying
ndirected graph, UN, of GN is 4n+ �2m+1��2+2i�+ �4p�i. It follows that the number of solid and
ashed arcs in GN are 2�n+m�+1 and 2�m+ p�+1, respectively. Hence, there must be an odd
umber of odd-multiplicity arcs of each type in GN. Suppose we had some GN� possessing exactly
ne odd-multiplicity arc of a given type. By Lemma 2, it follows that this arc forms a loop at a
ingle vertex, which implies that N�0. Thus, the minimum number of such odd-multiplicity arcs
n GN� is three. �

We shall concentrate on finding a complete set of invariants for E in this paper, and address

he determination of a complete set for O in a subsequent presentation. We define the set Ê�E
uch that an even invariant N belongs to Ê iff all contractions in N are even, i.e., all contractions
etween spinors in N occur pairwise, and the contractions belonging to each pair have the same
irection. This is equivalent to saying that every arc in GN possesses multiplicities that are divis-
ble by 2. The invariant I2 represented in Fig. 1 is a member of this set.

The set Êc� Ê consists of the connected invariants within Ê. We note that Ŵ� Ê, and Ŵc� Êc.

he even-degree pure Ricci invariants belonging to Êc are associated with “polygon-shaped”
raphs with alternating solid and dashed arcs of multiplicity two.

Lemma 5: An invariant N� Ê either belongs to Êc, or is expressible as a product of elements

f Êc.

Proof: Suppose N� Ê. If GN is connected, then N� Êc. Suppose GN is disconnected and it

ossesses a connected subgraph, Sodd containing an odd number of vertices of vertex characteristic
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+2i. It follows from Lemma 4 that Sodd possesses an odd number of arcs of either arc type.

ence the multiplicity of every arc in GN is not divisible by 2, contradicting the fact that N� Ê.
hus, if GN is disconnected, each of its connected components must possess an even number of
ertices of characteristic 2+2i, and given that the multiplicity of every arc in GN must be divisible

y 2, it follows that each connected component is associated with a member of Êc. �

We are now in a position to state the main result of this section. Following the convention
ntroduced in Paper I, we use the symbol � in the graphical representation to denote addition of
he associated invariants of two graphs.1,13

Theorem 1: For any invariant N�E, SN�
S and SN�

D are expressible, using the identity, as a

nite sum of graphs, S̃j
S and S̃l

D, consisting only of even-multiplicity arcs which are solid and
ashed, respectively,

SN�
S � �

j=1

n

bjS̃j
S, �4�

SN�
D � �

l=1

m

clS̃l
D, �5�

here the coefficients bj and cl are rational numbers.
The graph GN� may then be expressed as

GN� � �
j=1

n

�
l=1

m

bjclGXjl
, �6�

here

GXjl
= GN�

S
� S̃j

S � S̃l
D. �7�

he invariant N� then obeys the following identity:

N� = �
j=1

n

�
l=1

m

bjclXjl, �8�

here Xjl� Ê, j=1,2 , . . . ,n; l=1,2 , . . . ,m.
Proof: By Lemma 2, the unpaired subgraphs SN�

S and SN�
D are reorientable to SN�

S and SN�
D where

ach connected component of SN�
S and SN�

D are Euler circuits. SN�
S and SN�

D are equivalent to SN�
S and

N�
D , respectively, up to a sign modulo union with GN�

S in the graphical representation, depending
n whether the total number of arcs reoriented is even or odd. Lemma 3 requires that the sums of
engths of the solid circuits in SN�

S and of the dashed circuits in SN�
D must both be even.

Case 1: Both SN�
S and SN�

D are connected.
Let SN�

S be a single solid k-circuit, and SN�
D be a single dashed k*-circuit, where both k and k*

re even. Following the argument presented in Case 1 of the proof of Theorem 1 in Paper I,1 and
ncorporating a sign change if an odd number of arcs were reoriented to form SN�

S from SN�
S , it is

ossible to reexpress SN�
S as written in Eq. �4�. A direct extension of this method to dashed arcs

ields Eq. �5�. Each individual term, GXjl
in the graphical decomposition of GN� �Eq. �6�� is

onstructed by forming the union of GN�
S with S̃j

S and S̃l
D, as shown in Eq. �7�. The equivalent

xpression in spinor form expresses N� as a polynomial of members of Ê �Eq. �8��.
Case 2: At least one of SN�

S or SN�
D is not connected.

When SN�
S is not connected, it is reducible to the connected case using the procedure described

n Case 2 of the proof of Theorem 1 in Paper I.1 The extension towards the reduction of SN�
D to the
onnected case is trivial. �
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Bonanos’ full conjecture11 is a corollary of this result. We note that Theorem 1 holds for both
onnected and disconnected members of E, and applying the decomposition process outlined in the
roof to disconnected members of E yields algebraic syzygies involving connected invariants.
neddon has suggested that squares of odd invariants, and products of any two odd invariants, will
e expressible as polynomials of even invariants.8 In fact, this will be true for any product
ontaining an even number of odd invariants. We have now provided a means of explicitly
onstructing such syzygies, and an example is provided in Appendix A. Polynomial syzygies

elating odd invariants to members of Ôc and Êc will be explored in detail in the next part of this
eries.

V. DETERMINATION OF THE BASIS ELEMENTS OF Êc

Lemma 5 and Theorem 1 reduce the problem of finding a polynomial basis for E to that of

nding one for Êc. Ultimately, we also wish to explicitly construct the syzygies relating any
ember of E to the basis. To achieve these objectives, we construct spinorial objects that consti-

ute fundamental building blocks for the elements of Êc, and examine the structures of these
lements in terms of the building blocks. We make the following definition.

Definition 2: A �-spinor is any connected 4-indexed spinor �ABCD which may be formed
olely from even dotted contractions between copies of the Weyl, conjugate Weyl and Ricci spinors.

Apart from the trivial �-spinor, �ABCD, the �-spinors can only be formed using the conjugate
eyl and Ricci spinors. All of the available dotted indices must be completely exhausted using

ven dotted contractions. Furthermore, a �-spinor must have four free undotted indices, and not
ontain any undotted contractions. Therefore, all nontrivial �-spinors contain exactly two copies
f the Ricci spinor, and can be described as a contiguous sequence of even dotted contractions
eginning with a Ricci spinor, continuing with an arbitrary number of conjugate Weyl spinors, and

nding with another Ricci spinor: ��̄p�. It will be convenient to describe the �-spinors as having
wo types of symmetries: index-pair symmetry �ABCD=�BACD=�ABDC, and block symmetry

ABCD=�CDAB.
Every �-spinor has a dyad expansion of the following form:

j�ABCD = j�00�A�B�C�D − 4 j�01��A�B�CoD� + j�02�oAoB�C�D + oCoD�A�B� + j�11�oAoC�B�D + oAoD�B�C

+ oBoC�A�D + oBoD�A�C� − 4 j�12o�AoBoC�D� + j�22oAoBoCoD,

here

j�00 = j�0000,

j�01 = j�0001 = j�0010 = j�0100 = j�1000,

j�02 = j�0011 = j�1100,

�9�
j�11 = j�1010 = j�1001 = j�0110 = j�0101,

j�12 = j�0111 = j�1011 = j�1101 = j�1110,

j�22 = j�1111,
nd the prefix j distinguishes distinct �-spinors.
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Taking the conjugates of the �-spinors yield the �̄-spinors. Apart from the trivial �̄-spinor,
¯

ȦḂĊḊ, all �̄-spinors have the form of a contiguous sequence of even undotted contractions
eginning with a Ricci spinor, continuing with an arbitrary number of Weyl spinors, and ending
ith another Ricci spinor: ��p�.

We now establish that the �-spinors and the �̄-spinors constitute fundamental building blocks

or the invariants belonging to Êc.

Lemma 6: A connected invariant N belongs to Êc iff it is expressible in at least one of the
ollowing ways:

i� solely as even contractions between copies of �-spinors, or

ii� solely as even contractions between copies of �̄-spinors.

Proof: The graph GN associated with any such N only possesses arcs of even multiplicity. The

emma is trivially true for the quadratic invariants: �ABCD�ABCD, �̄ȦḂĊḊ�̄ȦḂĊḊ, and �ABȦḂ�ABȦḂ.
ence we can assume without loss of generality that each spinor in N is evenly contracted to

xactly two other distinct spinors. It is then clear from the structure of GN that N is a cyclic
equence of such even contractions. Suppose contractions between pairs of undotted indices are
resent. These undotted contractions can be viewed to separate this cyclic sequence of even
ontractions into connected 4-indexed compound spinors formed solely from even dotted contrac-
ions. Thus, we obtain a contractive partitioning of N into copies of �-spinors. Similarly, contrac-

ions between pairs of dotted indices yield a contractive partitioning of N into copies of �̄-spinors.

he converse follows immediately from the fact that besides �ABCD and �̄ȦḂĊḊ, every �-spinor

nd �̄-spinor contain exactly two copies of the Ricci spinor. �

For example, the invariant �ABCD�CDĊḊ�̄ĊḊĖḞ�ABĖḞ can be formed by even undotted con-

ractions between the �-spinors �ABCD and �CDĊḊ�̄ĊḊĖḞ�ABĖḞ, or by even dotted contractions

etween the �̄-spinors �̄ĊḊĖḞ and �ABĖḞ�ABCD�CDĊḊ. The pure Weyl invariants belonging to Ŵc

nd their conjugates both form subsets of Êc. The former is expressible only in terms of �-spinors,

nd the latter only in terms of �̄-spinors. However, all other invariants belonging to Êc possess
oth undotted and dotted contractions. Thus for these invariants we can obtain both a �-structure

nd a �̄-structure. This existence of two distinct structures of the mixed invariants belonging to Êc

ill play a significant role in the subsequent basis determination.
It will be useful to define the 	-spinors to be connected 4-spinors formed by sequential

airwise undotted contractions between copies of �-spinors, and 	̄-spinors to be the conjugates of
-spinors. All 	-spinors possess index-pair symmetry, but a 	-spinor will not possess block
ymmetry unless it is formed from a palindromic sequence of �-spinors. Every 	-spinor has a
yad expansion of the following form:

j	ABCD = j	00�A�B�C�D − 2 j	10�C�D��A�o�B� − 2 j	01�A�B��C�o�D� + j	20oAoB�C�D + j	02oCoD�A�B

+ j	11�oAoC�B�D + oAoD�B�C + oBoC�A�D + oBoD�A�C� − 2 j	12oCoDo�A���B�

− 2 j	21oAoBo�C���D� + j	22oAoBoCoD,

here

j	00 = j	0000,

j	01 = j	0001 = j	0010,

j	 = j	 = j	 ,
10 0100 1000
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j	02 = j	0011,

j	20 = j	1100, �10�

j	11 = j	1010 = j	1001 = j	0110 = j	0101,

j	12 = j	0111 = j	1011,

j	21 = j	1101 = j	1110,

j	22 = j	1111,

nd the prefix j distinguishes distinct 	-spinors.

Lemma 6 implies that all scalars constructed from evenly contracting 	-spinors belong to Êc.
e shall specify these scalars as a list, �j1 , j2 , j3 , . . . �, of the prefixes of the sequence of 	-spinors

venly contracted in a cyclic manner to form the scalar. For example, the scalar
1	ABCD

3	CD
EF

3	EF
GH

4	GHAB would be denoted as �1, 2, 3, 4�. Obviously, the scalar denoted by
j1 , j2 , j3 , . . . , jn� is equivalent to the scalars represented by any cyclic permutation of that list. In
he special case where all of the spinors denoted by j1 , j2 , j3 , . . . , jn are �-spinors, the scalar
enoted by �j1 , j2 , j3 , . . . , jn� is also equivalent to the scalars represented by any cyclic permutation
f the reversal of that list, �jn , . . . , j3 , j2 , j1�. For convenience, we shall drop the commas whenever
his will not create any ambiguities and rewrite �A ,B ,C ,D� as �ABCD�. Additionally, we will
urther simplify the representation by indicating a contiguous, evenly contracted sequence of n
opies of j	 as jn within the square brackets. For example, we will write �AAAB� and �AABB� as
A3B� and �A2B2�, respectively.

One can verify the following scalar identity using Eq. �10�:

�ABCD� + �ABDC� + �ACBD� + �ACDB� + �ADBC� + �ADCB�

− �A��BCD� − �A��BDC� − �B��ACD� − �B��ADC� − �C��ABD�

− �C��ADB� − �D��ABC� − �D��ACB� − �AB��CD� − �AC��BD�

− �AD��BC� + �AB��C��D� + �AC��B��D� + �AD��B��C�

+ �BC��A��D� + �BD��A��C� + �CD��A��B� − �A��B��C��D� � 0. �11�

Equation �11�, which obviously also holds when A, B, C, and D are all 	̄-spinors, is a polynomial

dentity relating invariants of the form �ABCD� to other members of Êc. The form of this equation
s readily justified by associating each 	-spinor, 	ABCD, with a 3�3 complex matrix, 	
�, which
ransforms under the SO�3,C� representation. The elements of 	
� are the components of 	ABCD

ith respect to the orthonormal basis,14

�
1

AB = −
i

2
�oAoB − �A�B� ,

�
2

AB =
1
2

�oAoB + �A�B� ,

�
3

AB =
i

2
�oA�B + �AoB� ,
uch that
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� = 	ABCD�



AB�
�

CD.

n terms of the dyad components of 	ABCD, the matrix 	
� has the following form:

	
� = 	
1

2
�	02 + 	20 − 	00 − 	22�

i

2
�	20 + 	22 − 	00 − 	02� 	01 − 	21

i

2
�	02 + 	22 − 	00 − 	20�

1

2
�	00 + 	02 + 	20 + 	22� �	01 + 	21�i

	10 − 	12 �	10 + 	12�i − 2	11


 ,

nd performing a similar calculation on �ABCD yields the analogous matrix �
�,

�
� = 	�02 −
1

2
��00 + �22�

i

2
��22 − �00� �01 − �12

i

2
��22 − �00� �02 +

1

2
��00 + �22� ��01 + �12�i

�01 − �12 ��01 + �12�i − 2�11


 .

Equtation �11� is equivalent to the statement that antisymmetrizing over four indices annihi-
ates any product of 3�3 matrices, 	�


�	�
	

�	���

�0. The derivation of the corresponding

atrix identity from the Cayley-Hamilton theorem has been reported by Spencer and Rivlin, who
ubsequently used various versions of this identity to construct bases for matrix polynomials in up
o five 3�3 matrices.15–17

Setting D=A and D=C=A in Eq. �11� gives the special cases Eqs. �12� and �13�, respectively,

2�A2BC� + 2�A2CB� + 2�ABAC� − 2�A��ABC� − 2�A��ACB� − 2�B��A2C� − 2�C��A2B� − �A2��BC�

− 2�AB��AC� + �A2��B��C� + 2�AB��A��C� + 2�AC��A��B� + �BC��A�2 − �A�2�B��C� � 0,

�12�

6�A3B� − 6�A��A2B� − 2�B��A3� − 3�A2��AB� + 3�A2��A��B� + 3�AB��A�2 − �A�3�B� � 0.

�13�

Given that �-spinors are a specialized form of 	-spinors, it is immediately obvious that Eqs.

11�–�13� also hold when A, B, C, and D are all �-spinors, or all �̄-spinors. Equation �13� states
hat whenever three or more identical �-spinors are contracted sequentially within the �-structure
f an invariant, this invariant is then expressible as a polynomial function of lower-degree invari-

nts. We define an invariant N� Êc to be �-irreducible if it does not possess a �-structure or if its
-structure is not expressible as a function of lower-degree invariants modulo Eq. �13�. Simliarly,

f N does not possess a �̄-structure or if its �̄-structure is not expressible as a function of

ower-degree invariants modulo Eq. �13�, then N is said to be �̄-irreducible. We shall make use of
his result, which follows immediately from Eq. �13�.

Lemma 7: An invariant N� Êc is either �-irreducible or expressible as a polynomial function

f �-irreducible elements of Êc. Furthermore, N is either �̄-irreducible or expressible as a poly-

omial function of �̄-irreducible elements of Êc.
We are now in a position to introduce the following specific �-spinors:

1�ABCD = �ABCD,

2� = � ˙ ˙ � ȦḂ,
ABCD ABAB CD
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3�ABCD = �ABȦḂ�̄ȦḂ
ĊḊ

�CD
ĊḊ,

4�ABCD = �ABȦḂ�̄ȦḂ
ĊḊ

�̄ĊḊ
ĖḞ

�CD
ĖḞ,

hich are the four lowest-degree �-spinors, and the respective spinorial counterparts of the ma-
rices A, B, C, and D in Sneddon’s paper.8 The dyad components of 1�, 2�, 3�, and 4� are
resented in Appendix B. From this point onwards, we shall follow Sneddon’s notation and use the
ymbols A, B, C, and D to represent the symmetric 3�3 matrix representations of 1�, 2�, 3�, and

4�, respectively, and the list notation to denote the traces of matrix products. For example, the

calar invariant �AB
CD�CD

EF�EF
ĖḞ�AB

ĖḞ
is equivalent to the trace of the matrix product A2B, and

hall be denoted as �A2B�. Sneddon has suggested that any even invariant is expressible in terms
f traces of products of the matrices A, B, C, and D, and their conjugates.8 The following result,
n conjunction with Theorem 1, formally justifies a stronger version of this claim.

Theorem 2: Any invariant N� Êc is expressible as a polynomial function of �A2�, �A3� and
races of products of the matrices A, B, C, and D.

Proof: Theorem 1 in paper I1 immediately implies that this statement is true for all pure Weyl
nd conjugate-Weyl invariants. Hence, without loss of generality, we only consider the remaining

nvariants belonging to Êc. Consider any such N� Êc. It possesses both a �-structure and a
¯ -structure. There are two cases.

Case 1: N is �̄-irreducible.
Here, N will never contain contiguous, evenly contracted sequences of more than two copies

f the conjugate Weyl spinor. Thus, Lemma 6 implies that its �-structure will contain only copies
f 1�, 2�, 3�, and 4�; and the theorem is established in this case.

Case 2: N is �̄-reducible.

Here, N is a polynomial function of �̄-irreducible elements of Êc, by Lemma 7. Apart from the

ure conjugate Weyl invariants �A2� and �A3�, every other �̄-irreducible invariant possesses a
-structure, and the problem is reduced to Case 1. �

The concept of reducibility modulo Eq. �13� thus reduces the general problem to one of
etermining the basis of the set of all product traces of four symmetric 3�3 complex matrices,

1�, 2�, 3�, 4�. Spencer and Rivlin have derived the following basis, which we shall call S, for
roduct traces of four arbitrary symmetric 3�3 matrices, A, B, C, and D, under the orthogonal
ransformation group.15–17

Degree 1: �A� , �B� , �C� , �D�.
Degree 2: �A2� , �AB� , �AC� , �AD� , �B2� , �BC� , �BD� , �C2� , �CD� , �D2�.
Degree 3: �A3� , �A2B� , �A2C� , �A2D� , �AB2� , �ABC� , �ABD� , �AC2� , �ACD� , �AD2� , �B3� ,

�B2C� , �B2D� , �BC2� , �BCD� , �BD2� , �C3� , �C2D� , �CD2� , �D3�.
Degree 4: �A2B2� , �A2BC� , �A2BD� , �A2C2� , �A2CD� , �A2D2� , �AB2C� , �AB2D� ,

�ABC2� , �ABCD� , �ABDC� , �ABD2� , �AC2D� , �ACD2� , �B2C2� , �B2CD� ,
�B2D2� , �BC2D� , �BCD2� , �C2D2�

Degree 5: �A2B2C� , �A2B2D� , �A2BC2� , �A2BCD� , �A2BDC� , �A2BD2� ,
�A2C2D� , �A2CD2� , �AB2C2� , �AB2CD� , �AB2D2� , �ABC2D� ,
�ABCD2� , �ABDC2� , �ACB2D� , �ACBD2� , �AC2D2� , �B2C2D� ,
�B2CD2� , �BC2D2�.

Degree 6: �A2BACD� , �A2B2CD� , �A2CBD2� , �A2C2BD� , �AB2CBD� ,
�ABC2DC� , �ABC2D2� , �ACB2D2� , �AC2B2D� , �ADBCD2�

The proofs of Lemmas 1–3 and Theorem 1 in Ref. 15 and Sec. V in Ref. 16 are able to be
mplemented as an algorithm that allows the trace of any product of A, B, C, and D to be

18
ystematically expressed in terms of S using only variations of Eq. �11�.
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In our case, �A��0 owing to the trace-free character of 1�. Furthermore, the matrices A, B, C,
are not independent, and the complete set for E will be a proper subset of S. We say that an

lement of Êc is minimal with respect to the �-structure, or �-minimal iff it does not possess a
-structure or its �-structure corresponds to an element in S. With the exception of �A2� and �A3�,

he remaining �-minimal elements also possess �̄-structures. It can be easily verified that their
¯ -structures contain only 1�, 2�, 3�, and 4�; therefore these invariants also belong in the space

f product traces of Ā, B̄, C̄, and D̄. It immediately follows that the set S of conjugates of the

lements of S form the basis of this space, and an element of Êc is �̄-minimal iff it does not

ossess a �̄-structure or its �̄-structure corresponds to an element in S.

For example, the invariant N=�ABCD�CDĊḊ�EFĊḊ�EFĖḞ�AB
ĖḞ possesses the �-structure

AB2� and the �̄-structure �BC�. Therefore N is both �-minimal and �̄-minimal. On the other

and, the �-minimal invariant �CD� possesses the �̄-structure �A2BAB�, and can be expressed in

erms of �̄-minimal invariants as follows:

�A2BAB� = 1
6 ��A3��B�2 − �A3��B2�� + �AB��A2B� .

n accordance with Theorem 2, we can rewrite �A2BAB�, �B�, �B2�, �AB�, and �A2B� in terms of
heir �-structures to give

�CD� = 1
6 ��A3��B�2 − �A3��B2�� + �C��D� .

t is straightforward to verify that every invariant on the right-hand side is both �-minimal and
¯ -minimal. Analyzing every member of S in this manner yields the set of even invariants which

re both �-minimal and �̄-minimal, JE= ��A2�, �A3�, �A2�, �A3�, �B�, �B2�, �B3�, �C�, �D�, �AB�,
AC�, �AD�, �BC�, �BD�, �A2B�, �A2C�, �A2D�, �AB2�, �ABC�, �ABD�, �A2B2�, �A2BC�, �A2BD�,
AB2C�, �AB2D�, �A2B2C�, �A2B2D�, �A2BACD��.

An even invariant belonging to the complete set for E is necessarily a member of JE and it
emains to be established whether every member of JE belongs to the complete set for E. Sneddon
as previously specialized the set S towards the determination of a complete set, J, for the even
nvariants,8 and the set JE is identical to his complete set J. In Sec. VI of his subsequent paper
oncerning the odd invariants, Sneddon examined new syzygies that arose from multiplying syzy-
ies of the odd invariants with other odd invariants.9 These results led him to argue that JE is a
inimal basis for E. Now, every four-dimensional Lorentzian manifold belongs to one of 15

ifferent possible Segre types. Therefore, we may explicitly demonstrate the minimality of JE,
ithout needing to consider the odd invariants, by showing that each invariant is necessary as a
asis element for at least one of the 15 different Segre types.

For each Segre type, a canonical frame4,5 was selected and the members of JE were expressed
n terms of the Newman-Penrose curvature components. Trial polynomial syzygies of the form

n=�ajPj were then constructed, where Pj were all products of invariants within JE− �In� of the

ame polynomial degree in �ABCD, �̄ȦḂĊḊ, and �ABȦḂ as In. Attempts were then made to solve for
he coefficients aj. If no solution existed for a particular In in a given Segre type, then In is
ecessarily a member of the complete set for that particular Segre type. The complete sets and
olynomial syzygies within JE for all 15 Segre types are given in Appendix C, and it is apparent
hat no member of JE is a polynomial function of the remaining members of JE for every Segre
ype. Hence, every member of JE belongs to the complete set for E, and it follows that JE is a

inimal complete set for E.
The 10 real and 18 complex members of JE are depicted graphically in Figs. 2 and 3,

espectively. Sneddon worked exclusively in the space of 3�3 complex matrices in his derivation
f his complete set J.8 To the best of our knowledge, there is no explicit justification in the
iterature for the assertion that every even invariant is expressible as polynomials of traces of 3

3 complex matrix products. Furthermore, a general method to construct polynomial syzygies

xpressing the dependent invariants in terms of J is not available. We have provided a rigorous
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erivation of a complete set for the even invariants in a manner that resolves the aforementioned
roblems, and we can now explicitly construct the syzygies expressing any even invariant as a
olynomial function of the elements in JE.

. SYZYGY CONSTRUCTION

The proof of Theorem 1 provides a general algorithm for constructing the polynomial syzy-

ies relating any even invariant N� Êc in terms of elements of Êc, given N in the form of its
ssociated oriented matrix A�GN��. The characteristics of each vertex in the ordering defined by
�GN�� are provided by Eq. �2�. A�GN�� is partitioned into A�GN�

S �, A�SN�
S �, and A�SN�

D � using the
onditions of Eq. �3�. The subgraphs SN�

S and SN�
D can be decomposed separately into the forms

pecified by Eqs. �4� and �5� via the method of permutations of vertex sequences described in Sec.
of paper I.1 The adjacency matrices A�GXjl

� associated with each component of the syzygy are
btained by adapting Eq. �3�,

A�GXjl
� = A�GN�

S � + A�S̃j
S� + A�S̃l

D� .

t is then straightforward to obtain Xjl and construct the first syzygy expressing N in terms of

lements of Êc according to Eq. �8�.
Lemma 7 guarantees that we can use Eq. �13� to express any invariant belonging to Êc as a

¯

FIG. 2. Real invariants belonging to JE.
olynomial function of �-irreducible invariants, or of �-irreducible invariants; and we then make
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se of the fact that every �̄-irreducible invariant other than �A2� and �A3� is expressible in terms
f �-irreducible invariants to express N in the manner specified by Theorem 2.

An implementation18 of the Spencer and Rivlin solution of the basis problem for four sym-
etric 3�3 matrices, is then used to express N in terms of �A2�, �A3� and the elements of S. N is

ow expressed entirely in terms of �-minimal invariants. Each individual term is examined and

ecomposed further into �̄-minimal invariants if it is not already �̄-minimal. Each new term is
eexamined for �-minimality and reduced if necessary. This alternate checking for �-minimality

nd �̄-minimality is repeated until every term is both �-minimal and �̄-minimal. We then have
he polynomial syzygy expressing N in terms of the elements of JE. This algorithm is guaranteed

o terminate because in each step, invariants which are not �-minimal or �̄-minimal are reex-
ressed in terms of invariants of lower polynomial degree in the Weyl, conjugate Weyl and Ricci
pinors.

We now give an example of this decomposition process applied to an even invariant for N�

�̄ȦḂĊḊ�AB
ȦḂ�A

C
Ċ

Ė
�B

D
Ė

Ḟ
�CD

EF�EF
ĠḢ

�GH
ĠḢ�GHḊḞ. The graph GN� is drawn and its vertices

abeled as shown in Fig. 4.
Partitioning the arc set of GN� using Eq. �3� yields the subgraphs SN�

S and SN�
D , which are then

ecomposed separately as described earlier in this section. The graphical representations of Eqs.
4� and �5� for this particular example are depicted in Fig. 5.

Constructing the double sum described in Eqs. �7� and �8� yields a syzygy of nine terms which
implifies to the following expression:

N� = 1
4 ��B��ABC� − 2�ABCB�� ,

FIG. 3. Complex invariants belonging to JE.
ABCB� is not �-minimal, and is rewritten using a relation with the form of Eq. �12� to give
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N� = �AB2C� + 1
4 ��B�2�AC� − �AC��B2� + 2�B��C��AB� − 2�AB��BC� − 2�C��AB2� − 3�B��ABC�� .

t is easily verified that every invariant on the right-hand side is both �-minimal and �̄-minimal,
nd hence N� is expressed as a polynomial function of elements of JE.

I. CONCLUDING REMARKS

We have extended our work in paper I and provided a graph-theoretic algorithm that con-
tructs the polynomial syzygies relating any even invariant to the even invariants formed solely via
aired spinor index contractions. This fills in a significant gap in previous work by others. In our
etermination of the basis for this subset of even invariants, we have confirmed Sneddon’s earlier
nsights and placed them on a rigorous footing.

This concludes the complete analysis of the polynomial syzygies of the even invariants. The
olution of the complete problem requires a similar study of the odd invariants and their relation-
hips with the even invariants. We have managed to derive a graph-theoretic algorithm to express
dd invariants in terms of restricted subsets and work is currently underway to determine the basis
f these subsets. This work will appear in a forthcoming presentation.

FIG. 4. The graph GN� associated with the example invariant N�.

S D
FIG. 5. Decomposition of SN�
and SN�

for the example in this section.

                                                                                                            



A

t

a
d
d
p
6
T
s

b

T

t
e

052504-16 J. Carminati and A. E. K. Lim J. Math. Phys. 47, 052504 �2006�

                        
PPENDIX A: GENERATION OF AN ALGEBRAIC SYZYGY

We shall apply the results of this paper to construct an algebraic syzygy relating the square of

he odd invariant N=�̄
ȦḂḊ

Ė�AB
ȦḂ�AB

C
E�C

DĊ
Ḋ�E

DĊ
Ė

to members of the set JE. The graph GN2

ssociated with the quantity N2 is shown in Fig. 6. The solid unpaired subgraph SN2
S consists of two

isjoint 3-circuits, and is rewritten as the difference between two 6-circuits using the procedure
escribed in Case 2 of the proof of Theorem 1 in Paper I.1 Subsequent application of the arc-
airing procedure �Case 1� yields 15 terms, each consisting solely of paired arcs, for each
-circuit. After collecting like terms, SN2

S is equivalently rewritten as the six terms shown in Fig. 7.
he dashed unpaired subgraph SN2

D is rewritten as a combination of six paired-arc terms in a very
imilar manner.

Constructing the double sum in Eq. �6� yields a 36-term expression for N2 in terms of mem-

ers of Êc. After collecting like terms, this simplifies to

N2 = �B��AC�2 − 2�AC��ABC� + �A2CBC� − �B��A2C2� + �ABAC2� + �AB2AD�

− �B��ABAD� +
�A2D�

2
��B�2 − �B2�� .

he procedure outlined in Sec. V is used to rewrite nonminimal invariants in terms of invariants

hat are both �-minimal and �̄-minimal, resulting in the final algebraic syzygy relating N to
lements of JE,

FIG. 6. The graph GN2 associated with the example invariant N2.

S
FIG. 7. Decomposition of SN2.

                                                                                                            



A

t

052504-17 Syzygies of the Riemann tensor J. Math. Phys. 47, 052504 �2006�

                        
N2 = �D��AB�2 − 2�C��A2BC� − 2�AB��ABD� − 6�A2B2D� + �AD��AB2� + �D��A2B2� + �A2C��BC�

+ 4�B��A2BD� + �A2B���C�2 + �BD� − �B��D�� + �AC���B��AC� − 2�ABC� + �C��AB��

+
�A2D�

2
�5�B2� − 3�B�2� −

�A2��A2B�
4

��B�2 + �B2�� +
�A2��A2�

12
�5�B�3 − 12�B��B2� + 7�B3��

+
�A2�

4
�2�BC��C� + 2�B��BD� − �B�2�D� − �B2��D� − 2�C�2�B��

+
�A2�

2
��AB2��AB� + �B��A2B2� − �B��AB�2� .

PPENDIX B: DYAD COMPONENTS OF 1�, 2�, 3�, AND 4�

Below are the dyad components of the �-spinors 1�, 2�, 3� and 4� when they are written in
he form of Eq. �9�.

1�00 = �0,

1�01 = 1�10 = �1,

1�02 = 1�20 = 1�11 = �2,

1�12 = 1�21 = �3,

1�22 = �4,

2�00 = 2�00�02 − 2�01
2 ,

2�01 = 2�10 = �10�02 + �12�00 − 2�11�01,

2�02 = 2�20 = �22�00 + �20�02 − 2�01�21,

2�11 = 2�10�12 − 2�11
2 ,

2�12 = 2�21 = �10�22 + �12�20 − 2�21�11,

2�22 = 2�20�22 − 2�21
2 ,

3�00 = 4�̄2�01
2 + �̄0�02

2 + �̄4�00
2 + 2�̄2�00�02 − 4�̄3�00�01 − 4�̄1�01�02,

3�01 = 3�10 = �̄0�12�02 − 2�̄3�00�11 + �̄2�10�02 + �̄2�00�12 − 2�̄1�12�01 + �̄4�00�10

+ 4�̄2�11�01 − 2�̄1�11�02 − 2�̄3�01�10,

3�02 = 3�20 = 4�̄2�21�01 − 2�̄3�00�21 + �̄0�02�22 + �̄4�20�00 + �̄2�20�02 − 2�̄3�01�20

¯ ¯ ¯
+ �2�00�22 − 2�1�01�22 − 2�1�21�02,
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3�11 = 4�̄2�11
2 − 4�̄1�11�12 + �̄4�10

2 − 4�̄3�10�11 + �̄0�12
2 + 2�̄2�10�12,

3�12 = 3�21 = �̄4�20�10 − 2�̄1�22�11 + �̄2�10�22 + �̄2�20�12 + 4�̄2�11�21 + �̄0�12�22

− 2�̄1�12�21 − 2�̄3�20�11 − 2�̄3�10�21,

3�22 = �̄4�20
2 + 2�̄2�20�22 + �̄0�22

2 − 4�̄3�20�21 + 4�̄2�21
2 − 4�̄1�21�22,

4�00 = 4�̄1�̄2�01�02 + 2�̄2
2�00�02 − 2�̄3

2�00
2 + 2�̄0�̄2�02

2 − 8�̄2
2�01

2 − 4�̄0�̄3�01�02

− 4�̄1�̄4�00�01 + 2�̄2�̄4�00
2 + 8�̄1�̄3�01

2 + 4�̄2�̄3�00�01 − 2�̄1
2�02

2 + 2�̄0�̄4�00�02

− 4�̄1�̄3�00�02,

4�01 = 4�10 = �̄2
2�10�02 − 8�̄2

2�11�01 − 2�̄1�̄4�10�01 − 2�̄1�̄3�12�00 + �̄2
2�12�00

+ �̄0�̄4�12�00 + 2�̄0�̄2�02�12 + 2�̄2�̄3�10�01 + 2�̄2�̄4�10�00 + 8�̄1�̄3�11�01

− 2�̄1
2�02�12 − 2�̄3

2�00�10 − 2�̄1�̄3�02�10 − 2�̄1�̄4�11�00 − 2�̄0�̄3�12�01

+ 2�̄2�̄3�11�00 − 2�̄0�̄3�11�02 + 2�̄1�̄2�11�02 + 2�̄1�̄2�12�01 + �̄0�̄4�02�10,

4�02 = 4�20 = �̄2
2�22�00 − 2�̄3

2�20�00 − 2�̄1
2�22�02 − 8�̄2

2�21�01 − 2�̄1�̄4�21�00 + �̄2
2�02�20

+ 8�̄1�̄3�21�01 − 2�̄0�̄3�21�02 + 2�̄1�̄2�21�02 + �̄0�̄4�22�00 − 2�̄0�̄3�01�22

+ 2�̄2�̄3�01�20 − 2�̄1�̄3�22�00 + 2�̄1�̄2�22�01 + 2�̄0�̄2�22�02 − 2�̄1�̄4�01�20

+ 2�̄2�̄4�20�00 + 2�̄2�̄3�21�00 + �̄0�̄4�02�20 − 2�̄1�̄3�02�20,

4�11 = 2�̄0�̄4�10�12 − 2�̄1
2�12

2 + 2�̄2
2�10�12 − 2�̄3

2�10
2 + 2�̄0�̄2�12

2 + 8�̄1�̄3�11
2

− 4�̄1�̄4�11�10 + 2�̄2�̄4�10
2 + 4�̄2�̄3�11�10 − 8�̄2

2�11
2 + 4�̄1�̄2�11�12

− 4�̄1�̄3�12�10 − 4�̄0�̄3�11�12,

4�12 = 4�21 = 2�̄1�̄2�11�22 − 2�̄0�̄3�11�22 − 2�̄1�̄4�11�20 + �̄0�̄4�22�10 − 2�̄1�̄3�22�10

+ 2�̄2�̄3�11�20 − 2�̄3
2�10�20 − 2�̄1

2�22�12 + �̄0�̄4�12�20 + �̄2
2�12�20 + �̄2

2�10�22

− 2�̄1�̄3�12�20 − 8�̄2
2�11�21 − 2�̄0�̄3�12�21 − 2�̄1�̄4�10�21 + 2�̄1�̄2�12�21

+ 2�̄2�̄3�10�21 + 2�̄0�̄2�12�22 + 8�̄1�̄3�11�21 + 2�̄2�̄4�10�20,

4�22 = 8�̄1�̄3�21
2 − 2�̄3

2�20
2 + 2�̄0�̄2�22

2 + 4�̄1�̄2�21�22 − 4�̄0�̄3�21�22 − 4�̄1�̄4�20�21

− 4�̄1�̄3�20�22 + 2�̄2�̄4�20
2 + 2�̄2

2�20�22 − 2�̄1
2�22

2 + 2�̄0�̄4�20�22 − 8�̄2
2�21

2

¯ ¯
+ 4�2�3�20�21.
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PPENDIX C: COMPLETE SETS AND POLYNOMIAL SYZYGIES WITHIN JE FOR ALL
EGRE TYPES

. PP type O

. Segre type †„1,111…‡

Ricci components in a canonical frame: �ab=0.
Complete set: ��A2� , �A2� , �A3� , �A3��.

. Segre type †„2,11…‡

Ricci components in a canonical frame:

�00 = �01 = �02 = �12 = �11 = 0, �22 � 0.

Complete set: ��A2� , �A2� , �A3� , �A3� , �AC� , �AD� , �A2C� , �A2D��.

. Segre type †„1,11…1‡

Ricci components in a canonical frame:

�00 = �01 = �12 = �22 = 0 �02 = − 2�11 � 0.

Syzygies within JE,

3�B2� = �B�2, 9�B3� = �B�3,

3�D� = �B��A2�, 9�BD� = �B�2�A2� ,

3�A2B� = �B��A2�, 3�ABC� = �B��AC� ,

3�ABD� = �B��AD�, 9�A2B2� = �B�2�A2� ,

3�A2BC� = �B��A2C�, 3�A2BD� = �B��A2D� ,

9�AB2C� = �B�2�AC�, 9�AB2D� = �B�2�AD� ,

9�A2B2C� = �B�2�A2C�, 9�A2B2D� = �B�2�A2D� ,

324�A2BACD� = �B�2�4�A3��A3��B� + 9�A2��A2��AC�� .

Complete set: ��A2� , �A2� , �A3� , �A3� , �B� , �AC� , �AD� , �A2C� , �A2D��.

. Segre type †1,„111…‡

Ricci components in a canonical frame:

�01 = �02 = �12 = 0, �00 = 2�11 = �22 � 0,

Syzygies within JE and complete set are the same as for Segre type ��1,11��.

. PP type N

. Segre type †„3,1…‡

Ricci components in a canonical frame:
�00 = �01 = �02 = �11 = �22 = 0, �12 � 0.
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Syzygy within JE, 2�A2BACD�= �C��AD��A2B�+ �D��AB��A2C�.
Complete set: ��A2� , �A2� , �A3� , �A3� , �C� , �AB� , �D� , �A2B� , �AC� , �AD� , �A2C� , �A2D��.

. Segre type †„2,1…1‡

Ricci components in a canonical frame:

�00 = �01 = �12 = 0, �02 = − 2�11 � 0, �22 � 0.

Syzygies within JE,

3�B2� = �B�2, 9�B3� = �B�3,

3�BC� = 2�B��C�, 9�BD� = �B��6�D� − �B��A2�� ,

3�AB2� = 2�B��AB�, 9�A2B2� = �B��6�A2B� − �B��A2�� ,

9�AB2C� = �B��6�ABC� − �B��AC��, 9�AB2D� = �B��6�ABD� − �B��AD�� ,

9�A2B2C� = �B��6�A2BC� − �B��A2C��, 9�A2B2D� = �B��6�A2BD� − �B��A2D�� .

Complete set: ��A2� , �A2� , �A3� , �A3� , �B� , �C� , �D� , �AB� , �AC� , �AD� , �A2B� , �A2C� , �A2D� ,
ABC� , �ABD� , �A2BC� , �A2BD� , �A2BACD��.

. PP type III

. Segre type †3,1‡

Ricci components in a canonical frame:

�00 = �01 = �22 = 0, �02 = − 2�11 � 0, �12 � 0.

Syzygies within JE,

3�B2� = �B�2, 9�B3� = �B�3.

Complete set: ��A2� , �A2� , �A3� , �A3� , �B� , �C� , �D� , �AB� , �AC� , �AD� , �BC� , �BD� , �A2B� ,
A2C� , �A2D� , �AB2� , �ABC� , �ABD� , �A2B2� , �A2BC� , �A2BD� , �AB2C� , �AB2D� , �A2B2C� , �A2B2D�,
A2BACD��.

. PP type D

. Segre type †„1,1…„11…‡

Ricci components in a canonical frame:

�00 = �01 = �02 = �12 = �22 = 0, �11 � 0.

Syzygies within JE,

�B2� = �B�2, �B3� = �B�3,

�BC� = �B��C�, �BD� = �B��D� ,

�AB2� = �B��AB�, �ABC� = �B��AC� = �C��AB� ,

2 2 2
�ABD� = �B��AD� = �D��AB�, �A B � = �B��A B� ,
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�A2BC� = �B��A2C� = �C��A2B�, �A2BD� = �B��A2D� = �D��A2B� ,

�AB2C� = �B��C��AB� = �B�2�AC�, �AB2D� = �B��D��AB� = �B�2�AD� ,

�A2B2C� = �B��C��A2B� = �B�2�A2C�, �A2B2D� = �B��D��A2B� = �B�2�A2D� ,

�A2BACD� = �B��AC��A2D� = �B��AD��A2C� = �C��AB��A2D� = �C��AD��A2B�

= �D��AB��A2C� = �D��AC��A2B� .

Complete set: ��A2� , �A2� , �A3� , �A3� , �B� , �C� , �D� , �AB� , �AC� , �AD� , �A2B� , �A2C� , �A2D��.

. Segre type †„1,1…11‡

Ricci components in a canonical frame:

�00 = �01 = �12 = �22 = 0, �02 � 0, �02 � ± 2�11

Generic case: �11�0.
Complete set: JE �no polynomial syzygies within JE�.
Special case: �11=0.
Syzygies within JE,

2�B2� = �B�2, 4�B3� = �B�3,

2�BC� = �B��C�, 2�BD� = �B��D� ,

2�AB2� = �B��AB�, 2�ABC� = �B��AC� ,

2�ABD� = �B��AD�, 2�A2B2� = �B��A2B� ,

2�A2BC� = �B��A2C�, 2�A2BD� = �B��A2D� ,

4�AB2C� = �B�2�AC�, 4�AB2D� = �B�2�AD� ,

4�A2B2C� = �B�2�A2C�, 4�A2B2D� = �B�2�A2D� ,

144�A2BACD� = 36�B��AC��A2D� − 36�B��AD��A2C� + �B�3�A3��A3� + 72�C��AD��A2B�

+ 72�D��AB��A2C� + 12�B��C��D��A3� + 12�B��AB��A2B��A3� .

Complete set: ��A2� , �A2� , �A3� , �A3� , �B� , �C� , �D� , �AB� , �AC� , �AD� , �A2B� , �A2C� , �A2D��.

. Segre type †2,„11…‡

Ricci components in a canonical frame:

�00 = �01 = �02 = �12 = 0, �22 � 0, �11 � 0.

Syzygies within JE,

�B2� = �B�2, �B3� = �B�3,
�BC� = �B��C�, �BD� = �B��D� ,

                                                                                                            



�

d

e

�

052504-22 J. Carminati and A. E. K. Lim J. Math. Phys. 47, 052504 �2006�

                        
�AB2� = �B��AB�, �A2B2� = �B��A2B� ,

�AB2C� = �B��ABC�, �AB2D� = �B��ABD� ,

�A2B2C� = �B��A2BC�, �A2B2D� = �B��A2BD� ,

4�A2BACD� = �B��AD��A2C� − �B��AC��A2D� + 2�C��AD��A2B� + 2�D��AB��A2C�

− 2�A2C��ABD� + 2�A2D��ABC� − 2�AD��A2BC� + 2�AC��A2BD� .

Complete set: ��A2� , �A2� , �A3� , �A3� , �B� , �C� , �D� , �AB� , �AC� , �AD� , �A2B� , �A2C� , �A2D� ,
ABC� , �ABD� , �A2BC� , �A2BD��.

. Segre type †ZZ̄, „11…‡

Ricci components in a canonical frame:

�01 = �02 = �12 = 0, �22 = − �00 Å 0.

Generic case: �11�0.
Complete set: JE �no polynomial syzygies within JE�.
Special case: �11=0.
Syzygies within JE,

2�B2� = �B�2, 4�B3� = �B�3,

2�BC� = �B��C�, 2�BD� = �B��D� ,

2�AB2� = �B��AB�, 2�ABC� = �B��AC� ,

2�ABD� = �B��AD�, 2�A2B2� = �B��A2B� ,

2�A2BC� = �B��A2C�, 2�A2BD� = �B��A2D� ,

4�AB2C� = �B�2�AC�, 4�AB2D� = �B�2�AD� ,

4�A2B2C� = �B�2�A2C�, 4�A2B2D� = �B�2�A2D� ,

144�A2BACD� = 36�B��AC��A2D� − 36�B��AD��A2C� + �B�3�A3��A3� + 72�C��AD��A2B�

+ 72�D��AB��A2C� + 12�B��C��D��A3� + 12�B��AB��A2B��A3� .

Complete set: ��A2� , �A2� , �A3� , �A3� , �B� , �C� , �D� , �AB� , �AC� , �AD� , �A2B� , �A2C� , �A2D�.

. Segre type †1,1„11…‡

Ricci components in a canonical frame:

�01 = �02 = �12 = 0, �22 = �00 � 0, �00 � ± 2�11.

Generic case: �11�0.
Complete set: JE �no polynomial syzygies within JE�.
Special case: �11=0.
Syzygies within JE and complete set are the same as for the �11=0 case of Segre type
ZZ , �11��.
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. PP type II

. Segre type †2,11‡

Ricci components in a canonical frame:

�00 = �01 = �12 = 0, �02 � 0, �22 � 0, �02 � ± 2�11.

Generic case: �11�0.
Complete set: JE �no polynomial syzygies within JE�.
Special case: �11=0.
Syzygies within JE,

2�B2� = �B�2,

4�B3� = �B�3,

4�AB2C� = �B��4�ABC� − �B��AC�� ,

4�AB2D� = �B��4�ABD� − �B��AD�� ,

4�A2B2C� = �B��4�A2BC� − �B��A2C�� ,

4�A2B2D� = �B��4�A2BD� − �B��A2D�� ,

144�A2BACD� = �B�3�A3��A3� − 12�C��BD��A3� − 12�D��BC��A3� − 12�AB��A3��A2B2�

− 72�A2C��ABD� + 72�A2D��ABC� + 72�AC��A2BD� + 72�C��AD��A2B�

+ 72�D��AB��A2C� + 36�B��AD��A2C� − 36�B��AC��A2D� − 72�AD��A2BC�

− 12�A2B��AB2��A3� + 24�B��C��D��A3� + 24�B��AB��A2B��A3� .

Complete set: ��A2� , �A2� , �A3� , �A3� , �B� , �C� , �D� , �AB� , �AC� , �AD� , �BC� , �BD� , �A2B� ,
A2C� , �A2D� , �AB2� , �ABC� , �ABD� , �A2B2� , �A2BC� , �A2BD��.

. PP type I

. Segre type †ZZ̄,11‡

Ricci components in a canonical frame:

�01 = �12 = 0, �02 Å 0, �22 = − �00 Å 0.

Generic case: �11�0.
Complete set: JE �no polynomial syzygies within JE�.
Special case: �11=0.
Syzygies within JE,

2�B3� = �B��3�B2� − �B�2� ,

2�AB2C� = 2�B��ABC� + �AC���B2� − �B�2� ,

2�AB2D� = 2�B��ABD� + �AD���B2� − �B�2� ,

2 2 2 2 2 2
2�A B C� = 2�B��A BC� + �A C���B � − �B� � ,
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2�A2B2D� = 2�B��A2BD� + �A2D���B2� − �B�2� ,

72�A2BACD� = 12�B��C��D��A3� + 36�C��AD��A2B� + 36�D��AB��A2C� + 18�B��AD��A2C�

− 18�B��AC��A2D� + �B�3�A3��A3� + 12�B��AB��A2B��A3� − 6�C��BD��A3�

− �B��B2��A3��A3� + 36�ABC��A2D� − 36�AD��A2BC� − 36�A2C��ABD�

+ 36�AC��A2BD� − 6�D��BC��A3� − 6�AB��A2B2��A3� − 6�A2B��AB2��A3� .

Complete set: ��A2� , �A2� , �A3� , �A3� , �B� , �B2� , �C� , �D� , �AB� , �AC� , �AD� , �BC� , �BD� , �A2B� ,
A2C� , �A2D� , �AB2� , �ABC� , �ABD� , �A2B2� , �A2BC� , �A2BD��.

. Segre type †1,111‡

Ricci components in a canonical frame:

�01 = �12 = 0, �02 � 0, �22 = �00 � 0.

Generic case: �11�0.
Complete set: JE �no polynomial syzygies within JE�.
Special case: �11=0.
Syzygies within JE, and complete set are the same for the �11=0 case of Segre type

ZZ , �11��.

1 A. E. K. Lim and J. Carminati, J. Math. Phys. 45, 1673 �2004�, referred to as paper I in this paper.
2 The term “syzygy” is commonly used to describe polynomial relationships between invariants within a complete set. We
use it, in a broader sense, to refer to any polynomial relationship between invariants.

3 E. Zakhary and J. Carminati, J. Math. Phys. 42, 1474 �2001�.
4 J. Carminati, E. Zakhary, and R. G. McLeneghan, J. Math. Phys. 43, 492 �2002�.
5 J. Carminati and E. Zakhary, J. Math. Phys. 43, 4020 �2002�.
6 G. E. Sneddon, Class. Quantum Grav. 3, 1031 �1986�.
7 G. E. Sneddon, J. Math. Phys. 37, 1059 �1996�.
8 G. E. Sneddon, J. Math. Phys. 39, 1659 �1998�.
9 G. E. Sneddon, J. Math. Phys. 40, 5905 �1999�.
0 E. Ouchterlony, M.Sc. thesis, Linköping University, 1997.
1 S. Bonanos, J. Math. Phys. 40, 2064 �1999�.
2 This conjecture may be proven using the rotor �bivector� notation, but no such proof has been presented �G. E. Sneddon
�private communication��.

3 The equivalence stated in these type of diagrams is understood as equality of the associated invariants �modulo union
with GN�

S and either SN�
S or SN�

D , if necessary�. Also, for convenience, we have abbreviated � as �, �−1��B as −B, and
A � ��−1��B� as A−B.

4 R. Penrose and W. Rindler, Spinors and Space-time �Cambridge University Press, Cambridge, 1986�, Sec. 8.3, Vol. II, p.
234.

5 A. J. M. Spencer and R. S. Rivlin, Arch. Ration. Mech. Anal. 2, 309 �1958�.
6 A. J. M. Spencer and R. S. Rivlin, Arch. Ration. Mech. Anal. 2, 435 �1958�.
7 A. J. M. Spencer and R. S. Rivlin, Arch. Ration. Mech. Anal. 4, 214 �1960�.
8 A. E. K. Lim and J. Carminati �unpublished�.
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This paper discusses the long time behavior of solutions for a two-dimensional
�2D� nonautonomous incompressible non-Newtonian fluid in 2D bounded domains.
When the external force g0�x , t� is locally uniform integrable �see Definition 1.1� in
Lloc

2 �R ;H�, the authors obtain the existence and structure of uniform attractors in
space V for the family of processes associated with the fluid. Moreover, when �g0�Lb

2

is properly small, they provide some interesting corollaries. © 2006 American In-
stitute of Physics. �DOI: 10.1063/1.2200145�

. INTRODUCTION

In the past decades there was considerable progress in the research of infinite dimensional
ynamical systems. There arose some well-known works in this area �see e.g., Refs. 7, 10, 20, 21,
4, and 25�. In Ref. 21, Temam studied systematically the notation of global attractor, as well as
any concrete autonomous equations arising in mathematical physics. Later on, Chepyzhov and
ishik7 presented a general theory that is well valid to deal with nonautonomous equations. When
ne studies the uniform attractor for some nonautonomous equations, the construction of the
kew-product flow plays the main role in this theory which makes it possible to reduce the
roblem to the study of an attractor of some semigroup acting in an extended function phase
pace.9,17 Moreover, this theory reveals that the uniform attractor could be represented as the union
f kernel sections of the family of processes. Generally speaking, one can obtain the strongly
ompact uniform attractor for some systems with symbols of strongly compact hull, in other
ords, to obtain the strongly compact uniform attractor, one usually assumes that the symbol

0�x , t�=g0�t� of the addressed equations is translation compact �tr.c.� in some Banach space, i.e.,
he strong closure of the set �g0�t+h� :h�R� is compact in the Banach space. Recently, Lu et al.,15

sed the definition of measure of noncompactness and uniformly �-limit compactness to discuss
he two-dimensional �2D� Navier-Stokes equations and obtained some new result, which showed
hat it is possible to obtain the strongly compact uniform attractor for the system with symbols of
eakly compact hull �see later for definitions�.

In the present paper, we will develop the idea of Ref. 15 to obtain the uniform attractors and
o reveal their structure for the family of processes corresponding to the following 2D nonauto-
omous incompressible fluid:

�
Author to whom correspondence should be addressed; electronic mail: sfzhou@mail.shu.edu.cn

47, 052701-1022-2488/2006/47�5�/052701/13/$23.00 © 2006 American Institute of Physics
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�u

�t
+ �u · ��u + �p = � · ��e�u�� + g�x,t�, x = �x1,x2� � �, t � R , �1.1�

� · u = 0, �1.2�

here � is a smooth bounded subset of R2, the unknown function u=u�x , t�= �u1 ,u2� represents
he velocity of the fluid, g�x , t�=g�t�= �g1 ,g2� is the time-dependent external force, and the scalar
unction p is the pressure. Equation �1.1� describes the motion of an isothermal, incompressible
iscous fluid, where ��e�u��= ��ij�e�u���2�2, which is usually called the extra stress tensor for the
uid, is a matrix of order 2�2 in which

�ij�e�u�� = 2�0�� + �e�2�−�/2eij − 2�1�eij, i, j = 1,2,

�1.3�

and eij = eij�u� =
1

2
	 �ui

�xj
+

�uj

�xi

, �e�2 = �

i,j=1

2

�eij�2,

nd �0 ,�1 ,� ,� are parameters which generally depend on the temperature and pressure. In this
aper we assume that �0 ,�1 ,� are positive constants and 0	�	1. In �1.3� if the dependence of

ij�e�u�� on e�u� is linear then we say systems �1.1� and �1.2� satisfy the Stokes law and the
orresponding fluid is called a Newtonian one. Incompressible fluid whose extra stress tensor
annot be adequately described by the Stokes law is usually called non-Newtonian fluid �see, Ref.
6�. We refer to Refs. 3–5, 13, 16, and 18 and references therein for detailed background. Obvi-
usly, if �=�1=0, �1.1� and �1.2� turn into the famous Navier-Stokes equations; if �1=�0=0,
1.1� and �1.2� reduce to the well-known Euler equations.

We consider the initial boundary value problem of �1.1� and �1.3� as follows:

�u

�t
+ �u · ��u + �p = � · �2�0�� + �e�2�−�/2e − 2�1�e� + g�x,t�, x � �, t 
 � , �1.4�

� · u = 0, �1.5�

�u��� = 0, �1.6�

�u�t=� = u�, � � R . �1.7�

here are many works concerning the unique existence, regularity, and long time behavior of
olutions to Eqs. �1.4�–�1.7� or its associated version �see, e.g., Refs. 2, 6, 8, 11, 26, and 27�. The
ain objective of the present paper is to construct the uniform attractors and to reveal their

tructure for the family of processes corresponding to Eqs. �1.4�–�1.7�. We consider the classical
athematical setting of problem �1.4�–�1.7�. Set

V = �� = ��1,�2� � C0
���̄� � C0

���̄�,� · � = 0� ,

H = the closure of V in L2��� � L2��� ,

V = the closure of V in H2��� � H2��� .

e use H� and V� to denote the dual space of H and V, respectively. If one identifies H� with H
tself, then V�H=H��V�. Also �·, ·� and �·, · represent the inner product in H and the dual
airing between V� and V, respectively. Moreover we have �see Ref. 22� �f ,u�= �f ,u , " f
H ,u�V. Eliminating the pressure p, we can express problem �1.4�–�1.7� as follows �see Refs.
5 and 26�:
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�u

�t
+ 2�1Au + B�u� + N�u� = g�x,t�, t 
 � , �1.8�

�u�t=� = u�, � � R . �1.9�

he definitions of the operators A ,B�·� and N�·� will be introduced in Sec. II. The time-dependent
xternal force g�· , t� will be taken as the time symbol of the equation.

To state our main result clearly, we introduce some notations. Let E be some Banach space. A
unction g�t��Lloc

2 �R ;E� is said to be translation bounded �tr.b.� in Lloc
2 �R ;E� if

�g�Lb
2�R;E�

2 = �g�Lb
2

2 = sup
t�R

�
t

t+1

�g�s��E
2ds 	 + � .

e denote by Lb
2�R ;E� the union of tr.b. functions in Lloc

2 �R ;E�. We say that a function g�t�
Lloc

2 �R ;E� is tr.c. in Lloc
2 �R ;E� if Hs�g� is compact in Lloc

2 �R ;E�, where Hs�g� refers that the set

0�g�= �g�t+h� :h�R� takes closure with respect to �w.r.t.� the strong topology of Lloc
2 �R ;E�. The

ollection of tr.c. functions in Lloc
2 �R ;E� is denoted by Lc

2�R ;E�.
Definition 1.1: A function g�t��Lloc

2 �R ;E� is said to be locally uniform integrable, if for any

0 there exists �=���
0 such that

sup
t�R

�
t

t+�

�g�s��E
2ds �  . �1.10�

We use Llui
2 �R ;E� to denote the union of locally uniform integrable functions in Lloc

2 �R ;E�. We
emark that Definition �1.1� originates from Ref. 15, which pointed out that

c
2�R ;E��Llui

2 �R ;E��Lb
2�R ;E�. In this paper, we assume some fixed external force g0�t� that is

ocally uniform integrable in Lloc
2 �R ;H� and take the symbol space �=Hw�g0�, where Hw�g0�

efers that the set H0�g0�= �g0�t+h� :h�R� takes closure w.r.t. the weak topology of Lloc
2 �R ;E�.

bviously, Hw�g0� is weakly compact in Lloc
2 �R ;H�.

Our main result reads as follows.
Theorem 1.1: If the external force g0�t� of Eq. (1.8) is locally uniform integrable in

loc
2 �R ;H�. Then the family of processes �Ug�t ,��� ,g�Hw�g0�, corresponding to Eqs. (1.8) and
1.9) has a compact uniform �w.r.t. g�Hw�g0�� attractor AHw�g0� in space V, which uniformly
w.r.t. g�Hw�g0�� attracts any bounded sets of H in norm of V. Also the process �Ug0

�t ,���, the
amily of processes �Ug�t ,��� ,g�H0�g0�, corresponding to Eqs. (1.8) and (1.9) possesses, respec-
ively, the compact uniform �w.r.t. ��R, w.r.t. g�H0�g0�, respectively� attractor A0 and AH0�g0�.

oreover,

A0 = AH0�g0� = AHw�g0� = �
g�Hw�g0�

Kg�0� = �0,Hw�g0��B1� , �1.11�

here Kg�0� is the kernel section at time moment t=0, Kg is the kernel of the process �Ug�t ,���,
nd Kg is nonempty for all g�Hw�g0�; B1 is the bounded uniformly �w.r.t. g�Hw�g0�� absorbing
et defined by (2.30) and �0,Hw�g0��B1� is its uniform �w.r.t. g�Hw�g0�� �-limit set.

This result shows that we can obtain the strongly compact uniform attractor for the family of
rocesses corresponding to the incompressible non-Newtonian fluid with weakly compact hull.
his is essentially caused by the particular extra stress tensor ��e�u�� in the equation of the fluid.

We arrange the paper as follows. In Sec. II we introduce some definitions and show the unique
xistence and some estimations of the solutions. In Sec. III, we first prove the uniform �w.r.t. g
Hw�g0�� �-limit compactness and �V�Hw�g0� ,V� weak continuity for the associated family of

rocesses. Then we prove Theorem 1.1 and provide some interesting corollaries.
In this paper we use the stand norms of vector-valued functional spaces �see Ref. 1�. If no

onfusion arises, we denote by X=X�X, and � · �X stands for the norm of the Banach space X
2 2 2 2 2
X. For instance, L ���=L ����L ���, � · �L2��� denotes the norm of L ����L ���; especially,
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· �= � · �L2���. In addition, distM�X ,Y�=sup
x�X

inf
y�Y

dist�x ,y� denotes the semidistance from X�M to

�M in the metric space M. “⇀” denotes the convergence in weak topology. The summation
onvention of repeated indices is used in the whole paper.

I. A PRIORI ESTIMATES AND BOUNDED UNIFORMLY ABSORBING SET

In this section, we first introduce the definitions of the operators A, B�·�, N�·� and show some
roperties of them. Then we prove the unique existence and some estimations of the solutions to
qs. �1.8� and �1.9�. Lastly we use these estimations to construct the bounded uniformly �w.r.t.
�Hw�g0�� absorbing set in V.

Set

a�u,v� = �
i,j,k=1

2 	 �eij�u�
�xk

,
�eij�v�

�xk

 = �

i,j,k=1

2 �
�

�eij�u�
�xk

�eij�v�
�xk

dx, u,v � V . �2.1�

Lemma 2.1: �Bloom and Hao5� There exists a positive constant C1 that depends only on �
uch that

C1�u�V
2 � a�u,u� � �u�V

2 , " u � V . �2.2�

Lemma 2.1 implies that a�· , · � defines a positive definite symmetric bilinear form on V. As a
onsequence of the Lax-Milgram Lemma we obtain an isometric operator A�L�V ,V��, via

�Au,v = a�u,v�, " u,v � V .

et D�A�= ���V :A��H�, then D�A� is a Hilbert space and A is also a positive and self-adjoint
perator from D�A�=V�H4��� to H. In fact, A= P�2, where P is the Leray projector from L2���
nto H. Moreover, for any u�D�A� we have

C1�u�V � �Au� , �2.3�

ereafter C1 is the constant from Lemma 2.1. In fact, for any u�D�A�, we have by using Lemma
.1 that

C1�u�V
2 � a�u,u� = �Au,u = �Au,u� � �Au��u� � �Au��u�V.

hus we obtain �2.3�.
Now we define a continuous trilinear form on H0

1��� as follows.

b�u,v,w� = �
i,j=1

2 �
�

ui
�v j

�xi
wjdx, u,v,w � H0

1��� . �2.4�

n fact, one can easily check

b�u,v,w� = − b�u,w,v�, " u,v,w � H0
1��� , �2.5�

b�u,v,v� = 0, " u,v � H0
1��� . �2.6�

ince V�H0
1���, b�u ,v ,w� is also continuous on V. Moreover, for any u�V,

�B�u�,w = b�u,u,w�, " w � V , �2.7�

efines a continuous functional B�u� from V�V to V�. For further details on the operator B�u� one
an refer to Refs. 7 and 21–23.
Lastly we introduce the operator N�·� acting on V. For u�V, we set
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��u� = 2�0�� + �e�u��2�−�/2

nd define N�u� by

�N�u�,v = �
i,j=1

2 �
�

��u�eij�u�eij�v�dx, " v � V . �2.8�

hen the functional N�u� is continuous from V to V�. Moreover, when u�D�A�, N�u� can be
xtended to H via �N�u� ,v=−���� · ���u�e�u��� ·vdx, "v�H.

With the above definitions, we can formulate the weak form of problem �1.4�–�1.7� as �1.8�
nd �1.9� in the sense of distributions �see Refs. 5, 14, and 23�.

We now begin to show the unique existence and some estimations of the solutions to Eqs.
1.8� and �1.9�.

Lemma 2.2: �i� Suppose g�x , t��Lb
2�R ;H�, then for any ��R and u��H Eqs. (1.8) and (1.9)

ossess a unique solution u�t� satisfying

u � C���, + ��;H� � Lloc
2 ���, + ��;V�, ut � Lloc

2 ���, + ��;V�� . �2.9�

oreover,

�u�t��2 � �u��2e−��t−�� +
2

�
	1 +

1

�

�g�Lb

2
2 , �2.10�

�u�t��2 + C1�1�
�

t

�u�s��V
2ds � �u��2 +

2

C1�1
�

�

t

�g�s��2ds , �2.11�

here the positive constant � essentially depends only on � and �1.
�ii� Suppose g�x , t��Lb

2�R ;H�, then for any ��R and u��V Eqs. (1.8) and (1.9) possess a
nique solution u�t� satisfying

u � C���, + ��;V� � Lloc
2 ���, + ��;D�A��, ut � Lloc

2 ���, + ��;H� . �2.12�

oreover,

�t − ���u�t��V
2 � Q1	t − �,�u��2,�

�

t

�g�s��2ds
, t � �, � � R , �2.13�

here Q1�z1 ,z2 ,z3� is a monotone continuous function of z1= t−�, z2 and z3.
Proof of (i): One can use the Galerkin method to prove the unique existence and regularity of

olutions to Eqs. �1.8� and �1.9�. Since the method is classical and the proof is essentially the same
s that in Ref. 5, we omit it and here we only prove the estimations �2.10� and �2.11�. Let u�t� be
he unique solution corresponding to initial data u��H. Using u�t� to multiply Eq. �1.8�, we
btain, using �2.6� and the positive definiteness of the term �N�u� ,u,

1

2

d

dt
�u�t��2 + 2C1�1�u�t��V

2 �
1

2

d

dt
�u�t��2 + 2�1a�u,u� + �N�u�,u = �g�t�,u�t�� . �2.14�

ow from the definition of norm for Sobolev space we see �u�2� �u�V
2 holds for any u�V. Thus

y �2.14� we get

1

2

d

dt
�u�t��2 + 2C1�1�u�t��2 � �g�t�,u�t�� �

�g�t��2

C1�1
+

3C1�1

2
�u�t��2,
.e.,
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d

dt
�u�t��2 + C1�1�u�t��2 �

2�g�t��2

C1�1
. �2.15�

pplying Gronwall inequality to �2.15� and taking some transformation in the integral, we have

u�t��2 � �u��2e−��t−�� +
2

�
�

�

t

e−��t−s��g�s��2ds � �u��2e−��t−�� +
2

���t−1

t

e−��t−s��g�s��2ds + �
t−2

t−1

e−��t−s�

��g�s��2ds + ¯ � � �u��2e−��t−�� +
2

���t−1

t

�g�s��2ds + e−��
t−2

t−1

�g�s��2ds

+ e−2��
t−3

t−2

�g�s��2ds + ¯ � � �u��2e−��t−�� +
2

�
�1 + e−� + e−2� + ¯ ��g�Lb

2
2

� �u��2e−��t−��

+
2

�
�1 − e−��−1�g�Lb

2
2

� �u��2e−��t−�� +
2

�
	1 +

1

�

�g�Lb

2
2 ,

here �=C1�1
0. Obviously, � depends essentially only on � and �1. Thus �2.10� holds. Now
rom �2.14� we easily have

d

dt
�u�t��2 + C1�1�u�t��V

2 �
2�g�t��2

C1�1
. �2.16�

quation �2.11� follows directly from �2.16� by integrating it over �� , t�. The proof of �i� is
ompleted.

In the sequel, we use C to denote a generic constant that maybe depends on �, �0, �1, �, �,
nd C1, also maybe depend on the Sobolev embedding coefficient between spaces �and thus
ssentially depends on ��, but is independent of u. We allow C to take different value in different
lace.

Proof of (ii): Similar to the proof of �i�, we only establish the estimation �2.13�. For the sake
f brevity, we set �=0 and thus t�0. Multiplying Eq. �1.8� by tAu, we obtain

	 �u

�t
,tAu
 + 2�1t�Au,Au� + �B�u�,tAu + �N�u�,tAu =

1

2

d

dt
�ta�u,u�� −

1

2
a�u,u� + 2�1t�Au�2

+ t�B�u�,Au + t�N�u�,Au = t�g�t�,Au� �
1

2
�1t�Au�2 +

2t

�1
�g�t��2. �2.17�

t the same time, using Hölder inequality, Gagliardo-Nirenberg inequality, and �2.3�, we obtain

t�B�u�,Au � t�B�u���Au� � Ct�u�L4�����u�L4����Au� � Ct�u�V
1/2�u�H1����u�1/2�Au�

� Ct�Au�3/2�u�1/2�u�H1��� �
1
2�1t�Au�2 + Ct�u�2�u�H1���

4 , �2.18�

here C is a positive constant independent of u. Also we have

t�N�u�,Au = − t�
�

�� · ���u�e�u��� · Au dx . �2.19�

o estimate �2.19�, we set

F�s� = �� + �s�2�−�/2s, where s = 	s1 s2

s3 s4

, si � R, i = 1,2,3,4.
y computation we see that the first-order Frechét derivative of F�s� satisfies
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�DF�s�� ��4 +
12

�
�−�/2 � C�−�/2, " si � R, i = 1,2,3,4. �2.20�

sing �2.20�, we deduce from �2.19� that

t�N�u�,Au � 2�0Ct�4 +
12

�
�−�/2��u��Au� + 2�0Ct�−�/2��u��Au�

� Ct�u�H1����Au� + Ct�u�V�Au�

�
�1t

2
�Au�2 + Ct�u�H1���

2 + Ct�u�V
2 . �2.21�

ombining �2.17�, �2.18�, and �2.21�, we obtain by using Lemma 2.1 and �2.3� that

d

dt
�ta�u,u�� + �1t�Au�2 � a�u,u� +

4t

�1
�g�t��2 + Ct�u�2�u�H1���

4 + Ct�u�H1���
2 + Ct�u�V

2

� a�u,u� +
4t

�1
�g�t��2 + Ct�u�2�u�V

4 + Ct�u�V
2

� a�u,u� +
4t

�1
�g�t��2 + ta�u,u��Ca�u,u��u�2 + C� .

herefore, we get

d

dt
H�t� � K�t�H�t� + I�t� , �2.22�

here

H�t� = ta�u�t�,u�t��, K�t� = Ca�u�t�,u�t���u�t��2 + C, I�t� = a�u�t�,u�t�� +
4t

�1
�g�t��2.

pplying Gronwall inequality to �2.22�, we obtain

H�t� � �H�0� + �
0

t

I�s�ds�exp��
0

t

K�s�ds� = �
0

t

I�s�ds exp��
0

t

K�s�ds� . �2.23�

ow using Lemma 2.1 and estimation �2.11�, we have

�
0

t

I�s�ds = �
0

t �a�u�s�,u�s�� +
4s

�1
�g�s��2�ds � �

0

t

�u�t��V
2ds +

4t

�1
�

0

t

�g�s��2ds �
1

C1�1
�u�0��2

+ � 2

C1
2�1

2 +
4t

�1
��

0

t

�g�s��2ds � C	�u�0��2 + �1 + t��
0

t

�g�s��2ds
 , �2.24�

here

C = max� 1

C1�1
,

2

C1
2�1

2 ,
4

�1
� .
imilarly, using �2.10� and �2.11�, we get
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�
0

t

K�s�ds = �
0

t

�Ca�u�s�,u�s���u�s��2 + C�ds � C�
0

t

�u�t��V
2�u�s��2ds + Ct

� C�	�u�0��2 + �
0

t

�g�s��2ds
2

+ t� . �2.25�

quations �2.3� and �2.23�–�2.25� imply

t�u�t��V
2 � C	�u�0��2 + �1 + t��

0

t

�g�s��2ds
 � exp�C�	�u�0��2 + �
0

t

�g�s��2ds
2

+ t��
� Q1	t,�u�0��2,�

0

t

�g�s��2ds
 , �2.26�

here Q1�z1 ,z2 ,z3�=C�z2+ �1+z1�z3�exp�C��z2+z3�2+z1��. We complete the proof �ii� of this
emma.

The proof of Lemma 2.2 is completed. �

Obviously, if g0�Lb
2�R ;H�, then

�g�Lb
2

2
� �g0�Lb

2
2

	 + �, " g � Hw�g0� . �2.27�

n other words, g0�Lb
2�R ;H� implies g�Lb

2�R ;H� for all g�Hw�g0�. Thus, according to Lemma
.2�ii�, we can define the process �Ug0

�t ,��� :Ug0
�t ,��V�V, Ug0

�t ,��u�=u�t�, where u�t� is the
olution of Eqs. �1.8� and �1.9� with symbol g0 and initial condition u��V. Similarly, the family
f processes �Ug�t ,���, g�Hw�g0�, and �Ug�t ,���, g�H0�g0�, can be defined on V, respectively.

Lemma 2.3: Suppose g0�x , t��Lb
2�R ;H�, then the family of processes �Ug�t ,���, g�Hw�g0�,

orresponding to Eqs. (1.8) and (1.9) has a bounded uniformly (w.r.t. g�Hw�g0�) absorbing set

1�V, which uniformly (w.r.t. g�Hw�g0�) absorbs any bounded sets of H in norm of V.
Proof. By �2.10� and �2.27�, we see that the set

B0 = �u � H: �u�2 �
4

�
	1 +

1

�

�g0�Lb

2
2

� R0
2� �2.28�

s a bounded uniformly �w.r.t. g�Hw�g0�� absorbing set in H, that is, for any bounded sets B of H,
here exists t0= t0�� ,B��� such that

�
g�Hw�g0�

Ug�t,��B � B0, " t � t0��,B� . �2.29�

ow set

B1 = �
g�Hw�g0�

Ug�� + 1,��B0. �2.30�

hen we can derive from �2.13�, �2.27�, and �2.28� that B1 is bounded in V. Precisely, we have

�u�V
2 � Q1�1,R0

2,�g0�Lb
2

2 � � R1
2, " u � B1. �2.31�

learly, B1�V is the bounded uniformly �w.r.t. g�Hw�g0�� absorbing set of the family of pro-
esses �Ug�t ,���, g�Hw�g0�, which uniformly �w.r.t. g�Hw�g0�� absorbs any bounded sets of H
n norm of V. The proof is completed. �

II. UNIFORM �-LIMIT COMPACTNESS AND WEAK CONTINUITY

In this section we prove that the family of processes �Ug�t ,���, g�Hw�g0� is uniformly �w.r.t.
�Hw�g0�� �-limit compact and is �V�Hw�g0� ,V� weakly continuous. Then we briefly establish

heorem 1.1.
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Let E be a Banach space and B�E� be the union of all bounded sets of E. Also let � be the
ymbol space of some family of processes �U��t ,��, ���, defined on E. For the sake of brevity,
e set

Bt = �
���

�
s�t

U��s,��B .

Definition 3.1: The set ��,��B�=�t��B̄t is called the uniform (w.r.t. ���) �-limit set of
�E. A family of processes �U��t ,���, ���, is said to be uniformly (w.r.t. ���) �-limit

ompact if for any ��R and any B�B�E�, the set Bt is bounded and limt→+���Bt�=0, where
�B� denotes the Kuratowski measure of noncompactness which is defined by

��B� = inf�� 
 0: B admits a finite cover by sets of diameters � �� .

Lemma 3.1: Let g0�Llui
2 �R ;H�, then for any ��R, there holds

lim
�→+�

sup
t��

�
�

t

e−��t−���g�s��2ds = 0 �3.1�

niformly w.r.t. g�Hw�g0�.
This lemma is a directly corollary of Lemma 3.1 in Ref. 15.
Lemma 3.2: Let g0�Llui

2 �R ;H�. Then the family of processes �Ug�t ,���, g�H�g0�, corre-
ponding to Eqs. (1.8) and (1.9) is uniformly (w.r.t. g�H�g0�) �-limit compact in V.

Proof: According to Theorem 2.3 in Ref. 15, we only need to prove the following assertion:
or any fixed ��R, any B�B�V� and any 
0, there exist t1= t1�� ,B ,� and a finite dimensional
ubspace Vm of V such that

P� �
g�Hw�g0�

�
t�t1

Ug�t,��B� is bounded in V , �3.2�

and ��I − P�� �
g�Hw�g0�

�
t�t1

Ug�t,��x��V

� , " x � B , �3.3�

here I is the identity operator and P is a bounded projector from V into Vm.
In fact, by the classical spectral theory of elliptic operators �see e.g., Ref. 16�, there exist a

equence ��n�n=1
� satisfying

0 	 �1 � �2 � ¯ � �n � ¯ , �n → + � as n → + � , �3.4�

nd a family of elements �wn�n=1
� �D�A�, which form a basis of V and are orthonormal in H, such

hat

Awn = �nwn, " n � N . �3.5�

et Vm=span�w1 , . . . ,wm�, then Vm is a finite dimensional subspace of V. Denote by Pm the
rthogonal projector from V into Vm and we obviously have �Pm��1 for each m�N. Now for any
�D�A��V, we set

u = Pmu + �I − Pm�u � u1 + u2.

sing Au2 to take inner product with �1.8� in H, we obtain

1

2

d

dt
a�u2,u2� + 2�1�Au2,Au2� + �B�u�,Au2 + �N�u�,Au2 = �g,Au2� . �3.6�
ow using the definition of B�·�, Hölder inequality and Gagliardo-Nirenberg inequality, we have
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��B�u�,Au2� � �u�L4�����u�L4����Au2� � C�u�1/2��u�1/2�u�1/4��u�3/4�Au2�

� C�u�3/4�u�H1���
1/2 �u�V

3/4�Au2� �
3

8
�1�Au2�2 +

8C

3�1
�u�3/2�u�H1����u�V

3/2

�
3

8
�1�Au2�2 +

C

�1
�u�3/2�u�V

5/2, �3.7�

ere and in the following C denotes the generic constant that has been mentioned in Sec. II. Also
e have by using �2.20� and Hölder inequality that

��N�u�,Au2� = �− �
�

�� · ���u�e�u��� · Au2dx� � 2C�0�−�/2�4 +
12

�
��u��Au2� + 2C�0�−�/2��u�

��Au2� �
C

�1
�u�H1���

2 +
3

4
�1�Au2�2 +

C

�1
�u�V

2 �
3

4
�1�Au2�2 +

C

�1
�u�V

2 . �3.8�

t is clear that

�g,Au2� � �Au2��g� �
3

8
�1�Au2�2 +

8

3�1
�g�2. �3.9�

aking �3.6�–�3.9� into account, we obtain

d

dt
a�u2,u2� + �1�Au2,Au2� �

C

�1
�u�3/2�u�V

5/2 +
C

�1
�u�V

2 +
16

3�1
�g�2. �3.10�

ow �3.4� and �3.5� and Lemma 2.1 imply

�Au2�2 � �m+1�u2�V
2 � �m+1a�u2,u2� . �3.11�

ombining �3.10� and �3.11� and Lemma 2.3, we see that t� t0+1 implies

d

dt
a�u2�t�,u2�t�� + �1�m+1a�u2�t�,u2�t�� �

C

�1
R0

3/2R1
5/2 +

C

�1
R1

2 +
16

3�1
�g�2, �3.12�

here t0 is the constant from Lemma 2.3. Applying Gronwall inequality to �3.12�, we obtain

a�u2�t�,u2�t�� � a�u2�t0 + 1�,u2�t0 + 1��e−�1�m+1�t−t0−1� +
C

�1
2�m+1

�R0
3/2R1

5/2 + R1
2�

+
C

�1
2�m+1

�
t0+1

t

e−�1�m+1�s−t0−1��g�s��2ds, " t � t0 + 1. �3.13�

y �3.4� and Lemma 3.1, we derive that for any 
0, there exists m0�N such that

C

�1
2�m+1

�R0
3/2R1

5/2 + R1
2� �

C1

3
, m � m0, �3.14�

C

�1
2�m+1

�
t0+1

t

e−�1�m+1�s−t0−1��g�s��2ds �
C1

3
, m � m0, " g � Hw�g0� . �3.15�
ow we set
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t̃ = t̃��,B,� = t0 + 1 +
1

�1�m+1
ln	3R1

2

C1

 ,

hen

a�u2�t0 + 1�,u2�t0 + 1��e−�1�m+1�t−t0−1� �
C1

3
, " t � t̃ . �3.16�

hoose t1= t1�� ,B ,�=max�t̃ , t0+1� and we combine Lemma 2.1 and �3.13�–�3.16� to obtain
when m�m0�

�u2�t��V
2 �

1

C1
a�u2�t�,u2�t�� �

1

C1
	C1

3
+

C1

3
+

C1

3

 = , " t � t1, " g � Hw�g0� .

herefore, we have established the assertion formulated in the beginning of the proof. The proof
f this lemma is completed. �

Lemma 3.3: Let g0�Llui
2 �R ;H�. Then the family of processes �Ug�t ,���, g�Hw�g0�, corre-

ponding to Eqs. (1.8) and (1.9) is �V�Hw�g0� ,V� weakly continuous, i.e., for any t��, ��R, the
apping Ug�t ,�� : �u ,g��Ug�t ,��u is weakly continuous from V�Hw�g0� to V.

Proof: Let u0
�n�

⇀u0 in V and gn⇀g0 in Lloc
2 �R ;H�. For any ��R, we set u�n��t�

Ugn
�t ,��u0

�n� and u�t�=Ug0
�t ,��u0. Analogous with Lemma 2.2�ii�, we can prove that �u�n�� is

ounded in C��� , +�� ;V��Lloc
2 ��� , +�� ;D�A�� and �ut

�n�� is bounded in Lloc
2 ��� , +�� ;H�. The rest

s essentially the same as the proof of Lemma 2.2 in Ref. 12 or of Lemma 2.1 in Ref. 19. So we
mit it here. �

Proof of Theorem 1.1; Since g0�Llui
2 �R ;H��Lb

2�R ;H�, Hw�g0� is weakly compact in

loc
2 �R ;H�. At the same time, Lemma 3.3 shows that the family of processes �Ug�t ,���, g
Hw�g0�, corresponding to Eqs. �1.8� and �1.9� is �V�Hw�g0� ,V� weakly continuous. Moreover,

emma 2.3 shows that �Ug�t ,���, g�Hw�g0�, has a bounded uniformly �w.r.t. g�Hw�g0�� absorb-
ng set in V and Lemma 3.2 implies that �Ug�t ,���, g�Hw�g0�, is uniformly �w.r.t. g�Hw�g0��
-limit compact. It is clear that for any h�0, we have T�h�Hw�g0�=Hw�g0� and UT�h�g�t ,��
Ug�t+h ,�+h�, "t��, ��R, g�Hw�g0�, where �T�h��h�0 is the natural translation semigroup

see Ref. 7 for details�. These results show that the family of processes �Ug�t ,���, g�Hw�g0�,
atisfies all conditions of Theorem 2.6 in Ref. 15 and thus we obtain Theorem 1.1. The proof is
ompleted. �

In Ref. 28 the authors of the present paper assumed that the external force g0 is tr.c in

loc
2 �R ;H� and obtained the existence and structure of the uniform attractor in space H for the
amily of processes corresponding to Eqs. �1.8� and �1.9�. The result of this paper extends that of
ef. 28. The following corollaries could be proved essentially in the same way as that in Ref. 28.
ere we only list them out and omit the proofs.

Corollary 3.1: Assume g0�Llui
2 �R ;H� and �g0�Lb

2
2

	 Ĉ, where Ĉ depends only on � and �1.

hen for all g�Hw�g0� Eqs. (1.8) and (1.9) possess a unique bounded solution û�t��V, t�R,
hich is asymptotically stable in H, that is,

�û�t� − u�t��2 � �û��� − u��2K0e−��t−��, t � �, � � R ,

here u��H is arbitrary and u�t� is the corresponding solution; the positive constants K0 and �
re both independent of u�.

Corollary 3.2: Let g0 satisfy the conditions of Corollary 3.1. If g0 is a periodic function, then
ˆ �t� is also a periodic function with the same period.

Corollary 3.3: Let the conditions of Corollary 3.1 be satisfied and let û�t�, t�R, be the
ounded solution of Eqs. (1.8) and (1.9) with symbol g0. Then

A0 = AH �g � = AH �g � = �û�t�:t � R� = ��û�t�:t � R��V,

w 0 0 0
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here �·�V denotes taking closure w.r.t. strong topology of V.
Corollary 3.4: If g0�Llui

2 �R ;H�, then

A0 = AHw�g0� = AH0�g0� � BR1
�0� ,

here BR1
�0� is the ball in V centered at 0 with radius R1 defined in (2.31).

Remark 3.1: When g0�Lc
2�R ;H�,28 constructed the uniform attractor AHs�g0��H for the fam-

ly of processes corresponding to the non-Newtonian fluid. Indeed, if g0�Lc
2�R ;H�, then Theorem

.1 also holds true and we can deduce from Theorem 1.1 and Theorem 3.1 in Ref. 28 that

Hs�g0��AHw�g0��V, which implies the regularity of uniform attractors and thus reveals the
symptotic smoothing effect of solutions in the sense that the solutions become eventually more
egular than the initial data.

CKNOWLEDGMENTS

The work is supported by the NSF of China under No. 10471086, and the NSF of ZheJian
rovince under No. M103043. The authors are very grateful to the anonymous referees for their
areful reading and comments which greatly improves the manuscript. The authors would like to
hank the editors for their kind help.

1 Adams, R. A., Sobolev Spaces �Academic, New York, 1975�.
2 Bae, H.-O., “Existence, regularity, and decay rate of solutions of non-Newtonian flow,” J. Math. Anal. Appl. 231,
467–491 �1999�.

3 Bellout, H., Bloom, F., and Nečas, J., “Weak and measure-valued solutions for non-Newtonian fluids,” C. R. Acad. Sci.,
Ser. II: Mec., Phys., Chim., Sci. Terre Univers 317, 795–800 �1993�.

4 Bellout, H., Bloom, F., and Nečas, J., “Young measure-valued solutions for non-Newtonian incompressible viscous
fluids” Commun. Partial Differ. Equ. 19, 1763–1803 �1994�.

5 Bloom, F., and Hao, W., “Regularization of a non-Newtonian system in an unbounded channel: Existence and uniqueness
of solutions,” Nonlinear Anal. Theory, Methods Appl. 44, 281–309 �2001�.

6 Bloom, F., and Hao, W., “Regularization of a non-Newtonian system in an unbounded channel: Existence of a maximal
compact attractor,” Nonlinear Anal. Theory, Methods Appl. 43, 743–766 �2001�.

7 Chepyzhov, V. V., and Vishik, M. I., Attractors for Equations of Mathematical Physics, American Mathematical Society
Colloquium Publications, vol. 49 �American Mathematical Society, Providence, RI, 2002�.

8 Guo, B. L., and Zhu, P. C., “Partial regularity of suitable weak solution to the system of the incompressible non-
Newtonian fluids,” J. Differ. Equations 178, 281–297 �2002�.

9 Hale, J. K., “Asymptotic Behavior of Dissipative Systems,” Math. Surv. Monogr. 25 �AMS, Providence, RI, 1988�.
0 Haraux, A., Systèms Dynamiques Dissipatifs et Applications �Masson, Paris 1991�.
1 Ju, N., “Existence of global attractor for the three-dimensional modified Navier-Stokes equations,” Nonlinearity 14,
777–786 �2001�.

2 Ju, N., “The H1-compact global attractor for the solutions to the Navier-Stokes equations in 2D unbounded domains,”
Nonlinearity 13, 1227–1238 �2000�.

3 Ladyzhenskaya, O., “New equations for the description of the viscous incompressible fluids and solvability in large of
the boundary value problems for them,” Boundary Value Problems of Mathematical Physics �American Mathematical
Society, Providence, RI, 1970�.

4 Lions, J. L., Quelques Méthod de Résolutions des Problèmes aux Limites Nonlinéaires �Dunod, Paris, 1969�.
5 Lu, S. S., Wu, H. Q., and Zhong, C. K., “Attractors for nonautonomous 2D Navier-Stokes equations with normal external
forces,” Ann. Phys. �Paris� 13, 701–719 �2005�.

6 Málek, J., Nečas, J., Rokyta, M., and Ružičk, M., Weak and Measure-valued Solutions to Evolutionary PDEs
�Champman-Hall, New York, 1996�.

7 Miller, R. K., and Sell, G. R., Topological Dynamics and its Relation to Integral and Nonautonomous Systems, Interna-
tional Symposium vol. I �Academic, NewYork, 1976�, pp. 223–229.

8 Pokorný, M., “Cauchy problem for the non-Newtonian viscous incompressoble fluids,” Appl. Math. �Germany� 41,
169–201 �1996�.

9 Rosa, R., “The global attractor for the 2D Navier-Stokes flow on some unbounded domains,” Nonlinear Anal. Theory,
Methods Appl. 32, 71–85 �1998�.

0 Sell, G., and You, Y., Dynamics of Evolutionary Equations �Springer, New York, 2002�.
1 Temam, R., Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2d ed., �Sprigner, Berlin, 1997�.
2 Temam, R., Navier-Stokes Equations (Theory and Numerical Analysis), reprinted �American Mathematical Society,
Providence, RI, 2001�.

3 Temam, R., Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd ed. �SIAM, Philadelphia, 1995�.
4 Zelik, S. V., “Attractors for reaction-diffusion systems in unbounded domains and their spatial complexity,” Commun.
Pure Appl. Math. 56, 584–637 �2003�.

5
 Zelik, S. V., “The attractors for nonlinear hyperbolic equation in the unbounded domain,” Discrete Contin. Dyn. Syst. 7,

                                                                                                            



2

2

2

052701-13 Long time behavior of solutions J. Math. Phys. 47, 052701 �2006�

                        
593–641 �2001�.
6 Zhao, C., and Li, Y., “H2-compact attractor for a non-Newtonian system in two-dimensional unbounded domains,”
Nonlinear. Anal.:Theory, Method and Appl. 56, 1091–1103 �2004�.

7 Zhao, C., and Li, Y., “A note on the asymptotic smoothing effect of solutions to a non-Newtonian system in 2-D
unbounded domains,” Nonlinear Anal.: Real World Appl. 60, 475–483 �2005�.

8 Zhao, C., Zhou, S., and Liao, X., “Uniform attractor for a two-dimensional nonautonomous incompressible non-
Newtonian fluid,” �unpublished�.
                                                                                                            



A

I

w
i
o

a

b

JOURNAL OF MATHEMATICAL PHYSICS 47, 053301 �2006�

0

                        
new energy method for the Boltzmann equation
Tong Yanga�

Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong

Hui-Jiang Zhaob�

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

�Received 31 May 2005; accepted 21 March 2006; published online 4 May 2006�

An energy method for the Boltzmann equation was proposed by Liu, Yang, and Yu
�Physica D 188, 178–192 �2004�� based on the decomposition of the Boltzmann
equation and its solution around the local Maxwellian. The main idea is to rewrite
the Boltzmann equation as a fluid-type dynamics system with the nonfluid compo-
nent appearing in the source terms, coupled with an equation for the time evolution
of the nonfluid component. In this paper, we will elaborate this method and our
main observation is that the microscopic projection of the local Maxwellian with
respect to a given global Maxwellian is not linear but quadratic. Based on this and
by analyzing the fluid-type system using the analytic techniques for the system of
conservation laws, we can indeed control the conserved quantities � ,�u, and
�� 1

2u2+E� of the Boltzmann equation by the microscopic projection of the solution
of the Boltzmann equation with respect to the global Maxwellian, which is suffi-
cient to deduce the energy estimates for the solution of the Boltzmann equation.
The main purpose here is to show that there is no need to perform two sets of
energy estimates with respect to the local and a global Maxwellian as in the pre-
vious works. In fact, one set of energy estimates with respect to the global Max-
wellian is sufficient for closing the energy estimates. Therefore, it not only simpli-
fies the analysis in the previous works, but also shed some light on the stability
analysis in some complicated systems, such as the Vlasov-Poisson-Boltzmann and
Vlasov-Maxwell-Boltzmann systems. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2195528�

. INTRODUCTION

Consider the Boltzmann equation

f t + � · �xf =
1

�
Q�f , f�, �f ,t,x,�� � R+ � R+ � R3 � R3, �1.1�

here f = f�t ,x ,�� represents the distributional density of particles at space–time �x , t� with veloc-
ty � ,� is the Knudsen number proportional to the mean free path, and Q�f , f� is the collision
perator given by the following bilinear form, cf. Ref. 1,
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CityU 103004.
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Q�f ,g���� = �
R3
�

S+
2

�f����g��*�� + f��*��g���� − f���g��*� − f��*�g����B��� − �*�,��d�* d� ,

ith � being the angle between the relative velocity and the unit vector �, i.e., cos �= ��
�*� ·� / ��−�*�. Here S+

2 = ���S2 : ��−�*� ·��0�. The conservation of momentum and energy
ives the following relation between velocities before and after collision:

�� = � − ��� − �*� · ���, �*� = �* + ��� − �*� · ��� .

Throughout this paper, the collision kernel B��V � ,�� is assumed to satisfy the following two
onditions:

(A1) There is 0�	1
1 such that

0 � B��V�,�� � C1��V� + �V�−	1��cos �� . �1.2�

(A2) There are constants 0
��1 such that

C2�1 + ����� � ���� � C3�1 + �����, �1.3�

here Ci0�i=1,2 ,3� are positive constants and ���� is the collision frequency defined by �cf.
ef. 6�

���� = �
R3
�

S2
M���B��� − �*�,��d�* d� . �1.4�

Notice that both the hard sphere model and the hard potential model with angular cutoff
atisfy the above two conditions �A1� and �A2�.

In this paper, we consider the Boltzmann equation �1.1� in the whole space with its initial data
iven by

f�0,x,�� = f0�x,�� . �1.5�

ere f0�x ,�� is assumed to be a small perturbation of a given global Maxwellian M̄=M��̄,ū,�̄� for

ny given constant �̄0, ū�R3, �̄0. Without loss of generality, we can let ū=0 in the rest of
his paper.

For a solution around a global Maxwellian or a nontrivial solution profile, the solution spaces
or the Boltzmann equation can be in Lx,�,

� , Lx,�
1 , and Hx

s�L�
2�, respectively. The solution in Lx,�

� is
roved based on the spectral analysis and the bootstrapping argument from Grad6 to Ukai.21 The
mportant contribution of DiPerna and Lions4 is the establishment of the renormalized solutions in

x,�
1 space using the Boltzmann’s celebrated H theorem and the averaging lemma. Recently, the
xistence of solutions in the Hx

s�L�
2� space was proved by energy method for the study on the

tability of solution profiles and the large time behavior of the solutions related to fluid dynamics.
or this, the decomposition of the solution and the equation around a global Maxwellian was

ntroduced in Ref. 17 for the stability analysis of the shock profiles. And it was also used in the
tudy on the space periodic solutions.7,8 For the study of the nontrivial solution profiles, a decom-
osition of the solution into the local Maxwellian and the nonfluid component was used in Ref. 15
o that the Boltzmann equation can be rewritten as a new fluid-type system and an equation for the
onfluid component. So far, the stability of each basic wave pattern, i.e., shock wave, rarefaction
ave and contact discontinuity, and the solution profiles for Boltzmann equation with external

orce and the Vlasov-Poisson-Boltzmann system have been investigated by the energy method
hrough the above decomposition on both the solution and the Boltzmann equation, cf. Refs. 11,
2, 15–17, and 22–24.

However, in all the above analysis through the decomposition around the local Maxwellian,
wo sets of energy estimates are used. One is with respect to the local Maxwellian and another

ith respect to a global Maxwellian chosen appropriately. The reason to use two sets of energy
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stimates is that the collision frequency is of the order of �1+ �� � �� with ��1 for ��� large, while
he differentiation on the local Maxwellian may generate a factor as a polynomial of � of order
reater than 1. And the set of the energy estimates with respect to the global Maxwellian is to
bsorb the polynomial in �, while the energy estimates with respect to the local Maxwellian M is
sed by applying the orthogonality of P0

Mf and LM�P1
Mf� with respect to the local Maxwellian M.

The main purpose of this paper is to give a new way of obtaining energy estimates so that only
ne set of energy estimates is needed. Our main observation is that the microscopic projection of

he local Maxwellian M with respect to the global Maxwellian M̄ is not linearly but quadratic.
ased on this and by analyzing the fluid-type system �2.13� using the analytic techniques for the

ystem of conservation laws, we can indeed control the conserved quantities �, �u, and �� 1
2u2

E� of the Boltzmann equation �1.1� by P1
M̄ f besides the initial data, which is the microscopic

rojection of the solution f�t ,x ,�� to the Boltzmann equation �1.1� with respect to the global

axwellian M̄. Hence, it is sufficient to close the energy estimates for the solution of the Boltz-
ann equation �1.1� by performing the energy estimates on the original equation �1.1� with respect

o the global Maxwellian M̄. Therefore, it indeed provides a clear energy method for the study of
oltzmann equation not only simplifies all the previous works in the direction, but also give a
lear-cut relation of the Boltzmann equation with the corresponding fluid dynamics. Moreover, in
ome cases, it gives the optimal results.

The relation of the Boltzmann equation for rarefied gas with the systems of the fluid dynamics
s well known since Boltzmann’s derivation of this fundamental equation from statistics physics.
n fact, the Hilbert expansion in 1912 gives the system of the compressible Euler equations as the
rst order approximation, while the Chapman-Enskog expansion in 1916–1917 yields the system
f the compressible Navier-Stokes equations in the second order approximation, cf. Refs. 3 and
0. By using the decomposition around the local Maxwellian,15 the derived system of fluid-type
quations is not an approximation but an exact system for the time evolution of the fluid compo-
ents in the solution with a source in terms of the nonfluid component. Moreover, even though the
ecomposition of the solution into the local Maxwellian and the nonfluid component is known
ince Maxwell,19 the analysis on its time evolution and the solution behavior becomes much
learer until recently.9,11,12,15–17,22–24

The rest of the paper will be organized as follows. In the next section, we will review the
ecomposition and rewrite Boltzmann equation as in Ref. 15. In Sec. III, the new energy method
s given by the estimation on the fluid component through the fluid-type system and the original
quation for the nonfluid component where a basic estimate on the projection of the local Max-
ellian with respect to the global Maxwellian is crucially used.

I. REFORMULATION

For completeness and the convenience of the readers, in this section, we give reformulation of
he Boltzmann equation through the decomposition introduced in Ref. 15.

Let f�t ,x ,�� be the solution to the Boltzmann equation, we decompose it into the macroscopic,
uid part, the local Mawellian M=M�x , t ,��=M��,u,�����, and the microscopic, nonfluid part G
G�x , t ,��,

f�t,x,�� = M�t,x,�� + G�t,x,�� . �2.1�

ere, M�t ,x ,�� is defined by the five conserved quantities, the mass density ��t ,x�, momentum
�t ,x�=��t ,x�u�t ,x� and energy density E�t ,x�+ �u�t ,x��2 /2,

��t,x� 	 �
3

f�t,x,��d� ,

R
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mi�t,x� 	 �
R3

�i���f�t,x,��d�, i = 1,2,3,

���E + 1
2 �u�2���t,x� 	 �

R3
�4���f�t,x,��d� , �2.2�

n the form of

M 	 M��,u,����� 	
�


�2�R��3
exp�−

�� − u�2

2R�
� . �2.3�

ere ��t ,x� is the temperature which is related to the internal energy ��t ,x� through the gas
onstant R, E= 3

2R�, and u�t ,x�= �u1�t ,x� ,u2�t ,x� ,u3�t ,x�� is the fluid velocity. Also �����, �
0,1 , . . . ,4, are the five collision invariants,1

�0��� 	 1,

�i��� 	 �i, i = 1,2,3, �2.4�

�4��� 	 1
2 ���2.

or any given Maxwellian M̃=M̃��̃,ũ,�̃�, we define an inner product in ��R3 as

h,g�M̃ 	 �
R3

h���g���

M̃
d� ,

or functions h and g of � such that the integral is well defined. Using this inner product with
espect to this Maxwellian, the subspace spanned by the collision invariants has the following set
f orthogonal basis:

�0
M̃ = �0��; �̃, ũ, �̃� 	

1

�̃

M̃ ,

�i
M̃ = �i��; �̃, ũ, �̃� 	

�i − ũi


R�̃�̃
M̃, i = 1,2,3,

�2.5�

�4
M̃ = �4��; �̃, ũ, �̃� 	

1


6�̃
� �� − ũ�2

R�
− 3�M̃ ,

��
M̃,��

M̃�M̃ = 	��, for �,� = 0,1,2,3,4.

ith this basis, we can define the macroscopic projection P0
M̃ and microscopic projection P1

M̃ by

P0
M̃h 	 �

�=0

4

h,��
M̃�M̃��

M̃,

P1
M̃h 	 h − P0

M̃h .
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otice that the operators P0
M̃ and P1

M̃ are projections, that is,

P0
M̃P0

M̃ = P0
M̃, P1

M̃P1
M̃ = P1

M̃, P0
M̃P1

M̃ = P1
M̃P0

M̃ = 0.

ow, the system of conservation laws

�
R3

���f t + � · �xf�d� = 0, � = 0,1, . . . ,4, �2.6�

akes the following form:

�t + divx m = 0,

mt
i + ��

j=1

3

ujmi�
xj

+ pxi + �
R3

�i����� · �xG�d� = 0, i = 1,2,3, �2.7�

��� �u�2

2
+ E��

t
+ �

j=1

3 �uj��� �u�2

2
+ E� + p��

xj
+ �

R3
�4����� · �xG�d� = 0.

he equation of the state is that for the monatomic gas, with the gas constant R chosen to be 3
2

ithout loss of generality, cf. Ref. 16,

p = 2
3�e .

nd the macroscopic entropy S is given by

S = − 2
3 ln � + ln� 4

3��� + 1.

he microscopic equation is obtained by applying the microscopic projection P1
M to the Boltzmann

quation �1.1�:

Gt + P1
M�� · �xG + � · �xM� =

1

�
LMG +

1

�
Q�G,G� , �2.8�

here LM is the linearized collision operator defined by

LMg = LM��,u,��
g 	 Q�M��,u,�� + g,M��,u,�� + g� − Q�g,g� . �2.9�

From �2.8� we have

G = �LM
−1�P1

M�� · �xM�� + LM
−1����tG + P1

M� · ��xG�� − Q�G,G�� = �LM
−1�P1

M�� · �xM�� + � .

�2.10�

y substituting �2.10� into �2.7� yields the following fluid-type system for the macroscopic com-
onents:

�t + divx m = 0,

mt
i + ��

j=1

3

ujmi�
xj

+ pxi + ��
R3

�i����� · �xLM
−1�P1

M�� · �xM���d�

+ �
3

�i����� · �x��d� = 0, i = 1,2,3,

R
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��� �u�2

2
+ E��

t
+ �

j=1

3 �uj��� �u�2

2
+ E� + p��

xj
+ ��

R3
�4����� · �xLM

−1�P1
M�� · �xM���d�

+ �
R3

�4����� · �x��d� = 0. �2.11�

otice also that in the above system, the terms

− ��
R3

�i����� · �xLM
−1�P1

M�� · �xM���d�

=− ��
R3

�i����� · �xLM��,u,��

−1 �P1
M�� · �xM��,u,�����d�

=− ��
R3

�i����� · �xLM�1,u,��

−1 �P1
M�� · �xM�1,u,�����d�, i = 1,2,3,

− ��
R3

�4����� · �xLM
−1�P1

M�� · �xM���d�

=− ��
R3

�4����� · �xLM��,u,��

−1 �P1
M�� · �xM��,u,�����d�

=− ��
R3

�4����� · �xLM�1,u,��

−1 �P1
M�� · �xM�1,u,�����d�

re the viscosity and heat conductivity terms which are the same as those in the compressible
avier-Stokes equations; and they are independent of the density gradient �x�. In fact, with the
urnett functions A and B, the viscosity coefficient ���� and heat conductivity coefficient ����
an be represented by

Aj��� =
���2 − 5

2
� j, j = 1,2,3,

Bij��� = �i� j − 1
3	ij���2, i, j = 1,2,3,

�2.12�

���� = − �R��
R3

Bij� �


R�
�LM�1,u,��

−1 �Bij� �


R�
�M�1,u,���d�  0, i � j ,

���� = − �R2��
R3

Al� �


R�
�LM�1,u,��

−1 �Al� �


R�
�M�1,u,���d�  0,

nd the fluid-type system �2.11� can be rewritten as

�t + divx m = 0,

mt
i + �

3

�ujmi�xj + pxi = �
3

������uxj
i + uxi

j − 2
3	ij divx u��xj − �

3
�i����� · �x��d�, i = 1,2,3,
j=1 j=1 R
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��� 1
2 �u�2 + E��t + �

j=1

3

�uj��� 1
2 �u�2 + E� + p��xj = �

i,j=1

3

�����ui�uxj
i + uxi

j − 2
3	ij divx u��xj

+ �
j=1

3

������xj�xj − �
R3

�4����� · �x��d� .

�2.13�

rom this fluid-type system, one can easily see the structure of the compressible Euler and the
ompressible Navier-Stokes equations. For instance, when the Knudsen number � is set zero, the
ystem �2.13� becomes the compressible Euler equations. On the other hand, when � is set to be
ero in �2.13�, it becomes the compressible Navier-Stokes equations. These fluid equations as
erived through the Hilbert and Chapman-Enskog expansions are approximations to the Boltz-
ann equation.3 However, the above system is part of the Boltzmann equation. Nevertheless, this

eformulation is consistent in spirit with these expansions in that the higher order terms beyond
rst order in the expansions must be microscopic. The above analysis also indicates that if we
educe the compressible Navier-Stokes equations from the Boltzmann equation, the viscosity
oefficient ����0 and the heat conductivity coefficient ����0 are smooth functions of the
emperature �.

II. ENERGY METHOD

This section is devoted to the energy method for the Boltzmann equation �1.1�. For simplicity,
e assume from now on that the Knudsen number �=1.

We first state some basic inequalities for later use. The first lemma is concerned with some
nequalities of Sobolev type.

Lemma 3.1: For g�x��H1�R3�, we have

�g�x��L6�R3� � C0��xg�x�� , �3.1�

here C0 is a positive constant independent of g�x�. Consequently, for g�x��H2�R3�, there exists
positive constant C1 independent of g�x� such that

�g�x��L��R3� � C1��xg�x��1,

�3.2�
�g�x��L4�R3� � C1��xg�x��

3
4�g�x��

1
4 .

Here and in the sequel, � · � and � · �s denote the standard L2�R3�-norm and Hs�R3�-norm,
espectively.

In the following, we will give some inequalities on the nonlinear and linearized collision
perators Q�f , f� and LMG. The first lemma is from Ref. 5.

Lemma 3.2: Suppose that B���−�* � ,�� satisfies (A1) and (A2), then there exists a positive
onstant C20 such that

�
R3

����−1Q�f ,g�2

M̃
d� � C2��

R3

����f2

M̃
d� · �

R3

g2

M̃
d� + �

R3

f2

M̃
d� · �

R3

����g2

M̃
d�� , �3.3�

here M̃ is any Maxwellian such that the above integrals are well defined.
As pointed out before, to perform the energy estimates for the Boltzmann equation �1.1�, for

1
M0f , the microscopic projection of its solution f�t ,x ,�� with respect to a given Maxwellian M0,

he dissipative effect through the microscopic H theorem should be used. In short, the microscopic
theorem states that the linearized collision operator LM0

around a fixed Maxwellian state M0 is
M0 2
egative definite on the nonfluid element P1 f , i.e.,
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− �
R3

P1
M0fLM0

�P1
M0f�

M0
d� � ��

R3

�����P1
M0f �2

M0
d� ,

or a positive constant �. Furthermore, one can vary the background for linearization and the
eight function. That is, we also have the following result whose proof is based on Lemma 3.2, cf.
ef. 16.

Lemma 3.3: If � /2
�̃ and the assumptions in Lemma 3.2 are satisfied, then there exist two

ositive constants �̄= �̄�u ,� ; ũ , �̃� and �0=�0�u ,� ; ũ , �̃� such that if �u− ũ � + ��− �̃ � 
�0, we have
or h����N�,

− �
R3

hLMh

M̃
d� � �̄�

R3

����h2

M̃
d� . �3.4�

ere M	M��,u,�����, M̃=M̃��̃,ũ,�̃���� and

N� = � f���: �
R3

� j���f���d� = 0, j = 0,1,2,3,4� .

Remark 3.1: The constant �0 is some positive constant depending on the first nonzero eigen-
alue of the linearized operator LM. Note that �0 is not necessary to be small, cf. Ref. 16.

A direct consequence of Lemma 3.3 and the Cauchy inequality is the following corollary, cf.
ef. 16.

Corollary 3.1: Under the assumptions in Lemma 3.3, we have for h����N�,

�
R3

����

M̃
�LM

−1h�2 d� � �̄−2�
R3

����−1h2���

M̃
d� . �3.5�

Before performing the energy estimates for the Boltzmann equation �1.1�, we first give the
unction space for the solutions considered in this paper

Hx,�
N ��0,T�� =�g�t,x,���

�t
��x

�g�t,x,��

M̄���

� BCt��0,T�,Lx,�
2 �R3 � R3��


�����t
��x

�g�t,x,��

M̄���

� Lt,x,�
2 ��0,T� � R3 � R3�, for ��� + ���  0

0 � t � T, ��� + ��� � N

� .

ere g�t ,x ,��= f�t ,x ,��−M̄���.
Now we deduce an estimate on the conserved quantities ��t ,x�, m�t ,x�	��t ,x�u�t ,x�,

�t ,x�� 1
2u2�t ,x�+E�t ,x�� by using the analytic techniques for the systems of conservation laws, cf.

efs. 13, 15, and 18, based on the following a priori assumption:

N�t�2 	 sup
0���t

�
���+����4

�
R3

��x
��t

�����,x� − �̄,u��,x�,���,x� − �̄��2 dx

+ sup
0���t

�
���+����4

�
R3
�

R3

��x
��t

��f��,x,�� − M̄�����2

M̄
d� dx

+ �
1����+����4

�
0

t �
R3
�

R3

������x
��t

��f��,x,�� − M̄�����2

M̄
d� dx d� � �2. �3.6�
ere, the small parameter �0 will be given in terms of the strength of the initial data f0�x ,��,
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nd the discussion is in Hx,�
4 ��0,T�� space which can be readily generalized to the Hx,�

s ��0,T��
pace for s4.

It is easy to see from �3.6�, the conservation laws �2.7� and Sobolev’s inequality that

N�0� � O�1�E�f0� with E�f0�2 	 �
���+����4

�
R3
�

R3

��x
��t

��f0�x,�� − M̄�����2

M̄
d� dx �3.7�

nd

sup
0���t,x�R3� �

���+����2

��x
��t

�����,x� − �̄,u��,x�,���,x� − �̄��2�
+ sup

0���t,x�R3
� �

���+����2
�

R3

��x
��t

��f��,x,�� − M̄�����2

M̄
d�� � O�1��2. �3.8�

ere and in the sequel, we will use O�1� to denote a generic positive constant independent of t and
.

Let m= �m0 ,m ,m4�t= �m0 ,m1 ,m2 ,m3 ,m4�= �� ,m ,�� 1
2u2+E��t, as in Ref. 15, we construct a

onvex entropy-entropy flux pair �� ,q� around the global Maxwellian M̄ as follows:

� = 3
2��� − �̄�S + ���S̄ − 5

3��̄ +
�u�2

2
� + 2

3 �̄�̄� ,

�3.9�
qj = uj� + uj��� − �̄�̄�, j = 1,2,3.

otice that for m in any closed bounded region D��= �m :�0,�0�, there exists a positive
onstant C3 depending on D such that the entropy-entropy flux thus constructed satisfies �cf. Refs.
5 and 16�

c3
−1�m − m̄�2 � � � C3�m − m̄�2. �3.10�

he �� ,q1 ,q2 ,q3� solves the following partial differential equation:

�t + divx q = �
i,j=1

3

�mi�m�������uxj
i + uxi

j − 2
3	ij divx u��xj

+ �
i,j=1

3

�m4�m������ui�uxj
i + uxi

j − 2
3	ij divx u��xj + �

j=1

3

�m4�m�������xj�xj

− �
R3

�m��m� · �0,�1���,�2���,�3���,�4������ · �x��d� . �3.11�

Since

�m��m� = −
3

2
�̄�S +

�u�2

2�
− S̄,−

u1

�
,−

u2

�
,−

u3

�
,−

� − �̄

��̄
� , �3.12�

e have by integrating �3.11� with respect to t and x over �0, t��R3, and using the Cauchy-
chwarz inequality and �3.10� that

��� − �̄,u,� − �̄��2�t� + �t

��x�u,���2���d�

0
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�O�1����0�x� − �̄,u0�x�,�0�x� − �̄��2 + O�1��
0

t �
R3
�

R3
���4���2 d� dx d� . �3.13�

If we choose � sufficiently small such that

� 
 min��0

2
, �̄� , �3.14�

hen for any �_ satisfying

�̄ 
 � _ 
 �̄ + � , �3.15�

e have

� � �̄ + �� − �̄� 
 �̄ + � 
 2�̄ 
 2� _ ,

�3.16�
�u� + �� − � _ � � ��u� + �� − �̄�� + � _ − �̄ 
 2� 
 �0.

enote M_ =M��̄,0,�_�, we have from Lemma 3.2, Corollary 3.1, �1.3�, �2.10�, �3.6�, �3.8�, and
3.16� that

�
R3
�

R3
���4���2 d� dx � O�1��

R3
�

R3

�����LM
−1�GtP1

M�� · �xG� − Q�G,G���2

M_
d� dx

� O�1��
R3
�

R3

����−1��Gt�2���2��xG�2 + �Q�G,G��2�
M_

d� dx

� O�1��
R3
�

R3

��Gt�2 + ��xG�2�

M̄
d� dx

+ O�1��
R3
�

R3

����G2

M_
d��

R3

G2

M_
d� dx

� O�1��
R3
�

R3

1

M̄
�Gt

2 + ��xG�2 + �2G2�d� dx . �3.17�

etting �3.13� and �3.17� together gives

��� − �̄,u,� − �̄��2�t� + �
0

t

��x�u,���2���d�

�O�1����0�x� − �̄,u0�x�,�0�x� − �̄��2

+ O�1��
0

t �
R3
�

R3

1

M̄
�Gt

2 + ��xG�2 + �2G2�d� dx d� . �3.18�

To obtain the higher order estimates on the conserved quantities, we first note that the system
2.13� can be rewritten as

¯ ¯ ¯
�t = − �� − ��divx u − �x�� − �� · u − � divx u , �3.19a�
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ut
i + �

j=1

3

ujuxj
i +

2

3�
��� − �̄�̄�xi = − �

R3

�i�� · �x��
�

d� +
1

�
�
j=1

3 ������uxj
i + uxi

j −
2

3
	ijdivx u��

xj
,

�3.19b�

i = 1,2,3,

�t + �
j=1

3 �uj�xj +
2

3
�uxj

j � = − �
R3

�4 − � · u

�
�� · �x��d� +

1

�
��

j=1

3

������xj�xj +
1

2
���� �

i,j=1

3

�uxj
i + uxi

j �2

−
2

3
�����divx u�2� . �3.19c�

Similar to the analysis in Ref. 18, 14, and 20 for the compressible Navier-Stokes equations,
e have by applying ���1� �� � �3� to �3.19b� and �3.19c�, multiplying the resulting identities by
��ui and �̄ /����, taking the summation with respect to i from 1 to 3, and integrating the resulting
quations with respect to t and x over �0, t��R3 that, for j=1,2 ,3,

�
���+���=j

�
R3

��x
��t

��� − �̄,u,���2 dx + �
���+���=j

�
0

t �
R3

��x�x
��t

��u,���2 dx d�

�O�1���f0�2 + O�1� �
���=j

�
0

t �
R3
�

R3

���x
��t

�Gt�2 + ��x�x
��t

�G�2�

M̄
d� dx d�

+ O�1�� �
1����+����j+1

�
0

t �
R3

��x
��t

��� − �̄,u,���2 dx d�

+ O�1�� �
���+����j

�
0

t �
R3
�

R3

��x
��t

�G�2

M̄
d� dx d� . �3.20�

t is worthy to point out that, compared with those estimates in Ref. 18, the only difference is that
e need to deal with the terms containing �. This can be estimated suitably as in the proof of

3.17� by using Lemma 3.2, Corollary 3.1, �1.3�, �2.10�, �3.6�, �3.8�, and �3.16� and the following
asic estimate on the collision operator Q�f ,g� �cf. Corollary 3.1 of Ref. 22�,

�
0

t �
R3
�

R3

����−1��x
��t

�Q�G,G��2

M_
d� dx d� � O�1�� �

����+�����4

�
0

t �
R3
�

R3

��x
���t

��G�2

M̄
d� dx d� .

ere �� � + �� � �4.
To get the Lt,x

2 estimates on �x
��t

���− �̄� for 1� �� � + �� � �4, we use the conservation laws
2.13� as in Refs. 13 and 15 to deduce that

� �
0

t �
R3

��x
��t

��� − �̄��2 dx d� �3.21�

���+���=j+1
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�O�1���f0�2 + O�1��
R3 � �

���+���=j+1

��x
��t

��� − �̄��2 + �
���+���=j

��x
��t

�u�2�dx

+ O�1� �
1����+����j+1

�
0

t �
R3

��x
��t

��u − ���2 dx d�

+ O�1�� �
1����+����j

�
0

t �
R3

��x
��t

��� − �̄��2 dx d�

+ O�1� �
���+����j+1

�
0

t �
R3
�

R3

��x
��t

�G�2

M̄
d� dx d�, j = 0,1,2,3.

A suitable linear combination of �3.18�, �3.20�, and �3.21� yields an estimate on the conserved
uantities, � ,m ,� 1

2 �u�2+� which is controlled by G besides the initial data, the microscopic
rojection of the solution f�t ,x ,�� of the Boltzmann equation �1.1� with respect to the local
axwellian M.

Lemma 3.4: Under the a priori assumption �3.6� we have

�
���+����3

��x
��t

��� − �̄,u,� − �̄��2�t� + �
1����+����4

�
0

t

��x
��t

���,u,���2���d�

�O�1���f0�2 + O�1� �
���+����4

�
0

t �
R3
�

R3

��x
��t

�G�2

M
d� dx d� . �3.22�

Since we want to close the energy estimates for the solution f�t ,x ,�� of the Boltzmann
quation �1.1� by performing the energy estimates on the original equation �1.1� with respect to the

lobal Maxwellian M̄, we need to transform the estimates on G, the microscopic projection of

f�t ,x ,�� with respect to the local Maxwellian M into P1
M̄f , the microscopic projection of f�t ,x ,��

ith respect to the global Maxwellian M̄. For this purpose, by noticing

P1
M̄G = G, P1

M̄f = G + P1
M̄M , �3.23�

e only need to obtain an estimate on P1
M̄M which is presented in the following lemma.

Lemma 3.5: Under the assumptions of Lemma 3.4, we can deduce

�
R3

����k�P1
M̄M�2

M0
d� � O�1���� − �̄,u,� − �̄��4. �3.24�

ere k0 is any positive constant and M0=M��0,u0,�0� can be any Maxwellian satisfying �0
1
2max�� , �̄�.

Consequently, we have for all �� � + �� � �4 that

�
0

t �
R3
�

R3

��x
��t

�G�2

M̄
d� dx d� � �

0

t �
R3
�

R3

��x
��t

�P1
M̄f �2

M̄
d� dx d�

+ O�1�� �
1����+����4

�
0

t

��x
��t

���,u,���2���d� . �3.25�

Proof: We only prove �3.24� since �3.25� follows immediately from �3.23�, �3.24�, Lemma 3.1
nd the a priori assumption �3.6�.

M̄
To prove �3.24�, first notice that P1 M is a smooth function of � ,u ,�, and
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���,u,��P1
M̄M = P1

M̄����,u,��M� .

ince

P1
M̄����,u,��M����,u,��=��̄,0,�̄� = 0,

e can easily deduce that P1
M̄M is quadratic with respect to ��− �̄ ,u ,�− �̄� and �3.24� follows

mmediately. This completes the proof of Lemma 3.5.
The following corollary is a direct consequence of Lemma 3.4 and Lemma 3.5.
Corollary 3.2: Under the assumptions in Lemma 3.3, we have

�
���+����3

��x
��t

��� − �̄,u,� − �̄��2�t� + �
1����+����4

�
0

t

��x
��t

���,u,���2���d�

�O�1���f0�2 + O�1� �
���+����4

�
0

t �
R3
�

R3

��x
��t

�P1
M̄f �2

M̄
d� dx d� . �3.26�

Now we can finalize the energy estimates on the solutions f�t ,x ,�� of the Boltzmann equation

1.1�. To this end, since g�t ,x ,��= f�t ,x ,��−M̄��� solves

gt + � · �xg = LM̄�P1
M̄g� + Q�P1

M̄g,P1
M̄g� + 2Q�P1

M̄g,P0
M̄�M − M̄�� + Q�P1

M̄�M − M̄�,P0
M̄�M − M̄�� ,

�3.27�

e have by applying �x
��t

���� � + �� � �4� to �3.27� and integrating its product with �x
��t

�g /M̄ over
0 , t��R�R3 that

1

2��R3
�

R3

��x
��t

�g�2

M̄
d� dx�

0

t

= �
0

t �
R3
�

R3

�x
��t

�g · �x
��t

�LM̄�P1
M̄g�

M̄
d� dx d�

+ �
0

t �
R3
�

R3

�x
��t

�g . �x
��t

�Q�P1
M̄g,P1

M̄g�

M̄
d� dx d�

+ 2�
0

t �
R3
�

R3

�x
��t

�g . �x
��t

�Q�P1
M̄g,P0

M̄�M − M̄��

M̄
d� dx d�

+ �
0

t �
R3
�

R3

�x
��t

�g . �x
��t

�Q�P1
M̄�M − M̄�,P0

M̄�M − M̄��

M̄
d� dx d�:

ª �
j=1

4

Ij . �3.28�

ere Ii�i=1,2 ,3 ,4� are the corresponding terms in the above equation without any ambiguity.

Since M̄ is independent of t and x, we have

P1
M̄��x

��t
�g� = �x

��t
�gP1

M̄g ,

�3.29�
�x

��t
�LM̄�P1

M̄g� = LM̄��x
��t

�gP1
M̄g� .
hus from Lemma 3.2, Lemma 3.3, and �3.6�, I1 and I2 can be estimated as follows:
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I1 = �
0

t �
R3
�

R3

�x
��t

�P1
M̄g · LM̄��x

��t
�P1

M̄g�

M̄
d� dx d� � − ��

0

t �
R3
�

R3

������x
��t

�P1
M̄g�2

M̄
d� dx d� ,

�3.30�

I2 = �
0

t �
R3
�

R3

�x
��t

�P1
M̄g · �x

��t
�Q�P1

M̄g,P1
M̄g�

M̄
d� dx d�

�
�

4
�

0

t �
R3
�

R3

������x
��t

�P1
M̄g�2

M̄
d� dx d� + O�1��

0

t �
R3
�

R3

����−1��x
��t

�Q�P1
M̄g,P1

M̄g��2

M̄
d� dx d�

�
�

4
�

0

t �
R3
�

R3

������x
��t

�P1
M̄g�2

M̄
d� dx d�

+ O�1�� �
���+�����4

�
0

t �
R3
�

R3

����−1��x
���t

��P1
M̄g�2

M̄
d� dx d� . �3.31�

ere we have used the inequality

�
0

t �
R3
�

R3

����−1��x
��t

�Q�P1
M̄g,P1

M̄g��2

M̄
d� dx d�

� O�1�� �
���+�����4

�
0

t �
R3
�

R3

������x
���t

��P1
M̄g�2

M̄
d� dx d� , �3.32�

hich follows similarly to the Corollary 3.1 of Ref. 22.
For I3 and I4, we want to prove the following estimates;

I3 �
�

4
�

0

t �
R3
�

R3

������x
��t

�P1
M̄g�2

M̄
d� dx d�

+ O�1�� �
����+�����4

�
0

t �
R3
�

R3

������x
���t

��P1
M̄g�2

M̄
d� dx d�

+ O�1�� �
1�����+�����4

�
0

t �
R3

��x
���t

����,u,���2dx d� . �3.33�

nd

I4 �
�

4
�

0

t �
R3
�

R3

������x
��t

�P1
M̄g�2

M̄
d� dx d� + O�1�� �

1�����+�����4

�
0

t �
R3

��x
���t

����,u,���2dx d� .

�3.34�

For illustration, we only prove �3.34� because similar argument holds for �3.33�. For this, we

ave from Lemma 3.2, �3.6�, �3.8�, and �3.29� that
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I4 = �
���,������,��

C�,�
��,���

0

t �
R3
�

R3

�
�x

��t
�P1

M̄g · Q��x
���t

��P1
M̄�M − M̄�,�x

�−���t
�−��P0

M̄�M − M̄��

M̄
d� dx d�

�
�

4
�

0

t �
R3
�

R3

������x
��t

�P1
M̄g�2

M̄
d� dx d�

+ O�1� �
���,������,��

�
0

t �
R3
�

R3

����−1�Q��x
���t

��P1
M̄�M − M̄�,�x

�−���t
�−��P0

M̄�M − M̄���2

M̄
d� dx d�

�
�

4
�

0

t �
R3
�

R3

������x
��t

�P1
M̄g�2

M̄
d� dx d�

+ O�1� �
���,������,��

�
0

t �
R3
��

R3

����−1��x
���t

��P1
M̄�M − M̄��2

M̄
d�

· �
R3

��x
�−���t

�−��P0
M̄�M − M̄��2

M̄
d��dx d�

�
�

4
�

0

t �
R3
�

R3

������x
��t

�P1
M̄g�2

M̄
d� dx d�

+ O�1�� �
1�����+�����4

�
0

t �
R3

��x
���t

����,u,���2 dx d�

+ O�1� �
���,������,��

�
0

t �
R3

��x
���t

����,u,���2��x
�−���t

�−����,u,���2dx d� . �3.35�

Denote

I�,�
��,�� = �

0

t �
R3

��x
���t

����,u,���2��x
�−���t

�−����,u,���2dx d� . �3.36�

e estimate I�,�
��,�� by considering the following three cases.

Case 1: ��� ,���= �� ,��= �0,0�.
For this case, we have from Lemma 3.1 and the a priori assumption �3.6� that

I0,0
0,0 = �

0

t �
R3

��� − �̄,u,� − �̄��4dx d�

� O�1��
0

t

��� − �̄,u,� − �̄����x�� − �̄,u,� − �̄��3d�

� O�1���
0

t

��x�� − �̄,u,� − �̄��2d� . �3.37�

Case 2: 0� ��� � + ��� � �2, ��� ,���
 �� ,��.

In this case, we have from �3.8� that
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I�,�
��,�� � O�1���

0

t �
R3

��x
�−���t

�−����,u,���2dx d� . �3.38�

Case 3: 2
 ��� � + ��� � �4.
In this case, we have ��−�� � + ��−�� � �1 because �� � + �� � �4. Similar to Case 2, we have

I�,�
��,�� � O�1���

0

t �
R3

��x
���t

����,u,���2dx d� . �3.39�

Setting �3.37�, �3.38�, and �3.39� together yields

I�,�
��,�� � O�1�� �

1�����+�����4

�
0

t �
R3

��x
���t

����,u,���2dx d� . �3.40�

Plugging �3.40� into �3.35� gives �3.34� immediately. This completes the proof of �3.33� and
3.34�.

Now substituting �3.30�, �3.31�, �3.33�, and �3.34� into �3.28� yields

�
R3
�

R3

��x
��t

�g�2

M̄
d� dx + �

0

t �
R3
�

R3

������x
��t

�P1
M̄g�2

M̄
d� d�

� O�1���f0�2 + O�1�� �
����+�����4

�
0

t �
R3
�

R3

������x
���t

��P1
M̄g�2

M̄
d� dx d�

+ O�1�� �
1�����+�����4

�
0

t �
R3

��x
���t

����,u,���2 dx d� . �3.41�

hus

�
���+����4

�
R3
�

R3

��x
��t

�g�2

M̄
d� dx + �

���+����4
�

0

4 �
R3
�

R3

������x
��t

�P1
M̄g�2

M̄
d� dx d�

� O�1���f0�2 + O�1�� �
1����+����4

�
0

t �
R3

��x
��t

���,u,���2 dx d� . �3.42�

Multiplying �3.42� by a suitably large positive constant C4 and adding the result to �3.26�
ields

�
���+����4

�
R3
�

R3

��x
��t

��f − M̄��2

M̄
d� dx + �

���+����4
�

R3
��x

��t
��� − �̄,u,� − �̄��2 dx

+ �
���+����4

�
0

t �
R3
�

R3

������x
��t

�P1
M̄f �2

M̄
d� dx d� + �

1����+����4
�

0

t �
R3

�	x
�	t

���,u,���2dx d�

� O�1���f0�2. �3.43�

his closes the a priori assumption �3.6� provided that we choose 	00 sufficiently small such
hat

��f0� 
 	0,

�3.44�
O�1�	2 
 �2.
0
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The above analysis yields the following energy estimates for the solution f�t ,x ,�� of the
oltzmann equation �1.1� with initial data f0�x ,��.

Lemma 3.6 (Energy estimates): Assume that f�t ,x ,���Hx,�
4 ��0,T�� is a solution of the Cauchy

roblem �1.1� and �1.5� for some constant T0. Then there exist two sufficiently small positive
onstants �, 	0 such that if ��f0�
	0 we have

N�T� 
 � . �3.45�

In order to use the above energy estimates and the continuity argument to get the global
xistence result for the Cauchy problem �1.1� and �1.5�, we need the local existence result in

x,�
4 ��0,T�� from Refs. 9 and 22.

Lemma 3.7 (Local existence result): For any sufficiently small constant M 0, there exists a
ositive constant T*�M�0 such that if ��f0��M, then the Cauchy problem �1.1� and �1.5� admits

unique classical solution f�t ,x ,���Hx,�
4 ��0,T*�M��� on �0,T*�M���R3�R3 such that

f�t ,x ,���0 and

sup
0�t�T*�M�

�
���+����4

�
R3
�

R3

��x
��t

��f�t,x,�� − M̄�����2

M̄���
d� dx � C5M , �3.46�

or some positive constant C5.
Remark 3.2: Notice that even for the local existence, the smallness of the initial data

0�x ,��= f0�x ,��−M̄��� is needed.
By combining Lemma 3.6 with Lemma 3.7, the main result in this paper can be stated as in

he following theorem.

Theorem 3.1: Let N�4 be an integer and M̄��� be any given global Maxwellian, then there
xist two sufficiently small positive constants 	0 and � such that if

��f0� 	 �
���+����N

�
R3
�

R3

��x
��t

��f0�x,�� − M̄�����2

M̄
d� dx 
 	0, �3.47�

he Cauchy problem �1.1� and �1.5� admits a unique global classical solution f�t ,x ,��
Hx,�

N �R+� satisfying f�t ,x ,���0 and

�
���+����N

sup
t�R+

�
R3
�

R3

��x
��t

��f�t,x,�� − M̄�����2

M̄
d� dx � � ,

�3.48�

limt→� sup
x�R3

�
���+����N−3

�
R3

��x
��t

��f�t,x,�� − M̄�����2

M̄���
d� = 0.

Remark 3.3: The above analysis only shows that Theorem 3.1 holds for N=4. But the case
4 can be discussed similarly. It is worthy to point out that the assumption N�4 is to guarantee
hat Hx,�

N ��0,T�� is a Banach algebra.
Before concluding this paper, we point out the main difference of this work from the previous

nes on the stability analysis. The nonlinear stability of the global Maxwellian M̄ is studied in Ref.
5 based on the decomposition of the Boltzmann equation �1.1� and its solution f�t ,x ,�� around
he local Maxwellian M�t ,x ,��. The fluid component P0

Mf and nonfluid component P1
Mf are

stimated separately. The energy estimates are closed with respect to some suitably chosen global
axwellian M_ =M��_,u_,�_�. Because of the technicality, it requires, among others, that

� _ 
 �̄ ,
nd the initial data f0�x ,�� satisfies

                                                                                                            



f
i

i
t
m

t
=
a
m
c
q

M
k
s
e
n
a
M

1

1

1

1

1

1

1

1

1

1

2

053301-18 T. Yang and H. Zhao J. Math. Phys. 47, 053301 �2006�

                        
�
���+����N

�
R3
�

R3

��x
��t

��f0�x,�� − M̄�����2

M_
d� dx 
 	0,

or some sufficiently small positive constant 	0. Hence, it is easy to see that the assumptions
mposed on the initial data in Ref. 15 is stronger than those in this paper.

On the other hand, the energy estimate is also closed with respect to the global Maxwellian M̄
n Ref. 9 and the key point there is to use the positivity of the linearized collision operator LM̄ for
he solution f�t ,x ,�� with small amplitude to the Boltzmann equation �1.1�. Precisely, based on the

acroscopic projection

P0
M̄f = �a�t,x� + �

j=1

3

bj�t,x�� j + c�t,x����2�M̄ ,

he author in Ref. 9 gave a set of equations for the macroscopic quantities a�t ,x� ,bj�t ,x��j
1,2 ,3� and c�t ,x�. And the proof of the positivity of LM̄ for the solution f�t ,x ,�� with small
mplitude to the Boltzmann equation �1.1� is then obtained by some delicate estimates on the
acroscopic quantities a�t ,x� ,bj�t ,x��j=1,2 ,3�, and c�t ,x�. However, the time evolution of the

onserved quantities � ,m ,� 1
2 �u�2+� is not clearly presented by just analyzing the macroscopic

uantities a�t ,x� ,bj�t ,x��j=1,2 ,3�, and c�t ,x� as in Ref. 9.
The main observation in this paper is to close the energy estimates with respect to the global

axwellian M̄ by estimating the conserved quantities � ,�u ,� 1
2 �u�2+� governed by the well-

nown compressible Navier–Stokes equations with the nonfluid component P1
Mf appearing in the

ource terms. Hence, the analytic techniques for the system of the compressible Navier–Stokes
quations can be used to deduce the desired estimates on the conserved quantities. Therefore, it
ot only simplifies the analysis in the previous works, but also sheds some light on the stability
nalysis in some complicated systems, such as the Vlasov-Poisson-Boltzmann and Vlasov-
axwell-Boltzmann systems.
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A relation between semidirect sums of Lie algebras and integrable couplings
of lattice equations is established, and a practicable way to construct integrable
couplings is further proposed. An application of the resulting general theory to the
generalized Toda spectral problem yields two classes of integrable couplings
for the generalized Toda hierarchy of lattice equations. The construction of inte-
grable couplings using semidirect sums of Lie algebras provides a good source of
information on complete classification of integrable lattice equations. © 2006
American Institute of Physics. �DOI: 10.1063/1.2194630�

. INTRODUCTION

Integrable couplings have been receiving growing attention recently. A few ways to construct
ntegrable couplings are presented by using perturbations,1–3 enlarging spectral problems,4,5 and
reating new loop Lie algebras.6,7

The problem of integrable couplings can be expressed as follows:2 For a given integrable
ystem, how can we construct a nontrivial system of differential equations which is still integrable
nd includes the original integrable system as a subsystem? Obviously, a change of orders of
quations in a system does not lose integrability of the system. Therefore, up to a permutation, an
ntegrable coupling of a given integrable system ut=K�u� is given by a bigger and triangular
ystem:

ut = K�u�, vt = S�u,v� .

he vector-valued function S should satisfy the nontriviality condition �S /��u��0, where �u�
�u ,Dxu ,Dx

2u , . . . � and Dx
nu denotes a vector consisting of all derivatives of u of order n with

espect to the space variable x. The above nontriviality condition means that the second subsystem
nvolves the dependent variables of the first subsystem �i.e., the original system�, and thus it
uarantees that trivial diagonal systems with S�u ,v�=S�v� are not within our discussion.

A basic integrable coupling of an integrable system ut=K�u� is given by

�Electronic mail: mawx@math.usf.edu; Tel: �813�974-9563, Fax: �813�974-2700
�Electronic mail: xu�xixiang@sohu.com
�
Electronic mail: zhang�yfshandong@163.com

47, 053501-1022-2488/2006/47�5�/053501/16/$23.00 © 2006 American Institute of Physics

                                                                                                            

http://dx.doi.org/10.1063/1.2194630
http://dx.doi.org/10.1063/1.2194630
http://dx.doi.org/10.1063/1.2194630


w
s
�

O
r
i
c
l
T
l

T

w
o
n

s
b
u
h
w
t
t
f

L
m
o
o
i
t
t

a

L
m
s

053501-2 Ma, Xu, and Zhang J. Math. Phys. 47, 053501 �2006�

                        
ut = K�u�, vt = K��u��v� , �1.1�

hich can be generated by a perturbation around a solution of the system ut=K�u�.1 In the above
ystem and elsewhere throughout this paper, P��u��v� denotes the Gateaux derivative of P�u�

P�u ,Dxu , . . . � with respect to u in a direction v, i.e.,

P��u��v� =
�

��
�P�u + �v���=0 =

�

��
�P�u + �v,Dxu + �Dxv, . . . ���=0.

bviously, the second subsystem vt=K��u��v� in the above integrable coupling �1.1� is linear with
espect to v. Moreover, a symmetry S�u� of the system ut=K�u� leads to a solution �u ,S�u�� to the
ntegrable coupling �1.1�. However, the second component v of a solution �u ,v� to the integrable
oupling �1.1� is generally not a symmetry of the system ut=K�u�. This is because v satisfies the
inearized system vt=K��u��v� only for one solution, not for all solutions of the system ut=K�u�.
herefore, the simple integrable coupling �1.1� is already a generalization of the symmetry prob-

em. Another basic integrable coupling of an integrable system ut=K�u� reads as

ut = K�u�, vt = K��u��v� + K�u� . �1.2�

his system has a set of hereditary recursion operators2

���1,�2� = � �1��u� 0

�1���u��v� + �2��u� �1��u�
�

ith two arbitrary constants �1 and �2, if the original system ut=K�u� has a hereditary recursion
perator ��u�. Therefore, integrable couplings possess richer integrable structures than the origi-
al integrable systems.

The study of integrable couplings provides clues towards complete classification of integrable
ystems. Let us first observe classification of square matrix spectral problems through the Jordan
locks under similar transformations of matrices. Each triangular Jordan block corresponds to an
ndecomposable subsystem in a given integrable system. Now, note that an arbitrary Lie algebra
as a semidirect sum structure of a solvable Lie algebra and a semisimple Lie algebra,8 and we
ill see that semidirect sums of Lie algebras can result in integrable couplings. These imply that

he study of integrable couplings through semidirect sums of Lie algebras is an inevitable step
owards complete classification of integrable systems with an arbitrary number of components,
rom a point of view of Lie algebras.

The study of integrable couplings also generates interesting mathematical structures such as
ax pairs with several spectral parameters,9,10,2 integrable constrained flows with higher
ultiplicity,11,12 local bi-Hamiltonian structures in higher dimensions13 and hereditary recursion

perators of higher order.2,14 Very recently, we have proposed a relation between semidirect sums
f Lie algebras and integrable couplings of continuous soliton equations, which provides an
nteresting and systematic approach to integrable couplings of continuous soliton equations.15 In
his paper, we would like to discuss the problem of discrete integrable couplings and develop a
heory for constructing discrete integrable couplings by use of semidirect sums of Lie algebras.

Throughout our discussion, we denote by E the shift operator, write

�Emx��n� = x�m��n� = x�m + n�, where x:Z → R, m,n � Z , �1.3�

nd adopt an inverse of the difference operator E−1 as follows:

�E − 1�−1 =
1

2
� 	

k=−�

−1

− 	
k=0

� �Ek. �1.4�

et G be a matrix Lie algebra with the standard Lie bracket �A ,B�=AB−BA, and closed under
atrix multiplication: AB�G for all A ,B�G. We assume that an integrable lattice equation �or
ystem� of evolution type
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ut = K�u� = K�u,Eu,E−1u, . . . � �1.5�

s associated with G, where u=u�n , t� is a dependent variable. More precisely, there is a pair of
quare matrices U and V in G, called a Lax pair, so that the discrete spatial matrix spectral
roblem

E� = U� = U�u,��� �1.6�

nd the associated discrete temporal matrix spectral problem

�t = V� = V�u,Eu,E−1u, . . . ;��� , �1.7�

here � is a spectral parameter and � is an eigenfunction, generate16,17 the integrable lattice
quation �1.5� through their isospectral �i.e., �t=0� compatibility condition

Ut = �EV�U − UV , �1.8�

hich is called a discrete zero curvature equation. In other words, we have

U��u��K� = �EV�U − UV , �1.9�

here U��u��K� denotes the Gateaux derivative as above. In a nonisospectral case, e.g., �t= f���,
hen we have

U��u��K� + fU� = �EV�U − UV , �1.10�

here U� is a partial derivative of U with respect to �. Based on �1.6� and �1.7�, the lattice
quation �1.5� can often be solved by the inverse scattering transform �for example, see Ref. 18�.
here are also a few interesting Lie algebraic structures hidden behind the equation �1.10� �see
ef. 17 for more information�. An integrable hierarchy and its master symmetry hierarchy usually
orrespond to the isospectral case and the nonisospectral case �t=�n, n�0, respectively. These
wo hierarchies constitute a semidirect sum of Lie algebras, each of which consists of symmetries
n one hierarchy. The spatial matrix spectral problem �1.6� is our starting point in constructing
iscrete integrable couplings. The closure property of the Lie algebra G under matrix multiplica-
ion guarantees that �EV�U−UV is still in G so that the discrete zero curvature equation �1.8�

akes sense.
In what follows, we are going to establish a relation between semidirect sums of Lie algebras

nd integrable couplings of lattice equations and a technically practicable way to generate inte-
rable couplings through semidirect sums of Lie algebras. The resulting general theory will be
sed to generate two classes of integrable couplings for the generalized Toda hierarchy presented
n Ref. 19. It will also be indicated that the construction of integrable couplings using semidirect
ums of Lie algebras provides a good source of information about classification of integrable
attice equations. A few concluding remarks will be given in the last section.

I. CONSTRUCTING INTEGRABLE COUPLINGS USING SEMIDIRECT SUMS OF LIE
LGEBRAS

. Generating scheme

Assume that the lattice equation �1.5� has a Lax pair �U ,V� in a matrix Lie algebra G closed
nder matrix multiplication.

To construct an integrable coupling of the lattice equation �1.5�, we use semidirect sums of Lie
lgebras to enlarge the original Lie algebra G. Take another matrix Lie algebra Gc closed under

atrix multiplication and then form a semidirect sum Ḡ of G and Gc:

Ḡ = G* Gc. �2.1�
he notion of semidirect sums means that G and Gc satisfy
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�G,Gc� � Gc, �2.2�

here �G ,Gc�= 
�A ,B� �A�G ,B�Gc�. Obviously, Gc is an ideal Lie subalgebra of Ḡ. The sub-
cript c here indicates a contribution to the construction of couplings. We also require that the
losure property between G and Gc under matrix multiplication,

GGc,GcG � Gc, �2.3�

here G1G2= 
AB �A�G1 ,B�G2�, to guarantee that a Lax pair from the semidirect sum Ḡ can
enerate a coupling system. Note that the two different binary operations were used in the above
losure properties in �2.2� and �2.3�.

Now choose a pair of new Lax matrices in the semidirect sum Ḡ of Lie algebras:

Ū = U + Uc, V̄ = V + Vc, Uc,Vc � Gc, �2.4�

nd make a pair of enlarged discrete spatial matrix spectral problems

E�̄ = Ū�̄ = Ū�ū,���̄ ,

�2.5�
�̄t = V̄�̄ = V̄�ū,Eū,E−1ū, . . . ;���̄ ,

here the matrix Uc in Ū introduces additional dependent variables and ū consists of both the
riginal dependent variables and the additional dependent variables. In addition, the matrix Uc

ould depend on the spectral parameter �, and the matrix Vc in V̄ really does almost in all cases.
ased on the closure properties of G, Gc and between G and Gc, it is easy to see that

�EV̄�Ū − ŪV̄ = ��EV�U − UV� + 
��EV�Uc − UcV� + ��EVc�U − UVc� + ��EVc�Uc − UcVc��

� G* Gc.

herefore, under ut=K�u�, the corresponding enlarged discrete zero curvature equation

Ūt = �EV̄�Ū − ŪV̄ �2.6�

recisely presents

Ut = �EV�U − UV ,

�2.7�
Uc,t = ��EV�Uc − UcV� + ��EVc�U − UVc� + ��EVc�Uc − UcVc� .

he first equation above is equivalent to the lattice equation �1.5�, and hence, this is a coupling
ystem for the lattice equation �1.5�.

The whole construction process above shows that semidirect sums of a given Lie algebra G
ith new Lie algebras provide a great choice of candidates of integrable couplings for the lattice

quation �1.5� generated from the Lie algebra G.

. Realizations by particular semi-direct sums

To shed light on the above general scheme of constructing coupling systems, let us introduce
he following particular class of semidirect sums of Lie algebras:
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Gc =�
0

� Bij

0

B�+1,�+1

0 �

B	+1,	+1

�� , �2.8�

here A ,Bii are arbitrary square matrices, A is of the same order as U and the partitions of
atrices in G and Gc are the same. Obviously, Bij , j
�, are square but Bij , j��+1, may not; and

ll closure conditions of G ,Gc and between G and Gc under matrix multiplication are satisfied.
Define

ote that UG and VG in G generate the same lattice equation as U and V, and thus for integrable

ouplings, the corresponding enlarged spectral matrices Ū and V̄ in the semidirect sum G*Gc can
e chosen as

Ū = UG + UG,c ª
U

� Uij

U

U�+1,�+1

0 �

U	+1,	+1

�
V̄ = VG + VG,c ª

V

� Vij

V

V�+1,�+1

0 �

V	+1,	+1

� ,

here the first two matrices UG and VG play the �U ,V�-part and the second two matrices UG,c and

G,c play the �Uc ,Vc�-part in the pair of Ū and V̄ defined in �2.4�. It is not difficult to see that the
esulting coupling system �2.7� becomes

Ut = �EV�U − UV ,

�Ui+1,i+1�t = �EVi+1,i+1�Ui+1,i+1 − Ui+1,i+1Vi+1,i+1, � 
 i 
 	 , �2.9�

Uij,t = 	
k=i

j

��EVik�Ukj − UikVkj�, 1 
 i � j 
 	 + 1,

here Uii=U and Vii=V, 1
 i
�.

In particular, first, if we take
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Ū =
U U12 ¯ U1,�+1

� � ]

U U�,�+1

0 0
�, V̄ =

V V12 ¯ V1,�+1

� � ]

V V�,�+1

0 0
� ,

hen the coupling system �2.9� becomes

Ut = �EV�U − UV ,

�2.10�

Uij,t = 	
k=i

j

��EVik�Ukj − UikVkj�, 1 
 i � j 
 � + 1,

here Uii=U, Vii=V, 1
 i
�, and Uii=Vii=0, i=�+1. Second, if we take

Ū = 
U Ua1

¯ Ua	

U � ]

� Ua1

0 U
�, V̄ = 

V Va1
¯ Va	

V � ]

� Va1

0 V
� ,

hen the coupling system �2.9� becomes

Ut = �EV�U − UV ,

�2.11�
Uai,t

= 	
k+l=i,k,l�0

��EVak
�Ual

− Ual
Vak

�, 1 
 i 
 	 ,

here Ua0
=U and Va0

=V.
We remark that here we have just presented one class of semidirect sums of Lie algebras,

ogether with two specific examples. It is interesting to construct other possible realizations,
specially those which could carry essential information for keeping integrable properties of the
riginal lattice equations.

. Linearly dependent case on the spectral parameter

Let us now assume that the spatial spectral matrix U depends linearly on the spectral param-
ter � �see, for example, Refs. 17 and 19–21�:

U = U�u,�� = �U0 + U1,
�U0

��
=

�U1

��
= 0. �2.12�

onsider two specific examples of the enlarged spatial spectral matrices introduced in the last
ection,

Ū1 = �U Ua

0 0
�, Ū2 = �U Ua

0 U
�,

�Ua

��
= 0. �2.13�

ote that the submatrices Ua in the above two enlarged spatial spectral matrices could be of
ifferent sizes. As in the continuous cases,4,15 suppose that

W̄1 = �W Wa

0 0
�, W̄2 = �W Wa

0 W
�

ith
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W = 	
i�0

Wi�
−i, Wa = 	

i�−n0

Wa,i�
−i,

�Wi

��
= 0,

�Wa,i

��
= 0, �2.14�

here n0�0 is a proper integer, solve the corresponding enlarged discrete stationary zero curva-
ure equations

�EW̄i�Ūi − ŪiW̄i = 0, i = 1,2, �2.15�

espectively.
Then for each m�0, choose

V̄1
�m� = �V�m� Va

�m�

0 0
� = ��mW̄1�+ + �̄m, �̄m = ��m �m,a

0 0
� ,

here �m and �m,a do not depend on � and satisfy

�E�m�U0 − U0�m = 0, U0�m,a = 0, �2.16�

nd choose

V̄2
�m� = �V�m� Va

�m�

0 V�m� � = ��mW̄2�+ + �̄m, �̄m = ��m �m,a

0 �m
� ,

here �m and �m,a do not depend on � and satisfy

�E�m�U0 − U0�m = 0, �E�m,a�U0 − U0�m,a = 0. �2.17�

he subscript  above denotes to select the polynomial part in �. Based on �2.10� and �2.11� and
sing �2.15�, we can directly show that the enlarged discrete zero curvature equations

Ūi,tm
= �EV̄i

�m��Ūi − ŪiV̄i
�m�, i = 1,2,

amely,

Utm
= �EV�m��U − UV�m�,

Ua,tm
= �EV�m��Ua − UVa

�m�,

nd

Utm
= �EV�m��U − UV�m�,

Ua,tm
= �EV�m��Ua + �EVa

�m��U − UVa
�m� − UaV

�m�,

resent

Utm
= ��m�x + �U0,Wm+1� − �U1,�m� ,

�2.18�
Ua,tm

= U0Wa,m+1 + �E�m�Ua − U1�m,a,

nd

Ut = ��m�x + �U0,Wm+1� − �U1,�m� , �2.19a�

m
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Ua,tm
= U0Wa,m+1 − �EWa,m+1�U0 + �E�m�Ua − Ua�m + �E�m,a�U1 − U1�m,a, �2.19b�

espectively.
We remark that these two enlarged hierarchies in �2.18� and �2.19� share the enlarged discrete

pectral problems

E�̄ = Ū1�̄, E�̄ = Ū2�̄ ,

espectively. Thus, all lattice equations in each of the two enlarged hierarchies can possess infi-
itely many common conserved densities except the original ones �see Refs. 22–24 for a few

oncrete examples�. Moreover, one can construct a specific nondegenerate bilinear form on Ḡ with
he invariance property, to present Hamiltonian structures of the enlarged lattice equations by a
eneralized trace identity. The detailed analysis on those integrable properties will be left to a
uture presentation.

To sum up, each system of lattice equations in the hierarchy �2.18� or �2.19� can provide an
ntegrable coupling for its first subsystem of lattice equations. In the next section, we will only
iscuss two examples of constructing enlarged lattice hierarchies, in the generalized Toda case
resented in Ref. 19.

II. INTEGRABLE COUPLINGS OF THE GENERALIZED TODA HIERARCHY

. The generalized Toda equations

Let us here recall the generalized Toda hierarchy.19 The corresponding discrete spatial spectral
roblem reads

E� = U�u,���,U�u,�� = � 0 1

��� + ��r � + s
�, u = �r

s
� , �3.1�

here � is a spectral parameter, and � and � are two arbitrary constants satisfying �2+�2�0.
hen �=0 and �=−1, �3.1� becomes the Toda spectral problem.16

Its stationary discrete zero curvature equation

�EW�U − UW = 0 �3.2�

as the solution

W = � a b

��� + ��c − a
� , �3.3�

ith

a = 	
i�0

ai�
−i, b = 	

i�0
bi�

−i, c = 	
i�0

ci�
−i,

here the coefficients are defined by the initial conditions

a0 = − 1
2 , b0 = 0, c0 = 0,

nd the recursion relation

ci+1 − rbi+1
�1� = 0, i � 0, �3.4a�

b�1� + sb�1� + �a�1� + ai� = 0, i � 0, �3.4b�
i+1 i i
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�ai+1
�1� − ai+1� + s�ai

�1� − ai� + ��rbi+1 − ci+1
�1� � + ��rbi − ci

�1�� = 0, i � 0, �3.4c�

hich are all difference polynomials in u with respect to the lattice variable n. Under the initial-
alue conditions

�a1�u=0 = �c1�u=0 = 0, �ai�u=0 = �bi�u=0 = �ci�u=0 = 0, i � 2,

he recursion relation �3.4� uniquely determines the lattice functions ai, bi, and ci, i�1. The first
ew lattice functions are

a1 = �r, b1 = 1, c1 = r ,

a2 = − �2r�1�r − �2r2 − �2rr�−1� − �rs − �rs�−1� + �r ,

b2 = − �r − �r�−1� − s�−1�, c2 = − rs − �r2 − �rr�1�.

As usual, choose that

Vm = � ��ma�+ ��mb�+

��� + ����mc�+ − ��ma�+
�, m � 0. �3.5�

hen it follows from �3.4� that

�EVm�U − UVm = � 0 − bm+1
�1�

��� + ��cm+1 ��cm
�1� − rbm� − s�am

�1� − am�
� .

ake a modification

�m = �bm+1 0

0 0
� ,

nd define the temporal spectral matrices

V�m� = Vm + �m, m � 0. �3.6�

hen, a direct calculation leads to the following matrix:

�EV�m��U − UV�m� = � 0 0

��� + ���cm+1 − rbm+1� ��cm
�1� − rbm� − s�am

�1� − am�
� .

his is consistent with Utm
, and thus, making the evolution laws

�tm
= V�m��, m � 0, �3.7�

he compatibility conditions

Utm
= �EV�m��U − UV�m�, m � 0,

f the discrete spatial spectral problem �3.1� and the associated discrete temporal spectral prob-
ems �3.7� give rise to the following hierarchy of lattice equations:

rtm
= cm+1 − rbm+1,

stm
= − ��cm+1

�1� − rbm+1� + �am+1
�1� − am+1� ,

m � 0. �3.8�

his generalized Toda hierarchy is Liouville integrable,19 and its Hamiltonian structure leads to
nfinitely many conservation laws and symmetries for every system in the hierarchy.
Obviously, the first nonlinear lattice equation in the hierarchy is
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rt1
= r�s�−1� − s� + �r�r�−1� − r�1�� ,

�3.9�
st1

= �s�r − r�1�� + ��r�1� − r� .

hen �=0 and �=−1, �3.9� becomes the Toda lattice equation,25

rt1
= r�s�−1� − s�, st1

= r − r�1�, �3.10�

nd when �=1 and �=0, �3.9� becomes the following lattice equation presented in Ref. 26:

rt1
= r�s�−1� − s� + r�r�−1� − r�1��, st1

= s�r − r�1�� . �3.11�

he lattice equation �3.11� is linearly independent of the Toda lattice equation �3.10�. There exist
voluminous literature on the Toda lattice equation, and its generalizations and solution structures

for example, see Refs. 27–32�.

. Integrable couplings from specific semidirect sums

The generalized Toda spectral problem �3.1� linearly depends on the spectral parameter �, and
hus we can write

U = � 0 1

��� + ��r � + s
� = U0� + U1, U0 = � 0 0

�r 1
�, U1 = � 0 1

�r s
� . �3.12�

e will also see that there is a difference between the two cases of �=0 and ��0 in computing
ntegrable couplings.

Let us first consider the semidirect sum of Lie algebras of 3�3 matrices,

G* Gc, G = ��A 0

0 0
��A � C��,�−1� � M2�2�, Gc = ��0 B

0 0
��B � C��,�−1� � M2�1� ,

here C�� ,�−1� � Mm�n=span
�kA �k�Z ,A�Mm�n�. In this case, Gc is an Abelian ideal of
*Gc. We define the corresponding enlarged spatial spectral matrix as

Ū = Ū�ū,�� = �U Ua

0 0
� � G* Gc, Ua = Ua�v� = �v1

v2
� , �3.13�

here v1 and v2 are new dependent variables and

v = �v1,v2�T, ū = �uT,vT�T = �r,s,v1,v2�T.

Upon setting

W̄ = �W Wa

0 0
�, Wa = Wa�ū,�� = �e

f
� ,

here W is a solution to �EW�U−UW=0, defined by �3.3�, the corresponding enlarged discrete

tationary zero curvature equation �EW̄�Ū− ŪW̄=0 becomes

�EW�Ua − UWa = 0, �3.14�

hich is equivalent to

Wa = WU−1Ua,

amely,

�1� �1�
f = a v1 + b v2, �3.15a�
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��� + ��re = ��� + ��c�1�v1 − a�1�v2 − �� + s�f . �3.15b�

his system determines a solution for e and f as follows:

e = 	
i�−n0

ei�
−i, f = 	

i�0
f i�

i,

here n0=1 if �=0 and n0=0 if ��0 �see �2.14� for introduction of n0�. Now define the enlarged
emporal spectral matrix as

V̄�m� = �V�m� Va
�m�

0 0
�, Va

�m� = ��mWa�+ + �m,a, m � 0, �3.16�

here V�m� is defined as in �3.6�. To satisfy �2.16�, choose �m,a as

�m,a = � hm

− �rhm
�, hm − arbitrary, m � 0. �3.17�

hen based on �3.15�, we can compute that

�EV�m��Ua − UVa
�m� = �EVm�Ua − U��mWa�+ + �E�m�Ua − U1�m,a = � 0

− �cm+1
�1� v1 + �rem+1 + fm+1

�
+ �bm+1

�1� v1

0
� − � − �rhm

�rhm − �rshm
�

= � bm+1
�1� v1 + �rhm

− �cm+1
�1� v1 + �rem+1 + fm+1 − �rhm + �rshm

�, m � 0.

herefore, the mth enlarged discrete zero curvature equation

Ūtm
= �EV̄�m��Ū − ŪV̄�m�

eads to

vtm
= �v1

v2
�

tm

= Sm�u,v� = � bm+1
�1� v1 + �rhm

− �cm+1
�1� v1 + �rem+1 + fm+1 − �rhm + �rshm

� , �3.18�

ogether with the mth generalized Toda equation in �3.8�. Therefore, we obtain a hierarchy of
oupling systems defined by �2.18�,

ūtm
= �u

v
�

tm

= K̄m�u� = � Km�u�
Sm�u,v�

�, m � 0 �3.19�

or the generalized Toda hierarchy �3.8�.
Let us second consider the semidirect sum of Lie algebras of 4�4 matrices,

G* Gc, G = ��A 0

0 A
��A � C��,�−1� � M2�2�, Gc = ��0 B

0 0
��B � C��,�−1� � M2�2� .

n this case, Gc is an Abelian ideal of G*Gc, too. We define the corresponding enlarged spatial
pectral matrix as

Ū = Ū�ū,�� = �U Ua

0 U
� � G* Gc, Ua = Ua�v� = �v1 v2

v3 v4
� , �3.20�
here vi, 1
 i
4, are new dependent variables and
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v = �v1,v2,v3,v4�T, ū = �uT,vT�T = �r,s,v1,v2,v3,v4�T.

If we set

W̄ = �W Wa

0 W
�, Wa = Wa�ū,�� = �e f

g − e
� ,

here W is a solution to �EW�U−UW=0, defined by �3.3�, then the corresponding enlarged

iscrete stationary zero curvature equation �EW̄�Ū− ŪW̄=0 becomes

�EW�Ua + �EWa�U − UWa − UaW = 0, �3.21�

hich is equivalent to

�e�1� + e� + �� + s�f �1� + �a�1� + a�v2 + b�1�v4 − bv1 = 0,

− ��� + ��r�e�1� + e� − �� + s�g + ��� + ���c�1�v1 − cv4� − �a�1� + a�v3 = 0, �3.22�

g�1� − �� + s��e�1� − e� − ��� + ���rf − c�1�v2� − �a�1� − a�v4 − bv3 = 0.

his system can determine a solution for e, f , and g as follows:

e = 	
i�0

ei�
−i, f = 	

i�0
f i�

−i, g = 	
i�0

gi�
−i.

ow, we define the enlarged temporal spectral matrix as

V̄�m� = �V�m� Va
�m�

0 V�m� �, Va
�m� = ��mWa�+ + �m,a, m � 0, �3.23�

here V�m� is defined as in �3.6�. To satisfy �2.17�, choose �m,a as

�m,a = � hm 0

− �rhm 0
�, hm − arbitrary, m � 0. �3.24�

hen based on �3.22�, we can compute that

�EV�m��Ua + �EVa
�m��U − UVa

�m� − UaV
�m�

= ��EVm�Ua + �E��mWa�+�U − U��mWa�+ − UaVm�

+ ��E�m�Ua − Ua�m� + ��E�m,a�U1 − U1�m,a�

= � − �cm+1v2 + �rfm+1
�1� fm+1

�1�

�cm+1
�1� v1 − �cm+1v4 − �r�em+1

�1� + em+1� − gm+1 �cm+1
�1� v2 − �rfm+1 − �em+1

�1� − em+1�
�

+ ��bm+1
�1� − bm+1�v1 bm+1

�1� v2

− bm+1v3 0
� + � �rhm hm

�1�

r��s − ��hm − �r�1�hm
�1� �

=
− �cm+1v2 + �rfm+1

�1� + �bm+1
�1� − bm+1�v1 + �rhm,

�cm+1
�1� v1 − �cm+1v4 − �r�em+1

�1� + em+1� − gm+1 − bm+1v3 + r��s − ��hm,

fm+1
�1� + bm+1

�1� v2 + hm
�1�

�cm+1
�1� v2 − �rfm+1 − �em+1

�1� − em+1� − �r�1�hm
�1�

� .
hen the mth enlarged discrete zero curvature equation
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Ūtm
= �EV̄�m��Ū − ŪV̄�m�

eads to

vtm
= �v1,v2,v3,v4�tm

T = Tm�u,v�

=
− �cm+1v2 + �rfm+1

�1� + �bm+1
�1� − bm+1�v1 + �rhm

fm+1
�1� + bm+1

�1� v2 + hm
�1�

�cm+1
�1� v1 − �cm+1v4 − �r�em+1

�1� + em+1� − gm+1 − bm+1v3 + r��s − ��hm

�cm+1
�1� v2 − �rfm+1 − �em+1

�1� − em+1� − �r�1�hm
�1�

� , �3.25�

ogether with the mth generalized Toda equation in �3.8�. Therefore, we obtain a hierarchy of
oupling systems defined by �2.19�,

ūtm
= �u

v
�

tm

= K̄m�u� = � Km�u�
Tm�u,v�

�, m � 0 �3.26�

or the generalized Toda hierarchy �3.8�.

. Illustrative examples

We now work out two concrete examples as follows, one in each of the two above cases.
Case of �=1 and �=0: Let us first compute an example of the hierarchy �3.19�. Assume that

=1 and �=0 for convenience, which corresponds to the lattice hierarchy presented in Ref. 26. In
his case, we have n0=0 in �2.14�.

It directly follows from �3.15� that

f i = ai
�1�v1 + bi

�1�v2,

rei+1 = ci+1
�1� v1 − ai

�1�v2 − f i+1 − sf i,

here i�0 and re0=c0
�1�v1− f0. We can then obtain that

f0 = − 1
2v1, f1 = r�1�v1 + v2,

f2 = − �r�2�r�1� + �r�1��2 + r�1�r + r�1�s�1� + r�1�s�v1 − �r�1� + r + s�v2;

re0 = 1
2v1, re1 = 1

2sv1 − 1
2v2, re2 = r�1�rv1 + rv2.

If we choose

h1 = 2�f0f1 = − �v1�r�1�v1 + v2�, � = const,

hen the vector-valued function S1 defined by �3.18� becomes

S1�u,v� = � − �r�1� + r + s�v1 − �rv1�r�1�v1 + v2�
− r�1�sv1 − �r�1� + s�v2 − �rsv1�r�1�v1 + v2�

� .

herefore, the integrable coupling of the generalized Toda lattice equation �3.11�, defined by
3.19�, reads as

rt = r�s�−1� − s� + r�r�−1� − r�1�� ,

1
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st1
= s�r − r�1�� ,

�3.27�
v1,t1

= − �r�1� + r + s�v1 − �rv1�r�1�v1 + v2� ,

v2,t1
= − r�1�sv1 − �r�1� + s�v2 − �rsv1�r�1�v1 + v2� ,

he second subsystem of which is nonlinear with respect to both subsets of dependent variables
hen ��0.

Case of �=0 and �=1: Let us second compute an example of the hierarchy �3.26�. Assume
hat �=0 and �=1 for convenience, which corresponds to the Toda lattice hierarchy. In this case,
e have n0=1 in �2.14�.

We take the initial set of functions as follows:

f0 = g0 = 0, e0 = − 1
2 .

bviously from �3.22�, we can have

f i+1
�1� = − sf i

�1� − �ei
�1� + ei� − �ai

�1� + ai�v2 − bi
�1�v4 + biv1,

gi+1 = − sgi − r�ei
�1� + ei� − �ai

�1� + ai�v3 + ci
�1�v1 − civ4,

ei+1
�1� − ei+1 = − s�ei

�1� − ei� + gi
�1� − rf i − �ai

�1� − ai�v4 + ci
�1�v2 − biv3,

here i�0. It then follows that

f1 = 1 + v2
�−1�, g1 = r + v3, e1 = v3 + r�1 + v2

�−1�� ,

f2 = − �s�−1� + r��1 + v2
�−1�� − v3 − v3

�−1� − r�−1��1 + v2
�−2�� − v4

�−1� + v1
�−1�,

g2 = − s�r + v3� − r�v3
�1� + v3 + r�1��1 + v2� + r�1 + v2

�−1��� + r�1�v1 − rv4,

e2
�1� − e2 = �1 − s��r�1� − r + v3

�1� − v3 + r�1�v2 − rv2
�−1�� .

e can use the inverse formula �1.4� to compute e2 here, but as we will see, this is not necessary
or computing the corresponding integrable coupling.

Now if we choose

h1 = �v1e1 = �v1�v3 + r�1 + v2
�−1���, � = const,

hen the vector-valued function T1 defined by �3.25� becomes

T1�u,v� =
− �s − s�−1��v1,

− sv2 − �s + r�1���1 + v2� − r�1 + v2
�−1�� + v1 − v3

�1�

− v3 − v4 + �v1
�1��v3

�1� + r�1��1 + v2�� ,

�s�−1� + s�v3 + rs + r�v3
�1� + v3 + r�1��1 + v2� + r�1 + v2

�−1���
− r�1�v1 + rv4 − �rv1�v3 + r�1 + v2

�−1��� ,

�s − 1��r�1� − r + v3
�1� − v3 + r�1�v2 − rv2

�−1��
� .

herefore, the integrable coupling of the Toda lattice equation �3.10�, defined by �3.26�, reads as

rt = r�s�−1� − s�, st = r�1� − r ,

1 1
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v1,t1
= − �s − s�−1��v1,

v2,t1
= − sv2 − �s + r�1���1 + v2� − r�1 + v2

�−1�� + v1 − v3
�1� − v3 − v4 + �v1

�1��v3
�1� + r�1��1 + v2�� ,

�3.28�
v3,t1

= �s�−1� + s�v3 + rs + r�v3
�1� + v3 + r�1��1 + v2� + r�1 + v2

�−1���

− r�1�v1 + rv4 − �rv1�v3 + r�1 + v2
�−1��� ,

v4,t1
= �s − 1��r�1� − r + v3

�1� − v3 + r�1�v2 − rv2
�−1�� ,

he second subsystem of which is nonlinear with respect to both subsets of dependent variables
hen ��0.

V. CONCLUSIONS AND REMARKS

A feasible approach to construct integrable couplings of discrete soliton equations has been
roposed by taking advantage of semidirect sums of Lie algebras, and the resulting theory has
een applied to the generalized Toda hierarchy of lattice equations to generate integrable couplings
or the hierarchy. The key point in our generating scheme is to establish a relation between
emidirect sums of Lie algebras and integrable couplings of discrete soliton equations. The un-
erlying discrete matrix spectral problems are generated from semidirect sums of Lie algebras, and
he discrete Lax spectral matrices associated with given soliton equations play the nonideal part in
he semidirect sums.

In our analysis of the two specific semidirect sums, we have seen that there is always an
rbitrary modified term �n,a. This indicates that higher order matrix spectral problems have more
egrees of freedom in generating integrable systems. On the other hand, in all additional spectral
ubmatrices such as Uai

, one can take their dependence on the spectral parameter into consider-
tion, and this will bring much more diverse integrable couplings.

There are also other questions about integrable properties of the resulting enlarged lattice
quations, even in the case where additional spectral submatrices are independent of the spectral
arameter. For example, can we solve the enlarged lattice equations by the inverse scattering
ransform? The class of Lie algebras in �2.8� provides a few realizations of semidirect sums of Lie
lgebras. Other possible realizations are still interesting, especially those which could carry sig-
ificant information about integrable properties. Reductions of the presented cases of semidirect
ums, which keep the uniqueness property of discrete spectral problems �see Ref. 17�, could be
ood examples.

We would especially like to emphasize that we have been considering the problem of inte-
rable couplings and the key is semidirect sums of Lie algebras. The initial Lie algebras G
ssociated with given integrable systems in our construction can be simple �e.g., see Refs. 29 and

0�, but semidirect sums of Lie algebras Ḡ are normally nonsimple �see Ref. 15�. Our examples in

ec. II are all nonsimple, since the Killing forms on those semidirect sums of Lie algebras Ḡ are

egenerate. However, there still exist specific nondegenerate bilinear forms on the Lie algebras Ḡ,
ith nice invariance properties, and their corresponding generalized trace identities, which present
amiltonian structures of the enlarged lattice equations.

To conclude, semidirect sums of Lie algebras provide a good source of matrix spectral prob-
ems for generating integrable systems, and thus the study of integrable couplings using semidirect
ums of Lie algebras will enhance our understanding of classification of integrable systems. We

re expecting to see more research on related topics.
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We classify the simplest rational elements in a twisted loop group, and prove that
dressing actions of them, on proper indefinite affine spheres, give the classical
Tzitzéica transformation and its dual. We also give the group point of view of the
permutability theorem, construct complex Tzitzéica transformations, and discuss
the group structure for these transformations. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2195527�

. INTRODUCTION

In 1910, Tzitzéica published a classical paper21 on hyperbolic surfaces in R3 whose Gauss
urvature at any point p is proportional to the fourth power of the distance from a fixed point to
he tangent plane at p. He proved

wxy = ew − e−2w �1.1�

s the structure equation, and also constructed a geometric transformation of such surfaces that is
imilar to the well-known Bäcklund transformation of surfaces with constant negative curvature.
hese surfaces are invariant under affine transformations, and they are now known as �proper�
ffine spheres in affine differential geometry.

The classical Tzitzéica equation �1.1� was rediscovered in many mathematical and physical
ontexts afterwards �see, e.g., Refs. 5, 7, and 8�. In recent years, techniques from soliton theory
ave been applied to this equation extensively by, e.g., Rogers and Schief in the context of gas
ynamics,15 Kaptsov and Shan’ko on multisoliton formulas,11 Dorfmeister and Eitner on
eierstrass-type representation,6 and Bobenko and Schief on its discretizations.3,4 Terng and
hlenbeck20 gave a systematic method to construct Bäcklund-type transformations via dressing

ctions of simple rational loop group elements. It is natural to ask whether the classical Tzitzéica
ransformation is a dressing action of some loop element, whether there are new transformations
f affine spheres, and what is the group structure of these transformations. This paper answers
hese questions.

In Sec. II, we give a brief review of classical results and provide the Lax pair of the structure
quations. In Sec. III, we review the reality conditions for this Lax pair and give the loop group
escription of indefinite affine spheres. We then classify the simplest rational elements in this loop
roup and compute their dressing actions on affine spheres in Sec. IV. These rational elements
annot be constructed by projections as in Ref. 20 and the computation is harder. It turns out that
ne class of dressing action provides exactly the Tzitzéica transformation and the other provides
he dual transformation. In Sec. V, we present the group point of view of the classical permutabil-
ty theorem, construct complex Tzitzéica transformations and discuss the group structure of these
ransformations. Some examples are presented in the last section.

�
Electronic mail: ewang@math.utexas.edu

47, 053502-1022-2488/2006/47�5�/053502/13/$23.00 © 2006 American Institute of Physics
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I. INDEFINITE AFFINE SPHERE AND ITS LAX REPRESENTATION

Classical affine differential geometry studies the properties of surfaces in R3 invariant under
he �equi� affine transformations x→Ax+v, where A�SL�3,R� and x , v�R3. There are three
undamental affine invariants: the affine �or Blaschke� metric, the Fubini-Pick cubic form, and the
hird fundamental form �or the affine shape operator�. These invariants satisfy certain compatibil-
ty equations and the fundamental theorem states that they then determine a surface uniquely up to
ffine transformations. Let us first review the definitions of these invariants �for more details see,
.g., Refs. 2, 13, and 18�. The reader may also refer to Refs. 2–4 or 17 for an elementary
escription of affine spheres.

Let X :M�R3 be an immersed surface with nondegenerate second fundamental form. Let
= �e1 ,e2 ,e3� be a local SL�3,R�-frame on M such that e1 ,e2 are tangent to M, and e3 is trans-
ersal to M. Let �1 ,�2 denote the dual coframe of e1 ,e2, i.e.,

dX = e1 � �1 + e2 � �2.

et ��AB� denote the sl�3,R�-valued 1-form E−1 dE, i.e.,

deA = �
B=1

3

eB � �BA.

hen we have the structure equation

d�A = − �B
�AB Ù �B,

�2.1�
d�AB = − �C

�AC Ù �CB.

ince �3=0 on M, �2.1� implies that for i=1,2,

�3,i = hi1�1 + hi2�2, with hij = hji. �2.2�

direct computation shows that the quadratic form

g: = �det�hij��−1/4 �
i,j=1

2

hij�i� j �2.3�

s invariant under change of affine frames, and it is called the affine metric of M. M is said to be
efinite or indefinite if the affine metric is definite or indefinite, respectively.

The affine normal is �ª �X /2, where � is the Laplacian of g. It satisfies two natural
eometric conditions,

�i� d��·��TM,
�ii� i� dV=dvolg �the volume form of g�;

nd is essentially determined by them.
Take the exterior differentiation of �2.2� to get

�
j

�dhij + hij�3,3 − hik�kj − hkj�ki� Ù � j = 0, �2.4�

nd define hijk by

�
k

hijk�k = dhij + hij�3,3 − hik�kj − hkj�ki. �2.5�

hen �2.2� and �2.4� imply that hijk is symmetric in i , j ,k. The Fubini-Pick cubic form is defined

s
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J ª �
i,j,k

hijk�i� j�k,

hich is an affine invariant.
We choose e3=�. Then �3,3=0. Exterior differentiate it to get

�13 Ù �31 + �23 Ù �32 = 0.

hus the following form

III ª �det�hij��1/4��13�31 + �23�32�

s symmetric. This is the third fundamental form. Equivalently, we can first define the affine shape
perator S,

S�u�: = d��u�, " u � TpM ,

hen III�u ,v�=g�S�u� ,v�=g�u ,S�v��. The affine mean curvature H and the affine Gauss curvature
are defined as H=Tr S /2 , K=det S.

Definition 2.1: An affine sphere is a surface all of whose affine normals meet at a common
oint.

An equivalent definition is S=H · Id, i.e., the shape operator is a scalar multiple of the identity
ap and H is then the affine mean curvature. It follows from the structure equations that H must

e constant. When H=0, all affine normals are parallel and the center is at infinity. Such surface
s called improper affine sphere and has been completely classified in Ref. 2. When H�0, it is
alled proper affine sphere and we can move the center to the origin and normalize H to 1 by
caling the ambient space and changing the orientation if necessary. Then e3=�=X.

From now on we will only consider proper indefinite affine spheres in R3 with �=X. First note
hat there exists local asymptotic coordinate system �x ,y� and a smooth function w�x ,y� such that
he affine metric is

g = ew�dx � dy + dy � dx� .

e choose a frame e1=Xx, e2=e−wXy, and e3=�=X. Then det�e1 ,e2 ,e3�=1, and

�1 = dx = �13 = �32, �2 = ew dy = �23 = �31,

�33 = 0, �hij� = �0 1

1 0
� .

direct computation using the formula �2.5� shows

�21 = a dx, �12 = be−2w dy for some functions a, b;

J = − 2a dx3 − 2b dy3.

inally from d�A+�B�ABÙ�B=0 we get

�11 = − �22 = wx dx .

e have obtained the flat sl�3,R�-valued 1-form

� = E−1 dE = 	wx dx be−2w dy dx

a dx − wx dx ew dy

ew dy dx 0

 .
he compatibility equations are
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d� + � Ù � = 0 Û �wxy = ew − abe−2w,

ay = 0, bx = 0.
� �2.6�

hen ab�0 we may reparametrize the asymptotic coordinates to make a=b=1. Then �2.6� is
implified to the classical Tzitzéica equation.

Remark 2.2: It is known that ruled proper indefinite affine spheres correspond to the case
b=0 and they have been well understood �see Ref. 13�. For nonruled case, the points at which
b=0 are called planar points.

The following observation is crucial for the integrability of proper indefinite affine spheres:
he system �2.6� is invariant under the transformation

a → �a, b → �−1b

ith ��C \ 0�. Thus a family of flat connections is obtained,

�� = 	wx dx �−1be−2w dy dx

�a dx − wx dx ew dy

ew dy dx 0

 .

he zero curvature equation of �� is called the Lax representation of �2.6�.
When we solve E� from

E�
−1 dE� = �� �2.7�

or any ��R \ 0�, the last column of E� gives a family of affine spheres, whose affine fundamen-
al invariants are

g = 2ew dx dy, S = Id, J = − 2�a dx3 −
2

�
b dy3.

Let us recall the classical duality relation for indefinite affine spheres. Let h=e�. Then Tz-
tzéica equation becomes

�ln h�xy = h −
1

h2 , or hxyh − hxhy = h3 − 1. �2.8�

lassically �2.7� with a=b=1 was written as a linear system for X,

Xxx =
hx

h
Xx +

�

h
Xy ,

Xxy = hX ,

Xyy =
1

�hXx +
hy

h
Xy .

�2.9�

f X solves �2.9�, then we can check that

X*
ª

1

h
Xx � Xy

s a solution of �2.9� with � replaced by −�. Here � is the vector cross product in R3. This is
learly a duality relation �X*�*=X.

Finally let us recall the classical Tzitzéica transformation.
Theorem 2.3 �Ref. 21�. Given a solution �h ,X� of �2.8� and �2.9�, and �1 any scalar solution

f �2.9� with parameter �1, then the following transformation produces a new solution �h1 ,X1� of

2.8� and �2.9�:
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h1 ª h − 2�ln �1�xy ,

X1 ª
�� − �1�hX − 2��ln �1�xXy + 2�1�ln �1�yXx

�� + �1�h
.

�2.10�

II. THE REALITY CONDITIONS AND LOOP GROUP DESCRIPTION

Henceforth we assume a=b=1. To further reveal the hidden symmetry, let �=�3 � and change
he frame E� to

F� = E� diag�1/�,�,1� .

he gauged family of flat connections is then

�� = F�
−1 dF� = 	wx 0 �

� − wx 0

0 � 0

dx + �−1	 0 e−2w 0

0 0 ew

ew 0 0

dy . �3.1�

For any g�SL�3,C�, we need to define ��g�ª ḡ and define 	 by

	�g� ª T�gt�−1T−1, where T = 	 0 1 0

− 
 0 0

0 0 
2
, 
 = e�i/3.

he automorphism 	 has order 6 and induces the following automorphism �still denoted by 	� on
he Lie algebra sl�3,C� :	�A�=−TAtT−1. Therefore 	 gives the eigenspace decomposition:
l�3,C�= � j=0

5 G j, where G j is of eigenvalue 
 j. We compute that Xj �G j if and only if

X0 = 	x11 0 0

0 − x11 0

0 0 0

, X1 = 	 0 0 x13

x21 0 0

0 x13 0

 ,

X2 = 	 0 0 0

0 0 x23

− x23 0 0

, X3 = 	x11 0 0

0 x11 0

0 0 − 2x11

 ,

X4 = 	0 0 x13

0 0 0

0 − x13 0

, X5 = 	 0 x12 0

0 0 x23

x23 0 0

 .

ote that 	�=�−1	−1 implies that � j=0
5 �sl�3,R��G j� is the corresponding eigenspace decomposi-

ion of sl�3,R�.
The �� in �3.1� satisfies two reality conditions �first given in Ref. 12�,

����� = ��̄, 	���� = �
�. �3.2�

hen we solve F� in �3.1� uniquely with the initial condition F�0,0 ,��= I, it is easy to show that

� also satisfies the reality conditions �3.2�.
Let C*ªC \ 0�. We adopt the following notations for loop groups:

�G = holomorphic maps from C* � �Or � O1/r� to G� ,
�+G = holomorphic maps from C* to G� ,
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�−G = holomorphic maps f from Or � O1/r to G with f�� = I� ,

here 0�r�1 is sufficiently small and

Or = � � C:��� � r�, O1/r = � � C � �:��� � 1/r� .

Similar notations also apply to their Lie algebras. Let ��,	G denote the subgroup of g��G
atisfying the reality conditions �3.2�. Then �� in �3.1� is a �+

�,	sl�3,C�-valued flat connection, and
he corresponding frame F� for indefinite affine spheres lies in �+

�,	SL�3,C�. Conversely, given
ny smooth map F from a domain in R2 to �+

�,	SL�3,C� satisfying

F−1Fx = A� + B, F−1Fy = C�−1 + D �3.3�

ith A32C31�0, the last column of F then gives an affine sphere with h=A32C31 and F differs
rom F� in �3.1� by a simple gauge. This is the loop group description for indefinite affine spheres
for details, see Refs. 3 and 6�.

V. DRESSING ACTIONS OF SIMPLE RATIONAL ELEMENTS

Let us briefly review the method of dressing action �the original idea went back to Ref. 22 but
ee Refs. 9 or 19 for an elementary introduction�. Let G=SL�3,C� ,g�����−

�,	G, and F�x ,y ,��
�+

�,	G the frame of an associated family of indefinite affine spheres. Assume we can do the
ollowing factorization for each fixed �x ,y�:

g���F�x,y,�� = F̃�x,y,��g̃�x,y,�� , �4.1�

ith F̃��+
�,	G and g̃��−

�,	G. Then F̃ also satisfies �3.3� and generates new affine spheres. We

ketch the proof here. It suffices to prove that F̃−1�F̃�x and F̃−1�F̃�y are linear in � and �−1,
espectively. But

F̃ −1�F̃�x = g̃F −1g−1�gFg̃ −1�x = g̃�F −1Fx�g̃−1 + g̃�g̃−1�x = g̃�A� + B�g̃−1 − g̃xg̃
−1.

n the left-hand side, F̃−1�F̃�x is holomorphic in ��C \ 0�; on the right it has a simple pole at 
ince g��= g̃��= I. So

F̃−1�F̃�x = Ã� + B̃ .

imilarly, F̃−1�F̃�y is linear in 1/�. This completes the proof.

Furthermore, g*F : = F̃ defines a group action of �−
�,	G on the frames of affine spheres, which

s called the dressing action.
The factorization �4.1� can indeed be done on a dense open subset of ��,	G �see Refs. 1 and

4�. There is no explicit construction for general g, but when g is a rational element, the factor-
zation can be carried out using residue calculus �see Ref. 20�. In search of simple rational
lements in �−

�,	 SL�3,C�, it helps to write 	=� �� as the composition of two commuting auto-
orphisms, where

��g� ª QgQ−1 with Q = diag�
4,
2,1� ,

��g� ª P�gt�−1P with P = 	0 1 0

1 0 0

0 0 1

 .

ere � has been called the Coxeter-Killing automorphism, and the involution � is the unique outer
utomorphism of SL�3,C� modulo inner ones. We observe that an element g�����G lies in
�,	
G if and only if
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��g�̄� = g�, ��g�� = g
4�, ��g�� = g−�. �4.2�

Remark 4.1: � and � define a symmetric space SL�3,R� /SO�2,1�. Here SO�2,1� is the
sometry group of the quadratic form given by the symmetric matrix P, i.e., 2x1x2+x3

2 on R3. It
as proved in Ref. 19 that if F� is the frame of an associated family of indefinite affine spheres,

hen F−1F1
−1 is a harmonic map from R1,1 to the symmetric space SL�3,R� /SO�2,1�.

We will first study rational elements in �−
	G. Due to the �-reality condition in �4.2�, the

implest rational element in �−
	G may have only three simple poles � ,
2� ,
4�� with ��C*. The

lement can always take the following special form:

g��� = I +
2�

� − �
A +

2
2�

� − 
2�
B +

2
4�

� − 
4�
C . �4.3�

lug it into �� ,��-reality conditions in �4.2� and compare the residues, at each pole, we obtain that
��−

	G if and only if

B = Q−1AQ, C = QAQ−1,

�4.4�
AtP�I − A − 2
B + 2
2C� = 0.

rite A= �aij�, and we compute that

�I − A − 2
B + 2
2C� = 	1 − 3a11 − 3a12 3a13

3a21 1 − 3a22 − 3a23

− 3a31 3a32 1 − 3a33

 . �4.5�

f the rank of A is 3, we get A= I /3 and g��� is trivial. So there are two types left for A: rank 1 type
nd rank 2 type. A long but not hard computation implies that the rank 1 type is as follows:

A =
1

3	
b

2ab − 1

a

1

�a b 1� =

1

3	
ab

2ab − 1

b2

2ab − 1

b

2ab − 1

a2 ab a

a b 1

 , �4.6�

ith the corresponding loop group element

g��� = I +
2

�3 − �3	
�3ab

2ab − 1

��2b2

2ab − 1

�2�b

2ab − 1

�2�a2 �3ab ��2a

��2a �2�b �3

; �4.7�

nd the rank 2 type �thus the matrix �4.5� has rank 1� is as follows:

A =
1

3	
ab − 1

2ab − 1

− b2

2ab − 1

b

2ab − 1

a2 1 − ab − a

− a b 0

 , �4.8�
ith the corresponding loop group element
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g��� = I +
2

�3 − �3	
�3�ab − 1�

2ab − 1

− ��2b2

2ab − 1

�2�b

2ab − 1

�2�a2 �3�1 − ab� − ��2a

− ��2a �2�b 0

 . �4.9�

oth types must meet the constraint 2ab�1.
Remark 4.2: We compute that det g is ���3+�3� / ��3−�3��rank�A�, i.e., only depending on the

oles and the rank of the residues. A scaling by �det g�−1/3 will make them lie in SL�3,C�, though
ot rational any more. Since the scaling does not affect the factorization and the dressing action,
e will ignore this step henceforth.

Let l : = �a ,b ,1� ,� be the line C · l, and introduce the following cone:

� ª �z1,z2,z3� � C3 � 2z1z2 = z3
2, or z3 = 0� .

hen 2ab�1 is equivalent to ���. We observe that �t=Image�Res� gt� for rank 1 type and �t

Kernel�Res� g P� for rank 2 type �here �t means C · lt�. Conversely, a line � not in � determines
he residue A and thus the simple element g uniquely in both types. Henceforth we always use g�,�

o denote the rank 1 type element �4.7� and use h�,� to denote the rank 2 type element �4.9�. We
ave proved the following theorem.

Theorem 4.3: The simplest rational element in �−
	GL�3,C� is either g�,� of rank 1 type �4.7�

r h�,� of rank 2 type �4.9�, where ��C* and ���.

Imposing the �-reality condition g��̄�=g��� on both types, we obtain that one pole, say �,
ust be real and so is the residue A there. It is convenient in this case to let � denote the real line
· �a ,b ,1� in R3 and let �0 denote ��R3. We then have the following.

Corollary 4.4: The simplest rational element in �−
�,	GL�3,C� is either g�,� of rank 1 type or

�,� of rank 2 type, where ��R* and the real line ���0.
We are ready to compute the dressing action of these simple elements.
Lemma 4.5: Let g�,���−

�,	GL�3,C� as in �4.7�, and F��+
�,	SL�3,C�. If � : = �F�����0, then

�,� ·F can be factored uniquely as

g�,� · F = F̃ · g�,�̃ � �+
�,	SL�3,C� � �−

�,	GL�3,C� .

Proof: It suffices to prove that F̃ : =g�,� ·F ·g
�,�̃

−1
lies in �+

�,	SL�3,C�. Since F̃ satisfies the

eality conditions �4.2� and is holomorphic in C* except for possible simple poles coming from the

oles of g�,� and g
�,�̃

−1
, we only need to prove that the residues of F̃ are zero at both � and −�. But

��g�,����� = g�,��− �� Û P = g�,����Pg�,��− ��t,

hose residue is zero at � implies that �Pg�,��−��t=0, or equivalently g�,��−��P�t=0. These two

quations are also true for �̃. Therefore �a ,b ,1�F���� �̃ and the special form of A in �4.6� imply
hat

Res� F̃ = 2�AF���Pg�,�̃�− ��tP = 0,

nd F�−��P�ã , b̃ ,1�t� �F�−��PF���t��t= P�t implies that

Res−� F̃ = 2�g�,��− ��F�− ��PÃtP = 0.

he proof is completed once we notice that det F̃=1 by Remark 4.2. �

Theorem 4.6: The dressing action of rank 1 type g�,� on the affine frames F�x ,y ,�� of proper
ndefinite affine spheres gives the classical Tzitzéica transformation, provided an open condition
hat �F�x ,y ,����0. The dressing action of rank 2 type h�,� gives the dual transformation.
Proof: By Lemma 4.5, for fixed �x ,y�, we have the factorization
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g�,���� · F�x,y,�� = F̃�x,y,�� · g�,�̃���

ith �̃= �F�x ,y ,��. From F�x ,y ,��= ��X��x /� ,��X��y /h ,X��, we get

�a,b,1�F�x,y,�� = ��x/�,��y/h,�� � �̃ ,

here � : = �a ,b ,1�X� is a scalar solution of �2.9� with parameter �. Note that a constant scaling
f � does not change Tzitzéica transformation �2.10�, and the solution space of the linear system
2.9� has dimension 3. Therefore, by varying � ,� can be a generic scalar solution up to a constant
ultiple.

By the discussion at the beginning of this section, the third column of F̃ produces new affine
phere, so does the affine transformation of it by g�,�

−1 ,

X̂ ª g�,�
−1 �F̃�3 = �F���g�,�̃���−1�3

= �F���Pg�,�̃�− ��tP�3

=
�4.7�

�Xx/�,�Xy/h,X� ·
1

�3 + �3 · 	2�3��y/�h��
− 2�2�x/�

�3 − �3 

=

��3 − �3�hX − 2�3�ln ��xXy + 2�3�ln ��yXx

��3 + �3�h
.

he corresponding solution to Tzitzéica equation is given by

ĥ = X̂xy/X̂ = h − 2�ln ��xy .

his is exactly the classical Tzitzéica transformation �2.10� with

� = �3, �1 = �3, �1 = � .

In rank 2 type case, there is a similar factorization ha,� ·F= F̃ ·h�,�̃ when �̃ :
Kernelt�AF���P���0. We omit the details and present the corresponding transformation on
ffine spheres

X̃ =
��3 + �3�hX − 2�3�ln ��xXy − 2�3�ln ��yXx

��3 − �3�h
,

here � is the same scalar solution as the rank 1 type case. We see that

X̂� = − X̃−�,

.e., −X̃ gives the dual of X̂. This completes the proof. �

. PERMUTABILITY THEOREM AND COMPLEX TZITZÉICA TRANSFORMATIONS

Let us briefly review the classical description of the permutability theorem. In Theorem 2.3,
et �1 ,�2 be the scalar solution of �2.9� with parameter �1 ,�2, respectively. Then using �1 to
pply Tzitzéica transformation on h, we get a new solution to Tzitzéica equation,

h1 ª h − 2�ln �1�xy .
pplying Tzitzéica transformation �2.10� to ��2 ,�2�, we obtain
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�12 ª
��2 − �1�h�2 − 2�2�ln �1�x��2�y + 2�1�ln �1�y��2�x

��2 + �1�h
�5.1�

s a scalar solution to �2.9� with new h1 and parameter �2. Therefore we can use �12 to apply
zitzéica transformation again on the new h1, i.e.,

h12 = h1 − 2�ln �12�xy

ill give another solution to Tzitzéica equation. In this two step iteration, we may interchange the
oles of �1 and �2 to obtain h21 as another new solution. The permutability theorem claims h12

h21. Similarly we can apply this two step iteration to the affine sphere X to obtain X12 and X21,
espectively, and the equality X12=X21 still holds.

We will give a group point of view to this permutability theorem.

Lemma 5.1: Let g�i,�i
����i=1,2� be of rank 1 type with �1

3� ±�2
3. If both �̃1ª�1g�2,�2

��1�−1

nd �̃2ª�2g�1,�1
��2�−1 are not in �, then

g�2,�̃2
g�1,�1

= g�1,�̃1
g�2,�2

. �5.2�

Proof: It is equivalent to prove that f : =g�1,�̃1
g�2,�2

g�1,�1

−1 equals g�2,�̃2
. First of all, they both

re rational elements in the group �−
	GL�3,C�. It suffices to prove that their poles and residues are

he same.

Let li= �ai ,bi ,1� and l̃i= �ãi , b̃i ,1� span �i and �̃i, respectively. Similar to the proof of Lemma
.5, we compute that

Res�1
f = 2�1Ã1g�2,�2

��1�Pg�1,�1
�− �1�tP = 0

ince l̃1g�2,�2
��1���1, and

Res−�1
f = − 2�1g�1,�̃1

�− �1�g�2,�2
�− �1�PA1

t P = 0

ince g�2,�2
�−�1�Pl1

t � �g�2,�2
�−�1�Pg�2,�2

��1�t��̃1
t = P�̃1

t . Thus f has only three simple poles
�2 ,
2�2 ,
4�2�, same as g�2,�̃2

.
Now due to the � reality condition in �4.2�, we only need to prove that their residues at �2 are

he same. But

Image�Res�2
f t� = Image�g�1,�1

��2�−1�tA2
t g�1,�̃1

��2�t = �g�1,�1
��2�−1�t�2

t = �̃2
t = Image�Res�2

g
�2,�̃2

t � .

hen Res�2
f must be the same as Res�2

�g�2,�̃2
� since rank 1 type residue is uniquely determined

y the above image. This completes the proof. �

Example 5.2: Choose two nonzero poles �1 ,�2 such that �1
3� ±�2

3, and let �i=C · �0,bi ,1� for

=1,2. Then g�2,�̃2
g�1,�1

=g�1,�̃1
g�2,�2

holds for �̃i=C · �0, b̃i ,1� with

b̃1 =
��1

3 + �2
3�b1 − 2�1�2

2b2

��1
3 − �2

3�
, b̃2 =

2�1
2�2b1 − ��1

3 + �2
3�b2

��1
3 − �2

3�
.

Theorem 5.3: Use the same notation and the factorization formula �5.2� in Lemma 5.1. Let all

i ,�i be real. Let F1ªg�1,�1
*F and F2ªg�2,�2

*F, where * is the dressing action on the frames
�x ,y ,�� of affine spheres. Then the following holds and implies the classical permutability

heorem:

�g�2,�̃2
g�1,�1

� * F = g�2,�̃2
* F1�=:F12� = �g�1,�̄1

g�2,�2
� * F = g�1,�̄1

* F2�=:F21� . �5.3�

Proof: Because the dressing action is a group action, �5.3� certainly holds by �5.2�. Let li
˜ ˜ ˜ ˜
�ai ,bi ,1� and li= �ai ,bi ,1� span �i and �i, respectively. From the proof of Theorem 4.6, F1 :
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g�1,�1
*F means in classical terms the following: Tzitzéica transformation via �1 : = l1�F��1��3 on

= �F�3 gives a new affine sphere X1 : =g�1,�1

−1 �F1�3. Therefore F12: =g�2,�̃2
*F1 implies that Tz-

tzéica transformation via �12: = l̃2�F1��2��3 on �F1�3=g�1,�1
X1 gives a new affine sphere

�2,�̃2

−1 �F12�3. We observe that

�12: = l̃2�F1��2��3 = c0l2g�1,�1
��2�−1�F1��2��3 = c0l2X1��2� ,

hich coincides with the classical formula �5.1� except for a negligible constant c0 when we plug
n �2 : = l2X��2�.

So Tzitzéica transformation via �12 on X1=g�1,�1

−1 �F1�3 produces

X12 = g�1,�1

−1 �g
�2,�̄2

−1
F12�3 = �g�1,�1

−1 g
�2,�̄2

−1
F12�3.

imilarly X21= �g�2,�2

−1 g
�1,�̃1

−1
F21�3. Therefore, by �5.2� and �5.3� we obtain the classical permutabil-

ty theorem: X12=X21, which automatically implies h12=h21 for the corresponding affine metrics.�
There is some rational element in �−

�,	GL�3,C� which has six simple poles but none of them
re real. The poles must form two conjugate triples as � ,
2� ,
4�� and �̄ ,
2�̄ ,
4�̄�, where we
ay assume 0�arg����� /3 without loss of generality. So such element is not a product of real

ank 1 or 2 type elements. In fact, we can use Lemma 5.1 to construct them.
Proposition 5.4: Let ��C* with arg���� �0,� /6�� �� /6 ,� /3�. Let ���. If �* :

� ·g�,���̄�−1��, then f�,�ªg�̄,�*g�,���−
�,	GL�3,C�.

Proof: We first observe that f�,� lies in �−
	GL�3,C�. It suffices to verify f��̄�= f���, which is

g�,�̄*g�̄,�̄ = g�̄,�*g�,�.

ince �*= �̄ ·g�,���̄�−1�� implies �̄*= � ·g�̄,�̄���−1�� and arg����� /6 implies �3�−�̄3, the
bove factorization holds by Lemma 5.1. �

The dressing action of f�,� on affine spheres can be viewed as the composition of two con-
ugate complex Tzitzéica transformations, which produces a real solution in the end. The permut-
bility Theorem 5.3 can be applied to compute this action. Solutions from this construction are
ften called breather type solutions.

It is not hard to show, by a similar residue calculus as before, that any rational element with
ix simple poles as above can be constructed from Proposition 5.4. What would be much messier,
f not harder, to prove is that the subgroup of all rational elements in �−

�,	GL�3,C� is generated by

�,�’s, f�,�’s, and their rank 2 type brothers. This subgroup can then be regarded as the group of
zitzéica transformations on affine spheres. We will leave this interesting problem for future study.

I. BASIC EXAMPLES

In this section, we use x ,y ,z as the standard R3 coordinates to represent the immersion X, and
se u ,v to denote the asymptotic coordinates of the affine spheres.

Example 6.1 �the vacuum solution): The vacuum solution to Tzitzéica equation �see also Refs.
and 15� is �0�0 �or h0�1�. One can integrate �3.1� to obtain the whole family of frames. The
artesian equation of the surface is then obtained by the determinant

x3 + y3 + z3 − 3xyz = 1.

ote that it is independent of the parameter �. So this family is really a family of parametrizations
f the same affine sphere.

A general scalar solution of system �2.9� with parameter �=�3 is

���� = c0R��� + c1R�
2�� + c2R�
4�� , �6.1�
−1
here R���ªexp��u+� v�.
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Therefore we may choose the following asymptotic parametrizations of the vacuum affine
phere after certain affine transformations:

X0�u,v,�� = 	
exp�− ��u + �−1v�/2�cos��3��u − �−1v�/2�

exp�− ��u + �−1v�/2�sin��3��u − �−1v�/2�
2

3�3
exp��u + �−1v� 
 ,

hich is a surface of revolution �Note that Jonas has classified all affine spheres of revolution in
ef. 10 using elliptic functions�.

Example 6.2 �the one-soliton solution): Apply Tzitzéica transformation to the vacuum solution
e obtain the one-soliton solution h1. By �6.1�, �1=���1� is a scalar solution of system �2.9� with
arameter �1=�1

3. It is real when c0�R , c1=c2, and �1�R*. Compute h1=1−2 �ln �1�uv:

h1 = 1 −
6�0 exp�3s1/2�cos��3t1/2 + �0� + 1.5

��0 exp�3s1/2� + cos��3t1/2 + �0��2
,

here c1=�0ei�0 , �0=c0 / �2�0� , s1=�1u+�1
−1v, and t1=�1u−�1

−1v. The family of affine spheres

1�u ,v ,�� has a long expression given by �2.10�.
When �0=0 �i.e., c0=0�, we have the special solution

h1 = 1 − 1.5 sec2��3��1u − �1
−1v�/2 + �0� . �6.2�

e give explicit formula for this family of affine spheres,

X1�u,v,�� =
��3 − �1

3�
��3 + �1

3�
X0�u,v,��

+
�3��1 tan��3t1/2 + �0�

��3 + �1
3�

.	e−s/2�� cos��3t/2 + 4�/3� + �1 cos��3t/2 + 2�/3��

e−s/2�� sin��3t/2 + 4�/3� + �1 sin��3t/2 + 2�/3��

2es�� + �1�/�3�3� .


�6.3�

Note that �1 need not be real to produce real h1. For example, �6.2� will be a real hyperbolic
unction solution when �1 and �0 are pure imaginary. In this case the real �or imaginary� part of
6.3� still produces affine spheres, among which are the stationary and traveling one-soliton affine
phere shown in Ref. 16. Some pictures have already been shown in Refs. 15 and 16. In terms of
ressing action, �1 is the pole of some rank 1 type simple element g�1,�. So dressing actions of

�1,� with a pure imaginary pole �or a pole whose argument is ±� /6� may also produce new real
ffine spheres sometime.
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Assimilating the physical space-time with a fractal, a general theory is built. For a
fractal dimension D=2, the virtual geodesics of this space-time implies a general-
ized Schrödinger type equation. Subsequently, a geometric formulation of the
gravitation theory on a fractal space-time is given. Then, a connection is introduced
on a tangent bundle, the connection coefficients, the Riemann curvature tensor and
the Einstein field equation are calculated. It results, by means of a dilation operator,
the equivalence of this model with quantum Einstein gravity. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2196747�

. INTRODUCTION

A fractal structure is a manifestation of the universality of self-organization processes, a result
f a sequence of spontaneous symmetry breaking. Space-time itself may be a fractal. Some
rguments in favor of the universality of a fractal structure of space-time and matter at small and
arge scales are given in Refs. 1 and 2: “�i� Fractal trajectories in space with Hausdorff dimension
wo �a Peano-Moore curve� exhibit both an uncertainty principle and a de Broglie relation. Quan-
um particles move statistically on such a fractal �Feynman� paths. Thus, the Schrödinger equation
ay be interpreted as a fractal signature of space-time; �ii� The formal analytic continuation �t
it� which relates the Schrödinger and diffusion equations has a physical alternative: there is a

classical and quantum� stochastic fluid which can be either a fluid of probability for a unique
lement or a real fluid composed of elements undergoing quasi-Brownian motion. A �composite�
article �corpuscle with internal structure� may be one or a small cluster of stochastic elements.
here is a sort of democracy �statistical self-similarity� between the stochastic element constituting

he particle. As regards the cause of the randomness, the parton model involves a fragmentation of
he partons. The diffusion may be considered as a Brownian �random� motion which is superim-
osed on the Hamiltonian time development. This leads to a Langevin equation which is equiva-
ent to a Fokker-Planck equation for distribution function ��� , t� in the phase space, �� /�t
�H ,��− �D /2��H�=0, where −�H� is a positive semidefinite second order differential operator
hich is determined by the Hamiltonian dynamics and a sympletic metric g��= �������� on phase

pace; �iii� Nature does not ‘fractalize’ �and quantize�; it is intrinsically fractal �and quantum�.
ave function of the Universe is a solution of the Weller-DeWitt equation of quantum cosmology

nd corresponds to the Schrödinger equation. This can be related to the fact that observations of
he galaxy-galaxy and cluster-cluster correlations, as well as other large-scale structure can be fit
ith a fractal with Df 	1.2 which may have grown from two-dimensional sheet-like objects such

s domain walls or string wakes. The fractal dimension Df can serve as a constraint on the
roperties of the stochastic motion responsible for limiting the fractal structure; �iv� The non-

�Author to whom correspondence should be addressed. Present Address: Stradela Florilor No. 2, 700514, Iasi, Romania.

Electronic mail: magop@phys.tuiasi.ro
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inear �soliton� equation corresponds to a �linear� Schrödinger equation coupled to a medium with
pecific nonlocal response. Physically, this model is similar to a simple case of linear propagation
f thin beams in a wave-guide. Thus, a free photon in �fractal� space represents in fact a “bouncing
all” in a wave-guide. In other words, space-time is structured as a �fractal� web if optical fibers
channels� which represents a skeleton of space-time; �v� The proper wave-function
�1 ,�2 ,�3 , . . . � describing the hydrogen-like atom are similar to the electromagnetic models
TEM0,TEM1,TEM2, . . . � in optical resonating cavities; �vi� It is known that in quasi-crystalline
hase there exists atomic clusters with hierarchical and quasi-periodic packing which display a
cale-invariance under appropriate inflation/deflation transformation. In the case of a one-
imensional quasi-periodic chain there appears a new type of electronic �‘critical’� state which
anifests a multifractal nature.”

In particular, ���� Cantorian fractal space-time is constructed as an infinite numbers of elemen-
ary Cantor sets with all conceivable Hausdorff dimension. This space has three dimensions, the
ormal dimension nf =�, the topological dimension nT=4, and the Hausdorff dimension �dc�=4
	3=4.236 067 977.3 A fractal path in the Cantorian space time has always a fractal Hausdorff
imension of dH=2, and can be considered a two-dimensional projection of a fractal string �in
hree-dimensional �3D� space� which may represent a cosmic string. Then, the stability of the
olitonic objects �strings and vortices� in quantum fields theory implies instantons.4,5 An instanton
ay be interpreted as a tunneling transition and it is effectively an unusual transition between the

nergy levels of Dirac’s sea. This remarkable construction was subsequently used by ‘t Hooft to
esolve the U�I� problem of the standard model and to explain the mass of the 
 meson. However,
een from the ���� symplictic vacuum point of view, such “event,” are completely natural and go
n all the time to ensure the symplictic topology of the vacuum �VAK� as the ultimate source of
ll of the physics particles.4 It might be possible to interpret supersymmetry �SUSY� and exotic
articles in an analogous way.4,5

The Cantorian gravity is effectively the quantum gravity of ���� theory �El Naschie’s Canto-
ian gravity�.4,6 In turn Cantorian-fractal gravity is an effect that is, in essence, analogous to the
an der Waals forces and may therefore be understood in terms of what has been termed the
eynman—El Naschie conjecture.4 In short, the idea is the following4: It is well known that the
peed at which “time flows” could be slowed down by a gravitational field. If this is true, and it is
rue according to Einstein’s theory, then the converse is also true. This means that by changing the
speed” of the passing of time, one can “create” a gravitational effect. Put in a different way, a
uctuation in time creates a fluctuation in gravity and vice versa. Now the fundamental idea in the
l Naschie’s theory is that space-time is a random Cantorian fractal, which means that “time” is
lso a fractal. Since even a regular fractal possesses an “intrinsic fluctuation” which may clearly be
een from a parametric representation of say a Peano curve, the random fractal nature of Cantorian
ime must be seen as the cause for gravitational fluctuation. Similar to van der Waals forces the
xpectation or mean value of this fluctuation at the VAK level is a nonzero quantity and is that the
rigin of “fractal” gravity which we can now link to mass via Einstein’s equivalence principle. The
receding discussion could be summarized in one single sentence; the fractalness of space-time is
he origin of massiveness. A simple logical consequence of the previous discussion seems to be
hat “particles” for which times does not pass could not possibly have any rest mass. Thus the
hoton for which times does not pass as far as our classical theories tell us, must be “massless”.

In this article we give a geometric formulation of the gravitation theory in a fractal space-time.

I. A MATHEMATICAL MODEL OF THE FRACTAL SPACE-TIME

Let us suppose that the motion of the various physical objects takes place on continuous, but
owhere differentiable, curves, hence on fractals. In order to save the differential equations of
hysics, we consider, for a real fractalic function f�x�,5 its approximation obtained from smoothing

t or averaging at various resolutions
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f�x,�� = 

−�

+�

	�x,y,��f�y�dy , �1�

here 	�x ,y ,�� is a smoothing function centered on x. Now we impose lim
�→0

	�x ,y ,��=�x−y hence

lim
�→0

f�x,�� = f�x� . �2�

f�x ,�� can be everywhere differentiable and f�x� is the so-called fractal function.5 In this treatment
e have a new variable �a new dimension�, the resolution �.

Let us consider an infinitesimal dilatation

� → �� = ��1 + d�� = � + � d� �3�

o the resolution. Omitting the x dependence of a function L �e.g., the length� we have

L���� = L�� + � d�� = L��� + �
�L���

��
d� , �4�

r

L���� = �1 + D d��L��� . �5�

ere

D = � � /�� = �/� ln � �6�

s

�/�� = �� ln �/�����/� ln �� = �1/�� � /� ln � �7�

ith D the dilation operator.
From the previous equations it is obvious that the intrinsic variable of resolution is not �, but

n �. This claim has an important consequence. Since both the argument of the logarithm and the
xponent of the exponential function must be nondimensional, the same feature must have the
ariables of the fractal functions �in the aforementioned case x and ��. It does not mean that we
annot work with variables like distance, or time, but they are divided as constants of the same
hysical dimension, having the unitary dimension. For example, the time t measured in seconds is
n fact divided by t0=1 s.

The nondifferentiable nature of space-time implies some dramatic consequences.
�i� A breaking of differential time reflection invariance. Let us consider indeed the usual

efinition of the derivative of a given function with respect to time

�df

dt
� = lim

dt→0

f�t + dt� − f�t�
dt

= lim
dt→0

f�t� − f�t − dt�
dt

. �8�

he two definitions are equivalent in the differentiable case. One passes from one to the other by
he transformation dt→−dt �time reflection invariance at the infinitesimal level�. In the nondiffer-
ntiable situation considered here, both definitions fail, since the limits are no longer defined. The
ractal method solves this problem in the following way: we attribute to the differential element dt
he new meaning of a variable, identified with a time resolution, dt=�t. The passage to the limit
t→0 is actually devoid of physical meaning �an infinite energy would be needed to really
erform a measurement at zero time resolution interval�. The physics is now in the behavior of the
unction during the “zoom” operation on dt. The two functions f+� and f−� are now defined as

xplicit functions of t and of dt:
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f+��t,dt� =
f�t + dt,dt� − f�t,dt�

dt
, �9a�

f−��t,dt� =
f�t,dt� − f�t − dt,dt�

dt
. �9b�

�ii� We can write:

dX±
i = dx±

i + d�±
i �10�

or the forward process �+� and backward process �−�, respectively. Here dx±
i are the right and left

ifferentials of the classical variables, and d�±
i describe the fractal behavior. So that

�dX±
i � = dx±

i , �11a�

�d�±
i � = 0. �11b�

f a point like body along a fractal curve moves, the parameter t of the time could establish the
lace where the moving object is at a given moment. Since d�±

i describes the fractal properties of
he considered curve which has the fractal dimension D,5 it is natural to impose �d�±

i �D to be
roportional to dt, i.e.,

�d�±
i �D  dt , �12a�

r

�d�±
i �D = D dt , �12b�

here D is a coefficient of proportionality. From our earlier discussion, the fluctuation d�± is
ritten:

�d�±
i d�±

j � = ± � ij�D dt�2/D. �13�

his relation is invariant under translations and rotations in space between Cartesian coordinate
ystems. If i� j relation �13� is zero, due to the independence of d�i on d� j.

�iii� We must introduce two velocities �v+ ,v−� instead of one even when going back to the
lassical domain. Such a two valuedness of the velocity vector is a new, specific consequence of
ondifferentiability that has no standard counterpart �in the sense of differential physics�, since it
nds its origin in a breaking of the symmetry �dt→−dt�. Such a symmetry was considered
elf-evident up to now in physics �since the differential element dt disappears when passing to the
imit�, so that it has not been analyzed on the same footing as the other well-known symmetries.
ote that it is actually different from the time reflection symmetry T, even though infinitesimal

rreversibility implies global irreversibility. Now, at the level of our description, we have no way
o favor v+ rather than v−. Both choices are equally qualified for the description of the laws on
ature. The only solution to this problem is to consider both the forward �dt�0� and backward
dt0� processes together. The number of degrees of freedom is doubled with respect to the
lassical, differentiable description �six velocity components instead of three�.

We define average forward �+� and backward �−� derivatives, which, once applied to xi, yield
he above-mentioned forward and backward mean velocities

d+xi�t�
= v+

i , �14a�

dt
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d−xi�t�
dt

= v−
i , �14b�

here v±
i are the components of the “forward” velocity, and v−

i the components of the “backward”
elocity. The average of the fractal velocities �d�±

i /dt� is zero. Yet, if �v+
i +v−

i � /2 may be consid-
red as classical velocity, the difference between them, more precisely �v+

i −v−
i � /2 is due to the

ractal movement. In order to emphasize the latter from the former, we introduce a complex
elocity

V i =
v+

i + v−
I

2
− i

v+
i − v−

i

2
=

dx+
i + dx−

i

2dt
− i

dx+
i − dx−

i

2dt
. �15�

uch procedures are quite often in the theoretical physics �see, e.g., the dumping factor of the
scillations�.

Let us make now a change in our parameters. Instead of dx±, we put d±x. Then �15� becomes

V i = �d+ + d−

2dt
− i

d+ − d−

2dt
�xi, �16�

hich justifies the definition of the operator

d =
d+ + d−

dt
− i

d+ − d−

2dt
. �17�

�iv� Let us assume now that the fractal curve5 is immersed in a 3D space, and X of compo-
ents Xi�i=1,3� is the position vector of a point on the curve. Let us consider now a function

f�X , t� and the following Taylor series expansion up to the second order. This second order term
e consider rest term; without entering into deep mathematics, we have

df = f�Xi + dXi,t + dt� − f�Xi,dt�

=�f · dX +
� f

�t
dt +

1

2

�2f

�Xi � Xj dXidXj +
�2f

�Xi � t
dXidt +

1

2

�2f

�t2 �dt�2. �18�

he right and left average values of this equation reads

�d±f� = ��f · d±X� + � � f

�t
dt� +

1

2
� �2f

�Xi � Xj dX±
i dX±

j� + � �2f

�Xi � t
dX±

i dt� +
1

2
� �2f

�t2 �dt2�� .

�19�

We make now the following stipulations: the mean values of the function f and its derivatives
oincide with themselves, and the differentials dX±

i and dt are independent, therefore the averages
f their products coincide with the product of averages. Thus �19� becomes

d±f =
� f

�t
dt + �f · �d±X� +

1

2

�2f

�Xi � Xj �dX±
i dX±

j � +
�2f

�Xi � t
�dX±

i ��dt� +
1

2

�2f

�t2 ��dt�2� . �20�

n what follows we use �11a�. Consequently it results

d±f =
� f

�t
dt + �f · dx± +

1

2

�2f

�Xi � Xj�dx±
i dx±

j + �d�±
i d�±

j �� +
�2f

�Xi � t
dxidt +

1

2

�2f

�t2 �dt�2, �21�

here we took into account the fact that �d�i�=0 �see �11b��.
Now we make a choice and a specification. The choice concerns the dimension D=2 of the
ractal curve, i.e., of the Peano type curves. Now �13� becomes
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�d�±
i d±

j � = ± �ijD dt . �22�

he specification relates to the sign: since �d�±
i d�±

j ��0, and dt is negative for the vectors taken to
he left, we have put ± in front of dt for the two cases.

Now �21� becomes

d±f =
� f

�t
dt + �f · dx± +

1

2

�2f

2 � Xi � Xj dx±
i dx±

j ±
�2f

�Xi � Xj �
ijD dt +

�2f

�Xi � t
dxidt +

1

2

�2f

�t2 ��dt�2� .

�23�

f we now divide by dt and neglect the terms which still contain differential factors, �23� is
educed to

d±f

dt
=

� f

�t
+ �f ·

dX

dt
±

D
2

�f . �24�

he last term is specific to fractality. Let us calculate, under these circumstances df /dt. Taking
nto account �24�, we have

df

dt
=

1

2
�d+f

dt
+

d−f

dt
− i�d+f

dt
−

d−f

dt
��

=
1

2
�� � f

�t
+ �f · v+ +

D
2

�f� + � � f

�t
+ �f · + v− −

D
2

�f��
� − i�� � f

�t
+ �f · v+ +

D
2

�f� − � � f

�t
+ �f · v− −

D
2

�f���
=

� f

�t
+ �f ·

v+ + v−

2
− i��f ·

v+ − v−

2
+

D
2

�f� ,

r using �15�

df

dt
=

� f

�t
+ V · �f − iD�f . �25�

This relation allows us to also give the definition of the fractal operator

d

dt
=

�

�t
+ V · �− iD� . �26�

e now apply the principle of scale covariance, and postulate that the passage from classical
differentiable� mechanics to the new nondifferentiable mechanics that is considered here can be
mplemented by replacing the standard time derivative d/dt by the new complex operator d /dt. As

consequence, we are now able to write the equation of geodesics of the fractal space under its
ovariant form dV /dt=0. Equivalent results was given in Refs. 4–6.

II. A GENERALIZED SCHRÖDINGER EQUATION

Now, let us consider the covariant derivative �26� and the following V complex velocity
oncretization

V = − 2iD � ln � . �27�
pplying the d /dt covariant derivative to the V complex velocity, we obtain
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�d/dt�V = �tV + ���V2/2� − iD � · V�

=− 2iD��t�� ln �� − 2iD�� ln � · ���� ln ��

− iD��� ln ��� �28�

r still, considering the identity

����/�� = ��� ln �� + 2�� ln � · ���� ln �� ,

e have

�d/dt�V = − 2D � �i��t,�/�� + D���/��� . �29�

ow, Newton’s second principle takes the form

m�d/dt�V = − �U �30�

r explicitly

�U = ��2imD��t�/�� + 2mD2���/��� �31�

ith U the potential. Integrating this equation yields

D2�� + iD�t� =
U

2m
� �32�

p to an arbitrary phase factor ��t� which may be set to zero by a suitable choice of the phase of
. If there is no external field, U=0, the covariance is explicit, since Newton’s equation of inertial
otion is �d /dt�V=0. The statistical meaning of the wave function �Born postulate� can now be

educed from the very construction of the theory.4 Even in the case of only one particle, the virtual
eodesic family is infinite �this remains true even in the zero particle case, i.e., for the vacuum
eld�. The particle properties are assimilated to those of a random subset of the geodesics in the
amily, and its probability to be found at a given position must be proportional to the density of the
eodesic fluid. This density can easily be calculated in our formalism, since the imaginary part of
q. �32� writes in terms of �=��* ,�t�+� · ���V+V*� /2=0�, where �V+V*� /2 is the real part of

he complex velocity, which is identified, at the classical limit, with the classical velocity.

V. A COVARIANT MECHANICAL MODEL

We assume that any mechanical system can be characterized by a Lagrange function L�x ,V , t�
rom which an action S is defined

S = 

1

2

L�x,V,t�dt . �33�

In a general way, the Lagrange function is expected to be a function of the variables x and
heir derivatives ẋ=v. We have found that the number of velocity components v is doubled, so that
e led to write L=L�x ,v+ ,v− , t�. Instead, we have made the choice to write the Lagrange function

s L=L�x ,V , t�. We now justify this choice by the covariance principle. Re-expressed in terms of

+ and v− the Lagrange function writes

L = L�x,
1 − i

2
v+ +

1 + i

2
v−,t� . �34�
herefore we obtain
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�L

�v+
=

1 − i

2

�L

�V
, �35a�

�L

�v−
=

1 + i

2

�L

�V
, �35b�

hereas the new covariant time derivative operator writes

d/dt =
1 − i

2

d+

dt
+

1 + i

2

d−

dt
. �36�

Let us write the stationary action principle in terms of the Lagrange function �S
��1

2L�x ,V , t�dt=0. It becomes



1

2 � �L

�x
�x +

�L

�v+
�v+ +

�L

�v−
�v−�dt = 0. �37�

s �v+=d+��x� /dt and �v−=d−��x� /dt it takes the form



1

2 � �L

�x
�x +

�L

�V�1 − i

2

d+

dt
+

1 + i

2

d−

dt
��x�dt = 0, �38�

.e.,



1

2 � �L

�x
�x +

�L

�V
d

dt
�x�dt = 0 �39�

he subsequent demonstration of the Lagrange equations relies on an integration by parts. Now
uch an operation involves the Leibniz rule for the covariant derivative operator d /dt. As d /dt
� /�t+V ·�−iD� is a linear combination of first and second order derivatives, the same is true of

ts Leibniz rule. This implies the appearance of an additional term in the expression for the
erivative of a product:

d

dt� �L

�V
· �x� =

d

dt

�L

�V
· �x +

�L

�V
d

dt
�x − 2iD �

�L

�V
· ��x . �40�

s �x�t� is not a function of x, the additional term vanishes. After having defined a new integration
s the inverse of the covariant derivation, i.e. �df = f , the integral reduces to



1

2 � �L

�x
−

d

dt

�L

�V��x dt = 0. �41�

Finally the Euler-Lagrange equations write

d

dt

�L

�V
=

�

�x
. �42�

Therefore, thanks to the transformation d/dt→d /dt, they take exactly their standard classical
orm. This results reinforced the identification of our tool with a “quantum-covariant” represen-
ation, since, as we have shown in previous paragraph and as we recall in what follows, this
uler-Lagrange equation can be integrated in the form of a Schrödinger equation.

Assuming homogeneity of space in the mean lead to define a generalized complex momentum
iven by P=�L /�V. If we consider the action as a functional of the upper limit of integration in
q. �41�, the variation of the action from a trajectory to another nearby trajectory yields a gener-

lization of another well-known relation of standard mechanics P=�S.
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. THE GEOMETRY OF THE FRAME

Physics, both experimental and theoretical, is in fact based on the referential concept. The
osition, or more general, the motion of a body cannot be described but relative to certain refer-
ntial. From the experimental point of view, the referential is given by a system of bodies or, with
certain degree of abstraction, by points “relatively fixed” one from each other, system which is

he core of the measurements of distance and direction. The intervention of speculative thinking
ubsequently led to the detaching of the notion of coordinates of a point in a given referential:
patially speaking, the point is localized by three real numbers—its coordinates—if it is moving,
lso by means of the time when it is localized, i.e., by the moment of time read by a clock attached
o the referential.

Theoretically speaking the events or phenomena may be described by coordinates which ease
p most of the computations. Usually, the system of coordinates are chosen as to satisfy a certain
ype of symmetry, or as to the results of the computations to be able to be reported in terms
irectly testable by experiments.

In principle, the computations may be performed in any coordinate system, the result being
quivalent: the geometry found here has an entire arsenal of formula of transformation from one
ystem of coordinates to another. This reciprocal transformability led subsequently to the detach-
ent of the notion of referential from the pure experimental one mentioned above. A referential

requently used in geometry is the referential of the vectors tangent to the lines of coordinates �the
o-called natural referential.7� Due to the fact that the crossings between several such referentials
re easy to be expressed through derivatives of some unknown functions, the referential transfor-
ations are called “olonomous.” Related to such referentials, pure mathematical, the physical one

efined previously, is marked by a high degree of arbitrariness: not always its abstract defining
lements—the basis vectors—may define lines of coordinates relatively to where they must be
angent. As a result, it is said that the basis of such referentials is nonolonomous.8,9 However,
learly, these referentials are those used in the experimental physics, the olonomous being in
eneral, only abstractions necessary to the calculus, as we will try to show in what follows.

Physically speaking, for a system of coordinates to correspond to reality: it is necessary to be
easurable or interpretable in terms of measurable parameters. Although, in the quasitotality of

he cases the coordinates are not measurable. For example, in astronomy, the position of a star may
e reported in spherical or Cartesian coordinates: azimuth, height, and distance from the star. In
oth cases we deal with parameters with unknown significance, or effectively measured value. For
xample, the Cartesian coordinates are not measurable even if we consider the space absolutely
uclidian. The manner of work in astronomy consists of a second set of coordinates, for which the

adial distance, deduced from physical considerations, is affected by a large arbitrariness, quanti-
atively speaking. Then even qualitatively, if the space is non-Euclidian, it has not the significance
hich was given. In this last case, even the angles do not give the real direction anymore, but a

ocal, apparent one. Nevertheless, they keep a certain significance—as we tried to mention to
mphasize in—which is not related to translations, but only to rotations of the moving referential
r of some portions of it �which to play, eventually, the part of “theodolite”�. Let us not forget this
act, since we will use it in what follows.

This, because, among all the other notions used in physics, the notion of direction is endowed
pparently with a certain transcendence. For example, in quantum mechanics, the experimental
evice must obey with enough accuracy, to the classical laws. This refers to the fact that the
ifference between the classical laws �applicable to the measurement gauges and the quantum
aws �applicable to the microobjects��, is extended in what concerns the measuring scale of

asses, lengths and times and, in general, over any parameters which imply displacements, not
ver the directions, which implies only rotations. This has here two aspects: the first one concerns
he intuitive fact that a direction, no matter how it has been established, may serve as referential
oth for microscopic, and for macroscopic ones, and the second one, concerns the fact that the
mprecision relations which complies angular variables and associated operators, need a plus of
recautions in definition,10 which might indicate a certain “classicism” of the respective variables.
The indiscernability of the coordinate systems, as well as the fact that in measurements one
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ses the nonolonomous physical referentials indicate, clearly, the necessity of reporting the cal-
ulus to these last ones. Hence, only these are used, e.g., in the operational definition of the
pace-time metric element or, as it is underlined in Refs. 11–13, even the models of universe
efined by ingenious operational methods, as is the kinematic model of Milne, may be reformu-
ated with the help of the notion of metrics. For the metric theories there is a strong basis: the
eneral relativity theory of Einstein. In our opinion, what lacks in order to overcome the state of
act in physics �or in cosmology, with a higher restraint� is the physical interpretation, i.e., a
hysical referential, of the coordinates which enter in metrics. In other words, if usually a coor-
inates system may determine a referential �of the tangent vectors�, the problem which arises is
xactly inverse: given a referential, one has to detect a coordinate system compatible with it. The
heory of the complex potential9,14,15 allows us to reach to some extent the solving of this problem,
s from here, it is clear that the only olonomous coordinates cannot be but the three-dimensional
mbient metrics, which could be a working hypothesis.

Therefore, these coordinates have a relation with what is measuring �which is e.g., a poten-
ial�, only through a certain function solution of a partial derivative equation. This supposes yet an
xtension of the operational processes beyond the ones used habitually: the distance measurement,
ven by light signals, and the watch synchronization by the same signals. These being intrinsically
inked to each other, since synchronization is marked by a high degree of arbitrariness, the same
ill happen with the definition of the distance.

A first way of defining a measurement process related to the physical referential, as it was
ccepted previously, resides in a speculation which has at its basis the quantum measurability, i.e.,
y means of hermitic operators, whose eigenvalues represent values measured of the parameters
hich has operators attached. In order to explain such a point of view, we must first accept that on
physical referential one can establish directions independent of the phenomenological frame
here we are fixed �micro- or macro-cosmos�. Specifically we admit that, artificially �with rational

ntervention� or intrinsically, a physical referential is endowed with “theodolitic apparatus,” which
ay be oriented anyhow independently on the referential and, mostly, of the way this is taken into

onsideration �e.g., indifferently of the orientation of the three Cartesian axis attached to it�.
bviously, such a theodolitic apparatus “points to” something. Rising to some degree of abstrac-

ion, in its interior some interactions happen, due to the fields captured from the pointing direction,
nteractions through which one measures some parameters related to this field. Pointing to various
irections, the apparatus “measures” in the same way: what it measures �what it evidences� does
ot depend in its nature on the direction it is pointing to, or on the parameters associated to this
irection in the considered physical referential. In one word, the internal process through which
he measurement is achieved is independently on the direction. Under these circumstances, a
heodolit must be characterized by a hermitic operator which may depend on the direction, but
hich—in any case—has eigenvalues, independent on it. One may build such operators using the

3 sphere.
The S3 sphere can be parameterized in terms of either Cartesian coordinates xm�m

1,2 ,3 ,4�, complex variables �u ,v�, or � and angles �� ,� ,��. If the radius of S3 is equal to �,
hen

�x1�2 + �x2�2 + �x3�2 + �x4�2 = �2. �43�

e will set � equal to unity ��=1� wherever possible. The inverse radius �−1 can be considered as
mass scale in this space.16 The connection between different variables is of the form

u = x1 + ix2 = � cos �ei�, �44a�

V = x3 + ix4 = � sin �ei�, �44b�
ith the angular volume element
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d� =
1

2�2 sin � cos � d � d� d� . �45�

The manifold S3 has an O�4� symmetry, whose algebra is SU�2��SU�2�. S3 is itself the
anifold of the group SU�2�, and the two subgroups correspond to left and right multiplications

cting on the manifold. As a consequence, there are two independent frames ei
�1� and ei

�2� �i
1,2 ,3� possible on S3, each of which is smooth everywhere and can be used to define the spatial
erivatives. The particular choice of one or another of these frames has no physical consequences.

Throughout this article we choose the frame ei
�1�, and the corresponding derivatives will be

enoted by �i �i=1,2 ,3�:

�1 =
i

�
�u

�

��* − �
�

�u* + �* �

�u
− u* �

��
�

=
1

�
�− sin�� + ��

�

��
+ cos�� + ���tan �

�

��
− cot �

�

��
�� , �46a�

�2 =
1

�
�u

�

��* − �
�

�u* − �* �

�u
+ u* �

��
�

=
1

�
�cos�� + ��

�

��
+ sin�� + ���tan �

�

��
− cot �

�

��
�� , �46b�

�3 =
i

�
�u* �

�u* − u
�

�u
+ �* �

�u* − �
�

��
� = −

1

�
� �

��
−

�

��
� . �46c�

ote that these derivatives do not commute

��i,� j� =
2

�
�ijk�k, �47�

here �ijk is the antisymmetric tensor of rank 3 with �123=1. If we consider the derivatives

�� = ��i,�4 = � �

��±
�D

=
1

D
�

�t
� ,

hen we have

���,��� = C��
� �� = −

2

�
���4

� ��, �48a�

�1234 = − 1, �48b�

� = 1,2,3,4. �48c�

he quantities C��
� are the structure constants for the Lie algebra of the group SU�2��T, were T

s the group of fractal time translations. In the works of Carmeli and Marlin17–22 one uses the
ngular momentum components Li�i=1,2 ,3� as derivatives in S3. They satisfy the commutation
elations

�Li,Lj� = − �ijkLk �49�
� �
hich are equivalent up to a factor with �47�. In this case we have C��= �2/�����4
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I. THE LINEAR CONNECTION ON THE FRACTAL SPACE-TIME

Let T̄ be the tangent bundle over the fractal space-time and � a linear connection on this

anifold. It is known that � is a derivative on the bundle T̄. We define then a Riemannian

tructure on the fractal space-time by introducing a metric form on T̄ �Ref. 23�

g:�X,Y� → g�X,Y� , �50�

hich is symmetric, nondegenerate, and positive. Here X and Y are vector fields over the fractal
pace-time.

If we use the derivatives �� ,�=0,1 ,2 ,3, then the vector fields X ,Y can be written under the
orm23

X = X���, Y = Y���. �51�

n this case the metric form g becomes

g�X,Y� = g�X���,Y���� = X�Y�g���,��� . �52�

f we introduce the metric coefficients

g�� = g���,��� �53�

hen relation �52� can be written as

g�X,Y� = g��X�Y�. �54�

ecause g is symmetric, the metric coefficient has the property

g�� = g��. �55�

To describe the gravitational field, we suppose that the connection � is Riemannian, i.e., the
ovariant derivative of g is null:

��xg��Y,Z� = 0. �56�

his condition combined with the property of null torsion for Riemannian manifold yields:

2g��xY,Z� = X�g�Y,Z�� − Y�g�Z,X�� − Z�g�X,Y�� + g��X,Y�,Z� + g��Z,X�,Y� − g��Y,Z�,X� .

�57�

In a local chart we choose the vector fields X ,Y, and Z to be ��, ��, and ��, respectively. Then,
sing, �48a�–�48c� Eq. �57� becomes

2g����
��,��� = ��g�� + ��g�� − ��g�� + g����,���,��� + g����,������ − g����,������ . �58�

e introduce now the connection coefficient ���
� by the definition

���
�� = ���

� ��. �59�

hen, using �48a�–�48c� and �53�, we can write �58� in the form

2�� g�� = ��g�� + ��g�� − ��g�� + C� g�� + C� g�� − C� g��. �60�
�� �� �� ��
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inally, if we observe that g��g��=��
�, then from Eq. �60� we obtain

���
� = 1

2g�����g�� + ��g�� − ��g��� + 1
2g� �

�C��
� g�� + C��

� g�� − C��
� g��� . �61�

his result differs from the result of Carmeli and Malin22 by the last three terms on the right-hand
ide. These terms, containing the structure constants C��

� are determined by the noncommutativity
f the derivatives ��.

It is easy to verify that

���
� − ���

� − C��
� = 0. �62�

his result shows that the torsion of the Riemannian connection � introduced in fractal space-time
s null. Indeed, from the definition of torsion23 we have

T���,��� = ���
�� − ���

�� − ���,���

=����
� − ���

� − C��
� ��� �63�

nd, by using the definition of the torsion tensor components

T��
� �� = T���,���

e obtain

T��
� = ���

� − ���
� − C��

� = 0. �64�

Now, we can write the covariant derivative of a covariant vector by using the property

�X�fY� = f�XY + �Xf�Y , �65�

here f is a differentiable function defined on the fractal space-time. If we choose X as �� and put
=�� and f =V�, then

���
�V���� = V����

�� + ���V���� = ���V� + ���
� V����

r

��V� = ��V� + ���
� V�. �66�

his result coincides with that given in Ref. 22 for the covariant derivative.
We calculated now the Riemann curvature tensor R���

� by using the definition of the curvature
wo-form R�X ,Y�.23 If we choose X ,Y, and Z as �� ,��, and ��, respectively, then

R���,����� = ���
���

�� − ���
���

�� − ����,�����. �67�

sing �48a�–�48c� and �59�, we write expression �67� as

R���,����� = ���
����

� ��� − ���
����

� ��� − C��
� ���

��. �68�

f we define now the Riemann curvature tensor R���
� by

R���,����� = R���
� �� �69�

hen from Eq. �68� we obtain

R���
� = �����

� − �����
� + ���

� ���
� − ���

� ���
� − C��

� ���
� . �70�

his result differs also from that of Ref. 22 by the term C��
� ���

� , and is determined by the

oncommutativity of the derivative ��.
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II. EINSTEIN’S FIELD EQUATIONS

The parametrization �44a� and �44b� is consistent, leading to the metric

d�2 = �2�cos2 � d�2 + sin2 � d�2 + d�2� �71�

nd to the everywhere continuous right-handed triad ei=�i—see �46a�–�46c� whose corresponding
ual base is24

�1 = ��/2�cos�� + ��sin�2���d� − d�� − � sin�� + ��d� , �72a�

�2 = ��/2�sin�� + ��sin�2���d� − d�� − � cos�� + ��d� , �72b�

�3 = − ��cos2� d� + sin2� d�� . �72c�

The Lorentzian metric for the S3�T space-time being

ds2 = d�2 − dt2, �73�

he orthonormal frame is defined by ����= ��1 ,�2 ,�3 ,�4=� /D� t�, whereas the corresponding dual
rthonormal base consists of ����= ��1 ,�2 ,�3 ,�4=D dt�.

The above-introduced pseudo-orthonormal tetradic fields satisfy the SU�2��T algebra
48a�–�48c�. Using the tetradic field one-forms ���� one can obtain the line element as12,25

ds2 = g������, �74�

here g��=diag�1,1 ,1 ,−1�=
�� denotes the usual “flat” metric. In this choice of the tetrad,
xploiting the group properties of the manifold, the Cartan formalism leads to important results
hich will be presented in the sequel.

Thus, the algebraically essential coefficients of the Levi-Civita connection are easily obtained
s

�ijk = − �ijk, �75a�

�4ij = 0, �75b�

i, j,k = 1,3. �75c�

onsidering �= f�Dt� to be a function of time alone, we generalize the previous results to a
ime-dependent radius of curvature. With this assumption, the structure constants for the algebra
48a�–�48c� read

Cijk = �2/f��ijk, �76a�

Cii4 = − Ci4i = f�/f , �76b�

C4ii = 0, �76c�

here prime marks fractal time derivatives.
Using the first torsionless Cartan equation12,25

d�� = − ��
� Ù �� �77�

e obtain the connection coefficients as

�i = − �1/f��i , �i = �4 = − f�/f , �i = 0. �78�
jk jk 41 ii i4
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From the second Cartan equation12,25

d��� + ��� Ù ��
� = �1/2�R������ Ù �� �79�

e get the following essential Riemann tensor components:

R1212 = R1313 = R2323 = 1/f2 + �f�/f�2,

�80�
R1414 = R2424 = R3434 = − f�/f2,

hich enable us to compute the Ricci tensor

R11 = R22 = R33 = 2/f2 + f�/f + 2�f�/f�2,

�81�
R44 = − 3f�/f ,

nd the scalar curvature

R = 
��R�� = 6�1/f2 + f�/f + �f�/f�2� . �82�

For f�Dt�=�=const., one can obtain from �82� the well-known geometrical result R=6/�2.13

Using �81� and �82�, we compute the components of the Einstein tensor G��=R��

�1/2�
��R, obtaining

Gii = − �1/f2 + 2f�/f + �f�/f�2� , �83a�

G44 = �3/f2��1 + f�2� . �83b�

In the following we analyze the Einstein equations, for the dynamized metric, in two physi-
ally important cases. The exact solutions are derived and some considerations on particular cases
re made.

Considering the Einstein field equations

G�� = kT�� �84�

ith the matter-energy-momentum tensor of an ideal fluid

T�� = �w + p�u�u� + p
��, �85�

here p is the pressure and w is the energy density. The concrete expressions for the components
83a� and �83b� suggest the use of the well-known relation w=3p. So, the ideal fluid may be
dentified with an electromagnetic field of pure radiation, and �85� can be written in the form

T�� = �w/3��4��
4 ��

4 + 
��� . �86�

Introducing �83a�, �83b�, and �86� in �84�, we get

1/f2 + 2f�/f + �f�/f�2 = − kw/3, �87a�

�3/f2��1 + f�2� = kw . �87b�

hich lead to the following different equation for f:

f�f + f�2 + 1 = 0 �88�
ith the general solution
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f�Dt� = ± �f0
2 − �Dt − Dt0�2�1/2, �89�

here f0 and t0 are integration constants.
The �88� result in the form

�L
� ln �

= − 2,

here

L = ln�p2 + 1�,p = f� and � = f

eads to a continuous scale invariance—see Refs. 4 and 5. In this case, the scale dimension is
iven by the eigenvalues of the dilation operator �6�

DL = �L

nd indicates, according to the general theory of the fractal space-time—see Refs. 4 and 5 that it
s valuable at the microscopic scale since �=−2. Moreover, the fractalic dimension D=−�=2
how that this model becomes the quantum Einstein gravity.26,27

Replacing �89� in �87a� and �87b�, we obtain the energy density for the electromagnetic field
f pure radiation as

w = ± �3�/k��f0
2 − �Dt − Dt0�2�1/2. �90�

For comparison, it is worthwhile analyzing the simplest case of a cosmological dust whose
nergy-momentum tensor is T��=wu�u� �derived from �85� for p=0� and possesses, with respect
o the co-moving frame ui=0, a single nonvanishing component, T44=w. Under these hypotheses,
he Einstein’s field equations �84� concretely become

l/f2 + 2f�/f + �f�/f�2 = 0, �91a�

�3/f2��1 + f�2� = kw , �91b�

hose general solution is expressed through the transcendent dependence of the sphere radius on
ime

Dt = Dt0 ± �f0
��f/f0��1 − f/f0� + ��f0/2�arcsin�1 − f/f0� , �92�

here t0 and f0 are integration constants.
Equation �91b� provides the energy density

w = 3f0/�kf3� �93�

n perfect agreement with Ref. 13.

III. CONCLUSIONS

The main conclusions of the present paper are the following: �i� Assimilating the physical
pace-time with a fractal, a general theory is built. For a fractal dimension D=2, the virtual
eodesics of this space-time impliesh a generalized Schrödinger type equation and �ii� A geometric
ormulation of the gravitation theory on a fractal space-time is given. Then, a connection is
ntroduced on a tangent bundle, the connection coefficients, the Riemann curvature tensor and the
instein field equation are calculated. It results, by means of the a dilation operator, the equiva-
ence of this model with quantum Einstein gravity.
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We develop a Hilbert-space framework for a number of general multiscale prob-
lems from dynamics. The aim is to identify a spectral theory for a class of systems
based on iterations of a non-invertible endomorphism. We are motivated by the
more familiar approach to wavelet theory which starts with the two-to-one endo-
morphism r :z�z2 in the one-torus T, a wavelet filter, and an associated transfer
operator. This leads to a scaling function and a corresponding closed subspace V0 in
the Hilbert space L2�R�. Using the dyadic scaling on the line R, one has a nested
family of closed subspaces Vn, n�Z, with trivial intersection, and with dense union
in L2�R�. More generally, we achieve the same outcome, but in different Hilbert
spaces, for a class of non-linear problems. In fact, we see that the geometry of
scales of subspaces in Hilbert space is ubiquitous in the analysis of multiscale
problems, e.g., martingales, complex iteration dynamical systems, graph-iterated
function systems of affine type, and subshifts in symbolic dynamics. We develop a
general framework for these examples which starts with a fixed endomorphism
r �i.e., generalizing r�z�=z2� in a compact metric space X. It is assumed that r :X
→X is onto, and finite-to-one. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2196750�

. INTRODUCTION

We study a class of endomorphisms r :X→X, where X is a metric space. The endomorphism
s assumed onto, and finite-to-one. We build a spectral theory on a Hilbert space associated
aturally with �X ,r�. Our focus is on the case when X is assumed to carry a certain strongly
nvariant measure �, see �2.3�.

Continuing our earlier work13 we consider basis constructions in a general context of dynami-
al systems; the case of endomorphisms, i.e., non-reversible dynamics. Our framework will in-
lude wavelet bases, as well as algorithmic basis constructions in Hilbert spaces built on fractals
r on Julia sets of rational functions in one complex variable. In fact, these examples motivated
ur results.

First recall that in the real variable case of standard wavelets �in one or several variables, i.e.,
he d-dimensional Lebesgue measure�, there is a separate generalizations of standard dyadic wave-
ets, again based on translation and scaling: See for example Ref. 1 for such an approach to the
onstruction of generalized wavelet bases in the Hilbert space L2�Rd�, i.e., of orthogonal bases in
2�Rd�, or just frame wavelet bases, but still in L2�Rd�.

�Electronic mail: ddutkay@math.rutgers.edu
�
Electronic mail: jorgen@math.uiowa.edu

47, 053504-1022-2488/2006/47�5�/053504/20/$23.00 © 2006 American Institute of Physics
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It is the purpose of this paper to develop a geometric context of this viewpoint which applies
o any kind of dynamics which is based on an iterated scale of selfsimilarity. Hence our paper will
ffer a Hilbert-space framework which goes beyond the setting of scale similarity, and our results
ill offer a new viewpoint even in the case of the more familiar selfsimilarity which is based on
cascade of affine scales.

The best know instance of this is d=1, and dyadic wavelets.10 In that case, the two operations
n the real line R are translation by the group Z of the integers, and scaling by powers of 2, i.e.,
�2 jx, as j runs over Z. This is the approach to wavelet theory which is based on multiresolutions
nd filters from signal processing. In higher dimensions d, the scaling is by a fixed matrix, and the
ranslations by the rank-d lattice Zd. Again we will need scaling by all integral powers. We view
oints x in Rd as column vectors, and we then consider the group of scaling transformations,
�Ajx as j ranges over Z.

Suitable spectral conditions will be imposed on A. In particular we note that if A is integral,
.e., the entries in A are in Z, then x�Ax passes to the quotient Rd /Zd. Since Rd /Zd is a copy of
he compact d-torus Td via a familiar identification, we see that A induces an endomorphism rA in

d. If further A is invertible, then rA is finite-to-one, and maps Td onto itself. In fact, for every x
n Td, the inverse image rA

−1�x� has cardinality =�detA � = :N,

1
�det A

��A−1x� = �
k�Zd

ak��x − k� �x � Rd� . �1.1�

So our starting point is a given finite-to-one endomorphism r :X→X in a compact space X.
ur aim is threefold: �1� to build an associated Hilbert space which admits wavelet decomposi-

ions; �2� to show that the corresponding computations can be done with a geometric algorithm;
nd finally �3� we offer concrete examples from dynamics where our approach leads to new
nsight. So in addition to the endomorphism �X ,r�, our initial setup will include a scalar function

0; an analog of the function from wavelet theory which determines low-pass filters.
Details: Set W�x�ª �m0�2 / #r−1�x�. We say that m0 satisfies a low-pass condition if W�0�=1.

In the special case of �1.1� above, the relationship between the function m0 and the coefficients
ak	 is that the ak numbers will be the d-Fourier coefficients of m0 when m0 is viewed as a function
n the compact quotient X=Rd /Zd. This explains the summation over Zd in �1.1�.�

Suppose for some p, and x�X, that rp�x�=x. Then we say that the finite set of points C
�x ,r�x� , . . . ,rp−1�x�	 is a cycle. A cycle C is called a W-cycle if W�y�=1 for all y�C.

We will extend to the context of endomorphisms the following general principle from wave-
ets in the Hilbert space L2�Rd�: A generalized wavelet basis �also called a Parseval-frame, see e.g.,
ef. 1� will have the stronger orthonormal basis �ONB�property when the only one W-cycle is
= �0	. On the other hand, the presence of non-trivial W-cycles is consistent with wavelet systems

hat form frame-bases. The reader is referred to Ref. 6 for details regarding these more general
avelet bases. It was proved in Ref. 6 that the presence of W-cycles is consistent with a class of

ertain super-wavelets. This wavelet basis involves an additional cyclic structure which we will
evelop in the paper.

This setup arose earlier for the familiar linear multiresolution analysis �MRA� approach to
avelets: Recall10 that dyadic wavelets represent a special basis for the Hilbert space L2�R�, but

hey are generated by a subspace V0 in L2�R� which is the closed linear span of a single function
and its translates by the integers Z. The function � satisfies a certain scaling identity

1
�2

��x/2� = �
k�Z

ak��x − k� �x � R� , �1.2�

hich implies that the scaling operator Uf�x�ª1/�2f�x /2� maps V0 into itself. A solution � is
alled a scaling function. Using a terminology from optics, we say that functions on R represent

ignals or images, and that the subspace V0 initializes a fixed resolution.
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A special case: X=T= �z�C � �z � =1	=R /Z, r�z�=z2, and m0 is the function on T with Fourier
oefficients equal to the masking coefficients ak from �1.2�, i.e., m0�z�=�k�Zakz

k. The function m0

s called a filter function because of an analogy to a setting in signal processing. One of the axioms
or m0 �the quadrature-mirror-filter axiom� from wavelet theory amounts to the fact that the
ssociated linear operator, S0h�z� : =m0�z�h�z2� is isometric in L2�T , Haar measure�; see Fig. 1,

In this paper, we state a version of the scaling identity �1.2�, for the case of an endomorphism
:X→X, and we show that it admits a solution in certain Hilbert spaces built on �X ,r�. It turns out
hat the variant of �1.2� which arises by the Fourier transform, i.e.,

�2�̂�t� = m0�eit/2��̂�t/2� �t � R� , �1.3�

s more suggestive of the generalization we have in mind; see Theorem 2.14 for details.
While the standard MRA approach to wavelets �see Ref. 17� restricts the functions m0 in �1.3�

y assuming that m0 is in some regularity class, e.g., is Lipschitz, we shall not do this here.
oreover, there is a rich class of wavelet systems where m0 is typically only known a priori to be

�. This is the case, for example, for the frequency localized wavelets studied in Refs. 1 and 21.
In this last case, m0 is in fact matrix-valued.�

The scaling identity �1.2� implies that there is a natural intertwining of the isometry S0 on
2�T� with the restriction of U to the subspace V0 in L2�R�. A second axiom for m0 from wavelet

heory �called low-pass� implies that S0 is a pure shift isometry, i.e., that the intersection S0
n�L2�T��,

or n in N is �0	, see Fig. 1. Because of the intertwining relation, this fact guarantees that the
tandard functions that make up a wavelet basis really do form a basis for the whole Hilbert space
2�R�. See Fig. 1. And the purity of S0 is also what yields a certain martingale system, i.e., a
ested family of spaces, or of sigma-algebras.

It is the purpose of this paper to generalize this setting to that of endomorphisms, and to
ealize a natural scaling function, as a generating vector in a Hilbert space which corresponds to
2�R� for the special case of wavelets. For this purpose we introduce a solenoid X� built on X, and
family of repelling cycles for the system �X ,r ,m0�. Our Hilbert space is built as an L2-space on

ertain infinite paths starting at X. In Theorem 2.14, we solve the corresponding scaling identity,
nd write the scaling function as an infinite product. As one should expect by analogy to wavelets,
central theme in our present analysis is a characterization of those filter functions m0 on X for
hich the scaling identity has non-trivial solutions in a Hilbert space of functions of X�.

A concrete example of this wavelet technique used on a particular graph dynamical system
The Golden mean shift� is presented in Proposition 2.18 below. Our aim is to present this as a
ystematic tool for dynamics outside the traditional context of wavelets in L2�R�.

In recent papers,11,13 the co-authors have adapted this MRA technique to a related but different
roblem, the problem of creating a spectral theory for a class of non-linear iterated function
ystems �IFS�, but in those cases, there is not a direct analog to the scaling identity. Our construc-
ion here parallels the one we outlined briefly for the standard dyadic MRA wavelet
onstructions.17 �We have sketched the standard wavelet construction only in the dyadic case, and
nly in one dimension, i.e., for R, but it is known that this construction carries over mutatis
utandis to Rd with d�1, and when x�2x, is replaced with matrix scaling x�Ax in Rd where
is a d by d matrix over Z with eigenvalues � such that �� � �1. Moreover our results apply to the

FIG. 1. Multiresolutions.
ind of multiwavelets studied recently in Ref. 1.�
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Our present paper is not about Rd-wavelets but instead about a class of non-linear dynamics
:X→X. Specifically, now we start with r :X→X, and the function m0 is defined on X. We will
lso call m0 a filter function because of known analogy to subband filtering in signal processing.
hen m0 is given then S0 given by S0h�x�ªm0�x�h�r�x�� is isometric in L2�X�, subject to a

echnical condition on m0. So by Wold’s theorem,31 it is then the orthogonal sum of a shift
perator S and a unitary operator U0; i.e., the Hilbert space L2�X� on which S0 acts is the direct
um of two Hilbert spaces H�S� and H�U0� such that �i� each space invariant for S0, �ii� the
estriction to H�S� is a shift S, and the restriction to H�U0� a unitary operator. We say that S0 is
ure if H�U0�= �0	. �See Fig. 1.� This will be equivalent to the fact that the intersection of the
ultiresolution subspaces is trivial.

This means that S0 is itself a shift operator on L2�X�. Our Theorem 3.9 gives a simple
ondition for the isometry S0 to be pure.

The first step in our construction is an extension from the initial endomorphism r :X→X, to a
ew invertible system r̂ :X�→X�, i.e., with r̂ invertible on X�. When r is assumed finite-to-one,
his can be done such that there is a quotient X� /X which becomes a Cantor space. The extension
pace X� is called a solenoid. For the case when �X ,r� is a one-sided subshift,24 we work out �in
ec. II D� an explicit model for this solenoid.

In fact the notion of a solenoid �for the study of dynamics of an endomorphism and extension
o an automorphism� was used already in a pioneering paper by Lawton19 in 1973. Lawton
onsidered groups with expansive automorphisms; see also Ref. 20. Motivated by applications, we
ote that our present analysis is not restricted to groups.

The use of solenoids in the study of particular systems with scale similarity was initiated in
ef. 8, and was continued in Ref. 7. The context of Ref. 8 is a class of algebraic irrational numbers
nd an associated C*-algebraic crossed product. In a general context of non-linear dynamics, this
ork was continued in Refs. 11 and 13.

I. COVARIANT REPRESENTATIONS

Let X be a compact metric space with a non-invertible endomorphism r :X→X such that r is
easurable, onto and finite to one, i.e., 0� #r−1�x��� for all x�X.

We have shown in Refs. 12 and 13 that, for certain filter functions m0 on X, one can construct
ultiresolutions and scaling functions in Hilbert spaces of functions on X� �see �2.1��.

In Ref. 13 we proved that to get useful multiresolutions, the function m0 must have certain
xtreme cycles �see Definition 2.10�. In this case the measure on X� is actually supported on a
maller set NC �see �2.4� below�.

. The ground space

An �infinite� path starting at x is a sequence �z1 ,z2 , . . . � of points in X such that r�z1�=x,
�zn+1�=zn for n�1. We denote by �x the set of paths starting at x. We denote by X� the set of all
aths,

X� = �x�X�x. �2.1�

ote that a path �z1 ,z2 , . . . � in �x can be identified with the doubly infinite sequence �zn�n�Z,
here z0ªx and z−n=rn�x� for n�0.

X��XZ inherits the usual Tychonoff topology from XZ.
The maps 	n :X�→X are defined for all n�Z, by

	n��zk�k�Z� = zn.

he endomorphism r can be extended to the automorphism r̂ defined on X� by

r̂�zn�n�Z = �zn−1�n�Z.
hese maps satisfy the following relations:
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	n � r̂ = 	n−1 	0 � r̂ = r � 	0.

For a function g on X we define

g�n��x� ª g�x�g�r�x�� ¯ g�rn−1�x�� �n � 1� . �2.2�

or a function 
 on X�, we define 
�0�=1,


�n�
ª 

 � r̂ ¯ 
 � r̂n−1,

nd if 
 is not vanishing on X�, then


�−n� =
1


 � r̂−1
 � r̂−2
¯ 
 � r̂−n �n � 1� .

We can identify functions g on X with functions on X� by g↔g �	0. �Note that the two
efinitions for g�n� will coincide.�

Consider r :X→X and suppose � is a strongly invariant probability measure on X, i.e.,



X

f�x�d��x� = 

X

1

#r−1�x� �
y�r−1�x�

f�y�d��x� �f � L����� . �2.3�

Let C= �x0 ,x1 , . . . ,xp−1	�X be a cycle of length p, i.e., the points xi are distinct and r�xi+1�
xi, r�x0�=xp−1.

We define the set

NC�x� ª �� = �z1,z2, . . . � � �x� lim
n→�

zpn � C	 . �2.4�

or each x�X and �= �z1 ,z2 , . . . ��NC�x�, define i���� �0, . . . , p−1	 by i���ª i if limk→�zkp

xi.
An inspection reveals that each NC�x� is countable.
Define the measure �C on X� by



X�

fd�C = 

X

�
��NC�x�

f���d��x� . �2.5�

To simplify the notation we write c�x�= #r−1�r�x��.
Proposition 2.1: For all 
�L1�X� ,�C� and n�Z, we have



X�

c�n�
 � r̂nd�C = 

X�


d�C.

Proof: It is enough to prove this for n=1, the rest follows by induction,



X�

c
 � r̂d�C = 

X

# r−1�r�x�� �
��NC�x�


�r̂�x,���d��x�

= 

X

1

#r−1�x� �
y�r−1�x�

# r−1�r�y�� �
��NC�y�


�r̂�y,���d��x�

= 

X

�
��NC�x�


�x,��d��x� = 

X�

d�C.
�
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. The operators

In this section we show that when �X ,r� is given as above, there is a natural covariant
epresentation �U ,�� acting on the Hilbert space L2�X� ,�C�, i.e., with r inducing a unitary opera-
or U, and � a representation of L��X� by multiplication operators, such that the relation �2.8� is
atisfied on L2�X� ,�C�. �The operators on L2�X� ,�C� are equipped with the strong operator topol-
gy �SOT�.�

Let 0 , . . . ,p−1 be a set of complex numbers of absolute value 1.
Let U be the operator on L2�X� ,�C� defined by

U
�x,�� = i����#r−1�r�x��
 � r̂�x,�� �
 � L2�X�,�C�,x � X,� � �x� . �2.6�

or f �L��X ,�� define the operator ��f� on L2�X� ,�C� by

��f�
�x,�� = f�x�
�x,�� �
 � L2�X�,�C�,x � X,� � �x� . �2.7�

Proposition 2.2: The operator U is unitary, � is a representation of the algebra L��X ,�� and
he following covariance relation is satisfied:

U��f�U−1 = ��f � r� �f � L��X,��� . �2.8�

For any function f �L��X ,�� and n�1, the operator U−n��f�Un is the operator of multipli-
ation by f �	n. The union of the algebras �U−n��f�Un � f �L��X ,��	 is SOT-dense in the algebra
��X� ,�C� �seen as multiplication operators on L2�X� ,�C��. An operator S on L2�X� ,�C� com-
utes with U and ��f� for all f �L��X ,�� if and only if there exists a function F�L��X� ,�C� such

hat F=F � r̂ and S is the operator of multiplication by F.
Proof: The fact that U is an isometry follows form Proposition 2.1.
The inverse of U is

U−1
�x,�� = i�r̂����
−1 1

�#r−1�x�

 � r̂−1�x,�� .

ome simple computations prove the other relations.
Note that the algebra �U−n��f�Unf �L��X ,��	 is the algebra of operators of multiplication by

unctions which depend only on the first n coordinates. Since any function in L��X ,�� can be
ointwise and uniformly boundedly approximated by such functions, it follows that the union of
hese algebras is dense in L��X� ,�C�.

Since L��X� ,�C� is maximal Abelian, if S commutes with U and � then S commutes with the
ultiplication operators, so it is a multiplication operator itself, S=MF. Since S commutes with U,

t follows that F=F � r̂. �

Our formula for the measure �C in �2.5� shows that the Hilbert space L2�X� ,�C� fibers over
unctions on X as follows: for a dense space of functions 
 ,��L2�X� ,�C�, the sum

�
����x� ª �
��NC�x�


�������

efines a C�X�-valued inner product as in Refs. 28 and 16 and



X

�
����x�d��x� = �
���L2�X�,�C�.
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. A direct integral decomposition

We now resume our discussion of cycles C for the endomorphism.
The cycle C= �x0 , . . . ,xp−1	 generates p points in X�:

�C ª �x0,x1, . . . ,xp−1,x0, . . . � and r̂k��C�,k � �1, . . . ,p − 1	 ,

.e., �C is the path that goes through the cycle infinitely many times. We may write �CªCC¯

C�.
Definition 2.3: A fixed point x0 for r is called repelling if there is 0�c�1 and ��0 such that

or all x�X with d�x ,x0���, one has d�r�x� ,x0��c−1d�x ,x0�.
A cycle C= �x0 , . . . ,xp−1	 is called repelling if each point xi is repelling for rp.
Definition 2.4: A subset A of X� is called a cross section if for every path �

�x�XNC�x� \ �r̂k��C� �k� �0, . . . , p−1		, the intersection A� �r̂k��� k�Z	 contains exactly one
oint.

Proposition 2.5: If C is repelling, and r is continuous at the points in C, then there exists a
ross section.

Proof: Using the continuity of r and the fact that the cycle is repelling, we can find a small
�0 and 0�c�1 such that ri�B�x0 ,����B�x0 ,��=�, for i� �1, . . . , p−1	, r−p�x0��B�x0 ,��
�x0	, and such that d�rp�x� ,x0��c−1d�x ,x0� for x�B�x ,��.

Define

A ª ��zk�k�Z � X��z0 � rp�B�x0,��� \ B�x0,��, and zkp � B�x0,�� for k � 1	 .

It is enough to prove that, for every path �zk�k�Z in NC�x�, except the special ones �C and the
thers, there is a unique k0�Z such that

zk0
� rp�B�x0,��� \ B�x0,��, and zkp � B�x0,�� for k � 1. �2.9�

Since � is in NC�x�, the sequence �zkp	 converges to one of the points xi. Then, using the
ontinuity of r, �zkp+p−i	 converges to x0.

Take the first k0�Z such that zkp+k0
�B�x0 ,��, for all k�1. We still have to justify why there

s a first one.
If not, then z−kp+k0

�B�x0 ,�� for all k�0. Then, using the fact that x0 is repelling for rp, there
s a c such that 0�c�1, and for all k�0,

� � d�z−kp+k0
,x0� = d�rkp�zk0

�,x0� � c−kd�zk0
,x0� .

ut then let k→�, and obtain that zk0
=x0. So, zk0−l=rl�x0�=xl mod p for all l�0. Also, since

k0+p�B�x0 ,���r−p�x0�, we get zk0+p=x0. By induction we obtain then that � is one of the special
oints in the orbit of �C, which yields the contradiction.

Since zk0+p�B�x0 ,��, zk0
=rp�zk0+p� is in rp�B�x0 ,��� but not in B�x0 ,��.

Since zk0+kp�B�x0 ,�� for k�1, this proves that k0+kp does not have the property �2.9�.
Since zk0

�B�x0 ,��, this proves that k0−kp does not have the property �2.9� for k�1.
Since for k�0, zk0+kp+p�B�x0 ,��, it follows that for i� �1, . . . , p−1	, one has zk0+kp+i

rp−i�B�x0 ,��� so it is not in B�x0 ,��, and therefore k does not satisfy �2.9� when kk0mod p.
This proves that A is a cross section. �

Our present notion of cross section, and our next theorem are motivated in part by an earlier
heorem of Lim, Packer, and Taylor21 on direct integral decompositions of a class of wavelet

epresentations: This is the class of wavelets for which the Fourier transform �̂ of the wavelet
other-function � is the indicator function of a measurable subset in Rd. Both our present direct

ntegral decomposition theorem, and that in Ref. 21 are motivated by Mackey’s theory of unitary
epresentations of non-Abelian groups. In fact, our representation of the covariant system �U ,��

ay be viewed as a single representation of a certain non-Abelian crossed product Ar̂
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C�X��›r̂Z �see Ref. 8�, and our simultaneous direct integral decomposition of U and � in
heorem 2.6 below, is also a direct integral decomposition of a single representation of the crossed
roduct group.

Assume now that A is a cross section. For each ��A, define the operators U� and ���f�,
f �L��X ,�� on l2�Z� by

U�
�k� = i�rk����
�k + 1� �
 � l2�Z�,k � Z� ,

���f�
�k� = f�z−k�
�k� �
 � l2�Z�,k � Z� .

The representation �� extends to a representation of C�X�� defined by

���f�
�k� = f�r̂k����
�k� �f � C�X��,
 � l2�Z�,k � Z� .

he covariance relation is satisfied:

U����f�U�
−1 = ���f � r̂� �f � C�X��� .

Theorem 2.6: Let A be a cross section, and assume that ��C�=0. The map � :L2�X� ,�C�
L2�A ,�C� � l2�Z� defined by

���f����,k� = �c�k��z0�f�r̂k���� �f � L2�X�,�C�,� = �zk�k�Z � A,k � Z�

s an isometric isomorphism which intertwines the operators U and �A
�U�d�C���, and also the

epresentations � and �A
���d�C���. The representations �U� ,��� on l2�Z� are irreducible for all

�A.
Proof: The fact that � is isometric follows from Proposition 2.1. The inverse of � is defined

s follows: for each ���xNC�x�, �except the special ones which have measure 0, so do not
atter�, there exists a unique k����Z and �����A such that �= r̂k���������. Then

�−1�f���� =
1

�c�k���������0�
f�����,k���� .

verything follows by direct computation.
We prove now that the representation �U� ,��� is irreducible for all �= �zk�k�Z�A.
Note first that ���f� is a diagonal operator F with entries Fkk= f�z−k�, k�Z.
We claim that for k� l big enough, we have zk�zl. Since � is in NC�z0�, it follows that zkp

onverges to one of the points of the cycle. Also, for k big enough, the points zk cannot be in C,
ecause, this path �C was removed from A. Suppose now that for any m we can find k , l�m, such
hat k� l and zk=zl. Then this implies that zk is periodic, therefore also zk−1=r�zk� ,zk−2 , . . . ,zl are
eriodic, and since m is arbitrary, it follows that all the points zm are periodic. The orbit of the two
eriodic points z0 and zk intersect, because rk�zk�=z0, therefore the two orbits must be the same.
hus the path �zk�k�Z is an infinite repetition of the periodic orbit of z0:

z0 ,z1 , . . . ,zp0−1 ,z0 ,z1 , . . . �. However, this cannot converge to the cycle C.
Take now k� l small enough. Then z−k�z−l so we can pick a function continuous function f

uch that Fkk= f�z−k�� f�z−l�=Fll. If T= �Tij�i,j�Z is an operator on l2�Z� that commutes with U�

nd ��, then TklFll=FkkTkl. So Tkl=0 for k� l small enough.
Note that �U�

−1���f�U�
��k�= f�z−k+1�
�k�, so the conjugation with U� shifts the diagonal
ntries of ���f�. Therefore, with the previous argument, we obtain that Tkl=0 for all k� l. So T is
diagonal operator. Since, T commutes with U�, we obtain that Tkk=Tk+1,k+1. So T is a constant
ultiple of the identity. This proves that the representation �U� ,��� is irreducible. �

We show in Theorem 2.7 below that the harmonic analysis of covariant systems �U ,�� as in
2.8� is completely equivalent to that of single representations �̂ of a certain C*-algebraic crossed

ˆ
roduct Ar̂. With this identification �U ,��↔�, we note in particular that the operators in the
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ommutant of the pair �U ,�� coincide with the commutant of the representation �̂. Our main
onclusion in Theorem 2.7 is that the representation �̂ of Ar̂ is faithful, i.e., that the kernel of �̂
s trivial.

Theorem 2.7: Assume that for every x�X, there exists a path �zi�i�1 that starts at x and with
imi→�zpi�C, �i.e., NC�x� is non-empty�. Then the operators U and Mf, �f �C�X��� on L2�X� ,�C�
orm a faithful representation of the crossed-product Ar̂ªC�X��›r̂Z.

Proof: The C*-algebraic crossed product Ar̂ �Ref. 29� is the C*-algebraic completion of formal
ymbols ��f ,k� � f �C�X�� ,k�Z	 with product

�f ,k� · �g,l� = �fg � r̂k,k + l� �f ,g � C�X��,k,l � Z� .

The representation is defined by

�̂:�f ,k� � ��f�Uk.

We saw in Proposition 2.2 and its proof that the covariance relation is satisfied, so we have to
heck only that this representation is faithful. If not, using a result from Ref. 32, we see that there
s a non-zero element in Ar̂ of the form ��k�Zck�f ,k�� with �k�Z �ck � ��, f �C�X�� such that this
lement is mapped to 0 under �̂.

This means that ��f��k�ZckU
k=0. With Theorem 2.6 it follows that for almost all ��A and

ll 
� l2�Z�, l�Z, one has

f�r̂l���� �
k�Z

ck
�k + l� = 0.

ake 
=�i and get f�r̂l����ci−l=0 which implies that either f�r̂l����=0 for all l, or cl=0 for all l.
ut, if cl=0 for all l then this contradicts that the element in the crossed-product is non-zero.

Thus, for almost all �= �zi�i�Z�A, we have that f�r̂l����=0 for all l.
This implies that f is 0 on almost all �xNC�x�. We know that non-empty open sets in X have

ositive �-measure �see Ref. 13�. Hence, since the measure on each NC�x� is atomic, every
on-empty open set in �xNC�x� has positive measure. This implies that f has to be 0 on all

xNC�x�. We claim that this set is dense in X�.
Take �ª �z1 ,z2 , . . . ��X� and n�1 fixed. Since NC�zn� is not empty, there exists a path

y1 ,y2 , . . . � that starts at zn and is convergent to the cycle. Then, �z1 ,z2 , . . . ,zn ,y1 ,y2 , . . . � is in

C�x� and coincides with the initial path on the first n components. Thus, the path � can be
pproximated with paths in NC�x�.

Hence �xNC�x� is dense in X�, and this implies that f =0. The contradiction yields the
esult. �

Remark 2.8: �Iteration of rational functions�
Let r :S2→S2 be a rational function viewed as an endomorphism of the Riemann sphere S2, or

�=C� ��	; and suppose the degree of r is bigger than 2. Let X=X�r� be the Julia set of r, i.e.,
is the complement of the largest open subset U such that �rn�U �n�1	 is a normal family. It is

nown that X is non-empty, compact, and that �X ,r� carries a unique strongly invariant probability
easure; see Refs. 5 and 9.

Our present general result for cycles is motivated by the following specific theorems for
ational mappings:

Let r be a rational mapping of degree at least 2.

• Let C be a p-cycle for r. Then C is repelling if and only if ��rp���z� � �1 for all z�C.
Moreover, �rp���z�=�w�Cr��w�, z�C, so �rp�� has the same value for all points z on the
cycle C.

• Every repelling cycle C lies in the Julia set X.

• The Julia set X is the closure of the repelling periodic points, see Ref. 25.
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. The scaling function

We now turn to a theorem which is analogous to the existence theorem for the scaling function
n the classical theory of wavelets. As outlined in Ref. 10, the wavelet scaling function � in L2�R�
epends on a filter function m0 with m0 defined on T=R /Z. In fact, in the wavelet theory, it is the
ourier transform �̂ which is an infinite product of scaled versions of m0. As is well known, this
epresentation requires that the function m0 satisfies two conditions: one is called the quadrature
ondition, and the second is called the low-pass condition. Both of these conditions are motivated
irectly from the probabilistic interpretation that �m0�2 enjoys in signal processing.

In our theorem below we identify the analog of these two conditions for the function m0 :X
C which is associated to an endomorphism r :X→X. The quadrature condition takes the form

2.10�, and the low-pass condition takes the form �2.11�. The reason for the name quadrature is
hat r�z�=z2 in the wavelet case, and the reason for the name low-pass, is that points on T
R /Z correspond to frequencies, and x=0 is the lowest frequency.

In the general setting of the endomorphism r, the analog of low frequencies are points in
ycles C for r, and in this setting low-pass means that �m0�2 attains its maximum on C. This is
xactly what condition �2.11� is saying.

In the case of endomorphism, we will therefore expect to represent a scaling function as an
nfinite product built out of m0 and iterated shifts applied to m0. The fact that this can be done is
he main conclusion in the theorem.

Definition 2.9: A complex valued function f on a metric space X is called �-Lipschitz at a
oint x0 if there is a non-decreasing function � : �0, � �→ �0, � � such that for all A�0 and c�1,

�
k=1

�

��Ack� � � ,

nd

�f�x� − f�x0�� � ��d�x,x0�� ,

or all x in some neighborhood of x.
Definition 2.10: Let W :X→ �0,1� be a given function, and set

RWf�x� ª �
r�y�=x

W�y�f�y� �x � X� .

e say that RW is a transfer operator, or a Ruelle operator. A function h on X is said to be
armonic with respect to RW if RWh=h. A cycle C for r is said to be a W-cycle if W�x�=1 for all
�C.

The operator in Definition 2.10 plays a role in many areas of mathematics and physics. Some
f its recent uses are highlighted in Ref. 30, where it is key to Ruelle’s thermodynamical formal-
sm.

Lemma 2.11: There is a unique family of measures Px supported on �x, x�X, satisfying the
ollowing relation: for all measurable sets E�X� and all x�X,

�
r�y�=x

W�y�Py��y � r̂−1�E�� = Px��x � E� .

Proof: It is enough to define Px on cylinder sets: for a fixed �a1 ,a2 , . . . ,an , . . . ���x and n
2,

E ª ��z1,z2, . . . � � �x�z1 = a1, . . . ,zn = an	 .

hen Px�E��x�=�k=1
n W�ak�.

The extension of Px to the sigma-algebra generated by the cylinder sets now follows from

olmogorov’s theorem. See Ref. 13 for more details.
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Also, for y�r−1�x�, one has that r̂−1�E���y is empty unless y=a1, in which case
Py�r̂−1�E���y�=�k=2

n W�ak�. The lemma follows. �

Lemma 2.12: The function hC�x�ªPx�NC�x�� is harmonic with respect to RW.
Proof: We have the following disjoint union �r�y�=xNC�y�= r̂−1�NC�x��. The lemma follows

hen from Lemma 2.11. Indeed,

�RWhC��x� = �
r�y�=x

W�y�hC�y� = �
r�y�=x

W�y�Py��y � NC�y��

= �
r�y�=x

W�y�Py��y � r̂−1NC�x�� = Px��x � NC�x�� = hC�x� .

�

Definition 2.13: We call hC�x�ªPx�NC�x�� the harmonic function associated to the cycle C.
ee also Ref. 13 for more details.

In our next theorem, we prove that each repelling cycle C generates a covariant operator
ystem on the corresponding Hilbert space L2�X� ,�C�. Moreover, under two conditions on a given
lter function m0, we show that the corresponding scaling equation has a natural solution �̂C in
2�X� ,�C�.

Theorem 2.14: Assume now that the cycle C is repelling and the functions r and x� #r−1�x�
re continuous at the points in C. Let m0�L��X ,�� be a function which is �-Lipschitz at the
oints in C and which satisfies the conditions

1

#r−1�x� �
y�r−1�x�

�m0�y��2 = 1, �x � X� , �2.10�

nd

m0�xi� = i
�#r−1�r�xi��, �i � �0, . . . ,p − 1	� . �2.11�

efine the function �̂ by

�̂�x,�zk�k�1� ª �
k=1

� i���+k
−1 m0�zk�

�#r−1�r�zk��
, �x � X,�zk�k�1 � NC�x�� . �2.12�

hen �̂ is in L2�X� ,�C� and it satisfies the following relation:

U�̂ = ��m0��̂ . �2.13�

f W�x�ª �m0�x��2 / #r−1�r�x��, then C is a W-cycle, and if hC is the harmonic function associated
o this W-cycle, then

���f��̂��̂� = 

X

fhCd� . �2.14�

Set V0ª ���f��̂ � f �L��X ,��	L2
, and VnªU−nV0, for n�Z. Then Vn�Vn+1,

�
n�Z

Vn = L2�X�,�C�, �
n�Z

Vn = �0	 .

Proof: First we check that the infinite product �2.12� is convergent. Take x�X, �

�z1 ,z2 , . . . ��NC�x�. Then the sequence �zkp	 converges to one of the points of the cycle C,
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amely xi���. Applying r, which is continuous at these points, we obtain that, for all l, the sequence
zkp+l	 is convergent to xi���+l.

Now we use the fact that the cycle is repelling. For k large enough, the path � enters the
eighborhood where the cycle is repelling �see Definition 2.3�. Therefore, there are constants 0
cl�1, 0�ml�� such that for k large enough d�zkp+l ,xi���+l��cl

kml, for all l� �0, . . . , p−1	.
ake c=max�

p�cl	� �0,1� and Mªc−pmax�ml	. Then for k large enough

d�zk,xi���+k� � ckM .

Since the function #r−1�r�·�� is continuous at the points of the cycle, we get that for k large,
r−1�r�zk��= #r−1�r�xi���+k��= :Ak�1.

Let � be the function given by the �-Lipschitz condition for m0 at all the points of the cycle
Take the minimum of these functions over all the points of the cycle�. Using the condition �2.11�,
e have

�i���+k
−1 m0�zk�

�#r−1�r�zk��
− 1� =

1
�Ak

�m0�zk� − m0�xi���+k��

���d�zk,xi���+k�� � ��ckM� .

his implies that the sum over the terms on the left-hand side of this inequality is convergent,
hich in turn implies that the infinite product is absolutely convergent.

Next we check �2.14�. It is clear that C is a W-cycle. Also note that

��̂�x,�zk�k�1��2 = �
k=1

�

W�zk� = Px���zk�k�1	� .

See Ref. 13�. Then

hC�x� = Px�NC�x�� = �
��NC�x�

��̂�x,���2, �2.15�

nd Eq. �2.14� follows. Since hC�1, this also implies that �̂ is in L2�X� ,�C�.
We check Eq. �2.13�. For �= �z1 ,z2 , . . . ��NC�x�,

U�̂�x,�� = �#r−1�r�x��i����
k=1

� i�r̂����+k
−1 m0�zk−1�
�#r−1�r�zk−1��

=�#r−1�r�x��i���

i���
−1 m0�x�

�#r−1�r�x��
�
k=2

� i���+k−1
−1 m0�zk−1�
�#r−1�r�zk−1��

= m0�x��̂�x,�� .

The scaling equation �2.13� and the covariance equation �2.8� imply that V−1�V0. This im-
lies that the sequence of subspaces �Vn	 is increasing.

To check that their union is dense, we note that the closure of this union is invariant for U and
or ��f�, f �L��X ,��. Therefore the projection P onto this space is in the commutant �U ,�	�. But,
hen, with Proposition 2.2, we obtain a function F in L��X� ,�C� such that F=F � r̂ and P=MF. In
articular, F�̂= �̂ and F is the characteristic function of some set F which is invariant for r̂.

However, the previous argument shows that, if �= �z1 ,z2 , . . . ��NC�x� has zi close enough to
he cycle C, for all i�1, then �̂�x ,�� is close to 1. Now, take �= �z1 ,z2 , . . . ��NC�x� \F. Then
ˆ−n��� is outside F. Because ��NC�x�, for n large enough, all the points zn+1 ,zn+2 , . . . are close
o the cycle, so �̂�r̂−n���� is close to 1. But �̂�r̂−n����= �̂�r̂−n�����F�r̂−n����=0, a contradiction. It
ollows that F has complement of measure 0 so P=MF is the identity, and therefore the union of

he multiresolution subspaces is dense.
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It remains to check that the intersection �Vn is trivial. We use the following lemma:
Lemma 2.15: Define J :L2�X ,hCd��→V0 by

J�f� = ��f��̂, �f � L��X,��� .

efine the operator S0 on L2�X ,hCd�� by S0f =m0f �r. Then J is an isometric isomorphism such
hat UJ=JS0.

The proof of the lemma requires just some simple computations. The fact that S0 is an
sometry is proved in Theorem 3.9.

With this lemma, the assertion follows from Theorem 3.9. �

Let �X ,B ,�� be a measure space with � some fixed probability measure defined on the
igma-algebra B on X. Let � be a representation of L��X ,B� on a Hilbert space H, and suppose
hat the measure f � ���f�� ��� is absolutely continuous with respect to � for all ��H, i.e., there
xists h��L1�X ,B� such that ���f�� ���=�Xfh�d�, f �L��X ,B�.

By the spectral multiplicity theorem �Refs. 2, 15, and 31�, there is a measurable function
:X→ �1,2 , . . . , � 	 such that if Xkª �x�X �d�x��k	, then the spectral representation of � takes

he form of an isometric isomorphism J :H→�k�N
� L2�Xk ,B ,��, such that Jk��f��= fJk�

MfJk� for all f �L��X ,B� and all ��H.
We say that d is the multiplicity function of the representation �.
Corollary 2.16: Let V0�L2�X� ,�C�, be the subspace from Lemma 2.15 and Theorem 2.14,

nd let �n, n�N, be the restriction of the representation � of L��X ,B� to U−nV0. Then

dU−nV0
�x� = # �r−n�x� � �z � X�hC�z� � 0	� �x � X� .

Proof: Since ���f��̂ � �̂�=�XfhCd�, it follows that dV0
�x�=��z�X�hC�z��0	= :�EC

.
From Ref. 12, we know that

dU−nV0
�x� = �

rn�y�=x

dV0
�y� = �

rn�y�=x

�EC
�y� = # �r−n�x� � EC� .

�

Example 2.17: Let A be a square matrix with 0−1 entries. Suppose every column of A
ontains at least one entry 1. Then we show that the two systems �X� , r̂� and �X ,r� may be realized
s two-sided, respectively one-sided subshifts.

Let I be the index set for the rows and columns of A. Let

X��A� ª ��xi�i�Z � IZ�A�xi,xi+1� = 1	 .

et

r̂��xi�i�Z� = �xi+1�i�Z.

efine 	0��xi�i�Z�= �xi�i�0, and set X�A�=	0�X��A��.
Then there is an endomorphism r=rA :X�A�→X�A� such that r �	0=	0 � r̂.
Specifically,

x = �xi�i�Z = . . . x−2x−1x0x1x2 . . .

ith xi� I;

	0��xi�i�Z� = �xi�i�0 = x0x1x2 . . . ;

nd r�x0x1x2 . . . �= �x1x2x3 . . . � for x�X�A�.
For x ,y�X�A�, let xÙy be the longest initial block in I� I�¯ common to both x and y, and

et �xÙy� be the length of this block. Let 0�c�1, and set dc�x ,y�=c�xÙy�. Then dc is a metric, and

X�A� ,dc� is a compact metric space whose open sets are generated by the cylinder sets in X�A�.
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oreover, dc�r�x� ,r�y���c−1dc�x ,y� holds for all x ,y�X�A�. If x�X�A�, then r−1�x�
��ix� �A�i ,x0�=1	, and for the transfer operator LA :C�X�A��→C�X�A��,

�LAf��x� =
1

#r−1�x� �
r�y�=x

f�y� ,

e have

�LAf��x� =
1

#�i�A�i,x0� = 1	 �
A�i,x0�=1

f�ix� .

y Ref. 24, Chap. 2, there is a unique probability measure �=�A on X�A� such that ��LAf�
��f� for all f �C�X�A��; i.e., �=�A is the unique strongly invariant probability measure on X�A�.

It follows that all the results in this setting apply; in particular, if C�X�A� is a cycle, then
2�X��A� ,�C� is defined by



X��A�

�f �2d�C = 

X�A�

�
��NC�x�

�f����2d��x� � � .

Note also that NC�x� consists of doubly infinite words in X��A� that start with an infinite
epetition of the cycle C. Specifically, for x= �x0x1x2 . . . ��X�A�, NC�x�= ���i�i�Z�X��A� � $k
N	 such that ��I�i�−k is C�, ��i�−k�i�−1 is some finite word, and �i=xi for i�0	.

We now turn to a concrete example. Let the index set I be �1,2	 and let A= �1 1

1 0 �. This is

alled the golden mean shift �see Ref. 22, p. 37�.
Proposition 2.18: Let m0 be the function on X�A� determined by

m0�11 . . . � = �2, m0�21 . . . � = 0, m0�12 . . . � = 1, �2.16�

nd C be the cycle �111. . . 	. Then m0 satisfies �2.10� and �2.11� and defines a scaling vector �̂
L2�X� ,�C� with hC=1.

Proof: It is easy to verify the two conditions �2.10� and �2.11�. The scaling function �̂ is
efined by the infinite product �2.12�. �We set i=1.� If � is in NC�x0x1 . . . �, then it has the form
. .111x−nx−n+1 . . .x−1x0x1 . . . . Note that if one of the letters x−k is 2 �k�1� then the next one has
o be 1. Therefore, shifting the word to the right will bring the 21 to the central position, and m0

s 0 on words that start with 21. Therefore the infinite product is non-zero only when x−k=1 for all
�1. Then, an analysis of the possibilities for x0 shows that �̂ is 1 in this case.

Therefore �̂���=1, if x−k=1 for all k�1, and �̂���=0 otherwise.
Then by �2.15�

hC�x0x1 . . . � = �
��NC�x0x1...�

��̂����2 = 1.

An interesting consequence of �2.10� and �2.11� for this example is that an admissible m0

annot be of the form m0=�2�E for a subset E of X�A� �because �m0�21. . . ��2=1�. This contrasts
known wavelet, the Shannon wavelet, see Refs. 17 and 1. �

II. ERGODIC PROPERTIES AND THE WOLD DECOMPOSITION

In our analysis of the intersection of the multiresolution spaces Vn, we are forced to study
ome convergence properties for the measure � and the filter m0. The main tool in this study will
e Doob’s convergence theorems for reversed martingales, see e.g., Ref. 27.

Even though we are mainly interested in the strongly invariant measure �, our analysis works
n the following more general case.
Definition 3.1: Let V�0 be a measurable function on X such that
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�
r�y�=x

V�y� = 1 �x � X� .

probability measure � on X such that



X

fd� = 

X

�
r�y�=x

V�y�f�y�d��x� �f � L1�X,��� �3.1�

s called a Perron-Frobenius measure for the corresponding Ruelle operator

�RVf��x� ª �
r�y�=x

V�y�f�y� �x � X� .

or example, when V�x�=1/ #r−1�r�x��, then �3.1� is equivalent to the strong invariance of �.
Note that a Perron-Frobenius measure � is also invariant for r, because



X

f � rd� = 

X

�
r�y�=x

V�y�f�r�y��d��x� = 

X

f�x� �
r�y�=x

V�y�d��x� = 

X

fd� .

Let B be the sigma-algebra of measurable subsets of X.
Definition 3.2: Let B be a sigma-algebra on X and let � be a probability measure on �X ,B�.

et C�B be a sub-sigma-algebra. Then the C-conditional expectation EC is defined by



X

ECfgd� = 

X

fgd� ,

or f �L1�B ,��, g�L��C�; and ECL1�B ,��=L1�C ,��.
Proposition 3.3: The operator En

V defined on L1�X ,�� by

En
V�f��x� = �

rn�y�=rn�x�

V�n��y�f�y� �x � X� ,

efines the conditional expectation of B with respect to r−n�B�.
Proof: First note that if a function g on X is r−n�B�-measurable, then g�x�=g�y� whenever

n�x�=rn�y�. Take now g�L2�r−n�B�� and f �L1�B�. Using the invariance of � and �3.1�, we have



X

En
V�f�gd� = 


X
�

rn�x�=rn�y�

V�n��y�f�y�g�x�d��x�

=

X

�
rn�y�=x

V�n��y�f�y�g�y�d��x� = 

X

fgd� .

his shows that En
V is the conditional expectation. �

We note the relation between the Ruelle operator RV and the conditional expectation En
V:

En
V�f� = �RV

n� � rn �n � 1, f � L1�X,��� . �3.2�

The sigma-algebras r−n�B� form a decreasing sequence, and we denote their intersection by

�. Denote by E�
V the conditional expectation of B with respect to B�. Doob’s theorems for

everse martingales can be applied now directly and we obtain the following theorem:
Theorem 3.4: If f �Lp�X ,��, �1� p� � �, then En

V�f� converges pointwise �-a.e. and in
p�X ,�� to E�

V�f�.
Definition 3.5: We say that r is averaging �with respect to the measure ��, if L1�B�� contains

nly functions which are constant �-a.e., �or, equivalently, the sigma-algebra B� contains only

ets of �-measure 0 or 1�.
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Proposition 3.6: If r is averaging with respect to � then it is also ergodic with respect to �.
Proof: If A is a completely invariant set for r then, for any two points x ,y such that rn�x�

rn�y� for some n�0 �A�x�=�A�rn�x��=�A�rn�y��=�A�y�, so �A�L1�B��, therefore ��A� is 0 or
. �

Corollary 3.7: If r is averaging with respect to �, then for all f �Lp�X ,��, 1� p��, the
equence En

V�f� converges pointwise �-a.e. and in Lp�X ,�� to �Xfd�.
Next, we will derive an ergodic property for a function m0 satisfying �2.10�.
Theorem 3.8: Assume that the strongly invariant measure � is ergodic with respect to r. Let

0�L��X ,�� be a function that satisfies �2.10� and such that �m0 � �1 on a set of positive mea-
ure. Then

A ª 

X

ln�m0�x��d��x� � �− � ,0� .

hen

lim
n→�

�m0�x� ¯ m0�rn−1�x���
1
n = eA for �-a . e . x � X .

Proof: We have, using the strong invariance of �:



X

ln�m0�x��d��x� =
1

2



X

ln�m0�x��2d��x� = 

X

1

#r−1�x� �
r�y�=x

ln�m0�y��2d��x�

=

X

ln� �
r�y�=x

�m0�y��2�1/#r−1�x�
d��x�

�

X

ln� 1

#r−1�x� �
r�y�=x

�m0�y��2�d��x� = 

X

ln�1� = 0.

f we have equality in this chain, then we get that for �-a.e., x�X, �m0�y� � = �m0�y��� for all
y ,y��r−1�x�, which implies that

1 =
1

#r−1�r�x�� �
r�y�=r�x�

�m0�y��2 = �m0�x��, for a . e . x .

his contradicts the hypothesis. Thus A� �−� ,0�.
Assume now, that A�−�. Then, using Birkhoff’s ergodic theorem, we obtain that

lim
n→�

ln� �m0�x� ¯ m0�rn−1�x���1/n

eA � = lim
n→�

1

n
�
k=0

n−1

ln�m0�rk�x��� − A

=

X

ln�m0�x��d��x� − A = 0.

his yields the conclusion in the case A�−�.
When A=−�, take 0�B�−� arbitrary and choose a bounded measurable function f , with

f � � �m0� and such that −� ��Xln � f�x� �d��x�=B. Then apply the previous argument to conclude
hat �f�x�f�r�x��¯ f�rn−1�x���1/n converges a.e. to eB. Then

lim sup
n

�m0�x� ¯ m0�rn−1�x���1/n � eB

−�
nd, as B is arbitrary this implies that the limit is e =0. �
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With these results, we are now able to derive the result about the Wold decomposition31 of the
sometry S0 associated to m0.

Theorem 3.9: Let � be a strongly invariant measure for r. Let m0�L��X ,�� be a function that
atisfies �2.10�. Let h�L��X ,�� be a function such that h�0 and

1

#r−1�x� �
r�y�=x

�m0�y��2h�y� = h�x� �x � X� . �3.3�

hen the operator S0 on L2�X ,hd�� defined by

S0f = m0f � r

s an isometry.
Assume in addition that r is averaging with respect to �, and that �m0 � �1 on a set of positive

easure �. Then

�k�1S0
k�L2�X,hd��� = �0	 .

Proof: The fact that S0 is an isometry follows from the fact that � is strongly invariant and
rom the relation �3.3�:



X

�m0�x��2�f�r�x���2h�x�d��x� = 

X

1

#r−1�x� �
r�y�=x

�m0�y��2�f�r�y���2h�y�d��x�

=

X

�f�y��2d��x� .

enote by

c�x� ª
1

#r−1�r�x��
�x � X� .

ote that

Rm0

k f�x� = �
rk�y�=x

c�k��y��m0
�k��y��2f�y� ,

here Rm0
is the Ruelle operator associated to W�x�ª �m0�x��2 / #r−1�r�x��.

In particular

�
rk�y�=x

c�k��y��m0
�k��y��2 = 1.

Take now 
��kS0
k�L2�X ,hd���. Then for all k�1, there exists fk�L2�X ,hd�� such that 


m0
�k�fk �rk. This implies that for all x�X:

�
�x��2 = �m0
�k��x��2�fk�rk�x���2 �

rk�y�=rk�x�

c�k��y��m0
�k��y��2

= �m0
�k��x��2 �

rk�y�=rk�x�

c�k��y��m0
�k��y�fk�rk�y���2

= �m0
�k��x��2 �

k k

c�k��y��
�y��2

r �y�=r �x�

                                                                                                            



W
t

s
c
a

a

a

t

T

I

f

f
f

i
�

t
w

053504-18 D. E. Dutkay and P. E. T. Jorgensen J. Math. Phys. 47, 053504 �2006�

                        
= �m0
�k��x��2Ek

c��
�2� .

ith Theorem 3.8 and Corollary 3.7, if we let k→�, we can conclude that 
=0, �-a.e. This proves
he theorem. �

Remark 3.10: It is conceivable that the last conclusion in Theorem 3.9 above may hold
lightly more generally; possibly when only ergodicity is assumed for �X ,r ,��. But for the appli-
ations we have in mind, our present assumption of strong invariance is appropriate, i.e., the
veraging assumption we place on the system �X ,r ,��.

Some conditions for r to be averaging. We will give some necessary conditions for r to
veraging. For this we will relate the expectation EV

n to the Ruelle operator RV.
Just as before, assume V�0 is a measurable function such that

�
r�y�=x

V�y� = 1 �x � X� ,

nd let � be a measure such that



X

RVfd� = 

X

fd� .

Proposition 3.11: Suppose there exists a family of functions F which is dense in L1�X ,�� such
hat for all f �F,

lim
n→�

�RV
n�f� − 


X

fd��
1

= 0.

hen, for all f �L1�X ,��.

lim
n→�

RV
n�f� = 


X

fd� = E�
V�f� .

n particular r is averaging with respect to �.
Proof: Take f �L1�X ,��, and ��0. There exists g�F, such that �f −g�1��. Then, using the

act that � is invariant for r, and also for RV, we have, with the aid of �3.2�:

�En
V�f� − 


X

fd��
1

= �RV
n f − 


X

fd��
1

��RV
n�f − g��1 + �RV

ng − 

X

gd��
1

+ �

X

�g − f�d��
1

�2�f − g�1 + �RV
ng − 


X

g�
1

� 3� ,

or n large enough. This proves the first assertion. Since E�
V�f� is constant for all f �L1�X ,��, it

ollows that L1�B�� contains only constant functions so r is averaging. �

Remark 3.12: The conditions of Proposition 3.11 are satisfied in many cases of interest. This
s a consequence of Ruelle’s theorem �see Refs. 3 and 14�. For example, if r is locally expanding
i.e., there exists b�0 and ��1 such that d�r�x� ,r�y����d�x ,y� when d�x ,y��b�, and mixing

�i.e., for every open set U in X, there exists n such that rn�U�=X�, and if V�0 and is Lipschitz,
hen F can be taken to be the set of continuous functions, and RV

n f converges uniformly to �Xfd�,
here � is the unique probability measure invariant for RV.
In particular, this is satisfied, for subshifts of finite type.
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Also, consider the case when r is a rational map on C and X is its Julia set. Take V=1/N where
is the degree of the map r. Then �=� is the unique strongly invariant measure and we may take

gain F to be the set of continuous functions �see Ref. 23�.
Given our assumptions above, the existence and the uniqueness of the measure � follows from

he conclusion in Ruelle’s theorem, applied to RV.
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Vertex algebras in higher dimensions, introduced previously by Nikolov, provide an
algebraic framework for investigating axiomatic quantum field theory with global
conformal invariance. We develop further the theory of such vertex algebras by
introducing formal calculus techniques and investigating the notion of polylocal
fields. We derive a Jacobi identity which together with the vacuum axiom can be
taken as an equivalent definition of vertex algebra. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2197687�

. INTRODUCTION

Two-dimensional conformal field theory is important in physics as providing models of quan-
um field theory �QFT�. It also plays a role in other areas of mathematical physics as well as in
tatistical physics and condensed matter physics. A vertex algebra is essentially the same as a
hiral algebra in conformal field theory �see Refs. 7 and 20 and Ref. 12�. In more details, the field
ontent in two-dimensional conformal field theories splits into two chiral parts consisting of fields
hat depend separately on one of the two light-cone variables. Observable chiral fields have
ommutators supported on the diagonal, i.e., vanishing for noncoinciding arguments. It turns out
hat chiral fields form a purely algebraic structure under their operator product expansion, which
s called a vertex algebra. Axiomatically, the notion of vertex algebra was first introduced by
orcherds.8 Vertex algebras arose naturally in the representation theory of infinite-dimensional Lie
lgebras and in the construction of the “moonshine module” for the Monster finite simple
roup.8,19 Now the theory of vertex algebras is a rapidly developing area of mathematics �see Refs.
9, 21, 17, and 24�. “Multidimensional” generalizations of vertex algebras were considered in
efs. 9, 23, 26, and 28.

The vertex algebras introduced in Ref. 28 for higher space–time dimension arose naturally
ithin a one-to-one correspondence with axiomatic QFT models satisfying the additional symme-

ry condition of global conformal invariance �GCI�. The incorporation of GCI within the frame-
ork of axiomatic QFT, together with the problem of finding �nonperturbatively� such models in
igher dimensions, has been studied previously in, e.g., Refs. 31, 30, 32, and 29 �see also the
roundbreaking early work �Ref. 34��. In this way constructing models of higher-dimensional QFT
ith GCI becomes a purely algebraic problem. Let us point out that even for general QFT �without
CI� there are not any known models that satisfy the Wightman axioms in space–time dimension
reater or equal to 4, which cannot be realized by free or generalized free �Heisenberg� fields. In
act, this problem has remained open for more than 50 years.

�Electronic mail: bojko_bakalov@ncsu.edu
�Electronic mail: mitov@inrne.bas.bg
�Present address: Institut für Theoretische Physik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen,

Germany.
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On the other hand, even in dimension one �i.e., in chiral conformal field theory�, vertex
lgebras are far from full classification and are quite intricate in general. A different algebraic
tructure known as a vertex Lie algebra has been introduced by Kac21 �see also Refs. 33, 17, and
4� �it is also called a “conformal algebra” but we will not use this terminology here since it can
e confused with the usual conformal Lie algebra in higher dimensions�. This is the structure
ormed by the commutators of fields, i.e., by the singular part of their operator product expansion.
hus the relationship between vertex Lie algebras and vertex algebras is somewhat similar to the

elationship between Lie algebras and associative algebras. It turns out that this new algebraic
tructure is more tractable and, in particular, classification results for vertex Lie �super�algebras
an be obtained11,15 �see also Refs. 21 and 22�. The theory of vertex Lie algebras was further
eveloped in, e.g., Refs. 10 and 4, and a “multidimensional” generalization was considered in
ef. 1.

In the present paper we initiate an investigation of the notion of vertex Lie algebra for the
ertex algebras in higher dimensions of Ref. 28. In dimension one, the main axiom for vertex Lie
lgebras is the so-called Jacobi identity, which is related to the Jacobi identity of Ref. 19 for
ertex algebras �and the Borcherds identity of Ref. 21�. Recall that in dimension one vertex
lgebras can be defined in terms of the Jacobi identity �see Refs. 19, 18, 21, and 24�. The main
esult of the present paper is a generalization of this Jacobi identity to higher dimensions. In
ddition, we show that together with the vacuum axiom this identity can be taken as a definition
f vertex algebra equivalent to the definition of Ref. 28.

As in dimension one, we derive our Jacobi identity from certain “commutativity” and “asso-
iativity” identities �cf. Refs. 18, 25, 2, and 24�. However, in the one-dimensional case the Jacobi
dentity can be simplified so that it does not involve external sufficiently large parameters. This is
o longer the case in higher dimensions, and our Jacobi identity entails the same degree of
ifficulty as the “associativity” identity. The main difference with the one-dimensional case is that
ow the singular part of the operator product expansion contains infinitely many terms. Neverthe-
ess, it follows from our Jacobi identity that the singular modes close an algebraic structure under
he commutator, which would be the higher-dimensional analog of vertex Lie algebra.

The paper is organized as follows. The next two sections are devoted to an important technical
reparation, which can be useful not only for this work but also for future investigations of vertex
lgebras in higher dimensions. This includes an introduction of several spaces of formal series in
ec. II and a higher-dimensional residue functional in Sec. III �additional material is contained in

he Appendix�. In Sec. IV we recall the notions of fields, locality and operator product expansion
n higher dimensions, mainly following Ref. 28, but extending our considerations also to polylocal
elds. Our main result, the Jacobi identity, is contained in Sec. V, together with several integral
ersions and a commutator formula. Concluding remarks are presented in Sec. VI.

I. SPACES OF FORMAL SERIES

In this section we introduce various spaces of formal series, which will be used throughout the
aper. In particular, we define the notion of a formal distribution, and we discuss formal series
xpansions.

. Notation

In this section we fix some notation to be used throughout the paper, mostly following the
otation of Ref. 28. We fix a positive integer D, which will play the role of space–time dimension,
nd we denote by z, zi, w, etc., D-component variables,

z = �z1, . . . ,zD�, zi = �zi
1, . . . ,zi

D�, w = �w1, . . . ,wD� . �2.1�

e will denote by zij the difference

zij ª zi − z j = �zi
1 − zj

1, . . . ,zi
D − zj

D� , �2.2�
nd not a new variable. We introduce the standard scalar product,
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z1 · z2 ª �
�=1

D

z1
�z2

�, z2
ª z · z. �2.3�

ote that z2 stands for the Euclidean square of the vector z, while z2 is its second component.
For concreteness we will work over the field C of complex numbers, even though all of our

esults hold over an arbitrary field of characteristic 0. For a vector space V, let V�z� �respectively,
�z�� be the space of polynomials �respectively, formal power series� in z with coefficients in V.
or a one-component variable �, we denote by V�� ,�−1� the space of formal power series in �
nd �−1 with coefficients in V, and by V�����V�����−1� the space of formal Laurent series
nvolving finitely many negative powers of �.

Note that V�z� is a C�z�-module and V�z� is a C�z�-module. We denote by C�z�z2 �respectively,
�z�z2� the localization of C�z� �respectively, C�z�� with respect to the multiplicative system
�z2�k
k=1,2,. . .. Let V�z�z2 and V�z�z2 be the localizations of the corresponding modules. Then V�z�z2

respectively, V�z�z2� is a module over C�z�z2 �respectively, C�z�z2�.
We introduce the formal derivatives on V�z� and V�z�,

�z ª ��z1, . . . ,�zD�, �z� ª
�

�z� , �2.4�

nd the Euler and Laplace operators

z · �z = �
�=1

D

z��z�, �z
2 = �

�=1

D

��z��2. �2.5�

hen a polynomial f�z��V�z� is homogeneous of degree m iff �z ·�z−m�f�z�=0; it is harmonic
ff �z

2f�z�=0. We denote by V�z�har �respectively, V�z�har� the spaces of harmonic polynomials
respectively, formal power series�. Note that a formal power series is harmonic if and only if each
f its homogeneous components is a harmonic polynomial.

Finally, we denote by Z+ the set of non-negative integers, and by N the set of positive integers.
he notation N�0 means that N�0 is sufficiently large.

. Harmonic decomposition

The classical harmonic decomposition is the fact that every polynomial of z�CD can be
ivided by z2 with a unique harmonic remainder. One can view this in a more abstract way as
ollows. Let V be an arbitrary vector space. It is easy to see that the linear operators �z

2, z2 and
·�z+D /2 generate a representation of sl2 on V�z�, namely

��z
2,z2� = 2z · �z + D, �z · �z,�z

2� = − 2�z
2, �z · �z,z

2� = 2z2. �2.6�

n particular, we have the following useful formula:

��z
2,�z2�n� = 4n�z2�n−1�n − 1 + z · �z + D/2� . �2.7�

t follows from the representation theory of sl2 that every homogeneous polynomial ��z��V�z� of
egree k can be written uniquely in the form

��z� = �
2n+m=k

�z2�nhm�z� , �2.8�

here hm�z� are harmonic homogeneous polynomials of degree m �see, e.g., Ref. 28, Lemma 1.1
or a direct proof�. There is a similar harmonic decomposition for elements ��z� of the localized
pace V�z�z2; the only difference is that we allow k and n to be negative �and the sum is still finite�.

If we allow infinite sums, the largest space that we get is the space V�z ,1 /z2� of formal series

see Ref. 28�
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��z� = �
n�Z

�
m=0

�

�
�=1

hm

�	n,m,�
�z2�nhm,��z�, �	n,m,�
 � V . �2.9�

ere 	hm,��z�
�=1,. . .,hm
is a basis of the space of harmonic homogeneous polynomials of degree m

nd

hm = �m + D − 1

D − 1
� − �m + D − 3

D − 1
� . �2.10�

ote that the localized space V�z�z2 introduced in Sec. II A can be naturally embedded in
�z ,1 /z2� as the set of elements �2.9� for which the sum over n is bounded from below.

Elements �2.9� are called V-valued formal distributions, and the coefficients �	n,m,�
 in ex-
ansion �2.9� are called modes of ��z�. The space V�z ,1 /z2� has a natural structure of a differ-
ntial module over the algebra C�z�z2 �see Ref. 28 Sec. 1�, i.e., a C�z�z2-module equipped with a
ompatible action of C��z� so that the Leibniz rule for differentiation is satisfied. We will review
nd generalize this in the next section.

. Differential module structure

In this section we will describe the algebraic structure of the space V�z ,1 /z2� in a way that
an be generalized to more general vector spaces of “formal functions.”

As a consequence of harmonic decomposition �2.8�, the vector space V�z� is naturally iso-
orphic to V����z�har, the vector spaces of harmonic polynomials with coefficients polynomials in
one-component variable ��z2. Similarly, we have V�z�z2 V�� ,�−1��z�har and

V�z�z2  V�����z�har, V�z,1/z2�  V��,�−1��z�har, �2.11�

sing the notation of Secs. II A and II B.
We will now describe the differential module structures of the spaces V�z� and V�z�z2 �over the

lgebras C�z� and C�z�z2, respectively� in a way that is applicable to the space V�z ,1 /z2� and is
uitable for generalization. Set R=V��� or V�� ,�−1�, respectively. Let f����R and let h�z�

R�z�har be a harmonic homogeneous polynomial of degree m. Then for each �=1, . . . ,D, the
olynomials �z�h�z� and

�A�h��z� ª z�h�z� − �D + 2m − 2�−1z2�z�h�z� �2.12�

re harmonic as well. Indeed, for �A�h��z� this follows from �2.7�. Note that the right-hand side of
2.12� is well defined for m=0 since in this case �z�h�z�=0. We deduce that the action of z� and

z� on R�z�har is given by the formulas

z��f���h�z�� = f����A�h��z� + �D + 2m − 2�−1�f�����z�h��z� , �2.13�

�z��f���h�z�� = f�����z�h��z� + 2z��f����h�z�� , �2.14�

here ��z2 and f���� denotes the derivative df��� /d�, and in the right-hand side of �2.14� one
ust apply �2.13� in order to get a result in R�z�har.

Now we observe that by linearity Eqs. �2.13�, �2.14� give rise to a well-defined action of z�

nd �z� on the space of harmonic formal power series R�z�har. This follows from the fact that the
inear operators A� and �z� on R�z�har are graded �of degree +1 and −1, respectively� with respect
o the polynomial degree in z. We also notice that the right-hand sides of Eqs. �2.13� and �2.14�
nvolve only the differential C���-module structure of R. These observations are summarized in
he following statement.

Proposition 2.1: Let R be a differential module over C��� with a derivation f � f�. Then Eqs.
2.13� and �2.14� define on R�z�har and R�z�har structures of differential modules over C�z� with

−1 har har
erivations �z�. If R is a differential C�� ,� �-module, then R�z� and R�z� are differential
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�z�z2-modules.
Proof: We must check that for every ��z��R�z�har or R�z�har, the following relations are

atisfied:

z�z���z� = z�z���z�, �
�=1

D

�z��2��z� = z2��z� ,

�z��z���z� = �z��z���z�, �z��z���z�� = z��z���z� + ��
���z� ,

�z���z2�−1��z�� = �z2�−1�z���z� − 2�z2�−2z���z� .

his can be verified by a straightforward computation, or can be deduced from the fact that these
elations hold for R=V��� and V�� ,�−1�. �

In particular, using isomorphism �2.11� and taking R=V�� ,�−1� in the above proposition, we
btain a structure of a differential C�z�z2-module on the space V�z, 1 /z2� of formal distributions
cf. Ref. 28�. Note that V�z� is also a C�z�-module, and V�z�z2 is a C�z�z2-module. However,
�z ,1 /z2� is not a C�z�-module because V��, �−1� is not a C���-module. Although obvious, the
ext remark plays an important role in the theory.

Remark 2.1: The action of C�z�z2 on V�z�z2 does not have zero divisors. In other words, if
p�z� ��z�=0 for p�z��C�z�z2, ��z��V�z�z2, then either p�z�=0 or ��z�=0. Note that this is not
he case for the C�z�z2-module V�z ,1 /z2� �see Ref. 28, Example 1.1�.

. Generalized formal distributions

As another application of Proposition 2.1, we will define spaces of formal distributions that
nvolve nonintegral powers of z2. We will take R to be a space of formal series in real powers of
,

R = V��	� ª �� f��� = �

�	

f
 �
� f
 � V� , �2.15�

here 	 is a Z-invariant subset of R, i.e., such that

	 + Z ª 	
 + m�
 � 	,m � Z
 � 	 . �2.16�

hen R is a differential C�� ,�−1�-module �with ��
��=
�
−1�, and R�z�har is a differential
�z�z2-module, which we denote as V�z , �z2�	�. We can view the elements of V�z , �z2�	� as infinite
eries �cf. �2.9� and �2.11��

��z� = �

�	

�
m=0

�

�
�=1

hm

�	
,m,�
�z2�
hm,��z�, �	n,m,�
 � V . �2.17�

For 	=Z, the above-defined module V�z , �z2�Z� coincides with V�z ,1 /z2�. We will call ele-
ents �2.17� �generalized� formal distributions. Note that this construction works also for subsets
�C but we will restrict our considerations to R. We define inductively the vector spaces

V�z1,�z1
2�	1; . . . ;zn�zn

2�	n� ª �V�z1,�z1
2�	1; . . . ;zn−1,�zn−1

2 �	n−1���zn,�zn
2�	n� �2.18�

f formal distributions in several D-dimensional vector variables z1 , . . . , zn. When all 	i=Z, we
ill denote the space �2.18� as V�z1 ,1 /z1

2 ; . . . ; zn ,1 /zn
2�.

Remark 2.2: Choosing instead R=V��	� in the above construction, we obtain a differential
�z�z2-module R�z�har denoted as V�z , �z2�	�; it consists of all finite sums of the form �2.17�.
Remark 2.3: Note that Eq. �2.7� is valid for n�	, and it implies
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�z
2��z2�
hm,��z�� = 4
�
 + m +

D

2
− 1��z2�
−1hm,��z� . �2.19�

n particular, �z2�
hm,��z� is harmonic if and only if 
=0 or 
=−�D /2�+1−m.
Example 2.1: Let us consider the case D=1. Then z=z is a one-component variable and the

armonic polynomials are just the affine polynomials a+bz. Thus, every element of V�z , �z2�	� has
he form

��z� = �

�	

�z2�
�a
 + b
z�, a
,b
 � V . �2.20�

t is easy to see that when 	 is an additive subgroup of R containing 1
2Z, we have the following

irect sum of differential C�z�z2-modules:

V�z,�z2�	� = �1 + �z2�−1/2z�V�z,�z2�	� � �1 − �z2�−1/2z�V�z,�z2�	� . �2.21�

ote that here �z2�−1/2 z is viewed as an element of V�z , �z2�	�, and is not equal to 1.

. �-Localization

The vector space of localized formal power series V�z�z2 can be embedded in V�z, 1 /z2� as the
ubspace of all elements �2.9� for which the sum over n is bounded from below. This space is a
differential� module over the localized algebra C�z�z2. We will later need the following generali-
ations of these spaces.

Let 	1 , . . . ,	s be additive subgroups of R containing Z; then each 	i is automatically
-invariant �see �2.16��. Let A be a commutative associative algebra, and let f1 , . . . , fs be some
xed elements of A. Then we define

Af
1
	1
¯f

s
	s ª �C�	1��C ¯ �CC�	s��CA�/J , �2.22�

here C�	i� is the group algebra of 	i �with elements denoted as e
� and J is the ideal generated
y elements of the form

e
1� � ¯ � e
s� � g − e
1� � ¯ � e
s� � g �2.23�

or which there exist 
i�	i such that 
i+
i� ,
i+
i��Z+ �i=1, . . . ,s� and

f1

1+
1�

¯ fs

s+
s�g = f1


1+
1�
¯ fs


1+
s�g �2.24�

n the algebra A. The so-defined commutative associative algebra Af
1
	1
¯f

s
	s will be called the

	1 , . . . ,	s�-localization of A with respect to f1 , . . . , fs. When all groups 	i are equal to 	, we will
ust call it 	-localization. The image in Af

1
	1
¯f

s
	s of an element e
1 � ¯ � e
s � g will be denoted as

f1

1
¯ fs


s g.
Obviously, the Z-localization of A with respect to f1 , . . . , fs coincides with the localized

lgebra Af1¯fs
. In this case the localization with respect to a set 	f1 , . . . , fs
 is naturally isomorphic

o the localization with respect to the product f1¯ fs. For general 	 this is not true.
If M is an A-module, then in the same way one defines the localization Mf

1
	1
¯f

s
	s as an

f
1
	1
¯f

s
	s-module. In addition, if M is a differential A-module, then the localization Mf

1
	1
¯f

s
	s is a

ifferential Af
1
	1
¯f

s
	s-module with the same set of derivations. Indeed, every derivation of A ex-

ends by the Leibniz rule to Af
1
	1
¯f

s
	s since J is an invariant subspace. We note also that if M has

o zero divisors the same is true for Mf
1
	1
¯f

s
	s�cf. Remark 2.1�.

As a special case of the above construction, we get a differential C�z��z2�	-module V�z��z2�	.
he latter can be identified with the C�z�z2-submodule of V�z, �z2�	� consisting of all elements
2.17� for which the sum over 
 is over the union of finitely many sets of the form 	
i+Z+
.
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. Formal expansions

Let 	 be an additive subgroup of R containing Z, and let V be a vector space. Recall the
-localizations defined in Sec. II E and the spaces of formal series defined by �2.17�, �2.18�. There
re obvious embeddings

C�z,w��z2�	�w2�	' C�z��z2�	�w��w2�	' C�z,�z2�	;w,�w2�	� . �2.25�

e emphasize that the spaces C�z�z2�w�w2 and C�w�w2�z�z2 are different, because elements of the
ormer space have only finitely many negative powers of w2 but possibly infinitely many negative
owers of z2. Note also that the first two spaces in �2.25� are rings, and hence the second one is
module over the first.

For 
�	, we define �z,w��z−w�2�
 as the Taylor expansion of ��z−w�2�
 in w around 0, to wit

�z,w��z − w�2�

ª e−w·�z�z2�
 = �

k=0

�
�− w · �z�k

k!
�z2�
 � C�z��z2�	�w� . �2.26�

ne defines �z,w��z+w�2�
 in the same way, while �w,z��z−w�2�
 is defined using the identifica-
ions

��z − w�2�
 � ��w − z�2�
, ��− z�2�
 � �z2�
. �2.27�

More generally, for ��z ,w��V�z ,w��z2�	�w2�	 we set

�z,w���z,w���z − w�2�
� ª ��z,w��z,w��z − w�2�
, �2.28�

hus obtaining a C�z ,w��z2�	�w2�	-linear map

�z,w:V�z,w��z2�	�w2�	��z − w�2�	 → V�z��z2�	�w��w2�	. �2.29�

ote that the map �z,w commutes with all partial derivatives �z� and �w�.
We define another version of �z,w as follows:

�z,w:V�z − w���z − w�2�	�w��w2�	 → V�z��z2�	�w��w2�	,

�2.30�
��z − w,w� � e−w�·�z��z,w��w�=w,

here on the left-hand side z−w is viewed as an independent variable. Equation �2.30� is well
efined because e−w�·�z��z ,w��V�z��z2�	�w,w���w2�	 �while an analogous formal expansion �z,w

n V�w��w2�	�z−w���z−w�2�	 does not make sense�. Obviously, maps �2.29� and �2.30� agree with
ach other on the intersection of their domains. The two versions of �z,w can be related to each
ther by the following statement.

Proposition 2.2: �Taylor’s formula� For every ��z ,w��V�z, w��z2�	�w2�	��z−w�2�	 we have

�z,w�z−w,w���z − w� + w,w� = �z,w��z,w� . �2.31�

Proof: It suffices to prove �2.31� for ��z ,w�= �z2�
, 
�	. Then, according to Eqs. �2.26� and
2.30�, we have

�z,w�z−w,w���z − w� + w�2�
 = �z,w�ew�·�z��z − w�2�
�w�=w�

=e−w�·�zew�·�z�z2�
�w�=w�=w = �z2�
,

hich completes the proof. �
We define the spaces of successively localized formal series
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V�z1��z1
2�	 ¯ �z1��zn

2�	 ª �V�z1��z1
2�	 ¯ �zn−1��zn−1

2 �	��zn��zn
2�	, �2.32�

hich will be used in the sequel. The space �2.32� is a module over the algebra
�z1��z1

2�	¯ �z1��zn
2�	. Again, one should keep in mind that in �2.32� one would get a different space

f the variables are put in different order.

II. RESIDUE FUNCTIONAL

In this section we introduce an important linear functional on the spaces of formal distribu-
ions, which we call the residue functional. We discuss its fundamental properties and we prove an
nalog of the Cauchy formula. A geometric interpretation of the residue is given in the Appendix.

. Definition and main properties

In this section we introduce, for an arbitrary vector space V, an important linear map
�z , �z2�R�→V, which will be denoted as ��z��Resz ��z� and will be called the residue. Ob-
erving that every element of V�z , �z2�R� can be uniquely represented as a formal series of the form

��z� = �

�R

�z2�
�
�z� with �
�z� � V�z�har, �3.1�

e define

Resz �

�R

�z2�
�
�z� ª �−D/2�0� . �3.2�

Theorem 3.1: �a� The linear map �3.2� is �z-invariant in the sense that

Resz �z���z� = 0 �3.3�

or all ��z��V�z , �z2�R� and �=1, . . . ,D.
�b� The bilinear form

�f ,g� ª Resz f�z�g�z�, f ,g � C�z,�z2�R� , �3.4�

s nondegenerate.
�c� Let hm�z� and hm�

� �z� be harmonic homogeneous polynomials of degrees m and m�, re-
pectively. Then

��z2�
hm�z�,hm�
� �z�� = 0 if

m � m� or 2
 + m + m� � − D , �3.5�

nd in the opposite case this coincides with the unique, up to a multiplicative constant,
�D�-invariant scalar product on the vector space of harmonic homogeneous polynomials of
egree m�=m�� given by

��z2�−m−�D/2�hm�z�,hm� �z�� . �3.6�

Proof: �a� Let h�z� be a harmonic homogeneous polynomial of degree m. From Eqs.
2.12�–�2.14� we deduce the harmonic decomposition

�z���z2�
h�z�� = 2
�z2�
−1�A�h��z�

+ �1 + 2
�D + 2m − 2�−1��z2�
�z�h�z� .
ow let us apply Resz to the right-hand side of this equation. The first term will give zero, because
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A�h��0�=0. Similarly, the second term can give a nonzero result only if m=1 and 
=−D /2 but
hen the coefficient vanishes.

�b�, �c� Property �3.5� follows from the harmonic decomposition

hm�z�hm�
� �z� = �

n=0

min�m,m��

�z2�nhm+m�−2n
� �z� ,

here hm�
� �z� are uniquely determined harmonic homogeneous polynomials of degree m�= �m

m� � , . . . ,m+m�. It is known that for m=m�, the constant polynomial h0��C defines an
�D�-invariant nondegenerate scalar product on the space of harmonic polynomials of degree m.
his proves the remaining statements. �

From now on, we will assume that the bases 	hm,��z�
�=1,. . .,hm
of harmonic homogeneous

olynomials of degree m are orthonormal, so that

Resz�z2�
hm,��z�hm�,���z� = �
,−�D/2�−m�m,m���,��, �3.7�

n accord with Theorem 3.1�c�. Consequently, the modes of a formal series ��z� given by �2.17�
an be recovered as residues,

�	
,m,�
 = Resz ��z��z2�−�D/2�−
−mhm,��z� . �3.8�

his justifies the name “formal distributions.”
Corollary 3.2: Let 	 be a Z-invariant subset of R �i.e., 	+Z�	�, and set

�	� = − 	 +
D

2
ª �− 
 +

D

2
�
 � 	� . �3.9�

hen

V�z,�z2�	�  HomC�C�z,�z2�	��,V� �3.10�

s differential C�z�z2-modules. In particular, C�z, �z2�	� is the dual C�z�z2-module of C�z , �z2�	��.
Note that by the recursive definition �2.18� the residue functional is defined also on formal

istributions in several D-dimensional variables. For instance, we have

V�z,�z2�R;w,�w2�R� →
Resw

V�z,�z2�R�→
Resz

V . �3.11�

hen under the natural isomorphism

V�z,�z2�R;w,�w2�R�  V�w,�w2�R;z,�z2�R� �3.12�

he “Fubini theorem” is satisfied, namely,

Resz Resw ��z,w� = Resw Resz ��z,w� �3.13�

or ��z ,w��V�z , �z2�R ;w, �w2�R�.
The following proposition describes all �z-invariant linear functionals V�z, �z2�	� → V �cf.

3.3��.
Proposition 3.3: Let 	 be a Z-invariant subset of R, and let  :V�z , �z2�	�→V be a linear map

hat is �z-invariant, i.e., such that ��z���=0 for all ��V�z , �z2�	� and �=1, . . . ,D.
�a� If D�2, then there exists a complex constant C such that ���=C Resz � for all �

V�z , �z2�	�. In particular, if D /2�	 then =0.
�b� If D=1, then there exist complex constants C and C� such that ���=C Resz �

2 	
C� Resz� � for all ��V�z , �z � � �z is now one-component variable�, where Resz� is defined by
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Resz� �

�R

�z2�
�a
 + b
z� ª b−1 �3.14�

see Example 2.1�.
Proof: The space of all �z-invariant linear maps  :V�z , �z2�	�→V is isomorphic to the vector

pace

HomC�V�z,�z2�	�/�zV�z,�z2�	�,V� ,

here

�zV�z,�z2�	� ª �z1V�z,�z2�	� + ¯ + �zDV�z,�z2�	� .

Fix 
�	 and a harmonic homogeneous polynomials h�z� of degree m. We will prove that for
�2 one has

�z2�
h�z� � �zV�z,�z2�	� if �
,m� � �−
D

2
,0� , �3.15�

hile for D=1 one has

�z2�
h�z� � �zV�z,�z2�	� if �
,m� � �−
1

2
,0� or �
,m� � �− 1,1� . �3.16�

Indeed, using the equalities �see �2.19��

�z
2��z2�
+1h�z�� = 4�
 + 1��
 + m +

D

2
��z2�
h�z�

nd

�
�=1

D

�z���z2�
+1�z�h�z�� = 2m�
 + 1��z2�
h�z� ,

e conclude that �z2�
h�z���zV�z , �z2�	� if 
�−1 and �
 ,m�� �−D /2 ,0�. Finally, in the case
=−1, we have

�
�=1

D

�z���z2�−1z�h�z�� = �D + m − 2��z2�−1h�z� .

his proves �3.15� and �3.16�.
Now observing that by Theorem 3.1�a� we have �z2�−D/2��zV�z , �z2�	�, we complete the

roof of part �a�. To prove part �b�, it remains to check that Resz� is �z-invariant, which is straight-
orward. �

Example 3.1: Let D=1; then elements of V�z , �z2�	� have the form �2.20�. In particular, for
=Z, we can write every element ��z��V�z ,1 /z2� uniquely as

��z� = �
n�Z

cnzn, cn � V . �3.17�

n other words, V�z ,1 /z2� can be identified with the space of formal series V�z ,z−1�. The func-
ional Resz vanishes on a series �3.17�, while the functional Resz� coincides with the usual residue,
esz� ��z�=c−1.

. Translation invariance and Cauchy formula

Let V be a vector space, as before. One of the most important properties of the residue map

3.2� is its translation invariance.
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Proposition 3.4: �Formal translation invariance�

Resz �z,w��z + w� = Resz ��z�, ��z� � V�z��z2�R. �3.18�

his equation is also valid for elements of V�z , �z2�R�.
Proof: Recall that, by definition �cf. �2.26��, �z,w��z+w�=ew·�z��z�. Then Eq. �3.18� follows

rom Theorem 3.1�a�. �

We proceed to finding an analog of the Cauchy kernel for our residue functional.
Proposition 3.5: For ��z��V�z�, 
�R, n�N, we have

Resz�z2�
��z� = 0 if 
 +
D

2
� 0 or 
 +

D

2
� Z , �3.19�

Resz�z2�−D/2��z� = ��0� , �3.20�

nd

Resz�z2�−�D/2�−n��z� = Kn
−1���z

2�n���0� , �3.21�

here

Kn ª 22n�
k=1

n

k�k +
D

2
− 1� . �3.22�

Proof: Equations �3.19� and �3.20� are straightforward from the definition of the residue
unctional. To prove �3.21�, it is enough to assume that ��z� is a homogeneous polynomial of
egree 2n. Then we apply induction on n, starting with �3.20�, and using the �z-invariance �3.3�
nd the relation

�
�=1

D

�z���z2�−�D/2�−n+1��z����z�� = − 4n�n +
D

2
− 1��z2�−�D/2�−n��z� + �z2�−�D/2�−n+1��z

2���z� .

his completes the proof. �

As a corollary of Proposition 3.5, for even D we have a local formula for the residue of an
lement ��z��V�z�z2,

Resz ��z� = KN
−1��z

2�N��z2�N+D/2��z���z=0, N � 0. �3.23�

Proposition 3.6: �Higher-dimensional “Cauchy formula”�

Resz �z,w��z − w�2�−D/2��z� = ��w� for ��z� � V�z� . �3.24�

Proof: Consider the formal series

��z,w� ª �z,w��z − w�2�−D/2��z� � V�z�z2�w� .

y �3.18�, we have

Resz ��z,w� = Resz �z,w���z + w�,w� .

e can set w�=w on the right-hand side and obtain

Resz �z,w��z + w,w� = Resz �z,w�z2�−D/2��z + w� = ��w� ,
sing �3.20�. �
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. Harmonic decomposition of �z,w„„z−w…

2
…

�

As before, let 	hm,��z�
 be an orthonormal basis of the space of harmonic homogeneous
olynomials of degree m �see �3.7��. Introduce the polynomials

Hm�z,w� ª �
�=1

hm

hm,��z�hm,��w� . �3.25�

ote that Hm�z ,w� is the unique, up to a multiplicative constant, O�D�-invariant polynomial that
s separately harmonic and homogeneous in z and w of degree m. Combining Eq. �3.7� with the
auchy formula �3.24�, we obtain that

�z,w��z − w�2�−D/2 = �
m,n=0

�

�z2�−�D/2�−m−n�w2�nHm�z,w� . �3.26�

ecall that for every 
�R and n�Z+ the binomial coefficient � 

n

� is defined as 
�
−1�¯ �

n+1� /n! and is a polynomial of 
 of degree n.

Proposition 3.7: For every 
�R, we have

�z,w��z − w�2�
 = �
m,n=0

�

Km,n�
��z2�
−m−n�w2�nHm�z,w� , �3.27�

here

Km,n�
� ª
�− 1�n

� −D
2

m+n
� �

D

2
− 1 + 


n
�� 


m + n
� . �3.28�

Proof: It follows from definition �2.26� and the O�D�-invariance that �z,w��z−w�2�
 has the
orm �3.27�. Moreover, it is clear from �2.26� that for each fixed m ,n�Z+, the coefficient Km,n�
�
s a polynomial of 
. Then to establish �3.28� it will suffice to prove it for infinitely many values
f 
.

We will prove by induction that formula �3.28� holds for all 
 such that −�D /2�−
�Z+. For
=−D /2 it gives Km,n�−D /2�=1, which agrees with �3.26�. Next, assume that �3.27� and �3.28�
old for some 
. Apply the Laplace operator �z

2 to both sides of �3.27� and use �2.19� to find


�
 + D
2 − 1��z,w��z − w�2�
−1 = �

m,n=0

�

Km,n�
��
 − m − n��
 − n + D
2 − 1��z2�
−1−m−n�w2�nHm�z,w� .

omparing this to �3.27� with 
−1 instead of 
, we obtain that �3.28� holds for 
−1. This
ompletes the proof. �

For 
=−�D /2�+1, expansion �3.27� takes the particularly simple form

�z,w��z − w�2�−�D/2�+1 = �
m=0

�
D

2
− 1

D

2
− 1 + m

�z2�−�D/2�+1−mHm�z,w� . �3.29�

ote that both sides of this equation are harmonic with respect to both z and w �see Remark 2.3�.
et us also point out that for fixed 
�Z+, the coefficient Km,n�
� vanishes whenever m+n�
.

sing �3.27� for 
=0,1 ,2 , . . ., one can find the polynomials Hm�z ,w� recursively; for example,
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H0�z,w� = 1, H1�z,w� = Dz · w,

�3.30�
H2�z,w� = �D

2 + 1��D�z · w�2 − z2w2� .

. Formal delta-function

In this section we define a formal distribution in two variables, which plays the role of the
elta distribution. Let us consider the Z-invariant set Z�ª �D /2�+Z �cf. �3.9��, which coincides
ith Z when D is even. We define the following formal distribution in two variables:

��z,w� ª �
n�Z

�
m=0

�

�z2�−�D/2�−m−n�w2�nHm�z,w� � C�z,�z2�Z�;w,�w2�Z� . �3.31�

Proposition 3.8: The above-defined ��z ,w� is the unique element of C�z , �z2�Z� ;w, �w2�Z� with
he property that

Resz ��z���z,w� = ��w� for all ��z� � C�z�z2. �3.32�

n addition, it satisfies

��z���z,w� = ��w���z,w�, ��z� � C�z�z2 �3.33�

nd

�z���z,w� = − �w���z,w�, � = 1, . . . ,D . �3.34�

Proof: Property �3.32� and the uniqueness of ��z ,w� follow from the orthogonality relation
3.7� �cf. Corollary 3.2�. Then Eq. �3.32� and the �z-invariance of the residue �3.3� imply that, for
very ��z��C�z�z2,

Resz ��z���z� + �w����z,w� = − Resz��z���z����z,w� + �w�Resz ��z���z,w� = 0.

his proves �3.34�. Similarly, �3.33� follows from the equalities:

Resz ��z���z���z,w� = ��w���w� = Resz ��z���w���z,w� ,

or all ��z� ,��z��C�z�z2. �

Remark 3.1: Let 	 be any Z-invariant subset of R, and let 	�=−	+ D
2 �see �3.9��. Corollary 3.2

mplies that there exists a unique element �	�z ,w��C�z , �z2�	� ;w, �w2�	� such that Eq. �3.32�
olds for �	�z ,w� and all ��z��C�z��z2�	. Then �3.34� is satisfied as well, while the analog of
3.33� holds only when 	 is a subgroup of R �this is needed for C�z��z2�	 to be a ring�. Finally, note
hat �	�z ,w�=�	�w,z� when 	=	�.

Observe that ��z ,w� is symmetric, i.e., ��z ,w�=��w,z�, if and only if D is even. Switching z
nd w in �3.26� and using �2.27�, we obtain that for even D we have

��z,w� = �z,w��z − w�2�−D/2 + �w,z��z − w�2�−D/2 + �
m=0

�

�
n=1

�D/2�−1+m

�z2�−�D/2�−m+n�w2�−nHm�z,w� .

�3.35�

This splitting of ��z ,w� as a sum of three terms suggests the introduction of a natural partition
f the space of formal distributions �without assuming that D is even�. For a formal distribution
�z��V�z ,1 /z2�, written as in �2.9�, we define its parts ��z�+, ��z�−, and ��z��, as follows. We
et ��z�+ be given by �2.9� with the sum over n�Z restricted to n�0, n�Z. For ��z�− we restrict
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he sum to n�−�D /2�−m, n�Z �we first sum over m and then over n�. For ��z��we restrict the
um to −�D /2�+1−m�n�−1, n�Z. We call ��z�+ the regular part of ��z�, and we define the
ingular part as

��z�s.p. ª ��z�− + ��z��. �3.36�

hen, obviously, ��z�+�V�z� and

��z� = ��z�+ + ��z�− + ��z�� = ��z�+ + ��z�s.p. . �3.37�

t is important that the above partition of the space of formal distributions is C��z�-invariant, i.e.,

��z���z��� = �z���z�� for � = + ,− , � ,s.p. and � = 1, . . . ,D . �3.38�

Let us point out that the product ��z��z,w��z−w�2�−D/2 is well defined and belongs to the space
�z ,1 /z2��w�. Then we can generalize Cauchy formula �3.24�, using Eq. �3.26�, to obtain

Resz ��z��z,w��z − w�2�−D/2 = ��w�+, ��z� � V�z,1/z2� . �3.39�

hus, �z,w��z−w�2�−D/2 may be called �+�z ,w�, and one can also introduce formal distributions
−�z ,w� and ���z ,w� that give the − and � parts of ��w�, respectively, and such that ��z ,w�
�+�z ,w�+�−�z ,w�+���z ,w�. In the case when D is even, this splitting of ��z ,w� coincides with

he one in Eq. �3.35�.
Remark 3.2: Introduce the formal distribution �cf. �3.26��

�har
+ �z,w� ª �z2 − w2��z,w��z − w�2�−D/2 = �

m=0

�

�z2�−�D/2�+1−mHm�z,w� .

t is harmonic with respect to both z and w, and has the property that

Resz h�z��har
+ �z,w� = h�w� for all h�z� � C�z�har.

t follows from �3.31� that ��z ,w�=�1�z2−w2��har
+ �z ,w�, where

�1�x − y� ª �
n�Z

x−1−nyn � C�x,x−1;y,y−1�

s the formal delta distribution in the usual D=1 theory of vertex algebras �see, e.g., Refs. 19, 21,
nd 24�. Notice that, even though �z2−w2��1�z2−w2�=0, one cannot conclude from here that
�z ,w�=0, because the product �1�z2−w2��z,w��z−w�2�−D/2 is not well defined �see the discussion
n Ref. 24, Sec. 2.1 and in particular Eq. �2.1.17��.

. Transformation properties

For completeness, in this section we will investigate the transformation properties of the
esidue functional and the �-operation under the conformal inversion z�z /z2.

We observe that the substitution ��z����z /z2� is a well-defined involution of V�z , �z2�R� if
e set ��z /z2�2�


ª �z2�−
. Explicitly, if ��z� is given by �2.17�, then

�� z

z2�ª �

�	

�
m=0

�

�
�=1

hm

�	
,m,�
�z2�−
−mhm,��z� , �3.40�

ecause hm,��z /z2�= �z2�−mhm,��z�. Clearly, under this isomorphism, the C�z�z2-module V�z , �z2�	�
s mapped onto V�z , �z2�−	�.
Now let 	 be an additive subgroup of R containing Z. For 
�	, we define
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�� z

z2 −
w

w2�2�


ª �z2�−
�w2�−
��z − w�2�
, �3.41�

hich agrees with the usual formula for 
=1. Then the substitution ��z ,w����z /z2 ,w/w2�
efines an automorphism of V�z ,w��z2�	�w2�	��z−w�2�	.

Proposition 3.9: Let ��z��V�z , �z2�R� and ��z ,w��V�z ,w��z2�	�w2�	��z−w�2�	. Then we have

Resz �� z

z2� = Resz�z2�−D��z� �3.42�

nd

��z,w��� z

z2 ,
w

w2�� = ��w�,z���z�,w����
z�=z/z2,w�=w/w2

. �3.43�

Proof: Equation �3.42� is immediate from the definition of the residue �cf. �2.17�, �3.40��. To
rove �3.43�, it suffices to check it for ��z ,w�= ��z−w�2�
, in which case the statement follows
rom �2.27�, �3.27�, and �3.41�. �

One can define involutive automorphisms

��z� � ��− z�, ��z,w� � ��− z,− w� �3.44�

f V�z , �z2�R� and V�z ,w��z2�	�w2�	��z−w�2�	 by setting �cf. �2.27��

�z2�
1�w2�
2��z − w�2�
3f�z,w� � �z2�
1�w2�
2��z − w�2�
3f�− z,− w� �3.45�

or f�z ,w��V�z ,w�. By the definition of �z,w and �w,z �see Sec. II F�, the so-defined operation
ommutes with both of them. It is also clear that it anticommutes with all partial derivatives �z�,

w�, and satisfies

Resz ��− z� = Resz ��z�, ��z� � V�z,�z2�R� . �3.46�

Remark 3.3: In analogy with the above automorphism �3.45�, one can define an automorphism
by setting

�:�z2�
1�w2�
2��z − w�2�
3f�z,w� � e2�i�
1+
2+
3��z2�
1�w2�
2��z − w�2�
3f�z,w�

or f�z ,w��V�z ,w�. Then � commutes with the �-operations and with the partial derivatives, and
nstead of �3.46� one has Resz�����z�= �−1�D Resz ��z�.

V. FIELDS AND LOCALITY

In this section we investigate the notions of fields, locality, and operator product expansion in
igher dimensions, mainly following Ref. 28. We give the definition of vertex algebra and we
rovide two examples of vertex algebras.

. Polylocal fields

In this section we introduce the notion of a field of several variables, and we generalize the
esults of Ref. 28, Sec. 2 about the existence of operator product expansion.

Let V=V0̄ � V1̄ be a Z2-graded vector space �i.e., a superspace�. Then End V = �End V�0̄ �

End V�1̄ is a Z2-graded associative algebra, and we will denote its Lie super bracket by

�A,B� ª AB − �− 1�pqBA, for A � �End V�p, B � �End V�q. �4.1�

e will suppose that V is endowed with an action of mutually commuting even endomorphisms

1 , . . . ,TD �called translation endomorphisms� and with an even vector �0� �called vacuum�,

uch that T1 �0�= ¯ =TD �0�=0.

                                                                                                            



I

T

f

t

m

i

f

g

a
o
t

t

A
r
i

w

053505-16 B. Bakalov and N. M. Nikolov J. Math. Phys. 47, 053505 �2006�

                        
Let A�z1 , . . . , zm� be an �End V�-valued formal distribution; in other words, let

A�z1, . . . ,zm� � �End V��z1,1/z1
2; . . . ;zm,1/zm

2 � . �4.2�

t is called a field in z1 , . . . , zm �or just an m-field� iff for every v�V one has

A�z1, . . . ,zm�v � V�z1, . . . ,zm�z1
2
¯zm

2 . �4.3�

his means that for every v�V there is a non-negative integer NA,v such that

A�z1, . . . ,zm�v = �z1
2
¯ zm

2 �−NA,v�A,v�z1, . . . ,zm� �4.4�

or some �A,v�z1 , . . . , zm��V�z1 , . . . , zm�.
If A is an m-field, then for every partition

	1, . . . ,m
 = J1 � ¯ � Jr �disjoint union� , �4.5�

he restriction

A˜�u1, . . . ,ur�v ª ��z1
2
¯ zm

2 �−NA,v�A,v�z1, . . . ,zm���zjªus for j�Js
�4.6�

akes sense and defines again a field.
An m-field �or, more generally, an �End V�-valued formal distribution� A is called translation

nvariant iff

�T�,A�z1, . . . ,zm�� = �
k=1

m

�zk
�A�z1, . . . ,zm� �4.7�

or every �=1, . . . ,D.
Let us point out that a product A�z1 , . . . , zm�B�w1, . . . ,wn� of two fields is not a field in

eneral. Indeed, by the above definition, for every v�V we have

A�z1, . . . ,zm�B�w1, . . . ,wn�v � V�z1, . . . ,zm�z1
2
¯zm

2 �w1, . . . ,wn�w1
2
¯wn

2, �4.8�

nd it may contain infinitely many negative powers of z1
2 , . . . , zm

2 . As a consequence, the restriction
f the product �4.8� for coinciding arguments is not well defined in general. We will show below
hat one can “regularize” this product to make a field if the following definition is satisfied.

Two fields �or, more generally, �End V�-valued formal distributions� A and B are called mu-
ually local iff there exists a non-negative integer NA,B such that

��
j=1

m

�
k=1

n

�z j − wk�2�NA,B

�A�z1, . . . ,zm�,B�w1, . . . ,wn�� = 0. �4.9�

1-field that is local with respect to itself is usually called a local field; a 2-field that is local with
espect to itself is called a bilocal field. An m-field, for general m, which is local with respect to
tself, is called a polylocal field.

In the following statement we sum up some consequences of the above definitions.
Theorem 4.1: Let A�z1 , . . . , zm� and B�z1 , . . . , zn� be an m-field and an n-field, respectively,

hich are mutually local as above.

�a� Every restriction �4.6� of A is also a field and is mutually local with respect to B.
�b� If the field A is translation invariant, then its restrictions �4.6� are also translation in-

variant fields.
�c� If A is translation invariant, then A�z1 , . . . , zm� �0��V�z1 , . . . , zm�.
�d� Every partial derivative �zk

�A is a field and is mutually local with respect to B. If the field
A is translation invariant, then �zk

�A is also translation invariant.

�e� The formal distribution
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FA,B�z1, . . . ,zm,w1, . . . ,wn� ª ��
j=1

m

�
k=1

n

�z j − wk�2�NA,B

A�z1, . . . ,zm�B�w1, . . . ,wn� �4.10�

s an �m+n�-field. If the fields A and B are local with respect to a p-field C�z1 , . . . , zp�, then FA,B

s also local with respect to C. If both fields A and B are translation invariant, then FA,B is also
ranslation invariant.

Proof: Statements �a� and �b� follow easily from definitions.
Statement �c� for m=1 is proved in Ref. 32, Proposition 3.2�a�, and that proof can be straight-

orwardly generalized for general m �note that one can take h2=h1 there�.
To prove �d�, one “commutes” the derivative �zk

� through the polynomial ��zk−w j�2�N, as it is
one in a more general case in Ref. 28, Lemma 2.3.

�e� Note that, by �4.8� and �4.9�, for every v�V the series FA,B�z1 , . . . , zm ,w1 , . . . ,wn�v
elongs to the intersection

V�z1, . . . ,zm�z1
2
¯zm

2 �w1, . . . ,wn�w1
2
¯wn

2 � V�w1, . . . ,wn�w1
2
¯wn

2�z1, . . . ,zm�z1
2
¯zm

2

hich is exactly V�z1 , . . . , zm ,w1 , . . . ,wn�z1
2
¯zm

2 w1
2
¯wn

2. But this means, by definition, that FA,B is an
m+n�-field. The remaining part of the statement is straightforward. �

As a corollary of Theorem 4.1, every m-field A�z1 , . . . , zm� can be expanded in 1-fields as
ollows. Consider for v�V the formal expansion

�z,w1
¯ �z,wm−1

A�z + w1, . . . ,z + wm−1,z�v

ª exp�w1 · �z1
+ ¯ + wm−1 · �zm−1

�A�z1, . . . ,zm�v�z1=¯=zm=z

� V�z�z2�w1, . . . ,wm−1� . �4.11�

his is a formal power series in w1, . . . ,wm−1 with coefficients of the form �i�z�v�V�z�z2 for
ome uniquely defined fields �i�z� �i running over some index set�. All �i�z� are fields because
hey are obtained from A�z1 , . . . , zm� by the operations of differentiation and restriction. If, in
ddition, A is translation invariant and is local with respect to some other fields B, C, etc., then all
he fields �i�z� are also translation invariant and local with respect to B, C, etc.

The formal expansion �4.11� is called the operator expansion of A�z1 , . . . , zm�. Applying this
xpansion to the field FA,B �4.10�, we get what is called the operator product expansion �OPE�
f two mutually local fields A and B.

Example 4.1: Let us consider, for comparison, the D=1 case of OPE. Recall from Example
.1 that now z=z is a one-component variable and the space of �End V�-valued formal distribu-
ions is identified with �End V��z ,z−1�. Then our notions of fields and locality coincide with the
nes used in vertex algebra theory �see Refs. 20, 13, 25, 21, and 24�. For two mutually local fields
�z� and b�z� with parities pa and pb, respectively, one introduces their nth product for n�Z by

�a�w��n�b�w��c ª resz a�z�b�w�c�z,w�z − w�n − �− 1�papb resz b�w�a�z�c�w,z�z − w�n, �4.12�

here resz zk
ª�k,−1 is the usual residue functional �it corresponds to our Resz�; see Example 3.1�.

y the Cauchy theorem for resz �see Refs. 19, 21, and 24�, one gets an equivalent definition

�a�w��n�b�w��c =
1

N!
�z

N��z − w�N+n+1a�z�b�w�c��z=w, N � 0, �4.13�

here the right-hand side is independent of N. Our approach to the OPE of a�z� and b�z� corre-
ponds precisely to definition �4.13�. Then Dong’s lemma, the fact that the field a�z��n�b�z� is local
ith respect to every field c�z� local with respect to a and b, is a simple corollary of Theorem 4.1
e�, �d�, �a�.
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. Completeness and state-field correspondence: Definition of vertex algebra

The translation invariance and locality properties allow us to introduce a state-field correspon-
ence for a vertex algebra in higher dimensions, as in Secs. 3 and 4 of Ref. 28. Here we will
eproduce these results in a more concise way.

As in the previous section, let V be a superspace endowed with an action of mutually com-
uting even endomorphisms T� ��=1, . . . ,D� and a vacuum vector �0�. A system of fields

�i�z�
i�I is called local iff �i�z� and � j�z� are mutually local for every i , j�I. The system
�i�z�
 is called translation invariant iff every �i�z� is translation invariant. Finally, the system
�i�z�
 is called complete �with respect to the vacuum �0�� iff the coefficients of all formal series

i1
�z1�¯�in

�zn� �0� �n�N�together with �0� span the whole vector space V. In other words, the
ystem 	�i�z�
 is complete iff the vacuum �0� is a cyclic vector for the associative subalgebra of
nd V generated by the modes of all fields �i�z�.

Theorem 4.2: Let 	�i�z�
i�I be a translation invariant, local, and complete system of fields.
hen for every a�V there exists a unique field, denoted as Y�a , z�, which is translation invariant,

ocal with respect to all �i�z�, and such that

Y�a,z��0 � �z=0 = a . �4.14�

Proof: Let us consider the vector space F of all translation invariant 1-fields that are local
ith respect to �i�z� for all i�I. By Theorem 4.1�c�, there is a well-defined linear map

F → V, ��z� � ��z��0 � �z=0. �4.15�

t follows from translation invariance that

��z��0 � = ez·T���w��0��w=0�, z · T ª z1T1 + ¯ + zDTD.

hen Theorem 3.1 from Ref. 28 implies that map �4.15� is injective. The theorem will be proved
s soon as we show that map �4.15� is surjective.

Consider for every fixed m=1,2 , . . . and i1 , . . . , im�I the m-field

A�z1, . . . ,zm� ª � �
1�k�l�m

�zkl
2 �Nkl��i1

�z1� ¯ �im
�zm� ,

here zkl=zk−zl and Nkl are the integers fulfilling the locality condition �4.9� for �ik
and �il

. We
hen claim that all coefficients of A�z1 , . . . , zm� �0� belong to the image of �4.15�. To prove this,
rst note that by Theorem 4.1�e� A is a translation invariant m-field that is local with respect to

i�z� for all i�I. Then all coefficients �i�z� in the operator expansion of A are contained in F
see �4.11��. It follows from Theorem 4.1�c� that for v= �0� the right-hand side of �4.11� is simply
he Taylor expansion of

A�z + w1, . . . ,z + wm−1,z��0 � � V�z,w1, . . . ,wm−1� .

hen it is clear that all coefficients of A�z1 , . . . , zm� �0� belong to the image of �4.15�.
On the other hand, iterating �4.8� we obtain that �cf. �2.32��:

�i1
�z1� ¯ �im

�zm��0 � � V�z1�z1
2 ¯ �zm�zm

2 . �4.16�

he right-hand side of �4.16� is a module over the algebra C�z1�z1
2¯ �zm�zm

2 , in which the polyno-
ial �k�l�zkl

2 �Nkl is invertible: its inverse is given by applying the expansion �k�l �zk,zl
�see Sec.

I F�. Therefore,

�i1
�z1� ¯ �im

�zm��0 � = � � �zk,zl
�zkl

2 �−Nkl�A�z1, . . . ,zm��0 � .

1�k�l�m
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This implies that every coefficient of �4.16� can be expressed as a linear combination of
oefficients of A�z1 , . . . , zm� �0�, and hence belongs to the image of map �4.15�. But by complete-
ess the coefficients of �4.16� span V; therefore, �4.15� is surjective. �

Corollary 4.3: Let ��z� be a translation invariant field, which is local with respect to a
ranslation invariant, local, and complete system of fields 	�i�z�
. Then ��z� is a local field and
�z�=Y�a , z� for a=��z� �0��z=0.

Theorem 4.2 leads naturally to the following definition.28

Definition 4.1: A vertex algebra V over CD is a superspace V endowed with

�a� an action of mutually commuting, even endomorphisms T1 , . . . ,TD �translation endomor-
phisms�,

�b� an even vector �0� �vacuum� such that T1 �0�= ¯ =TD �0�=0,
�c� a parity preserving linear map �state-field correspondence�

V → �End V��z,1/z2�, a � Y�a,z� ,

such that 	Y�a , z�
a�V is a translation invariant, local system of fields and a
=Y�a , z� �0��z=0 for all a�V.

Corollary 4.4: Every translation invariant, local, and complete system of fields 	�i�z�
 gen-
rates on V a unique structure of a vertex algebra.

Note that when D=1, Definition 4.1 is equivalent to the definition of a usual �chiral� vertex
lgebra �see, e.g., Refs. 21 and 24�. We will use the notation

a�z� � Y�a,z� �4.17�

s it is customary in the usual D=1 theory of vertex algebras. For a vertex algebra V and elements
,b�V, we denote by N�a ,b� the smallest non-negative integer fulfilling the locality condition for
�z� and b�z�, i.e.,

N�a,b� ª min	N � Z+���z − w�2�N�a�z�,b�w�� = 0
 . �4.18�

Remark 4.1: One can introduce a more general notion of vertex algebra that involves nonin-
egral powers of z2 in the definition of a field and in the notion of locality. For D=1 this would
orrespond to the “generalized vertex algebras” of Refs. 16, 13, and 27, as explained in Ref. 3. For
=2, a related notion was introduced in Ref. 23.

. Examples of vertex algebras

For completeness, in this section we present two simple examples of vertex algebras. We refer
o Refs. 28, 32, 5, and 6 for additional examples.

Our first example shows that the notion of a vertex algebra includes as a special case that of
�super�commutative associative algebra �cf. Ref. 8�. We call a vertex algebra V over CD holo-
orphic if Y�a , z�� �End V��z� for all a�V. The following statement is a straightforward gener-

lization of the corresponding one in the case D=1 �see Refs. 8, 21, and 24�.
Proposition 4.5: �a� If V is a holomorphic vertex algebra over CD, then a�bªY�a ,z�b�z=0

efines on V the structure of supercommutative associative algebra with a unit �0� and even
erivations T1 , . . . ,TD.

�b� Conversely, given a supercommutative associative algebra V with a product �, a unit �0�,
nd with mutually commuting even derivations T1 , . . . ,TD, then Y�a , z�bª �ez·Ta��b defines the
tructure of a holomorphic vertex algebra on V.

Our second example is the vertex algebra generated by a harmonic scalar free field ��z� in
ven space–time dimensions D�2 �see Ref. 28 Sec. 5 for a more general construction�. Consider

new formal variable pª �p1 , . . . , pD� and introduce the vector spaces
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P ª C�p�/p2C�p�  C�p�har, V ª C�P� . �4.19�

ere V is defined as the algebra of all polynomials of the elements of P, i.e., it is the symmetric
lgebra of P. We will denote by �f�p�� the equivalence class of a polynomial f�p��C�p� in P.
hen V is the linear span over C of all monomials of the form �f1�p��¯ �fn�p�� �note that
f1�p���f2�p��� �f1�p�f2�p�� in V�.

We define an �End V�-valued formal distribution ��z� by the formula

��z��f1�p�� ¯ �fn�p�� ª �
k=0

�
1

k!
��z · p�k��f1�p�� ¯ �fn�p��

+ �
l=1

n

f l�− �z��z2�− D
2

+1�f1�p�� ¯ �f l�p�̂� ¯ �fn�p�� , �4.20�

here a hat over a term means that it is omitted in the product. This does not depend on the choice
f representatives f l�p� because �z

2�z2�−�D/2�+1=0. Since the right-hand side of �4.20� contains only
nitely many negative powers of z2, it follows that ��z� is a field. After a straightforward com-
utation, one finds

��z1���z2��f1�p�� ¯ �fn�p�� = e−z2·�z1�z1
2�−�D/2�+1�f1�p�� ¯ �fn�p�� + ¯ , �4.21�

here the remaining terms are symmetric under the exchange of z1 and z2. Hence,

���z1�,��z2�� = ��z1,z2
�z12

2 �−�D/2�+1 − �z2,z1
�z12

2 �−�D/2�+1�idV, �4.22�

here z12=z1−z2. Therefore, ��z� is a local field, since

�z12
2 ��D/2�−1���z1�,��z2�� = 0. �4.23�

We define endomorphisms T1 , . . . ,TD of V by the formula

T��f1�p�� ¯ �fn�p�� ª �
l=1

n

�p�f l�p���f1�p�� ¯ �f l�p�̂� ¯ �fn�p�� �4.24�

or �=1, . . . ,D. In particular, T� �0�=0, where �0� is the constant polynomial 1�V. One can
asily verify that the endomorphisms T1 , . . . ,TD commute with each other, and the field ��z� is
ranslation invariant. Let us point out that ��z� �0�= �ez·p�=ez·T�1�, and ��z� �0��z=0= �1��1= �0�.

Using �4.20�, one can prove by induction on n that every monomial �f1�p��¯ �fn�p�� is a
inear combination of the coefficients of ��z1�¯��zn� �0�. Therefore, the field ��z� is complete,
nd one can apply Corollary 4.4 to generate on V the structure of a vertex algebra over CD. Finally,
e note that the field ��z� is harmonic, i.e., it satisfies the Laplace equation �z

2��z�=0. This
ollows from �4.19�, �4.20� and the fact that the function �z2�−�D/2�+1 is harmonic.

. JACOBI IDENTITY

This section contains the main results of the paper. We first prove certain “formal commuta-
ivity and associativity” relations, and then use them to derive our Jacobi identity. Integral versions
f the Jacobi identity are also presented. We show that together with a partial vacuum axiom it can
e taken as an equivalent definition of the notion of vertex algebra over CD. We derive a formula
or the commutator of two fields, and we prove that the singular parts of fields close a substructure

nder the commutator.
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. Commutativity and associativity

In this section we will extend the “associativity” of Ref. 28, Theorem 4.3 by giving a con-
ection between the degrees of the poles in a product a�z�b�w� of two fields and the integers
�a ,b� introduced in �4.18�. In the case of usual D=1 vertex algebras our results agree with the
formal commutativity and associativity” of Refs. 17 and 24.

Theorem 5.1: �“Formal commutativity and associativity.”� Let V be a vertex algebra, and let
,b ,c�V, where a and b have parities pa and pb, respectively. Then there exists a localized

ormal series

Ya,b,c�z1,z2� =
�a,b,c�z1,z2�

�z1
2�N�a,c��z2

2�N�b,c��z12
2 �N�a,b� , �5.1�

here

�a,b,c�z1,z2� � V�z1,z2�, z12 = z1 − z2,

uch that

Ya,b,c�z1,z2� = �− 1�papbYb,a,c�z2,z1� �5.2�

nd

a�z1�b�z2�c = �z1,z2
Ya,b,c�z1,z2� , �5.3�

b�z2�a�z1�c = �− 1�papb�z2,z1
Ya,b,c�z1,z2� , �5.4�

�a�z3�b��z2�c = �z2,z3
Ya,b,c�z2 + z3,z2� . �5.5�

Proof: Equations �5.2�–�5.5� follow from Proposition 4.2 and Theorem 4.3 of Ref. 28. The
xplicit form �5.1� of Ya,b,c�z1 ,z2��V�z1 ,z2�z1

2z2
2z12

2 follows from Eq. �4.18� and the following
emma, which provides another description of the numbers N�a ,b�. �

Lemma 5.2: For any two elements a and b in a vertex algebra V, we have

N�a,b� = min	N � Z+��z2�Na�z�b � V�z�
 . �5.6�

Proof: Denote the right-hand side of �5.6� by N��a ,b�, and consider the formal distribution

Fa,b�z1,z2� ª �z12
2 �N�a,b�a�z1�b�z2� .

ue to Theorem 4.1�e�, �c�, Fa,b is a translation invariant, bilocal field and Fa,b�z1 ,z2� �0�
V�z1 ,z2�. Therefore, setting z2=0 we find from b�z2� �0��z2=0=b that N��a ,b� � N�a ,b�.

Consider now the formal distribution

Fa,b� �z1,z2� ª �z12
2 �N��a,b�a�z1�b�z2� .

s in the proof of Theorem 4.1�e�, Fa,b� is translation invariant and local �as a formal distribution�
ith respect to all fields c�z� for c�V. It follows from translation invariance that

Fa,b� �z1,z2��0 � = ez2·T��z12
2 �N��a,b�a�z12�b� � V�z12,z2� � V�z1,z2� . �5.7�

n the other hand, by locality �assuming that c�V has a fixed parity pc� we get

��z1 − w�2�z2 − w�2�NFa,b� �z1,z2�c�w��0 � = ��z1 − w�2�z2 − w�2�N�− 1��pa+pb�pcc�w�Fa,b� �z1,z2��0 �

or N�0. It follows from Eq. �5.7� and Theorem 4.1 that both sides of the above equation belong
o the intersection of V�z1, 1 /z1

2; z2 ,1 /z2
2� �w� and V�w�w2 �z1 ,z2�. But the latter space is exactly
�z1 ,z2 ,w�. Therefore,
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��z1 − w�2�z2 − w�2�NFa,b� �z1,z2�c�w��0 � � V�z1,z2,w� ,

nd setting w=0 we find that Fa,b� is a field.
In the same way one proves that

Fb,a� �z1,z2� ª �z12
2 �N��a,b�b�z2�a�z1�

s a field; note that N��a ,b�=N��b ,a� because of the “quasisymmetry” relation

a�z�b = �− 1�papbez·T�b�− z�a�, a,b � V �5.8�

see Ref. 28, Proposition 4.4�. Locality for a�z� and b�z� implies that

�z12
2 �N�Fa,b� �z1,z2� − �− 1�papbFb,a� �z1,z2��c = 0, N � 0.

n the other hand, since Fa,b� and Fb,a� are fields,

�Fa,b� �z1,z2� − �− 1�papbFb,a� �z1,z2��c � V�z1,z2�z1
2z2

2,

hich is a C�z1 ,z2�z1
2z2

2-module with no zero divisors. Hence, Fa,b� = �−1�papbFb,a� and N�a ,b�
N��a ,b�. �

From the proof of Lemma 5.2 and from Theorem 4.1, we deduce the following corollary.
Corollary 5.3: Let V be a vertex algebra, and let A�z1 , . . . , zm� be an �End V�–valued formal

istribution, which is translation invariant and local with respect to all fields Y�c , z��c�V�. Then
is an m-field if and only if A�z1 , . . . , zm� �0��V�z1 , . . . , zm�.

Next, we will derive from Theorem 5.1 an “associativity” property, which generalizes Eqs.
4.2� and �7.3� from Ref. 2 �see also Refs. 13 and 24�.

Proposition 5.4: �“Associativity”� For every three elements a ,b ,c in a vertex algebra V and
or L�N�a ,c�, we have

��z + w�2�L�a�z�b��w�c = ��z + w�2�L�z,wa�z + w�b�w�c , �5.9�

�z2�La�z�b�w�c = ���u + z − w�2�L�z,w�a�z − w�b��u�c�u=w, �5.10�

here the expression under the substitution on the right-hand side of �5.10� belongs to

z,wV�z ,w,u��z−w�2u2 and setting u=w makes sense.
Proof: We can assume without loss of generality that L=N�a ,c�. Then, by Theorem 5.1, the

eft-hand side of �5.9� is equal to

�a,b,c�z + w,w�
�z2�N�a,b��w2�N�b,c� � V�z,w�z2w2,

hile the right-hand side is

�z,w�z+w,w
�a,b,c�z + w,w�

���z + w� − w�2�N�a,b��w2�N�b,c� .

hen Eq. �5.9� follows from Taylor’s formula �2.31�. The proof of Eq. �5.10� is simpler: its sides
re equal to

�z,w
�a,b,c�z,w�

��z − w�2�N�a,b��w2�N�b,c� and �z,w
�a,b,c�u + z − w,u�

��z − w�2�N�a,b��u2�N�b,c� ,
espectively, and obviously they become equal after the substitution u=w. �
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. Jacobi identity

In this section, for any three elements in a vertex algebra over CD, we derive an identity that
eneralizes the Jacobi identity of Ref. 19 �and the Borcherds identity of Ref. 21� for usual D=1
ertex algebras.

Theorem 5.5: �“Jacobi identity”� Let V be a vertex algebra, and let a ,b ,c�V, where a and
have fixed parities pa and pb, respectively. Then for L�N�a ,c� and for every F�z ,w�
C�z ,w��z2�R�w2�R��z−w�2�R, we have

a�z�b�w�c�z,wF�z,w� − �− 1�papbb�w�a�z�c�w,zF�z,w�

= �z2�−L���u + z − w�2�L��z,w − �w,z��a�z − w�b��u�cF�z,w��u=w, �5.11�

here the expression under the substitution on the right-hand side belongs to ��z,w− �w,z�
�z ,w,u��z2�R�w2�R��z−w�2�Ru2 and setting u=w makes sense.

Proof: By the same argument as in the proof of Eq. �5.10� above, one finds separately

a�z�b�w�c�z,wF�z,w� = �z2�−L���u + z − w�2�L�z,w�a�z − w�b��u�cF�z,w��u=w, �5.12�

�− 1�papbb�w�a�z�c�w,zF�z,w� = �z2�−L���u + z − w�2�L�w,z�a�z − w�b��u�cF�z,w��u=w

�5.13�

or L�N�a ,c�. Taking the difference we obtain �5.11�. �

The main subtlety of Eq. �5.11� is that on the right-hand side one cannot make the substitution
=w in each of the factors separately. It is only after we multiply them that this substitution makes
ense. The reason is that, in contrast to the case D=1, the expression ��z,w− �w,z�a�z−w�b involves
n infinite sum, and hence in general ��z,w− �w,z��a�z−w�b��w�c is not well defined. We refer to
ecs. V D and V E below for additional discussion.

It is clear from the proof of Eq. �5.10� that if we multiply the right-hand sides of Eqs. �5.12�
nd �5.13� by �u2�M for M �N�b ,c�, they will become regular in u �i.e., not containing negative
owers of u2�. Then we will be able to represent the substitution u=w by Cauchy formula �3.24�.
hus we obtain the following equivalent integral form of Jacobi identity �5.11�.

Corollary 5.6: For every element a ,b ,c in a vertex algebra V, a and b having fixed parities
pa and pb, respectively, and for every L�N�a ,c�, M �N�b ,c�, we have

a�z�b�w�c�z,wF�z,w� − �− 1�papbb�w�a�z�c�w,zF�z,w�

= Resu�z2�−L�w2�−M��u + z − w�2�L�u2�M�u,w��u − w�2�−D/2

� ��z,w − �w,z���a�z − w�b��u�cF�z,w�� �5.14�

or F�z ,w��C�z ,w��z2�R�w2�R��z−w�2�R.
Proof: It remains to note that the right-hand side of �5.14� makes sense. Indeed, the product of

he Cauchy kernel �u,w��u−w�2�−D/2 and the third line in �5.14� is well defined in the space ��z,w

�w,z�V�u�u2�z ,w��z2�R�w2�R��z−w�2�R. �

Remark 5.1: One can give an alternative proof of Theorem 5.5 by using “associativity”
elation �5.9�, “quasisymmetry” relation �5.8�, and generalizing the arguments of Ref. 2, Sec. 7 to
he case of arbitrary D �see also Refs. 18, 25, and 24�. With obvious modifications, Eq. �5.11�
emains valid for generalized vertex algebras �see Remark 4.1 and Refs. 16, 13, 27, and 3�.

We will show in Sec. V D below that Jacobi identity �5.11�, together with a partial vacuum
xiom, can be taken as an equivalent definition of vertex algebra over CD.

. Integral Borcherds formula

In this section we will derive an integral version of Jacobi identity �5.11�, which in particular
ives a formula for the commutator of modes that generalizes the Borcherds commutator formula

rom Ref. 8 �see also Refs. 19, 18, 21, and 24�.
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Let us introduce the following additive subgroup of R:

Ẑ ª Z + D
2 Z = �Z if D is even,

1
2Z if D is odd. � �5.15�

s a consequence of Corollary 3.2, every �End V�–valued formal distribution ��z� � �End V�
�z, 1 /z2� can be considered as a linear map

C�z��z2�Ẑ → End V, f�z� � Resz��z�f�z� . �5.16�

hus C�z��z2�Ẑ plays the role of a vector space of test functions, and for even space–time dimension
it is exactly C�z�z2 �C�z��z2�Z. According to Eq. �3.8�, the modes of ��z� can be obtained by

ntegrating ��z� �with Resz� against appropriate test functions.
Now let us take Resz Resw of both sides of Eqs. �5.12� and �5.13� for F�z ,w�

C�z ,w��z2�Ẑ�w2�Ẑ��z−w�2�Ẑ, and represent the substitution u=w as Resu as done in Eq. �5.14�. We are
oing to rewrite the resulting identities in the form

Resz Resw a�z�b�w�c�z,wF�z,w� = Resz Resw KL,M
+ �z,w;F��a�z�b��w�c , �5.17�

Resz Resw b�w�a�z�c�w,zF�z,w� = �− 1�papbResz ReswKL,M
− �z,w;F��a�− z�b��w�c , �5.18�

here KL,M
± are to be determined. To arrive at the above formulas, we will use translation invari-

nce of the residue to replace z with z+w in �5.12� and w with w+z in �5.13�. More precisely, we
ave the following lemma.

Lemma 5.7: For every G�z ,w� � V�z ,w��z2�Ẑ�w2�Ẑ��z−w�2�Ẑ we have

Resz Resw �z,wG�z,w� = Resz Resw �z,wG�z + w,w� . �5.19�

Proof: Translation invariance of the residue �see �3.18�� implies the identity

Resz Resw �z,wG�z,w� = Resz Resw �z,u�z+u,wG�z + u,w� .

hen since the expression under the residue on the right-hand side belongs to the space
�z��z2�Ẑ�w,u��w2�Ẑ, we can set there u=w. But

�z,w�z+w,wG�z + w,w� = �z,wG�z + w,w�

y “Taylor formula” �2.31�. �

Applying Lemma 5.7 to the right-hand side of �5.12�, we obtain �5.17� with

KL,M
+ �z,w;F� ª Resu �z,uF�u + z,u���u + z�2�−L�u2�−M�w,u��w − u�2�−D/2��z + w�2�L�w2�M .

�5.20�

imilarly, after a renaming of the variables, �5.13� leads to �5.18� with

KL,M
− �z,w;F� ª Resu �z,uF�u,u + z���u + z�2�−M�u2�−L�w,u+z��w − �u + z��2�−D/2��w − z�2�L�w2�M .

�5.21�

otice that the expressions after Resu on the right-hand sides of �5.20� and �5.21� are well-defined
lements of C�w��w2�Ẑ�z��z2�Ẑ�u��u2�Ẑ, and in fact the former belongs to C�z ,w��z2�Ẑ�w2�Ẑ�u��u2�Ẑ. Then
5.20� and the formula

KL,M
− �z,w;F� = �w,zKL,M

+ �z,w − z;Fop�, Fop�z,w� ª F�w,z� �5.22�

mply that

K+ �z,w;F� � C�z,w� 2 Ẑ 2 Ẑ, K− �z,w;F� � C�w� 2 Ẑ�z� 2 Ẑ. �5.23�
L,M �z � �w � L,M �w � �z �
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Taking the difference of Eqs. �5.17� and �5.18�, and using �3.46�, we obtain the following
esult.

Theorem 5.8: With the above notation, in any vertex algebra, we have

Resz Resw a�z�b�w�c�z,wF�z,w� − �− 1�papb Resz Reswb�w�a�z�c�w,zF�z,w�

= Resz Resw KL,M�z,w;F��a�z�b��w�c , �5.24�

here

KL,M�z,w;F� ª KL,M
+ �z,w;F� − KL,M

− �− z,w;F� . �5.25�

n particular, when F�z ,w�= f�z�g�w� is a product of two test functions, Eq. �5.24� gives a formula
or the commutator of modes, generalizing the Borcherds formula.

. The Jacobi identity as alternative axiom and the case D=1

In this section we derive some consequences of our Jacobi identity �5.11�. We prove that
ogether with a partial vacuum axiom it can be taken as an equivalent definition of vertex algebra
ver CD. We also show that for D=1 it reduces to �an equivalent form of� the Jacobi identity of
ef. 19.

First of all, it is clear from the definitions that if �z2�Na�z�b�V�z�, then ��z,w− �w,z�a�z
w�b��z−w�2�N=0. Therefore, Jacobi identity �5.11� implies locality. Our next step is to show that

t also implies “associativity.”
Lemma 5.9: Let V be a vector space, let c be an element of V, and let a�z�, b�w� be two fields

n V. Assume that Eq. �5.11� holds for some fixed pa, pb, L and for all F�z ,w�
C�z ,w�z2w2��z−w�2�Ẑ �see �5.15��. Then Eq. �5.9� holds for some L��L.

Proof: Let L��L be large enough so that �z2�L�a�z�c�V�z�. Obviously, if Eq. �5.11� holds for
ome L then it holds for all L��L, so let us just assume L�=L. Applying Resz to both sides of
5.11� with F�z ,w�= �z2�Lf�z−w�, where f�z��C�z��z2�Ẑ is an arbitrary test function, we obtain

Resz�z2�La�z�b�w�c�z,wf�z − w� = Resz���u + z − w�2�L�z,w�a�z − w�b��u�cf�z − w��u=w.

ow using the translation invariance of the residue �see �3.18��, we get

Resz��z + w�2�L�z,wa�z + w�b�w�cf�z� = �Resz��u + z�2�L�a�z�b��u�cf�z��u=w.

fter the substitution u=w, this gives exactly Eq. �5.9� �cf. �5.16��. �

Now we can prove the following statement, which shows that a vertex algebra can be defined
n terms of Jacobi identity as in Ref. 19 for the D=1 case �see also Refs. 21 and 24�.

Theorem 5.10: Let V be a vector superspace endowed with an even vector �0� and with a
arity preserving linear map Y :V�Y�a , z��a�z� to the space of fields on V. Assume that Jacobi
dentity �5.11� holds for every fixed a ,b ,c�V with parities pa, pb of a and b, respectively, for
ome L�0 and for all F�z ,w��C�z ,w�z2w2��z−w�2�Ẑ. Finally, let the following “partial vacuum
xiom” be satisfied:

Y��0�,z�a = a, Resz�z2�−D/2Y�a,z��0 � = a for all a � V . �5.26�

hen there exist uniquely determined mutually commuting even endomorphisms T1 , . . . ,TD of V,
hich make V a vertex algebra over CD.

Proof: We have already pointed out that locality of a�z� and b�w� follows from Jacobi identity
or F�z ,w�= ��z−w�2�N with N�0. We will derive the rest of the axioms of vertex algebra
Definition 4.1� from Eqs. �5.9� and �5.26� �cf. Lemma 5.9�.

2 L
Setting in Eq. �5.9� b= �0� and L�0 such that �z � a�z�c�V�z�, we obtain that
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��z + w�2�L�a�z��0���w�c � V�z,w� .

ince �a�z� �0���w�c�V�w�w2�z�z2, it makes sense to multiply the above equation by �w,z��z
w�2�−L and get

�a�z��0���w�c � �w,zV�z,w��z + w�2 � V�w�w2�z� .

hen letting c= �0� and using the second equality in �5.26� �with respect to w�, we deduce from
ere that a�z� �0��V�z� for all a�V. Thus the second equality in �5.26� can be restated as
�z� �0��z=0=a.

We define the translation endomorphisms T1 , . . . ,TD of V by the formula

T�a ª �z�a�z��0 � �z=0, � = 1, . . . ,D ,

hich should hold if V is a vertex algebra. Then setting c= �0� in Eq. �5.9�, we deduce that

T��a�z�b� − a�z��T�b� = �z� a�z�b ,

hile the substitution b= �0� in Eq. �5.9� implies �T�a��z�=�z� a�z�. The remaining axioms �Defi-
ition 4.1�a�, �b�� are then immediate. �

Remark 5.2: With obvious modifications, Theorem 5.5 and Theorem 5.10 hold also for mod-
les over vertex algebras �see Ref. 28, Sec. 6 for the definition of module�.

The main subtlety of Jacobi identity �5.11� is that one cannot make the substitution u=w in
ach of the factors separately. However, in the next proposition we will show that this can be done
f the field a�z� has a special form. Recall that the regular and singular parts of a formal distribu-
ion were defined in Sec. III D.

Proposition 5.11: Let a ,b be elements in a vertex algebra V, with parities pa and pb, respec-
ively. Assume that for some n�Z the singular part of �z2�na�z�b belongs to V�z�z2. Then we have:

a�z�b�w��z,w��z − w�2�n − �− 1�papbb�w�a�z��w,z��z − w�2�n

= ��z,w − �w,z���a�z − w�b��w���z − w�2�n� , �5.27�

nd the right-hand side is well defined.
Proof: For an arbitrary fixed c�V and L�0, set F�z ,w�= ��z−w�2�n in Eq. �5.11�. Because

he regular part of ��z−w�2�na�z−w� is killed by �z,w− �w,z, we can replace ��z−w�2�na�z−w� by
ts singular part in the right-hand side of �5.11�. But by assumption the coefficients of the singular
art of �z2�na�z�b span a finite-dimensional subspace of V. Therefore, in �5.11� one can substitute
=w in each factor separately, and the right-hand side of �5.27� makes sense. After setting u
w in the other factor in �5.11� it cancels with �z2�L. �

Remark 5.3: When D=1, the assumption of Proposition 5.11 is satisfied for every pair of
lements a ,b�V and every n�Z. In this case, the collection of identities �5.27� is equivalent to
he Jacobi identity of Ref. 19.

Let us note that for D�1 the assumption of Proposition 5.11 is in fact quite restrictive. For
=0 it holds for the scalar free field ��z� discussed in Sec. IV C �because ��z� is harmonic� but

t does not hold for the Wick square :��z�2:. Furthermore, it does not hold for ��z� itself when
�0. On the other hand, the assumption is satisfied for n=0 and any “generalized free field” �see
ef. 28, Sec. 5�, thus providing a version of the Wick theorem �note that the element b is arbitrary�.

. Degree cutoffs and commutator formula

In this section, we derive a commutator formula, which shows in particular that the singular
odes of fields close an algebraic structure under the commutator.

We have remarked at the end of the preceding section that the main difficulty for D�1 as
pposed to D=1 is that the singular part of a�z�b involves an infinite sum in general. To circum-
ent this problem we introduce “degree cutoffs” as follows. For a formal distribution ��z�, written

�N
s in �2.17�, and for any N�R, we define the cutoff ��z� by restricting the sums over m and 
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n �2.17� to indices with m+2
�N. In other words, we restrict the sum to terms with degrees in
less than or equal to N. We denote the remaining part of ��z� by ��z��N

ª��z�−��z��N. In the
ame way, we define cutoffs ��z�s.p.

�N of the singular part of ��z� �see �3.36��. Note that all these
perations are commuting projections on the space of formal distributions.

Even though the singular part a�z�s.p.b may involve infinitely many terms with arbitrarily high
egrees in z, it is important that for fixed N�Z the cutoff of the singular part a�z�s.p.

�Nb is finite, i.e.,
t belongs to V�z�z2. Then the same argument as in the proof of Proposition 5.11 gives the
ollowing result.

Lemma 5.12: Let a ,b ,c be elements in a vertex algebra V, where a and b have parities pa and
pb, respectively. Then for every n ,N�Z and every L�N�a ,c�, we have

a�z�b�w��z,w��z − w�2�n − �− 1�papbb�w�a�z��w,z��z − w�2�n

= ��z,w − �w,z���a�z − w��Nb��w���z − w�2�n�

+ �z2�−L���u + z − w�2�L��z,w − �w,z��a�z − w��Nb��u�c��z − w�2�n�u=w.

We will now apply this lemma in the case n=0 when it reduces to a formula for the commu-
ator of the fields a�z�, b�w�. Then, because of the presence of �z,w− �w,z, on the right-hand side of
he above equation one can replace a�z−w��N and a�z−w��N by their singular parts and obtain

�a�z�,b�w��c = ��z,w − �w,z��a�z − w�s.p.
�Nb��w�

+ ��z2�−L��u + z − w�2�L��z,w − �w,z��a�z − w�s.p.
�Nb��u�c�u=w. �5.28�

he next result shows that the singular parts of fields themselves close a structure with respect to
he commutator.

Proposition 5.13: For every three elements a ,b ,c in a vertex algebra V and for every L
N�a ,c�, one has

�a�z�s.p.,b�w�s.p.�c = ���z2�−L��u + z − w�2�L��z,w − �w,z��a�z − w�s.p.b��u�s.p.c�u=w�s.p. ,

�5.29�

here the outer s .p. on the right-hand side designates taking the singular part with respect to both
and w.

Note that for D�1 a product of two singular terms may contain a regular part; that is why in
5.29� we must include the outer projection onto the singular parts.

Proof of Proposition 5.13: We will prove that �5.29� holds for all terms with total degree in z
nd w up to N, for every fixed N�Z. For this purpose, we consider all terms of total degree �N
n �5.28�, and take the singular parts with respect to both z and w. We will consider separately the
esulting two terms on the right-hand side.

In the first term, the expansion �w,z will not contribute because it produces terms regular in z.
ince �z,w�a�z−w�s.p.

�Nb��w�+ is regular in w, it will not contribute either, and we will obtain

��z,w�a�z − w�s.p.
�Nb��w�s.p.c�s.p. .

eversing the above reasoning, this expression can be rewritten as

���z,w − �w,z��a�z − w�s.p.
�Nb��w�s.p.c�s.p. .

hen, as in the derivation of Lemma 5.12, it is equal to

���z2�−L��u + z − w�2�L��z,w − �w,z��a�z − w�s.p.
�Nb��u�s.p.c�u=w�s.p. .

It remains to prove that the second term resulting from the right-hand side of �5.28� is equal

o
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���z2�−L��u + z − w�2�L��z,w − �w,z��a�z − w�s.p.
�Nb��u�s.p.c�u=w�s.p. .

his follows from the fact that

��z2�−L��u + z − w�2�L��z,w − �w,z��a�z − w�s.p.
�Nb��u�+c�u=w

ontains only terms with total degree in z and w strictly greater than N. �

I. CONCLUDING REMARKS

In this paper we develop further the theory of vertex algebras in higher dimensions. We start
y introducing useful formal calculus techniques including various spaces of formal series and a
ormal residue functional. This residue functional is uniquely determined �up to a multiplicative
onstant� by the property that it is translation invariant �Theorem 3.1�, and so it plays the role of
he integral. In addition, it satisfies an analog of the Cauchy formula �Eq. �3.24��. The modes of
elds can be obtained by integrating the fields �with respect to our residue functional� against
ertain test functions.

Our main goal was to understand the algebraic structure obeyed by the modes of local fields
ith respect to the commutator. For this purpose we derived an analog of the Jacobi identity for
ertex algebras in higher dimensions �Theorem 5.5�. Since the commutator of two local fields is
xpressed in terms of the singular part of their operator product expansion, a natural question
rises whether the singular parts of fields close a structure under the commutator. Utilizing a
ertain degree cutoff technique we proved that this is indeed the case �Proposition 5.13�.

Thus, if we denote by a�z�b the singular part a�z�s.p.b, we find that it closes the following
tructure. The map a ,b�a�z�b� �V�z�z2�s.p. is parity preserving and bilinear on a superspace V
ndowed with an action of mutually commuting even endomorphisms T1 , . . . ,TD, and the follow-
ng axioms are satisfied:

�a� �translation invariance� �T� ,a�z��b= �T�a��z�b=�z�a�z�b;
�b� �skew-symmetry� a�z�b= �−1�papb�ez·T�b�−z�a��s.p.;
�c� �Jacobi identity�

�a�z�,b�w��c = ��z2�−L���u + z − w�2�L��z,w − �w,z��a�z − w�b��u�c�u=w�s.p.

or L�0, and the expression under the substitution on the right-hand side belongs to the space
�z,w− �w,z�V�z ,w,u��z−w�2u2 where setting u=w makes sense. It is expected that the obtained alge-
raic structure will play in higher dimensions the same role as vertex Lie algebras do in dimension
ne.
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PPENDIX: GEOMETRIC REALIZATION OF THE RESIDUE

In this appendix we will provide a geometric definition of the residue functional introduced in

ec. III A. We will suppose that the space–time dimension D is even.
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Let us introduce the following one-parameter family 	M̄r
r�0 of D-dimensional real submani-
olds of CD:

M̄r ª 	z � CD�z = �u, � � C, ��� = r, u � SD−1 � RD
 , �A1�

here SD−1 denotes the unit sphere in RD. Note that M̄1 is exactly the conformally compactified
inkowski space �see Refs. 31 and 28�.

We introduce a parametrization of M̄r,

M̄r � z = rei�u for � � �0,��, u � SD−1, �A2�

hich shows that M̄r is diffeomorphic to �S1�SD−1� /Z2, with the points �ei� ,u� and �−ei� ,−u�
eing identified. In particular, all M̄r are orientable for even D. Thus, the volume form

z1Ù ¯ ÙdzD on CD can be restricted to M̄r and gives rise to a complex measure there. In
arametrization �A2�, we have

dz1 Ù ¯ Ù dzD�M̄r
= irDeiD� d� Ù d��u� , �A3�

here d��u� is the O�D�-invariant volume form dz1Ù ¯ ÙdzD�SD−1 on the unit sphere SD−1.

An important property of the family 	M̄r
 is that if z�M̄r and w�M̄r� for r�r� then �z
w�2�0. Indeed, writing

z = rei�u, w = r�ei��u�, u · u� = cos � = �ei� + e−i��/2, �A4�

e find that

�z − w�2 = �rei� − r�ei���+����rei� − r�ei���−��� . �A5�

his shows that for n�Z the formal Taylor expansion �z,w��z−w�2�n �see �2.26�� in the above
arametrization corresponds to a geometric series expansion for r�r�. Note also that the confor-

al inversion z�z /z2 maps M̄r onto M̄r−1.
Proposition A.1: For f�z��C�z�z2 and g�z ,w��C�z ,w�z2w2�z−w�2, we have

Resz f�z� = �i�VD−1�−1�
M̄r

f�z�dz1 Ù ¯ Ù dzD, �A6�

Resz �z,wg�z,w� = �i�VD−1�−1�
M̄r

g�z,w�dz1 Ù ¯ Ù dzD for w � M̄r�, r� � r , �A7�

Resz �w,zg�z,w� = �i�VD−1�−1�
M̄r

g�z,w�dz1 Ù ¯ Ù dzD for w � M̄r�, r� � r , �A8�

here VD−1=�SD−1d��u�.
Proof: It is enough to check �A6� for the functions �z2�nh�z�, where n�Z and h�z� is a

armonic homogeneous polynomial of degree m. Then �A6� follows from �A3� and the formulas

�
SD−1

h�u�d��u� = �m,0h�0�VD−1, �
0

�

eiD�+2in� d� = ��n,−�D/2�.

quation �A7� follows from �A6� because the expansion �z,wg�z ,w� converges uniformly to

�z ,w� for z�M̄r, w�M̄r� and fixed r�r� �see �A5��. Finally, �A8� is proved in the same way as

A7� but for r�r�. �
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inite dimensional representations of the Euclidean
lgebra e„2… having two generators
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The Euclidean algebra e�2� is the Lie algebra of the group E�2� of Euclidean
transformations of the plane. This paper examines finite dimensional representa-
tions of e�2� having two generators. To each representation with two generators we
associate a graph. In term of graphs, we give a criterion for the indecomposability
of such representations and describe an invariant for indecomposable representa-
tions. We also classify the indecomposable representations of dimensions 5 and 6,
regardless of the number of generators �dimensions less than 5 have been classi-
fied�. In each case there are finitely many such representations. Next, we show that
for each dimension �8 there are infinitely many nonequivalent indecomposable
representations. © 2006 American Institute of Physics. �DOI: 10.1063/1.2197688�

. INTRODUCTION

The group E�2� of Euclidean motions of the plane is the noncompact semidirect product group
2
’SO�2�. The complexification of its Lie algebra, e�2�, has basis �p+ ,p− , l� with commutation

elations given by

�p+,p−� = 0, �l,p±� = ± p±. �1�

et V be a complex representation of E�2�; then V decomposes into weight spaces according to the
ction of so�2�,

V = � Vk, where Vk = �v � V : l · v = kv� and k � Z . �2�

urther, we have

p+Vk � Vk+1, p−Vk � Vk−1. �3�

enceforth, all representations will be over the complex numbers.
Since e�2� is solvable, its finite dimensional, irreducible representations are all one dimen-

ional �see Ref. 11�, and thus of limited interest. Considerable research has been done investigat-
ng the infinite dimensional, unitary irreducible representations of e�2� �see, for example, 1, 3, and
�. However, much less is known about the finite dimensional, indecomposable representations of
�2�. These representations play a significant role in the representation theory of the Poincaré
roup �see Refs. 2, 5, 8, and 9�.

Given a finite dimensional representation V, a set of elements v1 , . . . ,vn�V is defined to be a
et of generators if each element is a weight vector, V= �v1 , . . . ,vn�, and fewer than n weight
ectors will not generate V. A representation of e�2� with one generator is necessarily indecom-
osable �see Ref. 6� and their classification is trivial. They are classified according to the dimen-
ions of the weight spaces since �v�	�w� if and only if dim��v�k�=dim��w�k�, for all k.

In this paper, we will investigate the finite dimensional representations of e�2� with two
enerators. In Sec. II we describe how we may associate to a representation V with generators v1

nd v2 a graph G�V ,v1 ,v2�. Section III contains necessary notation, terminology, and preliminar-
es.
The graph of a representation is dependent on the choice of generators. In Sec. IV we describe

47, 053506-1022-2488/2006/47�5�/053506/14/$23.00 © 2006 American Institute of Physics
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n important type of graph of a representation called the maximal form graph. In Sec. V we
resent a criterion for the indecomposability of representations with two generators in terms of
heir maximal form graphs. In Sec. VI we derive a formula, the generator change formula, that
escribes how changing generators of a representation with two generators changes its graph. We
hen determine an invariant for indecomposable representations using the generator change for-

ula and maximal form graphs.
In Sec. VII we classify the finite dimensional, indecomposable representations of dimensions

and 6 �regardless of the number of generators�; in each case there are finitely many such
epresentations �up to isomorphism�. Those representations of dimension less than 5 were consid-
red in Ref. 5. Next, we show that there are infinitely many nonequivalent indecomposable
epresentations for all dimensions �8.

I. THE GRAPH OF A REPRESENTATION OF e„2…

A representation of e�2� may be completely described in term of generators and relations.
sing this property, Repka and de Guise10 introduced a method for graphically describing some
nite dimensional representations of e�2�. According to this method, a finite dimensional repre-
entation is described by a graph with vertices and directed edges �or arrows�; vertices at the same
eight form a basis of a weight space. Arrows pointing diagonally upwards represent the action of

p+ and arrows pointing diagonally downwards represent the action of p−.
For example, the representation whose graph is in Fig. 1�a� has generators v1 and v2. We

enote the graph G�V ,v1 ,v2�. The scalars, which can be any complex numbers, describe relations
etween v1 and v2. The relation in Fig. 1�a� is

p+v1 − 4p+v2 − 5p+
2p−v2 = 0. �4�

he scalars in the graph will always be associated with the generator with index 2.
Define wt�vi� to be the weight of vi. Thus, in the case of Fig. 1�a�, wt�v1�=wt�v2�.
Note that the graph of a representation is dependent on the choice of generators. For example,

oth Figs. 1�a� and 1�b� are graphs of the same representation. In Fig. 1�a� we have the graph
�V ,v1 ,v2�, and in Fig. 1�b� we have the graph G�V ,w1 ,w2�, where w1=v1−4v2−5p+p−v2, and

2=v2. G�V ,w1 ,w2� is disconnected, reflecting the fact that the representation is decomposable
ith decomposition �w1� � �w2�.

II. NOTATION, TERMINOLOGY AND PRELIMINARIES

Before we continue, we will introduce further notation and terminology and make preliminary
emarks. Let V be a representation with generators v1 and v2. The generators will be indexed such

FIG. 1. Graphs �a� G�V ,v1 ,v2�, and �b� G�v ,w1 ,w2�.
hat wt�v1��wt�v2�. Define
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H = wt�v1� − wt�v2� . �5�

onsider the relation



i=0

N

p+
k+ip−

l+iWiv1 − 

i=0

N

p+
m+ip−

n+iZiv2 = 0, �6�

here Zi ,Wi�C and Z0 ,W0�0. Define invertible matrices

W =�
W0 W1 W2 ¯ WN

0 W0 W1 ¯ WN−1

0 0 W0 ¯ WN−2

� � � � �
0 0 0 ¯ W0

 , Z =�
Z0 Z1 Z2 ¯ ZN

0 Z0 Z1 ¯ ZN−1

0 0 Z0 ¯ ZN−2

� � � � �
0 0 0 ¯ Z0

 . �7�

e shall write the relation in �6� as

p+
kp−

l Wv1 − p+
mp−

nZv2 = 0. �8�

riting relations in this form allows us to manipulate them easily. For example, multiplying both
ides of �8� by W−1 gives

p+
kp−

l v1 − p+
mp−

nW−1Zv2 = 0. �9�

et �=gcd�p+
kp−

l ,p+
mp−

n�. Then Eq. �9� becomes

��p+
k�p−

l�v1 − p+
m�p−

n�W−1Zv2� = 0, for appropriate k�,m�,l�,n� � N . �10�

Suppose we have a relation R of the form ��p+
hZ�1�v1−p+

hZ�0�Zv2�=0 where hZ�0� ,hZ�1��0 and
y assumption Z0�0. By a slight abuse of notation we shall often write the relation ��p−

hZ�1�v1

p+
hZ�0�Zv2�=0 as

R = ��p−
hZ�1�v1 − p+

hZ�0�Zv2� . �11�

he matrix Z of the relation is called a relation matrix. And, hZ�0� is called the height of the
elation matrix Z. Of course, hZ�0� determines hZ�1� and vice versa since H=hZ�0�+hZ�1�.

Suppose wt�v1��wt�v2�. Then, the relation in �11� is of type 1 if hZ�1��0 and hZ�0��0; type
if hZ�1�=0 and hZ�0��0; type 3 if hZ�1��0 and hZ�0�=0.

Given relation matrices Z and W of the same height, define ��Z ,W� to be the index of the first
ntries of Z and W that differ. The gluing scalar of a relation matrix is the leading entry �that is,
he entry with index 0�. A nonzero weight element v�V is terminal if p+v=0 and p−v=0.

Given a matrix W as in �7�, we will define a matrix W�k� to be the matrix obtained by inserting
zero-columns on the left of W and removing the k rightmost columns of W. To illustrate this

oncept consider the following example:

If W =�
1 2 3 4

0 1 2 3

0 0 1 2

0 0 0 1
, then W�2� =�

0 0 1 2

0 0 0 1

0 0 0 0

0 0 0 0
 . �12�

atrices of the form in �7� are called upper triangular Toeplitz matrices. For any such matrices W

nd Z, we have �WZ��k�=W�k�Z=WZ�k�. Also note that W�0�=W.
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V. THE MAXIMAL FORM

As was mentioned above, the graph of a representation depends on the choice of generators.
n this section we describe a particular choice of generators that will be used in the indecompos-
bility criterion and for the invariant of indecomposable representations.

Let v1 and v2 be generators of a representation V such that wt�v1��wt�v2�. Consider an
rbitrary pair of generators w1 ,w2 of V such that wt�v1�=wt�w1� and wt�v2�=wt�w2�. Recall H
wt�v1�−wt�v2� and suppose

dim��v1�k� � max�dim��w1�k�,dim��p+
Hw2�k�� , �13�

dim��v2�k� � max�dim��w2�k�,dim��p−
Hw1�k��, " k � N . �14�

hen G�V ,v1 ,v2� is in maximal form.
Note that every representation has a graph which is in maximal form; suppose that a repre-

entation V has generators v1 ,v2. Then, it is straightforward to show that G�V ,v1−�p+
Hv2 ,p−

Hv1

�v2� is in maximal form if � and � are not zero, are not gluing scalars and ���.
The following lemma and Proposition 1 below establish several important properties of the

aximal form that will be important in subsequent sections.
Lemma 1: Let V be a representation with generators v1 and v2 such that wt�v1��wt�v2�.

uppose that G�V ,v1 ,v2� is in maximal form. Then all relations are of type 1, 2, or 3.
Proof: Suppose there is a relation that is not of type 1, 2, or 3. We then have a relation

R1 = �1�v1 − Zp+
H+lp−

l v2� , �15�

r

R2 = �2�p+
l p−

H+lv1 − Zv2� , �16�

here Z0�0 and l�0. Assume there is a relation as in �15�. Then

��1v1� 	 ��1Zp+
H+lp−

l v2� . �17�

et

w1 = v1 − �p+
Hv2 and w2 = v2, �18�

here ��0 and if there are relation of the form R=��v1−Wp+
Hv2� such that W0�0, then �

W0. Let �1=p+
s p−

t and define k=wt�v1�+s− t. Then, by �17� and �18�,

dim��w1�k� � dim��v1�k� . �19�

his, however, contradicts the hypothesis that G�V ,v1 ,v2� is maximal. Thus, we cannot have a
elation as in �15� and we may show in a similar manner that we cannot have a relation as in
16�. �

Consider graphs G�V ,v1 ,v2� and G�U ,u1 ,u2� in maximal form such that wt�vi�=wt�ui� and
vi�	�ui�, for i� �1,2�. A relation in G�U ,u1 ,u2� is said to correspond to a relation in G�V ,v1 ,v2�
f they have the same weight.

Let the graphs G�V ,v1 ,v2� and G�U ,u1 ,u2� be in maximal form and wt�vi�=wt�ui� for i
�1,2�. Then, define

G�V,v1,v2� � G�U,u1,u2� �20�

f

�1� �vi�	�ui�, for i� �1,2�.
hZ�1� hZ�0�
�2� There is a relation R=��p− v1−Zp+ v2� in G�V ,v1 ,v2�.
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�Û� There is a relation S=��p−
hW�1�u1−Wp+

hW�0�u2� in G�U ,u1 ,u2�, where R and S are corre-
ponding relations.

Note that it is not necessary that W=Z, but if R and S correspond then necessarily hZ�0�
hW�0� and hZ�1�=hW�1� If G�V ,v1 ,v2��G�U ,u1 ,u2�, then these graphs are identical up to the

calar values in the relations.
Proposition 1: Let the graphs G�V ,v1 ,v2� and G�U ,u1 ,u2� be in maximal form. Then,

V 	 U Þ G�V,v1,v2� � G�U,u1,u2� . �21�

Proof: Let wt�v1�=wt�u1��wt�u2�=wt�v2�. Let w1 ,w2 be another set of generators of V such
hat G�V ,w1 ,w2� is in maximal form, then we must have �vi�k= �wi�k for i=1,2 and all k�N by

aximality. Hence, �vi�	�wi� for i=1,2. It follows that

�vi� 	 �ui�, i = 1,2. �22�

y Lemma 1, a relation of V must be of the form

R = ��p−
hZ�1�v1 − Zp+

hZ�0�v2�, 0 � hZ�i� � H, i � �1,2� . �23�

t suffices to show that if V has a relation as in �23� then U has a corresponding relation

S = ��p−
hZ�1�v1 − Wp+

hZ�0�v2� . �24�

owever, this follows from �22�, consideration of dimensions and maximality. �

Unfortunately, if G�V ,v1 ,v2��G�U ,u1 ,u2�, then it is not necessarily true that V	U �see Ref.
�. Further, if V	U with G�V ,v1 ,v2� and G�U ,u1 ,u2� in maximal form then it is not necessarily
rue that G�V ,v1 ,v2�=G�U ,u1 ,u2�.

We end the section with an example of a maximal and a nonmaximal graph. Let V be a
epresentation with generators v1 and v2 such that wt�v1��wt�v2� and graph as shown in Fig. 2�a�.
he graph is not in maximal form. But, if we let u1=v1 and u2=p−

2v1−v2 the graph is in maximal

FIG. 2. Graphs of a representation �a� not in maximal form and �b� in maximal form.
orm �see Fig. 2�b��. It will follow from the indecomposability criterion that V is indecomposable.
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. INDECOMPOSABILITY CRITERION

Let V be a representation with graph G�V ,v1 ,v2� in maximal form. In this section we give a
recise criterion under which V does or does not decompose. Equivalently, the criterion establishes
hen there exists a choice of generators u1 ,u2 for V such that G�V ,u1 ,u2� is disconnected.

Let

w1 = Av1 + Bp+
Hv2, w2 = Cp−

Hv1 + Dv2, �25�

here A= �ai�, B= �bi�, C= �ci� and D= �di� are upper triangular Toeplitz matrices. Then w1 and w2

enerate V if and only if a0d0�b−Hc−H, where we define bi=0, if i�0 �we similarly define ai ,ci

nd di for i�0�.
The indecomposability criterion is expressed in the following proposition.
Proposition 2: �a� V is decomposable Û there is a generator change w1 ,w2 such that for each

elation ��p−
h�1�v1−p+

h�0�Zv2�=0 in the maximal graph G�V ,v1 ,v2� either �w1=0 or �w2=0.
�b� Further, in the case of decomposability, V= �w1� � �w2�.
Proof: We first consider �a� �Ü� We will show that V= �w1� � �w2� �this will also establish

b��. Consider the relation ��p−
h�1�v1−Zp+

h�0�v2�=0. Since either �w1=0 or �w2=0 we have either
�1�=0 or h�0�=0, respectively.

Since G�V ,v1 ,v2� is in maximal form, dimension considerations imply that no relations may
e created as we change generators from v1, v2 to w1, w2; and no relation may be increased in
ength. Thus, it suffices to show that that for each relation of the form ��v1−Zp+

Hv2�=0 or
�p−

Hv1−Zv2�=0 we no longer have a relation between w1 and w2 of weight wt��w1� or wt��w2�,
espectively. This, however, follows from the fact that �w1=0 or �w2=0.

�Þ� Suppose that V decomposes. Then for some generator change w1=Av1+Bp+
Hv2 ,w2

Cp−
Hv1+Dv2 we have V= �w1� � �w2�. The generator change from v1, v2 to w1, w2 and the

elation ��p−
h�1�v1−Zp+

h�0�v2�=0 imply, via straightforward algebraic manipulation, that

��C�h�0��Z + D�p−
h�1�w1 = ��AZ + B�h�1���p+

h�0�w2. �26�

f both C�h�0��Z+D=0 and AZ+B�h�1��=0 then a0d0=c−Hd−H which is impossible since w1 ,w2

re generators. If both C�h�0��Z+D�0 and AZ+B�h�1���0 then �w1�� �w2��0 which is impos-
ible since V= �w1� � �w2�.

Thus exactly one of C�h�0��Z+D=0 or AZ+B�h�1��=0. If C�h�0��Z+D=0 then h�0�=0 and

0Z0+b−H�0 to satisfy a0d0�c−Hd−H. Then AZ+B�h�1�� is invertible so that �26� implies �w2

0. Similarly if AZ+B�h�1��=0 then �w1=0 as required. �

Note that if a representation V is decomposable, its decomposition is unique up to isomor-
hism and permutation of components by the Krull-Schmidt theorem.7

The following corollaries express special cases of Proposition 2 which are often useful in
ractice.

Corollary 1: If G�V ,v1 ,v2� has a type 1 relation then V is indecomposable.
Proof: Suppose that V were decomposable and let ��p−

h�1�v1−Zp+
h�0�v2�=0 be a type 1 relation

f G�V ,v1 ,v2�. Then, by Proposition 2, there would exist a generator change w1=Av1

Bp+
Hv2 ,w2=Cp−

Hv1+Dv2 such that �w1=0 or �w2=0. However, since h�0��0 and h�1��0, this
mplies a0d0=0=b−Hc−H, which contradicts the fact that w1 ,w2 is a set of generators. Hence, it
ust be the case that V is indecomposable. �

Corollary 2: If H=0 and G�V ,v1 ,v2� has �3 gluing scalars then V is indecomposable.
Proof: There are relations Ri=�i�v1−�iv2� for i=1,2 ,3 such that the �i are distinct. Suppose

hat V were to decompose. Then there would exist a generator change w1=Av1+Bp+
Hv2 ,w2

Cp−
Hv1+Dv2 as in Proposition 2. Then, by the above proposition, there must be two relations, say

1 and R2, such that either �1w1=0 and �2w1=0 or �1w2=0 and �2w2=0. Without loss of gener-
lity, assume the former. �1w1=0 implies �1=−b0 /a0 while �2w1=0 implies �2=−b0 /a0. This is
mpossible since then �1��2. Hence it must be the case that V is indecomposable. �
Example: The graph in Fig. 3�a� is in maximal form. The relations in G�V ,v1 ,v2� are
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p+
2�v1 − �1 1

2

0 1
�v2� = 0 and p−�v1 − �1 1

2

0 1
�v2� = 0. �27�

onsider the generator change w1=v1, and w2=v1−v2− 1
2 p+p−v2. Then p+

2w2=0 and p−w2=0.
hus, by Proposition 2, V decomposes as �w1� � �w2�, as in Fig. 3�b�.

Example: The graph G�V ,v1 ,v2� in Fig. 4, which is in maximal form, has relations

p+
5�v1 − �1 1

0 1
�p+v2� = 0, p+

3p−
2�v1 − �1 2

0 1
�p+v2� = 0,

�28�

p−
5�p−v1 − �1 0

0 1
�v2� = 0.

y Proposition 2, if V were to decompose there would be a generator change w1=Av1+Bp+v2,

2=Cp−v1+Dv2 such that p+
5w1=0 ,p+

3p−
2w1=0 and p−

5w2=0. However, if p+
5w1=0, then p+

3p−
2w1

p+
3p−

2�v1− �1 1

0 1 �p+v2�=p+
5p−

3v2�0. Hence it must be the case that V is indecomposable.

FIG. 3. �a� A decomposable graph and �b� its decomposition.
FIG. 4. An indecomposable graph.
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I. THE GENERATOR CHANGE TRANSFORMATION AND AN INVARIANT FOR
NDECOMPOSABLE REPRESENTATIONS

In this section we describe an invariant for indecomposable representations. First we introduce
transformation on pairs of generators. Let

w1 = Av1 + Bp+
Hv2, w2 = Cp−

Hv1 + Dv2 �29�

e a generator change. The generator change from v1 ,v2 to w1 ,w2 induces a change of graphs
rom G�V ,v1 ,v2� to G�V ,w1 ,w2� which in turn induces a change in the relations and relation
atrices. To this generator change we will also associate the transformation

	�v1,v2�,�w1,w2��Z� =
AZ + B�h�1��
C�h�0��Z + D

, �30�

here Z is an upper triangular Toeplitz matrix. In place of 	�v1,v2�,�w1,w2� we shall write 	 when no
mbiguity arises. The transformation 	 is called the generator change transformation. After es-
ablishing preliminary results for generator change transformations we will construct an indecom-
osability criterion in Proposition 3 below.

Lemma 2: Suppose that V is an indecomposable representation with generators v1 ,v2 and

1=Av1+Bp+
Hv2 ,w2=Cp−

Hv1+Dv2 such that G�V ,v1 ,v2� and G�V ,w1 ,w2� are in maximal form.
hen, G�V ,v1 ,v2��G�V ,w1 ,w2�. Further, given a relation

��p−
h�1�v1 − Zp+

h�0�v2� = 0 �31�

n G�V ,v1 ,v2�, where H=h�0�+h�1�, the corresponding relation in G�V ,w1 ,w2� is

��p−
h�1�w1 − 	�Z�p+

h�0�w2� = 0. �32�

ote that by maximality, all relations are in the form of �31�.
Proof: That G�V ,v1 ,v2��G�V ,w1 ,w2� follows from Proposition 1. And, as was mentioned

bove, the generator change w1=Av1+Bp+
Hv2 ,w2=Cp−

Hv1+Dv2 and the relation in �31�, via
traightforward algebraic manipulation, imply

��C�h�0��Z + D�p−
h�1�w1 = ��AZ + B�h�1���p+

h�0�w2. �33�

f both a0Z0+b−h�1�=0 and c−h�0�Z0+d0=0 then we contradict a0d0�c−Hd−H which is a necessary
ondition for w1 ,w2 to be generators. If one of a0Z0+b−h�1�=0 or c−h�0�Z0+d0=0 then �33� con-
radicts Lemma 1. Thus a0Z0+b−h�1��0 and c−h�0�Z0+d0�0, so that C�h�0��Z+D and AZ
B�h�1�� are invertible, and

�p−
h�1�w1 = �

AZ + B�h�1��
C�h�0��Z + D

p+
h�0�w2 = �	�Z�p+

h�0�w2. �34�

�

Lemma 3: Let v1 ,v2 and w1=Av1+Bp+
Hv2 ,w2=Cp−

Hv1+Dv2 be generators of a representation
. Further, let G�V ,v1 ,v2� be in maximal form. If a0Z0+b−hZ�1��0 and c−hZ�0�Z0+d0�0 for all

elation matrices Z, then G�V ,w1 ,w2� is also in maximal form.
Proof: Since G�V ,v1 ,v2� is in maximal form, dimension considerations imply that no relations

ay be created as we change generators from v1 ,v2 to w1 ,w2. Hence to show that G�V ,w1 ,w2� is
n maximal form it suffices to show that no relations are shortened in length �they may not be
engthened by dimension considerations�.

Consider the relation

��p−
h�1�v1 − Zp+

h�0�v2� = 0. �35�
s above we have,
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��C�h�0��Z + D�p−
h�1�w1 = ��AZ + B�h�1���p+

h�0�w2. �36�

ince a0Z0+b−hZ�1��0 and c−hZ�0�Z0+d0�0, the matrices C�h�0��Z+D and AZ+B�h�1�� are in-
ertible thus the relation in �35� becomes

�p−
h�1�w1 − �

AZ + B�h�1��
C�h�0��Z + D

p+
h�0�w2 = 0 �37�

ith the leading entry of �AZ+B�h�1��� / �C�h�0��Z+D� in C− �0�, as required. �

The converse of Lemma 3 also holds, but will not be proved here. The next proposition
etermines an invariant for indecomposable representations.

Proposition 3: Let V and U be indecomposable representation with generators v1 ,v2 and

1 ,u2, respectively, such that G�V ,v1 ,v2� and G�U ,u1 ,u2� are in maximal form. Then

V 	 U Û G�V,v1,v2� � G�U,u1,u2� , �38�

nd there exists a generator change 	 such that 	�Z�=W for all corresponding relation matrices
and W.

Proof: �Þ� Suppose V	U, then Proposition 1 implies G�V ,v1 ,v2� , �G�U ,u1 ,u2�. By equiva-
ence, there must exist a generator change w1=Av1+Bp+

Hv2 ,w2=Cp−
Hv1+Dv2 such that

�V ,w1 ,w2�=G�U ,u1 ,u2�. Hence, by Lemma 2 we have a generator change transformation
�Z�= �AZ+B�h�1��� / �C�h�0��Z+D�=W for all corresponding relation matrices Z and W of
�V ,v1 ,v2� and G�U ,u1 ,u2�, respectively.

�Ü� Assume G�V ,v1 ,v2��G�U ,u1 ,u2� and let 	 be a generator change such that 	�Z�
�AZ+B�h�1��� / �C�h�0��Z+D�=W, for all corresponding relation matrices Z and W.

Then, w1=Av1+Bp+
Hv2 ,w2=Cp−

Hv1+Dv2 are generators of V and the hypothesis of Lemma 3
s satisfied. Thus G�V ,w1 ,w2� is in maximal form. Hence, by Proposition 1 G�V ,v1 ,v2�

G�V ,w1 ,w2�. It follows that G�V ,w1 ,w2��G�U ,u1 ,u2�.
We have that 	�Z�=W is the relation in G�V ,w1 ,w2� and in G�U ,u1 ,u2� corresponding to Z in

�V ,v1 ,v2�. Hence G�V ,w1 ,w2��G�U ,u1 ,u2� with equal corresponding relations. That is,
�V ,w1 ,w2�=G�U ,u1 ,u2�. Thus V	U. �

Note that showing the existence of a generator change 	 such that 	�Z�=W for all correspond-
ng relation matrices Z and W amounts to solving a system of linear equations in variables ai ,bi ,ci,
nd di subject to the constraint a0d0�b−Hc−H.

II. CLASSIFICATION IN SMALL DIMENSION

In this section we classify the indecomposable representations of dimensions 5 and 6, regard-
ess of the number of generators. In each case there are finitely many such representations �up to
somorphism�. Next, we show that for all dimensions �8 there are infinitely many nonequivalent
ndecomposable representations.

Any indecomposable representation V may be tensored with a character 
r for r�Z so that a
eight space Vk with weight k becomes a weight space Vk � 
r of weight k+r. From here onward
e shall assume that all indecomposable representations are renormalized so that their lowest
eight is 0.

In Ref. 5, Cassinelli et al. describe a class C of indecomposable representations and classify
he representations in this class of dimension �4. The representations in C can be characterized as
ollows: V�C if there exists a set of generators v1 ,v2 , . . . ,vn such that wt�vi��wt�vi+1� and

p−
�ivi=p+

�ivi+1 for 1� i�n−1 and �i ,�i�N�0.
The indecomposable representations in C of a given dimension are found by considering the

onnected graphs of the required dimension satisfying the characterization of the representations
n C �and of course satisfying the requirement that �p− ,p+�=0�. These graphs are shown to be
ndecomposables and it is straightforward to show that two such representations are equivalent if

5
nd only if they have the same graph.
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Cassinelli et al. remark that they are uncertain whether or not all finite dimensional indecom-
osable representations are in C. We illustrate below that there are indecomposable representations
ot in C for all dimensions �6. In fact the most complicated representations �complicated in terms
f creating an indecomposability criterion and classifying� are not contained in C.

. Classification in dimension 5

Figure 6 lists all five-dimensional representations in C and Proposition 4 below shows that all
ndecomposable representations of this dimension are contained in C. In fact all indecomposable
epresentation of dimension �5 are in C.

Figure 8 lists the indecomposable representations of dimension 6 in C. There are two addi-
ional isomorphism classes which are not in C; they are shown in Fig. 7. Figures 7 and 8 form a
omplete list of indecomposable, nonequivalent representations �Proposition 5 below�.

The method described to assign graphs to representations with two generators may be gener-
lized in a natural way to representations with an arbitrary number of generators, provided all
elations among generators can be generated by pairwise relations between generators. We call
uch representations graphical. We will use the following lemma about graphical representations
elow.

Lemma 4: If V is indecomposable and dim�V��6 then V is graphical.
Proof: We consider just the case dim�V�=6 and 3 generators since all other cases are similar

nd easier. Let v1 ,v2, and v3 generate V with wt�v1��wt�v2��wt�v3�.
Suppose that V is not graphical. Then we would have dim��ivi�i=1,2,3=2 for some �i=p+

aip−
bi. It

ollows, by dimension considerations, that p+p−vi=0 for all i. Hence, for each i ,�i=p+
ai or p−

bi.
Suppose ai�0 for all i. We would then have a relation 
i=1

3 �ip+
aivi=0 with �i�0 for all i. If

his were the only relation required to describe all relations among the generators then V= �v3�
� �v1 ,�2v2+�3p+

a3−a2v3�.
Suppose there is another relation among the generators. There is at most one other relation and

t must be of the form �1p−
c1v1+�2p−

c2v2+�3p−
c3v3=0 with exactly two of �i�0 �considering

imensions and p+p−vi=0�. Assume �1=0 �other cases are similar�. By dimension considerations,
t�v1�=wt�v2�=wt�v3� so that a1=a2=a3=1. We have either dim�p+v1 ,�2p+v2+�3p+v3�=1 or 2.

f dim�p+v1 ,�2p+v2+�3p+v3�=1 then ��2v2+�3v3�= ��2v2+�3v3� and V= �v1 ,�2v2+�3v3� � �v3�.
f dim�p+v1 ,�2p+v2+�3p+v3�=2 then V= ��2v2+�3v3� � �v1 ,�2v2+�3v3�.

Similarly, if bi�0 for all i then V would decompose. Now suppose that exactly two of ai

0. Then we must have b1�0,a2�0 and a3�0. Then we have a relation �1p−
b1v1+
i=1

2 �ip+
aivi

0 with �i�0 for all i. If this is the only relation required to describe all relations among the
enerators then V= �v3� � �v1 ,�2v2+�3p+

a3−a2v3�.
Suppose there is another relation among the generators. There is at most one other relation and

t must be of the form �2p−
c2v2+�3p−

c3v3=0 with �i�0 for all i �considering dimensions and
p+p−vi=0�. By dimension considerations, wt�v2�=wt�v3� and a1=b2=b3=1. We have either dim
p−v1 ,�2p+v2+�3p+v3�=1 or 2. If dim�p−v1 ,�2p+v2+�3p+v3�=1 then ��2v2+�3v3�= ��2v2

�3v3� and V= �v1 ,�2v2+�3v3� � �v3�. If dim�p−v1 ,�2p+v2+�3p+v3�=2 then V= ��2v2+�3v3�
� �v1 ,�2v2+�3v3�.

Similarly, if exactly two of bi�0 then V would decompose. Thus V, being indecomposable, is
raphical. �

Proposition 4: Let V be an indecomposable representation with dim �V��5, then V�C.
Proof: Certainly there can be no more than five generators. If there were five generators, vi for

=1,2 ,3 , . . . ,5, then dim�V�=5 and V= � i=1
5 �vi�. If there is one generator then trivially V�C.

Suppose there were four generators. Let v1 ,v2 ,v3 ,v4 be a set of generators. If dim�V�=4 then
would decompose as V= � i=1

4 �vi�. Thus we must have dim�V�=5.
By dimension considerations and indecomposability, for all i, p−vi=0, or p+vi=0; and p−vi, or

p+vi is terminal. Thus, we must have wt�vi�=wt�v j� for some i� j. Let wt�v1�=wt�v2�. We have
ither p+v1−�p+v2=0 or p−v1−�p−v2=0 for some ��C− �0�. In either case, V	�v1−�v2�
� �v1 ,v3 ,v4�. Hence, V, being indecomposable, cannot have four generators.

                                                                                                            



d
e

V

=
−
I

=

o
w
−

w
w

i
t

B

e
=

H
F

m
=
a
a
o

053506-11 Nonunitary Euclidean algebra representations J. Math. Phys. 47, 053506 �2006�

                        
Suppose that V has two generators. Let u and v generate V and suppose that p+p−u�0. By
imension consideration we must then have p+p−v=0,p+

2p−u=0, and p+p−
2u=0. Then, V must be

quivalent to one of the four graphs in Fig. 5.
The graphs in Figs. 5�a� and 5�b� are in C. The graphs in Figs. 5�c� and 5�d� are decomposable;

= �v−p+u� � �u� or V= �v−p−u� � �u�, respectively.
Now suppose that V has generators v1 ,v2 with wt�v1��wt�v2� such that p+p−vi=0 for i

1,2. First let wt�v1�=wt�v2�. Then we may have relations of the form p+
av1−�p+

av2=0 or p−
bv1

�p−
bv2=0.

f we have just the first relation then V= �v1−�v2� � �v1�. If just the second then V= �v1−�v2�
� �v1�. If we have both relations and ��� then V= �v1−�v2� � �v1−�v2� while if �=� then V

�v1−�v2� � �v2�.
Now suppose that wt�v1��wt�v2�. If we have a relation p−

av1−�p+
bv2=0 then we have no

ther relations and V�C. Otherwise we just have relations p−
av1−�p−

bv2=0 or p+
cv1−�p+

dv2=0. If
e have just the first relation then V= �p−

a−bv1−�v2� � �v1�. If just the second then V= �v1

�p+
d−cv1� � �v2�. If both then V= �v1−�p+

d−cv2� � �p+
a−bv1−�v2�.

Hence, if V has two generators than either V�C or V is decomposable. The remaining case
ere V has three generators follows in an analogous manner to the two generator case and thus
ill not be considered. �

Figure 6 is a complete list of indecomposable, nonequivalent representations of dimension 5
n C. Hence by Proposition 4 it is a complete list of all indecomposable, nonequivalent represen-
ations of this dimension.

. Classification in dimension 6

Proposition 5: Let V be an indecomposable representation such that dim�V�=6 then V is
quivalent to one of the graphs in Fig. 8 or one of the six dimensional graphs in Fig. 7 �i.e., k
0 in Fig. 7�.

Proof: Checking that V�C if V does not have two generators follows as in the previous proof.
ence we will only show that if V has two generators then it is equivalent to one of the graphs in
ig. 8 or one of the six dimensional graphs in Fig. 7.

We first establish that we cannot have wt�v1�=wt�v2�. We may assume that G�V ,v1 ,v2� is in
aximal form so that �v1�	�v2�. Let Ti be the terminal space of �vi� �i.e., Ti= �v� �vi� : p+v
0, p−v=0��. By dimension considerations dim�Ti��2 for i=1,2. Also by dimension consider-
tions all relation matrices must be 11. Hence there can be at most two gluing scalars �1 ,�2 and
ll relations are in the form ��v1−�iv2�=0 for i=1 or 2. Hence, V= �v1� � �v1−�1v2� in the case of

FIG. 5. The graphs G�V ,u ,v� of five dimensions such that p+p−u�0.
ne gluing scalar or V= �v1−�1v2� � �v1−�2v2� in the case of two gluing scalars.
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Next we consider wt�v1��wt�v2�. First suppose that p+p−vi=0 for i=1,2. Then, we have only
hree possible relations; p+

a1v1−�p+
a2v2=0 ,p−

b1v1−�p−
b2v2=0 or p−

c1v1−�p+
c2v2=0 for ��C− �0�. If

e have the last relation than we cannot have either of the other two and V�C. If we have one or
oth of p+

a1v1−�ap+
a2v2=0 ,p−

b1v1−�bp−
b2v2=0 then V decomposes. For instance if we have both

hen V= �v1−�ap+
a2−a1v2� � �p−

b1−b2v1−�bv2�.
Now suppose that p+p−v1�0. By dimension considerations p+

2p−v1=0 and p+p−
2v1=0. If V is

ot in C then the only possibility is that p+
2v2−�p+p−v1=0 for some ��C− �0� describes the

elation between v1 and v2. We can always change generators to w1=v1 ,w2=�v2 to get the first
raph in Fig. 7. �By Corollary 1, it is indecomposable since it has a relation of type 1�. The case
here p+p−v2�0 is similar. Hence we have shown that if dim�V�=6 then either V decomposes or

s equivalent to one of the graphs in Fig. 8 or one of the six-dimensional graphs in Fig. 7. �

The two graphs in Fig. 7 are clearly nonequivalent for any k. Figure 8 is a complete list of
ndecomposable, nonequivalent representations of dimension 6 in C. Hence by Proposition 5, Figs.

and 7 form a complete list of all indecomposable, nonequivalent representations of this dimen-
ion.

Proposition 5 shows that not all indecomposable representations are in C for dim�V�=6. In
act, for each dimension �6 there are indecomposable representations not in C. For example, the

FIG. 6. The indecomposable representation of dimension 5.
FIG. 7. Indecomposable representations of dimension 6+k, for k�N, not in C.
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epresentations in Fig. 7, which each have two generators, are 6+k dimensional for k�N. By
orollary 1, they are indecomposable since they have either a relation p+�p−v1−p+

k+1v2�=0 or
p−�p−

k+1v1−p+v2�=0.

. Higher dimensional representations

For each dimension �8 there are infinitely many nonequivalent, indecomposable representa-
ions. The graph in Fig. 9 is from a representation Vz of dimension 8+k for k�N. The maximal
raph G�Vz ,v1 ,v2� has relations p+�p−v1−p+v2�=0 and p−�p−v1−zp+v2�=0. These relations are
oth type 1 and thus the representation is indecomposable �Corollary 1�.

Proposition 6: Vz	VwÛz=w.
Proof: If z=w then G�Vz ,v1 ,v2�=G�Vw ,v1 ,v2� which implies Vz	Vw. Let z�w and suppose

hat Vz	Vw. Then, by Proposition 3, we would have a generator change 	 such that 	�1�=1 and
�z�=w. However, 	�1�=a01 /d0=1 thus 	�z�=a0z /d0=z�w; a contradiction. Hence, z�w im-
lies Vz /	Vw. �

Proposition 6 establishes that there are infinitely many nonequivalent indecomposable repre-
entations of dimension 8+k for k�N. We are uncertain if there are only finitely many indecom-
osable representations of dimension 7, but we conjecture that there are.

In a subsequent paper we will generalize the results of this paper pertaining to two generators
o all graphical representations of e�2�. We will also classify all indecomposable representations

FIG. 8. The indecomposable representations of dimension 6 in C.
aving two generators.
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We investigate the link between a periodic box-ball system �PBBS� and a solvable
lattice model. Introducing a PBBS with an integer parameter corresponding to the
dimensionality of the auxiliary space for the lattice model, we prove an important
relationship between the conserved quantities of states of the PBBS and eigenvec-
tors constructed through the string hypothesis. © 2006 American Institute of Phys-
ics.
�DOI: 10.1063/1.2200142�

. INTRODUCTION

A periodic box-ball system �PBBS� is a dynamical system of balls in a one-dimensional array
f boxes with a periodic boundary condition. It can be obtained from the zero temperature limit of
olvable lattice models which are generalizations of the six-vertex model.1 In Ref. 2, we explained
hy the fundamental cycle of PBBS is obtained from the eigenvalues of the transfer matrix of the

attice model and conjectured an important relation between the string hypothesis of Bethe ansatz
quation and the conserved quantities of PBBS. In this article, we prove this relation �Theorem
.1� by introducing a positive integer parameter to the evolution rule of PBBS. As for the PBBS
beying this rule, we will shown the following properties: the time evolution rule is equivalent to
n action of the transfer matrix of the solvable lattice model at the zero temperature limit �Theo-
em 2.1�; the conserved quantities under the original time evolution rule of the PBBS are con-
erved under the new rule �Proposition 2.1�.

In the rest of this section, we give definitions of the PBBS and the vertex models, and present
he main theorem �Theorem 1.1�. In Sec. II, we introduce yet another PBBS with the time evo-
ution rule characterized by a positive integer, and we investigate its properties. In Sec. III, we
repare a proposition about eigenvalues of the transfer matrix in the zero temperature limit of the
olvable lattice model, and prove Theorem 1.1. Section IV is devoted to the concluding remarks.

. A periodic box-ball system

There may be many ways to describe the update rule of a periodic box-ball system.1,3 Here we
hall give yet another one. This is done in order that we may define a generalized model in Sec.

�Electronic mail: mada@ms.u-tokyo.ac.jp
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�
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I. We hope that the readers feel that things are clearly stated in the following description. The
quivalent definition adopted in previous work is shown in the Appendix .

Let N and M be non-negative integers. Let ��N� be the set of all sequences of zeros and ones
f length N, and let �M�N� be the subset of ��N� consisting of sequences having exactly M 1’s.
hat is,

��N� = Map��N�,�0,1�� ,

�M�N� = ���� � ��N�, # �−1��1�� = M� ,

here �N�= �1,2 , . . . ,N�, Map�A ,B� denotes the set of all mappings of A into B, and #A the
umber of elements in a finite set A. We use � to denote both the mapping � : �N�→ �0,1� and a
nite sequence ���1� ,��2� , . . . ,��N��.

In what follows, we always assume that M �N /2.
Let �= ��1 ,�2 , . . . ,�N���M�N�. Let ��0�=�, N�0�=N, and M�0�=M. For each j=1,2 ,3 , . . .,

et W�j� be the set of all pairs of positions in ��j−1� where 0 follows 1. Because of the periodic
oundary condition, this includes the case �N=1 and �1=0. By definition, #W�j� is even; thus,
efine

pj = 1
2 # W�j� and N�j� = N�j−1� − 2pj;

et n�j��Map��N�j�� , �N�j−1��� be defined by

�n�j��1�,n�j��2�, . . . ,n�j��N�j��� = �N�j−1�� \ W�j�,

here n�j��1��n�j��2�� ¯ �n�j��N�j��; let M�j�=M�j−1�− pj, and define a subsequence � j �

M�j��N�j�� of ��j−1� by

��j� = ��j−1� � n�j�.

et L be the integer uniquely determined by the condition

N�j−1� � N�j� �j � L� and N�j� = N�L� �j � L� .

hen we have

�N� = W�1� � ��
j=2

L

n�1��n�2��¯n�j−1��W�j�� ¯ ��	
�n�1��n�2��¯n�L−1��n�L���N�L���� ¯ �� �disjoint union� .

or example, let N=28, M =9, and

� = �0,0,0,0,0,1,1,1,1,0,0,0,1,1,0,1,1,0,0,0,1,0,0,0,0,0,0,0� .

hen we have

�1� W�1�= �9,10,14,15,17,18,21,22� , p1= 1
2 #W�1�=4,

N�1� = N − 2p1 = 20, M�1� = M − p1 = 5,

n�1� = �1,2,3,4,5,6,7,8,11,12,13,16,19,20,23,24,25,26,27,28� ,

��1� = � � n�1� = �0,0,0,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0�;

�2� W�2�= �8,9 ,12,13� , p2= 1
2 #W�2�=2,

�2� �1� �2� �1�
N = N − 2p2 = 16, M = M − p2 = 3,
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n�2� = �1,2,3,4,5,6,7,10,11,14,15,16,17,18,19,20� ,

��2� = ��1� � n�2� = �0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0�;

�3� W�3�= �7,8 ,9 ,10�, p3= 1
2 #W�3�=2,

N�3� = N�2� − 2p3 = 12, M�3� = M�2� − p3 = 1,

n�3� = �1,2,3,4,5,6,11,12,13,14,15,16� ,

��3� = ��2� � n�3� = �0,0,0,0,0,1,0,0,0,0,0,0�;

�4� W�4�= �6,7� , p4= 1
2 #W�4�=1,

N�4� = N�3� − 2p4 = 10, M�4� = M�3� − p4 = 0,

n�4� = �1,2,3,4,5,8,9,10,11,12� ,

��4� = ��3� � n�4� = �0,0,0,0,0,0,0,0,0,0�;

�5� For k=5,6 ,7 , . . . , W�k�=0, pk= 1
2 #W�k�=0,

N�k� = N�k−1� − 2pk = 10, M�k� = M�k−1� − pk = 0,

n�k� = �1,2,3,4,5,6,7,8,9,10� ,

��k� = ��k−1� � n�k� = �0,0,0,0,0,0,0,0,0,0�;

ence, we obtain L=4 and the decomposition of �28�= �1,2 , . . . ,28�

W�1� � n�1��W�2�� � n�1��n�2��W�3���

�n�1��n�2��n�3��W�4���� � n�1��n�2��n�3��n�4���N�4������

=�9,10,14,15,17,18,21,22� � �8,11,16,19� � �7,12,13,20�

��6,23� � �1,2,3,4,5,24,25,26,27,28� .

Let N̄=N� ���= �1,2 ,3 , . . . �� ���, and assume that ��m for any number m�N. Define

= ��1 ,�2 , . . . ,�N��Map��N� , N̄� as follows:

�k = 
1 for k � W�1�

j for k � n�1��n�2��¯n�j−1��W�j�� ¯ �� �j = 2,3, . . . ,L�
� otherwise.

�
A periodic box-ball system �PBBS� is defined by the set �M�N� whose elements are called

tates and a mapping T of �M�N� into �in fact, onto� itself, which is called time evolution. For
��M�N� and k� �N�, we define

T��� = ��1�,�2�, . . . ,�N� �
here
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�k� = �1 − �k if �k � �

�k if �k = � .


or the above example,

� = �� , � , � , � , � ,4,3,2,1,1,2,3,3,1,1,2,1,1,2,3,1,1,4, � , � , � , � , � � ,

T��� = �0,0,0,0,0,0,0,0,0,1,1,1,0,0,1,0,0,1,1,1,0,1,1,0,0,0,0,0� .

hus, the PBBS is a type of discrete dynamical system. The number N is called the number of
oxes �or length of the system�, and M is called the number of balls. We shall say that a state
��M�N� has �or consists of� M balls.

It is convenient to write �= ��1 ,�2 , . . . ,�N���M�N� as

�1�2 ¯ �N;

or example

0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0.

n a similar manner, we shall express �� ,��= ��1 ,�1� , ��2 ,�2� , . . . , ��N ,�N�� as

�1
�1 �2

�2
¯ �N

�N;

or example

0�0�0�0�0�1413121101020313110112110102031101040�0�0�0�0�,

r more simply

0 0 0 0 0 1413121101020313110112110102031101040 0 0 0 0

here �’s in the upper suffix are omitted.
The numbers pj determined for a state � by the above-noted procedure are conserved quan-

ities of the PBBS;3 that is, if we write pj��� for these numbers for a state �, then

pj�T���� = pj��� for j = 1,2,3, . . . , and for any � � �M�N� .

ince, by definition,

p1 � p2 � p3 � . . . , and �
j

pj = M ,

he sequence of conserved quantities p= �p1 , p2 , p3 , . . . � is a partition of the integer M.
We shall not distinguish a partition p and a Young diagram, the array of squares left justified

n decreasing order �p1 squares in the top row, p2 in the second row, and so on�. The conjugate of
partition p is the partition p�= �p1� , p2� , p3� , . . . � defined by

pj� = # �i�i � 1 and pi � j�;

r equivalently, in terms of Young diagrams, p� is the transpose of the diagram p. An example is
hown in Fig. 1.

Let Y be a Young diagram; we define a subset �M
Y �N� of �M�N� by

�M
Y �N� = �� � �M�N��p��� is the conjugate of Y� .

In what follows, we shall often write �M ,�M
Y , . . . for �M�N� ,�M

Y �N� , . . ., respectively, when

heir N-dependence is apparent.
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. The vertex models

The six-vertex model and its higher spin generalizations are defined by the so-called
-matrices R��,��� :C�+1 � C��+1→C�+1 � C��+1,

R��,�����i�� � �j��� = �
i=0

�

�
j=0

��

�i, j�R��,����i�, j����i� � �j�� ,

here ��i� � i=0,1 , . . . , � � and ��j� � j=0,1 , . . . ,��� are bases of C�+1 and C��+1, respectively. The
-matrices are parametrized by two parameters, x and q. We follow the parametrization given in
ef. 4. For ��=1, the parametrization of R��,1�=R��,1��x ;q� we need is given by

�i� for k=0,1 , . . . ,�,

�k,1�R��,1��x;q��k,1� =
q�−kx − qk+1x−1

x − q�+1x−1 ,

�k,0�R��,1��x;q��k,0� =
qkx − q�−k+1x−1

x − q�+1x−1 ;

�ii� for k=1,2 , . . . ,�,

�k − 1,1�R��,1��x;q��k,0� = �k,0�R��,1��x;q��k − 1,1�

=
��1 − q2k��1 − q2��−k+1��

x − q�+1x−1 ;

�iii� otherwise, �i , j �R��,1��x ;q� � i� , j��=0,

here x and q are called the spectral parameter and the deformation parameter, respectively. The
atrix R�1,���x ;q� is related to R��,1��x ;q� by

R�1,���x;q� = P��,1�R��,1��x;q�P�1,��,

here p�m,n� :Cm+1 � Cn+1→Cn+1 � Cm+1 is the permutation

P�m,n���i� � �j�� = �j� � �i� .

t̂��x;q���i1�� � �i2�� � . . . � �iN� ��

= �
i ,i ,. . .,i ��0,1�

�i1,i2, . . . ,iN�t̂��x;q��i1�,i2�, . . . ,iN� ���i1� � �i2� � . . . � �iN�� ,

FIG. 1. Young diagram whose conjugate corresponds to the partition �4,2,2,1�.
1 2 N
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�i1,i2, . . . ,iN�t̂��x;q��i1�,i2�, . . . ,iN� �

ª �
j1,j2,. . .,jN=0

�

�iN, j1�R�1,���x;q��iN� , jN��iN−1, jN�R�1,���x;q��iN−1� , jN−1�

. . .�i2, j3�R�1,���x;q��i2�, j2� . �i1, j2�R�1,���x;q��i1�, j1� .

The transfer matrices for different x’s and �’s commute with each other by virtue of the
Yang-Baxter relation which the R matrices obeys; that is,

t̂��x;q�t̂���x�;q� = t̂���x�;q�t̂��x;q� for any � ,��,x, and x�.

Let VM : =span��i1� � �i2� � . . . � �iN��V � i1+ i2+ . . . iN=M�. Since the R-matrix obeys the so-
called ice condition

�i, j�R�1,���i�, j�� = 0 unless i + j = i� + j�,

t̂��x ;q� maps VM into itself.
Let �	� be a vector in V of the form

�	� = �	;�xj� j=1
M � = C�x1;q�C�x2;q� ¯ C�xM ;q���0� � �0� � ¯ � �0�� ,

here C�x ;q� :V→V is a creation operator in the algebraic Bethe ansatz method.5 Assume that the
dditional parameters x1 ,x2 , . . . ,xM are mutually distinct and satisfy the so-called Bethe ansatz
quation �BAE�,

�q−1xk − qxk
−1

xk − xk
−1 	N

= �
j=1
j�k

M
q−1xkxj

−1 − qxk
−1xj

qxkxj
−1 − q−1xk

−1xj

�k = 1,2, . . . ,M� . �1�

hen it follows that t̂��x ;q� �	�=
��x ; �xj� ;q� �	�, where


��x;�xj�;q� = �
k=0

� �qkx − q�−k+1x−1

x − q�+1x−1 	N

�
j=1

M
�q−1xj

2�x−2 − q−�−2 − q� + q−2�q−1xj
2�−1x2

q�−2k�q−1xj
2�x−2 − 1 − q−2 + q2k−�−2�q−1xj

2�−1x2 . �2�

e are interested in these solutions at q=0. We make use of the string hypothesis:6

Definition 1.1: Let Y be the Young diagram, which represents a partition of M

�3�

here m1�m2� ¯ �ms and Ki�0�i=1,2 , . . . ,s� �Fig. 2�. Then, the string hypothesis is the
ssumption that any solution �xj� j=1

M to the BAE �1� is expressed as �xi�k� of the form

�xi�k�q��2 = qmi−2k+2�zi�
0 + O�q��

�i = 1,2, . . . ,s; � = 1,2, . . . ,Ki; k = 1,2, . . . ,mi� .

If all the eigenvectors can be obtained by the string hypothesis, the space VM decomposes into
ubspaces VM

Y �q�:

VM = � VM
Y �q� ,
Y
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VM
Y �q� = span��	;�xi�k����xi�k� � SY� ,

here SY is the set of all solutions to the BAE under the string hypothesis for a given Young
iagram Y.

. A statement of the main theorem

Let VM
Y : = limq→0VM

Y �q�. A 0,1 sequence ���M corresponds to a monomial in VM by the
apping � :�M →VM defined by

���� = ��1� � ��2� � . . . � ��N� ,

nd so we can identify VM with the space spanned by vectors in ���M�:

VM = span ���M� .

n this article, we prove the following theorem concerning this identification.
Theorem 1.1: If the string hypothesis in Definition 1.1 is true, then

�i� VM
Y � span���M

Y �.
Furthermore, if all the eigenvectors can obtained by the string hypothesis, the stronger
condition

�ii� VM
Y =span ���M

Y �
holds.

The above statements were conjectured in Ref. 2.

I. A PBBS WITH CARRIER AND THE VERTEX MODEL

In this section, we consider a class of PBBSs which obey different time evolution rules
haracterized by a positive integer parameter.

Let � be a positive integer. A periodic box-ball system with carrier (PBBSC) of capacity � is
efined again by the set �M�N� and a mapping T� :�M�N�→�M�N� whose definition is given in
he following.

In Sec. I we defined a sequence � in N̄ for each state ����N� and in this section we will
¯ ¯ ¯

FIG. 2. The Young diagram corresponding to �3�.
efine another sequence � in N. Both � and � will be necessary to define the time evolution T�.
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Still we are assuming that M �N /2. Let ���M�N�. Let �̄�0�=�, N�0�=N, and M�0�=M. For

ach j=1,2 ,3 , . . ., let W̄�j� be the set of all pairs of positions in �̄�j−1� where 1 follows 0; note that

W̄�j�= #W�j�=2pj; let N�j�=N�j−1�−2pj as before; let n̄�j��Map�N�j� ,N�j−1�� be defined by

�n̄�j��1�, n̄�j��2�, . . . , n̄�j��N�j��� = �N�j−1�� \ W̄�j�,

here n̄�j��1�� n̄�j��2�� ¯ � n̄�j��N�j��; define a subsequence �̄�j���M�j��N�j�� of �̄�j−1� by

�̄�j� = �̄�j−1� � n̄�j�.

e again have a decomposition of �N� into a disjoint union

�N� = W̄�1�� ��
j=2

L

n̄�1��n̄�2��¯ n̄�j−1��W̄�j�� ¯ ��	
� n̄�1��n̄�2��¯ n̄�L−1��n̄�L���N�L���� ¯ �� .

Define �̄�Map��N� , N̄� by

�̄k = 
1 for k � W̄�1�

j for k � n̄�1��n̄�2��¯ n̄�j−1��W̄�j�� ¯ �� �j = 2,3, . . . ,L�
� otherwise.

�
Then the time evolution T� is defined by

T���� = ��1�,�2�, . . . ,�N� � ,

here

�k� = 
1 if �k = 0 and �k � �

0 if �k = 1 and �̄k � �

�k otherwise
�

or �̄��M�N� and k� �N�.
As before, we shall express �� ,� , �̄�= ���1 ,�1 ,�1̄� , ��2 ,�2 ,�2̄� , . . . , ��N ,�N ,�N̄�� as

�1�1
¯

�1 �2�2
¯

�2
¯ �N�N

¯
�N ;

or example,

0�
�04

�03
�02

�01
�11

412
313

214
103

102
201

311
312

101
111

213
10�

1 0�
2 01

311
10�

1 0�
4 0�

�0�
�0�

�0�
�0�

�, �4�

r more simply

0 0 0 0 0 1112131401020311120111130102031101040 0 0 0 0,

here only upper suffices of 0’s and lower suffices of 1’s are indicated.
From the definition of t̂��x ;q� in the previous section, the action of t̂��x�ª limq→0t̂��x ;q���

1,2 ,3 , . . . � on a monomial ���ª �i1� � �i2� � ¯ � �iN� is

t̂��x���� = �
i1�,i2�,. . .

. . .,i���0,1�

�
y0=0

�

�
y1=0

�

¯ �
yN=0

�

�Ry0y1

i1i1� �x�Ry1y2

i2i2� �x� ¯ RyN−1yN

iNiN� �x��
N
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 �y0,yN
�i1�� � �i2�� � ¯ � �iN� � ,

here

Ryy�
ii� �x� = 


1 �i,y ;i�,y�� = �1, � ;1, � � or �0,0;0,0�
1/x �i,y ;i�,y�� = �1,k;0,k + 1�� or �0,k + 1;1,k�

�k = 0,1, . . . , � − 1�
0 otherwise.

� �5�

ereafter, for simplicity, we write t̂�ª t̂��1� and Ryy�
ii�

ªRyy�
ii� �1�.

Proposition 2.1:

��T����� = t̂������� �� � �M� .

he following lemma guarantees that the vector t̂������� is a monomial.
Lemma 2.1: If ����V is a monomial, then t̂� ��� is a monomial.
Proof. From �5�, we find that, for given i and y, there is one and only one pair �i� ,y�� which

atisfies Ryy�
ii� =1. Hence, for a given �N+1�−tuple�y0 ; i1 , i2 , . . . , iN�, there exists one and only one

N-tuple �y1 ,y2 , . . . ,yN ; i1� , i2� , . . . , iN� � which satisfies

Ry0y1

i1i1� Ry1y2

i2i2� Ry2y3

i3i3�
¯ RyN−1yN

iNiN� = 1. �6�

hus �yN ; i1� , i2� , . . . , iN� � is determined uniquely from the condition �6�. Denote the induced mapping
y0 ; i1 , i2 , . . . , iN�� �yN ; i1� , i2� , . . . , iN� � by

�y0;i� � �ỹ�y0;i�; ĩ�y0;i�� �7�

here i= �i1 , i2 , . . . iN�. �Furthermore, from a symmetry property of R :Ryy�
ii� =Ry�y

i�i �for any i , i� ,y
nd y��, we can show that �7� is one-to-one.� If �i� denotes a monomial �i1� � �i2� � ¯ � �iN� then
e have

t̂��i� = �
y0=0

�

�y0ȳ�y0;i��ĩ�y0;i��

here �ĩ�y0 ; i��= �i1�� � �i2�� � ¯ � �iN� �. Hence it is enough to show that there is one and only one
y0�0�y0� � � which satisfies y0= ỹ�y0 ; i�.

Noticing the fact that the condition �5� determines y1 ,y2 , . . . ,yN successively from y0, we can
asily find that there exist integers a ,b ,c�0�a�b�c� � � such that

ỹ�y0;i� = 
a �0 � y0 � b�
y0 + a − b �b � y0 � c�
a − b + c �c � y0 � � �;

�
ee Figs. 3 and 4. Therefore y0= ỹ�y0 ; i� if and only if y0=a, which completes the proof. �

Corollary 2.1: The operator t̂� is invertible.

Proof: In this proof, ỹ and ĩ are as defined �7�. For a given i, let y0=a�i� denote the unique

olution of y0= ỹ�y0 ; i�. Then, Lemma 2.1 says that t̂���i��= �ĩ�a�i� ; i��. Since it is sufficient to show
hat the mapping t̂� is one-to-one on the set of all monomial, what is to be proved is that

˜ �i� ˜ �j�
i � j means i�a ;i� � i�a ;j� .
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So suppose that i� j. Since the mapping �7� is one-to-one, �a�i� ; ĩ�a�i� ; i��� �a�j� ; ĩ�a�j� ; j��.
ence, if a�i�=a�j� then ĩ�a�i� ; i�� ĩ�a�j� ; j� follows. Now suppose that a�i��a�j� and assume that

�a�i� ; i�� ĩ�a�j� ; j�. Since R is symmetric �Ryy�
ii� =Ry�y

i�i �, the mapping �7� gives

�a�i�; ĩ�a�i�;i�� � �a�i�;i� and �a�j�; ĩ�a�i�;i�� � �a�j�;j�;

hen, as in the proof of Lemma 2.1, a�i� and a�j� must be equal, contrary to our assumption. �

Proof of Propostion 2.1: Let ����= �a1� � ��2� � ¯ � ��N�, and t̂�������= ��1�� � ��2�� � ¯

� ��N� �. From Lemma 2.1, there exists one and only one y0 �N+1�-tuple �y0 ,y1 , . . . ,yN−1 ,yN=y0�
hich satisfies �6� for ���� and t̂�������.

When �n=0, from �5�, it holds that

�n� = �0 �yn−1 = 0�
1 �yn−1 � 1� .


uppose that �n= j, that is, �n

�n =0 j. From the definition of �, there is a subsequence

�m
�m�m+1

�m+1
¯ �n

�n���1
�1�2

�2
¯ �N

�N�

here �m
�m=1 j and 1��m+1 ,�m+2 , . . . ,�n−1� j−1. Among the subsequence, there exists at least

ne pair �s
�s�s+1

�s+1 which satisfies �s
�s�s+1

�s+1=1101 and

FIG. 3. Successive maps yi�yi+1�i=0,1 ,2 , . . . ,N−1�.
FIG. 4. A graph of y0�yN.
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�1k � ��m+1
�m+1,�m+2

�m+2, . . . ,�s−1
�s−1�

0k � ��s+2
�s+2,�s+3

�s+3, . . . ,�n−1
�n−1�  �k = 2,3, . . . , j − 1� .

ote that the number of 1’s in �m�m+1 . . .�s is larger than that of 0’s by j. Similarly the number of
’s in �s+1�s+2 . . .�n is larger than that of 1’s by j. Hence, using the action of R matrix, it holds that

ys = � �j � � �
j � ys � � �j � � � ,

�8�

nd

yn−1 = max�ys − �j − 1�,0� . �9�

rom �8� and �9�, we find that

yn−1 = 0 �j � � � ,

yn−1 � 1 �j � � � ,

hich implies

�n� = �0 �j � � �
1 �j � � � .


urthermore, for 0�, it is immediately seen that yn−1=0. Therefore the action of t̂� is equivalent to

he time evolution rule of T� for 0’s.
The proof for 1’s is carried out in a similar manner. �

Hereafter we fix a partition p= �p1 , p2 , p3 , . . . � of M, that is, an integer sequence which satis-
es p1 , p2 , p3 , . . . which satisfies p1� p2� p3� ¯ �0 and � j�1pj =M. Let Y be the Young dia-
ram whose conjugate corresponds to the partition p. Then we have the following corollary.

Corollary 2.2

� � �M
Y Û t̂��������� = x−2�i=1

� pit̂������� �� = 1,2,3, . . . � .

Proof: In the proof of Lemma 2.1, we see

Ray1

i1i1��x�Ry1y2

i2i2� �x�Ry2y3

i3i3� �x� ¯ RyN−1a
iNiN� �x� = x−K�a�

ith a non-negative integer K�a�. Hence we have

t̂��x������� = x−K�a�t̂������� .

rom �5� and Propostion 2.1, K�a� is equal to the number of 0 j ’ s and 1 j ’ s �1� j� � �.
Therefore,

K�a� = 2�
i=1

�

pi.

On the other hand, when ���M
Y , clearly there exist �0 such that

t̂�0
�x������� � x−2�i=1

�0 pit̂�0
������ ,

hich completes the proof. �

Next we show that the vector space spanned by the vectors in ���M
Y � is invariant under the

ˆ Y
ction t�. For a monomial ���� ���M�, we define
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������� ª − 2�
i=1

�

pi �� = 1,2,3, . . . � .

Lemma 2.2: For an arbitrary monomial ��� and �=1,2 ,3 , . . . ,

�a� �������=���t̂1 ����
and

�b� �1�����=�1�t̂� ����.

Proof:

�a� For a state �= ��1 ,�2 ,�3 . . . ,�N���M, it holds that

T1��� = ��N,�1,�2, . . . ,�N−1� ,

and each conserved quantity does not change. Hence, from Proposition 2.1, we have
�������=���t̂1 ����.

�b� From Corollary 2.2,

t̂1�x��t̂��x����� = x�������t̂1�x��t̂����� = x�������+�1�t̂�����t̂1t̂��� � ,

t̂��x��t̂1�x����� = x�1�����t̂��x��t̂1���� = x�1�����+���t̂1����t̂�t̂1�� � .

ince transfer matrices are commutative t̂1�x�t̂��x�= t̂��x�t̂1�x�, we obtain

������� + �1�t̂����� = �1����� + ���t̂1���� .

Thus, from �a�, �1�t̂� ����=�1�����. �

For �= ��1 ,�2 , . . . ,�N���M and �= ��1 ,�2 , . . . ,�N���M, we write ��� when � coin-
ides with � up to shift, that is, $k�Z , ��1 ,�2 , . . . ,�N�= ��k ,�k+1 , . . . ,�N ,�1 ,�2 . . . ,�k−1�. We

lso define Ê10��� as the reduced 0,1 sequence with length N−2p1 which is obtained by elimi-

ating 11
’ s and 01’

s from �� ,� , �̄�.
Proposition 2.2: For a state ���M,

T�−1 � Ê10��� � Ê10 � T���� �� = 2,3,4, . . . � .

Proof: A state consists of alternating sequences of consecutive 1’s and of consecutive 0’s. We

all these sequences domains of 1’s and domains of 0’s. Note that the action of Ê10 is equivalent
o removing one element from each domain.

By the definition of T�−1 and Ê10, the operator T�−1 � Ê10 acts on a state as follows: Eliminate

1’s and 01’s, and replace 12 ,13 ,14 , . . . and 02 ,03 ,04 , . . . with 11 ,12 ,13 , . . . and 01 ,02 ,03 , . . .
espectively; then replace 1i and 0i �i=1,2 , . . . , �−1� with 0 and 1, respectively. For example, in
ase of �=2,

0 0 0 0 0 111213140102031112011113010203110104 0 0 0 0 0

�
Ê10 0 0 0 0 0 111213010211120102030 0 0 0 0

�
T�−1

0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0.

t is equivalent to the action: Replace 1i and 0i �i=1,2 , . . . , � � with 0 and 1, respectively, and
1
liminate 0’s and 1’s corresponding to 11 and 0 . For example, in case of �=2,
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0 0 0 0 0 1112131401020311120111130102031101040 0 0 0 0

eplacement
� 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0

Elimination
� 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0.

n this process, we eliminate p1 0’s and the same number of 1’s which are arranged alternately in
he sequence. Since from Lemma 2.2�b�, the number of each domain does not change in the time
volution, we eliminate an element in each domain. Thus this action is equivalent to the action of

ˆ
10�T�. Therefore, we find

T�−1 � Ê10��� � Ê10 � T���� .

Theorem 2.1: If ���M
Y , then T������M

Y ��=1,2 ,3 , . . . �.
Proof: By the definition of Ê10, we have

��−1���Ê10����� = �������� − �1������ . �10�

rom Proposition II.1 and Lemma II.2�b�,

�1������ = �1���T������ . �11�

ence, from �10�, �11� and Proposition 2.2, it follows that

�2������ = �1���Ê10����� + �1������

=�1���T�−1 � Ê10����� + �1���T������

=�1���Ê10 � T������ + �1���T������

=�2���T������ .

epeating a similar procedure for �3������ ,�4������ ,�5������ , . . ., we obtain

�m������ = �m���T������ �m = 1,2,3, . . . � .

herefore the conserved quantities of T���� are p1,p2 , p3 , . . . .
Corollary 2.3: If �	�� span ���M

Y �, then t̂� �	�� span ���M
Y ���=1,2 ,3 , . . . �.

Proof: This is a direct consequence of Proposition 2.1 and Theorem 2.1. �

II. PROOF OF THEOREM 1.1

In this section, we prove Theorem 1.1. we fix a Young diagram Y with M squares as in the
revious section. The corresponding partition of M is given in Definition 1.1. We also denote by

pj = �j=1,2 ,3 , . . . � the jth column length of Y. Note that the following relation holds:

�
i=1

s

min�mi, � �Ki = �
i=1

�

pi �� = 1,2,3, . . . � . �12�

ˆ
In order to consider the eigenvalues 
��x ; �xj� ;q� of t��x� in �2�, we put
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̃�
�k��x;�zi�

0 �;q�: = �qkx2 − q�−k+1�Nx−2N�
i=1

s

�
�=1

Ki

�
h=1

mi

Q�
�k��x,zi�

0 ,rih;q�

here rihªmi−2h+1 and

Q�
�k��x,z,r;q� ª

q�+2r+2z2
− qrzx2 + q�x4

q2�−2k+2r+2z2
− q�+rzx2 + q2kx4

.

y direct calculation, we see that


��x� ª lim
q→0


��x;�xj�;q� = lim
q→0

�
k=0

�


̃�
�k��x;�zi�

0 �;q� .

When a function f�q� is expressed as f�q�=qa�f0+ f1q+ f2q2+ ¯ ��f0�0�, we write ordq�f�
a and f �qaf0.

Lemma 3.1: For k�0,

ordq�
̃�
�k��x;�zi�

0 �;q�� � N − 2M .

Proof: For each k�k=1,2 , . . . , � �, we put

��
�k��r�: = ordq�Q�

�k��x,zi�
0 ;r;q�� .

hen we have

��
�k��r� =


�− 2k �� � r�
r − 2k �2k − � � r � � �
− � �2k − � − 2 � r � 2k − � �
− r − 2��− k� − 2 �− � − 2 � r � 2k − � − 2�
2k − � �r � − � − 2� .

�
ince

ordq��qkx2 − q�−k+1�N� = N min�k, � − k + 1�,

qN min�k,�−k+1� = q�N−2M�min�k,�−k+1� · q2Mmin�k,�−k+1�

nd M =�i=1
s miKi, we get

ordq�
̃�
�k��x;�zi�

0 �;q�� = �N − 2M�min�k, � − k + 1�

+ �
i=1

s

�
�=1

Ki

�
h=1

mi

���
�k��rih� + 2 min�k, � − k + 1�� .

urthermore we obtain the following inequality immediately:

��
�k��r� + ��

�k��− r� + 4 min�k, � − k + 1� � 0 �r � Z�0� .

herefore, for each k�k=1,2 , . . . , � �, we have

ordq�
̃�
�k��x;�zi�

0 �;q�� � �N − 2M�min�k, � − k + 1�

�N − 2M .
Proposition 3.1: For �=1,2 ,3 , . . . ,
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��x� = x−2�k=1
s min�mk,��Kk�

i=1

s

�
�=1

Ki

�− zi�
0 �min�mi,��.

Proof: From Lemma 3.1, terms 
̃�
�k� for k�1 would not contribute to 
��x� since we have

ssumed N−2M �0. For Q�
�0��x ,zi�

0 ,r ;q�, we have

Q�
�0��x,zi�

0 ,r;q� � 

q� �� � r�
q��− zi�

0 x−2 + 1� �r = � �
− qrzi�

0 x−2 �− � � r � � �
− q−�zi�

0

− zi�
0 + x2 �r = − � �

q−� �r � − � � .

�
�i� If mi� � mod 2, then

Q�
�0��x,zi�

0 ,r;q� � 
q� �r = � + 1, � + 3, � + 5, . . . �
− qrzi�

0 x−2 �r = − � + 1,− � + 3, . . . , � − 1�
− q−� �r = − � − 1,− � − 3,− � − 5, . . . � .

�
�ii� If mi� � mod 2, then

Q�
�0��x,zi�

0 ,r;q� � 

q� �r = � + 2, � + 4, � + 6, . . . �
q��− zi�

0 x−2 + 1� �r = � �
− qrzi�

0 x−2 �r = − � + 2,− � + 4, . . . , � − 2�
− q−�zi�

0

− zi�
0 + x2 �r = − � �

q−� �r = − � − 2,− � − 4,− � − 6, . . . � .

�
Hence we obtain

lim
q→0

�
h=1

mi

Q�
�0��x,zi�

0 ,rih;q� = x−2 min�mi,���− zi�
0 �min�mi,��,

hich completes the proof.
Proof of Theorem 1.1(i): For an eigenvector �	��VM

Y of t̂��x� ��=1,2 ,3 , . . . �, from Proposi-
ion 3.1 and �12�, we have

t̂��x��	 = x−2�k=1
s min�mk,��Kk�

i=1

s

�
�=1

Ki

�− zi�
0 �min�mi,���	 �

= x−2�k=1
s min�mk,��Kkt̂��	 �

= x−2�k=1
� pkt̂��	 � . �13�

On the other hand, �	� can be expanded as

�	� = �
j

Cj�� j � ,

here �� j� are monomials in VM
Y and Cj��0� are coefficients. Let �� j�= ��� j��� j ��M�.
Then, from Corollary 2.2,
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t̂��x��	 � = t̂��x��
j

Cj�� j � = �
j

Cjt̂��x��� j �

= �
j

Cjt̂��x����� j�� = �
j

Cjx
−2�k=1

� pk
�j�

t̂ j���� j�� = �
j

Cjx
2�k=1

� pk
�j�

t̂��� j � , �14�

here pk
�j��k=1,2 , . . . , � � are conserved quantities of � j. Since �� j�’s are linearly independent and

� is invertible on VM �Corollary 2.1�, the vectors t̂� �� j� are also linearly independent. Hence, from
13� and �14�, we have

x−2�k=1
� pk

�j�
t̂��� j � = x−2�k=1

� pkt̂��� j � ,

hat is,

t̂��x��� j � = x−2�k=1
� pkt̂��� j � .

hus, from Corollary 2.2, it follows that �� j�� ���M
Y � for each j and �	��span���M

Y �.
Therefore, if ��� is a vector in VM

Y then it is also a vector in span ���M
Y �. �

Proof of Theorem 1.1(ii): The completeness implies that

�
Y

VM
Y = VM .

n the other hand

�
Y

span���M
Y � = VM .

herefore, it must be that

VM
Y = span���M

Y � .

�

V. CONCLUDING REMARKS

In this paper, we have showed an important relationship between the string hypothesis of BAE
nd the conserved quantities of PBBS �Theorem 1.1�. In the limit that q→0, for a given Young
iagram one may obtain eigenvectors from string hypothesis in terms of monomials. These mo-
omials correspond exactly with the states of PBBS whose conserved quantities are given by
xactly the same Young diagram. Although our result elucidates an aspect of the string solutions,
t does not justify the string hypothesis or prove the completeness of Bethe vectors. However, we
ope that our approach with PBBS may give some pieces of information about these problems.
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PPENDIX: EQUIVALENT DEFINITION OF PBBS

In this appendix, we give the equivalent definition of PBBS in previous work.2,3 Consider a
ne-dimensional array of boxes each with a capacity of one ball. A periodic boundary condition is
mposed by assuming that the last box is adjacent to the first one. We denote the number of boxes
y N and the number of balls by M and we assume M �N /2. An arrangement of M balls in N
oxes is called a state of the PBBS.

Denoting a vacant box by 0 and a filled box by 1, a state of the PBBS is represented as a 0,1

equence of length N. For example, in a case of N=8 and M =3,

                                                                                                            



I
t

I

F

w
p

I
r

b

F

a
c
P

s
e

053507-17 Correspondence between conserved quantities J. Math. Phys. 47, 053507 �2006�

                        
f we think of this state at time t, the mapping T described in Sec. I A corresponds to incrementing
ime t to t+1. The time evolution rule from time step t to t+1 is also described as follows:

1. For a given state, connect all 10 pairs in the sequence with arc lines. We call them ”1� arc
lines.”

2. Neglecting the 10 pairs which are connected in the first step, connect all the remaining
10’s with arc lines. We call them ”2� arc lines.”

3. Repeat the above procedure until all 1’s are connected to 0’s with arc lines.
4. Exchange all the 1’s and 0’s which are connected with arc lines.

f we denote by pj�t� the number of j�arc lines, we obtain a nonincreasing sequence of integers,
pj�t��j=1,2 ,3 , . . . �. Then, this sequence is conserved in time, that is,

pj�t� = pj�t + 1� � pj �j = 1,2,3, . . . � .

or example, for the state considered in Sec. I A

0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0,

e draw arc lines as shown in Fig. 5 and evolve it by one time step according to the above
rocedure; then we obtain a new state

0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 1 1 0 0 0 0 0.

n this case, the conserved quantities are p1=4 , p2=2 , p3=2 , p4=1 , pj =0 �j=5,6 ,7 , . . . �. These
esults are in agreement with those obtained by the other definition.

Next, we consider a class of PBBSs which obey different time evolution rules characterized
y a positive integer parameter. Let � be a positive integer.

1. For a given state, draw the arc lines in the same way as in the original time evolution rule
of the PBBS.

2. For 01 pairs, we also draw arc lines by a similar procedure to that for 10 pairs. We call the
arc lines drawn at jth step by ”j� arc lines.”

3. Replace with 0’s all the 1’s connected by i� arc lines �i=1,2 , . . . , � � and replace with 1’s
all the 0’s connected by j�arc lines �j=1,2 , . . . , � �.

or example, for �=2, the state given in Fig. 6 evolves into

0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0

t the next time step. When the system size is infinite and the number of 1’s is finite, this rule
oincides with the rule of a BBS with carrier of capacity � introduced in Ref. 7. So we call the
BBS with the above rule a PBBS with carrier �PBBSC�.

To see the state at the next time step, it is convenient to express a state as a 0,1 sequence with
ubscripts, where 1 and 0 connected by i� and j� arc lines are replaced 1i and 0 j, respectively. For

FIG. 5. A state of PBBS with j� arc lines.
xample, the state in Fig. 6 is expressed as
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0 0 0 0 0 11 12 13 14 01 02 03 11 12 01 11 13 01 02 03 11 01 04 0 0 0 0 0,

hich coincides with �4�. The time evolution rule of PBBSC of capacity � is given as follows:
eplace 1i and 0i �i=1,2 , . . . , � � with 0 and 1, respectively.
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FIG. 6. A configuration with j� and i� arc lines.
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Our starting point is a class of braid matrices, presented in a previous paper,
constructed on a basis of a nested sequence of projectors. Statistical models asso-
ciated to such N2�N2 matrices for odd N are studied here. Presence of 1

2 �N+3�
��N−1� free parameters is the crucial feature of our models, setting them apart
from other well-known ones. There are N possible states at each site. The trace of
the transfer matrix is shown to depend on 1

2 �N−1� parameters. For order r, N
eigenvalues constitute the trace and the remaining �Nr−N� eigenvalues involving
the full range of parameters come in zero-sum multiplets formed by the rth roots of
unity, or lower dimensional multiplets corresponding to factors of the order r when
r is not a prime number. The modulus of any eigenvalue is of the form e��, where
� is a linear combination of the free parameters, � being the spectral parameter. For
r a prime number an amusing relation of the number of multiplets with a theorem
of Fermat is pointed out. Chain Hamiltonians and potentials corresponding to
factorizable S-matrices are constructed starting from our braid matrices. Perspec-
tives are discussed. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2197690�

. INTRODUCTION

The most salient feature of the class of braid matrices presented in Ref. 1, setting it apart from
ther known examples, is the number of free parameters. This class was obtained for N2�N2 braid
atrices for odd

N = �2p − 1� �p = 1,2, . . . � . �1.1�

uch matrices, depending on a spectral parameter � and satisfying the braid equation

R̂12�� − ���R̂23���R̂12���� = R̂23����R̂12���R̂23�� − ��� �1.2�

ave 1
2 �N+3��N−1� free parameters when the overall normalization is fixed. Thus for N

3,5 ,7 , . . ., the respective number of parameters are 6 ,16,30, . . . . These parameters appear in the
oefficients of the N2 projectors �the “nested sequence” defined in Ref. 1� providing the basis of

ˆ ���.
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The projectors are defined as follows. Let �ij� be the N�N matrix with a single nonzero

lement 1 on row i and column j. Then N2 projectors are defined, with �=± and ī=N− i+1, as

Ppp = �pp� � �pp� ,

2Ppi��� = �pp� � ��ii� + �ii� + ���iī� + �īi��� ,

2Pip��� = ��ii� + �ii� + ���iī� + �īi��� � �pp� , �1.3�

2Pij��� = �ii� � �j j� + �ii� � �j j� + ���iī� � �j j̄� + �īi� � � j̄ j�� ,

2Pij̄��� = �ii� � �j j� + �ii� � �j j� + ���iī� � � j̄ j� + �īi� � �j j̄�� ,

here, from �1.1�,

i = 1,2, . . . ,p − 1, ī = N − i + 1 = 2p − 1,2p − 2 . . . ,p + 1, p = 1
2 �N + 1� . �1.4�

he projectors satisfy �with �, � standing for triplets �i , j ,���

P�P� = ���P�, �
�

P�
2 = IN2�N2. �1.5�

heir total number is

1 + 4�p − 1� + 4�p − 1�2 = �2p − 1�2 = N2. �1.6�

or our class of solutions, normalizing to 1 the coefficient of Ppp,

R̂��� = Ppp + �
i,�

�empi
����Ppi��� + emip

����Pip���� + �
i,j,�

�emij
����Pij��� + em

ij̄

���
�Pij̄���� , �1.7�

ith the crucial constraint,

mij
��� = mij̄

���
, � j̄ = N − j + 1 = 2p − j� . �1.8�

his sufficient and necessary constraint concerning the coefficient of � in the exponents, leaves

1
2 �N + 3��N − 1� �1.9�

ree parameters. For N=3 one thus obtains, with six free parameters,

R̂��� =�
a+ 0 0 0 0 0 0 0 a−

0 b+ 0 0 0 0 0 b− 0

0 0 a+ 0 0 0 a− 0 0

0 0 0 c+ 0 c− 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 c− 0 c+ 0 0 0

0 0 a− 0 0 0 a+ 0 0

0 b− 0 0 0 0 0 b+ 0

a− 0 0 0 0 0 0 0 a+

� , �1.10�
here
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a± = 1
2 �em11

�+�� ± em11
�−���, b± = 1

2 �em12
�+�� ± em12

�−���, c± = 1
2 �em21

�+�� ± em21
�−��� . �1.11�

he parameters a± are each repeated in �1.10� according to �1.8�, since

m
11̄

�±�
= m11

�±� �1̄ = 3� . �1.12�

his is the case we will study mostly in the following sections. The corresponding results for N
3 will be indicated briefly. For example, the generalization of the considerations below in this

ection for N�3 is entirely straightforward. To explore the statistical model associated to �1.10�
ne starts by constructing explicit representations of the monodromy matrices tij

�r���� of successive
rders �r=1,2 ,3 , . . . � obtained by taking coproducts of the fundamental 3�3 blocks �with the
ame � for each factor�

tij
�r� = �

j1,. . .,jr−1

tij1
� tj1j2

� ¯ � tjr−1j . �1.13�

or N=3,

t�r� = �t11
�r� t12

�r� t
11̄

�r�

t21
�r� t22

�r� t
21̄

�r�

t
1̄1

�r�
t
1̄2

�r�
t11
�r� � . �1.14�

f the R̂tt equation for the blocks tij
�r� �Appendix C�,

R̂�� − ����t�r���� � t�r������ = �t�r����� � t�r�����R̂�� − ��� �1.15�

s satisfied for r=1, then the coproduct construction �1.13� ensures that �1.15� is satisfied for all
igher values r=2,3 , . . . . The solution for r=1 is given by

t�1���� � t��� = PR̂��� = R��� , �1.16�

here P is the permutation matrix

p = �
ij

�ij� � �ji� �1.17�

nd R��� is the Yang-Baxter �YB� matrix. This is a standard result valid generally for solutions of
1.2�. �See Appendix B of Ref. 1 for sources cited.�

The transfer matrix, for each order r, is defined to be the trace �with argument ��

T�r� = t11
�r� + t22

�r� + t11
�r�. �1.18�

he properties of the model depend crucially on the eigenvalues of T�r�. References 2–4 provide
mple information citing numerous basic sources.

So our basic task will be to construct the eigenstates and eigenvalues of T�r����. Remarkable
eature following from �1.10� �and more generally from �1.7�� will be presented in the following
ections and appendixes.

We will also construct chain Hamiltonians and potentials leading to factorizable S-matrices

tarting from our class of R̂���.
Concerning each aspect we will try to display the role of our multiple parameters. For all

mij
�+�� 	 mij

�−�� �1.19�

he elements of R̂��� and hence the Boltzmann weights are non-negative, consistent with physical

nterpretations. For definiteness we consider the sector, say

                                                                                                            



o
s

I

t

�

�
�

�

�

A

�

053508-4 B. Abdesselam and A. Chakrabarti J. Math. Phys. 47, 053508 �2006�

                        
m11
�+� � m11

�−� � m12
�+� � m12

�−� � m21
�+� � m21

�−�, � 	 0. �1.20�

f �1.10�. The eigenvalues will be ordered differently for other sectors. They can be considered
eparately.

I. TRANSFER MATRIX, EIGENVECTORS, EIGENVALUES „N=3…: CRUCIAL FEATURES

We start by signalling some crucial features to be encountered below in the explicit construc-
ions restricted �in this section� to N=3.

1� The trace of the transfer matrix �1.17� of order r will turn out to be

tr�T�r����� = 2erm11
�+�� + 1. �2.1�

Of the six parameters �m11
�±� ,m12

�±� ,m21
�±�� of �1.11� only m11

�+� appears in the trace. A simple
explanation of this fact will be given after discussing the generalization for N�3.

2� The eigenvalue erm11
�+�

� is obtained exactly twice for each r and the value 1 only once.
3� The remaining �3r−3� eigenvalues occur in multiplets of zero sum due to the presence of

roots of unity. Hence they do not contribute to the trace. For r a prime number there will be
“r-plets” �and possibly “nr-plets,” n being an integer�

e���1,e�2
i/r�,e�2
i/r�·2, . . . ,e�2
i/r�·�r−1�� , �2.2�

where � is a linear combination of the parameters mij
�±�. When r is factorizable lower order

multiplets can be present corresponding to the factors. Thus for r=4 one obtains both dou-
blets and quadruplets

e�2��1,− 1�, e�4��1,i,− 1,− i� , �2.3�

with appropriate linear combinations �2, �4 to be displayed below.
4� Apart from possible roots of unity phase factors the modulus of each eigenvalue is a simple

exponential of the type e�� of �2.2�. For r=3, for example, one obtains for � the values
�Appendix A�

3m11
�+�, �m11

�+� + 2m11
�−�� ,

�m11
�+� + m12

�+� + m21
�+��, �m11

�+� + m12
�−� + m21

�−�� ,

�m11
�−� + m12

�+� + m21
�−��, �m11

�−� + m12
�−� + m21

�+�� , �2.4�

�m12
�+� + m21

�+��, �m12
�−� + m21

�−�� ,

0.

Along with roots of unity factors these provide all the 27 eigenvalues as will be shown
below.

5� The values of � depend crucially on the subspaces, to be introduced below, which are
invariant under the action of T�r����, the transfer matrix.

. Construction of T„r…
„�… for N=3

The standard construction of the fundamental 3�3 block matrices tij��� implementing �1.15�,
�1� ¯
1.16�, �1.10�, �1.11�, leads to �for t ���� t��� with 1=3�
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t11��� = �a+ 0 0

0 0 0

0 0 a−
�, t12��� = � 0 0 0

c+ 0 c−

0 0 0
�, t11̄��� = � 0 0 a−

0 0 0

a+ 0 0
� ,

t21��� = �0 b+ 0

0 0 0

0 b− 0
�, t22��� = �0 0 0

0 1 0

0 0 0
�, t21̄��� = �0 b− 0

0 0 0

0 b+ 0
� , �2.5�

t1̄1��� = � 0 0 a+

0 0 0

a− 0 0
�, t1̄2��� = � 0 0 0

c− 0 c+

0 0 0
�, t11��� = �a− 0 0

0 0 0

0 0 a+
� ,

here, from �1.11�,

�a+ ± a−� = em11
�±��, �b+ ± b−� = em12

�±��, �c+ ± c−� = em21
�±��. �2.6�

ne now must implement these in �1.13�, �1.14�, and �1.18� to obtain T�r����. Then one proceeds
o construct eigenvalues of T�r����.

. Subspaces invariant under the action of T„r…
„�…

We start by introducing convenient, compact notations. The state vectors of the fundamental
epresentation �2.5� are denoted as

��1

0

0
	,�0

1

0
	,�0

0

1
	
 � ��1�, �2�, �1̄�� . �2.7�

ensor products for higher orders are constructed as

��1� � �1�, �1� � �2�, �1� � �1̄�, . . . � � ��11�, �12�, �11̄�, . . . � �2.8�

nd so on in evident continuation. The order of the labels �1,2 , 1̄� will indicate the tensor product
tructure. Thus, for example,

�1� � �1� � �2� � �1̄� � �1� � �1121̄1� . �2.9�

Corresponding to the rth order coproduct, T�r���� acts on a space spanned by 3r states �for
=3�. Let

S�r,k� �k = 0,1, . . . ,r� �2.10�

enote the subspaces labeled by k, the multiplicity of the index 2. The coefficients of different
ower of x in the expansion

�x + 2�r = 1 · xr + 2rxr−1 + ¯ + 2r−k r

r − k
�xk + ¯ + 2r �2.11�

ive the number of states in the respective subspaces. Setting x=1 one obtains the total number

�1 + 2�r = 3r. �2.12�
or example, for r=3, one obtains the subspaces,
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S�3,3�: �222�;

S�3,2�: �221�, �221̄�, �212�, �21̄2�, �122�, �1̄22�;

S�3,1�: �211�, �211̄�, �21̄1�, �211� ,

�121�, �121̄�, �1̄21�, �1̄21̄� ,

�112�, �11̄2�, �1̄12�, �112�;

S�3,0�: �111�, �111̄�, �11̄1�, �1̄11� ,

�111�, �111�, �1̄11̄�, �111� .

�2.13�

striking and most helpful consequence of the structure of the matrices �2.5� and their coproducts
s each subspace S�r ,k� is invariant under the action of T�r����. This facilitates considerably the
onstruction of eigenstates. One works on lower dimensional spaces.

One possible approach is as follows: One selects any one state from the 2r−k� r

r−k � states of

�r ,k� and computes the action of T�r���� on it. One gets on the right-hand side �rhs� a linear
ombination of states belonging to S�r ,k�. Thus, for example,

T�4�����1111� = �a+
4 + a−

4��1111� + 2a+
2a−

2��1111� + �11̄11̄� + �1̄11̄1��

+ �a+
2 + a−

2�a+a−��1111� + �1111� + �1̄111̄� + �1111�� , �2.14�

here a±= 1
2 �em11

�+�
�±em11

�−�
�� as noted before. Next, one computes the action of T�4� successively on

he other states appearing on the right-hand side. This continues until one obtains the coefficients
or a closed subsystem. Then one searches for linear combinations such that under T�4� it is
eproduced to within a factor. Thus one systematically obtains all eigenvectors and eigenvalues,
or the subspace S�r ,k�. For our class one must solve systems of linear equations with fairly
imple coefficient. Even the 81 eigenstates and eigenvalues for r=4 were obtained directly without
sing a computer program and without any real difficulties.

We have thus obtained exhaustive solutions for r=1,2 ,3 ,4. The corresponding 3, 9, 27, and
1 eigenvalues are presented in Appendix A. We have also obtained explicitly all the correspond-
ng eigenstates. For brevity they are not presented here. The eigenvalues of Appendix A fully
llustrate the crucial properties �1�–�5� signalled at the start of this section. In the following section
e indicate a related but somewhat differently formulated approach for various comparisons.

II. LINEAR CONSTRAINTS FOR EIGENVECTORS FOR N=3 AND COMPARISION
ITH ALGEBRAIC BETHE ANSATZ

In Sec. II we have noted how, exploiting the invariance of the subspaces S�r ,k� defined by
2.10� one can construct step by step all the eigenstates. The comments following �2.14� indicate
ow the relevant linear equations are obtained. We formulate below the approach in a systematic,
xplicit fashion.

Starting with �2.5� and �2.6� for tij
�1����= tij��� we define the operators

U = b+�− ��t21��� + b−�− ��t21̄��� = �0 1 0

0 0 0

0 0 0

 ,

A = t22��� = �0 0 0

0 1 0 
 , �3.1�

0 0 0
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D = b−�− ��t21��� + b+�− ��t21̄��� = �0 0 0

0 0 0

0 1 0

 .

hen �suppressing arguments � of tij�

t11�A,U,D� = �0,a+U,a−D� ,

t12�A,U,D� = �0,c+A,c−A� ,

t11̄�A,U,D� = �0,a+D,a−U� ,

t21�A,U,D� = �b+U + b−D,0,0� ,

t22�A,U,D� = �A,0,0� , �3.2�

t21̄�A,U,D� = �b−U + b+D,0,0� ,

t1̄1�A,U,D� = �0,a−D,a+U� ,

t1̄2�A,U,D� = �0,c−A,c+A� ,

t11�A,U,D� = �0,a−U,a+D� .

lso from �2.7� and �3.1�

U�2� = �1�, A�2� = �2�, D�2� = �1̄� . �3.3�

or any r, starting with S�r ,r� one obtains the basic eigenstate �trivially since S�r ,r� is of dimen-
ion 1�,

T�r�����22 ¯ 2� = 1�22 ¯ 2� . �3.4�

ow one moves up in �r−k� stepwise.
S�r ,r−1��dim 2r�: With 2r coefficients �ui ,di��i=1, . . . ,r� one can label the states as

�
�u1U + d1D� � A � ¯ � A

+ A � �u2U + d2D� � A � ¯ � A

�
+ A � A � ¯ � A � �urU + drD�


�22 ¯ 2� . �3.5�

he action of T�r���� on these leads to a linear system of equations in �ui ,di� corresponding to
igenstates. For S�r ,r−1� the solution is particularly simple. Define

��,�� =�
A � A � ¯ � A � �U + �D�
+ �A � A � ¯ � �U + �D� � A

+ �2A � A � ¯ � �U + �D� � A � A

�
+ �r−1�U + �D� � A � A � ¯ � A


�22 ¯ 2� , �3.6�
here �=± and � can have r values �as a rth root of unity�
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� = �1,ei2
/r, . . . ,e�i2
/r�·�r−1�� . �3.7�

ne obtains

T�r������,�� = �r−1e�m12
���+m21

�������,�� . �3.8�

he 2r eigenvalues are

e�m12
���+m21

������1,ei2
/r, . . . ,e�i2
/r��r−1�� . �3.9�

he next step is k=r−2.
S�r ,r−2� �dim 2r�r−1��: A set of states spanning this subspace is given by

�
i�j

�A � ¯ � A � �uiU + diD� � A � ¯ � �ujU + djD� � A � ¯ � A��22 ¯ 2� .

�3.10�

he parameters �u ,d� must be constrained to obtain eigenstates. At each step one obtains sets of
inear constraints. The pattern is now evident. At each step one inserts, as in �3.10�, �r−k� factors
f the type �uiU+diD� excluding their coincidence.

Finally for k=0, one has S�r ,0� of dimension 2r. Here a basis spanning the subspace can be
abeled as

�
i

�u1
�i�U + d1

�i�D� � �u2
�i�U + d2

�i�D� � ¯ � �ur
�i�U + dr

�i�D���22 ¯ 2� . �3.11�

ince there are no label �2� left, it can be shown from �3.2� that T�r����, acting on S�r ,0� simplifies
o

T�r� � t11
�r� + t11

�r� � t11 � t11
�r−1� + t11̄ � t

1̄1

�r−1�
+ t1̄1 � t

11̄

�r−1�
+ t11 � t11

�r−1�. �3.12�

n successive steps �t�r−1�→ t � t�r−2� and so on� only the indices �1, 1̄� need be retained. They only
ive nonzero contributions. From �3.2�,

t11�us
�i�U + ds

�i�D� = �a+us
�i�U + a−ds

�i�D� � X11
�i��s� ,

t11̄�us
�i�U + ds

�i�D� = �a−ds
�i�U + a+us

�i�D� � X
11̄

�i��s� ,

�3.13�
t1̄1�us

�i�U + ds
�i�D� = �a+ds

�i�U + a−us
�i�D� � X

1̄1

�i��s� ,

t11�us
�i�U + ds

�i�D� = �a−us
�i�U + a+ds

�i�D� � X11
�i��s� .

Define, with indices taking values �1, 1̄� only,

Xab
�i��1,2, . . . ,r� = �

b1,. . .,br−1

Xab1

�i� �1� � Xb1b2

�i� �2� � ¯ � Xbr−1b
�i� �r� . �3.14�

he action of T�r���� on the generic state �3.11� finally reduces to

�
i=1

r

�X11
�i��1,2, . . . ,r� + X11

�i��1,2, . . . ,r����22 ¯ 2� . �3.15�

t is of particular interest to see what parametrizations in �3.11� corresponds to the two eigenstates
and two only for any r� that contribute to the trace.
For r=2,
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T�2������11� + �11�� = e2m11
�+����11� + �11�� ,

�3.16�
T�2������11̄� + �1̄1�� = e2m11

�+����11̄� + �1̄1�� .

long with

T�2�����22� = �22� �3.17�

he two states of �3.16� yield

tr�T�2����� = 2e2m11
�+�� + 1. �3.18�

or other six states provide the three zero sum doublets of �A4�, �A5�, �A6�.
For r=3. Apart from eight zero sum triplets of eigenvalues �see Appendix A� and the corre-

ponding eigenstates one obtains for

V1 = �111� + �111� + �1̄11̄� + �111� , �3.19�

V2 = �111� + �1̄11� + �11̄1� + �111̄� , �3.20�

T�3�����V1,V2� = e3m11
�+���V1,V2� . �3.21�

long with �222� these assure

tr�T�3����� = 2e3m11
�+�� + 1. �3.22�

For r=4, the two corresponding combinations are

V1 = �1111� + �1111� + �1111� + �11̄11̄� + �1111� + �1111� + �1̄11̄1� + �1̄111̄� ,

�3.23�
V2 = �1111̄� + �111̄1� + �11̄11� + �1̄111� + �1111� + �1111̄� + �1̄111� + �1111� ,

ith

T�4�����V1,V2� = e4m11
�+���V1,V2� . �3.24�

long with �2222� these assure

tr�T�4����� = 2e4m11
�+�� + 1. �3.25�

The general pattern is now visible. Indeed the general result is that �with relative coefficients
n the sums below being all unity as in the example above�

Ve = �sum of states with even number of �1�� ,

�3.26�
V0 = �sum of states with odd number of �1�� ,

ive

T�r�����Ve,V0� = erm11
�+���Ve,V0� . �3.27�
long with �22¯2� they assure
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tr�T�r����� = 2erm11
�+�� + 1. �3.28�

ll the reaming �3r−3� states are grouped unto subsets giving “zero-trace” multiplets of eigen-
alues involving roots of unity.

This is as far as we propose to go in explicitly constructing the eigenstates. We repeat that, as
entioned in Appendix A, we could obtain the complete sets for r=1,2 ,3 ,4 the 3 ,32 ,33 ,34

igenstates exhaustively.
Let us now compare our approach with that via algebraic Bethe ansatz �Refs. 3, 5, and 6

rovide a considerable number of references�. For ready comparison we recapitulate the essential
esults for the relatively simple and well studied case of 6-vertex models. We follow the notation
f Ref. 3 for the ferroelectric regime in particular. Starting with the 4�4 6-vertex braid matrix and
enoting the Nth order transfer matrix blocks as �N, r having different significance here as com-
ared to our notations�

T�N���� = A��� B���
C��� D���

� �3.29�

ith

tr�T�N����� = A��� + D��� . �3.30�

he eigenvalues of this trace are extracted from the ansatz

���1,�2, . . . ,�r� = B��1�B��2� ¯ B��r��1

0
�

1
� �1

0
�

2
� ¯ � �1

0
�

N
� . �3.31�

or the chosen regime, denoting

 j = i� j +
�

2
� �3.32�

where � is the single free parameter of R̂� the constraints on the parameters ��1 , . . . ,�r� for �3.31�
o give eigenstates reduce �due to the Rtt algebra� to

� sin� j + i�/2�
sin� j − i�/2��N

= − �
k=1

r
sin� j − k + i��
sin� j − k − i��

. �3.33�

ne must find the solutions �in general complex� for ��1 , . . . ,�r� from these set of nonlinear
onstraints.

For our case the invariance of the subspaces S�r ,k� defined in �2.10� under the action of
�r���� �our r being N of �3.29�� clearly indicates the choice of

�22 ¯ 2� = �0

1

0
	 � �0

1

0
	 � ¯ � �0

1

0
	 �3.34�

ith eigenvalue 1 �for all successive orders r� as the starting point. This is the subspace S�r ,r�
ith only one state.

From �3.1� to �3.28� we have defined and implemented operators which acting on �3.34�
oves stepwise through the subspaces

S�r,r�,S�r,r − 1�, . . . ,S�r,1�,S�r,0� . �3.35�

or our class of higher dimensional structures, already for N=3, the state-labels �1,2 , 1̄� necessi-
ate different types of actions on the index 2. Instead of a single complex �-dependent matrix �like

��� of �3.31�� we have chosen and systematically implemented the operators �U ,A ,D� to move
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hrough the sequence �3.35�. At each step our formalism leads to relatively simple linear con-
traints, �3.6� giving the complete results for S�r ,r−1� being the simplest example. The results
3.26�–�3.28� give the complete trace. The results in Appendix A �for r=1,2 ,3 ,4 for spaces of
,9,27,81 dimensions, respectively� give a fair idea of the structure of the eigenvalues.

The fact that one finally solves only sets of linear equations with simple constant coefficients
s not evident directly from �3.13�–�3.15�, for example. But the fact that one ends up only with
igenvalues of the form e�� �where, as in Appendix A, � is a linear function of the parameters

ij
�±�� leads finally to such constraints. For the 3r−3 eigenvalues of zero total trace one searches for
ultiplets formed by roots unity and hence summing to zero. This also is very helpful in con-

tructing eigenstates. The eigenvalues, for each r, are known to a certain extent �through certainly
ot entirely� beforehand.

V. HAMILTONIANS AND CONSERVED QUANTITIES „N=3…

We study here the role of our parameters in the sequence of conserved quantities, the first one
n the sequence being chain Hamiltonian.3,4 �Many source are cited in Ref. 3.� Define

Hn = � �n

��n ln T�r�����
�=0

. �4.1�

he commutativity of the transfer matrices T���, T���� implies

�Hn,Hm� = 0. �4.2�

f H1 is regarded as the Hamiltonian of the system, there is infinite set of conserved quantities.
Using standard results3,4 and taking account of our normalization and the regularity, i.e.,

R̂�0� = PR�0� = I , �4.3�

ne obtains �since �PR̂�0��−1�P��R̂�����=0= ���R̂�����=0�

H1 = ��T�r��0��−1 �

��
T�r�����

�=0
= �

k=1

r

I � ¯ � R̂
˙ �0�k,k+1 � ¯ � I . �4.4�

ote that due to the trace �circular boundary� constraint k+1=r+1�1. Indeed starting with r
2, evaluating directly and explicitly

��T�2��0��−1 �

��
T�2�����

�=0
�4.5�

nd setting

x± = 1
2 �m11

�+� ± m11
�−��, y± = 1

2 �m12
�+� ± m12

�−��, z± = 1
2 �m21

�+� ± m21
�−�� , �4.6�
ne obtains �writing H for H1 when r=2�
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H =�
2x+ 0 0 0 0 0 0 0 2x−

0 y+ + z+ 0 0 0 0 0 y− + z− 0

0 0 2x+ 0 0 0 2x− 0 0

0 0 0 y+ + z+ 0 y− + z− 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 y− + z− 0 y+ + z+ 0 0 0

0 0 2x− 0 0 0 2x+ 0 0

0 y− + z− 0 0 0 0 0 y+ + z+ 0

2x− 0 0 0 0 0 0 0 2x+



= R̂

˙ �0� + PR̂
˙ �0�P = R̂

˙ �0�12 + R̂
˙ �0�21, �4.7�

here, in evident notations,

R̂
˙ �0�12 = �x+,y+,x+,z+,0,z+,x+,y+,x+�diag + �x−,y−,x−,z−,0,z−,x−,y−,x−�antidiag �4.8�

nd

R̂
˙ �0�21 = �x+,z+,x+,y+,0,y+,x+,z+,x+�diag + �x−,z−,x−,y−,0,y−,x−,z−,x−�antidiag. �4.9�

he expressions for �12� and �21� are related through the interchanges

�y±,z±� → �z±,y±� . �4.10�

he appearance of �21� in �4.7� is consistent with the remark below �4.4�.
For higher derivatives one has

� dl

d�l R̂����
�=0

= �x+
l ,y+

l ,x+
l ,z+

l ,0,z+
l ,x+

l ,y+
l ,x+

l �diag + �x−
l ,y−

l ,x−
l ,z−

l ,0,z−
l ,x−

l ,y−
l ,x−

l �antidiag.

�4.11�

or H2 one now obtains, as compared to �4.4�,

H2 = �
j�k

I � ¯ � I � R̂
˙ �0� j j+1 � I ¯ � I � R̂

˙ �0�k,k+1 � I ¯ � I

+ �
k

I ¯ � I � R̂
¨ �0�k,k+1 � I ¯ � I . �4.12�

eneralization to higher orders are carried out in evident fashion.

In Sec. 5 of Ref. 1 in constructing �-expansions the H defined in �5.1� is precisely R̂
˙ �0� of

4.8� above generalized to all odd N, namely N=3,5 ,7 , . . . . There it was noted �Eq. 5.9 of Ref. 1�,

�H12 + H23,�H12,H23�� = 0, �4.13�

here H12=H � I and H23= I � H. This vanishing double commutator is the simplest version of the
eshetikhin condition given in Eqs. 3.20 of Ref. 2 as

�H12 + H23,�H12,H23�� = X12 − X23, �4.14�
he rhs being the difference of two two-point-quantities. In �4.13� the rhs is simply zero.
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. POTENTIAL FOR FACTORIZABLE S-MATRICES AND CAYLEY TRANSFORMS
N=3…

Potentials for scattering of bosons or fermions with quadratic interaction terms �Sec. 3 of Ref.
and Sec. 1 of Ref. 3 provide more references� can correspond to factorizable S-matrices �fac-

orizable into two particle scatterings, independently of the chosen order of the latter ones� pro-
ided that such potentials are inverse Cayley transforms of Yang-Baxter matrices of appropriate
imensions, i.e., V being the potential �for a chosen helicity fixing the sign of ��

− iV = �R��� − ���I�−1�R��� + ���I� . �5.1�

s compared to Refs. 2 and 3 we display explicitly a free normalization factor

�����−1R��� . �5.2�

ur multiparametric case shows clearly that though the normalization �if well-defined� trivially
ancels in the YB or the braid equation it must be compatible with the existence of the inverse of

�−1���R��� − I� . �5.3�

e will find that

��� � �1,em11
�±��, ± em11

�−��, ± e�1/2��m12
�±�+m21

�±���� . �5.4�

he inverse �when R̂��� is given by �1.10��

�R̂��� − ����I�−1 �5.5�

an be shown to exist for

���� � �1,em11
�±��,em12

�±��,em21
�±��� . �5.6�

he significance of �5.6� is simple, the rhs exhibiting simply the coefficients of the projectors

�P22,P11
�±�,P12

�±�,P21
�±�� �5.7�

n �1.10�.
Diagonalizing R̂��� the situation becomes particularly transparent �Eqs. �3.4�, �3.5� of Ref. 1�.

M being given by �3.5� of Ref. 1,

M�R̂��� − ����I�M−1 = �em11
�+��,em12

�+��,em11
�+��,em21

�+��,1,em21
�−��,em11

�−��,em12
�−��,em11

�−���diag − ����I .

�5.8�

hen ���� is equal to any one of the eigenvalues �including 1� the determinant of �R̂���
����I� vanishes. Hence �5.6�.

For �5.1� one requires invertibility of

PR̂��� − ���I . �5.9�

he action of P finally leads to �5.4� rather than �5.6�.
Defining X through

�R��� − ���I�X = I , �5.10�
e present below the explicit form of X for our N=3 case,
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X =�
x1 0 0 0 0 0 0 0 x8

0 x2 0 x6 0 x7 0 x4 0

0 0 x3 0 0 0 x9 0 0

0 x10 0 x2 0 x4 0 x11 0

0 0 0 0 x5 0 0 0 0

0 x11 0 x4 0 x2 0 x10 0

0 0 x9 0 0 0 x3 0 0

0 x4 0 x7 0 x6 0 x2 0

x8 0 0 0 0 0 0 0 x1


 , �5.11�

here �writing  for ����

x1 =
1

2 1

em11
�+�� − 

+
1

em11
�−�� − 

�, x8 =
1

2 1

em11
�+�� − 

−
1

em11
�−�� − 

� ,

x2 =


2 1

e�m12
�+�+m21

�+��� − 2
+

1

e�m12
�−�+m21

�−��� − 2� ,

x4 =


2 1

e�m12
�+�+m21

�+��� − 2
−

1

e�m12
�−�+m21

�−��� − 2� ,

x3 =
1

2 1

em11
�+�� − 

−
1

em11
�−�� + 

�, x9 =
1

2 1

em11
�+�� − 

+
1

em11
�−�� + 

� ,

x5 =
1

1 − 
, �5.12�

x6 =
1

2 em21
�+��

e�m12
�+�+m21

�+��� − 2
+

em21
�−��

e�m12
�−�+m21

�−��� − 2
� ,

x7 =
1

2 em21
�+��

e�m12
�+�+m21

�+��� − 2
−

em21
�−��

e�m12
�−�+m21

�−��� − 2
� ,

x10 =
1

2 em12
�+��

e�m12
�+�+m21

�+��� − 2
+

em12
�−��

e�m12
�−�+m21

�−��� − 2
� ,

x11 =
1

2 em12
�+��

e�m12
�+�+m21

�+��� − 2
−

em12
�−��

e�m12
�−�+m21

�−��� − 2
� .

ow, from �5.1�, �5.10�, and �5.11�,

− iV = �R��� − ���I�−1�R��� + ���I�

= �R��� − ���I�−1�R��� − ���I + 2���I�
−1
= X�X + 2���I� ,
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− iV = I + 2���X . �5.13�

rom �5.12� it is evident that X is well-defined only when �5.4� is satisfied. We have thus obtained
xplicitly, for N=3, the potential leading to a factorizable S-matrix. The role played by our
arameters is now displayed.

Note that any ��� satisfying �5.4� can be implemented. One many choose to display this
ependence on  by denoting the potential as V��. With our V�� one now considers the fermi-
nic Lagrangian

L =� dx�i�̄a�v�v�a − g��̄a�v�c�Vab,cd��̄b�v�d�� , �5.14�

here

V = �
ab,cd

�Vab,cd��ab� � �cd� . �5.15�

here is an analogous, simpler, formulation for bosons. We will not further analyze the conse-
uences of our V. But it should be compared to the detailed studies of the solutions obtained in
efs. 7 and 8.

I. N>3

So far we have studied the case N=3 in detail. Now we indicate briefly the crucial new
eatures arising for N�3. Many aspects are conserved also, as will be pointed out.

The first major feature is the generalization of �2.1�. For N=2p−1, one obtains

tr�T�r����� = 2�erm11
�+�� + erm22

�+�� + ¯ + ermp−1,p−1
�+� �� + 1, p = 2,3,4, . . . . �6.1�

here are

2�p − 1� + 1 = 2p − 1 = N �6.2�

erms. An explanation, promised below �2.1�, is as follows. Only the diagonal blocks tii��� have
iagonal terms. Thus in �2.5� only t11���, t22���, t11���, has nonzero elements on the diagonal, their
um being

tr�T�1����� = 2�a+ + a−� + 1 = 2em11
�+�� + 1 �r = 1� . �6.3�

or r=2 �and N=3� one obtains from the coproduct structure

tr�T�2����� = tr��a+a+,0,a+a−�diag + �0,1,0�diag + �a−a−,0,a−a+�diag + �a−a+,0,a−a−�diag

+ �a+a−,0,a+a+�diag� + tr�blocks with nondiagonal terms only� = 2�a+ + a−�2 + 1,

tr�T�2����� = 2e2m11
�+�� + 1, �6.4�

nd so on.
For N�3 the basic features persist. Along with the crucial constraint �1.8�

mij
��� = mij̄

��� � j̄ = 2p − j� �6.5�

hich symmetrizes the blocks on the diagonal �generalizing �1.10��, the final result is

tr�T�r����� = 2�
p−1

�aii
�+� + aii

�−��r + 1 �6.6�

i=1
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=2�
i=1

p−1

ermii
�+�� + 1. �6.7�

he result is obtained directly by looking closely at the structure of the matrices concerned,
ithout constructing eigenstates and their eigenvalues. We have checked �6.7� directly and ex-
licitly for arbitrary p �Appendix A�. But this result has profound consequence on the spectrum of
he eigenvalues for each r. Given �N ,r� and the coproduct rule,

1� the number of eigenvalues for T�r����=Nr,
2� the number of eigenvalues contributing in the trace� N,
3� the remaining �Nr−N� eigenvalues must sum to give zero contribution in the trace.

or N=3 we have shown �Appendix A� how this constraint is satisfied via the multiplet structures

e���1,��l�,��l�
�2�, . . . ,��l�

l−1�, ��l� = e2
i/l,

�6.8�
1 + ��l� + ��l�

2 + ¯ + ��l�
�l−1� = 0,

here � is linear in mij
�±� and for

r = 2, l = 2,

r = 3, l = 3, �6.9�

r = 4, l = 2,4,

nd so on.
This multiplet structure involving roots of unity can also be shown to be carried over for N

3 explicitly. But apart from the fact that the number of eigenstates and the number of states in
he linear combinations giving eigenstates increase very fast there are no other basic difficulties.

For N=5, for example, generalizing the basis �2.7�, for p=3, to

��
1

0

0

0

0
	 ,�

0

1

0

0

0
	 ,�

0

0

1

0

0
	 ,�

0

0

0

1

0
	 ,�

0

0

0

0

1
	
 � ��1�, �2�, �3�, �2̄�, �1̄�,� �6.10�

ne again obtains subspaces stable under the action of T�r����,

S�r,k� �k = 0,1, . . . ,r� , �6.11�

here k is now the multiplicity of the index 3. The operator structures �3.1�, �3.2�, �3.3� are now
eneralized, in terms of operators �t31��� , t31̄����, �t32��� , t32̄����, t33��� to construct

U1�3� = �1�, U2�3� = �2� ,

D1�3� = �1̄�, D2�3� = �2̄� , �6.12�

A�3� = �3� .
he subspace S�r ,r� is still given by a single state
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T�r�����33 ¯ 3� = �33 ¯ 3� . �6.13�

he subspace S�r ,r−1� is now spanned by 4r �instead of 2r for N=3� states and is easily diago-
alized.

The stepwise generalization for N=7,9 , . . . is now fairly evident. The dimensions of S�r ,k� is
given by a generalization of �2.11� by the successive coefficients in

�x + 2�p − 1��r = 1 · xr + 2r�p − 1�xr−1 + ¯ + �2�p − 1��r−k r

r − k
�xk + ¯ + �2�p − k��r.

�6.14�

or x=1, one gets the total dimension

�2p − 1�r = Nr. �6.15�

he generalization of �3.26� is also fairly direct. When the order r of Tr��� is a prime number there
s an amusing encounter with a theorem of Fermat in considering our multiplet structures. This is
iscussed in Appendix B.

The generalization of the structure of the Hamiltonian of Sec. IV involving R̂
˙ �0� of �4.8� is

articulary straightforward. But even for N=5 we have 24 nonzero terms on the diagonal and as
any on the antidiagonal.

The potential �5.1� for N=5,7 , . . . now involve inversions of N2 dimensional matrices �R���
���I�. This is again straightforward, given our specific structure of R̂���, but evidently lengthly.

Apart from such general indications as presented above systematic studies for cases N�3 are
eyond the scope of this work. In particular possible substructures in each subspace S�r ,k� cor-

esponding to multiplicities of different indices �say �1, 1̄� and �2, 2̄� for N=5� should be formu-
ated with care.

II. GENERALIZATION OF THE NESTED SEQUENCE OF PROJECTORS

The sequence of projectors �1.3�, forming a complete orthonormalized basis admits the more
eneral parametrization displayed below �for odd N�

Ppp = �pp� � �pp� ,

�upi + upi
−1�Ppi�±� = �pp� � �upi

±1�ii� + upi
�1�ii� ± �vpi�iī� + vpi

−1�īi��� ,

�uip + uip
−1�Pip�±� = �uip

±1�ii� + uip
�1�iī� ± �vip�iī� + vip

−1�īi��� � �pp� , �7.1�

�uij + uij
−1�Pij��� = uij

±1�ii� � �j j� + uij
�1�ii� � �j j� ± �vij�iī� � �j j̄� + vij

−1�īi� � � j̄ j�� ,

�uij̄ + uij̄
−1�Pij̄��� = uij̄

±1�ii� � �j j� + uij̄
�1�ii� � �j j� ± �vi j̄�iī� � � j̄ j� + vi j̄

−1�īi� � �j j̄�� ,

here the supplementary parameters introduced are compatible with the orthonormality and com-
leteness conditions �1.5�. For even N also an analogues pammetrization can be introduced. Thus

-vertex and 8-vertex projector basis �given in �6.1� of Ref. 1� can be generalized to
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�u11 + u11
−1�P11�±� =�

u11
±1 0 0 ±v11

0 0 0 0

0 0 0 0

±v11
−1 0 0 u11

�1

 ,

�7.2�

�u11̄ + u
11̄

−1�P11̄�±� =�
0 0 0 0

0 u
11̄

±1
±v11̄ 0

0 ±v
11̄

−1
u

11̄

�1
0

0 0 0 0

 .

raid matrices on such bases of projectors and associated statistical models can be studied sys-
ematically. Such a study will be presented elsewhere with suitable restrictions on parameters for
pecific solutions. Setting uab=vab=1 for all values of the indices one recovers the projectors of
1.3�.

III. DISCUSSION

Our results presented above, are limited to formal study of the transfer matrix, construction of
hain Hamiltonians and potentials corresponding to factorizable S-matrices. Adequate study of the,
onsequences of the features obtained, of their deeper significance remains to be done. The role of
ur parameters should be analyzed in various domains for comparison with corresponding features
f well-known statistical models.3,9–11 Our braid matrices encode star-triangle relations.

Certain features are, of course, immediately available for our case. Thus the free energy
defined with the opposite sign in Ref. 10�, is given by the maximum eigenvalue ���0� as

f = − lim
r→�

1

r
ln erm11

�+�� = − m11
�+�� �8.1�

f we choose, say, the order

m11
�+� � m22

�+� � ¯ � mp−1,p−1
�+� . �8.2�

n our case results depend on the sector of the parameters selected �their ordering�. The second
argest eigenvalue, also of particular interest, is again directly obtained once the ordering is fixed.

Correlation functions are of major interest and a domain of intense activity.12,13 Here our
odel can have quite interesting consequences. This aspect also remains to be explored.

We intend to continue our study elsewhere. But we consider the series of remarkable features
resented here to be sufficiently rich in content. They open up a significantly different domain, as
ompared to standard, well known cases.
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PPENDIX A: EIGENVALUES OF T„r…
„�… FOR N=3, r=1,2,3,4 AND DIRECT

ONSTRUCTION OF TRACE FOR N>3

For each r, the eigenvalues of T�r���� are given systematically for the subspaces S�r ,k� defined
n �2.10�, for k=0,1 , . . . ,r.
r=1(dim 3):
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eigenvalues

S�1,0��dim 2�: em11
�+���1,1� ,

�A1�

S�1,1��dim 1�: 1, �A2�

tr�T�1����� = 2em11
�+�� + 1. �A3�

r=2(dim 9):

S�2,0��dim 4�: e2m11
�+���1,1� ,

e2m11
�−���1,− 1�;

�A4�

S�2,1��dim 4�: e�m12
�+�+m21

�+����1,− 1� ,

e�m12
�−�+m21

�−����1,− 1�;
�A5�

S�2,2��dim 1�: 1; �A6�

tr�T�2����� = 2e2m11
�+�� + 1. �A7�

r=3(dim 27):

S�3,0��dim 8�: e3m11
�+���1,1� ,

e�m11
�+�+2m11

�−����1,e2
i/3,e�2
i/3�2� �2 times�;
�A8�

S�3,1��dim 12�: �
e�m11

�+�+m12
�+�+m21

�+���

e�m11
�+�+m12

�−�+m21
�−���

e�m11
�−�+m12

�+�+m21
�−���

e�m11
�−�+m12

�−�+m21
�+���

�1,e2
i/3,e�2
i/3�2�; �A9�

S�3,2��dim 6�: e�m12
�+�+m21

�+���

e�m12
�−�+m21

�−�����1,e2
i/3,e�2
i/3�2�; �A10�

S�3,3��dim 1�: 1; �A11�

tr�T�3����� = 2e3m11
�+�� + 1. �A12�

r=4(dim 81):

S�4,0��dim 16�: e4m11
�+���1,1� ,

e2�m11
�+�+m11

�−����1,e2
i/4,e�2
i/4�·2,e�2
i/4�·3� �3 times�;
4m11

�−��

�A13�
e �1,− 1� ,
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S�4,1��dim 32�: e�m11
�+�+m11

�−�+m12
�+�+m21

�−����1,e2
i/4,e�2
i/4�·2,e�2
i/4�·3,� �2 times� ,

e�m11
�+�+m11

�−�+m12
�−�+m21

�+����1,e2
i/4,e�2
i/4�·2,e�2
i/4�·3,� �2 times�;

�
e�2m11

�+�+m12
�+�+m21

�+���

e�2m11
�+�+m12

�−�+m21
�−���

e�2m11
�−�+m12

�+�+m21
�+���

e�2m11
�−�+m12

�−�+m21
�+���

�1,e2
i/4,e�2
i/4�·2,e�2
i/4�·3,� ,

�A14�

S�4,2��dim 24�: e2�m12
�+�+m21

�+���

e2�m12
�−�+m21

�−�����1,− 1� ,

e�m12
�+�+m12

�−�+m21
�+�+m21

�−����1,e2
i/4,e�2
i/4�·2,e�2
i/4�·3� ,

�
e�m11

�+�+m12
�+�+m21

�+���

e�m11
�+�+m12

�−�+m21
�−���

e�m11
�−�+m12

�+�+m21
�−���

e�m11
�−�+m12

�−�+m21
�+���

�1,e2
i/4,e2
i/4·2,e2
i/4·3�;

�A15�

S�4,3��dim 8�: e�m12
�+�+m21

�+���

e�m12
�−�+m21

�−�����1,e2
i/4,e2
i/4·2,e2
i/4·3�; �A16�

S�4,4��dim 1�: 1; �A17�

tr�T�4����� = 2e4m11
�+�� + 1. �A18�

ow we indicate briefly the direct construction of trace for all N, without constructing the full set
f eigenvalues explicitly.

Set, for the coefficients on the diagonal and the antidiagonal, respectively,

dij = 1
2 �emij

�+�� + emij
�−��� = dij̄, aij = 1

2 �emij
�+�� + emij

�−��� = aij̄ , �A19�

here

i = 1,2, . . . ,p − 1, ī = �2p − 1�, . . . ,�p + 1�, p = 1
2 �N + 1� . �A20�

rom �1.7� and �1.15�

t��� = �
i

��pi� � �dip�ip� + aip�īp�� + �pī� � �aip�ip� + dip�īp�� + �ip� � �dpi�pi� + api�pī��

+ �īp� � �api�pi� + dpi�pī��� + �
ij

��ji� � �dij�ij� + aij�ij�� + �ji� � �aij�ij� + dij�ij�� + �jī�

� �dij�ī j� + aij�i j̄�� + � j̄i� � �dij�ī j� + aij�i j̄��� + �
i

��iī� � �dii�īi� + aii�iī�� + �īi� � �aii�īi�

+ dii�iī��� + �
i

��ii� � �dii�ii� + aii�ii�� + �ii� � �aii�ii� + dii�ii��� + �pp� � �pp� . �A21�

Crucial features to be noted are the following:
1� Only the diagonal blocks have nonzero terms on the diagonal.

2� In each such block there are only two nonzero terms �with only one for the pth�.
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3� These features are iterated under successive coproducts.

hus

tr�T���� = tr�
i

�tii��� + tii���� + tpp���� = 2�
i

�dii + aii� + 1 = 2�
i

emii
�+�� + 1, �A22�

tr�T�2����� = 2�
i

�dii�dii + aii� + aii�dii + aii�� + 1 = 2�
i

�dii + aii�2 + 1 = 2�
i

e2mii
�+�� + 1,

�A23�

nd continuing stepwise

tr�T�r����� = 2�
i=1

p−1

�dii + aii�r + 1 = 2�
i=1

p−1

ermii
�+�� + 1. �A24�

his is how the structure of our projector basis leads to a direct evaluation of tr�T�r����� for the
eneral case without the full list of eigenvalues. The trace is given by 2�p−1�+1=2p−1=N
igenvalues. The remaining �Nr−N� eigenvalues give zero trace, as we have seen, due to multiplet
tructures corresponding to roots of unity.

PPENDIX B: ENCOUNTER WITH A THEOREM OF FERMAT

A well-known theorem of Fermat states

Nr = N mod r , �B1�

here �N ,r� are positive integers and r is a prime number. Writing it as

Nr − N = rM , �B2�

e try to obtain the integer M explicitly with the following purpose.
In Sec. VI we noted that out of Nr eigenvalues of the transfer matrix T�r���� of order r�Nr

N� eigenvalues must give zero trace when summed. We have also seen how such a zero trace
onstraint is implemented in our case through multiplets corresponding to roots of unity as ex-
lained in �6.8�–�6.10�. When r is a prime number the minimal multiplets can be consistently
r-plets” �or “nr-plets”� only if �B2� is satisfied. But precisely this is guaranteed by �B1�. This is
he link of our multiplet structure with �B1�. When r is factorizable one can have lower multiplets
r1 ,r2 , . . . � for, say, r=r1 ·r2¯rn. This is already seen for r=4 in �6.10�. We are interested here in
dd integers N, but �B2� holds also for even N. We now construct M giving the number of r-plets.

Different constructions of M are certainly possible. The one particularly suitable for our
urpose is as follow. One has for r=1,3 ,5 ,7 ,11, . . ., respectively,

N − N = 0,

N3 − N = �N − 1�N�N + 1� ,

N5 − N = �N − 2��N − 1�N�N + 1��N + 2� + 5�N − 1�N�N + 1� ,

N7 − N = �N − 3��N − 2��N − 1�N�N + 1��N + 2��N + 3�

+ 7�2�N − 2��N − 1�N�N + 1��N + 2� + 3�N − 1�N�N + 1�� .
ontinuing thus with product of consecutive factors
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N11 − N = �N − 5� ¯ N ¯ �N + 5� + 11�5�N − 4� ¯ N ¯ �N + 4� + 57�N − 3� . . . N . . . �N + 3�

+ 128�N − 2� ¯ N ¯ �N + 2� + 31�N − 1N�N + 1��� . �B3�

hus for N=3, r=3,5 ,7 , . . ., one has, respectively, eight triplets, 48 5-plets, 312 7-plets, and so on
unless 10-plets, 14-plets, and so on are also obtained�.

The first term is

N −
r − 1

2
�¯ N +

r − 1

2
� �B4�

nd being a product of r consecutive integers, evidently divisible by r. The lower order products
ll have r as a factor. Hence the result. When N� �r−1� /2 one or more higher order products
anish. Although now Nr is not directly, visibly present on the right-hand side, the results still
old. Thus though �N−3� vanishes in the leading term,

37 − 3 = 0 + 7 � �312� . �B5�

or completeness we give the general result below

Nr − N = �
p=1

�r−1�/2

Ap�r� �
k=−p

p

�N + k� � �
p=0

�r−1�/2

Ap�r�B�N,p� , �B6�

here

A�r−1�/2�r� = 1,

A�r−2k+1�/2�r� = �
m1=1

k−1

�
m2=1

m1−1

¯ �
mk−1=1

mk−2−1 �−
Hm1

2k−2m1�r�

�2k − 2m1�!
� � �−

Hm2

2m1−2m2�r�

�2m1 − 2m2�!
� � ¯

��−
Hmk−1

2mk−2−2mk−1�r�

�2mk−2 − 2mk−1�!
�, k = 2,3, . . . ,

r − 1

2
. �B7�

he elements Hk
m are given by

Hk
m�r� =  �

p1=−�r−2k+1�/2

�r−2k+1�/2

p1�� �
p2=−�r−2k+1�/2

p2�p1

�r−2k+1�/2

p2
¯ � �
pm=−�r−2k+1�/2
pm�p1,. . .,pm−1

�r−2k+1�/2

pm
, m � 0,

�B8�
Hk

0�r� = 1.

or example,

Hk
2�r� = − 1

12�r − 2k + 1��r − 2k + 2��r − 2k + 3� ,

Hk
4�r� = 1

240�5r + 17 − 10k��r + 3 − 2k��r − 2k + 2��r − 2k + 1��r − 2k��r − 1 − 2k� ,

H�r−2k+1�/2
2k �r� = �− 1�k�2k� ! �k ! �2, k = 0, . . . ,

r − 1

2
,

H�r−2p+1�/2
2p+2k−r−1�r� = ��2p + 2k − r − 1� !

dr−2k+2B�N,p�
dNr−2k+2 � , p =

r − 2k + 1

2
, . . . ,

r − 1

2
,

N=0
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Hm1

2k−2m1�r� = �2k − 2m1� ! �d2m1+1BN,
r − 2m1 + 1

2
�

dN2m1+1 �
N=0

, m1 = k, . . . ,
r − 1

2
. �B9�

he above formula gives the general expression for the coefficients. But, as A. Lascoux has
ointed out, the symmetric form of Newton’s interpolation formula relevant for our case leads to
omplete functions as coefficients. These can be obtained systematically and conveniently. Thus
ne obtains, for example

N11 − N = �N − 5� ¯ N ¯ �N + 5�

+ �N − 4� ¯ N ¯ �N + 4��12 + 22 + 32 + 42 + 52�

+ �N − 3� ¯ N ¯ �N + 3��14 + 24 + 34 + 44 + 12 � 22 + 12 � 32

+ 12 � 42 + 22 � 32 + 22 � 42 + 32 � 42�

+ �N − 2� ¯ N ¯ �N + 2��16 + 26 + 36 + 14 � 32 + 24 � 32

+ 24 � 12 + 34 � 12 + 34 � 22 + 14 � 22 + 12 � 22 � 32�

+ �N − 1�N�N + 1��18 + 28 + 16 � 22 + 26 � 12 + 14 � 24� . �B10�

his gives �B3� in which 11 is already factorized.

PPENDIX C: R̂tt-ALGEBRA

We present below a canonical formulation of the R̂tt algebra14 specifically adapted to our case.
he Baxterized form with N2 blocks of N�N matrices tij��� must satisfy

R̂�� − ����t��� � t����� = �t���� � t����R̂�� − ��� , �C1�

here �since P2= I�

t��� � t���� = �t��� � I��I � t���� � t1���t2��� = �t1���P��Pt2���� . �C2�

ut t1���= Pt2���P, hence

t1���P = t2���P � t̂��� . �C3�

hus

R̂�� − ���t̂���t̂���� = t̂����t̂���R̂�� − ��� , �C4�

here one has just matrix multiplication of the same matrix t̂ with arguments �� ,���.
Now suppose that one has obtained explicitly the diagonalizer M of R̂���. When

R̂��� = �
�,�

f�,����P�,�, �C5�

here P�� form a complete basis of �-independent projectors �and the minimal polynomial equa-

ion satisfied by R̂��� has no multiple roots for consistency� one can construct a �-independent M
o diagonalize each P�� simultaneously. For our nested sequence of projectors �1.3� the diagonal-

zer is given in Sec. III of Ref. 1 as
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�2M = �2M−1 = �2�pp� � �pp�

+ �pp� � �
i

��ii� − �ii� + �iī� + �īi���
+ �

i

��ii� − �ii� + �iī� + �īi��� � �pp�

+ �
ij

���ii� − �ii�� � ��j j� + �j j�� + ��iī� + �īi�� � ��j j̄� + � j̄ j��� , �C6�

here

i = 1,2, . . . ,p − 1, ī = 2p − 1, . . . ,p + 1, N = 2p − 1. �C7�

or N=3 �p=2�, one obtains �see �3.5� of Ref. 1�

�2M = �2M−1 = �1,1,1,1,�2,− 1,− 1,− 1,− 1�diag + �1,1,1,1,�2,1,1,1,1�antidiag �C8�

�2 being the common element of diag and antidiag�.
The general case is now evident. Defining

MR̂���M−1 = D��� �C9�

diagonal matrix and

Mt̂���M−1 = K��� �C10�

uite generally

D�� − ���K���K���� = K����K���D�� − ��� . �C11�

his is our canonical formulation.15 For our present case �3.3�, �3.4� of Ref. 1,

D��� = �em11
�+��,em12

�+��, . . . ,em11
�−��� . �C12�

rom �C11�

Daa�� − ���Kac���Kcb���� = Kac����Kcb���Dbb�� − ��� . �C13�

or N=3, for our case, defining the 3�3 diagonal blocks

d11��� = �em11
�+��,em12

�+��,em11
�+���diag,

d22��� = �em21
�+��,1,em21

�−���diag, �C14�

d11��� = �em11
�−��,em12

�−��,em11
�−���diag,

nd denoting �K��� ,K���� ,D��−������K ,K� ,D�� when d11��−����d11� and so on

�d11� �KK��11 d11� �KK��12 d11� �KK��11̄

d22� �KK��21 d22� �KK��22 d22� �KK��21̄

d11� �KK��1̄1 d11� �KK��1̄2 d11� �KK��11

 = ��K�K�11d11� �K�K�12d22� �K�K�11̄d11�

�K�K�21d11� �K�K�22d22� �K�K�21̄d11�

�K�K�1̄1d11� �K�K�1̄2d22� �K�K�11d11�

 .

�C15�

ubstituting the explicit form of �KK��ij one obtains the full set of 81 relations �for N=3� of the
ˆ
 tt-algebra. Each Kij is a 3�3 block whose elements are the blocks of tij. Thus
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2K11 = �t11 + t11 t12 + t1̄2 t11̄ + t1̄1

0 0 0

t11̄ + t1̄1 t12 + t1̄2 t11 + t11

 = �t11 + t11���11� + �11�� + �t12 + t1̄2���12� + �1̄2�� + �t11̄ + t1̄1�

���11̄� + �1̄1�� . �C16�

n such a notation

2K11 = �t11 + t11��− �11� + �11�� + �t12 + t1̄2��− �12� + �1̄2�� + �t11̄ + t1̄1��− �11̄� + �1̄1�� ,

�C17�

2K11̄ = �t11 − t1̄1���11� − �11�� + �t12 − t1̄2���12� − �1̄2�� + �t11 − t11���11̄� − �1̄1�� , �C18�

2K1̄1 = �t11̄ − t1̄1���11� + �11�� + �t12 − t1̄2���12� + �1̄2�� + �t11 − t11���11̄� + �1̄1�� , �C19�

2K12 = �t11 + t11̄ + t1̄1 + t11��21� + �2�t12 + t1̄2��22� + �t11 − t11 + t1̄1 − t11��21̄� , �C20�

2K1̄2 = �t11 + t11̄ − t1̄1 − t11��21� + �2�t12 − t1̄2��22� + �t11 − t11 − t1̄1 + t11��21̄� , �C21�

2K21 = �t21 + t21̄���11� + �11�� + 2t22�12� + �t21 − t21̄���1̄1� − �11�� , �C22�

2K21̄ = �t21 − t21̄��− �11� + �11�� + 2t22�1̄2� + �t21 + t21̄���1̄1� + �11�� , �C23�

2K22 = �2�t21 + t21̄��21� + 2t22�22� + �2�t21 − t21̄��21̄� . �C24�

e have not directly utilized the R̂tt constraints in constructing eigenstates. But since �C1� is the
asic equation providing the starting point we present here the most compact approach to the full
et of 81 constraints for N=3.
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In this paper we consider the minimum time population transfer problem for the z
component of the spin of a �spin 1/2� particle, driven by a magnetic field, that is
constant along the z axis and controlled along the x axis, with bounded amplitude.
On the Bloch sphere �i.e., after a suitable Hopf projection�, this problem can be
attacked with techniques of optimal syntheses on two-dimensional �2-D� manifolds.
Let �−E ,E� be the two energy levels, and ���t� � �M the bound on the field
amplitude. For each couple of values E and M, we determine the time optimal
synthesis starting from the level −E, and we provide the explicit expression of the
time optimal trajectories, steering the state one to the state two, in terms of a
parameter that can be computed solving numerically a suitable equation. For
M /E�1, every time optimal trajectory is bang-bang and, in particular, the corre-
sponding control is periodic with frequency of the order of the resonance frequency
�R=2E. On the other side, for M /E�1, the time optimal trajectory steering the
state one to the state two is bang-bang with exactly one switching. For fixed E, we
also prove that for M→� the time needed to reach the state two tends to zero. In
the case M /E�1 there are time optimal trajectories containing a singular arc.
Finally, we compare these results with some known results of Khaneja, Brockett,
and Glaser and with those obtained by controlling the magnetic field both on the x
and y directions �or with one external field, but in the rotating wave approxima-
tion�. As a byproduct we prove that the qualitative shape of the time optimal
synthesis presents different patterns that cyclically alternate as M /E→0, giving a
partial proof of a conjecture formulated in a previous paper. © 2006 American
Institute of Physics.
�DOI: 10.1063/1.2203236�

. INTRODUCTION

. Preliminaries

The issue of designing an efficient transfer of population between different atomic or molecu-
ar levels is crucial in atomic and molecular physics �see, e.g., Refs. 1–4�. In the experiments,
xcitation and ionization are often induced by means of a sequence of laser pulses. The transfer
hould be as efficient as possible in order to minimize the effects of relaxation or decoherence that
re always present. In the recent past years, people started to approach the design of laser pulses
y using Geometric Control Techniques �see, for instance, Refs. 5–9�. Finite-dimensional closed
uantum systems are in fact left �or right� invariant control systems on SU�n�, or on the corre-
ponding Hilbert sphere S2n−1�Cn, where n is the number of atomic or molecular levels. For these
inds of systems very powerful techniques were developed, both for what concerns
ontrollability10–13 and optimal control.14–16
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The dynamics of an n-level quantum system is governed by the time dependent Schrödinger
quation �in a system of units such that �=1�,

iẋ�t� = �H0 + �
j=1

m

� j�t�Hj�x�t� , �1�

here x�·�, defined on �0,T�, is a function taking values on the state space that is SU�n� �if we
ormulate the problem for a time evolution operator� or the sphere S2n−1 �if we formulate the
roblem for the wave function�. The quantity H0 called the drift Hamiltonian is a Hermitian
atrix, that is natural to assume diagonalized, i.e., H0=diag�E1 , . . . ,En�, where E1 , . . . ,En are real

umbers representing the energy levels. With no loss of generality we can assume � j=1
n Ej =0. The

eal valued controls �1�.� , . . . ,�m�.�, represent the external pulsed field, while the matrices Hj

j=1, . . . ,m� are Hermitian matrices describing the coupling between the external fields and the
ystem. The time dependent Hamiltonian H�t�ªH0+� j=1

m � j�t�Hj is called the controlled Hamil-
onian.

The first problem that usually one would like to solve is the controllability problem, i.e.,
roving that for every couple of points in the state space one can find controls steering the system
rom one point to the other. For applications, the most interesting initial and final states are of
ourse the eigenstates of H0.

If x�SU�n�, thanks to the fact that the control system �1� is a left invariant control system on
he compact Lie group SU�n�, this occurs if and only if

Lie	iH0,iH1, . . . ,iHm
 = su�n� , �2�

see, for instance, Ref. 13�. If the problem is formulated for the wave function, i.e., x�S2n−1, one
an have controllability, with less restrictive conditions on the Lie algebra Lie	iH0 , iH1 , . . . , iHm
,
ee Ref. 17. The problem of finding easily verifiable conditions under which �2� is satisfied has
een deeply studied in the literature �see, for instance, Refs. 18 and 13�. Here we just recall that
he condition �2� is generic in the space of Hermitian matrices.

Once that controllability is proved, one would like to steer the system between two fixed
oints in the state space, in the most efficient way. Typical costs that are interesting to minimize
or applications are as follows.

• Energy transferred by the controls to the system. �0
T� j=1

m � j
2�t�dt,

• Time of transfer. In this case one can attack two different problems: one with bounded and
one with unbounded controls.

The problem of minimizing time with unbounded controls has been deeply investigated in
efs. 19 and 8. The problems of minimizing time or energy with bounded controls are very
ifficult in general, and one can hope to find a complete solution in low dimension only.

In Refs. 5 and 20–22 a special class of systems, for which the analysis can be pushed much
urther, was studied, namely systems such that the drift term H0 disappear in the interaction picture
by a unitary change of coordinates and a change of controls�. For these systems the controlled
amiltonian reads as

H�t� =�
E1 �1�1�t� 0 ¯ 0

�1�1
*�t� E2 �2�2�t� � 

0 �2�2
*�t� � � 0

 � � En−1 �n−1�n−1�t�
0 ¯ 0 �n−1�n−1

* �t� En

� . �3�

ere �*� denotes the complex conjugation involution. The controls �1 , . . . ,�n−1 are complex

they play the role of the real controls �1 , . . . ,�m in �1� with m=2�n−1�� and � j �0 �j
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1, . . . ,n−1� are real constants describing the couplings �intrinsic to the quantum system� that we
ave restricted to couple only levels j and j+1 by pairs.

For n=2 the dynamics �3� describes the evolution of the z component of the spin of a �spin
/2� particle driven by a magnetic field that is constant along the z axis and controlled both along
he x and y axes, while for n�2 it represents the first n levels of the spectrum of a molecule in the
otating wave approximation �see, for instance, Ref. 23�, and assuming that each external fields
ouples only close levels. The complete solution to the optimal control problem between eigen-
tates of H0=diag�E1 , . . . ,En� has been constructed for n=2 and n=3, for the minimum time
roblem with bounded controls �i.e., �� j � �Mj� and for the minimum energy problem

0
T� j=1

n−1 �� j�t��2 dt �with a fixed final time�.
Remark 1: For the simplest case n=2 �studied in Refs. 5 and 7�, the minimum time problem

ith bounded control and the minimum energy problem actually coincide. In this case the con-
rolled Hamiltonian is

H�t� = � − E ��t�
�*�t� E

�, ��� � M , �4�

nd the optimal trajectories, steering the system from the first to the second eigenstate of H0

diag�−E ,E�, correspond to controls in resonance with the energy gap 2E, and with maximal
mplitude, i.e., ��t�=Mei��2E�t+	�, where 	� �0,2
� is an arbitrary phase. The quantity �R=2E is
alled the resonance frequency. In this case, the time of transfer TC is proportional to the inverse
f the laser amplitude. More precisely �see, for instance, Ref. 5�, TC=
 / �2M�.

For n=3 the problem has been studied in Refs. 20 and 22, and it is much more complicated
in particular, when the coupling constants �1 and �2 are different�. In the case of minimum time
ith bounded controls, it requires some nontrivial technical tools of 2-D syntheses theory for
istributional systems that have been developed in Ref. 22.

For n�4 the problem is very hard and still unsolved, but in Ref. 21, it has been proved that
he optimal controls steering the system from any couple of eigenstates of H0 are in resonance,
.e., they oscillate with a frequency equal to the difference of energy between the levels that the
ontrol is coupling. More precisely,

� j = Aj�t�ei��Ej+1−Ej�t+	j�, j = 1, . . . ,n − 1, �5�

here Aj�.� are real functions describing the amplitude of the external fields and 	 j are arbitrary
hases. Actually, this result holds for more general systems, initial and final conditions, and costs
see Ref. 21�.

The problem of minimizing time with bounded controls or energy is even more difficult if it
s not possible to eliminate the drift H0. This occurs, for instance, in a system in the form �3� with
eal controls � j�t�=� j

*�t�, j=1, . . . ,n−1, as we are going to discuss now. �For more details on the
limination of the drift see Refs. 5, 20, and 21.�

. A spin 1/2 particle in a magnetic field

In this paper we attack the simplest quantum mechanical model interesting for applications for
hich it is not possible to eliminate the drift, namely a two-level quantum system driven by a real

ontrol. This system describes the evolution of the z-component of the spin of a �spin 1/2� particle
riven by a magnetic field, which is constant along the z axis and controlled along the x axis.
quivalently, it describes the first two levels of a molecule driven by an external field without the

otating wave approximation. The dynamics is governed by the time dependent Schrödinger equa-

ion �in a system of units such that �=1�:
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i
d��t�

dt
= H�t���t� , �6�

here ��.�= ��1�.� ,�2�.��T : �0,T�→C2, � j=1
2 �� j�t��2=1 �i.e., ��t� belongs to the sphere S3�C2�,

nd

H�t� = � − E ��t�
��t� E

� , �7�

here E�0 and the control ��.�, is assumed to be a real function. With the notation of formula
1�, the drift Hamiltonian is

H0 = �− E 0

0 E
� ,

hile

H1 = �0 1

1 0
� ,

nd the controllability condition �2� is satisfied.
Notice that for a spin 1/2 system, it is equivalent to treat the problem for the wave function or

or the time evolution operator since S3 is diffeomorphic to SU�2�. The aim is to induce a
ransition from the first eigenstate of H0 �i.e., ��1�2=1� to any other physical state. We recall that
wo states � ,���S3 are physically equivalent if they differ by a factor of phase. More precisely,
y the physical state we mean a point of the two dimensional sphere �called the Bloch sphere�
BªS3 /� where the equivalence relation � is defined as follows: ���� �where � ,���S3� if
nd only if �=exp�i����, for some �� �0,2
�. The projection from S3 to SB is called the Hopf
rojection, and it is given explicitly in the next section. A particularly interesting transition is of
ourse from the first to the second eigenstates of H0 �i.e., from ��1�2=1 to ��2�2=1�.

Due to the presence of the drift, in this case the minimum time problem with bounded control
nd the minimum energy problem are different. In Ref. 7 the authors studied the minimum energy
roblem �in that case, optimal solutions can be expressed in terms of elliptic functions�, while here
e minimize the time of transfer, with a bounded field amplitude:

���t�� � M, for every t � �0,T� , �8�

here T is the time of the transition and M �0 represents the maximum amplitude available. This
roblem requires completely different techniques with respect to those used in Ref. 7.

Thanks to the reduction to a two dimensional problem �on the Bloch sphere�, this problem can
e attacked with the techniques of optimal syntheses on 2-D manifolds developed by Sussmann,
ressan, Piccoli, and the first author; see, for instance, Refs. 24–27 and recently rewritten in Ref.
5. We make a brief recall of these techniques in Appendix A.

. The control problem on the Bloch sphere SB

An explicit Hopf projection from S3 to SB is given by

:��1

�2
� � S3 � C2 � y = �y1

y2

y3
� = �− 2 Re��1

*�2�
2 Im��1

*�2�
��1�2 − ��2�2

� � SB � R3. �9�

otice that  maps the first eigenstate of H0 �i.e., ��1�2=1� to the North Pole PNª �0,0 ,1�T of SB,
nd the second eigenstate �i.e., ��2�2=1� to the South Pole PSª �0,0 ,−1�T.

After setting u�t�=��t� /M, the Schrödinger equation �6�, �7� projects to the following single

nput affine system �clarified below, after normalizations�,
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ẏ = FS�y� + uGS�y�, �u� � 1, �10�

here

y � SB ª ��y1,y2,y3� � R3, �
j=1

3

yj
2 = 1� , �11�

FS�y� ª k cos����− y2

y1

0
�, GS�y� ª k sin���� 0

− y3

y2
� , �12�

� ª arctan�M

E
� � � 0,
/2�, k ª 2E/cos��� = 2�M2 + E2. �13�

Remark 2 �normalizations�: In the following, to simplify the notations, we normalize k=1.
his normalization corresponds to a reparametrization of the time. More precisely, if T is the
inimum time to steer the state ỹ to the state ȳ for the system with k=1, the corresponding
inimum time for the original system is T / �2�M2+E2�. Sometimes we need also the original

ystem �6�, �7� on S3, with the normalization made in this remark, i.e., the system

i
d��t�

dt
= H̃�t���t�, where H̃�t� =

1

2
sin ��− cot � u�t�

u�t� cot �
� . �14�

e come back to the original value of k only in Sec. III C, where we compare our results with
hose of other authors.

We refer to Fig. 1. The vector fields FS�y� and GS�y� �that play the role, respectively, of H0

nd H1� describe rotations, respectively, around the axes y3 and y1. Let us define the vector fields
orresponding to constant control ±1,

XS
±�y� ª FS�y� ± GS�y� . �15�

he parameter �� �0,
 /2� �that is the only parameter of the problem� is the angle between the
xes of rotations of FS and XS

+. The case ��
 /4 �resp., ��
 /4� corresponds to M �E �resp.,
M �E�.

Definition 1: An admissible control u�.� for the system �10�–�13� is a measurable function

FIG. 1. �Color online� The Bloch sphere.
�.� : �a ,b�→ �−1,1�, while an admissible trajectory is a Lipschitz functions y�.� : �a ,b�→SB sat-
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sfying �10�, a.e., for some admissible control u�.�. If y�.� is an admissible trajectory and u�.� the
orresponding control, we say that �y�.� ,u�.�� is an admissible pair.

For every ȳ�SB, our minimization problem is then to find the admissible pair steering the
orth Pole to ȳ in minimum time. More precisely, we have the following.

Problem �P�: Consider the control system �10�–�13�. For every ȳ�SB, find an admissible pair
y�.� ,u�.�� defined on �0,T� such that y�0�= PN, y�T�= ȳ, and y�.� is time optimal.

For us an optimal synthesis is the collection of all the solutions to the problem �P�. More
recisely we have the following.

Definition 2 �optimal synthesis�: An optimal synthesis for the problem �P� is the collection of
ll time optimal trajectories �= 	yȳ�.� : �0,bȳ��SB, ȳ�SB:yȳ�0�= PN , yȳ�bȳ�= ȳ
.

For more elaborated definitions of optimal synthesis see Refs. 15 and 28 and references
herein.

Definition 3 [bang, singular for the problem (10)–(13)]: A control u�.� : �a ,b�→ �−1,1� is said
o be a bang control if u�t�= +1, a.e., in �a ,b� or u�t�=−1, a.e., in �a ,b�. A control u�.� : �a ,b�
→ �−1,1� is said to be a singular control if u�t�=0, a.e., in �a ,b�. A finite concatenation of bang
controls is called a bang-bang control. A switching time of u�.� is a time t̄� �a ,b� such that, for
very ��0, u is not bang or singular on �t̄−� , t̄+��� �a ,b�. A trajectory of the control system
A4) is said a bang trajectory (or arc), singular trajectory (or arc), bang-bang trajectory, if it
orresponds, respectively, to a bang control, singular control, bang-bang control. If t̄ is a switch-
ng time, the corresponding point on the trajectory y�t̄� is called a switching point.

Remark 3: The definitions of singular trajectory and control, given above are very specific to
ur problem �10�–�13�. For the definition of singular trajectories for more general systems see
efinition 8, Appendix A.1.

In Ref. 29 it was proved that, for the same problem �10�–�13�, but in which y�RP2, for every
ouple of points there exists a time optimal trajectory joining them. Moreover it was proved that
very time optimal trajectory is a finite concatenation of bang and singular trajectories. Repeating
xactly the same arguments and recalling that S2 is a double covering of RP2, one easily gets the
ame result on SB. More precisely we have the following.

Proposition 1: For the problem �10�–�13�, for each pair of points p and q belonging to SB,
here exists a time optimal trajectory joining p to q. Moreover, every time the optimal trajectory
or the problem �10�–�13� is a finite concatenation of bang and singular trajectories.

Notice that the previous proposition does not apply if �=0 or �=
 /2, since in these cases the
ontrollability property is lost.

. Purpose of the paper

Our aim is to study problem �P� for every possible value of the parameter �, giving a
articular relief to the case in which ȳ= PS �i.e., to the optimal trajectory steering the North to the
outh Pole�.

We will not be able to give a complete solution to the problem �P�, without the help of
umerical simulations. However, thanks to the theory developed in Ref. 15 we give a satisfactory
escription of the optimal trajectories. In the following we describe the main results and the
tructure of the paper.

For ��
 /4, every time optimal trajectory is bang-bang and, in particular, the corresponding
ontrol is periodic, in the sense that for every fixed optimal trajectory the time between two
onsecutive switchings is constant. Moreover, it tends to 
 as � goes to 0. For the original
on-normalized problem this means that for M /E�1, the optimal control oscillates with fre-
uency of the order of the resonance frequency �R=2E. In this case it is possible to give a
atisfactory description of the optimal synthesis, excluding a neighborhood of the South Pole, in
hich we are able to find the optimal synthesis only numerically �such results were already given

n Ref. 29, as we see later�.
On the other side, if ��
 /4 the computation of the optimal trajectories is simpler since the
umber of switchings needed to cover the whole sphere is small �less than or equal than 2�. In this
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ase, for � big enough, we are also able to give the exact value of the time needed to cover the
hole sphere. However, there is a new difficulty, namely, the presence of singular arcs. Moreover,

he qualitative shape of the optimal synthesis is rather different if � is close to 
 /4 or to 
 /2. A
elevant fact is that this synthesis contains a singularity �the so called �S ,K�3� that is predicted by
he general theory �see Ref. 15, pp. 61 and 82�, and was never observed out from ad hoc examples.

The problem of finding explicitly the optimal trajectories from the North Pole PN to the South
ole PS, can be easily solved in the case ��
 /4 as a consequence of the construction of the time
ptimal synthesis. �Coming back to the original non-normalized problem, we also prove that at
xed E, for M→�, the time of transfer from PN to PS tends to zero.�

For ��
 /4 the problem is more complicated. However, we are able to prove that if u�t� is an
ptimal control steering the North Pole PN to the South Pole PS in time T, then u�T− t� is as well
see Lemma 4 in Appendix B�. Thanks to this fact, we can prove that the optimal trajectories
teering the North to the South Pole belong to a set �, containing, at most eight trajectories �half
tarting with control +1 and half starting with control −1, and switching exactly at the same
imes�. These trajectories are determined in terms of a parameter �the first switching time� that can
e easily computed numerically solving suitable equations. Once these trajectories are identified,
ne can check by hands which are the optimal ones.

The analysis can be pushed much forward. We also prove that the cardinality of � depends on
he so called normalized remainder,

R ª




2�
− � 


2�
� � �0,1� , �16�

here �.� denotes the integer part. In particular, for � small, we prove that if R is close to zero then
contains exactly eight trajectories �and, in particular, there are four optimal trajectories�, while

f R is close to 1 then � contains only four trajectories �two of them are optimal�. The precise
escription of these facts is contained in Proposition 6, Sec. III B. As a consequence, the qualita-
ive shape of the time optimal synthesis presents different patterns, that cyclically alternate, in the
oncontrollability limit �→0, giving a partial proof of a conjecture formulated in a previous paper
Ref. 29�, that was supported by numerical simulations; see Remark 11. This is probably the most
nteresting byproduct of this paper.

Finally, we compare these results with some known results of Khaneja, Brockett, and Glaser
nd with those obtained by controlling the magnetic field both on the x and y directions.

The structure of the paper is as follows. In Sec. II we briefly resume the results of paper29 that
re connected to our problem and the conjectures formulated therein. The main results of the paper
re described in Sec. III, while the proofs are postponed to Appendix B. In Appendix A we recall
he main tools of the theory of optimal synthesis. In Appendix C we determine the last point
eached by trajectories starting at PN and the time needed to cover the whole sphere.

I. HISTORY OF THE PROBLEM AND KNOWN FACTS

The problem �P� �although with different purposes� was already partially studied in Ref. 29,
n the case ��
 /4. In that paper the aim was to give an estimate on the maximum number of
witchings for time optimal trajectories on SO�3� �this problem was first studied by Agrachev and
amkrelidze in Ref. 30, using index theory�.

In Ref. 29 it has been proved that, for the problem �P� in the case ��
 /4, every optimal
rajectory is bang-bang. More precisely, it was proved that in the case ��
 /4, if y�.� is a time
ptimal trajectory starting at the North Pole, then it should satisfy the following properties.

�i� y�.� is bang bang.
�ii� The duration si of the first bang arc satisfies si� �0,
�.
�iii� The time duration between two consecutive switchings is the same for all interior bang

arcs �i.e., excluding the first and the last bang�, and it is the following function of si

defined in the interval �0,
�,
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v�si� = 
 + 2 arctan� sin�si�
cos�si� + cot2���� . �17�

One can immediately check that this function satisfies v�0�=v�
�=
 and v�si��
 for
every si� �0,
�,

�iv� The time duration of the last arc is sf � �0,v�si��.

Properties �i�–�iv� are illustrated in Fig. 2. Moreover, thanks to the analysis given in Ref. 29,
one easily gets �always in the case ��
 /4�.

�v� The number of switchings Ny of y�.� satisfies the following inequality:

Ny � NM ª � 


2�
� + 1. �18�

Conditions �i�–�v� define a set of candidate optimal trajectories. Notice that conditions
�i�–�v� are just necessary conditions for optimality and one is faced with the problem of
selecting, among them, those that are really optimal. In particular, given a trajectory
satisfying conditions �i�–�v�, one would like to find the time after which it is no more
optimal. In the following we say that at this time the trajectory loses optimality.

The way in which these candidate optimal trajectories cover the whole sphere is shown in the
op of Fig. 3.

Consider the following curves, made by points where the control switches from +1 to −1 or
ice versa, called switching curves, defined by induction,

C1
��s� = eXS

�v�s�eXS
−�sPN, Ck

��s� = eXS
�v�s�Ck−1

−� �s� �where � = ± 1 and k = 2, . . . ,NM − 1� .

�19�

ee the top of Fig. 3.
Even if the analysis made in Ref. 29 was sufficient for the purpose of giving a bound on the

aximum number of switchings for time optimal trajectories on SO�3�, some questions remained
nsolved, in particular, questions about local optimality of the switching curves. Roughly speak-
ng, we say that a switching curve is locally optimal if it never “reflects” the trajectories �see Fig.
�A��. �More precisely, consider a smooth switching curve C between two smooth vector field Y1

nd Y2 on a smooth two-dimensional manifold. Let C�s� be a smooth parametrization of C. We say

hat C is locally optimal if, for every s�Dom�C�, we have Ċ�s���1Y1(C�s�)+�2Y2(C�s�), for
very �1 ,�2 s.t. �1�2�0. The points of a switching curve on which this relation is not satisfied
re usually called “conjugate points.” See Fig. 4. The terminology “conjugate points” and “cut
ocus” comes from Riemannian Geometry.� When a family of trajectories is reflected by a switch-
ng curve, then local optimality is lost and some cut locus appear in the optimal synthesis.

Definition 4: A cut locus for the problem �P� is a set of points reached at the same time by two
or more� optimal trajectories. A subset of a cut locus that is a connected C1 manifold is called the

FIG. 2. �Color online� Time optimal trajectories for ��
 /4.
verlap curve.
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An example showing how a “reflection” on a switching curves generate a cut locus is por-
rayed in Figs. 4�B� and 4�C�. More details are given later. In Ref. 29, the following questions
emain unsolved.

Question 1: Are the switching curves Ck
�, k=1, . . . ,NM −1, locally optimal? More precisely,

ne would like to understand how the candidate optimal trajectories previously described are
oing to lose optimality.

Question 2: What is the shape of the optimal synthesis in a neighborhood of the South Pole?
Numerical simulations suggested some conjectures regarding the previous questions. More

recisely, we have the following

C1: Define klast= ��
−�� /2��−1. Then the curves Ck
��s�, �k=1, . . . ,NM −1� are locally opti-

IG. 3. �Color online� Synthesis on the sphere for ��
 /4 and a conjectured shape in a neighborhood of the South Pole.
mal if and only if k�klast. Notice that klast� 	NM −3,NM −2
.
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Analyzing the evolution of the minimum time wave front in a neighborhood of the South
Pole, it is reasonable to conjecture the following.

C2: The shape of the optimal synthesis in a neighborhood of the South Pole depends on the so
called remainder rª
−2��
 /2��. �Notice that r=2�R, where R has been defined in
formula �16�. In conjecture C2, we use the remainder r to keep the same notation of Ref.
29.� Notice that r belongs to the interval �0,2��. More precisely, we conjecture that for
�� �0,
 /4�, there exist two positive numbers �1 and �2 such that 0��1����2

�2� and the following:

CASE A: r� ��2 ,2��. The switching curve CNM−1
� glues to an overlap curve that passes

through the origin �Fig. 3, Case A�.

CASE B: r� ��1 ,�2�. The switching curve CNM−1
� is not reached by optimal trajectories in the

interval �0,
�. At the point CNM−1
� �0� an overlap curve starts and passes through the origin.

CASE C: r� �0,�1�. The situation is more complicated and it is depicted in the bottom of
Fig. 3, Case C.

For r=0, the situation is the same as in CASE A, but for the switching curve starting at
CNM−2

� �0�.

II. MAIN RESULTS

We give here a brief description of the main results of the paper. The corresponding proofs are
iven in Appendix B. From now on we use the following conventions.

Remark 4 �notation�: Recall Definition 3. The letter B refers to a bang trajectory and the letter
refers to a singular trajectory. A concatenation of bang and singular trajectories is labeled by the

orresponding letter sequence, written in order from left to right. Sometimes, we use a subscript to
ndicate the time duration of a trajectory so that we use Bt to refer to a bang trajectory defined on
n interval of length t and, similarly, St for a singular trajectory defined on an interval of length t.
oreover, we indicate by �+ �resp., �−� the trajectory of �10�–�13� starting at the North Pole at

ime zero and corresponding to control u�1 �resp., u�−1�. Notice that �± are defined for every
ime, and are periodic. Finally, we use the following subsets of SB: the circle of equation y3=0
alled the equator, the set y3�0, called northern hemisphere and the set y3�0, called southern
emisphere.

IG. 4. �Color online� Locally optimal switching curves and nonlocally optimal switching curves with the corresponding
ynthesis.
From Sec. II, recall the definitions of switching curves, cut loci, and overlap curves.
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. Optimal synthesis for ��� /4

In this section we describe the time optimal synthesis for ��
 /4. We divide SB in 8 open
egions called �1

± , . . . ,�3
±, �nasty

± and in 16 arcs �see Definition 5, and Fig. 5�. For every point ȳ
SB\ ��nasty

+ ��nasty
− �, Theorem 1 gives the optimal trajectories reaching ȳ.

Unlike the ��
 /4 case, here it is possible to detect the presence of singular trajectories that
re optimal, and also of cut loci �even not only in a neighborhood of the South Pole�.

The region �nasty
+ �and similarly �nasty

− � is more difficult to analyze. It contains a cut locus that
hould be determined numerically. Even if we are not able to provide an analytic characterization
f this locus, we are able to prove the following.

�i� �=arcsin�1/�4 2� is a bifurcation point for the optimal synthesis, i.e., the qualitative
shape is different if �� �
 /4 ,arcsin�1/�4 2�� �called Case 1� or �

� �arcsin�1/�4 2� ,
 /2� �called Case 2�. More precisely, from the point D+
ª�+�
�, in

Case 1 it starts an optimal switching curve, while in Case 2 it starts an overlap curve
�see Proposition 3�. The situation in �nasty

− is symmetric.
�ii� The South Pole belongs to the cut locus and it is reached exactly by four optimal

trajectories �see Proposition 2�.

Numerical computations show that in Case 2 the cut locus in �nasty
+ is an overlap curve

onnecting D+ with the South Pole, while in Case 1, the switching curve starting from D+ loses
ocal optimality at a point of �nasty

+ and connects to an overlap curve that reaches the South Pole
see Fig. 6�. Remark 9 explains that in Case 2 it is not necessary to compute the cut locus lying

FIG. 5. �Color online� Definition 5.
FIG. 6. �Color online� Optimal synthesis for �=
 /3 and � slightly larger than 
 /4.
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n �nasty
+ to get the expression of the optimal trajectory connecting PN to a point of �nasty

+ . The
ituation in �nasty

− is symmetric.
Let us start with the description of the optimal synthesis in SB\ ��nasty

+ ��nasty
− �. Even if

efinition 5 and Theorem 1 look complicated, the shape of the optimal synthesis is quite simple,
s it is shown in Fig. 6.

Definition 5: According to Fig. 5, let us define the following curves on SB.

• Let t1 be the first time at which �+ intersects the equator and let A+
ª�+�t1� �notice that

t1=
−arccos(cot2���)�. Define PNA+=Supp��+��0,t1��.
• Let �− be the trajectory corresponding to control −1, starting at time zero from A+. Let t2

be the first positive time at which �− intersects the equator �notice that t2
=2 arccos(cot2���)�. Define B+

ª�−�t2� and AB+=Supp��−��0,t2��.
• Let O+= �1,0 ,0�. Define AO+ �resp., OB+� as the support of the trajectory corresponding

to control zero, starting at A+ �resp., O+� and ending at O+ �resp., B+�.
• Recall that D+=�+�
�, and define AD+=Supp��+��t1,
��, DB+=Supp��+��
,t3��, where t3 is

the second intersection time of �+ with the equator �notice that t3=
+arccos(cot2���)
= t1+ t2�.

• Let BPS
+ the support of the trajectory corresponding to control −1, starting at B+ and

ending at the South Pole.
• Let DPS

+ the connected subset of the meridian y2=0, lying in the southern hemisphere and
connecting the point D+ to the South Pole.

imilarly, define A−, B−, O−, D−, PNA−, AB−, AO−, OB−, AD−, DB−, BPS
−, DPS

−.
According to Fig. 5, define �1

± , . . . ,�4
± ,�nasty

± as the open connected components of the open
et obtained subtracting from SB all the arcs previously defined.

The following theorem holds for every �� �
 /4 ,
 /2�. For the particular value �=
 /4, the
laims of the theorem must be modified. Such changes are reported in Remark 5.

Theorem 1: Let �ȳ be the set of time optimal trajectories steering the North Pole to ȳ. We
ave the following:

T1. If ȳ � PNA+, then �ȳ is made by a unique trajectory corresponding to control +1 of the
form Bt, with t� t1.

T2. If ȳ�AB+ \B+, then �ȳ is made by a unique trajectory of the form Bt1
Bt �with the first bang

corresponding to control +1�.
T3. If ȳ�AO+, then �ȳ is made by a unique trajectory of the form Bt1

Ss �with the first bang
corresponding to control +1�.

T4. If ȳ�OB+ \O+, then �ȳ is made by two trajectories of the form Bt1
SsBt, both starting with

control +1 and ending, respectively, with control +1 and −1. These two trajectories have
the same values of s�0 and t�0.

T5. If ȳ�AD+, then �ȳ is made by a unique trajectory corresponding to control +1 of the form
Bt, with t� �t1 ,
�.

T6. If ȳ�DB+ \B+, then �ȳ is made by a unique trajectory corresponding to control +1 of the
form Bt, with t� �
 , t3�.

T7. If ȳ�BPS
+ then �ȳ is made by two trajectories, respectively, of the form Bt1

Bt and Bt3
Bt−t2

and starting with control +1.
T8. If ȳ��1

+� �DPS
− \ PS�, then �ȳ is made by a unique trajectory of the form BtBt�, with 0

� t� t1 and the first bang corresponding to control +1.
T9. If ȳ��2

+, then �ȳ is made by a unique trajectory of the form Bt1
SsBt, with s�0, the first

bang arc and the last bang arc corresponding respectively to control +1 and −1.
T10. If ȳ��3

+, then �ȳ is made by a unique trajectory of the form Bt1
SsBt, with s�0 and both

bang arcs corresponding to control +1.
T11. If ȳ= PS then �ȳ is made by the four trajectories of the form Bt1

Bt3
and Bt3

Bt1
.

T12. If ȳ��nasty
+ then every trajectory of �ȳ is bang-bang with, at most, two switchings.

¯
If y belongs to one of the remaining sets defined previously, the description of the optimal
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trategy is analogous, by symmetry.
Remark 5: In the case �=
 /4, some changes in the previous statement are required. In

articular, the points A+, B+, O+, and D+ coincide �also the points A−, B−, O−, and D− coincide�
nd, consequently, there are no optimal trajectories containing singular arcs. Another immediate
onsequence of this fact is that there are only two optimal trajectories reaching the South Pole, of
he form B
B
.

Remark 6: Notice that every point of OB+ \O+, OB− \O−, BPS
+, BPS

− is reached by more than
ne optimal trajectory, i.e., it belongs to the cut locus. Other points of the cut locus can be
dentified numerically in �nasty

+ and �nasty
− , as explained in the next section.

Remark 7: In Theorem 1 we do not specify all the durations of the bang arcs. However, the
issing ones can be obtained simply by following the switching strategy backward.

Remark 8: Note that the region reached by optimal trajectories containing a singular arc

2
±��3

±�AO±�OB± become bigger and bigger as � tends to 
 /2. Moreover, in this limit, since
he modulus of the drift FS becomes smaller and smaller, the time needed to cover such a region
ends to infinity. Notice, however, that the time needed to reach PS is always 2
. The time needed
o reach every point of the sphere for � big enough, and the last point reached by an optimal
rajectory containing a singular arc, can be computed explicitly. This is done in Appendix C.

Since the case ȳ= PS is important also for the determination of the cut locus in �nasty
+ ��nasty

− ,
t is reported in the next section as a separate proposition �see Proposition 2�.

. The time optimal synthesis in �nasty
± and optimal trajectories reaching PS for ��� /4

From the next proposition, T11 of Theorem 1 follows. More precisely, Proposition 2 shows
hat in the case ��
 /4, there are exactly four optimal trajectories steering PN to PS, and it
haracterizes them. As a consequence, the South Pole belongs to the cut locus.

Proposition 2: Consider the control system �10�–�13�, and assume ��
 /4. Then the optimal
rajectories steering the North Pole to the South Pole are bang-bang with only one switching.

ore precisely, they are the four trajectories corresponding to the four controls:

u�1� = �u = 1, t � �0,t1� ,

�u = − 1, t � ��t1,T� ,
u�2� = �1, t � �0,t3� ,

� − 1, t � ��t3,T� ,

u�3� = �− 1, t � �0,t1� ,

�1, t � ��t1,T� ,
u�4� = �− 1, t � �0,t3� ,

�1, t � ��t3,T� ,

here t1 and t3 are defined in Definition 5, and T=2
.
One can easily check that the switchings described in Proposition 2 occur on the equator

y3=0�.
The following proposition describes the optimal synthesis in �nasty

± , in a neighborhood of the
oints D± and the bifurcation occurring at �=arcsin�1/�4 2�.

Proposition 3: Let ��
 /4. In a neighborhood of the point D+ in �nasty
+ , there exists a

witching curve starting at D+ of the form ev�s�XS
+
esXS

−
PN. If ��
 /4, this curve is tangent to the

quator at D+. Moreover, if ��arcsin�1/�4 2� �called Case 1�, then the switching curve is optimal
ear D+, while if ��arcsin�1/�4 2� �called Case 2� then the switching curve is not locally optimal
ear D+ and an overlap curve starts at the point D+. A symmetric result holds in a neighborhood
f D− in �nasty

− .
The region �nasty

+ contains a cut locus that should be determined numerically. In Case 2,
umerical simulations show that the switching curve starting at D+ is never optimal, i.e., every
oint of �nasty

+ is reached by an optimal trajectory of the form etX+esX−PN, with s� �0, t1� or an
ptimal trajectory of the form etX−esX+PN, with s� �
 , t3�.

Remark 9: Notice, however, that, in Case 2, given a point ȳ��nasty
+ , to find the time optimal

¯
rajectory reaching y, it is not necessary to compute the cut locus. Indeed it is sufficient to compare
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he final times, corresponding to the two switching strategies given previously, and to chose the
uickest one. The situation in �nasty

− is symmetric.
In Case 1, the situation is more complicated. The switching curve described by Proposition 3

as the expression C1
+�s�=eXS

+v�s�eXS
−sPN, s� �0, t1� where the function v�.� is given by the same

ormula of the ��
 /4 case, i.e. v�s�=
+2 arctan��sin s� / �cos s+cot2 ���. �To verify such a
ormula, it is enough to repeat the computations done in Ref. 29.� As described by Proposition 3,
his switching curve is optimal near D+ and numerical simulations show that there exists s̄

�0, t1� such that there is an optimal trajectory switching on C1
+�s� if and only if s� �0, s̄�, and an

verlap curve connecting C1
+�s̄� to the South Pole appears. The optimal synthesis for Case 1 and

ase 2 is depicted in Fig. 6.

. Optimal trajectories reaching the South Pole for �<� /4

In this section we characterize the time optimal trajectories reaching the South Pole, in the
ase ��
 /4. This characterization is more complicated with respect to the case ��
 /4, due to
he fact that the optimal trajectories have many switchings. The time optimal synthesis for �


 /4 was already �partially� studied in Ref. 29, and it has been described in Sec. II.
From conditions �i�–�iv� in Sec. II, we know that every optimal trajectory starting at the North

ole has the form Bsi
Bv�si�

¯Bv�si�
Bsf

, where the function v�si� is given by formula �17�. �In the
ollowing we do not specify if the first bang corresponds to control +1 or −1, since, as a conse-
uence of the symmetries of the problem, if u�t� is an optimal control steering the North Pole to
he South Pole, −u�t� steers the North Pole to the South Pole as well.� It remains to identify one
r more values of si ,sf and the corresponding number of switchings n for this trajectory to reach
he South Pole.

Notice that t̄=arccos(−tan2���) is the maximum of the function v�.� on the interval �0,
�, v�.�
s increasing on �0, t̄� and decreasing on �t̄ ,
� and v�0�=v�
�=
. Then, given s� �0,
� such that
� t̄, there is a unique solution s*�s�� �0,
�, s*�s��s, to the equation v�s*�=v�s�. The function
*�.� is extended to the whole interval �0,
�, setting s*�t̄�= t̄ �see Fig. 7�A��. Thanks to the
ymmetries of the problem, we prove that if ��
 /4, sf is equal either to si or to s*�si�. This fact
s described by Lemma 4 stated and proved in Appendix B.

The following two propositions describe how to identify candidate triples �si ,sf ,n� for which
he corresponding trajectory steers the North Pole to the South Pole in minimum time. From now
n, all along the paper, we say that a bang-bang trajectory, solution of the system �10�–�13�, is a
andidate optimal trajectory if it is an extremal trajectory for problem �P� reaching the South Pole
nd it has a number n of switchings satisfying n�NM �defined in Formula �18��. From Lemma 4,
here are two kinds of candidate optimal trajectories:

• sf =s*�si�, called TYPE-1-candidate optimal trajectories
• sf =si called TYPE-2-candidate optimal trajectories

efine the following functions, whose geometric meaning is clarified in Appendix B.2:

��s� = 2 arccos�sin2�v�s��cos�2�� − cos2�v�s��� , �20�

FIG. 7. Graph of v�.� when �=
 /6 �A�. Graph of the functions F and G when �=0.13 �B� and �C�.
2 2
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��s� = 2 arccos�sin���cos���„1 − cos�s�…� . �21�

Proposition 4 (TYPE-1-trajectories): Fixed ��
 /4, the equation for the couple �s ,n�
�0,
��N:

F�s� ª
2


��s�
= n , �22�

Proposition 5 (TYPE-2-trajectories): Fixed ��
 /4, the equation for the couple �s ,n�
�0,
��N:

G�s� ª
2��s�
��s�

+ 1 = n , �23�

In Figs. 7�B� and 7�C�, the graphs of the functions �22� and �23� are drawn for a particular
alue of �, namely �=0.13. Propositions 4 and 5 select a set of �possibly coinciding� four or eight
andidate optimal trajectories �half of them starting with control +1 and the other half with control
1� corresponding to triples �si ,sf ,n�. Such triples can be easily computed numerically solving
qs. �22� and �23�. Then the optimal trajectories can be selected by comparing the times needed to

each the South Pole for each of the candidate optimal trajectory. Notice that there are at least two
ptimal trajectories steering the North to the South Pole �one starting with control +1 and the other
ith control −1�.

m ª � 


2�
�, and the normalized remainder R ª




2�
− � 


2�
� � �0,1�.

here �.� denotes the integer part. The following proposition determines precisely the time optimal
rajectories for particular values of the parameter R:

Proposition 6: For m large enough, there exist r1�m��r2�m�� �0,1� such that the following
ccurs

A. If R� �0,r1�m��, then Eq. �22� admits exactly two solutions that are both optimal, while
TYPE-2 candidate optimal trajectories are not.

B. If R� �r1�m� ,r2�m��, then Eq. �22� admits two solutions that are not optimal.
C. If R� �r2�m� ,1� then Eq. �22� does not admit any solution. Moreover, r2�m�→0 for

m→�.

Remark 10: The function r2�m� can be determined explicitly �see Appendix B2.1�, while for

1�m� we are just able to prove the existence, and we conjecture that it can be taken equal to r2�m�.
Remark 11: An important consequence of Proposition 6 is that for � small, the number of
ptimal trajectories reaching the South Pole is not fixed with respect to �. Indeed, such a number
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lternates as �→0, according to Proposition 6: in particular, it is equal to 4 if R� �0,r1�m�� and
t is equal to 2 if R� �r2�m� ,1��	0
. This is enough to conclude that also the qualitative shape of
he optimal synthesis in a neighborhood of the South Pole alternates, giving a partial proof to
onjecture C2 of Sec. II �originally stated in Ref. 29�. In particular, it is a proof of the first
ssertion �on the dependence of the synthesis on the remainder r=2�R�. Moreover, notice that the
esults of Proposition 6 perfectly fit with all the other statements of conjecture C2, with r2�m�
laying the role of �1 / �2��. One can apply the definition of locally equivalent syntheses given in
ef. 15 �see Definition 32, p. 59�, to make rigorous the statement that the qualitative shape of the
ptimal synthesis changes with �.

Using the previous analysis one can easily show the following result �of which we skip the
roof�.

Proposition 7: If N is the number of switchings of an optimal trajectory joining the North to
he South Pole, then




2�
− 1 � N �




2�
+ 1.

Using these inequalities and the fact that, for ��
 /6, the function 2s+ �
 /2�−1�v�s� is
ncreasing on �0,
�, one can give a rough estimate of the time needed to reach the South Pole:

Proposition 8: The total time T of an optimal trajectory joining the North to the South Pole
atisfies the inequalities:


2

2�
− 2
 � T �


2

2�
+ 
 .

. Comparison with results in the rotating wave approximation and with Ref. 8

In this section we come back to the original value of k, i.e., k=2E / cos���=2�M2+E2, and we
ompare the time necessary to steer the state one to the state two for our model and the model �4�,
escribed in Remark 1, in which we control the magnetic field both along the x and y directions,
r we consider a two-level molecule in the rotating wave approximation. We recall that −E ,E are
he energy levels and M is the bound on the control. For our model, the time of transfer T satisfies
he following:

• for ��
 /4 �i.e., for M �E� then T=2
 /k=
 /�M2+E2;
• for ��
 /4 �i.e., for M �E� then T is estimated by 1/k�
2 /2�−2
��T�

1
k �
2 /2�+
�.

n the other hand, for the model �4�, the time of transfer is TC=
 / �2M� �cf. Remark 1�.

IG. 8. �Color online� �A� Estimate of the minimum time to reach the state two and comparison with the time needed with
wo controls or in the rotating wave approximation �B� A comparison between the optimal strategy for our system and in
he rotating wave approximation.
Fixed E=1, in Fig. 8�A� the times T and TC as function of M are compared. Notice that
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lthough TC is bigger than the lower estimate of T in some interval, we always have TC�T. This
s due to the fact that the admissible velocities of our model are a subset of the admissible
elocities of the model �4�.

Notice that, fixed E=1, for M→0 we have T�
2 / �4M�= �
 /2�TC, while for M→�, we have
�
 /M =2TC.

Remark 12: For M�E �i.e., for � small� the difference between two switching times is
�s� /k�
 / �2E�. It follows that a time optimal trajectory connecting the North to the South Pole
in the interval between the first and the last bang� is periodic with period P�
 /E, i.e., with a
requency of the order of the resonance frequency �R=2E �see Fig. 8�B��. On the other side, if

M �E, then the time optimal trajectory connecting the North with the South Pole is the concat-
nation of two pulses. Notice that if M�E, the time of transfer is of the order of 
 /M and
herefore tends to zero as M→�. It is interesting to compare this result with a result of Khaneja,
rockett, and Glaser, for a two level system, but with no bound on controls �see Ref. 8�. They
stimate the infimum time to reach every point of the whole group SU�2� in 
 /E. On the other
ide, in Appendix C it is proved that the time needed to cover the whole sphere SB=SU�2� /S1 goes
o 
 / �4E� as M goes to infinity �however, this does not contradict the fact that the state two can
e reached in an arbitrary small time, as we previously discussed�.

Notice that our optimal control has the same “qualitative form” of the control computed in
ef. 8, i.e., a pulse �bang� followed by an evolution with the drift �singular� followed by a pulse

bang�.

. Some possible extensions

It is very easy to see that if 	uȳ
ȳ�SB
is the collection of all time optimal controls steering the

orth Pole to all the points of SB, then the same set is also the collection of all time optimal
ontrols starting from the South Pole.

Notice that nothing is changing if the controlled magnetic field is in any direction in the x-y
lane. If this is not the case, the problem is different. However, the same techniques of this paper
ould be used to deal with this case, but the solution is probably more complicated.

Another interesting problem could be the variant of �P� in which one considers a different
nitial condition. In this case, generically, one loses the local controllability property �i.e., for small
ime, the trajectories do not cover a neighborhood of the starting point�, but the structure of
xtremal trajectories �i.e., trajectories satisfying the Pontryagin Maximum Principle; cf. Appendix
� is very similar.

PPENDIX A: AN OVERVIEW ON OPTIMAL SYNTHESIS ON 2-D MANIFOLDS

In this section we briefly recall the theory of optimal syntheses on 2-D manifolds for a system
f the kind ẏ=F�y�+uG�y�, �u � �1, developed by Sussmann, Bressan, Piccoli, and the first author
n Refs. 24–27 and recently rewritten in15. This appendix is written to be as much self-consistent
s possible.

For every coordinate chart on the manifold it is possible to introduce the following three
unctions:

�A�y� ª Det„F�y�,G�y�… = F1�y�G2�y� − F2�y�G1�y� , �A1�

�B�y� ª Det„G�y�,�F,G��y�… = G1�y��F,G�2�y� − G2�y��F,G�1�y� , �A2�

fS�y� ª − �B�y�/�A�y� . �A3�

he sets �A
−1�0� ,�B

−1�0� of zeros of �A ,�B are, respectively, the set of points where F and G are
arallel, and the set of points where G is parallel to �F ,G�. These loci are fundamental in the
onstruction of the optimal synthesis. In fact, assuming that they are a smooth embedded one-

imensional submanifold of M, we have the following:

                                                                                                            



c

s

1

c
m
r

u

s

�

s

I

a

c
e
w

062101-18 U. Boscain and P. Mason J. Math. Phys. 47, 062101 �2006�

                        
• In each connected region of M \ (�A
−1�0���B

−1�0�), every extremal trajectory is bang-bang
with, at most, one switching. Moreover, for every switching of the extremal trajectory, the
value of the control passes from −1 to +1 if fS�0 and from +1 to −1 if fS�0.

• The support of singular trajectories �that are trajectories for which the switching function
identically vanishes; see Definition 7� is always contained in the set �B

−1�0�.
• A trajectory not switching on the set of zeros of G is an abnormal extremal �i.e., a

trajectory for which the Hamiltonian given by the Pontryagin Maximum Principle van-
ishes; see later� if and only if it switches on the locus �A

−1�0�.

Then the synthesis is built recursively on the number of switchings of extremal trajectories,
anceling at each step the nonoptimal trajectories �see Ref. 15, Chap. 1�.

Remark 13: Notice that, although the functions �A and �B depend on the coordinate chart, the
ets �A

−1�0�, �B
−1�0� and the function fS do not, i.e., they are intrinsic objects of the control equation

ẏ=F�y�+uG�y�.

. Basic definitions and Pontryagin Maximum Principle on an n-dimensional manifold

In this section we define our optimization problem, we state the Pontryagin Maximum Prin-
iple �that is a key tool to compute optimal trajectories� and we give some basic definitions in the
ore general case of a n-dimensional manifold. We do this, since in Appendix B1 we stated some

esult for the original problem �14�, on S3�SU�2�.
Problem (Q): Consider the control system:

ẏ = F�y� + uG�y�, y � M, �u� � 1, �A4�

where the following occurs.
�H0� M is a smooth n-dimensional manifold. The vector fields F�y� and G�y� are C�.
We are interested in the problem of reaching every point of M in minimum time from a point

y0�M.
Definition 6: An admissible control u�.� for the system �A4� is a measurable function

�.� : �a ,b�→ �−1,1�, while an admissible trajectory is a Lipschitz functions y�.� : �a ,b�→M sat-
isfying ẏ�t�=F(y�t�)+u�t�G(y�t�), a.e., for some admissible control u�.�

In the following we assume that the control system is complete, i.e., for every measurable
control function u�.� : �a ,b�→ �−1,1� and every initial state ȳ, there exists a trajectory y�.� corre-
ponding to u�.�, which is defined on the whole interval �a ,b� and satisfies y�a�= ȳ.

The main tool to compute time optimal trajectories is the Pontryagin Maximum Principle
PMP for short; see Refs. 14–16�.

Theorem [Pontryagin maximum principle for the problem (Q)]: Consider the control
ystem �A4� subject to �H0�. Define for every �y ,� ,u��T*M � �−1,1� the function

H�y,�,u� ª ��,F�y�� + u��,G�y�� .

f the couple �y�.� ,u�.�� : �0,T�→M � �−1,1� is time optimal then there exist a never vanishing
Lipschitz continuous covector ��.� : t� �0,T����t��Ty�t�

* M and a constant �0�0 such that for,
.e., t� �0,T�:

�i� ẏ�t�= �H
�� �y�t� ,��t� ,u�t��,

�ii� �̇�t�=− �H
�y (y�t� ,��t� ,u�t�)=−��t���F(y�t�)+u�t��G(y�t�)�,

�iii� H(y�t� ,��t� ,u�t�)=HM�y�t� ,��t�� where HM�y ,��ªmax	H�y ,� ,u� :u� �−1,1�
,
�iiii� HM(y�t� ,��t�)+�0=0.

Remark 14: The PMP is just a necessary condition for optimality. A trajectory y�.� �resp., a
ouple (y�.� ,��.�)� satisfying the conditions given by the PMP is said to be an extremal �resp., an
xtremal pair�. An extremal corresponding to �0=0 is said to be an abnormal extremal, otherwise

e call it a normal extremal.
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We are now interested in determining the extremal trajectories satisfying the conditions given
y the PMP. A key role is played by the following.

Definition 7 (switching function): Let (y�.� ,��.�) be an extremal pair. The corresponding
witching function is defined as 	�t�ª ���t� ,G�y�t���.

Notice that 	�.� is continuously differentiable �indeed 	̇�t�= ���t� , �F ,G�(y�t�)�, which is con-
inuous�.

Definition 8 (bang, singular): Let �, defined in �a ,b�, be an extremal trajectory and
�.� : �a ,b�→ �−1,1� the corresponding control. We say that u�.� is a bang control if u�t�= +1, a.e.,
n �a ,b� or u�t�=−1, a.e., in �a ,b�. We say that u�.� is singular if the corresponding switching

function 	�t�=0 in �a ,b�. A finite concatenation of bang controls is called a bang-bang control. A
witching time of u�.� is a time t̄� �a ,b� such that, for every ��0, u is not bang or singular on
t̄−� , t̄+��� �a ,b�. An extremal trajectory of the control system �A4� is said abang extremal,
ingular extremal, bang-bang extremal, respectively, if it corresponds to a bang control, singular
ontrol, bang-bang control, respectively. If t̄ is a switching time, the corresponding point on the
rajectory y�t̄� is called a switching point.

The switching function is important because it determines where the controls may switch. In
act, using the PMP, one easily gets the following.

Proposition 9: A necessary condition for a time t to be a switching is that 	�t�=0. Therefore,
n any interval where 	 has no zeroes �respectively, finitely many zeros�, the corresponding
ontrol is bang �respectively, bang-bang�. In particular, 	�0 �resp, 	�0� on �a ,b� implies u
1 �resp., u=−1� a.e. on �a ,b�. On the other hand, if 	 has a zero at t and 	̇�t� is different from

ero, then t is an isolated switching.

. More on singular extremals and predicting switchings for 2-D systems

Now we come back to the case in which M is two dimensional. In this section we compute the
ontrol corresponding to singular extremals and we would like to predict which kind of switchings
an occur, using properties of the vector fields F and G. The following two lemmas illustrate the
ole of the functions �A

−1�0�, �B
−1�0� in relation with singular and abnormal extremals. The proofs

an be found in Refs. 24, 15, and 26.
Lemma 1: Let y�.� be an extremal trajectory that is singular in �a ,b��Dom(y�.�). Then

y�.���a,b� corresponds to the so called singular control �(y�t�), where

��y� = −
��B�y� · F�y�
��B�y� · G�y�

, �A5�

ith �A and �B defined in Eqs. �A1� and �A2�. Moreover, on Supp�y�.��, ��y� is always well
efined and its absolute value is less than or equal to one. Finally, Supp�y�.���a,b����B

−1�0�.
Lemma 2: Let y�.� be a bang-bang extremal for the control problem �A4�, t0�Dom(y�.�) be

time such that 	�t0�=0 and G(y�t0�)�0. Then, the following conditions are equivalent: �i� y�.�
s an abnormal extremal; �ii� y�t0���A

−1�0�; and �iii� y�t���A
−1�0�, for every time t�Dom�y�.��,

uch that 	�t�=0.
The following lemma describes what happens when �A and �B are different from zero.
Lemma 3: Let ��M be an open set such that �� (�A

−1�0���B
−1�0�)=�. Then all connected

omponents of Supp(y�.�)��, where y�.� is an extremal trajectory of �A4�, are bang-bang with,
t most, one switching. Moreover, if fS�0 throughout �, then y�.��� is associated to a constant
ontrol equal to +1 or −1 or has a switching from −1 to +1. If fS�0 throughout �, then y�.��� is
ssociated to a constant control equal to +1 or −1 or has a switching from +1 to −1.

Remark 15: For the problem (Q), under generic conditions on the vector fields F and G, one
an make the complete classification of synthesis singularities, stable synthesis, singularities of the
inimum time wave fronts. We refer to Ref. 15 for the general theory. For some extensions to
igher dimension, see Refs. 31 and 32.
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PPENDIX B: PROOF OF THE MAIN RESULTS

In this section we give the proof of our main results. We start with a lemma, stating a property
f optimal trajectories, that is a consequence of the symmetries of the problem. It is used to
dentify the time optimal trajectories steering the North to the South Pole both for ��
 /4 and
�
 /4.

Lemma 4: Let �� �0,
 /2�. Every optimal bang-bang trajectory, connecting the North to the
outh Pole, with more than one switching is such that v�si�=v�sf� where si is the first switching
ime, sf is the time needed to steer the last switching point to the South Pole and v�si� is the time
etween two consecutive switchings.

Proof of Lemma 4: Consider the problem of connecting PS with PN in minimum time for the
ystem ż=FS��z�+uGS��z�, where z�S2 and FS��z�=−FS�z�, GS��z�=−GS�z�. The trajectories of this
ystem coincide with those of the system �10�–�13�, but the velocity is reversed. Therefore the
ptimal trajectories for the new problem coincide with the optimal ones for the system �10�–�13�
onnecting PN to PS, and the time between two switchings is the same. Since performing the
hange of coordinates �z1 ,z2 ,z3�→ �y1 ,y2 ,y3�= �−z1 ,z2 ,−z3�, the new problem becomes exactly
he original problem, we deduce that, if we have more than one switching, it must be v�si�
v�sf�. �

. Time optimal synthesis for the two level quantum system for ��� /4

In this section, we apply the theory of optimal syntheses on 2-D manifolds recalled in Ap-
endix A, to the system �10�–�13�. Our aim is to describe the time optimal synthesis for �

 /4, i.e., to prove Theorem 1 and Propositions 2 and 3. First, we state some general results,

olding for �� �0,
 /2�, regarding time optimal trajectories of the system �14�, on S3�SU�2�,
nalogous to those obtained in Ref. 29 for SO�3� �in particular, the proofs can be repeated using
he same arguments�.

. General results on S3

In this section �� �0,
 /2�. The first proposition states that singular extremals, defined as
xtremals for which the switching function vanishes �see Definitions 7 and 8� correspond to zero
ontrol. This fact is very specific for our problem.

Proposition 10: For the normalized minimum time problem on S3 �14�, singular extremals are
ntegral curves of the drift, i.e., they must correspond to a control almost everywhere vanishing.

Since for a fixed u� �−1,1� every trajectory of �14� is periodic with period

 /�u2 sin2 �+cos2 �, we have the following.

Proposition 11: Given an extremal trajectory � of type Bt �resp., St�, then t�4
 �resp., t
4
 / cos ��.

The following proposition describes the switching behavior of abnormal and bang-bang nor-
al extremals �see Sec. A 1 for the definition�.

Proposition 12: Let � be an abnormal extremal of �14�. Then it is bang-bang and the time
uration between two consecutive switchings is always equal to 
. In other words, � is of kind

sB
 . . .B
Bt with s , t�
.
On the other hand, if � is a bang-bang normal extremal, then the time duration T along an

nterior bang arc is the same for all interior bang arcs and verifies 
�T�2
 �i.e., � is of kind

sBT . . .BTBt with s , t�T �.
For the optimal trajectories containing a singular arc we have the following.
Proposition 13: Let � be a time optimal trajectory containing a singular arc. Then � is of the

ype BtSsBt�, with s�2
 / cos � if t�0 or t��0 and s�4
 / cos � otherwise.
These results on S3�SU�2� are useful to determine the optimal synthesis on SB, since every

ptimal trajectory on SB is the projection of an optimal trajectory on S3. This is a simple conse-
uence of the fact that SB is a homogeneous space of SU�2�.
Proposition 14: A time optimal trajectory � for the system �10�–�13� on SB starting at PN is
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he projection of a time optimal trajectory of �14�, starting from a point satisfying ��1�2=1 �recall
hat �= ��1 ,�2�T�S3�C2�.

Remark 16: Notice that, since two opposite points on S3 project on the same point on SB, it is
asy to see from Proposition 11 that the projection on SB of an optimal trajectory of �14� of type

t �resp., St�, must be such that t�2
 �resp., t�2
 / cos ��. More precisely, for a fixed
� �−1,1� every trajectory of �10�–�13� is periodic with period 2
 /�u2 sin2 �+cos2 � �the period
ivides by two after projection�.

. Construction of the synthesis on SB

In this section we assume ��
 /4. Following Appendix A, we first need to determine the sets

A
−1�0�, �B

−1�0�, and the function fS. Checking where FS is parallel to GS and where GS is parallel
o �FS ,GS�, one gets �A

−1�0�= 	y�SB:y2=0
 and �B
−1�0�= 	y�SB:y3=0
. To find the function fS

e can choose for instance, the coordinate chart defined on each hemisphere by the projection on
he plain 	�y1 ,y2��R2
, obtaining fS= �sin ��y3 /y2. Then Lemma 3 says that every optimal tra-
ectory belonging to one of the regions 	y�SB:y3�0,y2�0
, 	y�SB:y3�0,y2�0
 is bang-
ang with, at most, one switching. Moreover only the switching from control −1 to control +1 is
llowed. On the contrary, on the regions 	y�SB:y3�0,y2�0
, 	y�SB:y3�0,y2�0
, the con-
rol can switch only from +1 to −1. Moreover, thanks to Lemma 1, every singular extremal must
ie on the equator. The following lemma characterizes the structure of the bang-bang extremals for
he problem �P�.

Lemma 5: Recall that t1=
−arccos�cot2 �� and t3=
+arccos�cot2 �� and consider a bang-
ang extremal for the problem �P�. Then it is of the form BsBv�s�Bv�s�. . . with s� �0, t1�� �
 , t3�,
here, on the set �0, t1���
 , t3�, v�.� is defined as follows:

v�s� ª 
 + 2 arctan� sin s

cos s + cot2 �
� .

f �=
 /4 then t1= t3=
 and v�
�ª
, while if ��
 /4 we set v�t1�ªv�t3�ª2
.
Notice that the function v�.� has the same expression �17� obtained in the case ��
 /4

excepted at the points t1 and t3�. However, its interval of definition is different.
Proof of Lemma 5: As shown previously, the meridian �A

−1�0� and the equator �B
−1�0� divide

he sphere in four parts and in each of them the sign of the function fS is constant and changes
hen passing through �A

−1�0� or �B
−1�0�. In particular, following �+ or �− �cf. Remark 4� in the

ase in which ��
 /4 this happens at the times t1 �where the equator is crossed�, at time 
 �where

A
−1�0� is crossed� and at time t3 �again is the equator to be crossed�. Applying Lemma 3, we
btain that for an extremal trajectory the first switching may occur only on the intervals �0, t1� and

 , t3�. Exactly as in,29 one shows that the extremal must have the form BsBv�s�Bv�s�. . . with s

�0, t1�� �
 , t3�. The case �=
 /4 is similar. �

Remark 17: One can also show that every trajectory starting from PN, of the form

sBv�s�Bv�s�. . . with s� �0, t1�� �
 , t3�, is extremal, i.e., for every s in such a set, there exists an
nitial value of the covector � such that the switching function 	�.� vanishes for the first time at
ime s.

Unlike the case in which ��
 /4, in the case ��
 /4 it is possible to establish the presence
f optimal trajectories containing a singular arc, whose switching behavior is described by the
ollowing proposition, illustrated in Fig. 9�A�.

Proposition 15: Let ��
 /4. A trajectory � of �10�–�13� starting with control u=1 and
ontaining a singular arc is a solution of �P� if and only if it is of the form BtSsBt� and satisfies the
ollowing conditions.

• t= t1=
−arccos�cot2 ��, i.e., � coincides with �+ until it reaches the equator.
• s�arccos�cot �� / cos �, i.e., the singular arc is optimal until it reaches the point O+

= �1,0 ,0�T.

• If s=arccos�cot �� / cos �, then the trajectory is of type BtSs, �i.e., the time duration of the
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last bang arc reduces to zero�. If s�arccos�cot �� / cos �, then � is optimal until the last
bang arc reaches the equator �i.e., it does not exist t̄� �0, t�� such that ��t+s+ t̄� is
contained in the equator�.

n analogous result holds for trajectories, starting with control −1.
Remark 18: Notice that in the case �=
 /4, Proposition 15 provides a singular trajectory

egenerated to a point. In other words, for �=
 /4 there are no singular trajectories that are
ptimal.

Remark 19: Notice that the previous result completely characterizes the optimal synthesis in
ome neighborhoods of the points O±= �±1,0 ,0�T, namely �2

±��3
±, and moreover it determines

he presence of two symmetric overlap curves contained inside the equator. The synthesis around
he point O+ is represented in Fig. 9�A�.

Proof of Proposition 15: Consider a trajectory, solution of �P�, starting with u= +1 and
ontaining a singular arc. Using Propositions 13 and 14, this trajectory must be of the form

tSsBt�, and, since the singular arc is contained inside the equator, we have t= t1 �the case t= t3 can
e easily excluded�. Consider a singular arc containing in its interior the point O+. This arc
ontains two points of the form �y1

0 ,−y2
0 ,0�T and �y1

0 ,y2
0 ,0�T, with both y1

0, y2
0 positive, that can be

onnected by a bang arc. Using classical comparison theorems for second order ODEs, one can
asily compare the time needed to follow such a trajectory with the time needed to steer the two
oints along the singular arc finding that the bang arc is quicker than the singular arc. Therefore
singular arc containing O+ cannot be optimal. By symmetry, the extremal trajectories that have

he same singular arc, but the last bang arc corresponding to opposite control, must meet on a
oint of the equator. Therefore the arc of the equator that is comprised between the point O+ �resp.,
−� and the second intersection point with �+ �resp., �−� is an overlap curve. It remains now to
erify that the trajectories previously described are optimal �until the last bang arc reaches the
quator�. This is a straightforward consequence of the fact that the quickest bang-bang trajectories
hat enter the region spanned by such trajectories �i.e., the closure of the regions �2

±��3
±� are not

xtremal because of Lemma 3 �see also Lemma 5�. �

Remark 20: Notice the trivial fact that, if a trajectory � defined on the interval �a ,b� is optimal
etween ��a� and ��b�, then the restriction of � in �c ,d�, c ,d� �a ,b�, c�d, is optimal between
�c� and ��d�.

Using Remark 20, we have that Proposition 15 characterizes completely the time optimal
ynthesis on PNA±, and in the closure of �2

±��3
±, i.e., it proves items T1–T6, T9, and T10, of

heorem 1.
Remark 21: From Lemma 5 we obtain that there are four families of bang-bang trajectories. In

articular, the families starting with control +1 and switching, respectively, in �0, t1� and �
 , t3�
oin at the point B+, generating an amazing �Y ,K�3 frame point, in the framework of the classifi-
ation of Ref. 15. See Fig. 9�B�.

Next we give the proof of Proposition 2, from which it follows T11 of Theorem 1, and, using

FIG. 9. �Color online� The region covered by optimal trajectories with singular arcs and the �Y ,K�3 frame point.
gain Remark 20, also T7.
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Proof of Proposition 2: By Proposition 15, there are no optimal trajectories containing a
ingular arc joining PN with PS. One can easily see that the only possible trajectories steering PN

o PS with only one switching are those described in the statement of the proposition, that we have
o compare with trajectories having more than one switching. Trajectories having two switchings
ith the first or the last bang longer than 
 and trajectories with more than two switchings are

xcluded, since from Lemma 5 their total time is larger than 2
. Trajectories having two switch-
ngs and the length of the first arc si and the length of the last arc sf satisfying si ,sf �
 are
xcluded, since by Lemma 4 they must satisfy si=sf. For these trajectories the total time can be
asily computed and it is 2
+2 arcsin�1/2 sin�����2
. �

Item T8 is proved by the following.
Proposition 16: If ȳ��1

+� �DPS
− \ PS�, then �ỹ is made by a unique trajectory of the form

tBt�, with 0� t� t1 and the first bang corresponding to control +1. A similar result holds if ȳ
�1

−� �DPS
+ \ PS�. As a consequence there is not a cut locus in the region, �1

+��1
−. On the other

and, �nasty
+ ��nasty

− contains a cut locus.
Proof of Proposition 16: Define the following three families of extremal trajectories:

�s
A�t� ª etXS

+
esXS

−
PN, with s � � 0,t1� and t � v�s� ,

�s
B�t� ª etXS

−
esXS

+
PN, with s � �
,t3� and t � v�s� ,

�s
C�t� ª etXS

−
ev�s�XS

+
esXS

−
PN, with s � � 0,t1� and t � v�s� .

irst, notice that from Proposition 2 that there are no optimal trajectories of kind �s
A reaching the

rc BPS
+. Now for every point x�DPS

+ the following occurs: �i� there exist sA , tA such that x
�sA

A �tA�, and they are unique; �ii� if there exist sB , tB �resp., sC , tC� such that x=�sB

B �tB�, �resp., x
�sC

C �tC��, then they are unique. By direct computation, one can compare the times the three
rajectories need to reach x, i.e. sA+ tA ,sB+ tB ,sC+v�sC�+ tC, finding that the optimal trajectory is of
ind �A �these computations are long, not very instructive, and we omit them�. From this fact, the
rst part of the claim immediately follows. Moreover, it implies that there is not a cut locus in �1

+,
ince the only trajectories entering such a region are those of the form �A. The existence of a cut
ocus in �nasty

+ is evident, since no optimal trajectories belonging to the families �A, �B, �C leave

nasty
+ . The reasoning in �1

− and in �nasty
− is similar. �

End of the proof of Theorem 1: To conclude the proof of Theorem 1, it remains to prove T12.
onsider by contradiction an optimal bang-bang trajectory � defined in �0, t�� steering PN to a
oint of �nasty

+ , with at least three switchings. Define t̄=max	t� �0, t�� :��t���nasty
+ 
. Then, by

emark 20, ���0,t̄� must be optimal between PN and ��t̄�. Then, from the results proved previously,
e deduce that ���0,t̄� can have, at most, one switching. Therefore � switches at least two times in

nasty
+ , and the arc between them must be completely contained in �nasty

+ , and this leads to a
ontradiction since the sign of fS is constant in �nasty

+ �see Lemma 3�. �

Before proving Proposition 3, notice that the point D+, which is obtained following the
rajectory �+ for a time 
 �see Fig. 6�, belongs to two different families of bang-bang trajectories
t time 
, one given by trajectories starting with control −1 and switching at time s� t1, the other
ne given by trajectories that start with control 1 and switching at time s� �
 , t3�. Moreover, since
�0�=
, there must be a switching curve starting at D+ and therefore we deduce that there are two
ossible behaviors of the optimal synthesis around this point: either this switching curve is optimal
r the two fronts continue to intersect generating an overlap curve.

Observe that if ��
 /3 the trajectories of the type BsBv�s�Bt with s small cannot be optimal
ince the vector fields XS

+ and XS
− point to opposite sides on the switching curve �i.e., the switching

urve “reflects the trajectories,” and therefore it is not locally optimal, by the definition given in
ec. II�. In this case the two families of bang-bang trajectories described previously must intersect,

iving rise to an overlap curve. Therefore to prove Proposition 3 we assume ��
 /3.
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Proof of Proposition 3: First we parametrize the switching curve with respect to the first
witching time �assuming without loss of generality that this curve starts with u=−1�:

C�s� = ev�s�XS
+
esXS

−
PN.

e consider the functions �1�s�=det�C�s� ,C��s� ,XS
+(C�s�)� �here the superscript � denotes the

erivative with respect to s� and �2�s�=det�C�s� ,C��s� ,XS
−(C�s�)�. It is easy to see that the opti-

ality of C�.�, for s small, depends on the signs of such functions. Indeed C�.� is locally optimal
ear the point D+=C�0� if and only if for every positive and small enough s, and given a
eighborhood of C�s� that is divided in two connected components U1 ,U2 by the trajectory C�.�,
oth XS

−(C�s�) and XS
+(C�s�) point toward U1 or toward U2. It is easy to see that this occurs if �1�s�

nd �2�s� have the same sign. Notice that �1�0�=�2�0�=0 and that �1�s�
det(PN ,XS

−�PN� ,e−sXS
−
XS

+�esXS
−
PN�)=2 cos � sin2 � sin s, which is positive for every ��
 /2 and

� �0,
�. To determine the sign of �2�s� near 0, it is enough to look at the sign of the derivative

2��0� that can be computed directly: �2��0�=4 cos � sin2 ��1−2 sin4 ��. We deduce that, if �
arcsin�1/�4 2�, the switching curve C�.� is optimal for s small enough. For the particular value
=arcsin�1/�4 2�, one can easily check that the function �2�.� is negative for s�0 small, and then
�.� is no more optimal for ��arcsin�1/�4 2�. The tangency of the switching curve starting at D+

f ��
 /4, is a consequence of the fact that, in this case, the bang-bang trajectory switching at D+

s an abnormal extremal �see Proposition 2 and Ref. 15, Proposition 23, pp. 177�. �

. Time optimal trajectories reaching the South Pole for �<� /4

Our purpose of this section is to characterize the optimal trajectories steering PN to PS in the
ase ��
 /4, i.e., to prove Propositions 4 and 5. A key tool is Lemma 4. Recall the shape of the
unction v�s�, in the case ��
 /4 �see Fig. 7�A��. Given ��
 /4 and s� �0,
� with s�arccos
−tan2 ��, there exists one and only one time s*�s�� �0,
� different from s, such that v�s�
v(s*�s�). From Sec. III B, recall the following definition of candidate optimal trajectories:

• sf =s*�si� �i.e., TYPE-1-candidate optimal trajectories�,
• sf =si �i.e., TYPE-2-candidate optimal trajectories�.

A useful relation between s and s*�s� is given by the following.
Lemma 6: For ��
 /4 and s� �0,
�, it holds that s+s*�s�=v�s�.
Proof of Lemma 6: Both s and s*�s� satisfy the following equation in t� �0,
�:

cot�1

2
v�s�� = −

sin�t�
cos�t� + cot2���

Þ cos�1

2
v�s� − t� = − cos�1

2
v�s��cot2��� .

herefore, since 1
2v�s�− t� �−
 ,
�, "s , t� �0,
� and s*�s��s, it must be s*�s�− 1

2v�s�= 1
2v�s�

sÞs+s*�s�=v�s�. �

The description of candidate optimal trajectories is simplified by the following lemma, of
hich we skip the proof.

Lemma 7: Set

Z�s� =
1

�� 0 cot„ 1
2v�s�… − sin���

− cot„ 1
2v�s�… 0 0

sin��� 0 0
� ,

here �=�cot2( 1
2v�s�)+sin2���. Then, if ��s� is defined as in �20�, we have e��s�Z�s�

ev�s�XS
−
ev�s�XS

+
. Notice that the matrix Z�s��so�3� is normalized in such a way that the map

�etZ�s��SO�3� represents a rotation around the axes R�s�= �0,sin��� , cot( 1
2v�s�)�T with angular

elocity equal to one.
To prove the results stated in Sec. III B we study separately the two possible cases previously
isted.
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Proof of Proposition 4: In this case we consider TYPE-1-candidate optimal trajectories. As-
ume that the optimal trajectory starts with u=−1 �the case u=1 is symmetric� and has an even
umber n of switchings. Then it must be

�B1�

here PN and PS denote, respectively, the North and the South Pole, and we have that

esiXS
−
PS = ev�si�XS

−
ev�si�XS

+
. . . ev�si�XS

+
esiXS

−
PN = e�1/2�n��si�Z�si�esiXS

−
PN,

rom which we deduce that si must satisfy

1

2
n��si� = 
 + 2p
, for some integerp .

t is easy to see that a value of si that satisfies a previous equation with p�0 does not give rise to
candidate optimal trajectory since the corresponding number of switchings is larger than NM.
herefore in a previous equation it must be p=0. If n is odd, instead than �B1� we have

�B2�

nd, moreover, by symmetry,

PN = esfXS
−
ev�si�XS

+
. . . . . . ev�si�XS

−
esiXS

+
PS.

hen, combining with �B2� and using the relation Lemma 6, we find

ince esiXS
−
PN is orthogonal to the rotation axis R�si� corresponding to Z�si�, the previous identity

s satisfied if and only if n��si�=2m
 with m a positive integer. As in the previous case, for a
andidate optimal trajectory, it must be m=1. �

Proof of Proposition 5: Here we consider TYPE-2-candidate optimal trajectories. For simplic-
ty call si=sf =s. Assume, as before, that the optimal trajectory starts with u=−1. If this trajectory
as n=2q+1 switchings then it must be

PS = esXS
+
eq��s�Z�s�esXS

−
PN.

n particular, the points e−sXS
+
PS and esXS

−
PN must belong to a plane invariant with respect to

otations generated by Z�s�, and therefore the difference esXS
−
PN−e−sXS

+
PS must be orthogonal to the

otation axis R�s�. Actually it is easy to see that this is true for every value s� �0,
�, since both
−sXS

+
PS and esXS

−
PN are orthogonal to R�s�. Since the integral curve of Z�s� passing through esXS

−
PN

nd e−sXS
+
PS is a circle of radius 1, it is easy to compute the angle ��s� between these points. In

articular, the distance between esXS
−
PN and e−sXS

+
PS coincides with 2 sin���s� /2�, and so one easily

ets the expression ��s�=2 arccos(sin���cos���)�1−cos�s�)). Then Proposition 5 is proved when
is odd.

Assume now that the optimal trajectory has n=2q+2 switchings; then we can assume without

oss of generality that PS=esXS
−
ev�s�XS

+
eq��s�Z�s�esXS

−
PN. First of all, it is possible to see that

−v�s�XS
+
e−sXS

−
PS is orthogonal to R�s�. So it remains to compute the angle �̃�s� between the point

sXS
− −v�s�XS

+ −sXS
−

PN and the point e e PS on the plane orthogonal to R�s�. As before, the distance
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etween these points coincides with 2 sin��̃�s� /2�. Instead of computing directly �̃�s�, we com-

ute the difference between the angle �̃�s� and the angle ��s� previously defined above. We know
hat

2 sin���s�
2

− �̃�s�� = �e−v�s�XS
+
e−sXS

−
PS − e−sXS

+
PS� = �e−sXS

−
PS − ev�s�XS

+
e−sXS

+
PS� = �e−sXS

−
PS − es*�s�XS

+
PS� .

sing the fact that s and s*�s� satisfy the relation v�s�=v(s*�s�), one can easily find that

�e−sXS
−
PS − es*�s�XS

+
PS� = 2�1 − cos2���sin2�1

2
v�s�� .

herefore ��s�= �̃�s�+2arccos�cos���sin( 1
2v�s�)�. This leads to ��s�− �̃�s�=��s� /2, and the propo-

ition is proved also in the case n is even. �

. Proof of Proposition 6, on the alternating behavior of the optimal synthesis

In this section we need to consider also the dependence on � of the functions
�s� ,��s� ,��s� ,F�s� ,G�s�. Therefore we switch to the notation
�s ,�� ,��s ,�� ,��s ,�� ,F�s ,�� ,G�s ,��.

The claims about the existence of solutions in Proposition 6 come from the fact that F�0�
F�
�=
 /2� and the only minimum point of F occurs at s̄=
−arccos(tan2���). It turns out that

he image of F is a small interval whose length is of order � and therefore equation �22� has a
olution only if � is close enough to 
 /2m for some integer number m. This proves C with r2�m�
atisfying r2�m�=O�1/m�.

On the other hand, it is possible to estimate the derivative of G with respect to s, showing that
t is negative in the open interval �0,
�. Therefore, since G�0�=
 /2�+1 and G�
�=
 /2�−1, Eq.
23� has always two positive solutions.

For the particular values �=
 /2m, where m�1 is an integer number, the solutions to Eqs.
22� and �23� give rise to two candidate optimal trajectories: the first one has exactly m bang arcs,
ll of length 
 �TYPE-1 and TYPE-2 candidate optimal trajectory at the same time�, while the
econd one has one more switching and is a TYPE-2 candidate optimal trajectory. We want to see
hat the optimal trajectory is the first one. For this purpose, we need to estimate the time needed
o reach the South Pole by the second candidate optimal trajectory, showing that it is greater than

=
2 /2�.

First, using the Taylor expansions with respect to � and centered at 0 of ��
 /2 ,�� and
�
 /2 ,��, one obtains

G�


2
,�� =




2�
− �




4
+ o��� . �B3�

e want now to estimate the solution s��� of the equation G�s ,��=
 /2�. This can be done using
B3� and the following estimate on the derivative of G�.�, with respect to s, near s=
 /2:

d

ds
G�s,�� = − 1 + o���� + �


2
− s�� .

hen it is easy to find that s���=
 /2−��
 /4�+o���, and, consequently, v�s��� ,��=
+2�2

o��2�. Therefore 2s���+ �
 /2�−1�v(s��� ,�)=
2 /2�+��
 /2�+o���. In particular, for �

 /2m this expression gives the time needed to reach the South Pole by the candidate optimal

rajectory, and, since for m large enough it is larger than m
=
2 /2�, we conclude that this
rajectory cannot be optimal. Since the solutions to the equations �22�, �23� change continuously
ith respect to � for each fixed number of switchings n, we easily deduce that, if we slightly
ecrease � starting from the value 
 /2m, the solution of �22� for n=m does not give rise to an

ptimal trajectory.
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For � slightly smaller than �̄ª
 /2m there is a TYPE-2 candidate optimal trajectory corre-
ponding to a solution (s1��� ,m+1) of �23�, where s1�.� is continuous �on ��̄−� , �̄�� and s1��̄�
0, and there is also a TYPE-1 candidate optimal trajectory corresponding to a solution (s2��� ,m)
f �22�, where s2�.� is continuous �on ��̄−� , �̄�� and s2��̄�=0. Clearly for �= �̄ these trajectories
oincide. So we have to compare the time to reach the South Pole for such trajectories with �
lose to �̄.

We start with the TYPE-1 candidate optimal trajectory. From Eq. �22� we have that
d /d���(s2��� ,�)=0. We use a subscript s, � to denote the partial differentiation with respect to
uch variables. Since �s�0,��=0 we cannot apply directly the implicit function theorem near
0 , �̄�. However, if we set s̃2���=s2

2��� we find that s̃2����=2s2�����(s2��� ,�)� /�s(s2��� ,�)� �the
uperscript � denotes differentiation with respect to ��, and then, passing to the limit as
s2��� ,�)tends to �0, �̄�, one easily finds that s̃2���̄�=−2/sin��̄�3 cos��̄�.

Now we want to determine the way in which the total time T2���=mv(s2��� ,�) changes. It is
asy to see that T2��� is not differentiable at �̄, therefore we introduce the function F���
(T2���−T2��̄�)2=m2�v(s2��� ,��−
)2.

Then F����=2m2�d/d��v(s2��� ,�)�v(s2��� ,�)−
�=2m2�vs(s2��� ,�)s2����+v�(s2��� ,�)�
nd, after the substitution s2����= s̃2���� /2s2��� we can pass to the limit as � converges to �̄
btaining

F���̄� = m2vs
2�0,�̄�s̃2���̄� = − 8m2 tan �̄ .

Now we consider the TYPE-2 candidate optimal trajectory and we want to estimate s1���.
rom Eq. �23� we have that s1�.� is implicitly defined by the equation �(s1��� ,�)
2�(s1��� ,�)−m�(s1��� ,�)=0. As before, it is easy to see that s1�.� is not differentiable at �̄,

nd therefore we introduce the parameter s̃1���=s1
2���. As before, it is possible to compute the

erivative s̃1����:

s̃1���̄� = − lim
�→�̄

2s1�����„s1���,�…
�s„s1���,�…

= −
2m

sin �̄ cos �̄�1 + m sin2 �̄�
.

e have now to estimate the total time T1���=2s2���+mv(s2��� ,�) for � close to �̄. After
efining

G��� = „T1��� − T1��̄�…2 = �2s2��� + m„v�s2���,�� − 
…�2,

e can compute the derivative of G�.� as follows:

G���̄� = lim
�→�̄

�2�2s2��� + m�v„s2���,�… − 
�…� s̃2����
s2���

+ m�vs�s2���,��s̃2����
2s2���

+ v�„s2���,�…���
= lim

�→�̄
�2�2 + m

v�s2���,�� − v�0,��
s2���

�� lim
�→�̄

�s̃2���� + m�1

2
vs„s2���,�…s̃2���� + v�„s2���,�…s2�����

=„2 + mvs�0,�̄�…2s2���̄� = − �2 + 2m sin2 �̄�2 2m

sin �̄ cos �̄�1 + m sin2 �̄�
= −

8m�1 + m sin2 �̄�
sin �̄ cos �̄

.

ince

8m�1 + m sin2 �̄�
sin �̄ cos �̄

� m tan �̄ ,

e deduce that G��� decreases faster than F��� as � goes to �̄ and, since T1��� and T2��� are
ecreasing for � close to �̄, we have that T2����T1���, i.e., the TYPE-1 trajectory is optimal for

¯ ¯
� ��−� ,��.
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PPENDIX C: THE TIME NEEDED TO REACH EVERY POINT OF THE BLOCH SPHERE
TARTING FROM THE NORTH POLE IN THE CASE �« †� /4 ,� /2†

In this section we assume �� �
 /4 ,
 /2�. If � is close to 
 /4, it is easy to verify that the
outh Pole is not the last point reached by bang-bang trajectories �the last point reached belongs

o the cut locus present in the region �nasty
± �, and the time needed to cover the whole sphere is

lightly larger than 2
.
On the other hand, if � is large enough then the velocity along a singular arc is small and

herefore the time needed to move along trajectories containing singular arcs is larger than 2
. The
ollowing proposition gives the asymptotic behavior of the total time needed to reach every point
rom the North Pole and determines the last point reached by the optimal synthesis for � large
nough.

Proposition 17: Let T��� the time needed to cover the whole sphere. Then, if � is large enough

T��� =



2 cos �
+ 
 −

2 arcsin�cot ��
cos �

+ 2 arcsin�cot2 �� =



2 cos �
+ 
 − 2 + O�


2
− �� ,

�C1�

nd the last points reached for a fixed value of � are ±��1−cot2 � , cot � ,0�T.
Proof of Proposition 17: From Proposition 2 the last points reached by optimal trajectories of

he form BtSsBt� must lie on overlap curves that are subsets of the equator. Therefore it is enough
o estimate the maximum time to reach these overlap curves. Assume that the first bang arc
orresponds to the control u=1 and denote by � the angle corresponding to the arc of the equator
etween the last point of the singular arc and the point O+= �1,0 ,0�T. Notice that �
�0,arccos�cot ���. Then it is easy to find the expression T�� ,�� of the time needed to reach the

verlap curve along that optimal trajectory:

T��,�� = 
 − arccos�cot2 �� +
arccos�cot ��

cos �
−

�

cos �
+ arccos� cos2 � − tan2 �

cos2 � + tan2 �
� .

he conclusion follows finding the maximum with respect to � of the previous quantity, which

orresponds to the value �̄=arcsin�cot ��. Notice that �̄ belongs to the interval of definition of �
nly if ��arccot��2/2�. �

Remark 22: Notice that, if ��arccot��2/2�, then the set of points of the sphere reached
ithin time t, with t in a left neighborhood of T���, is not simply connected. More precisely there

re two symmetric neighborhoods of the points ±��1−cot2 � , cot � ,0�T that are not reached in
ime less than or equal than t.

Remark 23: Recall that for system �6� the time needed to cover the whole sphere for � close
nough to 
 /2 is obtained dividing by k=2E / cos � the expression �C1�. Therefore, if we fix E it
urns out that this quantity converges to 
 /4E as M goes to infinity.
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We consider solutions of the one-dimensional equation −u�+ �Q+�V�u=0 where
Q :R→R is locally integrable, V :R→R is integrable with supp�V�� �0,1�, and
��R is a coupling constant. Given a family of solutions �u����R which
satisfy u��x�=u0�x� for all x�0, we prove that the zeros of b���ªW�u0 ,u��, the
Wronskian of u0 and u�, form a discrete set unless V�0. Setting Q�x�ª−E, one
sees that a particular consequence of this result may be stated as: if the fixed energy
scattering experiment −u�+�Vu=Eu gives rise to a reflection coefficient which
vanishes on a set of couplings with an accumulation point, then V�0. © 2006
American Institute of Physics. �DOI: 10.1063/1.2206691�

. INTRODUCTION

The purpose of this paper is to prove a result concerning perturbations of one-dimensional
chrödinger-type equations. Let Q :R→R be locally integrable and let u0 :R→C be a solution of

− u0��x� + Q�x�u0�x� = 0 �1�

hat is not identically zero. The perturbation is a second �real-valued� potential, V�L1�R� of
ompact support which, for simplicity, we assume satisfies supp�V�� �0,1�. Define u� as the
olution of

− u���x� + Q�x�u��x� + �V�x�u��x� = 0 �2�

hat obeys u��x�=u0�x� for all x�0. The parameter � is known as the coupling constant. In the
roblems of interest to us, it is real; however, we will allow it to vary over the complex plane as
his does not affect our results.

The question we wish to discuss is the following: for how many values of � is it possible that

��x� is a multiple of u0�x� in the region x�1? An equivalent formulation is to study the zeros of
he Wronskian between u0 and u�,

b��� ª W�u0,u���x� = u0��x�u��x� − u0�x�u���x� �3�

or any x�1.
Theorem 1.1: The zeros of b��� form a discrete set unless V�0.
Furthermore, if b has infinitely many zeros, they must approach infinity rather rapidly.
Theorem 1.2: If V�0, then the number of roots of b���=0 in the disk 	� 	 �r (counted by

ultiplicity) is O�r1/2� as r→�.

�Electronic mail: killip@math.ucla.edu
�
Electronic mail: rjsims@math.ucdavis.edu
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When V is sign definite and Q�0, Chadan has shown that the zeros of b��� determine V
recisely in a slightly different scenario; see Ref. 2. A Liouville transformation is used to reduce
he problem to the well-known uniqueness problem in the energy parameter.

The proof of Theorems 1 and 2 consist of using some classical analysis to reduce the problem
o one treated by Stolz.13 �We repeat his solution for the convenience of the reader.� As with this
aper, Stolz was interested in such matters for their relation to localization for the Anderson
odel. Before elaborating this point, let us first explain the connection of our results to scattering

heory.
Consider the time-independent Schrödinger equation with potential q�x�:

− ���x� + q�x���x� = E��x� , �4�

hich describes the wave function of a quantum particle with energy E. For certain choices of q
nd E, this equation admits a solution, u0, that corresponds to the particle travelling from right to
eft �the complex conjugate solution represents left-to-right motion�. For example, when q�0 and
=k2 with k�0, we have ��x�=e−ikx. The Floquet-Bloch waves form another example when q is
eriodic.

If a perturbation �V is introduced, this may cause the particle to be reflected back with
onzero probability. This situation can be analyzed by looking at the solution u� of �2� with
�x�=q�x�−E. For x�1, we may write u��x�=�u0�x�+�ū0�x� for some complex numbers � and
. In this way, we obtain a formula for the probability of reflection, 	� /�	2. We also see that there
ill be no reflection if and only if u� and u0 are linearly dependent on the interval �0,1�. That is,

here will be no reflection if and only if b���=0.
Our interest in this question stems from its relevance to the one-dimensional Anderson model.

onsider solutions of �2� in the situation where the coupling constant � is a random variable. As
as first observed in the context of the random dimer model,6,7 it is possible for the localization

ength to diverge �i.e., Lyapunov exponent vanish� at a fixed energy. In particular, this happens at
ositive energies when the reflection coefficient associated to the single site potential vanishes
lmost surely for a particular choice of random coupling constant. The presence of these excep-
ional energies leads to interesting transport phenomena �see Refs. 3 and 8 and references therein�,
hile away from them one may prove exponential and dynamical localization �see Refs. 4 and 5�.
consequence of Theorem 1.1 is that these divergences cannot occur unless the distribution of the

ouplings is purely discrete.
We assumed from the very beginning that V was an L1 function. The theorems above are false

f V is permitted to be a measure as the following example shows: see Ref. 5 for an analogous
xample in the discrete setting.

Example 1.3: Consider Q�x�=−k2 and u0�x�=eikx. For V�x�=	�x�−	�x−1�, a simple calcula-
ion reveals

b��� = ��1 + �
2ik��e2ik − 1� . �5�

hus we see that b�0 whenever k=n
, n�Z. �The case k=0 follows by a limiting argument.�
he same is true for any other choice of u0. This is particularly evident when u0=sin�n
x� for in

his case, u��x�=sin�n
x�, which vanishes on the support of V.
One may ask for analogues of the theorems given above when V is not of compact support. In

his case, one would define u��x� by the constraint u��x�−u0�x�→0 as x→−� and define b��� as
he limit of W�u0 ,u���x� as x→ +�. Naturally, one would need to ensure that V decays fast enough
o that these limits exist; moreover the choice of decay rate cannot be made without knowledge of

he behavior of Q at infinity. We haven chosen not to pursue this matter.
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I. PROOFS

Let us choose a solution v0 of �1�, linearly independent of u0, normalized by the requirement
�u0 ,v0��1. As u��x� is also a solution of �1� in the region x�1, we may write

u��x� = a���u0�x� + b���v0�x� for all x � 1;

oreover, by computing Wronskians, we see that b��� is the same function defined in �3�.
First we show that a��� and b��� are analytic functions of order one-half. This allows us to

educe Theorem 1.2 from Theorem 1.1. Moreover, it shows that if the zeros of b are not discrete,
hen b must vanish identically. These two applications require us only to treat b; however when u0

s complex valued, we will need to invoke properties of a when we prove Theorem 1.1.
Proposition 2.1: The functions a��� and b��� are entire and obey

	a���	 � C exp�c	�	1/2�, 	b���	 � C exp�c	�	1/2� �6�

or some positive constants c and C, which depend on u0 and 
V
L1.
Proof: As in the preceding paragraphs, let v0 be a solution of �1� which satisfies W�u0 ,v0�

1. We define

K�x,t� = �u0�x�v0�t� − v0�x�u0�t��V�t�

o u��x� can be constructed as the solution of the Volterra integral equation

u��x� = u0�x� + ��
0

x

K�x,t�u��t�dt �7�

cting on C0��0, � ��. While this equation arises naturally from variation of parameters, it is
uicker to check it by differentiating both sides twice. The key observations are

K�x,x� = 0,
�K

�x
�x,x� = V�x�, and

�2K

�x2 �x,t� = Q�x�K�x,t� .

One can solve �7� by repeated substitution, which gives rise to an infinite series for u�,

u��x� = u0�x� + �
n=1

�

�n� ¯� K�x,t1� ¯ K�tn−1,tn�u0�tn�dt1 ¯ dtn, �8�

here integration takes place over the region 0� tn� ¯ � t1�x. Convergence of this series is a
ell-known property of Volterra operators �cf. Ref. 14, Sec. 36� and can be deduced from the

stimates below.
From �8� we obtain power series for a and b,

a��� = 1 + �
n=1

�

�n� ¯ �
�n

v0�t1�V�t1�K�t1,t2� ¯ K�tn−1,tn�u0�tn�dt1 ¯ dtn,

b��� = − �
n=1

�

�n� ¯ �
�n

u0�t1�V�t1�K�t1,t2� ¯ K�tn−1,tn�u0�tn�dt1 ¯ dtn,

here �n is the simplex 0� tn� ¯ � t1�1. Our bound on the size of these functions will follow
y estimating the individual terms in these series. We only give details for b��� because the
rgument for a��� is almost identical.

1
As u0 and v0 are C , one may choose a constant M so that
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	u0�t�	 � M and 	K�s,t�	 � M	s − t		V�t�	 " t,s � �0,1� .

econd, by the arithmetic/geometric mean inequality,


j=1

n−1

	tj − tj+1	 � �n − 1�−�n−1�.

ombining these two observations, we can deduce

	b���	 � �
n=1

� 	�	nMn+1

�n − 1�n−1 � ¯ �
�n

	V�t1�	 ¯ 	V�tn�	dt1 ¯ dtn

��
n=1

� 	�	nMn+1

n ! �n − 1�n−1 
V
L1
n .

he resulting bound on 	b���	 can now be deduced either through the properties of the Bessel
unction

�
n=0

�
r2n

�n ! �2 = I0�2r� =
1



�

0




e2r cos � d� � e2	r	,

r by brute force. �

The one-half power appearing in �6� is the smallest possible; see Example 2.3 below.
In the proof of Theorem 1.1 will specifically consider only ��R in order to be able to use

ome facts about self-adjoint operators. When u0 is real-valued, Theorem 1.1 follows by the
rgument presented in Lemma 3 of Ref. 13. Of course the problem is unchanged if u0 is a complex
ultiple of a real solution. However, when Re u0 and Im u0 are linearly independent solutions, one

eeds to make some modifications. The approach we take is to show that one may replace u0 by
e u0.

Proposition 2.2: Suppose Re u0 and Im u0 are linearly independent and b����0. Then
�Re u0 ,Re u���x�=0 for all x�1 and all ��R.

Proof: By assumption, u��x�=a���u0�x� for all x�1. For ��R, both u� and ū� are solutions
f �2�. Therefore,

W�u0, ū0� = W�u�, ū�� = 	a���	2W�u0, ū0� ,

hich is nonzero because we assumed linear independence. Thus it follows that a��� is unimo-
ular for ��R.

By the Schwarz reflection principle, the complex conjugate of any zero of a must be a pole;
owever, a is an entire function so we may conclude that it is zero-free. This means that log�a����
s an entire function, but then by the estimate in Proposition 2.1, it must be constant. By taking
=0, we learn that a����1.

We have just seen that for all � �real or complex� and all x�1, u��x�=u0�x�. By taking real
arts, we immediately obtain the conclusion sought. �

Proof of Theorem 1.1: In light of Proposition 2.2 we may assume that u0 is real-valued. We
ow essentially repeat the argument from Lemma 3 of Ref. 13. Let us choose �0 and �1 so that

cos��0�u0�0� + sin��0�u0��0� = 0 = cos��1�u0�1� + sin��1�u0��1�

nd consider the self-adjoint operators H�u=−u�+Qu+�Vu on �0,1� with the boundary condi-
ions
cos��x�u�x� + sin��x�u��x� = 0 for x � �0,1� .
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Suppose V�0 and the set of � for which b���=0 has an accumulation point. In this case,
����0, and in particular, 0 is an eigenvalue of H� for every ��R. As the spectrum of H� is
imple, discrete, and bounded from below, this implies that the number of negative eigenvalues of

� is finite and independent of �. We will derive a contradiction by using a very weak form of
eyl’s law. �When Q and V obey some mild regularity hypotheses, full Weyl-law asymptotics are

nown, cf. Ref. 10 Theorem XIII.79.�
As V�0, it must happen that either V is positive on a set of positive measure, or V is negative

n a set of positive measure. We will treat the former case, the latter follows with obvious
odifications.

For each �0, let us define

��x� = ��3
2−3/2� − 	x	� 	x	 �  ,

0 	x	 �  .

y the Lebesgue differentiation theorem, ���x− t�2V�t�dt→V�x� as ↓0 for a.e. x�R. Therefore,
iven any integer N�0, one can find N distinct points x1 , . . . ,xN� �0,1� and  sufficiently small,
o that ��x−xj� are supported in disjoint subsets of �0,1� and obey �V�x���x−xj�dx�. Thus,
y the minimax principle �cf. Ref. 10, Sec. XIII.1� one can see that H� has at least N negative
igenvalues when � is a sufficiently large negative number. �

An alternate approach to proving that a����1 implies V�0, is through recent work on the
arge-� asymptotics of the spectral shift function arg�a����; see Refs. 9 and 11, for example. The
uthors thank Pushnitski for explaining some of this material to us.

Proof of Theorem 1.2: The conclusion of this theorem holds for any nonzero entire function of
rder one-half and finite type; see Ref. 1, Theorem 2.5.13 or Ref. 12, Theorem 5.2.1. �

Theorem 1.2 is optimal with regard to the power of r. This is to be expected from Weyl’s law
nd can be seen with an elementary example.

Example 2.3: Consider Q�−
2, u0�x�=sin�
x�, and V=−��0,1�. In this case,

b��� = − cos��� + 
2� .

s cosine is an even function, both branches of the square root lead to the same answer.
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We obtain several new results for the complex generalized associated Lamé poten-
tial V�x�=a�a+1�m sn2�y ,m�+b�b+1�m sn2�y+K�m� ,m�+ f�f +1�m sn2�y+K�m�
+ iK��m� ,m�+g�g+1�m sn2�y+ iK��m� ,m�, where y�x−K�m� /2− iK��m� /2,
sn�y ,m� is the Jacobi elliptic function with modulus parameter m, and there are
four real parameters a ,b , f ,g. First, we derive two new duality relations which,
when coupled with a previously obtained duality relation, permit us to relate the
band edge eigenstates of the 24 potentials obtained by permutations of the param-
eters a ,b , f ,g. Second, we pose and answer the question: how many independent
potentials are there with a finite number “a” of band gaps when a ,b , f ,g are
integers and a�b� f �g�0? For these potentials, we clarify the nature of the
band edge eigenfunctions. We also obtain several analytic results when at least one
of the four parameters is a half-integer. As a by-product, we also obtain new
solutions of Heun’s differential equation. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2204810�

. INTRODUCTION

In a recent paper,1 hereafter referred to as paper I, we discussed the generalized associated
amé �GAL� potential given by

V̂�x� = a�a + 1�m sn2�x,m� + b�b + 1�m sn2�x + K�m�,m�

+ f�f + 1�m sn2�x + K�m� + iK��m�,m� + g�g + 1�m sn2�x + iK��m�,m�

= a�a + 1�m sn2�x,m� + b�b + 1�m
cn2�x,m�
dn2�x,m�

+ f�f + 1�
dn2�x,m�
cn2�x,m�

+ g�g + 1�
1

sn2�x,m�
,

�1�

hich involves four real parameters a ,b , f ,g. Here, sn �x ,m�, cn �x ,m�, dn �x ,m� are Jacobi
lliptic functions with elliptic modulus parameter m�0�m�1�. They are doubly periodic func-

tions with periods �4K�m� , i2K��m��, �4K�m� ,2K�m�+ i2K��m��, �2K�m� , i4K��m�� respectively,2

here K�m���0
�/2d��1−m sin2 ��−1/2 denotes the complete elliptic integral of the first kind, and

��m��K�1−m�. From now on, unless essential, we will not explicitly display the modulus
arameter m as an argument of Jacobi elliptic functions. It may be noted here that the four terms
n the GAL potential �1� correspond to complex translations of the independent variable x by 0,
�m� ,K�m�+ iK��m� , iK��m�. Although the GAL potential is real, it does have singularities on the

eal axis coming from the zeros of the Jacobi elliptic functions sn �x� and cn �x� in the last two
erms. One way to avoid these singularities is to make a complex change of variables y= ix+�,

�
Electronic mail: sukhatme@buffalo.edu
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ith � being an arbitrary real, nonzero constant, chosen so as to avoid the singularities arising
rom the zeros of Jacobi elliptic functions on the real axis.3 This procedure was used in paper I,
nd we studied many of the properties of the resulting PT-invariant complex periodic potential.4

owever, consistent with the practice in the mathematics literature, in this paper we use an
lternative approach of avoiding singularities by simply translating the independent variable x by
n arbitrary nonzero amount in the complex plane. In fact, for simplicity, from symmetry consid-
rations, we take the translated variable to be x−K�m� /2− iK��m� /2. Note that the potential still is
PT-invariant complex periodic potential. One very important consequence of this choice is that

he energy eigenvalues which we shall obtain here will be opposite in sign from the values
btained in paper I. This point should be kept in mind while comparing the results from the two
apers. Thus explicitly, we consider the potential

V�x� = V̂�y�

= a�a + 1�m sn2�y,m� + b�b + 1�m sn2�y + K�m�,m� + f�f + 1�m sn2�y + K�m� + iK��m�,m�

+ g�g + 1�m sn2�y + iK��m�,m�

= a�a + 1�m sn2�y,m� + b�b + 1�m
cn2�y,m�
dn2�y,m�

+ f�f + 1�
dn2�y,m�
cn2�y,m�

+ g�g + 1�
1

sn2�y,m�
� �a,b, f ,g� , �2�

here

y = x −
K�m�

2
−

iK��m�
2

. �3�

t may be noted here that in paper I we used the notation �a�a+1� ,b�b+1� , f�f +1� ,g�g+1�� to
denote this potential. However, for consistency with the prevailing practice in the mathematics
literature, in this paper we use the notation �a ,b , f ,g�. In this notation, ordinary Lamé potentials
are denoted by �a, 0, 0, 0�, and associated Lamé �AL� potentials are denoted by �a ,b, 0, 0�. Note
that the potential �2� remains unchanged when any one or more of the parameters a ,b , f ,g change
to −a−1,−b−1,−f −1,−g−1 respectively.

There is one important observation which permits us to construct many supersymmetric part-
ner potentials corresponding to a given potential.5 Although this point was previously made in
aper I, it is worth restating here. Normally, in supersymmetric quantum mechanics,6 given a
otential V−�x�, the ground state wave function �0�x� is used to construct the superpotential
�x�=−�0��x� /�0�x�, which then yields the supersymmetric �SUSY� partner potential V+�x�=W2

W�. If one uses any excited state wave function ��x� of V−�x� to construct a superpotential W�x�,
hen the original potential V−�x� is recovered correctly �by construction�, but the corresponding
artner potential V+�x� turns out to be singular on the real x axis due to the zeros of the excited
tate wave function ��x�. However, for the complex potential �2�, the singularities are not on the
eal axis.7 Thus in this case one could also use any of the excited state wave functions to obtain the
uperpotential W�x� and hence discover several supersymmetric partner potentials with the same
nergy spectrum.

In paper I we showed that several GAL potentials with specific integer values of a ,b , f ,g have
finite number of band gaps. Further, looking at the symmetry of these potentials, we conjectured

hat all GAL potentials with integer values of a ,b , f ,g also have a finite number of band gaps.
ome results of this type are available in the mathematics literature, and it is worthwhile to present
brief review of what is already known about the GAL potential.

The GAL potential �2�, expressed in terms of Weierstrass functions, was discussed in a brief
ote by Darboux in 1882,8 as well as in two subsequent articles in 1914 and 1915. He mentioned
hat some results had already been presented by Hermite in 1872 in unpublished lectures at Ecole

9
olytechnique. In 1883, Sparre wrote two long papers on the GAL potential expressed in terms of
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acobi elliptic functions. Unfortunately, the mathematics community was largely unaware of these
apers, and the GAL potential was “rediscovered” by Treibich and Verdier in 1990.10 Nowadays,
he GAL potential, expressed in terms of Weierstrass functions, is known as the Treibich-Verdier
otential. Several investigators have shown that when a ,b , f ,g are integers, these potentials have
finite number of band gaps. In particular, the number of band gaps p is given by11

p = 1
2 max�2 max�a,b, f ,g�,1 + N − �1 + �− 1�N��min�a,b, f ,g� + 1

2�� , �4�

here N=a+b+ f +g. It was also shown that finite band gap potentials are solutions of higher
rder KdV equations.12 In recent times, several people have also discussed the connection between
eun’s equation and the Treibich-Verdier potential.13 Finally, some authors have studied other
eneral potentials �different from GAL potentials� which have a finite number of band gaps.14

In paper I using supersymmetry we showed that the band edge eigenvalues of the Lamé and
he AL potentials �2, 0, 0, 0�, �3, 0, 0, 0�, �a , �a−3�, 0, 0� are the same as those of the GAL
otentials �1, 1, 1, 0�, �2, 1, 1, 1�, �a ,a−1, 1, 0�, respectively. We had also conjectured in paper I
hat for integer a ,b, Lamé and AL potentials have the same band edge eigenvalues as some GAL
otentials—the explicit relationship being

�a,0,0,0� � 	a

2
,
a

2
,
a

2
,
a − 2

2

, a = even integer,

�a,0,0,0� � 	a + 1

2
,
a − 1

2
,
a − 1

2
,
a − 1

2

, a = odd integer,

�5�

�a,b,0,0� � 	a + b

2
,
a + b

2
,
a − b

2
,
a − b − 2

2

, a + b = even integer,

�a,b,0,0� � 	a + b + 1

2
,
a + b − 1

2
,
a − b − 1

2
,
a − b − 1

2

, a + b = odd integer.

ote that we are using the notation “�” to denote “same band edge eigenvalues,” but not identical
otentials. It is interesting to note that recently, Takemura15 has verified the conjectures expressed
n �5�. Further, more generally, he has proved that the GAL potential �a ,b , f ,g� for integer
,b , f ,g has the same band edge eigenvalues as another GAL potential, with the explicit relation-
hip depending on whether N�a+b+ f +g is an even or an odd integer. If N is an even integer, the

relationship is

�a,b, f ,g� � 	a + b + f − g

2
,
a + b + g − f

2
,
a + f + g − b

2
,
b + f + g − a

2

 , �6�

hile if N is an odd integer, then the relationship is

�a,b, f ,g� � 	a + b + f + g + 1

2
,
a + b − f − g − 1

2
,
a + f − b − g − 1

2
,
a + g − b − f − 1

2

 . �7�

e has also shown that if a ,b , f ,g are all half-integers and their sum is an even integer, then the
and edge energy eigenvalues of the potential �a ,b , f ,g� are the same as two other GAL potentials

where also all four parameters are half-integers with their sum being an even integer. In particular,

the explicit relationships are
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	a = k +
1

2
,b = l +

1

2
, f = n +

1

2
,g = p +

1

2



� 	 k + l + n + p + 3

2
,
k + l − n − p − 1

2
,
k + n − l − p − 1

2
,
k + p − n − l − 1

2



� 	 k + l + n − p + 1

2
,
k + l + p − n + 1

2
,
k + n + p − l + 1

2
,
l + n + p − k + 1

2

 . �8�

The above-mentioned results, when combined with our work in paper I, raise several ques-
ions. For example, while it is clear from relation �4� that all 24 potentials obtained by permutation
f the four parameters a ,b , f ,g have the same number of band gaps, what is the precise relation-
hip between the band edge eigenstates of these 24 potentials? Second, a very interesting question
s to ask how many independent GAL potentials there are with say a band gaps. Third, is it
ossible to further generalize the results of Takemura?15 Besides, what is the nature of the band
dge eigenfunctions for a general GAL potential in case a ,b , f ,g are all integers? Finally, in view
f the connection between the GAL potentials and Heun’s equation,9,13 it is worth inquiring about
he implications of these results in the context of solutions to Heun’s equation.

In this paper, we address all the above-raised issues. Further, we also consider GAL potentials
n which at least one of the four parameters is a half-integer while the other parameters are
rbitrary numbers and show that both relations �6� and �7� are valid in all these cases. As a
onsequence, we conjecture that relations �6� and �7� are in fact simultaneously valid even when
ll four parameters a ,b , f ,g are integers with their band edge eigenvalues being the same as the
uasi-exactly solvable �QES� eigenvalues of potentials where all four parameters are half-integers
with their sum being an odd integer�. Further, knowing the QES eigenvalues of the GAL poten-
ials �a ,1 /2 , f ,g�, �a ,b ,1 /2 ,g�, �a ,b , f ,1 /2� �where a ,b , f ,g are arbitrary numbers�, and using

the connection between the Schrödinger equation for the GAL potentials and Heun’s equation, we
show that the corresponding eigenfunctions can be obtained by directly solving the algebraic form
of Heun’s equation.

The plan of this paper is as follows. In Sec. II, we derive new duality relations and examine
some consequences. In particular, using these duality relations we obtain the precise connection
between the energy eigenvalues and eigenfunctions of the 24 potentials obtained by permuting the
four parameters a ,b , f ,g. In Sec. III, we discuss the GAL potential �2� in some detail when the
four parameters a ,b , f ,g are all integers. First, we find various GAL potentials which are related
to each other in the sense that they have identical band edge energy eigenvalues. We also find a
arge number of self-isospectral potentials as well as self-dual but non-self-isospectral potentials.
sing all these results, we obtain the number of independent potentials with say a band gaps. We

lso clarify the nature of the band edge eigenfunctions for these potentials. In Sec. IV we discuss
he GAL potential when either one or more of the four parameters take half-integer values while
he remaining parameters are arbitrary. In this case, in general one expects to obtain QES mid-
and states, by which we mean any energy state lying inside an energy band and thus not a band
dge. Quite remarkably, by generalizing Takemura’s results15 we obtain GAL potentials which
ave the same band edge eigenvalues as the mid-band energy values of the potentials with one or
ore of the parameters being half-integers. In Sec. V we discuss the GAL potential in case the

arameters a ,b , f ,g take arbitrary values and obtain the corresponding GAL potentials with the
ame band edge and mid-band energy values when a+b+ f +g �or any other combination obtained
y replacing one or more of these parameters by −a−1,−b−1,−f −1,−g−1, respectively� is an

even integer. In Sec. VI we discuss the implications of all these results in the context of Heun’s
equation. In particular, we show that in view of the connection between the different GAL poten-
tials, given a periodic solution of Heun’s equation, one immediately obtains four periodic and
three quasi-periodic solutions of the same equation. We also show that in many cases, knowing the
QES energy values of a GAL potential, it is much easier to solve the algebraic form of Heun’s
equation and obtain the corresponding eigenfunctions of the GAL potential. Finally, in Sec. VII we

summarize the results obtained in this paper and spell out some open problems.
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I. DUALITY RELATIONS FOR GAL POTENTIALS

In this paper our main focus is on the Schrödinger equation

−
d2

dx2��x� + V̂�x���x� = E��x� , �9�

here V̂�x� is the GAL potential given by Eq. �1�, and we have chosen units with �=2m=1.

isplaying parameters more explicitly, Eq. �9� states that the potential V̂�a ,b , f ,g ,m ;x� has band
dge eigenvalues E�a ,b , f ,g ,m� and eigenfunctions ��a ,b , f ,g ,m ;x�. Of course, this means that

he translated potential V�x��V�a ,b , f ,g ,m ;x�= V̂�a ,b , f ,g ,m ;x−K�m� /2− iK��m� /2� given in
q. �2� has the same eigenvalues E�a ,b , f ,g ,m� and eigenfunctions ��a ,b , f ,g ,m ;x−K�m� /2
iK��m� /2�.

First we want to show that the band edge eigenstates of the 24 potentials �obtained via
ermutations of the 4 parameters, a ,b , f ,g in V�x�� are all related, so that once the band edge
igenstates of any one permutation are known, the complete band edge eigenstates of all 24
otentials are also known. Actually, these relations are valid for both band edges as well as
id-band states.

The first relation is simple—in view of the invariance of the Schrödinger Eq. �9� under the
ranslation x→x+K�m� followed by the interchanges a↔b and f ↔g, one gets1

E�b,a,g, f ,m� = E�a,b, f ,g,m�, ��b,a,g, f ,m;x� � ��a,b, f ,g,m;x + K�m�� . �10�

imilarly, the translations x→x+ iK��m� and x→x+K�m�+ iK��m� followed by suitable inter-
hanges of parameters yield

E�g, f ,b,a,m� = E�a,b, f ,g,m�, ��g, f ,b,a,m;x� � ��a,b, f ,g,m;x + iK��m�� , �11�

E�f ,g,a,b,m� = E�a,b, f ,g,m�, ��f ,g,a,b,m;x� � ��a,b, f ,g,m;x + K�m� + iK��m�� . �12�

Thus, once we obtain the eigenvalues and eigenfunctions of a given potential �a ,b , f ,g�, then
e immediately know the eigenvalues and eigenfunctions of three other potentials: �b ,a ,g , f�,

g , f ,b ,a�, and �f ,g ,a ,b�. Note that relations �10�–�12� all involve the same modulus parameter
m.

We now derive three remarkable duality relations, which connect the energy states of different
GAL potentials, and involve changes in the modulus parameter from m to 1−m, 1 /m and
−m / �1−m�.

Duality Relation I: This was already derived in paper I and is given by

E�a,b, f ,g,m� = �a�a + 1� + b�b + 1� + f�f + 1� + g�g + 1�� − E�a,g, f ,b,1 − m� ,

�13�
��a,b, f ,g,m;x� � ��a,g, f ,b,1 − m;x + K��m� + iK�m�� .

Duality Relation II: Using the formulas2

sn�x,m� =
1

k
sn�kx,

1

m
�, cn�x,m� = dn�kx,

1

m
�, dn�x,m� = cn�kx,

1

m
�, k2 � m , �14�
nd redefining a new variable z=kx, the Schrödinger equation �9� takes the form
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−
d2

dz2��z� + a�a + 1�
m

sn2�z,
1

m
� +

f�f + 1�
m

cn2�z,
1

m
�

dn2�z,
1

m
�

+ b�b + 1�
dn2�z,

1

m
�

cn2�z,
1

m
� + g�g + 1�

1

sn2�z,
1

m
����z� =

E�m�
m

��z� . �15�

n comparing Eqs. �9� and �15� we then have the duality relation

E�a,b, f ,g,m� = mE�a, f ,b,g,
1

m
�, ��a,b, f ,g,m;x� � ��a, f ,b,g,

1

m
;kx� . �16�

Duality Relation III: We again start from the Schrödinger equation �9� and now use the
ormulas2

sn�x,m� =
sn��1 − mx,− m/�1 − m��

�1 − mdn��1 − mx,− m/�1 − m��
,

cn�x,m� =
cn��1 − mx,− m/�1 − m��

dn��1 − mx,− m/�1 − m��
, �17�

dn�x,m� =
1

dn��1 − mx,− m/�1 − m��
.

n defining a new variable z=�1−mx, the Schrödinger equation �9� takes the form

−
d2

dz2��z� + −
mb�b + 1�

1 − m
sn2�z,

− m

1 − m
� −

ma�a + 1�
1 − m

cn2�z,
− m

1 − m
�

dn2�z,
− m

1 − m
�

+ f�f + 1�
dn2�z,

− m

1 − m
�

cn2�z,
− m

1 − m
� + g�g + 1�

1

sn2�z,
− m

1 − m
����z�

=
1

1 − m
E��z� −

m

1 − m
�a�a + 1� + b�b + 1� + f�f + 1� + g�g + 1����z� . �18�

n comparing Eqs. �9� and �18� one gets the duality relation

E�a,b, f ,g,m� = �1 − m�E�b,a, f ,g,
− m

1 − m
� + m�a�a + 1� + b�b + 1� + f�f + 1� + g�g + 1�� ,

�19�

��a,b, f ,g,m;x� � ��b,a, f ,g,
− m

1 − m
;�1 − mx� .

Using the three duality relations �Eqs. �13�, �16�, and �19�� along with the translation results

Eqs. �10�–�12��, it is easily shown that once the eigenstates of a given potential are known, we
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an immediately obtain the energy eigenstates of all 24 potentials obtained by permuting the 4
arameters a ,b , f ,g. Hence, out of these 24 potentials, there is only one independent potential and
ithout loss of any generality, throughout this paper we only consider the potential �a ,b , f ,g� with
�b� f �g �unless stated otherwise�.

The duality relations are very powerful and have many interesting consequences. For ex-
ample, we find that for arbitrary integer values of a , f , the potential �a ,0 , f ,0� has only a finite
number of band gaps. This follows because Eq. �16� gives

E�a,0, f ,0,m� = mE�a, f ,0,0,
1

m
� , �20�

o that both the potentials �a , f ,0 ,0� and �a ,0 , f ,0� must have the same number of band edges.
ince one knows16 that the AL potential �a , f ,0 ,0� has a finite number of band gaps, the same
tatement holds for the potential �a ,0 , f ,0�.

II. INDEPENDENT GAL POTENTIALS WITH a BAND GAPS †a ,b , f ,g=integers‡

In this section, we want to answer the following interesting question: given a potential of the
orm �a ,b , f ,g� with a�b� f �g�0, how many independent GAL potentials are there with
xactly a band gaps?

To begin, for a given integer a, let us calculate the total number of possible GAL potentials
ith a�b� f �g�0. The number of such potentials is

�
b=0

a

�
f=0

b

�
g=0

f

1 = �a + 1��a + 2��a + 3�/6. �21�

Now due to the Landen transformations,2,17 potentials of the form �a ,a ,b ,b� with a�b are
ssentially the same as the potentials �a ,b ,0 ,0� and hence are not really distinct. There are a such
otentials �for any given value of a�. Similarly, it is easy to show that the potential �a ,a ,a ,a� is

related to the potential �a ,0 ,0 ,0� and hence not distinct. In particular, on using the relations2

sn2�x,m� =
1 − cn�2x,m�
1 + dn�2x,m�

, m sn2�x + iK��m�,m� =
1

sn2�x,m�
, �22�

ne obtains

sn2�x,m� + sn2�x + K�m�,m� + sn2�x + iK��m�,m� + sn2�x + K�m� + iK��m�,m� = 4sn2�2x + iK��m�,m� .

�23�

hus the number of distinct GAL potentials of the form �a ,b , f ,g� with a�b� f �g�0 is given
y

Ndist = a�a + 1��a + 5�/6. �24�

In view of formula �4� for the number of band gaps, it is obvious that these distinct potentials
re of two types—there are those with exactly a band gaps and those with more than a band gaps.
sing Eqs. �6� and �4� and �4� it follows that in case a+b+ f +g is an even integer and if a+g
b+ f then the potential has a band gaps while if a+g	b+ f then it has �a+b+ f −g� /2 band

gaps. Similarly, using Eqs. �7� and �4� it follows that in case a+b+ f +g is an odd integer and if
a�b+ f +g then the potential has a band gaps while if a	b+g+ f then it has �a+b+ f +g+1� /2
and gaps.

It is now straightforward to count the number of independent GAL potentials �a ,b , f ,g� with
a band gaps and show that

Na =
1

�a3 + 9a2 + 6a + 2�, a = 1�mod 3� ,

18
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Na =
1

18
�a3 + 9a2 + 6a − 2�, a = 2�mod 3� ,

Na =
a

18
�a2 + 9a + 6�, a = 0�mod 3� . �25�

Several comments are in order at this stage.
1. There is only one independent potential with one band gap but there are three independent

otentials with two band gaps and seven independent potentials with three band gaps. This then
mplies12 that while there is only one independent KdV equation of third order, there should be
hree such equations of fifth order and seven such equations of seventh order. It is worth pointing
ut that indeed there are three such independent KdV equations of fifth order already known in the
iterature, called standard, Sawada-Kotera, and Kupershmidt �fifth-order� KdV equations. It may
e interesting to explicitly obtain all seven independent KdV equations of seventh order.

2. On subtracting the number of independent potentials with a band gaps �as given by Eq.
25�� from the total number of allowed potentials as given by Eq. �24�, we immediately find that
he number of independent potentials of the form �a ,b , f ,g� having more than a band gaps is given
y

N
a = 1
18�a + 2��2a2 + 5a − 1�, a = 1�mod 3� ,

N
a = 1
18�a + 1��2a2 + 7a + 2�, a = 2�mod 3� , �26�

N
a = 1
18a�a + 3��2a + 3�, a = 0�mod 3� .

or example there are four potentials of the form �a ,b , f ,g� with a=2 having more than two band
aps given by

N
2 = �2,2,2,0�,�2,2,2,1�,�2,2,1,0�,�2,1,1,1� , �27�

hile for a=3 there are nine such potentials with more than three band gaps, given by

N
3 = �3,3,3,0�,�3,3,3,1�,�3,3,3,2�,�3,3,2,0�,�3,3,2,1�,�3,3,1,0�,�3,2,1,1�,�3,2,2,0�,�3,2,2,2� .

�28�

3. If a+b+ f +g is an even integer and further if a+g=b+ f , then both sides of Eq. �6� are
dentical and the corresponding potential is self-dual. Similarly, if a+b+ f +g is an odd integer and
a=b+ f +g+1, then both sides of Eq. �7� are identical, and one has a self-dual potential. As an
illustration, the AL potential �a ,a−1,0 ,0� is self-dual, a fact we already knew from Ref. 18 But
we now get a large number of additional self-dual GAL potentials, like �2,1,1,0�, �4,2,2,0�, and
�4,2,1,0�, for example.

4. A related question is, out of the above self-dual potentials how many are also
elf-isospectral?18,19 It is easy to see that the most general form of �at least one of� the eigenfunc-
ion for the self-isospectral potentials is

� =
dna�x,m�snb�x,m�

cnb�x,m�
�29�

nd that the corresponding self-isospectral potential has the form

�a,a − 1,b,b − 1�, b 
 0, �a,a − 1,0,0�, b = 0. �30�

he fact that the AL potentials of the form �a ,a−1,0 ,0� are self-isospectral was established many
ears ago.18 However, what is new is the realization that the potentials �a ,a−1,b ,b−1� are also

elf-isospectral potentials. Note that here a ,b can be any integers. Some examples of self-
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sospectral potentials are �1,0,0,0�, �2,1,0,0�, �3,2,2,0�, �3,2,1,1�, and �3,2,0,0�. Thus out of all the
elf-dual potentials, those which are of form �30� are also self-isospectral while the rest are
elf-dual but not self-isospectral. One can show that the number of self-dual potentials Nsd which
re not self-isospectral is given by

Nsd = 1
3 �a − 1�2, a = 1,4,7, . . . ,

�31�
Nsd = 1

3a�a − 2�, a = 2,3,5,6, . . . .

n the other hand, it is easy to see that the number of self-isospectral potentials is Nsi=a. As an
llustration, the self-isospectral potentials with two band gaps are �2,1,0,0� and �2,1,1,0� while
here are no self-dual �but non-self-isospectral� potentials with two band gaps. On the other hand,
he self-isospectral potentials with three band gaps are �3,2,2,1�, �3,2,1,0�, and �3,2,0,0�, while the
nly self-dual �but non-self-isospectral� potential with three band gaps is �3,1,1,0�.

5. Clearly all potentials with a+g
b+ f or a
b+ f +g+1 depending on if a+b+ f +g is an
odd or an even integer, have partner potentials as given by Eq. �6� or �7�, respectively. Now out of
these, some are SUSY partner potentials while the rest are merely partner potentials. So let us
count both types of potentials. Now if two GAL potentials are SUSY partners, then one of their
eigenfunctions must be related to each other by �II=�I

−1. Further, these two eigenfunctions must
ave the form

dn��x�cn��x�sn��x� . �32�

esides, from paper I we know that if the QES eigenfunction is of the form �32�, then b=−�, f
−�, g=−�, and a+b+ f +g=0. From here it is easy to show that the potential �a ,b , f ,g� with a

band gaps has a SUSY GAL partner provided either a+g=b+ f +2 or a=b+ f +g+3 depending on
if a+b+ f +g is an even or an odd integer, respectively. Hence, all potentials of the form �a ,b , f ,g�
with a band gaps and satisfying a+g
b+ f +2 or a
b+g+ f +3 have merely partner potentials of
the form �6� and �7�, respectively. It is worth emphasizing that while these partner potentials have
the same band edge eigenvalues, none of them are SUSY partner potentials. For example, �2,0,0,0�
and �1,1,1,0� are SUSY partner GAL potentials with two band gaps. Similarly �3,1,0,0� and
�2,2,1,0� are SUSY partner GAL potentials with three band gaps. On the other hand, �4,0,0,0� and
2,2,2,1� are merely partner potentials with four band gaps.

6. One can count the number of potentials �Nsu� of the form �a ,b , f ,g� with a band gaps
aving another GAL potential as its SUSY partner and it is easy to show that

Nsu = 1
3 �a2 − 1�, a � 0�mod 3� ,

�33�
Nsu = 1

3a2, a = 0�mod 3� .

inally, it is not difficult to show that the number of potentials of the form �a ,b , f ,g� with a band
aps and having merely a �non-SUSY� partner potential of the form as given by Eqs. �6� and �7�,
espectively, is given by

Nnsu = 1
18�a − 1��a2 − 2a − 2�, a = 1�mod 3� ,

Nnsu = 1
18�a − 2��a2 − a − 2�, a = 2�mod 3� , �34�

Nnsu = 1
18a2�a − 3�, a = 0�mod 3� .

7. On adding the number of self-dual �but non-self-isospectral�, self-isospectral, SUSY partner
nd �non-SUSY� merely partner potentials as given by Eqs. �30�–�34� respectively, as expected,

e find that the number of independent potentials with a band gaps is as given by Eq. �25�.
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8. One obvious interesting question is whether there are non-GAL potentials with a finite
umber of band gaps. The answer to this question is yes. In particular, since the general form of
he eigenfunction for any GAL potential is of the form1

�GAL�x� = dn−b�x�cn−f�x�sn−g�x��
k=0

N

Aksn2k�x� , �35�

t follows that non-GAL potentials of the form

V+�x� = VGAL�x� − 2
d2

dx2 ln �GAL�x� �36�

re also finite gap potentials. In this context it is worth mentioning that some people14 have
ecently obtained potentials with a finite number of band gaps which are more general than the
AL potentials. It is not clear if those potentials and the potentials �36� have any overlap.

The nature of band edge eigenstates. In paper I we showed that if a+b+ f +g=2n, then n
1 QES states can be obtained for GAL potentials �2� and they are of the form given in Eq. �35�.
n using this key result as well as the fact that the GAL potential �a ,b , f ,g� remains unchanged
hen any one �or more� of the four parameters a ,b , f ,g is changed to −a−1, −b−1, −f −1, −g

−1, respectively, it is easy to specify the nature of the band edge eigenfunctions for any potential
�a ,b , f ,g� with a band gaps. The nature as well as the number of eigenstates crucially depend on
whether a+b+ f +g is an even or an odd integer—so we will discuss these situations separately.

a+b+ f +g=even integer: In this case it is easy to show that one has �a+b+ f +g+2� /2 eigen-
tates of the form

sn−g�x�cn−f�x�dn−b�x�F�a+b+f+g�/2�sn2�x�� , �37�

a+b− f −g� /2 eigenstates of the form

sng+1�x�cnf+1�x�dn−b�x�F�a+b−f−g−2�/2�sn2�x�� , �38�

a+ f −b−g� /2 eigenstates of the form

sng+1�x�cn−f�x�dnb+1�x�F�a+f−b−g−2�/2�sn2�x�� , �39�

nd �a+g−b− f� /2 eigenstates of the form

sn−g�x�cnf+1�x�dnb+1�x�F�a+g−b−f−2�/2�sn2�x�� . �40�

f instead b+g
a+ f , then one has �b+ f −a−g� /2 eigenstates of the form

sng+1�x�cn−f�x�dn−b�x�F�b+f−a−g−2�/2�sn2�x�� . �41�

a+b+ f +g=odd integer: In this case it is easy to show that one has �a+b+ f −g+1� /2 eigen-
states of the form

sng+1�x�cn−f�x�dn−b�x�F�a+b+f−g−1�/2�sn2�x�� , �42�

a+b+g− f +1� /2 eigenstates of the form

sn−g�x�cnf+1�x�dn−b�x�F�a+b+g−f−1�/2�sn2�x�� , �43�

a+ f +g−b+1� /2 eigenstates of the form

sn−g�x�cn−f�x�dnb+1�x�F�a+f+g−b−1�/2�sn2�x�� , �44�
a−b− f −g−1� /2 eigenstates of the form
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sng+1�x�cnf+1�x�dnb+1�x�F�a−b−f−g−3�/2�sn2�x�� . �45�

f instead b+ f +g
a−1 then one has �b+ f +g−a+1� /2 eigenstates of the form

sn−g�x�cn−f�x�dn−b�x�F�b+f+g−a−1�/2�sn2�x�� . �46�

ere Fn�sn2�x�� denotes a polynomial of order n in sn2�x�. It is worth pointing out that not only the
ES band edge eigenvalues are identical for the two partner potentials as given either by Eq. �6�
r by �7�, even the nature of the band edge eigenfunctions in the two cases is also similar. For
xample, the potential ��a+b+ f −g� /2 , �a+b+g− f� /2 , �a+ f +g−b� /2 , �b+ f +g−a� /2� as given

by Eq. �6� has the same band edge eigenvalues and further the corresponding eigenfunction is
simply obtained from Eqs. �37�–�41� by replacing a ,b , f ,g with �a+b+ f −g� /2 , �a+b+g
− f� /2 , �a+ f +g−b� /2 , �b+ f +g−a� /2, respectively. Exactly the same is also true about the
quivalent potential given by Eq. �7� in case a+b+ f +g is an odd integer and the corresponding

eigenfunctions are exactly as given by Eqs. �42�–�46� but with the replacement of a ,b , f ,g by
�a+b+ f +g+1� /2 , �a+b− f −g−1� /2 , �a+ f −b−g−1� /2 , �a+g−b− f −1� /2, respectively. It fol-
lows from here that irrespective of whether a+b+ f +g is an odd or an even integer, there are
precisely a bound bands, same a number of band gaps and 2a+1 number of band edges all of

hich are analytically known in principle, beyond which there is a continuum band extending up
o E=. Further, irrespective of whether a+b+ f +g is an odd or an even integer, if a+b is an even
odd� integer, then there are a+b+1 band edges of period 2K�4K� and a−b band edges of period

4K�2K�.
Thus in general the band structure of the GAL potentials is unusual in that if a+b is an even

�odd� integer, then b band gaps of period 4K�2K� must be of zero width, i.e., there must be b
doubly degenerate states of period 4K�2K�. Unfortunately, till today we do not know either the
eigenvalue or the nature of the eigenfunction of even one of these doubly degenerate states. One
exception is the case of pure Lamé �and their GAL partners� potentials, i.e., when b= f =g=0, as
in that case depending on if a is even or odd integer, one has a+1 band edges of period 2K�4K�
and a band edges of period 4K�2K� and the band structure is normal one, with no doubly degen-
rate states.

As an illustration, consider the GAL potentials with two band gaps. As seen earlier, there are
hree distinct potentials with two band gaps out of which we have already discussed the band
tructure of the two potentials �2, 0, 0, 0� and �2, 1, 0, 0�.16,18 Thus it would be interesting to know
he band edges and the band structure of the remaining potential with two band gaps, i.e., �2, 1, 1,
�. Since a+b=3, it follows from the above discussion that in this case there must be four band
dges of period 4K and 1 band edge of period 2K. Using Table 4 of paper I it is easily seen that
he eigenstate with period 2K is given by

� = dn2�x�sn�x�cn−1�x�, E = 9m , �47�

hile out of the four band edges of period 4K, one eigenstate has the form

� = dn−1�x�sn�x�cn2�x�, E = 9. �48�

he three other eigenstates of period 4K have the form

� = dn−1�x�cn−1�x��A + B sn2�x� + D sn4�x�� , �49�

nd the corresponding three eigenvalues satisfy the cubic equation

r3 + 8�1 + m�r2 + 80mr + 64m�1 + m� = 0, E = − r + 1 + m . �50�

urther, it is clear that there must be one doubly degenerate state of period 2K whose eigenvalue

nd eigenfunctions are not known analytically.
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V. GAL POTENTIALS †WITH AT LEAST ONE PARAMETER a ,b , f ,g=HALF-INTEGER‡

So far, we have discussed GAL potentials when all four parameters a ,b , f ,g take integer
alues. We have seen that these are problems with a finite number of band gaps. We now consider
he case when at least one of the parameters a ,b , f ,g is a half-integer. In general, all such
roblems have an infinite number of band gaps and one has only a few QES states.

. a=half-integer

As mentioned in Sec. I, we conjecture that the relations �6� and �7� are simultaneously valid
hen at least one of the four parameters a ,b , f ,g is a half-integer. In particular, in case a=k+ 1

2
nd b , f ,g are arbitrary numbers, we assert that k+1 QES energy values are identical for three
AL potentials, that is

	a = k +
1

2
,b, f ,g


� 	2�k + b + f + g� + 3

4
,
2�k + b − f − g� − 1

4
,
2�k + f − b − g� − 1

4
,
2�k + g − b − f� − 1

4



� 	2�k + b + f − g� + 1

4
,
2�k + b + g − f� + 1

4
,
2�k + f + g − b� + 1

4
,
2�b + f + g − k� − 1

4

 .

�51�

his relation needs some clarification. What is being conjectured here is that there are k+1 QES
id-band energy values of the potential with a=k+1/2 and b , f ,g being arbitrary numbers, which

re the same as the band edge energy eigenvalues of the two other potentials given in �51�. For
hese two potentials, we can always obtain k+1 QES band edges, since for both of them the sum
f the four parameters characterizing the potentials is 2k.1

We have explicitly verified our conjecture in the following cases: �i� Lamé potentials with
=1/2 ,3 /2 �and b= f =g=0�; �ii� AL potentials16 with a=1/2 ,3 /2, b=1,2 ,3 �and f =g=0�; �iii�
AL potentials with a=1/2 ,3 /2, and either b or f or g is arbitrary while the remaining two
arameters take any integer values. For example, we know that the mid-band state of the a
1/2 Lamé potential is at �1+m� /4. Using Eq. �51�, we predict that both the potentials � 3

4 ,− 1
4 ,

1
4 ,− 1

4
� and � 1

4 , 1
4 , 1

4 ,− 3
4
� must have a QES band edge eigenvalue at E= �1+m� /4. Using Table 4

f paper I it is easily checked that this is indeed so, with the corresponding band edge eigenfunc-
ions being �= �dn�x�cn�x�sn�x��1/4 and �=dn−1/4�x�cn−1/4�x�sn3/4�x�, respectively. Similarly, it is
ell known that the QES mid-band states of the a=3/2 Lamé potential are at

E =
5�1 + m�

4
± �1 − m + m2. �52�

sing Eq. �51� we then predict that both the potentials � 5
4 , 1

4 , 1
4 , 1

4
� and � 3

4 , 3
4 , 3

4 , −1
4

� must have QES
and-edge eigenvalues as given by Eq. �52�. Using Table 4 of paper I it is easily checked that this
s indeed so, with the corresponding band edge eigenfunctions being respectively given by

� = �dn�x�cn�x�sn�x��−1/4�1 + �− �1 + m� ± �1 − m + m2�sn2�x�� , �53�

� = �dn−3/4�x�cn−3/4�x�sn1/4�x���3 + �− �1 + m� ± �1 − m + m2�sn2�x�� . �54�

We have similarly checked the equivalence in all the above-mentioned cases. For example,
sing the results16 for the AL potential �3/2, 1, 0, 0�, we find �and verify using Table 4 of paper
� that the GAL potentials �7/4 ,3 /4 ,−1/4 ,−1/4� and �5/4 ,5 /4 ,1 /4 ,−1/4� have QES band edges

� 2
t E= �13+5m� /4± 9−9m+m . The corresponding band edge eigenfunctions are
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� = �dn−3�x�cn�x�sn�x��−1/4�3 + �− �3 + m� ± �9 − 9m + m2�sn2�x�� , �55�

� = �dn−5/4�x�cn−1/4�x�sn3/4�x���5 + �− �3 + m� ± �9 − 9m + m2�sn2�x�� , �56�

espectively. Similarly, using the results in paper I for the mid-band states of the GAL potential
1
2 , t− 1

2 , 1, 0� we verify that the potentials �t /2+1, t /2−1, �1− t� /2 ,−�1+ t� /2� and ��1+ t� /2 ,
�1− t� /2 ,1− t /2 , t /2� indeed have a QES band edge eigenvalue E= t2+9m /4, for any noninteger

and the corresponding eigenfunctions are �=dn�2−t�/2�x�cn�t−1�/2�x�sn�1+t�/2�x� and �
dn�1−t�/2�x�cn�t−2�/2�x�sn�2+t�/2�x�.

Thus one is fairly confident that the remarkable relationship �51� is indeed valid. We now turn
round and use �51� to predict new results for the mid-band states of GAL potentials with half-
nteger values of a in case b , f ,g take arbitrary values. As an illustration, we predict that the
otential �1/2 ,b , f ,g�, where b , f ,g are arbitrary numbers must have a QES state at energy

E = �b + 1/2�2 + �f + 1/2�2m , �57�

hile the potential �3/2 ,b , f ,g� with b , f ,g being arbitrary numbers must have two QES states
ith energies

E = ��b + 1/2�2 + 1� + �1 + �f + 1/2�2�m

± 2���b + 1/2� + �f + 1/2�m�2 − �b + f + g + 3/2��b + f − g + 1/2�m . �58�

Perhaps some clarification is required as to when the QES state is a band edge and when it is
mid-band state. We believe that only those states correspond to band edges for which a+b+ f
g �or any other combination obtained by changing one or more of these parameters to −a−1,

−b−1,−f −1,−g−1, respectively� is equal to an even integer �including zero�. All other QES
states should correspond to mid-band states. We thus believe that the QES energy values as given
above for the potentials �1/2 ,b , f ,g� and �3/2 ,b , f ,g� with arbitrary b , f ,g are in most cases the
energies for the mid-band states of these potentials. In Sec. VI we shall obtain the QES eigenstates
corresponding to some of these QES eigenvalues by using the connection of the GAL potential
problem and Heun’s equation.

We can also predict the QES energy values when a=5/2 and b , f ,g are arbitrary numbers, by
computing the band edges of either of the two potentials given in �51�. In this way, we predict that
the mid-band energy values for the three QES states of the GAL potential �5/2 ,b , f ,g� are
solutions of the cubic equation

r3 + 2�1 + 6b + �1 + 6f�m�r2 + 4�2�4b2 − 1� + 2�4f2 − 1�m2 + �4b2 + 4f2 − 4g2 + 24bf + 8b + 8f

− 2g + 3�m�r + 8m�2b + 1 + �2f + 1�m��4�b + f�2 − �2g + 1�2� = 0, �59�

here r=−E+ �3/2−b�2+ �3/2− f�2m. For the special cases �i� b= f =g=0 as well as �ii� b=1, f
g=0, it is easily checked that Eq. �59� agrees with well-known results,16 thereby providing a
owerful check on our calculations. Generalization to higher half-integer values is straightforward
in principle� and it is easy to see that energy values for a+1/2 QES mid-band states can be
redicted �at least in principle� when b , f ,g are arbitrary numbers and a is a half-integer.

. a ,b=half-integers

Let us now discuss the case when both a and b are half-integers while f and g are arbitrary
umbers using our conjecture that Eqs. �6� and �7� are both simultaneously valid. In particular, for

1 1
=k+ 2, b= l+ 2 while f ,g are any numbers, we assert that the three potentials
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	a = k +
1

2
,b = l +

1

2
, f ,g


� 	 k + l + f + g + 2

2
,
k + l − f − g

2
,
k + f − l − g − 1

2
,
k + g − l − f − 1

2



� 	 k + l + f − g + 1

2
,
k + l + g − f + 1

2
,
k + f + g − l

2
,
l + f + g − k

2

 , �60�

ave the same k+ l+2 QES energy values. This means that the QES mid-band energy values of the
otential with a=k+1/2, b= l+1/2 are the same as the band edge eigenvalues of the two other
otentials in �60�. For these two potentials, we can obtain k+ l+2=a+b+1 QES states since, for

both of them, the sum of the four numbers characterizing the potentials is either 2k or 2l. This is
possible because the GAL potential �a ,b , f ,g� remains unchanged when any one �or more� of the
four parameters a ,b , f ,g changes to �−a−1,−b−1,−f −1,−g−1�, respectively.

As an illustration, consider the potential �3/2 ,1 /2 , f ,g� with f ,g being arbitrary numbers. It
is then easily shown that this potential must have three QES mid-band states at

E1 = 4 + �g + 1/2�2m , �61�

E2,3 = 2 + ��f + 1/2�2 + 1�m ± ��2 − �2f + 1�m�2 + ��2g + 1�2 − �2f − 1�2m� . �62�

he point is, from Eq. �60� it follows that the potential �3/2 ,1 /2 , f ,g� has the same QES mid-
and states as the potentials

	3 + f + g

2
,
1 − f − g

2
,
f − g

2
,
g − f

2

 and 	2 + f − g

2
,
2 + g − f

2
,
1 + f + g

2
,−

1 + f + g

2

 .

ow, using Table 4 of paper I, it is easily shown that these potentials indeed have these three QES
igenvalues. Further, corresponding to the eigenvalue E1 in Eq. �61� the corresponding eigenfunc-
ions for these two potentials, respectively, are

dn�g+f−1�/2�x�cn�2+f−g�/2�x�sn�2+g−f�/2�x�, dn�f−2−g�/2�x�cn�3+f+g�/2�x�sn�1−f−g�/2�x� . �63�

he eigenfunctions corresponding to the eigenvalues E2,3 in Eq. �62� can similarly be written
own using Table 4 of paper I.

Note that out of the k+ l+2 QES states, the energies for the k+1 states can also be obtained by
onsidering the previous case of a=k+1/2 and b , f ,g arbitrary and putting b= l+1/2 at the end of
he calculation. As an illustration, consider the case �3/2 ,b , f ,g� where b is any arbitrary number.

As shown in the last section, there are two QES energies given by Eq. �58�. On putting b=1/2 we
find that the two QES energy values of the potential �3/2 ,1 /2 , f ,g� are precisely as given by Eq.
�62�. For the special case f =g=0, these eigenvalues agree with well-known results for the AL
potential.16 Similarly, consider the case �5/2 ,b, 0, 0�. As shown in Sec. IV A, there are three QES
nergy values as given by Eq. �59�. On putting b=1/2, it is easily seen that the three eigenvalues
re E= �1+9m /4� , �1+25m /4� , �9+m /4�, in agreement with the eigenvalues obtained by us
reviously.16

. a ,b , f=half-integers

We shall now discuss the case when three out of the four parameters �say a ,b , f� are half-
ntegers while g is any number �not a half-integer�, and obtain the energies of the QES mid-band
tates. Our argument is again based on the assertion that relations �6� and �7� are simultaneously

1 1 1
alid. In particular, we assert that for a=k+ 2, b= l+ 2, f =n+ 2 the three potentials
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	a = k +
1

2
,b = l +

1

2
, f = n +

1

2
,g


� 	2�k + l + n + g� + 5

4
,
2�k + l − n − g� − 1

4
,
2�k + n − l − g� − 1

4
,
2�l + n − k − g� − 1

4



� 	2�k + l + n − g� + 3

4
,
2�k + l + g − n� + 1

4
,
2�k + n + g − l� + 1

4
,
2�l + n + g − k� + 1

4



�64�

ave identical k+ l+n+3 QES energy values. What is being asserted here is that the k+ l+n+3
ES mid-band energies of the potential with half-integer values of a ,b , f and arbitrary g are the

ame as the band edge energy eigenvalues of the two other potentials in �64�. This happens
ecause for arbitrary values of g, for the two potentials

	2�k + l + n + g� + 5

4
,
2�k + l − n − g� − 1

4
,
2�k + n − l − g� − 1

4
,
2�l + n − k − g� − 1

4

 , �65�

	2�k + l + n − g� + 3

4
,
2�k + l + g − n� + 1

4
,
2�k + n + g − l� + 1

4
,
2�l + n + g − k� + 1

4

 , �66�

e can always obtain k+ l+n+3=a+b+ f +3/2 QES band edges, since for both potentials the sum
f the four numbers characterizing the potentials is either 2k or 2l or 2n. This is possible because
he GAL potential �a ,b , f ,g� remains unchanged when any one �or more� of the four parameters
,b , f ,g change to −a−1,−b−1,−f −1,−g−1, respectively. Thus we conjecture that the potential

�k+1/2 , l+1/2 ,n+1/2 ,g�, for arbitrary g has k+ l+n+3 QES mid-band states. As an illustration,
consider the case k= l=n=0 with g arbitrary. We assert that the potential � 1

2 , 1
2 , 1

2 ,g� must have
hree QES states, being a partner of the potentials

	2g + 5

4
,−

�2g + 1�
4

,−
�2g + 1�

4
,−

�2g + 1�
4



nd

	3 − 2g

4
,
�2g + 1�

4
,
�2g + 1�

4
,
�2g + 1�

4

 .

Using Table 4 of paper I it is easily checked that these two potentials have three QES energy
igenstates which are:
i� E=1+m with the two corresponding eigenfunctions respectively being

� = �cn�x�dn�x���2g+1�/4sn�3−2g�/4�x�, � = �cn�x�dn�x��−�2g+1�/4sn�2g+5�/4�x� . �67�

ii� E=1+ �g+ 1
2

�2m with the two corresponding eigenfunctions being

� = �sn�x�dn�x���2g+1�/4cn�3−2g�/4�x�, � = �sn�x�dn�x��−�2g+1�/4cn�2g+5�/4�x� . �68�

iii� E= �g+ 1
2

�2+m with the two corresponding eigenfunctions being

� = �sn�x�cn�x���2g+1�/4dn�3−2g�/4�x�, � = �sn�x�cn�x��−�2g+1�/4dn�2g+5�/4�x� . �69�

We now make a number of predictions for the energy eigenvalues of the mid-band states for
AL potentials of the form �k+1/2 , l+1/2 ,n+1/2 ,g�.

1. We predict that the potential �1/2 ,1 /2 ,1 /2 ,g� has three QES mid-band states with energy
alues

2 2
E1 = �1 + m�, E2 = 1 + �g + 1/2� m, E3 = �g + 1/2� + m . �70�

                                                                                                            



w
a
t
p

o
=

D

t
W

1

t
T
t
n
G
a

�

062103-16 A. Khare and U. Sukhatme J. Math. Phys. 47, 062103 �2006�

                        
2. The potential �3/2 ,1 /2 ,1 /2 ,g� has four QES mid-band states with energy values

E1 = �4 + m�, E2 = �g + 1/2�2 + 4m, E3,4 = 2�1 + m� ± �4�1 − m�2 + �2g + 1�2m . �71�

3. The potential �3/2 ,3 /2 ,1 /2 ,g� has five QES mid-band states with energy values

E1 = �g + 1/2�2 + 4m, E2,3 = 5 + 2m ± �4�2 − m�2 + �2g + 1�2m − 4m ,

�72�
E4,5 = 5 + ��g + 1/2�2 + 1�m ± ��4 − �2g + 1�m�2 − �2g − 3�2m + 4m .

4. The potential �3/2 ,3 /2 ,3 /2 ,g� has six QES mid-band states with energy values

E1,2 = �5 + m� ± �16�1 − m�2 + �2g + 1�2m ,

E3,4 = 5 + ��g + 1/2�2 + 1�m ± �16 − �2g + 1�2m�1 − m� ,

E5,6 = ��g + 1/2�2 + 1� + 5m ± �16m2 + �2g + 1�2�1 − m� . �73�

5. One can readily obtain some QES mid-band energy values when �i� k is an arbitrary integer
hile l and/or n are either 0 or 1; �ii� k , l are arbitrary integers with n=0 or 1 and g being any

rbitrary number. It would be nice to prove �or disprove� these conjectures and more importantly,
ry to obtain the corresponding energy eigenfunctions. We shall have something to say about this
oint when we discuss the implications of these results in the context of Heun’s equation.

6. Note that out of the k+ l+n+3 QES states, the energy values for k+ l+2 states can also be
btained by considering the previous case �a=k+1/2, b= l+1/2 , f , g=arbitrary� and putting f
n+1/2 at the end of the calculation. As an illustration, consider the case �3/2 ,1 /2 , f ,g� where

f ,g are arbitrary numbers. As shown in Sec. IV B, there are three QES energy values and they are
given by Eqs. �61� and �62�. On putting f =1/2 in these equations, we find that three �out of four�
QES eigenvalues of �3/2 ,1 /2 ,1 /2 ,g� as given by Eq. �72� are correctly obtained.

. a ,b , f ,g=half-integers

Finally, let us consider the case when all four parameters are half-integers. The potential is of
he form �k+1/2 , l+1/2 ,n+1/2 ,p+1/2�, where k , l ,n ,p are integers and we take k� l�n�p.

e shall discuss the two cases when the sum k+ l+n+p is an even or an odd integer separately.

. k+ l+n+p=even-integer

As shown in paper I, for the GAL potential �2�, QES energies are obtained when the sum of
he four parameters is an even integer including zero. In this case, as already shown by
akemura,15 both the relations �6� and �7� are simultaneously valid. We would like to assert here

hat in this case, in general there should be k+n+ l+p+4 QES states, since the sum of the four
umbers characterizing the potentials is either 2k or 2l or 2n or 2p. This is possible because the
AL potential �a ,b , f ,g� remains unchanged when any one �or more� of the four parameters
,b , f ,g change to −a−1,−b−1,−f −1,−g−1, respectively. Unfortunately, in the several specific

cases that we have examined, we find that some of the eigenvalues simply get repeated. Thus the
true number of QES states may be much less than k+ l+n+p+4. For example, consider the case
of �5/2, 1, 2, 1 /2 ,1 /2�. Using Eqs. �6� and �7� it follows that this potential must have the same
QES eigenvalues as the potential �3/2 ,3 /2 ,3 /2 ,−1/2�. While naively we expect six QES states
for these potentials, we only find three QES levels. The three QES energy eigenstates for the two
potentials are:
�i� E=1+m with the two corresponding eigenfunctions being

� = �cn�x�dn�x��−3/2sn1/2�x�, � = �cn�x�dn�x��3/2sn−1/2�x� . �74�
ii� E=9+m with the two corresponding eigenfunctions being
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� = dn−3/2�x�cn5/2�x�sn1/2�x�, � = �sn�x�cn�x��3/2dn−1/2�x� . �75�

iii� E=1+9m with the two corresponding eigenfunctions being

� = dn5/2�x�cn−3/2�x�sn1/2�x�, � = �sn�x�dn�x��3/2cn−1/2�x� . �76�

imilarly, for the potential �9/2 ,1 /2 ,1 /2 ,1 /2�, while naively we expect eight QES states, we
nly find four QES levels at E= �1+m�, �1+25m�, �25+m�, 9�1+m�.

. k+ l+n+p=odd integer

Let us now discuss perhaps the most intriguing case when all four parameters are half-integers
nd their sum is an odd integer. While it is clear from paper I that no QES band edges can be
btained when k+ l+n+p is an odd integer, it is not obvious whether mid-band states can be
btained in this case. In fact we shall now obtain energy values for several QES mid-band states
or these potentials. As argued in Sec. I, while Takemura has shown that relations �6� or �7� are
alid when a+b+ f +g is an even or an odd integer, respectively �and all are integers�, we con-
ecture that irrespective of whether a+b+ f +g is an odd or an even integer, both relations are

always valid. Using Eqs. �6� and �7�, it then follows that irrespective of whether a+b+ f +g is an
even or an odd integer, they always have a partner potential of the form �k+1/2 , l+1/2 ,n
+1/2 ,p+1/2� where k , l ,n ,p are all integers and their sum is an odd integer. We thus conjecture
that when a+b+ f +g is an even integer, then the QES mid-band energy values of the potential
��a+b+ f +g+1� /2, �a+b− f −g−1� /2, �a+ f −b−g−1� /2, �a+g−b− f −1� /2� are the same as the
band edge eigenvalues of the potential �a ,b , f ,g�. Similarly, when a+b+ f +g is an odd integer,
then we conjecture that the QES mid-band energy values of the potential ��a+b+ f −g� /2, �a+b
+g− f� /2, �a+ f +g−b� /2, �b+ f +g−a� /2� are the same as the band edge eigenvalues of the
potential �a ,b , f ,g�. This is rather remarkable. Since the band edges of the GAL potentials
a ,b , f ,g� with integer a ,b , f ,g are all known �at least in principle�, hence one has a prediction for
+ l+n+p+4 QES mid-band states of the GAL potentials of the type �k+1/2 , l+1/2 ,n+1/2 ,p

+1/2� when k+ l+n+p is an odd integer. To be precise, we predict that the potential �k+1/2 , l
+1/2 ,n+1/2 ,p+1/2� has k+ l+n+p+4 QES mid-band states in case k+ l+n+p is an odd integer
and these eigenvalues are identical to the band edges of the potential ��k+ l+n+p+3� /2, �k+ l
−n−p−1� /2, �k+n− l−p−1� /2, �k+p− l−n−1� /2�. As an illustration, knowing the band edges of
the Lamé potential 2msn2�x� we predict that the three QES mid-band state energy values of the
otential �1/2 ,1 /2 ,1 /2 ,−1/2� must be at E=m ,1 ,1+m. Similarly, we predict that the five mid-
and QES energies of the potential �3/2 ,1 /2 ,1 /2 ,1 /2� are at

E2 = 1 + m, E3 = �1 + 4m�, E4 = �4 + m�, E1,5 = 2�1 + m� ± 2�1 − m + m2. �77�

The validity of our conjecture and in a way the consistency of our whole approach can be
hecked by extrapolating the results obtained in the previous subsection. In particular, in the last
ubsection we have discussed the case when the potential is of the form �k+1/2 , l+1/2 ,n
1/2 ,g� where g is any arbitrary number and we have seen that in that case one obtains energies

or k+ l+n+3 QES mid-band states. On choosing g=p+1/2 and choosing k , l ,n ,p such that their
sum is an odd integer, we have verified in many cases the validity of our conjectures.

We thus predict that the potentials �3/2 ,1 /2 ,1 /2 ,1 /2�, �5/2 ,1 /2 ,1 /2 ,−1/2� and
�3/2 ,3 /2 ,1 /2 ,−1/2� have exactly the same �five� QES mid-band energies as the band edge
energy eigenvalues of the potentials �2, 0, 0, 0�, �2, 1, 1, 0�, �2, 1, 0, 0�, respectively. It is worth
observing that there are exactly three ways of obtaining k+ l+n+p=1 given that k� l�n�p and
that while k , l ,n are non-negative integers, p is �−1. It may be noted here that in case n is also −1
then the corresponding partner potentials as given by Eqs. �6� and �7� are potentials of the type
a ,a ,b .b� and similarly if both n= l=−1 then the partner potentials are of type �a ,a ,a ,a� which,
s explained in Sec. II, are not included in our analysis. Thus, put another way, the problem of
nding the number of independent potentials with say a band gaps reduces to finding four integers

, l ,n ,p with k� l�n�p �with n�0,p�−1� such that their sum equals 2a−3.

                                                                                                            



V

a
w

r
t

a
t
r
e

a
n
a

V

h
H
v
s
K

w
b

T

062103-18 A. Khare and U. Sukhatme J. Math. Phys. 47, 062103 �2006�

                        
. GAL POTENTIALS †a ,b , f ,g=ARBITRARY NUMBERS‡

So far, we have discussed the cases when the four parameters a ,b , f ,g take integer values or
t least one of them is half-integer. Now we want to extend this discussion to the general case
hen a ,b , f ,g take arbitrary values.

As seen in Sec. IV, when either one, two, or three of the parameters are half-integer while the
emaining parameters are arbitrary, then clearly the corresponding partners indeed correspond to
he case where a ,b , f ,g are arbitrary numbers. We therefore conjecture that the relations �6� and

�7� are valid even when the four parameters a ,b , f ,g take any arbitrary values, the only restriction
being that either a+b+ f +g or any other combination obtained by replacing one or more of these
parameters by −a−1,−b−1,−f −1,−g−1, respectively, is a non-negative even integer. Further, in
that case the two partner potentials have the same band-edge eigenvalues as the QES mid-band
energies of the potentials where either one, two, or three of the parameters are half-integers.

A few illustrative examples are in order here. Consider the potential �4/5 ,2 /5 ,2 /5 ,2 /5�. In
this case while a+b+ f +g=2, no other combination characterizing relations �38�–�46� gives an
even integer. Using Eq. �6� we find that this potential has a GAL partner �3/5 ,3 /5 ,3 /5 ,1 /5�.
Using Table 4 of paper I it is easily shown that both these potentials have two �identical� QES
band edge energy eigenvalues

E = 26
25�1 + m� ± 2

5
�1 − m + m2. �78�

If instead we consider the potential �17/5 ,8 /5 ,7 /5 ,6 /5�, then only a+ f −b−g is an integer
nd the corresponding GAL partner potential is �13/5 ,12/5 ,11/5 ,2 /5� and both have one �iden-
ical� QES energy. Of course it can happen that a ,b , f ,g are such that more than one of the
elations �37�–�46� are satisfied. In that case one has more QES band edge eigenvalues. For
xample, if the potential parameters are such that a+b−g− f −1,a+ f −b−g−1 as well as a+g

− f −b−1 are non-negative integers, then using Eqs. �38�–�40� it is easily seen that the number of
QES energy eigenvalues is equal to �3a−b− f −g� /2. One illustration of this is the potential
�11/5 ,1 /5 ,1 /5 ,1 /5� which has three QES energies �1+m�, 144/25+m, 1+ �144/25�m. We might
dd here that the above-presented discussion is valid even if the numbers a ,b , f ,g are irrational
umbers but such that a+b+ f +g or any other combination obtained by replacing one or more of
,b , f ,g to −a−1,−b−1,−f −1,−g−1, respectively, is an even integer �including zero�.

We would like to restate here that when all four parameters a ,b , f ,g are integers, one has a
finite number of band gaps. In all other cases one expects to have an infinite number of bands and
band gaps out of which only a few are QES states.

I. IMPLICATIONS FOR HEUN’S EQUATION

Heun’s equation, a second-order linear differential equation with four regular singular points
as been extensively discussed in the mathematics literature.20–22 The intimate connection between
eun’s equation and GAL potentials is well known.9 In recent years, this equation has also proven
ery useful in the context of a number of physical problems, like quasi-exactly solvable systems,23

phaleron stability,24 Calogero-Sutherland models,25 higher dimensional correlated systems,26

err-de Sitter black holes,27 and finite lattice Bethe ansatz systems.28

The canonical form of Heun’s equation is given by20

	 d2

dx2 + ��

x
+

�

x − 1
+

�

x − c
� d

dx
+

��x − q

x�x − 1��x − c�
G�x� = 0, �79�

here � ,� ,� ,� ,� ,q ,c are parameters, except that c�0,1 and the first five parameters are related
y

� + � + � = � + � + 1. �80�

he four regular singular points of Eq. �79� are located at x=0,1 ,c and the point at infinity.
2 20
If we make the transformation x=sn �y ,m�, then Heun’s equation takes the form
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F��y� + 	�1 − 2��m
sn�y,m�cn�y,m�

dn�y,m�
+ �1 − 2��

sn�y,m�dn�y,m�
cn�y,m�

+ �2� − 1�
cn�y,m�dn�y,m�

sn�y,m� 
F��y�

− �4mq − 4��msn2�y,m��F�y� = 0, �81�

here c=1/m, G�x��F�y�. The periodic solutions of Eq. �81� correspond to the polynomial
olutions of Eq. �79� while the quasiperiodic solutions correspond to nonpolynomial solutions of
79�.

The interesting point is that after a transformation, the Schrödinger equation �9� for the GAL
otential �2� is in fact Heun’s Eq. �81�. In particular, let us start from the Schrödinger equation �9�
or the GAL potential �2�. On substituting

��y� = dn−b�y�cn−f�y�sn−g�y���y� , �82�

ne can show that ��y� satisfies the differential equation

���y� + 2	mb
sn�y,m�cn�y,m�

dn�y,m�
+ f

sn�y,m�dn�y,m�
cn�y,m�

− g
cn�y,m�dn�y,m�

sn�y,m� 
���y�

− �R − Qmsn2�y,m����y� = 0, �83�

here

R = − E + m�g + b�2 + �f + g�2, Q = �b + f + g��b + f + g − 1� − a�a + 1� . �84�

hus once we obtain solutions of the Schrödinger equation for the GAL potential �2�, then we can
mmediately write the solutions for the periodic form of Heun’s Eq. �81� and the solutions of the
riginal Heun’s Eq. �79� with the identification

� = 1
2 − g, � = 1

2 − f , � = 1
2 − b ,

�85�
� + � = 1

2 − �b + f + g�, 4�� = Q, 4mq = R,F�y� � ��y� .

We now make a crucial observation. From Eq. �84�, it follows that if under any transforma-
ion, the parameters b1 , f1 ,g1 change to b2 , f2 ,g2 and the energy E remains invariant, then the
orresponding values of R are related by

R1 − m�b1 + g1�2 − �f1 + g1�2 = R2 − m�b2 + g2�2 − �f2 + g2�2. �86�

aking use of Eq. �86� and the connection between GAL potentials as given by Eqs. �6� and �7�,
e can obtain interesting relations for Heun’s equation. Using the fact that the two GAL potentials
iven by Eq. �6� have the same band edge energy eigenvalues and the eigenfunctions for both the
artners as are given by Eqs. �37�–�41�, one can obtain the connection between the two corre-
ponding solutions of Heun’s equation. For example, consider the solution �37� and the corre-
ponding solution of the GAL partner obtained by the above-noted substitution. Using Eq. �86� it
hen follows that corresponding to a given periodic �i.e., polynomial� solution of Heun’s equation
ith parameter set ��, �, �, �, �, q� there always exists another periodic solution with the same q
rovided the other parameters change as follows:

� → �, � → �, � → �, � → 1 + � − �, � → 1 + � − � . �87�

imilarly, on considering the other three periodic solutions as given by Eqs. �38�–�40� and the
orresponding solutions of the GAL partner potential with the same energy, we find that corre-
ponding to a given periodic solution of Heun’s equation, there exist the following three �periodic�
olutions with the change of parameters given by �note that R=4mq and c=1/m�
� → 1 + � − �, � → �, � → �, � → 1 + � − �, � → �, q → q − ��� − �� , �88�
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� → �, � → �, � → �, � → 1 + � − �, � → 1 + � − �, q → q − ��� − ��c , �89�

� → 1 + � − �, � → 1 + � − �, � → �, � → 1 + � − �, � → 1 + � − �,

q → q + ���� − �� + �� − ��c� . �90�

Thus given a periodic solution of Heun’s equation, one immediately has four other periodic
olutions as given by Eqs. �87�–�90�. We have checked that if instead we consider the two partner
AL potentials given by Eq. �7� and consider the corresponding eigenfunctions given by Eqs.

42�–�46� �and those of the corresponding GAL partner potentials with the same energy�, then we
gain obtain the same relations �Eqs. �87�–�90��. As an additional check, we have looked at the
artner GAL potentials as given by Eqs. �51�, �65�, �66�, �60�, and �8� and in all these cases we get
ack the relations �87�–�90�, which to the best of our knowledge, are new results. Several com-
ents are in order:

1. In Sec. IV we have shown that the QES mid-band energy values of the GAL potential �a
k+1/2 ,b , f ,g� are the same as the QES energies of the two GAL potentials given in �51�. What
oes this imply in the context of Heun’s equation? It is easily shown that as a consequence of the
iscussion in Sec. IV, ven a periodic solution of Heun’s equation with the set of parameters �, �,
, �, �, q, one has a corresponding quasiperiodic solution with changed parameters:

� → 2 − �, � → 1 + � − �, � → 1 + � − �, � → 1 + � − �, � → 1 + � − � ,

�91�
q → q + �� − 1���1 + � − �� + �1 + � − ��c� .

n additional check on this relation is obtained by using the connection between the mid-band
tates of the GAL potentials �a=k+1/2, b= l+1/2, f , g� and �a=k+1/2, b= l+1/2, f =n+1/2, g�

and the QES energies of the potentials �60�, �65�, and �66� and we again obtain the same connec-
tion between the periodic and quasiperiodic solutions of Heun’s equation.

2. Using the results in Sec. IV regarding the case when three of the four parameters a, b, f , g
are half-integers, we also obtain two more relations connecting the periodic and quasiperiodic
solutions of Heun’s equation. In particular, given a periodic solution of Heun’s equation with the
set of parameters �, �, �, �, �, q, it implies the following two quasiperiodic solutions of Heun’s
quation:

� → �, � → 1 + � − �, � → �, � → 1 + � − �, � → 1 + � − �, q → q + ��� − �� ,

�92�

� → �, � → 1 + � − �, � → �, � → 1 + � − �, � → 1 + � − �, q → q + 4��� − ��c .

�93�

3. Needless to say that if instead, a quasiperiodic solution of Heun’s equation is given, then by
nverting Eqs. �91�–�93�, we immediately obtain three periodic solutions of Heun’s equation.

So far we have discussed how the connections between different GAL potentials can help in
nding new solutions of Heun’s equation. It may happen that in some cases it may be simpler to
olve the algebraic Heun’s equation �79� rather than its periodic variant. We now show that this is
ndeed so in the case of several quasiperiodic mid-band eigenfunctions. Consider for example the
AL potentials when either b or f or g is 1 /2 while the other three parameters are arbitrary. Using

rguments of Sec. IV, we can easily obtain the eigenvalues for mid-band states for these potentials.
e shall now show that using these eigenvalues we can easily solve the algebraic form of Heun’s

quation �79� and hence using the connection as explained earlier, obtain the eigenfunctions for
he mid-band states of these GAL potentials.

Consider the GAL potential �a ,1 /2 , f ,g� where a, f , g are arbitrary numbers, Note that using

he relations �6� and �7� and Table 4 of I, it is easily shown that the QES mid-band eigenvalue of
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he GAL potential �a ,1 /2 , f ,g� is at E= �a+1/2�2+m�g+1/2�2. On using the connection formulas
84� and �85� it is easily shown that the corresponding parameters for Heun’s equation �79� are

� = 1/2 − g, � = 1/2 − f , � = 0, � = �a − f − g + 1/2�/2,

� = − �a + f + g + 1/2�/2, q = �a + f + g + 1/2��f + g − a − 1/2��c/4� . �94�

Remarkably, for these parameters, it is straightforward to obtain the solution of the algebraic
Heun’s equation �79� and show that

G�x� = F��a − f − g + 1/2�/2,− �a + f + g + 1/2�/2,1/2 − g;x� , �95�

where F�a ,b ,c ;x� is the hypergeometric function. The corresponding mid-band state eigenfunc-
tion for the GAL potential �a ,1 /2 , f ,g� is then immediately written down. We have verified that
this is indeed the correct eigenfunction in the following cases �i� a= f =g=0, �ii� a integral, f =g

0, �iii� a arbitrary while f , g are integral.
Similarly, for the GAL potential �a ,b ,1 /2 ,g�, with arbitrary a, b, g, the QES mid-band energy

igenvalue is E= �g+1/2�2+ �a+1/2�2m and proceeding as above, it is easily shown that the
olution of the algebraic Heun’s equation �79� is given by

G�x� = F��a − b − g + 1/2�/2,− �a + b + g + 1/2�/2,1/2 − g;mx� . �96�

Finally, for the GAL potential �a ,b , f ,1 /2�, with arbitrary a, b, f , the QES energy is E= �f
+1/2�2+ �b+1/2�2m and proceeding as above, it is easily shown that the solution of the algebraic

eun’s equation �79� is given by

G�x� = F��a − b − f + 1/2�/2,− �a + b + f + 1/2�/2,1/2 − b;�1 − mx�/�1 − m�� . �97�

On using the solutions �95�–�97� it follows that for the potential �a ,1 /2 ,1 /2 ,1 /2� one knows
three QES mid-band energy eigenstates. In the special case when a=2k+3/2 these eigenstates are
the mid-band QES eigenstates for the potential �2k+3/2 ,1 /2 ,1 /2 ,1 /2� where the sum of the four
parameters characterizing the potential is an odd integer.

II. SUMMARY AND OPEN QUESTIONS

In this paper, we have addressed many issues regarding GAL potentials with a number of
hoices for the parameters a, b, f , g. The most interesting case is when all four parameters are
ntegers. This is a potential with a finite number of band gaps. We have been able to count the
umber of independent GAL potentials with a given number of band gaps and completely specify
he nature of the band edge eigenfunctions. We have introduced the new concept of self-dual
otentials which are not self-isospectral. We are also able to specify how many of the independent
otentials with a given number of band gaps have supersymmetric partner potentials and how
any have nonsupersymmetric partner potentials. Finally, using the results for the GAL potentials,
e have shown that given any one periodic solution of Heun’s equation, one can obtain four more
eriodic solutions.

We have also discussed several issues related with GAL potentials when one or more of the
arameters take half-integer values. In particular, while nothing is known so far about GAL
otentials when three of the parameters take half-integer values, we have been able to obtain the
ES energy values for several of these potentials. Further, using these eigenvalues and the alge-
raic form of Heun’s equation, we have also been able to obtain the corresponding eigenfunctions
or potentials of the form �a ,1 /2 , f ,g�, �a ,b ,1 /2 ,g�, �a ,b , f ,1 /2� where a, b, f , g are arbitrary

numbers. The key point to make while addressing these questions is that the relations �6� and �7�
are not only valid when the four parameters a, b, f , g are integers but also when one or more of
these parameters take half-integer values. This in turn immediately implies that these relations are
also valid when the four parameters a, b, f , g take arbitrary values so long as either their sum

a+b+ f +g �or one or more of the combinations obtained by changing one or more of the param-
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ters to −a−1, −b−1, −f −1, −g−1, respectively� is a nonnegative even integer. We have also
onjectured that both relations �6� and �7� are simultaneously valid when a, b, f , g are integers and
hat the energy eigenvalues for the band edges of these potentials are the same as mid-band QES
nergy values of GAL potentials in which all four parameters are half-integers and their sum is an
dd integer. Finally, using these results we have also shown that given a periodic solution of
eun’s equation, one can immediately obtain three quasiperiodic solutions of the same equation.

This work raises several issues which we have not been able to address satisfactorily:

. Can one explicitly write down all seven KdV equations of seventh order?

. What are the QES eigenfunctions for GAL potentials when one or more of the parameters is
half-integral ��3/2� while the remaining parameters are arbitrary?

. The problem when two of the four parameters are half-integers needs further study. In
particular, it is still not clear how many QES energy eigenvalues can be obtained, in general,
in that case.

. When the sum of all the four parameters is an even integer, it is clear that the QES states
correspond to band edges. However, a complete understanding is still lacking regarding the
number of QES states for various values of a, b, f , g. Further, when the sum of the four
parameters is an odd integer, the form of the QES eigenfunctions is not clear when the
half-integer parameters are 
1/2.
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We show that a POV measure F on the Borel �-algebra of the reals B�R� is
commutative if and only if there exists a PV measure E on B�R� and, for every �
in the spectrum of E, a probability measure ��·���� on B�R� such that the effect
F��� coincides with ���A�, where A is the self-adjoint operator associated to E.
The relevance of this result to the theory of the sharp reconstruction is analyzed.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2206879�

. INTRODUCTION

POV �positive operator valued� measures have been used to define generalized observables in
uantum mechanics,1–8 and are a consequence of the probabilistic structure of quantum mechan-
cs. Their introduction can also be justified by the analysis of some ideal experiments which show
hat there are physical events which cannot be described by projection operators.6 POV measures
ere also used to generalize Mackey’s imprimitivity theorem8 and to study the problem of the

oint measurement of incompatible observables.9,10

As shown in Refs. 1–3 there exists a one-to-one correspondence between POV measures and
ffine maps S��S

F�·� from the set of states S into the set of probability measures on B�R�.
oreover, this correspondence is determined by the relation �S

F���=Tr�SF����. This allows one
o interpret the number

�S
F��� = Tr�SF����

s the probability that the outcomes of a measurement of the observable F �corresponding to a
OV measure F� is in � when the physical system is in the state S�S. We recall that an analogous
elation holds for standard observables E :B�R�→E�H�, that is:

�S
E��� = Tr�SE���� .

herefore POV measures are a generalization of the standard quantum observables and the prob-
em of giving them a clear physical meaning should be dealt with. In order to address this problem
everal characterizations of commutative POV measures were found.11–16

In Ref. 13 it is proved that for each commutative POV measure F, there exists a unique Baire
robability measure � :P�R ,A�F��→ �0,1� �defined on the space of all the PV measures with
alues in the commutative von Neumann algebra A�F� generated by the set �F������B�R�� such
hat F���=�P�X,A�F��E���d��E�.

Naimark theorem16 establishes that every POV measure F in a Hilbert space H can be dilated
o a PV measure E+ in an extended Hilbert space H+ such that F is the projection of E+ on H.

In Refs. 11 and 12 it is shown that: if F :B�R�→F�H� is a commutative POV measure, then
here exists a unique PV measure E :PR→E�H�, where PR is the space of the probability measures
n B�R�, such that

�
Electronic mail: rbeneduci@unical.it
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F��� = �
PR

p���E�dp� . �1�

Here we follow a different approach, which stems from Refs. 14 and 15. In these papers, the
utcomes of the measurement of a commutative POV measure are interpreted as deriving from a
tochastic diffusion of the outcomes of the measurement of a particular PV measure. The starting
oint of this approach is a theorem due to von Neumann, which states that for any given set �Fi�i�I

f commuting self-adjoint operators there exists a self-adjoint operator A and a family of measur-
ble functions f i��� such that f i�A�=Fi �see Theorem 1 below�. von Neumann’s theorem implies
hat a POV measure F is commutative if and only if there exists a self-adjoint operator A �corre-
ponding to a PV measure E� and a family of functions ������B�R� such that F���=���A�.

In Ref. 14, starting from a commutative POV measure with spectrum in �0, 1�, the authors
onstructed explicitly a self-adjoint operator A with spectrum ��A�� �0,1� and, for every set �
B��0,1��, a measurable function ����� :��A�→ �0,1� such that F���=���A�. Their construction

ses a procedure analogous to the one used by Riesz and Nagy to prove von Neumann’s theorem
see Ref. 21, Sec. 130�.

In Ref. 15 it was shown that, for every real number �, the application ��·���� :B��0,1��
�0,1�, corresponding to the family of functions ���������B��0,1��, defines an additive set func-

ion on a particular ring R�S� which generates B��0,1��.
This result suggests to interpret the outcomes of the measurement of F as deriving from a

andomization of the outcomes of the measurement of E. Indeed let us consider a pure state S
P�. From F���=���A� we get

�S
F��� =� w����	E��� − d�,����	2 =� w����d�S

E, �2�

here E is the PV measure corresponding to the operator A.
This relation shows that w���� could be interpreted, quoting from Ref. 15, “as the probability

hat the outcome � of E turns into an outcome in � for F.” The physical source of randomization
ould be the imprecision of the measuring apparatus, or some other cause.

The above interpretation is satisfactory if the application ��·���� is �-additive on B��0,1��.
owever, the problem of the �-additivity of ��·���� was left open by the authors.

In this paper we follow a novel approach and give a general geometrical characterization of
OV measures, without using constructive procedures. Specifically, we show that a POV measure
:B�R�→F�H� is commutative if and only if there exists a PV measure E :B�R�→E�H� �corre-

ponding to a self-adjoint operator A� and, for every ����A�, a probability measure ��·�
��� :B�R�→ �0,1� such that F���=���A� �see Theorem 2�. This result is founded on the ground

f von Neumann’s theorem. Its relevance to the interpretation of the commutative POV measures
roposed in Refs. 14 and 15 is that, repeating the reasoning used to get Eq. �2�, we get

�S
F��� =� �����d�S

E

o that the sharp reconstruction E and the POV measure F are related by a probability measure.
It is worth mentioning that this result is close to the one obtained by Holevo11,12 but, at

ariance with Theorem 2, the PV measure in �1� is not defined on B�R� but on the space of the
robability measures on B�R�. It would be interesting to check if there are relationships between
he two characterizations.

The paper is organized as follows. In Sec. II we give some basic definitions and state the
lassical von Neumann’s theorem. Then, in Sec. III, we prove the main result of the paper,
heorem 2. In Sec. IV we prove Proposition 2 which will be used in the last section where we
iscuss the relevance of Theorem 2 to the theory of the sharp reconstruction. In the appendices we

ive some technical results which are used in the paper.
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I. PRELIMINARIES

In this section we fix the basic notation and terminology, and state von Neumann’s theorem,
hich will be the starting point of the paper.

We denote by B�R� the Borel �-algebra of R, and by F�H� the space of bounded, positive
elf-adjoint operators acting on the Hilbert space H. A POV measure is defined as follows:

Definition 1: A POV (positive operator valued) measure is a mapping F :B�R�→F�H� such
hat:

. F���	0 for all ��B�R�;

. if ��n� is a countable family of disjoint sets in B�R� then

F
�
n=1




�n� = �
n=1




F��n� ,

where the series converges in the weak operator topology;
The POV measure is said to be normalized if one has also

. F�R�=1.
Definition 2: A PV (projection valued) measure is a normalized POV measure which is
orthogonal, that is, such that

. F��1�F��2�=0 if �1��2=0” .

If this is the case we have F���=F���2. Then, F��� is a projection operator for every �
B�R� and the PV measure is denoted by E :B�R�→E�H�, where E�H� is the space of all the

rojection operators of the Hilbert space H. We recall that to each PV measure it is possible to
ssociate a measure E���x ,x� for every x�H.

Definition 3: A POV measure F is said to be commutative if the following relations are valid:

�F��1�,F��2�� = 0; " �1,�2 � B�R� .

e recall that PV measures are also named sharp or standard observables and, by the spectral
heorem,17 they are in a one to one correspondence with the self-adjoint operators, while nonor-
hogonal normalized POV measures are also named unsharp observables.

In what follows we shall always refer to normalized POV measures defined on B�R�.
Next we proceed to define the spectrum of a POV measure.
Definition 4, see Ref. 18: Given a POV measure F we define the co-spectrum of F as the open

et

��F� = � ��:� is open, F��� = 0�

nd the spectrum ��F� of F as the complement of ��F�.
The spectrum of a POV measure is characterized by the following proposition:
Proposition 1: The spectrum ��F� of F is closed and coincides with the set ���R : "�

0,F���−� ,�+����0�.
Proof: Let us suppose ����F�. Then, ����F� and F����0 for every open set �. In par-

icular,

F��� − �,� + ��� � 0

or every �0. On the converse, let us suppose that � is so that F���−� ,�+����0 for every
0. For every open set � containing � it must exist a number �0 such that the open interval

�−� ,�+�� is contained in �. By items 1 and 2 of definition 1 we get

0 � F��� − �,� + ��� � F���
hen, ����F�, hence ����F�. �
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We shall use the term “measurable” for the Borel measurable functions and consider the class
��0,1�� of measurable functions defined on �0, 1� which are bounded or are equal almost

verywhere �a.e.�, with respect to a PV measure E, to a bounded measurable function. Thus
��0,1�� is the set of functions such that

E-ess sup
t��0,1�

�f�t�� = inf sup
E���=It��

�f�t�� � + 
 .

he norm in M��0,1�� is 	f	=E−ess supt��0,1��f�t��. Moreover we shall always consider equiva-
ence classes of measurable functions. We say that two functions f and g are equivalent if f =g a.e.
ith respect to a PV measure E, that is a.e. with respect to all the measures E���x ,x�, where x

uns through all the vectors of the space H.
As it is well known,17,22 if a measurable function f is defined on the spectrum ��A� of a

elf-adjoint operator A, one has f�A�=�f���E���−d� ,��� where E is the PV measure correspond-
ng to A.

We shall denote by 0 and 1 the null and the identity operators, respectively.
Theorem 1 (von Neumann19–21): For any family �Fi�i�I of self-adjoint operators acting on a

ilbert space H such that �Fi ,Fj�=0 for all i , j�I, there exist

) a bounded self-adjoint operator A;
) a family of measurable functions �f i :R→R�i�I such that for every i�I,

Fi = f i�A� = �
−





f i���E��� − d�,��� =�
−





f i���dE�

where E is the PV measure corresponding to A.

It follows that an unsharp observable F :B�R�→F�H� is commutative if and only if there
xist:14

• a sharp observable E :B�R�→E�H� (which corresponds to a self-adjoint operator 0�A
�1�,

• a family of set functions

��·����:B�R� → �0,1�, � � �����, � � ��A�

such that F���=���A�.

Indeed the family �F��� ,��B�R�� is a commutative family of bounded positive operators
nd von Neumann’s theorem can be applied. Conversely, if a self-adjoint operator A exists such
hat all the operators F��� are functions of A, then the family �F��� ,��B�R�� is commutative
see Ref. 19, theorem 2, Sec. 75�.

In what follows whenever a POV measure F, a self-adjoint operator A and an application

�·���� are such that F���=���A� we shall say that the triple �F ,A ,��·����� satisfies the thesis of
on Neumann’s theorem.

II. A CHARACTERIZATION OF COMMUTATIVE POV MEASURES

Let us consider a family of functions F= ������ : �0,1�→ �0,1����B�R� and the corresponding
amily of set functions FS= ���·���� :B�R�→ �0,1� ,����A�� and assume that the triple
F ,A ,��·����� satisfies the thesis of von Neumann’s theorem. The aim of the present section is to
how that the family of functions ������ : �0,1�→ �0,1����B�R� can always be chosen in such a
ay that the corresponding set functions ��·�����FS are probability measures.

Theorem 2 (Main result): A normalized POV measure F :B�R�→F�H� is commutative if
nd only if there exist an application ��·���� :B�R�→ �0,1� and a PV measure E :B�R�→E�H�

uch that:
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. the application ��·���� :B�R�→ �0,1� is a probability measure for every ����A�;

. F���=���A�=������E���−d� ,���,

here A is the self-adjoint operator associated to the PV measure E.
To prove this theorem we need two lemmas:
Lemma 1: For any commutative POV measure F, it is possible to find a couple �A ,��·�����

uch that the triple �F ,A ,��·����� satisfies the thesis of von Neumann theorem and ��·���� is
dditive on an appropriate ring which generates the Borel �-algebra B�R�.

Proof: Following Ref. 14 we shall consider, without loss of generality, POV measures with a
ounded spectrum contained in �0, 1� so that ��B��0,1�� �see Appendix A�. To prove the lemma
et us consider a family of set functions

��·����:B��0,1�� → �0,1�, � � �����, � � ��A�

uch that the triple �F ,A ,��·����� satisfies the thesis of von Neumann’s theorem. We have that

�0,1��A�=1. Moreover the function ��0,1����ª1 is such that ��0,1��A�=F��0,1�� so that we can
eplace ��0,1���� with ��0,1����.

We proceed by showing that it is possible to replace the functions ��0,1/2���� and ��1/2,1����
ith two measurable functions ��0,1/2���� and ��1/2,1���� such that:

� ��0,1/2����+��1/2,1����=��0,1���� for all �;
� ��0,1/2��A�=F��0,1 /2�� and ��1/2,1��A�=F��1/2 ,1��.

e have

� ��0,1����dE� = F��0,1�� = F��0,1/2�� + F��1/2,1��

=� ��0,1/2����dE� +� ��1/2,1����dE� =� ���0,1/2���� + ��1/2,1�����dE�

o that, by Ref. 22, Corollary 9 �see also Ref. 21, Chap. IX�,

��0,1/2���� + ��1/2,1���� = ��0,1���� a.e. with respect to E .

y setting

��1/2,1���� = ��0,1���� − ��0,1/2����

��0,1/2���� = ��0,1/2����

e get two measurable functions ��0,1/2���� and ��1/2,1���� such that items 1� and 2� are satisfied
nd which differ from functions ��0,1/2���� and ��1/2,1���� only in a set of zero E-measure.

We proceed by showing that it is possible to replace the functions ��0,1/4���� and ��1/4,1/2����
ith two measurable functions ��0,1/4���� and ��1/4,1/2���� such that:

1�� ��0,1/4����+��1/4,1/2����=��0,1/2���� for all �;
2�� ��0,1/4��A�=F��0,1 /4�� and ��1/4,1/2��A�=F��1/4 ,1 /2��.
We have
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� ��0,1/2����dE� = F��0,1/2�� = F��0,1/4�� + F��1/4,1/2��

=� ��0,1/4����dE� +� ��1/4,1/2����dE� =� ���0,1/4���� + ��1/4,1/2�����dE�,

o that

��0,1/4���� + ��1/4,1/2���� = ��0,1/2���� a.e. with respect to E .

Let us consider the set N� �0,1� such that ��0,1/4������0,1/2����. Since N is a null set, there

xists a Borel set �̄ such that N� �̄ and E��̄�=0. Now we define the function

�̄�0,1/4���� ª���0,1/4���� if � � �̄

0 if � � �̄ ,
�

hich is less than or equal to ��0,1/2����. Moreover �̄�0,1/4���� is measurable. Indeed by the mea-
urability of ��0,1/4���� we have that, for every x� �0,1�,

�� � �0,1���̄�0,1/4���� � x� = �� � �0,1� \ �̄���0,1/4���� � x� � �̄

= ��� � �0,1����0,1/4���� � x� � ��0,1� \ �̄�� � �̄ � B��0,1�� .

y setting

��0,1/4���� = �̄�0,1/4���� ,

��1/4,1/2���� = ��0,1/2���� − �̄�0,1/4���� ,

e get two functions such that items 1�� and 2�� are satisfied and which differ from the functions

�0,1/4���� and ��1/4,1/2���� only in a set of zero E-measure.
Analogously, starting from the functions ��1/2,3/4���� and ��3/4,1����, we can define two mea-

urable functions ��1/2,3/4���� and ��3/4,1���� such that
1�� ��1/2,3/4����+��3/4,1����=��1/2,1����;
2�� ��1/2,3/4��A�=F��1/2 ,3 /4��, and ��3/4,1��A�=F��3/4 ,1��.
Iterating the procedure we shall finally obtain a family of functions ������ : �0,1�

�0,1����S where S is the semi-ring:

S = ��0,1/2n−1�,�k/2n−1,k + 1/2n−1��,k = 1,2, . . . ,2n−1 − 1,n � N� .

oreover, for every given �, the set function ��·���� :S→ �0,1� is additive on the semi-ring S.
Now, for any �, it is possible to extend ��·���� :S→ �0,1� to the ring R�S� generated by S.

he extension ��·���� :R�S�→ �0,1� is an additive set function on R�S� such that ���A�=F���
see Ref. 24�. �

The following lemma concerns the definition and the monotonicity property of ��0,t���� as a
unction of t. In particular it will be proved that ��0,t���� is nondecreasing with respect to t and
uch that ��0,t��A�=F�0, t�.

In order to define ��0,t���� we use the fact that it is always possible to decompose �0, t� into
he union of a disjoint sequence of intervals from S.

Definition 5: For every t� �0,1� we define ��0,t����=� j=1

 ��j

��� where �� j :� j �S� j�N is a
ecomposition of the interval �0, t� with the following property: for every x� �0, t� there is a
losed interval �0,a�: a	x such that �0,a�=� j=1

n � j. The set of the decompositions so defined is

enoted by D.
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The series � j=1

 ��j

��� used to define the function ��0,t���� is convergent. Indeed for every p
N, � j=1

p � j � �0, t�� �0,1� and then, using the additivity of the measure on R�S�, � j=1
p ��j

���
��0,1�. Moreover, as shown in Appendix B, ��0,t���� is well defined.

Lemma 2. The set function ��0,t����, is nondecreasing with respect to t and ��0,t��A�
F��0, t��.

Proof. Let us consider the two intervals �0, t� and �0, t�� where t� t� and let us decompose
hem as ��k ;�k�S�k�N and ��k� ;�k��S�k�N, respectively. Following Definition 5 it is possible to
nd m�N so that

�0,t� � �0,b� = �
k=1

m

�k� � �0,t�� ,

ith �0,b��R�S�. We can write:

�0,t�� = ��
k=1

m

�k�� � � �
k=m+1




�k�� .

y the additivity of ��·���� on R�S� we get:

��0,t����� = �
k=1

m

��k�
��� + �

k=m+1




��k�
��� = ��0,b���� + �

k=m+1




��k�
��� 	 ��0,b���� .

sing again the additivity of the measure and the relation

�
k=1

p

�k � �
k=1




�k = �0,t� � �0,b�; " p � N ,

e finally have

���k=1
p �k���� � ��0,b����, " p � N ,

��0,b���� 	 ��0,t���� ,

hich ends the proof of the first part of the proposition. The second assertion is proved as follows:
��0, t��=F�� j� j�=� jF�� j�=� j ���j

���dE� and, by Theorem VII.2.d in Ref. 17, we get

F��0,t�� =� �
j

��j
���dE� = ��0,t��A� .

�

Now we are ready to prove the main theorem of this paper.
Proof of Theorem 2. Let �F ,A ,��·����� satisfy the thesis of von Neumann’s theorem. By

emma 1, the family of set functions ���·���� ,����A�� can be chosen in such a way that, for each
���A�, ��·���� is an additive set function. Moreover, Lemma 2 allows us to define a function

�0,t���� which is nondecreasing with respect to t and such that ��0,t��A�=F��0, t��.
Now, starting from �tª��0,t����, it is possible to define a distribution function �t��� continu-

us from the left as follows:

�t��� = ��t−��� if 0 � t � 1

0 if t � 0

1 if t  1,
�

here �t−���=limx→t−��0,t����.
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In its turn, for every �, starting from the left continuous function �t��� it is possible to define
he set function ��a,b����=�b−�a, �a ,b�� �−
 ,
� which can be extended to a �-additive prob-
bility measure �see Ref. 23, p. 97� ��·���� :B�R�→ �0,1� such that

����� = 0 if � � �0,1� = 0” .

e want to prove that:

�t�A� = F��0,1� � �− 
,t�� �3�

nd that the probability measure ��·���� :B��0,1��→ �0,1�, which is the restriction of ��·�
��� :B�R�→ �0,1� to B��0,1��, is such that

���A� = F���, � � B��0,1�� . �4�

irst we prove �3�. If t� �0,1�, we have:

�t�A� =� �t���dE� =� � lim
x→t−

�x����dE�.

otice that the integral exists thanks to the measurability of �t��� as a function of � �see Remark
below�. Let us consider a sequence �xn� such that xn→ t from the left. We have �t�A�

��limx→t−�x����dE�=��limn→
�xn
����dE�. By the continuity of F and theorem 11 in Ref. 18 we

et

�t�A� =� � lim
n→


�xn
����dE� = lim

n→

� �xn

���dE� = lim
n→


F��0,xn�� = F��0,t�� = F��0,1� � �− 
,t�� .

oreover, if t�0 then �t�A�=0=F�0”�=F��0,1�� �−
 , t��, while, if t1 then �t�A�=1
F��0,1��=F��0,1�� �−
 , t��.

It remains to prove that the probability measure ��·���� :B�R�→ �0,1� generated by �t��� is
uch that ���A�=F���, ��B��0,1��. Let us consider the POV measure F� :B�R�→F�H� such
hat F����=F��� �0,1��. Notice that F is the restriction of F� to B��0,1�� and F����=0 if
� �0,1�=0” .

As a consequence of �3�,

F���t, t̄�� = F���− 
, t̄�� − F���− 
,t�� = F��0,1� � �− 
, t̄�� − F��0,1� � �− 
,t��

= �t̄�A� − �t�A� = ��t,t̄��A�

o that F����=���A� for every set � in the ring P generated by sets of the kind �t , t̄�� �−
 ,
�.
oreover by the uniqueness of the extensions of F� :P→F�H� to the �-algebra B�R� �see Ref.

8, theorem 7�, it follows that the probability measure ��·���� :B�R�→ �0,1� generated by the
istribution function �t��� and the POV measure F� :B�R�→F�H� are such that F����=���A� for
very ��B�R�, hence ���A�=F��� for every ��B��0,1��. �

Remark 1: The argument used to prove Theorem 2, applies to every pair �B ,��·�
B ���� such that

he triple �F ,B ,��·�
B ���� satisfies the thesis of von Neumann’s theorem. Therefore we can state the

ollowing corollary:
Corollary 1: If the triple �F ,B ,��·�

B ���� satisfies the thesis of von Neumann theorem then there
xists a probability measure ��·�

B ���, equivalent to ��·�
B ��� �that is, for every ��B��0,1��, ��

B���
��

B��� a.e.�, such that the triple �F ,B ,��·�
B ���� satisfies the thesis of von Neumann’s theorem.

Remark 2: The function �t�·� defined in the proof of Theorem 2 is measurable because it is the
imit of a monotone sequence of measurable functions.17,23–25 Indeed, for each �, the function
x��� is bounded and nondecreasing with respect to x, then the limit �t−��� exists and we have
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t���=�t−���=limx→t−�x���=limn→
 �xn
��� where �xn� is an increasing sequence of numbers

uch that xn→ t from the left.

V. A NECESSARY AND SUFFICIENT CONDITION FOR THE �-ADDITIVITY OF �
„·…„�…

In the proof of Theorem 2 we started from the additive set function ��·���� :R�S�→ �0,1� such
hat ���A�=F���, ��R�S� and proved the existence of a probability measure ��·���� :B��0,1��

�0,1� such that the triple �F ,A ,��·����� satisfies the thesis of von Neumann’s theorem. Clearly,
f ��·���� :R�S�→ �0,1� were �-additive on R�S� it could be directly extended to a probability
easure ��·���� on B��0,1�� such that ���A�=F���. Now we want to show that the additive set

unction ��·���� :R�S�→ �0,1� is �-additive if and only if �����=����� for every ��R�S�.
Proposition 2: The additive set function ��·���� :R�S�→ �0,1� is �-additive on R�S� if and

nly if �����=����� for every ��R�S�, where ��·���� is the probability measure introduced in
he proof of Theorem 2.

Proof: Let us assume that, for any �, ��·���� is �-additive on the ring R�S�. Then, by
aratheodory theorem �see Ref. 24 p. 88, and Ref. 25�, it can be uniquely extended to a �-additive
easure ��·���� on B��0,1��. Now, we can define �see Theorem 4.8 of Ref. 24 and p. 88 of Ref.

3�, a distribution function continuous from the left �see Definition 9 in Appendix D� as follows:

�t��� = ����0,t����� t � �0,1�
1 t  1

0 t � 0.
�

y Theorem 4 in Appendix D, it follows that the measure ��·���� :B�R�→ �0,1� generated by �t���
oincides with ��·���� :B��0,1��→ �0,1� on B��0,1�� so that it is an extension of ��·���� to B�R�.
oreover �����=0 if �� �0,1�=0” . Therefore, by the �-additivity of the measure and by Defini-

ion 5, we have

��0,t���� = �
k=1




��k
��� = �

k=1




��k
���

or every decomposition

�k�k = �0,t�, �k � S .

ence,

��0,t���� = ��0,t����, t � �0,1�

nd ��0,t���� is continuous from the left in �0,1�. Therefore we get

�t��� = �t��� = ����0,t����� t � �0,1�
1 t  1

0 t � 0,
� �5�

hich means that the probability measure ��·���� corresponding to �t��� coincides with the prob-
bility measure ��·���� corresponding to �t���. Hence, �����=�����=����� on R�S�. The con-
erse is obvious because if it were �����=����� for every ��R�S�, then ��·���� would be

-additive on R�S�. �
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. SHARP RECONSTRUCTION AND UNIQUENESS OF THE CHARACTERIZATION

This section is devoted to the analysis of the implications of Theorem 2 to the theory of the
harp reconstruction. Moreover we show �Theorem 3� that the result obtained in Ref. 15 implies
he uniqueness �in a sense specified below� of the characterization in Theorem 2.

In Ref. 14, starting from a commutative POV measure F, the authors constructed a PV
easure E �corresponding to a self-adjoint operator A� called the sharp reconstruction of F, and an

pplication ��·���� :B��0,1��→ �0,1� which connects A and F by means of relation ���A�=F���,
roving that the triple �F ,A ,��·����� satisfies the thesis of von Neumann’s theorem. In Ref. 15 it
as proven that for every given ����A� the set function ��·���� is additive on R�S�. By Corollary
it follows that, for every given ����A�, there exists a probability measure ��·���� :B��0,1��
�0,1� such that the triple �F ,A ,��·����� satisfies the thesis of von Neumann’s theorem. Indeed,

hanks to the additivity of ��·���� on R�S�, it is sufficient to apply the reasoning in the proof of
heorem 2 to the functions �����, ��R�S�.

Moreover, by proposition 2, ��·���� is �-additive on R�S� if and only if �����=����� for
very ��R�S� so that if ��·���� is not �-additive on R�S� it would be interesting to check
hether there are conditions, on the construction of the functions �����, ��R�S�, which, added

o conditions C and D in Ref. 14, imply the �-additivity of ��·���� on R�S�. In Ref. 15 it was
roven that the sharp reconstruction A is unique in the following sense: if the triples �F ,A ,��·�
���� and �F ,B ,��·�

B ���� satisfy the thesis of von Neumann’s theorem then there exists a function
: �0,1�→ �0,1� such that A=g�B�, so that, among the set of all sharp observables which satisfy

he thesis of von Neumann’s theorem, the sharp reconstruction A is the only one �modulo a
ijection� which is related to the others by means of a relation of the kind A=g�B�. Due to the last
elation, the operators A and B commute. This allowed the authors to consistently interpret the
utcomes of measurements of the unsharp observable F as deriving from a randomization of the
utcomes of measurements of the sharp reconstruction A �see Ref. 15�. By Theorem 2 of the
resent work and by the main result of Ref. 15 we get the following theorem:

Theorem 3: A POV measure F :B�R�→F�H� is commutative if and only if there exist a PV
measure EB :B�R�→E�H� (corresponding to a self-adjoint operator B) and, for every ����B�, a
robability measure ��·�

B ��� :B�R�→ �0,1� such that the triple �F ,B ,��·�
B ���� satisfies the thesis of

on Neumann’s theorem. The sharp reconstruction A is the only one (modulo a bijection) which is
elated to the others as follows:

for every triple �F ,B ,��·�
B ���� satisfying the thesis of von Neumann’s theorem there exists a

unction g : �0,1�→ �0,1� such that A=g�B�.

PPENDIX A: POV MEASURES WITH SPECTRUM IN †0, 1‡

In this appendix we show14 that, without loss of generality, we can restrict ourselves to POV
easures with spectrum in �0, 1�.

Definition 6: Given the POV measure F, the application ��·���� :B�R�→ �0,1� and a bijective

unction f : �0,1�→R we denote by F̄ the POV measure ��B��0,1��→F�f���� and by �̄�·���� the
pplication ��B��0,1��→� f������.

Notice that the POV measure F̄ has spectrum in �0, 1�.
Proposition 3: Given a POV measure F and a self-adjoint operator A, the triple �F ,A ,��·�

���� satisfies the thesis of von Neumann’s theorem if and only if the triple �F̄ ,A , �̄�·����� satisfies
he thesis of von Neumann’s theorem too.

Proof: If �F ,A ,��·����� satisfies the thesis of von Neumann’s theorem then F̄�f−1����=F���
�����A�= �̄ f−1����A� for every ��B�R�. Notice that f establishes a one to one correspondence

etween Borel sets in B��0,1�� and Borel set in B�R�. Therefore the triple �F̄ ,A , �̄�·����� satisfies

he thesis of von Neumann theorem. Now let us suppose that the triple �F̄ ,A , �̄�·����� satisfies the

hesis
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f von Neumann theorem. Then we have F�f����= F̄���= �̄����A�=� f����A� for every �

B��0,1�� which means that �F ,A ,��·����� satisfies the thesis of von Neumann’s theorem. �

PPENDIX B: THE NONDECREASING REAL FUNCTION �
†0,t…„�…

In this appendix we prove the following lemma:
Lemma 3: The sum in Definition 5 does not depend on the decomposition of the interval �0, t�.
In order to prove Lemma 3 the following simple facts will be used:

� if the interval ��k�−1� /2q−1 ,k� /2q−1=b� is an element of the decomposition �� j� j�N of �0, t�
it is not possible that intervals of the kind ��j−1� /2p−1 , j /2p−1=b� with p�q be elements of
the decomposition too. Otherwise �� j� j�N would not be a disjoint family of sets;

� the extrema of the sets ��S define the set of points:

A = � k

2n−1k,n � N:k � 2n−1�;

if a�A and a� ��i−1� /2n−1 , i /2n−1��S it follows that a=r /2l−1 for some r , l�N such that
r�2l−1 and n� l. Therefore every set ��S having a=r /2l−1 as one of its extrema must be
contained in ��i−1� /2n−1 , i /2n−1�;

� every point a�A, with the exception of 0, is contained in �0, 1� as the right extreme of one
interval ��S

Definition 7: For any decomposition dt= �� j� j�N�D of �0, t� and for any x� �0, t� we define
he set

Mdt
�x� = �b�x � �0,b� = �

l=1

m

�l,�l � dt� .

Proposition 4: Let us consider two decompositions dt= ��l�l�N, d̃t= ��̃k�k�N�D of �0, t�. If for
ny 0�x� t it is Mdt

�x��Md̃t
�x��0” then sequences ��l=1

n ��l
����n�N and ��k=1

n ��̃k
����n�N con-

erge to the same limit.
Proof: Let us choose a sequence of numbers �xi ;0�xi� t� such that xi→ t. For every xi there

xists a number bi�Mdt
�xi��Md̃t

�xi� such that xi�bi� t, hence a sequence �bi� such that bi

t is defined. We have

lim
i→


bi = t ,

lim
i→


n�i� = lim
i→


m�i� = 
 ,

�0,bi� = �
l=1

mi

�l = �
k=1

ni

�̃k,

�
l=1

mi

��l
��� = �

k=1

ni

��̃k
��� " i ,
ence
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lim
i→


�
l=1

mi

��l
��� = lim

i→

�
k=1

ni

��̃k
���

hich proves the existence of two subsequences ��l=1
mi ��l

����mi�N and ��k=1
ni ��̃k

����ni�N of se-
uences ��l=1

n ��l
����n�N and ��k=1

n ��̃k
����n�N, respectively, converging to the same limit. �

Now we are ready to prove Lemma 3.

Proof of Lemma 3: Let us consider two decompositions ��l�l�N , ��̃k�k�N�D of �0, t�. The
roposition is proved if we prove that for every 0�x�1 it is Mdt

�x��Md̃t
�x��0” .

For any x, with 0�x� t, we denote by b the minimum of Mdt
�x� and by b̃ the minimum of

d̃t
�x�. The existence of the minimum comes from the definition of the class D. If b� b̃ we

uppose �without loss of generality� b� b̃.

Let ��k�−1� /2q−1 ,k� /2q−1= b̃�� ��̃k�k�N be the interval of decomposition ��̃k�k�N having b̃ as

he right extreme. Then, considering that b̃ is the minimum of set Md̃t
�x� and that sets �̃k are

isjoint, we get x� ��k�−1� /2q−1 ,k� /2q−1= b̃�. Let us consider the number ā=max�a
Mdt

�x� : �0,a�� �0, b̃��. We have x� ā� b̃ and then ā� ��k�−1� /2q−1 ,k� /2q−1= b̃�. Following
tem 2�, we have that every interval of decomposition ��l�l�N having ā as the left extreme is

ontained in ��k�−1� /2q−1 ,k� /2q−1= b̃�. In other words for every �l� ��l�l�N�S such that �l

�ā ,y� �y� �0,1�� it must be y� b̃. Considering that ā is the maximum of Mdt
�x�, that b̃

�0,1� and by item 3�, we get y= b̃. This proves that Mdt
�x��Md̃t

�x��0” . The thesis derives
rom Proposition 4. �
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After recalling Snyder’s idea �Phys. Rev. 71, 38 �1947�� of using vector fields over
a smooth manifold as “coordinates on a noncommutative space,” we discuss a
two-dimensional toy-model whose “dual” noncommutative coordinates form a Lie
algebra: this is the well-known �-Minkowski space �Phys. Lett. B 334, 348
�1994��. We show how to improve Snyder’s idea using the tools of quantum groups
and noncommutative geometry. We find a natural representation of the coordinate
algebra of �-Minkowski as linear operators on an Hilbert space �a major problem in
the construction of a physical theory�, study its “spectral properties,” and discuss
how to obtain a Dirac operator for this space. We describe two Dirac operators. The
first is associated with a spectral triple. We prove that the cyclic integral of Dimi-
trijevic et al. �Eur. Phys. J. C 31, 129 �2003�� can be obtained as Dixmier trace
associated to this triple. The second Dirac operator is equivariant for the action of
the quantum Euclidean group, but it has unbounded commutators with the
algebra. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2204808�

. INTRODUCTION

In classical mechanics, Legendre transformation in the Hamiltonian formalism exhibits an
vident symmetry between coordinate space and momentum space.

The same holds in quantum mechanics on a flat space �Rn or a quotient by a discrete sub-
roup�, with Fourier transform/series replacing the Legendre transformation.

Dealing with quantum mechanics on a curved space M �a smooth manifold�, the situation
hanges. While coordinate functions on M are elements of a commutative algebra, “momenta” �we
ean, vector fields over M� no longer commute. A basic example is the 3-sphere, whose vector
elds generate su�2�, the algebra of angular momenta of quantum mechanics.

Snyder’s idea was to use momenta, i.e., vector fields over a smooth manifold M, as “coordi-
ates on a noncommutative space” dual to M.

He applied this idea to the four-dimensional deSitter space, and was led to study the algebra
enerated by ten operators �x� ,J��� satisfying the commutation rules �Greek letters run over
,1 ,2 ,3�:

�x�,x�� = i�2J��, �1�

here J�� is an element of so�3,1� with suitable commutators with the “coordinates” x�. One can
otice that this algebra �isomorphic to so�3,2�� has too many generators to represent a four-
imensional “noncommutative space,” while the elements x� alone are correct in number, but do
ot close an algebra.

A characteristic feature is the presence in �1� of an invariant length �, whose role is to provide
he correct physical dimensions and to allow us to recover R4 as � goes to zero �“long distance”
r “low energy” limit�.

�
Electronic mail: dandrea@sissa.it
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The purpose of this article is to show how to modify Snyder’s idea in such a way as to obtain
n algebra that can be studied with noncommutative-geometric tools.

In Sec. II, we discuss Snyder’s model in full detail in the two-dimensional version, and realize
hat Snyder’s coordinates do not close an algebra, either in two dimensions, or in four.

In Sec. III, we retry in three dimensions, and realize a fundamental difference from the
riginal Snyder example: in the three-dimensional case the “dual” of the deSitter space is an
lgebra. This is a basic property, if we want to study noncommutative geometry.1–3

The geometrical reason at the base of the difference between Snyder’s model in three and in
�3 dimensions is clear: the deSitter space in three dimensions is a Lie group, hence the tangent
undle trivialize and vector fields form a Lie algebra isomorphic to the Lie algebra of the group.

In Sec. IV, we search for a two-dimensional example and realize that there is only one, the
pacetime studied in literature under the name of �-Minkowski,4 whose coordinate algebra is
somorphic to U�sb�2,R��.

As a by-product of this section, we find a natural representation of the algebra as linear
perators on a Hilbert space �the choice of a representation on a Hilbert space is a major problem
n the construction of a physical theory�. Another main point of this section is the realization of
oincaré as a symmetry of �-Minkowski, in the spirit of Snyder’s idea.

In Sec. V we adopt a different point of view and, applying Weyl quantization, construct a
*-algebra encoding information on the “topology” of the underlying �-Minkowski space.

We then focus attention on the construction of a spectral triple over �-Minkowski space. A
roposal for a Dirac operator on �-Minkowski has already appeared in Ref. 5, although the Dirac
perator they found does not satisfy Connes’ axioms for a spectral triple �the same holds for the
ne in Ref. 6, as well as the one parametric family of Dirac operators in Ref. 7�. For the gener-
lization of such axioms to the noncompact case we refer to the original paper of Connes2 �see
lso Refs. 8 and 9 for a comprehensive presentation�.

In Sec. V C, we construct a Dirac operator that fulfills all axioms of a spectral triple, and
rove that the Dixmier trace associated with the spectral triple is just the cyclic integral discussed
n Ref. 10.

Then, we compute a Dirac operator imposing equivariance for the action of the quantum
uclidean group. This turns out to be very similar to the one in Refs. 5 and 6, and has not bounded
ommutators with the algebra.

I. THE TWO-DIMENSIONAL ANALOGUE OF SNYDER’S SPACETIME

In his original article, Snyder considers the deSitter space SO�3,2� /SO�3,1� and identifies the
pacetime “coordinate functions” with a basis of the vector subspace of so�3,2� orthogonal to
o�3,1�. The �connected component of the� SO�3,1� subgroup provides the Lorentz symmetries
nd, with a suitable choice of the momenta, it can be extended to a Poincaré symmetry. For the
ake of simplicity, we will study, in full detail, the two-dimensional version. Interested readers can
nd the four-dimensional model discussed in Snyder’s original article.11

In the two-dimensional version, the deSitter space is SO�2,1� /SO�1,1�. If �0 ,�1 ,�2 are
oordinates of R3, the deSitter spacetime is the SO�2,1�-orbit with equation

�0
2 − �1

2 − �2
2 = − 1. �2�

he �three-dimensional Lorentz� Lie algebra so�2,1� has generators �J ,K1 ,K2� �a rotation and two
oosts� given by

J = i��2�1 − �1�2� ,
K1 = i��0�1 + �1�0� ,
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K2 = i��0�2 + �2�0� ,

here ��=� /���. So, the commutation rules are

�J,K1� = iK2, �J,K2� = − iK1, �K1,K2� = − iJ . �3�

mulating Snyder, we call N=K2 the generator of the so�1,1� subalgebra �the one-dimensional
orentz Lie-algebra, isomorphic to R� that leaves fixed the point m0= �0,0 ,1�, and x=�J, t
�K1 the remaining generators �whose span is the subspace of vector fields over SO�2,1� that are

angent to M at m0�. The length � provides the correct physical dimensions. By �3�, the coordi-
ates satisfy the commutation rule

�x,t� = i�2N ,

nd clearly do not form a subalgebra of so�2,1�.
The higher-dimensional analogue is the commutator �x� ,x��= i�2J�� anticipated in Sec. I.
The action of the Lorentz algebra so�1,1� on the coordinates is via commutator, and by �3� is

ndeformed:

N � x = it, N � t = ix .

ince the action is undeformed, the invariant is the classical quadratic element x2− t2.
We still need to introduce translations.
Let us recall the idea of Snyder: to start with a commutative spacetime, in which translations

o not commute, and define a noncommutative spacetime with commutative momenta. Half of this
dea was already applied, to find the noncommutative spacetime “dual” to deSitter.

To complete the picture, following Snyder, we define momenta as P=�−1�1 and E=�−1�0 �the
resence of � ensures the correct physical dimensions�. Together with N they form the classical
oincaré algebra:

�E,P� = 0, �N,P� = − iE, �N,E� = − iP .

The momenta act on the coordinates via commutators. For example:

P � x = �P,x� = − i���2�1 − �1�2��−1�1 = − i�2 = − i��2�E2 − P2� − 1.

n the last step we used Eq. �2�, defining the deSitter space.
With a straightforward calculation we derive the �deformed� action of momenta on coordi-

ates

P � x = − i��2�E2 − P2� − 1 = E � t, P � t = E � x = 0,

hile the associated phase-space is defined by

�x,P� = i��2�E2 − P2� − 1 = �t,E�, �t,P� = �x,E� = 0.

n the �→0 limit, the spacetime reduces to a commutative one, phase space becomes the Heisen-
erg algebra, and the action of the Poincaré algebra reduces to the standard one; so for �=0 we
ecover the classical scenario.

II. THE THREE-DIMENSIONAL ANALOGUE OF SNYDER’S SPACETIME

In two dimensions, we have just seen that “Snyder’s coordinates” do not form a complete set
f generators for an algebra. Let us try in three dimensions.

4
The space we consider here is the SO�2,2�-orbit M �R with equation
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�0
2 + �1

2 − �2
2 − �3

2 = − 1, �� � R4. �4�

he stability group of the point m0= �0,0 ,0 ,1� is SO�2,1�, so the orbit is the quotient M
SO�2,2� /SO�2,1�. Being an homogeneous SO�2,2�-space, elements of the Lie algebra so�2,2�
i.e., vector fields over SO�2,2�� correspond to derivatives of C��M�. Vectors of the subspace

o�2,1��so�2,2� are orthogonal to M, so the “naive” approach would be to take a basis of
o�2,1��, the orthogonal of so�2,1� in so�2,2�, as coordinates of the noncommutative spacetime
ual to M. But so�2,1�� is not a subalgebra of so�2,2�, this because M is not a group with the
uotient structure �SO�2,1� is not a normal subgroup of SO�2,2��.

Despite this, we can put a Lie group structure on M. Writing

g = 	�0 + �3 �1 + �2

�1 − �2 − �0 + �3

, �� � R4, �5�

e have the obvious �smooth manifold� isomorphism M �SL�2,R�, the equation det g=1 �that
dentifies SL�2,R� inside Mat�2,R�� being equivalent to �4�. Thus, M is a double cover of the
orentz group SO�2,1�.

This is the pseudo-Euclidean analogue of the fibration SO�4� →
SO�3�

S3�SU�2�, i.e. SO�2,2�
�2,1�

SL�2,R�.
Since M is a Lie group, its tangent bundle is trivial. The Lie algebra of global vector fields on

M, isomorphic to sl�2,R�, will be identified with the algebra “coordinate functions on the non-
ommutative spacetime,” three-dimensional analogue of the Snyder’s spacetime. Let us compute it
xplicitly.

We take L̃�sl�2,R� �real traceless matrices� and call L the associated vector field on M,
efined by

�Lf��g� = � d

d�
�

�=0
f�exp��L� · g� , �6�

or all f �C��M�, g�SL�2,R�. We fix a basis for sl�2,R�:

t̃ = 	1 0

0 − 1

, x̃ = 	0 1

1 0

, ỹ = 	0 1

− 1 0

 ,

ompute the exponentials

exp��t̃� = 	e� 0

0 e−� 
 ,

exp��x̃� = 	cosh � sinh �

sinh � cosh �

 ,

exp��ỹ�	cos � sin �

− sin � cos � ,

 ,

nd their action via left multiplication on �5�, the generic element of SL�2,R�. Then, through �6�,
e determine the associated vector fields. For example:

exp��t̃�g = 	 ��0 + �3�e� ��1 + �2�e�

��1 − �2�e−� �− �0 + �3�e−� 
 .

˜ ���
o exp��t� maps � to the point � , with coordinates
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�
�0

���

�1
���

�2
���

�3
���
 =�

�0 cosh � + �3 sinh �

�1 cosh � + �2 sinh �

�1 sinh � + �2 cosh �

�0 sinh � + �3 cosh �
 ,

nd by �6�:

�− i�−1t · f���� = � d

d�
�

�=0
f������ ,

here � is a parameter with the dimensions of a length.
We have called −i�−1t the derivation associated with �̃ because we like to work with sym-

etric operators, and we want a t with the dimension of a length.
Thus,

− i�−1t = �
�

�d��
���

d�
�

�=0

�

���

= �3�0 + �2�1 + �1�2 + �0�3.

n the same line, one can compute x and y. The full list of vector fields is

t = i���3�0 + �2�1 + �1�2 + �0�3� ,

x = i��− �2�0 + �3�1 − �0�2 + �1�3� ,

y = i���1�0 − �0�1 + �3�2 − �2�3� ,

nd the commutation rules are those of “i ·sl�2,R�:”

�t,x� = 2i�y, �t,y� = 2i�x, �x,y� = − 2i�t .

n contrast with the two-dimensional Snyder’s model, now �t ,x ,y� is the basis of a Lie algebra.
Furthermore, this algebra has the correct number of generators to represent a three-dimensional
noncommutative space, dual to the three-dimensional deSitter space.

This idea can easily be generalized: starting with a Lie group M, one can consider U�Lie M�
as noncommutative space dual to M, and eventually study it with tools of noncommutative ge-
ometry.

A celebrated �compact, Riemannian� example is the fuzzy sphere,12 quotient of U�su�2�� for
he ideal generated by J2−c, with J2 the Casimir and c a suitable constant.

In the next section we consider a simple, two-dimensional example.

V. A TWO-DIMENSIONAL MODEL: �-MINKOWSKI

In two dimensions, the unique �real connected� non-Abelian Lie group is the matrix group of
lements �Ref. 13, Sec. 10.1�

	a b

0 1

, �a,b� � R+ � R .

hat is �the connected component of� the group of affine transformations of the real line:

	y

1

 � 	a b

0 1

	y

1

 = 	ay + b

1

, y � R .
he map

                                                                                                            



g
v

L

W

i

w

f
b
c

T
R

S

Y
w

=

i
t
o

062105-6 Francesco D’Andrea J. Math. Phys. 47, 062105 �2006�

                        
	a b

0 1

 � 	a a−1b

0 a−1 

ives an isomorphism with Sb�2,R�, the group of special upper-triangular real matrices, so the
ariety M �Sb�2,R� is the starting point.

We want to compute the vector fields and identify them with noncommutative coordinates. Let

= � a
0

b
0

� be the generic element of the Lie algebra, a ,b�R, and −iL̃ the associated vector field:

�− iL̃f��m� = � d

d�
�

�=0
f�exp��L�m�, f � C��M� .

e use physicists’ habit of working with self-adjoint operators. Since

Ln = 	an an−1b

0 1

, exp��L� = �e�a e�a − 1

a
b

0 1
 ,

f we indicate with m= ��0 �1

0 1 � the generic point of M, ��0 ,�1��R+�R, it is easy to compute

�L̃f���0,�1� = i�a�0�0 + �a�1 + b��1�f��0,�1� ,

ith ��=� /���. We fix the basis

x = i��1, t = i���0�0 + �1�1� ,

or vector fields on M, and define the algebra of “functions on the noncommutative spacetime” to
e the algebra of polynomials generated by x and t. The presence of the length � guarantees the
orrect physical dimensions, and enables us to recover R2 as �→0 limit.

Thus, the algebra is generated by x and t modulo

�x,t� = i�x . �7�

his is just U�sb�2,R��, the two-dimensional version of the so-called �-Minkowski, introduced in
ef. 4 as homogeneous space for �-Poincaré.14

The same Lie algebra, but with different real structure, emerges in the Weyl quantization of
1�R. In that case x is unitary, thus the space is “compact” in the x direction.

Now, let � be the �left� Haar measure on M. Explicitly, for an integrable function f on M:

�
M

fd� = �
R+�R

f��0,�1��0
−1d�0d�1.

ou can easily verify the invariance with respect to the left regular action, i.e., �Mfd�=�Mf�d�
ith f���0 ,�1�= f�a�0 ,a�1+b� and for all �a ,b��R+�R.

With this measure, we can define the Hilbert space H=L2�M ,�� with inner product �	 ,
�
�M	*
d�.

The measure being invariant, it means that finite transformations of the group M act as
sometries on the associated Hilbert space, i.e., as unitary operators. Thus, the vector fields x and
, the generators of these transformations, are represented by �unbounded� self-adjoint linear
perators. I mean:

*
�x 	,
�: = �	,x
� � �x	,
� ,
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�t*	,
�: = �	,t
� � �t	,
� ,

or all 	 ,
�H and in the domain of x, respectively, t �it is an easy check to verify these
quations�. The self-adjointness of x and t allows us to interpret them as quantum-mechanical
bservables.

. �-Minkowski more in depth

Following Snyder’s idea, we interpret vector fields on M as “coordinates,” and define mo-
enta as the following functions in C�M�:

P = �−1�1, E = �−1log �0.

gain, the presence of � is for dimensional reasons and we choose E as a logarithm because we
ant it in R, and not in R+.

The commutators defining phase-space are

�x,E� = 0, �x,P� = i = �t,E�, �t,P� = i�P , �8�

nd reduce to the classical Heisenberg algebra for �=0 �physically, this can be interpreted as a
low-energy limit,” i.e., as an approximation for ��E � , ��P � �1�.

To complete the picture, we want to define the analogue of a boost generator: the generator of
a transformation of M with a fixed point �of course, we choose the unit element ��0 ,�1�= �1,0� as

xed point�.
If we define

iN = E�P + P�E � �0�1�0 + log �0�1,

acts on E and P as a classical boost, and �E , P ,N� generate the �undeformed� Poincaré algebra:

�N,E� = − iP, �N,P� = − iE .

ince N�−Pt− �E−�P2�x, the action on coordinates is

�N,x� = i�t − �Px�, �N,t� = i�1 − �E − �2P2�x + i�Pt .

hus, the action on coordinates is nonlinear and reduces to a classical boost for �→0.
Like in Snyder’s case, we have deformed R2 into a noncommutative space without breaking

he Poincaré symmetry.
In the Snyder case, the coordinates are vector fields on SO�2,1� orthogonal to the submanifold

O�1,1�, they are a G-algebra module for Poincaré and do not close an algebra.
In the �-Minkowski case, the Lie group associated with �E , P ,N� is Poincaré, isomorphic to

O�1,1�›Sb�2,R�, where SO�1,1��R is the subgroup generated by N. Coordinates are vector
elds on M =Sb�2,R���SO�1,1�›Sb�2,R�� /SO�1,1�, and close a Lie algebra isomorphic to

“i ·sb�2,R�.” The boosts SO�1,1� are the isotropy transformations of M, which we identify with
momentum space. The Poincaré symmetry of spacetime is obtained by dualizing the action of
SO�1,1� and taking the cross-product with momenta.

All that has been done in this section can be generalized to n+1 dimensions. Just substitute M
with the matrix group of elements

	ea b

0 1



with a � R,b � Rn, and 1 the n � n identity matrix.

he associated Lie algebra is again called �-Minkowski4 and arises in quantum group theory as a

uantum homogeneous space.
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. Quantum group of symmetries for �-Minkowski

One could object that the action of the boost N on �-Minkowski coordinates depends on
omenta. In more mathematical terms: spacetime is not an algebra module for Poincaré, although

hase-space is.
It is obvious that a noncommutative space cannot be a quantum homogeneous space for a Lie

roup �I mean “embeddable,” see, e.g., Ref. 15 for the definition of homogeneous space in a
oncommutative framework�. Or, in other words, that the algebra of functions on a Lie group has
nly commutative subalgebras.

It results that �-Minkowski is embeddable in a quantum group, �-Poincaré, whose �→0 limit
s the classical Poincaré group. Or, from a dual point of view, it carries a covariant action of an
opf algebra whose �→0 limit is the universal enveloping algebra �UEA� of the classical
oincaré Lie algebra.

By using the tools of Hopf algebras,16 it is not difficult to produce such a deformation. As
lgebra of momenta one takes the dual of �-Minkowski Lie algebra, and as covariant action the
eft canonical one. Then, one adds a “boost” generator and determines the full Hopf algebra of
ymmetries and its action on coordinates using a bi-cross-product.16

The result is the Hopf algebra generated by three real elements �N ,E , P� �for notational
onvenience we continue to use the same symbols as in Sec. IV A, but we remark that the Hopf
lgebra is different� with commutation relations:

�E,P� = 0, �N,P� = i
2� �1 − e2�E� − i�

2 P2, �N,E� = − iP ,

oproduct:

�E = E � 1 + 1 � E , �9a�

�P = P � 1 + e�E
� P , �9b�

�N = N � 1 + e�E
� N , �9c�

nd counit/antipode:

�E� = �P� = �N� = 0, S�E� = − E, S�P� = − Pe−�E, S�N� = − Ne−�E. �9d�

his is the two-dimensional version of �-Poincaré algebra, obtained for the first time in Ref. 14 by
ontraction of Uq�so�3,2��.

The action on coordinates is undeformed:

N � x = it , P � x = − i , E � x = 0,

N � t = ix , P � t = 0, E � t = − i .

On the other hand, the coproduct is deformed. For this reason, one can calculate, for example:

N � x2 = �N � x�x + x�N � x� = i�tx + xt� ,

N � t2 = �N � t�t + �e�E � t��N � t� = i�tx + xt� + �x = N � x2 − i�N � t ,

nd prove that the quadratic invariant is deformed into x2− t�t+ i��, that is:

N � �x2 − t�t + i��� = 0.

Finally, a phase space can be obtained as a cross product of momenta and coordinates. The

elations defining the phase space are
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fg = �f �1� � g�f �2�,

or f a generic function of the momenta, g a function of the coordinates, and �T=T�1� � T�2� the
weedler notation.16 Thus:

�x,P� = �t,E� = i, �t,P� = i�P, �x,E� = 0.

his is the same algebra defined by Eq. �8�.
A second �different� phase space can be constructed via a cross product using the right

anonical action of momenta on coordinates, instead of the left one.
The construction of phase space as a cross product �in 3+1 dimensions� was performed in

efs. 17 and 18, an analysis of physical consequences is in Ref. 19.

. SPECTRAL GEOMETRY OF �-MINKOWSKI

Let us quote from Ref. 2 the definition of spectral triple, noncommutative generalization of the
otion of Riemannian spinc manifold.

Definition 1: A spectral triple �A ,H ,D� is given by an involutive algebra A, a representation
:A→B�H� by bounded operators on a Hilbert space H, and a self-adjoint operator D=D* with

ense domain in H, such that:

�S1� ��a��D2+1�−1/2 is a compact operator for all a�A;
�S2� �D ,��a�� is a bounded operator for all a�A.

A commutative example is the canonical spectral triple associated with the spin structure of
2: �C0

��R2� ,H ,D” �, with C0
��R2� smooth functions vanishing at infinity on R2, H=L2�R2� � C2 the

ilbert space of L2-spinors and D” the Dirac operator:

D” = i��1�0 + �2�1� = 	 0 i�0 + �1

i�0 − �1 0

 .

ere � j are the Pauli matrices, �� coordinates in R2 and �� : =� /��� the corresponding deriva-
ives. Greek letters run over 0 ,1. We define also �� = ��0 ,�1�.

C0
��R2� is a Frechét pre-C*-algebra. The supremum norm is equivalent to the operator norm on

, and the C*-algebra completion is C0�R2�, the algebra of continuous functions vanishing at
nfinity.

Definition 2: A spectral triple �A ,H ,D� is even if there exists a grading ��B�H�, �=�* and
2=1, such that �D=−D� and a�=�a" a�A.

The operator:

�: = 	1 0

0 − 1

 �10�

s a grading for the canonical spectral triple on R2.
We quote also the notion of equivariance with respect to the action of a Lie group.
Definition 3: Let H be Lie group, � :H→B�H� a representation and � :H�A→A a covari-

nt action. An even spectral triple �A ,H ,D ,�� is H-equivariant if:

�E1� ��h���a���h�−1=��h�a� for all a�A, h�H;
�E2� ��h�D��h�−1=D and ��h����h�−1=� for all h�H.

The spin structure of R2 is equivariant with respect to the spin representation of
: = ISO�2��SO�2�›R2, the group of isometries of the Euclidean plane R2.

� � 2
If �R ,v� , �R� ,v���SO�2��R , the multiplication law of ISO�2� is
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�R,v�� · �R�,v��� = �RR�,v� + Rv��� ,

nd the spin representation � :H→B�H� is defined by

���R,v��
���� �: = R · 
�R−1��� − v���, " 
 � H . �11�

The representation � of the algebra satisfies �E1� if we define � to be the pull-back of the
atural action on R3:

��R,v�� � f���� � = f�R−1��� − v���, " f � C0
��R2� .

Differentiating the action of the group, we arrive at the equivalent notion of
�Lie H�-equivariance. This notion can be generalized to a generic Hopf-algebra.

Definition 4: Let U be an Hopf-algebra, � :U→B�H� a representation and � :U�A→A a
ovariant action. An even spectral triple �A ,H ,D ,�� is U-equivariant if:

�E1�� ��u�1����a���Su�2��=��u�a� for all a�A, u�U,
�E2�� ��u�D=D��u� and ��u��=���u� for all u�U.

In the following we construct the algebras replacing continuous and smooth functions van-
shing at infinity associated with �-Minkowski, and describe the spinor representation.

Since the metric properties of the space depend on the Dirac operator, at this point there is no
ifference between Euclidean and Lorenzian version.

We then analyze the problem of constructing an Euclidean Dirac operator. We exhibit an
perator that is essentially the Dirac operator on the commutative subspace R of �-Minkowski,
nd prove that it defines a spectral triple. We search also for an equivariant Dirac operator and find
hat there is just one, and does not satisfy the axioms of a spectral triple.

. The algebra of polynomials of the “noncommutative coordinates”

Let us recall the construction of the algebra of coordinates on �-Minkowski.
We call G : = �R2 , � � the space R2 with deformed sum:

�p0,p1� � �p0�,p1�� = �p0 + p0�,p1 + p1�e
�p0�, " �p0,p1�,�p0�,p1�� � R2.

The map:

�p0,p1� � g: = 	e�p0 p1

0 1



s an isomorphism between G and Aff0�R�, �the connected component of� the group of affine
ransformation of R. We will identify G and Aff0�R�.

There is only one unitary irreducible infinite-dimensional representation of the group Aff�R�,
efined on the Hilbert space L2�R* ,d�1 / ��1 � � by:20

�g · 	���1�: = eib�1	�a�1�, 	 � L2�R*,d�1/��1��, g = 	a b

0 1

 � Aff�R� .

e take the tensor product of this representation with the trivial representation g�ei�0p0 of the
belian subgroup R. Then we take the direct integral on �0�R with an arbitrary measure d���0�
n R.

The result is a unitary representation of G on the space:

H�: = L2�R � R*,d���0���1�−1d�1� � C2, �12�
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efined by

�:G → B�H��, p� � ��p�� ,

���p��
���� � = eip� ·��
��0,�1e�p0� , �13�

here 
�H�. One can explicitly check that it is an homomorphism:

��p����p��� = ��p0 + p0�,p1 + p1�e
�p0� .

e indicate with H0 the Hilbert space obtained taking as d���0� the Lebesgue measure d�0.
In the previous section, we defined the noncommutative coordinates on �-Minkowski as the

ector fields associated with the generators of U�g�:

	� 0

0 0

 , 	0 1

0 0

 ,

here g is the Lie algebra of G.
We can obtain a representation of these coordinates on H� using the differential of �:

x̂0 = id�	� 0

0 0

 = �0 − i��1�1,

x̂1 = id�	0 1

0 0

 = �1.

he operators �x̂0 , x̂1� generate an algebra isomorphic to the �-Minkowski algebra:

�x̂0, x̂1� = − i�x̂1. �14�

We indicate with R�
2 the virtual “quantum space” associated with the algebra U�g�, and call

lements of U�g� the “polynomial functions” on �-Minkowski space.
When �=0, the representation d� reduces to the ordinary �unbounded� representation of

olynomial functions on R2 via pointwise multiplication on H�.

. Continuous and smooth “functions” on �-Minkowski space

To construct a spectral triple with the polynomial algebra U�g� is problematic, since x̂� cannot
e represented by bounded operators, and �14� can be satisfied only on a dense domain in H�. It
s the same problem one encounters in the canonical quantization of phase-space in quantum

echanics. A possible solution is to shift the attention from x̂� to complex exponentials, that is,
rom the Lie algebra g to the Lie group G. This is Weyl quantization, defined as a map associating
omplex exponentials on R2 to elements of G, represented by unitary operators on H�. The
uantization map can be extended to an involutive subalgebra of C0�R2� using Fourier transform.

We call Fun�R2� the following class of functions:

Fun�R2�: = C0�R2� � H0,

nd define the following quantization map:

�:Fun�R2� → B�H�� ,

f � ��f� = �
R2

d2pf̃�p����p�� ,

˜
here � is the representation �13� and f is the Fourier transform of f:
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f̃�p�� =
1

�2��2�
R2

f��� �e−ip���d2� .

Although f =eip��� �C0�R2�, one can formally verify taking f̃�p���=��2��p� − p��� that

��eip���� = ��p�� ,

nd since

�� = − i� �

�p�
�

p�=0
eip��� ,

����� = − i
�

�p�
�p�=0��p�� � x̂�.

The explicit expression of the quantization map is

���f�
���� � = �
R2

f̃�p��eip���
��0,�1e�p0�d2p, f � Fun�R2�, 
 � H�, �15�

nd we need to verify that it defines a bounded operator.
Proposition 5: The quantization map �, defined by �15�, sends Fun�R2� into bounded opera-

ors B�H��. For this class of functions, the operator norm is bounded by

���f��2: = sup

�H�,
�0

���f�
�H�

2

�
�H�

2 �
1

2�
�f�H0

2 , �16�

here �H�
indicate the norm in the Hilbert space H�.

Proof: Let a=e�p0 and call:

F��� ,a� =
1

2�
�

R
d�0�f��0�,�1�eip0��0−�0�� = �

R
d�1 f̃�p��eip��� .

hen:

���f�
���� � = �
R

dp0F��� ,a�
��0,a�1� = �
R+

da

�a
F��� ,a�
��0,a�1� .

ince �partial� Fourier transform is an isometry of L2, then F�L2�R ,dp0�=L2�R+ ,da /�a� for each
xed �� . Using Schwartz inequality:

���f�
��� ��2 � 	�
R+

da

�a
�F��� ,a�
��0,a�1��
2

� 	�
R+

da

�a
�F��� ,a��2
	�

R+

da

a
�
��0,a�1��2
 .

�17�

ow:

�
R+

da

�a
�F��� ,a��2 =

1

�2��2�
R+

da

�a��R
d�0�f��0�,�1�eip0��0−�0���2

=
1

�2��2�
R

dp0�
R2

d�0�d�0�f��0�,�1�f��0�,�1�eip0��0�−�0�� =
1

2�
�

R
d�0��f��0�,�1��2,
�18a�
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�
R+

da

a
�
��0,a�1��2 � �

R*

da

�a�
�
��0,a�1��2 = �

R*

d�1�

��1��
�
��0,�1���

2, �18b�

here �1�=a�1 and in the last step we used dilatation invariance of the measure. Using the
nequalities �17� and �18� we arrive at

���f�
�H�

2 = �
R�R*

d���0�d�1

��1�
���f�
��� ��2 �

1

2�
	�

R�R*

d�0�d�1

��1�
�f��0�,�1��2


�	�
R�R*

d���0�d�1�

��1��
�
��0,�1���

2
 =
1

2�
�f�H0

2 · �
�H�

2 .

sing the last inequality, we find the upper bound �16� for the operator norm. �

We define the following �-product on Fun�R2�:

f1 � f2: = ��f1�f2, " f1,2 � Fun�R2� . �19�

et Fun��R2� be the subspace of smooth functions of Fun�R2�.
Proposition 6: A : = �Fun�R2� , � � and A� : = �Fun��R2� , � ��A are involutive algebras �asso-

iative without unit�. � :A→B�H�� is a unitary representation.
Proof: Since ��f1� is a bounded operator on H�, for all �, and f2�H0, the product f1* f2 is

n H0. Moreover, f1� f2�C0�R2� and is smooth if f1 and f2 are.
By construction:

��f1 � f2� = ��f1���f2� .

his guarantees associativity of the product, and proves that � is a representation.

Finally, �� f̄1�=��f1�+ is the adjoint of ��f1�, since the representation � of the group Aff0�R�
s unitary. So we have a unitary representation of A. �

We call A the algebra of continuous functions on �-Minkowski space, and A� the subalgebra
f “smooth functions.” Since 1�A, the space is not compact.

From �15�, using Leibniz rule and the property ip� f̃ =��f˜, we deduce the following “de-
ormed” Leibniz rule:

�0���f1�f2� = ���0f1�f2 + ��f1��0f2, �20a�

�1���f1�f2� = ���1f1�f2 + ��e−i��0f1��1f2, �20b�

r equivalently:

�0�f1 � f2� = ��0f1� � f2 + f1 � ��0f2� ,

�1�f1 � f2� = ��1f1� � f2 + �e−i��0f1� � ��1f2� ,

or all f1 , f2�Fun��R2�.

. A Dirac operator for �-Minkowski space

The first attempt to define a Dirac operator would be to use the classical one D” .
Properties �20� means that D” has not bounded commutator with the algebra. Indeed:

��0,��f�� = ���0f�, f � A�

s bounded, but ��1 ,��f�� is not, due to the presence of the unbounded operator e−i��0.
D : = i�0 has nontrivial sign �it is not positive�, has dense domain in H and bounded commu-
ators with A. Geometrically, the evaluation at �1=0:
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��f� � f��0,0�

s an algebra morphism A→C0�R�, and tells us that R is a commutative subspace. D is just the
irac operator on this subspace.

Let � : =−�0
2+1. Intuitively, one would expect that the axiom �S1� in the definition of spectral

riple is not satisfied. For �=0, f ·�−1/2 is not a compact operator on L2�R2�. Surprisingly if �
0, ��f��−1/2 is a compact operator on H�, if � is a finite measure on R �i.e., �Rd���0���� and

bsolutely continuous with respect to the Lebesgue measure.
Proposition 7: Let � be a finite measure on R, absolutely continuous with respect to the

ebesgue measure, and let ��0. Then, �A� ,H� , i�0� is a 1+-summable spectral triple. The asso-
iated Dixmier trace is just the cyclic integral of10

W
��f��−1/2: = Resz=1TraceH�

��f��−z/2 � �
R�R*

f�x��
dx0dx1

�x1�
, �21�

here � : =−�0
2+1.

Proof: We decompose H�=V0 � V1, with V0 : =L2�R ,d���0�� and V1 : =L2�R* ,d�1 / ��1 � �.
Let us recall some facts from Ref. 21 �see also Ref. 22 for a pedagogical presentation and Ref.

for considerations on the noncompact case�.
Let ����0�=d���0� /d�0. By hypothesis ���C0�R2�.
i�0 being the Dirac operator on R, f�−1/2 is compact on L2�R ,d�0� for all f �C0�R2�. In

articular, taking f =��, we prove that �−1/2 is compact on V0.
From the formula:

Resz=1TraceL2�R,d�0�f�
−z/2 � �

R
f��0�d�0

we do not care about the proportionality constant, which is independent on f� we deduce

Resz=1TraceV0
�−z/2 = Resz=1TraceL2�R,d�0����−z/2 � �

R
d���0� � � .

The operator �−z/2 is traceclass on V0 if z�1, and in the Dixmier class L1+�V0� if z=1.
On H�, if f �A, the kernel of the operator ��f��−z/2 is the distribution:

Kf��� ,�� �� =
1

2�
�

R2
d2pf̃�p��eip������1� − �1e�p0��

R
d��1 + �2�−z/2ei���0−�0��,

here the integral in d� is the resolvent of �z/2.
We consider first the case in which f is integrable �f �L1�R* ,d�0d�1 / ��1 � ��.
The partial trace of ��f��−z/2 on V1 is the operator with kernel:

K̂f��� ,�� �� = �
R*

d�1

��1�
Kf��0,�1;�0�,�1� =

�−1

2�
�

R*

d�1

��1� �R
dp1 f̃�0,p1�eip1�1�

R
d��1 + �2�−z/2ei���0−�0��

=
�−1

2�
	�

R�R*

dx0dx1

�x1�
f�x��
�

R
d��1 + �2�−z/2ei���0−�0��.

hen, as operators on V0:

TraceV1
���f��−z/2� =

�−1

2�
	�

R�R*
f�x��

dx0dx1

�x1� 
�−z/2. �22�

From what was said above about �−z/2, we see that ��f��−z/2 is traceclass on H� if z�1, and
1+
n the Dixmier class L �H�� if z=1.
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Taking the trace on V0 of �22� and then the residue in z=1 we prove �21�.
Now, since Fun�R2��L2, integrable functions are dense in the algebra A. So, ��f��−1/2 is in

he closure of L1+�H�� for all f �A. The closure of the Dixmier class are the compact operators
, and this concludes the proof. �

Remark: The spectral triple constructed in this section does not have a commutative analogue.
xiom �S1� is not satisfied for �=0.

. Equivariance properties of the representation

Let A be the involutive algebra defined in Proposition 6, H the Hilbert space:

H: = H0 � C2 = L2�R � R*, ��1�−1d�0d�1� � C2,

nd � the grading in �10�. We lift trivially the representation �15� of A from H0 to H.
We postpone the problem of constructing an equivariant Dirac operator and study the equi-

ariance properties of the data �A ,H ,��. Clearly A commutes with �, and so � is a natural
andidate for the grading.

The space H0 carries a representation of an Hopf-algebra, which we indicate with U��iso�2��,
hat is the Euclidean analogue of �-Poincaré. It is generated by three real operators, which we
ontinue to denote with E , P ,N, with commutation relations:

�E,P� = 0, �N,P� = i
2� �1 − e2�E� + i�

2 P2, �N,E� = iP ,

hile coproduct, counit, and antipode are defined by �9�, as for �-Poincaré algebra.
Notice that in the basis

Px = E, Py = Pe−�E/2, J = Ne−�E/2,

he Hopf-algebra is just the quantum Euclidean group derived in Ref. 23 by contraction of

q�su�2��.
There is a natural representation of the �E , P� sub-Hopf-algebra of U��iso�2�� on a space

ense in H0, defined by

��E� = − i�0, ��P� = − i�1.

his extends to a representation of the full Hopf-algebra if we define:

��N� = �0��P� + �1�	1 − e2�E

2�
+

�

2
P2
 = − i�0�1 +

1

2�
�1�1 − e−2i��0� −

�

2
�1�1

2. �23�

n the space C2, we call � the representation of the commutative R subalgebra, defined by

��N�: =
1

2
� =

1

2
	1 0

0 − 1

, ��E� = ��P� = 0.

n the space H=H0 � C2 we consider the representation � � � defined through the �opposite�
oproduct:

�� � ���h� = ��h�2�� � ��h�1��, " h � U��iso�2�� .

his representation commutes with the grading �, since the image through � of the algebra is in
he subspace of Mat2�C� spanned by 1 and �.

Before discussing the U��iso�2��-equivariance of �A ,H ,�� we need to define a covariant
ction of the Hopf algebra on A. If we define:

h � ��f�: = ����h�f�, " h � U��iso�2��, ��f� � A ,
his is a representation of the Hopf-algebra. We want to prove that it is covariant, that is:
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h � ��f1���f2� = �h�1� � ��f1���h�2� � ��f2�� ,

r equivalently using the �-product:

��h��f1 � f2� = ���h�1��f1� � ���h�2��f2� .

Proposition 8: The action � of U��iso�2�� on A is covariant. Moreover:

h � a = ��h�1��a��Sh�2�� ,

or all h�U��iso�2�� and a�A �on a subspace dense in H0�.
Proof: Using �19�, we deduce that the covariance condition is equivalent to

��h���f1�f2 = ����h�1��f1� · ���h�2��f2� . �24�

ince on both sides appear representations of U��iso�2��, it is sufficient to do the check for the
enerators E , P ,N.

We can rewrite �20a� as

��E���f1�f2 = ����E�f1�f2 + ��f1����E�f2� ,

��P���f1�f2 = ����P�f1�f2 + ����e�E�f1����P�f2� ,

nd then the action of E and P is covariant.
In the same way, using �20� and �23�, it is a straightforward computation to prove the cova-

iance of the action of N.
If in Eq. �24� we replace h with h�1�, call a=��f1��A, f2=��Sh�2��
, and recall that

���h�1��f1�=h�1��a, we obtain

��h�1��a��Sh�2��
 = �h�1� � a���h�2�S�h�3���
 = ��h�2��h�1� � a�
 = �h � a�
 .

his concludes the proof. �

Since the representation of A is lifted diagonally from H0 to H=H0 � C2, ��h�a=a��h� for
ll h�U��iso�2�� and a�A. Then, as a corollary:

h � a = �� � ���h�1��a�� � ���Sh�2�� .

his means that:
Corollary 9: �A ,H ,�� is U��iso�2��-equivariant.

. An U�„iso„2……-equivariant Dirac operator

To have an equivariant spectral triple on �-Minkowski space, it remains to find a Dirac
perator D that is equivariant for the action of the quantum Euclidean group.

We write D as a formal pseudo-differential operator:

D
��� � = �
R2

eip���	 0 T��� ,p��
T��� ,p��* 0



̃�p��d2p, 
 � H ,

nd determine the symbol T imposing equivariance. The matrix form of the symbol is a conse-
uence of the grading and formal self-adjointness.

Since �� � ���E�=��E�, �� � ���P�=��P� and �� � ���N�=��N�+��N���e�E�=��N�+ 1
2�, the

quivariance conditions become

���E�,D� = 0, ���P�,D� = 0, ���N�,D� = − 1
2 ��,D� � − �D .
The first two conditions are equivalent to
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�0T��� ,p�� = �1T��� ,p�� = 0.

hen, T��� , p��=T�p��. The last condition can be written as

���N�,T�p��� = − T�p��, ���N�,T�p��*� = T�p��*, �25�

here

��N�: = ip1
�

�p0
+ i	1 − e2�p0

2�
+

�

2
p1

2
 �

�p1
.

f we define ��E�= p0 and ��P�= p1, then the map � extends to a representation of the U��iso�2��
opf algebra.

In Ref. 24 it was constructed for the first time a �formal� isomorphism between �-Poincaré and
he Poincaré algebra. The Euclidean counterpart is the change of coordinates:

e−�p0p1 = :r sin �,
1

�
sinh��p0� +

�

2
p1

2e−�p0 = :r cos � ,

ith r�R0
+ and ��S1. The Casimir of the quantum Euclidean group is:

m2: = 	 2

�
sinh

�E

2

2

+ e−�EP2.

t is related to r2 by

r2 = �	m2	1 +
�2m2

4


 , �26�

nd then r2 is central and ���N� ,r2�=0. So, ��N�= Ñ�r ,���� is a derivation in the � direction, with
˜ defined by Ñ�r ,��rei�=−i���N� ,rei��.

With a straightforward computation we arrive at ���N� ,rei��=rei�, and prove that

��N� = − i
�

��
.

The general solution of �25� is T�p��=R�r�e−i�, with R an arbitrary function. If we want the
lassical Dirac operator as �=0 limit, we are forced to choose R�r�=−r, and the final solution is

D = − �� 0
1

�
sinh��E� + e−�EP	�

2
P − i


1

�
sinh��E� + e−�EP	�

2
P + i
 0 

=� 0
1

�
sinh�i��0� + ei��0	1 +

�

2
�1
�1

1

�
sinh�i��0� − ei��0	1 −

�

2
�1
�1 0  . �27�

This Dirac operator is very similar to the one constructed in Refs. 5–7, but for Euclidean
ignature instead of Lorentzian one, and 1+1 dimension instead of 3+1.

A deformed Leibniz rule for D comes from the coproduct of E , P, and tells us that commu-
ators with the algebra are not bounded, due to the presence of the e�E factor.

Using Eq. �2.5� of Ref. 7 one can reach the same conclusion for the Dirac operators in Refs.
–7.
From �26� we derive the following relation:
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D2 = �	m2	1 +
�2m2

4


 ,

hat is the same as Eq. �12� in Ref. 5.

I. CONCLUSION

In quantum mechanics over Rn, it is usual to work in momentum space by means of Fourier
ransform. If the physical system under consideration lives in a curved manifold, with trivial
angent bundle, momenta are globally defined as vector fields on the manifold, and in general do
ot commute. We have illustrated this situation with an example that is recurrent in physics, the
eSitter space in three dimensions. In such a situation, if we want to work in “momentum space,”
e need the tools of noncommutative geometry.

In these notes, we have studied the lowest dimensional nontrivial �i.e., noncommutative�
xample, when the manifold M is the connected component of the group of affine transformations
f the real line, and found that the “dual” space is �-Minkowski. This is the unique two-
imensional noncommutative example coming from a Lie group.

We have found a natural representation of �-Minkowski on L2�M ,��, with � the �left� Haar
easure on the group M.

Usually this spacetime is studied from an Hopf-algebra point of view, considering U�Lie M�
s the polynomial algebra of coordinates on some virtual space.4 We have argued how, using Weyl
uantization, it is possible to define the associated C*-algebra. The definition of the C*-algebra
llows one to study the topology of the space, following the general philosophical viewpoint that
*-algebra theory may be regarded as a kind of noncommutative topology.

In the last section, we have constructed a spectral triple associated with the cyclic integral of
ef. 10, and an U��iso�2��-equivariant Dirac operator which does not satisfy the axioms for a

pectral triple.
About the Dirac operator i�0, it could be interesting to construct pure states of the algebra and

nvestigate the properties of the distance defined by the celebrated Connes formula �see, e.g., Refs.
and 3�. Since it only involves time derivatives, it is natural to expect that, in some way, it

rovides information only about the time distance between two events.
Apart from its intrinsic interest, �-Minkowski is a simple nontrivial example in which to

ompare Connes’ approach to noncommutative geometry with the Hopf-algebraic one.
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Let ��� be an arbitrary stabilizer state distributed between three remote parties,
such that each party holds several qubits. Let S be a stabilizer group of ���. We
show that ��� can be converted by local unitaries into a collection of singlets, GHZ
states, and local one-qubit states. The numbers of singlets and GHZs are deter-
mined by dimensions of certain subgroups of S. For an arbitrary number of parties
m we find a formula for the maximal number of m-partite GHZ states that can
be extracted from ��� by local unitaries. A connection with earlier introduced
measures of multipartite correlations is made. An example of an undecomposable
four-party stabilizer state with more than one qubit per party is given. These results
are derived from a general theoretical framework that allows one to study intercon-
version of multipartite stabilizer states by local Clifford group operators. As a
simple application, we study three-party entanglement in two-dimensional lattice
models that can be exactly solved by the stabilizer formalism. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2203431�

. INTRODUCTION

Many quantum cryptographic protocols such as quantum key distribution,1 coin flipping,2 or
ther quantum games3 operate with a single copy of a pure quantum state shared by three or more
arties. Each party has complete control of its subsystem, so the states which can be converted to
ach other by local unitary �LU� operators may be regarded as equivalent. Unfortunately, in
eneral, LU-equivalence classes lack any known concise analytical description. For tripartite pure
tates �or, equivalently, bipartite mixed states�, substantial progress has been achieved only for
aussian states of fermions4 and bosons5 with some additional symmetry properties.

In the present paper we study LU-equivalence classes of stabilizer states. A stabilizer state of
qubits can be thought of as an irreducible representation of an Abelian stabilizer group generated

y n pairwise commuting operators in the Pauli group �i.e., tensor products of the identity I and
he Pauli matrices �x, �y, �z�. Important applications of stabilizer states include measurement-
ased schemes of quantum computation6 and quantum error correction using ancillas.7 They also
rovide exactly solvable models of condensed-matter systems.8

In the special case when each party holds exactly one qubit �so that a local operator means a
ne-qubit operator�, LU-equivalence classes of stabilizer states have been already studied by Van
en Nest, Dehaene, and De Moor in Refs. 9–11.

We assume that n qubits are distributed between a finite set of parties M. Each party may hold
n arbitrary number of qubits. Our main results are summarized below.

Result 1: Three-party entanglement.
We prove that an arbitrary stabilizer state shared by three parties A ,B ,C is LU equivalent to

+ +
collection �tensor product� of states from a set E3= ��0� , �� � , ��3��, where

47, 062106-1022-2488/2006/47�6�/062106/19/$23.00 © 2006 American Institute of Physics
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��+� =
1
	2

��0,0� + �1,1�� ,

�1�

��3
+� =

1
	2

��0,0,0� + �1,1,1��

re the EPR state and the GHZ state. The set E3 thus can be called an entanglement generating set
EGS� for three-party systems, as far as stabilizer states are concerned. LU-equivalence classes are
ompletely specified by four integers �a ,b ,c , p�, where a ,b ,c are the numbers of EPR states ��+�
hared by BC, AC, and AB, respectively, while p is the number of GHZ states ��3

+� shared by all
hree parties. A prerequisite to this result is the work in Ref. 12, where a set E2= ��0� , ��+�� was
hown to be an EGS for bipartite systems. It should be emphasized that the set E3 is not an EGS
or arbitrary tripartite states, even if one allows arbitrary local manipulation and classical com-
unication �see Ref. 13�.

Result 2: Multipartite entanglement.
Let ��� be an n-qubit stabilizer state shared by a set of parties M, �M � =m�3, and let S be its

tabilizer group. We are interested in the maximal number of m-party GHZ states

��m
+ � =

1
	2

��0�m� + �1�m��

hat can be extracted from ��� by local unitaries. Denote this number by p. We prove that

p = dim�S� − dim�Sloc� , �2�

here Sloc is a subgroup of S generated by all stabilizer operators that act trivially on at least one
arty. �For bipartite systems the answer is slightly different, p= �1/2��dim�S�−dim�Sloc��, see Ref.
2.�

In particular, p can be computed in polynomial time in the number of qubits. Interestingly, we
ill give below a constructive proof of Eq. �2�, which translates naturally into an efficient algo-

ithm to perform the GHZ extraction. An implementation of this algorithm will be available online
oon.

It should be mentioned that Eq. �2� provides a simple upper bound on p. Indeed, if one can
nd l independent generators of S, such that each of them acts trivially on at least one party, then
im�Sloc�� l and thus p�dim�S�− l.

Also, we show that the GHZ extraction yield p, considered as a functional of ���, coincides
ith an entanglement measure introduced by Linden, Popescu, and Wootters in Ref. 14 to quantify

rreducible multipartite correlations.
To illustrate the usefulness of Results 1 and 2, we consider two-dimensional lattice models

hat can be exactly solved by the stabilizer formalism. Well-known examples of such models
nclude the cluster state used in one-way quantum computation6 and Kitaev’s toric code state.8,15

n general, the ground state of such models can be specified as an eigenvector of local stabilizer
perators. We study tripartite entanglement of the ground state with respect to a partition of the
attice into three angular segments with a common junction point �see Fig. 1 in Sec. VII�. We show
hat the number of GHZ states extractable from the ground state is bounded from above by a
onstant that depends only upon the structure of stabilizers near the junction point �and does not
epend upon the size of the lattice�. This is a natural generalization of the entanglement saturation
henomenon found for 1D spin chains �see Ref. 16 and references therein�.

The rest of the paper is organized as follows. Section II introduces notation and terminology.
ur main technical theorems are proved in Sec. III. In Sec. IV we consider multipartite stabilizer

tates and prove Eq. �2�. Section V establishes a connection between GHZ extraction yield and

easures of multipartite correlations. LU-equivalence classes of tripartite states are discussed in
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ec. VI. We apply the developed technique to spin lattices in Sec. VII. The goal of Sec. VIII is to
onvince the reader that four-party stabilizer states are likely to lack a simple entanglement
enerating set.

I. PRELIMINARIES AND NOTATION

. Stabilizer states

The goal of this section is to introduce convenient terminology. Whenever it is possible, we
se the notation of Ref. 17, Chap. 15.

The Pauli operators �x, �y, �z, and the identity operator I will be labeled by elements of
wo-dimensional binary linear space G= �00,01,10,11�, such that

�00 = I, �10 = �x, �01 = �z, �11 = �y .

or any integer n and f = ��1 ,�1 , . . . ,�n ,�n��Gn, define a �-operator

��f� = ��1�1
� ¯ � ��n�n

.

or all f ,g�Gn, one has ��f���g�=ei���f +g� for some phase factor ei�. The commutation rules
or �-operators can be written as

��f���g� = �− 1���f ,g���g���f� .

ere � :Gn � Gn→ �0,1� is a symplectic form,

��f , f�� = 

j=1

n

� j� j� + � j� j� mod 2.

or any subspace S�Gn define a dual subspace S� as

S� = �f � Gn:��f ,g� = 0 for all g � S� .

subspace S is called isotropic iff S�S�, i.e., ��f ,g�=0 for any f ,g�S. A subspace S is called
elf-dual iff S�=S. For any isotropic �self-dual� subspace S�Gn one has dim�S��n �dim�S�
n�.

The Hilbert space of n qubits will be denoted Bn. A unitary operator U :Bn→Bn belongs to the
lifford group, U�Cl�n�, iff it maps �-operators to �-operators �up to a sign� under the conju-
ation. In other words, U�Cl�n� iff there exists a map u :Gn→Gn and a function 	 :Gn→ �+1,
1�, such that

U��f�U† = 	�f���u�f�� �3�

or any f �Gn. Unitarity of U implies that u is a linear invertible map preserving the inner product
, i.e.,

��f ,g� = ��u�f�,u�g��

or all f ,g�Gn. Such linear maps constitute a binary symplectic group Sp2�n�. In fact, all u
Sp2�n� can be realized through an appropriate choice of U�Cl�n�.

A stabilizer state ����Bn is an irreducible representation of a group �	�f���f� : f �S�, where
�Gn is a self-dual subspace and 	 :S→ �+1,−1� is a function that accounts for a phase in a
roduct of � operators. In other words,

��f��� � = 	�f��� � , f � S . �4�

he state ��� is uniquely specified by Eq. �4�. The subspace S is referred to as a stabilizer group

f ���. Two stabilizer states have the same stabilizer group iff they can be mapped to each other
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y a � operator, see Ref. 17. Any stabilizer state can be represented as ���=U �0�n� for some
perator U�Cl�n�.

. Local Clifford equivalence

A state ����Bn is called M-partite iff the n qubits are distributed between a finite set of
arties M, i.e.,

n = 

��M

n�, n� � 0. �5�

e shall be interested in equivalence classes �orbits� of stabilizer states under local Clifford
nitary �LCU� operators.

Definition 1: M-partite stabilizer states ��� , �����Bn are called LCU-equivalent iff there
xist Clifford unitaries �U��Cl�n�����M such that

���� = �
��M

U��� � .

or any vector f �Gn and party � denote by f��Gn� a projection of f onto the party � �if one
egards f as a binary string, f� is a substring that includes all qubits owned by a party ��. In
articular, f�=0 iff ��f� acts trivially on the party �.

Definition 2: Suppose n qubits are distributed among a set of parties M. Let S�Gn be a linear
ubspace. For each ��M define a local subspace S��S and a colocal subspace S�̂�S as

S� = �g � S:g� = 0 for all � � M \ �� ,

nd

S�̂ = �g � S:g� = 0� .

n other words, f �S�̂ iff ��f� acts as the identity on the party �; f �S� iff ��f� acts as the identity
n all parties ���. In the case n�=0 we shall use a convention S�=0 and S�̂=S. If S is a
tabilizer group of some state, we shall use the terms local �colocal� subspace and local �colocal�
ubgroup interchangeably.

Consider an M-party stabilizer state ���. Let 
� be the reduced state of the party �. To
implify the discussion we shall assume that Rk�
��=2n� for all ��M, that is, that all states under
onsideration have the maximal possible local ranks. Let S be a stabilizer group of ���. One can
asily check that the requirement Rk�
��=2n� is equivalent to the local subgroup S� being trivial.

Definition 3: An M-party stabilizer state ��� with a stabilizer group S has full local ranks iff
ll local subgroups of S are trivial:

S� = 0 for all � � M .

n general case, if Rk�
��=2k, one has dim�S��=n�−k. Equivalently, n�−k copies of the one-qubit
tate �0� can be extracted from ��� for each ��M by local Clifford unitaries �this will follow
rom Theorem 2 with S�=S��. After such local extractions we arrive at a state with full local ranks.

necessary and sufficient criterion for LCU equivalence is given below.
Theorem 1: Let ��� , �����Bn be M-party stabilizer states with full local ranks. Let

,S��Gn be their stabilizer groups. The state ��� is LCU equivalent to ���� iff there exists a
inear invertible map T :S→S� such that

��T�f��,T�g��� = ��f�,g�� for all f ,g � S,� � M .
e shall prove Theorem 1 in the next section.
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II. LOCAL EXTRACTION

Let ����Bn be an M-party stabilizer state. The most interesting stabilizer states are LCU-
rreducible ones �which in this paper we simply refer to as irreducible�, which are not LCU
quivalent to a collection of stabilizer states of smaller dimension. For example, if one considers
he finest partition, M = �1,2 , . . . ,n�, a state ��� is irreducible iff it is entangled with respect to any
ipartition. On the other hand, we shall see that for bipartite and tripartite systems ��M � =2 or
M � =3�, the only irreducible states are the EPR and GHZ states. If ��� is not irreducible, one can
xtract some simpler stabilizer state from it by LCU operators. Given two M-party states ��� and
���, one can ask under what circumstances ���� is extractable from ���. The goal of this section
s to answer this question. Note that LCU-equivalence of states is just a special case of extraction,
hen ���� and ��� are composed from the same number of qubits.

Definition 4: Let ����Bn and �����Bk be M-party stabilizer states, such that

n = 

��M

n�, k = 

��M

k�, 0 � k� � n�.

he state ���� is extractable from ��� iff ��� is LCU-equivalent to ��� � ��� for some M-party
tabilizer state ����.

Remark: An equality k�=0 means that the party � owns no qubits of the state ����. Analo-
ously, k�=n� implies that the party � owns no qubits of the state ����.

A necessary and sufficient criterion for a state ���� to be extractable from ��� is given below.
Theorem 2: Let ����Bn and �����Bk be M-party stabilizer states with stabilizer groups

�Gn and S��Gk. The state ���� is extractable from ��� iff there exists a linear injective map
:S�→S such that

�i� ��T�f�� ,T�g���=��f� ,g�� for all f ,g�S� and ��M;
�ii� �T ·S���̂=T · �S�̂�� for all ��M.

This theorem is a simple consequence of the following lemma.
Lemma 1: Suppose n qubits are distributed among a set of parties M. Let S ,S��Gn be linear

ubspaces. The following statements are equivalent:

�1� There exist local operators �u��Sp2�n�����M such that

S� = � �
��M

u�� · S ,

�2� There exists a linear invertible map T :S→S� such that

�i� ��T�f�� ,T�g���=��f� ,g�� for all f ,g�S and ��M;
�ii� T ·S�̂=S�̂� for all ��M.

Here the direct sum ���Mu� corresponds to a decomposition of Gn into its local subspaces,
.e., Gn= ���MG�

n . A proof of the lemma is presented in Appendix B.
Proof of Theorem 2: The nontrivial part is to prove that existence of T with the properties �i�,

ii� implies that ���� is extractable from ���. Let us split the n� qubits owned by the party �
M into two subsets

�1,2, . . . ,n�� = A� � B�,

uch that �A� � =k�. We shall refer to a qubit as an A-qubit �B-qubit� if it belongs to one of the
ubsets A� �B��. Any vector f �Gn can be represented as a direct sum f = fA � fB, where fA and fB

re projections of f onto A-qubits and B-qubits, respectively.
Let us define a linear subspace R��Gn that is equal to a direct sum of S� on A-qubits and the
ero space on B-qubits, i.e.,
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R� = �f � Gn:fB = 0 and fA � S�� .

efine also a subspace R=T ·S��S, i.e.,

R = �f � Gn:f = T�g� for some g � S�� . �6�

he map T regarded as a map from R� to R obviously satisfies condition �2� of Lemma 1. We
onclude that there exists a linear symplectic operator u :Gn→Gn such that

R� = u · R, u = �
��M

u�, �7�

here u��Sp2�n��.
Consider a linear subspace

Q = u · S � Gn. �8�

he fact that u�Sp2�n� implies that Q is self-dual. Let ����Bn be a stabilizer state with the
tabilizer group Q. ���� is unique up to multiplication by a � operator.� Since u is a direct sum of
ocal symplectic operators, ��� is LCU equivalent to ���.

We still must show that ��� is a tensor product of two stabilizer states, ���= ��A � �B�, that
ive on the A-qubits and B-qubits, respectively. Indeed, since R is a subgroup of S, it follows from
qs. �7� and �8� that

R� � Q .

hus the state ��� satisfies stabilizer equations

��f��� � = 	�f��� � , f � R�, �9�

or some function 	 :R�→ �+1,−1�. By the definition of R�, any operator ��f�, f �R� acts trivially
n B-qubits. If we restrict our attention to A-qubits only, R� is a self-dual subspace �since R
S��. Thus the stabilizer equations �9� completely specify the state of the A-qubits �see the

emarks following Eq. �4��. Denote this state ��A�. Since the states ��A� and ���� have the same
tabilizer group, they coincide up to a � operator. Thus ��� is LCU equivalent to ��� � �B� for
ome stabilizer state ��B�. On the other hand, ��� is LCU equivalent to ���. We have proved that
��� is extractable from ���.

Conversely, suppose ��� is LCU equivalent to ��� � ���. This means that S=u · �S� � S��,
here S� is a self-dual subspace, u= ���Mu� is a local symplectic operator, and the direct sum

orresponds to the bipartition of all qubits in the state ��� � ���. One can easily check that a map

T�f� = u · �f � 0�

rom S� to S satisfies conditions �i� and �ii�. The theorem is proved. �

Remark: Condition �ii� in Theorem 2 cannot be dropped. Indeed, consider as an example
hree-party states, M = �A ,B ,C�. Let ���= ��3

+� be the GHZ state and ����= ��+� be the EPR state
hared by A and B. Obviously, ���� cannot be extracted from ��� without classical communica-
ion. However, the linear injective map T satisfying condition �i� exists. Indeed, consider a map-
ing

�x
� �x → �x

� �x
� �x,

�z
� �z → �z

� �z
� I

etween stabilizer generators of ���� and ���. It can be easily converted to a map T :S�→S
etween the stabilizer groups. This map preserves local commutation rules, so condition �i� is
atisfied.
Proof of Theorem 1: Consider a special case of Theorem 2 with k�=n� for all ��M, i.e., with
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he state ���� being a complex number. In this case S ,S��Gn are self-dual subspaces, so that
im�S�=dim�S��=n. Thus T is a linear invertible map and T ·S�=S. On the other hand, the state-
ent “���� is extractable from ���” translates into “���� is LCU equivalent to ���.” What we

btain is exactly Theorem 1 with T replaced by T−1 and with the extra condition �ii�. We will show
ow that �ii� can be derived from �i�, the equality T ·S�=S, and the maximal local rank assumption.

Indeed, consider some particular � and take any vector f �S�̂� , so f�=0. Denote h=T�f��S.
ondition �i� tells us that

��h�,g�� = ��f�,�T−1�g���� = 0 for any g � S .

onsider a vector h̃�G�
n such that h̃�=h�. Then ��h̃ ,g�=0 for any g�S, that is h̃�S�. Since

�=S we have h̃�S�G�
n =S�=0. We conclude that h�=0, that is h�S�̂. This proves that

T · S�̂� � S�̂.

pplying the same arguments to the map T−1 :S→S� �which, of course, also satisfies condition �i��
ne gets

T−1 · S�̂ � S�̂� .

herefore S�̂� and S�̂ have the same dimension, and thus T ·S�̂� =S�̂. �

Remark: In fact, a little bit more work shows that the full local ranks assumption in Theorem
can be dropped. We sacrifice some generality for the sake of readability.

V. GHZ-EXTRACTION FORMULA

Given a set of parties M, �M � =m, consider an M-party analogue of the GHZ state

��m
+ � =

1
	2

��0�m� + �1�m�� � Bm.

t is a stabilizer state with a stabilizer group generated by a vector f̄ �Gm such that

�� f̄� = �1
x

� �2
x

� ¯ � �m
x , �10�

nd vectors �f���Gm��,��M such that

��f��� = ��
z

� ��
z �11�

the identity factors are suppressed�. The vectors f̄ , f�� constitute an overcomplete basis of the
tabilizer group.

Given an M-party stabilizer state ����Bn, one can ask how many copies of ��m
+ � can be

xtracted from ��� by local Clifford unitaries. The goal of this section is to answer this question.
et S be a stabilizer group of ���, and S�̂�S, ��M, be its colocal subgroups �see Definition 2�.
efine a subgroup

Sloc = 

��M

S�̂ �12�

enerated by all colocal subgroups. The sum above is generally not a direct one, since the colocal
ubgroups may overlap. By definition, Sloc�S, and, in general, Sloc�S. In the latter case one has
deficit of local stabilizer elements, meaning that for any choice of a basis in S there will be at

east n−dim�Sloc� basis vectors having support on all m parties ��M. We will see that each of

hese nonlocal basis vectors can be identified with the f̄ element of the stabilizer of a state ��m
+ �

see Eq. �10��.

It was pointed out in Ref. 12 that a functional
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���� = n − dim�Sloc� = dim�S� − dim�Sloc� �13�

an be used as an entanglement measure that quantifies truly multipartite correlations in ���. In the
resent paper we go further and prove the following theorem.

Theorem 3: Let ����Bn be an M-party stabilizer state with a stabilizer group S. Suppose
hat m= �M � �3. The maximal number of states ��m

+ � extractable from ��� by local Clifford
nitaries is equal to ����.

Remarks: �1� Note that the functional ���� is invariant under extraction of local �0� states.
hus we can safely assume that ��� has full local ranks. �2� The generalization of the theorem to
rbitrary LU operators is discussed in Sec. V. �3� A shorter but less constructive proof of the
heorem is given in Appendix A.

Proof: For each ��M define a subspace L��Gn as

L� = �f � G�
n :��f ,g� = 0 for all g � Sloc� .

ere G�
n is the local subspace of Gn corresponding to the party � �see Definition 2�. To illustrate

he usefulness of this definition, consider as an example ���= ��m
+ �. Then the subgroup Sloc is

enerated by vectors �f��� �see Eq. �11��, while L� is a one-dimensional subspace generated by

�
z . The remaining stabilizer generator of the GHZ state f̄ anticommutes with ��

z for any ��M.

hus any product ��
z

� ��
z commutes with both f̄ and stabilizer elements from Sloc. Therefore,

�
z

� ��
z is in the stabilizer of ���. Similarly, in the general case, we shall use the subspaces L� to

onstruct 2-local stabilizer elements of ��� that are analogous to ��
z

� ��
z stabilizer elements of the

HZ state.
Our first goal is to prove that

dim�L�� = ���� for any � � M . �14�

hoose an arbitrary subgroup Sent�S such that

S = Sloc � Sent. �15�

y definition of Sloc, any nonzero vector f �Sent has support on all parties, i.e., f��0 for all �
M. Define a bilinear form

�:L� � Sent → �0,1�, ��f ,g� = ��f�,g�� .

e claim that the form � is nonsingular, that is

��f ,g� = 0 for all g � Sent iff f = 0, �16�

nd

��f ,g� = 0 for all f � L� iff g = 0. �17�

ndeed, suppose f �L� and ��f ,g�=0 for all g�Sent. By definition of L�, we have ��f ,g�=0 for
ll g�Sloc. Thus the decomposition Eq. �15� implies that f �S�. But since S�=S, one has f �S.
ince the state ��� has full local ranks �see the remark after the theorem�, L��S�S�=0, that is

f =0. The property Eq. �16� is proved.
Suppose g�Sent and ��f ,g�=0 for all f �L� �for some particular ��M�, that is g�L�

�. The
efinition of L� implies that

g � L�
� iff g� = h� for some h � Sloc.

Here we use the fact that �L���=L for any binary subspace L.� Thus there exists a vector h
Sloc such that �h+g��=0, i.e., h+g�Sloc. But this means that g�Sloc. Since decomposition Eq.
15� is a direct sum, the inclusion g�Sent�Sloc implies g=0. The property Eq. �17� is proved.
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The fact that � is nonsingular implies that the subspaces L� and Sent have the same dimen-
ion. But from Eq. �15� we infer that dim�Sent�=����. The formula Eq. �14� is proved.

Denote p=���� and choose an arbitrary basis ḡ1 , ḡ2 , . . . , ḡp in the subspace Sent. For each
�M choose the dual basis g�1 ,g�2 , . . . ,g�p in the subspace L� with respect to the form �. That

s, the set of vectors �g�j� j must satisfy equations

��g�j, ḡk� = � jk for all 1 � j,k � p and � � M . �18�

efine vectors g��j �Gn by

g��j = g�j + g�j, j = 1, . . . ,p .

t follows from Eq. �18� that

��g��j, ḡk� = ��g�j, ḡk� + ��g�j, ḡk� = � jk + � jk = 0.

hus g��j �Sent
� . On the other hand, by definition of the subspaces L�, one has L��Sloc

� for all
�M, that is g��j �Sloc

� . We infer from Eq. �15� that g��j �S�. Since S is self-dual, we conclude
hat g��j �S.

All arguments above apply equally well to m=2 and m�3. From now on we shall focus on
he case m�3.

We would like to show that the subspaces L� are isotropic, i.e.,

��f ,g� = 0 for all f ,g � L�, � � M . �19�

ndeed, it suffices to show that ��g�j ,g�k�=0 for any j ,k. Assuming that m�3, choose an arbi-
rary triple � ,� ,��M, such that �����. Taking into account that g��j �S, g��k�S, we obtain
hat

0 = ��g��j,g��k� = ��g�j,g�k� .

he property Eq. �19� is proved.
By definition, a vector g��j has a support only on two parties. If m�3 it means that

g��j � Sloc �20�

or all pairs of parties � ,��M and j=1, . . . , p.
Our next goal is to adjust the subspace Sent to make it “locally isotropic,” i.e., to fulfill the

ollowing property:

��f�,g�� = 0 for all f ,g � Sent, � � M .

his adjustment can be achieved by adding a proper “local shift” taken from the subspaces L�.
amely, the basis vectors ḡj �Sent must be replaced by new basis vectors according to

ḡj → ḡj + 

��M



l=1

j−1

� jl
�g�l, j = 1, . . . ,p , �21�

here

� jl
� = ���ḡj��,�ḡl��� .

ne can easily check that after this replacement we end up with

���ḡj��,�ḡk��� = 0

or all ��M and all j ,k. In addition, the fact that Sent is an isotropic subspace, i.e., ��ḡj , ḡk�=0,

mplies that
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��M

� jl
� = 0

or any fixed j , l. This means that the vector added to ḡj in Eq. �21� belongs to the stabilizer group
. Accordingly, the adjusted Sent is still a subspace of S. Moreover, Eq. �20� implies that the added
ector belongs to Sloc, so the decomposition S=Sloc � Sent remains a direct sum.

Summarizing, after the adjustment described above we can assume that

��g�j,g�k� = 0, ���ḡj��,�ḡk��� = 0, ��g�j, ḡk� = � jk, �22�

or all ��M. Here j and k are arbitrary integers in the range 1 , . . . , p.
Denote by Sghz�Gm·p a stabilizer group of p copies of the GHZ state ��m

+ �. As generators of

ghz let us choose p copies of the canonical GHZ generators �see Eqs. �10� and �11��. Denote them

s f̄ j and f��j, where j=1, . . . , p refers to different copies of ��m
+ �. Define a linear map T :Sghz

S such that its action on the generators is as follows:

T� f̄ j� = ḡj, T�f��j� = g��j ,

here j=1, . . . , p and � ,��M. We would like to prove that T satisfies all conditions of Theorem
.

Using the fact that the vectors �ḡj ,g�k�, j ,k=1, . . . , p, ��M are linearly independent, one can

asily show that T is a linear injection. Taking into account that g1̄ , . . . , ḡp span the subspace Sent

hat has no intersection with Sloc, we conclude that �T ·Sghz��̂=T · �Sghz��̂. Condition �i� of Theorem
follows from the local commutation relations Eq. �22�. Thus one can extract at least p copies of

he state ��m
+ � from ���.

Conversely, to prove the upper bound, assume that one can extract q copies of ��m
+ � from ���.

enote by Sghz the stabilizer group of �q ·�m
+ � and let f̄1 , . . . , f̄ q be the canonical �x-type stabilizers

see Eq. �10��. Let T :Sghz→S be the linear injective map whose existence is guaranteed by

heorem 2. Clearly, a linear span of f̄1 , . . . , f̄ q has no intersection with colocal subspaces �Sghz��̂.

ccording to Theorem 2, vectors T� f̄1� , . . . ,T� f̄ q� are linearly independent and their linear span has
o intersection with Sloc. This means that dim�Sloc��n−q. Therefore p�q, i.e., one can extract at
ost p copies of ��m

+ �. �

. BEYOND STABILIZER STATES

In this section we argue that the functional ���� defined in Eq. �13� for stabilizer states can
e naturally extended to arbitrary multipartite states. Namely, it coincides with a measure of
ultipartite correlations introduced by Linden, Popescu, and Wootters in Ref. 14. A similar mea-

ure has been introduced also for multipartite probability distributions in Ref. 18. It will allow us
o show that ���� is equal to the number of GHZ states extractable from ��� by arbitrary local
nitaries.

Denote by D�Bn� a set of all mixed n-qubit states. Assume that n qubits are distributed
etween a set of parties M. Let ����Bn be an arbitrary M-party state. Define a set

���� = �
 � D�Bn�:Tr��
� = Tr��������� � � M� ,

here Tr� is the partial trace. In other words, 
����� iff 
 agrees with ��� on any subset of
M �−1 parties. Following Ref. 14, define a functional

���� = max

�����

S�
� , �23�

here S�
�=−Tr 
 log�
� is the von Neumann entropy. For bipartite states ���� coincides with
he entanglement entropy �except for a factor 2� �see Ref. 14�. The main result of this section is the
ollowing.
Theorem 4: For any M-party stabilizer state ��� with a stabilizer group S one has
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���� = dim�S� − dim�Sloc� ,

here Sloc=
��MS�̂.
The proof is based on the following observation.
Lemma 2: Let ��� be an M-party stabilizer state with a stabilizer group S. If S is generated by

ts colocal subgroups, S=Sloc, then ������ is the only state that belongs to the set ����.
In other words a state ��� with S=Sloc is the unique �mixed� state compatible with partial

races of ���.
Proof: We shall use stabilizer equations ��f� ���=	�f� ���, f �S, uniquely specifying ��� �see

q. �4��. Take any state 
�����. For any f �S�̂ one has

Tr���f�
� = �����f���� = 	�f� .

Now consider a projector �= �1/2��I+	�f���f��. Then Tr��
�=1. This is possible only if the
ange of 
 coincides with the range of �. Thus, �
=
, i.e.,

��f�
 = 
��f� = 	�f�
 for any f � S�̂, � � M . �24�

ince S is generated by the subgroups S�̂, the equalities Eq. �24� actually hold for any f �S. But
quations ��f�
=	�f�
, f �S, mean that 
 has support on the subspace stabilized by S, that is 

������. �

Corollary 1: Let ���= ��� � �� be a collection of two M-party stabilizer states, such that ���
atisfies the conditions of Lemma 2. Then

���� = ����� � ������ . �25�

To prove the corollary, take any state 
����� and apply Lemma 2 to the partial trace of 

ver the first subsystem. Now we are ready to prove Theorem 4.

Proof: Let p=dim�S�−dim�Sloc� and m= �M�. Obviously, ���� is invariant under local unitar-
es. As we know from Theorem 3, ��� is LCU equivalent to a collection of p M-party GHZ states,
p ·�m

+ �, and some M-party stabilizer state ��� satisfying the conditions of Lemma 2. Taking into
ccount the factorization property Eq. �25�, we obtain

���� = ��p · �m
+ � .

t remains to be shown that

��p · �m
+ � = p . �26�

irst of all, consider a mixed version of the GHZ state,


 = �1/2��0�m��0�m� + �1/2��1�m��1�m� . �27�

t is clear that 
����m
+ �. Thus

��p · �m
+ � � S�
�p� = pS�
� = p . �28�

o get an upper bound, take any 
�����. Divide M into three nonempty subsets by an arbitrary
ay: M =M1�M2�M3. Let 
 j and 
 jk be the reduced states of the subset Mj and Mj �Mk �with

espect to 
�. The strong subadditivity inequality shows that

S�
� + S�
1� � S�
12� + S�
13� .

ut the condition 
���p ·�m
+ � implies that all the states 
1, 
12, and 
13 are the mixed versions of

he GHZ state �Eq. �27��, that is S�
1�=S�
12�=S�
13�= p. Thus we get S�
�� p. Combining it with
he lower bound Eq. �28� we get Eq. �26�. �

Corollary 2: Theorem 3 gives the GHZ extraction yield from a stabilizer state for arbitrary
ocal unitary operators.
Proof: Let p=���� and q be the number of GHZ states extractable from ��� by local
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nitaries. Obviously, q� p. Since the functional ���� is LU invariant, we infer from Eq. �26� that
������q ·�m

+ �=q. It follows from Theorem 4 that p�q. Thus p=q. �

I. TRIPARTITE STABILIZER STATES

As a simple application of Theorem 3 let us show that any tripartite stabilizer state is LCU
quivalent to a collection of states from the set E3= ��0� , ��+� , ��3

+��. After extraction of all local
0� states one can consider only states with full local ranks.

Theorem 5: Let ����Bn be a stabilizer state with full local ranks shared by a set of parties
M = �A ,B ,C�. Let S be a stabilizer group of ��� and Sloc=
��MS�̂. Denote p=dim�S�−dim�Sloc�
nd d���=dim�S�̂�. The state ��� is LCU equivalent to a collection of

�i� �d�A�− p� /2 copies of ��+� shared by B and C,
�ii� �d�B�− p� /2 copies of ��+� shared by C and A,
�iii� �d�C�− p� /2 copies of ��+� shared by A and B,
�iv� p copies of the GHZ state ��3

+�.

Proof: As we already know from Theorem 3, one can extract p copies of ��3
+� from ���. This

llows us to consider only the case p=0. Equivalently, we can assume that S is equal to the sum
f its colocal subgroups, S=Sloc. The full local ranks assumption means that the colocal subgroups
o not overlap, i.e., S�̂�S�̂=0 for ���. Thus S can be represented as a direct sum,

S = SÂ � SB̂ � SĈ. �29�

Let us prove that ��� is LCU equivalent to a collection of EPR states ��+�. The proof consists
f applying the same arguments to each pair of parties, so let us focus on the pair AB.

Denote RSĈ and consider a bilinear form

:R � R → �0,1�, �f ,g� = ��fA,gA� ,

or any f ,g�R. We claim that  is a nonsingular form. Indeed, suppose that

�f ,g� = 0 for all g � R �30�

nd prove that f =0. Indeed, Eq. �30� and decomposition Eq. �29� imply that ��fA ,hA�=0 for any

�S. We can rewrite this as �� f̃ ,h�=0 for any h�S, where f̃ �GA
n is chosen such that f̃A= fA. It

eans that f̃ �S�, that is f̃ �S�GA
n =SA=0. Therefore, fA=0 and so f �SB=0. We conclude that

f =0 and  is nonsingular.
Applying the Gram-Schmidt orthogonalization procedure, one can check that R must have an

ven dimension, dim�R�=2l, and that there exists a symplectic basis �gj , ḡj� j=1,. . .,l of R such that

�gj,gk� = 0, �ḡj, ḡk� = 0, �gj, ḡk� = � jk. �31�

For a proof see Dickson’s theorem in Ref. 19, Chap. 15.�
Denote by SEPR�G2l a stabilizer group of l copies of the EPR state, �l ·�+�. We consider

l ·�+� as a tripartite state, such that C holds no qubits at all, and there are l EPR states shared by

and B. The group SEPR has independent generators �f j , f̄ j� j=1,. . .,l such that

��f j� = � j
z

� � j
z, �� f̄ j� = � j

x
� � j

x,

here j labels the copies of ��+�, i.e., j=1, . . . , l. Define a linear map T :SEPR→S such that

T�f j� = gj, T� f̄ j� = ḡj, j = 1, . . . ,l .

bviously, T�SEPR�=R. We would like to check that T satisfies all the conditions of Theorem 2.
ndeed, it is a linear injection because the images of the basis vectors of SEPR are linearly inde-

endent. Condition �i� follows directly from Eq. �31�. Condition �i� holds because SEPR has trivial
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olocal subgroup and so does R. Thus l copies of ��+� shared between A and B can be extracted
rom ���.

Applying the same arguments to other pairs of parties, we conclude that AB, BC, and AC can
xtract d�C� /2, d�A� /2, and d�B� /2 EPR states, respectively. The total number of qubits in the
xtracted EPR states is d�A�+d�B�+d�C� which coincides with dim�S�=n, see Eq. �29�. Thus no

qubits are left after the extraction.
To conclude the proof it is sufficient to note that extraction of a single GHZ state ��3

+� reduces
ach of the dimensions dim�S�̂� by one. �

A simple corollary of Theorem 5 is that two tripartite stabilizer states ��� , ���� are LU-
quivalent iff their decompositions into ��+�, ��3

+�, and local �0� states coincide. Indeed, make use
f the fact that a partial trace of ��3

+� over any qubit is a separable state. LU equivalence of ���
nd ���� implies that all partial traces of ��� and ���� are LU equivalent; that is, the number of
inglets ��+� extractable by each pair of parties is the same for ��� and ����. By counting the
emaining dimensions we conclude that the numbers of GHZ’s ��3

+� extractable from ��� and ����
re the same. Thus LU-equivalence classes of tripartite stabilizer states are completely specified by
he numbers of ��+� and ��3

+� in the decomposition of Theorem 5.
Remark: One could prove Theorem 5 by making use of mixed stabilizer states. A mixed

tabilizer state is a maximally mixed state encoded by some stabilizer code. Bipartite mixed
tabilizer states can be classified using the techniques of the paper.12 It turns out that any bipartite
ixed stabilizer state is LCU equivalent to a collection of �i� local pure states; �ii� local maximally
ixed states; �iii� EPR states; �iv� two-qubit mixed states �1/2� �0,0��0,0 � + �1/2� �1,1��1,1�.
ombining this fact with the purification theorem one immediately gets Theorem 5. We refrain

rom pushing this approach further, because it is less symmetric than the one presented above.

II. SATURATION OF MULTIPARTITE ENTANGLEMENT ENTROPY IN SPIN
ATTICES

As was mentioned in the introduction, characterization of multipartite entangled states might
e useful for quantum cryptography and quantum game theory. Another natural area to look for
pplications is condensed matter physics. It has been realized recently that ground states of
-dimensional spin lattices with spatially uniform short-range interactions are distinguished
mong all other states by obeying the entropic area law �see Ref. 16 and references therein�.
ccording to this law, entanglement entropy of a block of spins with a spatial size L �thus

ontaining about Ld spins� scales as E�L�=b ·Ld−1+o�Ld−1�, where b is a constant �critical systems
re set aside�. This law can be understood, at least very roughly, if one regards the ground state as
collection of short-range EPR states. Then E�L� is equal to the number of EPR states that stretch
etween the interior and exterior of the block. It is obviously proportional to the area of the
oundary. From this standpoint �which is of course only a rude approximation� E�L� can be
egarded as the maximal number of EPR states extractable from the ground state by local unitaries.

To get more insight into the structure of entanglement of the ground state, one can consider a
artition of the lattice into several blocks of spins �which may or may not have junction points�,
nd ask how many multipartite GHZ states can be extracted from the ground state by local
nitaries. In this section we shall try to follow this program.

Let us first set the problem more strictly. We shall focus on the two-dimensional case �a
eneralization to an arbitrary d is trivial�. Suppose that the system under consideration consists of
qubits that are assigned to sites of a 2D regular lattice. Let ��0��Bn be the ground state of the

ystem. Consider a partition of the lattice into three segments A, B, and C which have a common
unction point O, while pairwise intersections are one-dimensional rays incident to O �see Fig. 1�.

he problem is to compute the quantity
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E3�n� = ���0� ,

efined by Eq. �23�. As was argued in Sec. V, the quantity ���0� is a natural generalization of the
HZ extraction yield beyond stabilizer states. We are particularly interested in the asymptotic
ehavior of E3�n� when n goes to infinity �the thermodynamic limit�.

It is natural to expect that E3�n� does not diverge as n→�, since tripartite correlations must be
ormed by interactions acting on spins near the junction point O. As long as the Hamiltonian of the
ystem is short ranged, there is only a finite number of such interactions. In other words, a natural
onjecture is that

sup
n

E3�n� � � . �32�

his inequality says that E3�n� can be bounded from above by a constant that does not depend on
he size of the system �this constant may depend upon the details of the system’s Hamiltonian,
owever�. The conjecture Eq. �32�, if it is true, would generalize the entanglement saturation
henomenon found for one-dimensional spin chains16 to higher dimensions.

In the rest of this section we prove Eq. �32� for a special case when �i� ��0� is a stabilizer
tate; �ii� the stabilizer group of ��0� has a set of geometrically local generators. Well-known
xamples of such states are the 2D cluster state6 or the planar analogue of Kitaev’s toric code
tate.15

Let ��0��Bn be a stabilizer state and S�Gn be its stabilizer group. Let us say that S has an
nteraction length l, iff there exists a family of vectors f1 , . . . , fp�S, such that �i� S is generated by
f1 , . . . , fp; �ii� for any j, the support of the vector f j can be covered by a l� l rectangular block. We
o not assume that the f j are linearly independent, so in general p�n. However we assume that
ny vector u�Gn appears in the list f1 , . . . , fp with multiplicity at most one �which, of course, is
ot a restriction at all�. For example, one can easily check that the 2D cluster state and Kitaev’s
tate have interaction length l=3 and l=2, respectively.

Consider a subgroup S��S generated by vectors f j that have support on all three parties A, B,
nd C. Obviously, f j is supported on all three parties only if the l� l block representing the support
f f j covers the junction point O. Since there are only l2 different blocks that cover O and each
lock can represent at most l2 independent vectors f j, we conclude that

dim�S�� � l4.

onsider now a subgroup Sloc�S generated by colocal subgroups of S �see Eq. �12��. Since each
f j belongs to at least one of the subgroups S�, Sloc, we infer that

S = Sloc + S� and dim�Sloc� � dim�S� − dim�S�� .

FIG. 1. �Color online� A junction point.
aking into account Theorem 4, one gets
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���0� = dim�S� − dim�Sloc� � dim�S�� � l4

hich gives us an upper bound on the number of GHZ states ��3
+� that can be extracted from ��0�.

his bound does not depend upon n—only upon the interaction length l. Therefore Eq. �32� is
roved.

Remark: Since the state ��0� is uniquely specified by stabilizer equations ��f� ��0�
	�f� ��0�, f �S �see Eq. �4��, it can be regarded as the nondegenerate ground state of a Hamil-

onian

H = − 

j=1

p

	�f j���f j� .

his Hamiltonian is a sum of local interactions each of which affects the qubits inside some l
l block.

III. FOUR-PARTY STABILIZER STATES

As we learned from Sec. VI, there exists essentially one irreducible tripartite stabilizer state—
he GHZ state ��3

+�. What about four-party states? As the simplest example, consider a system of
our qubits distributed between four parties. As was pointed out in Ref. 20, there exist only two
rreducible four-qubit stabilizer states: the GHZ state ��4

+� and a state

�C4� = �1/2���0000� + �0011� + �1100� − �1111�� ,

uch that �C4�=���z��2,3� ��+ � �+� �one can check that �C4� is LCU equivalent to the cluster
tate of a four-qubit linear chain�.

Is it true that a set E4= ��0� , ��+� , ��3
+� , ��4

+� , �C4�� is an entanglement generating set for
our-party stabilizer states? In this section we give an example of a state that is not LCU equiva-
ent to any collection of states from E4, thus answering this question in the negative.

Consider a graph G= �V ,E� with six vertices shown in Fig. 2. For each vertex u�V define a
tabilizer fu�G6 such that

��fu� = �u
x

�
�u,v��E

�v
z . �33�

he vectors �fu�u�V generate a self-dual subspace S�G6. Let �G��B6 be the corresponding
tabilizer state �it is known as a graph state associated with the graph G; one can also define �G�
sing a classical GF�4�-linear code known as hexacode, see Ref. 21�. This state has the following
urious property.

Proposition: A partial trace of �G� over any triple of qubits is maximally mixed:

Truvw��G��G�� = 1
8 I, for any u � v � w . �34�

or a proof see Ref. 22.
Suppose now that �G� is shared by a set of parties M = �A ,B ,C ,D� such that

FIG. 2. Graph G used in the definition of �G�.
A = �1,4�, B = �3,6�, C = �2�, D = �5� .
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Lemma 3: If �G� is shared by the set of parties M = �A ,B ,C ,D� as above, it is irreducible, i.e.,
o stabilizer state can be extracted from �G�.

�Here we talk about extraction in the sense of Definition 4 and ignore the trivial possibility of
xtracting �G� from itself.�

Proof: We shall first show that neither of the states ��+�, ��3
+� can be extracted from �G�.

�a� ��3
+� extraction: Suppose one can extract one copy of ��3

+� which is shared by a subset of
arties M��M, �M� � =3. Obviously, M� contains at least one of A, B, and at least one of C, D. By
he symmetry, assume that A�M� and D�M�. Then the reduced state of the qubits 1 ,4 ,5 has a
ank at most 4, contradicting Eq. �34�.

�b� ��+� extraction: Obviously, ��+� cannot be shared by C and D �the reduced state of any
air of qubits is maximally mixed�. Thus there are only two possibilities: �i� ��+� is shared by one
f �A ,B� and one of �C ,D�. Then one of the triple of qubits AC, AD, BC, BD has a rank at most

, contradicting Eq. �34�. �ii� ��+� is shared by A and B. Then there must be two vectors f , f̄
S such that

fC = fD = f̄C = f̄D = 0, �35�

��fA, f̄A� = ��fB, f̄B� = 1. �36�

aking into account the explicit form of the stabilizer generators Eq. �33�, one can check that the
nly nontrivial stabilizer elements having a support on A and B are the following:

�1
y

� �4
z

� �3
y

� �6
z , �1

z
� �4

y
� �3

z
� �6

y, �1
x

� �4
x

� �3
x

� �6
x .

All identity factors are suppressed.� Any pair of them commute locally on A and B. Thus the
quations Eqs. �35� and �36� have no solutions and we get a contradiction.

Extraction of a four-party state from �G� is impossible, since it leaves a bipartite �or a local
ure state� which would also be extractable from �G�. As we already know, this would lead to a
ontradiction. �

This observation means that we must add the state �G� to the entanglement generating set E4.
t raises a question: Is there a finite EGS for four-party stabilizer states? �Note that we allow an
rbitrary number of qubits per party, so the total number of stabilizer states is infinite.� To the
uthors’ best knowledge, the answer is unknown.

A closely related problem is to find LCU-equivalence classes of bipartite unitary operators
rom the Clifford group �it suffices to take two copies of a maximally entangled state and apply a
nitary operator to one-half of each state, see Ref. 23 for more details�.

Another open question is the relation between LU equivalence and LCU equivalence of
tabilizer states. To the authors’ best knowledge, there are no known examples of LU-equivalent
tabilizer states which are not LCU equivalent. On the other hand, it was shown by Van den Nest,
ehaene, and De Moor in Ref. 11, extending the work of Rains,24 that for a large class of stabilizer

tates, including the states specified by GF�4� linear codes, LCU equivalence coincides with LU
quivalence �this statement applies only to one-qubit-per-party partitions�.
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PPENDIX A

In this section we give a shorter �but less constructive� proof of the GHZ extraction formula,
ee Theorem 3.

Denote p the maximal number of states ��m
+ � extractable from ���. Clearly, p�0 implies S

Sloc, and thus �����0. Since ���� is additive under a tensor product of states, and ���m
+ �

1 �for m�3�, it suffices to prove that �����0 implies p�0.

�1� Consider a linear map �� :S→Gn� that sends f �S to f� �a projection onto party ��. By
definition of a colocal subspace, Ker����=S�̂. The fact that ��� has full local ranks �see
the remark after the statement of Theorem 3� implies that Im����=Gn�. Therefore
dim�S�=n�+dim�S�̂� for any ��M. Thus any linear function � :S→ �0,1� such that
��S�̂�=0 can be uniquely represented as ��f�=��x� , f�for some x��G�

n .
�2� Choose a nonzero linear function � :S→ �0,1� such that ��Sloc�=0. As shown above, for

any ��M we can choose x��G�
n such that ��f�=��x� , f� for all f �S. Then ��x�

+x� , f�=0 for all f �S and thus x�+x��S �recall that S is self-dual�.
�3� Choose ḡ�S such that ��ḡ�=1. Define a linear subspace V�S, such that V is spanned by

vectors g�,�=x�+x�, � ,��M, and ḡ. From ��ḡ�=1 we infer that ḡ�Sloc, and thus that
ḡ��0 for all ��M. Besides, the fact that ��x� ,g�=��g�=1 implies that x� and g� are
linearly independent. Thus a colocal subspace Vloc�V is spanned by vectors g�,�.

�4� Let Sghz�Gm be a stabilizer group of ��m
+ � with canonical generators f�,� and f̄ , see Eqs.

�10� and �11�. Define a linear map T :Sghz→S according to T�f�,��=g�,� and T� f̄�= ḡ. Let
us verify that T obeys conditions of Theorem 2. Indeed, T is the injective map since x�

and g� are linearly independent. The property �i� follows from equality ��x� ,g��=��g�
=1. The property �ii� follows from equality T��Sghz�loc�=Vloc. Thus��m

+ � is extractable
from ���, i.e., p�0.

PPENDIX B

The goal of this section is to prove Lemma 1. We start by stating one more lemma.
Lemma 4: Let f1 , . . . , fp and f1� , . . . , fp� be two families of vectors in Gn satisfying the following

onditions:

��f j, fk� = ��f j�, fk�� for all 1 � j,k � p , �B1�



j=1

p

xjf j = 0 if f 

j=1

p

xjf j� = 0. �B2�

ere x1 , . . . ,xp� �0,1� are arbitrary binary coefficients. Then there exists a symplectic operator
�Sp2�n� such that

f j� = u�f j� for all j = 1, . . . ,p .

Proof: Let us call a basis e1 , ē1 , . . . ,en , ēn of the space Gn canonical iff the following relations
old:

��ej,ek� = 0, ��ēj, ēk� = 0, ��ej, ēk� = � jk. �B3�

ne can extend the family f1 , . . . , fp to a canonical basis �ej , ēj� using the Gram-Schmidt orthogo-

alization algorithm. After that one can write
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f j = 

k=1

n

Fjkek + F̄jkēk, j = 1, . . . ,p ,

here F and F̄ are some binary p�n matrices. It is a property of the Gram-Schmidt algorithm that

he coefficients Fjk and F̄jk depend only upon the inner products Eq. �B1� and upon the set of
inear dependencies Eq. �B2�. Thus if we apply the same algorithm in parallel to the family
f1� , . . . , fp�, we shall end up with a canonical basis �e1� , ē1� , . . . ,en� , ēn�� such that

f j� = 

k=1

n

Fjkek� + F̄jkēk�, j = 1, . . . ,p .

he symplectic group Sp2�n� acts transitively on the set of canonical bases. Thus

ej� = u�ej�, ēj� = u�ēj�, j = 1, . . . ,n ,

or some u�Sp2�n�. This implies that f j�=u�f j� for all j=1, . . . , p. �

Now we are ready to prove Lemma 1. The nontrivial part is to prove that statement 1 follows
rom statement 2. Choose an arbitrary basis f1 , . . . , fp of the subspace S. Denote f j�=T�f j��S�.
he condition that T is an invertible map implies that f1� , . . . , fp� is a basis of S�. For each ��M,
onsider projections f�j = �f j�� and f�j� = �f j���. The condition �2-i� is equivalent to

��f�j, f�k� = ��f�j� , f�k� � for all � � M �B4�
nd any j ,k in the range 1 , . . . , p.

In addition, we have the following chain of implications: 
 j=1
p xjf�j =0 iff 
 j=1

p xjf j �S�̂ iff
�
 j=1

p xjf j��S�̂� iff 
 j=1
p xjf�j� =0. The second implication is the condition �2-ii� of the lemma, while

ll others follow from the definition of the colocal subspace. Summarizing, we have



j=1

p

xjf�j = 0 iff 

j=1

p

xjf�j� = 0. �B5�

ow, for each ��M, let us apply Lemma 4 to the families of vectors f�1 , . . . , f�p�Gn� and
f�1� , . . . , f�p� �Gn�. The conditions of Lemma 4 are equivalent to Eqs. �B4� and �B5�. Thus there
xist operators u��Sp2�n�� such that

f�j� = u��f�j�, � � M, j = 1, . . . ,p .
his means that

f j� = � �
��M

u���f j�, j = 1, . . . ,p .

his is equivalent to statement 1 of Lemma 1.
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For the largest class of physical systems having a classical analog, a new rigorous,
but not probabilistic, Lagrangian version of nonrelativistic quantum mechanics is
given, in terms of a notion of regularized action function. As a consequence of the
study of the symmetries of this action, an associated Nœther theorem is obtained.
All the quantum symmetries resulting from the canonical quantization procedure
follow in this way, as well as a number of symmetries which are new even for the
case of the simplest systems. The method is based on the study of a corresponding
Lie algebra and an analytical continuation in the time parameter of the probabilistic
construction given in paper I of this work. Generically, the associated quantum first
integrals are time dependent and the probabilistic model provides a natural inter-
pretation of the new symmetries. Various examples illustrate the physical relevance
of our results. © 2006 American Institute of Physics. �DOI: 10.1063/1.2199087�

. INTRODUCTION

This paper is the continuation of the one, referred hereafter simply as paper I, whose subtitle
as the “Theorem of Nœther in Schrödinger’s Euclidean quantum mechanics.”1 There, a proba-
ilistic �i.e., “Euclidean”� generalization of Nœther’s theorem of classical mechanics was pre-
ented, for a class of Lagrangians quadratic in the velocities, and involving a special family of
ime-symmetric R3-valued diffusion processes. At the end of paper I, our physical motivation was
ndicated: after an appropriate analytic continuation in the time parameters, the main conclusion of
he construction was preserved as a theorem on quantum symmetries, in the Heisenberg picture. In
ther words, although the probabilistic content of the theorem of Nœther was destroyed by this
ontinuation in time, its geometrical one survived.

The purpose of this second paper is to describe in a detailed way the reason of this apparently
urprising conclusion. This will provide us with a new Lagrangian version of the quantum theory
f such a class of systems. The symmetries of the associated new concept of regularized action
unctional will be expressed as a quantum version of the theorem of Nœther. All the unusual
egularizations introduced on the quantum side will correspond to the ones given for free with the
nderlying diffusion process, whose probability measures make sense only in the Euclidean set-
ing. In point of fact, it will be shown that the corresponding symbolic “quantum diffusions” in
eal time have all the properties of the heuristic ones manipulated by Feynman in his famous path
ntegral method.2 In this sense, our indirect method is very much along the line of Feynman’s
pace–time approach. It will be shown that we obtain many more quantum symmetries in this way
han using the usual theorems on quantum symmetries, even for the simplest class of elementary
ntegrable systems. Those “new” quantum symmetries are the keys of basic relations with sto-
hastic analysis. A general argument of Lie group theory assures us, in fact, that all quantum
ymmetries arise in this way.
The organization of this work is as follows.

47, 062107-1022-2488/2006/47�6�/062107/61/$23.00 © 2006 American Institute of Physics
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Section II introduces the notions �implicit in Feyman’s approach� of �complex-valued� space–
ime observables associated with a family of regular quantum observables and of quantum deriva-
ives along a state. Although these quantum derivatives are not observables in the sense of Von
eumann, they constitute a key tool of our construction. Under the quantum expectation, such
ifferential operators behave like derivations.

Then, we define the concept of quantum conditional expectation in a state, given a space–time
oint. In spite of the fact that this concept shares a number of properties with its counterpart in
robability theory, we show why it is not a conditional expectation in the probabilistic sense. The
ssociated “quantum diffusions” are precisely the ones introduced by Feynman in time discretized
anner.

Section III is devoted to the definition of the regularized action function for this class of
ystems and its relations with quantum dynamics.

The study of the symmetries of this quantum action is the subject of Sec. IV. In particular, the
efinition of the invariance of the action corresponds to a natural regularization of the classical
otion. The symmetry group of the underlying Schrödinger equation is used in an essential way
ere, and the regular concept of constant observable of the motion is adapted to our calculus on
pace–time observable �or quantum calculus, for short�.

In Sec. V the construction is specialized to the case of Hamiltonians which are polynomials of
egrees �2 in the position and momentum observables. This is the case where all the calculations
re explicit. Although this class is supposed to be completely known, our method provides, even
or the most elementary systems, more symmetries than the traditional approach. For general
amiltonians the main results hold true; but no explicit basis of the symmetry algebra can be

ound, in general and, therefore, the method is more indirect.
Section VI is devoted to the analysis of the content of our Nœther theorem in a Riemannian

anifold.
In Sec. VII we come back to the relation of what we did with the ideas of Feynman and show

n what sense the content of the present paper is a natural counterpart of paper I, where stochastic
nalysis is involved in an essential way.

Finally, the last section is devoted to a short collection of explicit examples of quantum
ymmetries with some emphasis on those not directly accessible to regular methods. Of course, as
oon as we know it, the theorem of Nœther in quantum mechanics can be verified without any use
f our detour via probability theory and stochastic analysis. However, it is argued in favor of this
etour for the intuition it provides, in the same sense as Feynman’s path integral approach has
roved to be very useful for the discovery of many new aspects of quantum theory. A short Errata
or paper I will conclude the present work.

I. THE CONCEPT OF QUANTUM MECHANICAL CONDITIONAL EXPECTATION

Let H be a self-adjoint, lower bounded Hamiltonian operator in the Hilbert space H
L2�Rn ,dx� of square integrable complex-valued function over Rn. Consider the one-parameter,

trongly continuous groups of unitary operators Ut :H→H , t�R,

Ut = e−�i/��tH,

ith the reduced Planck constant �. Then for any � in the definition domain DH�H of H,

�t = Ut� , �2.1�

olves the Schrödinger equation with the initial condition �:

i �
��t

�t
= H�t,

�2.2�

�0 = � .
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Let consider a one-parameter family A�t� , t�R, of self-adjoint operators in H. Assume that

A�t��HDH and A�t�DH�DH, so that the commutators �A�t� ,H�=A�t�H−HA�t� are well defined
n DH. Let 0�T�� and define DT

A�t��DA�t� by DA�t�=�T��t�0DA�t+�t�. In particular we have
A�t��DA�t�. If A�t� is weakly differentiable on DA�t� with respect to the time parameter t
�0,T�,then we can compute

lim
�t↓0

��,
A�t + �t� − A�t�

�t
�� � 	t

Ȧ��,�� .

t exists for any ��H ,��DA�t�, where �· , · � denotes the scalar product in H, and is linear in the

econd vector. Provided that DȦ�t� is dense in H ,	t
Ȧ :H
DA�t�→C is a densely defined sesqui-

inear form.
Now let us define, for �t�H and �t�DA�t� , I�,��t�= ��t ,A�t��t�.
When �t�DA�t� and �t is the solution of �2.2� with �t�DA�t� ,T� t�0 and �t�0, we can

ompute the relative time increment of I�,��t� as follows:

I�,��t,�t� �
I�,��t + �t� − I�,��t�

�t

=
1

�t
���t+�t,A�t + �t��t+�t� − ��t,A�t + �t��t+�t�

+ ��t,A�t + �t��t+�t� − ��t,A�t��t+�t�

+ ��t,A�t��t+�t� − ��t,A�t��t�� .

If, in addition, �t=Ut� with �0���D�H� then the strong derivative �t
˙ of �t with respect to

exists and �t
˙ = �1/ i� �H�t. But, by assumption, H�t�DA�t�. This, inserted in the above relative

ncrement of I�,��t� gives, when �t↓0, using the strong differentiability of �t ,�t, the strong
ontinuity of A�t��t on DA�t�, the fact that �t+�t�DA�t� and that A�t� is weakly differentiable on
A�t�,

lim
�t↓0

I�,��t,�t� = ��̇t,A�t��t� + 	t
Ȧ��t,�t� + ��t,A�t��̇t� .

By �2.2�, the corresponding equation for �t and the further assumption DA�t��HDH, we see
hat the latter relation can be rewritten as

lim
�t↓0

I�,��t,�t� = � 1

i�
H�t,A�t��t� + 	t

Ȧ��t,�t� + ��t,
1

i�
A�t�H�t� .

Since A�t�DH�DH by assumption, and so A�t��t�DH, this reduces, by the self-adjointness of
, to

1

i�
��t,�A�t�,H��t� + �t

Ȧ��t,�t� =
d

dt
��t,A�t��t� , �2.3�

here we used the definitions of I�,��t ,�t�, I�,��t�, and �t
Ȧ��t ,�t�.

We shall denote by 	D��t ,�t� the sesquilinear form on left-hand side �lhs� of �2.3�. So

	D��t,�t� =
d

dt
��t,A�t��t� . �2.4�

We recall that for T� t�0, 	D��t, �t� is well defined if �t�DA�t� and A�t�DH�DH.
Definition II.1: Let � be in H and such that �t�DA�t�. The complex-valued space–time

A
bservable a�t
�x , t� associated with the family of quantum observable A�t� in the state �t is defined
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or all x�Rn , t�R ,s . t .�t�x��0, by

a�t

A �x,t� �
�A�t��t��x�
�t�x�

. �2.5�

We shall consider, for any x , t, versions of �t�x� jointly measurable in t�R, x�Rn, and
enote them again by �t�x�. For x , t such that �t�x�=0 we set a�t

A �x , t��0. Therefore, for any �t in
and �t in DA�t� we have

��t,A�t��t� = �
�Nt
��c
�̄tA�t��t dx + �

Nt
�
�̄tA�t��t dx = �

�Nt
�̇�c
�̄tA�t��t dx ,

here Nt
�= 	x�Rn 
�t�x�=0� , �Nt

��c=Rn−Nt
�.

Using �2.5�, it is clear that, by construction,

��t,A�t��t� =� �̄t�ta�t

A dx . �2.6�

ssumption on the zeroes of the wave function

We shall need that Nt
� has zero Lebesgue measure. Sufficient conditions for this are known in

erms of assumption on H. See Sec. V.
Using �2.3� and �2.4� and our assumption that Nt

� has zero Lebesgue measure, we get

	D��t,�t� =
1

i�
��t,�A�t�,H��t� + 	t

Ȧ��t,�t� =
1

i�
�

�Nt
��c
�̄t�t

1

�t
�A�t�,H��t dx + 	t

Ȧ/�t��t�̄t,�t� ,

�2.7�

here we have defined 	t
Ȧ/�t, for f / �̄t�H and g�DA�t�, by

	t
Ȧ/�t�f ,g� � lim

�t↓0
� f ,

1

�t
�A�t + �t� − A�t�

�t
g� .

Now suppose that, in the strong sense on DA�t�, there exist a linear operator �A�t� /�t such that

lim
�t↓0

A�t + �t� − A�t�
�t

�t =
�A

�t
�t��t, 0� t� T .

hen, for ��H ,�t�DA�t�, using the definition of 	t
Ȧ��t ,�t�,

��t,
�A

�t
�t��t� = 	t

Ȧ��t,�t� .

lso, for any �t�DA�t�,

� �A

�t
�t� +

1

i�
�A�t�,H���t

s well defined �recall that we have assumed HDH�DA�t� and A�t�DH�DH�. According to the
efinition �2.5�, a�t

A .�t=A�t��t is also well defined. Therefore in the sense of the identification of

he corresponding Bochner integrals,
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�

�t
�a�t

A · �t� =
�A

�t
�t��t +

1

i�
A�t�H�t,

or any �t�DA�t� and Lebesgue a.e. t� �0,T� �recalling our assumption that DA�t��HDH�. From
his it follows that

� �

�t
−

1

i�
H��a�t

A · �t�

s well defined and coincides, for Lebesgue a.e. t, with

� �A

�t
+

1

i�
�A�t�,H���t.

ow for any x� �Nt
��c we defined Dta�t

A by

�Dta�t

A ��x� =
1

�t
� �

�t
−

1

i�
H��a�t

A · �t��x� . �2.8�

sing the relation above, we get first on �Nt
��c but then in the L2�Rn�-sense

Dta�t

A =
1

�t
� �A

�t
+

1

i�
�A�t�,H���t. �2.9�

rom this, for all �0=��DH we obtain

��t,�Dta�t

A ��t� = ��t,� �A

�t
+

1

i�
�A�t�,H���t� =

d

dt
��t,A�t��t� ,

here �2.7� and �2.9� have been used. All equalities hold first for Lebesgue a.e. t but can be
xtended to all t if both sides of the equalities are continuous in t.

In summary, we have proved the following:
Proposition II.2:
Let H be a self-adjoint operator in H=L2�Rn ,dx� and A�t� a one-parameter family of self-

djoint operators in H with A�t�DH�DH and DA�t��HDH. For ��DH, consider �t=e−�i/��tH�
nd assume that Nt

� has a zero Lebesgue measure. Suppose that �A�t� /�t exists in the strong sense
n DA�t�. Define Dta�t

A by equations �2.8� and �2.9�. Then, for any ��DH and �t�DA�t�,with �t

atisfying �2.2�, we have

d

dt
��t,A�t��t� = ��t,�Dta�t

A ��t� , �2.10�

or Lebesgue a.e. t�R. If both sides of �2.10� are continuous in t, then �2.10� holds for all t
R.

Corollary II.3:
If A�t� is a quantum constant of motion of the system with Hamiltonian H, defined on a dense

omain D�H, in the sense that

� �A

�t
�t� +

1

i�
�A�t�,H��X = 0 for any X � D ,

hen the space–time observable associated with A�t� satisfies

Dta�t

A = 0,

A
or all �t�D �t�.
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Proof: By �2.9� we have Dta�t

A = �1/�t�Ȧ�t��t=0, for

Ȧ�t� �
�A

�t
�t� +

1

i�
�A�t�,H� .

˙ �t� is a closable operator since A�t�, ��A /�t��t� and H are all symmetric, defined on a common
omain.

By approximation of �t�DA�t� through vectors in D, and since A�t� is a quantum constant of

otion, we see that Ȧ
¯ �t��t=0, where the overbar denotes the closure. Since �t is in the domain of

˙ �t�, the conclusion follows. �

Remarks:

1� If we call quantum space–time observable any operator-valued map �x , t�→g�x , t� measur-
able in the sense that �x , t�→ � ,g�x , t��� is measurable for �H ,��D a dense domain
and g�x , t� self-adjoint in H, we can define Dt, t�R, on the set of such observables g by

Dtg �
1

�t
� �

�t
−

1

i�
H��g�t� , �2.11�

whenever the right-hand side �rhs� makes sense �with �g�t��x���g�x , t��t��x��. Then, for g
=a�t

A , Dta�t

A coincides with �2.9�. If g�t�DH, �g /�t exists in the strong sense on DH and
D�g/�t�DH, then the rhs of �2.11� is well defined �for �t�DH�. However, we are going to
show that there is a more natural definition of Dt regarded as differential operator densely
defined in an associated Hilbert space.

2� Dt, acting on space–time functions a�t

A , for example, should not be confused with the familiar
Heisenberg derivative D acting on the family of self-adjoint operators A�t� and defined
heuristically by

DA�t� =
�A

�t
�t� +

1

i�
�A�t�,H� .

Indeed, according to �2.9�, the relation between these two derivatives is Dta�t

A

= �1/�t��DA�t��t�. In particular, Heisenberg’s derivative D does not depend on the state �t.
In order to avoid any confusion, from now on we shall call Dt the quantum derivative along
�t.

3� Consider two arbitrary observables A and H, time independent and with DA=DH=D, a
common dense domain in H, invariant under A and H. We say that A and H commute, and
write �A ,H�=0 whenever for any f , g bounded and Borel measurable one has f�A�g�H�
−g�H�f�A�=0.

A necessary and sufficient condition for this property is, for example, that

�ei��/��A,ei�t/��H� = 0 " �, t � R .

cf., for example, Ref. 3�. If A is essentially self-adjoint on a domain D, invariant under ei�t/��H,
t�R, then A and H commute if

A�t��� ei�t/��HAe−i�t/��H� = A�, " �� D and t � R .
o it suffices indeed to show that
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d

dt
�,ei�t/��HAe−i�t/��H�� =

d

dt
�t,A�t�

=�t,
1

i�
�A�t�,H��t�

=0

ith

t � e−i�t/��H, Xt � e−i�t/��H�, and " �, in D = DH � DA,

n order to prove that A and H commute �in the sense of the above-mentioned sufficient condition�
nd therefore that A�t� is a constant of motion. According to the Corollary II.3, when this holds,
e have Dta�t

A =0.
Lemma II.4:
Let �t be the solution of the Schrödinger equation �2.2� with initial condition � in L2�Rn� and

et Nt
� be a zero Lebesgue measure set. Then the quantum derivative Dt along the solution �t of

he Schrödinger equation �2.2� with initial condition � is a densely defined differential operator in
2�Rn , 
�t�x�
2 dx�.

Proof: Let �t be the solution of the Schrödinger equation �2.2� with the initial condition �
L2�Rn ,dx��H and consider the weighted Hilbert space L2�Rn , 
�t�x�
2 dx�. Since, by assump-

ion, Nt
� has zero Lebesgue measure, the two Hilbert spaces are unitarily equivalent through the

ransformation

U�t
: L2�Rn, 
�t�x�
2 dx� → L2�Rn,dx� ,

g � g�t.

Let K be the space of R-indexed families of functions f = �f �t��t�R with each f �t� strongly
ontinuously differentiable from R into H, such that

�

�t
f �t� � lim

�t↓0

f �t+�t� − f �t�

�t
� H ,

here the limit is taken in the strong H sense. Let us define the partial differential operator

Q =
�

�t
−

1

i�
H

n the subset KH of K consisting of those �f �t��t�R such that the mapping x�Rn� f �t��x� belongs
o DH for all t�R. We can also define the Hilbert space W1

2�R ,H�, consisting of the functions
f = �f �t��t�R, with f �K such that f �t��x� , �� /�t�f �t��x��L2�R ,dt� for dx a.e., x�Rn. The operator iQ
s well defined on KH

0 �	f �t��KH , t� f �t��C0
1�R��. This operator is symmetric in W1

2�Rn ,H�, on a
ense domain KH

S �DS �S for “Schrödinger”�, independent of time.
Let Kt be the “tth copy” of L2�Rn ,dx� so that f �t��Kt for any t�R. Let us consider the image

nder U�t

−1 of Kt. U�t

−1Kt is made of all functions of the form f �t��x� /�t�x�, with f �t��Kt and
x , t��Nt

�.

U�t

−1 can be extended to an operator Ũ�t

−1 from K into L2�Rn , 
�t�x�
2 dx�, defined by

�Ũ�t

−1f �s���x� =
f �s��x�
�t�x�

, �x,t� � Nt
�, s � R .

2 n 2 ˜ −1 2 n 2 2 n
estricted to L �R , 
�t�x�
 dx� ,U�t
is unitary from L �R , 
�t�x�
 dx� to L �R ,dx�, since
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�Ũ�t

−1f �s��L2�Rn,
�t�x�
2 dx� = �f �s��L2�Rn,dx�, " s,t � R ,

nd its inverse is Ũ�t
f �s�=�t f

�s�.

We can look at the image of the operator Qt in K under Ũ�t

−1 as an operator Q̂t whose action

n elements of L2�Rn , 
�t�x�
2 dx� is given by Ũ�t

−1QtŨ�t
=Q̂t on D�L2�Rn , 
�t�x�
2 dx� ,D being

uch that Ũ�t
D�DQt. Since iQt= i� /�t− �1/ � �H is symmetric on the dense domain DS of

1
2�R ,H�, this means that iQt is symmetric on the dense domain Ũ�t

−1DS in L2�Rn
R ,dx dt�. On

his domain, Q̂t is given by

Q̂tŨ�t

−1f =
1

�t
� �

�t
−

1

i�
H� f ,

ith f = �f �t��t�R�DS.
DS contains, for example, the subset DS

0 consisting of all families f = �f �t��t�R such that
f �t��·� as well as �� /�t�f �t��·� are both in C0

��Rn� �if DH�C0
��Rn��.

Setting h= Ũ�t

−1f for f �DS
0 we see that

Q̂th =
1

�t
� �

�t
−

1

i�
H���th� .

omparing with �2.11�, this means that, on Ũ�t

−1DS
0 we have indeed

Q̂t = Dt. �2.12�

�

Remarks:

1� Suppose that H is the Hamiltonian for a unit mass and charged particle in an electromagnetic
field, i.e., H=−��2 /2���−�i / � �A�2+V on C0

��Rn� or

H = −
�2

2
� + i � A · � +

i�

2
� · A +

1

2
�A�2 + V , �2.13�

where A :Rn�Rn is the vector potential and V :Rn�R the scalar potential, both continuous,
A being C1, and such that H has a unique self-adjoint extension, also denoted by H �cf., for
example, Ref. 4 for sufficient conditions such that this holds�. In this case, using �2.11�, we
obtain explicitly a quantum derivative along �t �in the sense of Lemma II.4� given by

Dt =
�

�t
+ �− i �

��t

�t
− A� · �−

i�

2
� �2.14�

on the domain of functions of the form � ·DS, which is dense in L2�Rn , 
�t�x�
2 dx�. Accord-
ing to our Remark 1 after Corollary II.3, Dt is also defined on a larger set of functions in
L2�Rn , 
�t�x�
2 dx�. For example, denoting by q the function

Rn 
 R → Rn, " t, we have Dtq = i �
��t

�t
− A

�x,t� � x

which is well defined, provided

� �̄t�x�x�H�t��x�dx� � .
This is the case under weak restrictions on the vector and scalar potentials A and V.

                                                                                                            



�

�

n

q

a
s

q

c
v

I

i



062107-9 Theorem of Nœther in quantum mechanics J. Math. Phys. 47, 062107 �2006�

                        
2� We shall also need the complex conjugate of the operator Dt, denoted by D̄t. On complex
space–time observables of the form a�t

A , one has, by definition,

D̄ta�̄t

A =
1

�̄t
� �

�t
+

1

i�
H���̄ta�̄t

A � .

Proceeding as before in connection with �2.12�, i.e., considering vectors h of the form Ũ�̄t

−1f ,
with f �DS

0, we have

D̄th =
1

�̄t
� �

�t
+

1

i�
H���̄th� . �2.15�

In particular, when the Hamiltonian H is of the form �2.13�, D̄t reduces on Ũ�̄t

−1DS
0 to the

differential operator

D̄t =
�

�t
+ �i �

��̄t

�̄t

− A� · � +
i�

2
� �2.16�

defined on the elements 	Ũ�̄t

−1DS
0�t�R of W1

2�Rn ,H�. These elements form a dense domain of
W1

2�Rn ,H�, as discussed in the proof of the Lemma II.4. Using the terminology introduced

there, D̄t will simply be called the quantum derivative along �̄t.
3� It follows clearly from �2.11� and �2.15� that

Dtg = D̄tḡ ,

where the lhs denotes the complex conjugate of Dtg.

Motivated by Born’s probabilistic interpretation of the wave function, let us introduce the
atural definition.

Definition II.5: Let f = �f �t��t�R, with f �t��·� in L1�Rn , 
�t�x�
2 dx� and f �t� measurable in t. The
uantum �absolute� expectation of f in the state �t solving �2.1�, denoted by �f��t

, is the integral

�f��t
=� f �t��x�
�t�x�
2 dx �2.17�

nd we shall refer to 
�t�x�
2 as the density �with respect to dx� of the quantum probability in the
tate �t.

The terminology chosen for Dt and D̄t is due to the crucial observation that, under this
uantum expectation, these differential operators behave like derivations.

Proposition II.6:

Let f = �f �t��t�R, g= �g�t��t�R be in the domains of the quantum derivatives Dt and D̄t and with
ompact support in the space variables. Then �f ·g��t

is differentiable with respect to the time
ariable and the following Leibniz rule holds:

d

dt
�f · g��t

= �Dtf · g + f · D̄tg��t
. �2.18�

n particular,

d

dt
�f��t

= �Dtf��t
= �D̄tf��t

. �2.19�

Corollary II.7:
If f , g have supports with respect to the time variable strictly contained in the interior of an

nterval �t0 , t1� for some t0 , t1�R, then Dt
+=−D̄t where + denotes the adjoint with respect to

2 n
�t�x�
 dx dt on R 
 �t0 , t1�.
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Proof: Integrating �2.18�, we obtain

�
t0

t1

�Dtf · g��t
dt = − �

t0

t1

�f · D̄tg��t
dt .

�

Proof of Proposition II.6: By definition, �d /dt��f ·g��t
denotes

lim
�t↓0

�f �t+�t�g�t+�t���t+�t
− �f �t�g�t���t

�t
.

The term under lim�t↓0 means explicitly

1

�t
�� f �t+�t�g�t+�t�
�t+�t�x�
2 dx −� f �t�g�t�
�t�x�
2 dx

=
1

�t
�� �f �t+�t� − f �t��g�t+�t�
�t+�t�x�
2 dx

+� f �t��g�t+�t� − g�t��
��x�t+�t
2 dx

+� f �t�g�t��
�t+�t�x�
2 − 
�t�x�
2�dx .

he first term on the rhs converges, when �t↓0, to �� ḟ �t�g�t���x� 
�t�x�
2 dx by the dominated
onvergence theorem and the hypothesis that f �t� is strongly differentiable in L2�Rn ,dx� �here we

enote �� /�t�f �t� by ḟ �t� for simplicity�. Similarly we see that the second term of the rhs converges
o �f �t�ġ�t� 
�t�x�
2 dx.

For the third term we use again the dominated convergence theorem and the fact that, in the
trong L2�Rn ,dx� sense,

d

dt

�t
2 =

d

dt
�̄t · �t = −

1

i�
H�̄t · �t + �̇̄t

1

i�
H�t,

here the Schrödinger equation has been used, together with the fact that �̇̄t ·H�t as well as
�̄t ·�t are in L1�Rn ,dx� and f �t� ,g�t� have compact support as functions of the space variable. In
ther words the rhs above becomes

� � ḟ �t�g�t� + f �t�ġ�t� + f �t�g�t�� 1

i�

H�t

�t
−

1

i�

H�̄t

�̄t
���x�
�t�x�
2 dx

=� �Dtf
�t� · g�t� + f �t�D̄tg

�t���x�
�t�x�
2 dx ,

here the definition of Dt , D̄t have been used together with the self-adjointness of H, in order to
implify the term involving H�f �t��t�.

The second part of the calculation follows from the first one by approaching in the
2�Rn , 
�t�x�
2 dx�-norm f �t�=1, respectively, g�t�=1 through C0

��Rn� functions. �

Remarks:

1� When the Hamiltonian H is of the explicit form �2.13�, the relation �2.18� can be given a

more illuminating form if we use exclusively one of the quantum derivatives,
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d

dt
�f · g��t

= ��Dtf� · g + f�Dtg���t
− i � ��f · �g��t

�2.20�

=��D̄tf� · g + f�D̄tg���t
+ i � ��f · �g��t

. �2.21�

Proof: This follows directly from Proposition II.6, using the explicit expressions �2.14� and

2.16� of Dt and D̄t available for the Hamiltonian �2.13�. �

�2� Relations like �2.20� and �2.21� hold, in fact, also without integration with respect to

�t�x�
2 dx.

Proposition II.8:
For f ,g in a dense domain of the form �t ·DS�L2�Rn , 
�t�x�
2 dx� (cf. Lemma II.4) and an

amiltonian of the form �2.13�, one has

Dt�f · g� = �Dtf� · g + f�Dtg� − i � �f · �g , �2.20��

D̄t�f · g� = �D̄tf� · g + f�D̄tg� + i � �f · �g , �2.21��

or any �t ,x� such that �t�x��0.
Proof: Equations �2.20� and �2.21� can be written, for any �t=Ut�, and any �t ,x� s.t.

�t ,x��0,�A�x , t� 
�t�x�
2 dx=0 with A�x , t�= D̄�f ·g�− �D̄tf�g− f�D̄tg�− i��f ·�g, and so equa-
ions �2.20�� and �2.21�� hold a.e. with respect to dx. Alternatively, one can use directly the
efinitions �2.14� and �2.16� to show that the conclusion holds. �

Equations �2.20�� and �2.21�� show that the quantum derivatives behave, in fact, like quantum
eformations of derivatives in the �commutative� algebra of families of functions f = �f �t��t�R with

f �t��C0�Rn�. To regard Dt and D̄t as quantum deformations of derivations will prove, later on, to
e a very natural interpretation.

Now we are going to introduce the quantum counterpart of the probabilistic concept of
onditional expectation given a space point x�Rn in the past time t�0.

Definition II.9:
Let g= �g������R be complex valued, measurable functions defined on Rn and such that g���

�·����·��L2�Rn ,dx� where, as before, ��=U��. For 0� t�� and �t ,x� such that �t�x��0 �or,

or short, �t ,x� “�-admissible”� let us define the quantum conditional expectation Mt,x
�̄ in the state

, given �t ,x� and evaluated at g��� by

Mt,x
�̄ �g���� = ��̄t�x��−1�U�−t�g����̄����x� . �2.22�

Let us first assume that the Hamiltonian H is time-independent and that the evolution group

�−t has an integral kernel, denoted by

k�x,� − t,q� = �e−�i/����−t�H��x,q�, x,q � Rn, � � t .

hen the definition �2.22� means

Mt,x
�̄ �g���� = ��̄t�x��−1� k�x,� − t,q�g����q��̄��q�dq , �2.22��

hich is well defined for any �-admissible �t ,x��R+
Rn. We shall denote by

p̂�t,x,�,dq� = ��̄t�x��−1k�x,� − t,q��̄��q�dq, t� �, x,q � Rn, �2.23�

he integral kernel associated with �2.22�� and refer to it as the forward quantum transition kernel

“forward” because the conditioning x is in the past t�� and also because the initial quantum
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robability density 
�t�x�
2 is propagated towards the future by p̂�. More precisely since, for �
t the kernel k�x ,�− t ,q� coincides with the retarded �or “casual”� propagator

k+�x,� − t,q� = ��� − t��e−�i/����−t�H��x,q� ,

where � is Heaviside’s distribution� i.e., the distribution solving

�− i �
�

��
+ H�k+�x,� − t,q� = − i � ��q − x���� − t� ,

q. �2.23� means that

p̂�t,x,�,dq� = ��̄t�x��−1k+�x,� − t,q��̄��q�dq . �2.23��

Let us observe that sufficient conditions for the existence of k and therefore p̂ as continuous
unctions in all the variable are known; cf., e.g., Refs. 5, 6, and 60.

We remark that when H is time dependent, Eq. �2.23� still holds with k replaced by the
ntegral kernel of the two-parameter family of unitary operators U�t ,��, t ,��R defining the
orresponding time evolution.

The main properties of the quantum conditional expectation of Definition 2.9 are expressed by
he following:

Proposition II.10:
For all �-admissible �t ,x��R
Rn and g= �g������R as in �2.22��, with �� t,

�1� the quantum mechanical conditional expectation is linear: if �i�C and gi= �gi
������R ,

i=1,2 as above,

Mt,x
�̄ ��1g1

��� + �2g2
���� = �1Mt,x

�̄ �g1
���� + �2Mt,x

�̄ �g2
����;

�2� Mt,x
�̄ ���=�, ��C;

�3� Mt,x
�̄ �g����=g�t��x�, �� t;

�4� �Mt
�̄�g�������= �g������, �� t;

�5� when Ms,x
�̄ �g1

�s�g2
�t��, s� t, is well defined, then

Ms,x
�̄ �g1

�s�g2
�t�� = g1

�s��x�Ms,x
�̄ �g2

�t�� .

Proof: This follows from direct computations using the definitions �2.17� and �2.22�. �

Remarks:

1� We shall also need, for the same class of g= �g������R as in Proposition II.10, and any

�-admissible �t ,x��R
Rn, the definition �2.22� with � replaced by �̄ and U�−t replaced by
U�−t, 0��� t, i.e.,

M�
t,x�g���� = ��t�x��−1�Ut−��g��������x� . �2.24�

The properties of M�
t,x are, of course, similar to the ones of Mt,x

�̄ .
Let us stress that, for the latter quantum conditional expectation in the state �, the condi-
tioning x is lying in the future of the time interval under consideration �i.e., t��; this justifies
our alteration of notation with respect to �2.22��. For this reason, we shall occasionally call
backward �respectively, forward� the conditional expectation �2.24� �respectively �2.22��
when a confusion is possible between these two concepts. When needed, we shall denote by
p�� ,dq , t ,x� the backward quantum transition kernel associated with �2.24�, i.e.,

−1
p��,dq,t,x� = ���q�k−�q,t − �,x�����x�� dq, � � t , �2.25�
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for any �t ,x� �-admissible. Here, we denote by k− the advanced propagator defined in terms
of the causal one by

k−�x1,s − u,x2� = k+�x2,u − s,x1� . �2.26�

2� Comparing the definitions �2.23�� and �2.25�, it is clear that the relation between the forward
and backward quantum transition kernels can be expressed as

p̂�t,x,s,y� = p�s,y,t,x�, s� t, x,y � Rn. �2.27�

Definition II.11:
Let f = �f �t��t�R, �g�s��s�R as in the definitions �2.22�� and �2.23�. The quantum �absolute�

xpectation of their product f �t� ·g�s� in the state �, for t�s, is defined by

�f �t�g�s��� = �Ms,·
�̄ �f �t�� · g�s���s

�2.28�

=�f �t�M�
t,·�g�s����t

, �2.28��

hen Ms,·
�̄ �f �t�� ·g�s��L2�
�s�x�
2 dx� and f �t�M�

t,·�g�s���L2�
�t�q�
2 dq�.
The consistency of this definition is verified by observing that equation �2.28� reduces, after

implification, to

� � �s�x�g�s��x�k�x,t − s,q�f �t��q��̄t�q�dq dx ,

hen the integral kernel �2.23�� exists �since t�s�. On the other hand, using the forward condi-
ional expectation of �2.28��, this absolute expectation in the state �t reduces to

� � �s�x�g�s��x�k−�x,t − s,q�f �t��q��̄t�q�dq dx ,

.e., to the same expression as before, by definition of the advanced propagator k− when t�s.
This duality with respect to the time parameter suggests to introduce the following two-

arameters family of operators Ps,t
* ,s� t associated with quantum conditional expectations:

Ps,t
* :L2�
�s�x�
2 dx� → L2�
�t�q�
2 dq�

�2.29�

g�s��·� �� g�s��x�p�s,dx,t,q� � M�
t,q�g�s�� ,

here the backward transition kernel �2.25� has been introduced and its “time reversed” family
Pt,s, s� t,

Pt,s:L
2�
�t�q�
2 dq� → L2�
�s�x�
2 dx� ,

�2.29��

f �t��·� �� f �t��q�p̂�s,x,t,dq� � Ms,x
�̄ �f �t�� ,

o that the equality between �2.28� and �2.28�� can be rewritten as

��Pt,sf
�t�� · g�s���s

= �f �t� · �Ps,t
* g�s����t

. �2.30�

The properties of the operators Ps,t
* �or Pt,s� for s� t are as follows:

a� Ps,t
* are linear operators; as a map from R+
R+ into densely defined, bounded operators

2 2 2 2 *
from L �
�s�x�
 dx� into L �
�t�q�
 dq�, �s , t�� Ps,t is continuous;
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b� �Ps,t
* g�s��L2�
�t�q�
2 dq�= �g�s��L2�
�s�x�
2 dx�;

c� Ps,t
* 1�s�=1�t� where 1�s� is the function identically 1 in L2�
�s�x�
2 dx� �with 1�t� the same in

L2�
�t�q�
2 dq�� and Pt,s1�t�=1�s�;
d� Ps,s

* �Id, the identity operator from L2�
�s�x�
2 dx� into L2�
�s�x�
2 dx�;
e� Pt,u

* · Ps,t
* = Ps,u

* , s� t�u;

f� Ps,t
* · Pt,s=1�t� and Pt,s · Ps,t

* =1�s�.

We may summarize the situation as follows:
Proposition II.12:
The two-parameters family of bounded operators Ps,t

* and Pt,s are dual from L2�
�s�x�
2 dx�
nto L2�
�t�q�
2 dq� in the sense that for any f �t��DPt,s

and g�s��DPs,t
* , the relation �2.30� holds.

oreover, the properties �a� to �f� are satisfied �where �a� to �e� have their natural counterparts
or Pt,s�.

The proof follows directly from the definitions �2.23�� and �2.25� of the forward and backward
uantum transition kernels.

Remarks:

1� Let f �s��·� be non-negative in L2�
�s�x�
2 dx�. Then, clearly Ps,t
* does not, in general, transform

f �s��·� into a non-negative element of L2�
�t�q�
2 dq� since the backward quantum transition
kernel p is not even real. In particular, p�s , · , t ,q� is not a measure, although it shares
manifestly a number of properties with probability measures.

2� The equality between �2.28� and �2.28�� can be rewritten infinitesimally using the quantum

derivatives Dt and D̄t. To do this, we need another property of these derivatives, which will
be the first result of the next section.

Let Ps,t
* and Pt,s a pair of 2-parameters family of operators satisfying the properties of Propo-

ition II.12 and p , p̄, respectively, their associated quantum transition kernels.
Definition II.13:
The two dual kernels define a quantum diffusion if "s� t ,x�Rn ,	�0, we have

1� p̂�s ,x , t ,S	�x�c�=o�t−s�, where S	�x�c is the complement of the sphere S	�x� of radius 	 and
center x.

2� There is a Cn-valued function B̂�x ,s� s.t.,

�
S	�x�

�q − x�p̂�s,x,t,dq� = B̂�x,s��t − s� + o�t − s� .

There is an n
n complex-valued function Ĉ�x ,s� s.t.

�
S	�x�

�q − x��q − x�Tp̂�s,x,t,dq� = Ĉ�x,s��t − s� + o�t − s� .

Ĉ will be called the quantum diffusion matrix and B̂ the �forward� drift of the quantum
diffusion.

3� There is a Cn-valued function B�x , t� s.t.

�
S	�x�

�q − x�p�s,dx,t,q� = B�q,t��t − s� + o�t − s� ,

and an n
n complex-valued function C�x ,s� s.t.

�
S �x�

�q − x��q − x�Tp�s,dx,t,q� = C�q,t��t − s� + o�t − s� .
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These properties are satisfied, e.g., for the kernels associated with the Hamiltonians �2.13�
ompare also Refs. 5 and 6. Indeed we have the following.

Proposition II.14:
Let H be of the form �2.13� and its associated kernel k be such that

lim
�s↓0

1

�s
� �q − x�R�q,x,�s�k�x,�s,q�dq = 0,

here R�q ,x ,�s�=0��q−x�2�+0��s�2 is a term in the Taylor expansion of the integrand of B̂�x ,s�
n the proof below. Let �q , t��Rn
R be �-admissible, where �t is a regular solution of the
chrödinger equation for H, admitting a Taylor expansion in powers of the space and time
ariables around �t�q�. Then a quantum diffusion corresponds to this solution, whose drifts and
iffusion matrix are, respectively, given by

B̂�q,t� = i �
��̄t

�̄t

�q� − A�q� ,

B�q,t� = − i �
��t

�t
�q� − A�q� , �2.31�

C�q,t� = Ĉ�q,t� = i � 1 ,

here 1 denotes the n
n identity matrix.
Proof: By �3� and �2.23�,

B̂�x,s� = lim
�s↓0

1

�s
�

s	�x�
�q − x�p̂�s,x,s + �s,q�dq

= lim
�s↓0

1

�s
�

s	�x�
�q − x���̄s�x��−1k�x,�s,q��̄s+�s�q�dq

= lim
�s↓0

1

�s
�

s	�x�
�q − x��1 +

��̄s

�̄s

�x��q − x� +
�̄
˙

s

�̄s

�x��s + O��q − x�2� + O��s2�k�x,�s,q�dq .

We can easily verify the following properties of the integral kernel k�x ,� ,q� of the evolution
roup U� for the Hamiltonian �2.13�:

lim
�↓0

1

��1 − �
Rn

k�x,�,q�dq =
1

2
� · A�x� +

i

2�
�A�x��2 +

i

�
V�x� ,

lim
�↓0

1

�
�

Rn
�q − x�k�x,�,q�dq = A�x� ,

lim
�↓0

1

�
�

Rn
�q − x��q − x�Tk�x,�,q�dq = i � 1 .

sing these in the above rhs of the expression of B̂�x ,s� we obtain the expected result. The other
esults follow in a similar way. �

Proposition II.15:

Let ��t /�t and A�q� be given and continuous, for a Hamiltonian of the form �2.13�. Assume
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hat, in the representations �2.29� and �2.29��, the partial derivatives with respect to �t ,q� �respec-
ively �s ,x�� of the quantum conditional expectations are well defined and continuous, and can be
xchanged with the integrals. Then the quantum equation of Kolmogorov for the transition kernel

p̂ for s� t�R, x ,y�Rn, is given by

a�

−
� p̂

�s
�s,x,t,q� =

i�

2

�2p̂

�xj � xj �s,x,t,q� + �i �
� j�̄t

�̄t

�q� − Aj�q�� �

�xj p̂�s,x,t,q� �2.32�

�with the usual summation convention over the indices j�. Equivalently, regarded as a func-
tion of the past variable, p̂ is the fundamental solution of

D̄su = 0, for u � DD̄s
, �2.33�

with D̄s defined in �2.16�.
b� If all the involved partial derivatives exist and are continuous, p̂, regarded as a function of

the future variables, solves the quantum Fokker-Planck equation

� p̂

�t
�s,x,t,q� =

i�

2

�2p̂

�qj � qj �s,x,t,q� −
�

�qj��i �
� j�̄t

�̄t

�q� − Aj�q�� p̂�s,x,t,q� .

�2.34�

Similarly, the transition kernel p�s ,x , t ,q� solves
c�

−
�p

�s
�s,x,t,q� = −

i�

2

�2p

�xj � xj �s,x,t,q� + �− i �
� j�t

�t
�q� − Aj�q�� �

�xj p�s,x,t,q� .

�2.35�

So that p is the fundamental solution of

Dsv = 0 for v � DDs
, �2.36�

with Ds given by �2.14� and the following backward quantum Fokker-Planck equation holds:
d�

�p

�t
�s,x,t,y� = −

i�

2

�2p

�qj � qj �s,x,t,y� −
�

�qj��− i �
� j�t

�t
�q� − Aj�q��p�s,x,t,y� .

�2.37�

Proof: �a� Let us consider �2.29��

�Pt,sf
�t���x� =� f �t��q�p̂�s,x,t,dq� � u�s,x�, s� t ,

or any f �t� of compact support in the class used to define �2.22�. By hypothesis, we can differen-
iate with respect to �s ,x� under the integral sign. Using Proposition II.12 �c� and the properties of

he quantum transition kernels before Proposition II.14,
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u�s1,x� − u�s2,x� = �
S	�x�

�u�s2,q� − u�s2,x��p̂�s1,x,s2,q�dq + o�s2 − s1�

=�
S	�x�

��q − x� � u�s2,x�+ �q − x��q − x�T1

2
�2u�s2,x� + R� p̂ dq + o�s2 − s1�

=��u�s2,x��
S	�x�

�q − x�p̂�s1,x,s2,q�dq

+
1

2
�2u�s2,x��

S	�x�
�q − x��q − x�Tp̂�s1,x,s2,q� dq + R�s2 − s1� + o�s2 − s1�

=�B̂�x,s2� � u�s2,x� +
1

2
Ĉ�s2,x��2u�s2,x� + R�s2 − s1� + o�s2 − s1� ,

here B̂ and Ĉ have been computed in Proposition II.14 and R�R�s1 ,s2 ,q ,x� is a remainder
�
q−x
2�. Dividing by �s2−s1� and taking lims2↓s, lims1↑s one verifies that u�s ,x� solves the
uantum Fokker-Planck equation �2.34�.

According to �2.29��, the boundary condition of this equation is provided by

u�s,x� − f �s��x� = �
S	�x�

�f �t��q� − f �s��x��p̂�s,x,t,q�dq + o�t − s� .

o

lim
s↑t

u�s,x� � lim
s↑t

Ms,x
�̄ �f �t�� = f �t��x� . �2.33��

b� Let f �t� be of compact support, twice continuously differentiable in the class used to define
2.22�. As before, one verifies that

lim
s1↑s,s2↓s

1

s2 − s1
�� f �s2��q�p̂�s1,x,s2,q�dq − f �s��x� = B̂�x,s� � f �s��x� +

1

2
Ĉ�x,s��2f �s��x� .

�2.38�

ow let us write

�

�t
� f �t��q�p̂�s,x,t,q�dq = lim

s1↑t,s2↓t

1

s2 − s1
� �p̂�s,x,s2,q� − p̂�s,x,s1,q��f �t��q�dq

= lim
s1↑t,s2↓t

� p̂�s,x,s1,q�� 1

s2 − s1
� f �s2��z�p̂�s1,q,s2,z�dz − f �s2��q�dq .

sing �2.38� this reduces to

� p̂�s,x,t,q��B̂�q,t� � f �t��q� +
1

2
Ĉ�q,t��2f �t��q�dq .

fter integration by parts, we get

� �

�t
p̂�s,x,t,q� · f �t��q�dq =� dq f �t��q��− �q�p̂�s,x,t,q�B̂�q,t� −

1

2
�q�Ĉ�q,t�p̂�s,x,t,q��� .

�

Introducing B̂, Ĉ of Proposition II.14, �2.34� holds since f �t� is arbitrary in the chosen dense

lass.
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Starting from �2.29�, one proves �c� and �d� in the same way.
Proposition II.16:
Under the same conditions as in Proposition II. 15, the density of the quantum probability in

he state �t ,��x , t� dx= 
�t�x�
2 dx, solves the continuity equation

��

�t
+ � j� i�

2
��t�

j�̄t − �̄t�
j�t� − Aj� = 0,

r

��

�t
+ � j� i�

2 �� j�̄t

�̄t

−
� j�t

�t
− Aj�� = 0. �2.39�

Proof: It follows from the definition �2.23�� of the forward quantum transition kernel
p̂�s ,x , t ,q� that, if ��s��dx� denotes the quantum probability density at time s� t, then

��q,t� =� ��s��dx�p̂�s,x,t,q� . �2.40�

pplying the integration with respect to ��s��dx� to the quantum Fokker-Planck equation �2.34�
ne can see that ��q , t� satisfies the same equation, namely

��

�t
= − � j��i �

� j�̄t

�̄t

− A�� +
i�

2
�� . �2.41�

ut the quantum probability density � is also propagated backward in time by the transition kernel
p solving �2.37�. This means that � solves as well

��

�t
= − � j��− i �

� j�t

�t
− A�� −

i�

2
�� . �2.42�

t follows that � also solves the average of �2.41� and �2.42�, i.e., the usual quantum continuity
quation �2.39�, as claimed. �

II. THE QUANTUM ACTION FUNCTION AND ITS DYNAMICAL CONTENT

Let us show first why, in relation with the quantum conditional expectation in a given state, it

s legitimate to call D̄� a quantum �time� derivative. The next proposition can be regarded as a
uantum version of the fundamental theorem of calculus.

Proposition III.1: Let f = �f ������R be any function continuous in the time variable �, and in the

omain of D̄�. Then, for any t�u we have

Mt,x
�̄ ��

t

u

D̄� f ��� d� = Mt,x
�̄ �f �u�� − f �t��x� , �3.1�

here D̄� is defined by �2.15�, for � replaced by �.

Proof: By the definition �2.22� of Mt,x
�̄ , the lhs of �3.1�, for �t ,x� �-admissible, is

��̄t�x��−1��
t

u

U�−t�D̄� f ��� · �̄��d���x� .

¯
ntroducing the definition �2.15� of D�, this means
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��̄t�x��−1��
t

u

U�−t · � 1

�̄
� �

��
+

1

i�
H���̄� f ���� · �̄�d���x�

= ��̄t�x��−1��
t

u

U�−t�� �

��
+

1

i�
H���̄� · f �����d��x� .

y an integration by parts with respect to d� and using the self-adjointness of H in L2�Rn ,dx� we
btain

���̄t�x��−1�− �
t

u � �

��
U�−t���̄� f ����d� + U�−t��̄� f �����

t

u

�x� +
1

i�
�

t

u

�HU�−t���̄� f ����d�� .

ince U�−t solves, for �� t, �� /���U�−t�= �1/ i� �HU�−t� for all � in DH, this reduces to

��̄t�x��−1U�−t��̄� f ����
tu = ��̄t�x��−1	Uu−t��̄uf �t���x� − �̄t�x�f �t��x�� .

y definition of the quantum conditional expectation, this is the rhs of Eq. �3.1�. �

Remark:
When U� admits an integral kernel k, as in Sec. II, then the lhs of Eq. �3.1� becomes

��̄t�x��−1�
t

T � k�x,� − t,q�D̄� f ����q��̄��q�dq d� .

he integration by parts with respect to d� mentioned in Proposition III.1 is done using the fact
hat k coincides with the retarded �or causal� distribution k+ solving, for �� t, in the sense of
istributions

�− i �
�

��
+ H�k+�x,� − t,q� = − i � ��q − x���� − t� .

�

Corollary III.2:
Let f = �f �t��t�R strongly continuously differentiable from R into L2�Rn ,dx�, with f �t��·��DH,

t. Assume that �Hf �t��t�R is continuous in the time variable t. Then

D̄t f �t��x� = lim
�t↓0

Mt,x
�̄ � f �t+�t��·� − f �t��x�

�t
 . �3.2�

Proof: By Proposition III.1 for u= t+�t and property �3� of Proposition II.10,

�tMt,x
�̄ �D̄t*f �t*�� = Mt,x

�̄ �f �t+�t��·� − f �t��x�� , �3.3�

or some t*� t. The lhs is

�t��̄t�x��−1Ut*−t�� �

�t* +
1

i�
H���̄t*f �t*�� .

ow f �t*��DH and H��̄t*f �t*��= �̄t*Hf �t*�→t*→t�̄tHf �t�=H��̄t f
�t��. By Lemma II.4 �� /�t*�f �t*� is con-

inuous in time, thus limt*→t Mt,x
�̄ �D̄t*f �t*�� exists. After division by �t, the rhs limit of �3.3� is the

hs of �3.2�.
Corollary III.2 provides another proof of Proposition II.14 regarding the forward quantum

ransition kernel p̂.
Corollary III.3:
Let us assume that f = �f ������R is as before and, moreover, admits a Taylor expansion up to the

n
econd order around a �-admissible �t ,x��R
R . Then if the Hamiltonian H is of the form
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2.13�, equation �3.2� implies, for f �t��x�=x,

D̄tx = lim
�t↓0

Mt,x
�̄ � f �t+�t��·� − x

�t
 = i �

��̄t

�̄t

�x� − A�x� , �3.4�

nd

lim
�t↓0

Mt,x
�̄ � �f �t+�t��·� − x�2

�t
 = i � 1 , �3.5�

here �f �t+�t��·�−x�2 refers to the tensor product �f �t+�t��·�−x� � �f �t+�t��·�−x� and 1 is the n
n
dentity matrix.

In equations �3.4� and �3.5� the dummy variable �·� is the one denoted by q in �2.23��. All such
quantum moments” of order higher than 2 vanish.

Proof: Let us consider the Taylor expansion up to the second order,

Mt,x
�̄ �f �t+�t��q� − f �t��x�� = Mt,x

�̄ � � f

�t
�x,t� � t + �q − x� · �f�x,t�

+
1

2�
i,j

��qi − xi��qj − xj��
�2f

�xi � xj �x,t� + o��t� .

sing the linearity of the quantum conditional expectation, as well as the properties �3� and �5� of

roposition II.15, the conclusion follows from the comparison with the explicit form �2.16� of D̄t

with � replacing �� for the Hamiltonian �2.13�. �

In a similar way one proves the following.
Proposition III.4:
Let f = �f ������R be continuous in the time variable � and in the domain of D�. Then, "t�s,

M�
t,x��

s

t

D�f
���d� = f �t��x� − M�

t,x�f �s�� , �3.6�

here D� is defined by �2.11�, with � replaced by �.
Corollary III.5:
Under the same conditions as in Corollary III.2 we have

Dtf
�t��x� = lim

�t↓0
M�

t,x� f �t��x� − f �t−�t��·�
�t

 . �3.7�

f f admits a Taylor expansion up to the second order around a �-admissible �t ,x��R
Rn, with
as in �2.13� we have, for f �t��x�=x,

Dtx = lim
�t↓0

M�
t,x� x − f �t−�t��·�

�t
 = − i �

��t

�t
�x� − A�x� , �3.8�

nd

lim
�t↓0

M�
t,x� �x − f �t−�t��·��2

�t
 = i � 1 , �3.9�

here �·� is the dummy space variable of the definition �2.24�. As before, all such moments of
rder higher than 2 vanish.

As mentioned in Remark 2 after Proposition II.12, in the conditions of Propositions III.1 and
II.4, the definitions of the quantum �absolute� expectation of f �t� ·g�s� in the state �, t�s, given in

¯
2.28� and �2.28�� can be reexpressed in terms of the quantum derivatives Dt and Dt as follows.
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Corollary III.6:

�f �t�g�s��� =�Ms,·
�̄ ��

s

t

D̄�f
��� d� · g�s� + f �s�g�s��

�s

=� f �t�g�t� − f �t�M�
t,·��

s

t

D�g
��� d��

�t

, t� s .

This relation could define, actually, the proper concept of time-dependent Dirichlet form
elevant to quantum dynamics �or its Euclidean counterpart—cf. Ref. 7�.

Let us apply the Proposition III.1 to a f = �f ������R in the domain of D̄� which is, in fact, time
ndependent and of the form f ����·�=F�·� for some regular F. Then the lhs of �3.1� can be made
xplicit using �2.16� for the Hamiltonian �2.13�, as well as �3.4�,

Mt,x
�̄ �

t

T

D̄�F d� = Mt,x
�̄ �

t

T �D̄�q · �F +
i�

2
�F�d� = Mt,x

�̄ �F�·�� − F�x� . �3.10�

This relation clearly displays a quantum deformation of the fundamental theorem of calculus
or line integrals along C1 trajectories

�:�t,T� � R → Rn

�� q��� .

e shall henceforth denote the lhs of �3.10� by

Mt,x
�̄ �

t

T

� F � dq �3.11�

n order to remind ourselves that it coincides simply with the rhs of �3.10� but involves the
entioned deformation of the classical calculus.

Using �3.6� instead of �3.1�, we shall write as well, when s� t,

M�
t,x�

s

t

� F � dq = F�x� − M�
t,x�F�·�� , �3.11��

nderstanding now the lhs as

M�
t,x�

s

t �D�q · �F −
i�

2
�F�d� . �3.10��

More generally, for any A :Rn→Rn regular such that

Mt,x
�̄ �

t

T �D̄�q · A +
i�

2
� A�d� �3.12�

akes sense, we shall denote the expression �3.12� simply by

Mt,x
�̄ �

t

T

A � dq . �3.13�

e preserve, however, the boundary value in the time variable, in order to stress that �3.13� is only
short notation for �3.12� and that, in particular, no assumption on the existence of some under-
ying continuous trajectories � �q��� is made. The same remark applies to
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M�
t,x��

s

t

A � dq = M�
t,x�

s

t �D�q · A −
i�

2
� · A�d� , �3.13��

o, with the conventions �3.13� and �3.13��, this “quantum calculus” satisfies the rules of the
lassical �Riemann-Stieltjes� calculus.

Let us come back to the special Lagrangian system whose quantum Hamiltonian is �2.13�, i.e.,
unit mass and charge particle in an electromagnetic field. Its associated classical action SL with

nitial condition S�s� is defined by

SL�x,t� = S�s��q�s�� + �
�
�1

2

q̇
2 + q̇ · A − V�q��d� , �3.14�

or s� t. It is a real valued function of x�Rn, t�R and a functional along a bundle of solutions
in C2��s , t� ;Rn� :��q��� of the classical Lagrangian equations of motion, with the mixed

oundary conditions on �s , t�,

q̇�s� = � �S�s�

�q
�

q�s�
and q�t� = x .

t is well known �cf., e.g., Ref. 8� that for 
t−s
 small enough �and A and V as in �2.13��, SL is a
ell-defined function. Notice that the Lagrangian L of SL �i.e., the integrand of �3.14�� can be

ewritten as

�
�

L d� = �
�
�1

2

q̇
2 − V�q��d� + �

�

A dq . �3.15�

We are going to show that, using various regularizations provided by the quantum mechanical
onditional expectation, we can define a quantization of the above classical action functional SL

hich will prove to be natural later on.
For any �� ,q��-admissible, let us define

S�q,�� = − i � ln ���q� , �3.16�

here �� is a regular solution of the Schrödinger equation �2.2� with Hamiltonian �2.1�, such that
= �S������R is continuous in the domain of D�. �We may choose the principal determination of the

ogarithm in the definition �3.16�.�
According to �3.8�, we observe that

D� q = �S�q,�� − A�q� �3.17�

s an element of L2�Rn , 
���q�
2 dq� when �
���
2 dq�� as well as �A2�q� 
���q�
2 dq��. Using
he definition �2.14� for our situation, we compute

D�S�q,�� =
�S

��
+ �− i �

���
��

− A� · �S −
i�

2
�S =

1

2
�D� q�2 −

i�

2
� · A + A · D�q − V�q� ,

�3.18�

here the relation �3.16� and the fact �i solves the Schrödinger equation with H as in �2.13� have
een used. The rhs of �3.18� is interpreted as the Lagrangian L�D� q ,q� of our quantum system.
hen, by Proposition III.4,

M�
t,x��

s

t �1

2
�D�q�2 − V�q��d� + �

s

t �A · D�q −
i�

2
� · A�d� = S�x,t� − M�

t,x�S�s��·�� .
With the convention �3.13�, this means that we have defined a regularized action function by
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S�x,t� = M�
t,x�S�s��·�� + M�

t,x��
s

t �1

2
�D�q�2 − V�q��d� + M�

t,x��
s

t

A � dq , �3.19�

o be compared with the corresponding classical action �3.14� and �3.15�. The relation �3.19�
rovides us with an exact representation of the solution �t of the Schrödinger equation.

Theorem III.7:
Let �t be the solution of the Cauchy problem in L2�Rn ,dx� , t�s,

i �
��t

�t
= H�t,

�s�x� = e�i/��S�s��x� � DH, with S�s� such that S�s� = − i � ln �s�x� exists ,

or H=−��2 /2���−�i� �A�2+V, with A,V continuous as in Remark 1 after Lemma II.4. We also
ssume that �
����q�
2 dq�� and �A2 
���q�
2 dq�� , "��s. Then the following exact integral
epresentation of the solution �t holds:

�t�x� = exp� i

�
M�

t,x��
s

t �1

2
�D�q�2 − V�q��d� + �

s

t

A � dq + S�s��·�� = e�i/��S�x,t�, �3.20�

�t ,x��-admissible, where S is the (complex-valued) solution of the quantum Hamilton Jacobi
quation on Rn
 �s ,� �

�S

�t
+

1

2
��S − A�2 + V +

i�

2
� · A −

i�

2
�S = 0,

�3.21�
S�s��x� = − i � ln �s�x� .

Remark: The kinetic energy term in �3.20� �i.e., the term with V=0,A=0� involves the scalar
roduct of real vectors and not an Hermitian product. So, since D�q is a complex function, the
inetic energy term is, in general, a complex function, denoted here by �D�q�2.

Proof: When t=s the representation �3.20� holds trivially, according to the property �3� of
roposition II.10 of the quantum mechanical conditional expectation. When t�s, using the rela-

ion �3.17�, Eq. �3.18� means

�S

�t
+ ��S − A� · �S −

i�

2
�S =

1

2
��S − A�2 −

i�

2
� · A + A · ��S − A� − V .

fter simplification, this reduces to �3.21�. The integral representation �3.20� follows from the
efinition �3.16� and the relation �3.19�.

Remarks: We shall interpret �3.20� as a rigorous substitute for Feynman’s path integral rep-
esentation of the wave function �t.

2 Like this one, �3.20� is built in term of the Lagrangian of the
nderlying classical system. We are going to need this for our study of quantum symmetries.
owever, the mathematical status of �3.20� is quite distinct from Feynman’s heuristic �and, in

ome cases, rigorous9,10 sum over a path space, as it involves in an essential way the regulariza-
ions provided by the quantum conditional expectation and no underlying path space whatsoever
cf. Sec. VII�.

Corollary III.8:

Let �̄t be the solution of the boundary problem in L2�Rn ,dx� which is complex conjugate to the

ne of Theorem III.7,
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� − i �
��̄t

�t
= H�̄t, 0� t� T,H as in Theorem III.7,

�̄T�x� = e�i/��S�T��x�.
�

hen the following representation holds under the same assumptions as Theorem III.7:

�̄t�x� = exp� i

�
M�t,x�
�̄ ��

t

T �1

2
�D̄�q�2 − V�q��d� + �

t

T

A � dq + S�T��·�� = e�i/��Ŝ�x,t�,

�3.22�
here Ŝ solves the equation adjoint to �3.21� on Rm
 �−� ,T�,

−
� Ŝ

�t
+

1

2
�− �Ŝ − A�2 + V −

i�

2
� · A −

i�

2
�Ŝ = 0,

�3.23�
Ŝ�x,T� = Ŝ�T��x� = − i � ln �̄T�x� .

Proof: Starting from the logarithmic transformation of �3.22�, Eq. �2.16� shows that
¯
�q=−�Ŝ−A. Also D̄iŜ�q ,��=−�1/2��D̄�q�2+V�q�− D̄�q ·A− �i� /2��. A reduces to �3.23�. The

onclusion follows from the definition �3.10� and Proposition III.1. �

Notice the change of signs in the two Hamilton-Jacobi equation �3.21� and �3.23�. In the
euristic classical limit �=0, this is a well-known observation when the action is computed as a
unction of the future or past configurations �Ref. 11�. This limit could be computed rigorously
sing, e.g., the methods of Ref. 12.

Also notice that, up to the convention �3.10� and �3.11� and the fact that the classical norm 
q̇
2
f �3.14� is replaced by the square of a complex-valued quantum derivative, the Lagrangian of
3.22� is indeed the classical one, but evaluated on regularized variables.

The regularized action �3.19� used in our integral representation �3.20� satisfies the following
dditivity property along an admissible family of states �� , s���u.

Corollary III.9:
For any t� �s ,u� and under the conditions of Theorem III.7,

M�
u,z��

s

t

L d� + A � dq + M�
u,z��

t

u

L d� + A � dq = M�
u,z��

s

t

L d� + A � dq .

Proof: According to the property �c� of the operator P* defined by �2.29�, using �3.19�, and for
�s� like in the definition �3.21�,

Pt,u
* · Ps,t

* �S�s�� = M�
u,z�M�

t,·�S�s���

=M�
u,z�S�t��·� − M�

t,·��
s

t

Ld� + A � dq
=M�

u,z�S�t��·�� − M�
u,z�M�

t,·��
s

t

Ld� + A � dq
=S�u��z� − M�

u,z��
t

u

L d� + A � dq − M�
u,z��

s

t

L d� + A � dq
=Ps,u

* �S�s��

=S�u��z� − M�
u,z��

s

u

L d� + A � dq .
�
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Let us see what the fundamental gauge invariance of quantum mechanics means in the context
f our integral representation �3.20�.

Proposition III.10:
Let �t be the solution of the Cauchy problem of Theorem III.7. Let �= ��������R be real

ontinuous and differentiable in the domain of D�. Then the gauge transformation

A � A� = A + �� ,

�3.24�

V � V� = V −
��

��

eaves the form of the Schrödinger equation invariant provided that the integral representation
3.20� becomes

�t�x� � �t��x� = exp� i

�
M�

t,x��
s

t �1

2
�D�q�2 − V�q��d� + �

s

t

A � dq+ �
s

t

D��
���d� + �S�s� + ��s���·�� .

�3.25�

Proof: According to �2.14�, for �t replaced by t, and �3.11�,

M�
t,x��

s

t

D��
��� d� = M�

t,x��
s

t

� � � dq + �
s

t ��

��
d� = ��t��x� − M�

t,x���t��·�� . �3.26�

sing the representation of �t�x� in Theorem III.7 and �3.26�, the representation �3.25� reduces to

�t��x� = �t�x�e�i/��X�t��x�. �3.27�

hen the starting wave function �t is subject to the phase transformation �3.27�, it is well know
hat the Schrödinger equation is form invariant under the gauge transformation �3.24�. And indeed,
3.25� coincides with the representation �3.20� of �t��x� in term of V� and A� defined by �3.24�.

�

We shall need, later on, a dynamical characterization of what plays, for our regularized action
3.19�, the role of the critical points of the classical action �3.15�, regarded as a functional of the

2 path � :��q���.
Proposition III.11:
For the action �3.19�, the regularized equations of motion and conservation of energy in the

dmissible state �� solving the Schrödinger equation �2.2� with Hamiltonian H �2.13� in
2�R3 ,dq� are, respectively, when D�q is in the domain of D�,

D�D�q = − rot A Ù D�Z −
i�

2
rot�rot A� − �V , �3.28�

hen Ù denotes the exterior product in Rn and

D�h��
H �q,�� =

�h��
H

��
, �3.29�

here h��
H is the space–time observable associated by �2.5� with the Hamiltonian �2.13�, i.e.,

h��
H =

1

2
p2 − p · A +

i�

2
� · �A − p� +

1

2
A2 + V

or p the vector pj =−i� �� j�� /���=Bj −Aj , j=1,2 ,3 and B�q ,��=D�q. In �3.29�, �h��
H /�� denotes

he space–time observable associated with �H /��, i.e., here, �V /��. In particular, for V time
H H
ndependent, h�� is a quantum martingale along ��, i.e., D�h��=0.
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Proof: According to �2.14�, we have D�q=−i� ���� /���−A. If D�q is in the domain of D� we
an compute D�D�q. Using the fact that �� solves the Schrödinger equation of Theorem III.7 one
ets, after some simplification, the rhs of �3.28�. Alternatively, taking the gradient � of the
uantum Hamilton-Jacobi equation �3.21� and, by �3.17�,

D�q = �S�q,�� − A�q� � B�q,�� ,

here we introduced the notation B=−i� ���� /���−A for the space–time observable a��
P−A asso-

iated by �2.5� with the quantum velocity observable P−A�Q� �P being the momentum and Q the
osition observable�. We verify that the resulting equation coincides with �3.28�. The additional
quantum” deformation on the rhs of �3.28� comes from the vector identity in R3 :��� ·A�
rot�rot A�+�A for the potential vector A. Besides this extra term, the rhs of �3.28� is the quantum

egularization of the classical Lorentz force acting, at the singular limit �=0, on the system with
amiltonian �2.13� �cf. remark below�. Concerning �3.29�, the space–time energy function h

ssociated with the Hamiltonian �2.13� is, by �2.5�, �H�� /��� for ���DH. After substitution in
2.11� and using the fact that i� ���� /���=H��, we obtain the conclusion. �

Remark: Using D̄�, as defined in �3.2�, instead of D�, we would find that

D̄�D̄�q = D̄�q Ù rot A +
i�

2
rot�rot A� − �V , �3.30�

nstead of �3.28�. In particular, only the average of D�D�q and D̄�D̄�q can provide a regularization
f the classical Lorentz force free of quantum corrections but involving, instead, the symmetric

elocity �1/2��D�q+ D̄�q�, namely

1
2 �D�D�q + D̄�D̄�q� = 1

2 �D�q + D̄�q� Ù rot A − �V . �3.31�

Let us stress that our quantum calculus over space–time observables is perfectly commutative.
or example, −rot AÙD�q=D�qÙ rot A in contrast with its operator counterpart,

− rot A Ù �P − A� = �P − A� Ù rot A + i � rot�rot A� , �3.32�

but the quantum correction associated with the noncommutativity of the operators reappears now

in �3.28� as a consequence of the definition �2.14� of D�. Also we remark that the use of both D̄�

nd D� is really necessary for our quantum calculus. For example, as expressed by �3.32�,
rot AÙq and qÙ rot A differ after canonical quantization and, in fact, they do not even define,

ndividually, symmetric operators. So our symmetrization leading to �3.31� is the space–time
ounterpart of the canonical �symmetrized� Lorentz equations of motion13

d2Q

d�2 =
1

2
��P − A� Ù rot A − rot A Ù �P − A�� − �V , �3.33�

or Q and P, respectively, the position and momentum quantum observables in the sense of
eisenberg.

V. SYMMETRIES OF THE QUANTUM ACTION FUNCTION AND THE THEOREM
F NŒTHER

Let Rn be the configuration manifold of the classical system associated with the quantum
amiltonian H of �2.2�. The corresponding Lagrangian is

L:Rn 
 Rn 
 R → R

�4.1�
˙ ˙
�q,q,t� � L�q,q,t� .
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Let us consider a one-parameter local Lie group of transformations of the extended configu-
ation space Rn
R, of the form

U�:Rn 
 R → Rn 
 R

�q,t� � �Q,�� ,

here

Q = q + �X�q,t� + o���; � = t + �T�t� + o���; �4.2�

he generators X :Rn
R→Rn and T :R→R are real analytical functions and � is a real parameter.
Let us write the action function �3.19� associated with the special Hamiltonian H of Theorem

II.7. With an appropriate choice of the gauge ��t��x� �Proposition III.10�, we can get rid of the
nitial condition in the representation �3.19� for, say, s= t0 and t= t1,

SL�x,t1� = M�
t1,x��

t0

t1 �1

2
�Dt q�2 − V�q��dt + �

t0

t1

A � dq �4.3�

here � denotes the underlying solution of the associated Cauchy problem of Theorem III.7.
In analogy with the concept of invariance of the action involved in the classical Theorem of

œther14 we want to use the change of space–time variables, defined by �4.2�, for defining the
nvariance of our regularized action �4.3�.

Let us assume the existence of a further, complex analytic, generator ��t� in the domain of D�,
alled the “divergence.”

Definition IV.1: The action �4.3� is divergence invariant under the one-parameter group of
ransformations �4.2� if, any interval �t0 , t1�, we have

M�
t1,x1��

t0

t1 �1

2
�D�q�2 − V�q��dt + �

t0

t1

A � dq + �M�
t1,x1��

t0

t1

D��
�t�dt

= M
�̃

�1,Q1��
�0

�1 �1

2
�D�Q�2 − V�Q��d� + �

�0

�1

A � dQ + o��� , �4.4�

here �̃ denotes the associated solution of the same Cauchy problem as in Theorem III.7 but for
he new space–time variables �Q ,�� resulting from the transformation U�.

We remark that the definition �4.2� implies, up to the first order in �,

q + �X�q,t� = Q , �4.5�

here Q refers to the new configuration at the new time � �we do not denote Q by Q� only to avoid
he suggestion that paths ��Q� are involved�.

Clearly, the invariance condition �4.4� can only hold under severe restrictions on the genera-

ions X ,T, and �. These conditions are easier to find in terms of the two solutions � and �̃ of the
nderlying Cauchy problem.

First, Proposition III.10 suggests that the addition in �4.4� of the divergence term Dt�
�t� to the

iven Lagrangian should correspond to a relation similar to �3.27� between � and �̃. So, to the first
rder in the parameter �, it should hold that

�̃ = � − �
i

�
� · � . �4.6�

Now let us consider �4.2� and �4.6� together with the linear generator of the associated local
roup of transformations of the Schrödinger equation �2.2� �as before, Einstein’s sum convention

s used�
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L = Xj �

�xj + T
�

�t
+

i

�
�, j = 1, . . . ,n .

For further purposes, it will be more natural to consider, instead, the formal symmetry
enerator

N̂�t� = − i � L = Xj�x,t��− i �
�

�xj� − T�t��i �
�

�t
� + ��x,t� , �4.7�

s well as the Schrödinger partial differential operator �cf. �2.2��, already used in Lemma II.4 �up
o a factor i�,

Q = i
�

�t
−

1

�
H . �4.8�

Definition IV.2: N̂�t� is a symmetry operator for the Schrödinger equation �2.2� provided

�N̂�t�,Q� = �N̂�x,t�Q , �4.9�

here the complex analytic function �N̂�x , t� will depend, in general, on N̂�t� and is s.t.

N̂QDQ�L2�Rn
R ,dx dt�.
The domain DQ of Q has been defined in Lemma II.4. For the time being, we assume that

Q�QDQ and N̂�t�DQ�DQ so that the lhs commutator of �4.9� is well defined on DQ. We shall
e more specific about DN̂ in Sec. V.

In Refs. 15 and 67 it was shown that, in the algebraic sense, we have the following:

A symmetry operator N̂�t� generates a group, mapping solutions of the Schrödinger equation

2.2� into other solutions. The collection g of such symmetry operators N̂�t� is a complex Lie

lgebra, i.e., if N̂1 , N̂2�g, then �1� �1N̂1+�2N̂2�g , "�1, �2�C, �2� �N̂1 , N̂2��g.
The formal symmetry group G�exp g of Eq. �2.2� results from products of formal exponen-

ials of symmetry operators; it is a local Lie group.
Let us stress that, in order to make this claim analytical rigorous, we have first to define the

ymmetrization N�t� of such a formal generator N̂�t� then a self-adjoint extension N̂�t� and finally

he unitary group generated by N̂�t�. This will be done in Sec. V.
For a given Hamiltonian H, the property �4.9� implies the explicit conditions on the coeffi-

ients X ,T, and � that we are looking for.
Proposition IV.3:

N̂�t� is a symmetry operator for the Schrödinger equation in L2�Rn�, with Hamiltonian �2.13�
where V may depend on time), if and only if

1�

dT

dt
� jk =

�Xk

�xj +
�Xj

�xk , 1� j, k� n ,

2�

�Xj

�t
= −

��

�xj −
1

2

dT

dt
Aj − Xk�Aj

�xk ,

3�

��

�t
− Aj ��

�xj −
i�

2
�� = Xj �

�xj� i�

2
� · A +

1

2

A
2 + V� +

dT

dt
� i�

2
� · A +

1

2

A
2 + V� + T

�V

�t
,

here Einstein’s sum convention has been used, �. A denotes the divergence of the vector field A
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nd n is the dimension of the configuration space of the underlying classical system.

Remark: If we allow space–dependent time transformation �= t+�T�q , t�+o��� in �4.2� then,

or the associated N̂�t� to be a symmetry operator it is necessary, in addition to �1�, �2�, �3�, that

�T

�xj = 0, j = 1, . . . ,n .

n other words, our initial choice of T=T�t� was not a restriction.
Proof: Using the definitions �4.7� and �4.8�, the conclusion follows from �4.9�, after a labo-

ious computation. One verifies that the coefficient �N̂�x , t� in �4.9� is

�N̂�x,t� = −
dT

dt
�t� . �4.10�

n particular �N̂ is not space dependent. �

Notice that the “determining equations” �1�–�4� �Ref. 16� for the coefficients Xj ,T, and � of
he symmetry operator �4.7� are linear. We shall come back later to discuss their integrability
onditions.

According to Theorem III.7, when N̂ is a symmetry operator for �2.2� with Hamiltonian H of

he form �2.13�, �̃ solves the same Schrödinger equation but in the new variables �Q ,��. Therefore
t follows from �3.16� and �3.19� that

− i � ln �̃�Q,�� = M
�̃

�,Q��
�0

� �1

2
�DsQ�2 − V�Q��ds + �

�0

�

A � dQ .

n the other hand, taken together, the relations �4.2� and �4.6� defining the Lie groups of trans-

ormation around the identity �=0 mean that � and �̃ are related, up to the first order in �, by

��q,t�exp�−
i�

�
��q,t�� = �̃�q + �X�q,t�,t + �T�t�� .

y considering �−i� ln� of this equality for the principal determination of ln, taking into account
he relation �4.5�, valid for � small enough, as well as the representations �3.20� and �3.26�, we
erify that the invariance condition �4.4� of the action �4.3� is satisfied. In other words, the
ollowing proposition holds.

Proposition IV.4:
When the determining equations �1�–�3� are satisfied for the Schrödinger equation with

amiltonian �2.13� i.e., when the operator N̂ of �4.7� is a symmetry operator for this equation, the
ssociated action �4.3� is divergence invariant under the Lie groups of transformations defined by
4.2� and �4.6�.

e shall need:
Proposition IV.5:
Let us denote by L=L�Dtq ,q , t� the Lagrangian involved in �3.18�–�3.20�. Then, a necessary

ondition for the divergence invariance �4.4� of the action is that

�L

�t
T +

�L

�qj X
j +

�L

��Dtq� j�DtX
j − �Dtq� j dT

dt
� + L

dT

dt
= − Dt� . �4.11�

Proof: For the Hamiltonian of Theorem III.7 we have, according to the definition �2.14� of Dt,
2 n 2
ensely defined in L �R , 
�t�x�
 dx�,
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DtX
j =

�Xj

�t
+ Bk�Xj

�qk −
i�

2
�Xj , �4.12�

here

Bk = − i �
�k�t

�t
− Ak, k = 1, . . . ,n .

y �1� and �2� of Proposition IV.3,

DtX
j = −

��

�qj −
1

2

dT

dt
Aj − Xk�Aj

�qk + Bk�Xj

�qk .

n particular,

DtX
j = − �Dtq� j dT

dt
= i �

� j�t

�t
·

1

2

dT

dt
−

��

�qj − Xk�Aj

�qk +
1

2
Bk� �Xj

�qk −
�Xk

�qj � .

After substitution of L�Dtq ,q , t�= �1/2��Dtq�2+A ·Dtq− �i� /2�� ·A−V in �4.11� we verify
hat this relation reduces to the condition �3� of Proposition IV.3 and therefore to one of the

onditions ensuring that the generator N̂ of �4.7� is a symmetry operator for the Schrödinger
quation of Theorem III.7. �

Proposition IV.6:

When the generator N̂�t� is a symmetry operator for the Schrödinger equation �2.2� s.t.

�t , N̂�t��t� is well defined and the assumption for �4.9� is satisfied, then we have "�t�DN̂�t�,

d

dt
��t,N̂�t��t� = 0.

Proof: The equation �2.3� for A�t�= N̂�t� holds even when the members of the one-parameter

amily of operators N̂�t� are not self-adjoint as long as H is, and if the N̂�t� are densely defined and

uch that ��t , N̂�t��t� makes sense.
Then, for any �t�DN̂�t�, using �2.3� for �t=�t,

d

dt
��t,N̂�t��t� =� �̄t� �N̂�t�

�t
+

i

�
�H,N̂�t����t dx

=− i� �̄t	Q�N̂�t��t� − N̂�t�Q�t�dx ,

here the operator −iQ= ��� /�t�− �1/ i� �H� of Lemma II.4 has been introduced.

On the other hand, it follows from the definition �4.9� that when N̂ is a symmetry operator for

2.2� then Q�t=0ÞQ�N̂�t��t�=0. So the conclusion follows. �

Let us prove a stronger version of Proposition IV.6 �without expectation� in terms of space–
ime observables.

Theorem IV.7 (Theorem of Nœther):
When N̂�t� is a symmetry operator for the Schrödinger equation �2.2� with Hamiltonian

2.13�, and when the action �4.3� is divergence invariant under the Lie group of transformations

enerated by N̂�t�, the associated space–time observable n�t

N̂ in the state �t satisfies Dtn�t

N̂ =0, for

ll �t-admissible elements in DN̂�t�. In this case we shall say that n�t

N̂ is a quantum martingale for
his Schrödinger equation.

N̂
Proof: According to the definition �4.7�, writing n instead of n�t
for simplicity, we have
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Dtn�x,t� = Dt�Xjpj − Th + ���x,t� , �4.13�

here the space–time functions associated with N̂, the momentum observable Pj and the Hamil-
onian observable H of �2.13� have been introduced.

Using the relation �4.12� and Proposition II.8, the derivative of the scalar product in �4.13� can
e written as

Dt�Xjpj� = �DtX
j�pj + Xj�Dtpj� − i �

�Xj

�xk

�pj

�xk , �4.14�

here we notice the quantum deformation of Leibniz rule. Since pj =−i� �� j�t /�t�, �pj /�xk is
ymmetric in j and k, so

Dt�Xjpj� = �DtX
j�pj + Xj�Dtpj� − i �

1

2
� �Xk

�xj +
�Xj

�xj � �pj

�xk

=�DtX
j�pj + Xj�Dtpj� −

�2

2

dT

dt
���t

�t
− ���t

�t
�2� ,

ince, by �1� of Proposition IV.3,

�Xk

�xj +
�Xj

�xk =
dT

dt
� jk. �4.15�

n the other hand, coming back to �4.13�, we have

h = −
�2

2

��t

�t
+ i �

��

�
· A +

i�

2
� · A +

1

2

A
2 + V . �4.16�

sing �2.11� it is easy to verify �cf. also Proposition III.11� that

Dth =
�V

�t
. �4.17�

e have already found, in Proposition IV.5, that

DtX
j = �Dtq�idT

dt
+ i �

� j�t

�t
·

1

2

dT

dt
−

��

�xj − Xk�Aj

�xk .

lso, by �3� of Proposition IV.3,

Dt� = � ��

�t
− Aj ��

�xj −
i�

2
��� − i �

� j�t

�t

��

�xj

=Xj �

�xj� i�

2
� · A +

1

2

A
2 + V� +

dT

dt
� i�

2
� · A +

1

2

A
2 + V�+ T

�V

�t
− i �

� j�t

�t

��

�xj .

y �3.28�, we also have, since pj = �Dtq� j +Aj,

Dtpj = �Dtq Ù rot A� j −
i�

2
rot�rot A� j − � jV + DtAj ,

here

DtAj = �− i �
��t

�t
· ��Aj − �A · ��Aj −

i�

2
�Aj .
fter substitution of all this in
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Dtn = �DtX
j�pj + Xj�Dtpj� −

�2

2
���t

�t
− ���t

�t
�2 − hDtT − Dth · T + Dt� ,

e obtain, indeed, zero. �

Let us come back to the explicit definition �4.7� of a symmetry operator N̂�t� for the
chrödinger equation �2.2�. Introducing the definitions of the momentum and energy quantum
bservables P and H �in Heisenberg’s picture� we observe that

N̂�t� = XjPj − TH + � , �4.18�

here the coefficients Xj, T, and � solve the partial differential equations of Proposition IV.3.
Let us denote by Q�t� the time �Heisenberg� evolution of the position observable under an

amiltonian H of the form �2.13�. Then we define the following symmetrization of N̂�t�:

N�t� = Xj�Q�t�,t� � Pj�t� − T�t�H�t� + �̂�Q�t�,t� , �4.19�

here � denotes Jordan’s multiplication of operators, i.e., C �B= �1/2��CB+BC�. Then the phase �
hould be redefined by

�̂ = � +
i�

2
� · X . �4.20�

Proceeding heuristically, without worrying about domains �cf. Sec. V for precise definitions�,
e see that by the Corollary II.3 and Theorem IV.7, n�t

N̂ satisfies

Dtn�t

N̂ =
1

�t
� �N̂

�t
+

1

i�
�N̂,H���t = 0, �4.21�

r, equivalently, for n�t

N . So we can also verify, using the definition �4.19� of N�t�, the following
eisenberg equations of motion for the Hamiltonian �2.13�:

dQ

dt
= P − A�Q� ,

dP

dt
= �P,H� =

1

2
	�P − A� Ù rot A − rot A Ù �P − A�� − �V +

1

i�
�A,H� , �4.22�

dH

dt
=

�H

�t
,

nd the equations �1�, �2�, and �3� of Proposition IV.3, that N�t� is indeed a constant of motion, i.e.,
atisfies

�N�t�
�t

+
1

i�
�N�t�,H� = 0. �4.23�

o we have heuristically checked that the family of operators N�t� defined by �4.19� in terms of
ny solution 	Xj ,T ,�s� of the system of determining equations of Proposition IV.3 are constants of
otion of the system with Hamiltonian H �2.13�, associated with the Lie groups of space–time

ransformations generated by N̂�t�.
From now on, we shall refer to N�t� as above as a Nœtherian operator. We must now prove

hat any Nœtherian operator is indeed a respectable quantum observable, in the sense of Von

eumann.
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. STUDY OF THE NŒTHERIAN OPERATORS

. Quadratic Hamiltonians

We shall start from the special class of Hamiltonian observables used in Theorem III.7, i.e., of
he form

H�Q,P,t� = 1
2 �P − A�Q��2 + V�Q,t� on C0

��Rn� �5.1�

ut where, in addition, H is a real-valued polynomial of degree �2 in Q and P, which may be time
ependent.

Let us denote by Hc the classical observable �or symbol� on the phase space R2n
R to which
�HW is associated by the Weyl calculus17 of pseudodifferential operators. The set of quadratic

nhomogeneous polynomials in q , p on R2n, denoted by IQ�2n�, constitutes a Lie algebra under the
lassical Poisson bracket of observables

	Fc,Gc� = �
j=1

n
�Fc

�qj

�Gc

�pj
−

�Fc

�pj

�Gc

�qj . �5.2�

Since the algebra generated under �5.2� by IQ�2n� and any additional polynomial of order �2
s the set of all polynomials, IQ�2n� will be maximal for our purpose.

Let us consider a smooth family of initial conditions ���DH�L2�Rn ,dx� ,��R, for the
chrödinger equation of a quadratic Hamiltonian �5.1�, such that �0=�. The infinitesimal genera-

or N of the associated one-parameter group in DH is defined formally by

N� =� d

d�
���

�=0
. �5.3�

Using the notation �4.7� for the symmetry operator N̂�t� of this Schrödinger equation, we
onsider the family of transformations N of the initial conditions � such that, under the quantum
volution generated by the quadratic Hamiltonian H,

�N��t�x� = N̂�t��t�x� , �5.4�

here, as before, �t denotes the solution of the above-mentioned Cauchy problem of Schrödinger
ith initial condition ��DH.

On the other hand, the �“Weyl”� quantization �−i / � �FW�Q , P� of any observable F�q , p�
IQ�2n� provides a linear map between Lie algebras, preserving the Lie bracket operation, i.e., a

epresentation of such quadratic polynomials by skew-symmetric operators, such that Dirac’s
orrespondence holds,

�FW�Q,P�,GW�Q,P�� =
i

�
	Fc,Gc�W�Q,P� �5.5�

or Q and P the quantum position and momentum observables, respectively. We consider first the
implest quadratic Hamiltonian �5.1�, i.e., the free case A=V=0. This will prove to be sufficient
or any quadratic case �cf. Proposition V.4�.

Proposition V.1:
The above (faithful) representation of IQ�2n� can be exponentiated to a representation of a

ie group, called the inhomogeneous (or extended) metaplectic group and denoted iMp�n�, which
s the semidirect product of Mp�n�, the (“metaplectic”) group generated by the quadratic observ-
bles and Wn, the Heisenberg group generated by the linear and constant observables. In par-
icular, any generator N satisfying �5.4� belongs to the inhomogeneous metaplectic algebra,
enoted by imp�n�.
Proof: Let us denote by k0�q , t ,x� the propagator of the free Schrödinger equation �2.2� �i.e.,
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ith H=H0 in �5.1�, where A=V=0�. Using the definition �4.7� of N̂�t�, the rhs of Eq. �5.4� can be
ritten as

�
Rn
��q��Xj�x,t��− i �

�k0

�xj � − T�t�i �
�k0

�t
+ ��x,t�k0��q,t,x�dq

=�
Rn
�i � Xj�x,t�

���q�
�qj + T�t�

�2

2

�2��q�
��qj�2 + ��x,t��k0�q,t,x�dq ,

here the space translation invariance of k0 has been used. Taking limt↓0, this provides the
ollowing explicit form of N defined on C0

��Rn� by �5.4�:

N = − Xj�Q,0�Pj − 1
2T�0�Pj

2 + ��Q,0� . �5.6�

�

Clearly, the maximal Lie algebra generated by such infinitesimal operators is a subalgebra,
enoted by Gs�n�, of the above-mentioned Weyl quantization of IQ�2n�.

Equivalently, each Xj�x ,0� can be an inhomogeneous polynomial of degree 1, T�0� is a
onstant and ��x ,0� an inhomogeneous polynomial of degree 2. Taking into account the restric-
ions imposed by �5.4� and the special form of our free Schrödinger equation, one computes that
he dimension of this �“symmetry”� Lie algebra Gs�n� of skew-symmetric operators is �n /2��n
3�+4= l.

Here is a basis of Gs�n�, for j ,k=1,2 , . . . ,n:

Bs�n� = �i,iqk, �
�

�qk ,i�
k

�qk�2,i
�2

2 �
k

�2

��qk�2�,� ��
k

qk �

�qk +
�

2
n, � �qj �

�qk − qk �

�qj�� .

�5.7�

We shall denote by N j , j=1,2 , . . . , �n /2��n+3�+4� l, the skew-Hermitian operators of Bs�n�
n L2�Rn�. A necessary condition for exponentiating this representation of the Lie algebra Gs�n� is
hat all the generators N j should be essentially skew-adjoint on a common domain in the Hilbert
paces. We shall use the following general result of Nelson18 �cf. also Ref. 19�:

Let G be a simply connected Lie group with an �-dimensional Lie algebra G, and a given
epresentation of G by unbounded skew-Hermitian operators N j , j=1, . . . ,�, on a Hilbert space H.
hen this representation of G arises by differentiation of a unique unitary representation of G if

here is dense set vectors � in the domain of any product N j1
, . . . ,N jm

and such that

�N j1
¯ N jm

��H
m!

� CKm, �5.8�

m�N and "ji� 	1, . . . , � �, for C ,K two positive constants. Such a ��H is called “analytic for
N j� j=1

� .”
In our case we have the following.
Lemma V.2:
The finite linear combinations of the Hermite functions on Rn (i.e., the products of one-

imensional Hermite functions) are analytic vectors for any products N j1
. . .N jm

of the generators
isted in the basis �5.7� of Gs�n�.

Proof: Since the set of finite linear combinations of Hermite functions is dense in L2�Rn�, one
eeds only to show that each Hermite function is an analytic vector for any N j1¯N jm. Instead of
he standard basic 	i , iqk , �� /�qk� ,k=1, . . . ,n, used in �5.7� for the Heisenberg algebra �of con-
tant and linear observables in q and p�, consider the linear combinations called creation and

nnihilation operators:
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�i,Ak �
1
�2

�qk + �
�

�qk�, Ak
+ �

1
�2

�qk − �
�

�qk�� . �5.9�

xpressing the Hermite function in terms of Ak
+, one shows that those functions are analytical

ectors for qk and −i� �� /�qk� �see, e.g., Ref. 4, p. 204�. On the other hand, the operators of Bs�n�
uadratic in q and p are generated by all possible double products of creation and annihilation
perators and it is known that the Hermite functions are analytic vectors as well for such quadratic
bservables �Ref. 19, p. 190�. �

So there is indeed a unique representation of a Lie group Gs�n� whose infinitesimal version �or
ifferential� is the symmetry algebra Gs�n�. The representation is included in the so-called ex-
ended metaplectic representation19 which is the semidirect product of the n�2n+1�-dimensional

etaplectic group Mp�n�, generated by all quadratic observables, and the �2n+1�-dimensional
eisenberg group Wn generated by the constant and liner observable.

In particular, let us consider matrices D in the symplectic Lie algebra Sp�2n�, i.e., of the form

D = �WT Z

Y − W
� , �5.10�

here Y and Z are n
n real matrices of the form Y =�1 ,Z=�1, with � ,� two real constants, 1 the

n identity matrix, and W is a n
n real matrix of the form

W =�
� − W21 − W31 . . . . . . − Wn1

W21 � − W32 . . . . . . − Wn2

W32 W32 � . . . . . . − Wn3

� � �
� � − Wnn−1

Wn1 Wn2 . . . . . . Wnn−1 �

� �5.11�

or � a constant. Then we use the faithful representation of Sp�2n� by skew-Hermitian quadratic
perators associated with the names of Segal, Shale, and Weil,20

D � − iPD
W�Q,P� � �

i�2

2

�2

�qk
2 − � qkWjk

�

�qj −
�

2
n� + �

i

2
qk

2, �5.12�

hich is the infinitesimal version of the representation of some elements M� of the symplectic
roups Sp�2n� by unitary groups U� ,��R, on L2�Rn�,

M� = e�D � U� = e�PD
W�Q,P�.

On the classical side, each M� is a one-parameter group of linear difeomorphisms of the
lassical phase space R2n, whose associated quadratic Hamiltonian vector field vD is defined by

vD�Fc� =
d

d�
Fc�M��q,p��
�=0 = �WTq + �p��qFc + ��q − Wp��pFc
 = �pPD

c · �qFc − �qPD
c · �pFc

= 	Fc,PD
c � �5.13�

n any Fc in the Schwartz space of smooth and rapidly decreasing functions, which are C� vectors
or the metaplectic representation. Equation �5.13� holds since the classical observable PD

c in

Q�2n� associated with D�Sp�2n� is
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PD
c �q,p� =

�

2
p2 + qWp −

�

2
q2. �5.14�

otice that the only additional constant term in the representation �5.12� with respect to �5.14� is
ue to the Weyl �Jordan� symmetrization of the classical qWp term in �5.14�.

The relation D�Sp�2n��vD preserves the respective Lie parentheses, i.e., is a Lie algebra
omomorphism. As mentioned before, the Heisenberg algebra Wn adds to the previous picture the
epresentation of the linear observable on R2n,

ap − bq + c � − i � ak
�

�qk
− bkq

k + c , �5.15�

here a ,b�Rn and c�R, so that, finally, the classical quadratic observable

PD
c �q,p� =

�

2
p2 + qWp −

�

2
q2 + ap − bq + c �5.16�

f Hamiltonian vector field vP associated with the �affine� equation of Hamilton,

�q̇

ṗ
� = � �pPc

− �qPc � = �WT �1

�1 − W
��q

p
� + �a

b
� ,

s quantized, according to Weyl, by

PD
W�Q,P� = −

�

2
�2 �2

�qk
2 − i � qkWjk

�

�qj
−
�

2
qk

2 − i � ak
�

�qk
− bkq

k + �c −
i�

2
n�� �5.17�

with the usual convention of summing over repeated indices�. We can now be more specific about
he comments at the beginning of this section: The Lie algebra IQ�2n� associated with the semi-
irect product of the metaplectic group Mp�n� and the Heisenberg group Wn is isomorphic to the
lgebra of all polynomial observables of degree �2 on R2n equipped with the Poisson bracket
5.2� and the representation of the classical observables is Weyl quantization procedure.

Let us observe that some subgroups of Sp�2n� have, under this representation, explicit integral
ormulations. We will not need them here. See Ref. 19 for some particular cases.

In particular, let us consider D= �0 1

0 0 ��Sp�2n�, i.e., the case �=1,�=0,W=0 in �5.14�. So

he associated classical observable reduces to our free Hamiltonian

PA
c �q,p� = 1

2 p2 � H0�p� ,

nd its Weyl quantization is, of course,

PA
W�Q,P� = −

i

�
H0�P�

r iN�2n+3� in term of the �2n+3�th element of the basis Bs�n� �5.7�. Denoting the associated
arameter � by t, let us consider

Ut = etPA
W

= e−�i/��tH0, t � R,

.e., the strongly continuous unitary group evolution in L2�Rn�, solving the free Schrödinger
quation, and defined on DH0

. This groups acts on the symmetry algebra Gs�n� generated by the

ymmetry operators N j , j=1, ¯ �n /2��n+3�+4 via the adjoint representation
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N � UtNUt � N̂�t� . �5.18�

ince this representation sends analytic vectors into analytic vectors, the domains are preserved,

N=DN̂�t�. In other words, although H0 and the operators −iN are unbounded symmetric opera-
ors, they are essentially self-adjoint and defined on a common dense invariant domain of analytic
ectors in L2�Rn�. By a variant of the commutator theorem,4 the Baker-Campbell-Hausdorff for-
ula still holds. The image of the basis Bs�n� under �5.18� is, therefore, computed as follows:

�i,iqk − t �
�

�qk , �
�

�qk ,i�
k

�qk�2 − 2t��
k

qk �
�

�qk +
�

2
n� − 2t2 �

�

�t
, �

�

�t
,

��
k

qk �

�qk +
�

2
n + 2t �

�

�t
, � �qj �

�qk − qk �

�qj�� , �5.19�

here j ,k=1, ¯ ,n. We shall denote by N̂j�t� , j=1, ¯ ,�, any of those �= �n /2��n+3��4 result-
ng skew-symmetric operators.

Theorem V.3:
For fixed t�R, let us define by UtV0

j ���U−t=Vt
j���, ��R, a one-parameter family of opera-

ors in L2�Rn�, with V0
j ���=e��/��Nj and Vt

j���=e��/��N̂j�t�, N̂j�t� being any of the skew-symmetric
perators of �5.19�, image under the adjoint representation �5.18� of the one-parameter group of
perators V0

j ���, j=1, . . . ,�, generated by the basis �5.7� of the symmetry algebra Gs�n�. Then, the

t
j��� are symmetry operators of the free, Schrödinger equation i� �� /�t��t=H0�t in L2�Rn�, i.e.,

hey map any regular solution �t of this equation in another solution of the same equation �̃t

Vt
j����t, and the iN̂j�t� are constant observables of the free quantum system.
Proof: Let us consider �t=Ut�, ��DH for Ut=e−�i/��tH0, t�R. Then Vt

j����t�e−�i/��tH0��,
�R, is, by construction, solution of the same free Schrödinger equation, for the one-parameter

amily of initial conditions in DH�L2�Rn� defined by ���e��/��Nj�.
It follows from the definition of Vt

j��� and the computation of �� /���
�=0 in the relation above
hat

�N j��t�x� = N̂j�t��t�x�, j = 1, . . . ,
n

2
�n + 3� + 4, �5.20�

s the infinitesimal version of this relation, as required by the definition �5.4� of a symmetry
perator.

Now by �5.18�, Ut N jUt
−1= N̂j�t�. Proceeding like in Sec. II �or observing, as before, that the

aker-Campbell-Hausdorff formula holds here�, we see that

d

dt
��t,N̂j�t��t� = ��t,� �N̂j

�t
+

1

i�
�N̂j,H0���t� .

ut, by definition �4.9� of a symmetry operator N̂�t� for the free Schrödinger operator

Q�t � �i
�

�t
−

1

�
H0��t, �5.21�

e had

�N̂�t�,Q��t = �NQ�t = 0 �5.22�

or any �t�DN̂�t� �in the notations of Proposition II.2�. In particular, for any N̂j�t� as before we

nd, by Proposition IV.6,
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i
d

dt
��t,N̂j�t��t� = 0, �5.23�

.e., that iN̂j�t� is a constant observable of the free Schrödinger equation. �

Any quadratic Hamiltonian H of the form �5.1� can, in fact, be handled in the same way since
he infinitesimal generators of Bs�n� �cf. �5.7�� form a vector space. Let us see how, in the special
ase n=2 for the simplicity of the illustration �and notations�.

Proposition V.4:
All Schrödinger equations in L2�R2�, of the form

i �
�

�t
�t = �−

�2

2
� + c1��x1�2 + �x2�2� + c2�− i �

�

�x1� + c3�− i �
�

�x2� + c4�− i � �x1 �

�x2 − x2 �

�x1��
+ c5x1 + c6x2 + c7�− i � �x1 �

�x1 + x2 �

�x2�� + c8�t, �5.24�

ith ck�R such that the Hamiltonian is essentially self-adjoint on C0
��R2�, have isomorphic

ymmetry algebras and are equivalent to the free equation

i �
�

�t
�t = H0�t, �5.25�

here H0 is the two-dimensional free Hamiltonian

H0 = −
�2

2
� �2

��x1�2 +
�2

��x2�2� .

Proof: Given in Ref. 15. �

In order to illustrate this isomorphism, let us consider the following linear combination of
lements of Gs�2� �using the notations of �5.7��:

N = − N6 +
1

2
N7 = i�−

�2

2
� +

1

2
��x1�2 + �x2�2�� � iH0s. �5.26�

H0s is the Hamiltonian observable of the isotropic two-dimensional harmonic oscillator. So,
or any ��DH0s

,

�t�x� = �e−�i/��tH0s���x� �5.27�

olves in L2�R2�

i �
��t

�t
= H0s�t,

�0�x� = ��x� .

�5.28�

ow pick any N j, j=1, . . . ,9 in Bs�2�, the basis �5.7� of the free symmetry algebra Gs�2�. Then,
ccording to �5.18�, but now for Ut

0s=exp�−�i / � �tH0s�,

N̂j
0s�t� = Ut

0sN j�Ut
0s�−1 �5.29�

s a symmetry generator of the harmonic oscillator, for the same reason as in Theorem V.3.

herefore iN̂j
0s�t� is a constant observable of the quantum harmonic oscillator �5.28�. All such

armonic symmetry operators N̂j
0s�t�, j=1, . . . ,9, are linear combinations of the N j in Bs�2�, with

k
ime-dependent coefficients denoted by X �x , t�, k=1,2 ,T�t� and ��x , t� in �4.7�.
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By Proposition IV.3, we already know the system of partial differential equations solved by
hese coefficients Xk, T, and � regarded as functions. In our case, since V�q�= 1

2 ��x1�2+ �x2�2� and
he vector field A in �5.26� vanishes, they reduce to

�X1

�x2 +
�X2

�x1 = 0,
�X1

�x1 +
�X2

�x2 =
dT

dt
,

�Xj

�t
= −

��

�xj , j = 1,2,

��

�t
−

i�

2
�� = X1x1 + X2x2 +

dT

dt
·

1

2
��x1�2 + �x2�2� .

�5.30�

In particular, instead of solving �5.30�, we could use the Baker-Campbell-Hausdorff formula
n �5.29�, for N j any explicit element of the free basis Bs�2� of �5.7�. Let us take, for example,

4= �� /�x1. According to �5.19� this generator is invariant under �5.18�, i.e., N̂4�t�= �� /�x1. On
he other hand, under �5.29� we obtain, on C0

��R2�,

N̂4
0s�t� = exp�−

i

�
tH0s�N4 exp� i

�
tH0s� = �1 −

t2

2!
+

t4

4!
− ¯ ��� �

�x1� − x1�t −
t3

3!
+

t5

5!
− ¯ � .

omparing with the general form �4.7�, this means that the coefficients of N̂4
0s�t� are, respectively,

X1�x,t� = cos t, X2�x,t� = 0, T�t� = 0, ��x,t� = x1 sin t . �5.31�

One verifies easily that �5.31� makes up a solution of the system �5.30�. In other words,

cos t · P1�t� + sin t · Q1�t� �5.32�

s a constant of motion of the quantum harmonic oscillator. This can also be easily verified
therwise: Consider the solution of the equation of motion of this system, in the Heisenberg
icture. Those �linear� equations are, for j=1,2,

�Qj�t�
Pj�t�

� =��t��Qj

Pj
�, with ��t� = � cos t sin t

− sin t cos t
� � SO�2� . �5.33�

In particular, the �constant� operators which are initial conditions of this solution are given by

�Qj

Pj
� = �cos t − sin t

sin t cos t
��Qj�t�

Pj�t�
�, j = 1,2. �5.34�

o the constant of motion �5.32� provided by Nœther’s theorem coincides, in this elementary case,
ith the initial momentum P1 of the solution �5.33�. Another trivial example of symmetry gen-

rator is

cos tQ2�t� − sin tP2�t� � Q2, �5.35�

ssociated with the following solution of the system �5.30�

X1�x,t� = 0, X2�x,t� = − sin t, T�t� = 0, ��x,t� = x2 cos t .

ortunately, many nontrivial examples follow as well from this constructions �cf. Sec. VIII�. In
his way, the free basis Bs�2� allows us to compute the basis of the symmetry Lie algebra of any

uadratic Hamiltonian of the form �5.24� and then their associated symmetry operators N̂�t�. We
ummarize this result �in two dimensions, for simplicity� as follows.

Proposition V.5:
Let us consider any essentially self-adjoint quadratic Hamiltonian HQ in L2�R2�, as in the rhs
f equation �5.24�, i.e., resulting from a linear combination of elements of Gs�2�. For any �
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DHQ
, �t= �e−�i/��tHQ���x� solves the Cauchy problem for the associated Schrödinger equation. If

j, j=1, . . . ,9, denotes any element of the basis Bs�2� of the free symmetry algebra Gs�2� then, on
he dense invariant domain of analytic vectors of Lemma V.2,

N̂j
HQ�t� = Ut

QN j�Ut
Q�−1 �5.36�

s a symmetry generator of the HQ-system, where Ut
Q, t�R, denotes the one-parameter strongly

ontinuous group of unitary operators

Ut
Q = e−�i/��tHQ:L2�R2� → L2�R2� .

n particular, iN̂j
HQ�t� is a constant of the motion of the HQ-system. By construction, the time-

ependent coefficients Xj�x , t� ,T�t� and ��x , t� of this constant observable solve the system of
quations of Proposition IV.3, for the quadratic Hamiltonian HQ.

Moreover, if Wt denotes the one-parameter, strongly continuous, group of unitary operators in
2�R2� defined by

Wt = Ut
Q · e�i/��tH0 �5.37�

n the invariant domain of Lemma V.2, and for H0 as in �5.25�, then Wt provides the time-
ependent canonical transformation from the free system �5.25� to the one of Hamiltonian HQ. In
articular, we have

HQ = WtH0Wt
−1 + i �

dWt

dt
Wt

−1. �5.38�

Proof: The Hamiltonian defined by the rhs of �5.24� is of the general quadratic form �5.18�
ith

� = 1, W21 = − c4, � = − 2c1, a1 = c2, a2 = c3,

b1 = − c5, b2 = − c6, � = c7, c − i � c7 = c8
�5.39�

nd results indeed from a linear combination of elements of Gs�2�. Let HQ denote a self-adjoint
xtension of this �lower-bounded� operator in L2�R2�. By Stone’s theorem, Ut

Q=e−�i/��tHQ is a
trongly continuous unitary group of evolution in L2�Rn� solving the associated Schrödinger equa-

ion. Using �5.36�, any N j �Bs�2� , j=1, . . . ,9, evolves into a symmetry generator N̂j
HQ�t� of the

Q-system, as in the above-mentioned example.

Let us define a time-dependent unitary operator Wt on the invariant domain of Lemma V.2 by

Wt = Ut
Qe�i/��tH0.

learly, if �t is a solution of the free Schrödinger equation �5.25� with initial condition �0=�
DH0

then t=Wt�t solves the Schrödinger equation with quadratic potential HQ and the same
nitial condition. Equivalently, an HQ-solution t is given by a quadrature from a solution �t of the
ree equation. �One could also introduce an extra unitary generator M acting as well on the initial
ondition �, so that

Wt� = Ut
QMe�i/��tH0

s unitary.�
Then, it is well known that such a time-dependent unitary transformation Wt the Hamiltonian

0 is transformed into HQ given by �5.38�. Precisely, this goes as follows.
Let us write HQ=H0+ �HQ−H0� and denoted by DQ the above-mentioned common dense

omain of analytic vectors of H0 and HQ. Then HQ=Ut
QH0�Ut

Q�−1+Ut
Q�HQ−H0��Ut

Q�−1 on DQ. By
he definition �5.37� of Wt this is also HQ=WtH0Wt

−1+Ut
Q�HQ−H0��Ut

Q�−1 on DQ. Now on DQ �in
2 n
he strong L �R � sense�

                                                                                                            



s

r

k

f
W

+
t

w

fl

B

c
f
c

t
a
o
H

t
a
t
�
t

i

V

w
m

062107-41 Theorem of Nœther in quantum mechanics J. Math. Phys. 47, 062107 �2006�

                        
i �
dWt

dt
· Wt

−1 = ih
d

dt
�Ut

Qe�i/��tH0�e−�i/��tH0�Ut
Q�−1

=HQ − Ut
QH0�Ut

Q�−1

=Ut
Q�HQ − H0��Ut

Q�−1,

o HQ=WtH0Wt
−1+ i� �dWt /dt�Wt

−1 on DQ.
Since DQ is a domain of essential self-adjointness, this implies �5.38�. �

Let us make a remark on the problem of the zeroes set Nt
�= 	x�Rn 
�t�x�=0�.

As mentioned in Sec. II, our construction �see the definitions �2.5� and �2.14�, for example�
equires to consider �t ,x�-admissible states �, i.e., such that �t�x��0.

The study of the zeroes of �t�x� amounts to investigate the wave front set WF of the integral
ernel of Schrödinger,

k�x,t,y� = kernel�e−�i/��tH��x,y�

or fixed initial configuration x and time t. This problem has been considered by Zelditch21 and
einstein22 for H slight perturbations of a quadratic Hamiltonian HQ.

For example, in the case of the classical harmonic oscillator Hamiltonian PA
c �q , p�= �1/2�p2

��2 /2�q2 �i.e., the case �=1,�=−�2 and W=0 in �5.14�� the initial zero �cf. Mehler formula� of
he associated �t reappears at times k� /� and positions �−1�kx=y ,k�Z.

For more about this, see also Fujiwara �Ref. 23�.
Under bounded perturbations with bounded derivative, the singularities of �t behave as if H

as the harmonic Hamiltonian, i.e., the wave front sets are stable under these weak perturbations.
The study of these singularities is made using the geometry of the underlying Hamiltonian

ow on the classical phase space.

. General Hamiltonians

When the Hamiltonian H of our given quantum system is not of the quadratic form HQ

onsidered in Sec. V A �cf., for example, Proposition V.5�, the symmetry operators N�t� defined
ormally in �4.19� with coefficients X ,T ,� solving the PDE of Proposition IV.3 are still quantum
onstants of motion.

However, Dirac’s correspondence �5.5� does not hold anymore and the metaplectic represen-
ation used in Sec. V B is of no help. In general, no explicit basis of the associated symmetry
lgebra can be found. But since, by hypothesis, the coefficients X ,T, and � of the symmetry
perator N�t� are analytic functions, it is easy to show that N�t� is well defined for a large class of
amiltonians H.

Proposition V.6: Let us consider H=−��2 /2��+V, with V :Rn→R as in the Kato-Rellich
heorem, so that H is self-adjoint in L2�R2�. Let X :Rn
R→Rn ,� :Rn
R→C and T :R→R be
nalytic functions, respectively, of the form X�q , t�=�n=0

� �n�t�qn, with �n real-valued smooth func-
ions, ��q , t�=�n=0

� �n�t�qn with �n complex-valued and smooth. If �n=0
� 
�n�t� 
 �QnP� ��� and

n=0
� 
�n�t�
 �Qn� ��� , "��A�H�, the set of analytic vectors for H, then the Nœtherian symme-

ry operator

N�t� = Xj�Q�t�,t� � Pj�t� − T�t�H�t� + �̂�Q�t�,t� �5.40�

s a densely defined operator in L2�Rn�.

I. THE QUANTUM THEOREM OF NŒTHER IN A RIEMANNIAN MANIFOLD

Let us consider now a classical system like the one of Sec. IV but with a configuration space
hich is, instead of Rn, any n-dimensional smooth Riemannian manifold M, with positive-definite

etric tensor gi,j.
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The state � of the associated quantum system evolves in L2�M ,dM�, with volume element
M�q�=�g dq, where g=det�gij�, according to

i �
��t

�t
= H�t �6.1�

or the Hamiltonian of the form �2.13�

H = −
�2

2
� j� j + i � Aj� j +

i�

2
�kA

k +
1

2
�A�2 + V , �6.2�

here � · � denotes the Riemannian norm and �j is the covariant derivative with respect to the
evi-Civita connection. Let us recall that for this connection, the Christoffel symbols are sym-
etric: � jk

i =�kj
i , i.e., we are in the torsion-free case.

Conditions on the vector and scalar potentials V and A ensuring the self-adjointness of H on
dense domain of L2�M ,�gdq� are known; see, e.g., Refs. 24–27.

The relevant one-parameter group U� ,��R, of transformations of the extended configuration
pace will be denoted, like in the flat case, by

U�:M 
 R,�qi,t� � �Q�
i = qi + �Xi�q,t� + o���,�� = t + �T�t� + o���� , �6.3�

here qi are local configuration coordinates and

X:M 
 R → M, T:R → R ,

re real analytic. For g any scalar field on M
R such that g�t�DH and such that ġ exists, let us
efine, like in �2.11�, the quantum derivative along �t by

Dtg =
1

�t
� �

�t
−

1

i�
H��g�t� . �6.4�

Introducing �6.1� and �6.2�, this means that

Dtg = � �

�t
+ �− i �

� j�t

�t
− Aj�� j −

i�

2
� j� j�g . �6.5�

ince this can be interpreted as a quantum deformation of the classical “absolute” �or “intrinsic”�
erivative of the scalar g along a smooth continuous curve qj =qj�t�, we shall define Dtq

j by the
ector

Dtq
j = − i �

� j�t�q�
�t�q�

− Aj�q� � Bj�q,t� , �6.6�

n analogy with what we have done in the proof of Theorem III.7 of Sec. III. Choosing, like in Eq.
3.16�, g�q ,��=S�q ,��, with

S�q,�� = − i � ln ���q� �6.7�

or any � ,q �-admissible solution of the Schrödinger equation �6.1�, we can compute

D�S�q,�� =
1

2
D�q

jD�qj −
i�

2
� jA

j + AjD�q
j − V�q� . �6.8�

he rhs of �6.8� defines the Lagrangian L�D�q ,q� associated with the quantum system �6.1�.
efining, for any g= �g�s��s�R complex-valued, measurable and such that g�s��·��s�·�

2
L �M ,dM�, the �forward� quantum conditional expectation in the state � by
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E�
t,x�g�s�� =� g�s����p�s,�,t,x�dM��� , �6.9�

here, for any �t ,x� �-admissible, s� t,

p�s,�,t,x�dM��� = �s���k−��,t − s,x���t�x��−1 dM��� �6.10�

ith k− the advanced propagator of the Schrödinger equation �6.1�, one verifies that Theorem III.7
till holds. So, canceling the boundary term without loss of generality, the regularized action
unctional �6.3� becomes

SL�x,t1� = M�
t1,x��

t0

t1 �1

2
�Dtq�2 − V�q��dt + �

t0

t1 �AjDqj −
i�

2
� jA

j�dt
= M�

t1,x��
t0

t1 �1

2
�Dtq�2 − V�q��dt + �

t0

t1

A � dq , �6.11�

here we have used on M the same notations as in the Euclidean case of equations �3.10� and
3.11�.

Given an additional analytic generator � :M
R→C, called the divergence, the invariance of
he action �6.11� �up to this divergence term� is defined as in �4.4�.

The formal symmetry operator on M becomes, instead of �4.7�,

N̂�t� = Xj�x,t��− i � � j� − T�t��i �
�

�t
� + ��x,t� , �6.12�

nd it is defined by the same commutation property �4.9� with the Schrödinger equation as in the
uclidean case. This property implies the following conditions on X ,T, and �.

Proposition VI.1:

N̂�t� is a symmetry operator for the Schrödinger equation �6.1� in L2�M ,dM�, with Hamil-
onian �6.2� �where V may depend smoothly on time� if and only if the following determining
quations hold:

1�

dT

dt
gjk = � jXk + �kXj ,

2�

�Xj

�t
= − � j� −

1

2

dT

dt
Aj − Xk�kA

j ,

3�

��

�t
− Aj� j� −

i�

2
� j�

j� = Xj� j� i�

2
�kA

k +
1

2
�A�2 + V�

+
dT

dt
� i�

2
�kA

k +
1

2
�A�2 + V� + T

�V

�t
.

Proof: This is based on a simple computation of �N̂�t� ,Q�=�N̂�x , t�Q, where Q= �� /�t�

�i / � �H with the Hamiltonian �6.2�. Like in the flat Euclidean case, one finds that
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�N̂�x,t� = −
dT

dt
�t� . �6.13�

�

Remark: As in the flat Euclidean case, if we allow space-dependent time transformations in

6.3�, a further condition is needed for N̂�t� to be a symmetry operator for �6.1�. This is

� jT = 0. �6.14�

n other words �6.3� is indeed the most general space–time transformation for our purpose.
The integrability conditions of the determining equations �1�–�3� are not as obvious as in the

at Euclidean case, but they have already been investigated.28

When the determining equations �1�–�3� hold, the divergence invariance of the action �6.11�
in the sense of the relation �4.4�� is guaranteed by construction.

In order to obtain the general form of the invariance of the Lagrangian under our groups of
ransformations �Proposition IV.5� we need first to define the quantum derivative along �t of a
ector field Y j on M
R.

In classical mechanics on a Riemannian manifold M, it is well known that the time derivative
f the velocity field is, in general, not a tensor. In consequence, the acceleration is defined as the
absolute” �or “intrinsic”� derivative of the velocity.29 The result is indeed a contravariant tensor
f rank one.

Definition VI.2: Let Rk
j be the Ricci tensor of the Riemannian manifold M. Then the quantum

“absolute”) derivative of the complex-valued vector field Y, on M
R is defined by

DtY
j =

�Y j

�t
+ Bk�kY

j −
i�

2
��k�kY

j + Rk
jYk� , �6.15�

here Bk is given by �6.6�.
To be short, we shall denote simply by � the operator �k�k+R, so that

DtY
j =

�Y j

�t
+ Bk�kY

j −
i�

2
� Yj . �6.15��

On scalars and covariant vectors, the Laplacian � coincides with the Laplace-Kodaira-de
ham operator.30 One easily shows that this Laplacian commutes with the gradient and the diver-
ence, i.e., for g a scalar field as before,

� j � g = � � jg ,

nd for Y a vector field,

� j � Yj = � � jY
j .

Notice, in contrast, that �� j� j ,�i� is not zero, in general.
Proposition VI.3:
Let L�Dtq ,q , t� be the Lagrangian, defined by the rhs of �6.8�, of the quantum system, when the

otential V is allowed to be a smooth function of the time. A necessary condition for the diver-
ence invariance of the action functional �6.11� is

�L

�t
T +

�L

�qj X
j +

�L

��Dtq� j�DtX
j − �Dtq� j dT

dt
� + L

dT

dt
= − Dt� . �6.16�
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roof:

DtX
j =

�Xj

�t
+ Bk�kX

j −
i�

2
��k�kX

j + Rk
jXk� . �6.17�

rom the determining equation �1� �Proposition VI.1� and �dT /dt�= �2/n�� jX
j �where n=dim M�

e have

�l�kXj + �l� jXk = 0.

sing this in the Ricci identity we get

�l�kXj = Rkjl
m Xm, �6.18�

here Rkjl
m denotes the Riemannian-Christoffel curvature tensor. The rhs of �6.18� coincides with

kn,jlX
n, so

�n�kXj = gn,lRkn,jlX
n

nd

�k�kX
j = − Rk

jXk. �6.19�

fter introduction of the determining equation �2� �Proposition VI.1� and of �6.19� in the definition
6.17� we obtain

DtX
j = − � j� −

1

2

dT

dt
· Aj − Xk�kA

j + Bj�kX
j .

n particular,

DtX
j − �Dtq� j dT

dt
= − � j� −

1

2

dT

dt
· Aj − Xk�kA

j −
1

2
Bj dT

dt
+

1

2
Bk��kX

j − � jXk� . �6.20�

ow consider the invariance condition �6.16�. Using the rhs of �6.8� as a definition of the La-
rangian �for V smoothly time dependent� this condition means explicitly, after simplification,

��

�t
− Aj� j� −

i�

2
� j�

j� = Xj� j� i�

2
�kA

k +
1

2
�A�2 + V +

dT

dt
� i�

2
�kA

k +
1

2
�A�2 + V� + T

�V

�t
.

his is the determining equation �3� of Proposition VI.1 and, therefore, the invariance condition
6.16� constitutes indeed a necessary condition for the divergence invariance of the action �6.11�
nder the Lie group of transformations �6.13�. �

The main results of the flat case are, now, easily generalized. Using the definition of the
uantum derivative along �t of the scalar field S defined by �6.7�, one verifies that S solves the
uantum Hamilton-Jacobi equation on M
R,

�S

�t
+

1

2
��S − A�2 + V +

i�

2
� jA

j −
i�

2
� j� jS = 0, �6.21�

here the same remark as after �3.21� applies, as far as our notations are concerned. The quantum
amilton-Jacobi equation �6.21� provides us with a direct derivation of the regularized equation of
otion generalizing �3.28� and the Riemannian version of conservation of energy �3.29�.

Let us compute

� jS = Bj + Aj . �6.22�
e first notice that
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� j
1
2 ��S − A�2 = 1

2� j�BkBk�=Bk�kBj + �� jBk − �kBj�Bk.

ince, for the Levi-Civita connection, there is no torsion, � jBk−�kBj is the exterior derivative of

k, generalizing the curl operator of Proposition III.11. By �6.22� this coincides with −�� jAk

�kAj� so

� j
1
2 ��S − A�2 = Bk�kBj − �� jAk − �kAj�Bk. �6.23�

n the other hand, as observed after �6.15��, �� ,� j�S=0 implies that

� j�
k�kS = �k�k� jS + Rj

k�kS .

inally, using �6.15� and �6.22�, the covariant derivative of the quantum Hamilton-Jacobi equation
6.21� reduces to

DtDtqj = − �� jAk − �kAj�Bk −
i�

2
�� j�kA

k − �Aj� − � jV . �6.24�

ow let us consider the space–time observable of energy h�t

H associated with �6.2�, namely

h�t

H =
H�t

�t
= −

�2

2

� j�t

�t

� j�t

�t
−
�2

2
� j�� j�t

�t
� + i � Aj� j�t

�t
+

i�

2
�kA

k +
1

2


A

2 + V . �6.25�

ccording to �6.6�, it is consistent to denote the space–time momentum by

pj = Bj + Aj , �6.26�

o that the energy becomes

h�t

H =
1

2
p2 − Ajpj +

i�

2
� jAj −

i�

2
� jpj +

1

2
A2 + V . �6.25��

ssociated with the quantum Hamilton-Jacobi equation �6.21� we notice the following integrabil-
ty condition:

� jh�t

H = −
�Bj

�t
. �6.27�

ndeed, from the definition �2.5� and Schrödinger equation �6.1�, h�t

H =−�� /�t�S, where the relation
6.7� has been used. In other words, according to �6.6�, the relation �6.27� holds. Since the energy
pace–time observable is a scalar, its quantum derivative along �t is given by �6.5�,

Dth�t

H =
�h

�t
− Bj�Bj

�t
+

i�

2
� j�Bj

�t
, �6.28�

here the integrability condition �6.27� was used. On the other hand, by the definition �6.25�� of

�t

H ,

�H�t

H

�t
= Bj�Bj

�t
−

i�

2
� j�Bj

�t
+

�V

�t
.

fter substitution in �6.28� we obtain the conservation of the energy

Dth�t

H =
�V

�t
. �6.29�
et us collect this information in the
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Proposition VI.4:
For the action functional SL defined by �6.11�, the regularized equation of motion and con-

ervation of energy in an admissible state �t, solution of the Schrödinger equation �6.1� in
2�M ,�gdq�, are given respectively by

DtDtqj = − �� jAk − �kAj�Bk −
i�

2
�� j�kA

k − � Aj� − � jV �6.30�

nd

Dth�t

H =
�V

�t
. �6.31�

n particular, when the scalar potential V is time independent, the energy space–time observable
s a quantum martingale.

More generally, one shows, like in the flat case �cf. Ref. 31 and 32 for the probabilistic case�,
he following.

Theorem VI.5 (Theorem of Nœther):
Let us consider the Jordan symmetrization of the formal symmetry operator N̂�t� in

2�M ,dM� defined in �6.12�, i.e., the Nœtherian operator

N�t� = Xj�Q�t�,t� � Pj�t� − T�t�H�t� + �̂�Q�t�,t� , �6.32�

here � denotes Jordan’s multiplication of operators,

�̂ = � +
i�

2
� jX

j �6.33�

nd X, T, and � are solutions of the determining equations �1�, �2�, and �3� of Proposition VI.1, for
he symmetry groups of the Schrödinger equation �6.1�. In �6.32� Pj and H are, respectively, the
omentum and Hamiltonian observable in Heisenberg’s picture [cf. �6.26� and �6.2�].

Then N�t� is a quantum constant observable, densely defined on DN�t��L2�M ,dM� and the
ssociated space–time (scalar) observable n�t

N is a quantum martingale, i.e., Dtn�t

N =0, "�t admis-
ible.

II. QUANTUM PHYSICS, FEYNMAN PATH INTEGRAL AND STOCHASTIC ANALYSIS

Von Neumann axiomatization of quantum mechanics in Hilbert space is the mathematical
orm of the original version of this theory.33 It can be regarded as a generalization of classical
amiltonian mechanics, where the commutative algebra of the �real� observables in phase space is

eplaced by a noncommutative one.
It is well known that there is no mathematically rigorous Lagrangian version of quantum

heory. To construct such a framework was precisely one of Feynman’s original motivations.2 But,
n spite of its success �founded on its extraordinary heuristic power�, Feynman’s path integral
heory still cannot be regarded as such a satisfactory framework, from the mathematical point of
iew. Let us recall that Feynman represents the solution of the initial value problem �2.2� by the
ymbolic expression

�t�x� = �
�t,x

����0��e�i/��S��;t�D� , �7.1�

here �t,x denotes the path space 	��C��0, t� ,Rn� 
��t�=x�. S�� ; t� is the action functional of the

nderlying classical Lagrangian system. For example, when H is as in �2.13�, with A=0,

                                                                                                            



D

a

i

p
�

s
p
=

i
m
f
v
o

�

B
e

w

c
a
m
p

p
m

062107-48 Albeverio, Rezende, and Zambrini J. Math. Phys. 47, 062107 �2006�

                        
S��;t� = �
0

t �1

2

�̇���
2 − V�������d�� S0��;t� − �

0

t

V������d� , �7.2�

� is the heuristic “flat measure” on the path space �t,x �used as a Lebesgue measure�

D� = �
0���t

d���� ,

nd

e�i/��S��;t� � e−�i/���0
t V������d�e�i/��S0��;t�

s a complex weight.
Note that to make sense of the kinetic energy term in S0 one should a priori assume that the

aths ������ are absolutely continuous and in the Cameron-Martin Hilbert space HCM with
finite� norm

��,��H = �
0

t


�̇���
2d� . �7.3�

Using Lie-Trotter’s formula, Nelson has shown that the rhs of �7.1� can be reinterpreted as the
trong limit j→� in L2�Rn� of a discretization of the time interval 0� t1� t2�¯� tj = t along
olygonal paths interpolating linearly between the corresponding configurations ��tk�=xk, k
1, . . . , j ,��t�=x. But the heuristic expression for the limit of

e�i/��S0��,t� �
��	t1,. . .,tj=t�

d���� �7.4�

s not �-additive �cf. Ref. 18� and therefore cannot be used for the construction of a basic complex
easure on �t,x. However, it is possible, but very hard, to construct a rigorous �nonprobabilistic�

unctional calculus on path space, using the time discretization approximation �cf. Ref. 34�. For
arious other approaches, cf. also Ref. 35. Let us see �in the free case, for simplicity� how the lack
f complex measure is reinterpreted in our distinct construction.

We consider a finite product of complex-valued functions like the ones used in our definition
2.28�,

F = fn
�t� · fn−1

�tj−1�
¯ f1

�t1�, n � N, t� tj−1 � tj−2 � ¯ � t1. �7.5�

y iteration of the argument used there for only two such functions, the quantum �absolute�
xpectation of F in the state � becomes

�f j
�t�
¯ f1

�t1��� =� �t1
�x1�f1

�t1��x1�k0�x1,t2 − t1,x2�f2
�t2��x2�k0�x2,t3 − t2,x3� ¯ k0�xj−1,t − tj−1,xj�

f j
�t��xj��̄t�xj�dx1 ¯ dxj , �7.6�

here k0�x , t−s ,y� denotes the integral kernel of the evolution group Ut−s when V=0.
The rhs of �7.6� is a multilinear functional of f1

�t1� , . . . , f j
�t� which is well defined. But the

orresponding finite additive measure is not �-additive �the proof goes back to Cameron.36 See
lso Ref. 37� and, therefore, there is no way to look at such an additive measure as the path space
easure of some diffusion process, i.e., a Markovian stochastic process with continuous sample

aths �→����.
What we have called the forward quantum transition kernel p̂ in �2.23�, for example, is not

ositive in contrast with a crucial requirement of the existence proof of such a probability
38
easure. However, regarded only as defining a continuous complex-valued functional on a
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easonable domain of integrable functions and satisfying some basic properties needed otherwise
or quantum theory, the limit of �7.4� makes sense and allows to obtain a number of results �see
efs. 39, 40, 37, 41, 42, and 61�.

If we are insistent about interpreting Feynman’s type of formula �7.1� as an integral over a
pace of continuous paths, the traditional way, in mathematical physics, is to appeal to Kac’s
pproach �but cf. also Refs. 62–66�. First one replaces Schrödinger’s initial value problem �2.2� by
ts “Euclidean” �or “imaginary time”� counterpart, say

− �
��*

�t
= H�* �7.7�

ith a bounded continuous initial condition � in L2�Rn�. Then the counterpart of �7.4�, i.e.,

e−�1/��S0��;t� �
��	t1,¯. . .,tj=t�

d���� , �7.8�

onverges to the Wiener measure with diffusion coefficient �, denoted by dMW
� , on the path space

t,x �cf., e.g., Ref. 38�. The measure MW
� has support on continuous but not differentiable paths

in particular MW
� �HCM�=0� so neither the first factor in �7.8� nor the second one are well defined

ut their product is. After a discrete absorption of the a.s. singular kinetic energy term in the
easure, the probabilistic counterpart of �7.1� is Feynman-Kac formula,43

�t
*�x� = �

�t,x
����0��e−�1/���0

t V������d�dMW���=Et,x���W�0��e−�1/���0
t V�W����d�� , �7.9�

here the last expression adopts the probabilities notation for the conditional expectation given
hat the Wiener process satisfies W�t�=x �our superscript t ,x indicates that the condition lies in the
uture of the time interval of integration�, as well as another notation ��

* for the solution of �7.7�
tressing its dependence on the initial condition �.

The process W��� is used exclusively as a technical tool in �7.9�. We shall not insist here on
he fact, underlined time and time again44,45 that its �irreversible� dynamical properties have little
o do with the �reversible� ones of free quantum dynamics. There is no surprise here: the way
robability theory enters in �7.7�–�7.9� has nothing to do with the way it enters in quantum
ynamics, where, in particular, no direct probabilistic concept of conditional expectation is defined
ut Born interpretation of �t is fundamental to the absolute expectation.

The above-mentioned support of MW
� makes rather tricky the construction of any “stochastic

Euclidean� Lagrangian calculus” along the line suggested by Feynman in Ref. 2, since the irregu-
arities of the “quantum paths” turn any classical action functional into a divergent one.

Any quantum observable should be defined as a function of the basic underlying “stochastic
rocess.” It is easy to check �see Chap. 7 of Ref. 2� that Feynman’s implicit relation between
elf-adjoint operators in Hilbert space and associated “random variables” is precisely of our form
2.5� �although formulated by the authors in the time discretized context, i.e., before taking limj→�

n the above-mentioned construction, in order to avoid flagrant singularities�. But the specific rules
or handling these “random variables” are not established at all in Ref. 2. Their calculus seems to
e plagued by the same kind of singularities as in naive computations along the paths of diffusion
rocesses before the advent of Itô’s calculus.

The first problem is, of course, that the precise nature of the underlying formal stochastic
rocess itself �for a given H� is never specified. This may be due to the fact that, after the
bove-mentioned nonexistence proof of the “Feynman’s process,” the specific properties it should
ave were not, understandably, investigated. Is it clear, for example, that this process should be the
ne associated with the real time version of the Wiener measure or, instead, of the counterpart of
ome measure absolutely continuous with respect to the Wiener measure?

Also even if, given a quantum observable A, one admits �2.5� as a rule for the associated
pace–time observable, there are, of course, many other candidates providing the same quantum

echanical expectation ��t ,A�t��t�. For example, Feynman gives two distinct space–time observ-
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bles for the Hamiltonian H of the form �2.13� with zero vector potential �Ref. 2, p. 194�. He does
ot indicate any way to choose which of those is more natural, for instance as defining the proper
pace–time counterpart of the quantum constant of motion. It is also worthwhile to observe here
hat Feynman’s path integral approach does not provide, curiously, any Nœther Theorem although
ts whole point is to be a Lagrangian approach.

Nevertheless, Feynman’s formal computations suggest that the abelian nature of the classical
lgebra of observables should be preserved under quantization but that other basic rules of New-
onian calculus should be “deformed in �” so as to preserve the compatibility with regular �non-
ommutative� quantum mechanics in Hilbert space.

The point of our present work has been to investigate systematically the properties of the
bove-mentioned “process,” beyond what Feynman did, without ever using what it certainly
annot provide, a well-defined probability measure on the path space, compatible with Born
nterpretation of the wave function �t and all quantum mechanical predictions.

Our main improvement with respect to Feynman’s original framework is the introduction of
he quantum version�s� of conditional expectation�s� for his heuristic process. Indeed, this supplies
s with a natural regularization of the many divergent terms in his formal computation, for
xample the kinetic energy term �cf. �3.20�� of the classical action function.

Introducing the quantum derivatives along an L2-state associated with this quantum condi-
ional expectation, our calculus of space–time observables follows directly, as well as the defini-
ion of quantum martingale, underlying Nœther theorem.

The key deformations of the rules of the classical calculus are, therefore, the ones of the
erivations, given by Proposition II.8.

With this procedure, we have embedded regular quantum mechanics �more precisely, the class
f elementary systems considered here� into a framework which, we claim, is much closer to
robability theory and stochastic analysis than Feynman’s path integral approach and, a fortiori,
han quantum theory in Hilbert space.

Let us now recall why this claim is justified.
A solution of the Cauchy problems for Schrödinger’s equation can be regarded as the value on

he imaginary axis of a solution of the heat equation �7.7�. This is the famous “Euclidean” relation
or “Wick rotation”�

���x,− it� = ��
*�x,t� �7.10�

or any ��DH�L2�Rn�.
Let us restrict ourselves, for a fixed T�0, to � in the dense set of vectors in L2�Rn�, denoted

y D�e�T/2�H�, such that

�
n=0

�
1

n!
�Hn��2
t
n � � , " t � I = �−

T

2
,
T

2
 .

hen, together with the solution of �7.7�, we can consider the solution, in the strong L2-sense of
he adjoint equation with respect to the time parameter

�
���̄

�t
= H��̄, t � I

��̄�· ,0� = �̄�·� ,

�7.11�

here the overbar denotes, now, the complex conjugate.

Clearly we have
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�
Rn
��̄��

*�x,t�dx = ���2
2, �7.12�

n a striking analogy with Born’s “probabilistic” interpretation of the associated wave function �t

cf. definition �2.17��. This observation is due to Schrödinger �cf. Refs. 44 and 45� and lies at the
oundations of Euclidean quantum mechanics.

The identity �7.12� suggests the introduction of various Hilbert spaces associated with the pair
f heat equations �7.7�–�7.11� and allowing to mimic what happens in regular quantum mechanics.
or each t� I, consider the solution space of �7.7�, namely

 ̃t
* �  ̃t

*�Rn� = 	��*�t�,�� D�e�T/2�H�� ,

nd define

Ut
−1: ̃t

* → D�e�T/2�H� ,

��
*�t� � � .

�7.13�

quation �7.12� suggests as well the definition of the following scalar product in  ̃t
*:

���1

* �t�
��2

* �t��t = �Ut
−1��1

* �t�
Ut
−1��2

* �t��2 = ��1
�2�2, �7.14�

nd to complete  ̃t
* with respect to �·
 · �t. The resulting space, denoted by  t

*, is called forward
ilbert space. As a matter of fact, � t

* , �·
 · �t� is unitarily equivalent to �L2 , �·
 · �2� since Ut
−1 can be

xtended unitarily from  t
* onto L2. Using Ut, the Euclidean version of Heisenberg time evolution

f observables will be, for any densely defined A,

A−t
F = Ut AUt

−1, t � I , �7.15�

here F stands for forward �space�.
So the familiar �Heisenberg’s� quantum formulas will be valid, but without the factor i

�−1. For the same reason, the observables, in this framework, are densely defined normal
perators �not necessarily self-adjoint�. For example, the momentum observable in  0

*�Rn�
L2�Rn� is defined as −�� on its usual domain. A symmetric construction for equation �7.11�
ould introduce another one-parameter family of �“backward”� Hilbert space,  t.

Before continuing, it is worth stressing that the “reciprocal” analytical continuation in time of
he above construction adds nothing to regular quantum theory. Since the analytical vectors are
ense in L2�Rn� and e−�i/��tH�L2�Rn��=L2�Rn� " t, the real time version of the key restriction �
D�e�T/2�H� disappears since

D�ei�T/2�H� = L2�Rn�, " T � R .

et us see that the probabilistic interpretation suggested by �7.12� and �7.14� is indeed fully
ustified on positive vectors in  t

*, if e−�t/��H is positively preserving. For H as in Theorem III.7,
ith A=0, this is the case when V belongs to a subset of a class of potentials introduced by Kato

cf. Ref. 45�. The integral kernel of e−�1/���t−s�H in L2�Rn�, denoted by

h�x,t − s,q� , �7.16�

s, then, known to be jointly continuous and strictly positive.
For ��0 fixed as before, and �s

*�·�=��
*�· ,s�, the Euclidean counterpart of the quantum tran-

ition kernel �2.25� becomes

q*��,dq,t,x� = ��
*�q�h�q,t − �,x���t

*�x��−1 dq, � � t in I . �7.17�

n contrast with �2.25�, q* satisfies all the properties of the backward transition probability of a

eal-valued Markov process in I, for a given final probability distribution pT/2�y�dy.
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For another fixed ���0, and �t�·�=����· , t� in  t�Rn� one gets the Euclidean version of the
uantum transition kernel �2.23�, i.e.,

q�t,x,�,dq� = �t
−1�x�h�x,� − t,q����q�dq, t� � in I, �7.18�

amely the �forward� transition probability of a Markov process for a given initial probability
istribution p−T/2�x�dx. The existence of this Markov process Zt , t� I, introduced in 1984–1985
nder the name of Bernstein diffusion45 has been proved since then in more general settings �see
ef. 46 for a recent review, using the tools of statistical physics�.

Notice that the quantum problem of the zeroes of the wave function disappears here since, by
ypothesis on the potential V, exp�−�1/ � ��t−s�H� is positivity preserving. Using �7.17� and
7.18�, one verifies easily that Zt, t� I, is a real valued inhomogeneous diffusion process whose
rifts and diffusion matrix are given by the Euclidean version of Proposition II.14, i.e.,

B*�q,t� = − �
��t

*

�t
* �q� ,

B�q,t� = �
��t

�t
�q� , �7.19�

C�q,t� = C*�q,t� = � 1 ,

ith 1 the n
n identity matrix.
The particularity of such diffusions is that, in contrast with the traditional one-sided notion of

arkov processes, they take seriously the fact that the Markov property itself is invariant under
ime reversal. If Pt denotes the �-algebra generated by the past of Zt, i.e., Pt=�	Zs ,s� I ,s� t� and

t the future, Ft= 	Zu ,u� I ,u� t�, then, for any events A�Pt and B�Ft,
38

P�AB
Nt� = P�A
Nt� · P�B
Nt� �7.20�

lmost surely, where Nt denotes the present �	Zt� and P�·
Nt� is the conditional probability given

t.
The time symmetry of Zt , t� I, shows up in the multiplicative aspect of the integrand of

7.12�, for a pair of positive analytic vectors � ,��, since Eqs. �7.7� and �7.11� are formally time
eversed of each other.

The Euclidean version of the relation �2.5� between operators in Hilbert space and space–time
bservables provides us with well-defined random variables, functions of Zt. For example, the
bove-mentioned momentum observable at time t corresponds to −� ���t

* /�t
*��Zt�, i.e., the drift

*�zk , t� already known by �7.19�.
It follows that the Euclidean counterparts of the quantum derivatives �2.14� and �2.16� along

he quantum state �t and �̄t are given, respectively, by

Dt
* =

�

�t
+ L*, �7.21�

Dt =
�

�t
+ L , �7.22�

here L* and L are backward and forward generators of Zt , t� I, namely the elliptic operators

L* = − �
��t

*

�t
* · �−

�

2
� , �7.21��
nd
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L = �
��t

�t
· � +

�

2
� . �7.22��

he derivatives �7.21� and �7.22� are better defined as limits �whenever they exist� of conditional
xpectations, for f smooth real valued with compact support on Rn+1, namely

Dt
*f�Zt,t� = lim

�t↓0
Et� f�Zt,t� − f�Zt−�t,t − �t�

�t
 �7.23�

nd

Dtf�Zt,t� = lim
�t↓0

Et� f�Zt+�t,t + �t� − f�Zt,t�
�t

 , �7.24�

here Et denotes the conditional expectation given Zt in the future or in the past of the time
nterval, computed in terms of the kernels �7.17� or �7.18�, respectively. These conditional expec-
ations make sense from the probabilistic viewpoint, since the process Zt does, in contrast with our
uantum definitions �2.24� and �2.22�.

Let us stress that, although the definitions �7.23� and �7.24� coincide with Nelson’s ones in
ef. 47, the processes Zt have little in common with the ones introduced by him in order to

nterpret probabilistically �2.2� �cf. Ref. 44 for more about that�.
By definition of Dt

* and Dt, notice that f�Zt , t� is an Ft �respectively, Pt� martingale if and only
f Dt

*f�Zt , t�=0 �respectively, Dtf�Zt , t�=0�.
The probabilistic counterpart of Proposition III.1, involving the derivative �7.24�, is generally

nown in stochastic analysis, as Dynkin’s formula �cf., e.g., Ref. 48�. The fact that the counterpart
f �3.4�, using �7.23�, holds as well is due to the time symmetry of Bernstein measures.

The infinitesimal operators Dt and Dt
* are keystones of Itô’s stochastic calculus.49,68 Although

t is not as widely known in mathematical physics as it should, this calculus can indeed be
ormulated in a time-symmetric way as well as with respect to the usual increasing filtration Pt.
his requires the introduction of the time-reversed filtration Ft, �Refs. 45, 47, and 50�, used here.
he quantum deformations �2.20�� and �2.21�� of Leibniz rule �for our class of Hamiltonians�
ecome, respectively, in stochastic analysis, for f ,g smooth and real valued,

Dt�f · g� = �Dtf� · g + f�Dtg� + � �f · �g , �7.25�

Dt
*�f · g� = �Dt

*f� · g + f�Dt
*g� − � �f · �g , �7.26�

he relations �3.13� and �3.13�� are the quantum counterparts of the relations between Itô and
tratonovich stochastic integrals �also denoted by � �Ref. 50�� with respect to Pt and Ft. It is well
nown that the latter relation had already been discovered by Feynman in his path integral ap-
roach to quantum theory.2,44

Using this, one shows that positive solutions of the two adjoint heat equations �7.7� and �7.11�
dmit two path integral representations in terms of Zt , t� I. These are the probabilistic counter-
arts of the integral representations �3.20� and �3.22�.

The study of the symmetries of the action functionals involved in these path integrals results
n the probabilistic version of the quantum theorem of Nœther, proved in paper I, which is in fact
he origin of the present Lagrangian formulation of quantum theory for elementary systems.

One can further develop Feynman’s ideas using the rigorous tools of stochastic analysis.69 For
xample, his functional calculus2 is well defined for the class of Bernstein diffusions and allows to
rove the Euclidean version of his heuristic results.51 The aim of Euclidean quantum mechanics,
n the sense of Refs. 44 and 45 and for the present paper, is to transfer along this line, as much as
ossible of mathematical structures from stochastic analysis to regular quantum theory. The point

f this indirect approach is to make the best of the irreducible probabilistic content of this theory
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nd discover more easily new conceptual and technical aspects of quantum dynamics which have
een muddled along the years by the superficial role of probability in the traditional Hilbert space
ramework.

III. SOME CONCRETE EXAMPLES

. One-dimensional free fall

Let the configuration manifold M of Sec. VI be simply R and consider the free fall Hamil-
onian,

H = −
�2

2

�2

�q2 + gq , �8.1�

here g is a real constant. This is the �one dimensional� case A=0,V�q , t�=gq of �6.2�. In
articular, H belongs to the quadratic class �5.1� and it follows from Sec. V that it is sufficient to
ompute the free case V=0. The basis Bs�1� of the symmetry Lie algebra gs�1� is six dimensional
nd, according to �5.7�, given by

Bs�1� = �i,iq, �
�

�q
,iq2,i

�2

2

�2

�q2 , � q
�

�q
+
�

2
� � 	N j, j = 1, . . . ,6� . �8.2�

We observe that the free fall Hamiltonian �8.1� results from a linear combination of elements
f Bs�1�.

By �5.19� we know that the constant observables of the one-dimensional free system are

�i,i�q + i � t
�

�q
�, �

�

�q
,iq2 − 2t�iq�− i �

�

�q
� +

�

2
 + 2it2�i �

�

�t
�,

�
�

�t
,q �

�

�q
+
�

2
− 2it�i �

�

�t
�� �8.3�

quivalently the coefficients of the symmetry generator defined in �4.18� for the one-dimensional
ree case are

�8.4�

ccording to the method of Proposition V,5 each of these generators is unitarily equivalent to one
enerator of the free fall Hamiltonian H via the strongly continuous one parameter groups of
nitary operators in L2�R� defined by

Wt = e−�i/��tH · e�i/��tH0. �8.5�

sing this, one computes the corresponding coefficients for the free fall symmetry generators. The

esults are
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�8.6�

s they should, the constant observables of the free fall system reduce clearly to the ones of the
ure free case �8.4� when the constant g vanishes.

We also observe that the second and third of those constants are “trivial” �although consis-
ently forgotten� since they correspond to the initial position and momentum observables ex-
ressed, in the Heisenberg picture, in terms of Q�t� and P�t�. On the other hand, the fourth and last
bservables are nontrivial constants for this elementary system with purely continuous spectrum

H.

. The free particle on the sphere S2£R3

Now take for the configuration manifold M of Sec. VI the sphere S2 of radius R in R3.
It is natural to introduce the spherical coordinates �qj�= �� ,� in �0,��
�0,2��. Then, since

=V=0 here, the Lagrangian of the classical system reduces to the kinetic part

L��̇,̇,�,� =
R2

2
��̇2 + sin2 �̇2� , �8.7�

ince the metric of S2 is of the form

ds2 = R2�d�2 + sin2 � d2� , �8.8�

r, equivalently,

gij = �R2 0

0 R2 sin2 �
� . �8.9�

The associated Christoffel symbols and covariant derivatives are easily computed,

�11
1 = �12

1 = �21
1 = �11

2 = �22
2 = 0,

�12
2 = �21

2 = cotg � , �8.10�

�22
1 = − sin� cos  ,

nd

�� =
�

��
, � =

�

�
,

�� =
1

R2

�

��
, � =

1

R2 sin2 �

�

�
.

�8.11�

2 2 2
he quantum momentum observables in L �S ,R sin � d� d� are
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P� = − i � �� − i � cot g� ,

P = − i � �,
�8.12�

nd the Hamiltonian observable is

H = −
�2

2R2�� �2

��2 + cotg �
�

��
� +

1

sin2 �

�2

�2 . �8.13�

It is known that for this case with constant curvature K=R−2�0 and potentials A=V=0 the
imension of the symmetry algebra is maximal; here this is five. The table of the coefficients of

he symmetry generator N̂�t� for the Schrödinger equation with Hamiltonian �8.13� is the follow-
ng:

�8.14�

Given the definition �6.12� of the symmetry generator N̂�t�, it is clear that the first symmetry
orresponds to the conservation of the energy observable. The three last ones are interesting, but
lso of a purely classical origin.

�Xj
� ,Xj

� , j=1,2 ,3 form a basis of the Killing vector field Lie algebra for S2, an homogeneous
anifold. Those vectors Xj are proportionals to the quantum angular momenta, known to be a

asis of SO�3�, the group of isometries �rotations� of S2:

Lx = i � �sin 
�

��
+

cos 

tg �

�

�
� � i � �sin ,

cos 

tg �
� � i � X1, �8.15�

nd correspondingly for Ly ,Lz. The three vectors Xj solve the determining equation �1� of Propo-
ition VI.1 which reduces here to Killing’s equation

��Xj
 + �Xj

� = 0, j = 1,2,3. �8.16�

he last symmetry of the table �8.14� corresponds to the conservation of the angular momentum
P.

The integrability of the underlying classical system is built on the existence of the two
onstants of motion H and P allowing to foliate the data space by a two parameter family of
wo-dimensional tori.

. An example of Goldstein

In Goldstein’s Classical Mechanics �1980�, �p. 430�, the problem 2a� consists in showing that,
or a one-dimensional classical system with Hamiltonian

H�q,p� =
p2

2
−

1

2
q−2, �8.17�
here is a time-dependent constant of motion of the form
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n =
q

2
p − tH . �8.18�

his is the case where M =R ,A�q�=0, V�q�=− 1
2q−2and �8.18� shows that

X�q,t� =
q

2
, T�t� = t, ��q,t� = 0.

he determining equations �1� and �2� of Proposition IV.3 are trivially satisfied and the “classical
imit �=0” of �3� holds as well, so n is indeed a �classical� constant of motion. Let us recall that
here is nothing exotic about time-dependent classical first integrals, as shown by the ones asso-
iated with Galilean boosts.

. Lewis and Riesenfeld invariant

This is a quantum invariant, discovered in 1969 �Ref. 52� for the harmonic oscillator with
ime-dependent frequency, i.e., with classical Hamiltonian �M =R�

H�q,p,t� =
1

2
p2 +

�2�t�
2

q2. �8.19�

t can be shown that this invariant is of the form �6.32�, with

X�q,t� =
Ṫ

2
q, �̂�q,t� = −

T̈

4
q2, T�t� = �2�t� ,

here ��t� solves the nonlinear equation

�̈ + �2�t�� −
1

�3 = 0.

etails can be found in Ref. 53.

X. CONCLUSIONS

Our framework is founded on a dynamic reinterpretation of the symmetry group of the
chrödinger equation, itself very close to the one of the associated heat equation.

Given the fact that this group was computed by Lie around 1890, a number of the tools we
sed here are, indeed, quite old. The free Lie algebra can be found in most of the textbooks on Lie
roups analysis of PDE published since 1970 �for example Refs. 15, 16, and 54�, often with
ommentaries about the obscure physical interpretation of most explicitly time-dependent trans-
ormations, notably those presented as trivial in our Section V. Kuwabara’s result28 �1984� �dis-
overed by us after the redaction of the present work was almost finished� is especially relevant,
s it shows that the Lie algebraic structure for quantum �and classical� symmetries is time-
ependent. He found, in particular, the form �6.12� of the symmetry operator, without regarding it
s a consequence of a Nœther theorem or trying to relate it with a Lagrangian framework.
lthough we could not find a clear statement that the associated quantum first integrals should be
nderstood in the sense of the Heisenberg picture of quantum dynamics, such a statement may
ell already exist in the vast literature on the subject, but is certainly not common knowledge in
athematical or theoretical physics.

The specific contribution of our indirect Euclidean approach lies, curiously, in the physical
nterpretation it provides of many time-dependent symmetries, through their elementary meaning

69
n stochastic analysis.
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The simplest illustration is provided by the one-dimensional �n=1� free case �A=V=0� and

he symmetry associated with the coefficients X=−t ,T=0,�=x of the symmetric generator N̂�t� in
4.7�, corresponding to a simple solution of the system of equations of Proposition IV.3. This
ymmetry corresponds to the one-parameter family of solutions

���x,t� = e�i/����x−��2/2�t���x − �t,t�, �� R �9.1�

f the free equation i� ��� /�t�=−��2 /2���, quite familiar in the context of the Galilean invari-
nce of this equation.55

Let us rewrite �9.1� as

���x,t� = �e�N̂�t����x,t� , �9.2�

nd expand in � this expression when � is the trivial �unnormalizable� free solution if �t=1. On
his “state,” the space–time observables of momentum and energy vanish and the one associated

ith N̂�t� reduces to the phase � �cf. �4.18��. We find

���x,t� = 1 + �x +
�2

2!
�x2 + i � t� −

�3

3!
�x3 + 3i � tx� + ¯ . �9.3�

By successive taking of �� /��� at �=0 we obtain a collection of constant space–time observ-

bles n1
N̂n

�x , t���n�x , t� ,n�N, each, indeed, solution of Dt�n=0.

Now N̂�t�= �−tP�t�+Q�t�� itself is certainly a trivial quantum first integral, namely the initial
osition observable �since Q�t� and P�t� are solutions of the free Heisenberg equation of motion�

and the N̂n�t� ,n�N, reduce to the successive powers of this trivial dynamical information on the
ree quantum system.

On the Euclidean side, we are dealing instead of �9.1� with the one parameter family

���q,t� = e�1/����q−��2/2�t���q − �t,t�, �� R �9.4�

f �positive� solutions of the free heat equation �7.11�. It corresponds to the Euclidean counterpart
cf. paper I�

NE�t� = t
�

�q
− q �9.5�

f the real time symmetry generator N̂�t�. The above unphysical state �t turns into the trivial
olution �t=1 of the free equation �7.11� whose probabilistic role becomes fundamental. Indeed,
ccording to �7.19� and �7.22�� the associated well-defined diffusion Zt reduces to the one-
imensional Wiener process with diffusion coefficient �. Notice that the corresponding solution of
he free adjoint heat equation �7.7� is, then, the integral kernel �t

*=h0�x , t ,q� of this equation.
ince the relation between �t and �t

* is manifestly not the Euclidean counterpart of a complex
onjugacy, this means that for the Wiener process itself, the time invariance of the lhs of �7.12�
with an appropriate pair of positive boundary conditions� is the basis of our probabilistic inter-
retation of a complex quantum probability amplitude.

Now let us consider

h��q,t� =
��
�

�q,t� . �9.6�

If Zt is the diffusion, of law P, built from � using �7.19�, it is easy to show that h� is a strictly
ositive Pt-martingale of Zt, i.e., satisfies Dt h��Zt , t�=0. Denoting by Zt

� the new diffusion, of law
P�, built from ��, one shows easily that P� is absolutely continuous with respect to P, with

adon-Nikodym derivative dP� /dP=h�. In the case of the Wiener process, h� is the exponential
44,49
artingale of this process, a basic tool dating back to the foundations of stochastic analysis.
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he family of Pt-martingales resulting from the successive taking of derivatives � /�� at �=0,
amely 	1,q ,q2− � t ,q3−3� tq , . . . �, coincides with the familiar Wick product of the Brownian
otion56 which is, therefore, reinterpreted as the probabilistic counterpart of the above-mentioned

rivial dynamical information on the free quantum system provided by Nœther’s theorem.
Thus stochastic analysis may help, indeed, to understand some conventional aspects of quan-

um dynamics.
The version of Euclidean quantum mechanics advocated in paper I is known to be valid for a

lass of Hamiltonians much larger than the one considered here �cf. Ref. 57� and it is expected that
any ideas expressed here will survive in more general contexts �cf. Refs. 70 and 71�.

Although, as shown here, the Riemannian formulation of our results is quite natural, the
roper geometrical framework of this method is distinct. It should be regarded, in fact, as defor-
ation of classical contact geometry.58 This viewpoint also has serious computational advantages
hen adopted in the Euclidean context where the probability measures make sense, and quantum

ymmetries are reinterpreted as symmetries of families of diffusion processes.

. ERRATA FOR PAPER I

1� In Proposition 3.6 of Ref. 1 �cf. also Ref. 59�, the term �−Xq ·B, i.e., the variation of the
drift, is ambiguous. It should be understood as

�

�qi −
�Xk

�qi Bk

�where the summation convention is used�.
2� The “illustration of the central role of time symmetry,” mentioned in p. 331 of Ref. 1 is

wrong: the function n�q , t� �respectively n*�q , t�� solves our heat equation �7.11� �respec-
tively, �7.7�� and so are Pt �respectively, Ft� martingales of the starting process Zt, t� I. But
they are not strictly positive and so cannot be used as h-functions, in the sense of Doob’s

h-transform. However, when the Nœtherian symmetry operator N̂ is positivity preserving,

���q , t�=e−�N̂��q , t�, where � is the positive solution of �7.11� associated with Zt, is a
one-parameter family of solutions of the same equation. Then h��q , t�= ��� /���q , t� is, in-
deed, the positive martingale needed for the h-transform producing the family of Bernstein
diffusions Zt

� associated with this symmetry �cf. Conclusion here, Sec. 6, Part 2 of Ref. 44,
and Refs. 31, 32, and 58 for much more�.
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We define a kind of quantized enveloping algebra of a generalized Kac-Moody
algebra G by adding a generator J satisfying Jm=Jm−1 for some integer m. We
denote this algebra by wUq

��G�. This algebra is a weak Hopf algebra if and only if
m=2. In general, it is a bialgebra, and contains a Hopf subalgebra. This Hopf
subalgebra is isomorphic to the usually quantum envelope algebra Uq�G� of a
generalized Kac-Moody algebra G. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2209771�

. INTRODUCTION

In his study of Monstrous moonshine,3–5 Borcherds introduced a new class of infinite dimen-
ional Lie algebras called generalized Kac-Moody algebras. These generalized Kac-Moody alge-
ra have a contravariant bilinear form which is almost positive definite. The fixed point algebra of
ny Kac-Moody algebra under a diagram automorphism is a generalized Kac-Moody algebra. A
eneralized Kac-Moody algebra can be regarded as a Kac-Moody algebra with imaginary simple
oots. More explicitly, a generated Kac-Moody algebra is determined by a Borcherds-Cartan
atrix A= �aij��i,j��I�I, where either aii=2, or aii�0. If aii�0, then the index i is called imaginary,

nd the corresponding simple root �i is called imaginary root. In this paper, the set �i� I �aii=2� is
enoted by I+. Set Iim= I \ I+. The structure and the representation theory of generalized Kac-Moody
lgebras are very similar to those of Kac-Moody algebras, and many basic facts about Kac-Moody
lgebras can be extended to generalized Kac-Moody algebras. For example, the Kac-Weyl formula
bout an irreducible representation over a Kac-Moody algebra is generalized to a formula about an
rreducible representation over a generalized Kac-Moody algebra as follows:

chV��� =
�w�W �F�T,F��

�− 1�l�w�+�F�ew��+�−s�F��

�w�W,F�T
�− 1�l�w�+�F�ew��−s�F��

,

here T is the set of all imaginary simple roots, F runs all over finite subsets of T such that any
wo elements in F are mutually perpendicular. We denote by s�F� the sum of the roots in F. We
all the above formula Borcherds-Kac-Weyl formula.

On the other hand, many mathematicians are interested in generalization of Hopf algebras, of
hich importance has been recognized in both mathematics and physics. One way to do this is to

ntroduce a kind of weak coproduct such that ��1��1 � 1 in Ref. 1. The face algebras7 and
eneralized Kac algebras14 are examples of this class of weak Hopf algebras. Li and Duplij have
efined and studied another kind of weak Hopf algebras.11 A bialgebra �H ,� ,	 ,� ,
� is called a
eak Hopf algebra if there is an antiautomorphism T such that T*idH*T=idH and idH*T*idH

T, where idH is the identity map and * is the convolution product. Hopf algebras, and left or right
opf12,13 algebras are weak Hopf algebras in this sense. In the presented paper a weak Hopf

�
Electronic mail: wzx@zju.edu.cn
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lgebra is always a mean weak Hopf algebra in this sense. The weak quantized enveloping
lgebras of semisimple Lie algebras are also weak Hopf algebras.15 Our aim is to give more
ontrivial examples of weak Hopf algebras. Thanks to the definition of quantized enveloping
lgebra Uq�G� associated a generalized Kac-Moody algebra G defined in Ref. 7, we can also
eplace the group G�Uq�G��of grouplike elements by some regular monoid as in Ref. 15, we use a
enerator J instead of the projector in Ref. 13. Our generator J satisfies Jm=Jm−1 for some integer
�2. By this way, we obtain a subclass of bialgebra wUq�G�. This bialgebra contains a subbial-

ebra U��G�, which is a weak Hopf algebra in the sense of Ref. 11. Moreover, the quotient algebra
Uq�G� / �1−Jm� is isomorphic to a sub-Hopf algebra of the quantized enveloping algebra Uq�G� as
opf algebras. As in the case of the classic quantum group Uq�G�, we try to determine irreducible

epresentation of wUq�G�.
Finally, let us outline the structure of this paper. In Sec. II, we recall some basic facts related

o the quantized enveloping algebra of a generalized Kac-Moody algebra. In Sec. III, we give the
efinition of wUq�G�. We study the bialgebra structure of wUq�G� in Sec. IV. In the final section,
e study the irreducible representation of wUq�G�.

I. NOTATIONS AND PRELIMINARIES

In this section, we fix notations and recall fundamental results about generalized Kac-Moody
lgebras.

Let I= �1, . . . ,n� or the set of positive integers, and A= �aij�I�I, a Borcherds-Cartan matrix, i.e.,
t satisfies

�1� aii=2 or aii�0 for all i� I,
�2� aij �0 for all i� j,
�3� aij �Z,
�4� aij =0 if only if aji=0.

We say that an index i is real if aii=2 and imaginary if aii�0. We denote I+= �i� I �aii=2� and
im= I− I+. Kang considered the generalized Kac-Moody algebras associated with Borcherds-
artan matrices with charge10

m = ��mi � Z�0��i � I,mi = 1 for i � I� .

he charge mi is the multiplicity of the simple root corresponding to i� I. In this paper, we follow
ef. 9, and assume that mi=1 for all i� I. However, we do not lose generality by this hypothesis.

ndeed, if we take Borcherds-Cartan matrices with some of the rows and columns identical, then
he generalized Kac-Moody algebras with charge introduced in Ref. 10 can be recovered from the
nes in the present paper by identifying the hi’s and di’s �and hence the �i’s� corresponding to
hese identical rows and columns.

Moreover, we also assume that A is symmetrizable; that is, there is a diagonal matrix D
diag�si�0 � i� I� such that DA is a symmetric matrix.

Let P= �� i�IZhi� � �� i�IZdi� be a free Abelian group generated by the set �hi ,di � i� I�. This
ree Abelian group is called the coweight lattice of A. The element hi in Ú= �hi � i� I� is called a
imple coweight. We call Ú the set of all simple coweights. The space H=Q�ZPÚ over the
ational number field Q is said to be a Cartan subalgebra. The weight lattice is defined to be P

���H* ���PÚ��Z�, where H* is the dual space of the Cartan subalgebra H=Q�ZPÚ. We
enote by P+ the set ��� P ���hi��0, for every i� I� of dominant integral weights.

Define �i, �i�H* by

�i�hj� = aji, �i�dj� = �ij,

�i�hj� = �ij, �i�dj� = 0.

hen �i , i� I are called simple roots of A. Let = ��i � i� I�� P be the set of simple roots. The

ree Abelian group Q= � i�IZ�i is called the root lattice. Set Q+=�i�IZ�0�i and Q−=−Q+. For any
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�Q+, we can write �=�k=1
n �ik

for i1 , i2 , . . . , in� I. We set ht���=n and call it the height of �.
Let �.� . � be the bilinear form on �� i�Q�i � Q�i���H* defined by

��i��� = si��hi�,��i��� = si��di� .

ince it is symmetric on �� i�Q�i � Q�i��� �� i�Q�i � Q�i��, one can extend this to a symmetric
ilinear form on H*. Then such a form is nondegenerated.

We always assume that K is a field of characteristic 0. Let q�K and qi=qdi. It is assumed that

i� ±1,0 for all i� i. For an indeterminant � and an integer m, let

�m�� =
�m − �−m

� − �−1 , �m�!� = �m�� ¯ �1��, �0�� = 1,

nd

	m

s



�

=
�m�!�

�s�!��m − s�!�

.

Definition: The quantized enveloping generalized Kac-Moody algebra Uq�G� associated with
Borcherds-Cartan datum �A , PÚ , P ,Ú ,� is the associated algebra with unit 1 over a field K

f characteristic 0, generated by the symbols ei, f i �i� I� and PÚ subject to the following defining
elations:

q0 = 1,qhqh� = qh+h� " h,h� � PÚ,

qheiq
−h = q�i�h�ei, qhfiq

−h = q−�i�h�f i,

eif j − f jei = �ij

ki − ki
−1

qi − qi
−1 , where ki = qsihi,

�
r=0

1−aij

�− 1�r	1 − aij

r



i
ei

1−aij−rejei
r = 0 if aii = 2, i � j,

�
r=0

1−aij

�− 1�r	1 − aij

r



i
f i

1−aij−rf j f i
r = 0 if aii = 2, i � j,

eiej − ejei = f if j − f j f i = 0 if aij = 0.

The quantum generalized Kac-Moody algebra Uq�G� has a Hopf algebra structure with the
omultiplication �, the counit 
, and antipode S defined by

��qh� = qh
� qh,

��ei� = ei � ki
−1 + 1 � ei,

��f i� = ki � f i + f i � 1,


�qh� = 1, 
�ei� = 
�f i� = 0,

S�qh� = q−h, S�ei� = − eiki, S�f i� = − ki
−1f i

Ú
or all h� P and i� I.
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Let Uq
+�G� and Uq

−�G� be the subalgebras of Uq�G� generated by elements ei and f i, respec-
ively, for i� I, and let Uq

0�G� be the subalgebra of Uq�G� generated by qh�h� PÚ�. Then we have
he triangular decomposition1,8

Uq�G� = Uq
−�G� � Uq

0�G� � Uq
+�G� .

inally, let us use Uq��G� to denote a subalgebra of Uq�G� generated by ei , f i ,q
h, where

� � i�IZsihi � � i�IZdi. It is obvious that Uq��G� is a Hopf algebra.

II. WEAK QUANTUM ALGEBRAS wUq
T
„G…

Let m be a fixed positive integer. To generalize the invertibility condition kiki
−1=1 in Uq�G�, let

s introduce some generators J, Ki, and K̄i, which subject the following relations:

Jm = Jm−1 = KiK̄i = K̄iKi = DiD̄i = D̄iDi. �3.1�

oreover, we assume that Jr�Jr−1 for any r�m. Suppose Ki and K̄i are not zero divisors. Then

KiJ = JKi = Ki, K̄iJ = JK̄i = K̄i. �3.2�

DiJ = JDi = Di, D̄iJ = JD̄i = D̄i. �3.3�

n this paper we always assume that �3.2� and �3.3� hold. We call an element Ei of type one if it
atisfies

KjEi = qi
aijEiKj, K̄jEi = qi

−aijEiK̄j . �3.4�

imilarly, if

KjFi = qi
−aijFiKj, K̄jFi = qi

−aijFiK̄j , �3.5�

hen Fi is said to be type one. Suppose

KjEiK̄j = qaijEi. �3.6�

hen we say that Ei is type zero. Similarly, Fi is type zero if it satisfies the following:

KjFiK̄j = q−aijFi. �3.7�

Proposition III.1: Ei �respectively, Fi� is type zero if and only if Ei is type one and EiJ
m−1

Jm−1Ei=Ei �respectively, FiJ
m−1=Jm−1Fi=Fi�.

Proof: If Ei is type zero, then we obtain from �3.6�,

KjEiK̄jKj = KjEiJ
m = qi

aijEiKj .

n the other hand, since JmKj =Kj,

KjEiK̄j = KjEiJ
mK̄j = qi

aijEiKjK̄j = qi
aijEiJ

m−1.

o Ei=EiJ
m−1. Similarly, we can prove that Ei=Jm−1Ei. Then

KjEi = KjEiJ
m = qi

aijEiKj

nd

EiK̄j = JmEiK̄j = qi
aijK̄jEi.

m m
hat is, Ei is type one. On the other hand, if Ei is type one, and EiJ =J Ei=Ei, then
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qi
aijEi = qi

aijEiKjK̄j = KjEiK̄j .

imilarly,we can prove the statement about Fi is true. By now, we complete the proof.
The types of Ei and Fi are denoted by �i, ��, respectively. Let �= ���i�i�I � ��i���i�I�. By now,

e can give the definition for the weak quantum algebra of type � as follows.
Definition: The type � weak quantum algebra wUq

��G� associated with the generalized Kac-
oody algebra G is an associated algebra with unit 1 over a field K of characteristic 0, generated

y J, Ei ,Fi�i� I� and Ki ,Di�i� I� subjecting with the following defining relations:

Jm = Jm−1 = KiK̄i = DiD̄i, �3.8�

KiK̄j = K̄jKi, KiKj = KjKi, Ki
¯ Kj

¯ = K̄jK̄i, �3.9�

DiD̄j = D̄jDi, DiDj = DjDi, Di
¯ Dj

¯ = D̄jD̄i, �3.10�

DiK̄j = K̄jDi, KiDj = DjKi, Di
¯ Kj = KjD̄i, Di

¯ K̄j = K̄jD̄i, �3.11�

DiJ = JDi = Di, KiJ = JKi = Ki, �3.12�

JDi
¯ = Di

¯ J = Di, JK̄i = K̄iJ = K̄i, �3.13�

Ei Fi are type � , �3.14�

EiFj − FjEi = �ij
Ki − K̄i

qi − qi
−1 , �3.15�

�
r=0

1−aij

�− 1�r	1 − aij

r



i
Ei

1−aij−rEjEi
r = 0 if aii = 2,i � j , �3.16�

�
r=0

1−aij

�− 1�r	1 − aij

r



i
Fi

1−aij−rFjFi
r = 0 if aii = 2,i � j , �3.17�

EiEj − EjEi = FiFj − FjFi = 0, if aij = 0. �3.18�

If m=1, and the Borcherds-Cartan matrix A is symmetric, then wUq
T�G�=Uq�G� provided that

e identify Ki with qhi, K̄i with q−hi, Di with qdi and D̄i with q−di. If m=2 and G is a semisimple
ie algebra, then wUq

T�G� has been defined and studied by Yang in Ref. 14. Notice that the type
ero was called type two by Yang.

Lemma III.1: Jm is a center idempotent element of wUq
��G�.

Proof: If Ei is type one, then JmEi=KjK̄jEi=EiKjK̄j =EiJ
m. Similarly, we can prove that

iJ
m=JmFi provided Fi is type one. Hence this lemma follows from Proposition III.1.
In the following corollary, the subalgebra of Uq�G� generated by Ei ,Fi, sihi ,di�i� I� is denoted

y Uq��G�. It is a Hopf subalgebra of Uq�G�.
Corollary III.1:

�1� wUq
��G�=wUq

��G�Jm � wUq
��G��1−Jm� is a direct sum of algebras.

�2� wUq
��G� / �1−J� is isomorphic to the algebra Uq��G�.
� m
�3� wUq�G�J is isomorphic to the algebra Uq��G�.
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Proof: The proof of �1� and �2� is easy. To prove �3�, let us define a map � from Uq��G� to
Uq

��G�Jm as follows.

��qsihi� = Ki, ��qdi� = Di, ��ei� = EiJ
m, ��f i� = FiJ

m, ��1� = Jm.

hen one can show that � is an algebra homomorphism. Similarly we can define an algebra
omomorphism a map � from wUq

��G�Jm to Uq��G� as follows:

��Ki� = qsihi, ��Di� = qdi, ��EiJ
m� = ei, ��FiJ

m� = f i, ��Jm� = 1.

t is easy to check that ��=id and ��=id. This proves �3�.
Remark 1: By Proposition III.1, wUq

��G��1−Jm� is generated by Jr−Jm−1 for 0�r�m−2,

i�1−Jm� and Fi�1−Jm�, where Ei and Fi are type one. Since �3.15� holds in wUq
��G�, Ei�1

Jm�Fj�1−Jm�=Fj�1−Jm�Ei�1−Jm�. If all �i= �̄i=0, then wUq
��G��1−Jm� is isomorphic to the

roup algebra K�Zm−2�.

V. THE BIALGEBRA STRUCTURE OF wUq
�
„G…

The algebras wUq
��G�Jm and wUq

��G��1−Jm� are denoted by w and w̄, respectively, in the
ollowing. By Corollary III.1, w is isomorphic to the quantum group Uq�G� provided si=1. Thus
he comultiplication and counit of Uq�G� transplant to the algebra wUq

��G�Jm, and wUq
��G�Jm

ecomes a Hopf algebra. Moreover, we can define three maps:

�: wUq
��G� → wUq

��G� � wUq
��G� ,


: wUq
��G� → K ,

T: wUq
��G� → wUq

��G� ,

s follows:

��Ki� = Ki � Ki, ��K̄i� = K̄i � K̄i, �4.1�

��Di� = Di � Di, ��D̄i� = D̄i � D̄i, �4.2�

��J� = J � J , �4.3�

��Ei� = �1 � Ei + Ei � Ki, Ei is type one ,

Jm−1
� Ei + Ei � Ki, Ei is type zero ,

�4.4�

��Fi� =�Fi � 1 + K̄i � Fi, Fi is type one ,

Fi � Jm−1 + K̄i � Fi, Fi is type zero ,
�4.5�


�Ki� = 
�K̄i� = 1, 
�Di� = 
�D̄i� = 1, 
�J� = 1, �4.6�


�Ei� = 
�Fi� = 0, �4.7�

hile the map T is defined as follows:

¯ ¯
T�1� = 1, T�Ki� = Ki, T�Ki� = Ki, �4.8�
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T�J� = J, T�Di� = D̄i, T�D̄i� = Di, �4.9�

T�Ei� = − EiK̄i, T�Fi� = − KiFi. �4.10�

hen we extend them to the whole wUq
��G�. Thus we obtain the following lemma.

Lemma IV.1: wUq
��G� is a bialgebra with comultiplication � and counit 
.

Proof: It can be shown by direct calculation that the following relations hold:

��Ki���K̄j� = ��K̄j���Ki�, ��Di���D̄j� = ��D̄j���Di� ,

��Jm−1� = ��Ki���K̄i� = ��Di���D̄i� ,

��JKi� = ��Ki�, ��JK̄i� = ��K̄i� ,

��JDi� = ��Di�, ��JD̄i� = ��D̄i� ,


�KiK̄j� = 
�Ki�
�K̄j�, 
�DiD̄j� = 
�Di�
�D̄j� ,


�JKi� = 
�Ki�, 
�JK̄j� = 
�K̄j� ,


�JD̄i� = 
�Di�, 
�JD̄j� = 
�D̄j� ,


�Kj�
�Ei� = qi
aij
�Ei�
�Kj�, 
�Fi�
�K̄j� = qi

aij
�Fj�
�K̄j� ,


�Ei�
�Fj� − 
�Fj�
�Ei� = �ij

�Ki� − 
�K̄i�

qi − qi
−1 .

f Ei is type one, then

��Kj���Ei� = �Kj � Kj���1 � Ei + Ei � Ki� = Kj � KjEi + KjEi � KjKi = qi
aij��Ei���Kj� .

f Ei is type zero, then

��Kj���Ei���K̄j� = �Kj � Kj��Jm−1
� Ei + Ei � Ki��K̄j � K̄j� = KjK̄j � KjEiK̄j + KjEiK̄j � KjKiK̄j

= qi
aij��Ei� .

ext we prove that

��Ei���Fj� − ��Fj���Ei� = �ij
��Ki� − ��K̄i�

qi − qi
−1 . �4.11�

or any integers 0�r ,s�m, if Jm−rFj =FjJ
m−r and Jm−sEi=EiJ

m−s, then

�Jm−r
� Ei + Ei � Ki��Fj � Jm−s + K̄j � Fj�

− �Fj � Jm−s + K̄j � Fj��Jm−r
� Ei + Ei � Ki�

m−r m−s ¯ ¯
=J Fj � EiJ + Kj � EiFj + EiFj � Ki + EiKj � KiFj
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− FjJ
m−r

� Jm−sEi − FjEi � Ki − K̄j � FjEi − K̄jEi � FjKi

=K̄j � �EiFj − FjEi� + �EiFj − FjEi� � Ki

=�ij
��Ki� − ��K̄i�

qi − qi
−1 .

hus �4.11� holds for all i , j.
Finally, we prove that � satisfies the quantum Serre relations, i.e., the relations from �3.16� to

3.18�.
From aij =0, we obtain EiEj =EjEi, and KiEj =qj

ajiEjKi=EjKi. Hence

�Jm−r
� Ei + Ei � Ki��Jm−s

� Ej + Ej � Kj�

− �Jm−s
� Ej + Ej � Kj��Jm−r

� Ei + Ei � Ki�

=J2m−r−s
� EiEj + Jm−rEj � EiKj + EiJ

m−s
� KiEj + EiEj � KiKj

− J2m−r−s
� EjEi − Jm−sEi � EjKi − EjJ

m−r
� KjEi − EjEi � KjKi

=Jm−rEj � EiKj + EiJ
m−s

� KiEj − Jm−sEi � EjKi − EjJ
m−r

� KjEi=0,

for any 1�r ,s�m. So

��Ei���Ej� − ��Ej���Ei� = 0.

Similarly, we can prove

��Fi���Fj� − ��Fj���Fi� = 0.

By now we have proven that � satisfies the relation �3.18�.
To prove that � satisfies the relation �3.16�, we must consider the following cases:

�1� Both Ei and Ej are type one.
�2� Only one of the Ei and Ej is type one.
�3� Both Ei and Ej are type zero.

For the case �3�. Since Ei is type zero,

��Ei� = Jm
� Ei + Ei � Ki = �Jm

� 1��1 � Ei + Ei � Ki� = �1 � Ei + Ei � Ki��Jm
� 1� .

et us introduce notations. �1 � Ei+Ei � Ki� is denoted by ���Ei�. Set s=1−aij. Then

�r=0

s
�− 1�r	s

r

��Ei�s−r��Ej���Ei�r

=�Jm
� 1��s+1��r=0

s
�− 1�r	s

r

���Ei�s−r���Ej����Ei�r=0,

y the discussion in Ref. 8, pp. 67 and 68. Hence � satisfies �3.16� in this case. For the other cases,
he argument is more or less the same as case �3�.

Similarly, we can prove that � satisfies �3.17�. Therefore � and 
 can be extended to an
lgebra morphism from wUq

��G� to wUq
��G� � wUq

��G�, and from wUq
��G� to K, respectively.
It is easy to prove that
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�� � 1���X� = �1 � ����X� , �4.12�

�
 � 1���X� = �1 � 
���X� �4.13�

or any X=Ei ,Fi ,KiK̄i ,DiD̄i ,J. Since � ,
 are algebra morphisms, �4.12� and �4.13� hold for any
�wUq

��G�. By now we have completed the proof.
Next we prove that the map T, defined by �4.8�, �4.9�, �4.10�, is a weak antipode of the

ubalgebra of a subbialgebra of the bialgebra wUq
��G� generated by Ei ,Fi ,Ki, K̄i ,Di , D̄i ,J

m. First
e prove that T can be extended to an antiautomorphism of wUq

��G�. It is easy to prove the
ollowing relations are true:

T�Ki�T�K̄j� = T�K̄j�T�Ki�, T�Di�T�D̄j� = T�D̄j�T�Di� ,

T�Di�T�K̄j� = T�K̄j�T�Di�, T�Ki�T�D̄j� = T�D̄j�T�Ki� ,

T�D̄i�T�K̄j� = T�K̄j�T�D̄i�, T�J�T�K̄i� = T�K̄i�, T�J�T�Ki� = T�Ki�

T�J�T�D̄i� = T�D̄i�, T�J�T�Di� = T�Di� ,

T�Ei�T�Ej� = T�Ej�T�Ei�, T�Fi�T�Fj� = T�Fj�T�Fi� if aij = 0.

f Ei is type one, then

T�Ei�T�Kj� = − EiK̄iK̄j = − qi
aijK̄jEiK̄i = qi

aijT�Kj�T�Ei� .

f Ei is type zero, then

T�K̄j�T�Ei�T�Kj� = − KjEiKiK̄j = − qi
aijEiKi = qi

aijT�Ei� .

imilarly, we can prove

T�Fi�T�Kj� = qi
−aijT�Kj�T�Fi�

f Fi is type one, and

T�K̄j�T�Fi�T�Kj� = qi
−aijT�Fi�

f Fi is type zero. Moreover,

T�Fj�T�Ei� − T�Ei�T�Fj� = Kj�FjEi�K̄i − EiK̄iKjFj = qj
−ajjqi

aijFjEiKjK̄i − qj
−ajjqj

ajiFjEiKjK̄i

= �ij
K̄i − Ki

qi − qi
−1KjKi

¯ = �ij
T�Ki� − T�K̄i�

qi − qi
−1 .

imilarly to Ref. 15, p. 8, we can prove the following antirelations to the quantum Serre relations
old:

�
s

�− 1�r	s

r

T�Ei�rT�Ej�T�Ei�s−r = 0 if aii = 2,
r=0
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�
r=0

s

�− 1�r	s

r

T�Fi�rT�Fj�T�Fi�s−r = 0 if aii = 2,

here s=1−aij.
From the above discussion, we get that T is an antiautomorphism of wUq

��G�. Let U� be a

ubalgebra of wUq
��G� generated by Ki , K̄i ,Di , D̄i ,Ei ,Fi ,J

m.
Theorem IV.2: T is a weak antipode of U��G� and U��G� is a weak Hopf algebra.
Proof: It is easy to verify that the following relations hold:

�id * T * id��X� = X ,

�T * id * T��X� = T�X� ,

or X=Ki , K̄i ,Di , D̄i ,Ei ,Fi ,J
m.

Since

id * T * id = �� � 1���id � T � id��� � 1�� ,

d*T*id is a linear automorphism of wUq
��G�. To prove �id*T*id��X�=X, for any X�U��G�, we

nly need to prove that

�id * T * id��xy� = xy �4.14�

rovided that �id*T*id��x�=x, and y is one of the generators Ki , K̄i ,Di , D̄i ,Ei, Fi ,J
m. Suppose

� � 1���x�=�x�1� � x�2� � x�3�. Then �� � 1���xJm�=�x�1�J
m � x�2�J

m � x�3�J
m and hence

id * T * id�xJm� = � x�1�T�x�2��x�3�J
m = xJm.

imilarly

id * T * id�xEi� = � x�1�J
mT�x�2�J

m�x�3�Ei + � x�1�J
mT�x�2�Ei�x�3�Ki + � x�1�EiT�x�2�Ki�x�3�Ki

= � x�1�T�x�2��x�3�Ei − � x�1�EiK̄iT�x�2��x�3�Ki + � x�1�EiK̄iT�x�2��x�3�Ki = xEi,

f Ei is type zero. We can prove �4.14� is true for other generators of U��G�. So id*T*id�x�=x for
ny x�U��G� by induction.

Similarly, we can prove T*id*T�x�=T�x� for any x�U��G�. So T is a weak antipode of
��G�, and U��G� is a weak Hopf algebra.

Corollary IV.1: wUq
��G� is a weak Hopf algebra if and only if m=2. Moreover, if m=2, then

Uq
��G� is a noncommutative and noncocommutative weak Hopf algebra with the weak antipode

, but not a Hopf algebra.
Proof: Since m=2, Jm−1=Jm=J. Thus U��G�=wUq

��G�. So it is a weak Hopf algebra. Suppose
t is a Hopf algebra with antipode S. Then Jm=S�Jm�Jm=1. On the other hand, since Jm=Jm−1,
m−1�J−1�=0 implies that J=1. This is impossible. So wUq

��G� is not a Hopf algebra.
If wUq

��G� is a weak Hopf algebra, then id*T*id�J�=J3=J. From this and Jm=Jm−1, we can
btain J2=J. Thus m=2 by our assumption.

Corollary IV.2: U��G� is a noncommutative and noncocommutative weak Hopf algebra with
he weak antipode T, but not a Hopf algebra. Moreover, wUq

��G�Jm=U��G�Jm is isomorphic to

q��G� as Hopf algebras.
Proof: It follows from Corollary III.1, Theorem IV.2.
Let H be a coalgebra. The set of grouplike elements of H is denoted by G�H� in the next

roposition.
Proposition IV.1: G�U��G��=G�U��G�Jm�� �1�.

� m m m m
Proof: If g�G�U �G��, then g=gJ +g�1−J �. Let g1=gJ ,g2=g�1−J �. Then g � g=��g�
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g1 � g1+g1 � g2+g2 � g1+g2 � g2. Since ��g1�=g1 � g1 is a grouplike element, ��g2�=g1 � g2

g2 � g1+g2 � g2. So

�1 � ����g2� = g1 � g1 � g2 + g1 � g2 � g1 + g1 � g2 � g2 + g2 � g1 � g1 + g2 � g1 � g2 + g2

� g2 � g1 + g2 � g2 � g2.

hen

�T * id * T��g2� = T�g2�g2T�g2� = T�g2� ,

�id * T * id��g2� = g2T�g2�g2 = g2. �4.15�

ecause U��G��1−Jm� is generated by Ei�1−Jm� ,Fj�1−Jm� ,1−Jm and T�Ei�1−Jm��=T�Fj�1
Jm��=0, T�g2�=k�1−Jm� for some k�K. From �4.15�, we obtain the following:

k2g2 = k2�1 − Jm�2g2 = k�1 − Jm� ,

kg2
2�1 − Jm� = kg2

2 = g2. �4.16�

f k=0, then g=g1�G�U��G��. If k�0, then g2= �1/k��1−Jm�. Thus

1

k
�1 � 1 − Jm

� Jm� =
1

k
g1 � �1 − Jm� +

1

k
�1 − Jm� � g1 +

1

k2 �1 − Jm� � �1 − Jm� .

ultiplying by k�Jm � 1� on both sides of the above equation, we get

Jm
� 1 − Jm

� Jm = g1 � �1 − Jm� .

imilarly, we have

1 � Jm − Jm
� Jm = �1 − Jm� � g1.

hen

1 � 1 − Jm
� Jm = Jm

� 1 + 1 � Jm − 2Jm
� Jm +

1

k
�1 − Jm� � �1 − Jm� .

ence

�1 − Jm� � �1 − Jm� =
1

k
�1 − Jm� � �1 − Jm� .

onsequently, k=1. Notice that the set of grouplike elements of U��G�Jm is a monoid generated by

i , K̄i ,Di , D̄i and Jm, and the elements from this monoid are linearly independent over K. So we
et g1=Jm from 1 � Jm−Jm � Jm= �1−Jm� � Jm= �1−Jm� � g1. Hence g=1.

Proposition IV.2: Suppose � is an automorphism of the bialgebra wUq
��G�. Then ��J�=J and

he restriction of � on w �respectively, w̄� is an isomorphism of w �respectively, w̄�.
Proof: From Jm=Jm−1, we obtain ��J�m=��J�m−1. Thus ��J�mJm=��J�m−1Jm is a grouplike

lement in wUq
��G��Uq�G�. Hence ��J�Jm=Jm. Suppose ��J�=Jm+x, where x=��J��1−Jm�� w̄.

ince T��J�=��T�J��=��J�, Tx=x. Consequently, x=�i=0
m−2ki�Ji−Jm�. Then

���J�� = �Jm + x� � �Jm + x� = Jm
� Jm + �i=0

m−2
ki�Ji

� Ji� − �i=0

m−2
ki�Jm

� Jm�

Jm
� Jm + �i=0

m−2
ki�Ji

� Jm� + �i=0

m−2
ki�Jm

� Ji� + �i=0

m−2
kiJ

i
� � j=0

m−2
kjJ

j . �4.17�

rom �4.17�, we obtain that ��J�=Jm+ �Jr−Jm�=Jr for some 0�r�m−2. If r�2, then ��Jm−2

m−1 r�m−2� r�m−1�
J �=J −J =0. This is a contradiction to the fact that � is an isomorphism. So r=1.
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ince ��J�=J, ��w�=��wJm�=��w�Jm=w. Consequently, the restriction of � on w is a Hopf
lgebra isomorphism of w. Similarly, we can prove the restriction of � on w̄ is an algebra
somorphism of w̄.

Similarly to Ref. 15, we can prove the following:
Corollary IV.3: Suppose G is a semisimple Lie algebra. Then the automorphism group of the

ialgebra of wUq
��G� is the semidirect product of N and H, where H is the group of diagram

utomorphism, and N is the group of diagonal automorphism and it is a normal subgroup of the
utomorphism group of wUq

��G�.
Remark: If G is a semisimple Lie algebra, then U��G� is isomorphic to the weak quantum

lgebra defined by Yang in Ref 15.

. THE REPRESENTATIONS OF wUq
�
„G…

In this section, we try to determine the irreducible representations of wUq
��G�. Suppose V is a

imple module over the bialgebra wUq
��G�. Then V=JmV � �1−Jm�V. Since both JmV and �1

Jm�V are modules over wUq
��G�, either V=JmV or V= �1−Jm�V.

If V=JmV, then Jv=v for any v�V. Suppose v�V satisfying Kiv=�iv, then �i�0. In this

ase, KiK̄iKiv=�i
2K̄iv=�iv. So K̄iv= �1/�i�v.

If V= �1−Jm�V, then Jmv=0 v�V, Kiv=KiJ
mv=0 and K̄iv= K̄iJ

mv=0 for any v�V.
By now we have completed the proof of the following proposition.
Proposition V.1: Let V be simple wUq

��G�-module. Then either Jv=v for all v�V, or Jmv
0 for any v�V. Suppose there exists an i� I such that Kiv=�iv for some nonzero vector v. Then

¯
iv= �̄iv for �i, where

�̄i = ��i
−1 if �i � 0,

0 if �i = 0.

oreover, �i�0 if and only if Jv=v.
Suppose V=JmV. Then V can be viewed as a module over wUq

��G� / �1−J� by Proposition V.1.
otice that wUq

��G� / �1−J� is isomorphic to Uq��G� by Corollary III.1�2�. In this case, V has been
tudied by Kang.10 For example, the limit of highest weight simple module is a highest weight
imple module over the generalized Kac-Moody algebra G with the same weight �. Then this
imple module is unique determined by its formally Borcherd-Kac-Weyl character formula �see
ec. I�.

Suppose V= �1−Jm�V. Then JmV=0 and KiV= K̄iV=0 for any i� I by Proposition V.1. Simi-

arly, we can prove that DiV= D̄iV=0 for all i� I. Hence EiFjV=FjEiV for all i , j� I. Moreover, V
an be viewed as a module over w̄. Recall that w̄ is generated by Jr−Jm�0�r�m−2�, Ei�1
Jm�, and Fj�1−Jm�, where Ei ,Fj are type one. Hence Ei�1−Jm�Fj�1−Jm�V=Fj�1−Jm�Ei�1
Jm�V for all i , j� I. In the following, we try to determine the structure of V in some special case.

Proposition V.2: For any wUq
��G� module V, if V= �1−Jm�V, then JV=0.

Proof: Consider the subalgebra B of w̄ generated by Ji−Jm for 0�r�m−2. Since �Ji−Jm�
�Jj −Jm�=Jr−Jm, where r� i+ j mod�m−2�, B is isomorphic to K�Zm−2�. Because char K=0, B

s a semisimple algebra. Hence V is a semisimple module over B. Let S be a simple B-module
ontained in V and v be a nonzero element of S. Then there exists r such that Jrv=0 and Jr−1v
0. So S is equal to a vector space spanned by v ,Jv , . . . ,Jr−1v over K. Since KJr−1v is a nonzero
odule of S, S=KJr−1v and JS=0. Consequently JV=0.

The above proposition also characterizes the simple w̄ module when all Ei ,Fj are type zero. In
he general case, let Xi=Ei�1−Jm� ,Yi=Fi�1−Jm�. Then every simple module V over w̄ is a module
ver the algebra generated by �Xi ,Yj � for i� I1 ,J� I2�, where I1= �i� I �Ei is type one�, I2= �j
I �Fj is type one�. The generators Xi ,Yj satisfy the following relation:
XiY j = YjXi,
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�r=0

1−aij �− 1�r	1 − aij

r



i
Xi

1−aij−rXjXi
r = 0 if aii = 2, i � j ,

�
r=0

1−aij

�− 1�r	1 − aij

r



i
Yi

1−aij−rY jYi
r = 0 if aii = 2, i � j ,

XiXj − XjXi = YiY j − YjYi = 0, if aij = 0.

his simple module V satisfies JV=0. From the above discussion, we obtain the following result.
Corollary V.1: If aij =0 for any i� �I1� I2�� I+, then every simple module over w̄ is isomor-

hic to w̄ /M, where M is a maximal ideal of w̄.
By Corollary V.1, the only simple over w̄ is K�x� / �p�x�� if �I1� I2 � =1, where p�x� is an

rreducible polynomial in K�x�. Suppose K is an algebraically closed field. If aij =0 for any i
�I1� I2�� I+, and �I1� I2 � =n, then the simple module V over w̄ is isomorphic to K�Xi ,Yj � i
I1 ,Jj � I2� / ��Xi−ai ,Yj −bj � i� I1 , j� I2�� for some ��ai�i�I1

, �bj� j�I2
��Kn. �See Refs. 2, 6, and

0.�
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Ground state energies and wave functions of quartic and pure quartic oscillators are
calculated by first casting the Schrödinger equation into a nonlinear Riccati form
and then solving that nonlinear equation analytically in the first iteration of the
quasilinearization method �QLM�. In the QLM the nonlinear differential equation is
solved by approximating the nonlinear terms by a sequence of linear expressions.
The QLM is iterative but not perturbative and gives stable solutions to nonlinear
problems without depending on the existence of a smallness parameter. Our explicit
analytic results are then compared with exact numerical and also with WKB solu-
tions and it is found that our ground state wave functions, using a range of small to
large coupling constants, yield a precision of between 0.1 and 1 percent and are
more accurate than WKB solutions by two to three orders of magnitude. In addi-
tion, our QLM wave functions are devoid of unphysical turning point singularities
and thus allow one to make analytical estimates of how variation of the oscillator
parameters affects physical systems that can be described by the quartic and pure
quartic oscillators. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2209769�

. INTRODUCTION

A basic nonrelativistic quantum mechanics problem is to solve the Schrödinger equation with
potential V�x� that governs motion of a given physical system. The first two terms of the power

xpansion of a one-dimensional, even potential around an equilibrium position are

g2x2

2
+ �x4, �1�

here x is the deviation from an equilibrium position. The above potential describes the dynamics
f a great many systems that deviate from the idealized picture of pure harmonic motion. When
oth g and � are nonzero, we call this potential a “quartic” or quartic anharmonic oscillator;
hereas, when g=0 with nonzero � it is dubbed a “pure quartic” oscillator. In addition to provid-

ng an excellent description of spectroscopic molecular vibrational data �see Ref. 1 and references
herein�, the quartic anharmonic oscillator �1� also serves as a basic tool for checking various
pproximate and perturbative methods in quantum mechanics. Such an application appears in
everal recent field theoretical model studies.2–14

It is well known15,16 that for the quartic anharmonic oscillator the perturbation expansion
iverges even for small couplings and becomes completely useless for strong coupling. In view of
his divergence of perturbation theory, we have adopted17,18 the general and very powerful quasi-
inearization method �QLM�,19–23 which although iterative is not a perturbative method. In QLM
he pth order solution of a nonlinear differential equation with N variables is obtained by first

pproximating the nonlinear aspect by a sequence of linear terms and then iteratively solving the

47, 062109-1022-2488/2006/47�6�/062109/11/$23.00 © 2006 American Institute of Physics
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ssociated linear equations. This iterative process converges to a solution without requiring the
xistence of a smallness parameter. Properties and applications of the quasilinearization method
ere reviewed recently in Ref. 24.

To apply the quasilinearization method, one first casts the Schrödinger equation into the
onlinear Riccati form and then solves that nonlinear equation by the QLM iterations. In a series
f presentations,17,18,25–27 we have shown that for a range of anharmonic and other physical
otentials �with both weak and strong couplings�, the QLM iterates display very fast quadratic
onvergence. Indeed, after just a few QLM iterations, energies and wave functions are obtained
ith extremely high accuracy, reaching 20 significant figures for the energy of the sixth iterate

ven in the case of very large coupling constants.
Although numerical solutions using either the QLM or direct numerical solution of the dif-

erential equations can be very accurate, it is important to also provide analytic solutions. Analytic
olutions allow one to gauge the role of different potential parameters, and explore the influence
f such variations on the properties of the quantum system under study. However, in contrast to
he harmonic oscillator, the anharmonic oscillator cannot be solved analytically, and thus one
sually has to resort to approximations.

The goal of this paper is to obtain and test approximate analytic solutions for the quartic and
ure quartic oscillators using the explicit analytic equation for the first QLM iterate. We will show
hat both energies and wave functions will be represented by closed analytic expressions with the
ccuracy of the wave functions being between 0.1 and 1 percent for both small and large coupling
onstants. Various accurate analytic expressions for the energies have already appeared in the
iterature based on using convergent, strong coupling expansions generated by rearrangement of
he usual divergent weak coupling expansion28 or by some variational requirement.29 Variational
nharmonic oscillator wave functions have also been obtained.30,31 However, accurate nonvaria-
ional analytic expressions representing wave functions have not hitherto been known. That result
s provided here.

I. MAIN FORMULAS

The usual WKB substitution y�x�=���x� /��x� converts the Schrödinger equation to the non-
inear Riccati form

dy�x�
dx

+ �k2�x� + y2�x�� = 0. �2�

ere k2�x�=2�E−V�x��, where we use m=1, �=1 units. The quasilinearization21–24 of Eq. �2�
eads to the recurrence differential equation

dyp�x�
dx

+ �2yp−1�x��yp�x� = yp−1
2 �x� − k2�x� , �3�

here yp�x� is the subsequent pth QLM iterate, which have the same boundary condition as y�x�
f Eq. �2�. Note that Eq. �3� is a linear equation of the form dyp�x� /dx+ f�x�yp�x�=q�x�, with

f�x�=2yp−1�x� and q�x�=yp−1
2 �x�−k2�x�.

Let us use Eq. �3� to estimate the ground state wave function and energy of the quartic
scillator. Excited states will be considered elsewhere.

The ground state wave function is nodeless and for an even potential �1� should therefore be
n even function. Its logarithmic derivative is necessarily odd, and therefore the boundary condi-

ion obviously is y�0�=0 and correspondingly yp�0�=0.
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. Linear initial condition

The zero iterate should be based on physical considerations. Let us consider first an initial
uess y0�x�=−gx. This linear initial condition completely neglects the anharmonic term containing
compared with the harmonic term and thus this initial guess is expected to be reasonable only

or relatively small values of �.
Solution of the first order linear differential Eq. �3� with the above zero boundary condition at

he origin can always be found analytically. For p=1 the solution is

y1�x� = 2egx2�
0

x

e−gs2
�g2s2 + �s4 − E1�ds . �4�

ntegration by parts, yields an expression for y1�x� that involves the error function Erf�x�
�2/���0

xe−t2 dt,

y1�x� =
1

4g5/2 �− 2x	g�2g3 + 3� + 2g�x2� + egx2	� Erf�x	g��2g2�g − 2E1� + 3��
 . �5�

The asymptotic expression Erf�x���1− �e−x2
/	�x�� for �x � →�, indicates that y1�x� will be

xponentially large for very large x unless the second term in Eq. �5� is made zero. Correspond-
ngly, invoking the condition 2g2�g−2E1�+3�=0 yields the energy and the logarithmic derivative
n the first iteration: E1=a /2 and y1�x�=−ax−bx3, where a=g+3� /2g2; b=� /g. This leads to the
rst QLM iteration wave function ��x�=C exp�− gx2

2 −�� 3x2

4g2 + x4

4g
��. This QLM result for the energy

oincides with the perturbative result, as well as with the result obtained by Friedberg, Lee, and
hao32 who used their recently developed iterative method for solving the Schrödinger equation.

The wave functions we obtained above obviously have incorrect asymptotic behavior. Also,
he energies E1 calculated for different �, as displayed in Table I �g=1�, are far from being precise.
herefore, to improve the result one is tempted to go to the second QLM iteration, using y1�x� as
n input.

Equation �3� then yields the second iterate

y2�x� = eax2+�b/2�x4�
0

x

��a2 + g2 + 2�ab + ��t2 + b2t4�t2 − 2E2
e−at2−�b/2�t4 dt . �6�

ince y2�x�e−�ax2+�b/2�x4� approaches a constant when x goes to infinity, y2�x� and consequently the
orresponding wave function grows exponentially at infinity, unless the integral in Eq. �6� equals
ero when its upper limit equals infinity. This condition yields the following expression for the

TABLE I. Exact, WKB and linear guess QLM ground state energies.

� Eexact EWKB �EWKB

E�1�

y0=−gx
�E�1�

�%�
E�2� ;y0=−gx

second iteration
�E�2�

�%�

0 1/2 1/2 0 1/2 0 1/2 0
0.1 0.559 15 0.533 28 4.6 0.575 2.8 0.559 83 0.1
0.3 0.637 99 0.584 66 8.3 0.725 13.6 0.648 69 1.7
0.5 0.696 18 0.625 38 10.2 0.875 25.7 0.727 28 4.4
1 0.803 77 0.704 20 12.4 1.25 55.5 0.914 23 13.7
2 0.951 57 0.816 67 14.2 2 110 1.2829 34.8
10 1.504 97 1.254 12 16.7 8 4.2628 183
100 3.131 38 2.571 81 17.9 75.5
1000 6.694 22 5.479 55 18.1 750.5
nergy E2 in the second iteration:
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E2 =
�0

��a2 + g2 + 2�ab + ��t2 + b2t4�t2e−at2−�b/2�t4 dt

2�0
�e−at2−�b/2�t4 dt

. �7�

alues of E2, for this initial linear form, are compared to exact values E calculated numerically in
able I �g�1�. It is seen that E2 approximates the exact E reasonably well only for small �, as we
nticipated would result from using an initial linear condition. We now turn to another choice for
he initial form.

. Quadratic initial condition

To ensure a proper wave function asymptotically, one needs an adequate initial guess. Our
econd condition is based on the asymptotic behavior of the quartic potential. The zeroth iterate of
he logarithmic derivative, y0�x�, is for example, now obtained by taking an initial iterate of
uadratic form y0�x�=−	2�x2. This choice for the first iterate automatically satisfies the
symptotic and x=0 boundary conditions, but is based on neglecting the harmonic term compare
ith the anharmonic one.

With this quadratic initial condition, the solution y1�x� of Eq. �3� satisfying y1�0�=0 is then
iven by

y1�x� = e�2/3�	2�x3�
0

x

e−�2/3�	2�s3
�4�s4 + g2s2 − 2E1�ds . �8�

ote, that y1�x�e−�2/3�	2�x3
approaches a constant, C�, as x goes to infinity, and consequently y1�x�

rows exponentially at infinity unless the above limit C�, is set to zero. The latter condition yields
nother expression for the energy based on the quadratic initial condition:

E1 =

�0
�e−�2/3�	2�s32�s4 +

g2s2

2
�ds

�0
�e−�2/3�	2�s3

ds
. �9�

The integrals in Eq. �9� can be expressed in terms of the Euler gamma function ��x�.33 The
nal expression for the first iterate energy based on a quadratic initial condition reads

E1 =
�1/6

31/3��1

3
�

3g2

4	�
+ �1/632/3��2

3
�� . �10�

This result should be proper for large � when the second term of the quartic potential
g2x2 /2�+�x4 dominates over the harmonic term and thus a term containing g in initial guess y0�x�
ould be neglected. The above expression for the energy is not expected to be suitable for small �.
ndeed, one can see that for the �→0, the energy in Eq. �10� diverges.

. Linear plus quadratic initial condition

To obtain a result accommodating arbitrary values of both g and �, one must start from an
nitial choice y0�x� that takes into account the asymptotic behavior of both the harmonic and the
nharmonic parts of the potential. Let us choose, for example, y0�x�=−gx−	2�x2 which is a linear
ombination of our two previous initial guesses. This yields

y1�x� = 2egx2+�2	2�/3�x3�
0

x

�t2�g2 + g	2�t + 2�t2� − E1�e−gt2−�2	2�/3�t3 dt , �11�
ith

                                                                                                            



m
b

n

c
e

y

w

I
e

T
c

a
i
a

I

e
t
t
c
i
�

062109-5 Analytic calculation of quartic oscillators J. Math. Phys. 47, 062109 �2006�

                        
E1 =
�0

�t2�g2 + g	2�t + 2�t2�e−gt2−�2	2�/3�t3 dt

�0
�e−gt2−�2	2�/3�t3 dt

. �12�

Another possible initial guess, which also accounts for the asymptotic behavior of both har-
onic and anharmonic parts of the potential is y0�x�=−	g2x2+2�x4. This guess is easy to justify

y assuming that y��x� in Eq. �2� at large x becomes negligible compared with y2�x� and therefore
y2�x� can be set equal to k2�x�=g2x2+2�x4−2E�g2x2+2�x4 since in this expression we can
eglect E for sufficiently large x.

The solution of Eq. �3� using the initial condition y0�x�=−	g2x2+2�x4, is only slightly more
omplicated than in when one uses the initial guess y0�x�=−gx−	2�x2, and is given by the
xpression

y1�x� = 2e�g2 + 2�x2�3/2/3��
0

x

e−�g2 + 2�t2�3/2/3��g2t2 + 2�t4 − E1�dt . �13�

The condition to avoid exponential behavior of the logarithmic derivative at infinity now
ields the following expression for the ground state energy:

E1 =
�0

�t2�g2 + 2�t2�e−�g2 + 2�t2�3/2/3� dt

�0
�e−�g2 + 2�t2�3/2/3� dt

. �14�

For a pure quartic oscillator with g=0, both Eqs. �11� and �13� reduce to

y1�x� = 2e2	2�x3/3�
0

x

e−2	2�t3/3�2�t4 − E1�dt �15�

ith E1 given by

E1 =
2��0

�e−�2	2�/3�s3
s4 ds

�0
�e−�2	2�/3�s3

ds
= �1/331/3

�� 2
3�

�� 1
3� � 0.729 011�1/3. �16�

n view of Eq. �16� y1�x� of Eq. �15� can be expressed in terms of a special function, namely, the
xponential integral33 EI	�z�=�1

�e−ztt−	 dt,

y1�x� = − 	2�x2 +
2

3
e�2	2�/3�x3�− 	2�x2EI1/3�2	2�

3
x3� + �1/331/3

�� 2
3�

�� 1
3�xEI2/3�2	2�

3
x3�� .

�17�

his expression for the log derivative yields a first iterate QLM wave function, based on the initial
ondition y0�x�=−	g2x2+2�x4, that is the main result of our paper.

The exact dependence of E1 on � for the pure quartic oscillator has the same form, but with
factor of 0.667 986 259 before �1/3,28 so that the accuracy of the QLM prediction for the energy

s about 9.1 percent. The WKB energy can be easily estimated and gives EWKB�0.546 267�1/3, an
ccuracy of 18.2 percent.

II. RESULTS AND DISCUSSION

The ground state energies for the quartic oscillator in the first QLM approximation for differ-
nt initial guesses and for values of g=1 and � between zero and 1000 and their comparison with
he numerically calculated exact and WKB values are given in Tables I and II �g=1�. One can see
hat the values computed using explicit equations �12� and �14� for the QLM energy are signifi-
antly more accurate than the WKB values or than values obtained in the first and second QLM
terations with the initial guess y0�x�=−gx. They have a precision of 0.4 to 9 percent for values of
varying between 0.1 and 1000, respectively.
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However, the main results of our work, are not the expressions for the energy. As mentioned
n the introduction, such expressions were already given in different forms by others. Our major
esults are the analytic expressions for the wave functions given by Eqs. �11� and �13�, which are
ased on using the first QLM iterate with the initial conditions y0=−gx−	2�x2 and

y0=−	g2x2+2�x4, respectively.
The graphs of the wave functions for the quartic oscillator with g=1 and for different �

ogether with the correspondent exact and WKB wave functions, are presented in Figs. 1, 3 and 5,
hile Figs. 2, 4, and 6 display the logarithm of the absolute value of the differences between the
KB or QLM wave functions and the exact solution for � being equal to 0.1, 1, and 10, respec-

ively. The same graphs for the pure quartic oscillator �g=0� are presented in Figs. 7, 9, 11 and in
igs. 8, 10, 12, respectively. One can see that in Figs. 1–12 the differences between the exact and
LM solutions are two to three orders of magnitude smaller than the differences between the

xact and the WKB solutions and that the QLM wave functions expressed analytically by Eqs.
11�, �13� have an accuracy of between 0.1 and 1 percent. The order of magnitude better accuracy
f the wave function compared to the poorer accuracy of the energies is explained by the fact that
he general theorems19–24 for the QLM iterates show that the solutions converge quadratically with
ach iteration, while no such convergence theorem has been proven for the energy iterates. Note,
hat the dips in the figures are artifacts of the logarithmic scale, since the logarithm of the absolute

TABLE II. Ground state QLM energies for the quadratic and linear plus
quadratic guesses.

�

E�3�

y0=−x2	2�

�E�3�

�%�
E�4� ;y0=

−gx−x2	2�

�E�4�

�%�
E�5� ;y0=

−	g2x2+2�x4
�E�5�

�%�

0 1/2 0 1/2 0
0.1 0.756 58 35 0.569 40 1.8 0.561 49 0.4
0.3 0.777 99 21.9 0.648 38 1.6 0.647 05 1.4
0.5 0.823 19 18.2 0.705 52 1.3 0.711 26 2.2
1 0.923 13 14.8 0.811 38 0.95 0.830 90 3.4
2 1.072 57 12.7 0.958 53 0.73 0.995 77 4.6
10 1.6607 10.3 1.5259 1.4 1.610 85 7.0
100 3.4256 9.4 3.2564 4.0 3.400 39 8.5
1000 7.3095 9.2 7.1171 6.3 7.297 44 9.0

IG. 1. Comparison of the WKB, QLM and exact wave functions for the ground state of the quartic oscillator for g=1,

=0.1.
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IG. 3. Comparison of the WKB, QLM and exact wave functions for the ground state of the quartic oscillator for g=1,

=1.
IG. 4. Logarithm of the differences of the WKB and QLM wave functions with exact wave function for the ground state
IG. 2. Logarithm of the differences of the WKB and QLM wave functions with exact wave function for the ground state
f the quartic oscillator for g=1, �=1.
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IG. 6. Logarithm of the differences of the WKB and QLM wave functions with exact wave function for the ground state

f the quartic oscillator for g=1, �=10.
IG. 7. Comparison of the WKB, QLM and exact wave functions for the ground state of the pure quartic oscillator for
IG. 5. Comparison of the WKB, QLM and exact wave functions for the ground state of the quartic oscillator for g=1,
=0, �=0.1.

                                                                                                            



F
g

F
o

F
of the pure quartic oscillator for g=0, �=0.1.

062109-9 Analytic calculation of quartic oscillators J. Math. Phys. 47, 062109 �2006�

                        
IG. 9. Comparison of the WKB, QLM and exact wave functions for the ground state of the pure quartic oscillator for

=0, �=1.
IG. 10. Logarithm of the differences of the WKB and QLM wave functions with exact wave function for the ground state
IG. 8. Logarithm of the differences of the WKB and QLM wave functions with exact wave function for the ground state
f the pure quartic oscillator for g=0, �=1.
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alue of the difference of two solutions goes to −� at points where the difference changes sign.
he overall accuracy of the solution can therefore be inferred only at x values not too close to the
ips.

V. CONCLUSION

We calculated analytically the ground state energy and wave function of the quartic and pure
uartic oscillators by casting the Schrödinger equation into the nonlinear Riccati form, which is
hen solved in the first iteration of the quasilinearization method �QLM�, which approaches the
olution of the nonlinear differential equation by approximating nonlinear terms with a sequence
f linear ones and does not rely on the existence of a smallness parameter. Comparison of our
esults with exact numerical solutions and the WKB solutions shows that the explicit analytic
xpressions we obtain �12� and �14� for the ground state energy have a precision of only a few
ercent while the analytically expressed wave functions �11� and �13� have an accuracy of be-
ween 0.1 and 1 percent and are more accurate by two to three orders of magnitude than those

IG. 11. Comparison of the WKB, QLM and exact wave functions for the ground state of the pure quartic oscillator for
=0, �=10.

IG. 12. Logarithm of the differences of the WKB and QLM wave functions with exact wave function for the ground state

f the pure quartic oscillator for g=0, �=10.

                                                                                                            



g
t
e
d

f
a
o
t

A

S

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

062109-11 Analytic calculation of quartic oscillators J. Math. Phys. 47, 062109 �2006�

                        
iven in the WKB approximation. The QLM wave function in addition possess no unphysical
urning point singularities which allows one to use these wave functions to make analytical
stimates of the effects of variation of the oscillator parameters on the properties of systems
escribed by quartic and pure quartic oscillators.

The next QLM iterations could be evaluated numerically.17,18,25–27 These further QLM iterates
or the different anharmonic and other physical potentials with both strong and weak couplings
lso display very fast quadratic convergence so that the accuracy of energies and wave functions
btained after a few iterations is extremely high, reaching 20 significant figures for the energy of
he sixth iterate even in the case of very large coupling constants.

Extension of this approach to excited states and to other potentials is underway.

CKNOWLEDGMENTS

This research was supported by Grant No. 2004106 from the United States-Israel Binational
cience Foundation �BSF�, Jerusalem, Israel.

1 J. Laane, Annu. Rev. Phys. Chem. 45, 179 �1994�; Int. Rev. Phys. Chem. 18, 301 �1999�; J. Phys. Chem. A 104, 7715
�2000�.

2 J. Zamastil, J. Cizek, and L. Skala, Phys. Rev. Lett. 84, 5683 �2000�.
3 A. S. de Castro and D. A. de Souza, Phys. Lett. A 269, 281 �2000�.
4 M. Mueller and W. D. Heiss, J. Phys. A 33, 93 �2000�.
5 G. Alvarez and C. Casares, J. Phys. A 33, 2499 �2000�; 33, 5171 �2000�.
6 A. Pathak, J. Phys. A 33, 5607 �2000�.
7 M. S. Child, S. H. Dong, and X. G. Wang, J. Phys. A 33, 5653 �2000�.
8 G. F. Chen, J. Phys. A 34, 757 �2001�.
9 D. Zapalla, Phys. Lett. A 290, 35 �2001�.
0 S. Giller and P. Milczarski, J. Math. Phys. 42, 608 �2001�.
1 M. Jafarpour and D. Afshar, J. Phys. A 35, 87 �2002�.
2 G. Alvarez, C. J. Holes, and H. J. Silverstone, J. Phys. A 35, 4003 �2002�; 35, 4017 �2002�.
3 P. Amore, A. Aranda, and A. de Pace, J. Phys. A 37, 3515 �2004�.
4 S. Dusuel and G. S. Uhrig, J. Phys. A 37, 9275 �2004�.
5 C. M. Bender and T. T. Wu, Phys. Rev. 184, 1231 �1969�; Phys. Rev. Lett. 27, 461 �1971�; Phys. Rev. D 7, 1620 �1973�.
6 B. Simon and A. Dicke, Ann. Phys. 58, 76 �1970�.
7 R. Krivec and V. B. Mandelzweig, Comput. Phys. Commun. 152, 165 �2003�.
8 R. Krivec, V. B. Mandelzweig, and F. Tabakin, Few-Body Syst. 34, 57 �2004�.
9 R. Kalaba, J. Math. Mech. 8, 519 �1959�.
0 R. E. Bellman and R. E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems �Elsevier, New York,
1975�.

1 V. B. Mandelzweig, J. Math. Phys. 40, 6266 �1999�.
2 V. B. Mandelzweig and F. Tabakin, Comput. Phys. Commun. 141, 268 �2001�.
3 V. B. Mandelzweig, Few-Body Syst., Suppl. 14, 185 �2003�.
4 V. B. Mandelzweig, Phys. At. Nucl. 68, 1227-1258 �2005�; Yad. Fiz. 68, 1277 �2005�.
5 R. Krivec, V. B. Mandelzweig, and F. Tabakin �unpublished�.
6 R. Krivec and V. B. Mandelzweig, Phys. Lett. A 337, 354 �2005�.
7 R. Krivec and V. B. Mandelzweig, Comput. Phys. Commun. 174, 119 �2006�.
8 W. Janke and H. Kleinert, Phys. Rev. Lett. 75, 2787 �1995�.
9 P. M. Mathews, M. Seetharaman, S. Raghavan, and V. T. A. Bhargava, Phys. Lett. 83A, 118 �1983�.
0 A. Turbiner, Lett. Math. Phys. 74, 169 �2005�.
1 T. Hatsuda, T. Kunihiro, and T. Tanaka, Phys. Rev. Lett. 78, 3229 �1997�.
2 R. Friedberg and T. D. Lee, Ann. Phys. 308, 263 �2003�.
3 I. S. Gradsteyn and I. M. Ryzhik, Table of Integrals, Series and Products �Academic, New York, 1994�.
                                                                                                            



T
5

I

L
a
t
�

c
s
t
o
f
r
T
o

a
S

a

JOURNAL OF MATHEMATICAL PHYSICS 47, 062110 �2006�

0

                        
he Bargmann transform and regularization of the 2, 3,
-dimensional Kepler problem

Carlos Villegas-Blasa�

Instituto de Matemáticas, Universidad Nacional Autónoma de México,
Unidad Cuernavaca, A. P. 273-3, Admon. 3, Cuernavaca Morelos 62251

�Received 9 February 2005; accepted 11 May 2006; published online 30 June 2006�

We introduce a Bargmann transform for the space L2�Sn� of square integrable
functions on the n=2,3 ,5 dimensional unit sphere Sn inmersed in Rn+1. This is
done on base of the Hopf fibration for the spheres Sk�Sd with �k ,d�
= �1,1� , �3,2� , �7,4� and a suitable canonical transformation relating two different
ways to regularize the n=2,3 ,5 dimensional Kepler problem �with fixed negative
energy� involving the null complex quadric Qn inmersed in Cn+1. We prove the
unitarity of the Bargmann transform onto a suitable space of analytical functions.
We give reproducing kernels for these spaces of analytical functions which, for the
cases n=3,5, are defined as the kernel of quantizations of restrictions for regular-
izations of the classical Kepler problem. We give an inversion formula for our
Bargmann transform. We also give a set of coherent states for L2�Sn�, n=2,3 ,5 and
their semiclassical asymptotics ��→0�. Our Bargmann transform is actually a
coherent states transform. Additionally, we use the moment map technique in order
to construct a map with values in Qn that gives the base to define our canonical
transformation. © 2006 American Institute of Physics. �DOI: 10.1063/1.2209556�

. INTRODUCTION

In 1961, Bargmann4 introduced the so called Bargmann transform as a unitary operator from
2�Rn� onto a Hilbert space Bn of analytical functions which are square integrable with respect to
Gaussian measure on Cn. This alternative representation of quantum mechanics through opera-

ors acting on spaces of analytical functions has shown to be very useful in semiclassical analysis
see Refs. 29, 23, and 26�.

The main goal of this paper is to introduce and study a Bargmann transform when the
onfiguration space is the unit n-sphere Sn �the set of all vectors of unit length in Rn+1� in the
pecial cases n=2,3 ,5. The reason to study this particular sphere is motivated by the physical fact
hat it is in this special dimension that the duality between the Kepler problem and harmonic
scillators holds: for fixed negative energy, the n=2,3 ,5 dimensional Kepler problem is trans-
ormed into m=2,4 ,8 harmonic oscillators with the same frequency, respectively. Here we are
egarding the n=2,3 ,5 dimensional Kepler problem as the Hamiltonian system with phase space
*�Rn− �0��, symplectic form dpÙdx �where p and x denote the momentum and position vectors
f the particle, respectively� and Hamiltonian

H =
�p�2

2
−

1

�x�
. �1�

The duality between the Kepler problem and harmonic oscillators in the dimensions specified
bove has its roots, from the mathematical viewpoint, in the Hopf fibration between the spheres
k�Sd with �k ,d�= �1,1� , �3,2� , �7,4�. By extending the Hopf fibrations S1�S1 and S3�S2 one

�
Electronic mail: villegas@matcuer.unam.mx
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btains maps of the type used by Levi-Civita25 and Kustaanheimo-Stiefel19 to regularize the
epler problem. Namely we can find new position variables where, for fixed negative energy E

nd after a time reparametrization, �d /ds= �x��d /dt� with t and s the old and new time parameters,
espectively� the equation of motion for the n=2,3 Kepler problem �1� appears as the equation of
otion for m=2,4 harmonic oscillators, respectively, without any singularity. The oscillators have

he same frequency which depends on the energy E. The same can be done for the case of the
opf fibration S7�S4 and the n=5 dimensional Kepler problem obtaining m=8 harmonic oscil-

ators. For this last case, the first reference we are aware of is Ref. 7. We will refer to these maps
s Kustaanheimo-Stiefel-type maps and denote them by H�n,m�. Here and in the sequel, whenever
e write �n ,m� we mean the three possible cases �n ,m�= �2,2� , �3,4� , �5,8� unless a particular
alue of �n ,m� is specified.

There is another way to regularize the Kepler problem which works for any dimension n
1. This regularization was introduce by Moser.22 The main idea here lies on the physical fact

hat the orbits of the Kepler problem for fixed negative energy and nonzero angular momentum
hen projected into the momentum space are circles. By a standard stereographic projection, those

ircles correspond to great circles on the n-sphere Sn not passing through the north pole. Moser
xtended this stereographic projection to a canonical transformation Mn from the phase space of
he Kepler problem onto the cotangent bundle of Sn with the north pole removed in order that the
ne form x ·dp transforms into the one form � ·dw with w�Sn and � in the cotangent space of Sn

t w. Thus Moser shows, after the same time reparametrization d /ds= �x��d /dt� considered above
or the other type of regularization and for fixed negative energy E=−1/2, the equivalence be-
ween the Hamiltonian flow of the n-dimensional Kepler problem with the geodesic flow of the
unctured n-sphere. The regularization of the Kepler problem is achieved when we add the north
ole. This allows us to include the collision states �negative energy orbits with zero angular
omentum� corresponding to geodesics passing through the north pole of Sn.

The relationship between the two different ways to regularize the Kepler problem mentioned
bove plays a crucial role in our definition of the Bargmann transform for the spaces L2�S2�,
2�S3�, and L2�S5�. We are denoting by L2�Sn�, n�1, the Hilbert space of square-integrable
unctions with respect to the normalized surface measure dS on the n-sphere Sn and endowed with
he inner product

��1,�2,	L2�Sn� = 

w�Sn

�1�w��2�w�dS�w� . �2�

Kummer18 showed how to relate the two regularizations in the case n=3 by using the moment
ap for the group SU�2,2�. In Ref. 28 it is shown how a canonical transformation �denoted here

y C�3,4�� between a suitable reduction of the space C4− �0� and the cotangent bundle of the
-sphere with the zero section removed T*S3− �0� also links the two regularizations for n=3. This
anonical transformation was actually obtained from the integral kernel of a Bargmann transform
hat we introduced in Ref. 27 for L2�S3� by following the symmetries of the negative energy
ydrogen atom problem given by the rotations group SO�4�. The canonical transformation we are
entioning is actually the composition of two maps involving the null complex quadric Q3− �0� of

our complex variables �for n�1, a vector belongs to the null complex quadric Qn if and only if
he addition of the squares of the components of the vector is zero�. Namely, the composition of
map ��3,4� from C4− �0� onto the null complex quadric Q3− �0� and a map �3 from Q3− �0� onto
*S3− �0�. It is also shown that the function given by the inner product ���3,4��z� ·w� is a generating
unction of the canonical transformation C�3,4� with z�C4 and w�S3.

In order to build the Bargmann transform for L2�S5�, the key point for our approach is to
onsider a canonical transformation C�5,8� from a reduced phase space of eight complex variables
8− �0� onto the cotangent bundle of the 5-sphere T*S5− �0� �with the zero section removed� and

nvolving the null complex quadric Q5. We take this canonical transformation as the composition
5
f two maps ��5,8� and �5 involving the null complex quadric Q − �0�. Again, the function
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��5,8��z� ·w� �with z�C8 and w�S5� is a generating function of the canonical transformation

�5,8�. More precisely, for the three cases we are considering we define a canonical transformation

�n,m� as

nd the following diagram holds:

here S0
n denotes the n-sphere Sn with the north pole removed, Tm :T*Rm�Cm is a complexifica-

ion of T*Rm. For the cases m=4,8, the manifolds Km and Jm are obtained from the inverse image
f the zero value of moment maps Km and Jm acting on Cm and T*�Rm− �0�� and related to the
ction of the groups S1 and SU�2� for m=2 and m=8, respectively. In both cases we remove the
nverse image of the cotangent space of Sn at the north pole under the map C�n,m� and the origin
rom Cm. In the case m=2, J2=T*�R2− �0�� and K2=C2− �0� �see Sec. V for details�.

We remark that even though the map C�n,m� is not injective, we still call it a canonical
ransformation as people in the physics literature do. In order to get an injective map, we need to
onsider the quotient �symplectic reduction in the cases m=4,8� of Jm and Km by the action of the
roups Z2, S1 or SU�2� corresponding to the cases m=2,4 ,8, respectively.

For m=4,8, the map ��n,m� appearing in the first diagram is obtained by considering the
oment map I of the action on Cm of the group F of matrices that leave invariant the moment map

m. Thus the map ��n,m� is invariant under the action of the groups S1 and SU�2� for m=4,8,
espectively. The map ��2,2� is obtained by considering a basis of the vector space of homogeneous
olynomials in two complex variables of degree two �and then invariant under the action of the
roup Z2�. The map �n appearing in the same diagram identifies Qn− �0� and T*Sn− �0� in a natural
ay �see Secs. V and VI for details�.

Thus based on our experience on Bargmann transforms for L2�S2� and L2�S3� �see Refs. 27
nd 28�, we define a Bargmann transform for L2�Sn�, n=2,3 ,5, as a suitable power series in the
enerating function ���n,m��z� ·w� of the canonical transformation C�n,m�. We choose the coefficients
f the power series in such a way that our transform is an isometry and then we prove that our
argmann transform is unitary. The Bargmann transform that we define in the present paper for

he cases n=2,3 is actually the same as the one introduced in Ref. 27 �with the exception of
onrelevant changes in the definition of the map ��n,m��. However the Bargmann transform in Ref.
7 is introduced as the linear extension of an assignment between corresponding orthonormal
asis of its domain and range. This idea is hard to implement in the case n=5 since an explicit
escription of a basis of the range is quite complicated. So we present in this paper the three cases
=2,3 ,5 all together in the same framework. The nontrivial part for our present approach is now

o prove that our Bargmann transform is well defined and unitary. We show those facts by
ollowing the method of Bargmann in his original paper.4

2 2 2 3 2 5
We show in detail that our Bargmann transform for L �S �, L �S �, and L �S � is a unitary
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perator and give a reproducing kernel for the corresponding range. This reproducing kernel is
btained by averaging the usual reproducing kernel for the Bargmann spaces over the groups Z2,
1 and SU�2� appearing in the corresponding Hopf fibrations. The range of our Bargmann trans-
orms for L2�S3� and L2�S5� is actually given by the kernel of suitable operators which are quan-
izations of restrictions appearing in the Kepler problem. We also give an inversion formula for
ur Bargmann transform.

We finally show that our Bargmann transform is actually a coherent states transform, i.e.,
hen applied to a function ��L2�Sn� we obtain the inner product of � with a coherent state

abeled by a point in the cotangent bundle of Sn. Our coherent states for L2�Sn� have the property
hat their Bargmann transform give us the reproducing kernel of the range of the Bargmann
ransform. Moreover, our set of coherent states gives a resolution of the identity for L2�Sn�, i.e.,
ny element of L2�Sn� can be written as the limit �in the norm sense� of integrals involving
rojections of � onto each coherent state with respect to a measure on the null complex quadric
n �the cotangent bundle T*Sn− �0� with the zero section removed can be identified with Qn

�0� through the map �n�. Our coherent states are infinite linear combinations of states that
oncentrate on great circles of Sn in the large quantum numbers regime. In order to study the
emiclassical behavior of our coherent states, we introduce the Planck’s constant � in the defini-
ion of our Bargmann transforms. Based on the work of Thomas and Wassell,26 we provide an
symptotic expression for our coherent states showing that they concentrate at points of the sphere
n for � small.

We remark that the n=5 dimensional Kepler problem has been studied before in the classical
echanics setting �see Refs. 7 and 14� and its quantization �see Refs. 7 and 20�. The work of
ladenov20 about geometric quantization of the n=5 dimensional Kepler problem is quite rel-

vant and connected with our work. The definition of the range of our Bargmann transform for
2�S5� is actually described in Mladenov’s paper. However, our Bargmann transform is not men-

ioned there.
We finally mention that other Bargmann-type transforms for spheres have been introduced in

he literature before. We comment on this point in the discussion section of this paper.
The paper is organized as follows. Section II is devoted to describe the Hopf fibration and to

btain its explicit equations. We also show the action of the groups Z2, S1 and SU�2� in the
orresponding fibers. In Sec. III we extend the Hopf fibration and obtain a regularization of the
=2,3 ,5 dimensional Kepler problem of the type obtained by Levi-Civita and Kustaanheimo-
tiefel for the n=2 and n=3 dimensional problems, respectively. The restrictions appearing in the
ases n=3,5 are introduced via a moment map. In Sec. III we describe the Moser regularization
f the n�1 dimensional Kepler problem. Despite the fact that the content of Secs. II–IV is known
n the literature, we include these sections in the present paper in order to introduce notation and
o try to make it as self-contained as possible. In Sec. V and following Kummer18 in his work
bout the n=3 dimensional Kepler problem, we obtain the maps ��n,m� appearing in the diagram
bove through the moment map of the group of linear transformations which leave the moment
ap Km invariant. Then in Sec. VI we present our canonical transformation C�n,m� linking the two

egularizations mentioned above and explain the second diagram above.
In Sec. VII we introduce and study our Bargmann transform for L2�Sn�, n=2,3 ,5 and prove

ts unitarity. We also show the reproducing kernel for the range of our Bargmann transform and
how that our Bargmann transform is actually a coherent states transform providing L2�Sn� with a
et of coherent states. Then we introduce the parameter � into the definition of both the Bargmann
ransform and coherent states and show the localization property of our coherent states for � small.

e conclude in Sec. VIII with a discussion concerning the possible use of our coherent states for
2�Sn� to define coherent states for the hydrogen atom problem �with negative energy� in dimen-
ions n=2,3 ,5. We also include Appendix A about representations in Cm, m=2,4 ,8, of the
overing groups of rotations in SO�n+1�, n=2,3 ,5 and Appendix B about an explicit expression
or orthogonal projectors on eigenspaces of the Laplacian on Sn. Appendix A is used in Appendix

n
and to show the invariance of certain measures on the null complex quadric Q with respect to
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otations in SO�n+1�. However, we think that Appendix A is interesting on its own because it
rovides a nontrivial and specific representation of the covering group of SO�6� on the space C8.

I. THE HOPF FIBRATION

In this section we define the Hopf fibration S1�S1, S3�S2, S7�S4 by following Ref. 24. We
ive explicit equations of these maps. We also describe the action of the corresponding group on
he fibers.

. Stereographic projection

In this section we give the equations of the stereographic projection Tk from Rk� ���, k�1,
nto the k-sphere,

Sk = ��x1, . . . ,xk+1� � Rk+1��
i=1

k+1

xi
2 = 1 . �3�

Let us consider a point x= �x1 , . . . ,xk��Rk and the straight line joining this point with the
orth pole of Sk. This line intersects Sk at the point w= �w1 , . . . ,wk+1� given by

wi =
2xi

�x�2 + 1
, i = 1, . . . ,k ,

wk+1 =
�x�2 − 1

�x�2 + 1
, �x�2 = �

i=1

k

xi
2.

Then we can assign the north pole of Sk to � if we need to.

. The Hopf fibration S1¾S1, S3¾S2, S7¾S4

Our presentation of the definition of the Hopf fibration follows.24 Let F denote either the field
f real R, complex C or quaternion H numbers. Let us define F2=F�F �the Cartesian product of
with itself�. Let FP1 be the F-projective space defined as the set of equivalence classes of F2

��0,0�� �i.e., F2 with the origin removed� under the following equivalence relation: �q1� ,q2��
�q1 ,q2� if and only if there exists 	�F− �0� such that �q1� ,q2��= �q1 ,q2�	.

For k=1,3 ,7, let us regard the k-sphere Sk as the set of points �q1 ,q2� where q1 ,q2�F and
q1�2+ �q2�2=1, with F=R ,C ,H, respectively. Then consider the map Dk from Sk onto FP1 which
ssigns to �q1 ,q2� its equivalence class ��q1 ,q2�� in FP1. Notice that elements of Sk of the form
q ,0� with q�F− �0� are sent to the same equivalence class ��q ,0��. Any other element of Sk of
he form �q1 ,q2� with q2�0 �and q1�F arbitrary� is equivalent to �q1q2

−1 ,1�. Thus, if we identify
he equivalence class ��q ,0�� with �, then the map Dk can be seen as a map from Sk onto F� ���
nder the identification of FP1 with F� ���.

The Hopf fibration H�k,d� is the map from Sk onto Sd, with �k ,d�= �1,1� , �3,2� , �7,4�, defined
s the composition of the map Dk and the stereographic projection from the field F� ��� �with F
dentified with R, C or H� onto the sphere S1 ,S2 ,S4, respectively.

Let us give the equations of the Hopf fibration for the cases we are considering. Let us regard
he domain and range of the Hopf fibration as the sets ��u1 , . . . ,uk+1��Rk+1�u1

2+ ¯ +uk+1
2 =1�� and

�x1 , . . . ,xd+1��Rd+1�x1
2+ ¯ +xd+1

2 =1�� �with k=1,3 ,7 and d=1,2 ,4�, respectively.

i� Case S1�S1:

x1 = 2u1u2,

x2 = u2 − u2. �4�
1 2
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ii� Case S3�S2: Here we regard a point �u1 , . . . ,u4��S3 as �u1+ ıu2 ,u3+ ıu4�.

x1 = 2�u1u3 + u2u4� ,

x2 = 2�u2u3 − u1u4� , �5�

x3 = u1
2 + u2

2 − u3
2 − u4

2.

iii� Case S7�S4: Here we regard a point �u1 , . . . ,u8��S7 as �a1 ,a2� with a1 ,a2 quaternions
given by the 2�2 matrices

a1 = � u1 + ıu2 u3 + ıu4

− u3 + ıu4 u1 − ıu2
�, a2 = � u5 + ıu6 u7 + ıu8

− u7 + ıu8 u5 − ıu6
� . �6�

Then the equations for the Hopf fibration are

x1 = 2�u1u5 + u2u6 + u3u7 + u4u8� ,

x2 = 2�− u1u6 + u2u5 − u3u8 + u4u7� ,

x3 = 2�− u1u7 + u2u8 + u3u5 − u4u6� , �7�

x4 = 2�− u1u8 − u2u7 + u3u6 + u4u5� ,

x5 = u1
2 + u2

2 + u3
2 + u4

2 − u5
2 − u6

2 − u7
2 − u8

2.

The Hopf fibration map H�k,d� that we have defined in the three cases above is onto but not one
o one. The inverse image of a point x in the range of the Hopf fibration �the fiber of the Hopf
bration map at x� is the set of points �q1 ,q2��F2− ��0,0�� �with �q1�2+ �q2�2=1� such that q2q1

−1

s equal to the inverse image of x under the corresponding stereographic projection. The points
q1 ,q2� , �q1� ,q2��� �F2− �0,0�� such that q2q1

−1=q2�q1�
−1 are related to each other by the action of an

lement of the group G=Z2, S1 or SU�2� for the Hopf fibration S1�S1, S3�S2 or S7�S4,
espectively. More explicitly, let us introduce the following equivalence relations in the spheres S1,
3 and S7 given by u��u ,v iff u�=T�g�u for some g in Z2, S1 or SU�2�, respectively, and T�g�
efined in the following way.

i� Case S1:

T�g� = ± 1. �8�

ii� Case S3. For g=exp�
���S1,

T�g� = C†UC , �9�

where C† denotes the adjoint of the following unitary matrix:

C =
1
�2�

− ı − 1 0 0

0 0 1 − ı

0 0 1 ı

− ı 1 0 0
� �10�
and
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U =�
exp�− ı�� 0 0 0

0 exp�− ı�� 0 0

0 0 exp�ı�� 0

0 0 0 exp�ı��
� . �11�

iii� Case S7: For g�SU�2�,

T�g� = D†VD , �12�

where D is the following unitary matrix:

D =
1
�2�

− ı − 1 0 0 0 0 0 0�25�
0 0 1 − ı 0 0 0 0

0 0 0 0 − ı − 1 0 0

0 0 0 0 0 0 1 − ı

0 0 0 0 0 0 − 1 − ı

0 0 0 0 ı − 1 0 0

0 0 1 ı 0 0 0 0

− ı 1 0 0 0 0 0 0

� �13�

and

V =�
g 0 0 0

0 g 0 0

0 0 g 0

0 0 0 g
� . �14�

Thus the fibers of the Hopf fibration are the equivalence classes described above with the
roup G=Z2, S1 or SU�2� �respectively� acting on them.

II. REGULARIZATION OF THE KEPLER PROBLEM IN n=2,3,5 DIMENSIONS

In this section we extend the Hopf fibration maps introduced above in order to get a regular-
zation of the Kepler problem in n=2,3 ,5 dimensions.

First, let us extend the domain and range of the Hopf fibration maps. We do this by consid-
ring Eqs. �4�, �5�, and �7� and then regarding �u1 ,u2�, �u1 , . . . ,u4� or �u1 , . . . ,u8� in R2, R4 or R8,
espectively. Thus we obtain maps R2�R2, R4�R3, and R8�R5. All of these maps can be
ritten as

x = Au �15�

n the following way �for each case that we are considering�:

�x1

x2
� = �u2 u1

u1 − u2
��u1

u2
� , �16�

�
x1

x2

x3� =�
u3 u4 u1 u2

− u4 u3 u2 − u1

u1 u2 − u3 − u4��
u1

u2

u3� , �17�
0 u2 − u1 u4 − u3 u4
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�
x1

x2

x3

x4

x5

0

0

0

� =�
u5 u6 u7 u8 u1 u2 u3 u4

− u6 u5 − u8 u7 u2 − u1 u4 − u3

− u7 u8 u5 − u6 u3 − u4 − u1 u2

− u8 − u7 u6 u5 u4 u3 − u2 − u1

u1 u2 u3 u4 − u5 − u6 − u7 − u8

u2 − u1 − u4 u3 u6 − u5 − u8 u7

u3 u4 − u1 − u2 u7 u8 − u5 − u6

u4 − u3 u2 − u1 u8 − u7 u6 − u5

��
u1

u2

u3

u4

u5

u6

u7

u8

� , �18�

here in the last two cases we have completed the matrix A such that the Eqs. �17� and �18� hold.
Notice that the rows of the matrix A are orthogonal among them �the same happens with the

olumns�. It is here where the special dimensions �n ,m�= �2,2� , �3,4� , �5,8� appear. The rows of
he matrix A give a frame for the spheres S1, S3, and S7 that changes smoothly �notice that first
ow vector is actually the position vector in the corresponding sphere�. This is possible because the
-sphere Sk is a parallelizable manifold only when k=1,3 ,7.

Since the matrix A satisfies the relation

AtA = �u�2I �19�

with At the transpose matrix of A and I the identity matrix� then A is invertible with inverse
−1=At / �u�2 when �u��0.

We will consider the Kepler problem in dimensions 2, 3, 5 by regarding the vector x �appear-
ng on the left-hand side of Eqs. �16�–�18�� as a vector describing the position of a particle in R2,

3 or R5, respectively, under the influence of the gravitational force

F = −
x

�x�3
�20�

nd obeying the Newton’s law F=−d2x /d2t.
The singularity of the force vector F at the origin x=0 has been studied and regularized

efore. Two different ways to achieve this regularization are the following.

a� By considering maps of the type appearing in Eqs. �16�–�18�, Levi-Civita studied the first
case n=2, Kustaanheimo and Stiefel19 considered the second case n=3 and the third case
n=5 can be solved via a Hurwitz transformation, Refs. 7 and 20. See Ref. 25 for a nice
description of the first two cases.

b� By considering an extension of the stereographic projection between Rn and the n-sphere Sn,
Moser22 regularized the Kepler problem for any dimension n�1. This regularization will be
presented in Sec. IV.

The two regularizations mentioned above use as a key idea to consider a reparametrization of
ime t in the following way: when the particle moves in a straight line towards the origin �a
ollision orbit� the speed of the particle goes to infinity. However the product �x��dx /dt� tends to
finite limit �zero� when �x� approaches the origin �this is a consequence of the conservation of

nergy E= 1
2 ��dx /dt��2− �1/ �x���. Thus a new time parameter s is introduced via the following

quation:

d

ds
= �x�

d

dt .
�21�

n this way, the speed of the particle when it reaches the origin is finite and equal to zero with
espect to time s.

In order to show the regularization indicated in �a�, let us consider the symplectic spaces N
* n * m
�T �R − �0�� ,�� and M = �T �R − �0�� ,� with symplectic forms �=dpÙdx and =4 dvÙdu,
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espectively. We will show a canonical transformation that transforms the Hamiltonian system of
he n=2,3 ,5 dimensional Kepler problem �N ,H= 1

2 �p�2− �1/ �x��� into a suitable reduction of the
amiltonian system �M ,H�= �1/ �u�2��2�v�2−1�� with m=2,4 ,8, respectively. Moreover, we will

how that, for fixed negative energy H=E and after the time reparametrization Eq. �21�, the
amiltonian flow of H is transformed into the Hamiltonian flow of the reduction of an isotropic
armonic oscillator K= 1

2 ��v�2+k�u�2� with strength k=−E /2 and obtained from the Hamiltonian
ow of H�. Since the Hamiltonian flow of K does not have any singularity, we will say that we
ave achieved a regularization of the n=2,3 ,5 dimensional Kepler problem.

Let us consider the following action of the group G on the symplectic manifold M: given g
G we define �u� ,v��= �T�g�u ,T�g�v� where T�g� is defined by Eqs. �8�–�14�. Since T�g� is an

rthogonal matrix for all g�G, then the action we are defining is symplectic.
In order to find the reduction of the symplectic manifold M under the action of the group G

defined above, we need to find the moment map for the cases m=4 and m=8. First we introduce
some notation.

Let G denote the Lie algebra of the group G. That is, G is the vector space R when m=4 or the
eal vector space su�2� of 2�2 self-adjoint and traceless complex matrices when m=8.

Let � denote the representation of the Lie algebra G obtained from the representation of G
given by the matrices T�g�. Let us denote the elements of � by T��� with ��G. More specifically,
or the case m=4,

T��� = C†UC , �22�

here C is given by Eq. �10� and

U =�
− � 0 0 0

0 − � 0 0

0 0 � 0

0 0 0 �
� �23�

for some �=��R� and for the case m=8,

T��� = D†VD , �24�

here D is given by Eq. �13� and

V =�
� 0 0 0

0 � 0 0

0 0 � 0

0 0 0 �
� �25�

ith ��su�2�.
Let us introduce the following inner product in the Lie algebra �: for T��1� and T��2� in �, let

s define

�T��1�,T��2�	 = 1
8 tr�T��1�T��2�� = 1

2 tr��1�2� �26�

Let �̃ be the representation of the Lie algebra G given by matrices of the form

T̃��� = �T��� 0

0 T��� � �27�
ith T�����.
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The moment map is defined as the function Jm :M ��̃*, where �̃* denotes the dual vector

pace of �̃, such that Jm�u ,v� evaluated at T̃�����̃ is equal to the infinitesimal generator of the

ction corresponding to T̃��� at the point �u ,v�. Namely, we want the following equation to hold:

�Jm�u,v�,T̃���	 = � d

ds
�

s=0
exp�isT̃�����u

v
� , �28�

here we have used the Riez representation theorem and denoted the element of �̃ which repre-
ents Jm�u ,v� by the same symbol.

The result is that the element ��u ,v��G determining Jm�u ,v� is the following.
For the case m=4,

��u,v� = − u2v1 + u1v2 − u4v3 + u3v4. �29�

For the case m=8,

��u,v� = � 	 � + i�

� − i� − 	
� �30�

ith

��u,v� = − u3v1 − u4v2 + u1v3 + u2v4 − u7v5 − u8v6 + u5v7 + u6v8,

��u,v� = u4v1 − u3v2 + u2v3 − u1v4 + u8v5 − u7v6 + u6v7 − u5v8,

	�u,v� = u2v1 − u1v2 − u4v3 + u3v4 + u6v5 − u5v6 − u8v7 + u7v8. �31�

The equations 	=0 and �=�=	=0 are known in the physics literature as the restrictions of
he Kepler problem in the variables u and v for the n=3 �see Ref. 19� and n=5 �see Ref. 7�
imensional Kepler problem, respectively. The geometrical meaning of them is that the momen-
um vector v is orthogonal to the fiber of the point u at the point u �see Ref. 25 for the n=3
imensional case�.

Thus we want to restrict ourselves to the submanifold Jm
−1�0� of M given by the inverse image

f the zero element 0 of �̃*. Since 0 is a regular value of Jm, The Marsden-Weinstein reduction
ethod �see Ref. 1� implies that we can take the reduction of M by the action of the Lie group G

nd consider the symplectic manifold Jm
−1�0� /G with a well-defined symplectic form ̃ acting on

t and coming from the initial symplectic form =4 dvÙdu.
Let us consider the map H�n,m� :Jm

−1�0��N given by

x = A�u�u, p =
2

�u�2
A�u�v , �32�

here A�u� denotes the matrix A as a function of u as it appears in Eqs. �17� and �18�. Notice that
f �u ,v��Jm

−1�0� then �v ,u��Jm
−1�0�, and the matrix A has the following property:

A�u�v = A�u�v , �33�

here A�v� is the matrix A with entries for the components of the vector v instead of u �the
mportance of having this equation is emphasized in Ref. 25 for m=2,4�. This property in par-
icular implies that dx=2A�u�du.

Since At�u�A�u�= �u�2I, then p dx=4v du, which in turn implies that H�n,m�
*�=. Thus we

an obtain a canonical transformation H̃�n,m� from the symplectic manifold �Jm
−1�0� /G , ̃� onto the
ymplectic manifold �N ,��.
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The analog of the situation described in the last paragraph holds in the case m=2 as well. In

his case the canonical transformation H̃�2,2� goes from T*�R2− �0�� /Z2 onto T*�R2− �0�� with
orresponding symplectic forms ̃ and �.

Since the Hamiltonian system �Jm
−1�0� , ,H�= �1/ �u�2��2�v�2−1�� is invariant under the action

f G, the equations of motion of the corresponding reduced Hamiltonian system associated to

Jm
−1�0� /G , ̃ , H̃� �with H̃ being the Hamiltonian H� acting on the reduced manifold Jm

−1�0� /G�
re determined by the equations of motion of �Jm

−1�0� , ,H�� which in turn are

du

dt
=

1

4

�H�

�v
=

v

�u�2
,

�34�
dv

dt
= −

1

4

�H�

�u
=

u

2�u�4
�2�v�2 − 1� .

Thus on each surface of constant negative energy H�=E, and after the time reparametrization
/dt= �1/ �x���d /ds�, we obtain the equations of motion of an isotropic harmonic oscillator �with
trength k=−E /2�,

du

ds
= v ,

dv

ds
=

E

2
u . �35�

The Hamiltonian H� is mapped to the Hamiltonian of the Kepler problem H= 1
2 �p�2− �1/ �x��

hrough the transformation H�n,m� defined in Eq. �32� �i.e., H�=H �H�n,m��. Since H�n,m�
* �=, the

amilton equations of H� indicated in Eqs. �34� are mapped to the Hamilton equations of the
epler problem:

dx

dt
=

�H

�p
= p ,

�36�
dp

dt
= −

�H

�x
= −

x

�x�3
.

We conclude that, for fixed negative energy H=H�=E, the Hamiltonian flow of the Kepler
roblem given by Eqs. �36� is equivalent, after a time reparametrization, to the reduction of the
amiltonian flow of an isotropic harmonic oscillator K= 1

2 ��v�2+k�u�2� with strength k=−E /2
nder the corresponding action of Z2, S1 or SU�2�.

We remark that the study of the above moment map Jm has already been considered by Iwai14

nd Mladenov.20

V. THE MOSER REGULARIZATION

Moser22 introduced a different way to regularize the Kepler problem for fixed negative energy
han the one described in the preceding section. The Moser regularization actually works for any
imension and not only for n=2,3 ,5. The Moser map that we describe below is usually associated
o the fixed energy E=−1/2. Other negative values of the energy can be considered by taking the
orresponding dilations �see Ref. 22�.

In this section we briefly present the Moser regularization. The main idea goes as follows: The
rbits corresponding to nonzero angular momentum �where the initial position and momentum
ectors are linearly independent� are circles when projected into the momentum space. These

n n
ircles correspond, under a stereographic projection Tn :R �So and fixed energy E=−1/2, to

                                                                                                            



g
g
n
m

w
=
T
e
−
t
c
n

a
t
z
t
r
e
p
m
fi
r
r

V
A

w
=

062110-12 Carlos Villegas-Blas J. Math. Phys. 47, 062110 �2006�

                        
reat circles on the punctured n-sphere So
n. The idea is to consider an extension of this stereo-

raphic projection Tn from the phase space T*Rn onto the tangent bundle T*So
n of the punctured

-sphere Sn under the restriction: Tn
*� ·dw=x ·dp where �w ,���T*So

n, w�So
n. Thus we obtain a

ap Mn :T*Rn�T*So
n. The explicit equations are the following:

wj =
2

�p�2 + 1
pj, j = 1,2, . . . ,n ,

wn+1 =
�p�2 − 1

�p�2 + 1
, �37�

� j =
�p�2 + 1

2
xj − �x · p�pj, j = 1,2, . . . ,n ,

�4 = x · p = �
j=1

n

xjpj . �38�

The equations for the inverse transformation are

pj =
wj

1 − w4
, j = 1,2, . . . ,n ,

xj = �1 − w4�� j + �4wj, j = 1,2, . . . ,n . �39�

The Moser map Mn is actually a symplectomorphism from the phase space T*Rn endowed
ith its canonical symplectic form �=dpÙdx onto T*So

n endowed with the symplectic form �
dwÙd� obtained from the restriction to T*So

n of the canonical symplectic form of the ambient
*Rn+1. Moreover, for fixed negative energy E=−1/2, the Moser map Mn and the time reparam-
trization Eq. �21� transform the Hamiltonian flow of the n-dimensional Kepler problem ��Rn

�0���Rn ,dpÙdx ,H= ��p�2 /2�− �1/ �x��� onto the geodesic flow of the punctured n-sphere with
he zero section of T*So

n removed �note that ���= ���p�2+1� /2��x� which implies �=0 iff x=0�. The
ollision orbits �orbits with zero angular momentum� are sent to geodesics passing through the
orth pole but not including the north pole itself.

The north pole can be included into the picture in the following way: it can be shown that,
fter the time reparametrization, a collision orbit of the n-dimensional Kepler problem corresponds
o a particle moving on a segment with one of its ends at the origin and reaching the origin with
ero speed. Thus, if we make the convention that after the collision with the center of attraction
he particle goes back to its motion on the segment, then we have an oscillatory motion with
espect to the time s. Note that we are now including the point x=0. Moreover, since the total
nergy is conserved then �x�→0 iff �p�→� then we include the case �p�=� in the stereographic
rojection by assigning to �p�=� the north pole of Sn. The oscillatory motion corresponds to
otion on a geodesic passing through the north pole including this point. Thus we say that, for
xed negative energy E=−1/2, the Hamiltonian flow of the n-dimensional Kepler problem is
egularized by the geodesic flow of the whole n-sphere Sn after the time reparametrization. We will
efer to this fact as the Moser regularization of the n-dimensional Kepler problem.

. MAPPING A COMPLEXIFICATION OF T *Rm ONTO A NULL QUADRIC THROUGH
MOMENT MAP

In this section we set up a map �n,m�z� from a complexification of T*Rm onto a quadric Qn that
ill play a key role when we define the Bargmann transform acting on L2�Sn�. In the case of m

4 and m=8, such a map will be obtained through a moment map I of a suitable defined group
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acting on a related space to the above-mentioned complexification. The group F is defined as the
et of m�m complex matrices that leave the moment map Km �defined in �29�–�31�� invariant.
his section is motivated by the work of Kummer20 where he considers the case m=4.

Let us introduce the following complexification of T*Rm �similar to the one considered by
ladenov20� Tm :T*Rm�Cm,

z = Mu + 2ıMv , �40�

here we take the following particular expression for the unitary matrix M.

i� The case m=2:

M =
1
�2

�− ı − 1

− ı 1
� . �41�

ii� The case m=4:

M =
1
�2�

− ı − 1 0 0

0 0 1 − ı

0 0 1 ı

− ı 1 0 0
� . �42�

iii� The case m=8:

M =
1
�2�

− ı − 1 0 0 0 0 0 0

0 0 − 1 − ı 0 0 0 0

0 0 0 0 − ı − 1 0 0

0 0 0 0 0 0 1 ı

0 0 0 0 0 0 1 − ı

0 0 0 0 ı − 1 0 0

0 0 1 − ı 0 0 0 0

− ı 1 0 0 0 0 0 0

� . �43�

Since M is unitary, we have

� ª − ı dz Ù dz� = 4 dv Ù du . �44�

Given k a positive integer number, we define the null quadric by

Qk = �� � Ck+1��1
2 + ¯ + �k+1

2 = 0� . �45�

Let us first define the map ��z� in the case m=2. In this case we have the action z�� ±z of
he group Z2 on the complex manifold C2. The set of monomials �z1

2 ,z2 ,z1z2� give a basis of the
ector space V of all the homogeneous polynomials of degree 2 �all the elements of V are invariant
nder the Z2 action�. Thus, we define the map ��z��2,2�= ��1�z� ,�2�z� ,�3�z�� by

�1 = �z2
2 − z1

2�/2, �2 = ı�z1
2 + z2

2�/2, �3 = z1z2. �46�

The map ��z� defined by Eq. �46� has values in the null quadric Q2.
In order to consider the cases m=4,8, let us introduce the variable ��Cm and write it as

= ��I ,�II� with �I ,�II�Cm/2. Let us consider the following change of variables from the variable
to the variable �:

�I = zI, �II = z̄II. �47�
Thus the symplectic form � written in terms of � is
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� = − ı�d�I Ù d�̄I − d�II Ù d�̄II� . �48�

Let us denote by Km the moment map associated to the action of the group G on the space Cm

n terms of the variable �.
The moment map Km written in terms of � and �̄ is determined by the following equations

see Eqs. �29�–�31� and the definition of the complexification Tm in Eqs. �40�–�43���.
For the case m=4,

���,�̄� =
1

4
�†� I 0

0 − I
�� , �49�

here I denotes the 2�2 unit matrix and �† the adjoint of �.
For the case m=8,

���,�̄� = −
1

4
R��t�0 J

J 0
��� ,

���,�̄� =
1

4
I��t�0 J

J 0
��� ,

	��,�̄� = −
1

4
�†� I 0

0 − I
�� , �50�

here I denotes the 4�4 unit matrix and J is

J = � 0 �1

�1 0
�, �3 = �1 0

0 − 1
� . �51�

et us define the group F as the group of linear transformations which leave the moment map Km

nvariant. Namely, F is the Lie group of m�m matrices S which satisfy the condition

S†� I 0

0 − I
�S = � I 0

0 − I
� �52�

nd additionally the following condition for the case m=8:

St�0 J

J 0
�S = �0 J

J 0
� , �53�

here St denotes the transpose matrix of S.
We will also require the condition that the elements of F have unit determinant in both cases.

otice that F=SU�2,2� for m=4 and F is a subgroup of SU�4,4� for m=8.
From the definition of the group F �Eq. �52�� and the expression of the symplectic form � in

erms of the variables � and �̄ �Eq. �48��, we have that the action of F on C8 is symplectic.
herefore we can consider the moment map I of the action of F on C8. We will obtain from this
oment map a map ��z� from C8 to T*Sn which is invariant under the following action �obtained

rom the action of the group G in the last section and acting on the variables �u ,v��.
Case m=4,

z� =�
exp�− ı�� 0 0 0

0 exp�− ı�� 0 0

0 0 exp�ı�� 0 �z . �54�
0 0 0 exp�ı��
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ase m=8,

z� = L†VLz , �55�

here V has the form indicated in Eq. �14� and

L =�
1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 − 1 0 0 0 0

0 0 0 0 0 1 0 0

0 − 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1

� . �56�

The Lie algebra F of F is the real vector space of m�m traceless complex matrices � which
ave the following form.

Case m=4,

� a b

− b† d
� �57�

ith the 2�2 matrices a and d restricted to be self-adjoint.
Case m=8,

� = � a b

− b† − JatJ
� , �58�

here the 4�4 matrices a and b satisfy

a† = a, Jbt = − bJ �59�

r, equivalently, the matrix b must have the form

b = �b11 b12

b21 − �3b11
t �3

� �60�

ith b11 any 2�2 complex matrix, b12 and b21 any two complex multiples of the 2�2 matrix �3

efined in Eq. �51�.
Notice that the dimension of F is 15 and 28 when m=4 and m=8, respectively.
Let us introduce the following real valued inner product in F:

��1,�2	 = tr�� I 0

0 − I
��1� I 0

0 − I
��2� . �61�

Given a Hamiltonian system �H ,��, with H=H�� , �̄�, the associated Hamiltonian vector field

H is

XH = ı� I 0

0 − I
� �

��̄
H . �62�

The infinitesimal generator �� associated to a given element � of the Lie algebra F at the point
is equal to ı��. Thus we want the moment map I to satisfy the following equation for all �

F:
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� I 0

0 − I
��� =

�

��̄
tr�� I 0

0 − I
�I��,�̄�� I 0

0 − I
��� . �63�

The solution to Eq. �63� is the following.
Case m=4,

I��,�̄� = � I 0

0 − I
���†. �64�

Case m=8,

I��,�̄� =
1

2
�� I 0

0 − I
���† + �0 J

J 0
����†�t�0 − J

J 0
�� . �65�

We are now ready to introduce the map ��z�= ��1 , . . . ,�n+1�. The real and imaginary parts of
he components of ��z� are defined as the Hamiltonians �I�� , �̄� ,�	 written in terms of z with the
ollowing particular choices for ��F.

Case m=4: Denote the elements of F by �=��a ,b ,d� as indicated in Eq. �57�. Let us define

R�1 = �I,��0,�0,0�	, I�1 = �I,��0,ı�0,0�	 ,

R�2 = �I,��0,− ı�3,0�	, I�2 = �I,��0,�3,0�	 ,

�66�
R�3 = �I,��0,− ı�1,0�	, I�3 = �I,��0,�1,0�	 ,

R�4 = �I,��0,ı�2,0�	, I�4 = �I,��0,�2,0�	 ,

here the matrix �0 is the 2�2 identity matrix and � j, j=1,2 ,3, are the Pauli matrices given by

�1 = �0 1

1 0
�, �2 = �0 − ı

ı 0
�, �3 = �1 0

0 − 1
� . �67�

More explicitly, we define the components of ��3,4� by

�1�z� = z1z3 + z2z4, �2�z� = ı�z1z3 − z2z4� ,

�68�
�3�z� = ı�z1z4 + z2z3�, �4�z� = z1z4 − z2z3.

Case m=8: Denote the elements of F by �=��a ,b11,b12,b21� as indicated in Eqs. �58�–�60�.
Let us define then

R�1 = �I,��0,− �2,0,0�	, I�1 = �I,��0,− ı�2,0,0�	 ,

R�2 = �I,��0,�1,0,0�	, I�2 = �I,��0,ı�1,0,0�	 ,

R�3 = �I,��0,− �3,0,0�	, I�3 = �I,��0,− ı�3,0,0�	 ,

�69�
R�4 = �I,��0,ı�0,0,0�	, I�4 = �I,��0,− �0,0,0�	 ,

R�5 = �I,��0,0,ı�1,ı�1�	, I�5 = �I,��0,0,− �1,− �1�	 ,
R�6 = �I,��0,0,�1,− �1�	, I�6 = �I,��0,0,ı�1,− ı�1�	 .
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More explicitly, we define the components of �5,8 by

�1�z� = ı�− z1z6 + z3z8 + z2z5 − z4z7� ,

�2�z� = z1z6 + z3z8 + z2z5 + z4z7,

�3�z� = z2z6 + z3z7 − z1z5 − z4z8,

�70�
�4�z� = ı�− z1z5 + z4z8 − z2z6 + z3z7� ,

�5�z� = ı�− z1z8 − z2z7 − z3z6 − z4z5� ,

�6�z� = z1z8 + z2z7 − z3z6 − z4z5.

We remark that in each case �m=4 and m=8� the particular matrices ��F that we have
hosen are orthogonal among them. Moreover, we can extend this particular subset of F to an
rthonormal basis �as shown by Kummer20 in the case m=4� obtaining Hamiltonians �I�� , �̄� ,�	
hich give the six generators of the SO�4� group and the 15 generators of the SO�6� group for
=4 and m=8, respectively. Moreover, in both cases we can choose one of the basis elements

uch that we obtain the Hamiltonian H=�k=1
k=m�zk�2. Thus we can obtain 8+6+1=15 and 12+15

1=28 elements of the basis of F when m=4 and m=8, respectively. Note that in both cases
=4,8 the moment map I is invariant under the action of G defined by Eqs. �54�–�56�. Therefore,

he map ��n,m��z� enjoys that invariance property too and it is well defined on the reduced sym-
lectic manifold Km

−1�0� /G. Moreover, the map ��z� is onto and takes values in the null quadric Q3

r Q5 corresponding to the cases m=4 or m=8.

I. CANONICAL TRANSFORMATION

In this section we provide a canonical transformation C̃�n,m� from �Km
−1�0�− �0�� /G �with �0�

enoting the origin of Cm� onto T*Sn− �0� �here �0� denotes the zero section of T*Sn�. This trans-
ormation comes from a map C�n,m� defined as the composition of the map ��n,m� defined in the
receding section �and restricted to Cm− �0�� and a map � which identifies the null quadric Qn

�0� with T*Sn− �0�. The map C̃�n,m� has the remarkable property that relates the two different
ays to regularize the Kepler problem that we have explained in the preceding sections �the Moser

nd H�n,m� maps�. Moreover, the Bargmann transform for L2�Sn�, n=2,3 ,5, that we will define in
he next section can be regarded as the quantization of the canonical transformation C�n,m�.

Let us define the map �n in the following way. Since ��Qn if and only if the real and
maginary parts of � are orthogonal and have the same norm �as vectors in Rn+1�, then we can
dentify Qn− �0� with T*Sn− �0� through the map

�n:Qn − �0� � T*Sn − �0� ,

�71�

�n��� = �R�

���
,− I�� .

Thus we define the map C�n,m� as composition of the maps ��n,m� and �n,

C�n,m�:C
m − �0� � T*Sn − �0� ,

�72�
C�n,m� = ��n,m� � �n.
The map C�n,m� makes the following diagram commute:

                                                                                                            



w
m

i

�

w

c

f
t
i

V

b
i
v
t

B

A

=

w

062110-18 Carlos Villegas-Blas J. Math. Phys. 47, 062110 �2006�

                        
here the set P denotes the inverse image of the cotangent space of Sn at the north pole under the
ap C�n,m� and Tm :T*Rm�Cm denotes the complexification indicated in Eq. �40�. Note that the set

P is actually given by the inverse image of the real number one under the function R�n+1 which
s invariant under the action of the group G and therefore we can consider the quotient

P̃ªP /G.
To check that the last diagram holds, we can make use of the relations �R��n,m��= ���n,m�� /�2,

��n,m��= �z�2 /�2 and the equations

pj =
R� j�z�

�R��n,m��z�� − R�n+1�z�
,

�73�

xj =
− �R��n,m��z��I� j�z� + I��n+1�z�� j�z��

�R��n,m��z��
, j = 1, . . . ,n .

here the components of ��n,m� are denoted by � j�z� as above. Then a long computation follows.
Moreover, when C�n,m� is considered as in the last diagram, we can check through a direct

omputation that w d�=I�z̄ dz�, which in turn implies that C�n,m�
* �=�.

Since C�n,m� is invariant under the action of the group G, we can define our canonical trans-

ormation C̃�n,m� as the reduction of C�n,m� and with domain �Km
−1�0�− �0�� /G− P̃. As indicated in

he introduction of this paper, we still call C�n,m� a canonical transformation even though it is not
njective.

II. BARGMANN TRANSFORM

In this section we define a Bargmann transform for the space L2�Sn� with n=2,3 ,5. We do this
y following the ideas in Refs. 27 and 28. Namely, we regard the Bargmann transform as an
ntegral operator from L2�Sn� onto a suitable Hilbert space of analytical functions of the complex
ariable z�Cm �m=2,4 ,8� with an integral kernel given as a power series of a function which in
urn is the inner product of ��n,m��z� with the variable w in Sn.

In order to define the range of the Bargmann transform for L2�Sn�, let us recall the usual
argmann spaces Bk introduced by Bargmann in Ref. 4.

. Bargmann transform for L2
„Rk

…

For k�N, let Bk be the space of analytical functions in k complex variables �denoted by z
�z1 ,z2 , . . . ,zk�� which are square integrable with respect to the Gaussian measure

dk�z� =
1

�k exp�− �z�2��
j=1

k

dxj dyj , �74�

here �z�2= �z1�2+ �z2�2+ ¯ + �zk�2 and zj =xj + ıyj, xj ,yj �R, with j=1,2 , . . . ,k.
The space Bk is a Hilbert space endowed with the inner product

�F,G	Bk
= 


k
F�z�Ḡ�z�dk�z� . �75�
C
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The norm of a function F�Bk will be denoted by �F�Bk
=��F ,F	Bk

.
The set of all monomials z1

a1z2
a2
¯zk

ak /�a1!a2!¯ak!, with a1 ,a2 , . . . ,ak non-negative integers,
s an orthonormal basis of Bk.

The space Bk has a reproducing kernel. Let us denote by

�a�z� = exp�āz�, with a � Ck. �76�

hen for all ��Bk the following equation holds:

��z� = ��,�z	Bk
= 


Ck
exp�z�̄�����dk��� . �77�

The Bargmann transform for L2�Rk� is defined as the operator BRk :L2�Rk��Bk given by

BRk��z� =
1

�k/4

Rk

A�x,z���x�dx, � � L2�Rk� , �78�

here dx is the usual Lebesgue measure on Rk and

A�x,z� = exp�− 1
2 �z2 + x2� + �2z · x� , �79�

ith z2=z1
2+z2

2+ ¯ +zk
2, x= �x1 ,x2 , . . . ,xk�, x2=x1

2+x2
2+ ¯ +xk

2 and z ·x=z1x1+z2x2+ ¯ +zkxk. The
argmann transform BRk is a unitary operator with L2�Rk� endowed with the usual inner product,

��1,�2	L2�Rk� = 

x�Rk

�1�x��2�x�dx . �80�

he inverse BRk
−1 is given by

BRk
−1F�x� = lim

M��



�z��M

A�x,z�F�z�dk�z� . �81�

ere we need to take the limit because the integral over all the space Ck might not exist �note that,
or fixed x, A�x ,z��Bk�.

. Bargmann transform for L2
„Sn

… with n=2,3,5

The range of the Bargmann transform for L2�Sn� with n=2, 3 or 5 will be defined as a closed
ubspace of the Bargmann space B2, B4 or B8, respectively.

i� Case L2�S2�: Let us define the space F2 as the closed subspace of the Bargmann space B2

generated by the monomials z1
a1z2

a2 with a1+a2 an even non-negative integer number.
ii� Case L2�S3�: Let F4	B4 be the kernel of the following operator:

L � z1
�

�z1
+ z2

�

�z2
− z3

�

�z3
− z4

�

�z4
. �82�

The domain of L is defined as �f �B4 �Lf �B4�.
iii� Case L2�S5�: Let F8	B8 be the intersection of the kernel of the following three operators:

R1 � z1
�

�z1
+ z2

�

�z2
+ z3

�

�z3
+ z4

�

�z4
− z5

�

�z5
− z6

�

�z6
− z7

�

�z7
− z8

�

�z8
,

R2 � z7
�

− z8
�

+ z5
�

− z6
�

− z1
�

+ z2
�

− z3
�

+ z4
�

,

�z1 �z2 �z3 �z4 �z7 �z8 �z5 �z6
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R3 � z7
�

�z1
− z8

�

�z2
+ z5

�

�z3
− z6

�

�z4
+ z1

�

�z7
− z2

�

�z8
+ z3

�

�z5
− z4

�

�z6
. �83�

The domains of Rq ,q=1,2 ,3 are defined in a similar way as the domain of L. The definition
f the operators L and Rq is motivated by the quantization of the restrictions given by Km

−1�0� �see
qs. �49� and �50� with the change of variables �47�� taking zj and z̄ j to the operators of multi-
lication by the complex variable zj and to partial derivation with respect to zj, respectively, with

j=1, . . . ,m.
Notice that, since the operators L, R1, and R2 are closed �see Sec. 3d of Ref. 4�, the spaces

4 and F8 are actually Hilbert spaces.
Following Refs. 27 and 28, we define the Bargmann transform in the three cases we are

onsidering, initially in a formal way, as the following integral operator: For ��L2�Sn�,

BSn��z� = 

Sn
��

k=0

�

ck���n,m��z� · w�k���w�dS�w�, z � Cm, �84�

here the inner product of two vectors in Cn+1 is given by � ·
=� j=1
n+1� j�̄ j.

The coefficients ck appearing in Eq. �84� are determined in such a way that BSn is an isometry.
hus let us consider the function ���w�=d���e1+ ıe2� ·w�� where � is a non-negative integer, e1

�1,0 , . . . ,0� and e2= �0,1 ,0 , . . . ,0� are two unit vectors in Rn+1 and d� is a normalization con-
tant such that ����L2�Sn�=1. Since the integral



Sn

���n,m��z� · w�k��e1 + ıe2� · w�� dS�w� = �k,�� �2k�!!
�2k + 1�!!

��1�z� + ı�2�z�
2

�k

for n = 2,

�
1

k
��1�z� + ı�2�z�

2
�k

for n = 3,

�
2

�k + 2��k + 1�
��1�z� + ı�2�z�

2
�k

for n = 5 ,

�85�

here �2k�!! is the product of all positive even numbers lesser or equal than 2k �a similar
efinition for �2k+1�!!�.

Then by demanding �� to be sent to the function ��=b����1�z�+ ı�2�z�� /2�� �with b� a
ormalization constant such that ����Bm

=1� we can evaluate the constant ck obtaining

ck = ��2k + 1

k!
for n = 2,

�k + 1

k!
for n = 3, �k + 2

2

1

k!
for n = 5 . �86�

Since the series �k=0
� ck���k is an analytic function in the complex variable � on the whole

omplex plane, and ����n,m��z� ·w��� ���n,m��z�� then the integral appearing in Eq. �84� is well
efined for ��L2�Sn� �and therefore in L1�Sn�� and z�Cm. Moreover, BSn� has the following
roperties.

Proposition 1: Let ��L2�Sn�.

i� The function BSn� [defined by Eq. (84)] is an analytical function on the whole complex
space Cm.

ii� The Bargmann transform BSn is an isometry, �BSn��Bm
= ���L2�Sn�.

iii� The function BSn� is in the space Fm.

Note that from �ii� we have that the Bargmann transform BSn is one-to-one and that the
unction BSn� belongs to the space Bm.

m
Proof:�i� Let z be a fixed element of C . We will show that �� /�zj�BSn��z� exist for any j
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1,2 , . . . ,m. Let q= �0, . . . ,h , . . . ,0��Cm with the complex variable h in the jth entry and �h�
� �for some positive number ��. Since

1

h
�BSn��z + q� − BSn��z�� = 


Sn
�
k=0

�

ck� ���n,m��z + q� · w�k − ���n,m��z� · w�k

h
���w�dS�w�

�87�

hen, on base of the dominated convergence theorem, it will be enough to prove that the sequence
f functions

fh�w� � �
k=0

�

ck� ���n,m��z + q� · w�k − ���n,m��z� · w�k

h
�, w � Sn �88�

s uniformly bounded by a constant. Namely, from the Cauchy’s integral formula we have

� ���n,m��z + q� · w�k − ���n,m��z� · w�k

h
� �

1

2�
�

C

����n,m���� · w�k�

��� − �z + q������ − z��
d��� �89�

ith C= ��z1 , . . . ,zj +r exp�ı2��� , . . . ,zm� �0���1� and ��r. Therefore,

�fh�w�� �
1

r�r − ���k=0

�

ck�max����n,m������� � C��k. �90�

Thus we conclude that � /�zjBSn��z� exist and

�

�zj
BSn��z� = 


Sn

�

�zj
��

k=0

�

ck���n,m��z� · w�k���w�dS�w�

= 

Sn
��

k=0

�

ck
�

�zj
���n,m��z� · w�k���w�dS�w� . �91�

ii� We will use the following criterion �see Sec. 1g of Ref. 4�: an analytical function F on Cm is
n the Bargmann space Bm if and only if for 0�	�1 the functions F	 defined as F	�z�=F�	z�
elong to Bm and their norms �F	�Bm

are uniformly bounded. Moreover, if F�Bm then F	→F as
→1 in the norm of Bm.

Thus let us consider the functions BSn��	z�. The main point in the following calculations is
hat 0�	�1 and then we can use Fubini’s theorem.

Let us define

I = 

Cm



Sn�Sn
��

k=0

�

ck	
2k���n,m��z� · w�k�

� ��
�=0

�

c�	2����n,m��z� · v�����w���v�dS�w�dS�v�dm�z� . �92�

Let us define the following function:

f�z,�w,v�� = ��
k=0

�

ck	
2k���n,m��z� · w�k���

�=0

�

c�	2����n,m��z� · v��� . �93�

Since �R��n,m��z��= �I��n,m��z�� and �R��n,m��z��= �1/�2����n,m��z��= 1
2 �z�2 in all of the cases we
re considering, then
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��
k=0

�

ck	
2k���n,m��z� · w�k� � �

k=0

�

ck	
2k� R��n,m��z�

�R��n,m��z��
· w + ı

I��n,m��z�

�I��n,m��z��
· w�k

�R��n,m��z��k

� �
k=0

�

ck	
2k�w�k� �z�2

2
�k

� �
k=0

�

dk	
k 1

k!
�	�z�2

2
�k

�94�

ith dk=ckk!
Now notice that given 0�	�1, there exist N	 such that dk	

k�1 for k�N	. Therefore,

�
k=0

�

dk	
k 1

k!
�	�z�2

2
�k

� P��z�2� + exp�	�z�2

2
� �95�

or some polynomial P which degree depends on 	. Since a polynomial times exp�	�z�2� is
ntegrable with respect to the Gaussian measure dm�z�, then the integral of �f�z , �w ,v��� is finite
ith respect to dm�z�. Moreover, since ��L2�Sn� and then ��L1�Sn�, we can use Fubini’s

heorem in order to interchange the two integrals appearing in Eq. �92�. Thus we have

I = 

Sn

�
k=0

� 

Sn



Cm
ck

2	4k���n,m��z� · w�k���n,m��z� · v�k dm�z���w�dS�w���v�dS�v� , �96�

here we have used the orthogonality of two given homogeneous polynomials of different degree
n the Bargmann space Bm.

Let us denote by Pk the projector onto the kth eigenspace of the Laplacian. In Appendix B we
rove that the first two integrals in Eq. �96� give an expression of Pk acting on �. Namely,

Pk��v� = 

Sn

Jk�w,v���w�dS�w� �97�

ith

Jk�w,v� = ck
2


Cm
���n,m��z� · w�k���n,m��z� · v�k dm�z� . �98�

Thus we have



Cm

BSn��	z�BSn��	z�dm�z� = 

Sn

�
k=0

�

	4kPk��v���v�dS�v� . �99�

Let

f	�v� = �
k=0

�

	4kPk��v���v� �100�

By following the same procedure as in Eq. �94� we obtain

�Jk�w,v�� �
ck

2

22k

Cm

��z�2�2k dm�z� . �101�

Since ck
2	2k�2k�! /22k+1 is bounded, then we obtain from the bounded dominated convergence
heorem
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�f	�v�� � C���v��

Cm

�exp�	�z�2� + exp�− 	�z�2��dm�z� �102�

or some constant involving the integral of ��� on Sn.
Since 0�	�1 then �f	�v���C���v�� �for some other finite constant C� which allows us to

se the dominated convergence theorem in Eq. �99� to obtain



Cm

BSn��	z�BSn��	z�dm�z� = �
k=0

�

	4k�Pk�,�	 = �
k=0

�

	4k�Pk��2. �103�

ince the right-hand side is finite then we have proved that, for 0�	�1, BSn��	z� are in Bm and
heir norms are uniformly bounded, therefore BSn��z� is in Bm. Moreover,

�BSn��2 = lim
	→1

�
k=0

�

	4k�Pk��2 = �
k=0

�

�Pk��2 = ���2 �104�

hich proves that BSn is an isometry.
�iii� The case �n ,m�= �2,2� is immediate because the function ��2,2� is homogeneous of degree

in the variables �z1 ,z2�. The cases �n ,m�= �3,4� and �n ,m�= �5,8�, are consequence of Eq. �91�
nd the fact that each entry of the function ��n,m��z� is in the kernel of the corresponding operators
efining Fm. �

. Reproducing kernel for the spaces Fm

by following Ref. 5 we will find the reproducing kernel of the spaces Fm by taking the
verage of the reproducing kernel of the corresponding Bargmann space �where Fm is contained�
ith respect to the action and Haar measures of the groups Z2 ,S1, SU�2� for the cases m
2,4 ,8, respectively.

Let us consider the action of the group G=Z2, S1, SU�2� on the space Cm for m=2,4 ,8,
espectively, given by Eqs. �54�–�56�.

Proposition 2. For m=2,4 ,8, the elements of the Hilbert spaces Fm are given by the invariant
unctions in Bm under the group actions of Z2, S1, SU�2� described above. Namely, F2= �f

B2 � f�Tg�z��= f�z�"g�Z2�, F4= �f �B4 � f�Tg�z��= f�z�"g�S1� and F8= �f �B8 � f�Tg�z��
f�z�"g�SU�2�.

Proof: Since the set of monomials z1
a1z2

a2 /a1!a2! �with a1 and a2 non-negative integer numbers�
s an orthonormal basis of B2, then the case m=2 is immediate.

Let us now consider a similar basis of monomials for the Bargmann space B4. One can show
hat f �B4 is in F4 if and only if f is a linear combination of monomials of the type z1

a1z2
a2z3

a3z4
a4

ith a1+a2−a3−a4=0 �see the proof of Proposition 2.1 of Ref. 27�. Thus if f �F4 then f is
learly invariant under the action of S1 described above. Conversely, if f �B4 is invariant, then by
onsidering the expansion of f in terms of all of the monomials z1

a1z2
a2z3

a3z4
a4 �i.e., with aj , j

1,2 ,3 ,4 arbitrary non-negative integer numbers� we conclude that exp�ı�−a1−a2+a3+a4���
1"��R which it is possible only if a1+a2−a3−a4=0. Thus f must belong to F4.

Let us assume that f �B8 is invariant under the action of SU�2�, that is

f�Tg�z�� = f�z� " g � SU�2� . �105�

Let us consider the following parametrization of g�SU�2�:

g = � cos���exp�ı�� sin���exp�ı��
− sin���exp�− ı�� cos���exp�− ı��

� �106�

ith �� �0,� /2� and � ,�� �−� ,��
By considering the partial derivative of both sides in Eq. �105� with respect to � and evalu-
ting the resulting equation at the point �� ,� ,��= �0,0 ,0�, we obtain that f must belong to the
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ernel of the operator R1. In a similar way, we can prove that f is in the kernel of the operators

2 and R3 by considering the partial derivatives with respect to � and �, respectively, and then
valuating at the point �� ,� ,��= �0,0 ,0� �we actually need to take the limit �→0 in the last case�.

Conversely, let us assume R1f =R2f =R3f =0 and consider the function h�� ,� ,��= f�Tg�z��
f�z� regarding z�C8 as fixed. By considering the inverse transformation of Eq. �55�, it is
ossible to show that the gradient of h with respect to the variables � ,� ,� must be equal to zero.
ince h�0,0 ,0�=0, then h�� ,� ,��=0 for all � ,� ,� and then f must be invariant under the SU�2�
ction. �

Theorem 3: The Hilbert space Fm, m=2,4 ,8, has the following reproducing kernel (respec-
ively):

Q2�z,w� =
1

2
�exp�z1w̄1 + z2w̄2� + exp�− z1w̄1 − z2w̄2�� ,

Q4�z,w� =
1

2�



�=0

2�

exp�z1w̄1 exp�ı�� + z2w̄2 exp�ı�� + z3w̄3 exp�− ı�� + z4w̄4 exp�− ı���d� ,

Q8�z,w� =
1

2�2

�=0

�/2 

�=0

2� 

�=0

2�

exp�z1�w̄1 + ¯ + z8�w̄8�dm��,�,�� , �107�

here z�=Tg�z� is given by the action of SU(2) defined in Eq. (55) and dm�� ,� ,��
�1/2�2� sin���cos���d� d� d� is the Haar measure of SU(2).

Proof: We just need to use the previous Proposition and the fact that exp�z1w̄1+ ¯ +zmw̄m� is
he reproducing kernel of the Bargmann space Bm. �

. The reproducing kernel for Fm and the Bargmann transform BSn

The purpose of this section is to introduce a set of states ��� ���Qn− �0�� in L2�Sn�, n
2,3 ,5 with the property that their Bargmann transform give us the reproducing kernel Qm of the

pace Fm when we take �=��n,m��w�, with m=2,4 ,8, respectively.
Following Refs. 27 and 28, let us define the following functions in L2�Sn�, n=2,3 ,5:

��̄�x� = �
k=0

�

ck��̄ · x�k, �̄ � Qn − �0� �108�

ith ck given by Eq. �86�.
Our first goal is to obtain an explicit expression for the Bargmann transform of ��. Let R be

rotation in SO�n+1� such that, for some ��0, R�=��e1+ ıe2� with e1= �1,0 , . . . ,0� and e2
�0,1 ,0 , . . . ,0� two unit vectors in Rn+1. Since ��x ·���� �R�� for all x�Sn and ��Qn we obtain

he following equation by using the dominated convergence theorem:

BSn���z� = �
k=0

�

�
�=0

�

ckc�

Sn

���n,m��z� · x�k�x · ��� dS�x�

= �
k=0

�

�
�=0

�

��ckc�

Sn

�R��n,m��z� · y�k�y · �e1 + ıe2��� dS�w� , �109�

here we have made the change of variable y=Rx and made use of the orthogonality of the

otation R.
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The integral appearing in the last equation is equal to zero when k�� because �R��n,m�
�z� ·y�k and �y · �e1+ ıe2��� are eigenfunctions of the spherical Laplacian on Sn and therefore they

re orthogonal �they are harmonic homogeneous polynomials of degree k and �, respectively, in
he components of the vector y�Rn+1�.

In order to evaluate the integral in Eq. �109� when k=�, let us introduce spherical coordinates
�1 , . . . ,�n� for the variable y= �y1 , . . . ,yn+1��Sn:

y1 = sin��n� ¯ sin��2�sin��1� ,

y2 = sin��n� ¯ sin��2�cos��1� ,

¯ , �110�

yn = sin��n�cos��n−1� ,

yn+1 = cos��n� .

Since �0
2� exp��k�1�d�1 is equal to zero when k�0 then we find after some computation,

BSn���z� = �
k=0

�

�kfk�R��n,m��z� · �e1 + ıe2��k = 2��
k=0

�

fk���n,m��z� · ��k, �111�

here

fk = � 1

k!�2k − 1�!!
for n = 2

1

2k�k!�2 for n = 3
1

2kk!�k + 1�!
for n = 5 . �112�

By using the explicit expressions for the map ��n,m� �see Eqs. �46�, �68�, and �70�� in the
xpression ��n,m��z� ·� with �=��n,m��w� we get the following equations:

BS2���2,2��w��z� = �
k=0

�
1

�2k�!
�z1w̄1 + z2w̄2�2k,

BS3���3,4��w��z� = �
k=0

�
1

�k!�2 �z1w̄1 + z2w̄2�k�z3w̄3 + z4w̄4�k,

BS5���5,8��w��z� = �
k=0

�
1

k!�k + 1�!
��z1w̄1 + z2w̄2 + z3w̄3 + z4w̄4��z5w̄5 + z6w̄6 + z7w̄7 + z8w̄8�

+ �z7w̄1 − z8w̄2 + z5w̄3 − z6w̄4��− z3w̄5 + z4w̄6 − z1w̄7 + z2w̄8��k. �113�

We now establish the relation between the Bargmann transform of the functions ���n,m��w� with

he reproducing kernel of Fm in the following.
Theorem 4: The Bargmann transform BSn of the functions ���n,m��w� coincides with the repro-

ucing kernel of the spaces Fm,

BSn���n,m��w��z� = Qm�z,w� . �114�

roof: Use the Taylor series expansion for the exponential function in the expression for Qm�z ,w�
see Eqs. �107��. The last case �n ,m�= �5,8� requires a more elaborated calculation. For this case,

ntegrate first with respect to � and then with respect to �. To perform the integration with respect
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o � use the identity �0
�/2 sin2�k−��+1 cos2�+1 d���= �k−��!�! /2�k+1�!. �

In addition to having the property indicated in the last proposition, the set of functions
�� ���Qn− �0�� provides a resolution of the identity which will be explained in the next section
f this paper. Moreover, we will introduce in Section VII H the Planck’s constant � into the
efinition of the states �� showing that they have a concentration property in the semi-classical
imit �→0. Thus, in analogy with some of the properties in the definition of coherent states for the
armonic oscillator �see Ref. 15 and Ref. 2 for different types of definitions of coherent states
xisting in the literature depending on the property to be emphasized�, we will refer to ��� ��
Qn− �0�� as a set of coherent states for L2�Sn�, n=2,3 ,5.

. Unitarity of the Bargmann transform BSn

In this section we show the following.
Theorem 5: The Bargmann transform BSn, n=2,3 ,5, is a unitary operator from L2�Sn� onto

m, m=2,4 ,8.
Proof: We already have shown that BSn is an isometry �see Eq. �104�� which implies that BSn

s a one-to-one operator and preserves the inner product �as a consequence of the polarization
dentity�. Thus we only need to show that BSn is onto, i.e., that the range of BSn is the whole space

m.
From the preceding section we know that the reproducing kernel Qm�z ,w� is in the range of

he Bargmann transform �think of Qm�z ,w� as a function of z for w fixed�. Therefore, the orthogo-
al complement in Fm of the range of BSn is the trivial vector space. Since Fm is a Hilbert space,
hen the range of BSn is dense in Fm. Thus BSn is an isometry with dense range, which implies that
t is onto. �

. The inverse of the Bargmann transform BSn

In this section we give an inversion formula for the Bargmann transform BSn. Motivated by
he expression for the inverse Segal-Bargmann transform introduced in Ref. 8 for L2�K� with K a
ompact Lie group, we state the following.

Theorem 6: Let �Eq �q�N� be an increasing sequence of bounded measurable sets in Cm such
hat �q=1

� Eq=Cm. Let f �Fm. Then the inverse Bargmann transform of f is given by

BSn
−1f�x� = lim

q→�



Eq

�
k=0

�

ck���n,m��z� · x�kf�z�dm�z� . �115�

The proof of this proposition follows a standard procedure as in Ref. 8.

. Coherent states for L2
„Sn

…, n=2,3,5

In this section we show that the set of coherent states ��� ���Qn− �0�� provides a resolution
f the identity for the space L2�Sn�. This resolution of the identity will be a consequence of the
xpression for the inverse of the Bargmann transform BSn that we obtained in the preceding
ection. We also include a description of the resolution of the identity for the eigenspaces of the
aplacian on Sn given by great-circle states that we define below.

Let ��L2�Sn�. From the inversion formula for the Bargmann transform obtained in the
receding section we have

��x� = lim
q��



Eq

���n,m��z�BSn��z�dm�z� . �116�

Notice that BSn��z� is equal to the inner product in L2�Sn� of � with the coherent state

��n,m��z�:

BSn��z� = ��,�� �z�	 . �117�

�n,m�
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Thus we conclude from Eq. �117� that

��x� = lim
q��



Eq

��,���n,m��z�	���n,m��z� dm�z� . �118�

Let us now consider the map ��n,m� from Cm onto the null quadric Qn. Let us denote by d����
he measure on Qn obtained from the measure dm�z� through the map ��n,m�. Thus we can rewrite
q. �118� as

��x� = lim
q→�



Eq

��,��	�� d�m��� . �119�

We will refer to Eq. �119� as the resolution of the identity for L2�Sn�.
Remark 7: From Appendix A, it follows that the measure d�m is SO�n+1� invariant. Namely,

or all f �L1�d�m� and R�SO�n+1� we have


 f�R��d�m��� =
 f�R��n,m��z��dm�z�

=
 f���n,m��Uz��dm�z� =
 f���n,m��z���dm�z�� =
 f���d�m��� ,

�120�

here we made the change of variables z�=Uz and used the invariance of the Gaussian measure
m with respect to the action of U.

Notice that the coherent states �� �see Eq. �108�� are infinite linear combinations of the states

�,k�x���� ·x�k. These states ��,k have in turn the following interesting properties �see Ref. 27�.
Proposition 8: (i) The states ��,k are eigenfunctions of the Laplacian on Sn, i.e., for each k,

he state ��,k belongs to the eigenspace Ek of the Laplacian on Sn.
(ii) For �R��=1 and k large, the state ��,k concentrates around the great circle in Sn gen-

rated by the two orthogonal unit vectors R� and I�.
(iii) For each k, the set of states ��,k provides a resolution of the identity in the eigenspace Ek.

amely, for ��Ek we have

��x� = ck
2


z�Cm
��,��,k	��,k�x�dm�z� = ck

2

��Qn

��,��,k	��,k�x�d���� . �121�

Since property �ii� of the previous proposition is satisfied, we will refer to the functions ��,k

s great-circle states �as suggested to us by Hall�. Since these states provide a resolution of the
dentity for the space Ek, we can also think of the great-circle states as coherent states for the space

k.
We end this section by giving an explicit expression for the inner product of two great-circle

tates.
Proposition 9:

���,k,��,k	 = dk��,�	 �122�

ith

dk = � k!

�2k + 1�!!
for n = 2,

1

2k�k + 1�
for n = 3,

1

2k−1�k + 2��k + 1�
for n = 5 .

�123�

Proof: Since the surface measure on Sn is SO�n+1� invariant we only need to show Eq. �122�
n
hen �= �e1+ ıe2�. To that end, introduce spherical coordinates on S �see Eq. �110�� to evaluate
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he inner product. �

Notice that the Bargmann transform BSn of the great-circle states can be easily obtained from
he preceding equation,

BSn��,k�z� = dk���n,m��z�,�	 . �124�

. Asymptotic behavior of coherent states

In this section we introduce the Planck’s constant � in the definition of the Bargmann trans-
orm and provide an asymptotic expression for the coherent states for L2�Sn�, n=2,3 ,5 that we
ave introduced above.

By scaling the expression for the Bargmann transform in Eq. �84� and using Theorem 5 we
btain that the operator

BSn
�

��z� = 

Sn
��

k=0

�

ck���n,m��z� · w

�
�k���w�dS�w�, z � Cm �125�

s a unitary transformation from L2�Sn� onto the Hilbert space Fm
� with the space Fm

� having the
ame elements as Fm but endowed with the inner product

�f ,g	 =

Cm

f�z�ḡ�z�dm
� �z� �126�

ith the measure

dm
� �z� ª

1

����n exp�−
�z�2

�
��

j=1

k

dxj dyj . �127�

Let us denote the coefficients ck given by Eq. �86� as ck=�ak+b /k!. Define the analytical
unction g�z�=�k=0

� ckz
k with domain C. Thomas and Wassel26 have described an asymptotic ex-

ansion for g�z� in the case m=2. Their proof can be adapted easily to the other cases m=4,8.
hus we have the following.

Proposition 10: For Rz�� and �Iz��CRz and C a positive constant,

g�z� =
2z1/2

�a
exp�z��1 +

a1

z
+

a2

z2 + ¯ � . �128�

Therefore we obtain an asymptotic expansion for the coherent states �with � included�

��
��w� = �

k=0

�

ck�� · x

�
�k

, � � Qn − �0� �129�

n the following way.
Proposition 11: Let ��Qn− �0�. Then for ��0 and �x ·I���Cx ·R� we have

��
��x� =

2�x · ��1/2

�a�
exp�x · �

�
��1 +

a1�

x · �
+

a2�2

�x · ��2 + ¯ � . �130�

This proposition describes asymptotically the coherent state ��
� on a neighborhood around the

oint a=R� / �R�� in the sphere Sn when � is very small. In particular, it indicates concentration
f the coherent states ��

� around a for � small in the sense that the magnitude of the function

�
��x���2�x ·��1/2 /�a�� exp�x ·� /�� achieves its maximum value at x=a and the relative quo-

� �
ient ����x� /���a�� goes to zero �with x�a fixed� as a constant times exp��x ·R�− �R��� /��.
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The phase of the function ��
��x� contains information too. To see that, let us write the

unction

��
��x� =

2
�a
�x · R�

�
exp�x · R�

�
��1 + ı

x · I�

x · R�
exp� ıx · I�

�
� . �131�

hus for x�Sn in a small neighborhood around the point a �and therefore the quotient
·I� /x ·R� a small number� the phase of ��

��x� is mainly determined by the factor
xp�ıx ·I� /��. This is similar to what occurs in the case of the canonical coherent states �labeled
y z= �q− ıp� /�2� of the n-dimensional harmonic oscillator �see Eq. �5.1� of Ref. 28 for instance�
aving as a consequence in this last case that the Fourier transform of the coherent state is
oncentrated around p in momentum space. We remind the reader that a point � in Qn− �0�
orresponds under the map �n to a point in T*Sn with momentum I�.

III. DISCUSSION

We have introduced a Bargmann transform BSn for L2�Sn�, n=2,3 ,5, i.e., a unitary transfor-
ation from L2�Sn� onto a suitable Hilbert space of analytical functions Fm, m=2,4 ,8, inmersed

n the usual Bargmann space Bm. The key point to build such a Bargmann transform is to consider
he function ���n,m� ·w� in its integral kernel. The relevant property of the function ���n,m� ·w� is that
t is a generating function of a canonical transformation which links the Moser map and the map

�n,m� concerning the regularization of the n=2,3 ,5 dimensional Kepler problem. Thus our Barg-
ann transform can be regarded as the quantization of such a canonical transformation. We have

roved in detail the unitarity of BSn and provided its range with an explicit reproducing kernel. We
ave also provided the inversion formula for BSn and given a set of coherent states for L2�Sn�
ncluding their semiclassical asymptotics. We also point out that the map ��n,m� is constructed via

moment map for a suitable defined group F �this construction has been done just in the case
n ,m�= �3,4� by Kummer18�.

We comment that other Bargmann-type transforms have been introduced by Hall and
itchell10 for the n-sphere �with n�1� and by Kowalski and Rembielínski17 for the circle and the

-sphere. However, theses Bargmann-type transforms are different than ours. The work of Hall
nd Mitchell is based on properties of heat kernel functions whereas the work of Kowalski and
embielínski is based on the construction of certain types of coherent states defined as eigenstates
f a vector operator whose addition of the squares of its components is one. In both of the cases
he non-null complex quadric appears.

We also comment on the interesting work of Mladenov20 on the geometric quantization of the
=5 dimensional Kepler problem. By following the technique of geometric quantization, Mlad-

nov builds a Hilbert space K̃ of analytical functions called physically admissible states. The

pace K̃ is determined by considering the Hilbert space generated by the bound states of eight
armonic oscillators �with the same frequency� subject to the restrictions R1�=0, R2�=0, and

3�=0 �see Eqs. �83��. This is the same space F8 that we are considering and that we defined
otivated by our previous work on the Bargmann transform for L2�S3� �see Ref. 28�. The Hilbert

pace K̃ is seen as quantization of the phase space �Cm− �0� ,−ı dzÙdz̄� and then imposing the
forementioned conditions. The phase space �Cm− �0� ,−ı dzÙdz̄� comes out from a complexifica-
ion of ��Rm− �0���Rm ,4 dvÙdu� considered by Mladenov. We remark that Mladenov’s way to
onsider such a complexification was very inspiring for our present paper and useful in order to

onstruct our canonical transformation. Mladenov uses the Hilbert space K̃ representation as an
lternative method to the canonical quantization in order to find the eigenvalues and their multi-
licities of the n=5 dimensional hydrogen atom.

On the other hand, the coherent states for L2�Sn�, n=2,3 ,5, that we have introduced can be
sed to construct coherent states for the n=2,3 ,5 hydrogen atom problem. This can be done via
known unitary transformation between L2�Sn� and the Hilbert space generated by the bound
tates of the n=2,3 ,5 hydrogen atom problem �see Ref. 3�. The development of this work and the
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omparison of the coherent states obtained in this way with already known and proposed sets of
oherent states for the hydrogen atom �like the coherent states of Klauder,16 and the ones proposed
y Horowski and Odzijewicz13� is part of future work.

We finally remark that Hilbert spaces of analytical functions on the null complex quadric Qn

ndowed with the measure d�m��� can also be considered in the framework of our work. These
ilbert spaces are related with the ones introduced by Bargmann and Todorov.5

For the case L2�S2�, Thomas and Wassell have used the Bargmann transform presented in this
aper in order to obtain approximations of eigenvalues of Schrödinger operators on the 2-sphere
2. Our work could be also useful in semiclassical analysis like in the work done by Helffer et al.
see Refs. 11 and 12� about Schrödinger operators with a Coulomb type singularity where the
ustaanheimo-Stiefel regularization was implemented in the quantum mechanical setting.
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PPENDIX A: SO„n+1… AND ITS COVERING GROUP ACTING ON THE QUADRIC Qn

ND Cm, RESPECTIVELY

In this appendix we give the explicit relation between the SO�n+1� action of rotations on the
uadric Qn and the corresponding action of its universal covering group on Cm. Namely, we give
epresentations of the groups SU�2�, SU�2��SU�2� and SU�4� acting on C2, C4, and C8, respec-
ively, and then, by using the maps ��n,m� �see Eqs. �46�, �68�, and �70��, we map these represen-
ations through a map � into the representations of the rotation groups SO�3�, SO�4�, and SO�6�
cting on the quadric Q2, Q3, and Q5, respectively. We show that the map � is onto, two-to-one,
nd a homomorphism between the corresponding Lie groups.

We remark that the universal covering group of SO�n+1� is also known as the spin group spin
n+1� �see Ref. 6�.

The action of SO�n+1� on the quadric Qn is defined as follows: let R be a rotation in SO�n
1� and � in Qn. Then we define

R� = RR� + ıRI� , �A1�

here RR� and RI� denote the usual action of R on the real and imaginary parts of �, respec-
ively �regarded as elements of Rn+1�.

Let us consider the map ��n,m� �see Eqs. �46�, �68�, and �70��. This map will give us the
elation between the action defined in Eq. �A1� and the corresponding action of the covering group
f SO�n+1� on Cm. The main idea is the same for the three cases n=2,3 ,5. We describe in detail
he most complicated case n=5. The cases n=2,3 follow in a similar way and we do not include
heir description in order not to make this appendix too long.

The case n=5: let us write the map ��5,8��z�= ��1�z� , . . . ,�6�z�� in matrix form

� j = �z1,z2,z3,z4�Aj�
z5

z6

z7

z8

�, j = 1, . . . ,6, �A2�
here the matrices Aj, j=1, . . . ,6 are defined as follows:
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A1 =�
0 − ı 0 0

ı 0 0 0

0 0 0 ı

0 0 − ı 0
�, A2 =�

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0
� ,

A3 =�
− 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 − 1
�, A4 =�

− ı 0 0 0

0 − ı 0 0

0 0 ı 0

0 0 0 ı
� , �A3�

A5 =�
0 0 0 − ı

0 0 − ı 0

0 − ı 0 0

− ı 0 0 0
�, A6 =�

0 0 0 1

0 0 1 0

0 − 1 0 0

− 1 0 0 0
� .

In order to find the action of SU�4� on C8, the key point is to consider the following trans-
ormation: let U�SU�4� and define

�
z1�

z2�

z3�

z4�
� = U�

z1

z2

z3

z4

�, �
z5�

z6�

z7�

z8�
� = EUE�

z5

z6

z7

z8

� , �A4�

here the matrix E is defined by

E =�
0 0 − 1 0

0 0 0 1

− 1 0 0 0

0 1 0 0
� . �A5�

Let us denote by � j�, j=1, . . . ,6, the components of the vector ��8,5��z��. Then

� j� = �z1,z2,z3,z4�UtAjEUE�
z5

z6

z7

z8

� , �A6�

here Ut denotes the transpose matrix of U.
Let V denote the real vector space generated by the matrices Aj, j=1, . . . ,6. The vector space

is the set of complex matrices of the form

A =�
− � �̄ 0 �

� �̄ � 0

0 − �̄ � �

− �̄ 0 �̄− �̄
� , �A7�
ith � ,� ,��C.
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We now claim that, for U�SU�4�, the matrix UtAjEUE is in the vector space V. To prove this
act, let us denote by Uj,k the matrix elements of U. Since U†=U−1 and det�U�=1 then by
onsidering the explicit expression for the inverse matrix U−1 we find that the matrix elements of

must satisfy the following six relations:

Ū11Ū33 − Ū31Ū13 = U22U44 − U42U24,Ū21Ū43 − Ū41Ū23 = U12U34 − U32U14,

Ū31Ū23 − Ū21Ū33 = U12U44 − U42U14,Ū11Ū43 − Ū41Ū13 = U32U24 − U22U34, �A8�

Ū11Ū23 − Ū21Ū13 = U42U34 − U32U44,Ū41Ū33 − Ū31Ū43 = U12U24 − U22U14.

hen by using Eqs. �A8� and computing the explicit expression for the matrix UtAjEUE, we find
hat UtAjEUE has the form indicated in Eq. �A7�.

The vector space V is endowed with the real valued inner product

�A,B	V = 1
2 �trace�AB†� + trace�BA†�� . �A9�

he set of matrices � 1
2Aj � j=1, . . . ,6� gives an orthonormal basis for the space V. Thus UtAjEUE

ust be the following linear combination of the basis elements �summation over repeated in-
exes�:

UtAjEUE = 1
4 �UtAjEUE,Ak	VAk, j = 1, . . . ,6. �A10�

Therefore we have

� j� = �z1,z2,z3,z4�RjkAk�
z5

z6

z7

z8

� = Rjk�k �A11�

ith the real numbers Rjk, j ,k=1,2 ,3, given by

Rjk = 1
4 �UtAjEUE,Ak	V. �A12�

Thus to each element U�SU�4� we associate a 6�6 matrix R whose matrix elements are Rjk

iven by Eq. �A12�. Since the matrix R satisfies the relation RjkRsk=� js �thus R must be an
rthogonal matrix� then we have a continuous map U�R from SU�4� into O�6�. Since SU�4� is a
onnected manifold, then its image under the map we are considering must be the connected
omponent of the identity matrix in O�6� �notice that from Eq. �A12� the identity element of SU�4�
oes to the identity element of O�6��. Thus the assignment U�R gives us a map � from SU�4�
nto SO�6�. Moreover, since the set � 1

2Aj � j=1, . . . ,6� is an orthonormal basis for the space V, we
btain from Eq. �A12� that � is a Lie group homomorphism.

We now claim that the map � is onto. Let us consider an element U�SU�4�. Since SU�4� is
compact connected Lie group, the exponential map is onto and therefore there is a matrix � in

he Lie algebra of SU�4� �denoted by su�4�� such that U=exp�ı��. Consider the one-parameter
roup U�s�=exp�ıs�� with parameter s�R.

Let ��� ��=1, . . . ,15� be an orthonormal basis of SU�4� under the inner product �A ,B	su�4�
trace�AB�. Thus we obtain a one-parameter group of rotations R�s� whose matrix elements are

iven by
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R�s� jk = 1
4 �Ut�s�AjEU�s�E,Ak	V, j,k = 1, . . . ,6 �A13�

ith U�s�=exp�ıshj� j� and h�= �� ,��	su�4�, �=1, . . . ,15. Let us now consider the element A of
o�3� �the Lie algebra of SO�3�� obtained by taking the −ı times the derivative of R�s� at s=0.
hus we have

A jk =
1

8
� d

ds
�

s=0
trace�Ut�s�AjEU�s�EAk + Ak�Ut�s�AjEU�s�E�†� = h����� jk, j,k = 1, . . . ,6,

�A14�

here ���� jk denotes the �j ,k� matrix element of the matrix �� defined by

���� jk = 1
8 trace���

t �AjAk
† − AkAj

†� + ��E�Ak
†Aj − Aj

†Ak�E� , �A15�

here we have used the property ��
†=��.

Since the matrices Aj, j=1, . . . ,6 satisfy the following equation:

E�Ak
†Aj − Aj

†Ak�E = − �AjAk
† − AkAj

†�, j,k = 1, . . . ,6 �A16�

nd the matrices ı�AjAk
†−AkAj

†� are in su�4� �they are self-adjoint and traceless� then we find after
ome computation

���� jk =
− ı

4
���,ı�AjAk

† − AkAj
†�	su�4�. �A17�

rom the last equation we see that the matrices �1/�2��� are in so�6� �they are of the form ı times
n antisymmetric matrix with real entries� and they actually give an orthonormal set of so�6� under
he inner product �A ,B	so�6�=trace�AB� because the set of matrices ��ı /4��AjAk

†−AkAj
†� � j ,k

1, . . . ,6 , j�k� is an orthonormal set of SU�4�.
Let S�SO�6�. Since S�SO�6� is a compact connected group, there exist D�so�6� such that

S=exp�ıD�. Since ��1/�2���� is an orthonormal basis of so�6�, then D=c��1/�2��� with c�

�D , �1/�2���	so�6�. Consider the matrix U=exp�ı�c� /�2���� in SU�4�. From Eq. �A14� we find
hat ��U�=S and therefore � is onto.

Let us denote by � : su�4��so�6� the associated Lie algebra homomorphism of �. From Eq.
A14� we obtain that ����= �� ,��	su�4��� for all ��su�4�. It is easy to check that � is a linear
ijection. Moreover � is a Lie algebra isomorphism because of the way it is defined and Theorem
.21 of Ref. 9.

Finally, � is two-to-one. Since � is an homomorphism, it is enough to show that the only two
olutions of the equation ��U�= I are the matrices U= I or U=−I. Thus suppose that ��U�= I.

From Eq. �A14� we must have that UtAkEUE=Ak for all k=1, . . . ,6. By performing the analysis of
hese equations we find that U= I or U=−I are the only two solutions.

PPENDIX B: ORTHOGONAL PROJECTORS ON EIGENSPACES OF THE LAPLACIAN

Let Pk denote the orthogonal projector onto the kth eigenspace Ek of the Laplacian on Sn �n
2,3 ,5�. The finite dimensional vector space Ek is the space of restrictions of harmonic homoge-
eous polynomials of degree k in n+1 variables. The Hilbert space L2�Sn� is equal to the direct
um of all the spaces Ek �k a non-negative integer number�. In particular, two elements of different
igenspaces of the Laplacian are orthogonal with respect to the usual inner product of L2�Sn�.

Let us define the operator Sk :L2�Sn��L2�Sn� by the following expression:

Sk��v� = 

Sn

Jk�w,v���w�dS�w� �B1�
ith
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Jk�w,v� = ck
2


Cm
���m,n��z� · w�k���m,n��z� · v�k dm�z� . �B2�

Proposition 12: The operator Sk is equal to the orthogonal projector Pk.
Proof: Since, Jk�w ,v� is in the space Ek as a function of w and v fixed, then Sk�=0 for � in

he orthogonal complement of Ek. Thus we only need to show that Sk is the identity operator when
cting on the eigenspace Ek. We will use the Schur’s lemma for that purpose.

Let us define the following representation of the rotation group SO�n+1� on the eigenspace

k. Given R�SO�n+1�, define the operator TR :Ek�Ek by TR��w�=��R−1w�. The set of opera-
ors �TR �R�SO�n+1�� gives an irreducible representation of the group SO�n+1�. By Schur’s
emma we just need to prove that the operator Sk restricted to Ek commutes with TR for all R

SO�n+1� and that Sk�=� for a particular nontrivial function in Ek.
Notice that for � in Ek,

SkTR��v� = 

Sn

Jk�w,v���R−1w�dS�w� . �B3�

On the other hand, we have

TRSk��v� = Sk��R−1v� = 

Sn

Jk�w,R−1v���w�dS�w� =

Sn

Jk�R−1w,R−1v���R−1w�dS�w� ,

�B4�

here we have made the change of variable w�Rw and used the invariance of the SO�n+1�
urface measure dS�w�. We now claim that Jk�R−1w ,R−1v�=Jk�w ,v�:

Jk�R−1w,R−1v� = ck
2


Cm
���n,m��z� · R−1w�k���n,m��z� · R−1v�k dm�z�

= ck
2


Cm
�R��n,m��z� · w�k�R��n,m��z� · v�k dm�z� , �B5�

here we have used the orthogonality of the matrix R�SO�n+1�.
From Appendix A, we know that, given R�SO�n+1�, there exist a transformation U acting

n Cm such that R��n,m��z�=��n,m��Uz� and dm�z� is invariant under the action of the matrix U. By
onsidering the change of variables z�Uz we conclude that Jk�R−1w ,R−1v�=Jk�w ,v� Using this
act in Eq. �B3� we obtain SkTR��v�=TRSk��v� and therefore the operator Sk commutes with all
f the operators TR.

Now consider the particular function ��w�= ���e1+ ıe2� ·w��k in the eigenspace Ek. From the
xpression for the inner product of two coherent states Eq. �122� and Fubini’s theorem we con-
lude that Sk��z�=��z�.
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symptotic iteration method solutions to the relativistic
uffin-Kemmer-Petiau equation
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A simple exact analytical solution of the relativistic Duffin-Kemmer-Petiau equa-
tion within the framework of the asymptotic iteration method is presented. Exact
bound state energy eigenvalues and corresponding eigenfunctions are determined
for the relativistic harmonic oscillator as well as the Coulomb potentials. As a
nontrivial example, the anharmonic oscillator is solved and the energy eigenvalues
are obtained within the perturbation theory using the asymptotic iteration
method. © 2006 American Institute of Physics. �DOI: 10.1063/1.2203429�

. INTRODUCTION

Exact analytical solutions to relativistic wave equations are important in relativistic quantum
echanics since the wave function contains all the necessary information to describe a quantum

ystem fully. There are only a few potentials for which the relativistic Dirac, Klein-Gordon, and
uffin-Kemmer-Petiau �DKP� equations can be solved analytically. So far, many methods such as

he supersymmetric �SUSY�,1 shape invariance,2,3 factorization and path integral,4–7 etc., have
een developed to solve the relativistic wave equations exactly, or quasiexactly, for potentials like
oulomb, harmonic oscillator, Pösch Teller and exponential type ones. In recent years, an
symptotic iteration method for solving second-order homogeneous linear differential equations
as been proposed by Ciftci et al.8–10 This method has been applied to solve the nonrelativistic
adial Schrödinger and Dirac equations for various potentials.10

Since the DKP equation is being increasingly used to describe the interactions of relativistic
pin-0 and spin-1 bosons,11–19 it would be interesting to probe whether the DKP equation is
menable to exact solutions in the framework of the asymptotic iteration method �AIM�. This is
recisely the aim of this paper.

In the next section, we explain the AIM briefly and show how to solve a second-order
omogeneous differential equation. Then, we introduce the DKP oscillator and Coulomb problems
nd obtain their exact eigenvalues and eigenfunctions. In Sec. V, we present the solution of the
nharmonic oscillator as a nontrivial example within the perturbation theory. Finally, in the last
ection, we provide our summary and conclusion.

I. BASIC EQUATIONS OF THE ASYMPTOTIC ITERATION METHOD „AIM…

We briefly outline the asymptotic iteration method here; the details can be found in Refs.
–10. The asymptotic iteration method was proposed to solve second-order differential equations
f the form

y� = �0�x�y� + s0�x�y , �1�

here �0�x��0 and s0�x�, �0�x� are in C��a ,b�. The variables, s0�x� and �0�x�, are sufficiently
8
ifferentiable. The differential equation �1� has a general solution

47, 062301-1022-2488/2006/47�6�/062301/11/$23.00 © 2006 American Institute of Physics
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y�x� = exp�− �x

�dx���C2 + C1�x

exp��x�
�0�x�� + 2��x��dx��dx�	 �2�

f n�0, for sufficiently large n,

sn

�n
=

sn−1

�n−1
= � , �3�

here

�n = �n� + sn−1 + �0�n−1 and sn = sn−1� + s0�n−1. �4�

The quantization condition of the method together with Eq. �4� can also be written as follows:

��x� = �n+1�x�sn�x� − �n�x�sn+1�x� = 0. �5�

For a given potential, the idea is to convert the relativistic wave equation to the form of Eq.
1�. Then, s0 and �0 are determined and sn and �n parameters are calculated. The energy eigen-
alues are then obtained by the condition given by Eq. �5�. However, the wave functions are
etermined by using the wave function generator, namely exp�−
x� dx��.

In this study, we seek the exact solution of DKP equation for which the relevant second-order
omogeneous linear differential equation takes the following general form:

y� = 2� axN+1

1 − bxN+2 −
�m + 1�

x
�y� −

wxN

1 − bxN+2 y . �6�

f this equation is compared to Eq. �1�, it entails the following expressions:

�0 = 2� axN+1

1 − bxN+2 −
�m + 1�

x
�, s0�x� = −

wxN

1 − bxN+2 �7�

hile the condition �3� yields for N=−1,0 ,1 ,2 ,3 , . . .,

wn
m�− 1� = n�2a + 2bm + �n + 1�b� , �8�

wn
m�0� = 2n�2a + 2bm + �2n + 1�b� , �9�

wn
m�1� = 3n�2a + 2bm + �3n + 1�b� , �10�

wn
m�2� = 4n�2a + 2bm + �4n + 1�b� , �11�

wn
m�3� = 5n�2a + 2bm + �5n + 1�b� , �12�

tc. Hence, these formulas are easily generalized as

wn
m�N� = b�N + 2�2n�n +

�2m + 1�b + 2a

�N + 2�b � . �13�

he exact eigenfunctions can be derived from the following generator:

yn�x� = C2 exp�− �x

�kdx�� . �14�

sing Eq. �3� and Eq. �7�, the eigenfunctions are obtained as follows:
y0�x� = 1,
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y1�x� = − C2�N + 2���1 −
b�� + 1�

�
xN+2� ,

y2�x� = C2�N + 2�2��� + 1��1 −
2b�� + 2�

�
xN+2 +

b2�� + 2��� + 3�
��� + 1�

x2�N+2�� ,

y3�x� = − C2
��� + 1��� + 2�

�N + 2�−3 �1 −
3b�� + 3�

�
xN+2 +

3b2�� + 3��� + 4�
��� + 1�

x2�N+2�

−
b3�� + 3��� + 4��� + 5�

��� + 1��� + 2�
x3�N+2�� ,

tc. Finally, the following general formula for the exact solutions yn�x� is acquired as:

yn�x� = �− 1�nC2�N + 2�n���n2F1�− n,� + n;�;bxN+2� , �15�

here

���n =
��� + n�

����
, � =

2m + N + 3

N + 2
, and � =

�2m + 1�b + 2a

�N + 2�b
.

II. DKP HARMONIC OSCILLATOR

In this section, the Duffin-Kemmer-Petiau formalism11,13 is briefly sketched and the DKP
scillator is solved using AIM. Generally, the first-order relativistic Duffin-Kemmer-Petiau equa-
ion for a free spin zero or spin one particle of mass m is

�c	 . p + mc2�
 = i�	0d


dt
, �16�

here 	���=0,1 ,2 ,3� matrices satisfy the commutation relation

	�		� + 	�		� = g�	� + g�	� �17�

hich defines the so-called Duffin-Kemmer-Petiau algebra. The algebra generated by the four 	
atrices has three irreducible representations: a 10-dimensional one that is related to S=1, a
ve-dimensional one relevant for S=0 �spinless particles�, and a one-dimensional one which is

rivial.
In the spin-0 representation, 	� are 5�5 matrices defined as �i=1,2 ,3�

	0 = � � 0̃

0̄T 0
�, 	i = � 0̃ �i

− �T
i 0

� �18�

ith 0̃, 0̄, 0 as 2�2, 2�3, 3�3 zero matrices, respectively, and

� = �0 1

1 0
�, �1 = �− 1 0 0

0 0 0
�, �2 = �0 − 1 0

0 0 0
�, �3 = �0 0 − 1

0 0 0
� . �19�

�
or spin one particles, 	 are 10�10 matrices given by
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	0 =�
0 0̄ 0̄ 0̄

0̄T 0 I I

0̄T I 0 0

0̄T 0 0 0
�, 	i =�

0 0̄ ei 0̄

0̄T 0 0 − isi

ei
T 0 0 0

0̄T − isi 0 0
� , �20�

here si are the usual 3�3 spin one matrices

0̄ = �0 0 0�, e1 = �1 0 0�, e2 = �0 1 0�, e3 = �0 0 1� . �21�

and 0 are the identity and zero matrices, respectively. While the dynamical state 
DKP is a five
omponent spinor for spin zero particles, it has 10 component spinors for S=1 particles.

For the external potential introduced with the nonminimal substitution

p → p − im��0r , �22�

here � is the oscillator frequency and �0=2	02
−1, the DKP equation for the system is

�c	 · �p − im��0r� + mc2�
 = i�	0d


dt
. �23�

n the spin zero representation, the five component DKP spinor


�r� = � 
upper

i
lower
� with 
upper  ��

�
� and 
lower  �A1

A2

A3
� , �24�

o that for stationary states the DKP equation can be written as

mc2� = E� + ic�p + im�r� · A ,

mc2� = E� ,

mc2A = ic�p − im�r�� , �25�

here A is the vector �A1 ,A2 ,A3�.
The five-component wave function 
 is simultaneously an eigenfunction of J2 and J3,

J2�
upper


lower
� = � L2
upper

�L + S�2
lower
� = J�J + 1��
upper


lower
� , �26�

J3�
upper


lower
� = � L3
upper

�L3 + s3�
lower
� = M�
upper


lower
� , �27�

here the total angular momentum J=L+S which commutes with 	0, is a constant of the motion.
For S=0 DKP oscillator eigenstates problem, the most general solution for a central problem11

s presented as follows:


JM�r� = �
FnJ�r�YJM���
GnJ�r�YJM���

i�
L

HnJL�r�YJL1
M ��� � , �28�
here
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�J = ��J + 1�/�2J + 1�, �J = �J/�2J + 1� , �29�

FnJ�r� = F�r�, GnJ = G�r�, Hn,J,J±1�r� = H±1�r� , �30�

JM of parity �−1�J is inserted into Eq. �23� and the following equations are found:

EF = mc2G , �31�

�c� d

dr
−

J + 1

r
+

m�r

�
�F = −

1

�J
mc2H1, �32�

�c� d

dr
−

J

r
+

m�r

�
�F = −

1

�J
mc2H−1, �33�

− �J� d

dr
+

J + 1

r
−

m�r

�
�H1 + �J� d

dr
−

J

r
−

m�r

�
�H−1 =

1

�c
�mc2F − EG� . �34�

rom the above equations, if Eqs. �31�–�33� are inserted into Eq. �34�, the homogeneous second-
rder differential equation for the DKP harmonic oscillator11 is obtained as

� d2

dr2 +
�E2 − m2c4�

��c�2 +
3m�

�
−

m2�2r2

�2 −
J�J + 1�

r2 �F�r� = 0. �35�

f we define Eeff= ��E2−m2c4� / ��c�2�+ �3m� /�� and k=m� /�, Eq. �35� becomes

� d2

dr2 + Eeff − k2r2 −
J�J + 1�

r2 �F�r� = 0. �36�

he asymptotic iteration method requires selecting the wave function as follows:

F�r� = rJ+1e�−1/2�kr2
f�r� �37�

quating it into Eq. �36� leads to

d2f�r�
dr2 − 2�kr −

J + 1

r
�df�r�

dr
+ �Eeff − 3k − 2kJ�f�r� = 0, �38�

here �0=2�kr− ��J+1� /r�� and s0=3k+2kJ−Eeff. By means of Eq. �4�, we may calculate �n�r�
nd sn�r�. This gives

�0 = 2�kr −
J + 1

r
� ,

s0 = 3k + 2kJ − Eeff,

�1 = 5k + 2
J + 1

r2 + 2kJ − Eeff + 4�kr −
J + 1

r
�2

,

s1 = 2�3k + 2kJ − Eeff��kr −
J + 1� ,
r
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�2 = − 4
J + 1

r3 + 2�kr −
J + 1

r
��4�k +

J + 1

r2 � + �3k − 2kJ − Eeff� + 2�kr −
J + 1

r
�	 ,

s2 = �3k + 2kJ − Eeff��7k + 4
J + 1

r2 + 2kJ − Eeff + 4�kr −
J + 1

r
�2	 , �39�

tc. Combining these results with the quantization condition given by Eq. �5� yields

s0

�0
=

s1

�1
Þ �Eeff�0 = 3k + 2kJ , �40�

s1

�1
=

s2

�2
Þ �Eeff�1 = 7k + 2kJ , �41�

s2

�2
=

s3

�3
Þ �Eeff�2 = 11k + 2kJ , �42�

tc.
When the above expressions are generalized, the DKP oscillator eigenvalues turn out as

�Eeff�n = k�4n + 3 + 2J� . �43�

f one inserts the values of k and Eeff into Eq. �43�, the relativistic energy spectrum of DKP
scillator becomes

1

2mc2 �ENJ
2 − m2c4� = N�� , �44�

here N is the principal quantum number defined as N=2n+J. Our result is in agreement with the
esult of Ref. 11 for the same potential.

As indicated in Sec. II, we can construct the corresponding eigenfunctions by using the wave
unction generator given by Eq. �14� and Eq. �39� where we obtain � and s values. Therefore,
imilar to Eq. �15�, the wave function fn�r� can be written

fn�r� = �− 1�nC22n���n 1F1�− n,�;kr2� . �45�

�r� ensues right away in the following form:

F�r� = rJ+1e−�1/2�kr2
��− 1�nC22n���n 1F1�− n,�;kr2�� , �46�

here

� =
2J + 3

2
and ���n =

��� + n�
����

. �47�

Using the wave function F�r�, the wave functions G�r�, H1�r�, and H−1�r� can be easily
btained by using Eqs. �31�–�34�.

V. DKP COULOMB POTENTIAL

We now apply the AIM method to the bound state problem of a spinless charged pion ��−� in

he Coulomb field of a nucleus. If we use the following ansatz:
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a± =
mc2 ± E

�c
, � = �Z, �� =

�

mc
, � =

2

�c
�m2c4 − E2, � =

2�E

��c
, � = �r �48�

he system of coupled equations for the Coulomb potential becomes

�J�dF

d�
−

J + 1

�
F� = −

1

���

H1, �49�

�J�dF

d�
+

J

�
F� =

1

���

H−1, �50�

− �J�dH1

d�
+

J + 1

�
H1� + �J�dH−1

d�
−

J

�
H−1�=����a+

�
+

�

�
��a−

�
−

�

�
�F . �51�

Eliminating H1 and H−1 in favor of F, the second-order differential equation for the Coulomb
otential becomes

d2F���
d�2 + � �

�
−

1

4
−

J�J + 1� − �2

�2 �F��� = 0. �52�

et the radial wave function be factorized as

F��� = ��+1e−�1/2��f��� , �53�

here

� = − 1
2 + ��J + 1

2�2 − �2. �54�

quation �52� becomes

d2f���
d�2 −

�� − 2� − 2�
�

df���
d�

−
�� + 1 − ��

�
f��� = 0 �55�

hich is now amenable to an AIM solution. In order to find the exact energy eigenvalues, we
efine �0 and s0 as

�0 = −
�� − 2� − 2�

�
, s0 = −

�� + 1 − ��
�

. �56�

sing the quantization condition given by Eq. �5�, the � values take the form

�1 = � + 1, �2 = � + 2, �3 = � + 3, etc., �57�

hich can be generalized as

�n = � + n�. �58�

nserting � and � in Eq. �48� and defining the principal quantum number as n=n�+J, we obtain
he exact bound state eigenenergies,

EnJ = mc2�1 +
��Z�2

�n − J − 1
2 + ��J + 1

2�2 − ��Z�2�2	−1/2

, �59�

hich is in agreement with the results of Refs. 12 and 13 for the same potential. The binding
nergy BnJ can be calculated from BnJ=mc2−EnJ.
We can also construct the corresponding eigenfunctions using AIM as
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fn��� = �− 1�nC2���n 1F1�− n,�;�� �60�

hich gives

F��� = ��+1e−�1/2����− 1�nC2���n 1F1�− n,�;��� , �61�

here

� = 2� + 2 and ���n =
��� + n�

����
. �62�

ther components of the the wave functions �G���, H1���, and H−1���� can be obtained through
qs. �49� and �50� using F���.

. ANHARMONIC OSCILLATOR

In this section, we present the application of the asymptotic iteration method to nontrivial
roblems. We have thus chosen a vector potential of the type

UV = r2�, � = 2,3, . . . . �63�

aking �=2, the second-order DKP equation becomes as follows:

d2

dr2F�r� + �E2 − 2Er4 + r8 − m2c4

h2c2 −
J�J + 1�

r2 �F�r� = 0. �64�

n order to solve this equation with AIM, we propose the following wave function to transform it
o an equation similar to Eq. �1�:

F�r� = e−1/2	r2
f�r� , �65�

here 	 is an arbitrarily introduced constant to improve the convergence speed of the method. We
ake 	=5 as in Ref. 20 to compare with their nonrelativistic results for a similar problem. By
aking �=c=m=1 and J=0 �s state� for simplicity and inserting this wave function into Eq. �64�,
e obtain

d2

dr2 f�r� = �− E2 + 2Er4 + 	 + 1 − 	2r2 − r8�f�r� + 2	r
d

dr
f�r� �66�

hich can be now solved by AIM. Here, the s0�r� and �0�r� are as follows:

s0�r� = �− E2 + 2Er4 + 	 + 1 − 	2r2 − r8�, �0�r� = 2	r . �67�

n order to obtain the energy eigenvalues from Eq. �66�, using Eq. �4�, we obtain the sk�r� and

k�r� in terms of s0�r� and �0�r�. Then, using the quantization condition of the method given by
q. �5�, we obtain the energy eigenvalues. This straightforward application of AIM gives us the
nergy eigenvalues, however, we have observed that the energy eigenvalues oscillate and do not
onverge within a reasonable number of iterations. The sequence appears to converge when the
umber of iterations k� �30, but then it begins to oscillate as the iteration number k increases.
his result violates the principle behind the AIM; as the number of iteration increases, the method
hould converge and should not oscillate. We have noticed that the first reason for the oscillatory
ehavior is the r8 term and the second but less serious reason is the E2 term.

Therefore, in order to overcome this problem, we have used a perturbation approach within
he framework of the AIM, similar to Ref. 21. In order to apply the perturbation, we introduce a

arameter � for s0�r� in Eq. �67�,
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s0�r� = �− E2 + 2Er4 + 	 + 1 + ��− 	2r2 − r8�� , �68�

is an artificially introduced perturbation expansion parameter and at the end of the calculations,
t will be seen that it is equal to 1. After this, Eq. �5� becomes

�k�x,�� = �k+1�x,��sk�x,�� − �k�x,��sk+1�x,�� = 0. �69�

f we expand ��x ,�� near �=0, we obtain the following series:

�k�x,�� = �k�x,0� +
�

1!
� ��k�x,��

��
�

�=0
+

�2

2!
� �2�k�x,��

��2 �
�=0

+
�3

3!
� �3�k�x,��

��3 �
�=0

+ ¯ .

�70�

ccording to AIM, the quantization condition �k�x ,�� must be equal to zero,

�k
�j��x,�� =

� j

j!
� � j�k�x,��

�� j �
�=0

, j = 0,1,2, . . . . �71�

t is also suitable to expand the energy eigenvalue E,

En = En
0 + �En

1 + �2En
2 + �3En

3 + �4En
4 + ¯ . �72�

n expansion terms can be obtained by comparing the terms with the same order of � in Eqs. �71�
nd �72�. Hence, it is clear that the roots of �k

�0��x ,0�=0 give us the main contribution energy terms

n
0 and the roots of �k

�1��x ,0�=0 give us the first correction En
1 and so on.

After we apply this perturbation approach, we have obtained the ground and the first even
xcited state energy eigenvalues. The results are presented in Tables I and II, respectively, for the
round and the first even excited state eigenvalues. In the first column of Table I, we present the

0
0 �unperturbed�, the second column E0

1 which is the first correction and so on. We have used the
erturbation up to fifth term, but one can use higher terms to improve the results. However, the
ffect becomes smaller as it can be seen from tables. In the last column of Table I, we show the
onrelativistic results of Fernandez20 for the same potential to compare with our results. For these
alculations, we have observed that the first term �E0

0� in the expansion �72� converges around k
30 iterations, however, the correction terms require higher iterations and start to converge around

ABLE I. Ground state energy of the anharmonic oscillator where k is the iteration number �n=0, �=c=m=1, and J
0 �s state��.

k E0
0 E0

1 E0
2 E0

3 E0
4 E0

5 E0 E0 �Ref. 20�

2.478 891 −0.481 521 −0.171 317 −0.087 565 −0.038 408 −0.030 214 1.669 866

0 2.477 792 −0.485 884 −0.158 642 −0.080 739 −0.054 255 −0.036 055 1.662 217 1.325 073 435

5 2.477 837 −0.485 459 −0.159 187 −0.082 888 −0.052 218 −0.035 973 1.662 112 1.147 766 154

0 2.477 839 −0.485 450 −0.159 249 −0.083 021 −0.051 830 −0.035 991 1.662 298 1.072 223 000

5 2.477 838 −0.485 452 −0.159 247 −0.082 987 −0.051 875 −0.036 052 1.662 225 1.062 711 298

0 −0.159 246 −0.082 983 −0.051 885 −0.036 069 1.662 203 1.060 482 716

5 −0.159 246 −0.082 984 −0.051 885 −0.036 062 1.662 209 1.060 372 025

0 −0.051 884 −0.036 060 1.662 212 1.060 362 059

5 −0.036 061 1.662 211 1.060 362 077

0 1.060 362 091

5 1.060 362 091

0 1.060 362 090

5

0

=50.
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In Table II, we show the first even excited state energy eigenvalues. Again, the perturbation is
alculated up to fifth and the first term �E0

0� converges around k=35 iterations, however, the
orrection terms require higher iterations and we have run them up to k=50 iteration.

I. CONCLUSION

This paper has presented a different approach, the asymptotic iteration method, to the calcu-
ation of the nonzero angular momentum solutions of the relativistic Duffin-Kemmer-Petiau equa-
ion. Exact eigenvalues and eigenfunction for the relativistic Duffin-Kemmer-Petiau oscillator and
oulomb problems are derived easily. The advantage of the asymptotic iteration method is that it
ives the eigenvalues directly by transforming the second-order differential equation into a form
f y�=�0�r�y�+s0�r�y. The exact wave functions are easily constructed by iterating the values of

0 and �0. We have also shown how to solve the nontrivial problems with the help of the pertur-
ation theory within the framework of the asymptotic iteration method. The method presented in
his study is general and worth extending to the solution of other interaction problems.
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We construct a huge number of anomaly free models of six-dimensional N
= �1,0� gauged supergravity. The gauge groups are products of U�1� and SU�2�,
and every hyperino is charged under some of the gauge groups. It is also found that
the potential may have flat directions when the R-symmetry is diagonally gauged
together with another gauge group. In an Appendix, we determine the contribution
to the global SU�2� anomaly from symplectic Majorana Weyl fermions in six
dimensions. © 2006 American Institute of Physics. �DOI: 10.1063/1.2209767�

. INTRODUCTION

Six-dimensional N= �1,0� supergravity1,2 has many interesting features. The ungauged ver-
ion has been useful in uncovering the interesting dynamics of string theory in six dimensions. The
auged one is particularly interesting, because it does not allow the flat six-dimensional
inkowski space-time as a solution. Their solutions typically describe space–times which are

pontaneously compactified to lower dimensions.3,4 They can also be used to build various higher-
imensional models of particle phenomenology and cosmology. See e.g., Refs. 5 and 6.

Any higher dimensional theory of gravity should be considered as a low energy approximation
f some unknown quantized theory, and there are several consistency conditions that any low
nergy approximation should satisfy. Anomaly freedom is one of the most important criteria. The
earch for anomaly free models in six dimensions is more difficult and at the same time richer than
n 10 dimensions. It is because in six dimensions we can include hypermultiplets, which contribute
o perturbative anomalies.7

The d=6, N= �1,0� ungauged supergravity can be obtained from heterotic strings on K3, and
any anomaly free models are known,8–12 with the help of the Green-Schwarz mechanism13 in six

imensions. For d=6, N= �1,0� gauged supergravity, however, only a handful of consistent mod-
ls have been found so far. Furthermore, if we impose the constraint that all hyperini should be
harged under some of the gauge groups, the number of consistent models is very small.14–16

In d=10, N=1 supergravity the anomaly cancels only for a few models, namely SO�32�,
8�E8, E8�U�1�248 and U�1�496. Moreover, the discovery of anomaly freedom of E8�E8 in-
pired the construction of heterotic string theories. It is thus quite interesting to study how many
nomaly free models there are in d=6, N= �1,0� gauged supergravity, and it might suggest the
xistence of some totally novel quantum completion of those theories within superstring theory or
utside of it. No consistent way to derive it from the compactification of string or M theory is not
nown yet, although some progress is being made.17,18 This is also interesting from the point of
iew of its phenomenological or cosmological applications.
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In this paper, we investigate the models whose gauge groups are products of U�1� and SU�2�.
his choice makes the condition for anomaly cancellation relatively simple. It will be shown that

here are enormously many models which are free of both perturbative and global anomaly.
The paper is organized as follows. First we recall basic knowledge on d=6, N= �1,0� gauged

upergravity in Sec. II. In Sec. III, we describe the general form of both perturbative and global
nomaly free conditions, and we carry out the search and give our results in Sec. IV. Section V is
he summary and discussion. In Appendix A we collect our notations concerning the group rep-
esentations. Appendix B discusses the global gauge anomaly from the symplectic Majorana-Weyl
ermion charged under SU�2� gauge group.

I. GAUGED N= „1,0… SUPERGRAVITY IN SIX DIMENSIONS

. The spectrum

N= �1,0� supergravity in six dimensions contains the following multiplets:

supergravity multiplet, �e�
m , B��

− , ��
A−�;

tensor multiplet, �B��
+ , �A+ , ��;

vector multiplet, �A� , �A−�;
hypermultiplet, �4� , �+�;

here � ,�=0, . . . ,5 label space–time, m=0, . . . ,5 labels tangent space, A=1,2 labels the funda-
ental representation of Sp�1�R, and ± denotes the chirality of Weyl spinors or the self-duality of

he field strength of antisymmetric two-forms.
Weyl spinors of SO�1,5� and the fundamental representation of Sp�1�R are both pseudoreal.

y combining two antilinear involutions, we can impose a reality condition to get symplectic
ajorana-Weyl spinors. Gravitini, tensorini, and gaugini are symplectic Majorana-Weyl under

p�1�R. Hyperini are inert under Sp�1�R and are Weyl spinors in general. If some of the hyper-
ultiplets form a pseudoreal representation under the gauge groups, then we can impose the

ymplectic reality condition on them. Such a hypermultiplet is called a half-hypermultiplet.
Hereafter we assume the number of tensor multiplet nT is one. This is because only in this case

orentz- and gauge-covariant Lagrangian exist at the classical level.

. Gauging hyperscalar manifold

The d=6,N= �1,0� rigid supersymmetry requires the scalar fields in the hypermultiplets to
arametrize a hyperkähler manifold. If we couple hypermultiplets to gravity, then it must be a
uaternionic manifold with negative curvature. For simplicity we assume the target space of the
yperscalars to be the manifold

MH ª

Sp�1,nH�
Sp�1�R � Sp�nH�

, �2.1�

here nH is the number of hypermultiplets.
We introduce vector multiplets which gauge some part of the isometry group Sp�1�R

Sp�nH� of MH. Arbitrary subgroups of Sp�1�R�Sp�nH� can be gauged. Let us write the gauge
roups as GR�GH�Sp�1�R�Sp�nH�, where GR�Sp�1�R�Sp�nH� gauges some part of the
-symmetry and GH�Sp�nH� acts only on the hypermultiplets. The closure of Lie algebra requires

hat GR be one of the following possibilities: U�1�R, Sp�1�R, U�1�R+, and Sp�1�R+, where in the
atter two cases we take U�1� or Sp�1� subgroup of Sp�nH� and gauge the diagonal combination of
hem with U�1�R or Sp�1�R, respectively. We call these latter two choices as diagonal gaugings.

hen GH is made out of several factors GH1�GH2� ¯ , we use the label z=1,2 , . . . to distin-
uish different factors.

Gauging hyperscalar manifold brings an additional potential term to the Lagrangian, which is

equired by supersymmetry. Here we will write the general form of the potential, citing the results

                                                                                                            



o
S
L
a
p

w

w
−

i
�
s
t
g
s
p
p

o

c
e
u
o
a

I

a
m
i
m
c

A

a
o
d
d

f
s
m
p

062302-3 Anomaly freedom of six-dimensional supergravity J. Math. Phys. 47, 062302 �2006�

                        
f Refs. 1 and 2. We denote hyperscalars parametrizing the manifold MH by �	, 	=1, . . . ,4nH.
ince MH is a symmetric space, its tangent space is spanned by the coset of the Lie algebras. Let
��� be a representative of the coset Sp�1,nH� / �Sp�1�R�Sp�nH�� so that L���=1Sp�1,nH�+O���,
nd define C-functions as �the C-function is known under various names: P function, Killing
repotential, triholomorphic moment map, etc.�

CAB
CD ª �L−1TABL�CD, Cz

ab
CD ª �L−1Tz

abL�CD, �2.2�

here TAB and Tz
ab are the generators of GR and GHz, respectively. Then, the potential is given by

V��� =
1

4
e−��gR

2CAB
CDCABCD + �

z

gHz
2 Cz

ab
CDCz

abCD� , �2.3�

here gR, gHz are the coupling constants �we normalize the gauge kinetic term as
�e±� /4gk

2�trk F��F
��, with k=R ,Hz� of GR, GHz.

The potential �2.3� is non-negative, because it is the sum of the squares of C-functions. One
mportant feature is that CAB

CD=TAB
DC+O��� and Cz

ab
CD=O���, hence the potential is positive at

	=0 if we gauge R-symmetry. It provides a positive cosmological constant in a six-dimensional
ense. For a nondiagonal gauging, explicit calculations of Refs. 1, 15, and 19 show that � 	=0 is
he minimum of the potential and there is no possibility of Higgsing. If we take a diagonal
auging, however, the potential may have flat or tachyonic directions. In this case, one can
pontaneously break R-symmetry and possibly it leads to ungauged supergravity theories. The
hysics of models with diagonal gauging is relatively unexplored, and we hope to revisit this
roblem in the future.

Another important feature is that in the examples discussed so far, quadratic terms of V��� are
nly from the R coupling. Thus, the mass of hyperscalars is determined by their R charges.

The way how hyperini acquire four-dimensional mass depends on the details of compactifi-
ation. Consider, for example, a space–time R1,3�S2 with monopoles in the internal S2. If we
mbed the field strength of the monopole in GR=U�1�R, d=4, N=1 supersymmetry can remain
nbroken.3 Other choices of monopole charges generically break all the supersymmetry and many
f them induce instability. �See Ref. 20 for the models with monopoles sitting in the U�1� factor,
nd Ref. 21 for those with monopoles sitting in the non-Abelian factor.�

II. GENERAL ANOMALY FREE CONDITIONS

Any six-dimensional gauge theory must satisfy two constraints concerning its gauge groups
nd representations. They are the freedom from the local and the global gravitational, gauge and
ixed anomaly. The local or the global anomaly measures the change in the fermion determinant,

nduced by a gauge transformation which can or cannot be continuously deformed to identity. One
ust choose the gauge groups and the representations carefully so that both kinds of anomaly will

ancel.

. Local anomaly

It is well known that the Green-Schwarz mechanism can cancel the local gravitational, gauge
nd mixed anomaly if anomaly polynomial factorizes. �Note that in six dimensions the consistency
f the Green-Schwarz mechanism is rather subtle, because we need to modify the lowest-
erivative terms in the Lagrangian in order to introduce the Green-Schwarz counterterm. More
etails can be found in Refs. 2 and 22, including the generalization to nT
1.�

Anomaly polynomial can be explicitly calculated by summing up the contributions from
ermions and �anti-� self-dual tensors. Fermions of positive chirality or antisymmetric tensor with
elf-dual field strength contribute to it positively, while fermions of negative chirality or antisym-
etric tensor with anti-self-dual field strength do negatively. Hence in our case, the total anomaly
olynomial Ptotal is of the form
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Ptotal = − �I3/2 + IA� + �
tensor

�IA + I1/2� − �
vector

I1/2 + �
hyper

I1/2, �3.1�

here each term comes from the supergravity multiplet, tensor multiplets, vector multiplets, and
ypermultiplets, respectively.

In six dimensions, the anomaly polynomials for spin 3/2 fermions and spin 1/2 fermions in the
epresentation r are known to be7,23

I3/2 = � 245
360tr R4 − 43

288�tr R2�2�trr 1 + 19
6 tr R2 trr F2 + 10

3 trr F4, �3.2�

I1/2 = � 1
360 tr R4 + 1

288�tr R2�2�trr 1 − 1
6 tr R2 trr F2 +

2

3
trr F4, �3.3�

nd that for a real self-dual antisymmetric tensor to be

IA = 28
360 tr R4 − 8

288�tr R2�2. �3.4�

We will study what conditions are necessary for �3.1� to factorize into the product of four-
orms.

First of all, the coefficients of tr R4 and trr F4 must vanish. Using �3.2� and �3.3�, the tr R4

ondition gives

nH = 273 − 29nT + nV. �3.5�

o satisfy the trr F4 condition, we restrict our analysis to particular representations for which tr F4

s a multiple of �tr F2�2. We call such representations exceptional type. All finite dimensional
rreducible representations of A1, A2, E6, E7, E8, F4, and G2 are of exceptional type, which we call
ie algebras of exceptional type. Further studies on exceptional-type representations can be

ound in Refs. 24 and 25. Casimir invariants of exceptional-type Lie algebras are summarized in
ppendix A.

When tr R4 and trr F4 vanish, we can rewrite the total anomaly polynomial as

Ptotal = �
jk

� jkK
jKk, �3.6�

here Kk is

K� ª �tr R2,trf FGR

2 ,trf FG1

2 ,trf FG2

2 , . . . , trf FGn

2 � , �3.7�

here Gi is shorthand notation for GHi and f is the smallest nontrivial irreducible representation of

i.
It is convenient to regard �ij as a �n+1�� �n+1� matrix. We call �ij as anomaly matrix of the

odel. The condition for factorization of Ptotal is equivalent to �ij= �	i� j+	 j�i� /2 for some 	i ,� j.
t is clear that the columns of � are linear combination of 	� and �� , so we must have

rank �  2. �3.8�

esides, the two vectors 	� and �� must be real, because they enter into Lagrangian through the
reen-Schwarz counterterm. Elementary calculation shows that � has two real nonzero eigenvec-

ors �and thus real 	� and �� � if and only if

�+�−  0. �3.9�
e call �3.8� and �3.9� the first and the second factorization condition, respectively.
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As a preparation for the actual search for anomaly free models in the next section, we describe
he anomaly matrix more explicitly in each case of GR=U�1�R�+� and Sp�1�R�+�. Throughout the
aper, we write the representation of hyperini as �H and use trH as the abbreviation for the trace
ver �H.

For GR=U�1�R, the gravitini, tensorini, and gaugini all have charge one under U�1�R. The
augini are the adjoints of the gauge groups. The anomaly polynomial is given by �we normalize
he total anomaly polynomial so that 	1=�1=1�

P = �tr R2�2 +
tr R2

6
��− 20 + nV�FU�1�R

2 + �
i=1

n

trad FGi

2 − trH F2�
+

2

3�− �4 + nV�FU�1�R
4 − �

i=1

n

trad FGi

4 − 6FU�1�R
2 �

i=1

n

trad FGi

2 + trH F4	 . �3.10�

For GR=U�1�R+, the anomaly polynomial is almost the same as �3.10�, except that hyperini are
harged under U�1�R+ in this case.

For GR=Sp�1�R, recall that the symplectic Majorana-Weyl condition is imposed on gravitini,
ensorini, and gaugini. Another important point to notice is that the gaugini of the Sp�1�R

ymmetry transforms in the 2 � 3 representation. The anomaly polynomial is given by

P = �tr R2�2 +
tr R2

6
��− 12 + nV

2
�tr2 FSp�1�

2 + �
i=1

n

trad FGi

2 − trH F2�
+

2

3�− �84 + nV

4
��tr2 FSp�1�R

2 �2 − �
i=1

n

trad FGi

4 − 3 tr2 FSp�1�R
2 �

i=1

n

trad FGi

2 + trH F4	 .

�3.11�

For GR=Sp�1�R+, we need to take it into account that hyperini are charged under Sp�1�R+.

. Global anomaly

Once one finds a perturbatively anomaly free model, one needs to check whether the global
nomaly vanishes. Global gauge anomaly in six dimensions may appear if the gauge group G has
he nonvanishing sixth homotopy group, �6�G��0.26 There are three simple Lie groups with

6�G��0, namely �6�SU�2��=Z12, �6�SU�3��=Z6, and �6�G2�=Z3. Abelian gauge groups do not
ause global anomaly because �6�U�1��=0.

The conditions for the cancellation of global gauge anomaly have been investigated through
he works of Refs. 27–31 for the case of Weyl spinors. The conditions with symplectic Majorana-

eyl spinors in six dimensions seem to be absent in the literature, so we will give the derivation
n Appendix B. The results are

1 − 4C4��H;G2� 
 0 �mod 3� for G2, �3.12�

8 − D4��H;SU�2�� 
 0 �mod 12� for SU�2� , �3.13�

− 2C4��H;SU�3�� 
 0 �mod 6� for SU�3� , �3.14�

nV − D4��H;Sp�1�� 
 0 �mod 12� for Sp�1�R�+�, �3.15�

here the quantity C4 is defined in Appendix A and the quantity D4 for SU�2��Sp�1� is defined
n Appendix B. If there are no half-hypermultiplets, the relation D4
4C4�mod 12� holds. Then the

ondition �3.13� reduces to
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4 − 2C4��H;SU�2�� 
 0 �mod 6� , �3.16�

hich is precisely the condition found in Ref. 31.
Assuming the vanishing of global gauge anomaly, one can show that there is no global

ravitational anomaly in six dimensions if the space–time is S6, by slightly generalizing the
rgument in Ref. 32. Furthermore, it means that any six-dimensional theory is free of global
nomaly on a coordinate patch, because any large diffeomorphism or large gauge transformation
n a small patch can be done likewise on S6. There might be other global anomalies coming from
he nontrivial topology of space–time, but it is beyond the scope of our present work.

V. EXAMPLES OF MODELS

We performed an extensive computer-aided search of anomaly free models whose gauge
roups are of the form GR�+��GH where GR�+� and GH are U�1� or SU�2�. And then we discovered
normously many anomaly free models. In what follows, we describe the details of our search and
how several examples of the models.

. Abelian gauge groups

Let �hi be the basis of Cartan subalgebra u�1�nH of sp�nH�, then the generator of a
�1��u�1�nH is written as

T ª �
i=1

nH

qihi. �4.1�

e assume qi’s to be quantized in integers.
When there are more than one Abelian factor within the gauge groups under which hyperini

re charged, the anomaly polynomial, in general, contains terms of the form

tr FU�1�1
tr FU�1�2

3 , tr FU�1�1
tr FU�1�2

tr FU�1�3

2 , tr FU�1�1
tr FU�1�2

tr FU�1�3
tr FU�1�4

.

he presence of traces of odd powers of F necessitates the generalization of the procedure outlined
n the preceding sections. Therefore, in such situations we assume the presence of a symmetry
mong U�1� charges which forbids the appearances of the trace of odd powers of FU�1�i

’s.
Before giving our calculation and results, let us explain what kind of solutions we seek. First,

f one finds an anomaly free model, one can rescale the unit charge of any U�1� and obtain another
olution. This operation is rather trivial, so we regard two charge vectors related in this way as the
ame solution.

Second, in the literature, solutions with so-called drones are considered to be unrealistic and
ninteresting, and thus we search for anomaly free models without drones. By drones we mean
ypermultiplets which are not charged under GR�GH, and U�1� vector multiplets with no charged
calars or fermions.

U�1�R: One needs nH=245 neutral hypermultiplets to cancel tr R4 terms. Then the anomaly
olynomial automatically factorizes into

�tr R2 − 4FU�1�R
2 ��tr R2 + 5

6FU�1�R
2 � . �4.2�

hus, there is one anomaly free model, albeit lots of singlet hyperini entering into it.
U�1�R�U�1�: We have found more than 40 million solutions to �3.8�, �3.9� without drones.

ome of them are listed as follows:

�n1,n2,n3,n4� = �243,0,3,0� , �173,70,3,0� , �138,96,12,0� , �123,102,21,0� ,

�112,109,24,1� , �108,96,42,0� , �108,54,84,0� , �123,0,123,0� ,
here nq is the number of hypermultiplets with charge q. We set nq=0 for q
4.

                                                                                                            



p

s
i

f
a

t
i
c
r

w

B

S
q
a
d

o
a
t

w
i

w

062302-7 Anomaly freedom of six-dimensional supergravity J. Math. Phys. 47, 062302 �2006�

                        
We also found some infinite series of anomaly free solutions with drone U�1� vector multi-
lets. For example, if nV=2+ndrone and nH=246+ndrone, the combinations

�n1,n2,n3,n4� = �243,0,3 + ndrone,0� , �4.3�

�n1,n2,n3,n4� = �173,70,3,ndrone� �4.4�

olve the factorization conditions for any ndrone�1. There might be a deeper reason why such
nfinite series exist.

U�1�R+: In this case, � jk is a two-by-two matrix and the anomaly polynomial immediately
actorizes. We also need to check the constraint �3.9�, of which one can easily find an enormous
mount of solutions with no singlet hypers.

U�1�R+�U�1�H: Now hyperini can have charges under two Abelian groups, so the term
r FU�1�R+

tr FU�1�H
3 may appear. Let us denote by nab the number of hyperini whose U�1�R+ charge

s ±a and whose U�1�H charge is ±b. We restrict nab to be even so that one-half of them have
harge �a ,b� and the other one-half �a ,−b�. Then the terms containing tr FU�1�, tr FU�1�

3 are
emoved.

We have found thousands of anomaly free choices of nab, some of which are

�n11 n12 n13

n21 n22 n23

n31 n32 n33
� = � 0 0 0

114 12 2

22 66 30
�, � 2 4 6

150 4 2

6 62 10
�, � 0 0 0

190 14 30

10 2 0
� ,

here other nab are all zero.

. Non-Abelian gauge groups

In addition to �3.8�, �3.9�, one must also check the vanishing of global gauge anomaly for
p�1�R and SU�2� when dealing with non-Abelian gauge groups. These conditions altogether are
uite lengthy and therefore it becomes far rarer to find the solutions than in Abelian cases. Still, we
re able to discover hundreds or thousands of anomaly free models. To be concrete, we will
escribe some of them in this section.

As explained in Sec. II A, we can impose symplectic Majorana-Weyl condition to the fermi-
ns which transform in a pseudoreal representation. A half-hypermultiplet contributes to the
nomaly polynomial �3.3� half as much as a hypermultiplet. Thus, once half-hypermultiplets are
aken into account, nH should be decomposed as

nH = �
r

nr dim r , �4.5�

here nr is the number of hypermultiplets in the representation r, and we allow nr to be half-
ntegers if r is pseudoreal. The group-theoretical constants defined in Appendix A then become

C2��H;G� = �
r

nrC2�r;G�, C4��H;G� = �
r

nrC4�r;G� , �4.6�

here G is a non-Abelian simple Lie group.
U�1�R�SU�2�: Anomaly free choices of �H are listed as follows:

�n2,n3,n4,n5,n6,n7,n8� = �0,4,1,11,26,3,0�, �0,7,0,2,0,31,0� ,

�1,0,12,0,33,0,0�, �1,3,1,3,7,24,1� ,

�2,1,29,25,0,0,0�, �3,0,0,0,11,0,22� ,
�5,0,0,0,37,0,2�, �124,0,0,0,0,0,0� .
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U�1�R+�SU�2�: Let ni,r be the number of hypermultiplets with U�1�R+ charge i and in the
U�2� representation r. Let us list some solutions of anomaly free conditions,

�n1,2 n1,3 n1,4

n2,2 n2,3 n2,4

n3,2 n3,3 n3,4
� = � 1 0 12

66 0 9

9 0 3
�, � 2 6 9

46 4 5

28 2 1
�, � 3 1 5

28 6 1

65 1 2
�, � 4 5 8

59 1 8

15 2 1
� .

Sp�1�R, Sp�1�R�U�1� and Sp�1�R�SU�2�: There are no consistent models, because the
p�1�R part has global gauge anomaly.

Sp�1�R+: A few examples of anomaly free spectrum are

�n2,n3,n4,n5� = �107 + 1/2,0,8,0�, �109 + 1/2,8,1,0� ,

�117 + 1/2,1,1,1�, �119 + 1/2,0,2,0� .

Sp�1�R+�U�1�: Let us denote by nr,i the number of hypermultiplets with U�1� charge i and in
p�1�R representation r. Hypermultiplets like

�n2,1 n2,2 n2,3

n3,1 n3,2 n3,3

n4,1 n4,3 n4,3
� = �0 22 56

0 0 0

0 4 19
�, �15 28 11

0 0 0

5 11 19
�, �23 0 9

23 8 1

0 18 4
�, �32 24 0

28 0 4

6 2 2
�

ive anomaly free models.
Sp�1�R+�SU�2�: Let us denote by nr,s the number of hypermultiplets in the representation

r ,s� of Sp�1�R�SU�2�. Examples of solutions are

�n1,1 n1,2 n1,3

n2,1 n2,2 n2,3

n3,1 n3,2 n3,3
� = � 0 0 0

2 6 5

26 16 2
�, � 0 35 0

49 7 0

9 3 1
�, � 0 56 1

3 0 2

12 12 1
�, �0 92 5

9 6 0

0 0 1
� .

e set n1,1=0 to exclude singlet hyperini.
Before closing this section, we would like to mention an extra anomaly free model with the

auge groups U�1�R�SU�3�. The hypermultiplets behave as a totally symmetric tensor of SU�3�
ith 21 indices. And this model is free from the global SU�3� anomaly.

. SUMMARY AND DISCUSSION

We discussed consistency conditions of six-dimensional gauged supergravity coming from
nomaly cancellation. By performing a computer-aided search for consistent models, we found an
normous number of anomaly free models where the one-loop anomaly from the fermions is
ancelled via the Green-Schwarz mechanism.

In the literature, it has often been considered that anomaly free models of six-dimensional
auged supergravity are quite rare. Our results suggest that there are a huge number of other
erturbatively anomaly free models in six-dimensional gauged supergravity. However, our search
as limited to the cases where the gauge group is a product of U�1� and/or SU�2�. In fact, it is still
ery hard to find consistent models whenever the gauge groups consist of more than two simple
ie groups. Thus, the existence of E7�E6�U�1�R, E7�G2�U�1�R, and F4�Sp�9��U�1�R

odels found in Refs. 14–16 is indeed miraculous.
If one incorporates several tensor multiplets at the cost of covariant Lagrangian formulation,

ne can employ the generalized Green-Schwarz mechanism. Then, if rank �nT+1, one can
uccessfully cancel the local anomaly. Thus, we might be able to find enormously many consistent
odels with the gauge groups like GR�G1� ¯ �GnH

in a similar manner. The need for the
uantum formulation is much more pressing with nT
1, since in this case we cannot tell anything

bout the effective action in a strict sense.
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We would like to comment on possible applications of our results. We have shown several
xamples of anomaly free models of d=6,N= �1,0� gauge supergravity. And some of them look
ery simple compared to the consistent models known so far. We hope that they will help to study
arious aspects of six-dimensional supergravity.

For example, when one wants to derive six-dimensional gauged supergravity from the com-
actifications of type II theory on a smooth space, we often have only Abelian gauge groups
xcept for R-symmetry, as well as lots of drone U�1�’s. If such compactification is consistent as
ype II string theory, then it should be automatically anomaly free. Thus, our solutions with local
-symmetry�Abelian factors seem to be a good step in this direction. However, how to obtain a

arge number of charged hypermultiplets from string theory and how to make gravitini charged
till remain as big problems.

Compactification to four dimensions is worth a further investigation. Our models might find a
se in constructing higher-dimensional models of phenomenology and cosmology.5,6,33–35 More-
ver, if we compactify the theory down to four dimensions with branes,34 new anomaly possibly
rises on the branes. Then one should take care of anomaly inflow36,37 in that framework.

Furthermore, our results may also be interesting in building solutions of d=6,N= �1,0�
auged supergravity. For example, see the recent paper.38

Finally, the physics of diagonally gauged models can be studied more thoroughly. We may
nd interesting generalization of the aforementioned applications. We hope to revisit this problem

n the future.
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PPENDIX A: REPRESENTATION THEORETICAL CONSTANTS

Let FG=FG
i Tr

i be the field strength of gauge group G, acting on fermions in the representation
. When G is a simple non-Abelian gauge group, we define group-theoretical constants C2�R ;G�,
�R ;G�, and B�R ;G� as

trR FG
2
ª C2�R;G�trf FG

2 , trR FG
4
ª A�R;G�trf FG

4 + B�R;G��trR FG
2 �2, �A1�

here f is the smallest nontrivial irreducible representation of G. For exceptional-type represen-
ations which has no fourth-order Casimir invariants, we also define C4�R ;G� as

trR FG
4
ª C4�R;G��trf FG

2 �2 = B�R;G�C2�R;G�2�trf FG
2 �2. �A2�

e will omit G if it causes no ambiguity.
Some comments on the group-theoretical constants defined here: First, the ratio

rr�FG�n / trr��FG�n is independent of the normalization of Tr
i . Thus the quantities A�R ;G�, B�R ;G�,

nd Ci�R ;G� are determined only by the representation R of G. Second, when R is the direct sum
f irreducible representations R= � iRi, then C2�R� and C4�R� are equal to the sums �iC2�Ri� and

iC4�Ri�, respectively. Third, for an irreducible exceptional-type representation R, we have a
ormula24

C4�R;G� =
dim G �6 −

C2�ad�
·

dim R�C2�R;G�2. �A3�

2 dim R�2 + dim G� dim G C2�R�
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PPENDIX B: GLOBAL GAUGE ANOMALY FOR MAJORANA-WEYL FERMIONS

If �6�H�=Zp for some gauge group H, global anomaly may exist. Then we must check
hether the global gauge anomaly cancels.

. Weyl fermions

First let us review the calculation for Weyl fermions.27–31 The basic strategy is to embed H
nto G such that �7�G�=Z and �6�G�=0. Then, because the gauge group G has no global gauge
nomaly in six dimensions, the global gauge transformation in H can be deformed continuously to
dentity in G. In this way we can reduce the calculation of global anomaly for H to that of
erturbative anomaly for G.

The embedding

0 → H→
�

G→
p

G/H → 0 �B1�

nduces the homotopy exact sequence

¯→
�*

�7�G�→
p*

�7�G/H�→
�*

�6�H� → �6�G� = 0. �B2�

et us denote by g, g� the generators of �7�G� and �7�G /H�, respectively. Then, g̃
�*g� is a
enerator of �6�H� and there is an integer s such that p*�g�= �g��s in our cases.

Let us embed the fermion in the representation rL of H in the representation RL � RR of G
here the subscripts L and R denote the chirality�, so that RL � RR decompose under H to rL plus
ome fermions which can be massive. Then, following the argument of Ref. 27, the H gauge
ransformation corresponding to g̃ produces a phase ei��r�, with ��r� given by

��r� =
1

s
�

S7
��g,A,F;RL � RR� , �B3�

here ��g ,A ,F ;R� is the change under g of the non-Abelian Chern-Simons terms in the repre-
entation R. We can easily show that �S7��g ,A ,F ;R�=2�A�R ;G� if G=SU�n�. Thus we have

��r� = 2�A�R;G�/s . �B4�

For H=SU�2�, SU�3�, and G2, we can choose G as SU�4�, SU�4�, SU�7�, respectively.28 We
laim that, for the representation R of SU�4� or SU�7�, A�R ;G� is given by

A�R;SU�4�� 
 2�
i

C4�ri;H� �mod 6� for H = SU�2� or SU�3� , �B5�

A�R;SU�7�� 
 4�
i

C4�ri;H� �mod 3� for H = G2, �B6�

rovided that the representation R decomposes as R= � iri under H.
To prove them, we evaluate trG FR

4 in two ways. Using �A1�, it can be rewritten as

trG FR
4 �on H = A�R;G�trG Ff

4�on H + B�R;G��trG Ff
2�on H�2 = �B�f ;H�A�R;G� + B�R;G��trG Ff

2�on H�2,

�B7�

here f is the fundamental representation of G, and in the last line we evaluate the trace after
estricting it on H. Using the direct product decomposition R= � iri, the trace is

trG FR
4 �on H = trH��

i

Fri�4
= �

i

trH Fri

4 = �
i

C4�ri;H��trH Ff
2�2. �B8�
y comparing the two, we get
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B�f ;H�A�R;G� + B�R;G� = �
i

C4�ri;H� . �B9�

e have B�f ;H�=1/2 for H=A1 ,A2 and 1/4 for H=G2. Furthermore, one can show that
�R ;G�
0 �mod 3� by mathematical induction,39 and the claims �B5� and �B6� immediately

ollow. It is easy to derive the equations �3.12�, �3.14�, and �3.16� from these results.

. Majorana-Weyl fermions

Let us now move on to the case with Majorana-Weyl fermions. As discussed in Sec. II A, in
ix dimensions we can halve the degrees of freedom of Weyl spinors when they form a pseudoreal
epresentation of the gauge groups. Such Majorana-Weyl fermions are more specifically called
ymplectic Majorana-Weyl fermions, though we use the two words interchangeably.

If we carry out this procedure for a hypermultiplet, the resulting multiplet is called a half-
ypermultiplet. The gravitini, tensorini, and gaugini of d=6,N= �1,0� supergravity are all
ajorana-Weyl, where we use the fact the 2 of Sp�1�R is pseudoreal.

Of the gauge groups which have global anomaly in d=6, only SU�2� has pseudoreal irreduc-
ble representations. So hereafter we restrict our attention to global SU�2� �or Sp�1�� anomaly. We
ssume that the perturbative anomaly is already canceled by the Green-Schwarz mechanism. As
e saw in the preceding section, the Weyl fermions in 2 produces the phase e2�i/6 under the
enerator of �6�SU�2��. Let 	 be the phase produced by Majorana-Weyl fermions in 2. Because
2=e2�i/6, 	 must be either e2�i/12 or e2�i7/12. Now we are going to determine which is the case.

To do it, we need to embed a symplectic Majorana-Weyl fermion in 2 of SU�2� in a Majorana-
eyl fermion in a larger gauge group without global anomaly. Thus 4 in Sp�2� is a good choice.

et it decompose into 2 � 1 � 1 under SU�2�. We write the change of the Chern-Simons seven-
orm by ��g ,A ,F�, as in the preceding section.

The phase change for Weyl fermions in the fundamental of SU�4� is ���g ,A ,F�=2� under the
enerator g of �7�SU�4��. Consider the homotopy exact sequence

�8�S5� = Z24→
�*

�7�Sp�2�� = Z→
�*

�7�SU�4�� = Z→
p*

�7�S5� = Z2→
�*

�6�Sp�2�� = 0. �B10�

A considerable knowledge of algebraic topology is required for the actual calculation of homo-
opy groups. A concise table for the higher homotopy groups of the compact Lie groups can be
ound in the Appendix A of Ref. 40. Interested readers can consult the textbooks �Refs. 41 and 42�
nd references therein.�

It implies that the generator g� of �7�Sp�2�� is mapped to g2. Thus, the phase change for Weyl
ermions in 4 of Sp�2� under g� is 4�. Therefore it is 2� for Majorana-Weyl fermions in 4.

Now consider another sequence

�7�Sp�1�� = Z2→
�*

�7�Sp�2��

= Z→
p*

�7�Sp�2�/Sp�1�� = Z→
�*

�6�Sp�1�� = Z12→
�*

�6�Sp�2�� = 0. �B11�

enote the generator of �7�Sp�2� /Sp�1�� by h�. Then h� satisfies p*�g��= �h��12, and h̃ª�*h� is

ne of the generators of �6�Sp�1��. Thus, the phase change under h̃ for Majorana-Weyl fermions
n 2 is e2�i/12.

Let us go on to other representations. Let �k� be the k-index symmetric tensor representation
f Sp�1� or Sp�2�. Let us bear in mind that k= �k−1� in Sp�1�. Then, for Sp�2�,

tr�k� F4 = A�k�tr�1� F4 + ¯ , �B12�

2
here A�k�=k�k+1��k+2��k+3��k+4��k +4k+2� /840. Furthermore,
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�k� → �k� + 2�k − 1� + 3�k − 2� + 4�k − 3� + ¯ . �B13�

nder the restriction of groups from Sp�2� to Sp�1�. Thus, �k−1�L−2�k−2�R+ �k−3�L of Sp�2�
educes to kL of Sp�1�, and hence the phases under the global gauge transformation h̃ for

ajorana-Weyl k is 2�D4�k� /12, where

D4�k� = A�k − 1� − 2A�k − 2� + A�k − 3� . �B14�

Specifically, Majorana-Weyl fermions in 4 contribute e−�i/3, and Weyl fermions in 3 contribute
4�i/3 to the global anomaly phase.

Finally, by considering

I3/2 = ¯ + 10
3 tr F4, I1/2 = ¯ + 2

3 tr F4,

nd the embedding of gravitini into 4 of Sp�2� with the symplectic Majorana-Weyl condition, we
ee that a gravitino contributes five times as much as that of a spin 1/2 fermion.

Suppose we gauge the Sp�1� R-symmetry, then the contributions from various fermions are
ummarized as

gravitini in a supergravity multiplet, 5 mod 12;

tensorini in a tensor multiplet, − 1 mod 12;

the Sp�1�R gaugini, − 1 mod 12;

other gaugini in a vector multiplet, 1 mod 12.

�B15�

hus, the condition for the cancellation of global Sp�1�R�+� anomaly is

nV − D4��H;Sp�1�� 
 0 �mod 12� . �B16�
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A discussion of character formulas for positive energy, unitary irreducible repre-
sentations of the conformal group is given, employing Verma modules and Weyl
group reflections. Product formulas for various conformal group representations are
found. These include generalizations of those found by Flato and Fronsdal for
SO�3,2�. In even dimensions the products for free representations split into two
types depending on whether the dimension is divisible by four or not. © 2006
American Institute of Physics. �DOI: 10.1063/1.2196241�

. INTRODUCTION

Motivated by the AdS/CFT correspondence, which relates string theory in an AdS space to a
onformal field theory on the boundary character formulas for groups associated with conformal
ymmetry have received greater attention recently.1–4 In Refs. 1, 2, and 4 the way in which
haracter formulas encode the spectrum of operators allowed in a conformal Yang-Mills theory has
een their main use. We hope that the present discussion might be similarly useful for conformal
ang-Mills theories in higher dimensions.

It is well known that character formulas provide an elegant way of decomposing tensor
roducts of Lie algebra representations—the Racah-Speiser algorithm for decomposing tensor
roducts of finite dimensional irreducible representations of simple Lie algebras may be easily
roved in terms of Weyl characters, see Ref. 5 for a summary. In conformal field theories the
ethod of characters was used by Flato and Fronsdal6 to decompose products of certain massless

epresentations, called “Di” and “Rac,” in three dimensions. Oscillator and other methods have
een used by various authors to generalize this to higher dimensions.7–10 Here we follow a more
irect approach using character formulas for the conformal group to decompose products of
ositive energy unitary irreducible representations of the conformal group which inter alia pro-
ides a generalization of the Flato-Fronsdal results. These formulas may also be relevant to
perator product expansions.

The layout of the paper is as follows. We rewrite the conformal algebra in terms of the
rthonormal basis of SO*�d+2�, the complexification of the conformal group in d dimensions, in
ec. II.

In Sec. III we construct the characters of any positive energy unitary irreducible representation
f the conformal group. The problem is related to finding characters of certain infinite dimensional
epresentations of SO*�d+2� and we make use of a result in Ref. 11, employing Verma module
haracters, for solving it. The main part of the task consists, in this approach, of finding sub-Verma
odules of an original one. This is more straightforward in the orthonormal basis of SO*�d+2�

ue to simplifications in the Weyl group action on weights in this basis. In this section we also
how how these formulas are equivalent to ones obtained as follows. The basis for the original
O*�d+2� Verma module is reduced in a way determined by Appendix C which discusses unitary
epresentations of the conformal group. We write down the character of the reduced SO*�d+2�

�
Address for correspondence: Trinity College, Cambridge, CB2 1TQ, England; Electronic mail: fad20@damtp.cam.ac.uk

47, 062303-1022-2488/2006/47�6�/062303/33/$23.00 © 2006 American Institute of Physics
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erma module and then simply act on it with the Weyl symmetry operator of SO�d�. The formula
btained agrees with the character formula for the corresponding irreducible representation of
O*�d+2�. We also give the three- and four-dimensional results explicitly and these match known
esults.4,6,24,25

In Sec. IV we discuss products of the unitary irreducible representations. As a simple example
e first discuss the case of d=4. This is made simpler by the fact that the SO�4� character may be

ewritten as a product of two SO�3� characters. We then go on to discuss higher dimensional cases
hich correspond to products of free representations. Crucial in this approach are expansion

ormulas of the characters in the following form, namely,

�
N

s�+NFN�x� , �1.1�

here � denotes the canonical conformal dimension, FN�x� is some linear combination of the
O�d� characters and with s and x= �x1 , . . . ,xr�, r=� 1

2d� being some variables. We give expansion
ormulas of the type �1.1� for all character formulas of interest.

In even dimensions the product formulas obtained divide into two forms depending on
hether the dimension d is divisible by 4 or not.

While we do not find all such product formulas, we feel that the method presented generalizes
asily when used in conjunction with expansion formulas of the type �1.1�.

Expansions of the form �1.1� are used in Sec. V then to correlate our results for character
ormulas with one-particle partition functions which have been found by various authors12–14 for
he free scalar, Weyl fermion and �d /2�-form field strengths. We also discuss an expansion formula
iven for the character for conserved symmetric traceless tensor currents in the main text. A simple
rgument is given which explains the behavior of the character formula �in the form �1.1�� when
= �1, . . . ,1�. Also it is found that the character for the free scalar obtained here matches the one
article partition function for a scalar field on the boundary of AdS in Ref. 15 when the spin of
escendants is taken into account.

Various useful formulas and proofs are left in the remaining appendixes. In Appendix A
esults for character formulas for infinite dimensional representations of semisimple Lie groups are
iscussed. In Appendix B standard formulas for SO�d� Weyl characters are given. In Appendix C
nitarity bounds are discussed. While unitarity bounds have been discussed in great detail by other
uthors, see, for example, Refs. 16–18, we feel that this attention is merited in that it determines
hich combination of generators are to be omitted from the full Verma module for SO*�d+2�
hen character formulas for unitary irreducible representations of the conformal group are ana-

yzed. Appendix D contains proofs of certain product and expansion formulas for conformal group
haracters.

I. THE CONFORMAL ALGEBRA IN THE ORTHONORMAL BASIS

Starting from the Lie algebra for SO�d ,2�,

�MAB,MCD� = i�gACMBD − gADMBD − gBCMAD + gBDMAC� , �2.1�

or A ,B=1, . . . ,d+2,gAB=diag �1, . . . ,1 ,−1 ,−1� and where MAB=−MBA are Hermitian, then �2.1�
ay be related to the standard form of the conformal algebra by defining Mab ,Pa ,Ka ,H, for
,b=1, . . . ,d through

�MAB� = �Mab − Mat

Msb �stH
� , �2.2�

here s , t=d+1,d+2, �dd+1=1, �st=−�ts, and

Pa = Mad+1 + iMad+2, Ka = Mad+1 − iMad+2. �2.3�
hen
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�Mab,Mcd� = i��acMbd − �adMbc − �bcMad + �bdMac� ,

�Mab,Pc� = i��acPb − �bcPa�, �Mab,Kc� = i��acKb − �bcKa� , �2.4�

�H,Pa� = Pa, �H,Ka� = − Ka, �Ka,Pb� = − 2iMab + 2�abH ,

ith all other commutators not mentioned in �2.4� vanishing. As usual, Mab=−Mba are Hermitian
enerators of SO�d� rotations. Here H, the conformal Hamiltonian, is required to have a positive
efinite spectrum of eigenvalues for positive energy representations.

In �2.4� Mab of course satisfy the Lie algebra of SO�d�. For what follows we will use the
rthonormal basis for SO�d� whereby the Cartan subalgebra is defined by

Hi = M2i−12i, i = 1, . . . ,r, �Hi,Hj� = 0, �2.5�

ith raising and lowering operators formed from

Eij
�� = − Eji

�� = M2i−12j−1 + i�M2i2j−1 + i�M2i−12j − ��M2i2j, i � j, �,� = ± , �2.6�

ugmented by

Ei
± = M2i−12r+1 ± iM2i2r+1, �2.7�

or SO�2r+1�.
In 2r dimensions the commutation relations among the SO�2r� generators in the orthonormal

asis are given by

�Hi,Ejk
��� = ���ij + ��ik�Ejk

��,

�Eij
��,Eij

����� = �� − ����1 − ����Hi + �� − ����1 − ����Hj , �2.8�

�Eij
��,Ejk

����� = i���� − 1�Eik
���, i � k ,

here i , j ,k=1, . . . ,r and � ,�� ,� ,��=± with other commutators, that cannot be obtained through
he symmetry Eij

��=−Eji
��, vanishing.

Using standard orthogonal unit vectors ei�Rr then Eij
+± for 1� i� j�r correspond to the set

f positive roots ei±ej while Eij
−± correspond to the set of negative roots −ei±ej. The simple roots

i−ei+1 ,er−1+er for 1� i�r−1 correspond to the linearly independent set of raising operators

ii+1
+− ,Er−1r

++ . Similarly the linearly independent set of lowering operators is Eii+1
−+ ,1� i�r

1,Er−1r
−− .

In 2r+1 dimensions we have additionally the following commutation relations involving the
xtra generators �2.7�, namely,

�Hi,Ej
±� = ± �ijEj

±,

�Ei
�,Ei

�� = �� − ��Hi, �Ei
�,Ej

�� = iEij
��, i � j , �2.9�

�Eij
��,Ej

��� = − �Eji
��,Ej

��� = i���� − 1�Ei
�,

or i , j=1, . . . ,r with all other such vanishing.
For SO�2r+1� Ei

+ corresponds to the extra positive roots ei while Ei
− corresponds to the extra

egative roots −ei. The simple roots ei−ei+1 ,1� i�r−1 and er correspond to the linearly inde-
endent set of raising operators Eii+1

+− ,Er
+. The linearly independent set of lowering operators is

−+ −

ii+1 ,1� i�r−1 along with Er .
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In the orthonormal basis of SO�2r�, the 2r dimensional vector representation has highest
eight e1 and all other weights in the weight system are given by ±ei ,1� i�r. The weight system
ay be represented diagrammatically by

�2.10�

hich also indicates the action of the lowering operators Eii+1
−+ ,1� i�r ,Er−1r

−− . As a convenient
asis for the Pa ,Ka operators, which of course transform in the vector representation, we define

Pi± = P2i−1 ± iP2i, Ki± = K2i−1 ± iK2i, �2.11�

or which �Eii+1
+− ,P1+�= �Er−1r

++ ,P1+�= �Eii+1
+− ,K1+�= �Er−1r

++ ,K1+�=0 and

�Hi,P j±� = ± �ijP j±, �Hi,K j±� = ± �ijK j±, �2.12�

o that Pi± ,Ki± correspond to the weights ±ei. In terms of explicit action of lowering operators, we
ave that

Pi± = −
i

2
�E1i

−±,P1+�, i = 2, . . . ,r − 1, P1− = 1
4 �E12

−+,�E12
−−,P1+�� ,

�2.13�

Ki± = −
i

2
�E1i

−±,K1+�, i = 2, . . . ,r − 1, K1− = 1
4 �E12

−+,�E12
−−,K1+�� ,

hich may be easily unravelled in terms of the action of the linearly independent set of lowering
perators Eii+1

−+ ,1� i�r ,Er−1r
−− .

In fact the entire conformal algebra in this basis may be written in terms of the orthonormal
asis of the SO*�2r+2� algebra. Making the definitions

H0 = − H, E0i
−± = − Ei0

±− = Pi±, Ei0
±+ = − E0i

+± = Ki±, i = 1, . . . ,r �2.14�

so that −H is the extra Cartan subalgebra element and Ki± /Pi± form the extra raising/lowering
perators� then the conformal algebra may be shown to be equivalent to �2.8� for the range of the
ndices i , j ,k being extended to 0 ,1 , . . . ,r. The linearly independent set of raising/lowering op-
rators in this case is extended to include K1− /P1+.

The 2r+1 dimensional vector representation of SO�2r+1� has highest weight e1 and the
eight system is ±ei and 0. Diagrammatically the weight system is given by

e1→
E12

−+

e2 ¯ er−1 →
Er−1r

−+

er→
Er

−

0→
Er

−

− er →
Er−1r

−+

− er−1 ¯ − e2→
E12

−+

− e1, �2.15�

here we have indicated the action of lowering operators. In addition to �2.11� we may also
hoose

P0 = P2r+1, K0 = K2r+1, �2.16�

s extra elements of the basis for Pa ,Ka operators and these commute with Hi ,1� i�r, so that
hey have weight 0.

Again, in this basis the conformal algebra may be written in terms of the orthonormal basis of
*
O �2r+3�. In addition to �2.14� in this case we define
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E0
− = P0, − E0

+ = K0, �2.17�

nd along with �2.8� the extra commutation relations are given by �2.9� for the range of the indices
, j being extended to 0 ,1 , . . . ,r. Again, the linearly independent set of raising/lowering operators
n this case is extended to include K1− /P1+.

In terms of the orthonormal basis, unitarity requires that

H† = H, Hi
† = Hi, Eij

��† = Eij
−�−�, Ei

�† = Ei
−�, Pi�

† = Ki−�, P0
† = K0. �2.18�

II. CHARACTER FORMULAS FOR POSITIVE ENERGY UNITARY IRREDUCIBLE
EPRESENTATIONS

Essential in our approach to finding the character formulas for positive energy irreducible
epresentations of the conformal group are SO*�d+2� Verma modules. These have basis generated
y the arbitrary action of lowering operators on the conformal highest weight state �� , � 	hw

orresponding to the SO*�d+2� weight �= �−� ,�1 , . . . ,�r�, r=� 1
2d� �where for a=0,1 , . . . ,r then

a are Ha=−H ,Hi eigenvalues�. In what follows we assume that � is a dominant integral highest
eight with respect to SO�d�, so that in the orthonormal basis �i= � ·ei�

1
2Z and �the Dynkin

abels for even d are given by �i�=�i−�i+1 ,1� i�r−2 and �r−1� =�r−1+�r ,�r�=�r−1−�r while for
dd d they are �i�=�i−�i+1 ,1� i�r−1 and �r�=2�r and these are the conditions for them to be
on-negative integers�

�1 	 ¯ 	 �r−1 	 ��r� , �3.1�

or SO�2r� while for SO�2r+1�

�1 	 ¯ 	 �r 	 0, �3.2�

hese being the respective dominant Weyl chambers �or boundaries thereof�.
The highest weight state �� , � 	hw satisfies

Ha��,� 	hw = �a��,� 	hw, K1−��,� 	hw = E
��,� 	hw = 0, �3.3�

or 
 being the simple roots of SO�d� so that


E
� → 
Eii+1
++ ,1 � i � r − 1,Er−1r

++ � , �3.4�

or SO�2r� while


E
� → 
Eii+1
++ ,1 � i � r − 1,Er

+� , �3.5�

or SO�2r+1�.
The Verma module V� with highest weight � therefore has basis

�
v=i�,0

1�i�r,�=±

Pv
nv �


��_
E


n
��,� 	hw, �3.6�

or �_ denoting the set of negative roots of SO�d� and with nv ,n
 all positive or zero integers,
ith n0=0 for SO�2r�. As mentioned before, for SO�2r� then 
E
�→ 
Eij

−±� while for SO�2r+1�
hen 
E
�→ 
Eij

−± ,Ei
−�. Corresponding to the basis �3.6� the weights �� in the Verma module are
iven by
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�0� = − � − �
v=i�,0

1�i�r,�=±

nv, �� = � − �

��_

n

 + �
i=1

r

�ni+ − ni−�ei. �3.7�

n �3.6� we assume some fixed ordering of Pv, E
. This ordering may be arbitrarily chosen since
f a different ordering is assumed then the resulting Verma module basis can be expressed in terms
f that in �3.6� due to Pv ,E
 having commutators which are closed among themselves.

In Appendix C we will use the form of the algebra in the last section, in terms of the
rthonormal basis, to derive conditions necessary for conformal group representations to be uni-
ary. These results are summarized by

� 	 �p = �1 + d − p − 1, p = 1, . . . ,� 1
2d� for �1 = �2 = ¯ = �p � �p+1,

�3.8�
� 	

1
2d − 1 or � = 0 for � = 0,

hile for odd d we have in addition that

� 	 � 1
2d� for �1 = ¯ = ��1

2
d� = 1

2 . �3.9�

t has been proven elsewhere that these conditions are sufficient16 �in order for states in irreducible
epresentations of the conformal group to have strictly positive norm�. We impose these conditions
n the representations we are interested in.

Along with the highest weight � the weight system for V� may contain other highest weights
w being, for certain w in the relevant Weyl group W, shifted �or affine� Weyl reflections given by

�w = w�� + � −  , �3.10�

or  being the Weyl vector, =− 1
2�
��_
. �A simple example is for the V� Verma module of

O�d� whereby the state ���12	= �E12
−+��1−�2+1 ��	hw, for �12��1 ,�2 , . . . �= ��2 ,�1 , . . . �, characterizes a

ub-Verma-module V��12, for ��	hw being annihilated by all SO�d� raising operators. To see this it
uffices to use that �E12

+− , �E12
−+�n�=4n�H1−H2+n−1��E12

−+�n−1. For unitary representations Eij
��†

Eij
−�−� and ���12	 is null.� As described more in Appendix A, V�w is a sub-Verma module if and

nly if the w can be made to satisfy condition �A9�. A necessary conditions is that �−�w be
xpressible as a linear combination of positive roots with non-negative integer coefficients. This is
quivalent to demanding that the state with weight �w can be reached by applying lowering
perators on the highest weight state with weight �. If the highest weight � is dominant integral
hen all V�W are sub-Verma modules of V�.

As described in Appendix A, in order to find the character of I� the first step is to find all �w

hich are highest weights of sub-Verma modules. Below we give necessary conditions for
O*�d+2� weights to satisfy this for the highest weight having orthonormal basis labels
= �−� ,�1 , . . . ,�r�. We show how each such weight may be written as ��w where w�Wd, the
eyl group of SO�d�, and ��= �−�� ,��� has �� satisfying �3.1� and �3.2�, so that �� is a dominant

ntegral weight of SO�d�, or else such that the weight �� has a Dynkin label equal to −1 in which
ase such contributions vanish in ��. Using the results of Appendix A we may then write the
haracter as

�� = �
w�Wd

sgn�w�C�w + �
w�Wd,��

��� sgn�w�C��w, �3.11�

here C�� are SO*�d+2� Verma module characters and ��� is determined by a recurrence relation.
o solve this recurrence relation requires knowing in more detail which submodules are contained

n which and so condition �A9� applies here.
The Weyl group Wd+2 acts in a particularly simple way on weights of the Verma module V�

*
f SO �d+2� in the orthonormal basis. Choosing any w�Wd+2 then we may write
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w��0, . . . ,�r� = ��0���0�, . . . ,�r���r�� , �3.12�

or ��Sr+1 and �a= ±1 with �a�a=1 for d=2r. In the present case the relevant-Weyl vector has
omponents

a = 1
2d − a, a = 0, . . . ,r , �3.13�

n the orthonormal basis of SO*�d+2�. Notice that the last r components are the components of the
eyl vector for SO�d�. From �3.10� we have that the components of �w in the orthonormal basis

re

�a
w = �a���a� + ��a − 1� 1

2d − �a��a� + a . �3.14�

Now for SO*�d+2� the weights �= �−� ,�1 , . . . ,�r� are clearly not dominant integral unless
=�i=0 which corresponds to the trivial representation. Sub-Verma-module weights must satisfy

3.7�. Thus, for any �w to be the highest weight of a sub-Verma-module then �0
w=−�−n, n�N.

lso the minimum value of �0
w is that for �0=−1, ��0�=1 so that sub-Verma-modules exist for

− �1 − d + 1 � �0
w = − � − n . �3.15�

otice that for �0=1, ��0�=0 so that �0
w=−� then all V�w, w�Wd are sub-Verma-modules as �

s a dominant integral highest weight with respect to the SO�d� subgroup. For any other �0 ,��0�
hen this corresponds to a definite action of Pv on the highest weight state so that for these cases
	1.

Using the formula �3.11� and the results of Appendix A with condition �3.15� we now discuss
he even and odd dimension character formulas separately.

. Character formulas: even dimensions

For application of the results of Appendix A we need to specify what condition �A9� demands
or SO*�d+2� Weyl group elements in d=2r dimensions. For Sab ,T�ab� being the Wd element for
he respective positive roots ea+eb, ea−eb, 0�a�b�r then clearly

Sab��0, . . . ,�a, . . . ,�b, . . . ,�r� = ��0, . . . ,− �b, . . . ,− �a, . . . ,�r� ,

�3.16�
T�ab���0, . . . ,�a, . . . ,�b, . . . ,�r� = ��0, . . . ,�b, . . . ,�a, . . . ,�r� .

�ab� corresponds to the transposition �ab� and below we use the short-hand notation T�

T�a1b1� . . .T�ajbj�
for �= �a1b1� . . . �ajbj�. Applying Sab, respectively, T�ab�, to some weight ��

��0� , . . . ,�r�� then clearly condition �A9� allows only those Sab, respectively, T�ab�, for which

a�+�b��N, respectively, �a�−�b��N.
We may easily write the character formula for the SO*�2r+2� Verma module with highest

eight �, for �= �−� ,��, and weights �� given by �3.7� as

C�
�2r+2��s,x� = �

��

e����� = s�C�
�2r��x�P�2r��s,x� , �3.17�

here, for some general SO*�d+2� weight �,

s = e−e0��� = e−�0, xi = eei��� = e�i, �3.18�

�
�2r��x� denotes the character of the SO�2r� Verma module with highest weight � �given in
ppendix B� and
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P�2r��s,x� = �
1�i�r

�1 − sxi�−1�1 − sxi
−1�−1. �3.19�

P�2r��s ,x� comes from the summation over ni± implicit in �3.17�.�
For ���1+d−2 or � lying between two any of �p and �p+1 in �3.8� then �3.15� implies that

he only sub-Verma-modules are at most those having highest weights for �0=1, ��0�=0 in �3.14�.
owever, since � is a dominant integral weight of SO�d� then all V�w, w�Wd are sub-Verma-
odules of V� in this case. Thus from �3.11� the corresponding character is

A��;��
�2r� �s,x� = �

w�W2r

sgn�w�C�w
�2r+2��s,x� = s���

�2r��x�P�2r��s,x� . �3.20�

et us assume that �1=�2= ¯ =�p� ��p+1�, p�r−1, �=�p. In this case only �0
w for �0=1 ,��0�

0 and �0=−1, ��0�=1, . . . , p in �3.14� satisfy �3.15�. For �0=1, ��0�=0 then all V�w, w�Wd are
ub-Verma-modules. Let us assume �0=−1, ��0�= j, 1� j� p for which �0

w=−�1−d+ j then it is
ot difficult to show that the rest of the components may be written as

��1, . . . ,�1,�p+1, . . . �w = ��1, . . . ,�1,�1 − 1, . . . ,�1 − 1,�p+1, . . . �w�, w� � Wd;

jth position
↑

�3.21�

hereby if in the original w�Wd+2 then ��ka�=a ,ka�0, a� j then w� is defined in terms of w by

�0� = − �0 = 1, �k0
� = − �k0

, �ki
� = �ki

, �� = �0pp − 1 ¯ j�� , �3.22�

o that ���0�=0 and �� exhausts all members of Sr. Thus we have shown that all weights for the
ase of w�Wd+2 having �0=−1, ��0�= j in �3.14� may be written as ��j,p�w�, w��Wd with

��j,p� = �− �1 − d + j,�1, . . . ,�1,�1 − 1, . . . ,�1 − 1,�p+1, . . . � .

�j + 1�th position
↑

�3.23�

�Also �a�a�=�a�a and sgn�w��= �−1�p+j+1 sgn�w�. During the course of this work we noticed
hat, at this point, simply using the following formula:

�� = C� + �
w�W,w�1

�w��

sgn�w�C�w,

here the sum runs over all w satisfying condition �A9�, gives exactly the same result for the
haracter as we find here by a more laborious procedure. It would be interesting to know whether
r not this formula holds for more general Lie algebras and highest weights. We have not been
ble to find such a simple formula in the literature.�

We may now easily show that ��j,p�w�, w��Wd exhaust all other highest weights of sub-
erma-modules of V� in this case. To see this notice that if condition �A9� of Appendix A is
atisfied for the weight ��j,p� then it is satisfied for ��j,p�w�, w��Wd since the ��1 , . . . ,�1 ,�1

1 , . . . ,�1−1 ,�p+1 , . . . � corresponds to a dominant integral weight of SO�d�. For ��j,p� itself we
ay show that ��j,p�=�w where w=S0pT� for �= �pp−1. . . j� satisfies condition �A9�. We see this

s �pp−1¯ j�= �pp−1��p−1p−2�¯ �j+1j� and T�i+1i�T�ii−1�¯T�j+1j���+� · �ei+2−ei+1��N for i
p and T���+� · �e0+ep��N.

It now remains to determine ���j,p�→� j,p in �3.11� for the weight ��j,p� by the recurrence
elation in Appendix A. The first observation which is not difficult to show �in a similar fashion as
bove� is that among V��k,p� the only such modules which contain V��j,p� as a submodule are those
or j�k� p or none such if j= p. In fact it is possible to show that no proper submodule of V�
ontains V��p,p� so that in this case �p,p=−1.
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To describe which submodules contain other V��j,p� we first define a subset of the permutation
roup Tn�Sn so that every ��Tn has 1�c�n cycles, where the first cycle consists of the first n1

f the integers n ,n−1, . . . ,2 ,1, preserving this ordering, the second consists of the next n2 such
ntegers, again preserving this ordering, and so on and where n1 , . . . ,nc	1 satisfy �i=1

c ni=n. For
xample, for n=3 then Tn= 
�321� , �32��1�= �32� , �3��21�= �21� , �3��2��1�=1�. It is not difficult to

see that the number of such permutations with c cycles �counting trivial one cycles� is � n−1
c−1

� so that
he total number of such permutations is 2n−1. Further we have that for n�1 there are 2n−2 of these
ermutations with signature 1 or −1 so that ���Tn

sgn���=0.
With the above definition of Tn we have found that the submodules V�w�, w��Wd ,w��1

ontain V��j,p� as a submodule only for w��Tp+1−j so that for j� p then �w�
sgn�w��=−1 is the

ontribution to � j,p coming from these. Also we have found that the submodules V��k,p�w� , j�k
p ,w��Wd containing V��j,p� have w��Tk−j so that for j+1�k� p then �w� sgn�w��=0 so that

he contribution to � j,p coming from these vanishes while for k= j+1 then w�=1 and this contrib-
tes � j+1,p sgn�w��=� j+1,p to � j,p. With these results we may then easily find that

� j,p = �− 1�p+j+1, �3.24�

olves the recurrence relation � j,p=−� j+1,p ,�p,p=−1.
It is possible to show that for such w� as described above �essentially belonging to Tn for

arious n� then for w�Wd+2 so that ��j,p�=�ww� or ��j,p�=��k,p�ww� the only w which satisfy
ondition �A9� are expressible as products of S0l ,T�mn� ,1� l ,m ,n� p.

Now applying �3.11� and the Weyl character formula for SO�2r� in terms of �3.17� �Appendix
� we find that the corresponding character is

D��1+2r−p−1;�1,�p+1,. . .,�r�
�2r� �s,x�

=s�1+2r−p−1���
�2r��x� + �

1�j�p

�− s�p+1−j��−ep−¯−ej

�2r� �x��P�2r��s,x� �3.25�

or �= ��1 , . . . ,�1 ,�p+1 , . . . ,�r�.
Notice that for even dimensions we also have the possibility of �1= ¯ =�r−1= ±�r ,�=�1

1
2d−1. Here the �0

w satisfying �3.15� are those for �0=1, ��0�=0, �0= �1, ��0�=r along with

0=−1, ��0�=1, . . . ,r−1. By an argument very similar to the previous we find that, for �
�� , . . . , � , ± � �,

D��+r−1;��±
�2r� �s,x�

=s�+r−1���
�2r��x� + �

1�j�r

�− s�r+1−j���er−¯−ej

�2r� �x��P�2r��s,x� , �3.26�

s the corresponding character in this case.
The free scalar case, for which �= �−r+1,0 , . . . ,0� is the highest SO�2r+2� weight, is ac-

ounted for by �3.26� for �=0 and has character

D�r−1;0�
�2r� �s,x�  D�r−1;0�±

�2r� �s,x� = sr−1�1 − s2�P�2r��s,x� , �3.27�

ince the SO�2r� characters obey ��0,. . .,0,−1,±1��x�=−1 with ��0,. . .,0±1��x�=0 and ��0,. . .,0,−1,. . .,−1,±1�
�x�=0 otherwise.

. Character formulas: odd dimensions

Considerations for odd d=2r+1 dimensions are very similar to those above for even d=2r
imensions and we will not go into as much detail here. Along with �3.16� W2r+1 has extra

lements corresponding to the extra positive roots ei ,1� i�r given by
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Sa��0, . . . ,�a, . . . ,�r� = ��0, . . . ,− �a, . . . ,�r� . �3.28�

cting on some weight ��= ��0� , . . . ,�r�� then condition �A9� only allows those Sa for which

a�� 1
2N.

We may easily write the character formula for the SO*�2r+3� Verma module with highest
eight � and weights �� given by �3.7� as

C�
�2r+3��s,x� = �

��

e����� = s�C�
�2r+1��x�P�2r+1��s,x� , �3.29�

here C�
�2r+1��x� denotes the character of the SO�2r+1� Verma module with highest weight �

given in Appendix B� and

P�2r+1��s,x� = �1 − s�−1 �
1�i�r

�1 − sxi�−1�1 − sxi
−1�−1. �3.30�

P�2r+1��s ,x� comes from the summation over ni± ,n0 implicit in �3.29�.�
For ���1+d−2 or � lying between two any of �p and �p+1 in �3.8� then character for

ositive energy unitary irreducible representations is

A��;��
�2r+1��s,x� = �

w�W2r+1

sgn�w�C�w
�2r+3��s,x� = s���

�2r+1��x�P�2r+1��s,x� , �3.31�

here ��
�2r+1��x� is the character of the SO�2r+1� irreducible representation with highest weight �.

For �=�p in �3.8� we may go through the same procedure as for the even dimensional case
nd find that the extra Weyl reflections �3.28� lead to nothing new as far as condition �A9� is
oncerned. Thus for odd d and with �= ��1 , . . . ,�1 ,�p+1 , . . . ,�r� corresponding character for these
epresentations is

D��1+2r−p;�1,�p+1,. . .,�r�
�2r+1� �s,x�

=s�1+2r−p���
�2r+1��x� + �

1�j�p

�− s�p+1−j��−ep−¯−ej

�2r+1� �x��P�2r+1��s,x� . �3.32�

For the free scalar case, for which �= �−r+ 1
2 ,0 , . . . ,0� is the highest SO�2r+3� weight, we

ave that the corresponding character is given by

D
�r− 1

2
;0�

�2r+1�
�s,x� = sr− 1

2 �1 − s2�P�2r+1��s,x� . �3.33�

For odd dimensions we also have the possibility of the highest weight � having components
= �−r , 1

2 , . . . , 1
2

�. This time the �0
w satisfying �3.15� are those for �0= ±1, ��0�=0, �0=−1, ��0�

j, 1� j�r. For �0=−1, ��0�=0 then �0
w=−r−1 and the remaining components may be rewritten

s �w=�w� where w��W2r+1 is identical to w save for �0�=−�0=1 so that �a�a�=−�a�a and
gn�w��=−sgn�w�. The cases of �0=−1, ��0�= j, 1� j�r are accounted for similarly as for even
imensions for p=r. However these cases have highest weights which are shifted W2r+1 Weyl
roup reflections of �−�� ,���= �−2r−1+ j ,− 1

2 , . . . ,− 1
2 , 1

2 , . . . �. For these weights at least one of the
ynkin labels �i+1� −�i� is equal to −1 so that contributions from all these Verma modules vanish

rom the character formula �by a result of Appendix A�.
The only cases we must consider are for the Verma modules V��w� ,w��W2r+1 for

�= �−r−1, 1
2 , . . . , 1

2
�. By similar arguments as before all V��w� for w��1 are submodules of V��.

ue to ��+=S0��+�, where Sa is defined in �3.28� then condition �A9� �which is satisfied due
o e0 · ��+�= 1

2 � implies that all V��w� ,w��W2r+1 are submodules of V��. Further we may show
hat V�� is contained only in V�, and no submodules of V�, and so ���=−1.
Taking into account these considerations, we have that the character is, from �3.11�,
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D
�r; 1

2
�

�2r+1�
�s,x� = �

w�W2r+1

sgn�w��C�w − C��w� = sr�x1
1/2 + x1

−1/2� ¯ �xr
1/2 + xr

−1/2��1 − s�P�2r+1��s,x� ,

�3.34�

nd where we have used that

��1/2,. . .,1/2�
�2r+1� �x� = �x1

1/2 + x1
−1/2� ¯ �xr

1/2 + xr
−1/2� . �3.35�

. Relation with reduced Verma module bases

We wish to show here that omitting certain of Pv from the original Verma module basis �3.6�
eads to formulas for characters which are equivalent to those obtained in the last sections.

Descendant states �i.e., those obtained by definite action of Pv on the highest weight state� are
O�d� representations belonging to the decomposition of e1 � ¯ � e1 � � in terms of irreducible
epresentations. From Appendix C, these states are null for either of two reasons. One reason is
hat � may lie on the boundary of the dominant Weyl chamber �3.1� �i.e., that some �1=�2=¯� so
hat certain descendant states are null with respect to the SO�d� subgroup. The other reason is that

may lie on a unitarity bound. By omitting the correct Pv from �3.6� we effectively discard states
n the original Verma module which are null due to the value of �. Acting with the Weyl symmetry
perator on the character of the reduced Verma module is equivalent to projecting out of the
educed module states which are null by virtue of which SO�d� representation they belong to. We
ay show that this prescription gives the same formulas for characters as found earlier.

For definiteness we consider the case where �1= ¯ =�p� ��p+1�, �	�1+d− p−1, in even
imensions, d=2r, although the other cases of interest are similar.

For this case and in the notation of Appendix C, consider the SO�2r� highest weight state
�+1,�−ep	. The construction of such a state is nontrivial and in Appendix C only the simplest
uch states have been constructed. Nevertheless we may write down the state in principle as

�� + 1,� − ep	 = A�Pp−��,� 	hw + �
v�,��

Bv�,��Pv���,�� 	 , �3.36�

here Pv�↔v�� 
±ei� is the subset of Pi± which may be reached by applying SO�2r� raising
perators to Pp− and ��+v�=�−ep. The subset Pv� may be easily determined from �2.10� to be
iven by Pi+ ,P j− for 1� i�r and p+1� j�r. The complex numbers A� ,Bv�,�� are determined by
he condition that �3.36� be a highest weight state with respect to SO�2r�, i.e., that all SO�2r�
aising operators annihilate it. By the results of Appendix C, for � above the unitarity bound this
tate is not null however when �=�1+d− p−1 then ��+1,�−ep	=0. This is equivalent to a
onservation equation for the highest weight state �� ,�	hw.

Now the modulus of A� is nonzero despite �1= ¯ =�p� ��p+1�. When �=�1+d− p−1, so that
3.36� vanishes, then Pp− �� ,�	hw may be expressed in terms of Pi+ �� ,��	, P j− �� ,��	 for 1� i

r and p+1� j�r. Also, as

Eii+1
−+ ��,�1, . . . ,�1,�p+1, . . . ,�r 	hw = 0, i = 1, . . . ,p − 1, �3.37�

hen applying such Eii+1
−+ to �3.36� and using �2.10�, we have that for � on the unitarity bound then

i− �� ,�	hw, 1� i� p−1 may be similarly expressed in terms of Pi+ ��, ��	, P j− �� ,��	 for 1� i
r and p+1� j�r. Thus, effectively the Verma module basis �3.6� becomes reduced so as to

xclude Pi− ,1� i� p.
Acting with the SO�d� Weyl symmetry operator Wd �see Appendixes A and B� on the char-
cter for the reduced Verma module yields the following formula:
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�
��,w�W2r

ew������� = s�1+2r−p−1Wd�C�
�2r��x��1 − sx1

−1� ¯ �1 − sxp
−1��P�2r��s,x�

= s�1+2r−p−1���
�2r��x� + �

1�n�p
ij��1,. . .,p�,ij�ik

�− s�n��−ei1
−¯−ein

�2r� �x��P�2r��s,x� ,

�3.38�

or �= ��1 , . . . ,�1 ,�p+1 , . . . ,�r� and where now ��= �−�0� ,��� are specified by

�0� = − �� = − �1 − d + p + 1 − �
1�i�r

ni+ − �
p+1�j�r

nj−,

�3.39�
�� = � − �


��_

 + �

1�i�r

ni+ei − �
p+1�j�r

nj − ej .

t is easy to see that �3.38� reduces to �3.25�. To see this note that ����x� in �3.38� is nonzero only
or ��= ��1 , . . . ,�1 ,�1−1 , . . . ,�1−1 ,�p+1 , . . . ,�r�, i.e., for ij =k ,k+1, . . . , p for some 1�k� p.

To summarize: when the conformal dimension � saturates a unitarity bound the Verma mod-
le basis is reduced so as to exclude certain of the Pi±, P0 from �3.6�. This is equivalent to
onservation equations constraining the highest weight state. This subset may be determined in
erms of the results of Appendix C. Acting with the SO�d� Weyl symmetry operator on the
haracter of the reduced Verma module then leads to the characters for the corresponding unitary
rreducible representation. Explicitly, for �3.25� and �3.32� the subset to be omitted from �3.6� is

i− ,1� i� p, for �3.26� the subset is Pi− ,1� i�r−1 along with Pr− for D��+r−1;��+
�2r� or Pr+ for

��+r−1;��−
�2r� while for �3.34� the subset is Pi− ,1� i�r along with P0.

. Special cases

We here illustrate these character formulas for the simplest cases of the SO�3,2� and SO�4,2�
onformal groups and mention how special cases relate to conformal field representations.

We have that,

C��x�  C�
�3��x� =

x�

1 − x−1 , �3.40�

s the character of SO�3� Verma modules and

���x�  ��
�3��x� = C��x� + C��x−1� =

x�+�1/2� − x−�−�1/2�

x1/2 − x−1/2 , �3.41�

s the usual character for SO�3� irreducible representations. We have therefore that,

A��;��
�3� �s,x� = s����x�P�3��s,x� ,

D��+1;��
�3� �s,x� = s�+1����x� − s��−1�x��P�3��s,x� ,

�3.42�
D�1;1/2�

�3� �s,x� = s�x1/2 + x−1/2��1 − sx�−1�1 − sx−1�−1,

D�1/2;0�
�3� �s,x� = s1/2�1 + s��1 − sx�−1�1 − sx−1�−1,

xhaust all characters of the unitary irreducible representations of SO�3,2�. �In terms of the
2 2
otation employed in Ref. 6 these character formulas agree for x→� , s→
 . In the nomenclature
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f Ref. 6, the representations D�1;1/2�
�3� and D�1/2;0�

�3� correspond to the “Di” and “Rac” singleton

epresentations, respectively.�
For SO�4��SU�2� � SU�2� we have that

C��1,�2�
�4� �x1,x2� = Cj�x�Cj̄�y� for �1 = j + j̄, �2 = j − j̄, x1 = x1/2y1/2, x2 = x1/2y−1/2

�3.43�

.e., the Verma module character with dominant highest weight ��1 ,�2� may be expressed as a

roduct of two SU�2� Verma module characters with highest weights j , j̄. The characters of unitary
rreducible representations of SO�4,2� are given by

A��;j,j̄�
�4� �s,x,y� = s�j�j̄�x��j̄�y�P�4��s,x,y� ,

D�j+j̄+2;j,j̄�
�4� �s,x,y� = sj+j̄+2�� j�x��j̄�y� − s� j−�1/2��x��j̄−�1/2��y��P�4��s,x,y� ,

�3.44�
D�j+1;j�+

�4� �s,x,y� = sj+1�� j�x� − s� j−�1/2��x��1/2�y� + s2� j−1�x��P�4��s,x,y� ,

D�j̄+1;j̄�−
�4� �s,x,y� = sj̄+1��j̄�y� − s�j̄−�1/2��y��1/2�x� + s2�j̄−1�y��P�4��s,x,y� .

ere we have written P�4��s ,x1 ,x2�→P�4��s ,x ,y� for x1 ,x2 as in �3.43�. This reproduces the results
or character formulas in four dimensions found in Ref. 4.

Free fields have conformal dimension �+ 1
2d−1 and belong to the �� , . . . , � , ± � � representa-

ion of SO�2r� for any �� 1
2N in d=2r, dimensions and the �� , . . . , � , � � representation of

O�2r+1� for �=0, 1
2 in d=2r+1 dimensions.19 The corresponding characters for even dimen-

ions are D��+r−1;��±
�2r� �s ,x� in �3.26� along with D�r−1;0�

�2r� �s ,x� in �3.27� for the scalar case. For odd

imensions the corresponding characters are D�r;1/2�
�2r+1��s ,x�of �3.34� and D�r−�1/2�;0�

�2r+1� �s ,x� in �3.33�.
The characters �3.25�, �3.32� for the special case of p=1 and �1 � ,�2= ¯ =�r=0 correspond

o conserved symmetric traceless tensor-field representations of the conformal group, T�1¯��

T��1¯���, T��2¯��

� =��1T�1¯��
=0. These have conformal dimension d+ �−2 in d dimensions and

xamples are the conserved vector current for �=1 and energy momentum tensor for �=2.

V. PRODUCT FORMULAS

We now turn to the determination of the decomposition of products of unitary irreducible
epresentations of the conformal group into other unitary irreducible representations.

. Product formulas: four dimensions

We illustrate for the SO�4,2� case first. For these purposes we first note a useful identity,
amely,

P�4��s,x,y� = �
p,q=0

�

s2p+q��1/2�q�x���1/2�q�y� . �4.1�

ith �4.1� we may now easily determine the products of unitary irreducible representations of the
onformal group. Using the usual decomposition of products of SU�2� characters,

� j� j��x�  � j�x�� j��x� = �
q=�j−j��

j+j�

�q�x� , �4.2�
nd �4.1�, we notice that
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D�j+1;j�+
�4� �s,x,y� = �

q=0

�

sq+j+1� j+�1/2�q�x���1/2�q�y� . �4.3�

hus we may straightforwardly, determine that

�j+1,j�+
�4� �s,x,y�D�j�+1;j��+

�4� �s,x,y�

=sj+j�+2P�s,x,y��� j� j��x� + �
q=1

�

sq�� j+j�+�1/2�q�x���1/2�q�y� − s� j+j�+�1/2�q−�1/2��x���1/2�q−�1/2��y���
=A�j+j�+2;j� j�,0�

�4� �s,x,y� + �
q=1

�

D�j+j�+q+2;j+j�+�1/2�q,�1/2�q�
�4� �s,x,y� . �4.4�

imilarly, using �4.2�, �4.3�, we may easily determine that

D�j+1,j�+
�4� �s,x,y�D�j̄+1;j̄�−

�4� �s,x,y�

=sj+j̄+2P�s,x,y��
q=0

�

sq�� j+�1/2�q�x��j̄+�1/2�q�y� − s� j+�1/2�q−�1/2��x��j̄+�1/2�q−�1/2��y��

=�
q=0

�

D�j+j̄+q+2;j+�1/2�q,j̄+�1/2�q�
�4� �s,x,y� . �4.5�

sing �4.2�, �4.3�, we may also find that

D�j+j̄+2;j,j̄�+
�4� �s,x,y�D�j�+1,j��+

�4� �s,x,y�

=�
q=0

�

�A��q,j+j�+�1/2�q,j̄+�1/2�q�
�4� �s,x,y� + A��q,�j−�1/2����j�+�1/2�q−�1/2��,j̄+�1/2�q��s,x,y�

+ A��q,j+j�+�1/2�q,�j̄−�1/2�����1/2�q−�1/2���
�4� �s,x,y��, �q = j + j� + j̄ + q + 3, �4.6�

nd

A��;j,j̄�
�4� �s,x,y�D�j�+1,j��+

�4� �s,x,y� = �
q=0

�

A��+j�+q+1;j��j�+�1/2�q�,j̄�1/2q�
�4� �s,x,y� , �4.7�

hich exhausts all products involving D�j+1;j�+
�4� �s ,x ,y�. Those involving D

�j̄+1;j�−

�4�
�s ,x ,y� may be

btained by the exchange x↔y above noting

D�j̄+1;j̄�−
�4� �s,x,y� = D�j̄+1;j̄�+

�4� �s,y,x�, D�j+j̄+2;j,j̄�
�4� �s,x,y� = D�j+j̄+2;j̄,j�

�4� �s,y,x� ,

�4.8�
A��;j,j̄�

4 �s,x,y� = A��;j̄,j�
�4� �s,y,x� .

Similarly, using �4.1� directly, we have that

A��;j,j̄�
�4� �s,y,x�A���;j�,j̄���s,y,x� = �

p,q=0

�

A��+��+2p+q;j� j���1/2�q,j̄� j̄���1/2�q�
�4� �s,x,y� . �4.9�
e may note that each of these product formulas is compatible with the blind partition functions,
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A��;j,j̄�
�4� �s,1,1� =

s�

�s − 1�4 �2j + 1��2j̄ + 1� ,

D�j+j̄+2;j,j̄�
�4� �s,1,1� =

sj+j̄+2

�s − 1�4 ��2j + 1��2j̄ + 1� − 4sjj̄� , �4.10�

D�j+1;j�+
�4� �s,1,1� = D�j+1;j�−

�4� �s,1,1� =
sj+1

�s − 1�3 �− �2j + 1� + s�2j − 1�� .

As we see, the d=4 cases are relatively simple when we use expansion formulas of the type
4.1�, �4.3� to expand one of the characters in the product of two. The general cases which we
onsider now are also made simpler with analogous expansion formulas.

. Product formulas: even dimensions

Useful for finding product formulas for the SO�2r ,2� conformal group is the following ex-
ansion of P�s ,x� in terms of SO�2r� characters, namely,

P�2r��s,x� = �
p,q=0

�

s2p+q��q,0,. . .,0�
�2r� �x� , �4.11�

here

��q,0,. . .,0�
2r �x� = 1

2 det�xi
kj + xi

−kj���x1 + x1
−1, . . . ,xr + xr

−1�−1, �4.12�

ith k1=q+r−1, kj =r− j, j�1, for ��x� being the Vandermonde determinant,

��x1, . . . ,xn� = �
1�i�j�n

�xj − xi� . �4.13�

he latter expression for the character comes from Appendix B where also expressions for more
eneral characters of SO�d� in even and odd dimensions are given.

Analogously to �4.3� we have for �3.26� that

D��+r−1;��±
�2r� �s,x� = �

q=0

�

s�+r+q−1���+q,�,. . .,�,±��
�2r� �x� , �4.14�

hich we prove in Appendix D.
More generally for the p=r− j case of �3.25� �note that �4.14� encapsulates the p=r case� we

ave, for ���1� ¯ � �� j�,

D��+r+j−1;�,�1,. . .,�j�
�2r� �s,x�

= �
p1,. . .,pj,q=0

�

�
i1=− 1

2
p1

1
2

p1

¯ �
ij=− 1

2
pj

1
2

pj

s�+r+j+q+p1+¯+pj−1���+q,�,. . .,�,�1+2i1,. . .,�j+2ij�
�2r� �x� , �4.15�

hich we also prove in Appendix D. Note that the weights ��+q , � , . . . , � ,�1 , +2i1 , . . . ,� j +2ij�
ay lie outside the dominant Weyl chamber, i.e., not satisfy �3.1� for particular � ,�i. However for

uch weights we may use that �
��
�2r��x�=sgn�w��

��w
�2r��x�, for some w�W2r, to relate such characters

o the character with dominant integral highest weight ��w.
A notable simplification to �4.15� occurs for the p=1 case of �3.25� for �1 � ,�2= ¯ =�r

0 which corresponds to conserved symmetric traceless tensor representations of the conformal

roup. In this case we obtain that, for d�4,
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D��+2r−2;�,0. . .,0�
�2r� �s,x� = �

p,q=0

�

�
k=0

�

s�+2r+2p+q−2��q+k,�−k,0,. . .,0�
�2r� �x� . �4.16�

We now discuss products involving the representations in �4.14� which contain the truncated
epresentations in �3.25� for p=1 namely, D��1+2r−2,�1,. . .,�r�

�2r� .

For d=6, for example, we may find using �4.14�, �3.25� for p=1 and �3.26� that

D��+2;��+
�6� �s,x�D���+2;���−

�6� �s,x�

=A��+��+4;��,�,������,��,−����
�6� �s,x� + �

q=1

�

D��+��+q+4;�+��+q,�+��,�−���
�6� �s,x� , �4.17�

nd that

D��+2;��±
�6� �s,x�D���+2;���±

�6� �s,x� = �
q=0

�

�
t=��−���

�+��

D��+��+q+4;�+��+q,t,±t�
�6� �s,x� . �4.18�

ere and in the following we are using the short-hand notation, for r=� 1
2d�,

���1,. . .,�r����1�,. . .,�r��
�d� �x�  ���1,. . .,�r�

�d� �x����1�,. . .,�r��
�d� �x� , �4.19�

n A��;���s ,x�. Of course �4.19� may be decomposed in terms of SO�d� characters once we know
ow � � �� decomposes into irreducible representations.

More generally there is a distinction in such product formulas between the cases where the
imension is divisible by four or not so.

Explicitly, we have for d=4m that

D��+2m−1;��+
�4m� �s,x�D���+2m−1;���−

�4m� �s,x�

=�
q=0

�

�
ti	t−��
ti	ti+1

D��+��+q+4m−2;�+��+q,t1,t1,t2,t2,. . .,tm−1,tm−1,�−���
�4m� �s,x� �4.20�

nd

D��+2m−1;��±
�4m� �s,x�D���+2m−1;���±

�4m� �s,x�

=A��+��+4m−2;��,. . .,±������,. . .,±����
�4m� �s,x�

+ �
q=1

�

�
ti	��−���

ti	ti+1

�+��

D��+��+q+4m−2;�+��+q,�+��,t1,t1,t2,t2,. . .,tm−1,±tm−1�
�4m� �s,x� , �4.21�
hile for d=4m+2 we have that
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D��+2m;��+
�4m+2� �s,x�D���+2m;���−

�4m+2� �s,x�

=A��+��+4m;��,. . .,������,. . .,−����
�4m+2� �s,x�

+ �
q=1

�

�
ti	��−���

ti	ti+1

�+��

D��+��+q+4m;�+��+q,�+��,t1,t1,t2,t2,. . .,tm−1,tm−1,�−���
�4m+2� �s,x� , �4.22�

nd

D��+2m;��±
�4m+2� �s,x�D���+2m;���±

�4m+2� �s,x� = �
q=0

�

�
ti	��−���

ti	ti+1

�+��

D��+��+q+4m;�+��+q,t1,t1,t2,t2,. . .,tm,±tm�
�4m+2� �s,x� .

�4.23�

A special case of the previous is the product involving the character D�r−1;0�
�2r� in �3.27�, corre-

ponding to a free scalar field, for which we have

D�r−1;0�
�2r� �s,x�D��+r−1;��±

�2r� �s,x� = �
q=0

�

D��+q+2r−2;�+q,�,. . .,±��
2r �s,x� . �4.24�

Another special case of the above contains a result first found by Vasiliev10 which generalizes
well-known result by Flato and Fronsdal6 in three dimensions to even dimensions d=2r. This

esult involves products of the representation corresponding to the free Dirac spinor,

Di�2r��s,x�  D�r−�1/2�,�1/2��+
�2r� �s,x� + D�r−�1/2�,�1/2��−

�2r� �s,x�

= sr−�1/2��1 − s����1/2,. . .,1/2,1/2�
�2r� �x� + ��1/2,. . .,1/2,−1/2�

�2r� �x��P�s,x�

= sr−�1/2��1 − s��x1
�1/2� + x1

−�1/2�� ¯ �xr
�1/2� + xr

−�1/2��P�s,x� . �4.25�

sing the above product formulas we may show that

Di�2r��s,x�Di�2r��s,x� = 2A�2r−1,0,. . .,0�
�2r� + 2�

q=0

�

�D�2r+q−1,q+1,1,1,. . .,1,0�
�2r� �s,x� + D�2r+q−1,q+1,1,1,. . .,1,0,0��s,x�

+ ¯ + D�2r+q−1,q+1,1,0,. . .,0,0�
�2r� �s,x� + D�2r+q−1,q+1,0,0,. . .,0,0�

�2r� �s,x��

+ �
q=0

�

�D�2r+q−1,q+1,11,. . .,1,1�
�2r� �s,x� + D�2r+q−1,q+1,1,1,. . .,1,−1�

�2r� �s,x�� , �4.26�

egardless of whether d=2r is divisible by 4 or not so. The latter matches Vasiliev’s result.

. Product formulas: odd dimensions

For SO�2r+1,2� we have that

P�2r+1��s,x� = �
p,q=0

�

s2p+q��q,0,. . .,0�
�2r+1� �x� , �4.27�
here
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��q,0,. . .,0�
�2r+1� �x� = 1

2det�xi
kj − xi

−kj���x1 + x1
−1, . . . ,xr + xr

−1�−1�x1
�1/2� − x1

−�1/2��−1
¯ �xr

1/2 − xr
−�1/2��−1,

�4.28�

ith k1=q+ 1
2 +r−1, kj =

1
2 +r− j, j�1.

From the results of Appendix D, we have the following expansions for the free spinor case of
3.34� and the free scalar case of �3.33�, namely,

D�r;1/2�
�2r+1��s,x� = �

q=0

�

sr+q���1/2�+q,�1/2�,. . .,�1/2��
�2r+1� �x� , �4.29�

or the free spinor case and

D�r−�1/2�;0�
�2r+1� �s,x� = �

q=0

�

sr+q−�1/2���q,0,. . .,0�
�2r+1� �x� , �4.30�

or the free scalar case.
For �3.32� and p=r− j we have that, for ���1� ¯ �� j,

D��+r+j;�,�1,. . .,�j�
�2r+1� �s,x� = �

p1,. . .,pj,q,t=0

�

�
i1=− 1

2
p1

1
2

p1

¯ �
ij=− 1

2
pj

1
2

pj

s�+r+j+q+t+p1+¯+pj���+q,�,. . .,�,�1+2i1,. . .,�j+2ij�
�2r+1� �x� ,

�4.31�

hich we show in Appendix D. Again, the weights ��+q , � , . . . , � ,�1+2i1 , . . . ,� j , +2ij� may lie
utside the dominant Weyl chamber, i.e., not satisfy �3.2�, for particular � ,�i. For such weights we
ay use that �

��
�2r+1��x�=sgn�w��

��w
�2r+1��x�, some w�W2r+1, to relate such characters to those with

ominant integral highest weights ��w.
Just as for even dimensions in �4.16� a simplification to �4.31� occurs for the p=1 case of

3.32� for �1 � ,�2= ¯ =�r=0 for which,

D��+2r−1;�,0,. . .,0�
�2r+1� �s,x� = �

p,q=0

�

�
k=0

�

s�+2r+2p+q−1��q+k,�−k,0,. . .,0�
�2r+1� �x� . �4.32�

Regarding products of free representations, we may determine that, using �3.32� for p=1,

D�r;1/2�
�2r+1��s,x�D�r;1/2�

�2r+1��s,x� = A�2r;0,. . .,0��s,x� + �
q=0

�

�D�2r+q;q+1,1,. . .,1�
�2r+1� �s,x� + D�2r+q;q+1,1,. . .,1,0�

�2r+1� �s,x�

+ ¯ + D�2r+q;q+1,0,. . .,0�
�2r+1� �s,x�� , �4.33�

nd

D�r;1/2�
�2r+1��s,x�D�r−�1/2�;0�

�2r+1� �s,x� = �
q=0

�

D�2r+q−�1/2�;q+�1/2�,�1/2�,. . .,�1/2��
�2r+1� �s,x� , �4.34�

long with

D�r−�1/2�;0�
�2r+1� �s,x�D�r−�1/2�;0�

�2r+1� �s,x� = �
q=0

�

D�2r+q−1;q,0,. . .,0�
�2r+1� �s,x� , �4.35�
hich generalize similar formulas obtained in Ref. 6 to odd dimensions.
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. PARTITION FUNCTIONS

As a partial check of the character formulas corresponding to free fields, we will compare
hem to partition functions which have been obtained by various authors in conformally invariant
heories on S1�Sd−1. For these cases, the single particle partition function for a local free operator

may expressed by

YF
�d��s� = �

q=0

�

nF,q
�d� s�0+q, �5.1�

here nF,q
�d� enumerates the descendants of F in the flat background Rd. For even d, the form �4.14�

or the character formula corresponding to such free fields allows us to obtain YF
�d��s� directly

hen we set x1 , . . . ,x�1/2�d=1. Thus we easily find that

YF±

�d��s� = �
q=0

�

nF±,q
�d� s�+�1/2�d+q−1, �5.2�

here for ��0 �from Appendix B�

nF±,q
�d� = ���+q,�,. . .,�+±��

�d� �1, . . . ,1� = dim�I��+q,�,. . .,��
�d� �

= 2�1/2�d−1 �
i=1

1
2

d−1
1

�d − 2i�!
�q + i��2 � + q + d − 2 − i�

� �
2�k�j�

1
2

d

�j − k��2 � + d − j − k� , �5.3�

hile for the scalar field

nS,q
�d� = ��q,0,. . .,0�

�d� �1, . . . ,1� =
2q + d − 2

q + d − 2
�q + d − 2

q
� , �5.4�

hich is the dimension of the rank-q symmetric traceless tensor representation of SO�d�. �This
grees with a similar formula in Ref. 12.� For chiral Weyl fermions we find, from �5.3� for �= 1

2 .

nf±,q

�d� = 2�1/2�d 1

q!
�q + 1��q + 2� ¯ �q + d − 2� . �5.5�

imilarly for the 1
2d-form field strength, from �5.3� for �=1,

nV±,q

�d� =
d

2�2q + d�� d
1
2d
��q + d − 1

q
� . �5.6�

ote that it may be easily checked that these occupancy numbers agree with those obtained in Ref.
3. For d=4,6 �where for d=4 then Y

V+
�4��s�+Y

V−
�4��s� is the single particle partition function of the

axwell field�.
For bosonic F the multiparticle partition function is given by

ZF
�d��s� = exp��

n=1

�
1

n
YF

�d��sn�� = �
q=0

�

�1 − s�0+q�−nF,q
�d�

, �5.7�
hile for fermionic F it is given by
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ZF
�d��s� = exp��

n=1

�
1

n
�− 1�n+1YF

�d��sn�� = �
q=0

�

�1 + s�0+q�nF,q
�d�

. �5.8�

t is easy to check that �5.7�, �5.8� for the scalar, Weyl fermion and field strength cases above
atch the results Ref. 13 for d=4,6.

Performing the summation in �5.2� for the scalar, Weyl fermion and 1
2d-form field-strength

ases we find

YS
�d��s� = �s + 1�

s�1/2�d−1

�1 − s�d−1 ,

Y f±
�d��s� = 2�1/2�d s�1/2��d−1�

�1 − s�d−1 , �5.9�

YV±

�d��s� =
d!

2� 1
2d�!2

s�1/2�d

�1 − s�d−1F�1,− 1
2d + 1; 1

2d + 1;s� ,

where F�a ,b ;c ;x� is the usual hypergeometric function� which may be read off directly from
3.26�, �3.27� for xi=1. This form may be directly compared to similar results in Ref. 14 whereby
he formulas agree for the scalar and Weyl fermion cases.

It is not difficult to compute the first couple of numbers �5.6� for the self-dual r= 1
2d form field

trength which we denote by F�1¯�r
= *F�1¯�r

. For q=0 this number just counts the number of
ndependent components in F�1¯,�r

. Antisymmetry in the indices implies � 2r
r

� independent com-
onents which is reduced by a factor of one-half due to self-duality. For q=1 �5.6� counts the
umber of first-order descendants, ��F�1¯�r

. This will be r� r
2r� less the number of constraint

quations ��1F�1¯�r
=0 which is �r−1

2r �.
As a further example and check of our formulas, we consider the single particle partition

unction for rank-� symmetric traceless tensor fields T�1¯��
satisfying the constraint equation

�1T�1¯��
=0. The appropriate character formula in this case is given by �4.16�. The corresponding

ccupation numbers, for nF,q
�d� →Nq,� in �5.2�, are given by

Nq,� = �q�d − 2��2 � + d − 3� + �d − 1��� + d − 3��2 � + d − 2��

�
1

�d − 1��d − 2��d − 3�
�� + d − 4

�
��q + d − 2

q
� . �5.10�

o see this we may use �4.16� to write

Nq,� = �
i=0

�1
2

q�
tq−2i,� for tq,� = �

k=0

�

dim�I�q+k,�−k,0,. . .,0�
�d� � . �5.11�

sing the dimension formula in Appendix B we may find that

tq,� = �� + q + d − 3��4 � q + �d − 3��2 � + 2q + d − 2��
1

�d − 2��d − 3�2�� + d − 4

�
��q + d − 4

q
� ,

�5.12�

nd thence obtain �5.10� from �5.11�.
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gain it is not difficult to check that the first couple of numbers agree with expectations. We may
asily show that N�,0=dim�I��,0,. . .,0�

�d� � given in �5.4� as expected. Also we may easily show that

�,1=d dim�I��,0,. . .,0�
�d� �−dim�I��−1,0,. . .,0�

�d� � which is the number of first-order descendants ��T�1. . .��

educed by the number of constraint equations coming from the conservation condition. More
enerally

N�,q = �q + d − 1

q
�dim�I��,0,. . .,0�

�d� � − �q + d − 2

q − 1
�dim�I��−1,0,. . .,0�

�d� � , �5.13�

hich may be easily seen as the descendants at level q are given by ��1
��2

¯��q
T�1¯��

whose
umber of independent components, is given by the first term in �5.13� which is reduced by the
umber of independent components in ��1

��2
¯��q−1

��1T�1¯��
which vanishes by conservation.

More generally, we may use �4.15� in even dimensions and �4.29�, �4.30�, �4.31� in odd
imensions for xi=1 to determine the occupation numbers in the single particle partition function
orresponding to fields whose conformal dimension saturates the unitarity bounds �3.8�, �3.9�. As
entioned before these are fields which satisfy certain conservation conditions which determines

he particular unitarity bound.
Rotating quantum fields in an AdSd+1 background have been considered in Ref. 15. Here the

odes of a quantum field are supposed to have energies E and angular momenta ji where i
1, . . . ,� 1

2d�. For the boundary conformal field theory on R�Sd−1 the energies are related to the
onformal dimension of conformal fields and their descendants via E=� assuming that the sphere
as unit radius while ji correspond to SO�d� eigenvalues. Making the identification

s = e−�, xi = e��i, �5.14�

here �=T−1 for T being the temperature and �i denote chemical potentials for angular momenta,
hen it can be shown that the one particle boundary partition function �E,ji

e−��E−�iji� and character
ormula for the conformal field coincide. For instance, for a free scalar field, the character formula
3.27� obtained here agrees with the corresponding single particle partition function for the bound-
ry conformal field theory obtained in Ref. 15 when we make the identification �5.14�.
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PPENDIX A: CHARACTER FORMULAS FOR INFINITE DIMENSIONAL IRREDUCIBLE
ODULES OF SEMISIMPLE LIE ALGEBRAS

In this appendix we outline some results on character formulas of relevance for the main text.
irst we give basic definitions and notation.

The Weyl group W is generated by mappings w
, for 
 being a root, which on weight space
ive

w
��� = � − �
Ú,��
, 
Ú = 2
/�
,
� . �A1�

or �=�, another root, then w
��� is a reflection of � with respect to the hyperplane through the
rigin and perpendicular to 
. Here �� ,�� denotes the usual inner product on weight space
etween � and �. �In the Dynkin basis this is given by �� ,��=�i,j�iGij� j where �i ,�i are Dynkin
abels and �Gij� is the quadratic form matrix�. Any w�W may be decomposed in terms of simple

eyl reflections wiw
i
, for 
i being the simple roots, as w=wi1

¯win
for some n which is

enerally not unique. However the signature of w defined, in the present case, by sgn�w�= �−1�n is
niquely defined. We denote by ��w� the minimum number of wi in the composition of w. Clearly

��w�
gn�w�= �−1� .
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The Weyl group divides the weight space into a family of open sets called Weyl chambers.
hese are simplicial cones defined by

Hw = 
�:�
i
Ú,w���� � 0, 1 � i � r� , �A2�

or w�W. The number of such equals the order of W, �W�. The weights lying on the boundary of
he Weyl chambers are the points on the hyperplanes perpendicular to the roots �
i

Ú ,w����=0. In
erms of Dynkin labels these are the weights having at least one vanishing Dynkin label.

The Weyl chamber corresponding to the identity of the Weyl group H1 is the fundamental or
ominant Weyl chamber. In terms of Dynkin labels the weights in this chamber have strictly
ositive Dynkin labels. If all the Dynkin labels are non-negative and/or integers then we say the
eight is dominant and/or integral.

Suppose we have some Lie algebra module V� having highest weight �. The definition of the
orresponding character we use is5

Char�  �
��V�

multV�
���e�, �A3�

here multV�
���, multV�

���=1, denotes the multiplicity of the weight � in the weight system of

�. This is to be interpreted as a function on weight space satisfying

e�e� = e�+�, e���� = e��,��. �A4�

nder the action of the Weyl group, for w�W,

w�e�� = ew���. �A5�

For a unitary group and with multV�
��� always finite we may recover a trace formula for the

haracter by normalizing each vector v��V� corresponding to the weight � so that �v� �v�	=1.
hen we may write,

Char���� = �
v��Ṽ�

�v��v�	e��,�� = Tr�e�H,��� , �A6�

here �H ,��=�i,jHiGij� j in the Dynkin basis, for example, for Hi being Cartan subalgebra
lements with Hi �v�	=�i �v�	.

As an example, consider a Verma module V� with basis �
��−
E


n
 ��	hw for �− being negative
oots and n
 being non-negative integers. For fixed n
 then the corresponding weight ��n
�=�

�
��−
n

 has unit multiplicity in the weight system of V�. Thus we may write the character for

he Verma module as

C� = �
n
	0

e��n
� = e� �

��−

�1 − e
�−1. �A7�

ote that a given weight � has multiplicity given by P��−�� where P��� counts the number of
ays in which the weight � may be written as a linear combination of positive roots with
on-negative integer coefficients.

We may easily also show that

w�C�� = sgn�w�C�w, �w = w�� + � −  , �A8�

or any w�W.
The character �� of an infinite dimensional irreducible module I� of a semisimple Lie algebra

as been written down long ago.11 For the highest weight � not being dominant integral then I�

s infinite dimensional. Otherwise I� is finite dimensional and the character is given by the
ell-known Weyl character formula. Before we give the result of Ref. 11 we quote a number of
esults which give insight into the structure of infinite dimensional irreducible modules.
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Concerning Verma modules �which in Ref. 11 are called elementary representations�, the first
esult we recount is that if �w, w�W is not a weight of V� then V� itself is irreducible. This is
he simplest case and an example is V� for SO�3� with � being a negative half integer. We now
ive the conditions for V� to contain submodules V�� and so to be reducible.

We define a partial ordering on weights so that ���� if and only if �−��=� for some
=�
��+

p

 for p
 being non-negative integers, not all zero. A necessary condition for a Verma
odule V� to contain a submodule V�� is that ��=�w�� for some w�W, w�1. A crucial result

s a theorem in Ref. 20 which proves that a necessary and sufficient condition for V�w to be a
ubmodule of V� is that there exist a sequence of positive roots �1 , . . . ,�K such that

w = w�1
w�2

¯ w�k
, �w�k

Ú ,w�k+1
w�k+2

¯ w�K
�� + �� � N, k = 1, ¯ ,K , �A9�

here we define w�K+1
1. For � being a dominant integral weight then condition �A9� holds for

ll �w, w�W. This justifies the claim made in this paper that for � being dominant integral then
w is a highest weight in V� for every w�W.

A key result proved by Verma21 and recounted in Ref. 11 is the following. A Verma module
ontains those and only those irreducible representations I�� for which V�� is a submodule of V�.
urthermore it contains I�� at most once.

This results in the following formula for characters:

C� = �� + �
w�W
�w��

��w, �A10�

here the sum runs over all w for which �A9� holds.
Using these results and formulas for multiplicities of weights determined for Verma modules

n terms of the function P��� above a formula has been given for �� in Ref. 11. This may be
ewritten in the equivalent form

�� = C� + �
w�W
�w��

��wC�w, �A11�

here each w satisfies condition �A9� and where the integers ��w are determined by a recurrence
elation as follows.

Consider a submodule V�w of V� so that there is no other submodule V�w� of V� containing

�w in turn as a submodule. Then in this case ��w =−1.
For a submodule V�w of V� which is in turn contained in the submodules V�w� of V�, then in

his case

��w = − �
w�

��w� − 1, �A12�

hich determines ��w in �A11� recursively.
A simple example illustrates this formula. Consider Sl3 whereby, for a weight �= �a ,b� with

ynkin labels a ,b, the simple Weyl reflections are given by

w1��a,b�� = �− a,a + b�, w2��a,b�� = �a + b,− b� . �A13�

he S3 Weyl group elements consist of 
1,w1 ,w2 ,w1w2 ,w2w1 ,w
� where w
=w1w2w1=w2w1w2 is
he Weyl reflection corresponding to the root 
=
1+
2. The shifted Weyl reflections are given by

1=�, �w1 =�− �a+1�
1, �w2 =�− �b+1�
2, �w2w1 =�− �a+1�
1− �a+b+2�
2, �w1w2 =�− �a
b+2�
1− �b+1�
2, �w
 =�− �a+b+2�
. For ↙denoting a vector in the −
1 direction of length
+1 and ↘ denoting such in the −
2 direction of length b+1 then we may represent the weight

ystem of the Verma module V� diagrammatically as follows:
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�A14�

ssuming � is dominant integral and where we have omitted any other weights occurring. In
omputing ��w1, for example, we have that V�w1w2 and V�w2w1 are both sub-Verma modules of V�w1

ith ��w1w2 =��w2w1 =−1. Also V�w
 is a sub-verma-module of both the latter and so ��w
 =
���w1w2 +��w2w1�−1=1. Thus ��w1 =C�w1 −C�w2w1 −C�w1w2 +C�w
 In fact for all ��=�w� it is easy to
heck that ���=C��+� w�S3

��w���
sgn�w�=C��w.

Other properties of I� which are useful for what follows concern symmetry under Weyl group
eflections. For all Dynkin labels �i of the weight � which are non-negative integers then the
ubgroup W� generated by the corresponding simple Weyl reflections wi is the maximal symmetry
roup of the weight system of I�. Furthermore V�w� is a submodule of V� for all w��W� ,w�
1 �since all w� satisfy condition �A9��. In terms of characters we have that w�����=�� for every
��W�.

For � being dominant integral then this symmetry group is of course the Weyl group itsetf and
�=W. In this case we from �A11� that

�� = �
w�W

sgn�w�C�w = �

��−

�1 − e
�−1 �
w�W

sgn�w�ew��+�−, �A15�

he usual Weyl character formula. This follows as symmetry under W determines ��w =sgn�w� in
his case. Using �A8� we may find that the Weyl character may be rewritten as

�� = �
w�W

w�C��  W�C�� . �A16�

ue to the invariance of I� under the action of any w�W then the Weyl symmetry operator W

efined by �A16� is obviously linear and idempotent on the vector space spanned by the characters
f the Verma modules, W2= �W �W.

Denoting by I the subset of labels for which �i, i� I, are non-negative integers, supposing we
nd that every sub-Verma-module highest weight �w�, w��W may be written in the form �w�

�w�w, w�W, w��W� for �i
w, i� I being non-negative integers or �i

w=−1 for some i� I. We
laim that the weights �w��� are given by the disjoint union of the weights �w�w for every
��W�. For the cases of �i

w=−1 then the C�w�w, w��W� cancel among themselves in ��.
Under this assumption �which holds in the cases considered in this paper� then using �A11� we

ay write for the character

�� = C� + �
w��W�
w��1

��w�C�w� + �
w��W�

w�W,w�1

��w�wC�w�w, �A17�

here the sum runs over only those w�W which satisfy �A9� and for which �i
w, i� I, is a

on-negative integer or −1. Using �A8� and w�����=��, w��W� and the claims proved below we
ay show that ��w�=sgn�w��, ��w�w =��w sgn�w�� and that the C�w�w for which � j

w=−1 for some
j� I cancel among themselves. It is then left to determine the remaining ��w by the recurrence

elation mentioned earlier.
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We now show that for some arbitrary weight � which has �i, i� I being non-negative integers
hat this is the unique weight among �w�, w��W� having this property. Clearly under these
ssumptions ��wi�i= �
i

Ú ,�wi�=−�i−2 is negative for i� I. Since W� is generated by all wi, i
I, then we may consider all w�=wi1

¯win
, ij � I such that ��w��=n. Denoting by �+� all those

ositive roots formed from linear combinations of the subset of simple roots 
i, i� I, then we have
he result that ��wiw��= � �w��+1 if and only if w�−1�
i���+�. �The argument for this is similar to
ne given in Ref. 22.� In this case we have that ��wiw��i=−�
Ú ,�+�−1 where 
=w�−1�
i�
�+�. Since �
Ú ,�+�	0 then ��wiw��i must be negative. Hence all �w�, w��W�, w��1, have

t least on of �i
w�, i� I which is negative.

If some �w�w=�u�u for some w�, u��W� and with �i
w, �i

u	0, i� I, then clearly we may
rite �u=�u�−1w�w which contradicts the above unless u=w, u�=w�. Thus any two sets of such
eights 
�w�w ,w��W�� and 
�w�u ,w��W�� for w�u are disjoint.

If for some weight � j =−1 for some j� I then �wj =� since �
 j
Ú ,�w+�=0. We claim that the

nly �w� for w��W� which equal � in this case are those for which w� is composed of the wj.
or simplicity we consider the case when � j =−1 and otherwise �i is non-negative for i� I. In this
ase if �w�=� then clearly �wjw�=� so that, for 
=w−1�
 j�, ��wjw�� j =−�
Ú ,�+�−1=−1 by
ssumption. Thus �
Ú ,�+�=0 which is only the case if 
�
 j. The only roots with this property
re ±
i so that w�=1,wj. Also this implies that, for w�, u��W�, �w�=�u� if and only if u�
w� or u�=w�wj. The generalization is clear.

PPENDIX B: WEYL CHARACTER FORMULAS FOR SO„d…

We now consider SO�d� character formulas. We define the variables xi=eei���=e�i for some
rbitrary SO�d� weight �=�i=1

r �iei.
For SO�2r� the action of the Weyl group, W2r=Sr›Zr−1, on weights in the orthonormal basis

s given by Sr permutations on the labels followed by reflections involving an even number of sign
ips in the labels. This means that for �=i¯ j �Zr−1 where i��1 , . . . ,�i , . . .r�= ��1 , . . . ,
�i , . . .�r� ,i

2=1 then the number of i in the composition of � is even and sgn���=1. Using that

�
��Sr

sgn���x��1�
�1

¯ x��r�
�r = det�xi

�j� , �B1�

nd the restriction mentioned on ��Zr−1 then23

W2r��
i=1

r

xi
�i� =

1

2
det�xi

�j + xi
−�j� +

1

2
det�xi

�j − xi
−�j� , �B2�

or W2r denoting the SO�2r� Weyl symmetry operator. For some highest weight �=�i=1
r �iei cor-

esponding Verma module character is given by

C�
�2r��x�  C�

�2r���� = �
i=1

r

xi
�i �

1�j�k�r,�=±
�1 − e�
jk,�,���−1 = �

i=1

r

xi
�i+r−i��x1 + x1

−1, . . . ,xr + xr
−1�−1,

�B3�

here 
ij,±=−ei±ej, 1� i� j�r are the negative roots and ��x� is the Vandermonde determinant
4.13�. Using the fact that ��x1+x1

−1 , . . . ,xr+xr
−1� is left alone by any ���Sr›Zr−1 then we have

uite simply that the Weyl character of the irreducible representation with dominant integral
ighest weight � �given by ��

�2r��x�=W2r�C�
�2r��x��� reduces to

��
�2r��x� = 1

2 �det�xi
kj + xi

−kj� + det�xi
kj − xi

−kj����x1 + x1
−1, . . . ,xr + xr

−1�−1, �B4�
or ki=�i+r− i. The dimension of the irreducible representation is given by
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dim�I�
�2r�� = 2r−1�

i=1

r
1

�2r − 2i�! �
1�i�j�r

��i − � j + j − i���i + � j + 2r − i − j� . �B5�

For SO�2r+1� the action of the Weyl group, W2r+1=Sr›Zr, on weights in the orthonormal
asis is given by Sr permutations on the labels followed by reflections involving any number of
ign flips in the labels. Using �B1� we therefore have that23

W2r+1��
i�1

r

xi
�i� = det�xi

�j − xi
−�j� , �B6�

or W2r+1 denoting the SO�2r+1� Weyl symmetry operator. This time for some highest weight
=�i=1

r �iei the corresponding Verma module character is given by

C�
�2r+1��x�  C�

�2r+1���� = �
i=1

r

xi
�i �

1�j�k�r,�=±
�1 − e�
jk,�,���−1 �

1�l�r

�1 − e�el,���−1

= �
i=1

r

xi
�i+�1/2�+r−i��x1 + x1

−1, . . . ,xr + xr
−1�−1�x1

1/2 − x1
−1/2�−1

¯ �xr
1/2 − xr

−1/2�−1, �B7�

ince −ei, 1� i�r are the weights of the extra negative roots in this case. Using that ��x1

x1
−1 , . . . ,xr+xr

−1�−1�x1
1/2−x1

−1/2�−1
¯ �xr

1/2−xr
−1/2�−1 is left alone by any ���Sr›Zr then the Weyl

haracter of the irreducible representation with dominant integral highest weight � is given by,
sing �B6� and �B7�,

��
�2r+1��x� = det�xi

kj − xi
−kj���x1 + x1

−1, . . . ,xr + xr
−1�−1�x1

1/2 − x1
�−1/2��−1

¯ �xr
1/2 − xr

−1/2�−1,

�B8�

here ki=�i+
1
2 +r− i. The dimension of the irreducible representation is given by

dim�I�
�2r+1�� = �

i=1

r
1

�2r + 1 − 2i�!
�2�i + 2r + 1 − 2i� �

1�i�j�r

��i − � j + j − i���i + � j + 2r + 1 − i − j� .

�B9�

PPENDIX C: UNITARITY BOUNDS

Descendant states have bases, for p=0,1 , . . .,

B�p� = � �
v=i�,0

1�i�r,�=±

Pv
nv��;��	,�

v
nv = p� , �C1�

or nv being positive integers �with n0=0 for SO�2r�� and �� being a weight in the weight system
f the module of SO�d� with highest weight �. For p=0 the norms of corresponding states are
trictly positive for �� being weights in the SO�d� irreducible representation with dominant inte-

ral highest weight � and ��� ;��	�2= �� ,��̄ �� ,��	�0.
Examining the simplest descendant states with basis B�1� then these have SO�d� highest

eight states

Hd = 
�� + 1;� + v	� , �C2�

here v=�ei, along with v=0 for d=2r+1, these of course occurring in the decomposition of the
roduct between the vector representation and the representation with highest weight � into irre-

ucible representations, e1 � � = �v� � v. Remarkably, most of the restrictions necessary for the
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tates in Hd to have positive definite norm are sufficient for the unitarity constraints to be satisfied
or all descendant states in B�p�—also conjectured in Ref. 18.

The simplest states in Hd may be constructed explicitly and are

�� + 1;� + e1	 = P1+��;�	hw,

�� + 1;� + e2	 = �− 2i��1 − �2�P2+ + P1+E12
−+���;�	hw, �C3�

�� + 1;� + e3	 = �− 4��1 − �3 + 1���2 − �3�P3+ − 2i��1 − �3 + 1�P2+E23
−+

+ ��2 − �3 + 1�P1+E12
−+E23

−+ − ��2 − �3�P1+E23
−+E12

−+���;�	hw,

hich are all annihilated by SO�d� raising operators. Using the conformal algebra and the unitarity
onditions, the norms of these three states are given by

��� + 1;� + e1	�2 = 4�� + �1����;�	�2,

��� + 1;� + e2	�2 = 16�� + �2 − 1���1 − �2���1 − �2 + 1����;�	�2, �C4�

��� + 1;� + e3	�2 = 64�� + �3 − 2���1 − �3 + 1���1 − �3 + 2�

���2 − �3���2 − �3 + 1����;�	�2,

nd for these to be strictly positive this places obvious restrictions on �. Other examples which
ay be readily achieved are, for SO�3,2�,

�� + 1; � + 1	 = P1+��; � 	hw, �� + 1; � 	 = �− 2i � P0 + P1+E1
−���; � 	hw,

�C5�
�� + 1; � − 1	 = �2 � �2 � − 1�P1− − 2i�2 � − 1�P0E1

− + P1+�E1
−�2���; � 	hw,

or which the norms are

��� + 1; � + 1	�2 = 4�� + � ����; � 	�2, ��� + 1; � 	�2 = 8�� − 1� � �� + 1����; � 	�2,

�C6�
��� + 1; � − 1	�2 = 16�� − � − 1��2�4�2 − 1����; � 	�2.

nother important example is for SO�4,2� whereby along with �C3�, for �= ��1 ,�2�, we also have

�� + 1;�1,�2 − 1	 = �− 2i��1 + �2�P2− + P1+E12
−−���;�	hw,

�C7�
�� + 1;�1 − 1,�2	 = �− 4��1

2 − �2
2�P1− − 2i��1 − �2�P2+E12

−− − 2i��1 + �2�P2−E12
−+ + P1+E12

−+E12
−−�

���;�	hw,

or which the norms are

��� + 1;�1,�2 − 1	�2 = 16�� − �2 − 1���1 + �2���1 + �2 + 1����;�	�2,

�C8�
��� + 1;�1 − 1,�2	�2 = 64�� − �1 − 2���1

2 − �2
2���1 − �1 + 1���1 + �2 + 1����;�	�2.

Constructing other such elements of Hd is cumbersome. We here outline a simpler procedure
or finding the unitarity constraints for B�1�. The norms of the highest weight states in Hd are more

enerally given by
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��� + 1;� + v	�2 = �� + g�
�v��f�

�v�, �C9�

here the functions f�
�v� are strictly positive for � being strictly inside the dominant Weyl chamber,

3.1� or �3.2�. We have that, assuming that � is strictly inside the dominant Weyl chamber,

K1−�� + 1;� + v	 = 0 Þ � + g�
�v� = 0, �C10�

hich is in turn implied by the state ��+1;�+v	 being null. As an aid to solving �C10� we extend
he definition of B�1� in �C1� and consider ���V� �the Verma module with dominant integral
ighest weight ��. Consider the following highest weight states with respect to SO�d�, namely,

�� + 1;�wv + e1	 = P1+��;�wv	, K1−�� + 1;�wv + e1	 = 0 Þ � + �1
wv = 0, �C11�

here wv are such members of the Weyl group Wr for which

�wv + e1 = �� + wv
−1�e1��wv = �� + v�wv, �C12�

or some v=�ej for �=±. �Note that for SO�2r+1� the vector v=0 is not on the Weyl orbit of

1—we need a different approach to deal with this.� Thus the states �C11� are related to those in

d by the action of SO�d� lowering operators on ��+1;�+v	. �For instance, we have that ��
1;��12+e1	= �E12

−+��1−�2 ��+1;�+e2	 for �12��1 ,�2 , . . . �= ��2 ,�1 , . . . � and with ��+1,�+e2	 given
n �C7�.� Also, K1− commutes with all such lowering operators so that the conditions �C10� and
C11� should be identical. Thus, using �3.14� �for �1=� ,��1�= j�,

g�
��ej� = �1

w�ej = �� j + �� − 1� 1
2d − �j + 1, �C13�

etermining g�
�v�, v�0 in �C9� for the states in Hd.

To deal with the state ��+1; � 	�H2r+1 for SO�2r+1,2� we first note an interesting observa-
ion. Consider the state ��+1;�+er+1	�H2r+2 which is given by

�� + 1;� + er+1	 = �A�Pr+1+ + �
1�i�r,�

B� ,i,�Pi+E��ii+1�
−+ E��i+1i+2�

−+
¯ E��rr+1�

−+ ���,�	hw,

�C14�

here � permutes �ii+1� , . . . , �rr+1� and A�, B�,i,� are determined from the requirement that

12
+− , . . . ,Err+1

+− annihilate the state �Err+1
++ automatically annihilates it�. Defining Ã��1,. . .,�r�

A��1,. . .,�r,0� , B̃��1,. . .,�r�,i,�
=B��1,. . .,�r,0�,i,�, then we claim that ��+1; � 	�H2r+1 is given by

�� + 1;�	 = �Ã�P0 + �
1�i�r,�

B̃� ,i,�Pi
+E��ii+1�

−+ E��i+1i+2�
−+

¯ E��r�
− ���,�	hw, �C15�

here now � permutes �ii+1� , . . . , �r�. This follows when we show that the conditions on Ã� , B̃�,i,�

rising from Eii+1
+− ,Er

+ ,1� i�r−1 annihilating �C15� are exactly equivalent to those on A�B�,i,�

rising from Eii+1
+− ,Err+1

+− ,1� i�r−1 annihilating �C14� for �r+1=0 if we identify P0 with Pr+1 and

r
−with Err+1

−+ . We have that �K1− ,Pr+1+�=−2iE1r+1
−+ = �−2i�1−r�E12

−+ , . . . , �Er−1r
−+ ,Err+1

−+ �¯ � and

K1− ,P0�=−2iE1
−= �−2i�1−r�E12

−+ , . . . , �Er−1r
−+ ,Er

−�¯ �. Due to this and as Ã��1,. . .,�r�

A��1,. . .,�r,0� , B̃��1,. . .,�r�,i,�
=B��1,. . .,�r,0�,i,� then K1− annihilating �C14� for �r+1=0 results in the same

quations for � as for K1− annihilating �C15� if we identify Err+1
−+ with Er

−. Thus, from �C13� for
j=r+1,�= + ,�r+1=0,

K1−�� + 1,�	 = 0 Þ g�
�0� = − r . �C16�

Now that we have determined g�
�v� in �C9� to be given by �C13� and �C16�, we may determine

�1�
he unitarity bounds for states in B , the simplest descendants. For Hd and �1= ¯ =�p� ��p+1�,
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p�r−1 then we have that f�
�v�=0 in �C9� for v=−e1 ,�ej ,ep, j=2, . . . , p−1 �here and in the

ollowing, this is because the corresponding states ��+1;�+v	 for � being on the boundary of the
ominant Weyl chamber are null as SO�d� representations� and that

� 	 max
− g�
�e1�,− g�

�−ep�,− g�
�ej�,− g�

�−ej�,p + 1 � j � r� � 
− g�
�0� for d = 2r + 1�

= − g�
�−ep� = �1 + d − p − 1, �C17�

hich matches the first requirement in �3.8�. At the unitarity bound �=�1+d− p−1 then all the
tates ��+1;�+v	 for v=−e1 ,�ej ,2� j� p in Hd are null.

In even dimensions, for �1= ¯ = ±�r for H2r then we have that f�
�v�=0 in �C9� for

=−e1 ,�ej , ±er, j=2, . . . ,r−1,

� 	 max
− g�
�e1�,− g�

��er�� = �1 + r − 1, �C18�

ith in addition the state ��+1;��er	 being null at the unitarity bound.
In odd dimensions, for �1= ¯ =�r�

1
2 for H2r+1 then f�

�v�=0 in �C9� for v=−e1 ,�ej ,er, j

2, . . . ,r−1 and

� 	 max
− g�
�e1�,− g�

�−er�,− g�
�0�� = �1 + r , �C19�

ith in addition the state ��+1,�−er	 being null at the unitarity bound. For �1= ¯ =�r= 1
2 then

f�
�v�=0 in �C9� for v=−e1 ,�ej, j=2, . . . ,r and

� 	 max
− g�
�e1�,− g�

�0�� = r = � 1
2d� , �C20�

ith the state ��+1,�	 being null at the unitarity bound.

PPENDIX D: EXPANSION AND PRODUCT FORMULAS

In this appendix various formulas from Sec. IV are proven. We make use of a simple property
f the function P�d��s ,x� defined for d=2r in �3.19� and d=2r+1 in �3.30�. Under the action of the
eyl symmetry operator Wd �defined in Appendixes A and B� it obeys

Wd�f�s,x�P�d��s,x�� = Wd�f�s,x��P�d��s,x� , �D1�

or any f�s ,x�, as P�d��s ,x� is invariant under the action of any element of the SO�d� Weyl group,

d. Note also that Wd has no effect on the variable s.
We discuss the even dimensional cases of �4.11�, �4.14�, �4.15� first. For �4.14� we have that

�
q=0

�

s�+r+q−1���+q,�,. . .,±��
�2r� �x� = s�+r−1W2r��

q=0

�

�sx1�qC��,. . .,±��
�2r� �x�� = s�+r−1W2r� 1

1 − sx1
C��,. . .,±��

�2r� �x�� ,

�D2�

hich follows just by the definition of the character of the irreducible representation �B4� in terms
f the Verma module character �B3�. Using �D1� then �D2� may be rewritten as

s�+r−1P�2r��s,x�W2r��1 − sx1
−1��

i=2

r

�1 − sxi��1 − sxi
−1�C��,. . .,±��

�2r� �x��
= s�+r−1P�2r��s,x� �

ni−,nj+=0,1

0�n=�ni��2r−2

�− s�n���−n1−,�+n2+−n2−,. . .,±�+nr+−nr−�
�2r� �x� . �D3�
or n�0 in �D3� we may use
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���1,. . .,�j,�−1,�+1,�j+3,. . .,�r�
�d� �x� = − ���1,. . .,�j,�,�,�j+3,. . .,�r�

�d� �x� , �D4�

o show that the contributions for given n reduce to a single one from

���,. . .,�,�−1,. . .,�−1,±��1�
�2r� �x� ,

nth position
↑ �D5�

ith all contributions for n�r vanishing. Hence we have that �D2� reduces to D��+r−1,��±
�2r� �s ,x�

efined in �3.26� thus proving �4.14�. Notice that �4.11� is a special case of �4.14� when we take
=0 in the latter �whereby, as mentioned before, D��+r−1,��±

�2r� �s ,x�→sr−1�1−s2�P�2r��s ,x��.
We may prove �4.15� in a very similar way. The sum on the right-hand side of �4.15� may be

educed to

s�+r+j−1W2r��1 − sx1�−1 �
i=r−j+1

r

�1 − sxi�−1�1 − sxi
−1�−1C��,. . .,�,�1,. . .,�j�

�2r� �x�� , �D6�

n a similar fashion as �D2�, when we perform the sums over p1 , . . . , pj ,q. This may be rewritten
sing �D1� as

s�+r+j−1P�2r��s,x�W2r��1 − sx1��
i=2

r−j

�1 − sxi��1 − sxi
−1�C��,. . .,�,�1,. . .,�j�

�2r� �x��
= s�+r+j−1P�2r��s,x� �

ni−,nj+=0,1

0�n=�ni��2r−2j−2

�− s�n���−n1−,�+n2+−n2−,. . .,�+nr−j+−nr−j−,�1,. . .,�r�
�2r� �x� .

�D7�

or similar reasons as before, for n�0 the contributions for given n reduce to a single one from

���,. . .,�,�−1,. . .,�−1,�1,. . .,�j�
�2r� �x� ,

nth position
↑ �D8�

o that �D7� equals D��+r+j−1,�,�1,. . .,�j�
�2r� �s ,x� in �3.25� for p=r− j.

Turning to the odd dimensional cases of �4.27�, �4.29�, �4.30�, �4.31� these may be proven in
very similar way as for the even dimensional cases when we use �D1�. Note that we may use the

definition of the irreducible character �B8� in terms of the Verma module character �B7� and �3.30�
o rewrite the sum on the right-hand side of �4.30� as

srP�2r+1��s,x��1 − s�W2r+1��1 − sx1
−1��

i=2

r

�1 − sxi��1 − sxi
−1�C�1/2,. . .,1/2�

�2r+1� �x��
= srP�2r+1��s,x��1 − s���1/2,. . .,1/2�

�2r+1� �x� , �D9�

hich matches �3.34�. The free scalar case of �4.29� follows in a similar fashion. The identity
4.27� is in fact equivalent to �4.29�. The sum on the right-hand side of �4.31� may be rewritten as

s�+r+jW2r+1��1 − s�−1�1 − sx1�−1 �
i=r−j+1

r

�1 − sxi�−1�1 − sxi
−1�−1C��,. . .,�,�1,. . .,�j�

�2r+1� �x�� , �D10�
hen we perform the sums over pi ,q , t. This may be rewritten as
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s�+r+jP�2r+1��s,x�W2r+1��1 − sx1��
i=2

r−j

�1 − sxi��1 − sxi
−1�C��,. . .,�,�1,. . .,�j�

�2r+1� �x��
= s�+r+jP�2r+1��s,x� �

ni−,nj+=0,1

0�n=�ni��2r−2j−2

�− s�n���−n1−,�+n2+−n2−,. . .,�+nr−j+−nr−j−,�1,. . .,�r�
�2r+1� �x� .

�D11�

sing �D4�, for n�0 the contributions for given n reduce to a single one from

���,. . .,�,�−1,. . .,�−1,�1,. . .,�j�
�2r+1� �x� ,

nth position
↑ �D12�

o that �D11� equals D��+r+j,�,�1,. . .,�j�
�2r+1� �s ,x� in �3.32� for p=r− j.

To prove some product formulas we will use the expansions above and the following:

Wd�f�x���
�d��x�� = Wd�f�x����

�d��x� , �D13�

or any f�x�.
For even dimensions we now prove �4.22� and �4.23� for ��= 1

2 . In this case we have that

D��1/2�+2m;�1/2��±
�4m+2� �s,x� = s�1/2�+2m���1/2,. . .,1/2,±1/2�

�4m+2� �x� − s��1/2,. . .,1/2,�1/2�
�4m+2� �x�� , �D14�

here we may determine from �B4� that

��1/2,. . .,1/2�
�4m+2� �x� = �

i=1

2m+1

xi
−1/2 �

m	t	0
2m+1	j1�¯�j2t+1	1

xj1
¯ xj2t+1

,

�D15�

��1/2,. . .,−1/2�
�4m+2� �x� = �

i=1

2m+1

xi
−1/2�1 + �

m	t	1
2m+1	j1�¯�j2t	1

xj1
¯ xj2t� .

We use �D14� and �4.14� to expand D��+2m,��±
�4m+2� �s ,x� in �4.22� and then match powers of s on

oth sides. Clearly the O�1� terms on both sides of �4.22� agree. At O�sq� for q	1 we must show
hat

���+q,�,. . .,��
�4m+2� �x���1/2,. . .,−1/2�

�4m+2� �x� − ���+q−1,�,. . .,��
�4m+2� �x���1/2,. . .,1/2�

�4m+2� �x�

= �
ti=�±�1/2�

ti	ti+1

���+�1/2�+q,�+�1/2�,t1,t1,. . .,tm−1,tm−1,�−�1/2��
�4m+2� �x� − ���+�1/2�+q−2,�+�1/2�,t1,t1,. . .,tm−1,tm−1,�−�1/2��

�4m+2� �x� .

�D16�

sing �D13� and �D15� we may rewrite the left-hand side of �D16� as

W�4m+2��C��+q,�,. . .,��
�4m+2� �x���1/2,. . .,−1/2�

�4m+2� �x� − C��+q−1,�,. . .,��
�4m+2� �x���1/2,. . .,1/2�

�4m+2� �x��

= W4m+2�C��+q−�3/2�,�−�1/2�,. . .,�−�1/2��
�4m+2� �x��x1

2 − 1� �
m	t	1

2m+1	j1�¯�j2t−1	2

xj1
¯ xj2t−1� .

�D17�

or q	1 most of the terms in �D17� vanish under the action of the Weyl symmetry operator and

t reduces to
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W4m+2�C��+q−�3/2�,�−�1/2�,. . .,�−�1/2��
�4m+2� �x��x1

2 − 1��
t=1

m

x2x3 ¯ x2t� , �D18�

nd from here it is easy to show that this agrees with the right-hand side of �D16�.
Similarly, using �D14� and �4.14� to expand D��+2m,��±

�4m+2� �s ,x� in �4.23�, then matching powers of

on both sides of the equation �4.23� we must show that for q	0,

���+q,�,. . .,���
�4m+2� �x���1/2,. . .,��1/2��

�4m+2� �x� − ���+q−1,�,. . .,���
�4m+2� �x���1/2,. . .,−��1/2��

�4m+2� �x�

= �
ti=�±�1/2�

ti	ti+1

���+�1/2�+q,t1,t1,. . .,tm,�tm�
�4m+2� �x� − ���+�1/2�+q−2,t1,t1,. . .,tm,�tm�

�4m+2� �x� , �D19�

or �=±. Using �D13� and �D15� we may rewrite the left-hand side of �D19� for �=+ as

W4m+2�C��+q,�,. . .,��
�4m+2� �x���1/2,. . .,1/2�

�4m+2� �x� − C��+q−1,�,. . .,��
�4m+2� �x���1/2,. . .,−1/2�

�4m+2� �x��

= W4m+2�C��+q−�3/2�,�−�1/2�,. . .,�−�1/2��
�4m+2� �x��x1

2 − 1��1 + �
m	t	1

2m+1	j1�. . .�j2t	2

xj1
¯ xj2t�� .

�D20�

or q	0 most of the terms in �D20� vanish under the action of the Weyl symmetry operator and
t reduces to

W4m+2�C��+q−�3/2��−�1/2�,. . .,�−�1/2��
�4m+2� �x��x1

2 − 1��1 + �
t=1

m

x2x3 ¯ x2t+1�� , �D21�

nd from here it is easy to show that this agrees with the right-hand side of �D19� for �=+.
We also have that

D��1/2�+2m−1;�1/2��±
�4m� �s,x� = s�1/2�+2m−1���1/2,. . .,1/2,±1/2�

�4m� �x� − s��1/2,. . .,1/2,�1/2�
�4m� �x�� , �D22�

here,

��1/2,. . .,−1/2�
�4m� �x� = �

i=1

2m

xi
−1/2 �

m−1	t	0
2m	j1�. . .�j2t+1	1

xj1
¯ xj2t+1

,

�D23�

��1/2,. . .,1/2�
�4m� �x� = �

i=1

2m

xi
−1/2�1 + �

m	t	1
2m	j1�. . .�j2t	1

xj1
¯ xj2t� ,

nd this allows similar product formulas in d=4m dimensions to be derived straightforwardly in

n analogous fashion as above.
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We present an analysis of the behavior of the electromagnetic self-force for charged
particles in a conformally static spacetime, interpreting the results with the help of
optical geometry. Some conditions for the vanishing of the local terms in the
self-force are derived and discussed. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2206877�

. INTRODUCTION

The motion of a point particle with mass m, electric charge e, and four-velocity va is described
y

maa = Ka + Fa, �1.1�

here aaªvb�bva is the particle four-acceleration, Ka is the sum of the external four-forces acting
n the particle, and Fa accounts for the backreaction of the particle’s own electromagnetic field on
ts motion. �We use latin indices a, b , . . . from the beginning of the alphabet as abstract indices,1

hile greek letters �, � , . . . denote components in some chart and run from 0 to 3. We work in
nits in which G=c=1, and choose the positive signature for the metric. We follow the conven-
ions of Ref. 1 for the curvature tensors; the Ricci tensor Rab has then the opposite sign than in
efs. 2 and 3.� In contrast to a well-established tradition, we shall avoid referring to Fa as the

adiation reaction, because such terminology is somehow improper and can be misleading;4,5 we
hall use the term self-force instead. According to the classic analysis of DeWitt-Brehme-Hobbs,2,3

a can be written as the sum of two contributions, Fa=Fa
�l�+Fa

�nl�, where

Fa
�l� = 2

3e2ka
bvc�cab + 1

3e2ka
bRbcv

c �1.2�

nd

Fa
�nl� = e2vb�

−�

�

d��faba�v
a�. �1.3�

The equation of motion obtained putting together �1.1�–�1.3� contains third derivatives of the
article coordinates, and hence leads to unphysical conclusions such as preacceleration and run-
way solutions, as it happens for the Lorentz-Dirac equation in flat spacetime.4 These pathologies
an be removed by a reduction-of-order technique.6 Nevertheless, in the following we shall con-
ider the standard expression �1.2� for Fa

�l�, that differs from the one so obtained only to higher
rders, and is therefore equivalent to it as long as one limits oneself to the classical domain, in

�Electronic mail: sebastiano.sonego@uniud.it
�
Electronic mail: marek@fy.chalmers.se
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hich the theory is defined.� Here va and � are the four-velocity and proper time of the particle,

a
b=�a

b+vavb is the projector onto the three-space orthogonal to va, Rab is the Ricci tensor, and
faba� is a bi-tensor associated with the presence of “tails” in the electromagnetic field.2,7 The term

a
�l� is the relativistic generalization to a curved spacetime of the noncovariant expression �2/3�e2v̈

or the self-force,4,5 and can be regarded as purely local, as it depends only on quantities evaluated
t the actual position of the particle. On the contrary, the contribution Fa

�nl� depends on the entire
ast history of the particle and on the property of spacetime of being able to backscatter electro-
agnetic waves,2,7 encapsulated in the quantity faba�, and represents therefore an essentially non-

ocal contribution. The two terms on the right-hand side of �1.2� are known as the von Laue4,5 and
he Hobbs3 forces, respectively. We shall denote them as

Fa
�vL�

ª

2
3e2ka

bvc�cab �1.4�

nd

Fa
�H�

ª

1
3e2ka

bRbcv
c, �1.5�

o �1.2� can be rewritten as Fa
�l�=Fa

�vL�+Fa
�H�. �Noteworthy, the von Laue force can also be written

s Fa
�vL�= 2

3e2��v�
�FW�aa, where ��v�

�FW� is the Fermi-Walker derivative along va, which for a generic

eld of one-forms ua is8 ��v�
�FW�uaªvb�bua+ �aavb−vaa

b�ub. Hence, the von Laue term Fa
�vL� van-

shes iff the acceleration aa is Fermi-Walker transported along the particle worldline.� It should be
lear from the outset that all this, as well as the treatment that follows, applies to classical point
articles—an unrealistic model which presents pathologies, given that the size of a classical object
annot be smaller than its Compton wavelength. The extension to particles of a finite size has been
iscussed recently.9

In the last decade there has been a renewed interest in calculations of self-forces of different
ature. The main motivation for such a revival is the possibility to go beyond the test particle
pproximation when studying motion in a gravitational field, which is important for investigations
bout the generation of gravitational waves. �For recent reviews, see Ref. 10, and references
herein.� However, due to the complexity of the calculations in the gravitational case, several
uthors have considered simpler models involving the scalar and electromagnetic self-interactions,
hich are also interesting by themselves. In particular, much attention has been paid to the
onlocal contribution. In this article we shall instead focus on the behavior of the local term Fa

�l�

or the electromagnetic case, arguing that it can be understood more easily in terms of the so-
alled optical geometry, rather than of the usual geometry of spacetime. A similar analysis could
e carried out for scalar and gravitational self-forces, but we shall not cover such cases here. Also,
e leave for further investigation the issue of whether optical geometry could be successfully

pplied to the challenging problem of computing the nonlocal term �see, however, the end of Sec.
for a brief discussion of this point�.

We begin by considering, in the next section, a situation in which the charge moves uniformly
n a circular orbit in a static, spherically symmetric spacetime, comparing the results in the special
ases of Einstein’s universe and Schwarzschild spacetime. For the latter, we shall see that Fa

�l�

0 at the closed photon orbit r=3M. This property will be interpreted in Sec. III by introducing
he notion of optical geometry, in which light paths on t=const hypersurfaces are geodesics. In
ec. IV we generalize the analysis to an arbitrary conformally static spacetime, showing that if a
harge moves with constant speed along a possible light path, the self-force is the one associated
ith optical geometry �apart from an obvious conformal rescaling�, and providing other conditions
or the different parts of the self-force to vanish. Section V contains a brief summary of the results.
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I. UNIFORM CIRCULAR MOTION IN STATIC SPHERICALLY SYMMETRIC SPACETIMES

Let us begin by discussing a rather special, but highly significant case. Consider a charge
oving on a circular orbit r=const in the plane �=� /2 of a static, spherically symmetric space-

ime, with metric

g = − e2��r�dt2 + 	�r�dr2 + r2�d�2 + sin2 � d
2� , �2.1�

here � and 	 are known functions, with 	 positive. The components of the four-velocity are

v� = ���t
� + ��


�� , �2.2�

here � is a parameter and �= �e2�−�2r2�−1/2 is fixed by the normalization v�v�=−1. It is
onvenient to introduce the velocity v=e−��r measured by static observers, and the correspond-
ng Lorentz factor ª �1−v2�−1/2=e��.

If the motion is uniform, i.e., �=const, the only nonvanishing component of the acceleration
s

ar = �2�e2�
d�

dr
− �2r� , �2.3�

nd the von Laue force is given by

F�
�vL� =

2

3
e25�r

e−�

	
�1 − r

d�

dr
��e2�

d�

dr
− �2r��− ���

t + ��

� . �2.4�

he Hobbs term is

F�
�H� = 1

3e23�e−��e−2�r2Rtt + R

��− ���
t + ��


� , �2.5�

here

Rtt =
e2�

	
�d2�

dr2 +
2

r

d�

dr
+ �d�

dr
�2

−
1

2	

d�

dr

d	

dr
� �2.6�

nd

R

 = 1 −
1

	
+

r

	
� 1

2	

d	

dr
−

d�

dr
� �2.7�

re the only relevant nonvanishing components of the Ricci tensor. �The component R

 in �2.7�
s evaluated at �=� /2. The general expression for R

 contains an overall extra coefficient sin2 �.�
ecause of the rather complicated dependence on �, 	, and their derivatives, it is more instructive

o focus on two particular cases.

. Einstein’s universe

The metric of Einstein’s static universe corresponds to �=0 and 	�r�= �1−r2 /R2�−1, where R
s a positive parameter �the “radius” of the three-dimensional spherical space�. The coordinate r

�0,R�, however, does not cover the whole manifold, so it is convenient to introduce a new
ariable �� �0,�� defined through r=R sin �. The metric then takes the form

g = − dt2 + R2d�2 + R2 sin2 ��d�2 + sin2 � d
2� , �2.8�

howing that R� measures the proper distance from the point �=0. The function 	 becomes
2
���=1/cos �, and the only nonvanishing component of the acceleration is
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a� =
�r

��
ar = −

�2R2 sin � cos �

1 − �2R2 sin2 �
. �2.9�

he magnitude �with sign� of the acceleration is 2�v2 /r�cos �, so the acceleration differs from the
pecial relativistic expression 2v2 /r only by the factor cos �, whose origin can be easily under-
tood by looking at Fig. 1. Note that the acceleration for orbits with �� �� /2 ,�� has the opposite
ign than for those with �� �0,� /2�, and vanishes when �=� /2.

The von Laue force is

F�
�vL� = 2

3e25�3R2 sin2 � cos2 ��− ���
t + ��


� . �2.10�

t also vanishes for �=� /2, but does not exhibit any change in sign.
Finally, let us compute the Hobbs force. The components of the Ricci tensor can be evaluated

irectly from expressions �2.6� and �2.7�, or simply remembering that the symmetries of Einstein’s
niverse imply R��= �2/R2�h��, where

h = �1 − r2/R2�−1dr2 + r2�d�2 + sin2 � d
2� = R2d�2 + R2 sin2 ��d�2 + sin2 � d
2� �2.11�

s the metric tensor on the t=const hypersurfaces.11 Thus, we have

F�
�H� = 2

3e23� sin2 ��− ���
t + ��


� . �2.12�

his expression is nonvanishing for all nontrivial values of �. Therefore, the local part of the
elf-force,

F�
�l� = 2

3e25� sin2 ��1 + �2R2 cos 2���− ���
t + ��


� , �2.13�

ever vanishes, in spite of the fact that when the motion takes place on the spatial geodesic �
� /2, the von Laue force does.

. Schwarzschild spacetime

In Schwarzschild spacetime,

� =
1

2
ln�1 −

2M

r
� �2.14�

−2�

IG. 1. Embedding diagram for the surface t=const, �=� /2 in Einstein’s universe, showing the geometrical meaning of
he quantities R, r, and �. The centripetal acceleration of a particle moving at r=const is given by the tangential component
f the acceleration in the fictitious three-dimensional Euclidean space. For ��� /2 the centripetal acceleration points in the
irection of decreasing r, while for � /2���� it points in the direction of increasing r.
nd 	=e . Then, from Eq. �2.3� we obtain
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ar = �2�M

r2 − �2r� =
M − �2r3

r�r − 2M − �2r3�
�2.15�

nd, from �2.4�,

F�
�vL� =

2

3
e25�r�1 −

2M

r
�−3/2�1 −

3M

r
��M

r2 − �2r��− ���
t + ��


� . �2.16�

ince Rab=0, the Hobbs force vanishes identically, so F�
�l�=F�

�vL�.
Let us now study the behavior of ar and F�

�l� for different values of r. When r /M is very large
Newtonian gravity�, Eq. �2.15� can be approximated as

ar � 2�M

r2 − �2r� . �2.17�

part from the factor 2, which represents only special-relativistic corrections, the norm of aa is
ust the difference between the gravitational and the centripetal accelerations in Newtonian me-
hanics. This agrees with the physical interpretation of aa, which represents the thrust per unit
ass that must be applied to the particle in order to keep it at the fixed value of r with angular

elocity �. In particular, aa=0 for a Keplerian motion, �2=�K�r�2
ªM /r3 or r=rK���

�M /�2�1/3. In the same approximation,

F�
�l� �

2

3
e2�r5�M

r2 − �2r��− ���
t + ��


� . �2.18�

he local part of the self-force behaves then in the following way: When the motion is Keplerian
t vanishes, consistent with the fact that aa=0; in the super-Keplerian regime ��2��K�r�2 or r

rK���� it points backward with respect to the direction of motion; finally, in the sub-Keplerian
egime ��2��K�r�2 or r�rK���� it points forward with respect to the direction of motion. In the
articular case of a static charge, �=0 and F�

�l�=0.
It is interesting to note that this behavior is peculiar to gravity and has no counterpart for

otion in other central fields such as, e.g., a Coulomb one. This is easily seen by computing the
elf-force associated with circular motion in Minkowski spacetime,

F� 	 F�
�l� = − 2

3e2�3r25�− ���
t + ��


� , �2.19�

here the second equality follows immediately from �2.16� with M =0 �see also Ref. 12, where
his expression is derived explicitly for the case of synchrotron radiation�. Now, the self-force
lways points backward with respect to the direction of motion, regardless of the magnitude of �.
his is related to the fact that the right-hand side of Eq. �2.19� does not contain any indication
bout the central force responsible for keeping the charge on circular motion, contrary to what
appens in the gravitational case, where a term M /r2 appears together with �2r. The combination

M /r2−�2r is the same that appears in ar—see Eq. �2.15�—and is ultimately linked to the asso-
iation between gravity and curvature. Thus, although for most purposes one can think of New-
onian gravity as a field on a flat background, the present analysis shows that this picture would
ead to incorrect conclusions as far as the self-force is concerned. �Apparently, this point is not
ppreciated in the extant literature. See, e.g., Ref. 4, p. 183, for an explicit statement that the
ewtonian and Coulomb problems are alike.�

Let us come back to the analysis of ar and F�
�l�. For r�3M the qualitative behavior of these

uantities at different values of r is like in the Newtonian limit examined above, even when r /M
s not large. However, it is easily seen from Eqs. �2.15� and �2.16� that when r=3M, ar

�3M�−1 and F�
�l�=0. Thus, the thrust needed in order to keep a particle on the closed photon orbit

oes not depend on the particle speed.13 Furthermore, if the particle is charged, the local part of
he self-force vanishes, in spite of the fact that motion takes place on a circle and is not geodesic.

14
This point is related to earlier results. � Finally, for orbits with 2M �r�3M, it follows from

                                                                                                            



�
m

t
+
s

I

e
i
a

�
A
f
=
r

p
“

W

g
−

a

T

d

h
r

�

062501-6 S. Sonego and M. A. Abramowicz J. Math. Phys. 47, 062501 �2006�

                        
2.16� that the local part of the self-force always points backward with respect to the direction of
otion. Since such orbits are necessarily sub-Keplerian, as follows from the inequality

��2 − �K�r�2�r2 � 1 − 3M/r , �2.20�

his behavior is the opposite than for r�3M. �Proof of �2.20�: Consider the condition 2M /r
�2r2�1, which guarantees that � be real or, equivalently, that the particle worldline be timelike;

ubtract �K�r�2r2 from both sides, and use the definition �K�r�2
ªM /r3.�

II. OPTICAL GEOMETRY

The behavior of ar can be understood in the following way. The component ar of the accel-
ration, given by expression �2.15�, is proportional to the thrust necessary to keep the particle on
ts orbit, and can be written as the difference between a gravitational part ar

�g�, independent of �,
nd a centripetal part ar

�c�:

ar
�g� =

M

r2�1 − 2M/r�
, �3.1�

ar
�c� = �2r

r − 3M

�1 − 2M/r��r − 2M − �2r3�
. �3.2�

Of course, ar
�g� and ar

�c� have signs opposite to those of the gravitational and centripetal forces.
lternatively, one can identify ar

�c� with the centrifugal field acting on the particle in the comoving
rame.� It is then evident from �3.2� that the centripetal force vanishes at r=3M, for which ar

ar
�g�= �3M�−1. In addition, �3.2� predicts that ar

�c� has an opposite sign in the regions r�3M and
�3M.

These properties admit a simple explanation if one imagines that the particle motion takes
lace in the so-called optical spacetime,15 with a metric g̃= �1−2M /r�−1g, under the action of a
gravitational potential” � given by �2.14�, which produces a “gravitational field”16

+̃� = − k�
���� = − �1 −

2M

r
�−1 M

r2 ��
r . �3.3�

e have then ar
�g�=−+̃r and, in the optical spacetime, the magnitude of the gravitational field is

iven by the simple Newtonian expression �g̃��+̃�+̃��1/2=M /r2. Also, defining ṽ�
ª �1

2M /r�1/2v�, so that g̃��ṽ�ṽ�=−1, one gets

ã� = g̃��ṽ��̃�ṽ
� = −

�2�2�r − 3M�
1 − 2M/r

��
r , �3.4�

nd ar
�c�= ãr. The magnitude of the acceleration in optical spacetime is

�g̃��ã�ã��1/2 = �2�2
r − 3M
 . �3.5�

he presence of the factor �r−3M� in ar
�c� can be understood intuitively17 considering an embed-

ing diagram18 of the section �=� /2 of the optical space �S , h̃ab�, where S is any t=const

ypersurface of the Schwarzschild spacetime, and the metric h̃ab has the coordinate
epresentation15

h̃ = �1 −
2M

r
�−2

dr2 + �1 −
2M

r
�−1

r2�d�2 + sin2 � d
2� �3.6�
see Fig. 2 and the Appendix�.
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Let us now consider the self-force. The von Laue term associated with the optical quantities
as the components

F̃�
�vL� = −

2

3
e25�3r2�1 −

2M

r
�−2�1 −

3M

r
�2

�− ���
t + ��


� , �3.7�

o it always points backward with respect to the direction of motion, vanishes only at r=3M, and
educes to �2.19� in the region r�M. The Hobbs force in the optical space can be computed either
irectly, or by using the transformation formula �2.11� of Ref. 19. Its components are

F̃�
�H� =

2

3
e23�

M

r
�1 −

2M

r
�−1�1 −

3M

r
��− ���

t + ��

� . �3.8�

or r�M, this becomes

F̃�
�H� �

2

3
e23�

M

r
�− ���

t + ��

� . �3.9�

ote that the magnitude of the von Laue force is proportional to �3r, like in Minkowski space,
hile the magnitude of the Hobbs force is proportional to M� /r2, which can be rewritten as M /r3

imes the speed �r. Thus, from the perspective offered by optical geometry, the coefficient

M

r2 − �2r

hat appears in Eq. �2.18� should not be regarded as representing the difference between the
ravitational and the centripetal forces, because the first term actually arises from the curvature of

S , h̃ab�. The same coefficient is present for uniform circular motion at r=const on �S , h̃ab�,
egardless of the nature �gravitational or other� of the “central” force. Therefore, when the local
art of the self-force is analyzed in optical geometry, the puzzling peculiarity of gravity that was
oticed in Sec. II B disappears.

It is worth pointing out that F�
�l�, F̃�

�vL�, and F̃�
�H� all vanish at r=3M, as it follows from Eqs.

2.16�, �3.7�, and �3.8�. However, while the property F̃�
�vL��3M�=0 is natural from the point of

iew of optical geometry, because the circle r=3M is a geodesic of �S , h̃ab� and the charge motion
˜ �H� �l�

IG. 2. Embedding diagram for part of the surface t=const, �=� /2 in Schwarzschild spacetime, with the optical geometry.
he throat corresponds to r=3M. The centripetal acceleration of a particle moving at r=const is given by the tangential
omponent of the acceleration in the fictitious three-dimensional Euclidean space. Notice that for r�3M the centripetal
cceleration points in the direction of decreasing r, while for 2M �r�3M it points in the direction of increasing r.
s uniform, the fact that also F� �3M�=0—hence F� �3M�=0—is due to the algebraic properties
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f the optical Ricci tensor at r=3M rather than to the geodesic character in �S , h̃ab� of the closed
hoton orbit �see Sec. IV B�. Therefore, the change of sign of F�

�l� at r=3M has a different origin
han for other phenomena in which a similar “reversal” takes place.20

V. GENERAL RESULTS

If �M ,gab� and �M , g̃ab� are two conformally related spacetimes, with

g̃ab = e−2�gab, �4.1�

he local and nonlocal parts of the corresponding self forces are related as Fa
�l�=e−�F̃a

�l� and Fa
�nl�

e−�F̃a
�nl�.19 Then, in order to compute Fa

�l� or Fa
�nl�, one can work in a conformally related space-

ime �M , g̃ab� rather than in the physical one �M ,gab�. We now use this remark to put the results
f Sec. II into a more general context extending the line of reasoning outlined in Sec. III, and to
stablish some extra necessary and/or sufficient conditions for the different parts of Fa

�l� to vanish.
Let us consider a charge with four-velocity va in an arbitrary conformally static spacetime

M ,gab�. �This restriction is motivated mainly by simplicity. Optical geometry can be straight-
orwardly defined also for conformally stationary spacetimes,21 and has been extended even to
ases where no global time symmetry exists, as it happens in gravitational collapse.22 For recent
esults concerning generalizations of optical geometry, see Ref. 23.� By definition, such a space-
ime admits a hypersurface-orthogonal timelike conformal Killing vector field �=� /�t, corre-
ponding to a conformal Killing time t. One can then define the scalar function

� ª

1
2 ln�− gab�a�b� �4.2�

nd consider the ultrastatic spacetime �M , g̃ab� with g̃ab given by �4.1�, in which �a is a Killing
ector field with unit norm, £�g̃ab=0 and g̃ab�a�b=−1.24 It is not difficult to check that the
rojection, along the integral curves of �a, of null geodesics of �M ,gab� onto the spatial hyper-

urfaces S defined by the condition t=const, are geodesics of �S , h̃ab�, where h̃abª g̃ab+�a�b and

aª g̃ab�b. Hence, generalizing what we have done in Sec. III, all quantities pertaining to the

pacetime �M , g̃ab� will be denoted as “optical.” Instead of Fa
�l�, we can then consider F̃a

�l�, com-
uted in the optical spacetime �M , g̃ab� starting from the rescaled four-velocity ṽa=e�va.

At any point on the particle worldline, ṽa can be decomposed in a unique way as

ṽa = ��a + v�̃a� , �4.3�

here v� �−1,1� is the speed of the particle according to an observer with four-velocity parallel
o �a, the coefficient ª �1−v2�−1/2 is the corresponding Lorentz factor, and �̃a is a spacelike

ector orthogonal to �a, such that g̃ab�̃a�̃b=1. The four-acceleration ãaª ṽb�̃bṽa of the particle in
he optical spacetime �M , g̃ab� is then

ãa = 2T̃aṽ
b�̃bv + 2v2�̃b�̃b�̃a + 2v�b�̃b�̃a, �4.4�

here

T̃a
ª

k̃a
b�̃b

�k̃cd�̃c�̃d
= ��̃a + v�a� �4.5�

s a unit vector in �M , g̃ab�, orthogonal to ṽa. Using now the orthogonality condition �a�̃a=0, and

he property �̃b�a=0 that follows from the fact that �M , g̃ab� is ultrastatic, we have

�̃b�̃a = D̃b�̃a − �b�c�̃c�̃a, �4.6�

here D̃b is the covariant derivative along directions orthogonal to �a, hence on �S , h̃ab�. In order
˜a
or both Eqs. �4.4� and �4.6� to make sense, one needs to know � off the particle worldline. The
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atural extension of �̃a is such that its integral curves �located on t=const hypersurfaces� coincide
ith the projection on S of the particle worldline along the integral curves of �a. This is equivalent

o requiring that £��̃a=0, i.e., that �b�̃b�̃a= �̃b�̃b�a, and the latter quantity vanishes in an ultrastatic

pacetime. Hence, �b�̃b�̃a=0, and the particle acceleration in optical spacetime takes the very
imple form

ãa = 2T̃aṽ
b�̃bv + 2v2�̃bD̃b�̃a, �4.7�

n which one can identify a tangential and an orthogonal �centripetal� component.16

The relationship19

ãa = aa − ka
b�b� �4.8�

eneralizes the result, already obtained in Sec. III for the special case of Schwarzschild spacetime,
ccording to which one can write the particle acceleration in optical spacetime, ãa, as the sum
etween the nongravitational thrust per unit mass, aa, and a gravitational force per unit mass,

a=−ka
b�b�:

ãa = aa + +̃a. �4.9�

quation �4.9� contains a precise formulation of the equivalence principle, because the quantity
hat is physically measurable at the particle location—the thrust, proportional to aa—allows one

nly to determine the difference ãa− +̃a between ãa and +̃a, but not ãa and +̃a separately �unless one
ossesses extra knowledge, of a nonlocal nature, about the structure of the spacetime under

onsideration�. �In particular, the two situations with ãa=aa and +̃a=0, or with ãa=0 and +̃a=
aa, cannot be distinguished by a measurement of the thrust.� Inserting �4.7� into �4.9�, and

dentifying −2T̃aṽb�̃bv and −2v2�̃bD̃b�̃a with suitable inertial forces per unit mass,16,25 one finds
general relativistic version of the statement, commonly expressed within the framework of
ewtonian mechanics, that in a frame comoving with the particle there is perfect balance between

he nongravitational thrust, the gravitational force, and the inertial forces acting on the particle.

On replacing �4.7� into the definition of F̃a
�l� one can find the local part of the self-force

xpressed in terms of v and �̃a, that characterize the motion in optical spacetime �M , g̃ab�. How-
ver, since the general expression is not particularly illuminating, let us focus instead on the most
nteresting particular cases.

. Uniform motion along optical geodesics

It is obvious from Eq. �4.7� that a particle which moves uniformly �i.e., with ṽb�̃bv=0� along

ptical geodesics of space �so that �̃bD̃b�̃a=0� has vanishing acceleration in �M , g̃ab�, that is, ãa

0. Then F̃a
�l� consists only of the Hobbs term and we can write

Fa = e−��1

3
e2ka

bR̃bcṽ
c + e2ṽb�

−�

�̃

d�̃� f̃ aba�ṽ
a�� . �4.10�

hus, the particle is indeed subjected to a self-force, but just to the one that is associated with the
eometric properties of the optical space. In a sense, the charge “feels” the geometry of �M , g̃ab�
ather than the one of the physical spacetime �M ,gab�.

It may be interesting to note that, with the only exception of ultrastatic spacetimes, for which
he ordinary and the optical geometries simply coincide, there are no lines in the ordinary space
S ,hab� such that the von Laue term vanishes identically for a charge that moves uniformly along

hem. On the contrary, in �S , h̃ab� the conditions that v=const and F̃a
�vL�=0 uniquely select optical
eodesics.

                                                                                                            



B

u

=

e

a

v

u

v
i

u

a
m
i
t

C

L
l
=
o
v

ã
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. Special metrics

If ka
bR̃bcṽc=0, then expression �4.10� implies that Fa=Fa

�nl�, because Fa
�l� and Fa

�nl� do not mix

nder a conformal transformation.19 �For a more general, nonuniform motion, one finds F̃a
�l�

F̃a
�vL�.� This can happen iff R̃a

bṽb=�ṽa for some �, and it is easy to see, by contracting this

quation with �a and noting that �aR̃a
b=0 in an ultrastatic spacetime, that it must be �=0. Using

gain the decomposition �4.3� and the property R̃ab�b=0, one finally finds that the Hobbs term

anishes iff vR̃a
b�̃b=0. Thus, excluding the trivial case v=0, there is no local self-force for

niform motion along optical geodesics whose directions are eigenvectors of R̃a
b with zero eigen-

alue. Such directions exist iff the determinant of the matrix made by the components R̃i
j with

, j=1,2 ,3 is zero, i.e., iff such matrix is degenerate.
Let us reconsider the examples of Sec. II in the light of this conclusion. For the Einstein

niverse, R̃i
j=Ri

j= �2/R2��i
j, which is always nondegenerate. For Schwarzschild spacetime,

R̃
i =
2M

r
�1 −

2M

r
�−1�1 −

M

r
�2 + sin2 ����i


 �4.11�

nd, for �=� /2, R̃i
j becomes degenerate at r=3M. Hence, Fa

�l� vanishes at r=3M for uniform
otion in an equatorial plane along any optical geodesic, not only for the circular orbit considered

n Sec. II B. This result is far from trivial, but its derivation is rather straightforward working in
he optical space.

. Geodesic motion

For charges following a geodesic in �M ,gab� the four-acceleration aa vanishes, so the von
aue term Fa

�vL� is identically zero. �We avoid referring to this situation as “free fall,” because the
atter would be appropriately identified by the vanishing of the external force in Eq. �1.1�, Ka

0, whereas geodesic motion corresponds to Ka+Fa=0.� In optical geometry this result is not
bvious, because it follows from a compensation between contributions coming from the “optical”
on Laue and Hobbs terms. More precisely, applying �4.8� to this case one immediately finds

a=−ka
b�b�. Then, the von Laue term F̃a

�vL� in optical space contains first and second derivatives

f �, that are canceled by identical contributions coming from the Hobbs term F̃a
�H�, because of the

ay the Ricci tensor changes under a conformal transformation.19

Thus, from the perspective of optical geometry, the fact that Fa
�vL�=0 just when ãa=

ka
b�b� is somewhat surprising. For example, it is not evident that F̃a

�l�=0 for the Keplerian
otions of Sec. II B because in optical geometry, where gravity is described by the physical field
, Keplerian motions have nothing qualitatively different from, say, orbits in a Coulomb field. In

act, it turns out that it is only thanks to a cancellation between the von Laue and the Hobbs terms

n the optical geometry that F̃a
�l�=0. However, if one thinks that for a Keplerian motion in

chwarzschild spacetime Fa
�vL�=Fa

�H�=0, and that F̃a
�l�=e�Fa

�l�, then such a compensation is only

xpected. Geodesics in �M ,gab� are not geodesics in �M , g̃ab�, so F̃a
�vL� does not vanish in general,

nd since R̃ab�0, the Hobbs force F̃a
�H� also does not vanish. Nevertheless, F̃a

�vL� and F̃a
�H� combine

o form a vanishing local self-force, F̃a
�l�=0.

This remark should not be regarded as a drawback of the description based on optical geom-
try, though. Indeed, the fact that Fa

�vL� does, or does not, vanish is not particularly important,
ecause the physically interesting quantity is not Fa

�vL�, but Fa
�l�. And whether Fa

�l�=0 �or, equiva-

ently, F̃a
�l�=0� cannot be established simply by looking at Fa

�vL� �or F̃a
�vL��, unless one is in a

ituation for which Fa
�H�=0 �or F̃a

�H�=0�. Thus, in the case of Schwarzschild spacetime the evalu-
�vL�
tion of Fa turns out to be convenient only because, since Rab=0 there, the Hobbs force vanishes

                                                                                                            



i

o
a

D

a

i

I
F
�
fi
h

l
F

V

s
H
c
t

F
=
s

g

h
o

t

a
f
c
c
t
o
s
�
a
l

A

g
f

062501-11 Optical geometry analysis of the self-force J. Math. Phys. 47, 062501 �2006�

                        
dentically, so Fa
�vL� coincides with Fa

�l�. However, in a spacetime for which it is R̃ab that vanishes,

ne has F̃a
�H�=0. Consequently, it is now F̃a

�vL� that one should inspect, in order to get information
bout the behavior of Fa

�l�=0.

. Conformally static charge

In order to further illustrate the point made in the last paragraph of Sec. IV C, let us consider
conformally static charge, i.e., one with four-velocity va=na, where

na
ª e−��a = �− gbc�

b�c�−1/2�a �4.12�

s the unit vector field parallel to �a. This is obviously a subcase of the situations covered in Sec.

V A and since R̃ab�b=0, it is evident in optical geometry that F̃a
�vL�= F̃a

�H�=0, so also F̃a
�l�=0 and

a
�l�=0. On the other hand, this conclusion is not obvious at all if one works in the spacetime
M ,gab�, because in order to establish it, one must use highly nontrivial properties of the vector
eld na, that lead to cancelations between terms coming from Fa

�vL� and Fa
�H� �none of which,

owever, vanishes separately�. Hence, in this case it is optical geometry that allows one to estab-

ish that Fa
�l�=0 in a simple way, by using the decomposition F̃a

�l�= F̃a
�vL�+ F̃a

�H�. The alternative split,

a
�l�=Fa

�vL�+Fa
�H�, leads instead to rather cumbersome calculations.

. CONCLUSIONS

Let us summarize the results of Secs. II–IV. We have seen that, for uniform motion along a
patial geodesic �=� /2 in Einstein’s static universe, the von Laue force vanishes, whereas the
obbs force does not �hence, the local part of the self-force also does not vanish�. In Schwarzs-

hild spacetime, for uniform motion along a circle at r=3M, the von Laue force vanishes; since
he Hobbs force is identically zero �Schwarzschild spacetime is Ricci-flat�, this implies that

a
�l��3M�=0. Similarly, in the optical Schwarzschild spacetime, F̃a

�vL��3M�= F̃a
�H��3M�= F̃a

�l��3M�
0. All these are instances of the following general results, valid in an arbitrary conformally static

pacetime: �i� for geodesic motion in optical spacetime �M , g̃ab�—uniform motion along optical

eodesics—, F̃a
�vL�=0; �ii� for geodesic motion in the spacetime �M ,gab�, Fa

�vL�=0. Note that,

owever, the physically interesting result does not concern Fa
�vL� or F̃a

�vL�, but the entire local part
f the self-force. Whether this vanishes in cases �i� and �ii� depends on the additional feature that

he matrix R̃i
j or R�

�, respectively, be degenerate. Also, note that the particular case of �i�, that for

conformally static charge Fa
�l�= F̃a

�l�=0, although nontrivial, is straightforward when regarded
rom the perspective offered by optical geometry. Hence, the latter appears to be a useful tool in
alculations of self-force and related effects, as it happens already in several other
ircumstances.15–17,20–22,25–28. Indeed, although in this paper we deliberately avoided dealing with
he nonlocal part of the self-force Fa

�nl�, there are good reasons to believe that working in the
ptical spacetime might also simplify its evaluation—a rather challenging task, in general. This is
uggested by the fact that computing Fa

�nl� amounts, basically, to finding the bi-tensor faba� in Eq.
1.3�. In turn, this amounts to the determination of a particular electromagnetic field in spacetime,
nd we know already from Ref. 28 that this is sometimes easier to do using optical geometry. We
eave the development of this subject for future investigations.
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PPENDIX: CENTRIPETAL ACCELERATION IN OPTICAL GEOMETRY

We present a derivation of Eq. �3.5� based on the embedding diagram of Fig. 2. In the
ctitious three-dimensional Euclidean space, the centripetal acceleration of a particle that moves
niformly on the orbit r=const is aE

�c�=2�2�, where �= �1−2M /r�−1/2r is the distance from the
xis18—also called “radius of gyration”26 because v= �1−2M /r�−1/2�r=��. The centripetal ac-
eleration in the optical space is given by the tangential component of aE, namely

a�c� = 2�2� cos 	 , �A1�

here 	 is the angle indicated in Fig. 2. Let z= f��� be the equation of the surface in Fig. 2. The
urface is isometric to the section �=� /2 of the optical space if18

�1 + � df

d�
�2�d�2 = �1 −

2M

r
�−2

dr2. �A2�

ut we have also df /d�=tan 	, so

cos 	 = �1 −
2M

r
��d�

dr
� = �1 −

2M

r
�−1/2�1 −

3M

r
� . �A3�

ubstituting into �A1� we recover Eq. �3.5�.
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Without making use of the Ernst formalism we look directly for particular solutions
of field equations describing stationary axisymmetric vacuum space–time using
Weyl coordinates. The solutions that we obtain, by simple separation of variables,
are parametrized in the general case by a III transcendent of Painlevé with two
arbitrary constants. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2206689�

. INTRODUCTION

Here we study the stationary axisymmetric vacuum metric presented by Lewis.1 This metric
epends on four potentials and we present it in Weyl coordinates. We know that the solutions can
e expressed in three distinct classes for the cylindrical case2 and for the general case.3 We have
hown3 that the solutions of Lewis metric implies a functional relation between the three principal
otentials.

To find new solutions of Lewis metric here we use the method of separation of variables � and
. Through this procedure the solutions are parametrized by the III transcendental of Painlevé with
wo arbitrary constants,4–6 one structure constant a and one constant of integration C.

Wils presented a very interesting review7 of solutions of Einstein’s field equations producing
ranscendents of Painlevé. Persides and Xanthopoulos8 and Calvert and Woodhouse,9 in the axi-
ymmetric case, found solutions parametrized by Painlevé transcendents III and V, using different
ethods.

Section II presents the field equations, Sec. III gives the transcendent solutions and the paper
nishes with a short conclusion.

I. FIELD EQUATIONS

The general line element for a stationary axisymmetric space–time can be written in the Lewis
orm1

ds2 = − f dt2 + 2k dt d� + e��d�2 + dz2� + l d�2, �1�

here f , k, �, and l are only functions of the Weyl coordinates � and z. For convenience3 we
ssume

�Electronic mail: gariel@ccr.jussieu.fr
�
Electronic mail: santos@ccr.jussieu.fr and n.o.santos@qmul.ac.uk
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f = �F��,z�, k = �K��,z�, l = �L��,z� . �2�

ollowing the procedure of Ref. 3 with

FL + K2 = 1, �3�

e obtain the vacuum field equations in the symmetric form

K�F = F�K , �4�

L�K = K�L , �5�

F�L = L�F , �6�

here the Laplacian � is defined by

� � ��� +
1

�
�� + �zz, �7�

ith the indexes standing for differentiation.

II. TRANSCENDENT SOLUTION

We look for solutions of the system �4�–�6� of the form

F = F���H1�z� , �8�

K = K���H2�z� , �9�

L = L���H3�z� , �10�

atisfying �3�. Substituting �8�–�10� into �3� and differentiating twice with respect to � and z we
btain

H1H3 = 1, H2 = 1, �11�

nd with the field equations �4�–�6� we find

H1 = e−az, H2 = 1, H3 = eaz, �12�

here a�0 is an arbitrary constant. When a=0 we find again the cylindrically symmetric case.2

herefore the field equations �4�–�6� can be written

K�F�� +
1

�
F� + a2F� = F�K�� +

1

�
K�� , �13�

L�K�� +
1

�
K�� = K�L�� +

1

�
L� + a2L� , �14�

F�L�� +
1

�
L�� = L�F�� +

1

�
F�� , �15�

espectively, and we see that �13� is a consequence of �14� and �15�. We can integrate �15� and

btain
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F�

F
−

L�

L
=

C

�FL
, �16�

here C is an integration constant and from �3� and �11�,

FL + K2 = 1. �17�

inally we find

L�

L
=

1

K2 − 1
�KK� +

C

2�
� . �18�

e can rewrite �14� as

1

K
�K�� +

1

�
K�� = �L�

L
�

�

+ �L�

L
�2

+
1

�

L�

L
+ a2, �19�

nd with �18� it becomes a second-order differential equation for K���, or K,

�1 − K2��K�� +
1

�
K�� + KK�

2 − K� C2

4�2 + a2�1 − K2�2� = 0. �20�

onsidering the transformation

� = �x, K = � R

R − 1
�1/2

, �21�

here R is a function of � and ranging R� �− � ,0� and R� �1, � �, then �20� becomes

Rxx +
1

x
Rx − � 1

2R
+

1

R − 1
�Rx

2 −
C2R

8x2 �R − 1�2 −
a2R

2x
= 0. �22�

he second-order differential equation �22� is a canonical particular type of the V transcendent of
ainlevé depending on two parameters.4,6,10 We observe that �22� is the same that appears in Ref.
�see Eq. �2.16�� obtained from the field equation using the Ernst potential. Furthermore, �22�

orresponds to the standard form of the V transcendent of Painlevé as proposed by Okamoto11

ith the parameter �=0, i.e., v1+v2=0 and t=x.
We can use a differential transformation between the III transcendent of Painlevé and the V

ranscendent �20�.12 Setting

r = 1 − K2, �23�

n �20�, we obtain

r�� −
1

2
�1

r
+

1

r − 1
�r�

2 +
1

�
r� −

C2

2�
�1 −

1

r
� − 2a2�r − 1�r� = 0. �24�

ow let us consider the system

y� = 2y2�2r − 1� +
C − 1

�
y −

a2

2
, �25�

r� = �4yr +
C

�
��1 − r� . �26�

liminating y in this system we obtain �24�, while eliminating r, we obtain a particular form of the

II transcendent of Painlevé,
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y�� −
1

y
y�

2 +
1

�
y� −

1

�
��y2 + �� − �y3 −

	

y
= 0, �27�

ith

� = 2C, � =
a2

2
�C − 2�, � = 4, 	 = −

a4

4
, �28�

here we can rescale, �→� /a and choose a=1. The link between r, of the V transcendent of
ainlevé, and y, of the III transcendent, given by �25� and �26�, is differential, and we observe that

f in �20� we substitute

y =
1

2�K2 − 1��K�

K
+

C

2�
� , �29�

ith K=�1−r we reobtain �26�.
Finally, we find from �12�, �17�, �18�, �21�, and �22�,

F = − �R − 1�−1/2 exp�C

2
	

�0

� 1 − R

�
d�� , �30�

K = � R

R − 1
�1/2

, �31�

L = �R − 1�−1/2 exp�C

2
	

�0

� R − 1

�
d�� , �32�

here R��2� is a solution of �22�, and from �2� and �8�–�10�,

f = �e−azF��� , �33�

k = �K��� , �34�

l = �eazL��� . �35�

ence �33�–�35� are solutions of the potentials f , k, and l for an axisymmetric vacuum field �1�
arametrized by a III transcendent of Painlevé with C�0 in place of the usual harmonic functions
ike in the three classes of Lewis space–time.3

V. CONCLUSION

Departing from a formulation of the stationary axisymmetric space–time given originally by
ewis, we consider a solution of the field equations where the potentials are parametrized in a
articular reducible to a Painlevé III transcendent with two non-null constants, and not by a
armonic function which are known as Lewis solutions which suppose, not only the relation �17�
ut also a functional relation between the potentials.3 This method presents a particular advantage
ince the calculations are straightforward and clear.
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The second order Killing and conformal tensors are analyzed in terms of their
spectral decomposition, and some properties of the eigenvalues and the eigenspaces
are shown. When the tensor is of type I with only two different eigenvalues, the
condition to be a Killing or a conformal tensor is characterized in terms of its
underlying almost-product structure. A canonical expression for the metrics admit-
ting these kinds of symmetries is also presented. The space–time cases 1+3 and
2+2 are analyzed in more detail. Starting from this approach to Killing and con-
formal tensors a geometric interpretation of some results on quadratic first integrals
of the geodesic equation in vacuum Petrov-Bel type D solutions is offered. A
generalization of these results to a wider family of type D space–times is also
obtained. © 2006 American Institute of Physics. �DOI: 10.1063/1.2207717�

. INTRODUCTION

Killing tensors are associated with first integrals to the geodesic equation. In the second order
ase, they define quadratic first integrals and they play a central role in the theory of separability
f the Hamilton-Jacobi equation. The relationship between separability and Killing tensors was
hown by Eisenhart1 and abundant literature exists regarding this property �for example, see Ref.
and references therein�.

Within the relativistic framework the study of Killing tensors grew when Walker and Penrose3

howed how the existence of a Killing tensor explains the Carter results4 on the integrability by
ariable separation of the geodesic equation in the Kerr solution. Since then a lot of studies have
een devoted to determining and classifying the space–times admitting Killing tensors and also to
btaining the Killing tensors of a given metric. A summary of known results on this subject can be
ound in Ref. 5.

The problem of finding the metrics admitting a quadratic integral of the geodesic equation was
stablished by Eisenhart.1 He wrote the intrinsic Killing tensor equations, i.e., the Killing equa-
ions in terms of the eigenvectors ei and the eigenvalues �i of a Killing tensor, and he pointed out
hat �see Ref. 1, p. 129�: “the problem of finding all Vn admitting a quadratic integral consists in
nding a tensor g and an orthogonal ennuple ei that satisfy the conditions obtained by the elimi-
ation of the �’s from the intrinsic Killing tensor equations. The general solution has not been
btained, but we shall consider two particular solutions of the problem.” Later, he considered the
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rivial case when all the �’s are equal, and the case with different eigenvalues and normal principal
ongruences, a case which led to the Stäckel form of the metric.6,1

The general solution to the problem set by Eisenhart is far from being solved, although a
umber of results are known for some classes of Einstein-Maxwell solutions or algebraically
pecial space–times, as well as those for flat metrics.5 Nevertheless, the usual way in which this
ubject is tackled differs from the Eisenhart conception. Indeed, the common approach consists of
tudying the integrability conditions of the Killing tensor equations, whereas the Eisenhart method
nvolves the following: �i� to write the intrinsic Killing tensor equations, �ii� to determine the
quivalent equations involving exclusively the eigenspaces and the metric tensor �the eigenvalues
aving been removed�, and �iii� to study the integrability conditions of the aforementioned equa-
ions. Both procedures, the usual one and Eisenhart’s, may be suitable depending on the different
ituations. In this work we adopt the Eisenhart approach and we will show how useful it is by
onsidering the case of Killing tensors with two complementary eigenspaces.

The conformal extension of the Killing tensor equation determines the conformal tensors
hich define first integrals to the null geodesic equation. Here we also analyze the Eisenhart
roblem for the class of conformal tensors with two complementary eigenspaces.

In the problem of finding the Riemannian spaces admitting a Killing or a conformal tensor
wo different aspects can be considered. On the one hand, we can look for a general canonical
xpression for the metric tensors with these kinds of first integrals. In this case, we must also
btain the expression of the Killing or conformal tensors in terms of the elements appearing in this
anonical form. This approach may be useful in working in spaces with these symmetries, the
dapted coordinates allowing calculations to be simplified and throwing light on the geometric
nterpretation of the expressions we can find.

On the other hand, we can give explicit and intrinsic conditions that characterize the metric
ensors, and then we must offer the expression of the Killing or conformal tensors in terms of

etric concomitants �namely, the Riemann tensor and its covariant derivatives�. This approach is
elpful in analyzing when a metric, which is known in an arbitrary coordinate system, has these
inds of symmetries. Moreover, we can obtain these tensorial symmetries without solving the
illing or conformal equations.

In this work we analyze both viewpoints. Regarding the first one, we can quote several results
reviously obtained in the relativistic framework. Thus, canonical forms for the four-dimensional
pace–time metrics admitting a Killing or a conformal tensor of type 2+2 have been proposed in
iterature.7,8 In this case the Killing or conformal tensor admits two complementary eigenplanes.
ere we generalize these results by considering a general p+q tensor �with two complementary

igenspaces of dimensions p and q, respectively� in a generic Riemannian space with arbitrary
ignature and dimension.

The second approach, the intrinsic characterization of the metrics admitting Killing and con-
ormal tensors, has also been partially considered in relativity. Thus, it is known that every
etrov-Bel type D vacuum solution admits a conformal tensor of type 2+2 which may be obtained
orm the Weyl tensor.5 Here we extend this result by characterizing all the Petrov-Bel type D
etrics with conformal tensors. Moreover we also identify the type D solutions admitting a
illing tensor, thus generalizing some results that are known for the vacuum case.5

It is worth remarking that the Eisenhart approach used here allows the intrinsic and explicit
abeling of the metrics to be obtained easily. Indeed, in this approach we give conditions for the
nderlying 2+2 structure of the Killing or conformal tensors. Moreover, for the Petrov-Bel type D
etrics, this is the principal structure one of the Weyl tensor, and it is explicitly known in terms

f the metric tensor.9 The reason why it is of interest to obtain an explicit and intrinsic character-
zation of a space–time metric has been pointed out elsewhere10 and the method used here has
een useful in labeling the Schwarszchild10 and Reissner-Nordström11 solutions, the static Petrov
ype I space–times9 and the Petrov type I space–times admitting isotropic radiation.12

Here we show that the eigenspaces of a Killing or a conformal tensor are umbilical planes.
oreover they are totally geodesic for a conformal metric. This geometric interpretation could be
seful in clarifying the role played by the Killing tensor in the separability theory.
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The paper is organized as follows. Some notation, definitions and properties related to regular
iemannian p planes are introduced in Sec. II. In Sec. III we study some properties of the
igenvectors and eigenvalues of a Killing or a conformal tensor. The type I case �when the tensor
dmits an orthonormal basis of eigenvectors� is analyzed in detail in Sec. IV and we write the
isenhart intrinsic Killing tensor equations in a form that is more useful to our purposes. In Sec.
we use this new form for the Killing tensor equations to analyze the Eisenhart problem when the
illing or the conformal tensor has two complementary eigenspaces. A canonical form for the
etrics admitting these kinds of first integrals is presented in Sec. VI. In Sec. VII we study the
+ �n−1� case and outline when these Killing or conformal tensors are not reducible. In the last

wo sections some results concerning the usual four-dimensional space–time are obtained. The
+2 space–time structures associated to a Killing or conformal tensor are analyzed in detail in
ec. VIII. Finally, Sec. IX is devoted to obtaining an intrinsic and explicit characterization of the
etrov-Bel type D metrics admitting Killing or conformal tensors attached to its principal struc-

ure, and we also present an algorithm to obtain these quadratic first integrals in a given type D
pace–time.

I. SOME NOTATION AND USEFUL CONCEPTS

On an n-dimensional Riemannian manifold �M ,g� we shall refer to a �regular� p-dimensional
istribution V as a p plane. Let v be the projector on V and h=g−v the projector on the plane
rthogonal to V. The generalized second fundamental form of V is defined as the �2,1�-tensor Qv
iven by

Qv�x,y� = h��v�x�v�y�� �1�

or every pair of vector fields x, y. We can consider the decomposition of Qv into its antisymmetric
art Av and its symmetric part Sv�Sv

T+ �1/ p�v � Tr Sv, where Sv
T is a traceless tensor:

Qv = Av +
1

p
v � Tr Sv + Sv

T. �2�

he plane V is a foliation if, and only if, Av=0. In this case Qv=Sv and it coincides with the
econd fundamental form of the integral manifolds of the foliation V.13 Moreover V is minimal,
mbilical or geodesic if, and only if, Tr Sv=0, Sv

T=0 or Sv=0, respectively. Then one can gener-
lize these geometric concepts for plane fields which are not necessarily a foliation.

Definition 1: A plane field V is said to be geodesic, umbilical or minimal if the symmetric part

v of its (generalized) second fundamental form Qv satisfies Sv=0, Sv
T=0 or Tr Sv=0, respectively.

From these definitions, and defining �x ,y�=�xy+�yx, a lemma easily follows.
Lemma 1: A plane field V is umbilical for the metric g if, and only if, a vector field a exists

uch that h��x ,y��=g�x ,y� a for every x ,y�V, h being the projector on the plane orthogonal to V.
On a n-dimensional Riemannian manifold �M ,g� an almost-product structure is defined by a

p-plane field V and its orthogonal complement H. The almost-product structures can be classified
aking into account the invariant decomposition of the covariant derivative of the structure tensor

=v−h. Likewise, they can be classified according to the foliation, minimal, umbilical or geo-
esic character of each plane.14,15 We will say that a structure �V ,H� is integrable when both
lanes are foliations and we will say that it is minimal, umbilical or geodesic if both of the planes
re so.

In an oriented four-dimensional space–time �V4 ,g� of signature �� � ��� a more accurate
lassification for the almost-product structures follows taking into account the causal character of
he planes.16 Elsewhere11 we have classified the Petrov-Bel type D space–times in accordance with

he class of the 2+2 principal structure of the Weyl tensor.

                                                                                                            



I

t

t

t

w
s
n

T

−

C
T

c
t
s
a
a
c
t
s
t

s

O

S

e

T

�

062503-4 Coll, Ferrando, and Sáez J. Math. Phys. 47, 062503 �2006�

                        
II. SECOND ORDER KILLING AND CONFORMAL TENSORS

The quadratic first integrals of the geodesic equation are associated with second rank Killing
ensors.1 Indeed, if K is a solution to the generalized Killing equation

�K,g� = 0 ��K,g�abc = ��a�K�bc�� , �3�

hen the scalar K�v ,v� is constant along an affine parametrized geodesic with tangent vector v.
It is known5 that if K is a Killing tensor, its traceless part P=K− �1/n�Tr Kg is a conformal

ensor, i.e., it satisfies the conformal equation

�P,g� = S�g � t� , �4�

here t is, up to a factor, the divergence of P, t= �2/ �n+2��� · P, and S�B� denotes the total
ymmetrization of a tensor B. Then, the scalar P�v ,v� is constant along an affinely parametrized
ull geodesic with tangent vector v. Moreover, Killing equation �3� implies

2n � · P + �n + 2�d Tr K = 0. �5�

hen, we have the following.
Lemma 2: If K is a second rank Killing tensor [solution to (3)] then its traceless part P=K

�1/n�Tr Kg is a conformal tensor [solutions to (4)] and it satisfies

d � · P = 0. �6�

onversely if a traceless conformal tensor P satisfies (6), a scalar � exists such that d�=� · P.
hen, K= P− �2/ �n+2���g is a Killing tensor.

In this work we analyze some properties of the eigenvalues and eigenspaces of Killing and
onformal tensors and we present some of their properties. We proceed by studying both classes of
ensors simultaneously and we will comment on the differences when they exist. So, if we con-
ider a second rank tensor T solution to �4� the consequences on its eigenspaces and eigenvalues
pply to both, Killing and conformal tensors. We particularize the conformal case by taking T as
traceless tensor. If we add condition �6�, then T is the traceless part of a Killing tensor. But we

an also recover the Killing tensor case by taking the vector t to be zero. It is worth pointing out
hat if P is a traceless conformal tensor, then P+�g is a conformal tensor, and both define the
ame first integrals of the null geodesic equation. Nevertheless, here we will always work with the
raceless representative.

We denote E� the eigenspace of T corresponding to the eigenvalue �. Then, if x ,y�E�, a
traightforward calculation leads to

�T,g��x,y, · � = x���y + y���x + g�x,y�d� − �T − �g��x,y� . �7�

n the other hand,

S�g � t��x,y, · � = g�x,y�t + g�t,x�y + g�t,y�x . �8�

o, for two eigenvectors x ,y�E�, the conformal condition �4� implies

�T − �g��x,y� = g�x,y�s + g�s,x�y + g�s,y�x, s � d� − t . �9�

On the other hand, if we consider three eigenvectors x ,y ,z corresponding to three different
igenvalues, a similar calculation leads to

T�x,�y,z�� + T�z,�x,y�� + T�y,�z,x�� = 0. �10�

hus, we can state the following.
Lemma 3: Let T be a Killing �respectively, conformal� tensor. Then we have the following.
i� If x ,y�E� are eigenvectors associated with the eigenvalue �, Eq. (9) holds, where the
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vector t is zero �respectively, t= �2/ �n+2��� ·T�.
ii� If x ,y ,z are eigenvectors corresponding to three different eigenvalues, Eq. (10) holds.

A consequence of Lemma 3 follows by taking x=y in Eq. �9�. Indeed, if one makes a new
roduct with x one obtains

x2g�d� − t,x� = 0 �11�

nd so, if x ,y are non-null vectors, Eq. �9� becomes

�T − �g��x,y� = g�x,y��d� − t� . �12�

If E� is a regular eigenspace of T, then a basis of E� formed with non-null eigenvectors exists
nd, consequently, �12� holds even for the null eigenvectors. Moreover, taking into account �11�
e have the following.

Lemma 4: Let E� be a regular eigenspace of a Killing (respectively, conformal) tensor T. Then
12� with t=0 �respectively, t= �2/ �n+2��� ·T� holds for every x ,y�E�.

Moreover, d��E�
� [respectively, 2� ·T− �n+2�d��E�

�].

V. EIGENVALUES AND EIGENVECTORS OF SECOND ORDER KILLING
ND CONFORMAL TENSORS OF TYPE I

Let us now go to type I Killing and conformal tensors, that is, those admitting an orthonormal
asis of eigenvectors. In this case every eigenspace is regular and then the Killing �or conformal�
quation implies �10� and �12�. Moreover a basis of eigenvectors exists and, consequently, these
estrictions are also sufficient conditions for T to be a Killing �or conformal� tensor. Thus, we have
he following.

Proposition 1: Let T be a symmetric 2-tensor of type I and let Ei be the eigenspaces corre-
ponding to the eigenvalues �i. Then, T is a Killing �respectively, conformal� tensor if, and only if

i� �T−�ig��x ,y�=g�x ,y��d�i− t�, for every x ,y�Ei, where the vector t is zero �respectively,
t= �2/ �n+2��� ·T�.

ii� T�x , �y ,z��+T�z , �x ,y��+T�y , �z ,x��=0, for x, y, z, eigenvectors with different eigenvalue.

Let K be a Killing tensor of type I and let �ea� and ��a� be an orthonormal basis of eigenvec-
ors and the corresponding eigenvalues. A straightforward calculation allows us to write the two
onditions in Proposition 1 in terms of �ea� and ��a� obtaining, in this way

�asbca + �bscab + �csabc = 0, a,b,c � , �13�

ea
2eb��a� − ��b − �a�saab = 0, a � b , �14�

eb��b� = 0, �15�

here sabc are the symmetrized rotation coefficients, sabc=g�ec , �ea ,eb��. If we set Eqs. �13�–�15�
n terms of the rotation coefficients we easily recover the intrinsic Killing tensor equations ob-
ained by Eisenhart.1 In order to study the metrics which admit a second order Killing tensor,
isenhart1 started from these intrinsic equations and he looked for a set of equivalent conditions

nvolving the eigenvectors exclusively. He considered the case when all the eigenvalues are equal
nd the case with different eigenvalues and normal principal congruences.1 In this work we solve
his Eisenhart problem for both the Killing and conformal tensors, when the second order tensor
dmits two complementary eigenspaces. We could also start from Eqs. �13�–�15� and similar
onditions for the conformal case, but we will choose an alternative approach that makes the
eometric properties of the eigenspaces of the Killing and conformal tensors more evident.

Let �i and hi be the eigenvalue and the projector associated with the eigenspace Ei, and let pi
e its dimension. Then
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T = � �ihi, g = � hi, Tr hi = pi. �16�

ith this notation, the second statement of Lemma 4 becomes hi�d�i− t�=0 and, consequently,

t = � hi�d�i� . �17�

n the other hand, by projecting condition �i� in Proposition 1 on every eigenspace Ej one obtains

�� j − �i�hj��x,y�� = g�x,y�hj�d�i − t� . �18�

o, if vi denotes the projection on the orthogonal space Ei
�, one has

vi��x,y�� = g�x,y��
j�i

1

� j − �i
hj�d�i − t� �19�

or every x ,y�Ei. Then, according to Lemma 1 and taking into account that t is zero for a Killing
ensor and it can be written as �17� for a conformal one, we arrive to the following:

Theorem 1: Let T be a symmetric 2-tensor of type I and let hi be the projector corresponding
o the eigenvalue �i. Then, T is a Killing or a conformal tensor if, and only if,

i� The eigenspaces are umbilical subspaces, that is, their second fundamental form can be
written as Si=

1
2hi � ai.

ii� For every eigenspace the trace of its second fundamental form Tr Si= �pi /2�ai satisfies

ai = �
j�i

1

� j − �i
hj�d�i�, hi�d�i� = 0, for a Killing tensor, �20�

ai = − �
j�i

hj�d ln	�i − � j	�, � pi�i = 0, for a conformal tensor. �21�

iii� T�x , �y ,z��+T�z , �x ,y��+T�y , �z ,x��=0, for x, y, z, eigenvectors with different eigenvalues.

The first condition of this theorem gives a geometric property involving the eigenvectors
exclusively: every eigenspace is an umbilical subspace. Thus, it offers a decoupled equation that
partially solves the Eisenhart problem. In the next section we will analyze the other two conditions
in Theorem 1 for the case of two complementary eigenspaces. The last condition makes no sense
in this case and we will see that the second one can be easily decoupled.

. GEOMETRY OF KILLING AND CONFORMAL TENSORS OF TYPE p+q

A particular case of type I second order tensors are those having two complementary eigen-
paces of dimensions p and q=n− p. So, a p+q almost-product structure �V ,H� is associated with
hese tensors, and we say that they are of type p+q. If v and h are the projectors onto the
igenspaces and � and � are the eigenvalues, such a tensor takes the form T=�v+�h. In this case
he previous theorem can be stated concisely in terms of the canonical elements �v ,h ;� ,�� as

Proposition 2: A symmetric 2-tensor K=�v+�h of type p+q is a Killing tensor if, and only if,
he following conditions hold:

i� The eigenstructure �V ,H� is umbilical, that is, the second fundamental forms can be written
as

Sv = 1
2v � a, Sh = 1

2h � b . �22�

ii� The traces of the second fundamental forms, Tr Sv= �p /2�a and Tr Sh= �q /2�b, and the

eigenvalues � ,� are related by
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a =
1

� − �
d�, b =

1

� − �
d� . �23�

similar result takes place for conformal tensors as the following proposition says.
Proposition 3: A traceless symmetric 2-tensor P=��qv− ph� of type p+q is a conformal

ensor if, and only if, the following conditions hold:

i� The eigenstructure �V ,H� is umbilical, that is, the second fundamental forms can be written
as

Sv = 1
2v � a, Sh = 1

2h � b . �24�

ii� The traces of the second fundamental forms, Tr Sv= �p /2�a and Tr Sh= �q /2�b, and the
scalar � are related by

a + b = − d ln	�	 . �25�

It is worth remembering that, for the space-time 2+2 case, the umbilical nature of the struc-
ure is equivalent to the geodesic and shear-free character of its two null principal directions.11

onsequently, the above propositions generalize some results for the space–time Killing and
onformal tensors of type 2+2 �see Ref. 5, theorem 35.4� to an arbitrary dimension n and an
rbitrary type p+q. Now we want to remark that the covariant formalism used here allows us to
ccomplish the second step in the Eisenhart method: the characterization of the Killing and
onformal tensors in terms of their eigenspaces.

The characterization of a p+q Killing or conformal tensor presented in the propositions above
nvolves the structure tensor �conditions �i� and �ii�� and the eigenvalues �condition �ii��. The next
tep consists of removing the eigenvalues in order to obtain the conditions that an almost product
tructure must satisfy in order to be the eigenstructure of a Killing or a conformal tensor. Condi-
ion �ii� of Proposition 2 can be written as

�� − ��a = − d�, �� − ��b = d� . �26�

hen we have ��−���a+b�=d��−��. If we differentiate �26� and make the substitution of
��−�� we get

da + a Ù b = 0, db + b Ù a = 0. �27�

onversely, if a, b satisfy Eqs. �27�, two functions x, y exist such that

a + b = dx, a − b = exdy .

hen, taking �=e−x−y and �=−e−x−y, Eq. �26� is satisfied and K=�v+�h is a Killing tensor
rovided that �22� holds. The freedom in choosing x and y leads to the family of Killing tensors
K+Dg, C and D being arbitrary constants.

In the same way, condition �25� for a conformal tensor implies that d�a+b�=0. Conversely, if
�a+b�=0, a function x exists such that a+b=dx. Then, the traceless tensor P=e−x�qv− ph� is a
onformal Killing tensor provided that �24� holds. The freedom in choosing x leads to the family
P, C being an arbitrary constant. Thus, we have obtained the following.

Theorem 2: The necessary and sufficient conditions for a p+q almost-product structure
V ,H� to be the eigenstructure of a Killing or a conformal tensor are the following.

i� �V ,H� is umbilical, that is, the second fundamental forms take the expression

Sv = 1
2v � a, Sh = 1

2h � b . �28�

ii� The traces, Tr Sv= �p /2�a and Tr Sh= �q /2�b, of the second fundamental forms satisfy
da + a Ù b = 0, db + b Ù a = 0 for Killing tensors, �29�
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d�a + b� = 0 for conformal tensors. �30�

If �28� and �29� hold, two functions x, y exist such that a+b=dx, a−b=ex dy. Then taking
=e−x−y, �=−e−x−y, K=C��v+�h�+Dg is a Killing tensor, C and D being two arbitrary

onstants.
If �28� and �30� hold, a function x exists such that dx=a+b. Then, P=Ce−x�qv− ph� is a

onformal Killing tensor, C being an arbitrary constant.
This theorem offers the second step in solving the Eisenhart problem for Killing or conformal

ensors with two complementary eigenspaces. In fact, once the eigenvalues have been removed,
e have obtained necessary and sufficient conditions involving the sole eigenspaces. In Sec. VIII
e will see that, for the space–time 2+2 case, these conditions can be written as tensorial condi-

ions on the structure tensor �or on the canonical 2-form associated with the structure�. This fact
llows us to give an intrinsic and explicit characterization of the four-dimensional Petrov-Bel type

space–times admitting a Killing or a conformal tensor in Sec. IX.

I. METRICS ADMITTING A KILLING OR A CONFORMAL TENSOR OF TYPE p+q

In this section we show that a metric admitting a Killing or a conformal tensor of type p+q
dmits a canonical expression in terms of a particular conformal metric and a specific conformal
actor. First we state a corollary which trivially follows on from Propositions 2 and 3.

Corollary 1: Let �V ,H� be a p+q almost-product structure for the metric tensor g. The
ollowing statements are equivalent:

i� �V ,H� is a p+q totally geodesic almost-product structure.
ii� Cv+Dh is a Killing tensor, C and D being arbitrary constants.
iii� C�qv− ph� is a conformal tensor, C being an arbitrary constant.

This corollary states that the Riemannian spaces admitting a second order Killing tensor with
onstant eigenvalues are those admitting a p+q totally geodesic structure �V ,H�. We will show
ow that these Riemannian spaces generate all the spaces admitting Killing or conformal tensors
y using an adequate conformal transformation.

The umbilical property is known to be a conformal invariant.15,11 Moreover, if we take into
ccount the change of the second fundamental form through a conformal transformation,11 condi-
ion �25� for a conformal tensor states that the eigenstructure �V ,H� is minimal for the conformal

etric g̃= 	�	−1g. Consequently, the family of metrics that admit a p+q conformal tensor are those
hat are conformal to a metric which admits a totally geodesic p+q structure. More precisely, we
ave the following.

Proposition 4. The metrics g that admit a p+q conformal tensor are those that may be written
s g= 	�	g̃, where g̃ is a metric admitting a totally geodesic p+q structure �V ,H�.

Then the conformal tensor for g is P=C��qv− ph�, C being an arbitrary constant.
This proposition and Corollary 1 generalize to an arbitrary dimension n and an arbitrary type

p+q a result by Hauser and Malhiot8 concerning the 2+2 space–time case. Moreover we also
ecover another known result easily:17 a �contravariant� conformal tensor for a metric is a confor-
al tensor for every conformally related metric.

A similar result holds for Killing tensors. In fact, the sum of expressions �29� says that
�a+b�=0, which is exactly the condition necessary for �V ,H� to be the eigenstructure of a
onformal tensor, and so the metric is conformal to a metric admitting a p+ p totally geodesic
tructure. But now, the conformal factor is not arbitrary because it must satisfy the two equations
n �29�. A detailed analysis of these conditions leads to the following.

Proposition 5: The metrics g that admit a p+q Killing tensor are those that may be written as
= 	�−�	g̃, where g̃ is a metric admitting a totally geodesic p+q structure �V ,H�, and � and � are

unctions such that v�d��=0, h�d��=0.
Moreover, the Killing tensor for g is K=C��v+�h�+Dg, C and D being arbitrary constants.

The two propositions above imply that the study of the Riemannian spaces admitting a Killing
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r a conformal tensor reduces to the study of the metrics g̃ admitting a totally geodesic p+q
tructure. As Proposition 4 states, for every metric g̃ of this type we obtain a metric g admitting a
onformal tensor by using an arbitrary conformal factor, g=	2g̃.

Nevertheless, Proposition 5 states that the richness of metrics admitting a Killing tensor
onformally related to a g̃ of this type depends on the quantity of normal directions aligned with
ne of the planes of the structure. This fact induces a classification of the metrics admitting a
otally geodesic p+q structure.

In the more regular metrics no aligned normal direction exists and only constant conformal
actors can be considered, the Killing tensor then have constant eigenvalues.

The more degenerate class corresponds to the product metrics g̃= ṽ+ h̃, ṽAB�xC� and h̃ij�xk�
eing two arbitrary p and q dimensional metrics, respectively; then, the available conformal
actors are 	2= 	�−�	, ��xk� and ��xC� being arbitrary functions depending on the product coor-
inates and they coincide with the Killing tensor eigenvalues.

An intermediate situation occurs when, for example, only one normal aligned direction exists
n each plane. Then, through the adequate conformal transformation we can obtain a metric
dmitting a Killing tensor with nonconstant eigenvalues. In dealing with 2+2 space–time Killing
ensors this case leads to the Hauser and Malhiot7,8 canonical form for the metric.

II. KILLING AND CONFORMAL TENSORS OF TYPE 1+ „n−1…

Let us consider the case of a 1+ �n−1� structure �V ,H� defined by the unitary direction u
u2=
= ±1� and its orthogonal complement. Then g=v+h where v=
u � u and h=g−
u � u. In
erms of the usual kinematic coefficients of u ��u=
u � u̇+ �1/ �n−1���h+�+	� the �generalized�
econd fundamental forms are

Qv = u � u � u̇, Qh = − 

 1

n − 1
�h + � + 	� � u . �31�

he condition for �V ,H� to be an umbilical structure just states �=0, and then

Sv = u � u � u̇, Sh = − 

1

n − 1
�h � u . �32�

hus taking into account Theorem 2, we find that the necessary and sufficient condition for u to
efine the eigenstructure of a conformal tensor is

� = 0, d
u̇ −
�

n − 1
u� = 0. �33�

ut these conditions state that u defines the direction of a conformal Killing vector.18 Thus, we
ave the following.

Proposition 6: A 1+ �n−1� structure defined by the unitary direction u is the eigenstructure of
conformal Killing tensor if, and only if, u defines the direction of a conformal Killing vector, that

s, it satisfies (33).
This proposition implies that every traceless conformal tensor of type 1+ �n−1� is the trace-

ess part of  � ,  being a Killing conformal vector. In other words, every 1+ �n−1� conformal
ensor is reducible

A similar procedure allows us to characterize the fact that u defines the eigenstructure of a
+ �n−1� Killing tensor. But in this case we find that it is not, necessarily, reducible. Indeed,
aking into account �32� the condition �29� of Theorem 2 is equivalent to
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d
u̇ −
�

n − 1
u� = 0, � du + d� Ù u + 2
�u Ù u̇ = 0.

hen �=0 these equations hold if du̇=0, that is, if u defines the direction of a Killing vector. On
he contrary, if ��0, the second equation implies duÙu=0, and so du=
uÙ u̇. In this case, u
efines the direction of a normal conformal Killing vector and the second equation can be written
s

d��1/3u� = 0. �34�

hese results are summarized in the following.
Proposition 7: The 1+ �n−1� structure defined by the unitary direction u is the eigenstructure

f a Killing tensor if, and only if, one of the following conditions hold:

i� u defines the direction of a Killing vector, that is, it satisfies �=0=�, du̇=0.
ii� u defines the direction of a normal conformal Killing vector with integrant factor �1/3, that

is, it satisfies equations (33) and (34).

This proposition shows that we can distinguish two classes of Killing tensors of type 1+ �n
1�. On the one hand, we have the reducible ones, that is, those that can be written as  � 
Bg,  being a Killing vector and B an arbitrary constant. On the other hand, a class of irreducible
illing tensors that can be obtained from normal conformal Killing vectors. This last class has
een considered by Koutras19 and Rani et al.17

The results in the preceding section allow us to give the canonical form for the metric tensors
dmitting irreducible Killing tensors of type 1+ �n−1�. Indeed, as the eigenstructure is integrable,
he metric will be conformally related to a 1+ �n−1� product metric. Moreover Proposition 5 gives
he conformal factor. Finally, we can state the following

Proposition 8: The metrics admitting an irreducible Killing tensor of type 1+ �n−1� are those
hat may be written as

g = 	��xi� − ��x0�	�
 dx0
� dx0 + ��xi�� , �35�

here ��xi� is an arbitrary �n−1�-dimensional metric.
The Killing tensor is then given by C	�−�	�
� dx0 � dx0+���xi��+Dg, C and D being arbi-

rary constants.

III. SPACE–TIME KILLING AND CONFORMAL TENSORS OF TYPE †„11… „11…‡

Let T be a Killing or a conformal tensor of type ��11� �11�� in an oriented four-dimensional
pace–time �V4 ,g� of signature ������. Then T has two eigenspaces: a timelike two-plane V
nd its spacelike orthogonal complement H. The almost-product eigenstructure �V ,H� is deter-
ined by the canonical unitary 2-form U, volume element of the timelike plane V. Then, the

espective projectors are v=U2 and h=−��U�2, where U2=U�U=Tr23 U � U and � is the Hodge
ual operator.

In order to study the geometric properties of a 2+2 structure it is useful to introduce the
elf-dual unitary 2-form U��1/�2��U− i�U� associated with U. The metric on the self-dual
-forms space is G= 1

2 �G− i��, where � is the metric volume element of the space–time,
= 1

2gÙg is the metric on the 2-forms space, and Ù denotes the double-forms exterior product,
AÙB�����=A��B��+A��B��−A��B��−A��B��. Then, we can consider some first order differen-
ial concomitants of U that determine the geometric properties of the structure. Indeed, if i�·�
enotes the interior product and � the exterior codifferential, �= �d�, we have the following
emma.11

Lemma 5: Let us consider the 2+2 structure defined by U= �1/�2��U− i�U�. Then

i� The traces of the second fundamental forms take the expression
Tr Qv = a�U� � − i�� � U� � U, Tr Qh = b�U� � i��U�U . �36�
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ii� The structure is umbilical, if, and only if,

��U� � �U − i��U�U � U − i��U�G = 0. �37�

With this notation, we can write the intrinsic equations in Propositions 2 and 3 for the case of
illing or conformal tensors of type ��11� �11�� by using the eigenvalues and the canonical 2-form
exclusively.

Proposition 9: The traceless symmetric tensor P=��U2+ ��U�2� is a conformal tensor if, and
nly if, the canonical elements �� ,U� satisfy (37) and

− d ln	�	 = ��U� � i��U�U − i�� � U� � U . �38�

Proposition 10: The symmetric tensor K=�U2+���U�2 is a Killing tensor if, and only if, the
anonical elements �� ,� ,U� satisfy (37) and (38) and

d� = �� − ��i�� � U� � U . �39�

This last proposition is the tensorial version of the intrinsic equations for a Killing tensor that
re known in Newmann-Penrose formalism �Ref. 5, Theorem 35.4�. Now we can easily write the
onditions in Theorem 2 in terms of the canonical 2-form U, that is, we obtain the characterization
f the Killing and conformal tensor in the sole variable U.

Theorem 3: The 2+2 structure defined by the unitary simple 2-form U is the eigenstructure
f a conformal tensor if, and only if, U satisfies

��U� � �U − i��U�U � U − i��U�G = 0, �40�

d��U� � d�i��U�U − i�� � U� � U� = 0. �41�

f these conditions hold, a function � exists such that ��U�=−d ln	�	. Then, the conformal tensor
s P=C��U2+ ��U�2�, C being an arbitrary constant.

Theorem 4: The 2+2 structure defined by the unitary simple 2-form U is the eigenstructure of
Killing tensor if, and only if, U satisfies

��U� � �U − i��U�U � U − i��U�G = 0, �42�

d��U� � d�i��U�U − i�� � U� � U� = 0, �43�

di��U�U = i��U�U Ù i�� � U� � U . �44�

f these conditions hold, two functions � and � exist such that ��U�=−d ln	�−�	 and d��+��
2��−���i��U�U+ i���U��U�. Then, the Killing tensor is K=C��U2−���U�2�+Dg, C and D
eing two arbitrary constants

It is worth pointing out that the first order differential properties of a 2+2 structure admit a
inematical interpretation16 and, in particular, the umbilical conditions �40� and �42� equivalently
mply that the two principal null directions of the structure are geodesic and shear-free
ongruences.11 Thus, we recover a known result obtained independently by Hauser and Malhiot7

nd by Collinson.20

On the other hand, condition �41� states that the structure is pre-Maxwellian.21,22 Then, taking
nto account the study of these structures given in Ref. 22 we have the following.

Corollary 2: The 2+2 traceless tensor P=��v−h� is a conformal tensor if, and only if, T
�−2�v−h� is a conservative Maxwell-Minkowski energy tensor and the principal directions of the

ssociated electromagnetic field are geodesic and shear-free congruences.
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X. PETROV-BEL TYPE D SPACE–TIMES ADMITTING KILLING OR CONFORMAL
ENSORS

The results in the preceding sections help us to characterize intrinsically and explicitly some
amilies of metrics. More precisely, in this section: �i� we obtain necessary and sufficient condi-
ions on the metric concomitants for a four-dimensional space–time to be a Petrov-Bel type D
olution admitting a 2+2 Killing or conformal tensor and, when they hold, �ii� we give an
lgorithm to determine these tensors.

In the preceding section we have characterized the 2+2 Killing and conformal tensors in
erms of the volume element U of their timelike eigenplane. Moreover, for the case of Petrov-Bel
ype D metrics, this 2-plane determines the Weyl principal structure and, consequently, U can be
btained from the Weyl tensor. The intrinsic and explicit characterization of type D solutions and
he covariant obtaining of the Weyl canonical bivector have been given in Ref. 9. Consequently we
an state the following invariant characterizations.

Proposition 11: A Petrov-Bel type D metric admits a conformal tensor if, and only if, the Weyl
rincipal null directions define geodesic shear-free congruences and the Weyl canonical 2-form
atisfies (43).

A Petrov-Bel type D metric admits a Killing tensor if, and only if, the Weyl principal null
irections define geodesic shear-free congruences and the Weyl canonical 2-form satisfies (43) and
44).

Finally, taking into account the algebraic results for Petrov-Bel type D metrics quoted above
see Ref. 9�, we obtain from Theorems 3 and 4 the explicit expression of the conditions in
roposition 11 and the algorithm for obtaining the conformal or Killing tensors.

Theorem 5: Let W�W�g�= 1
2 �W�g�−i�W�g�� and G�G�g�= 1

2
� 1

2gÙg−i��g�� the self-dual
eyl tensor and self-dual metric associated with a space–time metric g, and let us take the metric

oncomitants

� � −
TrW3

TrW2 , S �
1

3�
�W − �G�, U �

S�X�
�S�X,X�

, �45�

� � �U − i��U�U � U − i��U�G , �46�

U � �2 Re�U�, a � − i�� � U� � U, b � i��U�U , �47�

here X is an arbitrary self-dual bivector.
The necessary and sufficient conditions for g to be a Petrov-Bel type D solution admitting a

+2 conformal tensor are

� � 0, S2 + S = 0, � = 0, d�a + b� = 0. �48�

hen (48) hold, a function � exists such that −d ln	�	=a+b. Then, the conformal tensor is P
C��U2+ ��U�2�, C being an arbitrary constant.

The necessary and sufficient conditions for g to be a type D solution admitting a 2+2 Killing
ensor are 48 and

db + b Ù a = 0. �49�

hen (48) and (49) hold, two functions � and � exist such that −d ln	�−�	=a+b and d��+��
2��−���b−a�. Then, the Killing tensor is K=C��U2−���U�2�+Dg, C and D being two arbi-

rary constants.
For Petrov-Bel type D solutions with a vanishing Cotton tensor �the Weyl tensor is

11
ivergence-free� the Bianchi identities take the expression
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�U = i��U��U � U + G�, i��U�U = 1
3d ln � , �50�

here U is the Weyl canonical bivector and � the double Weyl eigenvalue. The real part of the
econd equation in �50� states

2
3d ln	�	 = ��U� � i��U�U − i�� � U� � U . �51�

hus, the principal structure of a type D divergence-free Weyl tensor is umbilical and pre-
axwellian and, as a consequence of Theorem 3, it is the structure of a conformal tensor. More-

ver, in this case the eigenvalue of the conformal tensor can be obtained algebraically from the
eyl eigenvalues if we take into account Proposition 9. Thus, we have the following.

Theorem 6: Every Petrov-Bel type D solution with vanishing Cotton tensor admits a confor-
al tensor. Let �, S, and U be the Weyl concomitants given in �45�. Then we have the following.

i� These space–times are characterized by the conditions

� � 0, S2 + S = 0, �W = 0. �52�

ii� The conformal tensor is given by

P = C	�	−2/3U � Ũ . �53�

his theorem generalizes the result about the existence of conformal tensors in Petrov-Bel type D
acuum solutions �see Ref. 5, Theorem 35.2�.

We finish with two comments. The characterization of the Killing or conformal tensors in
erms of their underlying structure has allowed us to give an explicit and intrinsic labeling of the
etrov-Bel type D space–times admitting Killing or conformal tensors, as well as to generalize
ome known results on the existence of these symmetries. Furthermore, our Eisenhart-type ap-
roach to the Killing and conformal tensor may also be useful in analyzing and extending other
roperties. For example, it is known that all type D vacuum solutions that admit a Killing tensor,
lso admit a Killing-Yano tensor.20,23 Our result here and those given in Ref. 22 allow us to
eneralize this property. This question and other related topics will be considered elsewhere.24

Our study of the geometry of the Killing and conformal tensors and the canonical expressions
f the metric tensor in terms of this geometry can be applied, in particular, to n-dimensional
orentzian metrics. We know that, for four-dimensional Petrov-Bel type D space–times, this
nderlying geometry is closely related with the Weyl tensor and, this fact allows us to determine
he 2+2 Killing and conformal tensors �see Theorems 5 and 6�. The generalization of these results
o higher dimensions is an open problem that could be fruitful in some classes of the Weyl tensor.
ut this study will require a further analysis of the Weyl classification in higher dimensions.25,26
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We provide a coordinate-free version of the local classification, due to Walker
�Q. J. Math. 1, 69 �1950��, of null parallel distributions on pseudo-Riemannian
manifolds. The underlying manifold is realized, locally, as the total space of a fiber
bundle, each fiber of which is an affine principal bundle over a pseudo-Riemannian
manifold. All structures just named are naturally determined by the distribution and
the metric, in contrast with the noncanonical choice of coordinates in the usual
formulation of Walker’s theorem. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2209167�

. INTRODUCTION

In 1950, Walker1 described the local structure of all pseudo-Riemannian manifolds with null
arallel distributions. The present paper provides a coordinate-free version of Walker’s theorem.

Many authors, beginning with Walker himself,2 have invoked Walker’s 1950 result, often to
eneralize it or derive other theorems from it. In our bibliography, which is by no means complete,
efs. 3–16 all belong to this category. They invariably cite Walker’s result in its original, local-
oordinate form �reproduced in the Appendix�.

Such an approach, perfectly suited for the applications just mentioned, tends nevertheless to
bscure the geometric meaning of Walker’s theorem. In fact, Walker coordinates are far from
nique; choosing them results in making noncanonical objects a part of the structure.

To keep the picture canonical, some authors3,5 replace a single Walker coordinate system by a
hole maximal atlas of them. What we propose here, instead, is to use only ingredients such as
ber bundles, widely seen as more directly “geometric” than a coordinate atlas �even though one
ay ultimately need atlases to define them�.

In our description, the coordinate-independent content of Walker’s theorem amounts to real-
zing the underlying manifold, locally, as a fiber bundle whose fibers are also bundles, namely,
ffine principal bundles over pseudo-Riemannian manifolds. The bundle structures are all natu-
ally associated with the original null parallel distribution; the distribution and the metric can in
urn be reconstructed from them.

I. PRELIMINARIES

Throughout this paper, all manifolds, bundles, sections, subbundles, connections, and map-
ings, including bundle morphisms, are assumed to be of class C�. A bundle morphism may
perate only between two bundles with the same base manifold, and acts by identity on the base.

A bundle always means a C� locally trivial bundle and the same symbol, such as M, is used
oth for a given bundle and for its total space; the bundle projection M→� onto the base manifold

�Electronic mail: andrzej@math.ohio-state.edu
�
Electronic mail: roter@im.pwr.wroc.pl
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is denoted by � �or, sometimes, p�. We let My stand for the fiber �−1�y� over any y��, while
er d� is the vertical distribution treated as a vector bundle �namely, a subbundle of the tangent
undle TM�.

For real vector bundles X ,Y over a manifold � and a real vector space V with dim V��, we
enote by Hom�X ,Y� the vector bundle over � whose sections are vector-bundle morphisms
→Y, and by ��V the product bundle with the fiber V, the sections of which are functions
→V. Thus, X *=Hom�X ,��R� is the dual of X.

We will say that a given fiberwise structure in a bundle M over a manifold � depends
�-differentiably on y ��, or varies C�-differentiably with y, if suitable C� local trivializations of

M make the structure appear as constant �the same in each fiber�.
The symbol � will be used for various connections in vector bundles. Our sign convention

bout the curvature tensor R=R� of a connection � in a vector bundle X over a manifold � is

R�u,v�� = �v�u� − �u�v� + ��u,v�� , �1�

or sections � of X and vector fields u ,v tangent to �. By the Leibniz rule, when � is the
evi-Civita connection of a pseudo-Riemannian metric g and u ,v ,w are tangent vector fields,
��wv ,u� equals17

dw�v,u� + dv�w,u� − du�w,v� + �v,�u,w�� + �u,�w,v�� − �w,�v,u�� , �2�

here dv is the directional derivative and �,� stands for g�,�.
Remark 2.1: Let � :M→� be a bundle projection. A vector field w on the total space M is

-projectable onto the base manifold � if and only if, for every vertical vector field u on M, the
ie bracket �w ,u� is also vertical. This well-known fact is easily verified in local coordinates for

M which make � appear as a standard Euclidean projection.

II. AFFINE PRINCIPAL BUNDLES

All principal bundles discussed below have Abelian structure groups G, so one need not
ecide whether G acts from the left or right.

Let N be a G-principal bundle over a base manifold L, where G is an Abelian Lie group. By
he N-prolongation of the tangent bundle TL we mean the vector bundle F over L whose fiber Fc

ver c�L is the space of all G-invariant vector fields tangent to N along Nc �and defined just on

c�, with Nc denoting, as usual, the fiber of N over c. A vector subbundle G�F now can be
efined by requiring Gc, for any c�L, to consist of all G-invariant vector fields defined just on Nc

hich are vertical �i.e., tangent to Nc�. Since each Gc is canonically isomorphic to the Lie algebra
of G, the vector bundle G is naturally trivialized, that is, identified with the product bundle

�g. Therefore

L � g = G � F . �3�

he quotient bundle F /G is in turn naturally isomorphic to TL, via the differential of the bundle
rojection N→L.

An affine space is a set A with a simply transitive action on A of the additive group of a vector
space V. One calls V the vector space of translations of the affine space A.

An affine bundle M over a manifold � is a bundle with fibres My, y��, carrying the
tructures of affine spaces whose vector spaces Xy of translations form a vector bundle X over �,
alled the associated vector bundle of M. We also require the affine-space structure of My to vary
�-differentiably with y��, in the sense of Sec. II.

If, in addition, X=��V, that is, the associated vector bundle of M happens to be a product
undle, then M is also a V-principal bundle, with the obvious action of the additive group of the
ector space V. Such affine principal bundles are distinguished from arbitrary affine bundles by
aving a structure group that, instead of general affine transformations of a model fiber, contains

nly translations.
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V. PARTIAL METRICS AND EXTENSIONS

Let C, D, and E be real vector bundles over a manifold Q. By an E-valued pairing of C and D
e mean any vector-bundle morphism � :C � D→E. This amounts to a C� assignment of a
ilinear mapping ��z� :Cz�Dz→Ez to every z�Q. An E-valued partial pairing of C and D
onsists, by definition, of two vector subbundles C��C and D��D, of some codimensions k and
, along with pairings � :C � D�→E and � :C� � D→E which coincide on the subbundle C� � D�
and so may be represented by the same symbol � without risk of ambiguity�. One can obviously
estrict a given pairing � :C � D→E to C � D� and C� � D, so that a partial pairing � is obtained;
e will then say that � is a total-pairing extension of �.

Lemma 4.1: For any fixed partial pairing �, with C, D, E, C�, D�, k, l, and Q as above, and
ith m denoting the fiber dimension of E, the total-pairing extensions of � coincide with sections
f a specific affine bundle of fiber dimension klm over Q, whose associated vector bundle is
om�C /C� � D /D� ,E�.

Proof: Our � is nothing else than a vector-bundle morphism X→E, where X�C � D is the
ubbundle spanned by C � D� and C� � D. The affine bundle in question is the preimage of the
ection � under the �surjective� restriction morphism Hom�C � D ,E�→Hom�X ,E�. �

As usual,5 by a pseudo-Riemannian fiber metric g in a vector bundle T over a manifold M we
ean any family of nondegenerate symmetric bilinear forms g�x� in the fibers Tx that constitutes
C� section of the symmetric power �T *��2. Equivalently, such g is a pairing of T and T valued

n the product bundle M �R, symmetric and nondegenerate at every point of M.
Let T again be a vector bundle over a manifold M. We define a partial fiber metric in T to be

triple �P ,P�,	� formed by vector subbundles P and P� of T along with a pairing 	 :P� � T
M �R, valued in the product bundle M �R, such that

�i� T ,P, and P� are of fiber dimensions n ,r and, respectively, n−r for some n ,r with 0

r
n /2, while P�P�,

�ii� at every x�M the bilinear mapping 	�x� :Px��Tx→R has the rank n−r, its restriction
to Px��Px� is symmetric, and its restriction to Px��Px equals 0.

y a total-metric extension of �P ,P�,	� we then mean any pseudo-Riemannian fiber metric in T
hose restriction to P� � T is 	.

Lemma 4.2: The total-metric extensions g of any partial fiber metric �P ,P�,	�, with r ,M as
bove, coincide with the sections of a specific affine bundle of fiber dimension r�r+1� /2 over M.
or every such g the subbundle P is g-null and P� is its g-orthogonal complement.

Proof: For any fixed point x�M, let us choose a basis e1 , . . . ,en of Tx such that

1 , . . . ,er�Px and e1 , . . . ,en−r�Px�. The matrix of g�x�, for any total-metric extension g of our
artial fiber metric, then is the matrix appearing in Walker’s original theorem �see the Appendix�,
ith det A�0, and with the two occurrences of I replaced by some nonsingular r�r matrix C and

ts transpose C�. The submatrices A ,H ,C �and H� ,C�� are prescribed, while the freedom in
hoosing g�x� is represented by an arbitrary symmetric r�r matrix B. �

. WALKER’S THEOREM

Suppose that the following data are given:

�a� Integers n and r with 0
r
n /2.
�b� An r-dimensional manifold �.
�c� A bundle over � with some total space M, whose every fiber My , y��, is a

Ty
*�-principal bundle over a �n−2r�-dimensional manifold Qy �cf. the last paragraph of

Sec. III�.
�d� A pseudo-Riemannian metric hy on each Qy ,y��.
We assume that all y-dependent objects in �c� and �d�, including the principal-bundle structure,
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ary C�-differentiably with y�� �in the sense of Sec. II� and, in particular, the Qy are the fibers
f a bundle over � with a total space Q of dimension n−r. When r=n /2, each hy is the “zero
etric” on the discrete space Qy, cf. Sec. VIII.

Let F be the vector bundle over Q whose restriction to Qy, for each y��, is the
My-prolongation of the tangent bundle TQy �see Sec. III� for the Ty

*�-principal bundle My over Qy.
elation �3� now yields p*�T*���F, where p:Q→� denotes the bundle projection. In other
ords, p*�T*�� may be treated as a vector subbundle of F.

Furthermore, the quotient-bundle identification following formula �3� yields F /p*�T*��
Ker dp �the vertical subbundle of TQ, for the projection p:Q→��.

We define a partial pairing � of F and TQ valued in the product bundle Q�R, as in Sec. IV,
or our Q along with C=F, D=TQ, E=Q�R, C�=p*�T*�� and D�=Ker dp. Namely, given
�Q, we set ��� ,��=��dpz�� for ��Ty

*�= �p*�T*���z and ��TzQ, with y=p�z���, as well as
�u ,��=hy��u� ,�� for u�Fz and ��Ker dpz, where u� �u� denotes the surjective vector-bundle
orphism F→Ker dp with the kernel p*�T*��.

Our construction has two steps involving arbitrary choices.
Step 1: We choose � :F � TQ→Q�R to be any total-pairing extension of �.
According to Lemma 4.1, such � is just an arbitrary section of an affine bundle of fiber

imension �n−2r�r over Q. For the meaning of the above discussion in Walker’s original lan-
uage, see the Appendix.

The remainder of our construction proceeds as follows. Using �, we define a partial metric
P ,P�,	� in the tangent bundle TM. Specifically, T ,P ,P� and n ,r with the properties listed in �i�
nd �ii� of Sec. IV are chosen so that T=TM, while n ,r are the integers in �a� above, P is the
ubbundle of TM whose restriction to My �M, for each y��, is the vertical distribution on the

y
*�-principal bundle My over Qy, and P�=Ker d� is the vertical distribution of the bundle pro-

ection � :M→�. We also set 	�u� ,w�=��u ,�� for any x�M and any vectors w�TxM ,
��Px�=TxMy with y=��x���, where u is the Ty

*�-invariant vector field tangent to My along the

y
*�-orbit of x and having the value u� at x, while � is the image of w under the differential at x
f the bundle projection M→Q.

Step 2: We select an arbitrary total-metric extension g of �P ,P�,	� restricted to U, where U
s any fixed nonempty open subset of M.

The construction just described gives a null distribution P of dimension r on the
-dimensional pseudo-Riemannian manifold �U ,g�. This is clear from Lemma 4.2, which also
mplies that such metrics g are just arbitrary sections of some affine bundle over U.

The reader is again referred to the Appendix for a description of what the above steps corre-
pond to in Walker’s formulation.

We can now state a coordinate-free version of Walker’s theorem.
Theorem 5.1: If g and P are obtained as above from any prescribed data �a�–�d�, then g is a

seudo-Riemannian metric on the n-dimensional manifold U, and P is a g-null, g-parallel distri-
ution of dimension r on U.

Conversely, up to an isometry, every null parallel distribution P on a pseudo-Riemannian
anifold �M ,g� is, locally, the result of applying the above construction to some data �a�–�d�. The
ata themselves are naturally associated with g and P.

A proof of Theorem 5.1 is given in the next two sections.

I. PROOF OF THE FIRST PART OF THEOREM 5.1

By Lemma 4.2, P is g-null and P� is its g-orthogonal complement. That P is g-parallel will
e clear if we establish the relation ��wv ,u�=0, where � is the Levi-Civita connection of g and �,�
tands for g�,�, while v ,u ,w are any vector fields tangent to M such that v is a section of P and

is a section of P�. We may further require w to be projectable under both bundle projections
M→Q and � :M→�. Finally, we may also assume that v restricted to each Ty

*�-principal bundle
pace My is an infinitesimal generator of the action of Ty

*�, while u restricted to each My is
*

y�-invariant, �Locally, such w ,v ,u span the vector bundles TM ,P and P�.�
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First, �w ,v� is a section of P and �u ,w� is a section of P� �from Remark 2.1 applied to both
undle projections�, while �v ,u�=0 by Ty

*�-invariance of u. The last three terms in �2� thus all
qual zero.

Our claim will follow if we show that the first three terms in �2� vanish as well. To this end,
ote that dw�v ,u�=0 since �v ,u�=0. Next, dv�w ,u�=0. Namely, �w ,u�=	�u ,w�=��u ,��, for
,� ,� described in Sec. V, is constant in the direction of v �and, in fact, constant along each leaf
f P�: at a point x�My �M we obtain � as the projection image of w�x�, while u is Ty

*�-invariant,
o that, due to projectability of w, both u and � depend only on the image of x under the bundle
rojection M→Q, rather than x itself. Finally, du�w ,v�=0 as �w ,v�=��w̃� is a function �→R,
hat is, a function M→R constant along P�. Here � is the section of T*� corresponding to v under
he inclusion p*�T*���F of Sec. V, while w̃ is the vector field on � onto which w projects;
herefore, �w ,v�=��w̃�, since in Sec. V we set ��� ,��=��dpz��.

II. PROOF OF THE SECOND PART OF THEOREM 5.1

For any null parallel distribution P of dimension r on an n−dimensional pseudo-Riemannian
anifold �M ,g�, the g-orthogonal complement P� is a parallel distribution of dimension n−r. If

he sign pattern of g has i− minuses and i+ pluses, it follows that

r 
 min�i−,i+� , �4a�

P � P�, �4b�

r 
 n/2. �4c�

n fact, P is null, which gives �4b� and r
n−r, that is �4c�, while �4a� follows since, in a
seudo-Euclidean space with the sign pattern as above, i− �or, i+� is the maximum dimension of a
ubspace on which the inner product is negative �or, positive� semidefinite.

Every null parallel distribution P satisfies the curvature relations

R�P,P�,− ,− � = 0, �5a�

R�P,P,− ,− � = 0, �5b�

R�P�,P�,P,− � = 0, �5c�

5a� meaning that R�v ,u ,w ,w��=0 whenever v ,u ,w ,w� are vector fields, v is a section of P, and
is a section of P�. �Similarly for �5b� and �5c�.� In fact, for such v ,u ,w ,w�, �1� implies that

�w ,w��v is a section of P, and so it is orthogonal to u. This proves �5a�; �5a� and �4b� yield �5b�,
hile �5a� and the first Bianchi identity give �5c�.

We now show how a null parallel distribution P on a pseudo-Riemannian manifold �M ,g�
ives rise to objects �a�–�d� in Sec. V.

First, n and r are the dimensions of M and P. By �4c�, r
n /2.
Being parallel, the distribution P� is integrable. Since our discussion is local, we will assume,

rom now on, that M is the total space of a bundle over some r-dimensional base manifold �,
hose fibers My, y��, are all contractible and coincide with the leaves of P�. As P is parallel,

he Levi-Civita connection � induces a connection in the vector bundle obtained by restricting P
o any given submanifold N of M. In the case where N=My is a leaf of P�, we have, for each

y��, the following conclusion.

Ty
*� is naturally isomorphic to the space Vy of those sections of the restriction
of P to My which are parallel �along My� . �6�
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nstead of establishing �6� directly, we will show that sections of T*� can be naturally identified
ith sections of P parallel along P�, using an identification which is clearly valuewise, i.e.,
onsists of operators Vy→Ty

*� ,y��. To this end, we denote by � the bundle projection M→�.
very vector field on � is the �-image �d��w of some �-projectable vector field w on M. Let v
ow be a section of the vector bundle P over M, parallel in the direction of P�. Our identification
ssociates with v the cotangent vector field � on � that sends each vector field �d��w to g�v ,w�
reated as a function �→R. Note that � is well defined: two �-projectable vector fields w on M
ith the same �-image �d��w differ by a section of P�=Ker d�, necessarily orthogonal to v, so

hat g�v ,w� is the same for both choices of w. Also, g�v ,w� :M→R actually descends to a
unction �→R, i.e., is constant along the fibers My �leaves of P��. In fact, du�g�v ,w��=0 for any
ection u of P�, as �uv=0 in view of the assumption about v, and �uw= �u ,w�+�wu, while �u ,w�
or �wu� is a section of P� by Remark 2.1 �or, since P� is parallel�.

Injectivity of the above assignment v�� is obvious, since �-projectable vector fields w span
M. Surjectivity of the resulting operators Vy→Ty

*� now follows: both spaces have the same
imension, as the connections induced by � in the restrictions of P to the leaves My are flat in
iew of �5c� �cf. �1��. This proves �6�.

Flatness of the induced connections also implies that the leaves of P contained in any given
eaf My of P� are the fibers of a Vy-principal bundle with the total space My over some base
anifold Qy. �Here M should be replaced with an open subset, if necessary.� Since each Ty

*� is
dentified with Vy by �6�, we thus obtain the data �c� of Sec. V.

Next, we define the metric hy on each Qy, required by �d� in Sec. V, so that it assigns the
unction g�u ,u�� to two vector fields on Qy which are images, under the Ty

*�-principal bundle
rojection My→Qy, of Ty

*�-invariant vector fields u ,u� on My. Constancy of g�u ,u�� along the

y
*�-orbits, meaning that dv�g�u ,u���=0 for any section v of P defined on My and parallel along
�, now follows: as v is P�-parallel and u is Ty

*�-invariant, we have �uv= �v ,u�=0, cf. �6�, so
hat �vu=0. For the same reason, �vu�=0.

Finally, a suitable version of the construction in Sec. V, applied to the data �a�–�d� defined
bove, leads to the original g and P, which is a consequence of how the identification �6� and the
efinition of hy use g. The choices of the total-pairing and total-metric extensions, required in Sec.
, are provided by g as well. For instance, � in Step 1 is given by ��u ,��=g�u ,w�, where u is a
ection of P� commuting with every section v of P that is parallel along P�, and � is a vector
eld on Q �the union of all Qy�, while w is any vector field on M projectable onto � under the
undle projection M→Q. That g�u ,w� depends just on u and � �but not on w� is clear: two choices
f w differ by a section of P. Also, g�u ,w� is constant in the direction of P �and so it may be
reated as a function Q→M�. Namely, dv�g�u ,w��=0 for any section v of P parallel along P�,
hich follows as �vu=�uv=0 �note that �u ,v�=0�, while �vw= �v ,w�+�wv, and �v ,w� �or �wv�

s a section of P by Remark 2.1 �or, respectively since P is parallel�. This completes the proof of
heorem 5.1.

III. THE MID-DIMENSIONAL CASE

For an r-dimensional null parallel distribution P on a pseudo-Riemannian manifold �M ,g� of
imension n=2r, the discussion in Sec. V amounts to nothing new: implicitly at least, it is already
resent in Sec. �6� of Walker’s original paper.1 See also Sec. 9 in Ref. 3. �A related global result
s Theorem 5 in Ref. 5.� In this section we point out how the construction may be simplified when
=2r.

Let P and �M ,g� be as above, with n=2r2. The relations i−+ i+=n and �4a� imply that g has
he neutral sign pattern: i−= i+=r=n /2. In �c� and �d� of Sec. V, each Qy is a 0-dimensional
discrete� manifold, and hy is the “zero metric” on Qy. Also, the choice of a total-pairing extension

in Step 1 of Sec. V is now unique: the affine bundle having � as a section is of fiber dimension
. The construction in Sec. V can therefore be rephrased as follows. Given

�a� an even integer n2,

�b� a manifold � of dimension r=n /2,
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�c� an affine bundle over � with some total space M, for which T*� is the associated vector
bundle �Sec. III�,

e define a partial metric �P ,P�,	� in the tangent bundle TM by choosing P=P� to be the vertical
istribution Ker d� for the bundle projection � :M→�, and setting 	�� ,w�=��d�x w� for any x
M ,��Px=Ty

*�, where y=��x�, and w�TxM. Selecting any total-metric extension g of
P ,P�,	� on a fixed nonempty open set U�M, we now obtain an n-dimensional pseudo-
iemannian manifold �U ,g� on which P is a g-null, g-parallel distribution of dimension r=n /2.

Conversely, up to an isometry, every null parallel distribution P of dimension r1 on a
seudo-Riemannian manifold �M ,g� with dim M =2r arises, locally, from the above construction

applied to some data �a�–�c�, themselves naturally determined by g and P.
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PPENDIX: WALKER’S ORIGINAL STATEMENT

Walker stated his classification result as follows.1

Theorem 1: A canonical form for the general Vn of class C� �or C�� admitting a parallel null
-plane is given by the fundamental tensor

�gij� = �O O I

O A H

I H� B
� ,

here I is the unit r�r matrix and A ,B ,H ,H� are matrix functions of the coordinates, of the same
lass as Vn, satisfying the following conditions but otherwise arbitrary:

�i� A and B are symmetric, A is of order �n−2r�� �n−2r� and nonsingular, B is of order
r�r, H is of order �n−2r��r, and H� is the transpose of H.

�ii� A and H �and therefore H�� are independent of the coordinates x1 , . . . ,xr.

A basis for the parallel null r-plane is the set of vectors �1
i ,�2

i , . . . ,�r
i .

Here is how the coordinates and matrix functions appearing above correspond to the objects
sed for the construction in Sec. V. Walker’s coordinates xi , i=1, . . . ,n, serve as a coordinate
ystem for the manifold M of Sec. V. Coordinates for other manifolds appearing in Sec. V are
btained from xi by restricting the range of the index i, to i�n−r �for ��, i�r �for Q�, i
n−r
for each My� and r� i
n−r �for each Qy�. The center submatrix A in Walker’s matrix corre-
ponds to the family hy ,y��, of pseudo-Riemannian metrics ��d� in Sec. V� and, consequently,
lso to the formula for ��u ,��, while the last two matrices O I in the first row represent the
efinition of ��� ,��. The Walker-matrix counterpart of the extension � chosen in Step 1 is the
n−r�� �n−r� submatrix with the rows O I and A H, so that the freedom in choosing � amounts
o arbitrariness in the selection of H �and H is independent of the coordinates xi , i=1, . . . ,r, which
ranslates into the fact that � is a morphism of vector bundles over the manifold Q with the
oordinates xi , i�r�. Once chosen, � is used in Sec. V to define P ,P� and 	. In terms of Walker’s
oordinates and matrix functions, P �or, P�� is spanned by the xi coordinate directions with

r �or, respectively, i
n−r�, while the analog of 	 is the �n−r��n submatrix with the rows

O I and O A H. Finally, the extension in Step 2 is nothing else than augmenting this last

ubmatrix by a third row, I H�B, in which B is completely arbitrary.
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A survey of linearized cosmological fluid equations with a number of different
matter components is made. To begin with, the one-component case is reconsidered
to illustrate some important mathematical and physical points rarely discussed in
the literature. The work of some previous studies of two-component systems are
examined and reanalyzed to point out some deficiencies of solutions, and further
solutions and physical interpretation are then presented. This leads into a general
two-component model with variable velocity dispersion parameters and mass den-
sity fractions of each component. The equations, applicable to both hot dark matter
�HDM� and cold dark matter �CDM� universes are solved in the long wavelength
limit. This region is of interest, because some modes in this range of wave numbers
are Jeans unstable. The mixture Jeans wave number of the two-component system
is introduced and interpreted, and the solutions are discussed, particularly in com-
parison to analogous solutions previously derived for plasma modes. This work is
applicable to that region in the early Universe �20�z�140�, where large scale
structure formation is thought to have occurred. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2209172�

. INTRODUCTION

The theory of structure formation in the Universe has become one of the most popular and
ntensely studied topics in modern cosmology. Throughout the past century there has been an
ccumulating volume of work on the analytic investigation of the cosmological structure forma-
ion equations. The various approaches include both fluid and kinetic theory formulations. They
rincipally consider the gravitational interaction of components of the cosmological medium,
hough sometimes other forms of interaction such as magnetic fields are also included �for some
tandard examples see, e.g., Refs. 1 and 2�. The analysis of these equations has employed ever
ore diverse and complicated techniques and approximation schemes to model increasingly real-

stic physical situations. This has been comprehensively supported and now superseded by large
-body simulations. The algorithms which govern these large numerical studies have grown
rogressively more refined and subtle, and are now producing very accurate and realistic results,
hich can be directly compared with observations �e.g., Ref. 3�.

Despite the current trends in modern cosmological structure formation theory, much can still
e learned from relatively simple analytic models. We consider such models, in the face of modern
omputing power, to analyze at a fundamental level some of the basic physical processes which
ause the clustering observed in the Universe. This helps to isolate physical mechanisms difficult
o discern numerically. In this paper our interest will focus on the linearized cosmological fluid
quations. These equations have been used to build up the components of the cosmological density
erturbation power spectrum, and must be evolved through the various stages of cosmological
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volution, and over a large range of physical scales. There are several reasons for taking such an
pproach. The equations may be solved numerically to give detailed power spectra for the various
osmological models currently viable. The power spectra may then be used as initial data to
volve the large N-body simulations, which are ultimately compared to observations. The equa-
ions may also be used to build up a semiquantitative picture of the evolution of the power
pectrum. This can show how the various sized perturbations scale with respect to the Friedmann
xpansion parameter a during different epochs of the Universe, and give a direct insight into some
f the fundamental physical processes operating to produce structure in the Universe �see, e.g.,
ef. 1�.

The evolution of perturbation modes with wavelength greater than the Hubble radius may be
tudied through a relativistic formulation of the perturbation equations, whereas for modes with
avelengths smaller than this radius, a Newtonian formalism suffices. There is a range of physical
arameters and variety of differential equations describing the evolution processes of density
uctuations in the early Universe. This involves such elements as equations of state for energy
onstituents, and specification of the expansion parameter a by the Friedmann cosmological equa-
ions. As a consequence, there is a large wealth of literature on this subject, and most of the
urrently important techniques and results have been collected in some well-known textbooks.1,2,4

ome of the relatively complicated systems of equations have also been studied in the literature,
nd it is our goal to both review many of these studies, and to extend them in new directions,
chieving some new unique results.

In this paper we will only study the Newtonian limit of the linearized cosmological perturba-
ion equations, valid for density fluctuations on scales well within the Hubble radius. Our main
oncern is with some mathematically more complicated multicomponent models, which although
ot usually considered in standard power spectrum analysis, have realistic and interesting physical
eaning. The primary concept of the Jeans gravitational instability5 has been investigated in a

tatic universe for multicomponent models, to reveal the more complicated structure of modes
ossible.6,7 This provides some interesting qualitative ideas about the possible mechanisms for
tructure formation, but the lack of an expanding background space–time in the models leads to
nrealistic solutions, exponential in form. The inclusion of cosmological expansion in the equa-
ions leads to the more realistic power law and logarithmic solutions, familiar from the standard
ower spectrum analysis. Previous work in this area has focused both on some particular models,8

nd on a more general classification of the equations and solutions for a range of parameter values
some of them only of mathematical interest� and physical contexts.9–11 Analytic solutions for
ome of the most general cases of the equations considered above, which often have significant
hysical interest, have not been achieved. It is our aim here to rectify this situation and investigate

system of equations modeling a two-component fluid in the matter dominated post-
ecombination era of an Einstein-deSitter universe. One of these components consists of baryons,
nd the other some form of nonrelativistic dark matter particles. Through this work we will amend
hat appear to be some errors in the previous general studies of Haubold and Mathai.11

This paper makes a comprehensive study of the linear perturbation equations for cosmological
uids with gravitational instabilities with application to large scale structure formation. For a
istorical perspective we note that Lifshitz12 concluded that gravitational instability could not be
esponsible for the formation of structure in the Universe. The correct conclusion, that gravita-
ional instability suffices, was pointed out by Novikov.13 As our work details the mathematical
tructure of the appropriate equations describing cosmological structure formation, we note the
ice series of papers by Ratra and Peebles14 directed to understanding the applications of special
unctions to the problem of gravitational instability in cosmological models. We further note the
ice series by Buchert et al.15 concerning analytic results and their relevance to observational
osmology.

We will also make a comparison with work done in cosmological plasma physics in an
instein-deSitter background.16–18 This is interesting due to the mathematically very similar form
f fluid equations for both types of systems. This similarity is largely due to the similarity of the

lectromagnetic and gravitational forces. In this paper we will analyze the long wavelength region
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f the solutions. This corresponds to the Jeans unstable region of parameter space, and requires
se of Frobenius methods of expansion of the differential equations. In a follow-up paper19 we
ill investigate the short wavelength region of the solutions, which will require a WKB approxi-
ation scheme to be developed.

In these papers we take explictly the temperature relationship T�1/a�t�2, where a�t� is the
adius of the Universe. We give here the explanation why this is so. Following standard textbook
aterial in Padmanabhan1 �as summarized in equation �3.118�� and Peebles �1993, p. 179� we find

hat the baryons follow this relationship when

1 + z = 142��bh2/0.024�2/5.

ere �b has been scaled to the WMAP best fit value. Thus for redshifts below z�140 the baryon
emperature drops as 1/a2 down to z�20, where the Universe reionizes �probably in a patchy
ashion� and the 1/a2 scaling no longer holds. This 20�z�140 redshift region is important, as it
s where early large scale structure formation is thought to have occurred.

The paper is to be organized as follows. In Sec. II we introduce the most general cosmological
ensity perturbation equations in the Newtonian approximation. We review and classify previous
ork on these equations to put our current work into context, showing what has been achieved,
hat needs amendment, and where we will seek to expand current knowledge. In Sec. III we

evert to the one-component equations, to illustrate some of the basic principles which will be
mportant later in our analysis, and to reveal some apparently new results. This will enable us to
egin to tackle the two-component problem in Sec. IV. In this section the CDM two-component
odel in an expanding universe will be investigated. This has ties with the previous work cited,

nd we will demonstrate the limitations of the existing formalism here. We present new results
pparently overlooked in the work of Haubold and Mathai.11 After this, we are ready to study the
ost general baryonic and dark matter equations in Sec. V, where we will consider the long
avelength approximation, applicable to either HDM or CDM. This is followed by our conclu-

ions in Sec. VI.

I. A CLASSIFICATION OF COSMOLOGICAL DENSITY PERTURBATION EQUATIONS

As discussed in Sec. I, there are a vast spectrum of equations describing cosmological density
erturbations in different physical regimes. We begin directly with the linearized Newtonian
pproach. The equations for an n-component system of nonrelativistic species is derived in all the
tandard texts. Given a density perturbation �i in the ith component of the mass density �i,

�i�r,t� =
��i

�i
, �2.1�

t may be decomposed into its Fourier plane wave modes with wave vector k,

�i�r,t� =
1

�2��3 � �ki�t�exp�− ik · r�d3r . �2.2�

ere r is the physical spatial coordinate, and t is cosmic time.
To be able to solve the equations, the implicit time dependence of the physical variables needs

o be removed. We will adopt the convention that barred variables will denote comoving quanti-

ies, independent of time. Thus we define the comoving wave number k̄=ak. Using the Eulerian
quations of motion describing a perfect fluid, a set of coupled second order equations for the
ourier modes �i�t� �where we now drop the subscript k� are achieved:

d2�i

dt2 + 2
ȧ

a

d�i

dt
+

vi
2k̄2

a2 �i = 4�G�
i=1

n

�i�i, i = 1,2, . . . ,n . �2.3�
verdots will denote derivatives with respect to t. The above equations contain the sound velocity
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vi
2 =

dpi

d�i
� �i

�i−1. �2.4�

he sound velocity depends on the equation of state of the medium, and is in general dependent
n time. We have introduced the specific heat ratio �i, and assumed an equation of state of the
orm pi��i

�i.
The introduction of a sound velocity implicitly assumes that the fluids involved are collisional.

his means that there are considerable interactions between the particles comprising each matter
omponent. It is in fact generally assumed that dark matter is collisionless, in which case a fluid
quation is not strictly correct. The dark matter component would better be modeled by a distri-
ution function satisfying the Vlasov equation. “Fluid-like” equations can still be derived in this
ase by taking velocity moments of the Vlasov equation, and identifying the velocity dispersion
ith the above parameter vi. Thus although in the present paper we will refer to “sound veloci-

ies,” this should be taken as a generic expression for a velocity dispersion parameter. Such an
pproach should work fine for CDM, but may neglect an important damping term found in HDM
odels. The complete analogous equation to �2.3� for HDM gives a fluid equation perspective on

ree-streaming, the phenomenon found in HDM models of neutrinolike matter. An approximate
quation has been derived for a hot neutrinolike component by Setayeshgar,20 which tends to wipe
ut perturbations below a certain scale �see also the lecture notes by Bertschinger21�. In this work
he exact Vlasov equation kinetic treatment was considered, and the usual Fermi-Dirac distribution
unction was replaced by a carefully chosen approximate form, allowing the conversion of the
ntegro-differential equation into the following pure differential equation:

�̈� + �2ȧ

a
+

2k̄v�

a2 	�̇� +
v�

2k̄2

a2 �� = 4�G�
i=1

n

�i�i. �2.5�

ere the damping term 2k̄v� gives rise to nonoscillating solutions heavily damped at short wave-
engths. Thus an equation of the form �2.3� is not correct for HDM of a neutrinolike nature. We
xamine the general equations for both CDM and HDM, without specifying too carefully the exact
ature of the dark component involved. This allows comparison of the results in this paper with
revious work in the literature, which has also neglected this point. If some aspects of HDM
odels are poorly described by �2.3�, the equations are still applicable to other two-component

osmological systems such as a hydrogen-helium gas not in equilibrium, where the lighter hydro-
en component has a greater sound speed.

At present �2.3� has been displayed in a quite general form, with an unspecified scale factor a,
iven by the Friedmann cosmological equation

ȧ2

a2 =
8�G

3
� +

	

3
−

kc

a2 . �2.6�

eneral parameters describing the nature of the Universe in this equation are kc=0, ±1, the spatial
urvature, and 	, the cosmological constant. It is difficult to make much progress without first
ecoming more specific about the energy content of the Universe. All the studies cited
reviously8–11 have only examined the Einstein-deSitter, matter dominated case, with various
hysical components and equations of state possible. The studies,10,11 all of which are equivalent,
ake the pretense to study the radiation dominated era as well, but this is incorrect for the

quations presented. It was explicitly assumed that a� t2/3 in the scaling of the energy densities

i=�i / �6�Gt2� and the velocity parameters, yet an allowance was made for a general Hubble
xpansion H=
t−1. The general parameter 
 can only be equal to 2

3 for the equations presented to
e physically correct. The fluid equations were formulated to allow for general equations of state,
y writing the sound velocities such that both their magnitudes and time dependences were freely
arametrized. A range of solutions were obtained for different cases of the parameters, and were

22,23
enerally classified by Meijer G functions. We will show that the solutions found for a CDM
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nd baryon model have been evaluated incorrectly, and will proceed to find their general exact
epresentation. We will also proceed to investigate a more general dark matter and baryon problem
han considered in any of the above. In Ref. 9, several subcases of the above-mentioned studies
ere considered in some detail, and given a range of physical interpretations. The solutions were
f a mathematically simpler nature, involving either Bessel functions or simple power law behav-
or. The investigations in Ref. 8 concentrated on a three-component medium, involving baryons,
DM and photons. They incorrectly used the nonrelativistic Newtonian cosmological equations to
odel the photon component, so that the solutions, expressed in terms of Meijer G functions,

annot be considered as physically relevant.
Let us now make the choice of the matter dominated era of cosmological evolution in which

o set �2.3�, and in particular the post-recombination era, where baryons had decoupled from
hotons. This allows us to determine how the energy density and sound velocity scale with respect
o a, and consequently exhibit all explicit time dependences in the equations. We therefore intro-
uce the comoving total background density �̄0
a3�0, and the constant �i
�i /�0, the fraction of
he total mass density contributed by species i. This is distinct from the in general time-dependent
uantity �i�t�
�i /�c, where �c is the critical density of the Universe

�c =
3H2

8�G
. �2.7�

e will consider a two-component fluid comprised of baryons �subscripted by B� and dark matter
subscripted by D�. In the post-recombination era, the adiabatic speed of sound of species i
ssumes the following behavior:

vi
2 � Ti � a−2, �2.8�

here Ti is the temperature of the component. This prompts us to define the time-independent
uantity v̄i

2
a2vi
2. With these definitions, the linearized cosmological perturbation equations may

e written as

d2�B

dt2 + 2
ȧ

a

d�B

dt
+

v̄B
2 k̄2

a4 �B =
4�G�̄0

a3 ��B�B + �D�D� , �2.9�

d2�D

dt2 + 2
ȧ

a

d�D

dt
+

v̄D
2 k̄2

a4 �D =
4�G�̄0

a3 ��B�B + �D�D� . �2.10�

The equations currently still represent a fairly general cosmological setting. The curvature
arameter kc and cosmological constant 	 have not been specified, and control the behavior of a
hrough the Friedmann equation �2.6�. To see how these influence the evolution of the density
erturbations, we transform the dependent variable from t to a. We also use �2.6� and another
osmological dynamics equation for the acceleration of a:

ä =
4

3
�G

�̄0

a2 +
	

3
a . �2.11�

his equation is derived in conjunction with the Friedmann equation by taking the spatial com-
onents of the Einstein equation. The cosmological perturbation equations are now able to be
ritten in a form purely dependent on a, and parametrized explicitly by the cosmological dynami-

al constants:

�8

3
�G�̄0 +

	

3
a3 − kca	�B� + a−1�4�G�̄0 + 	a3 − 2kca��B� +

v̄B
2 k̄2

a3 �B −
4�G�̄0

a2 ��B�B + �D�D� = 0,
�2.12�
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�8

3
�G�̄0 +

	

3
a3 − kca	�D� + a−1�4�G�̄0 + 	a3 − 2kca��D� +

v̄D
2 k̄2

a3 �D −
4�G�̄0

a2 ��B�B + �D�D� = 0.

�2.13�

n the above, a prime denotes differentiation with respect to a.
A general analysis of �2.12� and �2.13� has not been attempted previously. To begin with, we

an test for exactness of the equations �see Ref. 24, pp. 92, 93�, to determine whether a first
ntegral exists. In general, a second order ordinary differential equation of the form

A0�x�y� + A1�x�y� + A2�x�y = 0 �2.14�

arbitrary functions Ai�x�� is exact if

A0� − A1� + A2 = 0. �2.15�

et us first consider the one-component example. This is the uncoupled case of �2.12� ��D=0,

B=1�, which gives

A0� − A1� + A2 =
v̄B

2 k̄2

a3 . �2.16�

hus the one-component equation is only exact for a pressureless gas v̄B=0. This means that no
losed form solution is possible, and approximations need to be made. We note that the pressure-
ess one-component case has been studied extensively �e.g., Ref. 2� for various values of the
arameters.

To make progress with the perturbation equations, and also to make contact with previous
ork in the literature, we need to make some assumptions about kc and 	. The kc�0 cases tend

o be more complicated mathematically, as generally only parametric solutions can be found,
here a is represented by hyperbolic functions �kc=−1 open universe� or trigonometric functions

kc=1 closed universe�. Current observations, and the weight of theoretical tendencies in cosmol-
gy �e.g., �=1 as demanded by inflation� make the choice of flat universe kc=0 seem the most
avorable. � contains a contribution from 	 as well as matter components. The large amount of
bservational data now being analyzed, increasingly points to the existence of a cosmological
onstant comprising a major fraction of the energy density �see, e.g., Ref. 25–27�, with a value of

	�0.7. The Einstein-deSitter �	=0, �=1� model is generally not the model of choice anymore
or detailed numerical studies in cosmology, however we do not make a claim that the solutions
resented here are of an exact quantitative nature. Many other factors must also be taken into
ccount when attempting to build up an exact, numerical model of structure formation. We wish to
orrect and extend some previous results, as well as perform some semiquantitative analysis. Our
ntent is to keep work analytically tractable at this stage.

We set kc=	=0 in �2.12� and �2.13�. In the Einstein-deSitter model, the critical density can be
ritten explicitly as

�c =
�̄0

a3 =
1

6�Gt2 , �2.17�

nd the relation �B+�D=1 holds. We also introduce quantities resembling the comoving Jeans
ave numbers for each component taken separately,

k̄B
2 =

4�G�̄0

v̄B
2 , k̄D

2 =
4�G�̄0

v̄D
2 . �2.18�

he difference with the true comoving Jeans wave number for a one-component fluid is the
nclusion of the total mass density �̄0, rather than just the mass density of the component in

¯
uestion �i. Equations �2.12� and �2.13� now become
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�B� +
3

2a
�B� +

3

2a3� k̄

k̄B

	2

�B =
3

2a2 ��B�B + �D�D� , �2.19�

�D� +
3

2a
�D� +

3

2a3� k̄

k̄D

	2

�D =
3

2a2 ��B�B + �D�D� . �2.20�

he effects of the various physical processes are now clearly evident. The expansion of the
niverse produces a damping term 3�i� / �2a�, causing the solutions to be in power law form rather

han exponential. The relation of the mode wave number to the Jeans wave number is expressed
s a ratio, transparently showing in which region of physical scales the mode lies. This ratio can
e compared to the fractions �B and �D to decide whether gravity or pressure dominates the

ynamics. The true Jeans instability scale for a two-component medium is not given by either k̄B

r k̄D, but by a combination of the two, as demonstrated in Refs. 6 and 7. This scale will be
ntroduced in due course.

We finally perform a couple more manipulations, to cast the equations in their simplest form.
e define the dimensionless parameters

KB =
k̄

k̄B

, KD =
k̄

k̄D

. �2.21�

hen Ki�1 corresponds to the Jeans unstable region in the one-component analog of the equa-
ions, and Ki�1 to the acoustic region. We also make the variable transformation =a−1/2. This
ives the final form of the system of differential equations to be studied in the ensuing sections,

�B� + 6�KB
2 −

�B

2	�B −
6�D

2 �D = 0, �2.22�

�D� + 6�KD
2 −

�D

2	�D −
6�B

2 �B = 0. �2.23�

prime now denotes differentiation with respect to . These equations bear a strong resemblance
o the equations of an electron-proton cosmological plasma studied in Ref. 18 �Eqs. �4.8� and �4.9�
f that paper�. As is well known from the analogy between the simple Jeans instability and
angmuir modes, this resemblance is not surprising when the mathematical similarity between the
lectromagnetic and gravitational forces is considered. The techniques employed in Ref. 18 will be
seful in our current analysis. In this paper we will employ the Frobenius method in obtaining
ong wavelength solutions. In a related paper,19 some general WKB techniques are developed
urther than previously. Apart from facilitating some short wavelength solutions to the current
roblem, these techniques will also indicate further results possible in cosmological plasma phys-
cs.

Before we proceed to a general analysis of �2.22� and �2.23�, we wish to digress to the simpler
ase of a one-component system. Surprisingly, we will derive some apparently new results, which
rovide a conceptually useful introduction to the ensuing analysis.

II. THE ONE-COMPONENT EQUATION REVISITED

The Einstein-deSitter one-component equation for a baryonic or dark matter fluid in the
ost-recombination era is a canonical example studied in all textbooks for linearized cosmological
erturbation theory. It gives the familiar Jeans unstable power law solutions �� t2/3, t−1 in the limit
f large scales, and acoustic oscillations in the limit of small scales. Despite this, we have not
ound the full exact solutions completely displayed and analyzed in any textbooks or review

rticles in the current literature. Although a full analysis will not bring any startling new physical
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evelations, the mathematical techniques required are of some interest in their relation to the
hysics, and as an introduction to the more complicated analysis we will require later. This section
ay be seen as a useful orientation to the further work carried out in the bulk of this paper.

We begin with the one-component version of �2.19�, i.e., with �B=1 and �D=0 �or vice versa
or �2.20��. Analogous to the definitions of KB and KD, we define the one-component comoving

eans ratio for the fluid, which has comoving Jeans wave number k̄J, as KJ= k̄ / k̄J. The one-
omponent density perturbation equation then becomes

� � +
3

2a
�� + � 3

2a3KJ
2 −

3

2a2	� = 0. �3.1�

he solution of this equation is a Bessel function of order 5/2. A Bessel function of half odd-
nteger order can be recast in terms of a spherical Bessel function. To begin with, we will choose
he spherical Bessel functions of the first and second kind, j� and y�, respectively. The solution

ay be rewritten as

��a� = c1a−1/2j2��6

a
KJ	 + c2a−1/2y2��6

a
KJ	 , �3.2�

ith arbitrary constants of integration c1 and c2. For this case the fortuitous circumstance arises
hat the solutions may be represented in terms of elementary trigonometric functions �see, e.g.,
ef. 28�. The solutions as shown are exact mathematical representations, containing all the infor-
ation of the modes over all scales. As is usually the case with such solutions, a simple inspection

oes not reveal all the physical properties of the modes in an obvious manner. For example, it is
little difficult to interpret the time dependence of the modes through the argument of the Bessel

unctions �6/aKJ. We will require various approximations and numerical plotting to extract more
hysical meaning out of the solutions.

To begin with, we seek to place the solutions into a canonical form, for easy comparison with
ther examples. The most useful such form comprises, to leading order, a product of a power law
ime factor and complex exponential factor. This approach was adopted in the studies of cosmo-
ogical plasmas16–18 for one- and two-component systems. As mentioned previously, due to the
imilarity between the gravitational and electromagnetic forces, the corresponding modes display
any similarities.

The most useful Bessel function solutions for our purposes are the Hankel functions, due to
he fact that their leading order terms contain complex exponentials. We use the spherical Hankel
unctions h2

�1� and h2
�2�, given by the expressions

h2
�1��z� =

1

z
expi�z −

3�

2
	��1 −

3

z2 −
3

iz
	 , �3.3�

h2
�2��z� =

1

z
exp− i�z −

3�

2
	��1 −

3

z2 +
3

iz
	 . �3.4�

e may make the comparison here to plasma results, where analogous series were obtained for
arge z. Contrary to this paper, where the series has a finite number of terms, the series for plasma

odes were only asymptotic.
We write the explicit one-component solution via Hankel functions as

��a� = �1 +
a

2Kj
2 +

a2

4KJ
4	1/2

exp�±i�6KJ

a1/2 + arctan� �6KJa
−1/2

2KJ
2a−1 − 1

	�� . �3.5�

t must be stressed that unlike the plasma solutions, this is an exact result. The modulus of the
olution grows with respect to time to leading order as ��a if KJ�1, or else if KJ�1 the modulus

s approximately constant, with a first order time correction proportional to a. There is also a
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omplex exponential portion to the solution, which usually gives a dispersion relation. The dis-
ersion relation may be extracted by differentiating the phase with respect to t. This follows from
he general fact that given an observed frequency �, a solution of the form

� � exp±i�t

��t�dt� �3.6�

s expected. This is assuming, of course, that the solution oscillates—if not, some other form of
eal valued solution must be available. Using the matter dominated time dependence of a, namely

a = � t

ti
	2/3

, �3.7�

here ti is an arbitrary constant, we find the frequency to be

� =
v̄sk̄a−2

1 +
1

2
KJ

−2a +
1

4
KJ

−4a2

�
v̄sk̄

a2 �1 −
1

2

a

KJ
2 +

1

8

a3

KJ
6 −

1

16

a4

KJ
8 + ¯ 	, KJ � 1. �3.8�

he result has been expanded for KJ�1, as we may suspect that due to the Jeans instability,
coustic waves only exist in this region, and thus we can only attach physical meaning to � for

J�1. This assertion will be derived rigorously in what ensues.
The result of �3.8� may come as a surprise. How does it relate to the well-known Jeans

ispersion relation derived for a static space–time

�2 = vs
2k2 − 4�G�0 ? �3.9�

n a cosmological setting, we may expect the dispersion relation to follow a similar form, with
ppropriate time factors included. For plasma modes, it was demonstrated in Ref. 18 that the
ispersion relations could be written down to leading order in exactly the same form as their static
pace–time counterparts in terms of physical �nonbarred� variables, and then converted to comov-
ng variables by inserting the correct time factors. Thus we may expect

� �
v̄sk̄

a2 �1 −
a

KJ
2	1/2

�3.10�

t least in the form of a binomial expansion, namely

� �
v̄sk̄

a2 �1 −
1

2

a

KJ
2 −

1

8

a2

KJ
4 −

1

16

a3

KJ
6 + ¯ 	 . �3.11�

his form for � may also be expected to contain some other time dependent terms, as was
emonstrated for a number of plasma modes. Comparing the expansions in �3.8� and �3.11�, we
ee in fact that they only agree to first order. This still indicates some form of Jeans instability, but
he dispersion relations are quite different. This difference in behavior between the linearized
ravitational modes and plasma modes may be attributed to the special role the density plays in the
ravitational perturbation equations. Equation �3.1� contains only one free parameter, the Jeans
atio KJ, whereas the plasma equations contain both the sound velocity and plasma frequency,
hich cannot be reduced to one parameter. This implies that the relation between the gravitational

ource and the Friedmann equation, which fixes the background space–time, means that the same
orm for the dispersion relation as found in static space–time need not necessarily be expected in
he expanding Einstein-deSitter model.

We have a general solution in terms of a modulus and complex exponential, which is exact
nd thus contains all the information of the problem. How do we infer the usual Jeans instability

ehavior from this? Let us examine plots of the solutions to gain a pictorial idea of what is
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appening. In Figs. 1 and 2 we see the transition from acoustic oscillations to growing and
ecaying modes as KJ is decreased—we are examining ever larger scales, and passing through the
nstability. To all fit on the same set of axes, the plots have been approximately normalized. The
ependent variable a is rather arbitrary �as can be deduced from �3.7��. An appropriate starting
ime ti may be chosen to normalize a to 1 at the beginning of the chosen epoch of evolution, and
he solutions may then be propagated forward in time. The tendency for the period of the acoustic
scillations to grow longer in time is evident from the plots, and the approximate constancy of the
mplitude predicted previously from �3.5� is evident. In the extreme case, the oscillation period
ecomes so long that a perturbation cannot complete one full oscillation, and then the instability
rises. This behavior can clearly be seen in Figs. 1 and 2 for the KJ=2.0, 8.0 plots.

We now perform some approximations to make contact with some better known results of the
ne-component problem. Let us begin with a small KJ

2 /a expansion. For the spherical Hankel
olutions �3.5�, we find

� �
a

2KJ
21 +

KJ
2

a
+ O�KJ

4

a2 	�exp��i�6
KJ

a1/21 −
4

5

KJ
4

a2 + O�KJ
6

a3 	�� . �3.12�

he above expansion explains what happens to acoustic oscillations when KJ�1. In this region,
he leading order factor KJa

−1/2 in the exponential must always lie between 1 and 0 numerically,
nd decreases with increasing time. This is because a�1 and increases monotonically for all time.
hus the solution lies within one period of oscillation for all time, and only the growing or
ecaying modes may be observed. When KJ becomes larger than 1, more than one period of
scillation may be spanned by the KJa

−1/2 factor, and the solution will begin to develop acoustic
aves. The expansion �3.12� shows ��a, which only gives the familiar growing mode, discussed

n all texts. The decaying mode has not been found in the current analysis, because spherical

FIG. 1. �Color online� The transition of the decaying one-component modes as KJ varies through the Jeans instability.
FIG. 2. �Color online� The transition of the growing one-component modes as KJ varies through the Jeans instability.
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ankel functions have been chosen to represent the Bessel function solutions. The spherical
ankel functions are linear combinations of the original j2 and y2 solutions, which contain both
odes. The decaying mode has been “asymptotically swamped” by the growing mode in this

inear combination. The decaying mode may be liberated by a direct small variable expansion of
3.2� for each spherical Bessel function. We find the j2 component gives the decaying mode

� � a−3/21 −
3

7

KJ
2

a
+ O�KJ

4

a2 	� , �3.13�

nd the y2 component gives the same growing mode as �3.12� in the slightly different form

� � a1 +
KJ

2

a
+ O�KJ

4

a2 	� �3.14�

ithout the exponential phase factor. These solutions clearly correspond to the usual textbook
odes found when pressure is ignored. They have included the pressure corrections, given as a

eries in the Jeans ratio, with matching time factors to all orders in the expansion.
We now turn to the large parameter expansion, from which we expect to liberate the acoustic

scillations. Equation �3.5� is in fact already in the form of a large parameter expansion, only that
t has a finite number of terms, and is consequently exact. The phase of the exponential does not
eem to show the structure of the familiar Jeans dispersion relation. This was discussed above,
here it was indicated that this is not necessarily to be expected. It is possible to see why this is

o in a lucid fashion by applying the WKB method to the original equation �3.1�. Through this
ethod we will derive a dispersion relation displaying very similar characteristics to the familiar

extbook one, that shows the presence of the Jeans instability. A more complicated WKB approxi-
ation scheme was developed in Ref. 18 to deal with plasma modes of a more intricate form,

nvolving larger numbers of coupled equations. This method is used in Ref. 19 to handle the
wo-component cosmological density perturbation equations in the short wavelength approxima-
ion. For the present simple second order equation, the standard textbook approach suffices �for a
ood explanation of WKB methods, see Ref. 29�.

To see the physics most clearly, we transform �3.1� to depend on t. Using the variable trans-
ormation given by �3.7�, the equation

�̈ +
4

3t
�̇ + �2

3
KJ

2 ti
2/3

t8/3 −
2

3t2	� = 0 �3.15�

esults. The usual Jeans dispersion relation can be directly seen in this equation. Consider the
actor 2 / �3t2�, arising from the gravitational source term. This term may be transformed to ex-
licitly see the source parameters emerge. We consider the physical �time-dependent� value of the
otal energy density

4�G�0 = 4�G�c =
4�G

6�Gt2 =
2

3t2 , �3.16�

nd the relation

KJ
2 = 3

2 v̄s
2k̄2ti

2. �3.17�

hen the Jeans dispersion relation can be directly seen in �3.15�,

v̄s
2k̄2� ti

t
	8/3

−
2

3t2 = vs
2k2 − 4�G�0. �3.18�

n the static space–time case the physical variables would of course not depend on time, and the
˙
rst derivative term 4� / �3t� in �3.15� would not exist. This leads to the exact exponential solutions
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nd the familiar dispersion relation given by �3.18�, as originally found by Jeans.
The most straightforward way to effect a WKB approximation in the present situation is to

emove the first derivative from the equation. One way to do this is by the variable change 
a−1/2. We then find the equation

d2�

d2 + �6KJ
2 −

6

2	� = 0. �3.19�

ow we suggestively define

�̃�� = �6KJ
2 −

6

2	1/2

. �3.20�

pplying the WKB approximation to �3.19� gives the leading order solution

��� � �̃−1/2 exp±i� �̃��d� . �3.21�

dispersion relation has indeed been derived, and is given by �̃ as defined in �3.20�. If we
onsider

� �̃��d = −� �2

3
KJ

2 t2/3

ti
8/3 −

2

3t2	1/2

dt = −� � t

ti
	−4/3v̄s

2k̄2 −
2

3ti
2� t

ti
	2/3�1/2

dt , �3.22�

hen a physical frequency ��t� can be identified by use of �3.18� and the relation ti
2=1/ �6�G�̄0�.

hus

� �̃��d =� ��t�dt =� �vs
2k2 − 4�G�0�1/2 dt , �3.23�

nd the physical connection has been made. Another point to note is that the amplitude �̃��−1/2 is
ime independent to leading order �because KJ�1�. Thus the amplitude is approximately constant,
s noted previously.

To make a direct comparison of �3.21� and �3.5�, we now evaluate the integral in the phase of
he WKB solutions. A change of integration variable from  back to a sets the integral into a form
hich has been tabulated,30 and we find

� �̃��d = �6KJ
2

a
− 6	1/2

−
�6

2
arcsin�1 −

2a

KJ
2	 . �3.24�

he solution generated by the WKB method may be compared to the exact one given by �3.5�. The
mplitudes and phases need to be expanded for large KJ,

WKB phase, �6KJ
2

a
− 6	1/2

−
�6

2
arcsin�1 −

2a

KJ
2	 = �6

KJ

a1/21 −
�

4

a1/2

KJ
+ O� a

KJ
2	� ,

�3.25�

exact phase,
�6KJ

a1/2 + arctan� �6KJa
−1/2

2KJ
2a−1 − 1

	 = �6
KJ

a1/21 +
a

2KJ
2 + O� a

KJ
2	� , �3.26�

WKB amplitude, �6KJ
2 − 6a�−1/4 1

61/4K1/21 +
a

4K2 + O� a2

K4	� , �3.27�

J J J
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exact amplitude, �1 +
a

2KJ
2 +

a2

4KJ
4	1/21 +

a

4KJ
2 + O� a2

KJ
4	� . �3.28�

t can be seen that the two solutions only agree to leading order �modulo time independent
onstant factors�. Given that the WKB method only gives a leading order solution to the problem,
o more can be expected. This discussion has highlighted the difference between the expected
ispersion relations of static space–time to those derived in an expanding universe context. WKB
an reproduce the same form as the static space–time dispersion relations, but this may only agree
o leading order to the true dispersion relation found in an expanding universe scenario.

V. IMPROVEMENTS ON PREVIOUS CDM PERTURBATION RESULTS

We now return to the two-component equations and consider the case of CDM perturbations
haracterized by strictly zero temperature. If the velocity dispersion is considered to be an adia-
atic sound velocity as given by �2.8�, then Ti=0 corresponds to KD=0 in �2.23�. Such an ap-
roximation facilitates an exact analytic solution to the problem, which is otherwise impossible.
he resulting system of equations was one of the main cases investigated in the general analysis
f Ref. 11. In this section we will point out what appears to be an error in the analysis of that
aper, which leads to some markedly different solutions, derived in what ensues.

Before we proceed with this, it is pertinent to point out a general problem with taking KD

0 in Eqs. �2.22� and �2.23�. For simplicity, it is possible to neglect space–time expansion, as the
ualitative behavior will be the same. Thus the static space–time cosmological equations studied
n Ref. 7 are sufficient for this discussion. These equations are also examined in Ref. 19, and using
he notation employed there we have

�̈D + �vD
2 k2 − WD��D − WB�B = 0, �4.1�

�̈B + �vB
2k2 − WB��B − WD�D = 0, �4.2�

ith Wi=4�G�i. This system of equations can be reduced to a first order linear autonomous
ynamical system describing a state vector

x = �x1,x2,x3,x4�T 
 ��̇D,�D, �̇B,�B�T, �4.3�

here T denotes the transpose of a vector. The dynamical system has a k-dependent critical point
ound by solving the equation ẋ=0. This critical point happens to give the Jeans wave number of
he mixture, and is given by

k2 = kM
2 
 kB

2 + kD
2 =

WB

vB
2 +

WD

vD
2 . �4.4�

ote the slight difference in this definition of ki in comparison to k̄i defined in �2.18�. It is already
vident that a problem arises if we take vD→0 in �4.4�, and this will be physically elucidated by
tudying the four independent modes of the system, given by the eigenvalues of the dynamical
ystem.

The eigenvalues give the structure of the modes �see Ref. 7 or Ref. 19 for the details�. They
re found to be of the general form

�1 = − �2 =
1
�2

�f + �f2 + 4g ,

�4.5�
                                                                                                            



F
g

I
w
t
o

�

T
k

v
−
n
p
t
s
s

d
c
w
l
s
1
e

w
e
s
R
b
f

062505-14 R. M. Gailis and N. E. Frankel J. Math. Phys. 47, 062505 �2006�

                        
�3 = − �4 =
1
�2

�f − �f2 + 4g .

or the case of CDM currently under consideration, where vD=0, the k-dependent functions f and
are given by

f�k� = WB + WD − k2vB
2 , �4.6�

g�k� = k2WD
2 vB

2 . �4.7�

t was previously found that the eigenvalues �1 and �2 described the Jeans unstable modes,
hereas �3 and �4 described acoustic oscillations at all wave numbers. An examination of �1 in

he current context will show this not to be the case for CDM. If we define �analogously to the
ne-component scenario�

KJ =
vB

2k2

WB + WD
, �4.8�

1 may be written as follows:

�1 =
1
�2

�WB + WD�1/2�1 − KJ
2 + ��1 − KJ

2�2 + 4�DKJ
2�1/2�1/2. �4.9�

his does not equal zero for KJ=1, and it is straightforward to show that it has no zeros for all
�0. Thus a CDM perturbation would collapse for all scales, clearly a physical impossibility.

If we examine Eqs. �4.1� and �4.2�, it can be seen that with the removal of the pressure term

Dk2, there is no mechanism to counter the remaining gravitational source terms −WD�D and
WB�B, whose sign indicate an attractive forcing, initiating gravitational collapse. This is the case
o matter how small the fraction of dark matter compared to baryons, thus no amount of baryonic
ressure support can prevent a collapse at any scale. This physically absurd situation is the root of
he problem of taking vD→0 in the fluid models. A physically correct equation must include some
ort of velocity dispersion term, even if the matter is totally collisionless and an adiabatic speed of
ound cannot be defined.

With these thoughts in mind, we must view the current section as more of a mathematical
igression, than a physically realistic model. It nevertheless serves a purpose. We can make
ontact with the work of Ref. 11, and uncover some interesting mathematical properties associated
ith these cosmological perturbation equations in general. We find mathematical subtleties over-

ooked in Ref. 11, which also indicate the nature of the general solutions to follow in the next
ection. They allow an interesting comparison with cosmological plasma modes discussed in Ref.
8, where the limit TD→0 is valid. The special nature of gravity, and the extra complications it
ntails are revealed by this comparison.

We now proceed to obtain a solution of Eqs. �2.22� and �2.23� �with KD=0� in the long
avelength �small k� limit. A short wavelength solution is trivially obtained by setting KD=0

verywhere in the results presented in Ref. 19. To align ourselves with earlier notation, and to
tress the fact that there is only one Jeans related scale now occurring, we will rename KB to KJ.
ather than directly reducing Eqs. �2.22� and �2.23� into a single equation, we attempt a solution
y the Frobenius method. This is useful as a precursor to the general solution derived in the
ollowing section in a similar manner.

To begin with, we assume an arbitrary expansion of the solutions in the form

�B��,� = ��
�

ann, �4.10�

n=0
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�D��,� = ��
n=0

�

bnn. �4.11�

ere � is an arbitrary exponent to be determined, and an and bn are series coefficients also to be
etermined by the Frobenius method. We substitute these series into �2.22� and �2.23� to obtain a
et of algebraic relations between the undetermined coefficients. Then all coefficients of like
ower of  are collected and equated to zero.

Arising out of this procedure are a pair of indicial equations for �, with one of a0 or b0

emaining an arbitrary constant,

��� − 1�a0 − 6�Ba0 − 6�Db0 = 0, �4.12�

��� − 1�b0 − 6�Db0 − 6�Ba0 = 0. �4.13�

set of recursion relations also arise for all higher order coefficients:

6KJ
2an + ��� + n + 2��� + n + 1� − 6�B�an+2 − 6�Dbn+2 = 0, �4.14�

��� + n + 2��� + n + 1� − 6�D�bn+2 − 6�Ban+2 = 0. �4.15�

n retaining the arbitrary constant a0 or b0, it is assumed that all odd indexed terms vanish from
ropagation of the initial values a1=b1=0 through the recursion relations.

If we solve �4.12� and �4.13� for �, we find four possible values,

� = 0,1,3,− 2. �4.16�

comparison with the analogous case for cosmological plasma modes18 immediately shows a
ifference in the nature of the exponents. In the preceding case the exponents are exactly deter-
ined integers, whereas for plasmas the exponents depended on the plasma frequency. When the

ne-component solutions were discussed in the preceding section, an analogous difference was
bserved between the spherical Bessel function solutions of the gravitational perturbation modes,
nd the general order Bessel function solutions of the plasma modes. Whereas in the one-
omponent study the solutions were simplified by this property of gravity, in the present case they
re in fact complicated. The plasma solutions were representable in terms of 2F3 generalized
ypergeometric functions, but a similar representation is not well-defined here. This is because the
xponents differ by integers—a fact which necessitates a modification of the basic Frobenius
ethod. This modification is borne out in the solutions by the fact that parameters appearing in the

enominator of generalized hypergeometric function expansions cannot differ by integers. In such
ituations the generalized hypergeometric functions are not definable, and one must resort to
lassifying solutions of the equation by Meijer G-functions.

To apply the Frobenius method to indices differing by integers, the recursion relations must
rst be solved for general �. This is achieved by employing �4.12� and �4.13�, and writing the
ystem of differential equations as

L�B��,�
�D��,� � = ��� − 1�a0 − 6�Ba0 − 6�Db0

��� − 1�b0 − 6�Db0 − 6�Ba0
��−2, �4.17�
here the operator L is defined by
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L = �
�2

�2 + 6�KJ
2 −

�B

2	 −
6�D

2

−
6�B

2

�2

�2 −
6�D

2
� . �4.18�

t present there is no relation between a0 and b0, but the recursion relations will provide one. A
engthy algebraic exercise is needed to solve the recursion relations. The result is

a2n = a0

�1

2
� −

1

2
�D +

3

4
	

n
�1

2
� +

1

2
�D +

3

4
	

n

�1

2
� −

1

2
	

n
�1

2
� +

1

2
	

n
�1

2
� + 1	

n
�1

2
� + 2	

n

�−
3

2
KJ

2	n

, �4.19�

b2n =
6a0�B

��� − 1� − 6�D

�1

2
� −

1

2
�D −

1

4
	

n
�1

2
� +

1

2
�D −

1

4
	

n

�1

2
� −

1

2
	

n
�1

2
� +

1

2
	

n
�1

2
� + 1	

n
�1

2
� + 2	

n

�−
3

2
KJ

2	n

. �4.20�

n the above, the parameter �D has been introduced as a shorthand,

�D 
 �1
4 + 6�D, �4.21�

nd the notation � �n is the Pochhammer symbol. It is clear that the coefficients as derived will not
xist for �=1,−2. This is the basis for requiring a modification to the straightforward method of
ubstituting in the four calculated values of � �4.16� into �4.19� and �4.20� to generate four
ndependent solutions.

To proceed, we extract from �4.19� and �4.20� the relation

b0 =
6a0�B

��� − 1� − 6�D
, �4.22�

hich allows �4.17� to be rewritten as

L�B��,�
�D��,� � = a0� 1

�B

��� − 1��� + 2��� − 3�
��� − 1� − 6�D

0
��−2. �4.23�

or �=0,3, direct substitution is permissible to obtain two independent solutions, which turn out
o be generalized hypergeometric 2F3 functions, analogously to the plasma results. For �=1,−2,
e take advantage of the fact that a0 is arbitrary, and set it, respectively, equal to �−1 and �+2.
fter differentiation with respect to � and evaluation at the respective points �=1 and �=−2, we
btain the result

L��
�

��
�B��,�

�

��
�D��,� ��

�=1,−2

= 0. �4.24�

his gives two more solutions.
The above discussion has defined an algorithm for finding small k expansions of the solutions

f the cosmological density perturbation equations. This algorithm is readily implemented into a
ymbolic manipulation computer code. We will write such a code to find the solutions to the

eneral equations in the next section. The solutions for the CDM case under consideration may
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ow be written down. The need to differentiate with respect to � for the �=1,−2 cases result in
olutions involving digamma functions � and logarithmic terms—quite a complication to the 2F3
unctions derived for the plasma perturbations in Ref. 18. To display the modes in their simplest
orm, linear combinations of the modes derived directly by the above algorithm need to be taken,
nd the use of various mathematical identities involving digamma functions employed. The final
et of four CDM modes are given as follows:

�B1�� =
c1

�B
�
n=0

� �3

4
−

1

2
�D	

n
�3

4
+

1

2
�D	

n

�−
1

2
	

n
�1

2
	

n
�2�nn!

�−
3

2
KJ

22	n

=
c1

�B
2F3�3

4
−

1

2
�D,

3

4
+

1

2
�D;−

1

2
,
1

2
,2;−

3

2
KJ

22	 , �4.25�

�D1�� =
c1

�D
�
n=0

� �−
1

4
−

1

2
�D	

n
�−

1

4
+

1

2
�D	

n

�−
1

2
	

n
�1

2
	

n
�2�nn!

�−
3

2
KJ

22	n

=
c1

�D
2F3�−

1

4
−

1

2
�D,−

1

4
+

1

2
�D;−

1

2
,
1

2
,2;−

3

2
KJ

22	 , �4.26�

�B2�� = c2


�B
+ c2



�B
�
n=1

� �5

4
−

1

2
�D	

n
�5

4
+

1

2
�D	

n

�3

2
	

n
�5

2
	

n
�n − 1�!n!

�−
3

2
KJ

22	n��5

4
−

1

2
�D + n	

+ ��5

4
+

1

2
�D + n	 − ��n� − ��n + 1� − ��n +

3

2
	 − ��n +

5

2
	 + log 2� , �4.27�

�D2�� = − c2


�D
− c2



�D
�
n=1

� �1

4
−

1

2
�D	

n
�1

4
+

1

2
�D	

n

�3

2
	

n
�5

2
	

n
�n − 1�!n!

�−
3

2
KJ

22	n��1

4
−

1

2
�D + n	

+ ��1

4
+

1

2
�D + n	 − ��n� − ��n + 1� − ��n +

3

2
	 − ��n +

5

2
	 + log 2� , �4.28�

�B3�� = c33
2F3�9

4
−

1

2
�D,

9

4
+

1

2
�D;

5

2
,
7

2
,2;−

3

2
KJ

22	 , �4.29�

�D3�� = c33
2F3�5

−
1

�D,
5

+
1

�D;
5

,
7

,2;−
3

KJ
22	 , �4.30�
4 2 4 2 2 2 2
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�B4�� = c4�3

2
KJ

22	−1

+ 2c4�D�
n=1

� �3

4
−

1

2
�D	

n
�3

4
+

1

2
�D	

n

�−
1

2
	

n
�1

2
	

n
�2�nn!

�−
3

2
KJ

22	n��3

4
−

1

2
�D + n	

+ ��3

4
+

1

2
�D + n	 − ��n + 2� − ��n + 1� − ��n −

1

2
	 − ��n +

1

2
	 + log 2� , �4.31�

�D4�� = c4�3

2
KJ

22	−1

− 2c4�B�
n=1

� �−
1

4
−

1

2
�D	

n
�−

1

4
+

1

2
�D	

n

�−
1

2
	

n
�1

2
	

n
�2�nn!

�−
3

2
KJ

22	n��−
1

4
−

1

2
�D + n	

+ ��−
1

4
+

1

2
�D + n	 − ��n + 2� − ��n + 1� − ��n −

1

2
	 − ��n +

1

2
	 + log 2� . �4.32�

The same solutions may be obtained by considering Meijer G-function solutions to the origi-
al differential equations. The procedure for determining solutions to generalized hypergeo-
etriclike equations which contain parameters differing by integers is discussed in detail by
uke,23 pp.138–143. The study outlined a method for developing Meijer G-function solutions

rom the equations, which involved the differentiation of generalized hypergeometric functions
ith respect to their parameters—a procedure analogous to the differentiation of � indices in the

bove. The analysis involved is lengthy and tedious, but leads to the solutions obtained above. We
efrain from a physical interpretation of the above gravitational modes for now, and take that up in
he next section when we discuss the more general solutions. The one obvious difference will be
he fact that no Jeans instability is apparent for any of the above modes, with two modes always
ollapsing and two modes always acoustic, whereas for the general modes a Jeans instability will
e apparent.

We now compare the solutions obtained to those of Refs. 10 and 11. In these studies general
olutions were written as

�1 
 t−��B = c1G1 + c2G2 + c3G3 + c4G4. �4.33�

ere ci are constants, and the functions Gi denote Meijer G functions,

Gh = G2,4
m,n�x�

a1
* + 1,a2

* + 1

bh
*,b1

*
¯ # ¯ b4

* 	, h = 1,2,3,4. �4.34�

he notation # signifies that bh is to be omitted in its usual place. The G function is defined so that
�m�4 and 0�n�2. The parameters ai

* ,bj
* depend on �B, �D, the adiabatic index �B, and the

xponent 
 of t in the Hubble expansion parameter �which we pointed out earlier must be equal to
2
3 for the equations as formulated to be physically correct—even though Refs. 10 and 11 used a
reater range of values�. The time parameter x= 3

2KJ
22 in our notation. A particular set of solutions

s given by m and n being given specific values. In general, m=1, n=2 will give such a set of
olutions for small x in the above example. The G functions can then normally be expressed in
erms of 2F3 functions �for example, the plasma solutions�, but in the particular case under
iscussion, since some of the bj

* differ by integers, this is not possible. It is this point that Haubold
nd Mathai missed in Ref. 11.

Let us give specifics to illustrate the point. Under the general classification scheme, the CDM
ase under consideration corresponds to 
= 2

3 , �i=
5
3 , in the notation of Ref. 11. This implies that

he parameters take the following values:

a1
*,a2

* = − 1 ± 1 �D,
2
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b1
*,b2

* = ± 1
4 , b3

*,b4
* = ± 5

4 .

o evaluate the G functions in this special case, where some parameters differ by integers, the
ntegral representation of the G functions was considered in Ref. 11:

G1 =
1

2�i
�

L

��1

4
+ s	��− a1

* − s���− a2
* − s�

��5

4
− s	��−

1

4
− s	��9

4
− s	 x−s ds . �4.35�

sing the fact that

��1

4
+ s	

��−
1

4
− s	 −

��5

4
+ s	

��3

4
− s	 , �4.36�

t was found that

G1 = − x5/4

��− a1
* +

5

4
	��− a2

* +
5

4
	

��5

2
	��2���7

2
	 2F3�− a1

* +
5

4
,− a2

* +
5

4
;
5

2
,2,

7

2
;− x	 , �4.37�

hich agrees with �B3 in �4.29�. Performing the same analysis as above for G3 however, it is found
hat G1 and G3 are exactly the same function. It appears as though this was never checked in Ref.
1. The same applies to G2 and G4,

G2 = G4 = − x−1/4

��− a1
* −

1

4
	��− a2

* −
1

4
	

��1

2
	��2���−

1

2
	 2F3�− a1

* −
1

4
,− a2

* −
1

4
;
1

2
,2,−

1

2
;− x	 , �4.38�

hich agrees with �B1 in �4.25�. Thus the solutions degenerate by employing this method, and two
f the solutions, namely �B2 and �B4 which contain logarithmic terms, are totally missed. The
orrect way to evaluate the G functions when some parameters differ by integers is given by
uke,23 pp. 143–147. A careful study of this rather complicated procedure will show that the

ogarithmic solutions �B2 and �B4 are found in this way.
It is interesting to note that a linear combination of the solutions �B2 and �B4 are in fact found

n Ref. 11 in the large x limit. In this case the function G2,4
4,1 was evaluated from the contour

ntegral representation to achieve some analogous series to �4.27� and �4.31�. Although the solu-
ions �4.25�–�4.32� are valid for all x, such a representation does not seem very useful for x large,
s the solutions are comprised of an infinite ascending series in x. Thus very many terms would be
equired to represent the solutions accurately in this limit through �B2 and �B4. In Ref. 19 we
evelop a much better method for evaluating the solutions for large x using a WKB approximation
cheme.

We have now thoroughly investigated the CDM two-component model using the KD=0 limit,
nd tidied up previous work in this area. As discussed earlier, although this work is of dubious
hysical relevance, it has been an interesting mathematical investigation, and has allowed com-
arisons with the previous work in cosmological perturbation theory and cosmological plasma
hysics. We now turn to the more general two-component model, which has a firmer physical

asis.
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. THE GENERAL TWO-COMPONENT SOLUTIONS

We finally investigate the most general set of equations, those with both KB and KD nonzero.
he equations thus posed can model both CDM and HDM, though the discussion initiated earlier
bout the lack of a free streaming damping term for neutrinolike HDM should be heeded.

The algorithm needed to solve the equations was developed in the preceding section for KD

0, and can be used here. Thus if �4.10� and �4.11� are substituted into �2.22� and �2.23�, we
btain the same indicial equations �4.12� and �4.13� as previously, and the following set of coupled
ecursion relations:

�� + n + 2��� + n + 1��� + n + 4��� + n − 1�an+2 + 6KB
2�� + n + 3

2 − �D��� + n + 3
2 + �D�an

+ 36�DKD
2 bn = 0, �5.1�

�� + n + 2��� + n + 1��� + n + 4��� + n − 1�bn+2 + 6KD
2 �� + n + 3

2 − �B��� + n + 3
2 + �B�bn

+ 36�BKB
2an = 0. �5.2�

ere �B
2 = 1

4 +6�B in analogy with the previous definition of �D. A closed solution for this set of
ecursion relations cannot be obtained for all n, so that solutions to �2.22� and �2.23� can only be
enerated iteratively, to whatever order desired. Lacking the ability to generate an infinite series
epresentation for the solutions means that they cannot be classified by known analytic functions.
o handle the complicated algebra involved in finding successive terms iteratively, we have de-
eloped a symbolic computation code using the functional programming language Mathematica.
he algorithm described in the preceding section can be used to generate a solution up to a certain
ower in .

The coefficients increase in complexity very quickly for increasing n. Although the code can
enerate solutions up to arbitrary order, we find it sufficient to present only the first two orders for
ach solution here. We express the results in terms of the original parameters KB and KD, rather
han in terms of �B and �D, as no simplification is gained in using the latter. The solutions,
orresponding to �=0,1 ,3 ,−2, respectively, are

�B1�� = 1 + 3
2 �KB

2 − 3�DKB
2 − 3�BKD

2 �2 + O�4� , �5.3�

�D1�� = −
�B

�D
1 +

3

2
�KD

2 − 3�DKB
2 − 3�BKD

2 �2 + O�4�� , �5.4�

�B2�� =  +
1

25
�6KB

2 − 31�DKB
2 − 31�BKD

2 + 5
�B

�D
KD

2 	3 +
6

5
�B�KD

2 − KB
2�3 log  + O�5� ,

�5.5�

�D2�� = −
�B

�D
 −

1

25
�31�DKB

2 + 31�BKD
2 − KD

2 �3 −
6

5
�D�KD

2 − KB
2�3 log  + O�5�� ,

�5.6�

�B3�� = 3 + 3
70�3�DKB

2 − 3�DKD
2 − 10KB

2�5 + O�7� , �5.7�

�D3�� = 3 + 3
70�3�BKD

2 − 3�BKB
2 − 10KD

2 �5 + O�7� , �5.8�

�B4�� = −2 + �KB
2 − 5

�B KD
2 + 5�DKB

2 − 5�DKD
2 	 + 6�D�KB

2 − KD
2 �log  + O�2� , �5.9�
�D
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�D4�� = −2 + �6KD
2 − 5�BKB

2 + 5�BKD
2 � + 6�D�KD

2 − KB
2�log  + O�2� . �5.10�

It remains now to make a physical interpretation of these solutions. This is most usefully
chieved by constructing a table comparing different properties of the modes, and comparing the
olutions to the corresponding cosmological plasma modes. The results are summarized in Table I,
hich uses notation defined in Ref. 18. Both the KD=0 modes of the preceding section and the
odes of this current section are included in each category under the table. The plasma modes

y1 , . . . ,y4 of Ref. 18, Eq. �4.16� correspond to the KD=0 modes �4.25�–�4.32�. The current gravi-
ational modes �5.3�–�5.10� �that is �1 , . . . ,�4� correspond to the more general expansions Eqs.
4.20�, �4.21�, �4.29�–�4.32� of Ref. 18.

In Table I, the power of  gives the corresponding exponent �. The parameter �
�1

4 − Pi
2− Pe

2 found in the plasma modes depends on the plasma frequencies of the electron and
on components. For the gravitational modes, the signs of Pi and Pe must be reversed since �as
pposed to the electromagnetic force� gravity is always attractive. In addition Pi

2+ Pe
2 corresponds

o �B+�D=1 �once again the special nature of gravity in cosmology is apparent�. This implies that
he general parameter � in the plasma modes should be replaced with 5

2 for the gravitational
odes—the reason why many of the parameters in the 2F3 and Meijer G functions were pure

ational numbers not depending on physical constants. Notice that the ratio of the amplitudes of
aryonic/dark matter modes and electron/ion modes differ. This is because the couplings in the
ifferential equations are different. For the gravitational modes the couplings involve terms such
s �D�D and �B�B, whereas for the plasma modes the couplings involve terms such as Pi

2n̄e1 and
Pe

2n̄i1.
We have indicated the corresponding collapsing and acoustic modes for the gravitational

ABLE I. A comparison of gravitational and plasma linear perturbation modes

Gravitational modes Plasma modes

�1�0� t0 y1�
0� t0

�B

�D
�−

�D

�B

ne

ni
�1

Lower 2F3 parameters: − 1
2 , 1

2 , 2 1
2 , 3

4 − 1
2�, 3

4 + 1
2�

Acoustic mode Ion-sound mode

�2��a−1/2� t−1/3 y2�
−1�a−1/2� t−1/3

�B

�D
�−

�D

�B

ne

ni
�1

Logarithmic solutions Parameters do not correspond

Acoustic mode Ion-sound mode

�3�3�a−3/2� t−1 y3�
−1/2−��a−1/4−�1/2��� t−1/6−�1/3��

�B

�D
�1

ne

ni
�−

Pe
2

Pi
2

Lower 2F3 parameters: − 5
2 , 7

2 2 1+�, 3
4 + 1

2�,, 5
4 + 1

2�

Collapsing mode Langmuir mode

�4�−2�a� t2/3 y4�
−1/2+��a−1/4+�1/2��� t−1/3+�1/3��

�B

�D
�1

ne

ni
�−

Pe
2

Pi
2

Logarithmic solutions Parameters do not correspond

Collapsing mode Langmuir mode
ensity perturbations. It is difficult to show this rigorously for the series solutions as presented. We
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an make comparisons to the one-component results, and identify the leading order powers of the
xpansion parameter a. This yields the classification as stated. We can also make an analogy to the
on-sound modes of plasma physics, which are of a similar nature to acoustic oscillations. They
how a collective behavior of both components oscillating approximately in phase.

We are finally left with the question of how the Jeans scale enters into the solutions. In Sec.
V the mixture wave number kM, Eq. �4.4� was briefly introduced as being the only physically
eaningful scale for instabilities in a two-component fluid. To make this quantity dimensionless,

t would be appropriate to make the definition

KM
2 =

k2

WB/vB
2 + WD/vD

2 . �5.11�

his quantity is only of relevance to a static spacetime scenario. To place it in the context of the
xpanding Universe, the substitutions

WB →
6�B

2 , vB
2k2 → 6KB

2 ,

WD →
6�D

2 , vD
2 k2 → 6KD

2

re required. Then KM takes on the revised definition

KM
2 =

2

�B/KB
2 + �D/KD

2 =
2

c
2 . �5.12�

e have introduced the quantity c�k�, which can be thought of as a critical time. For �c,

M �1 and acoustic oscillations would only be expected to exist for all modes. For �c, KM

1 and two of the modes become unstable and undergo gravitational collapse. Since the precise
agnitude of the scale factor a is not determined by cosmology �see Eq. �3.7�, which contains an

rbitrary initial time ti�, we may arbitrarily assign an initial time a0=1, so that 0=1 and decreases
ith increasing time. Then we may interpret the Jeans instability in two ways by considering the

ritical time c. Initially we may study all k-dependent modes at a particular time , where a
ubset will be unstable for values of k for which c�k�� �we stress that c is a function of k�. We
ay then consider what occurs as the modes evolve through time from this particular instant. The

ritical time c is fixed for any particular mode, so that a subset of modes that were originally
coustic will become unstable as →c

+ �those modes corresponding to the solutions �3 and �4 in
able I�. Consequently more and more modes pass through the instability as the Universe evolves.
he physical wave number k is of course dependent on time, thus the dependence of the instability
n a time c shows the inextricable link between the wave number and time.

It is illuminating at this stage to refer back to the one-component modes discussed in Sec. III.
or the one-component case, solutions were found in terms of the combination KJa

−1/2. With the
dentification =a−1/2, the quantity c is seen to be the two-component analog of KJ.

It would be useful to convert the expansions �5.3�–�5.10� to depend on KM or c, to see how
he Jeans scale enters. This is achieved by the following relations:

KB
2 =

1

c
2 ��B + �DV2�, KD

2 =
1

c
2��D +

�B

V2	 . �5.13�

ere V=vB /vD is the ratio of sound velocities. We then find that the expansions are all in terms of
ncreasing powers of  /c, with coefficients in terms of �B, �D, and V:

�B1�� = 1 +
3

2
��B + �DV2 − 6�B�D − 3�D

2 V2 −
3�B

2

V2 	2

2 + O�4

4	 , �5.14�

c c
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�D1�� = −
�B

�D
1 +

3

2
��D +

�B

V2 − 6�B�D − 3�D
2 V2 −

3�B
2

V2 	2

c
2 + O�4

c
4	� , �5.15�

�B2�� = �1 +
1

25
5 + �D +

6�B

V2 +
5�B

2

�DV2 − 31��DV +
�B

V
	2�2

c
2

+
6

5
�B��D − �B − �DV2 +

�B

V2	2

c
2 log  + O�4

c
4	� , �5.16�

�D2�� = −
�B

�D
�1 −

1

25
�D −

�B

V2 + 31��DV +
�B

V
	2�2

c
2

−
6

5
�D��D − �B − �DV2 +

�B

V2	2

c
2 log  + O�4

c
4	� , �5.17�

�B3�� = 3�1 +
3

70
3�D��B − �D + �DV2 −

�B

V2	 − 10��B + �DV2��2

c
2 + O�4

c
4	� , �5.18�

�D3�� = 3�1 +
3

70
3�B��D − �B − �DV2 +

�B

V2	 − 10��D +
�B

V2	�2

c
2 + O�4

c
4	� , �5.19�

�B4�� = −2�1 + − 4�B + �DV2 + 5�B�D + 5�D
2 �V2 − 1� − 5� �B

�D
+ �D	 �B

V2�2

c
2

+ 6�D��B − �D + �DV2 −
�B

V2	2

c
2 log  + O�4

c
4	� , �5.20�

�D4�� = −2�1 + 6�D − 5�B
2 + 5�B�D�1 − V2� +

5�B
2

V2 �2

c
2

− 6�B��B − �D + �DV2 −
�B

V2	2

c
2 log  + O�4

c
4	� . �5.21�

his is a convenient parametrization of the solutions. The scale of the modes are chosen by c, the
ature of the matter involved is determined by V, and the proportions are determined by �B and �D.
complete solution to the problem has thus been achieved up to whatever order desired.

I. CONCLUSIONS AND FURTHER WORK

A method for determining the small k solutions of a general two-component cosmological
ensity perturbation model has been expounded in this paper. We have only displayed the solu-
ions to first order, but it is possible to derive them up to any order by the method in principle. We
ave explored the mathematical properties and peculiarities of density perturbations influenced by
ravitational interaction, particularly contrasting them to plasma modes, and correcting a number
f previous misconceptions in the literature. The expanding Universe introduces new features not
redictable from simple static space–time considerations. In particular, totally new structures to
he dispersion relations are found, even in the one-component example. We have shown how the

ixture Jeans wave number enters the solutions, and clarified its role in an expanding universe
ontext.

More work is required to investigate the solutions around the critical scale defined by kM.

lthough the expansions as derived in this paper are applicable to this region, they are not
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articularly useful, as many terms in the equations need to be retained when the expansion
arameter  /c is of O�1�. It is unclear how an analytical investigation of this region could
roceed at present. We have performed some preliminary studies which involved producing a large
umber of terms in the expansions �5.3�–�5.10� using the Mathematica program described, and
hen substituting in numerical values for the various physical parameters to obtain numerical
oefficients with an ascending series in . At present the plots of these expansions over a range of
alues of  do not yield reliable results—it is possible that many more terms than are practically
alculable will be required, and a very high order of numerical precision will have to be main-
ained. Other methods of analyzing the modes in this interesting region probably need to be
nvestigated.

Of ultimate interest is exploring how these type of modes contribute to the power spectrum.
ore physical effects may need to be introduced, such as a cosmological constant, or the addition

f more matter components. To determine the actual density contrast at a given scale 1 /k, the
ourier modes of the density contrast as derived in this paper would also need to be integrated
ver the whole range 0�k�1/k. It would be of considerable interest to compare the power
pectra calculated by such a method with the well-known power spectra of the various cosmo-
ogical models in existence today.

In concluding, we remark that a similar analysis could be carried out in the postrecombination
egion 140�z�1150, where now the baryons follow the T�1/a relationship. The differential
quations in Sec. II will now be different, as will be their solutions; but we expect that the ensuing
nalysis would yield qualitatively similar results but quantitatively different scaling. This would be
useful future study.
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hort wavelength analysis of the evolution of perturbations
n a two-component cosmological fluid
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The equations describing a two-component cosmological fluid with linearized den-
sity perturbations are investigated in the small wavelength or large k limit. The
equations are formulated to include a baryonic component, as well as either a hot
dark matter �HDM� or cold dark matter �CDM� component. Previous work done on
such a system in static space–time is extended to reveal some interesting physical
properties, such as the Jeans wave number of the mixture, and resonant mode
amplitudes. A WKB technique is then developed to study the expanding universe
equations in detail, and to see whether such physical properties are also of rel-
evance in this more realistic scenario. The Jeans wave number of the mixture is
reinterpreted for the case of an expanding background space–time. The various
modes are obtained to leading order, and the amplitudes of the modes are examined
in detail to compare to the resonances observed in the static space–time results. It
is found that some conclusions made in the literature about static space–time results
cannot be carried over to an expanding cosmology. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2209551�

. INTRODUCTION

The analysis of cosmological perturbations in the Newtonian limit is a well studied problem in
heories of structure formation, and it may be supposed that there is little left to learn from this
heory. Most of the effort has gone into the study of the one-component cosmological fluid
quations, and the results have been well expounded in many standard texts.1–5 There is, however,
till a wealth of problems remaining in the detailed analysis of two-component cosmological fluids
nd their linearized gravitational perturbation modes. In particular, if pressure effects are included
o that the Jeans instability becomes an issue, the equations present a considerable analytic chal-
enge, and a range of new physical effects become apparent. Some of these effects have been
tudied in the contrived case of a static space–time background.6,7 In this scenario there is no
xpansion, so that the mathematics is considerably simplified, and solutions can easily be found.
his is useful to gain some qualitative idea about physical phenomena observable, but to gain a

rue picture in a cosmological context, the expanding background space–time given by the
riedmann-Robertson-Walker cosmologies is required.

There have been a variety of studies of the multicomponent cosmological fluid equations,
anging from some relatively specific applications under certain cosmological scenarios,8,9 to a
road mathematical study and classification.10 A discussion of the application and validity of some
f the equations mentioned in these previous studies, together with the solution of an unsolved set
f two-component post-recombination equations, has recently been undertaken by the authors.11

he system of equations described the interaction between a dark matter and baryonic component
n the Newtonian regime �density fluctuations on scales well within the Hubble radius�. A series
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xpansion of the solutions for small wave number k �large scales� was presented. This allowed
omparison with some of the previous work, in particular with the Meijer G-function classifica-
ions given by Ref. 10. This region of k-space is also interesting because it is the region in which
he Jeans instability is known to occur.

In this paper we wish to complete this study by examining the large k asymptotic region of the
olutions. Such a study is worthwhile, in order to make contact with the static space–time results
f Ref. 7. Although not realistic as cosmological solutions, these results displayed a number of
ittle known physical phenomena associated with the linearized modes, which we wish to expand
n here. The techniques required to analyze the expanding universe solutions are also of interest
n their own right mathematically, where a generalized WKB method will be expounded. It is
ossible to make a comparison with the work done in cosmological plasma physics in an Einstein-
eSitter background.12–14 This is interesting because of the mathematically very similar form of
uid equations for both type of systems, which is due to the similarity of the electromagnetic and
ravitational forces. Thus mathematical techniques employed in the analysis of plasma equations
ill be useful in this paper, and give clues as to how to proceed with some challenging math-

matical analysis of gravitational density perturbation modes.
The paper is to be organized as follows. The relevant equations will be introduced in Sec. II.

he discussion will then be focused in Sec. III, by reconsidering the two-component modes in a
tatic space–time. This investigation is by necessity of a qualitative nature, but gives a useful
ntroduction to the concepts and interesting physical effects not found in the standard one-
omponent analysis. The work of Ref. 7 will also be extended. The expanding universe baryonic
nd dark matter equations will then be considered in Sec. IV. The short wavelength �WKB�
pproximation will be utilized to complete the study of these equations initiated in Ref. 11. The
elevance of the previous work on static space–time systems is revealed through this analysis. This
ill allow meaningful conclusions to be drawn about this whole area of study, and point to where
romising future work may lie. These aspects are discussed in Sec. V.

I. THE GOVERNING EQUATIONS

A broad survey of the Newtonian cosmological perturbation equations under various cosmo-
ogical scenarios was given in Ref. 11. This paper also gave a detailed derivation of the equations
f interest for present analysis. We will not repeat such a detailed discussion here, but directly
ntroduce the relevant equations.

The starting point is the equations for an n-component system of nonrelativistic species, as
erived in all the standard texts. Given a density perturbation �i of the ith component of the mass
ensity �i,

�i�r,t� =
��i

�i
, �2.1�

t may be decomposed into its Fourier plane wave modes with wave vector k,

�i�r,t� =
1

�2��3 � �ki�t�exp�− ik · r�d3r . �2.2�

ere r is the physical spatial coordinate, and t is cosmic time. Using the Eulerian equations of
otion describing a perfect fluid, a set of coupled second order equations for the Fourier modes

i�t� �where we now drop the subscript k� are achieved,

d2�i

dt2 + 2
ȧ

a

d�i

dt
+ vi

2k2�i = 4�G�
i=1

n

�i�i, i = 1,2, . . . ,n . �2.3�

verdots will denote derivatives with respect to t.
The above equations contain the universe expansion factor a and sound velocities vi. We use
he expression “sound velocity” fairly loosely. The parameters vi could also denote a general
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elocity dispersion for a collisionless fluid. To be able to solve the equations, the time dependence
f the physical variables needs to be made explicit. We will adopt the convention that barred
ariables will denote comoving quantities, independent of time. Thus the definition of comoving

ave number k̄=ak arises naturally. An assumption must also be made about the scaling of the
ound velocities vi. In the post-recombination era, the adiabatic speed of sound follows the be-
avior v�a−1, so we will introduce the time independent quantities v̄i�avi. The total background
nergy density �0 can also be made independent of time by the definition �̄0�a3�0. This enables
s to introduce the useful parameter �i=�i /�0, the fraction of mass density contributed by
pecies i.

We will not go into detail on how the equations are transformed into their simplest form here
instead see Ref. 11�, but briefly describe the important points. The equations are first transformed
o that a is the only explicit temporal variable. This allows parameters specifying particular large
cale cosmological dynamics to enter the equations, namely the cosmological constant � and
patial curvature kc. In this paper, a background Einstein-deSitter cosmology will be employed
kc=0, �=0�. Although this model has been ruled out with high confidence by current observa-
ions, it is sufficient for our purposes. We wish to study some important physical process without
dditional complications.

It is found that the following important parameters arise:

k̄B
2 =

4�G�̄0

v̄B
2 , k̄D

2 =
4�G�̄0

v̄D
2 . �2.4�

hey resemble the comoving Jeans wave numbers for each component taken separately. The strict
eans one-component wave numbers are given by replacing �0 with �i in �2.4� �see next section�.
he wavelength parameters defined above indicate whether gravity k̄i� k̄ or pressure support k̄i

k̄ dominate the dynamics, and thus whether the region of k-space under consideration is Jeans
nstable. It may also be noted that the relation �B+�D=1 holds.

It is useful to define the parameters

KB =
k̄

k̄B

, KD =
k̄

k̄D

, �2.5�

or a clear dimensionless partitioning of parameter space. Ki�1 corresponds to the Jeans unstable
egion in the single component analog of the equations, and Ki�1 to the acoustic region. The
osmological fluid equations are finally written in terms of the variable 	=a−1/2, to give the
anonical form of the system of differential equations to be studied in this paper,

�B� + 6�KB
2 −

�B

	2	�B −
6�D

	2 �D = 0, �2.6�

�D� + 6�KD
2 −

�D

	2	�D −
6�B

	2 �B = 0. �2.7�

he prime denotes differentiation with respect to 	.
These equations bear a strong resemblance to the equations of an electron-proton cosmologi-

al plasma studied in Ref. 14 �Eqs. �4.8� and �4.9� of that paper�. Considering the mathematical
imilarity between the electromagnetic and gravitational forces, this was to be expected. A mani-
estation of this fact is the close resemblance between the dispersion relation for the simple
ne-component Jeans instability and Langmuir modes. The techniques employed in Ref. 14 will
e adopted and developed further to the current problem. In particular, some general WKB tech-
iques will be extended. This will also indicate further results obtainable in cosmological plasma

hysics.
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We now digress to an analysis of the static space–time perturbation equations to introduce
ome new physical phenomena, which are to be scrutinized for their applicability in an expanding
niverse.

II. THE STATIC TWO-COMPONENT PROBLEM

. Eigenvalues and eigenvectors

The static space–time results for a two-component fluid are well understood, though receive
ittle attention in standard linearized structure formation theory, which aims to produce the power
pectrum of density perturbations. We will extend the current results to facilitate understanding the
eneral expanding universe scenario later. This section aims to develop some concepts in a rela-
ively simple setting. Previous work on the static problem has been done in Refs. 6 and 7. We will
n particular rely quite heavily on the notation and results of Ref. 7 in this section. Although the
olutions are unrealistic as an application to cosmology, they display some similar qualitative
eatures, and allow an exposition of the basic physical ideas without the complication of space–
ime expansion being introduced. The static nature of the space–time simplifies the mathematics
reatly, and is thus useful in understanding the general problem.

In this section, there is no need to refer to barred �comoving� physical quantities, and all
hysical variables may be assumed to be constant in time, unless otherwise specified. With the
xpansion parameter a set equal to unity, the general fluid equations �2.3� may be written as

�̈D + �vD
2 k2 − WD��D − WB�B = 0, �3.1�

�̈B + �vB
2k2 − WB��B − WD�D = 0, �3.2�

ith an overdot denoting differentiation with respect to t, and Wi=4�G�i. A study of the behavior
f the solutions to these equations is most readily undertaken by reducing the system to a first
rder autonomous dynamical system, undertaken in Ref. 7. To analyze the dynamical system, a
olution needs to be found for the state vector

x = �x1,x2,x3,x4�T � ��̇D,�D, �̇B,�B�T. �3.3�

e just state the results here.
The most important feature discovered in Ref. 7 was the existence of a parameter dependent

ritical point of the dynamical system given by

k2 = kM
2 � kB

2 + kD
2 =

WB

vB
2 +

WD

vD
2 , �3.4�

here kB and kD have been defined in terms of the density and velocity parameters of each matter

omponent, and are slightly different from k̄B and k̄D defined in �2.4�. The special value of the
ave number kM, may be thought of as the Jeans wave number of a two-component fluid �the
ixture wave number�. It comprises the Jeans wave numbers of each fluid taken separately, but it

s possible to show that k=kM is the only physical quantity which indicates an instability—both
=kD and k=kB have no such interpretation for the coupled two-component case.

With solutions of the form

x�t� = �
i=1

4


i exp��it��i, �3.5�

here the 
i are amplitude functions dependent on k and determined by initial conditions, the
olutions for the eigenvalues �i and eigenvectors �i of the dynamical system are, respectively,

� = − � = 1 
f + 
f2 + 4g ,
1 2 
2
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�3 = − �4 = 1

2

f − 
f2 + 4g , �3.6�

ith

f�k� = WB + WD − k2�vB
2 + vD

2 � , �3.7�

g�k� = k2�WBvD
2 + WDvB

2� − k2vB
2vD

2 , �3.8�

nd

�i = ��i�i,�i,�i,1�T, i = 1,2,3,4, �3.9�

ith

�1 = �2 = 1
2WD

�h + 
h2 + 4WBWD� ,

�3 = �4 = 1
2WD

�h − 
h2 + 4WBWD� , �3.10�

nd

h�k� = WD − WB + k2�vB
2 − vD

2 � . �3.11�

or calculational purposes, we note that

h2 + 4WBWD = f2 + 4g . �3.12�

n examination of the real and imaginary parts of the �i will show that the �1 and �2 modes
epresent acoustic oscillations for k�kM and growing and decaying modes for k�kM. The �3 and

4 modes however always represent acoustic oscillations. The exponential nature of the solutions
ndicate that the growing and decaying modes do not have the typical power law behavior exhib-
ted by expanding universe solutions, however the solutions exhibit the correct qualitative behav-
or in the regions below and above the critical point given by k=kM.

To gain a feel for the properties of the above eigenvalues and eigenvectors, which allows us
o make direct contact with the physics of the solutions, we study the quantities in various
symptotic regimes, and examine some plots. This will be effectively facilitated if the quantities
re reparametrized in terms of some dimensionless variables. We need only consider the eigen-
alues �1 and �3. To indicate the nature of the dark matter, the sound velocities may be coalesced
nto the single variable

V2 =
vB

2

vD
2 . �3.13�

hen V�1 corresponds to HDM while V�1 corresponds to CDM. We also introduce the quan-
ities �D and �B as used elsewhere in the paper. In this context, they may be defined as

�D =
WD

WB + WD
, �B =

WB

WB + WD
. �3.14�

e also parametrize the wave-number dependence in units of the mixed Jeans wave number; thus
e define

KM =
k

kM
. �3.15�
t then follows that the eigenvalues may be written as
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�1,3 =
1

2

�WB + WD�1/2�1 − KM
2 − ��DV2 +

�B

V2	KM
2 	±��1 − KM

2 − ��DV2 +
�B

V2	KM
2 	2�

+ 4� �B

V
+ �DV	2

KM
2 �1 − KM

2 �1/2�1/2

. �3.16�

These expressions may be expanded for small and large KM. The results are

�1 � �WB + WD�1/2�1 +
1

2V2 �− �B + �B
2 − V2 + 2�B�DV2 − �DV4 + �D

2 V4�KM
2 + ¯ , KM � 1,

�3.17�

�1 � iKM
1

2

�WB + WD�1/2�1 + �B/V2 + �DV2 − ��1 + �B/V2 + �DV2�2

− 4��B/V + �DV�2�1/2�1/2, KM � 1, �3.18�

�3 � iKM�WB + WD�1/2��B/V2 + �DV2�, KM � 1, �3.19�

�3 � iKM
1

2

�WB + WD�1/2�1 + �B/V2 + �DV2 + ��1 + �B/V2 + �DV2�2

− 4��B/V + �DV�2�1/2�1/2, KM � 1. �3.20�

hese expansions confirm the earlier statement, whereby the �3 �and equivalently �4� modes
isplay acoustic oscillations at all wavelengths, whereas the �1 �and equivalently �2� modes
ndergo a Jeans instability to growing �decaying� modes for KM �1. It is also evident that at very
arge wave numbers �small scales� the acoustic oscillations have a very large frequency, growing
n proportion to the wave number, whereas for very low wave numbers the �3 modes behave in a
ery slowly varying oscillatory manner, the frequency again being proportional to the wave num-
er. In this regime the �1 and �2 modes comprise exponentially growing or decaying perturbations
ver an almost wave number independent timescale, approximately equal to �WB+WD�1/2. These
roperties are illustrated in Fig. 1, where the absolute values of the eigenvalues are plotted as a
unction of KM for a variety of H/CDM scenarios. The values �B=0.1 and �D=0.9 have been used
n the plots, which is a fairly typical proportion of baryonic and dark matter mass density expected
n the Universe.

. Interesting scales

It is evident that at certain scales the eigenvalues undergo some qualitatively interesting
hanges, which have been marked on the plots by some arrows. For wave numbers around KM

1, the �1 eigenvalue drops very quickly to zero, indicating the Jeans instability, but the �3

igenvalue displays uniform behavior in this region. There is another interesting scale in the

M �1 region for small V. The physical motivation for this scale was discussed in Ref. 7. It
orresponds to a critical wave number kC, defined to be when the frequencies of each component
aken separately coincide, i.e., when

vB
2k2 − WB = vD

2 k2 − WD. �3.21�
he wave number k=kC is consequently given by
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kC = �WD − WB

vD
2 − vB

2 	1/2

. �3.22�

t is interesting that the importance of this scale is only apparent for small V, where a sudden
ncrease in the magnitude of �3 and decrease in the magnitude of �1 is apparent. For all V1, the
lots would be almost identical to the displayed plots of V=1000 in Fig. 1.

To gain a better understanding of this behavior, it is useful to convert kC into units of kM,
hich are the plotting units of all the figures. Thus

KMC �
kC

kM
= � �D − �B

�D − �B − �DV2 + �B/V2	1/2

. �3.23�

t is interesting to compare this quantity to the individual Jeans instability scales for each fluid
aken separately,

KMD �
kD

kM
= � �D

�B/V2 + �D
	1/2

, �3.24�

KMB �
kD

kM
= � �B

�B + �DV2	1/2

. �3.25�

better qualitative feel for these scales is facilitated by considering their expansions in the HDM
nd CDM regimes. For HDM, with V�1 we find

KMC
2 = V2� �D

�B
− 1	�1 − � �D

�B
− 1	V2 + O�V4� , �3.26�

KMD
2 = V2�D�1 −

�DV2 + O�V4� , �3.27�

FIG. 1. The eigenvalues for HDM and CDM in the static universe scenario with �B=0.1, �D=0.9.
�B �B
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KMB
2 = 1 −

�D

�B
V2 + O�V4� . �3.28�

rom this it may be concluded that if

�1� �D��B, then KMC�KMD,
�2� �D�B, then KMC�1,
�3� �B��D, then KMC is imaginary �no physical significance�.

his last point is also borne out by the original definition �3.22�, where it is seen that for kC to be
eal, the dominant component must also be the hotter component. For CDM, with V�1 the
orresponding relations are given by

KMC
2 = V−2� �B

�D
− 1	�1 − � �B

�D
− 1	V−2 + O�V−4� , �3.29�

KMD
2 = 1 −

�B

�D
V−2 + O�V−4� , �3.30�

KMB
2 = V−2 �B

�D
�1 −

�B

�D
V−2 + O�V−4� . �3.31�

his shows that if

�1� �B��D, then KMC�KMB,
�2� �B�D, then KMC�1,
�3� �D��B, then KMC is imaginary �no physical significance�.

he position of the arrows in Fig. 1 bear out the above relations, as do the arrows in Fig. 2 and 3
o be discussed more below.

In conclusion, the fact that all eigenvalues have been plotted for the values �B=0.1 and �D

0.9 means that the scale kC is only physically relevant for HDM. This is why all plots for V

FIG. 2. The eigenvalue �1 for a range of �D and �B, with V=0.001 in the static universe scenario.
1 �CDM� are so similar. Given that the real Universe is now considered almost certainly CDM
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ominated, it is doubtful as to whether this potentially interesting physical effect given by the
quations has any discernible effect on structure formation scenarios in pure CDM models. A H
CDM model may give similar interesting results as discussed here. This however is a three-
omponent problem beyond the scope of this paper, but may be considered a worthwhile topic of
esearch for future work in this area.

. Other qualitative behavior

We briefly consider some other features of the solutions, to help better understand the math-
matical properties. The qualitative features we wish to explore are the same for both the �1 and

3 modes, so we will concentrate only on the �1 modes here. The eigenvalue �1 is plotted for
ifferent values of �B and �D in Fig. 2 and 3. An interesting feature of these figures is that there is
one-to-one correspondence between each of the four plots in one figure to a particular plot in the
ther figure, yet each plot corresponds to different physical parameters in each figure. This prop-
rty highlights the symmetry of the eigenvalues. If the original analytic expression �3.16� for �1 is
xamined, it is clear that the expression retains an identical form if �D and �B are interchanged
ogether with V and 1/V. Real values of KMC have also been marked in. They indicate when the
ritical scale kC is physically relevant. Related to this property is the fact that in Fig. 2 all plots
or �D�0.1 and �B0.9 are almost identical to the values of �D=0.1 and �B=0.9. Analogously, in
ig. 3 the same may be said for all plots �D0.9 and �B�0.1.

We now turn to study the behavior of �1 and �3, which give an indication of the relative
roportion of baryonic and dark matter in each of the modes �see, for example, the x2 and x4

omponents of the eigenvectors in Eq. �3.9��. In dimensionless variables, �1 and �3 may be
ritten as

�1,3 =
1

2
�1 −

�B

�D
+ � �B

�D
−

�B

�DV2 + V2 − 1	KM
2 	±� 1

�D
2 + 2�1 −

�B

�D
	� �B

�D
−

�B

�DV2 + V2 − 1	KM
2

+ �� �B

�D
−

�B

�DV2 + V2 − 1	2

KM
4 1/2 � . �3.32�

FIG. 3. The eigenvalue �1 for a range of �D and �B, with V=1000 in the static universe scenario.
t is obvious from inspection that for all wave numbers �1 and �3 are real valued and �1�0,
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3�0. The almost symmetrical nature of the quantities are well illustrated in Fig. 4 for the
pposing cases of H/CDM. Of interest here again is the scale KMC, around which all the �i

ndergo an abrupt change. Figure 4 shows that either �1 or �3 will dominate very rapidly for
ncreasing wave number, depending on the value of V. Stated more specifically, for the HDM
cenario �V�1�, baryons will dominate the �1 modes and dark matter will dominate the �3

odes, and vice versa for the CDM scenario �V�1�. We refrain from examining the asymptotics
f �1 and �3 now, and leave that task to when we derive analogous expressions in the expanding
niverse scenario. The asymptotics will confirm the present qualitative discussion.

. Initial conditions and amplitudes

Having completed a study of the behavior of the general solutions, we now turn to consider
he effect of initial conditions. The study of the amplitudes of the various modes was studied with
articular interest in Ref. 7, where the presence of a resonance was discovered at the scale kC. We
xtend that work here to consider the amplitude functions at a wider range of scales, and for CDM
s well. This will be of relevance when the expanding universe scenario is analyzed in the next
ection, where the KM �1 range of scales needs to be considered. It is also of course of relevance
rom the fact that the Universe is believed to be CDM dominated.

The amplitudes are k-dependent functions, which also depend on the various constants in the
roblem. Consider the initial conditions at some time t0 given by the constants xi�t0�=xi0. Here and
enceforth, any variable subscripted with a 0 �possibly together with other subscripts� denotes that
uantity evaluated at t= t0. As a reasonable simplifying assumption, the perturbations are assumed
o start from rest, so that x10=x30=0. The matter density perturbations may then be written in the
orm

�1� −�1�

FIG. 4. The eigenvector amplitude functions �1 and �3 for HDM and CDM in the static universe scenario.
�D��� = x20��1�e + e � + �2 cos�i�3��� , �3.33�
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�B��� = x40��3�e�1� + e−�1�� + �4 cos�i�3��� , �3.34�

here the time origin has been shifted by the definition �= t− t0. The amplitude functions �i are
onstructed out of the mode eigenvector functions �i, as well as the ratio of initial densities Q0

x40/x20. They are

�1 =
�1

2

1 − Q0�3

�1 − �3
, �2 = �3

Q0�1 − 1

�1 − �3
, �3.35�

�3 =
1

2

Q0
−1 − �3

�1 − �3
, �4 =

�1 − Q0
−1

�1 − �3
. �3.36�

Of particular interest is the fact that some of the �i display a resonance around the scale kC.
his scale has of course previously shown its significance in the behavior of the eigenvalues and

he �i. The fact that kC defines the scale at which the collapse times of the components taken
eparately coincide indicates that a resonance may well be expected to occur at this scale. The
ehavior of the various amplitudes over a wide range of scales, and in both the HDM and CDM
cenarios are illustrated in Figs. 5–12. The distinguishing feature of all the plots of HDM ampli-
udes is the rapid change of the functions around the scale kC.

The analytic properties of �1 and in particular �3 are discussed at some length in Ref. 7. Under
ome restrictive conditions �only HDM and certain initial values of Q0� it was shown that �1 would
ot obtain a resonance, whereas �3 would for

Q0 �
1

2
�vD

2

vB
2 −

WD

WB

vB
2

vD
2 	 . �3.37�

n contrast no resonances are observed in the CDM scenario, but the amplitudes still undergo a
apid change around the scale KMB. Both KM =KMB and KM =KMD are always less than KM =1, so
hat no significant behavior occurs in the long wavelength limit, a fact of some importance in later

IG. 5. The k-dependent amplitudes of the �1 dark matter modes in a HDM universe for a range of initial conditions

0=x40/x20.
ork.
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V. THE SHORT WAVELENGTH APPROXIMATION IN THE EXPANDING UNIVERSE

. Matrix formulation

We are now prepared to tackle the most general equations formulated for the current problem,
iven by �2.6� and �2.7�. The solution to this system of equations cannot be classified by known
nalytic functions, so approximation schemes need to be implemented. This paper investigates a
hort wavelength approximation, which would be expected to probe the acoustic regime of the

IG. 6. The k-dependent amplitudes of the �1 dark matter modes in a CDM universe for a range of initial conditions

0=x40/x20.

IG. 7. The k-dependent amplitudes of the �3 dark matter modes in a HDM universe for a range of initial conditions
0=x40/x20.
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odes. A WKB-type method may be employed for this. This is interesting, because through the
erivation the explicit physical approximations required and type of solutions obtainable will
aturally arise as a consequence of the method. A WKB method for coupled systems of equations
n a cosmological plasma setting was expounded in Ref. 14. We will further develop that method
ere for the current system, which is more complicated than anything considered previously.

To begin with, the equations must be reduced to a first order system. Thus as in the static case
3.3�, we define

IG. 8. The k-dependent amplitudes of the �3 dark matter modes in a CDM universe for a range of initial conditions

0=x40/x20.

IG. 9. The k-dependent amplitudes of the �1 baryonic modes in a HDM universe for a range of initial conditions Q0
x40/x20.
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x = �x1,x2,x3,x4�T � ��D� ,�D,�B� ,�B�T. �4.1�

he system may be written in matrix form

x� = Tx, �4.2�

ith the definition

IG. 10. The k-dependent amplitudes of the �1 baryonic modes in a CDM universe for a range of initial conditions Q0

x40/x20.

IG. 11. The k-dependent amplitudes of the �3 baryonic modes in a HDM universe for a range of initial conditions Q0
x40/x20.
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T = �
0 − 6KD

2 +
6�D

	2 0
6�B

	2

1 0 0 0

0
6�D

	2 0 − 6KB
2 +

6�B

	2

0 0 1 0

� . �4.3�

he idea behind the method is to attempt to remove the coupling between equations as much as
ossible, hopefully relegating it to some lower order, which can then be dealt with by a suitable
pproximation. To this end we define the matrices A and f such that

x = Af. �4.4�

is chosen appropriately in order to diagonalize T. Then �4.2� may formally be written as

f� = A−1TAf − A−1A�f, det A � 0. �4.5�

To diagonalize T, we must first find its eigenvalues and eigenvectors. The structure of T is
ery similar to its static space–time counterpart, so the four eigenvalues also have the form given

y �3.6�. In the present case however, f and g are functions of 	 and k̄, defined as

f�	, k̄� =
6

	2 − 6�KB
2 + KD

2 � , �4.6�

g�	, k̄� =
36

	2 �KD
2 �B + KB

2�D� − 36KB
2KD

2 . �4.7�

ote that unlike the static space–time results, where f contained an expression of the form WB

WD, no analogous expression exists here due to the physical constraint of the Einstein-deSitter

IG. 12. The k-dependent amplitudes of the �3 baryonic modes in a CDM universe for a range of initial conditions Q0

x40/x20.
niverse, �B+�D=1. The eigenvectors �i corresponding the eigenvalues �i are also identical in
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tructure to their static space–time counterparts �3.9�. In this case the functions �i are given by

�1 = �2 =
1

2

	2

6�D
�h +
h2 + 4

36�B�D

	4 	 , �4.8�

�3 = �4 =
1

2

	2

6�D
�h −
h2 + 4

36�B�D

	4 	 , �4.9�

ith

h�	, k̄� =
6

	2 ��D − �B� + 6�KB
2 − KD

2 � . �4.10�

t is worthwhile to point out here for the sake of calculations that

S �
h2 + 4
36�B�D

	4 = 
f2 + 4g . �4.11�

The eigenvectors may be used to form the diagonalizing matrix

A = ��1,�2,�3,�4� , �4.12�

hose inverse exists. This enables the formal equation �4.5� to be written explicitly

�
f1�

f2�

f3�

f4�
��

�1 0 0 0

0 − �1 0 0

0 0 �3 0

0 0 0 − �3

��
f1

f2

f3

f4

� − �
�1 �2 �3 �4

�2 �1 �4 �3

�5 �6 �7 �8

�6 �5 �8 �7

��
f1

f2

f3

f4

� . �4.13�

e have introduced eight new parameters here, all of which can be written in terms of �1, �3, �1,
nd �3. In what follows, let us use the shorthand

�13 � �1 − �3 =
	2

6�D
S =

1

�D


1 + 2	2��D − �B��KB
2 − KD

2 � + 	4�KB
2 − KD

2 �2. �4.14�

he parameters are defined by

�1 =
�1�

�13
+

�1�

2�1
, �4.15�

�2 = −
�1�

2�1
, �4.16�

�3 =
�3�

2�13
�1 +

�3

�1
	 , �4.17�

�4 =
�3�

2�13
�1 −

�3

�1
	 , �4.18�

�5 = −
�1� �1 +

�1	 , �4.19�

2�13 �3
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�6 = −
�1�

2�13
�1 −

�1

�3
	 , �4.20�

�7 = −
�3�

�13
+

�3�

2�3
, �4.21�

�8 = −
�3�

2�3
. �4.22�

Let us consider the meaning of �4.13� more closely. Using the terminology of WKB theory,
he first matrix on the right-hand side will give us the leading order “control factor”—the fastest
arying part of the solution, typically an exponential factor. This factor may indicate rapid oscil-
ations for imaginary �i, or rapid growth or decay for real �i. The second matrix contains a
ollection of parameters, which determine further slowly varying behavior. For this to be true, the
ondition �i�� j, "i, j must hold. It is then possible to show that the four equations all decouple
o leading order, and WKB solutions may be written down. The proof of this is quite involved, but
t is worthwhile to pursue. A bonus of the proof is that through a careful consideration of the
pproximations required, some instructive physics is learned along the way.

. The WKB approximation criteria

In an attempt to decouple the equations, we need to consider more carefully the various
riteria which constitute the condition �i�� j, "i, j, which allow the WKB method to work. To
egin with, we will assume the �i’s are of about the same order. Although their magnitude varies
reatly over various scales, an examination of Fig. 1 shows this assumption to hold fairly well in
eneral. When we find, through the reasoning which follows, the precise scales of interest for a
KB approximation, we will see that this assumption is justified post facto. The essence of the
KB approximation is to assume

��i�

�i
�� ��i� , �4.23�

hat is, the eigenvalues vary slowly over the time scale which they define. In the current context,
his corresponds physically to many oscillations in a universe expansion time for the acoustic
egion of k-space, or a far shorter collapse time than a universe expansion time for perturbations
n the region where modes are Jeans unstable. In what follows, exactly which type of modes
acoustic or collapse� do fall into the category defined by �4.23� will become apparent.

From the results of static space–time, we suspect that a Jeans instability must exist, and in
uch a region, it should follow that one of the �i be zero, rendering �4.23� false. Consequently, we
eed to find the critical points of the �i, dependent on the wave number k. A consideration of the
quation �1

2�	�=0 gives a solution for a “critical time” 	=	c,

	c
2 �

�B

KB
2 +

�D

KD
2 . �4.24�

t turns out that �3 however has no such time.
Let us examine the behavior of �1�	� around 	�	c more closely. We set 	2=	c

2�1+�� for a
mall parameter �, and expand �1 in powers of �. It turns out that

f + 
f2 + 4g = − 12�KB
2KD

2 KD
2 �B + KB

2�D

KD
4 �B + KB

4�D

+ O��2� , �4.25�

o that �1�
−� for 	�	c. This dependence of �1 on � gives a clear picture of how �1 changes

round the critical point. For 	�	c, ��0 and �1 is imaginary. This corresponds to acoustic
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scillations, in the stable part of k-space. For 	�	c, ��0 and �1 is real. This corresponds to an
nstable part of k-space, so that 	c is an indication of the transition through the Jeans instability.
he time parameters may be defined so that initial time corresponds to a0=1. This is because the
xplicit magnitude of a0 is not determined by cosmology. By the definition 	=a−1/2, it is clear that
begins at 1 and decreases with increasing time. This gives us two ways of looking at the Jeans

nstability. One way is to consider the instability at a particular instant in time. For a particular
ime 	, a subset of modes will be unstable for values of k for which 	c�k��	 �we stress that 	c is
function of k�. We may then consider what occurs as these modes evolve through time from this
articular instant. The critical time 	c is fixed for any one mode, so that the modes which were
riginally acoustic will become unstable as 	→	c

+. Consequently more and more modes pass
hrough the instability as the Universe evolves. The physical wave number k is of course depen-
ent on time, thus the dependence of the instability on a time 	c shows the inextricable link
etween the wave number and time.

We wish to relate these concepts back to the result discussed for static space–time, and so
ust ask how the critical time 	c is related to the critical wave number kM of the mixture of

omponents. In static space–time we defined

KM
2 =

k2

WB/vB
2 + WD/vD

2 �4.26�

s the dimensionless parameter, indicating the relation of a mode to the instability at KM =1. To
lace this quantity in an expanding universe context, the substitutions

WB →
6�B

	2 , vB
2k2 → 6KB

2 ,

WD →
6�D

	2 , vD
2 k2 → 6KD

2

re required. This gives KM the following form:

KM
2 =

	2

�B/KB
2 + �D/KD

2 =
	2

	c
2 . �4.27�

t is explicitly seen here that the scale of instability changes with time, as was explained above.
he analogy with the one-component case discussed in Ref. 11 may be made here, where solutions
ere found in terms of the one-component Jeans wave number KJa

−1/2. With 	=a−1/2, we see that
he quantity 	c

−1 in the two-component case is the exact analogy of KJ for the one-component case.
Now that we have determined that �1 approaches zero in a particular region, it becomes clear

hat the WKB approximation will not be valid in this region 	�	c, from the condition �4.23�. Let
s examine �1� /�1

2 in more detail, to determine its behavior over the whole of k-space. An explicit
valuation using the definitions of f and g from �4.6� and �4.7� gives

�1�

�1
2 = −

3

��1	�3 �1 + F� , �4.28�

here

F =
1 + ��D − �B��KB

2 − KD
2 �	2

�D�13
. �4.29�

n the ensuing discussion we use the quantity k̄ to describe the comoving wave-number depen-
ence of the quantities involved. If we denote the numerator of �4.29� by N, it is simple to see that
2 2 2 ¯
��D�13 for all k �see �4.14��, so that �F � �1. We also consider the limits of F for large and
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mall k̄. For k̄→0, F→1 and for k̄→�, F→�D−�B if KB�KD, and F→�B−�D if KD�KB. This

eans that asymptotically F is independent of k̄, and since �F � �1 for all k̄, �1� /�1
2 does not change

ign. It now becomes clear that the magnitude of �1� /�1
2 is mainly dependent on the factor ��1	�−3.

e already know that as k̄→ k̄M, �1→0 so that in this region it has been confirmed that �1� /�1
2�1.

uitable regions where WKB might be valid must be sought far from the neighborhood k̄� k̄M.
he dependence of �1� /�1

2 on �1	 leads us to suggest the WKB criterion in the amended form

1	�1. This makes good physical sense, because if �1 is considered a frequency/inverse of a
ynamical collapse time, the WKB criteria requires that a large number of oscillations/significant
hange in �i occurs during an expansion time.

A similar analysis needs to be performed for �3. We find

�3�

�3
2 = −

3

��3	�3 �1 − F� . �4.30�

his too demands the criterion �3	�1. To find how �3 behaves, consider first the k̄→0 limit.
his limit gives �3→0, so this region of k-space is clearly inappropriate for WKB analysis. We

ote, however, that since �3�0 at k̄= k̄M, this region should be checked more closely. After a
areful examination of �3,

�3	 = 
3
1 − �KB
2 + KD

2 �	2 − �D�13, �4.31�

t becomes apparent that �3	�1 only when both KB�1 and KD�1. This corresponds to the

egion k̄� k̄M, and so the region k̄� k̄M must be excluded from consideration as well. For �3, we

re only left with the region k̄� k̄M as fulfilling the WKB criterion. For completeness, the same

easoning should also be applied to �1. The k̄→0 limit applied to �1 gives

3

��1	�3 →
1

2
6
, �4.32�

hich is not much less than 1, as is required to define it as a region amenable to WKB analysis.

hus the k̄� k̄M region is inappropriate for �1 as well.

In conclusion, k̄� k̄M is the only region for which the WKB approximation holds. We may
ummarize the methods available to analyze the two-component problem in various regions of
-space by the following classification.

k̄� k̄M: The WKB method will give acoustic oscillations for all modes, with the rapidly
arying part of the solution taking the form exp�±i ��i �	�.

k̄� k̄M: A Frobenius expansion �small parameter expansion� of the solutions needs to be
eveloped. Some growing and decaying modes following a power law behavior may be expected
or solutions corresponding to �1, while some low frequency acoustic oscillations may be expected
or solutions corresponding to �3.

k̄� k̄M: This region of parameter space is not accessible to analytic solution. Some numerics
ill be required to investigate this interesting region.

We will continue with the WKB analysis in this paper, and show how the equations �4.13�
ecouple. An investigation of the other regions of k-space are taken up in Ref. 11.

We still need to check how �1 and �3 vary, to ensure that all the �i are small. In particular, we
eed to consider whether relations of the form

�i�

�13
� � j, i, j = 1,3 �4.33�

re true. The analysis proceeds very similarly to that described above for the derivatives of �1 and
3, and a full description will not be given here. As a brief example, it can be shown that
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�1�

�13�1
�

1

�1	
�4.34�

or k̄� k̄M, once again fulfilling the criterion �1	�1. Other cases follow similarly. Given that the

elations �4.33� do hold, we can finally make the important statement that �i�� j, "i, j if k̄� k̄M.

. The solutions

Now that we have worked out the region of k-space in which the WKB method produces valid
eading order solutions, we proceed to derive these solutions by decoupling the equations. To
llustrate how the equations �4.13� decouple, we begin with an example. Taking the top row of the

atrix equation, the following suggestive equation for f1 may be written

f1� − ��1 − �1�f1 = − �2f2 − �3f3 − �4f4. �4.35�

his may be treated as a first order inhomogeneous ordinary differential equation �ODE� for f1.
he homogeneous portion has a simple solution

f1 � c1 exp��
	0

	

��1 − �1�d	 , �4.36�

ith a constant of integration c1. This may be considered to be a first approximation to the
olution, though it remains to be shown that it is the full leading order result. To evaluate the
nhomogeneous portion of the solution of �4.35�, we require the first approximations for the other
f i as well. A corresponding analysis to that illustrated for f1 yields

f2 � c2 exp�− �
	0

	

��1 + �1�d	 , �4.37�

f3 � c3 exp��
	0

	

��3 − �7�d	 , �4.38�

f4 � c4 exp�− �
	0

	

��3 + �7�d	 . �4.39�

hen these are substituted into �4.35�, we achieve the rather complicated result

f1 � exp��
	0

	

��1 − �1�d	�c11 + c12�
	0

	

d	�2 exp�− 2�
	0

	

�1d	
+ c13�

	0

	

d	 �3 exp��
	0

	

�− �1 + �3 + �1 − �7�d	�
+ c14�

	0

	

d	 �4 exp��
	0

	

�− �1 − �3 + �1 − �7�d	� . �4.40�

here are a number of integrals present here which need to be estimated to determine how the
pproximation is to proceed.
As an example of a generic type of integral to evaluate, consider
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I = �
	0

	

d	 �2 exp�− 2�
	0

	

�1 d	 . �4.41�

ince the region of interest is k̄� k̄M, �1 is imaginary, and consequently the definition of the real
unction ��	��−i��	� is useful. We integrate I by parts to obtain

I = � �1�

4�1
2 exp�− 2i�

	0

	

��	�d	�
	0

	

−
1

4
�

	0

	

d	� d

d	

�1�

�1
2	exp�− 2i�

	0

	

��	�d	 . �4.42�

t is our aim to show that all corrections to the leading order results �4.36�–�4.39� are of O���,
here � generically denotes any of the small quantities �i, i=1,2 , . . . ,8. It is already obvious that

he first term in �4.42� is of O���, because it consists of a �1� /�1
2 term multiplied by a phase factor.

e may constrain the second term by

��
	0

	

d	� d

d	

�1�

�1
2	exp�− 2i�

	0

	

��	�d	� � �
	0

	

d	�� d

d	

�1�

�1
2	����1�

�1
2�

	0

	 � . �4.43�

his shows that indeed I�O���.
The same type of analysis may be performed for the other more complicated integrals. In

eneral, integration by parts is involved, and the terms may be shown to be bounded by some
xpressions of the form �i� /� j

2, or �i� / ��13� j�. It is found that in the WKB approximation, �4.36�
s the correct leading order term, and the integrals arising from considering the inhomogeneous
ortion of the ODE �4.35� are all of O��� below this leading order term. Similar correction
ntegrals to those found in �4.40� may be written down for f2, f3, and f4, all of which take the same
eneric form as those evaluated in the f1 case. A lengthy analysis will show that all the corrections
re of O���, so we have shown that to leading order we may effectively neglect the off-diagonal

i in �4.13�. In conclusion, the full leading order WKB solution to f is given by �4.36�–�4.39�.
These solutions contain two important terms in the integrals. The �1 and �3 terms represent

he rapidly varying oscillatory portion of the solutions, i.e., the control factor mentioned earlier. To
btain the true frequencies, these integrals need to be converted to integrals over t. We expect the

1 and �7 terms to represent some slowly varying time-dependent amplitude. To reveal the time-
ependent structure of the solutions more explicitly, the integrals of �1 and �7 need to be evaluated.
his is facilitated greatly by the relation

�1�3 = −
�B

�D
. �4.44�

or �1 consider the integral

�
	0

	 �1�

�1 − �3
d	 = �

	0

	 �1�1�

�1
2 + �B/�D

d	 = �1

2
log��1

2 +
�B

�D
	�

	0

	

. �4.45�

sing �4.44� once more we find

�
	0

	 �1�

�1 − �3
d	 =

1

2
log� �1�	�

�1�	� − �3�	� −
1

2
log� �1�	0�

�1�	0� − �3�	0� . �4.46�

or notational expedience, we define the tilde quantities

�̃i�	� =
�i�	�

, i = 1,3, �4.47�

�i�	0�
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�̃13�	� =
�1�	� − �3�	�

�1�	0� − �3�	0�
, �4.48�

�̃i�	� =
�i�	�
�i�	0�

, i = 1,3, �4.49�

ith the obvious property that f̃�	0�=1, for any quantity f�	�. This allows us to write the integrals
s follows:

− �
	0

	

�1 d	 =
1

2
log� �̃13

�̃1�̃1

	 , �4.50�

− �
	0

	

�7 d	 =
1

2
log� �̃13

�̃3�̃3

	 . �4.51�

ere the integral involving �7 was calculated using identical techniques as just illustrated for �1.
At last the final form of leading order solution for f may be written down, with the explicit

ime-dependent amplitude and rapidly varying oscillatory part,

f1,2 � c1,2� �̃13

�̃1�̃1

	1/2

exp�±�
	0

	

�1 d		 , �4.52�

f3,4 � c3,4� �̃13

�̃3�̃3

	1/2

exp�±�
	0

	

�3 d		 . �4.53�

e are now in a position to recover the original physical state vector x by multiplying these
uxiliary functions by the matrix A, as given in the original definition �4.4�. The matrix A contains
’s and �’s, which are not tilde quantities. The full general solution to �2.6� and �2.7� is finally
iven by

�
�D�

�D

�B�

�B

� � c1� �̃13

�̃1�̃1

	1/2

�1 exp�i�
	0

	

��1�d		 + c2� �̃13

�̃1�̃1

	1/2

�2 exp�− i�
	0

	

��1�d		
+ c3� �̃13

�̃3�̃3

	1/2

�3 exp�i�
	0

	

��3�d		 + c4� �̃13

�̃3�̃3

	1/2

�4 exp�− i�
	0

	

��3�d		 .

�4.54�

ere the �i are the eigenvectors defined by �3.9�. In summary, this leading order solution repre-
ents acoustic oscillations in the short wavelength limit, defined as

k2 � kM
2 =

4�G�B

vB
2 +

4�G�D

vD
2 , �4.55�
hich is a time-dependent quantity. Equivalently, we may view the limit as given by
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�B

KB
2 +

�D

KD
2 � 	2. �4.56�

Jeans instability will not be evident for the solutions in this region of k-space, but the time
ependence will mean that the period of oscillation becomes longer until a point is reached at
hich the WKB approximation is no longer accurate, and the solutions as displayed are not

ealistic representations of the underlying physics. Then different approximations need to be
onsidered. The methods involved are discussed in detail in Ref. 11.

. Relative amplitudes of the solutions

The slowly varying time-dependent amplitudes of the solutions �4.54� show how either dark
atter or baryons dominate various modes, depending on whether HDM or CDM is being con-

idered. This feature was noticed in the static case, and we now demonstrate it more fully through
symptotic analysis in the expanding universe scenario. The information is contained in the eigen-
ectors �i, which give the relative amplitudes. It can be seen directly from �3.9� that

�B

�D
�

1

�1
= −

�D

�B
�3 �4.57�

or the �1 modes, and

�B

�D
�

1

�3
= −

�D

�B
�1 �4.58�

or the �3 modes. At first glance this may appear a little surprising, as there seems to be an
symmetry in the solutions. If the indices are interchanged D↔B, the amplitudes do not appear to
e the same, yet all such an interchange is doing is swapping the order the equations are written
own in.

As an illustration for the �1 modes

��D

�B
 � ��1

1
, with �1 =

	2

12�D
�h + S� , �4.59�

hereas after the interchange D↔B,

��B

�D
 � ��1

*

1
, with �1

* =
	2

12�B
�− h + S� . �4.60�

he quantity �1
* is defined as being the form of �1 after the interchange has been made. The square

oot term S, defined in �4.11� is invariant under the interchange, whereas an examination of �4.10�
hows that under the interchange h→−h. It is however simple to show that �1�1

*=1, which is to
e expected from the symmetry of the differential equations. The same result holds for the �3

ode, where it can be shown that �3�3
*=1 for the quantities

�3 =
	2

12�D
�h − S�, �3

* =
	2

12�B
�− h − S� . . �4.61�

We now examine the behavior of the amplitudes more carefully, to find the dominant com-
onents of matter. A useful large expansion parameter in the analysis will be the quantity y
�KB

2 −KD
2 �	2. Let us also introduce the notation �=sign�KB

2 −KD
2 �= ±1, and expand the eigenval-
es in y. For the �1 modes we may write
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�1 =
y

2�D
�� +

�D − �B

y
+ 
1 + 2���D − �B�y−1 + y−2 , �4.62�

rom which the following results may be deduced:

�1 = �
y

�D
�1 +

�D − �B

y
+ O�y−2� , KB � KD, �� = 1� ,

1 − ��D − �B�2

4�Dy
�1 +

�D − �B

y
+ O�y−2� , KD � KB, �� = − 1� .� �4.63�

his indicates that for CDM �KB�KD�

�1 � �KB
2 − KD

2 �	2,

nd the dark matter oscillations are dominant in the �1 modes, although as time increases they
ecome less so. On the other hand, for HDM �KD�KB�

�1 �
1

�KD
2 − KB

2�	2 ,

nd the baryon oscillations dominate, and their dominance increases with time. The �3 modes
isplay complementary behavior,

�3 = �
− 1 + ��D − �B�2

4�Dy
�1 +

�B − �D

y
+ O�y−2� , KB � KD, �� = 1� ,

−
y

�D
�1 −

�B − �D

y
+ O�y−2� , KD � KB, �� = − 1� .� �4.64�

n this case for CDM,

�3 � −
1

�KB
2 − KD

2 �	2 ,

o that the baryon oscillations dominate, and the dominance increases with time, while for HDM,

�3 � − �KD
2 − KB

2�	2,

hich shows that dark matter oscillations dominate, but the dominance decreases with time. In
ummary, in a CDM scenario �KD�KB� baryons dominate the �3 mode and dark matter dominates
he �1 mode, whereas the situation is opposite for HDM.

The apparent asymmetry of these results with respect to interchange of subscripts B↔D can
e easily explained by taking into account the relations �4.59�–�4.61�. It was shown that after an
nterchange B↔D, the �’s are given by

�1
* = − �3 and �3

* = − �1. �4.65�

his is the correct way to view the asymptotic forms for the �’s after an interchange, rather than
y a direct swapping of subscripts. By deriving the asymptotic results, information has been lost
nd direct swapping is no longer valid. As an example, for KB�KD,

�1 � �KB
2 − KD

2 �	2 → �1
* = − �3 �

1

�KB
2 − KD

2 �	2 , �4.66�

*
nd the expected result �1�1=1 holds.

                                                                                                            



u
p

E

s
c
s
s

T

A

N
d
t
c

w

s

L
c
r

062506-25 Short wavelength analysis of cosmological fluid J. Math. Phys. 47, 062506 �2006�

                        
Now that we have gained some insight into the behavior of the modes in a generic sense, let
s be a little more specific and investigate the full leading order solutions under some tighter
hysical constraints to see some more physical effects emerge.

. Initial conditions and resonances

We attempt to reproduce the resonances described in the static space–time case by imposing
ome initial conditions on our solutions, and eliminating the arbitrary constants of integration

i, i=1, . . . ,4, using a similar procedure to that employed previously. In the static space–time
cenario we just stated the results, but here we explicitly go through the derivation. The general
olution may be expediently written in the form

xi�	� = �
j=1

4

cjv�j�i�	�exp��
	0

	

� j d		 . �4.67�

he amplitudes are given by the vectors

v�1�,�2� = � �̃13

�̃1�̃1

	1/2

�1,2, v�3�,�4� = � �̃13

�̃3�̃3

	1/2

�3,4. �4.68�

t 	=	0, v�j��	0�=� j�	0�, and an equation for the initial conditions xi0 is obtained,

xi0 = �
j=1

4

cj��j�i�	0� . �4.69�

ote that henceforth any variable subscripted with a 0 �possibly together with other subscripts�
enotes that quantity evaluated at 	=	0. As a reasonable simplifying assumption, we once again
ake x10=x30=0, i.e., the perturbations start from rest. This gives a simple algebraic system for the

i, with the solution

�
c1

c2

c3

c4

� =
x20

2�130�
1 − Q0�30

1 − Q0�30

Q0�10 − 1

Q0�10 − 1
� , �4.70�

here the ratio of initial conditions Q0=x40/x20 is used once more.
When the above expressions for the ci are substituted back into the general solution �4.54�, a

implified result follows:

�
�D�

�D

�B�

�B

� �
x20

�130
�1 − Q0�30�� �̃13

�̃1�̃1

	1/2�
i�1�1 sin

�1 cos

i�1 sin

cos
���	0

	

��1�d		 +
x20

�130
�Q0�10 − 1�

�� �̃13

�̃3�̃3

	1/2�
i�3�3 sin

�3 cos

i�3 sin

cos
���	0

	

��3�d		 . �4.71�

et us concentrate in particular on the x2 and x4 components, which describe the actual matter
ontent of the Universe, and may have some interesting implications for structure formation

esults. We may write the solutions in a form analogous to the static space–time results,
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�D�	� = x20��1 cos��
	0

	

��1�d		 + �2 cos��
	0

	

��3�d		 , �4.72�

�B�	� = x40��3 cos��
	0

	

��1�d		 + �4 cos��
	0

	

��3�d		 . �4.73�

he amplitudes are given by the expressions

�1 = �1
1 − Q0�30

�130
� �̃13

�̃1�̃1

	1/2

, �4.74�

�2 = �3
Q0�10 − 1

�130
� �̃13

�̃3�̃3

	1/2

, �4.75�

�3 =
Q0

−1 − �30

�130
� �̃13

�̃1�̃1

	1/2

, �4.76�

�4 =
�10 − Q0

−1

�130
� �̃13

�̃3�̃3

	1/2

. �4.77�

he immediate obvious differences for these amplitudes with the static space–time results are the
ollowing.

�1� Missing factors of 1
2 for �1 and �3, because the solutions are now all of a cosine form,

rather than real exponentials �which is due to the fact that we are considering the k̄� k̄M
region�.

�2� The amplitudes are all time varying.
�3� The amplitudes contain extra tilde factors which equal one at the initial time, but in

general contain other time-dependent terms not present even as constant factors in the
static space–time amplitudes.

For 	=	0 the amplitudes correspond exactly to those of the static space–time amplitudes, and
igs. 5–12 are accurate representations of the amplitudes over a wide range of k. As time in-
reases, the amplitudes tend to grow, but retain the same qualitative shape with the most marked
eatures still occurring around the scale KM =KMC. Since the WKB solutions are only valid for
�kM, this interesting region of k-space does not apply, and the �i as presently defined should not
e extrapolated to have any meaning around KM =KMC. In the KM �1 region the �i show no
ignificant behavior, just tending to constant values close to zero or one. In particular no reso-
ances are apparent. Thus the potentially interesting resonant features discovered by de Carvalho
nd Macedo7 do not apply in the physically more realistic expanding universe scenario. Any
ignificant effects would have to be sought from the small k solutions presented in Ref. 11.

In addition to these statements, it must be added that the �i eigenvalues characterizing the
odes in the large k region do not have any physical significance in the small k region either. This
as already apparent in the small k expansions for the one-component solutions discussed in Ref.

1. The characteristic Jeans dispersion relation

� = 
vs
2k2 − 4�G�0 �4.78�

s not apparent in the small KJ expansions presented in Ref. 11, and likewise, the �i found in the

resent paper are not apparent in the general solutions given by Eqs. �5.3�–�5.10� of Ref. 11. With
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hese facts in mind, the discussion of the physical information we are able to extract from the
KB solutions at present is complete.

. CONCLUSIONS AND FURTHER WORK

The structure and behavior of the eigenvalues and eigenvectors of two-component cosmologi-
al density perturbations have been studied in great detail in this paper. We have reviewed the
revious work done in a static space–time background, and produced further results in this simple
ontext. This has enabled the far more difficult expanding universe problem to be tackled.

The WKB method employed has produced the full leading order behavior of all the modes in
he Einstein-deSitter expanding universe scenario. These solutions represent acoustic oscillations
or wavelengths much smaller than the Jeans scale. The Jeans scale of the mixture has arisen in a
atural way out of the analysis of the eigenvalues obtained through the WKB method, with some
nteresting interpretation. It is now a straightforward task to adapt the methods developed here to
tudy a variety of further cosmological plasma modes. The ion-sound and two-component Lang-
uir oscillations would follow directly from the results presented here, and more complicated
odes involving magnetic fields could also be obtained by similar procedures.

We have also obtained the time- and k-dependent amplitudes of the modes in a fairly general
etting �the one restriction being initial perturbations beginning from rest�. These results have
hown that the amplitudes are very constant in the region of interest. The existence of resonances
n the amplitudes found for static space–time results do not apply here, as all resonances occurred
or wave numbers far smaller than kM. Thus a resonant amplitude cannot be viewed as a mecha-
ism for producing structures of a preferred scale in a two-component model. The eigenvalues
erived in this paper also do not have any direct physical interpretation around the Jeans scale, or
or small k expansions of the solutions of Eqs. �2.6� and �2.7�. Thus the results obtained in this
aper must be considered to be restricted to the parameter regions considered here.

It may be interesting to investigate different models such as a three-component HDM
CDM+baryon fluid, or models involving a cosmological constant �especially given the weight of
urrent observations15–17�. The analytics would become considerably more complicated, but some
ther interesting resonant scales may be found with a direct implication for structure formation.
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We study a pair of neutrally stable eigenvalues of zero energy in the linearized NLS
equation. We prove that the pair of isolated eigenvalues, where each eigenvalue has
geometric multiplicity one and algebraic multiplicity N, is associated with 2P
negative eigenvalues of the energy operator, where P=N /2 if N is even and P
= �N−1� /2 or P= �N+1� /2 if N is odd. When the potential of the linearized NLS
problem is perturbed due to parameter continuations, we compute the exact number
of unstable eigenvalues that bifurcate from the neutrally stable eigenvalues of zero
energy. © 2006 American Institute of Physics. �DOI: 10.1063/1.2203233�

. INTRODUCTION

Spectral stability of solitary waves is defined by the number of unstable eigenvalues in a
inearized problem associated with the underlying nonlinear equation. Unstable eigenvalues for
olitary waves of the nonlinear Schrödinger �NLS� equation have been recently studied within the
nertia law,1 the constrained variational problems and wave operators,2 and the Grillakis projection

ethod.3

The count of unstable eigenvalues is simplified in Refs. 1 and 2, with the technical assumption
hat the unstable and potentially unstable eigenvalues are structurally stable to parameter continu-
tions. In particular, the count of eigenvalues is modified if the linearized problem admits an
solated eigenvalue of zero Krein signature �see Ref. 3 for definitions�, which we refer to here as
n eigenvalue of zero energy. The simplest instability bifurcation, called the Hamiltonian-Hopf
ifurcation, occurs when the eigenvalue of zero Krein signature arises due to coalescence of two
imple eigenvalues with positive and negative Krein signatures.4,5

In our present paper, we focus on a general Hamiltonian-Hopf bifurcation within the frame-
ork of a scalar NLS equation. We study properties of this general bifurcation and the number of
nstable eigenvalues that are generated due to parameter continuations. Specifically, we use the
otations from Ref. 2 and consider the linearized operator �3H, where H is the energy operator,

H = �− � + � + f�x� g�x�
g�x� − � + � + f�x�

� , �1.1�

he standard Pauli matrices are used,

�1 = �0 1

1 0
�, �3 = �1 0

0 − 1
� , �1.2�

�Rn, n�1, ��0, and f ,g :Rn→R are exponentially decaying C� functions. The spectral prob-
em for the operator �3H is considered on L2�Rn ,C2�:

�Electronic mail: vvougalt@fields.utoronto.ca
�
Electronic mail: dmpeli@math.mcmaster.ca
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�3H� = z� , �1.3�

here �= ��1 ,�2�T. Eigenvalues z of the spectral problem �1.3� are called unstable if Im�z��0,
eutrally stable if Im�z�=0 and stable if Im�z��0 �see Ref. 2�. The following notations are used
or inner products: �c ,d�CN for c ,d�CN, �f ,g� for f ,g�L2�Rn ,C2� and �f ,g� for f ,g�L2�Rn�.

It is shown in the previous paper2 that the spectrum of the linearized operator �3H is defined
n part by the sign of the energy quadratic form in H1�R3 ,C2�:

h = ��,H�� . �1.4�

n particular, the number of unstable eigenvalues in the point spectrum of �3H in the upper
alf-plane is bounded by the number of negative eigenvalues of H, while the energy quadratic
orm �1.4� is positive definite on the nonsingular part of the essential spectrum of �3H. The
ingular part of the essential spectrum of �3H �which only includes the embedded eigenvalues but
ot the embedded resonances� is studied with the Fermi Golden rule, from which it follows that
he embedded eigenvalue z of positive energy h�0 disappears under generic perturbation, while
hat of negative energy h�0 bifurcates into isolated complex eigenvalues of the point spectrum of

3H.2,5

One of the technical assumptions in Ref. 2 postulates that the real eigenvalues z of the point
pectrum of �3H have nonzero energy h�0. In the present work we remove this assumption and
tudy the case when there exists a pair of isolated eigenvalues z= ±z0, where 0�z0��, which
orresponds to the zero energy h=0. We show that a pair of isolated eigenvalues of zero energy
as a higher algebraic multiplicity in the spectrum of �3H. Our precise result is formulated as
ollows.

Theorem 1: Let z= ±z0 be a pair of isolated eigenvalues of �3H, where each eigenvalue has
eometric multiplicity one and algebraic multiplicity N. Let Xg be a subspace spanned by a set of
eneralized eigenvectors 	� j ,�1� j
 j=0

N−1, such that s0= 1
2 ��3�N−1 ,�0��0. Then,

n�H��Xg
= 2P ,

here P=N /2, when N is even, P= �N−1� /2, when N is odd, and s0�0, and P= �N+1� /2, when
is odd, and s0�0. Therefore, n�H��2P.

When the potentials of the linearized operator �3H are perturbed by a continuous deforma-
ion, we compute the exact number of unstable eigenvalues with Im�z��0 that bifurcate from the
igenvalue z0 of zero energy h=0. In particular, we study the perturbed spectral problem:

�3�H + 	Vp�x��� = z� , �1.5�

here the perturbation matrix Vp�x� is C�, real-valued and bounded, such that Vp�L��Rn�. We
ssume that the perturbation matrix Vp is generic in the sense that ��0 ,Vp�0��0, where �0 is the
igenvector of �3H for the eigenvalue z=z0. Our precise result is formulated as follows.

Theorem 2: Let z0 be an isolated eigenvalue of �3H with geometric multiplicity one and
lgebraic multiplicity N. Let �0 be the corresponding eigenvector of �3H, such that s0
1
2 ��3�N−1 ,�0��0. Then, there exists a small 	0�0, such that the problem �1.5� with 0� �	 �
	0 has N simple eigenvalues near z=z0, which are approximated to the leading order by roots

f

�zk − z0�N =
	

2s0
��0,Vp�0� + O�	�N+1�/N�, k = 1, . . . ,N . �1.6�

e note that results of Theorems 1 and 2 are no longer restricted to the case n=3, unlike the
revious work.2 Theorem 1 is proved in Sec. II, while Theorem 2 is proved in Sec. III.

A typical example of the spectral problem �1.3� with operators �1.1�–�1.2� arises in the lin-

arization of the nonlinear Schrödinger �NLS� equation,
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i�t = − �� + U�x�� + F����2�� , �1.7�

here F�0�=0 and U�x� decays to zero, at the solitary wave solution �=
�x�ei�t, where 
�x� is a
eal-valued function and ��0 is a parameter. Linearization of the NLS equation �1.7� with the
nsatz,

� = �
�x� + ��x�e−izt + �̄�x�eiz̄t�ei�t, �1.8�

eads to the spectral problem �1.3� with �= �� ,��T, f�x�=U�x�+F�
2�+F��
2�
2, and g�x�
F��
2�
2. When F�
2� is C� and U�x� and 
�x� are exponentially decaying C� functions, then

he assumptions on f�x�, g�x� are satisfied.
The Hamiltonian-Hopf bifurcation is typical with N=2 when the real isolated eigenvalue z

z0 has a geometric multiplicity one and an algebraic multiplicity two.3,4 If �� ,
� is a pair for the
olitary wave solution that corresponds to the bifurcation case and 	=� is a variation of param-
ter � while 	 
 is a variation of the solution 
�x� along the solution family, then the perturba-
ion matrix Vp�x� takes the form:

Vp = �1 + f�x� g�x�
g�x� 1 + f�x�

� ,

here

	 f�x� � F„�
 + 	
�2
… − F�
2� + F�„�
 + 	
�2

…�
 + 	
�2 − F��
2�
2,

	 g�x� � F�„�
 + 	
�2
…�
 + 	
�2 − F��
2�
2,

re variations of the potentials f�x� and g�x� along the solution family. The particular perturbation
atrix Vp�x� satisfies the assumption that Vp�x� is C� bounded matrix-valued function. An analysis

f a general Hamiltonian–Hopf bifurcation is described in Sec. IV.

I. PROPERTIES OF AN EIGENVALUE OF ZERO ENERGY

We rewrite the system �1.3� in new variables �= �u+w ,u−w�T:

�1Hu = zu , �2.1�

here u= �u ,w�T and H is the new energy operator:

H = �L+ 0

0 L−
� , �2.2�

ith L±=−�+�+ f�x�±g�x�. Let n�H� denote the negative index of the energy operator H, which
s the number of negative eigenvalues of H in L2�Rn ,C2� counting their multiplicity. Let n�H��X be
he negative index of H restricted to some subspace X�L2�Rn ,C2�. We assume that there exists an
solated eigenvalue 0�z0�� and eigenvector u0= �u0 ,w0�T of the spectral problem �2.1�, such
hat

�1Hu0 = z0u0. �2.3�

he adjoint problem has then the same eigenvalue z0 with the eigenvector u0,a, such that

H�1u0,a = z0u0,a, u0,a = �1u0. �2.4�

e assume that the eigenvalue z0 has zero energy h= �u0 ,Hu0�=0, such that the algebraic multi-
licity of the eigenvalue z0 exceeds its geometric multiplicity. We consider the situation when the
eometric multiplicity of the eigenvalue z0 is one, while its algebraic multiplicity is N, such that
er��1H−z0�= 	u0
 and Ng��1H−z0�= 	u0 ,u1 , . . . ,uN−1
. The generalized eigenvectors u j

T
�uj ,wj� , 1� j�N−1 are defined from the Jordan chain equations:
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�1Hu j = z0u j + u j−1. �2.5�

he adjoint problem has N−1 generalized eigenvectors u j,a=�1u j, 1� j�N−1 that solve the
nhomogeneous equations:

H�1u j,a = z0u j,a + u j−1,a. �2.6�

f z0 is an eigenvalue of �1H, then −z0 is also an eigenvalue of both �1H and its adjoint H�1, such
hat dim�Ng��1H+z0��=dim�Ng�H�1+z0��=N. Explicitly, we have

�1Hu0
− = − z0u0

−, �2.7�

�1Hu j
− = − z0u j

− + u j−1
− , �2.8�

here u0
−=�3u0 and u j

−= �−1� j�3u j and similarly

H�1u0,a
− = − z0u0,a

− , �2.9�

H�1u j,a
− = − z0u j,a

− + u j−1,a
− , �2.10�

here u0,a
− =�1u0

− and u j,a
− =�1u j

−. Let Xg=Ng��1H−z0� � Ng��1H+z0� be the subspace spanned by
he generalized eigenvectors 	u j ,�3u j
 j=0

N−1. Let L+ and L− be diagonal compositions of �L+ ,0� and
0,L−�. The exact number of negative eigenvalues of H restricted to the subspace Xg is given by
heorem 1 in notations of the equivalent system �1.3�. In order to prove Theorem 1, we establish
ome useful relations between eigenvectors of the generalized subspace Xg.

Lemma 2.1: Let 2N=dim�Xg�, where 2�N��. Then, it is true that

��1u0,u j� = 0, 0 � j � N − 2, ��1u0,uN−1� � 0. �2.11�

Proof: By the Fredholm Alternative Theorem, it follows from �2.4� and �2.5� that
u j−1 ,u0,a�=0, 1� j�N−1 and �uN−1 ,u0,a��0. Since u0,a=�1u0, these conditions are equivalent
o the statement �2.11�. �

Let U be an auxiliary matrix with the elements:

Ui,j = ��1ui−1,u j−1�, 1 � i, j � N . �2.12�

e study the structure of the matrix U.
Definition 2.2: Suppose M is a square matrix of size N. The subset of its elements Mi,j, 1

i , j�N, such that i+ j=k+1 is said to be the kth antidiagonal of the matrix M, where 1�k
2N−1. The kth antidiagonal of M is said to be constant if all its elements are equal.

Lemma 2.3: Each kth antidiagonal of U is constant. There exists a basis 	ûj ,�3û j
 j=0
N−1 in the

ubspace Xg, such that

U = s0
0 0 . . . 0 1

0 0 . . . 1 0

� � � � �
1 0 . . . . . . 0

� , �2.13�

here s0= ��1ûN−1 , û0�. Moreover,

��1�3ûi,û j� = 0, 0 � i, j � N − 1. �2.14�
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Proof: By Lemma 2.1, the first antidiagonal of U is zero. It follows from �2.5� and �2.6� that

�ui−1,a,u j� = �ui,a,u j−1�, 1 � i, j � N − 1. �2.15�

herefore, the relation ��1ui ,u j−1�= ��1ui−1 ,u j� holds for 2� i+ j�2N−2. Since ��1u0 ,u j�=0 by
emma 2.1 for any 0� j�N−2, then all antidiagonals of U are zero for 1�k�N−1, such that

�1ui ,u j�=0 for 0� i+ j�N−2. We show that by a proper choice of the generalized eigenvectors
ll but the main antidiagonals of U are zero for N�k�2N−1. We introduce a sequence of
ransformations for 1� j�N−1:

ûk = uk, 0 � k � j − 1,

ûk = uk − � juk−j, j � k � N − 1, �2.16�

here the constants � j are chosen from the condition that

��1û j,ûN−1� = 0, 1 � j � N − 1. �2.17�

t is clear from �2.5� that the modified generalized eigenvectors 	ûk
k=0
N−1 satisfy the same inhomo-

eneous problems for any 1� j�N−1. By using recurrently the relations �2.16�, we find that

��1û j,ûN−1� = ��1u j,uN−1� − 2� j��1u0,uN−1� ,

uch that

� j =
��1u j,uN−1�

2��1u0,uN−1�
.

ince all antidiagonals of U are constants, the previous orthogonalization implies that ��1ûi , û j�
0, N� i+ j�2N−2. Furthermore, we have the normalization ��1ûN−1 , û0�=s0 on the main an-

idiagonal. It follows from �2.5� and �2.10� that

2z0�ui,a
− ,u j� + �ui,a

− ,u j−1� − �ui−1,a
− ,u j� = 0, 1 � i, j � N − 1. �2.18�

sing the relation �2.18�, we prove �2.14� by induction. �

Corollary 2.4: There exists a basis of generalized eigenvectors 	û j ,�3û j
 j=0
N−1 in the subspace

g, such that it satisfies the skew-orthogonality relations,

��1ûi,û j� = s0i,N−1−j, 0 � i, j � N − 1, �2.19�

nd any f�L2�Rn ,C2� can be decomposed as follows:

f = �
j=0

N−1

�cjû j + dj�3û j� + fc, �2.20�

here

cj =
1

s0
��1ûN−1−j,f�, dj = −

1

s0
��1�3ûN−1−j,f�, 0 � j � N − 1

nd

��1û j,fc� = ��1�3û j,fc� = 0, 0 � j � N − 1.

Remark 2.5: Let Pg be the skew-orthogonal projection operator to the subspace Xg. We have
2 2 2 n 2
Pg= Pg and �I− Pg� = I− Pg on L �R ,C �. Operators Pg and �I− Pg� are bounded, such that
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�Pg� �
2

�s0� �k=0

N−1

�ûN−1−k�L2�ûk�L2, �I − Pg� � 1 + �Pg� ,

here the operator norm � · �L2→L2 is denoted as � · �.
Remark 2.6: In what follows, the hats over the basis elements of the subspace Xg will be

mitted for the simplicity of notations. Let H�Xg
= Pg

*HPg be the restriction of the energy operator
o the generalized subspace Xg. The restriction of the energy operator is defined in terms of the

atrices M+ and M−, where

�M+�i,j = �L+ui−1,uj−1�, 1 � i, j � N ,

�M−�i,j = �L−wi−1,wj−1�, 1 � i, j � N . �2.21�

he structure of the matrices M+ and M− follows from that of the matrix U.
Lemma 2.7: The matrices M+ and M− are equal and have the structure:

M+ = M− =
s0

2 
0 0 . . . 0 z0

0 0 . . . z0 1

� � � � �
z0 1 . . . . . . 0

� . �2.22�

Proof: Using the definitions �2.12� and �2.21�, the systems �2.3� and �2.5�, and the identity
2.14�, we derive the relations

2�M+�1,j = z0Uj,1, 2�M−�1,j = z0U1,j, 1 � j � N ,

nd

2�M+�i,j = z0Uj,i + Uj,i−1, 2�M−�i,j = z0Ui,j + Ui−1,j, 2 � i � N, 1 � j � N .

y Lemma 2.3, these formulas imply the representation �2.22�. �

Remark 2.8: The structure of matrices U and M± enables us to estimate the number of their
ositive and negative eigenvalues. Since s0�0 and z0�0, the main anti-diagonal of the matrices
s nonzero, such that their determinant is nonzero and no zero eigenvalue exists. We denote the
umber of positive and negative eigenvalues of an abstract symmetric non-singular matrix M by

p�M� and n�M� respectively, such that p�M�+n�M�=N.
Lemma 2.9: Let M be a symmetric N-by-N matrix, such that each kth antidiagonal of M is

ero for 1�k�N−1 and the Nth antidiagonal of M is a�0. If N is even, then n�M�= p�M�
=N /2. If N is odd, then n�M�= �N−1� /2 and p�M�= �N+1� /2 for a�0 and n�M�= �N+1� /2 and
p�M�= �N−1� /2 for a�0.

Proof: Let 	�k
k=0
N−1 be eigenvalues of M ordered by �0��1� . . . ��N−1. It follows from the

tructure of M that det M = �−1�N�N−1�/2aN. We introduce the auxiliary subspace Vd�RN spanned
y the unit vectors 	ek
k=1

d in RN, where d=N /2 when N is even and d= �N−1� /2 when N is odd.
et Pd be the orthogonal projection from RN onto Vd, such that Pd has the matrix elements:

�Pd�i,j = �1, 1 � i = j � d ,

0, d + 1 � i = j � N ,

0, i � j .

�2.23�

trivial computation gives that the elements of M�Vd
are

�PdMPd�i,j = �Pd�i,iMi,j�Pd� j,j, 1 � i, j � N ,

hich are nonzero only if i , j�d and i+ j�N+1. However, the intersection of these two sets is

mpty due to the definition of d. Therefore, the matrix PdMPd=0 and all d eigenvalues of M�Vd

are
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ero. By the Rayleigh-Ritz theorem �see Theorem XIII.3 in Ref. 6�, d eigenvalues of M are
onpositive due to the upper bound by the eigenvalues of M�Vd

. Therefore, n�M��d. The same
rgument for −M shows that p�M��d. This proves that n�M�= p�M�=N /2 if N is even. If N is
dd, there are two possibilities: either n�M�= �N−1� /2 and p�M�= �N+1� /2 or n�M�= �N+1� /2

and p�M�= �N−1� /2. Since

sign„det�M�… = �− 1�N�N−1�/2
„sign�a�…N = �− 1�n�M�,

e find that the first case occurs for a�0 and the second case occurs for a�0. �

Proof of Theorem 1: We recall that H�Xg
= Pg

*HPg denotes the restriction of the energy operator
o the generalized subspace Xg. By Lemma 2.7, a trivial calculation shows that the quadratic form
f H�Xg

can be rewritten as

�H�Xg
u,u� = 2�M+c,c�CN + 2�M+d,d�CN, �2.24�

here c= �c0 ,c1 , . . . ,cN−1�T�CN, d= �d0 ,d1 , . . . ,dN−1�T�CN, and the matrices M± are defined by
2.21�. Let 	vs
s=1

n�M+� be an orthonormal set of eigenvectors corresponding to negative eigenvalues
f the matrix M+. Then we can construct a subspace of Xg, spanned by the vectors ũs

�k=0
N−1�vs�kuk and �3ũs for 1�s�n�M+�. It follows from �2.24� that the operator H�Xg

is negative
efinite on this subspace, i.e., via the Rayleigh-Ritz theorem n�H��Xg

�2n�M+�. Let M+=M+

� M+ be the block matrix on C2N. To obtain the inequality reverse to the one above we consider
he orthonormal set of eigenvectors 	ws
s=1

n�H��Xg, which spans the negative subspace of H�Xg
. Apply-

ng the projection operator, we have Pgws=�k=0
N−1��s�kuk+�k=0

N−1��s�k�3uk. Therefore, there is a
ubspace of C2N spanned by the vectors ��s ,�s�T, 1�s�n�H��Xg

. It follows from �2.24� that the
atrix M+ is negative definite on this subspace, which yields n�M+�=2n�M+��n�H��Xg

. We have
= 1

2z0s0 and z0�0, such that it follows by Lemmas 2.7 and 2.9 that n�H��Xg
=2n�M+�=2P. By the

ayleigh–Ritz Theorem,6 we then have n�H��n�H��Xg
. �

II. SPLITTING OF AN EIGENVALUE OF ZERO ENERGY

When the perturbation is applied to the spectral problem �2.1�, one can expect that the mul-
iple isolated eigenvalue z=z0 is destroyed and N simple eigenvalues bifurcate in the neighborhood
f z=z0. This splitting of the multiple eigenvalue z=z0 may result in the instability bifurcations if
m�z��0 for some of the simple eigenvalues. The location of N simple eigenvalues in the neigh-
orhood of z=z0 for small nonzero 	 is given by Theorem 2 in notations of the perturbed spectral
roblem �1.5�. For convenience, we rewrite �1.5� in the equivalent form

�1�H + 	Vp�u = zu , �3.1�

here Vp�x� is C�, real-valued, and a bounded perturbation matrix given by Vp=U−1VpU, with

U =
1
�2

�1 1

1 − 1
� = U−1.

n order to prove Theorem 2, we use the resolvent R�z�= ��1H−z�−1 defined for the values of z
way from the spectrum of �1H. The perturbed problem �3.1� is rewritten in the resolvent form

�I + 	R�z��1Vp�u = 0. �3.2�

e shall consider the subspace Xg
+=Ng��1H−z0� with the projection operator Pg

+ onto this sub-
pace. In what follows, the superscript for the subspace Xg

+ and the projection operator Pg
+ will be

mitted for the simplicity of notations. Our plan is to use the projection operator Pg and to reduce
he perturbed problem �3.1� to the finite-dimensional equations on the subspace Xg, where a
egular perturbation theory can be applied.7 For this purpose, we study properties of the resolvent
�z� and the related projection operator onto Xg.
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emma 3.1: Let the subspace Xg be spanned by the set 	u j
 j=0
N−1. Then,

R�z�u j = �
k=0

j
�− 1�

�z − z0� j−k+1uk, �3.3�

or z�z0 and 0� j�N−1.
Proof: The formula �3.3� with j=0 follows from the problem �2.3�. We use the induction

ethod and assume that the formula �3.3� holds for some j=s for 0�s�N−2. It follows from
2.5� that

R�z�us+1 =
1

z − z0
R�z�us −

1

z − z0
us+1,

uch that

R�z�us+1 = �
k=0

s+1
�− 1�

�z − z0�s−k+2uk,

nd the formula �3.3� remains true for j=s+1. �

Corollary 3.2: Let z be not in the spectrum of �1H. Then,

�I − Pg�R�z�Pg = 0, PgR�z��I − Pg� = 0.

Proof: Let f be an arbitrary function in L2�Rn ,C2�. By Lemma 3.1, we have R�z�Pgf�Xg for
�z0, and therefore �I− Pg�R�z�Pgf=0. On the other hand, for any k=0, . . . ,N−1 we have

�R�z��I − Pg�f,�1uk� = ��I − Pg�f,�H�1 − z̄�−1�1uk� = ��I − Pg�f,�1R�z̄�uk� = 0

uch that PgR�z��I− Pg�f=0. �

Remark 3.3: Let D̄�z0 ,�= 	z�C : �z−z0 � �
 be a closed disk that contains no eigenvalues of

he operator �1H other than z=z0. The resolvent R�z� has the only singularity in D̄�z0 ,� at z
z0.

Lemma 3.4: Let T�z�= �I− Pg�R�z��I− Pg��1Vp. The operator T�z� is uniformly bounded in
¯ �z0 ,r�� D̄�z0 ,�, such that

�T�z�� � C � � , �3.4�

here r�0 and C�0.
Proof: The proof is a standard argument, which uses the analyticity of the resolvent outside

he spectrum, the Corollary 3.3, the boundedness of the operator I− Pg, and the fact that Vp

L�. �

Lemma 3.5: The problem �3.2� projected onto the subspace Xg is equivalent to the problem:

�I + 	R�z�Pg�1Vp�I + S�	,z���Pgu = 0, �3.5�

here the operator S�	 ,z� is analytic in 	 and �S�	 ,z� � �2C �	�, while C is defined in �3.4�, z

D̄�z0 ,r�, and 	�0 is small, such that �	 � �1/2C.
Proof: Applying Pg and �I− Pg� to the problem �3.2�, we obtain

Pgu + 	PgR�z��1VpPgu + 	PgR�z��1Vp�I − Pg�u = 0

nd

�I + 	�I − Pg�R�z��1Vp��I − Pg�u = − 	�I − Pg�R�z��1VpPgu .
y Corollary 3.2, we have
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�I + 	PgR�z�Pg�1Vp�Pgu + 	PgR�z�Pg�1Vp�I − Pg�u = 0 �3.6�

nd

�I + 	T�z���I − Pg�u = − 	T�z�Pgu . �3.7�

y Lemma 3.1, we have PgR�z�Pg=R�z�Pg for z�z0, such that we need to derive the equation
xpressing �I− Pg�u via Pgu. It follows from �3.7� that

�I − Pg�u = ��I + 	T�z��−1 − I�Pgu , �3.8�

uch that the equation �3.6� yields

�I + 	R�z�Pg�1Vp�I + 	T�z��−1�Pgu = 0.

he operator �I+	T�z��−1 can be written as I+S�	 ,z�, where

S�	,z� = �
k=1

�

�− 	T�z��k. �3.9�

y Lemma 3.4 and a comparison with the geometric series, the series �3.9� converges absolutely

n the � . � norm for z� D̄�z0 ,r�. When �	 � �1/2C, we have �S�	 ,z� � �2C �	�. �

Remark 3.6: By Lemma 3.5, the finite-rank operator on the left-hand side of the projection
quations �3.5� is analytic in 	 for small 	. The determinant of the left-hand side is the Weinstein–
ronszajn determinant, properties of which and its relation to the spectrum of the perturbed
perator are rigorously derived in Ref. 7, pp. 244–250. We truncate the projection equations �3.5�
y linear terms in 	 and obtain the finite rank operator W�	 ,z�= I+	R�z�Pg�1Vp on the subspace

g. The matrix elements of W�	 ,z� are expressed in terms of the elements 	u j
 j=0
N−1 of the subspace

g.
Lemma 3.7: For all i , j=1, . . . ,N, we have

Wi,j�	,z� = i,j −
	

s0
�

s=i−1

N−1
�uN−1−s,Vpu j−1�

�z − z0�s−i+2 . �3.10�

Proof: Due to the orthogonality relations �2.19�, the matrix elements of the finite rank operator
are equal to

Wi,j�	,z� =
1

s0
��1uN−i,Wu j−1�, 1 � i, j � N . �3.11�

orollary 2.4 and Lemma 3.1 yield

	R�z�Pg�1Vpu j = −
	

s0
�
s=0

N−1

�
q=0

s
�uN−1−s,Vpu j�
�z − z0�s−q+1 uq.

ubstituting this relation into the representation �3.11� and using the orthogonality conditions
2.19� we derive the identity �3.10�. �

Proof of Theorem 2: According to Ref. 7, the Weinstein-Aronszajn determinant is a meromor-
hic function, which has the pole of the Nth order at z=z0. The eigenvalues of the perturbed
roblem �3.1� are given by the zeros z=zk of the Weinstein–Aronszajn determinant. We define the
perator F�	 ,z�= �z−z0�W�	 ,z�, such that det F�	 ,z� is a polynomial in z−z0 and 	. By Lemma

.7, the matrix elements of F�	 ,z� are equal to
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Fi,j�	,z� = �z − z0�i,j −
	

s0
�

s=i−1

N−1
�uN−1−s,Vpu j−1�

�z − z0�s−i+1 , i, j = 1, . . . ,N .

ince det F�	 ,z� is a polynomial in 	, we have the expansion:

det F�	,z� = det F�0,z� + 	
�

�	
det F�0,z� + O�	2,z − z0� , �3.12�

here O�	2 ,z−z0� is a polynomial in 	 and z−z0. The expansion �3.12� allows us to obtain the
stimate on the zeros z=zk of the Weinstein–Aronszajn determinant. We find that

det F�0,z� = �z − z0�N

nd

�

�	
det F�0,z� = �

i=1

N

det Di�z� ,

here

Dq,j
i �z� = ��z − z0�q,j , q � i ,

Di,j
i �z� , q = i ,

uch that

Di,j
i �z� = −

1

s0
�

s=i−1

N−1
�uN−1−s,Vpu j−1�

�z − z0�s−i+1 ,

r explicitly

Di�z� =
z − z0 0 0 . . . 0 0 0

� � � � � � �
0 . . . z − z0 0 0 . . . 0

Di,1
i �z� Di,2

i �z� . . . Di,i
i �z� . . . . . . Di,N

i �z�
0 . . . 0 0 z − z0 . . . 0

� � � � � � �
0 0 0 0 . . . 0 z − z0

� .

straightforward computation shows that

det Di�z� = �z − z0�N−1Di,i
i �z� = −

1

s0
�

s=i−1

N−1

�z − z0�N−2−�s−i��uN−1−s,Vpui−1� .

he expansion �3.12� implies that the zeros of the Weinstein–Aronszajn determinant are given by
he algebraic equation

�z − z0�N −
	

s0
�
i=1

N

�
s=i−1

N−1

�z − z0�N−2−�s−i��uN−1−s,Vpui−1� + 	2F2�z − z0,	� = 0, �3.13�

here lim	→0F2�z−z0 ,	� exists. By the Implicit Function Theorem, roots of the algebraic equation
3.13� exist and satisfy the estimate z−z0=O�	1/N�. Therefore, the zero energy eigenvalue of the

nperturbed problem splits into N simple eigenvalues, which are given asymptotically by roots of
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�zk − z0�N =
	

s0
�u0,Vpu0� + O�	�N+1�/N�, k = 1, . . . ,N . �3.14�

quation �3.14� coincides with �1.6� in notations of �1.5�. �

V. A GENERAL HAMILTONIAN–HOPF INSTABILITY BIFURCATION

The pair of eigenvalues of zero energy z= ±z0 is neutrally stable in the linearized spectral
roblem �2.1�, since Im�z0�=0. If there are no other isolated eigenvalues with Im�z��0, it would
mply that the spectral problem �2.1� is weakly spectrally stable. However, the multiple eigenvalue
f zero energy is structurally unstable and splits into simple eigenvalues, when the spectral prob-
em �2.1� is perturbed with a bounded potential Vp in the form �3.1�. When simple eigenvalues
rom the roots of �3.14� satisfy Im�zk��0 for some k, the spectral problem �3.1� undertakes an
nstability bifurcation, referred to as the general Hamiltonian–Hopf bifurcation. We show that
here is only one bifurcation that gives a transition to instability, such that neutrally stable eigen-
alues for one sign of 	 split into stable and unstable eigenvalues for the other sign of 	. This
ifurcation occurs for N=2. Other bifurcations with N�3 lead to unstable eigenvalues for either
ign of 	�0. We compute the exact number of unstable eigenvalues for each N, considering
eparately the cases N=2 and N�3.

Proposition 4.1: Let �u0 ,Vpu0��0 and 0� �	 � �	0. When N=2, there exist two neutrally
table eigenvalues of the spectral problem �3.1� in a local neighborhood of z=z0 for
ign�	s0�u0 ,Vpu0��=1, one of positive and the other one of negative energy, and two (stable and
nstable) eigenvalues for sign�	s0�u0 ,Vpu0��=−1.

Proof: It follows from �3.14� with N=2 that

z1,2
+ = z0 ±� 	

s0
�u0,Vpu0� + O�	� , �4.1�

hen sign�	s0�u0 ,Vpu0��=1 and

z1,2
− = z0 ± i�� 	

s0
�u0,Vpu0�� + O�	� ,

hen sign�	s0�u0 ,Vpu0��=−1. Since the total multiplicity of eigenvalues near z=z0 is continuous
n 	 and complex eigenvalues occur in pairs, the eigenvalues z1,2

+ are real and neutrally stable. The
igenvalues z1,2

− are complex, such that z1
+ is stable and z1

− is unstable. Let v1,2
+ be the eigenvectors

f the problem �3.1� that correspond to z1,2
+ . We need to show that the energy operator is positive

n one of the eigenvectors and negative on the other eigenvector. It follows from �3.1� that

��H + 	Vp�v j
+,v j

+� = zj
+��1v j

+,v j
+�, j = 1,2. �4.2�

sing the projection onto the subspace Xg, we rewrite �4.2� as follows:

��1v j
+,v j

+� = ��1Pgv j
+,Pgv j

+� + ��1�I − Pg�v j
+,�I − Pg�v j

+� + 2��1Pgv j
+,�I − Pg�v j

+� . �4.3�

et us estimate each of these three terms and show that only the first one plays the leading role.
e have

Pgv j
+ = c0

+u0 + c1
+u1, �4.4�

here the constants c0
+ and c1

+ satisfy

W2,1�	,zj
+�c0

+ + W2,2�	,zj
+�c1

+ + O�	2� = 0. �4.5�
sing the explicit expression �3.10�, we have
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W2,1�	,zj
+� = −

	

s0

�u0,Vpu0�
zj

+ − z0

, W2,2�	,zj
+� = 1 −

	

s0

�u0,Vpu1�
zj

+ − z0

. �4.6�

his expression can be rewritten by using �4.1�, or, explicitly,

�	�
zj

+ − z0

= �− 1� j+1� s0	

�u0,Vpu0�
+ O�	� ,

uch that

W2,1�	,zj
+� = �− 1� j� 	

s0
�u0,Vpu0� + O�	�

nd

W2,2�	,zj
+� = 1 + �− 1� j sign�	s0�� 	

s0�u0,Vpu0�
�u0,Vpu1� + O�	� .

e let c0
+=1 by scaling and obtain from �4.5� that

c1
+ = �− 1� j+1� 	

s0
�u0,Vpu0� + O�	� .

y the triangle inequality applied to �4.4�, we have the norm estimate

�Pgv j
+�L2 � �u0�L2 + O��	��u1�L2. �4.7�

or the first term on the right side of �4.3� using �4.4�, we derive

��1Pgv j
+,Pgv j

+� = 2�− 1� j+1 sign�s0��	s0�u0,Vpu0� + O�	� . �4.8�

or the second and the third terms on the right side of �4.3�, we get bounds via the identity �3.8�,
he Schwarz inequality, the estimate on the norm of the operator S�	 ,z� given in Lemma 3.5, and
he bound �4.7�. Thus

���1�I − Pg�v j
+,�I − Pg�v j

+�� � �S�	,zj
+�Pgv j

+�L2
2

� C̃2	2��u0�L2 + O��	��u1�L2�2

nd

�2��1Pgv j
+,�I − Pg�v j

+�� � 2�Pgv j
+�L2�S�	,zj

+�Pgv j
+�L2 � 2C̃�	���u0�L2 + O��	��u1�L2�2.

sing the inequalities above along with �4.8� in the identity �4.3� and substituting into �4.2�, we
rrive at

��H + 	Vp�v1
+,v1

+� = 2z0 sign�s0��	s0�u0,Vpu0� + O�	� , �4.9�

��H + 	Vp�v2
+,v2

+� = − 2z0 sign�s0��	s0�u0,Vpu0� + O�	� , �4.10�

or 	 sufficiently small and sign�	s0�u0 ,Vpu0��=1. Thus, the quadratic forms �4.9� and �4.10� have
pposite signs. �

Proposition 4.2: Let �u0 ,Vpu0��0 and 0� �	 � �	0. When N�3, there exist unstable eigen-
alues of the spectral problem �3.1� in a local neighborhood of z=z0 for either sign of 	�0. When

is odd, there are �N−1� /2 unstable eigenvalues. When N is even, there are N /2−1 unstable
igenvalues for sign�	s0�u0 ,Vpu0��=1 and N /2 unstable eigenvalues for sign�	s0�u0 ,Vpu0��=−1.
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roof: We have

zk
+ = z0 +�N 	

s0
�u0,Vpu0�ei�2��k−1�/N� + O�	2/N�, k = 1, . . . ,N , �4.11�

or sign�	s0�u0 ,Vpu0��=1 and

zk
− = z0 +�N � 	

s0
�u0,Vpu0��ei��−�+2�k�/N� + O�	2/N�, k = 1, . . . ,N , �4.12�

or sign�	s0�u0 ,Vpu0��=−1. Unstable eigenvalues with Im�zk��0 exist among both 	zk
+
k=1

N and
zk

−
k=1
N , e.g., Im�z2

+��0 and Im�z1
−��0. The count of unstable eigenvalues follows from the ex-

licit expressions �4.11� and �4.12�. �

Remark 4.3: In practical situations, the NLS equation �1.7� has limits when the eigenvalues of
he spectral problem �1.3� are all neutrally stable. When the NLS equation �1.7� deviates from the
table limit due to parameter continuations, real eigenvalues z start to move, which may lead to
oalescence. The practical outcome of the above analysis shows that the coalescence of N neu-
rally stable eigenvalues with N�3 cannot lead to a multiple eigenvalue z=z0 of geometric
ultiplicity one and algebraic multiplicity N. If the resulting eigenvalue z=z0 has zero energy,

hen it corresponds to several Jordan blocks, where each block splits according to our analysis in
ropositions 4.1 and 4.2.
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Dynamics of planar domains with moving boundaries driven by the gradient of a
scalar field that satisfies an elliptic PDE is studied. We consider the question: For
which kind of PDEs are the domains algebraic, provided the field has singularities
at a fixed point inside the domain? The construction reveals a direct connection
with the theory of the Calogero-Moser systems related to finite reflection groups
and their integrable deformations. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2204809�

. NONHOMOGENEOUS POROUS MEDIUM FLOWS

Laplacian growth is a process that governs the dynamics of the boundary ��=���t� in the

lane separating two disjoint, open regions �� and C \�̄� in which harmonic �scalar� fields are
efined. These may be interpreted as the pressure fields for incompressible fluids �porous-medium
ows, Hele-Shaw flows, etc. See, e.g., Ref. 14, and references therein�. In the recent literature

here have appeared several new formulations of the Laplacian growth related with the theory of
ntegrable systems and random matrices, quantum Hall effect, and Dirichlet boundary problem in
wo dimensions �see, e.g., Refs. 8, 9, and 15, and references therein�.

In the present paper, we consider a new connection with the theory of quantum integrable
ystems. To be more precise, we study an integrable generalization of the Laplacian growth, when
he boundary is driven by a field satisfying an elliptic PDE, that is not generally reduced to a
eltrami-Laplace equation �“non-Laplacian” growth�. To be specific, we use the porous medium
uid dynamics interpretation.

We find variable-coefficient elliptic PDEs for which the boundary dynamics can be described
xplicitly and the moving fluid occupies evolving algebraic domains �see the following�. These,
urn out to be PDEs of the Calogero-Moser type, related to finite reflection �Coxeter� groups as
ell as their integrable deformations �see Secs. VII–IX�, that possibly complete the list of all

econd-order PDEs connected with the algebraic domains �our main conjecture�.
In this section we set the problem in terms of the porous medium fluid dynamics. Formulation

f the problem in terms of quadrature domains is given in the next section.
Consider a flow of an incompressible liquid in a thin nonplanar layer of nonhomogeneous

orous medium. The layer can be viewed as a two-dimensional surface embedded in the three-
imensional Euclidean space. We let the layer curvature, permeability, porosity, and thickness
epend on the surface spatial coordinates x ,y. We can choose x ,y such that locally

�Electronic mail: loutsenk@maths.ox.ac.uk
�
Electronic mail: yermola@sissa.it
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dl2 = G�x,y��dx2 + dy2� ,

here dl is the surface length element. The surface area element is d�=Gdxdy, and the volume of
he liquid that can be absorbed in the range x+dx ,y+dy equals

dV = �hd� = �hGdxdy ,

here �=��x ,y� ,h=h�x ,y� are the medium porosity and the layer thickness, respectively.
In the porous medium, the flow velocity v= �dx /dt ,dy /dt� is proportional to the gradient �

�� /�x ,� /�y� of the pressure P,

v = −
�

�G
� P ,

here �=��x ,y� is the medium permeability.
It is seen from the above that only the two combinations of variable coefficients, namely

�hG,
�

�G

nter the flow equation of motion, and it is convenient to absorb h and G into definitions of the
ther coefficients. Therefore, without loss of generality, we can consider the flow in the plane
arametrized by the complex coordinates z=x+ iy , z̄=x− iy, choosing � and � to depend on z , z̄
nd setting remaining coefficients to unity. The liquid volume conservation leads to the continuity
quation

�� · �v� = 0, �1�

hile the dynamical law of motion rewrites as

v = − � � P . �2�

e consider a situation where the liquid occupies bounded, simply connected open region � of
he plane, whose time evolution �=��t� is induced by the flow.

At fixed time t, the pressure is constant along the boundary

P����t�� = P0�t� . �3�

ote that dynamics of simply connected domains is independent of P0�t�, and the latter is often set
o zero.

The normal velocity of the boundary vn and that of the flow coincide at ��,

vn = n · v if z � �� . �4�

he flow is singularity driven. For instance

P →
− q�t�

2��z1, z̄1���z1, z̄1�
log�z − z1� + �

j=1

k � � j�t�

�z − z1� j +
�̄ j�t�

�z̄ − z̄1� j	 as z → z1, �5�

hen a multipole source of order k+1 is located at z=z1. Equations �1�–�5� constitute the free
oundary problem where the evolution of the boundary ���t� is completely determined by the
nitial condition ���0� and strengths q�t�= q̄�t� ,� j�t� , �̄ j�t� , j=1, . . . ,k as well as position z1 of the

ources.
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I. CONSERVATION LAWS AND QUADRATURE DOMAINS

From �1�, �2�, �5� it follows that the pressure satisfies the elliptic PDE

��� � P = − �q̂���x − x1���y − y1�� , �6�

here q̂= q̂�t� is the differential operator of order k,

q̂ = q�t� + �
j=1

k

�− 1� j�qj�t�
� j

�zj + q̄j�t�
� j

� z̄ j	, q̄ = q . �7�

et ��z , z̄� be a time-independent function satisfying

��� � � = 0, z � � �8�

n the whole region �, including point z=z1.
Let us now estimate the time derivatives of the following quantities:

M��� = 

��t�

��dxdy .

onsidering an infinitesimal variation of the fluid domain ��t�→��t+dt�, we get

dM���
dt

= �
���t�

vn��dl ,

here dl is the boundary arclength. From �2�, �2�, �4� it follows

dM���
dt

= �
���t�

�P�� � � − ��� � P� · ndl .

pplying the Stokes theorem and remembering that P and � satisfy �6�, �8�, we obtain

dM���
dt

= �q̂*����z1, z̄1�, q̂* = q�t� + �
j=1

k �qj�t�
� j

�zj + q̄j�t�
� j

� z̄ j	 . �9�

ote that mixed derivatives are absent in q̂ �cf. �7��, for by �8�, �2� /�z� z̄ is expressed through first
erivatives of �. q̄j is the complex conjugate of qj, since both ��z , z̄� and �̄�z̄ ,z� satisfy �8�.

It follows that M��� is conserved for any solution of �8�, such that q̂*����z1 , z̄1�=0.
The conservation laws have been first obtained for the homogeneous medium flows in Ref. 12,

he variable-coefficient generalization seems to have been first presented in Ref. 7. A wider class
f conservation laws was considered in Ref. 10.

The flow in the homogeneous medium

� = 1, � = 1 �10�

s the simplest example, where the conservation laws can be written down explicitly.12 In this
xample, any �anti�analytic in � function satisfies �8�,

��z, z̄� = f�z� + g�z̄�, for � = 1, � = 1, �11�
here f ,g are univalent in � and the quantities
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��t�

�f�z��z − z1�k + g�z̄��z̄ − z̄1�k�dxdy

re integrals of motion for the free-boundary flows driven by a multipole source of order k+1
ocated at z=z1 in homogeneous medium.

Returning to the general case, we integrate �9�

M����t� = M����0� + �Q̂����z1, z̄1� ,

here

Q̂ = 

0

t

q̂*�t��dt� = Q + �
j=1

k �Qj
� j

�zj + Q̄j
� j

� z̄ j	 . �12�

herefore, M����t� and, consequently, form of the domain, does not depend on the history of the
ources and is a function of “multipole fluxes”

Q = 

0

t

q�t��dt�, Qj = 

0

t

qj�t��dt�, Q̄j = 

0

t

q̄j�t��dt�, j = 1, . . . ,k

njected by time t.
Now consider the special case when M����0�=0 that describes the injection of the fluid to an

nitially empty medium. In such a case



�

��z, z̄���z, z̄�dxdy = �Q̂����z1, z̄1� . �13�

quation �13� is a generalization of quadrature identities �those expressing integrals over �
hrough evaluation of integrands and a finite number of their derivatives at a finite number of
oints inside �� appearing in the theory of harmonic functions13 to the case of elliptic equations
ith variable coefficients. Special domains for which the quadrature identities hold are called
uadrature domains in the theory of harmonic functions. We extend this definition to solutions of
ny elliptic PDE with regular in � coefficients.

To construct quadrature domains �or equivalently domains resulted from injection of fluid into
n initially empty medium�, one needs an explicit form of a general solution of �8�. Such explicit
olutions are available for a class of the second-order differential equations that are related to the
chrödinger operators of integrable systems on the plane. We, however, postpone construction of

hese solution to Sec. IV and present our main result in the next section.

II. THE MAIN RESULT

Let us start with the simplest possible example, where the liquid is injected into initially
mpty homogeneous porous medium through the single monopole source at z=z1=x1+ iy1. By
ymmetry, the solution is a circular disc of the radius r�t�, centered at z=z1,

�z − z1� 	 r�t� . �14�

he pressure satisfies


P = − �q̃�t���x − x1���y − y1� ,
here the source strength and the total flux are
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q̃�t� =
dr�t�2

dt
, Q̃ = r2,

espectively.
The remarkable fact is that the variable-coefficient problem for a medium with constant

orosity and permeability that varies as an inverse square of one Cartesian coordinate

� =
1

x2 , � = 1 �15�

dmits the same circular solution �14� if the flow is driven by a combination of the same monopole

ource of strength q= q̃�t� and a dipole source of strength q1=−q̃Q̃ /2x1, both located at the point
=z1,

�
1

x2 � P = − �q̂���x − x1���y − y1��, q̂ =
dr2

dt
�1 −

r2

2x1

�

�x
	 . �16�

ndeed, it is not difficult to check that

P = r
dr

dt
��2x1x + �2 + r2�log � −

r2x�x − x1�
�2 − �2 + x�x − x1� − �2x1x + �2�log�r�	 , �17�

here �= �z−z1�, satisfies �16�, and the boundary conditions �2�, �15�,

dr

dt
= −

1

x2� �P

�n
	

�=r

,

s well as �6� holds at the disc boundary.
Also the following quadrature identity holds:



�z−z1�	r

�dxdy = �r2��z1, z̄1� +
�r4

4x1
� ��

�x
	

z=z1

,

hich is a simplest nontrivial generalization of the mean value theorem for harmonic functions to
he case of regular in �14� solutions of the elliptic PDE

�
1

x2 � � = 0.

he above example is a special case of the main result presented in the following.

Let ��t� be a domain, resulted from the injection of the fluxes Q̃ , Q̃j , j=1, . . . , k̃ into a homo-

eneous medium through a multipole source of order k̃+1 located at z=z1. Then the same domain
an be formed by an injection of a special combination of fluxes Q ,Qj , j=1, . . . ,k through a

ultipole source of order k+1, where k= �k̃+1��s�n+ l�+1�−1 located at z=z1 into an initially
mpty nonhomogeneous medium with permeability

� =
1

�zs + z̄ s�2n�zs − z̄ s�2l , n � l  0, s � 0, � = 1 �18�

nd constant porosity, where s ,n , l are integers.
In more details, the multipole fluxes of nonhomogeneous medium problem must be fixed
unctions of fluxes of its homogeneous medium counterpart
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Q = Q̃, Qj = Qj�Q̃,Q̃1, . . . ,Q̃k̃,Q̃
¯

1, . . . ,Q̃
¯

k̃,z1, z̄1�, j = 1 . . . �k̃ + 1��s�n + l� + 1� − 1.

or instance, in the above example of circular k̃=0 solution in a medium with permeability �15�
that is the special case n=1, l=0,s=1 of �18��

k = �0 + 1��1�1 + 0� + 1� − 1 = 1, Q = Q̃, Q1 =
Q̃2

4x1
.

ote that �18� can be rewritten in the form

� =
1

��x,y�2 , ��x,y� = �
��R+

�� · z�m�, �a · b� ª Re�āb� ,

here R= �� is a set of root vectors of a finite reflection �Coxeter� group on the plane �Dihedral
roup�. R is invariant under reflections

z → z − 2
�� · z�
�� · ��

�

n a mirror �line�, normal to any root vector ��R, and R+ denotes “positive” subset of R,
ontaining a half of all root vectors �i.e., R= �−R+��R+�. The multiplicities m� must be non-
egative integers that are functions on the group orbits. If l=0, the reflection group has one orbit
nd m�=n. Otherwise, the group has two orbits and multiplicities m� take values n and l on each
rbit respectively. The permeability �18� is therefore an invariant of the group of symmetries of a
egular 4s-polygon �2s-polygon if l=0� and its singular locus �i.e., union of all points z, such that
/��z , z̄�=0� coincides with the union of mirrors.

The pressure satisfies the elliptic PDE

���x,y�−2 � P = ��x,y�−1H��x,y�−1P = − �q̂���x − xk���y − yk��

order�q̂� = �k̃ + 1��deg���x,y�� + 1� − 1 = �k̃ + 1��1 + �
��R+

m�	 − 1,

here H is the Schrödinger operator of the Calogero-Moser system related to the dihedral
roup3,6,11

H = 
 − �
��R+

�� · ��
m��m� + 1�

�� · z�2 .

lso, regular in � solutions ��z , z̄� of the elliptic PDEs ���x ,y�−2��=0 satisfy the quadrature
dentities



�

�dxdy = Q̂����z1, z̄1�, order�Q̂� = �k̃ + 1��deg���x,y�� + 1� − 1

hat are generalization of the mean value theorem for harmonic functions to the case of solutions
f the variable-coefficient elliptic PDEs in �generally� non-circular domains.

Before proving the main result we need to construct a complete set of solutions to �8� for the
edium with � ,� given by �18�.

V. NONHOMOGENEOUS POROUS MEDIUM FLOWS AND INTEGRABLE SYSTEMS
ELATED TO THE FINITE REFLECTION GROUPS

In this section we show how to obtain a general solution ��z , z̄� to �8�, �18�. It is instructive

o consider the special case s=1, l=0 of �18�
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� =
1

x2n , � = 1, �19�

hen permeability depends on one Cartesian coordinate only. Construction of solutions in the
eneral case �18� is conceptually similar.

Consider the simplest nontrivial example n=1 in �19� and start with factorizing the differential
perator �x

2 as

�2

�x2 = �1

x

�

�x
	�x

�

�x
− 1	 .

y associativity of differential operators

herefore,

T1
 = L1T1, T1 = x
�

�x
− 1, L1 = x2 �

1

x2 � �20�

nd the elliptic equation �8� is nontrivially related to the Laplace equation when ��=1/x2. In
eneral, the identity

T
 = LT

hat relates two differential operators �e.g., 
 and L above� through a differential operator T is
alled an intertwining identity and T is an intertwining operator.

A differential operator that is related to 
 through the intertwining identity equals, modulo a
auge transformation, a Schrödinger operators of an integrable system. Indeed,

T�
 − �� = �L − ��T

nd when � is an eigenfunction of 
 with the eigenvalue �, T��� is an eigenfunction of L with the
ame eigenvalue or zero.

The factorization approach leading to the simplest nontrivial intertwining identity �20� can be
ow applied to L1, etc. By induction we get the intertwining identity for an arbitrary nonnegative
nteger n in �19�,

Tn
 = LnTn, Ln = x2n �
1

x2n � , �21�

here

Tn = xn� �

�x
−

n

x
	� �

�x
−

n − 1

x
	¯ � �

�x
−

1

x
	 = �

i=0

n

ai;nxi � i

�xi . �22�

ny solution � to �8�, �19� in � can be represented in the form

� = Tn�f�, 
f = 0, z � � . �23�
et us show this for n=1, where T1 is given by �20�. Introduce f satisfying
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x
� f

�x
− f = � ,

here L1���=0 in � and �=0 for z��. It is not difficult to see that

f�z, z̄� = x

−�

x ��x� + iy,x� − iy�
�x��2 dx� + xF�y� ,

here F�y� is an arbitrary regular function of y. Therefore, for any � regular in � �which is the
ase� there exists a regular in � function f , such that T1�f�=�. From the intertwining identity �20�
t follows that T1
f =0 and 
f �Ker�T1�, if z��, i.e.,


�f� = xC�y�, z = x + iy � � ,

here C�y� is an arbitrary function of y. It follows that


�f + xF�y�� = 0,
d2F�y�

dy2 = C�y� .

ince f is defined modulo xF�y�, we can set F=0 and any solution of L1���=0 can be represented
s �=T1�f�, where 
�f�=0. Similar proof applies to the arbitrary n case �23�.

In the general case �18�

Tn,l;s
 = Ln,l;sTn,l;s, Ln,l;s = �zs + z̄s�2n�zs − z̄s�2l �
1

�zs + z̄s�2n�zs − z̄s�2l � ,

here the intertwining operator can be expressed in the form of a Wronskian3

Tn,l;s�f� = �s�n+l�W�sin��1�,sin��2�, . . . ,sin��n�, f�
cos�s��n�n−1�/2sin�s��l�l−1�/2 , W�f1, . . . , fk� ª det� � j−1f i

�� j−1�
1�i,j�k

�24�

ith

z = �ei�, �k = � k�s� +
�

2
	 , k = 1,2, . . . n − l

�2k + l − n��s� +
�

2
	 , n − l 	 k � n

.�
t is important that the intertwining operator Tn,l;s is a homogeneous differential polynomial in
, z̄ ,�z ,�z̄. This fact allows one to construct the quadrature domains for solutions � of Ln,l;s���
0.

Note that, in general, there exist several independent operators intertwining 
 and another
econd-order differential operator �forming a linear space of intertwining operators�. For instance,

n in �21� that intertwines 
 with Ln=Ln,0;1 is not the special case Tn,0;1 of �24�. However, any
onzero linear combination of them can be used to obtain solutions to the corresponding elliptic
quations Ln,0;1���=0.

. PROOF OF THE MAIN RESULT

The zero-initial condition solution of the homogeneous-porous medium flow that is driven by

multipole source of order k̃+1 is described by the polynomial conformal map of degree k̃+1

rom the unit disc in the parametric �w�-plane into the fluid region �,
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z�w� = z1 + rw + �
i=1

k̃

uiw
i+1, �w� 	 1. �25�

he map is analytic in �w � 	1, and the unit circle �w � =1 is mapped to the boundary ��. As shown
bove such regions are also quadrature domains. They are special �polynomial� cases of �rational�

lgebraic domains.14 The map coefficients r ,ui , i=1, . . . , k̃ are functions of Q̃ , Q̃i , Q̃
¯

i , i=1, . . . , k̃.
he “conformal radius” r can be chosen to be real.

The main idea of the proof is to show that the quadrature identity �13� for solutions of �8�,
18� holds in domains defined by �25�.

Consider illustrative examples of the problem �19� with permeability changing in one direc-
ion. As shown in the previous section any solution of the elliptic equation Ln���=0 can be
epresented as

Tn�f�z� + g�z̄�� , �26�

here f�z� ,g�z̄� are holomorphic and anti-holomorphic, respectively.
According to �13� we have to show that



�

Tn�f�z��dxdy = �Q̂Tn�f�z��z=z1

olds for any analytic in � function f�z� when � is defined by the conformal map �25�. Using the
reen theorem and taking �22� into account we rewrite the last equation as

�
j=0

n aj;n

2 j�j + 1�

1

2�i
�

��

�z + z̄� j+1
� j f�z�

�zj dz = Q̂Tn�f�z��z=z1
. �27�

ince w̄=1/w if �w � =1, z̄�w̄�= z̄�1/w� along the boundary, we can rewrite the left-hand side of the
ast equation as

�
j=0

n
aj;n

2 j�j + 1�
1

2�i
�

�w�=1 ��z�w� + z̄�1/w�� j+1� 1

�z�w�
�w

�

�w�
j

�f�z�w���� �z�w�
�w

dw .

ince z�w� is analytic in �w � 	1, z̄�1/w� has poles only at w=0, and the above integral is a pure
um of residues

�
j=0

�k̃+2��n+1�−2

Vj� � j f�z�
�zj 	

z=z1

, �28�

here Vj , j=0. . . �k̃+2��n+1�−2 are functions of the parameters z1 , z̄1 ,r ,uj , ūj , j=1. . . k̃ of the

onformal map �25�. Equating it with the right-hand side of �27�, we see that Q̂k must be �differ-

ntial operators� of order �k̃+1��n+1�−1 and

Q̂Tn�f�z��z=z1
= �

j=0

�k̃+2��n+1�−2

Uj� � j f�z�
�zj 	

z=z1

, �29�

here Uj , j=0. . . �k̃+2��n+1�−2 are linear functions of Q ,Qj , Q̄j , j=1. . . �k̃+1��n+1�−1. There-

ore, the quadrature identity �27� is satisfied if the following system of 2�k̃+2��n+1�−1 linear

quations
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Vj − Uj = 0, V̄j − Ūj = 0, j = 0 . . . �k̃ + 2��n + 1� − 2 �30�

or 2�k̃+1��n+1� unknowns

Q,Q̄,Qj,Q̄j, j = 1 . . . �k̃ + 1��n + 1� − 1 �31�

as solutions.

Note that the condition Q̄=Q is satisfied automatically, since, as is easily seen from �27�, �25�,
12�, the j=0 subset of �30�

V0 − U0 = 0, V̄0 − Ū0 = 0

re equations for Q , Q̄ that have the same form for any n0 in �22�. They have real solution

Q = Q̃ = r2 + �
i=1

k̃

�i + 1�uiūi.

he number of equations in �30� exceeds the number of unknowns �31� by 2n and the system of
quations �30� is overdermined for the nonhomogeneous medium problem n�0.

For instance, for the circular domain k̃=0,

z�w� = z1 + rw

n a medium with permeability 1 /x2, that has been considered in Sec. III, the system of equations
30� consists of six equations

Q − r2 = 0, Q̄ − r2 = 0,

2Qx1 − Q1 + Q̄1 − 2x1r2 = 0, 2Q̄x1 − Q̄1 + Q1 − 2x1r2 = 0,

4Q1x1 − r4 = 0, 4Q̄1x1 − r4 = 0

or four unknowns Q , Q̄ ,Q1 , Q̄1. It has the following solution:

Q = Q̄ = r2, Q1 = Q̄1 = r4/4x1.

eturning to the general case, we are going to show that not all equations in �30� are independent,
he system is compatible and has a unique solution, which proves our main result.

To prove the compatibility, we introduce the basis

� j�z, z̄� = cjTn��z − z1� j+n�, �̄ j�z̄,z� = cjTn��z̄ − z̄1� j+n�, j = 0,1,2, . . . , �32�

here cj = j ! / �j+n� !x1
n, in the space of solutions ��z , z̄� of Ln���=0 that are regular in neighbor-

ood of z=z1, and then show that the quadrature identity �13� holds for any element of this basis.
Indeed, according to �22�, �32� is a set of solutions of Ln���=0 that continuously tends to the

asis of functions analytic in a neighborhood of z=z1,

� j�z, z̄� → �z − z1� j, j = 0,1,2, . . . , x1 → �

s the position of the source z1=x1+ iy1 goes to infinity. On the other hand, Ln���z , z̄��=0,z��
ontinuously tends to the Laplace equation when region � is moved to infinity. Therefore, set �32�
s homotopically equivalent to �z−z1� j , �z̄− z̄1� j , j=0,1 ,2 , . . . under a continuous deformation of
he Laplace operator and thus contains a basis of solutions of Ln���=0 that is regular in a
eighborhood of z=z1.
It then follows from �28� and �29� that the quadrature identity holds if
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�Vj − Uj��djf�z�
dzj 	

z=z1

= 0, �V̄j − Ūj��djf�z̄�
dz̄j 	

z=z1

= 0, j = 0 . . . �k̃ + 2��n + 1� − 2 �33�

or

f�z� � �z − z1� j, j  n� .

ince jn, the left-hand sides of the first n equations in �33� vanish, and there remains 2�k̃+1�
�n+1� independent equations and the equal number of unknowns �31�.

We now have to prove the compatibility of remaining equations. �30� is a nonhomogeneous

ystem of linear equations for unknowns Q , Q̄ ,Qj , Q̄j , j=1. . . �k̃+1��n+1�−1, that fixes depen-
ence of these unknowns on parameters z1 , z̄1 ,r ,u1 , . . . ,uk̃, ū1 , . . . , ūk̃. The system is compatible if
ts homogeneous part does not have nontrivial solutions. Let us suppose that it does. Recall that

he homogeneous part of the system has been obtained by action of the operator Q̂ to an arbitrary
olution of Ln���=0 at point z=z1. So, if the homogeneous part of the system had nontrivial

olutions, then operator Q̂ would annihilate any solution � of Ln���=0 at z=z1, i.e.,

Q̂Tn�f�z�� = 0 at z = z1, �34�

here f�z� is any analytic in � function. If the above were true, then changing continuously the

osition z=z1 of the source, we could construct such operator Q̂, with coefficients depending on z,

hat Q̂Tn�f�z��=0 in some region of the plane for an arbitrary f�z�. But this is evidently impossible,

ince the highest symbols of Q̂ and Tn contain pure derivatives in z, so does their composition.
Therefore, �30� has a unique solution and quadrature identity holds in the polynomial alge-

raic domains, that leads to our main result �see Sec. III�.
Similar result can be analogously proved for the general system with permeability given by

18�.

I. GENERALIZATION TO HIGHER DIMENSIONS

Our study can be extended to PDEs in more than two dimensions, since the derivation of the
onservation laws in Sec. II is not restricted to the two-dimensional flows.

For instance, if we take solution ���� of ��1
−2��=0, where �ª ��1 , . . . ,�d� and �

�� /��1 , . . . ,� /��d�, then the following quadrature identity holds:



��−���	r

����d�1 . . . d�d = vd����� +
r2

�d + 2��1

�����
��1

	
�=��

�35�

n the d-dimensional ball of radius r with center at �=��, where vd=���−���	rd�1 . . .d�d is the
olume of the ball. Since the Hadamard expansion of the fundamental solution of the Calogero-
oser type operators truncates �see, e.g., Refs. 4 and 6�, the pressure distribution in the corre-

ponding free-boundary flow can be written down explicitly for any d �e.g., we have used the
echnique of Ref. 4 for derivation of �17��.

II. GENERALIZATIONS TO NON-COXETER ARRANGEMENTS

According to works on algebraic integrability,6 it is likely that the second-order elliptic op-
rators related to the Coxeter root systems as well as their special deformations exhaust all
ossible operators that can be related to the Laplace operators through intertwining operators with
ational coefficients. These are elliptic operators for which a rational Baker-Akhieser function
xists. We call all such operators the algebraic Calogero-Moser operators. For instance, the alge-

6
raic Calogero-Moser equations related to the porous medium problems �8� with the permeability

                                                                                                            



w
n

w
m
n
c

w

T
W

w
d

w
o
C
k
B

s
n
c

V

s
a
m
e

w
t

T
i

062702-12 I. Loutsenko and O. Yermolayeva J. Math. Phys. 47, 062702 �2006�

                        
� = x−2m��2m + 1�y2 − x2�−2, � = 1, �36�

here m=2,3 ,4 , . . ., are the simplest examples that extend the main result of the present paper to
on-Coxeter arrangements of mirrors.

A more general class of such algebraic Calogero-Moser systems was found in Ref. 3, and it
as shown in Ref. 2 that they exhaust all algebraically integrable systems with linear arrange-
ents of mirrors in two dimensions. Such systems are labeled by a sequence of integer positive

umbers 0�k1	k2	 . . . 	kn and a sequence �1 , . . . ,�n of complex parameters �“phases”�. The
orresponding algebraically integrable elliptic operator is

L = �2 � �−2� �37�

here rational function �=��x ,y� is the ratio of Wronskians

��x,y� = �kn
W�sin��1�, . . . sin��n−1�,sin��n��

W�sin��1�, . . . sin��n−1��
, � j = kj� + � j, z = �ei�. �38�

he corresponding intertwining operator is of the order n and can be rewritten in the form of a
ronskian

T�f� = �kn
W�sin��1�, . . . sin��n�, f�
W�sin��1�, . . . sin��n−1��

ith �24� being a special case. The results of the present paper, e.g., algebraicity of quadrature
omains, etc., also hold for systems with

� = 1/��x,y�2, � = 1

here � is given by �38�, with such k1 , . . .kn and �1 , . . .�n that the Wronskian in the denominator
f �38� divides that in the numerator and � is a polynomial in x ,y �these include systems with
oxeter arrangements of mirrors, deformed systems of type �36�, and many others�. For these
inds of systems, the intertwining operator has polynomial coefficients and the corresponding
aker-Akhieser function is polynomial in the spectral parameter.

More generally, one can consider a situation where the porosity ��x ,y� is not constant, and is
uch that the quadrature identities �13� hold in domains determined by the conformal maps �25�
ot only when ��x ,y� is a polynomial, but also when it is a rational function �38� of x ,y. We
onsider related examples in the next section.

III. SYSTEMS WITH AFFINE SINGULAR LOCI

We considered systems with mirrors arranged linearly, i.e., all mirrors passing through the
ame point �origin�. There, however, exist generalizations of the above construction with affine
rrangement of mirrors. In the present section we give examples of such systems that are nonho-
ogeneous in one direction. These are related to rational solutions of the Korteveg-de-Vries

quation. The permeability and porosity are expressed in terms of the Adler-Moser1 polynomials
pn�x� �first introduced by Burcnhall and Chaundy in Ref. 5� as follows:

�� = ��x�−2, ��x� =
pn�x�

pn−1�x�
, � = pn−1�x�S�x� �39�

here S�x� is an arbitrary polynomial of x. The Adler-Moser polynomial pn can be represented as
he Wronskian

p0 = 1, pn�x;t3, . . . ,tn� = W��1�x�,�2�x�, . . . ,�n�x��, �1 = x, �x
2�n = �n−1.

he nth Adler-Moser polynomial depends on n−1 parameters t3 , . . . t2n−1 �that can be viewed as

ntegration constants for �k�x� ,k=2. . .n� and is of degree n�n+1� /2 in x. t3 , t5 , . . . are the KdV
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ierarchy flow parameters �“times”�, while pn ,n=0,1 ,2 , . . . are �-functions of the hierarchy.
xamples of several first Adler-Moser polynomials are

p0 = 1, p1 = x, p2 = x3 + t3, . . . .

lliptic operator �37� is related to the Laplace operator by the intertwining operator that can be
ritten in terms of the Wronskians

T�f� =
W��1, . . . ,�n, f�
W��1, . . . �n−1�

.

t is a differential operator of order n with rational coefficients.
Note that expression �39� for � ,� is given for generic values of t3 , t5 , . . ., when the greatest

ommon divisor of pn and pn−1 is a constant. For instance, �19�, �21� correspond to a special case
f Adler-Moser polynomials, when all times t2i−1 , i�1 are set to zero and pn=xn�n+1�/2 is divisible
y pn−1=xn�n−1�/2. In this case the intertwining operator has polynomial coefficients and one can
hoose � to be a constant, rather than a polynomial of nonzero degree in x �cf. �37��.

The quadrature identities �13� hold in algebraic domains determined by �25�. In generic case,

he order of Q̂ in the right-hand side of �13� is

order�Q̂� = �deg�S�x�� +
n�n + 1�

2
+ 1	deg�z�w�� − 1.

or example, in circular domain �14� with S�x�=1 and n=2 in �39�



�z−z1�	r

x�dxdy = ��
i=0

3

Qi� �i�

�xi 	
z=z1

, �40�

here � is any solution of

�
x2

�x3 + t3�2 � � = 0

egular in �14�, and

Q0 = x1r2, Q1 =
x1r4�6x1

2 + r2�
8�x1

3 + t3�
, Q2 =

r6�16x1
5 + 16x1

2t3 + r2t3�
128�x1

3 + t3�2 , Q3 =
x1r8

192�t3 + x1
3�

.

X. CONCLUSION, MAIN CONJECTURE

In this article we have found examples of nonhomogeneous porous medium flows, driven by
ultipole source located at a fixed point, whose boundaries obey the same dynamics as those of

he homogeneous-medium flows also driven by a multipole source located at the same point.
amely, in the main set of examples, the medium permeability is a homogeneous rational function
f x ,y, and an invariant of the dihedral group. We also considered examples with permeability that
s a homogeneous rational function of x ,y, which is not generally dihedral-invariant, as well as
xamples with affine arrangements of singular loci. For the latter examples, the medium perme-
bility as well as its porosity are nonhomogeneous rational functions of x ,y. The multipole fluxes
f the nonhomogeneous medium problem must be fixed functions of those of its homogeneous
edium counterpart. Related variable-coefficient elliptic PDEs for the pressure distribution are of

he algebraic Calogero-Moser type6 and the quadrature identities for solutions of such equations
old in algebraic domains determined by polynomial conformal maps of unit disc.

In conclusion, one may pose the classification problem: Find the complete list of all PDEs
hose solutions satisfy quadrature identities in polynomial algebraic domains. In view of the

bove it is reasonable to expect that it has the following solution:
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Conjecture: The algebraic Calogero-Moser equations exhaust, up to a gauge equivalence, all
ossible second-order elliptic PDEs whose solutions satisfy quadrature identities in polynomial
lgebraic domains.

As mentioned in Sec. VI, our study can be extended to PDEs in more than two dimensions.
lthough we cannot use conformal maps to parametrize algebraic domains in higher dimensions,
e can still pose the classification problem for domains with spherical boundaries, looking for a

omplete list of elliptic equations for which generalized mean value theorem holds. More pre-
isely, one can look for equations in d-dimensions whose solutions possess the following property:
here exists such d-dimensional measure that the integral of an arbitrary solution taken over an
rbitrary d-dimensional ball equals a linear combination of the value of the solution and those of
finite number of its derivatives at the ball center. Coefficients of the linear combination may

epend on the ball position and radius, while the measure is determined by coefficients of the
lliptic PDE only. Typical examples of this property are �35� �where the measure is simply
�1 . . .d�d� and �40� �with measure xdxdy�.

Extending our conjecture to higher dimensions we may expect that algebraic Calogero-Moser
quations complete the above list. Note, that our classification problem seems to be equivalent to
lassical Hadamard’s problem of classification of Huygens’ operators. As in our case, all known
xamples of such Huygens’ operators are related to algebraic Calogero-Moser systems.6
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Dynamical systems on Rn presenting geometric chaos, i.e., open domains where
bounded and unbounded orbits are intermingled, have been constructed. The oppo-
site situation �open scattering� has been studied for integrable Hamiltonian
and non-Hamiltonian vector fields and for equations of type ẍ=−�V�x� when the
potential has the form V=a�r�+b�r�F��� in spherical coordinates. © 2006 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2206880�

. INTRODUCTION

Let X be a smooth dynamical system on Rn. The solution x�x0 ; t� through x0 is called a
cattering orbit if

lim
t→�,��

�x�x0;t�� = + � ,

� � R+ � �+ ��, �� � R− � �− �� , �1�

�� ,�� being the maximal interval around t0=0 on which x�x0 ; t� is defined.
Orbits of this kind often appear in Mechanics concerning the vector field �vf�

X = �ẋ,− �V�x�� ,

x � Rm �2�

ssociated with the Newtonian equation

ẍ = − �V�x� �3�

uling the motion of a particle in the potential V�x�, cf. Ref. 1.
In this paper we study the robustness of scattering trajectories, i.e., if we consider orbits

hrough initial conditions close to x0, are all these orbits also of scattering type? A negative answer
ould yield a nonuniform behavior which would make predictability impossible due to the prac-
ical small uncertainties in initial conditions. The nonuniformity would be reflected by the exis-
ence of bounded solutions arbitrarily near scattering ones.

It is important to note that in this work we are interested in analyzing whether the orbits near
given scattering trajectory are bounded or not. In this sense our approach is closer to the concept
f uniform behavior of a dynamical system2 than to the well-known concept of chaotic scattering.

Recall that, via numerical experiments, it has been suggested that chaotic scattering can
ppear in vf of type �2� when there exist multiple exit modes for the solutions. Chaotic scattering

�
Electronic mail: adiaz@mat.ucm.es
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sually refers to the fractality of the boundaries separating the basins of different exits, the
ppearance of the Wada phenomenon being the most typical situation. There is a vast literature on
haotic scattering, the interested reader can consult, e.g., Refs. 3–8 although we will not focus on
his phenomenon.

Although chaotic scattering usually gives rise to complex phase portraits we are not interested
n complexity arising from the existence of multiple exit modes but in unpredictability associated
ith the concept of geometric chaos.9 We say that there exists geometric chaos in R when the set
�R, R standing for an open set of Rn, formed by the initial conditions x0 supporting a

cattering solution x�x0 , t�, and its complement Kc in R, formed by nonscattering trajectories, are
oth dense in R. Rigorous mathematical examples of chaotic scattering are given in Sec. II for vf
n Rn with first integrals. As far as we know these are the first examples in the literature of
ntegrable vf presenting geometric chaos.

Conditions in order that geometric chaos does not arise are also given in Sec. II.
We warn the reader that a similar phenomenon �that is, Arnold’s diffusion10� appears when a

ompletely integrable Hamiltonian system with m �m�2� degrees of freedom is perturbed in the
orm

XH → XH + �XH1
,

� � R; � � 0 and small. �4�

The only difference being that geometric chaos appears without needing to perturb another vf.
n the other hand, geometric chaos can appear for Rn vf for any value of n �n�3� while Arnold’s
iffusion only appears when n�4 �n=2m�. Note also that Arnold’s diffusion has been observed,
f. Refs. 11 and 12, in many physical systems: motion of a charge in the focusing magnetic field
f an accelerator, motion of electrons in a magnetic bottle, interactions of colliding electron-
ositrons beams, etc.

The opposite situation to geometric chaos is open scattering, in which there exists a neigh-
orhood N��� of a scattering trajectory � such that all the orbits of X with initial conditions in
��� are scattering trajectories. This situation is studied in Sec. III for Liouville integrable sys-

ems and for Newtonian vector fields verifying certain assumptions.
It becomes evident that open scattering gives rise to uniformity in the sense that all trajectories

ear certain scattering trajectory are of scattering type, although the behavior of the system could
e nonuniform in the sense of chaotic scattering �but we will not focus here on this issue�. Open
cattering is desirable from the physical viewpoint because the presence of geometric chaos makes
t impossible to predict whether the evolution of an initial condition will remain in some compact
et or on the contrary it will tend to infinity. One of the most relevant results that we obtain is that,
ven when 2n−2 conserved quantities exist �n is the number of degrees of freedom�, geometric
haos may arise, thus extending the results of nonuniformity obtained in Ref. 2. This phenomenon
s not as well known as chaotic scattering and hence it complements the literature on chaos in
amiltonian systems. Furthermore we provide criteria in order to avoid geometric chaos in physi-

ally relevant Newtonian systems, thus justifying the interest of our study both in Physics and
pplied Mathematics.

I. GEOMETRIC CHAOS

Smooth R3 vf with a first integral whose level sets are tori are constructed, see Sec. II A,
xhibiting geometric chaos over an open domain R�R3. The set Kc, which is the complement of
he set K=� �scattering orbits�, is formed by S1 orbits of X. This construction is generalized to Rn

f with r �1�r�n−2� first integrals whose level sets are diffeomorphic to �S1�n−r. When X has
−1 first integrals it is proved that geometric chaos is not possible.

3
Examples are also given of R vf with a first integral whose level sets are cylinders, see Sec.
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I B, for which geometric chaos is impossible. For R3 vf with a first integral whose level sets are
ifferent from tori or cylinders the discussion of geometric chaos is given at the end of Secs. II A
nd II B.

. Geometric chaos in integrable systems

Let X be any C� vf in R3 with a differentiable first integral I�x� such that:

�a� I�x� = I�x0� = I0 are tori if x0 � z − axis.

�b� The orbits of the vf �X�I=I0
are either dense in I0 �irrational orbits� or are,

all of them, topological circles.

�c� Both S1 tori �i.e., rational tori� and irrational tori are dense in an open domain. �5�

A physical example for which these conditions are fulfilled is

X = B + �	, �6�

standing for the magnetic vf created by a circular wire of center �0, 0, 0� lying on the �x ,y�
lane,13 and �	 being the vf −y�x+x�y representing rotations around the z axis. It can be proved13

hat the magnetic field has the form B=A1�r ,z��r+A2�r ,z��z in cylindrical coordinates �r ,	 ,z�.
he orbits of B on the �r ,z� planes consist of the z axis and topological circles around the point of

ntersection between the wire and these planes. This gives rise to a global first integral I�r ,z� on R3

hose level sets are tori around the circular wire. The frequency of B on these tori is a noncon-
tant function ��I�, and hence the tori on which ��I� /2
�Q are filled by periodic orbits of X,
therwise we have irrational tori. X becomes globally smooth after multiplication of any function
hich goes to zero fast enough on the wire.

Note that assumption �4�-�5b� is automatically fulfilled when X is divergence-free and has no
eros on R.1

Consider now the set

R3 \ s , �7�

being any C1, properly embedded, unbounded curve starting at �1, 1, 1� and transversal to the
evel sets of I lying on the domain R �R being the complement in R3\ �z axis� of the domain
ounded by the torus I= I�1,1 ,1��. Assume that s intersects each level set of I in R only once.

It can be seen that R3 \s is diffeomorphic to R3 via a smooth diffeomorphism D. Indeed,
onsider that s is a half straight-line starting at �1, 1, 1� and take a foliation of R3 \ �1,1 ,1� by
pheres Sr of centers �1, 1, 1� and radii r�0, becoming topological planes after removing in Sr the
oint Sr�s.

Now, any torus T �T�R� becomes a horned torus after deletion of the point T�s and the vf
D transformed of �X�R3\s under D is again an R3 smooth vector field. XD exhibits geometric

haos because the horns of T \ �T�s� blow-up to infinity under the action of D, while the S1 orbits
n the tori are preserved �except for the S1 orbits passing through T�s, which are transformed in
nbounded orbits of XD�. Dense orbits in tori become scattering dense orbits in the horned tori
�T \ �T�s��.

The above conclusion holds for Rn vf X �n�3� when r C1 first integrals of X are given, the
regular� level sets of them are codimension r tori �S1�n−r and �5b�, �5c� hold. The only modifi-
ation is that �7� becomes

Rn \ Lr, �8�

r being a half-linear space of dimension r �L1=s, L2=a half plane,¼� transversal to the tori
1 n−r n
S � , which guarantees a unique intersection among each of these tori and Lr. Note that R \Lr
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s smooth diffeomorphic to Rn �this follows from a well-known theorem by Stallings14�. In fact,
his diffeomorphism can be taken as a symplectomorphism, ensuring that XD remains Hamiltonian
f X is �n=2m, the symplectic structure in R2m possibly being nonglobally equivalent to the
tandard one15,16�.

For example, when n=4 and r=2 �consider an R2 foliation similar to the one introduced for
=3, r=1�, take X as the vf associated with the uncoupled differential equations

ẍ = − x ,

ÿ = − y3. �9�

The explicit expression of the vf XD associated with Eq. �9� can be immediately obtained from
he expression of the diffeomorphism D, which in this case is given by

D = D1 � D2,

R4 \ L2 = �R2 \ L1�1 � �R2 \ L1�2,

Di = �i � i,

�R2 \ L1�i = R2 \ �xi � 0,yi = 0� ,

i = 1,2, �10�

i and i being defined by

�ri,�i� � �R2 \ L1�i ——→
i

�ri,�i/2� ——→
�i

�log xi,yi� ,

ri � 0, − 
 � �i � 
 �11�

ri ,�i� being polar coordinates in the splitted planes �R2 \L1�i, around �0, 0� with �L1�= ��i=
�.
Note that the effect of i is that of transforming �R2 \L1�i in the half-plane xi�0, and the

ffect of �i that of transforming this half-plane into R2.
Once D has been defined, XD is obtained by just transforming the R4 vf X associated with Eq.

9�:

X = �ẋ,− x, ẏ,− y3� , �12�

nder D. This gives rise to a very involved expression for XD which for brevity is omitted.
The tori foliating open sets of R4 are given by

�ẋ2/2 + x2/2 = c1� � �ẏ2/2 + y4/4 = c2� , �13�

nd Lr=L2 �a half plane in phase-space�. Assumptions �5b� and �5c� are satisfied since the ratio of
he frequencies of the orbits in the uncoupled equations is a C� nonconstant function.

Let us now prove that when r=n−1 �i.e., the vector field X is completely integrable� and the
rst integrals are independent of � �a periodic orbit of X� then geometric chaos cannot arise. Let
I1 , . . . , In−1� be the first integrals of X. Indeed let us construct n−1 vector fields Si in a neighbor-
ood N��� of � as

Si = 	
j=1

n−1

aij � Ij �14�
uch that
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Si�Ij� = �ij , �15�

ij standing for the Kronecker delta. Note that in Eq. �15� Si�Ij� denotes the Lie derivative of the
unction Ij along the streamlines of Si. Therefore, Si�Ij�=Si ·�Ij, the dot standing for the standard
uclidean scalar product in R3.

The Lie derivative of Ij is, of course, defined by,

Si�Ij� =
dIj��i�t;x��
dt



t=0

, �16�

i�t ;x� begin the flow induced by Si.
It is straightforward to see that the coefficients aij in �14� are smooth functions and are

niquely defined by Eq. �15� in N���. Si are obviously �by �15�� n−1 independent symmetries of
, thus implying, on account of the compactness of �, that N��� is covered by periodic orbits of
. This rules out the existence of geometric chaos. The reader can have a look at Ref. 9 where

ome criteria for the existence of open scattering in completely integrable vector fields are given.
The generalization of the results of this section to r�n−1 first integrals foliating an open

ubset of Rn with fiber F �dim F=n−r�, F� �S1�n−r is problematic since, except for tori, we are not
ware of foliations of open domains of Rn satisfying assumptions �5b� and �5c�.

. A topological obstruction to the existence of geometric chaos

We now give examples of R3 analytic vf with a first integral I whose �regular� level sets are
ylinders for which geometric chaos is impossible. The analyticity of I is a key property in the
onstruction.

Consider the vf X defied by

X = X2�x,y� + a�x,y,z��z, �17�

2 ,a�C�, satisfying

I = I�x,y�, X�I� = 0,

I�x,y� = c are circular cylinders �in R3� ,

rank ���I���x,y���0,0� = 1,

periods T�c� of X2 on I = c cover �as c varies in R� an open interval of R ,

here X�I� denotes the Lie derivative of I along the streamlines of X. Calling �x�t� ,y�t�� the
eriodic solution of ẋ=X2�x� with initial condition �x0 ,y0��R2, its period T0 is an analytic
unction of c0= I�x0 ,y0�.

We get z�t� along this solution via

dz

dt
= �a�x,y,z���x�t�,y�t�� = F0�t;z� , �18�

0 being C� and periodic in t �of period T0�.
Any periodic solution p of X lying on the cylinder I�x ,y�=c0 satisfies, see Ref. 17,

�n�z;T0� = z ,

z � p;n�z,T0� � N , �19�
being the Poincaré map
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��z;T0� = 	�t = T0;z0 = z� �20�

ssociated with Eq. �18� and 	�t ;z0� the general solution of Eq. �18�. Remember17 that � is an
nalytic function of z and T0 �since X is analytic�.

Let R be an open R3-domain and assume the existence of a periodic orbit ��P� through a
oint P�R �on the cylinder I=c0�. The analyticity of the Poincaré map � of �X�I=c0

near ��P�
mplies17 that in a neighborhood N���P�� either all the orbits of �X�I=I0

are of type S1 or none, but
�P�, is of type S1 �limit cycle�. In the second case the cylinders I=c �for c running on an interval

f R centered at c0� would hold a one-parameter family of S1 orbits of X �possibly with only one
lement�, whose closure can never be an open subset of R3.

In the first case �taking into account the topology of I=c0� it follows that the period n�z ,T0� of
is independent of z and T0, and is in fact equal to 1. Therefore we get �see Eq. �19��

��z;T0� = z ,

"T0s.t.N���P�� � �I = c0� is foliated by S1 orbits. �21�

Summarizing, any cylinder I=c on which a S1 orbit lies is either foliated with S1 orbits or
ontains a countable number m�c� of isolated S1 orbits �m�c�=0 not being excluded�.

When geometric chaos is present, the closure of the values of T0 for which Eq. �21� holds
ust contain an interval J of R. Since ��z ;T0�−z is C�, its zeros zi on J are either a finite set or

therwise ��z ;T0�−z�0 on J, and hence we can write

��z;T0� � z ,

"T0 � J , �22�

hus implying that the cylinders through R are foliated by S1 orbits. Therefore geometric chaos is
lso impossible. Note that the key points in the proof are the analyticity of X and that the topology
f I= I0 is S1�R, which implies that the period n in Eq. �19� is constant �n=1�. For example, if
= I0 were a torus S1�S1 the period would not be constant in general and the proof would fail
rational and irrational tori are generally intermingled�.

In ending this section let us observe that when the level sets of the first integral of X are
either tori nor cylinders the problem of knowing whether or not an S1 orbit of X belongs to a
haotic region R is a global one and therefore it cannot generally be solved by using local
echniques, like considerations concerning the local Poincaré map.

II. OPEN SCATTERING

Section III A deals with open-scattering for R2n Hamiltonian vf XH with n first integrals in
nvolution �Liouville-integrability�. In Sec. III B open-scattering in the presence of ignorable
oordinates is studied. Finally, in Sec. III C, some analytical conditions based on inequalities are
iven ensuring open-scattering for positive values of the energy.

Let us first show some examples of vf with and without open scattering orbits. Recall that a
cattering solution of a vf X �see Eq. �1�� is called open if Eq. �1� is satisfied not only at the point

0, but for every y0 in an open neighborhood N�x0� of x0.
It is well known that the R4 vf associated with the Newton equations

ẍ = − �V�r� ,

2
x � R ,
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lim
r→�

V�r� = 0, �23�

here r= �x�, do certainly possess open scattering orbits �see, e.g., Arnold in Ref. 1�.
An example of R2 Hamiltonian vf without open scattering orbits �because its only unbounded

rbit is isolated� is

XH = � �H

�y
,−

�H

�x
 , �24�

�x ,y� being the Newtonian potential created by the charge dipole �−q ,q� lying on
�−1,0� , �1,0��, that is

H = −
q

��x + 1�2 + y2
+

q
��x − 1�2 + y2

. �25�

The vf XH defined by �24� and �25� has the y axis as a scattering orbit which is surrounded by
1 orbits of XH centered at �−1,0� and �1,0� �i.e., the level sets H�x ,y�=c of H, c�0�.

Note that this vf can be globalized either by multiplication by a suitable smooth function

�x ,y� vanishing at �−1,0� and �1,0� or by constructing a vf YH̃, with H̃ an adequate function of
.

Can a similar example �of isolated scattering orbit� be found for vf of type �ẋ ,−�V�x��, x
Rn?

. Open scattering and Liouville integrability

For the sake of simplicity let us assume that n=2 �the case n�2 can be treated in a similar
ay�. Consider that the Hamiltonian vf XH in R4 is Liouville integrable;1 that is, in addition to the
amiltonian H, a second first integral I is known such that

. rank ��I ,�H�=2 either globally or at least in the open domain D where we are working.

. �H , I� Poisson-commute.

. XH and XI are complete vf globally or at least in D.

. The topology of the level sets �H=C1, I=C2� near the level set L0= �H=C10, I=C20� does not
vary with �C1 ,C2�. Assume that D contains L0 and it is saturated by level sets of �H , I�.

We are now given a scattering orbit S lying on the level set L0. Call L any level set �H=C1,
=C2� near L0. Note that L0 must be diffeomorphic to R2 or S1�R �tori being excluded by the
resence of S, which is unbounded�, by the well-known Arnold-Liouville’s theorem.1 In what
ollows D will be an open neighborhood of L0.

Open scattering does certainly appear when L0�R2. Indeed, since �H�0 on L then �XH�L
0 and hence �by Poincaré-Bendixon theorem17� the orbits of �XH�L must be of type R.

When L0�S1�R the action of XI on S �remember that XI is complete on D� defines a
oliation on L0 whose leaves are diffeomorphic to R. In fact �XH�L0

is conjugate to a helicoidal
ector field, i.e., there exists coordinates �	 ,z��S1�R on L0 such that10

�XH�L0
= a�	 + b�z, �26�

,b�R and b�0 because of the presence of S in L0.
Equation �26� implies that all the orbits of �XH�L0

go from one end of L0 to the other, thus
roving that �XH�L0

is structurally stable.18 Therefore L is foliated by R orbits and hence there is
pen scattering in D.

When the level sets L near L0 do not keep a fixed topological type, e.g., there are bifurcations
rom R2 to S1�R or from S1�R to S1�S1 we cannot conclude anything on open scattering. An
llustrative example is the Kepler problem when L0 is the level set �H=C10, I=C20�0� of the first

ntegrals
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H =
ẋ2 + ẏ2

2
−

1
�x2 + y2

, I = xẏ − yẋ .

ssumptions �1�–�4� are fulfilled if C10�0, thus implying open scattering. If C10=0 then only
ssumptions �1�–�3� hold because the level sets �H�0, I=C20� are tori. In this case open scattering
oes not occur.

. Open scattering and ignorable coordinates

We now study the effect on open scattering of the existence of n−1 ignorable coordinates �call
hem y2 , . . . ,yn� in the n first integrals �I1 , . . . , In� of the second order differential equation �not
ecessarily Hamiltonian�

ÿ = C�y, ẏ� ,

y = �y1, . . . ,yn� � Rn. �27�

System �27� is assumed to have the n first integrals:

I1�y1, ẏ1, . . . , ẏn� ,

]

In�y1, ẏ1, . . . , ẏn� . �28�

Assume that ẏ2 , . . . , ẏn can be globally eliminated in

I1�y1, ẏ1, . . . , ẏn� = C1,

]

In�y1, ẏ1, . . . , ẏn� = Cn. �29�

We get in this way

��y1, ẏ1;C1, . . . ,Cn� = 0, �30�

being called the eliminant �sometimes also called resultant, particularly when I1 , . . . , In are
olynomials in ẏ2 , . . . , ẏn�.

If y1�R �y2 , . . . ,yn can vary either on R or S1� and Eq. �27� possesses a scattering solution S
n the level set �C10, . . . ,Cn0�, y1�t� being unbounded, then the curve �0 on the �y1 , ẏ1� plane
efined by ��y1 , ẏ1 ;C10, . . . ,Cn0�=0 has some connected component which is also unbounded. If
he values �C1 , . . . ,Cn� of the first integrals are close to �C10, . . . ,Cn0�, does the curve � defined by
�y1 , ẏ1 ;C1 , . . . ,Cn�=0 remain unbounded? In the next paragraph we give a sufficient condition

nsuring that if �C1 , . . . ,Cn� are near �C10, . . . ,Cn0� then � is close to �0, thus proving that open
cattering around S occurs.

If �����y1 , ẏ1 ;C10, . . . ,Cn0���0
��c�0 then the curves � for �C1 , . . . ,Cn� close enough to

C10, . . . ,Cn0� are diffeomorphic to �0. Indeed, this assumption on �� is a particular case of
algrange condition and hence it implies the nonexistence of asymptotic critical values.19 Al-

hough �0 is noncompact the fact that ���� is bounded below implies that Thom’s isotopy
heorem20 holds, thus showing that a small perturbation of � gives rise to a curve � which is
iffeomorphic �via a smooth diffeotopy arbitrarily close to the identity� to �0. If �C1 , . . . ,Cn� are
ear �C10, . . . ,Cn0� then, on account of the continuous dependence, ��y1 , ẏ1 ;C1 , . . . ,Cn� is a small

˙
erturbation of ��y1 ,y1 ;C10, . . . ,Cn0�, and the result follows.
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Newton equations for central potentials satisfy Eq. �28� in the polar chart �y1=r, y2=��. In this
ase the first integrals take the form I1= 1

2 ẏ1
2+ 1

2 y1
2ẏ2

2+V�y1�, I2=y1
2ẏ2.

Let us illustrate the main result of this section with a classical example: the Kepler problem.
n this case it is easy to check that the eliminant is given by

��y1, ẏ1;C1,C2� =
1

2
ẏ1

2 +
C2

2

2y1
2 −

1

y1
− C1 = 0. �31�

The critical points of � are p1�y1=C2
2 , ẏ1=0� and p2�y1→� , ẏ1=0�. Since

��p1� = −
1

C2
2 − C1 and ��p2� = − C1

t follows, on account of the previous discussion, that when C1=C10�0 and C2=C20�0 there
xists open scattering �hyperbolic orbits�. If C1=C10=0 �parabolic orbits� then the curve �0 has an
symptotic critical value and the criterion does not work, in fact in this case there is no open
cattering because the orbits with C1�0 are periodic.

A particularly relevant situation in which equations of type �30� arise is for Stackel’s separable
ystems.21 In this case it is not difficult to reach the following expression

�i�yi, ẏi;C1, . . . ,Cn� = 1
2 ẏi

2 + 	i�yi;C1, . . . ,Cn� = 0 �32�

or each i=1, . . . ,n. If the �type R� coordinate yk is unbounded for the scattering orbit S then our
riterion applied to �k implies open scattering.

. Potentials with open scattering for positive energy

In the Kepler problem all the trajectories with energy E�0 �and nonvanishing angular mo-
entum� are scattering orbits, thus exhibiting the open scattering phenomenon when E�0. We

ow give a procedure in order to get open scattering in Newtonian systems ẍ=−�V�x�, x�Rn,
hen V�x� is of type a�r�+b�r�F���, �r ,���R+�Sn−1 being spherical coordinates in Rn, and the

nergy E�0.
The method is based on the inequalities

r̈ � − a��r� − b��r�F��� ,

a�r� + b�r�F��� � E �33�

btained from the equation ẍ=−�V�x� written in spherical coordinates and the energy conserva-
ion law

ẋ2

2
+ V�x� = E . �34�

ssume that b�r��0,b��r��0 or b�r��0,b��r��0 �if r is large enough�, in these cases, by
liminating F��� in Eq. �33�, we get the following inequality:

r̈ �
dW�r�

dr
, �35�

here W�r�=a�r�+E ln�b�r��−�b��r�a�r� /b�r�dr.
Inequalities of type �35� have been studied in Refs. 22 and 23 in order to prove the existence

f scattering solutions. The arguments developed in these works yield that open scattering occurs
hen W�r��c �c�R� and W��r��0 for large values of r.

For example, if a�r�=−1/rk �k�1� and b�r� satisfies 0�b�r��k, b��r��0, b��r��0 if r

R then open scattering exists for positive energy. Indeed W�r� is given by
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W = −
1

rk + E ln b�r� +� b��r�
rkb�r�

dr . �36�

t is not difficult to check that W�r� is bounded above when r�R and furthermore

W��r� = −
k�1 + k�

rk+2 + �E +
1

rkb��r�b�r� − b��r�2

b�r�2 −
b��r�

rk+1b�r�
. �37�

Equation �37� implies that W��r��0 �r large� when E�0 and therefore open scattering is
uaranteed for positive energy.

The criterion of this section is analytical and very easy to check in specific examples. Other
otentials that can be studied with this technique are of type V�r�=a�r�G���+b�r�F���, G���
c�0.

V. CONCLUSION

In this paper we have studied the robustness of scattering type trajectories when the initial
ondition is perturbed. We have shown that geometric chaos is possible even for integrable vector
elds, thus obtaining a new chaotic phenomenon different from the well-known chaotic scattering.
n the phenomenon that we have reported the complexity and nonuniformity of the trajectories is
anifested in the �practical� impossibility of determining whether a given solution is bounded or

ot because scattering and nonscattering orbits are intermingled. We have also found some topo-
ogical obstructions to the presence of geometric chaos.

The opposite situation to geometric chaos is open scattering. In this case all the orbits through
ome open set are of scattering type. This situation is desirable from the physical viewpoint
ecause it guarantees that all the orbits will escape to infinity, i.e., there is no uncertainty in the
oundedness of the trajectories. We have provided criteria for ensuring open scattering in some
articularly relevant situations, like Liouville integrable systems, Stackel separable systems and
otential systems with positive energy.

It remains open to ascertain how often is the presence of geometric chaos in Hamiltonian
ystems �e.g., is geometric chaos robust under small perturbations of the vector field?�, and to
rovide more criteria guaranteeing open scattering.
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A one-dimensional system made up of a compressible fluid and several mechanical
oscillators, coupled to the acoustic field in the fluid, is analyzed for different
settings of the oscillator array. The dynamical models are formulated in terms of
singular perturbations of the decoupled dynamics of the acoustic field and the
mechanical oscillators. Detailed spectral properties of the generators of the dynam-
ics are given for each model we consider. In the case of a periodic array of
mechanical oscillators it is shown that the energy spectrum presents a band
structure. © 2006 American Institute of Physics. �DOI: 10.1063/1.2209553�

NTRODUCTION

In this paper we study the dynamics of a system consisting of one or more mechanical
scillators �the sources� coupled with the acoustic field they produce in the compressible fluid
urrounding them.

Classical electromagnetism is perhaps the most well-known case in theoretical physics where
ll attempts to construct a complete, covariant, causal, divergence-free theory for the evolution of
he fields together with their sources were unsuccessful up to now �in fact, it is hard to say that
here is a single case in classical or in quantum physics in which this problem was completely
olved�.

Whereas theories with extended rigid charges are quite well understood both at the classical
nd the quantum level �see, e.g., a recent book �Spohn, 2004� for a systematic introduction to the
ubject and for a long list of references�, there is no mathematically consistent theory of point
harges interacting with their own electromagnetic field. Indeed, Newton equations with a Lorentz
orce require the fields to be evaluated at the particle positions, and this produces infinities due to
he presence of the pointlike sources. These difficulties directly lead to the need of mass renor-

alization. In his seminal paper, Dirac �1938� �see also Infeld and Wallace �1940�, Kijowski
1994�, and Marino �2002��, without using a Lorentz force but exploiting the conservation of
nergy and momentum and considering their flow through a thin tube of radius r, derived an
quation for the motion of a charged point particle �the Lorentz-Dirac equation�. As Dirac himself
ointed out, the equation obtained in the limit r↓0, together with the mass renormalization, leads
o the presence of runaway solutions, i.e., solutions for which the acceleration increases beyond
ny bound even in the absence of external fields.

An approach based on the theory of singular perturbations of the free dynamics was initiated
n Noja and Posilicano �1998, 1999� for the case of classical electrodynamics of a point particle in
he dipole �or linearized� case. Here the generator of the limit dynamics of both the field and the
article appears to be a singular perturbation of the generator of the free dynamics. The phenom-

�Electronic mail: claudio.cacciapuoti@na.infn.it
�Electronic mail: figari@na.infn.it
�
Electronic mail: andrea.posilicano@uninsubria.it
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nological mass plays the role of the parameter describing a suitable family of self-adjoint exten-
ions and the boundary condition naturally appearing in the domain of the generator results to be
othing else that a regularized �and linearized� version of the usual velocity-momentum relation in
he presence of an electromagnetic field. In this framework runaway solutions are unavoidable
ecause a negative eigenvalue appears in the spectrum of the generator after mass renormalization.

Our interest in a similar problem in acoustics was prompted by the appearance in 1999 of a
aper by Templin �1999�. In that paper the author analyzed the dynamics of a simple model of a
pherical oscillator interacting with the acoustic field it generates. The existence of a spherically
ymmetric radiation field �the acoustic monopole� makes the acoustic case significantly different
rom the electromagnetic one. Moreover, the pressure field at the surface of the sphere completely
haracterizes the contact forces responsible for the interaction between the source and field in the
coustic case.

Templin performed a detailed analysis of the field emitted by the acoustic monopole, explic-
tly computing both its radiation and near-field components. He noticed that a deduction of the
eaction field obtained from the emitted radiation power, therefore neglecting the near field com-
onent, brings to an equation for the radius of the oscillating sphere showing runaway solutions.

In analogy with what was done for the electromagnetic case in Noja and Posilicano �1998�, we
ant to provide a formalization of the problem of a finite or infinite number of oscillators coupled
ith their acoustic field in terms of singular perturbations of the generator of the free dynamics.

In this paper we will consider only the one-dimensional case. In the abstract setting we will
ork in the physical model of interaction between the sources and the field will appear as the only
ossible extension of the free dynamics. The generalization to three dimensions is not straightfor-
ard. On the one hand, a model of a physically relevant, symmetric, mechanical oscillator with
nite degrees of freedom is lacking. On the other hand, point perturbations of the free dynamics
re much more singular in higher dimensions. We plan to discuss the three-dimensional case in
uture work.

We want to stress an aspect of the dynamical system we analyze here that was extensively
tudied in different contexts. As an immediate consequence of the third Newton’s law and of the
ssumption of persistent contact between the fluid and the surface of the oscillators, the total
nergy, sum of the �positive� energy of the acoustic field Eac and the �positive� energy of the
scillators Eosc, is a constant of motion. As an immediate consequence, one can exclude the
xistence of runaway solutions in this case. Moreover, lacking a mechanism of reflection of the
coustic waves at some exterior boundary, the motion of the oscillators should be damped and the
nergy should finally diffuse over the field degrees of freedom for almost every initial condition.
he situation is reminiscent of the one investigated in Soffer and Weinstein �1998a, 1998b, 1999�

hat concerned the diffusion of energy from bound states to continuous states triggered by time-
ependent perturbations in quantum and classical systems. In our system there is no external
otential, the interaction being given by internal forces.

This paper is organized as follows. In Sec. I we introduce a list of notations and we briefly
ecall the equations for the acoustic field. Afterwards we exemplify the problem of the interaction
etween the field and a source in the completely solvable case of a single wall attracted toward the
rigin by a linear restoring force.

In Sec. II we analyze the case of a finite number of sources in the framework of the possible
xtensions of the free dynamics outside the points where the sources are placed. In Sec. III we
eneralize the construction to the case of infinitely many sources and study the case of sources
eriodically placed on the real line. We give detailed results on the characteristic band structure of
he spectrum of the generator of the dynamics.

To the best of our knowledge, these kinds of systems of oscillators coupled with the acoustic
eld was never proposed and solved. A remark on the band structure of a similar model is in

riffiths and Steinke �2001�.
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. THE ACOUSTIC MONOPOLE IN ONE DIMENSION

We give a detailed description of our model in the simplest case of one oscillator coupled with
he acoustic field.

Consider an infinite pipe filled with a nonviscous, compressible fluid. We suppose that there is
o friction between the fluid and the pipe, and we choose a coordinate system with the x axis
arallel to the axis of the pipe. The mechanical oscillator is made up of a very thin wall of mass

M positioned in the pipe perpendicularly to the axis in x=0. The thin wall is connected to a spring
f elastic constant K. We analyze only one-dimensional cases, hence the acoustic field is described
y the pressure field p�x , t� and the velocity field v�x , t�. The motion of the mechanical oscillator
s described through the position and the velocity of the thin wall.

The field p�x , t� represents deviations of the pressure in point x at time t with respect to an
quilibrium pressure P0. In the linearized acoustics regime the continuity equation, the Newton’s
econd law, and the adiabatic equation of state read

��

�t
+ �0

�v
�x

= 0, �0
�v
�t

= −
�p

�x
, p = a2� , �1.1�

here ��x , t� is the deviation of the density in point x at time t with respect to the equilibrium
ensity �0 and a is the velocity of sound in the fluid.

Then we have for p�x , t� and v�x , t� the following coupled differential equations:

�p

�t
= − a2�0

�v
�x

,
�v
�t

= −
1

�0

�p

�x
. �1.2�

e consider only small oscillations of the thin wall around its equilibrium position x=0, we
ndicate with y�t� the displacement of the wall from its equilibrium position at time t, and we
uppose that the wall always remains in contact with the fluid:

v�y�t�,t� =
dy�t�

dt
" t � 0. �1.3�

otice that we consider a wall of zero thickness. We make the approximation v�y�t� , t��v�0, t�
nd condition �1.3� becomes

v�0,t� =
dy�t�

dt
" t � 0. �1.4�

he equation of motion for the position of the thin wall y�t� is

Mÿ�t� = − Ky�t� − S�p�0+,t� − p�0−,t�� , �1.5�

here S is the area of the transverse section of the pipe and we made the approximation
p�y±�t� , t�� p�0±, t�.

The total energy of the system is given by

Etot = Eac + Eosc, �1.6�

ith

Eac =
S

2a2�0
�

−�

�

p�x�2dx +
S�0

2
�

−�

�

v�x�2dx , �1.7�

Eosc =
K

2
y2 +

M

2
ẏ2. �1.8�
ac is the energy stored in the acoustic field while Eosc is the energy of the mechanical oscillator.
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As the system is isolated, the energy is constant. The motion of the wall produces acoustic
aves, thus transferring continuously energy from the oscillator to the acoustic field. One then

xpects that y�t� decreases to zero when t→�.
In spite of being a simple exercise, the exact computation of the solution of problems �1.2�,

1.4�, and �1.5� and, in turn, of the damping rate of the oscillations rarely appears in textbooks.
In the following we give the solution of the Cauchy problem of coupled ordinary and partial

ifferential equations with time-dependent boundary conditions

�p

�t
= − a2�0

�v
�x

" t � 0 " x � R \ �0� ,

�v
�t

= −
1

�0

�p

�x
" t � 0 " x � R \ �0� ,

ÿ�t� = − �0
2y�t� −

S

M
�p�0+,t� − p�0−,t�� " t � 0,

p�x,0� = f�x� " x � R \ �0� ,

�1.9�
v�x,0� = g�x� " x � R \ �0� ,

y�0� = y0,

ẏ�0� = ẏ0,

v�0,t� = ẏ�t� " t � 0,

here f�x� and g�x� are two real functions and �0
2=K /M.

Suppose that

f�x� � C0
2�R�; g�x� � C0

2�R� and y0 =
1

�0
2�0

f��0�; ẏ0 = g�0� , �1.10�

hen the solution of problem �1.9� reads

p�x,t� = pf�x,t� + a�0 sgn�x�Y	t −

x

a
� , �1.11�

v�x,t� = v f�x,t� + Y	t −

x

a
� , �1.12�

y�t� = −
v̇ f�0,t�

�0
2 +

�
0

t F�t��
�+

e�+�t−t��dt� − �
0

t F�t��
�−

e�−�t−t��dt�

�+ − �−
, �1.13�

here pf�x , t� and v f�x , t� are solution of the wave equation in �−� , +�� with initial conditions
f�x� and g�x�:

pf�x,t� =
f�x − at� + f�x + at�

+
a�0 �g�x − at� − g�x + at�� , �1.14�
2 2
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v f�x,t� =
g�x − at� + g�x + at�

2
+

1

2a�0
�f�x − at� − f�x + at�� ,

�1.15�
F�t� = − v̈ f�0,t� − �0

2v f�0,t� ,

nd

Y�t� =

�
0

t

F�t��e�+�t−t��dt� − �
0

t

F�t��e�−�t−t��dt�

�+ − �−
, �1.16�

ith �±= �−�±��2−4�0
2� /2 with �=2a�0S /M.

With conditions �1.10� one can easily obtain that y�t� and ẏ�t� are both continuous and
ecrease exponentially to zero with a decay constant �=� /2.

I. SINGULAR PERTURBATIONS OF THE FREE DYNAMICS

In this section we present a generalization of problem �1.9� formulated in terms of a unitary
ow on a space of finite energy.

Let us consider a system of n thin walls positioned in a pipe, perpendicular to its axis. Let
= �s1 , . . . ,sn��R be the set of equilibrium positions of the thin walls. The ith thin wall, placed in

i has mass Mi and is connected to a spring of elastic constant Ki. The acoustic field is described
y the pressure field p and the velocity field v. The motion of the walls is described by the
isplacements yj from their equilibrium positions and by the corresponding velocities zj.

The generator of the dynamics, Â, will be defined as a singular perturbation of the skew-
djoint operator A generating the uncoupled evolution of the acoustic field and of the oscillators.

The system of first-order differential equations,

�p

�t
= − a2�0

�v
�x

" x � R , �2.1�

�v
�t

= −
1

�0

�p

�x
" x � R , �2.2�

dyj

dt
= zj 1 � j � n , �2.3�

dzj

dt
= −

Kj

Mj
yj 1 � j � n , �2.4�

escribes, in the linear approximation, the independent evolution of n mechanical oscillators and
f the acoustic field.

We want to show first how Eqs. �2.1�–�2.4� define an unitary flow in a complex Hilbert space.
o this aim let us consider Eqs. �2.1�–�2.4� for complex functions v, p, yj, zj of position and time.

The set of all the displacements and velocities will be represented respectively by the vectors
n Cn:

y� = y1e�1 + ¯ + yne�n, z� = z1e�1 + ¯ + zne�n, �2.5�

n
here e�1 , ¯ ,e�n is the canonical orthonormal basis in C .
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Let us denote by L2�R� the space of square-integrable functions on the real line. H̄1�R�
ndicates the homogeneous Sobolev space of locally square-integrable functions with a square-
ntegrable �distributional� derivative, and H1�R� is the usual Sobolev space H1�R�

H̄1�R��L2�R�.
Therefore the linear operator A in L2�R� � L2�R� � Cn � Cn generating the dynamics �2.1�–�2.4�

s defined by

A:H1�R� � H1�R� � Cn
� Cn → L2�R� � L2�R� � Cn

� Cn, �2.6�

A�p,v,y� ,z�� ª 	− a2�0
dv
dx

,−
1

�0

dp

dx
,z�,− 

1�j�n

Kj

Mj
yje� j� , �2.7�

here a, �0, Kj, Mj, 1� j�n, are the positive real constants representing the physical parameters.
In the following, a capital Greek letter will indicate a generic vector �p ,v ,y� ,z�� in L2�R�

� L2�R� � Cn � Cn.
A is a real operator, i.e., it preserves the �physical� linear subspace of real elements

��p,v,y� ,z��:p�x� � R,v�x� � R,y� � Rn,z� � Rn� . �2.8�

is skew-symmetric with respect to the scalar product

��	1,	2�� �
1

a2�0
�p1,p2� + �0�v1,v2� +

1

S


1�j�n

Kjȳ1jy2j + Mjz̄1jz2j , �2.9�

here �·,·� indicates the standard scalar product in L2�R�, S is the area of the transverse section of
he pipe, and denotes complex conjugation. L2�R� � L2�R� � Cn � Cn is a Hilbert space with the
calar product �2.9�.

The square norm of a vector 	, �	�2= ��	 ,	��, defines the total energy of the system in the
tate 	,

Etot =
S

2
�	�2 = Eac + Eosc, �2.10�

here Eac is the energy stored in the acoustic field while Eosc is the energy of the oscillators:

Eac =
S

2a2�0
�p,p� +

�0S
2

�v,v�; Eosc =
1

2 
1�j�n

�Kj
yj
2 + Mj
zj
2� . �2.11�

or any 
�C \ iR the resolvent of A is

�− A + 
�−1�p,v,y� ,z�� = 	�0	−
d2

dx2 +

2

a2�−1	−
dv
dx

+



a2�0
p��,

1

a2�0
	−

d2

dx2 +

2

a2�−1	−
dp

dx
+ 
�0v�, 

1�j�n

Mjzj + 
Mjyj

Kj + 
2Mj
e� j , �2.12�

	 
1�j�n

− Kjyj + 
Mjzj

Kj + 
2Mj
e� j� .

ince

Ran�− A ± 1� = L2�R� � L2�R� � Cn
� Cn, �2.13�
is skew-adjoint. Moreover, the essential spectrum of A is purely absolutely continuous and
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�ess�A� = �ac�A� = iR, �pp�A� = �±i�Kj

Mj
,1 � j � n� . �2.14�

eing skew-adjoint, the operator A describes, by the Stone theorem, the uncoupled evolution of
he acoustic field and of the oscillators through the unitary flow exp tA corresponding to the
auchy problem for the first-order differential equation

d

dt
	�t� = A	�t� , �2.15�

hich is equivalent to the system written at the beginning of the section.
Now we consider the linear operator A0 obtained by restricting A on the set of vectors in its

omain satisfying

�v�sj� = zj, 1 � j � n� , �2.16�

hich represents the kinematic constraint �1.4� at each thin wall. A0 is a closed, densely defined,
kew-symmetric linear operator with defect indices �n ,n�. We want to characterize the skew-
djoint extensions of A0. The family of extensions of A0 can be parameterized by relations
�Cn � Cn, which are skew-symmetric, i.e., such that K= �IK��, where I�z�1 ,z�2�ª �z�2 ,z�1� �see,

.g., Gorbachuk and Gorbachuk �1991�, Theorem 1.6, Chap. 3, for the analogous self-adjoint
ase�. A skew-symmetric relation in Cn � Cn extends the notion of the graph of a skew-symmetric
perator � :Cn→Cn through the relation K= ��z� ,�z�� ,z� �Cn�. In order to be a candidate to describe
he interacting dynamics of the system under analysis, a skew-adjoint extension of A0 must be
ocal and real, i.e., it must generate a coupling between the fields evaluated in sj and the jth
scillator, 1� j�n, and it must preserve the linear space of physical data defined in �2.8�. The
nly admissible extension different from A itself will be the one corresponding to the graph of the
ero operator, �=0. The next theorem completely characterizes such an extension.

Theorem 2.1: The only local, real, and skew-adjoint extension of A0 is given by

Â:D�Â� � L2�R� � L2�R� � Cn
� Cn → L2�R� � L2�R� � Cn

� Cn, �2.17�

D�Â� = �	 � �p,v,y� ,z��:p � L2�R� � H1�R \ S�,v � H1�R�,y� � Cn,z� � Cn,p�si
+� − p�si

−� = �i,v�sj�

= zj,�� � Cn� , �2.18�

Â�p,v,y� ,z�� ª 	− a2�0
dv
dx

,−
1

�0

dp0

dx
,z�,− 

1�j�n
	 Kj

Mj
yj +

S

Mj
� j�e� j� . �2.19�

ere p0� H̄1�R�,

p0�x� ª p�x� −
1

2 
1�j�n

� j sgn�x − sj� , �2.20�

enotes the regular part of p. The resolvent of Â is given by

�− Â + 
�−1 = �− A + 
�−1 + 
1�i,j�n

��
�−1�ijG

i

� Ğ

̄

j
, 
 � C \ iR , �2.21�

here

�
�ij ª − 
	±
e�

si−sj
/a

2a�0

+

S�ij

Kj + 
2Mj
�, ± Re 
 � 0 �2.22�
nd
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Ğ

j�x� = 	G
��x − sj�,




a2�0
G
�x − sj�,

S

Kj + 
2Mj
e� j,

− 
S

Kj + 
2Mj
e� j� , �2.23�

G

j�x� = 	− G
��x − sj�,




a2�0
G
�x − sj�,

− S

Kj + 
2Mj
e� j,

− 
S

Kj + 
2Mj
e� j� , �2.24�

G
�x� = ±
a

2

e�

x
/a, G
��x� = −

1

2
sgn�x�e�

x
/a, ± Re 
 � 0. �2.25�

Proof: Since iA0 is a closed, densely defined, symmetric operator with defect indices �n ,n�, all
ts self-adjoint extensions can be obtained by the famed von Neumann theory on self-adjoint
xtensions �see, e.g., Theorem X.2 in Reed and Simon �1975��. However, since A0 is obtained by
estricting the skew-adjoint operator A to the kernel of the continuous, surjective linear operator

�:H1�R� � H1�R� � Cn
� Cn → Cn, �2.26�

��p,v,y� ,z�� ª 
1�j�n

�v�sj� − zj�e� j , �2.27�

t is easier to make use of the �equivalent� procedure developed in Posilicano �2001� �also see the
ppendix in Posilicano �in press� for a compact review�. Here below we provide the �almost�

elf-contained construction of the skew-adjoint extensions of A0 by using such a procedure.
Given the map � we can define the bounded linear operator

Ğ�
� ª ��− A + 
�−1:L2�R� � L2�R� � Cn
� Cn → Cn. �2.28�

y the relation

Ğ�
��p,v,y� ,z�� = 
1�j�n

��Ğ

̄

j
,�p,v,y� ,z����e� j, 1 � j � n , �2.29�

˘ �
� is represented by the vector Ğ

j . By Ğ�
� we define the bounded linear operator

G�
� ª − Ğ�− 
̄�*:Cn → L2�R� � L2�R� � Cn
� Cn, �2.30�

here Ğ�
�* indicates the adjoint of Ğ�
�. The action of G�
� on Cn is given by

G�
�e� j = G

j , 1 � j � n . �2.31�

et us notice that

Ran�G�
�� � H1�R� � H1�R� � Cn
� Cn = �0� . �2.32�

ow we consider the linear operator ��
� :Cn→Cn represented by the matrix �ij +�
�ij, where
:Cn→Cn is skew-Hermitian. By noticing that

��
� − ���� = ��G��� − G�
�� �2.33�

nd that, by the definition of G�
� and by the first resolvent identity,

�
 − ���− A + ��−1G�
� = G��� − G�
� , �2.34�
ne has that ��
� satisfies the identity
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��
� − ���� = �
 − ��Ğ���G�
� . �2.35�

y the definitions of Ğ�
� and G�
�, by �2.35� and by ��
̄�*=−��−
�, it follows that
et ��
��0 for any 
�C \ iR and that

R̂�
� ª �− A + 
�−1 + G�
���
�−1Ğ�
� �2.36�

atisfies the first resolvent identity

�
 − ��R̂���R̂�
� = R̂��� − R̂�
� �2.37�

nd

R̂�
̄�* = − R̂�− 
� �2.38�

for details see Posilicano �2001��. Moreover, R̂�
� is injective by �2.32�. Therefore

Â ª − R̂�
�−1 + 
 �2.39�

s well defined on

D�Â� ª Ran�R̂�
�� . �2.40�

y �2.37� such a definition of Â is 
 independent. Â is skew-symmetric by �2.38� and is skew-
djoint since

Ran�− Â ± 1� = L2�R� � L2�R� � Cn
� Cn �2.41�

y construction.

Since we require Â to be real, i.e., to preserve the linear space �2.8�, we have to restrict the
hoice of � to real, skew-symmetric matrices. Off-diagonal elements in the matrix � would
orrespond to nonlocal couplings between the pressure field and the oscillators. Since we are
ooking for local interactions the only admissible choice for the skew-symmetric matrix � is �
0.

By �2.40� �p ,v ,y� ,z���D�Â� if and only if

p�x� = p
�x� − 
1�i,j�n

��
�−1�ij�v
�sj� − z
j�G
��x − si� , �2.42�

v�x� = v
�x� +



a2�0


1�i,j�n

��
�−1�ij�v
�sj� − z
j�G
��x − si� , �2.43�

y� = y�
 − S 
1�i,j�n

��
�−1�ij
v
�sj� − z
j

Ki + 
2Mi
e� i, �2.44�

z� = z�
 − 
S 
1�i,j�n

��
�−1�ij
v
�sj� − z
j

Ki + 
2Mi
e� i, �2.45�

ith �p
�x� ,v
�x� ,y�
 ,z�
��D�A�. Posing

Â�p,v,y� ,z�� � �Â1�p,v,y� ,z��,Â2�p,v,y� ,z��,Â3�p,v,y� ,z��,Â4�p,v,y� ,z��� , �2.46�

ˆ
he action of A on �p ,v ,y� ,z�� is given by
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�Â1�p,v,y� ,z����x� = − a2�0
dv


dx
�x� − 
 

1�i,j�n

��
�−1�ij�v
�sj� − z
j�G
��x − si� , �2.47�

�Â2�p,v,y� ,z����x� = −
1

�0

dp


dx
�x� +


2

a2�0


1�i,j�n

��
�−1�ij�v
�sj� − z
j�G
��x − si� , �2.48�

Â3�p,v,y� ,z�� = z�
 − 
S 
1�i,j�n

��
�−1�ij
v
�sj� − z
j

Ki + 
2Mi
e� i, �2.49�

Â4�p,v,y� ,z�� = − 
1�j�n

Kj

Mj
y
je� j − 
2S 

1�i,j�n

��
�−1�ij
v
�sj� − z
j

Ki + 
2Mi
e� i. �2.50�

y the definitions of D�Â� and �
� one has

Â1�p,v,y� ,z�� = − a2�0
dv
dx

, �2.51�

Â3�p,v,y� ,z�� = z� , �2.52�

nd, defining

�i ª p�si
+� − p�si

−� = 
1�j�n

��
�−1�ij�v
�sj� − z
j� , �2.53�

ormula �2.50� becomes

Â4�p,v,y� ,z�� = − 
1�j�n

Kj

Mj
y
je� j − 
2S 

1�i�n

�i

Ki + 
2Mi
e� i �2.54�

=− 
1�j�n

	 Kj

Mj
yj +

S

Mj
� j�e� j . �2.55�

hen, posing

p�x� = p
�x� − 
1�j�n

� jG
��x − sj� = p0�x� +
1

2 
1�j�n

� j sgn�x − sj� , �2.56�

ne obtains

�Â2�p,v,y� ,z����x� = −
1

�0

dp0

dx
�x� − 

1�j�n

� j

�0
	 d

dx


x − sj

2�x − sj�

− 	−
d2

dx2 +

2

a2�G
�x − yj��
�2.57�

=−
1

�0

dp0

dx
. �2.58�
inally
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v�sk� = v
�sk� +



a2�0


1�i,j�n

��
�−1�ij�v
�sj� − z
j�
a

±2

e�

sk−si
/a �2.59�

=v
�sk� − 
1�i,j�n

��
�−1�ij�v
�sj� − z
j�	��
��ki +

S�ki

Ki + 
2Mi
� �2.60�

=z
k − 
S 
1�j�n

��
�−1�kj
v
�sk� − z
k

Kk + 
2Mk
= zk. �2.61�

�

By the previous theorem the differential equation

d

dt
	�t� = Â	�t� �2.62�

s equivalent to the system of equations

�p

�t
= − a2�0

�v
�x

, �2.63�

�v
�t

= −
1

�0

�p0

�x
� −

1

�0
	 �p

�x
− 

1�j�n

� j�sj� , �2.64�

dy�
dt

= z� , �2.65�

dz�

dt
= − 

1�j�n
	 Kj

Mj
yj +

S

Mj
� j�e� j , �2.66�

nd the corresponding Cauchy problem generates the strongly continuous unitary group of evo-

ution exp tÂ on L2�R� � L2�R� � Cn � Cn, which preserves D�Â�. Here �sj
denotes the Dirac mass

t the point sj and � j �see �2.18�� is the pressure jump at sj.
It is worth noting that the only real, skew-adjoint extension of the free operator A restricted to

he space of the vectors �p ,v ,y� ,z�� such that v�si , t�=zi corresponds to the relevant physical cou-
ling between the pressure field and the oscillators.

The next result will be useful in the spectral analysis of Â.
Lemma 2.2: The matrix

±���−1
ª lim

�↓0
�� ± ��−1 �2.67�

s well defined for any �� iR \ �0�.
Proof: We give the proof only for the matrix +���. The proof for −��� is analogous.
Let the matrix +�
� be the analytic continuation to C \� j=1

n �±i�Kj /Mj� of �
� defined for
e 
�0 in �2.22�. Suppose that si�sj if i� j, then

+�
� = − ��
� − T�
� , �2.68�
here � is the operator
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� = ��� −�
� � ��
+�
̄�� �2.69�

ith ��
±�
�=ie

±
si/a /�2a�0e� i. While T�
� is the upper triangular matrix

T�
�ij = � 
S�ij

Ki + 
2Mi
+

sinh 
�si − sj�
a�0

i � j

0 i � j ,
� �2.70�

e use the formula

+�
�−1 = −
1

��
� + T�
�
= −

1

T�
�
+

1

T�
�
��
�

1

��
� + T�
�
�2.71�

=− 
n=0

�
�− 1�n

T�
� 	��
�
1

T�
�
�n

, �2.72�

alid for all 
 for which the series converges.
Matrix T�
� is invertible and its inverse T�
�−1 is a lower triangular matrix with �T�
�−1�ii

1/ �T�
��ii. The eigenvalues of T�
�−1 are 1 / �T�
��ii and we can write

T�
�−1 = D�
�T̃�
�−1D�
�−1, �2.73�

here D�
� is a unitary matrix, analytic for 
�C \ �0�, and

�T̃�
�−1�ij =
1

�T�
��ii
�ij =

Ki + 
2Mi


S
�ij . �2.74�

e obtain for +�
�−1 the expression

+�
�−1 = − D�
�
n=0

�

�− 1�n��� �
� � �� �
��nT̃�
�−1D�
�−1, �2.75�

ith

��� �
��i =
Ki + 
2Mi


S
�D�
�−1��

−�
��i, �2.76�

��� �
��i = �D�
�−1��
+�
̄��i. �2.77�

hen

+�
�−1 = −
1

T�
�
+ 

n=0

�

�− 1�n���� �
�,�� �
��Cn�nD�
��� �
� � �� �
�T̃�
�−1D�
�−1. �2.78�

or all 
 for which the series converges, one has

+�
�−1 = −
1

T�
�
+

D�
��� �
� � �� �
�T̃�
�−1D�
�−1

1 + ��� �
�,�� �
��Cn
. �2.79�

n
onsider the scalar product in C :
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��� �
�,�� �
��Cn = 
i=1

n

�D�
�−1��
+�
̄��i

Ki + 
2Mi


S
�D�
�−1��

−�
��i. �2.80�

otice that, for �� iR \ �0�, ��� ��� ,�� ����Cn � iR and

− i��� ���,�� ����Cn → + � for � → + i� , �2.81�

− i��� ���,�� ����Cn → − � for � → i0+. �2.82�

hen there exists at least one point �� iR in which ��� ��� ,�� ����Cn =0. In a neighborhood of this
oint the series converges and defines an analytic function. By �2.79� and �2.80� it is clear that

+�
�−1 exists for any 
�C \ �0�. The same relations show that one can put +�
�−1
ª0 if 


i�Kj /Mj, j=1, . . . ,n. �

The following theorem completely characterizes the spectrum of Â.

Theorem 2.3: The essential spectrum of Â is purely absolutely continuous and

�ess�Â� = �ac�Â� = iR, �pp�Â� = �0� . �2.83�

ny vector of the kind

	1

2 
1�j�n

� j sgn�x − sj�,0,− 
1�j�n

S

Kj
� je� j,0�� , �2.84�

ith


1�j�n

� j = 0, �2.85�

s an eigenvector corresponding to the �n−1�-fold degenerate eigenvalue �=0.

The generalized eigenfunctions �̂±��� corresponding to the point of the absolutely continuous
pectrum relative to right �+� and left �−� incidence are given by

�̂±��,x� = ��̂p
±��,x�,�̂v

±��,x�,�̂y�
±���,�̂z�

±����, � � iR , �2.86�

�̂p
±��,x� = Ce±�x/a �

C

2a�0


1�i,j�n

�+���−1�ije
±�sj/a sgn�x − si�e−�
x−si
/a, �2.87�

�̂v
±��,x� = � C

e±�x/a

a�0
�

C

2a2�0
2 

1�i,j�n

�+���−1�ije
±�sj/ae−�
x−si
/a, �2.88�

�̂y�
±��� = ±

SC

a�0


1�i,j�n

�+���−1�ij
e±�sj/a

Ki + �2Mi
e� i, �2.89�

�̂z�
±��� = ±

�SC

a�0


1�i,j�n

�+���−1�ij
e±�sj/a

Ki + �2Mi
e� i, �2.90�

ith C=�a�0 / �4��.
Proof: For 
���A����Â�, �−Â+
�−1− �−A+
�−1 is of finite rank; then from Weyl’s criterion

see, e.g., Reed and Simon �1978� Theorem XIII.14� one has �ess�Â�=�ess�A�= iR. Moreover, by
ˆ
he Birman-Kato invariance principle, the wave operators �±�A ,A� exist and are complete �see,
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.g., Reed and Simon �1979�, Corollary 2 to Theorem XI.11�. Thus �ac�Â�=�ac�A�.
Let �̂	

sc be the singular continuous part of the spectral measure on iR corresponding to Â and

. Since �Ğ�
�	��� for all 
�C \�pp�A� and for all 	�D,

D ª �	 � �p,v,y� ,z��:p � L1�R� � L2�R�, v � L1�R� � L2�R�� , �2.91�

y Lemma 2 and Reed and Simon �1978�, Theorem XIII.19, one has supp �̂	
sc� �0���pp�A�, i.e.,

upp �̂	
sc=�, since �̂	

sc has no atoms by its definition. Since D is dense this gives �sc�Â�=�.

One can check that any vector 	 of the kind �2.84� is in the domain of Â and solves the

quation Â	=0. The degeneration of eigenvalue �0� follows from condition �101�.
Suppose now �� iR \ �0� and consider the equation Â	=�	. This produces, if 	

�p ,v ,y� ,z��, the equation

v� −
�2

a2 v = −
�

a2�0


1�j�n

� j�sj
, �2.92�

ith �i�C, i=1, . . . ,n, which has no square integrable solution.
The expression for the generalized eigenfunctions is a consequence of the Stone’s formula

see, e.g., Reed and Simon �1972�, Theorem VII.13�, which gives the generalized expansion
ormula

	 = s − lim
a↓−�,b↑�

s − lim
�↓0

1

2�
�

a

b

�R̂�� + �� − R̂�� − ���	d� . �2.93�

�

In the following lemma the asymptotic behavior of the oscillations of the thin walls is char-
cterized. It is proved that the oscillators relax �as 
t
→�� toward their equilibrium positions for
ny initial data orthogonal to the eigenspace relative to eigenvalue zero. For example, this is true
or any initial datum of the kind 	0��p ,v ,0� ,z��, where the support of p is outside the interval
ontaining the points s1 , ¯ ,sn which denote the equilibrium position of the walls.

Lemma 2.4: Given 	0 orthogonal to the eigenspace relative to eigenvalue zero, let us denote

y �y��t� ,z��t�� the projection onto Cn � Cn of etÂ	0. Then

lim

t
→�

�y��t��Cn = 0 and lim

t
→�

�z��t��Cn = 0.

Proof: Let P̂�dk� be the projection-valued measure corresponding to the self-adjoint operator

iÂ. Since 	0 is in the absolutely continuous subspace, for any 	 the bounded complex measure

�	 , P̂�dk�	0�� is absolutely continuous with respect to the Lebesgue measure and hence its
ensity belongs to L1�R�. Thus by the spectral theorem and Riemann-Lebesgue lemma,

lim

t
→�

��	,etÂ	0�� = lim

t
→�

�
R

e−itk��	, P̂�dk�	0�� = 0. �2.94�

y taking 	= �0,0 ,e� i ,0� � and 	= �0,0 ,0� ,e� i�, i=1, . . . ,n, one then obtains

lim

t
→�

yi�t� = 0 and lim

t
→�

zi�t� = 0. �2.95�

�

In order to obtain a more precise estimate on the asymptotic behavior of solutions of Eq.
2.62�, for particular initial conditions, a detailed analysis of ���−1 is required. For example, in
pecific cases one can prove the existence of frequencies that are totally transmitted by the array

f oscillators.
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II. KRONIG-PENNEY MODEL IN ACOUSTICS

It is possible to extend the previous construction to the case of an array of infinitely many
scillators. We prove that in the case of a periodic array of identical oscillators the energy spec-
rum shows a band structure.

As a first step we define the operator Â introduced in Sec. II when S= �s1 ,s2 , . . . � is a
enumerable set such that

d ª inf
i�j


si − sj
 � 0 i, j � N . �3.1�

efining the linear map

��p,v,y� ,z�� ª 
j=1

�

�v�sj� − zj�e� j , �3.2�

here �e� j�1
� is the usual complete orthonormal system for �2, one has the following.

Lemma 3.1: � is bounded as a map on H1�R� � H1�R� � �2 � �2 to �2.
Proof: We will follow closely Albeverio et al. �2005�. Let �Ij�1

� be a partition of R and let
�x−y� be the kernel of �−�+1�−1/2. Since

v�x� = 
j=1

� �
Ij

K�x − y���− � + 1�1/2v��y�dy , �3.3�

o prove the lemma amounts to show that the infinite matrix

Mij ª 	�
Ij

K�x − si�2dx�1/2

�3.4�

orresponds to a bounded linear operator M on �2. By Lemma C.3 in Albeverio et al. �2005�, one
as

�M��2,�2
2

� sup
i


j=1

� 	�
Ij

K�x − si�2dx�1/2

sup
j


i=1

� 	�
Ij

K�x − si�2dx�1/2

. �3.5�

ince

1
�x

=
2

�
�

0

� d�

x + �2 , x � 0,

y functional calculus one has

K�x − y� =
1

�
�

0

� e−�1+�2
x−y

�1 + �2
d� . �3.6�

y taking Ij = �sj −� j ,sj +� j�, where � j is one half the distance between sj and the preceding point
nd � j is one half the distance between sj and the successive point, a straightforward calculation
eads to

�
Ij

K�x − si�2dx �
2

d2�2e−
si−sj
/�2, �3.7�

rom where the estimate �M��2,�2 � +� follows immediately.
The construction proceeds now along the same lines as in the case of a finite set of points. We
tate the final result:
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Theorem 3.2: Let �Kj�1
� �Mj�1

�, Kj �0, Mj �0 be in �� and suppose that �Kj /Mj�1
� and

1/Mj�1
� are in �� too. The linear operator

Â:D�Â� � L2�R� � L2�R� � �2
� �2 → L2�R� � L2�R� � �2

� �2, �3.8�

D�Â� = ��p,v,y� ,z��:p � L2�R� � H1�R \ S�,v � H1�R�,y� � �2,z� � �2,p�si
+� − p�si

−� = �i,v�sj�

= zj,�� � �2� , �3.9�

Â�p,v,y� ,z�� ª 	− a2�0
dv
dx

,−
1

�0

dp0

dx
,z�,− 

j=1

� 	 Kj

Mj
yj +

S

Mj
� j�e� j� �3.10�

s real and skew-adjoint. Here p0� H̄1�R�,

p0�x� ª p�x� −
1

2
j=1

�

� j sgn�x − sj� , �3.11�

enotes the regular part of p. The resolvent of Â is given by

�− Â + 
�−1 = �− A + 
�−1 + 
i,j=1

�

��
�−1�ijG

i

� Ğ

̄

j
, 
 � C \ iR . �3.12�

ow we can proceed to the study of a periodic system. We use the same notation of Albeverio et
l. �2005�.

In this case S will be the “Bravais” lattice,

S = �nL:n � Z�, L � 0, �3.13�

nd Ŝ the “Brillouin” zone,

Ŝ = �−
b

2
,
b

2
�, b =

2�

L
. �3.14�

e consider a Hilbert space H on L2 � L2 � �2 � �2 in which the scalar product is defined by

1

a2�0
�p1,p2� + �0�v1,v2� +

K

S
�y�1,y�2� +

M

S
�z�1,z�2� �3.15�

here �·,·� represents either the usual scalar product in L2, when concerning pressure and velocity
elds, or the usual scalar product in �2, for y� and z�.

M, K, and S are positive constants representing the mass of oscillating walls, the elastic
onstant of the springs, and the area of the transverse section of the pipe.

The Hilbert space H can be decomposed as

H = W̃−1Ĥ�Ŝ,b−1d�;L2��− L/2,L/2�� � L2��− L/2,L/2�� � C � C� �3.16�

=W̃−1�
�−b/2,b/2�

� d�

b
�L2��− L/2,L/2�� � L2��− L/2,L/2�� � C � C� , �3.17�

here

˜ ˆ ˆ −1 2 2
W:H → H�S,b d�;L ��− L/2,L/2�� � L ��− L/2,L/2�� � C � C� , �3.18�
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W̃�p,v,y� ,z�� � ��W̃p���,��,�W̃v���,��,�W̃y�����,�W̃z������ , �3.19�

�W̃p���,�� � p̃��,�� = 
n�Z

ein�Lp�� + nL� , �3.20�

�W̃v���,�� � ṽ��,�� = 
n�Z

ein�Lv�� + nL� , �3.21�

�W̃y����� � ỹ��� = 
n�Z

ein�Lyn, �3.22�

�W̃z����� � z̃��� = 
n�Z

ein�Lzn � � �− L/2,L/2�, � � �− b/2,b/2� , �3.23�

nd

W̃−1:Ĥ�Ŝ,b−1d�;L2��− L/2,L/2�� � L2��− L/2,L/2�� � C � C� → H , �3.24�

W̃−1�p̃, ṽ,y� ,z�� � ��W̃−1p̃��� + nL�,�W̃−1ṽ��� + nL�,��W̃−1ỹ�n�,��W̃−1z̃�n�� , �3.25�

�W̃−1p̃��� + nL� = b−1�
−b/2

b/2

d�e−in�Lp̃��,�� , �3.26�

�W̃−1ṽ��� + nL� = b−1�
−b/2

b/2

d�e−in�Lṽ��,�� , �3.27�

�W̃−1ỹ�n = b−1�
−b/2

b/2

d�e−in�Lỹ��� , �3.28�

�W̃−1z̃�n = b−1�
−b/2

b/2

d�e−in�Lz̃��� � � �− L/2, L/2�, n � Z . �3.29�

he scalar product in L2��−L /2 ,L /2�� � L2��−L /2 ,L /2�� � C � C is defined by

1

a2�0
�p̃1, p̃2�L/2 + �0�ṽ1, ṽ2�L/2 +

K

S
yD1ỹ2 +

M

S
zD1z̃2, �3.30�

here �· , · �L/2 indicates the usual scalar product in L2��−L /2 ,L /2��.
From Theorem 3.2 we obtain the following.
Corollary 3.3: The linear operator

Â:D�Â� � H → H , �3.31�

D�Â� = ��p,v,y� ,z��:p � L2�R� � H1�R \ S�,v � H1�R�,y� � �2,z� � �2,p�nL+� − p�nL−� = �n,v�nL�
2
= zn " n � Z,�� � � � , �3.32�
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Â�p,v,y� ,z�� ª 	− a2�0
dv
dx

,−
1

�0

dp0

dx
,z�,−

K

M
y� −

S

M
�� � , �3.33�

here the regular part of p�x�, denoted with p0� H̄1�R�, is

p0�x� = p�x� −
1

2 
n�Z

�n sgn�x − nL� , �3.34�

s real and skew-adjoint.

We want to study the spectral structure of Â. To this aim we introduce the family of operators
ˆ ���:

Â���:D�Â���� � L2��− L/2,L/2�� � L2��− L/2,L/2�� � C � C → L2��− L/2,L/2�� � L2��− L/2,L/2��

� C � C , �3.35�

D�Â���� = ��p̃���, ṽ���, ỹ���, z̃����:p̃��� � H1��− L/2,L/2� \ �0��, ṽ��� � H1��− L/2,L/2��, ỹ���

� C, z̃��� � Cp̃��,0+� − p̃��,0−� = �̃���, ṽ��,0� = z̃���,�̃��� � C, p̃	�,−
L

2
+�

= ei�Lp̃	�,
L

2
−�, ṽ	�,−

L

2
+� = ei�Lṽ	�,

L

2
−�� ; " � � �−

b

2
,
b

2
� �3.36�

Â����p̃���, ṽ���, ỹ���, z̃���� ª 	− a2�0
dṽ���

d�
,−

1

�0

dp̃0���
d�

, z̃���,−
K

M
ỹ��� −

S

M
�̃���� ,

�3.37�

here p̃0����H1�R� is the regular part of p̃���,

p̃0��,�� = p̃��,�� −
1

2
�̃���sgn��� . �3.38�

oundary conditions for p̃�� ,�� and ṽ�� ,�� in �=0 and �= ±L /2 are such that all operators in this
amily are skew-adjoint with respect to the scalar product �3.30�.

The operator Â is related to Â��� by the relation �see Albeverio et al. �2005��

W̃ÂW̃−1 = �
�−b/2,b/2�

� d�

b
Â��� . �3.39�

he spectrum of Â��� is described by the following

Theorem 3.4: Let �� �−b /2 ,b /2�, then the spectrum of Â��� is purely discrete, in particular
ts eigenvalues En��� are given by

En��� = �n��� = 2i�n���
a

L
; n � Z, �n��� � R , �3.40�

here �n��� are the real solutions of

sin ��sin � − F���cos ��cos2 �L
= cos ��cos � + F���sin ��sin2 �L

, �3.41�

2 2
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F��� =
M

Mg
	�2�o

2

�g
2

1

�
− �� ; Mg = �0SL, �o

2 =
K

M
, �g = 2�

a

L
. �3.42�

he corresponding eigenfunctions are

�n��,x� = �p̃n��,��, ṽn��,��, ỹn���, z̃n����; n � Z, � � �− b/2,b/2� , �3.43�

p̃n��,�� = Cn�	sin	�n −
�L

2
� − F��n�cos	�n −

�L

2
��cos

2�n

L
� +

− i sin	�n −
�L

2
�	sin

2�n

L
� − F��n�


�

�

cos
2�n

L
��� , �3.44�

ṽn��,�� = −
iCn

a�0
�	sin	�n −

�L

2
� − F��n�cos	�n −

�L

2
��sin

2�n

L
�

+ i sin	�n −
�L

2
�	cos

2�n

L
� + F��n�sin

2�n

L

�
�� , �3.45�

ỹn��� = − i
CnL

a2�0�n
sin	�n −

�L

2
� , �3.46�

z̃n��� =
Cn

a�0
sin	�n −

�L

2
� . �3.47�

or �� �−b /2 ,b /2� zero is an eigenvalue with eigenfunction

	0 = 	C0	cos
�L

2
− i sin

�L

2
sgn����,0,2iC0

S

K
sin

�L

2
,0� . �3.48�

oreover, the following chain of inequalities holds:

0 � E1�0� � E1�− b/2� � E2�− b/2� � E2�0� � E3�0� � E3�− b/2� � E4�− b/2� � E4�0� � E5�0�

� E4�− b/2� � E5�− b/2� � ¯ . �3.49�

n general, the eigenvalues En��� are all distinct and nondegenerate. If �o /�g=n /2 with n�N,
here is just one twofold degenerate eigenvalue equal to n� /2; such an eigenvalue corresponds to
=0 for n even and to 
�
=b /2 for n odd.

If E��� is an eigenvalue then −E��� is an eigenvalue.
Given �� �−b /2 ,b /2� the following relation holds:

En�− �� = En��� . �3.50�

Proof: Eigenvalues and eigenfunctions �3.40�–�3.48� are given by direct computation. We
olve the system of equations

Â����p̃���, ṽ���, ỹ���, z̃���� = ��p̃���, ṽ���, ỹ���, z̃���� � � iR; �3.51�

˜ ˜
ith the condition v�� ,0�=z���, the solution reads
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p̃��,�� = C���cos
2��

L
+ D����sin

2��

L
− F���sgn���cos

2��

L
� , �3.52�

ṽ��,�� =
C���
ia�0

sin
2��

L
−

D���
ia�0

�cos
2��

L
+ F���sin

2�
�

L

� , �3.53�

here �=−iL� / �2a��R, and C��� and D��� are two unknown functions of �. To determine C���

IG. 1. Graphical solution of Eqs. �3.55� and �3.56�. �b� and corresponding band structure for �a� a non-degenerate case �b�
degenerate case.
nd D��� we have to take into account the boundary conditions
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p̃	�,−
L

2
+� = ei�Lp̃	�,

L

2
−� ,

�3.54�

ṽ	�,−
L

2
+� = ei�Lṽ	�,

L

2
−� .

his system has only the trivial solution C���=0 and D���=0 for the values of � for which the
eterminant of the matrix of the coefficients of the system is zero. The condition that the deter-
inant is zero implies Eq. �3.41� for the eigenvalues. For � satisfying condition �3.41� the solu-

ions of the system of dependent equations �3.54� give the eigenfunctions.
For �=0 and �=−b /2 relation �3.41� becomes

tan � = 0 or tan � = F��� =
M

Mg
	�2�o

2

�g
2

1

�
− �� ; � = 0, �3.55�

cot � = 0 or − cot � = F��� =
M

Mg
	�2�o

2

�g
2

1

�
− �� ; � = − b/2. �3.56�

raphic solutions of the transcendental equations �3.55� and �3.56� are given in the upper part of
igs. 1�a� and 1�b�. The chain of inequalities �3.49� follows by the monotone behavior of F���.

Degeneration of eigenvalues for �o /�g=n /2, the fact that −E��� is an eigenvalue if E��� is an
igenvalue and relation �3.50� follow directly by Eq. �3.41� and by F���=−F�−��. �

One can show that there is a band structure writing equation �3.41� as

tan2 �L

2
= tan �� tan � − F���

1 + F���tan �
� . �3.57�

t is possible to find solutions of Eq. �3.57� only for values of � such that the right-hand side is
ositive. In the lower part of Figs. 1�a� and 1�b� the resulting band structure is shown. The figures
learly show that the width of the gaps is connected to the structure of the spectrum. In particular,
ig. 1�b� shows that when there is a degenerate eigenvalue, �o /�g=n� /2 with n�N, a gap
isappears because of the overlapping of two bands.

The bandwidth increases when the ratio M /Mg decreases.
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n inverse scattering for the multidimensional relativistic
ewton equation at high energies
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Consider the Newton equation in the relativistic case �that is the Newton-Einstein
equation� ṗ=F�x�, F�x�=−�V�x�, p= ẋ /�1− ��ẋ�2 /c2�, p=dp /dt, ẋ=dx /dt, x
�C1�R ,Rd�, where V�C2�Rd ,R�, ��x

jV�x�����j��1+ �x��−��+�j�� for �j��2 and some
��1. We give estimates and asymptotics for scattering solutions and scattering
data for the equation for the case of small angle scattering. We show that at high
energies the velocity valued component of the scattering operator uniquely deter-
mines the x-ray transform PF. Applying results on inversion of the x-ray transform
P we obtain that for d�2 the velocity valued component of the scattering operator
at high energies uniquely determines F. In addition we show that our high energy
asymptotics found for the configuration valued component of the scattering opera-
tor does not uniquely determine F. The results of the present work were obtained in
the process of generalizing some results of Novikov to the relativistic case. © 2006
American Institute of Physics. �DOI: 10.1063/1.2206690�

. INTRODUCTION

Consider the Newton equation in the relativistic case �that is the Newton-Einstein equation�

ṗ = F�x�, F�x� = − �V�x� ,

p =
ẋ

�1 −
�ẋ�2

c2

, ṗ =
dp

dt
, ẋ =

dx

dt
, x � C1�R,Rd� , �1.1�

here

V � C2�Rd,R�, ��x
jV�x�� � ��j��1 + �x��−��+�j�� �1.2�

or �j��2 and some ��1 �here j is the multi-index j� �N� �0��d, �j�=	n=1
d jn and ��j� are positive

eal constants�. The equation �1.1� is an equation for x=x�t� and is the equation of motion in Rd of
relativistic particle of mass m=1 and charge e=1 in an external electric field described by the

calar potential V �see Ref. 1 and, for example, Sec. 17 of Ref. 5�. In this equation x is the position
f the particle, p is its impulse, F is the force acting on the particle, t is the time and c is the speed
f light.

For the equation �1.1� the energy

�
Electronic mail: jollivet@math.univ-nantes.fr

47, 062902-1022-2488/2006/47�6�/062902/30/$23.00 © 2006 American Institute of Physics
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E = c2�1 +
�p�t��2

c2 + V�x�t��

s an integral of motion. We denote by Bc the Euclidean open ball whose radius is c and whose
enter is 0.

Yajima10 studied in dimension 3 �without loss of generality for the case of dimension d�2�
he direct scattering of relativistic particle in an external electromagnetic field described by four
ector �V�x� ,A�x�� where the scalar potential V and the vector potential A are both rapidly
ecreasing. We recall the results of Yajima10 in our case.

Under the conditions �1.2�, the following is valid �see Ref. 10�: for any �v− ,x−��Bc�Rd,

−�0, the equation �1.1� has a unique solution x�C2�R ,Rd� such that

x�t� = v−t + x− + y−�t� , �1.3�

here ẏ−�t�→0, y−�t�→0, as t→−�; in addition for almost any �v− ,x−��Bc�Rd, v−�0,

x�t� = v+t + x+ + y+�t� , �1.4�

here v+�0, �v+��c, v+=a�v− ,x−�, x+=b�v− ,x−�, ẏ+�t�→0, y+�t�→0, as t→ +�.
The map S :Bc�Rd→Bc�Rd given by the formulas

v+ = a�v−,x−�, x+ = b�v−,x−� �1.5�

s called the scattering map for the equation �1.1�; in addition, a�v− ,x−�, b�v− ,x−� are called the
cattering data for the equation �1.1�.

By D�S� we denote the domain of definition of S; by R�S� we denote the range of S �by
efinition, if �v− ,x−��D�S�, then v−�0 and a�v− ,x−��0�.

Under the conditions �1.2�, the map S has the following simple properties �see Ref. 10�: for
ny �v ,x��Bc�Rd, �v ,x��D�S� if and only if �−v ,x��R�S�; D�S� is an open set of Bc�Rd and
es��Bc�Rd� \D�S��=0 for the Lebesgue measure on Bc�Rd induced by the Lebesgue measure

n Rd�Rd; the map S :D�S�→R�S� is continuous and preserves the element of volume,
�v− ,x−�2=v−

2.
If V�x�
0, then a�v− ,x−�=v−, b�v− ,x−�=x−, �v− ,x−��Bc�Rd, v−�0. Therefore for

�v− ,x−�, b�v− ,x−� we will use the following representation:

a�v−,x−� = v− + asc�v−,x−�
b�v−,x−� = x− + bsc�v−,x−�

�v−,x−� � D�S� . �1.6�

We will use the fact that, under the conditions �1.2�, the map S is uniquely determined by its
estriction to M�S�=D�S��M, where

M = ��v−,x−� � Bc � Rd�v− � 0,v−x− = 0� .

Consider

TSd−1 = ��	,x��	 � Sd−1, x � Rd,	x = 0� ,

here Sd−1 is the unit sphere in Rd.
Consider the x-ray transform P which maps each function f with the properties

f � C�Rd,Rm�, �f�x�� = O��x�−��, as �x� → �, for some � � 1

nto a function Pf �C�TSd−1 ,Rm�, where Pf is defined by

Pf�	,x� = �
−�

+�

f�t	 + x�dt, �	,x� � TSd−1.
oncerning the theory of the x-ray transform, the reader is referred to Refs. 8, 2, 6, and 7.
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Let


�c,d,�̃,�,rv,rx,r� =
1

�1 +
rv

2

4�c2 − rv
2�

22�+6�1 + 3�̃/c�d2�d�̃�rv/�2 + 1 − r�3

r�� − 1��rv/�2 − r�4�1 + rx/�2��−1
�1.7a�

nd let z=z�c ,d , �̃ ,� ,rx ,r�, z1=z1�c ,d ,�1 ,� ,rx ,r�, and z2=z2�c ,d ,�1 ,� ,rx� be defined as the
oots of the following equations:


�c,d,�̃,�,z,rx,r� = 1, z � � �2r,c� , �1.7b�

z1

�1 −
z1

2

c2

−
2�+4�1

�d

��z1/�2 − r��rx/�2 + 1��
= 0, z1 � � �2r,c� , �1.7c�

z2

�1 −
z2

2

c2

−
8�1

�d

��z2/�2��1 + rx/�2��
= 0, z2 � � 0,c� , �1.7d�

here rv, rx, and r are some non-negative numbers such that 0�r�1, r�c /�2, �2r�rv�c, and

here �̃=max��1 ,�2�.
The main results of the present work consist in the small angle scattering asymptotics and

stimates for the scattering data asc and bsc �and scattering solutions� for the equation �1.1� and in
pplication of these asymptotics and estimates to inverse scattering for the equation �1.1� at high
nergies. Our main results include, in particular, Theorem 1.1 and Proposition 1.1 given below.

Theorem 1.1: Let the conditions �1.2� be valid, �̃=max��1 ,�2�, �	 ,x��TSd−1, and let r be a
ositive constant such that 0�r�1, r�c /�2. Then

PF�	,x� = lim
s→c

s�c

s

�1 −
s2

c2

asc�s	,x� , �1.8a�

nd, in addition,

�PF�	,x� −
s

�1 −
s2

c2

asc�s	,x�� �
d2�̃222�+5s�s/�2 + 1 − r�2

�1 +
s2

4�c2 − s2�
��� − 1��s/�2 − r�4�1 + �x�/�2�2�−1

�1.8b�

or s�c, s�z�c ,d , �̃ ,� , �x� ,r�, s�z1�c ,d ,�1 ,� , �x� ,r�;

�
−�

0 �
−�

�

F�s	 + x�ds d� − �
0

+� �
�

+�

F�s	 + x�ds d� + PV�	,x�	 = lim
s→c

s�c

s2

�1 −
s2

c2

bsc�s	,x�

�1.9a�
nd, in addition,
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� bsc�s	,x�

�1 −
s2

c2

−
1

c2 PV�	,x�	 +
1

s2�
0

+� �
�

+�

F�u	 + x�du d� −
1

s2�
−�

0 �
−�

�

F�u	 + x�du d��
��1 −

s2

c2C +

d3�d��2 + 3
�1�2

c
��123�+8� s

�2
+ 1 − r�3

�1 −
3

4

s2

c2���� − 1�2� s
�2

− r�6�1 +
�x�
�2
�2�−2� �1.9b�

or s�c, s�z�c ,d , �̃ ,� , �x� ,r�, s�max�z1�c ,d ,�1 ,� , �x� ,r� ,z2�c ,d ,�1 ,� , �x��� and some constant
=C�c ,d ,�0 ,�1 ,� , �x�� which can be given explicitly.

Consider the vector function w of �	 ,x� arising on the left-hand side of �1.9a�,

w�V,	,x� = �
−�

0 �
−�

�

F�s	 + x�ds d� − �
0

+� �
�

+�

F�s	 + x�ds d� + PV�	,x�	, �	,x� � TSd−1.

Proposition 1.1: The vector w as a function of potential V satisfying the conditions �1.2� and
f �	 ,x��TSd−1 has the following simple properties:

1� under the conditions �1.2�, for any potential V the vector w�V ,	 ,x� is orthogonal to 	,
2� there exists a potential V which satisfies the conditions �1.2� and for which w�V ,	 ,x� is not

null for all �	 ,x��TSd−1,
3� for any spherical symmetric potential V satisfying the conditions �1.2� we have w�V ,	 ,x�

=0 for all �	 ,x��TSd−1.

From �1.8a� and inversion formulas for the x-ray transform for d�2 �see Refs. 8, 2, 6, and 7�
t follows that asc determines uniquely F at high energies. Moreover for d�2 methods of recon-
truction of f from Pf �see Refs. 8, 2, 6, and 7� permit to reconstruct F from the velocity valued
omponent a of the scattering map at high energies. The formula �1.9a� and the item �3� of
roposition 1.1 show that the first term of the asymptotics of bsc does not uniquely determine the
otential V or the force F. The item �2� of Proposition 1.1 ensures us that the asymptotics which
as found for bsc is nontrivial. Note that Nicoleau paid our attention to the fact that, in addition of

he item �3� of Proposition 1.1, w�V ,	 ,x�, �	 ,x��TSd−1, uniquely determines V satisfying �1.2�
odulo spherical symmetric potentials.

Inverse scattering for the classical multidimensional Newton equation was first studied by
ovikov7 �the existence of the scattering states, asymptotic completeness and scattering map for

he classical Newton equation was studied by Simon9�. Novikov proved two formulas which link
cattering data at high energies to the x-ray transform of F and V. These formulas are generalized
o the relativistic case by the formulas �1.8a� and �1.9a� of Theorem 1.1. Then applying results on
nversion of the x-ray transform, Novikov obtains that at high energies the velocity valued com-
onent of the scattering data determines uniquely the x-ray transform of F whereas the configu-
ation valued component of the scattering operator determines uniquely the x-ray transform of V.
ote that in the relativistic case �due to the formula �1.9a� and Proposition 1.1� the asymptotics of

sc does not determine uniquely F. We follow Novikov’s framework7 to obtain our results. Note
lso that for the classical multidimensional Newton equation in a bounded open strictly convex
omain an inverse boundary value problem at high energies was first studied in Ref. 3.

Further our paper is organized as follows. In Sec. II we transform the differential equation
1.1� with initial conditions �1.3� in an integral equation which takes the form y−=Av−,x−

�y−�. Then
e study Av−,x−

on a suitable space and we give estimates and contraction estimates about Av−,x−
Lemmas 2.1, 2.2, 2.3�. In Sec. III we give estimates and asymptotics for the deflection y−�t� from
1.3� and for scattering data asc�v− ,x−�, bsc�v− ,x−� from �1.6� �Theorem 3.1 and Theorem 3.2�.
rom these estimates and asymptotics the formulas �1.8a� and �1.9a� will follow when the param-

ˆ
ters c, �m, �, d, v−, x− are fixed and �v−� increases �where ��j�, �, d are constants from �1.2�,
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m=max��0 ,�1 ,�2�; v̂−=v− / �v−��. In these cases supt�R�	�t�� decreases, where 	�t� denotes the
ngle between the vectors ẋ�t�=v−+ ẏ−�t� and v−, and we deal with small angle scattering. Note
hat, under the conditions of Theorem 3.1, without additional assumptions, there is the estimate
upt�R�	�t��� 1

4� and we deal with rather small angle scattering �concerning the term “small angle
cattering” see Ref. 7 and Sec. 20 of Ref. 4�. Theorem 1.1 follows from Theorem 3.1 and Theorem
.2. Section IV, Sec. V, and Sec. VI are devoted to Proofs of our Theorems and Lemmas.

I. A CONTRACTION MAP

Let us transform the differential equation �1.1� in an integral equation. Consider the function
:Rd→Bc defined by

g�x� =
x

�1 +
�x�2

c2

,

here x�Rd. One can see that g has, in particular, the following simple properties:

�g�x� − g�y�� � �d�x − y� for x,y � Rd, �2.1�

is an infinitely smooth diffeomorphism between Rd and Bc, and its inverse is given by

�x� =
x

�1 −
�x�2

c2

, x � Bc.

Now, if x satisfies the differential equation �1.1� and the initial conditions �1.3�, then x satisfies
he integral equation

x�t� = v−t + x− + �
−�

t �g��v−� + �
−�

�

F�x�s��ds� − v−�d� , �2.2�

here F�x�=−�V�x�, v−�Bc \ �0�.
For y−�t� this equation takes the form

y−�t� = Av−,x−
�y−��t� , �2.3�

here

Av−,x−
�f��t� = �

−�

t �g��v−� + �
−�

�

F�v−s + x− + f�s��ds� − v−�d�, v− � Bc \ �0� .

From �2.2�, �1.2�, and �2.1� �applied on “x” =�v−�+�−�
� F�x�s��ds and “y” =�v−��, and

y−�t��C�R ,Rd�, y−�t�→0, as t→−�, it follows, in particular, that

y−�t� � C1�R,Rd� and �ẏ−�t�� = O��t�−��, �y−�t�� = O��t�−�+1�, as t → − � , �2.4�

here v−�Bc \ �0� and x− are fixed.
Consider the complete metric space

MT,r = �f � C1�� − �,T�,Rd�� �f�T � r� ,
here
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�f�T = max� sup
t����−�,T�

� ḟ�t��, sup
t����−�,T�

�f�t� − t ḟ�t��� �2.5�

where for T= +� we understand �−� ,T� as �−� , +���. From �2.4� it follows that, at fixed T
+�,

y−�t� � MT,r for some r depending on y−�t� and T . �2.6�

Lemma 2.1: Under the conditions �1.2�, the following is valid: if f �MT,r, 0�r�1,
�c /�2, �v−��c, �v−��z1�c ,d ,�1 ,� , �x−� ,r�, v−x−=0, then

�Av−,x−
�f��T � �T�c,d,�1,�, �v−�, �x−�,r�

=
1

�1 + �v−�2/�4�c2 − �v−�2��

2�+1d�1��v−�/�2 + 1 − r�

�� − 1���v−�/�2 − r�2�1 + �x−�/�2 − ��v−�/�2 − r�T��−1

�2.7a�

or T�0,

�Av−,x−
�f��T � ��c,d,�1,�, �v−�, �x−�,r�

=
1

�1 + �v−�2/�4�c2 − �v−�2��

2�+2d�1��v−�/�2 + 1 − r�

�� − 1���v−��2 − r�2�1 + �x−�/�2��−1
�2.7b�

or T� +�; if f1, f2�MT,r, 0�r�1, r�c /�2, �v−��c, �v−��z1�c ,d ,�1 ,� , �x−� ,r�, v−x−=0, then

�Av−,x−
�f2� − Av−,x−

�f1��T � �T�c,d,�2,�, �v−�, �x−�,r��f2 − f1�T,

�T�c,d,�2,�, �v−�, �x−�,r� =
1

�1 + �v−�2/�4�c2 − �v−�2���� − 1�

�
2�+2d�d�2��v−�/�2 + 1 − r�2

��v−�/�2 − r�3�1 + �x−�/�2 − ��v−�/�2 − r�T��−1
�2.8a�

or T�0,

�Av−,x−
�f2� − Av−,x−

�f1��T � ��c,d,�1,�2,�, �v−�, �x−�,r��f2 − f1�T,

��c,d,�1,�2,�, �v−�, �x−�,r� =
1

�1 + �v−�2/�4�c2 − �v−�2��

22�+6��2 + 3�1�2/c�d2�d��v−�/�2 + 1 − r�3

�� − 1���v−�/�2 − r�4�1 + �x−�/�2��−1

�2.8b�

or T� +�.
Note that

max��T�c,d,�1,�, �v−�, �x−�,r�
r

,�T�c,d,�2,�, �v−�, �x−�,r�� � 
T�c,d,�̃,�, �v−�, �x−�,r�

=
1

�1 + �v−�2/�4�c2 − �v−�2��

2�+2d�d�̃��v−�/�2 + 1 − r�2

r�� − 1���v−�/�2 − r�3�1 + �x−�/�2 − ��v−�/�2 − r�T��−1

�2.9a�
or T�0,
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max���c,d,�1,�, �v−�, �x−�,r�
r

, ��c,d,�1,�2,�, �v−�, �x−�,r��
� 
�c,d,�̃,�, �v−�, �x−�,r� =

1
�1 + �v−�2/�4�c2 − �v−�2��

�
22�+6�1 + 3�̃/c�d2�d�̃��v−�/�2 + 1 − r�3

r�� − 1���v−�/�2 − r�4�1 + �x−�/�2��−1
�2.9b�

or T� +�, where �̃=max��1 ,�2�, 0�r�1, r�c /�2, �v−��c, �v−��z1�c ,d ,�1 ,� , �x−� ,r�,
−x−=0.

From Lemma 2.1 and the estimates �2.9� we obtain the following result.
Corollary 2.1: Under the conditions �1.2�, 0�r�1, r�c /�2, �v−��c, �v−�

z1�c ,d ,�1 ,� , �x−� ,r�, v−x−=0, the following result is valid:

if 
T�c,d,�̃,�, �v−�, �x−�,r� � 1, then Av−,x−
is a contraction map in MT,r for T � 0;

if 
�c,d,�̃,�, �v−�, �x−�,r� � 1, then Av−,x−
is a contraction map in MT,r for T � + � .

Taking into account �2.6� and using Lemma 2.1, Corollary 2.1 and the lemma about the
ontraction maps we will study the solution y−�t� of the equation �2.3� in MT,r.

We will use also the following results.
Lemma 2.2: Under the conditions �1.2�, f �MT,r, 0�r�1, r�c /�2, �v−��c, �v−�

z1�c ,d ,�1 ,� , �x−� ,r�, v−x−=0, the following is valid:

�Ȧv−,x−
�f��t�� � �−�c,d,�1,�, �v−�, �x−�,r,t� =

1
�1 + �v−�2/�4�c2 − �v−�2��

�
d�12�+1

���v−�/�2 − r��1 + �x−�/�2 − ��v−�/�2 − r�t��
, �2.10�

�Av−,x−
�f��t�� � �−�c,d,�1,�, �v−�, �x−�,r,t� =

1
�1 + �v−�2/�4�c2 − �v−�2��

�
d�12�+1

�� − 1����v−�/�2 − r�2�1 + �x−�/�2 − ��v−�/�2 − r�t��−1
, �2.11�

or t�T, T�0;

Av−,x−
�f��t� = kv−,x−

�f�t + lv−,x−
�f� + Hv−,x−

�f��t� , �2.12�

here

kv−,x−
�f� = g��v−� + �+�

F�v−s + x− + f�s��ds� − v−, �2.13a�

−�
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lv−,x−
�f� = �

−�

0 �g��v−� + �
−�

�

F�v−s + x− + f�s��ds� − v−�d�

+ �
0

+� �g��v−� + �
−�

�

F�v−s + x− + f�s��ds�
− g��v−� + �

−�

+�

F�v−s + x− + f�s��ds��d� , �2.13b�

�kv−,x−
�f�� � 2�−�c,d,�1,�, �v−�, �x−�,r,0� , �2.14a�

�lv−,x−
�f�� � 2�−�c,d,�1,�, �v−�, �x−�,r,0� , �2.14b�

�Ḣv−,x−
�f��t�� � �+�c,d,�1,�, �v−�, �x−�,r,t� =

1
�1 + �v−�2/�4�c2 − �v−�2�����v−�/�2 − r�

�
d�12�+1

�1 + �x−�/�2 + ��v−�/�2 − r�t��
, �2.15�

�Hv−,x−
�f��t�� � �+�c,d,�1,�, �v−�, �x−�,r,t� =

1
�1 + �v−�2/�4�c2 − �v−�2����� − 1���v−�/�2 − r�2

�
d�12�+1

�1 + �x−�/�2 + ��v−�/�2 − r�t��−1
, �2.16�

or T= +�, t�0.
Lemma 2.3: Let the conditions �1.2� be valid, y−�t��MT,r be a solution of �2.3�, T= +�, 0

r�1, r�c /�2, �v−��c, �v−��z1�c ,d ,�1 ,� , �x−� ,r�, v−x−=0, then

�kv−,x−
�y−� − kv−,x−

�0�� � �a��c,d,�1,�2,�, �v−�, �x−�,r� =
d�d�22�+3��v−�/�2 + 1 − r�

���v−�/�2 − r�2�1 + �x−�/�2��

�
��c,d,�1,�, �v−�, �x−�,r�

�1 + �v−�2/�4�c2 − �v−�2��
, �2.17a�

� kv−,x−
�y−�

�1 −
�v−�2

c2

− �
−�

+�

F�x− + v−s�ds� � �a�c,d,�1,�2,�, �v−�, �x−�,r�

=
d�22�+3�1 + �v−�/�2 − r���c,d,�1,�, �v−�, �x−�,r�

���v−�/�2 − r�2�1 + �x−�/�2��
,

�2.17b�

�lv−,x−
�y−� − lv−,x−

�0�� � �b�c,d,�1,�2,�, �v−�, �x−�,r� =
d2�d��2 + 3�1�2/c�22�+6��v−�/�2 + 1 − r�2

��� − 1���v−�/�2 − r�4�1 + �x−�/�2��−1

�
��c,d,�1,�, �v−�, �x−�,r�

�1 + �v−�2/�4�c2 − �v−�2��
. �2.17c�
Proofs of Lemmas 2.1, 2.2, 2.3 are given in Sec. V.
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II. SMALL ANGLE SCATTERING

Under the conditions �1.2�, for any �v− ,x−��Bc�Rd, v−�0, the equation �1.1� has a unique
olution x�C2�R ,Rd� with the initial conditions �1.3�. Consider the function y−�t� from �1.3�. This
unction describes deflection from free motion.

Using Corollary 2.1 the lemma about contraction maps, and Lemmas 2.2 and 2.3 we obtain
he following result.

Theorem 3.1: Let the conditions (1.2) be valid, 
�c ,d , �̃ ,� , �v−� , �x−� ,r��1, �̃=max��1 ,�2�,
�r�1, r�c /�2, �v−��c, �v−��z1�c ,d ,�1 ,� , �x−� ,r�, v−x−=0. Then the deflection y−�t� has the

ollowing properties:

y− � MT,r, T = + � , �3.1�

�ẏ−�t�� � �−�c,d,�1,�, �v−�, �x−�,r,t� , �3.2�

�y−�t�� � �−�c,d,�1,�, �v−�, �x−�,r,t� for t � 0, �3.3�

y−�t� = asc�v−,x−�t + bsc�v−,x−� + h�v−,x−,t� , �3.4�

here

�asc�v−,x−� −  �v−� + �
−�

+�

F�v−s + x−�ds

�
1 +

��v−� + �
−�

+�

F�v−s + x−�ds�2

c2

− v−�� � �a��c,d,�1,�2,�, �v−�, �x−�,r� ,

�3.5a�

� asc�v−,x−�

�1 −
�v−�2

c2

− �
−�

+�

F�v−s + x−�ds� � �a�c,d,�1,�2,�, �v−�, �x−�,r� , �3.5b�

�bsc�v−,x−� − lv−,x−
�0�� � �b�c,d,�1,�2,�, �v−�, �x−�,r� , �3.5c�

�asc�v−,x−�� � 2�−�c,d,�1,�, �v−�, �x−�,r,0� , �3.6a�

�bsc�v−,x−�� � 2�−�c,d,�1,�, �v−�, �x−�,r,0� , �3.6b�

�ḣ�v−,x−,t�� � �+�c,d,�1,�, �v−�, �x−�,r,t� , �3.7�

�h�v−,x−,t�� � �+�c,d,�1,�, �v−�, �x−�,r,t� �3.8�

or t�0, where lv−,x−
�0� �respectively, �a�, �a, �b, �−, �+, �− and �+� is defined in �2.13b� �respec-

ively, �2.17a�, �2.17b�, �2.17c�, �2.10�, �2.15�, �2.11�, and �2.16��.
We will use the following observations.

�
�I� Let 0�r�1, r�c / 2, 0�u,
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s1

�1 −
s1

2

c2

−
2�+4�1

�d

��s1/�2 − r��u/�2 + 1��
�

s2

�1 −
s2

2

c2

−
2�+4�1

�d

��s2/�2 − r��u/�2 + 1��

or �2r�s2�s1�c.
�II� Let 0�r�1, r�c /�2, u� ��2r ,c�,

u

�1 −
u2

c2

−
2�+4�1

�d

��u/�2 − r��s1/�2 + 1��
�

u

�1 −
u2

c2

−
2�+4�1

�d

��u/�2 − r��s2/�2 + 1��

or 0�s2�s1.

�III� Let 0�r�1, r�c /�2, x some real non-negative number, �̃=max��1 ,�2� and �2r�s
c then


�c,d,�̃,�,s, �x�,r��1 Û s�z�c,d,�̃,�, �x�,r� .

bservations �I� and �II� imply that z1�c ,d ,�1 ,� ,s2 ,r��z1�c ,d ,�1 ,� ,s1 ,r� for �2r�s2�s1�c
hen c, �1, �, d, r are fixed.

Theorem 3.1 gives, in particular, estimates for the scattering process and asymptotics for the
elocity valued component of the scattering map when c, �1, �2, �, d, v̂−, x− are fixed �where

ˆ −=v− / �v−�� and �v−� increases or, e.g., c, �1, �2, �, d, v−, x̂− are fixed and �x−� increases. In these
ases supt�R�	�t�� decreases, where 	�t� denotes the angle between the vectors ẋ�t�=v−+ ẏ−�t� and

−, and we deal with small angle scattering. Note that already under the conditions of Theorem
.1, without additional assumptions, there is the estimate supt�R�	�t��� 1

4� and we deal with a
ather small angle scattering. Theorem 3.1 with �3.5c� will give the asymptotics of the configura-
ion valued component b�v− ,x−� of the scattering map if we can study the asymptotics of lv−,x−

�0�.
his is the subject of Theorem 3.2.

Theorem 3.2: Let c, d, �0, �1, �, �x� be fixed. Then there exists a constant Cc,d,�0,�1,�,�x� such
hat

� lv,x�0�

�1 −
�v�2

c2

−
1

c2 PV�v̂,x�v̂ +
1

�v�2�0

+� �
�

+�

F�uv̂ + x�du d� −
1

�v�2�−�

0 �
−�

�

F�uv̂ + x�du d��
� Cc,d,�0,�1,�,�x��1 −

�v�2

c2 �3.9�

or any v�Bc, �v��z2�c ,d ,�1 ,� , �x��, vx=0, and where v̂=v / �v�.
The proof of Theorem 3.2 is given in Sec. VI. Using this proof one can compute Cc,d,�0,�1,�,�x�

xplicitly.

V. PRELIMINARIES FOR THE MAIN PROOFS

. Inequalities for F

Lemma 4.1: Under the conditions �1.2�, the following estimates are valid:

�F�x�� = �	
j=1

d � �

�xj
V�x��2�1/2

� �1
�d�1 + �x��−��+1� for x � Rd, �4.1�

�F�x� − F�y�� � �2d sup
���0,1�

�1 + ��x + �1 − ��y��−��+2��x − y�, for x,y � Rd. �4.2�
Lemma 4.1 follows directly from the formula F�x�=−�V�x� and the conditions �1.2�.
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. Infinitely smooth function g :Rd\Bc

Lemma 4.2: The following estimates hold:

��gi�x��2 �
1

1 +
�x�2

c2

for x � Rd, i = 1, . . . ,d , �4.3�

�g�x� − g�y�� � �d sup
���0,1�

1

�1 +
��x + �1 − ��y�2

c2

�x − y� for x, y � Rd, �4.4�

��gi�x� − �gi�y�� �
3�d

c
sup

���0,1�

1

1 +
��x + �1 − ��y�2

c2

�x − y� for x, y � Rd, �4.5�

here g= �g1 , . . . ,gd�.
Lemma 4.2 follows from straightforward calculations.
Remark 4.1: Using the growth properties of g�p� with respect to �p� and following Novikov’s

ramework,7 we will easily generalize some of the results of Ref. 7 to the relativistic case. Note
hat 1 / �1+ �p�2 /c2�→0 when p�Rd, �p�→ +�.

. Some estimates of integrals

We will use the following estimates. For a�0, b�0, ��1,

�
−�

t

�a + b�s��−� ds =
1

�� − 1�b�a − bt��−1 for t � 0, �4.6�

�
−�

t

�a + b�s��−� ds �
2

�� − 1�ba�−1 for t � 0. �4.7�

For a�0, b�0, ��2,

�
−�

t �
−�

�

�a + b�s��−� ds d� =
1

�� − 2��� − 1�b2�a − bt��−2 for t � 0, �4.8�

�
0

t �
�

t

�a + bs�−� ds d� �
1

�� − 2��� − 1�b2a�−2 for t � 0. �4.9�

For a�1, b�0, ��2,

�
−�

t

�a + b�s��−��1 + �s��ds �
b + 1

�� − 2�b2�a − bt��−2 for t � 0, �4.10�

�
−�

t

�a + b�s��−��1 + �s��ds � 2
b + 1

�� − 2�b2a�−2 for t � 0. �4.11�
For a�1, b�0, ��3,
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�
0

t �
�

t

�a + bs�−��1 + s�ds d� �
b + 1

�� − 3��� − 2�b3a�−3 for t � 0. �4.12�

For the proof of �4.6�–�4.12�, see Ref. 7.

. About z1„c ,d ,�1 ,� , �x−� ,r…

Let c, d, �1, �, �x−�, 0�r�1, r�c /�2, be fixed. We consider the one-dimensional infinitely
mooth function � : ��2r ,c�→R defined by

��s� =
s

�1 −
s2

c2

−
2�+4�1

�d

��s/�2 − r���x−�/�2 + 1��
.

is an increasing function �its derivative is a positive function� and as a consequence

1�c ,d ,�1 ,� , �x−� ,r� is well defined in the Introduction and the observation �I� of Sec. III holds.

. About MT,r, 0<rÏ1, r<c /�2

Lemma 4.3: Let f , f1 , f2�MT,r, v−�Bc \ �0�, v−x−=0, �v−���2r, then

�f1 + �1 − ��f2 � MT,r for 0 � � � 1, �4.13�

2�1 + �x− + v−s + f�s��� � �1 + �x−�/�2 + ��v−�/�2 − r��s�� for s � T , �4.14�

��
−�

t

F�v−s + x− + f�s��ds� �
�1

�d2�+2

���v−�/�2 − r���x−�/�2 + 1��
for t � � − �, + �� , �4.15�

�1 +
1

c2��v−� + �1�
−�

t

F�v−s + x− + f1�s��ds + �2�
w

u

F�v−s + x− + f2�s��ds�2�−�

� �1 +
�v−�2

4�c2 − �v−�2��
−�

, �4.16�

or u, t� �−� ,T�, w� �−� ,u�, ��0, −1��1, �2�1, f1, f2�MT,r and if �v−�
z1�c ,d ,�1 ,� , �x−� ,r�, �v−��c, where  is defined by

�v� =
v

�1 − �v�2/c2
,

or v�Bc.
Proof of Lemma 4.3: For the proof of �4.14� see Ref. 7. Inequality �4.1� with �4.14� and �4.7�

roves �4.15�. �4.13� follows from the definition of MT,r. Inequality �4.15� gives in particular for
, t� �−� ,T�, w� �−� ,u�, ��0, −1��1, �2�1, f1, f2�MT,r,

��v−� + �1�
−�

t

F�v−s + x− + f1�s��ds + �2�
w

u

F�v−s + x− + f2�s��ds�
� ��v−�� −

�1
�d2�+3

���v−�/�2 − r���x−�/�2 + 1��
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=
�v−�

�1 − �v−�2/c2
−

�1
�d2�+3

���v−�/�2 − r���x−�/�2 + 1��

�
c�v−�

2�c2 − �v−�2
if �v−� � z1�c,d,�1,�, �x−�,r�, �v−� � c ,

hich implies �4.16�.

. PROOFS OF LEMMAS 2.1, 2.2, 2.3

Proof of Lemma 2.1: The property

Av−,x−
�f� � C1�� − �,T � ,Rd� for f � MT,r �0 � r � 1, r � �v−�/�2� �5.1�

ollows from �1.2� and �2.1� �applied on “x” =�v−�+�−�
� F�v−s+x−+ f�s��ds and “y” =�v−�� and

he definition of Av−,x−
�f�.

Now we always suppose that 0�r�1, r�c /�2, �v−��z1�c ,d ,�1 ,� , �x−� ,r�, �v−��c, v−x−

0. Consider

Av−,x−
�f��t� = �

−�

t �g��v−� + �
−�

�

F�v−s + x− + f�s��ds� − v−�d�

d

dt
Av−,x−

�f��t� = g��v−� + �
−�

t

F�v−s + x− + f�s��ds� − v−.

for f � MT,r, �5.2�

irst we shall prove some estimates about �d/dt�Av−,x−
�f�.

Note that g��v−��=v−. From �5.2� and �4.4� �applied on “x” =�v−�+�−�
t F�v−s+x−+ f�s��ds

nd “y” =�v−��, �4.1�, �4.14�, and �4.16� it follows that

� d

dt
Av−,x−

�f��t�� �
d�12�+1

�1 +
�v−�2

4�c2 − �v−�2�

�
−�

t

��1 + �x−�/�2 + ��v−�/�2 − r��s���−��+1� ds . �5.3�

Our next purpose is to prove estimates �5.5� and �5.9� given below.
From �5.3�, �4.8�, and �4.6� it follows that

�Av−,x−
�f��t�� �

d�1 2�+1

�1 +
�v−�2

4�c2 − �v−�2�
��� − 1�� �v−�

�2
− r�2�1 +

�x−�
�2

− � �v−�
�2

− r�t��−1
,

�5.4a�

�t
d

dt
Av−,x−

�f��t�� �
d�1 2�+1

�1 +
�v−�2

4�c2 − �v−�2�
�� �v−�

�2
− r�2�1 +

�x−�
�2

− � �v−�
�2

− r�t��−1
, �5.4b�
or t�T, t�0. From �5.4� it follows that
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�Av−,x−
�f��t� − t

d

dt
Av−,x−

�f��t��
�

d�1 2�+1

�1 +
�v−�2

4�c2 − �v−�2�
�� − 1���v−�/�2 − r�2�1 + �x−�/�2 − ��v−�/�2 − r�t��−1

, �5.5�

or t�T, t�0.
For t�T, t�0, note that

Av−,x−
�f��t� − t

d

dt
Av−,x−

�f��t� = Av−,x−
�f��0� + �

0

t �g��v−� + �
−�

�

F�v−s + x− + f�s��ds�
− g��v−� + �

−�

t

F�v−s + x− + f�s��ds��d� . �5.6�

or Av−,x−
�f��0� we use the estimate �5.4a�, i.e.,

�Av−,x−
�f��0�� �

d�1 2�+1

�1 + ��v−�2/�4�c2 − �v−�2������ − 1���v−�/�2 − r�2�1 + �x−�/�2��−1
. �5.7�

e estimate the second term on the right-hand side of �5.6� in the following way: from �4.4�,
4.16�, �4.1�, �4.14�, and �4.9�, it follows that

��
0

t �g��v−� + �
−�

�

F�v−s + x− + f�s��ds� − g��v−� + �
−�

t

F�v−s + x− + f�s��ds��d��
�

�d

�1 +
�v−�2

4�c2 − �v−�2�

�
0

t ��
t

�

F�v−s + x− + f�s��ds�d�

�
d�1 2�+1

�1 + ��v−�2/�4�c2 − �v−�2������ − 1���v−�/�2 − r�2�1 + �x−�/�2��−1
, �5.8�

or 0� t�T. From �5.6�–�5.8� it follows that

�Av−,x−
�f��t� − t

d

dt
Av−,x−

�f��t�� �
d�1 2�+2

�1 +
�v−�2

�4�c2 − �v−�2��
��� − 1���v−�/�2 − r�2�1 + �x−�/�2��−1

�5.9�

or 0� t�T. Using �5.3� and �4.6� and using �5.5� we obtain �2.7a�. Using �5.3� and �4.7� and
sing �5.9� we obtain �2.7b�.

Our next purpose is to prove estimate �5.14� given below. Consider �d/dt��Av−,x−
�f2��t�

Av−,x−
�f1��t�� for f1, f2�MT,r �0�r�1, r�c /�2, �v−��c, v−x−=0, �v−��z1�c ,d ,�1 ,� , �x−� ,r��.

irst

d

dt
Av−,x−

�f2��t� −
d

dt
Av−,x−

�f1��t� = g��v−� + �
−�

t

F�v−s + x− + f2�s��ds�
− g��v−� + �

−�

t

F�v−s + x− + f1�s��ds� �5.10�
or t�T. From �5.10�, �4.4�, and �4.16� it follows that
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� d

dt
Av−,x−

�f2��t� −
d

dt
Av−,x−

�f1��t�� �
�d

�1 + ��v−�2/�4�c2 − �v−�2���
�

−�

t

�F�v−s + x− + f2�s��

− F�v−s + x− + f1�s���ds , �5.11�

or t�T. From �4.13�, �4.14�, and �4.2�, it follows that

�F�v−s + x− + f2�s�� − F�v−s + x− + f1�s��� � d�22�+2�1 + �x−�/�2 + ��v−�/�2 − r��s��−��+2��f2�s�

− f1�s�� for s � T . �5.12�

Moreover

�f2�s� − f1�s�� � �1 + �s���f2 − f1�T for s � T . �5.13�

Thus, from �5.11�–�5.13� it follows that

� d

dt
Av−,x−

�f2��t� −
d

dt
Av−,x−

�f1��t�� �
d�d�22�+2�f2 − f1�T

�1 + ��v−�2/�4�c2 − �v−�2���
�

−�

t

�1 + �x−�/�2 + ��v−�/�2 − r�

��s��−��+2��1 + �s��ds . �5.14�

Our next purpose is to prove estimates �5.17� and �5.31� given below. From �5.14�, �4.10�, and
4.6� it follows that

�Av−,x−
�f2��t� − Av−,x−

�f1��t��

�
d�d�22�+2��v−�/�2 + 1 − r��f2 − f1�T

�1 +
�v−�2

4�c2 − �v−�2�
��� − 1���v−�/�2 − r�3�1 + �x−�/�2 − ��v−�/�2 − r�t��−1

�5.15�

or t�T, t�0. From �5.14� and �4.10� it also follows that

�t�� d

dt
Av−,x−

�f2��t� −
d

dt
Av−,x−

�f1��t��
�

d�d�22�+2��v−�/�2 + 1 − r��f2 − f1�T

�1 +
�v−�2

4�c2 − �v−�2�
���v−�/�2 − r�3�1 + �x−�/�2 − ��v−�/�2 − r�t��−1

�5.16�

or t�T, t�0. Hence from �5.15� and �5.16� it follows that

�Av−,x−
�f2��t� − Av−,x−

�f1��t� − t
d

dt
�Av−,x−

�f2��t� − Av−,x−
�f1��t���

�
d�d�22�+2��v−�/�2 + 1 − r��f2 − f1�T

�1 +
�v−�2

4�c2 − �v−�2�
�� − 1���v−�/�2 − r�3�1 + �x−�/�2 − ��v−�/�2 − r�t��−1

�5.17�

or t�T, t�0.

For 0� t�T, using �5.6� we obtain
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�Av−,x−
�f2��t� − Av−,x−

�f1��t� − t� d

dt
Av−,x−

�f2��t� −
d

dt
Av−,x−

�f1��t��� � �Av−,x−
�f2��0� − Av−,x−

�f1��0��

+ ��
0

t �g��v−� + �
−�

�

F�v−s + x− + f2�s��ds� − g��v−� + �
−�

t

F�v−s + x− + f2�s��ds�
− g��v−� + �

−�

�

F�v−s + x− + f1�s��ds� + g��v−� + �
−�

t

F�v−s + x− + f1�s��ds��d�� .

�5.18�

rom �5.15� it follows that

�Av−,x−
�f2��0� − Av−,x−

�f1��0�� �
d�d�22�+2��v−�/�2 + 1 − r��f2 − f1�T

�1 +
�v−�2

4�c2 − �v−�2�
��� − 1�� �v−�

�2
− r�3�1 +

�x−�
�2

��−1
.

�5.19�

n order to estimate the second term of the right-hand side of �5.18�, we will estimate

�
0

t �gj��v−� + �
−�

�

F�v−s + x− + f2�s��ds� − gj��v−� + �
−�

t

F�v−s + x− + f2�s��ds�
− gj��v−� + �

−�

�

F�v−s + x− + f1�s��ds� + gj��v−� + �
−�

t

F�v−s + x− + f1�s��ds��d�

�5.20�

or 1� j�d and 0� t�T.
Let 1� j�d and 0� t�T, 0��� t. Note that

gj��v−� + �
−�

�

F�v−s + x− + f2�s��ds� − gj��v−� + �
−�

t

F�v−s + x− + f2�s��ds�
− �gj��v−� + �

−�

�

F�v−s + x− + f1�s��ds� − gj��v−� + �
−�

t

F�v−s + x− + f1�s��ds��
= � j,t

1 ��� + � j,t
2 ��� , �5.21�

here

� j,t
1 ��� = �

t

�

�F�v−s + x− + f2�s�� − F�v−s + x− + f1�s���ds

� �
0

1

� gj��v−� + �
−�

t

F�v−s + x− + f2�s��ds + ��
t

�

F�v−s + x− + f2�s��ds�d� ,
�5.22a�
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� j,t
2 ��� = �

t

�

F�v−s + x− + f1�s��ds

� �
0

1 ��gj��v−� + �
−�

t

F�v−s + x− + f2�s��ds + ��
t

�

F�v−s + x− + f2�s��ds�
− �gj��v−� + �

−�

t

F�v−s + x− + f1�s��ds + ��
t

�

F�v−s + x− + f1�s��ds��d� ,

�5.22b�

here � denotes the usual scalar product on Rd.
Using �5.22a�, �4.3�, �4.2�, �4.16�, �4.14�, and �5.13�, we obtain

�� j,t
1 ���� �

d�2 2�+2

�1 +
�v−�2

4�c2 − �v−�2�

�
�

t

�1 + �x−�/�2 + ��v−�/�2 − r�s�−��+2��1 + s�ds�f2 − f1�T.

�5.23�

hus from �4.12� it follows that

�
0

t

�� j,t
1 ����d� �

d�2 2�+2��v−�/�2 + 1 − r�

�1 +
�v−�2

4�c2 − �v−�2�
��� − 1���v−�/�2 − r�3�1 + �x−�/�2��−1

�f2 − f1�T.

�5.24�

sing �5.22b�, �4.5�, and �4.16�, we obtain

�� j,t
2 ���� � �

�

t

�F�v−s + x− + f1�s���ds� 3�d

c�1 + ��v−�2/�4�c2 − �v−�2����

� �
0

1 ��
−�

t

�F�v−s + x− + f2�s�� − F�v−s + x− + f1�s���ds

+ ��
t

�

�F�v−s + x− + f2�s�� − F�v−s + x− + f1�s���ds�d�� . �5.25�

e shall use

��
−�

t

�F�v−s + x− + f2�s�� − F�v−s + x− + f1�s���ds

+ ��
t

�

�F�v−s + x− + f2�s�� − F�v−s + x− + f1�s���ds�
� 2�

−�

t

��F�v−s + x− + f2�s�� − F�v−s + x− + f1�s����ds , �5.26�

or all 0���1 �we remind that �� t�.

From �5.25� and �5.26� it follows that
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�� j,t
2 ���� � �

�

t

�F�v−s + x− + f1�s���ds

�
6�d

c�1 +
�v−�2

4�c2 − �v−�2��
�

−�

t

��F�v−s + x− + f2�s�� − F�v−s + x− + f1�s����ds .

�5.27�

sing �4.2�, �4.14�, �5.13�, and �4.11� we obtain

�
−�

t

�F�v−s + x− + f2�s�� − F�v−s + x− + f1�s���ds �
d�2 2�+3��v−�/�2 + 1 − r�

���v−�/�2 − r�2�1 + �x−�/�2��
�f2 − f1�T.

�5.28�

sing �4.1�, �4.14�, and �4.9� we obtain

�
0

t �
�

t

�F�v−s + x− + f1�s���ds d� �
�d�12�+1

��� − 1���v−�/�2 − r�2�1 + �x−�/�2��−1
. �5.29�

rom �5.27�–�5.29� it follows that

�
0

t

�� j,t
2 ����d� �

3

c�1 + ��v−�2/�4�c2 − �v−�2����
d2�1�222�+5��v−�/�2 + 1 − r�

�2�� − 1���v−�/�2 − r�4�1 + �x−�/�2�2�−1
�f2 − f1�T.

�5.30�

rom �5.18�, �5.19�, �5.21�, �5.24�, and �5.30�, it follows that

�Av−,x−
�f2��t� − Av−,x−

�f1��t� − t� d

dt
Av−,x−

�f2��t� −
d

dt
Av−,x−

�f1��t���
�

d�d�22�+2��v−�/�2 + 1 − r�
�1 + ��v−�2/�4�c2 − �v−�2������ − 1���v−�/�2 − r�3�1 + �x−�/�2��−1

� �2 +
3

c��1 + ��v−�2/�4�c2 − �v−�2����
d�1 2�+3

���v−�/�2 − r��1 + �x−�/�2���
� �f1 − f2�T. �5.31�

sing �5.14�, �4.10�, and �5.17� we obtain �2.8a�. Using �5.14�, �4.11�, and �5.31� we obtain �2.8b�.
Lemma 2.1 is proved.
Proof of Lemma 2.2: The estimates �2.10� and �2.11� follow immediately from �5.3�, �4.6�, and

5.4a�. From �4.1�, �4.14�, and �4.7� it follows that

�
−�

+�

F�v−s + x− + f�s��ds

onverges absolutely for any f �MT,r. Moreover, using �4.4� and �4.16� and then �4.1�, �4.14�, and

4.8� we obtain for u�0,
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�
u

+� �g��v−� + �
−�

�

F�v−s + x− + f�s��ds� − g��v−� + �
−�

+�

F�v−s + x− + f�s��ds��d�

�
d�1 2�+1

�1 +
�v−�2

4�c2 − �v−�2�

�
u

+� �
�

+�

�1 + �x−�/�2 + ��v−�/�2 − r�s�−��+1� ds d�

�
d�1 2�+1�1 + �x−�/�2 + ��v−�/�2 − r�u�−��−1�

�1 +
�v−�2

4�c2 − �v−�2�
��� − 1���v−�/�2 − r�2

�5.32�

s a consequence we can write

v−,x−
�f��t� = t�g��v−� + �

−�

+�

F�v−s + x− + f�s��ds� − v−� + �
−�

0 �g��v−� + �
−�

�

F�v−s + x−

+ f�s��ds� − v−�d� + �
0

+� �g��v−� + �
−�

�

F�v−s + x− + f�s��ds� − g��v−�

+ �
−�

+�

F�v−s + x− + f�s��ds��d� − �
t

+� �g��v−� + �
−�

�

F�v−s + x− + f�s��ds�
− g��v−� + �

−�

+�

F�v−s + x− + f�s��ds��d� �5.33�

nd �2.12� and �2.13� follow, where

Hv−,x−
�f��t� = �

t

+� �g��v−� + �
−�

+�

F�v−s + x− + f�s��ds�
− g��v−� + �

−�

�

F�v−s + x− + f�s��ds��d� . �5.34�

he formulas �5.34� and �5.32� prove �2.16�. Using �5.34�, �4.4�, �4.16�, �4.1�, �4.14�, and �4.6�, we
btain �2.15�.

Using �2.13a�, �4.4�, �4.16�, �4.1�, �4.14�, and �4.7� we obtain �2.14a�.
We write

lv−,x−
�f� = Av−,x−

�f��0� + �
0

+� �g��v−� + �
−�

�

F�v−s + x− + f�s��ds�
− g��v−� + �

−�

+�

F�v−s + x− + f�s��ds��d� . �5.35�

sing �5.35�, �5.7�, and �5.32�, we obtain �2.14b�.
Thus Lemma 2.2 is proved.
Proof of Lemma 2.3: Using �2.3� and �2.7b� we obtain

�y− − 0�T = �y−�T � ��c,d,�1,�, �v−�, �x−�,r�, T = + � .

sing �2.13a� and �5.10� with �5.14� and �4.11� �T= +� and t→ +��, we obtain �2.17a�.

From �5.35� it follows that

                                                                                                            



U

f

U
o

U

F
�

062902-20 Alexandre Jollivet J. Math. Phys. 47, 062902 �2006�

                        
�lv−,x−
�y−� − lv−,x−

�0��

� �Av−,x−
�y−��0� − Av−,x−

�0��0��

+ � lim
t→+�

��
0

t �g��v−� + �
−�

�

F�v−s + x− + y−�s��ds� − g��v−� + �
−�

t

F�v−s + x− + y−�s��ds�
− g��v−� + �

−�

�

F�v−s + x−�ds� + g��v−� + �
−�

t

F�v−s + x−�ds�
− �g��v−� + �

−�

+�

F�v−s + x− + y−�s��ds� − g��v−� + �
−�

t

F�v−s + x− + y−�s��ds��
+ �g��v−� + �

−�

+�

F�v−s + x−�ds� − g��v−� + �
−�

t

F�v−s + x−�ds���d��� . �5.36�

sing �4.4�, �4.16�, �4.1�, �4.14�, and �4.6� we obtain

t�g��v−� + �
−�

+�

F�v−s + x− + f�s��ds� − g��v−� + �
−�

t

F�v−s + x− + f�s��ds��→ 0 as t → + �

�5.37�

or f �MT,r.
From �5.36� and �5.37� it follows that

�lv−,x−
�y−� − lv−,x−

�0��

� �Av−,x−
�y−��0� − Av−,x−

�0��0��

+ � lim
t→+�

��
0

t �g��v−� + �
−�

�

F�v−s + x− + y−�s��ds� − g��v−� + �
−�

t

F�v−s + x− + y−�s��ds�
− g��v−� + �

−�

�

F�v−s + x−�ds� + g��v−� + �
−�

t

F�v−s + x−�ds��d��� . �5.38�

sing �5.19�–�5.21�, �5.24�, and �5.30�, �y−�T���c ,d ,�1 ,� , �v−� , �x−� ,r�, T= +�, and �5.38� we
btain �2.17c�.

We shall prove �2.17b�. First

v− + kv−,x−
�y−� = g��v−� + �

−�

+�

F�v−s + x− + y−�s��ds� . �5.39�

sing the integral of motion E, we have �v−�= �v−+kv−,x−
�y−�� and applying  to �5.39� we obtain

kv−,x−
�y−�

�1 − �v−�2/c2
= �

−�

+�

F�v−s + x− + y−�s��ds . �5.40�

rom �5.40�, �5.12�, �5.13�, and �4.11� and �y−�T���c ,d ,�1 ,� , �v−� , �x−� ,r�, T= +�, we obtain
2.17b�.
Lemma 2.3 is proved.
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I. PROOFS OF THEOREM 3.2 AND PROPOSITION 1.1

Let �	 ,x��TSd−1, �, d, c, �1, �2 be fixed.
We shall use

� 1

s
�

−�

u

F�x + �	�d�� �
�1

�d

��s/�2��1 + �x�/�2��
�6.1a�

or s� �0,c� and u� �−� ,0�; replacing 	 by −	 in �6.1a�, we obtain

� 1

s
�

u

+�

F�x + �	�d�� �
�1

�d

��s/�2��1 + �x�/�2��
�6.1b�

or s� �0,c� and u� �0, +��.
We prove �6.1a�. As 	x=0, the following formula is valid:

�x + w	� � �x�/�2 + �w�/�2, �6.2�

or any w�R. Then estimate �6.1a� follows from �4.1�, �6.2�, and �4.6�.
Before proving Theorem 3.2, we need to introduce three lemmas and prove them.
Lemma 6.1: There exists integrable g̃c,d,�0,�1,�,�x� : �−� ,0�→ �0, +�� such that

��1 + �1�c,	,x,s,u��−1/2 − 1 −

V�x + u	��1 −
s2

c2

c2 � � g̃c,d,�0,�1,�,�x��u��1 − s2/c2� , �6.3�

or u� �−� ,0� and s�c, s�z2�c ,d ,�1 ,� , �x��, and where

�1�c,	,x,s,u� =

− 2V�x + u	��1 −
s2

c2 + � 1

s2 −
1

c2���
−�

u

F�x + �	�d��2

c2 � −
3

4
, �6.4�

or u� �−� ,0� and s�c, s�z2�c ,d ,�1 ,� , �x��.
Proof of Lemma 6.1.
Let s� �0,c�, s�z2�c ,d ,�1 ,� , �x�� and u� �−� ,0�.
From �6.1a� and the definition of z2�c ,d ,�1 ,� , �x�� �see �1.7d�� it follows that

� s	

�1 − s2/c2
+

1

s
�

−�

u

F�x + �	�d�� �
s

2�1 − s2/c2
. �6.5�

Expanding the square of the norm we obtain

� s	

�1 − s2/c2
+

1

s
�

−�

u

F�x + �	�d��2

=
s2

1 − s2/c2 −
2V�x + u	�
�1 − s2/c2

+ � 1

s
�

−�

u

F�x + �	�d��2

.

�6.6�
sing �6.5� and �6.6�, we obtain
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�1�c,	,x,s,u� =

1 +
1

c2� s	

�1 − s2/c2
+

1

s
�

−�

u

F�x + �	�d��2

1 +
s2

c2 − s2

− 1 �

1 +
s2

4�c2 − s2�

1 +
s2

c2 − s2

− 1 � − 3/4.

�6.7�

oreover, from the definition of �1�c ,	 ,x ,s ,u�, �1.2� and �6.1a� and the hypothesis
�z2�c ,d ,�1 ,� , �x��, s�c, it follows that

��1�c,	,x,s,u�� � �1 − s2/c2��02�1 + �x�/�2 − u/�2�−�

c2

+
�1 − z2�c,d,�1,�, �x��2/c2�1

2d2�1 + �x�/�2 − u/�2�−2�

z2�c,d,�1,�, �x��2c2�2 � . �6.8�

Using Taylor expansion of the map �−1, +��→R, �� �1+��−1/2 at �=0, we obtain that

�1 + �1�c,	,x,s,u��−1/2 − 1 −

V�x + u	��1 −
s2

c2

c2 = −
1 − s2/c2

2s2c2 ��
−�

u

F�x + �	�d��2

+
3

4
�

0

1

�1 − w�

� �1 + w�1�c,	,x,s,u��−5/2 dw �1�c,	,x,s,u�2.

�6.9�

We estimate the first term on the right-hand side of �6.9� with the help of �6.1a�. We estimate
he second term on the right-hand side of �6.9� with the help of �6.7� and �6.8�. Using also the
nequality s�z2�c ,d ,�1 ,� , �x��, we finally obtain

��1 + �1�c,	,x,s,u��−1/2 − 1 −

V�x + u	��1 −
s2

c2

c2 � � g̃c,d,�0,�1,�,�x��u� ,

here

g̃c,d,�0,�1,�,�x��u� =
d�1

2

c2z2�c,d,�1,�, �x��2�2�1 + �x�/�2 − u/�2�2�
+ 45/2 3

2c4��0�1 + �x�/�2 − u/�2�−�

+
�1 − z2�c,d,�1,�, �x��2/c2�1

2d�1 + �x�/�2 − u/�2�−2�

z2�c,d,�1,�, �x��2�2 �2

.

emma 6.1 is proved.
Lemma 6.2: Let ��0, s� �0,c�, s�z2�c ,d ,�1 ,� , �x��. Then there exists a positive real num-

er k�,c,d,�1,�,�x� such that

��1 +
1 − s2/c2

s2c2 ��
−�

+�

F�x + �	�d��2�−�

− 1� � �1 − s2/c2�k�,c,d,�1,�,�x�.

Proof of Lemma 6.2: We define

�2�c,	,x,s� =
1 − s2/c2

s2c2 ��
−�

+�

F�x + �	�d��2

� 0. �6.10�
sing �6.1� and s�z2�c ,d ,�1 ,� , �x��, we obtain
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�2�c,	,x,s� � �1 − s2/c2�
d�1

28

c2z2�c,d,�1,�, �x��2�2�1 + �x�/�2�2�
. �6.11�

sing the Taylor expansion of the map �−1, +��→R, �� �1+��−� at �=0 and using �6.10�, we
btain

�1 + �2�c,	,x,s��−� − 1 = − ��2�c,	,x,s��
0

1

�1 + w�2�c,	,x,s��−��+1� dw . �6.12�

rom �6.10�–�6.12� it follows that

��1 + �2�c,	,x,s��−� − 1� � ��2�c,	,x,s� � �1 − s2/c2�k�,c,d,�1,�,�x�,

here

k�,c,d,�1,�,�x� =
� d�1

2 8

c2z2�c,d,�1,�, �x��2�2�1 + �x�/�2�2�
.

emma 6.2 is proved.
We always suppose that �	 ,x��TSd−1, �, d, c, �1, �2 are fixed. Let s� �0,c�,

�z2�c ,d ,�1 ,� , �x��, u� �0, +��, we define

A�c,	,x,s,u� = �1 + t�c,	,x,s,u��−1/2, �6.13�

here

t�c,	,x,s,u� =

1 +
1

c2� s	

�1 − s2/c2
+

1

s
�

−�

u

F�x + �	�d��2

1 +
1

c2� s	

�1 − s2/c2
+

1

s
�

−�

+�

F�x + �	�d��2 − 1. �6.14�

xpanding the square of the norms in the numerator and denominator of the fraction of the
ight-hand side of �6.14�, we obtain that

t�c,	,x,s,u� =

− 2V�x + u	��1 − s2/c2 +
1 − s2/c2

s2 ��
u

+�

F�x + �	�d��2

�1 +
�1 − s2/c2�

s2c2 ��
−�

+�

F�x + �	�d��2�c2

−

2�1 − s2/c2�
s2 �

u

+�

F�x + �	�d� . �
−�

+�

F�x + �	�d�

�1 +
�1 − s2/c2�

s2c2 ��
−�

+�

F�x + �	�d��2�c2

. �6.15�

Lemma 6.3: There exists hc,d,�0,�1,�,�x� : �0, +��→ �0, +�� an integrable function such that for
� �0,c�, s�z2�c ,d ,�1 ,� , �x��, u� �0, +��,

�A�c,	,x,s,u� − 1 − V�x + u	�
�1 − s2/c2

c2 � � �1 − s2/c2�hc,d,�0,�1,�,�x��u� .

Proof of Lemma 6.3: We first look for a lower bound for t�c ,	 ,x ,s ,u�. The following estimate

s valid
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� s	

�1 − s2/c2
+

1

s
�

−�

u

F�x + �	�d�� � � s	

�1 − s2/c2
+

1

s
�

−�

+�

F�x + �	�d�� − � 1

s
�

u

+�

F�x + �	�d�� .

�6.16�

rom �6.1� it follows that

� s	

�1 − s2/c2
+

1

s
�

−�

+�

F�x + �	�d�� �
s

�1 − s2/c2
−

2�1
�d

��s/�2��1 + �x�/�2��
. �6.17�

sing first �6.1b� and then s�z2�c ,d ,�1 ,� , �x�� and �6.17� we obtain

� 1

s
�

u

+�

F�x + �	�d�� �
�1

�d

�s/�2���1 + �x�/�2��
�

1

6
� s

�1 − s2/c2
−

2�1
�d

��s/�2��1 + �x�/�2���
�

1

6� s	

�1 − s2/c2
+

1

s
�

−�

+�

F�x + �	�d�� . �6.18�

rom �6.16� and �6.18� it follows that

� s	

�1 − s2/c2
+

1

s
�

−�

u

F�x + �	�d�� �
5

6� s	

�1 − s2/c2
+

1

s
�

−�

+�

F�x + �	�d�� . �6.19�

sing �6.14� and �6.19� we obtain

t�c,	,x,s,u� �
25
36 − 1 = − 11

36 . �6.20�

Now we look for an upper bound for t�c ,	 ,x ,s ,u�. The right-hand side of �6.15� consists of
subtraction of two fractions whose denominator is greater than c2 and this implies

�t�c,	,x,s,u�� � c−2�− 2V�x + u	��1 − s2/c2 +
1 − s2/c2

s2 ��
u

+�

F�x + �	�d��2

−
2�1 − s2/c2�

s2 �
u

+�

F�x + �	�d� � �
−�

+�

F�x + �	�d�� , �6.21�

here � denotes the usual scalar product on Rd. Thus, using �1.2�, �6.1�, �4.7� and the fact that
�z2�c ,d ,�1 ,� , �x��, we obtain

�t�c,	,x,s,u�� � c−2�1 − s2/c2�2�0�1 + �x�/�2 + u/�2�−�

+
�1 − z2�c,d,�1,�, �x��2/c2

z2�c,d,�1,�, �x��2

d�1
22

�2�1 + �x�/�2 + u/�2�2�

+
�1 − z2�c,d,�1,�, �x��2/c2

z2�c,d,�1,�, �x��2

d�1
28

�2�1 + �x�/�2 + u/�2���1 + �x�/�2��� . �6.22�

sing �6.13� and �6.20�, the Taylor expansion of the map �−1, +���R, �� �1+��−1/2 at �=0

nd �6.15�, we obtain
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�A�c,	,x,s,u� − 1 −
V�x + u	��1 − s2/c2

c2 �
= � 1

2
t�c,	,x,s,u� +

3

4
�

0

1

�1 − w��1 + wt�c,	,x,s,u��−5/2 dw t�c,	,x,s,u�2

−
V�x + u	��1 − s2/c2

c2 �
� �V�x + u	��1 − s2/c2

c2 �1 − �1 +
1 − s2/c2

c2s2 ��
−�

+�

F�x + �	�d��2�−1��
+

1

2

1 − s2/c2

s2 ��
u

+�

F�x + �	�d��2

+
2�1 − s2/c2�

s2 �
u

+�

�F�x + �	��d��
−�

+�

�F�x + �	��d�

�1 +
�1 − s2/c2�

s2c2 ��
−�

+�

F�x + �	�d��2�c2

+
3

8
�25

36
�−5/2

t�c,	,x,s,u�2. �6.23�

e use Lemma 6.2, conditions �1.2� and the fact that s�z2�c ,d ,�1 ,� , �x�� to estimate the first
erm on the right-hand side of the inequality �6.23�. In order to estimate the second term on the
ight-hand side of the inequality �6.23�, we use the fact that the denominator is greater than c2, and
e also use �6.1�, �4.7�, the fact that s�z2�c ,d ,�1 ,� , �x��. We estimate the third term on the

ight-hand side of the inequality with �6.22�. Thus we obtain

�A�c,	,x,s,u� − 1 −
V�x + u	��1 − s2/c2

c2 � � �1 − s2/c2�hc,d,�0,�1,�,�x��u� ,

here

hc,d,�0,�1,�,�x��u� =
1

c2 �1 + �x�/�2 + u/�2�−���0k1,c,d,�1,�,�x��1 − z2�c,d,�1,�, �x��2/c2

+
�1

2d

�2z2�c,d,�1,�, �x��2 ��1 + �x�/�2 + u/�2�−� + 4�1 + �x�/�2�−��

+
3

2c2�25

36
�−5/2��0�1 + �x�/�2 + u/�2�−�/2

+
d�1

2�1 − z2�c,d,�1,�, �x��2/c2

z2�c,d,�1,�, �x��2�2�1 + �x�/�2 + u/�2��/2

� ��1 + �x�/�2 + u/�2�−� + 4�1 + �x�/�2�−���2� .

emma 6.3 is proved.
Proof of Theorem 3.2: Let �	 ,x��TSd−1, �, d, c, �1, �2, s� �0,c�, s�z2�c ,d ,�1 ,� , �x�� be

xed. We shall study the asymptotics of ls	,x�0� which is defined by formula �2.13b�.

First we look for the asymptotics of
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�
−�

0 �g��s	� + �
−�

�

F�us	 + x�du� − s	�d� .

y changes of variables, we obtain

�
−�

0 �g��s	� + �
−�

�

F�us	 + x�du� − s	�d�

= �
−�

0 
	

�1 − s2/c2
+

1

s2�
−�

�

F�u	 + x�du

�1 + c−2� s	

�1 − s2/c2
+

1

s
�

−�

�

F�u	 + x�du�2
− 	�d� . �6.24�

xpanding the square of the norm in the denominator of the fraction under the integral in �6.24�,
he denominator becomes

�1 + c−2� s	

�1 − s2/c2
+

1

s
�

−�

�

F�u	 + x�du�2�−1/2

= �1 + �1�c,	,x,s,���−1/2�1 − s2/c2�1/2,

�6.25�

here �1 is defined by formula �6.4�. We define

�1�	,x,s� = ��1 − s2/c2�−1/2�
−�

0 �g��s	� + �
−�

�

F�us	 + x�du� − s	�d� − c−2�
−�

0

V��	 + x�d� 	

− s−2�
−�

0 �
−�

�

F�u	 + x�du d�� . �6.26�

rom �6.26�, �6.24�, and �6.25�, it follows that

�1�	,x,s� � �
−�

0

��1 + �1�c,	,x,s,���−1/2 − 1 − c−2V��	 + x��1 − s2/c2�

� � 1
�1 − s2/c2

+ s−2�
−�

�

�F�u	 + x��du�d�

+ �
−�

0 ��1 + c−2V��	 + x��1 − s2/c2�� 	

�1 − s2/c2
+ s−2�

−�

�

F�u	 + x�du�
−

	

�1 − s2/c2
− c−2V��	 + x�	 − s−2�

−�

�

F�u	 + x�du�d� . �6.27�

e estimate the first integral on the right-hand side of �6.27� by the use of Lemma 6.1. Therefore
xpanding the first product under the second integral of the form �−�

0 on the right-hand side of
6.27�, we obtain

�1�	,x,s� � �1 − s2/c2�
−�

0 �g̃c,d,�0,�1,�,�x�����1 + s−2�1 − s2/c2�
−�

�

�F�u	 + x��du�
+ �V��	 + x�

s2c2 �
−�

�

F�u	 + x�du��d� . �6.28�

e define �V��=supy�Rd�V�y��. Using �6.28�, �1.2�, �6.1a�, and �4.8� and the fact that

�z2�c ,d ,�1 ,� , �x��, we obtain

                                                                                                            



B

F
�

W

F

w

062902-27 On inverse scattering at high energies J. Math. Phys. 47, 062902 �2006�

                        
�1�	,x,s� � �1 − s2/c2��1 +
�1 − z2�c,d,�1,�, �x��2/c2

z2�c,d,�1,�, �x��2

�1
�d�2

��1 + �x�/�2����
−�

0

g̃c,d,�0,�1,�,�x����d�

+
�1

�d2�V��
z2�c,d,�1,�, �x��2c2��� − 1��1 + �x�/�2��−1� . �6.29�

Now we look for the asymptotics of

�
0

+� �g��s	� + �
−�

�

F�us	 + x�du� − g��s	� + �
−�

+�

F�us	 + x�du��d� .

y changes of variables, we obtain

�
0

+� �g��s	� + �
−�

�

F�us	 + x�du� − g��s	� + �
−�

+�

F�us	 + x�du��d�

= �
0

+� 
	

�1 − s2/c2
+

1

s2�
−�

�

F�u	 + x�du

�1 + c−2� s	

�1 − s2/c2
+

1

s
�

−�

�

F�u	 + x�du�2

−

	

�1 − s2/c2
+

1

s2�
−�

+�

F�u	 + x�du

�1 + c−2� s	

�1 − s2/c2
+

1

s
�

−�

+�

F�u	 + x�du�2�d� . �6.30�

irst we study the denominator of the first fraction under the integral of �6.30�. From �6.14� and
6.13� it follows that

�1 + c−2� s	

�1 − s2/c2
+

1

s
�

−�

�

F�u	 + x�du�2�−1/2

= �1 + c−2� s	

�1 − s2/c2
+

1

s
�

−�

+�

F�u	 + x�du�2�−1/2

A�c,	,x,s,�� . �6.31�

e define

�2�c,	,x,s� = ��1 − s2/c2�−1/2�
0

+� �g��s	� + �
�

+�

F�us	 + x�du�
− g��s	� + �

−�

+�

F�us	 + x�du��d� − c−2�
0

+�

V��	 + x�d� 	

+ s−2�
0

+� �
�

+�

F�u	 + x�du d�� . �6.32�

rom �6.30�–�6.32� it follows that

�2�c,	,x,s� � �2,1�c,	,x,s� + �2,2�c,	,x,s� , �6.33�
here
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�2,1�c,	,x,s� = �
0

+� ��1 − s2/c2�−1/2�1 +
1

c2� s	

�1 − s2/c2
+

1

s
�

−�

+�

F�u	 + x�du�2�−1/2

� �A�c,	,x,s,�� − 1 − V��	 + x�
�1 −

s2

c2

c2 �� 	

�1 −
s2

c2

+
1

s2�
−�

�

F�u	 + x�du��d� ,

�6.34a�

�2,2�c,	,x,s� = �
0

+� ��1 − s2/c2�−1/2�1 +
1

c2� s	

�1 − s2/c2
+

1

s
�

−�

+�

F�u	 + x�du�2�−1/2

� ��1 + V��	 + x�
�1 − s2/c2

c2 �� 	

�1 − s2/c2
+

1

s2�
−�

�

F�u	 + x�du�
− � 	

�1 − s2/c2
+

1

s2�
−�

+�

F�u	 + x�du��
−

V��	 + x�
c2 	 +

1

s2�
�

+�

F�u	 + x�du�d� . �6.34b�

et us estimate �2,1�c ,	 ,x ,s�.
From Lemma 6.3 and �6.34a� it follows that

�2,1�c,	,x,s� � �1 − s2/c2�1 +
1

c2� s	

�1 − s2/c2
+

1

s
�

−�

+�

F�u	 + x�du�2�−1/2

� � 1
�1 − s2/c2

+
1

s2�
−�

+�

�F�u	 + x��du��
0

+�

hc,d,�0,�1,�,�x����d� . �6.35�

n addition, expanding the square of the norm, we obtain

�1 +
1

c2� s	

�1 − s2/c2
+

1

s
�

−�

+�

F�u	 + x�du�2�−1/2

= �1 − s2/c2�1 +
1 − s2/c2

s2c2 ��
−�

+�

F�u	 + x�du�2�−1/2

�6.36a�

��1 − s2/c2. �6.36b�

sing �6.35�, �6.36�, �4.1�, �6.2�, and �4.7� and the fact that s�z2�c ,d ,�1 ,� , �x��, we obtain

�2,1�c,	,x,s� � �1 − s2/c2�1 +
�1

�d�1 − z2�c,d,�1,�, �x��2/c22�2

z2�c,d,�1,�, �x��2��1 + �x�/�2�� ��
0

+�

hc,d,�0,�1,�,�x����d� .

�6.37�

Let us estimate �2,2�c ,	 ,x ,s�.

From �6.34b� and �6.36a� it follows that
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�2,2�c,	,x,s� � �
0

+� ��1 +
1 − s2/c2

s2c2 ��
−�

+�

F�u	 + x�du�2�−1/2

− 1�
� �−

1

s2�
�

+�

F�u	 + x�du +
V��	 + x�

c2 	 +
�1 − s2/c2

s2c2 V��	 + x�

� �
−�

�

F�u	 + x�du�d� + �
0

+� ��1 − s2/c2

s2c2 V��	 + x��
−�

�

F�u	 + x�du�d� .

�6.38�

hus using Lemma 6.2, conditions �1.2�, �4.1�, �6.2�, �4.6�, and �4.7� and the fact that
�z2�c ,d ,�1 ,� , �x��, it follows that

�2,2�c,	,x,s� � �1 − s2/c2� k1/2,c,d,�1,�,�x��1 − z2�c,d,�1,�, �x��2/c2

�� − 1��1 + �x�/�2��−1

� � �d�12

z2�c,d,�1,�, �x��2�
+

�0
�2

c2 +
�d�0�14�1 − z2�c,d,�1,�, �x��2/c2

z2�c,d,�1,�, �x��2c2��1 + �x�/�2�� �
+

�d�0�14

z2�c,d,�1,�, �x��2c2��� − 1��1 + �x�/�2�2�−1� . �6.39�

From �2.13b�, �6.26�, �6.29�, �6.32�, �6.34�, �6.35�, and �6.39� it follows that there exists

c,d,�0,�1,�,�x� such that

� ls	,x�0�
�1 − s2/c2

−
1

c2 PV�	,x�	 +
1

s2�
0

+� �
�

+�

F�x + u	�du d� −
1

s2�
−�

0 �
−�

�

F�x + u	�du d��
� �1�c,	,x,s� + �2�c,	,x,s� � Cc,d,�0,�1,�,�x��1 − s2/c2. �6.40�

he estimate �3.9� follows from �6.40�.
Theorem 3.2 is proved.
Proof of Proposition 1.1: The item �1� follows immediately from

d

dt
V�t	 + x� = �V�t	 + x�	 for all �	,x� � TSd−1, t � R .

roof of item �2�. Take

V�x� =
x1

�1 + �x�2�� for x = �x1, . . . ,xd� � Rd,� � 1.

nd take �	 ,x��TSd−1. By a straightforward calculation and using 	x=0, we obtain

��
−�

0 �
−�

�

F�s	 + x�ds d� − �
0

+� �
�

+�

F�s	 + x�ds d� + PV�	,x�	��x

= − 4�	1�x�2�
0

+� �
�

+� s

�1 + s2 + �x�2��+1ds d� � 0 if and only if x � 0 and 	1 � 0,

here � denotes the scalar product.
Proof of item (3): Let V be a spherical symmetric potential �i.e., V takes the form m��x��� that

2 −� 1 1
atisfies the conditions �1.2� �e.g., V�x�= �1+ �x� � where �� 2 �. Then m�C ��0, +�� ,R� and
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V�x�=m���x���x / �x��. Let �	 ,x��TSd−1 and let 	� be an orthogonal vector to 	. A straighforward
alculation gives

F�s	 + x�	� = m���s2 + �x�2�
x�	�

�s2 + �x�2

or any s�R. Hence

��
−�

0 �
−�

�

F�s	 + x�ds d� − �
0

+� �
�

+�

F�s	 + x�ds d� + PV�	,x�	��	� = 0. �6.41�

tem �3� follows from item �1� and formula �6.41�.
Proposition 1.1 is proved.
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In the framework of general relativistic classical mechanics on a spacetime with
absolute time, we classify the infinitesimal symmetries of the classical structure
by means of distinguished Lie subalgebras of the Lie algebra of “special phase
function.” These subalgebras are crucial also for the classification of infinitesimal
quantum symmetries, which will be analyzed in a forthcoming paper. © 2006
American Institute of Physics. �DOI: 10.1063/1.2199068�

. INTRODUCTION

This paper is the first part of a sequence of two papers. They are aimed at classifying sys-
ematically the symmetries of classical and quantum mechanics within the geometric framework
f “covariant classical and quantum mechanics.”

This framework is a geometric formulation of classical and quantum mechanics on a curved
pacetime with absolute time and spacelike Riemannian metric, expressed in a manifestly coordi-
ate free and observer independent way. We assume minimal axioms describing just the funda-
ental classical interactions, namely the gravitational and electromagnetic fields. The goal of this

heory is to combine the standard quantum mechanics with those ideas and methods of Einstein’s
eneral relativity that are not related to the Lorentz metric and the speed of light, in order to
nderstand quantum mechanics in a general relativistic observer independent way, as far as pos-
ible.

This approach requires methods based on fibered manifolds, jets, connections, and the Lie
lgebra of special phase functions. On the other hand, in the flat case the theory yields just the
tandard Schrödinger equation and the quantum operators for all usual examples. This approach
as some analogies with other well-known geometric formulations of quantum mechanics, in
articular, with geometric quantization �see, for instance, Refs. 1, 29, and 68�. But, it presents
everal methodological novelties and results as well, by overcoming several typical difficulties in
he theory of geometric quantization.

This approach was proposed in Refs. 33 and 34 and further developed by several authors �see,
or instance, Refs. 38, 36, 61, and 62, and references therein�. On the other hand, several authors
ave been involved with a formulation of classical and quantum mechanics in the framework of a
urved Galileian background �see, for instance, Refs. 11, 18–24, 32, 40–44, 46, 54, and 65–67 �.
ne of the typical features of covariant classical mechanics is the role played by a cosymplectic
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�
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wo-form. This is a concept more general than that of contact two-form and appropriate to account
or the covariance of the theory. Actually, the literature on symplectic geometry is much wider and
etter known than that on cosymplectic geometry; however, several authors have analyzed the
econd one �see, for instance, Refs. 2, 8, 14, 17, 35, and 48, and references therein�.

In the present paper, we start by introducing the basic objects of the theory, namely the
pacetime fibered over absolute time, the spacelike Riemannian metric, the spacetime gravitational
onnection, and the electromagnetic field.

Then, we introduce the classical phase space and the main geometric objects induced by the
pacetime structure, namely the contact maps, the phase connection, the second-order phase con-
ection, the phase two-form and the phase two-vector. An important role is played by the phase
wo-form, which encodes all other objects and turns out to be cosymplectic. This set up allows us
o introduce in a natural way the distinguished Lie algebra of special phase functions and their
arious lifts. The special Lie bracket is linked to the Poisson bracket and allows us to deal with
pacetime functions, momentum, and energy on the same footing. An essential feature of special
hase functions is that they admit a lift to the tangent space of spacetime.

Eventually, we classify systematically the infinitesimal symmetries of the above classical
bjects and show, step by step, that they are generated by distinguished subalgebras of the Lie
lgebra of special phase functions.

We observe that the classical Lagrangian formalism, Nöther’s theorem, and the momentum
ap1,10,15,16,27,28,30,45,58,57,60,64 arise naturally in the present scheme ruled by a cosymplectic two-

orm and by the Lie algebra of special phase functions. The literature dealing with Lie algebras
ssociated with geometric structures of analytical mechanics from different perspectives is very
ide �see, for instance, Refs. 3–7, 9, 12, 13, 25, 26, 31, 47, 49–51, 53, 52, and 56�. On the other
and, the present paper is devoted to the specific setting of covariant classical mechanics of a
article effected by the fundamental classical fields.

This paper extends considerably the results obtained in Refs. 62 and 38, mainly by classifying
he distinguished subalgebras of the Lie algebra of special phase functions and its relation to
nfinitesimal symmetries.

The above results will play an essential role in the subsequent paper devoted to infinitesimal
uantum symmetries, where we achieve analogous results by a similar approach. In particular, we
ill prove in this forthcoming paper that the Lie algebra of special phase functions yields a Lie

lgebra of quantum currents; the conserved probability current is just a particular case of this
onstruction.

Thus, throughout the two papers, a crucial role is played by the Lie algebra of special phase
unctions, which turn out to be the generators of the infinitesimal symmetries both of the classical
nd quantum theories. The special phase functions are the functions of the phase space whose
econd order vertical differential �with respect to the fibering of the phase space over spacetime�
s proportional to the metric.

For each manifold M, N and each fibered manifolds F→B ,G→B, we denote the sheaf of
ocal maps f :M→N by map �M ,N�, the sheaf of local sections s :B→F by sec�B ,F� and the

sheaf of local fibered morphisms f :F→G over B by fib�F ,G�.

I. COVARIANT CLASSICAL MECHANICS

. Spacetime and its structure

. Scale spaces

In the covariant formulation of physical theories the independence from the choice of coor-
inates and of units of measurements appear on the same footing. Thus, a rigorous treatment of
nits of measurement is necessary.

We introduce the fundamental scale spaces U as “positive 1-dimensional semi-vector spaces”
ver R+. A detailed account for this notion can be found in Refs. 34 and 37. Roughly speaking,
hey have the same algebraic structure as R+, but no distinguished generator over R+. We can

aturally define the tensor product between scale spaces and ordinary vector spaces. Moreover, we
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an naturally define the rational powers Up/q of a scale space U. Rules analogous to those of real
umbers hold for scale spaces; accordingly, we adopt analogous notation. In particular, we shall
rite U0

ªU ,U−1
ªU* ,Up

ª� pU.
These spaces will appear in the theory tensorialized with spacetime tensors. The scale spaces

ppearing in tensor products are not effected by differential operators, hence their elements can be
reated as constants.

We introduce the space T of future oriented time intervals, the space L of lengths, and the
pace M of masses.

We shall refer to particles of mass m�M and charge q�T−1 � L3/2 � M1/2.
Moreover, we will consider time units u0�T, or their duals u0�T*.
In order to unscale some objects of the theory, we will need a scale with scale dimensions of

he Planck constant � :T−1 � L2 � M. Actually, in the classical theory any such scale would do; on
he other hand, in the quantum theory, we have to assume just the actual value of this scale.

. Spacetime

Our basic framework is spacetime with its fibering over absolute time.34,37

We assume time to be an affine space T associated with the vector space T̄ªT � R and
pacetime to be an oriented four-dimensional manifold E fibered over time by the absolute time
ap t :E→T.

We shall refer to spacetime charts �x��= �x0 ,xi� adapted to the time fibering, to the affine

tructure of time, to a time unit of measurement u0� T̄ and to the orientation of spacetime.
We shall be concerned with the tangent space TE of spacetime and its vertical tangent

ubspace j :VE�TE, consisting of the vectors tangent to the fibers, which are called spacelike.
oreover, we shall be concerned with the cotangent space T*E of spacetime and its horizontal

ubspace H*EªE� T̄*�T*E, consisting of forms vanishing on vertical vectors, which are called

imelike. Furthermore, we shall be concerned with the horizontal space HEªE� T̄ and the
otangent vertical space V*E. The local coordinate bases of TE, VE, T*E, HE, and V*E are
enoted by

�� � sec�E,TE�, �i � sec�E,VE�, d� � sec�E,T*E�, d0 � sec�E,H*E�

u0 � sec�E,HE�, ďi � sec�E,V*E� .

We have the distinguished scaled time form dt :E→T � T*E, with coordinate expression dt
u0 � d0. It generates the horizontal subbundle H*E�T*E. We shall often make the natural iden-

ification u0�d0 via pullback.
We have the natural timelike projection and spacelike projection

dt:TE → HE:X � dt�X� and j*:T*E → V*E:� � �̌ ª � � j ,

ith coordinate expressions dt�X�=X0u0 and �̌=�iď
i.

In general, the inverted caret “Ú” will denote the vertical restriction of spacetime forms. We
tress that we do not have natural inclusions and projections of the following type

V*E � T*E, HE � TE and TE → VE, T*E → H*E .

his is an important feature of our relativistic model; indeed, we need the choice of an “observer”
n order to achieve such inclusions and projections.

We shall be involved with the Lie subalgebras

proj�E,TE� � sec�E,TE� and fine�E,TE� � proj�E,TE�

f spacetime vector fields which are projectable on T and whose time component is constant,

espectively. Their coordinate expressions are of the type
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X = X0�0 + Xi�i � proj�E,TE� with X0 � map�T,R�,Xi � map�E,R� ,

X = X0�0 + Xi�i � fine�E,TE� with X0 � R Xi � map�E,R� .

. Observers

Observers are essential tools for performing physical measurements. In the standard literature,
he measurements are usually described by coordinates. But what is essentially necessary is the
bserver underlying a system of coordinates.

Our relativistic model does not exhibit any distinguished observer.
The choice of an observer yields the observed inclusions and projections which are not

rovided by the time fibering.
An observer is defined to be a �local� section o :E→T* � TE, which projects on 1�T* � T,

.e., a �local� section o :E→J1E, where J1E denotes the first jet space of spacetime. Thus, an
bserver is just a connection of the spacetime fibering.

The coordinate expression of an observer o is of the type o=u0 � ��0+o0
i �i�, where o0

i

map�E ,R�. The charts �x�� for which o0
i =0 are said to be adapted to o. Conversely, each chart

x�� is adapted to a unique observer, whose coordinate expression turns out to be oªu0 � �0.
Each observer o yields the observed spacelike projection ��o� :TE→VE :X�X−o�dt�X�� and

he observed timelike projection o* :T*E→H*E :� �o�o4�, whose coordinate expressions are
�o�= �di−o0

i d0� � �i and o*=d0 � ��0+o0
i �i�.

Moreover, an observer o yields the observed spacelike inclusion �*�o� :V*E�T*E :���
��o� and the observed timelike inclusion o :HE�TE :X�o�X�, whose coordinate expressions
re �*�o����=�i�di−o0

i d0� and o�X�=X0��0+o0
i �i�.

Thus, an observer o yields the observed splittings of the tangent and cotangent spaces of
pacetime into the direct sum of their timelike and spacelike components

TE = HE � VE:X � dt�X� + ��o��X�, T*E = H*E � V*E:� � o*��� + �*��� .

. Metric field

The fibers of spacetime are equipped with a given Riemannian metric.34,37

We assume spacetime to be equipped with a scaled Riemannian metric of the fibers g :E
L2 � �V*E � V*E�.

With reference to a particle of mass m, it is useful to define the rescaled spacelike metric
ª �m / � �g :E→T � �V*E � V*E�.

We denote the contravariant spacelike metric and the contravariant rescaled spacelike metric

y ḡ :E→L*2 � �VE � VE� and Ḡª �� /m�ḡ :E→T* � �VE � VE�.
The spacelike metric g and the spacetime orientation naturally yield the scaled spacelike

olume form � :E→L3 � �3V*E, with coordinate expression �=��g�ď1Ù ď2Ù ď3.
Moreover, the time form and the spacelike volume form yield the scaled spacetime volume

orm vªdtÙ� :E→ �T � L3� � Ù4T*E, with coordinate expression v=��g�u0 � d0Ùd1Ùd2Ùd3.

For each X�sec�E ,TE�, the Lie derivative L�X�Ḡ�sec�E ,T* � �VE � VE�� has the coordi-

ate expression L�X�Ḡ= �X���G0
ij −G0

hj�hXi−G0
ih�hXj�u0 � �i � � j.

For each X�proj�E ,TE�, the Lie derivative L�X�G�sec�E ,T � �V*E � V*E��, has the coor-

inate expression L�X�G= �X���Gij
0 +Ghj

0 �iX
h+Gih

0 � jX
h�u0 � ďi � ďj.

For each X�sec�E ,TE�, the spacetime divergence divvX�map�E ,R� is well defined by the
quality L�X�v= �divvX�v.

For each X�proj�E ,TE�, the spacelike divergence div�X�map�E ,R� and the timelike diver-
ence divdtX� map�E ,R� are well defined, respectively, by the equalities L�X��= �div� ,X�� and
�X�dt= �divdtX�dt.
We have the coordinate expressions
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divvX =
���X���g��

��g�
, div�X = X0�0

��g�
��g�

+
� j�Xj��g��

��g�
, divdtX = �0X0.

Hence, for each X�proj�E ,TE�, we obtain divvX=divdtX+div�X and, for each X
fine�E ,TE�, we obtain divvX=div�X.

Moreover, for each X�proj�E ,TE�, we obtain div�X= 1
2 �Ḡ ,L�X�G	.

. Gravitational and electromagnetic fields

Spacetime is equipped with given gravitational and electromagnetic fields.34

We assume spacetime to be equipped with a gravitational field, i.e., with a linear connection
� :TE→T*E � TTE, such that ��dt=0 and ��g=0, and such that its curvature tensor R�K��

ulfills the symmetry condition R�
i�j�=R�

.j�i�.
Proposition 2.1: The coordinate expression of the gravitational field is of the type

K�
�

0
� = 0,

K�
0

i
0 = − G0

ij2	0j ,

K�
0

i
h = K�

h
i
0 = − 1

2G0
ij��0Gjh

0 + 2	hj� ,

K�
k
i
h = K�

h
i
k = − 1

2G0
ij��hGjk

0 − � jGhk
0 + �kGjh

0 � ,

here 	��o�=	�
��d�Ùd��sec�E ,�2T*E� is a closed two-form, which depends on the chosen

hart only through the associated observer o. QED
We shall denote by A��o� the local potentials of 	��o�, according to 2dA��o�=	��o�.
We assume spacetime to be equipped with an electromagnetic field, i.e., with a closed scaled

wo-form F :E→ �L1/2 � M1/2� � �2T*E �see also Ref. 46�.
Given a particle with mass m�M and charge q�T−1 � L3/2 � M1/2, it is convenient to con-

ider, respectively, the unscaled field and the rescaled field

q
�F:E → �2T*E and q

mF̂:E → T−1
� �VE � T*E� ,

here F̂=g�2�F�=gihF�h�i � d�.
The electromagnetic field F can be “joined,” in a covariant way, to the gravitational field

ielding the “joined” spacetime connection K=K�−dt � �q /2m�F̂− �q /2m�F̂ � dt.
The joined K still fulfills the properties that we have assumed for K�. Moreover, all objects

erived from the joined connection split into components related to the gravitational and the
lectromagnetic fields.

In particular, the observed potential A�o� of the joined connection splits into the sum of the
ravitational and electromagnetic potentials as A�o�=A��o�+ �q / � �Ae, where Ae�sec�E , �L1/2

� M1/2� � T*E� is a local �observer independent� potential of F, according to 2dAe=F.
Thus, from now on, with reference to a particle of mass m and charge q, we shall refer to the

pacetime structure constituted by the 4-plet �E , t ,G ,K�, whose elements fulfill the properties
entioned above.

. Basic model of spacetime

The present paper deals with a curved spacetime. However, this model includes flat or par-
ially flat spacetimes, as well.34 Thus, the standard mechanics can be recovered as a particular case
f our theory.
The simplest model of spacetime is given by the following construction.
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We consider an oriented affine space E that is associated with the vector space Ē and equipped
ith an affine map t :E→T of rank 1.

Let us consider the vector subspace Sªker Dt� Ē. We can easily see that all fibers of the
bering t :E→T are affine subspaces of E associated with the same vector space S. Hence, the
pacetime fibered space turns out to be an Abelian principal bundle with structural group S.

We assume as spacelike metric a constant Euclidean metric on S.
Moreover, we assume as gravitational connection the connection induced by the affine struc-

ure of spacetime. Eventually, we assume a vanishing electromagnetic field.
Clearly, the above objects fulfill our axioms. We call such a spacetime a special Newtonian

pacetime. In this model we can easily define the standard inertial motions and inertial observers.
We could consider also a little more complex model, which assumes the previous structure for

ackground and adds a gravitational connection which is Ricci flat. This model accounts for the
tandard notions of classical mechanics, including Newton’s law of gravitation.

The rigid body provides a further nontrivial example of our model.59

. Phase space and the induced structure

. Classical phase space

We assume as phase space of a classical particle the first jet space of sections of
pacetime.34,37

The first jet space �Refs. 39 and 63� J1E of t :E→T is a fibered manifold t1 :J1E→T over T
nd an affine bundle t0

1 :J1E→E over E, associated with the vector bundle T* � VE. Hence, the
ertical space of J1E with respect to E turns out to be V0J1E=T* � VE.

We denote the fibered charts of the phase space by �x0 ,xi ,x0
i �.

The above affine structure yields the natural tensor � :J1E→T � �V*E � VJ1E�, with �=u0

� ďi � �i
0.

We recall the natural contact maps D :J1E→T*E � TE and 
 :J1E→T* � VE, with D=u0

� ��0+x0
i �i� and 
=�i � �di−x0

i d0�. From now on, J1E is considered as a subspace of T* � TE,
ccording to the natural embedding D.

We shall be involved with the Lie subalgebras

proj�J1E,TJ1E� � sec�J1E,TJ1E� and fine�J1E,TJ1E� � proj�J1E,TJ1E�

f vector fields of J1E, which are projectable on E and T, and additionally whose time components
re constant, respectively.

. Holonomic prolongation of spacetime vector fields

We have a natural prolongation of spacetime vector fields to phase vector fields.
Proposition 2.2:37,55 There is a natural fibered morphism r1 :J1TE→TJ1E over J1E�

T

J1TT,

ith �x0 ,xi ,x0
i ; ẋ0ẋi , ẋ0

i � �r1= �x0 ,xi ,x0
i ; ẋ0 , ẋi , ẋ0

i − ẋ0
i ẋ0

0�.
Then, for each X�sec�E ,TE�, we obtain the vector field, called first holonomic prolongation

f X, X�1�ªr1 �J1X�sec�J1E ,TJ1E�, which projects on X. Its coordinate expression is X�1�
X0�0+Xi�i+ ��0Xi+� jX

ix0
j −�0X0x0

i −� jX
0x0

j x0
i ��i

0.
The map r1 �J1 : sec�E ,TE�→sec�J1E ,TJ1E� :X�X�1� turns out to be an injective R-linear

orphism of Lie algebras. QED
In the particular case when the vector field X is projectable on T, we recover the standard

olonomic prolongation obtained through the first jet prolongation of the fibered flow of X. In fact,
he above map restricts to the injective R-linear map

proj�E,TE� → proj�J1E,TJ1E�:X � X�1�,

ith coordinate expression X�1�=X0�0+ =Xi�i+ ��0Xi+� jX
ix0

j −�0X0x0
i ��i

0.

Later, we shall use the following technical results.
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Lemma 2.3:37 For each X�sec�E ,TE�, we have the equalities

L�X�1��
 = �D . �dt�X���
 and L�X�1�� D = − �D . �dt�X��� D ,

ith coordinate expressions

L�X�1��
 = ��0X0 + � jX
0x0

j ��di − x0
i d0� � �i

0,

L�X�1�� D = − ��0X0 + x0
j � jX

0���0 + x0
i �i� .

QED
For each X↑�proj�J1E ,TJ1E� which projects on X�proj�E ,TE�, the spacelike divergence

iv�X↑�map�J1E ,R� is well defined by the equality L�X↑��= �div�X↑�� and we obtain div�X↑

div�X.

. Distinguished phase fields

The spacetime connection and the rescaled metric yield in a covariant way further objects on
he phase space.34,37

The spacetime connection K yields a torsion free affine connection of the affine bundle J1E
E, called phase connection, ��K� :J1E→T*E � TJ1E, with coordinate expression ��0

i
ª��0j

i0x0
j

��00
i0 , where ��0�

i0 =K�
i
� Conversely, � characterizes K.

The phase connection � splits into the gravitational and electromagnetic components as �

��+�e where �e=−�g /2m��F̂+ D 4 F̂��sec�J1E ,T* � �T*E � VE��.
We have �0

i
0
j −�0

j
0
i =−G0

ihG0
jk���hGkl

0 −�kGhl
0 �x0

l +�hAk−�kAh�, with �00
hk
ªG0

hl�l0
k .

Then, � yields the second-order connection ����ªD 4� :J1E→J2E�T* � TJ1E, with �
u0 � ��0+x0

i �i+�00
i �i

0�, where

�00
i = Kh

i
kx0

hx0
k + 2Kh

i
0x0

h + K0
i
0

= − G0
ij���hGjk

0 − 1
2� jGhk

0 �x0
hx0

k + ��0Ghj
0 + �hAj − � jAh�x0

h + �0Aj − � jA0� .

Conversely, � characterizes �.
The second-order connection � splits into the gravitational and electromagnetic components

s ��+�e, where �e=−�q /m�D 4 F̂ :J1E→ �T* � T*� � VE equals the Lorentz force.
Then, � and G yield the phase two-form �G ,��ªG4 �����Ù
� :J1E→�2J1TE, with 

Gij
0 �d0

i −�00
i d0−�h0

i 
h�Ù
 j, and where ���� is the vertical valued form associated with �. Con-
ersely,  characterizes � and G.62

The two-form  splits into the gravitational and electromagnetic components as =�

e, where e= �q /2� �F.

Then, � and G yield the two-vector ��G ,��ª Ḡ4 ��̌Ù�� :J1E→�2VJ1E, with �=G0
ij��i

�i0
h�Ù� j

0, where �̌ :J1E→V*E � VJ1E is the vertical restriction of �.
The two-vector � splits into the gravitational and electromagnetic components as �=��

�e, where �e= �q /2� �G��F� :J1E→�2VJ1E.
We have the identities i���dt=1, i���=0, L����=0, �� ,��=0.
Therefore, �J1E ,dt ,� turns out to be a scaled cosymplectic manifold, where � is the asso-

iated scaled Reeb vector field and � is the associated two-vector.
We have the following results which will be used later.
Proposition 2.4:62 For each X�proj�E ,TE�, the following implications hold:

L�X�1�� = 0 Û L�X�1��� = 0, L�X�G = 0,

L�X�1�� = 0 Þ div�X = 0.
QED
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. Classical mechanics

The spacetime structure and the joined connection allow us to formulate the dynamics of a
lassical particle under the action of the gravitational and electromagnetic fields.34,37

. Classical kinematics

A motion is defined to be a section s�sec�T ,E� and its absolute velocity is defined to be the
rst jet prolongation j1s�sec�T ,J1E�.

An observer o yields the following objects:
- the affine fibered morphism ��o�ª id− �o � t0

1�� fib�J1E ,T* � VE� over E,
- the observed kinetic momentum Q�o�ªG� ���o� :J1E→V*E and the observed kinetic en-

rgy K�o�ª 1
2G4 ���o� � ��o�� :J1E→T* � R,

- for each motion s, the observed velocity ��o�sª j1s−o �s�sec�T ,T* � VE�,
Their expressions, in adapted coordinates, are

��o� = x0
i u0

� �i, Q�o� = Gij
0 x0

j ďi, K�o� = 1
2Gij

0 x0
i x0

j u0, � �o�s = �0siu0
� �i.

In the special Newtonian spacetime, we can also define the usual observed angular momentum
�o ,c�ªr�c��Q�o� with respect to an inertial motion c as reference center.
For each motion s, the absolute gravitational acceleration is defined to be the section

����j1sª j2s− ��� � j1s��sec�T ,T* � T* � VE� and the absolute joined acceleration is defined to
e the section ����j1sª j2s− �� � j1s��sec�T ,T* � T* � VE�. Clearly, we have ����j1s
�����j1s−�e � j1s. We have the coordinate expression

����j1s = ��00s
i − �Kh

i
k � s��0sh�0sk − 2�K0

i
h � s��0sh − �K0

i
0 � s��u0

� u0
� �i.

. Classical dynamics

We assume the generalized Newton’s law as equation of motion for classical dynamics
���j1sª j2s−� � j1s=0.

A function f �map�J1E ,R� such that � · f =0 is said to be conserved. We denote the subsheaf
f conserved functions by cons�J1E ,R��map�J1E ,R�.

We can also obtain the classical dynamics by a Lagrangian formalism according to a cohomo-
ogical procedure in the following way.

The phase two-form  admits locally horizontal potentials A↑�sec�J1E ,T*E�, which are
efined up to a closed spacetime form ��sec�E ,T*E�. Each horizontal potential A↑ splits, in a
ovariant way, as A↑=L�A↑�+P�A↑�, through the horizontal component L�A↑�ªD 4A↑, called
agrangian, and the D-vertical component P�A↑�ª
4A↑, called momentum. Moreover, we ob-

ain DL�A↑�= P̌�A↑�. Hence, each horizontal potential A↑ turns out to be just the Poincaré-Cartan
orm � of the associated Lagrangian L�A↑�.

Moreover, the horizontal component of  turns out to be the fibered morphism E
G������� :J2E→T* � V*E. Indeed, E turns out to be just the Euler-Lagrange operator associated
ith the Lagrangian L�A↑�, for each horizontal potential A↑.

Next, let us choose a horizontal potential A↑ and an observer o.
Then, we define the observed potential to be the spacetime one-form A�o�ªo*A↑

sec�E ,T*E�. This form turns out to be just an observed potential of the joined connection K.
oreover, we define the observed Hamiltonian to be the function H�o�ª−o4A↑ and the observed

↑
omentum to be the form P�o�ª��o�4A .
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We have the following expressions, in adapted coordinates,

A↑ = − 1
2Gij

0 x0
i x0

j d0 + Gij
0 x0

j di + A�d�,

L = L0d0 = � 1
2Gij

0 x0
i x0

j + Aix0
i + A0�d0, P = �Gij

0 x0
j + Ai��di − x0

i d0� ,

A�o� = A�d�, H�o� = H0d0 = � 1
2Gij

0 x0
i x0

j − A0�d0, P�o� = �Gij
0 x0

j + Ai�di.

. Hamiltonian methods

We devote the following to the basic recalls concerning the splitting of the tangent space of
he phase space, the Hamiltonian lift of phase functions, and the Poisson bracket of phase
unctions.34,37

. Hamiltonian splitting

The time fibering and the second-order connection yield in a covariant way a splitting of the
angent and cotangent spaces of the phase space.

We have the natural dual splittings over J1E,

TJ1E = H�J1E � VJ1E and T*J1E = H*J1E � V�
*J1E ,

iven by X↑=dt�X↑��+ �X↑−dt�X↑��� and �↑=�↑���dt+ ��↑−�↑���dt�, where
- VJ1E�TJ1E is the vertical subbundle with respect to dt,
- H*J1E�T*J1E is the horizontal subbundle generated by dt,
- H�J1E�TJ1E is the horizontal subbundle generated by �,
- V�

*J1E�T*J1E is the vertical subbundle of forms which annihilate �.
We define the musical morphisms to be the linear maps

�:sec�J1E,TJ1E� → sec�J1E,V�
*J1E�:X↑ � i�X↑� ,

��:sec�J1E,T*J1E� → sec�J1E,VJ1E�:�↑ � i��↑�� .

The musical morphisms restrict to the mutually inverse linear maps

0
�:sec�J1E,VJ1E� → sec�J1E,V�

*J1E�

�0
�:sec�J1E,V�

*J1E� → sec�J1E,VJ1E� .

For each X↑�sec�J1E ,TJ1E� and �↑�sec�J1E ,T*J1E�, we obtain the equalities

��� � ���X↑� = X↑ − dt�X↑��, ��X↑� = ���
0�−1�X↑ − dt�X↑��� ,

�� � �����↑� = �↑ − �↑���dt, ����↑� = ��
0�−1��↑ − �↑���dt� .

Hence, we can write X↑=dt�X↑��+ ��� ����X↑� and �↑=�↑���dt+ �� ������↑�.
Given a time scale ��map�J1E , T̄�, we define the �-horizontal subbundle H�J1E�TJ1E

onsisting of vectors whose time components are given by �. Then, we obtain the mutually inverse
ffine maps

�
�:sec�J1E,H�J1E� → sec�J1E,V�

*J1E�:X↑ � i�X↑� ,

��
�:sec�J1E,V*J1E� → sec�J1E,H�J1E�:�↑ � ���� + i��↑�� .
�
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For each X↑ , X̄↑�sec�J1E ,TJ1E� and �↑ , �̄↑�sec�J1E ,T*J1E�, we have the following equiva-
ences:

X↑ = X̄↑ Û dt�X↑� = dt�X̄↑�, ��X↑� = ��X̄↑�

�↑ = �̄↑ Û �↑��� = �↑��̄�, ����↑� = ����̄↑� .

. Poisson bracket

We introduce the Poisson bracket in our cosymplectic framework by an approach which is
ather analogous to that of symplectic manifolds34,37

We define the Poisson bracket on map�J1E ,R� by 
f ,g�ª i�df Ùdg��, which has the coordi-
ate expression 
f ,g�=G0

ij��i f� j
0g−�ig� j

0f�− ��0
i

0
j −�0

j
0
i ��i

0f� j
0g.

For each f ,g�map�J1E ,R�, we have37 � . 
f ,g�= 
� . f ,g�+ 
f ,� .g�. Hence, the subsheaf
ons�J1E ,R��map�J1E ,R� is closed with respect to the Poisson bracket.

. Hamiltonian lift of phase functions

In our cosymplectic framework we can introduce the vertical Hamiltonian lift, which partially
esembles the usual Hamiltonian lift of symplectic manifolds. Moreover, we can introduce a
urther affine Hamiltonian lift which depends on an arbitrary choice of a time scale. Furthermore,
e obtain a distinguished affine Hamiltonian lift through the distinguished time scale exhibited by

ach phase function.34,37

For each f �map�J1E ,R�, we define its vertical Hamiltonian lift to be the vertical vector field
��df�= ��

0�−1�df −� . f��sec�J1E ,VJ1E�, with coordinate expression ���df�=−G0
ij� j

0f�i

�G0
ij� j f + ��0

i
0
j −�0

j
0
i �� j

0f��i
0.

For each f ,g�map�J1E ,R�, we have ����df� ,���dg��=���d
f ,g��. Hence, the map
ap�J1E ,R�→sec�J1E ,TJ1E� : f ����df� turns out to be a morphism of Lie algebras.

For each f �map�J1E ,R�, we define its Hamiltonian lift, with respect to the time scale �

map�J1E , T̄�, to the vector field X↑
ham�� , f�ª����+���df��sec�J1E ,TJ1E�, with coordinate

xpression

H↑
ham��, f� = �0�0 + ��0x0

i − G0
ij� j

0f��i + ��0�00
i + G0

ij� j f + ��0
i

0
j − �0

j
0
i �� j

0f��i
0.

We stress that we need the choice of the time scale � because � is a scaled vector field. This
act is not a minor point of our theory; instead, it plays an essential role throughout the classical
nd quantum theories.

Actually, each f �map�J1E ,R� yields the time scale f �ª
1
3 �Ḡ ,D2f	, where D2f

fib�J1E ,T2 � �V*E � V*E�� is the second fiber derivation of f with respect to the affine fiber of
he bundle J1E→E. Thus, we have the coordinate expression f �= f0u0= 1

3G0
ij�i

0� j
0fu0. The map f�

s called the time component of f .
We define the Hamiltonian lift of each f �map�J1 ,E ,R� to be the vector field

X↑
ham�f� ª Xham

↑ �f �, f� = ��f �� + ���df� � sec�j1E,TJ1E� .

. Special phase functions

In the following we collect some basic facts on special phase functions, their Lie bracket and
34,37
heir tangent, Hamiltonian and holonomic lifts.
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. The sheaf of special phase functions

A special phase function is defined to be a function f �map�J1E ,R�, such that D2f =� � G,

ith ��map�E , T̄�. Clearly, if f �map�J1E ,R� is a special phase function, then we obtain �

f �, hence D2f = f � � G, with f ��map�E , T̄�.
The coordinate expression of a special phase function is of the type

f = f0 1
2Gij

0 x0
i x0

j + f iGij
0 x0

j + f̆ with f0, f i, f̆ � map�E,R� .

iven an observer o, a special phase function f can be written as

f = f� 4 K�o� + f��o� 4 Q�o� + f�o� ,

here, in adapted coordinates,

f � = 1
3 �Ḡ,D2f	 = f0u0 � map�E,T̄� ,

f��o� = G��Df� � o = f i�i � sec�E,T*
� VE� ,

f�o� = f � o = f̆ � map�E,R� .

Given a horizontal potential A↑ and an observer o, a special phase function f can be written as
f = f�4H�A↑ ,o�+ f��o�4P�A↑ ,o�+ �f�o�+ f0A0− f iAi�.

The subsheaf of special phase functions is denoted by spec�J1E ,R��map�J1E ,R�.
Moreover, we shall be involved with the distinguished subsheaves related to the affine struc-

ure of the bundle J1E→E. Thus, we define the following subsheaves:
- the sheaf proj�J1E ,R��spec�J1E ,R� consisting of functions, called projectable, whose time

omponent f��map�T , T̄� depends only on T;
- the sheaf fine�J1E ,R��proj�J1E ,R� consisting of projectable functions, called fine, whose

ime component f�� T̄ is constant;
- the sheaf aff�J1E ,R�� fine�J1E ,R� consisting of projectable functions, called affine, whose

ime component f�=0 vanishes, i.e., the subsheaf of affine functions with respect to the affine
bers of the bundle J1E→E;

- the sheaf map�E ,R��aff�J1E ,R� consisting of affine functions such that Df =0, i.e., the
ubsheaf of affine functions which depend only on E.

. Lifts of special phase functions

Let us analyze three distinguished lifts of special phase functions into vector fields: the
amiltonian lift, the tangent lift and the holonomic lift.

Let us start with the Hamiltonian lift. The special phase functions are characterized by the
ollowing property.

Theorem 2.5: Let ��map�J1E , T̄� and f �map�J1E ,R�. Then, the following conditions are
quivalent:

1� Xham
↑ �� , f��sec�J1E ,TJ1E� is projectable on a vector field X�� , f��sec�E ,TE�,

2� f �spec�J1E ,R� and �= f�.
If either of the above conditions is fulfilled, then we obtain

Xham
↑ ��, f� = X↑

ham�f� ª ��f�� + ���df� .

QED
The Hamiltonian lift of special phase functions turns out to be the map�T ,R�-linear map

↑
ham:spec�J1E ,R�→sec�J1E ,TJ1E� : f �X↑

ham�f�=X↑
ham�f� , f�, with coordinate expression

↑ 0 i i 0

ham�f�= f �0− f �i+X0�i , where

                                                                                                            



d
X
m
→
−

X
=

3

i

d

a
m

h

�
t
s
J
o
b
j

s
t
i
r

4

b

062903-12 Modugno, Saller, and Tolksdorf J. Math. Phys. 47, 062903 �2006�

                        
X0
i = G0

ij� 1
2� j f

0Ghk
0 x0

hx0
k + �� j fh

0 + fk��kGjh
0 − � jGkh

0 � − f0�0Gjh
0 �x0

h + � j f̆

+ fh��hAj − � jAh� − f0��0Aj − � jA0�� .

Hence, the kernel of X↑
ham is the subsheaf map�T ,R��spec�J1E ,R�.

Then, let us analyze the tangent lift. We obtain the tangent lift of special phase functions
efined as the map X : spec�J1E ,R�→sec�E ,TE� : f �X�f�ªX�f� , f�, with coordinate expresssion
�f�= f0�0− f i�i. As a consequence, X is surjective and its kernel is the subsheaf
ap�E ,R��spec�J1E ,R�. We also obtain the map spec�J1E ,R� /map�E ,R�
sec�E ,TE� : �f��X�f�, whose inverse has Coordinate expression X0�0+Xi�i��X0 1

2Gij
0 x0

i x0
j

Gij
0 Xjx0

i �.
Eventually, let us introduce the holonomic lift.61

We define the holonomic lift of special phase functions to be the R-linear map
↑

hol : spec�J1E ,R�→sec�J1E ,TJ1E� : f �X↑
hol�f�ª �X�f���1�, with coordinate expression X↑

hol�f�
f0�0− f i�i− ��0f i+� j f

ix0
j +�0f0x0

i ��i
0.

The kernel of X↑
hol is the subsheaf map�E ,R��spec�J1E ,R�.

. Special Lie bracket

The special phase functions are not closed under the Poisson bracket. Also for this reason, one
ntroduces a nonstandard Lie bracket.34,37

We define the special bracket on spec�J1E ,R� by �f ,gª 
f ,g�+��f�� ·g−��g�� · f , with coor-
inate expression

�f ,g� = f0�0g� − g0�0f� − fh�hg� + gh�hf�,

�f ,g˘  = f0�0ğ − g0�0 f̆ − fh�hğ + gh�h f̆ − �f0gh − g0fh�	0h + fhgk	hk.

The sheaf spec�J1E ,R� is an R-Lie algebra with respect to the special bracket.
The subsheaves

aff�J1E,R� � fine�J1E,R� � proj�J1E,R� � spec�J1E,R� � map�J1E,R�

re subsheaves of R-Lie subalgebras with respect to the special bracket. Moreover, the subsheaf
ap�E ,R��aff�J1E ,R� is a subsheaf of ideals.

At a first insight, the special bracket resembles the Jacobi bracket.48 However, these brackets
ave essential differences.

In fact, in our context, the Jacobi bracket would be �f ,g�ª 
f ,g�+ f� ·g−g� · f and not
f ,gª 
f ,g�+��f�� ·g−��g�� · f . Indeed, the special phase functions are not closed with respect to
he Jacobi bracket; moreover, in our context, the Jacobi bracket is not well defined with respect to
cale dimensions, as it is not invariant with respect to time scales. Except for this trouble, the
acobi bracket could be defined for all phase functions, while the special bracket can be defined
nly for special phase functions, as it involves their “time components.” We stress that the Jacobi
racket depends on the first jets of the functions, while the special bracket depends on the second
et, because the time component of the special phase functions depends on the second jet.

Furthermore, we observe that in our context we have �� ,��=0 and not �� ,��=2�Ù�, but,
till, the special bracket fulfills the Jacobi property of Lie brackets. These facts do not conflict with
he Lichnerowicz theorem concerning the classification of Lie algebras of functions �see, for
nstance, Ref. 48, p. 336�, because the special phase functions are not closed with respect to the
eal multiplication.

. Morphisms of Lie algebras

Let us analyze the relation between the special bracket of special phase functions and the Lie

racket of their prolongations.
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The map X↑
ham:spec�J1E ,R�→sec�J1E ,TJ1E� is not a morphism of Lie algebras, with respect

o the special bracket and the Lie bracket, respectively. On the other hand, we have the following
esult.

Proposition 2.6:37 For each f ,g�proj�J1E ,R�, we have

X↑
ham��f ,g� = �Xham

↑ �f�,X↑
ham�g�� .

Thus, the sheaf of Hamiltonian lifts of projectable special phase functions is closed with
espect to the Lie bracket and the map X↑

ham:proj�J1E ,R�→sec�J1E ,TJ1E� is a morphism of Lie
lgebras. QED

Proposition 2.7:34 For each f ,g�spec�J1E ,R�, we have

X��f ,g� = �X�f�,X�g�� .

hus, the map X : spec�J1E ,R�→sec�E ,TE� is a morphism of Lie algebras. QED
Proposition 2.8: For each f ,g�spec�J1E ,R�, we have

X↑
hol��f ,g� = �X↑

hol�f�,X↑
hol�g�� .

Hence, the map spec�J1E ,R�→sec�J1E ,TJ1E� : f �X↑
hol�f� is a morphism of Lie algebras. Its

ernel equals map �E ,R�.
Proof: If f ,g�spec�J1E ,R�, then, by virtue of Proposition 2.7 and Proposition 2.2, we obtain

X↑
hol��f ,g� ª �X��f ,g���1� = �X�f�;X�g���1� = ��X�f���1�,�X�g���1�� ª �X↑

hol�f�,X↑
hol�g�� .

QED

II. CLASSICAL SYMMETRIES

The following deals with the main aim of the paper. It is devoted to the analysis of the
istinguished subalgebras of the algebra of special phase functions and to the classification of
lassical infinitesimal symmetries.

. Subalgebras of special phase functions

We have distinguished subsheaves of the sheaf of special phase functions, which are closed
ith respect to the special bracket. These subalgebras will play an important role with respect to

he infinitesimal symmetries of the classical structure.

. Subalgebra of conserved special phase functions

We define the sheaf cons spec�J1E ,R�ªcons�J1E ,R��spec�J1E ,R�, and, analogously, the
ubsheaves cons proj�J1E ,R� , cons fine�J1E ,R� , cons aff�J1E ,R�, and cons map�E ,R�.

We stress that the special bracket reduces to the Poisson bracket on the sheaf cons�J1E ,R�,
ence also on the above subsheaves.

Proposition 3.1: The sheaf cons spec�J1E ,R� is closed with respect to the special bracket.
Proof: If f ,g�cons spec�J1E ,R�, then � · �f ,g=� . 
f ,g�= 
� . f ,g�+ 
f ,� .g�=0. QED
Lemma 3.2: For each spec�J1E ,R�, we have the coordinate expression

�0 . f � ��u0� . f = 1
6 ��i f

0Ghk
0 + �kf0Gih

0 + �hf0Gki
0 �x0

i x0
hx0

k+ 1
2 ��0f0Ghk

0

− f0�0Ghk
0 + f i�iGhk

0 + �hf iGik
0 + �kf iGih

0 �x0
hx0

k

− �f0��0Ah − �hA0� + f i��hAi − �iAh� − �0f iGih
0 − �h f̆�x0

h+ �h f̆ − f i��0Ai − �iA0� .
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roof: The proof follows from a long computation in coordinates by using the coordinate expres-
ions

�00
i = − G0

ij���hGjk
0 − 1

2� jGhk
0 �x0

hx0
k + ��0Ghj

0 + ��hAj − � jAh��x0
h + �0Aj − � jA0� ,

f = f0 1
2Ghk

0 x0
hx0

k + fhGhk
0 x0

k + f̆ .

QED
Proposition 3.3: The sheaf cons spec�J1E ,R� is constituted by the special phase functions f

uch that

�i f
0Ghk

0 + �kf0Gih
0 + �hf0Gki

0 = 0,

�0f0Ghk
0 − f0�0Ghk

0 + f i�iGhk
0 + �hf iGik

0 + �kf iGih
0 = 0,

f0��0Ah − �hA0� + f i��hAi − �iAh� − �0f iGih
0 − �h f̆ = 0,

�0 f̆ − f i��0Ai − �iA0� = 0.

QED
A general analysis of the above system is beyond the scope of the present paper. Here, we just

iscuss some equivalences and simple examples in the basic model of spacetime. A similar remark
olds for the systems of differential equations, which will appear in the forthcoming sections.

Proposition 3.4: We have the useful identities �0 .H0=−�0L0 and �0 .Pi=�iL0. Moreover, we
ave the following equivalences:

� . x0
i = 0 Û K�

r
� = 0,

� . K0 = 0 Û �0Ghk
0 = 0, �0Ah − �hA0 = 0,

� . H0 = 0 Û �0Ghk
0 = 0, �0A� = 0,

� . Qi = 0 Û �iGhk
0 = 0, �iA� − ��Ai = 0,

� . Pi = 0 Û �iGhk
0 = 0, �iA� = 0,

� . L0 = 0 Û �hAk + �kAh = �0Ghk
0 , �hA0 = 0, A0

i ��0Ai − �iA0� = �0A0.

QED
Example 3.5: In the special Newtonian spacetime, the sheaf cons spec�J1E ,R� is constituted

y the special phase functions f such that

�i f
0 = 0,

�0f0 = − 2�1f1 = − 2�2f2 = − 2�3f3,

�1f2 = − �2f1, �1f3 = − �3f1, �2f3 = − �3f2,

i ˇ
�0f = − �i f ,
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�0 f̌ = 0.

A solution of this system is given by

f0 = − a0�x0�2 + d0, f i = �a0xi + b0
i �x0, f̌ = − � 1

2a0�
i

�xi�2 + �
i

b0
i xi + c� ,

here a0 ,b0
i ,c ,d0�R. In particular, we obtain cons spec�J1E ,R��proj�J1E ,R�.

For instance, the components of the kinetic energy, of the momentum, and of the angular
omentum with respect to an inertial observer are conserved special phase functions. QED

. Subalgebra of holonomic functions

We can compare the holonomic and Hamiltonian lifts of a special phase function. The special
hase functions whose holonomic and Hamiltonian lifts coincide constitute a subalgebra with
espect to the special bracket.

We call f� spec �J1E ,R� holonomic if X↑
hol�f�=X↑

ham�f�.
We denote the subsheaf of holonomic functions by hol�J1E ,R��spec�J1E ,R�.
Accordingly, we set

hol fine�J1E,R� ª hol�J1E,R� � fine�J1E,R� ,

hol aff�J1E,R� ª hol�J1E,R� � aff�J1E,R� ,

hol map�E,R� ª hol�J1E,R� � map�E,R� .

Proposition 3.6: The sheaf hol �J1E ,R� is constituted by the special phase functions f such
hat

�i f
0 = 0,

�0f0Gij
0 − f0�0Gij

0 + fh�hGij
0 + � j f

hGih
0 + �i f

hGjh
0 = 0,

f0��iA0 − �0Ai� + �0fhGih
0 + fh��hAi − �iAh� + �i f̆ = 0.

As a consequence, we obtain hol �J1E ,R��proj �J1E ,R�.
Proof: By the coordinate expressions of the holonomic and Hamiltonian lifts of projectable

pecial phase functions

X↑
hol�f� = f0�0 − f i�i − ��0f i + � j f

ix0
j + �0f0x0

i + � j f
0x0

j x0
i ��i

0,

X↑
ham�f� = f0�0 − f i�i + G0

ij�� j f̆ + � j f
0 1

2Ghk
0 x0

hx0
k + � j f

hGhk
0 x0

k − f0��0Ghj
0 x0

h

+ ��0Aj − � jA0�� + fh��hGjk
0 x0

k − �� jAh − �hAj���i
0,

e obtain the following coordinate expression of the condition X↑
hol�f�=X↑

ham�f�:

− ��0f i + � j f
ix0

j + �0f0x0
i + � j f

0x0
j x0

i � = G0
ij�� j f̆ + � j f

0 1
2Ghk

0 x0
hx0

k + � j f
hGhk

0 x0
k − f0��0Ghj

0 x0
h

+ ��0Aj − � jA0�� + fh��hGjk
0 x0

k − �� jAh − �hAj�� .

This is equivalent to the system

− �hf0�k
i = � j f

01
G0

ijGhk
0 ,
2

                                                                                                            



g

a

s

w

3

t
c

062903-16 Modugno, Saller, and Tolksdorf J. Math. Phys. 47, 062903 �2006�

                        
− ��hf i + �0f0�h
i � = G0

ij�� j f
kGhk

0 − f0�0Ghj
0 + fk�kGjh

0 � ,

− �0f i = G0
ij�� j f̆ − f0��0Aj − � jA0� + fh��hAj − � jAh�� .

By contracting the first equality with G0
hkGir

0 and the second and third equalities with Gir
0 , we

et

�rf
0 = 0,

− ��hf iGir
0 + �0f0Ghr

0 � = �rf
kGhk

0 − f0�0Ghr
0 + fk�hGrk

0 ,

− �0f iGir
0 = �r f̆ − f0��0Ar − �rA0� + fh��hAr − �rAh�

nd thus

�rf
0 = 0,

− ��i f
hGhj

0 + �0f0Gij
0 � = � j f

hGih
0 − f0�0Gij

0 + fh�iGjh
0 ,

− �0fhGhi
0 = �i f̆ − f0��0Ai − �iA0� + fh��hAi − �iAh�

QED
Proposition 3.7: The sheaf hol �J1E ,R� is closed with respect to the special bracket.
Proof: If f ,g�hol�J1E ,R�, then, obtain

X↑
ham��f ,g� = �X↑

ham�f�,X↑
ham�g�� = �X↑

hol�f�,X↑
hol�g�� = X↑

hol��f ,g� .

QED
Example 3.8: In the special Newtonian spacetime, the sheaf hol�J1E ,R� is constituted by the

pecial phase functions f such that

�i f
0 = 0,

�0f0 = − 2�1f1 = − 2�2f2 = − 2�3f3,

�1f2 = − �2f1, �1f3 = − �3f1, �2f3 = − �3f2,

�0f i = − �i f̆ .

A solution of this system is given by

f0 = − 2� ad0, f i = axi + bi, f̆ = − �1

2
�0a�

i

�xi�2 + �
i

�0bixi + c� ,

here a ,bic�map�T ,R�. QED

. Subalgebra of self-holonomic functions

Here, we consider special phase functions such that their holonomic prolongation is related to
heir differential through the cosymplectic two-form. These special phase functions turn out to be
onserved and holonomic.

↑
We call f �spec�J1E ,R� self-holonomic if i�X hol�f��=df .
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We denote the subsheaf of self-holonomic functions by self�J1E ,R��spec�J1E ,R�. Accord-
ngly, we set

self fine�J1E,R� ª self�J1E,R� � fine�J1E,R� ,

self aff�J1E,R� ª self�J1E,R� � aff�J1E,R� ,

self map�E,R� ª self�J1E,R� � map�E,R� .

Lemma 3.9: If f �self�J1E ,R�, then � . f =0, hence

self�J1E,R� � cons�J1E,R� .

Proof: We have � . f = i���df = i���i�X↑
hol�f��=−i�X↑

hol�f��i���=0. QED
Lemma 3.10: If f �self�J1E ,R�, then X↑

hol�f�=X↑
ham�f�, hence

self�J1E,R� � hol�J1E,R� .

Proof: The equality i�X↑
hol�f��=df yields

X↑
ham�f� ª ��f�� + ���df� = ��f�� + �����X↑

hol�f��� .

herefore, we have

X↑
ham�f� = ��f�� + X↑

hol�f� − ��X↑
hol�f�� = ��f�� + X↑

hol�f� − ��X�f��

=��f�� + X↑
hol�f� − ��f�� = X↑

hol�f� .

QED
Proposition 3.11: For each f ,g�self�J1E ,R�, we obtain

��X↑
hol��f ,g�� = d�f ,g .

Hence, the subsheaf self�J1E ,R��spec�J1E ,R� is closed with respect to the special bracket.
Proof: It sufficies to prove that

�����X↑
hol��f ,g��� = ���d�f ,g� ,

i������X↑
hol��f ,g��� = i����d�f ,g� .

In fact, we have

�����X↑
hol��f ,g��� = X↑

hol��f ,g� − ��X↑
hol��f ,g��

=X↑
hol��f ,g� − ��X��f ,g��

=X↑
hol��f ,g� − ���f ,g�� .

By Lemma 2.10 we have

�����X↑
hol��f ,g��� = X↑

ham��f ,g� − ���f ,g��

=���d�f ,g� .

On the other hand, the identity i���=0 yields i�����X↑
hol��f ,g��=0 and the definition of
he special bracket and Lemma 3.9 yield
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i���d�f ,g = i���d�
f ,g� + ��f�� . g − ��g�� . f�

=
� . f ,g� + 
f ,� . g� + i���d���f�� · g − ��g�� . f� = 0.

Hence, ��X↑
hol��f ,g��=d�f ,g. QED

Now, we state the conditions aimed at classifying the self-holonomic functions.
Lemma 3.12: For each f �proj�J1E ,R�, we obtain

i�X↑
hol�f�� = Gij

0 �f0x0
j + f j�d0

i + � f0���0Aj − � jA0� + �0Gjh
0 x0

h + 1
2� jGhk

0 x0
hx0

k�
− f i���iAj − � jAi� + ��iGjh

0 − � jGih
0 �x0

h� − Gij
0 ��0f i + �hf ix0

h + �0f0x0
i ��dj

+ � f j���0Aj − � jA0� + �0Gjh
0 x0

h + 1
2� jGhk

0 x0
hx0

k� + ��0f i + �kf ix0
k + �0f0x0

i �Gij
0 x0

j �d0.

Proof: The proof follows from a long computation in coordinates, by taking into account the
oordinate expressions

X↑
hol�f� = f0�0 − f i�i − ��0f i + � j f

ix0
j + �0f0x0

i ��i
0,

 = Gij
0 d0

i Ù �dj − x0
j d0� + ���0Aj − � jA0� + �0Gjh

0 x0
h

+ 1
2� jGhk

0 x0
hx0

k�d0 Ù dj + 1
2 ���iAj − � jAi� + ��iGjh

0 − � jGih
0 �x0

h�di Ù dj .

QED
Lemma 3.13: For each f �proj�J1E ,R�, we obtain

df = ��0f0 1
2Ghk

0 x0
hx0

k + �0fhGhk
0 x0

k + �0 f̆ + f0 1
2�0Ghk

0 x0
hx0

k + fh�0Ghk
0 x0

k�d0

+ �� j f
hGhk

0 x0
k + � j f̆ + f0 1

2� jGhk
0 x0

hx0
k + fh� jGhk

0 x0
k�dj

+ �f0Gih
0 x0

h + fhGih
0 �d0

i .

QED
Proposition 3.14: The sheaf self�J1E ,R� is constituted by the special phase functions f such

hat

�i f
0 = 0,

f0�0Gij
0 − �0f0Gij

0 − fh�hGij
0 − � j f

hGih
0 − �i f

hGjh
0 = 0,

f0��0Aj − � jA0� − f i��iAj − � jAi� − Gij
0 �0f i − � j f̆ = 0,

f i��iA0 − �0Ai� + �0 f̆ = 0.

Proof: By virtue of Lemmas 3.12 and 3.13, for each f �proj�J1E ,R�, we have i�X↑
hol�f��

df if and only if

f j���0Aj − � jA0� + �0Gjh
0 x0

h + 1
2� jGhk

0 x0
hx0

k� + ��0f i + �hf ix0
h + �0f0x0

i �Gik
0 x0

k

= �0f0 1
2Ghk

0 x0
hx0

k + �0fhGhk
0 x0

k + �0 f̆ + f0 1
2�0Ghk

0 x0
hx0

k + fh�0Ghk
0 x0

k ,

f0���0Aj − � jA0� + �0Gjh
0 x0

h + 1
2� jGhk

0 x0
hx0

k� − f i���iAj − � jAi� + ��iGjh
0 − � jGih

0 �x0
h�

− Gij
0 ��0f i + �hf ix0

h + �0f0x0
i � = � j f

hGhk
0 x0

k + � j f̆ + f0 1� jGhk
0 x0

hx0
k + fh� jGhk

0 x0
k .
2

                                                                                                            



e

t

t

3

f

062903-19 Covariant classical mechanics J. Math. Phys. 47, 062903 �2006�

                        
By comparing the coefficients of the two above polynomial equalities, we obtain the following
quivalent system:

f j��0Aj − � jA0� − �0 f̆ = 0,

f0��0Aj − � jA0� − f i��iAj − � jAi� − Gij
0 �0f i − � j f̆ = 0,

f0�0Gjh
0 − �0f0Ghj

0 − f i�iGjh
0 − �hf iGij

0 − � j f
iGih

0 = 0.

QED
The system of the previous Proposition can be reexpressed in terms of an observer and the

angent lift of the projectable special phase function.
Proposition 3.15: Let us consider an observer o. Then, the sheaf self�J1E ,R� is constituted by

he projectable special phase functions f such that

L�X�f��G = df� 4 G ,

X�f� 4 	�o� + �*�o��G��L�o�X�f��� = d�f�o�� .

Proof: We can write the system which characterizes self-holonomic functions �Proposition
.14� as

��Ghk
0 X�f�� + Gih

0 �k�X�f�i� + Gik
0 �h�X�f�i� = �0f0Ghk

0 ,

X�f�����Aj − � jA�� + Gij
0 �0�X�f�i� − � j f̆ = 0,

X�f�i��iA0 − �0Ai� − �0 f̆ = 0.

On the other hand, we have the coordinate expressions

L�X�f��G = ���Ghk
0 X�f�� + Gih

0 �k�X�f�i� + Gik
0 �h�X�f�i��u0 � ďh

� ďk,

df� 4 G = �0f0Ghk
0 u0 � ďh

� ďk,

X�f� 4 	�o� + �*�o��G��L�o�X�f��� = X�f��	��d� + Gij
0 �0�X�f�i�dj ,

d�f�o�� = �� f̆ .

QED
We have the following further intrinsic characterizations of self-holonomic special phase

unctions, which will play an important role in the classification of classical symmetries.
Theorem 3.16: Let f �proj�J1E ,R�. Then, the following conditions are equivalent:

1� i�X↑
hol�f��=df ,

2� L�X↑
hol�f��=0, with f �cons�J1E ,R�,

3� X↑
hol�f�=X↑

ham�f�, with f �cons�J1E ,R�.

Proof: 1�Þ2�. Let i�X↑
hol�f��=df . Then L�X↑

hol�f��ªdi�X↑
hol�f��=ddf =0.

On the other hand, the identity i���=0 yields i���df =0, i.e., f �cons�J1E ,R�.
2�Þ3�. Let L�X↑

hol�f��=0, i.e., di�X↑
hol�f��=0.

Then, we have locally the equality i�X↑
hol�f��=dg, with g�map�J1E ,R�.
On the other hand, the identity i���=0 yields i���dg=0, i.e., g�cons�J1E ,R�.
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As a consequence we obtain ��� ����X↑
hol�f��=���dg� and from this we can deduce that

↑
hol�f�−��X↑

hol�f��=X↑
hol�f�−��f��=���dg�. Hence X↑

hol�f�=��f��+���dg�ªX↑
ham�f� ,g�.

On the other hand, since X↑
hol�f� is projectable on E, Theorem 2.5 implies g�spec�J1E ,R�

nd g�= f�.
Hence, we obtain X↑

hol�f�=X↑
ham�g�, which yields X�f�=X�g�, hence f =g+h, with h

map�E ,R�.
On the other hand, f ,g�cons�J1E ,R� implies h�cons map�E ,R�=R.
Therefore, we obtain X↑

hol�f�=X↑
ham�f� in the domain of definition of g. But, if the above

quality holds locally, then it holds in the domain of definition of f .
3�Þ1�. Let f �cons�J1E ,R�. Then, the identities concerning the linear musical isomorphisms

nd the identity i���=0 yield i�X↑
ham�f��ª i���f��+���df��= �� �����df�=df − i���df =df .

Hence, X↑
hol�f�=X↑

ham�f� implies i�X↑
hol�f��=df QED

Corollary 3.17: We have self �J1E ,R�=cons�J1 ,ER��hol�J1E ,R�. QED
Indeed, an even stronger result holds.
Theorem 3.18: We have self�J1E ,R�=cons proj�J1E ,R�.
Proof: The classifying systems of Proposition 3.14 and of Proposition 3.3 coincide.
Hence, self�J1E ,R�=cons proj�J1E ,R�. QED

. Subalgebra of unimodular functions

Next, we consider the subalgebras of the algebra of projectable special phase functions related
o the divergence of the tangent lift.

A vector field X�proj�E ,TE� is called conformal unimodular, or unimodular, if we have,
espectively, d�div�X�=0, or div�X=0.

For each X , X̄�proj�E ,TE�, we have div���X , X̄��=X .div�X̄− X̄ .div�X. Hence, the sheaves of
onformal unimodular and unimodular vector fields of TE are closed with respect to the Lie
racket.

A function f �spec�J1E ,R� is said to be unimodular, or conformal unimodular if, respec-
ively, div�X�f�=0, or d�div�X�f��=0. The subsheaves of unimodular and conformal unimodular
rojectable special phase functions are denoted, respectively, by unim�J1E ,R��proj�J1E ,R� and
-unim�J1E ,R��proj�J1E ,R�.

In the above definition, we need to consider projectable special phase functions, because
iv�X is defined only for a projectable spacetime vector field X, due to the fact that � is a vertical
orm.

A vector field X↑�proj�J1E ,TJ1E� is called conformal unimodular, or unimodular, if we
ave, respectively, d�div�X↑�=0, or div�X↑=0.

The sheaves of conformal unimodular and unimodular vector fields of J1E are closed with
espect to the Lie bracket.

Proposition 3.19: The sheaves of conformal unimodular and unimodular special phase func-
ions are closed with respect to the special bracket.

Proof: If f ,g�proj�J1E ,R�, then we obtain

div��X��f ,g�� = div��X�f�,X�g�� = X�g� . div��X�f�� − X�f� . div��X�g�� .

QED
Proposition 3.20: If f �self fine�J1E ,R�, then div��X�f��=0, hence

self fine�J1E,R� = cons fine�J1E,R� � unim�J1E,R� .

Proof: The equality i�X↑
hol�f��=df yields L�X↑

hol�f��=0, hence, by virtue of Proposition
.4, div��X�f��=0. QED

. Subalgebra of classic generators

Eventually, we consider the subalgebra of the algebra of special phase functions, which

enerates the infinitesimal symmetries of the full classical structure.
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Each f � cons fine�J1E ,R� is called a classical generator. We denote the sheaf of classical
enerators by clas�J1E ,R�ªcons fine�J1E ,R�.

Theorem 3.21: We have clas�J1E ,R�=self fine�J1E ,R��hol�J1E ,R� and
las�J1E ,R��unim�J1E ,R�.

Proof: It follows immediately from Theorem 3.18, Lemma 3.10 and Proposition 3.20. QED
By reformulating a previous result, we have the following characterization of the classical

enerators.
Corollary 3.22: The sheaf clas�J1E ,R� is constituted by the special phase functions f such that

��f0 = 0,

f0�0Gij
0 − fh�hGij

0 − � j f
hGih

0 − �i f
hGjh

0 = 0,

f0��0Aj − � jA0� − f i��iAj − � jAi� − Gij
0 �0f i − � j f̆ = 0,

f i��iA0 − �0Ai� + �0 f̆ = 0.

QED
Example 3.23: In the special Newtonian spacetime, the sheaf clas�J1E ,R� is constituted by

he special phase functions f such that

��f0 = 0,

�1f1 = �2f2 = �3f3 = 0,

�1f2 = − �2f1, �1f3 = − �3f1, �2f3 = − �3f2,

�0f i = − �i f̌ ,

�0 f̌ = 0.

For instance, a solution of this system is given by

f0 = a0,

f i = bj
ixj + c0

i x0 + di,

f̆ = − �
1�i�3

c0
i xi + e ,

here a0 ,bj
i ,c0

i ,di ,e�R and bj
i =−bi

j. QED

. Classical infinitesimal symmetries

We classify the vector fields of the phase space which are infinitesimal symmetries of space-
ime and its structures.

. Infinitesimal symmetries of geometric structures

We start by defining the infinitesimal symmetries of some typical geometric structures. All
oncepts below are defined in such a way that the corresponding local group of diffeomeorphisms
ct on the geometric structure and preserve it.
We introduce the following general concepts.
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1. We define an infinitesimal symmetry of a fibered manifold p :F→B to be a projectable
vector field X of F.

2. We define an infinitesimal symmetry of a bundle q :G→M, which is a natural prolonga-
tion of a manifold M, to be the projectable vector field Y obtained by the corresponding
natural lift of a vector field X of M.

3. We define an infinitesimal symmetry of a bundle q :G→F, which is a natural prolongation
of a fibered manifold p :F→B to be the projectable vector field Y obtained by the corre-
sponding natural lift of a vector field X of F.

3. We define an infinitesimal symmetry of a tensor � of a manifold M to be a vector field X
of M such that L�X��=0.

4. We define an infinitesimal symmetry of a covariant vertical tensor � of a fibered manifold
p :F→B to be a projectable vector field X of F such that L�X��=0.

5. We define an infinitesimal symmetry of an affine space A to be a constant vector field of
A.

. Infinitesimal symmetries of spacetime and phase space

According to the above guideline, we introduce the infinitesimal symmetries of time, of
pacetime, and of the phase space as the vector fields which preserve the affine structure of time,
he time fibering of spacetime, and the natural first jet functor.

An infinitesimal symmetry of time is defined to be an infinitesimal symmetry of the affine

tructure of T, which can be regarded just as an element X� T̄ �i.e., a constant vector field of T�.
An infinitesimal symmetry of spacetime is defined to be an infinitesimal symmetry of the time

bering t yielding also an infinitesimal symmetry of the affine structure of T, i.e., a vector field
� fine�E ,TE�.

An infinitesimal symmetry of the phase space is defined to be the infinitesimal symmetry of
he first jet prolongation of spacetime yielding also an infinitesimal symmetry of the time fibering
and an infinitesimal symmetry of the affine structure of T, i.e., the holonomic prolongation of an

nfinitesimal symmetry of spacetime X�1��sec�J1E ,TJ1E�, with X� fine�E ,TE�.
We define, respectively, a spacetime infinitesimal symmetry of dt and a phase, infinitesimal

ymmetry of dt to be vector fields X�sec�E ,TE� and X↑�sec�J1E ,TJ1E�, such that L�X�dt=0
nd L�X↑�dt=0.

Proposition 3.24: The infinitesimal symmetries of dt are the vector fields of the type X
fine�E ,TE� and X↑� fine�J1E ,TJ1E�.

Proof: In fact, we have L�X�dt=di�X�dt and L�X↑�dt=di�X↑�dt. QED
Corollary 3.25: A vector field X�sec�E ,TE� is an infinitesimal symmetry of spacetime if and

nly if it is an infinitesimal symmetry of dt. QED

. Infinitesimal symmetries of the cosymplectic two-form

We define an infinitesimal symmetry of  to be a vector field X↑�sec�J1E ,TJ1E�, such that
�X↑�=0.

Theorem 3.26: The infinitesimal symmetries X↑�sec�J1E ,TJ1E� of  are of the local type
↑=X↑

ham�� , f�, with ��map�J1E , T̄� and f �cons�J1E ,R�, where f is determined up to a con-
tant.

Proof: Let us consider any X↑�sec�J1E ,TJ1E� and set �ªdt�X↑��map�J1E , T̄�.
Then, X↑ can be uniquely written as X↑=����+ X̄↑, with X̄↑�sec�J1E ,VJ1E�.
Moreover, by recalling the identity i���=0, we obtain L������=0.

Furthermore, by recalling the identity d=0, we have L�X̄↑�=0 if and only if di�X̄↑�=0,

.e., if and only if locally i�X̄↑�=df , with � . f =0, i.e., by virtue of the results of Sec. II D 1, if and

nly if locally X̄↑=���df�, with � . f =0. QED
Corollary 3.27: The infinitesimal symmetries X↑�sec�J1E ,TJ1E� of dt and  are of the local

↑ ↑ ¯
ype X =X ham�� , f�, with ��T and f �cons�J1E ,R�, where f is defined up to a constant. QED
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. Infinitesimal symmetries of the classical structure

Next, we classify the infinitesimal symmetries of dt and , which are projectable on E.
ndeed, the projectability condition yields an important consequence: namely, it implies that the
ector field is generated by a special phase function.

Corollary 3.28: The infinitesimal symmetries X↑�sec�J1E ,TJ1E� of , which are projectable
n E, are of the local type X↑=X↑

ham�f�, with f �cons spec�J1E ,R�, where f is defined up to a
onstant.

Proof: It follows from Theorem 3.26 and Theorem 2.5. QED
Corollary 3.29: The infinitesimal symmetries X↑�sec�J1E ,TJ1E� of dt and , which are

rojectable on E, are of the type X↑=X↑
ham�f�, with f �cons fine�J1E ,R�, where f is determined

p to a constant.
Proof: It follows from the above Corollary 3.28 and Proposition 3.24. QED
Corollary 3.30: Let us consider a vector field X�sec�E ,TE�.
If its holonomic prolongation X�1��sec�J1E ,TJ1E� is an infinitesimal symmetry of dt and ,

hen we obtain locally X�1�=X↑
hol�f�=X↑

ham�f�, with f �cons fine�J1E ,R� and X=X�f�.
Proof: By virtue of Corollary 3.29, we obtain X�1�=X↑

ham�f�, with f �cons fine�J1E ,R�.
On the other hand, by virtue of Proposition 2.2, X�1� projects on X and, by virtue of Theorem

.5, X↑
ham�f� projects on X�f�. Hence, we obtain X=X�f� and X�1�=X↑

hol�f�. QED
We can reformulate the above result in a slightly stronger way.
An infinitesimal symmetry of the classical structure is defined to be a vector field X↑

sec�J1E ,TJ1E�, which is an infinitesimal symmetry of dt and  and which is projectable on E.
Corollary 3.31: The infinitesimal symmetries X↑�sec�J1E ,TJ1E� of the classical structure are

f the local type X↑=X↑
hol�f�=X↑

ham�f�, with f �cons fine�J1E ,R�.
Proof: By virtue of Corollary 3.29, we obtain X↑=X↑

ham�f�, with f �cons fine�J1E ,R�.
On the other hand, by virtue of Theorem 3.21, we have cons fine�J1E ,R�=self fine�J1E ,R�,

ence X↑
hol�f�=X↑

ham�f�. QED
Proposition 3.32: The subsheaf of infinitesimal symmetries of the classical structure is a sheaf

f Lie subalgebras.
Proof: It follows from the fact that the holonomic lift of special phase functions is a morphism

f Lie algebras and that the holonomic lift of projectable special phase functions is a morphism of
ie algebras. QED

Of course, we can analogously prove that also the other subsheaves of infinitesimal symme-
ries considered above are subalgebras.

. Classical currents

We devote the following to the analysis of distinguished functions that are generated by
ymmetries of our structure.

. Functions generated by a horizontal potential

Each pair consisting of a spacetime vector field X and a horizontal potential A↑ of  yield a
pecial phase function. This construction turns out to be an important source of special phase
unctions in our classical and quantum theories. Indeed, the above simple definition encodes deep
spects relating the horizontal potentials of  and the classical and quantum symmetries.

Let us consider a spacetime vector field X�sec�E ,TE� and a horizontal potential A↑

fib�J1E ,T*E� of .
We define the function generated by X and A↑ as −X4A↑�map�J1E ,R�.
Proposition 3.33: The function −X4A↑ is a special phase function.
Its coordinate expression is −X4A↑=X0 1

2Gij
0 x0

i x0
j −XiGij

0 x0
j −X�A� and, with reference to an

bserver o, we have −X4A↑=X4K�o�−��o��X�4Q�o�−X4A�o�.
Proof: It follows from the coordinate expression of A↑. QED
Now, as a particular case, let us consider an f �spec�J1E ,R� and its tangent prolongation
�f��sec�E ,TE�.
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Corollary 3.34: We obtain the special phase function −X�f�4A↑�spec�J1E ,R�, with observed
xpression −X�f�4A↑= f �o−X�f�4A�o�. In an adapted chart, we get

− X�f� 4 A↑ = f0� 1
2Gij

0 x0
i x0

j − A0� + f i�Gij
0 x0

j + Ai� = f − � f̆ + f0A0 − f iAi� .

Indeed, we obtain X�−X�f�4A↑�=X�f�. QED
Corollary 3.35: For each observer o, the function

f̄ ª f � o + X�f� 4 A�o� = f + X�f� 4 A↑ � map�E,R� ,

oes not depend on the choice of the observer o. Therefore, the coordinate expression f̄ = f̆
f0A0− f iAi does not depend on the adapted chart.

proof: In fact, f and X�f�4A↑ do not depend on the choice of any observer. QED
For instance, we have −X�L0�4A↑=L0−2A0+G0

ijAiAj , −X�H0�4A↑=H0, and −X�Pi�4A↑

Pi.

. Nöther’s theorem

The previous results on infinitesimal symmetries can be applied to the Lagrangian formalism.
ere, we call in mind some of results already presented in Ref. 62 and add new results as well.

Let us consider a horizontal potential A↑� fib�J1E ,T*E� of  and the associated Lagrangian
�sec�J1E ,H*J1E� and momentum P�sec�J1E ,T*J1E�.

We define an infinitesimal symmetry of A↑ to be a vector field X↑�sec�J1E ,TJ1E�, such that
�X↑�A↑=0.

Lemma 3.36: Each infinitesimal symmetry of A↑ is an infinitesimal symmetry of . QED
We can formulate the following �Nöther� theorem which relates holonomic infinitesimal sym-

etries of A↑ to conserved functions. For this, let us consider an X�sec�E ,TE�.
We say that X is a holonomic infinitesimal symmetry of a tensor � of the phase space if its

olonomic prolongation X�1��sec�J1E ,TJ1E� is an infinitesimal symmetry of �, i.e., if
�X�1���=0.

Theorem 3.37: If L�X�1��A↑=0, then the one-form i�X�1���sec�J1E ,T*J1E� is exact and the
unction fª−X4A↑�map�J1E ,R� turns out to be a potential of i�X�1��. Moreover, we obtain
f �cons self�J1E ,R� and X�1�=X↑

hol�f�=X↑
ham�f�.

Proof: We have i�X�1��= i�X�1��dA↑=L�X�1��A↑−di�X�1��A↑=0−di�X�A↑=df .
Hence, f is a potential i�X�1��. Moreover, by virtue of Lemma 3.36 and Corollary 3.28, we

btain f �cons self�J1E ,R� and X�1�=X↑
hol�f�=X↑

ham�f� in the whole domain of A↑. QED
Corollary 3.38: If X is an infinitesimal symmetry of dt and a holonomic infinitesimal sym-

etry of A↑, then the potential fª−X4A↑=−�X4P+X4L� of i�X�1�� is a classical generator.
Proof: It follows from the above Theorem 3.37, Corollary 3.30, the definition of classical

enerators and Proposition 3.24. QED
Corollary 3.39: If an observer o�sec�E ,T* � TE� is a �scaled� infinitesimal symmetry of A↑,

hen the associated �scaled� potential of i�o�1�� is just the associated Hamiltonian H�A↑ ,o�
ª−o4A↑�map�J1E ,T* � R�. In particular, H�A↑ ,o� turns out to be a conserved �scaled� func-
ion. QED

Next, we prove that the holonomic infinitesimal symmetries of dt and of the horizontal
otential are just the holonomic infinitesimal symmetries of dt and of the Lagrangian.

Lemma 3.40: For each X� fine�E ,TE�, we have the coordinate expressions

L�X�1��L = �X���L0 + �0Xj� j
0L0 + �hXjx0

h� j
0L0�d0,

L�X�1��P = �i
0�X���L0 + �0Xj� j

0L0 + �hXjx0
h� j

0L0�di

0 � j 0 j h 0 i 0
− �i �X ��L0 + �0X � j L0 + �hX x0� j L0�x0d .
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Proof: We have

L�X�1��P = �X����i
0L0 + �0Xj� j

0�i
0L0 + �hXjx0

h� j
0�i

0L0 + �iX
j� j

0L0�di

− ��X����i
0L0 + �0Xj� j

0�i
0L0 + �hXjx0

h� j
0�i

0L0�x0
i + �0Xi�i

0L0 + �hXix0
h�i

0L0 − �0Xj� j
0L0�d0

=�X����i
0L0 + �0Xj� j

0�i
0L0 + �hXjx0

h� j
0�i

0L0 + �iX
j� j

0L0�di

− ��X����i
0L0 + �0Xj� j

0�i
0L0 + �hXjx0

h� j
0�i

0L0�x0
i + �hXix0

h�i
0L0�d0

=�i
0�X���L0 + �0Xj� j

0L0 + �hXjx0
h� j

0L0 − �iX
j� j

0L0 + �iX
j� j

0L0�di

− ��i
0�X���L0 + �0Xj� j

0L0 + �hXjx0
h� j

0L0�xi
0

− �iX
jx0

i � j
0L0 + �hXix0

h�i
0L0�d0

=�i
0�X���L0 + �0Xj� j

0L0 + �hXjx0
h� j

0L0�di

− �i
0�X���L0 + �0Xj� j

0L0 + �hXjx0
h� j

0L0�x0
i d0.

QED
Proposition 3.41: For each X� fine�E ,TE�, we have the following implication

L�X�1��L = 0 Þ L�X�1��P = 0.

QED
Theorem 3.42:62 For each X� fine�E ,TE�, the following equivalence holds

L�X�1��A↑ = 0 Û L�X�1��L = 0.

Proof: If L�X�1��A↑=0, then, by virtue of Lemma 2.3, we have

L�X�1��L ª L�X�1��i�D�A↑ = − i�D�L�X�1��A↑ + i��X�1�, D ��A↑ = 0 + 0.

If L�X�1��L=0, then, by virtue of Sec. II C 2, and Proposition 3.41

L�X�1��A↑ = L�X�1���L + P� = 0 + 0.

QED
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Consider a fast nonrelativistic, positively charged particle �ion� traversing a crystal,
assumed to be simple cubic and monatomic for simplicity. Let the Cartesian coor-
dinates X1 ,X2 ,X3 be parallel to the crystal axes, and �i be the initial value of the
component of the particle’s momentum vector along Xi. If ��3� is sufficiently large
compared to ��1 � , ��2�, then �under mild technical assumptions� the ion’s motion is
well approximated for a long time by a solution of the equations of motion �EOM�
of the axial-continuum Hamiltonian H̄, obtained from the ion’s nonrelativistic
Hamiltonian H by replacing the potential V�X1 ,X2 ,X3�, describing its interaction

with the atoms of the crystal, by its average V̄�X1 ,X2� over X3. Furthermore, if
��2 � , ��3� are sufficiently large compared with ��1 � , ��2�, respectively, then to a good
approximation its motion is given, again for a long time, by a solution of the EOM

of the planar continuum Hamiltonian H�, obtained from H̄ by replacing V̄�X1 ,X2� by

its average V��X1� over X2. We define motions of the first �respectively, second� type
as axial �respectively, planar� channeling. In this paper, the transition from the first
to the second kind of motion, occurring when the crystal is suitably rotated, is
discussed in a mathematically rigorous way by using an improved version of first-
order single-phase averaging theory. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2209554�

. INTRODUCTION

The transition from axial to planar channeling in crystals has been investigated by many
uthors, both experimentally and theoretically �see, e.g., Refs. 1–3 and the references cited
herein�. Previous theoretical studies differ from the present one in two main respects. First, they
ere carried out by using numerical or partially formal analytical procedures. Second, they deal
ith all stages of the transition. Here we study the phenomenon in a mathematically rigorous way

n a simple cubic crystal model by using an improved version of the first-order single-phase
veraging theory of nonlinear dynamical systems.4 The transition from axial to planar channeling
hich we study occurs for sufficiently large values of the components of the initial momentum

long the X2 ,X3 crystal axes, keeping fixed its component along the X1 axis, and is induced by
otating the crystal while immersed in the incident particle beam. The present paper deals with a
elatively late stage of the phenomenon, when the transition is almost complete.

Consider such a crystal traversed by a fast nonrelativistic, positively charged particle �ion� in
direction almost, but not exactly, parallel to the X3 cubic axis. We assume that the particle’s
otion is “governed” by the nonrelativistic Hamiltonian H : �R3 \Z3��R3→ �0, � � defined by

H�X,P� =
1

2�
i=1

3

Pi
2 + V�X� �1.1a�

n suitable units. Here X= �X1 ,X2 ,X3��R3 \Z3and P= �P1 , P2 , P3��R3denote the coordinate and

omentum vectors of the particle, and

47, 062904-1022-2488/2006/47�6�/062904/17/$23.00 © 2006 American Institute of Physics
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V�X� = �
k�Z3

v�X − k� �1.1b�

enotes the potential acting on the particle at X�R3 \Z3, due to the combined effect of the
epulsive, shielded Coulomb potentials of the individual atoms of a single species, idealized as
ointwise, which are located at the sites of a cubic lattice Z3. The potential at X�R3 \Z3 due to the
resence of an atom at k�Z3 is given by v�X−k�. We assume that v�C2�R3 \ �0�� and is strictly
ositive, and that v�Y�=O�	Y	−1� , 	Y 	 →0.5 Additionally, we assume that the series �1.1b� con-
erges uniformly on compacts in R3 \Z3, thus defining a strictly positive potential V�X� of this
ame class which tends to infinity as X→k�Z3 and is 1-periodic in each coordinate Xi�i
1,2 ,3� in terms of the present units.

We will say that the particle is axially channeled along the X3 direction if its motion is well
pproximated by a solution of the equations of motion �EOM� of the axial-continuum Hamiltonian

¯ : �R3 \Z3��R3→ �0, � � for a long time, where

H̄�X,P� =
1

2�
i=1

3

Pi
2 + V̄�X1,X2� , �1.2a�

ith

V̄�X1,X2� = 

�0,1�

V�X1,X2,X3��dX3�. �1.2b�

y our assumptions on V, the integral in �1.2b� exists as a Riemann integral and defines a strictly

ositive function V̄ of class C2�R2 \Z2�, which is unbounded from above in a neighborhood of
ach point of Z2. To say that the particle is channeled parallel to the X2 ,X3 plane will mean that
ts motion is well approximated by the solution of the EOM of the planar continuum Hamiltonian

: �R3 \Z3��R3→ �0, � �, again for a long time, where

H��X,P� =
1

2�
i=1

3

Pi
2 + V��X1� . �1.3a�

ere

V��X1� = 

�0,1�2

V�X1,X2�,X3��dX2� dX3�, �1.3b�

here the double integral exists in the above sense for X1�R \Z, and defines a strictly positive

unction V� of class C1�R \Z�, which is bounded from above in a neighborhood of each point of Z,
gain by our hypotheses on V. More precise definitions of axial and planar channeling for the
ases of interest will be given in the respective Secs. II and III.

For simplicity, we will confine ourselves to discussing channeling along the said axis and
lanes. A generalization to channeling along arbitrary axes and planes in simple cubic or more
omplicated crystals involves no essentially new ideas.

Let the initial values of the position and momentum vectors X= �X1 ,X2 ,X3�, P= �P1 , P2 , P3� be
enoted by �= ��1 ,�2 ,�3�, �= ��1 ,�2 ,�3�, respectively. Under the present hypotheses on V, one
an show that if � is almost, but not exactly, parallel to the X3 axis and 	�	 is sufficiently large, the
article remains axially channeled along X3 over distances of order �2E, where E is the total
article energy in the present units �Eq. �2.4b��. If in addition ��2 � � ��1� and ��1� is small enough,
t becomes planarly channeled between two adjacent atomic planes parallel to the X2 ,X3 plane

�
ver distances of order 2E� ,E� being the transverse particle energy in these units �Eq. �3.1b��.
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n the usual terminology, the variation from the first situation to the second constitutes a transition
rom axial to planar channeling. A more precise characterization of the transition is given in Sec.
II.

The organization of this paper is as follows. In Sec. II, we discuss axial channeling in simple
ubic crystals using an improved version of single-phase first-order averaging theory. The main
esults of the discussion are summarized in Theorems 2.1 and 2.2, the former being used in the
roof of the latter. The existence of an axial-to-planar transition in these crystals is asserted by
heorem 3.3 of Sec. III. This result is established there with the aid of Theorems 2.2 and 3.2, the
roof of the latter being based on Theorem 3.1. In Appendix A we state Propositions A.1 and A.2
oncerning certain inequalities needed in Secs. II and III. Finally in Appendix B we establish
heorem B.1, a basic result of first-order single-phase averaging theory which we use to prove
heorems 2.1 and 3.1 in Secs. II and III, respectively.

I. AXIAL CHANNELING „Ref. 6…

Consider the equations of motion �EOM�

dXi

dt
= Pi �i = 1,2,3� , �2.1a�

dPi

dt
= − DiV�X� �i = 1,2,3� ,

orresponding to the Hamiltonian �1.1a�, Di being the partial derivative with respect to the ith
ntry in V�. , . , . �. Since V is strictly positive and of class C2�R3 \Z3�, there exists7 for all t�R and
ll �ª �� ,��� �R3 \Z3��R3 a unique solution Xi�t ,�� , Pi�t ,���i=1,2 ,3� of Eqs. �2.1a� satisfy-
ng the initial conditions

Xi�0,�� = �i, Pi�0,�� = �i �i = 1,2,3� . �2.1b�

Henceforth we assume that �= ��1 ,�2 ,�1 ,�2� is in the multiply connected open set

U�K� = ���x1,x2�,�x3,x4�� � �R2 \ Z2� � R2: 1
2 �x3

2 + x4
2� + V̄�x1,x2� � K� , �2.2�

here K is a positive constant such that K� infy�R2\Z2 V̄�y�. Hence U�K� is a nonempty set which

s invariant under the transverse Hamiltonian H̄� : �R2 \Z2��R2→ �0, � � defined by

H̄��X�,P�� =
1

2 �
j=1,2

Pj
2 + V̄�X�� , �2.3�

here X�= �X1 ,X2� and P�= �P1 , P2�. Typically, V̄�x1 ,x2� consists of a set of sharp, infinitely high
eaks surrounding the atomic rows parallel to the X3 axis. For sufficiently large K, the projection

p�K�= ��x1 ,x2��R2 \Z2 : ��x1 ,x2� , �x3 ,x4���U�K�� of U�K� into the X1 ,X2 plane is a multiply
onnected set reminiscent of Swiss cheese, the holes being deformed circular disks surrounding
hese rows.

The total energy E of the solution Xi�t ,�� , Pi�t ,���i=1,2 ,3� is defined by

E ª H�X�t,��,P�t,��� = H�X�0,��,P�0,��� =
1

2�
j=1

3

� j
2 + V��� , �2.4a�

here X�t ,��= �X1�t ,�� ,X2�t ,�� ,X3�t ,��� and P�t ,��= �P1�t ,�� , P2�t ,�� , P3�t ,���, and where

e have used �2.1� and conservation of energy. We define the positive parameter
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	 ¬ 1/�2E = ��
j=1

3

� j
2 + 2V���−1/2

, �2.4b�

ith the range of values �0,1 /�2V0�, where V0=infx�R3\Z3 V�x�=minx�R3\Z3 V�x�� �0, � �. This
arameter will play an important role in the sequel.

For convenience we suppose henceforth that

�1 � �0,1�, � j = 0 � j = 2,3�, �k � 0 �k = 1,2,3� , �2.5�

n the absence of an explicit statement to the contrary. Moreover, in the present section we fix

1 ,�k�k=1,2�, leaving �3 as the only free parameter. Because of �2.4b� and �2.5�, we will view 	
n this section as a function of �3 alone, with 	�1/�3 for �3→�.

In order to formulate the relevant equations of motion in a manner suitable for the application
f averaging theory, we will isoenergetically reduce the sixth-order autonomous system �2.1a� to
fourth order nonautonomous one.8 This will be done by changing t to an independent variable u,
iven by

u = X3�t,�� = 

0

t

P3�s,��ds = �1/	�

0

t

�1 − 2	2�V�X�s,��� + �1/2�P�
2 �s,����1/2 ds , �2.6�

here we have used �1.1a�, �2.1�, and �2.4b�; assumed that P3�s ,�� does not change sign for s
�0, t�; and written P�

2 �s ,��=�i=1
2 Pi

2�s ,��.
Let

xi�u,	� = Xi�t,�� �i = 1,2� ,

xi+2�u,	� = Pi�t,�� �i = 1,2� , �2.7�

here the dependence of xj�u ,	� on � is not exhibited explicitly. By �2.1�, �2.6�, and �2.7�, at least
ormally, x�u ,	�= �x1�u ,	� , . . . ,x4�u ,	�� solves the IVP �initial-value problem�

dx

du
= 	f�x,u� + 	2r�x,u,	� , �2.8a�

x�0,	� = � � U�K� , �2.8b�

here we use x in �2.8a� as shorthand for x�u,	�. An analogous shorthand notation will be used to
efine other IVPs occurring in the paper. However, in order to define the functions f and r in
2.8a�, we will let x stand for any point �x1 ,x2 ,x3 ,x4��R4. No confusion should arise from this
sage in this section or from the analogous usage in Sec. III. With x understood in the latter sense,
e write

f�x,u� = �x3,x4,− D1V�x1,x2,u�,− D2V�x1,x2,u�� , �2.9a�

r�x,u,	� = 	−1��k�x,u,	��−1 − 1�f�x,u� , �2.9b�

k�x,u,	� = �1 − 2	2�V�x1,x2,u� + 1
2 �x3

2 + x4
2���1/2. �2.9c�

Since V�x1 ,x2 ,u� is C2 for �x1 ,x2��R2 \Z2 ,u�R and since it is 1-periodic in u, �2.9a� defines
f�. , . � as a C1-mapping from U�K��R into R4, which is 1-periodic in the second entry. Moreover,
t each 	� �0,	�0�� ,r�. , . ,	�, defined by �2.9a�, �2.9b�, and �2.9c�, is a bounded C1 mapping from
�K��R into R4. Here 	�0�=	�0��K� is a positive constant defined in Proposition A.1 of Appendix

. The boundedness property of this mapping is expressed by the estimate
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sup
�x,u,	��U�K��R��0,	�0��

	r�x,u,	�	 � � �2.10�

sserted by that proposition, and its C1 property is implied by elementary arguments.
In order to determine rigorously a set of values of u , t where relations �2.7� between the IVPs

initial-value problems� �2.1� and �2.8� hold, we proceed in a reverse manner to that by which �2.8�
as obtained heuristically from �2.1�. We first define the mapping u� t by

t = 	

0

u

�1 − 2	2�V�x1�r,	�,x2�r,	�,r� + �1/2��x3
2�r,	� + x4

2�r,	����−1/2 dr �2.6��

or u�J�	 ,T� ,0�	�	�1�. Here J�	 ,T�= �−
�	 ,T� ,T /	+
�	 ,T��, where 
�	 ,T��0 is consid-
red below, the constant T� �0, � � is defined in the paragraph containing �2.13�, and both T and
�1�=	�1��K ,� ,T� appear in Theorem 2.1. �If u�0,�0

u=−�−u
0 .� By this theorem, the solution

�u ,	�= �x1�u ,	� , . . . ,x4�u ,	�� of the IVP �2.8� exists uniquely and remains in U�K� for 0�u
T /	 ,0�	�	�1��	�0�. Since U�K� is open, x�u ,	� also has these properties if u�J�	 ,T� ,0
	�	�1�, provided that 
�	 ,T� is small enough at each such 	 ,T, by virtue of elementary

xistence and uniqueness theorems of ODEs. Since x�r ,	��U�K� for 0�r�u�J�	 ,T� at all the
latter 	 ,T, the quantity in curly brackets in �2.6�� is positive at these r ,	 values by �A4� in
Appendix A, and hence the mapping u� t exists at the latter 	 values. Indeed, one can show that
at each 	� �0,	�1��, T� �0, � �the relation �2.6�� defines a C1 diffeomorphism u� t from J�	 ,T�
nto a finite open interval J��	 ,T� containing the point t=0, whose inverse t�u is given by �2.6�.
econd, for t�J��	 ,T�, 	� �0,	�1�� we define Xi�t ,��, Pi�t ,���i=1,2� by �2.7�, and set

3�t ,��=u, P3�t ,��=du /dt. This can be shown to imply that Xi�t ,��, Pi�t ,���i=1,2 ,3� satisfies
he IVP �2.1� at each of the latter t ,	. Hence, this solution of �2.1� coincides locally, and therefore
lobally, with the global solution Xi�t ,��, Pi�t ,���i=1,2 ,3� mentioned in the first paragraph of
his section. We have thus justified �2.7� for u�J�	 ,T�, T� �0, � �. Hence �2.7� holds for t

�0,T�, 	� �0,	�1��, since at each such 	 ,T the latter interval is contained in the image of 0
u�T /	 under the diffeomorphism u� t.

Define

f̄�x� = �x3,x4,− D1V̄�x1,x2�,− D2V̄�x1,x2�� �2.11�

or x= �x1 ,x2 ,x3 ,x4��R4. Then the “averaged” IVP

dx̄

du
= 	 f̄�x̄� , �2.12a�

x̄�0,	� = � , �2.12b�

as a unique solution x̄�u ,	�= �x̄i�u ,	���i=1, . . . ,4� for u�R ,	�0. This follows from the strict

ositivity of V̄�C2�R2 \Z2� by arguments of the same type as ones adduced earlier in a similar
onnection.7

At each 	�0 the IVP �2.12� is equivalent to the IVP

dy

d�
= f̄�y� , �2.13a�

y�0� = � , �2.13b�
hich has a unique solution y���, where �ª	u. We have
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x̄�u,	� = y��� = �y1���,y2���,y3���,y4���� , �2.14�

here we omit the dependence of the yk��� on �. Note that system �2.13a� constitutes the EOM of

he transverse Hamiltonian H��y1 ,y2 ,y3 ,y4�= 1
2 �y3

2+y4
2�+ V̄�y1 ,y2� in terms of the time �, where

y3 ,y4 are the momenta canonically conjugate to the respective coordinates y1 ,y2. Since H� con-
erves transverse energy, and �2.14� and ��U�K� hold, the unique solution x̄�u ,	� of the IVP
2.12� remains confined to U�K� for all u�R ,	�0. Let �0,T1���� be the maximum forward
nterval of existence of the solution of the IVP �2.13�, and T a positive number less than T1���.
bviously, T1���=�, and hence T� �0, � �.

Theorem 2.1: Let T� �0, � � be given. Then there exist positive constants c
c�K ,� ,T� , 	�1�=	�1��K ,� ,T�, independent of 	 and hence of �3, with 	�1��	�0�=	�0��K� and such

hat the IVP �2.8� has a unique solution x�u ,	� which remains in U�K� and is uniformly approxi-
ated therein by x̄�u ,	� according to

	x�u,	� − x̄�u,	�	 � c	 �2.15�

or 0�u�T /	 , 0�	�	�1�.
Proof: This theorem is a special case of Theorem B.1 in Appendix B. To show this, we first

ote the following correspondences between key symbols used in the former and latter theorems:
�Rn→U�K��R4, 
�Rn→��R4, T→T, 	0→	�0�, 	1→	�1�, x�u ,	�→x�u ,	�, y�u ,	�
x̄�u ,	�, C1→c, where we remark that U�K� is uniquely determined by K. Second, we note that

he IVP �2.8� �respectively, �2.12�� has the same form as the IVP �B1� �respectively, �B3��. Third,
e observe that the functions f , r in �2.8a� satisfy special cases of the conditions �B2� imposed on

heir respective generalizations in �B1� �see the paragraph containing �2.10��. Keeping in mind
hese remarks, one readily sees that Theorem B.1 implies the present theorem. �

The solution X̄i�t ,�� , P̄i�t ,���i=1,2 ,3� of the EOM

dX̄i

dt
= P̄i �i = 1,2,3� , �2.16a�

dP̄i

dt
= − DiV̄�X̄1,X̄2� �i = 1,2,3� ,

orresponding to the averaged Hamiltonian H̄ and satisfying the same initial conditions

X̄i�0,�� = �i, P̄i�0,�� = �i �i = 1,2,3� �2.16b�

s that of the EOM �2.1a� exists and is unique for all t�R for reasons similar to those ensuring
hat the solution of the IVP �2.13� has these same properties. By �2.16b� and �2.5�, the projection
f the particle’s motion along the X3 axis is uniform and given by

X̄3�t,�� = �3t, P̄3�t,�� = �3. �2.17�

ote that

�X̄1�t,��,X̄2�t,��, P̄1�t,��, P̄2�t,��� = �y1�t�,y2�t�,y3�t�,y4�t�� �2.18�

or t�R. Indeed, the 4-vector on the lhs of �2.18� satisfies an IVP of the form

dy
= f̄�y� , �2.19a�
dt
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y�0� = � �2.19b�

t each t�R, as follows from �2.16�, the fact that the initial conditions satisfied by the components
f the latter 4-vector are of the form �2.12b�, and the uniqueness of solution of the IVP �2.19�.
hese properties immediately imply �2.18�.

Set Z�t ,��= �X�t ,�� , P�t ,����R6 and define X̄�t ,�� , P̄�t ,�� , Z̄�t ,�� similarly to
�t ,�� , P�t ,�� , Z�t ,�� in terms of barred quantities. We now use Theorem 2.1 to prove the next

heorem, which is its analogue in terms of Z�t ,�� and Z̄�t ,��.
Theorem 2.2: Let T� �0, � � be given. Then there exist positive constants C

C�K ,� ,T� ,	�2�=	�2��K ,� ,T�, independent of �3, with 	�2��	�1�, and such that Z�t ,�� is uni-

ormly approximated by Z̄�t ,�� according to

	Z�t,�� − Z̄�t,��	 � C	 �2.20�

or 0� t�T ,0�	�	�2�.
This theorem suggests the following definition.
Definition 2.1: For any �0, we say that a particle with Hamiltonian H �see �1.1a�, �1.1b�� is

-axially channeled for given parameters K ,� if for each of the t ,	 values mentioned in Theorem
.2 the inequality �2.20� holds with its right-hand side �rhs� replaced by .

Proof of Theorem 2.2: Fixing i=1,2 for the moment, we have

�Zi�t,�� − Z̄i�t,��� = �Xi�t,�� − X̄i�t,��� = �xi�u,	� − yi�t�� � �xi�u,	� − x̄i�u,	�� + �yi�t� − yi����

� const 	 + �yi�t� − yi���� �2.21�

y �2.7�, �2.14�, �2.18�, and Theorem 2.1, for 0�u�T /	, 0�	�	�1�, and for the corresponding
alues of t determined by the diffeomorphism u� t, which include all t� �0,T�, as mentioned
bove. In �2.21� and henceforth, “const” denotes a constant dependent on K ,�, but independent of

3. Recalling that �=	u, and using arguments analogous to ones adduced to establish �3.56� in the
roof of Theorem 3 of Ref. 5, we see that

�yi�t� − yi���� � ��i� . �t − �� + �

�

t

ds

0

s

dr DiV̄�y1�r�,y2�r���
� ��i� . �t − �� + 1

2 �t2 − �2�sup
r�R

�DiV̄�y1�r�,y2�r���

� ��i� . �t − �� + 1
2 �t2 − �2� sup

�y1,y2���Up�K��cl��0,1�2
�DiV̄�y1,y2�� � const 	2, �2.22�

t all t� �0,T�, 0�	�	�2�, where 	�2� is a constant sufficiently smaller than 	�1�. The third
nequality �2.22� follows because �y1�t� ,y2�t���Up�K� at all such t ,	 by Theorem 2.1 and because

iV̄�y1 ,y2� is 1-periodic in its arguments. The fourth inequality �2.22� is implied by the facts that
t the t ,	 in question t+��2T and �t−� � �const 	2, and that the last sup in �2.22� is finite. Its

niteness follows by V̄�C2�R2 \Z2� and because the distance between the closure �Up�K��cl of

p�K� and the set Z2 of singular points of DiV̄ is positive. Thus, DiV̄�y1 ,y2� is continuous, and
herefore bounded on the compact subset �Up�K��cl� �0,1�2�R2. Only the second inequality in
he penultimate sentence calls for comment. At the latter t ,	, it is directly implied by the fact that

t − � � ���K + V1�K� − V2�	2 + O�	4��

or 	↓0, uniformly with respect to the relevant variables, as one easily sees using �2.6� and �A4�.

By �2.21� and �2.22�,
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�Zi�t,�� − Z̄i�t,��� � const 	 �2.23�

or i=1,2 when t ,	 are as stated in the theorem, making 	�2� even smaller than above if necessary.
imilar considerations show that �2.23� holds for i=3,4 at each such t ,	 in terms of constants of

he indicated type. For i=5,6 one can easily prove that �2.23� holds at such t ,	 by using, in
articular, conservation of energy and �A4�. Therefore, �2.20� obtains in the stated sense. �

II. TRANSITION TO PLANAR CHANNELING

We begin with a few definitions and, for the moment, regard the components of the vector �
s freely choosable real parameters.

The transverse particle energy E� is defined as the energy of the solution �X��t ,��, P��t ,���
f the EOM of the transverse Hamiltonian �2.3� by

E� ª H��X��t,��,P��t,��� = H��X��0,��,P��0,��� = 1
2 �

j=1,2
� j

2 + V̄��1,�2� , �3.1a�

here we have used �2.3�, �2.16b�, and conservation of energy. Analogously to before, we define
he positive parameter

	� ª 1/�2E� = � �
j=1,2

� j
2 + 2V̄��1,�2�−1/2

, �3.1b�

aving the range of values �0,1 /�2V̄0�, where V̄0=infx�R2\Z2 V̄�y�=minx�R2\Z2 V̄�y�� �0, � �. This
arameter plays a role in this section comparable to that of 	 in the previous one.

From now on in this section, we fix �= ��1 ,�2 ,�3� ,�1, leaving �2 ,�3 as the only free param-
ters. Moreover, henceforth � j ,�k� j ,k=1,2 ,3� will be assumed to satisfy the conditions �2.5�. The
ransition from axial to planar channneling occurs when �2 ,�3 are both sufficiently large, as
xplained in detail near the end of the section.

We proceed to isoenergetically reduce the fourth-order subsystem �2.16a� for i=1,2 to second
rder. We do this by introducing a new “time” v as the independent variable,

v = X̄2�t,�� = 

0

t

P̄2�s,��ds = �1/	��

0

t

�1 − 2	�
2 �V̄�X̄��s,��� + �1/2�P̄1

2�s,����1/2 ds ,

�3.2�

here we have used �2.3�, �2.16a�, �2.16b�, and �3.1�; assumed that P̄2�s ,�� does not change sign

or s� �0, t�; and defined X̄��t ,��= �X̄1�t ,�� , X̄2�t ,���. No confusion would arise from the differ-
nt meanings of v in �3.2� and �1.1b�.

Define

z1�v,	�� = X̄1�t,��, z2�v,	�� = P̄1�t,�� . �3.3�

y �3.2� and �3.3�, at least formally, the fourth-order system �2.16a� for i=1,2 and the correspond-
ng initial conditions �2.16b� can be expressed as

dz

dv
= 	�g�z,v� + 	�

2 ��z,v,	�� , �3.4a�

z�0,	�� = �̄ . �3.4b�

ere z= �z1 ,z2�� �R \Z��R , �̄= ��1 ,�1�, and

¯
g�z,v� = �z2,− D1V�z1,v�� , �3.5a�
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��z,v,	�� = 	�
−1����z,v,	���−1 − 1�g�z,v� , �3.5b�

��z,v,	�� = �1 − 2	�
2 �V̄�z1,v� + �1/2�z2

2��1/2. �3.5c�

For the potential V defined in Sec. I, �3.5a� defines g�. , . � as a C1 mapping from Ū�K̄��R into
2 which is 1-periodic in the second entry. Here Ū�K̄� is defined as the nonempty, multiply

onnected open set

Ū�K̄� = ��z1,z2� � �R \ Z� � R: 1
2z2

2 + V��z1� � K̄� , �3.6�

here K̄ is a positive constant such that 0� infy�R\Z V��y�� K̄�supy�R\Z V��y���. Moreover, if

ertain additional, physically reasonable conditions on V� and K̄ stated below are satisfied, then
roposition A.2 in Appendix A guarantees that ��. , . ,	��, as defined by �3.5a�, �3.5b�, and �3.5c�,

s a bounded C1 mapping from Ū�K̄��R into R2 at each 	�� �0,	
�

�0��. Here 	
�

�0�=	
�

�0��K̄� is a
ositive constant defined by �A8�, which is such that

sup
�z,v,	���Ū�K̄��R��0,	�

�0��
	��z,v,	��	 � � , �3.7�

y virtue of that proposition. The latter holds if V� and K̄ satisfy the following conditions: �1� there

xist positive constants ��1/2 and B�supy�R\Z V��y� such that V��z1��B iff z1� �n−� ,n

�� "n�Z; and �2� K̄�B �see Fig. 1�. To simplify the notation, we fix � and B henceforth,
hich allows us to omit stating the dependence of the relevant quantities on them without fear of

onfusion. Defining Up�K�= �z1�R \Z : �z1 ,z2�� Ū�K̄��, it follows that dist �Ūp�K̄� ,Z��0 under
he conditions stated in the penultimate sentence. The definition of the key constant 	

�

�0� in �A8�
akes sense because of the latter inequality. The boundedness of the mapping ��. , . ,	�� at each

�� �0,	
�

�0�� follows immediately from �3.7�, and its asserted C1 property is easily proved.
We now determine a set of v , t values for which �3.3� holds by arguments analogous to those

dduced in the case of �2.7�. Supposing that 0�	��	
�

�1��	
�

�0� and T� �0, � �, we first define the
apping v� t by

t = 	�

0

v

�1 − 	�
2 �V̄�z1�r,	��,r� + �1/2�z2

2�r,	����−1/2 dr �3.2��

or v�L�	� ,T�, a bounded open interval of the form �−��	� ,T� ,T /	�+��	� ,T��, where
�	� ,T� is a sufficiently small positive constant. Theorem 3.1, together with �A10�, the openness

f Ū�K̄�, and elementary existence-uniqueness theorems of ODEs show that the quantity inside the
urly brackets in �3.2�� exists and is positive for 0�r�v�L�	� ,T�. It follows that for each

�1� 1

FIG. 1. Example of a function V� having the properties �1� and �2� stated in the paragraph containing �3.7�.
�� �0,	
�

�, T� �0, � � �3.2�� defines a C diffeomorphism v� t from L�	� ,T� onto a bounded
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pen interval L��	� ,T� containing t=0, whose inverse t�v is given by �3.2�. In the second place,

or t�L��	� ,T�, 	�� �0,	
�

�1�� we define X̄1�t ,��, P̄1�t ,�� by �3.7� and set X̄2�t ,��=v, P̄2�t ,��
dv /dt. Hence X̄i�t ,��, P̄i�t ,���i=1,2� satisfies the IVP �2.16� for i=1,2 if t�L��	� ,T�, thus
oinciding locally with the global solution with the same name defined earlier. This entails that
3.3� holds if v�L�	� ,T�, 	�� �0,	

�

�1��, and hence if t� �0,T� ,	�� �0,	
�

�1��.
The averaged IVP corresponding to �3.4� has the form

dz̄

dv
= 	�ḡ�z̄� = 	��z̄2,− D1V��z̄1�� , �3.8a�

z̄�0,	�� = �̄ , �3.8b�

here z̄= �z̄1 , z̄2�� �R \Z��R. In analogy with �2.14�, we express the solution of the VIP �3.8� as

z̄�v,	�� = w���� = �w1����,w2����� �3.9�

or 	��0. Here ��=	�v, and w����, whose dependence and that of its components on �̄ has been
mitted, is the unique solution of the IVP

dw

d��

= ḡ�w� , �3.10a�

w�0� = �̄ , �3.10b�

xisting for all ���R.7

Analogously to the fact that �2.13a� are the EOM of the Hamiltonian H��y1 ,y2 ,y3 ,y4� in

erms of the time �, �3.10a� are those of the Hamiltonian h�w1 ,w2�=w2
2 /2+V��w1� in terms of the

ime �� ,w2 being the momentum canonically conjugate to the coordinate w1. Note that w����
escribes a particle bouncing periodically within the interval �0,1� in the projection Ūp�K̄� of

¯ �K̄� into the X1 axis. This follows from 0��1�1, �̄= ��1 ,�1�� Ū�K̄�. Indeed, the last relation

nd our assumptions on V� and K̄ entail that �1/2��1
2+V���1�� K̄�B�supy��0,1� V��y�. Hence the

nergy of the particle is too small for it to escape from the relevant potential well, and conse-
uently it oscillates in �0,1� for all ��� �0, � �. In the next two theorems, T denotes a positive

umber less than T1��̄�, where �0,T1��̄�� is the maximum forward interval of the solution of the

VP �3.10�. Since T1��̄�=�, T can be freely chosen in �0, � �.
Theorem 3.1: Let T� �0, � � be given. Then there exist positive constants c�

c��K̄ , �̄ ,T� ,	
�

�1�=	
�

�1��K̄ , �̄ ,T�, independent of �2 ,�3, with 	
�

�1��	
�

�0�=	
�

�0��K̄�, and such that the

olution z̄�v ,	�� remains in Ū�K̄� and uniformly approximates z�v ,	�� therein according to

	z�v,	�� − z̄�v,	��	 � c�	� �3.11�

or 0�v�T /	� ,0�	��	
�

�1�.
Proof: By �3.4�, �3.8�, and the properties of g�z ,v� ,��z ,v ,	�� in the paragraph containing

3.6�, the theorem is directly implied by Theorem B.1, except for the assertion that c� ,	
�

�1� are
ndependent of �3. With this exception, the present theorem follows by reasoning analogous to that
sed to prove Theorem 2.1. The �3-independence property is a trivial consequence of the fact that

� does not depend on �3. �

Let

� �
�X1�t,��,P1�t,��� = �w1�t�,w2�t�� , �3.12a�
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X�i�t,�� = �it + �i, P�i�t,�� = �i �i = 2,3� , �3.12b�

nd define X��t ,�� , P��t ,�� analogously to the corresponding unbarred quantities. Arguments of the

ame type as those advanced above in a similar connection show that Z��t ,��= �X��t ,�� , P��t ,���
R6 is the solution of the EOM corresponding to the Hamiltonian H�. By �3.12� and a previous

emark, this solution describes a planarly channeled particle bouncing periodically in the X1

irection between two adjacent atomic planes parallel to the X2 ,X3 plane which intersect the X1

xis at X1=0 ,1, and travelling at constant speed in the X2 and X3 directions.
The next theorem is analogous to Theorem 3.1 in terms of t.
Theorem 3.2: Let T� �0, � � be given. Then there exist positive constants C�

C��K̄ , �̄ ,T� ,	
�

�2�=	
�

�2��K̄ , �̄ ,T�, independent of �2 ,�3, with 	
�

�2��	
�

�1�, and such that Z̄�t ,�� is

niformly approximated by Z��t ,�� according to

	Z̄�t,�� − Z��t,��	 � C�	� �3.13�

or 0� t�T ,0�	��	
�

�2�.
Proof: Follows by Theorem 3.1 and arguments similar to those invoked to prove Theorem

.2. �

We will consider a single fixed T� �0, � � henceforth in this section. This is convenient in
ormulating the key estimate used to establish the existence of a transition from axial to planar
hanneling as well as for other purposes. This estimate, immediately implied by �2.20� and �3.13�,
s given by

	Z�t,�� − Z��t,��	 � C�K,��	 + C��K̄, �̄�	�, �3.14�

here 0� t�T, and where we have dropped the T symbols in the pertinent constants, as we will
o from now on without fear of confusion. Intuitively, in order for the transition to occur, the rhs
f �3.14� must be small, which entails that �2 ,�3 must be large.

Remark on nomenclature: Henceforth K ,� and its components, and 	 will be modified by the
ddition of a superscript zero, e.g., K0 ,�0= ��1

0 ,�2
0 ,�3

0 ,�1
0 ,�2

0 ,�3
0� �with � j

0 ,�k
0 obeying �2.5� for

j ,k=1,2 ,3� when they refer to axial channeling, and 	�2� will be written as 	�2��K0 ,�0� when
eferring to this case. In the absence of such a superscript, the parameters mentioned below
orrespond to planar channeling. The words “particle P” will designate a particle where motion is
governed” by the Hamiltonian H in �1.1a�.

Definition 3.1: For any �0, we say that particle P is -planarly channeled for given param-

ters K , K̄ ,� if the inequality

	Z�t,�� − Z��t,��	 �  �3.15�

olds for all t� �0,T� for some 	� �0,	�2��K ,��� ,	�� �0,	
�

�2��K̄ , �̄��.
Definition 3.2: For any 0 ,�0, we say that particle P has made a �0 ,� axial-to-planar

ransition �or simply a �0 ,� transition� with initial parameters K0 ,�0 and final parameters K,
¯ ,� if for all t� �0,T� the inequality

	Z�t,�0� − Z̄�t,�0�	 � 0 �3.16�

olds for some 	0� �0,	�2��K0 ,�0�� and �3.15� holds for some 	� �0,	�2��K ,��� ,	�� �0,

�

�2��K̄ , �̄��.
Remarks: By Theorem 2.2, particle P is 0-axially channeled for fixed 0�0, � j

0� j
1,2 ,3� ,�k

0�k=1,2� at all t� �0,T� if �3
0 is sufficiently large. Therefore, to prove that a �0 ,�

ransition has occurred, it suffices to show that �3.15� holds at the stated t ,	 ,	�.This simple fact

ill be used in the proof of the next theorem.
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Theorem 3.3 (Existence of the axial-to-planar transition): For arbitrary 0 ,�0, particle P

akes a �0 ,� transition with initial parameters K0 ,�0 and final parameters K , K̄ ,� as defined in
he proof below.

Proof: It is important to keep in mind that 	
�

�2��K̄ , �̄� ,C��K̄ , �̄� are independent of �2 ,�3, and

hat 	�2��K ,�� ,C�K ,�� are independent of �3. We remind the reader that �̄= ��1 ,�1� is fixed, and

e also fix �0. By the inequality �1/2���1
2+�2

2�+ V̄��1 ,�2��K and definition �3.1b�, we may

and will� choose K and �2��1�0 so large that K /2� �1/2���1
2+�2

2�+ V̄��1 ,�2� and 1/�K

	
�

�2��K̄ , �̄ ,�2�, and hence so large that 	� satisfies

1/�2K � 	� � 1/�K � 	�
�2��K̄, �̄� . �3.17�

n addition, we may �and will� assume that K is so large that, because of the second inequality
3.17�,

C��K̄, �̄�	� � /2. �3.18�

ecalling �2.4b�, we next choose �3��2 so large that 	 satisfies the inequalities

	 � 	�2��K,�� , �3.19�

C�K,��	 � /2. �3.20�

y �3.17�–�3.20� and Theorems 2.2 and 3.2 it follows that �2.10� and �3.14� hold for all t
�0,T�. Moreover, by �2.20�, �3.14�, �3.18�, and �3.20� it follows that, for the chosen parameters,

3.15� holds at all such t, and we are done. �

The version of Theorem 3.3 stated next is important physically, and follows by arguments
imilar to those used to prove that theorem. Its importance stems from its assertion that if the total
article energy is large enough, then one can induce a transition from axial to planar channeling by
ppropriately rotating the crystal while keeping this energy fixed.

Theorem 3.4: For arbitrary 0�0, let particle P be 0-axially channeled, with parameters K0,
0, where �3

0 is sufficiently large. Then for arbitrary �0 it makes a �0 ,� transition from the

nitial parameters K0 ,�0 to the final parameters K , K̄ ,� chosen as explained in the proof of
heorem 3.3, with � j =� j

0� j=1,2 ,3� and �=R�0, where R denotes a �proper� rotation operator in
3. That is, 	� 	 = 	�0	, and thus 	=	0.
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PPENDIX A: AUXILIARY PROPOSITIONS

In this appendix we state Propositions A.1 and A.2, which play important roles in Secs. II and
II. The notation used in this appendix is in accord with that in those two sections.

Recall that K is a positive constant such that K� infy�R2\Z2 V̄�y�. We fix the value of K in this
ppendix and set

V1�K� = sup
��x1,x2�,u��Up�K��R

V�x1,x2,u� ,

V2 = inf
�x1,x2��R2\Z2

V̄�x1,x2� , �A1�

here Up�K��R2 is defined in the paragraph containing �2.3�.
�0� �0�
Proposition A.1: Let 	 =	 �K� be a positive constant given by
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	�0� = �/�2�K + V1�K� − V2� , �A2�

here �� �0,1� is a fixed numerical constant as close to unity as desired. Then

sup
�x,u,	��U�K��R��0,	�0��

	r�x,u,	�	 � � , �A3�

here U�K� and r�x ,u ,	� are given by �2.2� and �2.9b�, respectively.
Remarks: Before proving this proposition, we make the following remarks to show that it

akes sense. As to �A2�, note that under the assumptions on V in Sec. I it follows that 0
V1�K���, V2�0, K+V1�K�−V2�0. Indeed, if V1�K�=�, there would exist a sequence in

p�K� tending to some point in Z2, along which V̄�x1 ,x2���, since V̄�x1 ,x2��� on �R \Z�2 and

�x1 ,x2�→� along such a sequence. But this is impossible, since V̄�x1 ,x2��K on Up�K�. So �A2�
s well defined. As to �A3�, recall that 	� �0,1 /�2V0�, where V0 is defined in the paragraph
ontaining �2.4b�. By this and the easily proved fact that 	�0�� �0,1 /�2V0�, �A3� makes sense.

Proof of Proposition A.1: By �A1�, �A2�, and �2.2�,

1 − 2	2��1/2��x3
2 + x4

2� + V�x1,x2,u���1 − 2	2�K + V1�K� − V2� = 1 − �2 � 0 �A4�

or �x ,u ,	��U�K��R� �0,	�0��. Hence,

inf
�x,u,	��U�K��R��0,	�0��

k�x,u,	� � 0 �A5�

y �A4� and �2.9c�.
We claim that

�1 − k�x,u,	��/	 = O�	� �A6�

or 	↓0, uniformly with respect to �x ,u� in U�K��R. The boundedness property �A3� follows
directly from �2.9b�, the property of f�. , . � in the paragraph containing �2.10�, �A5�, and the fact
that �A6� holds in this uniform sense. This fact is an easy consequence of �2.9c�, �A4�, and
elementary arguments. �

Henceforth in this appendix we assume that B , K̄ are positive constants such that K̄�B

supy�R V��y��� and that the properties �1� and �2� stated in the fifth sentence of the paragraph
ontaining �3.6� hold �see Fig. 1�. Define

V̄1�K̄� = sup
�x1,u��Ūp�K̄��R

V̄�x1,u� ,

V̄2 = inf
x1�R\Z

V��x1� , �A7�

here Ūp�K̄� is defined in the last mentioned paragraph.

Proposition A.2: Let 	
�

�0�=	
�

�0��K̄� be a positive constant given by

	�
�0� = �/�2�K̄ + V̄1�K̄� − V̄2� . �A8�

hen,

sup
�z,v,	���Ū�K̄��R��0,	�

�0��
	��z,v,	��	 � � , �A9�

here ��z ,v ,	�� is defined by �3.5b�.
Remarks: Their purpose is to show that Proposition A.2 makes sense under the hypotheses on

� ¯ ¯ ¯ ¯ ¯
,V ,K in Secs. I and III. As to �A8�, note that under these hypotheses 0�V1�K���, V2�K��0,
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¯ + V̄1�K̄�− V̄2�0. Only the finitess of V̄1�K̄� merits comment. Suppose that V̄1�K̄�=�. Then, since

�x1 ,u�� � " �x1 ,u�� �R \Z��R and V̄�x1 ,u� is unbounded from above in a neighborhood of

ach point of Z at every such u, there exists a sequence in Ūp�K̄� converging to a point in Z. This

ontradicts the inequality dist �Ūp�K̄� ,Z��0 proved in the paragraph containing �3.7�. As to �A9�,

ecall that 	�� �0,1 /�2V̄0�, where V̄0 is defined in the paragraph containing �3.1b�. By this and

he readily proved fact that 	
�

�0�� �0,1 /�2V̄0�, �A9� makes sense.
Proof of Proposition A.2: By �A7�, �A8�, and �3.7�, we have

1 − 2	�
2 ��1/2�z2

2 + V̄�z1,v�� � 1 − 2	�
2 �K̄ + V̄1�K̄� − V̄2� � 1 − �2 � 0 �A10�

or �z ,v ,	��� Ū�K̄��R� �0,	
�

�0��. Hence

inf
�z,v,	���Ū�K̄��R��0,	�

�0��
� �z,v,	�� � 0, �A11�

here ��z ,v ,	�� is given by �3.5c�.
One arrives at �A9� by using �A11� and arguments analogous to those adduced to establish

A3� in the proof of Lemma A.1. �

PPENDIX B: FIRST-ORDER AVERAGING THEOREM FOR A CLASS OF PERIODIC
YSTEMS

The main purpose of this appendix is to state and prove Theorem B.1, which underpins our
esults in Secs. II and III in an essential way. This theorem is a version of a very general existence,
niqueness, and approximation theorem in Ref. 4.

Consider the IVP

dx

du
= 	f�x,u� + 	2r�x,u,	� , �B1a�

x�0,	� = 
 � U . �B1b�

ere x�Rn�n�1�, U�Rn is a connected open set, u�R, and 	� �0, � �. The functions f ,r are
ssumed to have the following properties:

f�. , . � � C1�U � R� and f�x,u� = f�x,u + 1� for x � U, u � R; �B2a�

r�. , . ,	� � C1�U � R� for 	 � �0,	0� , �B2b�

here 	0=	0�U� is a positive constant such that

sup
�x,u,	��U�R��0,	0�

	r�x,u,	�	 � � . �B2c�

Under these hypotheses, one can approximate the solution of the IVP �B1� over a u interval of
ength of order 1 /	 for sufficiently small 	�0 by the solution y�u ,	� of the “averaged” VIP

dy

du
= 	 f̄�y� , �B3a�

y�0,	� = 
 � U , �B3b�

¯ n
s stated precisely by Theorem B.1 below. Here f :U→R is defined by
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f̄�y� = 

0

1

f�y,s�ds . �B4�

ia �=	u, the IVP �B3� is equivalent to the IVP,

dy0

d�
= f̄�y0� , �B5a�

y0�0� = 
 �B5b�

or 	�0,where y�u ,	�=y0���.
By �B2a�–�B2c� and standard existence and uniqueness theorems, there exists a maximal

orward interval 0���T1=T1�
� in which the IVP �B5� has a unique solution y0���, where T1

ay be a finite positive real or +�. Let T be a positive constant less than T1. Then the VIP �B3�
as a unique solution y�u ,	�=y0�	u� in U for 0�u�T /	 at each 	�0, which lies in the compact
rbit S�U “swept out” by y0��� in the interval 0���T. Hence S is at a positive distance from the
oundary of U. Let d�0 be less than this distance.

Theorem B.1: Let the functions f ,r in the IVP �B1� have the properties �B2a�–�B2c�, and let
uch a constant T be given. Then there exist positive, 	-independent constants 	1=	1�U ,
 ,T�,
1=C1�U ,
 ,T�, with 	1�	0=	0�U� and having the property that the IVP �B1� has a unique

olution x�u ,	� which remains in U and is uniformly approximated therein by the unique solution
y�u ,	� of the IVP �B3� in accordance with

	x�u,	� − y�u,	�	 � C1	 �B6�

or 0�u�T /	, 0�	�	1.
Proof: By �B2a�–�B2c�, the IVP �B1� has a unique solution x�u ,	� in U on a maximal forward

nterval �0,��	�� for 0�	�	0. A key element of the present proof is to show that
0 ,T /	�� �0,��	�� for small enough 	�0.

In integral form, the IVP �B1� and its averaged version �B3� become

x�u,	� = 
 + 	

0

u

f�x�s,	�ds + 	2

0

u

r�x�s,	�,s,	�ds �B7�

or u� �0,��	��, 0�	�	0, and

y�u,	� = 
 + 	

0

u

f�y�s,	�ds − 	

0

u

f̃�y�s,	�,s�ds �B8�

or u� �0,T /	�, 	�0, where

f̃�y,u� = f�y,u� − f̄�y� . �B9�

ubtracting �B8� from �B7�, we obtain

	x�u,	� − y�u,	�	 � 	

0

u

	f�x�s,	�,	� − f�y�s,	�,	�	ds + 	

0

u

	 f̃�y�s,	�,	�	ds

+ 	2

0

u

	r�x�s,	�,s,	�	ds �B10�

or u� �0,J���	��, 0�	�	0. Here J���	��ª �0,��	��� �0,T /	�.
We now estimate the three integrals on the rhs of �B10� at the latter values of u ,	. By our

1
ssumption that f�. , . ��C �U�R�, the following inequality holds for the first integral:
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0

u

	f�x�s,	�,	� − f�y�s,	�,	�	ds � L

0

u

	x�s,	� − y�s,	�	ds , �B11a�

here L is an x-Lipschitz constant of f�x ,	� in a compact d /2-neighborhood Ud of the orbit S in
, and hence depending solely on Ud. By Lemma 5 of Ref. 4, the second integral obeys the

nequality9

�

0

u

f̃�y�s,	�,	�ds� � ��	t + 1� , �B11b�

here � is a constant which depends on 
 ,U, but not T or 	. Finally, the third integral in �B10�
atisfies the inequality



0

u

	r�x�s,	�,	�	ds � �1u , �B11c�

here �1 denotes the sup in �B2c�.
By �B10� and �B11a�–�B11c�, we immediately infer that

	x�u,	� − y�u,	�	 � 	L

0

u

	x�s,	� − y�s,	�	ds + �	�	t + 1� + �1	2u �B12�

or u� �0,J���	��, 0�	�	0. Using �B12� and Gronwall’s inequality,10 we find after a simple
omputation:

	x�u,	� − y�u,	�	 � M	�1 + 	u�exp�L	u� �B13�

t the last mentioned u ,	 values, where M is a constant depending on 
 ,U, but not T or 	. Let

1�	0 be a positive constant so small that M	1�1+T�exp�LT��d /2, and suppose that the in-
quality ��	��T /	 holds at some positive 	�	1. Then the unique solution x�u ,	� of the IVP �B1�
orresponding to this 	 and to the values of 
 ,T under consideration keeps away from the
oundary of U for u� �0,��	��, thus contradicting maximality. Therefore, ��	��T /	 at all posi-
ive 	�	1. It follows that �B6� holds in terms of the 	-independent constants 	1 and C1=M�1
T�exp�LT� at the values of u ,	 stated in the theorem. �

1 A. Desalvo and R. Rosa, Phys. Rev. B 9, 4605 �1974�.
2 M. A. Kumakhov and R. Wedell, Phys. Status Solidi B 76, 119 �1976�.
3 K. Lenkeit and R. Wedell, Phys. Status Solidi B 98, 235 �1980�.
4 J. A. Ellison, A. W. Sáenz, and H. S. Dumas, J. Differ. Equations 84, 383 �1990�.
5 For a= �a1 , . . . ,an��Rn, 	a 	 =�i=1

n �ai�.
6 The approach in this section is similar to that of A. W. Sáenz, J. Math. Phys. 41, 5342 �2000�. For the relevant averaging
theory background, see, e.g., Ref. 4.

7 This follows by arguments similar to those used to prove a related result stated in Proposition 6, p. 29 of G. Gallavotti,

The Elements of Mechanics �Springer, New York, 1983�.
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8 For a discussion of isoenergetic reduction, see, e.g., A. Wintner, The Analytical Foundations of Celestial Mechanics
�Princeton University Press, Princeton, NJ, 1941�, especially Secs. 180–182.

9 Lemma 5 of Ref. 4 is a rigorous version of Lemma 1 of B. J. Besies, J. Méc. 8, 357 �1969�.
0 J. K. Hale, Ordinary Differential Equations �Wiley-Interscience, New York, 1966�, Corollary 6.6, p. 36.
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We consider thermodynamic systems with finitely many degrees of freedom and
subject to an external control action. We derive some basic results on the depen-
dence of the relative entropy production rate on the controlling force. Applications
to macromolecular cooling and to controlling the convergence to equilibrium rate
are sketched. Analogous results are derived for closed and open n-level quantum
systems. © 2006 American Institute of Physics. �DOI: 10.1063/1.2207716�

. INTRODUCTION

Advances in nanotechnology permit nowadays to implement feedback control actions on
anodevices. For instance, in surface topography, the deflection of a cantilever is captured by a
hotodetector that records the angle of reflection from a laser beam focused on the mirrored
urface on the back side of the cantilever. Position feedback control is used to maintain the probe
t a constant force or distance from the object surface. Position can also be differentiated, allowing
s to apply a velocity-dependent external force. A velocity-dependent feedback control �VFC� has
een recently implemented to reduce thermal noise of a cantilever in atomic force microscopy
AFM�23 and in dynamic force microscopy.41 A contribution to a rigorous thermodynamical foun-
ation of macromolecules under VFC operating in nonequilibrium steady state is provided in Ref.
8. The entropy production rate there is decomposed into a positive entropy production rate
PEPR� and an entropy pumping rate �EPuR�. The latter indicates how much entropy is pumped
ut or into the macromolecule by the control force. It may render the overall entropy production
egative. This is at the basis of a macromolecular cooling mechanism.4,23,41

In this paper, we study entropy production in the presence of an external force in a more
eneral situation. Our approach is new and complementary to Ref. 18 in that we study the free
nergy change rather than the total entropy change of the heat bath and of the Brownian particles
s done in Ref. 18. As “distance” between two probability densities associated to the unperturbed
nd perturbed evolution we employ the information relative entropy �in the quantum case, the von
eumann relative entropy for density operators�. We show that it is possible to derive some basic

ormulas on the entropy production rate that extend those of Ref. 18 whenever the evolution of the
hysical system is in some suitable sense Markovian. We study nonequilibrium thermodynamical
ystems with finitely many degrees of freedom. Corresponding results are also sketched for n-level
losed and open quantum systems. The perturbation of the Hamiltonian is interpreted as a control
unction which is designed by the controller in order to obtain a desired behavior of the system
reduction of thermal noise, transfer to another state, etc.�.

Among potential applications, we mention molecular kinetics,8 macromolecular
ooling,4,18,23,41 and quantum computation.31 As it is well known, relative entropy plays a central

�Electronic mail: pavon@math.unipd.it
�
Electronic address: ticozzi@dei.unipd.it

47, 063301-1022-2488/2006/47�6�/063301/11/$23.00 © 2006 American Institute of Physics
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ole in many areas of modern science besides physics such as mathematical statistics, information
heory, probability, signal processing and quantum information processing; see, e.g., Refs. 3, 5–7,
1–13, 19, 20, 34, 35, and 37 , and Ref. 43 and references therein. Some of these results have been
nnounced without proofs in our conference papers.32,33

The paper is outlined as follows. In the next section, we consider finite-dimensional, nonequi-
ibrium thermodynamical systems. In Sec. III, we derive a basic formula on relative entropy
volution for probability densities satisfying a continuity-type equation. This result is then applied
n the following section to controlled thermodynamic systems. Section V is devoted to the study
f von Neumann entropy production for closed and open finite-dimensional quantum systems. In
he Appendix, we show that the basic result may also be extended to non-Markovian finite-energy
iffusions.

I. THERMODYNAMIC SYSTEMS

Consider an open thermodynamic system whose macroscopic evolution is modeled by an
-dimensional Markov diffusion process �x�t� ; t0� t�. The components of x form a complete set,
.e., all other variables have a much shorter relaxation time.14 Let �̄�x� be the Maxwell-Boltzmann
robability density corresponding to thermodynamical equilibrium

�̄�x� = Z−1exp �−
H�x�
kT

� . �1�

ere H is the �continuously differentiable� Hamiltonian function, and the �forward� Ito differential
f x is

dx�t� = �−
1

2kT
��T � H�x�t�� + u�x�t�,t��dt + �dW , �2�

here W is a standard n-dimensional Wiener process. The probability density �t of x�t� satisfies
he Fokker-Planck equation

��

�t
+ � · �	−

1

2kT
��T � H + u
�� =

1

2 �
i,j=1

n

���T�ij
�2�

�xi � xj
. �3�

n the uncontrolled case u=0, under reasonable assumptions, see, e.g., Ref. 22, as t→�, the
ensity �t of x�t� tends to �̄ in relative entropy and, consequently, in total variation.21 For the
rgodic properties of this class of diffusions, see, e.g., Ref. 40, Sec. 7.5.

Example II.1: In polymer dynamics,9 the macromolecule is described by a Hamiltonian

H�x,y� = 1
2 �y,My + ��x� ,

here M stands for the direct sum

M = M1 � ¯ � MN, Mk = mkI3, k = 1, . . . ,N .

ere x and y are 3N-dimensional vectors, with xi, yi three-dimensional position and momentum of
he ith hard building block of the macromolecule. Moreover, ��x� is the internal potential of

acromolecule �in AFM experiment,23 ��x�=Kx2 /2, where K is the spring constant of the canti-
ever�. Random collisions between solvent water molecules and building blocks of the macromol-
cule are modeled by the formal derivative of a Wiener process, namely Gaussian white noise.
he six-dimensional stochastic process �qi,x ,qi,y ,qi,z , pi,x , pi,y , pi,z� associated with the ith block
beys the equation

dqi� = �p H�q,p�dt , �4�

i�
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dpi� = �− �qi�
H�q,p� + f i� + ui��q,p��dt + �i�

j�dWj��t� , �5�

here Einstein’s convention has been used. Here f is a frictional force and u is a position-velocity
ependent control. In the AFM experiment, f =−	V, u=−�V, 	
0, �
0, with V a velocity. The
ontrol here acts like a frictional force on the macromolecule. Since the frictional coefficient has
een increased, one can introduce an effective temperature Teff which is lower than the thermostat
emperature T. As is well known, different uncontrolled �u=0� versions of this model16 play an
mportant role also in other applications such as nonlinear circuits with noisy resistors.42

To simplify the writing, we shall assume henceforth that in �2� ��T=�2In. The results of this
aper, however, extend in a straightforward way to the case where the diffusion matrix ��T is any
ymmetric, nonnegative definite �possibly singular as in �4� and �5�� matrix. Let us first recall a
ew basic concepts concerning the uncontrolled, nonequilibrium system �2�. Let us introduce the
uxes J�x , t� and forces ��x , t� by

J�x,t� = −
1

2
�2 � �t�x� −

1

2kT
�2 � H�x��t�x� ,

��x,t� = − ��x,t� ,

here =H+kT log �t is the electrochemical potential. Notice the following:

�1� The Fokker-Plank equation �3� may be rewritten �see e.g., Ref. 14� as a continuity equa-
tion

��

�t
+ � · J = 0. �6�

�2� Both fluxes and forces are zero in equilibrium. Moreover,

J�x,t� =
�2

2kT
��x,t��t�x� , �7�

which plays the role of constitutive relations.
�3� For � and � non-negative measurable functions on Rn, we define the information relative

entropy �divergence, Kullback-Leibler distance� by

D����� = �
Rn

log
�

�
� dx .

As it is well known,19 when � and � are integrable functions with

�
Rn

��x� dx = �
Rn

��x� dx ,

we have D�� � ����0. Moreover, D�� � ���=0 if and only if �=�. Define the free energy
functional

F��t� = kT�
Rn

log
�t

�̄
�t dx = kTD��t���̄� .

14
The free energy decay may now be expressed as
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d

dt
F��t� = −

�2kT

2
�

Rn
�� log

�t

�̄
�2

�t dx = −� J�x,t���x,t� dx . �8�

uppose now that, like in the AFM experiment, the thermodynamic system is subject to a feedback
ontrol action so that the macroscopic evolution is given by �2� with u�0. The density �t

u of the
olution xt

u satisfies the controlled Fokker-Planck equation �3�. We are interested in the evolution
f D��t

u � ��t
0�, where ��t

0 , t� t0� is an uncontrolled evolution �u�0�. We first need a simple but
seful result.

II. A RELATIVE ENTROPY PRODUCTION FORMULA

Consider two families of non-negative functions on Rn: ��t ; t0� t� t1� and ��̃t ; t0� t� t1�. We

re interested in how the relative entropy D��t
˜ � ��t� evolves in time.

Assumptions A1: There exist measurable functions f�x , t� and f̃�x , t� such that ��t ; t0� t� t1�
nd ��̃t ; t0� t� t1� are everywhere positive C1 solutions of

��t

�t
+ � · �f�t� = 0, �9�

� �̃t

�t
+ � · � f̃ �̃t� = 0. �10�

Assumption A2: For every t� �t0 , t1�

lim
�x�→�

f�x,t��̃t�x� = 0,

lim
�x�→�

f̃�x,t��̃t�x� = 0,

lim
�x�→�

f̃�x,t��̃t�x� log
�̃t

�t
�x� = 0.

Theorem III.1: Suppose D��t
˜ � ��t�� � , " t�0. Assume moreover Assumptions A1 and A2

bove. Then

d

dt
D	�t

˜ ���t� = �
Rn
�� log

�̃t

�t
· � f̃ − f���̃t dx .

Proof:

d

dt
D��t

˜ ��t� = �
Rn

d

dt
��log �̃t − log �t��̃t� dx = �

Rn
�� 1

�̃t

� �̃t

�t
−

1

�t

��t

�t
��̃t + log

�̃t

�t

� �̃t

�t
� dx

= �
Rn
�− � · � f̃ �̃t� +

�̃t

�t
� · �f�t� − log

�̃t

�t
� · � f̃ �̃t�� dx

= �
Rn
�� log

�̃t

�t
· f̃ �̃t − �

�̃t

�t
· f

�t

�̃t

�̃t� dx

= �
Rn
�� log

�̃t

�t
· � f̃ − f���̃t dx ,
here we have used �9� and �10� and integration by parts �the boundary terms are zero because of

                                                                                                            



A

fi
f

S

I

d
w
e
�

W

S

i
b
d
i
s
e
i
d

a
�

a

063301-5 Entropy production for controlled evolution J. Math. Phys. 47, 063301 �2006�

                        
ssumption 2�. �

For �t�x��1, we have that −D��̃t � ��t�=S��̃t� is the entropy. Taking f�x , t��0, we see that the
rst condition in Assumption A2 is verified. Theorem III.1 then gives �exchanging �t with �̃t� the
ollowing:

Corollary III.2: Suppose ��t ; t0� t� t1� is of class C1 and

lim
�x�→�

v�x,t��t�x� = 0, lim
�x�→�

v�x,t��t�x� log �t�x� = 0.

uppose S��t�� � , " t� �t0 , t1�. Then

d

dt
S��t� = − �

Rn
�� log �t · f��t dx . �11�

V. ENTROPY PRODUCTION FOR CONTROLLED EVOLUTION

Consider now again the controlled thermodynamic system of Sec. II �2�. Let �t
u denote the

ensity of the controlled process satisfying �3�. We are interested in the evolution of D��t
u � ��t

0�,
here ��t

0 , t� t0� is an uncontrolled evolution �u�0�. First of all, recall that the Fokker-Planck
quations of the uncontrolled and controlled system may be written as continuity equations as in
6�. Thus, we can apply Theorem III.1 with

f = −
�2

2kT
� H�x� −

�2

2
� log �t

0�x�, f̃ = −
�2

2kT
� H�x� + u�x,t� −

�2

2
� log �t

u�x� .

e get

d

dt
D	�t

u���t
0� = �

Rn
	� log

�t
u

�t
0 · 	u −

�2

2
� log

�t
u

�t
0

�t

u dx . �12�

uppose now �t
0� �̄, where �̄ is the Maxwell-Boltzmann distribution �1�. We obtain the following:

Theorem IV.1: Under assumptions A1 and A2,

d

dt
D��t

u��̄� = −
�2

2
�

Rn
�� log

�t
u

�̄
�2�t

u dx + �
Rn

� log
�t

u

�̄
· u�t

u dx . �13�

Remark IV 2: Formula �13� generalizes the decomposition of the entropy production exhibited
n Ref. 18 for the controlled Langevin equations. In Ref. 18, the total entropy change of the heat
ath and of the Brownian macromolecules is studied. The entropy production rate �EPR� is
ecomposed into the sum of two terms. The first, named PEPR �positive entropy production rate�,
s an always positive term expressed as the product of the thermodynamic force and the corre-
ponding flux as in �8�. The second, named EPuR �entropy pumping rate�, describes the amount of
ntropy pumped out of or into the macromolecule by the external agent. We recognize that �13�
mplies that −�d /dt�D��t

u � ��̄� is also decomposed into an always positive term and into a term
epending explicitly on the control function.

One can try to employ �13� to analyze macromolecular cooling.4,18,23,41 Another direction of
pplication is the following. Suppose we are interested in modifying the rate at which the solution

t of �3� tends to the invariant density �1�. Let

��t� 
 −
�2

2
,

nd consider in �2� the feedback control
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u�x,t� = − ��t� � log
�t

u

�̄
�x� . �14�

hen, �t
u satisfies the Fokker-Planck equation

��u

�t
− � · 		�2

2
+ ��t�
 1

kT
� H�u
 = 	�2

2
+ ��t�
��u. �15�

few observations are now in order.

�1� Although the feedback control law is nonlinear in �t
u, Eq. �15� is linear.

�2� The initial value problem for Eq. �15� is well posed since �2 /2+��t�
0.
�3� Equation �15� still has as invariant density the Maxwell-Boltzmann distribution �1�.
�4� It is conceivable to solve �15� off-line, and consequently compute the feedback law �14�

beforehand.
�5� The flow of one-dimensional probability densities ��t

u ; t�0� of xu�t� satisfying �2� with
the control given by �14� is the same as for the uncontrolled stochastic process � with
differential

d� = − 	�2

2
+ ��t�
 1

kT
� H���dt + ��2 + 2��t�dW , �16�

provided ��0� is distributed according to �0
u.

�6� The friction and diffusion coefficients in �16�, although time varying, still satisfy the
Einstein fluctuation-dissipation relation �see, e.g., Ref. 28�.

We now employ �13� to compute the relative entropy derivative. We get

d

dt
D��t

u��̄� = − 	�2

2
+ ��t�
�

Rn
�� log

�t
u

�̄
�2�t

u dx . �17�

ence, the controlled diffusion still tends to the Maxwell-Boltzmann distribution but at a different,
modulated” rate. In the linear Gauss-Markov case �i.e., when H is quadratic�, the results assume
very concrete form. In particular, Eq. �15� may be replaced by a linear matricial equation �see
ef. 33 for details�.

The results of this section may be readily extended to non-Markovian, finite-energy diffusions
mploying the Nelson-Föllmer kinematics10,29 �see the Appendix�. Notice that this family plays a
entral role in several branches of mathematical physics �see, e.g., Refs. 11 and 30�. The results
lso extend without too much difficulty to a large class of diffusions with constant but singular
iffusion coefficient such as in the case of the Orstein-Uhlenbeck model of physical Brownian
otion28 or, more generally, in the case of model �4� and �5�. They may also be established for a

arge class of Markovian diffusion processes with local diffusion coefficient given the results in
efs. 15 and 25–28.

. n-LEVEL QUANTUM SYSTEMS

It is apparent that Theorem III.1 can be applied to statistical mixtures in classical mechanics
Ref. 32, Sec. IV�. Indeed, Liouville’s equation, expressing conservation of density in phase space,
s just a continuity equation for the Hamiltonian evolution. One then gets the idea that it might be
ossible to establish a similar result in the quantum case, replacing the Liouville equation with the
andau-von Neumann equation for the density operator. First of all, we need to recall the basic
ormalism of statistical quantum mechanics.
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. Closed quantum systems

As in standard quantum mechanics,36 to every physical system S is associated a complex
ilbert space HS. In the standard formulation, the state of the system is described by a unit vector
�HS. For the sake of simplicity, here we will consider only finite-dimensional Hilbert spaces,
ut results hold in the general case.

We consider situations in which uncertainty on the system state affects our model. The quan-
um analog of a classical probability density is a density operator � in HS: A density operator is a
ositive semi-definite, unit trace operator on HS. They form a convex set D�HS� and the extremals
f D�HS� are the one-dimensional orthogonal projections. These are called pure states and are
quivalent to unit vectors in HS up to an overall phase factor, by setting �= �� , · �. Physical
bservables are represented by Hermitian operators on HS.

Let A be an observable: The expected value of A for a system described by a density operator
is defined as

�a� ª trace��A� . �18�

ence, the variance for an observable A given � is naturally defined as

Var�A�� ª ��A − �a��2�. �19�

t is easy to see that if �p is a pure state, then there exists an observable A such that the variance
ar�A��p

=0, clarifying the definition and the analogy with the classical case. The time evolution
or the density operator of an isolated quantum system is determined by the Hamiltonian, i.e., the
nergy observable. The dynamical equation is the Landau-von Neumann equation:

i �
d

dt
�t = �H,�t� , �20�

here �· , · � denotes the commutator

�A,B� ª AB − BA ,

nd � is Planck’s constant divided by 2�.
Quantum analogs of entropic functionals have been considered since the very beginning of the

athematical foundation of quantum mechanics.44 Recently renewed interest came from quantum
nformation applications.31 We are interested here in the quantum relative entropy, which is de-
ned as

D�����̃� ª trace���log � − log �̃�� . �21�

e define 0 log 0=0. As in the classical case, quantum relative entropy has the property of a
seudo-distance �see, e.g., Refs. 31 and 37�. We now consider the effect of a perturbation �H on

he evolution of a quantum system originally driven by a free Hamiltonian H �we denote by H̃
H+�H the perturbed Hamiltonian�.

Proposition V.1: Let �t and �̃t be the solution of �20� corresponding to the unperturbed and the
erturbed Hamiltonians, respectively. The relative entropy production for the perturbed evolution
s given by

d

dt
D����̃� =

i

�
���H,log �̃��. �22�

Proof: Observing that �� , log ��=0 and, consequently,

d
trace�� log �� = 0
dt
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i.e., the von Neumann entropy is time invariant under Hamiltonian evolution�, and using the
yclic property of trace, we have

d

dt
D����̃� =

d

dt
trace�� log �� +

i

�
trace��H,��log �̃ + ��H̃,log �̃��

=
i

�
trace��H,� log �̃� + ���H,log �̃�� =

i

�
trace����H,log �̃�� . �23�

Q.E.D.
e remark that the initial conditions for the perturbed and the unperturbed evolution can be

ifferent, and we can easily exchange the role of perturbed and unperturbed evolution adding a
inus sign on the right-hand side. The analogy with the corresponding relative entropy evolution

ormula in classical mechanics32 is apparent. As in the classical case, the perturbation can be
nterpreted as an additive control Hamiltonian.

. Open quantum systems

When we consider a quantum system interacting with the environment in some uncontrollable
ay, namely an open quantum system,1,31 the situation changes significantly. The complete dy-
amical description of the situation should be done considering the tensor product space of both
he system and the environment space. Usually, the environment has too many degrees of freedom
o be modeled. Moreover, only partial information about environment initial state interactions may
e available. In these cases, we can still obtain a dynamical equation for the system state by
veraging over the environment degrees of freedom.1 If the system evolution is assumed to be
arkovian, strongly continuous in time, and completely positive,31 a general form for the genera-

or of the system density operator dynamics is the following:24

d

dt
�t = −

i

�
�H,�t� + L��t� , �24�

here H is the effective Hamiltonian, in general different from the free drift Hamiltonian, and the
enerator for the dissipative evolution L has the form

L��� =
1

2�
k

��Lk�,Lk
†� + �Lk,�Lk

†�� . �25�

he operators Lk can be derived under different assumptions on the couplings with the environ-
ent or on a phenomenological basis �see, e.g., Ref. 1 and reference therein�. This equation can be

een as a quantum analog of a Fokker-Planck equation, since it describes the time evolution of the
ensity operator in the absence of conditioning measurements. Assume that �24� admits a station-
ry state commuting with the effective Hamiltonian, and denote it with �̄. Noting that

trace	�
d

dt
log �
 = trace	 d

dt
�
 = 0,

ince the generator �24� has zero trace, we obtain for the relative entropy production �see also Ref.
9�

d

dt
D�����̄� = trace�L����log � − log �̄�� � 0. �26�

he fact that D�� � ��̄� is nonincreasing for the dynamical semigroup generated by �24� was estab-
ished by Lindblad �see, e.g., Ref. 1�. To extend this result to the case of a perturbed Hamiltonian,
e consider now �̄ as a fixed target state, since the introduction of perturbations could in general
hange the stationary states. In this setting, we get
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d

dt
D����̄� = trace	 i

�
�H̃,��log �̄ + L����log � − log �̄�


= −
i

�
���H,log �̄�� + trace�L����log � − log �̄�� , �27�

here now � is undergoing a perturbed evolution H̃=H+�H and ��̄ ,H�=0 as before. In the
uantum case, however, the effectiveness of a control Hamiltonian is severely limited. For in-
tance, in the closed system case, the density operator eigenvalues cannot be modified by a control
amiltonian, precluding convergence in relative entropy if the target state has a different spectrum

rom the initial condition. A detailed analysis of the dissipative case from a control theoretic
iewpoint can be found, e.g., in Refs. 2 and 38. Whether these formulas could be of help in
esigning or analyzing control strategies will be a matter of further work �see also comments on
his issue in Ref. 33, Sec. VII�.

Further analogies with the classical thermodynamics setting can be unravelled if we restrict
ur attention to Eq. �24� when it is derived from, e.g., a weak coupling limit.1 This is essentially
constructive derivation of equations of the form �24� from the joint �tensor� description of the

ystem and the environment, which is consistent with classical thermodynamics. In fact, the Gibbs
tate

�G = Z−1e−�H,

here Z is the partition function and H is the system Hamiltonian, is a stationary state for the
esulting equation. Since, as we already recalled, relative entropy with respect to the stationary
tate is nonincreasing, for this class of dissipative Markovian evolutions we have a full correspon-
ence with the classical mechanical case.32

I. CONCLUSION AND OUTLOOK

We have derived explicit dependence of the relative entropy production rate on the control
ction for various uncertain physical systems exhibiting a Markovian evolution. Further work is
eeded to find other significant applications of the results as well as possible extension to other,
ore complex, systems with Markovian evolution such as interacting particle systems.

PPENDIX: FINITE-ENERGY DIFFUSIONS

Let � : =C��t0 , t1� ,Rn� denote the family of n-dimensional continuous functions, and let P and

P̃ be two probability distributions on �. The relative entropy H�P̃ , P� of P̃ with respect to P is
efined by

H�P̃,P� = �EP̃�log
dP̃

dP
� if P̃ � P ,

+ � otherwise.

et Wx denote Wiener measure on � starting at x�Rn, and let

W: =� Wx dx

e stationary Wiener measure. Let �
0, and denote by D the family of distributions P on � such
hat H�P ,�W���. Let Ft and Gt denote the � algebras of events observable up to time t and from
ime t on, respectively. It then follows from the Girsanov’s theory10,17 that P�D possesses both a
orward drift �P and a backward drift 	P, namely under P, the increments of the canonical

oordinate process x�t ,��=��t� admit the representations
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x�t� − x�s� =�
s

t

�P���d� + ��w+�t� − w+�s��, t0 � s � t � t1, �A1�

x�t� − x�s� =�
s

t

	P���d� + ��w−�t� − w−�s��, t0 � s � t � t1. �A2�

P�t� is at each time t Ft-measurable and w+�·� is a standard, n-dimensional Wiener process.
ymmetrically, 	P�t� is Gt-measurable and w− is another standard Wiener process. Moreover, �P

nd 	P satisfy the finite-energy condition

E��
t0

t1

�P�t� · �P�t�dt� � � , E��
t0

t1

	P�t� · 	P�t�dt� � � . �A3�

t was shown in Ref. 13 that the one-time probability density pt�·� of x�t� �which exists for every
� is absolutely continuous on Rn and the following relation holds a.s. "t
0

E��P�t� − 	P�t��x�t�� = �2 � logpt�x�t�� . �A4�

et us introduce the current drift and the current drift field of P

vP�t� =
�P�t� + 	P�t�

2
, vP�x,t� = E�vP�t��x�t� = x� . �A5�

hen, the one-time density pt satisfies weakly32 a continuity-type equation

�pt

�t
+ � · �vPpt� = 0. �A6�

ence, Theorem III.1 holds true for finite energy diffusions provided we define the v fields
ccording to �A5�.
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We study the global spectrum fluctuations for �-Hermite and �-Laguerre
ensembles via the tridiagonal matrix models introduced previously by the present
authors �J. Math. Phys. 43, 5830 �2002��, and prove that the fluctuations describe a
Gaussian process on polynomials. We extend our results to slightly larger classes of
random matrices. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2200144�

. INTRODUCTION

. The semicircle law, deviations and fluctuations, numerically

The most celebrated theorem of random matrix theory, the Wigner semicircle law,44,45 may be
llustrated as in Fig. 1 by histogramming the eigenvalues of a single random symmetric matrix
sing the simple MATLAB code �normalization omitted�

A = randn�n�; S = �A + A��/sqrt�8 * n�; a = hist�eig�S�,�� 1:delta:1��;

bar��� 1:delta:1�,a/�n * delta��

Every time we run this experiment, we obtain deviations from the semicircle. The difference
rom theory is readily explained computationally:

• we use a finite matrix size n, while the semicircle law is a theorem about the n=� limit;
• histograms bin eigenvalues into boxes of finite width, while the semicircle density is a

continuous function.

There can also be numerical error in the experiments due to finite precision computations and
runcation error, but in practice this does not appear to be significant.

It is worth noting that the above-noted algorithm is inefficient in two ways: first, it uses the
ull matrix A, rather than the equivalent tridiagonal matrix H�,n of Table II �with �=1�, and it
alculates the eigenvalues to obtain the histogram. For more on how to obtain the histogram plot
fficiently and without calculating the eigenvalues, see Sec. V.

To study the next order behavior in the law, for large n, we can subtract away the semicircle
nd multiply by n. The next order average behavior is what we call the deviation and it was first
omputed by Johansson21 to be

DEVIATION =
1

4
�−1�x� +

1

4
�1�x� −

1

2�
�1 − x2. �1�

This expression for the deviation is the �=1 �corresponding to real matrices� instance of the
ore general ��0 case �which was also computed by Johansson, and will be explained in the

ext sections�. The ��0 deviation contains a �2/�−1� multiplicative factor in front of the ex-
ression on the right of �1�, which notably disappears for �=2.

�
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One can see this deviation result as stating that as n→� the eigenvalues are decremented in
he interior at a rate that is fastest at the center, pulling the eigenvalues toward the endpoints.

Upon further examination of the next-order term, one can observe a phenomenon not appear-
ng in the leading order term; there are fluctuations around the mean.

Each time we run a trial we can compute this fluctuation. For example, if we have 25 bins, the
andom fluctuation vector v= �v1 , . . . ,v25�T is the difference between the count in each bin and the
umber of eigenvalues predicted by the semicircle plus the deviation. The entries of v can vary
uite wildly, but inner products with discretized smooth functions result in normal distributions in
he continuous limit. Specifically, if fk is the vector of size 25 consisting of the evaluations of
f�x�=xk on the centers of the bins, then the dot products fk

Tv are heading toward Gaussians with
ovariances E��fk1

T v��fk2

T v��.
Precise statements require the size of the matrix to go to infinity and the histogram to melt into

smooth density function so that the v vector becomes a Gaussian process.
Denote by FLUCTUATION�f�x�� the random quantity representing the limit obtained of fTv

here, as above, f is the vector of function values and v is the vector of histogram differences. For
mooth functions, FLUCTUATION�f�x�� converges to a normal distribution; for example, in the
imit as n→�,

FLUCTUATION�xk� � 2N�0,�k
2� , �2�

here

�k
2 =�

k

22k� k − 1

k − 1

2
	

2

if k = 1 mod 2

k

22k+2� k

k

2
	

2

if k = 0 mod 2.

For general �, the right side of �2� gains a multiplicative factor of 1 /�.
The limit of the entry �k1 ,k2� of the covariance matrix becomes the covariance between

k1 k2

IG. 1. �Color online� 25 bin-histogram of the eigenvalues of a 300�300 symmetric matrix from the real Gaussian
istribution, vs the semicircle.
LUCTUATION�x � and FLUCTUATION�x � �see Theorem 1.2 with �=1�.
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. �-Hermite and �-Laguerre ensembles

This paper studies deviations and fluctuations in a wider context than real symmetric matrices
ith semicircular asymptotic density: We consider Hermite and Laguerre matrices with general
arameter ��0. For a great reference for these ensembles, see Forrester’s upcoming book.16

Classical finite random matrix theory considers the study of eigenvalue ensembles with joint
ensity

f�x1, . . . ,xn� = cw,n�
i	j

�xi − xj���
i=1

n

w�xi� ,

ith w a scalar weight function on an interval I. This interval may be a subinterval of the real line,
r the unit circle in the complex plane; other possibilities have been considered, too, and gener-
lizations are easily conceived. A good reference for these formulas can be found in Lal Mehta’s
ook.27

Some of the most studied eigenvalue ensembles have Hermite, Laguerre, and Jacobi weight
unctions on the real line, or uniform weight on the unit circle. In this paper we will be examining
he ensembles with Hermite and Laguerre weights on the real line �respectively, half-line�; see
able I.

For more references on Gaussian ensembles, see Ref. 27; for Wishart and MANOVA
nsembles, see Ref. 30; for Hermite, Laguerre, and Jacobi ensembles, see Ref. 16.

For three particular values of �, namely 1, 2, and 4, these ensembles have been studied since
he birth of the field, as the Gaussian real, complex, and quaternion ensembles �Hermite with �
1,2 ,4� of nuclear physics.44,45,14,1 Similarly, the Wishart real and complex �Laguerre with �
1,2 and some restrictions on the Laguerre parameter� matrices emerged from the world of

tatistical multivariate analysis.46,6,20,24

The parameter � �making the connection to the Boltzmann factor of statistical physics� is seen
y some communities �e.g., statistical mechanics� as an inverse temperature, or repulsion strength,
f the ensemble of eigenvalues �the higher the �, the more separated the eigenvalues�. It also has
he advantage of the easy mnemonic of 1,2, and 4 corresponding to real, complex, and quaternion
ntries in the matrix models. However, some communities �like algebraic combinatorics� consider
different parameter, 
=2/�, which tends to simplify certain formulas.28,36 In this paper we will
se both notations, for convenience, and make sure that the reader is informed when changes take
lace.

The reason for the attractivity and success that the study of Gaussian orthogonal, unitary, and
ymplectic �Hermite with �=1,2 ,4�, and the Wishart real and complex �Laguerre with �=1,2�,

TABLE I. Random matrix ensembles with eigenvalue distribution propor-
tional to f�x1 , . . . ,xn���i	j�xi−xj���w�xi� with w defined on an interval
I�R. MANOVA stands for Multivariate ANalysis Of Variance.

Name Parameters I w
Historical

name/constraints

Hermite ��0 R w�x�=e−x2/2 Gaussian
�=1,2 ,4

Laguerre ��0
a� �n−1�� /2

�0,�� w�x�=xpe−x/2

p=a− �n−1�� /2−1
Wishart
�=1,2

a=m� /2 ,m�N
Jacobi ��0

a1 ,a2� �n−1�� /2
�0, 1� w�x�=xp1�1−x�p2

p1=a1− �n−1�� /2−1
p2=a2− �n−1�� /2−1

MANOVA
�=1,2

a1=m1� /2 ,m1�N
a2=m2� /2 ,m2�N
nsembles have enjoyed lies in the existence of matrix models with real, complex, and quaternion
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ntries �see Refs. 27 and 30�. These models have not only originated the study, but have also
llowed for a relatively thorough analysis of the finite and asymptotical eigenstatistics �statistical
roperties of the eigenvalues�.

One of the developments in the study of arbitrary �-Hermite, -Laguerre, and -Jacobi en-
embles is the introduction of general real matrix models �see Refs. 11, 25, and 38�. For every �,
here are simple real tridiagonal matrices which model the corresponding eigenvalue distributions
iven by Table I. For the �-Hermite and -Laguerre ensembles, we present these forms in Table II.
hese matrix forms allow for efficient Monte Carlo experiments and an alternative representation

or the study of eigenstatistics in the general � case.
This paper contains one example of such analysis. With the help of these matrix models, we

ompute asymptotical global spectrum fluctuations for the �-Hermite and -Laguerre ensembles.
or the latter, these results are new in the general � context; the global spectrum fluctuations of
omplex Wishart matrices ��-Laguerre with �=2� were studied by Speicher et al.,26 and before by
abanal-Duvillard.5 Johansson’s more extensive study21 covers our results for the �-Hermite
nsembles.

To prove our theorems, we use a very diverse set of methods and techniques from Jack
olynomial theory, special functions, perturbation theory, and combinatorial pathcounting. Some
f the techniques we used in studying the traces of powers of random matrices have been inspired
y the work of Soshnikov and Sinai,33,34 and by the study of traces of unitary random matrices by
iaconis and Shahshahani.9

TABLE II. Unscaled and scaled tridiagonal matrix models for the
�-Hermite and �-Laguerre ensembles with any ��0, n�N, a�R, and a
� �� /2��n−1�.

Hermite matrix,
unscaled

H�,n�
1
�2 �

N�0,2� �n−1��

�n−1�� N�0,2� �n−2��

� � �

2� N�0,2� �

� N�0,2�
�

Hermite matrix,
scaled

H̃�,n=
1

�2n�
H�,n

Laguerre matrix,
unscaled

L�,n
a =B�,n

a �B�,n
a �T, where

B�,n
a �� 2a

��n−1� 2a−�

� �

� 2a−��n−1�
�

Laguerre matrix,
scaled

L̃�,n
a =

�

n�
L�,n

a
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. Statements of results

Among the asymptotical eigenstatistics one may distinguish two classes of properties: local
like the scaled distributions and fluctuations of extremal eigenvalues, or like the level spacing
istribution, i.e., the distance between neighboring eigenvalues� and global �like the limiting level
ensity, i.e., the distribution of a random eigenvalue, and fluctuations thereof�. The term global
ends to refer to a property that involves all or a significant portion of the eigenvalues, while local
ends to refer to a property that occurs near an individual or a constant number of eigenvalues.
mong the more famous local properties we enumerate the level spacings for the Gaussian

nsembles �see Refs. 27 and 39� and the extremal �largest, corresponding to “soft edge,” smallest,
o “hard edge”� eigenvalue asymptotics �see Refs. 41, 40, 22, and 23�. All these results relate to
eal, complex, or quaternion matrices; in the category of results relating to general �, we have to
ention recent work by Desrosiers and Forrester,8 where they analyze the asymptotical corrections

o the eigenvalue density, and, for ��2N, obtain the expected O�n2/3� order in the fluctuation of
he largest eigenvalue in the case of both �-Hermite and -Laguerre ensembles.

For n �the size of the ensembles� finite, the n eigenvalues may be considered as n fluctuating
articles. Roughly speaking, the larger the �, the less fluctuation there is in the particles �hence �
s seen as an inverse temperature�. As �→� the particle positions behave like multivariate nor-
als with variance O�1/�� and means located at the roots of a Hermite �respectively, Laguerre�

olynomial �see Ref. 12�.
For a fixed �, as n→� and, in the case of Laguerre ensembles, 2a / �n��→�, the particles

ave an emerging �global� level density which obeys a simple law �Wigner’s semicircle law45 for
he Hermite ensembles, respectively the Marčenko-Pastur laws29 for the Laguerre ensembles�. The
oots of the Hermite, respectively Laguerre, polynomial have this same asymptotical density—the
uctuations do not change the asymptotics, as they are on a smaller scale.

In Ref. 10, we have proved convergence almost surely �as n→�� of the asymptotical eigen-
alue distribution of the �-Hermite ensemble to the semicircle distribution S with density
2/���1−x2, and of the asymptotical eigenvalue distribution of the �, a-Laguerre ensemble
with n� / �2a�→��1� to the Marčenko-Pastur E� distribution with density

1
2��

��x−���−1�2�����+1�2−x�

x . We recall that convergence almost surely is stronger �and implies� conver-
ence in distribution, a.k.a. convergence of moments.

We examine here the distribution of the statistic i=1
n f��i�, where f is a function of the scaled

igenvalues �i. The scaling is �→�2n�� for the �-Hermite ensembles and �→n� /�� for the
-Laguerre ensembles �see Table II�.

General � results for this kind of statistic can be found in Refs. 4 and 21; this or similar linear
tatistics have been considered also in Ref. 15 �for unitary matrices�, Ref. 32 �for Wishart matri-
es�, and, heuristically, in Ref. 31. Another path of interest is represented by asymptotical large
eviations from the density �spectral measure�; we mention the results of Refs. 5, 2, and 18 �which
lso covers global fluctuations for Wishart matrices�, Refs. 19 and 7 �which covers moderate
eviations�.

For the linear statistic i=1
n f��i�, the Wigner and Marčenko-Pastur laws for the �-Hermite and

-Laguerre ensembles state that for any “well-behaved” function f ,

1

n

i=1

n

f��i� →
2

�
�

−1

1

f�t��1 − t2dt, respectively, �3�

1

n

i=1

n

f��i� →
1

2��
�

��� − 1�2

��� + 1�2

f�t�
��t − ��� − 1�2����� + 1�2 − t�

t
dt , �4�

here the convergence in the above is almost certain. �Such a result is sometimes given the name

f “strong law of large numbers.”�
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Examining the fluctuations from these laws takes us one step further. For f a polynomial, we
rove that once we subtract the expected average over the limiting level density �i.e., the right-
and sides of �3� and �4��, the rescaled resulting quantity tends asymptotically to a normal distri-
ution with mean and variance depending on f . In other words, once the semicircle or Marčenko-
astur distributions are subtracted, the fluctuations in the statistic i=1

n f��i� tend asymptotically to
Gaussian process on polynomials f .

How much more we can extend the class of functions that this process is well-defined on
epends on the entries of the covariance matrix C= �Cij� �which can be expressed in any polyno-
ial basis�. One would be tempted to believe that a Gaussian process W defined on polynomials

ould, in principle, be extended to a class of continuous functions h�x� with the property that,
iven a sequence of polynomials pn�x�→h�x� in some norm, given vn=VarW�pn�, vn→ ṽ	�,
uch that ṽ=VarW�h�.

Definition 1.1: Let �� �0,1� be a real parameter, and let a= ���−1�2, b= ���+1�2. We define
he following two measures:

�H�x� ª �1

4
�1�x� +

1

4
�−1�x� −

1

2�

1
�1 − x2

if x � �− 1,1�

0 otherwise,



�L
��x� ª �1

4
�b�x� +

1

4
�a�x� −

1

2�

1
��x − a��b − x�

if x � �a,b�

0 otherwise.



Theorem 1.2: Let H̃�,n be a scaled matrix from the �-Hermite ensemble of size n, with
scaled) eigenvalues ��1 , . . . ,�n�, and let k�1 be a positive integer. For all i=1, . . . ,k, let

Xi = tr��H̃�,n�i� − n
1

4i/2� i

2
+ 1��

i

i

2
	��i mod 2�,0 − � 2

�
− 1��

−1

1

ti�H�t�dt

� 
j=1

n

� j
i − n

2

�
�

−1

1

ti�1 − t2dt − � 2

�
− 1��

−1

1

ti�H�t�dt .

et �Y1 ,Y2 , . . . ,Yk� be a centered multivariate Gaussian with covariance matrix

Cov�Yi,Yj� =�
1

2i+j

2ij

i + j� i − 1

i − 1

2
	� j − 1

j − 1

2
	 if i = j = 1 mod 2

1

2i+j+2

2ij

i + j� i

i

2
	� j

j

2
	 if i = j = 0 mod 2

0 otherwise.


 �5�
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hen, as n→�,

�X1,X2, . . . ,Xk� Þ�2

�
�Y1,Y2, . . . ,Yk� .

Remark 1.3: For any size k, if we add a first row and a first column of zeros to the covariance
atrix �5�, the resulting �k+1�� �k+1� matrix Ck has a scaled Cholesky decomposition as Ck

TkDkTk
T, where Dk is the diagonal matrix having on the diagonal the vector �0,1 ,2 ,3 , . . . ,k�, and

k has an interpretation as the change-of-base matrix in the space of univariate polynomials from
onomials basis to the Chebyshev polynomials basis. One can also look at the infinite version

�=T�D�T�
T .

Remark 1.4: This Gaussian process has been first described in a more general context (and
xtended to a larger class of continuous functions h� by Johansson in Ref. 21. Johansson conjec-
ured that the regularity conditions imposed on h were purely technical, and that in fact the correct
ondition should be that the function h admits a Fourier-like expansion in the Chebyshev basis.

e restate this as follows: write h as an (infinite) vector h� of coefficients in the Chebyshev basis;

hen VC�h�ªh�TD�h� is the variance of h under the Gaussian process expressed in Chebyshev
asis. Johansson’s conjecture is equivalent to saying that the process could be extended to any
lass of functions h such that V�h� �or equivalently, the variance of h under the Gaussian process

xpressed in monomial basis, Vm�h�ª �T�h��TC��T�h�� is finite; note that T�h� is the vector of
oefficients in monomial basis.

Theorem 1.5: Let L̃�,n
a be a scaled matrix from the �-Laguerre ensemble of parameter a and

ize n, with (scaled) eigenvalues ��1 , . . . ,�n�, and let k�1 be a positive integer. Assume that
� / �2a�→��1, and let �min= ���−1�2, �max= ���+1�2. For all i=1, . . . ,k, let

Xi = tr��L̃�,n
a �i� − n

r=0

i−1
1

r + 1
�k

r
��k − 1

r
��r − � 2

�
− 1��

�min

�max

ti�L
��t�dt

� 
j=1

n

� j
i − n

1

2��
�

�min

�max

ti��t − �min���max − t�dt − � 2

�
− 1��

�min

�max

ti�L
��t�dt .

et �Y1 ,Y2 , . . . ,Yk� be a centered multivariate Gaussian with covariance matrix

Cov�Yi,Yj� = TD�i, j� + TS�i, j� , �6�

here

TD�i, j� = 
q=1

i+j−1

�− 1�q+1�i+j−q

�i + j

q
�

i + j 
l=q+1

i+j
�− 1�l

�i + j − 1

l − 1
� 

r+s=l

1�r�i

1�s�j

rs� i

r
�2� j

s
�2

,

nd

TS�i, j� = 
q=0

i+j−2

�− 1�q�i+j−q

�i + j

q
�

i + j 
l=q

i+j−2
�− 1�l

�i + j − 1

l
� 

r+s=1

0�r�i−1

0�s�j−1

�i − r��j − s�� i

r
�2� j

s
�2

.

Then, as n→�,
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�X1,X2, . . . ,Xk� Þ�2

�
�Y1,Y2, . . . ,Yk� .

Remark 1.6: For any size k, if we add a first row and a first column of zeros to the covariance
atrix (6), the resulting matrix C should admit a scaled Cholesky decomposition of the form Ck

TkDkTk
T, with Dk being the diagonal matrix with diagonal entries �j�−j�0�j�k, and Tk being the

hange-of-basis matrix in the space of polynomials from monomial basis to the shifted Chebyshev
olynomials of the first kind (as defined by Cabanal-Duvillard5 and used in Ref. 26). Note that the
onstant c in Ref. 26 is our 1/�. It may also be useful to look at C�=T�D�T�

T .
Remark 1.7: It is worth noting that results like Theorems 1.2 and 1.5, where one averages over

set of quantities, then subtracts the mean and scales by the variance to obtain a limiting
aussian, are sometimes called central limit theorems (see, for example, Refs. 32 and 33). Free
robability uses this term as well, see, for example Ref. 35, in a different context, namely, to
xpress the fact that averaging over random matrices creates an eigenvalue distribution that
pproaches the semicircular law. Both uses of the term “central limit theorem” draw different
arallels to the classical case.

Our approach to proving Theorems 1.2 and 1.5 consists of computing the first-order deviation
rom the mean �in Sec. II�, showing that the centered process is Gaussian on monomials �by the
ethod of moments�, and computing the covariance matrices �in Sec. III�.

Finally, in Sec. IV, we generalize our approach to two different classes of random matrices.

I. DEVIATION FROM THE SEMICIRCLE AND MARČENKO-PASTUR LAWS

. Dependence on �: Symmetric functions and the “palindrome” effect

As stated in Sec. I, we are interested in computing the deviation to the semicircle and
arčenko-Pastur laws �denoted below by LAW���, as opposed to the LAW�n�, which is the level

ensity for finite n�. These deviations have the form

LAW�n� � LAW��� +
1

n
� 2

�
− 1�DEVIATION + o�1

n
� ,

s n→�.
By integrating the above against xk, we can write this in the moment form

momentk�n� = momentk��� +
1

n
� 2

�
− 1�momentk�DEVIATION� + o�1

n
� ,

gain as n→�.
We mention two interesting points, the first of which we prove in this section:

. The factor 2 /�−1 in the first-order term in n and the fact that DEVIATION does not depend
on � can be obtained from a symmetry principle alone. It is a direct consequence of Jack
polynomial theory that the coefficient of 1 /nj in momentk�n� is a palindromic polynomial
�we define “palindromic” below� in −2/�, and from the tridiagonal matrix models it follows
that the degree of this polynomial is j; thus when j=1 this polynomial must be a multiple of
2 /�−1. Mathematically, this is significant because in order to study the deviations, it is
sufficient to then study the non-random case, �=�. In summary, the powerful Jack polyno-
mial theory allows us to take a complicated random matrix problem and reduce it to an
exercise on the properties of univariate Hermite and Laguerre polynomials.

. With the Maple Library MOPs,13 we can compute symbolically the exact values of
momentk�n� for small values of k, as a function of n and �. In other words, while this paper
concerns itself with the constant and O�1/n� behavior, it is worth remembering that higher

order terms are in principle available to us.
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To make notation a bit clearer, we have used the 
=2/� in the following; we also recall the

caled matrices H̃�,n and L̃�,n
a , from Sec. I B. The following are the first three non-trivial moments

or the traces of the scaled �-Hermite and �-Laguerre matrices with a=n� / �2��=n / �
��. We
mit the n and a in the notation for reasons of space,

1

n
E�tr�H2/


2 �� =
1

4
+


 − 1

4n
,

1

n
E�tr�H2/


4 �� =
2

16
+

5
 − 5

16n
+

3
2 − 5
 + 3

16n2 ,

1

n
E�tr�H2/


6 �� =
5

64
+

11
 − 11

32n
+

16
2 − 27
 + 16

32n2 +
15
3 − 32
2 + 32
 − 15

64n3 ,

1

n
E�tr�L2/
�� = 1,

1

n
E�tr�L2/


2 �� = �1 + �� +
��
 − 1�

n
,

1

n
E�tr�L2/


3 �� = �1 + 3� + �2� +
3��� + 1��
 − 1�

n
+

�2�2
2 − 3
 + 2�
n2 .

Note that the O�1� terms in the above correspond to the second, fourth, and sixth moments of
he semicircle, in the Hermite case, respectively, to the first, second, and third moments of the

arčenko-Pastur distributions in the Laguerre case; these are Catalan numbers �scaled down by
owers of 4 because of the semicircle �−1,1� normalization�, respectively, Narayana polynomials
n �.

The O�1/n� terms, the moments of the deviation, are always multiplied by 
−1, while the
ther coefficients of the negative powers of n in the above are “palindromic polynomials” of
−
�; we recall the definition in the following.

Definition 2.1: A classical “palindromic polynomial” is defined by the fact that its list of
oefficients is the same whether read from beginning to end or from end to beginning.

Remark 2.2: An odd-degree palindromic polynomial in x is a multiple of �x+1�.
To prove that the dependence of the first-order term in the deviation is indeed a multiple of

−1, i.e., of 2 /�−1, we will use elements of Jack polynomial theory, and also a stronger form of
duality principle proved in Ref. 10.

We introduce in the following two notational conventions to be used throughout the rest of the
aper.

Definition 2.3: We denote by E�
H�P�x1 , . . . ,xs��, respectively, E�,a

L �P�x1 , . . . ,xs��, the expecta-
ions of the polynomial P over the scaled 2/�-Hermite, respectively, 2 /�, a-Laguerre, ensembles
f size s.

We denote by E�
H�P�x1 , . . . ,xs��, respectively, E�,a

L �P�x1 , . . . ,xs��, the expectations of the poly-
omial P over the unscaled 2/�-Hermite, respectively, 2 /�, a-Laguerre, ensembles of size s.

Let R�x1 , . . . ,xn� be the space of symmetric polynomials in n variables �by symmetric we
ean invariant under any permutation of the variables�. A homogeneous basis for this vector space

s a set of linearly independent, symmetric, and homogeneous polynomials which generate
�x1 , . . . ,xn�. One such basis is given by the power-sum functions, defined multiplicatively below.
or reference, see Refs. 37 and 28.

Definition 2.4: Let ����1 ,�2 , . . . ,�n� denote an ordered partition ��1��2� ¯ ��n�. We
efine the power sum functions by

p�i
= 

n

xj
�i, and
j=1
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p� = p�1
p�2

. . . p�n
.

The Jack polynomials J�

 constitute a parameter-dependent �the parameter being usually de-

oted by 
� class of orthogonal multivariate polynomials; they are indexed by the powers of the
ighest-order term � �in lexicographical ordering�.

Throughout this section, we will think of the parameter 
 as a sort of inverse to � �recall that
e have denoted 
=2/��.

The Jack polynomials allow for several equivalent definition �up to certain normalization
onstraints�. We will work here with definition 2.5, which arose in combinatorics. We follow
acdonald’s book.28

Definition 2.5: The Jack polynomials J�

 are orthogonal with respect to the inner product

efined in the following on power-sum functions

�p�,p��
 = 
l���z����,

here z�=�i=1
l���ai!i

ai, ai being the number of occurrences of i in �. In addition, the coefficient of the
owest-order term in J�


, which corresponds to the partition �1������1,1 , . . . ,1� �of length ����, is
��!.

From now on, we will use the notations In for the vector of n ones and we will refer to the
uantity J�


�x1 , . . . ,xn� /J�

�In� as the normalized Jack polynomial.

To prove our results, we will need the two lemmas to follow, the first of which is a stronger
ariant of the duality principle proved in Ref. 10 as Theorem 8.5.3 �the proof is virtually the same
s in Ref. 10 and we will not repeat it here�. The second one is a rewrite of a particular case �za=0
nd formula �4.14a�� of formula �4.36b� in Ref. 3.

Lemma 2.6: Let �� denote the conjugate partition to � (obtained by transposing the rows and
olumns in the Young tableau). Then for any integers m ,n�0,

E

H� J�


�x1, . . . ,xn�
J�


�In� � = �− 
�−k/2E1/

H � J��

1/
�y1, . . . ,ym�

J��
1/
�Im� � .

Lemma 2.7: The following identity is true:

E
,a
L � J�


�x1, . . . ,xn�
J�


�In� � = 2k 
�x,y���

�a −
x



+ y� .

n particular, for a=n / �
��,

E
,n/�

L � J�


�x1, . . . ,xn�
J�


�In� � = 2k 
�x,y���

� n


�
−

x



+ y� .

We can now prove the two main results of this section.
Theorem 2.8: For k an even integer, let

E

H�p�k��x1, . . . ,xn�� = 

j=0

k/2

f�
, j�nk/2+1−j ,

ith p�k� being the power-sum corresponding, to partition �k�. Then f�
 , j� is an integer-coefficient
olynomial in 1/
 of degree at most k /2 such that

f�
, j� = �− 
�−k+j f�1/
, j� .

Remark 2.9: When we scale the ensembles, we have to multiply the expectation by
−k/2 k/2
2n�� = �
 / �4n�� , which means that
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1

n
E


H�p�k��x1, . . . ,xn�� =
1

2k
j=0

k/2


k/2f�
, j�n−j .

The corollary below follows.
Corollary 2.10: It follows that g�
 , j�ª
k/2f�
 , j� is an integer-coefficient polynomial of 


or which

g�
, j� = �− 
� jg� 1



, j� ,

o the degree of g�
 , j� is at most j. This yields, in particular, g�
 ,1�=ck�
−1�, with ck a constant
epending on k.

Similarly, for the Laguerre ensembles, we have the following theorem.
Theorem 2.11: Let a=n /
�, and

E
,a
L �p�k��x1, . . . ,xn�� = 2k

j=1

k+1


r=0

j−1

f�
, j,r�
nj

�r ,

ith p�k� being the power-sum corresponding to partition �k�. Then f�
 , j ,r� is a polynomial in
/
 of degree at most k such that

f�
, j,r� = �− 
�−k−j+1f�1/
, j,r� .

Remark 2.12: When we scale the ensembles, we have to multiply the expectation by
� / �n���k= ��
 / �2n��k, which means that

1

n
E
,a

L �p�k��x1, . . . ,xn�� = 
j=1

k+1


r=0

j−1


kf�
, j,r�n−k+j−1�k−r.

The corollary below follows.
Corollary 2.13: It follows that g�
 , j ,r�=
kf�
 , j ,r� is an integer-coefficient polynomial of 


or which

g�
, j,r� = �− 
�k−j+1g�1/
, j,r� ,

o that the degree of g�
 , j ,r� is at most k− j+1. This yields, in particular, g�
 ,k ,r�=ck,r�
−1�.
Proof of Theorem 2.8: Note that 1 /
=2/� and that p�k��x1 , . . . ,xn�=tr�Xk�, for any matrix X

ith eigenvalues x1 , . . . ,xn. By using the unscaled matrix model H�,n for the �-Hermite ensembles
ound in Table II, one can obtain, as in Application 3 of Ref. 11 �more precisely, from Corollary
.3�, that E


H�p�k��x1 , . . . ,xn�� is an integer-coefficient polynomial in 1 /
 of degree k /2, and a
olynomial in n of degree k /2+1. Hence f�
 , j� is an integer-coefficient polynomial in 1 /
 of
egree at most k /2.

Let us now express p�k� in Jack polynomial basis:

p�k� = 
��k

c��
�J�

, �7�

mitting the variables for simplicity.
Let Q�
� be the field of all rational functions of 
 with rational coefficients.
Let ��Q�
� be the vector space of all symmetric polynomials of bounded degree with

oefficients in Q�
�.
For every 0���Q�
�, define the Q�
�-algebra automorphism �� :��Q�
�→��Q�
� by

he condition ���pk�= �−1�k−1�pk, for all k�1. This family of automorphisms appears in �Ref. 28,
hap. 10�, and similarly in Ref. 36. In particular, �=�1 is known as the Macdonald involution
and can be found in �Ref. 28, Chap. 1��.
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We will use the following formula due to Stanley,36 which can also be found as formula
10.24� in Ref. 28:

�
J�

 = 
���J��

1/
, �8�

here �� is the conjugate partition of � �obtained from � by transposing rows and columns in the
oung tableau�.

The first step of the proof is given by the following lemma.
Lemma 2.14: The coefficients in Eq. (7) satisfy

c��
� = �− 
�1−kc���1/
� .

Proof: We apply �
 to both sides of �7�, and use �7� with parameters 
 and 1/
 to obtain

�
p��� = �− 1�k−1
p�k� = �− 1�k−1

��k

c��1/
�J�
1/
.

n the other hand, since �
 is linear, with the help of �8� we write

�
p�k� = 
��k

c��
�
kJ��
1/
.

Since there is a unique way of writing �
 p�k� in Jack polynomial basis, it follows that

c��
� = �− 
�1−kc���1/
� .

�

Remark 2.15: Note that Lemma 2.14 does not say anything about expectations.
We now write the expectation of p�k� over the unscaled Hermite ensemble using �7�:

E

H�p�k��x1, . . . ,xn�� = 

��k

c��
�J�

�In�E


H� J�

�x1, . . . ,xn�

J�

�In� � .

We know �for example, from Ref. 36, Theorem 5.4� that J�

�In�=��x,y����n−x+
y�; hence

E

H�p�k��x1, . . . ,xn�� = 

��k

c��
�E

H� J�


�x1, . . . ,xn�
J�


�In� � �
�x,y���

�n − x + 
y� . �9�

By Lemma 2.6,

E

H� J�


�x1, . . . ,xn�
J�


�In� �
oes not depend on n. Write

�
�x,y���

�n − x + 
y� = 
j=0

���

b��j,
�nj ,

e have

�
�x,y���

�n − x + 
y� = �
�y,x����

�n + 
�y −
x



�� ,

nd consequently

b �j,
� = �− 
�k−jb �j,1/
� . �10�
� ��
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Using �9� and �10�, Lemma 2.14, Lemma 2.6, and substituting k /2+1− j for j �in the power
ndex of n�, we obtain the statement of Theorem 2.8. �

Proof of Theorem 2.11: The fact that f�
 , j ,r� is a polynomial in 1 /
 of degree k follows
imilarly to Corollary 4.3 in Application 3 of Ref. 11.

We write

E
,a
L �p�k��x1, . . . ,xn�� = 

��k

c��
�E
,a
L � J�


�x1, . . . ,xn�
J�


�In� � �
�x,y���

�n − x + 
y� �11�

=2k
��k

c��
� �
�x,y���

� n


�
−

x



+ y� �

�x,y���

�n − x + 
y� . �12�

If we write

�
�x,y���

� n


�
−

x



+ y� = 

j=0

���

b̃��j,
�nj�−j ,

t is not hard to see that

b̃��j,
� = �− 
�−k−jb̃���j,1/
� . �13�

Using �10� and �13�, and Lemma 2.14, we obtain the statement of Theorem 2.11. �

. Computing the �-independent part of the deviation

In this section we will examine the deviation at �=� for the Hermite and Laguerre ensembles.
n proving this we employ a simple differential equations trick that will allow us to compute the
ero- and first-order terms in the mean of the eigenvalue distributions at �=�.

Given a function y�x� which satisfies the second-order homogeneous differential equation

f�x�y��x� + g�x�y��x� + h�x�y�x� = 0,

enote by m�x� the function m�x�=y��x� /y�x� �with poles at the zeroes of y�x��.
Proposition 2.16: The function m�x� satisfies the first-order differential algebraic equation

m2�x� +
g�x�
f�x�

m�x� +
h�x�
f�x�

+ m��x� = 0.

The proof is immediate.
Remark 2.17: If the function y�x� is a polynomial with a finite number k of distinct roots, m�x�

s the generating function for the powers of y’s roots.

Let H̃�,n and L̃�,n
a denote matrices from the �-Hermite, respectively, �-Laguerre ensembles. As

n Ref. 10, to obtain the deviation, we once again will examine the averaged traces of powers of

he matrices H̃�,n and L̃�,n
a , this time looking at the first-order terms.

As a consequence of Corollaries 2.10 and 2.13, for k an even positive integer in the Hermite
ase, and k an arbitrary positive integer in the Laguerre case with parameter a= �n�� / �2��,

1

n
E�

H�p�k��x1, . . . ,xn�� = ck + ck
1

2

�
− 1

n
+ O�n−2� ,
hile

                                                                                                            



f

a

t
c

t

�
b
w

w
p

t
n

e
�

r

063302-14 I. Dumitriu and A. Edelman J. Math. Phys. 47, 063302 �2006�

                        
1

n
E�

L,a�p�k��x1, . . . ,xn�� = ck��� + ck
1���

2

�
− 1

n
+ O�n−2� .

It follows that the deviation is given by the moments ck
1, respectively, ck

1���, times the scaling
actor 2 /�−1. Equivalently, if we examine the generating functions

m�n,�,x� =
1

n
E�

H�
i=1

n
1

x − �i
� =

1

n

k=0

� E�
H�p�k��x1, . . . ,xn��

xk+1 = 
k=0

� � ck

xk+1 +
1

n
� 2

�
− 1� ck

1

xk+1 + ¯ �
nd �a=n /
�=n� /2��

m�n,a,�,x� =
1

n
E�,a

L �
i=1

n
1

x − �i
� =

1

n

k=0

� E�,a
L �p�k��x1, . . . ,xn��

xk+1 = 
k=0

� � ck

xk+1 +
1

n
� 2

�
− 1� ck

1���
xk+1 + ¯ �

hen in order to find the first-order asymptotics of m�n ,� ,x� and m�n ,a ,� ,x�, it is enough to
ompute k=0

� �ck
1 /xk+1�, respectively, k=0

� �ck
1��� /xk+1�.

We will do this by keeping n fixed, letting �→�, and computing the zero- and first-order
erms in 1/n in the generating function of the resulting matrix ensemble.

Remark 2.18: Knowing that the quantities �1/n�E�
H�p�k��x1 , . . . ,xn�� and

1/n�E�
L,a�p�k��x1 , . . . ,xn�� are polynomial expressions in 1/n and 2/� (which follows immediately

y recalling the results of Theorems 2.8 and 2.11) is the key factor in allowing us to let �→�

hile keeping in fixed.
To aid us in our calculations, we will make use of a beautiful property of the r distribution,

hich will allow us to replace our tridiagonal models with even simpler ones. We give this
roperty as a Proposition.

Proposition 2.19: Let �Xn�n�N be a set of random variables with distributions rn
, n�N, such

hat rn→� as n→�. Then the sequence �Xn−�rn�n�N converges in distributions to a centered
ormal of variance 1/2.

It follows then that, as we have already shown in Ref. 12, that given n and ��1 fixed, the

ntries of the scaled random matrices H̃�,n and L̃�,n
a =B�,n

a �B�,n
a �T �with a= �n�� / �2��� converge as

→� to the following models:

H̃�,n → H =
1

2�n�
0 �n − 1

�n − 1 0 �n − 2

�n − 2 0

�

0 �1

�1 0

	 , �14�

espectively, to
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L̃�,n
a → L� =

�

n�
n

�
�n

�
�n − 1

�n

�
�n − 1

n

�
+ n − 2 �n

�
− 1 �n − 2

�n

�
− 1 �n − 2

n

�
+ n − 3

�

�n

�
− n + 2 �2

�n

�
− n + 2 �2

n

�
− n + 4 �n

�
− n + 1 �1

�n

�
− n + 1 �1

n

�
− n + 2

	 . �15�

Note also that if we denote by B̃�,n
a the matrix such that L̃�,n

a = B̃�,n
a �B̃�,n

a �T, then

B̃�,n
a → B� =��

n�
�n

�

�n − 1 �n

�
− 1

�n − 2 �n

�
− 2

�

�2 �n

�
− n + 2

�1 �n

�
− n + 1

	 �16�

nd that L�=B�B�
T.

Since H, L�, and b� are non-random matrices, all expectations are exact.

. �=�, Hermite case

The matrix H �see �14�� has as eigenvalues h1 /�2n , . . . ,hn /�2n, where h1 , . . . ,hn are the roots
f the nth Hermite polynomial Hn�x� �this can be easily deduced from the three-term recurrence
or the Hermite polynomials, see, for example, Ref. 42�. For a more detailed description of the
roperties of this matrix, see Ref. 12.

It follows that the generating function we need to compute is

m̃�n,x� =
1

n

i=1

n
1

x −
hi

�2n

.

We use the well-known identity


i=1

n
1

x − xi
=

p��x�
p�x�

, �17�
here xi are distinct values, and p�x� is the polynomial whose roots the xi’s are, to obtain that
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m̃�n,x� =�n

2

Hn��x�2n�

Hn�x�2n�
,

nd by applying Proposition 2.16 to the second-order differential equation satisfied by the Hermite
olynomials �for a reference, see Ref. 42�, we get that m̃�n ,x� satisfies the algebraic differential
quation

�m̃�n,x��2 − 4xm̃�n,x� + 4 +
m̃��n,x�

n
= 0. �18�

Writing m̃�n ,x�=m0�x�− �1/n�m1�x�+O�n−2�, we obtain from �18� that

m0�x� = 2�x − �x2 − 1� ,

m1�x� =
�x − �x2 − 1�

2�x2 − 1�
.

Computing the inverse Cauchy transform for m0�x� and m1�x� yields the semicircle distribu-
ion and, respectively,

�H�x� = �1

4
��1�x� + �−1�x�� −

1

2�

1
�1 − x2

if x � �− 1,1�

0 otherwise.

 �19�

We have thus proved the following result.
Lemma 2.20: For any polynomial P,

E�
H�

i=1

n

P�xi�� − n�
−1

1

P�x�s�x�dx → � 2

�
− 1��

−1

1

P�x��H�x�dx ,

s n→�.
Remark 2.21: As a side note, in the computation above we have provided yet another way to

btain the semicircle law for all �.

. �=�, Laguerre case

The matrix L� has as eigenvalues �l1 /n , . . . ,�ln /n, where l1 , . . . , ln are the roots of the nth
aguerre polynomial Ln

n�1/�−1��x� �see Ref. 43� �this can be easily deduced from one of the many
ecurrences for Laguerre polynomials, found for example as �26� in Ref. 43�. To get a more
etailed description of the properties of this matrix, refer to Ref. 12, substituting n�1/��−1 for �.

Since we need to rescale the eigenvalues by an additional n, it follows that the quantity of
nterest is

m̃�n,�,x� =
1

n

i=1

n
1

x −
�li

n

,

Once again we use identity 17 and obtain that
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m̃�n,�,x� =
1

n

�Ln
n�1/�−1���� xn

�
�

Ln
n�1/�−1�� xn

�
� ,

nd by applying Proposition 2.16 to the second-order differential equation satisfied by Laguerre
olynomials �for a reference, see Ref. 43�, we get that m̃�n ,� ,x� satisfies the algebraic differential
quation

��m̃�n,�,x��2 − m̃�n,�,x��1 −
1

x
+

�

x
� +

1

x
+

�m̃��n,�,x� +
�m̃�n,�,x�

x

n
= 0. �20�

Writing m̃�n ,� ,x�=m0�x�− �1/n�m1�x�+O�n−2�, we obtain from �20� that

m0�x� =
x + � − 1 − ��x − ��� − 1�2��x − ��� + 1�2�

2�x
,

m1�x� =
x − � − 1 − ��x − ��� − 1�2��x − ��� + 1�2�

2�x − ��� − 1�2��x − ��� + 1�2�
.

By calculating the inverse Cauchy transforms of m0�x� and m1�x�, one obtains the Marčenko-
astur distribution, respectively,

t��x� = �1

4
�b�x� +

1

4
�a�x� −

1

2�

1
��x − a��b − x�

if x � �a,b�

0 otherwise,

 �21�

ith a= ���−1�2, b= ���+1�2.
We have thus proved the following result.
Lemma 2.22: For any polynomial P,

E�,a
L �

i=1

n

P�xi�� − n�
a

b

P�x�e��x�dx → � 2

�
− 1��

a

b

P�x�t��x�dx ,

s n→�.

II. FLUCTUATION OF THE SEMICIRCLE AND MARČENKO-PASTUR LAWS

In this section we compute the fluctuations terms for the �-Hermite and �-Laguerre en-
embles; we show that the fluctuation of the trace of any given power of the matrix corresponding
o the ensemble approaches in distribution a normal variable.

The essence of the argument is simple. We will think of the random matrix as the sum
etween the non-random matrix of means �which we can also think about roughly as the �=�
on-random matrix� and a random matrix of the centered entries, and do some obvious computa-
ions of traces of powers. Much of the work goes into the technical carefulness to provide a
omplete argument, but the readers should not let the details draw them away from the simplicity
f the idea, which is based on the matrix formula

tr�Tk� = 
i1,. . .,ik

ti1i2
ti2i3

¯ tiki1
,

ith the proviso that the above-noted sum is especially simple when the matrix T= �tij�i,j is

ymmetric and tridiagonal.
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We provide here a heuristic explanation for the Hermite case, just for the purpose of empha-
izing that the main idea is simple.

One can think of the random matrix, for all practical purposes, as

T � T�=� +
1

��n
G ,

here G is a symmetric tridiagonal matrix of O�1�-variance Gaussians �similar to the decompo-
ition we used in Ref. 12�, with entries which are mutually independent, up to the symmetry
ondition.

Then for any polynomial h,

tr�h�T�� � tr�h�T�=��� +
1

��n
tr�h��T�=��G� ,

he second term is clearly normally distributed, and all we have to do is compute the variance and
how it is finite �which we can achieve by examining the cases when h is a monomial�.

It is worth noting that, in principle, one should be able to do this computation for continuously
ifferentiable functions h with some additional conditions imposed by the fact that the variance
eeds to be finite.

The technicalities arise because n→� and the above-mentioned equalities are just approxi-
ations, but this should not detract from the main idea. Using the method of moments, we will

how that we do not need G’s entries to be Gaussian �or even approximately Gaussian� in order for
he fluctuation to monomials h to be Gaussian.

. The �-Hermite case

We write the scaled matrix H̃�,n as

H̃�,n = A +
1

�n�
Y , �22�

here A=E�
H�H̃�,n� is the symmetric tridiagonal matrix of mean entries

A�i , i+1�= �1/ �2�n���E��n−i���; all other entries are 0�, and Y is symmetric tridiagonal matrix of
entered variables �with a diagonal of independent Gaussians of variance 1/2�. Technically, A and

depend both on n and on �; we drop these indices from notation for the sake of simplicity.
Remark 3.1: From Proposition 2.19, we know that if A= �aij�1� i , j�n, then for any ��0,

here exists i��N such that

�2�n�ai,i+1 − ��n − i��� 	 � for any i � �n − i�� ,

nd that Yi,i+1→N�0,1 /8� in distribution as i→�, while Yi,i�N�0,1 /2� for all i.
Remark 3.2: (bounded moments) Note that the entries of A are bounded, both from below and

rom above; we will think of them as O�1�. Similarly, for any k and l finite, we know from the
bove that there exists an M such that

E��
i=1

kl

Y ji,ji�
ci � � M ,

or all 0�ci�kl, and for all j1 , . . . , jkl and j1� , . . . , jkl� such that �ji− ji���1.
Given integers k and n, consider the random variable

�k�n� = tr�H̃�,n
k � − E�

H�tr�H̃�,n
k �� .
Claim 3.2.1: For any fixed integers k and l,
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lim
n→�

E���k�n��l� =��
2

�
�l/2 �l − 1�!!

2�k+1�l kl/2� k

k

2
	

l

if k, l are even

� 2

�
�l/2 �l − 1�!!

2kl kl/2� k − 1

k − 1

2
	

l

if k is odd and l is even

0 if l is odd.



Claim 3.2.2: For any fixed integers k1 and k2,

lim
n→�

Cov��k1
�n�,�k2

�n�� =�
2

�

1

2k1+k2

2k1k2

k1 + k2�
k1 − 1

k1 − 1

2
	� k2

k2 − 1

2
	 if k1,k2 are odd

2

�

1

2k1+k2+2

2k1k2

k1 + k2�
k1

k1

2
	� k2

k2

2
	 if k1,k2 are even

0 otherwise.



Remark 3.3: Claims 3.2.1 and 3.2.2 show that the centered fluctuation of the �-Hermite

nsembles describes the Gaussian process on monomials defined in Theorem 1.2.
For the remainder of this section, we will prove Claims 3.2.1 and 3.2.2. To give the reader a

ough idea of where the calculations will lead, we provide in the following an intuition of what we
ill be doing.

Intuitive explanation: The first step is to note that tr�Tk� is a sum of products of k entries of T;
or a tridiagonal matrix T= �ti,j�1�i,j�n with ti,j =0 if �i− j��1,

tr�Tk� = 
1�i1,. . .,ik�n

ti1,i2
ti2,i3

. . . tik,i1
,

here the sum needs to be taken only over the sequences i1 , . . . , ik such that �ij − ij+1��1, for all
j=1, . . . ,k−1, and also �ik− i1��1.

We have a sliding “window” of size k down the diagonal of the matrix T in which we take
roducts of powers of the elements. In particular, for the matrix A, this is easy to visualize,
ecause with the exception of a finite bottom right corner, the entries of A in any finite window
ook roughly the same.

The second step is to identify the significant terms, i.e., the terms that have non-zero asymp-
otical contributions. Roughly speaking, these will be the terms which will contain precisely one
lement of Y, and all the others from A. Nothing surprising here, as Y is scaled by 1/�n� �see
22��.

Finally, we will compute the contribution from the significant terms and show it agrees with
he result of Claim 3.2.1. Then we will note that the same reasoning yields the result of Claim
.2.2.

We now proceed to make the above-noted intuitive description rigorous. We need to introduce
ome notation.

Definition 3.4: For given n and p, we denote by Sn,p� �1, . . . ,n�p the set of sequences of
ntegers i1 , . . . , ip such that �i1 , . . . , ip�� �1, . . . ,n�p and �ij − ij+1��1 for all j=1, . . . , p−1, and also
ip− i1��1.

We denote by I an element of Sn,p, and we denote by

�T�I ª ti1,i2
ti2,i3

¯ tip,i1
,

here �i1 , i2 , . . . , ip�¬I.
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For a given I�Sn,p, note that we can break up the sequence �i1 , . . . , ip� into concatenations of
equences

J = ��ip0
, . . . ,ip1

�,�ip2
, . . . ,ip3

�,�ip4
, . . . ,ip5

�, . . . ,�ip2q
, . . . ,ip2q+1

�� ,

nd

R = ��ip1
, . . . ,ip2

�,�ip3
, . . . ,ip4

�, . . . ,�ip2q−1
, . . . ,ip2q

�� ,

uch that in each of the sequences ip2k
, ip2k

+1, . . . , ip2k+1
�for k=0, . . . ,q� which form J, consecutive

ndices differ by exactly 1, and in addition to this

�i1, . . . ,ip� = �ip0
, . . . ,ip1

,ip1+1, . . . ,ip2
,ip2+1, . . . ,ip3

, . . . ,ip2q+1
� .

We allow for the possibility of having empty sequences ip0
, . . . , ip1

in the beginning and/or

p2q
, . . . , ip2q+1

in the end of J.
Remark 3.5: To give an intuition for these sequences, note that any term in tr��H�,n�k� can be

hought of in terms of products of entries from A and entries from Y; the sequences J and R will
e overlapping “runs” recording the former, respectively, the latter.

Also note that, given a fixed I, each J satisfying the requirements above has exactly one R
R�J� corresponding to it, and that to different R ’s correspond different J ’s. Furthermore, since
is finite, a given R may be associated only to a finite number of sequences I �since all indices
ust be within k of each other�.

Definition 3.6: We define the set J=J�I� as the set of pairs �J ,R� that corresponds to a given
. For a tridiagonal matrix T, we define

�T�J = tip0
,ip0

+1 ¯ tip1
−1,ip1

tip2
ip2

+1 ¯ tip3
−1,ip3

¯ ti2q,i2q+1 ¯ ti2p+1−1,i2q+1
,

imilarly,

�T�R = tip1
,ip1

+1 ¯ tip2
−1,ip2

tip3
ip3

+1 ¯ tip4
−1,ip4

¯ ti2q−1,i2q−1+1 ¯ ti2q−1,i2q
.

For any sequence I�Sn,p, we can write

�H̃�,n�I = �A +
1

�n�
Y�

I
= 

�J,R��J

1

�n��P/2 �A�J�Y�R, �23�

ith P being the total length of the “runs” in the sequence R �i.e., P= �p2− p1+1�+ �p4− p3+1�
¯ + �p2q− p2q−1+1��.

We have now enough information to start the proof of Claim 3.2.1.
Proof of Claim 3.2.1: First we examine

E���k�n��l� = E��tr�H̃�,n
k � − E�

H�tr�H̃�,n
k ���l� ,

ote that

E���k�n��l� = E� 
I1,. . .,Il�Sn,k

�
j=1

l

��H̃�,n�Ij
− E��H̃�,n�Ij

��� .

Using �23�, we write

E���k�n��l� = E� 
Ij�Sn,k

1�j�l


�Jj,Rj��Jj

1

�n��Pj/2�
j=1

l

��A�Jj
�Y�Rj

− E��A�Jj
�Y�Rj

��� . �24�
Since A is a non-random matrix, it follows that we can rewrite �24� as
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E���k�n��l� = 
Ij�Sn,k

1�j�l


�Jj,Rj��Jj

��
j=1

l
1

�n��Pj/2
�A�Jj�E��

j=1

l

��Y�Rj
− E��Y�Rj

��� . �25�

Denoting by q=q�I1 , . . . ,Il�ª j=1
l Pj /2, we obtain that

E���k�n��l� = 
Ij�Sn,k

1�j�l


�Jj,Rj��Jj

1

�n��q��
j=1

l

�A�Jj�E��
j=1

l

��Y�Rj
− E��Y�Rj

��� . �26�

Lemma 3.7: The non-zero terms in (26) have q� l /2.
Proof: If any of the l terms in the product � j=1

l ��Y�Rj
−E��Y�Rj

�� involves only variables that
re independent from all other variables appearing in the remaining l−1 terms of the product, the
xpected value of the product is 0. This includes the case when at least one of the Rj’s is empty.
ence, in all of the terms that have non-zero contribution to the expectation, each Rj must be
on-empty, and thus 2q= j=1

l Pj � l. �

Remark 3.8: Note that in fact something stronger follows, namely, that for each 1� j1� l,
here exists an 1� j2�n, j2� j1, such that the some variable appearing in �Y�Rj1

also appears in

Y�Rj2
.

Since the entries of A are O�1�, and k and l are fixed, the factors � j=1
l �A�Jj

are all O�1�. By
emark 3.8 and Lemma 3.7, it follows that every term with non-zero contribution in the double

um �26� corresponds to an l-tuple �R1 , . . . ,Rl� with the property described in Remark 3.8. Each
uch l-tuple comes with a weight proportional to 1 /nq.

To compute the asymptotics of the sum, we will do the following thought experiment: select
non-zero contribution term and draw the “correlation” graph with Rj as vertices, and an edge

etween Rj1
and Rj2

if and only if �Y�Rj1
and �Y�Rj2

are correlated �i.e., share variables�. The

esulting graph will have s connected components, with 1�s� �l /2�.
Call these connected components C1 , . . . ,Cs. Consider now the set of variables V1 , . . . ,Vs,

uch that v�Vi if and only if there is an Rj in Ci such that v appears in �Y�Rj
. Select from each Vi

single variable; these variables will be independent. A variable corresponds to a choice of one
ndex and three possibilities �since it will be of the form Yi,i+1, Yi+1,i, or Yi,i�.

If we were to choose a set of s independent variables from Y, roughly, to how many such
-tuples �R1 , . . . ,Rl� would this choice correspond, and in turn, to how many sequences I1 , . . . ,Il

o these correspond? In other words, to how many non-zero contribution terms in the sum �26�
an a choice of s independent variables correspond?

The answer is O�1�.
Indeed, by the way we defined I and R, it follows that, once we have chosen a variable v

Vi, for all other variables in Vi we have a finite number of corresponding indices to choose from.
his happens because the correlation of Rj’s induces a “clustering” of variables �since all indices
ust be within �Vi�� �k+1�� l�k+1� of each other�.

Hence, for each of the possible O�ns� choices of s “representative” variables, we have only
�1� possible non-zero contribution terms in the sum �26�.

Going backwards, it follows that for any s, there are O�ns� terms for which the correlation
raph has s components. Since each of these terms has weight at most 1 /nq�1/nl/2, we have
roved the following lemma.

Lemma 3.9: The contribution to the expectation sum (26) from all terms with s	 l /2 or q
l /2 is asymptotically negligible.

Thus, the only terms of asymptotical significance are those for which s=q= l /2. If l is odd,
his immediately implies

Lemma 3.10: With the notations above, for k and l fixed, l odd,

lim E��k�n�l� = 0.

n→�

                                                                                                            



s
1

t

f
o

a
d
o

d

1
2

s

f
�

t

�

y

063302-22 I. Dumitriu and A. Edelman J. Math. Phys. 47, 063302 �2006�

                        
Let us examine what happens when l is even and s=q= l /2. Such terms are easy to under-
tand: they correspond precisely to l-tuples �R1 , . . . ,Rl� for which �Rj�=1 for all j, and for each
� j1� l there exists a unique 1� j2� l such that �Y�Rj1

= �Y�Rj2
.

We make the following simple observation.
Lemma 3.11: The number of diagonal terms Yi,i contained in each �Y�Rj

, counting multiplici-
ies, has to have the same parity as k.

Proof: Indeed, by the definition of any R, all the diagonal terms found in �H̃�,n�I must be
ound in �Y�R. The parity of these terms, counting multiplicities, has to be the same as the parity
f k. This is easy to see; if I= �i1 , i2 , . . . , ik�, then by Definition 3.6

i1 − i2 + i2 − i3 + ¯ + ik−1 − ik + ik − i1 = 0,

nd since each difference ij − ij+1 above is either 0, 1, or −1, it follows that the number of
ifferences equal to 0 has the same parity as k. The number of differences equal to 0 is the number
f diagonal terms. �

It then follows that, for all l-tuples of �R1 , . . . ,Rl� for which s=q= l /2,

• if k is odd, all variables present in the �Y�Rj
’s are diagonal variables, and

• if k is even, all variables present in the �Y�Rj
’s are off-diagonal variables.

We summarize here what we now know about the terms we need to study when l is even.
Lemma 3.12: The only asymptotically relevant terms have the property that there exist l /2

istinct indices i1 , . . . , il/2 such that for each ij there exist precisely two values j1	 j2 for which

. if k is odd, Rj1
=Rj2

= ��ij , ij��,
. if k is even, either one of these four possibilities:

• Rj1
=Rj2

= ��ij , ij +1��, or
• Rj1

=Rj2
= ��ij +1, ij��, or

• Rj1
= ��ij , ij +1�� and Rj2

= ��ij +1, ij��, or
• Rj1

= ��ij +1, ij�� and Rj2
= ��ij , ij +1��.

Note that in this case, �Y�Rj1
= �Y�Rj2

, because the matrix is symmetric. We call all such terms

ignificant.
We will now need a stronger result than Remark 3.2.
Lemma 3.13: For any given ��0 and k , l�N, with l even, there exists some i��N such that

or any significant term �� j=1
l �A� ji

�E�� j=1
l ��Y�Ri

−E��Y�Ri
��� and the corresponding l /2-tuplet

i1 , . . . , il/2�, if k� i1 , . . . , il/2�n− i�, then

• if k is odd,

���
j=1

l

�A�Jj�E��
j=1

l

��Y�Rj
− E��Y�Rj

��� −
1

2�k−1�l+l/2 �
m=1

l/2 �1 −
im

n
�k−1� 	 �;

• if k is even,

���
j=1

l

�A�Jj�E��
j=1

l

��Y�Rj
− E��Y�Rj

��� −
1

2�k−1�l+3l/2 �
m=1

l/2 �1 −
im

n
�k−1� 	 � .

Proof: The lemma follows easily from Proposition 2.19 and Remark 3.1, together with the fact
hat if Rj contains the index i, then all indices present in Jj are within k of i. �

We prove now that it is enough to look at the significant terms for which n− i�� i1 , . . . , il/2

k �i.e., those covered by Lemma 3.13�.
Lemma 3.14: The contribution of significant terms for which some ij �n− i� or ij 	k is as-
mptotically negligible, i.e., o�1�.

                                                                                                            



i
g

t

n

c
S

b
k

d

a

S

063302-23 Global spectrum fluctuations for �-ensembles J. Math. Phys. 47, 063302 �2006�

                        
Proof: Each contribution from a significant term

��
j=1

l

�A�Jj�E��
j=1

l

��YRj
− E��Y�Rj

����
s bounded by some constant M̃, by Lemmas 3.2 and 3.1. Since restricting a choice of ij to be
reater than n− i� or less than k yields a finite number of choices for that particular ij, and since

j	 l is finite, it follows that there are only O�nl/2−1� such restricted terms. But since the contribu-
ion of any such term is weighted by 1/nl/2, the statement of the lemma follows. �

So we have reduced the computation to examining the contribution from the terms for which
− i��1, . . . , il/2�k. Assume w.l.o.g i��k �we can always choose a smaller ��.

Given an ordered l /2-tuplet of distinct indices n− i��1, . . . , il/2�k, how many terms can
orrespond to them? First, there are �l−1�!! ways of pairing these indices to the Rj’s in this order.
econd, once the pairing is given,

• for k odd, the corresponding I j sequence must be a sequence where all but one consecutive
difference are ±1 �the one difference that is 0 corresponds to the insertion of the diagonal
term�. There are �k� k−1

�k−1�/2 �� such choices for each I j, for a total of �k� k−1
�k−1�/2 ��l choices.

• for k even, the corresponding I j sequence must be a sequence where all consecutive differ-
ence are ±1, and one of these differences corresponding to the “marked” term that belongs to
Rj. Taking into account all four possible cases, we obtain a total number of k2�k/2

k �2 for each
pair of matched I j’s, and thus a total number of �k�k/2

k ��l/2 choices.

Note that in either one of the two above-mentioned cases, all choices of sequences are valid,
ecause the indices in each sequence will stay between 1 and n �this is where we need that all
� ij �n− i��.

Thus, the total number of significant terms which correspond to a given ordered l /2-tuplet of
istinct indices �n− i��1, . . . , il/2�k� is

• �l−1�!! �k� k−1
�k−1�/2 ��l if k is odd, and

• �l−1�!! �k�k/2
k ��l if k is even.

From Lemmas 3.9, 3.12, 3.13, and 3.14, we obtain that for any given �, if k is odd,

E���k�n��l� = 
all significant terms

with k�ij�n−i�,"j

1

�n��q��
j=1

l

�A�Jj�E��
j=1

l

��Y�Rj
− E��Y�Rj

��� + o�1� ,

nd so

�E���k�n��l� − �l − 1�!!�k� k − 1

k − 1

2
		

l

1

2kl−l/2 
all significant terms

with k�ij�n−i�,"j

1

�n��l/2�
j=1

l/2 �1 −
ij

n
�k−1�

� �l − 1�!!�k� k − 1

k − 1

2
		

l

1

2kl−l/2 
n−i��i1,. . .,il/2�k

all ij distinct

1

�n��l/2� + o�1�

= �l − 1�!!�k� k − 1

k − 1

2
		

l

1

2kl−l/2��1 + o�1�� + o�1� = �l − 1�!!�k� k − 1

k − 1

2
		

l

1

2kl−l/2��1 + o�1�� .
ince � was arbitrarily small, it follows that if we can compute
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S = �l − 1�!!�k� k − 1

k − 1

2
		

l

1

2kl−l/2 
n−i��i1,. . .,il/2�k

all ij distinct

1

�n��l/2�
j=1

l/2 �1 −
ij

n
�k−1

,

e are done. But, since l and k are fixed, the sum in S is asymptotically the same as the value of
he integral ��1/���0

1�1−x�k−1dx�l/2, hence


n−i��i1,. . .,il/2�k

all ij distinct

1

�n��l/2�
j=1

l/2 �1 −
ij

n
�k−1

�
1

�l/2

1

kl/2 ,

ence

E���k�n��l� − � 2

�
�l/2 �l − 1�!!

2kl kl/2� k − 1

k − 1

2
	

l

= O��� ,

or arbitrarily small �.
Similarly, for k even, we obtain through the same sort of calculation that

E���k�n��l� − � 2

�
�l/2 �l − 1�!!

2�k+1�l kl/2� k

k

2
	

l

= O��� ,

or arbitrarily small �.
Claim 3.2.1 is thus proved. �

Proof of Claim 3.2.2: The proof is based on the same idea as the proof of Claim 3.2.1; the
ame reasoning applies to yield the asymptotical covariance result. �

Remark 3.15: Note that we never actually used the full power of the fact that the entries of the
ridiagonal symmetric matrix Y tend to independent centered normal variables. We only used the
ollowing three properties:

• E�Yi,i�=E�Yi+1,i�=0;
• Var�Yi,i�= 1

2 , while limn→� Var�Yi+1,i�= 1
8 ;

• for any k, there exists a number Mk�0 such that �E��Yi,j�k��	Mk, for all 1� i, j�n �bound-
edness of moments�.

. The �-Laguerre case

Given an integer k, consider the random variable

�k,��n� = tr��L̃�,n
a �k� − E�,a

L �tr��L̃�,n
a �k�� .

The main results of this section are given in the Claims to follow.
Claim 3.15.1: For any fixed integers k and l,

lim
n→�

E���k,��n��l� = �� 2

�
�l/2

�Sum1�k,�� + Sum2�k,���l/2�l − 1�!! if l is even

0, if l is odd,



here
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Sum1�k,�� = 
q=1

2k−1

�− 1�q+1�2k−q

�2k

q
�

2k 
j=q+1

2k
�− 1� j

�2k − 1

j − 1
� 

s1+s2=j

1�s1,s2�k

s1s2� k

s1
�2� k

s2
�2

,

Sum2�k,�� = 
q=0

2k−2

�− 1�q�2k−q

�2k

q
�

2k 
j=q

2k−2
�− 1� j

�2k − 1

j
� 

s1+s2=j

0�s1,s2�k−1

�k − s1��k − s2�� k

s1
�2� k

s2
�2

.

Claim 3.15.2: For any fixed integers k and l,

lim
n→�

Cov�ni,��n�,� j,��n�� =
2

�
�Sum1�i, j,�� + Sum2�i, j,��� ,

here

Sum1�i, j,�� = 
q=1

i+j−1

�− 1�q+1�i+j−q

�i + j

q
�

i + j 
j=q+1

i+j
�− 1� j

�i + j − 1

j − 1
� 

r+s=j

1�r�i

1�s�j

rs� i

r
�2� j

s
�2

,

Sum2�i, j,�� = 
q=0

i+j−2

�− 1�q�i+j−q

�i + j

q
�

i + j 
j=q

i+j−2
�− 1� j

�i + j − 1

j
� 

r+s=j

0�r�i−1

0�s�j−1

�i − r��j − s�� i

r
�2� j

s
�2

.

The method we employ for proving these claims is basically the same as in Sec. III A; the
nly things that change are the details of the sequences we will deal with. In the following we will
oint out where definitions and calculations differ from before, but we will not go over the
eduction arguments again, for the sake of brevity.

We write the scaled matrix B̃�,n
a as

B̃�,n
a = D +

1
��n

Z ,

here D=E�,a
L �B̃�,n

a � is the bidiagonal matrix of mean entries D�i , i�= ��� /�n��E�2a−i�� and

�i+1, i�= ��� /�n��E��n−i���, and Z is the lower bidiagonal matrix of centered variables; we
rop the dependence of D and Z on �, a, and n, for simplicity.

Remark 3.16: From Proposition 2.19, if D= �dij�1�i,j�n, given any ��0, there is an i��N
uch that

��n�/� di,i − �n�/� − i�� � �, and

��n�/� di+1,i − ��n − i��� � � ,

or any i�n− i�.

Here we also used the fact that 2a / �n���1/�.
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Similarly, again from Proposition 2.19, we know that Zi,i→N�0,� /2� and Zi+1,i→N�0,� /2� in
istribution.

As in Sec. III A we start from the expression for tr��BBT�k�, for B a lower bidiagonal matrix:

tr��BBT�k� = 
1�i1,i2,. . .,i2k�n

bi1,i2
bi2,i3

¯ bi2k−1,i2k
bi2k,i1

,

here the sum is taken over sequences �i1 , . . . , i2k� with the property that i2j−1− i2j � �0,1�, for all
� j�k, and i2j − i2j+1� �0,−1�, for all 1� j�k−1, and also

2k− i1� �0,−1�.
Just as before, we will introduce a few notations �we “recycle” some of the notations we used

efore; note that the quantities change�.
Definition 3.17: We denote by Sn,k� �1, . . . ,n�2k the set of sequences of integers i1 , . . . , i2k such

hat i2j−1− i2j � �0,1�, for all 1� j�k, and i2j − i2j+1� �0,−1�, for all 1� j�k−1, and also

2k− i1� �0,−1�. We denote by I an element in Sn,k.
For each such I, we consider all the ways in which we can “break up” Iª �i1 , . . . , i2k� into

verlapping “runs” J and R, i.e.,

J = ��ip0
, . . . ,ip1

�,�ip2
, . . . ,ip3

�,�ip4
, . . . ,ip5

�, . . . ,�ip2q
, . . . ,ip2q+1

�� ,

nd

R = ��ip1
, . . . ,ip2

�,�ip3
, . . . ,ip4

�, . . . ,�ip2q−1
, . . . ,ip2q

�� ,

ith

�i1, . . . ,i2k� = �ip0
, . . . ,ip1

,ip1+1, . . . ,ip2
,ip2+1, . . . ,ip3

, . . . ,ip2q+1
� .

ote that this preserves the requirement that ij − ij+1� �0, �−1�1+j mod 2� for all j.
We allow for the possibility of having empty sequences ip0

, . . . , ip1
in the beginning and/or

p2q
, . . . , ip2q+1

in the end of J.
Definition 3.18: For any I, we introduce the set J=J�I� of pairs �J ,R� corresponding to the

equence I. For a bidiagonal matrix B, we define

�BBT�I = bi1,i2
bi2,i3

¯ bi2k−1,i2k
bi2k,i1

,

�BBT�J = bip0
,ip0

+1 ¯ bip1
−1,ip1

bip2
bp2

+1 ¯ bip3
−1,ip3

¯ bi2q,i2q+1 ¯ bi2q+1−1,i2q+1
,

�BBT�R = bip1
,ip1

+1 ¯ bip2
−1,ip2

bip3
ip3

+1 ¯ bip4
−1,ip4

¯ bi2q−1,i2q−1+1 ¯ bi2q−1,i2q
.

Remark 3.19: Note that any term in tr��L�,n

 �k� will consist of terms in D and terms in Z, with

sequence of runs J recording the former, and a sequence of runs R recording the latter.
Proof of Claim 3.15.2: As before, we note that

�L̃�,n
a �I = ��D +

1
�n�

Z��D +
1

�n�
Z�T�

I
= 

�J,R��J

1

�n��P/2 �D�J�Z�R, �27�

ith P= p2− p1+1+ ¯ + p2q− p2q−1+1.
Similarly with �26�, write

E���k,��n��l� = 
Ij�Sn,k

1�j�l


�Jj,Rj��Jj

1

�n��q��
j=1

l

�D�Jj�E��
j=1

l

��Z�Rj
− E��Z�Rj

��� , �28�
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ith q=q�I1 , . . . ,Il�ª jPj /2.
The rest of the argument follows in the footsteps of the proof of Claim 3.2.1. Just as before,

t can be shown that the only terms with significant contribution are those for which, for each j,
Z�Rj

consists of a single term, and, in addition to that, the set of Rj’s can be split in pairs �Rj1
,Rj2

�
uch that �Z�Rj1

= �Z�Rj2
. This yields

lim
n→�

E���k,��n��2p+1� = 0.

lso, if l is even, the argument that we can consider only the terms for which there is an l /2-tuple
i1 , . . . , il/2� which “avoids” the upper and lower corners of the matrix �like in Lemmas 3.13 and
.14� still applies.

The one way in which this computation differs from the one we made for the proof of Claim
.2.1 lies in the fact that approximating �D�J, given an index i1 present in J, becomes a little
rickier, since the diagonal and off-diagonal elements will approximate, respectively, to
��1/�− i /n and ���1− i /n.

Thus, one more parameter will become important, namely, the number of off-diagonal terms
n each �D�Jj

. Note that in each sequence I we must have an even number 2s of off-diagonal terms
either from D or from Z�, since i1− i2+ ¯ + i2k− i1=0, and this also implies that we have an even
umber 2�k−s� of diagonal terms.

1. Suppose we fix the term in ZRj
to be the diagonal term zi,i; to how many sequences I with

fixed number 2s of off-diagonal terms can this correspond? The answer is 2�k−s� �s
k�2; we have

s
k� ways of picking the off-diagonal terms �because of the alternating property�, and once those are
icked we have 2�k−s� choices for the location of zi,i among the diagonal terms remaining; this
etermines the sequence uniquely.

Each such sequence will have asymptotical weight

�D�J � �k−1/2� 1

�
−

i

n
�k−s−1/2�1 −

i

n
�s

.

2. Suppose we now fix the term in ZRj
to be the off-diagonal term zi+1,i; to how many

equences I with a fixed number 2s of off-diagonal terms can this correspond? The answer is 2s

s
k�2; we have �s

k� ways of picking the off-diagonal terms �because of the alternating property�, and
nce those are picked we have 2s choices for the location of zi+1,i among them.

Each such sequence will have asymptotical weight

�D�J � �k−1/2� 1

�
−

i

n
�k−s�1 −

i

n
�s−1/2

.

inally, using the binomial formula

� 1

�
−

t

n
�s−1

= 
i=0

s−1

�− 1�i�s − 1

i
��−s+1−i� t

n
�i

,

nd after some processing and use of the Riemann-sum and Beta-function formula

lim
n→�

1

n
t=0

n �1 −
t

n
�2k−r−s� t

n
�r+s−1

= �
0

1

�1 − x�2k−r−sxr+s−1dx =
�2k − r − s�!�r + s − 1�!

�2k�!
,

ombined with all the possible pairings of the Rj’s �which yields the necessary �l−1�!!�, we obtain
he result of claim 3.15.1. �

Claim 3.15.2 has a similar proof.
Remark 3.20: As in Sec. III A, we never actually use the full power of the fact that the entries

f the bidiagonal matrix Z tend to independent centered normal variables. We only used the

ollowing three properties:
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• E�Zi,i�=E�Zi+1,i�=0;
• limn→�Var�Zi+1,i�=limn→� Var�Zi,i�= �

2 ;
• for any k, there exists a number Mk�0 such that �E��Zi,j�k��	Mk, for all 1� i , j�n �bound-

edness of moments�.

V. A MORE GENERAL SETTING

We present here a way to generalize the “non-random matrix+small random fluctuation”
ecompositions we have used in Sec. III in order to analyze the deviation and fluctuation from the
symptotical law for the eigenvalue density in the case of the Hermite and Laguerre �-ensembles.

. Tridiagonals

Let f and g be two integrable functions f ,g : �0,1�→R such that the integrals �0
1fa�x�gb�x�dx

xist for all a ,b�N, and such that the quantities

mk ª 
r=0

�k/2� � k

r,r,k − 2r
��

0

1

fk−2r�x�g2r�x�dx �29�

re the moments of a �uniquely determined� distribution �, defined on a compact �a ,b�.
For any n�R, we then consider the n�n matrix FT:

FT =�
f�n

n
� g�n − 1

n
�

g�n − 1

n
� f�n − 1

n
� g�n − 2

n
�

g�n − 2

n
� � �

� � g�1

n
�

g�1

n
� f�1

n
�
	 ,

o the diagonal of FT is an equidiscretization of f with step 1/n �with the exception of the endpoint
t 0, which is missing�, and the off-diagonal is an equidiscretization of g with step 1/n �missing
oth the endpoint at 1 and the one at 0�.

We consider the tridiagonal symmetric matrix

RT =�
xn yn−1

yn−1 xn−1 yn−2

yn−2 � �

� � y2

y2 x2 y1

y1 x1

	 ,

ith the variables xi and yj being mutually independent and satisfying the following three prop-
rties:

• E�xi�=E�yj�=0, for all 1� i�n, 1� j�n−1,
2 2
• Var�xi�=� , for all 1� i�n, and Var�yj�=� , for all 1� j�n−1,
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• for all k there exists a Mk�0 such that �E��xi�k��	Mk and �E��yj�k��	Mk, for all 1� i�n,
1� j�n−1.

ote that FT is non-random matrix, while RT is a random one.
Now we consider the matrix model

MT = FT +
1
�n

RT. �30�

We will compute the asymptotical eigenvalue distribution, the first-order deviation from it,
nd the first-order fluctuation for the random matrix MT.

We need two more definitions.
Definition 4.1: Let P be a path on the lattice Z2, starting at �0,0� and ending at �k ,0�, with up

�x ,y�→ �x+1,y+1��, down ��x ,y�→ �x+1,y−1��, and level ��x ,y�→ �x+1,y�� steps. For each
level j�Z, we define the quantities aj�P� and bj�P�, as follows:

aj�P� ª # of level steps from j to j;

bj�P� ª # of down steps from j to j − 1.

ote that, since the path P ends at �k ,0�, the number of up steps it takes must always equal the
umber of down steps it takes.

Also let

Pr,k ª �paths from �0,0� to �k,0� with exactly r down steps� ,

Pr,k,i ª �paths in Pr,k which descend to, but not below, y = − i� ,

pr,k,i ª �Pr,k,i� ,

Pk ª �r=0
�k/2�Pr,k.

Theorem 4.2: Let MT be a matrix from the ensemble defined by �30�, of size n, with eigen-
alues ��1 , . . . ,�n�, and let k�1 be a positive integer. For all i=1, . . . ,k, let

�i = 
r=0

�i/2� � f�1�i−2rg�1�2r�
j=0

r−1

�r − j�pk,j,r −
1

2
� i

r,r,i − 2r
�� + f�0�i−2rg�0�2r�

j=0

r−1

�r − j�pi,j,r

−
3

2
� i

r,r,i − 2r
��� − 

P�Pr,i


j�Z

jaj�P��
0

1

f i−2r−1�t�g2r�t�f��t�dt

− 2 
P�Pr,i


j�Z

jbj�P��
0

1

f i−2r�t�g2r−1�t�g��t�dt + �2� 
P�Pr,i


j�Z

�aj�P�
2

���
0

1

f i−2r−2�t�g2r�t�dt

+ �2� 
P�Pr,i


j�Z

�2bj�P�
2

���
0

1

f i−2r�t�g2r−2�t�dt .

lso, for any 1� i�k, let

Xi = tr��MT�i� − n�
a

b

xi��x�dx − �i,

�
j=1

n

� j
i − n�

a

b

xi��x�dx − �i
et �Y1 ,Y2 , . . . ,Yk� be a centered multivariate Gaussian with covariance matrix
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Cov�Yi,Yj� = �2 
0�r��i/2�−1

0�s��j/2�−1

�i − 2r��j − 2s�� i

r,r,i − 2r
�� j

s,s, j − 2s
��

0

1

fA�r,s��x�gB�r,s��x�dx

+ �2 
1�r��i/2�
1�s��j/2�

4rs� i

r,r,i − 2r
�� j

s,s, j − 2s
��

0

1

fC�r,s��x�gD�r,s��x�dx ,

here A�r ,s�= i−2r+ j−2s−2, B�r ,s�=2r+2s, C�r ,s�=2r+2s−2, and D�r ,s�= i−2r+ j−2s.
Then, as n→�,

�X1,X2, . . . ,Xk� Þ �Y1,Y2, . . . ,Yk� .

Proof: A technical but simple calculation in the spirit of the ones performed in Sec. III A
hows that mk are the moments of the asymptotic level density, via the expansion of tr�MT

k� as a
um of products of the entries of MT and separation of the zero-order term. Furthermore, exam-
ning the first-order terms in this expansion yields the covariance result, using the same counting
echniques as in Sec. III A.

Computing the first-order deviation from the mean is slightly more complicated, as first-order
erms in the expansion come from four sources; we only enumerate these sources here and indicate
ow they play a part in the total sum.

We begin with expressing

E�tr�MT
k�� = E�tr��FT +

1
�n

RT�k�� = E� 
I�Sn,k

�MT�I� = E� 
I�Sn,k


�J,R��J

1

nP/2 �FT�J�RT�R� ,

here we have used the notation of Sec. III A.
It is easy to prove, like we did in Sec. III A, that the zero-order terms are given by the pairs

J ,R� where R=�, that the terms �RT�R which contain a single variable �at first power� are
nnihilated by the expectation �since all variables in RT are centered�, and that the terms where
RT�R contains three or more variables �counting multiplicities� do not contribute to the first-order
eviation.

To each sequence I �recall that I= �i1 , . . . , ik� with �ij − ij+1�� �0,1� for 1� i�k−1 and
ik− i1�� �0,1�� we associate in a one-to-one fashion, a path from �0,0� to �k ,0� taking steps up,
own, or level �depending on the nest term being larger, smaller, or equal to the current one�. The
ero-order terms sum asymptotically to mk �with the integral being obtained from the Riemann
um and with � k

r,r,k−2r
�= �Pk��.

Three of the first-order term sources come from those terms that have �R�=�, while the fourth
omes from the terms for which �RT�R contains a single variable, at the second power. Note also
hat the terms for which �RT�R contains two different variables will be annihilated by the expec-
ion.

Source 1. In the zero-order count, we ignore the fact that at the “edges,” i.e., upper left
orner, corresponding to i1� �1, . . . , �k /2��, and lower right corner, corresponding to

1� �n− �k /2� , . . . ,n�, not all paths in Pk,r can appear in the sum. This approximation yields a
rst-order term which is asymptotically equal to

S1 ª 
r=0

�k/2� ��f�1�k−2rg�1�2r + f�0�k−2rg�0�2r��
i=0

r−1

�r − i�pk,i,r − � k

r,r,k − 2r
��� .

Source 2. In the zero-order approximation, we approximate the value of the integral

0
1fk−2r�x�g2r�x�dx by the Riemann sum �1/n�i=0

n f�i /n�k−2r g�i /n�2r. Using the Euler-Maclauren

ormula, this yields a first-order term asymptotically equal to
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S2 ª 
r=0

�k/2�
1

2
� k

r,r,k − 2r
��f�1�k−2rg�1�2r − f�0�k−2rg�0�2r� .

Source 3. Finally, in the zero-order approximation, we replace f��i− j� /n� and g��i− j� /n� by
f�i /n�, respectively g�i /n� for each j� �−k , . . . ,k�. A Taylor series approximation and the counting
of terms shows that this way we need to subtract off haveing a first-order term which is asymp-
totically

S3 ª 
r=0

�k/2�


P�Pr,k


j�Z

� jaj�P��
0

1

fk−2r−1�t�g2r�t�f��t�dt − 2jbj�P��
0

1

fk−2r�t�g2r−1�t�g��t�dt� .

Source 4. The last source of first-order terms comes from the terms in which �RT�R contains a
ingle variable at the second power, and its contribution is asymptotically equal to

S4 ª �2� 
P�Pr,k


j�Z

�aj�P�
2

���
0

1

fk−2r−2�t�g2r�t�dt + �2� 
P�Pr,k


j�Z

�2bj�P�
2

���
0

1

fk−2r�t�g2r−2�t�dt .

Finally, adding S1, S2, S3, and S4 yields the statement of Theorem 4.2. �

Remark 4.3: Note that when f�x�=�x /2, g�x�=0 for all x� �0,1�, �2=1/ �2��, and
2=1/ �8��, both the level density asymptotics and the covariance matrix for the fluctuations are

he same as for the �-Hermite ensemble of Sec. III A.
Crucially, the deviation is different. The reason is that in the approximation

E� 1
2�n−i��� � 1

2
��n − i�� ,

he next order term is of order 1/��n− i��, which plays a part in computing the deviation.
We remind the reader that we computed the deviation for the �-Hermite ensembles by using

he palindromic property of expectations of trace, thus reducing the problem to computing the
eviation for the “�=�” case, for which we used Hermite polynomials properties. This allowed us
o find the distribution behind the moments of the deviation.

. Bidiagonals

Let f and g be two integrable functions, f ,g,: �0,1�→R, such that the integrals �0
1fa�x�gb�x�dx

xist for all a ,b�N, and such that the quantities

m̃k ª 
r=0

k �k

r
�2�

0

1

f2r�x�g2�k−r��x�dx

re the moments of a �uniquely determined� distribution � defined on �a ,b�.
For any n�N, we consider the n�n matrix FB, defined in the following:

FB =�
f�n

n
�

g�n − 1

n
� f�n − 1

n
�

� �

g�1

n
� f�1

n
� 	 ,

n other words the diagonal of FB is an equidiscretization of f with step 1/n �with the exception
f the endpoint at 0, which is missing�, and the subdiagonal is an equidiscretization of g with step

/n �missing both the endpoint at 0 and the one at 1�.
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We next consider the random bidiagonal matrix

RB =�
xn

yn−1 xn−1

� �

y1 x1

	 ,

here the variables xi, yj are mutually independent and satisfying the following properties:

• E�xi�=E�yj�=0 for all 1� i�n, 1� j�n−1,
• Var�xi�=�2 for all 1� i�n and Var�yj�=�2, for all 1� j�n−1,
• for all k there is a constant Mk�0 such that �E��xi�k��	Mk and �E��yj�k��	Mk for all 1� i

�n and 1� j�n−1.

Finally, consider the matrix

ML = MBMB
T , �31�

ith

MB = FB +
1
�n

RB.

Note that while FB is a non-random matrix, RB, MB, and ML are random.
We will compute the asymptotical level density and the first-order deviation and fluctuation

or the random matrix ML.
We need to define the following quantities.
Definition 4.4: Let Q be a path on the lattice Z2, starting at �0, 0� and ending at �2k ,0�, with

p ��x ,y�→ �x+1,y+1��, down ��x ,y�→ �x+1,y−1��, and level ��x ,y�→ �x+1,y�� steps. In ad-
dition, we require that the path is alternating, i.e., on each odd-numbered step (first, third, etc.) the
path is only allowed to go down or stay at the same level, whereas on each even-numbered step
(second, fourth, etc.), the path is allowed only to go up or stay at the same level.

For each level j�Z, we define the quantities cj�Q� and dj�Q�, as follows:
cj�Q� ª # of level steps from j to j ,

dj�Q� ª # of down steps from j to j − 1.

ote that, since the path Q ends at �2k ,0�, the number of up steps it takes must always equal the
umber of down steps it takes.

Also let
Qr,k ª �alternating paths from �0,0� to �2k,0� with exactly r down steps� ,

Qr,k,i ª �alternating paths in Qr,k which descends to, but not below, y = − i� ,

qr,k,i ª �Qr,k,i� ,
Qk ª �r=0

k Qr,k.

Theorem 4.5: Let ML be the matrix from the ensembles defined by �31�, of size n, with
igenvalues ��1 , . . . ,�n�, and let k�1 be a positive integer. For all 1� i�k, let

�̃i = 
r=0

i � f�1�2i−2rg�1�2r�
j=0

r−1

�r − i�qi,j,r −
1

2
� i

r
�2� + f�0�2i−2rg�0�2r�

j=0

r−1

�r − j�qi,j,r −
3

2
� i

r,r
�2��

− 
Q�Qr,i


j�Z

jcj�Q��
0

1

f2i−2r−1�t�g2r�t�f��t�dt − 2 
Q�Qr,i


j�Z

jdj�Q��
0

1

f2i−2r�t�g2r−1�t�g��t�dt

+ �2�   �cj�Q�
2

���1

f2i−2r−2�t�g2r�t�dt

Q�Qr,i j�Z 0
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+ �2� 
Q�Qr,i


j�Z

�2dj�Q�
2

���
0

1

f2i−2r�t�g2r−2�t�dt .

lso, for for any 1� i�k, let

Xi = tr��Ml�i� − n�
a

b

xi��x�dx − �̃i,

�
j=1

i

� j
i − n�

a

b

xi��x�dx − �̃i.

Let �Y1 ,Y2 , . . . ,Yk� be a centered multivariate Gaussian with covariance matrix

Cov�xi,xj� = 4�2 
1�r�i

1�s�j

rs� i

r
�2� j

s
�2�

0

1

fA�r,s��x�gB�r,s��x�dx + 4�2 
0�r�i−1

0�s�j−1

�i − r��j − s�

�� i

r
�2� j

s
�2�

0

1

fA�r,s�+2�x�gB�r,s�−2�x�dx ,

ith A�r ,s�=2�r+s−1� and B�r ,s�=2�i+ j−r−s�.
Then, as n→n,

�X1,X2, . . . ,Xk� Þ �Y1,Y2, . . . ,Yk� .

Proof: The proof of Theorem 4.5 is based on the same calculations as Theorem 4.2. The
ovariance can be computed using the same general principles as in Sec. III B, and the examina-
ion of the zero-order and first-order terms in the mean can be done as in Sec. IV B. Moreover, the
ources of the first-order terms are the same as in Sec. IV B; it is only the type of path we are
ounting that changes �from paths of length k to alternating paths of length 2k�. �

Remark 4.6: Note that when f =�1/�−1+x, g=�x, �2=�2=� / �2��, both the level density
symptotics and the covariance matrix for the fluctuations are the same as for the �-Laguerre
nsemble of Sec. III B.

Once again, the deviation is different, for the same reason as in Sec. IV B: in the approxi-
ation E� 1

2�n−i���� 1
2
��n− i�� the next order term is of order 1/��n− i��, which plays a part in

omputing the deviation.
We computed the deviation for the �-Laguerre ensembles by using the palindromic property of

xpectations of trace, thus reducing the problem to computing the deviation for the “�=�” case,
or which we used Laguerre polynomials properties. This allowed us to find the distribution behind
he moments of the deviation.

. HISTOGRAMMING EIGENVALUES EFFICIENTLY

We propose a very effective numerical trick for counting the number of eigenvalues in an
nterval numerically. This method does not require the computation of eigenvalues and requires a
umber of operations that is O�n�, rather than O�n2�, which allows for counts for matrices of a
ery large size. The method is the standard Sturm sequence method for tridiagonal symmetric
atrices. We take as input D, a vector of length n, which is the diagonal of the matrix, and E, a

ector of length n−1, the squares of the elements on the super or subdiagonal. This avoids
nnecessary square roots in the formation of the matrix which can slow down computation.

The algorithm is remarkably simple. For a given value �, which is not an eigenvalue of the

atrix, compute
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ti ª Di − � − Ei−1/ti−1

or t=1 through n with t0=1 and E0=0.
From Sturm’s theorem �see, for example Ref. 17, Theorem 13� we know that the number of

igenvalues of the tridiagonal matrix less than or equal to � is the number of ti’s that are negative,
ith 1� i�n.

To histogram eigenvalues of � ensembles for n’s into the millions or even the billions, one can
imply compute E from a chi-square random number generator �implemented in MATLAB’s Statis-
ics Toolbox as chi2rnd�, and D from a normal random number generator for the �-Hermite
ase �randn� or from another chi-square in the �-Laguerre case.

An interesting special case is the �-Hermite case with �=�, which computes the roots of the
orresponding scaled Hermite polynomial. This may be performed by taking D to be the zero
ector of length n and E= �n−1,n−2, . . . ,2 ,1� / �4n�.

When �=�, there is no fluctuation, but there are deviations for large n. The Sturm theorem
oughly states that the number of eigenvalues in an interval I is linear of the form

�# eigenvalues� = n�area under the semicircle� + DEVIATION, �32�

here

DEVIATION = �1
2�

arcsin�x��
I

�33�

nd we subtract 1 /4 if I contains +1 and 1/4 if I contains −1.
In one numerical experiment �see Fig. 2�, we took n=1 000 000+ i for i=0,1 , . . . ,99 and

omputed the deviation from the mean, i.e., the number of eigenvalues in the interval I minus the
rea

A = n
1

2�
�

I

�1 − x2dx;

e did this arbitrarily for the interval I= �0.2,0.8�. Since this experiment is non-random it is
epeatable without any reference to a random number generator. We found the experimental

IG. 2. �Color online� Calculating the deviation in the interval I= �0.2,0.8� for the �=� Hermite ensemble with sizes
06 :1 : �106+99�; circles represent the eigenvalue count minus the area under the semicircle over I; the solid line is the
heoretical deviation given in �33�.
eviation of 0.1167 which is close to the theoretical deviation of 0.1155, given by �33�.
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Figure 2 plots the results of the experiment. The red line which contains the theoretical value
f the intercept represents the best fit line to the data in the sense that the average vertical
eviation is minimized.

I. REMARKS AND OPEN PROBLEMS

There are many object-counting �combinatorial� approaches to the study of traces of powers of
andom matrices; they depend on the matrix model, and on the polynomial whose trace is being
omputed. For example, the counting approach of Ref. 34 uses full matrix models �all entries are
on-zero variables�, and traces of powers �thus using the monomial basis, like we have done here�,
nd counts paths in the complete graph of size n. By contrast, in Ref. 26, the polynomials used are
he shifted Chebyshev polynomials, and the objects counted are non-crossing annular partitions;
he matrix models are still full. Here, we use tri/bidiagonal matrix models, consider the monomi-
ls, and count essentially paths with three types of steps �up, down, level� in the plane.

Though the objects we count here are simpler than in Ref. 26, our counting technique ex-
resses the results in a less compact form than in Refs. 21 and 26. In the latter two papers, the
ovariance matrix is diagonalized by the choice of polynomial basis, whereas in our paper it is
btained as full because we work with the monomials. There seems to be a trade-off between the
implicity of the object to be counted and the simplicity of the form in which the covariance
atrix is expressed.

We would like to conjecture that by using a hybrid way of counting, for example, using the
ridiagonal matrices and some of the techniques of Ref. 26, both the counting process and the
esulting format of the answer could be simplified. The development of such a technique would be
f great interest.
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A geometrical description of the Heisenberg magnet �HM� equation with classical
spins is given in terms of flows on the quotient space G /H+, where G is an infinite
dimensional Lie group and H+ is a subgroup of G. It is shown that the HM flows
are induced by an action of R2 on G /H+, and that the HM equation can be inte-
grated by solving a Birkhoff factorization problem for G. For the HM flows that are
Laurent polynomials in the spectral variable, we derive an algebraic transformation
between solutions of the nonlinear Schrödinger �NLS� and Heisenberg magnet
equation. The Birkhoff factorization problem for G is treated in terms of the
geometry of the Segal-Wilson Grassmannian Gr�H�. The solution of the problem is
given in terms of a pair of Baker functions for special subspaces in Gr�H�. The
Baker functions are constructed explicitly for subspaces that yield multisoliton
solutions of NLS and HM equations. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2203231�

. INTRODUCTION

From the work of Zakharov-Shabat1 and Sato-Segal-Wilson,2 it is known that completely
ntegrable partial differential equations, such as the Korteweg-de Vries �KdV� or the nonlinear
chrödinger �NLS� equation, are related with loop groups and infinite dimensional Grassmanni-
ns. Our aim in this paper is to describe the Heisenberg magnet �HM� equation,

�S�

�t
= S� �

�2S�

�x2 , S1
2 + S2

2 + S3
2 = 1, �1�

n the context of loop groups, and to explore the construction of its solutions from the point of
iew that is close to that of Segal-Wilson’s work on KdV. The HM equation is a completely
ntegrable system for which integrability was proved in Ref. 3 and the inverse scattering transform
as developed in Ref. 4. Equation �1� is the isotropic case of the Landau-Lifshitz �LL� equation,

�
t=S� �S�xx+S� �JS� , when the interaction constants are given by J=diag�J0 ,J0 ,J0�. The LL model
as studied by a number of authors. In Ref. 5, it was integrated by the Riemann factorization
roblem on a torus. Soliton solutions using the dressing procedure and real algebraic-geometric
olutions using theta functions were found in Refs. 6 and 7. For a historical account of the HM and
L equations, see Ref. 8. For our consideration of particular interest is the work by Carrey et al.,9

n which a spectral curve for the zero-curvature form of the LL hierarchy was introduced. The
uthors show that the LL flows are induced by a group action on an infinite dimensional homo-
eneous space, and that solutions of the LL hierarchy can be constructed by an analog of Birkhoff
actorization for elliptic curves. However, the factorization problem is fairly difficult to solve
xplicitly which poses an obstacle in computing the flows. The motivation for the present work
tems from the fact that the computation of the HM flows is reduced to solving a Birkhoff
actorization for a subgroup of �GL�2,C�, GL�2,C�-valued loops defined on the unit circle. This

as the consequence that the homogeneous space on which the HM flows are defined is closely

47, 063501-1022-2488/2006/47�6�/063501/12/$23.00 © 2006 American Institute of Physics
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elated to the Segal-Wilson Grassmannian. We study solutions of the HM equation in terms of the
eometry of the Grassmannian, and explore its relation to solutions of the focusing NLS equation.
e show that solutions of the NLS equation can be expressed in terms of the Baker functions for

ertain subspaces of the Grassmannian. By using the gauge transformation between the NLS and
M equations, one can associate these subspaces to solutions of the HM equation. We also exhibit

ubspaces that yield multisoliton solutions of NLS and find an algebraic transformation that maps
hese solutions to multisoliton solutions of HM.

The paper is organized as follows. In Sec. II we give a brief account of the group theoretic
pproach to integrable systems. We describe a general construction of partial differential equations
hat can be formulated as the zero-curvature condition on the Lie algebra of a Banach-Lie group
. The solutions of such equations are represented by flows induced by an action of Rn on an

nfinite dimensional homogeneous space. The flows can be integrated by solving a Birkhoff fac-
orization problem for G. In Sec. III we discuss the HM equation within the framework of Sec. II.

e define a loop group G��GL�2,C� and show that the HM flows are induced by an action of
n on the homogeneous space G /H+, where H+ is a subgroup of “positive” loops in G. We also

how that by choosing a different subgroup G+�G the action induces the NLS flows on G /G+ that
re related with the HM flows by a gauge transformation. This transformation is interpreted as a
ap between the quotient spaces � :G /G+→G /H+. We show that if the NLS flows are Laurent

olynomials in the spectral variable z�S1, then � is an algebraic transformation between the NLS
nd HM solutions. In Sec. IV we describe a method for solving the Birkhoff factorization problem
or NLS by modeling the space G /G+ as the Segal-Wilson Grassmannian Gr�H� of the Hilbert
pace H=L2�S1 ,C2�. We associate subspaces in Gr�H� to solutions of NLS and show that the NLS
ows can be computed explicitly in terms of a pair of Baker functions for such subspaces. By
odifying the ideas from Ref. 2 we construct subspaces that yield the multisoliton solutions of
LS. These solutions are then mapped to the multisoliton solutions of HM by the transformation
.

I. GROUP THEORETIC FORMULATION OF INTEGRABLE SYSTEMS

In this section we give a brief account of the group theoretic construction of integrable
ystems that admit the zero-curvature representation. A more detailed discussion of the subject can
e found, for example, in Ref. 10.

Definition 1: Let G be a Banach Lie group. We say that G admits a Birkhoff factorization
enoted �G ,G− ,G+� if G contains closed subgroups G− and G+ such that G−�G+= �e� and the
roduct G−G+ is open in G.

Let g be the Lie algebra of G with the Lie bracket �· , · �. The set G−G+ is open in G if and only
f g splits into a direct sum of subalgebras g=g− � g+, where g± is the Lie algebra of G±. The
irkhoff factorization is modeled to generalize the factorization of GL�n ,C� into upper and lower

riangular matrices to infinite dimensions. Let X1 ,X2 , . . . ,Xn be pairwise commuting elements of

+, �Xi ,Xj�=0, and consider a differentiable action Rn�G→G defined by

t * g = exp��
i=1

n

tiXi	g , �2�

here t= �t1 , t2 , . . . , tn�. If g�G−G+, then for t in a neighborhood of 0�Rn we have t*g
G−G+ because G−G+ is open in G. Hence, t*g can be factored in a unique way as

t * g = g−�t�g+�t� , �3�

here g±�t��G±. We say that the action �2� induces the flow g±�t� on G±. The element Xi�g+ is
alled the infinitesimal generator of the ti flow. Note that the action �2� descends to an action on

he quotient space G /G+ by t* �gG+�= �t*g�G+, thus inducing the flow g−�t�G+ on G /G+.
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Next, we show that the flow g−�t� represents solutions to a hierarchy of partial differential
quations �PDE� in zero-curvature form on the Lie algebra of g+. Let p+ :g→g+ denote the
rthogonal projection. Observe that Eqs. �2� and �3� imply

Ad�g−
−1�Xi = g−

−1�g−

�ti
+

�g+

�ti
g+

−1. �4�

y projecting Eq. �4� onto g+, we obtain the following system of differential equations:

�g+

�ti
= Mi�t�g+�t�, where Mi�t� = p+�Ad�g−

−1�t��Xi�, 1 � i � n . �5�

ince �Xi ,Xj�=0, the ti and tj flows commute so the compatibility condition �i� jg+=� j�ig+ yields
he zero-curvature equation1

�Mi

�tj
−

�Mj

�ti
+ �Mi,Mj� = 0, i, j = 1,2, . . . ,n . �6�

quation �6� represents a hierarchy of partial differential equations for the vector fields Mi�t�. In
oncrete realizations of integrable systems, G is a Banach loop group, and Eq. �6� is equivalent
ith a system of differential equations for matrix elements �u�t�� of Mi and Mj. The zero-

urvature equation is an evolution equation for u�x , t�, where x= t1 is the space variable and t
tk, k�2, is the time variable in the kth equation of the hierarchy. Since u�t� can be calculated
xplicitly from g−�t�, u�t� is represented by the flow g−�t�G+ on the homogeneous space G /G+.
he group theoretic approach to integrable systems can be used to study explicit solutions, sym-
etries, and conservation laws in terms of these flows. Note that the map g�g−�t� is invariant

nder the right multiplication of g by an element of G+. Hence, we may assume that g=g−�0�, so
encodes initial data for Eq. �6�. Clearly,

exp��
i=1

n

�ti Xi	�g−�t�G+� = g−�t + �t�G+,

hich means that the left multiplication of g−�t�G+ by exp��tkXk� pushes u�t� in the tk direction by
he amount �tk. In this sense, the Birkhoff factorization linearizes the equation for u�t�; hence the

ap g−�t��u�t� can be viewed as an abstract version of the inverse scattering transform for Eq.
6�.

II. BIRKHOFF FACTORIZATION FOR THE HEINSENBERG MAGNET EQUATION

In this section we discuss the Heisenberg magnet equation from the geometrical viewpoint
resented in Sec. II. We define a loop group G and show that the flows corresponding to the HM
nd NLS equations are induced by an action of Rn on the homogeneous spaces G /H+ and G /G+,
here H+ and G+ are subgroups of “positive” loops in G. Furthermore, we show that the gauge

ransformation between the NLS and HM equations can be interpreted as a map between the
uotient spaces on which the flows are defined. For loops that are Laurent polynomials in the
pectral parameter z�S1 this leads to an algebraic transformation between solutions of the NLS
nd HM equations.

In order to provide G with a Banach structure we start by introducing the Wiener algebra �see
orfmeister11�

A = 
 f:S1 → C�f�z� = �
n=−�

�

cnzn, �
n=−�

�

�cn� � � � .

his is a Banach algebra relative to the norm f1=�n=−�
� �cn�. The algebra A consists of continu-

1
us functions on S that have an absolutely convergent Fourier series. Let gl�n ,A� denote the
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anach algebra of matrices with elements in A equipped with the commutator bracket and the
orm g  =�i,j gij1. In view of Wiener’s lemma,12 the matrix g�z� is invertible if and only if
et�g�z���0 for all z�S1. Hence, the group of invertible elements GL�n ,A�= �g
gl�n ,A� �det�g�z���0"z�S1� is a Banach-Lie group as an open submanifold of gl�n ,A�. Let 	

e a continuous automorphism of the algebra gl�n ,A�and define the group

G = �g � GL�n,A��	�g� = g� .

is a closed submanifold of gl�n ,A�, and hence a Banach-Lie group with Lie algebra,

g = �g � gl�n,A��	�g� = g� .

e shall use the above construction of loop group G in order to derive the HM and NLS flows. We
emark that in some cases it is more convenient to use an involution 
 on gl�n ,A�, 
2= id, and to

onsider the subgroup G̃= �g�GL�n ,A� �
�g�g= I�. This construction includes twisted loop groups
elated to systems such as the modified KdV equation13 and the Neumann oscillator.14 For more
xamples of loop groups and integrable systems see Ref. 11.

In order to relate the HM equation with the loop group G define the automorphism
:gl�2,A�→gl�2,A� by

	„g�z�… = � 0 1

− 1 0
	g�z̄��0 − 1

1 0
	 .

valuating the condition 	�g�=g, we obtain

G = 
g � GL�2,A��g�z� = � a�z� b�z�

− b�z̄� a�z̄�
	� . �7�

onsider the subgroups

H− = 
h � G�h�z� = �
n=0

�

Anz−n� and H+ = 
h � G�h�z� = I + �
n=1

�

Bnzn� .

learly, H− and H+ are closed subgroups of G and H−�H+= �I�. Furthermore, the Lie algebras of

− and H+ decompose the Lie algebra of G into a direct sum g=h− � h+, hence the set H−H+ is
pen in G. Thus �G ,H− ,H+� is a Birkhoff factorization for G. We will frequently use the Pauli spin
atrices,

	1 = �0 1

1 0
	, 	2 = �0 − i

i 0
	, and 	3 = �1 0

0 − 1
	 .

ow consider the pairwise commuting elements Xk�z�=	zk�h+ where 	= i	3, and define a dif-
erentiable action of Rn on G by

t * h = exp��
k=1

n

tk	zk	h . �8�

or any h�H−H+ we have a unique factorization t*h=h−�t�h+�t� for h�H−H+ when t is near
�Rn because H−H+ is open in G. Let p+ :g→h+ denote the orthogonal projection onto strictly
ositive powers of z, and consider the matrices

Mk�t� = p+�h−
−1�t�	zkh−�t��, 1 � k � n . �9�

bserve that Mk is a matrix polynomial of order k in the parameter z. According to the general
cheme outlined in Sec. II, the matrices �9� satisfy the zero-curvature condition �6�. The system of

quations obtained in this way will be called the HM hierarchy. The following result shows that
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he first equation in the HM hierarchy is Eq. �1�, and that solutions of Eq. �1� are obtained from the
actorization �x , t�*h=h−�x , t�h+�x , t� for some h�H−H+.

Lemma 1: Consider the Birkhoff factorization �x , t�*h=h−�x , t�h+�x , t� for some initial data
�H−H+, and let h−�x , t�=�k=0

� Ak�x , t�z−k. Then S�x , t�=A0
−1�x , t�	3A0�x , t� is the matrix represen-

ation of a solution of the HM equation �1�.
Proof: Substituting h−�x , t�=�k=0

� Ak�x , t�z−k into Eq. �9� we obtain the matrix polynomials,

M1 = �A0
−1	A0�z, M2 = �A0

−1	A0�z2 + �A0
−1	A0,A0

−1A1�z .

e show that

M1

�t
−

M2

�x
+ �M1,M2� = 0 �10�

s the zero-curvature representation of Eq. �1�. Define the matrices S=A0
−1	3A0 and P=A0

−1A1.
ince

A0 = � a0 b0

− b0 a0
	 ,

is a Hermitian matrix of the form

S = � S3 S1 − iS2

S1 + iS2 − S3
	 = �

k=1

3

Sk	k,

or some real-valued functions Sk�x , t�. Moreover, we have S2= I, which implies S1
2+S2

2+S3
2=1.

rom this, it follows that Eq. �10� is equivalent with the system of equations for S and P,

i
�S

�x
+ †S,�S,P�‡ = 0, �11�

�S

�t
−

�

�x
�S,P� = 0. �12�

y substituting the identity [S , �S , P�]=2S�P ,S� into Eq. �11�, we obtain �S , P�= �i /2�SSx. Then
q. �12� yields

�S

�t
=

i

2
� �2S

�x2S + � �S

�x
	2� . �13�

inally, we note that 2�Sx�2=−SxxS−SSxx, thus Eq. �13� becomes

�S

�t
=

1

4i
�S,

�2S

�x2� . �14�

fter dilating the time variable t� t /2 we conclude that Eq. �14� is equivalent with Eq. �1�. �

Thus, solutions of the HM equation are represented by the flows h−�x , t�H+ on the homoge-
eous space G /H+.

Next, we discuss the gauge transformation between the focusing NLS and HM equations in
he context of Birkhoff factorization for G. Recall that the gauge transformation �g :g�g→g
g by an element g�x , t��G is defined by
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�g�U,V� = �Ad�g�U +
�g

�x
g−1,Ad�g�V +

�g

�t
g−1	 .

his transformation preserves the zero-curvature condition, and two systems of equations are said
o be gauge equivalent if their zero-curvature representations are related by a gauge transforma-
ion.

It is well known that Eq. �1� is gauge equivalent with the focusing NLS equation,

i
�u

�t
−

1

2

�2u

�x2 − 4u�u�2 = 0, �15�

here u�x , t� is a complex valued function.3 We show that on the group level the gauge transfor-
ation NLS�HM can be interpreted as a map between the quotient spaces � :G /G+→G /H+,
here �G ,G− ,G+� is the Birkhoff factorization for G defined by the subgroups

G− = 
g � G�g�z� = I + �
n=1

�

Anz−n�, G+ = 
g � G�g�z� = �
n=0

�

Bnzn� . �16�

learly, g=g− � g+ where g± is the Lie algebra of G±. One can think of �G ,H− ,H+� and
G ,G− ,G+� as two factorizations that differ in the normalization conditions: h+�0�= I and g−���
I.

The NLS equation can be written in zero-curvature form as follows. Suppose that the action
f Rn on G is given by �8�, and consider now the factorization t*g=g−�t�g+�t� for some g
G−G+. Let q+ :g→g+ denote the orthogonal projection onto non-negative powers of z. Then the
atrix polynomials defined by

M̂k�t� = q+„g−
−1�t�	zkg−�t�…, k = 1,2, . . . ,n , �17�

atisfy the system of equations �6�, which is called the NLS hierarchy. It is not difficult to see that
q. �15� is the first equation in the hierarchy. Denoting g−�x , t�= I+�n=1

� An�x , t�z−n and evaluating
q. �17�, we obtain

M̂1 = 	z + �	,A1�, M̂2 = 	z2 + �	,A1�z + �	,A2� − A1�	,A1� .

ince

An = � an bn

− b̄n ān
	 ,

he matrices M̂1 and M̂2 have the form

M̂1 = 	z + 2� 0 ib1

− ib1 0
	, M̂2 = 	z2 + 2� 0 ib1

− ib1 0
	z + 2�− i�b1�2 v

− v i�b1�2 	 , �18�

here v= i�b2−a1b1�. It is easily verified that the zero-curvature condition �6� for M̂1 and M̂2 is
quivalent with Eq. �15� for u=b1. The NLS equation can also be obtained by a reduction as a
pecial case of the AKNS hierarchy.15

We have seen that the loop group G defined by Eq. �7� admits two factorizations: �G ,G−G+�
nd �G ,H−H+�. In fact, the sets G−G+ and H−H+ are equal, so we may denote them by K. Since
ach k�K can be factored uniquely as k=g−g+=h−h+ we can define a map � :K /G+→K /H+ by
�g−G+�=h−H+. The elements h± are related to g± simply by h−=g−B0 and h+=B0

−1g+, where B0 is
he zeroth-order Fourier coefficient of g+. Note that if k�x , t�= �x , t�*g is the flow in G based at
�0,0�=g�G−, then the cosets k�x , t�G+ and k�x , t�H+ represent the NLS and HM flows, respec-

ively. Thus, on the group level � maps the NLS solutions to HM solutions. Moreover, since g+
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B0h+ and the vector fields �M1 ,M2� satisfy Eq. �5�, we conclude that �M1 ,M2� and �M̂1 ,M̂2� are

elated by �M1 ,M2�=��M̂1 ,M̂2�, where � is the gauge transformation by B0
−1.Thus, we have the

ollowing.

Lemma 2: Let K̃ be the set of flows ��x , t�*g �g�G−�. Then the diagram

g+ � g+ →
�

h+ � h+

�̂↑ ↑�

K̃/G+ →
�

K̃/H+

s commutative, where the maps �̂�g−G+�= �M̂1 ,M̂2� and ��h−H+�= �M1 ,M2� are defined in terms
f Eqs. �17� and �9�, respectively, and � is the gauge transformation by B0

−1.
If g−�x , t� is a Laurent polynomial in the spectral parameter z�S1, then � leads to a simple

lgebraic transformation between the NLS and HM solutions. Suppose for the moment that g−�x , t�
as a pole of order N at z=0, so that

�x,t� * g = �I + �
k=1

N

Ak�x,t�z−k	��
k=0

�

Bk�x,t�zk	 , �19�

here g= I+�k=1
N Ak�0,0�z−k. Comparing the coefficients with z−N on both sides of Eq. �19�, we

onclude that B0�x , t�=AN
−1�x , t�AN�0,0�. The solution of the HM equation is thus given by

S�x,t� = B0
−1�x,t�	3B0�x,t�

=AN
−1�0,0�AN�x,t�	3AN

−1�x,t�AN�0,0� .

enote

AN�x,t� = � a b

− b̄ ā
	

nd let a�0,0�=a0, b�0,0�=b0. A straightforward computation shows that the elements of S can be
xpressed as

S3 =
��a�2 − �b�2���a0�2 − �b0�2� + 4 Re�aba0b0�

��a�2 − �b�2���a0�2 − �b0�2�
,

S1 + iS2 =
2���a�2 − �b�2�a0b̄0 + abb̄0

2 − aba0
2�

��a�2 − �b�2���a0�2 − �b0�2�
. �20�

ence, if g−�x , t� has a pole at z=0, then the transformation �20� completely determines the vector
� = �S1 ,S2 ,S3� from the lowest order Fourier coefficient of the NLS flow g−�x , t�. We will show in
he next section that factorization �19� leads to multisoliton solutions of NLS. In this case the

ransformation � : K̃ /G+→ K̃ /H+ maps multisoliton solutions of NLS to multisoliton solutions of
M. Finally, we remark that the correct choice of the loop group is important for obtaining the
esired classes of solutions. For example, the NLS equation can also be derived from the group
�SL�2,A�, but the subgroup �G�SL�2,A��− no longer contains Laurent polynomials, and

ence no soliton solutions.

As an example of transformation �20� consider the initial data
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g�z� = I + � 0 − i

− i 0
	z−1.

he time evolution of g�z� determined by Eq. �19� is given by

g−�x,t� = I + � − i tanh�2x� − ie−i2t sech�2x�

− iei22t sech�2x� i tanh�2x�
	z−1.

hen the transformation �20� yields

S1�x,t� = 2 cos�22t�tanh�2x�sech�2x� ,

S2�x,t� = − 2 sin�22t�tanh�2x�sech�2x� ,

S3�x,t� = 2 sech2�2x� − 1.

his is a solution of the HM equation that represents the magnetization vector S� of unit length that
otates about the z axis.

V. EXPLICIT SOLUTION OF THE BIRKHOFF FACTORIZATION PROBLEM

In this section we describe a geometrical solution of the Birkhoff factorization problem for the
ocusing NLS equation in terms of an infinite dimensional Grassmannian Gr�H�. Our approach is
ased on the ideas of Segal and Wilson2 who obtained solutions of the KdV equation in terms of
he Baker function for special subspaces in Gr�H�. By a similar procedure we construct a pair of
aker functions that yield solutions of the NLS equation. The geometrical approach to the NLS
quation has been studied by several authors. Guil and Mañas15 have used the Grassmannian
odel in the study of self-similar solutions of the AKNS hierarchy. As a byproduct, they charac-

erized points in the Segal-Wilson Grassmannian that correspond to Nakamura-Hirota rational
olutions of the nonfocusing NLS equation.16 In Ref. 17 Previato obtained solutions of the focus-
ng and nonfocusing NLS in terms of theta functions for the corresponding hyperelliptic curve.
lthough the Grassmannian model for integrable systems has been well studied, the solution of

he factorization problem for NLS given here does not seem to appear in the literature.
In the following we give a brief account of the Segal-Wilson Grassmannian of the Hilbert

pace H=L2�S1 ,C2�. More details can be found in Refs. 2 and 18. Let H be the Hilbert space of
quare integrable functions on S1 with values in C2, f�z�=�k�Zakz

k, ak�C2 and �z � =1. The space
has a natural decomposition H=H+ � H− into closed subspaces H+= ��k�0akz

k� and H−

��k�0akz
k�. The Grassmannian Gr�H� is the set of closed subspaces W�H such that the orthogo-

al projection p+ :W→H+ is a Fredholm operator and p− :W→H− is a Hilbert-Schmidt operator. It
s not difficult to see that Gr�H� is a Hilbert manifold modeled on the space of Hilbert-Schmidt
perators C2�H+ ,H−�. A chart around W�Gr�H� is the set UW= �G�T� �T�C2�W ,W���, where
�T�= �x+Tx �x�W� is the graph of T, together with the map UW→C2�W ,W�� defined by
�T��T. Since W and W� are both infinite dimensional, the Hilbert spaces C2�W ,W�� and

2�H+ ,H−� are isomorphic.
Recall that the index of a Fredholm operator T is defined by ind�T�=dim(ker�T�)

dim(coker�T�). If W�Gr�H�, then the index of p+ :W→H+ is called the virtual dimension of W,
.dim�W�. The Grassmannian is not connected since the connected components are indexed by

he integers v .dim�W�. Only the component Gr0�H�= �W�Gr�H� �v .dim�W�=0� will play a role
n applications to NLS. The set Gr0�H��UH+

is sometimes called the “big cell,” and has the
ollowing important property.

Lemma 3: �i� W�Gr0�H��UH+
if and only if p+ :W→H+ is an isomorphism. �ii� If W

Gr0�H�, then W�UH+
, if and only if W�H−= �0�.
Proof: �i� Suppose that W�Gr0�H��UH+
. Then p+ :W→H+ has index zero and the subspace
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is of the form W= �x+Tx �x�H+� for some Hilbert-Schmidt operator T :H+→H−. If
p+�x+Tx�=0, then clearly x=0; hence p+ is injective. Furthermore, ind�p+�=0 implies that
im(coker�p+�)=0. Thus, p+ is both injective and surjective, and hence an isomorphism.

Now suppose that p+ :W→H+ is an isomorphism. Then clearly ind�p+�=0, and hence W
Gr0�H�. Since the projection p− :W→H− is a Hilbert-Schmidt operator, so is the product T
p−p+

−1 :H+→H−. We note that W= �x+Tx �x�H+�, which proves that W�UH+
. Thus, W

Gr0�H��UH+
. Part �ii� is proved in a similar fashion. �

The full group GL�H� of bounded invertible operators with bounded inverse does not act on
r�H�, as it does not preserve the properties of the projections p± :W→H±. However, the restricted
eneral linear group GLres�H� acts on Gr�H�. GLres�H� is the subgroup of GL�H� consisting of

perators whose block form �a b

c d � with respect to the decomposition H=H+ � H− has off-

iagonal terms Hilbert-Schmidt: b�C2�H− ,H+� and c�C2�H+ ,H−�. The diagonal terms are then
utomatically Fredholm. The action of GLres�H� is transitive since the orbit through H+ is Gr�H�.

We shall be interested in the group �+ of holomorphic maps on the unit disk g :D0

GL�2,C�, D0= ��z � �1�. The elements of �+ can be viewed as multiplication operators on H. A
omputation involving the expansion of g�z� into the Taylor series around z=0 shows that if g�z�
s holomorphic, then the corresponding multiplication operator Mg :H+ � H−→H+ � H− has the

lock form Mg= �a b

0 d �, where a and d are invertible and b is Hilbert-Schmidt. Hence Mg

GLres�H�, and so �+ acts on Gr�H�. In fact, since a is invertible, �+ acts on the connected
omponent Gr0�H�. By a similar argument, it can be shown that the group �− of based holomor-
hic maps g :D�→GL�2,C�, D�= ��z � �1�, where g���= I also acts on Gr0�H�. Due to the ana-
ytical structure of the group G introduced in Sec. III, we have G±��± �see Eq. �16��. In particu-
ar, the loop exp��k=1

n tk	zk���+ acts on Gr0�H�. For any W�Gr0�H��UH+
, define the subspace

W�t� = exp��
k=1

n

tk	zk	W .

learly, W�t��Gr0�H��UH+
when t is near 0�Rn because UH+

is open and �+ acts on Gr0�H�.
ence, by Lemma 3�i� the orthogonal projection p+ :W�t�→H+ is an isomorphism.

Definition 2: Let W�Gr0�H��UH+
and consider the isomorphism p+ :W�t�→H+. The Baker

unctions for the subspace W are the unique elements �1�t ,z�, �2�t ,z��W such that

exp��
k=1

n

tk	zk	�1�t,z� = p+
−1�e1�, exp��

k=1

n

tk	zk	�2�t,z� = p+
−1�e2� , �21�

here e1= �1

0 �, e2= �0

1 �.
In the following we show that the flows of the NLS hierarchy can be expressed in terms of the

aker functions �1 and �2. For certain subspaces W this yields the multisoliton solutions of NLS.
et g�G− and consider the subspace gH+�Gr�H�. Suppose for the moment that gH+ contains a
ubspace W such that W�Gr0�H��UH+

, and let �1, �2 be the Baker functions for W. The
xistence of such subspaces will be shown shortly. Since W�gH+ we have �1=gf1, �2=gf2 for
ome f1 , f2�H+, and

exp��
k=1

n

tk	zk	gf1 = p+
−1�e1�, exp��

k=1

n

tk	zk	gf2 = p+
−1�e2� .
his can be combined into the matrix equation
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exp��
k=1

n

tk	zk	g�f1�f2� = �p+
−1�e1��p+

−1�e2�� .

e note that the matrices involved here have the form

�f1�f2� = �
k=0

�

Bkz
k, �p+

−1�e1��p+
−1�e2�� = I + �

k=1

�

Akz
−k.

f the matrix �f1 � f2� is invertible, then by uniqueness of the Birkhoff factorization �G ,G− ,G+�, we
ave

exp��
k=1

n

tk	zk	g = g−�t�g+�t�, g± � G±, �22�

here g+�t�= �f1 � f2�−1 and g−�t�= �p+
−1�e1� � p+

−1�e2��, which is precisely the factorization problem
or NLS. The importance of the last relation is that in view of Eq. �21� the flow g−�t� can be
xpressed in terms of the Baker functions:

g−�t� = exp��
k=1

n

tk	zk	��1��2� . �23�

his result can be formulated as the following theorem.
Theorem 1: Let g�G− and let W be a subspace of gH+�Gr�H� such that W

Gr0�H��UH+
. Then the flow g−�t� given by Eq. �23� is the unique solution of the NLS factor-

zation problem �22�, where �1 and �2 are the Baker functions for W.
Example 1 (one-soliton solution): Perhaps the simplest interesting example of a subspace in

r0�H��UH+
is the one which yields the one-soliton solution of NLS. Its construction resembles

he one-soliton space for the KdV equation given in Ref. 2. Consider the points in the unit disk
� �pi � �1, i=1,2, and the parameters � ,��C�, ���. Define W1 to be the L2 closure of the

pace of functions f :S1→C2, f = �f1

f2
�, where f1 and f2 are holomorphic in D0, except possibly for

simple pole at z=0; and that satisfy the condition

f1�p1� = �f2�p1�, f1�p2� = �f2�p2� . �24�

t is straightforward to verify that W1�Gr0�H� and W1�H−= �0�. It follows from Lemma 3�ii�
hat W1�Gr0�H��UH+

, so p+ :W1�t�→H+ is an isomorphism. In order to obtain the Baker func-
ions for the NLS equation let us write x= t1, t= t2, and suppress tk for k�3. Denote

p+
−1�e1� = �az−1 + 1

cz−1 	, p+
−1�e2� = � bz−1

dz−1 + 1
	 .

hen the Baker functions for W1 have the form

�1�x,t,z� = exp�− x	z − t	z2�p+
−1�e1� = ��1 + az−1�e−ixz−itz2

cz−1eixz+itz2 	 ,

�2�x,t,z� = exp�− x	z − t	z2�p+
−1�e2� = � bz−1e−ixz−itz2

�1 + dz−1�eixz+itz2	 .
ince �1 and �2 satisfy the condition �24�, the coefficients a ,b ,c ,d are given by
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a =
p1�ei�2 − p2�ei�1

�ei�1 − �ei�2
, b = −

���p1 − p2�
�e−i�2 − �e−i�1

, �25�

c =
p1 − p2

�ei�1 − �ei�2
, d = −

p1�e−i�2 − p2�e−i�1

�e−i�2 − �e−i�1
, �26�

here �k=2�xpk+ tpk
2�, k=1,2. In view of the relation

g−�x,t� = exp�x	z + t	z2���1��2� = I + �a b

c d
	z−1,

or the Baker functions to generate solutions of the NLS equation we must have g−�x , t��G−, i.e.,

he matrix coefficients must satisfy c=−b̄ and d= ā. These conditions are satisfied, provided p1

p̄2 and ��̄=−1. Let us write p1=+ i� and �=e−2�x0ei2� for some � ,x0�R. Then it follows
rom Eq. �25� that a and b have the particularly simple form

a�x,t� = −  + i� tanh�2��x + t + x0�� ,

b�x,t� = i� exp�i2„x + �2 − �2�t + �…�sech�2��x + t + x0�� .

ccording to the discussion in Sec. III �see Eq. �18�� the coefficient b�x , t� is a solution of Eq.
15�, which is the well-known one-soliton solution of NLS.

Example 2 (n-soliton solution): The n-soliton solution is obtained by a simple generalization
f the above construction. Consider n points in the unit disk 0� �pi � �1, 1� i�n, and n param-
ters �1 ,�2 , . . . ,�n�C�. Let Wn the L2 closure of the space of functions f :S1→C2, where f1 and

f2 are holomorphic in D0 except possibly for a pole of order n at z=0, and that satisfy the 2n
onditions

f1�pj� = � j f2�pj�, f1�p̄j� = � j f2�p̄j�, j = 1,2, . . . ,n , �27�

here � j�̄ j =−1. The Baker functions for Wn are given by

�1�x,t,z� =��1 + �k=1

n
akz

−k�e−i�xz+tz2�

��k=1

n
ckz

−k�ei�xz+tz2� 	 ,

�2�x,t,z� =� ��k=1

n
bkz

−k�e−i�xz+tz2�

�1 + �k=1

n
dkz

−k�ei�xz+tz2� 	 .

onditions �27� yield the following system of equations for ak ,bk ,ck ,dk:

�
k=1

n �� je
i�j

1

pj
kck −

1

pj
kak	 = 1, �

k=1

n �� je
i�̄j

1

p̄j
kck −

1

p̄j
kak	 = 1, �28�

�
k=1

n � 1

� je
i�j

1

pj
kbk −

1

pj
kdk	 = 1, �

k=1

n � 1

� je
i�̄j

1

p̄j
kbk −

1

p̄j
kdk	 = 1, �29�

here � j =2�xpj + tpj
2�, 1� j�n. The consistency condition � j�̄ j =−1 ensures that ck=−b̄k and dk

āk. The n-soliton solution of NLS is then given as the quotient of the determinants b1=�1 /�,

here
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� = �
j=1

n
1

� j� j�
q1e−i�1 q1

2e−i�1
¯ q1

ne−i�1 − �1q1 − �1q1
2

¯ − �1q1
n

� �
qne−i�n qn

2e−i�n
¯ qn

ne−i�n − �nqn − �nqn
2

¯ − �nqn
n

q̄1e−i�̄1 q̄1
2e−i�̄1 ¯ q̄1

ne−i�̄1 − �1q̄1 − �1q̄1
2

¯ − �1q̄1
n

� �

q̄ne−i�̄n q̄n
2e−i�̄n ¯ q̄n

ne−i�̄n − �nq̄n − �q̄n
2

¯ − �nq̄n
n

� ,

j =1/ pj, and �1 is obtained by replacing the first column of � by the vector ��1 . . .�n�1 . . .�n�T.
he explicit form of b1 becomes fairly complicated as n increases. To conclude our discussion we

emark that by solving system �28� and �29� for the lowest order coefficients an and bn, and
pplying the transformation �20� to an and bn we obtain the n-soliton solution of the HM equation.
ence, we can associate solutions of the HM equation to the subspaces Wn�Gr�H� via the
appings Wn� �an ,bn�� �S1 ,S2 ,S3�.
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The necessary and sufficient conditions are derived for the reducibility of a hydro-
dynamic type system into a block-diagonal form with k mutually interacting blocks.
Applications to the perturbations of the Benney system and to the Hamiltonian
systems of partial differential equations are presented. The algebraic identities
connecting the Nijenhuis tensors NB�A��u ,v� and NA�u ,v� and Haantjes tensors
HB�A��u ,v� and HA�u ,v� are discovered. © 2006 American Institute of Physics.
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. INTRODUCTION

As is known, the block diagonalizability of a hydrodynamic type system

�u�

�t
= �

j=1

n

Am
� �u1, . . . ,un�

�um

�x
�1.1�

rastically effects its properties and the computer time required for its numerical investigation.
ntil now no necessary and sufficient conditions for the block diagonalizability were known. The
ourant problem on the block diagonalizability1 is formulated as follows.

When a given system (1.1) can be transformed in some coordinates v1�u� , . . . ,vn�u� into
lock-diagonal form

�vmj+i

�t
= �

�=1

nj

Ãmj+�
mj+i �v1, . . . ,vn�

�vmj+�

�x
�1.2�

ith nj �nj mutually interacting blocks where n1+ ¯ +nk=n? Here j=1, . . . ,k, i=1, . . . ,nj and

j =n1+ ¯ +nj−1; u1 , . . . ,un and v1�u� , . . . ,vn�u� form systems of local coordinates in the Euclid-
an space Rn. The first result concerning the block-diagonalizability problem follows from the
aantjes theorem2 on the Xm-forming sets of eigenvalues of a �1,1�-tensors Aj

i�u1 , . . . ,un�. The
heorem is proved in Ref. 2 and is equivalent to the following statement.

The necessary and sufficient condition for the complete diagonalizability of the system (1.1)
ith real and distinct eigenvalues of Aj

i�u� is the vanishing of the corresponding Haantjes
1,2)-tensor2

HAjk
i = A�

i A�
�Njk

� + N��
i Aj

�Ak
� − A�

i N�k
� Aj

� − A�
i Nj�

� Ak
� �1.3�

hat is defined in terms of the Nijenhuis tensor3

NAik
j = Ai

��Ak
j

�u� − Ak
� �Ai

j

�u� + A�
j �Ai

�

�uk − A�
j �Ak

�

�ui . �1.4�

he more general case of complex eigenvalues of Aj
i�u� was not studied in Refs. 2 and 3. It is

vident however that for a generic system of pde’s �1.1� some of the eigenvalues of Aj
i�u� are
omplex.

47, 063502-1022-2488/2006/47�6�/063502/9/$23.00 © 2006 American Institute of Physics

                                                                                                            

http://dx.doi.org/10.1063/1.2206692
http://dx.doi.org/10.1063/1.2206692
http://dx.doi.org/10.1063/1.2206692


b
a
B
i
t

g
t
o
p
T
s
s
e

n
�

I

w
t
i

�

a

I
a
p
i

c
fi

w

a

063502-2 Oleg I. Bogoyavlenskij J. Math. Phys. 47, 063502 �2006�

                        
In this paper we prove Theorem 1 that gives the necessary and sufficient conditions for the
lock diagonalizability of systems �1.1�. The proof of Theorem 1 presented in Sec. III is based on
new algebraic identity that connects the Nijenhuis tensor NB�A��u ,v� with the NA�u ,v� where
�A� is an arbitrary polynomial in A. The identity and its analog for the Haantjes tensor are proved

n Sec. II. In Sec. IV we demonstrate applications to the perturbations of the Benney system4 and
o the Hamiltonian systems of partial differential equations in R3.

The Nijenhuis tensor appears in many problems of mathematical physics and differential
eometry, mostly as the vanishing condition NA�u ,v�=0: The Gelfand-Dorfman-Magri-Morosi
heorem5,6 states that the two Poisson structures P1 and P2 are compatible in Magri’s sense7 if and
nly if NA�u ,v�=0 where A= P1P2

−1. The Newlander-Nirenberg theorem8 states that a quasicom-
lex structure A�x�, A2�x�=−1, is complex if and only if the Nijenhuis tensor NA�u ,v� vanishes.
he condition NA�u ,v�=0 is used in Refs. 6, 9, and 10 as the definition of the Poisson-Nijenhuis
tructures and in Ref. 11 as the definition of the Nijenhuis G-manifolds with applications to the KP
ystems. The condition NA�u ,v�=0 is used in Refs. 12 and 13 as a sufficient condition for the
xistence of conservation laws for systems of pde’s �1.1�.

In Refs. 14 and 15 we applied the nonzero Nijenhuis and Haantjes tensors to study the
ecessary criteria for the existence of the Hamiltonian and bi-Hamiltonian structures for systems
1.1�.

I. ALGEBRAIC IDENTITIES FOR THE NIJENHUIS AND HAANTJES TENSORS

�i� The Nijenhuis tensor is defined by the formula3

NA�u,v� = A2�ũ, ṽ� + �Aũ,Aṽ� − A�Aũ, ṽ� − A�ũ,Aṽ� , �2.1�

here u and v are tangent vectors at a point x�Rn, ũ and ṽ are arbitrary vector fields extending
he vectors u and v, and �ũ , ṽ� is the commutator of the vector fields. The expression �2.1� is
ndependent of the extensions ũ and ṽ.

The Haantjes �1,2�-tensor HA�u ,v� �Ref. 2� is defined in terms of the Nijenhuis tensor NA�u ,v�
2.1�,

HA�u,v� = A2N�u,v� + N�Au,Av� − AN�Au,v� − AN�u,Av� �2.2�

nd has components �1.3�.
Let B�A� be any polynomial in A with the variable coefficients

B�A� = �
m=0

k

bm�x�Am�x� . �2.3�

n this section we derive the formulas that connect the Nijenhuis tensors NB�A��u ,v� and NA�u ,v�
nd the Haantjes tensors HB�A��u ,v� and HA�u ,v�. The formulas give a complete solution to the
roblem on the interconnections between the tensors NB�A��u ,v� and NA�u ,v� raised by Nijenhuis
n Ref. 3.

�ii� The (1,2)-tensors representation of the ring of polynomials P�z ,� ,��. Let us consider the
ommutative ring P3= P�z ,� ,�� of polynomials in three independent variables z ,� ,� with coef-
cients depending on a point x of a manifold Mn. Elements of the ring P3 are polynomials

S�z,�,�� = �
i,j,k

N

aijk�x�zi� j�k, x � Mn, �2.4�

here coefficients aijk�x� are arbitrary smooth functions on Mn.
We introduce a representation T of the ring P3 in the linear space of �1,2�-tensors V�u ,v� on

Mn. The representation depends on an arbitrary �1,1�-tensor A�x� on Mn and is defined for an

rbitrary polynomial S�z ,� ,�� �2.4� by the formula
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�TSV��u,v� = �
i,j,k

N

aijk�x�AiV�Aju,Akv� . �2.5�

ere the action of � and � is associated, respectively, with the first and the second entries of
�u ,v�; the action of z is associated with the value of V. The representation �2.5� possesses the
tandard properties

TS1+S2
= TS1

+ TS2
, TS1·S2

= TS2·S1
= TS1

· TS2
. �2.6�

he first identity �2.6� is obvious; the second one is evidently true for any monomials S1

a�x�zi� j�k and S2=b�x�zp�q�r; hence the general case follows by the bilinearity.
�iii� In terms of the representation TS �2.5�, formula �2.2� takes the form

HA�u,v� = TDNA�u,v� , �2.7�

here D is the polynomial D�z ,� ,��= �z−���z−��. It is evident that any �1,2�-tensor W�u ,v� of
he form

W�u,v� = �
m=0

N

�u�gm�x��Amv + v�hm�x��Amu�

s annihilated by the operator TD,

TDW�u,v� = 0. �2.8�

Let B�z� be a polynomial, B�z�=�m=0
k bm�x�zm. We will use the well-known Bezout identity

B�z� − B��� = �z − ��QB�z,�� , �2.9�

here QB�z ,�� is the symmetric polynomial

QB�z,�� = �
m=1

k

bm�x� �
p+q=m−1

zp�q. �2.10�

Remark 1: All tensors U�A� considered in this paper have the form

U�Aj
i,

�kAj
i�x�

�x�1
¯ �x�k

�
nd are polynomials with respect to their arguments. Therefore the tensors U�A� can be continued
nto the complexifications of the tangent bundle T�Mn� and the cotangent bundle T*�Mn�. We will
ean this continuation when the �1,1�-tensor Aj

i�x� has complex eigenvalues and eigenvectors.
Remark 2: Let a �k , l�-tensor U�A� analytically depend on the entries of the �1,1�-tensor Aj

i�x�
nd their partial derivatives up to a finite order N. If tensor U�A� is equal to zero for all �1,1�
ensors Aj

i�x� with distinct �complex� eigenvalues then U�A��0 for any �1,1�-tensor Aj
i�x�. This

vidently follows by continuation from the nondegenerate case Aj
i�x� with distinct eigenvalues.

Let �1�x� , . . . ,�k�x� be the eigenvalues of an operator A�x�, corresponding to the eigenvectors

1�x� , . . . ,ek�x�, k�n. The operator B�A�x�� �2.3� has the same eigenvectors ei�x� with the eigen-
alues B��i�x��.

For the Nijenhuis �1,2�-tensor NB�A��u ,v� �2.1�, the formula holds

NB�A��ei,ej� = �B�A� − B��i���B�A� − B�� j���ei,ej� + �B��i� − B�� j���ei�B�� j��ej + ej�B��i��ei� .

�2.11�
3
ndeed, formula �2.11� follows from the Nijenhuis formula
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NA�ei,ej� = �A − �i��A − � j��ei,ej� + ��i − � j��ei�� j�ej + ej��i�ei� . �2.12�

Lemma 1: For any polynomial B�A� �2.3�, the Nijenhuis tensor NB�u ,v� is connected with

A�u ,v� by the formula

NB�u,v� = �
m,l=1

k

bmbl �
p�m,q�l

Am+l−p−q−2NA�Apu,Aqv�

+ �
m=0

k

�B�A�u�bm�Amv − B�A�v�bm�Amu − u�bm�B�A�Amv + v�bm�B�A�Amu� .

�2.13�

Proof: We first assume that the operator A�x� has distinct eigenvalues �1�x� , . . . ,�n�x�. Using
he Bezout identity �2.9�, we find

QB��,�� =
�B���

��
,

�2.14�

e�B���� = �
m=0

k

�bme��m� + e�bm��m� = QB��,��e��� + �
m=0

k

e�bm��m,

here e is an arbitrary tangent vector, e�Tx�Mn�. In view of the identities �2.9� and �2.14�,
ormula �2.11� takes the form

NB�ei,ej� = QB�A,�i�QB�A,� j��A − �i��A − � j��ei,ej�

+ QB��i,� j���i − � j��QB�� j,� j�ei�� j�ej + QB��i,�i�ej��i�ei�

+ �
m=0

k

�B��i� − B�� j���ei�bm�� j
mej + ej�bm��i

mei� .

pplying the Nijenhuis formula �2.12�, we obtain

NB�ei,ej� = QB�A,�i�QB�A,� j�NA�ei,ej� + �
m=0

k

�B�A�ei�bm�Amej − B�A�ej�bm�Amei − ei�bm�B�A�Amej

+ ej�bm�B�A�Amei� . �2.15�

n view of �2.5�, the first term in �2.15� has the form

QB�A,�i�QB�A,� j�NA�ei,ej� = TQB�z,��QB�z,��NA�ei,ej� .

hus we get

NB�u,v� = TQB�z,��QB�z,��NA�u,v�

+ �
m=0

k

�B�A�u�bm�Amv − B�A�v�bm�Amu − u�bm�B�A�Amv + v�bm�B�A�Amu� ,

�2.16�

here u=ei and v=ej. Hence formula �2.16� follows by the bilinearity for arbitrary vectors u and
, for the case of distinct eigenvalues of A�x�. The formula �2.13� coincides with �2.16� in view of
he definitions �2.5� and �2.10�. Thus formula �2.13� is proven for any �1,1�-tensor Aj

i�x� having
istinct eigenvalues. Applying Remark 2, we obtain that formula �2.13� holds for an arbitrary

i
1,1�-tensor Aj�x�. �
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Lemma 2: For any polynomial B�A ,x� with variable coefficients, the Haantjes tensor HB�u ,v�
s connected with HA�u ,v� by the formula

HB�u,v� = TQB
2 �z,��QB

2 �z,��HA�u,v� . �2.17�

Proof: The Haantjes tensor HB�A��u ,v� is connected with the Nijenhuis tensor NB�A��u ,v� by
he relation

HB�u,v� = B2NB�u,v� + NB�Bu,Bv� − BNB�Bu,v� − BNB�u,Bv� ,

hat is equivalent to the expression

HB�A��u,v� = T�B�z�−B�����B�z�−B����NB�A��u,v� .

sing the Bezout identity �2.9�, we obtain

HB�A��u,v� = TQB�z,��QB�z,��TDNB�A��u,v� ,

here D= �z−���z−��. Substituting here formula �2.16� and using Eqs. �2.7� and �2.8�, we obtain
he identity �2.17�. �

Proposition 1: The Nuijenhuis tensors NA�u ,v� and NB�A��u ,v� are connected by the identity

A2NB�u,v� + NB�Au,Av� − ANB�Au,v� − ANB�u,Av�

= B2NA�u,v� + NA�Bu,Bv� − BNA�Bu,v� − BNB�u,Bv� . �2.18�

ndeed, applying operator TD, D= �z−���z−��, to the identity �2.16� and using Bezout formula
2.9� and Eq. �2.8�, we arrive at the identity �2.18�. �

II. THE BLOCK-DIAGONALIZABILITY PROBLEM

For a generic hydrodynamic type system in the block-diagonal form �1.2�, the eigenvalues

orresponding to any two different blocks Ãmj+�
mj+i �v1 , . . . ,vn� do not coincide with each other almost

verywhere for x�Rn �while inside a given block some eigenvalues can coincide, for example, if
ts Jordan normal form is not diagonal�.

Theorem 1: For a system of hydrodynamic type (1.1) to be reducible to a block-diagonal form
ith k blocks of dimensions nj �nj with n1+ ¯ +nk=n it is necessary and sufficient that in the

angent spaces Tx�Rn� there exist k smooth distributions L1x , . . . ,Lkx of dimensions n1 , . . . ,nk such
hat L1x � ¯ � Lkx=Tx�Rn� and the conditions

A�Lix� � Lix, HA�Lix,Lix� � Lix, HA�Lix,Ljx� � Lix + Ljx �3.1�

old provided that the eigenvalues of the operator A�x� in any two different subspaces Lix and Ljx

re different almost everywhere for x�Rn. Here i� j; i , j� 	1, . . . ,k
.
Proof: (i) The necessary condition. Suppose that in some coordinates v1 , . . . ,vn system �1.1�

as block-diagonal form �1.2� with the diagonal blocks in the subspaces v1 , . . . ,vn1 �L1,
n1+1 , . . . ,vn1+n2 �L2 , . . . ,vn−nk+1 , . . . ,vn�Lk that form the distributions Lj, L1 � ¯ � Lk=T�Rn�.
hen the �1,1�-tensor Ã�

��v1 , . . . ,vn� has invariant subspaces Li and Li+Lj and the definition �2.1�
ields N�Lix ,Lix��Lix and N�Lix ,Ljx��Lix+Ljx. Hence using Eq. �2.2� and A�Lix��Lix we get the
ecessary conditions �3.1�.

(ii) The sufficient condition. Let P���=det�A−�� be the characteristic polynomial of the �1,1�-
ensor A�

�, all depend on a point x�Rn. Let Ai�x� be the restriction of the operator A�x� onto the
nvariant subspace Lix and Pi���=det�Ai�x�−�� be the corresponding characteristic polynomial.

n
ince L1x � ¯ � Lkx=Tx�R �, we obtain P���= P1���¯Pk���. Let us define the polynomials
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Bj��� = P1��� ¯ Pj−1���Pj+1��� ¯ Pk��� = P���/Pj��� . �3.2�

y the Cayley-Hamilton theorem we have P��A��=0. Hence we get Bj�A��=0 for j��; j ,�
	1, . . . ,k
. The operator Bj�Aj� is nondegenerate almost everywhere because the operators Ajx

nd A�x do not have coinciding eigenvalues for j�� almost everywhere for x�Rn. Hence the
estriction of the operator Bj�A� onto the invariant subspace Ljx�Tx�Rn� is nondegenerate and is
ero on all other subspaces L�x�Tx�Rn�.

The polynomial Bj��� has some form

Bj��� = �
m=0

n−nj

bjm�x��m, �3.3�

here coefficients bjm�x� depend on point x�Rn. Let HBj
�u ,v� be the Haantjes �1,2�-tensor de-

ned by the �1,1�-tensor

Bj�A� = �
m=0

n−nj

bjm�x�Am. �3.4�

pplying Lemma 2, we obtain the formula

HBj
�u,v� = TQBj

2 �z,��QBj

2 �z,��HA�u,v� .

ence equations �3.1� yield

HBj
�Lix,Lmx� � Lix + Lmx, i � m; i,m � 	1, . . . ,k
 . �3.5�

et us consider the �n−nj�-dimensional distribution

Mjx = L1x + ¯ + L�j−1�x + L�j+1�x + ¯ + Lkx. �3.6�

quations �3.5� and �3.6� yield

HBj
�Mjx,Mjx� � Mjx. �3.7�

For any eigenvector fields ep�x�, eq�x� corresponding to the eigenvalues �p�x�, �q�x� of a
1,1�-tensor C, the formula14

HC�ep,eq� = �C − �p�2�C − �q�2�ep,eq� �3.8�

olds, where �ep ,eq� is the commutator of the vector fields. By the definition of the �1,1�-tensor

j�A�, all vector fields v�x��Mjx are zero eigenvector fields of the �1,1�-tensor Bj�A�, Bj�A�v
0, because the �1,1�-tensor Bj�A� annihilates the distribution Mj. Applying formula �3.8� to the
rbitrary vector fields v ,w�Mj, we obtain

HBj
�v,w� = �Bj�A��4�v,w� . �3.9�

ince Ljx � Mjx=Tx�Rn� and the restriction of the operator Bj�A� onto the invariant subspace Ljx is
ondegenerate, the generalized zero eigenspace of the operator Bj�A�x�� is exactly the subspace

Mjx �3.6�. Hence Eqs. �3.7� and �3.9� yield �v ,w��x��Mjx for any vector fields v�x� ,w�x��Mjx

nd almost everywhere for x�Rn. Hence by the continuity �v ,w��x��Mjx everywhere and the
istribution Mj is involutive. Equation �3.9� implies HBj

�Mjx ,Mjx�=0; Eq. �2.1� yields

Bj
�Mjx ,Mjx�=0. Applying Frobenius theorem,16 we obtain that each point x�Rn belongs to an

n−nj�-dimensional integral submanifold that is tangent to the linear subspaces Mjx. Hence there

xist nj functionally independent functions f j1�x� , . . . , f jnj

�x� such that
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df jm�Li� = 0, i � j, m = 1, . . . ,nj ,

nd differentials d f jm form a basis of the dual space Lj
*. Hence all differentials d f jm for j

1, . . . ,k and m=1, . . . ,nj form a basis of the dual space T*�Rn�=L1
*

� ¯ � Lk
*. Therefore the n

unctions v�= f im�x�, �=1, . . . ,n, form a system of local coordinates on the manifold Rn.
The integrability of the distributions Mj implies the integrability of each distribution Lj be-

ause Lj is the intersection of all distributions M� for �� j. The distribution Lj is defined by the
quations

df im�Lj� = 0, i � j ; i, j � 	1, . . . ,k
, m = 1, . . . ,ni.

ence in the coordinates v�= f im�x� the integral submanifolds of the distribution Lj are

j-dimensional planes defined by the equations

f im�x� = cim = const, i � j ; i, j � 	1, . . . ,k
, m = 1, . . . ,ni.

oordinates f jm, m=1, . . . ,nj, are arbitrary on Lj. Since the subspaces Ljx are A invariant, the
1,1�-tensor A�

� has the block-diagonal form in the local coordinates f im�x� with
nj �nj�-dimensional blocks. This gives the block diagonalization of the system �1.1� in the local
oordinates v�= f im, �=1, . . . ,n. �

V. CONCRETE APPLICATIONS

�i� Theorem 1 has the following equivalent form in terms of the Nijenhuis tensor �notations
re the same�.

Theorem 2: The necessary and sufficient conditions for the block diagonalizability of system
1.1) are

A�Lix� � Lix, NA�Lix,Lix� � Lix, NA�Lix,Ljx� � Lix + Ljx, �4.1�

rovided that the eigenvalues of the operator A�x� in any two different subspaces Lix and Ljx are
ifferent almost everywhere for x�Rn. Here i� j; i , j� 	1, . . . ,k
.

Indeed, the necessity of conditions �4.1� is proved in Theorem 1. Their sufficiency follows
rom Theorem 1 because Eqs. �2.2� and �4.1� imply Eqs. �3.1�. �

For the case of block diagonalization with only two diagonal blocks and L1x � L2x=Tx�Rn�, the
ecessary and sufficient conditions �4.1� have the simple form A�Lix��Lix, NA�Lix ,Lix��Lix, i
1,2.

�ii� Example 1: Let us consider the hydrodynamic type system

uit = − uiuix − �
j=1

k

f j�� j�� jx, �it = − �iuix − ui�ix, �4.2�

here i=1, . . . ,k. The systems �4.2� with arbitrary functions f j�� j� form perturbations of the
enney system4 that corresponds to f j�� j�=1. Let ei=� /�ui, hi=� /��i be the basis tangent vectors.
or system �4.2�, the �1,1�-tensor Aj

i has the form

A�ei� = − uiei − �ihi, A�hi� = − f iE − uihi, E = e1 + ¯ + ek. �4.3�

he corresponding Nijenhuis tensor is defined by the formulas

N�ei,ej� = 0, N�hi,hj� = f ihj − f jhi, N�ei,hj� = − f iei + � j f j�	 j
iE , �4.4�

here f j�=df j /d� j. Let v be a tangent vector v=�i�xiei+yihi�. We define a 1-form 
�v�= f1y1

¯ + fkyk. For any tangent vector w=�i��iei+�ihi�, formulas �4.4� yield

N�v,w� = 
�v�w − 
�w�v + ��v,w�E , �4.5�
here ��v ,w� is the 2-form,
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��v,w� = �
i=1

k

�xi�i − yi�i��i f i���i� . �4.6�

or the Haantjes tensor �2.2� we find

H�v,w� = ��v,w�A2E + ��Av,Aw�E − ���Av,w� + ��v,Aw��AE . �4.7�

or the Benney system one has f j�� j�=1 and hence ��v ,w�=0. Hence the Benney system that is
hyperbolic one4 can be transformed to a diagonal form because its Haantjes tensor �4.7� van-

shes.
A generic perturbation (4.2) of the Benney system for f j��� j��0 cannot be transformed into a

lock-diagonal form with three or more diagonal blocks. Indeed, for f j��� j��0 the 2-form �4.6� is
ondegenerate so its Lagrangian planes ��v ,w�=0 have dimension k. If a representation with
hree or more diagonal blocks existed then Tx�Rn�=L1 � L2 � L3 where Li are invariant subspaces
atisfying �4.1�. One subspace, say L1, has dimension m�k. Let L=L2 � L3, then k�dim L=2k
m�2k. Hence L is not a Lagrangian plane for the form ��v ,w� �4.6� and there exist vectors v,
�L such that ��v ,w��0. Hence Eqs. �4.1� and �4.5� yield that vector E�L. Vector E is a cyclic

ector for the operator Aj
i �4.3�: the vectors E ,AE ,A2E , . . . ,A2k−1E form a basis. All these vectors

n view of �4.1� belong to the subspace L. Hence dim L=2k. The contradiction proves that the
lock-diagonalization with three or more blocks is impossible. �

�iii� The Haantjes theorem2 on the Xm-forming sets of eigenvalues of a �1,1�-tensors Aj
i�u�

mplies that for the complete diagonalizability of a system �1.1� with real and distinct eigenvalues
f Aj

i�u� it is necessary and sufficient that the Haantjes tensor �1.3� vanishes.
Proposition 2: If a (1,1)-tensor Aj

i�u� (1.1) has complex and real distinct eigenvalues and its
aantjes tensor is zero then it has a block-diagonal representation with 2�2 and 1�1 blocks.

Proof: Since all eigenvalues of Aj
i�u� are distinct, to each pair of complex conjugate eigen-

alues it corresponds a two-dimensional invariant distribution Lj and to each real eigenvector it
orresponds an invariant vector field Lk. Since HA�v ,w�=0, the conditions �3.1� of Theorem 1 are
atisfied and we obtain the existence of the required block-diagonal form. �

Remark 3: Proposition 2 proves that condition HA�v ,w�=0 is sufficient for the 2�2 and 1
1 block diagonalization. However it is not necessary as the following example shows. Let us

onsider the simplest block-diagonal �1,1�-tensor

Aj
i = �� − � 0

� � 0

0 0 �
� , �4.8�

here � ,� ,� are arbitrary smooth functions of x1 ,x2 ,x3. Matrix �4.8� has eigenvalues �1,2

�± i�, �3=�. The corresponding Haantjes tensor �1.3� is nonzero:

H23
1 = 2�2��� − ��

��

�x3 − �
��

�x3� .

�iv� A Hamiltonian system of n pde’s �1.1� is called nondegenerate if the corresponding
2,0�-tensor gij�u� is nondegenerate.

Proposition 3: A nondegenerate Hamiltonian system (1.1) in R3 with HA�v ,w��0 does not
ave any block-diagonal representations.

Proof: For the three-dimensional case, the Haantjes tensor HA�v ,w� defines a Lie algebra
tructure Gx in each tangent space Tx�M3�.14 For any nondegenerate Hamiltonian system �1.1� with

A�v ,w��0, the Lie algebras Gx are simple,14 so the derivative Lie subalgebras Gx�=Gx. Suppose
1 2 3
hat in some coordinates u ,u ,u the system has a block-diagonal form
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Aj
i = �a11 a12 0

a21 a22 0

0 0 a33
� . �4.9�

hen for the coordinate basis vectors e1 ,e2 ,e3, the formulas �4.9�, �2.1�, and �2.2� imply

A�e1 ,e2�=0. Hence the derivative Lie subalgebras Gx� are generated by two vectors HA�e1 ,e3� and

A�e2 ,e3� and Gx��Gx. The contradiction proves that the block-diagonal representation �4.9� is
mpossible. �

Proposition 4: The following identities hold: for the Haantjes tensor

Hf�x�A+g�x�I�u,v� = f4�x�HA�u,v� , �4.10�

here I is the unit (1,1) tensor, Ij
k=	 j

k, f�x� and g�x� are smooth functions; and for the Nijenhuis
ensor

Nf�x�A+g�x�I�u,v� = f2�x�NA�u,v� + f��Au�f� − u�g��Av − �Av�f� − v�g��Au − u�f�A2v + v�f�A2u

+ Au�g�v − Av�g�u� . �4.11�

ndeed, for the operator

B�A,x� = f�x�A�x� + g�x�I , �4.12�

e have

b1�x� = f�x�, b0�x� = g�x�, QB�z,�� = f�x� . �4.13�

ince QB�z ,��QB�z ,��= f2�x�, formula �2.17� implies identity �4.10�. The identity �4.11� follows
rom formula �2.16� after substituting expressions �4.12� and �4.13�. �

Remark 4: Formula �4.10� means that the Haantjes tensor HA�u ,v� is invariant with respect to
he gauge transformations �4.12�. The gauge invariance of the Haantjes �1,2�-tensor was first
iscovered in Ref. 14. Formula �4.11� shows that the Nijenhuis tensor NA�u ,v� is not gauge
nvariant.

Remark 5: In Ref. 17 we prove that the necessary and sufficient conditions for the reducibility
f a system �1.1� into k noninteracting subsystems1 have the form

A�Lix� � Lix, NA�Lix,Lix� � Lix, NA�Lix,Ljx� = 0,

here notations are the same as in Theorem 1.
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. INTRODUCTION

In this paper, we study the Cauchy problem for the nonlinear Schrödinger equation with
armonic potential

i�t = − �� + �x�2� − ���p−1�, t � 0, x � RN,

��0,x� = �0�x� , �1�

here �=��t ,x� denotes the complex-value wave function, i=�−1, � is the Laplace operator on
N, 1� p� �N+2� / �N−2�+ �we use the convention �N+2� / �N−2�+=N−2 when N�3 and �N
2� / �N−2�+=� when N=1,2�. When p=3, �1� describes attractive Bose-Einstein
ondensation.1–3

For nonlinear Schrödinger equation without potential

i�t + �� + ���p−1� = 0, t � 0, x � RN, ��0,x� = �0�x� , �2�

any results4–7 have been achieved. In particular, Zhang8,9 obtained a sharp criterion for blow-up
nd global existence of solutions by variational methods.

For �1�, Cazenave10 and Oh11 established the local existence in corresponding energy space.
hang12,13 obtained blow-up and global existence of solutions, the stability of standing waves.

In this paper, we further exploit the sharp conditions of global existence which is attributed to
hang.9,14 By establishing a cross-constrained variational problem and the invariant sets under the
ow generated by the Cauchy problem �1�, we can derive some new blowup theorems and
stablish the sharp criterion for global existence and blowup of the solutions of �1�. From view-
oint of physics, the sharp criterion is just a sharp stability threshold of attractive Bose-Einstein
ondensation.1,12 These arguments originate in Pagne and Scattinger,15 Levine,16 Berestycki and
azenave,17 Weinstein.18

�Electronic mail: shu.ji@163.com and shuji2008@hotmail.com
�
Electronic mail: jianzhan@mail.sc.cninfo.net

47, 063503-1022-2488/2006/47�6�/063503/6/$23.00 © 2006 American Institute of Physics
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This paper is organized as follows. In the second section, we give some preliminaries. In the
hird section, we construct two constrained variational problems. In the fourth section, we give
ome new theorems of blow-up and sharp sufficient conditions of global existence.

I. PRELIMINARIES

For �1�, we define the energy space in the course of nature by

H ª �� � H1�RN�,� �x�2���2 dx � � 	 . �3�

Here and hereafter, for simplicity, we denote 
RN dx by 
 dx, H becomes a Hilbert space,
ontinuously embedded in H1�RN�, when endowed with the inner product as follows:

��,��H ª� �� � �̄ + ��̄ + �x�2��̄ dx , �4�

hose associated norm we denote by  · H.
From Cazenave10 and Oh,11 we can get the local well-posedness for the Cauchy problem �1�

n energy space H.
Proposition 2.1: Let �0�H. Then there exists a unique solution � of the Cauchy problem �1�

n C��0,T� ;H� for some T� �0, � � (maximal existence time), and either T=� (global existence)
r else T�� and

lim
t→T

�H = � �blow-up� .

First we have the following lemmas.7,10,19

Lemma 2.2: Let �0�H and � be a solution of the Cauchy problem �1� in C��0,T� ;H�. Set the
nergy functional

E��� =
1

2
� �����2 + �x�2���2 −

2

p + 1
���p+1�dx .

hen one has

� ���2 dx =� ��0�2 dx , �5�

E��� � E��0� . �6�

Lemma 2.3: Let �0�H and 1� p�1+ �4/N�. Then the solution � of the Cauchy problem �1�
xists globally.

Lemma 2.4: Let �0�H and 1+ �4/N�	 p� �N+2� / �N−2�+. If E��0��0. Then the solution �
f the Cauchy problem �1� blows up in a finite time.

Remark 2.5: From the above two lemmas we see that p=1+ 4
N is critical nonlinearity index for

low-up and global existence. In the following we call p�1+ �4/N� , p=1+ �4/N� , p�1+ �4/N�
ubcritical, critical, supercritical cases, respectively.

Lemma 2.6: Let �0�H and � be the solution of the Cauchy problem �1� in C��0,T� ;H�,
2 N 2 2
x ��0�L �R �. Set J�t�=
�x� ��� dx. Then one has
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J��t� = 8� �����2 − �x�2���2 −
N�p − 1�
2�p + 1�

���p+1�dx . �7�

II. THE CROSS-CONSTRAINED VARIATIONAL PROBLEM

For u�H and 1� p� �N+2� / �N−2�+, we define the following functionals:

I�u� =
1

2
� ���u�2 + �u�2 + �x�2�u�2 −

2

p + 1
�u�p+1�dx , �8�

S�u� =� ���u�2 + �u�2 −
N�p − 1�
2�p + 1�

�u�p+1�dx , �9�

Q�u� =� ���u�2 + �x�2�u�2 −
N�p − 1�
2�p + 1�

�u�p+1�dx , �10�

nd define the manifold

M ª �u � H \ �0	,S�u� � 0,Q�u� = 0	 .

Now we consider two constrained variational problems,

d
 = inf
�u�H\�0	,S�u�=0	

I�u� , �11�

dM = inf
u�M

I�u� . �12�

irst we have the following.
Lemma 3.1: d
�0 provided 1+ �4/N�� p� �N+2� / �N−2�+.
Proof: From S�u�=0, we have

I�u� =� �1

2
−

2

N�p − 1����u�2 + �1

2
−

2

N�p − 1���u�2 +
1

2
�x�2�u�2 dx . �13�

ince 1+ �4/N�� p� �N+2� / �N−2�+, �13� and u�0 implies that I�u��0. Thus from �11�, we get


�0. In the following we use the Sobolev embedding inequality:

� �u�p+1 dx 	 c�� ��u�2 + �u�2 dx��p+1�/2

. �14�

ere and hereafter c denotes various positive constants. From S�u�=0 it follows that

� ��u�2 + �u�2 dx =
N�p − 1�
2�p + 1� � �u�p+1 dx 	 c�� ��u�2 + �u�2 dx��p+1�/2

.

rom p�1 it follows that

� ��u�2 + �u�2 + �x�2�u�2 dx �� ��u�2 + �u�2 dx � c � 0. �15�

ince p�1+ �4/N�, �13� and �15� yields that

I�u� � c � 0, for all u � M .

+
hus �11� implies that d
�0 for 1+ �4/N�� p� �N+2� / �N−2� . �
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Next from �12� we have the following.
Lemma 3.2: dM �0 provided 1+ �4/N�� p� �N+2� / �N−2�+.
Proof: Let u�M. From S�u��0, we have u�0. From Q�u�=0, we have

I�u� =� �1

2
−

2

N�p − 1����u�2 +
1

2
�u�2 + �1

2
−

2

N�p − 1���x�2�u�2 dx . �16�

ince 1+ �4/N�� p� �N+2� / �N−2�+, �16� and u�0 implies that I�u��0 for all u�M. Thus from
12�, we get dM �0. Now we use the Sobolev embedding inequality

� �u�p+1 dx 	 c�� ��u�2 + �u�2 dx��p+1�/2

. �17�

ere and hereafter c denotes various positive constants. From S�u��0 it follows that

� ��u�2 + �u�2 dx �
N�p − 1�
2�p + 1� � �u�p+1 dx 	 c�� ��u�2 + �u�2 dx��p+1�/2

.

rom p�1 it follows that

� ��u�2 + �u�2 + �x�2�u�2 dx �� ��u�2 + �u�2 dx � c � 0. �18�

ince p�1+ �4/N�, �16� and �18� yields that

I�u� � c � 0, for all u � M .

hus �12� implies that dM �0 for 1+ �4/N�� p� �N+2� / �N−2�+. �

Now we define

d ª min�d
,dM	 . �19�

hen from Lemma 3.1 and Lemma 3.2 it implies the following.
Theorem 3.3: d�0 when 1+ �4/N�� p� �N+2� / �N−2�+.
Remark 3.4: We call the variational problem �12� cross-constrained variational problem since

here are two constrained conditions in �12�. The following corresponding invariant manifold will
e called cross-invariant manifold.

Theorem 3.5: Define

K ª �� � H,I��� � d,Q��� � 0,S��� � 0	 . �20�

f 1+ �4/N�� p� �N+2� / �N−2�+, then K is an invariant manifold of �1�, that is, if �0�K, then the
olution ��t ,x� of the Cauchy problem �1� also satisfies ��t ,x��K for any t� �0,T�.

Proof: Let �0�K. By Proposition 2.1, there exists a unique ��t ,x��C��0,T� ;H� with T
� such that ��t ,x� is a solution of the Cauchy problem �1�. From �5�, �6�, we have

I��� = I��0�, t � �0,T� . �21�

hus I��0��d implies that I����d for any t� �0,T�.
Now we show S����0 for t� �0,T�. If otherwise, from the continuity, there were a t0

�0,T� such that S���t0 , . ��=0. By �21�, I���t0 , . ��=
� 1
2 − �2/N�p−1��� ����t0 , . ��2+ 1

2 ���t0 , . ��2
� 1

2 − �2/N�p−1��� �x�2 ���t0 , . ��2 dx= I��0��0, note that 1+ �4/N�� p� �N+2� / �N−2�+, thus
�t0 ,x��0. From �11� and �19� it follows that I���t0 , . ���d. This is contradictory with
���t , . ���d for t� �0,T�. Therefore S���t , . ���0 for all t� �0,T�.
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At last we show Q���t , . ���0 for t� �0,T�. If otherwise, from the continuity, there were a

1� �0,T� such that Q���t1 , . ��=0. Because we have showed S���t1 , . ���0, it follows that
�t1 , . ��M. Thus �12� and �19� implies I���t1 , . ���dM �d. This is contradictory with

���t , . ���d for t� �0,T�. Therefore Q���t , . ���0 for all t� �0,T�.
From the above we proved ��t ,x��K for any t� �0,T�.
This completes the proof of this theorem. �

By the same argument as Theorem 3.5, we can get the following results.
Theorem 3.6: Define

K+ ª �� � H,I��� � d,Q��� � 0,S��� � 0	 ,

R− ª �� � H,I��� � d,S��� � 0	 ,

R+ ª ��� � H,I��� � d,S��� � 0 	 .

f 1+ �4/N�� p� �N+2� / �N−2�+, then K+ ,R− ,R+ are all invariant manifolds of �1�.

V. SHARP CONDITIONS FOR GLOBAL EXISTENCE

Theorem 4.1: Let 1+ �4/N�� p� �N+2� / �N−2�+. If �0�K+�R+, then the solution � of the
auchy problem �1� globally exists on t� �0, � �.

Proof: First we let �0�K+. Thus Theorem 3.6 implies that the solution � of the Cauchy
roblem �1� satisfies that ��t , . ��K+ for t� �0,T�. For fixed t� �0,T�, denote ��t , . �=�. Thus we
ave I����d, Q����0. It follows that from �8� and �10�,

� �1

2
−

2

N�p − 1������2 +
1

2

���2 dx + �1

2
−

2

N�p − 1���x�2���2 dx � d . �22�

or 1+ �4/N�� p� �N+2� / �N−2�+, from �22�, we always have

� ����2 + �x�2���2 dx � c . �23�

herefore Proposition 2.1 implies that � globally exists on t� �0, � �.
Thus for �0�K+ we proved the solution � of the Cauchy problem �1� globally exists on t

�0, � �.
Now let �0�R+. Thus Theorem 3.6 implies that the solution � of the Cauchy problem �1�

atisfies that ���t , . ���R+ for t� �0,T�. Thus we have I����d, S����0. It follows that

�1

2
−

2

N�p − 1�� � ����2 + 
���2 dx +� 1

2
�x�2���2 dx � d . �24�

hus Proposition 2.1 implies that � globally exists on t� �0, � �.
This completes the proof of this theorem. �

Theorem 4.2: Let 1+ �4/N�� p� �N+2� / �N−2�+. If �0�K and � · ��0�L2�RN�, then the so-
ution � of the Cauchy problem �1� blows up in a finite time.

Proof: From �0�K, Theorem 3.5 implies that the solution � of the Cauchy problem �1�
atisfies that ��t , . ��K for t� �0,T�. For J�t�=
�x�2 ���2 dx, �7� and �10� imply that

J��t� � 8Q���t, . ��, t � �0,T� . �25�
ix t� �0,T�, and denote ��t , . �=�. Since ��K, it follows that
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J��t� � 8Q��� � 0. �26�

bviously J�t� cannot verify �26� for all time t.19 Therefore from Proposition 2.1, it must be the
ase that T��, which implies

lim
t→T

�H = � .

his completes the proof of this theorem. �

Remark 4.3: It is clear that

�� � H,I��� � d	 = R+ � K+ � K .

hus Theorem 4.2 shows that Theorem 4.1 is sharp.
By the above remark, we immediately have the following.
Corollary 4.4: Let 1+ �4/N�� p� �N+2� / �N−2�+ and �0 satisfy I����d, then the solution �

f the Cauchy problem �1� blows up in a finite time if and only if �0�K.
By Theorem 4.1 we also get another condition for global existence of the solution of �1�.
Corollary 4.5: If �0�H and satisfy �0H

2 �2d, then the solution � of the Cauchy problem �1�
lobally exists on t� �0, � �.

Proof: From �0H
2 �2d, we have I��0��d. Moreover we claim that S��0��0. If otherwise,

here were a 0��	1 such that S���0�=0. Thus I���0��d. On the other hand,

��0H
2 = �2�0H

2 � 2�2d � 2d .

t follows that I���0��d. This is a contradiction. Therefore we have �0�R+. Thus Theorem 4.1
mplies this corollary. �

Remark 4.6: It is clear that d
 and dM in this paper is different from in Ref. 14.

CKNOWLEDGMENTS

The authors wish to thank the referees for their helpful comments. This work was partially
upported by the National Natural Science Foundation of China and SZD0406 deom Sichuan
rovince.

1 C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett. 78, 985 �1997�.
2 F. Dalfove, S. Giorgini, and P. Pitaevskii Lev, Rev. Mod. Phys. 71, 463 �1999�.
3 C. Huepe, S. Mtems, G. Dewel, P. Borckmans, and M. E. Brachet, Phys. Rev. Lett. 82, 1616 �1999�.
4 J. Ginibre and G. Velo, J. Funct. Anal. 32, 1 �1979�.
5 M. Tsutsumi, Commun. Math. Phys. 81, 467 �1999�.
6 C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation, Self-Focusing and Wave Collapse �Springer, New York,
1999�.

7 R. T. Glassey, J. Math. Phys. 18, 1794 �1977�.
8 J. Zhang, Nonlinear Anal. Theory, Methods Appl. 48, 191 �2002�.
9 J. Zhang, Cross-constrained variational problem and nonlinear Schrödinger equations, Foundation of Computational
Mathematics-Proceedings of the Smalefest, 2001, pp. 457–469.

0 T. Cazenave, An introduction to nonlinear Schrödinger equations �Textos de Metodos Matematicos, Rio de Janeiro,
1993�.

1 Y. G. Oh, J. Differ. Equations 81, 255 �1989�.
2 J. Zhang, J. Stat. Phys. 101�3/4�, 731 �2000�.
3 J. Zhang, ZAMP 51, 498 �2000�.
4 J. Zhang, Commun. Partial Differ. Equ. 30, 1429 �2005�.
5 L. E. Payne and D. H. Sattinger, Isr. J. Math. 22, 273 �1975�.
6 H. A. Levine, Trans. Am. Math. Soc. 192, 1 �1974�.
7 H. Berestycki and T. Cazenave, C. R. Acad. Sci. Paris, Ser. I 293, 489 �1981�.
8 M. I. Weinstein, Commun. Math. Phys. 87, 567 �1983�.
9
 Y. Tsutsumi and J. Zhang, Adv. Math. Sci. Appl. 8, 691 �1998�.

                                                                                                            



S

I

s
H
c
i
d
P
a
J
t
g
w
i
t
R
a
n
t

m
u

w
s
s
a

JOURNAL OF MATHEMATICAL PHYSICS 47, 063504 �2006�

0

                        
cale invariance in the spectral action
Ali H. Chamseddine
Physics Department, American University of Beirut, Lebanon

Alain Connes
College de France, 3 rue Ulm, F-75005, Paris, France, I.H.E.S. Bures-sur-Yvette, France,
and Department of Mathematics, Vanderbilt University, Nashville, TN 37240

�Received 19 January 2006; accepted 15 March 2006; published online 16 June 2006�

The arbitrary mass scale in the spectral action for the Dirac operator is made
dynamical by introducing a dilaton field. We evaluate all the low-energy terms in
the spectral action and determine the dilaton couplings. These results are applied to
the spectral action of the noncommutative space defined by the standard model. We
show that the effective action for all matter couplings is scale invariant, except for
the dilaton kinetic term and Einstein-Hilbert term. The resulting action is almost
identical to the one proposed for making the standard model scale invariant as well
as the model for extended inflation and has the same low-energy limit as the
Randall-Sundrum model. Remarkably, all desirable features with correct signs for
the relevant terms are obtained uniquely and without any fine tuning. © 2006
American Institute of Physics. �DOI: 10.1063/1.2196748�

. INTRODUCTION

It is known that the standard model of strong and electroweak interactions is classically almost
cale invariant, and that the only terms that break the dilatation symmetry are the mass terms in the
iggs sector. Scale invariance of the classical Lagrangian can be achieved by introducing a

ompensating dilaton field.1–3 Breaking of scale invariance occurs after the electroweak symmetry
s broken spontaneously through the generation of radiative corrections to the scalar potential. The
ilaton mass scale is much larger than the weak scale and could be as large as the GUT scale or
lanck scale. This leads naturally to consider the coupling of the dilaton to gravity. The dilaton is
lways part of the low energy spectrum in string theory. Historically it first appeared in the
ordan-Brans-Dicke theory of gravity which corresponds to one particular coupling of the dilaton
o the metric.2 The dilaton plays a fundamental role in models of inflation.4 It also appears in the
ravitational couplings of the noncommutative Connes-Lott formulation of the standard model,5–8

here the dilaton is the scalar field that couples the two sheets of space time. The resulting matter
nteractions in this case are also scale invariant, and the gravitational couplings are different than
he Jordan-Brans-Dicke theory. More recently, a scalar field, the radion field, appeared in the
andall-Sundrum �RS� scenario of compactification9 which is related to the question of masses
nd scales in physics. The RS scenario was shown to be equivalent to the results derived from
oncommutative geometry,10 which is not too surprising, because both the Connes-Lott model and
he RS model, describe a system with two branes.

At present, and within the noncommutative geometric picture, the spectral action gives the
ost elegant formulation of the standard model.11,12 All details of the standard model as well as its

nification with gravity are achieved by postulating the action

Trace F�D2/m2� + ���D��� ,

here D is the Dirac operator of a certain noncommutative space and � is a spinor in the Hilbert
pace of the observed quarks and leptons. However, the dilaton field does not appear in the
pectral action, which is to be contrasted with the Connes-Lott formulation of the noncommutative

ction where the dilaton field is part of the gravitational interactions. This suggests that the Dirac

47, 063504-1022-2488/2006/47�6�/063504/19/$23.00 © 2006 American Institute of Physics

                                                                                                            

http://dx.doi.org/10.1063/1.2196748
http://dx.doi.org/10.1063/1.2196748


o
a

s
f
o
d
f

w
d

w

a
t
s

i

I
m
c

fi
c
fi
t
i
o
s
S
n
a
d
c
i
T

I

i
t

063504-2 A. H. Chamseddine and A. Connes J. Math. Phys. 47, 063504 �2006�

                        
perator used in the construction of the spectral action should be modified in order to take into
ccount the presence of the dilaton.

The appearance of the dilaton field in physical models is related to the question of mass and
cales. It is therefore natural to consider replacing the mass parameter in the ratio D2 /m2 by a
unction of the dilaton, thus introducing a sliding scale, as the Dirac operator have the dimension
f mass. This is also relevant when dealing with noncompact manifolds where D no longer has
iscrete spectrum and the counting of eigenvalues requires a localization. Let the dynamical scale
actor � be written in the form

� = me�,

here we assume that � is dimensionless. The dilaton can be related to a scalar field � of
imension one by writing

� =
1

f
� ,

here f is the dilaton decay constant. The mass scale m can be absorbed by the redefinition

� → � − ln m ,

nd therefore we can assume, without any loss in generality, that �=e�. One can always recover
he scale m by performing the opposite transformation �→�+ln m. Now using � instead of the
calar m in the counting of eigenvalues:

N�m� = Dim�D2 � m2	 → N��� = Dim�D2 � �2	

s equivalent to replacing the operator D2 /m2 in Ref. 11 by

P = e−�D2e−�.

f we insist that the metric g�� be dimensionless to insure that its flat limit be the Minkowski
etric, then the scale m will explicitly appear in the action after rescaling e�→me�. Otherwise we

an absorb this mass scale by assuming that the metric has the dimension of mass.
The aim of this article is to determine the interactions of the dilaton field � with all other

elds present in the spectral action formulation of the standard model. Because of the spectral
haracter of the action, it is completely determined from the form of P and there is no room for
ne tuning the results. It is then very reassuring to find that the resulting interactions are identical

o those constructed in the literature by postulating a hidden scale invariance of the matter
nteractions.3 These are also equivalent to the interactions of the radion field in the RS model.9 All
f these results now support the conclusion that space time at high energies reveals its discrete
tructure, and is governed by noncommutative geometry. The plan of this article is as follows. In
ec. II we briefly review the derivation of the spectral action and comment on the modifications
eeded to include the dilaton. In Sec. III we derive the Seeley-de Witt coefficients of the spectral
ction in presence of the dilaton. In Sec. IV we give the full low-energy spectral action including
ilaton interactions specialized to the noncommutative space of the standard model. In Sec. V we
ompare our results with those obtained by imposing scale invariance on the standard model
nteractions, to the RS model and the model of extended inflation. Section six is the conclusion.
he appendices contain detailed proofs of some identities used.

I. A SUMMARY OF SPECTRAL ACTION

We begin by summarizing the results of Ref. 11. The square of the Dirac operator appearing
n the spectral triple of a noncommutative space is written in the following form suitable to apply

he standard local formulas for the heat expansion �see Ref. 13 Sec. 4.8�.
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D2 = − �g��I���� + A��� + B� , �1�

here g�� plays the role of the inverse metric, I is the unit matrix, and A� and B are matrix
unctions computed from the Dirac operator. The bosonic part of the spectral action can be
xpanded in a power series as a function of the inverse scale m, and is given in dimension 4 by

Trace�F�D2/m2�� 
 �
n�0

fnan�D2/m2� ,

here F is a positive function and

f0 = �
0

	

F�u�u du, f2 = �
0

	

F�u�du, f2n+4 = �− 1�nF�n��0�, n � 0. �2�

he positivity of the function F will insure that the actions for gravity, Yang-Mills, Higgs cou-
lings are all positive and the Higgs mass term is negative. We will comment on the positive sign
f the cosmological constant at the end of the article.

The first few Seeley-deWitt coefficients an�D2 /m2� are given �see Ref. 13, Theorem 4.8� by
according to our notations the scalar curvature R is negative for spheres �see Ref. 13 Sec. 2.3� and
he space is Euclidean�

a0�D2/m2� =
m4

16
2�
M

d4xg Tr�1� , �3�

a2�D2/m2� =
m2

16
2�
M

d4xg Tr�−
R

6
+ E� , �4�

a4�D2/m2� =
1

16
2

1

360
�

M

d4xg Tr�− 12R;�
� + 5R2 − 2R��R

�� + 2R����R���� − 60RE + 180E2

+ 60E;�
� + 30������� , �5�

hereas the odd ones all vanish

a2n+1�D2/m2� = 0.

The notations are as follows, one lets ���
� �g� be the Christoffel symbols of the Levi-Civita

onnection of the metric g and lets

���g� = g�����
� �g� .

he connection form ̄, its curvature �, and the endomorphism E are then defined by �see Ref. 13
ec. 4.8�

̄� = 1
2g���A� + ���g�I� , �6�

��� = ��̄� − ��̄� + �̄�,̄�� , �7�

E = B − g�����̄� + ̄�̄� − ���
� �g�̄�� . �8�

To understand algebraically the dependence in the operator D it is convenient to express the
revious coefficients as residues and this is done as follows in the generality that we need. One lets

P be a second order elliptic operator with positive scalar principal symbol and defines a zeta

unction as
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�P�s� = Trace�P−s/2� .

ne then gets in the required generality for our purpose the equality

Trace�F�P/m2�� �
m4

2
Ress=4�P�s�f0 +

m2

2
Ress=2�P�s�f2 + �P�0�f4 + ¯ ,

hich, using the Wodzicki residue which is given independently of D by

�− T = Ress=0 Trace �T�D2�−s/2� , �9�

an be written as

Trace �F�P/m2�� �
m4

2
f0�− P−2 +

m2

2
f2�− P−1 + f4�P�0� + ¯ . �10�

e want to compute the spectral action associated with the operator P=e−�D2e−�, i.e., to deter-
ine the dependence of the spectral action on the dilaton field �. The first term �−P�2 is a Dixmier

race and one can permute the functions with the operators without altering the result since the
ixmier trace vanishes on operators of order �−4. One thus gets, for any test function h,

sing the trace property of the residue and again we get an overall factor of e2� multiplying

2�x ,D2�. Note that the result remains valid when the test function h is taken with values in
ndomorphisms of the vector bundle on which P is acting. This suggests that the invariance of the

2 term �up to the e2� scale factor� takes place before taking the fiberwise trace. The direct
omputation as follows in Eq. �18� will confirm this point.

The term f4�P�0� is more tricky to analyze and we shall only give now a heuristic argument
xplaining why it should be independent of �. We shall then check it by a direct calculation. The
ormal argument proceeds as follows. First one lets

P�t� = e−t�D2e−t�

o that P�0�=D2 and P�1�= P with the previous notations. Let then

Y�t� = log P�t� − log P�0� .

sing the equality �a�0�

log a =�
0

	 � 1

� + 1
−

1

� + a
�d� ,

pplied to P�t� one obtains the relation

d

dt
Y�t� = − �

0

	

�P�t� + ��−1��P�t� + P�t����P�t� + ��−1d� . �11�
ne then shows that
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d

dt
Y�t� = − 2� + �P�t�,C�t�� , �12�

here C�t� is a pseudodifferential operator �see Appendix A�. Thus one gets a similar expression

Y = Y�1� = − 2� + �
0

1

�P�t�,C�t��dt . �13�

ext one uses the expansional formula

eA+Be−A = �
0

	 �
0�t1�¯�tn�1

B�t1�B�t2� . . . B�tn� � dti,

here

B�t� = etABe−tA.

ne lets A=−s log P�0� and B=−sY. This gives an equality of the form

P−s = D−2s − s�
0

1

�−st�Y�dtD−2s

+ �
2

	

�− s�n�
0�t1�¯�tn�1

�−st1
�Y��−st2

�Y� ¯ �−stn
�Y� � dtiD

−2s,

here

�u�T� = �D2�uT�D2�−u.

ne infers from this equality and the absence of poles of order �1 in the zeta functions of the
orm Tr�QD−2s� that the terms of order n�1 in s will not contribute to the value at s=0. Thus the
ollowing should hold:

�P�0� − �D2�0� = −
1

2
�− Y

nd using �13� one gets

�P�0� − �D2�0� =�− � = 0,

s the residue vanishes on differential operators. It would take a lot more care to really justify the
revious manipulations. Instead, in the next section, we shall show by a brute force calculation
hat a4 is independent of � so that the above-mentioned identity is valid.

We thus see that in the first few terms of the spectral action, the only modification we expect
hen the operator D2 is replaced by P is to get an overall factor of e�4−n�� multiplying an�x ,D2�:

Trace�F�P�� 
 �
n=0

6

fn� d4xge�4−n��an�x,D2� + ¯ .

lso as will be shown in Appendix B, we have the identity

an�x,e−�D2e−�� = an�x,D2e−2�� = an�x,e−2�D2� .

t is easy to check that by applying the inverse transformation �→�+ln m one recovers all the m
caling factors obtained in Ref. 11. In the next section, we shall confirm this result by directly

valuating the spectral action associated with the operator P and in particular the low-energy terms
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0, a2, and a4. We will not attempt to evaluate higher order terms as these are not needed in our
nalysis.

II. DILATON AND SEELEY-deWITT COEFFICIENTS

We compare quite generally the Seeley-deWitt coefficients of an operator P0=D2 given by �1�
nd those of the rescaled operator P=e−�D2e−�. We use the rescaled metric G in the Einstein
rame, where the dilaton factor is absorbed in the metric. First we write

P = e−�D2e−� = − �G������ + A��� + B� , �14�

here

G�� = e−2�g��,

A� = e−2�A� − 2G����� ,

B = e−2�B + G��������� − ������ − e−2�A���� .

he Seeley-deWitt coefficients for an�P� are expressed in terms of E and ��� defined by �6� so
hat,

E = B − G������� + ���� − ���
� �G���� ,

�� = 1
2G���A� + ���G�� ,

��� = ���� − ���� + ���,��� .

hese relations imply that

�� = 1
2g��A

� − ��� + 1
2G�����G� .

he conformal transformations of the Christoffel connection give

���
� �G� = ���

� �g� + ���
���� + ��

���� − g��g
������ ,

���G� = e−2����g� − 2e−2�g����� .

sing these relations we finally get

�� = ̄� − 2��� , �15�

E = e−2��E + g�����
g ��

g� + �������� , �16�

here the covariant derivative ��
g is taken with respect to the metric g. It is quite striking that the

erturbation is only a scalar multiple of the identity matrix and does not involve the endomor-
hisms A� at all.

The term a0 only involves G Tr�1� which, when expressed in terms of the metric g gives
ge4�Tr�1�.
The a2 term is proportional to
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� d4xG Tr�E −
1

6
R�G�� ,

here the curvature scalar is constructed as function of the metric G. We now use �16� and the
elation

R�G� = e−2��R�g� + 6g�����
g ��

g� + �������� �17�

o obtain at the level of endomorphisms �before taking the fiberwise trace�

E − 1
6R�G� = e−2��E − 1

6R�g�� . �18�

his of course implies the required rescaling of the a2 term in the required generality, but it is
ore precise since it holds before taking the trace. We shall use this more precise form in the proof

f the invariance of the a4 term.
The term a4�P� is given by

1

16
2

1

360
� d4xG Tr ��5R2�G� − 2R���G�R���G� + 2R�����G�R�����G��

− 60R�G�E + 180E2 + 30������G��G�� � ,

here we have omitted the total derivative terms 12�−R�G�+5E�;�
� . As the modification from ̄�

o �� is Abelian �15� we get

��� = ���

nd

������G��G�� = e−4�������g��g��.

ext we group the terms

180E2 − 60ER�G� + 5R2�G� = 180�E − 1
6R�G��2,

hich yields upon using Eq. �18�

180e−4��E − 1
6R�g��2.

e are left with the terms

30������G��G�� − 2R���G�R���G� + 2R�����G�R�����G� .

e now use

30 Tr�������G��G��� = 30e−4�Tr�������g��g��� .

− 2R���G�R���G� + 2R�����G�R�����G� = − R�G�*R*�G� + 3C�����G�C�����G� .

n deriving the last relation we made use of the two identities

R*R* − R2 = R����
2 − 4R��

2 ,

C����
2 − 1

3R2 = R����
2 − 2R��

2 ,
here C���� is the conformal tensor and
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R*R* =
1

4g
����������R��

��R��
�� .

hese imply

R����
2 = 2C����

2 − R*R* + 1
3R2,

R��
2 =

1

2
C����

2 −
1

2
R*R* + 1

3R2.

he square of the conformal tensor is known to be conformal invariant

� d4xGC�����G�C�����G� =� d4xgC�����g�C�����g� .

he topological Gauss-Bonnet term is metric independent and therefore conformal invariant

� d4xGR�G�*R*�G� =� d4xgR�g�*R*�g� ,

nd this can be rewritten as

1

4
� d4x

1
g

����������R��
��R��

�� .

his shows that the a4 term has the expected invariance under the rescaling of the operator P0

P=e−�P0e
−�.

V. SPECTRAL ACTION WITH DILATON

We now use the result of the previous section to compute the spectral action with dilaton as a
unction of the rescaled metric G in the Einstein frame, where the dilaton factor is absorbed in the
etric.

The lowest term in the spectral action is given by

45

4
2 f0� d4xge4� =
45

4
2 f0� d4xG .

Note that the dimension of the bundle on which the operator is acting is 4�3�15 where the 4
s the dimension of spinors, 3 the number of generations, and 15=4�3+3 is the content of each
eneration�.

The next term in the spectral action with dilaton of the standard model is, in terms of the
riginal metric g:

3

4
2 f2� d4xge2��5

4
R�g� − 2y2H*H� . �19�

e can transform this back to the Einstein frame with metric G�� so that the curvature scalar term
as no scale factors in front of it. Using Eq. �17� with g→G and �→−� the curvature R�g� is

R�g� = e2��R�G� + 6G���− ��
G��

G� + �������� ,
nd we obtain
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� d4xge2�R�g� =� d4xG�R�G� + 6G���− ��
G��

G� + ��������

=� d4xG�R�G� + 6G���������

fter integrating by parts. The a2 term �19� thus becomes

3

4
2 f2� d4xG�5

4
R�G� +

15

2
G�������� − 2y2H�*H�� , �20�

here we have defined

H = e�H�,

o that the only appearance of the dilaton � is through its kinetic energy.
Let us pause a bit and discuss signs at this point. For a positive test function F the coefficients

f0, f2, f4 are all positive. It is important that the Einstein term �d4xGR�G� appears in �20� with
he correct sign for the Euclidean functional integral, and that the kinetic term for � namely
d4xGG�������� appears with a positive coefficient in �20�.

The next term coming from a4�x , P� is unchanged for the spectral action with dilaton, and thus
iven independently of � by Ref. 11,

f4

4
2 � d4xg� 1

32
�11R�g�*R*�g� − 18C�����g�C�����g�g��g��g��g���

+ 3y2�D�H*D�Hg�� −
1

6
R�g�H*H���

+ �g3
2G��

i G��
i + g2

2F��
� F��

� +
5

3
g1

2B��B���g��g�� + 3z2�H*H�2� ,

here we have omitted total derivatives as they only contribute to boundary terms. Let us show
hat we can rewrite this term in the following way as a function of the metric G�� by making use
f the conformal invariance of a4:

f4

4
2 � d4xG� 1

32
�11R�G�*R*�G� − 18C�����G�C�����G�G��G��G��G����

+ 3y2�D�H�*D�H�G�� −
1

6
R�G�H�*H���

+ �g3
2G��

i G��
i + g2

2F��
� F��

� +
5

3
g1

2B��B���G��G�� + 3z2�H�*H��2� .

The terms which only involve the metric are conformal by construction. The same holds for
he terms which involve the gauge fields since the Yang-Mills action is conformal. Thus we need
nly to take care of the terms that involve the Higgs fields. We have to show that the following
xpression is unchanged by g→G and H→H�;

3f4y
2

4
2 � d4xg�g��D�H*D�H −
1

6
R�g�H*H� .
o see this we first rescale the kinetic energy of the Higgs field
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gg��D�H*D�H = GG��e−2�D��e�H�*�D��e�H��

=GG���D�H�*D�H� + ���H�*D�H�

+ D�H�*H���� + H�*H�������� .

he conformal coupling of the Higgs field to the scalar curvature transforms as

−
1

6
gR�g�H*H = −

1

6
GH�*H��R�G� − 6G���������G� − �������� .

fter integrating by parts the term

� d4xGH�*H�������G�G��,

e find that all cross terms cancel, thus obtaining

� d4xg�g��D�H*D�H −
1

6
R�g�H*H� =� d4xG�G��D�H�*D�H� −

1

6
R�G�H�*H�� .

he quartic Higgs interactions are evidently scale invariant

� d4xg�H*H�2 =� d4xG�H�*H��2.

ollecting all terms, the low-energy bosonic part of the spectral action with dilaton is given by

Ib =
45

4
2 f0� d4xG +
3

4
2 f2� d4xG�5

4
R�G� +

15

2
G�������� − 2y2H�*H��

+
f4

4
2 � d4xG� 1

32
�11R�G�*R*�G� − 18C�����G�C�����G��� + 3y2�D�H�*D�H�G��

−
1

6
R�G�H�*H��� + �g3

2G��
i G��

i + g2
2F��

� F��
� +

5

3
g1

2B��B���G��G�� + 3z2�H�*H��2� .

�21�

For higher order terms one expects a scaling factor of the form e�4−n�� to be present, but
erivatives of the dilaton field � may also occur. Therefore in the Einstein frame, one does not
xpect the dilaton field � to acquire a potential. As will be discussed later, this will change when
uantum corrections are taken into account and the dilaton acquires a potential of the Coleman-
einberg type.14

Fermionic interactions take the simple form

���D��� =� d4xg�̄D� ,

here the metric g�� is used to insure hermiticity of D. We will now show that the fermions will
ot feel the dilaton. To see this we first redefine the spinors by

� = e�3/2����,
hen we have, for the parts not involving the Higgs or gauge fields,
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���D��� =� d4xGe−4�e�3/2����¯ �ce�Ec
���� +

1

4
�

ab�e��ab��e�3/2����� ,

here the rescaled vierbein is E�
a =e�e�

a . We have to express the spin connection �
ab�e� in terms

f the spin connection of the rescaled vierbein ��
ab�E�. To do this we use the equations

��e�
a − ��e�

a − �
ab�e�e�b + �

ab�e�e�b = 0,

��E�
a − ��E�

a − ��
ab�E�E�b + ��

ab�E�E�b = 0,

nd these imply that

�
ab�e� = ��

ab�E� + �e�
a e�b − e�

a e�b���� .

herefore

�cec
�� 3

2��� + 1
4�

ab�e��ab� = �ce�Ec
�� 1

4��
ab�E��ab� ,

nd the fermionic action reduces to the nice form

� d4xG ���cEc
���� +

1

4
��

,ab�E��ab���,

hich is independent of the dilaton. Finally the parts involving interactions between the fermions
nd the Higgs or gauge fields could be written in the forms

� d4xg�̄�5H� =� d4xG ���5H���,

� d4xg�̄�aea
�A�� =� d4xG ���aEa

�A���.

The fermionic interactions are

If = �Q�Dq�Q� + �L�Dl�L� ,

here

Q =�
uL

dL

dR

uR

�, ��L

eL

eR
�

nd these take exactly the same form as those without dilaton when expressed in terms of the
etric G��. Rewriting this in terms of the fermionic fields

Q� = e−�3/2��Q, L� = e−�3/2��L ,

nd the Higgs field H� we obtain

If =� d4xG�L�Dl�L� + Q�Dq�Q�� ,

11
here
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Dl� = ���
� �D� � 12 − i

2g2A�
��� + i

2g1B� � 12� � 13 �5 � ke
� H�

�5 � k*e
� H*� ��

� �D� + ig1B�� � 13
�

Dq� =�
��

� ��
�1,2�

� 13 �5 � kd
� H� �5 � ku

� H�˜

�5 � k*d
� H*� ��

� �D� +
i

3
g1B�� � 13 0

�5 � k*u
� H˜�* 0 ��

� �D� −
2i

3
g1B�� � 13

�
+ ��

� 14 � 13 � �−
i

2
g3V�

i �i� ,

nd

�� = �aEa
�,

D� = �� + 1
4��

ab�E��ab,

��
�1,2� = D� � 12 −

i

2
g2A�

��� −
i

6
g1B� � 12.

rom the previous considerations we deduce that the only effect of the dilaton on the low-energy
erms of the spectral action is that the dilaton gets a kinetic term with no other interactions. This
onfirms that all matter interactions in the above-mentioned Lagrangian are scale invariant when
xpressed in the rescaled fields G��, H�, and ��. Only the Einstein term and the dilaton kinetic
nergy are not scale invariant.

Note that the invariance of the action for the Fermions, that is the equality

���D��� = ����D������, �22�

here D� corresponds to the metric G and the fields H�, does not mean that the operators D and
� are the same. Indeed the transformation �→�� is not unitary and one has

�������� = ���e���� , �23�

hich gives the unitary equivalence

D� � e−�/2De−�/2. �24�

One might then be tempted to conclude that the square of e−�/2De−�/2 should be unitarily
quivalent to P=e−�D2e−� but this does not hold precisely because of the additional kinetic term
n the spectral action with dilaton. Indeed one can prove �Appendix C� in the general framework
f spectral triples, with a minimum amount of hypothesis, the identity

�− e2�D−2 =�− �e−�/2De−�/2�−2 +
1

2
�− �D,e���D,e��*D−4 �25�

ith D�=e−�/2De−�/2 the last term gives the canonical kinetic energy of the dilaton

1

2
�− �D����D�,��*D�−4
ith the correct sign.
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. APPLICATIONS

We have shown that the dilaton interactions of the spectral action are almost the same as the
nes proposed in the literature,2,3 the difference lies in the derivative couplings of the dilaton field.
hese were obtained by requiring the standard model matter sector to be scale invariant by

ntroducing a compensating dilaton field. The origin of the dilatational symmetry breaking are the
ass terms of the Higgs potential, and these are scaled with the dilaton field to make them scale

nvariant. In a curved space time all fields couple to gravity, and the dilaton. The proposed action
or the gravity-dilaton-Higgs sectors, in our notation, was derived to be �this expression is in the
onventions of Ref. 4 and is in Minkowski space�3,4

I =� d4xG�−
1

2�2R +
1

2
�1 +

6

�2f2�G��������+ G��D�H�*D�H� − V0�H�*H��� .

here it was shown that in curved space-time this corresponds to the Jordan-Brans-Dicke theory of
ravity. The only difference between this action and the spectral action is that the latter has the
onformal coupling

1
6R�G��H�*H��2,

hich is necessary to make the matter couplings scale invariant. A slight modification was also
roposed in the study of models of extended inflation, by also considering the possibility of
odifying the Higgs sector by taking4

e�2/f��G��D�H*D�H − e�4/f��V0�H*H� .

his differs from the spectral action by the appearance of derivative couplings of the form

G��D�H�*H���� .

t is amusing to note that this alternative proposed action is exactly the same action as the one
erived for the Connes-Lott gravitational interactions.6,10 Therefore the two models proposed in
he literature for making the Higgs sector scale invariant are the same as the interactions obtained
or the noncommutative standard model, either for the spectral action formulation, or the Connes-
ott formulation. We also note that scale invariance of the action is broken by the Einstein term
nd by the kinetic term for the dilaton. This is remarkable because it was shown that if the full
ction is scale invariant, then the couplings will not lead to a model with extended inflation.
uantum corrections and renormalization conditions break scale invariance in the matter sector of

he standard model and lead to an exponentially large hierarchy between the mass scale f where
= �1/ f�� and the electroweak scale without fine tuning. The scale f is normally of the order of

he Planck scale. The dilaton mass obtained depends on the Higgs mass, but should be constrained
o be smaller than 10−6 eV.

The noncommutative space of the standard model is obtained by taking the product of a
our-dimensional Riemannian manifold times a discrete space dictated by the symmetries of the
ilbert space spanned by the quarks and leptons. The presence of left- and right-handed fermions
rovides the intuitive picture where these fermions are placed on different sheets. The gauge fields
n the discrete dimensions are the Higgs fields, with the inverse of the distance between the sheets
nterpreted as the electroweak energy scale. This picture is similar to the RS scenario where the
our-dimensional space is embedded into a five-dimensional space as a three-brane positioned at
he points x5=0 and x5=
rc, where rc is the compactification radius. The action for the Higgs

9
ector in the RS model was obtained to be
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� d4xg�g��D�H*D�H − ���H�2 − v0
2��

=� d4xḡ�ḡ��D�H�*D�H� − ���H��2 − e−2krc
v0
2�� ,

here

g�� = e−2krc
ḡ��,

H� = e2krc�H ,

n the visible sector located at x5=
rc. The physical mass scales are set by the symmetry breaking
cale v=e−krc
v0 so that m=m0e

−krc
. The bare symmetry breaking scale v0 is taken to be of the
rder of the Planck scale at 1019 GeV and the scaling factor ekrc
 tuned to be of the order of 1015

o that the low-energy masses are of the order of TeV. The hierarchy problem is only partially
olved in a technical sense because the tuning could not be maintained at the quantum level. A
hoice of krc=10 can generate the large scale 1015 GeV. Comparing the Higgs sectors in the RS
ction with that in the spectral action we immediately see that they are identical provided we
dentify the expectation value of the dilaton field ��� with krc
.

I. CONCLUSIONS

The Dirac operator being a differential operator has the dimensions of mass. The spectral
ction in noncommutative geometry is defined as a function of a dimensionless operator which is
aken to be the Dirac operator divided by some arbitrary large mass scale. The arbitrariness of the
ass scale naturally suggests to make this scale dynamical by introducing a dilaton field in the
irac operator of the noncommutative space defined by the standard model. To understand the

ppearance of the mass scales of the spectral action, we evaluated all interactions of the dilaton
ith the matter sector in the standard model. We found the remarkable result that the low-energy

ction, when evaluated in the Einstein frame, is scale invariant except for the Einstein-Hilbert term
nd the dilaton kinetic term. The resulting model is almost identical to the one proposed in the
iterature.2–4 The main motivation in these works is the observation that the standard model is
lassically almost scale invariant, with the symmetry only broken by the mass term in the Higgs
otential. The symmetry is restored by the use of a dilaton field. When coupled to gravity, neither
he dilaton kinetic energy nor the scalar curvature are scale invariant, leading to a Jordan-Brans-
icke theory of gravity. The vacuum expectation value of the Higgs field is then dependent on the
ilaton and is classically undetermined. Quantum corrections break the scale invariance of the
calar potential and change the vacuum expectation value of the Higgs field. The dilaton acquires
large negative expectation value given by −m and a small mass. The hierarchy in mass scales is
ue to the large Yukawa coupling of the top quark. The dilaton expectation value can range
etween the GUT scale of 1015 GeV to the Planck scale of 2.4�1018 GeV. The hierarchy in mass
cales is not possible if the dilaton kinetic energy and the gravitational action were scale invariant.
t is remarkable that all the essential features of building a scale invariant standard model inter-
ctions to generate a mass hierarchy and predict the Higgs mass are naturally included in the
pectral action without any fine tuning. It is worth mentioning that the scalar potential of exactly
he same model considered here was shown to admit extended inflation and a metastable ground
tate. It also evades the problems of the original version of extended inflation.

The vacuum expectation value of the dilaton field is determined by getting contributions from
lassical and radiative corrections to the vacuum energy density. One does not obtain naturally a
anishing cosmological constant. There are two possibilities to cure this problem. The first is to
etermine the low-energy value of the cosmological constant as determined by the renormalization

roup equations and then fine tune this value to cancel the contributions of the Coleman-Weinberg
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otential. The second possibility to cure this problem is to fix the total invariant volume. This
estricts general relativity to the form considered in Ref. 15, where the volume form is held fixed.
here it was shown that this picture is consistent both at the classical and quantum levels.16–18

his fixes the total invariant volume and eliminates the scalar mode of the metric tensor g��. This
s done at the expense of introducing the dilaton mode �.3 In noncommutative geometry the
olume is fixed by a Hochschild cycle c whose compatibility with the Dirac operator D is a basic
onstraint on the Hilbert space representation giving the metric.19 One applies the representation to
onomials


�f0, f1, f2, f3, f4� = f0�D, f1��D, f2��D, f3��D, f4� ,

nd requires that when applied to the Hochschild cycle c it gives


�c� = �5.

he cosmological constant becomes determined by the initial conditions of the theory.
To summarize, we have shown that the spectral action includes naturally a dilaton field which

uarantees the scale invariance of the standard model interactions, and provides a mechanism to
enerate mass hierarchies. This is in addition to the advantages obtained previously in Ref. 11
hich are now well known.12 There it was shown that all the correct features of the standard
odel are obtained without any fine tuning, such as unification with gravity, unification of the

hree gauge coupling constants and relating the Higgs to the gauge couplings. These results should
e taken to support the idea that all the geometric information about the physical space is captured
y the knowledge of the Dirac operator of an appropriate noncommutative space.
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PPENDIX A

In this appendix we shall prove formula �12�. Given an elliptic positive invertible second
rder operator Q and a differential operator T we use the notation ��T�= �Q ,T� and the following
dentity �for n�0�:

Q−1T = �
0

n

�− 1�k�k�T�Q−k−1 + �− 1�n+1Q−1�n+1�T�Q−n−1. �A1�

e apply this to Q= P�t�+�, T=�P�t�+ P�t��. The operator �k�T� is independent of � and is a
ifferential operator of order �2+k since �k��� is at most of order k. Thus the operator
k�T�Q−k−1 is pseudodifferential of order at most 2+k−2�k+1�=−k and the remainder in �A1� is
f order at most −n−1. This shows that when working modulo operators of order less than −n we
ave

�P�t� + ��−1T � T�P�t� + ��−1 + �
1

n

�− 1�k�k�T��P�t� + ��−k−1

o that

�P�t� + ��−1T�P�t� + ��−1 � T�P�t� + ��−2 + �
1

n

�− 1�k�k�T��P�t� + ��−k−2.
ut one has
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�
1

n

�− 1�k�k�T��P�t� + ��−k−2 = �P�t�,A�t,��� ,

here

A�t,�� = �
1

n

�− 1�k�k−1�T��P�t� + ��−k−2.

hus integrating from �=0 to 	 and using �11� we get that, modulo operators of order less than
n,

d

dt
Y�t� � − �

0

	

��P�t� + P�t����P�t� + ��−2d� + �P�t�,A�t��

here

A�t� = −�
0

	

A�t,��d� .

his thus gives

d

dt
Y�t� � − ��P�t� + P�t���P�t�−1 + �P�t�,A�t�� = − 2� + �P�t�,C�t��, C�t� = A�t� − �P�t�−1.

t is important to note that all of the previous manipulations hold in the general context of spectral
riples with simple dimension spectrum. Moreover one can prove fairly strong properties of the
pectral action in this general context.

PPENDIX B

In this appendix we shall prove the identity

an�x,P� = an�x,P1� = an�x,P2� ,

here P=e−�D2e−� and P1=D2e−2�, P2=e−2�D2. It can then be used to simplify some of the
omputations of Sec. III.

One simply writes

P = e−�P1e
�

o that

Trace �P−s� = Trace �P1
−s� .

rom this the identity an�x , P�=an�x , P1� immediately follows.
One can also do a direct check as follows, one first writes

P = − �G��I���� + A��� + B� ,

P1 = − �G��I ���� + A1
��� + B1� ,
here
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G�� = e−2�g��,

B = e−2�B + G��������� − ������ − e−2�A���� ,

A� = e−2�A� − 2G����� ,

A1
� = e−2�A� − 4G����� ,

B1 = e−2�B + 2G���2������ − ������ − 2e−2�A���� .

hese relations imply

A1
� = A� − 2G����� ,

B1 = B + G��������� − ������ − A���� .

e also have

�1� = 1
2G���A1

� + ���G��

=�� − ��� ,

o that

E1 = B1 − G������1� + �1��1� − ���
� �G��1��=E .

imilarly

�1�� = ���

nd the equality of the Seely-de Witt coefficients follow from the fact that these depend only on E,

�� and the curvature tensors are functions of the same metric G��.

PPENDIX C

In this appendix we shall show �25� and the appearance of the kinetic term in the general
ramework of spectral triples using the following manipulations. One has

�− �e−�/2De−�/2�−2 =�− e�D−1e�D−1. �C1�

lso

D−1e� = e�D−1 − D−1�D,e��D−1, �C2�

hich allows to write �C1� as

�− �e−�/2De−�/2�−2 =�− e2�D−2 −�− e�D−1�D,e��D−2, �C3�

nd using �C2� again,
he first of the two terms vanishes since the residue is a trace. The second is given by
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−�− D−1�D,e��D−1�D,e��D−2 =�− �D,e��2D−4 + R , �C4�

here R is the remainder

R = −�− D−2�D2,e��D−1�D,e��D−2.

et us show that

R = −
1

2
�− �D2,e��2D−6. �C5�

o see this write

R = −�− D−2�D2,e��DD−2�D,e��D−2, �C6�

nd note that the commutator of D with �D2 ,e�� is equal to �D2 , �D ,e��� and has order 1 so that

hus moving D to the left and using the trace property of the residue one gets

R = −
1

2
�− �D2,e��D−2�D�D,e�� + �D,e��D�D−4,

nd one obtains �C5�. Summarizing, we have shown the equality

hus to obtain �C1� one just needs to prove the equality

�− �D,a�2D−4 =�− �D2,a�2D−6, �C7�

nd apply it to a=e�. One can check �C7� directly in the Riemannian case by computing the
esidue as the integral of the principal symbols on the unit sphere bundle. The factor 22 from the
oisson brackets �D2 ,a� is compensated by the integral of ��

2 on the sphere which gives 1
4 . In the

eneral framework of spectral triples one gets �C7� from the general hypothesis

ote that the commutator �D ,e�� is skew adjoint and in particular �D ,e��*=−�D ,e��. Thus we get
he correct sign in

�− e2�D−2 =�− �e−�/2De−�/2�−2 +
1

2
�− �D,e���D,e��*D−4. �C8�
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lebsch-Gordan coefficients for U„8…¤O„8…¤SU„3…
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The group chain U�8��O�8��SU�3� plays an important role in many particle
systems whenever the fundamental particles have eight degrees of freedom. As a
particular example, the systems of many gluons and pairs of quark-antiquark are
discussed, which can be coupled to a flavor octet. In order to determine the explicit
structure of states and decay probabilities, the calculation of the Clebsch-Gordan
coefficients �CGC� of this group chain is indispensable. In this contribution, the
polynomial states of the U�8� chain are constructed and also the isoscalar factors of
the CGC’s. Tables of isoscalar factors are presented. The method shown serves as
an example for higher rank groups. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2207720�

. INTRODUCTION

Clebsch-Gordan coefficients �CGC� play an important role in physics. The group structure
elated to it depends on the particular problem to consider. For example, in the case of angular
omentum, spin or total spin of a many particle system, the underlying structure is the group
U�2�. Knowing the CGC serves to calculate matrix elements of tensors of SU�2�, which are, for
xample, related to interactions in a Hamiltonian and/or to transition operators. The fundamental
roup involved �here the SU�2�� depends on the basic degrees of freedom of the lowest nontrivial
rreducible spin representation �irrep�, which is spin 1

2 . There are other types of CGC, which are
elated to different basic degrees of freedom. As a further example we mention the SU�3� group.
t appears in nuclear physics as the symmetry group of the harmonic oscillator in three dimensions
nd it defines the fundamental structure of the shell model.1 Much effort has been involved to
btain these CGC’s. The culmination is the work presented in Refs. 2–4 where up to recoupling
oefficients are given, equivalent to the 6-j and 9-j symbols of SU�2�.5 The SU�3� CGC’s are also
sed in particle physics, where the meaning of SU�3� is different and rather related to flavor or
olor.

In order to obtain the CGC’s, in the example of SU�2� and SU�3� the recursion relations,
btained from the algebraic properties of the Lie algebra, were exploited. The number of these
ecursion relations is given by the number of generators minus the rank of the group. For SU�2�
t is 2 while for SU�3� it is 6, still a manageable number. However, for groups like U�8�, of interest
ere, this number of recursion relations raises to 56. Thus, alternative procedures are called for.

Now, why to use an U�8� group? The group U�8� appears whenever eight degrees of freedom
re involved. Of course, the main motivation is the current need of this group in a particular,
hough very important, area in physics, namely particle physics. The description of many particle
tate becomes more important since the recognition that a hadron state is not just a three-quark
tate �for baryons�, a quark-antiquark state �for mesons� or a two gluon state �for low-lying
lueballs�, i.e., there is an additional background of pairs of quark-antiquark and gluons. The spin
roblem of the nucleon6 is one hint in this direction. It implies the urgent need to obtain the CGC’s
n higher rank groups. Simple SU�3� coupling coefficients, related, for example, to color and/or
avor, will not suffice. The SU�3� CGC is expressed in terms of a product of an SU�2� CGC and
n isoscalar factor. This will be similar for U�8��O�8��SU�3�, i.e., the CGC will be expressed

n terms of already known SU�3� CGC’s and isoscalar factors. The U�8� group also appears in
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any gluon systems. Gluons have eight color degrees of freedom7 and thus the color part can be
escribed by a U�8� group. Because the gluon has spin one it has three mathematical spin degrees
f freedom �to distinguish them from the physical ones which only involve the transverse modes�,
.e., a many gluon system can be described by U�24��U�8� � U�3�,8 where the U�3� refers to the
pin part and a many gluon state must be in the complete symmetric irreducible representation �N�
f U�24�. Because �N� is symmetric, the color and spin part are intimately connected due to
omplementarity.9 The U�8� group can be reduced to the color SU�3� group and further the U�3�
o the spin SO�3� group, with integer spins only. The group reduction is well known and given in
efs. 8 and 10. The construction of states is less known. For symmetric irreps, the first attempts
re presented in Refs. 11 and 12, though, the SU�3� subgroup considered in Ref. 12 is not the color
roup.

The symmetric irreps play a particular important role in a system of many quark-antiquark
airs, as in the model presented in Refs. 13–15, where an effective model of QCD is proposed
onsidering many quark and antiquark states. A general classification for many quark and anti-
uark states in the s-orbital level was given. In order to simplify calculations, pairs of quark-
ntiquark were mapped to bosons.16 There are four different types of bosons corresponding to
uark-antiquark pairs with flavor �� ,�� ��=0,1� and spin S �S=0,1� denoted by �� ,S�. The cases
0 ,0� and �0,1� correspond to a one- and three-dimension harmonic oscillator, known from text-
ooks. The case �1,0� corresponds to the eight-dimensional harmonic oscillator, i.e., to the U�8�
roup with just a symmetric irrep. The last case �1,1� is mathematically identical to the many
luon problem and allows up to three rows in the Young diagram of U�8�. The same structure
ppears in any model whose basic ingredients are quark-antiquark and/or gluon pairs.

Restricting to symmetric irreps, coupling coefficients are still important in obtaining informa-
ion on decay properties and for the coupling of two systems. Though, so far we mainly mentioned
osonic systems, the isoscalar factors, calculated in this contribution, also serve for the equivalent
ermion pairs.

Another motivation is to decide whether the pentaquark17–21 exists in the model or not. A first
stimate within the schematic model, where we have information about the distribution of quark-
ntiquark pairs in the pentaquark and in the residual particles, indicates that the pentaquark is just
he sum of a nucleon and a kaon or at most a molecule in these particles, i.e., the width of the state
hould be very large and a peak should not be seen, confirmed in part by other experiments and
lso criticized in Ref. 22 �and references therein�. If this is the case, it can only be decided through
n explicit calculation, using U�8� CGC’s.

Of course, the immediate application to topics in particle physics is only one possible appli-
ation, used here as an example.

Does one also need the explicit form of the states defined by the U�8� group? The answer is
hat they are necessary for the calculation of CGC’s. In the calculation of CGC’s one usually
xploits the algebraic properties of a group obtaining recursion relations, as illustrated in Ref. 5 for
he SU�2� group and in Refs. 2–4 for the SU�3� group. However, for higher rank groups these

ethods get more involved and unpractical. In Refs. 23 and 24 a more practical procedure was
roposed for the U�5��SO�5��SO�3�, playing an important role in the geometric model of the
ucleus.1 There, the polynomial expressions of the U�5� states were constructed explicitly using
lementary tensors in terms of boson creation operators. The Clebsch-Gordan coefficients were
btained by direct calculation of the integrals involving the polynomial states, with the help of
lgebraic routines. The basic idea for the construction of the polynomials were borrowed from
efs. 25 and 26. In conclusion, the explicit knowledge of the polynomial states is of great use.

Thus, a first and important step forward towards the construction of many particle states is the
xplicit construction of these states in the symmetric irrep of U�8�. The CGC’s are obtained as
ntegrals over a product of three polynomials. The first steps of the procedure were presented in
ef. 27 where the basic ingredients are illustrated for the case of the well investigated group chain
U�3��SO�3�.

In this contribution, explicit expressions of the polynomial states up to eight particles and

ables of U�8� isoscalar factors are presented, which are useful for models treating, for example,
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any gluon and fermion pair systems, as outlined above. These tables are of great use in deter-
ining the structure and the decay properties of a many particle state, like hadrons or a system of
any quarks, antiquarks and gluons, and the quark-gluon plasma.

The paper is structured as follows: In the second section we give the classification and the
xplicit expressions of the states up to eight particles in the symmetric representation of
�8��O�8��SU�3��SU�2� � U�1� in terms of the polynomials in boson creation and annihila-

ion operators. We show how to obtain states with good seniority. In Sec. III the isoscalar factors
re calculated. In Sec. IV conclusions are drawn.

I. THE HIGHEST WEIGHT STATES IN SU„3… OF U„8…¤O„8…¤SU„3…¤SU„2…‹U„1…

The particles under consideration have eight degrees of freedom and belong to the SU�3� irrep
1 ,1�.

For symmetric irreps, the relevant group chain is

U�8� � O�8� � SU�3� � U�1� � SU�2�

�N� ��000� ��,�� Y T, Tz, �1�

here Y is the hypercharge, T the isospin, and Tz its third component. The N is the total number
f bosons, � the seniority �number of bosons not coupled in pairs with flavor �0,0��. The CGC’s
f the chain SU�3��U�1� � SU�2� are well known and available.28,29

The classification of the states, described by the group chain U�8��SU�3�, is immediately
btained, using Ref. 10. The reduction of U�8� to O�8� is obtained recursively: For a given N the
ossible values of the seniority are �=N ,N−2, . . . ,0 or 1. When the content up to a given
eniority �=N is known, the one for �= �N+2� is obtained, determining the content of the irrep
N+2� of U�8� and subtracting the SU�3� content of all seniorities up to �=N. The SU�3� content
f O�8� for �=0 is �0,0� and for �=1 it is �1,1�, which can be used as initial conditions. In Table
we give the list up to seniority eight.

TABLE I. Content of SU�3� irreps for a given seniority. When a SU�3� irrep
appears more than once �multiplicity larger than 1� it is indicated by an
upper index.

� �� ,��

0 �0,0�
1 �1,1�
2 �1,1�+ �2,2�
3 �0,0�+ �3,0�+ �0,3�+ �2,2�+ �3,3�
4 �1,1�+ �2,2�+ �4,1�+ �1,4�+ �3,3�+ �4,4�
5 �1,1�+ �2,2�+ �4,1�+ �1,4�+ �3,3�+ �5,2�+ �2,5�+ �4,4�

+ �5,5�
6 �0,0�+ �3,0�+ �0,3�+ �2,2�+ �3,3�2+ �6,0�+ �0,6�+ �5,2�

+ �2,5�+ �4,4�+
�6,3�+ �3,6�+ �5,5�+ �6,6�

7 �1,1�+ �2,2�+ �4,1�+ �1,4�+ �3,3�+ �5,2�+ �2,5�+ �4,4�2

+ �7,1�+ �1,7�+
�6,3�+ �3,6�+ �5,5�+ �7,4�+ �4,7�+ �6,6�+ �7,7�

8 �1,1�+ �2,2�+ �4,1�+ �1,4�+ �3,3�+ �5,2�+ �2,5�+ �4,4�2

+ �7,1�+ �1,7�+
�6,3�+ �3,6�+ �5,5�2+ �8,2�+ �2,8�+ �7,4�+ �4,7�+ �6,6�

+ �8,5�+ �5,8�+
�7,7�+ �8,8�
The generators of U�8� are given by
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CYTT3

�� = �b†
� b�YTTz

�� , �2�

here � is a short-hand notation for �� ,�� and � is a multiplicity label which is 1 except for the
rrep �= �1,1� where it obtains values 1 and 2. For this case, the value �=1 refers to the antisym-

etric coupling and �=2 to the symmetric coupling.30 The possible values of � are �0,0�, �2,2�,
nd �1,1�2 for the symmetric and �3,0�, �0,3�, and �1,1�1 for the antisymmetric coupling. The
ndex �YTTz� can be linearized to � as defined in Table II, which is of use in the further discussion.

The generators of O�8� are given by the coupling to the antisymmetric irreps �, implying 28
enerators for the algebra of O�8�. The generators of the SU�3� subgroup are obtained, restricting
he � to �1,1�1.

The Lie algebra for the generators �2� is given by

�C��
���,C�

��� = �− 1�sign��0,�0�+sign��,��+�max
��,��+�+�−��1 − �− 1�sign��,��+sign���,���+sign��0,�0��

� �
�max

�max
��0,�0�

�
��0,�0��0

�− 1��max
��0,�0�−�0 �

��=1

�max

�− 1��max−���dim��,��
8

� ���,���,���,��������0,�0��0	��

�U���0,�0��1,1���,���1,1�;�1,1��0����,���������b†
� b��0

�0��0,�0�. �3�

he �max
��0,�0� refers to the multiplicity in the coupling �1,1� � �1,1�→ ��0 ,�0�, the �max

��,�� to the
ultiplicity in the coupling �1,1� � �1,1�→ �� ,��, �max to �� ,�� � ��� ,���→ ��0 ,�0�, sign�� ,��

o the symmetry property of the �1,1� � �1,1�→ �� ,�� under exchange of the first two irreps in
he GCG �symmetric or antisymmetric� and U�¯� is the U-coefficient, whose definition can be
ound in Ref. 30.

As a particular case, the algebra for the subgroup SU�3�, which is a subgroup of O�8�, is given
y

�C��
1�1,1�,C�

1�1,1�� = �
�0

��1,1���,�1,1����1,1��0	1�b†
� b��0

�1,1�1. �4�

In terms of the standard notation of the SU�3� generators,31 the relation to the C�
1�1,1� of Eq. �2�

s �T0=Tz�

T± = ± �6�b†
� b�01±1

1�1,1�, T0 = − �3�b†
� b�010

1�1,1�,

V± = ± �6�b†
� b�±1�1/2�±�1/2�

1�1,1� ,

�5�
U± = �6�b†

� b�1�1,1� ,

TABLE II. Linearization of the index �YTTz� to �.

� Y T Tz

1 0 1 1
2 1 1

2
1
2

3 −1 1
2

1
2

4 0 1 0
5 0 0 0
6 1 1

2 − 1
2

7 −1 1
2 − 1

2

8 0 1 −1
±1�1/2���1/2�
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Y = − 2�b†
� b�000

1�1,1�.

In the next step we express an arbitrary tensor of U�8� in terms of a product of powers of
elementary” tensors, which are called elementary couplings �epd’s�25,26 �sometimes also called
ntegrity basis�. The origin of this name is that any tensor of a given order can be expressed in
erms of products of powers in these epd’s. The epd’s are basic tensors each coupled to the

aximum weight in SU�3�. Because these elementary tensors are of maximum weight in SU�3�,
ny product of two or more of these tensors result again in a tensor of maximum weight in SU�3�,
n the same way two tensors with spin j1 and j2 with maximal projection, i.e., m1= j1 and m2

j2, result in a new tensor with spin j= j1+ j2 and projection m= j. Products of powers in these
pd’s generate U�8� states with quantum numbers N and �� ,�� in the maximum weight state of
U�3�. One must take care that the list of epd’s is complete, checking if all irreps of U�8� can be
ritten in terms of them. If one state is missing, a further epd must be added.

In Ref. 11 a procedure is developed how to obtain these epd’s using generating functions.
lease consult this reference for more details and further references. This method was applied
uccessfully to various areas of physics, like the geometric collective model1,25,26 and in Ref. 11
ore possible applications are given, like the problem we are interested in this contribution. In
ef. 11 the following epd’s �sometimes denoted as integrity basis� where obtained using the
ethod of generating functions �see Eq. �16� of Ref. 11�. The epd’s are given by

A = b011
† ,

B = �b†
� b†�000

�0,0�,

C = �b†
� b†�011

�1,1�,

�6�
D = �b†

� �b†
� b†��1,1��000

�0,0�,

E = �b†
� �b†

� b†��1,1��1�3/2��3/2�
�3,0� ,

F = �b†
� �b†

� b†��1,1��−1�3/2��3/2�
�0,3� ,

here the coupling of two boson creation operators must be always symmetric, otherwise it would
ive zero due to the symmetry properties of the CGC. These are expressions obtained by coupling
he definite SU�3� tensors b�

† to new tensors using the SU�3� CGC’s.
A pedestrian way to look at it, is to ask: How many basic tensors one needs to construct all

ossible state polynomials which are in the maximum weight in SU�3�? Table I is here for
ssistance: For a given number of bosons N the SU�3� content is obtained by summing the
eniority content for �=N ,N−2, . . ., 0 or 1. For N=1 we need a tensor with the SU�3� structure
1,1�, which is just A. However, powers of the type An1 gives only polynomials with the SU�3�
rrep labels �n1 ,n1�. Inspecting Table I we see that for N=2 the SU�3� content is �0,0�+ �1,1�
�2,2�, implying that we also need tensors with the SU�3� labels �0,0� and �1,1�, which gives us

he tensors B and C. The irrep �2,2� is presented by A2. Powers and products ofA, B, and C are
till not sufficient: For N=3 the SU�3� content is given by �0,0�+ �3,0�+ �0,3�+ �1,1�+ �2,2�
�3,3�. The states with �3,3�, �2,2�, and �1,1� are, respectively, presented by A3, AC, and AB.
e note the need of tensors with SU�3� labels �0,0�, �3,0�, and �0,3�, which are just the D, E, and
tensors. Continuing to larger N one notes that all other polynomial states are obtained by the

roduct of powers in these basic tensors. An ambiguity, however, arises when the product of the
ensors E with F or powers of C3 are considered. For example, for N=6 and the SU�3� irrep �6,3�
here are the following possible representations, namely FA3 and EA3, though, �6,3� appears only

nce. This will be discussed in what follows.
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A maximum weight state �in SU�3�� is a monomial in these epd’s, where according to Ref. 11
he epd C appears only in powers of 0, 1 or 2, i.e., the C3 can be expressed as a linear combination
n the other epd’s. Instead of choosing C3 as dependent, the E and F can be used as dependent
pd’s. These two epd’s satisfy a relation which permits the appearance of powers in E or F only.
he relation of the product EF to the other epd’s is given by

EF = −
1

6
�15

2
C3 +�3

5
A2BC −

2
�15

A3D , �7�

.e., any product of EF can be expressed in terms of the other epd’s, implying that either only
owers in E or F may appear. This relation can also be used to express third powers of C in terms
f the other epd’s, as is suggested in Ref. 11. We take the choice �7� as also was done in Ref. 12.

Choosing E and F as dependent epd’s, there are two types of polynomials, one with ��
3k ,�� and the other with �� ,�+3k�, respectively, i.e.,

En5Dn4Cn3Bn2An1�0 	 , Fn5Dn4Cn3Bn2An1�0 	 , �8�

hich now covers all possible irreps of U�8�, as proven in Ref. 11. Fixing the total number of
uanta N, the � and � for the first case �only powers of E appear�, we obtain the following relation
etween the powers of the monomial:

N = n1 + 2n2 + 2n3 + 3n4 + 3n5,

� = n1 + n3 + 3n5, �9�

� = n1 + n3.

These relations are obtained, applying the number operator to the polynomial state, taking into
ccount the order of the tensors in the creation operators and by noting that the tensors A, C are
n the maximum weight and transform as �1,1�, while E transforms as �3,0�, which is also in the

aximum SU�3� weight.
Similar relations hold when only powers of F appear

N = n1 + 2n2 + 2n3 + 3n4 + 3n5,

� = n1 + n3, �10�

� = n1 + n3 + 3n5.

Up to now, the polynomials have no definite seniority �, the quantum number of the O�8�
roup. This is achieved requiring that the application of

B̄ = �b � b�000
�0,0� �11�

n a polynomial in terms of the monomials of Eq. �8�, gives zero �no pairs are contained, see, e.g.,
efs. 25 and 26�. This leads to the polynomials which have a seniority �=N. Explicitly, the
ondition reads

B̄PN=���,���A,B,C,D,E�F���0 	 = 0, �12�

here the polynomial has the following structure for the case when only powers of E appear

P1 = E��−��/3 �
n1n2

cn1n2
An1Bn2C�−n1D�N−�−�+n1−2n2�/3, �13�
nd similar when only powers of F appear
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P2 = F��−��/3 �
n1n2

cn1n2
An1Bn2C�−n1D�N−�−�+n1−2n2�/3. �14�

Each of these polynomials we will abbreviate by

P = �
n1n2

cn1n2
�n1n2 	 , �15�

here we omitted the labels �� ,�� and applied the operators on the vacuum, resulting in a

et-state. Applying from the left �n1�n2� � B̄, with n1�+n2�+1=n1+n2 and the same �� ,�� on both
ides, we arrive at the defining equation for the coefficients cn1n2

,

�
n1n2

cn1n2
�n1�n2� + 1�n1n2	 = 0. �16�

he overlaps �n1�n2�+1 �n1n2	 in the sum are calculated. How to determine the overlaps is described
n more detail in Sec. III. Having obtained the overlaps, the above equation is solved numerically,
eading in this way to maximal weight states in SU�3� with good seniority and N=�. The state
ith N	� is depicted below in Eq. �32�.

In Tables III–VIII we give a list of all polynomials up to eight bosons, with the additional
estriction of N=�. In case there is more than one state, an additional multiplicity index is
ssigned, called k. Only numerical values are given, though, most of the numbers listed in the
ables can be expressed as square roots of rational numbers. However, when more than one state
or a given seniority and SU�3� irrep �� ,�� appears, a Schmidt orthogonalization procedure is
pplied, yielding only simple numbers for the first state but in general real numbers for states with
higher index in k. In calculations within the models of Refs. 8, 13, and 14 no more than six

osons are needed.
Up to now, only highest weight states in SU�3� were considered. In the highest weight of the

TABLE III. List of the polynomial coefficients with definite seniority for
�=0 until �=4. For the coefficients only numerical values are given. They
can be expressed in terms of square roots of rational numbers. However, for
larger N there are cases where this cannot be done �see comments in text�,
which is the reason for this presentation. The powers of all epd’s can be
deduced using Eqs. �13� and �14�, the value of the SU�3� irrep and the
numbers of n1, n2 listed.

� �� ,�� n1 n2 State No. k cn1n2

0 �0,0� 0 0 1 1
1 �1,1� 1 0 1 1
2 �2,2� 2 0 1 0.707 106 78
2 �1,1� 0 0 1 0.707 106 78
3 �3,3� 3 0 1 0.408 248 29
3 �2,2� 1 0 1 0.597 614 31
3 �3,0� 0 0 1 0.527 046 28
3 �0,3� 0 0 1 0.527 046 28
3 �0,0� 0 0 1 0.223 606 80
4 �4,4� 4 0 1 0.204 124 15
4 �3,3� 2 0 1 0.372 678 00
4 �4,1� 1 0 1 0.372 678 00
4 �1,4� 1 0 1 0.372 678 00
4 �2,2� 0 0 1 0.289 318 78
4 �2,2� 2 1 1 −0.019 287 92
4 �1,1� 0 1 1 0.031 497 04
4 �1,1� 1 0 1 −0.195 180 02
rrep �� ,�� the value of the hypercharge and the third component of the isospin is given by
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�−�� /3 and ��+�� /2,31 respectively. A state with a lower weight can be reached via the appli-
ation of T−


U+
�V−

�. When the weight of a state is given by �Y ,T� and the difference to the highest
eight is −Tz, for the third component of the isospin, and +Y for the hypercharge, the expo-
ents 
, �, and � fulfill the relations

Tz = 
 + 1
2 �� + ��, Y = � − � . �17�

s can be seen, there is in general more than one possibility. The final state reached has only a
efinite isospin when � or � is zero. In general, the construction of the states with definite
sospins, for a fixed weight Y and Tz must still be performed.

For the construction of states with a definite isospin, the overlap of the states

TABLE IV. The same as in Table III, but now for �� 5.

� �� ,�� n1 n2 State No. cn1n2

5 �5,5� 5 0 1 0.091 287 09
5 �4,4� 3 0 1 0.194 624 74
5 �5,2� 2 0 1 0.204 124 15
5 �2,5� 2 0 1 0.204 124 15
5 �3,3� 1 0 1 0.220 479 28
5 �3,3� 3 1 1 −0.012 598 82
5 �4,1� 0 0 1 0.208 333 33
5 �1,4� 0 0 1 0.208 333 33
5 �2,2� 1 1 1 0.034 580 21
5 �2,2� 2 0 1 −0.125
5 �1,1� 0 0 1 0.109 108 95
5 �1,1� 1 2 1 −0.003 521 48

TABLE V. The same as in Table III, but now for �� 6.

� �� ,�� n1 n2 State No. cn1n2

6 �6,6� 6 0 1 0.037 267 80
6 �5,5� 4 0 1 0.089 514 36
6 �6,3� 3 0 1 0.096 225 04
6 �3,6� 3 0 1 0.096 225 04
6 �4,4� 2 0 1 0.125 629 73
6 �4,4� 4 1 1 −0.006 281 49
6 �5,2� 1 0 1 0.144 337 57
6 �2,5� 1 0 1 0.144 337 57
6 �6,0� 0 0 1 0.107 582 87
6 �0,6� 0 0 1 0.107 582 87
6 �3,3� 0 0 1 0.070 812 72
6 �3,3� 2 1 1 0.
6 �3,3� 3 0 1 −0.029 254 03
6 �3,3� 0 0 2 0.044 592 127
6 �3,3� 2 1 2 −0.028 629 62
6 �3,3� 3 0 2 0.060 427 62
6 �2,2� 0 1 1 0.010 228 96
6 �2,2� 1 0 1 −0.084 515 43
6 �2,2� 2 2 1 0.002 045 79
6 �3,0� 0 0 1 0.070 429 52
6 �0,3� 0 0 1 0.070 429 52
6 �0,0� 0 0 1 0.024 397 50
6 �0,0� 0 3 1 −0.000 508 28
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�N�k��,��
�� 	 = T−

U+

�V−
��hw 	 = �
�� 	 �18�

ust be determined, where hw is an abbreviation for “highest weight” and in the last line a
hort-hand notation for the state is given. This overlap is directly obtained using the commutation
roperties of the operators involved. The final result is

�
������
��	

=

 ! 
!�� ! � ! �!�� ! �� + � − 
 − � − � + 
�� ! �� + �� − ��!

�� − �� ! �� + � − �� ! �� − � − �� + ��!

� �
k=max�0,�−���

min�
�,�,��
�� − � + k� ! �� + � − k�!

k ! �
� − k� ! �� − k� ! �� + � − 
 − � − � + k� ! ��� − � + k� ! �� − k�!
.

�19�

TABLE VI. The same as in Table III, for �� 7.

� �� ,�� n1 n2 State No. cn1n2

7 �7,7� 7 0 1 0.014 085 90
7 �6,6� 5 0 1 0.037 267 80
7 �7,4� 4 0 1 0.040 662 50
7 �4,7� 4 0 1 0.040 662 50
7 �5,5� 3 0 1 0.060 657 70
7 �5,5� 5 1 1 −0.002 695 90
7 �6,3� 2 0 1 0.076 072 58
7 �3,6� 2 0 1 0.076 072 58
7 �7,1� 1 0 1 0.062 113 00
7 �1,7� 1 0 1 0.062 113 00
7 �4,4� 1 0 1 0.047 921 22
7 �4,4� 3 1 1 0.
7 �4,4� 4 0 1 −0.014 847 85
7 �4,4� 1 0 2 0.036 066 36
7 �4,4� 3 1 2 −0.016 830 97
7 �4,4� 4 0 2 0.027 936 88
7 �5,2� 0 0 1 0.055 170 93
7 �5,2� 2 1 1 −0.002 452 04
7 �2,5� 0 0 1 0.055 170 93
7 �2,5� 2 1 1 −0.002 452 04
7 �3,3� 1 1 1 0.010 594 03
7 �3,3� 2 0 1 −0.049 236 60
7 �3,3� 3 2 1 0.000 926 98
7 �4,1� 0 1 1 0.004 910 46
7 �1,4� 1 0 1 −0.045 643 55
7 �1,4� 0 1 1 0.004 910 46
7 �4,1� 1 0 1 −0.045 643 55
7 �2,2� 0 0 1 0.033 785 15
7 �2,2� 1 2 1 −0.001 453 88
7 �2,2� 2 1 1 −0.001 501 56
7 �1,1� 0 1 1 0.004 066 25
7 �1,1� 1 0 1 −0.018 898 22
7 �1,1� 1 3 1 0.000 262 48
                                                                                                            



S
t
v
n

w
o

w

w
−

063505-10 I. Sánchez-Lima and P. O. Hess J. Math. Phys. 47, 063505 �2006�

                        
tates with definite isospin are obtained by diagonalizing the operator T2=T+T−+Tz�Tz−1� within
he states given above. Note, however, that �
��	 are not orthogonal with respect to different
alues of 
, �, and �. The overlap is given in �19�. The most practical method is to solve
umerically the equation

�

�����

�
������T2�
��	
��
������
�����	�
���
��	

a
�����

= T�T + 1� �

�����

�
������
��	
��
������
�����	�
���
��	

a
�����, �20�

here the coefficients a
�� are the expansion coefficients in the basis �
��	. The matrix elements
f T+T− are obtained through the overlaps

�
� + 1�����
 + 1��	
��
������
�����	�
���
��	

, �21�

hile Tz is diagonal.
The state with definite isospin is then given by

�N���,��YTTz	 = �

��

a
��
YTTz�N���,��
��	/��
���
��	 , �22�

ith the constriction on 
, �, and � given by Y = ���+�� /3�+ ��−�� and Tz= ���−�� /2�−

1

TABLE VII. The same as in Table III. Partial list for �� 8.

� �� ,�� n1 n2 State No. cn1n2

8 �8,8� 8 0 1 0.004 980 12
8 �7,7� 6 0 1 0.014 291 55
8 �8,5� 5 0 1 0.015 748 52
8 �5,8� 5 0 1 0.015 748 52
8 �6,6� 4 0 1 0.026 041 67
8 �6,6� 6 1 1 −0.001 041 67
8 �7,4� 3 0 1 0.034 366 09
8 �4,7� 3 0 1 0.034 366 09
8 �8,2� 2 0 1 0.028 752 73
8 �2,8� 2 0 1 0.028 752 73
8 �5,5� 2 0 1 0.025 227 06
8 �5,5� 4 1 1 0.
8 �5,5� 5 0 1 −0.006 253 05
8 �5,5� 2 0 2 0.019 911 16
8 �5,5� 4 1 2 −0.008 147 65
8 �5,5� 5 0 2 0.011 894 31
8 �6,3� 1 0 1 0.037 297 65
8 �6,3� 3 1 1 −0.001 491 91
8 �3,6� 1 0 1 0.037 297 65
8 �3,6� 3 1 1 −0.001 491 91
8 �7,1� 0 0 1 0.029 611 21
8 �1,7� 0 0 1 0.029 611 21
8 �4,4� 0 0 1 0.014 674 54
8 �4,4� 2 1 1 0.
8 �4,4� 3 0 1 −0.012 124 64
8 �4,4� 4 2 1 0.000 260 88
2 ��+��.
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Care must still be taken with respect to the phase. The lower weight states are obtained via the
pplication of T−, U+, and V−. For example, when only a power of the T− operator is applied to the
aximal weight state, we arrive at �
00	 with a positive sign in front and the same isospin as in

he maximum weight state. Similar, parting from the highest weight state, the application of only

+ or only V− leads to a state with definite isospin ��+�−�� /2 �for �=0� or ��+�−�� /2 �for
=0�. Posterior application of T− leads to states with the same isospin. Therefore, we require that

he component �
��	 with either � or � equal to zero, within a state of definite isospin, has also
positive sign in front of �
�0	 �for �=0� or �
0�	 �for �=0�. In case the numerical program

roduced states with an opposite sign, we corrected for it by multiplying all coefficients by
−1�.

II. THE ISOSCALAR FACTORS AND CLEBSCH-GORDAN COEFFICIENTS

Once the states are obtained, we can proceed in the calculation of the CGC’s. Before that, a
eneral remark on the Wigner-Eckart theorem for a given group chain G�H is due: When �
epresents the label of the group G and � of its subgroup H and T�

� is a tensor, then the matrix
lements can be expressed as9

������T�0

�0���	 = �
�

���,�0�0�����	����
T�0
�	�, �23�

here � is a multiplicity index in the coupling � � �0→��, the first factor in the sum over � is the
GC and the last one the reduced matrix element. In order to distinguish the reduced matrix
lement of a group G different from SU�2�, often the notation of “multiple reduced” matrix
lement is used. Like in SU�3� �Ref. 30� where the reduced matrix element of SU�3� is called
riple reduced matrix element. Here we will continue to use this notation for SU�3� and for the

TABLE VIII. The same as in Table III. Partial list for �� 8.

� �� ,�� n1 n2 State No. cn1n2

8 �4,4� 0 0 2 0.011 363 92
8 �4,4� 2 1 2 −0.008 933 20
8 �4,4� 3 0 2 0.021 364 60
8 �4,4� 4 2 2 −0.000 261 18
8 �5,2� 1 1 1 0.004 504 69
8 �5,2� 2 0 1 −0.023 262 11
8 �2,5� 1 1 1 0.004 504 69
8 �2,5� 2 0 1 −0.023 262 11
8 �3,3� 0 1 1 0.002 337 37
8 �3,3� 1 0 1 −0.024 140 23
8 �3,3� 2 2 1 0.000 727 18
8 �3,3� 3 1 1 0.000 965 61
8 �4,1� 0 0 1 0.021 759 71
8 �4,1� 1 2 1 −0.000 468 19
8 �1,4� 0 0 1 0.021 759 71
8 �1,4� 1 2 1 −0.000 468 19
8 �2,2� 0 2 1 0.000 229 88
8 �2,2� 1 1 1 −0.004 273 52
8 �2,2� 2 0 1 0.011 034 19
8 �2,2� 2 3 1 −0.000 107 28
8 �1,1� 0 0 1 0.009 009 37
8 �1,1� 0 3 1 −0.000 125 13
8 �1,1� 1 2 1 −0.000 387 70
educed matrix element of U�8��O�8��SU�3� the name of quadruple reduced matrix element is
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roposed. The sum over the multiplicity index is only applied when the multiplicity is larger than
ne.

Now we will return to the determination of the U�8��O�8��SU�3� CGC’s and its isoscalar
actors.

In a first step we determine the triple reduced matrix elements with respect to the SU�3�
roup.30 The equation to solve is

�N3�3k3��3,�3�Y3T3T3z�PN1�1k1��1,�1�Y1T1T1z
�b†��N2�2k2��2,�2�Y2T2T2z	

= �
�

���2,�2�Y2T2T2z;��1,�1�Y1T1T1z���3,�3�Y3T3T3z	�

��N3�3k3��3,�3����PN1�1k1��1,�1��b†����N2�2k2��2,�2�	 . �24�

et us suppose that we have the result concerning the first line in Eq. �24�. How to obtain it will
e explained further below. The SU�3� Clebsch-Gordan coefficients are well known29 and, thus,
24� represents an equation to determine the triple reduced matrix elements. It suffices to use
aximal weight states for the polynomial 1 and 3, while the weight of the second polynomial is

iven by the difference of the weight of the third with the first polynomial.
In the next step, the Wigner-Eckart theorem for the U�8��O�8��SU�3� group chain is used,

.e.,

�N3�3k3��3,�3�Y3T3T3z�PN1�1k1��1,�1�Y1T1T1z
�b†��N2�2k2��2,�2�Y2T2T2z	

= �N2�2k2��2,�2�Y2T2T2z;N1�1k1��1,�1�Y1T1T1z�N3�3k3��3,�3�Y3T3T3z��N3����PN1
�b†�����N2	 .

�25�

here is no sum over a multiplicity index because the labels of the U�8� irrep is the number �N�,
iven here in the notation of a Young diagram, and the multiplication of two symmetric irreps is
lways free of multiplicities.

Comparing Eq. �25� with Eq. �24� we arrive at

�N2�2k2��2,�2�Y2T2T2z;N1�1k1��1,�1�Y1T1T1z�N3�3k3��3,�3�Y3T3T3z�

= �
�

���2,�2�Y2T2T2z;��1,�1�Y1T1T1z���3,�3�Y3T3T3z	�

�
�N3�3k3��3,�3����PN1�1k1��1,�1��b†����N2�2k2��2,�2�	�

�N3����PN1
�b†�����N2	

. �26�

he CGC of the SU�3� group are known, thus, it suffices to determine

�N2�2k2��2,�2�,N1�1k1��1,�1�
N3�3k3��3,�3�	�

=
�N3�3k3��3,�3����PN1�1k1��1,�1��b†����N2�2k2��2,�2�	�

�N3����PN1
�b†�����N2	

, �27�

hich we will denote as isoscalar factors of the group chain U�8��O�8��SU�3�.
Equation �27� implies that the triple reduced matrix element with respect to the group chain

U�3��SU�2� � U�1� and the quadruple reduced matrix element of U�8��O�8� must be deter-
ined. The last is the simplest one. For that, the U�8� CGC’s are calculated, assuming the

eniority �k in all polynomials equal to Nk � then, the CGC is just 1�. The polynomials have the

orm
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Pk =
1

�Nk!
ANk�0 	 , �28�

ith k=1,2 ,3. The result is

�N3����P�N1�����N2	 = � N3!

N1 ! N2!
�1/2

. �29�

The triple reduced matrix elements of the group chain SU�3��SU�2� � U�1� are obtained
hrough the use of Eq. �24�, as already explained.

The important part is the calculation of the left-hand side of Eq. �24�. In a first step the
verlaps �n1�n2� �n1n1	, as defined in Eqs. �15� and �16�, are determined. For that, we write the
xplicit form of the epd’s in terms of the boson creation operators. To simplify notations, we
ename a boson creation operator b�

† by a coordinate x� and the corresponding annihilation opera-
or b� by a derivative � /�x�. Both satisfy the same commutation relations �with this, it is easier to
ranslate it to an algebraic routine, like MATEMATICA,32 which assists in the evaluation of the
verlaps�. In terms of this new notation and using the association of the linear index � to �YTTz�
see Table II�, the epd’s of U�8� have the following structure:

A = x1,

B =
1
�8

�x4
2 − 2x1x8 + x5

2 − 2x2x7 + 2x3x6� ,

C = 2� 3

10
x3x2 −

2
�5

x1x5,

�30�

D =� 3

10
−

3

2
�2x1x6x7 + �3x1x5x8 +

�3

2
x3x5x6 −

�3

2
x2x5x7

+
3

2
x2x4x7 −

3

2
�2x2x3x8 +

3

2
x3x4x6 −

�3

2
x4

2x5 +
1

2�3
x5

3� ,

E =�3

5
x2

2x3 −
3

�10
x1x2x5 −�3

5
x1

2x6 +� 3

10
x1x2x4,

F = −�3

5
x1

2x7 +� 3

10
x1x3x4 −�3

5
x3

2x2 +
3

�10
x1x3x5.

hese expressions are obtained using the explicit values of the SU�3� CGS’s, as obtained in Refs.
–4. One can easily verify that they are in the maximum weight of the corresponding SU�3� label
see Eq. �6��. The Hermitian conjugate expressions are obtained by changing x� to � /�x�.

What we also need is the explicit form of the lowering operators T−, U+, and V−, in order to
btain a lower weight state in what we call the second polynomial. Starting from Eq. �5� and using
he explicit form of the SU�3� CGC’s, we obtain

T− = �2x8
�

+ �2x4
�

+ x6
�

+ x7
�

,

�x4 �x1 �x2 �x3
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U+ = −�3

2
x5

�

�x3
+

1
�2

x4
�

�x3
+ x8

�

�x7
−

1
�2

x6
�

�x4
+�3

2
x6

�

�x5
− x2

�

�x1
, �31�

V− =
1
�2

x4
�

�x2
+�3

2
x5

�

�x2
+ x8

�

�x6
+ x3

�

�x1
+�3

2
x7

�

�x5
+

1
�2

x7
�

�x4
.

or the overlaps, we must apply these lowering operators to a highest weight state in SU�3� of
hat we called the second polynomial, as given in Eq. �18�, using the norm depicted in Eq. �19�

nd multiply it with what we called the first polynomial in the highest weight state. That is, we
ust construct PN1�1k1��1,�1�Y1

maxT1
maxT1

max�x� PN2�2k2��2,�2�Y2T2T2z
�x�. This gives us an expression which

epends on the x� only. On that we must apply the conjugate expression of what we call the third
olynomial, which is a pure function of derivatives, i.e. PN3�3k3��3,�3�Y3

maxT3
maxT3

max�� /�x�. In prin-
iple, this quite involved calculation can be done by hand. It is advisable to take the assistance of
n algebraic routine like MATEMATICA,32 considering that the number of overlaps to calculate is in
he thousands. With this help, we finally obtain the overlap on the left-hand side of Eq. �24�.

Not all possible matrix elements were calculated but only those with N1=�1, N2=�2 and, thus,

3=�1+�2 and N3��3. The corresponding isoscalar factors of Eq. �27� were determined. In order
o obtain all other possible isoscalar factors, with Nk	�k �k=1,2� and N3=N1+N2, we note that
he corresponding state can be written as

�Nk�k�k	 = � ��k + 3�!

4�Nk−�k�/2�Nk−�k

2 � ! �Nk+�k+6

2 �!
�1/2

�b† · b†��Nk−�k�/2��k�k	 , �32�

here now �k denote all other quantum numbers ��k ,�k� YkTkTkz, ��k�k	 is the state with Nk=�k

nd �b† ·b†� is the scalar product between the boson creation operators.
Introducing this on the left-hand side of Eq. �25� leads to

�N3�3�3�PN1�1�1
�b†��N2�2�2	

= � ��1 + 3� ! ��2 + 3� ! N3 − �3

2
� ! N3 + �3 + 6

2
�!

N1 − �1

2
� ! N2 − �2

2
� ! N1 + �1 + 6

2
� ! N2 + �2 + 6

2
� ! �1 + �2 − �3

2
� ! �1 + �2 + �3 + 6

2
�!�

1/2

� �N3 = �1 + �2,�3�3�PN1=�1�1�1
�b†��N2 = �2,�2�2	 . �33�

sing �25�, we arrive at the following relations of CGC’s:

�N2�2�2,N1�1�1�N3�3�3	

= � ��1 + 3� ! N1!

N1 − �1

2
� ! �1 ! N1 + �1 + 6

2
�!

��2 + 3� ! N2!

N2 − �2

2
� ! �2 ! N2 + �2 + 6

2
�!

N3 − �3

2
� ! N3 + �3 + 6

2
�!

N3!

�
��1 + �2�!

�1 + �2 − �3

2
� ! �1 + �2 + �3 + 6

2
�!�

1/2

� �N2 = �2,�2�2,N1 = �1,�1�1�N3 = ��1 + �2�,�3�3	 . �34�
he same holds for the isoscalar factors, which can be verified using Eq. �26�.

Programs for all the steps mentioned are available and can be handed over on request.
In Table IX a partial list of the isoscalar factors for up to eight bosons is given, involving only

he SU�3� irreps �0,0�, �1,1�, �3,0�, �0,3� and restricting to �1��2 �for �1��2 we use the sym-
etric property of the isoscalar factors under permutation of the first two irreps�. Irreps with a

igher value were calculated, too, but are not tabulated. In total there are about 15 000 isoscalar
actors calculated involving states up to eight particles. Here, we only give a partial list containing,

s we think, the isoscalar factors of most interest. These involve the SU�3� irreps �0,0�, �1,1�, �3,0�,
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TABLE IX. Partial list of isoscalar factors �denoted by IF� for the group
chain U�8��O�8��SU�3�. Only those are listed with �k=Nk �k=1,2� and
�1	�2, thus, the N3=�1+�2. For this reason, the value of N3 is not listed.
Equation �34� must be applied in order to obtain the isoscalar factors for
N1	�1, N2	�2 and N3=N1+N2.

�2 k2 ��2 ,�2� �1 k1 ��1 ,�1� �3 k3 ��3 ,�3� � IF

0 1 �0,0� 0 1 �0,0� 0 1 �0,0� 1 1
0 1 �0,0� 1 1 �1,1� 1 1 �1,1� 1 1
1 1 �1,1� 1 1 �1,1� 2 1 �1,1� 1 0
1 1 �1,1� 1 1 �1,1� 2 1 �1,1� 2 1
1 1 �1,1� 1 1 �1,1� 0 1 �0,0� 1 1
0 1 �0,0� 2 1 �1,1� 2 1 �1,1� 1 1
1 1 �1,1� 2 1 �1,1� 3 1 �0,0� 1 1
1 1 �1,1� 2 1 �1,1� 3 1 �0,3� 1 −0.774 596 67
1 1 �1,1� 2 1 �1,1� 3 1 �3,0� 1 0.774 596 67
1 1 �1,1� 2 1 �1,1� 1 1 �1,1� 1 0
1 1 �1,1� 2 1 �1,1� 1 1 �1,1� 2 0.365 148 37
2 1 �1,1� 2 1 �1,1� 4 1 �1,1� 1 0
2 1 �1,1� 2 1�1,1� 4 1 �1,1� 2 −0.648 074 07
2 1 �1,1� 2 1 �1,1� 2 1 �1,1� 1 0
2 1 �1,1� 2 1 �1,1� 2 1 �1,1� 2 −0.141 421 36
2 1 �1,1� 2 1 �1,1� 0 1 �0,0� 1 0.365 148 37
0 1 �0,0� 3 1 �3,0� 3 1 �3,0� 1 1
0 1 �0,0� 3 1 �0,3� 3 1 �0,3� 1 1
0 1 �0,0� 3 1 �0,0� 3 1 �0,0� 1 1
1 1 �1,1� 3 1 �3,0� 4 1 �1,1� 1 0.467 707 18
1 1 �1,1� 3 1 �0,3� 4 1 �1,1� 1 −0.467 707 18
1 1 �1,1� 3 1 �0,0� 4 1 �1,1� 1 −0.572 821 96
1 1 �1,1� 3 1 �3,0� 2 1 �1,1� 1 0.306 186 22
1 1 �1,1� 3 1 �0,3� 2 1 �1,1� 1 −0.306 186 22
1 1 �1,1� 3 1 �0,0� 2 1 �1,1� 1 0.125
2 1 �1,1� 3 1 �3,0� 5 1 �1,1� 1 0.374 165 74
2 1 �1,1� 3 1 �0,3� 5 1 �1,1� 1 −0.374 165 74
2 1 �1,1� 3 1 �0,0� 5 1 �1,1� 1 0.458 257 57
2 1 �1,1� 3 1 �3,0� 3 1 �3,0� 1 0
2 1 �1,1� 3 1 �0,3� 3 1 �0,3� 1 0
2 1 �1,1� 3 1 �3,0� 1 1 �1,1� 1 −0.122 474 49
2 1 �1,1� 3 1 �0,3� 1 1 �1,1� 1 0.122 474 49
2 1 �1,1� 3 1 �0,0� 1 1 �1,1� 1 0.05
3 1 �3,0� 3 1 �3,0� 6 1 �0,3� 1 0
3 1 �0,3� 3 1 �3,0� 6 1 �0,0� 1 −0.483 045 89
3 1 �0,0� 3 1 �3,0� 6 1 �3,0� 1 0.374 165 74
3 1 �3,0� 3 1 �0,3� 6 1 �0,0� 1 −0.483 045 89
3 1 �0,3� 3 1 �0,3� 6 1 �3,0� 1 0
3 1 �0,0� 3 1 �0,3� 6 1 �0,3� 1 0.374 165 74
3 1 �3,0� 3 1 �0,0� 6 1 �3,0� 1 0.374 165 74
3 1 �0,3� 3 1 �0,0� 6 1 �0,3� 1 0.374 165 74
3 1 �0,0� 3 1 �0,0� 6 1 �0,0� 1 0.458 257 57
3 1 �0,3� 3 1 �3,0� 4 1 �1,1� 1 0
3 1 �3,0� 3 1 �0,3� 4 1 �1,1� 1 0
3 1 �0,3� 3 1 �3,0� 2 1 �1,1� 1 0
3 1 �3,0� 3 1 �0,3� 2 1 �1,1� 1 0
3 1 �0,3� 3 1 �3,0� 0 1 �0,0� 1 0.158 113 88
3 1 �3,0� 3 1 �0,3� 0 1 �0,0� 1 0.158 113 88
3 1 �0,0� 3 1 �0,0� 0 1 �0,0� 1 0.05
0 1 �0,0� 4 1 �1,1� 4 1 �1,1� 1 1
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TABLE IX. �Continued.�

�2 k2 ��2 ,�2� �1 k1 ��1 ,�1� �3 k3 ��3 ,�3� � IF

1 1 �1,1� 4 1 �1,1� 5 1 �1,1� 1 0
1 1 �1,1� 4 1 �1,1� 5 1 �1,1� 2 −0.8
1 1 �1,1� 4 1 �1,1� 3 1 �0,0� 1 −0.547 722 56
1 1 �1,1� 4 1 �1,1� 3 1 �0,3� 1 −0.141 421 36
1 1 �1,1� 4 1 �1,1� 3 1 �3,0� 1 0.141 421 36
2 1 �1,1� 4 1 �1,1� 6 1 �0,0� 1 −0.8
2 1 �1,1� 4 1 �1,1� 6 1 �0,3� 1 −0.505 964 43
2 1 �1,1� 4 1 �1,1� 6 1 �3,0� 1 0.505 964 43
2 1 �1,1� 4 1 �1,1� 4 1 �1,1� 1 0
2 1 �1,1� 4 1 �1,1� 4 1 �1,1� 2 0.103 279 56
2 1 �1,1� 4 1 �1,1� 2 1 �1,1� 1 0
2 1 �1,1� 4 1 �1,1� 2 1 �1,1� 2 −0.089 442 72
3 1 �3,0� 4 1 �1,1� 7 1 �1,1� 1 0.318 727 63
3 1 �0,3� 4 1 �1,1� 7 1 �1,1� 1 −0.318 727 63
3 1 �0,0� 4 1 �1,1� 7 1 �1,1� 1 0.390 360 03
3 1 �3,0� 4 1 �1,1� 5 1 �1,1� 1 0.089 087 08
3 1 �0,3� 4 1 �1,1� 5 1 �1,1� 1 −0.089 087 08
3 1 �0,0� 4 1 �1,1� 5 1 �1,1� 1 −0.021 821 79
3 1 �3,0� 4 1 �1,1� 3 1 �3,0� 1 0
3 1 �0,3� 4 1 �1,1� 3 1 �0,3� 1 0
3 1 �3,0� 4 1 �1,1� 1 1 �1,1� 1 0.026 726 12
3 1 �0,3� 4 1 �1,1� 1 1 �1,1� 1 −0.026 726 12
3 1 �0,0� 4 1 �1,1� 1 1 �1,1� 1 −0.032 732 68
4 1 �1,1� 4 1 �1,1� 8 1 �1,1� 1 0
4 1 �1,1� 4 1 �1,1� 8 1 �1,1� 2 0.505 390 45
4 1 �1,1� 4 1 �1,1� 6 1 �0,0� 1 0.208 656 21
4 1 �1,1� 4 1 �1,1� 6 1 �0,3� 1 0
4 1 �1,1� 4 1 �1,1� 6 1 �3,0� 1 0
4 1 �1,1� 4 1 �1,1� 4 1 �1,1� 1 0
4 1 �1,1� 4 1 �1,1� 4 1 �1,1� 2 0.006 023 39
4 1 �1,1� 4 1 �1,1� 2 1 �1,1� 1 0
4 1 �1,1� 4 1 �1,1� 2 1 �1,1� 2 0.018 070 16
4 1 �1,1� 4 1 �1,1� 0 1 �0,0� 1 0.057 142 86
0 1 �0,0� 5 1 �1,1� 5 1 �1,1� 1 1
1 1 �1,1� 5 1 �1,1� 6 1 �0,0� 1 1
1 1 �1,1� 5 1 �1,1� 6 1 �0,3� 1 −0.632 455 53
1 1 �1,1� 5 1 �1,1� 6 1 �3,0� 1 0.632 455 53
1 1 �1,1� 5 1 �1,1� 4 1 �1,1� 1 0
1 1 �1,1� 5 1 �1,1� 4 1 �1,1� 2 −0.258 198 89
2 1 �1,1� 5 1 �1,1� 7 1 �1,1� 1 0
2 1 �1,1� 5 1 �1,1� 7 1 �1,1� 2 −0.552 052 45
2 1 �1,1� 5 1 �1,1� 5 1 �1,1� 1 0
2 1 �1,1� 5 1 �1,1� 5 1 �1,1� 2 −0.061 721 34
2 1 �1,1� 5 1 �1,1� 3 1 �0,0� 1 0.169 030 85
2 1 �1,1� 5 1 �1,1� 3 1 �0,3� 1 −0.043 643 58
2 1 �1,1� 5 1 �1,1� 3 1 �3,0� 1 0.043 643 58
3 1 �3,0� 5 1 �1,1� 8 1 �1,1� 1 −0.295 468 42
3 1 �0,3� 5 1 �1,1� 8 1 �1,1� 1 0.295 468 42
3 1 �0,0� 5 1 �1,1� 8 1 �1,1� 1 0.361 873 43
3 1 �3,0� 5 1 �1,1� 6 1 �3,0� 1 0
3 1 �0,3� 5 1 �1,1� 6 1 �0,3� 1 0
3 1 �3,0� 5 1 �1,1� 4 1 �1,1� 1 −0.035 214 76
3 1 �0,3� 5 1 �1,1� 4 1 �1,1� 1 0.035 214 76
3 1 �0,0� 5 1 �1,1� 4 1 �1,1� 1 −0.008 625 82
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nd �0,3�. For example, when a many quark-antiquark state with one additional gluon is consid-
red, the quark state must be in a color �1,1� irrep as the gluon. Likewise, when one quark-
ntiquark pair is coupled to a color �or flavor� octet, the other pair must be in the same state �not
ecessarily for the flavor case�. More complicated isoscalar factors are available on request.

Next we explain the tests performed in order to assure that the results are of confidence. First
f all, we calculated by hand many of the overlap matrix elements of the polynomial No. 3 with
he product of the polynomials with Nos. 2 and 1 and compared them to the values obtained via
he MATEMATICA code. This we did up to eight bosons choosing arbitrarily the states. Then we
hecked if the isoscalar factors obtained satisfy the orthogonality condition. We use the orthogo-
ality relation of the U�8� CGC’s, i.e.,

�
�iki�i

�N2�2k2�2,N1�2k1�1�N3�3k3�3	�N2�2k2�2,N1�2k1�1�N3��3�k3��3�	 = �N3,N3�
��3,�3�

��3,�3�
, �35�

here the index i is 1 or 2.
We arrive at the following condition for the isoscalar factors, given in �27�,

�
�iki��i,�i��

�N2�2k2��2,�2�,N1�1k1��1,�1�
N3�3k3��3,�3�	�

� �N2�2k2��2,�2�,N1�1k1��1,�1�
N3��3�k3���3,�3�	� = �N3N3�
��3�3�

�k3k3�
. �36�

his orthogonality relation we have checked throughout the range from zero to eight bosons. In

TABLE IX. �Continued.�

�2 k2 ��2 ,�2� �1 k1 ��1 ,�1� �3 k3 ��3 ,�3� � IF

3 1 �3,0� 5 1 �1,1� 2 1 �1,1� 1 0.021 128 86
3 1 �0,3� 5 1 �1,1� 2 1 �1,1� 1 −0.021 128 86
3 1 �0,0� 5 1 �1,1� 2 1 �1,1� 1 0.025 877 46
0 1 �0,0� 6 1 �3,0� 6 1 �3,0� 1 1
0 1 �0,0� 6 1 �0,3� 6 1 �0,3� 1 1
0 1 �0,0� 6 1 �0,0� 6 1 �0,0� 1 1
1 1 �1,1� 6 1 �3,0� 7 1 �1,1� 1 0.487 950 04
1 1 �1,1� 6 1 �0,3� 7 1 �1,1� 1 −0.487 950 04
1 1 �1,1� 6 1 �0,0� 7 1 �1,1� 1 −0.487 950 04
1 1 �1,1� 6 1 �3,0� 5 1 �1,1� 1 0.218 217 89
1 1 �1,1� 6 1 �0,3� 5 1 �1,1� 1 −0.218 217 89
1 1 �1,1� 6 1 �0,0� 5 1 �1,1� 1 0.109 108 95
2 1 �1,1� 6 1 �3,0� 8 1 �1,1� 1 0.361 873 43
2 1 �1,1� 6 1 �0,3� 8 1 �1,1� 1 −0.361 873 43
2 1 �1,1� 6 1 �0,0� 8 1 �1,1� 2 0.361 873 43
2 1 �1,1� 6 1 �3,0� 6 1 �3,0� 1 0
2 1 �1,1� 6 1 �0,3� 6 1 �0,3� 1 0
2 1 �1,1� 6 1 �3,0� 4 1 �1,1� 1 0.069 006 56
2 1 �1,1� 6 1 �0,3� 4 1 �1,1� 1 −0.069 006 56
2 1 �1,1� 6 1 �0,0� 4 1 �1,1� 1 −0.034 503 28
0 1 �0,0� 7 1 �1,1� 7 1 �1,1� 1 1
1 1 �1,1� 7 1 �1,1� 8 1 �1,1� 1 0
1 1 �1,1� 7 1 �1,1� 8 1 �1,1� 2 −0.741 619 85
1 1 �1,1� 7 1 �1,1� 6 1 �0,0� 1 −0.408 248 29
1 1 �1,1� 7 1 �1,1� 6 1 �0,3� 1 −0.129 099 45
1 1 �1,1� 7 1 �1,1� 6 1 �3,0� 1 0.129 099 45
0 1 �0,0� 8 1 �1,1� 8 1 �1,1� 1 1
otal about 350 orthogonality relations, involving several thousand isoscalar factors, were checked.
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V. CONCLUSIONS

In this contribution we have constructed the isoscalar factors for the group chain
�8��O�8��SU�3�. Only the totally symmetric irreps �N� of U�8� were taken into account. This

s of use in any model/theory which deals with quark-antiquark and/or gluon pairs, as in the model
ublished in Refs. 13–15. The CGC’s will be used to calculate transition probabilities and can be
sed in any other model involving quark-antiquark and/or gluon pairs, like the background in
adron states. The coefficients are also of importance for many gluon systems, restricting to the
ompletely symmetric irreps of U�8�, which lie at lower energies.

The method presented is very practical for high rank groups when only few particular irreps
re of interest and thus serves as an example. It is more powerful than traditional methods, which
se the whole algebraic structure of the group and all recursion relations possible.

For many gluon systems, up to three rows in the Young diagrams are needed, i.e., �h1 ,h2 ,h3�.
herefore, the next step is to consider two rowed Young diagrams. Steps in this direction are
lready taken by the authors.

We presented the procedure on how to obtain the Clebsch-Gordan coefficients of the chain
�8��O�8��SU�3��U�1� � SU�2� for symmetric irreducible representations in U�8�, through

he use of isoscalar factors.
The importance of the Clebsch-Gordan coefficients of the chain starting with U�8� lies not

nly in the possibility to obtain, via their use, branching ratios of hadron decays involving gluons
nd quark-antiquark pairs, but it can also be used in any other problem related to a U�8� group,
.e., eight degrees of freedom, not necessarily in particle physics, though this was the main

otivation. Another area where the U�8� group could play a role, though probably still far in the
uture, is in quantum computing,33 related to cyclic networks of quantum gates with three-qubits as
lementary structure. Trying to describe a system of many three-qubits will require U�8� CGS’s,
hough, one must still understand the basic three-qubit structure alone.
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losed form of the generalized Green’s function
or the Helmholtz operator on the two-dimensional
nit sphere
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The closed representation of the generalized �known also as reduced or modified�
Green’s function for the Helmholtz partial differential operator on the surface of the
two-dimensional unit sphere is derived. In its compact form, the derived formula
contains a Legendre polynomial and a derivative of the Legendre function of the
first kind with respect to its index. An explicit expression for that derivative is
found and used to obtain an expanded �and potentially more suitable in applica-
tions� form of the generalized Green’s function for the operator in question. The
related problem of constructing the closed form of the generalized Green’s function
for the Legendre ordinary differential operator on the segment −1�x�1, with the
boundary conditions of finiteness at x= ±1, is also solved. © 2006 American Insti-
tute of Physics. �DOI: 10.1063/1.2203430�

. INTRODUCTION

Let S2 be the surface of the unit sphere in R3, parametrized by the unit radius vector n. The
patial orientation of the vector n �hence, also the location of a point on S2 for which n is the
adius vector� is uniquely determined by fixing the polar angle 0���� and the azimuthal angle
���2� in some spherical system of coordinates, with the origin of the latter located at the
enter of S2.

Some models of propagation of time-harmonic waves on spherical surfaces used in math-
matical geophysics �cf., e.g., the recent work of Yoshizawa and Kennett29� lead to the inhomo-
eneous scalar Helmholtz equation on S2:

��n
2 + ��� + 1�����;n� = ��n� . �1.1�

n this equation

�n
2 =

1

sin �

�

��
sin �

�

��
+

1

sin2 �

�2

��2 �1.2�

s the angular part of the Laplace operator �the spherical Laplacian� and ��n� is a source term. For
he sake of later convenience, the square of the �in general complex� propagation constant has
een written in the form ���+1�, where ��C. Equation �1.1� is to be solved subject to some
oundary and/or regularity conditions imposed on ��� ;n�. If the wave described by Eq. �1.1�
ropagates over the entire spherical surface, which will be implicit throughout the rest of this
aper, these conditions are the single valuedness and finiteness of ��� ;n�.

With present-day computers and software �see, e.g., the paper by Adams and Swarztrauber1�,
q. �1.1�, with the aforementioned regularity conditions, may be solved numerically on S2 for a

�
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ractically arbitrary form of the source function ��n�. On the other hand, it appears that the
ormal analytical solution to Eq. �1.1� is also available; except for the case when ���+1� is an
igenvalue of −�n

2 on S2, it is given by

���;n� = �
S2

d2n� G��;n,n����n�� , �1.3�

here G�� ;n ,n�� is the Green’s function for the Helmholtz operator

H��;n� = �n
2 + ��� + 1� �1.4�

n S2. Following the general theory,8,12,13,15,17,20,23,25,27,28G�� ;n ,n�� is defined as a solution to the
nhomogeneous partial differential equation �with n� fixed�

��n
2 + ��� + 1��G��;n,n�� = 	�2��n − n�� , �1.5�

ubject to the constraints of single-valuedness and finiteness �with the latter relaxed at the point
=n��. In Eq. �1.5� the inhomogeneity 	�2��n−n�� is the Dirac delta function on S2. The closed

orm of the Green’s function G�� ;n ,n�� is known2–7,9,10,24,26 to be

G��;n,n�� =
1

4 sin����
P��− n · n�� �� � Z� , �1.6�

here

P��x� = 2F1�− �,� + 1;1;
1 − x

2
� = �

n=0



�− ��n�� + 1�n

�n!�2 �1 − x

2
�n

�− 1 � x � 1� �1.7�

s the Legendre function of the first kind,16,22 with

���n =
��� + n�

����
�n � N� �1.8�

enoting the Pochhammer symbol.22

Equation �1.3� fails to represent a solution of Eq. �1.1� on S2 when ��Z, i.e., if it holds that

��� + 1� = L�L + 1� �L � N� . �1.9�

his corresponds to the situation when the operator �1.4� has a null eigenvalue in its spectrum. It
s known from the general theory of linear inhomogeneous equations20 that in such a case a
olution to Eq. �1.1� exists only if the source term is orthogonal to the null space of the operator
�L ;n�, spanned by 2L+1 complex spherical harmonics

YLM�n� =
�− �L+M

2LL!
	2L + 1

4�

�L − M�!
�L + M�!

sinM �
dL+M sin2L �

d cosL+M �
eiM�, �1.10�

ith M � 
0, ±1, . . . , ±L� �the phase choice in Eq. �1.10� conforms to the widely accepted Condon
nd Shortley11 convention�, i.e., when

�
S2

d2nYLM
* �n���n� = 0 �M � 
0, ± 1, . . . , ± L�� . �1.11�

f the constraints �1.9� and �1.11� hold simultaneously, a �nonunique� solution to the spherical

elmholtz equation �1.1� is formally given by
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�L�n� = �
M=−L

L

aLMYLM�n� + �
S2

d2n�ḠL�n,n����n�� , �1.12�

here 
aLM�, �M � 
0, ±1, . . . , ±L��, are arbitrary constants, while ḠL�n ,n�� is a generalized
known also as reduced or modified� Green’s function for the Helmholtz operator H�L ;n�. This
unction is defined as this particular solution to the inhomogeneous partial differential equation

��n
2 + L�L + 1��ḠL�n,n�� = 	�2��n − n�� − �

M=−L

L

YLM�n�YLM
* �n�� �L � N� , �1.13�

hich is single-valued and finite on S2 �except at the point n=n��, being, in addition, orthogonal
o the null space of the operator H�L ;n�:

�
S2

d2nYLM
* �n�ḠL�n,n�� = 0 �M � 
0, ± 1, . . . , ± L�� . �1.14�

In contrary to the case of G�� ;n ,n��, despite performing the extensive search through the

athematical and physical literature, we have found no studies on the closed form of ḠL�n ,n��,
xcept for the particular case L=0 �cf. Refs. 12, 14, 18, and 19�. It is therefore the purpose of this
ork to fill in this gap by presenting the construction of the closed representation of the general-

zed Green’s function for the Helmholtz operator �1.4�, constrained by Eq. �1.9�, on the unit sphere
2.

The structure of the paper is as follows. First, in Sec. II we show that ḠL�n ,n�� may be
xpressed compactly in terms of the derivative ��P��−n ·n�� /����=L. Then, in Sec. III we find the
xplicit representation of ��P��x� /����=L, the result which, apart from being important in the
ontext of the present work, seems to be also of interest for itself. Finally, in Sec. IV we combine

he findings of Secs. II and III, arriving at the sought explicit closed form of ḠL�n ,n��. We also
how that in the particular case L=0 the known result for the spherical Laplacian14,19 is recovered.

n addition, we provide the inhomogeneous three-term recurrence relation satisfied by ḠL�n ,n��.
he intermediate result obtained in Sec. III is of wider applicability than the subject of this work
ight suggest. We illustrate this in the Appendix, where the closed form of the generalized
reen’s function for the one-dimensional Legendre operator

L�L;x� =
d

dx
�1 − x2�

d

dx
+ L�L + 1� �L � N� �1.15�

n the interval −1�x�1, with the boundary conditions of finiteness at x= ±1, is constructed.

I. COMPACT CLOSED FORM OF THE GENERALIZED GREEN’S FUNCTION
OR THE HELMHOLTZ OPERATOR ON S2

From the general theory of Green’s functions �cf. the relevant references cited in Sec. I� it

ollows that one may construct the generalized spherical Helmholtz Green’s function ḠL�n ,n�� in
he form of the so-called spectral series

ḠL�n,n�� = �
l=0

�l�L�




�
m=−l

l
Ylm�n�Ylm

* �n��
L�L + 1� − l�l + 1�

. �2.1�

omparing this with the spectral series representation of the Green’s function G�� ;n ,n��, known

o be
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G��;n,n�� = �
l=0




�
m=−l

l
Ylm�n�Ylm

* �n��
��� + 1� − l�l + 1�

, �2.2�

t may be inferred that the functions ḠL�n ,n�� and G�� ;n ,n�� are related through

ḠL�n,n�� = lim
���+1�→L�L+1�

�

����� + 1��

���� + 1� − L�L + 1��G��;n,n��� . �2.3�

his, after exploiting the result �1.6�, may be rewritten as

ḠL�n,n�� =
1

4�2L + 1�
lim
�→L

�

��

�� − L��� + L + 1�
sin����

P��− n · n�� . �2.4�

he limit on the right-hand side of the above equation may be evaluated by using the l’Hospital
ule. After exploiting the fact that for a non-negative integer index the Legendre function �1.7�
egenerates to the Legendre polynomial

PL�x� =
1

2LL!

dL�x2 − 1�L

dxL �L � N� , �2.5�

nd making use of the following reflection property of the Legendre polynomials:

PL�− x� = �− �LPL�x� �L � N� , �2.6�

ne eventually finds that the closed form of ḠL�n ,n�� is

ḠL�n,n�� = � �− �L

4�

�P��− n · n��
��

�
�=L

+
1

4�

PL�n · n��
2L + 1

. �2.7�

From the purely theoretical point of view, arriving at Eq. �2.7� completes the task of deter-

ining the closed form of ḠL�n ,n��. However, in most of the actual applications formula �2.7�
ill be unhandy, if not useless. To find a representation of ḠL�n ,n�� which is suitable for practical
urposes, the derivative ��P��x� /����=L must be evaluated explicitly. We shall be concerned with
he latter problem in the following section.

II. EVALUATION OF †�P�„x… /��‡�=L

Throughout the whole section, it will be implicit that L is an arbitrary non-negative integer
nd that −1�x�1.

Consider the definition �1.7�. Differentiating it with respect to �, after making use of the
ollowing differential property of the Pochhammer symbol:

d���n

d�
= ��� + n� − �������n, �3.1�

here

��� =
1

����
d����

d�
�3.2�

16,22
s the digamma function, one obtains
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�P��x�
��

= �
n=1



�− ��n�� + 1�n

�n!�2 ��� + 1 + n� − �� + 1� + �− �� − �− � + n���1 − x

2
�n

.

�3.3�

t is evident from Eq. �3.3� that the function �P��x� /�� obeys

� �P���x�

���
�

��=−�−1
= �− �P���x�

���
�

��=�

. �3.4�

The right-hand side of Eq. �3.3� may be simplified. On exploiting the known relation16,22

��� = �1 − �� − � cot���� �3.5�

ne finds

− �� + 1� + �− �� − �− � + n� = − �� + 1 − n� . �3.6�

ence, it follows that

�P��x�
��

= �
n=1



�− ��n�� + 1�n

�n!�2 ��� + 1 + n� − �� + 1 − n���1 − x

2
�n

. �3.7�

quation �3.7� does not look simple. However, at this stage we may take advantage of the fact that
or the purposes of the present work the derivative �P��x� /�� is to be evaluated for �=L�N only.

At first, consider what happens if �=0. Since

lim
�→0

�� + 1 + n�
��− ��

= 0 �n � N� �3.8�

nd

lim
�→0

�� + 1 − n�
��− ��

= 1 �n � N \ 
0�� , �3.9�

n this particular case we arrive at the known result16,22

� �P��x�
��

�
�=0

= − �
n=1



1

n
�1 − x

2
�n

= ln
1 + x

2
. �3.10�

ext, the Legendre function �1.7� is known16,22 to satisfy the three-term homogeneous recurrence
elation

�� + 1�P�+1�x� − �2� + 1�xP��x� + �P�−1�x� = 0. �3.11�

ifferentiating this relation with respect to � yields the three-term inhomogeneous recurrence
elation for the function �3.7�

�� + 1�
�P�+1�x�

��
− �2� + 1�x

�P��x�
��

+ �
�P�−1�x�

��
= − P�+1�x� + 2xP��x� − P�−1�x� ,

�3.12�
hich, upon exploiting again Eq. �3.11�, may be rewritten in the form
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�� + 1�
�P�+1�x�

��
− �2� + 1�x

�P��x�
��

+ �
�P�−1�x�

��
=

1

2� + 1
�P�+1�x� − P�−1�x�� . �3.13�

f �=L�N, the recurrence �3.13� becomes

�L + 1�� �P��x�
��

�
�=L+1

− �2L + 1�x� �P��x�
��

�
�=L

+�L
�P��x�

��
�

�=L−1
=

1

2L + 1
�PL+1�x� − PL−1�x�� .

�3.14�

quation �3.14� is to be solved with formula �3.10� taken as an initial condition. Now, it is known
rom the general theory of linear difference equations21 that the solution to the problem �3.14� and
3.10� may be sought in the form

� �P��x�
��

�
�=L

= FL�x� + WL�x� , �3.15�

here FL�x� solves

�L + 1�FL+1�x� − �2L + 1�xFL�x� + LFL−1�x� = 0 �3.16�

ubject to the inhomogeneous initial condition

F0�x� = ln
1 + x

2
, �3.17�

hile WL�x� satisfies

�L + 1�WL+1�x� − �2L + 1�xWL�x� + LWL−1�x� =
1

2L + 1
�PL+1�x� − PL−1�x�� �3.18�

ubject to the homogeneous initial condition

W0�x� = 0. �3.19�

quations �3.18� and �3.19� imply that WL�x� is a polynomial in x, of degree L, such that

WL�1� = 0. �3.20�

e shall make use of this observation shortly.
The solution to the problem constituted by Eqs. �3.16� and �3.17� is immediately found to be

FL�x� = PL�x�ln
1 + x

2
. �3.21�

To find WL�x�, we observe that the derivative �P��x� /�� satisfies the inhomogeneous differ-
ntial equation

 d

dx
�1 − x2�

d

dx
+ ��� + 1�� �P��x�

��
= − �2� + 1�P��x� , �3.22�

btainable from the Legendre identity

 d

dx
�1 − x2�

d

dx
+ ��� + 1��P��x� = 0 �3.23�

y its differentiation with respect to �. On combining Eqs. �3.22�, �3.15�, and �3.21�, and after
22
aking use of the known relationship
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x
dPL�x�

dx
− LPL�x� =

dPL−1�x�
dx

, �3.24�

ne deduces that WL�x� satisfies the inhomogeneous differential equation

 d

dx
�1 − x2�

d

dx
+ L�L + 1��WL�x� = 2

dPL−1�x�
dx

− 2
dPL�x�

dx
. �3.25�

ince WL�x� is the polynomial, the pertinent boundary conditions supplementing Eq. �3.25� are

WL�x� bounded for x → ± 1. �3.26�

t is evident that by solving the boundary value problem constituted by Eqs. �3.25� and �3.26� one
s able to determine WL�x� only up to a multiple of the Legendre polynomial PL�x�, since the latter
olves the associated homogeneous boundary value problem. With this fact in mind, on applying
he machinery of Green’s functions, WL�x� is found to have the form

WL�x� = cLPL�x� + 2�
−1

1

dx� ḡL�x,x��dPL−1�x��
dx�

−
dPL�x��

dx�
� , �3.27�

here

ḡL�x,x�� =
1

2 �
l=0

�l�L�



2l + 1

�L − l��L + l + 1�
Pl�x�Pl�x�� �3.28�

s the generalized Green’s function �in its spectral form, cf. the Appendix� for the Legendre
perator �1.15�, while cL is a coefficient which remains to be determined. The integral on the
ight-hand side of Eq. �3.27� may be evaluated if one makes use of the known relationship16

dPL�x�
dx

= �
l=0

int��L−1�/2�

�2L − 4l − 1�PL−2l−1�x� �3.29�

in Eq. �3.29�, and hereafter, it is implicit that if the upper limit of the summation is smaller than
he lower one, than the sum is identically zero�, which implies that it holds that

dPL−1�x�
dx

−
dPL�x�

dx
= �

l=0

L−1

�− �L+l�2l + 1�Pl�x� . �3.30�

n inserting Eqs. �3.28� and �3.30� into Eq. �3.27�, after exploiting the orthogonality property16,22

�
−1

1

dx PL�x�PL��x� =
2

2L + 1
	LL�, �3.31�

ne obtains WL�x� in the form

WL�x� = cLPL�x� + 2�
l=0

L−1

�− �L+l 2l + 1

�L − l��L + l + 1�
Pl�x� . �3.32�

It remains to determine the coefficient cL. To this end, in Eq. �3.32� one sets x=1 and then
xploits the property

P��1� = 1, �3.33�
nd also Eq. �3.20�, obtaining
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cL = − 2�
l=0

L−1

�− �L+l 2l + 1

�L − l��L + l + 1�
. �3.34�

his leads to the following representation of the polynomial WL�x�:

WL�x� = 2�
l=0

L−1

�− �L+l 2l + 1

�L − l��L + l + 1�
�Pl�x� − PL�x�� . �3.35�

Observe that, according to the convention introduced below Eq. �3.29�, from Eq. �3.35� it follows
hat W0�x�=0, which is in agreement with Eq. �3.19�.�

The results obtained above may be summarized in the following formula for the sought
erivative ��P��x� /����=L:

� �P��x�
��

�
�=L

= PL�x�ln
1 + x

2
+ 2�

l=0

L−1

�− �L+l 2l + 1

�L − l��L + l + 1�
�Pl�x� − PL�x�� . �3.36�

n particular, from Eq. �3.36� it follows that

� �P��x�
��

�
�=1

= x ln
1 + x

2
+ �x − 1� , �3.37�

� �P��x�
��

�
�=2

=
1

2
�3x2 − 1�ln

1 + x

2
+ �7

4
x2 −

3

2
x −

1

4
� , �3.38�

� �P��x�
��

�
�=3

=
1

2
�5x3 − 3x�ln

1 + x

2
+ �37

12
x3 −

5

2
x2 −

5

4
x +

2

3
� . �3.39�

We parenthetically observe also that, if needed, the derivatives ��P��x� /����=−L−1 may be
educed from Eqs. �3.4� and �3.36�.

V. DISCUSSION

From Eqs. �2.7�, �3.36�, and �2.6� one deduces that the explicit form of the generalized
reen’s function for the Helmholtz operator �1.4�, with the constraint �1.9�, is

ḠL�n,n�� =
1

4�
PL�n · n��ln

1 − n · n�

2
− 2�

l=0

L−1

�− �L+l 2l + 1

�L − l��L + l + 1�
+

1

2L + 1�
+

1

2�
�
l=0

L−1
2l + 1

�L − l��L + l + 1�
Pl�n · n�� . �4.1�

n the particular case L=0, when the spherical Helmholtz operator �1.4� reduces to the spherical
aplacian, Eq. �4.1� yields

Ḡ0�n,n�� =
1

4�
�ln

1 − n · n�

2
+ 1� . �4.2�

his result agrees with that of Kneser19�see also the paper by Freeden14�, after rescaling his
ormula to achieve the consistency with our defining Eq. �1.13�, but at the first sight seems to
ontradict the finding of Courant and Hilbert,12 whose result, again after due rescaling, in our

otation is
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Ḡ0
�CH��n,n�� =

1

4�
�ln

1 − n · n�

2
+ 2 ln 2� . �4.3�

he reason for this discrepancy is that the latter authors did not impose the orthogonality con-
traint �1.14� on the solution to the inhomogeneous equation �1.13�, specialized to the case L=0.
onsequently, in their approach the generalized Green’s function for the spherical Laplace opera-

or is determined only up to a multiple of Y00�n�Y00
* �n��, i.e., up to an additive constant. If this

onstant is added to Ḡ0
�CH��n ,n��, and then chosen so that the result satisfies the constraint �1.14�,

ur finding �4.2� is recovered.
Finally, we find it noteworthy that Eqs. �2.7�, �3.11�, and �3.14� imply that the function

¯
L�n ,n�� satisfies the three-term inhomogeneous recurrence relation

�L + 1�ḠL+1�n,n�� − �2L + 1�n · n�ḠL�n,n�� + LḠL−1�n,n��

=
1

4�
 PL+1�n · n��

�2L + 1��2L + 3�
+

PL−1�n · n��
�2L − 1��2L + 1�� , �4.4�

ubject to the initial condition constituted by Eq. �4.2�.

PPENDIX: CLOSED FORM OF THE GENERALIZED GREEN’S FUNCTION
OR THE LEGENDRE OPERATOR „1.15…

The Legendre Green’s function g�� ;x ,x�� is defined as the solution to the inhomogeneous
ifferential equation �with x� fixed�

 d

dx
�1 − x2�

d

dx
+ ��� + 1��g��;x,x�� = 	�x − x�� �− 1 � x,x� � 1� �A1�

atisfying the boundary conditions

g��;x,x�� bounded for x → ± 1. �A2�

n Eq. �A1�, and hereafter, 	�x−x�� is the one-dimensional Dirac delta distribution. The function
�� ;x ,x�� has the spectral series representation

g��;x,x�� =
1

2�
l=0



2l + 1

��� + 1� − l�l + 1�
Pl�x�Pl�x�� �� � Z� , �A3�

hile its closed form may be shown to be

g��;x,x�� =
�

2 sin����
P��− x��P��x�� �� � Z� , �A4�

ith

x� = min�x,x��, x� = max�x,x�� . �A5�

vidently, g�� ;x ,x�� fails to exist if ��Z, i.e., if the condition �1.9� is satisfied. In this appendix,
ith the help of the results of Sec. III, we shall find the closed form of the generalized Legendre
reen’s function ḡL�x ,x�� for this case.

The function ḡL�x ,x�� is defined as this particular solution to the inhomogeneous equation

with x� fixed�
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 d

dx
�1 − x2�

d

dx
+ L�L + 1��ḡL�x,x�� = 	�x − x�� −

2L + 1

2
PL�x�PL�x�� �− 1 � x,x� � 1� ,

�A6�

hich satisfies the boundary conditions

ḡL�x,x�� bounded for x → ± 1 �A7�

nd the orthogonality constraint

�
−1

1

dx PL�x�ḡL�x,x�� = 0. �A8�

he spectral series representation of ḡL�x ,x�� is

ḡL�x,x�� =
1

2 �
l=0

�l�L�



2l + 1

L�L + 1� − l�l + 1�
Pl�x�Pl�x�� �A9�

nd this particular form of ḡL�x ,x�� has been helpful in deriving Eq. �3.32�.
To find the closed form of ḡL�x ,x��, we observe that, as it follows from Eqs. �A3� and �A9�,

t is related to the Green’s function g�� ;x ,x�� through

ḡL�x,x�� = lim
���+1�→L�L+1�

�

����� + 1��

���� + 1� − L�L + 1��g��;x,x��� . �A10�

n virtue of Eq. �A4�, this relation may be rewritten as

ḡL�x,x�� =
�

2

1

2L + 1
lim
�→L

�

��

�� − L��� + L + 1�
sin����

P��− x��P��x�� . �A11�

erforming the limiting passage with the aid of the l’Hospital rule gives

ḡL�x,x�� = � �− �L

2

�P��− x��
��

�
�=L

PL�x�� + � �− �L

2
PL�− x��

�P��x��
��

�
�=L

+
1

2

PL�x��PL�x��
2L + 1

,

�A12�

nd transforming further Eq. �A12� with the help of Eqs. �3.15�, �3.21�, and �2.6� leads to the final
esult

ḡL�x,x�� =
1

2
PL�x��PL�x��ln

�1 − x���1 + x��
4

+
1

2
WL�− x��PL�− x�� +

1

2
PL�x��WL�x��

+
1

2

PL�x��PL�x��
2L + 1

, �A13�

ith WL�x� given explicitly by Eq. �3.35�. In the particular case L=0, Eq. �A13� simplifies to the
ell-known formula12,20

ḡ0�x,x�� =
1

2
ln

�1 − x���1 + x��
4

+
1

2
. �A14�
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Properties of the Jacobi �3-function and its derivatives under discrete Fourier trans-
forms are investigated, and several interesting results are obtained. The role of
modulo N equivalence classes in the theory of �-functions is stressed. An important
conjecture is studied. © 2006 American Institute of Physics.
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. INTRODUCTION

Methods in mathematical physics usually provide an interface between quite different areas of
hysics, and it is not unusual that such areas advance in parallel, mostly ignoring each other’s
teps. This is the case with finite dimensional inner product spaces �hereafter mentioned as the
discrete”�, with its leading role in quantum mechanics �hence quantum information theory� and in
nite signal analysis. References 1–3 provide some links between those theories.

Both quantum mechanics of finite dimensional Hilbert spaces and finite signal analysis rely
eavily on the discrete Fourier transform �DFT, sometimes mentioned finite or fractional Fourier
ransform�, and, regarding quantum mechanics, after the seminal work of Weyl on finite dimen-
ional systems,4 it was Schwinger who observed and explored the fact that two physical observ-
bles whose families of eigenstates are connected via DFT share a maximum degree of
ncompatibility.5

Although, at first glance, a finite system might look much simpler than anything defined on a
onenumerable infinite dimensional Hilbert space �hereafter referred to as the “continuum”�, there
s much more knowledge about the latter than the former. In one phrase, in the continuum we have
ne, and only one, harmonic oscillator, while in the discrete there are a lot of candidates for that
ole, each one surely with its virtues, but surely no undisputed champion.

The eigenstates associated to the harmonic oscillator, the Gaussian function and the Hermite
olynomials, have a very distinguishable behavior under the action of the �usual� Fourier trans-
orm, so widely known that any comment on this regard is completely superfluous. Over such
roperties rests a huge amount of physical knowledge. On the other hand, however, although the
iscrete Fourier transform �DFT� is a well known tool, there is nothing on this context which
ould claim for itself a role analogous to that of the Gaussian function/Fourier transform “duo.”

A decisive step in an attempt to “regain,” in the discrete, all interpretative power derived from
he qualitative behavior of the harmonic oscillator eigenfunctions, lost when one leaves the con-
inuum realm, was given in Ref. 6, where the eigenstates of the DFT are obtained. The purpose of
his paper is to further explore this path, showing results which closely parallel those of the
ontinuum. Those results are obtained in a strikingly simple fashion, exploring the technique of
reaking infinite sums in modulo N equivalence classes. Pertinent research on the eigenstates of
he DFT can also be found in Ref. 7.

A remark must be made about the orthogonality of the DFT’s eigenstates. Mehta has conjec-
ured that those states are indeed orthogonal, what seems to be most reasonable. One may be led
o believe that, just as in the continuum, the eigenstates of the DFT may be also �nondegenerate�

�
Email address: mruzzi@ift.unesp.br
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igenstates of some other �unitary or self-adjoint� operator, and thus orthogonal. Further evidence
upporting such conjecture is that the continuous limit of the DFT eigenstates recovers, as ex-
ected, the Gaussian times the Hermite polynomials. However, as it will be shown, quite surpris-
ngly, the conjecture does not hold, giving another fine example of the peculiarities of the finite
imensional context.

The eigenstates of the DFT are seen to be the Jacobi �3-function and its derivatives.8 Interest
n Jacobi �-functions, by their own turn, may come from a variety of directions. First, its math-
matical interest goes without saying �see, for example, Ref. 9 and references therein�. To cite
elatively recent examples in physics, in quantum physics it is deeply related to coherent states
ssociated to both circle10 and finite lattice topology.11 Its modular properties have proven to be of
undamental importance in superstring theory, as it is shown by standard literature in this field.12

The basic notation adopted in this paper and some preliminary results are presented in the next
ection. Following, orthogonality of the DFT’s eigenstates is discussed. Section IV contains the
ain results, for which a two variable generalization is verified in the subsequent section. Further

elations among �3-functions are obtained in Sec. VI, which precedes the concluding section.

I. PRELIMINARY RESULTS

In Ref. 6 it is shown that there is a set of functions with the following remarkable property

fn�j� =
in

�N
�
k=0

N−1

fn�k�exp�2�i

N
kj� , �1�

here N is a natural number. The functions

fn�j� = �
�=−�

�

exp�−
�

N
��N + j�2�Hn����N + j��, � =�2�

N
�2�

re defined making use of the Hermite polynomial Hn. Writing Hn�x� in terms of its generating
unction, Hn�x�= �n

�tn
exp�2xt− t2�	t=0, it is possible to write this state �to use a quantum mechanical

erminology� as8

fn�j� =
1

�N

 �n

�tn
�3� j

N
−

�

�
t,

i

N
�exp�t2�


t=0
, �3�

here

�3�z,�� = �
�=−�

�

exp�i���2�exp�2�i�z�, Im��� � 0, �4�

s the Jacobi �3-function, following Vilenkin’s notation.13 In this notation the basic properties of
his even function read as

�3�z + m + n�,�� = exp�− i��n2�exp�− 2�inz��3�z,�� , �5�

�3�z,i�� = �−1/2 exp�−
�z2

�
��3� z

i�
,
i

�
� , �6�

mphasizing its period 1 and quasiperiod �. A beautiful consequence of �6� is that this function can

e written as a sum of Gaussians,
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�3� z

L
,

i

�2� = � �
�=−�

�

exp�− ���

L
�2

��L + z�2� , �7�

form in which the width L /� becomes apparent. Property �6� also provides an easy way to obtain
he additional identity �also given by Ref. 6�

fn�j� = ��− i�n �
�=−�

�

exp�−
�

N
�2 +

2�i

N
j��Hn���� , �8�

hich is in fact a generalization of Eq. �7� �if one compares it to Eq. �2��.

II. ORTHOGONALITY OF THE fn’S

According to Eq. �1�, the functions fn�j�� are eigenstates of the DFT with associated eigen-
alue in. Mehta has conjectured that fn�j��n=0

N−1 is an orthogonal set, and thus complete, over a finite
et of N points �for odd N. For even N one must replace fN−1�j� by fN�j��. This reasonable
onjecture, quite surprisingly indeed, does not hold for arbitrary N �it holds for large N�. As, in the
ollowing, evidence will be collected against the original conjecture, details shall be kept to a level
igher than usual.

Let �fn , fm� denote the inner product

�fn, fm� = �
j=0

N−1

fn
*�j�fm�j� = �2�− i�n+m�

j=0

N−1

�
�,	=−�

�

exp�−
�

N
��2 + 	2� +

2�i

N
j�� − 	��Hn����Hm��	� .

he sum over j� is a realization of the modulo N Kroenecker delta,


�,	
�N� = �1 � = 	 �mod N� ,

0 � � 	 �mod N� ,

hus

�fn, fm� = 2��− i�n+m �
�,	=−�

�


�,	
�N� exp�−

�

N
��2 + 	2��Hn����Hm��	� . �9�

he well-known identity,

exp�−
1

2
x2�Hk�x� =

ik

�2�
�

−�

�

dy exp�−
1

2
y2 + ixy�Hk�y� ,

ogether with the sum over 	� leads to

�fn, fm� = �
�,�=−�

� �
−�

�

dy dz exp�−
1

2
�y2 + z2� + iy�� + iz��� + �N��Hn�y�Hm�z� ,

here the infinite sum on �� covers the equivalence class present in 
�,	
�N� . Now, the sum over ��

y its turn is a realization of a modulo 2� Dirac delta, thus, with the integration over z� and
onvenient changes of variables,

�fn, fm� = 2� �
�,�=−�

� �
−�

�

dy exp�− y2 −
�2v2

�2 + i�y�N − v�N���Hn�y −
�v
�
�Hm�y +

��

�
� ,

here again an infinite sum is introduced due to the modulo 2� delta.
The above expression is rather elucidative. It is not hard to realize that the infinite sums over
� ,�� are a direct consequence of the equivalence classes brought in by the modulo N Kroenecker
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elta present in Eq. �9�. For large N, the term corresponding to �=�=0 becomes increasingly
mportant, and a simple check shows that this term is exactly 
n,m. Thus, as expected, the limit
→� recovers the usual harmonic oscillator results. For finite �and small� N, however, all terms

n the above summation must be taken into account.
Following then, the sum on � is seen to be a realization of the modulo 2� Dirac delta,

�2���y�N−v�N�, and after a change of variables one has

�fn, fm� = 2�� �
,�=−�

�

exp�−
2�

N
� +

Nv
2
�2

−
N�v2

2
�Hn���Hm�2�v

�
+ �� .

gain, summation over � must be included to account for the 2� periodicity of the Dirac delta.
plitting the sum on � in two sums, over the odd and even integers and shifting the sum on  by
N results in

fn, fm� = 2�� �
,�=−�

�

exp�−
2�

N
2 − 2�Nv2�Hn�� − �Nv�Hm�� + �Nv�

+ 2�� �
,�=−�

�

exp�−
2�

N
� +

N

2
�2

− 2�N�v + 1/2�2�Hn�� − �Nv�Hm��� + vN + N�� .

enoting the second term above by �fn , fm�odd, if N=2h+k, where the binary variable k controls
he parity of N, then

�fn, fm�odd = 2�� �
,�=−�

�

exp�−
2�

N
� + h + k/2�2 − 2�N�v + 1/2�2�Hn�� − �Nv�Hm��� + vN + N��

nd yet again shifting the sum on  by h+k /2 and the one on � by 1/2,

�fn, fm�odd = 2�� �
=−�

�

�k� �
�=−�

�

�1�exp�−
2�

N
2 − 2�Nv2�Hn��� − Nv��Hm��� + vN�� ,

here now �=−�
� �k� denotes a sum over the integers �half-integers� if k=0 �k=1�, so that back to

he general expression,

�fn, fm� = 2�� �
,�=−�

�

exp�−
2�

N
2 − 2�Nv2�Hn��� − Nv��Hm��� + vN��

+ 2�� �
=−�

�

�k� �
�=−�

�

�1�exp�−
2�

N
2 − 2�Nv2�Hn��� − Nv��Hm��� + vN�� .

ow, recourse to the Hermite polynomial’s generating function gives

�fn, fm� = 2��
�n

�tn
�m

�sm� �
,�=−�

�

exp�−
2�

N
2 + 2��t + s� − 2��N�t − s� − t2 − s2�

+ �
=−�

�

�k� �
�=−�

�

�1�exp�−
2�

N
2 + 2��t + s� − 2��N�t − s� − t2 − s2��

t=s=0

.

he sum on � results in a �3-function in the first term, and a �3 for k=0 or a �2 for k=1 in the

econd. The sum on ��, by its turn, gives �3-function in the first term, and a �2 in the second, as
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�fn, fm� = 2��
�n

�tn
�m

�sm���3� i��t + s�
�

,
2i

N
��3� i�N�t − s�

�
,2Ni��

+ �3−k� i��t + s�
�

,
2i

N
��2� i�N�t − s�

�
,2Ni�� exp�− t2 − s2�	�


t=s=0
.

sing the basic properties,

�3�z,i�� = �−1/2 exp�−
�z2

�
��3� z

i�
,
i

�
� ,

�2�z,i�� = �−1/2exp�−
�z2

�
��4� z

i�
,
i

�
� ,

ne gets

�fn, fm� =
2�3/2

N

�n

�tn
�m

�sm���3� i��t + s�
�

,
2i

N
��3� ��t − s�

2�
,

i

2N
�

+ �3−k� i��t + s�
�

,
2i

N
��4� ��t − s�

2�
,

i

2N
��exp�− 2ts�	�

t=s=0
.

inally, compact expressions can be achieved with

�3�z,�� =
1

2
��3� z

2
,
�

4
� + �4� z

2
,
�

4
�� ,

�2�z,�� =
1

2
��3� z

2
,
�

4
� − �4� z

2
,
�

4
�� ,

hus for k=0

�fn, fm� =
�3/2

N

�n

�tn
�m

�sm
�3� i��t + s�
�

,
2i

N
��3� ��t − s�

�
,
2i

N
�exp�− 2ts�


t=s=0

nd for k=1

�fn, fm� =
�3/2

N

�n

�tn
�m

�sm��3� i��t + s�
�

,
2i

N
��3� ��t − s�

�
,
2i

N
�

− 2�4� i��t + s�
2�

,
i

2N
��4� ��t − s�

2�
,

i

2N
�exp�− 2ts��

t=s=0
.

gain, the limit N→� easily recovers the usual results, as the i factor inside the �-functions
uarantees that, in this limit, only a term proportional to ��n /�tn���m /�sm�exp�−4ts�	t=s=0 survives.
nyhow, with the above expressions any term �fn , fm� can be calculated as a sum of �-function
erivatives evaluated at zero. The particular situation m=0, for example, for N even, is quite
nstructive. In this case

�fn, f0� =
�3/2 �n

n�3� i�t
,
2i��3� �t

,
2i� ,
N �t � N � N t=0
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�fn, f0� = 
�3/2

N
�
j=0

n �n

j
�ij � j

�tj�3� �t

�
,
2i

N
�


t=0

�� �n−j

�tn−j�3� �t

�
,
2i

N
�


t=0
� ,

nd it is immediate to see that all n=odd terms are zero. For n=2 �and for all even numbers not
ultipliers of 4�, the symmetry of the binomial term and the multiplicity of the powers of i lead

o a pairwise cancellation of all non-zero terms. For n=4 �and its multipliers�, the situation is
ifferent. The simplest case is n=4,

�f4, f0� = 
�3/2

N
�
j=0

4 �4

j
�ij � j

�tj�3� �t

�
,
2i

N
�


t=0

�� �4−j

�t4−j�3� �t

�
,
2i

N
�


t=0
�

�f4, f0� =
�3/2

N
�2�3�0,

2i

N
��3���0,

2i

N
� − 6��3��0,

2i

N
��2� .

his term �with proper normalization� goes to zero quite fast with increasing N. In fact, for N
10 it is already of order of 10−6. On the other hand, it is immaterial to discuss the case N=4 �or

maller�, as in this situation the distinct eigenvalues of the Fourier operator are enough to guar-
ntee orthogonality of the whole set. Considering all this, it comes down to, literally, one-half a
ozen different values of the dimensionality N �the range �5,10�� for which a significant deviation
rom the “expected” results �that is, orthogonality� can be observed.

V. DFT AND WIDTH INVERSION

Starting from the own definition of the �3-function, Eq. �4�, with ��R, a fractional shift of
he �3 function can be calculated,

�3�z +
k

N
,
i�2

N
� = �

�=−�

�

exp�−
�

N
�2�2�exp�2�i��z +

k

N
�� ,

here k is an integer. The sum over �� can be broken into modulo N equivalence classes as

�3�z +
k

N
,
i�2

N
� = �

j=0

N−1

�
	=−�

�

exp�−
�

N
�2�j + 	N�2�exp�2�i�j + 	N��z +

k

N
�� .

onveniently regrouping the terms one gets

�3�z +
k

N
,
i�2

N
� = �

j=0

N−1 � �
	=−�

�

exp�− �N�2	2�exp�2�i	�i�2j + Nz���
�exp�−

�

N
�2j2 + 2�ijz +

2�i

N
jk� ,

here the term inside the brackets can be identified as �3-function,

�3�z +
k

N
,
i�2

N
� = �

j=0

N−1

�3�i�2j + Nz,iN�2�exp�−
�

N
�2j2 + 2�ijz +

2�i

N
jk� .

se of property �6� leads to

�3�z +
k

N
,
i�2

N
� =

1
�N�2� j=0

N−1
�3� iz

�2 −
j

N
,

i

N�2�exp�−
�N

�2 z2 +
2�i

N
jk� �10�

� 2�i �
nd taking advantage of the Fourier coefficients exp N jk it is easy to obtain the inverse relation

                                                                                                            



P
o
s

a
t
w

A

I

i

a

t

w
b

V

t

063507-7 �-functions and discrete Fourier transforms J. Math. Phys. 47, 063507 �2006�

                        
�3� iz

�2 −
k

N
,

i

N�2� =�N

�2 �
j=0

N−1

�3�z +
j

N
,
i�2

N
�exp��N

�2 z2 −
2�i

N
jk� . �11�

articular cases of these equations are most interesting, and a lot of peculiar relations can be
btained with the different possible choices of z ,k and �. Two straightforward examples are: First,
etting z=0 in �10�,

�3� k

N
,
i�2

N
� =

1
�N

�
j=0

N−1

�3� j

N
,

i

N�2�exp�2�i

N
jk� , �12�

nd, according to Eq. �7�, the �3-function on the left-hand side has width �, while the one under
he action of the DFT has width �−1. This property is the obvious discrete counterpart of the
ell-known behavior of the Gaussian function under the usual Fourier transform.

The case k=0, by its turn, after some manipulation gives

�3�Nz,iN�2� =�N

�2 �
j=0

N−1

�3�z +
j

N
,
i�2

N
� .

. Application

With the above results it is possible to generalize the result of Ref. 6 in a straightforward way.
ntroducing

fn�j,�� =�N

�

 �n

�tn
�3� j

N
−

�

�
�t,

i�2

N
�exp�t2�


t=0
,

ts DFT can be directly calculated,

fn�k,�� =
1

�N
�
j=0

N−1

exp�2�i

N
jk� fn�j,�� ,

fn�k,�� =
1
��

�n

�tn �
j=0

N−1

exp�2�i

N
jk�
�3� j

N
−

�

�
�t,

i�2

N
�exp�t2�


t=0
,

nd use of Eq. �11� together with change of variables from t to it leads to

fn�k,�� = �N�in
�n

�tn

�3� k

N
−

�t

��
,

i

N�2�exp�t2�

t=0

,

hus

fn�k,�−1� = in�
j=0

N−1

exp�2�i

N
jk� fn�j,�� , �13�

hich reproduces Eq. �1� for �=1. From this relation, most identities obtained in Ref. 6 may also
e generalized.

. TWO VARIABLE’S DFT

Yet another generalization of the main result of Ref. 6 regards a two variable DFT, which, for
he sake of briefness, here it will be merely verified. Apart from the obvious product solution

fm�j�fn�l�, if one considers the quantity
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Fm,n�j,l� = �
k=0

N−1

fm�k�fn�k − l�exp�2�i

N
jk� ,

hich obeys

�Fm,n�j,l��* = Fm,n�j,l�exp�2�i

N
jl� ,

se of Eq. �1�, and some simple manipulations lead to the nontrivial result

	Fm,n�j,l�	2 =
�− i�m+n

N
�

a,b=0

N−1

	Fm,n�a,b�	2exp�2�i

N
�ma + nb�� .

s in the one variable case, these states obey

�
j,l=0

N−1

	Fm,n�j,l�	2	Fm�,n��j,l�	2 = 
m,m�
n,n�, m + n � m� + n��mod 4� ,

hich imply a multitude of relations involving derivatives of the �3-functions �or the Hermite
olynomials�. Motivated by the preceding section, it should be investigated whether this relation
olds for m+n=m�+n��mod 4�.

I. FURTHER RELATIONS INVOLVING THE WIDTH

So far it has been seen that to break up the infinite sum present in the definition of the Jacobi

3-function leads to interesting properties of this very function. In order to further explore this
echnique, from Eq. �7� it is straightforward to write

�3� z

L
,
i�2

L
� =

�L

�
�

�=−�

�

exp�− L�� z

�L
+

�

�
�2� , �14�

ith L a positive real number. Choosing � integer, it is possible to break the sum over �� into
odulo � equivalence classes

�3� z

L
,
i�2

L
� =

�L

�
�
j=0

�−1

�
=−�

�

exp�− L�� z

�L
+

j + �

�
�2� ,

�3� z

L
,
i�2

L
� =

�L

�
�
j=0

�−1

�
=−�

�

exp�− L�� z + jL

�L
+ �2� ,

nd the infinite sum can be identified as a �3,

�3� z

L
,
i�2

L
� =

1

�
�
j=0

�−1

�3� z + jL

�L
,

i

L
� . �15�

t is quite interesting to set z=z� above and observe that

�3� z�

L
,
i�2

L
� =

1

�
�
j=0

�−1

�3� z

L
+

j

�
,

i

L
� ,
hich, for the particular case �=2 gives the well-known result
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�3�2z

L
,
4i

L
� =

1

2
��3� z

L
,

i

L
� + �3� z

L
+

1

2
,

i

L
�� ,

�3�2z

L
,
4i

L
� =

1

2
��3� z

L
,

i

L
� + �4� z

L
,

i

L
�� .

imilar reasoning would lead to the complementary relation

�3� z

L
,

i

L
� =

1

�
�
j=0

�−1

�3� z

�L
+

j

�
,

i

L�2� . �16�

nd again, the particular case �=2 gives

�3� z

L
,

i

L
� =

1

2
��3� z

2L
,

i

4L
� + �4� z

2L
,

i

4L
�� .

quations �15� and �16� can be combined to provide an alternative width inversion relation

�3� z�

L
,
i�2

L
� =

1

�2 �
j,j�=0

�−1

�3� z

�L
+

j�

�
+

j

�2 ,
i

L�2� .

II. CONCLUSIONS

The results here presented seem to argue in favor of one basic point: The Jacobi �3-function,
ogether with the DFT, plays, in finite dimensional spaces, the same role played by the Gaussian
unction in conjunction with the usual Fourier transform. Concerning quantum mechanics,
chwinger has already noted that, if the families of eigenstates of two different observables are
onnected via DFT, then those observables share a maximum degree of incompatibility.5 In this
onnection, the width inversion relation obeyed by the fn�j ,�� functions strongly suggests that one
ay be able to construct, for finite dimensional spaces, states which behavior resembles that of the

ontinuous minimum uncertainty states.
However, such a reasoning meets an important hindrance if one considers that the orthogo-

ality of the DFT’s eigenstates ultimately fails. It is a fact, however, that with increasing N it
ecomes, in a numerical sense, true, and in this case the N→� limit is reached, as witty as it may
ound, somewhere near one dozen. This fact may illustrate a true finite dimensional idiosyncrasy,
r it might lead one to look for the possibility of finding different sets of DFT’s eigenstates, an
ssue which is a matter of current research.
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The inverse scattering transform for the vector defocusing nonlinear Schrödinger
�NLS� equation with nonvanishing boundary values at infinity is constructed. The
direct scattering problem is formulated on a two-sheeted covering of the complex
plane. Two out of the six Jost eigenfunctions, however, do not admit an analytic
extension on either sheet of the Riemann surface. Therefore, a suitable modification
of both the direct and the inverse problem formulations is necessary. On the direct
side, this is accomplished by constructing two additional analytic eigenfunctions
which are expressed in terms of the adjoint eigenfunctions. The discrete spectrum,
bound states and symmetries of the direct problem are then discussed. In the most
general situation, a discrete eigenvalue corresponds to a quartet of zeros �poles� of
certain scattering data. The inverse scattering problem is formulated in terms of a
generalized Riemann-Hilbert �RH� problem in the upper/lower half planes of a
suitable uniformization variable. Special soliton solutions are constructed from the
poles in the RH problem, and include dark-dark soliton solutions, which have dark
solitonic behavior in both components, as well as dark-bright soliton solutions,
which have one dark and one bright component. The linear limit is obtained from
the RH problem and is shown to correspond to the Fourier transform solution
obtained from the linearized vector NLS system. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2209169�

. INTRODUCTION

The inverse scattering transform �IST� for the scalar nonlinear Schrödinger �NLS� equation

iqt = qxx − 2��q�2q �1.1�

subscripts x and t denote partial differentiation throughout� has been extensively studied in the
iterature, both in the focusing ��=−1� and in the defocusing ��=1� cases.1–3 In particular, the
efocusing case with nonvanishing boundary conditions was first studied in 1973;4 the problem
as subsequently clarified and generalized in various works,5–10 and a detailed study can be found

n the monograph.11 Equation �1.1� with �=1 admits soliton solutions with nontrivial boundary
onditions, the so-called dark/gray solitons, which have the form

q�x,t� = q0e2iq0
2t�cos � + i sin � tanh�sin �q0�x − 2q0 cos �t − x0��� �1.2�
ith q0, � and x0 arbitrary real parameters. Such solutions satisfy the boundary conditions

47, 063508-1022-2488/2006/47�6�/063508/33/$23.00 © 2006 American Institute of Physics
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q�x,t� → q±�t� = q0e2iq0
2t±i� as x → ± �

nd appear as localized dips of intensity q0
2 sin2 � on the background field q0.

While the IST for the scalar NLS equation was developed many years ago, both with vanish-
ng and nonvanishing boundary conditions, the basic formulation of IST has not been fully devel-
ped for the vector nonlinear Schrödinger �VNLS� equation

iqt = qxx − 2��q�2q , �1.3�

here q=q�x , t� is, in general, an M-component vector and �·� is the standard Euclidean norm. The
ocusing case ��=−1� with vanishing boundary conditions in two components was developed by

anakov in 1974.12 However, the IST for the VNLS with nonzero boundary conditions has been
pen for over 30 years �partial results can be found in Ref. 13�. It is worth noting that Ref. 14
rovides an elegant direct and inverse scattering theory for decaying potentials on the real line.
he extension to nondecaying potentials, however, is not straightforward and therefore here we
mploy a different approach. We should also remark that direct methods have been applied to
NLS as a way to derive explicit bright and dark soliton solutions, see for instance Refs. 17–20

nd the review article Ref. 21.
In this work we present the IST for the two-component defocusing VNLS equation �namely,

q. �1.3� with �=1 and M =2� with nonvanishing boundary conditions as x→ ±�. In Sec. II we
iscuss the direct scattering problem. Section II A is devoted to the study of the analyticity of the
cattering eigenfunctions. Similar to the scalar equation, the spectral parameter of the associated
lock-matrix scattering problem for the VNLS is an element of a two-sheeted Riemann surface.
he vector problem however presents additional difficulties due, in part, to the fact that two out of

he six scattering eigenfunctions, defined via their asymptotics at infinity, do not admit an analytic
xtension on either sheet of the surface. Therefore a suitable modification both of the direct and of
he inverse problem is necessary. On the direct side, this is achieved by defining in Sec. II B an
adjoint” scattering problem, which provides two additional analytic solutions of the original
cattering problem. In Sec. II C we study the symmetries, and in Sec. II D we introduce a uni-
ormization variable. In Sec. II E we study the asymptotic behavior of the eigenfunctions for large
alues of the scattering parameter, and in Sec. II F we discuss the discrete spectrum. The inverse
roblem is formulated in Sec. III as a Riemann-Hilbert �RH� problem associated with analytic
igenfunctions. The RH problem is then transformed into a closed linear system of algebraic-
ntegral equations. The time evolution of the scattering data and the conserved quantities are
iscussed in Sec. IV. Explicit solutions are obtained in Sec. V; they include vector generalization
f the dark and gray soliton solutions of the scalar case as well as more exotic dark-bright soliton
olutions. Finally, in Sec. VI the linearized solution of the VNLS equation is obtained and found
o be consistent with that of the RH formulation, and in the Appendix we discuss the WKB
xpansion of the eigenfunctions at large values of the scattering parameter.

I. DIRECT PROBLEM

It is well-known12 that the two-component defocusing VNLS equation �1.3� with �=1 and
M =2 is associated to the Lax pair

vx = �ikJ + Q�v , �2.1a�

vt = �2ik2 + iqTr − 2kqT − iqx
T

− 2kr + irx − 2ik2I2 − irqT �v , �2.1b�

here v�x , t ,k�= �v�1��x , t ,k� ,v�2��x , t ,k� ,v�3��x , t ,k��T is the scattering eigenfunction, k is the scat-
ering parameter, q�x , t�= �q�1��x , t� ,q�2��x , t��T and r�x , t�= �r�1��x , t� ,r�2��x , t��T=q*�x , t� are the
cattering potentials, IN is the N�N identity matrix, the superscript T denotes matrix transpose,

nd where
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J = diag�− 1,1,1�, Q�x,t� = �0 qT

r 02�2
� . �2.2�

xplicitly, the compatibility of the system of equations �2.1� �i.e., the equality of the mixed
erivatives of the 3-component vector v with respect to x and t�, together with the constraint r
q*, is equivalent to the requirement that q�x , t� satisfy Eq. �1.3� with �=1. Throughout this work,
e consider potentials with the same time-independent amplitudes at both space infinities, which
e can write without loss of generality as

q�x,t� 	 q±�t� = ei�±�t�q0, r�x,t� 	 r±�t� = e−i�±�t�q0, x → ± � , �2.3�

here �±�t�=diag��±
�1� ,�±

�2�� and q0= �q0
�1� ,q0

�2��T�R+�R+, and where �q0�=
�q0
�1��2+ �q0

�2��2 is
ssumed to be non-zero. For brevity, in the following we will use q0= �q0�.

. Eigenfunctions, integral equations and analyticity

The eigenfunctions for the scattering problem �2.1a� with boundary conditions �2.3� are in-
roduced by fixing the large-x asymptotics for k�R with �k��q0,

�1�x,k� 	 w1
−�k�e−i	x, �2�x,k� 	 w2

−�k�eikx, �3�x,k� 	 w3
−�k�ei	x, x → − � , �2.4a�


1�x,k� 	 w1
+�k�e−i	x, 
2�x,k� 	 w2

+�k�eikx, 
3�x,k� 	 w3
+�k�ei	x, x → + � , �2.4b�

here 	�k�=
k2−q0
2, the eigenvectors w1

±�k� ,w2
±�k� ,w3

±�k� are given by

w1
−�k� = �	 + k

ir−
�, w2

−�k� = � 0

− iq−
� �, w3

−�k� = �	 − k

− ir−
� , �2.5a�

w1
+�k� = �	 + k

ir+
�, w2

+�k� = � 0

− iq+
� �, w3

+�k� = �	 − k

− ir+
� , �2.5b�

nd where we introduced a notation which we will use throughout this work: for any two-
omponent vector p= �p�1� , p�2��T we write p�= �p�2� ,−p�1��T. Note that for brevity we will omit the
ime dependence of the potentials and eigenfunctions throughout the discussion of the direct
roblem.

The Wronskian of a set �v1 ,v2 ,v3� of solutions of the scattering problem �2.1a� is defined in
he usual way as

Wr�v1,v2,v3� = det�v1,v2,v3� ,

nd satisfies the equation d�Wr�v1 ,v2 ,v3�� /dx= ik Wr�v1 ,v2 ,v3�. Taking into account the
symptotic behavior of the solutions in Eq. �2.4� we then have

Wr��1,�2,�3� = Wr�
1,
2,
3� = − 2	q0
2eikx. �2.6�

ence, for any nondecaying potential q�x , t�, the two Wronskians in Eq. �2.6� are nonzero for all
�R and all k such that 	�k��0 �i.e., everywhere except at the branch points of 	�. We also

ntroduce the solutions with fixed �with respect to x� boundary conditions

M1�x,k� = ei	x�1�x,k�, M2�x,k� = e−ikx�2�x,k�, M3�x,k� = e−i	x�3�x,k� , �2.7a�

N1�x,k� = ei	x
1�x,k�, N2�x,k� = e−ikx
2�x,k�, N3�x,k� = e−i	x
3�x,k� , �2.7b�
hich can be represented in terms of the integral equations
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Mj�x,k� = wj
−�k� + 

−�

�

G j
−�x − x�,k��Q�x�� − Q−�Mj�x�,k�dx�, �2.8a�

Nj�x,k� = wj
+�k� + 

−�

�

G j
+�x − x�,k��Q�x�� − Q+�Nj�x�,k�dx� �2.8b�

or j=1,2 ,3, where

Q± = � 0 q±
T

r± 02�2
� , �2.9�

nd where the matrix Green’s functions G j
±�x ,k� are defined below. The choice of Green’s func-

ions, together with the choice of the inhomogeneous terms in Eqs. �2.8�, determine the analytic
roperties of the corresponding eigenfunctions. The superscripts � in the Green’s functions, like
n the inhomogeneous terms, refer to the corresponding eigenfunctions being defined in terms of
heir asymptotics as x→ ±�.

Using the Fourier transform technique, one can show that

G1
��x,k� = ± ��±x�� 1

2	�	 + k�
��	 + k��	I3 − kJ� + i�	 + k�Q� + Q̃�� +

e2i	x

2	�	 − k�
��	 − k��	I3

+ kJ� − i�	 − k�Q� + Q̃�� +
ei�	+k�x

q0
2 Q̃�� , �2.10a�

G3
��x,k� = ± ��±x�� 1

2	�	 − k�
��	 − k��	I3 + kJ� − i�	 − k�Q� + Q̃�� +

e−2i	x

2	�	 + k�
��	 + k��	I3

− kJ� + i�	 + k�Q� + Q̃�� +
e−i�	−k�x

q0
2 Q̃�� , �2.10b�

G2
��x,k� = ± ��±x�� e−i�	+k�x

2	�	 + k�
��	 + k��	I3 − kJ� + i�	 + k�Q� + Q̃�� +

ei�	−k�x

2	�	 − k�
��	 − k��	I3

+ kJ� − i�	 − k�Q� + Q̃�� +
1

q0
2Q̃�� , �2.10c�

here

Q̃± = � 0 01�2

02�1 q±
��r±

��T � � �0 0 0

0 q±
�2�r±

�2� − r±
�1�q±

�2�

0 − r±
�2�q±

�1� r±
�1�q±

�1� � . �2.11�

ote that Eqs. �2.10� are significantly more complicated than the case of the vector system with
ero boundary conditions �e.g., see Ref. 22�.

So far, the integral equations and Green’s functions are only defined for real k and 	. In order
o extend the eigenfunctions to complex values of k, we note that, for instance, the Green’s
unction G1

−�x ,k� does not grow exponentially as �k�→� if and only if

Im 	 � 0 and Im�	 + k�� 0. �2.12a�
+
imilarly, G1�x ,k� does not grow exponentially as �k�→� if and only if
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Im 	  0 and Im�	 + k� 0. �2.12b�

t is therefore natural to introduce the Riemann surface of equation 	2=k2−q0
2 obtained by gluing

ogether two copies of the extended complex k-plane, which we will call C1 and C2, cut along the
emilines �−� ,−q0� and �q0 ,��.

On C1 one can introduce the local polar coordinates

k − q0 = r1ei�1, 0 �1� 2� ,

k + q0 = r2ei�2, − � �2��

ith the magnitudes r1 and r2 uniquely fixed by the location of the point k :r1= �k−q0� and r2

�k+q0� �cf. Fig. 1�. Then one can define

	�k� = �r1r2�1/2ei��1+�2�/2. �2.13�

f �= ��1+�2� /2, then � varies continuously between 0 and � both in the upper and in the lower
-planes, with a cut in the region �−� ,−q0�� �q0 ,��, and one has Im 	�0 and Im�	±k��0 for
ll k�C1. Conversely, on C2 one defines

	�k� = − �r1r2�1/2ei��1+�2�/2, �2.14�

hich will give Im 	0 and also Im�	±k�0, again with a cut in the region �−� ,
q0�� �q0 ,��. The upper branches of the cuts on sheet C1 are then glued with the lower branches
n sheet C2 and vice versa as shown in Fig. 2�a�.

With the above definitions, both conditions �2.12a� are satisfied if and only if k is on the upper
heet of the Riemann surface, and both conditions �2.12b� if and only if k is on the lower sheet.
or potentials that rapidly approach Q± as x→ ±�, the Green’s function G1

−�x ,k� then defines via
q. �2.8a� an eigenfunction M1�x ,k� which admits analytic extension on the entire upper sheet of

he Riemann surface. Similarly, for suitable potentials the eigenfunction N1�x ,k� defined by

1
+�x ,k� via Eq. �2.8b� admits analytic extension on the entire lower sheet. In a similar way one

an investigate the properties of the remaining Green’s functions. Overall we conclude that the
igenfunctions M1�x ,k�=�1�x ,k�ei	x and N3�x ,k�=
3�x ,k�e−i	x are analytic on the upper sheet,
nd M3�x ,k�=�3�x ,k�e−i	x and N1�x ,k�=
1�x ,k�ei	x are analytic on the lower sheet. Unlike the
ase of vanishing boundaries, however, the remaining two eigenfunctions, namely M2�x ,k� and

2�x ,k�, in general are analytic neither on the upper nor on the lower sheet.
Equation �2.6� shows that for all real k� ±q0, the two matrices ��x ,k�= ��1 ,�2 ,�3� and

�x ,k�= �
1 ,
2 ,
3� each contain a set of three linearly independent solutions of the third-order
cattering problem �2.4a�. Thus it must be possible to express one set of solutions as a linear

FIG. 1. The choice of branch cut for 	= �k2−q0
2�1/2 in the complex k-plane. Here �= ��1+�2� /2.
ombination of the other, where the coefficients depend on k but are independent of x:
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��x,k� =��x,k�AT�k� , �2.15a�

here A�k�= �aij� is the 3�3 matrix of scattering coefficients. That is, �1�x ,k�=a11�k�
1�x ,k�
a12�k�
2�x ,k�+a13�k�
3�x ,k�, with similar expressions for �2�x ,k� and �3�x ,k�. Note that Eqs.

2.6� imply det�A�=1. We can also express the “right” eigenfunctions in terms of the “left” ones,

��x,k� =��x,k�BT�k� , �2.15b�

here B�k�= �bij�=A−1�k�. Note that the scattering coefficients aij�k� and bij�k� are in general only
efined where all of the eigenfunctions are, i.e., for k�R and �k��q0, or, more precisely, on the
riented half-lines defined in Fig. 2, namely on aI�dII, bI�cII, cI�bII, and dI�aII. Note also that
pper and lower banks of the cut are not equivalent, because both 	�k� and the scattering eigen-
unctions are discontinuous along the cut. These semilines define the contour L
aI�bI�cI�dI�dII�cII�bII�aII namely L= �q0+ i0,�+ i0�� �−�+ i0,−q0+ i0��−�−q0− i0,
�− i0��−��− i0,q0− i0� on the upper sheet.

Some of the scattering coefficients can be analytically extended off the real axis. From Eqs.
2.15� one can derive Wronskian representations for the scattering coefficients. Unlike the scalar
ase, however, such representations are not definitive in order to establish analyticity, since they
ll involve either �2�x ,k� and/or 
2�x ,k�, which do not admit analytic continuation. However, one
an derive alternative representations for the scattering coefficients that provide the analytic ex-
ension sought for. For instance, using the first column of Eq. �2.15a� and the asymptotics �2.4b�,
ne can check that

a11�k� =
1

2	�	 + k�
lim

x→+�
ei	x��	 + k��1

�1��x,k� + iq+
�1��1

�2��x,k� + iq+
�2��1

�3��x,k�� , �2.16�

nd since this expression for a11�k� only depends on the components of the vector ei	x�1�x ,k�, it
ndicates that for suitable potentials a11�k� can be analytically extended on the upper sheet of the
iemann surface. Similarly one finds that a33�k� and b11�k� can be analytically extended on the

ower sheet of the Riemann surface, and b33�k� can be extended on the upper sheet of the Riemann
urface. In general, however, the remaining scattering coefficients do not have any special analy-
icity properties.

The problem of determining the class of potentials for which a limit like �2.16� �with respect
o a parameter, here x� of an analytic function of k is still an analytic function of k, is beyond the
cope of this paper. We point out that this result is true for all the special solutions considered in

IG. 2. �a� The two-sheeted covering of the complex plane defined by the scattering parameters �k ,	�. �b� The topologi-
ally equivalent genus-0 Riemann sphere. �c� The corresponding complex plane for the uniformization variable z=k+	
which will be introduced in Sec. II D�.
his work.
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. Adjoint problem and auxiliary eigenfunctions

In order to formulate and solve the inverse scattering problem, one needs two independent sets
f analytic eigenfunctions. The main issue at this stage is eliminating the nonanalytic eigenfunc-
ions �2 and 
2. The approach introduced by Kaup in Ref. 15 for investigating the three-wave
nteraction is generalized here in order to obtain a representation of the nonanalytic eigenfunctions
n terms of analytic eigenfunctions and scattering data. The key idea is to consider the “adjoint”
igenvalue problem

vx
ad = �− ikJ + QT�vad �2.17�

here Q and J are defined in Eq. �2.2�. One then recalls the well-known fact �see, for instance
ef. 16� that if uad�x ,k� and wad�x ,k� are two arbitrary solutions of the adjoint problem �2.17�, then

v�x,k� = − J�uad�x,k� Ù wad�x,k��eikx, �2.18�

here Ù denotes the vector product, is a solution of the original scattering problem �2.1a�. As
efore, one defines two sets of solutions of Eq. �2.17�, i.e., as x→−�

�1
ad�x,k� 	 �	 + k

− iq−
�ei	x, �2

ad�x,k� 	 � 0

ir−
� �e−ikx, �3

ad�x,k� 	 �	 − k

iq−
�e−i	x �2.19a�

nd as x→ +�


1
ad�x,k� 	 �	 + k

− iq+
�ei	x, 
2

ad�x,k� 	 � 0

ir+
� �e−ikx, 
3

ad�x,k� 	 �	 − k

iq+
�e−i	x. �2.19b�

ith techniques identical to those used to derive the integral equations and the Green’s functions
ssociated to the eigenfunctions of the scattering problem �2.1a�, one can then show that
i	x�3

ad�x ,k� and e−i	x
1
ad�x ,k� are analytic in the upper sheet of the Riemann surface, e−i	x�1

ad�x ,k�
nd ei	x
3

ad�x ,k� are analytic on the lower sheet and eikx�2
ad�x ,k� and eikx
2

ad�x ,k� on neither sheet.
nalogues of Eqs. �2.15� also exist,

�ad�x,k� =�ad�x,k�B̃T�k�, �ad�x,k� =�ad�x,k�ÃT�k� , �2.20�

here �ad�x ,k�= ��1
ad ,�2

ad ,�3
ad� and �ad�x ,k�= �
1

ad ,
2
ad ,
3

ad�, and where Ã�k�= �ãij� and B̃�k�
�b̃ij�= Ã−1�k� are the adjoint scattering matrices.

From these adjoint states, we can now use Eqs. �2.19� to define via �2.18� two new solutions
f the original scattering problem �2.1a�, namely,

�̄�x,k� = − eikxJ��1
ad�x,k� Ù 
3

ad�x,k�� , �2.21a�

��x,k� = − eikxJ��3
ad�x,k� Ù 
1

ad�x,k�� . �2.21b�

y construction, �̄�x ,k�e−ikx is analytic in the lower sheet �where �1
ad�x ,k�e−i	x and 
3

ad�x ,k�ei	x

re�, and ��x ,k�e−ikx is analytic in the upper sheet �where �3
ad�x ,k�ei	x and 
1

ad�x ,k�e−i	x are�.
oreover, by comparing the asymptotic behavior as x→ ±� of eigenfunctions and adjoint eigen-

unctions, one can check that, for all cyclic indices j , l ,m,

� j�x,k� = − eikxJ��l
ad�x,k� Ù �m

ad�x,k��/� j�k� , �2.22a�


 j�x,k� = − eikxJ�
l
ad�x,k� Ù 
m

ad�x,k��/� j�k� , �2.22b�

nd reciprocally

�ad�x,k� = − e−ikxJ��l�x,k� Ù �m�x,k��/� j�k� , �2.22c�
j
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 j
ad�x,k� = − e−ikxJ�
l�x,k� Ù 
m�x,k��/� j�k� , �2.22d�

here

�1�k� = 	 − k, �2�k� = 2	, �3�k� = 	 + k . �2.23�

rom Eqs. �2.22� and �2.15�, �2.20� it then follows that

ÃT�k� = ��k�A�k��−1�k�, B̃T�k� = ��k�B�k��−1�k� , �2.24�

here ��k�=diag��1�k� ,�2�k� ,�3�k��. Substituting the first of Eq. �2.20� into Eq. �2.21� and using
2.22b� yields

��x,k� = 2	�b33�k�
2�x,k� − b23�k�
3�x,k�� , �2.25a�

�̄�x,k� = 2	�b21�k�
1�x,k� − b11�k�
2�x,k�� . �2.25b�

ach of these two relations provides a decomposition of the nonanalytic eigenfunction 
2�x ,k�,


2�x,k� =
b21�k�
b11�k�


1�x,k� −
1

2	

�̄�x,k�
b11�k�

=
b23�k�
b33�k�


3�x,k� +
1

2	

��x,k�
b33�k�

. �2.26�

imilar relations hold for the eigenfunction �2�x ,k�, where now the scattering coefficients aij�k�
re involved. Precisely, one finds

�̄�x,k� = 2	�a23�k��3�x,k� − a33�k��2�x,k�� , �2.27a�

��x,k� = 2	�a11�k��2�x,k� − a21�k��1�x,k�� �2.27b�

nd consequently one obtains similar representations for �2�x ,k�:

�2�x,k� =
a23�k�
a33�k�

�3�x,k� −
1

2	

�̄�x,k�
a33�k�

=
a21�k�
a11�k�

�1�x,k� +
1

2	

��x,k�
a11�k�

. �2.28�

hese expressions will be key to define the inverse scattering problem in Sec. III.

. Symmetries

Importantly, the scattering problem admits two symmetries, which relate the value of the
igenfunctions on different sheets of the Riemann surface. These symmetries translate into com-
atibility conditions �constraints� on the scattering data, and will play a fundamental role in the
ormulation of the inverse problem.

First symmetry �k ,	�→ �k* ,	*�: When the potential satisfies the symmetry condition r=q*,
ne has QH=Q, and therefore from Eq. �2.17� it follows that

�

�x
�vad�k*��* = �ikJ + QH��vad�k*��* = �ikJ + Q��vad�k*��*.

ence, taking into account the boundary conditions �2.4� and �2.19�, we have

� j
ad�k,	� = �� j�k*,	*��*, 
 j

ad�k,	� = �
 j�k*,	*��*, j = 1,2,3 �2.29�

nd, as a consequence of Eqs. �2.24�, �2.15�, and �2.20�

��k,	�B�k,	��−1�k,	� = AH�k*,	*� , �2.30�
here ��k ,	�=diag��1 ,�2 ,�3� as before. In particular, Eqs. �2.30� give
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b11�k,	� = a11
* �k*,	*�, b33�k,	� = a33

* �k*,	*� �2.31�

howing that a11�k ,	� �respectively, b33�k ,	�� has a zero on the upper sheet of the Riemann
urface at a point �kn ,	�kn�� if and only if b11�k ,	� �respectively, a33�k ,	�� has a zero at the
onjugate point �kn

* ,	*�kn
*�� on the lower sheet.

Second symmetry �k ,	�→ �k ,−	�: This involution relates the values of the eigenfunctions on
he two sheets, and in particular across the cuts, for arbitrary fixed k on either sheet and 	→−	.
ndeed, the scattering problem is clearly invariant with respect to the exchange �k ,	�→ �k ,−	�,

and by looking at the boundary conditions �2.4� and �2.5� one can check that


1�x,k,− 	� = − 
3�x,k,	�, �1�x,k,− 	� = − �3�x,k,	� �2.32a�

hile 
2 and �2 are invariant with the respect to the symmetry 	↔−	, i.e.,


2�x,k,− 	� = 
2�x,k,	�, �2�x,k,− 	� = �2�x,k,	� . �2.32b�

herefore, from the equations �2.15a� defining the scattering coefficients one has

a11�k,− 	� = a33�k,	�, a22�k,− 	� = a22�k,	� , �2.33a�

a12�k,− 	� = − a32�k,	�, a13�k,− 	� = a31�k,	�, a21�k,− 	� = − a23�k,	� . �2.33b�

he same symmetry relations hold for the coefficients bij�k�, i.e.,

b11�k,− 	� = b33�k,	�, b12�k,− 	� = − b32�k,	�, b13�k,− 	� = b31�k,	� �2.34a�

b22�k,− 	� = b22�k,	�, b21�k,− 	� = − b23�k,	� . �2.34b�

ote that Eq. �2.33a� implies that �kn ,	�kn�� is a zero of a11�k ,	� in the upper sheet if and only if
kn ,−	�kn�� is a zero for a33�k ,	� in the lower sheet, and the same for b11�k ,	� and b33�k ,	�.
inally, note that, taking into account Eqs. �2.32� and �2.34�, comparing Eqs. �2.25a� and �2.25b�
ields

��x,k,	� = �̄�x,k,− 	� . �2.35�

. Uniformization coordinate

In a similar way as for the scalar problem �e.g., see Ref. 11�, we can introduce a uniformiza-
ion variable z �global uniformizing parameter� defined by the conformal mapping

z = k + 	�k� . �2.36a�

he inverse mapping is given by

k = 1
2 �z + ẑ*�, 	 = z − k = 1

2 �z − ẑ*� , �2.36b�

here we have introduced the shorthand notation

ẑ = q0
2/z*, �2.36c�

hich we will use throughout the rest of this work. �Note 	−k=−ẑ*, which will also be useful
ater on.� With regard to the mapping �k ,	�→z, it should be observed that �cf. Fig. 2�a�,�c��:

i� The branch cuts on the two sheets of the Riemann surface are mapped onto the real z-axis.
ii� The two sheets C1 and C2 of the Riemann surface are, respectively, mapped onto the upper

and lower half-planes of the complex z-plane.
iii� A neighborhood of k=� on either sheet is mapped onto a neighborhood of z=� or z=0
depending on the sign of kim �cf. Sec. II E�.
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iv� The symmetry k− i0→k+ i0 on the contours �giving the discontinuity of eigenfunctions and
scattering data on the banks of the cut� transforms into z→ ẑ*=q0

2 /z on the real z-axis.

According to the discussion in Secs. I A and I B, the eigenfunctions �1�x ,z�ei	�z�x,

3�x ,z�e−i	�z�x and ��x ,z�e−ik�z�x are analytic in the upper half-plane of z, while �3�x ,z�e−i	�z�x,

1�x ,z�ei	�z�x and �̄�x ,z�e−ik�z�x are analytic in the lower half-plane. Similarly, the scattering coef-
cients a11�z� and b33�z� are analytic in the upper half-plane of z, while a33�z� and b11�z� are
nalytic in the lower half-plane.

It should be noted that although the uniformization coordinate will be important in the inverse
roblem, it is not essential in our formulation of the direct problem. We introduce it here because
t turns out to be convenient when discussing the location of the discrete eigenvalues, which is
one in Sec. II F.

In terms of the global parameter z, the first symmetry becomes z→z*. Under this transforma-
ion, the symmetry relations �2.29� and �2.30� are then, respectively, written as

� j
ad�x,z� = �� j�x,z*��*, 
 j

ad�x,z� = �
 j�x,z*��*, j = 1,2,3, �2.37�

b�j
* �z*� = � j�z�aj��z���

−1�z�, �, j = 1,2,3, �2.38�

here

�1�z� = − ẑ*, �2�z� = 2	�z�, �3�z� = z . �2.39�

quation �2.38� can also be written compactly as

��z�B�z��−1�z� = AH�z*� , �2.40�

here ��z�=diag��1 ,�2 ,�3� as before. Taking into account Eq. �2.22�, the symmetries �2.37� can
e written in terms of eigenfunctions as follows:

� j
*�x,z*� = − e−ik�z�xJ��l�x,z� Ù �m�x,z��/� j�z� �2.41a�

nd


 j
*�x,z*� = − e−ik�z�xJ�
l�x,z� Ù 
m�x,z��/� j�z� �2.41b�

here j , l ,m are cyclic indices.
The second symmetry relates values of eigenfunctions and scattering coefficients at points

k ,	� and �k ,−	� on the two sheets or at the cuts. In terms of the uniformization variable z, the
ransformation then becomes z→ ẑ*=q0

2 /z. Hence the symmetry relations �2.33� can be written as

a11�ẑ*� = a33�z�, a12�ẑ*� = − a32�z� , �2.42a�

a13�ẑ*� = a31�z�, a21�ẑ*� = − a23�z� , �2.42b�

nd the same relations hold for the coefficients bij�z�. Also note that the symmetry relations �2.32�
etween the auxiliary eigenfunctions can be written as

�1�x,z� = − �3�x, ẑ*�, 
1�x,z� = − 
3�x, ẑ*� , �2.43a�

��x,z� = �̄�x, ẑ*� . �2.43b�

Taking into account Eq. �2.30� and recalling that B�z�=A−1�z� and that both matrices have unit

eterminant, on either side of the real z-axis we find
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�a11�z��2 + �a12�z��2
�1�z�
�2�z�

+ �a13�z��2
�1�z�
�3�z�

= 1,

here z�R. Combining this with Eq. �2.39� we then obtain

�a11�z��2 = 1 +
q0

2

z2 �a13�z��2 +
q0

2

z2 − q0
2 �a12�z��2 " z � R . �2.44�

he second term on the right-hand side is non-negative; the last term, however, can be either
ositive or negative and therefore one cannot a priori exclude real zeros of a11�z� if z

� �−q0 ,q0�. Similar results follow for zeros of a33�z�, b11�z�, and b33�z�, taking into account the
ymmetry relations �2.38� and �2.42�.

Note that both symmetry transformations relate values in the upper half z-plane to values in
he lower half z-plane, since both z* and ẑ* are in the opposite half-plane as z. In the following we
ill assume that the scattering coefficients a11�z�, etc., have no zeros on the real z-axis.

. Asymptotic behavior of eigenfunctions and scattering data

In order to determine the asymptotic behavior of the eigenfunctions for large values of the
cattering parameter k, we first note the following: in the upper sheet of the Riemann surface �i.e.,
hen 	im�0�, one has, above the cut �i.e., when kim�0�

	 + k 	 2k + O�1�, 	 − k 	 −
q0

2

2k
+ o�1/k� as �k� → � , �2.45a�

nd below the cut �i.e., when kim�0�

	 + k 	
q0

2

2k
+ o�1/k�, 	 − k 	 − 2k + O�1� as �k� → � . �2.45b�

imilar relations hold in the lower sheet of the Riemann surface �i.e., when 	im0�. Using these
elations we can obtain the large-k expansion of the eigenfunctions on each sheet. It is more
onvenient however to express this behavior in terms of the uniformization variable z, which will
e used in the inverse problem. To this aim, we note that �cf. Fig. 2�

i� �k�→� in the upper-half-plane of sheet I corresponds to z→� in the upper-half z-plane,
ii� �k�→� in the lower-half-plane of sheet II corresponds to z→� in the lower-half z-plane,

�iii� �k�→� in the lower-half-plane of sheet I corresponds to z→0 in the upper-half z-plane,
�iv� �k�→� in the upper-half-plane of sheet II corresponds to z→0 in the lower-half z-plane.

It should be noted here that there is no conceptual distinction between the points z=0 and z=� in
the z-plane, and one can change one into the other by simply defining z=k−	 instead of z=k
+	.

Taking Eqs. �2.45� into account and using both the integral equations �2.8� and the WKB
expansions of the eigenfunctions �see the Appendix� we obtain that as z→� in the upper-half
-plane one has

�1�x,z�ei	x 	 � z

ir�x�
�, 
3�x,z�e−i	x 	 − �qT�x�r+/z

ir+
� , �2.46a�

hile as z→0 in the upper-half z-plane one has

�1�x,z�ei	x 	 �qT�x�r−/ẑ*

ir−
�, 
3�x,z�e−i	x 	 − � ẑ*

ir�x�
� . �2.46b�
imilarly, as z→0 in the lower-half z-plane one has
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�3�x,z�e−i	x 	 − � ẑ*

ir�x�
�, 
1�x,z�ei	x 	 �qT�x�r+/ẑ*

ir+
� , �2.46c�

hile as z→� in the lower-half z-plane one has

�3�x,z�e−i	x 	 − �qT�x�r−/z

ir−
�, 
1�x,z�ei	x 	 � z

ir�x�
� . �2.46d�

symptotic expansions for the adjoint eigenfunctions can also be obtained. Then, using the as-
mptotics of � j

ad�x ,z� and 
 j
ad�x ,z� as well as Eqs. �2.21�, one can obtain the asymptotic expan-

ions for the auxiliary eigenfunctions �̄�x ,z� and ��x ,z�. Explicitly, in the upper-half z-plane one
as

��x,z�e−ikx 	 − �qT�x�q−
�

iq−
�z

� as z → � , �2.47a�

��x,z�e−ikx 	 �qT�x�q+
�

iq+
�ẑ* � as z → 0, �2.47b�

hereas in the lower-half z-plane

�̄�x,z�e−ikx 	 − �qT�x�q−

iq−
�ẑ* � as z → 0, �2.47c�

�̄�x,z�e−ikx 	 �qT�x�q+
�

iq+
�z

� as z → � . �2.47d�

quations �2.16� and �2.46� also allow us to obtain the asymptotic behavior of the scattering
oefficients. For example, in the upper-half z-plane, as z→� one has

a11�z� 	 1, b33�z� 	 q−
Tr+/q0

2, �2.48a�

hile as z→0 one has

a11�z� 	 q+
Tr−/q0

2, b33�z� 	 1. �2.48b�

imilar expressions hold for b11�z� and a33�z� in the lower-half z-plane: namely, as z→0 one has

a33�z� 	 1, b11�z� 	 q−
Tr+/q0

2 �2.48c�

hile as z→� one has

a33�z� 	 q+
Tr−/q0

2, b11�z� 	 1. �2.48d�

ote that q+
Tr−= �q−

Tr+�*=ei���1�
�q0

�1��2+ei���2�
�q0

�2��2, where we have introduced the asymptotic

hase differences for the potentials, ���1�=�+
�1�−�−

�1� and ���2�=�+
�2�−�−

�2� �cf. Eq. �2.3��. Hereafter,
e will assume that these asymptotic phase differences are the same in both components, namely

���1� = ���2�
¬ �� . �2.49�

f Eqs. �2.49� are satisfied, then

q+
Tr− = �q−

Tq+�* = ei��q0
2, �2.50�
nd the asymptotic behaviors of the scattering coefficients in Eqs. �2.48� simplify correspondingly.
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. Discrete eigenvalues and bound states

Recall that in the 2�2 scattering problem for the nondecaying scalar NLS equation there is a
ne-to-one correspondence between poles of the transmission coefficients �here, zeros of a11�z�
tc� and eigenvalues, which, in turn, are related to bound states. Hence, the unitarity relation �i.e.,
he analog of Eq. �2.44��, together with the self-adjointness of the scattering problem, ensure that
he transmission coefficients can only have poles at k=kn� �−q0 ,q0�, i.e., for z=zn on the circle C0

f radius q0 centered at the origin �e.g., see Ref. 11�. As we will see in the following, in the case
f vector NLS equation with nondecaying boundary conditions, the decay properties of the eigen-
unctions at a pole of the transmission coefficients are not sufficient to give a bound state.

Importantly, when r=q* any solution v�x ,k� of the scattering problem �2.1a� satisfies the
elation

− i�k − k*��v�x,k��2 =
�

�x
��v�1��x,k��2 − �v�2��x,k��2 − �v�3��x,k��2� . �2.51�

quation �2.51� shows that in order for k=kn to be an eigenvalue corresponding to a square
ntegrable eigenfunction, kn must be real �i.e., kn=kn

*�. For kn�R with �kn��q0 �i.e., for z�C0�
ne has 	�kn�= ± i
q0

2−kn
2 �with the upper/lower sign on sheet I/II of the Riemann surface, respec-

ively�. Correspondingly, �1�x ,kn ,	�kn�� and �3�x ,kn ,	�kn�� are exponentially decaying as x→
� while 
1�x ,kn ,	�kn�� and 
3�x ,kn ,	�kn�� are exponentially decaying as x→ +�. As we will
ee in Sec. II F 1, poles of the transmission coefficient at these points then give rise to bound
tates. It should be noted that, unlike the scalar case, the unitarity conditions �e.g., see Eq. �2.44��
re not enough to exclude poles of the transmission coefficients for k�R with �k��q0 �i.e., for
eal values of z�. In these cases, however, all eigenfunctions are oscillating as x→ ±�. Hence, the
nly eigenvalues k=kn corresponding to square integrable eigenfunctions lie in the segment
−q0 ,q0�. In terms of the uniformization variable z, this means that any eigenfunctions belonging
o L2�R� correspond to discrete eigenvalues on the circle C0 of radius q0. Therefore, if the scat-
ering coefficients a11�z�, etc., have a zero off the circle C0, then the corresponding eigenfunctions
annot form a bound state, that is, either they are not decaying rapidly enough at both space
nfinities, or they are singular, which prevents the eigenfunction from being L2�R�. We will see
hat both situations can in principle occur, the first case corresponding to zeros zn of a11�z� inside
he circle, while the second case to zeros outside the circle.

In order to locate discrete eigenvalues as it will apply to the inverse problem, it is convenient
o introduce the 3�3 matrices

E+�x,z� = ��1,�,
3�, E−�x,z� = �
1,�̄,�3� .

ith this notation, E+�x ,z� collects three eigenfunctions which are analytic in the upper-half
-plane, and E−�x ,z� three eigenfunctions analytic in the lower-half-plane. Then we note that Eqs.
2.6�, �2.25�, and �2.27� together imply

det�E+�x,z�� = Wr��1�x,z�,��x,z�,
3�x,z�� = − 4q0
2	2�z�a11�z�b33�z�eik�z�x, �2.52a�

det�E−�x,z�� = Wr�
1�x,z�,�̄�x,z�,�3�x,z�� = 4q0
2	2�z�a33�z�b11�z�eik�z�x. �2.52b�

quation �2.52a� shows that the Wronskian vanishes �i.e., the three solutions which comprise E+

ecome linearly dependent� at the zeros of a11�z� and b33�z�. Due to the symmetries �2.38� and
2.42� among the scattering coefficients, however, we have

a11�zn� = 0 Û b11�zn
*� = 0 Û b33�ẑn� = 0 Û a33�ẑn

*� = 0 �2.53�

where as before we used the notation �2.36c�, i.e., ẑ=q0
2 /z*�. If the zero zn of a11�z� is on the circle

0 of radius q0, then ẑn�zn, and therefore a11�z� and b33�z� vanish at the same point. Hence, the
ronskian �2.52a� will have a double zero at z=zn in this case. However, if a11�z� admits a simple
ero at a point z=zn off the circle C0 �i.e., �zn��q0 and Im zn�0�, then such zeros appear in
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uartets �cf. Fig. 3�, and the Wronskian �2.52a� will have a simple zero both at zn and at ẑn

q0
2 /zn

* in the upper-half-plane. Similarly, with regard to Eq. �2.52b�, a33�z� and b11�z� can either
oth vanish at the conjugate points zn

*� ẑn
*, on the lower-half circle, or vanish individually at two

ifferent points in the lower-half-plane �ẑn
* and zn

*=q0
2 /zn, respectively�. Hereafter we will use �n to

enote zeros of a11�z� on the circle C0, and we will reserve the notation zn for the zeros of a11�z�
ff the circle C0.

. Zeros on the circle

Let us first consider the case of zeros on the circle of radius q0 and assume that a11�z� and

33�z� both have a simple zero at the point z=�n=kn+ i�n, with �kn��q0 and �n=
q0
2−kn

2�0. As we
oted earlier, in this case the Wronskians �2.52a� and �2.52b� each have a double zero, respec-
ively, at z=�n and at z=�n

*. In principle there are two possibilities: either ��x ,�n�=0 or ��x ,�n�
0. If ��x ,�n�=0, then also �̄�x ,�n

*�=0, due to the symmetry �2.43b� �since in this case �n
*

q0
2 /�n�. If ��x ,�n��0 instead, one also has �̄�x ,�n

*��0. In the following we show that in fact it
s always the case that ��x ,�n�=��x ,�n

*�=0.
Indeed, let �n be a zero of a11�z� and b33�z� on the circle of radius q0. Then, according to Eq.

2.21b�, ��x ,�n�=0 if and only if �3
ad�x ,�n�Ù
1

ad�x ,�n�=0. Since �3
ad�x ,z� and 
1

ad�x ,z� are eigen-
unctions whose asymptotic behavior is fixed, they cannot vanish identically for all x. Hence for
�x ,�n� to be zero �3

ad�x ,�n� and 
1
ad�x ,�n� must be proportional to each other. Then, due to the

ymmetry �2.29�, it follows that �3�x ,�n
*��
1�x ,�n

*�. Moreover, Eq. �2.43b� implies that ��x ,�n�
�̄�x ,�n

*�, and therefore �recalling the definition �2.21a�� we conclude that

��x,�n� = �̄�x,�n
*� = 0 iff �3�x,�n

*� � 
1�x,�n
*� and �1�x,�n� � 
3�x,�n� . �2.54�

uppose now that ��x ,�n��0 �and hence also �̄�x ,�n
*��0�. If Eqs. �2.25a� and �2.27b� can be

ontinued off the real z-axis, then it follows that

��x,�n� � 
3�x,�n�, ��x,�n� � �1�x,�n�

with nonzero proportionality coefficients because by assumption ��x ,�n��0�. If this is the case,
hen �1�x ,�n��
3�x ,�n�, and �due to the symmetry �2.29�� one also has �1

ad�x ,�n
*��
3

ad�x ,�n
*�. But

hen it follows that �̄�x ,�n
*�=0, which contradicts the hypothesis. In conclusion, if �n and �n

* are a
air of zeros on the circle, then ��x ,�n�= �̄�x ,�n

*�=0, Eq. �2.54� holds and one can write

�1�x,�n� = bn
�1�
3�x,�n� , �2.55a�

�3�x,�n
*� = b̄n

�1�
1�x,�n
*� , �2.55b�

orresponding to a bound state. Note that due to the symmetry �2.32a� between the eigenfunctions,
rom Eqs. �2.55� it follows that

b̄n
�1� = bn

�1�. �2.56�

Since ��x ,�n�= �̄�x ,�n
*�=0 for all zeros �n of a11�z� and �n

* of a33�z� on the circle of radius q0,
t is then natural in this case to rescale the Wronskians in Eq. �2.52a� as

Wr��1�x,z�,
��x,z�

2	�z�b33�z�
,
3�x,z�� = − 2q0

2	�z�a11�z�eik�z�x, �2.57a�

Wr�
1�x,z�,
�̄�x,z�

2	�z�b11�z�
,�3�x,z�� = 2q0

2	�z�a33�z�eik�z�x. �2.57b�

*
he rescaled Wronskians will then have simple zeros at �n and �n.
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. Zeros off the circle

Suppose that a11�z�, which is analytic in the upper-half z-plane, has a simple zero at a point
=zn=kn+ i�n, with �n�0 and �zn��q0. First of all, note that, according to �2.36b�,

k�zn� = 1
2 �kn�1 + �ẑn�2/q0

2� + i�n�1 − �ẑn�2/q0
2�� ,

	�zn� = 1
2 �kn�1 − �ẑn�2/q0

2� + i�n�1 + �ẑn�2/q0
2�� .

hus, the behavior of eik�zn�x at large x depends on whether �zn��q0 �recall that ẑ=q0
2 /z*; hence,

ne has �ẑn��q0 for �zn��q0�, and it will be exponentially decaying at one space infinity and
xponentially growing at the other one. On the other hand, �1�x ,zn�	e−i	�zn�x will be decaying as
→−� and 
3�x ,zn�	ei	�zn�x will be decaying as x→ +� irrespective of whether zn is inside or
utside the circle.

If the zero zn of a11�z� is off the circle C0, then b33�z� will have a zero at point ẑn=q0
2 /zn

*

zn, but b33�zn��0 in general. Then from Eq. �2.52a� it follows that zn is a simple zero of the
ronskian. In this case we assume that ��x ,zn� does not vanish. Then from Eq. �2.25a� we deduce

hat

��x,zn� 	 − 2i	�zn�b33�zn�� 0

q+
� �exp� 1

2 �ikn�1 + �zn�2/q0
2� + �n�1 − �zn�2/q0

2��x�, x → + � ,

�2.58�

here we note that the other contribution formally obtained from b23�z�
3�x ,z� in Eq. �2.25a� is
xponentially small �and in any case, smaller than the contribution of the remaining term�. On the
ther hand, from Eq. �2.27b� it follows that, at a zero zn of a11�z�, the eigenfunction ��x ,zn� is
roportional to �1�x ,zn�:

�1�x,zn� = bn
�2���x,zn� . �2.59�

f �zn��q0 �i.e., if the zero is outside the circle C0�, we would obtain a bound state, since the
igenfunctions ��x ,zn� and �1�x ,zn� would be decaying at both space infinities. Therefore zeros of

11�z� outside the circle C0 cannot occur for a smooth eigenfunction, since this would violate the
igenvalue relation �2.51�. On the other hand, if �zn��q0 �i.e., if the zero is inside C0�, the relation
2.59� still holds, but the eigenfunctions ��x ,zn� and �1�x ,zn� will be exponentially growing as
→ +�, according to Eq. �2.58�, and this does not contradict Eq. �2.51�. Hence zeros zn inside the
ircle C0 are not forbidden.

Similarly, the Wronskian �2.52a� vanishes at the zero of b33�z� corresponding to zn, that is
according to Eq. �2.53��, at the point ẑn=q0

2 /zn
*. If zn is inside the circle C0 of radius q0, then ẑn

ill be outside the same circle, and vice versa. Also, in general a11�ẑn��0, and consequently from
q. �2.27b� it follows

��x, ẑn� 	 − 2i	�ẑn�a11�ẑn�� 0

q−
� �exp� 1

2 �ikn�1 + �zn�2/q0
2� − �n�1 − �zn�2/q0

2��x�, x → − � .

�2.60�

rom Eq. �2.25a�, however, one deduces that ��x , ẑn� is proportional to 
3�x , ẑn�,

��x, ẑn� = b̂n
�2�
3�x, ẑn� . �2.61�

herefore, if �zn��q0 �i.e., if ẑn is inside C0�, this would be a bound state, since 
3�x , ẑn� decays as
→ +� and ��x , ẑn� as x→−�, according to Eq. �2.60�. Hence, as before, this situation cannot
ccur for a smooth eigenfunction, in accordance with Eq. �2.51�. On the other hand, if �zn��q0

i.e., if ẑn is outside C0�, the eigenfunctions ��x ,zn� and 
3�x ,zn� are exponentially growing as

→ +�. Hence such situations do not contradict Eq. �2.51�.
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Finally, one has analogous results for the eigenfunctions in the lower-half-plane in correspon-
ence to the points zn

*=kn− i�n �zeros of b11�z� off the circle C0� and ẑn
*=q0

2 /zn �zeros of a33�z� off
he circle C0�. Specifically, at points zn

*, where b11�zn
*�=0, one has

�̄�x,zn
*� = b̄n

�2�
1�x,zn
*� . �2.62�

gain, if �zn��q0, this would correspond to a bound state. On the other hand, if �zn��q0 the
igenfunctions in �2.62� will be growing as x→−�. Also, at points q0

2 /zn� ẑn
*, where a33�ẑn

*�=0,
ne has �̄�x , ẑn

*� proportional to �3�x , ẑn
*�,

�3�x, ẑn
*� = b̌n

�2��̄�x, ẑn
*� . �2.63�

Summarizing, in the case of a pair of zeros zn and ẑn in the upper-half-plane such that

11�zn�=0 and b33�ẑn�=0 �with zn inside the circle C0 of radius q0 and ẑn=q0
2 /zn

* outside C0�, the
igenfunctions are related to each other as

��x, ẑn� = b̂n
�2�
3�x, ẑn� , �2.64a�

�1�x,zn� = bn
�2���x,zn� � bn

�2��̄�x, ẑn
*� �2.64b�

cf. Eqs. �2.61� and �2.59��, but neither ��x , ẑn� nor �1�x ,zn� are bound states. In Eq. �2.64b� we
sed the symmetry �2.43b� to express ��x ,z� in terms of �̄�x ,z�. At the corresponding pair of zeros
n the conjugate points in the lower half plane it is a33�ẑn

*�=0 and b11�zn
*�=0, and one has the

ollowing relations:

�3�x, ẑn
*� = b̌n

�2��̄�x, ẑn
*� � − bn

�2��̄�x, ẑn
*� , �2.64c�

�̄�x,zn
*� = b̄n

�2�
1�x, ẑn
*� � − b̂n

�2�
1�x,zn
*� �2.64d�

cf. Eqs. �2.63� and �2.62��, where we have used the symmetries �2.43� for the eigenfunctions in
rder to express the proportionality constants in terms those appearing in Eqs. �2.64�.

Finally, it should be noted that there is no conceptual difference between the interior and the
xterior of the circle C0. The reason why the zn are only allowed to be inside C0 is because they
re defined as the zeros of a11�z�. One could equivalently define zn as the zeros of b33�z� �which
mounts to switching zn↔ ẑn�, in which case one would obtain that zn are only allowed to be
utside C0.

. Symmetries in the norming constants

Eigenvalues on the circle: We first consider a pair of zeros ��n ,�n
*� on the circle C0 of radius

0. At these points, Eqs. �2.55� hold, with b̄n
�1�=bn

�1�, according to Eq. �2.56�. Moreover, from
ymmetries Eqs. �2.41a� and �2.55� if follows


3
*�x,�n� = �1/bn

�1��*�1
*�x,�n� = − �1/bn

�1��*e−ik��n
*�xJ��2�x,�n

*� Ù �3�x,�n
*��/�1��n

*�

nd, on the other hand, Eq. �2.41b� implies


3
*�x,�n� = − e−ik��n

*�xJ�
1�x,�n
*� Ù 
2�x,�n

*��/�3��n
*� .

hen observe that from Eqs. �2.26� and �2.28� it follows


1�x,�n
*� Ù 
2�x,�n

*� = −
1

2	��*�

1�x,�n

*� Ù
�̄�x,�n

*�
b11��

*�
, �2.65a�
n n
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�2�x,�n
*� Ù �3�x,�n

*� = −
1

2	��n
*�
�̄�x,�n

*�
a33��n

*�
Ù �3�x,�n

*� , �2.65b�

nd from the discussion in Sec. II F 1 we have �̄�x ,�n
*� /a33��n

*��0. Back-substituting, we finally
btain

�bn
�1��* = −

�3��n
*�

�1��n
*�

b11��n
*�

a33��n
*�

b̄n
�1�.

n order to simplify the above relation, first note that from Eq. �2.39� it follows −�1��n
*� /�3��n

*�
�n /�n

*. For the special case of reflectionless potential, with only one pair of eigenvalues �zeros�
�n ,�n

*� on the circle C0 of radius q0, one has

a11�z� =
z − �n

z − �n
* , a33�z� = a11�ẑ*� =

�n

�n
* ·

z − �n
*

z − �n
, b11�z� = a11

* �z*� =
z − �n

*

z − �n

o that b11�z� /a33�z���n
* /�n. In conclusion, one has

�bn
�1��* = � �n

*

�n
�2

b̄n
�1� � � �n

*

�n
�2

bn
�1� �2.66�

hich, in particular, implies that

�n
*

�n
bn

�1� � R .

igenvalues off the circle: We now consider the case of zeros off the circle C0, and establish a

elation between the norming constants bn
�2� and b̂n

�2� in Eq. �2.64�. Recall that

��x, ẑn� = b̂n
�2�
3�x, ẑn�, �1�x,zn� = bn

�2���x,zn�

nd, instead of the second relation, we could as well make use of the symmetry relations �2.43�
nd consider

�3�x, ẑn
*� = − bn

�2��̄�x, ẑn
*� . �2.67�

hen we can write

�*�x, ẑn� = �b̂n
�2��*
3

*�x, ẑn� = −
1

2	�ẑn
*��3�ẑn

*�b11�ẑn
*�

�b̂n
�2��*

bn
�2� �

*�x, ẑn�

where Eqs. �2.41b�, the first of Eqs. �2.26� and Eqs. �2.67�, �2.37�, and �2.21b� were used in turn�.
s a result we obtain

�b̂n
�2��* = − 2	�ẑn

*��3�ẑn
*�b11�ẑn

*�bn
�2�. �2.68�

he previous relation can be simplified by taking into account that −2	�ẑn
*�= �zn

2−q0
2� /zn and

3�ẑn
*�=q0

2 /zn, and that in the reflectionless case, with only one quartet of eigenvalues �zn ,zn
* , ẑn , ẑn

*�
cf. Fig. 3�, one has

b11�z� =
z − zn

*

z − zn
, b11�ẑn

*� =
q0

2 − �zn�2

q0
2 − zn

2

ˆ 2 *
again recall z=q0 /z �, so that
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�b̂n
�2��* =

q0
2

zn
2 ��zn�2 − q0

2�bn
�2�. �2.69�

II. INVERSE PROBLEM

In order to formulate the inverse scattering in terms of a Riemann-Hilbert �RH� problem, one
eeds a representation of eigenfunctions that are meromorphic in the upper-half z-plane in terms of
combination of eigenfunctions that are meromorphic in the lower-half-plane via suitably defined

ump conditions. In this case one employs the two sets of analytic eigenfunctions E+�x ,z�
��1 ,� ,
3� and E−�x ,z�= �
1 , �̄ ,�3�, which have already been used in Sec. II F. One then uses
qs. �2.15a�, which define the scattering coefficients, together with Eq. �2.25a� �which gives
�x ,z� in terms of 
2�x ,z� and 
3�x ,z�� and Eqs. �2.26� �which give 
2�x ,z� in terms of 
1�x ,z�
nd �̄�x ,z��, to obtain for all z�R,

�3�x,z�
a33�z�

e−i	�z�x = 
3�x,z�e−i	�z�x − �b31�z�
b11�z�


1�x,z� +
a32�z�
a33�z�

�̄�x,z�
2	�z�b11�z��e−i	�z�x, �3.1a�

�1�x,z�
a11�z�

ei	�z�x = 
1�x,z�ei	�z�x + �a12�z�
a11�z�

��x,z�
2	�z�b33�z�

−
b13�z�
b33�z�


3�x,z��ei	�z�x, �3.1b�

��x,z�
2	�z�b33�z�

e−ik�z�x = −
�̄�x,z�

2	�z�b11�z�
e−ik�z�x + �b21�z�

b11�z�

1�x,z� −

b23�z�
b33�z�


3�x,z��e−ik�z�x.

�3.1c�

ote that in the equations above we have used the relation A�z�=B�z�−1 among the scattering
oefficients. Recalling the symmetries �2.42� and �2.43b�, the system of Eqs. �3.1� can be written
s

�3�x,z�
a33�z�

e−i	�z�x = 
3�x,z�e−i	�z�x − ��1�z�
1�x,z� − �2�ẑ*�
�̄�x,z�

2	�z�b11�z��e−i	�z�x, �3.2a�

�1�x,z�
a11�z�

ei	�z�x = 
1�x,z�ei	�z�x − ��1�ẑ*�
3�x,z� − �2�z�
�̄�x, ẑ*�

2	�z�b11�ẑ*�
�ei	�z�x, �3.2b�

��x,z�
2	�z�b33�z�

e−ik�z�x = −
�̄�x,z�

2	�z�b11�z�
e−ik�z�x + ��̄2�z�
1�x,z� + �̄2�ẑ*�
3�x,z��e−ik�z�x, �3.2c�

here again ẑ=q0
2 /z*, and where we have introduced the analogs of reflection coefficients

�1�z� =
b31�z�
b11�z�

, �2�z� =
a12�z�
a11�z�

, �̄2�z� =
b21�z�
b11�z�

. �3.3�

ote that only two of the above three coefficients are independent, since according to Eq. �2.40�
ne has

�̄2
*�z*� =

q0
2

q2 − z2�2�z� . �3.4�

0
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. Riemann-Hilbert problem

The system of Eqs. �3.2� can be considered as a generalized matrix Riemann-Hilbert problem
n the real z-axis in the variables z, ẑ*�q0

2 /z, with poles in correspondence with the zeros of

11�z� and b33�z� in the upper-half-plane, as well as the zeros of b11�z� and a33�z� in the lower-
alf-plane. The next task is to solve the above RH problem by expressing the solutions in terms of
linear system of algebraic-integral equations.

Let us consider the first equation, namely Eq. �3.2a�. From the asymptotic expansions �2.46�
t follows

�3�x,z�
a33�z�

e−i	�z�x 	 
3�x,z�e−i	�z�x 	 � 0

− ir+
�, z → � , �3.5a�

�3�x,z�
a33�z�

e−i	�z�x 	 
3�x,z�e−i	�z�x 	 � − ẑ*

− ir�x�
�, z → 0. �3.5b�

herefore, in Eq. �3.2a� we subtract from both sides the behavior at infinity and the pole at zero
which are the same for the left-hand side and the first term on the right-hand side�. Also, note that
he left-hand side is meromorphic in the lower-half-plane, with �simple� poles at the zeros of a33�z�
which we have denoted by �n

* , ẑn
*�, while the first term on the right-hand side is analytic in the

pper-half-plane. Hence, we also subtract from both sides of the equation the residues at the poles.
e then introduce the Cauchy projectors,

P±�f��z� =
1

2�i


−�

� f���
� − �z ± i0�

d� , �3.6�

hich are well defined for any function f��� that is integrable on the real line �e.g., see Ref. 23�.
pplying P+ to Eq. �3.2a� after the above-mentioned subtractions, we then get


3�x,z�e−i	�z�x = − � ẑ*

ir+
� + �

n=1

��n�=q0

N1 �3�x,�n
*�e−i	��n

*�x

a33� ��n
*��z − �n

*�
+ �

n=1

�zn��q0

N2 �3�x, ẑn
*�e−i	�ẑn

*�x

a33� �ẑn
*��z − ẑn

*�

+
1

2�i


−�

� d�

� − �z + i0���1���
1�x,�� − �2��̂*�
�̄�x,��

2	���b11���
�e−i	���x, �3.7�

here N1 and N2 are, respectively, the number of zeros �n of a11�z� on the circle C0 of radius q0

nd of zeros zn inside the circle C0 �cf. section II F 2�. Regarding the contribution of the discrete
pectrum we now take into account that for any zero �n on the circle C0, according to Eq. �2.55b�
e can write �3�x ,�n

*�= b̄n
�1�
1�x ,�n

*�, while for any zero zn off the circle C0, Eq. �2.64c� gives

3�x , ẑn
*�=−bn

�2��̄�x , ẑn
*�. Therefore, from Eq. �3.7� we obtain


3�x,z�e−i	�z�x = − � ẑ*

ir+
� + �

n=1

��n�=q0

N1

C̄n
�1�
1�x,�n

*�e−i	��n
*�x

z − �n
* + �

n=1

��n��q0

N2

Cn
�2� �̄�x, ẑn

*�e−i	�ẑn
*�x

ẑn
*�z − ẑn

*�

+
1

2�i


−�

� d�

� − �z + i0���1���
1�x,�� − �2��̂*�
�̄�x,��

2	���b11���
�e−i	���x.

�3.8a�

n a similar way one can treat Eqs. �3.2b� and �3.2c�. Applying a projector P− and using �2.55a�,

2.64b�, and �2.64d� yields in these cases
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1�x,z�ei	�z�x = � z

ir+
� + �

n=1

��n�=q0

N1 z

z − �n
Cn

�1�
3�x,�n�ei	��n�x + �
n=1

��n��q0

N2 z

z − zn
Cn

�2��̄�x, ẑn
*�ei	�zn�x

−
z

2�i


−�

� d�

� − �z − i0���1��̂*�
3�x,�� − �2���
�̄�x, �̂*�

2	���b11��̂*�
� ei	���x

�
, �3.8b�

�̄�x,z�e−ik�z�x

2	�z�b11�z�
= � 0

iq+
� � − �

n=1

�zn��q0

N2

C̄n
�2�
1�x,zn

*�e−ik�zn
*�x z

�z − ẑn��z − zn
*�

−
1

2�i


−�

� d�

� − �z − i0�
��̄2���
1�x,�� + �̄2��̂*�
3�x,���e−ik���x. �3.8c�

ote that in Eqs. �3.8� we have introduced the norming constants

C̄n
�1� =

b̄n
�1�

a33� ��n
*�

, Cn
�1� =

bn
�1�

�na11� ��n�
, Cn

�2� =
bn

�2�

zna11� �zn�
, C̄n

�2� = −
b̄n

�2�

zn
*b11� �zn

*�
�

b̂n
�2�

zn
*b11� �zn

*�
.

�3.9�

rom the symmetry �2.42�, whenever ��n�=q0, it follows

a11� ��n� = −
q0

2

�n
2 a33� ��n

*� = −
�n

*

�n
a33� ��n

*� . �3.10�

ence, recalling Eq. �3.9� and �2.56�, one has

C̄n
�1� =

b̄n
�1�

a33� ��n
*�

= −
bn

�1��n
*

�na11� ��n�
� − �n

*Cn
�1�. �3.11a�

lso, symmetry �2.38� implies �b11� �zn
*��*=a11� �zn� and therefore

�C̄n
�2��* =

q0
2

zn
2 ��zn�2 − q0

2�Cn
�2�. �3.11b�

quations �3.8� are the fundamental equations for the inverse scattering problem. They contain the

1+N2 independent �complex� norming constants Cn
�1� and Cn

�2�. In the absence of discrete eigen-
alues �that is, when N1=N2=0�, Eqs. �3.8� are a linear system of three vector integral equations
or the three eigenfunctions 
1�x ,z�, 
3�x ,z�, and �̄�x ,z�. In general �that is, when N1�0 or N2

0�, the system is consistently closed by evaluating the first equation at z=�n, for n=1, . . . ,N1,
he second at z=�n

* for n=1, . . . ,N1 and z=zn
* for n=1, . . . ,N2 and the last one at z= ẑn

*, n
1, . . . ,N2.

It should be noted that, using the WKB expansions for the eigenfunctions �see the Appendix�
nd the Wronskian relations for the scattering coefficients, one can show that the reflection coef-
cients �3.3� decay as appropriate powers of z both as z→0 and as z→� so as to make the
ntegrals in Eqs. �3.8� convergent.
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. Trace formula

From the definition of the reflection coefficients �3.3� and the symmetries �2.38�, we can write
q. �2.44� as

�a11�z��−2 = 1 −
z2

q0
2 ��1�z��2 −

q0
2

z2 − q0
2 ��2�z��2. �3.12�

ecall that a11�z� is analytic in the upper-half z-plane, with a11�z�	1 as �z�→�, and that it has
simple� zeros at the points ��n�n=1

N1 on the circle C0 of radius q0, and �zn�n=1
N2 off the circle C0.

herefore, assuming that it does not vanish for any z�R, one can explicitly write

a11�z� = �
n=1

N1 z − �n

z − �n
* �

n=1

N2 z − zn

z − zn
* exp�−

1

2�i


−�

+� log�1 − �2��1����2/q0
2 − q0

2��2����2/��2 − q0
2��

� − z
d�� .

�3.13�

he scattering coefficients a33�z�, b11�z�, and b33�z� can obviously be obtained from a11�z� by
ymmetry �cf. Eqs. �2.38� and �2.42��. In fact, it is worth noting that all other entries in the
cattering matrix A�z�= �aij�z�� and its inverse B�z�= �bij�z�� can be reconstructed in terms of the
eflection coefficients �3.3� and of the elements of the discrete spectrum, once the symmetries
2.38� and �2.42� are taken into account. In this sense, the reflection coefficients �3.3�, together
ith the discrete eigenvalues and relative norming constants, constitute a minimal set of scattering
ata.

We also mention that from the asymptotic behavior �2.48b� of a11�z� as z→0, the following
elation between the scattering data and the asymptotic phase differences ��=�+

�j�−�−
�j� in the

otentials can be obtained:

ei�� = �
n=1

N1 �n

�n
* �

n=1

N2 zn

zn
* exp�−

1

2�i


−�

+� log�1 − �2��1����2/q0
2 − q0

2��2����2/��2 − q0
2��

�
d�� .

�3.14�

quation �3.14� is the analog of the �-condition that was obtained in Ref. 11 for the scalar NLS
quation.

V. TIME EVOLUTION

Equation �2.1b� fixes the time evolution of eigenfunctions and scattering data, as well as the
symptotic phases of the potential. Thus, asymptotically, the time dependence of the eigenfunc-
ions is given by

�v
�t

	 �2ik2 + iq0
2 − 2kq±

T

− 2kr± − 2ik2I2 − ir±q±
T �v as x → ± � . �4.1�

he eigenfunctions � j�x , t ,k� and 
 j�x , t ,k� however are defined at all times t by the asymptotic
ehavior in Eqs. �2.4� as x→ ±�. Those boundary conditions are not compatible with the time
volution prescribed by Eq. �2.1b�. To determine the time evolution of � j�x , t ,k� and 
 j�x , t ,k�,
ne can introduce modified eigenfunctions which are simultaneously solutions of the x and t part

˜ i��
�1�

t
f the Lax pair. For instance, let �1�x , t ,k�=e �1�x , t ,k�, so that

                                                                                                            



R
c
p

w
t
o

I
i

w
s

�
x
m

w

D
o

F
a
p
z
t

063508-22 Prinari, Ablowitz, and Biondini J. Math. Phys. 47, 063508 �2006�

                        
��̃1

�t
= i��

�1��̃1 + ei��
�1�t��1

�t
. �4.2�

equiring that �̃1�x , t ,k� be a solution of the time-differential Eq. �2.1b� �and hence, asymptoti-
ally as x→−�, of Eq. �4.1� with the lower sign�, and recalling that r−

�j��t� depends on t via the
hase �−

�j��t� �cf. �2.3��, one then obtains from �2.4� and �2.5�,

�1 	 �	 + k

ir−�t�
�e−i	x,

��1

�t
	 � 0

�̇−�t�ir−�t�
�e−i	x,

��1

�x
	 − i	�	 + k

ir−�t�
�e−i	x,

here �̇±�t�=diag��̇±
�1��t� , �̇±

�2��t�� and the dot denotes differentiation with respect to time. Substi-
uting these into Eq. �4.1� and looking at each of the three components of �̃1�x , t ,k� we then
btain, respectively, from each component,

��
�1� = 2k	 + q0

2 = �̇−
�1� − q0

2 + 2k	 = �̇−
�2� − q0

2 + 2k	 .

n order for these three expressions to be compatible, it is necessary that �̇−
�1��t�= �̇−

�2��t�=2q0
2, that

s,

�−
�j��t� = �−

�j� + 2q0
2t, j = 1,2, �4.3�

hich completely fixes the time evolution of the asymptotic phases �−
�j� for the potential. In a

imilar way one can obtain the evolution of the asymptotic phases as x→ +� to show that

�±
�j��t� = �±

�j��0� + 2q0
2t, j = 1,2. �4.4�

Note that Eq. �4.4� can also be obtained directly from the asymptotics of the VNLS Eq. �1.3� as
→ ±�.� Moreover, one finds that all of the eigenfunctions � j�x , t ,k� and 
 j�x , t ,k� satisfy a
odified version of Eq. �2.1b�,

�v j

�t
= �2ik2 + iqTr − 2kqT − iqx

T

− 2kr + irx − 2ik2I2 − irqT �v j − i��
�j�v j , �4.5�

here ��=diag���
�1� ,��

�2� ,��
�3��, and

���
�1�,��

�2�,��
�3�� = �2k	 + q0

2,− 2k2 − 2q0
2,q0

2 − 2k	� .

ifferentiating the scattering equations �2.15a� with respect to t and taking into account Eq. �4.5�,
ne then obtains the time evolution of the elements of the scattering matrix A,

�aj�

�t
= i���

��� − ��
�j��aj�, j,� = 1,2,3. �4.6�

rom Eq. �4.6� it follows immediately that all the diagonal elements a���k� of the scattering matrix
re time independent. Since a11�k� and a33�k� �as well as b11�k� and b33�k�, which are related to the
revious ones by symmetries �2.31�� are constants of the motion, the eigenvalues kn, being the
eros of a11�k�, are also time independent. The same holds for the zeros of a33�k�. It is convenient
o write explicitly the time dependence of the off-diagonal scattering coefficients

a13�k,t� = e−4ik	ta13�k,0�, a31�k,t� = e4ik	ta31�k,0� , �4.7a�

2i�k2−k	+q0
2�t+iq0

2t −2i�k2−k	+q0
2�t−iq0

2t
a23�k,t� = e a23�k,0�, a32�k,t� = e a32�k,0� , �4.7b�
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a12�k,t� = e−2i�k2+k	+q0
2�t−iq0

2ta12�k,0�, a21�k,t� = e2i�k2+k	+q0
2�t+iq0

2ta21�k,0� . �4.7c�

he evolution of the coefficient bj��k , t� is the same as that of the aj��k , t�.
In a similar way one can determine the time dependence of the norming constants. Indeed,

ifferentiating �2.55a� and �2.55b� and taking into account Eq. �4.5� we get for an eigenvalue �n

kn+ i�n with ��n�=q0,

bn
�1��t� = bn

�1��0�e4kn�nt, b̄n
�1��t� = b̄n

�1��0�e4kn�nt. �4.8�

herefore, according to the definitions �3.9�

C̄n
�1��t� = C̄n

�1��0�e4kn�nt, Cn
�1��t� = Cn

�1��0�e4kn�nt, n = 1, . . . ,N1. �4.9�

imilarly, for eigenvalues zn and ẑn off the circle �cf. Fig. 3�, Eqs. �2.61� and �2.59� yield

bn
�2��t� = bn

�2��0�exp�− i�zn
2 + 4q0

2�t�, b̂n
�2��t� = b̂n

�2��0�exp�i��zn
*�2 + 4q0

2�t�, n = 1, . . . ,N2.

�4.10�

. Conserved quantities

According to Eq. �4.6�, the scattering coefficient a11�z� is time independent. Since a11�z� is
nalytic in the upper-half z-plane and a11�z�→1 as z→�, it admits an asymptotic Laurent series
xpansion whose coefficients are constants of motion. Similarly, the coefficients of the Taylor
eries expansion of a11�z� about z=0 are constant of the motion as well. Moreover, one can write
he following expansions of the modified eigenfunction M1�x ,z�:

M1
�j��x,z� = zM1,�

�j,−1��x� + M1,�
�j,0��x� +

1

z
M1,�

�j,1��x� +
1

z2 M1,�
�j,2��x� + ¯ , j = 1,2,3 �4.11�

s z→�, and

M1
�j��x,z� = M1,0

�j,0��x� + zM1,0
�j,1��x� + z2M1,0

�j,2��x� + ¯ , j = 1,2,3 �4.12�

s z→0. Substituting Eqs. �4.11� and �4.12� in Eq. �2.16�, we can then obtain two infinite sets of
onserved quantities:

Im = M1,�
�1,m��+ �� + iq+

�1�M1,�
�2,m−1��+ �� + iq+

�2�M1,�
�3,m−1��+ ��, m = 0,1,2, . . . , �4.13a�

Km = M1,0
�1,m−2��+ �� + iq+

�1�M1,0
�2,m��+ �� + iq+

�2�M1,0
�3,m��+ ��, m = 1,2, . . . , �4.13b�

here

M1,�
�j,m��+ �� = lim

x→+�
M1,�

�j,m��x�, M1,0
�j,m��+ �� = lim

x→+�
M1,0

�j,m��x�, j = 1,2,3

nd where M1,�
�2,−1��+��, M1,�

�3,−1��+�� and M1,0
�1,−1��+��, M1,0

�1,−2��+�� are all assumed to be identically
ero.

The first few coefficients of the asymptotic expansions �4.11� and �4.12� are computed in the
ppendix, by means of a WKB expansion. Taking into account �1.2� and �1.3� and �1.10�, �1.11�,
e can write explicitly the first few conserved quantities in �4.13�. From Eq. �4.13a� we have

I0 = � ��q�x,t��2 − q0
2�dx, I1 = � qT�x,t�rx�x,t�dx , �4.14a�
−� −�
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I2 = 
−�

�

�qT�x,t�rxx�x,t� − �q�x��2��q�x,t��2 − q0
2��dx , �4.14b�

r equivalently

I2 = − 
−�

�

��qx�x,t��2 + ��q�x,t��4 − q0
4��dx ,

tc. Note that I2 is the Hamiltonian of the VNLS equation �1.3�. Similarly, from Eq. �4.13b� one
btains

K1 = q+
Tr−, K2 = 

−�

�

q+
T�r�x,t�qT�x,t�r− − q0

2r−�dx , �4.15a�

nd so on and so forth. Note that assuming the asymptotic phase differences are the same in both
omponents �cf. Eq. �2.49��, Eq. �4.15a� becomes

K1 = ei��q0
2, K2 = ei��q0

2I0,

tc., which show that the asymptotic phase difference is constant, in agreement with Eq. �4.4�.
Finally, note that motion constants are also given in terms of the scattering data by the trace

ormula �3.13�. In fact, recalling that a11�z�, as well as its zeros zn ,�n �discrete eigenvalues� are
ime independent, the coefficients of the expansions of a11�z� both as z→0 and as z→� in the
pper-half-plane of z, i.e.,

Jn = 
−�

+�

�n log�1 − �2��1����2/q0
2 − q0

2��2����2/��2 − q0
2��d�, n � Z �4.16�

rovide an infinite set of conserved quantities, assuming all of these integrals are convergent.

. EXPLICIT SOLUTIONS

Let us discuss the special solutions obtained in the case where there is no continuum spec-
rum, that is, for reflectionless potentials, � j�z�= �̄ j�z��0 for j=1,2 and all z�R.

. Dark-dark soliton solutions

We first consider the case of a reflectionless potential with one single eigenvalue on the circle

0 of radius q0 �i.e., N1=1 and N2=0�, and let �1=k1+ i�1 with −q0�k1�q0 and �1=
q0
2−k1

2. In
his case the first two equations of the inverse problem �namely Eqs. �3.8a� and �3.8b�� reduce to
he closed system


3�x,z�e−i	�z�x = − � ẑ*

ir+
� + C̄1

�1�
1�x,�1
*�e−�1x

z − �1
* , �5.1a�


1�x,z�ei	�z�x = � z

ir+
� +

z

z − �1
C1

�1�
3�x,�1�e−�1x. �5.1b�

valuating Eq. �5.1a� at z=�1 and Eq. �5.1b� at z=�1
*, we get a linear system whose solution is
iven by
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3�x,�1� = − � �1
*

ir+
�e−�1x

1 +
iC̄1

�1�

2�1
e−2�1x

1 −
C1

�1�C̄1
�1�

�2�1�2 �1
*e−4�1x

, �5.2a�


1�x,�1
*� = � �1

*

ir+
�e−�1x

1 −
i�1

*C̄1
�1�

2�1
e−2�1x

1 −
C1

�1�C̄1
�1�

�2�1�2 �1
*e−4�1x

, �5.2b�

here we used the fact that ��1�2=q0
2. We write the common denominator of Eqs. �5.2� as

1 −
C1

�1�C̄1
�1�

�2�1�2 �1
*e−4�1x � �1 + �e−2�1x��1 − �e−2�1x�

ith �2�1��2=C1
�1�C̄1

�1��1
*. Then from �3.11a� it follows

C̄1
�1� = − �1

*C1
�1� �5.3�

nd therefore

iC̄1
�1�

2�1
= �


C1
�1�C̄1

�1��1
*

2�1
� � � �5.4�

o that the eigenfunctions �5.2a� and �5.2b� can be written as


1�x,�1
*� = − 
3�x,�1� = � �1

*

ir+
�e−i�1x 1

1 ± �e−2�1x . �5.5�

ecalling the definitions �3.9� and the symmetry relation �3.10�, we get

C1
�1�C̄1

�1��1
* = − b̄1

�1�b1
�1�/�a33� ��1

*��2.

urthermore, in the pure one-soliton case, one has �1
*a33� ��1

*�=�1 / ��1
*−�1� and hence the previous

elation becomes C1
�1�C̄1

�1��1
*= �2�1�2b̄1

�1�b1
�1���1

* /�1�2 so that �2= b̄1
�1�b1

�1���1
* /�1�2. Finally, using the

ymmetry �2.66� we have

�2 = �b1
�1��2,

hat is �= �b1
�1�� assuming without loss of generality that ��0. Then, from Eq. �5.4� it follows that

¯
1
�1�= ± i�2�1�� that is, C̄1

�1� is purely imaginary. In the following, in order to exclude singular

olutions from the IST procedure, we assume the imaginary part of C̄1
�1� is positive, i.e., corre-

ponding to the upper sign. Then from �5.1a� we obtain


3�x,z�e−i	�z�x = − � ẑ*

ir+
� +

2i�1�

z − �1
*� �1

*

ir+
� e−2�1x

1 + �e−2�1x . �5.6�
ccording to �2.46b�, from the last two components of �5.6� in the limit z→0 it follows
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r�x� = r+�1 +
2i�1�

�1
*

e−2�1x

1 + �e−2�1x� . �5.7�

aking into account the time dependence of the norming constant as given in Eq. �4.9� and then
aking the complex conjugate to get q�x , t� one obtains a solution of the VNLS equation

q�x,t� = q+�0�e2iq0
2t�1 + �e2i� − 1�

e2q0 �sin ���x−2q0 �cos ��t−x0�

1 + e2q0 �sin ���x−2q0 �cos ��t−x0�� , �5.8a�

�1 = k1 + i�1 = q0e−i�, e2�1x0 = ��0� � �b1
�1��0�� �5.8b�

hich is of the same type as Eq. �1.2� in both components, multiplied by the constant polarization
i.e., unit magnitude� vector p+=q+�0� /q0. Let us also mention that from Eq. �5.7� it follows that
�x�→r+ as x→ +�. Also, as x→−� one has

r�x� 	 �1 +
2i�1

�1
* �r+ =

�1

�1
*r+

herefore the asymptotic behavior satisfies the analog of the �-condition for the scalar NLS
quation �cf. Ref. 11�, that is,

r−
�j�

r+
�j� =

�1

�1
* , j = 1,2 �5.9�

n agreement with Eq. �3.14� with � j =0, N1=1 and N2=0. Note that the right-hand side of Eq.
5.9� is independent of j, which is consistent with the assumption that the asymptotic phase
ifference is the same in both components.

. Dark-bright soliton solutions

We now consider one quarter of eigenvalues off the circle C0 of radius q0 �cf. Fig. 3� and no
ontinuous spectrum �i.e., N1=0 and N2=1�. The system of equation �3.8� for the inverse problem
hen reduces to


3�x,z�e−i	�z�x = − � ẑ*

ir+
� +

C1
�2�

ẑ1
*

�̄�x, ẑ1
*�e−i	�ẑ1

*�x

z − ẑ1
* , �5.10a�


1�x,z�ei	�z�x = � z

ir+
� +

z

z − z1
C1

�2��̄�x, ẑ1
*�ei	�z1�x, �5.10b�

�̄�x,z�e−ik�z�x

2	�z�b11�z�
= � 0

iq+
� � − C̄1

�2� z

�z − ẑ1��z − z1
*�

1�x,z1

*�e−ik�z1
*�x, �5.10c�

here C̄1
�2� and C1

�2� are given by Eqs. �3.9�. To obtain a closed system, we evaluate the second
quation at point z=z1

* and the third equation at z= ẑ1
*, which gives a system of two equations for

wo unknowns, 
1�x ,z1
*� and �̄�x , ẑ1

*�. Then, back-substituting, we obtain the expression of all the
z-dependent� eigenfunctions. Indeed, from Eqs. �5.10b� and �5.10c� one obtains

�̄�x, ẑ1
*� =

eik�ẑ1
*�x

1 + �1�1e−2�1x��1� 0

iq+
� � − �1� z1

*

ir+
�e−i�k�z1

*�+	�z1
*��x� ,
here
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�1 = 2	�ẑ1
*�b11�ẑ1

*�, �1 = �1C̄1
�2� ẑ1

*

�ẑ1
* − ẑ1��ẑ1

* − z1
*�

, �1 = C1
�2� z1

*

z1
* − z1

�5.11�

nd, substituting into Eq. �5.10b�,


1�x,z�ei	�z�x = � z

ir+
� +

z

z − z1
C1

�2� eiz1x

1 + �1�1e−2�1x��1� 0

iq+
� � − �1� z1

*

ir+
�e−iz1

*x� .

o find a dark-bright soliton solution, we take r+
�1�=0 �and consequently q+

�1�=0� with r+
�2�

�q+
�2��*�0, and we look at the second and third components of 
1�x , t�ei	x, which, according to

2.46d�, in the limit z→� reconstruct the potential r�x�. Explicitly, we get

r�1��x� = �1q+
�2�C1

�2�eik1x e−�1x

1 + �1�1e−2�1x , �5.12a�

r�2��x� = r+
�2��1 − C1

�2��1
e−2�1x

1 + �1�1e−2�1x� . �5.12b�

n the pure one-soliton case, using the analyticity properties we can write explicitly the scattering
oefficients b11�z� and a11�z� and their derivatives. Recalling that a11�z� is analytic in the upper-
alf-plane, that it goes to 1 as z→�, and assuming that it has a single, simple zero at z=z1 �cf. Eq.
2.53��, we get

a11�z� =
z − z1

z − z1
* , a11� �z1� =

1

z1 − z1
* .

hus, recalling that b11�z�=a11
* �z*� and substituting into Eq. �5.11�, we obtain

�1 =
q0

2 − �z1�2

z1
, �1 = C̄1

�2� z1
*

z1
* − z1

, �1 = C1
�2� z1

*

z1
* − z1

. �5.13�

ote that �1 vanishes if �z1�=q0 so that for zeros on the circle C0 the bright component becomes
rivial. Note also that from Eq. �3.11b� it follows that

�1�1 �
q0

2

4�1
2 �q0

2 − �z1�2��C1
�2��2

hich is real and positive for any eigenvalue z1 inside the circle C0 of radius q0. Note that having
z1��q0 �i.e., an eigenvalue outside C0� would produce a singular potential.

Inserting the time dependence �4.10� into the expressions for the potential �5.12�, we finally
btain the dark-bright soliton solution of the VNLS equation �1.3�,

r�1��x,t� = �1�q0
2/�z1�2 − 1�1/2ei�1−2iq0

2t+ik1x−i�k1
2−�1

2�t sech��1�x − 2k1t� + x0� , �5.14a�

r�2��x,t� = q0ei�2−2iq0
2t�1 +

2i�1

z1
*

exp�− 2�1x + 4k1�1t + 2x0�
1 + exp�− 2�1x + 4k1�1t + 2x0�� , �5.14b�

here

e2x0 =
q0

2

4�1
2 �q0

2 − �z1�2��C1
�2��0��2, �1 = arg C1

�2��0� + �+
�2��0�, �2 = − �+

�2��0� . �5.15�

s usual, the solution q�x , t� of Eq. �1.3� is obtained taking the complex conjugate of Eq. �5.14�.

he dark-bright solution �5.14� can be written in the more compact form
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q�1��x,t� = − �1 sin �
q0
2 − �z1�2 sech��1�x − 2k1t� + x0�e−ik1x+i�2q0

2+�k1
2−�1

2��t−i�1, �5.16a�

q�2��x,t� = q0�cos � + i sin � tanh��1�x − 2k1t� + x0��e2iq0
2t−i�2, �5.16b�

here

k1 = �z1�cos �, �1 = − �z1�sin � . �5.17�

gain, note that the condition k1
2+�1

2��z1�2�q0
2 �i.e., the requirement that the discrete eigenvalue

1 is inside the circle C0 of radius q0� is necessary and sufficient to ensure the regularity of the
olution at all times.

Equation �5.16� describes a two-component solution in which the second component
�2��x , t� represents a dark soliton similar to that in Eq. �1.2� �but with a different relation between
mplitude and velocity�, while the first component q�1��x , t� describes a bright soliton similar to
hat of the scalar focusing NLS �but with a different relation between amplitude and phase�. The
wo components travel together at the same speed 2k1. Note that the amplitude of the bright soliton
omponent and that of the intensity dip in the dark soliton component are related by the condition

1
2+�1

2�q0
2, and the amplitude of the bright component goes to zero as the eigenvalue approaches

he circle �i.e., in the limit �z1�→q0�. With proper identification of the parameters, Eqs. �5.16� also
oincide with the dark-bright soliton solution given in Ref. 19 in the case of x-independent
symptotic boundaries and with x0=0.

I. SMALL AMPLITUDE LIMIT

It is useful to consider the limit in which the solution q�x , t� of Eq. �1.3� is a small perturba-
ion of the background field.

. Linearization

Recall that q�x , t�→q±�t�=ei�±�t�q0 as x→ ±�, with �±�t�=diag��±
�1� ,�±

�2��, and �±
�j��t�

=�±
�j��0�+2iq0

2t, and with q0= �q0� as usual. We then consider the “normalized” vector NLS equa-
ion

iq̃t = q̃xx + 2�q0
2 − �q̃�2�q̃ , �6.1�

or the rescaled field q̃�x , t�=q�x , t�e−2iq0
2t, and we define

q̃�x,t� = ei�+�0��q0 + u�x,t�� , �6.2�

ith �u�x , t�� q0, so that u�x , t� represents a small perturbation of the background field q+�t�.
nserting Eq. �6.2� into the rescaled VNLS equation �6.1� and neglecting higher powers of u we
hen obtain a linearization of the VNLS equation around the background solution,

iut = uxx − 2q0q0
T�u + u * � . �6.3�

e now look for solutions of Eq. �6.3� employing standard Fourier transforms, where for conve-
ience we write the transform pair as follows:

u�x,t� =
1

2�


−�

�

û�k,t�e2ikx dk, û�k,t� = 2
−�

�

u�x,t�e−2ikx dx . �6.4�

nserting the first of Eqs. �6.4� into Eq. �6.3� with �6.2�, one finds a system of four first-
rder differential equations in time for the functions û�k , t���û1�k , t� , û2�k , t�� and û*�−k , t�T

ˆ* ˆ* T
�u1�−k , t� ,u2�−k , t�� , which can then be solved to obtain
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û�k,t� = A1�k�e4ik2tq0
� + �k − 
k2 + q0

2�A2�k�e−4ik
k2+q0
2tq0 + �k + 
k2 + q0

2�A3�k�e4ik
k2+q0
2tq0,

�6.5�

here q0
�= �q0

�2� ,−q0
�1��T�R2. The functions A1�k� ,A2�k� ,A3�k� satisfy the symmetry conditions

A2
*�− k� = − A2�k�, A3

*�− k� = − A3�k� , �6.6�

nd can be written in terms of the Cauchy data as follows:

A1�k� =
û0

T�k�q0
�

q0
2 , �6.7a�

A2�k� =
1

4kq0
2
k2 + q0

2
��− k + 
k2 + q0

2�q0
Tû0�k� + �k + 
k2 + q0

2�q0
Tû0

*�− k�� , �6.7b�

A3�k� =
1

4kq0
2
k2 + q0

2
��− k + 
k2 + q0

2�q0
Tû0

*�− k� + �k + 
k2 + q0
2�q0

Tû0�k�� , �6.7c�

here û0�k�= û�k ,0�. Together, Eqs. �6.5� and �6.7� yield the solution of the linearized VNLS Eq.
6.3� in terms of given Cauchy data, which in turn provides an approximation of the solution
�x , t� of the VNLS equation �1.3� in the small amplitude limit.

. Small amplitude limit from the inverse problem

If we consider the equations of the inverse problem �3.8a�, �3.8b�, and �3.8c� with no solitons,
n the small amplitude limit we can approximate each term on the left-hand side with a series in
owers of � j�z , t�. Keeping only linear terms in � j�z , t�, according to Eq. �2.46b�, the expansion as
→0 of the last two components of 
3�x ,z�e−i	�z�x yields

q�x,t� = q+�t��1 +
1

2�i


−�

� d�

�
�1

*��,t�e2i	���x� − r+
��t�

1

2�i


−�

� d�

�
�2

*��̂*,t�e−i�k���−	����x �6.8�

with �̂=q0
2 /�* as usual�. In order to compare with the Fourier transform solutions obtained in the

receding sections, we recall that q±�t�=ei�±�t�q0 and r±�t�=exp�−i�±�t�� q0, and we consider

gain the normalization q̃�x , t�=q�x , t�e−2iq0
2t. Then, taking into account the time dependence of the

cattering coefficients �cf. Eqs. �4.7��, from Eqs. �6.8� we get

q̃�x,t� = q+�1 +
1

2�i


−�

� d�

�
�1

*��,0�e2i	���x−4ik���	���t� − r+
� 1

2�i


−�

� d�

�
�2

*��̂*,0�e−i�q0
2/��x+i�q0

2/��2t,

�6.9�

here now q+�q+�0� and r+�r+�0�. In order to compare with the results in the preceding
ection, we then perform appropriate changes of variables. Consider the term in square brackets in
q. �6.9�. First, we revert from � to the original coordinates k ,	�k�, so that k runs over the contour
given by the branch cuts in Fig. 1 and defined in Sec. II A. Then we introduce the variable

! = 
k2 − q0
2,
o that ! d!=k dk, obtaining
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−�

� d�

�
�1

*��,0�e2i	���xe−4ik���	���t = 
L

dk

	�k�
�1

*�k,	�k�,0�e2i	�k�xe−4ik	�k�t

= 
−�

� d!


!2 + q0
2
e2i!x��1

*�
!2 + q0
2,!,0�e−4i!
!2+q0

2t

− �1
*�− 
!2 + q0

2,!,0�e4i!
!2+q0
2t� . �6.10�

n the other hand, the second term in Eq. �6.9� can be written as an ordinary Fourier transform by
imply performing the change of variable 2!=−q0

2 /�. By comparison, one can then show that Eq.
6.9�, obtained solving the inverse problem in the limit of small amplitude, indeed coincides with
he solution obtained via linearization, i.e., Eq. �6.2� with u�x , t� given by Eq. �6.4� and û�k , t� by
q. �6.5�. More precisely, one has

A1�!� = −
1

2k
e−i��+

�1�+�+
�2���2

*�− 2!,	�− 2!�,0� , �6.11a�

A2�!� =
i


!2 + q0
2�
!2 + q0

2 − !�
�1

*�
!2 + q0
2,!,0� , �6.11b�

A3�!� =
i


!2 + q0
2�
!2 + q0

2 + !�
�1

*�− 
!2 + q0
2,!,0� . �6.11c�

hen, as a consequence of the symmetry conditions �6.6�, it follows that

�1�
!2 + q0
2,− !,0� =


!2 + q0
2 + !


!2 + q0
2 − !

�1
*�
!2 + q0

2,!,0� ,

hat is, in terms of the uniformization variable z,

�1�ẑ*� =
z2

q0
2�1

*�z�, z � R . �6.12�

ote that Eq. �6.12� arises from the scattering data relations as well. Indeed, from the definitions
3.3� and symmetry �2.38� it follows

�1
*�z� =

b31
* �z�

b11
* �z�

= �1�z�
a13�z�
a11�z�

�3
−1�z� � −

q0
2

z2

a13�z�
a11�z�

�6.13a�

nd the analog of symmetries �2.42� for the coefficients bij�z� yields

�1�z� =
b31�z�
b11�z�

=
b13�ẑ*�
b33�ẑ*�

. �6.13b�

ecalling that B�z�= �bij�z�� is the inverse matrix of A�z�= �aij�z��, one can write

b13�z� = a12�z�a23�z� − a13�z�a22�z�, b33�z� = a11�z�a22�z� − a12�z�a21�z� . �6.14�

hen, since in the small amplitude limit terms aij�z� with i� j are o�1� while ajj�z�=O�1�, one has

�1�z� =
b13�ẑ*�
b33�ẑ*�

	 −
a13�ẑ*�a22�ẑ*�
a11�ẑ*�a22�ẑ*�

,

nd consequently Eq. �6.12� follows from Eq. �6.13�.
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II. CONCLUSION

We have presented the inverse scattering transform �IST� for the defocusing VNLS equation
1.3� with nonvanishing boundary conditions as �x�→�. The direct problem is constructed in
erms of scattering eigenfunctions and adjoint eigenfunctions. The six scattering eigenfunctions
rovide four analytic functions, and the adjoint problem is used to construct two additional ana-
ytic functions. A global uniformizing parameter, z, is introduced in order to simplify and elucidate
he analysis. The discrete eigenvalues are studied and it is found that one can have pairs of
igenvalues on a circle and/or quartets of eigenvalues symmetrically located inside and outside the
ircle. The inverse problem is formulated as a generalized Riemann-Hilbert �RH� problem for
eromorphic functions in the complex plane of the uniformizing parameter z. The RH problem is

ransformed into a closed linear system of algebraic-integral equations. The trace formula, con-
ervation laws, and explicit solutions �dark-dark and dark-bright solitons� are obtained. The solu-
ion in the small amplitude limit is studied by direct Fourier transform methods and it is shown to
gree with the linearized reduction of the inverse problem.
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PPENDIX: WKB EXPANSION OF THE EIGENFUNCTIONS

Consider the following ansatz for the expansion of the eigenfunction M1�x ,z� as z→�:

M1
�1��x,z� = zM1,�

�1,−1��x� + M1,�
�1,0��x� + z−1M1,�

�1,1��x� + z−2M1,�
�1,2��x� + ¯ , �A1a�

M1
�2��x,z� = M1,�

�2,0��x� + z−1M1,�
�2,1��x� + z−2M1,�

�2,2��x� + ¯ , �A1b�

M1
�3��x,z� = M1,�

�3,0��x� + z−1M1,�
�3,1��x� + z−2M1,�

�3,2��x� + ¯ . �A1c�

ubstituting these expressions into the scattering problem �2.1� with k= �z+q0
2 /z� /2 and matching

he terms with the same order in z−n for n=−1,0 ,1 ,2 , . . . yields M1,�
�1,−1��x�=const, and the integral

quation �2.8a� allows one to fix this constant value to

M1,�
�1,−1��x� = 1. �A2a�

roceeding further gives

M1,�
�2,0��x� = ir�1��x�, M1,�

�3,0��x� = ir�2��x�, �xM1,�
�1,0��x� = i��q�x��2 − q0

2� , �A2b�

hat is,

M1,�
�1,0��x� = i

−�

x

��q�x���2 − q0
2�dx�. �A2c�

imilarly, at higher orders one has

M1,�
�j,m+1��x� = ir�j−1��x�M1,�

�1,m��x� − i�xM1,�
�j,m��x�, m = 0,1,2, . . . �A3a�

or j=2,3, as well as

�xM1,�
�1,m��x� = − iq0

2M1,�
�1,m−1��x� + q�1��x�M1,�

�2,m��x� + q�2��x�M1,�
�3,m��x�, m = 1,2, . . . �A3b�

hich allow one to calculate iteratively all coefficients of the asymptotic expansion, with the
ecurrence relations in Eqs. �A3� anchored by Eqs. �A2�. For instance, from Eq. �A3a� with m

0 we obtain
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M1,�
�1,1��x� = I1�x� − 1

2 �I0�x��2, �A4a�

M1,�
�2,1��x� = rx

�1��x� − r�1��x�I0�x�, M1,�
�3,1��x� = rx

�2��x� − r�2��x�I0�x� , �A4b�

here

I0�x� = 
−�

x

��q�x���2 − q0
2�dx�, I1�x� = 

−�

x

qT�x��rx��x��dx�. �A4c�

urthermore, from Eq. �A3a� with m=1 it follows that

M1,�
�2,2��x� = ir�1��x��I1�x� − 1

2 �I0�x��2� − irxx
�1��x� + i�r�1��x�I0�x��x, �A5�

M1,�
�3,2��x� = ir�2��x��I1�x� − 1

2 �I0�x��2� − irxx
�2��x� + i�r�2��x�I0�x��x �A6�

hich can be substituted into Eq. �A3b� for m=2 to get

M1,�
�1,2��x� = iI0�x�I1�x� −

i

6
�I0�x��3 − iI2�x� , �A7�

here

I2�x� = 
−�

x

�qT�x���x�
2 r�x�� − �q�x���2��q�x���2 − q0

2��dx� �A8�

nd so on and so forth.
Similarly, one can write a Taylor series expansion of the eigenfunction M1�x ,z� as z→0 in the

orm

M1
�1��x,z� = zM1,0

�1,1��x� + z2M1,0
�1,2��x� + z3M1,0

�1,3��x� + ¯ , �A9a�

M1
�2��x,z� = M1,0

�2,0��x� + zM1,0
�2,1��x� + z2M1,0

�2,2��x� + ¯ , �A9b�

M1
�3��x,z� = M1,0

�3,0��x� + zM1,0
�3,1��x� + z2M1,0

�3,2��x� + ¯ . �A9c�

ubstituting this into Eq. �2.1� and matching terms with the same powers of zn yields M1,0
�2,0��x�

const and M1,0
�3,0��x�=const. As before, the value of such constants is fixed by the integral equa-

ion �2.8a� to give

M1,0
�2,0��x� = ir−

�1�, M1,0
�3,0��x� = ir−

�3�. �A10a�

n turn, these allow one to get

q0
2M1,0

�1,1��x� = qT�x�r−. �A10b�

roceeding to higher orders, one obtains the recurrence relations

�xM1,0
�j,m��x� = iM1,0

�j,m−1��x� + r�j−1��x�M1,0
�1,m��x�, m = 1,2, . . . �A11a�

or j=2,3, as well as

q0
2M1,0

�1,m+1��x� = i�xM1,0
�1,m��x� − iq�1��x�M1,0

�2,m��x� − iq�2��x�M1,0
�3,m��x�, m = 0,1, . . . .

�A11b�
or instance, the first terms are
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q0
2M1,0

�2,1��x� = 
−�

x

�r�1��x��qT�x��r− − q0
2r−

�1��dx�,

q0
2M1,0

�3,1��x� = 
−�

x

�r�2��x��qT�x��r− − q0
2r−

�2��dx�,

hich in turn give

q0
4M1,0

�1,2��x� = ir−
Tqx�x� − iqT�x�

−�

x

�r�x��qT�x��r− − q0
2r−�dx�

nd so on and so forth.
In a similar way one can obtain the asymptotic expansions for the remaining analytic eigen-

unctions and adjoint eigenfunctions.
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We construct a new family of quasigraded Lie algebras that admit the Kostant-
Adler scheme. They coincide with special quasigraded deformations of twisted
subalgebras of the loop algebras. Using them we obtain new hierarchies of inte-
grable equations in partial derivatives which we call “modified” non-Abelian Toda
field hierarchies. © 2006 American Institute of Physics. �DOI: 10.1063/1.2207719�

. INTRODUCTION

Integrability of equations of 1+1 field theory and condensed matter physics is based on the
ossibility to represent them in the form of the so-called zero-curvature equations,28,27

�U�x,t,��
�t

−
�V�x,t,��

�x
+ �U�x,t,��,V�x,t,��� = 0, �1�

here U�x , t ,��, V�x , t ,�� are auxiliary matrices depending on dynamical variables �fields�, their
erivatives, and an additional complex parameter � usually called “spectral.”

The most productive interpretation of the zero-curvature equations is achieved �see Refs. 5, 7,
and 15� if one treats them as a consistency condition for a set of commuting Hamiltonian flows on
a dual space to some infinite-dimensional Lie algebra g̃ of matrix-valued function of � written in
he Euler-Arnold �generalized Lax� form. In this case the corresponding U-V pairs coincide with
he matrix gradients of mutually commuting Hamiltonians with respect to the natural Lie-Poisson
racket on g̃*. The method that provides the needed set of the commuting Hamiltonian flows is the
amous Kostant-Adler scheme.18,15 The main ingredient of this scheme is an existence of the
ecomposition of the algebra g̃ into the sum of two subalgebras, g̃= g̃++ g̃−. Although this ap-
roach was originally based on the graded loop algebras L�g�=g � P�� ,�−1� �Refs. 7 and 15� that
ossess decompositions into sums of two subalgebras, in Refs. 8 and 9 it was shown that a special
ie algebra gE, living on an elliptic curve E, also possess the decomposition gE=gE

++gE
−. In our

apers �Refs. 10, 20, and 21� we have generalized results of Refs. 8 and 9 onto the case of special
uasigraded Lie algebras gH living on an algebraic curve H. In papers Refs. 22 and 23 we gave a
ie algebraic explanation of this construction. We have constructed a family of quasigraded Lie
lgebras g̃A possessing the decomposition g̃A= g̃A

+ + g̃A
− parametrized by some numerical matrices A,

hat may be viewed as a quasigraded deformations of loop algebras, such that loop algebras
hemselves correspond to the case A�0 and quasigraded Lie algebras gH correspond to the case
�Diag�n�.

In our previous papers �Refs. 24 and 25�, using the constructed quasigraded Lie algebras g̃A

e have obtained new hierarchies of integrable equations that coincide with the various generali-
ations of Landau-Lifshitz and anisotropic chiral field hierarchies.

In the present paper we develop our approach to the hierarchies of the integrable equations
ased on the quasigraded Lie algebras. We combine our previous results,22–25 ideas of Refs. 14, 4,

�
Electronic mail: tskrypnyk@imath.kiev.ua
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nd 3, and define new types of the quasigraded Lie algebras admitting Kostant-Adler scheme.
hey coincide with the “twisted” subalgebras of the Lie algebras g̃A defined with the help of a Zp

rading of a finite-dimensional Lie algebra g :g=�k=0
p−1

gk or, equivalently, with some its automor-
hism � of the order p. It turned out, that for a special choice of the matrices A �that depends on
he chosen Zp grading of g� it is possible to define twisted subalgebras g̃A

�� g̃A in the analogous
ay as for the case of ordinary loop algebras L�g�.11,3

Using the technique of Refs. 5, 15, and 7 we develop a general scheme of obtaining nonlinear
artial differential equations admitting the zero-curvature representation starting from the Lie
lgebras g̃A

�. For this purpose we explicitly construct the dual space, coadjoint action, its invariants
nd Lie-Poisson brackets for the case of the Lie algebra g̃A

�. In the result we obtain integrable
ierarchies satisfying zero-curvature conditions associated with the Lie algebras g̃A

�.
We explicitly obtain the simplest equations of these hierarchies which we call “modified”

on-Abelian Toda field equations. These are the system of the two sets of equations of the
yperbolic type that could be rewritten in the form of the one set of nonlinear equations in partial
erivatives of the following form �compare with a standard non-Abelian Toda field equation17,16�:

�

�x+
�g0

−1 �

�x−
g0� = 	g0

−1 �

�x−
g0,g0

−1C�−1�g0

A

, �2�

here g0�G0, G0 is a group of the Lie subalgebra g0 stable under the action of the automorphism
, C�−1��g−1 is a constant element, �X ,Y�A�XAY −YAX is the so-called A-bracket.

In the case of the trivial automorphism � the corresponding equations are equivalent to the
hiral field type equations independently discovered in Refs. 6 and 23. In the case of the second-
rder automorphism and Lie algebra so�4� the equations �2� are equivalent to one more type of the
o�3� anisotropic chiral field equations. In the case of the Coxeter automorphism �principal grad-
ng� equations �2� coincide with the Abelian modified Toda field equations introduced for the case
f g=gl�n� in Ref. 19 and for the case of a general g in Ref. 26. In the case of the general
utomorphism � equations �2� are new.

The structure of the present paper is the following: in the second section we define the
uasigraded Lie algebras g̃A, their “twisted” subalgebras g̃A

� and consider in details the case of
principal” twisted subalgebras. In the third section we define dual spaces, Lie-Poisson brackets,
nd Casimir functions on g̃A

�. In the fourth section we obtain the zero-curvature equations with the
alues in the twisted subalgebras g̃A

� and consider the case of modified non-Abelian Toda field
quations as the simplest equations they yield. We also consider several examples of the obtained
quations, in particular, the case of the trivial automorphism �, Coxeter automorphism and auto-
orphism of the second order.

I. K-A ADMISSIBLE QUASIGRADED LIE ALGEBRAS

. “Homogeneous” quasigraded Lie algebras g̃A

Definition 2.1: The infinite-dimensional Lie algebra g̃ is called Z-quasigraded of type �p ,q�
Ref. 13� if it admits the decomposition

g̃ = �
j�Z

g j, such that �gi,g j� � �
k=−p

q

gi+j+k.

he following proposition holds true.22

Proposition 2.1: Let g̃ be Z-quasi-graded of type �0,1�, or �1,0�. Then g̃ admits the decom-
osition into the sum of its two subalgebras g̃= g̃++ g̃−.

In order to construct Z-quasigraded algebras of type �0,1� we will deform the Lie algebraic
−1
tructure in loop algebras. We will introduce the new Lie bracket into L�g�=g � Pol�� ,� �:
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�X � p���,Y � q����F = �X,Y� � p���q��� − F�X,Y� � �p���q��� , �3�

here X ,Y �g, p��� ,q���� Pol�� ,�−1�, � , � on the right-hand side of this identity denotes an
rdinary Lie bracket in g and the map F :g�g→g is skew. It is evident by the very construction
hat the Lie algebras with so defined bracket are Z-quasi graded algebras of type �0,1� with the
uasigrading being defined in the standard way by degrees of the spectral parameter �.

The next Propositions hold true.
Proposition 2.2: Let the cochain F satisfy the following two requirements:

�J1� �
c.p.�i,j,k�

�F��Xi,Xj�,Xk� + �F�Xi,Xj�,Xk�� = 0,

�J2� �
c.p.�i,j,k�

F�F�Xi,Xj�,Xk� = 0.

Then bracket �3� satisfies the Jacobi identity.
In the case of classical matrix Lie algebras it is possible to give an explicit construction of a

arge �multiparametric� family of cochains F, that satisfy conditions �J1� and �J2�.
Let g be a classical matrix Lie algebra of the type gl�n�, so�n�, and sp�n� over the field of the

omplex or real numbers. We will realize algebra so�n� as follows: so�n�= �X�gl�n� X=−sXTs�,
here s is the symmetric matrix and s2=1, algebra sp�n� as the following matrix algebra: sp�n�
�X�gl�n� X=wXTw�, where n is an even number, w�so�n� and w2=−1.

As it follows from the results of Ref. 2 �see also Ref. 1� the following Proposition holds true.
Proposition 2.3: Let g be a classical matrix Lie algebra over the field K of complex or real

umbers. Let us define the numerical �K-valued� n�n matrix A of the following type:

�1� A is arbitrary for g=gl�n�,
�2� A=sATs for g=so�n�,
�3� A=−wATw for g=sp�n�.

Then maps FA :g�g→g of the form FA�X ,Y�= �X ,Y�A=XAY −YAX are correctly defined
kew symmetric maps that satisfy conditions (J1) and (J2).

We will denote the infinite-dimensional Lie algebra with the Lie bracket, given by �3�, by g̃A

nd the finite-dimensional vector space g with the bracket � , �A by gA.
Remark 1: The algebra g̃A could be realized also in the space of special matrix valued

unctions of � with an ordinary Lie bracket � , � �see Refs. 20–23�. Nevertheless we consider
ealization in the space g � Pol�� ,�−1� with the “deformed” bracket to be more convenient.

. “Twisted” quasigraded Lie algebras g̃A
�

In this section we will define another class of the quasigraded Lie algebras of the type �0,1�.
hey will coincide with the “twisted” subalgebras of the algebras g̃F.

Let g=�k=0
p−1

gk̄ �where j̄ denotes a class of equivalence of the elements j�Z mod pZ� be a

/ pZ grading of g. Let X�
j̄ be a basic element of the subspace g j̄.

Let us consider the following subspace in g̃F:

g̃F
� = �

j�Z
g j̄ � � j , �4�

he next proposition holds true
Proposition 2.4: The subspace g̃F

� is the closed Lie subalgebra in g̃F if and only if:

F�gī,g j̄� � gi + j + 1. �5�

Remark 2: It is known, that the Z / pZ grading of g may be defined with the help of some
ˆ
utomorphism � of the order p. If we extend the automorphism � to the map � of the whole
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lgebra g̃F, defining its action on the space g � Pol�� ,�−1� in the standard way:11 �̂�X � �k�
��X� � e−2�ik/p�k, then subalgebra g̃F

� can be defined as follows

g̃F
� = �X � p��� � g̃F��X � p���� = X � p��� . � .

Remark 3: From the very definition of g̃F
� and the commutation relation in g̃F it follows that

he algebra g̃F
� is Z-quasigraded of type �0,1�.

From the above proposition it follows in particular, that the algebra g̃F
� admits the direct sum

ecomposition g̃F
�= g̃F

�++ g̃F
�−, where

g̃F
�+ = �

j�0
g j̄ � � j, g̃F

�− = �
j�0

g j̄ � � j �6�

Now let us pass to the case of the matrix Lie algebras and the cochains FA given by the
roposition �2.3�. In this case, condition �5� can be specialized.

The following Proposition holds true.
Proposition 2.5: Let us define the map A :g→g by the following formula:

A�X� = 1/2�AX + XA� .

hen condition �5� is satisfied if and only if

A�gī� � gi + 1. �7�

Proof: It is easy to show, that the cochain FA can be rewritten in the following form:

FA�X,Y� = �A�X�,Y� + �X,A�Y�� − A��X,Y�� .

rom this it immediately follows that condition �5� is satisfied if and only if A�gī��gi + 1.
That proves the proposition.
We will denote the Lie algebra g̃F

� defined with the help of cocycle FA by g̃A
�.

. Example: “Principal” quasigraded Lie algebra

Let an algebra g with the bracket � , � be semisimple �reductive� classical Lie algebra of the
ank r. Let h�g be its Cartan subalgebra, �± be its set of positive �negative� roots, 	—the set of
imple roots, Hi�h basis of Cartan subalgebra E�, ��� the corresponding root vectors.

Let us define the so-called “principal” grading of g,11 setting

deg Hi = 0, deg E�i
= 1, deg E−�i

= − 1.

t is evident that in such a way we obtain the grading of g: g=�k=0
h−1

gk̄ with the graded subspaces

k̄ be defined as follows: gk̄=SpanC�E��, where � is the root of the length k, i.e., �=�i=1
r kiE�i

if
��+, �=�i=1

r kiE−�i
if ���− and k=�i=1

r ki, h is a Coxeter number of g. In particular g0̄=h,

1̄=SpanC�E�i
,E−
 ai�	�, g−1=SpanC�E−�i

,E
 ai�	� and 
 is the longest root of the length
−1.

If the matrix A satisfies condition �7� we may define the corresponding “principal” quasi-
raded Lie algebra g̃A

� in the following way:

g̃A
� = �

m�Z
�
j�0

h−1

g j̄
�m�

� � j+mh, where g j̄
�m� � g j̄ . �8�

Remark 4: For all the classical Lie algebras g and matrices A satisfying condition �7� it is
ossible to introduce �see Ref. 26� the following “pseudoroots” �i

A ��i
A :g−1→K�:

�X,Hi�A = �i
A�X�Hi, �9�
here X�g−1 and Hi are basic elements in Cartan subalgebra.
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II. DUAL SPACE, POISSON BRACKET AND ALGEBRA OF INTEGRALS

In order to describe an application of the Lie algebras g̃A
� to the theory of finite-dimensional

ntegrable Hamiltonian systems it is necessary to define a corresponding Lie-Poisson bracket on
g̃A

��* and its central functions �Casimir functions� which will be used in order to produce the
eeded set of mutually commuting Hamiltonians on �g̃A

��*.

. Coadjoint representation and Casimir functions of g̃A
�

In this section we will construct a dual space, a coadjoint representation and its invariants for
he case of the twisted algebras g̃A

�. Due to the fact, that g̃A
� is a subalgebra of g̃A we may consider

g̃A
��* as a subspace of an �-invariants in g̃A

* . If p is the order of � then from the properties of an
nvariant form on simple Lie algebras it follows11 that �gī ,g j̄�=0 if i+ j�0 mod p. Hence defining

pairing between g̃A
�and �g̃A

��* in the standard way,

�X,L� = res�=0�−1 Tr�X���L���� . �10�

e obtain that the generic element L���� �g̃A
��* has the following form:

L��� = �
j�Z

�
�=1

dim g j̄

l�
�j�X�

− j�−j ,

here X�
−j is a basic element of subspace g−j.

The following proposition holds true.
Proposition 3.1: Let the functions Im�L� be the invariants of a coadjoint representation of g,

���� �g̃A
��* be defined as above. Let A���=1−A�. Then the functions

Ik
m�L���� = res�=0�−k−1Im�L���A���−1� , �11�

re the invariants of the coadjoint representation of the Lie algebra g̃A
�.

A proof of this proposition follows from the explicit form of the coadjoint action which, as it
s easy to show, has the following form:

adX���
* � L��� = A���X���L��� − L���X���A��� , �12�

here X��� ,Y���� g̃A
�, L���� �g̃A

��*.
Remark 5: The matrix A���−1 must be understood as a power series in � in the neighborhood

f 0 or �: A���−1= �1+A�+A2�2+ ¯ � or A���−1=−�A−1�−1+A−2�−2+ ¯ �.

. Lie-Poisson bracket

Let us define the Poisson structure in the space �g̃A
��*. Using pairing �10� described in the

receding section we can define the Lie-Poisson bracket on P��g̃A
� �*� in the standard way:

�F1�L����,F2�L����� = �L���,��F1�L����,�F2�L�����A���� , �13�

ere

�Fi�L���� = �
j�Z

�
�=1

dim g j̄
�Fi

�l�
�j�X�

j̄ � j

nd

��F1�L����,�F2�L�����A��� = �F1�L����A��� �F2�L���� − �F2�L����A��� �F1�L����

j̄
¯
nd X� is a basic element of the subspace g j.
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Let us explicitly calculate Poisson bracket �13�. It is easy to show, that for the coordinate
unctions l�

�i�, l�
�j�, where l�

�i�� �gī�*, l�
�j�� �g j̄�*, this bracket will have the following form:

�l�
�i�,l�

�j�� = �


C�,�
 l

�i+j� − �
�

C�,�
� �A�l�

�i+j+1�, �14�

here l and l� are coordinate functions on �gi + j�* and �gi + j + 1�*.
This bracket determines in the space of linear functions �l�

�i�� the Lie algebra structure isomor-
hic to g̃A

� and, hence, the subspaces ��g̃A
��±�* are Poisson.

. Infinite-component Hamiltonian systems via g̃A
�

In this section we construct Hamiltonian systems on the infinite-dimensional space �g̃A
��*

ossessing infinite number of independent, mutually commuting integrals of motion. Let

L���� = �
j�Z±

�
�=1

dim g j̄

l�
�j��−jX�

− j

e the generic elements of the spaces �g̃A
�±�*. Let us consider the polynomial functions on �g̃A

��* of
he form

Ik
m��L���� � Ik

m�L����� , �15�

here �Ik
m�L����� are the Casimir functions of g̃A

�. The Hmiltonian flows corresponding to the
amiltonians Ik

m��L���� are written in a standard way,

�l�
�j�

�tk
m� = �l�

�j�,Ik
m��L����� . �16�

he following theorem is true.
Theorem 3.1: (i) The time flows defined by the equations (16) mutually commute. (ii) Euler-

rnold equations �16� could be written in the deformed Lax form

�L���
�tk

m� = A���Mk
m±���L��� − L���Mk

m±���A��� . �17�

here

Mk
m±��� = �Ik

m�L����� = �
j�Z±

�
�=1

dim g j̄
�Ik

m

�l�
�j�Xa

j̄ � j .

iii) The functions Iq
p�L±� are constant along all times tk

m± and tl
n�.

The proof of this theorem repeats the proof of the analogous theorem for the case of ordinary
oop algebras �see Ref. 15 and references therein�.�

V. “MODIFIED” TODA FIELD EQUATIONS

. Zero-curvature condition with the values in g̃A
�

In this section we will obtain zero-curvature-ype equations with the values in the Lie algebras

A
�.

The following theorem holds true.
Theorem 4.1: Let the infinite-dimensional Lie algebras g̃A

�, g̃A
�±, their dual spaces and poly-

omial Hamiltonians Ik
m�L±����, Is

n�L±���� on them be defined as in preceding sections. Then the

lgebra-valued gradients of these functions satisfy the “deformed” zero-curvature equations
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��Ik
m�L±����
�tl

n± −
��Is

n�L±����
�tk

m± + ��Ik
m�L±����,�Is

n�L±�����A��� = 0, �18�

��Ik
m�L±����
�tl

n� −
��Is

n�L�����
�tk

m± + ��Ik
m�L±����,�Is

n�L������A��� = 0. �19�

Idea of the Proof: The statement of the theorem, i.e., validity of the equations �18� and �19�,
ollows from the commutativity of the “deformed” Lax flows �17� constructed in the preceding
ection.

Remark 6: Using the above-mentioned realizations of g̃A
� the deformed zero-curvature equa-

ions can be rewritten in the form of the standard zero-curvature equations, but in this case the
orresponding U-V pairs will be more complicated and we will work with the zero-curvature
quations in the “deformed” form �18� and �19�.

Theorem 4.1 provides us with an infinite number of g̃A
�-valued U-V pairs that satisfy zero-

urvature-type equations. The latter are nonlinear equations in partial derivatives in the dynamical
ariables—matrix elements of the matrix L���. In the terminology of Ref. 27 equations generated
y the infinite set of U-V pairs are called “integrable in the kinematic sense.” In the next sections
e will consider the simplest examples of such integrable equations and their hierarchies.

. Modified non-Abelian Toda-field equations

In this section we obtain concrete examples of integrable equations satisfying the “deformed”
ero-curvature representations constructed in the preceding section. The most interesting of them
ill be “modified” non-Abelian Toda field equations.

Let us at first consider a general situation. Let the Lie algebra g̃A
� and its decomposition g̃A

�

g̃A
�++ g̃A

�− be defined as in Sec. II C. Generic elements L±���� �g̃A
���* of the dual spaces have the

ollowing form:

L+��� = �L�−1� + �2L�−2� + ¯ , L−��� = L�0� + �−1L�1� + �−2L�2� + ¯ ,

here L�k��g−k. Now we can formulate the following theorem.
Theorem 4.2: Let g be one of the classical matrix Lie algebras gl�n�, so�n�, sp�n�. Let g

� j=0
p−1

gk be Zp grading of g corresponding to some automorphism � of order p. Let the “defor-
ation” matrix A satisfy conditions �7�. Then

�i� among the corresponding equations �19� there is the equation equivalent to the system of
the following differential equations:

�U�0�

�x+
= �U�0�,V�−1��A, �20a�

�V�−1�

�x−
= − �V�−1�,U�0�� . �20b�

The corresponding U-V pair for the “deformed” zero-curvature conditions is

U = U�0� = �
�=1

dim g0

u�
�0�X�

0̄ � g0̄, V = �−1V�−1� = �−1 �
�=1

dim g0

v�
�−1�X�

− 1 � g− 1�−1. �21�

�ii� System of equations �20a� and �20b� is written in the form of the “modified” non-Abelian
Toda field equations,

�

�x+
�g0

−1 �

�x−
g0� = 	g0

−1 �

�x−
g0,g0

−1C�−1�g0
 , �22�

A
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where g0 is an element of the subgroup G0 and C�−1� is a fixed element of the subspace
g−1.

Proof: To prove item �i� of the theorem we will show, that among the integrals Ik
m , Il

n there are
uch integrals Ik0

m0 , Il0
n0 that

Ik0

m0�L+���� � Ik0

m0�L�−1��, Il0

n0�L−���� � Il0

n0�L�0�� .

ndeed, let us consider the generating series Ik0

m0�L+����,

Ik0

m0�L+���� = Im0�A−1���L+���� = Im0��1 + A� + A2�2 + . . . ���L�−1� + �2L�−2� + . . . �� .

aking into account that Im0 is a homogeneous polynomial on g* we easily obtain that

m0

m0�L+����= Im0

m0�L�−1��. Now, for the role of Im0 we must take any Casimir function on g that has a
ontrivial restriction onto g1̄. Such the Casimir function always exists because the generic element
f the space g1̄ is never nilpotent.

Let us now consider the generating series In0�L−����. It is evident that if we choose the
enerating Casimir function as follows: In0�L−����=det A���Det�L−���A���−1�, we obtain

In0�L−���� = Det�L−����, D0
n0�L−���� = Det�L�0�� .

Matrix gradients of these functions have the following form:

�Im0

m0�L+���� � V = �−1 �
�=1

dim g0

v�
�−1�X�

− 1,�I0
n0�L−���� � U = �

�=1

dim g0

u�
�0�X�

0̄ ,

here u���I0
n0 /�l�

�0�, v���Im0

m0 /�l�
�−1�. Substituting this into zero-curvature condition

�U

�x+
−

�V

�x−
+ �U,V�A��� = 0

e obtain item �i� of the theorem.
It is easy to verify, that by the substitution of variables U�0�=−g0

−1�� /�x−�g0, V�−1�

g0
−1C�−1�g0, where g0 is an element of the subgroup G0�G corresponding to the subalgebra g0̄

nd C�−1� is a fixed element of the subspace g−1, we solve Eq. �20b� and obtain Eq. �22�. That
roves item �ii�.

Theorem is proved.
Remark 7: In general, having the cocycle F satisfying conditions �J1� and �J2� and �5� on an

rbitrary semisimple or reductive Lie algebra g it is possible to write more general form of the
ystem: �20a� and �20b�, namely,

�U�0�

�x+
= F�U�0�,V�−1��,

�V�−1�

�x−
= − �V�−1�,U�0�� . �23�

he corresponding generalized “modified” non-Abelian Toda field equation has the form

�

�x+
�g0

−1 �

�x−
g0� = F�g0

−1 �

�x−
g0,g0

−1C�−1�g0� , �24�

here g0 is an element of the group G0 and C�−1� is a fixed element of the subspace g−1. Of course
hese equations coincide with the Eqs. �20a�, �20b�, and �22� if F�FA. But in the case of the
eneral F it is not possible to write coadjoint invariants of g̃F

� without the detailization of the form
f F. That is why in the general case it is difficult to give to equations �23� interpretation of the
onsistency condition of two Hmiltonian flows without such detailization, and we have considered

he case F�FA as our basic example.
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. Example: anisotropic chiral field-type equation

In this section we consider the case �=id that corresponds to the homogeneous grading of g.
e will show that anisotropic “chiral field-type” equations independently discovered in Refs. 6

nd 22 is a particular case of the non-Abelian modified Toda field equations. In this case p=1 and

ī�gi + 1 and we may put g0̄=g−1 =g. Taking into account that no requirements �5� and �7� are
mposed in this case onto the cochain FA and matrix A we may formulate the following corollary
f the Theorem 4.2.

Corollary 4.1: Let �=id. In this case equations �20a� and �20b� coincide with the anisotropic
hiral field-type equations

�U

�x+
= �U,V�A,

�V

�x−
= − �V,U� . �25�

he corresponding U-V pair for the “deformed” zero-curvature conditions is

U��� = U, V��� = �−1V, U,V � g .

Let us consider the most interesting small rank example of equations �25�.
Example 1: Let g=so�3�, A=diag�a1 ,a2 ,a3�. In this case we can consider elements of U ,V

g*�so�3� as vectors u� ,v��R3 and rewrite equations �25� in the following form:

�u�

�x+
= A��u� � v���,

�v�

�x−
= �u� � v�� , �26�

here matrix A acts on u�=�i=1,3ukXk as on a vector in R3: A�u��=�i=1,3akukXk. In this case it is
ossible to introduce the vector-potential �� such that u�=A���� /�x−�, v�=��� /�x+ and rewrite two
quations �26� in the form of one equation in partial derivatives,

�2��

�x+ � x−
= − 	 ���

�x+
� A� ���

�x−
�
 . �27�

Anisotropic chiral field-type equations �25� are in a certain sense maximally “non-Abelian”
mong all of the non-Abelian modified Toda-field equations and contain a maximal number of
ndependent variables. All other non-Abelian �and Abelian� modified Toda-field equations may be
iewed as their reductions with the help of some automorphism of the order p. Of course, each of
hese reductions is possible only in the case when matrix A satisfy additionally condition �7�. In
he next section we will consider such conditions and the corresponding reductions in the case

2=id.

. Example: “intermediate” modified Toda equation

In this section we consider “intermediate” modified Toda equation that corresponds to the
nvolutive automorphism: �2=id. In this case p=2, g=g0̄+g1̄ and we set g0�g+, g1�g−. Besides
t is possible to simplify condition �7�. The following Proposition holds.

Proposition 4.1: Let an involutive automorphism � of g�gl�n� be lifted to the automorphism
minus antiautomorphism) of the algebra gl�n� as an associative algebra. Then condition �7� is
atisfied if and only if

��A� = − A ���A� = A� . �28�

Now we can formulate the corollary of the Theorem 4.2 in the following way.
Corollary 4.2: Let �2= id and matrix A satisfies condition �28�. In this case equations �20a�

nd �20b� acquire the following form:

�U+ = �U+,V−�A,
�V− = − �V−,U+� . �29�
�x+ �x−
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he corresponding U-V pair for the “deformed” zero-curvature conditions is

U = U+, V = �−1V−, V− � g−, U+ � g+. �30�

Equations �29� may be viewed as a reduction of the equations �25�. Let us consider the
ollowing low rank example.

Example 2: Let g=so�4�. We introduce the following standard basis of so�4�: Xk��ijkXij,

k�Xk4, i , j ,k�1,3, Xij =−Xji and consider Z2 grading of so�n�: so�4�=so�4�0+so�4�1�so�3�
R3, where so�3�=SpanC�Xi�, R3=SpanC�Yi�. In this case the corresponding automorphism � has

he form ��X�=wXw−1, where w=diag�1,1 ,1 ,−1�, and, evidently is lifted to the �inner� automor-
hism of gl�4�. Hence, according to the condition �28� the matrix A should belong to gl�4�1 and be
ymmetric in order to provide that bracket � , �A be closed on so�4�.

U-V pair and matrix A has in this case the following form:

U+ = �
1�k�3

ukXk, V− = �
1�k�3

vkYk, A = �
1�k�3

akYk
+,

here Yk
+=Ek4+E4k and Ekl is the standard matrix basis in gl�n�, �Ekl���=�k��l�. Introducing in the

vident manner three-component vectors u�, v�, a� and the following notation, Ja�u����a��u��, we
ay rewrite corresponding equations �31� as follows:

�u�

�x+
= �v� � Ja�u���,

�v�

�x−
= �u� � v�� . �31�

hese equations are also the anisotropic chiral field-type equations, possessing very special “an-
sotropy tensor” Ja. Equations �31� seems to be new. Their possible generalization are equations

�u�

�x+
= F�u�,v��,

�v�

�x−
= �u� � v�� , �32�

here F is any other Lie bracket on so�4� compatible with the standard one and satisfying
ondition �5� for the described above Z2 gradation of so�4�.

. Example: “Abelian” modified Toda-field equation

Let us consider the equations �20a� and �20b� in the case of the “principal” quasigrading that
as described in Sec. II C. In this case G0 coincides with the Cartan subgroup, g0 is the Cartan

ubalgebra and the corresponding modified Toda system is Abelian.
By the direct verification one can prove the following corollary of the Theorem 4.2.
Corollary 4.3: (i) Let � be Coxeter automorphism and the matrix A satisfies condition �7�. In

his case equations �20a� and �20b� coincide with the following “Volterra coupled system:”

�tui = ui�i
A�v�, �xvi = vi�i�u� , �33�

here �i
A are the “pseudoroots” on g−1 defined by �9� and depending on the “deformation” matrix

and the Lie algebra g, �i�	� �−�� are linear forms (roots) on h, Hi is the basis in h, E−�i
,E�

s the basis in g−1, and

U = u = �
i=1

dim h

uiHi, V = �−1v = �−1� �
�i�	�−�

viE−�i� �34�

s the corresponding U-V pair.
(ii) The Volterra coupled system �33� is written in the form of the abelian “modified” Toda-
eld equations.
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�xt
2 �i = �x�i� �

�j�	��−��
�i,j

A e�j���� , �35�

here �=�i=1
n �iHi, �i,j

A =�i
A�E−�j

�, and ui=�x�i.
Remark 8: In the cases of all classical matrix Lie algebra equation �35� could be written

xplicitly. They are obtained and analyzed in Ref. 26. In the particular case g=gl�n� and special
hoice of the matrix A, A=�i=1

n−1Xii+1+Xn1, equation �35� has the form

�xt
2 �i = �x�i�e�i+1−�i − e�i−�i−1�, where i = 1,n,n + 1 � 1.

hey coincide with the periodic closure of the infinite “modified Toda chain” obtained by other
ethods in Ref. 19.

. CONCLUSION AND DISCUSSION

In the present paper using special quasigraded Lie algebras “twisted” with the help of an
utomorphism � of finite order we have obtained new hierarchies of integrable equations in partial
erivatives. We considered the simplest equations of these hierarchies. We called them “modified”
on-Abelian Toda-field equations. In the case of the automorphisms of the maximal order they
oincide with the Abelian “modified” Toda-field equations obtained for the case g=gl�n� �Ref. 19�
nd generalized for the case of general g in Ref. 26.

The interesting open problem is to find soliton solutions of the discovered integrable equa-
ions. It would be also very interesting to construct �-functions for the obtained integrable hierar-
hies using the representation theory methods.12
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rratum: “The equation for time-like extremal surfaces
n Minkowski space R2+n” †J. Math. Phys. 47,
13503 „2006…‡
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We would like to correct some inexactitudes in the statement of the last paragraph in page
13503–3 in our above cited paper and we apologize to the reader for this inconvenience.

The last paragraph in page 013503–3 and the first line in page 013503–4 in the above cited
aper should be replaced by:

We next consider the Cauchy problem for Eq. �1.7� with the initial data

��0,x� = f�x�, �t�0,x� = g�x� , �1.13�

here f is a given C2 vector-valued function, g is a given C1 vector-valued function, and they
atisfy

��f��x�,g�x�� � 0, " x � R , �1.13a�

ere and hereafter the function �=��· , · � is defined by �1.11�. Define

�±�x� =
1

1 + �f��x��2
�− �f��x�,g�x�� ± ���f��x�,g�x�� �. �1.14�

e assume that, for every fixed y�R,

�+�y� � �−�x�, " x � �− � ,y�. �1.15�

aking this opportunity, we also correct another inexactitude:
2+n in the title should be replaced by R1+�1+n�.
47, 069901-1022-2488/2006/47�6�/069901/1/$23.00 © 2006 American Institute of Physics
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Finslerian version of ‘t Hooft deterministic quantum
odels

Ricardo Gallego Torrome
Windhukstrasse 14, Hamburg, Germany
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Using the Finsler structure living in the phase space associated to the tangent
bundle of the configuration manifold, deterministic models at the Planck scale are
obtained. The Hamiltonian functions are constructed directly from the geometric
data and some assumptions concerning time inversion symmetry. The existence of
a maximal acceleration and speed is proved for Finslerian deterministic models. We
investigate the spontaneous symmetry breaking of the orthogonal symmetry
SO�6N� of the Hamiltonian of a deterministic system. This symmetry break implies
the nonvalidity of the argument used to obtain Bell’s inequalities for spin states. It
is introduced and motivated in the context of Randers spaces, an example of a
simple ’t Hooft model with interactions. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2211929�

. INTRODUCTION

The possibility to use deterministic models at the Planck scale has been presented, for
nstance, in Refs. 1 and 2. Following these ideas, Hilbert space techniques are useful tools to
eal with probabilistic predictions at atomic, nuclear, or standard model scale physics. Quantum
echanics is considered to be a powerful formalism to deal with the chaotic evolution of these

ystems. However, the behavior of physical systems at the Planck scale can be very different.
herefore deterministic models can be useful to describe the physical systems at this more fun-
amental level.

Particular motivations to investigate deterministic models at the Planck scale have been
xplained in Ref. 1. We recall briefly some of these reasons:

1. There is the feeling that fundamental concepts like locality, space, and time are becoming
more and more obscure in contemporary physics and that this tendency will gradually
grow in modern quantum theories. It seems that it is not a nice consequence of modern
physics.

2. There are conceptual problems related with quantum cosmology. Let us suppose that the
physical system being described is the entire universe through a master quantum wave
function. The meaning of this wave function of the universe is problematic because we
cannot make any experiment to test the correctness of it: we live in one universe only and
we do not have an ensemble of identical universes to check the probabilistic predictions
of the theory. It seems it is not possible to contrast a quantum model of the whole
universe.

3. Black hole physics is problematic from the point of view of quantum mechanics. The
research in this area has produced, among other results, the discovery of a fundamental
principle as the holographic principle.3 The interpretation of this principle is not intuitive
from a field theory point of view; let us consider the fundamental area

Ap = 4 ln 2Lp
2,

where Lp is the Planck length. This principle can be stated in the following way:

The quantum degree of freedom of a quantum black hole are such that the total information

47, 072101-1022-2488/2006/47�7�/072101/16/$23.00 © 2006 American Institute of Physics
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is distributed on a surface in such a way that a bit of information is contained in an area Ap.
In a local quantum field theory the density of states is proportional to the volume of the
system. Therefore, an interpretation of the holographic principle in the framework of a local
quantum field theory becomes difficult.

4. Finally, physicists have found strong difficulties in their attempts to unify quantum me-
chanics with a theory of gravity. This unified theory should be important at short dis-
tances, where gravity become strong and comparable to other interactions. Usually the
strategy consist of searching for the right laws of gravity at short distances, maintaining
quantum mechanics as a complete theory. This persistent problem is a reason to recon-
sider the status of quantum mechanics as a fundamental theory at the scale where is
gravity as strong as it is in other interactions.

The approach advocated in Ref. 1 is to investigate deterministic systems at the Planck scale as
n alternative way to solve these problems. Due to a dissipative dynamics, after a long term
volution, different states evolve into the same one, reducing the dimensionality of the Hilbert
pace. All the ontological states evolving into the same state define an equivalence class. The
quivalence classes can be nonlocally defined, and it is speculated that they are the states
escribed by rays of a Hilbert space, as they are represented in quantum mechanics. In addition, it
as shown that the use of Hilbert space theory in the description of these deterministic models is
seful to find the connection with ordinary quantum mechanics.

The Hilbert space approach to deterministic systems has some problems. The main one is that
he Hamiltonian of a deterministic system is linear in the momentum variables and therefore is not
ounded from below. This implies the instability of the system. In addition, only few examples are
nown with a mechanism generating a Hamiltonian bounded from below, but these models do not
nvolve interactions. Moreover, any deterministic description of quantum mechanics seems to be
lagued by Bell’s inequalities. It was conjectured in Ref. 1 that at the Planck scale physical
ystems do not meet the required symmetries used in the proof of Bell’s inequalities for spin
tates. The reason is that at this level the system can be so complex that usual rotation symmetries
o not hold.

The geometric nature or interpretation of important physical models are known. For instance,
he point particle action is the length of a curve, the string action is a generalized area, and
ang-Mills actions are a function of connections on bundles. General relativity also has an inter-
retation in terms of the semi-Riemannian geometry. The objective nature of the geometric entities
that is, covariance respects a transformation group� implies the relevance of the geometric ac-
ions, making apparent the independence of the physical phenomenon from the particular way a
escription is adopted. We can say that the actions of important physical models are related to
iemannian or semi-Riemannian structures and generalized notions of distance metrics.

Finsler structures are actually natural and constitutes a branch from differential geometry and
heoretical physics with a huge recent development �some general references for Finsler geometry
nd some of its applications are Refs. 3–9�. Finsler structures are as natural as Riemannian
tructures but have less restrictions than Riemannian ones, and it sometimes seems strange why
hey have not appeared recently in field theory in a natural way. Nevertheless, recently consider-
ble work has be done in some applications in string theory and general relativity �for instance in
ef. 6� and in the thermodynamics theory in curved spaces �Ref. 6 and references therein�.
revious applications of Finsler geometry to physics were performed by the school of Miron at
umania.7–9

However, our application of Finsler geometry to obtain deterministic models is completely
ifferent. It is based on the following general ideas:

1. In the construction of physical models, geometric structures are of extreme importance.
Indeed, more of the main theories such as string and general relativity are formulated
using metric theories, in particular structures existing in a pseudo-Riemannian manifold.

Metric structures are usually required and natural.

                                                                                                            



p
b
a
p
�
i
F
t
v
h
a
d

t
r
b
t
b

t

w
g
c
s
f

s
b

g

I

p

p

s
o
t
w
c
f
a
e

072101-3 Finslerian version of Deterministic Quantum Models J. Math. Phys. 47, 072101 �2006�

                        
2. If we are looking for a formalism that could be also applicable to the whole universe, it
should contain an irreversible element. We live in one universe and the notion of revers-
ible law is maybe not completely valid because it is not completely under experimental
control when it is applied to a large portion of the universe or to the whole universe.

Finsler geometry has enough ingredients to address both points. It probably is not the only
ossibility, but we were able to use this sophisticated geometry to find some results that maybe can
e useful for future research in this area. Finslerian distance �usually associated with the length of
curve using the Finsler metric� can be nonsymmetric, that is, the distance between point a and

oint b is not the same as the distance from b to a. We consider that nonsymmetric Finsler metrics
which means when the above asymmetry is possible� are useful to describe the behavior of
rreversible evolutions at the fundamental scale. For example, the action of a particle moving in a
insler space is not invariant under the inversion of the parameter of the curve. This asymmetry in

he metric implies the possibility to describe an irreversible evolution from a geometric point of
iew. This is the main reason to use models in physics based on Finsler geometry �another idea of
ow to describe thermodynamics using Finsler structures can be found in Ref. 5. However, our
pplication mainly differs from this one because we are concerned with the most basic level in the
escription of phenomena�.

The aim of the present work is as follows. First, we investigate some general consequences of
he ‘t Hooft theory. Second, in order to give a geometric basis for the theory, we explain the
elation of ‘t Hooft’s models with the Finsler structure of the cotangent bundle of the tangent
undle of the configuration manifold M, T*TM. Finslerian models are free of some problems of
he initial ‘t Hooft’s theory. In particular, they provide a geometric argument to obtain a lower
ound for a Hamiltonian coming from a deterministic system.

The structure of this work is as follows. In Sec. II the basic notions and results of the ‘t Hooft
heory are presented. Also, the main problems of this approach are explained.

In Sec. III the use of Finsler geometry to find deterministic models is presented. In addition,
e develop some consequences of the Finslerian approach as the existence of a higher limit for
eneralized physical acceleration and speed. We describe the spontaneous symmetric breaking that
an occur in the Finslerian deterministic model. The possible absence of Bell’s inequalities for
pin at the Planck scale is also argued, but the argument can be changed to a more general
ramework than Finslerian models, provided a geometric argument is possible.

In Sec. IV we to discuss our results in the context of the geometry of spaces of smooth Finsler
tructures. We describe a simple deterministic model where interactions are present. This model is
ased on some geometric construction and some additional physical requirements.

Finally, in the Appendix , the basic definitions and results of the Finsler geometry and other
eometric objects mentioned in this work are given.

I. THE ‘t HOOFT THEORY

‘t Hooft has investigated the possibility to use deterministic models in order to describe
hysical systems at the Planck scale through a Hilbert space formulation1,2 of these models. The

hysical system is described by an eigenstate �x�� of a set of commuting operators �X̂i�t��,

�X̂i�t�,X̂j�t̃�� = 0, " i, j, X̂i�t��x � = xi�t��x � ,

uch that the eigenvalues �xi�t�� completely describe the state of the system. These states are called
ntological. The parameter t is associated with a macroscopic phenomenon or device and used as
he time parameter by an macroscopic observer, although we consider microscopic processes,
hich are at the level of the deterministic description. At each instant t, the physical system is in

orrespondence with a particular vector defined by the set of eigenvalues �xi�t��. This set of
unctions defines the real configuration of the system at any instant t. The Hilbert space is gener-
ted by the vectors representing the configurations of the physical system. A linear combination of

lements of a basis of the Hilbert space produces a vector such that the square of the module of
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ach component is the probability of the system to be in this particular state.
The Hamiltonian of a deterministic system with 6N degrees of freedom in the phase space is

H = 	
i=1

6N

pif
i�x� + g�x� . �2.1�

x , p� are canonical variables, �xi , pj�=�ij. After canonical quantization this Hamiltonian repro-
uces the evolution differential equations, which are the Heisenberg equations for the operators
Xi , i=1, . . . ,6N�,

dX̂i

dt
= f i�X̂�, i = 1, . . . ,6N . �2.2�

hen we take the average value of the Eq. �2.2� we obtain

�x̃�
dX̂i

dt
− f i�X̂���x � = 0, i = 1, . . . ,6N .

his implies the classical ordinary differential equations

dxi

dt
= f i�x�, i = 1, . . . ,6N �2.3�

ecause the scalar product of the Hilbert space is positively defined. Any system whose evolution
s given by Eqs. �2.3� and has a complete and defined set of initial conditions is called determin-
stic.

Let us consider the quantization of the Hamiltonian �2.1�. It does not have a minimal eigen-
alue because it is linear in momentum. However, the existence of a ground state is essential for
he stability of the physical system. This parameter is a fundamental difficulty in the Hilbert space
ormulation of deterministic systems.

For this problem let us consider that a dissipative dynamics, a system with a rather turbulent
r chaotic behavior at the beginning, can reach stability in a finite time. This kind of dissipation
mplies the possibility to define the physical states as equivalence classes at equilibrium. An
quivalence class is defined by the set of ontological states that, after a long term in the parameter
, evolve to the same final state.

‘t Hooft has proposed the following solution to the problem of the missing of the lower bound
f the Hamiltonian: If dissipation of information it is possible, the final Hamiltonian could be
ounded from below. It was suggested in Refs. 1 and 2 that the actual quantum mechanics
escribes not the basic degrees of freedom of our universe, but the dynamics of equivalence
lasses reached by these basic states after a long term evolution with a dissipation of information:
arious states can evolve into the same equilibrium state. The ontological states follow a deter-
inistic dynamics that is described by the set of first order, ordinary differential equations of type

2.3� �in addition with a complete set of initial conditions�. These states are locally well defined.
y contrast, the equivalence classes of states could not be locally well defined and their evolution

s quantum mechanical.
This evolution onto equivalence classes can solve the problem of the ground state because

heir number is smaller than the number of ontological states. It could be that even with an infinite
umber of ontological states, we have a finite number of equivalence classes, a finite Hilbert
pace, and as a consequence the Hamiltonian has a defined ground state.1 Several examples has
een found by ‘t Hooft where there is a mechanism producing a Hamiltonian with a lower bound:
he free bosonic system, the free Maxwell field, and the free massless neutrino system are deter-

inistic systems. These examples at least prove the existence of deterministic models with a

amiltonian bounded from below.
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In this work we denote by a ‘t Hooft model a deterministic system with a mechanism pro-
ucing a lower bound for the final Hamiltonian at equilibrium. By dissipative mechanism we mean
n information loss mechanism.

II. FINSLERIAN DETERMINISTIC QUANTUM MODELS AT THE PLANCK SCALE

Let us denote by M the configuration manifold of all the degrees of freedom at the Planck
cale. By configuration manifold we mean a submanifold M of a 2n-manifold N such that TM
N. With this definition we adopt the formalism of Lagrange spaces7 �indeed dual Lagrange

paces�, instead of considering the formalism of higher order Lagrange spaces.8

The relation between Finsler structures and deterministic systems is based on the following
oints:

1. The ontological states at the Planck scale are described by points of the phase space
T*TM and the tangent bundle TM is equipped with a dual Randers metric F*.

2. The reduction of the ontological Hilbert space to the quantum mechanical Hilbert space is
in correspondence with the reduction of the Randers structure �TM ,F*� to the Riemann-
ian structure �TM ,h�. We postulate that this reduction corresponds to the average opera-
tion investigated in Ref. 10.

3. We assume that for each particle with a generalized velocity y=dxi /dt there is another
particle associated such that it is evolving backwards in time t with velocity −y and the
separation between them is zero.

or the definition of a Finsler structure and Randers structures, basic notions in the present work,
e refer to the Appendix or to Ref. 4. The term dual makes reference to the manifold T*TM where
* lives in our formalism. These spaces are treated in the literature �see Ref. 6 and references

herein� and are called Cartan spaces. Points 1 and 2 are the main link between geometry and
hysics in our proposal. Point 1 is a nominative axiom, relating notions from geometry and
hysics. Point 2 refers to the link between the geometric theory of Finsler geometry described in
ef. 10 with a reduction of the associated Hilbert space. This point is especially important to keep

n mind when finding the link between quantum mechanics and deterministic models at the Planck
cale. It is only explanatory; while point 1 is completely arbitrary, point 2 is just a consequence of
oint 1 and the theory developed in Ref. 10. Point 3 is a generalization of the particle-antiparticle
reation in the context of a nonsymmetric geometry background. Due to this asymmetry, a non-
rivial system arises with a defined fundamental time arrow.

In addition to the above statements, we note two other implicit facts in our construction:

1. There is a microscopic time arrow associated with the mechanism that produces the
evolution from the Randers structure �TM ,F*� to the actual Riemannian structure
�TM ,h�.

2. There is a Hamiltonian function obtained directly from the geometric data contained in
the Randers structure �TM ,F*�.

onsider a Randers function F* with the following form �see the Appendix for the definition of
anders space�,

F*�x,p� = ��x,p� + ��x,p� .

hen we perform the following identification between the Hamiltonian function and the nonsym-
etric part of the Randers function,

H = 	
i=1

n

pif
i�x� → 2	

i=1

n

�i�x�pi, �3.1�
nd if we identify component by component,
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2�i = f i, i = 1, . . . ,6N . �3.2�

he ordinary differential equations �2.3� are then

f i = �i =
dxi

dt
, i = 1, . . . ,6N . �3.3�

n order to quantize the model we use the canonical quantization through the prescription

xi → X̂i, �i�x� → �i�X̂�, pi → − i
�

�xi = P̂i. �3.4�

his representation holds the canonical quantization relation:

�X̂i, P̂j� = �ij .

he reason why we choose the above Hamiltonian function �3.1� is as follows: the first term
orresponds to a particle moving forward in time while the second term corresponds to a particle
oving backward in time, both at the same position; there is a democracy in the choice of the
acroscopic time arrow.

We would like to justify the Hamiltonian function �3.1� in more detail. Since we use phase
pace variables, we translate the above assumption from velocities to momentum variables. An
xample of a dual Finsler structure with Finsler function F* living in the cotangent bundle T*�TM�
s defined using the following procedure: if �TF ,F� is a Finsler structure, let us consider the dual
insler structure defined by

F*�x,p�: = F�x,yp� such that yp�p̃�: = gyp
�p, p̃� ,

p� = pi�� /�xi��Tu
*TxM ;y�TuTxM. yp is the dual vector of the 1-form p defined by the second

elation. gyp
is the fundamental tensor of the structure �TM ,F� evaluated at the point yp �for the

efinition, see the Appendix�.
The classical Hamiltonian function �3.2� coincides with

H = F*�x,p� − F*���x�,��p�� = 2�ipi. �3.5�

he transformation � is the time inversion operator with respect to the microscopic time t. The
ction of the time inversion operator in the canonical variables is defined such that the canonical
elation �xi , pj�=�ij remains invariant.

The quantization of the above models is equivalent to the quantum mechanical description of
deterministic system. The quantized Hamiltonian is defined by

Ĥ = F*�X̂, P̂� − F*�T̂X̂T̂ −1,T̂P̂T̂ −1� .

ˆ is the time inversion operator. The Hamiltonian is

Ĥ = 2�i�X̂�P̂i. �3.6�

simple calculation shows that for this Hamiltonian the relation T̂ĤT̂ −1=−Ĥ holds and that the
lementary evolution operator

Û�t,t + �t� = Î − i�tĤ

s invariant under time inversion T̂, producing a geometric time arrow �note that states are invari-
nt by the time inversion operation�.

Hamiltonian �3.6� is not bounded from below. In order to solve this problem we propose the

ollowing mechanism: Let us define the average classical Hamiltonian defined by
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�H�: = 
Ix
*
H�x,p����x,p��2d6N−1p .

he manifold Ix
*�Tx

*�TM� is defined by Ix
* : = �p�Tx

*�TM� �F*�x , p�=1�. ���x , p��2 is a weight
unction on the indicatrix Ix

* and it is determined by the geometric data �TM ,F*�.
The justification of this construction is as follows. In Ref. 10 the existence of a map from the

insler category to the Riemannian category relating the most important geometric notions was
roved. This map was basically interpreted as an “average” of the Finslerian objects �although in
ef. 10 we formulated our mathematical construction mainly related with the so-named Chern’s
onnection. However, it was noted that a similar average operation is also applicable to other
onnection as the Cartan connection or in general to any linear connection in �*TM. We also think
hat the construction is also extendable to the nonlinear connection, a very important notion in
insler geometry�. Here we remark that this average operation is also applicable to the Hamil-

onian operator after canonical quantization of the classical Hamiltonian because it is constructed
sing the Finsler function. This average is interpreted as a long term evolution of the initial
amiltonian. Another more physical reason to integrate only over Ix

* is the “holographic principle
n phase space”: all the quantum information is contained in a submanifold of dimension n−1, in
his case the indicatrix Ix

*. This holographic principle is formulated in the phase space instead of
he normal formulation in the configuration space and appears as a reinterpretation of the positive
omogeneity requirement. It seems to be possible to translate this construction to the configuration
pace just through a generalized Fourier transformation.

The above average Hamiltonian function has an associated quantum operator �better a density

perator� �Ĥ�. This operator is defined by the action on an arbitrary element of the Hilbert space
f the states of defined generalized coordinates:

�H�x�X̂, P̂��p�: = 
Ix
*
Ĥ�X̂, P̂����x,p��2�p�d6N−1p = 

Ix
*

�H�x,p����x,p��2��p + G�x��d6N−1p,

" �p� � H . �3.7�

he average quantum Hamiltonian density operator �Ĥ��X̂ , P̂� is linear. ��p�� is the set of vectors

uch that the Finsler norm is 1: P̂i � p�= pi � p� with F*�x , p�=1. The function G�x� is the translation

roduced by the operators X̂i on the momentum state �p�, computable from the canonical condi-

ions and the form of the operators �i�X̂�.
The first property of the above Hamiltonian �3.7� comes from the definition of Randers space.

ll the terms are bounded and positively defined because the functions ��i� are bounded and also
ecause we are integrating only over the indicatrix Ix

*. Therefore we obtain the following result.
Theorem 1: Let �TM ,F*� be a Randers space. Then there is a deterministic system with the

verage Hamiltonian density defined by relation (3.7) and with Ĥ defined by Eq. (3.6). Then the
verage Hamiltonian �H�x is bounded.

The local converse of this result also holds, proving the generality of the connection between
eterministic systems and Randers geometry,

Theorem 2: Let Ĥ=2�i�X̂�P̂i be a quantum Hamiltonian operator describing a deterministic
ystem. Suppose that the average Hamiltonian is bounded. Then there is a Randers structure that
eproduces the above Hamiltonian, and the Randers function is defined locally at one point by the
xpression

F�x,p� = ��ijp
ipj + f ip

i.

Proof: We read from the Riemannian metric and the 1-form that characterizes the Randers
tructure from the Hamiltonian; the Hamiltonian of a deterministic system is of the form H

i
f �x�p. We associated the following structure locally such that at the point x it is given by
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aij = �ij, 2�i�x� = f i�x� ,

here the functions f i�x� characterize the deterministic system. That the final Hamiltonian is
ounded implies that the functions �i�x� are also bounded, which is a fundamental requirement to
btain a Randers function.

It is important to note that the Randers structure of the thesis of Theorem 3.2 and the Randers
tructure of the hypothesis of Theorem 3.1 are not the same. The reason is because they describe
ifferent deterministic systems. In addition, let us note that the Riemannian structure aij =�ij is
rbitrary: our choice was the simplest one, but it can be constrained because of the topology of the
anifold TM �although locally the Finsler structure resembles the one in Theorem 3.2� and of the

hysical consistency, as we will see �� should be bounded by aij�. When the metric a is given
lobally we can extend beta, defining a Randers space in the whole manifold TM, assuming that
t is simply connected.

Another consequence of the geometric origin of the Hamiltonian is that because the require-
ents that F* is a Randers function, the functions ��i� are bounded. This implies that generalized

elocities and accelerations of the particles are bounded,
Corollary 3: Consider a deterministic system associated with a Randers space. Then the

eneralized speed and acceleration of any physical subsystem are bounded.
This consequence is interesting because it means the following for our model. From the

eometric point of view, bounded means to respect the metric structure aij of the given Randers
tructure �� ,��. Because both accelerations and velocities can become observables in some mod-
ls, this also happens with the metric aij, which becomes not arbitrary and dynamical. The prob-
em of finding the correct structure such that the 1-form � is bounded with the Riemannian metric

ij implies some additional hypothesis concerning the dynamical behavior of both.
As consequence of the existence of a maximal physical acceleration, there is a limit for the

trength of the gravitational field, if the strong equivalence principle holds. Therefore we are
ealing with a theory that contains a finite gravitational interaction.

A simple mechanical model can give an estimation of the value of the maximal acceleration.
uppose that the universe has a limited energy content, there is a minimal distance Lp, the
aximal speed is c, and the ontological degrees of freedom of the model describe the molecules

f a classical gas. We can write the elementary work that the rest of the universe can make on a
efined subsystem. Since this maximal work is equivalent to the energy of the particles involved,
e obtain the relation

Lpmap � �mc2.

he maximal exchange of energy is bounded by �MUc2, where MU is the equivalent mass of the
otal energy of the universe, excluding the subsystem considered. The mass m appearing in the left
ide is just the mass of the particle, and if this mass is the Planck mass Mp, then

ap �
MU

Mp

c2

Lp
.

his acceleration is very huge when LP is the Planck scale,

ap �
Mu

Mp
1052 m/s2.

f the change in the state of the subsystem is only produced by the neighborhood of the elementary
article, then instead of MU there is a mass comparable to m. Therefore the maximal acceleration
s

ap � 1052 m/s2.

ote that this acceleration is independent of the mass of the particles. This implies that the

quivalence principle for the maximal acceleration holds in this limit. In addition, this example
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hows the equivalence between the maximal acceleration and a minimal length Lp, when there is
maximal speed c.

As another example of application of our geometric formalism, let us consider the Hamil-
onian describing a deterministic system with 12 degrees of freedom associated with two pairs of
articles living in a space M of dimension three. The symmetry group of the Hamiltonian is
ontained in the group O�12� because it is the Euclidean product of two vectors of a
2-dimensional space �by associated particles we mean a pair of identical particles such that they
re at the same position but one is moving forward and the other backward on the external time t�.
et us consider a particular configuration describing a system of two correlated pairs of associated
articles and their environment. The symmetry group for this special configuration contains the
roup O�6��O�6��G, where the first two terms O�6� describe the symmetry related with the two
eparated pair of particles and G determines the symmetry of any other subsystem. This configu-
ation implies a spontaneous symmetry break of the group O�6N�,

O�6N� → O�6� � O�6� � G .

This symmetry break produces Goldstone’s bosons that we consider part of the environment.
Consider the subsystem composed of two correlated pairs. The symmetry of this Hamiltonian

is O�6��O�6�. The existence of an internal time t implies the existence of the time inversion

transformation T̂ defined by the action on the generalized canonical coordinates �let us recall that
the velocity y is also considered as a coordinate in the Hilbert space approach to deterministic
systems�,

�x,y� → �x,− y� .

nvariance of the canonical quantization implies the transformation

�P̂x, P̂y� → �− P̂x, P̂y� ,

ecause the time inversion is an antiunitary transformation on the Hilbert space.11 A similar
ransformation for the classical momentum holds.

We remark that the consistency of this splitting of the cotangent space T*TM is based on the

xistence of an additional geometric structure associated with the time inversion T̂. This additional
tructure again breaks the symmetry of the Hamiltonian,

O�6� � O�6� → O2�3� � O2�3� .

ecause the physical system is deterministic and has a well defined momentum and generalized
osition values, it is in a particular defined state. The evolution of these states is in a one-to-one
orrespondence with the 1-form ��−

1�1� ,�−
2�1� ,�−

3�1� ,�+
1�1� ,�+

2�1� ,�+
3�1�� describing the evolution

f the first pair and ��−
1�2� ,�−

2�2� ,�−
3�2� ,�+

1�2� ,�+
2�2� ,�+

3�2�� for the second �the notation ± cor-
esponds to the splitting induced by time inversion in TxM�. But when the system follows the
volution guided by a particular value of the above forms, the symmetry is again broken,

O2�3� � O2�3� → O2�2� � O2�2� .

he final group O2�2��O2�2� because it is the biggest group preserving a particular deterministic
volution.

Therefore it is not possible that the system could hold a nontrivial irreducible representation of
he rotation group SO�3� consistent with a deterministic evolution: the symmetry group for a
efined system of two correlated pair of particles at the Planck scale is O2�2��O2�2�. This group
s not enough to contain the rotation group SO�3�.

Theorem 4: For a deterministic system composed by two correlated, identical pairs of asso-
iated particles with energies at the Planck scale, there is not a nontrivial irreducible represen-
ation of the rotation group leaving invariant the deterministic evolution defined by particular

alues of the beta function.
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One consequence of this fact is that the ordinary proof of Bell’s inequalities for spin does not
old at the Planck scale for this system. The reason is that the proof uses the rotation symmetry
nd it does not hold for deterministic systems at this scale. Even the notion of spin is not truly
efined in this context. Therefore the claim is that Bell’s inequalities for spin does not hold for
eterministic Finslerian models.

At ordinary energies the breaking O2�3��O2�3�→O2�2��O2�2� is not given. Only at high
nergies of order of the Planck scale can we expect this break because it means that the system
annot decouple from the ambient in a way that rotation transformations of the system make sense.
owever, at ordinary scales this decoupling indeed does make sense and the above symmetry
reak does not hold.

This possible absence was anticipated by ‘t Hooft and is independent of the nature of the
odel, Finslerian or not. Here we remark the geometric character of this phenomenon in the case

f Finslerian deterministic models.

V. DISCUSSION

The relations between the Finsler structure �TM ,F*� and the Riemannian structure �TM ,h�
re described in Ref. 10 �indeed the case of a general, smooth manifold M was considered�. In
ddition, the existence of a map from the category of Finsler spaces to the category of Riemannian
paces mapping the Chern connection of F �generally, any linear connection living in �*M� to a
inear connection on �*TM and the hh curvature to the curvature of this linear connection was
hown. These transformations can be interpreted as “average” operations of the Finsler structures
nd objects. The physical interpretation of these averages is that the Finsler structure living in the
hase space manifold T*TM evolves after a long term to the equilibrium described by the Rie-
annian structure �TM ,h�. This Riemannian structure describes the geometry of the phase space
hen the systems of all ontological states reach the equilibrium. However, the Hamiltonian de-

cribing the evolution of the averaged system when the system has evolved after a long term is not
he Hamiltonian coming from the “average” Finsler structure �TM ,h� �that is indeed Riemannian�.
he reason is because these averaged physical systems are not systems of fundamental particles at

he Planck scale, but could be composite objects like strings. Since they do not have times as small

s the Planck time Lp /c, the Hamiltonian guiding their dynamics is the average Hamiltonian �Ĥ�,
ot the deterministic Hamiltonian based on the geometric structure, Finslerian or Riemannian.

When the system arrives into the equilibrium, the Finsler structure is just the Riemannian
tructure �TM ,h�. From the definition of the fundamental or ontological Hamiltonian �3.6�, we
btain in the equilibrium the condition

Ĥ = 0.

he existence of macroscopic matter structures and gravity can be associated with the following
ecomposition:

Ĥ = �Ĥ� + �Ĥ = Ĥmatter + �Ĥ .

f we take the average of each member of this relation, one obtains at equilibrium

�Ĥ� = ��ĤU�� + ��Ĥ� = Ĥmatter + ��Ĥ� = 0.

e associate �ĤU�=Ĥmatter, ��Ĥ�=Ĥgravity. Therefore in this model the distinction between matter
nd gravity appears as result of a long term evolution of the ontological states. Also it appears
emarkable that while in equilibrium gravity appears to compensate matter, at nonequilibrium �that
s when the structure is Finslerian� there is some kind of pregravity interaction, described by the

amiltonian �Ĥ. The qualitative characteristic of this interaction should be study further. Matter

eems identical �the particle content seems complete identical because the Hamiltonian for matter,
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efore and after average is the same �Ĥ�. This fact implies the universality of our formalism in
rder to get any quantum system from a deterministic model.

Connecting with the ‘t Hooft theory, we describe in a geometric way the projection from an
ntological state to an equivalence class as follows:

The projection after a long term evolution of a deterministic system to the equilibrium equiva-
ence class is described by the transformation that averages the dual Finsler structures living in
he manifold T*TM.

It is a remarkable consequence of the Finslerian ‘t Hooft models that we obtain the prediction
f the value of a maximal acceleration and speed for physical systems. This can be interpreted as
he requirement of the existence of two natural constants by geometric consistency. In addition, the
ossible absence of Bell’s inequalities for spin is a remarkable prediction for the general ‘t Hooft
odels: these inequalities are the main obstructions for the construction of hidden variables

heories. In the present paper we have shown that the absence of Bell’s inequalities is possible at
he Planck scale, where not decoupling of the system with the ambient is taken and even the notion
f three-dimensional rotations become unclear. This explanation is simultaneous with the predic-
ion of the existence of pregravity interaction in a natural way. Therefore it is possible to construct
he hidden variables theories at this energy without the introduction of nonlocal actions, and the

echanisms could be promoted by a pregravity interaction.
That all of the ‘t Hooft models have a local geometric interpretation in terms of Finsler

eometry and the geometric origin of a microscopic time arrow obtained from the geometric data
re the mayor goals of these models. In addition, we can motivate a deterministic model based in
ome construction of a Randers space containing interactions. Unfortunately, the model is not
ompletely defined by the geometry and physical hypothesis should be introduced.

We start reviewing the treatment of ‘t Hooft of a deterministic system with a dissipative
ynamics.1 The quantum Hamiltonian i:

Ĥ = p� · f��g�� .

onsider a scalar operator ��q�� such that ���q�� ,Ĥ�=0. Then we can perform the following de-
omposition:

Ĥ = Ĥ1 − Ĥ2, �4.1�

ith

Ĥ1 =
1

4�
��2 + Ĥ�2, Ĥ2 =

1

4�
��2 − Ĥ�2.

oth Hamiltonians commute, �Ĥ1 ,Ĥ2�=0.
In order to bound from below the complete Hamiltonian, one can introduce the constraint than

n physical states the following condition holds:

Ĥ��� → 0. �4.2�

hat should be understood as a long term evolution statement: the physical system evolves to
tates obeying condition �4.2�. This constraint immediately implies the bound of the Hamiltonian:

Ĥ → Ĥ1 → �2 	 0.

hese constraints can be motivated first if we mimic the system in terms of a nondissipative model
nd where the system corresponds to a quantum oscillator, where all the “orbits” are stable such

hat Ĥ= p� · f��g�� holds and such that �Hs ,�2�=0.

The stable orbits are restricted by the condition
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e−ĤT��� = ��� , �4.3�

here T is the period of the orbit �=1. This condition, equivalent to constraint �4.2�, implies the
imitation of trajectories to stable orbits at equilibrium.

Let us compare this construction with a parallel construction using Finslerian models. One
tarts directly with a classical Hamiltonian of the form

H = F�q� ,p�� − F�q� ,− p�� .

fter canonical quantization, we identify Ĥ1=F�q� , p��=�+�, Ĥ2=F�q� , p��=�−�.
We propose the constraint �=1 on physical states. It is equivalent to an average operation

efined in the following way:

hij = 
S

gij�x,y� , �4.4�

here the integration is done on the sphere S6N−1�Tu
*TxM.

Taking this average in the underlying geometric structure corresponds to constrain the values
f the quantum states: after a long term evolution, the physical states arrive to the submanifold
6N−1.

Suppose now the system is composed of two identical elementary systems, with their dynam-
cs described by a deterministic Hamiltonian of the form �4.1�. Let us suppose they are modeled on
anders spaces, so their Hamiltonians are determined by ��1 ,�1� and ��2 ,�2�. The 1-forms

i , i=1,2. have a norm of less than 1 by the corresponding Riemannian norms �i , i=1,2. There
re at least two ways to produce a bigger Randers space using just the above geometric data:

1. The first way is valid for complete general structures

� = �1 � �2, � = �1 � �2.

This construction does not produce interaction terms in the total Hamiltonian. There is a
priori no relation �1�2.

2. The second form recovers the impossibility for an external observer to differentiate be-
tween identical particles:

p� = p�1 � 0� + 0� � p�2, �� = �� 1 � 0� + 0� � �� 2,

� = �1 � �2, �1 = �2.

The quantum total Hamiltonian is given by

�� �p�� = 
1

2
�� 1�p�1� + �� 1�p�2� + �� 2�p�1� + �� 2�p�2�� .

The mixed terms produce the interaction. The condition �1=�2 ensures that the above
construction is a Randers space.

In order to conclude the discussion we would like to discuss our idea with some recent
pplications of Finsler geometry in physics �see Ref. 6 and references therein�. Our application of
insler geometry and in particular, of Randers spaces, seems new even if it contains elements that
ave been already used in other contests. Considerable work was performed on higher order
echanics and generalized Finsler spaces �see Refs. 7–9 and also Ref. 6�, but the bird of deter-
inistic models at the Planck scale is very recent and the application of Finsler geometry pre-

ented in this paper is also new. In addition, we remark that we are not concerned at this stage with
field theory for these deterministic systems, but with the general formalism that we could use to

escribe them. Finsler geometry is rather intrincately complex with so many natural connections,
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or instance, like Chern’s or Cartan’s connections. Also the notion of nonlinear connection is of
undamental importance. But we are not concern with these important topics in this paper because
he construction proposed involves only notions at the metric level: our average is a universal
rocedure, valid for any linear connection �*TM. Further research can provide a mechanism to
elect a right d connection for a field theory of deterministic degrees of freedom. In addition, some
dditional research is needed to understand the extension of the average operation applied to the
onlinear connection.

PPENDIX: BASIC RESULTS ON FINSLER GEOMETRY FOR DETERMINISTIC
YSTEMS

In this Appendix we recall the basic notions of Finsler geometry used in the present work. The
ain reference for this Appendix is Ref. 4. We present the notions for an arbitrary smooth
anifold M.

Let �x ,U� be a local coordinate system over a point x�M, where x�U have local coordinates
x1 , . . . ,xn�, U�M is an open set, and TM is the tangent bundle. We use Einstein’s convention for
p and down equal indices in this work.

A tangent vector at the point x�M is denoted by yi�� /�xi��TxM, yi�R. We also denote by
M the set of sections of the tangent bundle. We can identify point x with its coordinates

x1 , ¯ ,xn� and the tangent vector y�TxM at x with its components y= �y1 , ¯ ,yn�. Then each
ocal coordinate system �x ,U� induces a local coordinate system in TM denoted by �x ,y ,U� such
hat y=yi�� /�xi��TxM has local natural coordinates �x1 , ¯ ,xn, y1 , ¯ ,yn�.

Let us denote by N=TM \ �0�. The notion of a Finsler structure is given through the following
efinition.

Definition 1: A Finsler structure F on the manifold M is a non-negative, real function
:TM→ �0, 
 � such that

1. It is smooth in the split tangent bundle N.
2. Positive homogeneity holds: F�x ,�y�=�F�x ,y� for every ��0.
3. Strong convexity holds: the Hessian matrix

gij�x,y� ª
1

2

�2F2�x,y�
�yi � yj �A1�

is positively definite in N.

We also denote by a Finsler structure in M the pair �M ,F�.
The minimal smoothness requirement for the Finsler structure is C5 in N when second Bianchi

dentities are used; more generally only, a C4 differentiable structure is required. The matrix

ij�x ,y� is the matrix components of the fundamental tensor g. The homogeneity condition can be
tronger: F�x ,�y�= �� �F�x ,y�. Then �M ,F� is called the absolutely homogeneous Finsler struc-

ture.
Example 2: A Randers space is characterized by a Finsler function of the form

F�x,y� = ��x,y� + ��x,y� , �A2�

here ��x ,y�=aij�x�yiyj is a Riemannian metric and ��x ,y�=�i�x�yi. The requirement of being gij

ositively definite implies that the 1-form ��1 , ¯ ,�n� is bounded, using the above Riemannian
etric �. Examples of Randers spaces can be found, for instance, in Refs. 4 and 5.

Definition 3: �Ref. 4� Let �M ,F� be a Finsler structure and �x ,y ,U� a local coordinate system
nduced on TM from the coordinate system �x ,U� of M. The Cartan tensor components are
efined by the set of functions

Aijk =
F �gij

k , i, j,k = 1, . . . ,n . �A3�

2 �y
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These coefficients are homogeneous of degree zero in �y1 , . . . ,yn�. In the Riemannian case Aijk

re zero and this fact characterizes Riemannian geometry from other types of Finsler geometries
Deicke’s theorem�.

Since the components of the fundamental and Cartan’s tensors have a dependence on the
angent vector y, it is natural to use a manifold other than M to study Finsler geometry. One
ossible construction is the following: consider �*TM, the pullback bundle of TM by the projec-
ion

�:N → M . �A4�

he vector bundle �*TM has as a base manifold N, the fiber over the point u= �x ,y��N is
iffeomorphic to TxM for every point u�N with ��u�=x, and the structure group is diffeomor-
hic to GL�n ,R�.

The vector bundle �*TM�TM�N and the projection on the first and second factors are
iven by

�1:�*TM → N , �A5�

�2:�*TM → TM. �A6�
*TM is completely determined as a subset of TM�N by the following relation; for every u
N and ��1

−1�u�,

�u,� � �*TM iff � � �2�u,� = ��u� . �A7�

similar construction �*TM can be performed over SM, the sphere bundle over N.
One essential notion in Finsler geometry is the nonlinear connection. We introduce the non-

inear connection coefficients, defined by the formula

Nj
i

F
= � jk

i yk

F
− Ajk

i �rs
k yr

F

ys

F
, i, j,k,r,s = 1, . . . ,n

here the formal second kind Christoffel’s symbols � jk
i are defined in local coordinates by the

ormulas

� jk
i =

1

2
gis
 �gsj

�xk −
�gjk

�xs +
�gsk

�xj �, i, j,k = 1, . . . ,n;

jk
i =gilAljk, and gilglj =� j

i. Note that the coefficients Nj
i /F are invariant under the scaling y→�y,

�R+, y�TxM.
Let us consider the local coordinate system �x ,y ,U� of the manifold TM. A tangent basis for

uN ,u�N is defined by the distributions4

�� �

�x1�
u
, ¯ � �

�xn�
u
,F� �

�y1�
u

, . . . ,F� �

�yn�
u
� ,

� �

�xj�
u

=
�

�xj u − �Nj
i �

�yi�
u
, i, j = 1, . . . ,n .

he set of local sections

�� �

�x1�
u
, . . . ,� �

�xn�
u
,u � �−1�x�,x � U�
enerates the local horizontal distribution HU while

                                                                                                            



t
h

T
c

�
=

p
�

A
a
p
c

L
o

d

I
a

a

072101-15 Finslerian version of Deterministic Quantum Models J. Math. Phys. 47, 072101 �2006�

                        
�� �

�y1�
u

, . . . ,� �

�yn�
u

,u � �−1�x�,x � U�
he vertical distribution VU. The subspaces Vu and Hu are such that the following splitting of TuN
olds:

TuN = Vu � Hu, " u � N .

his decomposition is invariant by the action of GL�n ,R� and it defines a nonlinear connection �a
onnection in the sense of Ehresmann� on the principal fiber bundle N�M ,GL�n ,R��.

Theorem 4: �Chern’s connection, Ref. 4� Let �M ,F� be a Finsler structure. The vector bundle
*TM admits a unique linear connection characterized by the connection 1-forms �� j

i , i , j
1, . . . ,n� such that the following structure equations hold:

1. “Torsion- free” condition,

d�dxi� − dxj Ù wj
i = 0, i, j = 1, . . . ,n . �A8�

2. Almost g-compatibility condition,

dgij − gkjwi
k − gikwj

k = 2Aijk
�yk

F
, i, j,k = 1, . . . ,n . �A9�

Chern’s connection is nonmetric compatible but has null torsion. Cartan’s connection is com-
letely metric compatible, but has torsion. The relation between the Cartan connection 1-forms
�c�i

k in relation with the Chern connection �i
k 1-forms are given by4

��c�i
k = �i

k + Aij
k �yj

F
.

t this point we should stress the importance of the Cartan connection on physical applications
nd in general of the metric connections in field theory.6 Chern’s connection is not metric com-
atible, which is a bit problematic for physical applications; it is preferable to use Cartan’s
onnection or d-connection, which is metric compatible.

The manifold Ix is called the indicatrix and is defined by

Ix ª �y � TxM�F�x,y� = 1� .

et us denote by F�Ix� the set of real, smooth functions on the indicatrix Ix. Then the average
peration is defined as follows.

Definition 5: Let �M ,F� be a Finsler structure. Let f �F�Ix� be a real, smooth function
efined on the indicatrix Ix and �� ,Ix� the invariant measure. We define the map

�·��:F�Ix� → R

�A10�

f�x,y� →
1

vol�Ix�


Ix

d vol ��x,y�f�x,y� .

n the case of smooth Finsler structures the coefficients �hij , i , j=1, . . . ,n� are smooth in M. They
re the components of a Riemannian metric in M.

Proposition 6: Let �M ,F� be a Finsler structure. Then the functions

hij�x� ª �gij�x,y��, " x � M �A11�

re the components of a Riemannian metric in M such that in a local basis �x ,U� is

i j
h�x� = hijdx � dx . �A12�
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We should mention that the restriction on the indicatrix Ix in the integration is not necessary:
e can perform similar averages procedures on any compact submanifold of codimension 1

nd also of codimension 0 �see Ref. 10, Propositions 3.13 and 3.14�. Indeed, Proposition 3.14 of
ef. 10 implies that we can take the limit of the whole tangent bundle, provided a convenient
ormalization is used.

The average operation can be extended to obtain average connections and average
urvatures.10 This fact can be used to introduce a field theory based on connections as fundamental
ariables for deterministic theories at the Planck scale.
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We consider the dynamics on a quantum graph as the limit of the dynamics
generated by a one-particle Hamiltonian in R2 with a potential having a deep strict
minimum on the graph, when the width of the well shrinks to zero. For a generic
graph we prove convergence outside the vertices to the free dynamics on the edges.
For a simple model of a graph with two edges and one vertex, we prove conver-
gence of the dynamics to the one generated by the Laplacian with Dirichlet bound-
ary conditions in the vertex. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2213789�

. INTRODUCTION

Several physical systems, like electronic nanostructures or periodic solids made up of aro-
atic molecules, display the common feature that the motion of the electrons can be thought of as

eing confined in one or more directions by a strong potential barrier, which prevents the particles
rom escaping from the structure and allows propagation in the remaining �free� directions.

In solid state physics, a concrete example of this phenomenon is given by quantum wires and
arbon nanotubes, where the high purity achieved in fabrication techniques and the weakness of
lectron-phonon interaction give rise to ballistic transport. Therefore, using the strong-coupling
ethod, one can in first approximation model the interaction of electrons with the crystal assum-

ng that they move freely with an effective mass m �a more detailed discussion of the physical
ypotheses on which this approximation is based can be found in Duclos and Exner �1995�,
ondergan et al. �1999��.

Taking into account the strong potential barrier which keeps them confined, their dynamics are
hen given by the one-particle Hamiltonian

Ĥ� ª −
1

2
� +

1

2�2W�q� , �1�

here we have chosen suitable units so that � and the effective mass are equal to 1.
The parameter � is the natural small parameter of the problem and is linked to the ratio l /L,

here L is the characteristic length of the wire along the free direction where the electrons can
ropagate and l is the analogous length in the confined directions.

In general, the function W is assumed to be zero on the quantum wire and strictly positive
utside, so that when � becomes small one expects the electron to be better and better confined to
he wire. For this reason, W is called the constraining potential.

Our aim in this paper is to analyze the dynamics generated by �1� in the limit �→0 for
wo-dimensional systems constrained to a singular one-dimensional manifold given by a graph �.

�Electronic mail: dellantonio@mat.uniroma1.it
�
Electronic mail: lucattilio.tenuta@uni-tuebingen.de

47, 072102-1022-2488/2006/47�7�/072102/21/$23.00 © 2006 American Institute of Physics
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We consider an explicit form of the constraining potential, i.e., the square of the distance of a
oint from the graph. This potential is obviously continuous, but does not belong to C1�R2�,
ecause of the vertices. Outside the vertices, the potential is a quadratic function of the coordi-
ates, so it can be regarded as the first nonzero term of the Taylor expansion of more general
unctions which are zero on the graph, and whose gradient is zero on the edges. This is the natural
lass of constraining potentials considered in the literature to model holonomic constraints in
lassical and quantum mechanics �Bornemann �1998�, Froese and Herbst �2001�, and references
herein�. We will argue that the results we find can be generalized to a wider class of potentials,
hose Taylor expansion near the graph contains higher order terms.

As it is clear from the brief remarks given above, this case is relevant for solid state physics
n order to determine the leading order behavior for the dynamics of electrons moving in a
ranched nanostructure, made up of several wires which meet in a crossing region represented by
he vertices of the graph in the limit �→0.

Another important field where Equation �1� can be applied is given by theoretical chemistry,
n the so-called quantum network model �QNM� �for a recent review which contains also some
omparison with experimental data see Amovilli et al. �2004� and references therein�. This model
s used to study the motion of valence electrons �also called �-electrons� in aromatic molecules or
eriodic solids like graphene. In first approximation, they are thought to move freely through the
keleton of the molecule determined by �-electrons, which create a potential keeping �-electrons
onfined to the molecular structure. The most famous example, described in Fig. 1, is probably
aphthalene molecule, first studied by Ruedenberg and Scherr �1953�.

The characteristic feature shared by the examples presented is that we always expect the
imiting dynamics to take place on a graph, on which we must define a suitable Hamiltonian. The
ouple made up of the graph and a differential or pseudodifferential self-adjoint operator defined
n it is usually called quantum graph �a detailed review on this topic is given in Kuchment �2002,
004, 2005��.

The main problem one runs into if one wants to describe the physical systems mentioned
bove by a quantum graph is that there are a host of self-adjoint Hamiltonians which can be
efined on it.

If, for example, one assumes that the dynamics outside the vertices is free, i.e., that the
amiltonian is the Laplacian −d2 /dx2, where x is the natural arc length coordinate on the edges of

he graph, and that the graph has one vertex and n edges, then the possible self-adjoint extensions
re determined by n2 parameters �Kostrykin and Schrader �1999��.

To eliminate this ambiguity, a natural procedure is to consider the quantum graph as a limit of
more realistic model. We call the method employing a strong constraining potential a soft

pproximation of the graph. As we have pointed out above, this is a physically reasonable ap-
roximation, which, for a smooth constraint, has been investigated, e.g., in Belov et al. �2004�,
ell’Antonio and Tenuta �2004�, Froese and Herbst �2001�. As far as the authors’ knowledge is

oncerned, the remark by Kuchment �2002� that “the graph case �i.e., in the presence of vertices�

FIG. 1. Skeleton of naphthalene molecule.
as not been explored” is still largely true.
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Another appropriate choice, which we call rigid approximation of quantum graphs, is to
onsider a “thickened graph,” composed in the simplest cases of thin tubes of radius �, which has
he same topology as the original graph and reduces to it when � goes to zero. It is reasonable to
uppose that the motion of the electron in this thickened structure is free, but one needs to specify
oundary conditions to get a well-defined Laplacian. The most natural choice is to use Dirichlet
oundary conditions, which correspond to an infinite constraining potential barrier. Some light on
his case has been shed in two recent papers by Molchanov and Vainberg �unpublished� and Post
2005�.

Post considers thickened graphs which near the vertices are strictly smaller than the ones
efined by the distance function,

V�,� ª ��x,y� � R2:d��x,y� � �� , �2�

nd shows convergence to the Laplacian with Dirichlet boundary conditions at the vertices of the
raph. This limitation on the size of the neighborhoods gives another reason why the study of a
onstraining potential equal to the square of the distance is interesting.

Molchanov and Vainberg analyze a somewhat less realistic model, where separation of vari-
bles is possible, and are interested in the asymptotic expansion of the solutions to the scattering
roblem on the thickened graph to the solutions of a problem on the quantum graph. Even though
hey are in a stationary setting, they conclude that, near the threshold of the absolutely continuous
pectrum, one gets generically again Dirichlet boundary conditions at the vertices.

For technical reasons, however, much more attention has been devoted to the case of Neu-
ann boundary conditions, which is by now well understood �Exner and Post �2005�, Kuchment

nd Zeng �2001, 2003�, Rubinstein and Schatzman �2001�, Post �unpublished��.
We stress that, apart from Post �unpublished� and Molchanov and Vainberg �2006�, all the

apers we have quoted deal with the convergence of the spectrum of the Laplacian, defined on a
hickened graph, to the spectrum of a self-adjoint operator, defined on a graph whose edges have
nite length, while we are primarily interested in the convergence of the dynamics and eventually

n scattering theory.
The dynamical problem for parabolic equations �diffusion processes� was studied by Freidlin

1996� and Freidlin and Wentzell �1993�, who examined it in the context of the Neumann rigid
pproximation.

In the same setting, a weak form of resolvent convergence for the Laplacian was studied by
aitō �Saitō �2000, 2001��, but his results do not allow to infer the structure of time evolution.

In Post �unpublished� these results are improved, and norm resolvent convergence is estab-
ished, under the hypotheses that the vertex neighborhoods are “small” �for the precise meaning of
he term we refer to the original paper� and, for graphs embedded in R2, that the angle between
wo different edges has a global lower bound.

Another important difference in our paper is related to the class of initial conditions we
onsider. From a physical point of view, one expects that, when �→0, the Hamiltonian �1� gives
ise to fast oscillations of the electron in the directions orthogonal to the edges of the graph. To
rove the results mentioned above, one projects, roughly speaking, on the ground state of this
ransverse oscillation. Nonetheless, in the spirit of adiabatic perturbation theory �Teufel �2003�� we
xpect to be able to get an effective dynamics inside every transverse subspace, because they
ecome broadly separated in energy when � goes to zero. For this reason, we consider initial wave
unctions which are localized inside one edge, and belong to an eigenspace of the transverse
amiltonian �which will be defined more precisely in Sec. II�.

We consider longitudinal initial conditions which are independent of �. This corresponds to
tudy longitudinal states which vary over a wavelength which is much bigger than the transverse
ne. As it has been stressed in Belov et al. �2004� however, longitudinal states are not homoge-
eous, and it would be interesting to consider also wave functions which vary on a scale of order
1/2, for example, analyzing in this way a semiclassical limit.

One should also remark that, in the Neumann case, the energy of the transverse ground state

s independent of �, because the Neumann Laplacian has always the eigenvalue zero correspond-
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ng to the constant function, while in the Dirichlet and soft approximation cases, the energy of
very transverse mode tends to infinity when �→0. This makes it necessary to subtract a divergent
hase to get a finite result.

We will now describe briefly the structure of this paper.
In Sec. II we study the convergence of the unitary group generated by �1� for an arbitrary

raph �i.e., with an arbitrary number of vertices and edges�. As we have already mentioned, we
onsider initial conditions which belong to a transverse eigenspace and are localized inside one
dge of the graph and we choose a constraining potential given by the square of the distance of a
oint from the graph. Using weak convergence methods we study the limit flow on the graph
utside the vertices. To describe completely the limit flow, we must study its structure in a
eighborhood of the vertices.

This may be a difficult task; this can be seen from the exact treatment we give in Sec. III of
simpler system, in which the graph is a continuous curve in the plane.

In this example, the graph has one vertex and two straight edges at an angle 0�	��. In this
ase we approximate the graph by a sequence of smooth curves converging to the graph when
→0. We prove that generically �in particular if the curvature of the approximating curves is
verywhere non-negative� the limit dynamics along the graph correspond to Dirichlet boundary
onditions at the vertex.

The proof is achieved by reducing the problem to the study of the dynamics with Dirichlet
oundary conditions on the boundary of narrow tubes containing the graph, using a refined version
f a theorem due to Froese and Herbst �2001�. This however is not possible for every smooth
urve approximating the graph, and a condition on the curvature comes in. From this result, it
eems that the constraining potential and Dirichlet boundary conditions are not always inter-
hangeable, as one could naively think.

Even though the geometry of the graph is very simple, this model demonstrates a mechanism
hrough which adiabatic decoupling among different transverse modes takes place. In particular, it
hows that the bound states localized near the vertices that can arise �and indeed do arise if instead
f the constraining potential one considers a narrow tube with Dirichlet boundary conditions, see
arini et al.�1992, 1993�, Goldstone and Jaffe �1992�� do not interfere with the propagation of
roduct states localized inside one of the edges at the leading order, because their spectral dis-
ance becomes infinite in the limit.

I. CONVERGENCE OUTSIDE THE VERTICES

In this section we consider a finite metric graph, denoted by �, whose edges can have infinite
ength. We assume that it is embedded in R2 and, for the sake of simplicity, that all the edges are
traight lines.

We denote by V= �vi�i�I the �finite� set of vertices and by E= �ej� j�J the �finite� set of edges
onnecting them. We assume that there are no isolated vertices.

A graph is said to be a metric graph if to each edge e is assigned a length le� �0, +
�. Edges
f infinite length arise naturally if one considers scattering theory on graphs �see, e.g., Melnikov
nd Pavlov �1995� and references therein�.

We can now identify each edge with a finite or infinite interval �0, le�, with the natural
oordinate xe along it. One can also define function spaces �e.g., Lp spaces, Sobolev spaces�; in the
ase of Sobolev spaces, one must have some care at the vertices �see Kuchment �2004��.

As mentioned in the introduction, we approximate the dynamics on the graph using an Hamil-
onian, acting on L2�R2�, with a constraining potential given by the square of the distance from �,

Ĥ��� = −
1

� +
1

2d�
2 ,
2 2�
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d��q� ª inf
q̃��

�q − q̃�, q, q̃ � R2. �3�

ne could use a different potential, whose Taylor expansion away from the vertices contains
igher order terms, but we make the important assumption that the Hessian is constant along the
dges with the same value on all edges. This condition is reasonable in view of the analysis in
ell’Antonio and Tenuta �2004� and Froese and Herbst �2001� when the system is constrained to

mooth submanifolds.
In this case, the energy of the transverse oscillation appears as a potential energy in the

ongitudinal motion, in the form ��x� /�, where � is the frequency of the oscillation. If � does not
epend on x, the resulting phase factor in the dynamics can be discarded. Otherwise, it originates
constraining potential along the edge, so that in the limit �→0 we expect that the wave function

oncentrates along the minima of �.

We denote by Ût��� the unitary evolution associated to Hamiltonian �3�,

Ût��� ª exp�− itĤ���� , �4�

nd we take as initial a state which “lies in a subband,” i.e., is in a fixed transverse mode and
ocalized within one edge �see Fig. 2�. These are the states which are thought to describe the
ropagation of particles in semiconductor structures.

We have then

�0�xej0
,yej0

� = f�xej0
�n

��yej0
� , �5�

here f �C0

�0, lej0

� and n
� is an eigenstate of the harmonic oscillator,

�−
1

2

�2

�y2 +
1

2�2 y2	n
��y� =

En

�
n

��y� ,

En = n +
1

2
. �6�

ej0
is the natural coordinate along the edge ej0

and yej0
is the corresponding coordinate in the

rthogonal direction. xej0
varies in the interval �0, lej0

� �or �0, +
� if the edge has infinite length�
nd, since the edges are straight lines, yej0

is well defined and assumes values between −
 and +


to simplify the notation, from now we denote these coordinates just by xj and yj�.
Applying Ût��� to �0 we expect the appearance of a strongly oscillating factor, given by

xp�−iEnt /��. To avoid this �irrelevant� phase, we consider the modified unitary group,

H̃��� ª Ĥ��� −
En

�
,

�t
�
ª Ũ����0 ª exp�− itH̃�����0. �7�

To analyze the adiabatic decoupling, we split �t
� according to the different transverse compo-
ents in each edge,
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sj
m�t,xj;�� ª
 dyj m

� �yj�*�t
��xj,yj�,1 �8�

here xj is the natural coordinate along ej and yj is orthogonal to it. �See Fig. 2�
Proposition 1: Let Pj

m be the operator from S�R2� to Hk�R� defined by

Pj
m��xj� ª 


R
dyj m

� �yj�*��xj,yj� , �9�

hen Pj
m extends to a unique operator (of norm 1) from Hk�R2� to Hk�R�, for every k�N, k�0.

Proof. Given ��S�R2� it is clear that

�x
l�Pj

m���x� = 

R

dym�y�*�x
l��x,y� = �m,�x

l��L2�Ry� Þ ��x
l�Pj

m���x��2

� mL2�R�
2 ·
 dy��x

l��x,y��2 Þ
 dx��x
l�Pj

m���x��2

� mL2�R�
2 · �x

l�L2�R2�
2 Þ Pj

m�Hk�R�
2 = �

l=0

k

�x
lPj

m�L2�R�
2

� m2�
l=0

k

�x
l��x,y�L2�R2�

2 .

�10�

�

Corollary 1: The components sj
m�t ,xj ;�� are well defined, belong to H1�R� in the variable xj

nd satisfy

sup
t��0,T�

sj
m�t, · ;��L2�R� � const. �11�

Proof: The domain of the quadratic form associated to H̃��� is given by

Q�H̃���� ª H1�R2� � Q�d2� , �12�

here Q�d2�ª ���L2�R2� :d��x ,y���L2�R2��. �0 belongs to Q�H̃����, so �t
� is in H1�R2�. �

Lemma 1:

H̃����0 � C �independent of �� . �13�

Proof: Since the Laplacian is invariant by rotations and translations, we have �for simplicity
e drop the index j0 in x and y�

With an abuse of notation, we denote by �t
��xj ,yj� the function �t

� written in coordinates �xj ,yj�. Since the different
ystems of coordinates associated to each edge are linked to one another by a rigid motion of the plane, this does not
odify the differentiablity or integrability properties of �t

�. Note, instead, that m
� �yj� is an eigenfunction of the harmonic

FIG. 2. Schematic representation of the initial state.
scillator in the variable yj.
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H̃����0 = −
1

2
�x

2f · n −
1

2
f · �y

2n +
1

2�2d�
2 f · n −

En

�
f · n = −

1

2
�x

2f · n +
1

2�2 �d�
2 − y2�f · n

−
1

2
f · �y

2n + f
1

2�2 y2 · n −
En

�
f · n = −

1

2
�x

2f · n +
1

2�2 �d�
2 − y2�f · n.

Let a be the infimum of the support of f , and b�a the supremum. Since f is supported inside
he edge ej0

and near each edge the distance from the graph is equal to �yj�, the function
1/2�2��d�

2 −y2�f ·n will be zero when �y��D, where D, depending on the support of f , can be
mall, but it is strictly positive. Therefore we have

� 1

2�2 �d�
2 − y2�f · n�2

= 

a

b

dx

�y��D

dy
1

4�4 �d�
2 − y2�2�f�x�n

��y��2. �14�

ow we use the following two properties:

i� d�
2 is equal to a polynomial of second order in the variables �x ,y�;

ii� n
� is equal to a polynomial in y /�1/2 times exp�−y2 /2��.

The norm �14� contains then terms of the form �P and Q are polynomials�



a

b

dx�f�x��2

�y��D

dy P�x,y�Q�x,y/�1/2�exp�−
y2

�
	

= 

a

b

dx�f�x��2

�y��D

dy P�x,y�Q�x,y/�1/2�exp�− �1

�
− M	y2�exp�− My2�

� exp�− �1

�
− M	D2�


a

b

dx�f�x��2

�y��D

dy P�x,y�Q�x,y/�1/2�exp�− My2� = O�e−c/�� .

his implies that

� 1

2�2 �d�
2 − y2�f · n�2

= O�e−c/�� , �15�

nd therefore the thesis is proved. �

Corollary 2: For every system of coordinates �xj ,yj� associated to an edge ej we have

1

2
�xj

�t
�2 +

1

2
�yj

�t
�2 +

1

2�2 d��t
�2 �

C

�
. �16�

Corollary 3: Let Fd��� be the characteristic function of the set ��x ,y� :d��x ,y����, where � is
ny positive number, then

sup
t��0,T�

Fd����t
�L2�R2� = O��1/2� . �17�

Proof: Last term in �16� gives

1
2 d��t

�2 � C� .

herefore we get

�2 · ��t
�,Fd����t

�� � �d��t
�,Fd��� d��t

�� � 2C� .

�

We are now ready to prove the following.

Theorem 1: For m�n and j�J
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sj
m�t,xj;��⇀* 0, � → 0, �18�

here the convergence is in the weak* topology of L
��0,T� ,L2�R��.
Proof: For convenience of the reader, we recall that a bounded sequence f� of functions in


��0,T� ,L2�R�� converges to a limit f0�L
��0,T� ,L2�R�� in the weak* topology if and only if



0

T

dt ��t����·�, f��t, · ��L2�R� → 

0

T

dt ��t����·�, f0�t, · ��L2�R�

or every function ��L1�0,T� and every function ��L2�R�.
It is a standard fact about weak* topology that it is enough to consider only � and � in dense

ubsets of L1��0,T�� and L2�R�, respectively �see, e.g., Bornemann �1998�, Appendix B or Rudin
1973�, Theorems 3.15 and 3.16�.

Let us then show first that

sup
t��0,T�

����·�,sj
m�t, · ;���L2�R�� → 0, � → 0, �19�

or every function ��C0

�R \ �0, lej

�� if the edge ej has finite length and for every ��C0

�R \ �0�� if

j has infinite length. We consider explicitly only the latter case, the former being analogous.
If the support of � is contained in �−
 ,0� then

���,sj
m�L2�R�� = ��� · m

� ,�t
��L2�R2�� = ��� · m

� ,F��t
��� � � · m

�  · F��t
� = O��1/2� ,

here F� is the characteristic function of the support of � and we have used Corollary 3.
If the support of � in contained in �0, +
�, then, following the proof of Lemma 1 we can

how that

H̃������xj�m
� �yj�� = �we drop the index j� −

1

2
�x

2� · m
� +

1

2�2 �d�
2 − y2�� · m

� +
Em − En

�
� · m

� .

ince � is supported away from the vertex �located at xj =0�, an equation similar to �15� holds,

� 1

2�2 �d�
2 − y2�� · m

� �2

= O�e−c/�� .

Since m�n, we have then

�m
� =

�

m − n
�H̃������xj�m

� �yj�� +
1

2
�x

2� · m
�� + O�e−c/�� .

his implies

���·�,sj
m�t, · ;��� = ���·�m

� ,�t
�� =

�

m − n
���·�m

� ,H̃����t
�� +

�

m − n
� 1

2
�x

2� · m
� ,�t

�� + O�e−c/��

= �Lemma 1�O��� .

ow, if ��L1��0,T��, we get

�

0

T

dt ��t����·�,sj
m�t, · ;���L2�R�� � �L1 · sup

t��0,T�
����·�,sj

m�t, · ;���� ,

ut we have just shown that the right-hand side goes to zero for ��C0

�R \ �0�� �or C0


�R \ �0, lej
��

or an edge of finite length� which is dense in L2�R�. �

Theorem 1 shows that, although in a weak sense, there is indeed adiabatic separation between

he different transverse states even in the presence of vertices, if the initial state is localized in two
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enses: first, it must be localized inside one edge to avoid mixing between the different transverse
tates associated to each edge and second, it must be in one �or a finite number of� transverse
and�s�.

Since the limit of sj
m for m�n is zero, to analyze in a complete way the �limit� evolution of

0 we must determine the behavior of sj
n, j�J as a function of time.

Theorem 2: There exists a weak* convergent subsequence of sj
n�t ,xj ;�� in L
��0,T� ,L2�R��

denoted again by the same symbol), whose limit sj
n�t ,xj ;0��L
��0,T� ,L2�R�� satisfies

i�tsj
n�t,xj;0� = −

1

2
�x

2sj
n�t,xj;0� in D���0,T� � �0,lej

�� . �20�

Remark 1: By Corollary 1, sj
n�t ,xj ;�� is a bounded sequence in L
��0,T� ,L2�R��. Since the

alls in L
��0,T� ,L2�R�� are compact metric spaces with respect to the weak* topology �see the
heorems in the book of Rudin quoted above�, a weak* convergent subsequence certainly exists.

Moreover, if one shows that all the weak* convergent subsequences converge to the same
imit, then this implies that the sequence itself converges.

The equation satisfied by the limit in Theorem 2 is clearly independent of the subsequence,
ut it does not determine the behavior of the limit in the vertices, so we cannot conclude conver-
ence of the sequence.

For this it would be necessary to control the behavior of the sequence in a neighborhood of the
ertices. This difficulty �which is not present for smooth submanifolds, where the same strategy
as been successfully applied by Bornemann �1998� in the classical case� is linked with the fact
hat the operator −d2 /dx2 defined for functions which vanish in a neighborhood of the origin has
any self-adjoint extensions which define different dynamics.

We split the proof of the theorem into a number of lemmas.
Lemma 2: sj

n�t ,xj ;�� belongs to C1��0,T� ,L2�R�� and moreover it is an equicontinuous se-
uence of function from �0,T� to L2�R�.

Proof: Let us denote by s̃ j
n�t ,xj ;���C0��0,T� ,L2�R�� the function

Pj
n�− iH̃����t

�� .

Using Proposition 1 we have that

� sj
n�t + h, · ;�� − sj

n�t, · ;��
h

− s̃ j
n�t, · ;���

L2�R�
= �Pj

n� Ũt+h��� − Ũt���
h

+ iŨt���H̃�����0�
� �� Ũt+h��� − Ũt���

h
+ iŨt���H̃�����0�→ 0.

his proves that

i�tsj
n�t,xj;�� = s̃ j

n�t,xj;�� = Pj
m�− iŨt���H̃����0� . �21�

Since H̃����0 is bounded �Lemma 1�, s̃ j
m�t ,xj ;�� is bounded, therefore

sj
m�t, · ;�� − sj

m�t�, · ;��L2�R� = �

t

t�
d� ��sj

m��, · ;��� � 

t

t�
d���sj

m��, · ;�� � C�t − t�� ,

howing that sj
m�t ,xj ;�� is an equicontinuous sequence. �

Corollary 4: There exists a subsequence sj
m�t ,xj ;�� which satisfies

1� sj
m�t ,xj ;�� converges, in the weak topology of L2�R�, uniformly in t, to a limit sj

m�t ,xj ;0�
2 2
�L �R�. Moreover, the limit is continuous in t in the weak topology of L .
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2� �tsj
m�t ,xj ;��⇀* �tsj

m�t ,xj ;0� in L
��0,T� ,L2�R��, where the derivative �tsj
m�t ,xj ;0� is to be

interpreted as derivative in D���0,T��Rx�.

Proof: The sequence sj
m�t ,xj ;�� is contained in a ball in L2�R�. This ball is a compact metric

pace with respect to the weak topology. Since the sequence is equicontinuous with respect to the
trong topology, it will be equicontinuous with respect to the weak topology too. Therefore, the
heorem of Ascoli-Arzelà �see, e.g., Royden �1988�, Theorem 10.40� proves the first point.

Equation �21� implies that �tsj
m�t ,xj ;�� is a bounded sequence in L
��0,T� ,L2�R��, so, extract-

ng possibly another subsequence, we have that there exists gj
m�L
��0,T� ,L2�R�� such that

again, we denote the subsequence with the same symbol as the sequence itself�

�tsj
m�t,xj;��⇀* gj

m,

ut this implies that "��C0

��0,T��, "��C0


�R�,



0

T

dt

R

dx gj
m�t,x���t���x� = 


0

T

dt ��t����·�,gj
m�t, · ��L2�R� ← 


0

T

dt ��t���,�tsj
m�t, · ;���

= 

0

T

dt ��t��t��,sj
m�t, · ;��� = − 


0

T

dt �t���,sj
m�t, · ;���

→ − 

0

T

dt �t���,sj
m�t, · ;0�� = 


0

T

dt

R

dx sj
m�t,x;0��t��t���x� ,

Þgj
m = �tsj

m�t,xj;0� in D���0,T� � Rx� .

�

We can now prove Theorem 2.
Proof: We suppose that edge ej has infinite length. The proof for an edge of finite length is

nalogous.
Corollary 3, together with the proof of the first part of the proof of theorem 1 implies that

sup
t��0,T�

���,sj
m�t, · ;���� = O��1/2� ,

or all j�J and for all ��C0

�−
 ,0�, but the first point of Corollary 4 gives

��,sj
m�t, · ;0��L2�R� = lim

�→0
��,sj

m�t, · ;��� = 0.

quation �21� allows us to write, for all ��C0

�0, +
�,

��,i�tsj
m�t, · ;���L2�R� = �� · n

�,H̃����t
��L2�R2� = �H̃���� · n

�,�t
��

= �−
1

2
�x

2� · n
�,�t

�� + � 1

2�2 �d�
2 − y2�� · n

�,�t
��

= �−
1

2
�x

2�,sj
m�t, · ;���

L2�R�
+ � 1

2�2 �d�
2 − y2�� · n

�,�t
�� .

Since � is supported in �0, +
�, Eq. �15� holds also in this case, therefore

� 1

2�2 �d�
2 − y2�� · n

��2

= O�e−c/�� .
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e have then, for all ��C0

�0,T�, and for all ��C0


�0, +
�,



0

T

dt ��t���,i�tsj
n��t, · ;0���L2�R� ← 


0

T

dt ��t���,i�tsj
n�t, · ;���L2�R� = 


0

T

dt ��t�

��−
1

2
�x

2�,sj
n�t, · ;���

L2�R�
+ O�e−c/���L1�0,T� → 


0

T

dt ��t�

��−
1

2
�x

2�,sj
n�t, · ;0��

L2�R�
,

Þi�tsj
n�t,xj;0� = − 1

2�x
2sj

n�t,xj;0� in D���0,T� � �0, + 
�� . �22�

�

II. A GRAPH WITH TWO EDGES

In this section, we are going to put forward a different kind of soft approximation for a graph
ith one vertex and two infinite edges. We denote it by �	, where 	 is the angle made by the two

dges, 0�	��.
As we have already said in the introduction, we do not consider directly �	, but we approxi-

ate it by smooth curves, �	,�, whose curvature becomes bigger and bigger in a region whose
idth, given by �, goes to zero and we consider a potential constraining to this family of curves.

More precisely, to specify the approximating curves we need only to specify their curvature,

�, because, as it is well known, this determines the curve up to rigid motions of the plane.
aturally, we want that, when � goes to zero, the curves tend to the graph. This in particular

mplies that the turning angle must become equal to 	 when �→0.
A simple choice which satisfies these requests is �s is the arc length parameter�

k��s� ª
	

�
k� s

�
	, 


R
ds k�s� = 1,

k � C0

�− 1,1�,

k = 1, �s� � 1/2

k = 0, �s� � 3/4,
�23�

hich amounts to deformate the graph in a neighborhood of the vertex replacing it with an arc of
circle. Note that the � scaling is fixed by the request that the turning angle of the approximating

urves be 	,



R

ds
	

�
k� s

�
	 = 	 .

Actually, our result does not depend on this specific choice we have made, because, from the
roof, one can see that the only essential ingredient is the singularity 1 /�, which is forced by the
equirement that the turning angle is 	.

We consider the Hamiltonian

Ĥ��,����� = −
1

2
� +

1

�2W����, ���� → 0 when � → 0,

here, for simplicity, we suppose that

W�����x,y� =
1

d����
2 �x,y� =

1
dist��x,y�,�	,�����2.
2 2
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The remark we made above about the possibility to generalize the analysis to potentials with
onstant Hessian, applies here too. As in the preceding section, we are interested in the time
volution of a product state which is initially localized away from the vertex.

We expect that the particle oscillates very fast along the direction normal to the curve, so to
nalyze the motion we should use a suitable system of coordinates, adapted to the curve. A natural
hoice is given by tubular coordinates, which are a set of local coordinates suited to study tubular
eighborhoods of embedded submanifolds �see, e.g., Lang �1995��. If the submanifold one con-
iders has codimension �and dimension� bigger than one, then the metric in tubular coordinates is
n general not diagonal, and the Laplacian in these coordinates contains a gauge term which
ouples the longitudinal and the transverse motion �Mitchell �2001� and references therein�.

In our case, since both the dimension and the codimension are equal to one, these problems do
ot appear.

Given a smooth curve C, with parametric equation � :�→R2 such that ��s��s� � =1, we can
escribe the position of points in a tubular neighborhood N of C via the curvilinear coordinates
s ,u� defined by

q�s,u� = ��s� + un�s� , �24�

here q is an arbitrary point of N, n�s� is the normal unit vector to the curve, and u is assumed to
e smaller than the radius of curvature.

In the case we are dealing with, this means that curvilinear coordinates are defined only in the
egion

��x,y� � R2:d��x,y� � �� , �25�

here � is the radius of curvature of �	,�. When k� is different from zero, this quantity is
roportional to � itself, so, by hypothesis, it goes to zero when �→0.

To get rid of the region ��x ,y� :d��x ,y���� we will use a theorem, proved first by Froese and
erbst in the more general context of a potential constraining to a submanifold �proposition 8.1 in
roese and Herbst �2001��, which basically says that if one starts from an initial state more and
ore localized near the constraint, then all that matters for the time evolution is a small region

ear the constraint itself. We repeat the proof of Froese and Herbst because we need to keep track
f the dependence of all the constants in the estimates on �, to apply them to the region ��x ,y�
R2 :d��x ,y�������.

Theorem 3: Let ��L2�R2�, �=1 and Ĥ�� ,���� C1� � �C1 independent of ��. Then,

Fd��� e−itĤ��,��� � �2C1�1/2�1/2

�
. �26�
indicates the characteristic function of the region indicated.
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Moreover, let ĤD�� ,�� be the Hamiltonian Ĥ�� ,�� with Dirichlet boundary conditions on the
et ��x ,y��R2 :d��x ,y�=��.

Let us suppose that �=����, lim�→0����=0. Taking into account �26�, let us also assume that

lim
�→0

�1/2

����
= 0. �27�

Then, for all t� �0,T�, we have

Fd��� e−itĤ��,��� − e−itĤD��,��Fd���� � C2�C1,T�� �1/4

� 5/2 +
�1/2

� 3 	 . �28�

Remark 2: The theorem implies that if we choose a ���� such that

lim
�→0

�1/10

����
= 0 �29�

hen we can restrict ourselves to analyze the Dirichlet Hamiltonian ĤD�� ,�����, which is localized
nside the region where tubular coordinates are defined. This, however, means that we must
onsider a “tube” encircling the graph whose diameter is much bigger than the localization of the
ransverse states, which for an harmonic oscillator is �1/2.

Remark 3: As already observed in Froese and Herbst �2001�, the estimate �28� is not optimal.
Proof: Let us first prove �26�.
Since Ĥ�� ,���� C1� � , we have from Schwarz inequality

��,Ĥ��,���� �
C1

�
.

his implies immediately that

C1

�
� �Ĥ1/2�,Ĥ1/2�� =

1

2
��2 +

1

2�2 d��2 Þ d��2 � 2C1� . �30�

t follows then

�2�Fd����,Fd����� � �d�Fd����,d�Fd����� � d��2 � 2C1� . �31�

he same argument can be applied also to e−itĤ��,���, so �26� is proved.
We need now to prove an estimate on the behavior of the gradient of � away from the graph.
Let �̃�C0


�R� be 1 when 1/4� �x��3/4 and 0 when �x��1/8 or �x��7/8, then the function

��u� ª �̃� 1

2�� − �1�
�u� +

1

4
−

�1

2�� − �1�	
ill be when �1� �u��� and 0 for �u� near zero. If we choose �1 and � such that 0��1��
�, then � is well defined �and �C0


�R�� when u is the coordinate along the direction normal to
he curve �	,�.

We have then

F�1�d��� � � = F�1�da�� � ���� � ����� .

sing again the Schwarz inequality and the fact that ���D��� �the potential is bounded on the

upport of �� we get
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����� � �����1/2��1/2,

o, to estimate F�1�d����� we need to get an estimate on �����. To obtain it, we use an

nergy estimate of second order, i.e., we calculate the quadratic form associated to Ĥ�� ,��2.

Ĥ��,��2 =
1

4
�p�4 + � 1

2�2d�
2	2

+ �
j

pj
1

2�2d�
2 pj −

1

2�2�d�
2, �32�

here p=−i�. The first three terms are positive operators, while if we take the mean value of the
ast one with respect to the state �� we get

���,�d�
2��� = 


d���

dx dy����2�d�
2 = 


�u���

ds du�1 + uk��s������2�1 + uk��s��−1

� �u��1 + uk��s��2u� = 

�u���

ds du�1 + uk��s������2 · 2

+ 

�u���

ds du����22uk��s� � C��2,

here the Jacobian of the change to curvilinear coordinates is given by

��q1,q2�
��s,u�

= 1 + k��s�u �33�

nd in the last step we have used the fact that

sup
�u���

�uk��s�� � �k��s� = 	k� s

�
	 � const �independent of �� .

Taking the mean value of �32� with respect to �� we obtain then

�1

2
������2

� Ĥ��,������2 +
C

�2 ,

hich can be written equivalently as

1

2
����� �

C1/2

�
+ Ĥ��,��� +

1

2
��,��� .

he last term is equal to

��,��� = ����� + �� · �� ,

nd we can estimate its norm changing to curvilinear coordinates,

�� = �x�̃�x�u��
1

2�� − �1�
u

�u�
n�s� ,

�� = �1 + k�u�−1�u��1 + k�u��u�� = �u
2� + �1 + k�u�−1k��u� = �x

2�̃�x�u��
1

2�� − �1�2

+ �x�̃�x�u��
1

2�� − �1�
u

�u�
k�

1 + k�u
.

sing �30� to estimate ��, we have then
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��,��� �
C

�1/2�� − �1�
+

C

�� − �1�2 +
C

��� − �1�
. �34�

n what follows, we will need to choose � and �1 proportional to �. Assumption �27� implies then
hat all terms in �34� are at most of order �−1.

To sum up, we have

����� �
C

�
, �35�

rom which it follows that �assuming that � and �1 are proportional to � and that ���� satisfies
27��

F�1�d��� � � � C�−1/2�1/4

�1/2 =
C

�1/4�1/2 . �36�

Let now �̃ be a function in C0

�R� such that �̃�x�=1 when �x��1/4 and �̃�x�=0 when �x�

1/2. We define the function � by the equation ��u�ª �̃�u /��, where u is the curvilinear coordi-
ate normal to the curve.

Because of �26�, to prove �28� is enough to show that

eitĤD��,���e−itĤ��,��� − �� � C2�C1,T�� �1/4

� 5/2 +
�1/2

� 3 	
or t� �0,T�. Let

�t,�,� ª eitĤD��,���e−itĤ��,��� − �� .

ntegrating the derivative we have

�t,�,� = i

0

t

ds eisĤD��,���ĤD��,��� − �Ĥ��,���e−isĤ��,���

= 

0

t

ds eisĤD��,����� · p − �i/2����e−isĤ��,��� ,

herefore

�t,�,�2 = 

0

t

ds�e−isĤD��,���t,�,�,��� · p − �i/2����e−isĤ��,���� .

et now �̃ be a C0

�R� function which is 1 on the support of �x�̃ and 0 when �x� is near zero. As

bove, we denote by ��u�ª �̃�u /��. We can then write

�t,�,�2 � 

0

t

ds�e−isĤD��,���t,�,���� · pe−isĤ��,��� + �1/2���e−isĤ��,����

� C� 1

� 3/2�1/4 +
1

� 2	

0

t

ds�e−isĤD��,���t,�,� , �37�

here we have used �36� and the definition of �.

Now
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��t,�,�,ĤD��,���t,�,�� � 2��e−itĤ��,���,ĤD��,���e−itĤ��,���� + 2���,ĤD��,�����

= 2��e−itĤ��,���,�− 1
2�� − i � � · p + �ĤD��,���e−itĤ��,����

+ 2���,�− 1
2�� − i � � · p + �ĤD��,����� .

sing again Equation �36� and the definition of �, we get

����,−
1

2
����� �

C

� 2 ,

����,− i � � · p��� �
C

�1/4� 3/2 ,

����,�ĤD��,����� �
C

�
,

nd corresponding equations with e−itĤ��,��� instead of �. If we suppose that the sequence ����
atisfies �27�, then all the terms grow at most as �−1, so we obtain in the end

��t,�,�,ĤD��,���t,�,�� �
C

�
.

epeating the proof of �26�, we can then show that

�e−isĤD��,���t,�,� �
C�1/2

�
,

nd substituting this back in �37� we get

�t,�,�2 � C� 1

� 3/2�1/4 +
1

� 2	�1/2

�
= C� �1/4

� 5/2 +
�1/2

�3 	 . �38�

�

Now, let us fix a sequence ���� satisfying �29�. As in the preceding section, we consider the
ime evolution of a product state localized inside one of the two edges, away from the vertex,

�t
� = e−itĤ��,������0,

�0�x,y� = f�x�n
��y� , �39�

here �x ,y� is the system of coordinates associated to one of the edges, f �C0

�R� and n

� has
een defined in �6�. If we choose � sufficiently small, the tubular coordinates associated to the
urve �	,�, �s� ,u��, coincide with �x ,y� apart from a small neighborhood of the vertex. The state

0 is then well defined and independent of �. The limit �→0 gives us therefore the leading
ehavior of an initial state which propagates through a tube which curves slowly with respect to
he transverse wavelength.

Equation �26� allows us to discard Fd����������t
�, while �28� allows us to approximate

d����������t
� with e−itĤD��,�����Fd����������0.

We can now prove the following.
�
Proposition 2: Let �t be given by �39�, then, for t� �0,T�,
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exp�− itĤD��,������Fd����������0 − exp�− itK̂������ − itEn/���f� · Fd���������n
��u����� → 0,

� → 0, �40�

here

K̂������ = −
1

2
�s

2 −
k��s�2

8
. �41�

Proof: The proof is an application of the fundamental theorem of calculus �also called, in this
ontext, Duhamel formula�,

exp�− itĤD��,������Fd����������0 − exp�− itK̂������ − itEn/���f� · Fd���������n
��u�����

= �exp�itĤD��,������exp�− itK̂������ − itEn/�� − I�Fd���������f · n
��u�����

+ Fd���������f�x�n
��u�� − Fd���������f�x�n

��y� � �exp�itĤD��,������exp�− itK̂������

− itEn/�� − I�Fd���������f · n
��u�� + Fd���������f�x�n

��u�� − Fd���������f�x�n
��y�

= �exp�itĤD��,������exp�− itK̂������ − itEn/�� − I�Fd���������f · n
��u�� ,

ecause the second term is zero if � �and therefore �� is sufficiently small.
Applying now Duhamel formula,2 we have that

�exp�itĤD��,������exp�− itK̂������ − itEn/�� − I�Fd���������f · n
��u�� � 


0

t

ds�ĤD��,�����

− K̂������ − En/�� � exp�− isK̂������ − isEn/��Fd���������f · n
��u�� . �42�

The Hamiltonian ĤD�� ,����� in curvilinear coordinates, acting on L2�R� �0,�� ,ds du�, is
iven by

ĤD��,����� = −
1

2

1

�1 + uk��s��2

�2

�s2 +
1

�1 + uk��s��3uk���s�
�

�s
+ V�s,u� −

1

2

�2

�u2 +
1

2�2u2,

here V is the geometric potential,

V�s,u� =
1

2
�−

k�
2

4�1 + uk��2 +
uk��

2�1 + uk��2 −
5

4

u2�k���
2

�1 + uk��2� . �43�

aking a unitary dilation by the factor �1/2 along u, we get an operator acting on L2�R
�0,���� /�1/2� ,ds du�, given by

D�1/2ĤD��,�����D�1/2
† = −

1

2

1

�1 + �1/2uk��s��2

�2

�s2 +
1

�1 + �1/2uk��s��3�1/2uk���s�
�

�s
+ V�s,�1/2u�

−
1

2�

�2

�u2 +
1

2�
u2, �44�

here

D�1/2��u� = �1/4���1/2u� .

ˆ 2 ˆ ˆ
For every fixed �, the domain of K��� is H �R�, so exp�−itK�����f� ·Fd����u�� is in the domain of HD�� ,��.
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Therefore, Eq. �42� becomes

�exp�itĤD��,������exp�− itK̂������ − itEn/�� − I�Fd���������f · n
��u��

� 

0

t

ds�D�1/2ĤD��,�����D�1/2
† − K̂������ − En/��

� exp�− isK̂������ − isEn/��f · Fd���������/�1/2 · n
�=1�u�� .

Therefore, it is clear from previous equations that

�V�s,�1/2u� + k�
2 /8�exp�− isK̂������ − isEn/��f · Fd���������/�1/2 · n

�=1�u�� = O��1/2/�3� → 0,

� → 0,

��−
1

2�

�2

�u2 +
1

2�
u2 −

En

�
	exp�− isK̂������ − isEn/��f � Fd���������/�1/2 · n

�=1�u���→ 0, � → 0,

o we need to control only the terms containing the derivative with respect to s in �44�.
Using Lemma 3, proved below, we have that

� 1

�1 + �1/2uk��s��3�1/2uk���s�
�

�s
exp�− itK̂������ − itEn/��f�s� � Fd���������/�1/2 · n

�=1�u���
� ��1/2k��L
 · �sfL2 + �t� · �1/2k�L
k��L


2 fL2� � un
�=1�u� = O��1/2/�5� → 0, � → 0.

In the same way we also have

�−
1

2
� 1

�1 + �1/2uk��s��2 − 1� �2

�s2 exp�− itK̂������ − itEn/��f�s� � Fd���������/�1/2 · n
�=1�u���

� C�1/2k�
��s
2f + �t� � �2k�
 · k��
�sf + k��


2 f + k�
k��
f�� = O��1/2/�5� → 0,

� → 0.

�

Remark 4: As stressed above, in this model the dynamics under a strong constraining potential
re well approximated by Dirichlet boundary conditions on a “large” tube surrounding the smooth
urve. Proposition 2 says that this choice gives the same result as the procedure of constraining
rst the particle to the motion to the curve, and then taking the limit when the curve approaches

he graph.

Lemma 3: Let Ĥ be the one-dimensional Hamiltonian Ĥ=− 1
2�x

2+V, where V is a potential

ounded together with its first two derivatives, then, given ��H1�R�, we have

�x exp�− itĤ��L2�R� � �x�L2�R� + �t� · �xVL
 · �L2�R�, �45�

nd, given ��H2�R�,

�x
2 exp�− itĤ��L2�R� � �x

2�L2�R� + �t��2�xVL
 · �x�L2�R� + �x
2VL
 · �L2�R�� . �46�

Proof: Since V is bounded, the domain of the quadratic form associated to Ĥ is H1�R�, and the
1
ime evolution sends it into itself. It makes therefore sense to write, for ��H �R�,
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�− i�x,e
−itĤ�� = e−itĤ


0

t

ds �se
isĤ�− i�x�e−isĤ� = ie−itĤ


0

t

ds eisĤ�Ĥ,− i�x�e−isĤ�

= e−itĤ

0

t

ds eisĤ�xVe−isĤ� ,

ut this implies immediately

− i�xe
−itĤ� = e−itĤ�− i�x�� + �− i�x,e

−itĤ�� Þ − i�xe
−itĤ� � − i�x� + 


0

t

ds�xVe−isĤ� ,

hich gives �45�.
Following the same path and noticing that

�Ĥ,− �x
2� = − �x

2V − 2�xV · �x �47�

e get �46�. �

To complete the analysis of this case we need to study the limit of the dynamics

xp�−itK̂������� when �→0.
The limit of one-dimensional Hamiltonians containing rescaled potentials has been studied in

etail in the context of the approximation of singular interactions, like the delta coupling, by short
ange smooth potentials �Albeverio et al. �2005� and references therein�. The scaling used by us in
41� however, is not covered in the results presented in Albeverio et al., but it can be analyzed
sing exactly the same techniques.

The idea is to show convergence in norm of the resolvent of K̂������ to the resolvent of the
amiltonian with Dirichlet boundary conditions in s=0. As it is well known �Reed and Simon

1972�, Theorem VIII.21� this implies strong convergence of the corresponding unitary group.
One could expect convergence to Dirichlet boundary conditions because the potential −k�

2 /8 is
strongly attractive well, which becomes deeper and deeper, but whose range is shorter and

horter. As explained in Englisch and Šeba �1986� in a different context, we expect this to give rise
o Dirichlet boundary conditions. This in particular says that the strong convergence of the unitary
roup �or the norm resolvent convergence� does not capture the behavior of the eigenvalues which

o to −
 when �→0, because, even though the ground state of K̂������ tends to −
, its resolvent
onverges to that of a semibounded operator. This phenomenon has already been illustrated in
esztesy �1980�.

We can now prove the following.

Theorem 4: Let �K̂������−z2�−1 be the resolvent of K̂������, where Iz�0, then

�K̂������ − z2�−1 → �K̂D − z2�−1, � → 0, �48�

n the norm of bounded operators on L2�R�, where KD is the free Laplacian on L2�R� with
irichlet boundary conditions in s=0.

Proof: The potential Q�s�ª−k2 /8 is in L1�R��L
�R�, so we can apply the dilation technique
escribed in Albeverio et al. �1984� �see also Albeverio et al. �2005��. Applying lemma A.1 of
lbeverio et al. �1984� we get

�K̂������ − z2�−1 = Gz − A��z��� + B��z��−1C��z�, Iz � 0, �49�

here Gz is the free resolvent, with kernel gz�w�,

Gz ª �Ĥ0 − z2�−1, gz�w� ª
i

eiz�w�,

2z
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Ĥ0 ª −
�2

�s2 , D�Ĥ0� = H2�R� , �50�

hile A��z�, B��z�, and C��z� are Hilbert-Schmidt operators with kernels

A��z,s,r� = gz�s − �r��Q�r��1/2,

B��z,s,r� = − �Q�s��1/2gz���s − r���Q�r��1/2,

C��z,s,r� = − �Q�s��1/2gz��s − r� . �51�

It is not difficult to see �Lemma 2.3, Albeverio et al. �1984�� that

A� → A0,

B� → B0,

C� → C0, �52�

n Hilbert-Schmidt norm, where A0, B0, and C0 have kernels

A0�z,s,r� = gz�s��Q�r��1/2,

B0�z,s,r� = − gz�0��Q�s��1/2�Q�r��1/2,

C0�z,s,r� = − �Q�s��1/2gz�− r� . �53�

The operator B0 is not invertible on the whole Hilbert space, but it is clear from the expression
f the kernel that it actually acts on the one-dimensional subspace, denoted by HQ, generated by
he vector �Q given by

�Q�s� ª
�Q�s��1/2

�Q�s��1/2L2�R�
=

�Q�s��1/2

Q�s�L1�R�
1/2 . �54�

o we can write

B0 = − gz�0�Q�s�L1�R��Q��Q, · � . �55�

n HQ, B0 is invertible and the inverse is given by

B0
−1 = −

1

gz�0�Q�s�L1�R�
�Q��Q, · � . �56�

Since the operator C0 has range equal to HQ and A0 acts nontrivially only on HQ, we get that

�K̂������ − z2�−1 → Gz − A0B0
−1C0,

hich has a kernel given by

gz�s − r� −
gz�s�gz�− r�

gz�0�
, �57�
hich is the kernel of the resolvent of the Dirichlet Hamiltonian. �
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For a given pseudo-Hermitian Hamiltonian of the standard form: H=p2 /2m+v�x�,
we reduce the problem of finding the most general �pseudo-�metric operator �
satisfying H†=�H�−1 to the solution of a differential equation. If the configuration
space is R, this is a Klein-Gordon equation with a nonconstant mass term. We
obtain a general series solution of this equation that involves a pair of arbitrary
functions. These characterize the arbitrariness in the choice of �. We apply our
general results to calculate � for the PT-symmetric square well, an imaginary
scattering potential, and a class of imaginary delta-function potentials. For the first
two systems, our method reproduces the known results in a straightforward and
extremely efficient manner. For all these systems we obtain the most general � up
to second-order terms in the coupling constants. © 2006 American Institute of
Physics.
�DOI: 10.1063/1.2212668�

. INTRODUCTION

The key aspect of the general theory of relativity �GR� that distinguishes it from other well-
stablished physical theories is that in GR the very geometry of the spacetime, which is the arena
f physical reality in classical physics, is itself a dynamical quantity. In contrast, in quantum
echanics �QM�, the geometry of the Hilbert space, which plays a similar role as the spacetime

oes in classical physics, is an absolute entity. This is to some extent dictated by the well-known
athematical fact that all separable Hilbert spaces are unitary equivalent. For the past 75 years or

o, this equivalence has been used to justify the absolutism associated with the convention of
xing the �inner product of the� Hilbert space from the outset. This is actually quite surprising, for

he existence of an equivalence relation in a theory is clearly an evidence of the presence of a
reedom in its formulation. In the case of QM, this is the freedom to choose the inner product of
he Hilbert space, a freedom that has been left unused until recently.1,2

In Ref. 2, we have investigated the consequences of promoting the inner product of the Hilbert
pace into a degree of freedom. This revealed certain similarities between QM and GR and led to
ome interesting observations such as a direct link between geometric phases and the geometry of
he Hilbert space and a new root to a certain nonlinear generalization of QM. In the present paper,
e derive and examine a differential equation that includes among its solutions all possible

hoices of the inner product for a given physical system. This is the quantum mechanical analog
f Einstein’s field equation. �The same way Einstein’s equation does not generally restrict the
etric tensor to have a particular signature, the above-mentioned equation does not restrict its

olutions to correspond to positive-definite metric operators.� For a system having R as its con-
guration space we obtain a series solution of this equation that involves two functional degrees
f freedom. These signify the arbitrariness in the choice of the �pseudo-�metric operator. Our
pproach allows a more direct way of addressing some of the basic practical problems arising in

�
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he application of quasi- and pseudo-Hermitian quantum mechanics.1,3–13 In particular it provides
n extremely powerful technical tool for the perturbative calculation of the �pseudo-�metric op-
rators for various toy models.

I. DIFFERENTIAL REPRESENTATION OF PSEUDO-HERMITICITY

Consider a physical system described by a separable Hilbert space H and a pseudo-Hermitian
amiltonian operator H :H→H. Let M denote the set of all linear invertible Hermitian operators
:H→H, then by definition14 the pseudo-Hermiticity of H means that MHª ���M �H†

�H�−1� is a nonempty subset of M. The elements of M are called pseudo-metric operators, for
hey may be used to define a pseudo-inner product �a nondegenerate sesquilinear form15� �·� · 	�

�·�� · 	 on H, where �·�·	 denotes the defining inner product of H. �Strictly speaking, �·� · 	� is a
ondegenerate sesquilinear form defined on the domain of ��.

The Hamiltonian H is Hermitian with respect to �·� · 	� for all ��MH.14,16 If MH includes a
ositive-definite element, i.e., a metric operator, �+, then H is Hermitian with respect to the
ositive-definite inner product �·� · 	�+

. This implies that H is diagonalizable and has a real spec-
rum. The converse of this statement holds true at least for the case that the spectrum of H is
iscrete, i.e., if H is diagonalizable and has a real spectrum then MH includes a positive-definite
lement and equivalently H is Hermitian with respect to a positive-definite inner product.17,18

urthermore, in this case one can show that H is necessarily quasi-Hermitian, i.e., it may be
apped to a Hermitian Hamiltonian h :H→H via a similarity transformation, H=�−1h�.17,18 This

nd only this class of Hamiltonians are capable of supporting a unitary time evolution in an
ssociated physical Hilbert space. The latter is defined by endowing H with the inner product
·� · 	�+

and will be denoted by H�+
.4,5,7,9,19

An important fact about this construction is that �+ is not unique. Different choices for �+

ield kinematically distinct quantum systems that nevertheless share the same dynamical structure.
he quantum mechanical analog of the principle of general covariance of GR is the physical

unitary� equivalence of quantum systems �H�+
,H�.2 The metric operators �+ and more generally

seudo-metric operators � are linked to and consequently determined by the Hamiltonian H via
he pseudo-Hermiticity condition

H† = �H�−1. �1�

he same way Einstein’s field equation links the metric tensor to the energy-momentum tensor, �1�
inks the pseudo-metric operator to the Hamiltonian. The resemblance may be made more pro-
ounced for a Hamiltonian of the standard form,

H =
p�2

2m
+ v�x�� , �2�

hat acts in L2�Rn�. Applying both sides of �1� on �, substituting �2�, and representing the resulting
quation in the x�-basis, we find


− �x
2 + �y

2 +
2m

�2 �v�x��* − v�y������x�,y�� = 0, �3�

here �u
2
ª� j=1

n �2 /�uj
2 for u=x ,y and ��x� ,y��ª �x� �� �y�	. For n=1, this is a Klein-Gordon equation

ith a variable mass term,

�− �x
2 + �y

2 + �2�x,y����x,y� = 0, �2�x,y� ª
2m

�2 �v�x�* − v�y�� . �4�

ccording to �3� if ��x� ,y�� is a solution, then so is ��y� ,x��*. The pseudo-metric operators �

MH correspond to solutions that satisfy
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��x�,y��* = ��y�,x�� . �5�

ote that even for non-pseudo-Hermitian Hamiltonians of the form �2�, Eq. �3� admit solutions.
owever, these solutions fail to satisfy either the Hermiticity requirement �5� or the invertibility

ondition:


Rn

dny���x�,y����y�� = 0 implies � = 0. �6�

f MH happens to include positive-definite elements �+, then these elements correspond to the
olutions �+�x� ,y�� of �3� that in addition to �5� satisfy


Rn

dnx�
Rn

dny���x��*�+�x�,y����y�� � 0 for � � 0. �7�

he fact that for a diagonalizable Hamiltonian with a real and discrete spectrum such solutions
xist is a consequence of the spectral theorems given in Refs. 17 and 18. Indeed if ��n ,�n� is a
iorthonormal system associated with H, i.e., H�n=En�n, H†�n=En�n, ��n ��m	=�mn, then

�+�x�,y�� = �
n

�n�x���n�y��* �8�

s a solution of �3� that satisfies both �5� and �7�. As shown in Refs. 20 and 21, in this case the
ost general �positive-definite� metric operator has the form A†�+A, where A is invertible and

ommutes with H. The latter corresponds to a solution of �3� that is of the form

��+�x�,y�� = �
n


Rn
dnu�

Rn
dnv�A�u� ,x��*�n�u���n�v��*A�v� ,y�� , �9�

here A�x� ,y�� satisfies


− �x
2 + �y

2 +
2m

�2 �v�x�� − v�y����A�x�,y�� = 0, �10�

nd


Rn

dny�A�x�,y����y�� = 0 implies � = 0. �11�

or a real-valued potential v, ��x� −y�� is a solution of �3�. It corresponds to the choice �= I, where
is the identity operator acting in H=L2�R�. This is consistent with the Hermiticity of H. For a
T-symmetric potential v that satisfies v�−x��=v�x��*, ��x� +y�� is a solution of �3�. This is a mani-

estation of P-pseudo-Hermiticity of the Hamiltonian,14 for �x� �P �y�	=��x� +y��.
For n�1, �3� is an ultrahyperbolic equation with quite peculiar properties.22 We will therefore

ocus our attention on the case n=1. Our main purpose is to obtain the general solution of �3�
ithout having to resort to its spectral decomposition �8�. This is mainly because of the difficulties
ith summing the series in �8� or evaluating the integrals that replace the latter whenever the

pectrum becomes continuous.7

In Ref. 9, we have pursued a similar approach to construct the most general �+ for
he imaginary cubic potential v= i	x3 in some low orders of perturbation theory. The approach of
ef. 9 applies to any �preferably imaginary� potential with a real spectrum. It yields an infinite

ystem of iteratively decoupled partial differential equations whose solution provides the contri-
utions to �+ in various orders of the perturbation theory. Although these equations have the same
tructure, at each order one must compute their nonhomogeneous term and solve them separately.

n contrast, in the present paper, we obtain a single differential equation satisfied by �, namely �4�,
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hat applies for an arbitrary potential v�x� rendering the Hamiltonian pseudo-Hermitian. An im-
ortant advantage of the approach of the present paper over that of Ref. 9 is that in view of the
imple structure of �4�, we are able to offer �as discussed in Sec. III� a general scheme for
onstructing a series solution of this equation. This solution involves two arbitrary functions that
rovide an explicit characterization of the arbitrariness in the choice of �.

Another recent application of the powerful machinery of differential equations to compute
pseudo-�metric operators is due to Scholtz and Geyer.10 These authors obtain a phase-space
epresentation of the �pseudo-�metric operators �. They use the Moyal product techniques to deal
ith the difficult factor-ordering problems that arise in this representation. The following are the
ain differences between the method of Ref. 10 and the one presented in the present paper.

• The method of Ref. 10 leads to an equation for � that is a differential equation11 provided
that v�x� is a polynomial potential. Even for a polynomial potential the general character and
in particular the order of this differential equation depends on the structure of v�x� and its
degree. In contrast, in the present paper we offer a universal differential equation, namely �4�,
that applies for polynomial as well as nonpolynomial potentials, and has the same simple
structure for all potentials. It is this appealing property that allows us to treat the well-known
toy models of Sec. IV. The application of the method of Ref. 10 to these models yields
pseudo-differential equations �differential equations of infinite order� whose solution is
extremely difficult if not impossible.

• Suppose v is a polynomial potential, so that the method of Ref. 10 yields a differential
equation, and suppose that one is able to solve this equation. Then one obtains an explicit
expression for � in terms of the operators x and p that involves a number of arbitrary
functions. The condition that � be Hermitian must be imposed to fix some of these functions.
This is done by adopting a set of appropriate boundary conditions.10�The author is unaware of
a systematic method of selecting the boundary conditions that achieve this purpose.� In
contrast, our method yields an expression for ��x ,y� that satisfies the Hermiticity condition
��x ,y�*=��y ,x� manifestly and specifies a unique Hermitian � according to

�����x� = 
R

dy��x,y���y� .

• It achieves this without making use of the Moyal product or having to select certain boundary
conditions that ensures the Hermiticity of �. Its successful application, however, does not
yield an explicit expression for � in terms of x and p. As explained in Ref. 9, the latter may
be obtained by Fourier transforming ��x ,y�= �x���y	 over y to obtain �x���p	 and arranging
the terms in the expression for �2
�e−ixp/��x���p	 in such a way that x’s are placed to the left
of p’s. This is how the issue of ordering of factors is addressed in this construction.

A common feature of both methods is that solving the associated differential equations yields
enerally non-positive-definite pseudo-metric operators. The �positive-definite� metric operators

+, if they exist, correspond to certain special solutions that are to be identified using different
eans. �The construction of � given here may be supplemented with the procedure proposed in
ef. 10 for selecting the positive-definite metric operators �+ among �’s. This is expected to be a
ifficult task in practice, and we will not pursue it here. We suffice to point out that given ��x ,y�
e can obtain an expression for � in terms of x and p as outlined in Ref. 9. This allows for making
irect contact with the approaches of Refs. 10 and 11�.

II. SERIES EXPANSION FOR �„x ,y…

We begin our analysis by expressing �4� in the form

�− �x
2 + �y

2���x,y� = f�x,y� − f�y,x�*, �12�
here
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f�x,y� ª
2m

�2 v�y���x,y� . �13�

e note that for a Hermitian �, �12� is equivalent to

��x,y� = ��x,y� + ��y,x�*, �14�

�− �x
2 + �y

2���x,y� = f�x,y� . �15�

ext, we recall that the general solution of the wave equation �−�x
2+�y

2�u�x ,y�=0 is given by

u�x,y� = u+�x − y� + u−�x + y� , �16�

here u± :R→C are a pair of arbitrary twice-differentiable functions �or distributions�. Conse-
uently, the general solution of �12� has the form

��x,y� = u+�x − y� + u−�x + y� + �p�x,y� + �p�y,x�*, �17�

here u± satisfy u±�x�*=u±��x� and �p�x ,y� is a particular solution of �15�. The latter is a
onhomogeneous wave equation in 1+1 dimensions. It admits a particular solution that in view of
13� takes the form

�p�x,y� =
m

�2y

dr
x−y+r

x+y−r

ds v�r���s,r� . �18�

ombining �16�–�18�, we find

��x,y� = u�x,y� + K��x,y� , �19�

here K is the integral operator defined by

K��x,y� ª
m

�2�y

dr
x−y+r

x+y−r

ds v�r���s,r� + x

dr
−x+y+r

x+y−r

ds v*�r���s,r�*�
=

m

�2�y

dr
x−y+r

x+y−r

ds v�r���s,r� + x

ds
−x+y+s

x+y−s

dr v�s�*��s,r�� . �20�

n view of the analogy with the derivation of the Lippmann-Schwinger equation,23 it is not
ifficult to see that �19� admits the following general series solution:

��x,y� = �I − K�−1u�x,y� = �
�=0



K�u�x,y� . �21�

learly, � is determined in terms of the arbitrary functions u±.
For v=0, i.e., a free particle, ��x ,y�=u�x ,y�. As shown in Ref. 9, this is equivalent to

� = L�p� + K�p�P , �22�

here L�p�†=L�p� and K�p�†=PK�p�P, equivalently L and K are respectively real-valued and
T-invariant �this means K�r�*=K�−r� for all r�R� functions. �They may be further restricted to

onstants if one postulates the nonexistence of a hidden length scale for the problem. See Ref. 9
or details.� They are related to the Fourier transform �in our convention, the Fourier transform of

˜ −1/2  −ikx ˜
function � is given by ��k�ª �2
� �−dxe ��x�� u± of u± according to
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L�p� = �2
ũ+
 p

�
�, K�p� = �2
ũ−
−

p

�
� . �23�

or a real-valued potential the ordinary choice for the metric operator that yields the L2-inner
roduct, i.e., �= I, corresponds to setting

u�x,y� = ��x − y� −
m

�2x+y/2

dr v�r� . �24�

o see this, we first calculate K��x−y� for an arbitrary �possibly complex-valued� potential v.
sing the well-known properties of the step function

��x� ª �
0 for x � 0

1

2
for x = 0

1 for x � 0,
� �25�

e then find

K��x − y� =
m

�2
x+y/2

drR�v�r�� + i sign�y − x�x+y/2

drI�v�r��� , �26�

here R�v� and I�v� respectively stand for the real and imaginary parts of v, and

sign�x� ª ��x� − ��− x� = �− 1 for x � 0

0 for x = 0

1 for x � 0.
�

f v is a real potential, R�v�=v and I�v�=0. In this case �26� together with �19� and ��x−y�
��x−y� yield �24�.

For a purely imaginary potential, R�v�=0, v= iI�v�, and �26� takes the following form:

K��x − y� =
m

�2sign�y − x�x+y/2

dr v�r� . �27�

V. APPLICATIONS

. PT-symmetric square well

The PT-symmetric square well potential,

v�x� ª �− i� sign�x� for �x� �
L

2

 for �x� �
L

2
,� �28�

ith ��R and L�R+, defines one of the best-known exactly solvable toy models that captures the
eneric properties of pseudo-Hermitian quantum systems.24,25 A thorough investigation of the
hysical content of this model is conducted in Ref. 4, where a particular perturbative calculation
f a metric operator and the corresponding physical observables, localized states, probability
ensity, and the underlying classical Hamiltonian is performed. This calculation makes use of the
act that the non-Hermiticity effects in this model diminish for energy states with larger spectral
abel N. More specifically, it is � /N2 that plays the role of the perturbation parameter.

More recently, Bender and Tan12 performed a more conventional perturbative calculation of a

etric operator taking � as the perturbation parameter. This is the metric operator �+ that is
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ssociated with the CPT-inner product �· , · �CPT,26 that is �· , · �CPT= �·��+ · 	.21 Expressing �+ in its
xponential form, �+=e−Q, and noting that Bender and Tan set �=2m=L /
=1, take �=−� for the
oupling constant, and use “	�x�” for “sign �x�,” we can summarize their principal result �Eq. �11�
f Ref. 12� as

�x�Q�y	 ¬ Q�x,y� = −
i�

4
�x − y + sign�x − y���x + y� − 
�� + O��3� , �29�

here O��n� stands for terms of order n and higher in powers of �. In particular, in view of the
dentity x−y= �x−y�sign�x−y�, we have the following expression for the CPT-metric operator �+:

�+�x,y� = ��x − y� +
i�

4
��x − y� + �x + y� − 
�sign�x − y� + O��2� . �30�

he perturbative calculation of the metric operator using the method developed in the preceding
ection is quite straightforward. Inserting �28� in �27� and performing the trivial integral in the
esulting equation, we find

K��x − y� =
im�

2�2 �x + y�sign�x − y� . �31�

he most general metric operator � that reduces to the identity operator in the Hermitian limit
→0 is obtained by setting

u�x,y� = ��x − y� + ��w+�x − y� + w−�x + y�� + O��2� �32�

n �21�, where w± : �−L /2 ,L /2�→C are arbitrary functions satisfying w±�x�*=w±��x� and

±�±L�=0. �These conditions arise from the Hermiticity requirement on the metric operator and
ts spectral resolution �8�.� This together with �31� yields

��x,y� = ��x − y� + ��w+�x − y� + w−�x + y� +
im

2�2 �x + y�sign�x − y�� + O��2� . �33�

etting �=2m=L /
=1 in this equation, we find that the CPT-metric operator �30� obtained by
ender and Tan12 is a particular example of the metric operators �33�. It corresponds to the choice

+�x�= �i /4���x�−
�sign�x� and w−�x�=0.
We can calculate higher-order terms in the expression for the metric operator using our

terative method. Each additional order will involve an arbitrary pair of functions that enter the
xpression for u in �21�. This calculation is not only completely general �as it yields the most
eneral metric operator�, but it is also much simpler to perform. This is mainly because unlike its
lternatives4,12 it avoids approximating or summing complicated series.

. An imaginary scattering potential

Consider the following variant of the PT-symmetric square well potential:27

v�x� ª
i�

2
�sign
x +

L

2
� + sign
x −

L

2
� − 2 sign�x�� = �− i� sign�x� for �x� �

L

2

0 for �x� �
L

2
,� �34�

here ��R is a coupling constant and L�R+ is a length scale.
In Ref. 7 we established the reality of the spectrum of this potential and used the spectral

ethod of Refs. 14, 17, and 18 to obtain a perturbative expression for an associated metric
perator �+. This involved constructing an appropriate biorthonormal system for the model and

erforming a highly tedious calculation of the integrals appearing in the spectral resolution of �+.
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ndeed, this calculation could only be done after expanding all the relevant quantities in powers of
and restricting to the first-order terms. Although the results reported in Ref. 7 required perform-

ng extremely lengthy calculations partly done using Mathematica, the expression obtained for

+�x ,y�ª �x��+�y	 took a surprising simple form, namely

�+�x,y� = ��x − y� +
im�

4�2 �2L + 2�x + y� − �x + y + L� − �x + y − L��sign�x − y� + O��2� . �35�

ere we wish to use the scheme developed in the preceding section to construct the most general
etric operator � that reduces to the identity operator in the Hermitian limit �→0. In order to do

his first we insert �34� in �27� and perform the trivial integral in the resulting equation to obtain

K��x − y� =
im�

4�2 ��x + y + L� + �x + y − L� − 2�x + y��sign�y − x� . �36�

ubstituting �32� in �21� and using �36�, we then find

��x,y� = ��x − y� + ��w+�x − y� + w−�x + y� +
im

4�2 �2�x + y� − �x + y + L� − �x + y − L��sign�x − y��
+ O��2� , �37�

here w± :R→C are arbitrary functions satisfying w±
*�x�=w±�±x�. Clearly, the positive-definite

nner product �35� constructed in Ref. 7 corresponds to setting w+�x�= imL /2�2 sign�x� and

−�x�=0.

. Imaginary �-function potentials

Consider the potential

v�x� = i���x − a� , �38�

here � ,a�R. �Clearly, we can choose the origin of the x-axis so that a=0. We retain a for future
se where we consider the multi-delta-function potentials.� It is not difficult to solve the time-
ndependent Schrödinger equation for this potential and show that H= �p2 /2m�+v�x� has a real
ontinuous spectrum. �H is not PT-symmetric. But one may attempt to use the results of Ref. 21
o construct a generalized PT-operator �an antilinear involution� that commutes with H.� This in
urn suggests that one can construct an associated pseudo-metric operator using the spectral

ethod of Refs. 17 and 18. This construction is similar to the one offered in Ref. 7 for the
otential �34�. An explicit calculation of � using this method is however quite involved. A much
impler construction that we will describe in the following is based on the method of Sec. III.

First, we substitute �38� in �20� to establish

KF�x,y� = F�x,y� + F�y,x�*, F�x,y� ª
iz

2
��y − a�

x−y+a

x+y−a

dsF�s,a� , �39�

here zª2m� /�2 and F�x ,y� is a test function. If we choose a z-independent u, the series
xpansion �21� becomes a power series in the coupling constant z. For definiteness we shall first
hoose u�x ,y�=��x−y�. Setting F�x ,y�=��x−y� in �39� and using the properties of the step func-
ion �25�, we then find

Ku�x,y� =
iz

2
��x + y − 2a�sign�y − x� ¬ u1�x,y� . �40�

lternatively, we could directly use �27� to obtain �40�.
2
Next, we compute K u�x ,y� by substituting u1 for F in �39�. This yields
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K2u�x,y� =
z2

4
���x − a� + ��y − a����x + y − 2a���x + y − 2a� − �x − y�� . �41�

he higher-order terms in �21� can be similarly calculated. Moreover, because of the simple form
f �39� and �40�, we can actually obtain an upper bound on �K�u�x ,y�� and use it to find a lower
ound on the radius of the convergence of the series �21�.

First, we recall28 that if a function g :R→C is bounded on an interval �� ,�� by some M
R+, i.e., �g�r���M for all r� �� ,��, then ���

�dr g�r���M��−��. Now, let F�x ,y� be a function
uch that �F�s ,a�� has an upper bound MF as s takes values between �x−y�+a and x+y−a. Then,
ccording to �39�,

�KF�x,y�� � �z���x − a� + �y − a��MF. �42�

n view of �40�, for all x ,y�R, �Ku�x ,y��� �z� /2. To obtain an upper bound on �K2u�x ,y�� we set
�x ,y�=Ku�x ,y� in �42�, which allows us to identify MF with �z� /2 and yields for all x ,y�R:

�K2u�x,y�� �
z2

2
��x − a� + �y − a�� . �43�

e can directly verify this relation using �41�. Repeating the procedure that leads to �43�, we find
or all ��1 and all x ,y�R: �K�u�x ,y��� �z����x−a�+ �y−a���−1 /2. This in turn implies, in view of
he elementary comparison tests, that the series �21� converges �absolutely� for �z���x−a�+ �y−a��

1. Hence, it converges in an open disc in the x-y plane that is centered at �x=a, y=a� and has
radius �� ��2�z��−1.

In summary, for every given value of z, truncation of the series �21� yields a reliable approxi-
ation for � provided that we keep a sufficiently large number of terms in the series and deal with
ave functions ��x� that decay sufficiently rapidly as �x�→. �Our analysis only yields a lower
ound on �. It does not imply that � is finite.�

We can extend our treatment to a potential consisting of more than one delta function:

v�x� = i�
n=1

N

�n��x − an� , �44�

here N�Z+ and �n ,an�R. An example is the PT-symmetric potentials29–31 corresponding to the
ases that N is even and �N/2+k=−�k, a�N/2�+k=−ak for all k=1,2 , ¯N /2. �Here we assume that
�n ,an� are such that the Hamiltonian is pseudo-Hermitian. This is the generic case, for the values
f ��n ,an� that render the spectrum of the Hamiltonian nonreal form a measure-zero subset of the
et R2N of all possible values of ��n ,an�.�

For these multi-delta-function potentials the calculation of the first-order term in zn

2m�n /�2 in the series expansion �21� reduces to the case N=1 that we considered above. In
iew of �40�,

K��x,y� =
i

2�
n=1

N

zn��x + y − 2an�sign�y − x� . �45�

he most general � that reduces to �= I in the Hermitian limit zn→0 is obtained up to second-
rder terms in zn by setting u�x ,y�=��x−y�+�n=1

N zn�wn+�x−y�+wn−�x+y��+O�zn
2�, where

n± :R→C are arbitrary functions satisfying wn±�x�*=wn±��x�. This together with �45� and �21�

ields
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��x,y� = ��x − y� + �
n=1

N

zn�wn+�x − y� + wn−�x + y� +
i

2
��x + y − 2an�sign�y − x�� + O�zn

2� .

�46�

e close this section by the following general remarks. As we observe in the study of the above
oy models, the series solution �21� may be used to obtain a perturbative expansion for the
seudo-metric operator �. In general, depending on the details of the model under study, one may
r may not have access to a dimensionless perturbation parameter. Typical examples for which this
ccurs are the imaginary cubic potential and the single imaginary delta-function potential �38�. In
his case, as explained in Ref. 9, the truncation of the perturbative expansion of ��x ,y� generally
ields a reliable result only within a sufficiently small region in the x-y plane. Furthermore, one
xpects that for sufficiently small values of the perturbation parameter �the coupling constant � or

n in the above examples� the perturbative corrections to a positive-definite metric operator such as
= I leave this property intact.

. CONCLUDING REMARKS

In this article, we have outlined a differential realization of the pseudo-Hermiticity condition
hat plays a central role in devising a unitary quantum theory based on quasi-Hermitian Hamilto-
ians of the standard form. The integral kernel ��x ,y� for the corresponding pseudo-metric op-
rators � satisfies a linear partial differential equation. For systems having R as their configuration
pace this is nothing but a particular variable-mass Klein-Gordon equation. We have obtained a
eneral series solution for this equation and demonstrated its application in treating the
T-symmetric square well potential, an imaginary PT-symmetric scattering potential, and a class
f imaginary delta-function potentials. In particular, for the former two potentials, the approach
resented here is by far more practical than the alternative approaches that use the spectral
esolution of the metric operator. Another advantage of the former approach is that it is capable of
roducing the most general pseudo-metric operator. In particular, imposing the positive-
efiniteness condition �7�, it yields the general form of the metric operators.

Our method is not only practically advantageous but also conceptually appealing. It furthers
he analogy between QM and GR, for the differential pseudo-Hermiticity relation plays a similar
ole in QM as the Einstein’s field equation does in GR �not to mention the curious fact that the
eld theoretic extension of the pseudo-Hermiticity relation �3� is a functional differential equation

hat has the same structure as the Wheeler-DeWitt equation of the conventional canonical quantum
ravity�. Another valuable outcome of our method is a concrete characterization of the arbitrari-
ess of the metric operator. Each choice of a metric operator defines a separate quantum system.
ne can pursue the prescription used in the so-called quasi-Hermitian quantum mechanics1 to

elect an irreducible set of compatible quasi-Hermitian operators O� and fix the metric operator �+

up to scale� through the requirement that O� be �+-pseudo-Hermitian. Alternatively, one can
ollow the approach of the so-called pseudo-Hermitian quantum mechanics,3 choose �+ directly,
nd construct the Hilbert space and observables of the theory accordingly.4,5,7,9
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We consider questions related to a quantization scheme in which a classical
variable f :�→R on a phase space � is associated with a �preferably unique�
semispectral measure E f, such that the moment operators of E f are required to be
of the form ��f k�, with � a suitable mapping from the set of classical variables to
the set of �not necessarily bounded� operators in the Hilbert space of the quantum
system. In particular, we investigate the situation where the map � is implemented
by the operator integral with respect to some fixed positive operator measure. The
phase space � is first taken to be an abstract measurable space, then a locally
compact unimodular group, and finally R2, where we determine explicitly the rel-
evant operators ��f k� for certain variables f , in the case where the quantization map
� is implemented by a translation covariant positive operator measure. In addition,
we consider the question under what conditions a positive operator measure is
projection valued. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2211931�

. INTRODUCTION

Quantization can be any procedure that associates a quantum mechanical observable to a
iven classical dynamical variable. The traditional way to realize a quantization is to assign to
ach classical variable a Hermitean �symmetric, or even essentially self-adjoint� operator that
hould describe the quantum observable. The question is how to modify the traditional scheme in
rder to fit it into the context of modern quantum mechanics.

We recall that, in this formulation, observables of a quantum system with a Hilbert space H
re given as semispectral measures E :B�R�→L�H� and states as positive trace one operators
:H→H. The probability measure X�Tr�TE�X�� defined by a pair �E ,T� is taken to describe the
easurement outcome probabilities of the observable E in the state T. Here B�R� denotes the

Borel �-algebra of the real line R, and L�H� is the set of bounded operators on H.
Classical variables can be represented by real valued measurable functions defined on some

easurable space �� ,A�, which is the phase space of the classical system. The phase space can be
aken to be, e.g., R2n, in which case the variables are Borel functions. In the conventional approach
o quantization, we would have a map � from the set of real measurable functions to the set of all
inear �not necessarily bounded� operators in a Hilbert space H, and ��f� would be the observable
orresponding to the classical variable f �see, e.g., Refs. 9, 15, 28, 32, and 33�.

We would like to modify this scheme so that we could assign a semispectral measure to the
unction f , instead of an operator. To do this, we still assume that we have a map � as above, but
ow we use all the operators ��f k�, k�N, instead of just ��f�. �In this paper, N is the set of
ositive integers.� The idea is to consider the moment problem of finding the unique semispectral
easure E f :B�R�→L�H� with the property that �xkdE f =��f k� for all k�N. Here �xkdE f, the kth

�Electronic mail: jukka.kiukas@utu.fi
�Electronic mail: pekka.lahti@utu.fi
�
Electronic mail: kari.ylinen@utu.fi
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oment of E f, is the operator integral L�xk ,E f� of the function x�xk with respect to E f; see the
ext section for its definition. So if � and f are such that there exists a unique solution E f of the
escribed moment problem, then the collection of the operators ���f k� �k�N� is eligible to rep-
esent a quantization E f of f . The motivation for this approach lies in the fact that then the
oments of the measurement outcome probabilities of a quantum observable E f correspond to

hose of the original classical variable f , which are simply the powers of its values.
One way to obtain a quantization map � is to use the operator integral with respect to some

iven positive operator measure E, i.e., define � to be the map f �L�f ,E�. In this case, if we
efine E f on the Borel sets of the real line by B�E�f−1�B��, we have simply L�xk ,E f�
L�f k ,E�, as is easily seen by using the definition of the next section and the usual change of
ariables in the integral with respect to a complex measure. So then E f is a solution to the moment
roblem described above, which leaves us with the uniqueness question. Note that if we choose E
o be a projection operator measure, we end up getting only spectral measures as the quantized
bservables, with all the operators L�f k ,E� mutually commuting. We also remark that, in any case,
ll the observables obtained via this type of quantization are functionally coexistent,26 so that they
an be measured together in the sense of Ludwig �see Ref. 29, D.3.1, p. 153�.

We mention that the approach described above is used, for instance, in Ref. 14 in the descrip-
ion of a quantum measurement. In a typical measurement situation, where one aims to measure a
traditional� quantum observable represented by a self-adjoint operator, one is actually measuring
noisy or unsharp version of that observable. The noisy version, represented by a semispectral
easure, may agree with the observable intended to be measured, on the statistical level of

xpectations. The unsharpness of the measurement is reflected in the fact that the dispersion of the
easurement statistics is actually greater than what would be obtained in the noiseless case. The

bservable, as represented by a semispectral measure, cannot be described using a single operator.
ccordingly, in the approach of Ref. 14, each moment of the measurement outcome distribution is

onsidered to be an average of a certain operator, called an “operational observable,” and the
ollection of these operators then represents the measured observable. We want to point out that
hese operational observables are nothing more but the moment operators of the semispectral

easure representing the observable. Note that these moments need not determine the semispec-
ral measure uniquely. In certain special cases, however, they do,12,13 and sometimes even the first

oment is enough.8,25

The structure of this paper is as follows. In the Sec. II we give some results on the theory of
perator integrals and give a simple characterization of the quantization maps that can be repre-
ented by an operator integral with respect to a positive operator measure. In Sec. III, we consider
he operator integral with respect to covariant positive operator measures on a locally compact to
ological group. Section IV is devoted to the quantizations obtained by using the covariant phase
pace observables in R2, and in Sec. V, we discuss the “optimal” choice for such a covariant
bservable, in view of quantization. In Sec. VI, we consider the question under what conditions a
ositive operator measure is a spectral one.

I. THE OPERATOR INTEGRAL

The basic tool in our quantization procedure is the operator integral. It associates a linear �not
ecessarily bounded� operator in the Hilbert space H of a quantum system to each complex
easurable function on the phase space �. In this section we review the basic results concerning

he theory of operator integrals and give some additional remarks in relation to quantization.
Let � be a nonempty set and A a �-algebra of subsets of �. Let H be a complex Hilbert

pace and L�H� the set of bounded operators on H. Let E :A→L�H� be a positive operator
easure, i.e., a positive operator valued set function that is �-additive with respect to weak

perator topology. For each � ,��H, let E�,� denote the complex measure B� 	� �E�B��
. We
ecall that a normalized positive operator measure E is called a semispectral measure, and that a
emispectral measure E is a spectral measure exactly when E�A�B�=E�A�E�B� for all A ,B

A. As mentioned in Sec. I, semispectral measures are also called observables.
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Let F�� ,A�, or F��� in brief, denote the set of all complex A-measurable functions defined
n �, and O�H� the set of all �not necessarily bounded� linear operators in H. For f �F���,
efine

D�f ,E� = �� � H�f is E�,� − integrable for each � � H�

nd

D̃�f ,E� = �� � H��f �2 is E�,� − integrable� .

he following result was proved in Ref. 22. The operator L�f ,E� appearing in it is called the
perator integral of f with respect to E.

Theorem 1:
�a� The set D�f ,E� is a linear (not necessarily dense) subspace of H, and there is a unique

inear operator L�f ,E�=�fdE on the domain D�f ,E� satisfying

	��L�f ,E��
 =� fdE�,�

or all ��H and ��D�f ,E�.
�b� The set D̃�f ,E� is a subspace of D�f ,E�.
�c� If f is real valued, L�f ,E� is a symmetric operator.

�d� While the inclusion D̃�f ,E��D�f ,E� may in general be proper, D̃�f ,E�=D�f ,E� in the
ase where E is a spectral measure.

Remark: Since the operator measure E is also strongly �-additive, each set function A
B�E�ªE�B���H, for ��H, is an H-valued vector measure. The definition of the operator

ntegral states that D�f ,E� is the set of those ��H for which f is integrable with respect to the
ector measure E� in the sense of Ref. 20, p. 21, and L�f ,E��=�fdE� for each ��D�f ,E�. As
ointed out in Ref. 20, p. 37, this definition of integrability is equivalent to that of Ref. 10, p. 323
for proof, see Ref. 41, Corollary 3.6�.

The vector measure approach provides an easy way to characterize the operator integral

�f ,E� by approximating f with bounded functions. For each f �F���, and n�N, let f̃ n be such

hat f̃ n�x�= f�x� if �f�x���n, and f̃ n�x�=0 otherwise. It is a well-known fact that in the case where
is a spectral measure, we have

D�f ,E� = D̃�f ,E� = Df ,E
ª �� � H� lim

n→�
L� f̃ n,E�� exists� .

n addition, L�f ,E��=limn→� L� f̃ n ,E�� for all ��Df ,E �see, e.g., Ref. 11, p. 1196�. In the case of
general positive operator measure E, this need not be true. For example, take a probability
easure defined on the Borel sets of R, such that it has a density that is an even function, and

0
�xd��x�=�. Let E be the positive operator measure B���B�I, and f�x�=x. Now f is not

-integrable, so D�f ,E�= �0�. But if ��H, we have 	� �L� f̃ n ,E��
= 	� ��
�−n
n xd��x�=0 for all

�N and ��H because the density of � is even, so that Df ,E=H.

Thus in the general case, the existence of the limit limn→� L� f̃ n ,E�� does not guarantee that
�D�f ,E�. However, the following result holds.

Proposition 1: Let E :A→L�H� be a positive operator measure, and f �F���. Then

D�f ,E� = �� � H� lim
n→�

L�	Bf̃n,E�� exists for each B � A� ,

nd L�f ,E��=limn→� L� f̃ n ,E�� for all ��D�f ,E�.
Proof: Denote by D the right-hand side of the set equality appearing in the statement. Let

˜ ˜
�D, and let B�A, with 
B=limn→� L�	Bfn ,E��. Since each fn is bounded, we can choose a
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equence of A-simple functions gn, such that �gn�x�− f̃ n�x���1/n for each n�N and x��.
learly the sequence �gn� converges to f pointwise. Now

�L�	Bgn − 	Bf̃n,E��� = sup
����1

�
B

�gn − f̃ n�dE�,� �
1

n
sup

����1
�E�,����� �

4

n
�E������� ,

o that

��
B

gndE� − 
B� �
4

n
�E������� + �L�	Bfn,E�� − 
B� .

t follows that the sequence ��BgndE�� of vectors converges for each B�A �to 
B�, so by the
efinition of Ref. 10, p. 323, f is integrable with respect to the vector measure E�, i.e. �
D�f ,E� �see the Remark following Theorem 1�. Conversely, let ��D�f ,E�. Since D�f ,E�

D��f � ,E� by definition, and for each B�A the sequence �	Bf̃n� converges to 	Bf pointwise, with

	Bf̃n�� �	Bf �, it follows e.g. from the dominated convergence theorem for the vector measure E�

see Ref. 10, p. 328� that

L�	Bf ,E�� =� 	BfdE� = lim
n→�

� 	Bf̃ndE� = lim
n→�

L�	Bf̃n,E��

or each B�A. Thus ��D, and L�f ,E��=limn→� L� f̃ n ,E��. �

Remark:

�a� We now have the subspace inclusions D̃�f ,E��D�f ,E��Df ,E, with each of them possibly
roper. In the case where E is a spectral measure, both inclusions are equalities.

�b� It is well known that in the case where E is a spectral measure, the domain D�f ,E� is
ense. As seen before in Proposition 1, this need not be the case in general, so a question arises
hat is required for E and f to make D�f ,E� dense.

�c� Another difference to the spectral case is that for real valued f �F���, the symmetric
perator L�f ,E� is not necessarily self-adjoint �the adjoint need not even exist�, and it seems to be
ifficult, in general, to determine when L�f ,E� might have self-adjoint extensions. In the case
here f is positive and D�f ,E� dense, the positive symmetric operator L�f ,E� of course has its

self-adjoint Friedrichs extension.
As noted in Sec. I, the starting point of our quantization scheme is a map � from real valued

measurable functions to the set O�H�. The following theorem characterizes those maps � :F���
→O�H�, which are implemented by an operator integral. The corresponding result involving

bounded functions is well known. Here the functions f̃n are defined for each f as in Proposition 1.
Theorem 2: A map � :F���→O�H� coincides with the map f �L�f ,E� for a (clearly unique)

ositive operator measure E if and only if the following conditions are satisfied.
�i� � restricted to bounded functions is a positive linear map with values in L�H�;
�ii� if �fn� is an increasing sequence of positive A-measurable functions converging pointwise

o a bounded f �F���, then supn�N	� ���fn��
= 	� ���f��
 for each ��H;
�iii� for each f �F���, the domain D���f�� of ��f� consists of those vectors ��H for which

he sequence ���	Bf̃n��� of vectors converges for each B�A.

�iv� for each ��D���f��, the sequence ��� f̃ n��� converges to ��f��.
Proof: Assume first that there is a positive operator measure E, such that ��f�=L�f ,E� for

ach f . The above properties follow easily: Property �i� is well known �see, e.g., Ref. 2, pp. 22-28�,
nd �ii� follows from the monotone convergence theorem. Proposition 1 gives �iii� and �iv�. Next
ssume that �i�-�iii� hold for a map � :F���→O�H�. By �i� the map A�B�E��B�ª��	B�
O�H� is a positive operator valued additive set function. Since � is positive for bounded

unctions by �i�, supn�N in condition of �ii� can be replaced by limn→�. This implies that each set
� �
unction B� 	� �E �B��
 is a positive measure, so that E is a positive operator measure. If f
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F��� is a bounded positive function, we have 	� ���f��
= 	� �L�f ,E���
 for all ��H, as is
een by approximating f with an increasing sequence of simple functions and using linearity, �ii�,
nd the monotone convergence theorem. Hence, if f �F��� is bounded, it follows by linearity and
olarization that ��f�=L�f ,E��. Now let f �F��� be arbitrary. It follows by �iii� and Proposition

that D���f��=D�f ,E��, and �since each f̃ n is bounded�, also

L�f ,E��� = lim
n→�

L� f̃ n,E��� = lim
n→�

�� f̃ n�� = ��f��

or all ��D���f�� �where �iv� is used�, so L�f ,E��=��f�. �

Remark: In the quantization scheme described in Sec. I the classical variables were thought to
e real valued. Obviously, the preceding Theorem holds also with F��� replaced by the set of real
-measurable functions.

We end this section by discussing briefly a simple way of obtaining quantization maps without
he use of positive operator measures. This approach is essentially the one frequently used in the
onventional quantization �e.g., Weyl quantization�: the operator corresponding to a given classi-
al variable f :R2n→R is obtained by integrating the variable with respect to some operator valued
unction defined on the phase space. The quantization of the variable then becomes a continuous
istribution valued operator defined on some dense subspace of L2�R�, which does not depend on
he variable itself. In the case of Weyl quantization, for example, all the quantized operators are
efined on a common domain �see, e.g., Refs. 9 and 36�. However, to make the situation similar
o that of the operator integral map considered above, we define the quantization map in the
ollowing simple way. The proof is a direct adaptation of the proof of Theorem 1 �a� �see Ref. 22�.
ote that it follows from �i� that the integrand in �ii� is A-measurable. This is so because ���
sup��	� ��
� ���M , ���=1� for any vector ��H, where M is a fixed countable dense set in the

eparable Hilbert space H. Hence the integral in �ii� is well defined.
Proposition 2: Let �� ,A ,�� be a measure space, H a separable Hilbert space, and � :�

L�H� a map with the following properties:

i� �� 	� ������
 is A-measurable for all � ,��H;
ii� �B�������d����� for each ��H and B�A with ��B��.

Then for each A-measurable function f :�→C, there exists a linear operator ���f� in H,
uch that

D����f�� = �� � H�f	����·��
 is � − integrable for each � � H� ,

nd

	�����f��
 =� f�x�	�������
d����� � H, � � D����f�� .

Proof: It is clear that D����f���H is a vector subspace. Let �fn� be a sequence of simple
unctions converging pointwise to f , with �fn�� �f � for all n�N. Since �	� ������
�

���������� for each � ,��H ,���, it follows from �ii� and �i� that for each n�N, we have
����fn��=H and the linear functional ���fn���	� ������
d���� is continuous for each �
H. Hence, for each n�N and ��H, there is 
n

��H, such that

	��
n
�
 =� fn���	�������
d����

or all ��H. Now, let ��D����f��. Since �fn�� �f � for all n, the dominated convergence theorem
mplies that the sequence 	� �
n

�
 converges for each ��H to �f���	� ������
d����, so by the

niform boundedness theorem and the reflexivity of H, there is ���f���H, such that
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	�����f��
 =� f���	�������
d����

or all ��H. Clearly, the map D����f��������f���H is linear, so the proof is complete.
�

Remark: Consider the situation where we have a locally compact unimodular topological
roup G, with a left Haar measure �, and a strongly continuous projective unitary representation
:G→U�H�. Then, for any A�L�H�, the map � :G→L�H�, defined by ��g�=U�g�AU�g�*,

atisfies the conditions of the preceding Proposition, so we get the corresponding quantization map

�. Notice that in the case where the representation is square integrable and A positive, the
uantization map �� can be represented by an operator integral if and only if A has finite trace.
amely, the case Tr�A�=� gives D����	G��= �0� �see, e.g., Ref. 19, Lemma 2�, while the case
r�A�� leads to the usual quantization map given by the operator integral with respect to a
ovariant positive operator measure �multiplied by some constant�.

Consider the case where G=R2, U�g�=U��q , p�� are the Weyl operators, and A is the parity
perator L2�R������−· ��L2�R� �multiplied by a suitable constant�. Now �� is the Weyl
uantization map. It is well known that for f �L1�R2��L2�R2�, the operator ���f� is bounded.
oreover, if f �L2�R2�, then ���f� is a Hilbert-Schmidt operator, and if f is a Schwartz function,

hen ���f� is a trace class operator �see, e.g., Ref. 36�. It is a well-known fact that the Weyl
uantizations of the classical position and momentum variables are the position and momentum
perators Q and P, in the “distributional” sense. Note, however, that the actual domains of Q and

P are not given by the formula of the preceding theorem. For example, the characteristic function

�−1,1� is in the domain of Q, but the function �q , p��q		�−1,1� ���q , p�	�−1,1�
 is not �Lebesgue�-
ntegrable, as is easily seen by calculating the explicit form of the function.

II. COVARIANT QUANTIZATION

We now take the set � of the preceding section to be a locally compact second countable
nimodular topological group, henceforth denoted as G, and let B�G� denote the Borel �-algebra
f G. Fix � to be a Haar measure in G. Let T�H� denote the Banach space of trace class operators
n the Hilbert space H, and let Aut�T�H�� denote the set of linear, positive, trace norm preserving
ijections from T�H� onto itself. We consider it equipped with the topology given by the func-
ionals Aut�T�H�����Tr�A��T���C, where A�L�H� and T�T�H�.

Assume further that there is a continuous group homomorphism � :G→Aut�T�H�� and a
onstant d�0, satisfying

� Tr�P1��g��P2��d� = d for all one-dimensional projections P1,P2 on H . �1�

We now consider quantizations connected to the structure of G given by the homomorphism
, in the following sense: A map � :F�G�→O�H� with the property that ��f��L�H� for all
ounded functions f �F�G� is said to be �-covariant, if ��g�*���f��=��f�g · �� for all g�G and
ll bounded functions f �F�G�.

If � is such that it can be represented by the operator integral with respect to an observable E
i.e., � satisfies the conditions of Theorem 2�, then it is straightforward to verify that � is
-covariant if and only if the observable E is �-covariant in the following sense: An observable
:B�G�→L�H� is said to be �-covariant if ��g�*�E�B��=E�g−1B� for all g�G, B�B�G�.

Covariant observables are essential in quantum mechanics, and hence they have been studied
uite extensively. The canonical examples of covariant observables are constructed, e.g., in Ref. 7,
nd there are �at least� two completely different ways to obtain their characterization: a direct
pproach,16,19,38 which uses the theory of integration with respect to vector measures, and a group
heoretical approach.6 The most general of these characterizations is in Ref. 6. In our context of a
nimodular group, the characterization is given by the following theorem.
Theorem 3: Let T be a positive operator of trace one. Then there is a �-covariant observable
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T :B�G�→L�H�, such that

ET�B� = d−1�
B

��g��T�d��g� �2�

n the ultraweak sense for each B�B�G�. Conversely, assume that E :B�G�→L�H� is a
-covariant observable. Then there is a unique positive operator T of trace one, such that E
ET.

If E is a �-covariant observable, we call the corresponding trace-one positive operator T the
enerating operator for E. Thus, for a �-covariant observable E, we have

D�f ,E� = �� � H�g � f�g�	����g��T��
 is � - integrable for each � � H�

nd

	��L�f ,E��
 = d−1� f�g�	����g��T��
d��g�

or all ��D�f ,E� and ��H, where T is the generating operator for E.
According to the Wigner theorem, each ��g� has the form ��g��T�=U�g�TU�g�* for some

nitary or antiunitary operator U�g�, which is unique up to a phase factor, so that ��g� corresponds
o the associated equivalence class of unitary operators �see, e.g., Ref. 5, p. 19 or Ref. 16, p. 22�.
t follows that, in the case where G is connected, the map g�U�g� is a weakly �Borel� measurable
rojective unitary representation of G, where each U�g� is chosen from the equivalence class
orresponding to ��g� by means of some �measurable� section �see Ref. 16, p. 23 and Ref. 5, pp.
0 and 100�. Relation �1� gives the so-called square integrability condition

� �	��U�g��
�2d��g� = d

or all unit vectors � ,��H. Clearly, for each � ,��H there is a g�G such that 	� �U�g��

0. This implies that the closed linear span of �U�g�� �g�G� is dense in H for each ��H,
hich means that the projective representation g�U�g� is irreducible. The �-covariance condi-

ion for an observable E takes the form U�g�*E�B�U�g�=E�g−1B� for all g�G, B�B�G�.
Hence, we know that each covariant quantization map � :F�G�→O�H�, which can be repre-

ented by an operator integral, is of the form �=�T
ªL�· ,ET� for some generating operator T. It

s worth noting that in certain cases the observables produced by the quantization scheme associ-
ted with a map �T are never spectral measures. Namely, the irreducibility of U implies the
ollowing, perhaps well-known result.

Proposition 3: Assume that G is connected, and that the projective representation U associ-
ted with � is strongly continuous. Let T�T�H� be positive and of trace one. Then the only
rojections in the range of ET are O and I.

Proof: First we notice that if ET�X� is a projection for some X�B�G� and positive operator T
f trace one, then there is a nonzero ��H, such that E��
	���X� is a projection. Indeed, let T be a
ositive operator of trace one, ��0 an eigenvalue of T �so that ��1�, and ��H an associated
igenvector. Then we can decompose T as T=���
	��+ �1−��T�, where ��
	�� and T� are positive
nd of trace one, so we can write ET�X�=�E��
	���X�+ �1−��ET��X�. Since any projection is an
xtreme point of the convex set �A�L�H� �0�A� I� �see, e.g., Ref. 7, p. 19�, it follows that if
T�X� is a projection, then ET�X�=E��
	���X�.

Hence, it suffices to show that for each unit vector 
�H, the only projections in the range of
�

	
� are O and I. Denote T= �

	
�, and assume that there is a projection P in the range of ET.

T T 27
hen PE �B�=E �B�P for all B�B�G�. Let ��H. Now
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�
B

	��P��g��T��
d��g� = �
B

	����g��T�P�
d��g�

or all B�B�G�. Since g� 	� � �P��g��T�−��g��T�P��
 is continuous, it is thus zero for all g
G. Hence, P��g��T�=��g��T�P for all g�G.

Let U
 denote the map g�U�g�
. We then have

P�U
�g�
	U
�g�� = �U
�g�
	U
�g��P

or all g�G.
It follows that for each g�G, either U
�g�� P�H� or U
�g�� P�H��. Let f :G→ �0,1� be the

unction such that f�g�=0 if U
�g�� P�H� and f�g�=1 if U
�g�� P�H��. Then f is continuous,
hen the set �0,1� is equipped with the discrete topology. Indeed, let g0�G. Since U
 is continu-
us, W=U


−1����H � �U
�g0�−���2�� is an open set in G containing g0. Assume first that
f�g0�=0. Since all vectors U
�g� are of unit length, it follows that �U
�g�−U
�g0��=�2 whenever
f�g�=1. Hence, f�W�� �0�. Similarly, if we assume that f�g0�=1, it follows that f�W�� �1�. This
mplies that f is continuous. Since G is connected, f cannot be a surjection, so either U
�g�

P�H� for all g�G, or U
�g�� P�H�� for all g�G. But, due to the irreducibility of the pro-
ective representation U, the closed linear span of the set �U
�g� �g�G� is dense in H. This is
learly possible only if either P= I or P=O. The proof is complete. �

The following observation is another consequence of the irreducibility of the projective rep-
esentation associated with �. It uses a calculation similar to that appearing e.g. in Ref. 40, p. 40
n a different context. Part �a� is mentioned also in Ref. 39.

Proposition 4: Assume that G is connected and let U be the projective representation associ-
ted with �. Let E :B�G�→L�H� be a � -covariant observable.

�a� Assume that f �F�G� is such that D̃�f ,E�� D̃�f�g · � ,E� for all g�G. Then U�g�D̃�f ,E�
D̃�f ,E� for all g�G, and either D̃�f ,E�= �0� or D̃�f ,E� is dense.

�b� Assume that f �F�G� is such that D�f ,E��D�f�g · � ,E� for all g�G. Then U�g�D�f ,E�
D�f ,E� for all g�G, and either D�f ,E�= �0� or D�f ,E� is dense. Moreover,

U�g�*L�f ,E�U�g� � L�f�g · �,E� �3�

or all g�G.
Proof: Let T be the positive trace one operator associated with E, so that

D̃�f ,E� = �� � H�g � �f�g��2	��U�g�TU�g�*�
 is �-integrable� ,

D�f ,E� = �� � H�g � �f�g���	��U�g�TU�g�*�
� is �-integrable for all � � H� .

or all h ,g�G, we have U�h�*U�g�=c�g ,h�U�h−1g�, where �h ,g��c�h ,g� is some torus valued
unction, so that U�g�*U�h�= �U�h�*U�g��*=c�g ,h�−1U�h−1g�*, and hence

U�h�*U�g�TU�g�*U�h� = U�h−1g�TU�h−1g�*. �4�

a� Let �� D̃�f ,E�, and h�G. By the left invariance of the Haar measure and �4�, we have

� �f�g��2	U�h���U�g�TU�g�*U�h��
d��g� =� �f�g��2	��U�h−1g�TU�h−1g�*�
d��g�

=� �f�hg��2	��U�g�TU�g�*�
d��g� ,

with all the integrands positive. Since �� D̃�f�h · � ,E� by assumption, the last integral is
˜ ˜
finite, so U�h���D�f ,E�. Thus D�f ,E� is an invariant subspace of the projective represen-
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tation U, implying that the closure D̃�f ,E� is a closed invariant subspace of U. It follows

from the irreducibility of U that D̃�f ,E� is either trivial or dense. The fact that

U�h�D̃�f ,E�= D̃�f ,E� follows because we have U�h−1�=c��h�U�h�* for some torus valued
function c�. The proof of �a� is complete.

b� Let h�G, ��D�f ,E�, and ��H. Then by using �4� and the assumption, we get

� �f�g���	��U�g�TU�g�*U�h��
�d��g� =� �f�g���	U�h�U�h�*��U�g�TU�g�*U�h��
�d��g�

=� �f�g���	U�h�*��U�h−1g�TU�h−1g�*�
�d��g�

=� �f�hg���	U�h�*��U�g�TU�g�*�
�d��g�  � ,

so that U�h���D�f ,E�. Thus D�f ,E� is an invariant subspace for U, and hence D�f ,E� is
either trivial or dense. The fact that U�h�D�f ,E�=D�f ,E� follows for the same reason as the
corresponding one in �a�.

Let h�G. By repeating the preceding calculation without the absolute value signs, we get

	��L�f ,E�U�h��
 = 	U�h�*��L�f�h · �,E��
 = 	��U�h�L�f�h · �,E��


or each ��H and ��U�h�*D�f ,E�=D�f ,E��D�f�h · � ,E�, so that �3� holds. �

Remark:
�a� If we assume D�f ,E�=D�f�g · � ,E� for all g�G, then Proposition 4 �b� gives the strict

operator equality U�g�*L�f ,E�U�g�=L�f�g · � ,E� for each g�G, with dense domain D�f ,E�. This
resembles the covariance condition for the observable E.

�b� Since each E�,� is a finite measure, it is clear that the conditions of Proposition 4 �a� and
b� are satisfied, e.g., by all functions f �F�G� with the property that for each h�G there are
onnegative constants Kh and Mh, such that �f�hg���Kh�f�g��+Mh for almost all g�G. In the case
here G=R2n �see the beginning of the next section�, all polynomials of the form
2n' �x1 , . . . ,x2n�� p�xi��R, where p :R→R is a polynomial and i=1, . . . ,2n, are like this.

V. PHASE SPACE QUANTIZATION ON R2

Consider the special case where G=R2, with � the Lebesgue measure. Fix ��n
 �n�0 � to be an
rthonormal basis of H, and let U :L2�R�→H be the unitary operator that maps the nth Hermite
unction hn to �n
. Define W�q , p�=UW0�q , p�U−1, where �W0�q , p�f��t�=ei1/2qpeiptf�t+q�, and
:R2→Aut�T�H�� by ��q , p��T�=W�−q , p�TW�−q , p�*. Now � is a continuous group homomor-
hism, satisfying �1�, with d=2�, and � the Lebesgue measure of R2. Let A± be the ladder
perators associated with the basis ��n
�, and define Q and P to be the closures of the operators
/�2�A++A−� and 1/�2i�A+−A−�, respectively. Then A+=A−

*, and Q and P are unitarily equivalent
o the position and momentum operators in L2�R� via U. Let N denote the self-adjoint operator

+A−.
According to the general result described above, each positive operator T of trace one gener-

tes the map f �L�f ,ET�, where

ET�B� = d−1�
B

��q,p��T�d��q,p� .

he generating operators T of the form T=�nwn�n
	n�, where �nwn=1, and wn�0 for each n, have
special significance, as they are the ones for which ET is covariant with respect to the phase
hifts also, i.e.,
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ei�NET��0,�� � B�e−i�N = ET��0,�� � �B + ���

or all �� �0,2�� and B�B��0,2���, where R2= �0,��� �0,2�� and the sum B+� is understood
odulo 2�. �cf. Ref. 23�.

Since �q , p��W�q , p� is a strongly continuous projective representation, and R2 is connected,
roposition 3 tells us that the range of ET does not contain nontrivial projections. In particular, the
orresponding quantization scheme cannot then produce spectral measures.

In this section, we inspect the possibility of applying the quantization scheme described earlier
o the classical position and momentum variables, using the quantization map �T=L�· ,ET� with
arious generating operators T. For each k�N, let xk and yk denote the functions �q , p��qk and
q , p�� pk.

The essential question is whether the operator measures B�ET�B�R� and B�ET�R�B� are
niquely determined by their respective moment operator sets ��T�xk� �k�N� and ��T�yk� �k�N�.
t is known that this is indeed the case when T is a number state �n
	n�, n�0 �see Ref. 13�. In that
ase, the operator sets ��T�xk� �k�N� and ��T�yk� �k�N� are eligible to represent the quantizations
f x and y, respectively. As is well known, the associated quantum mechanical observables are
nsharp position and momentum observables.

Our goal here is to explicitly determine the operators �T�xk� and �T�yk� for certain generating
perators T.

To begin with, we consider the square integrability domains. According to Proposition 4 and
he associated Remark, these sets are either dense or trivial. The following two Propositions
pecify them completely.

Proposition 5: Let k�N, let 
�H be a unit vector, and denote u=U−1
�L2�R�.
�a� D̃�xk ,E	�

	
�
�� �0� if and only if 
�D�Qk�, and in this case, D̃�xk ,E	�

	
�
�=D�Qk�.
�b� The statement of (a) holds true, if “x” and “Q” are replaced by “y” and “P.”
Proof: Let 0���H and f =U−1��L2�R�. We get

�
R2

q2kdE�,�
�

	
��q,p� =

1

2�
� q2k�� �	��W�− q,p��

�2dp�dq =� q2k�� �F�ū�·− q�f��p��2dp�dq

=� q2k�� �u�t − q��2�f�t��2dt�dq =� �� q2k�u�t − q��2�f�t��2dq�dt

=� � �t − q�2k�u�q��2�f�t��2dqdt ,

here Lemma 2 of Ref. 18, the unitarity of the Fourier-Plancherel operator, and Fubini’s theorem
ave been used. �Since all the functions and measures involved are positive, the calculation is
alid regardless of whether the integrals are finite or not.�

Now the last integral is finite if and only if � and 
 are both in D�Qk�. This is seen as follows.
Assume first that the last integral is finite. Then it follows from Fubini’s theorem that t� �t

q�2k�f�t��2�u�q��2 is integrable for almost all q, and q� �t−q�2k�u�q��2�f�t��2 is integrable for
lmost all t. Thus t� t2k�f�t��2 and q�q2k�u�q��2 are integrable. �The fact that t� t2k�f�t��2 is
ntegrable is seen as follows: Take q�R, such that �u�q��2�0 and t� �t−q�2k�f�t��2�u�q��2 is
ntegrable. This is possible, since �
��0, which implies that �u�q��2�0 in some non-null set. Then
se the fact that there exist positive constants A ,B ,M, such that At2k� �t−q�2k�Bt2k for �t��M.
he fact that q�q2k�u�q��2 is integrable follows similarly, since we assumed that also ����0.�
hus f and u are in the domain of the kth power of the position operator in L2�R�, so � ,

D�Qk�.

Conversely, assume that � ,
�D�Qk�, so that t� t2k�f�t��2 and q�q2k�u�q��2 are integrable.
ence also t� �tl � f�t��2 and q� �ql �u�q��2 are integrable for all l�2k, implying that �t ,q�� �t
q�2k�u�q��2�f�t��2 is integrable over R2. Thus the last integral of the above calculation is finite.

We conclude that D̃�xk ,E	�

	
�	�� �0� if and only if 
�D�Qk�, and in this case, D̃�xk ,
	�

	
�	 k
�=D�Q �.
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The result concerning D̃�yk ,E	�

	
�	� is obtained in an analogous manner by using the calcu-
ation

�
R2

p2kdE�,�
�

	
��q,p� =

1

2�
� p2k�� �	��W�− q,p��

�2dq�dp

=� p2k�� �F−1�Fu�·− p�Ff��q��2dq�dp

=� p2k�� �Fu�t − p��2�Ff�t��2dx�dp

=� �� p2k�Fu�t − p��2�Ff�t��2dp�dt

=� � �t − p�2k�Fu�p��2�Ff�t��2dpdt ,

s well as the fact that P=UF−1U−1QUFU−1.
Now we consider the case of an arbitrary positive operator T of trace one. The following

lementary fact is needed. The proof is included for the reader’s convenience.
Lemma 1: Let T be a positive operator of trace one. Let �
n� be an orthonormal sequence and

wn� a sequence of nonnegative numbers, such that T=�nwn�
n
	
n�. Let A be a closed operator.
hen

�
n=1

�

wn�A
n�2  � ,

f and only if A�T is a Hilbert-Schmidt operator. [Here we have denoted �A
n � =� whenever

n�D�A�, and used the convention 0·�=0.] In particular, the convergence of the series is not
ependent on the representation of T in terms of �
n� and �wn�.

Proof: Let S=�n=1
� wn �A
n�2����. Assume first that S�, so that, in particular, 
n�D�A� for

ll those n�N for which wn�0. Let ��H. Since the series �T=�n
�wn�
n
	
n� converges in the

perator norm, the vector series �n
�wn	
n ��

n converges to �T� in the norm of H. Since �
n�

s orthonormal, the Cauchy-Schwartz inequality gives

�
n

�wn�	
n��
��A
n� � �S���  � ,

o also the series �n
�wn	
n ��
A
n converges in norm. Since A is closed, it follows that �T�

D�A� and A�T� equals the sum of the latter series. In particular, D�A�T�=H. Now the previous
nequality shows that �A�T����S���, so A�T is bounded. Clearly ���K�A�T��2=S� if K is an
rthonormal basis of H, which includes all the 
n, so A�T is Hilbert-Schmidt.

Assume then that A�T is a Hilbert-Schmidt operator. Now 
n=wn
−1/2�T
n�D�A� if wn�0,

nd S=���K�A�T��2�, where K is an orthonormal basis including all the 
n. �

Proposition 6:

�a� Let k�N. Then D̃�xk ,ET�� �0� if and only if Qk�T is a Hilbert-Schmidt operator, and in

hat case, D̃�xk ,ET�=D�Qk�.
�b� The statement in �a� holds true, if “x” and “Q” are replaced by “y” and “P.”
Proof: Write T in the form T=�n=1

� wn�
n
	
n�, where �nwn=1, tn�0, and �
n� is an ortho-
ormal sequence in H. The series converges in the trace norm, as well as in the operator norm.

For each ��H, let A�,�

 be the density function of the positive measure E�,�

�

	
�. Since the
T 
n ˜ k T
ensity function of the measure E�,� is �nwnA�,�, we have ��D�x ,E � if and only if the function
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2k�nwnA�,�

n is integrable over R2. In view of the Proposition 5, it is therefore clear that

˜ �xk ,ET�� �0� only if 
n�D�Qk� for all those n�N for which wn�0, and that in any case,
˜ �xk ,ET��D�Qk�.

Assume now that 
n�D�Qk� for all n�N with wn�0, and 0���D�Qk�. Let un=U−1
n for
ach n. The monotone convergence theorem and the proof of Proposition 5 imply that

� x2kdE�,�
T = �

n

wn� x2kdE�,�
�
n
	
n� =� � �

n

�t − q�2kwn�un�q��2��U−1���t��2dtdq

regardless of whether the series converges or not�. Now if the above integral is finite �i.e., �

D̃�xk ,ET��, then Fubini’s theorem gives that q� �t−q�2k��U−1���t��2�nwn�un�q��2 is integrable
or almost all t, so by the argument similar to that used in the proof of the preceding Proposition,
t follows that �nwn�Qk
n�2=��nwnq2k�un�q��2dq�. On the other hand, if �nwn�Qk
n�2�, then
ach function q��nwnql�un�q��2, with l�2k is integrable, so that �q , t���n�t
q�2kwn�un�q��2��U−1���t��2 is integrable over R2. �Note that since we assumed that ��D�Qk�, the

unction t� tl��U−1���t��2 is integrable for each l�2k.� Thus �x2kdE�,�
T �, so �� D̃�xk ,ET�.

We have proved that D̃�xk ,ET�� �0� if and only if 
n�D�Qk� for all n�N with wn�0, and

�
n=1

�

wn�Qk
n�2  �

where it is understood that �Qk
n�=� if 
n�D�Qk� and we use the convention 0 ·�=��. Since
k is closed, �a� follows from the preceding Lemma. The statement of �b� is proved similarly,

ince

� x2kdE�,�
T =� � �

n

wn�t − p�2k�Fun�p��2�FU−1��t��2dpdt ,

P=UF−1U−1QUFU−1, and Pk is also closed. The proof is complete. �

Now we proceed to determine the operators L�xk ,ET� and L�yk ,ET� for T=�nwn�
n
	
n�
atisfying the condition of the preceding Proposition.

Theorem 4:
�a� Assume that T satisfies the condition of the previous Proposition �a�. Then L�xk ,ET�

�l=0
k skl

QQl, where skl
Q = � k

l
��−1�k−l Tr �Qk−lT�, with each Qk−lT a trace class operator.

�b� The statement in �a� holds true, if “�a�,” “x,” and “Q” are replaced by “�b�,” “y,” and “P.”
Proof: Assume first that T= �

	
� for 
�D�Qk�. Denote u=U−1
�L2�R�. Define a polyno-

ial p
 :R→R by

p
�t� = 	
��t − Q�k

 = �
l=0

k �k

l
��− 1�k−l	
�Qk−l

tl.

ince p
 is a polynomial of order k, the operator p
�Q� is self-adjoint, and has the domain D�Qk�.
hus by Proposition 5 we have D�p
�Q��=D�Qk�= D̃�xk ,E	�

	
�
�.

Let �� D̃�xk ,E	�

	
�
��D�xk ,E	�

	
�
�, and ��H. Let f =U−1�, g=U−1�. Since the function

�q,p� � qk	��W�− q,p��

	��W�− q,p��



2 k 	�

	
�

s integrable over R �by the definition of D�x ,E ��, we get
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	��L�xk,E�

	
���
 = �
R2

qkdE�,�
�

	
��q,p� =

1

2�
� qk�� 	��W�− q,p��

	��W�− q,p��

dp�dq

=� qk�� F�ū�·− q�g��p�F�ū�·− q�f��p�dp�dq

=� qk�� u�t − q�g�t�u�t − q�f�t�dt�dq =� �� qk�u�t − q��2dq�g�t�f�t�dt

=� �� �t − q�k�u�q��2dq�g�t�f�t�dt ,

=� 	
��t − Q�k�

g�t�f�t�dt = 	��p
�Q��
 .

he fifth equality follows from Fubini’s theorem, since �q , t��qk�u�t−q��2g�t�f�t� is integrable
because of the Cauchy-Schwarz inequality and the square integrability of the maps �q , t�� �u�t
q�g�t�� and �q , t�� �qku�t−q�f�t��, the latter being a consequence of the proof of Proposition 5.�

t follows that p
�Q��L�xk ,E	�

	
�
�.
The equality p
�Q�=L�xk ,E	�

	
�
� follows from the fact that being self-adjoint, the operator

p
�Q� cannot have a proper symmetric extension.
Now we take T=�nwn�
n
	
n� under the condition of the preceding Proposition, so that

˜ �xk ,ET�=D�Qk�= D̃�xk ,E	�

	
�
� for each n. Let ��D�Qk� and ��H, and f ,g be as before.
According to Proposition 1 of Ref. 18, we have

	��L�xk,ET��
 = �
n=1

�

wn	��L�xk,E�
n
	
n���


= �
n=1

�

wn	��p
n�Q��
 = �
n=1

�

wn�
l=0

k �k

l
��− 1�k−l	
n�Qk−l
n
	��Ql�
 .

ince

�Qk−l
n�2 =� q2�k−l���U−1
n��q��2dq � 1 +� q2k��U−1
n��q��2dq = 1 + �Qk
n� ,

t follows from the preceding Lemma that also each Qk−l�T is defined in all of H and is a
ilbert-Schmidt operator. Thus each Qk−lT=Qk−l�T�T is defined in all of H and is a bounded
perator of trace class. Thus the series �nwn	
n �Qk−l
n
 converges �clearly to Tr �Qk−lT�� for each
, so

	��L�xk,ET��
 = �
l=0

k

skl
Q	��Ql�
 .

ince � was arbitrarily chosen from the set D̃�xk ,ET�=D�Qk� and the operator �l=0
k skl

QQl is self-
djoint, we conclude that L�xk ,ET�=�l=0

k skl
QQl, and the proof of �a� is complete.

Statement �b� is proved similarly by using the unitary equivalence of Q and P. �

Remark: As mentioned at the beginning of the section, the uniqueness of the operator measure
hat gives the moment operators of Theorem 4, is verified only in the case where T= �n
	n� for
ome n. The uniqueness question in the general case remains open.

We close this section with a remark on another application of our quantization scheme.
onsider the function h�q , p�= 1

2 �q2+ p2�, i.e., the classical oscillator energy variable. It is known
hat for each n�N, the operators ��n
	n��hk�, k�N, are the moment operators of the polar margin

�n
	n�
f the phase space observable E , and that the marginal observable is uniquely determined by
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ts moments.12 Thus a quantization of h is given by the set ��	�n
	n�
�hk� �k�N� of operators. These
perators were determined explicitly in Ref. 22; they are certain polynomials of the usual oscil-
ator Hamiltonian 1

2 �Q2+ P2�. The quantized oscillator energy observable is the unsharp number
bservable �see Ref. 4, p. 90�.

. OPTIMAL PHASE SPACE QUANTIZATION IN R2

Consider the situation of the previous section. At least in the case where T= �n
	n�, the quan-
izations of the position and momentum variables x and y corresponding to the covariant quanti-
ation map �T=L�· ,ET� are the Cartesian margins of ET, or, equivalently, the sets of the operators
�T�xk� �k�N� and ��T�yk� �k�N�. If the margins were projection valued, the quantization of, e.g.,
would just be the spectral measure of L�x ,ET�, with each operator L�xk ,ET� equal to the corre-

ponding power of L�x ,ET�. Although this is not the case, we can still try to find those generating
perators T for which the situation would be in some sense close to this ideal situation, where only
he first power of x is needed to determine its quantization.

First, we can find the generating operators T that give L�x ,ET�=Q and L�y ,ET�= P, so as to
ake the operators �T�x� and �T�y� equal to the actual position and momentum operators. In view

f Theorem 4, we know that the square integrability domains of L�x ,ET� and L�y ,ET� are non-
rivial if and only if Q�T and P�T are Hilbert-Schmidt operators. In that case we have

L�x,ET� = Q − Tr �QT�I ,

L�y,ET� = P − Tr �PT�I .

o if we assume that the square integrability domains of L�x ,ET� and L�y ,ET� are nontrivial, we
ave L�x ,ET�=Q and L�y ,ET�= P exactly when T is such that Tr �QT�=Tr �PT�=0. This occurs,
or example, if we choose T to be a mixture of number states, i.e., T=�nwn�n
	n�. Then the above
ilbert-Schmidt conditions take the form �nwnn�.18

Consider next the operators �T�x2� and �T�y2�. According to Theorem 4, they are given by

L�x2,ET� = Q2 − 2Tr �QT�Q + Tr �Q2T�I ,

L�y2,ET� = P2 − 2Tr �PT�P + Tr �P2T�I ,

rovided that Q2�T and P2�T are Hilbert-Schmidt operators �or, equivalently, that D̃�x2 ,ET� and
˜ �y2 ,ET� are nontrivial�. In order to make the situation close to the spectral measure case, we

ould like to minimize the “noise” operators RT�x�=L�x2 ,ET�2−L�x ,ET�2 and RT�y�=L�y2 ,ET�2

L�y ,ET�2. Now

RT�x� = �Tr �Q2T� − Tr �QT�2�I = Var�Q,T�I ,

RT�y� = �Tr �P2T� − Tr �PT�2�I = Var�P,T�I ,

n the domains D�Q2� and D�P2�, respectively, where, e.g., Var�Q ,T� denotes the variance of the
robability measure pT

Q
ªTr �TEQ�·��, with EQ the spectral measure of Q. The last equalities are

btained as follows: Let T=�nwn�
n
	
n�, pT
Q=Tr �TEQ�·��, and pn

Q= 	
n �EQ�·�
n
, where EQ is the
pectral measure of Q. Now pT

Q=�nwnpn
Q, with the series converging absolutely in the total varia-
ion norm, so we have �by, e.g., Lemma 1 of Ref. 18� that
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Tr �Q2T� − Tr �QT�2 = �
n

wn	
n�Q2
n
 − ��
n

wn	
n�Q
n
�2

= �
n

wn� x2dpn
Q − ��

n

wn� xdpn
Q�2

=� x2dpT
Q − �� xdpT

Q�2

.

herefore, RT�x�=Var�Q ,T�. The result RT�y�=Var�P ,T�I follows similarly. Since Var�Q ,T� and
ar�P ,T� are always positive, we see explicitly that RT�x� and RT�y� are never zero.

As is well known, the generating operator T can be chosen so that, e.g., RT�x�=Var�Q ,T�I is
rbitrarily small �in the sense that �RT�x��=Var�Q ,T� is such�, but then RT�y� becomes large,
ecause of the inequality Var�Q ,T�Var�P ,T��

1
4 . The product RT�x�RT�y� can reach its lower

ound 1
4 only in the case where T is a vector state of minimal uncertainty. If we assume that

r �QT�=0=Tr �PT� as discussed before, the operators T that give RT�x�RT�y�= 1
4 are of the form

= �

	
�, with

�U−1
��t� = ����q�−1/2e−�t2/4��q�2�,

here �q�0 �in fact, ��q�2=Var�Q , �

	
�� �Ref. 35, p. 92��. Moreover, we could require that
T�x�=RT�y�, so as to make the situation symmetric between x and y. This leaves us with only one
enerating operator, namely T= �0
	0�. Note that this choice indeed gives a quantization of position
nd momentum, for the associated operator measure is uniquely determined by its moment opera-
ors �see Remark of Theorem 4�.

I. WHEN IS A POSITIVE OPERATOR MEASURE PROJECTION VALUED?

Let E :B�R�→L�H� be a positive operator measure. If E is a spectral measure, the first

oment L�x ,E� is always self-adjoint on the domain D̃�x ,E�, and �x2dE�,�= �L�x ,E���2 for all

� D̃�x ,E�. In the case of a general positive operator measure, this need not be true, as the above
ase of the Cartesian margins of the phase space observable ET demonstrates. It turns out that this
ondition is sufficient for a positive operator E to be a spectral measure. This is explained in Ref.
, p. 130, but the �sketch of� proof given there does not contain certain details, and so we give a
slightly different� proof here as part �b� of the following Proposition.

An adaptation of the steps leading to the result in Ref. 31, p. 466 gives part �a� of the

ollowing Proposition. For each k�N, we let L̃�xk ,E� denote the restriction of L�xk ,E� to D̃�xk ,E�.
Proposition 7: Let E :B�R�→L�H� be a positive operator measure, such that

� x2dE�,� = �L�x,E���2

or all �� D̃�x ,E�.

a� L̃�xn ,E�= L̃�x ,E�n for all n�N.

b� If L̃�x ,E� is assumed to be self-adjoint, then E is projection valued.

Proof: Let P :B�R�→K be a Naimark dilation of E into a spectral measure acting on a Hilbert
pace K. Let V :H→K be the associated isometric map, so that E�B�=V*P�B�V for all B
B�R�. Denote by PH the projection VV*, acting on K with VH as its range. �Note that V*V is the

dentity operator of H.� Now L̃�xk ,E�=V*L�xk , P�V for each k�N �see Ref. 24�. Since P is a
pectral measure, we thus have

L̃�xk,E� = V*AkV �5�

˜
or all k�N, where A=L�x , P�. Denote E1=L�x ,E�. We prove by induction that for each n�N,
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D̃�xn,E� = D�E1
n�, and AnV� = VE1

n� for all � � D̃�xn,E� . �6�

ake first n=1, and let �� D̃�x ,E�=D�E1�=D�AV�. Since the measures E�,� and PV�,V� are the
ame, and P is a spectral measure, the assumption implies that

�AV��2 =� x2dPV�,V� =� x2dE�,� = �E1��2.

sing �5� and the fact that V is isometric, we thus get

�AV��2 = �E1��2 = �V*AV��2 = �PHAV��2.

ince PH is a projection, this means that

AV� = PHAV� = VE1� for all � � D̃�x,E� = D�E1� , �7�

.e., �6� holds for n=1. Now let k�N, k�1, and assume that �6� holds for n=k−1. Let �

D̃�xk ,E�. By �5�, this implies that V��D�Ak�, so that AV��D�Ak−1�. Since �

D̃�xk ,E�� D̃�x ,E�, it thus follows from �7� that V�E1��=AV��D�Ak−1�, so �5� and the induc-

ion assumption give E1�� D̃�xk−1 ,E�=D�E1
k−1�. Hence, ��D�E1

k�. Conversely, if ��D�E1
k�,

hen �� D̃�x ,E�=D�AV� and E1��D�E1
k−1�= D̃�xk−1 ,E�, so AV�=V�E1���D�Ak−1� by �7� and

5�, implying that V��D�Ak�, i.e., �� D̃�xk ,E�. Thus, D̃�xk ,E�=D�E1
k�. Let � be in this set. Since

ow E1��D�E1
k−1�, the induction assumption �along with the fact that AV�=V�E1��� gives

AkV� = Ak−1�AV�� = Ak−1V�E1�� = VE1
k−1�E1�� = VE1

k� ,

ompleting the induction proof of �6�.
Let n�N. Now �5� and �6� give L̃�xn ,E��=V*AnV�=V*VE1

n�=E1
n� for all �� D̃�xn ,E�

D�E1
n�, so L̃�xn ,E�= L̃�x ,E�n. This proves �a�.

If we assume that L̃�x ,E� is selfadjoint, it follows from �7� that PHD�A��D�A�. This fact is
roved in Ref. 34, but we include the proof here for the reader’s convenience. To that end, let
�D�A�, and let ��D�E1� be arbitrary. Using �7�, we get

	E1��V*�
 = 	VE1���
 = 	AV���
 = 	��V*A�
 ,

hich implies that V*��D�E1
*�. Since E1 is self-adjoint, V*��D�E1�, so PH�=V�V*��

VD�E1�. But VD�E1� is contained in D�A�, because D�E1�=D�AV�. Thus PH��D�A�, proving
he fact PHD�A��D�A�. In addition, the above calculation shows that V*D�A��D�E1�, and

1V*�=E1
*�V*��=V*A� for all ��D�A�. Combining this with �7�, we get

PHA� = VV*A� = V�E1V*�� = VE1�V*�� = AV�V*�� = APH�

or all ��D�A�. Consequently, PHA�APH. Since A is self-adjoint, this implies that PH com-
utes with all the spectral projections P�B� �Ref. 31, pp. 301 and 320�. It follows that each E�B�

s a projection �Ref. 27, Corollary 2.2.2.�, so the proof is complete. �

Remark: As mentioned before, the result appearing in part �b� of the above Proposition can be
ound in the classic book of Akhiezer and Glazman.1 The result seems to be somewhat well known
see, e.g., Refs. 30 and 37 both of which refer to the works of Akhiezer and Glazman�. However,
he fact is given in a much later work21 without reference to Ref. 1 �though we have not been able
o convince ourselves of their argumentation�, and Werner �Ref. 39, p. 796� only mentions that it
olds for normalized compactly supported operator measures. Moreover, Ingarden �Ref. 17, p. 87�
ays that all the semispectral measures with the same self-adjoint first moment A have variances
reater than or equal to that of the spectral measure of A. Part �b� of the above Proposition gives

ore—it asserts that the minimum variance occurs only in the case of the spectral measure of A.
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e note also that the proof given in Ref. 17, p. 87 considers only compactly supported semispec-
ral measures, and contains no reference to Ref. 1.

Now we get the following characterization for projection valued measures.

Theorem 5: Let E :B�R�→L�H� be a positive normalized operator measure, such that L̃�x ,E�
s self-adjoint. Then the following conditions are equivalent.

i� E is a spectral measure;
ii� L�x2 ,E�=L�x ,E�2;

iii� �x2dE�,�= �L�x ,E���2 for all �� D̃�x ,E�.

Proof. Since L̃�x ,E� is self-adjoint, it coincides with its symmetric extension L�x ,E�.
Assume that �i� holds. Then L̃�x2 ,E�= L̃�x ,E�2 by a standard result of spectral theory. Since E

s projection valued, we have also L̃�x2 ,E�=L�x2 ,E�, so �ii� holds.
Assume �ii�. Then we have

� x2dE�,� = �L�x,E���2 �8�

or all ��D�x2 ,E�. In order to get �iii�, we have to establish this identity for vectors in the larger

et D�x ,E�= D̃�x ,E�. Let �� D̃�x ,E�=D�x ,E�. Since L�x ,E�= L̃�x ,E� is self-adjoint, the closure
f the restriction of L�x ,E� to the domain of L�x ,E�2 is L�x ,E� itself �Ref. 11, p. 1245�. Therefore,
y �ii�, we can pick a sequence ��n� of vectors in D�x2 ,E�, converging to �, such that �L�x ,E��n�
onverges to L�x ,E��. Since �n�D�x2 ,E� for each n, �8� gives that

lim
n
� x2dE�n,�n

= lim
n

�L�x,E��n�2 = �L�x,E���2.

ince �E�n,�n
�B�−E�,��B��� ���n�+ �����E�R�� ��n−�� for all n�N and B�B�R�, the sequence

E�,��B�� converges to E�,��B� uniformly for B�B�R�, so the sequence �E�,�� of positive mea-
ures converges to E�,� in the total variation norm �Ref. 10, p. 97�. It follows by Ref. 22, Lemma
.5 that

� x2dE�,� � �L�x,E���2,� � D�x,E� . �9�

t follows, e.g., from the proof of Lemma A.2 of Ref. 22 �see Ref. 3, p. 65� that �L�x ,E���2

�x2dE�,� for all ��D�x ,E�. Combining this with �9�, we get �iii�.
Because �iii� implies �i� by the preceding Proposition, the proof is complete. �
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A “state property system” is the mathematical structure which models an arbitrary
physical system by means of its set of states, its set of properties, and a relation of
“actuality of a certain property for a certain state.” We work out a new axiomati-
zation for standard quantum mechanics, starting with the basic notion of state
property system, and making use of a generalization of the standard quantum
mechanical notion of “superposition” for state property systems. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2217807�

. INTRODUCTION

In standard quantum mechanics a state pc̄ of a quantum entity S is represented by the one-
imensional subspace or the ray c̄ of a separable complex Hilbert space H. An experiment eA

esting an observable A is represented by a self-adjoint operator A on H, and the set of outcomes
f this experiment eA is the spectrum spec�A� of this self-adjoint operator A. Measurable subsets
�spec�A� represent the events �in the sense of probability theory� of outcomes. The interaction
f the experiment eA with the physical entity being in state pc̄ is described in the following way:
1� the probability for a specific event B�spec�A� to occur if the entity is in a specific state pc̄ is
iven by �c , PB�c��, where PB is the spectral projection corresponding to B, c is the unit vector in
he ray c̄ representing state pc̄, and �,� is the in-product in the Hilbert space H; �2� if the outcome

s contained in B, the state pc̄ is changed to pd̄ where d̄ is the ray generated by PB�c�.
Hence in standard quantum mechanics the states and experiments are represented by means of

athematical entities of a complex Hilbert space. The crucial role that is played by this complex
ilbert space is very much ad hoc, in the sense that there are no physically plausible reasons why

he Hilbert space structure should be at the origin of both the structure of the state space, as well
s the structure of the experiments.

This initiated the search for an axiomatic theory for quantum mechanics where the Hilbert
pace structure would be derived from more general and physically more plausible axioms. The
rea of forming physical models in the field of quantum mechanics is very large, and often
nvolves philosophical problems of physics. Let us mention some of the most well known axiom-
tic approaches: the algebraic approach,1–3 where the basic notions are observables, the convexity
pproach,4–8 where the basic notion is the convex set of states, the empirical logic approach,9–13

here the authors start with primitive notions of an operation or a test, and the quantum logic
pproach,14–20 which starts with the set of experimental propositions.

Due to the original focus14 on the collection of “experimental propositions” of a physical
ntity—with the conviction that such an experimental proposition would be a good basic
oncept—most of the later axiomatics were constructed taking as their basic concept the set L of
xperimental propositions concerning an entity S. The first breakthrough came with a theorem of

�Electronic mail: diraerts@vub.ac.be
�
Electronic mail: pulmann@mat.savba.sk
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onstantin Piron, who proved that if L is a complete �axiom 1�, orthocomplemented �axiom 2�
tomic �axiom 3� lattice, which is weakly modular �axiom 4� and satisfies the covering law �axiom
�, then each irreducible component of the lattice L can be represented as the lattice of all
biorthogonal” subspaces of a vector space V over a division ring K �with some other properties
atisfied that we shall not explicitly address here�.17 Such a vector space is called an “orthomodu-
ar space” and also sometimes a “generalized Hilbert space.” It can be proven that an infinite
imensional orthomodular space over a division ring which is the real or complex numbers, or the
uaternions, is a Hilbert space. For a long time there did not even exist any other example of an
nfinite dimensional orthomodular space. The search for a further characterization of the real,
omplex, quaternionic Hilbert space started �see, e.g., Ref. 21�. Then Hans Keller constructed a
onclassical orthomodular space,22 and recently Maria Pia Solèr proved that any orthomodular
pace that contains an infinite orthonormal sequence is a real, complex, or quaternionic Hilbert
pace.23,24 It is under investigation in which way this result of Solèr can be used to formulate new
hysically plausible axioms.24–27

The axiomatic approach, apart from delivering an axiomatic foundation for quantum mechan-
cs, has been used fruitfully to study concrete problems in quantum mechanics. As an example we
ention the problem of the description of joint quantum entities, and the problems of entangle-
ent, nonlocality, and appearance of the complex numbers in quantum mechanics. Most recently

his problem has been studied within the axiomatic approach with very interesting results.28–34

Next to the idea of finding axioms that introduce the Hilbert space structure step by step was
he attempt to determine the basic notions for the axiomatics in a physically clear and operational
ay. “Operationality” means that the axioms should be introduced in such a way that they can be

elated to “real physical operations” that can be performed in the laboratory.
The approaches that have tried to formulate quantum mechanics operationally are the Geneva-

russels approach,17,18,35–41 the Amherst approach,9–13 and the Marburg approach.42,43 In the
resent article we elaborate further on the Geneva-Brussels approach. In the last versions of the
ormalism that were presented in this approach the power of making a good distinction between
he mathematical aspects of the formalism and its physical foundations had been identified.44,45

et us explain more concretely what we mean. In the older founding papers of the Geneva-
russels approach,35–41 although the physical foundation of the formalism is defined in a clear
ay, and the resulting mathematical structures are treated rigorously, it is not always clear what

re the “purely mathematical” properties of the structures that are at the origin of the results. That
s the reason that in more recent work on the formalism we have made an attempt to divide up the
hysical foundation and the resulting mathematical structure as much as possible. We first explain
n which way certain aspects of the mathematical structure arise from the physical foundation, but
hen, in a second step, define these aspects in a strictly mathematical way, such that propositions
nd theorems can be proven, “only” using the mathematical structure without physical interpreta-
ion. Afterwards, the results of these propositions and theorems can then be interpreted in a
hysical way again. This not only opens the way for mathematicians to start working on the
tructures, but also lends a greater axiomatic strength to the whole approach on the fundamental
evel. More concretely, it is the mathematical structure of a “state property system” that has been
dentified to be the proper mathematical structure of the Geneva-Brussels approach, i.e., the
tructure used to describe a physical entity by means of its states and properties.44–46 This step
urned out to be fruitful from the start, since we could prove that a state property system as a

athematical structure is isomorphic to a closure space.44–46 This means that the mathematics of
losure spaces can be translated to the mathematics of state property systems, and in this sense
ecomes relevant for the foundations of quantum mechanics. The step of dividing up the math-
matics from the physics in a systematic way also led to a scheme to derive the morphisms for the
tructures that we consider from a covariance principle rooted in the relation of a subentity to the
ntity of which it is a subentity.45,46 This paved the way to a categorical study of the mathematical
tructures involved.
Not only was it possible to connect with a state property system a closure space in an
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somorphic way, but, after we had introduced the morphisms starting from a merological covari-
nce principle, it was possible to prove that the category of state property systems and their
orphisms, that we have named SP, is equivalent to the category of closure spaces and continuous

unctions, denoted by Cls.45,46 More specifically we could prove that SP is the amnestic modifi-
ation of Cls.47

It could be proven that some of the axioms of axiomatic quantum mechanics17,36,37 correspond
o separation properties of the corresponding closure spaces.48 More concretely, the axiom of state
etermination in a state property system44 is equivalent to the T0 separation axiom of the corre-
ponding closure space,48,49 and the axiom of atomicity in a state property system44 is equivalent
o the T1 separation axiom of the corresponding closure space.50,51 More recently it has been
hown that “classical properties”36,38,40,41 of the state property system correspond to clopen �open
nd closed� sets of the closure space,52–54 and, explicitly making use of the categorical equiva-
ence, a decomposition theorem for a state property system into its nonclassical components can
e proved that corresponds to the decomposition of the corresponding closure space into its
onnected components.52,53,57

In the present article we put forward a new axiomatization for standard quantum mechanics,
tarting with the basic notion of “state property system,” and founded on the concept of “super-
osition,” that started in the quantum logic approach and was developed in Ref. 55. The general
eason for introducing the new axiomatization is to put under one roof the Geneva-Brussels
pproach in its recent form and the quantum logic approach and to combine the algebraic approach
nd the probabilistic approach. We also wish to find out how the recent development in projective
eometry �see Ref. 56� can be reflected in the axiomatization. A more specific reason for this new
xiomatization is to take it as a mathematical basis for further research into the problem of the
escription of joint quantum systems. Both authors have done extensive research on the problem
f the description of joint quantum systems.57–60,37,61–65 One of the hard problems is that all types
f product constructions on the level of the quantum logic structure give rise to a situation where
he joint quantum entity only has product states of the subentities. On the level of the Hilbert
pace, the joint system of two quantum systems is described by means of the tensor product of the
ilbert spaces of the subsystems, and in this case there is an abundance of nonproduct states,
iving rise to the well-known phenomenon of quantum entanglement. We plan to study the still
pen problem of coupled physical systems with entanglement, by investigating in which way we
an introduce “superpositions between product states” by means of the notion of superposition
hich we introduced in this axiomatization on the level of the quantum logic.

The notion of a superposition of states was introduced by Varadarajan66 for states as prob-
bility measures on quantum logics, i.e., orthomodular lattices. In the same sense it is also used in
ef. 55. In the present paper, we use a more general frame of a state property system to introduce

he notion of superposition. We use superpositions to create two kinds of closure operations. The
rst one, together with a few simple additional axioms, enables us to associate the structure of a
rojective geometry with our state property system. A very useful tool here is the material pre-
ented in the recent book by Faure and Frölicher.56 The first of our closure operations based on
uperposition leads to the formation of subspaces of a projective geometry. The second of our
losure operations enables us to characterize closed subspaces of the projective geometry. Prob-
bilities enter into play in order to introduce orthocomplementation on a subset L0 of the lattice L,
nd we show that L0 can be organized into a �- orthomodular poset with an order determining set
f probability measures, which are supported by elements of the set �. The set L0 may be
nterpreted as a set of measurable properties, and may depend on the present state of knowledge
nd experimental techniques. In the following parts of the article, conditions are found under
hich the orthocomplementation can be extended to the whole L, and L then becomes a complete,

tomistic, orthocomplemented lattice. Moreover, L can be related with the closed subspaces of the
rojective geometry via the so-called Cartan map. The notion of “superposition principle” is
ntroduced to obtain irreducibility of the projective geometry. More generally, sectors are intro-
uced as the minimal subspaces in which the superposition principle holds, and their topological

haracterization as clopen subspaces is derived. In the following the classical properties �or the
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uperselection rules� are specified, and it is shown that they correspond exactly to the central
lements of the lattice L. In the following, we study conditions under which our projective
eometry may admit some deeper properties, described in Ref. 56, such as the Mackey property or
o become an orthogeometry. Although not all of our axioms have a physical meaning, we try to
pecify simple axioms which enable us to obtain different stages of the projective geometry.
ventually we find conditions under which a vector space can be associated with our state prop-
rty system, and we finish with an analogue of the famous Piron theorem.

I. STATE PROPERTY SYSTEMS AND SUPERPOSITION

Definition 1:44–46 We say that �� ,L ,�� is a state-property system if �� , � � is a preordered set,
L , � , Ù , Ú � is a complete lattice with the greatest element I and the smallest element 0, and � is
function

�:� → P�L� �1�

uch that for p�� and �ai�i�L, we have

I � ��p� , �2�

0 � ��p� , �3�

ai � ��p� " i Û Ùiai � ��p� �for an arbitrary set of indices� �4�

nd for p ,q�� and a ,b�L we have

p � q Û ��q� � ��p� , �5�

a � b Û " r � �:a � ��r� Þ b � ��r� . �6�

lements of � are called states, elements of L are called properties.
Let �� ,L ,�� be a state-property system. For S�� define S���S� as follows. First define, for

ny p ,q��,

��p,q� ª �s � �:a � ��p� � ��q� Þ a � ��s�� . �7�

e will say that a subset S�� is �-closed if for any p ,q�S we have ��p ,q��S. Denote by L���
the set of all �-closed subsets. For any P��, define

��P� ª � �G:G � L���,P � G� . �8�

That is, ��P� is the intersection of all �-closed subsets of � that contain P.
Lemma 1: �i� For every subset P��, ��P��L���. �ii� A subset S�� is �-closed if and only

f S=��S�.
Proof: �i� Let p ,q���P�, then p ,q�G for every P�G�L���. Therefore ��p ,q��G for

every such G, and consequently ��p ,q����P�.
�ii� If S=��S�, then S�L��� by �i�. If S is �-closed, then clearly, S is the smallest �-closed

subset of � containing S, hence ��S�=S. �

That is,

L��� = �S � �:S = ��S�� . �9�

Proof of the following statement is immediate.
Lemma 2: The mapping � : P���P� satisfies the following properties:

�C1� P���P�,

�C2� P1���P2�Þ��P1����P2�.
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We recall that a map C :P�X�→P�X� satisfying conditions �C1� and �C2� is a closure operator
n the set X �Ref. 56, Definition 3.1.1�. Consequently, � is a closure operator on the set �.

According to Ref. 56, Remark 3.1.2, the following conditions are satisfied:

�10� ��A�B�=����A��B�=����A����B��,
�20� ��A�B������A��B����A����B�.

More generally,

�30� ���A�=�����A��,
�40� ���A�� ���A�,

here A�P��� is an arbitrary subset and ��A� denotes the set ���A� :A�A�.
Recall that a system S of sets is an intersection system if A�S implies �A�S. By �Ref. 56,

roposition 3.1.4�, L��� is an intersection system.
Definition 2: We say that a state-property system �� ,L ,�� satisfies property

�A� if there are at least two distinct states r ,s�� and for all p ,q��, ��p����q�Þ p=q.

Property �A� implies that � :�→P�L� is injective. By Ref. 46, Proposition 14, the pre-order
on � defined by �5� of Definition 1 is a partial order. Property �A� implies that � has only a

rivial order p�q iff p=q.
Recall that a closure operator C on a set X is called simple if it satisfies the additional axiom:

�C5� C���=� and C�x�= �x� for every x�X.

�We write C�x� instead of C��x���. If X contains at least two different points, then the second
property in �C5� implies the first one. Indeed, �� �x� , � � �y� implies C����C�x��C�y�

�x�� �y�=�.
Lemma 3: Let �� ,L ,�� be a state-property system such that there are at least two different

tates p ,q��. Then the closure operator � is simple if and only if property �A� of Definition 2
olds.

Proof: If �A� holds, then for every p��,

��p� = �s � �:a � ��p� Þ a � ��s�� = �s � �:��p� � ��s�� = �p� .

f ���� contains r, then �������q�= �q� implies r� �q�, hence r=q for all q, a contradiction.
Conversely, if � is simple and ��p����q� for p�q, then

��p� = �s � �:��p� � ��s�� � q

ontradicting ��p�= �p�. �

Proposition 1: Let �� ,L ,�� be a state property system satisfying �A�. Then L is a complete
tomistic lattice with the lattice operations

∧S� = � S�, ∨ S� = ���S�� .

Proof: Follows by Ref. 56, Proposition 3.1.4. �

In what follows, we introduce the notion of a superposition of states in analogy with Ref. 19.
Definition 3: A state p�� is a superposition of a set of states S, S��, if for each a�L,

���s� for all s�S implies a���p�, i.e., if �s�S��s����p�.
For S��, define

S̄ = �p � �: �
s�S

��s� � ��p�� . �10�

That is, S̄ is the set of all superpositions of states in S. Obviously, for arbitrary p ,q��,

−
�p,q� = ��p,q� . �11�
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Definition 4: A state p�� is a minimal superposition of a subset S�� if

i� p� S̄,

ii� p� Q̄ for any proper subset Q�S.

For example, if �A� holds, then s� �p ,q�− is a minimal superposition iff s�p, s�q.
Definition 5: Let �� ,L ,�� be a state-property system.
�1� We will say that a minimal superposition principle �MSP� holds for �� ,L ,�� if for every

ubset S�� and for every minimal superposition p of S,

�S1 � p�− � S̄2 � � �12�

henever S1 ,S2 are proper subsets of S such that S1�S2=� and S1�S2=S.
�2� We will say that a finite MSP �f-MSP� holds for �� ,L ,�� if �12� holds for every finite

ubset S��.
�3� We will say that an n-MSP holds for �� ,L ,�� if �12� holds for every subset S�� with the

ardinality at most n.
For example, the 3-MSP holds for a state-property system �� ,L ,�� iff for every p ,q ,r ,s

� �not necessarily all different�, if p� �q ,r ,s�− is a minimal superposition, then
p ,q�−� �r ,s�−�� and �p ,q ,r�−� �s�−��. Clearly, MSP implies f-MSP, which in turn implies
-MSP for every n�N. Observe also that if �A� holds, then 2-MSP is the following exchange
roperty: if r� �p ,q�− and r�p ,q, then p� �r ,q�−.

Theorem 1: Let �� ,L ,�� be a state-property system with properties �A� and 3-MSP. Then the
perator *:���→P��� defined by p*q=��p ,q� has the following properties:

�P1� p* p= �p�,
�P2� p� p*q for all p ,q��,
�P3� p�q*r and r�s* t and p�s imply �p*s�� �q* t���

That is, the system �� , * � is a projective geometry.56

Proof: �P1� By �A�, ��p , p�= �p�.
�P2� Clearly, p*q=��p ,q�� �p�.
�P3� From p� �q ,r�− and r� �s , t�− we obtain p� �q ,s , t�−. If p�q*s, respectively, p�s* t,

hen either p=q, respectively, p= t, or 2-MSP implies that q� p*s, respectively, t� p*s. In every
case, �P3� is satisfied. It remains the case that either p�q* t or p is a minimal superposition of
�q ,s , t�. In the first case, p� �p*s�� �q* t� holds by �P2�. In the second case the statement follows
by 3-MSP. �

By Ref. 56, Definition 2.3.1, the �-closed subsets of � coincide, under the suppositions of
Theorem 1, with the subspaces of the projective geometry �� , * � associated with �� ,L ,��. Con-
equently, we have the following.

Theorem 2: Let �� ,L ,�� be a state-property system satisfying conditions �A� and 3-MSP.
hen L��� is a projective lattice, i.e., a complete atomistic meet-continuous modular lattice.

Therefore we will call the elements of L��� the subspaces of �. From the next theorem we
an derive what properties satisfy the closure operator � on the system �� , * � with p*q
��p ,q�. �We write ��x� instead of ���x�� and ��A�x� instead of ��A� �x��.�

Theorem 3: Let �� ,L ,�� be a state-property system such that �� , * � with p*q=��p ,q� is a
rojective geometry, i.e., properties �P1�, �P2�, and �P3� are satisfied. Then the closure operator �
atisfies the following conditions:

�C3� x���A� implies x���B� for some finite subset B�A, i.e., � is finitary.
�C4� x���A� and x���A�y� imply y���A�x�, i.e., � satisfies the exchange property.
�C5� ����=� and ��x�= �x�, i.e., � is simple.
�C6� ��A�B�= � ���x ,y� :x���A� and y���B�� for every A ,B��.
Proof: See Ref. 56, Theorem 3.3.4. �
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Notice that �C6� is called a projective law. According to Ref. 56, Lemma 3.3.2, if a closure
perator C :P�X�→P�X� satisfies the projective law, then for any nonempty subset A�X and any
�X one has

�C7� C�A�b�= � �C�x ,b� :x�C�A��.

Moreover, the converse holds provided the closure operator C satisfies �C3�, i.e., is finitary. The
following proposition follows by Ref. 56, Proposition 3.3.4.

Proposition 2: Let the closure operator � :P���→P��� satisfy properties �C4�, �C5�, and
�C7�. The couple �� , * � where p*q=��p ,q� is a projective geometry.

Now we will study connections between the mappings A���A� and A� Ā, A��. First we

rove the following properties of A� Ā.

Lemma 4: Let �� ,A ,�� be a state-property system. The operator A� Ā satisfies the following
roperties for every A ,B��.

�i� A� Ā.

�ii� A� B̄Þ Ā� B̄.

�iii� Ā�L���.

Proof: �i� Follows directly from the definition.

�ii� Let p� Ā, i.e., �s�A��s����p�. A� B̄ implies that for every s�A, �q�B��q����s�, so

hat �q�B��q���s�A��s����p�. Hence p� B̄, and so Ā� B̄.

�iii� From ��p ,q�= �p ,q�−� Ā for every p ,q�A we see that Ā is �-closed, i.e., Ā=��Ā�. �

Observe that �i� and �ii� in Lemma 4 coincide with the properties �C1� and �C2�, respectively,

o that A� Ā is a closure operator. Let us denote by F��� the set of superposition-closed subsets
f �, that is,

F��� ª �S � �:S̄ = S� . �13�

Proposition 3: Let �� ,L ,�� be a state property system satisfying condition �A�. Then the set
��� is a complete atomistic lattice. Moreover, if Si�F��� , i� I, for any index set I, then

i�ISi=�i�ISi, and ∨i�ISi= ��i�ISi�−.

Proof: If S��, S=� or S= �s�, then S= S̄ by condition �A�. So one-element sets belong to
��� which are atoms in F���. From the properties of closure operators �Ref. 56, Proposition
.1.4�, we get ∧i�ISi=�i�ISi, and ∨i�ISi= ��i�ISi�−. �

Theorem 4: Let �� ,L ,�� be a state-property system such that condition �A� is satisfied.

�i� If 3-MSP holds, then for every p ,q ,s��,

�p,q,s�− = ��p,q,s� . �14�

�ii� If f-MSP holds, then for every finite subset A= �s1 ,s2 , . . . ,sn���,

��A� = Ā . �15�

Proof: �i� For every p ,q��, ��p ,q�= �p ,q�−, and by Lemma 4�iii�, ��p ,q ,s�� �p ,q ,s�− for
very p ,q ,s��. To prove the converse inclusion, let t� �p ,q ,s�−. If t� �p ,q�−, then t
��p ,q����p ,q ,s�. Hence we may assume that t is a minimal superposition. Then by 3-MSP,

here is r� �p , t�−� �q ,s�−. By 2-MSP, t���r , p����p ,q ,s�. This implies that
p ,q ,s�−���p ,q ,s�.

�ii� We will proceed by induction. For n=2, the statement holds. Assume that the statement

olds for every k�n, k ,n�N. Let A= �s1 ,s2 . . . ,sn ,sn+1�, and assume that t� Ā is a minimal
uperposition. By f-MSP and induction hypothesis, there is r� �t ,sn+1�−

−
� �s1 , . . . ,sn� ���s1 , . . . ,sn�. Now t���r ,sn+1�������s1 , . . . ,sn��sn+1����A�. If t is not a

                                                                                                            



m

e

I

a
i

C
	

t

�

t
w
m

f

f
�
L

�
f

�
�

072105-8 D. Aerts and S. Pulmannova J. Math. Phys. 47, 072105 �2006�

                        
inimal superposition, there is a subset B�A such that t� B̄=��B����A� by induction hypoth-

sis. Hence Ā���A�. The converse holds by Lemma 4�iii�. �

II. PROBABILITY MEASURES AND ORTHOCOMPLEMENTATION

Let �� ,L ,�� be a state-property system. Let there be a subset L0�L such that L0 contains 0
nd 1, and let there be a mapping 	 :��L0→ �0,1�, �p ,a��	p�a�, where �0,1� is the unit
nterval of the reals, such that

�Oi� 	p�a�=1 iff a���p� �a�L0�,
�Oii� a�b implies 	p�a��	p�b� �a ,b�L0�,
�Oiii�If �ai�i=1


 �L0 is a sequence such that for all i , j, and every p��,

	p�ai� + 	p�aj� � 1,

then there is b�L0 such that

	p�b� + 	
i=1




	p�ai� = 1.

learly, 	p�I�=1 and 	p�0�=0 for all p��. Define a relation ��L0�L0 by setting a�b iff

p�a�+	p�b��1 for all p��. We will say that a and b are orthogonal if a�b.
Lemma 5: Let �L ,� ,�� be a state-property system. Let L0�L and 	 :��L0→ �0,1� satisfy

he assumptions �Oi�–�Oiii�. Then

�i� 	p�a��	p�b� for every p�� implies a�b.
�ii� 	p�a�=	p�b� for all p�� if and only if a=b.
�iii� For every a�L0 there is a unique element a��L0 such that 	p�a�+	p�a��=1 for all

p��. Moreover, the mapping a�a� is an orthocomplementation in L0, i.e., �1� a
�bÞb��a�, �2� a�ª �a���=a, �3� aÚ0a�= I, aÙ0a�=0, where Ú0 and Ù0 denote the
supremum and infimum in L0, respectively.

�iv� For every sequence �ai�i=1

 of mutually orthogonal elements in L0, their supremum a

=∨0i=1

 ai exists in L0, and coincides with the supremum of �ai�i=1


 in L.

Proof: �i� If 	p�a��	p�b� for every p��, then 	p�a�=1Þ	p�b�=1, hence by �Oi�, a
��p�Þb���p�, which implies a�b.

�ii� Follows by �Oii� and �i�.
�iii� Let a�L0, and consider the sequence �ai�i=1


 where a1=a, ai=0, i=2,3 , . . . . By �Oiii�,
here is b�L0 such that 	p�b�+	p�a�=1 for all p��, i.e., 	p�b�=1−	p�a� for all p��. Hence
e may put a�=b. By �ii�, a� is uniquely defined. Now we prove that a�a� is an orthocomple-
entation.

�1� a�bÞ	p�a��	p�b� for all p��, which implies 	p�b��=1−	p�b��1−	p�a�=	p�a��
or all p��, which by �ii� entails b��a�.

�2� 	p��a����=1−	p�a��=1− �1−	p�a��=	p�a� for all p��, which entails a�=a.
�3� Let c�L0 be such that a�c ,a��c. From 	p�a�+	p�a��=1 and 	p�a�=1 iff a���p�, it

ollows that a���p�Þa����p�, and vice versa. Hence a���p� and a����p� happen for no p
�, which entails, by Definition 1, that aÙa�=0 in L. Since 0�L0, the infimum of a and a� in

0 is 0.
Properties �1� and �2� imply de Morgan laws in L0 :aÚ0b exists, then �aÚ0b��=a�Ù0b�, and

aÙ0b��=a�Ú0b� in the sense that if one side exists, so does the other, and they are equal. There-
ore for every a�L0, a�Ù0a�=0 implies �a�Ù0a���=aÚ0a�= I.

�iv� Let �ai�i=1

 be a sequence of pairwise orthogonal elements of L0. Let b be the element from

Oiii�. Put aªb�, then for every p�� we have 	p�a�=	i=1

 	p�ai�. It follows that 	p�ai�
	p�a� for all i�N, and for all p��. Hence a is an upper bound of ai , i=1,2 , . . . . Let c�L0 be

                                                                                                            



a
o

F

s

d

→
i

B
n
�
+
=
H

h
f

L
fi

e

a
i

I
s
a

T

a

072105-9 Representation of state property systems J. Math. Phys. 47, 072105 �2006�

                        
ny other upper bound of ai , i=1,2 , . . . . Then ai�c for all iimplies that c� ,a1 ,a2 , . . . are mutually
rthogonal. By �Oiii�, there is an element d�L0 such that for every p��,

	p�d� = 	p�c�� + 	
i=1




	p�ai� = 	p�c�� + 	p�a� .

rom this we obtain 	p�c�=	p�d��+	p�a�, which entails by �i� that a�c.
Let u be the supremum of �ai�i=1


 . The we have "p��, u���p� if and only if ai���p� for
ome i. But then u���p� if and only if a���p�, which entails that u=a. �

We will say that a set F of functions f :L→ �0,1� defined on a partially ordered set L is order
etermining if a�bÛ " f �F , f�a�� f�b�.

Theorem 5: Let �L ,� ,�� be a state-property system, L0�L, and let Mª �	 :��L0

�0,1�� satisfy conditions �Oi�–�Oiii�. Then the set L0 is a �-orthomodular poset and the set M
s order determining for L0. Moreover, for every a�L0, a�0, there is p�� such that 	p�a�=1.

Proof: By definition, the set L0 with the ordering inherited from L is a partially ordered set.
y Lemma 5, L0 is an orthocomplemented set such that the supremum of every pairwise orthogo-
al sequence exists in L0. Moreover, M is ordering for L0. Assume a�b, a ,b�L0. Then "p
�, 	p�a��	p�b� implies 	p�a�+	p�b���1, so that aÚb� exists in L0 and 	p�aÚb��=	p�a�

	p�b�� for all p��, which entails that 	p�b�=	p�a�+	p�a�Ùb� for all p��, hence 	p�b�
	p�aÚ �a�Ùb�� for all p��, so by Lemma 5�ii�, b=aÚ �a�Ùb�, which is the orthomodular law.
ence L0 is a �-orthocomplete orthomodular poset.

Let a�L, a�0, and assume that "p��, a���p�. Then the implication

"r � �:a � ��r� Þ 0 � ��r�

olds, which by �5� of Definition 1 means that a=0, a contradiction. If 0�a�L0, then a���p�
or at least one p�� means that 	p�a�=1. �

From now on, we will write �� ,L ,L0 ,�� to denote a state property system for which there is

0�L with a system of functions 	s ,s�� such that conditions �Oi�, �Oii�, and �Oiii� are satis-
ed.

Definition 6: Let �� ,L ,L0 ,�� be given. We will say that 	p has a support �in L0� if there is an
lement b�L �b�L0� such that "a�L0, 	p�a�=1 iff b�a.

Clearly, if a support exists, it is unique.
Proposition 4: Let �� ,L ,�� be a state property system, satisfying condition �A�. For p��, let

pª∧ �a :a���p��. Then ap , p��, coincide with the atoms in L. Moreover, a���p� if and only
f ap�a.

Proof: Observe that condition �A� also implies condition

�A�� for all p��, the element ap= ∧ �a :a���p���0.

ndeed, by Definition 1, ∧�a :a���p�����p�, and 0���p�. Hence ap���p�, and clearly, ap is the
mallest element in ��p�. Assume that ap���r�, r��. Now ap�a for all a���p� implies that
���r� for all a���p�, hence ��p����r�. By condition �A� then p=r.

Assume b�ap, b�0, then $r ,b���r� and we have

"r � �,b � ��r� Þ ap � ��r� Þ a � ��r� " a � ��p� ,

��p� � ��r� Þ p = r Þ b � ��p� Þ ap � b .

his proves that ap is an atom in L.
Now let a be an atom of L. Then there is r�� with a���r�, hence ar�a. Since ar is an

tom, ar=a. �

Notice that under conditions of Proposition 4, the element ap is a support of 	p.
Theorem 6: Under the suppositions of Proposition 4, L is an atomistic lattice.

Proof: Let b�L, put c= ∨ �as :b���s��. Then clearly c�b, and if b���p�, then ap�c im-
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lies c���p�, therefore b=c. �

Theorem 7: Let �� ,L ,L0 ,�� be a state property system satisfying condition �A� and

�B� For every s��, as belongs to L0.
�C� For every b�L, b= ∧ �as� :b�as��.

hen L with the mapping b�ª∨ �as :b�as�� is a complete, atomistic, orthocomplemented lattice.
Proof: Owing to Theorem 6, it suffices to prove that L is orthocomplemented. �i� If b�c, then

as :c�as��� �as :b�as��, which by �C� implies c��b�. �ii� From b��as� iff as�b we obtain that
b���= ∨ �as :b��as��= ∨ �as :as�b�=b. It remains to prove that bÙb�=0. Assume that as�b ,as

b�. By �i� and �ii�, as�b�as�, which contradicts �B�, so bÙb�=0. By duality we get bÚb�= I.�
Definition 7: Let �� ,L ,L0 ,�� be given. We will say that p is orthogonal to q, p ,q��, if there

s a�L0 such that 	p�a�=1 and 	q�a�=0 �equivalently, p�q if a���p�, a����q��. If p is
rthogonal to q we will write p�q.

It is obvious that the relation � is symmetric and antireflexive. For T��, we put T�= �p
� : p�T�, where p�T means that p� t for all t�T. Clearly, ��=�, T�T� and T1�T2 implies

1��T2�"T1 ,T2��. If s , p�� have supports in L0, then s� p if and only if their supports are
rthogonal.

Denote by T̄0 the set of all s�� such that "a�L0, a���t�" t�TÞa���s�. That is, T̄0 is

he set of all superpositions of T�� with respect to L0. Equivalently, T̄0= �s�� : "a�L0 ,at

aÞas�a�. Clearly, T̄� T̄0.
Proposition 5: Let �� ,L ,L0 ,�� be a state property system satisfying conditions �A�, �B�, �C�.

hen for every T��, T̄= T̄0.

Proof: It suffices to prove that T̄0� T̄. We have s� T̄0 iff "a�L0, at�a" t�TÞas�a. Let
s take b�L, and assume that at�b" t�T. By property �C�, b= ∧ �ar� :b�ar��, which yields at

ar� for all t�T and r such that b�ar�. From s� T̄0we obtain that as�ar� for all corresponding r,

nd therefore as� ∧ �ar� :b�ar��=b. In other words, ∨t�T��t����s�, hence s� T̄. �

Proposition 6: Let �� ,L ,L0 ,��. Suppose that �A�, �B� are satisfied. Then for any T�� we

ave T�= T̄0.
Proof: We follow the proof of Ref. 55, Proposition 3.3.15. We will identify 	s with s�� and

rite T�a�=k if 	t�a�=k" t�T. First we show that T�=� if and only if �a�L0 :T�a�=1�= �1�.
ssume that T�=� and let a�L0 be such that a�1 and T�a�=1. Since a��0, there is p�� such

hat p�a��=1. But then p�a�=0, so that a�T�, a contradiction. Now assume that �a�L0 :T�a�
1�= �1� and also that p�T�. Then for the supports we have ap�at" t�T. Hence t�ap��=1 for all

�T, which is again a contradiction.

To prove the equality T�= T̄0, assume first that T�=�. We have already proved that then �a
L0 :T�a�=1�= �1�, which implies T̄0=�=T�.

Assume that T��� and also that p� T̄0. We will show that p�T�. Assume that q�T�, then

q�at" t�T, and hence T�aq��=1. This implies aq���t�T��t�, which implies that aq����p�. This

mplies q� p, which implies that T̄0�T�.
Assume that p�T� and also that T�a�=1 for some a�L0. Without loss of generality we may

ssume that a�1. We have aq�a� iff q�a��=1. But q�a��=1 implies that q�T�. This means that
� p, and so ap�aq for all q such that q�a��=1. Hence aq�a� implies aq�ap�, so that a��ap�, so

hat p�a�=1. This shows that p� T̄0 and this completes the proof. �

As a corollary of Propositions 5 and 6, we obtain the following.
Corollary 1: Let �� ,L ,L0�� be a state property system satisfying �A�, �B�, �C�. Then for every

��, T̄=T�.
Theorem 8: Let �� ,L ,L0 ,�� be a state property system satisfying �A�, �B�. Define F0���

�S�� :S= S̄0�. Then the mapping S�S� is an orthocomplementation on F0���. Consequently,
0��� is a complete, atomistic, orthocomplemented lattice. If also �C� holds, then S�S� is an

rthocomplementation on F���, and F��� is a complete, atomistic, orthocomplemented lattice.
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Proof: It is easy to check that S� S̄0 is a closure operation, and hence F0��� is a complete
attice with lattice operations SÙT=S�T and SÚT= �S�T�−0. Owing to property �A�, F0��� is
tomistic. To prove orthocomplementation, observe that S�TÞT��S� and SÙS�=� follow
irectly from the definition of the mapping S�S�. Property S�=S for S�F0��� follows from
roposition 6. The remaining statement follows from Corollary 1. �

Definition 8: Suppose that �� ,L ,�� is a state property system. The map � :L→P��� defined
y

��a� = �p � �:a � ��p�� �16�

s called the Cartan map.
According to Ref. 46, Proposition 5, � :L→ ���L� , � , � � has the following properties:

��1� = � , �17�

��0� = � , �18�

a � b Û ��a� � ��b� , �19�

��∧i ai� = �
i

��ai� . �20�

hat is, � is an isomorphism of complete lattices. Moreover, by Ref. 46, Theorem 2, ���a� :a
L� is an intersection system. Consequently, the operator cl:Y � � ���a� :Y ���a�� is a closure

perator.56

The next lemma shows that ��a� is closed under superpositions.
Lemma 6: Let �� ,L ,�� be a state property system. For all a�L, ��a��F���.
Proof: For every a�L we have ��a����a�−. Observe that p���a�Ûa���p�. Let s

�̄�a�, then �p���a���p����s� implies a���s�, which means that s���a�. �

Proposition 7: Let �� ,L ,�� be a state property system such that condition �A� is satisfied.
hen ��L� and F��� are isomorphic as complete atomistic lattices.

Proof: By Lemma 6, the range of � is in F���. By Ref. 46, Proposition 5, ��L� and F��� are
somorphic as complete lattices. Let a�L be an atom. By definition, ��a�= �p�� :a���p��. By
A�, a���p� iff ap�a, hence ap=a because a is an atom. By �A� we may conclude that ��a�
�p�. �

Theorem 9: Let �� ,L ,L0 ,�� be a state property system satisfying �A�, �B�. Then the mapping
:L0→F���, a���a� has the following properties:

�i� If aÙb exists in L0, then ��aÙb�=��a�Ù��b�.
�ii� For all a�L0, ��a��=��a��.

onsequently, ��L0� and L0 are isomorphic as atomistic �-orthomodular posets.
If also condition �C� is satisfied, then ��L� and F��� are isomorphic as complete, atomistic

rthocomplemented lattices.
Proof: �i� Suppose that aÙb exists in L0. Obviously, ��aÙb����a�Ù��b�. Suppose that s

��a�Ù��b�=��a����b�. This gives a ,b���s�, hence as�a ,as�b, consequently as�aÙb,
.e., s���aÙb�.

�ii� Assume that p���a��, where a�L0 with 0�a�1. Then p�q for all q���a�. It follows
hat "q���a� , aq�ap�. Hence ap� �Úq���a�aq��=a�. This proves ��a�����a��.

Now let p���a��, then ap�a�= �Ú�aq :aq�a���, hence ap�aq� for all q���a�, which entails
p���a��.
The rest follows by Proposition 7. �
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V. SUPERPOSITION PRINCIPLE AND SECTORS

Let �L ,� ,�� be a state property system such that property �A� and 3-MSP are satisfied. By
heorem 1, �� , * �, where p*s=��p ,s�= �p ,s�− is a projective geometry.

Definition 9: We will say that a superposition principle �SP, for short� is satisfied in �L ,� ,��,
f for every p ,q��, p�q, there is r� �p ,q�− such that r�p ,r�q.

The following statement is straightforward.
Theorem 10: Let �L ,� ,�� be a state property system such that �A�, 3-MSP and SP are

atisfied. The �� , * � is an irreducible projective geometry.
The notion of a sector was introduced in Ref. 67 �see also Ref. 55, Definition 3.2.7�. Roughly

peaking, a sector is a maximal �-closed subset of � in which SP holds.
Definition 10: A nonempty subset S�� is called a sector if the following conditions hold:

�i� S�L���;
�ii� for any two different p ,q�S we can find r� �p ,q�− distinct from p and q;
�iii� if q�� \S, then �p ,q�−= �p ,q� for every p�S.

A basic property of sectors is the following.
Lemma 7: If S , P are sectors, then either S= P or S� P=�.
Proof: Assume that S� P. Then there is q�S \ P �or q� P \S�, and by �ii� of Definition 10,

�s ,q�−� �s ,q� whenever s�S� P, while by �iii� of Definition 10, �s ,q�−= �s ,q�. This contradic-
ion implies that S� P=�. �

Theorem 11:55 Let �L ,� ,�� be a state property system such that �A� and 3-MSP are satisfied.
hen � can be written as a set theoretical union of sectors.

Proof: Let us define a binary relation 
 on � as follows: �i� for every s��, s
s, �ii� for
istinct s , t��, s
 t if there is r� �s , t�−, r�s ,r� t. We will prove that 
 is an equivalence
elation. Reflexivity and symmetry are clear from the definition. To prove transitivity, assume that

p
r and r
s. With no loss of generality, we may assume that p ,r ,s are mutually different. Let
� �p ,r�− \ �p ,r�, y� �r ,s�− \ �r ,s�. By 2-MSP we have �p ,r�−= �p ,x�−= �r ,x�−, �r ,s�−= �r ,y�−

�s ,y�−. Moreover, r� �x , p�− implies y� �x , p ,s�−=��x , p ,s��S by 3-MSP. If y� �p ,s�− and y
p, then y is a minimal superposition of �p ,s�, and hence p
s. If y= p, then p� �r ,s�− implies

� �s , p�−, hence p
s. If y=x, then �r ,x�−= �r ,y�−implies �p ,r�−= �r ,s�−, p� �r ,s�−, hence r
�s , p�− and p
s. Finally, if y is a minimal superposition, then �y ,x�−� �p ,s�−�� implies that

p
s.
Let ŝ denote the equivalence class containing s��. We may write �= � �ŝ :s���. It can be

asily seen that ŝ is a sector for every s��. �

Sectors can be characterized by the closure operator � as follows.
Theorem 12: Let �L ,� ,�� be a state property system such that �A� and 3-MSP are satisfied.

et �=�iSi, where Si�L��� and �SP� is satisfied on Si, "i. Then Si are sectors if and only if they
re �-clopen sets.

Proof: By Theorem 11, � can covered by sectors, which are �-closed. Let S be a sector. To
rove that S is clopen, it suffices to prove that � \S is �-closed. Assume that p ,q�� \S and let r
e a minimal superposition of p ,q. If r�S, then by 2-MSP, p���r ,q�. Since r�S and q�S, and

S is a sector, we have ��r ,q�= �r ,q�, which is a contradiction. Therefore r�� \S. This proves that
sectors are �-clopen sets.

Conversely, let S be a �-clopen set such that SP is satisfied on S. Then conditions �i� and �ii�
of Definition 10 are satisfied. To prove �iii�, assume that p�S ,q�S, and r� �p ,q�−, r�p ,q, then
ither r�S or r�S. If r�S, we get q� �r , p�−, which contradicts the supposition that S is
-closed. If r�S, we get p� �r ,q�−, which contradicts the supposition that S is open. It follows

hat �p ,q�−= �p ,q�, hence S is a sector. �

Definition 11: We say that an element a�L is classical �or a superselection rule� if there is an
lement a��L such that for every s��, a���s�Ûa����s�.
Clearly, 0 and 1 are classical elements.
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Theorem 13: Let a�L be a classical element. Then ��a�= �s�� :a���s�� is a clopen set in
���.

Proof: We have �= �s :a���s��� �s :a����s��. By symmetry, it suffices to prove that S

�s :a���s�� belongs to F���. It easily follows from the fact that r� S̄ iff ����s� :s�S����r�,
hich entails that if a���s�"s�S, then a���r�, hence r�S. �

From the fact that F����L���, we obtain that ��a� is clopen also in L���.
We recall that an element z in a lattice L with 0 and 1 is central when there exist two lattices

1 and L2 and an isomorphism between L and the direct product L1�L2 such that z corresponds
o the element �11 ,02��L1�L2. �cf., e.g., Ref. 68, Definition �4.12�.� Evidently 0 and 1 are
entral elements.

Lemma 8: �Reference 68, Theorem �4.13�� An element z of a lattice L with 0 and 1 is central
f and only if there is an element z� in L such that

a = �a Ù z� Ú �a Ù z�� = �a Ú z� Ù �a Ú z�� for every a � L . �21�

If L is orthocomplemented, then z is central if and only if the first equality in �21� is satisfied
or every a�L ��Ref. 68, Lemma �29.9���.

Theorem 14: Let �L ,L0 ,� ,�� be a state-property system such that conditions �A�, �B�, �C�
re satisfied. Then an element c�L is central if and only if c is classical.

Proof: If properties �A�, �B�, �C� are satisfied, then L is a complete, atomistic, orthocomple-
ented lattice, and � :L→F��� is an isomorphism �Theorem 9�.

Let c be a central element of L, then by �21�, for every atom a�L, a= �aÙc�Ú �aÙc��, hence
ither a=aÙc, or a=aÙc�. By Proposition 7, ��a�= �s� for some s��. Moreover, ��a�
��aÙc�Ú��aÙc��, hence either ��aÙc�= �s�, or ��aÙc��= �s�, that is, either c���s� or c�
��s�. This entails that c is classical.

Conversely, if c is classical, i.e., for every s��, either s���c� or s���c��, then for every
�L,

a = ∨ �as:s � ��a�� = ∨ �as:s � ��a� � ��c�� Ú ∨ �as:s � ��a� � ��c���

= ∨ �as:s � ��a Ù c�� Ú ∨ �as:s � ��a Ù c��� ,

nd consequently, a= �aÙc�Ú �aÙc��. By Lemma 8, c is central element of L. �

. CLOSED SUBSPACES AND MACKEY PROPERTY

Throughout this section we will use the following notations:

For any A,B � L���,A � B ª ��A � B� . �22�

For any A,B � F���,A Ú B ª �A � B�−. �23�

For infima in both L���, F��� we use the same notation AÙB�=A�B�.
In Ref. 56, the following definitions were introduced, and the equivalence of the following

hree categories was proved.
Definition 12: A Mackey geometry is a projective geometry G together with a subset S of

ubspaces of G satisfying the following axioms:

�i� A�S implies �A�S �hence S is an intersection system�,
�ii� ��S,
�iii� if E�S, then aÚE�S for every a�G.

he elements of S are called the closed subspaces of G. An isomorphism of Mackey geometries is
n isomorphism of projective geometries g :G1→G2 satisfying S�S1 iff g�E��S2 �where E is any
ubspace of G1�.
Definition 13: A Mackey lattice is a projective lattice L together with an operator x→c�x�
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atisfying the following axioms:

�i� x�c�x� for every x�L,
�ii� x�c�y� implies c�x��c�y�,
�iii� c�0�=0,
�iv� if x=c�x�, the aÚx=c�aÚx� for every atom a in L.

An element x�L is closed if x=c�x�. An isomorphism of Mackey lattices is an isomorphism of
�projective� lattices h :L1→L2 satisfying h�c1�x��=c2�h�x�� for every element x�L1.

For any lattice L we shall denote by AL the set of all atoms of L. We say that a lattice L has
he intersection property �cf. �Ref. 56, Definition 2.5.1�� if one has

a,b � AL,a � b,x � L and a � b Ú x Þ $ c � AL with c � �a Ú b� Ù x . �24�

f L is an atomistic lattice, the following conditions are equivalent:

�1� L is upper and lower semimodular. A lattice L is called upper semimodular if uÙv�v
implies u�uÚv, and L is lower semimodular if u�uÚv implies uÙv�v. Here a�b
means that b covers a.

�2� L has the covering property. A lattice L has the covering property if for x�L and any
atom a�L one has, aÙx=0Þx�aÚx.

�3� L has the intersection property.

oreover, the implications 1Þ2Þ3 hold for any lattice.
Definition 14: An intersection lattice is a complete atomistic lattice C having the intersection

roperty. �Equivalently, C is both upper and lower semimodular.�
Let L1 and L2 be Mackey lattices. We say that a morphism f :L1→L2 is continuous if

f�c1�x�� � c2�f�x�� for every x � L1. �25�

Theorem 15: �Reference 56, Theorem 13.3.8� The categories of Mackey geometries, of
ackey lattices and of intersection lattices are equivalent. This means that one has a functor L

rom Mackey geometries to Mackey lattices, a functor C from Mackey lattices to intersection
attices, a functor G from intersection lattices to Mackey geometries, and natural isomorphisms

�G�C�L�G���, L�L�G�C�L��� and C�C�L�G�C���.
In our setting, we obtain the following result.
Theorem 16: Let �L ,L0 ,� ,�� satisfy properties �A�, �B�, �C� and 3-MSP. Then L��� with the

losure operation c�A�= Ā, A�L���, is a Mackey lattice.
Proof: �cf. Ref. 55, Proposition 3.3.18�. Properties �i�–�iii� of Definition 13 are clear. We have

o prove only property �iv�.
By Theorem 8, F��� is a complete, atomistic, orthocomplemented lattice with the orthoc-

mplementation S�S�. We will use the fact that L����F���, and L��� is modular �Theorem 2�.
e must show that if S�F��� and p�� \S, pÚS= p�S. Modularity of L��� implies that S

�S�p �that is, S�p covers S�. Dually, �S�p��=S�Ù �p���S�. Then there is an atom q�� such
hat �S� �p���� �q�=S�. Then ��S� �p���� �q���=S�=S� �S� �p���. This entails �S� �p���=SÚ �p�
S� �p�. �

Corollary 2: If �L ,L0 ,� ,�� satisfy properties �A�, �B�, �C� then for every S�F��� and a
nite dimensional element P= �p1 , . . . , pn�−, we have SÚ P=S�P.

In accordance with Theorems 15 and 16, if a state property system �L ,� ,�� satisfies condi-
ions �A�, �B�, �C� and 3-MSP, we may consider � with elements of F as closed subspaces as

ackey geometry, L��� with the operator S→ S̄ as a Mackey lattice, and F���� as intersection

attice. Indeed, by Theorem 16, L��� with the operation S� S̄ is a Mackey lattice. By Ref. 56,
roposition 13.2.7, the set F��� is an intersection lattice for the induced order. The infimum of
ny subset A�F��� is the element ÙA and the supremum is ÚA= ��A�−. Moreover, the atoms of
���are the atoms of L���, that is, elements of �. Further, F��� being an intersection lattice, the
et of all atoms � of F��� is a projective geometry �cf. Ref. 56, 2.5.7 and Theorem 1�, and the set
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f closure subspaces coincides with the sets �F�� :F�F���� as closed subspaces. Owing the
somorphism between F��� and L, the lattice L can be considered as an intersection lattice with
he atoms �as�L :s���.

In the sequel, we will need the following definition.
Definition 15: �Reference 56, Definition 13.4.6� A Mackey lattice L is called regular if for

very closed element x�L and every atom ax, there exists a closed coatom h�L such that x
h and ah.

I. ORTHOGEOMETRIES, ORTHOLATTICES AND ORTHOSYSTEMS

Definition 16: �Reference 56, Definition 14.1.1� An orthogeometry is a projective geometry
ith a relation �, called orthogonality, which satisfies the following axioms:

�1� �O1� a�b implies b�a,
�2� �O2� if a� p, b� p and c�a*b, then c� p,
�3� �O3� if a ,b ,c�G and b�c, then there is p�b*c with p�a,
�4� �O4� for every a�G there exists b�G with a�”b.

An isomorphism of orthogeometries is an isomorphism of projective geometries g :G1→G2

atisfying a�b iff ga�gb.
For any subset A�G the orthogonal set A�

ª �x�G :x�a for every a�A� is a subspace of
by condition �O2�. A point a of an orthogeometry G is called a null point if a�a�. The

eometry is called non-null if it contains a non-null point and pure if every point is non-null �Ref.
6, Definition 14.1.7�.

Definition 17: An ortholattice �please do not mistake it with orthocomplemented lattice, which
s sometimes also called ortholattice� is a projective lattice together with an operator x�x�

hich satisfies the following conditions:

�1� x�x�� for every x�L,
�2� x�y implies y��x�,
�3� 0��=0,
�4� if x=x��, then aÚx= �aÚx��� for every atom a�L.

An isomorphism of ortholattices is an isomorphism of lattices f :L1→L2 such that f�x��
�fx�� for every element x�L1.

Proposition 8: If L is an ortholattice, then L together with the operator c�x�ªx�� is a regular
ackey lattice.

Definition 18: An orthosystem is an intersection lattice C together with an operator x�x�
atisfying the following conditions:

�1� x=x� for every x�C,
�2� x�y implies y��x�.

n isomorphism of orthosystems is an isomorphism of lattices h :C1→C2 such that h�x��= �hx��
or every x�C1.

By Ref. 56, Remark 14.2.7, instead of an intersection lattice it is enough to require that C is
complete atomistic lattice satisfying the exchange property.

In Ref. 56, it is proved that there is a triple correspondence between orthogeometries and
rtholattices and orthosystems �Ref. 56, Proposition 14.2.11�. We summarize the results in the next
heorem.

Theorem 17:

�1� If L is an orthogeometry, then the projective lattice L�G� together with the operator
E�E� is an ortholattice �Ref. 56, Proposition 14.2.5�.

�2� Let L be an ortholattice. Denote by C�L� the set of all closed element x=x�� of L. Then
C�L� together with the operator x�x� is an orthosystem �for the induced order� �Ref. 56,

Proposition 14.2.8�.

                                                                                                            



o

S

T

l
M

V

�

o
e
g
d

d
P

m
a

A
a

O
i

q
i

o

i

a
e
i
(

072105-16 D. Aerts and S. Pulmannova J. Math. Phys. 47, 072105 �2006�

                        
�3� Let C be an orthosystem. Then the projective geometry G�C� consisting of the set AC of all
atoms of C and the operator *, a*b= �c�AC :c�aÚb�, together with the relation a�b
iff a�b�, is an orthogeometry �Ref. 56, Proposition 14.2.9�.

Theorem 18: Let �L ,L0 ,� ,�� satisfy properties �A�, �B�, �C� and 3-MSP. Then F��� is an
rthosystem.

Proof: By Theorems 16 and 15, F��� is an intersection lattice. By Theorem 8, the mapping
�S� is an orthocomplementation on F���, which implies the desired result. �

Remark 1: If �L ,L0 ,� ,�� satisfies properties �A�, �B�, �C� and 3-MSP then, according to
heorem 17, �� ,�� is an orthogeometry and L��� with the closed subspaces F��� is an ortho-

attice. Moreover, since S̄=S�, in accordance with Ref. 56, Proposition 14.2.4, F��� is a regular
ackey lattice.

II. REPRESENTATIONS IN VECTOR SPACES

Let V be any vector space over a field K. We emphasize that the dimension of V is arbitrary
possibly infinite� and K is allowed to be a skew field �often called division ring�.

Proposition 9: �Reference 56, Proposition 2.1.6�. Let V be any vector space. On V*
ªV \ �0�

ne defines a binary relation as follows: x�y iff x ,y if x ,y are linearly dependent. Since this is an
quivalence relation, the quotient set P�V�ªV* /� is well defined and becomes a projective
eometry if for any elements X ,Y ,Z�P�V� one defines ��X ,Y ,Z� iff X ,Y ,Z have linearly depen-
ent representatives x ,y ,z.

Theorem 19: Let G be an irreducible projective geometry containing at least four indepen-
ent points. Then there exists a (left) vector space V over a field K such that G is isomorphic to
�V�.

Definition 19: �Reference 56, Definition 14.1.5� Let V be a vector space over K. A
ap :� :V�V→K is called a reflexive (or also symmetric) sesquilinear form if there exists an
nti-isomorphism of fields � :K→K such that the following axioms are satisfied:

�1� ��x1+x2 ,y�=��x1 ,y�+��x2 ,y� and ���x ,y�=� .��x ,y�,
�2� ��x ,y1+y2�=��x ,y1�+��x ,y2� and ��x ,	y�=��x ,y� .��	�;
�4� ��x ,y�=0 iff ��y ,x�=0.

map � :V�V→K is called a Hermitian form if there exists an involution � :K→K, i.e., an
nti-isomorphism of order 2, such that the following axioms are satisfied:

�1� ��x−1+x2 ,y�=��x1 ,y�+��x2 ,y� and Phi��x ,y�=� .��x ,y�,
�4� ��x ,y�=����y ,x�� for all x ,y�V.

bviously, these two axioms imply both �2� and �3�. Finally, we recall that the form � is nons-
ngular if ��x ,y�=0 for all y�V implies x=0.

Proposition 10: �Ref. 56, Proposition 14.1.6� If � :V�V→K is a nonsingular reflexive ses-
uilinear form, then the projective geometry P�V� together with the relation � defined by �x�� �y�
ff ��x ,y�=0 is an orthogeometry.

Definition 20: A point a of an orthogeometry G is called a null point if a�a�. The orthoge-
metry is called non-null if it contains a non-null point and pure if every point is non-null.

Let V be a pre-Hilbertian space over R ,C ,H, then trivially the associated orthogeometry P�V�
s pure.

Theorem 20: �Reference 56, Theorem 14.1.8� Let V be a vector space of dimension �3 over
field K, and suppose that P�V� together with the relation � is an orthogeometry. Then there

xists a nonsingular reflexive sesquilinear form � :V�V→K which induces the orthogonality �

n the sense of Proposition 10. Moreover, if P�V� is non-null, then � can be induced by a
non-singular) Hermitian form.

We call states Sª �s1 , . . . ,sn� in � independent if "i, si���S \si�.

Theorem 21: Let �L ,� ,�� be a state property system such that conditions �A�, SP, 3-MSP are
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atisfied. Assume that there exist at least four independent states in �. Then there is a field K and
vector space V over K such that the set L��� of all linear subspaces of � is isomorphic to the

attice L�V� of all linear subspaces of V.
Theorem 22: Let �L ,� ,�� be a state property system such that conditions �A�, �B�,�C�, SP,

-MSP are satisfied. Assume that there exist at least four independent states in �. Then there exists
field K, an involutive ant-automorphism *:K→K, a vector space V over K and a Hermitian form

f :V�V→K such that F��� is orthoisomorphic to the set Lf�V� of all closed subspaces of V.
�See Ref. 68 for the ideas of proof�.

1 I. Segal, Ann. Math. 48, 930 �1947�.
2 G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory �Wiley, New York, 1972�.
3 R. Haag and D. Kastler, J. Math. Phys. 5, 841 �1964�.
4 E. Alfsen and F. Schults, Bull. Am. Math. Soc. 81, 893 �1975�.
5 C. Edwards, Commun. Math. Phys. 16, 207 �1970�.
6 C. Edwards, Commun. Math. Phys. 20, 26 �1971�.
7 B. Mielnik, Commun. Math. Phys. 9, 55 �1968�.
8 B. Mielnik, Commun. Math. Phys. 15, 1 �1969�.
9 D. Foulis and C. Randall, in Current Issues in Quantum Logic, edited by E. Beltrametti and B. van Fraassen �Kluwer
Academic, Dordrecht, 1981�, p. 35.

0 C. Randall and D. Foulis, in Foundations of Probability Theory, Statistical Inference, and Statistical Theories of Science
III, edited by C. Hooker �Kluwer Academic, Dordrecht, 1976�, p. 169.

1 C. Randall and D. Foulis, in Physical Theories as Logico-Operational structures, edited by C. A. Hooker �Kluwer
Academic, Dordrecht, 1978�, p. 167.

2 C. Randall and D. Foulis, in Interpretations and Foundations of Quantum Theory, edited by H. Neumann �Wissen-
schaftsverslag, Bibliographisches Institut, Mannheim, 1981�, p. 21.

3 C. Randall and D. Foulis, Found. Phys. 13, 835 �1983�.
4 G. Birkhoff and J. Von Neumann, Ann. Math. 37, 823 �1936�.
5 N. Zierler, Pac. J. Math. 11, 1151 �1961�.
6 G. W. Mackey, Mathematical Foundations of Quantum Mechanics �Benjamin, Reading, MA, 1963�.
7 C. Piron, Helv. Phys. Acta 37, 439 �1964�.
8 J. Jauch, Foundations of Quantum Mechanics �Addison-Wesley, Reading, MA, 1968�.
9 V. S. Varadarajan, Geometry of Quantum Theory �von Nostrand, Princeton, NJ, 1968�.
0 E. Beltrametti and G. Cassinelli, The Logic of Quantum Mechanics �Addison-Wesley, Reading, MA, 1981�.
1 W. Wilbur, Trans. Am. Math. Soc. 233, 265 �1977�.
2 H. Keller, Math. Z. 172, 41 �1980�.
3 M. P. Solèr, Commun. Algebra 23, 219 �1995�.
4 S. S. Holland, Jr., Bull. Am. Math. Soc. 32, 205 �1995�.
5 S. Pulmannova, Found. Phys. 24, 1403 �1994�.
6 S. Pulmannova, Int. J. Theor. Phys. 35, 2309 �1996�.
7 D. Aerts and B. Van Steirteghem, Int. J. Theor. Phys. 39, 497 �2000�.
8 B. Ischi, Int. J. Theor. Phys. 39, 2559 �2000�.
9 B. Ischi, Found. Phys. Lett. 14, 501 �2001�.
0 B. Ischi, Rep. Math. Phys. 50, 155 �2002�.
1 B. Ischi, Rep. Math. Phys. 56, 39 �2005�.
2 T. Watanabe, J. Math. Phys. 44, 564 �2003�.
3 T. Watanabe, J. Math. Phys. 45, 1795 �2004�.
4 G. Niestegge, J. Math. Phys. 45, 4714 �2004�.
5 C. Piron, Foundations of Quantum Physics �Benjamin, Reading, MA, 1976�.
6 D. Aerts, Doctoral thesis, Free University of Brussels, Brussels, 1981.
7 D. Aerts, Found. Phys. 12, 1131 �1982�.
8 D. Aerts, J. Math. Phys. 24, 2441 �1983�.
9 D. Aerts, in Foundations of Quantum Mechanics, edited by C. Gruber �A.V.C.P., Lausanne, 1983�, p. 63.
0 C. Piron, Helv. Phys. Acta 62, 82 �1989�.
1 C. Piron, Mècanique Quantique: Bases et Applications �Press Polytechnique de Lausanne, Lausanne, 1990�.
2 G. Ludwig, Foundation of Quantum Mechanics I �Springer, Berlin, 1983�.
3 G. Ludwig, Foundation of Quantum Mechanics II �Springer, Berlin, 1985�.
4 D. Aerts, Int. J. Theor. Phys. 38, 289 �1999�.
5 D. Aerts, in Quantum Mechanics and the Nature of Reality, edited by D. Aerts and J. Pykacz �Kluwer Academic,
Dordrecht, 1999�.

6 D. Aerts, E. Colebunders, A. Van der Voorde, and B. Steirteghem, Int. J. Theor. Phys. 38, 359 �1999�.
7 D. Aerts, E. Colebunders, A. Van der Voorde, and B. Van Steirteghem, Appl. Categ. Struct. 10, 469 �2002�.
8 B. Van Steirteghem, B.S. dissertation, Brussels Free University, 1998.
9 B. Van Steirteghem, Int. J. Theor. Phys. 39, 955 �2000�.
0 A. Van der Voorde, Int. J. Theor. Phys. 39, 947 �2000�.
1
 A. Van der Voorde, Doctoral thesis, Brussels Free University, 2001.

                                                                                                            



5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

072105-18 D. Aerts and S. Pulmannova J. Math. Phys. 47, 072105 �2006�

                        
2 D. Aerts, A. Van der Voorde, and D. Deses, J. Electr. Eng. 52, 18 �2001�.
3 D. Aerts and D. Deses, in Probing the Structure of Quantum Mechanics: Nonlinearity, Nonlocality, Computation and
Axiomatics, edited by D. Aerts, M. Czachor, and T. Durt �World Scientific, Singapore, 2002�.

4 D. Aerts, A. Van der Voorde, and D. Deses, Int. J. Theor. Phys. �to be published�.
5 P. Pták and S. Pulmannová, Orthomodular Structures as Quantum Logics �Kluwer, Dordrecht, 1981�.
6 C-A. Faure and A. Frölicher, Modern Projective Geometry �Kluwer, Dordrecht, 2000�.
7 D. Aerts and I. Daubechies, Helv. Phys. Acta 51, 661 �1978�.
8 D. Aerts and I. Daubechies, Lett. Math. Phys. 3, 11 �1979�.
9 D. Aerts and I. Daubechies, Lett. Math. Phys. 3, 19 �1979�.
0 D. Aerts, J. Math. Phys. 21, 778 �1980�.
1 S. Pulmannová, Int. J. Theor. Phys. 22, 837 �1983�.
2 D. Aerts, Rep. Math. Phys. 20, 421 �1984�.
3 D. Aerts, J. Math. Phys. 25, 1434 �1984�.
4 S. Pulmannová, Suppl. Rendiconti del Circolo Matematico di Palermo, Ser. II 231–235 �1984�.
5 S. Pulmannová, J. Math. Phys. 26, 1 �1985�.
6 V. S. Varadarajan, Geometry of Quantum Theory �Springer, New York, 1985�.
7 S. Pulmannová, Commun. Math. Phys. 49, 47 �1976�.
8 F. Maeda and M. Maeda, Theory of Symmetric Lattices �Springer, Berlin, 1970�.
                                                                                                            



O
o
c

I

s
m

w
m
w
t
c
t
t

w
G
P

s
a
C
a
�
o
b

a

JOURNAL OF MATHEMATICAL PHYSICS 47, 072106 �2006�

0

                        
n the ground state energy for a magnetic Schrödinger
perator and the effect of the DeGennes boundary
ondition
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Motivated by the Ginzburg-Landau theory of superconductivity, we estimate in the
semiclassical limit the ground state energy of a magnetic Schrödinger operator with
De Gennes boundary condition and we study the localization of the ground states.
We exhibit cases when the De Gennes boundary condition has strong effects on this
localization. © 2006 American Institute of Physics. �DOI: 10.1063/1.2218980�

. INTRODUCTION

Let ��R2 be an open bounded domain with regular boundary. Let us consider a cylindrical
uperconducting sample of cross section �. The superconducting properties are described by the
inimizers �� ,A� of the Ginzburg-Landau functional �cf. Refs. 1–3�:

G��,A� = �
�
����− i��A���2 + �2�2�curl A − 1�2 +

�2

2
����2 − 1�2�dx + �

��

�̃���x��2du���
�x� ,

�1.1�

hich is defined for pairs �� ,A��H1�� ;C��H1�� ;R2�. The parameter � is a characteristic of the
aterial. A material is said to be of type I if � is sufficiently small and it is said to be of type II
hen � is large. The parameter � is the intensity of the applied magnetic field which is supposed

o be constant and perpendicular to �. For a minimizer �� ,A� of the energy G, the function � is
alled the order parameter and ���2 measures the density of superconducting Cooper electron pairs;
he vector field A is called the magnetic potential and curl A is the induced magnetic field. Note
hat the order parameter � satisfies the following boundary condition proposed by De Gennes:1

� · ��− i��A�� + �̃� = 0, �1.2�

here � is the unit outward normal of �� and �̃�R is called in the physical literature the De
ennes parameter. Note that the boundary condition �1.2� was initially introduced in the theory of
DE by Robin.

The physicist De Gennes1 introduced the parameter �̃ in order to model interfaces between
uperconductors and normal materials. In that context, �̃ is taken to be a nonzero positive constant
nd 1/ �̃ �called the extrapolation length� usually measures the penetration of the superconducting
ooper electron pairs in the normal material. The size of �̃ depends on the nature of the material
djacent to the superconductor and it ranges from �̃=0 �interfaces with insulators� to �̃= +�
interfaces with magnetic and ferromagnetic materials�. Experiments show that for superconduct-
rs adjacent to ferromagnetic materials, the order parameter � vanishes at the boundary4 and the
oundary condition �1.2� is changed to the Dirichlet boundary condition. Negative values of �̃

�Also at: Université Libanaise, Département de mathématique, Hedeth, Beyrouth, Liban. Electronic mail:

ayman.kachmar@math.u-psud.fr
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ere also considered in the physical literature.5 It is suggested that negative values of �̃ would be
seful for modeling the situation when a superconductor is adjacent to another superconductor of
igher transition temperature.

Suppose that we have a type II superconductor �i.e., � is large�. The functional G has a critical
oint of the type �0,A�. Such a critical point is called a normal state. It is then natural to study
hether a normal state is a local minimum of G in the presence of a strong applied magnetic field.
he Hessian of G near a normal state is given by

�	,B� � 2	�
�

����− i��A�	�2 − �2�	�2�dx + �
��

�̃�	�2d
���
�x� + ����2�

�

�curl B�2dx
 .

y defining the change of parameter h=1/��, we then have to study as h→0 the positivity of the
uadratic form:

H1��� � u � ��h � − iA�u�L2���
2 + h2�

��

�̃�u�2d
���
�x� − ��h�2�u�L2���

2 .

The semiclassical limit h→0 is now equivalent to a large field limit �→ +�. In order to study
he influence of the size of �̃, it seems reasonable to suppose that �̃ is depending on h. Also, due
o the possibility of having different materials exterior to � together with possible lack of sym-

etry in the geometry of �, it seems also convenient to take �̃ as a function of the boundary.

hus, given a vector field A�C���̄ ;R2�, a regular real valued function ��C���� ;R�, and a
umber ��0, let us define the quadratic form:

H1��� � u � qh,A,�
�,� �u� = ��h � − iA�u�L2���

2 + h1+��
��

��x��u�x��2d
���
�x� . �1.3�

Observing that qh,A,�
�,� is semibounded, we consider the self-adjoint operator associated to

h,A,�
�,� by Friedrich’s theorem. This is the magnetic Schrödinger operator Ph,A,�

�,� with domain
�Ph,A,�

�,� � defined by

Ph,A,�
�,� = − �h � − iA�2,

D�Ph,A,�
�,� � = �u � H2���; � · �h � − iA�u���

+ h��u���
= 0 . �1.4�

e denote by 
�1��� ,� ,h� the ground state energy of Ph,A,�
�,� which is defined using the min-max

rinciple by


�1���,�,h� ª inf
u�H1���,u�0

qh,A,�
�,� �u�

�u�L2���
2 . �1.5�

et us also recall that this eigenvalue problem is gauge invariant.
In the case when ��0 �which corresponds to a superconductor surrounded by the vacuum�, a

ot of papers are devoted to the estimate in a semiclassical regime of the ground state energy of
Ph,A,�
�,� . We would like to mention here the works of Baumann-Phillips-Tang,6 Bernoff-Sternberg,7

el Pino-Felmer-Sternberg,8 Helffer-Mohamed,9 Helffer-Morame,10 and the recent work of
ournais-Helffer.11 The special case when �=1 and � is a positive constant was considered by
u-Pan.12,13 It was shown that in this case the effect of the De Gennes parameter � is weak in the
ense that the limit limh→0�
�1��1,� ,h�� /h is the same as in the case �=0. This regime is therefore
ot sufficient to recover all the physically interesting cases considered in Refs. 4 and 5. It is the
bject of this paper to establish the results announced in Ref. 14 and to analyze �for all values of
� the influence of the boundary term in �1.3� on the localization of the ground state energy of the

�,�
perator Ph,A,�.
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Following the technique of Helffer-Morame,10 we have to understand the model case of the
alf-plane when the magnetic field and the function � are both constant. Consider the magnetic
otential:

A0�x1,x2� = 1
2 �− x2,x1�, " �x1,x2� � R� R+. �1.6�

otice that curl A0=1. Let us define the function

R � ����� ,

here

��� ª inf
u�HA0

1 �R�R+�,u�0

���− iA0�u�L2�R�R+�
2 + ��

R
�u�x1,0��2dx1

�u�L2�R�R+�
2 , �1.7�

nd

HA0

1 �R� R+� = �u � L2�R� R+�; ��− iA0�u � L2�R� R+� . �1.8�

Note that ��� is the bottom of the spectrum of the operator Ph,A0,�
�,� with h=1 and �=R

R+. We shall see that ����1 �cf. Theorem II.2�. If �=0, we write:

0 ª�0� . �1.9�

t is 0 which appears in the analysis for the Neumann problem.6–13 Actually, we are interested in
he bottom of the spectrum of the operator Ph,A0,R�R+

�,� but a scaling argument gives us

"h � R+, " �,�� R, inf Sp�Ph,A0,R�R+

�,� � = h�h�−1/2�� . �1.10�

he semiclassical analysis of the half-plane model depends then on the sign of both �− 1
2 and �.

e have then to investigate the asymptotic behavior of ��� when �→0 and when �→ ±�. This
ill be the object of study in Sec. II.

Now we state our main results.
Theorem I.1: Suppose that ��R2 is open, bounded, connected, and having a smooth bound-

ry. Suppose moreover that the magnetic field is constant curl A=1. Then, for ��0 and �
C���� ;R�, the ground state energy of the operator Ph,A,�

�,� satisfies


�1���,�,h� = h�h�−1/2�0��1 + o�1�� �h → 0� , �1.11�

here �0ªminx�����x�.
Theorem I.1 gives a first term approximation of 
�1��� ,� ,h�. The asymptotics �1.11� is valid

ithout the need for any nondegeneracy hypothesis on the set of minima of �, and holds for the
unction � being constant as well. Let us remark that the asymptotics �1.11� depends strongly on
. In particular, when �= 1

2 , we get

lim
h→0


�1���,�,h�
h

=��0�� 1,

nd if �0=0 or if �� 1
2 , then �cf. Proposition II.5�:

lim
h→0


�1���,�,h�
h

=0 � 1.

hen �� 1
2 , it is the sign of �0 that affects the asymptotics. Actually, if �0�0 we have �cf.
roposition II.8�
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lim
h→0


�1���,�,h�
h2� = − �0

2,

nd if �0�0, we have �cf. �2.46��

lim
h→0


�1���,�,h�
h

= 1,

hich is the same behavior as that for the Dirichlet problem.10 This last regime �0��� 1
2 and

0�0� is in accordance with the physical observations in Ref. 4.
In the next theorem, we give a two-term asymptotics of 
�1��� ,� ,h� when �� � 1

2 ,1�.
Theorem I.2: Suppose in addition to the hypotheses of Theorem I.1 that 1

2���1 and that the
unction � is nonconstant. Then we have the following asymptotic expansion as h tends to 0:


�1���,�,h� = h0 + 6M3�0h�+1/2 + O�hinf�3/2,2��� , �1.12�

here M3 is a strictly positive universal constant.
The constant M3 satisfies ��0�=6M3 and it will be defined precisely in Sec. II, see however

2.25� and �2.27�. Compared with the result obtained in Ref. 10, the second term in the two-term
symptotics of 
�1��� ,� ,h� when �=0 is of order h3/2, whereas it is of order h�+1/2 in the regime
onsidered in Theorem I.2. Let us mention also that in Ref. 11, the authors obtain �when �=0� a
omplete asymptotic expansion under a generic hypothesis on the scalar curvature of ��. It seems
hat a complete asymptotic expansion could be obtained in the regime of Theorem I.2 but under
he following generic hypothesis over �:

1� � has a finite number of minima;
2� all the minima of � are nondegenerate.

e leave this point hoping to analyze it in a future work.
Next we turn to the question of the localization of the ground states. Let u�,�,h be a ground

tate of the operator Ph,A,�
�,� . We say that u�,�,h is exponentially localized as h tends to 0 near a

losed set B in �̄ if there exists ��0, and for each neighborhood V of B, there exist positive
onstants h0, � and C such that

�u�,�,h�L2��\V� � C exp�−
�

h�
��u�,�,h�L2���, �� " h ��0,h0� . �1.13�

In the next theorem we describe some effect of � on the localization of the ground states of the
perator Ph,A,�

�,� .
Theorem I.3: Under the hypotheses of Theorem I.1, if �0�0 or 1

2���1, a ground state of
he operator Ph,A,�

�,� is exponentially localized as h tends to 0 near the boundary points where � is
inimum.

More precisely, �1.13� is satisfied with �=1−� if �0�0, �= �1−�� /2 if 1
2���1, and �

1/2 otherwise.
In the special case �=1, the scalar curvature �r and the function � affects the asymptotic

xpansion of the ground state energy to the same order.
Theorem I.4: Suppose in addition to the hypotheses of Theorem I.1 that �=1. Then we have

he following asymptotic expansion as h tends to 0:


�1���,�,h� = h0 − 2M3��r − 3��maxh
3/2 + O�h13/8� , �1.14�

nd a ground state u�,�,h of the operator Ph,A,�
1,� is localized near the boundary points where the

unction �r−3� is maximal.
More precisely, �1.13� is satisfied with �=1/4.
If � is constant, the remainder in �1.14� is better and of order O�h5/3�. When ��0 we recover

10
n the above theorem the result of Helffer-Morame. Let us mention that the expansion �1.14� is
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nnounced by Pan25 in the particular case when � is a positive constant. As in Ref. 11, we believe
hat an asymptotic expansion with higher terms could be obtained under a generic hypothesis on
he function �r−3�.

In the next theorem, we study the case when the function � is constant and we find that only
he scalar curvature plays a role.

Theorem I.5: Suppose in addition to the hypotheses of Theorem I.1 that the function � is
onstant and that �� 1

2 . There exists a constant M3�� ,���0 such that we have the following
symptotic expansion as h tends to 0:


�1���,�,h� = h�h�−1/2�� − 2M3��,����r�maxh
3/2 + o�h3/2� . �1.15�

oreover, a ground state of the operator Ph,A,�
�,� is localized as h tends to 0 near the boundary

oints where the scalar curvature is maximal, and �1.13� is satisfied with �=1/4.
When �� 1

2 , the constant M3�� ,�� is equal to the universal constant M3. When �= 1
2 , we have

M3� 1
2 ,��=M3���, where the constant M3��� will be defined in Sec. II cf. �2.24�.
This paper is organized in the following way. In Sec. II, we link the analysis of the half-plane

odel operator to that of a one-dimensional operator. We get in particular the existence of a
umber �����0 such that ��� is the lowest eigenvalue of the operator −�t

2+ �t−�����2. Let �� be
n eigenfunction associated to ���. We establish the regularity of ��� and �� as functions of �,
he asymptotic behavior of ��� as �→ ±�, and uniform estimates with respect to � describing
he exponential decay of �� at infinity.

In Sec. III, we use the eigenfunction �� to construct a test function inspired by Refs. 7 and 10
nd we obtain an upper bound for 
�1��� ,� ,h�. We then carry out a similar analysis to that in Ref.
0 and we use the results of Sec. II to prove Theorem I.1.

In Sec. IV, we show how to get the localization of the ground states using Agmon’s
echnique.15 Finally, in Sec. V, the analysis of a one-dimensional family of operators on a weighted
2-space appears �cf. �5.21��. It is the same family of operators appearing in Ref. 10 �Sec. 11� but
ith a different boundary condition this time. This analysis permits us to derive two-term asymp-

otics of the ground state energy showing the influence of the scalar curvature. We finish then the
roofs of Theorems I.2, I.3, I.4, and I.5.

I. THE MODEL OPERATOR

Given ��R, let us consider the quadratic form:

HA0

1 �R� R+� � u � q����u� = ���− iA0�u�L2�R�R+�
2 + ��

R
�u�x1,0��2dx1. �2.1�

he magnetic potential A0 and the form domain HA0

1 �R�R+� are defined, respectively, in �1.6� and
1.8�. Observing that the quadratic form q��� is bounded from below, we can associate to q���, by
aking the Friedrichs extension, a unique self-adjoint operator P��� on L2�R�R+�. The min-max
rinciple gives that the bottom of the spectrum of P��� is equal to ��� �cf. �1.7��.

. Link with a one-dimensional operator

By a change of gauge and a partial Fourier transformation with respect to the first variable, we
btain that the spectral analysis of the operator P��� will be deduced from that of the �-family of
ne dimensional operators:

H��,�� = −
d2

dt2 + �t − ��2, �2.2�
ith domain
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D�H��,��� = �u � B2�R+�; u��0� = �u�0� , �2.3�

here, for a given integer k, the space Bk�R+� is defined by

Bk�R+� = �u � Hk�R+�; tku � L2�R+� . �2.4�

ote that the operator H�� ,�� has compact resolvent and hence the spectrum is discrete. We
enote by 
�1��� ,�� the first eigenvalue of H�� ,��. The min-max principle gives


�1���,�� = inf
u�B1�R+�,u�0

q��,���u�
�u�L2�R+�

2 ,

here q�� ,�� is the quadratic form associated to H�� ,��:

q��,���u� = �
R+

��u��t��2 + ��t − ��u�t��2�dt + ��u�0��2. �2.5�

spectral analysis using the separation of variables �cf. Ref. 16� gives us

��� = inf
��R


�1���,�� . �2.6�

n the following lemma, we collect some useful estimates of 
�1��� ,��.
Lemma II.1: Given �� �0,1�, we have


�1���,��� �1 − ��
�1��0,�� −
��−�2

�
, " �,�� R , �2.7�

here �−=max�−� ,0�.
Moreover, given ��R, we have

lim
�→−�


�1���,�� = + �, lim
�→+�


�1���,�� = 1. �2.8�

Proof: Using the density of C0
��R+� in H1�R+�, we get for any u�H1�R+�:

�u�0��2 = − 2�
0

�

u�t�u��t�dt . �2.9�

y the Cauchy-Schwarz inequality, we get for any ��0:

�u�0��2 � ��u�L2�R+�
2 +

1

�
�u��L2�R+�

2 .

aking �=� /� �with ��0�, we get

q��,���u�� �1 − ��q�0,���u� −
��−�2

�
�u�L2�R+�

2 , " u � B1�R+� . �2.10�

he min-max principle now gives �2.7�.
Notice that �2.8� is valid for �=0 �Ref. 10�. So the limit as �→−� in �2.8� is now a conse-

uence of the estimate �2.7�. For the reader’s convenience, let us give for nonzero � a proof for the
imit as �→ +� in �2.8�. Let us denote by 
D��� the first eigenvalue of the Dirichlet realization of
he harmonic oscillator −�t

2+ �t−��2 on R+. We have by the min-max principle:


�1��0,�� + ����,��0��2 �
�1���,���
D��� , �2.11�

here ��,� is the L2-normalized eigenfunction associated to 
�1��� ,��. Let us notice also that10,16

D 2
im�→+� 
 ���=1. So, if we know that lim�→+����,��0�� =0, then �2.11� is sufficient to deduce the
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imit as �→ +� in �2.8�. Thus, it remains for us to prove the following claim:

Given �� � 0,1� and �� R, there exists a constant C� 0 such that

"�� �C, + ��, ���,��0��2 � Ce−��/2. �2.12�

Let us mention that the decay in �2.12� is not optimal.17,18 We prove �2.12� using Agmon type
stimates.15 Let � be a regular function with compact support. An integration by parts gives the
ollowing identity:

q��,���e���,�� = 
�1���,���e���,��L2�R+�
2 + ���e���,��L2�R+�

2 . �2.13�

sing the estimate �2.10� �with �=1/2� together with the fact that 
D��� is bounded for ��R+, we
an rewrite �2.13� in the form:

1
2 ���e���,����L2�R+�

2 + ��t − ��e���,��L2�R+�
2 �� C̃�e���,��L2�R+�

2 + ���e���,��L2�R+�
2 , �2.14�

or some constant C̃�0. We choose now � as

��t� ª ��� �t − 1�2

2
if 0� t� 1

0 if t� 1.
�

nder this choice of �, we can get a sufficiently large constant C�0 such that, for �� �C , +��,
e can rewrite �2.14� in the form:

�e���,��H1��� � C .

sing the Sobolev imbedding H1�R+��L��R+�, this last estimate is sufficient to deduce �2.12�.
�

Following the analysis of Dauge-Helffer,19 we have now the following result.
Theorem II.2: For each ��R, ����1 and the function R���
�1��� ,�� attains its mini-

um at a unique positive point ���� that satisfies

����2 =��� + �2. �2.15�

Proof: Let us notice that by Kato’s theory �Ref. 20�, the maps

�� 
�1���,��, �� ��,� � L2�R+�

re analytic. Here we recall that ��,� is the unique strictly positive and L2-normalized eigenfunc-
ion associated to 
�1��� ,��. Let us consider ��0. Note that


�1���,� + ����,�+��t + �� = H��,�����,�+��t + ���, " t � R+.

aking the scalar product with ��,� and then integrating by parts, we get

�
�1���,� + �� − 
�1���,����
R+

��,�+��t + ����,��t�dt = ��,�+�� �����,��0� − ���,�+������,��0� .

�2.16�

ecall that we have the boundary conditions

��,�+�� �0� = ���,�+��0�, ��,�� �0� = ���,��0� .
hen we can rewrite �2.16� as
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�1���,� + �� − 
�1���,��
�

�
R+

��,�+��t + ����,��t�dt

= 	��,�+�� ��� − ��,�+�� �0�
�

− �
��,�+���� − ��,�+��0�

�

 · ��,��0� .

y taking the limit as �→0, we get

��

�1���,�� = ���,�� �0� − ���,�� �0����,��0� .

inally, we make the substitutions

��,�� �0� = ��2 − 
�1���,�����,��0�, ��,�� �0� = ���,��0� ,

nd we get the following formula,

��

�1���,�� = ��2 − 
�1���,�� − �2����,��0��2, �2.17�

alled usually the F-formula �cf. Refs. 19 and 21�. Using �2.7� and �2.8�, we get

��

�1���,����=0

� 0, ��

�1���,����=�

� 0,

or a sufficiently large ��0. This gives the existence of a positive critical point of 
�1��� ,��. Let
s notice now that for any critical point �c of 
�1��� ,��, we have

��
2
�1���,��

��=�c
= 2�c���,��0��2.

his shows that any negative critical point is a global maximum and any positive critical point is
global minimum of 
�1��� ,��. Coming back to �2.8�, lim�→−� 


�1��� ,��= +�, and thus there does
ot exist any negative critical points. Therefore, the minimum of ��
�1��� ,�� is attained at a
nique point �����0 and the function ��
�1��� ,�� is strictly increasing on ����� , +��. This
roves in particular �recalling �2.6��:

��� = 
�1���,������ 1.

�

In the sequel, we denote by �� the unique strictly positive and L2-normalized eigenfunction
ssociated to the eigenvalue ���, and by H��� the operator H�� ,�����:

�� = ��,����, H��� = H��,����� . �2.18�

In the next lemma, we collect various useful relations satisfied by the eigenfunction ��. These
elations are similar to those given in Appendix A of Ref. 10.

Lemma II.3: For each ��R, the following relations hold:

�
R+

�t − ���������t��2dt = 0, �2.19�

�
R+

�t − �����2����t��2dt =
���

2
−
�

4
����0��2, �2.20�

�
R+

�t − �����3����t��2dt =
1

6
�1 − 2�������2�����0��2. �2.21�

Proof: We follow the calculations done in Bernoff-Sternberg.7 Let us consider the differential

perator:
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L = − �t
2 + �t − �����2 −��� .

ote that for any polynomial p, we have the following identity:

L�2p�� − p���� = �p�3� − 4��t − ���� −�����p� − 4�t − �����p���. �2.22�

et v=2p��− p����. Integrating by parts we obtain

�
0

+�

���t��Lv��t�dt = �v��0� − �v�0�����0� . �2.23�

aking p=1, we get

− 4�
0

+�

�t − ���������t��2dt = 2�����2 − �2 −��������0��2.

ecalling �2.15�, the above formula proves �2.19�.
We prove �2.20� by taking p= �t−�����. To prove �2.21�, we take p= �t−�����2. Note that we

ave in this case

v��0� − �v�0� = 2�2�������2 − 1����0� .

e get now from �2.22� and �2.23�

− 12�
0

+�

�t − �����3����t��2dt = 2�2�������2 − 1�����0��2.

his proves �2.21�. �

For ��R, let us define the parameter

M3��� = 1
6 �1 + �������2�����0��2, �2.24�

nd when �=0, we write M3ªM3�0�. Note that �2.21� gives

M3 = �
R+

�t − �0�3��0�t��2dt , �2.25�

here �0ª��0�. The constant M3 is the universal constant appearing in Theorems I.2, I.4, and the
arameter M3��� appears as M3� 1

2 ,�� in Theorem I.5.

. Regularity

We discuss now the regularity of the functions �→����R and �����L2�R+�. It seems
or us that Kato’s theory �cf. Ref. 20� does not apply in this context at least for the reason that we
o not know a priori whether the expression of the operator

H��� = −
d2

dt2 + �t − �����2

epends analytically on �. Inspired by Bonnaillie,22 we use a modification of Grushin’s method23

nd we get the following proposition.
Proposition II.4. The functions R�������R and R������L2�R+� are C�.
Moreover, the function R������L��R+� is locally Lipschitz.
The specific difficulty in proving Proposition II.4 comes from the fact that both the expression

nd the domain of the operator H��� depend on �. To work with an operator with a fixed domain,

e consider a cut-off � that is equal to 1 on �0, 1� and we apply the invertible transformation
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� �̃=e−�t��t�� that transforms the boundary condition ���0�=���0� to the usual Neumann
oundary condition �̃��0�=0 and leaves the spectrum invariant �cf. Proof of Proposition II.7�.

In the next proposition we determine ����. This is a first step in the proof of Proposition II.4.
Proposition II.5: The function ����� is of class C1 and satisfies

���� = ����0��2. �2.26�

n particular, we have

��0� = 6M3. �2.27�

Remark II.6: Using Formula (2.15) we get also that the function ������ is of class C1.
Proof of Proposition II.5: Let � be a real number. We shall define the following trial function:

u = e�t��� + �u1� ,

here

u1 = �H��� −����−1�����0��2�� + 2��� + 2���� + �� − ������t − ������� .

y standard Fredholm theory, the operator �H���−����−1 is defined on the orthogonal space of

� and has values in D�H����. Hence, the function u1 is well defined, thanks to �2.19�, and the
unction u satisfies the boundary condition u��0�= ��+��u�0�. When � is sufficiently small, it is a
esult of the exponential decay of �� at +� �cf. Propositions II.9 and II.10� and standard elliptic
stimates that u�B2�R+�. Therefore, u�D�H��+���, and we have

H�� + ���u� = e�t�− �t
2 + �t − ��� + ���2 − 2��t − �2���� + �u1� . �2.28�

sing the decomposition:

H�� + �� = H��� − 2���� + �� − ������t − ����� + ���� + �� − �����2,

e can rewrite �2.28� as

�H�� + �� −��� − ����0��2���u� = �2e�t���� + ����0��2�u1 + ���� + �� − �����2u . �2.29�

e make the following claim:

"�� R, $ C� 0, " �� �− 1,1�, ���� + �� − ������ C��� . �2.30�

herefore, thanks to �2.29� and �2.30�, there exist constants C̃ ,�0�0 such that, for all
� �−�0 ,�0�, we have

��H�� + �� −��� − ����0��2��u�L2�R+� � C̃�2�u�L2�R+�.

e now get by the spectral theorem the existence of an eigenvalue ̃��+�� of the operator
��+�� that satisfies the following estimate:

�̃�� + �� −��� − ����0��2��� C̃�2, " �� �− �0,�0� . �2.31�

e make now another claim:

"�� R, $ C1 � 0, " �� �− 1,1�, �
�2��� + �,��� + ��� − 
�2���,������� C��� ,

�2.32�

here for �� ,���R�R, 
�2��� ,�� denotes the second eigenvalue of the operator H�� ,��. Under

he above claim, the estimate �2.31� gives
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̃�� + �� =�� + ��, " �� �− �0,�0� .

onsequently, we get that ��� is differentiable and satisfies formula �2.26�. We make now a final
laim:

The function �� ����0��2 is locally Lipschitz. �2.33�

o achieve the proof of the theorem, we only need to prove �2.30�, �2.32�, and �2.33�.
Proof of (2.30): As we have the formula �2.15�, it is sufficient to prove

"�� R, $ C� 0, " �� �− 1,1�, ��� + �� −����� C��� . �2.34�

he min-max principle gives


�1���,�� + ����+�,��0��2 �
�1��� + �,���
�1���,�� + ����,��0��2, " �� R . �2.35�

hus, given an eigenfunction � of H�� ,��, we need to estimate ���0��2. Let u�D�H����. Using
2.9� we get

�u�0��2 � 2�u�L2�R+��u��L2�R+�. �2.36�

We use now �2.10� �with �=1/2� to obtain

�u��L2�R+�
2

� 2q��,���u� + ��−�2�u�L2�R+�
2 . �2.37�

ombining �2.36� and �2.37�, we get after an integration by parts and the application of the
auchy-Schwarz inequality,

�u�0��2 � 2�H��,��u�L2�R+��u�L2�R+� + ��−�2�u�L2�R+�
2 , " u � D�H���� . �2.38�

et Mªsup���−1,1����+��. Let us show that M� +�. Actually, the min-max principle gives


�1��� − 1,���
�1��� + �,���
�1��� + 1,��, " �� �− 1,1�, " �� R .

ecalling �2.6�, we obtain ��−1��sup���−1,1���+�����+1�. Formula �2.15� now gives
M� +�. Therefore, �2.38� gives

���,��0��2 � C, ���+�,��0��2 � C, " �� �− 1,1�, " �� �− M,M� ,

or some constant C�0. Consequently �2.35� yields the estimate


�1���,�� − C�− �
�1��� + �,���
�1���,�� + C�+, " �� �− M,M� .

inimizing with respect to �, we get �2.34�, thanks to Theorem II.2.
Proof of (2.32): Let u�B1�R+�. We shall compare q��+� ,���+����u� and q�� ,������u�. In

act, we have

q�� + �,��� + ����u� = q��,������u� − 2���� + �� − ������
0

+�

�t − ������u�t��2dt + ���� + ��

− �����2�
0

+�

�u�t��2dt + ��u�0��2,

here, combining �2.36� and �2.37�,

�u�0��2 � 2q��,���u� + ��−�2�u�L2�R+�
2 .
he Cauchy-Schwarz inequality gives
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2��
0

+�

�t − ������u�t��2dt� � �
0

+�

��t − �����u�t��2dt + �
0

+�

�u�t��2dt .

sing �2.30�, we get a constant C�0 such that, for all �� �−1,1�, we have

�1 − C�−�q��,������u� − C�−�u�L2�R+�
2

� q��,��� + ����u�� �1 + C�+�q��,������u� + C�+�u�L2�R+�
2 .

he min-max principle now proves the claim.
Proof of (2.33): Let u=���t�−e−�t��+��t�. It is sufficient to prove that

�u�0��2 � C���, " �� �− �0,�0� , �2.39�

or constants C ,�0�0. Using �2.38�, we have to estimate �u�L2�R+� and �H�� ,��u�L2�R+�. Let f
�H���−����u. Then:

f = ���� −�� + ���u + w ,

here

w�t� = e−�t�− 2��t + 2���� + �� − ������t − ����� − ���� + �� − �����2 + �2����t� .

herefore, thanks to �2.30� and �2.34�, we have

�f�L2�R+� � C���, " �� �− �0,�0� . �2.40�

oticing that, after an integration by parts, �f ,���L2�R+�=0, we write

u = �H��� −����−1f .

t is a standard result that the operator norm of �H���−����−1 is bounded on the orthogonal space
f �� and is estimated by the inverse of the gap between the first two eigenvalues of H���.
herefore, thanks to �2.40�, we get that �u�L2�R+�� C̃��� for some constant C̃�0. Plugging this
stimate together with �2.40� in �2.38�, we get �2.39�. �

In the next proposition we have a regularity result with respect to the two variables �� ,��.
Proposition II.7: The functions �� ,���
�1��� ,�� and �� ,�����,� are of class C� in R2.

oreover, we have

��

�1���,�� = ���,��0��2. �2.41�

Using Proposition II.5 and Remark II.6, Proposition II.7 is sufficient for achieving the proof of
roposition II.4.

Proof of Proposition II.7: In order to reduce the problem to a problem of an operator with a
xed domain, we define the bounded operator V��� on L2�R+� by

V���u = e���t�tu, " u � L2�R+� .

e then define the operator H̃�� ,�� by

D�H̃��,��� = �u � B2�R+�;u��0� = 0 ,

H̃��,�� = V�− ��H��,��V��� .

ote that the domain of H̃�� ,�� is independent of � and �. Note also that H̃�� ,�� is not self-adjoint
˜
ut it has the same spectrum as H�� ,��. A fundamental state of H�� ,�� is given by
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�̃�,��t� = V�− ����,��t� .

e denote by ��,�
* the orthogonal projector on ��,�. Let us consider a point ��0 ,�0�. We define the

perator M0 :D�H̃�� ,����C→L2�R+��C by

M0 ª �H̃��0,�0� − 
0 �̃0

�0
* 0

� ,

here 
0=
�1���0 ,�0� and �0=��0,�0
.

The operator M0 is invertible and its inverse R0 is given by

R0 = �E0 E0
+

E0
− E0

+− � ,

here the coefficients of R0 are

E0 = V�− �0�R̃��0,�0�V��0� , �2.42�

E0
+ = V�− �0��0, �2.43�

E0
− = �0

*V��0� , �2.44�

E0
+− = 0. �2.45�

he operator R̃��0 ,�0� is the regularized resolvent which is equal to 0 on R ·�0 and to
H��0 ,�0�−
0�−1 on �0

�.
Now we define, in a neighborhood of ��0 ,�0 ,
0�, the operator M�� ,� ,
� by

M��,�,
� = �H̃��,�� − 
 �̃0

�0
* 0

� .

he operator M�� ,� ,
� is also invertible in a neighborhood of ��0 ,�0 ,
0� and we denote its
nverse by

R��,�,
� = � E��,�,
� E+��,�,
�
E−��,�,
� E+−��,�,
�

� .

t is then standard to prove the following two points �cf. Ref. 18 for details�:

• The coefficients of R�� ,� ,
� are C� in a neighborhood of ��0 ,�0 ,
0�.
• A number 
 is an eigenvalue of H�� ,�� if and only if E+−�� ,� ,
�=0.

Moreover, in a neighborhood of ��0 ,�0 ,
0�, if 
 is an eigenvalue of H�� ,��, then
���E+�� ,� ,
� is a corresponding eigenfunction.

Thus, in a neighborhood of ��0 ,�0�, the eigenvalues of the operator H�� ,�� are given by the
olutions of the equation E+−�� ,� ,
�=0. By viewing the operator M�� ,� ,
� as a perturbation of

M0, we can calculate the coefficients of R�� ,� ,
� and we obtain that

�
E+−��0,�0,
0� = 1.

s the function E+−�� ,� ,
� is of class C�, we can apply the implicit function theorem and get the
xistence of a number ��0 and a function 
 of class C� such that
"��,�� �� �0 − �,�0 + �����0 − �,�0 + ��, " 
��
0 − �,
0 + �� ,
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E+−��,�,
� = 0 Û 
 = 
��,�� .

his proves that the functions �� ,���
�1��� ,�� and �� ,�����,� are of class C�. �

. Asymptotic behavior

The asymptotic behavior at ±� of the eigenvalue ��� with respect to the parameter � is
iven in the following proposition.

Proposition II.8: There exist constants C0 ,�0�0 such that the eigenvalue ��� satisfies

1 − C0� exp�− �2������ 1, " �� ��0, + �� , �2.46�

nd

− �2 ����� − �2 +
1

4�2 , " ��� − �,0� . �2.47�

Proof: We prove the estimate �2.46�. Note that by the min-max principle and Theorem II.2 we
et for any ��0:


�1��0,���������� 1. �2.48�

he following estimate for the Neumann problem is obtained by Bolley-Helffer17 �formula �A18�:

�
�1��0,�� − 1�� C� exp − �2, " �� �A, + �� ,

here C ,A�0 are constants independent of �. Recalling �2.15�, the last estimate gives

�
�1��0,����� − 1�� C0� exp − �2, " �� ��0, + �� ,

here �0=max��A ,1� and C0=2C. Upon substitution in �2.48�, we arrive at the estimate �2.46�.
The relation �2.15� gives the lower bound ����−�2. To get the upper bound in �2.47�, we

se the function e�t �with ��0� as a trial function for the quadratic form defining H�� ,0�, this
hich gives

q��,0��e�t�
�e�t�L2�R+�

2 � − �2 +
1

4�2 , " ��� − �,0� .

herefore, we get by the min-max principle that 
�1��� ,0��−�2+1/4�2. Recalling �2.6�, we get
he upper bound in�2.47�.

. Exponential decay of the ground state

Using Agmon’s technique �cf. Ref. 15�, we get the following decay result for the eigenfunc-
ion ��.

Proposition II.9: For each �� �0,1� there is a positive constant C� such that, for all ��R, we
ave the following estimate for the eigenfunction ��:

�exp�� �t − �����2

2
����

H1��t�R+;�t−������C��
� C��1 + �− + �−

2� , �2.49�

here we use the notation �−=max�−� ,0�.
Proof: Let us consider a function ��H1�R+�. Given an integer N�N, an integration by parts
ives the following identity:

                                                                                                            



L
e

T
�
m

T

T

T

N

W

w

N
t
t

T

072106-15 Magnetic Schrödinger operator J. Math. Phys. 47, 072106 �2006�

                        
�
0

N

���e������2 + ��t − �����e����2�dt + ��e��0����0��2 − ����N�e2��N����N� =����e����L2��0,N��
2

+ ���e����L2��0,N��
2 . �2.50�

et us recall that the eigenfunction �� is strictly positive. It results then from the eigenvalue
quation satisfied by ��:

����t� = ��t − �����2 −�������t�� 0, " t �� ���� + ����, + �� .

herefore, the function ��� is increasing on �����+���� , +��. On the other hand, as ��
H2�R+�, the Sobolev imbedding theorem gives limt→+� ����t�=0. Thus, combining with the
onotonicity of ���, we get finally that

����t�� 0, " t � ���� + ����, + �� .

aking N�����+���� and recalling that ����1, the identity �2.50� yields the estimate:

�
0

N

���e������2 + ��t − �����e����2�dt + ��e��0����0��2 � �e����L2��0,N��
2 + ���e����L2��0,N��

2 .

�2.51�

o estimate the boundary term in �2.51�, we recall that �2.38� �with u=�� and �=����� gives

����0��2 � 2 + ��−�2.

herefore, the estimate �2.51� becomes

�
0

N

���e������2 + ��t − �����2 − ����2 − 1��e����2�dt� �−
�2 + ��−�2e2��0�. �2.52�

ow we take � as

��t� = �
�t − �����2

2
.

e can then rewrite �2.52� as

�
t��0,N�,�t−������a�

���e������2 + �e����2�dt� �−
�2 + ��−�2e����� + e�a�, �2.53�

here a��0 satisfies

a�
2 − �2a� − 1� 1.

otice that the first term on the right hand side of �2.53� is effective only if ��0. Coming back
o the regularity of the function ���, the decay of ��� in �2.47� and the relation �2.15�, we get
hat the function ���� is bounded for ��0. Let us now take

C0 = sup
��0

����, C� = max�a�,e�C0,e�a�� .
he estimate �2.53� reads now as
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�
t��0,N�,�t−������C�

���e������2 + �e����2�dt� C��1 + �− + ��−�2� .

oticing that the above estimate is uniform with respect to N, we get �2.49� upon passing to the
imit N→ +�.

Let us now recall that the regularized resolvent R̃��� is the bounded operator defined on
2�R+� by

R̃���	 = �0, 	���,

�H��� −����−1	 , 	� ��,
� �2.54�

nd extended by linearity. Again, using the Agmon’s technique, we get that this regularized
esolvent is uniformly continuous in suitable weighted spaces.

Proposition II.10: For each �� �0,1� and �0�0, there exist positive constants C0 , t0 such that

"�� �− �0,�0�, " u � L2�R+;e��t−�����dt�, u � ��,

e have

�e��t−�����R̃���u�H1��t0,+��� � C0�e��t−�����u�L2�R+�. �2.55�

II. PROOF OF THEOREM I.1

In this section we prove Theorem I.1 by comparing with the basic model introduced in the
receding section. We introduce a coordinate system �s , t� near the boundary �� where t measures
he distance to �� and s measures the distance in �� �cf. the Appendix�.

Proposition III.1 (Upper bound): Under the hypothesis of Theorem I.1, there exist positive
onstants C and h0 such that, "h� �0,h0�, we have


�1���,�,h�� h�h�−1/2��0 + Ch1/2�� + Ch3/2. �3.1�

Proof: We start with the easy case when �� 1
2 and �0�0. Notice that in this case, given a

onstant C�0, formula �2.46� gives the existence of h0�0 such that

��h�−1/2��0 + Ch1/2�� − 1�� exp�− h2�−1�, " h �� 0,h0 � . �3.2�

y comparing with the Dirichlet realization, the min-max principle gives


�1���,�,h�� ��1��h� ,

here ��1��h� is the first eigenvalue of the Dirichlet realization �on �� of −�h�−iA�2. Using the
ollowing upper bound for ��1��h� �cf. Ref. 9�:

��1��h�� h + Ch3/2, " h �� 0,1 � ,

ogether with �3.2�, we get �3.1�.
We suppose now that �0�0 if �� 1

2 . Consider a point x0��� such that ��x0�=�0. We
uppose that x0=0 in the coordinate system �s , t� near the boundary �cf. the Appendix�. Using this
oordinate system we construct a trial function uh,� supported in the rectangle Kh= �−h1/4 ,h1/4�
�0, t0� following the idea of Helffer-Morame10 and Bernoff-Sternberg.7 Since x0 is a minimum of

, Taylor’s formula up to the first order gives the existence of positive constants C1 ,h0 such that

�� " h ��0,h0�, ���s� − �0�� C1h1/2 in�� − h1/2,h1/2� .
hus, given a trial function u supported in Kh, we have the following estimate:
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��qh,A,�
�,� �u�� qh,A,�

�,�̃0 �u�, " h ��0,h0� , �3.3�

here �̃0=�0+C1h1/2. So it is enough to work with qh,A,�
�,�̃0 .

We introduce �=h�−1/2�̃0 and we choose now the following trial function:

uh,� = a−1/2 exp�− i
����s
h1/2 �vh,�, �3.4�

here a�s , t�=1− t�r�s� and

vh,� = h−3/8���h−1/2t���t�� f�h−1/4s� . �3.5�

he function � is a cut-off equal to 1 in a compact interval �0, t0 /2� and the function f �C0
���

1 � 2 , 1 � 2 �;R� is chosen such that �f�L2�R�=1.
Note that the decay of �� in Proposition II.9 gives:1 For every ��0 and k�N, there exist

ositive constants Ck,� and h0 such that,

���
R+

tk����t��2dt� Ck,�h
−�k, " h ��0,h0� . �3.6�

e work with the choice of gauge given in Proposition A2. Using formula �A3�, we can write

qh,A,�
�,�̃0 �uh,�� = �

−����/2

����/2 �
0

t0 	�h�tvh,��2 + a−2��h1/2���� − t�1 −
t

2
�r�s���vh,��2
dsdt

+ h3/2��
−����/2

����/2

�vh,��s,0��2ds + h2�
−����/2

����/2 �
0

t0

����ta
−1/2�vh,��2 + 2a−1/2��ta

−1/2�

���tvh,��vh,� + a−2��svh,��2�adsdt . �3.7�

ecalling the expression of vh,� �cf.�3.5��, we can replace the function � by 1 getting an expo-
entially small error on the right-hand side of �3.7�, thanks to the decay of �� in Proposition II.9.
fter a change of variables and using the decay of �� in �3.6�, the leading order term on the

ight-hand side of �3.7� is equal to

h��
0

+�

������t��2 + ��t − ��������2dt�dt + �����0��2� ,

nd the error is of order O�h3/2�. Therefore, we get constants C ,h0�0 such that

���qh,A,�
�,�̃0 �uh,�� − h����� Ch3/2, " h ��0,h0� .

sing formula �A4� and the decay of �� �Proposition II. 9�, we obtain that the L2 norm of uh,� is
xponentially close to 1 as h→0. The application of the min-max principle permits one now to
rove �3.1�.

Remark III.2: In the regime �� � 1
2 ,1�, we have, thanks to Proposition II.5:

�h�−1/2�0� =0 + 6M3h�−1/2 + O�h2�−1� .

ubstituting the above expansion in the upper bound (3.1), we get the following upper bound for
he eigenvalue 
�1��� ,� ,h�,


�1���,�,h�� h0 + 6M3�0h�+1/2 + O�hinf�3/2,2��� .

e shall prove that this upper bound is actually an asymptotic expansion of 
�1��� ,� ,h� as h
Actually we shall need this decay only when ��1/2 and �0�0.
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ends 0 (see Remark V.11).
Proposition III.3 (Lower bound): Under the hypothesis of Theorem I.1, there exist positive

onstants C ,C� and h0 such that, "h� �0,h0�, we have


�1���,�,h�� h�h�−1/2�0�1 + C�h1/4�� − Ch5/4. �3.8�

Proof: We follow the technique of Ref. 10 and we localize by means of a partition of unity to
ompare with the model operators in R2 and R�R+. Let us explain the heuristic idea. A partition
f unity permits one to estimate the quadratic form qh,A,�

�,� locally in small subsets of �. Near the
oundary, we obtain after a transformation of coordinates that the expression of qh,A,�

�,� is to leading
rder asymptotics as that of the half-plane model. In the interior of �, the expression of the
uadratic form is actually like that of the entire-plane model.

Let us introduce a partition of unity �� j� of R2 that satisfies

�
j

�� j�2 = 1, �
j

��� j�2 � + �, supp � j � D�zj,1� ,

here for z�R2 and r�0, we denote by D�z ,r� the disk of center z and radius r.
We introduce now the scaled partition of unity:

� j
h�z� ª � j��0h�z�, " z � R2,

here �0 and � are two positive numbers to be chosen suitably. Note that �� j
h� now satisfies

�
j

�� j
h�2 = 1, �3.9�

�
j

��� j
h�2 � C�0

−2h−2�, �3.10�

supp � j
h � Qj

h
ª D�zj

h,�0h�� , �3.11�

here C is a positive constant. We can also suppose that

either supp � j
h � �� = � or zj

h � �� . �3.12�

ote that the alternative in �3.12� permits us to write the sum in �3.9� under the form:

� = �
int

+ �
bnd

,

here the summation over “int” means that the support of � j
h does not meet the boundary while

hat over “bnd” means the converse.
We have now the following decomposition formula:

qh,A
�,��u� = �

j

qh,A
�,��� j

hu� − h2�
j

���� j
h�u�2, " u � H1��� , �3.13�

sually called the IMS formula �cf. Ref. 24�. We have now to bound from below each of the terms
n the right-hand side of �3.13�. Note that �3.10� permits one to estimate the contribution of the
ast term in �3.13�:

h2�
j

���� j
h�u�2 � C�0

−2h2−2��u�2, " u � H1��� . �3.14�

h
f � j is supported in �, then we have
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qh,A
�,��� j

hu� = �
R2

��h � − iA�� j
hu�2dx .

ince the lowest eigenvalue of the Schrödinger operator with constant magnetic field in R2 is
qual to h, we get

qh,A
�,��� j

hu�� h�
�

�� j
hu�2dx, " u � H1��� . �3.15�

e now have to estimate qh,A,�
�,� �� j

hu� when � j
h meets the boundary. It is in this case that we see the

ffect of the boundary condition. We shall do that by writing qh,A,�
�,� �� j

hu� in the boundary coordi-
ates. Note that, thanks to Proposition A.1, there exists a positive constant C1 independent of h
nd j such that

�
�

��h � − iA�� j
hu�2dx� �1 − C1�0h���

R�R+

��h � − iÃ�� j
hu�2dsdt, " u � H1��� ,

�3.16�

here Ã is the vector field associated to A by �A2�.
By a gauge transformation, we get a new magnetic potential Ãnew,j satisfying

Ãnew,j = Ã − �	 j
h,

Ãnew,j�zj
h� = 0,

�Ãnew,j�w� − Ãlin
j �w��� C�w�2, w = �s,t� , �3.17�

here Alin
j
ª

1
2 �−t ,s� is the linear magnetic potential and C�0 is a constant independent of h and

j.
Given ��0 and any function v of support in R�R+, we get by the Cauchy-Schwarz inequal-

ty,

��
R�R+

�h � − iÃnew,j�v · �Ãnew,j − Ãlin
j �vdsdt� � h2��

R�R+

��h � − iÃnew,j�v�2

+ h−2��
R�R+

��Ãnew,j − Ãlin
j �v�2.

riting Ãnew,j = Ãlin
j + �Ãnew,j − Ãlin

j � and using �3.17�, we get a positive constant C̃ independent of h
nd j such that

�
R�R+

��h � − iÃnew,j�v�2dsdt� �1 − h2���
R�R+

��h � − iÃlin
j �v�2dsdt − C̃h−2���w�2� j

hu�2.

�3.18�

et us recall that � j
hu is supported in the disk D�zj

h ,�0h��. Upon noticing that

�
R�R+

��h � − iÃ�� j
hu�2dsdt = �

R�R+

��h � − iÃnew,j�exp�− i
	 j

h

h
�� j

hu�2

dsdt ,

e get by combining �3.18� �with v=exp�−i�	 j
h /h��� j

hu� together with �3.16�, a constant C2�0

uch that
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�
R�R+

��h � − iA�� j
hu�2dx� �1 − C2�0h� − C2h2���

R�R+

��h � − iÃlin
j �exp�− i

	 j
h

h
�� j

hu�2

dsdt

− C2�0h4�−2��
R�R+

�� j
hu�2dsdt . �3.19�

otice also �possibly changing C2� we have in D�zj
h ,�0h��,

��x�� ��zj
h� − C2�0h�.

hen, by putting,

�̃ j =
��zj

h� − C2�0h�

1 − C2h2� − C2�0h�
,

he estimate �3.19� reads finally

qh,A,�
�,� �� j

hu�� �1 − C2�0h� − C2h2��q
h,Ãlin

j ,R�R+

�,�̃j �exp�− i
	 j

h

h
�� j

hu� − C2�0
2h4�−2��� j

hu�2.

�3.20�

ote that this permits one to compare with the half-plane model operator and to get finally the
nergy estimate �cf. �1.10��:

qh,A,�
�,� �� j

hu�� ��1 − C2�0h� − C2h2��h�h�−1/2�̃ j� − C2�0
2h4�−2��� j

hu�L2���
2 . �3.21�

e now substitute the estimates �3.8�, �3.14�, and �3.15�, in �3.13� and get finally

qh,A,�
�,� �u�� h�

int
�
�

�� j
hu�2dx + h�

bnd
�h�−1/2�̃ j��

�

�� j
hu�2dx − C�h4�−2� + �0

−2h2−2� + h1+� + h1+2��

��u�2, " u � H1��� . �3.22�

s �0 is the minimum of �, we can replace �3.20� by the estimate

qh,A,�
�,� �� j

hu�� �1 − C2�0h� − C2h2��q
h,Ãlin

j ,R�R+

�,�̃0 �exp�− i
	 j

h

h
�� j

hu� − C2�0
2h4�−2��� j

hu�2,

�3.23�

here �̃0 is defined by

�̃0 ª
�0

1 − C2h2� − C2�0h�
.

e then get instead of �3.22�:

qh,A,�
�,� �u�� h�

int
�
�

�� j
hu�2dx + h�h�−1/2�̃0��

bnd
�
�

�� j
hu�2dx − C�h4�−2� + �0

−2h2−2� + h1+� + h1+2��

��u�2, " u � H1��� . �3.24�

he advantage of �3.22� is that it gives a lower bound of the quadratic form qh,A,�
�,� in terms of a

otential, see however Sec. IV.
We choose now �0=1, and we optimize by taking 2−2�=1+�=4�−2� �i.e., �=3/8 and �
1/8� in �3.24�. We obtain then �3.8� by applying the min-max principle. �
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Proof of Theorem I.1: The proof follows in principle from Propositions III.1 and III.3. Actu-
lly, in the regime �� 1

2 , we use further Proposition II.8, while in the regime �� 1
2 , we use the

ontinuity of the function ��� �Proposition II.4�. �

V. LOCALIZATION OF THE GROUND STATE

We work in this section under the hypotheses of Theorem I.3. Due to Theorem I.1 we have in
his case that

lim
h→0


�1���,�,h�
h

� 1. �4.1�

hen this gives, by following the same lines of the proof of Theorem 6.3 in Ref. 10, the following
roposition.

Theorem IV.1: Under the hypotheses of Theorem I.3, there exist positive constants � ,C ,h0

uch that, for all h� �0,h0�, a ground state u�,�,h of the operator Ph,A,�
�,� satisfies

�exp��d�x,���
h�

�u�,�,h�
L2���

� C�u�,�,h�L2���, �4.2�

nd

�exp��d�x,���
h�

�u�,�,h�
H1���

� Ch−min�1/2,���u�,�,h�L2���, �4.3�

here �=1−� if �0�0 and �� 1
2 , and �=1/2 otherwise.

Proof: Integrating by parts, we get for any Lipschitz function �:

qh,A,�
�,� �exp��

h�
�u�,�,h� = 
�1���,�,h��exp��

h�
�u�,�,h�

L2���

2

+ h2−2������exp��
h�
�u�,�,h�

L2���

2

.

�4.4�

et u=exp�� /h��u�,�,h. Using the lower bound for qh,A,�
�,� �u� in �3.24� together with the upper

ound for 
�1��� ,� ,h� in �3.1�, we get from �4.4�:

�
int
�
�

�1 −�h�−1/2��0 + Ch1/2�� − C�0
−2h1−2� − Ch4�−2�−1 − Chmin��,2�� − h1−2�����2�� �� j

hu�2dx

��
bnd
�
�

��h�−1/2�̃0� −�h�−1/2��0 + Ch1/2�� + hmin�4�−2�−1,1−2�� + h1−2�����2�� �� j
hu�2dx .

e choose �=� so that each � j
h is supported in a disk of radius �0h�. We choose also ��0 such

hat 4�−2�−1�0 and we define the function � by

��x� = � max�dist�x,���;�0h�� ,

here � is a positive constant to be chosen appropriately. Note that 1−�h�−1/2�̃0� decays in the
ollowing way:

�� $ C0,h0 � 0s.t., " h ��0,h0� ,

1 −�h�−1/2�̃0�� C0h2�−1 if �0 � 0 and � �
1

,

2

                                                                                                            



T

T

F
t

w
v
f

w

I

f
m
u

w
c

I


I

072106-22 Ayman Kachmar J. Math. Phys. 47, 072106 �2006�

                        
1 −�h�−1/2�̃0�� C0 otherwise.

hus we can choose �0 and � small enough, so that we get finally the following decay:

�
int
�
�

�� j
h exp

�

h�
u�,�,h�2

dx� C�
�

�u�,�,h�2dx .

his actually permits one to conclude �4.2� and, thanks to �4.4�,

qh,A,�
�,� �exp

�d�x,���
h�

u�,�,h�� Chmin�2−2�,1��exp
�d�x,���

h�
u�,�,h�

L2���

2

. �4.5�

or a function u�H1���, let ũ�s , t� be defined by means of boundary coordinates �s , t� and equal
o the restriction of u in �t0

�cf. the Appendix�. Notice that

�ũ�s,0��2 = − 2�
0

�

��t���t�ũ�s,t����t�ũ�s,t�dt ,

here � is the same cut-off introduced in �3.5�. Integrating the above identity with respect to the
ariable s then applying a Cauchy-Schwarz inequality, we get after a change of variables the
ollowing interpolation inequality:

�u�L2����
2

� C�u�L2��� � �u�H1���,

here C is a positive constant depending only on �.
Applying again a Cauchy-Schwarz inequality, the preceding estimate gives

��h � − iA�u�L2���
2

� 2qh,A,�
�,� �u� + Ch�u�L2���

2 , " u � H1��� .

n particular, for u=exp� �d�x,���

h�
�u�,�,h, we get �4.3�, thanks to �4.2� and �4.5�. �

We study now the decay near the boundary. Let us consider a number ��0 and a Lipschitz

unction �0 defined in �̄. The function �0 and the number � will be chosen later in an appropriate
anner. Choosing �= 3

8 , �= 1
8 , and �0 large enough, the energy estimate �3.22� together with the

pper bound �3.1� give the existence of a positive constant C such that

0� h�
int
�
�

�1 −�h�−1/2�̃0� − Ch1/4 − h1−2����0�2��exp��0

h�
�� j

hu�,�,h�2

dx

+ h�
bnd
�
�

���h�−1/2�̃�x�� −�h�−1/2�̃0�� − Ch1/4 − h1−2����0�2��exp��0

h�
�� j

hu�,�,h�2

dx ,

here �̃0=�0+Ch1/2. The function � is extended to a small boundary sheath by means of boundary
oordinates in the following way:

��x� = ��s�x��, " x ��t0
.

n the case �� 1
2 and �0=0, thanks to Proposition II.8, the difference between �h�−1/2�̃�x�� and

�h�−1/2�̃0� decays in the following way:

"� � 0, $ C� � 0, " x � �� − �0�−1���, + ���, �h�−1/2�̃�x�� −�h�−1/2�̃0�� C�.

n the case �� 1
2 and �0�0, we have a stronger decay:

−1
"� � 0, $ C� � 0, " x � �� − �0� ���, + ��� ,
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�h�−1/2�̃�x�� −�h�−1/2�̃0�� C�h
1−2�.

o by taking �0 in the form:

�0�x� = ���dist�x,����dist�x,�x � ��;��x� = �0� ,

ith � an appropriate positive constant and � is the same as in �3.5�, we get for each ��0 the
ollowing decay near the boundary:

		�
dist�x,����t0

�exp
�0

h�
u�,�,h�2

dx� C� exp
�

h�
�u�,�,h�2, " h ��0,h�� , �4.6�

ith �=1−� if �0�0 and �� 1
2 , and �= 1

2 otherwise. This gives finally the decay in Theorem I.3.
For the critical case �= 1

2 and �0 arbitrary, we define the function �0 by

�0�x� = ���dist�x,����distagm�x,�x � ��;��x� = �0� ,

here distagm is the Agmon distance associated to the metric ����x��−��0��+. We obtain then a
imilar decay result to �4.6�.

In the case when �� 1
2 , we need a finer energy estimate than �3.22�, see however Remark

.11.

. TWO-TERM ASYMPTOTICS

In this section we suppose in addition to the hypotheses of Theorem II.1 that �� 1
2 . We give

wo-term asymptotic expansions for the ground state energy showing the influence of the scalar
urvature and we finish the proofs of the remaining theorems announced in Sec. I.

. Upper bound

We construct a trial function defined by means of boundary coordinates �s , t� near a point

0���. We suppose that z0=0 in the coordinate system �s , t� and we denote by �0=�r�0�, a0

1− t�0 and ��z0�=h�−1/2��z0�. We then define the trial function:

uh = exp�− i
����z0��s

h1/2 �vh�s,t� , �5.1�

ith

vh�s,t� = h−5/16a0
−1/2�t����z0��h−1/2t���t� · f�h−1/8s� , �5.2�

nd where the functions � and f are as in �3.5�.
We continue now to work in the spirit of Ref. 10. We work with the gauge given in Propo-

ition A.2. An explicit calculation, thanks to the decay of ���z0� �Proposition II.9�, gives the
ollowing lemma.

Lemma V.1: With the above notations, for each ��� 1
2 ,1� and ��C���� ;R�, there exist

ositive constants C ,h0 such that, "h� �0,h0�, we have the following estimate:

�qh,A,�
�,��z0��uh� − �

R+

Hh�Uh���z0��� �Uh���z0��dt� � Ch13/8, �5.3�

here the operators Hh and Uh are defined, respectively, by

Hh = a0
−2�t�1 − t

�0

2
� − h1/2����z0���2

− h2a0
−1�t�a0�t� ,

h −1/4 −1/2 2
�U g��t� = h g�h t�, " g � L �R+� .

                                                                                                            



T
m

I

W
t
s

N
i
s

"

w

T

h

2

w

072106-24 Ayman Kachmar J. Math. Phys. 47, 072106 �2006�

                        
Proof: Note that in the support of uh we have2

a = a0 + O�h5/8�, Ã1 = − t�1 −
t

2
�0� + O�h9/8� .

hen, thanks to formula �A3� �also cf. �3.7�� and the decay of ���z0� �Proposition II.9�, we get
odulo O�h13/8�:

qh,A,�
�,��z0��uh� = �

R�R+

a0��h�tvh�2 + a0
−2��t�1 −

t

2
�0� − h1/2����z0���vh�2�dsdt

+ h3/2��z0��
R

�vh�s,0��2. �5.4�

ntegrating with respect to s, the right-hand side above is equal to

h−1/2�
R

a0�h2��t�a0
−1/2���z0��h−1/2t���t���2 + a0

−3��t�1 −
t

2
�0� − h1/2����z0������z0�

��h−1/2t���t��2�dsdt + h��z0�����z0��0��2.

e can replace the function � in the above expression by 1 getting an exponentially small error,
hanks to Proposition II.9. Thus, modulo a small exponential error, we rewrite the above expres-
ion as

�
R
�h2a0��t�Uh���z0���2 + a0

−2��t�1 −
t

2
�0� − h1/2����z0����Uh���z0���2�dsdt

+ h3/2��z0���Uh���z0���0��2.

otice that we have the boundary condition �Uh���z0����0�=h−1/2��z0��Uh���z0���0�. Therefore,
ntegrating by parts, the above expression is equal to �R+

Hh�Uh���z0��� �Uh���z0��dt. Upon sub-
tituting in �5.3�, this finishes the proof of the lemma. �

Similar computations also give the following lemma.
Lemma V.2: Under the hypotheses of Lemma V.1, there exist positive constants C ,h0 such that,

h� �0,h0�, we have

��Hh − H0
h − H1

h�Uh���z0��L2�R+� � Ch2, �5.5�

here the operators H0
h and H1

h are defined, respectively, by

H0
h = − h2�t

2 + �t − h1/2����z0���2,

H1
h = 2t�0�t − h1/2����z0���2 − �0t2�t − h1/2����z0��� + h2�0�t.

Let us denote by �cf. �2.24� and �2.25��:

M3� 1
2 ,��z0�� = M3���z0��, M3��,��z0�� = M3 for � � 1

2 .

he next lemma permits us to conclude an upper bound for the eigenvalue 
�1��� ,� ,h�.
Lemma V.3: Under the above notations, there exist positive constants C ,h0 such that, when

� �0,h0�, we have the following estimate:

Actually, if z0 is a point of maximum of �r, the remainder is better and of order O�h3/4� for the first term. Consequently,
7/4
e obtain �5.4� modulo an error of order O�h �.
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�qh,A,�
�,� �uh� − ����z0�� − 2M3��,��z0���0h3/2�uh�L2���

2 �� Ch��,

here ��=inf�13/8 ,2�+ 1
2

� for �� 1
2 and �1/2=13/8.

Proof: Notice that in the support of uh we have ��z�=��z0�+O�h1/8�. Then this gives

qh,A,�
�,� �uh� − qh,A,�

�,��z0��uh� = O�h9/8+�� .

n view of Lemmas V.1 and V.2, we get the following estimate:

�qh,A,�
�,� �uh� − �

R+

�H1
h + H0

h��Uh���z0��� Uh���z0�dt� � Ch13/8. �5.6�

e note also that we have the following relations:

�Uh��H0
hUh = h�− �t

2 + �t − ����z0���2 , �5.7�

�Uh��H1
hUh = �0h3/2H1, �5.8�

here the operator H1 is defined by

H1 = �t − ����z0���3 − ����z0��2�t − ����z0��� + �t.

y defining K3�� ,h�ª�R+
H1���z0� ·���z0�dt, the estimate �5.6� reads as

�qh,A,�
�,� �uh� − �h���z0�� + K3��,h��0h3/2�� Ch13/8. �5.9�

ow, for �= 1
2 , we get by using �2.3� that K3� 1

2 ,h�=−2M3� 1
2 ,��z0��. For �� 1

2 , thanks to Propo-
itions II.4 and II.5, we get that

K3��,h� = − 2M3 + O�h2�−1� .

inally, the decay of ���z0� in Proposition II.9 gives that �uh�L2��� is exponentially close to 1. This
chieves the proof of the lemma. �

The min-max principle gives now, thanks to Lemma V.3, an upper bound for 
�1��� ,� ,h�.
nder the hypothesis of Theorem I.4, we take z0 such that

��r − 3���z0� = ��r − 3��max

nd we use the expansion �cf. �2.27��:

���z0�� =0 + 6M3��z0�h1/2 + O�h� .

herefore, �5.9� gives the following upper bound:


�1��1,�,h�� h0 − 2M3��r − 3��maxh
3/2 + O�h13/8� . �5.10�

nder the hypothesis of Theorem 1.5, we choose z0 such that �r�z0�= ��r�max.

. Lower bound

As in the proof of Proposition III.3, we consider a standard scaled partition of unity3

� j,h1/6� j�Z2 of R2 that satisfies

�
j�J

�� j,h1/6�z��2 = 1, �
j�J

��� j,h1/6�z��2 � Ch−1/3, �5.11�
We take a partition of unity associated to squares instead of discs.
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supp � j,h1/6 � jh1/6 + �− h1/6,h1/6�2. �5.12�

e define the following set of indices:

J��h�
1

ª �j � Z2;supp � j,h1/6 ��� 	,dist�supp � j,h1/6,���� ��h� ,

here the number ��h� is defined by

��h� = h� with 1
6 � �� 1

2 , �5.13�

nd the number � will be chosen in a suitable manner.
We consider also another scaled partition of unity in R:

�0,��h�
2 �t� + �1,��h�

2 �t� = 1, �� j,��h�� �t��� acC��h�, j = 0,1, �5.14�

supp �0,��h� � 	 ��h�
20

, + ��,supp�1,��h� � � − �,
��h�
10


 . �5.15�

ote that, for each j�J��h�
1 , the function �1,��h��t�� j,h1/6�s , t� could be interpreted, by means of

oundary coordinates, as a function in �̄. Moreover, each �1,��h��t�� j,h1/6�s , t� is supported in a
ectangle

��K�j,h� = � − h1/6 + sj,sj + h1/6�� �0,h��

ear ��. The role of � is then to control the size of the width of each rectangle K�j ,h�. Due to the
xponential decay of a ground state away from the boundary �Theorem IV.1�, we get the following
emma.

Lemma V.4: Suppose that �� 1
2 . With the above notations, an L2-normalized ground state

�,�,h of the operator Ph,A,�
�,� satisfies

� �
j�J��h�

1

qh,A,�
�,� �� j,h1/6�1,��h�u�,h� − 
�1���,�,h�� � Ch5/3. �5.16�

he proof of �5.16� follows the same lines of that in Ref. 10 �Formulas �10.4�, �10.5� and �10.6��.
For each j�J��h�

1 , we define a unique point zj ��� by the relation s�zj�=sj. We denote then by

j =�r�zj�, aj�t�=1−� jt, Aj�t�=−t�1− t /2� j�, and � j =��zj�.
We consider now the k-family of one-dimensional differential operators:

Hh,j,k = − h2aj
−1�t�aj�t� + �1 + 2� jt��hk − Aj�2, �5.17�

here k is a real parameter. We denote by Hh,j,k
�,�,D the self-adjoint realization on L2��0,h�� ;aj�t�dt�

f Hh,j,k whose domain is given by

D�Hh,j,k
�,D � = �v � H2��0,h���;v��0� = h��̃ jv�0�,v�h�� = 0 . �5.18�

he parameter �̃ j is defined by

�̃ j = � j + ��h� ,

here ��h�=0 if the function � is constant; if � is not constant, then there are constants C ,h0

0 such that

�����h��� Ch1/6, " h ��0,h0� .
e now introduce
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1
j ��,�,h� ª inf

k�R
inf Sp�Hh,j,k

�,D � . �5.19�

e have now the following lemma:
Lemma V.5: For each ��� 1

2 , +��, we have under the above notations:


�1���,�,h�� � inf
j�J��h�

1

1

j ��,�,h�� + O�h5/3� . �5.20�

gain the proof follows the same lines of Ref. 10 �Sec. 11�, but let us explain briefly the main
teps. We express each term qh,A,�

�,� ��1,��h�� j,h1/6u�,�,h� in boundary coordinates. We work with the
ocal choice of gauge given in Proposition A.2. We expand now all terms by Taylor’s formula near
sj ,0�. After controlling the remainder terms, thanks to the exponential decay of the ground states
way from the boundary, we apply a partial Fourier transformation in the tangential variable s and
e get finally the result of the lemma.

We now have to find, uniformly over k�R, a lower bound for the first eigenvalue

1
j �k ;� ,� ,h� of the operator Hh,j,k

�,�,D. Putting �=� j, �=−h1/2k, and �= �̃ j, we get by a scaling
rgument


1
j �k;�,�,h� = h
1�Hh,�,�

�,�,D� ,

here 
1�Hh,�,�
�,�,D� is the first eigenvalue of the one-dimensional operator:

Hh,�,�
�,�,D = − �t

2 + �t − ��2 + �h1/2�1 − �h1/2t�−1�t + 2�h1/2t�t − � − �h1/2 t2

2
�2

− �h1/2t2�t − �� + �2h
t4

4
,

�5.21�

hose domain is defined by

D�Hh,�,�
�,�,D� = �u � H2��0,h�−1/2��;u��0� = h�−1/2�u�0�,u�h�−1/2� = 0 .

e have then to find �when � ,�� �−M ,M� and M a given positive constant�, uniformly with
espect to ��R, a lower bound for the eigenvalue 
1�Hh,�,�

�,�,D�. The min-max principle gives the
ollowing preliminary localization of the spectrum of the operator Hh,�,�

�,�,D:
Lemma V.6: For each M�0 and ��� 1

2 , +��, there exist positive constants C ,h0 such that

�� " �,��� − M,M�, " �� R, " h ��0,h0� ,

e have

�
 j�Hh,�,�
�,�,D� − 
 j�H0,�

�,�,D��� Ch2�−1/2�1 + 
 j�H0,�
�,�,D�� , �5.22�

here, for an operator T having a compact resolvent, 
 j�T� denotes the increasing sequence of
igenvalues of T.

Remark V.7: Note that the min-max principle gives now that


 j�H0,�
�,�,D��
�j��h�−1/2�,�� ,

here, for �̃�R, 
�j���̃ ,�� is the increasing sequence of eigenvalues of the operator H�� ,��
ntroduced in �2.2�.

The following lemma deals with the case when � is not localized very close to ��h�−1/2��.
Lemma V.8: Suppose that �� �1/4 ,1 /2�. For each �� 1

2 , there exists �� �0,�− 1
4 �, and for

ach M�0, there exist positive constants � ,h0�0 such that

�� " �,��� − M,M�, " � such that �� − ��h�−1/2���� �h�, " h ��0,h0� ,
e have
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1�Hh,�,�
�,�,D���h�−1/2�� + h2�. �5.23�

Proof: It is sufficient to obtain �5.23� for 
�1��h�−1/2� ,��, thanks to Lemma V.6 and Remark
.7. We start with the case when �= 1

2 and �� �−M ,M�. Writing Taylors formula up to the second
rder for the function ��
�1��� ,��, we get positive constants � ,C1 such that when ��−�����
�, we have


�1���,������ + C1�� − �����2.

hen by taking � such that C1���0, where �0�1 is a constant to be chosen appropriately, we get
hen �h�� ��−�������,


�1���,������ + �0h2�,

here � is also a positive constant to be chosen later. When ��−�������, we get a positive
onstant �� such that


�1���,������ + ��.

hen by choosing h0 such that �0h0
����, we get for ��−�������h� and h� �0,h0�:


�1���,������ + �0h2�. �5.24�

e treat now the case when ��1/2. Note that the min-max principle gives uniformly for all �
R and �� �−M ,M�,


�1��h�−1/2�,��� �1 − C�−h�−1/2�
�1��0,�� .

hen using �5.24� for �=0 and �=inf��− 1
4 ,�− 1

2
�, we can choose �0 large enough so that we have

or ��−�0���h�:


�1��h�−1/2�,����h�−1/2�� +
�0

2
h�.

o finish the proof, we replace �0 by ��h�−1/2�� getting an error of order O�h�−1/2�. �

Now we deal with the case when ��−��h�−1/2�����h�. Let �̃=h�−1/2�. We look for a formal
olution �
 , fh,�,�

�,� � of the spectral problem

Hh,�,�
�,� fh,�,�

�,� = 
fh,�,�
�,� , �fh,�,�

�,� ���0� = h�−1/2fh,�,�
�,� �0� , �5.25�

n the form:


 = d0 + d1�� − ���̃�� + d2�� − ���̃��2 + d3h1/2, �5.26�

fh,�,�
�,� = u0 + �� − ���̃��u1 + �� − ���̃��2u2 + h1/2u3, �5.27�

here the coefficients d0 ,d1 ,d2 ,d3 and the functions u0 ,u1 ,u2 ,u3 are to be determined. We expand
he operator Hh,�,�

�,�,D in powers of ��−���̃�� and then we identify the coefficients of the terms of

rders ��−���̃�� j �j=0,1 ,2� and h1/2. We then obtain for the coefficients:

d0 =��̃�, u0 = ��̃,

d1 = 0, u1 = 2R̃��̃���t − ���̃����̃ ,

d2 ¬ d2��,�� = 1 − 2� �t − ���̃����̃u1dt ,

R+
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u2 = R̃��̃��4�t − ���̃��R̃��̃���t − ���̃����̃� − d2 ,

d3 ¬ d3��,�� = ��
R+

��̃��t + �t − ���̃��3��̃dt ,

u3 = − R̃��̃�����t + �t − ���̃��3 − ���̃�2�t − ���̃��� − d3�u0. �5.28�

sing the function ��t /h�−1/2�fh,�,�
�,� �where � is the same as in �3.5�� as a quasimode, we get by the

pectral theorem, thanks to the decay results in Propositions II.9 and II.10 and to the localization
f the spectrum in Lemma V.6, the following lemma.

Lemma V.9: Suppose that �� � 1
4 , 1

2 �. For each M�0 and ��� 1
2 ,1�, there exist positive

onstants C�0,h0 such that

�� " �,��� − M,M�, " � such that �� − ���̃��� �h�, " h ��0,h0� ,

e have

�
1�Hh,�,�
�,�,D� − ���̃� + d2��,���� − ���̃��2 + d3��,��h1/2�� C�h1/2�� − ���̃�� + h�+1/2� ,

�5.29�

here d2�� ,�� and d3�� ,�� are defined by (5.28)). Hence we have obtained by this analysis a
ower bound for the first eigenvalue 
�1��� ,� ,h�. We complete the picture by showing that the
erm d2�� ,�� is positive.

Lemma V.10: For each ��� 1
2 , +�� and M�0, there exists a positive constant h0 such that

���d2��,��� 0, " h ��0,h0�, " ��� − M,M� .

Proof: It is actually sufficient to prove the conclusion of the lemma when �= 1
2 . If �� 1

2 , we
eplace d2�� ,�� by its approximation up to the first order, thanks to Proposition II.4, and we
btain that

d2��,�� = d2� 1
2 ,0� + O�h�−1/2� ,

hich gives the lemma. For the particular case �= 1
2 , we show that

d2� 1
2 ,�� = 1

2 ���
2
�1���, · ��������

hich is strictly positive. �

We are now able to conclude the asymptotics given in Theorems I.4 and I.5. First we choose
= 5

12. When �� 1
2 we replace ��̃� and d3 by their approximations up to the second and first

rders, respectively, thanks to Propositions II.5 and II.4. For �= 1
2 we get by �2.21� that d3 is

ndeed equal to −2M3� 1
2 ,��.

Remark V.11: When �� � 1
2 ,1� and when the function � is not constant, we get from the above

nalysis that the upper bound in Remark III.2 is indeed an asymptotic expansion, and we achieve
herefore the proof of Theorem I.2.

We get also that the quadratic form qh,A,�
�,� can be bounded from below by means of a potential

:

qh,A,�
�,� �u�� �

�

W�x��u�x��2dx, " u � H1��� ,
here W is defined for some positive constant C0 by
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W�x� = � h if dist�x,���� h1/6

h0 + 6M3��x�h�+1/2 − C0hinf�3/2,2�� if dist�x,���� h1/6.
�

hen, as in Sec. IV, we get by Agmon’s technique that a ground state decays exponentially away
rom the boundary points where � is minimum and hence we have completed the proof of Theorem
.3.

Remark V.12: Note also that the above analysis permits, under the hypotheses of Theorems I.4
nd I.5, to bound the quadratic form qh,A,�

�,� from below using a potential W defined either by
eans of the function �r−3� �when �=1� or by the scalar curvature �r �when � is constant�.
hen, by using Agmon’s technique, we finish the proofs of Theorems I.4 and I.5.

I. CONCLUSION

The systematic analysis in the spirit of Ref. 10 has allowed us to understand the role of the
oundary condition imposed by De Gennes. We have extended in Theorems I.4 and I.5 the
xpansion announced by Pan25 in the particular case when �=1 and � is a positive constant.
owever, there is a specific difficulty when � is negative. We have not been able to obtain the

ocalization of the ground state when ��1/2 and �0�0. This is strongly related to the question
f the localization of the ground state of the Dirichlet realization of the Schrödinger operator with
onstant magnetic field which is open. Finally, in the spirit of Refs. 12, 26, and 27, we hope to
pply this analysis to the onset of superconductivity and to complete the analysis of Ref. 28 �cf.
ef. 18�.
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PPENDIX: COORDINATES NEAR THE BOUNDARY

We recall in this appendix well-known coordinates that straighten a portion of the boundary
�. Let s� �− ���� /2 , ���� /2��M�s���� be a regular parametrization of ��. For each x��
nd ��0 we denote by

t�x� = dist�x,��� and �� = �x � �̄;dist�x,���� � .

hen there exists a positive constant t0�0 depending on � such that, for each x��t0
, we can

efine the coordinates �s�x� , t�x�� by

t�x� = �x − M�s�x��� ,

nd such that the transformation

�:�t0
� x � �s�x�,t�x�� � S����/2 

1 � �0,t0�

s a diffeomorphisim. The Jacobian of this coordinate transformation is given by

a�s,t� = det�D�� = 1 − t�r�s� . �A1�

o a vector field A= �A1 ,A2��C���̄ ;R2�, we associate the vector field Ã= �Ã1 , Ã2��C��S����/2 
1

�0, t0�� by the following relation:
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Ã1ds + Ã2dt = A1dx1 + A2dx2. �A2�

e get then the following change of variable formulas.
Proposition A.1: Let u�H1��� be supported in �t0

. Then we have

�
�t0

��h � − iA�u�2dx = �
S����/2 

1
��0,t0�

���h�t − iÃ2�v�2 + a−2��h�s − iÃ1�v�2�adsdt �A3�

nd

�
�t0

�u�x��2dx = �
S����/2 

1
��0,�0�

�v�s,t��2adsdt , �A4�

here v�s , t�=u��−1�s , t��.
We also have the relation

��x1
A2 − �x2

A1�dx1 Ù dx2 = ��sÃ2 − �tÃ1�a−1ds Ù dt ,

hich gives

curl Ã = �1 − t�r�s��curl A .

e give in the next proposition a standard choice of gauge.

Proposition A.2: Consider a vector field A= �A1 ,A2��C���̄ ;R2� such that curl A=1. For
ach point x0���, there exists a neighborhood Vx0

��t0
of x0 and a smooth real-valued function

x0
such the vector field AnewªA−�	x0

satisfies

Ãnew
1 = − t�1 −

t

2
�r�s�� and Ãnew

2 = 0 in Vx0
, �A5�

ith Ãnew= �Ãnew
1 , Ãnew
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In this work, we study the complex bosonic matter coupled to the SU�Nc� gauge
fields on a cylinder, which has a circular space part. We extend the ideas used for
fermions on a cylinder in �S. G. Rajeev and Guruswamy, Mod. Phys. Lett. A 7,
3783 �1992�� to this case. Here, the normal ordering rule for bosonic bilinears is
found. In the large-Nc limit, we can reformulate the whole problem in terms of a set
of basic mesonic operators. The full equations of motion satisfied by these mesonic
variables are too complicated. An approximation method, which is a kind of lin-
earization, is suggested for this problem. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2211933�

. INTRODUCTION

Calculation of the bound states from first principles in QCD is a very challenging problem.
he perturbative approach is not sufficient to understand this problem. There are various interest-

ng ideas in this direction, but the most promising one seems to be the large-Nc limit, which is first
uggested by ’t Hooft1 and elaborated more by Migdal2,3 and Witten.4 ’t Hooft applied the large-

c limit to 1+1 dimensional QCD and found his celebrated equation for the mesonic spectrum.5

oon after this is generalized by Shei and Tsao to the scalar matter.6 The same problem is also
olved in the Hamiltonian formalism in Ref. 7. The generalized QCD, where the fermionic and
osonic matter fields present together, is solved by Aoki in Ref. 8 following ’t Hooft’s original
pproach.

In Ref. 9 Rajeev took a fresh look at the large-Nc limit of 1+1 dimensional QCD and has
hown that this is indeed a classical theory which has the restricted Grassmanian as its phase space
see Ref. 10 for a nice review�. The linearized equations for the mesonic bilinears are shown to
gree with the ’t Hooft equation. Being a nonlinear theory it admits also large deviations from the
acuum and they may be taken as the baryons. Krishnaswami gave a detailed study of these
olutions in his thesis and showed that the minimum of the baryon mass in this theory goes to zero
s the mass of the fermion goes to zero, contrary to what is believed to happen in 3+1
imensions.11 An extension of these ideas to bosonic matter is done in Ref. 12 and the linearized
quations are shown to agree with what is found by Shei and Tsao. The method proposed in Ref.
also can be applied to SO�Nc� gauge theories,13 the phase space there is an infinite dimensional

ersion of the Siegel disk.
In all these problems the gauge theory sector is not dynamical and only generates a potential

etween the quarks. When we study the pure Yang-Mills on a cylinder, which has a circular spatial
eometry, there is a global degree of freedom left out after the gauge equivalent configurations are
emoved. Therefore it is natural to try to add only a global degree of freedom to the gauge sector
hen it is coupled to matter for simplicity, by studying the same problem on a cylinder, which has

�
Electronic mail: turgutte@boun.edu.tr
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circle for the space part. This is perhaps the least complicated problem, but as we will see, the
esulting theory is much more complex, and we are far from understanding it.

The literature on the pure Yang-Mills theory on such nontrivial spaces is large, we mention
ust a few of them closely related to our approach taken here, there is an extensive review by

oore et al.14 where further references can be found. The solution of pure Yang-Mills theory on
he cylinder is given by Rajeev in Ref. 15, there it is found that this system is equivalent to a
article moving on the group manifold. The Hamiltonian is the quadratic Casimir of the group, the
lobal gauge invariance left out, forces one to restrict the Hilbert space of the theory to the
haracter functions. The key to reduction is accomplished by the Wilson loop operator along the
ircle. Later, the nonrelativistic matter coupled to the gauge fields is worked out in a geometric
etting using the Wilson loop operator to reduce the redundant gauge degrees of freedom in Ref.
6. The large-Nc limit of pure Yang-Mills is understood from different points of views in Refs.
7–20 �see for more the review in Ref. 14�. The matter coupled to gauge fields on a cylinder was
tudied by other authors as well, in Langmann and Semenoff21 the theory is constructed using the
ree vacuum and some ideas are suggested to study the spectrum. This problem is studied in Refs.
2 and 23, using again a large-Nc approximation in the path integral perspective. For large values
f the radius, the authors give a formula for the eigenvalues of the Hamiltonian. In all these
pproaches the splitting of the true degrees of freedom of the gauge fields and the matter fields is
ot so clear. In Ref. 24, Rajeev and Guruswamy reduced the fermionic matter interacting with the
auge fields on the cylinder to matter coupled to quantum mechanics on the tangent bundle of the
ymmetry group. Again, only global degrees of freedom are left after the removal of gauge
quivalent configurations from the gauge fields via the Wilson loop operator �the holonomy along
he circle�.

Here, we will study non-Abelian gauge theory coupled to scalars in the fundamental repre-
entation in 1+1 dimensions. To decouple the gauge theory sector from the kinetic part of the
osons and reducing the gauge theory sector to its true degrees of freedom, we will use the same
ethod suggested in Ref. 24. There are two essential points, first is the decoupling of the kinetic

art of the bosons and gauge fields, since when we have coupling between the leading kinetic
arts, the vacuum will change in an uncontrollable way. To start quantizing the fields, we should
nd the correct vacuum. The second point is the reduction of the gauge fields to their true degrees
f freedom without performing any gauge fixing. The fermionic problem is more realistic, yet it is
nteresting to work out the same approach in the bosonic case. In Ref. 24, only the Hamiltonian of
he theory is written in this coordinate system and no attempt is made to write down a large-Nc

heory. There are some complications coming from the boundary conditions in the case of fermi-
ns, it seems to us that they are harder to resolve than the ones in the bosonic theory. In the
osonic theory, as we will see, it is more difficult to find the normal ordering prescription. In a
eparate section this is developed, which we believe could be useful in other contexts as well.

Following Ref. 24, we will perform our analysis in a coordinate system different from the
artesian �x , t� coordinates used to solve pure Yang-Mills theory in Ref. 15. We construct a kind
f light-cone formalism such that the new coordinates �u ,x� are

u = t + �x� . �1�

hen,

dt = du − sgn�x�dx . �2�

he metric is

ds2 = dt � dt − dx � dx = du � du − sgn�x�du � dx − sgn�x�dx � du . �3�
hus the metric tensor becomes
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��� = � 1 − sgn�x�
− sgn�x� 0

�, ��� = � 0 − sgn�x�
− sgn�x� − 1

� . �4�

he points �u ,x� and �u ,x+2L� are the same on the cylinder. These light-cone coordinates avoid
he quadratic energy term appearing in the mass shell condition of the Cartesian coordinates,

p0
2 − p1

2 = m2. �5�

n Ref. 24, it is noticed that the ordinary light-cone method is not suitable for the elimination of
he redundant gauge theory degrees of freedom, but in this coordinate system it can be done in a
lever way. For this purpose, we will use u as our evolution variable. In this special light-cone
oordinate system the mass-shell condition is

− 2 sgn�x�pxpu − px
2 = m2 �6�

rom which we obtain a unique solution for pu,

pu = −
1

2
�m2

px
+ px�sgn�x� . �7�

his is important, since it suggests that in second quantization the positive and negative energies
ill be determined by the sign of px sgn�x�. This is essentially correct, the operator that we will
nd has this as its leading symbol.

I. BOSONS IN THE FUNDAMENTAL REPRESENTATION

The action of the complex bosons in two dimensions interacting with an SU�Nc� gauge field
an be written as

S =� du dx	− �
1

2
�D���†D�� −

1

2
m2�†� +

1

4g2Tr F��F��� , �8�

here F��=��A�−��A�+ �A� ,A��. Here D�=��+A�, where A� is the gauge potential, D� is the
ovariant derivative. We choose A� to be anti-Hermitian with

A� = A�
a ta, �9�

Tr�tatb� = − �ab, �10�

here ta are the generators of the Lie algebra. If we express this in terms of components in the
ew system of coordinates, we find

S =� du dx
−
1

2
sgn�x�Du�†Dx� −

1

2
sgn�x�Dx�

†Du�� +� du dx
−
1

2
Dx�

†Dx� −
1

2
m2�†��

+� du dx
−
1

g2 Tr E��uAx − �xAu + �Au,Ax�� +
1

2g2 Tr E2� , �11�

here

E = �uAx − �xAu + �Au,Ax� . �12�

ere we split the E2 term, namely,

1

4g2 Tr F��F�� = −
1

2g2 Tr E2 =
1

2g2 Tr E2 −
1

g2 Tr E2, �13�
nd insert the definition of E in terms of gauge fields in the second part to get
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−
1

g2 Tr E��uAx − �xAu + �Au,Ax�� . �14�

f we write the action explicitly,

S = −� du dx
1

2
sgn�x���u�† − �†Au���x� + Ax�� −� du dx

1

2
sgn�x���x�

† − �†Ax���u� + Au��

−� du dx
1

2
��x�

† − �†Ax���x� + Ax��� −� du dx
1

2
m2�†� −� du dx
 1

g2 Tr E��uAx − �xAu

+ �Au,Ax�� +
1

2g2 Tr E2� .

ow, following Ref. 24, we will define a variable h�u ,x� to eliminate the Yang-Mills field without
mposing any gauge condition:

�h

�x
+ Axh = 0, �15�

h�u,− L� = 1. �16�

he solution is represented as a path ordered exponential

h�u,x� = P�e�−L
x dy Ax�u,y�� . �17�

he Wilson loop is then given by

q = h−1�u,L� . �18�

e will define new field variables such that

� = h�̃ ,

Au = hÃuh−1,

E = hẼh−1. �19�

ur aim is to decouple the leading bosonic action from the gauge fields and reduce the gauge field
ector to its true dynamical degrees of freedom.

Since we are on a cylinder with �u ,x��u ,x+2L�, the fields are periodic with period 2L. Thus

��L� = ��− L� ,

�†�L� = �†�− L� ,

E�L� = E�− L� . �20�

n terms of the new variables, we have

�̃�L� = q�̃�− L� ,

˜ † ˜ † −1
� �L� = � �− L�q ,
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Ẽ�L� = qẼ�− L�q−1. �21�

e see that now we are dealing with a complicated boundary condition. We will define
�−L�=e. When we insert the new definitions of our variables, we find

S =� du dx
−
1

2
sgn�x���u�̃†�x�̃ + �x�̃

†�u�̃�� −� du dx
1

2
sgn�x���x�̃

†�Ãu + h−1�uh��̃ − �̃†�Ãu

+ h−1�uh��x�̃� −� du dx
1

2
m2�̃†�̃ −� du dx

1

g2 Tr�hẼh−1��uAx − ��xAu + �Au,Ax����

+� du dx
1

2g2 Tr��Ẽ2�� . �22�

e used the definition of h to simplify the above expression. Let us now work on the combination
elow,

�xAu + �Au,Ax� . �23�

e insert identities on both sides in the form of hh−1 and use Eq. �15�. We see that this term is the
xpansion of

h��xÃu�h−1. �24�

hus

�uAx − ��xAu + �Au,Ax�� = hh−1�uAxhh−1 − h��xÃu�h−1. �25�

y using the relation below that can also be derived from �15�,

h−1��uAx�h = − �x�h−1�uh� . �26�

quation �25� becomes

− h�x�h−1�uh�h−1 − h�x�h−1Auh�h−1 = − h�x�h−1�uh + Ãu�h−1. �27�

s we can see now, it is better to introduce a new variable A via

A = Ãu + h−1�uh . �28�

et us write down the Yang-Mills part of our action,

−
1

g2 � du dx Tr�hẼh−1��uAx − ��xAu + �Au,Ax���� = −
1

g2 � du dx Tr�− Ẽ�x�h−1�uh + Ãu�� ,

�29�

nd express this in terms of total derivatives,

−
1

g2 � du dx Tr�− �x�Ẽh−1�uh� + ��xẼ�h−1�uh − �x�ẼÃu� + ��xẼ�Ãu�

=
1

g2 � du�
−L

L

dx Tr��x�Ẽh−1�uh�� −
1

g2 � du dx Tr���xẼ��Ãu + h−1�uh�� .

ere the third term vanished, since the fields cancel out at the boundaries. The total derivative can

e expanded as
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1

g2 � du Tr�Ẽ�L�h−1�L��uh�L� − Ẽ�− L�h−1�uh�− L�� −
1

g2 � du dx Tr���xẼ�A� . �30�

n this expression �uh�−L� gives zero, we insert our boundary conditions; h−1�L�=q, or
�L�=q−1, obtaining

1

g2 � du Tr�qẼ�− L�q−1q�uq−1� −
1

g2 � du dx Tr���xẼ�A� . �31�

o the pure gauge theory part of our equation has become

−
1

g2 � du Tr�q−1�uqe� −
1

g2 � du dx Tr���xẼ�A� +
1

2g2 � du dx Tr Ẽ2. �32�

Having derived the gauge field interaction part in terms of the new variables we can now go
ack to �22�,

S =� du dx
−
1

2
sgn�x����u�̃†���x�̃� + ��x�̃

†���u�̃��� +� du dx
−
1

2
sgn�x����x�̃

†�A�̃

− �̃†A��x�̃��� −� du dx
1

2
��x�̃

†���x�̃� −� du dx
1

2
m2�̃†�̃ −� du dx
 1

g2 Tr��xẼ�A

−
1

2g2 Tr Ẽ2� −
1

g2 � du Tr�q−1�uqe� . �33�

We see now that A does not have a time derivative in the action, so it is just a Lagrange
ultiplier imposing a constraint and can be eliminated. Varying the action with respect to A we

btain a constraint,

1

g2�xẼ
b�Aa Tr�tbta� = −

1

2
sgn�x���x�̃

†ta�̃ − �̃†ta�x�̃��Aa. �34�

hus the constraint becomes

−
1

g2�xẼ
a = −

1

2
sgn�x���ta��

���̃���x�̃
†�� − ��x�̃���̃�

†�� . �35�

n matrix form,

Ẽ = e −
g2

2
�

−L

x

dy sgn�y���̃��y�̃
†� − ��y�̃��̃†� . �36�

hus the classical action is reduced to

S = −
1

2
� du dx sgn�x����u�̃†���x�̃� + ��x�̃

†���u�̃�� −� du dx
1

2
��x�̃

†���x�̃� −
1

2
� du dx m2�̃†�̃

+
1

2g2 � du dx Tr
e −
g2

2
�

−L

x

dy sgn�y���̃��y�̃
†� − ��y�̃��̃†��2

−
1

g2 � du Tr�q−1�uqe� . �37�

ere, we see that the action has three parts, the first part consists of �dressed� bosons, the last term
epresents the true dynamical degrees of freedom for the gauge fields and the rest is the coupling
f these two separate systems. There is only a global gauge freedom left, as we will see coming
rom the constraint equation. We can now start from the beginning and quantize these dynamical
ystems. The quantized bosonic field will not be related to the original bosonic fields in a simple

ay, in some sense they are dressed by the gauge fields.
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The advantage of the light-cone systems is clear, the action is first order in the time variable
, thus we are already in the Hamiltonian picture. When we write this action in the form

S =� du w̄i�ijẇ
j −� du H �38�

e can read off the Hamiltonian as

H =� dx
1

2
��x�̃

†���x�̃� +� dx
1

2
m2�̃†�̃ −

1

2g2 � dx Tr
e −
g2

2
�

−L

x

dy sgn�y���̃��y�̃
†�

− ��y�̃��̃†��2

, �39�

he rest belonging to the symplectic part.
In the Hamiltonian formulation, the reduced gauge field theory part becomes the motion on

he cotangent bundle of the Lie group SU�N�. The geometric meaning of this symplectic form is
ell described in Ref. 25. This is the same result for the pure Yang-Mills on a cylinder first
orked out by Rajeev15 using the Cartesian coordinates. To help the reader we present a simple
erivation of this in the appendix. Here, we state the result,

�q�
�,q	


� = 0,

�Tr �e,q�
�� = g2�q���

�,

�Tr �1e,Tr �2e� = g2Tr��1,�2�e . �40�

e can quantize by Dirac’s rule of replacing the Poisson brackets by the commutators, and there
s a natural representation of this on the space of square integrable functions on the Lie group
U�N�. We set the Hilbert space to be L2�SU�N��, and

�q̂�
�f��q� = q�

�f�q�, �Tr �ê f��q� = ig2L�f�q� . �41�

ne should further assume an ordering rule for the product of operators, one typically takes the
eyl �symmetric� ordering. The solution for the pure gauge theory on a circle can now be given

asily, Tr e2 is proportional to the quadratic Casimir on the group. The boundary condition Ẽ�L�
qẼ�−L�q−l becomes

�ê − q̂êq̂−1�f�q� = 0, �42�

s a result of nondynamical nature of A. Exponentiation of this constraint to the group will give us

f�sqs−1� = f�q� for all s � SU�N� , �43�

nd for all wave functions f�q�. Indeed the quadratic Casimir leaves this constraint invariant,
ence we can reduce the dynamics onto this subspace. The energy eigenvalues are the values of
he quadratic Casimir on all the irreducible representations. The eigenfunctions are the characters
f the irreducible representations �see Rajeev15�. It is known from the Peter-Weyl theorem that the
haracters form an orthonormal complete set in the above subspace.

In the next section we will focus on the quantization of the boson fields, since this will require
rethinking of the usual canonical quantization. What we need is the normal ordering prescription
f the bosonic theory, we will give the answer formally, we are not able to compute the resulting

ntegral kernel exactly at the moment.
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II. QUANTIZATION AND THE NORMAL ORDERING FOR BOSONS

Looking back to our action in Eq. �37�, we take the symplectic form of the field theory part as

−
1

2
� du dx sgn�x����u�̃†���x�̃� + ��x�̃

†���u�̃�� . �44�

arying with respect to �̃†, we get

−
1

2
� du dx sgn�x����u��̃†���x�̃� + ��x��̃†���u�̃�� . �45�

ntegrating by parts in the first term gives

−
1

2
� du dx sgn�x���u���̃†�x�̃� − ��̃†�u�x�̃ + ��x��̃†���u�̃�� . �46�

he first term drops out since ��̃† is zero at the boundaries ±� of the time coordinate. The same
annot be applied to the x coordinate due to the boundary conditions stated in Eq. �21�. Thus we
btain

−
1

2
� du dx���̃†���x sgn�x� − sgn�x���x��u�̃� . �47�

he term in parentheses gives the symplectic form. Its inverse can be written formally as

��−1��
� = 2�sgn ��x − ��x sgn�−1��

�, �48�

here sgn is defined as

�x�sgn�y� = sgn�x���x − y� . �49�

e have the previously stated boundary conditions.
To second quantize the theory one must know the annihilation and creation operators. Once

e find these operators, we will introduce the normal ordering procedure to make sure that the
roducts of the fields at the same point are well defined.

Apart from the coupling with the gauge field, our problem is like the harmonic oscillator. First
e will focus on a finite dimensional problem with constant symplectic and quadratic form.

We are going to make the quantization as in a real vector space. We can do this since in our
ase the symplectic and quadratic forms are real operators and the real and imaginary parts of the
omplex vectors decouple. We can see this easily by taking our complex fields as

� = a + ib . �50�

ur action has the form

� du
1

2
��†��̇ − �†Q�� �51�

nd it can be rewritten by using the antisymmetry of � and the symmetry of Q,

� du
1

2
�a†�ȧ − a†Qa + b†�ḃ − b†Qb� . �52�

ince a and b commute, if we quantize these fields, the normal ordering of � can now be defined

n a simple way,

                                                                                                            



A
t

x
s

I
p
R

s

w

H
b

W

I

W

s

I

O

S
t
i
u
fi

072301-9 Scalar gauge theory on a cylinder J. Math. Phys. 47, 072301 �2006�

                        
:�†�: = :�a + ib�†�a + ib�: = :a†a: + :b†b: + i�a†b − b†a� . �53�

t the end, we will subtract twice the commutator of the annihilation and creation operators from
he normal ordered product, to get the correct vacuum energy.

For simplicity we work with a finite dimensional �real valued� system, which has coordinates
i, in our application the indices �i , j ,k , l , . . . � will refer to both a set of continuous indices and a
et of discrete indices. To start quantization, the first step is to look at the equations of motion

ẋi = ��−1�ijQjkx
k. �54�

The next step is to complexify the underlying vector space to get the oscillatory solutions.
ndeed the oscillatory solutions are related to a complex structure. �This is not the original com-
lex structure in our complex case.� This quantization method is worked out using the ideas of
ajeev and Bowick in Ref. 26.

The polar decomposition of the operator �−1Q will reveal a complex structure J and a positive
ymmetric operator K. As a result the equations of motion become

ẋi = Jk
i Kl

kxl, �55�

here

JJ = 1. �56�

ere the transpose is not the usual one but instead it is defined with respect to the metric defined
y the quadratic form, Q as

J = Q−1JTQ . �57�

e have,

K = K, K � 0. �58�

t will be useful to define a new variable as

�̃ = �−1Q . �59�

e can see that this operator is antisymmetric in the metric defined by the quadratic form, that is

�̃ = − �̃ , �60�

ince,

��−1Q� = Q−1��−1Q�TQ = Q−1QT��−1�TQ = Q−1Q�− �−1�Q = − �−1Q . �61�

f we use Eq. �60�, we can solve for K and J in terms of �̃, giving

K = �− �̃2�1/2, J = �− �̃2�−1/2�̃ . �62�

ne can check that

J = − �− �̃2�−1/2�̃ = − J, thus, J2 = − 1. �63�

o, J defines a complex structure. What follows after the construction of the complex structure is
o project the coordinates into ±i eigenspaces to obtain complex coordinates. But it would be
nstructive to stop at this point and apply this procedure to the well-known real scalar field in the
sual coordinate system. For simplicity we will call this familiar quantization as the Klein-Gordon

3
eld. The Hamiltonian of a Klein-Gordon field on R can be written as follows:
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H =� d3x��2 + ����2 + m2�2� . �64�

y partial integration we get the quadratic form

H =� d3x��2 + ��− �2 + m2��� �65�

=� d3x��TQ�� . �66�

ere we use a two component representation such that

� = � �

�t�
� . �67�

e can read off the quadratic form as

Q = ��− �2 + m2� 0

0 1
� . �68�

he symplectic form is

� = � 0 1

− 1 0
� . �69�

hus

�̃ = �−1Q = �0 − 1

1 0
���− �2 + m2� 0

0 1
� = � 0 − 1

�− �2 + m2� 0
� . �70�

ne can easily show that the transpose is

�̃ = � 0 1

�− �2 + m2� 0
� . �71�

e can now calculate the complex structure J for the Klein-Gordon field easily,

J = ��̃�̃�−1/2�̃ = ��− �2 + m2�−1/2 0

0 �− �2 + m2�−1/2 �� 0 − 1

�− �2 + m2� 0
�

= � 0 − �− �2 + m2�−1/2

�− �2 + m2�1/2 0
� . �72�

At this point we go back to our main line of discussion. We will now project our coordinates
nto ±i eigenspaces to obtain complex coordinates. Let us point out that, there is always a basis
e��, and a dual basis �e*�� for which

J�e*�� = e*�+n,

J�e*�+n� = − e*�, �73�

here �=1,2 , . . . ,n, since J is a complex structure27 �note that these indices have nothing to do
ith our previous use of color indices, they are just used to denote these special basis elements in
he vector space�. We may define the coordinates through
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xj = e*j�x� , �74�

here x is a vector in our space. This can easily be verified, by looking at

e*j�x� = e*j�xkek� , �75�

ince the dual product gives a delta, e*j�ek�=�k
j . If we do not think about a basis, symbolically we

an write the projections as

xj = 1
2 �1 + iJ�s

jxs + 1
2 �1 − iJ�s

jxs. �76�

e can verify that

� 1
2 �1 ± iJ��2 = 1

2 �1 ± iJ� �77�

nd

�1 + iJ��1 − iJ� = 0. �78�

ere the first part is the projection into the +i eigenspace and the second is into −i. Let us make
choice from the linearly independent dual basis elements as

f̄*� = 1
2 �1 + iJ��e*��  z̄�,

f*� = 1
2 �1 − iJ��e*��  z�, �79�

here �=1,2 , . . . ,n.
So we think of dual basis as if they are the coordinates, this simplifies our writing. Now we

hould compute the Poisson brackets of these projected coordinates. We expect to have nonzero
oisson bracket only for z, z̄ term. Let us first check that the others give zero,

� 1
2 ��k

i + iJk
i �xk, 1

2 ��l
j + iJl

j�xl� = 1
4 ��xi,xj� + iJk

i �xk,xj� + iJl
j�xi,xl� − Jk

i Jl
j�xk,xl�� = 1

4 ���−1�ij + iJk
i ��−1�kj

+ iJl
j��−1�il − Jk

i Jl
j��−1�kl� = 1

4 ���−1�ij + iJk
i Jr

kKrj − iJl
jJr

lKri − Jk
i Jl

jJs
kKsl� .

ere Kij =Ks
i�Q−1�sj and we used the equality of �−1Q to JK,

� 1
2 ��k

i + iJk
i �xk, 1

2 ��l
j + iJl

j�xl� = 1
4 ���−1�ij − i�r

iKrj + i�r
jKri + Jl

j�s
iKsl� = 1

4 ���−1�ij − iKij + iKji + Jl
jKil�

= 1
4 ���−1�ij + ��−1� ji� = 0,

here we used the symmetry property of K and antisymmetry of �.
In the same manner,

� 1
2 ��k

i − iJk
i �xk, 1

2 ��l
j − iJl

j�xl� = 0.

ow we can compute �z̄ ,z� combinations,

� 1
2 ��k

i + iJk
i �xk, 1

2 ��l
j − iJl

j�xl� = 1
4 ��xi,xj� + iJk

i �xk,xj� − iJl
j�xi,xl� + Jk

i Jl
j�xk,xl�� = 1

4 ���−1�ij + iJk
i ��−1�kj

− iJl
j��−1�il + Jk

i Jl
j��−1�kl� = 1

4 ���−1�ij + iJk
i Jr

kKrj + iJl
jJr

lKri + Jk
i Jl

jJs
kKsl�

= 1
4 ���−1�ij − i�r

iKrj − i�r
jKri − Jl

j�s
iKsl� = 1

4 �2��−1�ij − 2iKij�

= 1
2 ���−1�ij − iKij� = 1

2 �Js
iKsj − iKij� = 1

2 �− i���s
i + iJs

i�Ksj .

lternatively we could switch the indices of the symplectic form in the middle step above, to get

� 1
2 ��k

i + iJk
i �xk, 1

2 ��l
j − iJl

j�xl� = 1
2 �− ��−1� ji − iKij� = 1

2 �− i���s
j − iJs

j�Ksi. �80�
ow we note that,
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1
2 �− i���s

i + iJs
i�Ksj = 1

2 �− ��−1� ji − iKij� = 1
2 �− i���s

j − iJs
j�Ksi. �81�

e use the fact that the operator acting on K is the projection operator �1+ iJ�. Now we have

�− i� 1
2 ��s

i + iJs
i� 1

2 ��s�
s + iJs�

s �Ks�j = �− i� 1
2 ��s

i + iJs
i�Ksj . �82�

rom the equality of this to the above expressions we write

� 1
2 �1 + iJ�l

ixl, 1
2 �1 − iJ�k

jxk� = �− i� 1
2 ��s

i + iJs
i� 1

2 ��s�
j − iJs�

j �Ks�s. �83�

ndeed the meaning of this equation is clear if we construct a Hermitian product, using our original
eal inner product as

� 1
2 �1 + iJ�e*���x�� 1

2 �1 − iJ�e*���x�K�e�,e��

=� 1
2 �x� + ix�+n� 1

2 �x� − ix�+n��K�e�,e�� = H�x,x� , �84�

r in a dual manner

� 1
2 �1 − iJ�e*i��es�� 1

2 �1 + iJ�e*j��es��K�e*s,e*s��

=e*i� 1
2 �1 + iJ�es�e*j� 1

2 �1 − iJ�es��K�e*s,e*s�� . �85�

n a compact form using xie
*i=x* this could be expressed as

x*� 1
2 �1 + iJ�es�x*� 1

2 �1 − iJ�es��K�e*s,e*s�� . �86�

f we now use our special basis, �e��, we get

= 1
4x*�e� − ie�+n�x*�e� + ie�+n�K�e*�,e*��

= 1
4 �x� − ix�+n��x� + ix�+n�K�e*�,e*�� = H�x*,x*� . �87�

o, if we specialize to our choice of coordinates, �z� , z̄��, the expression on the right-hand side in
q. �84� is indeed a Hermitian inner product. We will denote this Hermitian form as H�� and it has

he symmetry

H�� = H��. �88�

e will find the creation and annihilation operators in terms of our special choice of coordinates.
y �76�,

1
2 �1 + iJ�e*� + 1

2 �1 − iJ�e*� = e*�. �89�

he same is true for the second half, so

1
2 �1 + iJ�e*�+n + 1

2 �1 − iJ�e*�+n = e*�+n. �90�

e can extract the J from the e*�+n term to get e*� and act to the left to obtain

1
2 �J + iJ2�e*� + 1

2 �J − iJ2�e*� = e*�. �91�

hen we see that,

1
2 �J − i�e*� + 1

2 �J + i�e*� = e*�+n. �92�
ence,
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�− i�� 1
2 �1 + iJ�e*� − 1

2 �1 − iJ�e*�� = e*�+n. �93�

hus, we have the usual relation, such that

z� + z̄� = x�, �94�

�− i��z� − z̄�� = x�+n. �95�

et us assume that we have made this special choice of basis and found

�z̄�,z�� = �− i�H��. �96�

ow we use the Dirac quantization rule and set

�a�,a†�� = H��, �97�

nd we assume there is a vacuum state satisfying,

a��0� = 0. �98�

t is possible to further diagonalize the Hermitian form H��, without mixing z and z̄ coordinates,
hey will be the independent excitations, which could be identified as the “particles” of the theory.

e will not need this in our work, so not to complicate our notation further we ignore this step.
quation �97� creates a Fock space with positive norm elements as can easily be checked,

�	� = 	�a†��0� , �99�

�	�	� = 	�
*	�H�� � 0. �100�

e will demonstrate in an alternative way that these commutation relations can be realized by
perators acting on a Hilbert space and a� and a†� are Hermitian conjugates under the inner
roduct of our Hilbert space. For two functions f�z�� and g�z��, we define an inner product,

�f �g� =� �� dz� dz̄� e−z��H−1���z̄�
f�z�g�z� . �101�

he completion of holomorphic functions in this inner product defines our Hilbert space. Then we
efine,

a� = H�� �

�z� , a†� = z�, �102�

hich clearly satisfies our commutation relations. A calculation reveals that

�f �H�	�	g� = �z�f �g� . �103�

s a result we have the desired equality

�f �a†�g� = �a�f �g� . �104�

e have a well-defined normal ordering rule

:a�a†�
ª a†�a�, �105�

nd no change for all the other combinations.
In general it will not be practical to switch to this special basis, but 1

2 �1− iJ�, 1
2 �1+ iJ� terms

re, respectively, projections onto these subspaces and normal ordering brings a negative commu-

ator at the end, so
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� 1
2 ��1 + iĴ�x�i, 1

2 ��1 − iĴ�x� j� = i 1
2 ���−1�ij − iKij� = 1

2 �i��−1�ij + Kij� . �106�

o we can use this idea to set a normal ordering rule as

: x̂ix̂ j
ª x̂ix̂ j − 1

2 �i��−1�ij + Kij� . �107�

he discussion on projections imply that there is no reason to look for two different relations, our
rojections have all the desired properties. �So the net result will be the above commutator
elations.�

For complex coordinates as in our case, we can thus postulate the normal ordering with twice
he commutator taken out. However, we note a subtle point, what we call as the symplectic
tructure and the quadratic form are not the same as in the complex case, there is a factor of 2.
hus, when we multiply the above subtracted term by a factor of 2, we should then covert back to

he symplectic form and the quadratic form used in the complex case, this means that the factor of
disappears again, and we end up with

: ŵ̄iŵj
ª ŵ̄iŵj − 1

2 �i��−1�ij + Kij� . �108�

t should be noted that in this equation the indices are assigned to a discrete set, and from now on,
e will use continuous indices as well as discrete ones; the continuous indices will be shown
xplicitly in parentheses or as bra-kets and � ,� ,�, etc, will imply only discrete color degrees of
reedom.

If we go back to our example of Klein-Gordon field we can state our normal ordering as

:��x���y� ª ��x���y� − 1
2 �i��−1��x,y� + KQ−1�x,y�� �109�

=���x���y� ��x���y�
��x���y� ��x���y�

� −
1

2
� 0 − i��x − y�

i��x − y� 0
�

−
1

2
��x��− �2 + m2�−1/2�y� 0

0 �x��− �2 + m2�
1
2 �y�

� �110�

=���x���y� ��x���y�
��x���y� ��x���y�

� �111�

−
1

2
��x��− �2 + m2�−1/2�y� − i��x − y�

i��x − y� �x��− �2 + m2�
1
2 �y�

� . �112�

et us now write the normal ordering rule in our theory using the formalism developed above,

:��
†�x����y� ª ��

†�x����y� − 1
2 �i��−1��

��x,y� + K�
��x,y�� , �113�

here

��−1��
��x,y� = 2�x��− �� sgn + sgn ���−1�y���

�. �114�

ere sgn is

�x�sgn�y� = sgn�x���x − y� . �115�

he system is diagonal in the color indices, hence we can write it as it is

K�
��x,y� = �x���− ��−1Q�2�1/2��

��y� . �116�
here is no difference between upper and lower color indices for our purposes here. Thus
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K�
��x,y� = �x��− ��− �� sgn + sgn ���−1�− �x

2 + m2��2�1/2�y���
�. �117�

hen, transforming our expression Kj
iQjs to the infinite dimensional case only for the continuous

ndices, this becomes

K�
� = 2�− ��− �� sgn + sgn ���−1�− �2 + m2��2�1/2�− �2 + m2�−1��

�. �118�

e keep the color index down in general, since from the group theory point of view the fields have
pecial color indices attached to them. �The operator above has a kernel which should perhaps best
e written as K�

��x,y�, but to keep the notation simple we will keep the usual writing style for the
ernels.� It is not so simple to evaluate these expressions. Only as symbols of operators we have
ome chance. We will not attack this question in the present work. From now on we will denote
he colorless part of the subtraction in the normal ordering as the vacuum expectation value
�x ,y�,

V�x,y� � �x��− ��− �� sgn + sgn ���−1�− �2 + m2��2�1/2�− �2 + m2�−1�y� + i�x��− �� sgn + sgn ���−1�y� .

s mentioned, this is defined as a pseudodifferential operator. And of course after quantization we
aintain the commutation relations for the bosons,

��̃��x�,�̃�
†�y�� = i�−1�x,y���

�, �119�

here

�−1�x,y� = �x�2�− �� sgn + sgn ���−1�y� . �120�

V. GAUGE INVARIANCE CONSTRAINT

When we quantize the theory, we get a normal ordered version of �36�, since we have products
f the fields at the same point. Thus a reduction at the quantum level should read

Ê = ê −
g2

2
�

−L

x

dy sgn�y�:��̃��y�̃
†� − ��y�̃��̃†�: . �121�

ith this expression our quantum Hamiltonian can be written as

Ĥ =
1

2
� dx:��x�̃

†���x�̃�: +
1

2
� dx:m2�̃†�̃:−

1

2g2 � dx Tr
ê −
g2

2
�

−L

x

dy sgn�y�:��̃��y�̃
†�

− ��y�̃��̃†�:�2

�122�

f we express our previous boundary condition �21�, Ẽ�+L�=qẼ�−L�q−1 we end up with a con-
traint,

ê −
g2

2
�

−L

L

dy sgn�y�:��̃��y�̃
†� − ��y�̃��̃†� ª q̂êq̂−1. �123�

For simplicity we are not using any ordering rule for q̂êq̂−1, we can take it as Weyl ordered, and
he result will not change.� This is a too strong condition in the quantum theory. We should impose
his constraint on physical states. Its meaning is clear if we define a global color operator as

Q̂ = ê − q̂êq̂−1 −
g2

2
�

−L

L

dy sgn�y�:��̃��y�̃
†� − ��y�̃��̃†�: , �124�
hich gives zero acting on any color invariant physical state.
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Shortly we will demonstrate that Q̂ truly generates global gauge transformations. Therefore
he constraint tells us to restrict our theory to the color invariant sector. It is not difficult to form
he simplest mesonic variable, i.e., a color invariant physical state, in the fundamental represen-
ation. We can check that the combination below is a gauge invariant state,

�†�x�P�e�x
yAx dz���y� . �125�

ere the fields at these points are brought to the same point by parallel transport operator. When
e transform the fields according to Eq. �19� we obtain

��̃†�x�P�e�−L
x Ax dz��P�e�x

yAx dz��P�e−�−L
y Ax dz��̃�y�� . �126�

he path ordered exponentials add up to one due to the boundary conditions of the Wilson loop in
16�. We could as well construct a more general state by having several loops such as

�†�x�P�e�x
y+2KLAx dz���y� . �127�

o the more general expression for the mesonic variable is as follows:

�̃�
†�x��qK��

��̃��y� . �128�

e should normal order this at the quantum level. The normal ordered versions of these should be
he general “mesonic” observables. Nevertheless, we will need even a more general expression for
ossible observables in our work, as we will see later on.

Now that we have constructed a color invariant physical state we should show that it com-
utes with our color operator. Typical color invariant state can be constructed through the prod-

cts of such mesonic states on the vacuum. If we write the quantum constraint as

Tr �Q̂�physical state� = 0, �129�

here � is an element of the Lie algebra, after commuting through various mesonic operators

ventually Tr �Q̂ acts on the vacuum and that gives zero as desired. So let us take a closer look
t the commutator,

�Tr �Q̂, :�̃�
†�z��q̂K��

��̃��w�:� . �130�

irst note that

g2

2
�

−L

L

dy ��
�:�̃�

†�y��− ��y sgn�y� + sgn�y���y��̃��y�:

=
g2

2
�

−L

L �
−L

L

dy dy� ��
�:�̃�

†�y���y���− �� sgn + sgn ����y��̃��y�:

=g2�
−L

L �
−L

L

dy dy� ��
�:�̃�

†�y����y�,y��̃��y�:

ow it is a simple matter to check that,

�Tr �ê − Tr��q̂êq̂−1�, :�̃†q̂K�̃:�

=ig2�
R

:�̃†q̂R�q̂��q̂K−R−1�̃:− ig2�
R

:�̃†q̂R�q̂q̂−1�q̂�q̂K−R−1�̃:

=− ig2:�̃†�z���, q̂K��
��̃��w�: ,
�
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ere the last commutator only refers to the color indices. We can now go back and find the action
f the bosonic part on mesonic operators,


g2�
−L

L �
−L

L

dy dy� ��
��:�̃�

†�y����y�,y��̃��y�:�, :�̃

†�z��q̂K�


�̃
�w�:�

=ig2�
−L

L �
−L

L

dy dy� ��
��̃�

†�y����y�,y��−1�y,z���

�q̂K�


�̃
�w�

+ ig2�
−L

L �
−L

L

dy dy� ��
���y�,y��−1�y�,���

��̃

†�z��q̂K�


�̃
��y�

=ig2:�̃�
†�z���

��q̂K��

�̃
�w�:− ig2:�̃�

†�z��q̂K��
���

�̃
�w�:

− iV�z,w��

���

��q̂K��

 + iV�z,w��

���
�q̂K��

�

= + ig2:�̃�
†�z���

��q̂K��

�̃
�w�:− ig2:�̃�

†�z��q̂K��
���


�̃
�w�:

=ig2:�̃�
†�z���, q̂K��

��̃��w�: .

e may need to deal with even more general operators of the form

:�̃†�z�q̂K1êS1q̂K2
¯ �̃�w�: �131�

s we will discuss later on. The operator Tr �Q̂ still generates global color transformations on

hese operators. To show this it is enough to look at the action of Tr �Q̂ on ê�
�,

�Tr �Q̂, ê�
�� = �Tr �ê − Tr �q̂êq̂−1, ê�

�� = − ig2��, ê��
� + ���q̂�	


, ê�
���êq̂�

	

+ ��q̂�	

�ê


, ê
�

���q̂−1�
	 + ��q̂ê�	

��q̂−1�
	, ê�

��

= − ig2��, ê��
� − ig2�	

��q̂�
���


�ê

�q̂−1�

	

+ ig2��q̂�	

�ê�

�



� − ê

���

��q̂−1��
	 + ig2��q̂ê�	

�q̂−1�
�q̂�

���
��q̂−1��




= − ig2��, ê��
�.

As the reader can verify, the Weyl ordering will not change this result.� This proves that the color
perator acts as desired.

. THE LARGE Nc LIMIT

The basic idea of large Nc limit is to write everything in terms of color invariant observables.
n the limit of large Nc, only the color invariant operators survive and the expectation values of
olor invariant operators split as a product up to order 1 /Nc corrections, so

�AB� = �A��B� + O� 1

Nc
� . �132�

he equation above implies that the set of color invariant operators becomes classical as Nc goes
o infinity. Thus all color invariant operators should be representable as classical observables in the
arge Nc limit. This is an idea of Migdal,2 see also Witten.28 A nice review of how one should think
f it as a classical limit is presented in Ref. 29.

We had found the color invariant physical states to be of the form in Eq. �128�. A more general
xpression would be of the form

:�̃�
†�x��q̂K1êS1q̂K2êS2

¯ q̂Km��
��̃��y�: . �133�
n the large Nc limit there should be classical observables defined to be
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N�x,y�K1,S1, ¯ ,Km� = lim
Nc→�

1

Nc
:�̃�

†�x��q̂K1êS1q̂K2êS2
¯ q̂Km��

��̃��y�: . �134�

e note that its complex conjugate is not an independent variable, but satisfies the relation

N*�x,y�K1,S1, ¯ ,Km� = lim
Nc→�

1

Nc
�:�̃�

†�x��q̂K1êS1q̂K2êS2
¯ q̂Km��

��̃��y��†: �135�

=N�y,x�− Km,Sn−1, . . . ,− K1��− 1�S1+. . .+Sm, �136�

ince, we keep

�ê�
��† = − ê�

� and �q̂�
��† = �q̂−1��

� �137�

where † refers to the quantum mechanical Hermitian conjugate�. Moreover, we may keep the
racelessness condition of ê acting on the physical states, Tr ê �physical� =0. When we apply our
ynamical boundary conditions, namely

�̃�L� = q̂�
��̃��− L� , �138�

he N observable satisfies the relation

:�̃�
†�x��q̂K1êS1q̂K2êS2

¯ q̂Km��
��̃��L� ª :�̃�

†�x��q̂K1êS1q̂K2êS2
¯ q̂Km+1��

��̃��− L�: . �139�

n the large Nc limit this condition should be postulated as

N�x,L�K1,S1, . . . ,Km� = N�x,− L�K1,S1, . . . ,Km + 1� . �140�

e also define

Q�K� = lim
Nc→�

1

Nc
Tr q̂K, �141�

nd in general more complex variables

Q�K1,S1, . . . ,Kr,Sr� = lim
Nc→�

1

Nc
Tr�q̂K1êS1

¯ q̂KrêSr� . �142�

e believe that only the simpler variables will be essential to get the mesonic spectrum of the
heory but in principle we have all these observables in our theory. These observables satisfy
imilar conjugation conditions.

I. CONSTRAINTS OF THE LARGE-Nc THEORY

Color invariance implies a constraint on the bilinears of the theory, due to our requirement

Tr �Q̂�physical� = 0. �143�

e note the following interesting observation about the infinite dimensional trace of the basic
ariables,

g2�
−L

L �
−L

L

dx dy ��y,x�:�̃�
†�x��q̂K��

��̃��y� ª �q̂K��
��ê�

� − �q̂êq̂−1��
�� = �Tr�q̂Kê� − Tr�q̂K+1êq̂−1�� .

�144�
et us reorder the last term as
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q̂	

�q̂K�


�ê�
��q̂−1��

	 = �q̂K�

��ê�

�q̂	

�q−1��

	 − �e�
�,q	


���q−1��
	 = �q̂K�


�ê�
���


 − ig2��

�	

	�q̂K�

�

= Tr�q̂Kê� − ig2Nc Tr q̂K.

ence we get,

g2�
−L

L �
−L

L

dx dy ��y,x�:�̃�
†�x��q̂K��

��̃��y� = �q̂K��
��ê�

� − �q̂êq̂−1��
�� = ig̃2 Tr�q̂K� , �145�

r in the large-Nc limit,

lim
Nc→�

1

Nc
� dx dy ��y,x�N�x,y�K� = iQ�K� . �146�

his is an extra condition on the infinite dimensional trace,

lim
Nc→�

1

Nc
tr��N�K�� = iQ�K� . �147�

Note that this condition tells us what should be the leading divergence of the trace of this
perator.�

Let us now look for another relation satisfied by the basic “mesonic” observables, so we
ompute the following product:

�
−L

L

dy dy�:�̃�
†�x��q̂K��

��̃��y��:��y�,y�:�̃	
†�y��q̂L�	


�̃
�z�: . �148�

or simplicity of writing we will drop the limits of the integrals. We expand the normal orderings
y subtracting the vacuum energies

� dy dy���̃�
†�x��q̂K��

��̃��y�� − V�x,y��Tr�q̂K����y�,y���̃	
†�y��q̂K�	


�̃
�z� − V�y,z�Tr�q̂L�� .

�149�

ollecting the cross terms, and keeping the first term as it is, and normal ordering the other terms
gain we get, apart from the first term,

−� dy dy��Tr q̂K�V�x,y����y�,y�:�̃	
†�y��q̂L�	


�̃
�z�:−� dy dy��Tr q̂L�V�y,z���y�,y�:�̃�
†�x�

��q̂K��
��̃��y��:−� dy dy��Tr q̂L��Tr q̂K�V�x,y����y�,y�V�y,z� . �150�

e will keep this term as it is, what we extract from the first term at the end will be added to this
art. Now let us look at the other product coming from �149�,

� dy dy��̃�
†�x��q̂K��

��̃��y����y�,y��̃	
†�y��q̂L�	


�̃
�z� . �151�

ere we will change the order of �̃	
†�y� and �̃
�z� inserting their commutation relations which

rings the symplectic form as

� dy dy� �̃�
†�x��q̂K��

��̃��y����y�,y���̃
�z��̃	
†�y� + i�−1�y,z��


	��q̂L�	

. �152�
ence,
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� dy dy� �̃�
†�x��q̂K��

��̃��y����y�,y��̃
�z��̃	
†�y��q̂L�	


 + i�̃�
†�x��q̂K��

��̃��z�Tr�q̂L� . �153�

ow the first term in the above expression is

�̃�
†�x��q̂K��

��q̂L�	

�̃
�z� � dy dy� �̃��y����y�,y��̃	

†�y� . �154�

he integral part is converted to normal ordering as

�̃�
†�x��q̂K��

��q̂L�	

�̃
�z�
� dy dy�:�̃��y����y�,y��̃	

†�y�: +� dy dy���
	V�y,y����y�,y�

− i� dy dy���y,y���−1�y�,y���
	� . �155�

he vacuum energy term gives tr�V��, an infinite dimensional trace, and there is another term
˜

�
†�x��q̂K��

��q̂L��

�̃
�z�. Both of them are of smaller order in 1/Nc. The last term is also of

maller order in 1/Nc. Thus we drop these terms as Nc→�. The first term in �155� satisfies the
ollowing on color invariant states as a result of vanishing color operator on such states;

�̃�
†�x��q̂K��

��q̂L�	

�̃
�z�
−

1

g2 �q̂êq̂−1��
	 +

1

g2 ê�
	� . �156�

o set the color indices in the right order we should commute ê terms with q̂L terms, which gives
s,

1

g̃2 �̃�
†�x��q̂Kêq̂L��

��̃��z� −
1

g̃2 �̃�
†�x��q̂K+1êq̂L−1��

��̃��z� −
1

g̃2 �̃�
†�x��q̂K��

��̃
�z���ê	
�,�q̂L�	


�

− ��q̂êq̂−1��

,�q̂L�	


�� .

ere, 1 /g2 eats up one of the 1/Nc terms via g2Nc= g̃2 as Nc→�. Now let us normal order these
erms again and simplify the commutators by a similar method to finally obtain

1

g̃2�:�̃�
†�x��q̂Kêq̂L��

��̃��z�:− :�̃�
†�x��q̂K+1êq̂L−1��

��̃��z�:− V�x,z��Tr�q̂K+1êq̂L−1� − Tr�q̂Kêq̂L��

− :�̃�
†�x��q̂K��

��̃
�z�:��

�ig2Nc�

1

Nc
Tr q̂L + :�̃�

†�x��q̂K��
��̃
�z�:�q̂L��


�ig2Nc�

− ig2V�x,z��Tr q̂K Tr q̂L − Nc Tr�q̂K+L��� .

e can use a further simplification,

Tr�q̂K+1êq̂L−1� − Tr�q̂Kêq̂L� = − ig2 Tr q̂K Tr q̂L. �157�

e divide the full expression by 1/Nc
2 and find in terms of the large-Nc variables,

− iN�x,z�K�Q�L� + iN�x,z�K + L� +
1

g̃2 �N�x,z�K,1,L� − N�x,z�K + 1,1,L − 1�� + iV�x,z�Q�K + L� .

�158�
ere, we recall that
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N�x,z�K,1,L� = lim
Nc→�

1

Nc
:�̃�

†�x��qKêqL��
��̃��z�: ,

N�x,z�K + 1,1,L − 1� = lim
Nc→�

1

Nc
:�̃�

†�x��qK+1êqL−1��
��̃��z�: .

The final result will then be, in terms of the large-Nc variables,

� dy� dy N�x,y��K���y�,y�N�y,z�L� + Q�K� � dy� dy V�x,y����y�,y�N�y,z�L�

+ Q�L� � dy� dy N�x,y��k���y�,y�V�y,z� + Q�K�Q�L� � dy� dy V�x,y����y�,y�V�y,z�

= iN�x,z�K + L� +
1

g̃2 �N�x,z�K,1,L� − N�x,z�K + 1,1,L − 1�� + iV�x,z�Q�K�Q�L�

+ iV�x,z�Q�K + L� .

We see that the constraint does not define a familiar algebra �in its present form�. There are similar
onstraints for other variables as well, but they are more complicated to derive although the
ssential steps are the same. We believe that if we could understand the above sector of this large-

c theory, a significant part of the mesonic excitations would be understood. This constraint can be
ut in a more elegant form by assuming that there is an operator N which satisfies

�x�N�K��y� = N�x,y�K� , �159�

hen, we can write it as a matrix equation,

N�K��N�L� + Q�K�V�N�L� + Q�L�N�K��V + Q�K�Q�L�V�V = iN�K + L�

+
1

g̃2 �N�K,1,L� − N�K + 1,1,L − 1�� + iVQ�K + L� + iVQ�K�Q�L� . �160�

We recall our discussion in the third section, using its original notation �now j ,k , l refer only to the
continuous indices�, that

�V��k
l =

1

2
�i��−1�kj + �KQ−1�kj�� jl =

1

2
�i�k

l + ��− ��−1Q�2�1/2�k
j�Q−1��l

j�

=
i

2
�k

l +
1

2
��− ��−1Q�2�1/2�k

j���−1Q�−1� j
l =

1

2
�i�k

l + i�sgn�i�−1Q��k
l� . �161�

ere the operator �−1Q is an antisymmetric matrix, since the usual sign function is defined for
ermitian operators we introduce an extra i=	−1 and pull out a factor of i. We also recall that

K = Q−1KTQ = K , �162�

hich can be written as

�KQ−1�T = KQ−1. �163�

ow we note the following:

�kjV
jl = − 1

2� jk�− i�lj + �KQ−1�lj� = i 1
2�k

l − 1
2 ��− ��−1Q�2�1/2�k

j���−1Q�−1� j
l

= i 1
2�k

l − i 1
2 �sgn�i�−1Q��k

l. �164�

˜ −1
ence, by using �=� Q, we get
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N�K�� N�L� + iQ�K� 1
2 �1 + sgn�i�̃��N�L�

+ iQ�L�N�K� 1
2 �1 − sgn�i�̃��

− Q�K�Q�L� 1
4 �1 + sgn�i�̃���−1�1 − sgn�i�̃�� = iN�K + L� +

1

g̃2 �N�K,1,L� − N�K + 1,1,L − 1��

+ iVQ�K + L� + iVQ�K�Q�L� . �165�

Let us note that the above constraint is invariant under the complex conjugation, or using the
atrix form, under the Hermitian conjugation. To check that one should take the Hermitian

onjugation and use the constraint equation for the combination −N�−K��N�−L�, then the two
esults actually agree.

II. THE EQUATIONS OF MOTION

The next stage is to write the equations of motion for the simple mesonic variables, to
ccomplish this we preserve the Heisenberg equations of motion,

�N�x,y�K�
�u

= − iNc
N�x,y�K�,
H

Nc
� , �166�

nd we take the limit Nc→�. Since the Hamiltonian contains various types of observables, we
eed to know the Poisson brackets among these variables. To calculate the equations of motion it
s enough to know these Poisson brackets. The algebraic structure of these Poisson brackets, or the
tructure of all the Poisson brackets, may actually help us solve the problem. At the moment the
alculations are too complex, and a direct attack to the equations of motion as in Refs. 9, 10, and
2 seems to be intractable. It is perhaps much better to look for a variational ansatz as in Ref. 11.

After some computations we can write down the Hamiltonian in a completely well-defined
anner. The expression below unfortunately hides the analogies with the usual R1+1 case. As we
ill see there is a better way to write it which reflects this resemblance,

H

NC
=

1

2
� lim

y→x
dx�− �y

2N�x,y�� +
1

2
� dx m2N�x,x� −

L

g̃2Tr e2

+
1

2
� dx�

−L

x

dy sgn�y�lim
z→y

��zN�z,y�0,1,0� − �zN�y,z�0,1,0��

−
g̃2

8
� dx�

−L

x

dy sgn�y��
−L

x

dy� sgn�y��lim
z→y

lim
w→y�

��wN�w,y��zN�z,y�� − N�y�,y��z�wN�z,w�

− �z�wN�w,z�N�y,y�� + �zN�y�,z��wN�y,w� + �wN�w,y��zV�z,y�� + �zN�z,y���wV�w,y�

− N�y�,y��z�wV�z,w� − �z�wN�z,w�V�y�,y� − �z�wN�w,z�V�y,y�� − N�y,y���z�wV�w,z�

+ �zN�y�,z��wV�y,w� + �wN�y,w��zV�y�,z� + i�zN�z,y���w�−1�y,w� − i�z�wN�z,w��−1�y,y��

− iN�y,y���z�w�−1�z,w� + i�wN�y,w��z�
−1�z,y��� . �167�

he above form shows that everything in the Hamiltonian is well defined. However, from a
onceptual point of view there is a better way to write the Hamiltonian. After some algebra, we

an get to the following form:
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H

NC
=

1

2
�

−L

L

dx� dy��N���x�,y���̃�y�,x�� −
L

g̃2Tr e2 + �
−L

L

dx� dy��N�0,1,0����y�,y����x� − y��

−
g̃2

2
�

−L

L

dx� dy� G�x�,y���N���x�,y���N���y�,x�� −
ig̃2

2
�

−L

L

dx� dy�G�x�,y��

��N���x�,y��sgn�i�̃��y�,x�� , �168�

here ��x−y� denotes the usual step function and we also introduce the Green’s function

G�y,z� =
L

2
−

1

2
�y + z� −

1

2
�y − z� . �169�

or simplicity we write N� in place of N�0��, but the two will be used interchangeably.
To find the equations of motion for the basic large-Nc variables we will first calculate the

oisson brackets among various terms. These Poisson brackets along with the constraints satisfied
y these variables, define the underlying classical phase space of the large-Nc theory. Since there
s an infinite chain of operators we should compute the most general combinations. However, the
amiltonian contains only a certain set of these terms and we believe the essentials of the dy-
amics is contained in the simple mesonic variables N�x ,y �K�, so we restrict our computations to
hese variables. In fact, the above form of the Hamiltonian naturally suggests �N��= �N���x ,y� as
ur basic variable, so we will write all the relations in terms of these variables �for simplicity when
e use the explicit matrix elements we will not use the boldface notation�. Poisson brackets below
efine an infinite dimensional algebra, a natural question is to ask what kind of algebra this is.
oreover, what should be the underlying symmetry principle, which in some sense will replace

he gauge invariance principle in this classical system �see Ref. 30 for a study of these type of
lgebras�? All these questions are left unanswered here, we hope to return to them in a later work.
e first state the commutators between the simple mesonic operators then write down the result-

ng Poisson brackets,

��N�K����x,y�,�N�K�����x�,y��� =
i

Nc
��y� − x��N�K + K�����x�,y�

−
i

Nc
��y − x���N�K + K�����x,y��

−
1

2Nc
��y� − x�sgn�i�̃��x�,y�Q�K + K��

+
1

2Nc
��y − x��sgn�i�̃��x,y��Q�K + K�� . �170�

ultiplying this by −iNc and taking the limit as Nc→� we postulate the Poisson brackets,

��N�K����x,y�,�N�K�����x�,y��� = ���y� − x��N�K + K�����x�,y� − ��y − x���N�K + K�����x,y���

+
i

2
��y� − x�sgn�i�̃��x�,y� − ��y − x��sgn�i�̃��x,y��Q�K + K�� .

�171�

his is essentially the U��� Lie algebra, graded by Z, and has a central extension determined by
he operator sgn�i�̃�. If we switch to a basis where the operator is diagonal, we will find that it is
he same central extension, apart from the Z grading, as before in Ref. 9. The next commutator we

eed is
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 1

g̃2Tr e2,�N�K����x,y�� =
2i

NC
�
k=0

K

�N�k,1,K − k����x,y� −
2i

NC
�N�0,1,K����x,y�

−
Kg̃2

NC
�N�K����x,y� . �172�

s a result we postulate the Poisson bracket, and we define a special variable, C�2�
�1/ g̃2�Q�0,2�= �1/ g̃2�Tr ê2,

�C�2�,�N�K����x,y�� = 2�
k=0

K

�N�k,1,K − k����x,y� − 2�N�0,1,K����x,y� + iKg̃2�N�K����x,y� .

�173�

he last commutator is the most complicated one, after a long computation we have,

��N�K����x,y�,�N�0,1,0����x�,y��� = −
ig̃2

NC
�
k=0

K

��N�K − k����x,y���N�k����x�,y�

+ �N�k����x�,y��V���x,y��Q�K − k�

+ �V���x�,y�Q�k��N�K − k����x,y��

+ �V���x�,y�Q�k��V���xy��Q�K − k��

+
ig̃2

NC
��N�K����x�,y��N���x,y��

+ �N�K����x�,y��V���x,y��

+ �V���x�,y�Q�K��N���x,y��

+ �V���x�,y�Q�K��V���x,y���

−
i

NC
���x� − y��N�K,1,0����x,y��

− ��y� − x��N�0,K,1����x�,y��

−
i

NC
���x� − y��V���x,y��Q�K,1,0�

− ��y� − x��V���x�,y�Q�0,1,K��

+
Kg̃2

NC
2 ��x� − y����N�K����x,y�

+ �V���x,y�Q�K��

+
iKg̃2

NC
2 ��V���x�,y���N�K����x,y�

+ �V���x,y��N�K����x�,y���

+
iKg̃2

NC
2 �V���x�,y���V���x,y�Q�K� . �174�
e take the large-Nc limit and drop terms of smaller order to finally postulate,

                                                                                                            



I

w
a

V

c
n
v
R
t
o
c
t
c
s
t
o
f

I

T
e

072301-25 Scalar gauge theory on a cylinder J. Math. Phys. 47, 072301 �2006�

                        
��N�K����x,y�,�N�0,1,0����x�,y��� = − g̃2�
k=0

K

��N�K − k����x,y���N�K����x�,y� + �N�k����x�,y�

��V���x,y��Q�K − k� + �V���x�,y�Q�k��N�K − k����x,y��

+ �V���x�,y�Q�k��V���x,y��Q�K − k�� + g̃2��N���x,y��

��N�K����x�,y� + �N�K����x�,y��V���x,y��

+ �V���x�,y�Q�K��N���x,y�� + �V���x�,y�Q�K��V���x,y���

+ ���y� − x��N�0,K,1����x�,y� − ��x� − y�

��N�K,1,0����x,y��� + ���y� − x��V���x�,y�Q�0,1,K�

− ��x� − y��V���x,y��Q�K,1,0� . �175�

n principle we can compute now the equations of motion for the simple mesonic variables, via

�N�x,y�K�
�u

= �N�x,y�K�,Hc� , �176�

here Hc denotes the limit of H /Nc as Nc→�. However, the answer given in the appendix is not
t all easy to work with. In the next section we search for a linear approximation.

III. LINEARIZATION

A casual look at the Poisson brackets and the Hamiltonian tells us that the equations are very
omplicated in the general case, and various terms are coupled. An approximation which keeps the
onperturbative aspects of the theory is needed. One possibility is to again look at a linearized
ersion of these equations. This is a good approximation as we know from the previous work in
ef. 9. It seems natural to assume that the operators with various powers of q̂ inserted should be

he excited states �see also the nonrelativistic version in Ref. 16�. In fact we expect that the
perators of the form N�x ,y �K1 ,S1 ,K2 ,S2 . . � become less and less important when we study states
lose to the ground state. Of course it is possible that the theory readjusts itself further away from
hese naive expectations to a more complicated ground state. This can only be answered by a more
areful study of the system. It is likely that a variational estimate will be more powerful to settle
uch questions. From a group theory point of view we cannot neglect products of Q�K�’s with
hemselves, but we will neglect the products of N�x ,y �K� with Q�K� variables. This means that
ur basic variables are of order � fluctuations, or even smaller. Let us first rewrite the constraint
or N�K��,

N�K��N�L�� + i
1

2
Q�K��N�L��� +

1

2
Q�L��N�K��� − N�K + L��� + i

1

2
�Q�K�sgn�i�̃�N�L��

+ Q�L�N�K�� sgn�i�̃�� −
1

2
�1 + sgn�i�̃��Q�K + L� =

1

g̃2 �N�K,1,L�� − N�K + 1,1,L − 1��� .

�177�

f we set here K=L=0, we get a constraint equation which is

N�0��N�0�� + i
1

2
�sgn�i�̃�N�0�� + N�0�� sgn�i�̃�� −

1

2
�1 + sgn�i�̃��

=
1

g̃2 �N�0,1,0�� − N�1,1,− 1��� . �178�

his looks very much like the constraints found before in Refs. 10 and 12 apart from terms with
ˆ
 in them and also a vacuum correction term. There, the constraint was used to throw away certain
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omentum components of the basic variables, here we will use this to eliminate the variable
�0,1 ,0� as we will see. The linearized equations of motion will then be

�

�u
�N���x,y� = ��N���x,y�,HC� = −

1

2
�N�,�̃��x,y�

+� dx� dy� ��x�,y�����y�,x��N�0,1,0����y�,y� − ��y,y���N�0,1,0����x,y���

+
ig̃2

2
� dx��G�x,x���sgn�i�̃��x�,y�,�N���x,x���+

− G�y,x���sgn�i�̃��x,x��,�N���x�,y��+ − G�x,x���N���x�,y�sgn�i�̃��x,x��

+ G�y,x���N���x,x��sgn�i�̃��x�,y��

+
g̃2

4
� dx��G�x,x��sgn�i�̃��x�,y�sgn�i�̃��x,x��

− G�y,x��sgn�i�̃��x,x��sgn�i�̃��x�,y�� �179�

n which Q�0,1 ,0�=0 is imposed �because Tr ê=0 on physical states�. We also used �. , . �+ to
enote symmetrized product. If we now assume that N�x ,y �1,1 ,−1� is of smaller order in com-
arison to the other terms, we can eliminate N�x ,y �0,1 ,0� in favor of N�x ,y �0� in the above
onstraint and plug it into the equations of motion. This gives us

��N�0����x,y�,Hc� = −
1

2
�N�0��,�̃��x,y�

+
g̃2

2
�y − x��i�N�0��,sgn�i�̃��+�x,y� − �1 + sgn�i�̃���x,y��

+ g̃2 i

2
� dx��G�x,x��sgn�i�̃��x�,y��N�0����x,x��

− G�y,x��sgn�i�̃��x,x���N�0����x�,y��

+ g̃21

2
� dx��G�x�,x� − G�y,x���sgn�i�̃��x�,y�sgn�i�̃��x,x�� . �180�

t can further be simplified and we reach to,

��N�0����x,y�
�u

= ��N�0����x,y�,Hc�

=−
1

2
�N�0��,�̃��x,y� +

g̃2

2
�y − x��i�N�0��,sgn�i�̃��+�x,y� − sgn�i�̃��x,y��

+ g̃2 i

2
� dx��G�x,x��sgn�i�̃��x�,y��N�0����x,x��

− G�y,x��sgn�i�̃��x,x���N�0����x�,y��

+ g̃21

4
� dx���x� − x� − �y − x���sgn�i�̃��x�,y�sgn�i�̃��x,x�� . �181�
e can reorganize this equation into,
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��N�0����x,y�
�u

= ��N�0����x,y�,Hc�

=−
1

2
�N�0��,�̃��x,y� +

g̃2

2
i�y − x��N�0��,sgn�i�̃��+�x,y�

+ g̃2 i

2
� dx��G�x,x��sgn�i�̃��x�,y��N�0����x,x��

− G�y,x��sgn�i�̃��x,x���N�0����x�,y��

+ g̃21

2
�

x

y

dx�
x� −
1

2
�x + y��sgn�i�̃��x,x��sgn�i�̃��x�,y� −

g̃2

2
�y − x�sgn�i�̃��x,y� .

�182�

ere we face a problem, N�=0 is not a solution, so it suggests that the true ground state of the
heory is not the naive vacuum but has changed due to the interactions. It is also possible that this
s the result of our approximations. This is hard to say at our present level of understanding. The
nhomogeneous terms are proportional to the coupling constant, as it becomes weaker and weaker
e should approach to the true vacuum. If we set g̃=0, the naive vacuum N�=0, indeed solves the

ime independent equations. �There are examples of this type of phenomena, in the Lee model, the
oupling of the bosonic fields to a quantum mechanical system leads to a drastic change in the
round state of the system.� It is also possible to think of these inhomogeneous terms as if they
ere multiplied by some powers of � which allows one to get an idea about in which orders in �

hese terms make contributions to the naive vacuum of the theory due to the interactions. If one
eeps in mind that there are �’s both in the commutators of the bosonic sector and in the com-
utators of the gauge sector, more careful analysis shows that the first term in Eq. �182� is zeroth

rder in � as expected. Moreover the second, third, and fourth terms are the first order terms in �
nd the order of the last two terms is two in �. The solutions of the equations of motion will not
ive us the invariant mass, the energy is not a relativistic invariant. We need to find the operator
f the field momentum and look for the correct combinations of the simultaneous eigenvalues to
etermine the mass spectrum. All these can best be done in a variational setting. In Refs. 9 and 12,
he ordinary momentum was used to diagonalize all the operators. A natural ansatz for the basic

esonic variables would be of the form �N���x ,y�=��x−y�eiP�x+y�/2. The leading symbol of
gn�i�̃� is given by sgn� 1

2 �x+y��sgn�p�, this is expected and such a symbol expansion may be
seful to understand this problem as an alternative. Our elimination method may not be the best
pproach, it may be better to develop a new kind of symbol calculus by combining the collective
eld approach of the papers31,32 with bilinear methods. We hope to return to these issues in a later
ork.
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PPENDIX A: POISSON BRACKETS OF THE GAUGE SECTOR

In this section, in order to evaluate the Poisson brackets of the gauge sector, the suggestion

iven in Ref. 28 is followed. The variation of the action for the gauge sector can be given by
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�S =� du �xA�
��AB�

�
	


ẋB

	 −� du �H =� du �xA�

��AB�
�

	

ẋB


	 −� du �xA�
�QAB�

�
	


xB

	.

�A1�

or simplicity �H is given as a quadratic form, its explicit form is not needed here. The indices
,B belong to the coordinates �e ,q� and run from �1,2�. On top of it, the � ,� indices refer to
atrix form of the Lie algebra. The equations of motion gives

ẋA�
� = ��−1�AB�

�



	QBC	



�
x

C
�. �A2�

ince

ẋA�
� = �xA�

�,xB

	�QBC	



�

x
C

�, �A3�

he Poisson brackets can be read off directly from the expression. The variation of the action
hould be expressed in terms of a set of independent variables � ,v ,e and their variations �� ,�e on
he group manifold. The variables �� and v are given by

�� = q−1�q ,

v = q−1q̇ . �A4�

o obtain the Poisson brackets, a variation is made in the action

�S = −
1

g2 � du Tr ��q−1q̇e� . �A5�

his variation can be expressed in terms of our proper variables after an integration by parts as

�S = −
1

g2 � du Tr�− ��ve + ��ev − ��ė + �ev� �A6�

n which there is no contribution coming from a boundary term since the variation of q at the
oundaries gives zero. Equation �A6� can be written in terms of explicit indices

�S = −
1

g2 � du�− ���
�v

�

e


� + ���
�e�


v

� − ���

�e�
� + �e�

�v
�

�� . �A7�

fter some rearrangements of the indices, Eq. �A7� is given by

�S = −
1

g2 � du����
����

�e�

 − ��


e�
��v


� − ��
���


��e�
�v



� − ���

�ė

��� . �A8�

t is possible to write this variation in a more compact form as

�S = −
1

g2 � du����
� − �e�

���A�
�

�

 − ��

�
�




��
�

�

 0

��v

�

ė

�
� �A9�

n which

A�
�

�

 = ��

�e�

 − ��


e�
�,

��
�

�

 = ��

���

. �A10�
he symplectic form can, therefore, be given by a matrix as
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��
�

�

 = −

1

g2�A�
�

�

 − ��

�
�




��
�

�

 0

� , �A11�

nd its inverse is also given by

��−1�

�

�
 = − g2� 0 �


�
�



− �

�

�
 A


�
�


� . �A12�

he equations of motion for � and e are expressed in terms of the Poisson brackets by

v

� = ��


�,��
�

�H

���


+ ��

�,e�

�
�H

�e�


,

ė

� = �e


�,��
�

�H

���


+ �e

�,e�

�
�H

�e�


. �A13�

hus the Poisson brackets can be read off with the assistance of Eqs. �A12� and �A13� as follows:

��

�,e�

� = − g2�

�

�
 = − g2�


�
�

�, �A14�

�e

�,e�

� = − g2A

�

�
 = g2��


e
�

� − ��
�e


� . �A15�

Poisson bracket between the variables q and e can be introduced by passing q−1 in the definition
f v to the other side as q in the equation of motion for �. This is allowed since the Poisson bracket
etween the variables � themselves is zero. One can therefore end up with

�e�
�,q


�� = g2��
�q


�. �A16�

ontracting e by an element of the Lie algebra, namely �, the Poisson brackets can be set in a
orm as below,

�Tr �e,q

�� = g2�g��


�,

�Tr �1e,Tr �2e� = g2 Tr��1,�2�e . �A17�

here is a natural geometric interpretation for this symplectic structure. It is indeed the canonical
orm on T*G; the cotangent bundle on G �see Ref. 25 for a good exposition�.

PPENDIX B: THE FULL EQUATIONS OF MOTION

A long and tedious calculation will reveal the full equations of motion for the simple mesonic
ariables. We give the answer below without any details. One should subtract divergence coming
rom the renormal ordering of the Hamiltonian, this is not a simple task. We plan to come back to
hese issues in a later presentation,

�

�u
�N�K����x,y� = ��N�K����x,y�,HC� = −

1

2
�N�K��,�̃��x,y� + ig̃2KL�N�K����x,y�

+ 2L�
k=0

K

N�k,1,K − k���x,y� − 2L�N�0,1,K����x,y�

− g̃2�
k=0

K � dx� dy���x�,y����N�K − k����x,y���N�k����y�,y�
+ �V���x,y��Q�K − k��N�k����y�,y� + �N�K − k����x,y���V���y�,y�Q�k�
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+ �V���x,y���V���y�,y�Q�K − k�Q�k��

+ g̃2 � dx� dy� ��x�,y����N���x,y���N�K����y�,y� + �V���x,y��

��N�K����y�,y� + �N���x,y���V���y�,y�Q�K� + �V���x,y���V���y�,y�Q�K��

+ � dx� dy� ��x�,y�����y�,x��N�0,1,K����y�,y� − ��y,y���N�K,1,0����x,y���

+ � dx� dy� ��x�,y�����y�,x��V���y�,y�Q�0,1,K� − ��y,y��

��V���x,y��Q�K,1,0�� −
g̃2

2
� dx��G�x,x����N�K����x�y�,�N���x,x���+

− G�y,x����N�K����x,x��,�N���x�,y��+�

+
ig̃2

2
� dx��G�x,x���sgn�i�̃��x�,y�,�N���x,x���+Q�K� − G�y,x��

��sgn�i�̃��x,x��,�N���x�,y��+Q�K� − G�x,x���N�K����x�,y�sgn�i�̃��x,x��

+ G�y,x���N�K����x,x��sgn�i�̃��x�,y��

+
g̃2

4
� dx��G�x,x��sgn�i�̃��x�,y�Q�K�sgn�i�̃��x,x��

− G�y,x��sgn�i�̃��x,x��Q�K�sgn�i�̃��x�,y� . �B1�
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In a recent paper we have presented results for a set of massive scalar one-loop
master integrals needed in the NNLO parton model description of the hadropro-
duction of heavy flavors. The one-loop integrals were evaluated in n=4−2� dimen-
sion and the results were presented in terms of a Laurent series expansion up to
O��2�. We found that some of the �2 coefficients contain a new class of functions
which we termed the L functions. The L functions are defined in terms of one-
dimensional integrals involving products of logarithm and dilogarithm functions. In
this paper we derive a complete set of algebraic relations that allow one to convert
the L functions of our previous approach to a sum of classical and multiple poly-
logarithms. Using these results we are now able to present the �2 coefficients of the
one-loop master integrals in terms of classical and multiple polylogarithms.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2190336�

. INTRODUCTION

Recently, we have calculated the complete set of massive one-loop master integrals1 needed in
he calculation of the next-to-next-to-leading order �NNLO� parton model corrections to the ha-
roproduction of heavy flavors.2 We used Feynman parametrization to evaluate the one-loop
aster integrals in n=4−2� dimensions. We obtained the coefficients of the Laurent series ex-

ansion of the relevant scalar integrals in terms of the parameter � up to O��2� as needed for the
NLO calculation. We found that the real parts of some of the �2 coefficients contain a new class
f functions which can be written in terms of one-dimensional integral representations involving
roducts of log and dilog functions. These so-called single and triple index L functions cannot be
xpressed in terms of classical polylogaritms but can be seen to belong to a generalization of the
lassical polylogarithms which are called multiple polylogarithms.

Functions analogous to the triple index functions L�1�2�3
also arise in the approach of Ref. 3

hen one analytically continues their O��2� integral representation for a general vertex function.
ethods differing from ours have been used for the derivation of master N-point integrals such as

he differential equations method4 or the nested sum method.5 Depending on the number of scales
nvolved, the results include multiple polylogarithms6 and/or harmonic7 or two-dimensional
armonic8 polylogarithms. The latter functions all are subsets of multiple polylogarithms. Present-
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�
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ng our results in terms of multiple polylogarithms will facilitate a comparison with the results of
ossible rederivations of the scalar one-loop integrals using other methods. It is very likely that
uture results of multiloop calculations will be presented in terms of multiple polylogarithms or
heir subclasses. Alongside with this the necessary tools will be developed to deal with multiple
olylogarithms, be it analytically or numerically. In fact, recently a computer code has been
ritten for the numerical evaluation of the multiple polylogarithms.9 It is therefore timely that we

xpress the results of Ref. 1 also in terms of multiple polylogarithms.
It is a purpose of this paper to show that the single and triple index L functions introduced in

ef. 1 can all be related to multiple polylogarithms. This is done in explicit form. We are thus able
o present our results for the scalar massive one-loop master integrals in terms of multiple poly-
ogarithms and classical polylogarithms.10 In Sec. II we recapitulate material on the definition of
he single and triple index L functions as they arise in the approach of Ref. 1. Simple symmetry
elations allow one to restrict the discussion to the triple index L functions L−++ and L+++, and to
he single index L function L+. In Sec. II we also recapitulate the definition of multiple polyloga-
ithms. In the subsequent sections we will write down the formulas needed to transform the L
unctions to multiple polylogarithms for general arguments. The general formulas are not always
pplicable when the arguments take special values as they do in the massive one-loop calculation.
or these special values one must carefully discuss the limiting behavior of the general formulas.
n Sec. III A we derive the general formula which relates the L−++ functions to the set of multiple
olylogarithms. Section III B considers special cases of the general relation. Similarly, Sec. IV A
ives general relations which allow one to express the L+++ functions in terms of multiple poly-
ogarithms. In Sec. IV B we discuss special cases for the arguments of the L+++ functions. Sections

A and V B repeat the discussion for the single index L+ functions. Finally, Sec. VI presents our
onclusions.

As remarked on before, the L functions appear only in the real parts of some of the O��2�
oefficient functions of the masive one-loop integrals. In the notation of Ref. 1 these are the
hree-point coefficient functions Re C1

�2�, Re C2
�2�, and Re C5

�2�, and the four-point coefficient func-
ions Re D1

�2�, Re D2
�2�, and Re D3

�2�. For the sake of brevity we have decided to present multiple
olylogarithm results in this paper only for the four-point coefficient function Re D1

�2�. This result
s listed in the Appendix. The corresponding results for the other five coefficient functions are
eadily available in electronic form.11

I. BASIC FEATURES

In order to make the paper self-contained, we write down a number of basic definitions for the
functions and the multiple polylogarithms in this section, as well as some symmetry properties

nd domains of definitions for the single and triple index L functions. These will be of help when
resenting the subsequent material.

The definition for the L functions is as follows:1

L�1�2�3
��1,�2,�3,�4� = �

0

1

dy
ln��1 + �1y�ln��2 + �2y�ln��3 + �3y�

�4 + y
�1�

nd

L�1
��1,�2,�3,�4� = �

0

1

dy
ln��1 + �1y�Li2��2 + �3y�

�4 + y
. �2�

ere the �i �i=1,2 ,3� take the values ±1 and the � j’s are either integers �1,0 ,−1� or else
inematical variables. We want to emphasize that the numerical evaluation of the L functions is
traightforward.

The L functions possess simple symmetry properties as follows. One notices that a change of

he integration variable y→1−y results in the identity
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L�1
��1,�2,�3,�4� = − L−�1

��1 + �1,�2 + �3,− �3,− �4 − 1� �3�

hich implies that L− can always be related to L+, and vice versa. We have thus written our results
or the three-point and four-point functions in Ref. 1 only in terms of the L+ functions.

Turning to the triple index L function one notices that L�1�2�3
��1 ,�2 ,�3 ,�4� is symmetric

nder permutations of any two pairs of indices and arguments ��i ,�i� and �� j ,� j� for �i� j�. The
ame change of variables as above y→1−y results in

L�1�2�3
��1,�2,�3,�4� = − L−�1−�2−�3

��1 + �1,�2 + �2,�3 + �3,− �4 − 1� . �4�

herefore, from the eight functions L−−−, L−−+, L−+−, L+−−, L−++, L+−+, L++−, and L+++ only two are
ndependent. We have chosen to write our results in terms of L−++ and L+++.

The domains of definition of the functions L+++, L−++, and L+ that follow from the requirement
hat these functions take real values can be read off from the defining relations Eqs. �1� and �2�
onsidering the arguments of the log and dilog functions in the integrands, as well as from
nsuring that the denominator of Eqs. �1� and �2� does not change sign on the integration path.
ne has

L+++��1,�2,�3,�4�: �1 � 0,�2 � 0,�3 � 0,�4 � − 1 or �4 � 0;

L−++��1,�2,�3,�4�: �1 � 1,�2 � 0,�3 � 0,�4 � − 1 or �4 � 0;

L+��1,�2,�3,�4�: �1 � 0,�2 � 1,�2 + �3 � 1,�3 � 0,�4 � − 1 or �4 � 0. �5�

ooking at the definition of the triple index L function in �1� one concludes that the boundary
oints �1=0 and/or �2=0 and/or �3=0 can be included in the domain of the definition for L+++.
he same holds true for �1=1 and/or �2=0 and/or �3=0 for L−++. Also, from the definition of the
ingle index function L+ in �2� one concludes that the boundary point �1=0 can be added to its
omain of definition.

The points �4= �−1,0� can also be included in the domain if the values taken by the other
arameters �i guarantee the convergence of the integral. We mention that for all of our purposes
he conditions �5�, with the boundary points included, are satisfied, e.g., our results for the inte-
rals are real. Nevertheless, it is of course always possible to analytically continue the parameters
o the complex plane.

There are some further relations for the L functions which result from applying integration-
y-parts identities. They are not listed here but can be found in Appendix C of Ref. 1. They have
een used to reduce the set of L functions occurring in the master integrals to a subset of L
unctions having real values in physical phase space.1

Multiple polylogarithms are defined as a limit of Z sums,6 e.g.,

Limk,. . .,m1
�xk, . . . ,x1� = lim

n1→�
�

n1�n2. . .�nk�0

x1
n1x2

n2
¯ xk

nk

n1
m1n2

m2
¯ nk

mk
. �6�

he number w=m1+ ¯ +mk is called the weight and k is called the depth of the multiple poly-
ogarithm. The power series �6� is convergent for 	xi	�1, and can be analytically continued via the
terated integral representation:

Limk,. . .,m1
�xk, . . . ,x1� = �

0

x1x2¯xk 
dt

t
� �m1−1 dt

x2x3 ¯ xk − t
�


dt

t
� �m2−1 dt

x3 ¯ xk − t
� ¯ � 
dt

t
� �mk−1 dt

1 − t
, �7�
here the following notation is used for the iterated integrals:
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�
0

� dt

an − t
� ¯ �

dt

a1 − t
= �

0

� dtn
an − tn

�
0

tn dtn−1

an−1 − tn−1
	 ¯ 	 �

0

t2 dt1

a1 − t1
. �8�

II. TRANSFORMATION OF L−++ TO MULTIPLE POLYLOGARITHMS

In this section we will show that all our L−++ functions can be expressed in terms of multiple
olylogarithms.

. General case for the L−++ function

We begin with the L−++ function Eq. �1�,

L−++��1,�2,�3,�4� = �
0

1

dy
ln��1 − y�ln��2 + y�ln��3 + y�

�4 + y
. �9�

fter changing the integration variable y=�1t one gets

�
0

1/�1

dt
ln��1 − �1t�ln��2 + �1t�ln��3 + �1t�

�4

�1
+ t

= �
0

1/�1

dt
ln �1 ln��2 + �1t�ln��3 + �1t�

�4

�1
+ t

+ �
0

1/�1

dt

ln�1 − t��ln �1 + ln
�2

�1
+ t��ln �1 + ln
�3

�1
+ t�

�4

�1
+ t

= ln �1�
0

1

dy
ln��2 + y�ln��3 + y�

�4 + y
+ ln2 �1�

0

1/�1

dt
ln�1 − t�

�4

�1
+ t

+ ln �1�
0

1/�1

dt

ln�1 − t�ln
�2

�1
+ t�

�4

�1
+ t

+ ln �1�
0

1/�1

dt

ln�1 − t�ln
�3

�1
+ t�

�4

�1
+ t

+ �
0

1/�1

dt

ln�1 − t�ln
�2

�1
+ t�ln
�3

�1
+ t�

�4

�1
+ t

. �10�

ith the help of �7� the integral in the second term of the last equation of �10� can be written as

�
0

1/�1

dt
ln�1 − t�

�4

�1
+ t

= �
0

1/�1 dt1

−
�4

�1
− t1

�
0

t1 dt2

1 − t2
= Li1,1
−

�4

�1
,−

1

�4
� . �11�
he third and fourth terms of the last equation in �10� contain integrals of the form
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�
0

tm

dt
ln�1 − t�ln�
1 + t�


2 + t
. �12�

o express such integrals in terms of multiple polylogarithms one proceeds as follows:

− Li1,1,1
− 
2,

1


2
,
− tm

1

� = �
0

tm dt2


1 + t2
�

0

t2

dt1
ln�1 − t1�


2 + t1
= �

0

tm

dt1
ln�1 − t1�


2 + t1
�

t1

tm dt2


1 + t2

= ln�
1 + tm��
0

tm

dt1
ln�1 − t1�


2 + t1
− �

0

tm

dt1
ln�1 − t1�ln�
1 + t1�


2 + t1

= ln�
1 + tm�Li1,1
− 
2,
− tm

2

� − �
0

tm

dt1
ln�1 − t1�ln�
1 + t1�


2 + t1
. �13�

n the first line of �13� we have changed the order of integration in the two-dimensional integral.
e shall frequently use this trick further on. From Eq. �13� one immediately concludes that

�
0

tm

dt
ln�1 − t�ln�
1 + t�


2 + t
= Li1,1,1
− 
2,


1


2
,
− tm

1

� + ln�
1 + tm�Li1,1
− 
2,
− tm

2

� . �14�

et us now turn to the more involved integral �first term of Eq. �12��

�
0

1

dy
ln��2 + y�ln��3 + y�

�4 + y
=

y→−�2t

− �
0

−1/�2

dt
�ln �2 + ln�1 − t��ln��3 − �2t�

�4

�2
− t

= − ln �2�
0

−1/�2

dt
ln��3 − �2t�

�4

�2
− t

− �
0

−1/�2

dt

ln�1 − t��ln �2 + ln
�3

�2
− t�

�4

�2
− t

= + ln �2�
0

1

dy
ln��3 + y�

�4 + y
− ln �2�

0

−1/�2

dt
ln�1 − t�

�4

�2
− t

− �
0

−1/�2

dt

ln�1 − t�ln
�3

�2
− t�

�4

�2
− t

. �15�

he integral in the first term can be expressed as

�
0

1

dy
ln��3 + y�

�4 + y
=

y→−�3t

− �
0

−1/�3

dt
�ln �3 + ln�1 − t��

�4

�3
− t

= ln �3 ln
�4 + 1

�4
� + Li1,1
�4

�3
,−

1

�3
� .

�16�
he integral in the second term can be written as
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�
0

−1/�2

dt
ln�1 − t�

�4

�2
− t

= − Li1,1
�4

�2
,−

1

�2
� . �17�

he term from the last line of Eq. �15� has a form which is an analog of the integral �12� and can
e calculated in a similar way,

�
0

tm

dt
ln�1 − t�ln�
1 − t�


2 − t
= Li1,1,1

2,


1


2
,
tm

1
� + ln�
1 − tm�Li1,1

2,

tm

2
� . �18�

ombining the Eqs. �16�–�18� we arrive at the result for Eq. �15�,

�
0

1

dy
ln��2 + y�ln��3 + y�

�4 + y
= Li1,1,1
�4

�2
,
�3

�4
,−

1

�3
� + ln �2Li1,1
�4

�3
,−

1

�4
�

+ ln�1 + �3�Li1,1
�4

�2
,−

1

�4
� + ln �2 ln �3 ln
�4 + 1

�4
� . �19�

ecause the initial integrand is symmetric under the exchange of the parameters �2 and �3, the rhs
f �19� can be rewritten in a symmetric form if desired.

We are now left with the fifth term in �10�. The fifth term is an integral of the type

�
0

tm

dt
ln�1 − t�ln��1 + t�ln��2 + t�

�3 + t
. �20�

n order to express such integrals in terms of multiple polylogarithms one can perform the fol-
owing chain of transformations resulting in a multiple polylogarithm of weight four:

− Li1,1,1,1
− �3,
�2

�3
,
�1

�2
,
− tm
�1

� = �
0

tm dt4

�1 + t4
�

0

t4 dt3

�2 + t3
�

0

t3 dt2

�3 + t2
�

0

t2 dt1

1 − t1

= − �
0

tm dt4

�1 + t4
�

0

t4 dt3

�2 + t3
�

0

t3

dt2
ln�1 − t2�

�3 + t2

= − �
0

tm dt4

�1 + t4
�

0

t4

dt2
ln�1 − t2�

�3 + t2
�

t2

t4 dt3

�2 + t3

= − �
0

tm

dt4
ln��2 + t4�

�1 + t4
�

0

t4

dt2
ln�1 − t2�

�3 + t2

+ �
0

tm dt4

�1 + t4
�

0

t4

dt2
ln�1 − t2�ln��2 + t2�

�3 + t2

= − I��tm� + �
0

tm

dt2
ln�1 − t2�ln��2 + t2�

�3 + t2
�

t2

tm dt4

�1 + t4

= − I��tm� + I��tm� − �
0

tm

dt2
ln��1 + t2�ln��2 + t2�ln�1 − t2�

�3 + t2
,

�21�

here we have introduced the notation

I��tm� = �tm

dt4
ln��2 + t4�

�1 + t4
�t4

dt2
ln�1 − t2�

�3 + t2
,

0 0
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I��tm� = ln��1 + tm��
0

tm

dt2
ln�1 − t2�ln��2 + t2�

�3 + t2
. �22�

he third term on the last line of �21� is exactly the integral of the required type Eq. �20�.
The integral in I��tm� has the form of �14�. For the integral I��tm� we write

I��tm� = �
0

tm

dt4
ln��2 + t4�

�1 + t4
�

0

t4

dt2
ln�1 − t2�

�3 + t2
= �

0

tm

dt4
ln��2 + t4�

�1 + t4
Li1,1
− �3,

− t4

�3
� . �23�

n the other hand, one has

Li1,1,1,1
− �3,
�1

�3
,
�2

�1
,
− tm
�2

� = �
0

tm dt2

�2 + t2
�

0

t2 dt1

�1 + t1
Li1,1
− �3,

− t1

�3
�

= �
0

tm dt1

�1 + t1
Li1,1
− �3,

− t1

�3
��

t1

tm dt2

�2 + t2

= ln��2 + tm��
0

tm dt1

�1 + t1
Li1,1
− �3,

− t1

�3
�

− �
0

tm

dt1
ln��2 + t1�

�1 + t1
Li1,1
− �3,

− t1

�3
�

= − ln��2 + tm�Li1,1,1
− �3,
�1

�3
,
− tm
�1

� − I��tm� . �24�

ne then concludes that

I��tm� = − Li1,1,1,1
− �3,
�1

�3
,
�2

�1
,
− tm
�2

� − ln��2 + tm�Li1,1,1
− �3,
�1

�3
,
− tm
�1

� . �25�

inally, substituting I��tm� and I��tm� into Eq. �21� we write down the result for the integral of the
equired type Eq. �20�,

�
0

tm

dt
ln�1 − t�ln��1 + t�ln��2 + t�

�3 + t

= ln��1 + tm�ln��2 + tm�Li1,1
− �3,
− tm
�3

� + ln��2 + tm�Li1,1,1
− �3,
�1

�3
,
− tm
�1

�
+ ln��1 + tm�Li1,1,1
− �3,

�2

�3
,
− tm
�2

�
+ Li1,1,1,1
− �3,

�2

�3
,
�1

�2
,
− tm
�1

� + Li1,1,1,1
− �3,
�1

�3
,
�2

�1
,
− tm
�2

� . �26�

We are now in the position to collect all required contributions to express the L−++ function in

erms of multiple polylogarithms. Taking into account Eqs. �11�, �14�, �19�, and �26� and we obtain
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L−++��1,�2,�3,�4� = Li1,1,1,1
−
�4

�1
,
�2

�4
,
�3

�2
,−

1

�3
� + Li1,1,1,1
−

�4

�1
,
�3

�4
,
�2

�3
,−

1

�2
�

+ ln �1Li1,1,1
�4

�2
,
�3

�4
,−

1

�3
� + ln�1 + �2�Li1,1,1
−

�4

�1
,
�3

�4
,−

1

�3
�

+ ln�1 + �3�Li1,1,1
−
�4

�1
,
�2

�4
,−

1

�2
� + ln �1 ln �2Li1,1
�4

�3
,−

1

�4
�

+ ln �1 ln�1 + �3�Li1,1
�4

�2
,−

1

�4
� + ln�1 + �2�ln�1 + �3�Li1,1
−

�4

�1
,−

1

�4
�

+ ln �1 ln �2 ln �3 ln
�4 + 1

�4
� . �27�

ome remarks are in order at this place. The final formula �27� contains multiple polylogarithms
p to weight four. All multiple polylogarithms up to weight three can be expressed in terms of
ogarithms and clasical polylogarithms Li2 and Li3. This fact is used by us when we reexpress our
esults for the massive scalar integrals in terms of multiple polylogarithms, i.e., our final results
ill contain only multiple polylogarithms of weight four. For the variables �i the conditions �5�

re assumed. But in the results for the massive scalar integrals there are also cases when �1=1
nd/or �2=0 and/or �3=0 and/or �4= �−1,0�. In such cases the general formula �27� is no longer
alid and these cases must be studied separately.

. Special cases for the L−++ function

In the Laurent series expansion of the massive scalar one-loop integrals one encounters special
alues of the arguments �i for which the general formula Eq. �27� no longer applies. This is quite
bvious from the list of special cases discussed in the following.

. �1=1, �4=0

In such case one can make use of Eq. �26�. One should find the limit of the expression on the
ight-hand side for tm=1, �3→0. One obtains

�
0

1

dt
ln�1 − t�ln��1 + t�ln��2 + t�

t
= lim

�3→0
�ln��1 + 1�ln��2 + 1��

0

1 dt2

− �3 − t2
�

0

t2 dt1

1 − t1

+ ln��2 + 1��
0

1 dt3

− �1 − t3
�

0

t3 dt2

− �3 − t2
�

0

t2 dt1

1 − t1

+ ln��1 + 1��
0

1 dt3

− �2 − t3
�

0

t3 dt2

− �3 − t2
�

0

t2 dt1

1 − t1

+ �
0

1 dt4

− �1 − t3
�

0

t4 dt3

− �2 − t3
�

0

t3 dt2

− �3 − t2
�

0

t2 dt1

1 − t1

+ �
0

1 dt4

− �2 − t3
�

0

t4 dt3

− �1 − t3
�

0

t3 dt2

− �3 − t2
�

0

t2 dt1

1 − t1
�

= − ln��1 + 1�ln��2 + 1��
0

1 dt2

t2
�

0

t2 dt1

1 − t1

− ln��2 + 1��1 dt3

− �1 − t3
�t3 dt2

t2
�t2 dt1

1 − t1
0 0 0
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− ln��1 + 1��
0

1 dt3

− �2 − t3
�

0

t3 dt2

t2
�

0

t2 dt1

1 − t1

− �
0

1 dt4

− �1 − t3
�

0

t4 dt3

− �2 − t3
�

0

t3 dt2

t2
�

0

t2 dt1

1 − t1

− �
0

1 dt4

− �2 − t3
�

0

t4 dt3

− �1 − t3
�

0

t3 dt2

t2
�

0

t2 dt1

1 − t1
. �28�

n order to get the expression under the sign of the limit in Eq. �28� one applies the definition �7�
or the multiple polylogarithms in Eq. �26�. Using the same definition for the final multidimen-
ional integrals in �28� and making the change �1→�2, �2→�3 one finally arrives at the result for
he case �1=1 and �4=0,

L−++�1,�2,�3,0� = − Li2,1,1
− �3,
�2

�3
,−

1

�2
� − Li2,1,1
− �2,

�3

�2
,−

1

�3
� − ln��3 + 1�Li2,1
− �2,−

1

�2
�

− ln��2 + 1�Li2,1
− �3,−
1

�3
� − ln��2 + 1�ln��3 + 1���2� . �29�

. �1=1, �2=�3=0

For these values of the parameters �i one has an integral of the very simple form

L−++�1,0,0,�4� = �
0

1

dy
ln�1 − y�ln2 y

�4 + y
.

fter a change of variable y→1− t one gets

�
0

1

dt
ln t ln2�1 − t�

�4 + 1 − t
= − �

0

1

dt1
ln2�1 − t1�
�4 + 1 − t1

�
t1

1 dt2

t2

= − �
0

1 dt2

t2
�

0

t2

dt1
ln2�1 − t1�
�4 + 1 − t1

= − 2�
0

1 dt2

t2
�

0

t2 dt1

�4 + 1 − t1
�

0

t1 dt3

1 − t3
�

0

t3 dt4

1 − t4
. �30�

pplying the definition �7� one obtains

L−++�1,0,0,�4� = − 2Li1,1,2
1,�4 + 1,
1

�4 + 1
� . �31�

. �1=1, �2=0 „and �4=−1…

We shall again find the limit of the rhs of �26� for tm=1 and �1→0. The first and the third
erms are equal to 0 because of the limit lim�1→0 ln��1+1�=0. The other terms transform into

lim
�1→0

Li1,1,1
− �3,
�1

�3
,
− 1

�1
� = − Li1,2
− �3,−

1

�3
� ,

lim
� →0

Li1,1,1,1
− �3,
�2

�3
,
�1

�2
,
− tm
�1

� = − Li1,1,2
− �3,
�2

�3
,
− 1

�2
� ,
1
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lim
�1→0

Li1,1,1,1
− �3,
�1

�3
,
�2

�1
,
− tm
�2

� = − Li1,2,1
− �3,
�2

�3
,
− 1

�2
� .

inally we write

L−++�1,0,�3,�4� = − Li1,1,2
− �4,
�3

�4
,
− 1

�3
� − Li1,2,1
− �4,

�3

�4
,
− 1

�3
� − ln��3 + 1�Li1,2
− �4,−

1

�4
� .

�32�

or the special case �4=−1 one gets

L−++�1,0,�3,− 1� = − Li1,1,2
1,− �3,
− 1

�3
� − Li1,2,1
1,− �3,

− 1

�3
� − ln��3 + 1���3� . �33�

. �2=�3=0 „and �4=−1…

In this case one proceeds along the following lines:

L−++��1,0,0,�4� = �
0

1

dy
ln��1 − y�ln2 y

�4 + y
=

y→1−t�
0

1

dt
ln��1 − 1 + t�ln2�1 − t�

�4 + 1 − t

= − �
0

1

dt1
ln2�1 − t1�

− �4 − 1 + t1
�

−�1+2

t1 dt2

�1 − 1 + t2

= − �
0

1

dt1
ln2�1 − t1�

− �4 − 1 + t1
��

1

t1

+ �
−�1+2

1 � dt2

�1 − 1 + t2

= �
0

1 dt2

�1 − 1 + t2
�

0

t2

dt1
ln2�1 − t1�

− �4 − 1 + t1
− ln �1�

0

1

dt1
ln2�1 − t1�

− �4 − 1 + t1

= 2�
0

1 dt2

�1 − 1 + t2
�

0

t2 dt1

− �4 − 1 + t1
�

0

t1 dt3

1 − t3
�

0

t3 dt4

1 − t4
− 2 ln �1Li3
−

1

�4
� .

�34�

sing the definition �7� we arrive at the result

L−++��1,0,0,�4� = 2Li1,1,1,1
1,�4 + 1,
1 − �1

�4 + 1
,

1

1 − �1
� − 2 ln �1Li3
−

1

�4
� . �35�

or the case �4=−1 one obtains

L−++��1,0,0,− 1� = − 2Li1,2,1
1,1 − �1,
1

1 − �1
� − 2 ln �1��3� . �36�

. �2=0 „and �4=−1…
For this integral we change the integration variable y→1− t,
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�
0

1

dy
ln��1 − y�ln y ln��3 + y�

�4 + y
= �

0

1

dt
ln�1 − t�ln��1 − 1 + t�ln��3 + 1 − t�

�4 + 1 − t

= �
0

1

dt
ln�1 − t�ln��1 + t�ln��2 − t�

�3 − t
. �37�

ne notes that the last integral is an analog of the integral in Eq. �26�. The calculation proceeds in
similar way,

− Li1,1,1,1
�3,
�2

�3
,−

�1

�2
,−

1

�1
�

= �
0

1 dt4

�1 + t4
�

0

t4 dt3

�2 − t3
�

0

t3 dt2

�3 − t2
�

0

t2 dt1

1 − t1

= − �
0

tm dt4

�1 + t4
�

0

t4 dt3

�2 − t3
�

0

t3

dt2
ln�1 − t2�

�3 − t2
= − �

0

tm dt4

�1 + t4
�

0

t4

dt2
ln�1 − t2�

�3 − t2
�

t2

t4 dt3

�2 − t3

= �
0

1

dt4
ln��2 − t4�

�1 + t4
�

0

t4

dt2
ln�1 − t2�

�3 − t2
− �

0

1 dt4

�1 + t4
�

0

t4

dt2
ln�1 − t2�ln��2 − t2�

�3 − t2

= Y��1� − �
0

1

dt2
ln�1 − t2�ln��2 − t2�

�3 − t2
�

t2

1 dt4

�1 + t4

= Y��1� − ln��1 + 1��
0

1

dt2
ln�1 − t2�ln��2 − t2�

�3 − t2
+ �

0

1

dt2
ln�1 − t2�ln��1 + t2�ln��2 − t2�

�3 − t2

= Y��1� − Y��1� + �
0

1

dt2
ln�1 − t2�ln��1 + t2�ln��2 − t2�

�3 − t2
, �38�

here we have introduced the notation

Y��tm� = �
0

tm

dt4
ln��2 − t4�

�1 + t4
�

0

t4

dt2
ln�1 − t2�

�3 − t2
,

Y��tm� = ln��1 + tm��
0

tm

dt2
ln�1 − t2�ln��2 − t2�

�3 − t2
. �39�

he last term in �38� is the required integral. The expansion of the integral Y��tm� in terms of
ultiple polylogarithms is similar to the evaluation of I��tm� in Eq. �22�. The result of the calcu-

ation is

Y��tm� = Li1,1,1,1
�3,−
�1

�3
,−

�2

�1
,
tm
�2
� + ln��2 − tm�Li1,1,1
�3,−

�1

�3
,−

tm
�1
� . �40�

or the calculation of Y��tm� one can make use of �18�. Finally using Eqs. �38� and �40� one

rrives at the result
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�
0

1

dt
ln�1 − t�ln��1 + t�ln��2 − t�

�3 − t
= − Li1,1,1,1
�3,−

�1

�3
,−

�2

�1
,

1

�2
�

− Li1,1,1,1
�3,
�2

�3
,−

�1

�2
,−

1

�1
� − ln��1 + 1�Li1,1,1
�3,

�2

�3
,

1

�2
�

− ln��2 − 1�Li1,1,1
�3,−
�1

�3
,−

1

�1
�

− ln��1 + 1�ln��2 − 1�Li1,1
�3,
1

�3
� . �41�

o obtain the formula for the L function with �2=0 we must only change �1, �2, and �3 to �1

1, �3+1, and �4+1 according to Eq. �37�:

L−++��1,0,�3,�4� = �
0

1

dy
ln��1 − y�ln y ln��3 + y�

�4 + y
= − Li1,1,1,1
1 + �4,

1 − �1

1 + �4
,
1 + �3

1 − �1
,

1

1 + �3
�

− Li1,1,1,1
1 + �4,
1 + �3

1 + �4
,
1 − �1

1 + �3
,

1

1 − �1
� − ln �1Li1,1,1
1 + �4,

1 + �3

1 + �4
,

1

1 + �3
�

− ln �3Li1,1,1
1 + �4,
1 − �1

1 + �4
,

1

1 − �1
� − ln �1 ln �3Li1,1
1 + �4,

1

1 + �4
� . �42�

or the case �4=−1 we calculate the limit of the rhs of �42� for �4→−1 and obtain

L−++��1,0,�3,− 1� = Li2,1,1
1 − �1,
1 + �3

1 − �1
,

1

1 + �3
�

+ Li2,1,1
1 + �3,
1 − �1

1 + �3
,

1

1 − �1
� + ln �1Li2,1
1 + �3,

1

1 + �3
�

+ ln �3Li2,1
1 − �1,
1

1 − �1
� + ln �1 ln �3��2� . �43�

V. TRANSFORMATION OF L+++ TO MULTIPLE POLYLOGARITHMS

In this section we will show that all our L+++ functions can be expressed in terms of multiple
olylogarithms.

. General case for the L+++ function

We now proceed with the transformation of the triple index function L+++

L+++��1,�2,�3,�4� = �
0

1

dy
ln��1 + y�ln��2 + y�ln��3 + y�

�4 + y
. �44�
fter changing the integration variable y=−�1t we obtain
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− �
0

−1/�1

dt
ln��1 − �1t�ln��2 − �1t�ln��3 − �1t�

�4

�1
− t

= − �
0

−1/�1

dt
ln �1 ln��2 − �1t�ln��3 + �1t�

�4

�1
− t

− �
0

−1/�1

dt

ln�1 − t��ln �1 + ln
�2

�1
− t��ln �1 + ln
�3

�1
− t�

�4

�1
− t

= ln �1�
0

1

dy
ln��2 + y�ln��3 + y�

�4 + y
− ln2 �1�

0

−1/�1

dt
ln�1 − t�

�4

�1
− t

− ln �1�
0

−1/�1

dt

ln�1 − t�ln
�2

�1
− t�

�4

�1
− t

− ln �1�
0

−1/�1

dt

ln�1 − t�ln
�3

�1
− t�

�4

�1
− t

− �
0

−1/�1

dt

ln�1 − t�ln
�2

�1
− t�ln
�3

�1
− t�

�4

�1
− t

. �45�

he first integral on the rhs of �45� has been calculated in Eq. �19�. For the second integral one
akes use of the formula �17� �the only change is �2→�1�. For the evaluation of the third and

ourth integrals one uses Eq. �18�. We are left with the most complicated fifth integral. Let us
onsider an integral of the type

�
0

tm

dt
ln�1 − t�ln��1 − t�ln��2 − t�

�3 − t
. �46�

his integral is an analog of the integral in Eq. �26�. The calculation proceeds in a similar way.
ne obtains the result

�
0

tm

dt
ln�1 − t�ln��1 − t�ln��2 − t�

�3 − t
= − ln��1 − tm�ln��2 − tm�Li1,1
�3,

tm
�3
�

− ln��2 − tm�Li1,1,1
�3,
�1

�3
,
tm
�1
�

− ln��1 − tm�Li1,1,1
�3,
�2

�3
,
tm
�2
� − Li1,1,1,1
�3,

�2

�3
,
�1

�2
,
tm
�1
�

− Li1,1,1,1
�3,
�1

�3
,
�2

�1
,
tm
�2
� . �47�

aking into account everything mentioned above for Eq. �45� we arrive at the final result for the
+++ function,
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L+++��1,�2,�3,�4� = Li1,1,1,1
�4

�1
,
�2

�4
,
�3

�2
,−

1

�3
� + Li1,1,1,1
�4

�1
,
�3

�4
,
�2

�3
,−

1

�2
�

+ ln �1Li1,1,1
�4

�2
,
�3

�4
,−

1

�3
� + ln�1 + �2�Li1,1,1
�4

�1
,
�3

�4
,−

1

�3
�

+ ln�1 + �3�Li1,1,1
�4

�1
,
�2

�4
,−

1

�2
� + ln �1 ln �2Li1,1
�4

�3
,−

1

�4
�

+ ln �1 ln�1 + �3�Li1,1
�4

�2
,−

1

�4
� + ln�1 + �2�ln�1 + �3�Li1,1
�4

�1
,−

1

�4
�

+ ln �1 ln �2 ln �3 ln
�4 + 1

�4
� . �48�

or this equation the conditions �5� are assumed. We emphasize that the arguments of L+++

unctions occurring in the actual calculation of the massive scalar one-loop integrals are not of the
ost general type as assumed in the derivation of �48�. We have nevertheless included a discus-

ion of the general case because Eq. �48� may be useful in other applications. In the results for the
assive scalar integrals one has only the special cases where �1=�2 or �1=�3 as well as the cases

1=0 and/or �2=0 and/or �3=0 and/or �4= �−1,0�. If some �’s coincide with each other Eq. �48�
ecomes simpler. In this case one can also make use of symmetry properties to obtain simpler
elations between the L+++ functions and multiple polylogarithms. For the cases �1=0 and/or �2

0 and/or �3=0 and/or �4= �−1,0� the general formula �48� is no longer valid and these cases
ust be studied separately.

. Special cases for the L+++ function

In the Laurent series expansion of the massive scalar one-loop integrals the following special
ases for the �i are present.

. �1=�2 or �1=�3

As it was stated in Sec. II the L+++ function is symmetric under the permutations �i↔� j.
herefore, it suffices to consider the case �1=�2.

We must evaluate the integral

L+++��1,�1,�3,�4� = �
0

1

dy
ln2��1 + y�ln��3 + y�

�4 + y
. �49�

his integral can be expressed in different ways. First of all one can directly use Eq. �48� replacing

2 by �1. The second possibility is to use symmetry properties. One takes into account the rhs of
q. �48� and notes that the part with multiple polylogarithms of weight four is symmetric under

he exchange �2↔�3. It allows one to reduce the number of the multiple polylogarithms from two
o one. First we apply Eq. �48� for the case �2=�3 replacing �3 by �2. Second we change �1

�3 and �2→�1. After these transformations one obtains the following result:

+++��1,�1,�3,�4� = �
0

1

dy
ln2��1 + y�ln��3 + y�

�4 + y

= + 2Li1,1,1,1
�4

�3
,
�1

�4
,1,−

1

�1
� + ln �3Li1,1,1
�4

�1
,
�1

�4
,−

1

�1
�

+ 2 ln�1 + �1�Li1,1,1
�4 ,
�1 ,−

1 � + ln �3�ln��1 + 1� + ln �1�Li1,1
�4 ,−
1 �
�3 �4 �1 �1 �4
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+ ln2�1 + �1�Li1,1
�4

�3
,−

1

�4
� + ln2 �1 ln �3 ln
�4 + 1

�4
� . �50�

here is also the third possibility to express L+++��1 ,�1 ,�3 ,�4� in terms of multiple polyloga-
ithms:

�
0

1

dy
ln2��1 + y�ln��3 + y�

�4 + y

=
y→−�1t

− �
0

−1/�1

dt
ln2��1 − �1t�ln��3 − �1t�

�4

�1
− t

= − �
0

−1/�1

dt

�ln2 �1 + 2 ln �1 ln�1 − t� + ln2�1 − t���ln �1 + ln
�3

�1
− t�

�4

�1
− t

= + ln3 �1�
0

1 dy

�4 + y
+ ln2 �1�

0

1

dy
ln��3 + y�

�4 + y
− 2 ln2 �1�

0

−1/�1

dt
ln�1 − t�

�4

�1
− t

− ln �1�
0

−1/�1

dt
ln2�1 − t�

�4

�1
− t

− 2 ln �1�
0

−1/�1

dt

ln�1 − t�ln
�3

�1
− t�

�4

�1
− t

− �
0

−1/�1

dt

ln2�1 − t�ln
�3

�1
− t�

�4

�1
− t

. �51�

he first term can be integrated immediately. For the second and third term one uses Eq. �16� and
q. �17�, respectively. The integral of the fourth term can be rewritten as

�
0

−1/�1

dt
ln2�1 − t�

�4

�1
− t

= 2�
0

−1/�1 dt1

�4

�1
− t1

�
0

t1 dt2

1 − t2
�

0

t2 dt3

1 − t3
= 2Li1,1,1
1,

�4

�1
,
− 1

�4
� . �52�

he fifth term is calculable with Eq. �14�. To integrate the last term one first evaluates the
ollowing integral:

�
0

tm

dt
ln2�1 − t�ln�
1 − t�


2 − t
= − �

0

tm

dt1
ln2�1 − t1�


2 − t1
��

tm

t1

+ �

1−1

tm � dt2


1 − t2

= �
0

tm dt2


1 − t2
�

0

t2

dt1
ln2�1 − t1�


2 − t1
+ ln�
1 − tm��

0

tm

dt
ln2�1 − t�


2 − t

= 2Li1,1,1,1
1,
2,

1


2
,
tm

1
� + 2 ln�
1 − tm�Li1,1,1
1,
2,

tm

2
� . �53�

hen to calculate the last term of Eq. �51� one only has to change 
1, 
2, and tm by the corre-

ponding combinations of �i. Finally we arrive at the result for the L+++��1 ,�1 ,�3 ,�4� function,
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L+++��1,�1,�3,�4� = − 2Li1,1,1,1
1,
�4

�1
,
�3

�4
,−

1

�3
� − 2 ln��3 + 1�Li1,1,1
1,

�4

�1
,−

1

�4
�

+ 2 ln �1Li1,1,1
�4

�1
,
�3

�4
,−

1

�3
� + 2 ln �1 ln��3 + 1�Li1,1
�4

�1
,−

1

�4
�

+ ln2 �1Li1,1
�4

�3
,−

1

�4
� + ln2 �1 ln �3 ln
�4 + 1

�4
� . �54�

his is the third possibility to express L+++��1 ,�1 ,�3 ,�4� function in terms of multiple polylog-
ritms. Each of the Eqs. �50� and �54� contains only one multiple polylogarithm of weight four and
hey are both equally acceptable from this point of view. One has a free choice to apply any of
hese equations for the required L functions. The situation with the L+++��1 ,�1 ,�3 ,�4� function is
n example of the statement that the expansion of the L functions in terms of multiple polyloga-
ithms is not unique.

. �1=0 „or �2=0 or �3=0…

For this integral we change the integration variable y→1− t,

L+++�0,�2,�3,�4� = �
0

1

dy
ln y ln��2 + y�ln��3 + y�

�4 + y
= �

0

1

dt
ln�1 − t�ln��2 + 1 − t�ln��3 + 1 − t�

�4 + 1 − t

�55�

nd using Eq. �48� we arrive at the result

L+++�0,�2,�3,�4� = − Li1,1,1,1
1 + �4,
1 + �2

1 + �4
,
1 + �3

1 + �2
,

1

1 + �3
�

− Li1,1,1,1
1 + �4,
1 + �3

1 + �4
,
1 + �2

1 + �3
,

1

1 + �2
�

− ln �2Li1,1,1
1 + �4,
1 + �3

1 + �4
,

1

1 + �3
� − ln �3Li1,1,1
1 + �4,

1 + �2

1 + �4
,

1

1 + �2
�

− ln �2 ln �3Li1,1
1 + �4,
1

1 + �4
� . �56�

. �1=�2=0

To calculate this integral we again change the integration variable y→1− t,

L+++�0,0,�3,�4� = �
0

1

dy
ln2 y ln��3 + y�

�4 + y
= �

0

1

dt
ln2�1 − t�ln��3 + 1 − t�

�4 + 1 − t
. �57�

or the last integral we use Eq. �53�. An additional simplification can be done if one notes that

Li1,1,1
1,�4 + 1,
1

�4 + 1
� = − Li3
−

1

�4
� . �58�

inally one has

L+++�0,0,�3,�4� = 2Li1,1,1,1
1,�4 + 1,
�3 + 1

,
1 � − 2 ln �3Li3
−

1 � . �59�

�4 + 1 �3 + 1 �4
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. �1=�2=0, �4=−1 „or �2=�3=0, �4=−1…

In this case one should calculate the limit of the rhs of �59� for tm=1 and �4→−1. After this
rocedure one obtains

L+++�0,0,�3,− 1� = − 2Li1,2,1
1,�3 + 1,
1

�3 + 1
� − 2 ln �3��3� . �60�

or the case �2=�3=0 and �4=−1 one can use the same formula. The only change is �3→�1.

. �1=0, �4=−1

To obtain the solution for these values of the �i we must find the limit of the rhs of �56� for

4→−1. After taking the limit one arrives at the result

L+++�0,�2,�3,− 1� = + Li2,1,1
1 + �2,
1 + �3

1 + �2
,

1

1 + �3
� + Li2,1,1
1 + �3,

1 + �2

1 + �3
,

1

1 + �2
�

+ ln �2Li2,1
1 + �3,
1

1 + �3
� + ln �3Li2,1
1 + �2,

1

1 + �2
� + ln �2 ln �3��2� .

�61�

. TRANSFORMATION OF L+ TO MULTIPLE POLYLOGARITHMS

In this section we will show that all our L+ functions can be expressed in terms of multiple
olylogarithms.

. General case for the L+ function

Here we derive the general formula for the single index L+ function Eq. �2�,

L+��1,�2,�3,�4� = �
0

1

dy
ln��1 + y�

�4 + y
Li2��2 + �3y� . �62�

fter changing the integration variable y→ �t−�2� /�3 one gets

L+ = �
�2

�2+�3 dt

�3

ln
�1 +
t − �2

�3
�

�4 +
t − �2

�3

Li2�t� = �
�2

�2+�3

dt
− ln �3 + ln��1�3 − �2 + t�

�3�4 − �2 + t
Li2�t� . �63�

he integration interval can be split into two pieces, ��2 ,0� and �0,�2+�3�. One can then write L+

s a sum of four terms,

L+ = − ln �3��
0

�2+�3

− �
0

�2 � dt

� + t
Li2�t� + ��

0

�2+�3

− �
0

�2 �dt
ln�� + t�

� + t
Li2�t� , �64�

here we have introduced the notation

� = �1�3 − �2, � = �3�4 − �2. �65�
ooking at Eq. �64� it is clear that there are only two different types of integrals to be dealt with,
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�
0

tm dt

� + t
Li2�t� and �

0

tm

dt
ln�� + t�

� + t
Li2�t� . �66�

he upper limits are tm=�2+�3 or tm=�2. The first integral can be evaluated analytically in terms
f standard logarithms and classical polylogarithms up to Li3. However, the same integral can also
e expressed in terms of multiple polylogarithms via the integral representation �7�, e.g.,

�
0

tm dt

� + t
Li2�t� = �

0

tm dt1

� + t1
�

0

t1 dt2

t2
�

0

t2 dt3

1 − t3
= − Li2,1
− �,

− tm
�

� . �67�

e now deal with the second integral in �66�. Consider the following multiple polylogarithm of
eight four:

Li2,1,1
− �,
�

�
,

tm
− �

� = �
0

tm dt2

− � − t2
�

0

t2 dt1

− � − t1
Li2�t1� = �

0

tm dt1

� + t1
Li2�t1��

t1

tm dt2

� + t2

= �
0

tm dt1

� + t1
Li2�t1�ln�� + tm� − �

0

tm dt1

� + t1
Li2�t1�ln�� + t1� . �68�

n the first step we have used the usual trick to change the order of integration. As already noted
efore �see Eq. �67�� the first term on the second line can be expressed through a multiple
olylogarithm of weight three. Thus one has

�
0

tm

dt
ln�� + t�

� + t
Li2�t� = − Li2,1,1
− �,

�

�
,

tm
− �

� − Li2,1
− �,
− tm

�
�ln�� + tm� . �69�

inally, substituting Eqs. �67� and �69� into Eq. �64� we arrive at the desired relation

L+��1,�2,�3,�4� = Li2,1,1
�2 − �3�4,
�2 − �1�3

�2 − �3�4
,

�2

�2 − �1�3
�

− Li2,1,1
�2 − �3�4,
�2 − �1�3

�2 − �3�4
,

�2 + �3

�2 − �1�3
�

+ ln �1Li2,1
�2 − �3�4,
�2

�2 − �3�4
�

− ln��1 + 1�Li2,1
�2 − �3�4,
�2 + �3

�2 − �3�4
� . �70�

e should note that, similar to Eq. �27�, the conditions �5� are assumed for the variables �i. Also,
ne cannot directly use Eq. �70� if �2−�3�4=0 or �2−�1�3=0. However, in the results for the
assive scalar integrals precisely these special cases appear, as well as the cases where �1=0

nd/or �2=0 and/or �3=0 and/or �4= �−1,0�. In such cases the general formula �70� is no longer
alid and these cases must be studied separately.

. Special cases for the L+ function

In the Laurent series expansion of the massive scalar one-loop integrals the following special
ases appear for the arguments of the L+ functions:

. �2−�3�4=0 „or �2−�1�3=0…

In this case one must find the limit of the rhs of Eq. �70� for �2→�3�4. First we rewrite the
hs of Eq. �70� in terms of multidimensional integrals via the definition �7�. Second we replace �2
y �3�4. We finally again use the definition �7� to obtain the result
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L+��1,�3�4,�3,�4� = − Li3,1
�3��4 − �1�,
�4

�4 − �1
� + Li3,1
�3��4 − �1�,

�4 + 1

�4 − �1
�

− ln �1Li3��3�4� + ln��1 + 1�Li3��3��4 + 1�� . �71�

When �2−�1�3=0 one must find the limit of the rhs of Eq. �70� for �2→�1�3. We again
ewrite the rhs of Eq. �70� in terms of multidimensional integrals. We then replace �2 by �1�3 and
se the definition �7�. We arrive at the result

L+��1,�1�3,�3,�4� = − Li2,2
�3��1 − �4�,
�1

�1 − �4
� + Li2,2
�3��1 − �4�,

�1 + 1

�1 − �4
�

+ ln �1Li2,1
�3��1 − �4�,
�1

�1 − �4
� − ln��1 + 1�Li2,1
�3��1 − �4�,

�1 + 1

�1 − �4
� .

�72�

. �1=0

Unfortunately in this case one cannot use Eq. �70� for �1=0 because one is immediately faced
ith the problem of a logarithmic infinity. One must find another algorithm to express the

+�0,�2 ,�3 ,�4� function in terms of multiple polylogarithms. After changing the integration
ariable y→1− t one gets

�
0

1

dy
ln y

�4 + y
Li2��2 + �3y� = �

0

1

dt
ln�1 − t�
�4 + 1 − t

Li2��2 + �3 − �3t�

= �
0

1

dt1
ln�1 − t1�
�4 + 1 − t1

�
�2/�3+1

t1

dt2
ln�1 − �2 − �3 + �3t2�

�2

�3
+ 1 − t2

= �
0

1

dt1
ln�1 − t1�
�4 + 1 − t1

��
1

t1

+ �
�2/�3+1

1 �dt2
ln�1 − �2 − �3 + �3t2�

�2

�3
+ 1 − t2

= − �
0

1

dt2
ln�1 − �2 − �3 + �3t2�

�2

�3
+ 1 − t2

�
0

t2

dt1
ln�1 − t1�
�4 + 1 − t1

− Li2��2�Li1,1
�4 + 1,
1

�4 + 1
� . �73�

he last integral is an analog of I��tm� in Eq. �22�. First one notes that

�
0

t2

dt1
ln�1 − t1�
�4 + 1 − t1

= − Li1,1
�4 + 1,
t1

�4 + 1
� . �74�
hen one considers the following chain of transformations:
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�
0

1 dt2

1 − �2 − �3 + �3t2
�

0

t2 dt1

�2

�3
+ 1 − t1

Li1,1
�4 + 1,
t1

�4 + 1
�

= �
0

1 dt1

�2

�3
+ 1 − t1

Li1,1
�4 + 1,
t1

�4 + 1
��

t1

1 dt2

1 − �2 − �3 + �3t2

=
1

�3
ln�1 − �2��

0

1 dt1

�2

�3
+ 1 − t1

Li1,1
�4 + 1,
t1

�4 + 1
�

−
1

�3
�

0

1

dt1
ln�1 − �2 − �3 + �3t1�

�2

�3
+ 1 − t1

Li1,1
�4 + 1,
t1

�4 + 1
� . �75�

sing Eq. �74� we see that the last integral is exactly the integral required in Eq. �73�. The initial
ntegral of Eq. �75� and the first integral of the rhs of Eq. �75� can be expressed in terms of

ultiple polylogarithms due to the definition �7�. Finally for the L+�0,�2 ,�3 ,�4� function we
btain

L+�0,�2,�3,�4� = Li1,1,1,1
�4 + 1,
�2 + �3

�3��4 + 1�
,
�2 + �3 − 1

�2 + �3
,

�3

�2 + �3 − 1
�

+ ln�1 − �2�Li1,1,1
�4 + 1,
�2 + �3

�3��4 + 1�
,

�3

�2 + �3
� − Li2��2�Li1,1
�4 + 1,

1

�4 + 1
� .

�76�

. �1=0, �4=−1

For these values of the �i one uses Eq. �76� to calculate the limit of the rhs for �4→−1. One
rrives at the result

L+�0,�2,�3,− 1� = − Li2,1,1
�2 + �3

�3
,
�2 + �3 − 1

�2 + �3
,

�3

�2 + �3 − 1
� − ln�1 − �2�Li2,1
�2 + �3

�3
,

�3

�2 + �3
�

+ Li2��2���2� . �77�

. �1=0, �2+�3=1 „and �4=−1…

If one takes a look at Eq. �76� one realizes that there is a problem if �2+�4=1. To express the

+ function for this configuration of the �i the limit of the rhs of �76� for �2→1−�3 must be
ound. The result is

L+�0,1 − �3,�3,�4� = − Li1,1,2
�4 + 1,
1

�3��4 + 1�
,�3� + ln �3Li1,1,1
�4 + 1,

1

�3��4 + 1�
,�3�

− Li2�1 − �3�Li1,1
�4 + 1,
1

�4 + 1
� . �78�

or the case �1=0, �2+�3=1, and �4=−1 one must find in addition the limit for �4→−1. One
rrives at the result

L+�0,1 − �3,�3,− 1� = Li2,2
 1
,�3� − ln �3Li2,1
 1

,�3� + ��2�Li2�1 − �3� . �79�

�3 �3
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. �1=0, �2=−�3

To obtain the result for this case one must calculate the limit of the rhs of �76� for

3→−�2. After taking the limit one has

L+�0,�2,− �2,�4� = − Li1,1,2
 �2

�2 − 1
,− �4,−

1

�4
� + ln�1 − �2�Li1,2
− �4,−

1

�4
�

+ Li2��2�Li2
−
1

�4
� . �80�

. �1=0, �2=0

For this case one can directly use Eq. �76�,

L+�0,0,�3,�4� = Li1,1,1,1
�4 + 1,
1

�4 + 1
,
�3 − 1

�3
,

�3

�3 − 1
� . �81�

ut there is also another very simple possibility. We first change the integration variable
y→ t /�3,

�
0

1

dy
ln y

�4 + y
Li2��3y� = �

0

�3

dt
ln�t/�3�
�3�4 + t

Li2�t�

= �
0

�3 dt1

�3�4 + t1
Li2�t1��

�3

t1 dt2

t2

= − �
0

�3 dt2

t2
�

0

t2 dt1

�3�4 + t1
Li2�t1�

= �
0

�3 dt2

t2
�

0

t2 dt1

− �3�4 + t1
�

0

t1 dt3

t3
�

0

t3 dt4

1 − t4
. �82�

ow using the definition �7� we obtain the result

L+�0,0,�3,�4� = Li2,2
− �3�4,
− 1

�4
� . �83�

he reader has a free choice to use either formula �83� or �85�. Both equations contain multiple
olylogarithms of weight four. The depth of the multiple polylogarithm in Eq. �83� is two against
our in Eq. �81�. For �4=−1 Eq. �83� can be directly used. However, in the case of Eq. �81� one
ust first calculate the limit for �4→−1.

. �1=0, �2=1

Unfortunately, in this case one cannot use Eq. �76� because of the term ln�1−�2�. To express
his L+ function in terms of multiple polylogarithms we first make use of a standard relation

etween dilogs with arguments x and 1−x for the function Li2 under the sign of the integral:
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�
0

1

dy
ln y

�4 + y
Li2�1 + �3y� = �

0

1

dy
ln y

�4 + y
���2� − ln�− �3y�ln�1 + �3y� − Li2�− �3y��

= ��2��
0

1

dy
ln y

�4 + y
− �

0

1

dy
ln y

�4 + y
Li2�− �3y�

− �
0

1

dy
ln y�ln�− �3� + ln y�ln�1 + �3y�

�4 + y

= ��2�Li2
−
1

�4
� − Li1,1,1,1
�4 + 1,

1

�4 + 1
,
�3 + 1

�3
,

�3

�3 + 1
�

− ln�− �3��
0

1

dy
ln y ln�1 + �3y�

�4 + y
− �

0

1

dy
ln2 y ln�1 + �3y�

�4 + y
,

�84�

here the Li1,1,1,1 function was obtained with the help of Eq. �81�. To obtain the last integral in Eq.
84� one proceeds as follows:

�
0

1

dy
ln2 y ln�1 + �3y�

�4 + y
=

y→1−t�
0

1

dt
ln2�1 − t�ln�1 + �3 − �3t�

�4 + 1 − t

= �
0

1

dt1
ln2�1 − t1�
�4 + 1 − t1

�
1

t1 − �3dt2

1 + �3 − �3t2

= �
0

1 dt2

1

�3
+ 1 − t2

�
0

t2

dt1
ln2�1 − t1�
�4 + 1 − t1

= 2�
0

1 dt2

1

�3
+ 1 − t2

�
0

t2 dt1

�4 + 1 − t1
�

0

t1 dt3

1 − t3
�

0

t3 dt4

1 − t4

= 2Li1,1,1,1
1,�4 + 1,
�3 + 1

�3��4 + 1�
,

�3

�3 + 1
� . �85�

imilarly one can evaluate the remaining integral

�
0

1

dy
ln y ln�1 + �3y�

�4 + y
= − Li1,1,1
�4 + 1,

�3 + 1

�3��4 + 1�
,

�3

�3 + 1
� . �86�

ow combining Eqs. �84�–�86� one arrives at the result

L+�0,1,�3,�4� = − 2Li1,1,1,1
1,�4 + 1,
�3 + 1

�3��4 + 1�
,

�3

�3 + 1
�

− Li1,1,1,1
�4 + 1,
1

�4 + 1
,
�3 + 1

�3
,

�3

�3 + 1
�

+ ln�− �3�Li1,1,1
�4 + 1,
�3 + 1

,
�3 � + ��2�Li2
−

1 � . �87�

�3��4 + 1� �3 + 1 �4
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. �1=0, �2=−�3=1

For these values of the �i we must find the limit of the rhs of Eq. �87� for �3→−1. After
aking the limit we obtain

L+�0,1,− 1,�4� = Li1,1,2
�4 + 1,
1

�4 + 1
,1� + 2Li1,1,2
1,�4 + 1,

1

�4 + 1
� + ��2�Li2
−

1

�4
� .

�88�

I. CONCLUSIONS

We have presented all the necessary relations to transform the L functions �as defined in Eqs.
1� and �2�� that occur in our O��2� results1 for the Laurent series expansion of massive scalar
ne-loop integrals to multiple polylogarithms. We have used these relations to transform our
esults on massive one-loop integrals involving L functions to corresponding results involving
ultiple polylogarithms. The multiple polylogarithms results are readily available in electronic

orm.11

Despite of the fact that the relations between the L functions and the multiple polylogarithms
ave been derived having the massive scalar one-loop integrals in mind they can also be used in
more general setting. In fact, any definite integral given by

�
A

B ln�a1 + b1x�ln�a2 + b2x�ln�a3 + b3x�dx

a4 + b4x
or �

A

B ln�a1 + b1x�Li2�a2 + b2x�dx

a3 + b3x

an be written in terms of multiple polylogarithms with the help of the relations presented in this
aper. It is worthwhile to mention that all the equations presented in the present paper have been
lso checked numerically.

We have found several examples where the representation of the L functions in terms of
ultiple polylogarithms is not unique. This reflects the fact that multiple polylogarithms obey

uasishuffle and shuffle Hopf algebras and hence satisfy numerous identities as is the case for the
lassical polylogarithms. More information about identities between multiple polylogarithms can
e found, e.g., in Refs. 5 and 9 and references therein.

For future parton model applications of our results numerical efficiency is an important issue.
e are presently writing numerical C++ codes to compare the numerical efficiency of the two

epresentations in terms of L functions and multiple polylogarithms.

CKNOWLEDGMENTS

One of the authors �Z. M.� would like to thank the Particle Theory Group of the Institut für
hysik, Universität Mainz, for hospitality. The work of one of the authors �Z. M.� was supported
y a DFG �Germany� grant under Contract No. 436 GEO 17/6/05. One of the authors �M. R.� was
upported by the DFG through the Graduiertenkolleg “Eichtheorien” at the University of Mainz
nd by the Helmholtz Gemeinschaft under Contract No. VH-NG-105.

PPENDIX

In this Appendix we consider as an example the real part of the O��2� coefficient Re D1
�2� of

he Laurent series expansion of the massive box D1 with three massive propagators. Using the
ules written down in the main text of this paper we have expressed the corresponding results of
ef. 1 involving L functions in terms of multiple polylogarithms. The L function structure of
e D1

�2� in Ref. 1 is sufficiently rich to provide an illustration of the corresponding complexity in
erms of multiple polylogarithms when transforming to the latter representation. We mention that
ll multiple polylogarithms up to weight three have been reexpressed in terms of classical poly-
ogarithms. We then used automatic program codes to simplify the classical polylogarithms as
uch as possible, as was also done in Ref. 1.
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We use the notation and the conventions of Ref. 1. In brief, we use the Mandelstam-type
ariables

s � �p1 + p2�2, t � T − m2 � �p1 − p3�2 − m2, u � U − m2 � �p2 − p3�2 − m2 �A1�

or the 2→2 partonic process a�p1�+b�p2�→Q�p3�+ Q̄�p4� with p1
2=p2

2=0 and p3
2=p4

2=m2. We
lso introduce the abbreviations �
=�1−4m2 /s�

z3 � �s + 2t + s
�/2, z4 � �s + 2t − s
�/2,

z5 � �2m2 + t + t
�/2, z6 � �2m2 + t − t
�/2,

ls � ln
s

m2 , lt � ln
− t

m2 , lT � ln
− T

m2 , lx � ln x ,

l
 � ln 
, lz3 � ln
z3

m2 , lz4 � ln
− z4

m2 . �A2�

ne finds

Re D1
�2� =

1

st

� 1

192
�− 109ls

4 + 240lt
4 + 32lT

3lx + 264lT
2lx

2 − 200lTlx
3 − 177lx

4 − 96lT
2lxlz3 + 192lTlx

2lz3

+ 12lx
3lz3 + 96lTlxlz3

2 − 32lxlz3
3 − 480lT

2lxlz4 + 24lTlx
2lz4 + 180lx

3lz4 − 144lx
2lz3lz4

+ 480lTlxlz4
2 − 336lx

2lz4
2 − 96lxlz3lz4

2 + 320lxlz4
3 − 168lz4

4 + 480lT
2lxl
 − 480lTlx

2l
 − 40lx
3l


− 192lTlxlz3l
 + 336lx
2lz3l
 + 96lxlz3

2 l
 − 384lTlxlz4l
 + 336lx
2lz4l
 + 192lxlz3lz4l


+ 96lxlz4
2 l
 + 192lz4

3 l
 + 96lTlxl

2 + 24lx

2l

2 − 96lxlz3l


2 − 96lz4
2 l


2 + 32lxl

3 + 32l


4

− 32lt
3�9lT + 20lx + 25lz3 + lz4 + 13l
� − 4ls

3�8lT − 36lx − 9lz3 − 43lz4 + 94l
�

− 6ls
2�52lt

2 − 28lT
2 + 15lx

2 + 26lxlz3 + 46lxlz4 + 24lz3lz4 + 32lz4
2 − 4lT�9lx + 8lz3 − 15lz4

− 4l
� − 60lxl
 − 24lz3l
 − 56lz4l
 + 76l

2 + lt�− 44lT + 60lx − 8lz3 − 60lz4 + 8l
��

− 24lt
2�4lT

2 + 15lx
2 − 8lT�2lx + 2lz3 + 4lz4 − 3l
� + 4lx�3lz3 − 8lz4 + 13l
� + 2�− 4lz3

2

+ lz4
2 + 12lz3lz4 − 12lz3l
 − 8lz4l
 + 10l


2�� + 8lt�8lT
3 − 31lx

3 + lx
2�− 6lz3 + 33lz4 + 6l
�

+ 6lx�3lz3
2 − 22lz4

2 − 2lz3�5lz4 − 9l
� + 20lz4l
 − 10l

2� + 4�− 2lz3

3 + 6lz3
2 lz4 + 16lz4

3

+ 9lz3�lz4 − l
�2 − 18lz4
2 l
 + 9lz4l


2 + 2l

3� + 6lT

2�3lx − 4lz3 + 4lz4 − 4l
� − 3lT�5lx
2

− 4lx�5lz3 − 4lz4� − 8�lz3
2 − 2lz3lz4 − 3lz4

2 + 4lz4l
 + l

2��� − 4ls�80lt

3 + 8lT
3 + 18lx

3

− 27lx
2lz3 − 8lz3

3 − 165lx
2lz4 − 72lxlz3lz4 + 48lxlz4

2 − 24lz3lz4
2 − 64lz4

3 + 18lx
2l
 + 120lxlz3l


+ 24lz3
2 l
 + 72lxlz4l
 + 48lz3lz4l
 + 72lz4

2 l
 − 84lxl

2 − 24lz3l


2 − 48lz4l

2 + 40l


3

− 12lT
2�13lx + 2lz3 − 6lz4 + 6l
� + 12lt

2�8lT + 5lx − 26lz3 − 10lz4 + 12l
� − 12lt�5lT
2

+ 6lx
2 − 7lz3

2 − 10lz3lz4 − 16lz4
2 + lx�14lz3 + 27lz4 − 4l
� + 10lz3l
 + 16lz4l
 + 2l


2

+ lT�− 5lx − 2lz3 + 4lz4 + 8l
�� + 12lT�11lx
2 + lx�8lz3 + 7lz4 − 4l
� + 2lz3

2 − 6lz4
2 − 4lz3l


+ 8lz4l
 + 2l2���
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+ �3ls
2/4 − 7lt

2/2 + lTlx + 3lx
2/4 + 5lxlz3 + 5lxlz4 + lz4

2 /2 + lt�2lT − lx + 10lz3 + 2lz4 − 15l
� − 8lxl


+ 2lz4l
 − 11l

2 − ls�7lt + lT + 8lx + 5lz3 + lz4 + 6l
����2� + �− 3ls + 2lx���3� − 35��4�/4

− 2Li2
2
m2

z5
� + 2Li2

2
− t�1 − 
�
2m2 � +

1

8
Li2
m2

z5
��− 11ls

2 − 4lt
2 + 25lx

2 + 8lxlz4 − 24lz4
2 + ls�4lt

+ 26lx + 24lz4 − 8l
� + 24lxl
 + 16lz4l
 − 8l

2 − 4lt�9lx − 4lz4 + 4l
�� + Li2
m2x

− T
��11ls

2/8 − lt
2

+ 2lt�lx + lz4 − 2l
� + ls�− lt + 7lx/4 − lz4 + 2l
� + lx�19lx − 24lz4 + 16l
�/8� +
1

8
Li2�− x��− 15ls

2

+ 4lt
2 + lx�− 39lx + 32lz4 − 16l
� + 2ls�10lt + 5lx − 8l
� + lt�− 44lx + 32l
�� + Li2
 z3

z4
�

	
− 2Li2
m2

z5
� +

1

4
�− 5ls

2 + 20lt
2 − 7lx

2 − 4lxlz3 + 12lxlz4 − 4lz4
2 + ls�− 2lt + 4�2lx + lz3 + lz4

− l
�� − 4lxl
 + lt�− 22lx − 8lz3 + 8l
� − 8��2��� + Li2�x�
2Li2
m2

z5
� + 2Li2
− t�1 − 
�

2m2 �
− 7ls

2/4 − 3lt
2/2 − 11lx

2/4 + lxlz3 + 3lxlz4 + lz4
2 − 2lxl
 + lt�− 4lx + 2lz3 + 4l
� + ls�4lt + lx/2 − lz3

− lz4 − 2l
� − 6��2�� + Li2
 T

m2�
− 4Li2�x� − 4Li2
 z3

z4
� − 4Li2
m2

z5
� + 4Li2
− t�1 − 
�

2m2 � + ls
2/8

− 3lt
2/2 + lx

2/8 + 2lxlz3 − 4lz4
2 + lt�3lx/2 + 4lz3 + 4lz4 − 4l
� − 2lxl
 + 4lz4l
 − 2l


2 −
ls
4

�18lt + 7lx

+ 8lz3 − 16lz4 + 8l
� − 4��2��

+ Li2
 T

z3
�
−

ls
2

8
− 2lt

2 + ls
9

4
lx − lz4� − 2lt�lx − lz4� − lx
17

8
lx − lz4�� + Li2
− t�1 − 
�

2m2 �
− 2Li2
 z3

z4
�

− 7lt
2 − lx

2/2 + 2lxlz3 − lxlz4 − lz4
2 + ls�lt + 3lx/2 − 2lz3 + lz4 − l
� + 3lxl
 + 2lz4l
 − l


2 − lt�lx − 4lz3 − 2lz4

+ 2l
� + 12��2�� + Li3
− 1 + 


2

��4ls − 7lt� + 5Li3
 z5

t

�lt + Li3
m2

z5
��5ls − 6lt − 11lx�/2 − Li3
 z3

t
�

	�4lt + 6lx� + Li3
 z6

m2��3ls/2 − 5lt − 7lx/2� + 4Li3
 z4

t
��ls − lt − 2lx� + Li3
−

m2xz3

sT

��ls − 2lt − lx�

+ Li3
 − x2

1 − x2��ls − lt − lx� + Li3
 z3

s

��ls + 5lt − lx� + 2Li3
m2

− t
�lx + Li3
 z5

T
�
−

5

2
ls − 3lt −

5

2
lx + 4lz4

− 4l
� + Li3
− t�1 − 
�
2z5

�
−
5

2
ls − lt −

3

2
lx + 4lz4 − 4l
� + Li3
 − 2z6

t�1 + 
��
−
3

2
ls − 2lt + 2lz4 −

lx
2

− 2l
� + Li3
 z3

z4
�
 ls

2
− lt −

lx
2

+ 2lz4 − 2l
� + 2Li3�− x��3ls + 2lt + 2lx − 4lz4 + 4l
� + Li3
 z6

z5
�
 ls

2

+ 4lt −
lx − 2lz4 + 2l
�
2
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+ Li3
 2z6

m2�1 + 
��
3

2
ls + 2lt +

lx
2

− 2lz4 + 2l
� + Li3
 z4

T
��3ls + 3lt + 3lx − 4lz4 + 4l
�

+ Li3
 T

z3
�
 ls

2
+ lt +

7

2
lx − 2lz4 + 2l
� + Li3
m2�1 − 
�

2z5
�
3

2
ls + 3lt +

5

2
lx − 4lz4 + 4l
�

+ Li3�x�
15

2
ls − 2lt +

5

2
lx − 6lz4 + 6l
� + Li3
 T

z6
��− 2ls + lt − 2lx + 2lz4 − 2l
� + 2Li4�x�

− 4Li4
 z3

t
� + 4Li4
 z4

t
� − Li4
 z4

T
� − Li4
Tz4

D
� + Li4
 z5

T
� + 2Li4
 s�1 − 
�

− 2t
� + 3Li4
 s�1 − 
�

2z4
�

+ Li4
 T

z6
� + 4Li4
− 1 + 


2

� + 2Li4
 − 2t

s�1 + 
�� + 4Li4
 2


1 + 

� + 3Li4
 2z3

s�1 + 
��
+ 2Li3,1
−

m2xz3

sT

,
− T

m2x
� − 2Li3,1
−

m2xz3

sT

,

2T

t�1 − 
�� − 6Li1,2,1
1,
s�1 − 
�

2z4
,

z5

m2�
+ 6Li1,2,1
1,

s�1 + 
�
2z3

,
z6

m2� − 2Li2,1,1
1,
z4

z3
,
z3

t
� − 2Li2,1,1
m2

T
,
T

z5
,

z5

m2� + 2Li2,1,1
m2

T
,
T

z6
,

z6

m2�
− 2Li2,1,1
 z3

z4
,
z4

z3
,
z3

t
� − 2Li2,1,1
m2

z5
,1,

z5

m2� − 2Li2,1,1
m2

z5
,
z5

T
,

T

m2� + 2Li2,1,1
 s�1 − 
�
2z4

,
z5

z6
,

z6

m2�
+ 2Li2,1,1
−

m2xz3

sT

,−

sT


m2xz3
,
z3

s

� − 2Li2,1,1
−

m2xz3

sT

,−

sT


m2xz3
,−

z6

t

�

+ 2Li2,1,1
 s�1 + 
�
2z3

,1,
z6

m2� + 2Li2,1,1
 s�1 + 
�
2z3

,
z6

T
,

T

m2� − 2Li2,1,1
 s�1 + 
�
2z3

,
z6

z5
,

z5

m2�
+ Li1,1,1,1
1,

T

z6
,
z6

z5
,

z5

m2� − Li1,1,1,1
1,
s�1 − 
�

2z4
,
z5

T
,

T

m2� + 3Li1,1,1,1
1,
s�1 − 
�

2z4
,
z5

z6
,

z6

m2�
+ Li1,1,1,1
1,

s�1 + 
�
2z3

,
z6

T
,

T

m2� − 3Li1,1,1,1
1,
s�1 + 
�

2z3
,
z6

z5
,

z5

m2� − 2Li1,1,1,1
 t

T
,1,

T

z3
,
z3

t
�

+ 2Li1,1,1,1
 t

T
,1,

T

z4
,
z4

t
� + 2Li1,1,1,1
 t

T
,
T

z3
,1,

z3

t
�

− 2Li1,1,1,1
 t

T
,
T

z3
,
z3

T
,
T

t
� − 2Li1,1,1,1
 t

T
,
T

z3
,
z3

z4
,
z4

t
� − 2Li1,1,1,1
 t

T
,
T

z4
,1,

z4

t
�

+ 2Li1,1,1,1
 t

T
,
T

z4
,
z4

T
,
T

t
� + 2Li1,1,1,1
 t

T
,
T

z4
,
z4

z3
,
z3

t
� + 2Li1,1,1,1
 t

z3
,1,

z3

T
,
T

t
�

− 2Li1,1,1,1
 t

z3
,
z3

T
,1,

T

t
� + 2Li1,1,1,1
 t

z3
,
z3

T
,
T

z3
,
z3

t
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 t
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T
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T
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T
,
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T
,
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T
,1,

T

t
�
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 t
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,
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T
,
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T
,
T
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z4
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T
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�
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 T
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 z4 ,
T

,1,
z3� − Li1,1,1,1
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,1,
z5 ,

T
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z4 z3 t T z3 t z5 T m
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+ Li1,1,1,1
m2

z5
,
z5

T
,1,

T

m2� − Li1,1,1,1
m2

z5
,
z5

T
,
T

z5
,

z5

m2� − Li1,1,1,1
m2

z6
,
z6
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,1,
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T
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,
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z6
,
z6

z5
,1,
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,
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 z6
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,
T
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,
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T
,1,
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2z4
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�

2z4
,
z5

T
,
T

z6
,

z6

m2� − 3Li1,1,1,1
 s�1 − 
�
2z4

,
z5

z6
,1,

z6

m2� + Li1,1,1,1
 s�1 − 
�
2z4

,
z5

z6
,
z6

T
,

T

m2�
− 3Li1,1,1,1
 s�1 − 
�

2z4
,
z5

z6
,
z6

z5
,

z5

m2� + Li1,1,1,1
 s�1 + 
�
2z3

,1,
z6

T
,

T

m2� − Li1,1,1,1
 s�1 + 
�
2z3

,1,
z6

z5
,

z5

m2�
+ Li1,1,1,1
 s�1 + 
�

2z3
,
z6

T
,
T

z6
,

z6

m2� − Li1,1,1,1
 s�1 + 
�
2z3

,
z6

z5
,
z5

z6
,

z6

m2� − i�ls − 2lt − lx�
 ls
2

2
+ lslT

+ lslx +
lx
2

2
− lTlz3 +

lz3
2

2
− lslz4 +

lz4
2

2
+ lsl
 + lTl
 + lxl
 − lz4l
 +

l

2

2
+ 2Li2�− x� + 2Li2�x��

− Li2
m2x

− T
� + Li2
 T

z3
� + Li2
 z3

z4
� + ��2��  . �A3�

t the very end of the expression one finds an explicit imaginary part. Since the whole expression
ust be real this clearly indicates that the same imaginary contribution with opposite sign must be

ontained in multiple polylogarithms, e.g., some of them are sitting on branch cuts. This is in fact
rue for the multiple polylogarithms

Li3,1
−
m2xz3

sT

,

− T

m2x
�, Li3,1
−

m2xz3

sT

,

2T

t�1 − 
�� ,

Li2,1,1
−
m2xz3

sT

,−

sT


m2xz3
,
z3

s

�, Li2,1,1
−

m2xz3

sT

,−

sT


m2xz3
,−

z6

t

� .

ndeed, one finds that the imaginary contributions cancel out when one numerically evaluates the
esult.

As regards the length the representations of Re D1
�2� in terms of L functions in Ref. 1 and in

erms of multiple polylogarithms are of similar size. The representation in terms of L functions
ontains 43 different L function expressions against 59 different multiple polylogarithm expres-
ions.
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Michelson interferometer in the field of a plane
ravitational wave

Nikodem J. Popławskia�
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We treat the problem of a Michelson interferometer in the field of a plane gravita-
tional wave in the framework of general relativity. The arms of the interferometer
are regarded as the world lines of the light beams, whose motion is determined by
the Hamilton-Jacobi equation for a massless particle. In the case of a weak mono-
chromatic wave we find that the formula for the delay of a light beam agrees with
the result obtained by solving the linearized coupled Einstein-Maxwell equations.
We also calculate this delay in the next �quadratic� approximation. © 2006 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2212670�

. INTRODUCTION

The subject of this work is to investigate the behavior of a Michelson interferometer in the
resence of a plane gravitational wave. Sources of gravitational waves include the collapse of
assive stars in supernova explosions, and the coalescence of stars in binary systems containing
neutron star and/or a black hole. The large distances from these objects allow us to assume that

he gravitational waves detected on the Earth may be regarded as plane waves.
Gravitational waves were predicted by Einstein in his general theory of relativity1,2 as pertur-

ations of the space-time metric that propagate at the speed of light. Plane gravitational waves
ere considered first by Rosen,3 Taub,4 and McVittie,5 and their work seemed to indicate that such
aves may not physically exist. However, Bondi, Pirani, and Robinson6–8 proved that this con-

lusion was wrong, and that these waves not only exist but also carry energy. Exact solutions of
he Einstein equations, which describe plane gravitational waves, have also been developed in
efs. 9 and 10. In 1975, Hulse and Taylor11 found indirect proof for the existence of gravitational
aves by observing the pulsar PSR 1913+16. They noticed that the orbital parameters of this
ulsar were changing according to a model assuming that such a system radiates gravitational
aves.12,13 This discovery was awarded with the Nobel Prize in physics in 1993.

Research on the possibility of detecting gravitational waves was started in the 1960s by
eber,14 who constructed the first resonant-mass antenna. His results claiming the discovery of

ravitational waves15 could not be confirmed by other groups who built similar detectors. In the
970s, another method of detection was suggested using laser interferometry.16–19 Current and
lanned ground-based laser interferometric detectors include AIGO �Australia�,20 GEO 600
Germany/UK�,21 LIGO �USA�,22 TAMA 300 �Japan�,23 and VIRGO �France/Italy�.24 The first
earch for signals from neutron stars in LIGO and GEO 600 data did not find direct evidence for
ravitational waves,25 but gave upper limits on the strength of periodic gravitational radiation.26 In
011, ESA and NASA plan to launch LISA,27 a space project that will be able to make observa-
ions in a low-frequency band that is not achievable by ground-based observatories. A bibliogra-
hy on gravitational-wave theory and experiment through 1999 is listed in Ref. 28.

Since the search for gravitational waves is mainly based on interferometry, we consider a
ichelson interferometer in the presence of a plane gravitational wave. The effect of such a wave

�
Electronic mail: nipoplaw@indiana.edu
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n a light beam, using the linearized coupled Einstein-Maxwell equations, was studied in Refs. 29
nd 30. However, these equations in the quadratic approximation may lead to quite lengthy
xpressions. Instead, we can treat the light beam as photons whose motion is determined by the
eodesic equations for a massless particle.

The equations of motion for a particle in the metric of a strong gravitational wave13 were
erived by Ebner,31 and all seven integrals of motion can be found in the literature, e.g., Ref. 32.

simple model of a Michelson interferometer in the field of such a wave, based on the above
quations of motion, was proposed by Bażański.33 Here, we generalize this model to the second
quadratic� approximation. For simplicity, we consider a monochromatic plane gravitational wave
hose direction is parallel to one arm of the interferometer and perpendicular to the other. Since

he energy of gravitational waves contains the factor G /c5, the amplitude for such waves is very
mall. Therefore, second-order effects in gravitational-wave detection are irrelevant experimen-
ally, although it might be interesting to explore them.

This paper is organized as follows. In Sec. II we introduce a plane gravitational wave and
eview the equations of motion for a test particle. In Sec. III we study the behavior of a Michelson
nterferometer under the action of this wave in the first �linear� approximation. In Sec. IV we
roceed to the second approximation. The results are summarized in Sec. V. For the metric tensor
nd the curvature tensor we use the conventions of Ref. 13.

I. MOTION OF A PARTICLE IN THE FIELD OF A PLANE GRAVITATIONAL WAVE

In this section we derive the motion of a test particle in the presence of a plane gravitational
ave31,33 using the relativistic Hamilton-Jacobi equation. Let us consider the metric tensor whose

omponents are functions of only one variable u, gab=gab�u�. In this case, it can be shown13 that
he space-time interval in vacuum is of the form

ds2 = dudv + gab�u�dxadxb, �1�

here the letters a ,b refer to the coordinates 2,3. For a plane wave propagating in the direction of
he x axis we have u=ct−x and v=ct+x. If the interval is given by Eq. �1�, then all components
f the Ricci tensor identically vanish except Ruu=− 1

2 �̇a
a− 1

4�b
a�a

b, where �ab= ġab, and the dot
enotes differentiation with respect to u. Thus, the Einstein field equations in the case of a plane
ravitational wave reduce to one equation, Ruu=0.

The Hamilton-Jacobi equation for a particle with mass m moving in the gravitational field
escribed by the metric in �1� is given by

4
�S

�u

�S

�v
+ gab �S

�xa

�S

�xb = m2c2, �2�

here S=S�u ,v ,xa� is a principal function. We seek a solution of �2� in the form S= S̃�u�+ 1
2Bv

p0axa, where B= p0+ px=const and p0a=const. For a timelike geodesic line we have B�0. We
btain the principal function given by

S =
1

2B
��m2c2u − Gab�u,0�p0ap0b�� +

1

2
Bv + p0axa, �3�

here we define

Gab�p,q� = �
q

q+p

gab�u�du . �4�

he components of four-momentum are given by the derivatives of a principal function, pi

�S /�xi. The world line of a particle is determined by Jacobi’s theorem, �S /��k=�k, where �k are
he constants in the principal function �3�, and �k are new constants. Introducing a finite interval

a ab b
as a parameter such that mc�dx /ds�=g ��S /�x � yields u= �B /mc��s−s0�+u0. The equations of
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otion for a massive particle in the field of a plane gravitational wave in terms of s are �in
greement with Ref. 31�

ct�s� = ct�s0� +
1

2
� B

mc
+

mc

B
��s − s0� −

1

2B2Gab� B

mc
�s − s0�,ct�s0� − x�s0��p0ap0b,

x�s� = x�s0� +
1

2
�mc

B
−

B

mc
��s − s0� −

1

2B2Gab� B

mc
�s − s0�,ct�s0� − x�s0��p0ap0b,

xa�s� = xa�s0� +
1

B
Gab� B

mc
�s − s0�,ct�s0� − x�s0��p0b. �5�

n a similar manner, we can determine the equations of null geodesic lines in the presence of a
lane gravitational wave. The Hamilton-Jacobi equation in this case is equivalent to the eikonal
quation,

4
��

�u

��

�v
+ gab��

�xa

��

�xb = 0, �6�

nd its solution is of the form �=�̃�u�+ 1
2Cv+k0axa, where C=k0+kx=const and k0a=const.

onsequently we find

� = −
1

C
Gab�u,0�k0ak0b +

1

2
Cv + k0axa, �7�

ith Gab defined in �4�. The components of the four-dimensional wave vector are given by the
erivatives of the eikonal, ki=�� /�xi. A world line for a massless particle is again determined
rom Jacobi’s theorem.

Let us define the affine parameter � such that dxa /d�=gab��� /�xb� from which we find u
C��−�0�+u0. As a result, we obtain the null geodesic lines:

ct��� = ct��0� +
1

2
C�� − �0� −

1

2C2Gab�C�� − �0�, ct��0� − x��0��k0ak0b,

x��� = x��0� −
1

2
C�� − �0� −

1

2C2Gab�C�� − �0�, ct��0� − x��0��k0ak0b,

xa��� = xa��0� +
1

C
Gab�C�� − �0� ,ct��0� − x��0��k0b, �8�

here Gab�p ,q� were defined in �4�. Formulas �4� are satisfied for all null geodesics, except the
urve for which C=0. This condition represents a light beam moving parallel to a gravitational
ave. In this case, ka=0 for an arbitrary �, and the solution is

ct = A�� − �0� + ct0, x = A�� − �0� + x0, xa = x0
a, �9�

here A is a constant.

II. A MICHELSON INTERFEROMETER IN THE PRESENCE OF A PLANE GRAVITATIONAL
AVE

Using the equations of motion for a light beam in the field of a plane gravitational wave, Eqs.
8� and �9�, we will show how to build a simple model of a Michelson interferometer.33 Let us

onsider three observers at rest:
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1 . ct = s − s0, x = 0, y = 0, z = 0,

2 . ct = s − s0, x = l�, y = 0, z = 0,

3 . ct = s − s0, x = 0, y = l�, z = 0. �10�

et a light beam leave the world point �0,0,0,0� in the direction of a plane wave, and arrive at the
oint �s̃1−s0 , l� ,0 ,0�. In this case Eqs. �9� lead to

s̃1 − s0 = A��̃1 − �̃0�, l� = A��̃1 − �̃0� , �11�

hich gives s̃1−s0= l�. Then, let this light beam leave the point �s̃1−s0 , l� ,0 ,0� and arrive at the
oint �s̃2−s0 ,0 ,0 ,0� �return to the initial space point�. Consequently, the equations of motion �8�
re

s̃2 − s̃1 =
1

2
C��̃2 − �̃1� −

1

C2Gab�C�s̃2 − s̃1�, s̃1 − l��k0ak0b,

− l� = −
1

2
C�s̃2 − s̃1� −

1

2C2Gab�C�s̃2 − s̃1�, s̃1 − l��k0ak0b,

0 =
1

C
Gab�C�s̃2 − s̃1�, s̃1 − l��k0b. �12�

herefore s̃2−s0=2l�.
Next, let us consider a light beam leaving the point �0,0,0,0� in the direction perpendicular to

hat of the gravitational wave, and arriving at �s1−s0 ,0 , l� ,0�. In this case Eqs. �8� give

s1 − s0 =
1

2
C��1 − �0� −

1

2C2G→
abk0ak0b, l� =

1

C
G→

2bk0b,

0 = −
1

2
C�� − �0� −

1

2C2G→
abk0ak0b, 0 =

1

C
G→

3bk0b, �13�

here G→
ab=Gab�C��1−�0� ,s0�=	s0

s1gab�u�du. We obtain the equation for s1:

s1 − s0 = −
l�
2 G→

33

�→
, �14�

here �→=G→
22G→

33− �G→
23�2.

Then, let the same light beam go from the point �s1 ,0 , l� ,0� to the initial space point
s2 ,0 ,0 ,0�. The equations of motion are �with different constants of motion�

s2 − s1 =
1

2
C��2 − �1� −

1

2C2G←
abk0ak0b, − l� = −

1

C
G←

2bk0b,

0 = −
1

2
C��2 − �1� −

1

2C�2G←
abk0ak0b, 0 =

1

C
G←

3bk0b, �15�

ab ab s2 ab
here G←=G �C��2−�1� ,s1�=	s1
g �u�du. In a similar manner we obtain
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s2 − s1 = −
l�
2 G←

33

�←
, �16�

here �←=G←
22G←

33− �G←
23�2.

A weak plane gravitational wave in metric �1� can be described by the two-dimensional metric
ensor

gab = 
− 1 + f�u� h�u�
h�u� − 1 − f�u� � , �17�

here f�u� and h�u� are small quantities. �If we neglect terms quadratic and smaller in f and h,
hen the metric tensor �17� identically satisfies the field equation Ruu=0.� The two possible polar-
zations correspond to setting either quantity to zero. Let us consider a polarization such that
�u�=0 and denote it by h+. From this we find �→= �s1−s0�2+O�A2�, where A is the amplitude of
he gravitational wave. We can linearize Eq. �14�, omitting terms quadratic and smaller in A:

s1 − s0 = −
l�
2

�s1 − s0�2�− �s1 − s0� + �
s0

s1

f�u�du� . �18�

he analogous expression can be derived for Eq. �16�.
Let us assume that a plane gravitational wave is monochromatic with wavelength 	, f�u�

A cos�2�u /	�. We seek the solution of Eq. �18� in the form s1−s0= l�+�s→, where �s→ is a
mall quantity on the order of A. Keeping only linear terms in �s→ we find

�s→ = −
A	

2�
sin

�l�

	
cos

2��s0 + l�/2�
	

. �19�

imilarly, for the returning beam we have s2−s1= l�+�s←, where

�s← = −
A	

2�
sin

�l�

	
cos

2��s0 + 3l�/2�
	

, �20�

here we used s1−s0= l� since this term is on the order of A. Finally, the total delay of the light
eam moving perpendicular to the gravitational wave, relative to the parallel beam, is given by

�s = �s→ + �s← = −
A	

2�
sin

2�l�

	
cos

2��s0 + l��
	

. �21�

he other polarization �denoted by h
� is described by the metric tensor

gab = 
 − 1 h�u�
h�u� − 1

� . �22�

n this case, Eq. �14� reduces to s1−s0= l�, whereas for the returning beam we find s2−s1= l�. For
his polarization there is no delay.

Equation �21� is what experimentalists use to detect gravitational waves.28,34 Its relation to
ncoming gravitational waves with arbitrary propagation directions and polarization states can be
ound in the literature, e.g., Ref. 29. This equation agrees with the corresponding expression in
ef. 30 if we set the departure moment s0=0 and use the relation �s= �c /����, where � is the

ight beam frequency and �� denotes the phase shift. Therefore, treating light as massless par-
icles in the field of a weak gravitational wave and solving the linearized coupled Einstein-

axwell equations lead to the same result.
The delay of a light beam depends on the quantity s0, which corresponds to the moment when

he beam leaves the start point �the time dependence of the gravitational field is fixed by the form
f f�u��. If the wavelength of a monochromatic gravitational wave is small compared to the size of

	
he interferometer, we can average this delay over s0: ��s= �1/	�	0�s�s0�ds0. The physical rea-
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on for averaging arises from the fact that we do not know when the front of a gravitational wave
its the point of the departure of the beam. However, as for each periodic function, such an
xpression vanishes and is of no interest.

V. LIGHT BEAM DELAY IN THE SECOND APPROXIMATION

In this section we will generalize the results of the preceding section and consider quadratic
erms. Let the two-dimensional metric tensor gab of a weak gravitational wave be given by

gab = 
− 1 + f �1� h�1�

h�1� − 1 + g�1� � , �23�

here f �1�, g�1�, h�1� are small quantities on the same order. In the linear approximation f �1�+g�1�

O�A2�, where A is the amplitude of such a wave on the order of f �1�. Therefore, without loss of
enerality we may assume f �1�+g�1�=g�2�. The field equation is obtained from Ruu=0:

1

2
� ḟ �1�2 + 2f �1� f̈ �1� + g̈�2� + ḣ�1�2 + 2h�1�ḧ�1�� = 0, �24�

hich gives g�2� as a function of f �1� and h�1�.
If we consider a polarization h+ with h�1�=0 and put s1−s0= l� in terms on the order of A2,

hen Eq. �14� becomes

�s1 − s0�3 − l�
2 �s1 − s0� + l�

2 �
s0

s1

�f �1� + f �1�2�du − l���
s0

s1

f �1�du�2

= 0, �25�

ote that this equation does not contain the quantity g�2�. Let us apply the above results to the case
f a monochromatic plane wave, f �1�=A cos�2�u /	�. For such a wave, Eq. �24� leads to g�2�

�4�2A2 /	2��3 cos2�2�u /	�−1�, and this quantity clearly is not a periodic function of u. �We
ould assume f �1�+g�1�= f �2�, but then Eq. �25� would contain the nonperiodic function f �2�. Thus,
t would be impossible to average the light beam delay over s0 �the moment when the beam leaves
he start point� independently of the initial conditions.� We seek the solution in the form s1−s0

l�+�s→, where �s→ is again a small quantity on the same order as A. Thus, up to quadratic
erms in �s→ we obtain

�s→ = −
A	

2�
sin

�l�

	
cos

�

	
�2s0 + l�� −

A2	

16�
sin

2�l�

	
cos

2�

	
�2s0 + l�� −

A2l�

4

+
A2	2

8�2l�

�sin
�l�

	
cos

�

	
�2s0 + l���2

+
A2	

4�
sin

�l�

	
cos

�

	
�2s0 + l��cos

2�

	
�s0 + l�� .

�26�

he above expression contains the quadratic corrections to Eq. �19�. The mean value of this
uantity over the moment of the departure of the beam s0, ��s→= �1/	�	0

	�s→�s0�ds0, is now
ifferent from zero:

��s→ =
A2	2

16�2l�

sin2 �l�

	
−

A2l�

4
+

A2	

16�
sin

2�l�

	
. �27�

e remind that the moment s0 is relative to the instant when a front of the gravitational wave in
uestion hits the departure point, and we average with respect to s0 since we do not know the
alue of this quantity.

For the returning beam we must replace s1 with s2 and s0 with s1 �since the beam departs from
he reflection point right after it arrives there�, which gives s2−s1= l�+�s←, where �s← is de-

cribed by Eq. �26� in which s0 is replaced with s0+ l�+�s→. The result is
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��s← = ��s→ −
A2	

4�
sin2 �l�

	
sin

2�l�

	
. �28�

herefore, the total average delay of the light beam is given by

��s =
A2	2

8�2l�

sin2 �l�

	
−

A2l�

2
+

A2	

8�
sin

2�l�

	
−

A2	

4�
sin2 �l�

	
sin

2�l�

	
. �29�

e observe that ��s is negative for all values of 	. If l� = l�, then the light beam moving
erpendicular to the direction of a gravitational wave lags �on average with respect to the depar-
ure moment s0� behind the one which moves parallel, provided both beams left the light source at
he same time. The dependence of the quantity D= ��s /A2l� on the variable f =�l� /	 is shown
n Fig. 1.

Now we consider the other polarization h
 for which f �1�=0. Equation �25� is replaced by

�s1 − s0�3 − l�
2 �s1 − s0� + l�

2 �
s0

s1

�h�1�2�du − l���
s0

s1

h�1�du�2

= 0. �30�

or a monochromatic plane wave, h�1�=A cos�2�u /	�, instead of Eq. �26� we find

�s→ =
A2	2

2�2l�

�sin
�l�

	
cos

�

	
�2s0 + l���2

−
A2l�

4
−

A2	

16�
sin

2�l�

	
cos

2�

	
�2s0 + l�� . �31�

he returning beam again satisfies formula �28�. Averaging over the departure moment s0 gives

��s =
A2	2

2�2l�

sin2 �l�

	
−

A2l�

2
−

A2	

4�
sin2 �l�

	
sin

2�l�

	
. �32�

e see that ��s is negative for all values of the length of a gravitational wave, and tends
symptotically to zero as 	→. In Fig. 2 we show the function D�f�. Note that for both polar-
zations D→1/2 as 	→0.

From Figs. 1 and 2 we conclude that a one-to-one relation between the average light beam
elay and the wavelength exists only for waves longer than ��l�. Moreover, the precision of the
easurement of the delay is proportional to the length of the arms of the interferometer. Therefore,

f we try to increase the precision by increasing this length, we end up with decrease of the range
f waves measurable in this way.

. SUMMARY

In this work we showed that the time delay of a light beam in a Michelson interferometer,
btained by treating light as massless particles moving on geodesics, agrees with the correspond-

IG. 1. The normalized average light beam delay D as a function of the normalized wave frequency f for the polarization

+.
ng solution of the linearized coupled Einstein-Maxwell equations. We also calculated this delay in

                                                                                                            



t
d
H
p

m
m
e
u
a
e
i

A

t
1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

F
h

072501-8 Nikodem J. Popławski J. Math. Phys. 47, 072501 �2006�

                        
he second �quadratic� approximation. We considered the simple case of a plane wave with the
irection parallel to one arm of the interferometer, and treated the two polarizations separately.
owever, in reality, one should expect a broad spectrum of frequencies and a combination of both
olarizations.

Averaging the light beam delay �s over the moment of the departure of the beam s0 would
ake sense if either wavelength 	 is much smaller than the arm length l� or we measure ��s
any times. Since we excluded the former, this method would not work in the case of supernova

xplosions that radiate significantly for a few seconds only. Instead, the presented model could be
sed �in principle� for continuous sources of gravitational waves such as stellar binaries containing
neutron star. As we stated in Sec. I, second-order effects in gravitational-wave detection are

xtremely small and thus irrelevant experimentally. However, they might be of some academic
nterest.
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he orbital precession around oblate spheroids
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An exact series will be given for the gravitational potential generated by an oblate
gravitating source. To this end the corresponding Epstein-Hubbell type elliptic in-
tegral is evaluated. The procedure is based on the Legendre polynomial expansion
method and on combinatorial techniques. The result is of interest for gravitational
models based on the linearity of the gravitational potential. The series approxima-
tion for such potentials is of use for the analysis of orbital motions around a
nonspherical source. It can be considered advantageous that the analysis is purely
algebraic. Numerical approximations are not required. As an important example,
the expression for the orbital precession will be derived for an object orbiting
around an oblate homogeneous spheroid. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2219157�

. INTRODUCTION

The basis of the analysis will be the well known expression for the gravitational potential for
point source: �=GM /c2r. In this expression M is the mass, G is the gravitational constant, c is

he velocity of light, and r is the distance with respect to the point source. One can think of a
ravitating body as a collection of point sources. For a linear gravity theory the potential of the
omplete body simply is the sum over all the point sources: �=�iGMi /c2ri. Wherever possible, it
s customary to take the continuum limit and perform the integration. As is known, for a spherical
ource the result of the integration will also be of the form �=GM /c2r, where now M is the mass
f the sphere and r is the distance with respect to the center of the sphere. This means that general
elativity happens to be linear for the spherical situation. For nonspherical bodies the procedure of
dding potentials is valid in the Newtonian limit of general relativity or in a linear gravitation
heory. In the latter case the integration will lead to a series expansion for the potential of a
onspherical source.

In Sec. II the series expansion will be derived for the gravitational potential for an oblate
pheroid. As a part of the analysis an Epstein-Hubbell type integral has to be solved. The evalu-
tion of the Epstein-Hubbell elliptic type integral originates from 1963.1 Ever since, various
olution methods have been constructed for all kinds of generalizations of the Epstein-Hubbell
lliptic integral.2–4 For the evaluation of the integral under concern, use will be made of the
egendre polynomial expansion method in the same way as it recently has been used for disk
alaxies.5

In Sec. III a new model for gravitation will be mentioned briefly. The new model describes
ravitation in a flat Euclidean spacetime.6,7 It has the advantage that it is a linear gravitation
heory. The new model for gravitation is part of a larger theory.8–10 According to this theory
hysics takes place in a Euclidean geometry. The results of the theory are compatible with the
esults of the theory of relativity. One of the differences with the theory of relativity is that proper
ime is taken as the fourth dimension. If one wishes, one can regard this fourth dimension as a
idden dimension. Recently, a model for elementary particles in a Eucldean geometry has been
roposed on the basis of such a hidden dimension.11 The results obtained in Sec. II will be applied

�
Electronic mail: hans.montanus@wxs.nl

47, 072502-1022-2488/2006/47�7�/072502/11/$23.00 © 2006 American Institute of Physics

                                                                                                            

http://dx.doi.org/10.1063/1.2219157
http://dx.doi.org/10.1063/1.2219157


t
f
s
s
p
l
l
a
r

f
s

I

w
c

w
t
h
e
e
w

w
a
p
t

I
�
p

S

T
p

072502-2 J. M. C. Montanus J. Math. Phys. 47, 072502 �2006�

                        
o the new model for gravitation. Although the analysis holds for all kinds of motion, we will
ocus our attention to the precession of elliptic orbits. A general expression for the orbital preces-
ion will be given, with the potential unspecified. The substitution of the potential for a spherical
ource leads to the correct prediction for the precession of Mercury. In a recent paper the orbital
recession has been derived in a pure algebraic manner for the bipole.12 To significant order the
atter equals the prediction as it results from the general theory of relativity and numerical calcu-
ations. Because of the novelty of the present theory, the algebraic result will be recalled briefly. It
lso illustrates that a linear gravitation theory leads to the same result as the general theory of
elativity.

In Sec. IV we will consider an oblate spheroid as the source of gravitation. The exact series
or the potential will be derived by means of an appropriate integration method. Finally, the exact
eries for the orbital precession will be given.

In Sec. V the results will be discussed briefly.

I. THE EPSTEIN-HUBBELL INTEGRAL FOR GRAVITATION

We start considering homogeneous disk sources. These disk sources have a cylindrical shape
ith radius R and thickness S. For convenience, the disk is taken in the z=0 or �=0 plane with the

enter of the disk in the origin. For such a disk source the potential is given by

� =
4G�

c2 �
0

S/2 �
0

� �
0

R

uk dk d� dz , �1�

ith u=1/�k2−2kr cos �+r2+z2. In this expression � is the homogeneous density and k, �, z are
he cylindrical coordinates in the interior of disk.5 To be specific, � is the azimuthal angle, z is the
eight and k is the radial distance in the z=0 plane with respect to the center of the disk. The
lliptic integral �1� is known as an Epstein-Hubbell type integral. The integral can be evaluated
xactly by expanding the function u in terms of Legendre polynomials. First, the function u is
ritten as a Taylor series with respect to k:

u = �
n=0

�
u�n��0�kn

n!
, �2�

here u�n��0� stands for the nth derivative of u with respect to k and evaluated at k=0. In addition,
function v is defined as follows: v=r cos �−k. The functions u and v have the following

roperty: u�1�=u3v and v�1�=−1. By means of this property one finds for the higher order deriva-
ives with respect to k:

u�n��0� = n ! w−�n+1�/2Pn�w−1/2r cos �� . �3�

n the latter equation wªr2+z2 and the Pn are the Legendre polynomials: Pn�x�= �1/2n��1/n ! �
�dn /dxn��x2−1�n. Substituting the power series �2� into the equation �1�, we obtain for the

otential:

��r� =
4G�

c2 �
n=0

� �
0

R

kn+1 dk�
0

S/2

w−�n+1�/2�
0

�

Pn�w−1/2r cos ��d� dz . �4�

ince the integral vanishes for odd n, the integration over k yields

��r� =
4G�

c2 �
n=0

�
1

2t + 2
R2t+2�

0

S/2

w−�n+1�/2�
0

�

Pn�w−1/2r cos ��d� dz . �5�

his integral can be evaluated exactly in a systematic way.5 For the derivative of the gravitational

otential with respect to r, the result is
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dr� = −
GM

c2r2 �
t=0

�

AtBt���Ct����R

r
	2t

, �6�

here dr stands for the derivative with respect to r, M =�R2S� is the mass of the disk and where
he coefficients A, B, and C are given by

At =
1

24t ·
2t + 1

t + 1
· � 2t

t �2, �7�

Bt��� = �1 + �2�−2t−1/2, �8�

Ct��� = �
i=0

t

dti�
2i �9�

ith

dti = �2t

t
	−1

�
j=0

i
�− 1� j�2t + 2j�!

�2j + 1� ! �t + j� ! �t − i� ! �i − j�!
. �10�

ere � is defined as �ªS /2r. In case the distance r with respect to the center of the disk is larger
han the size of the disk �either S or R� the derivative of the potential can also be written in an
lternative way. That is, expanding the Bt���, writing � as 	R /r and recollecting equal powers of
/r, we obtain

dr� = −
GM

c2r2 �
t=0

�

AtCt+1�	��R

r
	2t

, �11�

here 	=S /2R is the oblateness of the disk. Explicitly it reads to sixth order as

dr� = −
GM

c2r2
1 +
3

8
�1 −

4

3
	2	�R

r
	2

+
15

64
�1 − 4	2 +

8

5
	4	�R

r
	4

+
175

1024
�1 − 8	2 +

48

5
	4 −

64

35
	6	

��R

r
	6

+ . . . � . �12�

he power series for the derivative of the potential for the disk will serve as the building block for
he derivative of the potential for the oblate spheroid. In order to build a general function for an
blate spheroid out of the function for a disk one needs a suitable integration procedure.

First of all, it will be assumed that the cross section of the oblate spheroid through the origin
s an ellipse. In analogy with the oblateness of a disk, the oblateness of the ellipse �or the
blateness of the spheroid� is defined as the semiminor axis divided by the semimajor axis: 	
L�1−
2 /L or 	2=1−
2, where 
 is the eccentricity of the ellipse. In the sequel we will not work
ith the eccentricity of the elliptic cross section just in order to avoid confusion with the eccen-

ricity of the elliptic orbit. That is, the oblateness of the spheroid will be characterized solely by
he oblateness 	. The symbol 
 will be strictly reserved for the eccentricity of the orbit.

Now we consider a cylinder with radius q inside the spheroid, q�R such that it precisely
ouches the surface of the spheroid. The cross section then is a rectangle with sizes 2q and 2h,
here the h and q are related according to the elliptic shape: h=	�R2−q2. The value h is with

espect to the equatorial plane, thus half the height of the cylinder. We can imagine the spheroid
o be build of these cylinders. That is, we start with a cylinder with small radius q0 and corre-
ponding height 2h0 in the middle of the spheroid. Around it one can think a cylindrical tube with
nner radius q0, outer radius q1, and height 2h1. Outside that tube is a next tube with inner radius
1, outer radius q2 and height 2h2 and so on until the last tube with outer radius equal to R and
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eight equal to 0. Tube number i with outer radius qi and height 2hi can be regarded as a cylinder
ith radius qi and height 2hi minus a cylinder with radius qi−1 and height 2hi. The calculation of

he influence of a spheroid then is a matter of counting up the influence of all the tubes. For a
eneral function F, this is

F = F�q0,h0� + F�q1,h1� − F�q0,h1� + ¯ + F�qi,hi� − F�qi−1,hi� + ¯ . �13�

sing

F�qi,hi� − F�qi−1,hi� � �qi − qi−1� · � �F

�q
	 , �14�

nd taking the continuum limit yields the following expression for F:

F = �
0

R � �F

�q
	dq . �15�

lternatively, we first calculate the partial derivative of F with respect to q and then we substitute
he function h�q� for h and perform the integration.

The method will be illustrated by the simple case of the calculation of the mass of a homo-
eneous spheroid. We start with the mass of a homogeneous cylinder with density �, radius q and
eight 2h: 2��q2h. The partial derivative with respect to q yields 4��qh. Now we substitute h
	�R2−q2 in the integral for the mass of the spheroid:

M = 4��	R3�
0

1

x�1 − x2dx . �16�

n evaluation of the integral yields the correct value for the mass of an oblate spheroid: M
4
3��	R3. Now we turn to the calculation of the derivative of the potential for an oblate spheroid.
ccording to Eqs. �6� and �11� the derivative of the potential of a homogeneous cylinder with

adius q and thickness 2h is given by

dr� = −
2��q2hG

c2r2 �
t=0

�

AtBt�h

r
	Ct�h

r
	�q

r
	2t

�17�

nd

dr� = −
2��q2hG

c2r2 �
t=0

�

AtCt+1�	��q

r
	2t

, �18�

espectively. It does not matter which one we take, since they are identical. As for the mass, we
ake the partial derivative with respect to q, substitute the expression 	�R2−q2 for h, evaluate the
ntegral Eq. �15�, and collect equal powers of R /2r. After some elaboration we arrive at the
ollowing result:

dr� = −
3GM

c2r2 
1

3
+

2

5
�1 − 	2�� R

2r
	2

+
6

7
�1 − 	2�2� R

2r
	4

+
20

9
�1 − 	2�3� R

2r
	6

+
70

11
�1 − 	2�4� R

2r
	8

+ ¯ � , �19�
here M is the mass of the spheroid. The latter can also be written as

                                                                                                            



w
s

N
a

I

i
a
c
f
d
p
i

w
s

w
d
p
T
b
t
s
t
a
p
m
l
p
m

T

a

072502-5 The Orbital Precession Around Oblate Spheroids J. Math. Phys. 47, 072502 �2006�

                        
dr� = −
GM

c2r2 �
t=0

�
3

2t + 3
�2t

t
	��

2
	2t

, �20�

here the quantity � is defined as �ª
�1−	2R /r. These expressions are identical to the power

eries of the following function:

dr� =
3GM

2c2r2��1 − �2

�2 −
arcsin �

�3 	 . �21�

ote that for a perfect sphere, 	=1, the latter expressions are reduced to dr�=−GM /c2r2, exactly
s required.

II. GENERAL DIFFERENTIAL EQUATION FOR ORBITAL MOTION

The theory of relativity is based on a Minkowskian geometry and in case of gravitational
nteractions even on curved spacetime. Recently, there has been proposed an alternative based on
Euclidean geometry.8–14 Gravitational dynamics does not require an interpretation in terms of a

urvature of spacetime.6–8 According to this new model the proper time of an object is taken as its
ourth coordinate: x4cª. As a consequence one obtains a circular spacetime diagram where
istances are measured with the flat Euclidean metric: ds2=dx2+dy2+dz2+c2 d2, even in the
resence of gravitation. The Schwarzschild counterpart of the Lagrangian for gravitational dynam-
cs in a flat Euclidean spacetime is given by

L = m�e2��ċ�2 + e4��ẋ2 + ẏ2 + ż2�� , �22�

here the overdot represents the derivative with respect to the global time t. In case of a spherical
ource the latter reads in polar coordinates

L = m�e2�/r�ċ�2 + e4�/r�ṙ2 + r2�2�� , �23�

here �=GM /c2 is half the Schwarzschild radius. It leads to the correct prediction for the
eflection of light and the orbital precession of Mercury.8 Also, the prediction for the orbital
recession around the bipole is in excellent agreement with the prediction of general relativity.12

he new model leads in a straightforward manner to an algebraic expression for the relationship
etween the precession around the bipole and the distance between the two spheres who constitute
he bipole.12 In contrast, in the general theory of relativity one has to resort to numerical
olutions.15 Both solutions are identical to significant order. The advantage of the new gravitation
heory is that it is a linear theory. For two or more spherical bodies, one can add the potentials of
ll the individual spheres. For bodies with non-spherical shape one can integrate over the volume
recisely as we did in the previous section for an oblate spheroid. For the analysis of the orbital
otion one has to substitute the resulting potential in the Lagrangian �22�. However, one can avoid

abor if one first derives the general differential equation for the orbital motion with an unspecified
otential and substitutes the expression for the potential afterward. Since we restrict ourselves to
otions in the z=0 plane, the orbital motion will be derived from the following Lagrangian:

L = m�e2��ċ�2 + e4��ṙ2 + r2�2�� . �24�

he corresponding Euler-Lagrange equations of motion are

me4�r2� = A , �25�

me2�ċ = B �26�
nd
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m2c2 = m2e2��ċ�2 + m2e4��ṙ2 + r2�2� . �27�

ubstituting the Eqs. �25� and �26� into the Eq. �27� and changing coordinates to uª1/r, we
btain

m2c2 = e−2�B2 + e−4�A2�u�2 + u2� . �28�

he prime denotes the derivative with respect to the orbital angle �. The derivative with respect to
followed by the resubstitution of the Eq. �28� gives

�du��−1e−2�A2�u� + u� + B2 − 2e2�m2c2 = 0, �29�

here du stands for the derivative with respect to u.
An elliptic orbit without a precession is described as follows:

u =
�1 + 
 cos ��

L�1 − 
2�
, �30�

here 
 is the eccentricity of the orbit, L is the semimajor axis of the orbit and u is the inverse
istance: u=1/r. The equation �30� satisfies the zeroth order equation,

u� + u =
1

L�1 − 
2�
. �31�

ow we take the derivative of Eq. �29� with respect to � and substitute the zeroth order equation
31�. The result is

u� + u��1 +
2r + r2 dr

2��dr��−1 + 2r2 dr�

L�1 − 
2�
−

4r2�dr��2m2c2

A2 	 = 0. �32�

n this expression a factor e4� has been set equal to unity in the last term between the brackets,
ince the difference is of insignificant order. The Eq. �32� is the general differential equation for
lliptic orbital motion.

V. THE ORBITAL PRECESSION FOR OBLATE SPHEROIDS

For elliptic orbits with a precession one cannot neglect the second and last term between the
rackets in the differential equation �32�. To evaluate these terms we first will substitute the value
or A. The constant A is determined by looking for its value at the perihelion.6 It suffices to
ubstitute the lowest order value for A in the differential equation. In the present analysis the plane
f the orbit equals the equatorial plane of the source. For bodies like disks, spheres, and spheroids,
he lowest order value for A then reads as

A2 = �m2c2L�1 − 
2� . �33�

ith the substitution of this expression for A, the differential equation for u is reduced to

u� + u��1 +
2r + r2dr

2��dr��−1 + 2r2dr�

L�1 − 
2�
−

4r4�dr��2

�L�1 − 
2�
	 = 0. �34�

ow we can substitute the expression �19� for dr�. The result is

u� + u��1 −
K

L�1 − 
2�	 , �35�
here K stands for the following power series:
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K = 6� +
3r + 5�

5
�1 − 	2��R

r
	2

+
324r + 1377�

700
�1 − 	2�2�R

r
	4

+
8184r + 29975�

21 000
�1 − 	2�3�R

r
	6

+
7 390 528r + 23 695 625�

21 560 000
�1 − 	2�4�R

r
	8

+ ¯ . �36�

rom a practical point of view we will not consider motions in the vicinity of an extremely dense
ource. That is, we will restrict ourselves to the situation where ��r. When terms of order � /r
re neglected, the quantity K is reduced to

K = 6� +
3r

5
�1 − 	2��R

r
	2

+
81r

175
�1 − 	2�2�R

r
	4

+
341r

875
�1 − 	2�3�R

r
	6

+
115 477r

336 875
�1 − 	2�4�R

r
	8

+ ¯ . �37�

he latter can be written a little bit more elegantly as follows:

K = 6� + r
3��2

5
	 +

81

7
��2

5
	2

+
341

7
��2

5
	3

+
115 477

539
��2

5
	4

+
6 776 661

7007
��2

5
	5

+
59 419 831

13 377
��2

5
	6

+
7 380 857 431

357 357
��2

5
	7

+ ¯ � . �38�

ere and in the sequel, �=�1−	2. As can be inferred from Eq. �21� the latter is a power series of
he following function:

K = 6� − r��3 + 3�1 − �2arcsin � − 3�

�3 + �1 − �2arcsin � − �
	 . �39�

ccording to the averaging method, we approximate K by its average value K�:

K� � =
1

T
�

0

T

K�t�dt , �40�

here T is the period of a revolution. Since K� is independent of u=1/r, an approximate solution
or the differential equation �35� can be found. It reads as

u��� =
1 + 
 cos��1 − p/2����

L�1 − 
2�
, �41�

here the precession per revolution p is given by

p =
�K�

L�1 − 
2�
. �42�

hen the source of gravitation is a perfect sphere, 	=1, �=0, K�=K=6�, the precession reads
s

p =
6��

L�1 − 
2�
, �43�

recisely in agreement with the prediction from the general theory of relativity. When the source
f gravitation is an oblate spheroid, 	�1, or a prolate spheroid, 	�1, the precession will, in
eneral, differ from the expression �43�. For this situation there are two ways to proceed with the
nalysis of the precession.

One way is to keep the orbit fixed and to vary the radius R of the source. This is appropriate
2 2
hen R�L. For this situation it suffices to consider terms up to order R /r :
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K � 6� +
3

5

R2�1 − 	2�
r

. �44�

ubstitution of the average value 1/L for u=1/r gives

K� � 6� +
3

5

R2�1 − 	2�
L

. �45�

he expression for the precession �in radians per revolution� then is reduced to

p �
6��

L�1 − 
2��1 +
R2�1 − 	2�

10�L
	 . �46�

n order to make a comparison, we imagine that Mercury is orbiting around the spheroid. That is,
e substitute the values for L and 
 as they hold for Mercury and the value for � as it holds for

he Sun. The relationship between the radius R �in astronomical units� and the precession p �in
rcseconds per century� is then given by

p � 43� · 
1 + �1 − 	2� · � R

2 � 10−4	2� . �47�

igure 1 illustrates the latter relationship between R in astronomical units and the orbital preces-
ion p �in arcseconds per century� for various values of 	.

The other way is to keep the radius R of the spheroid fixed and to vary the radius r of the
rbit. This seems appropriate when the radius of the orbit does not differ very much from the
adius of the spheroid. For this situation we have to use the full equation �38�. The averaging
ethod will then give rise to all kinds of powers of ��1−
2� in the expression for K�. Since we

re mainly interested in the consequences of the oblateness of the spheroid, the eccentricity of the
rbit will be neglected for convenience. The precession �in radians per revolution� then is given by

p =
6��

r
− ���3 + 3�1 − �2arcsin � − 3�

�3 + �1 − �2arcsin � − �
	 . �48�

n order to make a comparison, we let the spheroid have a mass and radius identical to the Sun. It
s obvious to regard the radius of the orbit in units of the Sun radius: r=xR. Since we vary the
adius of the orbit, also the period of the orbit varies. To obtain the precession per second we have

IG. 1. The orbital precession against the radius of the spheroid for the values 0.6, 0.8, 1.0, 1.2, and 1.4 of the oblateness
.

o take the precession per revolution times the number of revolutions per second. The latter, of
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ourse, is equal to 1/T where T=2�
r
c
�r /� is the well known expression for the period of the

rbit. For the precession in radians per second we then obtain

p = 3c� �3

x5R5 −
c

2
� �

x3R3��3 + 3�1 − �2arcsin � − 3�

�3 + �1 − �2arcsin � − �
	 . �49�

f we substitute the values for R and � as they hold for the Sun. The relationship between the
elative orbit radius x �in sun radii� and the precession p �in radians per century� is then given by

p �
13
�x5

−
1 � 106

�x3 ��3 + 3�1 − �2arcsin � − 3�

�3 + �1 − �2arcsin � − �
	 . �50�

igure 2 illustrates the relationship between the value x and the orbital precession for various
alues of 	.

It also is illustrative to consider the situation for a fixed radius of the spheroid at a fixed orbital
adius �say the radius of Mercury� and to vary solely the oblateness of the spheroid. Substituting
he values for R and � as they hold for the Sun and of the value for r as it holds for Mercury, we
btain for the precession of the orbit in arcseconds per century:

IG. 2. The orbital precession against the relative radius of the orbit for the values 0.6, 0.8, 1.0, 1.2, and 1.4 of the
blateness 	.
FIG. 3. The orbital precession against the oblateness 	 of the gravitational source.
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p � 43 − 2.7 � 108��3 + 3�1 − �2arcsin � − 3�

�3 + �1 − �2arcsin � − �
	 , �51�

here ��0.012�1−	2. As can be inferred from Eq. �47� the latter expression is approximately
qual to

p � 43�1 + 550 · �1 − 	2�� . �52�

n Fig. 3 the precession �in arcseconds per century� is plotted against the oblateness of the
pheroid. We see that the precession reaches a maximum value of about 23500 arcseconds per
entury when 	=0. That is, if the Sun would be a perfectly flat disk, Mercury would orbit around
t with a precession of about 6.5° per century. For the details of the precession around a nearly
pherical gravitational source, we have to zoom in at 	�1. This is done in Fig. 4. We see that for
=1 the precession is about 43 arcseconds per century. For the Sun, 	�0.999 991. Since the
ifference with respect to unity is so small, the contribution of the oblateness of the Sun to the
recession of Mercury is less than half an arcsecond per century. We also see that the precession
ecreases for increasing 	. The precession of Mercury would be zero in case of a prolate Sun with
�1.000 92. For larger values the precession rapidly falls off.

. DISCUSSION OF THE RESULTS

We showed how the Epstein-Hubbell type integral for the gravitational potential for a disk can
e evaluated by means of Legendre polynomials. By means of integration by parts one can obtain
he expression for the gravitational potential for a spheroid. The method can be applied to gravi-
ational theories based on a linear potential. In the present alternative model the linearity for
ravitation is restored. In contrast to general relativity, it is based on a flat and Euclidean space-
ime. Nevertheless, it leads to the same prediction for gravitational time dilation, gravitational
ensing, and the orbital precession around a point source or a bipole as the general theory of
elativity. In this paper we applied the method for the analysis of the orbital precession around an
blate spheroid. Obviously the new model allows for the analysis of gravitational motion in
ituations that are difficult to solve within the general theory of relativity. The precession of orbits
round an oblate spheroid source is derived algebraically. To my knowledge, such a result has
ever been obtained with the general theory of relativity.

The paper might be of value for mathematicians interested in the mathematical correspon-
ence between two different models for gravitation as well as for mathematicians interested in the

FIG. 4. �Color online� The orbital precession against the oblateness 	 for a nearly spherical gravitational source.
pplications of Epstein-Hubbell integrals.
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It is shown that the path topology of Hawking, King, and McCarthy can be
extended to the causal completion of a globally hyperbolic Lorentzian manifold.
The suggested topology T is defined only in terms of chronological structures and
T is finer than the extended Alexandrov topology. It is also shown that a
T-homeomorphism induces a conformal isomorphism and a homeomorphism in the
extended Alexandrov topology. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2218981�

. INTRODUCTION

In the sense that the Lorentzian geometry gives mathematical tools and models to Einsten’s
eneral relativity, a causality is one of the major areas of the Lorentzian geometry. By a causality,
e refer to the general question of which points in a space-time can be joined by causal curves.
elativistically, this is the question of which events can influence a given event. In a particular

pace-time, a causality may be trivial, but under fairly mild conditions it is closely related to
undamental geometrical properties. For example, it is well known that the Alexandrov topology

agrees with the given manifold topology M if and only if the strong causality condition holds.1

In connection with this, in 1964, Zeeman2 has shown that the causal structure of Minkowski
pace already implies its linear structure. Also, in 1967, he proposed a new topology on
inkowski space that describes timelike and spacelike directions separately. Zeeman’s idea on the

ew topology of Minkowski space was motivated by the fact that Euclidean space is locally
sotropic whereas Minkowski space is not; every point has its associated light cone separating
pacelike vectors from timelike vectors.

In 1976, Hawking, King, and McCarthy3 took Zeeman’s idea and they proposed a new topol-
gy P, called the path topology, on a space-time which is strongly causal. They have shown that

has several advantages: P is defined only in terms of timelike curves and a P-continuous curve
as a very close relation to timelike curves. One of the advantages of P is that a
-homeomorphism naturally induces a conformal diffeomorphism and thus P determines the

ausal, differential, and conformal structure of the manifold. However, there is a certain disadvan-
age on P in the sense that the manifold topology M is used implicitly in the definition of P.

In 1991, Fullwood4 proposed a new topology P̃ defined only in terms of causal structures on

he Lorentzian manifold in which the chronological condition is satisfied. He also proved that P̃ is
quivalent to the path topology if and only if the distinguishing condition holds. Thus if the

istinguishing condition holds, P̃ determines the causal, differential, and conformal structure of

he manifold. Not only extending the path topology, he has shown that the topology P̃ can be
efined in terms of timelike sequences and its causal limits, which will be used in this paper.

A causal boundary was introduced by the need to control singular points effectively. In 1972,
eroch, Kronheimer, and Penrose5 constructed the causal boundary of a strongly causal space-

�
Electronic mail: mathph@kaist.ac.kr
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ime. Whereas they constructed the causal boundary only from the properties of a space-time
tself, the causal relation cannot be extended to boundary points and the identification rule cannot
e given explicitly by the Hausdorff condition of the topology.

In 1974, Budic and Sachs �BS�6 proposed a new causal boundary construction, �M, which
tates that in a causally continuous space-time, the Hausdorff condition can be naturally satisfied
nd the causal relation can be extended to the ideal boundary. The topology of the BS-causal
ompletion was defined in terms of the causal relation and is called the extended Alexandrov

opology, denoted by Ā. The fact that the BS-causal completion M̄ is Hausdorff and is itself an
bstract causal set suggests that the Fullwood’s method can be applied to the BS-causal comple-
ion.

In this paper, it is shown that the path topology can be defined on the BS-causal completion
f the manifold is globally hyperbolic. The new topology T is shown to be finer than the Extended

lexandrov topology Ā and the inclusion map i : �M , P̃�� �M̄ ,T� is shown to be a dense imbed-
ing. Also, it is shown that a T-homeomorphism induces a conformal isomorphism and thus T
etermines the causal, differential, and conformal structure of the manifold.

As noted by several authors, in a sense, the structure of a causal boundary determines its inner
tructure: �1� M is globally hyperbolic if and only if I±�x�=� for x��M; �2� if �M is spacelike,

hen M̄ is geodesically connected. Furthermore, Penrose has shown that the strong cosmic cen-
orship is equivalent to I±�x�=� for x��M, which is equivalent to the condition that the space-
ime be globally hyperbolic. When we consider the fact that the BS-causal completion contains all
he singular points of our space-time, the fact that a T-homeomorphism on the BS-causal comple-
ion induces a conformal diffeomorphism on M tells us that singularities have deep effects on the
tructure of our space-time.

I. THE PATH TOPOLOGY

Let M be a time-oriented space-time, that is, M is a connected C� Hausdorff manifold with a
ountable basis, a Lorentz metric g of signature ��,�,�,��, and a time orientation

A smooth future-directed curve in M is a smooth curve whose tangent vector is never van-
shing, future directed nonspacelike, which means the tangent is always timelike or lightlike. If the
angent is always timelike the curve is said to be a timelike curve. If there is a future-directed
imelike curve from x to y, we write x�y. When there is a future-directed curve from x to y, or
hen x=y, we write x�y. The chronological future I+�x� and the chronological past I−�x� are
efined by I+�x�= �y �x�y� and I−�x�= �y �y�x�. When S is a subset of M, one defines I+�S�
�y �s�y for some s�S�. The causal future of a point x is defined by J+�x�= �y �x�y�. Further-
ore, one may define J−�x�= �y �y�x�, J+�S�= �y �s�y for some s�S� and J−�S�= �y �y
s for some s�S�. I+�p ,N� is the set of points that can be reached by a smooth future-directed

imelike curve from p in N. I−�p ,N� is the dual to the past. J+�p ,N� and J−�p ,N� allow nonspace-
ike curves in similar definition to I+�p ,N� and I−�p ,N�.

Throughout this paper, we denote the manifold topology of M by M. It is well known that
+�p� and I−�p� is always M-open and so I+�p�� I−�q� is M-open for any pair of points in M. The
lexandrov topology, A, is the topology obtained by taking the set of the form I+�p�� I−�q� as a
asis. Then the following is a well-known fact.

Theorem 1: The following are equivalent.

1� The Alexandrov topology A agrees with the manifold topology M.
2� The strong causality condition holds on M.
3� The Alexandrov topology is Hausdorff.

Hawking, King, and McCarthy3 defined that a set E�M is P-open if and only if for every
imelike curve �, there is an O�M such that E��=O��. Then as can easily be shown, P is
ner than M, and we can prove the following.

Proposition 2.1: Let � : I→M be a curve. If � is P-continuous, then � is M-continuous. If �

s timelike, then � is P-continuous.
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Hawking, King, and McCarthy3 have also shown that the sets of the form
+�p ,U�� I−�p ,U�� �p� form a basis for P where U is a convex normal neighborhood. Thus we
et the following.

Proposition 2: For any P-open neighborhood U of p�M, there is future (past, respectively)-
irected timelike curve in U with p its future �past, respectively� end point.

Fullwood4 defined the P̃-topology by taking the sets of the form

I+�p�� I−�q��� �I+�q�� I−�r��� �q�, for p�q�r, as a basis and has shown that P= P̃ if and only
f the distinguishing condition holds on M.

Fullwood has shown that the path topology can be obtained in a different manner described as
ollows. A sequence �xi� of points in M is said to be monotonic timelike if either xi�xi+1 or

i+1�xi for each i. A sequence �xi� is said to be causally convergent to x�M if either I−�x�
� I−�xj� for each subsequence of �xi� or I+�x�= � I+�xj� for each subsequence of �xi�. By the

bove definition for a sequential convergence, Fullwood defined a set E�M to be P�-closed if
very monotonic timelike sequence in E that causally converges has a limit in E. Fullwood has

roven that, actually, P�= P̃. Since we assume that M is globally hyperbolic throughout in this

aper, we do not distinguish P, P̃, and P� and call the equivalent topology as the path topology.
One of the most notable properties of the path topology is that the topology itself determines

he causal structure of the space-time. This stems from the fact that the construction of the path
opology uses the timelike curve. It thus seems that many calculations involving the causal,
ifferential structure may be made purely topological. We state some of the properties of the
-homeomorphism between Lorentzian manifolds.

Proposition 2.3: A P-homeomorphism is a C� diffeomorphism.
Theorem 2.2: A P-homeomorphism h is a smooth conformal diffeomorphism and the group of

-homeomorphisms of M coincides with the group of conformal diffeomorphisms of M.

II. THE BS CAUSAL BOUNDARY

Given an open set U�M, the chronological common past ↓U and the common future ↑U are
efined by ↓U= I−��x �x�y for all y�U�� and ↑U= I+��x �y�x for all y�U��, respectively.

A set P is called a past set if P= I−�S� for some subset S of M. A past set is always open since
−�x� is open for each x�M. A nonempty past set P is called indecomposable if whenever Q1 and

2 are past sets with P=Q1�Q2, then either P=Q1 or P=Q2. If an indecomposable past set �IP�
P is of the form I−�x� for some x�M, we say that P is a proper indecomposable past set �PIP�. If
n IP Q cannot be represented by the form I−�x� for any x�M, we say that Q is a terminal
ndecomposable past set �TIP�. Geroch, Kronheimer, and Penrose5 have shown that an IP P is a
IP I−�x� if and only if P= I−��� for some timelike curve � whose end point is x. They have also
hown that an IP Q is a TIP if and only if Q can be represented by the form Q= I−��� for some
nextendible timelike curve �.5 Future sets and indecomposable future sets are defined similarly.

Let M̂ denote the collection of all indecomposable past sets of M and let M̌ denote the

ollection of all indecomposable future sets of M. It is not hard to show that either M̂ �M̌ =� or

M̂ �M̌ = �M�.6 For most space-times, M̂ �M̌ =�. Whenever M̂ �M̌ = �M�, we will make a dis-
inction between M considered as an indecomposable past set and M considered as an indecom-
osable future set.

If A�M̂ and B�M̌ are such that B= ↑A and A= ↓B, the pair �A ,B� is called a hull pair. An

quivalence relation may be defined on the collection M̂ �M̌. If A ,B�M̂ �M̌ and either �A ,B� or

�B ,A� is a hull pair, we write A�B. Furthermore, let A�A if A�M̂ and A�A if A�M̌. When M

s in both M̂ and M̌, M considered as a past set is not equivalent to M considered as a future set.
udic and Sachs have investigated this equivalence relation. Each equivalence class has at most

wo elements. The completion M̄ is defined to be the set of equivalence classes of M̂ �M̌.6

In a causally continuous space-time, for each x�M, we have I−�x��M̂, I+�x��M̌ and
− + ˆ ˇ
I �x� , I �x�� is a hull pair. Thus, each point x of M corresponds to exactly one point in M �M /
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, and we have an injection M�M̂ �M̌ /�. The causal completion M̄ of the causally continuous

pace-time M is therefore defined to be M̂ �M̌ /�. Technically, this definition is not the one given
y Budic and Sachs, however, they remark that their definition is essentially the same as

M̂ �M̌ /�. Our definition is clearly invariant under reversal of time orientation.

Define a map I :M→M̄ by letting I�x� be the equivalence class represented by I−�x�. Since M

s distinguishing, this is a one-to-one map into the set M̄. The boundary �M of M may be defined

s �M =M̄ − I�M�. A boundary point of M is represented by an indecomposable subset of M which

s not of the form I−�x� or I+�x� for any x�M. The map I :M→M̄ will be used to identify M as

subset of M̄.

Budic and Sachs defined the causality on M̄ by defining relations � and � on M̂ �M̌ as in the

able to follow. For example, if �P ,Q��M̂ �M̂, �P ,F��M̂ �M̌ and �F , P��M̌ �M̂, the table

ndicates that P�Q iff P�Q; P	Q iff P� �↑Q���; P�F iff there is a hull pair �L̂ , Ľ� such

that P� L̂ and Ľ�F, etc.

·� · ·	 ·

M̂ �M̂ ·� · ·� �↑ · ���

M̌ �M̌ ·� · �↓ · �� · ��

M̂ �M̌ ·� L̂ and Ľ� · ·� · ��

M̌ �M̂ ·� Ľ and L̂� · �↓ · �� �↑ · ���

The relations � and 	 may be considered to be defined on M̂ �M̌ /�. If p, q�M̄ and some
epresentative in the equivalence class of p is in the causal future of some representative of q
ccording to the table, then this same relation holds for any representatives of p and any repre-
entatives of q. The chronological past of q and causal past of q are defined, respectively, by
−�q�= �p�M̄ �q	 p� and J�−�q�= �p�M̄ �q� p�. The set I�+�q� and J�+�q� are defined dually.

The extended Alexandrov topology Ā is defined on M̄ by taking the smallest topology such

hat for all q�M̄ each of the following four subsets of M̄ is open:

I�+�q�, I�−�q�, M̄ − J�−�q�, M̄ − J�+�q� .

udic and Sachs6 have shown that, if the manifold M is causally continuous, the causal comple-

ion M̄ becomes a causal space which is Hausdorff with respect to the extended Alexandrov
opology.

For the following sections, we state some results concerning the extended Alexandrov topol-

gy Ā.
Definition: Let T be a topology on a topological space M and � : �a ,b�→ �M ,T� be a

-continuous curve. Then p�M is called a T end point of � if for every T-open neighborhood U
f p, there exists t0 such that ��t��U for all t� t0.

A curve is called inextendible, if it does not have an end point in M.

Theorem 3.1: Let � : I→M be a timelike curve. Then I−�����M is the unique Ā end point in

M̄.
Proof: If � is extendible, see theorem 2.3 in Ref. 5. If � is inextendible, see Ref. 7. �

V. THE PATH TOPOLOGY ON THE CAUSAL COMPLETION AND ITS
ROPERTIES

Throughout this paper, all the concerned manifolds are always assumed to be globally hyper-
olic.

Definition: A sequence �xi� in M̄ is timelike if either xi�xi+1 or xi+1�xi. A timelike sequence

xi� satisfying xi�xi+1 �xi+1�xi, respectively� is called an increasing �decreasing, respectively�
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equence. A timelike sequence �xi� converges to x if either �I−�xi�= I−�x� when �xi� is increasing,
r �I+�xi�= I+�x� when �xi� is decreasing.

Since we assume that M is globally hyperbolic, we have I±�x�=� for all x��M.6 Thus, only
he first term in every timelike sequence can be in �M.

Proposition 4.1: For increasing timelike sequence �xi�, �I−�xi� is an indecomposable past set.
Proof: �This proposition is due to Geroch, Kronheimer, and Penrose5� Assume not. Then there

xist past sets Q and R such that �I−�xi�=Q�R. We must show that Q�R or R�Q. Suppose that
here exists q�Q−R and r�R−Q. Then there exist i0 and j0 such that q�xi0

and r�xj0
. Setting

0=max�i0 , j0�, we have q�xk0
and r�xk0

. If xk0
�Q, then both q and r are in Q since Q is a past

et. If xk0
�R, then both q and r are in R since R is a past set. This is a contradiction. Thus, �I−�xi�

s an indecomposable past set. �

From the above proposition, we can easily see that for any increasing timelike sequence �xi�,
e have a timelike curve � such that �I−�xi�= I−���. If this timelike curve has an end point x in M

ith respect to the M̄-topology, then it is also an end point with respect to the A-topology and we
ave �I−�xi�= I−�x�. If � is inextendible, then it is known that I−��� is also an end point of � with

espect to the Ā-topology.7 Thus we can conclude that for any increasing timelike sequence �xi�,
he corresponding timelike curve has an Ā end point x in M̄ and it is the unique limit of the
equence. Since I+�xi�� I−�����, we also have xi�x for each i.

Now we define a new topology T on M̄ as follows.

Definition: U�M̄ is T-closed if every timelike sequence that converges has a limit in U and

�M̄ is T-open if its complement is T-closed.

Proposition 4.2: The above defines a new topology T on M̄.

Proof: �i� Trivially, � and M̄ is closed and so � and M̄ are in T.
�ii� Almost trivially, arbitrary intersection of T-closed sets is also T-closed.
�iii� Now we show that A�B is closed when A and B are closed.
Let �xi� be an increasing timelike sequence in A�B that converges to x, i.e., �I−�xi�= I−�x�. If

ne of A or B contains all but finitely many terms of �xi�, then it is trivial since both A and B are
losed. Now, we assume that both A and B contain infinitely many terms of �xi�. If we break �xi�
nto �yj� and �zk� such that yj �A and zk�B, then we have �I−�xi�= ��I−�yj��� ��I−�zk��. Since
oth �I−�yj� and �I−�zk� are past sets and �I−�xi� is an indecomposable past set, without loss of
enerality, we can have I−�x�= � I−�xi�= � I−�yj�, i.e., yj converges to x. Since yj �B and B is
losed, we must have x�B, i.e., x�A�B. �

In Sec. II, we have seen that the path topology P is finer than the manifold topology M. We
ave the same result on the causal completion.

Proposition 4.3: The topology T on M̄ is finer than the extended Alexandrov topology A on M̄.

Proof: Since I±�y� and M̄ −J±�y� form a sub-basis of Ā, any Ā-closed subset of M̄ can be

xpressed as an intersection of sets of the form M̄ − I±�y� and J±�y�. So it is sufficient to show that
he above four basic closed subsets are T-closed. In the following four cases, we assume that �xi�
s an increasing timelike sequence that T-converges to x �i.e., �I−�xi�= I−�x��.

�i� Let �xi��M̄ − I+�y�.
Assume that x�M̄ − I+�y�. Then I−�x�� I+�y��� and ��I−�xi��� I+�y���. Thus,

−�xi�� I+�y��� for some i. This implies that xi� I+�y� for some i, which contradicts to xi�M̄

I+�y�. Thus, x�M̄ − I+�y� and M̄ − I+�y� is T-closed.

�ii� Let �xi��M̄ − I−�y�.
Assume that x�M̄ − I−�y�. Then �I−�xi�= I−�x�� I−�y� and xi�y for some i. This implies that

i� I−�y� which contradicts to xi�M̄ − I−�y�. Thus, x�M̄ − I−�y� and M̄ − I−�y� is T-closed.
�iii� Let �xi��J+�y�.
Since �I−�xi�= I−�x�, we have xi�x for each i by the remark following Proposition 4.1. Thus

y�xi�x. In other words, x�J+�y� and J+�y� is T-closed.
−
�iv� Let �xi��J �y�.

                                                                                                            



c

o

s

c
�

�
T

p

s

A

x

o

s
t

V

a
i

c

i

i

s

i

T
�
S

072503-6 Do-Hyung Kim J. Math. Phys. 47, 072503 �2006�

                        
Since xi�y, we have I−�xi�� I−�y� for each i. Thus, �I−�xi�� I−�y� and so I−�x�� I−�y�. So we
an conclude that x� I−�x�� I−�y�=J−�y�. Thus, J−�y� is T-closed. �

Since T is finer than Ā and Ā is Hausdorff, we can conclude that T is a Hausdorff topology

n M̄.

Proposition 4.4: Let � : �a ,b�→ �M̄ ,T� be a curve. Assume that for any sequence ti� �a ,b�
atisfying ti→b, we have ��ti�→p in T-topology. Then p�M̄ is the T end point of �.

Proof: Assume there exists a T-open neighborhood U of p such that for any ti� �a ,b� we can
hoose t� ti such that ��t��U. If we let ti=b−1/ i, then ti→b and we can choose si� ti such that
�si��U. Clearly, si→b but ��si�p in T-topology. This is a contradiction. �

We know that any timelike curve � : �a ,b�→M has an end point I−��� in Ā-topology. If ti

�a ,b� is a sequence such that ti→b, then we have I−���= � I−���ti��. Thus, ��ti�→ I−��� in
-topology. By the previous proposition, we have the following.

Corollary: I−��� is also an end point of a timelike curve � : �a ,b�→M in T-topology.

Though T is finer than Ā, we can say that the two topologies T and Ā share the same
roperties in the timelike directions in a sense, by the above corollary.

Let us assume that we have two topologies T1 and T2 on M. Then we can consider two
equential convergences with respect to T1- and T2-topologies and it is easy to show the following.

Lemma 4.1: Let T1 and T2 be two topologies defined on M and xi be a sequence of points in
M. Then �xi→x in T1Þxi→x in T2� if and only if �A is T2-closed ÞA is T1-closed�.

Proof: ⇒; Let A be T2 closed and �xi��A be such that xi→x in T1. Then, xi→x in T2. Since
is T2-closed, we have x�A and so A is also T1-closed.

⇐; Let U be a T2-neighborhood of x. Then, since U is T1-open and xi→x in T1, we have

i�U for all but finitely many. Thus we have xi→x in T2 �

The construction of T-topology on the causal completion extends the P̃-topology on M by use

f the sequential convergence. By the above lemma, the relation of T and P̃ can be given.

Proposition 4.5: The inclusion map i : �M , P̃�� �M̄ ,T� is a dense imbedding.
Proof: The imbeddedness follows from the construction of T and the previous lemma. Let

p��M, U be a T-open neighborhood of p and assume that U�M =�. Then M̄ −U is T-closed and
o it must contain all limits of convergent timelike sequence �xi�. Since p��M, there exists a
imelike sequence �xi� such that xi→p with xi�M =M −U. Since p�U, it is a contradiction. Thus,

M with P̃ topology is dense in M̄ with T-topology. �

. THE PATH TOPOLOGY HOMEOMORPHISM

Definition: A bijection f :M̄→ N̄ is a chronological isomorphism if x�yÛ f�x�� f�y� and

ntichronological isomorphism if x�yÛ f�y�� f�x�. Likewise, a bijection f :M̄→ N̄ is a causal
somorphism if x�yÛ f�x�� f�y� and anticausal isomorphism if x�yÛ f�y�� f�x�. A bijection

f :M̄→ N̄ is a conformal isomorphism if f is both �anti-� chronological isomorphism and �anti-�
ausal isomorphism.

In a Lorentzian manifold, it is known that the causal isomorphism and the chronological
somorphism are equivalent.4

The topology T is defined only in terms of chronological relations and so any chronological

somorphism f :M̄ → N̄ induces a T-homeomorphism. The chronological isomorphism has the

ame effects on the Ā-topology.

Proposition 5.1: If M and N are globally hyperbolic and f :M̄→ N̄ is either a chronological

somorphism or an antichronological isomorphism, then f is an Ā-homeomorphism.
Proof: We show that the above statement holds in the case of a chronological isomorphism.

he case of an antichronological isomorphism can be shown by the similar argument. Let x
�M. Without loss of generality, we can assume that I+�x�=� since M is globally hyperbolic.

+ −1
ince f is a chronological isomorphism, I �f�x��=� and f�x���N. Thus f��M���N. Since f is
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lso a chronological isomorphism, we have f��M�=�N. Thus f induces a chronological isomor-
hism �f �M :M→N and �f �M is also a causal isomorphism by Theorem 6.3 of Ref. 4. This implies
hat �f �M is a conformal isomorphism between M and N. Since the BS-causal boundary and its

opology Ā is constructed only in terms of the causal and chronological relations, we can conclude

hat f is an Ā-homeomorphism. �

Theorem 5.1: If f :M̄ → N̄ is a T-homeomorphism, then f is either a chronological isomor-
hism or an antichronological isomorphism.

Proof: First, we show that f��M���N. Let us assume not. Then there are p��M and q

N with f�p�=q. Since i : �M , P̃�� �M̄ ,T� is an imbedding, we can choose T-neighborhoods U of
p and V of q such that V�N and f :U→V is a T-homeomorphism. Then f :U−�M→V− f��M� is
˜ -homeomorphism since i : �M , P̃�� �M̄ ,T� is an imbedding. Since M is globally hyperbolic, �M

s T-closed in M̄ and thus f��M� is T-closed in N̄. Thus, V− f��M� is P̃-open in N and so we can
hoose future-directed timelike curve �1 and past-directed timelike curve �2 in V− f��M� with q

heir common end point. Since f−1 :V− f��M�→U−�M is a P̃-homeomorphism, one of f−1 ��1 and
f−1 ��2 is past-directed with p its end point. Since M is globally hyperbolic, it is a contradiction.

hus we have shown that f��M���N. Likewise, since f−1 : N̄→M̄ is also a T-homeomorphism, we
ave f−1��N���M and so we get f��M�=�N. Therefore, we can conclude that a

-homeomorphism f :M̄→ N̄ induces a P̃-homeomorphism �f �M :M→N. This implies that
�f �M :M→N is either a chronological isomorphism or an antichronological isomorphism by Theo-
em 2 of Ref. 4. Without loss of generality, we assume that �f �M :M→N is a chronological
somorphism. It remains to show that x�y implies that f�x�� f�y� when either x or y is in �M. In
ither case, there exists a future-directed timelike curve from x to y. Since �f �M is a conformal
iffeomorphism, f �� is a future-directed timelike cuve from f�x� to f�y�. Thus f�x�� f�y�. �

As stated above, the causal isomorphism between Lorentzian manifolds is equivalent to the

hronological isomorphism. Thus any T-homeomorphism f :M̄→ N̄ induces a causal isomorphism
�f �M :M→N and so we have shown the following theorem.

Theorem 5.2: If f :M̄→ N̄ is a T-homeomorphism, then f is a conformal isomorphism.

Whereas T is finer than Ā, by combining proposition 5.1 and theorem 5.1, we have the
ollowing theorem.

Theorem 5.3: A T-homeomorphism induces an Ā-homeomorphism.

We know that if f :M→N is a P̃-homeomorphism, then f is a conformal isomorphism. If, in
ddition, both M and N are strongly causal, the manifold topologies are the same as the Alexan-
rov topologies since the Alexandrov topology is defined only in terms of a chronological relation.

n other words, a P̃-homeomorphism induces an M-homeomorphism. By the above theorem, this
s indeed the case in the path topology of the BS-causal completion. Thus, we know that, in this
ense, the extended Alexandrov topology is natural to the causal completion.

I. DISCUSSION

If two space-times are chronologically isomorphic or causally isomorphic, then, clearly their
ausal boundaries have the same structures. Conversely, what can be said about the structures of
wo space-times if their causal boundaries have the same structure? Considering the fact that the
ausal boundary contains all the past and the future end points of all the inextendible causal curves
n our space-time, we can say that, in a sense, the causal boundary contains all the information of
he initial and the final states of our space-time. This is similar to the situation of the initial value
roblems or the boundary value problems of differential equation theories. Therefore, we may
xpect that the causal boundary determines the inner structure of our space-time to some extent.

In fact, the study of this paper was motivated by the question: To what extent does the
tructure of the causal boundary determine the inner causal structure of our space-time. If we keep
his in mind, it is natural to ask the following: If f :�M→�N is a T-homeomorphism, what is the

elation, if any, between the structures of M and N?
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We study the behavior of relativistic quantum particles in the space-times generated
by a rotating massive body and a moving mass current, in the weak field approxi-
mation. We solve the Dirac equation in these gravitational fields and calculate the
currents associated with the particles. It is shown that these solutions and the
currents depend on the angular momentum and on the velocity of the sources, in the
cases of a massive rotating body and a moving mass current, respectively. These
effects may be looked upon as a gravitational analog of the Aharonov-Bohm
effect. © 2006 American Institute of Physics. �DOI: 10.1063/1.2218671�

. INTRODUCTION

The study of relativistic quantum systems under the influence of gravitational fields goes back
o the pioneering works by Fock1 and Schrödinger,2 when the generalization of quantum mechan-
cs to curved spaces has been discussed, motivated by the idea of constructing a theory combining
uantum physics and general relativity. Along this line of research the hydrogen atom, for ex-
mple, has been studied in particular curved space-times.3,4 These investigations showed that the
nergy levels of an atom placed in a gravitational field is shifted as a result of the interaction of the
tom with the space-time curvature.4–6 These shifts of the atomic levels depend on the Riemann
urvature tensor at the position of the atom and can be used in principle to measure or put an upper
imit on the curvature of space-time at the position of the atom.

In a metric theory of gravitation, a gravitational field is related to a nonvanishing Riemann
urvature tensor. However, the presence of localized curvature can produce effects on the geodesic
otion and parallel transport in regions where the curvature vanishes. The best known example of

his nonlocal �global� effect is provided when a particle is transported along a closed curve which
ncircles an idealized cosmic string.7 In this case, the string is noticed at all. This situation
orresponds to the gravitational analog8 of the electromagnetic Aharonov-Bohm effect.9 These
ffects are of global origin rather than local. It is worth calling attention to the fact that different
rom the electromagnetic Aharonov-Bohm effect which is essentially a quantum effect, the gravi-
ational analog appears also at a purely classical context.

We also have an analog of the gravitational Aharonov-Bohm effect when particles are con-
trained to move in a region where the Riemann curvature does not vanish, but does not depend on
ertain parameters such as the angular momentum, as in the case of a weak gravitational field
rising from a rotating cylindrical shell10 which we will consider. In this situation, we can have

�Electronic mail: gmarques@df.ufpb.edu.br
�
Electronic mail: valdir@fisica.ufpb.br
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ravitational nonlocal effects associated with this parameter. A similar situation occurs when we
ave a gravitational field generated by a slowly moving mass current.11 In this case, the Riemann
urvature tensor does not depend on the velocity of the source, but we have a nonlocal effect on
he quantum system due to this parameter.

The existence of a gravitational analog of the electromagnetic Aharonov-Bohm effect was first
ointed out at the end of the 1960s.12–16 Studies concerning this subject were reported by many
uthors from that time up to now.17,18

The aim of this paper is to investigate the behavior of relativistic particles placed in the
ravitational field generated by a slowly rotating cylindrical shell10 and by a slowly moving mass
urrent.11 The gravitational effects are taken into account in the weak field approximation in which
ase the curvature does not depend on the angular momentum or on the velocity of the sources.

This paper is organized follows. In Sec. II, we introduce the gravitational fields to be consid-
red, namely, the gravitational field generated by a rotating cylindrical shell and by a slowly
oving massive current. In Sec. III, we obtain the solution of the Dirac equation and determine

he associated current. In Sec. IV, we do the same as the previous section, but now in the
pace-time generated by a moving mass current. Finally, in Sec. IV, we conclude with some
emarks.

I. WEAK GRAVITATIONAL FIELDS

In this section, we will present the space-times generated by an infinitely long and thin
ylindrical shell of matter which rotates slowly and by a cylindrical distribution of matter with
niform density along the z axis, which moves slowly with velocity v in the z direction.

First, let us consider the space-time generated by an infinitely long, infinitely thin massive
ylindrical shell rotating slowly around its axis. In the weak field approximation the metric reads10

ds2 = − �1 −
a���

2
�dt2 + �1 +

a���
2

��d�2 + �2d�2 + dz2� + 2bdtd� , �1�

here

a��� = − 8���� − �0�ln� �

�0
� �2�

nd

b��� = 4���0��2

�0
2���0 − �� + ��� − �0�� , �3�

ith ��x� being the unit step function.
The metric given by Eq. �1� is characterized by two parameters, namely, the linear mass

ensity � and the linear angular momentum density j=���0, with �0 and � being the radius of the
ylinder and the angular velocity of the source, respectively. This approximate solution is justified
n a domain in which the Newtonian potential generated by the thin massive cylindrical shell is

uch less than the unity which means that 	a��� 	 �1 and when b���2
0. The term with b���, in
his metric, being proportional to j is completely due to the rotation of the cylindrical shell.

In the weak field approximation, the Riemann curvature tensor outside the rotating shell is
ompletely determined by the function a��� only, if we neglect terms containing b���a���, 	a���	2,
r b���2, which is justified by the fact that 	a��� 	 �1 and we are considering that the source rotates
lowly around the z axis, which means that b���2
0, as already stated. Thus, due to these
onsiderations, the angular momentum is not present in the curvature, in this approximation. The
ontribution of the term with b��� is concentrated on the shell itself. This means that, in the weak
eld approximation, the local effects of curvature connected with the rotation of the cylindrical
hell are absent outside it. In this background space-time a study concerning the gravitational

10,19
haronov-Bohm effect has been done.
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The other space-time we will consider is generated by a cylindrical distribution of matter with
niform density along the z axis, which moves slowly with velocity v in the z direction. In the
eak field approximation, the line element given by11

ds2 = − �1 − �����dt2 + �1 + ������d�2 + �2d�2 + dz2� − 4v����dzdt , �4�

here ���� represents the Newtonian potential produced by this source and satisfies the condition
���2�0.

For this space-time, the curvature outside the distribution of matter does not depend on its
elocity, in the weak field approximation. This means that for the weak gravitational field associ-
ted with slowly moving mass currents, the local effects of the curvature associated with the
elocity of the source are absent outside it. In this space-time we also have a manifestation of the
haronov-Bohm effect.11,20

II. RELATIVISTIC QUANTUM SYSTEM IN THE SPACE-TIME OF A SLOWLY ROTATING
YLINDRICAL SHELL

In this section we will consider a massive spinor particle in the space-time of a slowly rotating
ylindrical shell. This particle obeys the covariant Dirac equation in a curved space-time, for a
assive spinor field �, which is given by

�i	��x��� − i	��x�
��x� − m���x� = 0, �5�

here 	��x� are the generalized Dirac matrices and are given in terms of the standard flat space
irac matrices 	�a� as

	��x� = e�a�
� �x�	�a�, �6�

here e�a�
� �x� are tetrad components defined by

e�a�
� e�b�

� ��a��b� = g��. �7�

ere and in what follows Greek indices are connected with tensor world indices �coordinate basis
ystem� and Latin indices denote Lorentz indices which are connected with a local Minkowski
oordinate system �tetrads�.

The product 	�
� that appears in Eq. �5� can be written as21

	��x�
��x� = 	�a��A�a��x� + i	�5�B�x�� , �8�

ith 	�5�= i	�0�	�1�	�2�	�3� and A�a� and B�a� given by

A�a� = 1
2 ���e�a�

� + e�a�
� 
��

� � �9�

nd

B�a� = 1
2�a��b��c��d�e

�b��e�c����e�
�d�, �10�

here �a��b��c��d� is the completely antisymmetric fourth-order unit tensor and the Christoffel
ymbols 
��

� are given by 
��
� = �1/�−g��� /�x����−g�.

In order to write the Dirac equation in the space-time generated by a rotating cylindrical shell

et us choose the following set of tetrads:
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e�a�
� =

1 +
a���

4
0

b

�
0

0 1 −
a���

4
0 0

0 0
1 −

a���
4

�

0

0 0 0 1 −
a���

4

� . �11�

Calculating the expresssions for A�a� and B�a� given by Eqs. �9� and �10�, respectively, and
ubstituting these results into Eq. �8�, we get the following result:

	�
� =
1

2�
�1 +

a���
2

�	�1�. �12�

Using the set of tetrads in �11�, we obtain that the generalized matrices 	��x�, are given by

	0�x� = �1 +
a���

4
�	�0�,

	1�x� = �1 −
a���

4
�	�1�,

�13�

	2�x� =
1

�
�1 −

a���
4

�	�2�,

	3�x� = �1 −
a���

4
�	�3�.

Thus, substituting Eqs. �12� and �13� into the Dirac equation in the curved space-time given
y �5�, and considering that the particle is restricted to move in a narrow region such that a��� is
pproximately constant and equal to a1, we will get

�i�1 +
a1

4
��t − m��2 −

b

�
�t�3 + i�1 −

a1

4
����3 −

1

�
�1 −

a1

4
����3

− i�1 −
a1

4
��z�3 + i

1

2�
�1 −

a1

4
��4 = 0,

�i�1 +
a1

4
��t − m��1 +

b

�
�t�4 + i�1 −

a1

4
����4 −

1

�
�1 −

a1

4
����4

− i�1 −
a1��z�3 + i

1 �1 −
a1��4 = 0,
4 2� 4
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�− i�1 +
a1

4
��t + m��3 −

b

�
�t�2 − i�1 −

a1

4
����2 −

1

�
�1 −

a1

4
����2

+ i�1 −
a1

4
��z�1 + i

1

2�
�1 −

a1

4
��2 = 0,

nd

�− i�1 +
a1

4
��t + m��4 +

b

�
�t�1 − i�1 −

a1

4
����1 −

1

�
�1 −

a1

4
����1

− i�1 −
a1

4
��z�1 − i

1

2�
�1 −

a1

4
��1 = 0, �14�

here �1,�2,�3,�4 are the components of the four spinor

� =
�1

�2

�3

�4

� �15�

nd we have used the standard representation of the Dirac matrices 	�a�.
To solve the set of equations given in �14�, let us choose

�1 = �E + me−iEt+il�+ikzu1��� , �16�

�2 = �E − me−iEt+i�l+1��+ikzu1��� , �17�

nd consider �1=�3, �2=�4, reducing this problem to a two-dimensional one. Thus, the set of
quations in �14� turns into the following pair of equations for u1��� and u2���:

� d2

d�2 +
1

�

d

d�
+

1

�2 �l + 2bE�2 + �1 −
a1

2
��E2 − m2��u1��� = 0 �18�

nd

� d2

d�2 +
1

�

d

d�
−

1

�2 �l + 2bE + 1�2 + �1 −
a1

2
��E2 − m2��u2��� = 0, �19�

hose solutions are given by

ui = Ci,l
�1�Jv+i−1�k�� + Ci,l

�2�Nv+i−1�k�� , �20�

here i=1,2, k2= �1−a1 /2��E2−m2�, v= l+2bE and Ci,l
�1�, Ci,l

�2� are constant spinors. The functions

v+i−1�k�� and Nv+i−1�k�� are Bessel functions of first and second kind, respectively.
The results obtained show us that there exist a dependence with the angular momentum of the

ource, although this quantity does not have any influence on the curvature, in the limit of weak
eld we are considering.

To calculate the probability current and exhibit explicitly the influence of the spin on the
rajactories of the particle, let us write the Dirac probability current in the Gordon decomposition

orm which is given by
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j� =
1

2m
����̄����� +

i

4m
g����̄��� − ����̄��� +

i

4m
�̄����	�,	�� + �	�,��	����

+
i

2m
�̄�	�
�,	��� . �21�

In order to calculate the current associated with a particle in this space-time, we need the
ollowing relations:

�01 = i	�0�	�1� +
ib

�
	�2�	�1�,

�02 =
i

�
	�0�	�2� +

ib

�2	�2�	�2�,

�03 = i	�0�	�3� +
ib

�
	�2�	�3�,

�12 = i	�1�	�0� +
ib

�
	�1�	�2�,

�13 = i	�1�	�3�,

�23 = i�1 −
a���

2
�	�1�	�3�,

�	�
�,	0� =
1

�
�1 +

a���
2

�	�1�	�0� +
b

�2	�1�	�2�,

�	�
�,	1� = 0,

�	�
�,	2� =
2

�2	�1�	�2�,

�	�
�,	3� =
2

�
	�1�	�3�. �22�

Substituting the set of equations �22� into Eq. �21�, we obtain the result

jt = �� · P� −
2b

�
�1

�
Mz − ��� � M���� + �conv,

j� = − �tP� + ��� � M��� −
2b

�
�tMz + j�,conv,

�23�

j� = − �tP� + ��� � M��� −
1

Mz + j�,conv,

�
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jz = − �tPz + ��� � M��z −
2b

�
�tM� + jz,conv,

here the convective part �subscript conv� is derived from �i /4m�g����̄���− ����̄���. The
omponents of the polarization densities are given by

P� =
i

2M
�̄	�0�	���� ,

P� =
i

2M
�̄	�0�	���� , �24�

Pz =
i

2M
�̄	�0�	�z�� ,

here 	�=	1 cos �+	2 sin � and 	�=	1 sin �+	2 cos �.

The components of the magnetization current density vector, M�, are

M� =
i

4M
�̄�	���,	�z��� ,

M� =
i

4M
�̄�	�z�,	����� , �25�

Mz =
i

4M
�̄�	���,	����� .

These results show us that the current also depends on the angular moment of the source, as
ell as on the Newtonian potential, a���, in the region where the particle is living.

It is worth calling attention to the fact that the Riemann curvature tensor, in this case, does not
anish, but does not depend on the angular momentum, and the solution and the current depend on
he angular momentum of the source. This is a manifestation of the global features of the space-
ime generated by a rotating cylindrical shell, in the weak field approximation, and represents a
ravitational analog of the Aharonov-Bohm effect.

V. RELATIVISTIC QUANTUM SYSTEM IN THE SPACE-TIME
F A MOVING MASS CURRENT

In this section, we will consider a massive spinor particle in the weak gravitational field due
o a moving mass current which moves slowly with velocity, v, in the z direction.

In order to solve the Dirac equation for a massive particle, given by Eq. �5�, in this space-time

iven by the line element �4�, let us choose the following set of tetrads:
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e�a�
� =

1 +
����

2
0 0 − 2v����

0 1 −
����

2
0 0

0 0
1 −

����
2

�

0

0 0 0 1 −
����

2

� . �26�

In this space-time, the product 	�
� that appears in the Dirac equation is given by

	�
� = 	�a�A�a� =
1

2�
�1 −

�

2
�	�1�. �27�

In this case, the generalized 	��x� matrices are expressed in terms of the Dirac matrices as

	0�x� = �1 +
����

2
�	�0� − 2v����	�3�,

	1�x� = �1 −
����

2
�	�1�,

�28�

	2�x� =
1

�
�1 −

����
2

�	�2�,

	3�x� = �1 −
����

2
�	�3�.

Substituting Eqs. �27� and �28� into �5�, we obtain the following result for the Dirac equation
n this space-time:

�AE − m�R1 − �Bk + iv̄E�aR1 + �iB
d

d�
+

iBl

�
+

iB

2�
�R2 = 0, �29�

�AE − m�R2 − �Bk + iv̄E�R2 + �iB
d

d�
−

ilB

�
+

iB

2�
�R1 = 0, �30�

− �AE + m�aR1 + �Bk + iv̄E�R1 − �iB
d

d�
+

ilB

�
+

iB

2�
�R2 = 0, �31�

− �AE + m�bR2 + �Bk − iv̄E�R2 + �− iB
d

d�
+

ilB

�
−

iB

2�
�R1 = 0, �32�

here A=1+�1 /2, B=1−�1 /2, and v̄=2v�1, and we have considered that the components of the
pinor, � j, solution of the Dirac equation can be written as

� j = e−iEtei�l�+kz�Rj���, j = 1,2,3,4 �33�

ith R3=R1 e R4=R2.

Combining Eqs. �29�–�32�, we obtain the following equations for R1��� and R2���,
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B2d2R1

dr2 +
B2

�
�l +

1

2
�dR1

dr
+ �B2

�2�l�l + 1� +
1

4
−

1

2B
� + pq�R1 = 0 �34�

nd

B2d2R2

dr2 +
B2

�
�l −

1

2
�dR2

dr
+ �B2

�2�l�l + 1� −
1

4
−

1

2B
� − p�q��R2 = 0, �35�

here

p = AE − m − �Bk + iv̄E� ,

q = AE − m − �Bk + iv̄E� ,

p� = v̄E + Bk − �AE + m� ,

q� = v̄E + Bk + �AE + m� .

The solutions of �34� and �35� are given by

R1��� = C1��1/2−u/2B�J��� �

B
�� + C2��1/2−u/2B�J��� �

B
�� �36�

nd

R2��� = C1��
�1/2−u/2B�J�̄�� �̄

B
�� + C2��

�1/2−u/2B�N�̄�� �̄

B
�� , �37�

here

� =
1

2
�B2 − 2uB + u2 − 4�2B

B2 ,

�̄ =
1

2
�B2 − 2ūB + ū2 − 4�̄2B

B2 ,

� = B2�l�l − 1� +
1

4
−

1

2B
� ,

� = pq ,

ū = − B2�1

2
− l� ,

u = B2�l +
1

2
� ,

�̄ = − B2�l +
1� ,

4
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�̄ = p�q�.

ote that these solutions depend on the velocity of the source. In this case the Riemann tensor
oes not depend on the velocity of the source, and therefore, the obtained result means that the
ependence of the solution with the velocity is of purely global origin.

The current can be computed using Eq. �21�. To this we will use the following expressions:

�01 = i�	�0�	�1� − 2v�	�3�	�1�� ,

�02 =
i

�
�	�0�	�2� − 2v�	�3�	�2�� ,

�03 = i�	�0�	�3� − 2v�	�3�	�3�� ,

�38�

�12 =
i

�
	�1�	�2�,

�13 = i	�1�	�3�,

�32 =
i�1 − ��

�
	�3�	�2�,

�	�
�,	0� =
2

�
	�1�	�0� −

4v�

�
	�1�	�3�, �39�

�	�
�,	1� = 0, �40�

�	�
�,	2� =
2�1 − ��

�
	�1�	�3�. �41�

Substituting these results into Eq. �22�, we get

jt = �� · P� −
2v
�2 M� + �conv,

j� = − �tP� + ��� � M��� −
2v
�

�tM� + j�,conv,

j� = − �tP� + ��� � M��� + j�,conv,

jz = − �tPz + ��� � M��z −
2v
�

�tM� + jz,conv,

here the components polarization and magnetization vectors, P� and M�, respectively, are given by

P� =
i

�̄	�0�	���� ,

2M
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P� =
i

2M
�̄	�0�	���� ,

Pz =
i

2M
�̄	�0�	�z�� ,

M� =
i

4M
�̄�	���,	�z��� ,

M� =
i

4M
�̄�	�z�,	����� ,

Mz =
i

4M
�̄�	���,	����� .

From the obtained results, we conclude that the solution of the Dirac equation, as well as the
urrent associated with the particle, depend on the velocity of the source, which does not have any
nfluence on the curvature, in the weak field approximation. This is a manifestation of an analog
f the electromagnetic Aharonov-Bohm effect, but in the present case in the context of the gravi-
ational field.

. CONCLUDING REMARKS

The obtained results show us that the solutions of the Dirac equation and the associated
robability currents depend on the angular momentum and on the velocity. The parameters deter-
ine the gravitational fields we have considered, namely, the gravitational fields generated by a

lowly rotating cylindrical shell and by a slowly moving mass current.
It is worth calling attention to the fact that in the region of motion of the massive spinor-1 /2

article, the Riemann curvature, in the weak field approximation, does not depend on the angular
omentum or on the velocity of the source, respectively, for the rotating cylindrical shell and the
oving mass current, but the solutions and probability currents for both cases do depend on these

uantities. This result means that even in the situation in which the particle is constrained to move
n a region where the Riemann curvature does not depend on the angular, or on the velocity of the
ource, it exhibits a gravitational effect associated with these quantities. This dependence on
arameters which do not have any influence on the Riemann curvature tensor, in the weak field
pproximation, is a manifestation of a global phenomenon associated with these gravitational
elds, which is called gravitational Aharonov-Bohm effect.
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Here, a version of the Arnol’d conjecture, first studied by Conley and Zehnder,
giving a generalization of the Poincaré-Birkhoff last geometrical theorem, is proved
inside Viterbo’s framework of the generating functions quadratic at infinity. We
give brief overviews of some tools that are often utilized in symplectic topology. ©
2006 American Institute of Physics. �DOI: 10.1063/1.2211930�

. INTRODUCTION

Henri Poincaré has been the main pioneer of the modern dynamical systems theory. Among
he large multitude of his contributes, he formulated what is now called “Poincaré’s last geometri-
al theorem” in order to schematize a crucial class of problems related to the search of period
olutions in Hamiltonian dynamics:

�P� Any area preserving diffeomorphism of the annulus A= ��x ,y��R2 :a�x2+y2�b� into
tself, uniformly rotating the two boundary circles of radius a and b in opposite directions, admits
t least two geometrically distinct fixed points.

The first rigorous proof of this statement was given in the 1920s by Birkhoff by means of a
echnique that seems not easily extendible to greater dimensional systems. In a following paper,4

e remarked on the power of “maximum-minimum considerations” in the existence of periodic
rbits. Nowadays, theseaspects are well ruled in the Lusternik-Schnirelman setting: in this frame-
ork, one can select minimax critical values �connected to periodic orbits� of suitable generating

unctions—quadratic at infinity �see below�.
In the 1960s, in a series of papers Arnol’d proposed his celebrated conjecture �see Ref. 1�:
�A� Any Hamiltonian diffeomorphism of a compact symplectic manifold �M ,�� possesses at

east many fixed points as a function f :M→R on M possesses critical points.
This new and intriguing topological question has been answered by Conley and Zehnder,10 in

he case where M =T2n; in that same paper they also proved that
�C-Z� For a Hamiltonian H :R�T*Tn→R, such that for �p��C the related vector field XH is

p-linear and independent of q�Tn and t�R, the time-one flow �H
1 of XH admits at least many

xed points as a function f :Tn→R on Tn possesses critical points.
It is interesting to note that this last statement, directly descending from Poincaré’s last

eometrical theorem, in a sense comes back to the original setting of analytical mechanics in
hich it arose. E.g., the above Hamiltonians are at once interpreted as describing a physical

andscape in which a number of particles does interact among them only under a suitable energy
hreshold �low energy scattering�:

H�q,p� = 1/2�p�2 + f�q,p�, q � Tn, f � O�1� .

�Electronic mail: obern@math.unipd.it
�
Electronic mail: cardin@math.unipd.it
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ncidentally, we can note that this is quite near to a typical Hamiltonian setting of Nekhoroshev
erturbation theory: H�q , p�=1/2�p�2+�f�q , p�.

Conley and Zehnder introduced a sort of Liapunov-Schmidt reduction technique, now known
s Amann-Conley-Zehnder reduction, based on a suitable Fourier cutoff on the loop space and
iving, at last, a finite dimensional variational problem. Later, Chaperon �see Ref. 5� proposed his
ew ingenious broken geodesics reduction, showing it is not indispensable to start from the infinite
imensional formulation of the problem. In both cases, the estimates on fixed points of �H

1 are
roved using the isolated invariant sets and the Morse index, as presented by Conley.9

More recently, Golé12,13 gave an alternative proof of the statement �C-Z�, extending Tn to any
ompact manifold and using a variation of Chaperon’s argument. The finite variational problem
hat in such a way he obtained was solved by utilizing techniques based on the Conley index and
urther results on it by Floer. Furthermore, the author pointed out that his function, defining the
bove finite variational problem, was not a generating function quadratic at infinity, an essential
roperty in order to agreeably apply the Lusternik-Schnirelman theory.

Nowadays, a short and nice proof of this theorem can be built up using the fine papers6,7 by
haperon.

After the impressive paper,22 there exists a rather common growing prejudgment that the
ramework of the generating function quadratics at infinity and the Lusternik-Schnirelman theory
hould be the right environment to better understand many actual aspects of symplectic topology,
s in the Arnol’d conjecture �see Ref. 15, p. 216�.

In this paper, by assuming this point of view, we restart from the original statement �C-Z�, for
n. In genuine framework of the generating function quadratics at infinity, and then using the now
lassical results of Chaperon, Chekanov, Laudenbach, and Sikorav and Viterbo, we propose a
nite variational problem consisting of a generating function quadratic at infinity: a suitable
pplication of the Lusternik-Schnirelman theory in the degenerate case, and the Morse theory in
he nondegenerate one, produces the expected result. By making this goal, we give brief overviews
n some of the tools used here, and that are often involved in symplectic topology.

I. PRELIMINARIES

. Generating functions

Let N be a compact manifold and L�T*N a Lagrangian submanifold. If L=im�df�=Lf, where
f :N→R is a C2 function, then the set crit�f� of the critical points of f coincides with the inter-
ection of Lf with the zero section 0N�T*N:

crit�f� = Lf � 0N.

n the more general case, Lagrangian submanifolds do not have the above graph structure Lf, and
classical argument by Maslov and Hörmander shows that, at least locally, every Lagrangian

ubmanifold is described by some generating function like S :N�Rk→R, �x ,���S�x ,��, in the
ollowing way:

LS ª �	x,
�S

�x
�x,��
:

�S

��
�x,�� = 0� ,

here 0 is a regular value of the map �x ,����S /���x ,��.
Some authors �e.g., Benenti, Tulczyjew, and Weinstein� say that in this case the generating

unction S is a Morse family. In order to apply the calculus of variations to generating functions,
ne needs a condition implying the existence of critical points. In particular, the following class of
enerating functions has been decisive in many issues:

Definition 2.1: A generating function S :N�Rk→R is quadratic at infinity (GFQI) if for ���
C

T
S�x,�� = � Q� , �1�
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here �TQ� is a nondegenerate quadratic form.
In the literature �see, e.g., Refs. 16 and 23� two main operations on the generating functions

hat leave the corresponding Lagrangian submanifolds invariant are known. Lemmas 2 and 3
elow recollect these facts. The globalization was realized by Viterbo �see Ref. 21�.

Lemma 2.2: Let S :N�Rk→R be a GFQI and N�Rk� �x ,��� �x ,��x ,����N�Rk a map
uch that, "x�N,

Rk � � � ��x,�� � Rk

s a diffeomorphism. Then S1�x ,��ªS�x ,��x ,��� generates the same Lagrangian submanifold:

S1
=LS.
Proof: Since � is a diffeomorphism, �S1 /��=�S /���� /��=0 if and only if �S /��=0. More-

ver, �S1 /�x=�S /�x+�S /���� /�x and it is immediately verified that 0 is a regular value for
S1 /���x ,��. �

Lemma 2.3: Let S :N�Rk→R be a GFQI. Then

S1�x,�,	� ª S�x,�� + 	TB	 ,

here 	�Rl and 	TB	 is a nondegenerate quadratic form, generates the same Lagrangian
ubmanifold: LS1

=LS.
Proof. �S1 /���x ,� ,	�=0 if and only if �S /���x ,��=0. Moreover, �S1 /�	�x ,� ,	�=0 if and

nly if B	=0, that is 	=0. Thus

� �S1

�x
�

�S1/��=0,�S1/�	=0
= � �S

�x
�

�S/��=0
.

�

Finally, as a third—although trivial—invariant operation, we observe that by adding to a
enerating function S any arbitrary constant c�R, the described Lagrangian submanifold is in-
ariant: LS+c=LS. Problems 1 and 2 below have been crucial in the global theory of Lagrangian
ubmanifolds and their parameterizations.

. When does a Lagrangian submanifold L�T*N admit a FGQI?

. If L admits a GFQI, when can we state the uniqueness of it �up to the operations described
above�?

he following theorem �see Ref. 18� partially answers the first question.
Theorem 2.4: (Chaperon-Chekanov-Laudenbach-Sikorav) Let 0N be the zero section of T*N

nd ��t�t��0,1� a Hamiltonian isotopy. Then the Lagrangian submanifold �1�0N� admits a GFQI.
The answer to the second problem is due to Viterbo:
Theorem 2.5: (Viterbo) Let 0N be the zero section of T*N and ��t�t��0,1� a Hamiltonian

sotopy. Then the Lagrangian submanifold �1�0N� admits a unique (up to the operations described
bove) GFQI.

The theorems above �see also Ref. 20� still hold in T*Rn, provided that ��t�t��0,1� is a flow of
compactly supported Hamiltonian vector field.

. Lusternik-Schnirelman theory

Let f :N→R be a C2 function. We shall assume that either N is compact or f satisfies the
alais-Smale �PS� condition:

�PS� Any sequence �xn� such that �f�xn�→0 and f�xn� is bounded, admits a converging
ubsequence.

We recall now some results of the Lusternik-Schnirelman theory, which allow us to associate
ritical values of f to nonvanishing relative cohomology classes and to give a lower bound to the
umber of critical points of f in terms of the topological complexity of N.
Let us define the sublevel sets
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N

ª �x � N:f�x� � 
� . �2�

PS� condition guarantees the well-defined gradient vector field �f , whose flow realizes a diffeo-
orphism between N� and N
 whenever no critical values exist in �� ,
�:

Proposition 2.6: Let ��
. If f has no critical points in N
 \N�, then H*�N
 ,N��=0.
Thus if H*�N
 ,N���0, then in N
 \N� there exists at least one critical point of f , with critical

alue in �� ,
�. For � �� ,
�, let i :NN
 be the inclusion.
Definition 2.7: For every u�H*�N
 ,N��, u�0, we define:

c�u, f� ¬ inf� � ��,
�:i
*u � 0� ,

here

i
*:H*�N
,N�� → H*�N,N��

enotes the pull-back of the inclusion.
This Definition provides a tool to detect critical values, indeed:
Theorem 2.8. c�u , f� is a critical value of f .
The main result of this construction consists of the following.
Theorem 2.9. �Cohomological Lusternik-Schnirelman theory� Let 0�u�H*�N
 ,N�� and v

H*�N
� \H0�N
�.

.

c�u Ù v, f� � c�u, f� . �3�

. If (3) is an equality �c�uÙv , f�=c�u , f�= :c�, set Kc= �x :df�x�=0, f�x�=c�, then, for every
neighborhood U of Kc, v is not vanishing in H*�U�, and the common critical level contains
infinitely many critical points.

orollary 2.10: Let N be a compact manifold. The function f :N→R has at least a number of
ritical points equal to the cup-length of N:

cl�N� ª max�k: $ v1, . . . ,vk−1 � H*�N� \ H0�N�s . t . v1 Ù . . . Ù vk−1 � 0�. �4�

roof: Apply Theorem 2.9 with �� inf f , sup f �
, and u=1�H*�N ,Ø�=H*�N�. �

By Corollary 2.11 below, we verify that the preceding estimate on the number of critical
oints of f still holds in the noncompact case whenever GFQI f are taken into account.

Corollary 2.11: Let N be a compact manifold and f :N�Rn→R be a GFQI, f�x ,��=Q��� out
f a compact set in the parameters �. Then, for c�0 large enough, there exist 0�u
H*�fc , f−c� and v1 , . . . ,vk−1 as in (4) such that

u Ù p*v1 Ù . . . Ù p*vk−1 � 0,

here p :N�Rn→N is the canonical projection. Consequently, the GFQI f :N�Rn→R has at
east cl�N� critical points.

Proof: Let us first observe that for c�0 large enough, the sublevel sets of f are invariant from
homotopical point of view: f±c=N�Q±c, and f±c̄ retracts on f±c for any c̄�c. Let AªQ−�c+��,
�0 small. Then the isomorphisms below �the first one by excision and the second one by

etraction� hold:

H*�Qc,Q−c�  H*�Qc \ Å,Q−c \ Å�  H*�Di,�Di� ,

here i is the index of the quadratic form Q and Di denotes the disk �of radius �c� in Ri.

onsequently
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Hh�Qc,Q−c�  Hh�Di,�Di� = � 0 if h � i

�R if h = i
�.

o conclude in the noncompact case N�Rn, by the Künneth isomorphism

H*�N�  Hc
*+i�N � Ri�

nd the homotopy argument

Hc
*�N � Ri�  H*�N � Di,N � �Di� ,

he following isomorphism,

H*�N� � v � q*� Ù p*v � H*+i�N � Di,N � �Di� ,

olds, where p :N�Rn→N, q= �q1 ,q2� : �N�Di ,N��Di�→ �Di ,�Di� are the standard projections.
ow we apply Theorem 2.9 with u=q*�; since q*�Ù p*v1Ù . . . Ù p*vk−1=q*�Ù p*�v1Ù . . . Ùvk−1�
0 whenever v1Ù . . .vk−1�0, then the number of critical points of the GFQI f :N�Rn→R is at

east cl�N�. �

II. THE HAMILTONIAN SETTING

Let T*Rn�R2n= ��q , p� :q�Rn , p�Rn� be endowed with the standard symplectic form �
dpÙdq=�i=1

n dpiÙdqi.
On �R2n ,�� we consider the-time-dependent globally Hamiltonian vector field XH given by

H�t,q,p� � C2�R � R2n;R� ,

eriodic in q of period 2� and

H�t,q,p� =
1

2
�p�2 if �p� � C � 0. �5�

ur aim is to draw a new proof of a popular version, due to Arnol’d, of Poincaré’s last geometrical
heorem �see Refs. 6, 7, 10, and 12� inside Viterbo’s framework of symplectic topology.22

. Properties of flows on the cotangent of the torus

In connection with the above Hamiltonian H, let �here, as in other analogous circumstances,
e mean �H

t
ª�H

t,0� �H
t be the flow of the Hamiltonian vector field XH, ��XH ,	�=−dH�	�, so that

H=J�H, where J is the symplectic 2n-matrix. The n-torus is denoted by Tn=Rn /2�Zn. There-

ore a Hamiltonian H̄ and the related flow �
H̄

t
are well defined on T*Tn �see Corollary 3.2 below�:

t is standard matter to see that
Proposition 3.1: The flow �H

t associated to H satisfies

��H
t �q�q + 2�k,p� = ��H

t �q�q,p� + 2�k ,

��H
t �p�q + 2�k,p� = ��H

t �p�q,p� ,

n 2n
k�R and "�q , p��R .
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We denote by �q��Tn
ªRn /2�Zn the class of q�Rn. From the above deductions it follows

hat
Corollary 3.2: The flow of XH̄ is

�XH̄

t ��q�,p� = ���XH,q
t �q,p��,�XH,p

t �q,p�� . �6�

. The splitting H=H0+ f

We remind that the Hamiltonian H coincides with 1
2 �p�2 if �p��C�0. Consequently, outside of

his compact set �in the p variables� the flow associated to the Hamiltonian H reduces to

Rn � �p:�p� � C� → Rn � �p:�p� � C� ,

�q,p� � �H
t �q,p� = �q + tp,p� .

e split H as the sum of the Hamiltonian H0ª
1
2 �p�2 and a Hamiltonian f , hence necessarily

ompactly supported in the p variables,

H = H0 + f:R � Rn � Rn → R ,

�t,q,p� � H�t,q,p� = H0�p� + f�t,q,p� .

enoting by �0
t the flow related to H0, we define the Hamiltonian K as the pull-back of f with

espect to �0
t :

K:R � Rn � Rn → R ,

K ª ��0
t �*f , i.e., K�t,q,p� = H�t,q + tp,p� −

�p�2

2
.

his Hamiltonian K, which is compactly supported in the p variables like f , will be essential in the
ollowing sections. We indicate now �K

t , the flow of K, and write down the following proposition,
hich is, essentially, a result of Hamilton14 �see also Ref. 11�.

Proposition 3.3: Let �H
t , �0

t , and �K
t be the flows of H=H0+ �H−H0�, H0, and K= ��0

t �*�H
H0�, respectively. We have

�H
t �q,p� = �0

t � �K
t �q,p� ,

�q , p��Rn�Rn and "t�R.
We recall some technical premises to the proof of this fact.
Definition 3.4: (Push-forward) Let N be a manifold and � a diffeomorphism of N into itself,

N→
�

N ,

x � y = ��x� .

he push-forward �* of a vector field X is defined as follows:

�*X�y� ª d���−1�y��X��−1�y�� .

Below, we will use this definition with N=T*Rn and �=�0
t .� The following Lemma is a central

esult of the canonical transformations theory.
Lemma 3.5: Let M be a manifold and � a symplectic diffeomorphism of T*M into itself, then,

*
or every Hamiltonian function L :T M→R,
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�*XL = X�*L = XL��−1.

roof.

d

dt
��0

t � �K
t ��q,p� = XH0

��0
t � �K

t �q,p�� + d�0
t ��K

t �q,p��XK��K
t �q,p�� = XH0

��0
t � �K

t �q,p��

+ d�0
t ��0

−t � �0
t � �K

t �q,p��XK��0
−t � �0

t � �K
t �q,p��

= XH0
��0

t � �K
t �q,p�� + ��0

t �*XK��0
t � �K

t �q,p��

= �XH0
+ X��0

t �*K���0
t � �K

t �q,p�� = XH0+f��0
t � �K

t �q,p��

= XH��0
t � �K

t �q,p�� .

�

. The “graph” and the “cotangent” structures of R4n

We introduce now the linear symplectic isomorphism h, from the “graph” structure to the
cotangent” structure:

h:�T*Rn � T*Rn,�Rn � �Rn� → �T*�T*Rn�,�R2n� ,

�q,p,Q,P� � �q,P,p − P,Q + P − q� . �7�

he following Lagrangian submanifold F of �T*Rn�T*Rn ,�Rn � �Rn�,

F ª ��q,p,q − p,p�:�q,p� � T*Rn� , �8�

s mapped by h to the zero section 0R2n: h�F�=0R2n �R4n.
Since we are looking for fixed points of �H

1 , we denote by �H and �K the graphs of �H
1 and �K

1

n �T*Rn�T*Rn ,�Rn � �Rn�, respectively, and by � the diagonal of T*Rn�T*Rn=R4n. It comes
ut that

�q̄, p̄� � T*Rn is a fixed point of �H
1 ,

that is, by Proposition 3.3,

�q̄, p̄,��0
1 � �K

1 �q�q̄, p̄�,��0
1 � �K

1 �p�q̄, p̄�� � �H � � ,

if and only if, setting

�̂0
−1�q,p,Q,P� ª idR2n � �0

−1�q,p,Q,P� = �q,p,Q − P,P� ,

and using F in �8� ,

�q̄, p̄,��K
1 �q�q̄, p̄�,��K

1 �p�q̄, p̄�� � �̂0
−1��H� � �̂0

−1��� = �K � F ,
if and only if, using h ,
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h�q̄, p̄,��K
1 �q�q̄, p̄�,��K

1 �p�q̄, p̄�� � h��K� � h�F� = h��K� � 0R2n.

hus, we claim that the periodic time-one solutions, corresponding to fixed points of �H
1 , are

aught by the critical points of a �possible� generating function for h��K�. Furthermore, they are
ontained in the region Tn� �p : �p��C�. In fact, on Tn� �p : �p��C� the Hamiltonian system is
rivially integrable and in such a case the tori Tn� �p� are invariant under the flow

H
t : �q , p�� �q+ tp , p�. Consequently, the nontrivial periodic solutions of �

H̄

1
, corresponding pre-

isely to the fixed points of �H
1 , must lie in Tn� �p : �p��C� and are contractible loops on Tn.

V. EXISTENCE FOR GENERATING FUNCTIONS

Our original problem has been translated into the investigation of h��K��0R2n. The Lagrang-
an submanifold h��K�,

h��K� = ��q,��K
1 �p�q,p�,p − ��K

1 �p�q,p�,��K
1 �p�q,p� + ��K

1 �q�q,p� − q��,

� " �q,p� � T*Rn� � �T*R2n,�R2n� ,

n a neighborhood of infinity �in the p variables� results:

h��K� = ��q,p,0,p�, " q � Rn, " p � Rn:�p� � C� .

n this section we study its structure, proving that it is the image �through a suitable symplectic

somorphism � of �T*R2n ,�R2n�� of another Lagrangian submanifold, denoted by h̄��K�, which is
sotopic to the zero section of T*R2n, so that it admits a GFQI �Theorem 2.4�. This is crucial in
rder to gain the existence of a generating function for h��K�. In fact, by means of a natural

omposition of the above generating functions for h̄��K� and for �, we will be able to construct a
FQI for h��K�.

. The factorization of the map h

We introduce the following linear two maps h̄ �introduced by Sikorav in Ref. 19 and used by
iterbo in Ref. 22� and �:

h̄:�T*Rn � T*Rn,�Rn � �Rn� → �T*�T*Rn�,�R2n� , �9�

�q,p,Q,P� � 	q + Q

2
,
p + P

2
,p − P,Q − q
 ,

�:�T*�T*Rn� = T*R2n,�R2n� → �T*�T*Rn� = T*R2n,�R2n� ,

�q,p,Q,P� ª �x0,y0� � �x1,y1� ¬ 	2q − P

2
,
2p − Q

2
,Q,

2P + 2p − Q

2

 . �10�

t results in the following well-defined map on the quotient tori structures:

�̃:T*�T*Tn� → T*�T*Tn� ,

��q�,p,Q,P� � 	�2q − P

2
�,

2p − Q

2
,Q,

2P + 2p − Q

2

 ,
nd the following diagram is commutative:
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t is standard matter to see that the maps � and h̄ are symplectic isomorphisms and it is easy to

heck that the factorization h=� � h̄ holds:

. The Lagrangian submanifold h̄„�K…

This section is devoted to the proof of the following

Proposition 4.1: The Lagrangian submanifold h̄��K�� �T*R2n ,�R2n� admits a GFQI,

1�q , p ;��, 2�-periodic in the q variables.
Proof: We observe that like H also the Hamiltonian K is periodic of the 2�-period in the q

ariables.:

K�t,q + 2�k,p� = H�t,q + 2�k + tp,p� −
�p�2

2
= H�t,q + tp,p� −

�p�2

2
= K�t,q,p� ,

t�R, "�q , p��R2n, and "k�Zn. Moreover, the flow �K
t =�0

−t ��H
t inherits from the flow �H

t �see
roposition 3.3� the following properties:

��K
t �q�q + 2�k,p� = ��K

t �q�q,p� + 2�k ,

��K
t �p�q + 2�k,p� = ��K

t �p�q,p� ,

�q , p��R2n , "k�Zn.
Consequently, for all fixed t�R a flow �̃K

t,0 in T*Tn are well-defined results, in particular, the
ollowing definition it is independent of the choice of q in the class �q�:

�̃K
t,0��q�,p� = ���̃K

t,0�q��q�,p�,��̃K
t,0�p��q�,p�� ª ����K

t �q�q,p��,��K
t �p�q,p�� ,

ere we mean � : �q , p�→ ��q� , p�.
Similarly to �K, we indicate by �̃K the graph of �̃K

1,0:

�̃K � �T*Tn � T*Tn,�Tn � �Tn� .

¯
he Lagrangian submanifold h��K�,
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h̄��K� = �	q + ��K
1 �q�q,p�
2

,
p + ��K

1 �p�q,p�
2

,p − ��K
1 �p�q,p�,��K

1 �q�q,p� − q
, " �q,p�

� T*Rn� � �T*R2n,�R2n� ,

n a neighborhood of infinity �in the p variables� results:

h̄��K� = ��q,p,0,0�, " q � Rn, " p � Rn:�p� � C� .

t is easy to verify that if �q , p ,Q , P�� h̄��K�, then "k�Zn�q+2�k , p ,Q , P�� h̄��K�. Therefore

he Lagrangian submanifold h̄��K�� �T*R2n ,�R2n� has a natural inclusion into �T*�Tn

Rn� ,�Tn�Rn�. Now, we prove that h̄��K� coincides, up to the symplectic morphism h̃ below from

K to T*�Tn�Rn�, with the image of the zero section Tn�Rn through �̃K
1,0. In order to see this, we

ntroduce the following well-defined �independent of the choice of q in �q�� �We note that, unlike

he map h̄, it does not exist a natural definition of h̃ from T*Tn�T*Tn in T*�Tn�Rn�, since it is
ssential the property: ��K

1 �q�q+2�k , p�= ��K
1 �q�q , p�+2�k.� map

h̃:�̃K → T*�Tn � Rn� ,

��q�,p,���K
1 �q�q,p��,��K

1 �p�q,p�� � 	�q + ��K
1 �q�q,p�
2

�,
p + ��K

1 �p�q,p�
2

,p

− ��K
1 �p�q,p�,��K

1 �q�q,p� − q
 .

herefore the following commutative diagram results:

ere we mean �1 : �q , p ,Q , P�→ ��q� , p , �Q� , P�, �2 : �q , p ,Q , P�→ ��q� , p ,Q , P�.
Thus we have proved that h̄��K� results, up to the symplectic diffeomorphism h̃, the image of

he zero section Tn�Rn through �̃K
1,0. On the other hand, the manifold h̃��̃K� is essentially the

mage of the zero section Tn�Rn through �̃K
1,0. In such a hypothesis �see Theorem 2.4� the

anifold h̃��̃K� admits a GFQI, say, s��q� , p ,��. Then a GFQI for h̄��K�, say, S1�q , p ,��, can be
btained extending periodically �in the q variables� s��q� , p ,��. �

. A generating function for h„�K…

In this section we build �see Lemma 4.2 below� a generating function for the linear symplec-
omorphism �. Combining it with the one above �see Proposition 4.1�, we will state the existence
f a generating function for h��K� �see Proposition 4.3�.

The following composition rule is popular in symplectic geometry and mechanics �see, e.g.,
efs. 2 and 3�, and it has been handled by Laudenbach and Sikorav in meaningful problems in

ymplectic topology �see Ref. 18�.
Lemma 4.2: The linear symplectomorphism � [see (10)] admits the generating function
2�x0 ,x1�:
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S2�x0,x1� =
1

2
�x0,	 0 − 2

− 2 0

x0� − �x0,	 0 − 2

− 2 0

x1� +

1

2
�x1,	 0 − 2

− 2 1

x1� .

See also Ref. 17, p. 280�.
Proof: Recalling the map � in �10�, we proceed to verify by direct computation:

� −
�S2

�x0
�x0,x1��

x0=�q,p�,x1=�2q−P/2,2p−Q/2�
= − 	 0 − 2

− 2 0

	q

p

 + 	 0 − 2

− 2 0

�

2q − P

2

2p − Q

2
�

= �2p,2q� + �Q − 2p,P − 2q� = �Q,P� = y0,

� �S2

�x1
�x0,x1��

x0=�q,p�,x1=�2q−P/2,2p−Q/2�
= − �q,p�	 0 − 2

− 2 0

 + 	 0 − 2

− 2 1

�

2q − P

2

2p − Q

2
�

= �2p,2q� + 	Q − 2p,P − 2q +
2p − Q

2



= 	Q,
2P + 2p − Q

2

 = y1.

�

e can now prove the following.
Proposition 4.3: The Lagrangian submanifold h��K� admits the generating function

�x1 ;x0 ,��:

S�x1;x0,�� = S1�x0,�� + S2�x0,x1� .

emark: Note that the variables x0 now are interpreted as auxiliary parameters, at the same level
f �.

Proof: The symplectomorphism � is generated by S2�x0 ,x1�, that is,

��x0,y0� = �x1,y1�iff�y0 = −
�S2

�x0
�x0,x1�

y1 =
�S2

�x1
�x0,x1� �,

�S

�x0
�x1;x0,�� = 0 means

�S1

�x0
�x0,�� +

�S2

�x0
�x0,x1� = 0, that is, y0 =

�S1

�x0
�x0,�� .

urthermore,

�S

��
�x1;x0,�� = 0 iff

�S1

��
�x0,�� = 0.
herefore the Lagrangian submanifold generated by S�x1 ;x0 ,�� results:
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��x1,y1� = 	x1,
�S

�x1
�x1;x0,��
:

�S

�x0
�x1;x0,�� = 0,

�S

��
�x1;x0,�� = 0�

= ��x1,y1� = 	x1,
�S

�x1
�x1;x0,��
:y0 =

�S1

�x0
�x0,��,

�S1

��
�x0,�� = 0�

= ��x1,y1� = 	x1,
�S2

�x1
�x0,x1�
:y0 =

�S1

�x0
�x0,��,

�S1

��
�x0,�� = 0�

= ��x1,y1�:�x1,y1� = ��x0,y0� with �x0,y0� � h̄��K�� = ��h̄��K�� = h��K� .

. The quadratic at infinity property

We are ready to look for fixed points of �H
1 , that is, to estimate

#�h��K� � 0R2n� .

hese intersection points are exactly the critical points, with respect to all the variables, of the
enerating function S for h��K�. More precisely, by Proposition 4.4 below, we show that they are
ssentially �that is to say, up to periodicity� the critical points for a GFQI f defined on a domain
ontracting to the torus Tn: this is crucial in order to gain, in the Lusternik-Schnirelman format, a
ower bound estimate of the number of fixed points of �H

1 .
Although in the previous section we managed with a formal expression of S2, by a straight-

orward computation we easily find out the simplified structure �here, for opportunity, we write

2�q0 , p0 ,¼ . � instead of S2�q , p ,¼ . �� of it:

S2�x0,x1� = S2�q0,p0,q1,p1� = 2�p0 − p1� · �q1 − q0� +
p1

2

2
.

roposition 4.4: The fixed points of �H
1 correspond to the critical points of the GFQI:

f:Tn � R3n+k → R ,

��q1�,p1,v,p0,���
f

S1��q1 − v�,p0 + p1,�� + 2p0 · v +
p1

2

2
. �11�

roof: Using the notation x1= �q1 , p1� and x0= �q0 , p0� we can rewrite S as

S:R4n+k → R ,

�q1,p1,q0,p0,�� � S1�q0,p0,�� + 2�p0 − p1� · �q1 − q0� +
p1

2

2
.

here is an evident invariance property:

S�q1 + 2�k,p1,q0 + 2�k,p0,�� = S�q1,p1;q0,p0,�� ,

�q1 , p1 ,q0 , p0 ,���R4n+k, and "k�Zn. This fact is the same as saying that S is constant over the
bers of the surjective map � below, thus it results in the following well-defined real-valued

unction S̃:
�12�
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�13�

�−1��q1�,p1,v,p0,�� = ��q1 + 2�k,p1,q1 − v + 2�k,p1,��:k � Zn� , �14�

S̃:Tn � R3n+k → R ,

��q1�,p1,v,p0,�� � S1��q1 − v�,p0,�� + 2�p0 − p1� · v +
p1

2

2
, �15�

atisfying the property

S̃ � � = S . �16�

urthermore, since dS̃�y��y=��x� �d��x�=dS�x�, we have that �rkd�=max�: �−1�Crit�S̃��=Crit�S�.
ow S1��q1−v� , p0+ p1 ,�� coincides for ����C with a nondegenerate quadratic form �A� ,��, then

or �p1� , �v� , �p0� , ����C and for any fixed �q1��Tn, f��q1� , p1 ,v , p0 ,��=Q�p1 ,v , p0 ,�� where
�p1 ,v , p0 ,�� is the nondegenerate quadratic form

Q�p1,v,p0,�� ª�
1

2
− 1 0 0

− 1 0 1 0

0 1 0 0

0 0 0 A
��p1

v

p0

�
��

p1

v

p0

�
� .

herefore f is a GFQI. �

. Fixed points: Degenerate case

We conclude this section with the estimate in the possible degenerate case, first proved by
onley and Zehnder,10 of which we propose a proof based on the quadratic at infinity property of

he generating function f .
Theorem 4.5: Let �H

1 be the time-one map of a time-dependent Hamiltonian H :R�R2n

R satisfying

H�t,q + 2�k,p� = H�t,q,p�, " �t,q,p� � R � R2n, " k � Zn,

nd

H�t,q,p� =
1

2
�p�2 if �p� � C � 0.

hen �H
1 has at least n+1 fixed points and they correspond to homotopically trivial closed orbits

f the Hamiltonian flow.
Proof: Fixed points of �H

1 correspond to critical points of f �see Proposition 4.4�. Moreover,
ia the Lusternik-Schnirelman theory �see Theorem 2.9�, critical values of f can be detected
nvolving nonvanishing relative cohomology classes in H*�fc , f−c�. As a consequence, and since

n 3n+k
f :T �R →R is a GFQI, Corollary 2.11 does work, so that we obtain the well-known estimate
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#fix��H
1 � = # crit�f� � cl�Tn� = n + 1.

�

. FIXED POINTS: NONDEGENERATE CASE

Whenever all the fixed points of �H
1 are a priori nondegenerate, so that the corresponding

ritical points of f are also nondegenerate, it happens that the GFQI f becomes also a so-called
orse function, and in this case we achieve a rather better estimate.

Definition 5.1: Let N be a smooth manifold. A fixed point x�N of a diffeomorphism � :N
N is said to be nondegenerate if the graph of � intersects the diagonal of N�N transversally

t �x ,x�, that is,

det�d��x� − I� � 0.

The notion of nondegeneracy for fixed points of diffeomorphisms corresponds to the notion of
nondegeneracy for critical points of functions, originally due to Morse.

Definition 5.2: Let N be a smooth manifold and f :N→R be a C2 function. A critical point x
or f , �f�x�=0, is said to be nondegenerate if the Hessian �2f /�xi�xj�x� of f at x is nondegenerate.

�Recall that the Hessian of a scalar function f at its critical points is a well-defined tensorial
bject.� Starting from the study of the sublevel sets N
 �see �2��, where 
 is not a critical value of

f , Morse proved the following famous lower bound on the number of critical points of f .
Theorem 5.3: (Morse inequality) Let N be a compact manifold and f :N→R be a Morse

unction. Then

crit�f� � �
k=0

dim N

Hk�N� ¬ �
k=0

dim N

bk�N� ,

here the values bk�N� are called the Betti numbers of N.
As in the degenerate case, the preceding estimate still holds when f :N�Rn→R is a GFQI

see, for example, Ref. 8�:
Theorem 5.4: Let N be compact manifold and f :N�Rn→R be A GFQI. If all the critical

oints of f are nondegenerate, then

crit�f� � �
k=0

dim N

bk�N� .

he expected estimate on the number of nondegenerate fixed points for the Hamiltonian flow �H
1

s a straight consequence of Theorem 5.4.
Theorem 5.5: Same hypothesis of Theorem 4.5. Then �H

1 has at least 2n nondegenerate fixed
oints and they correspond to homotopically trivial closed orbits of the Hamiltonian flow.

Proof: Nondegenerate fixed points of �H
1 correspond �via the diffeomorphisms h and �� to

ransversal intersections between h��K� and 0R2n. We observe now that the Lagrangian submani-
old h��K� intersects transversally 0R2n in the point �q̄ , p̄ , ū�ª �x̄ , ū��h��K� if

det	 �2S

�xi�xj
�x̄, ū� � 0. �17�

oreover, since the point �x̄ , ū��h��K�, the transversality condition guarantees that

rk	 �2S

�xi�uj ,
�2S

�ui�uj
�x̄, ū� = max. �18�

hen, from conditions �17� and �18�, we conclude that the nondegenerate fixed points of �H
1

orrespond exactly to the nondegenerate critical points of S, which are essentially �that is up to
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eriodicity� the nondegenerate critical points of f . Now f :Tn�R3n+k→R is a GFQI, then, as a
onsequence of Theorem 5.4, we obtain

#non deg − fix��H
1 � = # non deg − crit�f� � 2n.

�
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We consider a class of ordinary differential equations describing one-dimensional
analytic systems with a quasiperiodic forcing term and in the presence of damping.
In the limit of large damping, under some generic nondegeneracy condition on the
force, there are quasiperiodic solutions which have the same frequency vector as
the forcing term. We prove that such solutions are Borel summable at the origin
when the frequency vector is either any one-dimensional number or a two-
dimensional vector such that the ratio of its components is an irrational number of
constant type. In the first case the proof given simplifies that provided in a previous
work of ours. We also show that in any dimension d, for the existence of a quasi-
periodic solution with the same frequency vector as the forcing term, the standard
Diophantine condition can be weakened into the Bryuno condition. In all cases,
under a suitable positivity condition, the quasiperiodic solution is proved to de-
scribe a local attractor. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2213790�

. INTRODUCTION

In this paper we pursue the study started in Refs. 6 and 2. We consider one-dimensional
ystems with a quasiperiodic forcing term in the presence of strong damping, described by ordi-
ary differential equations of the form

�ẍ + ẋ + �g�x� = �f��t� , �1.1�

here ��Rd is the frequency vector, g�x� and f��� are functions analytic in their arguments, with
f quasiperiodic, i.e.,

f��� = �
��Zd

ei�·�f�, �1.2�

ith average �f�= f0, and ��0 is a real parameter, physically representing the inverse of the
amping coefficient. With · we are denoting the scalar product in Rd. A Diophantine condition is
ssumed on � for d�1, that is

�� · �� � C0���−� " � � Zd \ 	0
 , �1.3�

here ���= ���1���1�+ ¯ + ��d�, and C0 and � are positive constants. The set of vectors satisfying
he condition �1.3� is nonvoid for ��d−1 and is of full measure for ��d−1. For d=1 we denote

�Electronic mail: gentile@mat.uniroma3.it
�Electronic mail: m.bartuccelli@surrey.ac.uk
�
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he vectors without boldface; in that case � will be called the frequency number.
In Ref. 6 we show that, under the nondegeneracy condition

$c0 � R such that g�c0� = f0 and g��c0� � 0, �1.4�

he system �1.1� admits a quasiperiodic solution x�t ;�� with the same frequency vector as the
orcing. Such a solution can be obtained by a suitable summation of the formal power series

x0�t;�� ª �
k=0

�

�kx�k��t�, x�k��t� = �
��Zd

ei�·�tx�
�k�, �1.5�

hich solves the equations of motion order by order. For d=1 �periodic forcing� the series �1.4� is
orel summable in �. In Ref. 2 we also show that if g��c0��0, for any d such a solution is locally
n attractor. In some cases, for instance if g�x�=x2p+1, p�N, and f0�0, the attractor is global.

In this paper we first give a different �simpler� proof of Borel summability in the periodic case
Sec. II�, then we prove that the formal series for the solution turns out to be Borel summable also
or d=2 and �=1 �Sec. III�; this corresponds to frequency vectors with components such that their
atios are irrational numbers of constant type �i.e., numbers with bounded partial quotients in their
ontinued fraction expansion�. The proof does not rely on Nevanlinna-type theorems,7,8 but con-
ists in checking directly that the conditions for the formal series of the solution to be Borel
ummable are satisfied, and follows the same strategy introduced in Ref. 4 to investigate Borel
ummability of lower-dimensional tori.

Finally in Sec. IV we show how to relax the Diophantine condition. We show that, in order to
ave the same results on existence and attractivity of the quasiperiodic solution, one can take � to
e a Bryuno vector, that is one can assume that, by defining

B��� = �
n=0

�
1

2n log
1

�n���
, �n��� = inf

���	2n
�� · �� , �1.6�

hen � satisfies the Bryuno condition B���
�. More formal statements will be given in the next
ections.

I. BOREL SUMMABILITY FOR d=1

First of all let us recall the definition of Borel summability.8 Let f���=�n=1
� an�n be a formal

ower series �which means that the sequence 	an
n=1
� is well defined�. We say that f��� is Borel

ummable if

1� B�p�ª�n=1
� anpn /n! converges in some circle �p�
�,

2� B�p� has an analytic continuation to a neighborhood of the positive real axis, and
3� g���=�0

�e−p/�B�p�dp converges for some ��0.

Then the function B�p� is called the Borel transform of f���, and g��� is the Borel sum of f���.
oreover if the integral defining g��� converges for some �0�0 then it converges in the circle
e �−1�Re �0

−1. A function which admits the formal power series expansion f��� is called Borel
ummable if f��� is Borel summable; in that case the function equals the Borel sum g���.

Theorem 2.1: Consider the system (1.1) for d=1, and assume that the nondegeneracy con-
ition (1.4) is fulfilled. There exists �0�0 such that for ���
�0 there is a periodic solution x�t ;��
hich has the same frequency number as the forcing term and is Borel summable in � at the
rigin. If g��c0��0 such a solution describes a local attractor.

Proof: We consider explicitly the case g�x�=x2 in �1.1�, which corresponds to the varactor
quation extensively studied in Refs. 6, 1, and 2; the general case can be easily dealt with by
easoning as in Sec. VII of Ref. 6. In Ref. 6 we proved that the formal power series �1.5� is well

efined and that to any order k one has
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�x�
�k�� 	 A1�2

−kk!, �x�k��t�� 	 A1�2
−kk!, �2.1�

or suitable constants A1 and �2 �cf. formula �4.5� in Ref. 6�. This means that the first condition, in
he definition of Borel summability, is satisfied, with �=�2.

In Ref. 6 we also proved that the formal power series can be summed, and gives a function

x�t;�� = �
k=0

�

�
��Z

ei��tx�
�k�, �2.2�

hich is real-analytic and periodic in t, and analytic in � in a suitable domain tangent to the
maginary axis at the origin. The coefficients x�

�k� can be written as

x�
�k� = �

��Tk,�

Val���, Val��� =  �
��L���

g�� �
v�E����V���

Fv� , �2.3�

here the symbols are defined as in Sec. V of Ref. 6. We briefly recall the basic definitions and
otations, with the purpose of making self-consistent the discussion; reference should be made to
ef. 6 for further details.

A tree � is a graph, that is a connected set of points and lines, with no cycle, such that all the
ines are oriented toward a unique point �root� which has only one incident line �root line�. All the
oints in a tree except the root are denoted nodes. The orientation of the lines in a tree induces a
artial ordering relation ��� between the nodes. Given two nodes v and w, we shall write w�v
very time v is along the path �of lines� which connects w to the root. We call E��� the set of
ndpoints in �, that is the nodes which have no entering line. The endpoints can be represented
ither as white bullets or as black bullets; we denote with EW��� and EB��� the set of white bullets
nd the set of black bullets, respectively. With each endpoint v we associate a mode label �v
Z, such that �v=0 if v�EW��� and �v�0 if v�EB���. We denote with L��� the set of lines in

. Since � is uniquely identified with the point v which it leaves, we may write �=�v. With each
ine � we associate a momentum label ���Z. The modes of the endpoints and and the momenta
f the lines are related as follows: if �=�v one has

�� = �
i=1

sv

��i
= �

w�EB���:w�v
�w, �2.4�

here sv denotes the number of lines entering v �one has sv=2 if g�x�=x2 in �1.1�, otherwise sv
2�, and �1 , . . . ,�sv

are the lines entering v. We denote by V��� the set of vertices in �, that is the
et of points which have at least one entering line. We set V0���= 	v�V��� :��v

=0
. We call
quivalent two trees which can be transformed into each other by continuously deforming the lines
n such a way that they do not cross each other. Let Tk,� be the set of inequivalent trees of order
and total momentum �, that is the set of inequivalent trees � such that �V����+ �EB����=k and the
omentum of the root line is �. We associate with each line � a propagator

g� = �1/��i�����1 + i������ , �� � 0,

1, �� = 0,
� �2.5�

ith each vertex v a node factor

Fv = �− � , v � V0��� ,

− 1/2c0, v � V0��� ,
� �2.6�
nd with each endpoint v a node factor
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Fv = �c0, v � EW��� ,

�f�v
, v � EB��� . � �2.7�

hen �2.3� says that each coefficient x�
�k� is given by the sum over all trees of order k and total

omentum � of the corresponding values.
It is more convenient to slightly change the definition of node factors and propagators, by

ssociating the factor � with the propagator g� of the line � coming out from v and not with v
tself. In this way the propagator of any line with � momentum ���0 is

g� = g����;��, g�x;�� =
�

ix�1 + i�x�
, �2.8�

nd the only dependence on � in Val��� is through the product of propagators with nonvanishing
omentum. �Note that g�x ;�� in �2.8� has a completely different meaning with respect to the

unction g�x� appearing in �1.1�. The same caveat applies to the propagators g�n��x ;�� in Sec. III.�
The function �2.8� is Borel summable, and its Borel transform is easily computed to be

gB�x;p� =
e−ipx

ix
Þ �gB�x;p�� 	

e�Im p��x�

�x�
. �2.9�

oreover gB�x ; p� is an entire function in p, and the integral �0
�e−p/�gB�x ; p�dp converges �abso-

utely� for all ��0.
For any tree ��Tk,� the Borel transform of Val��� is given by a constant times the Borel

ransform of the product of the propagators with nonzero momentum. One has

�Val����B�p� =  �
��L0���

g�� �
v�E����V���

Fv� �
��L2���

g��
B

�p�� , �2.10�

here we have called L0��� is the set of lines in L��� with zero momentum, and we have set

2���=L��� \L0��� �cf. Sec. IV of Ref. 6�. The Borel transform appearing in �2.10� equals the
onvolution of the Borel transforms of the propagators with nonzero momentum, so that it can be
ounded as

� �
��L2���

g��
B

�p�� 	 �
��L2���

*�gB����;p�� 	  �
��L2���

1

������ �p�k−1

�k − 1�!
exp��Im p� max

��L2���
������ ,

�2.11�

here �* denotes the convolution product, and ���
 �����
 ����v�EB�����v�; cf. Remarks �4� to �6�
fter Definition 1 in Ref. 3 for properties of the Borel transforms we are using here.

Therefore, for p in any strip �= 	p�C : �Im p�
�
 of the real axis, we have

� �
v�EB���

Fv�exp��Im p� max
��L2���

������ 	 F�EB���� �
v�EB���

e−���v�/2, �2.12�

rovided ����
� /2, and summability over the Fourier labels in �2.3� is assured. The sum over k
n �2.2� produces a quantity bounded proportionally to the exponential e��p�, for some positive
onstant �. A comparison with Ref. 6 shows that �=1/�0, where �0 is the same as in the statement
f the theorem. In particular the Borel transform xB�t ; p� of the series �2.2� turns out to have an
nalytic continuation to the strip �, and admits there the bound �xB�t ; p��	Ce��p�, for a suitable

onstant C. Hence the integral
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g�t;�� ª �
0

�

e−p/�xB�t;p�dp �2.13�

bsolutely converges provided 0
�
�0. So also the last two conditions for the formal series of
�t ;�� to be Borel summable are satisfied.

That the solution x�t ;�� describes a local attractor, under the further condition g��c0��0,
ollows from the analysis performed in Ref. 2. �

Note that, because of the analyticity properties of xB�t ; p�, it follows, as a consequence of
evanlinna’s theorem,8 that the function defined by the integral �2.13� is analytic in the circle

R= 	��C :Re �−1�R−1
, with R=�0, and satisfies the bound

g�t;�� = �
k=0

N−1

�kx�k��t� + RN���, �RN���� 	 ABNN!���N, �2.14�

ith constants A and B independent of N. This is consistent with Proposition 5.3 of Ref. 6.

II. BOREL SUMMABILITY FOR d=2 AND �=1

In the case of quasiperiodic forcing terms for d=2 we obtain the following result.

Theorem 3.1: Consider the system (1.1) for d=2, and assume that � satisfies the Diophantine
ondition (1.3) with �=1 and that the nondegeneracy condition (1.4) is fulfilled. There exists �0

0 such that for ���
�0 there is a quasiperiodic solution x�t ;�� which has the same frequency
ector as the forcing term and is Borel summable at the origin. If g��c0��0 such a solution
escribes a local attractor.

Proof: Again we discuss explicitly the case g�x�=x2 in �1.1�. Let � be a nondecreasing C�

unction defined in R+, such that

��u� = �1 for u � 1,

0 for u 	 1/2,
� �3.1�

nd set ��u�ª1−��u�. Define, for all n�Z+, �n�u�ª��2nC0
−1u /4� and �n�u�ª��2nC0

−1u /4�.
With each line � with zero momentum we associate a scale label n�=−1, while with each line

ith nonzero momentum we associate �arbitrarily� a scale label n��Z+= 	0
�N. Then we can
efine cluster and self-energy clusters as in Refs. 4 and 6. A cluster T on scale n is a maximal set
f points and lines connecting them such that all the lines have scales n�	n and there is at least
ne line with scale n. The lines entering the cluster T and the possible line coming out from it
unique if existing at all� are called the external lines of the cluster T. Given a cluster T on scale
, we shall denote by nT=n the scale of the cluster; we call V�T�, E�T�, EW�T�, EB�T�, and L�T� the
et of vertices, of endpoints, of white endpoints, of black endpoints, and of lines of T, respectively.
e call self-energy cluster any cluster T such that T has only one entering line �T

2 and one exiting
ine �T

1, and one has �v�EB�T��v=0. With each line � with momentum �� and scale n� we associate
renormalized propagator g�=g�n���� ·�� ;��, still to be defined. On the contrary the node factors

re defined as in the previous case �with the only trivial difference that now �v, replacing �v, is a
-dimensional vector�.

Define the self-energy value VT�� ·� ;�� in terms of the renormalized propagators and node
actors as

VT�� · �;�� =  �
��L�T�

g�n���� · ��;��� �
v�E�T��V�T�

Fv� , �3.2�

here � is the momentum of both the external lines of T.
We proceed as in Sec. VI of Ref. 6, with the only two differences that we perform a prelimi-
ary summation by including the contribution −2�c0 �arising from the self-energy graphs on scale

                                                                                                            



−
�
S

w
t

w
T
f
�
w

I

a

w
f

s
t

072702-6 Gentile, Bartuccelli, and Deane J. Math. Phys. 47, 072702 �2006�

                        
1� into the propagator g�0��x ;��, and—as in the periodic case of Sec. II—we associate the factors
to the propagators with nonzero momentum. Therefore we define �see the comment after �2.8� in
ec. II�

g�0��x;�� =
��0��x��

ix�1 + i�x� − 2�c0
, M�0��x;�� = ��

k=1

�

�
T�Sk,0

R
VT�x;�� , �3.3�

hereas the propagators on scale n�1 are defined as in Ref. 6, again with a factor � appearing in
he numerator of the propagators with nonzero momentum; this means that one has

g�n��x;�� =
��0��x�� ¯ �n−1��x���n��x��
ix�1 + i�x� − M�n−1��x;��

,

�3.4�

M�n��x;�� = �
p=1

n

�0��x�� ¯ �p−1��x���n��x��M�p��x;��, M�n��x;�� = ��
k=1

�

�
T�Sk,n

R
VT�x;�� ,

here the set of renormalized self-energy clusters Sk,n
R is defined and the set of self-energy clusters

on scale nT=n and of order k �that is with �V�T��+ �EB�T��=k�. With respect to Refs. 6 and 4 a
urther factor � appears in M�n��x ;��, n�0, simply because there is one such factor per node
vertex or endpoint� with exiting line carrying a nonzero momentum—cf. Sec. 6 in Ref. 4—and
e are associating the factors � with the lines instead of the nodes.

An easy computation gives, for the Borel transform of g�0��x ;��,

gB
�0��x;p� =

�0��x��
ix

exp− ipx − 2
c0

x
�� Þ �gB

�0��x;p�� 	
1

�x�
e��x�+2�c0�/�x���Im p�. �3.5�

f we set, for n�0,

g̃�n��x;�� =
�

ix�1 + i�x� − M�n−1��x;��
" �x� 	 2−�n−1�C0, �3.6�

nd define M�n��x ;��=M�n��x ;��−M�n−1��x ;��, we obtain the recursive equations

�g̃�n��x;���−1 = �g̃�n−1��x;���−1 − �0��x�� ¯ �n−1��x���−1M�n−1��x;��, n � 1. �3.7�

By using these equations we can prove inductively the bound

�g̃B
�n��x;p�� 	

K0

�x�
e�cn+cn��x�−1/2��p�+�0�Im p��dn�x�+dn��x�−1�, �3.8�

here K0 and �0 are two constants, and the sequences 	cn
n=0
� , 	cn�
n=0

� , 	dn
n=0
� , 	dn�
n=0

� are to be
ound.

The proof proceeds as in Appendix A1 of Ref. 3. Set x�=� ·��, and call L0�T� and L2�T� the
et of lines in L�T� with zero momentum and the set L2�T�=L�T� \L0�T�, respectively. First we use

he inductive bound to obtain
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�M�N��x;��
�

�
B
� 	 �

k=2

�

�
T�Sk,N−1

R  �
��L0�T�

�g��� �
v�E�T��V�T�

�Fv��
�  �

��L2�T�

* K0

�x��
e�cn�

+cn�
� �x��−1/2��p�+�0�dn�

�x��+dn�
� �x��−1��Im p��

	  �
v�EB���

e−���v���
k=2

�

�k �p�k−2

�k − 2�!
e�cN−1+cN−1� 2N/2��p�+�0dN−1� 2N�Im p�, �3.9�

here D0=�2, rN=�+cN−1+�0cN−1� 2N/2, for some N-independent constant �0. The bound in the
ast line of �3.9� has been obtained by using part of the exponential decay �say one-fourth� of the
ode factors associated with the endpoints to control the exponent �0dN−1 max��L2�T��x��, provided

N−1
d for some N-independent constant d and �Im p�	�, with � small enough, more precisely

0�d���
� /4.
By explicitly performing the sum over k we obtain from �3.6�,

�M�N��x;��
�

�
B
� 	 D0erN�p�e−�02N

, �3.10�

here we have used the bound ���EB�T���v���12N, for a suitable constant �1—see formula �7.12�
f Ref. 4—and again part of the exponential decay �say another one-fourth� of the node factors
ssociated with the endpoints to control the exponent �0dN−1� 2N�Im p�, provided again dN−1� 
d� for
ome N-independent constant d� and �0d��
��1 /4; in particular one finds �0=�1� /4.

Then, by using �3.10� and, once more, the inductive bound, we obtain from �3.7�,

�g̃B
�N��x,p�� 	

K0

�x�
e�cN−1+cN−1� �x�−1/2��p�+�0�dN−1�x�+dN−1� �x�−1��Im p� * �

k=0

� �D0e−rN�p�e−�02N
�

* K0

�x�
e�cN−1+cN−1� �x�−1/2��p�+�0�dN−1�x�+dN−1� �x�−1��Im p���*k

, �3.11�

ith a*k=a�a� ¯ �a �k times�. This gives

�g̃B
�N��x,p�� 	

K0

�x� �k=0

�
1

�2k�!K0�p�2

�x�
D0e−�02N�K

e�rN+cN−1� �x�−1/2��p�+�0�dN�x�+dN� �x�−1��Im p�, �3.12�

hich implies the bound �3.5� for n=N, with cN=rN=�+cN−1+�0cN−1� 2N/2, cN� =cN−1�
�K0D0e−�02N

, dN=dN−1 and dN� =dN−1� . In particular one has dN=d=1 and dN�=d�=2�c0�, so that
here exists a constant c�0 such that max	cn2−n/2 ,cn� ,dn ,dn�
	c for all n�0.

The bounds �3.8� for the Borel transforms of the propagators can be used to obtain a bound on
he Borel transform xB�t ; p� of x�t ;��. We omit the details, which can be derived exactly as in
ppendix A1 of Ref. 3. Eventually one finds the bound

�xB�t;p�� 	 C1eC2�p�2, �3.13�

or suitable constants C1 and C2. Again, the bound �3.13� and the analyticity properties of xB�t ; p�
mplies that x�t ;�� is Borel summable, and it can be written for ��0 as

x�t;�� =�
0

�

e−p/�xB�t;p�dp , �3.14�

n terms of its Borel transform.

As in the case d=1 the last statement of the theorem has been proved in Ref. 2. �

                                                                                                            



g

t
t
N

I

c
s
g

g
F
d

a

t
i

w
s
I
�
s
i

f
a
c

f

f
b

072702-8 Gentile, Bartuccelli, and Deane J. Math. Phys. 47, 072702 �2006�

                        
In the general case g�x��x2 in �1.1� the quantity 2c0 must be replaced with g��c0�, with
��c0��0 by hypothesis. Then the discussion proceeds as in Sec. VII of Ref. 6.

Note also that in the case d=2 and �=1 the Borel transform is still defined in a strip around
he real axis, but it does not satisfy any more an exponential bound like in the case d=1 �at least
he argument given above does not provide an estimate of this kind�. Thus, we cannot apply
evanlinna’s theorem to prove Borel summability.7,8

V. BRYUNO FREQUENCY VECTORS

Let ��Rd be a Bryuno vector. This means that B���
�, with B��� defined in �1.6�.

Theorem 4.1: Consider the system (1.1) for any d�2, and assume that � satisfies the Bryuno
ondition B���
� and that the nondegeneracy condition (1.4) is fulfilled. There exists �0�0
uch that for all real ���
�0 there is a quasiperiodic solution with frequency vector �. If
��c0��0 such a solution describes a local attractor.

For simplicity’s sake we discuss the case g�x�=x2 and ��R, but the analysis can be easily
eneralized to any analytic function g �provided the nondegeneracy condition �1.4� is satisfied�.
urthermore the solution can be showed to extend to a function analytic in � in the domain CR

efined in Sec. VI of Ref. 6 �cf. Fig. 16 in Ref. 6�.
Let ��x� be the nondecreasing C� function defined in �3.1� and set ��x�ª1−��x�. Define, for

ll n�Z+, �n�x�ª���n
−1���x /4� and �n�x�ª���n

−1���x /4�.
Set g�−1��x ;��=1 and M�−1��x ;��=0, and define iteratively g�n��x ;�� and M�n��x ;�� as done in

he case of Diophantine vectors. This means that for n=0 we can define g�0��x ;�� and M�0��x ;�� as
n �3.3�, while for n�1 we define

g�n��x;�� =
��0��x�� ¯ �n−1��x���n��x��
ix�1 + i�x� − M�n−1��x;��

,

�4.1�

M�n��x;�� = �
p=0

n

�0��x�� ¯ �p��x��M�p��x;��, M�n��x;�� = ��
k=1

�

�
T�Sk,n

R
VT�x;�� ,

here Sk,n
R is the set of renormalized self-energy clusters T on scale n and of order k, and the

elf-energy value VT�x ;�� is defined as in �3.2�. Note that we are using the same definitions of Sec.
II, in particular we are associating the factors � with the propagators rather than with the nodes
contrary to what done in Ref. 6�. So far the only difference with respect to the case of the
tandard Diophantine condition concerns the multiscale decomposition: the factors 2nC0

−1 appear-
ng in �n and �n are substituted with �n

−1���.

Lemma 4.2: Assume that the renormalized propagators up to scale n−1 can be bounded as

�g�n���� · ��;��� 	 C−1�n�

−���� �4.2�

or some positive constants � and C. Then for all p	n−1 the number Np��� of lines on scale p in
ny renormalized tree � and the number Np�T� of lines on scale p in any renormalised self-energy
luster T are bounded both by

Np��� 	 K2−p �
v�EB���

��v�, Np�T� 	 K2−p �
v�EB�T�

��v� , �4.3�

or some positive constant K. If ���
�0, with �0 small enough, then for all p	n−1 one has

�M�p��x;��� 	 D1���2e−D22p
, ��xM

�p��x;��� 	 D1���2e−D22p
, �4.4�

or some positive constants D1 and D2. Only the constant D1 depends on �. The constant �0 can
�
e written as �0=C1�n0

, with n0�� ,�� such that
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K� �
n=n0+1

�
1

2n log
1

�n���
	

�

4
, �4.5�

nd C1 a positive constant dependending on C but not on �.

Proof: The lemma can be proved by reasoning as in Refs. 4 and 5. We simply sketch the
roof, and omit the details. First of all note that, if we define n���= 	n�Z+ :2n−1
 ���	2n
 then
ne has �� ·����n������. Moreover n��n implies �n����	�n���, and �n����
�n��� implies
��n. Set M���=�v�EB�����v� and M�T�=�v�EB�T���v�. The bound on Np��� is obtained by prov-
ng by induction on the order of the renormalized tree that if Np����0 then Np���	22−pM���
1 Then, given a renormalized self-energy cluster T�Sk,n

R , one proves first that M�T��2n−1,
ence, again by induction, that if Np�T��0 then Np�T�	22−pM�T�−1. Therefore �4.3� is proved.
n important property is that if a cluster T has two external lines, with momenta � and ��,

espectively, with ����, both on scales greater or equal to n, so that �� ·��	�n−1��� /4 and
� ·��	�n−1��� /4, then one has �� · ��−����
�n−1���, hence n��−����n, so that M�T�� ��
����2n−1. For details we refer to Ref. 5.

The bounds �4.4� are obtained by exploiting the just mentioned bound on M�T� and half the
xponential decay factors e−���v� associated with the vertices and endpoints internal to T to derive
he factors e−D22p

, with D2 independent of �, and by using the fact that any self-energy cluster T
ontributing to M�p��x ;�� must be of order at least 2 to derive the factors ���2.

Then for any n0�N and for any tree �, we can bound each propagator on scale up to n0 with
−1�n0

−���� and the product of propagators on scale greater than n0 with

�
n=n0+1

�C−1�n
−�����Nn��� = C−�n=n0+1

� Nn��� exp�M��� �
n=n0+1

�
1

2n log
1

�n���� , �4.6�

o that, by choosing n0 according to �4.5�, the last exponential in �4.6� is controlled by half the
xponential decay factor e−�M�T� arising from the node factors. Then the sum of the values of all
rees of order k is bounded by �C−1C��n0

−��k, for a suitable constant C�—taking into account all the
onstants other than C and the sums over the trees. Hence also the assertion about the dependence
f �0 on �n0

��� follows, and the proof of the lemma is complete. �

As in Ref. 6, to prove existence of the quasiperiodic solution we need the following result,
hich together with Lemma 4.2 provides the proof of Theorem 4.1.

Lemma 4.3: For real � small enough the renormalized propagators satisfy the bounds (4.2)
ith �=1. For � in the domain CR in Fig. 16 of Ref. 6 they satisfy the bounds (4.2) with �=2.

Proof: The proof can be carried out exactly as in Ref. 6. Indeed it is enough to show that the
ropagators g�n��x ;�� can be bounded proportionally to �x�−�, for � small enough in a suitable
omain, and this follows from Lemmata 6.2 to 6.5 of Ref. 6, independently on the particular
iophantine condition assumed on �. �

The proof of the theorem is completed if we show that the quasiperiodic solution is a local
ttractor if g��c0��0. But this can be proved as in the case of Diophantine frequency vectors, by
easoning as in Ref. 2: indeed the only property that we need for the argument given in Ref. 2 to
ork is the existence of the quasiperiodic solution.
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We study the long-time behavior of solutions to the Korteweg-de Vries-type equa-
tion �tu=−�x��x

2u+ f�u�−b�t ,x�u�, with initial conditions close to a stable, b=0
solitary wave. The coefficient b is a bounded and slowly varying function, and f is
a nonlinearity. For a restricted class of nonlinearities, we prove that for long time
intervals, such solutions have the form of the solitary wave, whose center and scale
evolve according to a certain dynamical law involving the function b�t ,x�, plus an
H1�R�-small fluctuation. The result is stronger than those previously obtained for
general nonlinearities f . © 2006 American Institute of Physics.
�DOI: 10.1063/1.2217809�

. INTRODUCTION

We study the long-time behavior of solutions to a class Korteweg-de Vries-type equations,
ith an additional term b�t ,x�u. These equations, hereafter referred to as the bKdV, are of the

orm

�tu = − �x��x
2u + f�u� − b�t,x�u� , �1�

here b�t ,x� is a real valued function and f is a nonlinearity. We formulate conditions on the
onlinearity in Sec. II. Our class includes, in particular, f�u�=u3, corresponding to the modified
dV �mKdV�. When b=0, Eq. �1� reduces to the generalized Korteweg-de Vries equation

GKdV�

�tu = − �x��x
2u + f�u�� . �2�

remarkable property of the GKdV is the existence of spatially localized solitary �or traveling�
aves, i.e., solutions of the form u=Qc�x−a−ct�, where a�R and c in some interval I. When

f�u�=up and p�2, solitary waves are explicitly computed to be

Qc�x� = c1/�p−1�Q�c1/2x� ,

here

Q�x� = � p + 1

2
�1/�p−1��sech� p − 1

2
x��2/�p−1�

.

t is generally believed that an arbitrary, say H1�R�, solution to Eq. �2� eventually breaks up into
collection of solitary waves and radiation. A discussion of this phenomenon for the generalized
dV appears in Bona.12 For the general, but integrable, case, see Deift and Zhou.19

�

This paper is part of the first author’s Ph.D. thesis.
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The GKdV arises in different branches of science and engineering. In particular, the mKdV
quation, to which our results apply, is fundamental in many areas of applied mathematics ranging
rom traffic flow to plasma physics �see Refs. 16, 32, 33, and 35�, and arises from an approxima-
ion of more complicated systems. The effects of higher order processes can often be collected into

term of the form b�t ,x�u. Our main result stated at the end of the next section gives, for long
ime, an explicit, leading order description of a solution to the bKdV initially close to a solitary
ave solution of the GKdV.

We assume that the coefficient b and nonlinearity f are such that �1� has global solutions for
1�R� data and that �1� with b=0 possesses solitary wave solutions. Precise conditions will be

ormulated in the next section. Here we mention that the literature regarding well-posedness of the
dV �b=0, f�u�=u2� is extensive and well developed. The Miura transform �see Ref. 34� then
ives well-posedness results for the mKdV. Bona and Smith10 proved global well-posedness of the
dV in H2�R�. See also Ref. 28. Kenig, Ponce, and Vega30 have proved local well-posedness in
s�R� for s�− 3

4 , and similar results are available for the generalized KdV �b=0, monomial
onlinearity f�u�=up with p=2,3 ,4�.29 In particular, local well-posedness for the mKdV in Hs�R�
ith s�

1
4 and global well-posedness for s�1 are known. More recently, results extending local

ell-posedness in negative index Sobolev spaces to global well-posedness have been proven.17,18

here is little literature on global well-posedness of the bKdV in energy space, however, under a
mallness assumption on the coefficient b, Dejak and Sigal20 proved global well-posedness in

1�R� of the bKdV with f�u�=up, p=2,3 ,4. They used results of Ref. 29, and perturbation and
nergy arguments.

Soliton solutions of the KdV equation are known to be orbitally stable. Although the linear-
zed analysis of Jeffrey and Kakutani26 suggested orbital stability, the first nonlinear stability result
as given by Benjamin.2 He assumed smooth solutions and used Lyapunov stability and spectral

heory to prove his results. Bona4 later corrected and improved Benjamin’s result to solutions in
2�R�. Weinstein46 used variational methods, avoiding the use of an explicit spectral representa-

ion, and extended the orbital stability result to the GKdV. More recently, Grillakis, Satah, and
trauss24 extended the Lyapunov method to abstract Hamiltonian systems with symmetry. Numeri-
al simulations of soliton dynamics for the KdV were performed by Bona et al. See Refs. 6–9.

The long-time dynamics of the bKdV was first studied in Ref. 20. For nonlinear Schrödinger
nd Hartree equations, long-time dynamics of solitary waves were studied by Bronski and
errard,13 Fröhlich, Tsai, and Yau,22 Keraani,31 and Fröhlich and co-workers.21,27. For related
esults and techniques for the nonlinear Schrödinger equations, see also Refs. 14, 15, 23, 39–41,
nd 43–45.

In this paper we show that for long time intervals �t�O���xb�−1��, the solution of the bKdV
nitially close to a soliton Qc0

�x−a0� remains close to a moving soliton Qc�t��x−a�t�� whose center
�t� and shape parameter c�t� satisfy a certain dynamical system. Although the class of nonlin-
arities consider in this paper is smaller than that of Ref. 20, we obtain more precise dynamical
quations for the soliton parameters that are valid for longer time intervals, and hence obtain a
etter description of solutions to the bKdV. Moreover, our proof is simpler than that of Ref. 20. In
ur approach, we use the fact that the bKdV is a �nonautonomous if b depends on time� Hamil-
onian system. As in Ref. 20, we construct a Hamiltonian reduction of this original, infinite
imensional dynamical system to a two-dimensional dynamical system on a manifold of soliton
onfigurations. The analysis of the bKdV with general nonlinearity immediately runs into the
roblem that the natural symplectic form � is not defined on the tangent space of the soliton
anifold. However, we show that there is a class of nonlinearities for which the symplectic form

s well defined on the tangent space. This is the class of nonlinearities considered in this paper.
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I. PRELIMINARIES, ASSUMPTIONS, MAIN RESULTS

The bKdV can be written in Hamiltonian form as

�tu = �xHb��u� , �3�

here Hb� is the L2�R� function corresponding to the Fréchet derivative �Hb in the L2�R� pairing.
ere the Hamiltonian Hb is

Hb�u� ª �
−�

� 1

2
��xu�2 − F�u� +

1

2
b�t,x�u2dx ,

here the function F is the antiderivative of f with F�0�=0. The operator �x is the anti-self-adjoint
perator �symplectic operator� generating the Poisson bracket

	G1,G2
 ª
1

2
�

−�

�

G1��u��xG2��u� − G2��u��xG1��u�dx ,

efined for any G1, G2 such that G1� ,G2��H1/2�R�. The corresponding symplectic form is

��v1,v2� ª
1

2
�

−�

�

v1�x��x
−1v2�x� − v2�x��x

−1v1�x�dx ,

efined for any v1 ,v2�L1�R�. Here the operator �x
−1 is defined as

�x
−1v�x� ª �

−�

x

v�y�dy .

ote that �x
−1 ·�x= I and, on the space 	u�L2�R� ��−�

� udx=0
, �x
−1 is formally anti-self-adjoint with

nverse �x. Hence, if �−�
� v1�x�dx=0, then ��v1 ,v2�=�−�

� v1�x��x
−1v2�x�dx.

Note that if b depends on time t, then Eq. �3� is nonautonomous. It is, however, in the form of
conservation law, and hence the integral of the solution u is conserved provided u and its

erivatives decay to zero at infinity:

d

dt
�

−�

�

udx = 0.

here are also conserved quantities associated to symmetries of �1� when b=0. The simplest such
orresponds to time translation invariance and is the Hamiltonian itself. This is also true if b is
onzero but time independent. If the potential b=0, then �1� is also spatially translation invariant.
oether’s theorem then implies that the flow preserves the momentum

P�u� ª
1

2
�u�L2

2 .

n general, when b�0, the temporal and spatial translation symmetries are broken, and hence the
amiltonian and momentum are no longer conserved. Instead, one has the relations

d

dt
Hb�u� =

1

2
�

−�

�

��tb�u2dx , �4�

d

dt
P�u� =

1

2
�

−�

�

b�u2dx , �5�
here b��t ,x�ª�xb�t ,x�. For later use, we also state the relation
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d

dt

1

2
�

−�

�

bu2dx = �
−�

� 1

2
u2�tb + b��uf�u� −

3

2
��xu�2 − F�u�� − b�u�xudx . �6�

ssuming �1� is well-posed in H2�R�, the above equalities are obtained after multiple integration
y parts. Then, by density of H2�R� in H1�R�, the equalities continue to hold for solutions in
1�R�. To avoid these technical details, we assume the Hamiltonian flow on H1�R� enjoys �4�–�6�.

Consider the GKdV, i.e., Eq. �2�. Under certain conditions on f , this equation has traveling
ave solutions of the form Qc�x−ct�, where Qc is a positive H2�R� function. Substituting u
Qc�x−ct� into the GKdV gives the scalar field equation

− �x
2Qc + cQc − f�Qc� = 0. �7�

he existence of solutions to this equation has been studied by numerous authors. See Refs. 3, 5,
nd 42. In particular, Berestyki and Lions3 give sufficient and necessary conditions for a positive
nd smooth solution Qc to exist. We assume gª−cu+ f�u� satisfies the following conditions:

1. g is locally Lipschitz and g�0�=0;
2. x*

ª inf	x�0 � �0
xg�y�dy
 exists with x*�0 and g�x*��0; and

3. lims→0�g�s� /s��−m�0.

hen, as shown by Berestycki and Lions, �7� has a unique �modulo translations� solution Qc
C2 for c in some interval, which is positive, even �when centered at the origin�, and with Qc,

xQc, and �x
2Qc exponentially decaying to zero at infinity ��xQc�0 for x�0�. Furthermore, if f is

2, then the implicit function theorem implies that Qc is C2 with respect to the parameter c on
ome interval I0�R+. We assume that xm�c

nQc�L1�R� for n=1,2,m=0,1 ,2 so that integrals
ontaining �c

nQc are continuous and differentiable with respect to c. We also make the assumption
hat

�
−�

�

�cQcdx = 0 �8�

or all c� I. This implies that

�
−�

x

�cQc�z�dz,�
−�

x

�c
2Qc�z�dz � L2�R� . �9�

o see this, use the isometry property of the Fourier transform and the decay properties of �cQc.
he above requirements of Qc are implicit assumptions on the nonlinearity f and are true when

f�u�=u3. Assumption �8� is a very important and restrictive requirement; it does not hold when
f�x�=xp and p�3. For the case where �8� does not hold, see Ref. 20.

The solitary waves Qc are orbitally stable if ���c��0, where ��c�= P�Qc� �to avoid potential
onfusion, we remark that the quantity ��c� is often written as d��c� in the literature�. See
einstein,46 for the first proof for general nonlinearities. Moreover, in Ref. 24, Grillakis, Shatah,

nd Strauss proved that ���c��0 is a necessary and sufficient condition for Qc to be orbitally
table. Bona, Souganidis, and Strauss11 also gave stability results for KdV-type equations and
lbert, Bona, and Henry1 gave an instability result. The first proof of asymptotic stability for the
dV was given by Pego and Weinstein.36 In this paper, we assume that Qc is orbitally stable for

ll c in some compact interval I� I0, or equivalently that ���c��0 on I. For f�u�=up, we have

���c� =
5 − p

4�p − 1�
�Qc=1�L2

2 c	�7−3p� � �2�p−1��
 ,

hich implies the well-known stability criterion p�5 corresponding to subcritical power nonlin-

arities.
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The scalar field equation �7� for the solitary wave can be viewed as a Euler-Lagrange equation
or the extremals of the Hamiltonian Hb=0 subject to constant momentum P�u�. Moreover, Qc is a
table solitary wave if and only if it is a minimizer of Hb=0 subject to constant momentum P. Thus,
f c is the Lagrange multiplier associated to the momentum constraint, then Qc is an extremal of

	ca�u� ª Hb=0�u� + cP�u� =�
−�

� 1

2
��xu�2 +

1

2
cu2 − F�u�dx , �10�

nd hence 	ca� �Qc�=0.
The functional 	ca is translationally invariant. Therefore, Qca�x�ªQc�x−a� is also an ex-

remal of 	ca, and Qc�x−ct−a� is a solitary wave solution of �1� with b=0. All such solutions
orm the two-dimensional manifold of solitary waves

Ms ª 	Qca�c � I,a � R
 ,

ith tangent space TQca
Ms spanned by the vectors


ca
tr
ª �aQca = − �xQca and 
ca

n
ª �cQca, �11�

hich we call the translation and normalization vectors. Notice that the two tangent vectors are
rthogonal in L2�R�.

In addition to the requirement on b that �1� is globally well posed, we assume the potential b
s bounded, twice differentiable, and small in the sense that

��t
n�x

mb� � �a�t
n�x

m, �12�

or n=0,1, m=0,1 ,2, and n+m�2. The positive constants �a, �x, and �t are amplitude, length,
nd time scales of the function b. We assume all are less than or equal to one.

Lastly, we make some explicit assumptions on the local nonlinearity f . We require the non-
inearity to be k times continuously differentiable, f�0�= f��0�=0. These assumptions ensure the
amiltonian is finite on the space H1�R� and, since Qc decays exponentially �see Ref. 3�, both

f�Qc� and f��Qc� have exponential decay.
We are ready to state our main result. Recall that I0�R+ is an interval where Qc is twice

ontinuously differentiable.
Theorem 2.1: Let the above assumptions hold and assume ���c��0 for all c in a compact

nterval I� I0. Assume �a�1. Then, if �x�1, �0 and �t are small enough ��infI��2�, there is a
ositive constant C such that the solution to �1� with an initial condition u0 satisfying
nfQca�Ms

�u0−Qca�H1 ��0 can be written as

u�x,t� = Qc�t��x − a�t�� + ��x,t� ,

here ���t��H1 =O��0+ ��a�x�0�1/2+�x+�t� for all times t�C��a�x�−1. Moreover, during this time
nterval the parameters a�t� and c�t� satisfy the equations

�ȧ

ċ
� = �c − b�a�

0
� + b��a�

��c�
���c�

�0

1
� + O���0 + �x + �t�2 + ��a�x�0�1/2��x + �t + �0�� ,

here c is assumed to lie in the compact interval I.
Sketch of Proof and Paper Organization. To realize the Hamiltonian reduction we decompose

unctions in a neighborhood of the soliton manifold Ms as

u = Qca + � ,
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ith � symplectically orthogonal to TQca
Ms, i.e., ���x

−1TQca
Ms. We show that there is an �0

O�infI��2��0 such that if the solution u satisfies the estimate infQca
�u−Qca�H1 ��0, then there

re unique C1 functions a�u� and c�u� such that u=Qc�u�a�u�+� with ���x
−1TQca

Ms.
With the knowledge that the symplectic decomposition exists, we substitute u=Qca+� into the

KdV �1� and split the resulting equation according to the decomposition

L2�R� = �x
−1TQca

Ms � ��x
−1TQca

Ms��

o obtain equations for the parameters c and a, and an equation for the �infinite dimensional�
uctuation �. In Sec. IV we isolate the leading order terms in the equations for a and c and
stimate the remainder, including all terms containing �. In Secs. VI and VII, we establish spectral
roperties and a lower bound of the Hessian 	ca� on the space ��x

−1TQca
Ms��.

The proof that ���H1 is sufficiently small is the final ingredient in the proof of the main
heorem. The remaining sections concentrate on proving this crucial result. We employ a
yapunov method and in Sec. V we construct the Lyapunov function c and prove an estimate on

ts time derivative. This estimate is later time maximized over an interval �0,T�, and integrated to
btain an upper bound on c involving the time T and the norms of �. We combine this upper
ound with the lower bound on c following from the results of Sec. VII, and obtain an inequality
nvolving ���H1. In Sec. VIII we solve the inequality to find an upper bound on ���H1 provided
��0��H1 is small enough. We substitute this bound into the bound appearing in the dynamical
quation for a and c, and take �a�xand �0 small enough so that all intermediate results hold to
omplete the proof. �

II. MODULATION OF SOLUTIONS

As stated in the previous section, we begin the proof by decomposing the solution of �1� into
modulated solitary wave and a fluctuation �:

u�x,t� = Qc�t�a�t��x� + ��x,t� , �13�

ith a, c, and � fixed by the orthogonality condition

� � �x
−1TQca

Ms, �14�

here

�x
−1:g → �

−�

x

g�z�dz .

ote that �x
−1TQca

Ms is a subset of L2�R� �see �9��.
The existence and uniqueness of parameters a and c such that �=u−Qca satisfies �14� follows

rom the next lemma concerning a restriction of �x
−1 and the implicit function theorem. The

estriction K of �x
−1 to the tangent space TQca

Ms is defined by the equation KPT= PT�x
−1PT, where

PT is the orthogonal projection onto TQca
Ms. In the natural basis 	
ca

tr ,
ca
n 
 of the tangent space

Qca
Ms, the matrix representation of K is N−1�ca, where

N ª ��
ca
tr �L2

2
0

0 �
ca
n �L2

2 �
nd

�ca ª �
ca
tr ,�x

−1
ca
tr � 
ca

n ,�x
−1
ca

tr �

ca

tr ,�x
−1
ca

n � 
ca
n ,�x

−1
ca
n �
� . �15�

1 2
ecall that ��c�= 2 �Qc�L2.
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Lemma 3.1: If ���c��0 on the compact interval I�R+, then the matrix �ca is invertible for
ll c� I, and

�ca
−1 =

1

���c�
� 0 1

− 1 0
� . �16�

learly, ��ca
−1 � � ����−1, where ����ª infI���c�.

Proof: The lemma follows from the relations 
ca
tr ,�x

−1
ca
tr �=0, 
ca

n ,�x
−1
ca

n �=0, and

ca

tr ,�x
−1
ca

n �= 
ca
n ,Qc�=���c�. �

Given ��0, define the tubular neighborhood

U� ª 	u � L2�R�� inf
�c,a��I�R

�u − Qca�L2 � �

f the solitary wave manifold Ms in L2�R�.

Proposition 3.2: Let I�R+ be a compact interval such that c�Qca is C1�I�. Then there exists
positive number ��=���I�=O�����2� dependent on I and unique C1 functions a :U��

→R and
:U��

→ I, such that

Qc�u�a�u� − u,�x
−1
c�u�a�u�

tr � = 0 and Qc�u�a�u� − u,�x
−1
c�u�a�u�

n � = 0

or all u�U��
. Moreover, there is a positive real number C=C�I� such that

�u − Qc�u�a�u��H1 � C inf
Qca�Ms

�u − Qca�H1 �17�

or all u�U��
�H1�R�.

Proof: Let �ª ��1 ,�2�T�R� I and define G :R� I�H1�R�→R2 as

G:��,u� → �Qca − u,�ca
ca
tr �

Qca − u,�ca
ca
n �
� ,

here a=�1 and c=�2. The proposition is equivalent to solving G�g�u� ,u�=0 for a C1 function g.
et �0= �ac�T. If G is C1, G��0 ,Qca�=0, and ��F��0 ,Qca� is invertible, then the implicit function

heorem asserts the existence of an open ball B��Qca� of radius � with center Qca, and a unique
unction gQca

:B��Qca�→R� I, such that G�gQca
�u� ,u�=0 for all u�B��Qca�.The first two condi-

ions are trivial, and the third follows from Lemma 3.1 since ��G��0 ,Qca�=�ca. The radius �
epends on the parameters c and a, however, since ����ª infI���c��0, we can choose a smaller
all radius �� of order ����2 that works for all a�R and c� I. For details, see the proof of the
ecomposition theorem in Ref. 20. We define U��

= � 	B��
�Qca� �a�R ,c� I
 and past the C1

unctions gQca
together into a C1 function gI :U��

→R� I. This proves existence of the required C1

unctions a�u� and c�u�. Uniqueness follows from the uniqueness of the functions gQca
.

Let u�U��
, c� I, and a�R, and consider the equation

u − Qc�u�a�u� = u − Qca + Qca − Qc�u�a�u�.

learly, inequality �17� will follow if �Qca−Qc�u�a�u��H1 �C �u−Qca�H1 for some positive constant
. Since the derivatives �cQca and �aQca are uniformly bounded in H1�R� over R� I, the mean
alue theorem gives that �Qca−Qc�u�a�u��H1 �C � �c ,a�T− �c�u� ,a�u��T�, where the constant C does
ot depend on c, a. The relations gI�Qca�= �c ,a�T and gI�u�= �c�u� ,a�u��T then imply �Qca

Qc�u�a�u��H1 �C �gI�Qca�−gI�u��. Again, we appeal to the mean value theorem and use the prop-
rties of �ca and that �ugI=��G−1�uG is uniformly bounded in the parameters c and a to obtain

17�. The last equation is obtained by implicitly differentiating G�gI�u� ,u�=0 with respect to u.�
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V. EVOLUTION EQUATIONS FOR PARAMETERS �, a, AND c

In Sec. III we proved that if u remains close enough to the solitary wave manifold Ms, then we
an write a solution u to �1� uniquely as a sum of a modulated solitary wave Qca and a fluctuation
satisfying the orthogonality condition �14�. Thus, as u evolves according to the initial value

roblem �1�, the parameters a�t� and c�t� trace out a path in R2. The goal of this section is to derive
he dynamical equations for the parameters a and c, and the fluctuation �. We obtain such equa-
ions by substituting the decomposition u=Qca+� into �1� and then projecting the resulting equa-
ion onto appropriate directions, with the intent of using the orthogonality condition on �.

From now on, u is the solution of �1� with initial condition u0 satisfying �0ª infQca�Ms
�u0

Qca�H1 ���, and T0=T0�u0� is the maximal time such that u�t��U��
for 0� t�T0. Then, for 0

t�T0, u can be decomposed as in �13� and �14�.
Proposition 4.1: Assume ���c��0. Say u=Qca+� is a solution to �1�, where � satisfies �14�.

hen, if ���H1 is small enough, �x�1, and c� I,

�ȧ

ċ
� = �c − b�t,a�

0
� + b��t,a�

��c�
���c�

�0

1
� + Z�a,c,�� , �18�

here Z�a ,c ,��=O��a�x
2+�a�x ���H1 + ���H1

2 �.
Proof: Recall that the solitary wave Qca is an extremal of the functional 	ca. To use this fact

e rearrange definition �10� of 	ca to write the Hamiltonian Hb as

Hb�u� = 	ca�u� − cP�u� +
1

2
�

−�

�

bu2�x�dx ,

here for notational simplicity we have suppressed the space and time dependency of b. Substi-
uting Qca+� for u in �3� and using the above expression for Hb gives the equation

ȧ
ca
tr + ċ
ca

n + �̇ = �x	ca� �Qca + �� − c�x�Qca + �� + �x��Qca + ��b� ,

here the dots indicate time differentiation. Let LQª	ca� �Qca�,

�b ª b�t,x� − b�t,a� ,

nd

�2b ª b�t,x� − b�t,a� − b��t,a��x − a� .

aylor expanding 	ca� �Qca+�� to linear order in �, using that Qca is an extremal of 	ca and the
elation 
ca

tr =−�xQca gives that

�̇ = �x��LQ + �b + b�a� − c��� + �xNca� ��� − �ȧ − c + b�a��
ca
tr − ċ
ca

n + b��a��x��x − a�Qca�

+ �x��2bQca� . �19�

he nonlinear terms have been collected into Nca� ��� given by �A1� in the Appendix.
Define the vectors 
1ª
ca

tr and 
2ª
ca
n . Projecting �19� onto �x

−1
i for i=1,2 and using the
ntisymmetry of �x gives the two equations

�ȧ − c + b�a���
ca
tr ,�x

−1
i� + �,
i�� + ċ
ca
n ,�x

−1
i� + �̇,�x
−1
i� − ȧ�,
i�

= − b��t,a��x − a�Qca,
i� − �2bQca,
i� − �b�,
i� − Nca� ���,
i� − LQ�,
i� . �20�

e can replace the term containing �̇ since the time derivative of the orthogonality condition

� ,�x
−1
i�=0 implies �̇ ,�x

−1
i�= ȧ� ,
i�− ċ� ,�c�x
−1
i�. Note that we have used the relation �a
i
=−�x
i. Thus, in matrix form, �20� becomes
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�I + B��ca�ȧ − c + b�t,a�
ċ

� = X + Y , �21�

here

X ª − b��t,a���c��1

0
� − ��2bQca,
ca

tr �
�2bQca,
ca

n �
� ,

Y ª − ��b�,
ca
tr � + Nca� ���,
ca

tr � + LQ�,
ca
tr �

�b�,
ca
n � + Nca� ���,
ca

n � + LQ�,
ca
n �
� ,

nd

B ª ��,
ca
tr � �,
ca

n �
�,
ca

n � − �,�c�x
−1
ca

n �
��ca

−1.

e have explicitly computed �x−a�Qca ,
i� to obtain the above expression for X.
We now estimate the error terms and solve for ȧ and ċ. The assumption on the potential

mplies the bounds

��b� � �a�x�x − a� and ��2b� � �a�x
2�x − a�2. �22�

hus, Hölder’s inequality and exponential decay of Qca imply

X = − b��t,a���c��1

0
� + O��a�x

2� = O��a�x� . �23�

imilarly, exponential decay of 
ca
tr and 
ca

n implies �b� ,
i�=O��a�x ���H1�. The linear term
LQ� ,
i� is zero since LQ
ca

tr =0, LQ
ca
n =−Qca, and ���x

−1
ca
tr =−Qca. Lastly, Nca� ��� ,
i��C ���H1

2

y the first estimate in Lemma A.A.1. Combining the above estimates gives the bound

�Y� = O��a�x���H1 + ���H1
2 � .

y the second inclusion of �9�, �c�x
−1
ca

n �L2�R�. Hölder’s inequality then implies �B � =O����H1�.
hus, if ���H1 is sufficiently small, say so that �B � �1/2, then I+B is invertible and ��I+B�−1 �
2. Acting on Eq. �21� by �I+B�−1= I−B�I+B�−1 and then �ca

−1 gives the equation

�ȧ − c + V�a�
ċ

� = �ca
−1�X + B�I − B�−1X + �I − B�−1Y� .

sing the above estimates of �B�, ��I−B�−1�, �X�, and �Y� implies

�ȧ − c + V�a�
ċ

� = �ca
−1X + O��a�x���H1 + ���H1

2 � .

eplacing X by �23� completes the proof. �

. THE LYAPUNOV FUNCTIONAL

In the last section we derived dynamical equations for the modulation parameters. These
quations contain the H1�R� norm of the fluctuation. In this section we begin to prove a bound on
. Recall that the latter bound is needed to ensure that u remains close to the manifold of solitary
aves Ms for a long time.
We employ a Lyapunov argument with a Lyapunov function
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c�t� ª 	ca�Qca + �� − 	ca�Qca� + b��a��x − a�Qca,�� . �24�

Remark: If f�u�=u3, the last term in the Lyapunov functional is not needed; however, apart
rom computational complexity, there is no disadvantage in using the above function for this
pecial case as well.

Lemma 5.1: Say u=Qca+� is a solution to �1�, where � satisfies �14�. Say �a�1. If ���c�
0, and �x and ���H1 are less than 1, with ���H1 small enough, then

d

dt
c�t� = O��a

2�x
3 + ��a�x�t + �a�x

2����H1� + O��a�x���H1
2 + ���H1

4 � . �25�

Proof: Suppressing explicit dependence on x and t, we have by definition

	ca�u� ª Hb�u� −
1

2
�

−�

�

u2bdx + cP�u� .

hus, relations �4�–�6� imply that the time derivative of 	ca along the solution u is

d

dt
	ca�u� = �

−�

� 1

2
ċu2 + b��1

2
cu2 − uf�u� +

3

2
��xu�2 + F�u�� + b�u�xudx .

ubstituting Qca+� for u, manipulating the result using antisymmetry of �x, and collecting appro-
riate terms into b��a�LQ� ,�x��x−a�Qca��, Nca� ��� ,�x��b�Qca+����, and 	ca� �Qca� ,�x��b�Qca

���� gives the relation

d

dt
�	ca�Qca + �� − 	ca�Qca�� = b��a�LQ�,�x��x − a�Qca�� + ċQca,��

+ ċ
1

2
���L2

2 + LQ�,�x��2bQca�� + c
1

2
b��,�� +

3

2
b��x�,�x��

− f��Qca��,�x��b��� + Nca� ���,�x��b�Qca + ����

+ b��,�x�� + 	ca� �Qca�,�x��b�Qca + ���� .

he last term is zero because 	ca� �Qca�=0 and since ��Qca, the quantity ċ� ,Qca� is also zero. We
se Lemma A.1, assumptions �12� on the potential, estimates �22�, and

��x�
2b� � �a�x

2�x − a�

o estimate the size of the time derivative of 	ca�Qca+��−	ca�Qca�. We also use that Qca, �xQca,

x
2Qca, and f��Qca� are exponentially decaying. When �x�1, higher order terms like b�� ,�x�� are
ounded above by lower order terms like b�� ,��. Similarly, if ���H1 �1, then �a�x ���H1

2

�a�x ���H1. This procedure gives the estimate

d

dt
�	ca�Qca + �� − 	ca�Qca�� = b��a��,LQ�x��x − a�Qca��

+ Nca� ���,�b�x�� + O��ċ����H1
2 + �a�x

2���H1 + �a�x���H1
2 � .
pplying the chain rule to the integrand of
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�
−�

�

�x��F�Qca + �� − F�Qca� − f�Qca�� −
1

2
f��Qca��2��b�dx = 0

nd using the definition of Nca� ��� gives that

Nca� ���,�b�x�� = �Nca� ��� +
1

2
f��Qc��2,�b�xQc�

− �
−�

� ��F�Qca� + �� − F�Qca� − f�Qca�� −
1

2
f��Qca��2�b�dx .

he second estimate and the proof of the third estimate of Lemma A.1 of the Appendix then imply
he bound Nca� ��� ,�b�x��=O��a�x ���H1

3 �. Thus, since �a�x ���H1
3

��a�x ���H1
2 when ���H1 �1, we

ave

d

dt
�	ca�Qca + �� − 	ca�Qca�� = b��a��,LQ�x��x − a�Qca�� + O��ċ����H1

2 + �a�x
2���H1 + �a�x���H1

2 � .

�26�

hen f�u�=u3, � ,LQ�x��x−a�Qca��=0 since 
ca
n =�x��x−a�Qca�. In this special case the above

stimate is sufficient for our purposes, but in general we need to use the corrected Lyapunov
unctional. When ��C�R ,H1�R���C1�R ,H−2�R��, b��a�� , �x−a�Qca� is continuously differen-
iable with respect to time;

d

dt
�b��a��,�x − a�Qca�� = �tb��,�x − a�Qca� + b��a��̇,�x − a�Qca� + ċb��a��,�x − a�
ca

n � + ȧb��a�

��,�x − a�
ca
tr � + ȧb��a��,�x − a�Qca� ,

here � ,Qca�=0 has been used to simplify the derivative. Substituting for �t� using �19� gives

d

dt
�b��a��,�x − a�Qca�� = − b��a��,LQ�x��x − a�Qca�� − �ȧ − c + b�a��b��a�

1

2
�Qca�L2

2

+ �tb��,�x − a�Qca� + �ȧ − c + b�a��b��a��x�,�x − a�Qca�

+ �ȧ − c + b�a��b��a��,�x − a�Qca� + ċb��a��,�x − a�
ca
n � − b��a�

��,�b�x��x − a�Qca��

− b��a�Nca� ���,�x��x − a�Qca�� − b��a��2bQca,�x��x − a�Qca��

+ �c − b�a��b��a��,�x − a�Qca� .

We estimate using the same assumptions used to derive �26�. If ���H1 and �x are less than 1,
hen

d

dt
�b��a��,�x − a�Qca�� = − b��a��,LQ�x��x − a�Qca�� + O��ȧ − c + b�a���a�x + �ċ��a�x���H1�

+ O��a
2�x

3 + ��1 + �a��x
2 + �x�t��a���H1 + �a�x���H1

2 � .

Adding the above expression to �26� gives an upper bound containing �ċ� and �ȧ−c+b�a��.
eplacing these quantities using the bounds

�ċ� = O��a�x + �a�x���H1 + ����H1
2 �
nd
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�ȧ − c + b�a�� = O��a�x
2 + �a�x���H1 + ���H1

2 �

rom Proposition 4.1, and bounding higher order terms by lower order terms gives �25�. To use the
bove bounds on �ċ� and �ȧ−c+b�a�� we must assume ���H1 is small enough so that Proposition 4.1
olds. �

I. SPECTRAL PROPERTIES OF THE HESSIAN LQ

The Hessian �2	ca at Qca in the L2�R� pairing is computed to be the unbounded operator

LQ: = − �x
2 + c − f��Qca� , �27�

efined on L2�R� with domain H2�R�. We extend this operator to the corresponding complex
paces.

Proposition 6.1: The self-adjoint operator LQ has the following properties.

1. LQ
ca
tr =0 and LQ
ca

n =−Qca.
2. All eigenvalues of LQ are simple, and Null LQ=Span	
ca

tr 
.
3. LQ has exactly one negative eigenvalue.
4. The essential spectrum is �c , � ��R+.
5. LQ has a finite number of eigenvalues in �−� ,c�.

Proof: Recall that the vectors 
ca
tr
ª−�xQca and 
ca

n
ª�cQca are in the Sobolev space H2�R�.

hus, relations LQ
ca
tr =0 and LQ
ca

n =−Qca make sense, and are obtained by differentiating

ca� �Qca�=0 with respect to a and c. The first relation above proves that 
ca
tr is a null vector.

Say 
, ��H2�R� are linearly independent eigenvectors of LQ with the same eigenvalue. Then,
ince LQ is a second-order linear differential operator without a first-order derivative, the Wronsk-
an

W��,
� = 
�x� − ��x


s a nonzero constant. With � and 
 both in H2�R�, however, the limit limx→�W�� ,
� is zero. This
ontradicts the nonvanishing of the Wronskian, and hence all eigenvalues of LQ are simple and, in
articular, Null LQ=Span	
ca

tr 
.
Next we prove that the operator LQ has exactly one negative eigenvalue using the Sturm-

iouville theory on an infinite interval. Recall that the solitary wave Qca�x� is a differentiable
unction, symmetric about x=a and monotonically decreasing if x�a. This implies that the null
ector 
ca

tr , or, equivalently, the derivative of Qca with respect to x, has exactly one root at x=a.
herefore, by the Sturm-Liouville theory, zero is the second eigenvalue and there is exactly one
egative eigenvalue.

We use standard methods to compute the essential spectrum. Since the function f��Qca�x�� is
ontinuous and decays to zero at infinity, the bottom of the essential spectrum begins at
imx→��c− f��Qca�x���=c and extends to infinity: �ess�LQ�= �c , � �. Furthermore, the bottom of the
ssential spectrum is not an accumulation point of the discrete spectrum since f��Qca�x�� decays
aster than x−2 at infinity. Hence, there is at most a finite number of eigenvalues in the interval
−� ,c�. For details, see Refs. 25, 37, and 38. �

II. STRICT POSITIVITY OF THE HESSIAN

In this section we prove strict positivity of the Hessian LQ on the orthogonal complement to
he two-dimensional space

�x
−1TQca

Ms = Span	Qca,�x
−1
ca

n 
 .
his result is a crucial ingredient needed to prove the bound on the fluctuation �.
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Proposition 7.1: Assume ���c��0 on I�R+. If ���x
−1TQca

Ms, then there is a positive constant
such that LQ� ,���� ���H1

2 .
Proof: Define Xª 	��H1�R� ����x

−1TQca
Ms , ���L2 =1
. By the max-min principle, infX�H2�R�

LQ� ,�� is attained or is equal to inf �ess�LQ�=c. If the latter holds, the proof is complete. In the
ormer case, let � be the minimizer.

We claim the set of vectors 	
ca
tr ,
ca

n ,�
 is a linearly independent set. If they were dependent,
hen, since 
ca

tr and 
ca
n are orthogonal, there are nonzero constants � and � such that �=�
ca

tr

�
ca
n . Projecting this equation onto �x

−1
ca
tr and �x

−1
ca
n gives the equations ����c�=0 and ����c�

0. Thus, the assumption ���c��0 implies �=0, a contradiction since the zero function does not
ie in the set X.Note that in deriving ����c�=0 we have used that �x

−1 is antisymmetric on the span
f 
ca

n since �x
−1
ca

n �L2�R�.
By the min-max principle, if

�3 ª inf	max	LQ�,���� � V,���L2 = 1
�V � H2�R�,dim V = 3


� max	LQ�,���� � Span	
ca
tr ,
ca

n ,�



s below the essential spectrum, then it is the third eigenvalue counting multiplicity. Let �=��
�
ca

tr +�
ca
n , where �, �, and � are arbitrary apart from satisfying ���L2 =1. Thus, since the third

igenvalue of LQ is positive �see Sec. VI�,

0 � LQ�,�� = �2LQ�,�� − �2���c� � �2LQ�,�� ,

nd hence LQ� ,���0. The function ��c�= LQ� ,�� is continuous since both �x
−1
ca

tr and �x
−1
ca

n

re continuous in L2�R� as functions of c. Set �=infI��c�.
We now improve the result to an H1�R� norm. If we define the constant K�I�ªsupI �c

f��Qca���, then LQ� ,��� ��x��L2
2 −K�I� ���L2

2 . Adding to this bound the factor �K+1� /� of the
ower bound LQ� ,���� ���L2

2 derived above completes the proof. �

III. BOUND ON THE FLUCTUATION

We are now ready to prove the bound on the fluctuation.
Proposition 8.1: Say �a�1. Then, for small enough �x�1 and initial fluctuation ���H1 �1,

here exists a constant C such that the bound

���t��H1 = O��0 + ��a�x�0�1/2 + �x + �t�

olds for all times t�T=C��a�x�−1.
Proof: Lemma 5.1 implies

� d

dt
c�t�� � C��a

2�x
3 + ��a�x�t + �a�x

2����T + �a�x���T
2 + ���T

4�

or some constant C�0 where ���Tªsup0�t�T ���H1. Integrating over �0,T� gives an upper bound
n c�T�. A lower bound is obtained by expanding 	ca�Qca+�� to quadratic order, then using
roposition 7.1, the third estimate of Lemma A.1, and V��a�� , �x−a�Qca�=O��a�x ���H1�. We
btain, after setting all nonessential constants to one,

���T
2 − ���T

3 − �a�x���T � c�T�

� �c�0�� + ��a
2�x

3 + ��a�x�t + �a�x
2����T + �a�x���T

2 + ���T
4�T

−1 1/2
or all T�0. Take T=O���a�x� �. Then, under the smallness assumption ���H1� ��a�x� ,
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���H1 = O��c�0��1/2 + �x + �t� .

he initial value of the Lyapunov functional c�0� can be bounded by the H1�R� norm of the initial
uctuation ���0��H1 �C�0 �recall that �0ª infQca�Ms

�u0−Qca�H1�. Indeed, Taylor expanding

ca�Qca+�� to second order in � and using the third estimate in Lemma A.1 gives �c�0� �
O��0

2+�a�x�0� if �0�1. To complete the proof we take �x and �0 small enough so that ���t��H1 is
ufficiently small for Lemma 5.1 to hold. �

We now prove the main theorem.
Proof of Theorem 1: By our choice �0���, there is a �maximal� time T0 such that the solution

in �1� is in U��
for time t�T0. Hence decomposition �13� with �14�, and Proposition 8.1 are

alid for the solution u over this time and imply the statements of the main theorem. In particular,

���t��H1 = O��0 + ��a�x�0�1/2 + �x + �t�

or times t�min	T0 ,T
. Taking �0+ ��a�x�0�1/2+�x+�t���, we must have t�T by maximality of
he time T0. �
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PPENDIX: ESTIMATES OF NONLINEAR REMAINDERS

Define

Nca��� ª − �
−�

�

F�Qc + �� − F�Qc� − F��Qc�� −
1

2
F��Qc��2dx

nd

Nca� ��� ª − �f�Qc + �� − f�Qc� − f��Qc��� . �A1�

ote that Nca� ���=��Nca��� under the L2�R� pairing.
Lemma A.1: If ���H1 �1 and f �Ck�R� for some k�3, then there are positive constant C1, C2,

nd C3 such that

1. �Nca� ����L2 �C1 ���H1
2 ,

2. �Nca� ���+ 1
2 f��Qca��2�L2 �C2 ���H1

3 ,
3. �Nca��� � �C3 ���H1

3 .

Proof: Taylor’s remainder theorem implies

Nca� ��� = − �
n=2

k−1
1

n!
f �n��Qca��n − R�Qca,�� ,

here, since ���H1 �1, �R�Qca ,�� � �C ���k. Recall that Qca is continuous and decays exponentially
o zero. Together with the assumption that f �Ck�R�, this implies f �n��Qca��L��R� for 2�n�k

1. Thus, after pulling out the largest constant,
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�Nca� ����L2 � C�
n=2

k

��n�L2.

o obtain item 1 we use the bound ��n�L2 �C ���H1
n , which is obtained from the inequality ���L�

C ���H1 and the assumption that ���H1 �1.
Clearly, a slight modification of the above proof gives items 2 and 3. For the latter we use that

he assumptions on f imply F�Ck+1�R� with F�k+1��L��R�. �
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Controlling chaos via wavelet transform was recently proposed by Wei, Zhan, and
Lai �Phys. Rev. Lett. 89, 284103 �2002��. It was reported there that by modifying
a tiny fraction of the wavelet subspace of a coupling matrix, the transverse stability
of the synchronous manifold of a coupled chaotic system could be dramatically
enhanced. The stability of chaotic synchronization is actually controlled by the
second largest eigenvalue �1�� ,�� of the �wavelet� transformed coupling matrix
C�� ,�� for each � and �. Here � is a mixed boundary constant and � is a scalar
factor. In particular, �=1 �respectively, 0� gives the nearest neighbor coupling with
periodic �respectively, Neumann� boundary conditions. The first, rigorous work to
understand the eigenvalues of C�� ,1� was provided by Shieh et al. �J. Math. Phys.
�to be published��. The purpose of this paper is twofold. First, we apply a different
approach to obtain the explicit formulas for the eigenvalues of C�� ,1� and C�� ,0�.
This, in turn, yields some new information concerning �1�� ,1�. Second, we shed
some light on the question whether the wavelet method works for general coupling
schemes. In particular, we show that the wavelet method is also good for the
nearest neighbor coupling with Neumann boundary conditions. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2218674�

. INTRODUCTION

Chaotic synchronization �Refs. 1, 8, 12–14, and references cited therein� is a fundamental
henomenon in physical systems with dissipation. It was first observed in Ref. 8 for identical
aster-slave Lorenz equations. This phenomenon was later observed in many different fields—

hysics, electrical engineering, biology, laser systems, etc. Experimental observations show that
haotic subsystems in a lattice manifest synchronized chaotic behavior in time provided they are
oupled with a dissipative coupling and its coupling strength is greater than some critical value.
pecifically, let there be N nodes �oscillators�. Assume ui is the m-dimensional vector of dynami-
al variables of the ith node. Let the isolated �uncoupling� dynamics be u̇i= f�ui� for each node.
e assume that ui has a chaotic dynamics in the sense that its largest Lyapunov exponent is

ositive. Let h: Rm→Rm be an arbitrary function describing the coupling within the components
f each node. Thus, the dynamics of the ith node are

u̇i = f�ui� + ��
j=1

N

aijh�u j�, i = 1,2, . . . ,N , �1.1a�

here � is a coupling strength. Here sum � j=1
N aij =0. Let u= �u1 ,u2 , . . . ,uN�T, F�u�

�f�u1� , f�u2� , . . . , f�uN��T, H�u�= �h�u1� ,h�u2� , . . . ,h�uN��T, and A= �aij�. We may write �1.1a� as

u̇ = F�u� + �A � H�u� . �1.1b�

�
Electronic mail: jjuang@math.nctu.edu.tw
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Here � is the direct product of two matrices B and C defined as follows. Let B= �bij�k1�k2
be

k1�k2 matrix and C= �Cij�k2�k3
be a k2�k3 block matrix, where each of Cij, 1� i�k2, 1� j

k3, is a k4�k5 matrix. Then

B � C = ��
l=1

k2

bilClj�
k1�k3

.

any coupling schemes are covered by Eq. �1.1b�. For example, if the Lorenz system is used and
he coupling is through its three components x, y, and z, then the function h is just the matrix

I3 = �1 0 0

0 1 0

0 0 1
	 . �1.2�

The choice of A will provide the connectivity of nodes. For instance, the nearest neighbor
oupling with mixed boundary conditions is given as follows:

A = A��� =�
− 1 − � 1 0 ¯ ¯ �

1 − 2 1 ¯ ¯ 0

0 1 − 2 1 ¯ 0

] � � � ]

] � � � ]

� 0 ¯ ¯ 1 − 1 − �

	
N�N

. �1.3�

ote that �=1 corresponds to periodic boundary conditions, while �=0 is associated with Neu-
ann boundary conditions. The synchronous manifold of the chaotic system �1.1� can be studied

y setting u1�t�=u2�t�= ¯ =uN�t�=s�t�. Here the chaotic solution s�t� satisfies the single oscillator
quation ds /dt= f�s�t��. The stability property of the synchronous manifold can then be studied in
he space of difference variables �ui�t�=ui�t�−s�t�, which are governed by7,10

d�u

dt
= �IN � DF + �A � DH��u , �1.4a�

here DH=dH�u� /du, and �u= ��u1 ,�u2 , . . . ,�uN�T. When H is just a matrix E, DH=E. The first
erm in �1.4a� is block diagonal. The second term can be treated by diagonalizing A. The trans-
ormation which does this does not affect the first term, since it acts only on the identity matrix IN.
his leaves us with a block diagonalized variational equation with each block having the form7

�u̇i = �DF + ��iDH��ui, �1.4b�

here �i is an eigenvalue of A, i=0,1 , ¯ ,N−1. The Jacobian functions DF and DH are the same
or each block, since they are evaluated on the synchronized state. It then follows from �1.4b� that
he largest eigenvalue �0 of A being equal to 0 governs the motion on the synchronized manifold,
nd all of other eigenvalues �i�i�0� control the transverse stability9 of the chaotic synchronous
tate. The stability condition is then given by Lmax+��1�0, where Lmax	0 is the largest
yapunov exponent of a single chaotic oscillator. As a consequence, the second largest eigenvalue

1 is dominant in controlling the stability of chaotic synchronization, and the critical strength �c

an be determined in term of �1,

�c =
Imax

− �1
. �1.4c�

Note that the eigenvalues of A=A�1� are given by �i=−4 sin2�
i /N�, i=0,1 , . . . ,N−1. In

eneral, a larger number of nodes gives a smaller nonzero eigenvalue �1 in magnitude, and, hence,
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larger �c. As a consequence, controlling chaos is apparently of great interest and
mportance.4–7,11,12 In Ref. 11, a new efficient strategy for controlling nonlinear dynamics was
resented. To be self-contained, we briefly describe such procedures. Let

A = �A11 ¯ A1n

] � ]

An1 ¯ Ann
	

n�n

, �1.5a�

e a matrix with the dimension of each block matrix Akl being 2i�2i. By an i-scale wavelet
perator W,2,11 the matrix A is transformed into W�A� of the form

W�A� = �Ã11 ¯ Ã1n

] � ]

Ãn1 ¯ Ãnn

	
n�n

, �1.5b�

here each entry of Ãkl is the average of entries of Akl, 1�k , l�n.
For a given matrix, the above wavelet transform allows a perfect reconstruction �inverse

avelet transform�, by which there is nothing to gain: A=W−1�W�A��. In Ref. 11, a simple opera-
or Ok is introduced to attain a desirable coupling matrix. That is,

C = W−1�Ok�W�A��� = A + �k − 1�W�A� ¬ A + �W�A� , �1.5c�

here Ok is the multiplication of a scalar factor K on each block matrix Ãkl. After such recon-
truction, the critical strength �c is again determined in terms of the second largest eigenvalue of
. A numerical simulation of a coupled system of 512 Lorenz oscillators in Ref. 11 shows that
ith h= I3 and A=A�1�, the critical coupling strength �c decreases linearly with respect to the

ncrease of � up to a critical value �c. The smallest �c is about 6, which is about 103 times smaller
han the original critical coupling strength, indicating the efficiency of the proposed approach.

To verify this phenomenon mathematically, we first consider the coupling matrix A=A���, as
iven in �1.3�. Let n=N /2i�N, where i is a fixed positive integer. We then write A into an n
n block matrix of the form

A = A��� =�
A1��� A2�1� 0 . . 0 A2

T���
A2

T�1� A1�1� A2�1� . . 0 0

0 . . . .

. . . . .

. . . . 0

0 0 . . A2
T�1� A1�1� A2�1�

A2��� 0 . . 0 A2
T�1� Ā1���

	
n�n

, �1.6a�

here

A1��� =�
− 1 − � 1

1 − 2 1 0

. . .

. . .

0 . . 1

1 − 2

	
i i

,

2 �2
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Ā1��� =�
− 2 1

1 − 2 1 0

. . .

. . .

0 . . 1

1 − 1 − �

	
2i�2i

, �1.6b�

nd

A2��� =�
0 . . . 0

. .

. .

0 0

� 0 . . 0
	

2i�2i

. �1.6c�

hen the newly transformed coupling matrix C=C�� ,�� can be written as

��,��

=�
A1��� + Ã1��� A2�1� + Ã2�1� 0 ¯ 0 A2

T��� + Ã2
T���

A2
T�1� + Ã2

T�1� A1�1� + Ã1�1� A2�1� + Ã2�1� 0 ¯ 0

0 � � � ]

] � � � 0

0 ¯ 0 A2
T�1� + Ã2

T�1� A1�1� + Ã1�1� A2�1� + Ã2�1�

A2��� + Ã2��� 0 ¯ 0 A2
T�1� + Ã2

T�1� Ã1��� + Ā
˜

1���

	
¬�

C1��� C2�1� 0 ¯ 0 C2
T���

C2
T�1� C1�1� C2�1� 0 ¯ 0

0 � � � ]

] � � � 0

0 ¯ 0 C2
T�1� C1�1� C2�1�

C2��� 0 ¯ 0 C2
T�1� C̄1���

	 . �1.7�

ere for any matrix B of dimension 2i�2i, the kl entry �B̃�kl of B̃ is defined to be

�B̃�kl =
�

22i�
l=1

2i

�
k=1

2i

�B�kl.

Here � is a scalar factor. The matrix C�� ,�� carries a new relationship among the coupled
scillators, which might not be as simple as the original matrix A. Nevertheless, the stability of the
ynchronous states can be determined by matrix C�� ,��, whose eigenvalues �i�� ,�� �i
0,1 ,2 , ¯ ,N−1� determine the synchronous stability of the coupled chaotic system. The follow-

ng theorem of Shieh et al.9 showed, indeed, the dramatic reduction in the critical coupling
trength can be achieved with the periodic boundary conditions. We summarize their main results
n the following.

Theorem 1.1: Let N�N, N=8k, k�N, be the dimension of the matrix C�� ,1�. Let the
imension of each block matrix in C�� ,1� be 2i�2i. Then the following assertions hold.

i) �iª2 cos�
 /2i�−2 is an eigenvalue of C�� ,1�.

ii) The second eigenvalue �1�� ,1� of C�� ,1� is decreasing in �. Moreover, �1�� ,1�=�i when-
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ever ��−2i�i /4 sin2�2i
 /N�.

ote that C�� ,1� is a block circulant matrix �see e.g., Ref. 3�. A classical result of a block
irculant matrix states that its eigenvalues exactly consist of those of certain linear combinations
f its block matrices �see, e.g., Theorem 5.6.4 of Ref. 3�. The proof of Theorem 1.1 was then
educed to working on the eigenvalues of those linear combinations of block matrices of C�� ,1�.
ote that C�� ,��, ��1 are not block circulant matrix. The objective of the present work is to
resent another approach to study the eigenvalues of C�� ,��. Specifically, we use this new
ethod to study two coupling schemes, the nearest neighbor coupling with periodic boundary

onditions and the nearest neighbor coupling with Neumann boundary conditions. To simplify our
alculation, we consider only the case i=1. In both coupling schemes, we are able to obtain,
espectively, exact form of eigenvalues �m

± �� ,�� of its corresponding matrix C�� ,��, see �2.16�
nd �3.9�. Here �=0 or 1. For each � and �, let �1�� ,�� be the second largest eigenvalue of
�� ,��. We prove that for N being a multiple of 4, then

�1��,1� =
 �1
+��,1� ,

0 � � �
1

sin2 z

n

�n/2
+ ��,1� = − 2,

� �
1

sin2 


n

. �
et N=2n be an even number which is not multiple of 4. We show that �1�� ,1�=��n/2�

+ �� ,1� for
sufficiently large, where �n /2�=the largest positive integer that is less than or equal to n /2.
oreover, we prove that for such N that �1�� ,1�−2, whenever �	1/sin2�
 /n�. With those

esults above, we get considerably more information than those obtained in Ref. 9. Among other,
uch result suggests that if the number N of oscillators is even but not a multiple of 4, then the
avelet method works even better. Specifically, it is better in the sense that the corresponding

econd largest eigenvalue �1�� ,1� is further away from 0, and, hence, gives even smaller critical
ength. Our second main result is concerned with �1�� ,0� of C�� ,0�, which corresponds to the
earest neighbor coupling with Neumann boundary conditions. We show that for all even number
its second largest eigenvalue �1�� ,0� for each � behaves like its periodic counterpart for which

ts corresponding N is a multiple of 4.

I. PERIODIC BOUNDARY CONDITIONS

Here, we consider the nearest neighbor coupling with periodic boundary conditions. The

esulting coupling matrix A�1� is given as in �1.6�. Let the dimension of A1�1�, A2�1�, and Ā1�1�
e 2�2. Then

A1�1� = �− 2 1

1 − 2
� = Ā1�1�, A2�1� = �0 0

1 0
� , �2.1a�

Ã1�1� = ��−
1

2
−

1

2

−
1

2
−

1

2
	 = Ā

˜
1�1�, Ã2�1� = ��

1

4

1

4

1

4

1

4
	 . �2.1b�

˜ ¯ ¯ D
hen Ci�1�=Ai�1�+Ai�1�, i=1 ,2, C1�1�=A1�1�+A1�1�. Thus,
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C1�1� =�−
1

2
�4 + ��

1

2
�2 − ��

1

2
�2 − �� −

1

2
�4 + �� 	 = C̄1�1�, C2�1� =�

�

4

�

4

1

4
�4 + ��

�

4
	 . �2.1c�

e begin by identifying some trivial eigenvalues of C�� ,1�.
Proposition 2.1: For each �, 0 and −4 are eigenvalues of C�� ,1�. If, in addition, n /2�	1� is

positive integer, then −2 is also an eigenvalue of C�� ,1� for any �.
Proof: Let C�� ,1�+4I= �c1 ,c2 , . . . ,cN�, where ci, 1� i�N, are column vectors. Then

j=1
N �−1� j+1c j =0. Thus −4 is an eigenvalue of C�� ,1� for each �	0. Let C�� ,1�+2I
�c1 ,c2 , . . . ,cN�. If N=2n�	4� is a multiple of four, then � j=1

N ��j�c j =0, where

��j� = � 1 if j = 4k or 4k + 1 for some k

− 1 if j = 4k + 2 or 4k + 3 for some k .


hus, −2 is an eigenvalue of C�� ,1� for each � with such N. �

Writing the corresponding eigenvalue problem C�� ,1�b=�b, where b= �b1 ,b2 , . . . ,bn�T and

i�C2, in block component form, we have

C2
T�1�bi−1 + C1�1�bi + C2�1�bi+1 = �bi, 1 � i � n . �2.2a�

eriodic boundary conditions would yield that

C2
T�1�b0 + C1�1�b1 + C2�1�b2 = �b1 = C1�1�b1 + C2�1�b2 + C2

T�1�bn

nd

C2
T�1�bn−1 + C1�1�bn + C2�1�bn+1 = �bn = C2�1�b1 + C2

T�1�bn−1 + C̄1�1�bn,

r, equivalently,

b0 = bn, �2.2b�

b1 = bn+1. �2.2c�

To study the block difference equation �2.2�, we first seek to find the solution bi of the form

bi = �i�1

�
� . �2.3�

ubstituting �2.3� into �2.2a�, we get

�C2
T�1� + ��C1�1� − �I� + �2C2�1���1

�
� = 0. �2.4�

o have a nontrivial solution � 1
�

� to Eq. �2.4�, we need to have

det�C2
T�1� + ��C1�1� − �I� + �2C2�1�� = 0, �2.5a�

r, equivalently,

��4 + �4� + 4 + 2����3 − �8 + 10� + 16� + 4�� + 4�2��2 + �4� + 4 + 2���� + � = 0.

�2.5b�

quation �2.5b� is to be called the characteristic equation of the block difference equation �2.2a�.
o study the property of Eq. �2.5b�, we need the following proposition.

T T
Proposition 2.2: Let D1, D2, and D3 be 2�2 matrices. Suppose D1=D3 and D2=D2. Let x1,
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2, x3, and x4 be roots of det�D1+xD2+x2D3�=0, where x�C. Then we may renumber the sub-
cripts if necessary so that

x1x2 = 1 = x3x4. �2.6a�

f, in addition, diagonal elements of D1 and D2, respectively, are both equal, then

y1y2 = 1 = y3y4. �2.6b�

ere � 1
yi

�, i=1,2 ,3 ,4, are vectors satisfying

�D1 + xiD2 + xi
2D3��1

yi
� = 0. �2.6c�

roof: If D1, D2, and D3 are as assumed, then

det�D1 + xD2 + x2D3� = ax4 + bx3 + cx2 + bx + a �2.7�

or some constants a�0, b, and c. Letting y=x+1/x, then �2.7� can be written as �y2+�y+�,
here �, �, and � depend on the constants a, b, and c. Thus det�D1+xD2+x2D3�=0 is equivalent

o x2−�±x+1=0, where �± are the roots a1y2+b1y+c1=0. Consequently, x1x2=1=x3x4.
Letting D1= � a1

c1

b1

a1
�=D3

T and D2= � a2

b2

b2

a2
�, we write �2.6c� in component form,

�a1 + yib1� + �a2 + yib2�xi + �a1 + yic1�xi
2 = 0, i = 1,2,3,4, �2.8a�

�c1 + yia1� + �b2 + yia2�xi + �b1 + yia1�xi
2 = 0, i = 1,2,3,4, �2.8b�

or i=1, �2.8a� is equal to

�a1 + y1b1� + �a2 + y1b2�
1

x2
+ �a1 + y1c1�

1

x2
2 = 0

r

�a1 + y1c1� + �a2 + y1b2�x2 + �a1 + y1b1�x2
2 = 0

r

�c1 +
1

y1
a1� + �b2 +

1

y1
a2�x2 + �b1 +

1

y1
a1�x2

2 = 0. �2.8c�

sing Eqs. �2.8c� and �2.8b� with i=2, and the uniqueness of yi, i=1,2 ,3 ,4, we conclude that
y1y2=1. Similarly, y3y4=1. We just complete the proof of the proposition. �

We are now in a position to further study Eq. �2.5�. We assume, momentarily, that Eq. �2.5�
as four distinct roots �1, �2, �3, and �4. The general solutions to �2.2a� can then be written as

bi = c1�1
i � 1

�1
� + c2�2

i � 1

�2
� + c3�3

i � 1

�3
� + c4�4

i � 1

�4
� . �2.9�

ere �i, i=1,2 ,3 ,4, are some constants depending on �i.
Applying �2.9� to boundary conditions �2.2b� and �2.2c�, we get

c1��1
n − 1�� 1

�1
� + c2��2

n − 1�� 1

�2
� + c3��3

n − 1�� 1

�3
� + c4��4

n − 1�� 1

�4
� = 0 �2.10a�
nd
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c1�1��1
n − 1�� 1

�1
� + c2�2��2

n − 1�� 1

�2
� + c3�3��3

n − 1�� 1

�3
� + c4�4��4

n − 1�� 1

�4
� = 0.

�2.10b�

riting �2.10� in matrix form, we have

�
1 1 1 1

�1 �2 �3 �4

�1 �2 �3 �4

�1�1 �2�2 �3�3 �4�4

	diag��1
n − 1,�2

n − 1,�3
n − 1,�4

n − 1��
c1

c2

c3

c4

	 = 0. �2.11�

ow if, diag��1
n−1,�2

n−1,�3
n−1,�4

n−1� is singular, then Eq. �2.9� has nontrivial solutions ci, i
1,2 ,3 ,4. Note that diag��1

n−1,�2
n−1,�3

n−1,�4
n−1� is singular if and only if �i, i=1,2 ,3 ,4,

atisfy

�n = 1 �2.12�

nd �2.5b�. To solve the system of equations �2.12� and �2.5b�, we first note that

�m = ei2m
/n, 0 � m � n − 1, �2.13�

re roots of Eq. �2.12�. Substituting �2.13� and �2.5b�, we get that the imaginary part of the
esulting equation is

�− 4 sin
4m


n
��2 + �2� sin

6m


n
− �4� + 16�sin

4m


n
+ 2� sin

2m


n
��

+ �� sin
8m


n
+ 4�1 + ��sin

6m


n
− �8 + 10��sin

4m


n
+ 4�1 + ��sin

2m


n
� = 0.

�2.14�

efore we proceed to compute the real part of the resulting equation, we need the following
emma.

Lemma 2.1: Let a, b, and c be any complex number, then

cos 2��sin 4� + a sin 3� + b sin 2� + a sin �� = sin 2��cos 4� + a cos 3� + b cos 2� + a cos � + 1� .

�2.15�

ince the proof of the lemma is straightforward, we will skip it.
Using �2.14� and �2.15�, we see immediately that the real part of �2.5b� with �=ei2m
/n is a

onstant multiple sin/cos�4m
 /n� / �4m
 /n� of its imaginary part. We next show that �2.14� is
ndeed the characteristic equation of the matrix C�� ,1�.

Theorem 2.1: Let N�N, N=2k, k�N, be the dimension of the matrix C�� ,1�. Let dimension
f each block matrix in C�� ,1� be 2�2. Then the eigenvalues �m

± �� ,1� of C�� ,1� are of the
ollowing form:

�m
± ��,1� =

1

2
�� cos

2m


n
− � − 4� ±

1

2
��� cos

2m


n
− � − 4�2

+ 4�� cos2 2m


n

+ 2�� + 1�cos
2m


n
− 2 − 3���1/2

¬ �̌m��,1� ± �̂m��,1�, m = 0,1, . . . ,n − 1.

�2.16�

Proof: Solving �2.14�, we get �2.16�. Using Proposition 2.2, we see that if �=1 or −1 is a root

f Eq. �2.5b�, then the multiplicity of �=1 or −1 is both two. Thus, we have only proved the
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ollowing. �i� If n /2 is not a positive integer, then for each �, �m
± �� ,1�, m=1,2 , . . . ,n−1, are

igenvalues of C�� ,1�. �ii� If n /2 is a positive integer, then for each �, �m
± �� ,1�, m

1,2 , . . . ,n /2−1,n /2+1, . . . ,n−1, are eigenvalues of C�� ,1�. To complete the proof of the theo-
em, it remains to show that for each �, �0

±�� ,1��=0,−4� are eigenvalues of C�� ,1� for each � and
hat if, additionally, n /2	1 is a positive integer, then for each �, �n/2

± �� ,1��=−2,−2−2�� are also
igenvalues of C�� ,1�. Using Proposition 2.1, we only need to show that −2−2�= ��n/2

− �� ,1�� is
n eigenvalue of C�� ,1� for fixed �. To this end, we see that

trace of C��,1� = − n�� + 4� . �2.17�

et N=2n	4 be a multiple of four, then

�n/2
+ ��,1� + � �

j=1,j�n/2

n

� j
±��,1�� + �0

±��,1� = − 2 − �n − 2��� + 4� − 4. �2.18�

sing �2.17� and �2.18�, we have that the remaining eigenvalue of C�� ,1� for each � is −2−2�,
hich is equal to �n/2

− �� ,1�. We thus complete the proof of the theorem. �

Proposition 2.3: For all �	0, we have that �̂m�� ,1�	0, �̌m�� ,1�0 and �m
± �� ,1��0.

Proof: Obviously, �̌m�� ,1�0. Now, letting t=cos�2m
 /n�, we have that

4��̂m��,1��2 = �t − 1�2�2 + 4�t2 − 1�� + 8�1 + t� = ��t − 1�� + 2�t + 1��2 + 4�1 − t2� 	 0

or any �	0. Thus �̂m�� ,1�	0. To prove the last assertion of the proposition, we note, via �2.16�,
hat

0 	 4�� cos2 2m


n
+ 2�� + 1�cos

2m


n
− 2 − 3��¬ l .

hus,

2�m
± ��,1� = 2�̌m��,1� ± �4�̌m

2 ��,1� + l�1/2 � 0.

e just complete the proof of the proposition. �

Proposition 2.4: If n /2 is not a positive integer, then the eigencurves �m
± �� ,1�, m

1,2 , . . . ,n−1, are strictly decreasing in �� �0,��. If n /2�	1� is a positive integer, then

m
± �� ,1�, m=1,2 , . . . ,n /2−1,n /2+1, . . . ,n−1, and �n/2

− �� ,1� are strictly decreasing in �
�0,��.

Proof: Letting t=cos�2m
 /n�, we write �2.16� as

�m
± ��,1� = 1

2 ���t − 1� − 4 ± ��t − 1�2�2 + 4�t2 − 1�� + 8�1 + t��1/2�

¬

1
2 ���t − 1� − 4 ± �t��1/2� ¬ �t

±��� . �2.19�

hen

2
d�m

± ��,1�
d�

= �t − 1��1 ±
�t − 1�� + 2�t + 1�

�t�
� .

direct computation would yield that

t� � ��t − 1�� + 2�t + 1��2.

hus, d�m
± �� ,1� /d��0. The equality holds only if t=1 or t=−1 for �m

+ . �
�
Proposition 2.5: (i) In the �−� plane, �t �� ,1� interest with �=−2+k at �t,k, where
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�t,k =
2�1 + t� − k2

�1 − t��1 + t + k�
. �2.20�

ii) For −1� t1, lim�→��t
+�� ,1�=−�t+3�.

Proof: Solving equation −2+k=�t
+�� ,1�, we easily get that �t,k are as asserted. Rewriting

t
+�� ,1� as

�t
+��,1� =

− 2��t − 1��t + 3� + 4�1 − t�
��t − 1� − 4 − �t�

,

e see that lim�→��t
+�� ,1�=−�t+3� for −1� t1. �

Theorem 2.2: Let N be any positive even integer. The dimension of each block matrix in
�� ,1� is 2�2. Then (i) suppose N is a multiple of four and N	4. For each �	0, let ��� ,1� be

he second largest eigenvalue of C�� ,1�. Then ��� ,1�=�1
+�� ,1�, for 0���1/sin2�
 /n�ª�1;

nd ��� ,1�=�n/2
+ �� ,1�=−2 for all �� ��1 ,��. See Fig. 1.

(ii) Suppose N is not a multiple of four. Then there exists a �̃c such that ��� ,1�=��n/2�
+ ��� for

ll ���̃c. Here �n /2�= the largest positive integer that is less than or equal to n /2. Moreover,
�� ,1�−2 whenever �	�1. See Fig. 2.

Proof: For �t,k to be positive, we must have

2�1 + t� 	 k2. �2.21�

ow,

�1 − t�2�1 + t + k�2d�t,k

dt
= 2�t + 1�2 − k3 + 4k − 2tk2 	 �1 + t�k2 − k3 + 4k − 2tk2

= − k�k2 + �t − 1�k − 4� = − k�k − t+��k − t−� ,

here t±= �1− t±�16+ �1− t�2� /2. Note that we have used �2.21� to justify the above inequality.
oreover t−0 and t+�2. Thus, d�t,k /dt	0 whenever �=−2+k, 0�k2, and �=�t

+�� ,1� have
he intersections intersect at the positive �t,k. Upon using Proposition 2.4, we conclude that for
�m�n−1, the portion of the graphs of �m

+ �� ,1� lying above the line �=−2 do not intersect each
ther. Thus, ��� ,1� is as asserted.

FIG. 1. The curves �m
± �� ,1� with N=2n=12 are provided. As predicted in Theorem 2.2–�i�, ��� ,1� turns flat after �1.
By Proposition 2.5�ii�, we have that
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lim
�→�

�m
+ ��,1� = − �cos

2m


n
+ 3�¬ �m

� = �t
�.

hen �m
� ,0m�n−1, have a maximum at m= �n /2�. Thus, there exists a �̃c such that ��� ,1�

��n/2�
+ �� ,1� for all ���̃c. The last assertion of the theorem follows from Proposition 2.5-�i� and

roposition 2.1. �

Remark 2.1: �i� Since �t
+�� ,1� is increasing in t and �t

� is decreasing in t, the eigencurves

m
+ �� ,1�, 0m� �n /2� must be crossing each other.

�ii� The first column in Table I contains the values of �m
± �1,1�, m=0,1 , . . . ,5, while the second

olumn contains the eigenvalues of C�1,1� obtained by using MATHEMATICA. As indicated, the
�1,1� and C�5,1� obtained by both methods are identical. The values �m

± �3,1�, m=0,1 , . . . ,8, in
he first and third columns of Table II are computed by MAPLE, while those in the second and
ourth columns are computed by MATLAB. Some discrepancies between the values in the respec-
ive columns occur due to the round-off errors.

�iii� Figure 1 illustrates the graph of �m
± �� ,1�, m=0,1 , . . . ,5, with n=6. The dotted part of the

urve is ��� ,1�. Figure 2 gives the same information with n=9.
�iv� We conclude, via the last assertion of Theorem 2.1, that the wavelet approach works even

etter when N is an even number but not a multiple of four. Indeed, in such case, it synchronizes
aster when � is chosen to be the critical value �̃c.

II. NEUMANN BOUNDARY CONDITIONS

Here, we consider the nearest neighbor coupling with Neumann boundary conditions. The

IG. 2. The curves �m
± �� ,1� with N=2n=18 are provided. As predicted in Theorem 2.2–�ii�, ��� ,1� lies below −2

ventually.
esulting coupling matrix A is then A�0�, given as in �1.6a�. With i=1, we have
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TABLE I. The first and third columns contain the values computed by using
formulas �m

± �� ,1� as given in �2.16�. The values in the second and fourth
columns are eigenvalues of C�� ,1� obtained by using MATHEMATICA.

n=6

�m
± �1,1�

Eigenvalues
of C�1,1� �m

± �5,1�
Eigenvalues
of C�5,1�

�0
+�1,1�=0 0 �0

+�5,1�=0 0

�1
+�1,1�=−

9

4
+

1

4
�37 −

9

4
+

1

4
�37 �1

+�5,1�=−
13

4
+

1

4
�13 −

13

4
+

1

4
�13

�2
+�1,1�=−

11

4
+

1

4
�13 −

11

4
+

1

4
�13 �2

+�5,1�=−
23

4
+

1

4
�181 −

23

4
+

1

4
�181

�3
+�1,1�=−2 −2 �3

+�5,1�=−2 −2

�2
+�1,1�=−

11

4
+

1

4
�13 −

11

4
+

1

4
�13 �4

+�5,1�=−
23

4
+

1

4
�181 −

23

4
+

1

4
�181

�2
+�1,1�=−

11

4
+

1

4
�13 −

11

4
+

1

4
�13 �5

+�5,1�=−
13

4
+

1

4
�13 −

13

4
+

1

4
�13

�0
−�1,1�=−4 −4 �0

−�5,1�=−4 −4

�1
−�1,1�=−

9

4
−

1

4
�37 −

9

4
−

1

4
�37 �1

−�5,1�=−
13

4
−

1

4
�13 −

13

4
−

1

4
�13

�2
−�1,1�=−

11

4
−

1

4
�13 −

11

4
−

1

4
�13 �2

−�5,1�=−
23

4
−

1

4
�181 −

23

4
−

1

4
�181

�3
−�1,1�=−4 −4 �3

−�5,1�=−12 −12

�4
−�1,1�=−

11

4
−

1

4
�13 −

11

4
−

1

4
�13 �4

−�5,1�=−
23

4
−

1

4
�181 −

23

4
−

1

4
�181

�5
−�1,1�=−

11

4
−

1

4
�13 −

11

4
−

1

4
�13 �5

−�5,1�=−
13

4
−

1

4
�13 −

13

4
−

1

4
�13
TABLE II. The first and third columns contain the values computed by
using formulas �m

± �� ,1� as given in �2.16�. The values in the second and
fourth columns are eigenvalues of C�� ,1� obtained by using MATH-
EMATICA.

n=9

�m
± �3,1�

Eigenvalues
of C�3,1� �m

± �10,1�
Eigenvalues
of C�10,1�

�0
+�3,1�=0 0 �0

+�10,1�=0 0
�1

+�3,1��−0.7967 −0.7967 �1
+�10,1��−2.2938 −2.2930

�2
+�3,1��−2.2524 −2.2525 �2

+�10,1��−3.0135 −3.0140
�3

+�3,1��−2.2975 −2.2974 �3
+�10,1��−2.4465 −2.4466

�4
+�3,1��−2.0399 −2.0399 �4

+�10,1��−2.0535 −2.0542
�5

+�3,1��−2.0399 −2.0399 �5
+�10,1��−2.0535 −2.0542

�6
+�3,1��−2.2975 −2.2974 �6

+�10,1��−2.4465 −2.4466
�7

+�3,1��−2.2524 −2.2525 �7
+�10,1��−3.0135 −3.0140

�8
+�3,1��−0.7967 −0.7967 �8

+�10,1��−2.2938 −2.2930
�0

−�3,1�=−4 −4 �0
−�10,1�=−4 −4

�1
−�3,1��−3.9051 −3.9052 �1

−�10,1��−4.0458 −4.0465
�2

−�3,1��−4.2268 −4.2265 �2
−�10,1��−9.2505 −9.2495

�3
−�3,1��−6.2025 −6.2026 �3

−�10,1��−16.5534 −16.5534
�4

−�3,1��−7.7791 −7.7792 �4
−�10,1��−21.3427 −21.3427

�5
−�3,1��−7.7791 −7.7792 �5

−�10,1��−21.3427 −21.3427
�6

−�3,1��−6.2025 −6.2026 �6
−�10,1��−16.5534 −16.5534

�7
−�3,1��−4.2268 −4.2265 �7

−�10,1��−9.2505 −9.2495
�8

−�3,1��−3.9051 −3.9052 �8
−�10,1��−4.0458 −4.0465
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A1�0� = �− 1 1

1 − 2
�, Ā1�0� = �− 2 1

1 − 1
�, A2�1� = �0 0

1 0
� ,

A1�1� = �− 2 1

1 − 2
�, A2�0� = �0 0

0 0
�, Ã2�0� = ��0 0

0 0
� ,

Ã1�0� = ��−
1

4
−

1

4

−
1

4
−

1

4
	 = Ā

˜
1�0�, Ã2�1� = ��

1

4

1

4

1

4

1

4
	 ,

nd

Ã1�1� = ��−
1

2
−

1

2

−
1

2
−

1

2
	 �3.1�

direct calculation would yield that

C2�0� = �0 0

0 0
� ,

C1�0� =�−
1

4
�4 + ��

1

4
�4 − ��

1

4
�4 − �� −

1

4
�8 + �� 	, C2�1� =�

�

4

�

4

1

4
�� + 4�

�

4
	 ,

C1�1� =�−
1

2
�4 + ��

1

2
�2 − ��

1

2
�2 − �� −

1

2
�4 + �� 	, C̄1�0� =�−

1

4
�8 + ��

1

4
�4 − ��

1

4
�4 − �� −

1

4
�4 + �� 	 . �3.2�

s in the case of periodic boundary conditions, the eigenvalue problem C�� ,0�b=�b, where b
�b1 ,b2 , . . . ,bn�T, bi�C2, can be formed as block difference equation

C2
T�1�bi−1 + C1�1�bi + C2�1�bi+1 = �bi, 1 � i � n . �3.3�

ith Neumann boundary conditions, b0, and bn+1 must satisfy

C1�0�b1 + C2�1�b2 = �b1 = C2
T�1�b0 + C1�1�b1 + C2�1�b2 �3.4a�

nd

C2
T�1�bn−1 + C̄1�0�bn = �bn = C2

T�1�bn−1 + C1�1�bn + C2�1�bn+1. �3.4b�

olving �3.4a� and �3.4b�, respectively, we get

b0 = �C2
T�1��−1�C1�0� − C1�1��b1 = �0 1

1 0
�b1 �3.5a�
nd
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bn+1 = C2�1�−1�C̄1�0� − C1�1��bn = �0 1

1 0
�bn. �3.5b�

e then see that the characteristic equation of the block difference equation �3.3� is

det�C2
T�1� + ��C1�1� − �I� + �2C2� = 0. �3.6a�

ere � is such that bi=�i� 1
�

�, where � is a constant depending on �. Expanding the determinant in
3.6a�, we get

��4 + 2�2� + 2 + ����3 − 2�4 + 5� + 2�� + 4�� + 2�2��2 + 2�2� + 2 + ���� + � = 0.

�3.6b�

e assume, momentarily, that Eq. �3.6b� has four distinct roots �1, �2, �3, and �4. The general
olutions to �3.3� can then be written as

bi = �
j=1

4

cj� j
i� 1

� j
� . �3.7�

ubstituting �3.7� into boundary conditions �3.5�, we get

�
�1�1 − 1 �2�2 − 1 �3�3 − 1 �4�4 − 1

�1 − �1 �2 − �2 �3 − �3 �4 − �4

�1
n��1�1 − 1� �2

n��2�2 − 1� �3
n��3�3 − 1� �4

n��4�4 − 1�
�1

n��1 − �1� �2
n��2 − �2� �3

n��3 − �3� �4
n��4 − �4�

	�
c1

c2

c3

c4

	¬ Dc = 0, �3.8�

T

TABLE III. The first and third columns contain the values computed by
using formulas �m

± �� ,0� as given in �3.9�. The values in the second and
fourth columns are eigenvalues of C�� ,1� obtained by using MATH-
EMATICA.

n=3

�m
± �2,0�

Eigenvalues
of C�2,0� �m

± �5,0�
Eigenvalues
of C�5,0�

�0
+�2,0�=0 0 �0

+�5,0�=0 0

�1
+�2,0�=−

5

2
+

1

2
�7 −

5

2
+

1

2
�7 �1

+�5,0�=−
13

4
+

1

4
�13 −

13

4
+

1

4
�13

�2
+�2,0�=−

7

2
+

1

2
�7 −

7

2
+

1

2
�7 �2

+�5,0�=−
23

4
+

1

4
�181 −

23

4
+

1

4
�181

�3
+�2,0�=−2 −2 �3

+�5,0�=−2 −2

�1
−�2,0�=−

5

2
−

1

2
�7 −

5

2
−

1

2
�7 �1

−�5,0�=−
13

4
−

1

4
�13 −

13

4
−

1

4
�13

�2
−�2,0�=−

7

2
−

1

2
�7 −

7

2
−

1

2
�7 �2

−�5,0�=−
23

4
−

1

4
�181 −

23

4
−

1

4
�181
here c= �c1 ,c2 ,c3 ,c4� . We are now in a position to simplify det D,
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det D = ��2�2���4�4��
�1�1 − 1 1 − �1�1 �3�3 − 1 1 − �3�3

�1 − �1 �1 − �1 �3 − �3 �3 − �3

�1
n��1�1 − 1� �2

n�1 − �1�1� �3
n��3�3 − 1� �4

n�1 − �3�3�
�1

n��1 − �1� �2
n��1 − �1� �3

n��3 − �3� �4
n��3 − �3�

�
= ��2�2���4�4���1

n − �2
n���3

n − �4
n��

0 1 − �1�1 0 1 − �3�3

0 �1 − �1 0 �3 − �3

�1�1 − 1 �2
n�1 − �1�1� �3�3 − 1 �4

n�1 − �3�3�
�1 − �1 �2

n��1 − �1� �3 − �3 �4
n��3 − �3�

�
= ��2�2���4�4���1

n − �2
n���3

n − �4
n�����1�1 − 1���3 − �3� + ��1 − �1���3�3 − 1��

��1 − �1�1 1 − �3�3

�1 − �1 �3 − �3
� .

herefore, det D being equal to zero amounts to �i
2n=1 for i=1,2 ,3 ,4.

To get the characteristic equation of C�� ,0�, we need to solve �2n=1 and Eq. �3.6b�. This
eads to the following theorem.

Theorem 3.1: Let N be any positive even integer. The dimension of each block matrix in
�� ,0� is 2�2. Let �m

± �� ,0� be defined as follows:

�m
± ��,0� =

1

2
�� cos

m


n
− � − 4� ±

1

2
��� cos

m


n
− � − 4�2

+ 4�� cos2 m


n
+ 2�� + 1�

�cos
m


n
− 2 − 3���1/2

. �3.9�

hen �m
± �� ,0�, m=1,2 , . . . ,n−1, �0

+�� ,0�=0 and �n
+�� ,0�=−2 are eigenvalues of C�� ,0� for each

	0.
Proof: Substituting �=eim
/n, 0�m�n−1, into �3.6b�, we get �3.9�. Clearly, if ��1 or −1, or

quivalently, cos�m
 /n��1 or −1, then �m
± �� ,0�, m=1,2 , . . . ,n−1, are eigencurves of C�� ,0�.

ince 0=�0
+�� ,0� is an eigenvalue of C�� ,0� for all �, we only need to show that �n

+�� ,0� is,
ndeed, the eigenvalue of C�� ,0� for each �. To this end, we see that trace�C�� ,0��=−�n−2���
4�−6−�. However, �0

+�� ,0�+� j=1
n−1� j

±�� ,0�=−�n−1���+4�= ¬k. Thus, trace�C�� ,0��−k=−2
�n

+�� ,0�. We just complete the proof of the theorem. �

Remark 3.1: �i� Letting t=cos�m
 /n�, �m
± �� ,0�=�t

±�� ,0� and treating t as a real parameter,

FIG. 3. The curves �m
± �� ,0� with N=2n=6 are provided. As predicted in Theorem 3.2, ��� ,0� turns flat after �1.
e see that for fixed �	0, the eigenvalues of C with periodic boundary conditions and Neumann
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oundary conditions, respectively, lie on the curve �t
±�� ,0� in t−� plane.

�ii� Note that �m
± �� ,0�=�2n−m

± �� ,0�.
Theorem 3.2: For each �, let ��� ,0� be the second largest eigenvalue of C�� ,0�. Then

�� ,0�=�1
+�� ,0�, for 0���1/sin2�
 /2n�¬ �̄1; and ��� ,0�=�n

+�� ,0�=−2 for all �� ��̄1 ,��.
We skip the proof of theorem due to its similarity with that of Theorem 2.1 �ii�.
Remark 3.2: Table III and Fig. 3 illustrate, again, the accuracy of our theorems.
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We present a complete derivation of the formula of Smythe �Phys. Rev. 72, 1066
�1947�� giving the electromagnetic field diffracted by an aperture created in a
perfectly conducting plane surface. The reasoning, valid for any excitating field and
any hole shape, makes use only of the free scalar Green function for the Helmoltz
equation without any reference to a Green dyadic formalism. We compare our proof
with the one previously given by Jackson and connect our reasoning to the general
Huygens Fresnel theorem. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2197689�

. INTRODUCTION

Diffraction of electromagnetic waves by an aperture in a perfect metallic plane is not only a
athematical problem of fundamental interest but is connected to many applications in the mi-

rowave domain �for example, in waveguides and in cavity resonators1� as well as in the optical
egime where it is involved in many optical arrangements.2 The fundamental importance of this
henomenon in near-field optics has been pointed out as early as in 1928 by Synge3 in his
rophetic paper and is currently involved in modern near-field scanning optical microscopy
NSOM�.4

In the domain of applicability of NSOM where distances and dimensions are smaller than or
lose to the wavelength of light, we need to know the exact structure of the electromagnetic field,
nd we cannot in general consider the usual approximations involved in Kirchhoff’s theory for a
calar wave.5–7 In this context, one of the most cited approaches is the one given by Bethe8 in
944 and corrected by Bouwkamp.9,10 It gives the electromagnetic field diffracted by a small
ircular aperture in a perfect metallic plane in the limit where the optical wavelength is much
arger than the aperture. Less known is the more general formula of Smythe11,12 which expresses
n a formal way the Huygens Fresnel principle for any kind of aperture in a metallic screen. Even
f this formula is not an explicit solution for the general diffraction problem, it constitutes an
ntegral equation which can be used in a self consistent way in perturbative or numerical calcu-
ations of the diffracted field.13,14 Further efforts have been made by Smythe11,12 himself in order
o justify his formula by means of some arrangements of current sheets fitting the aperture. This

ethod essentially consists of transforming the problem of diffraction by a hole into a physically
ifferent one in order to guess the correct integral equation for the original problem. However, if
his physical reasoning proves the consistency of the proposed solution with Maxwell equations
nd boundary conditions for the field, it is not directly connected to the rigorous electromagnetic
ormulation of the Huygens Fresnel principle obtained by Stratton and Chu.15 Such a connection
s expected naturally because these two formulations of diffraction must be equivalent here.

�
Electronic mail: aurelien.drezet@uni-graz.at
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Jackson,16 in the first edition of his textbook on electrodynamics, developed a complete proof
f the Smythe formula starting from the Stratton and Chu formula �Eq. �3� of the present paper�.
evertheless, like in the original paper of Smythe, Jackson transforms the problem into a physi-

ally different one in order to guess the correct result. The result is then subjected to the same
emarks as above for Smythe’s approach. Other justifications of Smythe results are based on the
se of the Babinet theorem or of the Green dyadic method. The latter, which uses a tensorial Green
unction instead of a scalar one like in Kirchhoff’s or Stratton and Chu’s theories, gives us the
ost direct justification for Smythe approach in terms of the Huygens Fresnel principle. However,

his proof is for the moment not directly connected to the Stratton and Chu approach. It is the aim
f this paper to establish such a link.

The paper is organized as follows. We give in Sec. II a description of the general theory of
iffraction of electromagnetic waves by an aperture in a screen. In Sec. III, we exploit precedent
orks by Jackson16,17 and Levine and Schwinger18 to justify directly and rigorously the Smythe

ormula using the Stratton Chu theorem without relying on any ingenious physical “trick.” Section
V deals with a vectorial justification of Smythe’s approach. The consistency between the various
heoretical treatments of diffraction by an aperture in a metallic screen is stressed in Sec. V which
lso compares our treatment with that obtained within the Green dyadic formalism.19,20 Our
onclusions appear in Sec. VI.

I. THE DIFFRACTION PROBLEM IN ELECTROMAGNETISM

The first coherent theory of diffraction was elaborated by Kirchhoff �1882� on the basis of the
uygens Fresnel principle.2,21 The method of integral equations allows one to write a solution
�r� �e−i�t of the Helmholtz propagation equation ��2+k2���r� �=0 �k=� /c� using the “free” scalar
reen function G�r� ,r���=eikR /4�R which is a solution of the equation ��2+k2�G�r� ,r���=−�3�r�
r���.

If, as schematized in Fig. 1, we consider now an aperture �S made in a two-dimensional
nfinite screen S and illuminated by incident radiation, we can express the field � existing at each
bservation point located behind the screen �i.e., for z�0� by the Kirchhoff formula

��r� � = �
S

���r���n�� · ���G�r�,r��� − G�r�,r���n�� · �����r����dS�, �1�

here the normal unit vector n�� is oriented into the diffraction half-space.
In a problem of diffraction, we usually impose the additional first Kirchhoff “shadow” ap-

� �

IG. 1. The problem of diffraction in electromagnetism. The incoming wave comes from the z�0 half-space and is
iffracted by the aperture �S located in the plane screen S at z=0. The unit vector n��= ẑ used in the text is represented.
roximation ��r��=�n���r��=0 which is valid on the unilluminated side of the screen. This per-

                                                                                                            



m
s
f
s

c
f
o
p

I
c
−
c
t
t
e
i

H
I
t
v
N
v

h

b

t
e

t
u
a
s
t
h

i
M
d
i
i

i
a
i

072901-3 Diffraction of light by a planar aperture J. Math. Phys. 47, 072901 �2006�

                        
its one to restrict the integral in �1� to the region of the aperture only, which is very useful in
ome approximations or iterative resolutions. Nevertheless, this intuitive hypothesis has some
undamental inconsistencies because, following a theorem due to Poincaré,21 a field satisfying the
hadow approximation on a finite domain must vanish everywhere.

A classic solution proposed by Rayleigh22 and Sommerfeld23 to circumvent this difficulty
onsists in replacing the free Green function by the Dirichlet GD or the Neumann GN Green
unctions16 satisfying �n�GN�r� ,r���=0 and GD�r� ,r���=0 for all points r�� on S. We can then rigor-
usly reduce the integral to the region of the aperture depending on the nature of the boundary
roblem. For example, if we impose �=0 on the screen, we can then write

��r� � = �
Aperture

��r����n�GD�r�,r���dS�. �2�

n principle, it could be possible to generalize the preceding methods to the different Cartesian
omponents �� of the electromagnetic field using equations of the form ��=�S����n�G
G�n����dS�. Nevertheless, as pointed out by Stratton, Chu and others,24–26the Maxwell equations
ouple the field components between them and the consistency of these relations must be con-
rolled a posteriori if we use an integral equation like Eq. �1� either in an exact or approximative
reatment of diffraction. In addition, because the boundary conditions imposed by Maxwell’s
quations connect the tangential and the normal components of the field on the screen surface, it
s not at all trivial to reduce the integral to the region of the aperture directly using Eq. �1�.

Due to the uniqueness theorem, such possible reduction of the integral appearing in the
uygens Fresnel principle is expected in the case of a perfectly conducting metallic screen.

ndeed, following this uniqueness theorem, the field in the diffracted space must depend only on
he tangential electric field on the screen and aperture surface. Because the tangential electric field
anishes on the screen, the integral must depend only on the tangential field at the opening.
umerous authors, especially Stratton and Chu15 as well as Schelkunoff,27,28 have discussed a
ectorial integral equation satisfying Maxwell’s equations automatically. We can effectively write

E��x� � = �
S

�ik�n�� � B� �G + �n�� � E� � � ���G + �n�� · E�����G�dS�, �3�

ereafter referred to as the Stratton-Chu equation. A similar expression holds for the magnetic field

y means of the substitution E�→B� and B�→−E�.
It is important to note that Eq. �3� is over-determined although it depends explicitly on the

angential and normal components of the electromagnetic field defined on S. Indeed, due to the
quivalence principle of Love and Schelkunoff24,27,29 and to the uniqueness theorem, we expect

hat the “most adapted” integral equations depend only on n���E� or n���B� on S. In addition,
nlike in the scalar case, we cannot directly reduce the surface integral to the region of the
perture just by choosing an adapted Dirichlet or Neumann Green function. It seems then neces-
ary to apply once again the shadow approximation of Kirchhoff in order to simplify the integra-
ion despite the inconsistency of the method. As in the Poincaré theorem, some problems appear
ere because we need to add a nonphysical contour integral associated with a magnetic line charge

n Eq. �3� �or to an electric line charge in the equivalent formula for B�� in order to satisfy
axwell’s equations and to compensate for the arbitrary change imposed to the integration

omain.32 Furthermore, in this Kirchhoff Kottler26 theory, the introduction of contour integrals
nduces a logarithmic divergence of the energy at the rim of the aperture, a fact which is forbidden
n a diffraction problem.

The particular case of the diffraction by an aperture in a planar screen constitutes an exception
n the sense that a rigorous integral equation had been anticipated by Schelkunoff27 and Bethe8 for

subwavelength circular aperture and generalized by Smythe11,12 for any kind of aperture. The

ntegral equation is
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E��x� � =
1

2�
�� � ��

Aperture

�ẑ � E��
eikR

R
dS�� . �4�

or some applications, it is important to note that in the short wavelength limit �	
 aperture
ypical radius� for which the electromagnetic field in the aperture can be identified with the

ncident plane wave B�i= ẑ�E�i �first Kirchhoff approximation�, the formula of Stratton Chu limited
o the aperture domain and the exact solution of Smythe give approximately the same result.
ndeed, within the Fraunhofer approximation, Eq. �4� reads

E� 	
ikeikr

r
r̂ � �

Aperture


 ẑ � E�i

2�
e−ikr̂·x���dS�, �5�

hereas Eq. �3� reduces to

E� 	
ikeikr

r

r̂ + ẑ

2
� �

Aperture


 ẑ � E�i

2�
e−ikr̂·x���dS�. �6�

oth equations are identical in the practical limit of small diffraction angles, i.e., close to the
ormal axis z going through the aperture. Equation �5� is correct for a subwavelength aperture
nly because we cannot identify the field in the aperture with the incident one. We can see that the
symptotic diffracted field for z�0 is equivalent to the one produced by an effective magnetic
ipole

M�eff = �
Aperture


n�� � E�

2�ik
�dS�, �7�

nd by an effective electric dipole

P� eff =
ẑ

4�
�

Aperture

�x�� · E��dS�. �8�

hese formula are fundamental in the context of NSOM because they give us the Bethe
ouwkamp8–10,16 dipoles which, in the particular case of a circular aperture of radius a, are

P� eff =
a3

3�
E��

�0�, M�eff = −
2a3

3�
B��

�0�. �9�

�

�0� and B��
�0� are, respectively, the locally uniform normal electric field and tangential magnetic

eld existing in the aperture zone in the absence of the opening �in z=0−�.

II. GREEN DYADIC JUSTIFICATION OF THE SMYTHE FORMULA

The so-called Smythe formula Eq. �4� is generally obtained on the basis of different principles
uch as the Babinet principle or the equivalence theorem �see Schelkunoff,27 Bouwkamp,30

ackson17�. In particular, the equivalence theorem shows that the solution of Smythe for z�0 is
dentical to the one obtained by considering a virtual surface magnetic-current density given by

�
s
m=−cẑ�E� / �2��. All these derivations are self consistent if we consider the very fact that the
uessed results fulfill Maxwell equations. Then, the uniqueness theorem ensures that the result is
he only one possible. Nevertheless, as already noted, the calculation is not direct and not neces-
arily connected to the Stratton and Chu formalism. A classical calculation due to Schwinger and
evine19,20 shows, however, that it is possible to rigourously and directly obtain this equation
sing the tensorial, or dyadic, Green function formalism. Such an electric dyadic Green function31

I
 , which is solution of the equation
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�� � ��� � GI e�r�,r���� = k2GI e�r�,r��� + �I�3�r� − r��� �10�

with �I=ix̂ix̂i� satisfying the condition �� ·GI e=−�1/k2����3�r�−r���, can be used to write the inte-
ral equation

E��r� � = �
S

��n�� � E� � · ��� � GI − ikB� · �n�� � GI e��dS� �11�

hich is defined on the same surface as previously. By imposing the dyadic Dirichlet condition
���GI e=0 on S, we can obtain the relation

E��r� � = �
Aperture

��n�� � E�� · ��� � GI e�dS� �12�

hich depends only on the tangential electric field at the aperture. This is in perfect agreement
ith the equivalence principle and the uniqueness theorem.

Following Ref. 31, the total Green function GI e for the plane can be deduced from the “free”
yadic

GI e
0�r�,r��� = ��I +

1

k2����� eikR

4�R
�13�

with R=��x−x��2+ �y−y��2+ �z−z��2� by using the image method. We have

GI e�r�,r��� = ��I −
1

k2 ������GD�r�,r��� + 2ẑẑ
eikR�

4�R�
, �14�

here GD= �eikR /R−eikR� /R�� /4� is the scalar Dirichlet Green function for the plane screen, and
�=��x−x��2+ �y−y��2+ �z+z��2. Inserting this Green function into Eq. �12� gives us directly Eq.

4�. It is interesting to observe that with the Green dyadic method, we can recover the formula of
mythe by using a magnetic current distribution located in front of a metallic plane or, equiva-

ently, by using a double layer of magnetic currents propagating in the same direction.13

In theory, both approaches based either on the scalar Green functions or on the dyadic Green
unctions are equivalent. In practice however, the difficulties related to the Stratton Chu formula
q. �3� have imposed the Green dyadic method. An illustration of this statement is that the dyadic

ormalism has been extensively used in the context of the electromagnetic theory of NSOM.33–36

V. VECTORIAL JUSTIFICATION OF THE SMYTHE FORMULA

We propose now a justification of Eq. �4� based on the Stratton Chu formula Eq. �3�. This
erivation will directly reveal the equivalence of the scalar and dyadic approaches in the particular
ase of a planar screen with an aperture. Let the surface S of equation z=0 be an infinite, perfectly
onducting metallic screen containing an aperture covering the surface �S. By the definition of

iffraction, we can always separate the total electric �magnetic� field E� �E�� into an incident field
i �B�i� existing independently of the presence of the screen, and into a diffracted field E�� �B���
roduced by the surface charge and current densities �s� ,J�s� located on the metal.

We have B��=���A� � and E��=−����+ ikA� � where potentials are expressed in a Lorentz gauge

A� ��r�� = �
Screen

dS�
 J�s�

c
�r���

eiKR

R
� ,

�15�
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���r� � = �
Screen

dS�
�s��r���
eiKR

R
� ,

ith R= �r�−r��� �we omit here the time dependent factor e−i�t�. Because these potentials are even
unctions of z we then have the following symmetries:

Ex�, Ey�, Bz� are even in z ,

�16�
Ez�, Bx�, By� are odd in z .

hese symmetries already used by Jackson16,17 imply in particular Ez�=By�=Bx�=0 at the aperture.
herefore, the field is a discontinuous function through the metal.

Let us now consider an observation point x located in the half-space z�0. We can apply the
ectorial Green theorem on a closed integration surface made up of a half-sphere S

+ “at infinity”
nd of the S+ plane �z=0+� as seen in Fig. 2�A�. This surface S+ can itself be decomposed into an
perture region �S+ and into a screen region �S−�S�+.

We have then

E���x�� = �
�S − �S�+

�ik�n�� � B���G + �n�� � E��� � ���G + �n�� · E������G�dS� + �
�S+

��n�� � E���

� ���G�dS� + �
S

+
�ik�n�� � B���G + �n�� � E��� � ���G + �n�� · E������G�dS�, �17�

here the unit vector n�� lies on S+ and is oriented in the positive z direction: n��= ẑ. Similarly we
an consider the surface of integration represented in Fig. 2�B�. We obtain an integration on the


+, S

− surfaces and on �S−�S�+ and �S−�S�− surfaces. Such integration surfaces have already
een used by Schwinger and Levine in the context of diffraction by a scalar wave.18 Here, due to
he symmetries given by Eq. �16�, we deduce

E���x�� = 2�
�S − �S�+

�ik�n�� � B���G + �n�� · E������G�dS� + �
S

−
�ik�n�� � B���G + �n�� � E��� � ���G

+ �n�� · E������G�dS� + �
S

+
�ik�n�� � B���G + �n�� � E��� � ���G + �n�� · E������G�dS� �18�

� ˆ +

FIG. 2. The two surfaces of integration for the application of the vectorial Kirchhoff theorem.
ith n�=z on the �S−�S� surface. After identification of Eq. �17� and �18�, we obtain
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E���x� � = 2�
S+

��n�� � E��� � ���G�dS� − �
S

−
�ik�n�� � B���G + �n�� � E��� � ���G + �n�� · E������G�dS�

+ �
S

+
�ik�n�� � B���G + �n�� � E��� � ���G + �n�� · E������G�dS�. �19�

n order to simplify this formula, it is important to note that the fields E��, B�� located on S
± are the

eflected fields E�r, B�r which could be produced by the complete metallic screen z=0 submitted to
he same incident field in the absence of the aperture.

Because this field compensates for the incident field for z�0, we have E�r=−E�i, B�r=−B�i in

his half-space. As a consequence, the integral on S
+ in Eq. �19� can be written −E�i�x��

�S+�ik�n���B�i�G+ �n���E�i�����G+ �n�� ·E�i����G�dS�, which is a direct application of the Green
heorem for an observation point located on the closed surface composed of S

+ and S+.

Injecting this last result into Eq. �19� and after subtracting and adding 2�S+��n���E�i�
���G�dS�, we finally obtain E��=E��1�+E��2� where

E��1��x� � = 2�
S+

��n�� � E�� � ���G�dS� − E�i�x��dS� �20�

nd

E��2��x� � = − �
S

−
�ik�n�� � B�r�G + �n�� � E�r� � ���G + �n�� · E�r����G�dS�

+ �
S+

�ik�n�� � B�i�G − �n�� � E�i� � ���G + �n�� · E�i����G�dS�. �21�

ecause of Eq. �16�, we also have

Ex,y
r �x,y,z� = − Ex,y

i �x,y,− z� ,

Bz
r�x,y,z� = − Bz

i�x,y,− z� ,

nd

Bx,y
r �x,y,z� = Bx,y

i �x,y,− z� ,

�22�
Ez

r�x,y,z� = Ez
i�x,y,− z�

or z�0. Using the fact that the integral on S+ can be written as an integral on S−: �S+�E�i ,B�i�
=−�S−�E�i ,B�i�, and using Eq. �22�, the last two integrals in Eq. �21� can be transformed into

S−+S

−�ik�n���B�r�G+ �n���E�r�����G+ �n�� ·E�r����G�dS�. Because the observation point is outside

f the closed surface composed of S
− and of S−, E��2��x�� is zero. Regrouping all terms, the total

lectric field in the half-plane z�0 is finally given by the Smythe formula

E��x� � = 2�
�S+

��n�� � E�� � ���G�dS� =
1

2�
�� � ��

Aperture
�ẑ � E��

eikR

R
dS�� , �23�

here we have applied Maxwell’s boundary conditions that annihilate the tangential component of

he total electric field on a perfect metal. An equivalent derivation in the z�0 half-space gives
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E��x� � = E�0�x� � + 2�
�S−

��n�� � E�� � ���G�dS� = E�0�x�� −
1

2�
�� � ��

Aperture
�ẑ � ���

eikR

R
dS�� ,

�24�

here E�0=E�i+E�r is now the total electric field existing in the z�0 domain for the problem
ithout aperture.

. CONSISTENCY BETWEEN VARIOUS APPROACHES

As written in the introduction, the proof given by Jackson16 of the Smythe equation is con-
ected to the theory of vectorial diffraction Eq. �3�. In order to solve the problem, Jackson used a
olume looking like a flat pancake limited by the two S+ and S− surfaces, and he applied Eq. �3�
o this boundary. Then, in agreement with Smythe, Jackson imagined a double current sheet such
hat the surface current on the two S+ and S− layers at any point of a given area fitting the aperture
re equal and opposite. With such a distribution, it is possible to reduce the integral of Eq. �3� to
he one given by the formula of Smythe, Eq. �23�. Such a formula is then the correct one to
escribe the diffraction problem by an aperture in agreement with the uniqueness theorem.

Our justification of the Smythe theorem is more direct because it uses only the Huygens
resnel theorem without applying the intuitive trick of a virtual surface current distribution asso-
iated with a different physical situation �double layer of electric current, or layer of magnetic
urrent confined to the aperture zone�. Our result is in fact the direct generalization of a method
sed by the authors for a scalar wave �. Using two different surface integrations, as the ones used
n this paper, we are indeed able to prove directly the Rayleigh-Sommerfeld theorem given by Eq.
2�. This scalar reasoning, which is similar to the one presented before, is given in the Appendix.
t can be observed that the scalar result makes only use of the Green function in vacuum G in
rder to justify the result obtained with the Dirichlet one GD. Similarly, our derivation of the
mythe formula uses the scalar Green function in order to justify the result obtained with the
Dirichlet” dyadic Green function. Then, the two reasonings presented in this paper for an elec-
romagnetic and a scalar wave show the primacy of the Huygens-Fresnel theorem given by Eq. �1�
or the scalar wave and by Eq. �3� for the electromagnetic field, respectively.

A few further remarks here are relevant: First, the mathematical results described here con-
titute a justification of the physical “trick” introduced by Smythe and Jackson. However more
ork must be done in order to see if the method based on scalar Green functions could be

xtended to other geometries. Second, the Smythe formula allows one to express the electromag-
etic field radiated by the aperture �far-field� as a function of the near-field existing in the aperture
lane. This method could thus be useful for calculating the field generated by a NSOM aperture if
e know the optical near-field �computed, for example, by using numerical methods discussed in
efs. 33–36�.

I. CONCLUSION

In this paper, we have justified the vectorial formula of Smythe expressing the diffracted field
roduced by an opening created in a perfectly metallic screen. Our justification is based only on
he Huygens principle for electromagnetic wave and on the specifical nature of boundary condi-
ions for the Maxwell field. This proof differs from the ones presented in the literature because it
oes not use the concept of current sheets introduced by Smythe and Jackson. The demonstration
ses only the scalar Green function in free space and does not consider Dirichlet or Neumann
oundary conditions as involved in the Green dyadic method.

PPENDIX

Let ��r� � be a scalar wave solution of the Helmoltz equation for the problem of diffraction by
n opening �S in a plane screen S. In order to define completely the problem, we must impose

�
oundary conditions on the screen surface. Here, we choose ��r��S−�S=0 for any point on the
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creen �Dirichlet problem�. The Neumann problem can be treated in a similar way. For such a
roblem, we can in principle always divide the field into an incident one, called �inc�r� � and
xisting independently of any screen, and into a scattered field ���r� �, produced by sources in the
creen. The problem cannot be solved without postulating some properties of the sources. A way
o do this is to introduce a source term J�r� � in the second member of the Helmoltz equation such
hat this term goes to zero rapidly outside of the pancake volume occupied by the screen. Then, we
ave ��2+k2���r� �=−J�r� �. Imposing Sommerfeld’s radiation condition at infinity gives us the
olution

���r� � = �
pancake

J�r���G�r�,r���d3r��. �A1�

e deduce the important fact that this potential ���r�� must be an even function of z. This is
onsistent with the Kirchhoff formula applied on the surface of Fig. 1�B�. Imposing the condition
��x ,y ,z�=���x ,y ,−z� implies

��r� � = − �
�S−�S�

G�r�,r���ẑ · ������r���dS� �A2�

hich defines the source term JS�x ,y� �surface density� by JS�x ,y�=−limz→0+ẑ ·�����x ,y ,z�. It is
orth noting that the even character of �� and the field continuity in the aperture impose

ˆ ·�����x ,y ,z=0� in the opening. In order to complete the problem, we must define the reflected
eld �r�r�� produced by the sources when the plane screen contains no aperture. Since for z�0

here is no field, we must choose �r�x ,y ,z�=−�i�x ,y ,z� in this half-plane. The requirement that
he source field is an even function of z imposes �r�x ,y ,z�=−�i�x ,y ,−z� for z�0. In this form,
he problem is similar to the one described by Bouwkamp10 and it can be solved. The rest of the
easoning is similar to the one given for the Smythe formula. Identifying the Kirchhoff integral on
he two different surfaces represented in Figs. 2�A� and 2�B�, we obtain

���r� � = 2�
S+

���r���ẑ · ���G�r�,r���dS� + ��
S

+
− �

S
−
�����r���n�� · ���G�r�,r���

− G�r�,r���n�� · ������r����dS�. �A3�

s for the Smythe formula, we can use the symmetry properties of the field as well as its
symptotic behavior at infinity to transform Eq. �A3� into

��r� � = 2�
�S+

��r���ẑ · ���G�r�,r���dS� �A4�

hich is equivalent to the Rayleigh-Sommerfeld result given by Eq. �2�.
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We extend the work of Mello et al. based on Cabbibo and Ferrari concerning the
description of electromagnetism with two gauge fields from a variational principle,
i.e., an action. We provide a systematic independent derivation of the allowed
actions that have only one magnetic and one electric physical field and are invariant
under the discrete symmetries P and T. We conclude that neither the Lagrangian,
nor the Hamiltonian, are invariant under the electromagnetic duality rotations. This
agrees with the weak-strong coupling mixing characteristic of the duality due to the
Dirac quantization condition providing a natural way to differentiate dual theories
related by the duality rotations �the energy is not invariant�. Also, the standard
electromagnetic duality rotations considered in this work violate both P and T by
inducing Hopf terms �theta terms� for each sector and a mixed Maxwell term. The
canonical structure of the theory is briefly addressed and the magnetic gauge sector
is interpreted as a ghost sector. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2219159�

. INTRODUCTION AND DISCUSSION OF RESULTS

The seminal works of Dirac1 introduced the famous charge quantization relation eg=n that is
btained in the presence of both electric and magnetic poles �charges�. The existence of both
lectric and magnetic charges raised the problem of a variational description of electromagnetism
rom an action that could actually contain explicitly both types of charges. Also, it is widely
ccepted that in order to achieve that goal one must consider a description in terms of gauge fields
hat minimally couple to both currents, so necessarily we need to consider the existence of two
istinct gauge fields: A that couples to ordinary electric currents and C that couples to the mag-
etic current.2–6 One possible approach first considered by Cabbibo and Ferrari2 is to consider two
hysical gauge fields A and C. Although this approach preserves both time-space isotropy and
orentz invariance has the drawback of the inexistence of experimental observable effects of the
econd gauge field. Another approach has been to consider mechanisms that, starting from a theory
ith two gauge fields, give us only one physical gauge field, either by considering solutions

constraints� for the second gauge field3–6 �this approach has the drawback of not preserving space
sotropy or not preserving Lorentz invariance� or by considering a very massive second gauge
eld.7 Yet another very simple approach is to consider electromagnetism as an effective theory of
n extended theory with two gauge fields such that one gauge field is fixed by the second gauge
eld obeying the equations of motion.8 In Mello et al.,9 for the first time an explicit action is built
or electromagnetism with two gauge fields based on the work of Cabbibo and Ferrari.2 In here we
uild a similar lower order action with two gauge fields A and C of the gauge group U�1�
U�1�. In order to accomplish it, we take an independent approach of the original work9 by

tudying in detail and systematically the desired properties of such an action. First, we note that

�
Electronic mail: pcastelo@catastropha.org

47, 072902-1022-2488/2006/47�7�/072902/17/$23.00 © 2006 American Institute of Physics

                                                                                                            

http://dx.doi.org/10.1063/1.2219159
http://dx.doi.org/10.1063/1.2219159
http://dx.doi.org/10.1063/1.2219159
http://dx.doi.org/10.1063/1.2219159


d
T
u
s
r
a
e
s
w
t

w

H
c
c
C
t
t
n
e
i
t
e

I

M
R
r

A

072902-2 P. Castelo Ferreira J. Math. Phys. 47, 072902 �2006�

                        
ue to the different nature of A and C under the discrete symmetries of parity P and time inversion
,10,11 standard electromagnetic duality10,12 violates P and T symmetries. So it is desirable that
nder an electromagnetic duality transformation our action gains terms that explicitly violate these
ymmetries. This argument is not completely closed once there are ways of implementing duality
otations that preserve P and T symmetries.13,14 Second, we demand that there is only one electric
nd one magnetic physical field. Implicitly this assumption means that the group charge flux of
ach of the U�1�’s is of the same nature of the topological flux of the other U�1� group. The action
uggested coincides �up to a sign choice� with the one of Ref. 9 and consists of two Maxwell terms
ith an opposite relative sign, one for each of the gauge fields and a topological cross Hopf term

hat mixes both gauge sectors allowing for the desired characteristics,

SMax−

�̂ = −�
M

��− g

4e2 F��F�� −
�− g

4g2 G��G�� −
�̂

4eg
�����F��G�� +

1

e
�A� − �̂C̃��Je

� −
1

g
��̂C� + Ã��Jg

�� ,

ith �̂= ±1 corresponding to the two physical fields,

Ei =
1

e
F0i −

�̂

2g
�0ijkGjk,

Bi =
�̂

g
G0i +

1

2e
�0ijkFjk.

owever, the Maxwell terms of each of the gauge sectors have an opposite sign; this has no
onsequences at the classical level, but at the quantum level allows negative energy solutions that
learly violate causality. There are two approaches to overcome this problem. We can consider the

field to be a ghost; this means that upon quantization it has the opposite spin-statistics relations
han the one of standard fields and therefore it has anticommutation relations,15 such kinds of
heories both with a matter and a ghost sector were introduced in cosmology by Linde.16 Alter-
atively, we can consider some mechanism that allows for a classical treatment of the C field, as
xamples we have in cosmology the Phantom matter models,17 and a dynamical symmetry break-
ng mechanism8 that allows an effective electric description of the theory. Also compatible with
his last mechanism, we can give a vacuum-expectation value to the C field that renders an
ffective Proca mass to the standard photon, the A field.18,19

I. ELECTROMAGNETIC DUALITY

The study of theories with two gauge fields were first considered by Cabbibo and Ferrari.2

ore recently, several studies addressed electromagnetic duality with two gauge fields, namely in
ef. 11 an explicit electromagnetic duality in terms of the gauge fields is presented. Here we

eview these results.

. The original duality

The generalized Maxwell equations with both Electric and Magnetic currents10 read as

� · E = �e,

� · B = �g,

˙
B + � Ã E = − Jg,
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Ė − � Ã B = − Je. �1�

his equation obeys the well known electromagnetic duality that rotates the electric and magnetic
elds and currents,12

E → cos���E + sin���B ,

B → − sin���E + cos���B ,

Je → cos���Je + sin���Jg,

Jg → − sin���Je + cos���Jg, �2�

here J= �� ,J� stand for the four-vector current densities.

. Duality with two gauge fields

In order to build an action for electromagnetism with magnetic monopoles it is necessary to
onsider two U�1� gauge fields that minimally couple to the external electric and magnetic current
ensities. By introducing gauge fields one is led to the question whether the above duality can be
xtended to a duality of gauge fields instead of the electric and magnetic fields �i.e., the gauge field
onnections�. By considering that both gauge fields have true physical degrees of freedom it is
ossible to elevate the duality to a transformation of those gauge fields, as has been shown in Ref.
1. In Ref. 11 the electric and magnetic fields are defined as

Ei =
1

2e
F0i −

1

4g
�ijkGjk,

Bi =
1

2g
G0i +

1

4e
�ijkFjk, �3�

here F=dA and G=dC are the gauge connections of the gauge fields A and C. In Sec. III B we
ill properly discuss the physical field definitions; for the time being we use these definitions,
hich can be found in the literature. The electromagnetic duality reads now as

1

e
F0i −

1

2g
�ijkGjk → cos���	1

e
F0i −

1

2g
�ijkGjk
 + sin���	1

g
G0i +

1

2e
�ijkFjk
 ,

1

g
G0i +

1

2e
�ijkFjk → − sin���	1

e
F0i −

1

2g
�ijkGjk
 + cos���	1

g
G0i +

1

2e
�ijkFjk
 . �4�

here are two ways to implement these transformations, either in terms of each of the U�1� gauge
ectors independently or mixing both gauge sectors. If we consider each sector independently, we
btain the standard electromagnetic transformations for each of the connections F and G,

F0i → cos���F0i + sin���
1

2
�ijkFjk,

Fjk → sin���
1

�ijkF
0i + cos���Fjk,
2
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G0i → cos���G0i + sin���
1

2
�ijkGjk,

Gjk → sin���
1

2
�ijkG0i + cos���Gjk. �5�

hese transformations are not compatible with a transformation of the gauge fields because the
0i� components transform differently from the components �ij�.

If we consider mixing between both sectors, we can rewrite the electromagnetic duality in
erms of the gauge fields or respective connections,11

F → cos���F + sin���
e

g
G ,

G → − sin���
g

e
F + cos���G ,

A → cos���A + sin���
e

g
C ,

C → − sin���
g

e
A + cos���C . �6�

here is a very simple argument to choose the second kind of duality �6� and exclude the possi-
ility of the transformations �5�. Let us consider the Lorentz gauge �or Lorentz condition� for both
auge fields ��A�=��C�=0 and assume regular gauge fields �meaning without discontinuities�
uch that the Bianchi identities are obeyed as ������� ��A�=������� ��C�=0. Then the Maxwell
quations �1� read simply11 as

�A� = Je
�,

�C� = Jg
�, �7�

here the Laplacian is �=����. Taking into account the duality transformations for the current
ensities expressed in �2�, we conclude straight away that only �6� correctly transform the Max-
ell equations for these particular standard conditions. Here, particular means that the gauge

hoice is not unique, we could have some other gauge fixing prescription and generally we can
ave discontinuities on the gauge fields such that the Bianchi identity is not obeyed everywhere.
s an example, there are cases of the Dirac string1 or equivalently the nontrivial fiber bundle of
u and Yang.20 However, regular gauge fields describe most of the physical applications and must

herefore be a possible choice. There is, however, a serious problem concerning these equations;
he two U�1� gauge fields are completely decoupled and we obtain two different interactions
orresponding to each of the gauge fields instead of only one, as in standard electromagnetism.
ur main aim in the remainder of this work is how to obtain one only interaction described by two
hysical gauge fields.

So we have reviewed how to elevate electromagnetic duality of the Maxwell equations in
erms of the electric and magnetic fields to a electromagnetic duality in terms of the gauge fields.
ext, we will briefly describe how the discrete symmetries act on the several fields and how
lectromagnetic duality breaks parity and time inversion.
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. Discrete symmetries: P and T violation

We proceed to resume the known results for parity P and time inversion T for the electro-
agnetic physical quantities. The remaining discrete symmetry is Charge Conjugation C and plays

o role in the following discussion.
Parity �P� stands for the inversion of spatial coordinates and time inversion �T� stands for the

nversion of the time coordinate. Under these discrete symmetries the fields and current densities
ransform as10

P: xi → − xi, T: t → − t ,

Ei → − Ei, Ei → + Ei,

Bi → + Bi, Bi → − Bi,

�e → + �e, �e → + �e,

Je
i → − Je

i , Je
i → − Je

i ,

�g → − �g, �g → − �g,

Jg
i → + Jg, Jg

i → + Jg. �8�

lectric and magnetic fields transform differently under P and T being, respectively, vectors and
seudovectors. Accordingly, also the electric and magnetic currents have the same properties.10

hen necessarily the gauge fields A and C also have to transform accordingly as vectors and
seudovectors.11 The most straightforward way to show this is by considering an action for
lectromagnetism such that the electric and magnetic current densities are minimally coupled to
he gauge fields A and C, respectively �we will return to this discussion later�. Demanding invari-
nce of the action under P and T imposes the gauge field C to transform as a pseudovector. We
ote that the field definitions �3� agree with these results. Then for the two gauge fields and
espective gauge connections we have the discrete transformations

P: A0 → + A0, T: A0 → + A0,

Ai → − Ai, Ai → − Ai,

C0 → − C0, C0 → − C0,

Ci → + Ci, Ci → + Ci,

F0i → − F0i, F0i → + F0i,

Fij → + Fij, Fij → − Fij ,

G0i → + G0i, G0i → − G0i,

Gij → − Gij, Gij → + Gij . �9�

e want now to show that neither P nor T are maintained by the standard duality rotations �2� or

quivalently �6�. Here we consider duality as a global transformation independent of space-time
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oordinates such that the angle � is an exterior parameter to the theory used in the redefinition of
he fields. Therefore it does not depend on the space-time coordinates and transform as a scalar
ith respect to the discrete symmetries P and T.

We can see explicitly that the duality transformations mix vector with pseudovectors such that

P: Ẽ = cos���E + sin���B → − cos���E + sin���B

B̃ = − sin���E + cos���B → sin���E + cos���B . �10�

learly Ẽ and B̃ are not transformed to −Ẽ and B̃ under parity, as they should. The same argument
ollows for T:

T: Ẽ = cos���E + sin���B → cos���E − sin���B ,

B̃ = − sin���E + cos���B → − sin���E − cos���B , �11�

nd the redefined fields do not transform correctly under T. The current duality transformations �2�
ehave in the same way.

Charge conjugation C is not a space-time symmetry; it exchanges particles with antiparticles.
t the classical level this is simply equivalent to change the sign of the current densities and it is
reserved by electromagnetic duality.

So, to summarize, at the level of single fields, the electromagnetic duality preserves C, PT,
nd CPT while it violates P, T, CP, and CT.

The issue of P and T violation by the existence of dyons with both electric and magnetic
harge can be found in Ref. 10. As for P and T, the violation by electromagnetic duality is
iscussed in Ref. 13. The argument is generic and applicable to the original duality transforma-
ions �2� independently of considering a gauge field description of electromagnetism. Also, we
oint out that upon redefinition of the fields one may as well redefine P and T, but in order to do
o one would be changing the space-time interpretation of the discrete symmetries and necessarily
edefining the action of the Lorentz group. This could be interpreted then as an extended duality
f space-time. An alternative interesting construction is to consider � to be a pseudoscalar;13 in this
ay we manage to obtain a duality that preserves the discrete symmetries. Also, it is possible to
auge the duality by considering �=��x� to be an additional gauge parameter14,21 �in this work the
uality rotations constitute one further distinct U�1� group�.

Here we are considering � to be a parameter exterior to the theory that transforms as a scalar,
hen, although the discrete symmetries violations are not explicit in the equations of motion, at the
evel of the action �a Lagrangian formulation of the theory� they will be explicit. As we will see
n detail electromagnetic duality induces P and T violating terms.

In addition, we will demand that there is only one electric and one magnetic physical gauge
elds. This requirement is going to reduce the allowed actions.

II. GAUGE SECTOR

In this section we will build a U�1��U�1� gauge action such that the physical electric and
agnetic fields are identified with the definitions �3�. In order to do so, one expects that the group

harge flux of each of the U�1�’s is coupled to the topological charge flux of the other U�1�. It is
lso desirable that a classical description of electromagnetism preserves both parity P and time
nversion T �see, for instance Ref. 10 for a discussion on this topic�. So, we are further demanding
ur action to be invariant under these discrete symmetries. In addition, and from the discussion on
he last section, we expect that under an electromagnetic rotation our action explicitly gains terms

hat violate P and T. This will be the case.
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. Possible actions

Let us consider all the possible lower order terms that are Lorentz and gauge invariant. First,
e list the lower order terms containing the gauge connections F and G that are invariant under P

nd T,

LMaxwellFF
= −

1

4e2F��F��,

LMaxwellGG
= −

1

4g2G��G��,

LHopfFG
= −

1

4eg
�����F��G��. �12�

he last term is a cross Hopf term �or theta term�. To show that it is invariant let us rewrite the
xpression as LHopf=2�0ijk�F0iGjk+G0iFjk�; then we see from �9� that F0i and G0i always trans-
orm in the same way as Gjk and Fjk �respectively� such that LHopfFG

is invariant under any of the
iscrete symmetries P and T.

The remaining possible lower order terms that are Lorentz and gauge invariant are not invari-
nt under P and T. They are the cross Maxwell term and the usual Hopf �or theta� terms for each
f the gauge sectors,

LMaxwellFG
= −

1

4eg
F��G��,

LHopfFF
= −

1

4e2�����F��F��,

LHopfGG
= −

1

4g2�����G��G��. �13�

o show that they are not invariant under P and T, we note that, from Eq. �9�, �F0i ,Fij� and
G0i ,Gij� transform in the opposite way under P and T such that the cross Maxwell term trans-
orms as LMaxwellFG

→−LMaxwellFG
. Concerning the Hopf terms, we note that F0i and G0i transform

n the opposite way than Fij and Gij �respectively� under P and T such that LHopfFF
→−LHopfFF

and

HopfGG
→−LHopfGG

. This is a known feature of such terms that have been extensively studied to
xplain the CP violation, both in Abelian and non-Abelian gauge theories �see, for instance Refs.
5 and 22 and references therein�.

We have listed all the possible lower order candidate terms to build our action. We also need
o study how these several candidate terms behave under electromagnetic duality:

LMaxwellFF
→ cos2���LMaxwellFF

+ sin2���LMaxwellGG
+ 2 cos���sin���LMaxwellFG

,

LMaxwellGG
→ sin2���LMaxwellFF

+ cos2���LMaxwellGG
− 2 cos���sin���LMaxwellFG

,

LHopfFG
→ sin � cos ��LHopfGG

− LHopfFF
� + �cos2 � − sin2 ��LHopfFG

,

LMaxwell → sin � cos ��LMaxwell − LMaxwell � + �cos2 � − sin2 ��LMaxwell ,

FG GG FF FG

                                                                                                            



W
D
c
c

W
s
s
w
a
m
t
a
e
a
m

s

T
t
i
S
d

g
e
H
d
a
d
t
r
t
d

072902-8 P. Castelo Ferreira J. Math. Phys. 47, 072902 �2006�

                        
LHopfFF
→ cos2���LHopfFF

+ sin2���LHopfGG
+ 2 cos���sin���LHopfFG

,

LHopfGG
→ sin2���LHopfFF

+ cos2���LHopfGG
− 2 cos���sin���LHopfFG

. �14�

e are now ready to build an action that describes an electromagnetism with two gauge fields.
emanding the action to be P and T invariant, we are left only with the terms listed in �12�. So we

onclude that the most standard action that explicitly depends on two gauge fields must be a
ombination of LMaxwellFF

and LMaxwellGG
. We will call this action the minimal action,13,23,24

SMin+
= − �

M

�− g� 1

4e2F��F�� +
1

4g2G��G��� , �15�

SMin−
= − �

M

�− g� 1

4e2F��F�� −
1

4g2G��G��� . �16�

e note that from the electric and magnetic fields definition �3� both Maxwell terms must have the
ame numerical factor �up to the relative sign�. The standard would be to consider both with the
ame sign in order to have the same quantum structure in both sectors, however, for completeness
e consider both cases. These actions imply the existence of two electric and two magnetic fields

s we will discuss in detail in Sec. III B. Instead, we expect to have only one electric and one
agnetic field such that the group charge flux of one U�1� is of the same nature of the flux of the

opological charge of the other U�1�, as implied by the field definitions �3�. As a weaker but valid
rgument, we note that the pure gauge sectors are completely decoupled, a priori one would
xpect that some sort of mixing �meaning coupling� between the two sectors exist that, at least,
ccomplishes the coupling of topological flux with group charge fluxes. We consider these argu-
ent as a drawback of the minimal actions.

From the above arguments we are further considering the remaining allowed term that pre-
erves T and P, the cross Hopf term. We call these actions the maximal actions,

SMax+

�̂ = − �
M
��− g

4e2 F��F�� +
�− g

4g2 G��G�� −
�̂

4eg
�����F��G��� , �17�

SMax−

�̂ = − �
M
��− g

4e2 F��F�� −
�− g

4g2 G��G�� −
�̂

4eg
�����F��G��� . �18�

he cross Hopf term couples the flux of the group charges �F0i and G0i� with the flux of the
opological charge �Gij and Fij, respectively� of the two different U�1�’s. As we are going to show
n Sec. III B, the only action that can be defined using only one electric and one magnetic field is

Max−

�̂ , as given by �18�. �̂= ±1 sets the relative sign of the Hopf term and will be relevant in the
efinition of the physical fields, as we will show in detail.

We also note that when both Maxwell terms have the same sign the minimal action SMin+
, as

iven by �15�, is invariant under electromagnetic duality, so for an action of this form we have
levated the duality to a symmetry.14,21 Also, the respective Hamiltonian will be duality invariant.
owever, this is not necessarily a good feature. As we already pointed out, the standard duality
oes not preserve either P or T, and this fact is not explicit on the action SMin−

; neither can be on
duality invariant action. This argument is not completely close because one can consider the

uality angle parameter � to be a pseudoscalar.13 However, another physical argument is that due
o the Dirac quantization condition1 �eg=n� we have that the A field obeys a weak coupling
egime while the C field obeys a strong coupling regime. Then we expect that the energy �Hamil-
onian� not to be conserved under a duality rotation. For these reasons a duality symmetric action

oes not look like a good choice. The remaining actions, the maximal actions �18� and �17� and
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he minimal action �16�, are not invariant under duality, but they are P and T invariant. Further-
ore, a duality transformation does not preserve P and T invariance, as can explicitly be seen

rom �14�. This is actually a good feature; duality explicitly breaks P and T at the level of the
ction, as expected from �10� and �11�, and the respective Hamiltonians are not invariant under
uality.

Finally, as we show in detail in the next subsection, only SMax−

�̂ is compatible with the exis-
ence of only one electric and one magnetic physical field.

. Physical electric and magnetic fields

Due to the fact that a second gauge field C has been introduced, we now have twice the
egrees of freedom than the usual electromagnetism. Accordingly, we expect to have as well a
ew interaction such that generally we have two electric fields and two magnetic fields. From a
heoretical point of view this is standard; each of the gauge fields carry a different kind of
nteraction. Nevertheless, we are led to the question of whether both definitions are physical fields
r not. Here we will show that for both the minimal actions �15� and �16� and the maximal action
17� we have indeed four physical fields �two electric and two magnetic�, while for the maximal
ction �18� we have only two physical fields �one electric and one magnetic�.

Let us consider the generic definitions of electric and magnetic fields corresponding to the
auge fields A and C,

EA
i =

1

e
F0i, EC

i = −
1

2g
�ijkGjk,

BA
i =

1

2e
�ijkFjk, BC

i =
1

g
G0i. �19�

e note that the definitions of electric and magnetic fields for C are reversed to the ones of the A
eld and for reasons that will become clear in the remainder of this section we consider a minus
ign in the definition of EC. Both in order to define the electric and magnetic fields accordingly to
3� and to preserve the properties of the fields in relation to the discrete symmetries, i.e., the
lectric field is a vector and the magnetic field is a pseudovector. Then we take the following linear
ombinations of the above definitions �19�:

E+
i =

1

2
�EA

i + EC
i � = +

1

2e
F0i −

1

4g
�ijkGjk,

B+
i =

1

2
�BA

i + BC
i � = +

1

2g
G0i +

1

4e
�ijkFjk,

E−
i =

1

2
�EA

i − EC
i � = +

1

2e
F0i +

1

4g
�ijkGjk,

B−
i =

1

2
�BA

i − BC
i � = −

1

2g
G0i +

1

4e
�ijkFjk. �20�

o consider these combinations is the approach of several authors that consider only E+ and B+ as
hysical fields.11,23 As already explained in the Introduction, the main motivation is to achieve a
eneralized description of electromagnetism with both electric and magnetic particles.2 Also, these
ombinations are used to implement an explicit electromagnetic duality between the two sectors in
erms of two distinct gauge fields, as we explained in Sec. II.
For what follows we will need the identities
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1

2e2F0iF0i =
1

2
�E+

i + E−
i ��E+

i + E−
i � =

1

2
�+ E+

i E+
i + E−

i E−
i + 2E+

i E−
i � ,

1

4e2FijFij = −
1

2
�B+

i + B−
i ��B+

i + B−
i � =

1

2
�− B+

i B+
i − B−

i B−
i − 2B+

i B−
i � ,

1

2g2G0iG0i =
1

2
�B+

i − B−
i ��B+

i − B−
i � =

1

2
�+ B+

i B+
i + B−

i B−
i − 2B+

i B−
i � ,

1

4g2GijGij = −
1

2
�− E+

i + E−
i ��− E+

i + E−
i � =

1

2
�− E+

i E+
i − E−

i E−
i + 2E+

i E−
i � ,

1

2eg
�0ijkF0iGjk = �E+

i + E−
i ��− E+

i + E−
i � = − E+

i E+
i + E−

i E−
i ,

1

2eg
�0ijkG0iFjk = �B+

i + B−
i ��B+

i − B−
i � = + B+

i B+
i − B−

i B−
i , �21�

here the minus sign and the factor of 2 in the second and fourth lines are due to the contraction

f the indices of the antisymmetric tensor, i.e., �0jki�0jk
i� =−2� ii�.

Let us consider both the minimal actions �15� and �16� and the maximal actions �17� and �18�
nd rewrite the respective Lagrangians in terms of the above combinations �20� using the identities
21�. We obtain that

LMin+
= − 2�E+

i E−
i − B+

i B−
i � ,

LMin−
= − �E+

i E+
i + E−

i E−
i − B+

i B+
i − B−

i B−
i � ,

LMax+

�̂ = − 2�E+
i E−

i − B+
i B−

i � − �̂�E+
i E+

i − E−
i E−

i − B+
i B+

i + B−
i B−

i � ,

LMax−

�̂ = − 2�E�̂
i E�̂

i − B�̂
i B�̂

i � . �22�

ere we use the usual convention in classical electrodynamics;10 we sum over repeated indices i
hat are considered always upstairs such that the metric is no longer explicit; because Ei=−Ei we
ave that E2=−EiEi=EiEi	0. The indices of the electric and magnetic fields correspond to 

epending, respectively, on what choice of �̂= ±1 is taken.

We readily conclude that the only action that can be written in terms of only two fields �E+

nd B+ for �̂= +1 or E− and B− for �̂=−1� is the maximal action �18�. This is only possible if the
ross Hopf term is present and the two Maxwell terms have opposite signs. We also note that the
hoice of �̂ is relevant to the physical field definitions.

As a worm up for what follows, we can argue that, after our field redefinition �20�, the form
f the maximal Lagrangian LMax−

�̂ , as given in the last line of �22�, is essentially the same as the
ne of standard electromagnetism, therefore we have a very strong indication that, for this La-

rangian, the physical fields are
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Ei =
1

e
F0i −

�̂

2g
�0ijkGjk,

Bi =
�̂

g
G0i +

1

2e
�0ijkFjk. �23�

his is only possible for the maximal Lagrangian LMax−

�̂ .
To show that this is indeed the case, we will formalize this argument and analyze the four

ossible actions. Let us compute the equations of motion for the actions and check which fields
ppear in them. We will properly discuss how to couple each type of current density to both the
auge fields in the next section; for the moment being let us assume the standard minimal cou-
ling,

SSources,Min±
= −

1

e
� A�Je

� ±
1

g
� C�Jg

�, �24�

here the 
 correspond to the relative sign between the Maxwell terms.
For the minimal actions we have that the equations of motion are

�
1

e
��F�� = Je

�

1

g
��G�� = Jg

�� Û �
� . EA = �e,

� . BC = �g,

ḂC + � Ã EC = − Jg,

ĖA − � Ã BA = − Je.
� �25�

he electric and magnetic equations are completely decoupled, and we have two electric and two
agnetic fields. Also, in addition to this equation, we have the Bianchi identities for each gauge
eld. There is a way to couple both sectors by using nonhomogeneous Bianchi identities; for that

onsider nonregular gauge fields such that we have the respective Bianchi identities dF= � J̃g and

G= � J̃e. Then by an appropriate combination of the equations of motion with the Bianchi iden-

ities we obtain d��F−G�= �Je− * J̃e and d�F+ �G�= �Jg+ � J̃g that correspond to the generalized

axwell equations �1� with the current densities changed from Je→Je− J̃e and Jg→Jg+ J̃g. Here �

enotes the usual Hodge duality operation and we used form notation for compactness. There are
wo drawbacks for this approach: first the current densities are no longer the ones that minimally
ouple to the gauge fields at the level of the action and, second, the identification of the topologi-
al charge fluxes with the group charge fluxes of different gauge groups is imposed �by hand� not
merging naturally from the action. These problems are solved by using the maximal action with
pposite signs for the Maxwell terms as given by �18�.

In order to analyze the maximal action �18�, we note that the above procedure of the redefi-
ition of fields �20� and rewriting the Lagrangians in terms of the redefined fields �22� is equiva-
ent to rewriting the Lagrangian in terms of the new 2-form gauge connections13

�F+
�̂��� =

1

2
�F + �̂ � G����� =

1

2e
F�� +

�̂

4g
�����G��,

�F−
�̂��� =

1

2
�F − �̂ � G����� =

1

2e
F�� −

�̂

4g
�����G��, �26�
r their Hodge duals
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�G+
�̂��� = − � �F−

�̂����� =
�̂

2g
G�� +

1

4g
�����F��,

�G−
�̂��� = − � �F+

�̂����� =
�̂

2e
G�� −

1

4g
�����F��. �27�

hen the maximal Lagrangian �18� is rewritten in both equivalent expressions as

LMax−

�̂ = − �F+
�̂����F+

�̂��� = + �G−
�̂����G−

�̂���, �28�

here we used the Hodge duality property ��G=−G for 2-forms G in Lorentzian four dimen-
ional �4D� manifolds. This is basically the reason why in �19� we defined EC

i =−�ijkGjk with a
inus sign.11,23 We note that these two ways of rewriting are algebraically equivalent. However,

hysically they have an important meaning, we can have both an electric and a magnetic descrip-
ion of the theory. This is seen in the equations of motion. Upon variation of the maximal action
ith respect to A and C, we obtain

���F+
�̂��� = Je

�,

���G−
�̂��� = �̂Jg

�, �29�

hich indeed correspond to the generalized Maxwell equations �1� and are expressed only in terms
f the fields E and B, as given by �23�. So these must be the physical fields! This is only possible
or the maximal action. As for LMax+

�̂ corresponding to the action �17�, this construction is not
ossible; we obtain that

LMax+

�̂ = −
1

2
�F+

�̂����F+
�̂��� +

1

2
�F−

�̂����F−
�̂��� − �F+

�̂����F−
�̂��� �30�

uch that we need two distinct gauge connections in order to define it, hence, as expected, four
hysical fields.

One must be careful with the way we couple the source to both gauge fields depending on the
hoice of �̂ due to the definitions of the physical fields and the current sign in the second line of
29�. We will discuss this issue in detail in Sec. IV.

There is a subtlety here. The reader may by now be recalling the Bianchi identities �or
omogeneity conditions for Abelian gauge fields� on the gauge connection and claiming that as
sual for topological terms, the variation

�LHopfFG
=

1

2eg
��������G�� �A� + ��F�� �C�� �31�

hould be always null and does not contribute to the equations of motion. This is true for regular
elds, however, as already mentioned in the first section and in the analysis of the minimal actions,

f nonregular gauge fields are allowed, then this contribution to the equations of motion is not null
verywhere and must be taken into account, and �29� are actually the correct ones. By disconti-
uities we mean that �� ��C��� ��C. Allowing for corrections to the Bianchi identities allows for
he inclusion of magnetic charge in standard electromagnetism �with only one U�1� gauge field�
nd is in the basis of the original construction that originates the Dirac string1 or the equivalent
ontrivial fiberbundle of Wu and Yang.20 We present this argument only to show that algebraically
29� are correct, we do not need to necessarily have these discontinuities to describe both electric
nd magnetic charge as long as we work with two distinct gauge fields. However, we show in Ref.
that in order to have effective theories obtained from the maximal action only with one gauge

eld, we still have discontinuities, but the discontinuities will be present on the extra field �instead

f the physical field of the effective theory as in Refs. 1 and 20�.
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An important result here is that for the maximal action the topological fluxes of one U�1� are
dentified with the charge fluxes of the other U�1� as desired for the existence of only one electric
nd one magnetic physical field. We must stress that this does not imply that we are constraining
he fundamental fields A and C; we are maintaining the same degrees of freedom. We have four
hysical degrees of freedom �two for each of the gauge fields A and C� that are still maintained in
he electric and magnetic fields �again two for each of the fields E and B�. In standard electro-

agnetism with only one gauge field there is only two degrees of freedom. The interpretation in
erms of the fields is quite interesting. For each of the U�1� fields the two physical degrees of
reedom correspond to the transverse modes while the longitudinal modes are not physical and do
ot constitute physical degrees of freedom. When combining the gauge connections as in �26� the
egrees of freedom of the second gauge field C are combined with the degrees of freedom of the
riginal gauge field A in such a way that they play the role of two Longitudinal modes of the
auge field A; simply, we have now two longitudinal modes instead of a single one, as is usual in
heories with massive photons. These degrees of freedom constitute here physical degrees of
reedom and are due to the inclusion of a second U�1� gauge group.

Our discussion would not be complete without discussing the canonical variables. We do so
ext and also discuss briefly the expression for the Hamiltonians corresponding to the minimal and
aximal actions.

. Canonical variables and Hamiltonian formulation

The canonical momenta for the minimal actions �15� and �16� are

�A,Min
i =

1

e2F0i =
1

e
EA

i ,

�C,Min±

i = ±
1

g2G0i = ±
1

g
BC

i , �32�

here the 
 refers respectively to LMin+
�the � sign� and LMin−

�the  sign�. This means that the
anonical momenta are each of the U�1� group charge fluxes. The Hamiltonian depends on both
auge sectors, but each of them are completely decoupled,

HMin±
=

1

2
	e2�A,Min

i �A,Min
i +

1

2e2FijFij
 ±
1

2
	g2�C,Min±

i �C,Min±

i +
1

2g2GijGij
 , �33�

uch that the Hilbert space factorizes into states carrying charge fluxes of both gauge sectors. The
opological charge fluxes are present only trough the potential FijFij and GijGij, as in standard
lectromagnetism. So basically we have two distinct copies of standard electromagnetism and no
nteraction terms between the two sectors.

The canonical momenta for the maximal action �17� and �18� are

��A,Max±

�̂ �i =
1

e2F0i ±
�

2eg
�ijkGjk = +

2

e
E�±�̂�

i ,

��C,Max±

�̂ �i = ±
1

g2G0i −
�̂

2eg
�ijkFjk = −

2�̂

g
B±

i , �34�

here the 
 refers, respectively, to LMax+
�the � sign� and LMax−

�the  sign�. In the electric field
he subscript �±�̂� means the product of ±1 by �̂. The canonical momenta coincide up to constants
ith the physical electric and magnetic fields, this is a good indication that, indeed, also at the
uantum level, we can have the correct identifications between group charge and topological
harge fluxes from the opposite U�1�’s.
After a straightforward computation, we obtain the following Hamiltonians:
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HMax+

�̂ = +
e2

2
	�A,Max+

i +
�̂

2eg
�ijkGjk
	�A,Max+

i −
�̂

2eg
�ijkGjk


+
g2

2
	�C,Max+

i +
�̂

2eg
�ijkFjk
	�C,Max+

i −
�̂

2eg
�ijkFjk


+
�̂

2eg
�ijk��A,Max+

i Gjk + �C,Max+

i Fjk� −
3

4e2FijFij +
5

4g2GijGij �35�

nd

HMax−

�̂ = +
e2

2
	�A,Max−

i +
�̂

2eg
�ijkGjk
	�A,Max−

i −
�̂

2eg
�ijkGjk


−
g2

2
	�C,Max−

i +
�̂

2eg
�ijkFjk
	�C,Max−

i −
�̂

2eg
�ijkFjk


+
�̂

2eg
�ijk��A,Max−

i Gjk − �C,Max−

i Fjk� +
5

4e2FijFij −
5

4g2GijGij . �36�

he first lines of both these equations are interpreted as usual with a+
i a−

i , where a± are creation and
nnihilation operators of electric excitations and the second lines correspond to b+

i b−
i , where b± are

reation and annihilation operators of magnetic excitations. The third lines contain a generalized
ngular momenta term between the two gauge sectors and the potentials FijFij and GijGij. We note
hat the potential terms have nonstandard factors and opposite signs in both Hamiltonians. In
articular, the factors for the potentials in HMax+

�̂ , as given in �35�, have different weights �i.e.,
esides, the opposite sign has different numerical factors independent of the coupling constants�
hile they have the same numerical weight for HMax−

�̂ , as given in �36�. This is also a good
ndication that the Maximal action �18� is the correct one since there is no reason for the potentials

ijFij and GijGij having different numerical weights �beside the coupling constants�.
The Hilbert space is not generally factorizable, the states should only be factorizable for states

hat have null eigenvalues of the generalized angular momenta.
The main problem in quantizing this theory is that the b+

i b−
i has the opposite sign �than the

tandard fields� and, using the usual commutation relations for the C field, makes the existence of
egative energy states possible. In order to solve this issue the standard way out is to consider
nticommutation relations for the C gauge sector.15 In this case we are in the presence of a ghost
eld,16 not a standard boson. An alternative approach is to consider some mechanism that allows
s to quantize only the electric sector, as done in.26 As such examples we have Phantom matter in
osmology,17 where such fields are considered at classical level �i.e., we may consider them to be
collective field, meaning a statistical effective field� in inflationary models. Also, we can con-

ider a dynamical symmetry breaking mechanism;8 a possible application is considered in Refs. 18
nd 19 as a way to generate a Proca mass for the usual photon.

We are not discussing any further the quantization procedure here.

V. INCLUSION OF CURRENT DENSITIES

Here, we analyze in detail the current densities coupling to both the gauge fields for the

aximal action �18� and accordingly derive the Lorentz force with both gauge fields.
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. Current coupling terms

Concerning the inclusion of currents, let us consider the standard action,

SSources,Max−

�̂ = − �
M
�1

e
A�Je

� −
�̂

g
C�Jg

�� , �37�

here �̂ correctly sets the current sign in the generalized Maxwell equations �29�. This action is
oth P and T invariant but it is not invariant under electromagnetic duality rotation. Under a
uality rotation we effectively couple each current density with both gauge fields obtaining vio-
ating terms.

From the discussion of the last section we concluded that the physical electric and magnetic
elds are given by �23�. So each of the currents need to couple in some way to both U�1� gauge
elds. The question is how to do it maintaining P and T symmetries and having the variation of

he action with respect to space-time coordinates holding the Lorentz force defined in terms of the
elds �3�. We note that �37� is not enough since it holds that we would have two Lorentz forces,
ne for each U�1� in terms of the decoupled fields as given in �19�.

The way out is to consider the dual fields Ã and C̃ defined in terms of the original gauge fields
y the differential equations

 F̃ = � F

G̃ = � G
�ÛdÃ = � dA

dC̃ = � dC
� , �38�

here again � denotes the Hodge duality operation. We note that the dual fields have only
ongitudinal modes, so by dual we mean that we are exchanging transverse modes in A and C by

ongitudinal modes in Ã and C̃. So the extra action for the current densities read as

SDual Sources,Max−
= + �

M
� �̂

g
C̃�Je

� +
1

e
Ã�Jg

�� . �39�

oth terms are P and T invariant because Ã and C̃ are, respectively, a pseudovector and a vector
ue to �38�. Again, the sign choice is not arbitrary, we already fixed it in order to obtain the correct

orentz forces. Electromagnetic duality couples both current densities with both gauge fields Ã

nd C̃ such that it induces P and T violating terms. For this action we indeed have that the group
harges of each U�1� �given by the J’s� are coupled to the topological charges of the other U�1� �in
erms of Ã and C̃�. This is what is expressed in the definition of the dual fields as given by �38�.
lso, there are a couple of very important points we must address. These terms do not contribute

o the equations of motion of the gauge fields. The reason is that due to �38� we exchange

ransverse with longitudinal modes in the definitions of Ã and C̃ and that the current densities only

arry transverse modes. Let us be more precise: the variation of a term Ã�X� reads as

�Ã�

�A�

X� = 	�F̃��

�Ã�


−1
�F̃��

�F��

�F��

�A�

X� = 8��
�

�
�����−1 ��X�. �40�

ow, considering the gauge invariance condition �continuity condition� for current densities
�J=��J�=0, we obtain that the currents are given in terms of a regular antisymmetric 2-tensor
�a 2-form� as

J� = ����� ����� + c�, �41�

here c� is a constant. This same result is already expressed in Refs. 25 and 26. We note that the
bove expression is obtained from the Hodge decomposition of the current densities J=d�

� d�+c. Then, replacing this expression for X=J in the above action variation �40�, we have the
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erivatives in � and � contracted with the antisymmetric tensor. Therefore we obtain a null
ariation. We note that although we may generally consider nonregular fields, we cannot consider
onregular current densities; the continuity equation for currents ��J�=0 is demanded everywhere
or gauge invariance, while for the gauge fields F and G are gauge invariant independently of A
nd C being regular or not �as long as the gauge transformation parameter is regular and well
nderstood�. The second point to stress is that for regular gauge fields this term is a total deriva-
ive, however, for nonregular gauge fields it is not. So by admitting the existence of nonregular
auge fields, the term is present in the action and cannot be integrated to the boundary.

To clarify we give an explicit example. Let us rewrite the first term of the above expression
39� in terms of � as given in �41� as

S� = −
�̂

g
�

M

G�����, �42�

eing, as usual, G��=��C�−��C�. One can notice that for regular fields we would integrate by
arts, obtaining S�=−�̂ /g�MC� �����=0 because �����=0. However, take as an example of a
onregular gauge field C1=H�x2�, and all the remaining components null, C0=C2=C3=0. Here
�x� is the Heaviside function �also known as a unit step function�. Then the above action reads

s

S� = −
�̂

g
�

M

��x2��21 = −
�̂

g
� dt dx1 dx3 dx4 �21 � 0. �43�

learly we are not allowed to integrate by parts for nonregular gauge fields. However, when
omputing the equations of motion for S� we obtain upon a functional derivation on C� the null
ontribution for the equations of motion �����=0, as desired.

As a last remark, we note that adding a current carrying both electric and magnetic charges
corresponding to a dyon� we obtain an explicit P and T violation,

SMix Sources = − �
M
	1

e
A� −

1

g
C�
Jeg

� . �44�

his violation is independent of electromagnetic duality by the simple fact that Jeg must be a
ombination both of a vector and a pseudovector. So we are assuming that we have no dyons,
eaning particles with both electric and magnetic charge. If they do exist then P and T are not

alid symmetries.10

In the next subsection we derive the Lorentz force, checking that we actually have the usual
xpression but with the electric and magnetic fields defined as in �3�.

. Lorentz force and the physical fields

In order to derive the Lorentz force, consider the Lagrangian for a relativistic classical elec-
ron with charge −e described by the current density Je

�=−e�1, ẋ�,

LLorentz−e = − m�−1 − 	1

e
A� −

�̂

g
C̃�
Je

�, �45�

here the first term accounts for the rest mass and, as usual, �−1=�1− ẋ2. We have set c=1.
arying this action with respect to the coordinates xi is equivalent to the Euler-Lagrange equa-

ions, and we obtain after a straightforward computation that

dpi

dt
= + e�	1

e
F0i −

�̂

g
G̃0i
 + ẋj	1

e
Fij −

�̂

g
G̃ij
� = + e�Ei + �ijkẋjBk� , �46�

˜ i
here we used the definition of the dual fields G as given in �38�, and E and Bi are given by �23�.
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If instead we consider the Lagrangian for a relativistic classical magnetic monopole with
harge +g and current given by Jg

�= +g�1, ẋ�, we obtain

LLorentz−g = − m�−1 + 	 �̂

g
C� +

1

e
Ã�
Jg

�. �47�

hen we obtain

dpi

dt
= + g�	 �̂

g
G0i +

�̂

g
F̃0i
 + ẋj	 �̂

g
Gij +

1

e
F̃ij
� = + g�Bi − �ijkẋjEk� , �48�

here again we used the definition of the dual fields F̃ as given in �38�, and Ei and Bi are given
y �23�. We note that here we considered a positive magnetic charge with rest energy positive; for
hat reason we obtain a plus sign in the definition of the Lorentz force.

We note that both Lorentz forces are duality invariant.13
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We solve a physically significant extension of a classic problem in the theory of
diffusion, namely the Ornstein-Uhlenbeck process �Ornstein and Uhlenbeck, Phys.
Rev. 36, 823 �1930��. Our generalized Ornstein-Uhlenbeck systems include a force
which depends upon the position of the particle, as well as upon time. They exhibit
anomalous diffusion at short times, and non-Maxwellian velocity distributions in
equilibrium. Two approaches are used. Some statistics are obtained from a closed-
form expression for the propagator of the Fokker-Planck equation for the case
where the particle is initially at rest. In the general case we use spectral decompo-
sition of a Fokker-Planck equation, employing nonlinear creation and annihilation
operators to generate the spectrum which consists of two staggered ladders. © 2006
American Institute of Physics. �DOI: 10.1063/1.2206878�

. INTRODUCTION

This paper introduces a physically important extension of a classic problem in the theory of
iffusion, namely the Ornstein-Uhlenbeck process.1 Our results are obtained by spectral decom-
osition of a linear operator. The spectrum of this operator consists of two ladders of eigenvalues
ith, respectively, odd and even parity. The ladders of eigenvalues are staggered, that is the
dd-even step is different from the even-odd step �see Fig. 1�. The corresponding eigenfunctions
re generated by a raising operator. A concise account of our work on these staggered ladder
pectra appeared earlier.2 In the following we show how the results summarized in Ref. 2 were
btained. We also derive new results, not included in our earlier report: a closed-form solution for
xample, and the generalization of our previous results to a continuous family of diffusion pro-
esses.

. The Ornstein-Uhlenbeck process

Before we discuss our extension of the Ornstein-Uhlenbeck process, we describe its usual
orm.1 This considers a particle of momentum p subjected to a rapidly fluctuating random force

f�t� and subject to a drag force −�p, so that the equation of motion is

ṗ = − �p + f�t� . �1�

he random force has statistics �f�t��=0, �f�t�f�t���=C�t− t�� �angular brackets denote ensemble
verages throughout�. If the correlation time � of f�t� is sufficiently short ����1�, the equation of

otion may be approximated by a Langevin equation:

47, 073301-1022-2488/2006/47�7�/073301/21/$23.00 © 2006 American Institute of Physics
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dp = − �pdt + dw , �2�

here the Brownian increment dw has statistics �dw�=0 and �dw2�=2D0dt. The diffusion constant
s

D0 =
1

2
�

−�

�

dt �f�t�f�0�� . �3�

his problem is discussed in many textbooks �for example, Ref. 3�.

. Generalized Ornstein-Uhlenbeck processes

Our extension arises when the force depends upon position as well as time. We consider the
ase where the fluctuations of the force on the particle are mainly a consequence of the spatial,
ather the temporal, fluctuations of the force f�x , t�. A consequence of this difference is that the
mpulse �w supplied to the particle in a short time �t depends upon the momentum of the particle.
f the particle is at position x0 at time t0, this impulse is

�w = �
t0

t0+�t

dt f�x0 + p�t − t0�/m,t� + O��t2� . �4�

In particular, the impulse approaches zero as the speed �p� /m of the particle increases, because
he motion of the particle effects an average over the spatial fluctuations of the force. This can be
een clearly by considering the second moment of �w. We assume that the force f�x , t� has the
ollowing statistics:

�f�x,t�� = 0, �f�x,t�f�x�,t��� = C�x − x�,t − t�� . �5�

The spatial and temporal correlation scales of the random force f�x , t� are � and �, respec-
ively. We consider the case where �for most of the time� the momentum of the particle is large
ompared to p0=m� /�, then the force experienced by the particle decorrelates much more rapidly
han the force experienced by a stationary particle. If �t is large compared to � but small compared
o 1/�, we can estimate the variance of the impulse ��w2�=2D�p��t as follows �due to transla-
ional invariance, we consider without loss of generality a particle which starts from position x

IG. 1. The spectrum of Ĥ consists of two equally spaced �ladder� spectra �n
− and �n

+ which are “staggered” �that is, they

re interleaved with uneven spacings�. Â and Â+ do not change the parity of the eigenfunctions.
0 at time t=0�:
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��w2� = �
0

�t

dt1�
0

�t

dt2 �f�pt1/m,t1�f�pt2/m,t2�� = �t�
−�

�

dt C�pt/m,t� + O��2� . �6�

e define the momentum diffusion constant by writing ��w2�=2D�p��t+O��t2�, and find

D�p� =
1

2
�

−�

�

dt C�pt/m,t� . �7�

hen p� p0 we recover D�p�=D0. When p� p0, we can approximate �7� to obtain

D�p� =
D1p0

�p�
+ O�p−2�, D1 =

m

2p0
�

−�

�

dX C�X,0� . �8�

hen the force is the gradient of a potential V�x , t� with a correlation function having continuous
erivatives, we find that D1 is zero. This case is discussed in Sec. VIII, where it is shown that
�p�	�p�−3 provided the correlation function of V�x , t� is sufficiently differentiable. Another
ariation, also discussed in Sec. VIII, arises when the correlation function of the force exhibits a
iscontinuity at t=0 �as when the potential V�x , t� is itself generated by an Ornstein-Uhlenbeck
rocess�. In this case D�p�	�p�−2, and other exponents are also possible. We therefore consider a
eneral situation where D�p�	�p�−	 and give exact results for the case

D�p� = D	�p0/�p��	 �9�

ith 	
0. We analyze the dynamics by solving a Fokker-Planck equation which determines the
robability density for the Langevin process in which the momentum has diffusion constant given
y �9�. We discuss the form of this Fokker-Planck equation in Sec. II; the remainder of this
ntroduction will set our work in context with earlier research on related topics.

. Earlier work

The motion of a damped particle subjected to a force fluctuating in both space and time was
rst studied by Deutsch,4 who addressed an entirely different aspect of the problem. Deutsch
onsidered the case where the momentum of the particle remains small compared to p0, and posed
he question of whether particles aggregate. He discovered that there is a phase transition between
oalescing and noncoalescing trajectories. �Two of the authors of the present paper subsequently
olved Deutsch’s one-dimensional model exactly,5 and results for two and three spatial dimensions
re discussed in Refs. 6 and 7�. All of these papers only considered cases where p� p0.

Sturrock8 analyzed the motion of a particle subjected to a spatially varying force field without
amping. He introduced the concept of a momentum diffusion constant which varies as a function
f the momentum: that is, he considered the same problem as is addressed in the present paper, but
n the limit of damping constant �=0. Subsequently Golubovic, Feng, and Zeng9 identified the
mportance of the relation D�p�	�p�−3 �in the case of a potential force�, and discussed the nature
f the Fokker-Planck equation and its solution in the case where �=0. It was argued that the
article exhibits anomalous diffusion and solution for the propagator of the Fokker-Planck equa-
ion with initial value p=0 was proposed. Later Rosenbluth10 pointed to an error in the evaluation
f this propagator. The results of Refs. 8–10 were applied to the stochastic acceleration11 of
articles in plasmas, and subsequent contributions have concentrated on refining models for the
alculation of D�p� �see, for example, Refs. 12 and 13�.

In the following we analyze the problem with the damping term, proportional to �, included.
urprisingly, we find that this more general problem is more tractable: we are able, for example,

o obtain precise results concerning the problems considered in Refs. 9 and 10 by taking, in our
olutions, the limit �→0.

There is a large literature devoted to the motion of particles advected in random velocity fields
corresponding to the large-� limit of the model we study�. In the case where the velocity field is

14,15
ndependent of time, subdiffusive motion is typically found. The advection of tracers in a
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urbulent fluid is described by models with rapidly fluctuating velocity fields.16 In our problem the
nertia of the particles plays an important role. Particles suspended in a turbulent fluid can show
urprising clustering properties when inertia effects are significant. These were first proposed by
axey;17 the current state of knowledge is summarized in Ref. 7. In cases where the random force

esults from motion of the surrounding fluid, it is not possible for the condition p� p0 to be
ealized.7

Although our generalized Ornstein-Uhlenbeck process exhibits anomalous diffusion �at short
imes�, this is not a result of power-law distributions that are built into the model. This distin-
uishes it from the anomalous diffusion of Levy flights or walks, reviewed in Ref. 18, which are
consequence of power-law distributions of the step lengths or waiting times for random jumps.
ur model is thus distinct from the ‘fractional Ornstein-Uhlenbeck process’ described in Ref. 18.

Finally, we remark that a brief summary of many of the results of this paper has already been
ublished.2 The closed-form solution of Sec. III, the Wentzel-Kramers-Brillouin �WKB� analysis,
nd most of the results for general values of 	 were not discussed in Ref 2.

. Description of our results and outline of this paper

In order to simplify the presentation, we describe in detail only our results for the case 	=1,
orresponding to a generic random force. Corresponding expressions for general values of 	 are
btained using the same method, and we quote the most important results for general values of 	
n Sec. VIII at the end of the paper.

In Sec. II, the Fokker-Planck equation for the generalized Ornstein-Uhlenbeck processes is
escribed. In Sec. III we briefly discuss a particular closed-form solution, which enables us to
etermine the steady state momentum distribution �which is non-Maxwellian� and some statistics,
uch as the time evolution of the variance of the momentum. The results of Sec. III are not
ufficient to enable all statistics to be calculated, and in the general case we obtain statistics via a
pectral decomposition of the Fokker-Planck equation. Section IV discusses this spectral decom-
osition. We transform the Fokker-Planck operator into a Hermitean operator and determine the
igenvalues and eigenvectors of this “Hamiltonian” operator by generating them using a new type
f raising and lowering operators, which are nonlinear second-order differential operators. We
how that the resulting spectrum is a ladder spectrum, consisting of separate ladders for the odd
nd even parity states. These are staggered: the odd-even separation differs from even-odd. Sec-
ion V contains calculations of the matrix elements needed for computing correlation functions
nd expectation values. In Sec. VI we summarize our results on diffusion and anomalous diffusion
or generic random forcing.

Section VII discusses a technical issue concerning our evaluation of the spectrum. When the
ndex of the eigenvalue is large, it is possible to apply standard WKB approximation methods
verywhere except in the vicinity of a singularity of the Hamiltonian. We show that the singularity
ntroduces phase shifts which explain the staggered-ladder structure of the spectrum.

Finally, in Sec. VIII we explain in more detail how other values of 	 can arise and summarize
ur results for general 	.

I. FOKKER-PLANCK EQUATIONS

We consider a particle with equations of motion

ẋ = p/m, ṗ = − �p + f�x,t� �10�

here the force f�x , t� is random, with statistics given by Eq. �5�. In the limit as the correlation
ime � of the force approaches zero, the equation of motion of the momentum may be approxi-
ated by a Langevin equation, �2�, where the random increment dw has second moment �dw2�
2D�p�dt with D�p� given by �7�. This Langevin equation for the stochastic evolution of p�t�
orresponds to a Fokker-Planck equation �generalized diffusion equation� for the probability den-

3
ity of the momentum, P�p , t�. Using standard results, the Fokker-Planck equation is

                                                                                                            



w

N
h
c

�

N
t
i
i
o
n
l

T

R
t

S
a

c
i

I

g

073301-5 Generalized Ornstein-Uhlenbeck processes J. Math. Phys. 47, 073301 �2006�

                        
�P

�t
= −

�

�p
�v�p�P� +

�2

�2p
�D�p�P� , �11�

here

v�p� =
�dp�
dt

, D�p� =
�dp2�
2dt

. �12�

ote that we can replace dp by dw in the expression for D�p�, because the neglected terms are of
igher order in dt, and that D�p� has already been obtained in Eq. �7�. In order to determine the
orrect form of the Fokker-Planck equation it remains to determine �dp�=−�p dt+ �dw�.

Expanding the impulse �4� about a reference trajectory x�t�= pt /m, and using the fact that
f�x , t��=0, we obtain

��w� =
1

m
�

0

�t

dt1�
0

t1

dt2�
0

t2

dt3 exp�− ��t2 − t3��
 �f

�x
�pt1/m,t1�f�pt3/m,t3�� . �13�

ote that throughout the three-dimensional region of integration, we have 0� t3� t2� t1��t, and
he short correlation time implies that the integrand is negligible unless �t1− t3���. The integrand
s therefore significant along a line rather than a surface, because t2 must lie between t1 and t3. The
ntegral is therefore O��t�, rather than O��t2� which would obtain if the integrand were significant
n a surface. We replace the factor exp�−��t2− t3�� by unity because ���1, and the other factor is
egligible when �t2− t3��. The integral over t2 then gives simply t1− t3. Writing t= t1− t3, in the
imit ���1, the result is therefore

��w� =
�t

2m
�

−�

�

dt t 
 �f

�x
�0,0�f�pt/m,t�� = �t

d

dp
D�p� . �14�

his implies

v�p� = − �p +
d

dp
D�p� . �15�

osenbluth10 has pointed out that this relation can also be obtained as a consequence of applying
he principle of detailed balance.

With �7� and �15�, the following Fokker-Planck equation obtains:

�P

�t
=

�

�p
��p + D�p�

�

�p
P . �16�

turrock8 introduced a related Fokker-Planck equation �without the damping term� and also gave
n expression for D�p� analogous to Eq. �7�.

In the following we discuss our solution of �16� with D�p� given by Eq. �9�, for the particular
ase of generic random forcing �corresponding to 	=1�. Results for other values of 	 are obtained
n an analogous fashion. The general case is briefly described in Sec. VIII.

II. A PARTICULAR CLOSED-FORM SOLUTION

In this section we introduce a particular solution of the Fokker-Planck equation �16� with D�p�
iven by �9�. We restrict ourselves to the case of generic random forcing �corresponding to 	=1�:

�P
=

� ��p + D1
p0 � P . �17�
�t �p �p� �p

                                                                                                            



i
d

E

f
p

A
t

T

p
c
T

e

W
w

f
l

I

I
r

H
p
u
e

d

o
=

073301-6 Bezuglyy et al. J. Math. Phys. 47, 073301 �2006�

                        
Consider the distribution P�p , t� of momentum p for particles initially at rest. It satisfies the
nitial condition P�p ,0�=��p� where ��p� is the Dirac �-function. For this particular initial con-
ition, we have found the following closed-form solution of �17�:

P�p,t� =
1

2��4/3�
�1/3

�3p0D1�1 − e−3�t��1/3 exp�−
��p�3

3p0D1�1 − e−3�t�� . �18�

quation �18� determines how the moments of momentum grow for a particle initially at rest:

�p2l�t�� = �3D1p0

�
2/3���2l + 1�/3�

��1/3�
�1 − e−3�t�2l/3 �19�

or positive integers l. This result is consistent with the result obtained in Ref. 2 �Eq. �8� in that
aper�. In the limit of small times �19� gives rise to anomalous diffusion

�p2l�t�� 	 t2l/3. �20�

t large times ��t�1�, by contrast, we obtain a stationary non-Maxwellian momentum distribu-
ion

P0�p� =
1

2��4/3�
�1/3

�3p0D1�1/3 exp�− ��p�3/�3p0D1�� . �21�

he particular solution �18� generalizes in a natural way to other values of 	.
However, in order to determine the momentum correlation function and the spatial diffusion

roperties, the particular solution �18� is not sufficient, the general solution for arbitrary initial
ondition is required. We have not been able to obtain the general solution to �16� in closed form.
herefore, we determine it using spectral decomposition: we construct the eigenvalues �n and

igenfunctions �n of a Hermitian operator Ĥ corresponding to the Fokker-Planck equation �17�.
e identify raising and lowering operators Â+ and Â which map one eigenfunction to another
ith, respectively, two more or two fewer nodes. We use these to obtain the spectrum and eigen-

unctions of Ĥ which in turn allow us to construct the propagator, expectation values, and corre-
ation functions. This approach is described in Secs. IV and V.

V. SPECTRAL DECOMPOSITION

Introducing dimensionless variables �t�=�t and p=zp0�D1 / ��p0
2��1/3� we write �17� as

�P

�t�
=

�

�z
�z +

1

�z�
�

�z
P � F̂P . �22�

t is convenient to transform the Fokker-Planck operator F̂ to a Hermitian form which we shall
efer to as the Hamiltonian operator:

Ĥ = P0
−1/2F̂P0

1/2 =
1

2
−

�z�3

4
+

�

�z

1

�z�
�

�z
. �23�

ere P0�z��exp�−�z�3 /3� is the stationary solution �21� satisfying F̂P0=0. We solve the diffusion
roblem by constructing the eigenfunctions of the Hamiltonian operator. In the following we make
se of Dirac notation19 of quantum mechanics to write the equations in a compact form and to
mphasize their structure.

The eigenfunctions of the Fokker-Planck equation �16� are alternately even and odd functions,

efined on the interval �−� ,��. The operator Ĥ, describing the limiting case of this Fokker-Planck

perator, is singular at z=0. We identify two eigenfunctions of Ĥ by inspection, �0
+�z�

+ 3 + − − 3 −
C0 exp�−�z� /6� which has eigenvalue �0 =0 and �0�z�=C0z�z�exp�−�z� /6� with eigenvalue �0
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−2. These eigenfunctions are of even and odd parity, respectively �zero and one node, respec-

ively�. Our approach to determining the full spectrum is to define a raising operator Â+ which
aps any eigenfunction �n

±�z� to its successor with the same parity, �n+1
± �z�, having two additional

odes.

. Algebra of raising and lowering operators

We write

Ĥ = â−�z�−1â+. �24�

ere a±= ��z±z�z� /2�. We introduce the operators

Â = â+�z�−1â+ and Â+ = â−�z�−1â− �25�

s well as

Ĝ = â+�z�−1â−. �26�

ote that Â+ is the Hermitian conjugate of Â. The commutator of Â and Â+ is

�Â,Â+� = − 3�Ĥ + Ĝ� . �27�

ote also that Ĥ− Ĝ= Î �where Î is the identity operator�.

. Eigenvalues

It can be verified that

�Ĥ,Â� = 3Â and �Ĥ,Â+� = − 3Â+. �28�

hese expressions show that the action of Â and Â+ on any eigenfunction is to produce another
igenfunction with eigenvalue increased or decreased by three, or else to produce a function which

s identically zero. The operator Â+ adds two nodes, and repeated action of Â+ on �0
+�z� and �0

−�z�
herefore exhausts the set of eigenfunctions. Together with �0

+=0 and �0
−=−2 this establishes that

he spectrum of Ĥ is �see Fig. 1�

�n
+ = − 3n and �n

− = − 3n − 2 n = 0, . . . ,� . �29�

. Eigenfunctions

We represent the eigenfunctions by of Ĥ by kets ��n
−� and ��n

+�. The actions of Â and Â+ are

Â+��n
±� = Cn+1

± ��n+1
± � and Â��n

±� = Cn
±��n−1

± � . �30�

he normalization factor Cn+1
− is determined as follows:

1 = ��n+1
− ��n+1

− � = �Cn+1
− �−2��n

−�ÂÂ+��n
−� = �Cn+1

− �−2��n
−��Â,Â+� + Â+Â��n

−� . �31�

t follows

�Cn+1
− �2 = �3�− 2�n

− + 1� + �Cn
−�2� . �32�
y recursion we obtain
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Cn
− = �3n�3n + 2��1/2. �33�

his determines the normalization of the states �Â+�n��0
−�,

��n
−� = Nn

−�Â+�n��0
−� �34�

ith

Nn
− = ��

k=1

n

3k�3k + 2�−1/2

N0
−. �35�

For the positive-parity states we proceed in a similar fashion and obtain

Cn
+ = �3n�3n − 2��1/2. �36�

his implies

��n
+� = Nn

+�Â+�n��0
+� �37�

ith

Nn
+ = ��

k=1

n

3k�3k − 2�−1/2

N0
+. �38�

he operators Â+ and Â differ from the usual examples of raising and lowering operators in that
hey are of second order in d/dz, whereas other examples of raising and lowering operators are of
rst order in the derivative. The difference is associated with the fact that the spectrum is a
taggered ladder: only states of the same parity have equal spacing, so that the raising and
owering operators must preserve the odd-even parity. This suggests replacing a first-order opera-
or which increases the quantum number �total number of nodes� by one with a second-order
perator which increases the quantum number by two, preserving parity.

There is an alternative approach to generating the eigenfunctions of Ĥ. This equation falls into
ne of the classes considered in Ref. 20, and we have written down first-order operators which
ap one eigenfunction into another. However, these operators are themselves functions of the

uantum number n, making the algebra cumbersome. The approach is briefly described in the next
ection.

. Schrödinger factorization

Consider the eigenvalue problem

Ĥ��� = ���� �39�

ith Hamiltonian �23�. For z0 it can be transformed by the variable change x=z3:

��3x�2 d2

dx2 + 3x
d

dx
− x�1

4
x + � −

1

2
���x� = 0. �40�

quation �40� is a Fuchsian linear differential equation with regular singular points of rank less
han or equal to two. Equation �40� can therefore be factorized using a generalized Schrödinger
actorization scheme �see Ref. 20 for a review of this method�.

Applying this scheme we have obtained raising and lowering operators generating the spec-
±
rum �29�. The raising operator acting on �n is given by
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T±,n+1 = − 3x
d

dx
+

x

2
− 3�n + �±� �41�

ith �+=1/3 and �−=1. The lowering operator acting on �n
± is

T̃±,n = − 3x
d

dx
−

1

2
x + 3�n + �±� �42�

ith �+=0 and �−=2/3. Note that the Hermitian conjugates of T±,n+1 and T̃±,n are

�T±,n+1�+ = − T̃±,n+1 + 3, �43�

�T̃±,n�+ = − T±,n + 3. �44�

he raising and lowering operators satisfy

T±,n+1��n
±� = Cn+1

± ��n+1
± � and T̃±,n��n

±� = Cn
±��n−1

± � �45�

ith Cn
± given by �33� and �36�, generating the spectrum �29�. The operators differ from Â and Â+

ntroduced in Sec. IV in that they are of first order in d/dx, and in that they depend on the state
hey are applied to.

. CORRELATION FUNCTIONS AND MATRIX ELEMENTS

. Correlation functions

The required solutions of the Fokker-Planck equation may be expressed in terms of the
ropagator K�y ,z , t� which is the probability density for the scaled momentum to reach z after time

, starting from y. It satisfies the Fokker-Planck equation �t�K= F̂K and can be expressed in terms

f the eigenvalues �n
� and eigenfunctions �n

��z�= P0
−1/2�z��n

��z� of F̂:

K�y,z;t�� = �
n�

an
��y��n

��z�exp��n
�t�� �46�

or t�0. The expansion coefficients an
��y� are determined by the initial condition K�y ,z ;0�

��z−y�, namely an
��y�= P0

−1/2�n
��y�. In terms of the eigenfunctions of Ĥ we have �for t�0�

K�y,z;t�� = �
n�

P0
−1/2�y��n

��y�P0
1/2�z��n

��z�exp��n
�t�� . �47�

quilibrium correlation functions of an observable O�z� are given by

�O�z0�O�zt���eq. = �
−�

�

dz �
−�

�

dy O�z�O�y�K�y,z;t��P0�y� . �48�

ince P0
1/2�y�=�0

+�y� this corresponds to

�O�z0�O�zt���eq. = �
n�

���0
+�Ô��n

���2 exp��n
�t�� �49�

or t�0. The momentum correlation function in equilibrium, for instance, is

�pt�p0�eq. = p0
2� D1

�p0
22/3

�
n

��0
+�ẑ��n

−�2 exp��n
−t�� �50�

+ ˆ −
or t�0, which requires the evaluation of matrix elements ��0�z��n�.
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Consider on the other hand the time-dependence of �x2�t��, with particles initially at rest at the
rigin. We need to evaluate

�x2�t�� =
1

m2�
0

t

dt1 �
0

t

dt2 �pt1
pt2

� . �51�

n dimensionless variables this corresponds to

�x2�t�� =
1

�2� p0D1

�
2/3 1

m2�
0

t�
dt1� �

0

t�
dt2� �zt1�

zt2�
� . �52�

he required correlation function is �assuming t2� t1�0�

�zt2�
zt1�

� = �
−�

�

dz1 �
−�

�

dz2 z1z2K�z1,z2;t2� − t1��K�0,z1;t1��

= �
n,m

�m
+ �0�

�0
+�0�

��0
+�ẑ��n

−���n
−�ẑ��m

+ �exp��n
−�t2� − t1�� + �m

+ t1�� . �53�

n order to evaluate �53�, the ratios of wave-function amplitudes �m
+ �0� /�0

+�0� are required in
ddition to matrix elements of ẑ. The matrix elements ��n

−�ẑ��m
+ � are determined in Sec. V B, while

he ratios of eigenfunctions are calculated in Sec. V C.

. Matrix elements Š�m
+ �ẑ��n

−
‹

To evaluate the matrix elements Zmn= ��m
+ �ẑ��n

−� we proceed in three steps: we first evaluate

0n, in a second step the matrix elements Zmn are related to Z0,n−m for m�n. Third, Zmn is
valuated for mn.

. Matrix elements Š�0
+�ẑ��n

−
‹

Consider first Z0n= ��0
+�ẑ��n

−�. These matrix elements are obtained by recursion. To evaluate

Z0,n+1 = ��0
+�ẑÂ+��n

−�/Cn+1
− �54�

e write ẑÂ+= ẑĜ+ ẑ�Â+− Ĝ�= ẑ�Ĥ− Î�+ ẑ�Â+− Ĝ�. It follows

��0
+�ẑÂ+��n

−� = ��n
− − 1�Z0n + ��0

+�ẑ�Â+ − Ĝ���n
−� . �55�

sing �Â+− Ĝ�=−ẑâ− and �ẑ2 , â−�=−2ẑ we obtain

��0
+�ẑÂ+��n

−� = ��n
− + 1�Z0n. �56�

his corresponds to the recursion

Z0n = �− 1�n

�
k=0

n−1

�3k + 1�

��
k=0

n−1

3�k + 1��3k + 5�

Z00. �57�

ith Z00=3−5/12�� /��2/3� �found by direct evaluation of an integral� we obtain

Z0n = �− 1�n3−5/12
���2/3�

��n + 1/3�
. �58�
�2� ���n + 1���n + 5/3�
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. Matrix elements Š�m
+ �ẑ��n

−
‹ for mÏn

Consider now the case m�n. Let

Jmn = ��0
+�Âmẑ�Â+�n��0

−� = ��0
+�Âm�ẑ,Â+��Â+�n−1��0

−� + ��0
+�ÂmÂ+ẑ�Â+�n−1��0

−� .

e use �ẑ , Â+�=−��ẑ�−1â−+ â−�ẑ�−1� to write

Jmn = − ��0
+�Âm�ẑ�−1â−�Â+�n−1��0

−� − ��0
+�Âmâ−�ẑ�−1�Â+�n−1��0

−� + ��0
+�ÂmÂ+ẑ�Â+�n−1��0

−�

= Jmn
�1� + Jmn

�2� + Jmn
�3� �59�

nd evaluate the three terms separately. The third one gives

Jmn
�3� = ��0

+�ÂmÂ+ẑ�Â+�n−1��0
−� = �Cm

+ �2��0
+�Âm−1ẑ�Â+�n−1��0

−� = �Cm
+ �2Jm−1n−1. �60�

onsider next the first term: Âm�ẑ�−1â−�Â+�n−1= Âm−1â+�ẑ�−1â+�ẑ�−1â−�Â+�n−1= Âm−1â+�ẑ�−1Ĝ�Â+�n−1,
nd thus

��0
+�Âm�ẑ�−1â−�Â+�n−1��0

−� = ��n−1
− − 1���0

+�Âm−1â+�ẑ�−1�Â+�n−1��0
−� . �61�

sing Âm−1â+�ẑ�−1�Â+�n−1= Âm−1â+�ẑ�−1â−�ẑ�−1â−�Â+�n−2= Âm−1Ĝ�ẑ�−1â−Â+n−2 we obtain the recursion

Jmn
�1� = ��n−1

− − 1���m−1
+ − 1�Jm−1n−1

�1� = 3n�3m − 2�Jm−1n−1
�1� . �62�

Now consider Jmn
�2�. Using â−�ẑ�−1�Â+�n−1= Â+�ẑ�−1â−Â+n−2 it follows

Jmn
�2� = �Cm

+ �2Jm−1n−1
�1� . �63�

his implies

Jmn
�2� =

�Cm
+ �2

��n−1
− − 1���m−1

+ − 1�
Jmn

�1� =
m

n
Jmn

�1� . �64�

ote also that J0n
�3�=0, as well as J0n

�2�=0. This gives J0n
�1�=J0n �consistent with �64��. We obtain

Jmn
�1� = �

k=1

m

3�n − m + k��3k − 2�J0n−m, �65�

hich results in

Jmn
�1� = �− 1�m+n��2/3�3m+n+5/6

6�

��n + 1���m + 1/3���n − m + 1/3�
��n − m + 1�

. �66�

Equation �66� allows us to write down an inhomogeneous recursion for Jmn:

Jmn = 3m�3m − 2�Jm−1n−1 + �1 + m/n�Jmn
�1� , �67�

here the inhomogeneous term is given by �66�. Iterating this recursion we obtain

Jmn = �
l=0

m � �
k=l+1

m

3k�3k − 2��1 +
l

n − m + l
Jln−m+l

�1� , �68�
hich results in
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Jmn = �− 1�m−n3m+n+1��2/3�2

4�2 �m + n + 1�
��n + 1���m + 1/3���n − m + 1/3�

��n − m + 2�
J00. �69�

his determines Jmn for n
m.

. Matrix elements Š�m
+ �ẑ��n

−
‹ for m>n

For mn we use instead

Jmn = ��0
+�ÂmẑÂ+n��0

−� = ��0
+�Âm−1�Â, ẑ�Â+n��0

−� + ��0
+�Âm−1ẑÂ�Â+�n��0

−� �70�

nd proceed as before. We find that Jmn=0 for mn+1. For m=n+1 we obtain

Jn+1n = ��0
+�Ân�ẑ�−1â+�Â+�n��0

−� + ��0
+�Ânâ+�ẑ�−1�Â+�n��0

−� + ��0
+�Ân�ẑ�Â�Â+�n��0

−�

= J̃n+1n
�1� + J̃n+1n

�2� + J̃n+1n
�3� . �71�

onsider first J̃n+1n
�3� :

J̃n+1n
�3� = �Cn

−�2J̃nn−1
�3� = 3n�3n + 2�J̃nn−1

�3� . �72�

econd, using Ân�ẑ�−1â+�Â+�n= Ân−1â+�ẑ�−1Â�Â+�n we determine J̃n+1n
�1� :

J̃n+1n
�1� = �Cn

−�2J̃nn−1
�2� = 3n�3n + 2�J̃nn−1

�2� . �73�

hird,

J̃n+1n
�2� = ��n

+ − 1���n−1
− − 1�J̃nn−1

�2� = �3n + 1�3nJnn−1
�2� . �74�

e deduce that

J̃n+1n
�1� =

3n + 2

3n + 1
J̃n+1n

�2� �75�

nd obtain the recursion

Jn+1n = J̃n+1n
�1� + J̃n+1n

�2� + J̃n+1n
�3� = 3n�3n + 2�Jnn−1 + �1 +

3n + 2

3n + 1
J̃n+1n

�2� . �76�

Iterating �74� we obtain

J̃n+1n
�2� = ��

k=1

n

3k�3k + 1�J̃10
�2� =

3�3

2�
9n��2/3���n + 1���n + 4/3�J00 �77�

nd thus from �76�

Jn+1n =
�3

2�
9n��2/3���2 + n���n + 4/3�J00. �78�

omparing this result to �69� we find that �69� gives the correct result for m=n+1, although it was
erived assuming m�n. Normalizing to obtain Zmn our final result is

Zmn = �− 1�m−n35/6

6�
�m + n + 1���2/3�

���n + 1���m + 1/3�
���m + 1���n + 5/3�

��n − m + 1/3�
��n − m + 2�

�79�
or n
m−1 and zero otherwise.

                                                                                                            



C

o

W

T

a

U

f

E

W

O

V

o

A

U

073301-13 Generalized Ornstein-Uhlenbeck processes J. Math. Phys. 47, 073301 �2006�

                        
. Ratios of eigenfunctions

In this section we show how to evaluate �n
+�0� /�0

+�0�. For z0, the eigenfunctions �n
+�z� are

f the form Nn
+gn�z�exp�−z3 /6�, where gn�z� is polynomial in z3, of the form

gn�z� = gn
�0� + gn

�1�z3 + ¯ . �80�

e determine how Â+ and Ĥ act on these polynomials. To this end we define

Â�+ = ez3/6Â+e−z3/6 = ��z − z2�z−1��z − z2� , �81�

Ĥ� = ez3/6Ĥe−z3/6 = ��z − z2�z−1�z. �82�

his implies

Â�+ − Ĥ� = − ��z − z2�z = z3 − z�z − 1 �83�

nd thus

�Â�+ − Ĥ��gn = − gn
�0� + O�z3� . �84�

sing �n
+=−3n we obtain

Ĥ�gn = − 3ngn
�0� + O�z3� �85�

rom the eigenvalue equation. Taking �84� and �85� together we have

Â�+gn = − �3n + 1�gn
�0� + O�z3� . �86�

quation �86� implies

gn+1
�0� = − �3n + 1�gn

�0�. �87�

ith �30� it follows

�n+1
+ �0� = Nn+1

+ gn+1
�0� = − �3n + 1�Nn+1

+ /Nn
+�n

+�0� = −� 3n + 1

3�n + 1�
�n

+�0� . �88�

ur final result for the ratio of wave-function amplitudes is therefore

�n
+�0�/�0

+�0� = �− 1�n��3��2/3�
2�

��n + 1/3�
��n + 1�

. �89�

I. EQUILIBRIUM CORRELATIONS, DIFFUSION, AND ANOMALOUS DIFFUSION

In the following the momentum correlation function in equilibrium and the time dependence
f �x2�t�� are determined.

. Momentum correlation function in equilibrium

The correlation function of momentum in equilibrium is obtained from �49�. We have

�pt�p0�eq. = p0
2� D1

�p0
22/3

�
n

Z0n
2 exp��n

−t�� . �90�
sing �79� we obtain

                                                                                                            



f
l

B

�

w

f

i
w

T

A
o

073301-14 Bezuglyy et al. J. Math. Phys. 47, 073301 �2006�

                        
�ptp0�eq. =
��4/3�

31/3��5/3�
� p0D1

�
2/3

e−2�tF21�1

3
,
1

3
;
5

3
;e−3�t �91�

or t0. Here F21 is a hypergeometric function.21 It follows that �ptp0�eq. decays as exp�−2�t� at
arge times as opposed to exp�−�t� in the Ornstein-Uhlenbeck process.

. Diffusion at long times

We now turn to �x2�t��. This expectation value is calculated using Eqs. �52�, �53�, �79�, and
89�. We have

�x2�t�� = � p0D1

�
2/3 1

m2�2�
k=0

�

�
l=k−1

�
�k

+�0�
�0

+�0�
Z0lZklTkl �92�

ith

Tkl�t�� = �
0

t�
dt1� �

t1�

t�
dt2� e�l

−�t2�−t1��+�k
+t1� + �

0

t�
dt1� �

0

t1�
dt2� e�l

−�t1�−t2��+�k
+t2� = 2

�k
+�1 − e�l

−t�� − �l
−�1 − e�k

+t��
�l

−�k
+��k

+ − �l
−�

.

�93�

We define

Akl �
�k

+�0�
�0

+�0�
Z0lZkl =

32/3��2/3�2

12�2

�k + l + 1���k + 1/3���l + 1/3���l − k + 1/3�
��k + 1���l + 5/3���l − k + 2�

�94�

or k
 l−1 and zero otherwise. In order to determine �x2�t��, the sum

S�t�� = �
kl

AklTkl�t�� �95�

s required. Note that Akl=0 for k� l−1. Consider the behavior of �95� at large values of t�. We
rite the k=0 term separately

T0l = −
2t�

�l
− +

2

�l
−2 �e�l

−t� − 1� . �96�

his gives

�x2�t�� = 2Dxt + � p0D1

�
2/3 1

m2�2�
l=0

�

Z0l
2 2

�l
−2 �e�l

−t� − 1� + � p0D1

�
2/3 1

m2�2�
k=1

�

�
l=k−1

�
�k

+�0�
�0

+�0�
Z0lZklTkl�t�� .

�97�

t large t� the secular term dominates and diffusion is thus recovered. The diffusion constant is
btained as2

Dx =
�p0D1�2/3

m2�5/3

�3−5/6

2��2/3�2F32�1

3
,
1

3
,
2

3
;
5

3
,
5

3
;1 . �98�
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. Anomalous diffusion at short times

Next we consider short times. In order to evaluate �95� at small values of t�, we replace the
ums in �95� by integrals:

S�t�� = �
0

�

dl �
0

l

dk T�k,l,t�A�k,l� . �99�

n order to evaluate �99� we use the asymptotic form of the coefficients Akl:

A�k,l� 	
32/3��2/3�2

12�2

k + l

k2/3l4/3�l − k�5/3 . �100�

he coefficients A�k , l� exhibit nonintegrable divergence k→ l. In view of this divergence we make
se of a sum rule of the Akl:

�
k=0

l+1

Akl = 0. �101�

t can be derived by considering

�
k=0

l+1

�k
+�z���k

+�ẑ��l
−� = �

k=0

�

�k
+�z���k

+�ẑ��l
−� = �

k=0

�

�z��k
+���k

+�ẑ��l
−� = �z�ẑ��l

−� , �102�

hich vanishes for z=0. Replacing sums by integrals the sum rule amounts to

�
0

l

dk A�k,l� = 0. �103�

Equation �103� allows us to write

S�t�� = �
0

�

dl �
0

l

dk �T�k,l;t�� − lim
k→l

T�k,l;t���A�k,l� . �104�

e find that the divergence of A�k , l� is reduced to an integrable divergence by the fact that
�k , l ; t�−limk→l T�k , l ; t�=O�k− l�. Approximately, T�k , l ; t� is given by

T�k,l;t� = − 2
3k�1 − exp�− 3lt�� − 3l�1 − exp�− 3kt��

27lk�l − k�
. �105�

hanging the integration variables in �104� to x=3lt and xy=3kt, we have k=xy / �3t� and l
x / �3t�, and

A�x,y,t� =
310/3��2/3�2

12�2 t8/3x−8/3 1 + y

y2/3�1 − y�5/3 . �106�

he Jacobian of the transformation is J=x / �9t2�. In the new variables,

T�x,y ;t� = − 2
t2

x
�a�x� − a�xy�

1 − y
� �107�

here

a�x� = �1 − exp�− x��/x . �108�
sing
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lim
y→1

T�x,y ;t� =� − 2
t2

x
� �

�y
a�xy���

y=1
= − 2

t2

x
xa��x� �109�

e finally obtain

T�k,l;t� − lim
k→l

T�k,l;t� = − 2
t2

x
�a�x� − a�xy�

1 − y
− xa��x�� . �110�

his gives

S�t� = − C t8/3�
0

�

dx x−8/3�
0

1

dy �a�x� − a�xy�
1 − y

− xa��x�� 1 + y

y2/3�1 − y�5/3 �111�

ith C=31/3��2/3�2 / �2�2�. Equation �111� implies anomalous spatial diffusion at short times:

�x2�t�� = Cx�p0D1�2/3m−2t8/3 �112�

ith

Cx = − C�
0

�

dx x−8/3�
0

1

dy �a�x� − a�xy�
1 − y

− xa��x�� 1 + y

y2/3�1 − y�5/3 . �113�

This anomalous diffusion is analogous to that described by Golubovic, Feng, and Zeng9 in the
ase where there is no damping �they considered the case where 	=3 in their paper�. Our results
ive the prefactor as well as the scaling behavior. It is noteworthy that we are able to solve the
roblem discussed in Ref. 9 by solving a more complex set of equations exactly, and taking a
imit.

In Ref. 2, Fig. 2b shows plots of Eqs. �97� and �112� in comparison with numerical simula-
ions of the equations of motion �10�, exhibiting anomalous spatial diffusion at short times, and a
rossover to diffusion at long times.

II. WKB ANALYSIS

The staggered ladder spectrum discussed in Sec. IV is surprising, especially in view of the fact
hat for large quantum number n we expect that the eigenfunctions of the Hamiltonian �23� might

e obtained by WKB theory. In this section we show how to determine the spectrum �29� of Ĥ
sing asymptotic WKB analysis. We show how phase shifts associated with the singularity at z
0 of the Hamiltonian �23� are the source of the staggered spectrum. It turns out that the WKB
rocedure gives rise to the exact eigenvalues.

In dimensionless coordinates, the classical Hamilton function corresponding to �23� is

Hcl =
1

2
−

z3

4
− p2/z . �114�

olving Hcl=� for p we obtain p�z ,��= ± 1
2
��2−4��z−z4, while the velocity is

ż = �Hcl/�p = − 2p/z . �115�

he classical trajectories are figure-of-eight orbits, illustrated in Fig. 2.
The WKB wave function is of the form

f�z� = �z/p�z,���1/2 exp�±i�z

dzp�z,�� . �116�

he phase of the wave function can be determined as follows. We discuss separately the behaviors
f the wave function at the origin z0=0 and in the vicinity of the regular turning point zt.p.= �2

1/3
4�� . In the latter case, the wave function at z�zt.p. connected with the turning point is
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f t.p.�z� = Ct.p.�z/p�z,���1/2 sin��
z

zt.p.

dz p�z,�� +
�

4  . �117�

Consider now the behavior of the wave function near the origin. The Hamiltonian has a
ingularity at z=0. We find an exact solution of the equation when �=0. This equation has a
ontinuous spectrum, but we identify solutions f+�z� and f−�z� which correspond, respectively, to
ven and odd solutions of the full equation for �0 �with discrete spectrum�. Close to z=0, the
amping term in the Hamiltonian is negligible, and for z0 the eigenfunctions resemble solutions
f the equation

�zz
−1�z f�z� = − �f�z� �118�

here ��=−�� is a positive constant. Write f =F�, and find that

�

�z
�F� + �zF

z
 = 0 �119�

o that F�+�zF=Cz for some constant C. Thus we find G�z�=F�z�−C /� satisfies G�+z�G=0,
hich has solution G�z�=Ai�−�1/3z�, and a similar solution constructed from Bi�x� �here Ai�y�

nd Bi�y� are Airy Ai and Bi functions21�. The general solution is

f�z� = A1Ai��− �1/3z� + A2Bi��− �1/3z� . �120�

We must find solutions of this form which resemble the behavior of the eigenfunctions of the
quation with �0 which obey the boundary conditions

d2f+�0�
dz2 = 0 and f−�0� = 0. �121�

he functions Ai� and Bi� have the following forms in the neighborhood of z=0

Ai��y� = c1� y2

+ O�y5� − c2�1 +
y3

+ O�y6� , �122�

FIG. 2. �Color online� The trajectories of the classical Hamiltonian �114� are figure-of-eight orbits.
2 3
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Bi��y� = �3c1� y2

2
+ O�y5� + �3c2�1 +

y3

3
+ O�y6� �123�

ith y=−�1/3z, c1=3−2/3 /��2/3�, and c2=3−1/3 /��1/3�. So the positive-parity solution corre-
ponds to the choice

A1
+ = − �3 and A2

+ = 1 �124�

hile

A1
− = �3 and A2

− = 1. �125�

t large values of y the corresponding wave functions are of the form

f±�y� 	 �− y�1/4 sin�2

3
�− y�3/2 +

�

4
±

�

3
 . �126�

oting that, near z=0, �0
zdzp�z ,��= �2/3��−y�3/2 and �z / p�z ,���1/2� �−y�1/4, the solution coming

rom the origin is

fO,±�z� = CO,±�z/p�z,���1/2 sin��
0

z

dz� p�z�,�� +
�

4
±

�

3  . �127�

he forms �117� and �127� should be smoothly connected for 0�z�zt.p.. This requires

�
0

zt.p.

dz p�z,�� +
�

2
±

�

3
= �n + 1�� , �128�

or n=0,1 , . . . together with Ct.p.= �−1�nCO,±. Writing

S��� = �
0

zt.p.

dz p�z,�� =
�

12
�− 4� + 2� , �129�

e find the quantization condition

S��±� = �n + 1
2 �

1
3�� . �130�

sing �129� the quantization condition takes the form

� = �− 3n even parity

− 3n − 2 odd parity,
� �131�

hich corresponds exactly to the spectrum �29� obtained by algebraically diagonalizing Ĥ.

III. RESULTS FOR OTHER VALUES OF �

Up to now we have only considered the case of generic random forcing �where the constant

1 in Eq. �8� is not zero�, corresponding to the case 	=1 in Eq. �9�. In this section we explain two
ases where other values of 	 arise and briefly describe results for arbitrary positive values of 	,
nalogous to the results obtained in Sec. VI.

First consider the case where the force is the gradient of a potential, f�x , t�=�V�x , t� /�x. We
ssume that the potential has mean value zero and correlation function C�X ,T�= �V�x+X , t

T�V�x , t��. Assuming that C�X ,T� is sufficiently differentiable at T=0, the diffusion constant is
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D�p� =
1

2
�

−�

�

dt 
 �V

�x
�pt/m,t�

�V

�x
�0,0�� =

− m

2�p��−�

�

dX
�2C
�X2 �X,mX/p�

=
− m

2�p��−�

�

dX � �2C
�x2 �X,0� +

mX

p

�3C
�2X�T

�X,0� +
m2X2

2p2

�4C
�2X�2T

�X,0� + O�X3�� . �132�

ntegration by parts shows that the integral over the first term of the expansion is zero, and the
ntegral over the second term is zero by symmetry. The leading-order contribution in �p�−1 comes
rom the third term. Integrating this term by parts twice gives

D�p� 	
− m3

2�p�3�−�

�

dX
�2C
�T2 �X,0� . �133�

hus in the case of a potential force with a sufficiently smooth correlation function we have 	
3.

An exceptional case which is worthy of comment is when the potential V�x , t� is itself gen-
rated from a set of Ornstein-Uhlenbeck processes Aj�t� by writing V�x , t�=� jAj�t�� j�x�, where
he � j�x� are elements of some suitable set of basis functions. In this case the correlation function
f V�x , t� is of the form c�x�exp�−��t�� �for some function c�x��. Then the second term in the
xpansion on the final line of Eq. �132� does not vanish by symmetry and we find D�p�� �p�−2, that
s 	=2.

For general positive values of 	 the Hamiltonian �22� is replaced by

Ĥ =
1

2
−

1

4
�z�2+	 +

�

�z

1

�z�	
�

�z
. �134�

ts ground state

�0
+ = 0 and �0

+�z� = C0
+e−�z�	+2/�4+2	� �135�

nd first excited state

�0
− = − 1 − 	 and �0

−�z� = C0
−z�z�	e−�z�	+2/�4+2	� �136�

re found by inspection. Raising and lowering operators can be introduced in a manner analogous
o Eqs. �24�–�26�. We write

Ĥ = â−�z�−	â+ �137�

ith â±=�z±z�z�	 /2. The operators

Â = â+�z�−	â+ and Â+ = â−�z�−	â− �138�

atisfy

�Ĥ,Â� = �2 + 	�Â and �Ĥ,Â+� = − �2 + 	�Â+ �139�

nd act as lowering and raising operators. For the spectrum of Ĥ we obtain

�n
+ = − �2 + 	�n and �n

− = − �2 + 	�n − 1 − 	 . �140�

hese expressions replace �29�. Note also that the commutator of Â and Â+ is

�Â,Â+� = − �2 + 	��Ĥ + Ĝ� �141�

ˆ ˆ+ −	ˆ− ˆ ˆ ˆ
here G=a �z� a and H−G= I. The normalization of the eigenstates
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Â+��n
−� = Cn+1

− ��n+1
− � , �142�

Â��n
−� = Cn

−��n−1
− � �143�

s determined as in Sec. IV A 2. We obtain

�Cn+1
− �2 = �2 + 	��n + 1���2 + 	�n + 3 + 2	� �144�

nd

�Cn+1
+ �2 = �2 + 	��n + 1���2 + 	�n + 1� . �145�

he results of Sec. V for the matrix elements Zmn= ��m
− �ẑ��n� and for �n

+�0� /�0
+�0� generalize as

ollows:

Zmn = �− 1�n−m �2 + 	�−�1+	�/�2+	�

�� 	

2 + 	
 �m + n + 1�

�� 	

2 + 	
− m + n���n + 1��� 1

2 + 	
+ m

��2 − m + n����3 + 2	

2 + 	
+ n��m + 1�

,

�146�

�n
+�0�/�0

+�0� = �− 1�n�����2 + 	�n + 1�/�2 + 	��
��n + 1���1/�2 + 	��

. �147�

his allows us to obtain, for example, the diffusion constant

Dx =
1

m2� p0
2	D	

2

�4+	 1/�2+	� �2 + 	�−�4+3	�/�2+	��F32� 	

2 + 	
,

	

2 + 	
,
1 + 	

2 + 	
;
3 + 2	

2 + 	
,
3 + 2	

2 + 	
;1

sin� �

2 + 	
��3 + 2	

2 + 	
2

�148�

escribing the dynamics at large times. Upon substituting 	=0, Eq. �148� reproduces the standard
rnstein-Uhlenbeck result, and it gives �98� for 	=1.

For the short-time anomalous diffusion we obtain

�x2�t�� = Cx��p0
	D	�2/�2+	�m−2�t�6+2	�/�2+	� �149�

ith

Cx = − C�
0

�

dx x−�6+2	�/�2+	��
0

1

dy �a�x� − a�xy�
1 − y

− xa��x�� 1 + y

y�1+	�/�2+	��1 − y��4+	�/�2+	� ,

�150�

here a�x� is the same as in �113�, and

C =
2�2 + 	�−2	/�2+	�

�� 	

2 + 	
2 . �151�

his reproduces �112� for 	=1 and concludes our summary of results for other than generic

andom forcing.
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We consider a shear flow of a scale invariant Gaussian random velocity field that
does not depend on the coordinates in the direction of the flow. We investigate a
heat advection coming from a Gaussian random homogeneous source. We discuss a
relaxation at large time of a temperature distribution determined by the forced
advection-diffusion equation. We represent the temperature correlation functions by
means of the Feynman-Kac formula. Jensen inequalities are applied for lower and
upper bounds on the correlation functions. We show that at finite time there is no
velocity dependence of long range temperature correlations �low momentum
asymptotics� in the direction of the flow but the equilibrium heat distribution has
large distance correlations �low momentum behavior� with an index depending on
the scaling index of the random flow and of the index of the random forcing. If the
velocity has correlations growing with the distance �a turbulent flow�, then the large
distance correlations depend in a crucial way on the scaling index of the turbulent
flow. In such a case the correlations increase in the direction of the flow and
decrease in the direction perpendicular to the flow, making the stream of heat more
coherent. © 2006 American Institute of Physics. �DOI: 10.1063/1.2217808�

. INTRODUCTION

We investigate a heat advection in a random flow that is supposed to be “turbulent.” The
urbulence is a complex phenomenon that is difficult to define in precise mathematical terms. The
omplexity of turbulence can be related to its dependence on the length scale relevant for under-
oing experiments. In this paper we apply only some aspects of the turbulent flow: randomness of
he velocity field, its self-similarity, and long range correlations. The appearance of the turbulence
hould have an impact on transport phenomena described by an advection-diffusion equation of a
assive scalar.1 Such an equation can describe transport of heat, a mass, or some impurities. We
re interested in the equilibrium distribution of solutions of the random advection-diffusion equa-
ion. The equilibrium is possible only under an external forcing �a heat source�. We are interested
n the equilibrium distribution at all scales. Such an equilibrium will depend on the forcing. The
niversality is possible only in the inertial range2–4 where the external forcing should not be
elevant �see Ref. 5 for some recent shear flow experiments�. Although the precise equilibrium
istribution depends on the form of the forcing. the asymptotic behavior of correlation functions
epends solely on the asymptotic behavior of the random forcing. We investigate the way the long
ange correlations of the fluid velocity influence the long range correlations of the temperature.

We assume that there is a distinguished direction of the fluid velocity V. We make a decom-
osition X= �x ,z��RD with x�Rd and z�RD−d; V�� ,x� depends only on x�Rd and has nonva-
ishing components only in RD−d �in such a case it automatically satisfies �V=0; for physical
pplications D=3 and d=2 or d=1�. As a typical example we could consider a fluid flow Vz�x ,y�
n the direction of the z axis, which does not depend on z. We can impose such an anisotropy of

�
Electronic mail: zhab@ift.uni.wroc.pl

47, 073302-1022-2488/2006/47�7�/073302/23/$23.00 © 2006 American Institute of Physics
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he flow by an external force R, which depends only on x and has nonzero components solely in
he z direction. So, we consider the Navier-Stokes equation with such a random force R:

�tV + V � V − ��V = R .

he �0,V�x�� solution of the Navier-Stokes equation is the solution of the linear equation �for the
component�

�tV − ��xV = R

together with a zero solution for the x component�. By properly choosing the external force R we
an simulate a large class of x-dependent flows.

In Secs. II and III we discuss the advection-diffusion equation, the random velocity, and a
andom forcing. The advection-diffusion equation can be solved by means of the Feynman-Kac
ormula. The Feynman-Kac solution has already been discussed by other authors.6,7 These authors
ave been interested in the asymptotic behavior of the advection-diffusion equation without forc-
ng. Our main interest �Secs. IV and V� is in the asymptotic behavior for large time and distances
f correlation functions of the temperature field resulting from the advection-diffusion equation
ith forcing describing the heat injection. First, in Sec. III we simulate forcing by a constant
radient term in the temperature. We obtain a simple soluble model of advection illustrating some
eneral features. In general, we can obtain some lower and upper bounds on the correlation
unctions by means of the Jensen inequalities �Sec. V�. For the sake of simplicity we concentrate
n the two-point correlations. In Sec. VI we show how our methods can be extended to multipoint
orrelations. We obtain asymptotic behavior of the Fourier transform of the correlation functions
or small and large momenta. We compare our methods and results �in Secs. IV–VI and in
ppendix B� with an exactly soluble model of Kraichnan4,8,9 �defined by a velocity field, which is
white noise in time�. The random advection is closely connected with diffusion. In fact, under

ome natural assumptions random advection enforces diffusion10–12 and vice versa the diffusion
an be expressed as a white noise advection.13 However, when we choose no diffusion �zero
olecular diffusivity� in the initial equation of advection describing the temperature evolution,

hen we obtain a model of advection �discussed in Appendix A� as a limit of the solution of the
andom advection-diffusion equation. The limit of zero molecular diffusivity has been discussed
arlier in Refs. 14 and 15.

In the text some positive constants arise �denoted usually as K, c1, etc.� that are not described
t each case and are not related one to another.

I. THE ADVECTION-DIFFUSION EQUATION

We consider the advection in a random velocity field V �described in Sec. I� forced by a
andom source f:

���� + V � �� −
�2

2
��� = f , �1�

here �2 is the molecular diffusivity. If the random velocity V has singular correlation functions
t small time, then Eq. �1� needs a careful interpretation. If the singularity of the velocity’s
ovariance is of the form ��t− t��D�x−x��, then there are two standard interpretations, either Ito or
tratonovitch.16,17 The difference between them in Eq. �1� is 1 � 2D�0��z

2�. Hence, choosing one
f them will change only the diffusion constant. We choose the Stratonovitch interpretation
hroughout the paper and also in Appendix B.

First, let us consider V=0 and f =0. Let N be a �deterministic� solution of the heat equation

��N� −
�2

2
�N� = 0. �2�
e expand � around the solution N of the diffusion equation
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� = T + N

if the mean value of V is zero, then T describes fluctuations of the temperature�. From Eq. �1�

��T� + V � T� −
�2

2
�T� = F , �3�

here

F = f − V � N�.

s the simplest example of a physical relevance we consider the mean gradient18,19

N = − gX , �4�

here g is a constant vector. The mean gradient is a stationary solution of the heat equation
etween two planes kept at fixed temperatures. For such a static solution

F = f + Vg . �5�

e can see that even if f =0 then F is nontrivial. This is a frequent realization of an advection in
xperiments.20,21 In such a case the source F has the same distribution as the velocity. A constant
ean gradient distinguishes a direction in space. It breaks the rotational symmetry. As a model we

ould consider g= �0,0 ,gz� and V= �0,0 ,Vz�.
We define the spectral measure � of the temperature T, which is directly measurable in

xperiments22

�T��x,z�T��x�,z��� − �T��x,z���T��x�,z��� =� dkdp exp�ik�x − x�� + ip�z − z������k,p� .

�6�

e have

� dx��	̃��x,p�	̃��x�,p��� − �	̃��x,p���	̃��x�,p���� = ��p + p�����0,p� �7�

nd

�	̃��x,p�	̃��x,p��� − �	̃��x,p���	̃��x,p�� = ��p + p�� � dk���k,p� ,

�T��x,z�T��x,z�� − �T��x,z���T��x,z�� =� dp� dk���k,p� .

hen the spectral function has singularities at low momenta, then the Fourier transform in Eq. �6�
ay need a careful definition in the sense of generalized functions. Instead of the correlation

unctions of T��x ,y�, we could consider the structure functions

G�
�2n��x,z� = ��T��0,0� − �T��0,0�� − T��x,z� + �T��x,z���2n� .

or n=1 we have

G�
�2��x,z� = 2� dkdp���k,p��1 − exp�ikx + ipz�� .

�
�2� scales in the same way as �TT� but has better infrared behavior. The structure functions G�2n�
re expressed by the correlation functions of the Fourier transforms of T�.
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It can be seen that the spectral measure � of the temperature T depends on the spectral
easure of the source f and the scaling properties of the random velocity field.

II. GAUSSIAN MODEL OF THE SHEAR FLOW

We decompose the fluid velocity

V = U + v

nto the mean value U and random fluctuations v. We assume that the velocity v is a Gaussian
uclidean Rd invariant random field with the mean zero and the covariance

�v j�s,x�vk�s�,x��� = Gjk�s − s�,x,x�� , �8�

here j ,k=d+1, . . . ,D. For the sake of simplicity of the arguments we shall sometimes separate
he time dependence, choosing G of the product form 
D. If G is a decaying function of the
istance �x−x�� then a model of the vector field v can be determined by a translation invariant G,
.g.,

Gjk�s − s�,x,x�� 	 � jk
�s − s��D�x − x�� = � jk
�s − s�� � dp exp�ip�x − x���D̃�p� , �9�

here D̃ is a locally integrable function.
In a description of the turbulence we consider growing long range correlations. In such a case

cannot be translation invariant. We consider a model with Euclidean Rd invariant correlation
unctions of v�x�−v�x��. Then

Gjk�s − s�,x,x�� = � jk
�s − s����x�2� + �x��2� − �x − x��2�� . �10�

his G is positive definite if 
 is positive definite and 0���1 �the covariance �10� determines
evy’s model23 of the Brownian motion depending on d parameters�. When 2��2 then the vector
eld v�x� does not satisfy the Lipschitz condition. In such a case we could expect difficulties with

he uniqueness of the flow and the uniqueness of the solution of Eq. �1� at �=0. Fortunately, a
efinition of the unique solution of Eq. �1� in a weak probabilistic sense is possible24,25 even
ithout the Lipschitz condition.

The source f is an independent Gaussian field with the covariance

�f�s,x,z�f�s�,x�,z��� = M�s − s�,x − x�,z − z�� . �11�

e take the Fourier transform of Eq. �3� in the z variable. Then, this equation reads

��T̃��x,p� + 
ipV��,x� +
�2p2

2
−

�2

2
�x�T̃��x,p� = F̃��,x,p� . �12�

e apply the Feynman-Kac formula17 in order to express the solution of Eq. �12� with the initial
2
ondition T0�L �dX� in the form �the uniqueness of the solution is discussed in Refs. 24 and 25�
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T̃��x,p� = exp
−
�2p2�

2
�E�exp�− ip�

0

�

V�� − s,x + �b�s��ds�T̃0�x + �b���,p�
+ �

0

�

dt exp
−
�2p2�� − t�

2
�E�exp
− ip�

0

�−t

V�� − s,x + �b�s��ds�
F̃�t,x + �b�� − t�,p� . �13�

n Eq. �13� bj �j=1,2 , . . . ,d� is the Brownian motion defined as the Gaussian process with the
ovariance17

E�bj�s�bk�t�� = � jk min�s,t� .

e are interested in the equilibrium distribution of T�, i.e., in the limit �→�. When �→� and

0�L2�dX�, then the first term in Eq. �13� is vanishing. For this reason we may set T0=0 from the
eginning. The stationary solutions N being harmonic functions are not square integrable in RD.
dmitting such functions as initial conditions, we could regain the solution N from Eq. �13� �with

=0�. In particular, the mean gradient �4� comes from a generalized function T̃0 with its support
oncentrated at p=0.

Before discussing more general correlations let us consider the constant mean gradient �Eqs.
4� and �5�� with f =0 and F=gV. Then, from Eq. �13� �with T0=0�,

T̃t�x,p� = ��p�E��
0

�

dtgV�t,x + �b�� − t�� . �14�

e shall see that some properties of the general advection �3� appear already at the level of the
imple model �14�. It follows from Eq. �14� that

�T��X�� = ��p�E��
0

�

dtgU�t,x + �b�� − t��
nd

�T̃��x,p�T̃��x�,p��� − �T̃��x,p���T̃��x�,p��� = ��p���p���
0

�

dt�
0

�

dt�E�gG�t − t�,x − x� + �b�� − t�

− �b��� − t���g� .

e calculate the integral over time. First, if the covariance G is time independent �a steady flow�,
hen

�T��x,z�T��x�,z��� − �T��X���T��X���

= 4�−4� dk exp�ik�x − x���gG̃�k�g�k�−4
1 − exp
−
�2

2
k2���2

. �15�

ext, let us consider

G�t − t�,x − x�� = ��t − t��D�x − x�� . �16�

he covariance �16� does not have any physical foundations but the virtue of the assumption �16�
s the solubility of the model �3� �Ref. 8� �the Kraichnan model� in the sense that one can obtain
closed set of partial differential equations for the correlation functions �see Appendix B�. In our
implified version �14�
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�T��x,z�T��x�,z��� − �T��X���T��X��� = �−2� dk exp�ik�x − x���gD̃�k�g�k�−2�1 − exp�− �2k2��� .

�17�

f the v correlations are growing as in Eq. �10�, then expression �17� can be infrared divergent
especially at �=��. In such a case we should rather consider

��T��0,0� − �T��0,0�� − T��x,z� + �T��x,z���2�

= 8�−4� dk�1 − exp�ikx��G̃�k��k�−4
1 − exp
−
�2

2
k2���2

. �18�

n general, let

G�t − t�,x − x� =� d�dkG̃��,k�exp�i��t − t�� + ik�x − x��� , �19�

hen

�T̃��x,p�T̃��x�,p��� − �T̃��x,p���T̃��x�,p���

= ��p���p���
0

�

dt�
0

�

dt�� dkgG̃�t − t�,k�g exp
ik�x − x�� −
1

2
�2k2�2� − t − t��� .

fter the time integration

�T��x,z�T��x�,z��� − �T��X���T��X���

=� dkd� exp�ik�x − x���gG̃��,k�g
1

4
�4�k�4 + �2�−1�1 − exp
−

1

2
�2k2� − i����2

.

�20�

e assume that G is scale invariant:

G�ct,�x� = c−��−2�G�t,x� �21�

�+��1 if the time integral in Eq. �14� is to be finite�. This assumption has simple consequences
or heat transport. It may not be exact in mathematical models. As an example, for the shear flow
olution of the Navier-Stokes equation discussed in Sec. I, if Cjl�� ,k� is the spectral function of
he force distribution R, then the spectral function of the stationary velocity distribution �obtained
s a solution of the Navier-Stokes equation with the initial condition at t0 and then letting t0→
�� is

G̃jl��,k� = Cjl��,k�

�

2
k2� + �2�−1

. �22�

e must choose a specific C in order to obtain a scale invariant G̃.
We can see from Eqs. �15�–�20� that at finite � the large distance behavior of the temperature

orrelations is the same as that of the velocity correlations because the behavior of �� for small
omenta does not change. However, if �v�x�v�0����x�2�, then at �=� for a steady flow we obtain

n Eq. �18�

��T��x,z� − �T��x,z�� − T��0,0� + �T��0,0���2� � �x�2�+4,
8
nd for the Kraichnan model
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��T��x,z� − �T��x,z�� − T��0,0� + �T��0,0���2� � �x�2�+2

n Eq. �17�. For a general time-dependent G�t ,x� of the form �19�, we shall have the �x�2�−2�+4

ehavior of the structure functions S�
�2� in Eq. �20� if G scales as in Eq. �21� ��=−��. We can

stablish the behavior for large x−x� by means of a change of variables in the integrals �15�–�20�,
= k̃�x−x��−1 and �= �̃�x−x��−2 and an estimate of the remainder. Note that the long range cor-

elations of the velocity field ���0� lead to an increase of the temperature correlations.

V. GAUSSIAN WHITE NOISE SOURCE

In this section we consider F= f as a Gaussian random field independent of v. Estimates on the
quilibrium distribution are simplified if the sources at different times are independent:

M�t − t�,x − x�,z − z�� = ��t − t��m�x − x�,z − z�� . �23�

e assume the form �23� of M as a technical simplification. This is a mathematical idealization
till justified by an application of physical sources of heat �as heat injections are independent at
ach time�.

For a lower bound we need an assumption that the dependence on x−x� is of the form of the
aplace transform �such an assumption includes the scale invariant distributions m, which do not

ncrease at large distances� either in the form

m�x − x�,z − z�� 	 m1�x − x��m0�z − z�� =� dkdp exp�ik�x − x�� + ip�z − z���m̃1�k�m̃0�p�

= �
0

�

da�1�a�exp�− a�x − x��2�m0�z − z�� �24�

r in the Euclidean invariant way

m�x − x�,z − z�� = �
0

�

da��a�exp�− a��x − x��2 + �z − z��2��

	 �
0

�

da� dp exp�ip�z − z���exp�− a�x − x��2���a,p� . �25�

n Eqs. �24� and �25� �1 and � are non-negative functions.
v in Eq. �13� enters T� in the form

exp�iv�J�� ,

here

v�J� =� du�
0

�

dsv�s,u�J�s,u�

ith

J�s,u� = − ��s�p��u − x − �b�� − s�� .

t follows that the expected values of n products of T� are expressed by

�exp�iv�Jn��� = S�Jn� ,
here S�J� is the characteristic function of the random field v. For a Gaussian random field,
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S�J� = exp
−
1

2
JGJ� . �26�

et us note that because of the translation invariance in the z variable of the source f , we have a
onservation of momenta

�T̃��x1,p1� ¯ T̃��xn,pn�� = ��p1 + ¯ + pn�H �27�

he correlation functions �27� are expressed by the characteristic function �26� with Jn satisfying
he condition �for n�1�

� Jn�s,u�du = 0. �28�

t follows that in the Gaussian case with the covariance �10� the part of G that is not translation
nvariant does not contribute to the correlation functions.

We calculate the equal time expectation values of T� �Eq. �13� with the zero initial condition�
nder the assumption that the random fields f and v are independent:

�T̃��x,p�T̃��x�,p���

= ��p + p���
0

�

dt exp�− �2p2�� − t��

 E�exp
− ip�
0

�−t

U�� − s,x + �b�s��ds�m̃�x − x� + �b�� − t� − �b��� − t�,p�S�J2� ,

�29�

here

J2�u� = p��s���u − x − b�� − s�� − p��s���u − x� − b��� − s�� .

or the Gaussian field �26�

S�J2� = exp
−
1

2
�

0

�−t �
0

�−t

dsds�pG0�s − s�,�b�s� − �b�s���p

−
1

2
�

0

�−t �
0

�−t

dsds�pG0�s − s�,�b��s� − �b��s���p

+ �
0

�−t �
0

�−t

dsds�pG0�s − s�,x − x� + �b�s� − �b��s���p� , �30�

here G0 is the translation invariant part of G. If

�m̃�x,p�� � K�m̃0��p� , �31�

hen from �S�J� � �1 there follows the bound

��T̃��x,p�T̃��x�,p���� � K��p + p���m̃0��p��−2p−2�1 − exp�− �2p2��� . �32�

or a small p and a finite � the correlations �32� are bounded by ��m̃0��p� whereas at �=� by
m̃0 � �p�p−2.
Next, we apply the scale invariance of the Brownian motion
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b�at� = �ab�t� �33�

n Eq. �29�. We write s= ��− t��. Then, using the scaling properties �21� and �33� and denoting by

0 the translation invariant part of G we can rewrite Eqs. �29� and �30� in the form

�T̃��x,p�T̃��x�,p��� = ��p + p���
0

�

dt exp�− �2p2�� − t��

 E�exp
− ip�
0

�−t

U�� − s,x + �b�s��ds�m̃�x − x� + ��� − tb�1�

− ��� − tb��1�,p�

 exp
−
1

2
�� − t�2−�−��

0

1 �
0

1

d�d��pG0�� − ��,�b��� − �b�����p

−
1

2
�� − t�2−�−��

0

1 �
0

1

d�d��pG0�� − ��,�b���� − �b������p

+ �� − t�2−�−��
0

1 �
0

1

d�d��pG0�� − ��,�� − t�−1/2�x − x��

+ �b��� − �b������p� . �34�

or the Kraichnan model8 
�s−s� �=��s−s� � in Eqs. �9� and �10�, then �=1 in Eq. �22� and
ormula �34� reads

�T̃��x,p�T̃��x�,p��� = ��p + p���
0

�

dt exp�− �2p2�� − t��

 E�exp
− ip�
0

�−t

U�� − s,x + �b�s��ds�m̃�x − x� + ��� − tb�1�

− ��� − tb��1�,p�

 exp
− �� − t�1−�pD�0�p + �� − t�1−��
0

1

d�pD��� − t�−1/2�x − x��

+ �b��� − �b�����p� . �35�

. JENSEN INEQUALITIES FOR THE TEMPERATURE CORRELATIONS

We are going to estimate the spectral measure �6� and �7� by an application of the Jensen
nequality. We can obtain an upper bound on the correlation functions by applying the Jensen

nequality ��d� exp f �exp��d�f� if �d�=1� �Ref. 26� to the time integral in Eqs. �29� and �30�:
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��T̃��x,p�T̃��x�,p���� � 2��p + p���
0

�

dr�
0

1

d��
0

�

d�� exp�− �2p2r�E��m̃�x − x� + ��rb�1�

− ��rb��1�,p��  exp
−
1

2
r2−�−�pG0�� − ��,�b��� − �b�����p

−
1

2
r2−�−�pG0�� − ��,�b���� − �b������p

+ r2−�−�pG0�� − ��,r−1/2�x − x�� + �b��� − �b������p� . �36�

et p�s ,u ; t ,w� be the transition function for the Brownian motion to pass from u at time s to w
t time t. Then, the expectation value �36� reads

��T̃��x,p�T̃��x�,p����

� 2��p + p�� � dudu�dwdw��
0

�

dr�
0

1

d��
0

�

d�� exp�− �2p2r�

p�0,0;��,u�p���,u;�,w�p��,w;1,z�p�0,0;��,u��p���,u�;�,w��p��,w�;1,z��

 �m̃�x − x� + ��rz − ��rz�,p��  exp
−
1

2
r2−�−�pG0�� − ��,�w − �u�p

−
1

2
r2−�−�pG0�� − ��,�w� − �u��p +

1

2
r2−�−�pG0�� − ��,r−1/2�x − x�� + �w − �u��p

+
1

2
r2−�−�pG0�� − ��,r−1/2�x − x�� + �w� − �u�p� . �37�

ill now we have kept the mean velocity U as an arbitrary nonzero function. We can obtain a
ower bound only if

U = 0.

s claimed by some authors �see, e.g., the standard textbook27� the mean velocity does not play
ny essential role in turbulence. So, setting it equal to zero we do not lose much. Moreover, for the
ower bound we must assume m of the form �24� �or �25�� with m̃0�p��0. Then, we can apply the
ensen inequality to the expectation value over the Brownian motion

�T̃��x,p�T̃��x�,p��� � ��p + p���
0

�

dr exp�− �2p2r��
0

�

da�1�a�

m̃0�p�exp E�−
1

2
r2−�−��

0

1 �
0

1

d�d��pG0�� − ��,�b��� − �b�����p

−
1

2
r2−�−��

0

1 �
0

1

d�d��pG0�� − ��,�b���� − �b������p

+ r2−�−��
0

1 �
0

1

d�d��pG0�� − ��,r−1/2�x − x�� + �b��� − �b������p

− a�x − x� + ��rb�1� − ��rb��1��2 . �38�
or m of the form �25� the inequality �38� reads
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�T̃��x,p�T̃��x�,p��� � ��p + p���
0

�

dr exp�− �2p2r��
0

�

da��a,p�

exp E�−
1

2
r2−�−��

0

1 �
0

1

d�d��pG0�� − ��,�b��� − �b�����p

−
1

2
r2−�−��

0

1 �
0

1

d�d��pG0�� − ��,�b���� − �b������p

+ r2−�−��
0

1 �
0

1

d�d��pG0�� − ��,r−1/2�x − x�� + �b��� − �b������p

− a�x − x� + ��rb�1� − ��rb��1��2 . �39�

he correlation functions �36�–�39� in general will essentially depend on the source distribution m.
e consider m such that �i� m1 is bounded from above by a constant �Eq. �31�� and, in addition,

ii� m1�x� is decreasing like a power 2� of �x�. From Eq. �32� it follows that under the assumption
31� the limit �→� exists. We wish to estimate the correlation functions at �=� under various
onditions on m1�x�. Using the inequality �for A�0�

2 exp�− �2p2r − A�x − x�,b�r2−�−�p2� � exp�− �2p2r� + exp�− A�x − x�,b�r2−�−�p2� ,

nd a change of variables in the r integral in Eqs. �36� and �37�, r= t �p�−�2/2−�−��, we obtain �when

1 is a bounded function �31��

�T̃��x,p�T̃��x,p��� � ��p + p���m̃0��p�
c1�
�p� −
1

�
��p�−2 + c2�
 1

�
− �p���p�−�2/2−�−��� ,

�40�

here on the right-hand side �rhs� of Eq. �36�, after an integral over r �which can be performed by
change of variables�, we obtain a function �A�x−x� ,b��−�1/2−�−�� �where b depends on � and ���
hose expectation value is expressed by the rhs of Eq. �37�. This is an integrable function of
,w ,z ,u� ,w�, and z�. Hence, the integral can be bounded by a constant c2. Under a stronger
ssumption that

� dxm1�x� � � �41�

rom Eq. �37� we obtain in a similar way the bound

� dx�T̃��x,p�T̃��x�,p��� � ��p + p���m̃0��p�
c3�
�p� −
1

�
��p�−2 + c4�
 1

�
− �p���p�−�2/2−�−��� .

�42�

his is a bound on the spectral measure on the rhs of Eq. �7�.
We wish to estimate the dependence of the correlation functions �34� on x−x� in a more

xplicit form. Note that if the velocity correlations are defined by Eq. �9�, where D̃�k� is an
ntegrable function, then on the basis of the Lebesgue lemma G is vanishing at large �x−x��. In
uch a case the term depending on x−x� in the exponential on the rhs of Eq. �34� can be neglected.

f m is in addition a slowly varying function of x−x� then

                                                                                                            



A
l
f

A

H
0

W
�
l

e
t

I

u

I

T
f

073302-12 Z. Haba J. Math. Phys. 47, 073302 �2006�

                        
�T̃��x,p�T̃��x�,p��� � �T̃��x,p�T̃��x,p��� . �43�

discussion of the turbulent flow �10� remains. We are unable to prove precise upper bounds for
arge �x−x�� and general �. However, if 0�2��1 and d=1 then g�x�=−�x�2� is a convex
unction26

g
1

2
�x + y�� �

1

2
g�x� +

1

2
g�y� .

s a consequence,

exp�− r2−�+�p2
�� − ����r−1/2�x − x�� + �b��� − �b������2��

� exp
−
1

2
r2−�+�p2
�� − �����2r−1/2�x − x���2� + �2�b��� − 2�b������2��� .

ence, under the assumption �31� �after the r integration� the inequalities �36� and �37� at �=� for
�2��1 read

�T̃��x,p�T̃��x�,p��� � K�p�−�2/2−���m̃0��p��x − x��−�2�/2−��. �44�

e expect the inequality �44� to hold true in general �under the assumption �31�� for large
x−x�� because we obtain such a behavior of the two-point function if in a formal way we take the
imit �x−x��→� in Eq. �34�, neglecting terms of order �x−x��−1.

We discuss now the Jensen inequality �38� for the lower bound. It is sufficient to calculate the
xpectation value in the exponential �38�. First, in the Kraichnan model �35� for the term −W in
he exponential appearing in Eq. �38�, we obtain

exp�− W�x − x��� = exp
− r1−�� dkpD̃�k�p

 �1 − �−2k−2 exp�ikr−1/2�x − x����1 − exp�− �2k2���� . �45�

t is easy to see that

exp�− W�0�� = exp
− r1−�� dkpD̃�k�p  �1 − �−2k−2�1 − exp�− �2k2���� � exp�− cr1−�p2�

�46�

nder the assumptions that pD̃p� �D̃�p2, �dk � D̃ � �k����k�− �1/�����, and

� dk�D̃��k�k2�
 1

�
− �k�� � � .

n such a case we can take the limit �→�. In this limit

�T̃��x,p�T̃��x,p��� � ��p + p��m̃0�p��
0

�

dr� da�1�a�exp�− �2p2r − cp2r1−� − 2a�2r�

= m̃0�p���p + p���
0

�

drm1���2r�exp�− �2p2r − cp2r1−�� . �47�

he behavior of the integral �47� depends on the behavior of the source correlations m1 as a

unction of �x−x��. If
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m1���2r� � K , �48�

hen

�T̃��x,p�T̃��x,p��� � ��p + p��m̃0�p�
c5�
�p� −
1

�
��p�−2 + c6�
 1

�
− �p���p�−�2/1−��� . �49�

his lower bound coincides with the upper bound �40� �where �=1�. If m1 satisfies a stronger
ondition ���1�

m1��x�� � K�x�−2� �50�

��0 if it is to be of the form �24�, i.e., �1�a��Ka�−1�, then

�T̃��x,p�T̃��x,p��� � ��p + p��m̃0�p�
c7�
�p� −
1

�
��p�−2+2� + c8�
 1

�
− �p���p�−��2−2��/�1−���� .

�51�

he inequality �51� results from the following estimate �for �+��1�:

�
0

�

drr−� exp�− �2p2r − cp2r2−�−�� = �
0

1

drr−� exp�− �2p2r − cp2r2−�−��

+ �
1

�

drr−� exp�− �2p2r − cp2r2−�−��

� �
0

1

drr−� exp�− ��2p2 + cp2�r�

+ �
1

�

drr−� exp�− ��2p2 + cp2�r2−�−��

= �p�−2+2��
0

p2

t−� exp�− ��2 + c�t�dt

+ �p�−��2−2��/�2−�−����
a�p�

�

t−� exp�− ��2 + c�t2−�−��dt ,

�52�

here a�p�= �p�2/�2−�−�� and �=1 in application to Eq. �47�.
Next, we wish to estimate the behavior of the temperature correlations at large x−x� in the

urbulent case �10� when �=−��0 �if ��0 and m1 is a bounded function then the temperature
orrelations are bounded from below and from above as functions of x−x�, Eq. �43��. First, we
onsider the Kraichnan model �35� �
�s−s� �=��s−s� � in Eq. �10�� with the mean velocity U
0 and

D̃�k� � �k�−d+2�. �53�

he integral in Eq. �45� is convergent for large k if ��0 and for small k if −��1. We consider
he model �10� with 0��=−��1. Let us change the integration variable in Eq. �45�:

k = �x − x��−1�rq . �54�
hen, after an estimate of the remainder,
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exp�− W�x − x��� � exp�− crp2�x − x��2�� . �55�

s a consequence,

�T̃��x,p�T̃��x�,p��� � ��p + p��m̃0�p���2p2 + cp2�x − x��2��−1�1 − exp�− ���2p2 + cp2�x − x��2���� .

ence, for large �x−x� � we obtain

�T̃��x,p�T̃��x�,p��� � ��p + p��m̃0�p�c−1p−2�x − x��−2�. �56�

his lower bound for the Kraichnan model is the same as the upper bound �44� �here �=1�. Let us
alculate the expectation value in the exponential of Eq. �38� �denoted by −W� for the general G
f Eq. �19�:

W�x − x�� = r2−�−�� d�dkpG̃��,k�p

 
2
1

2
�2k2 − i��−1
1 − 
1

2
�2k2 − i��−1
1 − exp
−

1

2
�2k2 + i����

− 
1

4
�4�k�4 + �2�−1

exp�ikr−1/2�x − x����1 − exp
−
1

2
�2k2 + i���2� . �57�

e estimate this integral at x=x� first. Similarly, as in Eq. �46�, the scale invariance �21� leads to

W�0� � cr2−�−�p2 �58�

f

� dkd�G̃��,k�
1

2
�2k2 − i��−1

�
�k� −
1

�
� � �

nd

� � dkd�G̃��,k�
1

4
�4�k�4 + �2�1/2

�
 1

�
− �k�� � � .

ence, under the assumption �50�, on the basis of the inequalities �52� and �58�, we have the lower
ound �generalizing that of Eq. �51� to ��1�

�T̃��x,p�T̃��x,p��� � ��p + p��m̃0�p�
c�
�p� −
1

�
��p�−2+2� + c��
 1

�
− �p���p�−��2−2��/�2−�−����

�59�

at �=0 this lower bound coincides with the upper bound �40��. Next, if �x−x�� is large, then for
�−�=��1 we obtain from Eqs. �21� and �57� the lower bound

exp�− W�x − x��� � exp�− cp2r2−��x − x��2�� ,

here the form of the rhs comes from a change of variables k=k� �x−x��−1 and �=���x−x� �−2

nd an estimate of the remainder in Eq. �57�.
If we restrict ourselves to G of the form �10� and 2��1, then we can derive a more precise

ower bound for exp�−W� with an application of the Hölder inequality

�x + y�2� � 22�−1��x�2� + �y�2�� .

rom Eq. �38� and the Hölder inequality we obtain, after an elementary calculation of the expec-

ation value over the Brownian paths,
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exp�− W�x − x��� � exp�− Cr2−�−�p2 − cr2−��x − x��2�p2� . �60�

ence, after a calculation of the expectation value in the exponential in Eq. �38�, the remaining r
nd the a integrals �from the representation �24�� in the correlation function �38� read

�
0

�

dr� da�1�a�exp�− W − a�x − x��2 − 2�2ra� �
1

2
�

0

�

dr� da�1�a�exp�− W − a�x − x��2�

+
1

2
�

0

�

dr� da�1�a�exp�− W − 2�2ra� ,

here exp�−W� is lower bounded by Eq. �60�. An easy estimate of this integral leads to the
ollowing inequality for large x−x�:

�T̃��x,p�T̃��x�,p��� � ��p + p��m̃0�p��K1�p�−��2−2��/�2−����x − x��−2�

+ K2�p�−2/�2−���x − x��−�2�/�2−���−2�� , �61�

here

� =
��1 − ��

2 − �
. �62�

or 0�2��1 this lower bound coincides with the upper bound �44� �derived for �=0�. We
xpect that Eq. �61� gives the asymptotic behavior of the two-point correlation function for any
�2��2 because such a behavior is a consequence of a formal exchange of the limit �x−x��
� with the integral over t and the expectation value over the Brownian motion in Eq. �34�.

The lower bound �59� for small p is obtained by neglecting the �x−x��-dependent term on the

hs of Eq. �60�. We can see from Eq. �59� that if m̃0�p���p�−� and m1�k���k�−d+2� then the �T̃T̃�
orrelations behave as �p�−2−�+2� for large momenta �short distances in the z direction�, whereas
he low momentum behavior �large distance� is �p�−�−��2−2��/�2−�−���. These estimates show the
ffect of the random flow on the temperature correlations in the z direction. The effect on the
emperature correlations in the x direction is described by the lower bound �61� and the upper
ound �44�. Again the decay of temperature correlations is determined by scaling indices of the
elocity and source correlations.

I. HIGHER ORDER CORRELATION FUNCTIONS

Let us consider the multipoint correlation functions

�T̃��x1,p1� ¯ T̃��x2n,p2n�� = �
pairs

�
0

�

dt1 ¯ dt2n�
�j,k�

��p j + pk���tj − tk�exp
−
1

2
�2�

j

p j
2�� − tj��

 E��
�j,k�

m̃�x j − xk + �b j�� − tj� − �bk�� − tk�,p j�

 exp
−
1

2�
il
�

0

�−ti �
0

�−tl

dsds�piG0�s − s�,xi − xl + �bi�s�

− �bl�s���pl� , �63�

here the sum is over all pairings in accordance with the Gaussian combinatorics. From �63� we

ave
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��T̃��x1,p1� ¯ T̃��x2n,p2n��� � �
pairs

�
0

t

dt1 ¯ dt2n  �
�j,k�

��p j + pk���tj − tk�exp
−
1

2
�2�

j

p j
2�� − tj��

 E��
�j,k�

�m̃�x j − xk + �b j�� − tj� − �bk�� − tk�,p j�� � � .

ence, the equilibrium limit �→� exists.
If m is either of the form �24� or �25� then we can apply the Jensen inequality to the expec-

ation value in the form E�exp f��exp E�f�. We obtain an analogue of the lower bound �38�. For
he upper bound we apply the Jensen inequality to the time integral

exp
−
1

2
�

0

� �
0

�

dsds�� � Jk�s�Jl�s���vk�s�vl�s����
� �−2�

0

� �
0

�

dsds� exp
−
�2

2
� � Jk�s�Jl�s���vk�s�vl�s���� , �64�

here

J�s,u� = − ��s��
k=1

2n

pk��u − xk − �bk�� − s��

nd the additional integral in Eq. �64� is over the spatial variable u.
We can repeat the basic estimates concerning the behavior for low z momenta and large x

istances by means of the methods applied for the two-point correlations. First, by means of the
ensen inequalities, we reduce the estimates of the expectation values to finite dimensional inte-
rals. From the Jensen inequalities we can see that the correlation functions are bounded in � when
→�. Next, the results concerning the scaling behavior for 2n-point functions can be obtained by
n introduction of spherical coordinates in the dt1¯dtn integral in Eq. �63�. Then, the correlation
unctions scale in a simple way with respect to the temporal radius r. Let us explain such estimates
n more detail for n=2. Then,

�T̃��x1,p1� ¯ T̃��x4,p4�� = ��p1 + p3���p2 + p4�  �
0

�

dt1�
0

�

dt2 exp�− �2p1
2�� − t1� − �2p2

2�� − t2��

 E�m̃�x1 − x3 + �b1�� − t1� − �b3�� − t1�,p1�  m̃�x2 − x4 + �b2��

− t2� − �b4�� − t2�,p2�  exp
− �
j=1,2

�
0

�−tj �
0

�−tj

dtdt�p jG0�t − t�,�b j�t�

− �b j�t���p j + �
j�k
�

0

�−tj �
0

�−tk

dtdt�p jG0�t − t�,x j − xk + �b j�t�

− �bk�t���pk� + permut., �65�

here the sum is over permutations of the numbers from 1 to 4 in accordance with the Gaussian
ombinatorics; in the sum in the exponential we set t1= t3 and t2= t4. Let �− t1=r cos �, �− t2

r sin �, t=r� cos �, and t�=r�� sin �. In such a case r scales in the exponential in the same way
s in Eqs. �37� and �38�. The integral dt1dt2=drrd� adds an additional power of r. Under the
ssumption �31� the small p behavior of the correlation functions �65� at �=� is determined by the

ntegral
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��T̃��x1,p1� ¯ T̃��x4,p4��� � �m̃0��p1��m̃0��p2��
0

�

drrE�exp
− r2−�−��
jk

p jG0pk� + permut.

� �m̃0��p1��m̃0��p2�E���
jk

p jG0pk�−�2/�2−�−��� + permut. �66�

or large distances, �=−��0 and G of Eq. �10�, we can expand the dependence on the Brownian
otion in Eq. �66� in powers of ��x j−xk�−1. The leading order reads

��T̃��x1,p1� ¯ T̃��x4,p4��� � �m̃0��p1��m̃0��p2���
jk

p jpk�x j − xk�2��−�2/�2−���
+ permut. �67�

ote that the power describing the low p behavior in Eq. �66� and large x behavior in Eq. �67� is
wice as big as that for the two-point function �34� and �40� indicating the asymptotic scale

nvariance of the temperature T̃��x ,p� at low momenta or large distances. This property can be
xtended to the 2n correlation functions where the scaling index is proportional to n as a conse-
uence of the drrn−1 time integral in the spherical time coordinates. Such a behavior of the
ntegrals suggests that if the velocities and the sources are scale invariant then the temperatures
cale at large distances with the scale dimension determined by the two-point function.

II. DISCUSSION

The power-law behavior of turbulent velocity correlation functions and passive scalar corre-
ation functions in a homogeneous isotropic turbulent flow has been widely discussed in the
iterature since the basic papers of Kolmogorov2 followed by Obukhov,28 Corrsin,29 and
atchelor30 �concerning the scalar advection�. The universal Kolmogorov 5/3 law for spectral
elocity distribution as well as passive scalar distribution is derived by means of dimensional
rguments �independent of any dynamical model�. A statistical homogeneity and isotropy of the
urbulence at a microscale in a sufficiently large space interval �called the “inertial range”� is at the
asis of the Kolmogorov theory. Under these assumptions the velocity �or passive scalar� corre-
ation functions are universal, i.e., independent of the source distribution m. An experimental
erification is not simple. Turbulent flows are usually nonhomogeneous and nonisotropic at a
acro scale. However, if a flow satisfying Kolmogorov assumptions is created, then the spectral
olmogorov law is satisfied in the inertial range.31 Nevertheless, it is common for flows in nature

hat Kolmogorov assumptions are not satisfied �for some studies of such turbulent flows, see Refs.
2 and 33�. Even if the velocity is satisfying the Kolmogorov law, the analogous Obukhov law for
may fail.32–34 As the authors in Ref. 32 point out, some problems with the verification of

olmogorov’s theory concern a construction of a flow that would be homogeneous and isotropic
n a sufficiently large inertial range �usually boundary conditions or sources violate a global
ymmetry�. They suggest a study of nonisotropic flows.

An investigation of a general class of dynamical models of randomly forced Navier-Stokes
nd passive scalar equations is still beyond the reach of analytical as well as numerical methods.
ubstantial progress has been achieved in the white noise randomly forced passive scalar �Kra-

chnan model�.4,8,9 However, the white noise distribution of velocities is quite unrealistic. Our
ain motivation in these studies was a derivation of the scaling behavior for velocities that are not

f the white noise type. A passive scalar in a shear flow independent of the coordinates in the
irection of the flow was studied before in Refs. 6 and 7. However, these authors were interested
n the anomalous free decay of solutions of the advection-diffusion equation.

Our results predict a power law of the passive scalar correlations in nonisotropic flows. The
esults depend on the source distribution m because the source f is present at any scale. We do not
pecify any inertial range in our model. In general, the correlations must depend on the source �for
discussion of random forcing, see Ref. 35�. This can be seen from the detailed calculations in

4,8,9
efs. 36 and 37 performed in the isotropic Kraichnan model �white noise in time�. The two-
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oint passive scalar correlations depend explicitly on the source and on the molecular diffusivity
2. Only in a proper limit of the source covariance m and �→0 does the universal scaling law
ome out.

Before we summarize our results let us begin with simple models. First, consider a pure
iffusion corresponding to V=0. Then

�T̃��x,p�T̃��x�,p��� = 2��p + p���
0

�

dr exp�− �2p2r�  E�m̃�x − x� + ��rb�1� − ��rb��1�,p��

= 2��p + p���2��−D+d�
0

�

dr exp�− �2p2r�

� dudw exp
−
u2

2
−

w2

2
��m̃�x − x� + ��ru − ��rw,p��

= �−2��p + p�� � dk exp�ik�x − x���m̃1�k�m̃0�p��p2 + k2�−1

 �1 − exp�− �2�p2 + k2���� .

In the limit �→�

�T��x,z�T��x�,z��� = �−2� dkdp exp�ik�x − x���exp�ip�z − z���m̃�k,p��p2 + k2�−1. �68�

ence

���k,p� = �−2�p2 + k2�−1m̃1�k�m̃0�p� . �69�

et us note that the behavior of the temperature correlations changes abruptly for large �z−z�� at
=� in this simple model. At finite � it is the same as that of the source �say �z−z��−d+�� whereas
t �=� it becomes �z−z��−d+�+2. However, it can be seen from Eq. �68� that after the limit �

�, the limit �→0 does not exist in the model without the advection. If we first take �→0 then
he subsequent limit �→� is linearly divergent in �. The strong � dependence of the asymptotic
ehavior means that this parameter sets a scale on time and space that determines different scaling
ehavior. In Appendix A we show that the limits �→0 and �→� can be interchanged in the
odel with a random advection. The correlation functions S�2n� in a nonisotropic Kraichnan model

re discussed in Appendix B. The correlation functions S�2n� �x1 ,p1 , . . . ,x2n ,p2n� can be calculated
xactly in the limit �→0 �Eq. �86��. They show no anomalous scaling �encountered in the
sotropic model4,8� as long as the points x j are different. The scaling behavior can change after a
ransformation to the configuration space �the Fourier transform does not exist in the usual sense�.

Let us compare the two-point temperature correlation function �68� with the one in a random
ow, which is bounded in space and time, i.e., G= �vv�� const. Under the assumption �31� we
btain

�T̃��x,p�T̃��x�,p��� � K��p + p��m̃0�p��
0

�

dr exp�− �2p2r − cp2r2� . �70�

he integral �70� behaves as m̃0�p�p−2 for large p and as m̃0�p��p�−1 for a small p in agreement
ith Eq. �59� for �=�=�=0. Our results of Secs. IV and V give an extension of the simple
bservations on the temperature correlation functions derived in this section for a pure diffusion
nd for an advection by a uniformly bounded random flow.

In our model �defined by the assumption that the velocity does not depend on coordinates in
he direction of the flow� the spectral distribution in the corresponding momentum is proportional
o the source distribution m̃, as can be seen from Eq. �34�. We could consider a source f with the

ovariance m�x ,z�, which �approximately in a certain range as in Refs. 36 and 37� is independent
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f x. In such a case the spectral equilibrium distribution �6� for a pure diffusion ���k ,p� �67� is
�k�m̃0�p�p−2, where the p−2 behavior comes from the molecular diffusivity. The temperature
orrelations remain independent of x and the limit �→0 does not exist. A random advection is
hanging the behavior of temperature correlations in x as well as in p. This change involves a
onperturbative mechanism that could not be seen in an expansion in V. It comes from an
xponential of G in Eq. �34�. In particular, a steady flow bounded in x gives ���k ,p�=��k��p�−1

or �p�� 1/�, whereas for the random velocity growing in space with the index � �Eq. �10�� we
ave for a small k the behavior ���k ,p���k�−d+�2�/�2−���, as follows from Eq. �61�.

In experiments �D=3� we could create an anisotropic flow with the Kolmogorov index �10�
=1/3 in d=2 or d=1. In such a case we obtain definite predictions concerning the temperature
istribution. This will be �x−x��−2/3�z−z��� where

� =
2

2 − �
− �D − d� ,

nd D−d is either 1 or 2, and there is a restriction �−��1 coming from the requirement of the
ntegrability of the expression in the exponential of �34�.

In general, we can see from Eqs. �40�, �42�, �44�, �59�, and �61� that the turbulent behavior
=−��0 of the velocity field will �in comparison to pure diffusion� decrease the temperature
orrelations in the direction orthogonal to the flow and increase the correlations �at the fixed ��in
he direction of the flow. These effects contribute to the more coherent heat distribution in a
urbulent stream.

PPENDIX A: THE LIMIT �\0

If there is no diffusion ��=0�, then our formulas in Secs. IV–VI at finite � remain valid but
eed some interpretation. There is no expectation value over the Brownian motion. In such a case,
n some formulas �as in Eqs. �34� and �35�� �=0. Let us consider as an example the formula �34�
t �=0:

�T̃��x,p�T̃��x�,p��� = ��p + p��m̃�x − x�,p��
0

�

dt exp
− ip�
0

�−t

dsU�� − s,x��
 exp
− �� − t�2−��

0

1 �
0

1

d�d��pG0�� − ��,0�p

+ �� − t�2−��
0

1 �
0

1

d�d��pG0�� − ��,x − x��p� . �71�

or the Kraichnan model8 �35� the formula �71� reads �with the Stratonovitch interpretation of the
radient term; see the discussion at the beginning of Sec. II�

�T̃��x,p�T̃��x�,p��� = ��p + p��m̃�x − x�,p��
0

�

dt exp
− ip�
0

�−t

U�� − s,x�ds�
 exp�− �� − t�pD0�0�p + �� − t�pD0�x − x��p� . �72�
n the limit �→� and for U=0 we can calculate the integral over time in Eq. �71� with the result
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�T̃��x,p�T̃��x�,p��� = C��p + p��m̃�x − x�,p�
�
0

1 �
0

1

d�d��pG0�� − ��,0�p

− �
0

1 �
0

1

d�d��pG0�� − ��,x − x��p�−�1/�2−���

, �73�

n agreement with the bounds �56� and �61�. We can also calculate the higher order correlation
unctions. As an example, the four-point function �65� reads

�T̃��x1,p1� ¯ T̃��x4,p4�� = ��p2 + p4���p1 + p3�m̃�x1 − x3,p1�m̃�x2 − x4,p2�

 �
0

�

dt1�
0

�

dt2 exp
− �
j=1,2

�
0

�−tj �
0

�−tj

dtdt�p jG0�t − t�,0�p j

+ �
j�k
�

0

�−tj �
0

�−tk

dtdt�p jG0�t − t�,x j − xk�pk� + permut.

e can obtain detailed estimates of the time integrals for any �. In some special cases the integrals
an be explicitly calculated. In Appendix B we give the formula �Eq. �88�� for the Kraichnan
odel ��=1�. For a steady flow �
�s�=1 in Eq. �10�, �=0� at �=� the integration over tj gives

�T̃��x1,p1� ¯ T̃��x4,p4�� = ��p2 + p4���p1 + p3�m̃�x1 − x3,p1�m̃�x2 − x4,p2�

 �4p1
2p2

2D0�x1 − x3�D0�x2 − x4� − �p1p2�2�D0�x1 − x4� + D0�x2 − x3�

+ D0�x1 − x2� + D0�x3 − x4��2�−1/2 + permut., �74�

here D0�x j−xk�=−�x j−xk�2� in the model �10�.

PPENDIX B: THE KRAICHNAN MODEL

If 
�t− t��=��t− t��, then we obtain a closed set of equations for the correlation functions

S�
�n��x1, . . . ,xn;p1, . . . ,pn� = �T̃��x1,p1� ¯ T̃��xn,pn�� . �75�

hese equations have been derived by Kraichnan8 for velocities depending on all coordinates. In
ur simplified model �9� and �10� they read �the odd order correlation functions are zero�

��S�
�2n� =

1

2
�2 �

j=1

j=2n

� jS�
�2n� −

1

2
��2 + D0�0�� �

j=1

j=2n

p j
2S�

�2n� + �
�j,k�

p jD0�x j − xk�pkS�
�2n�

+ �
�j,k�

��p j + pk�m̃�x j − xk,p j�S�
�2n−2��jk� 	 MS�

�2n� + RS�
�2n−2�, �76�

here D0 is the translation invariant part of D and S�jk� means that the coordinates x j and xk are
acking in S. The term D�0� �adding to �2� comes from the Stratonovitch interpretation of Eq. �1�.
he solution of Eq. �76� reads

S�
�2n� = exp��M�S0

�2n� + �
0

�

dt exp��� − t�M�RSt
�2n−2�. �77�

f the operator M is strictly negative in the space L2�R2dn�, then the limit �→� exists and does
ot depend on the initial condition S0

�2n�.
We can express the solution of Eq. �76� by means of the Feynman-Kac formula for the heat
ernel
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�exp�rM�g��x1, . . . ,x2n� = E�exp
�
0

r

dsW�b�s���g�x1 + �b1�r�, . . . ,x2n + �b2n�r�� ,

�78�

here

W�s� = −
1

2
��2 + D0�0�� �

j=1

j=2n

p j
2 + �

�j,k�
p jD0�x j + �b j�s� − xk − �bk�s��pk. �79�

e obtain an upper bound on the correlation functions �78� from the Jensen inequality as applied
o the time integral

��exp rM�g��x1, . . . ,x2n� �
1

r
�

0

r

dsE�exp�rW�b�s����g��x1 + �b1�r�, . . . ,x2n + �b2n�r��� .

�80�

f g=exp h �or a superposition with positive coefficients of such functions as in Eq. �25��, then we
ave the lower bound from the Jensen inequality as applied to the expectation value

�exp�rM�exp h��x1, . . . ,x2n� � exp E��
0

r

dsW�b�s�� + h�x1 + �b1�r�, . . . ,x2n + �b2n�r�� .

�81�

s an example, the formula for the two-point function �in the limit �→�� with the velocity
orrelations defined by Eq. �10� reads

S�
�2��x1,x2,p1,p2� = ��p1 + p2��

0

�

dr exp�− r�2p1
2�  E�exp
− p1

2�
0

r

ds�x1 − x2 + �b1�s�

− �b2�s��2��m̃�x1 + �b1�r� − x2 − �b2�r�,p1� . �82�

hen, the resulting correlation functions are controlled from below and from above by the Jensen
nequalities. For the lower bound �81� we obtain an explicit formula �using the representation �24�
or m1�

S�
�2��x1,x2,p1,p2� � ��p1 + p2�m̃0�p� � d�1�a��

0

�

dr exp�− r�2p1
2�

 exp�− p2r�+1h�r−1/2�x1 − x2�� − a�x1 − x2�2 − 2�2ra� , �83�

here

h��� = K�2�1+���
0

�−2

d��
0

�

dbb−1−�
1 − �1 + 2�2�b�−d/2 exp
−
b

2�1 + 2�2b����; �84�

ere K is a positive constant. From Eq. �84� it can easily be seen that for large x−x� �small � in
q. �84�� the r integrand in Eq. �83� behaves as

exp�− Krp2�x1 − x2�2� − a�x1 − x2�2 − 2�2ra�

as shown in another way in Eq. �60�; here �=1�, leading as a consequence to the estimate �61� for
he correlation functions. We can continue the Jensen inequalities for higher correlation functions
ecause it follows from Eqs. �77� and �78� that the correlation functions are again in the form of

uperpositions of exponentials.
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For lower order correlations a direct study of the differential equation �76� can be equally
fficient. As an example, if D=3 and d=2, then Eq. �76� at �=� �with the velocity covariance
10�� reads �here �= �x1−x2��


�21

�
����� − �2p2 − p2�2��T�

�2���,p;�� = m̃��,p� , �85�

here we defined

S�2���,p1,p2;�� = ��p1 + p2�T�2���,p1;�� .

n contradistinction to the spherically symmetric case,8 Eq. �85� is not explicitly soluble but its
symptotic solution �61� is easy to obtain. This asymptotic behavior is the same as the limit �
0 of the solution �85�:

T�
�2���,p;0� = − p−2�−2�m̃��,p� . �86�

n general, from Eq. �76�, the limit �=0 can be obtained inductively:

S�
�2n��x1, . . . ,x2n;p1, . . . ,p2n;0� = 
1

2
D0�0� �

j=1

j=2n

p j
2 − �

�j,k�
p jD0�x j − xk�pk�−1

 �
�i,l�

��pi + pl�m̃�xi − xl,pi�S�
�2n−2��il;0� . �87�

he formulas for the asymptotic behavior �61� ��=1� and �66� ��=1, �=0� agree with the exact
olution �87�. For n=1 the solution �82� takes the form �86�, whereas for n=2 we have

S�
�4��x1, . . . ,x4;p1, . . . ,p4;0� = 
1

2
D0�0��

j=1

j=4

p j
2 − �

�j,k�
p jD0�x j − xk�pk�−1

 ���p1 + p2���p3 + p4��p1D0�0�p1 − p1D0�x1 − x2�p1�−1

 m̃�x1 − x2,p1�m̃�x3 − x4,p3� + permut.� . �88�

or the scale invariant random velocity field �10�, D0�0�=0 and D0�x j−xk�=−�x j−xk�2�. It follows
rom Eqs. �87� and �88� that the temperature correlation functions are scale invariant under scale
ransformations of the coordinates x j as well as p j. When �=0, then the correlation functions S�

�2n�

re singular at coinciding points �the limit �→0 has been studied earlier by other methods in
efs. 14 and 15�. The bound �40� is valid for ��0.
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Before the thermodynamic limit, macroscopic averages need not commute for a
quantum system. As a consequence, aspects of macroscopic fluctuations or of con-
strained equilibrium require a careful analysis, when dealing with several observ-
ables. We propose an implementation of ideas that go back to John von Neumann’s
writing about the macroscopic measurement. We apply our scheme to the relation
between macroscopic autonomy and an H-theorem, and to the problem of equiva-
lence of ensembles. In particular, we show how the latter is related to the
asymptotic equipartition theorem. The main point of departure is an expression of
a law of large numbers for a sequence of states that start to concentrate, as the size
of the system gets larger, on the macroscopic values for the different macroscopic
observables. Deviations from that law are governed by the entropy. © 2006 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2217810�

. INTRODUCTION

“It is a fundamental fact with macroscopic measurements that everything which is measurable
t all, is also simultaneously measurable, i.e. that all questions which can be answered separately
an also be answered simultaneously.” That statement by von Neumann enters his introduction to
he macroscopic measurement.16 He then continues to discuss in more detail how that view could
ossibly be reconciled with the non-simultaneous-measurability of quantum mechanical quantities.
he main qualitative suggestion by von Neumann is to consider, for a set of noncommuting
perators A ,B , . . . a corresponding set of mutually commuting operators A� ,B� , . . . which are each,
n a sense, good approximations, A��A ,B��B , . . . . The whole question is: in exactly what
ense? Especially in statistical mechanics, one is interested in fluctuations of macroscopic quan-
ities or in the restriction of certain ensembles by further macroscopic constraints which only make
ense for finite systems. In these cases, general constructions of a common subspace of observ-
bles become very relevant. Interestingly, at the end of his discussion on the macroscopic
easurement,16 von Neumann turns to the quantum H-theorem and to the relation between en-

ropy and macroscopic measurement. He refers to the then recent work of Pauli,13,15 who by using
disorder assumptions” or what we could call today, a classical Markov approximation, obtained
general argument for the H-theorem.

In the present paper, we are dealing exactly with the problems above and as discussed in
hapter V.4 of Ref. 16. While it is indeed true that averages of the form A= �a1+ ¯ +aN� /N ,B
�b1+ ¯ +bN� /N, for which all commutators �ai ,bj�=0 for i� j, have their commutator �A ,B�
O�1/N� going to zero �in the appropriate norm, corresponding to �ai ,bi�=O�1�� as N↑ +�, it is
ot true in general that

�Also at: U.Antwerpen; electronic mail: wojciech.deroeck@fys.kuleuven.be
�Electronic mail: christian.maes@fys.kuleuven.be
�
Electronic mail: netocny@fzu.cz
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lim
N→+�

1

N
log Tr�eNAeNB�=

?

lim
N→+�

1

N
log Tr�eNA+NB� .

hese generating functions are obviously important in fluctuation theory, such as in the problem
f large deviations for quantum systems.12 It is still very much an open question to discuss
he joint large deviations of quantum observables, or even to extend the Laplace-Varadhan formula
o applications in quantum spin systems. The situation is better for questions about normal
uctuations and the central limit theorem, for which the so-called fluctuation algebra provides a
ice framework, see, e.g., Ref. 8. There the pioneering work of André Verbeure will continue to
nspire coming generations who are challenged by the features of noncommutativity in quantum

echanics.
These issues are also important for the question of convergence to equilibrium. For example,

ne would like to specify or to condition on various macroscopic values when starting off the
ystem. Under these constrained equilibria not only the initial energy but also, e.g., the initial
agnetization or particle density, etc., are known, and simultaneously installed. As with the large

eviation question above, we enter here again in the question of equivalence of ensembles but we
re touching also a variety of problems that deal with nonequilibrium aspects. The very definition
f configurational entropy as related to the size of the macroscopic subspace has to be rethought
hen the macroscopic variables get their representation as noncommuting operators. One could

gain argue that all these problems vanish in the macroscopic limit, but the question �indeed�
rises before the limit, for very large but finite N where one can still speak about finite dimensional
ubspaces or use arguments like the Liouville-von Neumann theorem.

In the following, there are three sections. In Sec. II we write about quantum macrostates and
bout how to define the macroscopic entropy associated to values of several noncommuting
bservables. As in the classical case, there is the Gibbs equilibrium entropy. The statistical inter-
retation, going back to Boltzmann for classical physics, is however not immediately clear in a
uantum context. We will define various quantum H-functions. Second, in Sec. III, we turn to the
quivalence of ensembles. The main result there is to give a counting interpretation to the ther-
odynamic equilibrium entropy. In that light we discuss quantum aspects of large deviation

heory. Finally, in Sec. IV, we study the relation between macroscopic autonomy and the second
aw, as done before in Ref. 5 for classical dynamical systems. We prove that if the macroscopic
bservables give rise to a first-order autonomous equation, then the H-function, defined on the
acroscopic values, is monotone. That is further illustrated using a quantum version of the Kac

ing model.

I. QUANTUM MACROSTATES AND ENTROPY

Having in mind a macroscopically large closed quantum dynamical system, we consider a
equence H= �HN�N↑+� of finite-dimensional Hilbert spaces with the index N labeling different
nitely extended approximations, and playing the role of the volume or the particle number, for

nstance. On each space HN we have the standard trace TrN. Macrostates are usually identified
ith subspaces of the Hilbert spaces or, equivalently, with the projections on these subspaces. For

ny collection �Xk
N�k=1

n of mutually commuting self-adjoint operators there is a projection-valued
easure �QN� on Rn such that for any function F�C�Rn�,

F�X1
N, . . . ,Xn

N� = �
Rn

QN�dz�F�z� .

macrostate corresponding to the respective values x= �x1 ,x2 , . . . ,xn� is then represented by the

rojection
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QN,��x� = �
�k�xk−�,xk+��

QN�dz�

or small enough ��0. Furthermore, the Boltzmann H-function, in the classical case counting the
ardinality of macrostates, is there defined as

HN,��x� =
1

N
log TrN�QN,��x��

ith possible further limits N↑ +�, �↓0. However, a less trivial problem that we want to address
ere, emerges if the observables �Xk

N� chosen to describe the system on a macroscopic scale do not
utually commute.

Consider a family of sequences of self-adjoint observables �Xk
N�N↑+�,k�K where K is some

ndex set, and let each sequence be uniformly bounded, supN �Xk
N � � +�, k�K. We call these

bservables macroscopic, having in mind mainly averages of local observables but that will not
lways be used explicitly in what follows; it will however serve to make the assumptions plau-
ible.

In what follows, we define concentrating states as sequences of states for which the observ-
bles Xk

N assume sharp values. Those concentrating states will be labeled by possible “outcomes”
f the observables Xk

N; for these values we write x= �xk�k�K where each xk�R.

. Microcanonical setup

. Concentrating sequences

A sequence �PN�N↑+� of projections is called concentrating at x whenever

lim
N↑+�

trN�F�Xk
N��PN� = F�xk� �2.1�

or all F�C�R� and k�K; we have used the notation

trN�· �PN� =
TrN�PN · PN�

TrN�PN�
=

TrN�PN · �
TrN�PN�

�2.2�

or the normalized trace state on PNHN. To indicate that a sequence of projections is concentrating

t x we use the shorthand PN→
mc

x.

. Noncommutative functions

The previous lines, in formula �2.1�, consider functions of a single observable. By properly
efining the joint functions of two or more operators that do not mutually commute, the concen-
ration property extends as follows.

Let IK denote the set of all finite sequences from K, and consider all maps G :IK→C such that

	
m�0

	
�k1,. . .,km��IK

�G�k1, . . . ,km��

i=1

m

rki
� � �2.3�

or some fixed rk�supN �Xk
N � ,k�K. Slightly abusing the notation, we also write

G�XN� = 	
m�0

	
�k1,. . .,km��IK

G�k1, . . . ,km�Xk1

N
¯ Xkm

N �2.4�

efined as norm-convergent series. We write F to denote the algebra of all these maps G, defining
oncommutative “analytic” functions on the multidisc with radii �rk� ,k�K.

N
mc
Proposition 2.1: Assume that P →x. Then, for all G�F,
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lim
N↑+�

trN�G�XN��PN� = G�x� . �2.5�

Remark 2.2: In particular, the limit expectations on the left-hand side of �2.5� coincide for
ll classically equivalent noncommutative functions. As example, for any complex parameters

k ,k�R with R a finite subset of K and for PN→
mc

x,

lim
N↑+�

trN�e	k�R�k�Xk
N−xk��PN� = lim

N↑+�
trN�


k�R

e�k�Xk
N−xk��PN� = 1

o matter in what order the last product is actually performed.
Proof of Proposition 2.1: For any monomial G�XN�=Xk1

N
¯Xkm

N , m�1, we prove the statement
f the proposition by induction, as follows. Using the shorthands YN=Xk1

N
¯Xkm−1

N and y
xk1

¯xkm−1
, the induction hypothesis reads limN↑+�trN�YN � PN�=y and we get

�trN�YNXkm

N − yxkm
�PN��

= �trN�YN�Xkm

N − xkm
��PN� + xkm

trN�YN − y�PN��

��YN�trN��Xkm

N − xkm
�2�PN��

1
2 + �xkm

��trN�YN − y�PN�� → 0

ince PN→
mc

x and �YN� are uniformly bounded. That readily extends to all noncommutative poly-
omials by linearity, and finally to all uniform limits of the polynomials by a standard continuity
rgument. �

. H-function

Only the concentrating sequences of projections on the subspaces of the largest dimension
ecome candidates for noncommutative variants of macrostates associated with x= �xk�k�K, and
hat maximal dimension yields the �generalization of� Boltzmann’s H-function. More precisely, to
ny macroscopic value x= �xk�k�K we assign

Hmc�x� = lim sup

PN→
mc

x

1

N
log TrN�PN� , �2.6�

here lim supPN→
mc

x=supPN→
mc

xlim supN↑+� is the maximal limit point over all sequences of projec-
ions concentrating at x. By construction, Hmc�x�� −� �� �0, + � � and we write 	 to denote the
et of all x�RK for which Hmc�x��0; these are all admissible macroscopic configurations.

lightly abusing the notation, any sequence PN→
mc

x, x�	 such that lim supN�1/N�log TrN�PN�
Hmc�x�, will be called a microcanonical macrostate at x.

. Example

Take a spin system of N spin-1 /2 particles for which the magnetization in the 
-direction,
=1 ,2 ,3, is given by

X

N =

1

N
	
i=1

N

�i

 �2.7�



n terms of �copies of� the Pauli matrices � .
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Let �N be a sequence of positive real numbers such that �N↓0 as N↑ +�. For m�
�m1 ,m2 ,m3�� �−1,1�3, let e� �m� be a unit vector for which m� =me� with m�0. Consider YN�m� �
	
=1

3 m
X

N and its spectral projection QN�m� � on �m−�N ,m+�N�. One easily checks that if

1/2�N↑ +�, then �QN�m� ��N is a microcanonical macrostate at m� , and

Hmc�m� � = �−
1 − m

2
log

1 − m

2
−

1 + m

2
log

1 + m

2
for m � 1

− � otherwise.

. Canonical setup

The concept of macrostates as above and associated with projections on certain subspaces on
hich the selected macroscopic observables take sharp values is physically natural and restores

he interpretation of “counting microstates.” Yet, sometimes it is not very suitable for computa-
ions. Instead, at least when modeling thermal equilibrium, one usually prefers canonical or grand-
anonical ensembles, and one relies on certain equivalence of all these ensembles.

. Concentrating states

For building the ensembles of quantum statistical mechanics, one does not immediately en-
ounter the problem of noncommutativity. One requires a certain value for a number of macro-
copic observables and one constructs the density matrix that maximizes the von Neumann en-
ropy.

We write �N→
1

x for a sequence of states ��N� on HN whenever limN↑+��N�Xk
N�=xk �conver-

ence in mean�.
That construction and that of the concentrating sequences of projections of Sec. II A 1 still has

ther variants. We say that a sequence of states ��N� is concentrating at x and we write �N→x,
hen

lim
N↑+�

�N�G�XN�� = G�x� �2.8�

or all G�F. The considerations of Proposition 2.1 apply also here and one can equivalently
eplace the set of all noncommutative analytic functions with functions of a single variable.

. Gibbs-von Neumann entropy

The counting entropy of Boltzmann extends to general states such as the von Neumann
ntropy which is the quantum variant of the Gibbs formula, both being related to the relative
ntropy defined with respect to a trace reference state. Analogous to �2.6�, we define

Hcan�x� = lim sup
�N→x

1

N
H��N� , �2.9�

here H��N��0 is, upon identifying the density matrix �N for which �N�·�=TrN��N · �,

H��N� = − Tr��N log �N� . �2.10�
Second, we consider
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H1
can�x� = lim sup

�N→
1

x

1

N
H��N� . �2.11�

bviously, H1
can is the analog of the canonical entropy in thermostatics and the easiest to compute,

ee also under Sec. II B 3. To emphasize that, we call any sequence of states ��N�, �N→
1

x such that
im supN�1/N�H��N�=H1

can�x� a canonical macrostate at x.
Another generalization of the H-function is obtained when replacing the trace state �corre-

ponding to the counting� with a more general reference state = �N�N. In that case we consider
he H-function as derived from the relative entropy, and differing from the above-used convention
y the sign and an additive constant:

H1
can�x�� = lim inf

�N→
1

x

1

N
H��N�N� . �2.12�

ere, defining �N and �0
N as the density matrices such that �N�·�=Tr��N · � and N�·�=Tr��0

N · �,

H��N�N� = Tr��N�log �N − log �0
N�� . �2.13�

emark that this last generalization enables one to cross the border between closed and open
hermodynamic systems. Here, the state �N� can be chosen as a nontrivial stationary state for an
pen system, and the above-defined H-function H1

can�x �� may lose natural counting and thermo-
ynamic interpretations. Nevertheless, its monotonicity properties under dynamics satisfying suit-
ble conditions justify this generalization, see Sec. IV.

. Canonical macrostates

The advantage of the canonical formulation of the variational problem for the H-function as in
2.11� is that it can often be solved in a very explicit way. A class of general and well-known
xamples of canonical macrostates have the following Gibbsian form.3

If �= ��1 , . . . ,�n� are such that the sequence of states ���
N�, ��

N�·�=TrN���
N · � defined by

��
N =

1

Z�
NeN	k�kXk

N
, Z�

N = TrN�eN	k�kXk
N� �2.14�

atisfies limN↑+���
N�Xk

N�=xk, k=1, . . . ,n, then ���
N� is a canonical macrostate at x, and

H1
can�x� = lim sup

N

1

N
log Z�

N − 	
k

�kxk. �2.15�

II. EQUIVALENCE OF ENSEMBLES

A basic intuition of statistical mechanics is that adding those many new concentrating states in
he variational problem, as done in Sec. II B, does not actually change the value of the H-function.
n the same manner of speaking, one would like to understand the definitions �2.9� and �2.11� in
ounting-terms. In what sense do these entropies represent a dimension �the size� of a �micro-
copic� subspace?

Trivially, Hmc�Hcan�H1
can, and Hcan�x�=H1

can�x� iff some canonical macrostate �N→
1

x is
ctually concentrating at x, �N→x. We give general conditions under which the full equality can
e proven. We have again a sequence of observables Xk

N with spectral measure given by the
rojections Qk

N�dz� ,k�K.
Theorem 3.1: Assume that for a sequence of density matrices �N�0, the corresponding

�N�N is a canonical macrostate at x and that the following two conditions are verified:
�i� �Exponential concentration property.�
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For every ��0 and k�K there are Ck����0 and Nk��� so that

�
xk−�

xk+�

�N�Qk
N�dz�� � 1 − e−Ck���N �3.1�

for all N�Nk���.
�ii� �Asymptotic equipartition property.�

For all ��0,

lim
N↑+�

1

N
log�

−�

�

�N�Q̃N�dz�� = 0, �3.2�

where Q̃N denotes the projection operator-valued measure of the operator �1/N��log �N

−�N�log �N��.

hen, Hmc�x�=Hcan�x�=H1
can�x��0.

Theorem 3.1 evidently expresses that the microcanonical and the canonical ensembles are
quivalent. Results of that kind are well-known in the literature, see e.g., Ref. 14 or 7. An example
f a similar type of reasoning for the quantum case is given in Ref. 11. Theorem 3.1 is, however,
lightly different from these results in the following aspects,

�1� When considering the quantum microcanonical ensemble, one usually starts out with
spectral projections PN associated with one macroscopic observable. That at least is the
approach in Ref. 11 and it is also sketched at the very beginning of Sec. II. Our approach
is, however, not limited to one macroscopic observable. Indeed, remember that the �Xk

N�k

need not commute �Sec. II A�.
�2� Results on equivalence of ensembles, including those contained in, e.g., Refs. 14, 7, and

11 are mostly dealing solely with translation-invariant lattice spin systems. We do not
have that limitation here; instead we have the assumptions �3.2� and �3.1�.

�3� Even within the context of translation-invariant lattice spin systems, the results in Refs.
14, 7, and 11 do not yield Theorem 3.1. In these references the microcanonical state is
defined as the average of projections PN, translated over all lattice vectors. That lattice
average is translation-invariant by construction �and hence technically easier to handle�,
but of course it is itself not longer a projection and hence it is not a microcanonical state
in the sense of the present paper.

Remarks on the conditions of Theorem 3.1: Whether one can prove the assumptions of Theo-
em 3.1, depends heavily on the particular model.

The exponential concentration property �3.1� is not trivial even for quantum lattice spin
ystems, and not even in their one-phase region. Let us mention one criterion under which �3.1�
an be checked, which indicates its deep relation to the problem of quantum large deviations.
onsider the generating functions

�k�t� = lim
N↑+�

1

N
log �N�etNXk

N
�, k � K . �3.3�

heir existence together with their differentiability at t=0 imply by an exponential Chebyshev
nequality that �N exponentially concentrates at x= ��k��0� ;k�K�. However, to our knowledge, the
ifferentiability of �k�t� has only been proven so far for lattice averages over local observables for
uantum spin lattice systems in a “high-temperature regime,” see Ref. 12, Theorem 2.15 and
emark 7.13, where a cluster expansion technique has been used. The existence of the generating

unctions �3.3� has also been studied in Ref. 10.
The asymptotic equipartition property �3.2� is easier. The terminology, originally in informa-

N
ion theory, comes from its immediate consequence �3.7� below, where P projects on a “high
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robability” region: as in the classical case, the Gibbs-von Neumann entropy measures in some
ense the size of the space of “sufficiently probable” microstates. For �3.2� it is enough to prove
hat the state �N is concentrating for the observable

AN =
1

N
log �N. �3.4�

xplicitly, it is enough to show that for all F�C�R�,

lim
N↑+�

��N�F�AN�� − F��N�AN��� = 0. �3.5�

n particular, if ��N�, �N=��
N is given by formula �2.14�, a sufficient condition for the asymptotic

quipartition property to be satisfied is that the pressure p��� defined as

p��� = lim
N↑+�

1

N
log Z�

N �3.6�

xists and is continuously differentiable at �=��x�.
Remark that for ergodic states of spin lattice systems, the asymptotic equipartition as ex-

ressed by �3.2� and �3.7� follows from the quantum Shannon-McMillan theorem, see Ref. 2, and
he references therein. An interesting variant of that result, which touches the problem of quantum
arge deviations, is the quantum Sanov theorem, proven for i.i.d. processes in Ref. 1. In contrast,
ur result focuses on the intimate relation of the asymptotic equipartition property to the problem
f equivalence of ensembles in the noncommutative context, and Theorem 3.1 formulates suffi-
ient conditions under which such an equivalence follows. An advantage of this approach is that
t is not restricted to the framework of spin lattice models with its underlying quasilocal structure.

As Hmc�Hcan�H1
can, we only need to establish that there is a concentrating sequence of

rojections for which its H-function equals the Gibbs-von Neumann entropy. Hence, the proof of
heorem 3.1 follows from the following lemma:

Lemma 3.2: If a sequence of states ��N� satisfies conditions �i� and �ii� of Theorem 3.1, then
here exists a sequence of projections �PN� exponentially concentrating at x and satisfying

lim
N↑+�

1

N
�log TrN�PN� − H��N�� = 0. �3.7�

Proof: There exists a sequence �N↓0 such that when substituted for �, �3.2� is still satisfied.

ake such a sequence and define PN=�−�N

�N dQ̃N�z�. By construction,

eN�hN−�N�PN � ��N�−1PN � eN�hN+�N�PN �3.8�

or any N=1,2 , . . ., with the shorthand hN= �1/N�H��N�. That yields the inequalities

TrN�PN� = �N���N�−1PN� � eN�hN+�N��N�PN� �3.9�

nd

TrN�PN� � eN�hN−�N��N�PN� . �3.10�

sing that limN↑+��1/N�log �N�PN�=0 proves �3.7�.
To see that �PN� is exponentially concentrating at x, observe that for all YN�0,

�N�YN� = TrN���N�1/2YN��N�1/2� � TrN�PN��N�1/2YN��N�1/2PN�

= TrN��YN�1/2PN�N�YN�1/2�
N�hN−�N� N N N N N −2N�N N N N N N
� e Tr �P �tr �Y �P � � e � �P �tr �Y �P � , �3.11�
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here we used inequalities �3.8�–�3.10�. By the exponential concentration property of ��N�,
nequality �3.1�, for all k�K, ��0, and N�Nk���,

�
R\�xk−�,xk+��

trN�dQk
N�z��PN� � e−�Ck���−2�N�N��N�PN��−1. �3.12�

hoose Nk���� such that �N�Ck��� /8 and �1/N� log �N�PN��−Ck��� /4 for all N�Nk����. Then
3.12� �exp�−Ck���N /2� for all N�maxNk��� ,Nk�����. �

V. H-THEOREM FROM MACROSCOPIC AUTONOMY

When speaking about an H-theorem or about the monotonicity of entropy one often refers,
nd even more so for a quantum setup, to the fact that the relative entropy verifies the contraction
nequality

H��N�N�N�N� � H��N�N� �4.1�

or all states �N ,N on HN and for all completely positive maps �N on B�HN�. That is true
lassically, quantum mechanically and for all small or large N. When the reference state N is
nvariant under �N, �4.1� yields the contractivity of the relative entropy with respect to N. How-
ver tempting, such inequalities should not be confused with second law or with H-theorems; note
n particular that H��N� defined in �2.10� is constant whenever �N is an automorphism:

��N�N�=H��N�.
In contrast, an H-theorem refers to the �usually strict� monotonicity of a quantity on the

acroscopic trajectories as obtained from a microscopically defined dynamics. Such a quantity is
ften directly related to the fluctuations in a large system and its extremal value corresponds to the
quilibrium or, more generally, to a stationary state.

In the previous section we have obtained how to represent a macroscopic state and constructed
candidate H-function. Imagine now a time-evolution for the macroscopic values, always refer-

ing to the same set of �possibly noncommuting macroscopic� observables Xk
N. To prove an

-theorem, we need basically two assumptions: macroscopic autonomy and the semigroup prop-
rty, or that there is a first-order autonomous equation for the macroscopic values. A classical
ersion of this study and more details can be found in Ref. 5.

. Microcanonical setup

Assume a family of automorphisms �t,s
N is given as acting on the observables from B�HN� and

atisfying

�t,s
N = �t,u

N �u,s
N , t � u � s . �4.2�

t follows that the trace TrN is invariant for �t,s
N .

Recall that 	�RK is the set of all admissible macroscopic configurations, Hmc�x��0. On this
pace we want to study the emergent macroscopic dynamics.

Autonomy condition. There are maps ��t,s�t�s�0 on 	 and there is a microcanonical mac-
ostate �PN�, PN= PN�x� for each x�	, such that for all G�F and t�s�0,

lim
N↑+�

trN��t,s
N G�XN��PN� = G��t,sx� . �4.3�

Semigroup property. The maps are required to satisfy the semigroup condition,

�t,u�u,s = �t,s �4.4�

or all t�u�s�0.
Theorem 4.1: Assume that the autonomy condition �4.3� and the semigroup condition �4.4�

mc
re both satisfied. Then, for every x�	, H �xt� is nondecreasing in t�0 with xt=�t,0x.

                                                                                                            



a

y

I
�

n
H
w
g
H

t
d
t
m
c

B

a
d

t

�

A

t

e

O

073303-10 De Roeck, Maes, and Netočný J. Math. Phys. 47, 073303 �2006�

                        
Proof: Given x�	, fix a microcanonical macrostate PN→
mc

x and t�s�0. Using that ��t,s
N �−1 is

n automorphism and TrN���t,s
N �−1 · �=TrN�·�, the identity

trN��t,s
N G�XN��PN� =

TrN�G�XN���t,s
N �−1PN�

TrN���t,s
N �−1PN�

= trN�G�XN����t,s
N �−1PN�

ields ��t,s
N �−1PN→

mc
�t,sx due to autonomy condition �4.3�. Hence,

Hmc��t,sx� � lim sup
N↑+�

1

N
log TrN���t,s

N �−1PN� = Hmc�x� .

n particular, one has that xs=�s,0x�	. The statement then follows by the semigroup property
4.3�:

Hmc�xt� = Hmc��t,0x� = Hmc��t,sxs� � Hmc�xs� .

�

It is important to realize that a macroscopic dynamics, even autonomous in the sense of �4.3�,
eed not satisfy the semigroup property �4.1�. In that case one actually does not expect the
-function to be monotone; see Ref. 4 and below for an example. As obvious from the proof,
ithout that semigroup property of ��t,s�, �4.3� only implies H�xt��H�x�, t�0. Or, in a bit more
enerality, it implies that for all s�0 and x�	 the macrotrajectory �xt�t�s, xt=�t,s�x� satisfies
�xt��H�xs� for all t�s.

Remark that while the set of projections is invariant under the automorphisms ��t,s
N �, this is not

rue any longer for more general microscopic dynamics defined as completely positive maps, and
escribing possibly an open dynamical system interacting with its environment. In the latter case
he proof of Theorem 4.1 does not go through and one has to allow for macrostates described via

ore general states, as in Sec. II B. The revision of the argument for the H-theorem within the
anonical setup is done in the next section.

. Canonical setup

We have completely positive maps ��t,s
N �t�s�0 on B�HN� satisfying

�t,s
N = �t,u

N �u,s
N , t � u � s � 0 �4.5�

nd leaving invariant the state N; they represent the microscopic dynamics. The macroscopic
ynamics is again given by maps �t,s.

As a variant of autonomy condition �4.3�, we assume that the maps �t,s are reproduced along
he time-evolution in the mean. Namely, see definition �2.12�, for every x�	1��= x ;H1

can�x ��

� � we ask that a canonical macrostate �N→
1

x exists such that, for all t�s�0,

�t,sx = lim
N↑+�

�N��t,s
N XN� . �4.6�

t the same time, we still assume the semigroup condition �4.4�.
Theorem 4.2: Under conditions �4.6� and �4.4�, the function H1

can��t,0x �� is nonincreasing in
�0 for all x�	1��.

Proof: If �N→
1

x is a canonical macrostate at x then, by the monotonicity of the relative
ntropy,

H1
can�x�� = lim inf

N↑+�

1

N
H��N�N� � lim inf

N↑+�

1

N
H��N�t,s

N �N� .

N N
n the other hand, by �4.6�, the sequence �� �t,s� is concentrating in the mean at �t,s�x�, yielding
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H1
can�x�� � H1

can��t,sx�� .

sing �4.4�, the proof is now finished as in Theorem 4.1. �

. Example: The quantum Kac model

A popular toy model to illustrate and to discuss essential features of relaxation to equilibrium
as been introduced by Mark Kac.9 Here we review an extension that can be called a quantum Kac
odel, we described it extensively in Ref. 4, to learn only later that essentially the same model
as considered by Max Dresden and Frank Feiock in Ref. 6. However, there is an interesting
ifference in interpretation to which we return at the end of the section.

At each site of a ring with N sites there is a quantum bit �i�C2 and a classical binary variable

i= ±1 �which we also consider to be embedded in C2�. The microstates are thus represented as
ectors �� ;��= ��1 , . . . ,�N ;�1 , . . . ,�N�, being elements of the Hilbert space HN=C2N � C2N. The
ime is discrete and at each step two operations are performed: a right shift, denoted below by SN

nd a local scattering or update VN. The unitary dynamics is given as

UN = SNVN, Ut
N = �UN�t for t � N �4.7�

ith the shift

SN��;�� = ��N,�1, . . . ,�N−1;�� �4.8�

nd the scattering

VN��;�� = �1 − �1

2
V1�1 +

1 + �1

2
�1, . . . ,

1 − �N

2
VN�N +

1 + �N

2
�N;�� �4.9�

xtended to an operator on HN by linearity. Here, V is a unitary 2�2 matrix and Vi its copy at site
=1, . . . ,N.

We consider the family of macroscopic observables

X0
N =

1

N
	
i=1

N

�i, X

N =

1

N
	
i=1

N

�i

, 
 = 1,2,3,

here �i
1 ,�i

2 ,�i
3 are the Pauli matrices acting at site i and embedded to operators on HN. We fix

acroscopic values x= �� ,m1 ,m2 ,m3�� �−1, +1�4 and we construct a microcanonical macrostate
PN� in x in the following way.

Let �N be a positive sequence in R such that �N↓0 and N1/2�N↑ +� as N↑ +�. For
� �−1,1�, let Q0

N��� be the spectral projection associated to X0
N, on the interval ��−�N ,�

�N�. For m� = �m1 ,m2 ,m3�� �−1,1�3, we already constructed a microcanonical macrostate QN�m� �
n Sec. II A 4. Obviously, Q0

N��� and QN�m� � commute and the product PN=Q0
N���QN�m� � is a

rojection. It is easy to check that PN is a microcanonical macrostate at x= �� ,m� �.
The construction of the canonical macrostate is standard along the lines of Sec. II B 3. The

orresponding H-functions are manifestly equal:

Hmc�x� = H1
can�x� = ��1 + m

2
� + ��1 − m

2
� + ��1 + �

2
� + ��1 − �

2
� �4.10�

ith ��x�=−x log x for x� �0,1� and ��0�=0, otherwise ��x�=−�.
We now come to the conditions of Theorem 4.1. The construction of the macroscopic dynam-

cs and the proof of its autonomy was essentially done in Ref. 4. The macroscopic equation �t

� is obvious and the equation for m� t can be written, associating m� t with the reduced 2�2 density
� � t t t
atrix �t= �1+mt ·�� /2, in the form �t=���, t=0,1 , . . ., where ��= ���� and
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����� =
1 − �

2
V�V* +

1 + �

2
� . �4.11�

he semigroup condition �4.4� is then also automatically checked.
In order to understand better the necessity of the semigroup property for an H-theorem to be

rue, compare the above with another choice of macroscopic variables. Assume we had started out
ith

X0
N =

1

N
	
i=1

N

�i, X1
N =

1

N
	
i=1

N

�i
1

s the only macroscopic variables, as was done in Ref. 6. A microcanonical macrostate can again
e easily constructed by setting Q0

N��� the spectral projection associated to X0
N on the interval

�−�N ,�+�N� and Q1
N�m� � the spectral projection for X1

N on ��−�N ,�+�N�, and finally PN

Q0
N���Q1

N�m� � as before. The sequence �PN� defines a microcanonical macrostate at �� ,m� � and
he autonomy condition �4.3� is satisfied. However, the macroscopic evolution does not satisfy the
emigroup property �4.4� and, in agreement with that, the corresponding H-functions are not
onotonous in time �see Ref. 4�.
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niqueness of solutions to the helically reduced wave
quation with Sommerfeld boundary conditions

C. G. Torrea�

Department of Physics, Utah State University, Logan, Utah 84322-4415
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We consider the helical reduction of the wave equation with an arbitrary source on
�n+1�-dimensional Minkowski space, n�2. The reduced equation is of mixed
elliptic-hyperbolic type on Rn. We obtain a uniqueness theorem for solutions on a
domain consisting of an n-dimensional ball B centered on the reduction of the axis
of helical symmetry and satisfying ingoing or outgoing Sommerfeld conditions on
�B�Sn−1. Nonlinear generalizations of such boundary value problems �with n=3�
arise in the intermediate phase of binary inspiral in general relativity. © 2006
American Institute of Physics. �DOI: 10.1063/1.2212667�

. INTRODUCTION

Recent approaches to the quasistationary approximation of the intermediate phase of binary
nspiral in general relativity have led to the consideration of reductions of the Einstein equations
y a helical Killing vector field �see Refs. 1–3 and references therein�. To date, model problems
ave been analyzed consisting of helical reductions of linear and nonlinear wave equations in
3+1�-dimensional Minkowski space–time with various sources using Sommerfeld conditions on
spherical boundary.1 These helically reduced equations have the challenging feature of being of
ixed elliptic-hyperbolic type on their three-dimensional domain. More precisely, they are elliptic

n an inner cylindrical region surrounding the sources and hyperbolic outside this cylindrical
egion. There appear to be no general theorems to handle existence and uniqueness of solutions to
artial differential equations of mixed type. Results tend to be specific to individual equations or
imited classes of equations, and even then the equations which have been most studied are defined
n two dimensions.4 From the investigations of Ref. 1 it appears that the boundary value problem
rising from helical reduction of �linear and nonlinear� wave equations using Sommerfeld condi-
ions on an exterior boundary is well-posed. Solutions have been constructed and appear to be
nique. This is somewhat remarkable since the boundary intersects both the hyperbolic and elliptic
omains. In particular, one might not expect a single �Sommerfeld� condition on a closed bound-
ry to enforce uniqueness of solutions.1

Some light was shed on this issue by the work of Ref. 5, where the helical reduction of the
2+1�-dimensional wave equation was shown to define a symmetric-positive system on an annular
egion in R2 such that the Sommerfeld boundary value problem was well-posed—solutions exist
nd, in particular, are unique. Unfortunately, it is not known how to generalize these results �i.e.,
ymmetric positivity of the reduced equation� to higher dimensions. Moreover, the helical reduc-
ion of the �2+1�-dimensional wave equation leads to a boundary value problem on a two-
imensional region with an outer circular boundary which need never intersect the circle of
egeneracy of the symbol of the reduced partial differential equation. In higher dimensions, the
pherical outer boundary necessarily intersects the “light cylinder” where the symbol is degenerate
o the boundary conditions must be imposed both in the elliptic and in the hyperbolic regions.
Unless, of course, the boundary is completely contained in the elliptic region, which is not of
hysical interest and which, in any case, leads to a standard elliptic boundary value problem�. This

�
Electronic mail: torre@cc.usu.edu
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akes the problem qualitatively different in the physical �3+1� space–time dimensions �and in
igher dimensions�.

Thus, it is of interest both from mathematical physics and gravitational physics viewpoints to
etter understand the nature of boundary value problems arising from helical reduction of wave
quations. Here we shall provide a uniqueness theorem for the helical reduction of the
n+1�-dimensional wave equation with arbitrary sources and with Sommerfeld boundary condi-
ions. The proof is remarkably elementary and employs an approach used by Protter to study a
eneralization of the Tricomi problem.6

I. THE HELICALLY REDUCED WAVE EQUATION

We will be considering the helical reduction of the wave equation with an arbitrary source on
n+1�-dimensional Minkowski space, with n�2. The space-time manifold is N=Rn+1 with metric

� = − dt � dt + dx � dx + dy � dy + �ijdzi
� dzj , �2.1�

here Latin indices i , j=1,2 , . . . ,n−2. The wave equation for � :N→R with a prescribed source
:N→R is

− �tt + �xx + �yy + �ij�ij = F . �2.2�

ote we use the notation where subscripts on a function indicate partial derivatives. The helical
eduction is accomplished by assuming the source and solutions are invariant with respect to the
sometry group �G� generated by

K = �t + ��x�y − y�x�, � = const . , �2.3�

hich is equivalent to

LKF = LK� = 0. �2.4�

n cylindrical coordinates �t ,� ,� ,zi�, the metric and Killing vector field are

� = − dt � dt + d� � d� + �2d� � d� + �ijdzi
� dzj , �2.5�

K = �t + ���, �2.6�

he wave equation is

− �tt +
1

�
������� +

1

�2��� + �ij�ij = F , �2.7�

nd the invariance condition �2.4� is

�t = − ���, Ft = − �F�. �2.8�

ntroducing �=�−�t, �2.8� means there exists functions u and f such that

��t,�,�,zi� = u��,�,zi�, F�t,�,�,zi� = f��,�,zi� . �2.9�

e then get the reduced equation defining helically invariant solutions to �2.2�

1

�
����u�� +

	���
�2 u�� + �ijuij = f , �2.10�

here

2 2
	��� = 1 − � � . �2.11�
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The locus of points where 	���=0 is the “light cylinder”. Inside the light cylinder ��
1/�� Eq. �2.10� is elliptic and outside the light cylinder ���1/�� Eq. �2.10� is hyperbolic.

A useful geometric interpretation of this reduction is as follows. The set of orbits of the group
enerated by K defines a manifold M =N /G�Rn. The functions �� ,� ,zi� are G-invariant and
efine cylindrical coordinates on M. In these coordinates the projection � :N→M is simply

��t,x,y,zi� = ��,�,zi� , �2.12�

nd satisfies �*K=0. The G-invariant functions F and � on N correspond to functions f and u on
M, respectively, via

F = �*f , � = �*u . �2.13�

he inverse metric on N is given by

�� = − �t � �t + �� � �� +
1

�2�� � �� + �ij�i � � j . �2.14�

eing G-invariant, �� projects to a tensor field q on M. Using �2.12�,

q = �*�� = �� � �� +
	���
�2 �� � �� + �ij�i � � j . �2.15�

his tensor field is well-defined everywhere on M, but it does not determine a metric on M
ecause q has no inverse on the light cylinder. While the metric on N does not induce a metric on

M, the metric volume form  on N does define a volume form � on M as follows. Define

� = K ⇀  , �2.16�

hich satisfies

LK� = 0, K ⇀ � = 0. �2.17�

onsequently, � is the pull-back by � of a volume form � on M. It is easy to check that

� = �d� Ù d� Ù dz1 Ù ¯ Ù dzn−2. �2.18�

he volume form � defines a scalar density of weight 1, �=�, on M.
We will use Greek indices to label tensor fields on M. Introduce a torsion-free derivative

perator ��. The reduced equation �2.10� is equivalent to

1

�
����q����u� = f . �2.19�

o see this, we first note that because of the density weights �2.19� is in fact independent of the
hoice of torsion-free derivative ��. Using the cylindrical coordinate derivative operator, ��=��,
n �2.19� we obtain �2.10�. For what follows we rewrite �2.19� as

���h����u� = ���h��u�� = f̃ , �2.20�

here f̃ =�f is a scalar density of weight 1 and h��=�q�� is a tensor density of weight 1 given by

h�� = �, hij = ��ij, h�� =
1

	 =
1

− �2� . �2.21�

� �
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II. ENERGY INTEGRAL

The key ingredient in our uniqueness theorem is the following generalized energy integral. Fix
domain B�M and define

E�u� = �
B

��au + b�u�����h��u��� , �3.1�

here a and b��� are a function and vector field to be specified later. The integrand involving a
an be written as

au���h��u�� =
1

2
���h��a��u2 − ah��u�u� + ���auh��u� −

1

2
h��a�u2� . �3.2�

he integrand involving b� can be written as

b�u����h��u�� =
1

2
���h��b��u�u� − b,�

� h��u�u� + ���b�u�h��u� −
1

2
b�h��u�u�� . �3.3�

gain, while these expressions use the coordinate derivative, they are in fact independent of the
hoice of torsion-free derivative operator. The divergences integrate to the boundary and we have

E�u� = �
B
	1

2
���h��a��u2 − ah��u�u� +

1

2
���h��b��u�u� − b,�

� h��u�u�

+ �

�B

n�	�au + b�u��h��u� −
1

2
h��a�u2 −

1

2
b�h��u�u�
 . �3.4�

f there were a metric on B, n� could be defined in terms of the unit normal to the boundary and
he metric-induced volume element of the boundary. Without a metric n� is still defined, of course,
ut its definition is necessarily more involved. We give the definition in the Appendix.

V. UNIQUENESS THEOREM

We are now ready to formulate the boundary value problem of interest. We consider solutions
o Eq. �2.20� on a ball of radius R,

B = ���,�,zi��0 � �2 + �ijz
izj � R2 . �4.1�

he boundary �B is the sphere Sn−1 of radius R. Using �A7�, we have in spherical coordinates
r ,�1 , . . . ,�n−1�,

n�dx� = dr . �4.2�

e impose Sommerfeld-type conditions on �B of the type used in Ref. 1. These take the form �in
ylindrical coordinates�

1

R
��u� + ziui� ± ���u = �, on � B , �4.3�

here we have included a function � :Sn→R to allow for nonradiative �e.g., monopole� contribu-
ions to u �see Remark �ii� below�. These boundary conditions can be understood as follows.
ommerfeld conditions for � are, strictly speaking, decay conditions on �r��t at spatial infinity

n N, where r denotes the spatial radius at fixed t in N �see, e.g., Ref. 7 for a discussion of
ommerfeld conditions�. These conditions select ingoing/outgoing radiation. At a finite radius—

ecessary for numerical computations—one imposes conditions of the form
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�r � �t = �, on � B . �4.4�

pplying the helical symmetry reduction the conditions �4.4� reduce to �4.3�.
Remark: �i� If R�1/� the boundary passes through both the elliptic and hyperbolic domains.

ii� The functions � and f̃ cannot be specified independently. Using �4.3� the integral of �2.20� over
implies

�
B

f̃ = �
�B

�� . �4.5�

Since �2.20� and the boundary conditions �4.3� only involve derivatives of u, solutions to these
quations can only be unique up to an additive constant. In fact, this is the only freedom in the
olution. Our main result is the following.

Theorem: Given �, f̃ :B→R, and � :�B→R, any two solutions to �2.20� on B with boundary
onditions �4.3� differ at most by a constant.

Proof: Consider the difference of two solutions, u=u1−u2; u satisfies �2.20� and �4.3� with

f =0 and �=0, respectively. Consequently, E�u�=0 for any choices of the function a and vector
eld b=b���. We choose these as

a = − 1, b =
2

1 − n
���� + zi�i ± R���� . �4.6�

ote that

b�u� = 0, on � B . �4.7�

straightforward computation, using �4.3� with �=0 in the boundary integral, then gives

0 = �
B
	� 1

n − 1
����u�

2 + �ijuiuj� + � 1

�2 + �2�u�
2�
 + �

�B
� 1

n − 1
��

R

�2 ��zizj + �2�ij�uiuj + �1

+ �2�ijz
izj�u�

2 ± 2R�ziuiu� . �4.8�

he volume integrand �in the first integral� is manifestly non-negative for n�2. We now show that
he boundary integrand �in the second integral� is also non-negative.

We first note that the boundary integrand is invariant under orthogonal transformations of the
i. Thus, given any point �� ,� ,zi�, we can rotate the zi axes such that zi= �z ,0 ,0 , . . . ,0�, where
2=�ijz

izj. The boundary integrand at the given point is then

� 1

n − 1
��

R

�2 ��zizj + �2�ij�uiuj + �1 + �2�ijz
izj�u�

2 ± 2R�ziuiu�

=� 1

n − 1
��

R

�2 �z2u1
2 + �2�ijuiuj + �1 + �2z2�u�

2 ± 2R�zu1u�

�� 1

n − 1
��

R

�2 �u�
2 + �Ru1 ± �zu��2�0. �4.9�

Because both integrands in �4.8� are non-negative they must each vanish. From the volume
ntegrand it follows immediately that

u� = 0. �4.10�
�
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PPENDIX: THE DIVERGENCE THEOREM WITHOUT A METRIC

Consider an n-dimensional orientable manifold M, a torsion-free derivative operator �� on M,
nd a vector density of weight 1, V�. Given B�M, Stokes theorem implies an identity of the form

�
B

��V� = �
�B

n�V�. �A1�

ormally this divergence theorem is proved using a metric on M. However, this is not necessary.
ere, we shall give a version of the divergence theorem and, in particular, give a formula for n�

ithout using a metric.
The manifold M, being orientable, comes equipped with a nowhere vanishing n-form density

f weight minus 1, denoted by ��1,. . .,�n
, and a totally antisymmetric contravariant tensor density of

eight 1, �̃�1,. . .,�n, such that

�̃�1,. . .,�n��1,. . .,�n
= n ! ��1

��1
¯ ��n

�n�. �A2�

oth ��1,. . .,�n
and �̃�1,. . .,�n are constant for any choice of �u.

The boundary �B is an oriented submanifold in M embedded by i :S→M, i.e., �B= i�S�. S is
quipped with an �n−1�-form density of weight minus 1, �a1,. . .,an−1

, and a skew, contravariant rank

n−1� tensor density of weight 1, �̃a1,. . .,an−1, satisfying

�̃a1,. . .,an−1�b1,. . .,bn−1
= �n − 1� ! �b1

�a1
¯ �bn−1

an−1�. �A3�

In this appendix only we use Latin indices to denote tensors on S.�
To apply Stokes theorem we define an �n−1�-form

��1,. . .,�n−1
= V����1,. . .,�n−1

. �A4�

e then have �using differential form notation�

�
B

��V� = �
B

d� = �
�B

� = �
S

1

�n − 1�!
�a1,. . .,an−1�i*��a1,. . .,an−1

. �A5�

ow, at points of �B we can write

�a1,. . .,an−1�i*��a1,. . .,an−1
= �i*���1,. . .,�n−1��1,. . .,�n−1

= �i*���1,. . .,�n−1���1,. . .,�n−1
V�. �A6�

hus we have

n� =
1

�n − 1�!
�i*���1,. . .,�n−1���1,. . .,�n−1

. �A7�

An alternative approach to the integral over B in �A1� is to note that it is independent of the
hoice of ��. If we fix a Riemannian metric g�� on M, and use the metric-compatible derivative
perator, we have available the more traditional form of the divergence theorem,

�
B

��V� = �
�B

��n̂�W�, �A8�
here
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W� =
1
�g

V�, �A9�

ˆ� is the outwardly oriented unit normal to �B, and �� is the induced volume element on �B. The
esult �A8� is, of course, equivalent to the manifestly metric independent result �A5� above, as can
e verified by using the identity

n̂� =
1

�n − 1�!

�g
��

�i*���1,. . .,�n−1���1,. . .,�n−1
. �A10�
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In this paper, we shall define a kind of operator-valued integration and define the
Feynman path integrals of Riemann integral type. It seems that it is one of the best
possible conditions of the existence of the path integrals of Riemann integral type
for the Schrödinger equation with singular potentials. Our class of potentials is
wide enough: the real measurable potential U should be continuous except for a
closed set of measure zero. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2213788�

. INTRODUCTION

Heuristic Feynman path integrals have played a remarkable role in various aspects of quantum
hysics. But rigorous mathematical treatment of this integral is not enough. It is well known that
eynman path integrals for Schrödinger equations are not represented by scalar-valued measure
see Ref. 9�.

In this paper, we discuss a kind of operator-valued integration and define the path integral of
iemann type, analogously to Riemann integration of scalar functions. So our integration is
ifferent from the one of Nelson’s �see Ichinose,5 Nelson,9 and Takeo11�.

We shall show that the solution to the Schrödinger equation in RN�N�2�,

�

�t
u�t,x� = i�u�t,x� − iU�t,x�u�t,x�, u�0,x� = ��x�, � � L2�RN;C� �1�

s written as the path integral

u�t,x� = �
��0,t�

e−i�0
t U��,�����d�����0��d����, � � L2�RN;C� �2�

f Riemann type. Here we denote by � a path on RN, that is, ����0,t���	��0,t�R	
N �R	

N=a copy
f RN�: �= �x	�RN�	��0,t� �or ��	�=x	�.

We study the conditions to define the path integrals of Riemann integral type for Schrödinger
quation with singular potentials. Our class of potentials is wide enough: the real valued measur-
ble potential U should be locally essentially bounded except a closed set of measure zero.

The paper of Nelson9 is concerned with the Schrödinger operator i��1/2m��−V�x��, except
or a set N of m with measure 0 and he assumes that V is continuous on the complement of a
losed set F of capacity 0. In this paper Nelson mentions that “The restriction to almost every real
alue of the mass parameter is an unsatisfactory feature of the theory” �Ref. 9, p. 335�. As
ohnson and Lapidus point out that it is a serious weakness �Ref. 6, p. 295�. Notice that we have
o restriction of this type.

This paper is organized as follows: In Sec. II we state some fact about abstract evolution
quations that will be used later. The main purpose of Sec. III is to provide basic notions of path
ntegral of Riemann type. The concepts of path integral of Riemann type are introduced in Sec.

�
Electronic mail: furuya@math.ocha.ac.jp
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II A. In Sec. III B we discuss the relationship between the iteration integral and the multiple
ntegral. Section III C deals with sufficient conditions for �Q-integrability on RN. In Sec. IV we
nvestigate the integrability for potentials with singularity. Integration on bounded domain treated
n Sec. IV A. The goal of Sec. IV B is to provide strong integrability for non-negative potentials
ith singularity. Section IV C deals with the integrability for more general real potentials with

ingularity �see Refs. 7 and 8�.

I. ABSTRACT EVOLUTION EQUATION

We begin by introducing the following class of functions.
Definition 1: The space of functions f in L
�RN ;C� such that f is uniformly continuous on RN

ill be denoted C
�RN ;C� where L
�RN ;C� consisting of all essentially bounded functions on RN.
Equation �1� is written as an evolution equation

d

dt
u�t� − �A + V�t��u�t�, u�0� = � , �3�

here A= i� and V�t�=−iU�t , · � is a C
�RN ;C�-valued function.
The associate semigroup with V�0 is written as �St	. More precisely, �St 
−
� t


	�L�L2�RN ;C� ,L2�RN ;C�� is a group of unitary operators, where L�L2�RN ;C� ,L2�RN ;C�� is
he space of all bounded linear operators from L2�RN ;C� to L2�RN ;C�.

Let m be a natural number and �= t /m, s0=0, sj+1=sj +�, for j=0, . . . ,m−1, sm= t. The subject
f this section is that the solution u�t� to the equation �3� is approximated as

u�t,x� � �
j=1

m

S�eV��j,x�����x�, sj−1  � j � sj, j = 1, . . . ,m . �4�

e wish to provide some background in abstract evolution equation theory. Let H= �H , � · �� be a
ilbert space. Here �·� is a norm of H.

We consider the following abstract evolution equation in H:

d

dt
u�t� = �A + B�t��u�t�, u�0� = � � H , �5�

here A is the generator of a semigroup of unitary operators and B�t� is a bounded linear operator
or any t�0.

Definition 2: A function u which is differentiable almost everywhere on �0,T� such that
u /dt�L1�0,T ;H� is called a strong solution of the initial value problem �5� if u�0�=� and
d /dt�u�t�= �A+B�t��u�t� a.e. on �0,T�.

Lemma 1: The strong solution to

d

dt
u�t� = �A + B�t��u�t�, u�0� = � � D�A� , �6�

s given by

u�t� = etAu�0� + �
0

t

e�t−s�AB�s�u�s�ds , �7�

f B�t� is an L�D�A� ,D�A��-valued continuous function. Here D�A� is the domain of A equipped
ith the graph norm �f�D�A�= ��f�2+ �Af�2�1/2.

Definition 3: The solution to the integral equation �7� is called the mild solution to the
volution equation �6�, if it uniquely exists.

Lemma 2: The mild solution to �6� uniquely exists if B�t� is an L�H ,H�-valued continuous

unction.
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From Eq. �7� we have

u�t + �� = e�Au�t� + �
0

�

e��−s�AB�t + s�u�t + s�ds . �8�

n general eA+B�eAeB. This is because A and B need not commute. Therefore we shall approxi-
ate u�t+�� by e�Ae�B�t�u�t�.

Lemma 3: Let T�0 and B�t� be a L�H ,H�-valued continuous function. Then we have for each
�0, there exists �0�0 such that

���Ae�B�t�u�t� − u�t + ��� � �� for 0 � �  �0 and 0  t  T . �9�

Proof: Note that the set C= �u�t� 
0 tT	 is compact. Since B�t�, u�t�, and etA are continuous
n t, we may assume for each �1�0, there exists �1�0 such that

��B�t� − B�t + s��u�t�� � �1, �B�t + s��u�t� − u�t + s��� � �1, ��e�A − esA�B�t�u�t�� � �1

for 0  s,�  �1, and 0  t  T .

ince B�t� is linear bounded operator, there exists M �0 such that

esB�t�u�t� = �1 + sB�t��u�t� + s2� for ��� � M .

ence by �8�, for any ��0 it follows that

�e�Ae�B�t�u�t� − u�t + ��� = �e�Ae�B�t�u�t� − e�Au�t� − �
0

�

e��−s�AB�t + s�u�t + s�ds�
= ��e�AB�t�u�t� + �2e�A� − �

0

�

e��−s�AB�t + s�u�t + s�ds�
= ��2e�A� + �

0

�

�e�A − e��−s�A�B�t�u�t�ds

+ �
0

�

e��−s�A�B�t� − B�t + s��u�t�ds

+�
0

�

e��−s�AB�t + s��u�t� − u�t + s��ds�
 ��2�� + ��

0

�

�e�A − e��−s�A�B�t�u�t�ds�
+ ��

0

�

e��−s�A�B�t� − B�t + s��u�t�ds�
+ ��

0

�

e��−s�AB�t + s��u�t� − u�t + s��ds�
� �2M + ��1 + ��1 + ��1 � 4��1 = �� for 0  �  min��1,�1/M	

= �0, and �1 = �/4.
e turn now to the solution u�t� to Eq. �3�. �
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Lemma 4: Let u�t� be the solution to the equation �3�. If V�t� is an
�L2�RN ;C� ,L2�RN ;C��-valued continuous function, then it holds that

u�t,x� = lim
�→0

�
j=1

m

S�e�V��j����x� for sj−1  � j � sj, and � = t/m . �10�

Proof: Set uk= � j=1
k S�e�V�sj−1��� and B=sup0st�V�s��L
.

Given ��0 it follows from �3� that

�uk+1 − u�sk+1�� = �e�Ae�V�sk�uk − u�sk + ���  e��V�sk��L
�uk − u�sk�� + �e�Ae�V�sk�u�sk� − u�sk + ���

 e��V�sk��L
�uk − u�sk�� + ��  e��V�sk��L
�e��V�sk−1��L
�uk−1 − u�sk−1�� + ��	 + ��

 ¯  ek�Bk��  etBt� for k = 1, . . . ,m − 1.

ince ��0 is arbitrary the proof is complete. �

II. PATH INTEGRAL OF RIEMANN TYPE

. Operator-valued integral of Riemann type

In this section we express the operator Ste
V :��St�eV�� as the integral of eV� by dSt. We

enote by Z the set of integers. We consider a division of RN,

�
k�ZN

Ik
h = RN, Ik

h = �hk1,hk1 + h� � ¯ � �hkN,hkN + h�, k = �k1, . . . ,kN�, kj � Z .

function eV in L
�RN ;C� is considered as an operator in L�L2�RN ;C� ,L2�RN ;C��:

eV:L2�RN;C� � � � eV� � L2�RN;C� .

or simplicity we denote L
=L
�RN ;C�. This implies the following estimates:

�eV�x��L�L2�RN;C�;L2�RN;C��  �eV�x��L
,

�Ste
V�x��L�L2�RN;C�;L2�RN;C��  �eV�x��L
  e�V�x��L
,

�11�
�Ste

�V�x��L�L2�RN;C�;L2�RN;C��  �1 + ��V�x��L
�e��V�x��L
,

�St�e�V�x� − 1��L�L2�RN;C�;L2�RN;C��  ��V�x��L
e��V�x��L
.

he characteristic function ��Ik
h� of Ik

h is at the same time an operator in

L�L2�RN;C�,L2�RN;C��:���Ik
h� · ���x� � ��Ik

h��x� · ��x� = ���x� for x � Ik
h,

0 for x � Ik
h.
�

ote that ��x�=�k�ZN��Ik
h��x���x�. We denote

�k
hSt = St��Ik

h� � L�L2�RN;C�,L2�RN;C��:� → St���Ik
h��� . �12�

Lemma 5: If eV in C
�RN ;C� then the sum Ste
V=�k�ZN�k

hSte
V is unconditionally strongly

onvergent. That is, for any � in L2�RN ;C�, �k�ZN�k
hSte

V� strongly converges independent of the
rder of the sum.

Proof: The lemma follows from the unconditional strong convergence of �=�k�ZN��Ik
h�� or

V h V
�=�k�ZN��Ik��e ��. In fact we get
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if ��Ik
h�� � ��Ik�

h �� for k � k� then St��Ik
h�� � St��Ik�

h 0�� for k � k�,

ince St is unitary. Therefore

if Z1 � Z2 � ZN then �Ste
V − �

k�Z1

�k
hSte

V� � �Ste
V − �

k�Z2

�k
hSte

V� .

�

Definition 4: For h�0 and k�ZN, let an element xh
k � Ik

h be fixed. �k�k
hSte

V�xh
k� is called the

iemann sum. limh→0�k�k
hSte

V�xh
k� is called the Riemann integral of eV�x� by dSt�x� and denoted by

R – �
RN

dSt�x�eV�x� = �
RN

St�dx�eV�x� = lim
h→0

�
k�ZN

�k
hSte

V�xh
k� � L�L2�RN;C�,L2�RN;C�� . �13�

St is finitely additive and may be called an operator-valued “Riemann measure.”

. Iterated integral and multiple integral

From the definition of Riemann integral, we obtain that


j=1

m

S�e�V��j,x�� = R − �
RN

dS��x�e�V��m,x�
¯ R − �

RN
dS��x�e�V��1,x�� ,

ith �= t /m. This is the iterated integral. We shall express this by the multiple integral.
We denote by C��0, t� ,C
�RN ;C�� the space of continuous functions on �0, t� with values in


�RN ;C�. Note that for all V�C��0, t� ,C
�RN ;C�� and for each ��0, there exists ��0 such that


V�s,x� − V�s�,x��
 � �, 
e�V�s,x� − e�V�s�,x��
 � �� ,

�14�
for 
s − s�
  �, 
x − x�
 � �, and 0  �  1.

Lemma 6: Let C be a compact subset of L2�RN ;C�. Let Aj and An
j be operators in

�L2�RN ;C� ;L2�RN ;C�� for 1 jm.
Then for each ��0, there exists n0�1 such that for all n�n0, (a) if

�An
j − Aj�L�L2�RN;C�,L2�RN;C�� � �

hen

�
j=1

m

An
j − 

j=1

m

Aj�
L2�RN;C�

� �mMm−1, �15�

b) if

sup
��Cj

��An
j − Aj���L�L2�RN;C�,L2�RN;C�� � �, for all C j:compact

hen

sup
��C
��

j=1

m

An
j − 

j=1

m

Aj���
L2�RN;C�

� �mMm−1. �16�

Here we write � j=1
m Aj =Am

¯A1 and

M = max�1,sup��Aj � 2 N 2 N ,�Aj� 2 N 2 N ;n � N, j = 1, . . . ,m�	 .
n L�L �R ;C�,L �R ;C�� L�L �R ;C�,L �R ;C��
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Proof: In this proof for simplicity we denote � · �= � · �L�L2�RN;C�,L2�RN;C��. Note that for each �

0, there exists n0 such that �An
j −Aj��� for all n�n0, and j=1, . . . ,m. We have


j=1

m

An
j − 

j=1

m

Aj = �
j=2

m

An
j��An

1 − A1� + �
k=2

m−1 �� 
j=k+1

m

An
j��An

k − Ak�
j=1

k−1

Aj� + �An
m − Am�

j=1

m−1

Aj .

hen from �3.2�, we obtain

�
j=1

m

An
j − 

j=1

m

Aj�  ��
j=2

m

An
j��An

1 − A1� + �
k=2

m−1 �� 
j=k+1

m

An
j��An

k − Ak�
j=1

k−1

Aj� + �An
m − Am�

j=1

m−1

Aj�
 �

j=2

m

�An
j ���An

1 − A1� + �
k=2

m−1 �� 
j=k+1

m

�An
j ���An

k − Ak�
j=1

k−1

�Aj��
+ �An

m − Am�
j=1

m−1

�Aj� � �mMm−1 for any n � n0.

Set C1=C and Ck= � j=1
k−1Aj�C for k�1. Each Ck is compact, since it is the continuous image of

he compact set C. From the right-hand side of �16� we have for each ��0 that there exists n0 such
hat sup��Ck

��An
k −Ak����� for all n�n0 and j=1, . . . ,m.

Hence

sup
��C
��

j=1

m

An
j − 

j=1

m

Aj���
= sup

��C
���

j=2

m

An
j��An

1 − A1� + �
k=2

m−1 �� 
j=k+1

m

An
j��An

k − Ak�
j=1

k−1

Aj� + �An
m − Am�

j=1

m−1

Aj���
 sup

��Cm
��

j=2

m

An
j��An

1 − A1��� + �
k=2

m−1

sup
��Ck

�� 
j=k+1

m

An
j��An

k − Ak�
j=1

k−1

Aj��
+ sup

��C
��An

m − Am�
j=1

m−1

Aj��  �
j=2

m

�An
j �� sup

��C1

��An
1 − A1���

+ �
k=2

m−1 �� 
j=k+1

m

�An
j �� sup

��Ck

��An
k − Ak����

+ sup
��Cm

��An
m − Am��� � �mMm−1.

�

Lemma 7: Let V in C��0, t� ,C
�RN ;C��. Then we have


j=1

m

S�e�V��j,·�� = lim
h→0


j=1

m

S��
k

��Ik
h��·�e�V��j,xh

k�� for xh
k � Ik

h with � = t/m . �17�

Proof: From �14� we recall for each ��0, there exists h�0 such that 
eV��j,x��−eV��j,xh
k��


h N
�� for all x in Ik and for all k in Z . Then we have
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�e�V��j,·�� − �
k�ZN

��Ik
h��·�e�V��j,xh

k���  � �
k�ZN

��Ik
h��·��e�V��j,·� − e�V��j,xh

k���
L


��� � �����

for all � � L2�RN;C� .

his means

�e�V��j,·�� − �
k�ZN

��Ik
h��·�e�V��j,xh

k��
L


� �� .

rom �11� we have

�S�e�V��j,·��L�L2�RN;C�;L2�RN;C��  eL

��V��j,·��,

�S� �
k�ZN

��Ik
h��·�e�V��j,xh

k��
L�L2�RN;C�;L2�RN;C��

 eL

��V��j,·�� + �h ,

�S�e�V��j,·� − S� �
k�ZN

��Ik
h��·�e�V��j,xh

k��
L�L2�RN;C�;L2�RN;C��

� �� . �18�

ence from Lemma 6 we obtain that

�
j=1

m

S�e�V��j,·� − 
j=1

m

S� �
k�ZN

��Ik
h��·�e�V��j,xh

k��
L�L2�RN;C�;L2�RN;C��

� ��met�V�L
 = �tet�V�L
,

�19��
j=1

m

S�e�V��j,·�� − 
j=1

m

S� �
k�ZN

��Ik
h��·�e�V��j,xh

k���
L�L2�RN;C�;L2�RN;C��

� �tet�V�L
��� .

his means �17�. �

Denote �= �k�1� , . . . ,k�m���ZN�m where k�j�= �k1�j� , . . . ,kN�j���ZN.

Note that �k�j�
h S� and e�V��j,xh

k�j�� commute since each e�V��j,xh
k�j�� is a constant function. Thus we

ave


j=1

m

S� �
k�ZN

��Ik�j�
h �e�V��j,xh

k� = �
��ZN�m


j=1

m

�S���Ik�j�
h �e�V��j,xh

k�j��� = �
��ZN�m


j=1

m

��k�j�
h S�e�V��i,xh

k�j���

= �
��ZN�m


j=1

m

��k�j�
h S��e�l=1

m �V��l,xh
k�l��, �20�

ince the sum �k�ZN��Ik
h�e�V��j,xh

k� is unconditionally convergent. The multiple integral is defined as
ollows.

Definition 5: The multiple integral of exp��l=1
m �V�� ,���l��� is defined by

R −� ¯� dS�����1�� ¯ dS�����m��e�l=1
m �V��,���l��

= lim
h→0

�
��ZNm


j=1

m

��k�j�
h S��e�l=1

m �V��l,xh
k�l�� with � = t/m . �21�

Let h→0 in �20� and we get the following lemma by �19�, �13�, and �17�.
N
Lemma 8: Let V�C��0, t� ,C
�R ;C��. Then we have
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j=1

m

S�e�V��j,x� = R −� ¯� dS�����1�� ¯ dS�����m��e�j=1
m �V��,���j��,

here ��� j� runs over RN for each j and

� dS����� j��e�V��,���j�� means �
RN

dS��x�e�V��j,x�.

Roughly speaking,


j=1

m

�k�j�
h S� � 

j=1

m

dS����� j�� for � � ��0,t�, ��� j� � Ik�j�
h as h → 0.

. Path integral of Riemann type

Now we define the path integral of the Riemann type.

Definition 6: The Riemann type path integral of F�V ; t ,��=e�0
t V��,�����d� is defined by

R – �
��0,t�

e�0
t V��,�����d�� d�Q��� = lim

m→

lim
h→0

�
��ZNm


j=1

m

�k�j�
h S�e��V��j,xh

k�j��� ,

= lim
m→


lim
h→0

�
��ZNm

�k
hS�e��V��j,xh

k�j��� , �22�

here ��
hS�= j=1

m �k�j�
h S� with �= t /m.

Thus from Definition 5, Lemma 8, and Definition 6 we obtain that

R – �
��0,t�

e�0
t V��,�����d��d�Q��� = lim

m→

R −� ¯� dS�����1�� ¯ dS�����m��e�j=1

m �V��j,���j���

= lim
m→


�
j=1

m

S�e�V��j,x��� .

Remark: In general we have not defined the function F�V ; t ,��=e�0
t V��,�����d�, nor the �gener-

lized� measure �Q. Since F�V ; t ,�� might not exist for a path �. Nevertheless the path integral
22� is defined for some V.

A sufficient �but not necessary� condition for a function F�V ; t ,�� to be �Q-integrable is given
n our next theorem.

Theorem 1: Let V�C��0, t� ,C
�RN ;C��. Then the function F�V ; t ,��=e�0
t V��,�����d� is

Q-integrable.
That is,

R − �
��0,t�

e�0
t V��,�����d�����0��d�Q��� = lim

m→

�

j=1

m

S�e�V��j,x����x� with � = t/m �23�

xists.
Proof: From �22� of Definition 6 it suffices to show limm→
 j=1

m S�e�V��j,x� exists.
For each ��0, there exists m�N such that �e��V��,x�−e��V��,x��L
 ��� for 
�−�
�= t /m and
����. Hence
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�S��e
��V��,x� − S��e

��V��,x��L�L2�RN;C�;L2�RN;C��  ���e���V�L
. �24�

e divide each time interval �sj ,sj+1�. Let m� be a natural number and ��=� /m�, � j0=sj, � j j�
sj +��, � jm�=sj+1 for j�=0, . . . ,m�−1.

By Lemma 6 and �24� we have

�S�e�V��j,x� − 
j�=1

m�

S��e
��V��j j�,x�� = �

j�=1

m�

S��e
��V��j,x� − 

j�=1

m�

S��e
��V��j j�,x�

 �m����e���V�L
�m−1  ��e��V�L
.

n the same way as above we have

�
j=1

m

S�e�V��j,x� − 
j=1

m


j�=1

m�

S��e
��V��j j�,x��  ��e��V�L
m�e��V�L
�m−1  �tet�V�L
, �25�

nd the proof is complete. �

A direct consequence of Theorem 1 is the following theorem.
Theorem 2: Let a real function U in C��0, t� ,C
�RN ;C��. Then the mild solution to the

chrödinger equation (1) is expressed as the Riemann type integral

u�t,x� = R − �
��0,t�

e−i�0
t U��,�����d�����0��d�Q��� . �26�

V. INTEGRABLE FUNCTIONS

In this section we study the Schrödinger equations with singular potentials.

. Integration on a bounded domain

Let subset D of RN be a bounded open domain with smooth boundary and V be a continuous

unction on D̄. Denote

��0,t��D� = 
	��0,t�

D	,

here D	=a copy of D= �� 
��s�� D̄ , "s� �0, t�	.
We consider the integration on ��0,t��D�.
The family of solutions to the Schrödinger equation in D with Dirichlet boundary condition

�

�t
u�t,x� = i�u�t,x�, 
u�t,x�
x��D = 0, u�0,x� = 
��x�
x�D �27�

s written as u�t�=St� by a group �St 
−
� t�
	 of unitary operators.
Let

�
k�ZN

Ik
h�D� = D, Ik

h�D� = D � ��hk1,hk1 + h� � ¯ � �hkN,hkN + h��, k = �k1, . . . ,kN�, kj � Z .

Definition 7: If the Riemann sum �k�ZN��Ik
h�D���·�eV�xh

k� converges as h→0 independently of
he choice of �Ik

h�D�	 and �xh
k	, the function eV�x� is said to be Riemann integrable, where ��Ik

h�D��
h
s the volume of Ik�D�.
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If the function G�x�=e−iU�x�, U�x��R, is a scalar valued Riemann integrable in a bounded

omain D, the operator-valued integral R−�DdSt�x�eV�x�=limh→0 �k�ZN�k
hSte

V�xh
k� also exists.

oreover the multiple integral exists.
As is well known, a bounded function on a bounded domain is Riemann integrable if and only

f the set of discontinuous points is of measure zero. In our case, we have the following.
Lemma 9: A function G�x�=e−iU�x�, U�x��R for a bounded function U, is Riemann integrable

n a bounded domain D if and only if the set of discontinuous points of U is of measure zero.

Let NV�t��D�= �x� D̄ 
V�t� is not continuous at	 and NV�D�=�t��0,T�NV�t��D�.
Our next theorem is analogous to Theorem 1.
Theorem 3: If a function V in C��0,T� ;L
�Rn ;C�� and for any t in �0,T�V�t� is Riemann

ntegrable on D̄ and NV�D� is a closed set of measure zero, then the function e�0
t V��,�����d� is

Q-integrable on ��0,t��D�. That is,

R − �
��0,t��D�

e�0
t V��,�����d�����0��d�Q��� = lim

m→


j=1

m

S�e�V��j,x���x�, x � a.e. D with � = t/m

�28�

xists.

Proof: Note that NV�t��D� is of measure zero since V�t� is Riemann integrable on D̄. Therefore
e have for each ��0 there exist open sets Jj�D��D�j=1, . . . ,n� such that � j=1

n Jj�D��NV�D�
nd � j=1

n ��Jj�D����2. Set J���=def� j=1
n Jj�D�. Since D̄ \J���� is compact,V is uniformly continu-

us on �0,T�� �D̄ \J����	.
For each V and for each ��0, there exists ��0, such that


V�s,x� − V�s�,x��
 � �, 
e�V�s,x� − e�V�s�,x��
 � ��

or


s − s�
 � �, s,s� � �0,T�, 
x − x�
 � �, x,x� � D̄ \ J����, 0  �  1. �29�

If necessary we take finer division, we assume that J����� �Ik
h�D��o=� for all k�Z1,

����� Ik
h�D� for all k�Z2, ZN=Z1�Z2 and Z1�Z2=�. Here Ao is the interior of A. Thus we

ave

�e�V��j,·� − �
k�ZN

��Ik
h��·�e�V��j,xh

k��
L�L2�D;C�;L2�D;C��

= sup
���L2�D;C�=1��e�V��j,·� − �

k�ZN

��Ik
h��·�e�V��j,xh

k����
L2�D;C�

= sup
���L2�D;C�=1

��
D
�e�V��j,x� − �

k�ZN

��Ik
h��x�e�V��j,xh

k����x�

� �e�V��j,x� − �
k�ZN

��Ik
h��x�e�V��j,xh

k����x�dx�1/2

= sup
���L2�D;C�=1

���
D\J����

+ �
J����

��e�V��j,x� − �
k�ZN

��Ik
h��x�e�V��j,xh

k����x�

� �e�V��j,x� − �
N

��Ik
h��x�e�V��j,xh

k����x�dx�1/2
k�Z
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 sup
���L2�D;C�=1

��
D\J���� �e�V��j,x� − �

k�ZN

��Ik
h��x�e�V��j,xh

k����x�

� �e�V��j,x� − �
k�ZN

��Ik
h��x�e�V��j,xh

k����x�dx�1/2

+ sup
���L2�D;C�=1

��
J���� �e�V��j,x� − �

k�ZN

��Ik
h��x�e�V��j,xh

k����x�

� �e�V��j,x� − �
k�ZN

��Ik
h��x�e�V��j,xh

k����x�dx�1/2

= I + II

ince �A+B�A+�B for A�0, B�0.
From �29� it follows that

I = sup
���L2�D;C�=1

��
D\J���� �e�V��j,x� − �

k�ZN

��Ik
h��x�e�V��j,xh

k����x�

� �e�V��j,x� − �
k�ZN

��Ik
h��x�e�V��j,xh

k����x�dx�1/2

 �� sup
���L2�D;C�=1

��
D

��x���x�dx�1/2

= �� .

y the definition of J����, we have

II = sup
���L2�D;C�=1

��
J���� �e�V��j,x� − �

k�ZN

��Ik
h��x�e�V��j,xh

k����x�

� �e�V��j,x� − �
k�ZN

��Ik
h��x�e�V��j,xh

k����x�dx�1/2

 2e�V�
 sup
���L2�D;C�=1

��
J����

��x���x�dx�1/2

 2e�V�
���L2�D;C���J�����1/2 � 2��e�V�
.

o the rest of the proof is obtained in a way similar to that of Theorem 1. �

. Strong integrability for non-negative potentials with singularity

For simplicity we shall discuss the time-independent case. We use the following notations:

N = a fixed closed subset of RN of measure 0, �30�

C�RN \ N,R+� = �U � C�RN \ N,R�
U�x� � 0, for all x � RN	 . �31�

n this section we consider the integrability of the function e−i�0
t U���s��ds for a function U

C�RN \N ,R+�. Let Dn= �x�RN 
n�U�x�	 for n�N. �Dn	n=1

 is an increasing sequence such that

¯
n�Dn+1 and �n=1


 Dn=RN \N. Here Dn is a finite sum of Ek
n for k�N and each Ek

n is a bounded
pen connected set with smooth boundary.

For U�C�RN \N ,R+� we define a sequence of functions Un such that

Un�x� = min�n,U�x�	 for n � N .

Lemma 10: Let U in C�RN \N ,R+�. Then e−i�0
t Un���s��ds is Riemann integrable.

Proof: From Theorem 3 we obtain this lemma. �
We denote that
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Tn�t�� = �
��0,t��Dn�

e−i�0
t Un���s��ds� d�Q for � � L2�RN;C� .

hen a function U is not bounded the Riemann integral of e−i�0
t U���s��ds does not exist for U in

�RN \N ,R+�. Therefore we introduce the definition of improper Riemann integration with respect
o �Q.

Definition 8: For a function U�C�RN \N ,R+�, the function e−i�0
t U���s��ds is said to be improper

iemann integrable by �Q if

lim
n→


R − �
��0,t��Dn�

e−i�0
t Un���s��ds� d�Q

xists for any ��L2�RN ;C� independently of the choice of �Dn	.
The main result of this section is the following theorem.
Theorem 4: Let a function U in C�RN \N ,R+�. Then the function F�−iU ; t ,��

e−i�0
t U���s��ds is improper Riemann integrable by �Q.

For the proof of this theorem we shall use the subdifferential of convex functionals.
Denote HR

1 =H1�RN ;R� and HR
2 =H2�RN ;R�, where H1�RN ;R� is the first Sovolev space on RN

nd HR
2 =H2�RN ;R� is the second Sovolev space on RN. The subdifferential of a lower semicon-

inuous convex functional � :L2�RN ;R�→ �−
 ,
� is defined as

��:� � �� � L2�RN;R�
���� � ���� + ��,� − �� for all � � L2�RN;R�	 . �32�

or the basic property of lower semicontinuous convex functionals and their subdifferentials, we
efer to the book1 by Brézis.

For U�C�RN \N ,R+�, the functional ��U��2 is lower semicontinuous and convex.
H1

0��� denote the first Sobolev space defined as the closure of the space of test functions on
he open set ��RN with respect to the Hilbert norm �� · �2

2+ �� · �2
2�1/2.

Lemma 11: Let �1 and �2 be properly lower semicontinuous and convex such that
��1��D��2��� where D��1� and D��2� are effective domain. Then �1+�2 is properly lower

emicontinuous and convex and ��1+��2����1+�2�. Moreover ��1+��2 is maximal monotone if
nd only if ��1+��2=���1+�2�.

Lemma 12: Each functional �n���� 1
2 ���−��1/2��2+ ��Un��2� or ����� 1

2 ���−��1/2��2

��U��2�, is lower semicontinuous and convex. Its effective domain is

D��n����f � L2�RN;R�
�n�f� � 
	� = HR
1 or D��� = D��− ��1/2� � D��U� .

Roughly speaking, ���� is a closed extension of �−��+U� ,��.
Lemma 13: The resolvent �n= �I+��n�−1�0 of the subdifferential ��n is given by the projec-

ion of �0 to Bn where Bn= ���L2�RN ;R� 
�n����n��n�	:

projBn
�0 = �I + ��n�−1�0. �33�

Proof: Since Bn is closed convex, the projection projBn
�0, ��0−projBn

�0�=inf���0−�� 
�
Bn	, uniquely exists. Using ��n��n�=�0−�n and �32� we have

�n��� � �n��n� + ���n��n�,� − �n� = �n��n� + ��0 − �n,� − �n�, for all � � L2�RN;R� .

his implies ��0−�n ,�−�n�0, for all ��Bn, since �n����n��n� if ��Bn. Thus we have

��0 − ��2 = ���0 − �n� − �� − �n��2 = ��0 − �n�2 − 2��0 − �n,� − �n� + �� − �n�2 � ��0 − �n�2

+ �� − �n�2

2
� ��0 − �n� for all � � Bn. �34�
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he relation ��0−��2� ��0−�n�2, for all ��Bn, �n�Bn means �n=projBn
�0. �

Lemma 14: The resolvent �I+��n�−1 strongly converges to the resolvent �I+���−1,

�I + ���−1�0 = lim
n→


�I + ��n�−1�0 for any �0 � L2�RN;R� . �35�

Proof: Denote B����L2 
�������I+���−1�0�	, �n= �I+��n�−1�0 and �m= �I
��m�−1�0. By virtue of Lemma 13 �n=projBn

�0 and �m=projBm
�0. Since effective domain

��n��D��� implies �n↓�, we have Bm↑�n=1

 Bn and B=�Bn. For n�m we have Bn�Bm and

��0 − �n� = ��0 − projBn
�0�  ��0 − projBm

�0� = ��0 − �m� ,

ince �m� �Bm� �Bn. ���0−�m�	m�N is a non-negative decreasing sequence. Hence ��0−�m�
��0−�n� converges to 0 as n�m tends to infinity. From �34� it follows that

��0 − �m�2 � ��0 − �n�2 + ��m − �n�2 for all �m � Bm.

e have

�projBm
�0 − projBn

�0� = ��m − �n�  ��0 − �m�2 − ��0 − �n�2↓0 as n,m → 
 .

herefore we obtain �35�. �

Proposition 1: −�� generates a C0-semigroup, hence it is a linear operator and R�I+���
L2�RN ;R�. Here R�A� is a range of the operator A.

Proof: Since R��I+���−1� is dense in L2�RN ;R� ,−�� generates a C0-semigroup. Because of
he maximal monotonicity of ��, we have R�I+���=L2�RN ;R�. �

Proposition 2: Let S�t� and Sn�t� be the semigroups generated by infinitesimal generator −��
nd −��n, respectively. Then we obtain the following equation:

lim
n→


Sn�t�� = S�t�� for all � � L2�RN;R� . �36�

Proof: We obtain �36� by using �35� and Trotter-Kato theorem �see Ref. 12�. �

Let ��̃ and ��̃n :L2�RN ;C�→L2�RN ;C� be the complex extension of �� and
�n :L2�RN ;R�→L2�RN ;R�, respectively. From Proposition 1, R�I+���=L2�RN ;R�. Hence we

btain R�I+��̃�=L2�RN ;C�.
Lemma 15: The operator ��̃ is a self-adjoint positive operator.
Proof: If a symmetric operator T satisfies R�I+T�=L2�RN ;C�, then it is self-adjoint. The

ositivity of ��̃ is evident, since ������ ,���0 for all ��L2�RN ;R�. �

Theorem 5 (Stone): A is the infinitesimal generator of a C0 group of unitary operator on a
ilbert space H if and only if iA is self-adjoint.

Theorem 6: If a function U in C�RN \N ,R+� then the Schrödinger equation

d

dt
u�t� = − i��̃�u�t�� ��i�� − U�u�t��

as a unique solution. Moreover the semigroup �T�t�	 of solution family is unitary..

Proof: Since ��̃�−��−U� is self-adjoint, −i��̃� i��−U� generates a semigroup of unitary
perators by virtue of Stone’s theorem. �

Definition 9: Let A be the linear operator in complex Hilbert space H= �H , � · ��.

a� The operator A is called monotone if and only if

Re�x,Ax� � 0 for all x � D�A� .

b� The operator A is called maximal monotone if and only if any monotone extension of A

coincides with A.
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Lemma 16: Let −A be a maximal monotone operator. Then

�A�I − A�−1�  1.

Proof: The monotonicity of −A implies

�Ay�2  �y�2 + 2 Re�− Ay,y� + �Ay�2 = ��I − A�y�2.

et y= �I−A�x. Then we have

�A�I − A�−1x�  ��I − A��I − A�−1x� = �x� .

�

Lemma 17: Let −A and −An be maximal monotone operators. Then �I− �1+	�A�−1 and
I− �1+	�An�−1 are bounded operators for 
	
�1.

Moreover if

lim
n→


�I − An�−1� = �I − A�−1� for all � � H ,

hen we have

lim
n→


�I − �1 + 	�An�−1� = �I − �1 + 	�A�−1� for all � � H .

Proof: From Lemma 16 we have �An�I−An�−1�1.
Therefore,

I − �1 + 	�An = �I − An��I − 	An�I − An�−1� and 
	
 � 1

mplies

�I − �1 + 	�An�−1 = �I − 	An�I − An�−1�−1�I − An�−1 = ��
k=0




	k�An�I − An�−1�k��I − An�−1

= ��
k=0

K

	k�An�I − An�−1�k��I − An�−1 + � �
k=K+1




	k�An�I − An�−1�k��I − An�−1.

ince for any fixed K, we obtain that

lim
n→


��
k=0

K

	k�An�I − An�−1�k��I − An�−1 = ��
k=0

K

	k�A�I − A�−1�k��I − A�−1

nd the monotonicity of An and Lemma 16 we have

�� �
k=K+1




	k�An�I − An�−1�k��I − An�−1�  � �
k=K+1





	k
��An�I − An�−1��k���I − An�−1�

 �
k=K+1





	
k =

	
K+2

1 − 
	

.

or any ��0 there exists K�N such that 
	
K+2 / �1− 
	
���. Then the proof is complete. �

Lemma 18: Let −A and −An be self-adjoint positive operators.
If �I−ei�A�−1 and �I−ei�An�−1 are bounded operators for 0�� /2 and

lim
n→


�I − An�−1� = �I − A�−1� for all � � H ,
hen
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lim
n→


�I − iAn�−1� = �I − iA�−1� for all � � H .

Proof: By using Lemma 17 we get

lim
n→


�I −
1 + i
�2

An�−1

� = �I −
1 + i
�2

A�−1

� for all � � H , �37�

ince 
	
�1 for 	= ��1+ i� /�2�−1. Note that −��1+ i� /�2�An and −��1+ i� /�2�A are maximal
onotone. By virtue of Lemma 17 and

�1 + 	�
1 + i
�2

= �1 + i
�2

�2

= i

e have

lim
n→


�I − iAn�−1� = �I − iA�−1� for all � � H .

�

Remark: �−i+c�A and �−i+c�iAn are not maximal monotone operators for any c�0.
Proposition 3: Let T�t� and Tn�t� be the semigroups generated by infinitesimal generator −i��

nd −i��̃n, respectively. Then it follows that

lim
n→


Tn�t�� = T�t�� for all � � L2�RN;C� .

Proof: Denote A=−i��̃ and An=−i��̃n. Fix ��L2�RN ;C� and an interval 0 tT. We
onsider

��Tn�t� − T�t���I − A�−1��  �Tn�t���I − A�−1 − �I − An�−1��� + ��I − An�−1�Tn�t� − T�t����

+ ���I − A�−1 − �I − An�−1�T�t��� = I1 + I2 + I3. �38�

Since �Tn�t�� is bounded for 0 t t it follows from Lemma 18 that I1→0 as n→
 uniformly
n �0, t�. The rest of the proof is obtained in a way similar to that of Pazy �Ref. 9, Chap. 3,
heorem 4.2�. �.

Proof of the Theorem 4: From Proposition 3, it follows that limn→
 R−���0,t�
e−i�0

t Un���s��ds

d�Q=limn→
 Tn�t�� uniquely exists.

Therefore from Definition 7 we obtain that e−i�0
t U���s��ds is Riemann integrable by �Q. �

Corollary 1: Let a function U�C�RN \N ,R� and there exist m�R such that U�x��m for any

�RN \N. Then the function F�−iU ; t ,��=e−i�0
t U���s��ds is improper Riemann integrable by �Q.

For a time dependent case we give the following theorem.
Theorem 7: Let U�t , · � be a C�RN ;R��L
�RN ;R�-valued function and be continuous in t on

very compact set �R. Then the function F�−iU ; t ,��=e−i�0
t U�s,��s��ds is Riemann integrable by �Q.

Proof: For a fixed t, the integrability follows from the integrability of U+ �U�
. We recall
+ �U�
 is non-negative. Since V�t�=−iU�t ,x� is a L�L2�RN ;C� ;L2�RN ;C��-valued strongly con-

inuous function, we get the result by virtue of Lemma 4. �

. Weak integrability for real potentials with singularity

In this section we study about more general potentials. We consider the following equation:

�

�t
u�t,x� = i�u�t,x� − iU�x�u�t,x�, u�0,x� = ��x�, � � H2�RN;C� . �39�
ecall that we set
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N = a fixed closed subset of RN of measure 0. �40�

et D= �D	 be the maximum family such that each element D� D̄�RN \N is a finite union of
onnected bounded open sets. The family D= �D	 satisfies �D�DD=RN \N.

We denote the restriction of f to D by 
f 
D, or simply, by fD. We use the following notation:

Lloc

 �RN \ N,R� = �f 
f�x� � R, 
f 
D � �L
�D;R��, " D � D	 . �41�

et U in Lloc

 �RN \N ,R�. We assume for any neighborhood of any point of N ,U is not essentially

ounded.
First we cite a result of Kōmura.7 Let

B�n� = �x � RN
n � U�x� � − n	, n = 1,2,3, . . . . �42�

e have B�m��B�n� for m�n and from the assumption that

for any D in D, there exists B�n� such that D � D̄ � B�n� . �43�

Strictly speaking, D̄ \B�n� is a null set.�
We denote

Un�x� = min�n,max�− n,U�x�		, n � N .

hus Un in L
�RN ;R�.
For U in Lloc


 �RN \N ,R� we consider the approximate equation

d

dt
un�t� = Anun�t�, where An = i�� − Un� . �44�

n this case the operator −iAn is essentially self-adjoint and hence the semigroup �Tn�t�	 of the
amily of solutions to �44� is a group of unitary operators: �Tn�t���= ��� ,−
� t�
 for all �

L2�RN ;C�.
Theorem 8 (Kōmura): For any U in Lloc


 �RN \N ;R�, there exists a closed extension of 
�i�
iU�
C0


�RN\N� in L2�RN ;C�→L2�RN ;C� which generates a contraction C0-semigroup �T�t� 
 t�0	
uch that

T�t�� = w – lim
n→


Tn�t��, " � � L2�RN;C� , �45�

here Tn�t�� is the solution to

d

dt
un�t� = Anun�t�, where An = i�� − Un� �46�

nd w−lim means the weak convergence.

Definition 10: For a function U in C�Rn \N ;R�, the function e−i�0
t U���s��ds is said to be weakly

iemann integrable by �Q if

w − lim
m,n→


R − �
��0,t��Dm,n�

e−i�0
t Um,n���s��ds� d�Q

xists for any � in L2�RN ;C� independently of the choice of �Dm,n	.
Now we return to �39�. Let U in C�RN \N ,R�. In order to use the previous theorem we define

sequence of functions Um,n and Dm,n such that
Um,n�x� = min�m,max�− n,U�x�		, m,n = 1,2,3, . . . ,
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Dm,n = �x � RN
m � U�x� � − n	, m,n = 1,2,3, . . . .

By virtue of Corollary 1 the solution um,n to the Schrödinger equation in RN,

�

�t
um,n�t,x� = i�um,n�t,x� − iUm,n�x�um,n�t,x� ,

�47�
um,n�0,x� = ��x�, � � L2�RN;C� ,

xists.
Theorem 9: For any U in Lloc


 �RN \N ;R�, there exists a closed extension of i
��
U�
C0


�RN\N� in L2�RN ;C�→L2�RN ;C� which generates a contraction C0-semigroup �T�t� 
 t�0	
uch that

T�t�� = w − lim
n→


Tm,n�t��, " � � L2�RN;C� , �48�

here Tm,n�t�� is the solution to

d

dt
um,n�t� = Am,num,n�t�, where Am,n = i�� − Um,n� �49�

nd w−lim means the weak convergence.
Proof: Let Um,n

+ �x�=max�0,Um,n�x�	 and Um,n
− �x�=max�0,−Um,n�x�	. Then Um,n�x�=Um,n

+ �x�
Um,n

− �x�. Note the following:

a� In the case that there exists M �0 such that Um,n
+ �x�M for x�Dm,n and m ,n�N, there

exists n0�N such that Dm,n�B�n� for any n�n0�M.
b� In the case that there exists M �0 such that Um,n

− �x�M for x�Dm,n and m ,n�N, there
exists m0�N such that Dm,n�B�m� for any m�m0�M.

c� In another case we obtain that

max�B�n�,B�m�	 � Dm,n � min�B�n�,B�m�	, m,n � N .

Note that

D = �
n,m=1




Dm,n.

herefore from the result of Theorem 8 we obtain the consequence. �

Note that �Tt	 is independent of the choice of �Dm,n	.
We conclude this section with a condition for F�−iU ; t ,�� to be weakly Riemann integrable.

See Refs. 2–4 and 10�.
Theorem 10: Let the associated scalar function G�x�=e−iU�x� be the Riemann integrable on

ny bounded domain in RN. Then the function F�−iU ; t ,��=e−i�U���s��ds is weakly Riemann inte-
rable.

Proof: Let D�RN be a bounded domain. As is well known, �DG�x�dx is Riemann integrable
f and only if G�x� is continuous except a closed set NG�D� of measure zero, since G�x� is
ounded. Hence U�x�= i log G�x� is continuous except a closed set NG=�DNG�D�. In this case
�−iU ; t ,�� is weakly Riemann integrable. �

Corollary 2: Let U be continuous and real valued function on the complement of N. Then the
−i�0

t U���s��ds
unction F�−iU ; t ,��=e is weakly Riemann integrable.
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We construct an explicit example of dimensional reduction of the free massless
Dirac operator with an internal SU�3� symmetry, defined on a 12-dimensional
manifold that is the total space of a principal SU�3�-bundle over a four-dimensional
�nonflat� pseudo-Riemannian manifold. Upon dimensional reduction the free 12-
dimensional Dirac equation is transformed into a rather nontrivial four-dimensional
one: a pair of massive Lorentz spinor SU�3�-octets interacting with an SU�3�-gauge
field with a source term depending on the curvature tensor of the gauge field. The
SU�3� group is complicated enough to illustrate features of the general case. It
should not be confused with the color SU�3� of quantum chromodynamics where
the fundamental spinors, the quark fields, are SU�3� triplets rather than octets. ©
2006 American Institute of Physics. �DOI: 10.1063/1.2217811�

. INTRODUCTION

It is well known that when we look for a solution with some symmetry, we can reduce the
umber of variables and thus simplify the problem of solving differential equations. The
chwarzschild solution of the nonlinear Hilbert-Einstein equation is a typical example. A point of
iew, different from this calculational aspect of symmetry, is essential for the so-called “Kaluza-
lein approach.” It is observed in the pioneer work of Kaluza �1921, English translation in Ref. 1�

hat there is one-to-one correspondence between the U�1�-invariant metrics on a five-dimensional
anifold and the triples �metric on four-dimensional manifold, linear connection with structure

roup U�1� �electromagnetic potential�, scalar field�. The scalar curvature of five-dimensional
�1�-invariant metric is equivalent to the Einstein-Maxwell action for the mentioned fields. This

ction describes the really observed interaction between gravity and electromagnetic field. This
emonstrates the general idea: We consider a “simple” field and “simple” equations but in a
multidimensional” universe. Imposing some symmetry conditions, after dimensional reduction
e obtain a set of fields with different nature involved in complicated differential equations. Our
ope is that the fields and differential equations, obtained in this way, may describe a real process,
nd that this investigation may be a step to the unification of different interactions in nature. The
atural generalizations of the Kaluza-Klein ansatz are considered in the literature: the group of
ymmetry G is arbitrary, the group G acts on a manifold as on a total space of a principal bundle,
nd the group G acts on a manifold with one type orbits. See, for example, Ref. 2.

In this paper the starting point is the free Dirac operator with an SU�3� symmetry defined on
twelve-dimensional Minkowski space that is interpreted as an SU�3� principal bundle over

our-dimensional Minkowski space. Should we interpret the outcome in physical terms we should
elate the structure group with the “flavor SU�3�” of the quark model, identifying the resulting

�Electronic mail: pnikolov@phys.uni-sofia.bg
�
Electronic mail: gergana@inrne.bas.bg

47, 073503-1022-2488/2006/47�7�/073503/11/$23.00 © 2006 American Institute of Physics
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U�3�-octets Dirac particles with observed baryons. Such an interpretation would again be a
onstandard one however since, unlike the flavor SU�3� of the standard model, our structure group
ppears as a local gauge group in four-space-time. We prefer, in fact, to view the present paper as
mathematical model illustrating some surprising features of dimensional reduction.

Our purpose is to consider the simplest possible case because then the arising structures after
imensional reduction are imperative. The initial manifold, denoted by E in the text, is the 12-
imensional total space of a principal SU�3� bundle, which admits a real spinor bundle with
tandard fiber R64. In the real case, the spinor connection is uniquely defined if it is compatible
ith the Levi-Civita connection of the metric on E. For physical reasons we consider a complex

pinor bundle, a complexification of the real-valued one. The spinor connection is also considered
s a complexification of the real one. Thus we avoid the necessity to fix a connection with
tructure group U�1�. Further, when we fix the SU�3�-action on spinor fields we choose the trivial
ifting. And thus we avoid some additional terms in the reduced Dirac operator. Also the scalar
eld in the Kaluza-Klein ansatz is taken to be constant—the Killing metric in the Lie algebra of
U�3�. In this way, in the reduced Dirac operator there are only structures whose presence is
ecessary. We also point out the steps in which, imposing the symmetry, the new structures arise
the gauge field with structure group G=SU�3�, its curvature tensor, the Clifford algebra for a
our-dimensional manifold, the four-dimensional Dirac operator, the spinor octets, the mass term
tc.�.

We choose the group of symmetry to be SU�3� acting freely on the 12D manifold because of
ts connection to the standard model and because we wanted the arising after the reduction gauge
eld to have structure group SU�3�. In the same way one can obtain the dimensional reduction of
irac operator when the symmetry group is an arbitrary connected Lie group acting freely on the
ultidimensional manifold.

The article is organized as follows.
In Sec. II the necessary constructions from differential geometry and the algebraic origin of

he Kaluza-Klein ansatz are presented. We give the coordinate expression of the Levi-Civita
onnection for the metric in nonholonomic basis. These formulas are applied to the canonical basis
f the SU�3�-invariant metric on E. This basis determines a horizontal subbundle Th�E��T�E�.
he subbundle Th�E� is invariant under the action of SU�3� and defines a linear connection �gauge
eld with structure group SU�3��. The components of the Levi-Civita connection for the SU�3�-

nvariant metric are calculated and they contain components of the gauge field and its stress tensor
Eq. �16��.

In Sec. III the Dirac operator for the SU�3�-invariant metric �the Kaluza-Klein ansatz� is
onsidered. The crucial moment here is that the sum T�E�=Th�E� � Tv�E� is orthogonal with
espect to the SU�3�-invariant metric. According to the classifying theorem for Clifford algebras,
he Clifford algebra Cl�Tz�E� ,g�x���M64�R� is realized as a tensor product of the Clifford alge-
ras of Tz

h�E� and Tz
v�E�. So the standard fiber C64 of the spinor bundle on E takes the structure of

ensor product C4 � C16.
In Sec. IV we give the dimensional reduction of the Dirac operator for the SU�3�-invariant

etric. We introduce an action of SU�3� on the spinor bundle, compatible with the action of SU�3�
n T�E�. This condition of compatibility does not fix uniquely the action of SU�3� on the spinors.
o we choose, as we mentioned above, the simplest case in which the lifting of the SU�3� action
n E to the total space of the spinor bundle is trivial in the canonical basis.

In Sec. V we list the steps in the procedure of dimensional reduction where the new structures
resented in the reduced Dirac operator arise.

I. BASIC CONSTRUCTIONS AND NOTATIONS

Let E be a smooth manifold, g a metric on E �with arbitrary signature�, and � the correspond-
ng Levi-Civita connection. Let �h�� be a �local� nonholonomic basis of T�E� and �h�� the corre-

*
ponding dual basis on T �E�. In this basis we have the following notation:
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��h�� = ���
� h�

� h�, �h�
�h�� = ���h�� = ���

� h�,

�h�,h�� = C��
� h�, g�h�,h�� = g��,

g����h��,h�� = ���
� g�� = ����, g��h�,h��,h�� = C��

� g�� = C���.

he condition ��g�=0 and the requirement for the vanishing of the torsion reads:

h��g��� = g����h��,h�� + g�h�,���h��� Þ ���� + ���� = h��g��� ,

�1�
���h�� − ���h�� = �h�,h�� Þ ���� − ���� = C���,

nd from here it follows that

2���� = C��� + C��� + C��� + h��g��� + h��g��� − h��g��� . �2�

e follow the classical construction of the generalized Kaluza-Klein ansatz. The point structure of
he ansatz is the description of the metric on the vector space L, which is the middle term in the
hort exact sequence:

0 → L0→
i

L→
j

L1 → 0. �3�

e realize this in coordinates by choosing a basis �h�= �f ,e� in L; h�= f�, �=1,2 , . . . ,m
dim�L1�, hk=ek, k=m+1, . . . ,m+n ,n=dim�L0�. The vector space L0=span�e1 , . . . ,en�, and the
ector space L1 is identified with span�f1 , . . . , fm� and i�ek�=ek; j�ek�=0, j�f��= f�. Every splitting
f the exact sequence �3� is given by a linear map S :L1→L with the property j �S=1, i.e., is given
y defining the vectors:

f̂� = S�f�� = f� − A�
k ek. �4�

n these formulas we have summation over repeated indices. Here the matrix A�
k is arbitrary. Every

etric gL on L, for which the restriction on i�L0� is nondegenerate is uniquely determinate by the
onditions:

gL�f̂�, f̂�� = g��,

gL�f̂�,ek� = 0, �5�

gL�ek,el� = g0kl,

here g0kl and g�� are metrics on L0 and L1. In this manner we have one-to-one correspondence
etween the metrics on L, non degenerated on L0 and the triples �metric on L1, metric on L0,
plitting of �3��.

In the basis �f� ,ek� the metric, defined by Eq. �5� has components:

�gL� = �g�� + A�
iA�

jg0ij A�
ig0il

g0kiA�
i g0kl

	 . �6�

The above construction is the algebraic origin of the Kaluza-Klein ansatz. In the case of the
eneral Kaluza-Klein ansatz this construction arises in the tangent space of each point of the
anifold where the group of symmetry acts. More precisely, let �E , p ,M� be a principal bundle
ith structure group G=SU�3�. We assume for simplicity that the principal bundle is trivial and

he manifold M is isomorphic to R4 as a topological manifold. We take a global trivialization E

M �SU�3� and the right group action is Rg�x ,z�= �x ,zg� where �x ,z��M �SU�3� and g
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SU�3�. We also fix coordinates on the total space E, �x� ,zk�= �x ,z�, �=1,2 ,3 ,4, k=5, . . . ,12,
p�x� ,zk�= �x��. Because of the assumed triviality of M the coordinates x� are global. Let

v�E��T�E� be the vertical subbundle, f� the nonholonomic basis of T�M�, ek the fundamental
elds on E corresponding to a basis ê5 , . . . , ê12 of the Lie algebra su�3�. The fields f� ,ek form a
onholonomic basis on TE=T�M �SU�3��, and have the form

f� = f�
� �x�

�

�x� , ek = ek
l �z�

�

�zl . �7�

he natural exact sequence

0 → Tv�E� → T�E� → p*�T�M�� → 0 �8�

ealizes the exact sequence �3� at the tangent space of each point of the manifold E. Here p*�T�M��
s the pull back of the tangent bundle of M �see Ref. 3�. Each metric gE on E can be written in the
orm:

�gE�x,z�� = �g���x,z� + A�
i�x,z�A�

j�x,z�g0ij�x,z� A�
i�x,z�g0il�x,z�

g0ki�x,z�A�
i �x,z� g0kl�x,z�

	 , �9�

here g���x ,z�=gE�x ,z��f��x� , f��x��, g0kl�x ,z�=gE�x ,z��ek�z� ,el�z��. The vector fields f̂��x ,z�
f��x�−A�

k �x ,z�ek�z� span a horizontal subbundle Th�E��T�E� orthogonal to Tv�E� with respect
o the metric �9�. The ansatz �9� is convenient to describe the metrics on E invariant under the
ction of the group G=SU�3�. The invariant metrics g on E have the form

�gE�x,z�� = �g���x� + A�
i�x�A�

j�x�g0ij�x� A�
i�x�g0il�x�

g0ki�x�A�
i �x� g0kl�x�

	 . �10�

This is the Kaluza-Klein ansatz in our case. In this formula g���x�=g�f� , f���x� is an arbitrary
etric on M. Because f� is a nonholonomic basis on M, without loss of generality we can think

hat g�� is in canonical form, i.e. f� are tetrada. This will be used in our calculation later. g0kl�x�
t each point x�M is invariant metric on the Lie algebra su�3�, i.e., g0 is a field defined on M

aking values in the set of invariant metrics on the Lie algebra su�3�. The vector fields f̂��x ,z�
f��x�−A�

k �x�ek�z� span orthogonal horizontal subbundle Th�E� which is invariant under the action
f the structure group of the principal bundle G=SU�3�. So A�

k �x� define a linear connection in the
rincipal bundle with a structure group G=SU�3�. A classical result is that there is one-to-one
orrespondence between the G-invariant metrics on E and the triples �metric on M, linear con-

ection with values in the Lie algebra of G, “scalar field”�. In the basis �f̂� ,ek� for the metric �10�
e have

gE�f̂��x�, f̂��x�� = g�f��x�,f��x�� = g���x� ,

gE�f̂��x�,ek�x�� = 0, �11�

gE�ek�z�,el�z�� = g0kl�x� .

he next step is to construct the Dirac operator on E corresponding to the metric �10�. To calculate
he Levi-Civita connection �2� of the metric �10� we have to introduce the commutator coefficients
or the basis �f� ,ek�:

�f�,f���x� = C��
� �x�f��x� ,

�f�,ek� = 
 f�
� �x�

�
� ,ek

l �z�
�

l� = 0,

�x �z
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�ek,el��z� = tkl
mem�z� . �12�

ere C��
� �x� are determined by the choice of the nonholonomic basis f� in T�M�, tkl

m are the
tructure constants of the Lie algebra su�3� for the basis ê5 , . . . , ê12. The non-holonomic basis

f̂� ,ek�, because of �11�, is convenient for the construction of the Dirac operator. By means of �12�
nd �4� we calculate

�f̂�, f̂���x,z� = C��
� �x�f̂��x� − F��

k �x�ek�z� ,

�f̂�,ek��x,z� = − A�
l �x�tlk

mem�z� , �13�

�ek,el��z� = tkl
mem.

ere

F��
m = f��A�

m� − f��A�
m� + t��

� A�
m − C��

� A�
m �14�

s the curvature tensor of the linear connection, determined by the one-form A�=A�
mam. Then the

oefficients C��� in �2� for the basis �f̂� ,ek� are

C��� = g��f�,f��,f�� = C��
	 g	�, C��k = − g0klF��

l = − F��k,

C�k� = − Ck�� = 0, C�kl = − A�
k tmkl = − Ck�l, �15�

Ckl� = 0, Cklm = tklm,

here tmkl=g0litmk
i . From �2� we obtain the components of Levi-Civita connection in the basis

f̂� ,ek�:

����
E = ����, ���k

E = − 1
2F��k,

��k�
E = 1

2F��k, ��kl
E = 1

2A�
m�tmlk − tmkl� + 1

2 f��g0kl� ,

�16�
�k��

E = 1
2F��k, �k�l

E = 1
2A�

m�tmkl + tmlk� + 1
2 f��g0kl� ,

�kl�
E = − 1

2A�
m�tmkl + tmlk� + 1

2 f��g0kl�, �klm
E = 1

2 �tklm + tmlk + tmkl� .

n these formulas ���
� are the components of the Levi-Civita connection in the basis �f�� for the

etric g on M.

II. DIRAC OPERATOR FOR THE KALUZA-KLEIN METRIC

To describe the Dirac operator for the Kaluza-Klein metric �10� we need some preliminary
onstructions. Let L be a real vector space and 
 a metric on L of type �p ,q�; 
=diag�−1, . . . ,
1 ,1 , . . . ,1�, �number of �1��= p, �number of �1��=q, p+q=dim�L�. We denote by � the canoni-
al embedding

�:L → Cl�
� �17�

f the vector space L into the corresponding Clifford algebra.4,5 ��x�2=
�x ,x�1 ,x�L, where 1 is
he unit of the algebra Cl�
��Clp,q. If a1 , . . . ,an is an arbitrary basis of L, ��ai�=�i ,�i� j −� j�i

2
ij1 ,
ij =
�ai ,a j�. If a1 , . . . ,an is oriented orthonormal basis, the volume element �=�1 . . .�n is
2
niquely determined and � = ±1. We will assume that L has fixed orientation. The symmetry of
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he metric on L gives rise to some structures on the spinor bundle on L. In order to describe them
e need some facts for the classificationof the Clifford algebras.

The first step in the classification and realizations of the Clifford algebras for arbitrary metric
s the following statement:4,5 If �L1 � L2 ,
1 � 
2� is an orthogonal direct sum of metric vector

paces �L1 ,
1� and �L2 ,
2� then Cl�
1 � 
2�=Cl�
1��̂Cl�
2�, where �̂ is the Z2-graded tensor
roduct of the naturally Z2-graded Clifford algebras. In some exceptional cases the Z2-graded
ensor product may be replaced with the usual tensor product. In our example is realized one of
hese exceptional cases.

Let dim�L�= p+q=2k be even. We say that Cl�
�0 or Cl�
��0 if �2= +1 or �2=−1. Let
L1 ,
1� and �L2 ,
2� be vector spaces with metrics 
1 and 
2, and �L1 � L2 ,
1 � 
2� be an or-
hogonal direct sum. Then �see Ref. 4 and 5�

Cl�
1�  0 Þ Cl�
1 � 
2� = Cl�
1� � Cl�
2� ,

�18�
Cl�
1� � 0 Þ Cl�
1 � 
2� = Cl�
1� � Cl�− 
2� .

et �a1i�, �a2j� be bases in L1 and L2. The isomorphisms in �18� are given by

�1i � 12 � �i = ��a1i,0�, i = 1,2, . . . ,n1 = dim�L1� ,

�19�
�1 � �2j, � �n1+j = ��0,a2j�, j = 1,2, . . . ,n2 = dim�L2� .

hese isomorphisms give the classification of the Clifford algebras.
For physical reasons we will consider complex spinor fields and we will need a complexifi-

ation of the Clifford algebra:

Clp,q
� C = Cl�L � C,
� = Cln, n = p + q . �20�

t is known4,5 that Cl2k�M2k�C�, Cl2k+1�M2k�C� � M2k�C�. In our case the Clifford algebra Cl12 is
ven and thus Cl12�M64�C� has only one simple module. We have the following isomorphisms:

Cl1,3 � M4�R�, Cl1,3 � 0

�21�
Cl0,8 = Cl8,0 � M16�R�, Cl0,8  0, Cl8,0  0.

o we have

Cl1,11 = Cl1,3
� Cl8,0 � M4�R� � M16�R� . �22�

Let �E ,g� be an oriented even dimensional manifold with metric g, sign�g�= �p ,q�. This
eans that the tangent bundle over E has a cocycle ����x��Aut�R2k ,
�=O�p ,q�. An element

�Aut�R2k ,
� uniquely determines an element A˜ �Aut�Clp,q�. So �˜�x��Aut�Clp,q� is a cocycle
hich defines the Clifford bundle Cl�TE� over E. In this bundle the fiber Cl�TE�x is the Clifford

lgebra for the vector space �Tx�E� ,g�x��. The standard fiber of the complex Clifford bundle
lC�TE� is Cl2k=M2k�C�. A spinC structure on E is equivalent to a bundle � of simple complex
odules over the Clifford bundle ClC�TE�. We will point out some details in the construction of

he complexified bundle � because they are important in our later study on the structures arising in

. Let L̂=��L��Cl�
� be the image of the linear space L in the Clifford algebra. � :L→ L̂ is an

somorphism and we will identify L and L̂ by means of �. The Clifford group F is defined by

Fp,q = �c � Cl*�p,q�cL̂c−1 � L� , �23�
*
here Cl is the set of invertible elements. In the complexified case we have similarly
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F2k = �c � Cl*2kcL̂c−1 � L� . �24�

he linear map j�c� : L̂→ L̂; u→ j�c��u�=cuc−1 is orthogonal and j :F→O�p ,q� is surjective and
ives the exact sequence

1 → C* → F2k→
jC

O�p,q� → 1 . �25�

nd in the real case we have

1 → R* → Fp,q→
j

O�p,q� → 1 . �26�

A spinC bundle � is a complex vector bundle on E and each fiber ��x,z� , �x ,z��E=M � G, is a
imple complex module over the algebra Cl�T�x,z�E�. Let ����x��Aut�R2k ,
� be a cocycle of

�E� and �˜���x��Aut�Cl2k� be the cocycle of ClC�TE�. Because the standard fiber of Cl�TE� is
l2k�M2k�C��Hom�C2k

,C2k
�, and C2k

�the standard fiber of the spinor bundle ��is the simple
odule of M2k�C�, the spinC bundle has a cocycle ����x��Aut�C2k

��M2k�C��Cl2k of invertible
lements ����F2k and

j�����x�� = ����x� . �27�

In general, not every manifold admits a spinC structure, and even if it admits there may exist
ifferent spinC structures. In our example the base manifold has only one �up to isomorphism�
pinC-structure.

The Dirac operator

D:C���� → C���� �28�

s determined by a linear connection on the spinor bundle and the requirement that its symbol
�D� :T*�E�→�* � � be the unique irreducible representation of the Clifford algebra Cl2k at each
ber �see Ref. 6�.

In our example we choose E to be a total space of a principal SU�3� bundle over M and M to
e isomorphic to R4 as a topological manifold. We also choose the metric on M to be g��

diag�−1,1 ,1 ,1�, the basis �f��x�� to be a nonholonomic basis in T�M�, and the metric g0kl�x�
g0kl=diag�−1, . . . ,−1� to be the Killing metric on the Lie algebra su�3�. We consider the simplest
ase in which the “scalar fields” in Kaluza-Klein ansatz are constants.

Because of �11� the direct sum T�E�=Th�E� � Tv�E� is orthogonal. And from �17�

Cl�TE� = Cl�ThE� � Cl�TvE� , �29�

.e., the standard fiber of Cl�TE� is Cl1,3 � Cl0,8 in the real �Majorana� case and C4 � C8 in the
omplexified case. So the standard fiber of the spinor bundle � is isomorphic to R4 � R16 in the
ajorana case and C4 � C16 in the complexified case. In the nonholonomic basis �7� of TE accord-

ng to �19� we have

f��x� � �� � 1 � Cl�T�x,z�
h E � T�x,z�

v E� = Cl�T�x,z�
h E,g� � Cl�T�x,z�

h E,− g0� ,

�30�
ek�x� � � � �k � Cl�T�x,z�

h E � T�x,z�
v E� = Cl�T�x,z�

h E,g� � Cl�T�x,z�
h E,− g0� .

n the real case the Levi-Civita connection determines a unique connection on the Majorana spinor
undle. Let � be the Levi-Civita connection for the metric gE on E and h� be an orthonormal with
espect of gE nonholonomic basis of TE. If

�h�
�h�� � ���h�� = ���

E�h�, �31�
hen in the real case there is a unique corresponding connection on �,
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�h�
= h� + S�,

S� = − 1
4��

E�	���	 = − 1
4���	���	, �32�

���	 = g	�
E ���

� , g��
E = gE�h�,h�� = const.

f in the complexified case we want to have a soldering between the parallel transport in TE and
there remains freedom for the choice of the U�1�-connection. In our example we fix the com-

lexification of �32�. Then the Dirac operator reads:

D = ĥ��� = gE��ĥ��� = �E��h� + S��, ĥ� = ��h�� ,

�33�
�D��a = �E��h���a� + S�b

a �b�, � � C���C� .

For the Kaluza-Klein metric we specify g��=g�f� , f��=const=diag�−1,1 ,1 ,1�, g0kl=const
diag�−1, . . . ,−1�. Because �f�� is nonholonomic basis on T�M�, “tetrada,” g can be an arbitrary
etric on M. For simplicity we take the “scalar fields” g0kl to be constant: the Killing form in the

ie algebra su�3�. In the global basis �f̂� ,ek� the metric �10� has the form:

�gE� =�
− 1 0 0 0 0 . . 0

0 1 0 0 0 . . 0

0 0 1 0 0 . . 0

0 0 0 1 0 . . 0

0 0 0 0 − 1 0 0 0

. . . . 0 . . 0

. . . . 0 . . 0

0 0 0 0 0 . . − 1

� . �34�

he coefficients of the Levi-Civita connection of the metric �34�

�f̂�
�f̂�� = ���

E� f̂� + ���
Ekek; ����

E = g�	���
E	, ���k

E = − g0ki���
Ei ,

�f̂�
�ek� = ��k

E�f̂� + ��k
El el; ��k�

E = g�	��k
E	, ��kl

E = − g0li��k
Ei ,

�ek
�f̂�� = �k�

E�f̂� + �k�
El el; �k��

E = g�	�k�
E	, �k�l

E = − g0li�k�
Ei ,

�ek
�el� = �kl

E�f̂� + �kl
Emem; �kl�

E = g�	�kl
E	, �klm

E = − g0mi�kl
Ei

�35�

re defined in the general case in �16�. Because of the form of the metric in �34� the Clifford
undle Cl�TE� has global generators:

��
E = �� � 1, � = 1,2,3,4,

�36�
�k

E = � � �k, k = 5, . . . ,12,

here �� are generators of Cl1,3, �k are generators of Cl0,8 �30�, �=�1�2�3�4, �2=−1. After these
pecifications the Dirac operator �32� and �36� for the Kaluza-Klein metric �10� reads:

D = �E��f̂�
+ �Ek�ek

= ���
� 1��f̂� + S�� + �� � �k��ek + Sk�

= ���
� 1��f� − A�

k ek� + �� � �k�ek

+ ���
� 1��−

1	�����
E ����

� 1 + ���k
E ���

� 1��� � �k�

4
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+ ��k�
E �� � �k����

� 1� + ��kl
E �� � �k��� � �l��

+ �� � �k��−
1

4
	��k��

E ����
� 1 + �k�l

E ���
� 1��� � �l�

+ �kl�
E �� � �l����

� 1� + �klm
E �� � �l��� � �m�� . �37�

ere ��=g�	�	 and �k=−g0
ki�i. Using �16� we obtain

D = ���
� 1��f� − A�

k ek� + �� � �k�ek −
1

4
���

� 1����������
� 1 + F��k���

� �k −
1

2
A�

m�tmlk − tmkl�1 � �k�l	 −
1

4
�� � �k��1

2
F��k�

���
� 1 − A�

m�tmlk + tmkl����

� �l −
1

2
�tklm + tmlk + tmkl�1 � �l�m	 . �38�

he Dirac operator �38� for the Kaluza-Klein metric �10� acts on spinor fields which have 64
omponents. Due to �30� the standard fiber of the complex spinor bundle is C4 � C16.

V. DIMENSIONAL REDUCTION OF THE DIRAC OPERATOR

We need to specify the action of the symmetry group G=SU�3� on the spinor bundle. The
ction Rg�x ,z�= �x ,zg� on the base E=M �SU�3� of the spinor bundle � must be lifted to a bundle
orphism action on the spinor bundle �. This lifting must be in agreement with the action of
U�3� on T�E�. More precisely, let Rg : �x ,z�→ �x ,zg� be the action of g�G=SU�3� on E. For the
aluza-Klein metric �10� the tangent lifting Rg

T :T�x,z��E�→T�x,zg��E� is an isometry. In our trivi-

lization, in the basis �f̂� ,ek� the tangent lifting Rg
T :R12→R12 is the identity. Let F :C4 � C16

C4 � C16be the lifting of the action Lg to the complexified spinor bundle �C. Fg must satisfy �in
he same trivialization�

jC�Fg� = Rg
T = 1 �39�

ith jC given from �25�. Our purpose is to construct explicitly the simplest example of the Dirac
perator with SU�3� symmetry and its reduction to the Dirac operator acting on spinors over
our-dimensional manifold. So we fix Fg=1 and then the action of G=SU�3� on spinor fields, i.e.,
he sections on �, is

Rg����a�x,z� = ��a�x,zg� . �40�

The Dirac operator �38� for the Kaluza-Klein metric �10� is SU�3�-invariant, when the action
f SU�3� on spinor fields is specified as in �40�. For the invariant spinor fields, from �40� we have

Rg����a = ��a Þ ��a�x,zg� = ��a�x,e� � ��a�x� . �41�

he set of all invariant spinor fields C����G is identified, due to �41�, with C��� M��e��
C��� M�. The dimensional reduction of the Dirac operator �38� is a restriction of �38� on the set

f SU�3�-invariant spinor fields and we obtain the reduced Dirac operator Dr:

Dr:C
���M� → C���M� . �42�

o calculate Dr we have to put in �38� a SU�3� invariant spinor field. For invariant spinor fields
�a �a
�x� we have from �41�, ek�� �=0. For the reduced Dirac operator Dr we obtain
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Dr = ���
� 1��f� −

1

4
�����x�����	 −

1

8
F��k�x������

� �k +
1

4
A�

m�x�tmlk�
�

� �k�l +
1

4
tmlk� � �k�l�m, �43�

here the coefficients tmlk are totally antisymmetric in all indices. The reduced Dirac operator �43�
cts on the sections ��C��� M�. The standard fiber is C4 � C16. The bundle � M is canonically
somorphic to �M � �SU�3�:

�M � �M
� �SU�3�, �44�

here �M is the �complex� spinor bundle on M and �SU�3� is a vector bundle on M with standard
ber C16 considered as a simple module of the Clifford algebra Cl0,8 corresponding to the Lie
lgebra su�3� with the Killing metric g. �f�� is a nonholonomic global basis of T�M� and tetrada
or the metric g. �����x� are the components of the Levi-Civita connection of g in the basis �f��
nd − 1

4�����x����� are the components of the spinor connection in �M, so

DM = ���
� 1��f� −

1

4
�����x�����	 �45�

s the Dirac operator for the metric g acting on spinor fields with isotopic indices. A�
m�x� is a gauge

eld with values in the Lie algebra su�3� and F��k�x� is its curvature tensor. We can write �45� in
he form

Dr = ���
� 1��f� −

1

4
�������� +

1

4
A�

mtmkl1 � �k�l	 −
1

8
F��k�����

� �k + � � � , �46�

here �= 1
4 tklm�k�l�m.

The interpretation of �46� is that the reduced free massless Dirac operator for the Kaluza-Klein
etric acting on spinor fields with an “isotopic” index on M is equivalent to the usual Dirac

perator in the presence of a gravitation field �the metric� and external gauge field with gauge
roup SU�3�, source term depending on the curvature F��

k and a mass term � � �.
The “isotopic” bundle �SU�3� in �44� has a standard fiber C16. C16 is the unique simple module

f the Clifford algebra Cl�su�3� ,−g0�=Cl0,8=M16�R�. The algebra su�3�, as a real vector space, is
somorphic to R8 and g0 is the negative defined Killing metric. In the chosen basis �êk� of su�3�,
0=diag�−1, . . . ,−1�. The group of symmetry of the Killing metric g0 on su�3� �considered as a
ector space, isomorphic to R8� is O�8�. According to the standard procedure,4,5 the Lie algebra
�8�has a complex spinor representation in C16, which is a direct sum of two irreducible repre-
entations and C16=C8 � C8. These representations are realized on the eigenspaces of the operator

0=�k=4
12 �k. Let � :O�8�→End�C16� be the spinor representation, s�o�8� and s�êi�=si

jê j. Then

��s� = −
1

4
sij�

i� j . �47�

ut the Lie algebra su�3� has a natural adjoint representation: b�su�3� ,ad�b��End�su�3�
R6�,

ad�êk��êi� = �êk, êi� = tki
j ê j . �48�

he adjoint representation “ad” takes values in the Lie algebra so�8�, i.e. �tk��so�8�. So we can
ake the composition of the two natural representations:

� � ad:su�3� → End�C16�
�49�
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�� � ad��êk� = −
1

4
tkij�

i� j .

his is a representation of su�3� in C16 which is a direct sum of two eight-dimensional represen-
ations of su�3�. So the bundle �su�3� on M is a Whitney sum of two eight-dimensional bundles.
ue to this fact, the SU�3� invariant spinors, i.e., the sections C��� M�=C���M � �SU�3�� have the
atural interpretation as two su�3� spinor octets.

The main result of this paper is that the free massless SU�3�-invariant Dirac operator on the
anifold E �the total space of principal SU�3�-bundle on four-dimensional manifold M� after

imensional reduction is equivalent to the Dirac operator on 4-dimensional manifold M, acting on
wo SU�3� spinor octets, in the presence of gravitational field, external SU�3� gauge field with a
ource depending on the curvature tensor of the SU�3� gauge field and mass term as it is in �46�.

. COMMENTS

One of the ideas of the “Kaluza-Klein approach” is that a collection of fields with different
ature involved in complicated differential equations may be considered as “simple” differential
quations for one-type field in a multidimensional case, but having some symmetry, and consid-
red only on the invariant fields. In the spirit of this idea we comment here on the steps in the
eduction procedure, where the structures of new type arise. In this example E is 12-dimensional
anifold with trivial tangent bundle. For arbitrary metric gE on E there is just one spinor structure

nd the spinor fields have 64-components. The group of symmetry G=SU�3� acts on E as on a
otal space of a principal bundle. This separate the vertical subbundle Tv�E��T�E�. The metric
nder consideration gE determines a horizontal subbundle Th�E��T�E� as an orthogonal comple-
ent of Tv�E�. The metric gE is G-invariant, so the horizontal subbundle Th�E� is G-invariant and

s a linear connection with structure group G=SU�3�. Further, the linear connection in the spinor
undle, coming from the Levi-Civita connection for gE and needed for the Dirac operator, is
xpressed interms of this SU�3�-connection. This leads to the appearance of the SU�3� gauge field
nd its stress tensor. These are classical results for the Kaluza-Klein ansatz. The orthogonal
plitting T�E�=Th�E� � Tv�E� according to the classifying theorem for Clifford algebras leads to
he representation �29� and to appearance of spinors on Four-dimensional base manifold after the
eduction. The metric in the vertical subspace is the Killing metric. There is a natural adjoint
epresentation of Lie algebra su�3� on itself, orthogonal to the Killing metric and a natural repre-
entation of the orthogonal group of the Killing metric on corresponding 16-dimensional spinors.
ue to the representations �29�, this leads to the appearance of two SU�3� spinor octets after the

eduction. Finally, the G-invariance of the spinor fields in the simple case that we consider leads
o vanishing of the vertical derivatives and we obtain the reduced operator acting on the fields
efined on the Four-dimensional base manifold.

1 An Introduction to Kaluza-Klein Theories, edited by H. C. Lee, Workshop on Kaluza-Kelein Theories, Ontario �World
Scientific, Singapore, 1983�.

2 R. Coquereaux and A. Jadczyk, Commun. Math. Phys. 90, 79 �1983�.
3 C. Godbillon, Géometrie Différentielle et Mécanique Analytique �1969�.
4 M. Atiyah, R. Bott, and A. Shapiro, Clifford Modules, Topology Vol. 3 �Pergamon, New York, 1964� Suppl.1, pp. 3–38.
5 H. B. Lawson and M.-L. Michelsohn, Spin geometry �Princeton University Press, Princeton, NJ, 1989�.
6 R. Palais, Seminar on the Atiyah-Singer Index Theorem �Princeton University Press, Princeton, NJ, 1965�, Chap. 4.
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The relations between the different linear problems for Painlevé equations is an
intriguing open problem. Here we consider our previously given second and fourth
Painlevé hierarchies �Publ. Res. Inst. Math. Sci. �Kyoto� 37, 327-347 �2001��, and
show that they could alternatively have been derived using the linear problems of
Jimbo and Miwa. That is, we give a gauge transformation of our linear problems
for these two hierarchies which maps those of the second and fourth Painlevé
equations themselves onto those of Jimbo and Miwa. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2217647�

. INTRODUCTION

The discovery of the inverse monodromy transform1–4 saw the inclusion of the six Painlevé
quations amongst the panoply of integrable equations, i.e., of equations solvable using underlying
inear problems. Recently, the question of obtaining linear problems for hierarchies of higher order
nalogues of the Painlevé equations has absorbed the attention of many authors. In particular, in a
eries of recent papers,5–8 nonisospectral scattering problems have been used as a means of
eriving new completely integrable hierarchies of partial differential equations �PDEs� in 2+1 and
+1 dimensions, and, by reduction, new hierarchies of ordinary differential equations �ODEs�, all

ogether with corresponding underlying linear problems.
In Ref. 8 we presented a generalized nonisospectral dispersive water wave hierarchy in 2

1 dimensions; amongst the reductions to ODEs of this hierarchy we obtained a generalized
PIV− PII hierarchy which includes as special cases both a hierarchy of ODEs having the fourth

ainlevé equation �PIV� as first member, and a hierarchy having the second Painlevé equation �PII�
s first member. We believe that the PII hierarchy of Ref. 8 is not equivalent to the standard PII

ierarchy given in Refs. 9 and 1. We note in particular that for the first members of these two
ierarchies, that is for PII itself, there is no known gauge transformation between their respective
inear problems �see the Appendix�. We thus believe that both the PII and PIV hierarchies of Ref.

were previously unknown.
The aim of the present paper is to explore the relationship between the linear problems for the

PII and PIV hierarchies presented in Ref. 8, and other linear problems for these hierarchies. We

�Electronic mail: pilar.gordoa@urjc.es
�Electronic mail: nalini@maths.usyd.edu.au
�
Electronic mail: andrew.pickering@urjc.es
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ive the important result that there exist gauge transformations which map the linear problems for
hese PII and PIV hierarchies onto two new sequences of linear problems, whose first members are
he linear problems of PII and PIV given by Jimbo and Miwa.3

I. A SECOND PAINLEVÉ HIERARCHY

One of the hierarchies of ODEs obtained in Ref. 8, as a reduction of a �2+1�-dimensional
onisospectral hierarchy, can be expressed as

Rnux + �
i=0

n−2

ciRiux + gn+1�1

0
� = �0

0
�, n � 1, �1�

here gn+1��0� and each of the ci are constants. Here u= �u�x� ,v�x��T and R is the recursion
perator of the dispersive water wave hierarchy as given in Ref. 10,

R =
1

2
��xu�x

−1 − �x 2

2v + vx�x
−1 u + �x

� . �2�

n Ref. 8, we also gave the following matrix linear problem for the hierarchy �1�:

�x = F� , �3�

�1

2
gn+1��� = Hn� = ���n + �

i=0

n−2

ci�
i�F + Gn + �

i=1

n−2

ciGi	� , �4�

here �= ��1 ,�2�T and the matrices F and Gi are given by

F =
−
1

2
�2� − u� 1

− v
1

2
�2� − u� � , �5�

Gn =

−

1

4
��2� − u�Pn + Pn,x�

1

2
Pn

1

2
gn+1 +

1

2
�nux −

1

2
Mn

1

4
��2� − u�Pn + Pn,x�

−
1

4
��2� − u�Pn + Pn,x�x −

1

2
vPn

� , �6�

nd, for i�n,

Gi =

−

1

4
��2� − u�Pi + Pi,x�

1

2
Pi

1

2
�iux −

1

2
Mi

1

4
��2� − u�Pi + Pi,x�

−
1

4
��2� − u�Pi + Pi,x�x −

1

2
vPi

� . �7�

n the above, Mi and Pi are given, respectively, by

�Mn � = Rnux + gn+1�1 � , �8�

Nn 0
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�Mi

Ni
� = Riux, for i � n , �9�

nd

Pi = �x
−1�

j=0

i−1

�i−1−jMj . �10�

he compatibility condition of the matrix linear problem �3�, �4� is Eq. �1�.
Since each member of the dispersive water wave hierarchy is in conservation form, each

omponent of our hierarchy �1� integrates immediately to give

�M̃n

Ñn

� � ��x
−1 0

0 �x
−1 ��Rnux + �

i=0

n−2

ciRiux	 + �gn+1x

− �n
� = �0

0
� , �11�

here �n is one of the constants of integration; our assumption that gn+1�0 allows us to set the
econd constant of integration to zero without loss of generality. It is this hierarchy that is our PII

ierarchy; as we shall see, in the case n=1, this system of equations yields PII itself. We note,
owever, that higher order members of this hierarchy are different from those of the PII hierarchy
resented in Refs. 9 and 1.

It is a simple matter to write down a linear problem whose compatibility condition gives the
ierarchy �11� directly; this is given by the pair of equations

�x = F� , �12�

�� = Kn� , �13�

here

Kn =
1

gn+1
�2Hn + �− M̃n 0

2Ñn M̃n

�	 = ��Kn�11 �Kn�12

�Kn�21 �Kn�22
� . �14�

ere we have added to Hn in the linear equation �4� a matrix whose entries �being the integrated
quations themselves� are identically zero. This matrix is obtained by taking into account the

ependence of Hn on the higher order derivatives unx and vnx, as well as that of M̃n and Ñn on these

erivatives: M̃n�− 1
2

�nunx, Ñn� 1
2

�nvnx. The addition of this matrix to Hn in �4� is equivalent to
ubstituting higher order derivatives in Hn in order to obtain as compatibility condition the inte-
rated hierarchy �11� rather than the original hierarchy �1�. The compatibility condition of the
inear problem �12�, �13� is

F� − Kn,x + �F,Kn� = R1� + R0 = 0, �15�

here

�R1�21 =
4

gn+1
Ñn, �R0�12 =

2

gn+1
M̃n, �16�

ll other �R1�ij=0, and all other �R0�ij=0 modulo M̃n=0, Ñn=0.

. The relationship with the Jimbo-Miwa linear problem for the second Painlevé
quation

Let us consider the linear problem for the hierarchy �11� given by the system of equations �12�

nd �13�, where F and Kn are as above. We now consider the gauge transformation
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� = M� , �17�

here the matrix M is given by

M = �e�1/2�s�x� 0

0 e−�1/2�s�x� � , �18�

nd where sx=u. This maps the linear system �12� and �13� onto

�x = A� , �19�

�� = Bn� , �20�

here �noting that M�=0�

A = M−1FM − M−1Mx =
 − �
w

2

− 2
v
w

� � , �21�

Bn = M−1KnM =
 �Kn�11
w

2
�Kn�12

2

w
�Kn�21 �Kn�22

� , �22�

nd where we have introduced the auxiliary function w=w�x� defined by w=2e−s, and which
herefore satisfies the relation wx /w=−u.

Thus we obtain a different sequence of linear problems �19�, �20� for the PII hierarchy �11�:
he first of these is, up to a trivial change of variables �see the next section�, the linear problem for
PII given by Jimbo and Miwa.3 We thus obtain the result that the PII hierarchy obtained in Ref. 8
ould also have been obtained by expanding in powers of � �or �=−2�; again, see the next
ection� in the Jimbo-Miwa linear problem for PII, i.e., by using an Ablowitz-Kaup-Newell-Segur
AKNS� type approach11 therein. We now illustrate this remark with some examples.

. Examples

. Example n=1

For the case n=1 of the hierarchy �11� we have the system of equations

v + 1
2 �u2 − ux� + g2x = 0, �23�

uv + 1
2vx − �1 = 0. �24�

his system is equivalent to the second order ODE,

uxx = 2u3 + 4g2xu + 2�g2 + 2�1� , �25�

hich for g2�0 is just the second Painlevé equation PII. We have the corresponding linear

roblem given by Eqs. �12� and �13�, where
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F =
− � +
1

2
u 1

− v � −
1

2
u� , �26�

K1 =
1

g2
�
j=0

2

K1,j�
j , �27�

nd where the matrices K1,j are given by

K1,2 = 2�− 1 0

0 1
�, K1,1 = 2� 0 1

− v 0
�, K1,0 = �− v − g2x u

uv − 2�1 v + g2x
� . �28�

fter the gauge transformation �17� we obtain the linear problem �19�, �20� with

A =
 − �
w

2

− 2
v
w

� � , �29�

B1 =
1

g2
�
j=0

2

B1,j�
j , �30�

here each B1,j=M−1K1,jM, and where w satisfies wx /w=−u. This transformation leads to the
ntroduction of factors �w /2� and �2/w� in the off-diagonal elements of the matrix B1, as in �22�.

If in the linear system �19�, �20�, with A and B1 given as above, we set �=−�� /2�, v=z /2,

2=1/4, u=y and 4�1=�− 1
2 , then we obtain the linear system for PII as given by Jimbo and

iwa,3 i.e.,

�x = Ã� , �31�

�� = B̃1� �32�

ith

Ã =
1

2
 � w

− 2
z

w
− � � , �33�

B̃1 = �1 0

0 − 1
��2 + 
 0 w

− 2
z

w
0 �� +
 z +

1

2
x − wy

2� − 1 − 2zy

w
− z −

1

2
x� . �34�

he compatibility condition of the latter gives wx=−yw and, after elimination of w, the system of
quations

zx = − 2yz + � − 1 , �35�
2
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yx = y2 + z +
x

2
. �36�

hese two equations imply that y satisfies PII:

yxx = 2y3 + xy + � . �37�

. Example n=2

In the case n=2 of the hierarchy �11� we have the system of equations

1

4
�uxx − 3uux + u3 + 6uv� + c0u + g3x = 0, �38�

1

4
�vxx + 3v2 + 3uvx + 3u2v� + c0v − �2 = 0. �39�

his system arises as the compatibility condition of the linear problem �12�, �13� where F is given
y �26� and K2 by

K2 =
1

g3
�
j=0

3

K2,j�
j , �40�

here the matrices K2,j are as follows:

K2,3 = 2�− 1 0

0 1
� , �41�

K2,2 = 2� 0 1

− v 0
� , �42�

K2,1 = �− v − 2c0 u

− vx − uv v + 2c0
� , �43�

K2,0 =
 −
1

2
vx − uv − g3x

1

2
�u2 − ux� + v + 2c0

1

2
�v2 + uvx − uxv� + u2v − 2�2

1

2
vx + uv + g3x � . �44�

fter the gauge transformation �17� we obtain the linear problem �19�, �20� with

A =
 − �
w

2

− 2
v
w

� � , �45�

B2 =
1

g3
�
j=0

3

B2,j�
j , �46�

here as before each B2,j=M−1K2,jM. We note that this particular member of our PII hierarchy
12
as also obtained by Kitaev �see the Appendix�.
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. Example n=3

In the case n=3 the system of equations �11� is

1

8
�− uxxx + 6v2 + 2vxx + 4uuxx − 6vux − 6u2ux + 3ux

2 + 12u2v + u4� + c1�v +
1

2
u2 −

1

2
ux�

+ c0u + g4x = 0, �47�

1

8
�vxxx + 6vvx + 2vuxx + 2uxvx + 12v2u + 4u3v + 6u2vx + 4uvxx� + c1�uv +

1

2
vx� + c0v − �3 = 0.

�48�

his system arises as the compatibility condition of the linear problem �12�, �13�, where F is given
y �26� and K3 by

K3 =
1

g4
�
j=0

4

K3,j�
j , �49�

nd where the matrices K3,j are

K3,4 = 2�− 1 0

0 1
� , �50�

K3,3 = 2� 0 1

− v 0
� , �51�

K3,2 = �− v − 2c1 u

− vx − uv v + 2c1
� , �52�

K3,1 =
 −
1

2
vx − uv − 2c0

1

2
�u2 − ux� + v + 2c1

−
1

2
�vxx + 2v2 + u2v + 2uvx + uxv�

1

2
vx + uv + 2c0

− 2c1v
� , �53�

K3,0 =

−

1

4
�vxx + 3v2 + 3u2v + 3uvx�

1

4
�uxx − 3uux + 6uv + u3�

− c1v − g4x + c1u + 2c0

1

4
�vuxx + uvxx + 3u2vx − 3uvux�

1

4
�vxx + 3v2 + 3u2v + 3uvx�

� − uxvx + 3u3v + 6uv2� + c1v + g4x

+ c1uv − 2�3

� . �54�

gain, after the gauge transformation �17� we obtain the linear problem �19�, �20� with

A =
 − �
w

2

− 2
v

� � , �55�
w
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B3 =
1

g4
�
j=0

4

B2,j�
j , �56�

nd where as before B3,j=M−1K3,jM.

II. A FOURTH PAINLEVÉ HIERARCHY

We now consider the PIV hierarchy which, together with its linear problem, we introduced in
ef. 8. Without any loss of generality we assume that our PIV hierarchy is of the form

Rnux + �
i=1

n−1

ciRiux + gnR�1

0
� = �0

0
�, n � 1, �57�

here again gn��0� and ci are constants, and where R is the recursion operator of the dispersive
ater wave hierarchy �2�. Bäcklund transformations for this hierarchy have been given in Ref. 13.
e also note that a detailed singularity analysis of the case n=2, which presented certain diffi-

ulties, was undertaken in Ref. 14. Here we concentrate on the linear problem for �57�, whose
atrix form is8

�x = F� , �58�

�1

2
�gn��� = Hn� = ���n + �

i=1

n−1

ci�
i�F + Gn + �

i=1

n−1

ciGi	� , �59�

here �= ��1 ,�2�T and the matrices F, Gn, and Gi for i�n, are given by

F =
−
1

2
�2� − u� 1

− v
1

2
�2� − u� � , �60�

Gn =

−

1

4
��2� − u�Pn + Pn,x�

1

2
Pn

1

2
�gn +

1

2
�nux −

1

2
Mn

1

4
��2� − u�Pn + Pn,x�

−
1

4
��2� − u�Pn + Pn,x�x −

1

2
vPn

� , �61�

here

�Mn

Nn
� = Rnux + gnR�1

0
� , �62�

�Mn−1

Nn−1
� = Rn−1ux + gn�1

0
� , �63�

�Mj

Nj
� = R jux, for j � n − 1, �64�
nd
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Pn = �x
−1�

j=0

n−1

�n−1−jMj; �65�

nd �for i�n�

Gi =

−

1

4
��2� − u�Pi + Pi,x�

1

2
Pi

1

2
�iux −

1

2
M̂i

1

4
��2� − u�Pi + Pi,x�

−
1

4
��2� − u�Pi + Pi,x�x −

1

2
vPi

� , �66�

here

�M̂i

N̂i

� = Riux �67�

nd now

Pi = �x
−1�

j=0

i−1

�i−1−jM̂ j . �68�

he compatibility condition of the matrix linear problem �58�, �59� is Eq. �57�.
Again, as in the case of the PII hierarchy discussed in Sec. II, this hierarchy �57� can be

ntegrated. The integrated version of this hierarchy was presented in Ref. 8 and its derivation was
iven in Ref. 15. A general statement of this integration process can be found in Ref. 16. The
ntegrated form of �57�, or equivalently of

B2Kn�u� = 0, B2 =
1

2
� 2�x �xu − �x

2

u�x + �x
2 v�x + �xv

� , �69�

here

Kn�u� = �Kn

Ln
� = Ln�u� + �

i=1

n−1

ciLi�u� + gn�0

x
� , �70�

s

M̃n � Ln,x − 2Kn − uLn − �gn − 2�n� = 0, �71�

Ñn � Kn,x −
�Kn +

1

2
gn − �n�2

−
1

4
�n

2

Ln
+ vLn = 0, �72�

n and �n
2 being the two arbitrary constants of integration.

A matrix linear problem whose compatibility condition is precisely the integrated hierarchy
71�, �72� can easily be given. This can be done, in the same way as for the PII hierarchy, by
dding to Hn in the linear equation �59� a matrix whose entries �being the integrated equations
hemselves� are identically zero. This matrix is obtained by taking into account the dependence of

n on the higher order derivatives unx and vnx, as well as that of M̃n and Ñn on these derivatives:
˜ � 1 �n−1 ˜ � 1 �n−1
Mn − 2 unx, Nn 2 vnx. We thus obtain the linear problem
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�x = F� , �73�

�� = Kn� , �74�

here the matrix Kn is given by

Kn =
1

�gn�2Hn +

1

2
M̃n 0

Ñn −
1

2
M̃n
�� = ��Kn�11 �Kn�12

�Kn�21 �Kn�22
� . �75�

he compatibility condition of the linear problem �73�, �74� is the integrated hierarchy �71�, �72�:

F� − Kn,x + �F,Kn� = S0 +
1

�
S−1 = 0, �76�

here

�S0�21 =
2

gn
Ñn, �S−1�12 = −

1

gn
M̃n, �77�

ll other �S0�ij=0, and all other �S−1�ij=0 modulo M̃n=0, Ñn=0.

. The relationship with the Jimbo-Miwa linear problem for the fourth Painlevé
quation

As for the PII hierarchy discussed in Sec. II, we now consider a gauge transformation of the
inear problem �73�, �74�: we set

� = M� , �78�

here as before

M = �e�1/2�s�x� 0

0 e−�1/2�s�x� � �79�

nd sx=u. The linear system �73�, �74� is then mapped to

�x = A� , �80�

�� = Bn� , �81�

here A and Bn are now

A = M−1FM − M−1Mx = 
 − � w

−
v
w

� � , �82�

Bn = M−1KnM = 
 �Kn�11 w�Kn�12

1

w
�Kn�21 �Kn�22 � , �83�

nd where we have introduced the auxiliary function w=w�x� defined—differently from in Sec.
I—by w=e−s, and which therefore satisfies the relation wx /w=−u.

We now consider some examples. In particular we will see how, using the above gauge

ransformation, the linear problem for the first nontrivial flow of our hierarchy is mapped onto the
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inear problem for PIV given by Jimbo and Miwa.3 This then means that our PIV hierarchy �71�,
72� could alternatively have been obtained using an AKNS type approach in the Jimbo-Miwa
inear problem for PIV.

. Examples

. Example n=1

The first nontrivial flow of the hierarchy �71�, �72� consists of the pair of equations

ux = 2v + u2 + g1xu − 2�1, �84�

vx =
�v − �1 +

1

2
g1	2

−
1

4
�1

2

�u + g1x�
− v�u + g1x� , �85�

here �1 and �1 are two independent constants of integration. Eliminating v between these
quations and performing the change of variables

u = y − g1x , �86�

e obtain

yxx =
1

2

yx
2

y
+

3

2
y3 − 2g1xy2 + 2��g1

2x2/4� − �1�y −
1

2

�1
2

y
. �87�

etting g1=−2, which can be done without loss of generality for g1�0, gives

yxx =
1

2

yx
2

y
+

3

2
y3 + 4xy2 + 2�x2 − �1�y −

1

2

�1
2

y
, �88�

.e., PIV. Corresponding to the system �84�, �85� we have the linear problem given by Eqs. �73�,
74� where

F =
− � +
1

2
u 1

− v � −
1

2
u� , �89�

K1 =
1

g1
�
j=−1

1

K1,j�
j , �90�

ith K1,j given by

K1,1 = 2�− 1 0

0 1
� , �91�

K1,0 = �− g1x 2 � , �92�

− 2v g1x
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K1,−1 =
 − v −
1

2
g1 + �1 u + g1x

−
�v − �1 +

1

2
g1	2

−
1

4
�1

2

�u + g1x�
v +

1

2
g1 − �1� . �93�

ur gauge transformation then yields the alternative linear problem �80�, �81� with

A = 
 − � w

−
v
w

� � , �94�

B1 =
1

g1
�
j=−1

1

B1,j�
j , �95�

here w satisfies
wx

w =−u and each B1,j=M−1K1,jM. This transformation leads to the introduction of
actors w and �1/w� in the off-diagonal elements of the matrix B1, as in �83�.

If in the linear system �80�, �81�, with A and B1 given as above, we set �=−� and choose

1=−2, make the transformation

u = y + 2x , �96�

v = − 2z + 2�	0 + 	
� , �97�

nd redefine the parameters �1 and �1 as

�1 = 2	
 − 1, �98�

�1
2 = 16	0

2, �99�

e obtain the linear problem

�x = Ã� , �100�

�� = B̃1� , �101�

here

Ã = 
 � w

2�z − 	0 − 	
�
w

− � � , �102�

B̃1 = �1 0

0 − 1
�� + 
 x w

2�z − 	0 − 	
�
w

− x � +
 − z + 	0 −
1

2
wy

2z�z − 2	0�
wy

z − 	0
� 1

�
, �103�

nd where we now have the relation wx /w=−y−2x. The compatibility condition of this linear

roblem gives this last relation and, after elimination of w, the system of equations
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zx = −
2

y
z2 − yz +

4	0

y
z + �	0 + 	
�y , �104�

yx = − 4z + y2 + 2xy + 4	0, �105�

hich is of course equivalent to PIV. The above linear problem is the linear problem for PIV given
y Jimbo and Miwa in Ref. 3.

. Example n=2

As a further example we give here the results for the second member of our PIV hierarchy
71�, �72�,

uxx = 3uux − u3 − 6uv − 2g2xu + 2c1�ux − 2v − u2� + 4�2, �106�

vxx = 2
�uv + 1
2vx + c1v − �2 + 1

2g2�2 −
1

4
�2

2

v +
1

2
u2 −

1

2
ux + g2x + c1u � − 2�uv�x − 2v�v +

1

2
u2 −

1

2
ux + g2x� − 2c1�vx + uv� ,

�107�

here �2 and �2 are two independent constants of integration.
Corresponding to the system �106�, �107� we have the linear problem given by Eqs. �73�, �74�

here

F =
− � +
1

2
u 1

− v � −
1

2
u� , �108�

K2 =
1

g2
�
j=−1

2

K2,j�
j , �109�

ith K2,j given by

K2,2 = 2�− 1 0

0 1
� , �110�

K2,1 = �− 2c1 2

− 2v 2c1
� , �111�

K2,0 = � − v − g2x u + 2c1 � , �112�

− vx − uv − 2c1v v + g2x
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K2,−1 =

−

1

2
�2uv + vx�

1

2
�2v + u2 − ux�

− c1v −
1

2
g2 + �2 + c1u + g2x

−
�uv +

1

2
vx + c1v − �2 +

1

2
g2	2

−
1

4
�2

2

v +
1

2
u2 −

1

2
ux + g2x + c1u

1

2
�2uv + vx�

+ c1v +
1

2
g2 − �2

� . �113�

ur gauge transformation then yields the alternative linear problem �80�, �81�, with

A = 
 − � w

−
v
w

� � , �114�

B2 =
1

g2
�
j=−1

2

B2,j�
j , �115�

here w satisfies wx /w=−u and where each B2,j=M−1K2,jM.

V. CONCLUSIONS

We have studied in detail the PII and PIV hierarchies derived in Ref. 8. We have shown that the
orresponding linear problems can be mapped on to alternative linear problems such that those for
he first members of our hierarchies �i.e., for PII and PIV themselves� are precisely the linear
roblems given by Jimbo and Miwa.3 This then means that our hierarchies could alternatively
ave been obtained by using an AKNS type approach, i.e., expanding in powers of �, in the
imbo-Miwa linear problems for PII and PIV. Our work here then raises the interesting problem of
hether other Jimbo-Miwa linear problems can be used to obtain hierarchies based on Painlevé

quations. This is a topic that we will pursue in subsequent studies.
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PPENDIX

In this Appendix we briefly consider the linear problems for PII given in Refs. 1 and 3,

�t = U�, �� = V� , �A1�
hich we take here in the forms presented in Ref. 17, i.e., respectively in the form of Ref. 1 with

                                                                                                            



o

T
a
f

a

w
b
o
O

b
m
g

T

t
�
�

073504-15 Second and fourth Painlevé hierarchies J. Math. Phys. 47, 073504 �2006�

                        
U = �− i� ip

− ip i�
� , �A2�

V = � − i�4�2 + t + 2p2� i�4p� − �/�� − 2pt

− i�4p� − �/�� − 2pt i�4�2 + t + 2p2�
� , �A3�

r, corresponding to Ref. 3, with

U = �− i� iq

− ir i�
� , �A4�

V = �− i�4�2 + t + 2qr� 4iq� − 2qt

− 4ir� − 2rt i�4�2 + t + 2qr�
� . �A5�

he compatibility condition of each of these linear problems yields PII �in the case of �A4�, �A5�
fter integrating twice�. The linear problem �A1� with �A4�, �A5� is put into standard Jimbo-Miwa
orm �31�–�34� by making the change of variables

q = −
1

2
i�w, r = − i�

z

w
, t =

x

�
, � =

1

2
i�� , �A6�

nd using the relations

qt =
1

2
i�2wy, rt = − i�2�� − �1/2� − zy

w
� , �A7�

here �3=−2. This identification means that our PII hierarchy described in Sec. II could also have
een derived beginning with an AKNS type linear problem, which then explains why Kitaev
btained the second member of our hierarchy when seeking to isolate examples of higher order
DEs related to such a linear problem.12

It is argued in Ref. 17 that there is no elementary relation between the linear problems given
y �A1� with �A2�, �A3�, and �A1� with �A4�, �A5�; for example, there is no gauge transformation
apping one into the other. However, while there is no known gauge transformation, we give a

eneral linear problem which encapsulates both Lax pairs. Consider the linear problem �A1� with

U = �− i� iq

− ir i�
� , �A8�

V = � − i�4�2 + t + 2qr� i�4q� − �/�� − 2qt

− i�4r� − �/�� − 2rt i�4�2 + t + 2qr�
� . �A9�

he compatibility condition of this linear problem yields the three equations

qtt = 2q2r + tq + � , �A10�

rtt = 2qr2 + tr + � , �A11�

��q − r� = 0, �A12�

he third of which tells us that we must either have q=r or �=0, corresponding to the choices
A2�, �A3� and �A4�, �A5�, respectively. That is, the linear problems with �A2�, �A3� and �A4�,

A5� are in fact both special cases of �A8�, �A9�.
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We consider the deformations of Whitham systems including the “dispersion
terms” and having the form of Dubrovin-Zhang deformations of Frobenius mani-
folds. The procedure is connected with the B. A. Dubrovin problem of deforma-
tions of Frobenius manifolds corresponding to the Whitham systems of integrable
hierarchies. Under some nondegeneracy requirements we suggest a general scheme
of the deformation of the hyperbolic Whitham systems using the initial nonlinear
system. The general form of the deformed Whitham system coincides with the form
of the “low-dispersion” asymptotic expansions used by B. A. Dubrovin and
Y. Zhang in the theory of deformations of Frobenius manifolds. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2217648�

. INTRODUCTION

The classical Whitham method1–4 is connected with the slow modulations of the exact peri-
dic or quasiperiodic solutions of nonlinear PDE’s,

Fi��,�t,�x,�tt,�xt,�xx, . . . � = 0, i = 1, . . . ,n , �1.1�

here �= ��1 , . . . ,�n�.
It is assumed that the system �1.1� admits the finite-parametric family of exact solutions

�i�x,t� = �i�k�U�x + ��U�t + �0,U� , �1.2�

here �= ��1 , . . . ,�m�, �i�� ,U� are smooth functions 2�-periodic with respect to each ��, k�U�
�k1�U� , . . . ,km�U��, ��U�= ��1�U� , . . . ,�m�U�� are “wave numbers” and “frequencies” of the

olution, U= �U1 , . . . ,UN� are parameters of the solution, and �0= ��0
1 , . . . ,�0

m� are arbitrary initial
hases.

The functions ��� ,U� satisfy the nonlinear system

Fi��,���U����,k��U����,���U��	�U�����	, . . . � = 0. �1.3�

We can introduce the families 
k,� and the full family 
= �
k,� of the functions ��� ,U�
atisfying the system �1.3� in the space of 2�-periodic with respect to each �� function. Let us
hoose �in a smooth way� at every �U1 , . . . ,UN� some function ��� ,U� as having “zero initial
hase shifts” and represent the full family of m-phase solutions of system �1.1� in the form �1.2�.

In Whitham method we make a rescaling X=�x, T=�t ��→0� of both variables x and t and try
o find a function

S�X,T� = �S1�X,T�, . . . ,Sm�X,T�� �1.4�

nd 2�-periodic functions

�
Electronic mail: maltsev@itp.ac.ru

47, 073505-1022-2488/2006/47�7�/073505/18/$23.00 © 2006 American Institute of Physics
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�i��,X,T,�� = �
k0

��k�
i ��,X,T��k �1.5�

uch that the functions

�i��,X,T,�� = �i�S�X,T�
�

+ �,X,T,�� �1.6�

atisfy the system

Fi��,��T,��X,�2�TT, . . . � = 0 �1.7�

t every X, T, and �.
It is easy to see that the function ��0��� ,X ,T� satisfies the system �1.3� at every X and T with

k� = SX
�, �� = ST

�

nd so belongs at every �X ,T� to the family 
. We can write then

��0�
i ��,X,T� = �i�� + �0�X,T�,U�X,T��

nd introduce the functions U��X ,T�, �0
��X ,T� as the parameters characterizing the main term in

1.5� which should satisfy the condition

�k��U��T = ����U��X. �1.8�

The functions ��1�
i �� ,X ,T� are defined from the linear system

L̂j
i��1�

j ��,X,T� = f �1�
i ��,X,T� �1.9�

here

L̂j
i = L̂�X,T�j

i =
�Fi

�� j ���0���,X,T�, . . . � +
�Fi

��t
j ���0���,X,T�, . . . ����X,T�

�

���

+
�Fi

��x
j ���0���,X,T�, . . . �k��X,T�

�

��� + ¯ �1.10�

s the linearization of system �1.3� and f�1��� ,X ,T� is discrepancy given by

f �1�
i ��,X,T� = −

�Fi

��t
j ���0���,X,T�, . . . ���0�T

j ��,X,T� −
�Fi

��x
j ���0���,X,T�, . . . ���0�X

j ��,X,T�

−
�Fi

��tt
j ���0���,X,T�, . . . ��2���X,T���0���T

j + �T
��X,T���0���

j � − . . . . �1.11�

We have here

�

�T
= UT

� �

�U� + ��0�T
� �

��� ,
�

�X
= UX

� �

�U� + ��0�X
� �

���

or the functions

��0�
i ��,X,T� = �i�� + �0�X,T�,U�X,T�� .

We will assume that k� and �� can be considered �locally� as the independent parameters on
he family 
 and the total family of solutions of �1.3� depends �for generic k�, ��� on N=2m

� �
s, �s0� parameters U and m initial phases �0 .
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It is easy to see that the functions �����+�0�X ,T� ,U�X ,T�� and

������+�0�X ,T� ,U�X ,T�� where � is any vector in the space of parameters U� tangential to the

urface k=const, �=const belong to the kernel of the operator L̂�X,T�j
i .

Let us put now some “regularity” conditions on the family �1.2� of quasiperiodic solutions of
1.1�

Definition 1.1: We call the family (1.2) the full regular family of m-phase solutions of (1.1) if:
(1) The functions ����� ,U�, �U��� ,U� are linearly independent (almost everywhere) on the

et 
;
(2) The m+s linearly independent functions ����� ,U�, ����� ,U� ���k=0,���=0� give the

ull kernel of the operator L̂�U�j
i (here �0=0) for generic k and �.

(3) There are exactly m+s linearly independent “left eigen-vectors” ��U�
�q� ���, q=1, . . . ,m+s of

he operator L̂�U�j
i (for generic k and �) corresponding to zero eigenvalues, i.e.,

�
0

2�

. . . �
0

2�

��U�i
�q� ���L̂�U�j

i � j���
dm�

�2��m 	 0

or any periodic � j���.
It is not difficult to see that the Definition 1.1 is connected with the regularity properties of the

ubmanifold 
 given by the set of functions ��� ,U� in the space of 2�-periodic functions. In fact,
or our purposes we can use also the weaker definition of the full regular family of m-phase
olutions of �1.1�. Namely, let us represent the space of parameters U in the form U= �k ,� ,n�
here k are the wave numbers, � are the frequencies of m-phase solutions, and n= �n1 , . . . ,ns� are

ome additional parameters �if they exist�. Let us give now the “weak” definition of the full
egular family of m-phase solutions in the form:

Definition 1.1�: We call the family 
 the full regular family of m-phase solutions of (1.1) if
(1) The functions ����� ,k ,� ,n�, �nl�� ,k ,� ,n� are linearly independent and give (for ge-

eric k and �) the full basis in the kernel of the operator L̂j��0,k,�,n�
i ;

(2) The operator L̂j��0,k,�,n�
i has (for generic k and �) exactly m+s linearly independent “left

igenvectors”

��U�
�q� �� + �0� = ��k,�,n�

�q� �� + �0�

epending on the parameters U in a smooth way and corresponding to zero eigenvalues.
We will assume now that the system �1.1� has a full regular family of quasiperiodic m-phase

olutions in strong or weak sense in all our considerations.
To find the function ��1��� ,X ,T� we have to put now the m+s conditions of orthogonality of

he discrepancy f�1��� ,X ,T� to the functions ��U�X,T��
�q� ��+�0�X ,T��

�
0

2�

. . . �
0

2�

��U�X,T��i
�q� �� + �0�X,T��f �1�

i ��,X,T�
dm�

�2��m = 0. �1.12�

The system �1.12� together with �1.8� gives m+ �m+s�=2m+s=N conditions at each X and T
on the parameters of zero approximation ��0��� ,X ,T� necessary for the construction of the first
-term in the solution �1.5�.

Let us prove now the following Lemma about the orthogonality conditions �1.12�:
Lemma 1.1: Under all the assumptions of regularity formulated above the orthogonality

onditions (1.12) do not contain the functions �0
��X ,T� and give just the restrictions on the

unctions U��X ,T� having the form

C�
�q��U�UT

� − D�
�q��U�UX

� = 0 �1.13�
�q� �q�
with some functions C� �U�, D� �U�).
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Proof: Let us write down the part f�1�� of the function f�1� which contains the derivatives

0T
� �X ,T� and �0X

� �X ,T�. We have from �1.11�

f �1��i ��,X,T� = −
�Fi

��t
j ���0�, . . . ���0���

j �0T
� −

�Fi

��x
j ���0�, . . . ���0���

j �0X
�

−
�Fi

��tt
j ���0�, . . . �2���X,T���0�����

j �0T
� −

�Fi

��xx
j ���0�, . . . �2k��X,T���0�����

j �0X
� − . . . .

Let us choose again the set of parameters U in the form

U = �k1, . . . ,km,�1, . . . ,�m,n1, . . . ,ns� ,

here k� are the wave numbers, �� are the frequencies of m-phase solutions, and �n1 , . . . ,ns� are
dditional parameters �except the initial phases�.

We can write then

f �1��i ��,X,T� = 
−
�

���Fi���� + �0,U�, . . . � + L̂j
i �

���� j�� + �0,U���0T
�

+ 
−
�

�k�Fi���� + �0,U�, . . . � + L̂j
i �

�k�� j�� + �0,U���0X
� .

The derivatives �Fi /��� and �Fi /�k� are identically zero on 
 according to �1.3�. We have
hen

�
0

2�

. . . �
0

2�

��U�X,T��i
�q� �� + �0�X,T��f �1��i ��,X,T�

dm�

�2��m 	 0

ince all ��q��� ,X ,T� are the left eigenvectors of L̂ with zero eigenvalues.
It is easy to see also that all �0�X ,T� in the arguments of � and ��q� will disappear after the

ntegration with respect to � so we get the statement of the Lemma.
Lemma 1.1 is proved.
The system

�k�

�U�UT
� =

���

�U� UX
� , � = 1, . . . ,m ,

�1.14�
C�

�q��U�UT
� = D�

�q��U�UX
� , q = 1, . . . ,m + s

s called the Whitham system for the m-phase solutions of system �1.1�.
Let us note that we have rank ��k� /�U��=m according to our assumption above. In the generic

ase the derivatives UT
� can be expressed through UX

� and the Whitham system �1.14� can be
ritten in the form

UT
� = V�

� �U�UX
�, �,� = 1, . . . ,N , �1.15�

here V�
� �U� is some N�N matrix depending on the variables U1 , . . . ,UN.

Let us say that quite often the system �1.1� can be written in the evolution form

�t
i = Qi��,�x,�xx, . . . � . �1.16�

For systems �1.16� the form �1.15� of the corresponding Whitham system has then a natural
otivation.

We will assume here that if the conditions �1.14� are satisfied then the system �1.9� is resolv-
�
ble on the space of 2�-periodic with respect to each � function. The solution ��1��� ,X ,T� is
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efined then modulo a linear combination of the “right eigenfunctions” of L̂�X,T�j
i ���0��� ,��0�nl�

ntroduced above. According to common approach4,12 we can try to use the corresponding coef-
cients to make the systems analogous to �1.9� resolvable in the next orders and try to find
ecursively all the terms of series �1.5�.

Different aspects and numerous applications of the Whitham method were studied in many
ifferent works1–51 �we apologize for the impossibility to give here the full list of numerous works
n the Whitham method� and the Whitham method is considered now as one of the classical
ethods of investigation of nonlinear systems.

It was pointed out by G. Whitham1–3 that the Whitham system �1.14� has a local Lagrangian
tructure in case when the initial system has a local Lagrangian structure

	� � L��,�t,�x, . . . �dx dt = 0

n the space ��x , t��.
The procedure of construction of Lagrangian formalism for the Whitham system �1.14� is

iven by the averaging of the Lagrangian function L on the family of m-phase solutions of system
1.1�.1–3 Let us note also that in the case of the presence of additional parameters nl the additional
ethod of Whitham pseudophases should be used.

The important procedure of averaging of local field-theoretical Hamiltonian structures was
uggested by B. A. Dubrovin and S. P. Novikov.14,18,28,32 The Dubrovin-Novikov procedure gives
he local field-theoretical Hamiltonian formalism for the Whitham system �1.15� in the case when
he initial system �1.16� has a local Hamiltonian formalism of general type. The Dubrovin-
ovikov bracket for the Whitham system has a general form

U��X�,U��Y�� = g���U�	��X − Y� + b�
���U�UX

�	�X − Y� �1.17�

nd was called the local Poisson bracket of hydrodynamic type. The theory of the brackets �1.17�
s closely related with differential geometry14,28,32 and is connected with different coordinate
ystems in the �pseudo� Euclidean spaces. Let us say also that during the last years the important
eakly nonlocal generalizations of Dubrovin-Novikov brackets �Mokhov-Ferapontov bracket and
erapontov brackets� were introduced and studied.53–59

The Hamiltonian structure �1.17� for the systems �1.15� has a direct relation to the integrabil-
ty of the systems of this class. Thus it was conjectured by S. P. Novikov that any diagonalizable
ystem �1.15� Hamiltonian with respect to the bracket of hydrodynamic type is integrable. The
onjecture of S. P. Novikov was proved by S. P. Tsarev,52 who suggested the “generalized
odograph method” for solving the diagonal Hamiltonian systems �1.15�. Let us say that the
sarev method has become especially important for the Whitham systems corresponding to inte-
rable hierarchies and provided a lot of very important solutions for such systems in different
ases. We note here that the Whitham systems of integrable hierarchies can usually be written in
iagonal form3,11,25 and admit the �multi-� Hamiltonian structures given by the averaging of the
agrangian or the field-theoretical Hamiltonian structures of the initial system.

During the last years the theory of compatible Poisson brackets �1.17� and their deformations
n connection with Quantum Field Theory was intensively developed.60–72 Namely, the theory of
ompatible Poisson brackets �1.17� plays the main role in the theory of “Frobenius manifolds”
onstructed by B. A. Dubrovin and connected with the classification of the topological quantum
eld theories �based on the Witten-Dijkgraaf-Verlinde-Verlinde equation�. Every “Frobenius mani-
old” is connected also with the integrable hierarchy of hydrodynamic type

Uts
� = V�s��

� �U�UX
� �1.18�

aving the bi-Hamiltonian structure in Dubrovin-Novikov sense with a pair of Poisson brackets
1.17�. �The hierarchy �1.18� and the corresponding pair of Poisson brackets also possess some

dditional properties �the existence of “unit vector field,” Euler field, �-symmetry, etc.��
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The “�-deformations” of the integrable hierarchies and the Poisson brackets �1.17� are con-
ected with the “higher” corrections in the quantum field theories and are being intensively
nvestigated now.64–72 According to B. A. Dubrovin and Y. Zhang the �-deformation of Frobenius
anifold is given by the infinite series polynomial with respect to derivatives UX ,UXX ,UXXX , . . .

nd representing the “small dispersion” deformation of the hierarchy �1.18� and the corresponding
i-Hamiltonian structure of hydrodynamic type. The deformed hierarchy and bi-Hamiltonian
tructure should possess also the additional properties of Frobenius manifolds �“unit vector field,”
uler field, �-symmetry etc.,¼� and give then the “deformation” of the corresponding Frobenius
anifold.64,66,68 The general problem of classification of deformations of bi-Hamiltonian hierar-

hies �1.18� is being also intensively studied by now and very important results were obtained
ecently in this area.67–72

The dispersive corrections to the Whitham systems were first considered by M. Y. Ablowitz
nd D. J. Benney �see Ref. 5, also Refs. 6 and 7� where the first consideration of multiphase

hitham method was also made. As was shown in Ref. 5 the dispersive corrections to Whitham
ystems can naturally arise and, besides that, can be generalized to the multiphase situation.

In this paper we will consider the deformations of the Whitham systems �1.15� having
ubrovin-Zhang form, i.e., the dispersive corrections to �1.15� containing the higher X-derivatives
f the parameters U. The problem in this form is connected with the problem set by B. A.
ubrovin, which is formulated as the problem of deformations of Frobenius manifolds corre-

ponding to the Whitham systems of integrable hierarchies. B. A. Dubrovin problem contains both
he problem of deformation of Whitham systems �1.15� and the corresponding bi-Hamiltonian
tructures of hydrodynamic type giving the dispersive corrections to these structures.

We will consider here the first part of the B. A. Dubrovin problem and suggest a general
cheme of recursive construction of terms of the deformation of the Whitham system �1.15� using
he initial system �1.1� or �1.16�. The second part of the B. A. Dubrovin problem will then be
onsidered in the next paper. We will not require, however, the “integrability” of the system �1.15�
nd all the considerations below can be applicable for both integrable and nonintegrable systems
1.1� and �1.16�. Thus, we do not require also the bi-Hamiltonian property of the Whitham system
1.15�.

In the next section we will make more detailed investigation of the asymptotic series �1.5� and
escribe the construction of the deformation procedure for general Whitham systems.

I. THE DEFORMATION OF THE WHITHAM SYSTEMS

Let us start again with the description of the construction of asymptotic series �1.5� connected
ith the Whitham method. We will assume that we have the initial system having the general form

1.1� which has an N-parametric �modulo the initial phases �0
�� family of m-phase solutions

�i�x,t� = �i�k�U�x + ��U�t + �0,U� �2.1�

ith the functions ��� ,U� satisfying the system

Fi��,���U����,k��U����,���U��	�U�����	, . . . � = 0 �2.2�

and 2�-periodic with respect to all ���.
The choice of the functions �i�� ,U� at each U is defined modulo the initial phase �0 and the

ull family of solutions of �2.2� is given by all the functions ���+�0 ,U� with arbitrary �0

��0
1 , . . . ,�0

m�. We will just assume here that the choice of �i�� ,U� is smooth on the family of
-phase solutions 
.

We will assume also that the parameters �k ,�� are independent on the family 
 such that
2m. It will be convenient to use the parameters �k1 , . . . ,km ,�1 , . . . ,�m ,n1 , . . . ,ns� on the

amily 
 where k� are the “wave numbers,” �� are frequencies, and �n1 , . . . ,ns� are additional
arameters �if they present�. The linearly independent solutions of the linearized system �2.2� will

hen be given by m+s functions ����� ,U�, �nl�� ,U�.
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As we already said above we assume that the family 
 represents the “full regular family” of
-phase solutions of �2.3� such that the requirements formulated in Definition 1.1 or Definition
.1� are satisfied. We thus have exactly m+s functions ����� ,U�, �nl�� ,U� giving the basis in the
ernel of linearized system �2.2� and exactly m+s linearly independent functions ��U�

�q� ��+�0�
iving the basis in the kernel of the adjoint operator �for generic k, �� and depending in a smooth
ay on the parameters �k ,� ,n�.

As we mentioned already we make a rescaling of coordinates X=�x, T=�t and try to find the
olutions of system

Fi��,��T,��X,�2�TT,�2�XT,�2�XX, . . . � = 0, i = 1, . . . ,n �2.3�

aving the form

�i��,X,T,�� = �i�S�X,T�
�

+ �,X,T,�� , �2.4�

�i��,X,T,�� = �
k0

��k�
i ��,X,T��k. �2.5�

The function ��0��� ,X ,T� belongs to the family 
 at every fixed X and T,

��0�
i ��,X,T� = �i�� + �0�X,T�,k�X,T�,��X,T�,n�X,T�� , �2.6�

nd the compatibility conditions �1.12� for the system

L̂j
i��1�

j ��,X,T� = f �1�
i ��,X,T� �2.7�

ive the Whitham system �1.13� on the parameters U�X ,T� of the zero approximation. The func-
ion ��1��� ,X ,T� is defined from the system �2.7� modulo the linear combination of functions

���� ,U�, �nl�� ,U� at every X and T.
All the other approximations ��k��� ,X ,T� satisfy the linear systems

L̂j
i��k�

j ��,X,T� = f �k�
i ��,X,T� , �2.8�

here the functions f�k��� ,X ,T� represent the higher order discrepancies given by system �2.3�.
The compatibility conditions of the systems �2.8� �k2� give the restrictions on the “initial

hases” �0
� of the zero approximation and on the previous corrections ��k���� ,X ,T�.

Let us make now one more general assumption about the systems �2.7� and �2.8�. Namely we
mit here the special investigation of the solvability of systems �2.7� and �2.8� on the space of
�-periodic functions and assume that the orthogonality conditions

�
0

2�

. . . �
0

2�

��U�X,T��i
�q� �� + �0�X,T��f �k�

i ��,X,T�
dm�

�2��m = 0 �2.9�

ive the necessary and sufficient conditions of solvability of these systems. So, we will assume
hat under the conditions �2.9� we can always find a smooth 2�-periodic solution of �2.7� and �2.8�
efined modulo the linear combination

�
�=1

m

c�k�
� �X,T������,X,T� + �

l=1

s

d�k�
l �X,T��nl��,X,T� . �2.10�

Let us consider now the construction of the asymptotic series �2.5�. We note first that the
olution ��k��� ,X ,T� is defined from the system �2.8� modulo the linear combination �2.10� which

k+1 � �
s equivalent in the main order to the addition of the values � c�k��X ,T� to the phases S �X ,T� of
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he zero approximation ��0��� ,X ,T� and to the addition of the values �kd�k�
l �X ,T� to the param-

ters nl�X ,T� of ��0��� ,X ,T� according to the formulas �2.4� and �2.5�. It is easy to see also that
e can add the values �k+1c�k�X

� �X ,T� and �k+1c�k�T
� �X ,T� to the parameters k� and �� in the

-dependence of ��0��� ,X ,T� which does not affect the kth order of � in the series �2.5�.
Let us change now the procedure of construction of series �2.5� in the following way:
�1� At every step k we choose the solution ��k��� ,X ,T� in arbitrary way;
�2� We allow the regular �-dependence

S��X,T,�� = �
k0

S�k�
� �X,T��k,

nl�X,T,�� = �
k0

n�k�
l �X,T��k

f the phases S� and the parameters �k ,� ,n� of the zero approximation ��0��� ,X ,T� such that

k��X,T,�� = SX
��X,T,��, ���X,T,�� = ST

��X,T,��

�3� We use the higher orders S�k�
� , n�k�

l of the functions S��X ,T ,��, nl�X ,T ,�� to provide the
rthogonality conditions �2.9� for the systems �2.8�.

We can now write the asymptotic solution of �2.3� in the form

�i��,X,T,�� = �i�S�X,T,��
�

+ �,SX�X,T,��,ST�X,T,��,n�X,T,��� + �
k1

�̃�k�
i �S�X,T,��

�
+ �,X,T��k.

�2.11�

Let us note that the phase shift �0�X ,T� of the initial approximation now becomes the �-term
n �-expansion of the function S�X ,T ,��.

It is not difficult to see that the series �2.11� can be always represented in the form �2.4� and
2.5� and give the same set of the asymptotic solutions of system �2.3�. However, the series �2.11�
ontains a big “renormalization freedom” since we can change in arbitrary way the higher orders

orrections S�2��X ,T�, S�3��X ,T� , . . ., n�1��X ,T�, n�2��X ,T� , . . . and then adjust the functions �̃�k� in
he appropriate way.

Let us now “fix the normalization” of the solution �2.11� in the following way.
We require that the first term

�i�S�X,T,��
�

+ �,SX�X,T,��,ST�X,T,��,n�X,T,���
f �2.11� gives “the best approximation” of the asymptotic solution �2.11� by the modulated
-phase solution of �1.1�. To be more precise, we require that the rest of the series �2.11� is
rthogonal �at every X and T� to the vectors ����� ,X ,T�, �nl�� ,X ,T� “tangent” to 
 at the
point” �S�X ,T ,�� ,n�X ,T ,���.

Thus we will now put the conditions

�
0

2�

. . . �
0

2�

�
i=1

n

���
i ��,SX,ST,n�
�

k=1

�

�̃�k�
i ��,X,T��k� dm�

�2��m = 0, �2.12�

�
0

2�

. . . �
0

2�

�
i=1

n

�nl
i ��,SX,ST,n�
�

k=1

�

�̃�k�
i ��,X,T��k� dm�

�2��m = 0 �2.13�
for all ��.
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The representation �2.6� defines in fact the first correction S�1�=��0��X ,T�. As we saw above,

he functions �̃�k��� ,X ,T� are defined modulo the linear combinations of the functions

���� ,S�0�X ,S�0�T ,n�0��, �nl�� ,S�0�X ,S�0�T ,n�0�� which are linearly independent for the full regular
amily of m-phase solutions of �1.1�. Using this fact it is not difficult to prove that the conditions

2.12� and �2.13� fix uniquely all the terms S�k+1�, n�k�, and �̃�k��� ,X ,T� �k1� for a given
olution �2.4� and �2.5� which gives then the representation �2.11�.

Let us say now that the choice of the normalization �2.12� and �2.13� is not unique. In
articular, it depends on the choice of the variables �i�x , t� for the “vector” �i�1� systems �1.1�.
e will speak about the normalization �2.12� and �2.13� as about one possible way to fix the

unctions �̃�k��� ,X ,T�.
The solution ��� ,X ,T� can now be defined as the asymptotic solution of the system �2.3�

aving the form �2.11� which satisfies the conditions

�
0

2�

. . . �
0

2�

�
i=1

n

���
i ��,SX,ST,n��i�� −

S

�
,X,T,�� dm�

�2��m = 0,

�
0

2�

. . . �
0

2�

�
i=1

n

�nl
i ��,SX,ST,n�
�i�� −

S

�
,X,T,�� − �i��,SX,ST,n�� dm�

�2��m = 0

for all ��.
To find a solution in the form �2.11� we substitute the series �2.11� in the system �2.3� and try

o find the functions �̃�k�
i �� ,X ,T� from the linear systems

L̂j�S�0�,n�0��
i �̃�k�

j ��,X,T� = f̃ �k�
i ��,X,T� �2.14�

nalogous to �2.8�.
The functions f̃ �k�

i �� ,X ,T� are different from the functions f �k�
i �� ,X ,T� since we included “a

art of �-dependence” in the first term of �2.11�. The functions f̃�k��� ,X ,T� should be orthogonal
o the functions ��S�0�,n�0��

�q� �� ,X ,T�, q=1, . . . ,m+s and we use the conditions �2.12� and �2.13� for

he recurrent determination of �̃�k��� ,X ,T�. The functions S�k�
� �X ,T�, n�k�

l �X ,T� are used now to
rovide the resolvability of the systems �2.14� in all orders of �.

Let us investigate now the systems arising on the functions S�0��X ,T�, S�1��X ,T� , . . .,

�0��X ,T�, n�1��X ,T� , . . .. Let us note that we have in our notations S�X ,T�=S�0��X ,T�, �0�X ,T�
S�1��X ,T�. We saw in Lemma 1.1 that the function �0�X ,T� does not appear in the solvability
onditions of the system �1.9�. For the asymptotic solution written in the form �2.11� with the
ormalization conditions �2.12� and �2.13� we can prove here even stronger statement.

Lemma 2.1: The functions S�k�
� �X ,T�, n�k�

l �X ,T� do not appear in the expression for the dis-

repancy f̃�k��� ,X ,T� and do not affect the solution �̃�k��� ,X ,T�.
Proof: The way we get the discrepancy f̃�k��� ,X ,T� can be described as follows:
�1� We substitute the solution �2.11� in the system �2.3�;
�2� After “making all differentiations” we can omit the argument shift S�X ,T ,�� /� in all

unctions depending on �;
�3� Then collecting together all the terms of order �k we get the system �2.14�.
It is not difficult to see that in this approach the kth order of � containing the functions
�k��X ,T� or n�k��X ,T� have the form

                                                                                                            



w
d
�
r
fi
o

�

a
f


s

i
s

S

d
t

w

w

w

f

073505-10 A. Ya. Maltsev J. Math. Phys. 47, 073505 �2006�

                        
dFi

dk�S�k�X
� ,

dFi

d��S�k�T
� dFi

dnl n�k�
l ,

here Fi are the constraints �2.2� defining the m-phase solutions of �1.1�. The derivatives d /dk�,
/d��, d /dnl here are the total derivatives including the dependence of the functions
i�� ,k ,� ,n� on the corresponding parameters view the form of �2.11�. However, all these de-

ivatives are identically equal to zero on the family 
, so we get the first part of the Lemma. To
nish the proof we have to note also that the values S�k��X ,T�, n�k��X ,T� do not appear in the kth
rder of � of the normalization conditions �2.12� and �2.13� either.

Lemma 2.1 is proved.
We can now formulate the procedure in the following form:
We try to solve the systems �2.14� recursively in all orders and find the functions

˜
�k��� ,X ,T� satisfying the conditions �2.12� and �2.13�. At each kth step of our procedure we get
system on the functions S�k−1��X ,T�, n�k−1��X ,T� from the solvability conditions of �2.14�. The

ull set of Whitham solutions will then be parametrized by the set of all functions
S�k��X ,T� ,n�k��X ,T��, k0 satisfying the conditions of solvability of systems �2.14�.

Now let us investigate the systems arising on the functions S�k−1��X ,T�, n�k−1��X ,T� from the
olvability conditions of �2.14�

�
0

2�

. . . �
0

2�

��S�0�,n�0��i
�q� ��,X,T� f̃ �k�

i ��,X,T�
dm�

�2��m 	 0, q = 1, . . . ,m + s �2.15�

n the kth order of �. We note first that the solvability conditions of �2.14� for k=1 give a nonlinear
ystem on the functions S�0��X ,T�, n�0��X ,T�. It is not difficult to prove the following Lemma:

Lemma 2.2: The system arising for k=1 coincides with the Whitham system for the functions

�0��X ,T�, n�0��X ,T�.
Proof: Indeed, using Lemma 2.1 it is not difficult to see that the discrepancy f�1��� ,X ,T�

iffers from f̃�1��� ,X ,T� just by the terms containing derivatives �0X and �0T. However, according
o Lemma 1.1 these terms do not affect the orthogonality conditions �1.12� which then coincide

ith orthogonality conditions for f̃�1��� ,X ,T�.
Lemma 2.2 is proved.
The Whitham system �orthogonality conditions� for the functions S�0��X ,T�, n�0��X ,T� can be

ritten in the following general form:

W�q��S�0�,n�0���X,T� 	 ���S�0�,n�0��
�q� · f̃�1��S�0�,n�0����X,T�

= �
0

2�

. . . �
0

2�

��S�0�,n�0��i
�q� ��,X,T� f̃ �1�

i �S�0�,n�0����,X,T�
dm�

�2��m

= A�
�q��S�0�X,S�0�T,n�0��S�0�TT

�

+ B�
�q��S�0�X,S�0�T,n�0��S�0�XT

� + C�
�q��S�0�X,S�0�T,n�0��S�0�XX

�

+ Gl
�q��S�0�X,S�0�T,n�0��n�0�T

l + Hl
�q��S�0�X,S�0�T,n�0��n�0�X

l = 0 �2.16�

ith some functions A�
�q�, B�

�q�, C�
�q�, Gl

�q�, Hl
�q�, q=1, . . . ,m+s, �=1, . . . ,m, l=1, . . . ,s.

Let us prove now the following Lemma about the systems on S�k�, n�k�, k1.

Lemma 2.3: The orthogonality conditions of f̃�k+1��� ,X ,T� to the functions ��S�0�,n�0��
�q� give the
ollowing linear systems for the functions S�k��X ,T�, n�k��X ,T�, k1:
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� � 	W�q��X,T�
	S�0�

� �X�,T��
S�k�

� �X�,T��dX�dT� +� � 	W�q��X,T�
	n�0�

l �X�,T��
n�k�

l �X�,T��dX�dT�

= V�k�
�q��S�0�, . . . ,S�k−1�,n�0�, . . . ,n�k−1���X,T� ,

here

	W�q��X,T�
	S�0�

� �X�,T��
=

�W�q�

�S�0�T
� 	��T − T��	�X − X�� +

�W�q�

�S�0�X
� 	�T − T��	��X − X��

+
�W�q�

�S�0�TT
� 	 ��T − T��	�X − X�� +

�W�q�

�S�0�XT
� 	��T − T��	��X − X�� +

�W�q�

�S�0�XX
� 	�T − T��	 ��X − X�� ,

	W�q��X,T�
	n�0�

l �X�,T��
=

�W�q�

�n�0�
l 	�T − T��	�X − X�� +

�W�q�

�n�0�T
l 	��T − T��	�X − X�� +

�W�q�

�n�0�X
l 	�T − T��	��X − X�� .

In other words, the functions S�k��X ,T�, n�k��X ,T� satisfy the linearized Whitham system on
he functions S�0��X ,T�, n�0��X ,T� with additional right-hand part depending on the functions

�0� , . . ., S�k−1�, n�0� , . . ., n�k−1�.

Proof: Let us look at the terms in f̃�k+1��� ,X ,T� which contain the functions S�k��X ,T�,
�k��X ,T�:

�1� As we proved in Lemma 2.1 the functions f̃ �1�
i �� ,X ,T� contain only the terms depending

n S�0�, n�0�. It is easy to see that the functions f̃ �k+1�
i �� ,X ,T� will then contain the terms

� � 	 f̃ �1�
i ��,X,T�

	S�0�
� �X�,T��

S�k�
� �X�,T��dX� dT� +� � 	 f̃ �1�

i ��,X,T�

	n�0�
l �X�,T��

n�k�
l �X�,T��dX� dT�

ccording to the form of the first term in �2.11�.
�2� There are terms containing the functions S�k�, n�k� and the function �̃�1��� ,X ,T�. All such

erms can be written in the form:

−� � 
S�k�
� �X�,T��

	L̂�S�0�,n�0��j
i �X,T�

	S�0�
� �X�,T��

+ n�k�
l �X�,T��

	L̂�S�0�,n�0��j
i �X,T�

	n�0�
l �X�,T��

��̃�1�
j ��,X,T�dX� dT�,

here L̂j�S�0�,n�0��
i is the linear operator �1.10� given by the linearization of the system �2.2� on the

amily of m-phase solutions.
�3� There are terms of the form

−� . . .� 	2F�S�0�,n�0��
i ��,X,T�

	S�0�
� �X�,T��	S�0�

� �X�,T ��
S�k�

� �X�,T��S�1�
� �X�,T ��dX� dT� dX� dT � − ¯ ,

here F�S�0�,n�0��
i �� ,X ,T� is the left-hand part of the system �2.2�.

However, the sum of all such terms is equal to zero since they all correspond to the expansion
f the “shift of parameters” S�0��X ,T�, n�0��X ,T� on the family 
 where we have Fi�� ,X ,T�	0
dentically.

Let us look now at the terms in the orthogonality conditions

�
0

2�

. . . �
0

2�

��S�0�,n�0��i
�q� ��,X,T� f̃ �k+1�

i ��,X,T�
dm�

�2��m = 0 �2.17�
ontaining the terms �1� and �2�.
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We have identically

�
0

2�

. . . �
0

2�

��S�0�,n�0��i
�q� ��,X,T�L�S�0�,n�0��j

i ��,��,X,T�
dm�

�2��m 	 0 �2.18�

n 
 �where L�S�0�,n�0��j
i �� ,�� ,X ,T� is the “core” of the operator L̂�S�0�,n�0��j

i �X ,T��.
It is easy to see then that the inner product of ��q� with the terms �2� is equal to

�
0

2�

. . . �
0

2� � � 
S�k�
� �X�,T��

	��S�0�,n�0��i
�q� ��,X,T�

	S�0�
� �X�,T��

+ n�k�
l �X�,T��

	��S�0�,n�0��i
�q� ��,X,T�

	n�0�
l �X�,T��

�dX� dT�

�L̂�S�0�,n�0��j
i �X,T��̃�1�

j ��,X,T�
dm�

�2��m .

It is not difficult to see now that the terms of orthogonality conditions containing the terms �1�
nd �2� can be written together in the form

� � S�k�
� �X�,T��

	

	S�0�
� �X�,T��

���S�0�,n�0��
�q� · f̃�1��S�0�,n�0����X,T�dX� dT�

+� � n�k�
l �X�,T��

	

	n�0�
l �X�,T��

���S�0�,n�0��
�q� · f̃�1��S�0�,n�0����X,T�dX� dT�

where �¯¯� is the inner product of ��q� and f̃�1��.
All the other terms in the orthogonality conditions �2.17� are the smooth functionals of

�0� , . . . ,S�k−1�, n�0� , . . . ,n�k−1�, so we get the statement of the Lemma.
Lemma 2.3 is proved.
Let us consider now the systems �1.1� satisfying the special nondegeneracy conditions.

amely, we will assume that the corresponding Whitham system �2.16� can be resolved with
espect to the highest T derivatives of the functions S�0��X ,T�, n�0��X ,T� and written in the “evo-
ution” form:

S�0�TT
� = M�0��

� �S�0�X,S�0�T,n�0��S�0�XX
� + N�0��

� �S�0�X,S�0�T,n�0��S�0�TX
� + P�0�p

� �S�0�X,S�0�T,n�0��n�0�X
p ,

�2.19�
� = 1, . . . ,m ,

n�0�T
l = T�0��

l �S�0�X,S�0�T,n�0��S�0�XX
� + L�0��

l �S�0�X,S�0�T,n�0��S�0�TX
� + R�0�p

l �S�0�X,S�0�T,n�0��n�0�X
p ,

�2.20�
l = 1, . . . ,s .

After the introduction of the variables k�0�
� =S�0�X

� , ��0�
� =S�0�T

� we can write the system �2.19�
nd �2.20� in the form

k�0�T
� = ��0�X

� ,

��0�T
� = M�0��

� �k�0�,��0�,n�0��k�0�X
� + N�0��

� �k�0�,��0�,n�0����0�X
� + P�0�p

� �k�0�,��0�,n�0��n�0�X
p ,

n�0�T
l = T�0��

l �k�0�,��0�,n�0��k�0�X
� + L�0��

l �k�0�,��0�,n�0����0�X
� + R�0�p

l �k�0�,��0�,n�0��n�0�X
p ,

�2.21�

.e., in the form �1.15�.

We will consider now the hyperbolic systems �2.21�, i.e., such that the matrix
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V�
� �k�0�,��0�,n�0�� = � 0 Im 0

M�0� N�0� P�0�

T�0� L�0� R�0�
�

as exactly N=2m+s real eigenvalues with N linearly independent real eigenvectors. For hyper-
olic systems �2.21� it is natural to consider the Cauchy problem with the smooth initial data

�0��X ,0�, ��0��X ,0�, n�0��X ,0� �or S�0��X ,0�, S�0�T�X ,0�, n�0��X ,0��. The smooth solution of �2.21�
xists in general up to some finite time T0 until the breakdown occurs. So we can write the zero
global in X� approximation for the solution �2.11� just in the time interval where we have a
mooth solution of the Whitham system. Using Lemma 2.3 it is not difficult to prove then the
ollowing Lemma:

Lemma 2.4: For nondegenerate hyperbolic Whitham system (2.21) and the global solution

�0��X ,T�, n�0��X ,T� defined on the interval �0,T0� the higher orders approximations in (2.11) are
ll defined for all X and T� �0,T0� and are parametrized by the initial values S�k��X ,0�,
�k�T�X ,0�, n�k��X ,0�. �Let us recall that we assume that all systems �2.14� are solvable if the
orresponding orthogonality conditions are satisfied.�

Proof: Indeed, as follows from Lemma 2.3 the functions S�k��X ,T�, n�k��X ,T� are defined by
he initial values S�k��X ,0�, S�k�T�X ,0�, n�k��X ,0� and can be found from the linear system using the
haracteristic directions of �2.21� �defined by S�0��X ,T�, n�0��X ,T�� provided that all the smooth

olutions S�0��X ,T� , . . . ,S�k−1��X ,T�, n�0��X ,T� . . . ,n�k−1��X ,T� and �̃�1��� ,X ,T� , . . . ,
˜

�k−2��� ,X ,T� exist on the interval �0,T0�. According to Lemma 2.1 and Lemma 2.3 we can find

hen the functions �̃�k−1�
i �� ,X ,T� which are the local expressions �in X and T� of

�0��X ,T� , . . . ,S�k−1��X ,T�, n�0��X ,T� . . . ,n�k−1��X ,T� and their derivatives. Using the induction we
hen finish the proof of the Lemma.

Lemma 2.4 is proved.
According to Lemma 2.4 we can formulate now the following statement:
For the initial system �1.1� having the nondegenerate hyperbolic Whitham system �2.21� the

orresponding Whitham solutions �2.11� �or �2.4� and �2.5�� are defined by the initial values
�X ,0 ,��, ST�X ,0 ,��, n�X ,0 ,�� and exist in the time interval �0,T0� defined by the Whitham
ystem �2.21� and the initial data S�0��X ,0�=S�X ,0 ,0�, S�0�T�X ,0�=ST�X ,0 ,0�, and n�0��X ,0�
n�X ,0 ,0�.

The deformation procedure: Let us note now that the series �2.11� �or �2.4� and �2.5�� give in
act the one-parametric formal solutions of �1.1� with a parameter �. Let us rewrite now the
olutions �2.11� in the form which gives the concrete �formal� solution of �1.1� and is not con-
ected with the additional one-parametric �-family including this given solution. We omit now the
-dependence of functions S�X ,T ,��, n�X ,T ,�� �or put formally �=1� and say that the Whitham
olution is defined now by functions S�X ,T�, n�X ,T� determined by the initial values S�X ,0�,
T�X ,0�, and n�X ,0�. �Let us keep here the notations X and T for the spatial and time coordinates

ust to emphasize that we consider the “slow” functions SX�X ,T�, ST�X ,T�, n�X ,T�.�
Thus, we define now the Whitham solution as the solution of the system

Fi��,�T,�X,�TT,�XT,�XX, . . . � = 0, i = 1, . . . ,n �2.22�

aving the form

�i��,X,T� = �i�S�X,T� + �,SX�X,T�,ST�X,T�,n�X,T�� + �
k1

��k�
i �S�X,T� + �,X,T�

�2.23�

here the functions ��k�
i :

�1� Are 2�-periodic with respect to each ��;

�2� Have degree k �introduced below�;
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�3� Satisfy the normalization conditions �2.12� and �2.13� which will be written now in the
orm:

�
0

2�

. . . �
0

2�

�
i=1

n

���
i ��,SX,ST,n���k�

i ��,X,T�
dm�

�2��m = 0, �2.24�

�
0

2�

. . . �
0

2�

�
i=1

n

�nl
i ��,SX,ST,n���k�

i ��,X,T�
dm�

�2��m = 0 �2.25�

1, ��=1, . . . ,m, l=1, . . . ,s�.
Let us introduce now the gradation used for the formal expansion �2.23�. Namely, for the

ystems �1.1� having the nondegenerate hyperbolic Whitham system �2.21� we put the following
radation on the functions SX�X ,T�, ST�X ,T�, n�X ,T� and their derivatives:

�1� The functions k��X ,T�=SX
��X ,T�, ���X ,T�=ST

��X ,T�, and nl�X ,T� have degree 0;
�2� Every differentiation with respect to X adds 1 to the degree of the function;
�3� The degree of the product of two functions having certain degrees is equal to the sum of

heir degrees.
In other words, for the parameters U= �k ,� ,n� we have the gradation rule of Dubrovin-Zhang

ype, i.e.,
All the functions f�U� have degree 0;
The derivatives UkX

� have degree k;
The degree of the product of functions having certain degrees is equal to the sum of their

egrees.
We put now the evolution conditions to the functions S�X ,T�, n�X ,T� having the form:

STT
� = �

k1
��k�

� �k,�,n,kX,�X,nX, . . . � , �2.26�

nT
l = �

k1
��k�

l �k,�,n,kX,�X,nX, . . . � , �2.27�

here ��k�
� , ��k�

l are general polynomials in derivatives kX ,�X ,nX ,kXX ,�XX ,nXX , . . . �with coeffi-
ients depending on �k ,� ,n�� having degree k.

We now substitute the expansion �2.23� in the system �2.22� and use the relations �2.26� and
2.27� to remove all the time derivatives of parameters �k ,� ,n�. After that we can divide the
ystem �2.22� into the terms of certain degrees and try to find recursively all the terms

�k��� ,X ,T� for k=1,2 , . . ..
It is easy to see again that for any ��k��� ,X ,T� we will have the linear system analogous to

2.8� and �2.14�, i.e.,

L̂�S�X,T�,n�X,T��j
i ��k�

i ��,X,T� = f̂ �k�
i ��,X,T� , �2.28�

here f̂�k��� ,X ,T� is the discrepancy having degree k according to the definition above.
We have to put again the orthogonality conditions

�
0

2�

. . . �
0

2�

��S,n�i
�q� ��,X,T� f̂ �k�

i ��,X,T�
dm�

�2��m 	 0 �2.29�

n the functions f̂ �k�
i �� ,X ,T� and then find the unique ��k��� ,X ,T� satisfying the normalization

onditions �2.24� and �2.25�.
It is not difficult to prove the following Lemma:

Lemma 2.5: (1) For any system (1.1) having the nondegenerate hyperbolic Whitham system
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2.21) the functions ��k�
� , ��k�

l are uniquely determined by the orthogonality conditions (2.29) in the
rder k.

(2) The functions ��1�
� , ��1�

l give the Whitham system (2.19) and (2.20) for the functions

�0��X ,T�, n�0��X ,T�. �In fact, the functions S�X ,T ,��, n�X ,T ,�� introduced previously satisfy the
ull system �2.26� and �2.27�.�

Proof: Indeed, using Lemma 2.1 it is easy to see that the functions f̂ �1�
i �� ,X ,T� coincide with

he functions f̃ �1�
i �� ,X ,T� introduced in �2.14� after the replacement of functions S�0��X ,T�,

�0��X ,T� by S�X ,T�, n�X ,T�. Comparing then the orthogonality conditions �2.29� with �2.15� we
et the second part of the Lemma.

To prove the first part we just note that all ��k�
� , ��k�

l arise in the kth order of system �2.22� “in
he same way.” We can conclude then that the orthogonality conditions �2.29� in the kth order
lways contain the functions ��k�

� , ��k�
l in one particular way which coincides with the appearance

f ��1�
� , ��1�

l in the Whitham system arising for k=1. From the definition of the nondegenerate
hitham system we now obtain the first part of the Lemma.

Lemma 2.5 is proved.
Definition 2.1: We call the system (2.26) and (2.27) or the equivalent system

kT
� = �X

�,

�T
� = �

k1
��k�

� �k,�,n,kX,�X,nX, . . . � ,

nT
l = �

k1
��k�

l �k,�,n,kX,�X,nX, . . . � �2.30�

he deformation of the Whitham system (2.19) and (2.20) (or (2.21)).
The functions k��X ,T�, ���X ,T�, nl�X ,T� are the “slow” functions of the variables x and t and

he system �2.30� gives the analog of the “low-dispersion” expansion in our case. The asymptotic
olutions �2.23� of the initial system �2.22� are parametrized by the asymptotic solutions k��X ,T�,
��X ,T�, nl�X ,T� of the system �2.30� and arbitrary �constant� initial phases �0

�. As follows from
ur considerations above the solutions �2.23� give all the “particular solutions” �2.4� and �2.5�,
owever, they do not contain the additional information about the one-parametric �-family given
y �2.4� and �2.5�

Remark 1: Let us note that the full set of parameters of m-phase solutions of �1.1� is given by
, �, n, and �0. However the functions �0�X ,T� do not present as the parameters of solutions
2.23� in this approach. This shows in fact that the introduction of the functions �0

��X ,T� does not
ive “new” formal solutions of �1.1� and is responsible for the additional �-dependence of one-
arametric families �2.4� and �2.5�. Here they are “absorbed” by the total phase S�X ,T� connected
ith the “particular” formal solution of �1.1�.

Remark 2: In our consideration we fixed some functions �i�� ,k ,� ,n� on the family 
 �for
ach �k ,� ,n�� as having zero initial phases. However, the choice of the functions �i�� ,k ,� ,n�
s not unique. In particular, the natural change of the functions �i�� ,k ,� ,n� on 
 can be written
n the form

����,k,�,n� = ��� + �0�k,�,n�,k,�,n� , �2.31�

here �0
��k ,� ,n� are arbitrary smooth functions.

It is not difficult to see also that the system �2.30� depends on the choice of the functions
i�� ,k ,� ,n� in the high �k2� orders.

Let us give here the definition given by B. A. Dubrovin and Y. Zhang64,66 and connected with
he “equivalence” of different infinite �or finite� systems.
Definition 2.2 �B. A. Dubrovin, Y. Zhang�: Consider the system of the form
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UT
� = �

k1
V�k�

� �U,UX,UXX, . . . �, � = 1, . . . ,N �2.32�

or arbitrary parameters U� where all V�k�
� are smooth functions polynomial in UX ,UXX , . . . and

aving degree k. We say that two systems (2.32) are connected by the triviality transformation (or
quivalent) if they are connected by the formal substitution

Ũ� = �
k0

Ũ�k�
� �U,UX,UXX, . . . � ,

here all Ũ�k�
� are smooth functions polynomial in UX ,UXX , . . . and having degree k.

Let us say actually that the definition of B. A. Dubrovin and Y. Zhang is applied usually to the
hole integrable hierarchies and plays the important role in the classification of integrable hier-

rchies having the form �2.32�. We will prove here the following Lemma:
Lemma 2.6: The deformations of the Whitham system (2.30) written for the initial functions

�� ,k ,� ,n� and ���� ,k ,� ,n� connected by the transformation (2.31) are equivalent in
ubrovin-Zhang sense.

Proof: Let us prove first the following statement:
For any transformation �2.31� there exists a unique change of functions S��X�, nl�X�:

S�� = S� − �0
��k,�,n� + �

k1
S�k�

� �k,�,n,kX, . . . � ,

n�l = nl + �
k1

n�k�
l �k,�,n,kX, . . . � �2.33�

uch that:
�1� All S�k�, n�k� are polynomial in derivatives of �k ,� ,n� and have degree k;
�2� For any solution �2.23� ���S,n��� ,X ,T�� of �2.22� the functions

�i�S��X ,T�+� ,SX� ,ST� ,n�� satisfy the normalization conditions

�
0

2�

. . . �
0

2�

�
i=1

n

����
i �S� + �,SX� ,ST�,n����S,n�

i ��,X,T�
dm�

�2��m 	 0, �2.34�

�
0

2�

. . . �
0

2�

�
i=1

n

�n�l�i �S� + �,SX� ,ST�,n�����S,n�
i ��,X,T� − ��i�S� + �,SX� ,ST�,n���

dm�

�2��m 	 0.

�2.35�

For the proof of this statement let us note first that we can always express all the time
erivatives of k, �, and n using the system �2.30� in terms of X-derivatives of these functions.
sing this procedure we try to find the transformation �2.33� recursively in all degrees by substi-

ution of �2.33� in �2.34� and �2.35�. It is not difficult to check then that the functions S�k�
� , n�k�

l are
efined in the kth order of �2.34� and �2.35� from a linear system. The matrix of this linear system
oincides with the Gram matrix of functions ���, �nl at every X and T. Thus, for the full
ondegenerate family of m-phase solutions of �1.1� this system has a unique solution at every
egree k. The transformation �2.33� is evidently invertible in sense of the infinite series �polyno-
ial with respect to derivatives of �k ,� ,n�� so we can also express the functions �S ,n� in terms

f �S� ,n��.
We can now try to use the functions ��i�S�+� ,SX� ,ST� ,n�� as the zero approximation in the
S� ,n��-expansion of the corresponding solution �2.23�. It is not difficult to see that the difference
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��i�S� + �,SX� ,ST�,n�� − ��S,n�
i ��,X,T�

an be represented as the infinite series polynomial with respect to derivatives of �k ,� ,n� and
tarting with the terms of degree 1. After the expression of the functions �k ,� ,n� in terms of
k� ,�� ,n�� in this difference we get finally the �S� ,n��-expansion of the solution ��S,n�

i �� ,X ,T�.
The functions �S� ,n�� now satisfy the new deformed Whitham system �2.26� and �2.27�

orresponding to the choice of the functions ���� ,k� ,�� ,n�� as the functions of zero approxi-
ation.

It is easy to see also that the transformation �2.33� remains polynomial in X-derivatives of
k ,� ,n� after the expression of time derivatives of �k ,� ,n� using the system �2.30�.

We obtain then that the transformation �2.33� gives a “triviality” connection between the
ystems �2.30� written for the initial functions ��� ,k ,� ,n� and ���� ,k ,� ,n�.

Lemma 2.6 is proved.
At the end let us note again that Lemma 2.6 is important in fact for the integrable hierarchies

ather than for the one particular system �1.1� according to Dubrovin-Zhang approach to classifi-
ation of integrable systems.
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Valence two Killing tensors in the Euclidean and Minkowski planes are classified
under the action of the group which preserves the type of the corresponding Killing
web. The classification is based on an analysis of the system of determining partial
differential equations for the group invariants and is entirely algebraic. The
approach allows one to classify both characteristic and noncharacteristic Killing
tensors. © 2006 American Institute of Physics. �DOI: 10.1063/1.2217649�

. INTRODUCTION AND BASIC PROPERTIES

. Killing tensors and separable webs

A Killing tensor �KT� on a pseudo-Riemannian space �M ,g� is a tensor K of type �0,k� which
atisfies

��j�K�i1. . .ik� = 0, �1�

here � denotes the covariant derivative defined by the Levi-Civita connection of the pseudo-
iemannian metric g and where the parentheses signify symmetrization of the enclosed indices. It
as shown by Eisenhart5 that such tensors arise naturally from first integrals of the geodesic flow
n �M ,g� in the form

I = Ki1. . .ik

dqi1

ds
¯

dqik

ds
.

The function I, defined on the tangent bundle TM, is a first integral of the geodesic equations
i.e., it is constant along each geodesic� if and only if the Killing tensor equation �1� holds. Killing
ensors may also be characterized in contravariant form by means of the following function
efined on the cotangent bundle T*M:

I* = Ki1. . .ikpi1
. . . pik

,

here �qi ,pi� denote canonical coordinates on T*M. Condition �1� is then equivalent to

�I*,H� = 0,

here �·,·� denotes the Poisson bracket and

H = 1
2gijpipj ,

he geodesic Hamiltonian.

�
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The set of all Killing tensors of valence k, on an n-dimensional manifold M, is a real vector
pace which we denote by Kk�M�. Its dimension d satisfies the Delong-Takeuchi-Thompson
nequality4,15,16

d �
1

n
�n + k

k + 1
��n + k − 1

k
� .

quality is achieved for manifolds of constant curvature. Moreover, in this case the Killing tensors
f valence k are sums of symmetrized products of the Killing vectors of the manifold. In manifolds
ith isometry groups of less than the maximal dimension there may exist Killing tensors which

re not expressible in this way. For example, such a situation occurs in the Kerr space-time.3

Killing tensors of type �0, 2� which we call Killing 2-tensors, are particularly important.
ndeed, if the eigenvalues of a Killing 2-tensor are real and simple and the eigenvectors are normal
orthogonally integrable�, then the Killing tensor defines an orthogonally separable web on M, that
s n foliations of mutually orthogonal �n−1�-dimensional hypersurfaces. To the separable web are
ssociated systems of coordinates with respect to which the Hamilton-Jacobi equation for the
eodesic flow is solvable by separation of variables �see Benenti1�. Killing 2-tensors with the
bove properties are called characteristic Killing tensors �CKTs�.

It is well known that in the Euclidean plane there exist four types of orthogonally separable
ebs �see, for example, Miller11�. Nevertheless, it is not a trivial task to determine which type of
eb is defined by a given characteristic Killing tensor. The converse problem of characterizing the
illing tensors which define the same separable web is also challenging. This problem becomes

ven more difficult in dimension greater than two where the preliminary problem of identifying
he characteristic Killing tensors is itself a daunting task. It is thus clear that finding an effective

ethod of classifying Killing tensors would be very useful indeed.
The classification of separable coordinates in two- and three-dimensional Euclidean space by

illing tensors dates back to the work of Eisenhart.5 A similar classification for two- and three-
imensional Minkowski space was undertaken by Kalnins,8 who classified the symmetric second-
rder differential operators that commute with the wave operator and solved the Eisenhart inte-
rability conditions5 to obtain the metric in the two-dimensional case. A classification of KTs in
he Euclidean and Minkowski planes based on an analysis of their singular sets �i.e., the points
here the eigenvalues of the Killing tensors are not real and simple� is given by Benenti and
astelli2 and Rastelli.13 Recently remarkable progress in the classification problem was achieved
y McLenaghan, Smirnov, Horwood, The, and Yue by means of the invariant theory of Killing
ensors on spaces of constant curvature.7,9,10,14 In this theory Killing tensors are classified modulo
he group which consists of the transformations on K2�M� induced by the isometries of the
nderlying pseudo-Riemannian manifold �M ,g� and the transformation which maps any Killing
ensor K into K+bg, where b is any real number. More specifically to any isometry � on M is

ssociated the transformation on K�K̂ on K2�M� defined with respect to a system of local
oordinates �qi� by

K̂ij�q� = Jk
i ��−1�q��Jl

j��−1�q��Kkl��−1�q�� , �2�

here Jj
i�q�=��i /�qj is the Jacobian of the transformation �. Two Killing tensors are considered

quivalent if one can be obtained from the other in this way. Clearly all CKTs in the same
quivalence class define the same orthogonal web. The classification is based on set of algebraic
nvariants of K2�M� under the action of the group, from which a classification scheme for the type
f the separable web can be constructed in the cases considered, namely, E2, M2, and E3.

The approach presented in this paper is related but somewhat different than that developed by
cLenaghan et al. It is based on two observations: �i� the transformations on K2�M� induced by

he isometries are not the only ones which preserve the type of web defined by a given CKT.
ndeed, any transformation of the form K�aK+bg also preserves the web �in Refs. 9 and 10,
=1 was assumed�; �ii� two webs of the same type are not necessarily isometric. For example two

lliptic-hyperbolic in the Euclidean plane webs with different interfocal distances are of the same

                                                                                                            



t
d
K
t
g
e

u
o
m
t
c
R
m
m

t
t
I

B

K
g

r
g

i

w
�

G
o

m

c
w

m
o
�

c
�
R

073506-3 Geometrical classification of Killing tensors J. Math. Phys. 47, 073506 �2006�

                        
ype but are not isometric but are rather related by a dilatation transformation. In the following we
o not focus on the transformations of the manifold M, but directly on the transformations of
2�M� that preserve the type of separable web defined by a given characteristic Killing tensor. In

he Euclidean and Minkowski planes these transformations are well known and generate a Lie
roup with dimension equal to that of K2�M�. This further fact allows the determination of the
quivalence classes in a purely algebraic way which is described in the sequel.

There are both advantages and disadvantages to the extension of the group of transformation
sed in our classification scheme. On the positive side is the very natural way in which the classes
f KTs which define the distinct types of separable webs are obtained. Restriction of the transfor-
ations of KTs to those that preserve the web has the result that the CKTs which define the same

ype of web are scattered through many classes. The method also leaves open the possibility of
lassifying noncharacteristic KTs. On the negative side, while the isometry group of pseudo-
iemannian manifold is known in many cases, it is not easy to identify the additional transfor-
ations of K2�M� that preserve the type of a Killing web. This makes it very difficult to extend the
ethod to higher dimensions and to spaces with nonvanishing curvature.

The plan of the paper is as follows: in Sec. I B we outline the necessary theory of Lie
ransformation groups to be applied later in the paper. In Sec. II we perform the classification in
he Euclidean plane. The classification in the Minkowski plane is undertaken in Sec. III. Section
V contains the conclusion.

. Orbit of Lie group actions

Let � :G�K→K be a linear action of a finite-dimensional Lie group G on the vector space
. According to the notation of Ref. 12, the infinitesimal generators of the action form a finitely

enerated and involutive distribution � of nonconstant rank �isomorphic to the Lie algebra of G�.
Proposition 1:6,12 A distribution on a manifold is integrable if and only if it is involutive and

ank-invariant. Finitely generated involutive distributions are always rank-invariant and so inte-
rable.

By this generalized Frobenius theorem the distribution � is integrable, and for the rank-
nvariance property it is tangent to any of the sets

rj = �x � K:	rank���	x = j� ,

hich are unions of maximal connected integral submanifolds Sx of �, but in general not
immersed� submanifolds.

All the connected components of the Lie group G are diffeomorphic to the normal subgroup

0 which is the connected component containing the identity. Then G=�g�ZgG0 where Z is a set
f cosets representatives.

The orbit Ox of the action � can be obtained as union of maximal integral manifolds of �
apped one into the other by the diffeomorphisms �g with g�Z,

Ox = �
g�Z

�g�Sx� = �
g�Z

Sg·x.

Lemma 2: If rj is a submanifold of dimension j then for any x�rj Sx is the connected
omponent of rj containing x and the orbit Ox is the union of the connected components of rj

hich are images of Sx through the action of the elements of Z.
If dim G=dim K=n then we are able to determine the orbits where the distribution � has

aximal rank by looking for the connected components of rn and gluing the ones mapped into the
thers by the elements of Z. Moreover the other orbits are contained in the sets where the rank of
change and, if the condition dim rj= j still holds, they can all be determined in an algebraic way.

Some tools useful to detect the components connected by arcs �equal to topological connected
omponents in our case� of a subset of Rn are now introduced. Let us consider a set A�Rn and let
Ai�i�I be its partition in connected components. We consider the natural decomposition
n m n−m n m
→R �R , so that any point of P�R can be labeled as P= �v ,p� with v�R and
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p�Rn−m. In this way we get a partition �Vv�v�Rm of Rn in parallel hyperplanes of dimension n
m, where Vv= �P�Rn : P= �v ,p� ,p�Rn−m�. We call Av=A�Vv the section of A determined by

he hyperplane Vv and construct its partition in connected components

Av = �
��Iv

A�
v .

n the family �A�
v���Iv,v�Rm of the connected components of the sections of A we define the

elation

A�
v 
 A�

w Û $ !i � I:A�
v � Ai and A�

w � Ai

t’s easy to check that the following Lemma holds:
Lemma 3: The relation � is an equivalence relation. There is a one-to-one correspondence

etween the equivalence classes �A�
v� and the (arc)-connected components Ai of A. If there exists

continuous arc f : �0,1�→Rm�Rn−m such that f��0,1���A, f�0�= �v ,p�, f�1�= �w ,q� with
p�A�

v , q�A�
w then A�

v 
A�
w.

Hence, the study of the connected components of A can be reduced to the study of connected
omponents of all sections Av �of lower dimension� under the equivalence relation.

I. KILLING TENSORS IN THE EUCLIDEAN PLANE

In the Euclidean plane E2, with Cartesian coordinates �x ,y� and the standard metric g, the
eneral Killing 2-tensor K has the following contravariant form:

�Kij� = � A + 2�y + 	y2 C − �x − �y − 	xy

C − �x − �y − 	xy B + 2�x + 	x2 � .

e denote by K�E2� the vector space of KTs on the Euclidean plane. On this space there exist six
inds of transformation preserving the type of the web associated to each KT: three of them
orrespond to isometries, a fourth corresponds to the dilatation of E2. The last two are not asso-
iated with any coordinate transformation in the plane but act directly on the tensor K and
orrespond to the addition of a multiple of the metric tensor �K�K+
g� and to the multiplication
f the tensor for a nonvanishing constant �K��K�. The infinitesimal generators of these trans-
ormations are easily calculated �see Ref. 9 for the generators corresponding to isometries and
ddition of a multiple of the metric�. With respect to the basis of the vector fields on K�E2� given
y ��A ,�B ,�C ,�� ,�� ,�	� the infinitesimal generators are spanned by:

Translations

V1 = �0,− 2�,�,0,− 	,0� ,

V2 = �− 2�,0,�,− 	,0,0� .

Rotation

V3 = �− 2C,2C,A − B,�,− �,0� .

Dilatation of E2,

V4 = �2A,2B,2C,�,�,0� .

Addition of the metric

V5 = �1,1,0,0,0,0� .

Scalar multiplication
V6 = �A,B,C,�,�,	� .
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These vector fields form a Lie algebra and therefore generate an integrable distribution,
enoted by �E. In order to study the rank of �E we gather the components of the Vi in the matrix

M =�
0 − 2� � 0 − 	 0

− 2� 0 � − 	 0 0

− 2C 2C A − B � − � 0

2A 2B 2C � � 0

1 1 0 0 0 0

A B C � � 	

 �3�

ith determinant det M =−2	���2−�2−	�A−B��2+4���+	C�2�. We are led naturally to consider
he two surfaces where det M =0,

S1: 	 = 0 dim S1 = 5, �4�

S2: ��2 − �2 = 	�A − B�
�� = − 	C

� dim S2 = 4, �5�

hose intersection is the vector subspace �=�=	=0. The sections of S1, obtained using as
arameters A, B, and C, are always planes; on the other hand the sections of S2 are curves
escribed by the following lemma:

Lemma 4: If the parameters A, B, and C have the values C=0 and A=B then the section of S2

s given by the axis 	, for other values of the parameters the section is given by two parabolas
ontained in two orthogonal planes, with vertex in the origin and foci on the 	 axis symmetric with
espect to the origin.

Proof: When C�0 Eq. �5� become

��2 − �2�C + ���A − B� = 0,

�� = − 	C .

he first equation can be factorized as C��−k+����−k−�� where

k± =
B − A ± ��A − B�2 + 4C2

2C
.

hus the section of S2 is the union of the two parabolas

�� = k+�

	 = −
k+

C
�2 � � �� = k−�

	 = −
k−

C
�2 � .

e observe that k+k−=−1 thus the two parabolas are contained in two orthogonal planes. Their
oci lie on the 	 axis with

	 = ± 1
4
��A − B�2 + 4C2;

eing k+ /C�0 the first parabola is always downward, while the second one is always upward. For

=0 the second equation in �5� becomes ��=0. Then when A�B we have the two parabolas
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�� = 0

	 = −
�2

B − A
� � �� = 0

	 =
�2

A − B
�

or which the previous considerations on foci hold. Finally when A=B we have �=�=0 and then
he two parabolas degenerate in the 	 axis.

We remark that the functions = ��2−�2−	�A−B��2+4���+	C�2 and 	, defining the sur-
aces S1 and S2, are the fundamental invariant of K2�R2� determined by McLenaghan et al.9 under
he action of the group induced by the isometries and the addition of a multiple of the metric.

Proposition 5: Outside of the union of the surfaces S1 and S2, the distribution �E has rank 6
nd the space K�E2�− �S1�S2� is an orbit of the action.

Proof: The distribution has maximal rank outside of S1�S2 because the determinant of the
atrix �3� vanishes only on that set. Since K�E2�− �S1�S2 1� has the same dimension of the

istribution, each connected component is an orbit of the action generated by the vector fields Vi.
he connected components are two: one for 	�0 and the other for 	�0. However, the two
omponents are linked together by the finite transformation that change the sign of the KT and so
hey form a unique orbit with respect to the disconnected group generated by the vector fields and
his transformation.

Proposition 6: On S1−S2 the rank of �E is 5 and this space is an orbit of the action.
Proof: In order to determine the rank of �E on S1 we set 	=0 in the matrix M: all the

onvanishing 5�5 minors contain the factor �2+�2, and one of them is 2��2+�2�2. Thus the rank
f M is lesser than 5 if and only if �=�=0, that is on S1�S2. Because S1−S2 is connected and has
imension five it is an orbit of the action.

Proposition 7: On S2−S1 the rank of �E is 4 and this space is an orbit of the action.
Proof: Assume 	�0, from Eq. �5� we obtain the relation

B = A −
�2 − �2

	
, C = −

��

	
,

hich substituted in adj�M� make it identically zero. Then on S2−S1 the rank of the distribution is
t most 4, but one 4�4 minor is 	3�0. Thus outside of S1�S2 the rank is exactly 4. From
emma 4 it follows that for any fixed values of A−B and C �not both vanishing� the section of

2−S1 is formed by four disjoint parabola’s arcs. But it is always possible to find a continuous
eformation of the parameter A ,B ,C gluing together the two upward and downward arcs, respec-
ively. Indeed with the change in the space of parameters A−B=� cos �, 2C=� sin � we have that
he directions of the two planes containing the parabolas depends only on �, while the amplitude
f the two parabolas is inversely proportional to �, thus letting � go to zero with a fixed value of
has the effect to glue together the arcs of the two parabolas along the 	 axis. Hence, S2−S1 has

wo connected components only, which can be connected using the change of sign of the KT.
Finally we study the intersection S1�S2 which is the three-dimensional vector space with

oordinates A, B, and C. On S1�S2 the only independent vector fields among the Vi are V3, V5,
nd V6, whose components, with respect to ��A ,�B ,�C�, form the matrix

M̃ = �− 2C 2C A − B

A B C

1 1 0
 . �6�

ntroducing the one-dimensional line

S3:�� = � = 	 = 0

C = 0

A = B
� dim S3 = 1 �7�
e are able to individuate the last two orbits.
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Proposition 8: The rank of �E on �S1�S2�−S3 is 3 and then this space is an orbit of the
ction.

Proof: The determinant of the matrix �6� is det M̃ =4C2+ �A−B�2, then it vanishes only on S3.
ecause �S1�S2�−S3 is connected it is an orbit. �

Proposition 9: The rank of �E on S3 is 1 and then this space is an orbit of the action,
ontaining the (noncharacteristic) tensors of the form 
 g.

Proof: The only independent vector field on S3 is the constant vector V5, generated by the
ddition of a multiple of the metric. �

We remark that the discrete transformation �A↔B ,�↔�� induced by the discrete isometry of
he Euclidean plane ��x̄=y , ȳ=x�� does not allow one to glue together the above found orbits.

In conclusion five orbits of the action of the web preserving group are found.
E1� The set K�E2�− �S1�S2�, the tensors on this orbit generate elliptic-hyperbolic coordinates.

tensor of this type is

� y2 1 − xy

1 − xy x2 � .

E2� The set S1−S2, the tensors on this orbit generate parabolic coordinates. Two tensors of this
ype are

� 2y − x

− x 0
�, � 0 − y

− y 2x
� .

E3� The set S2−S1, the tensors on this orbit generate polar coordinates. A tensor of this type
s

� y2 − xy

− xy x2 � .

E4� The set �S1�S2�−S3, the tensors on this orbit generate Cartesian coordinates. Three
ensors of this type are

�1 0

0 0
�, �0 0

0 1
�, �0 1

1 0
� .

E5� The line S3, the tensors on this orbit are multiples of the metric.
This classification coincides with that given by McLenaghan et al.9 where the four types of

eparable webs in E2 are characterized by the vanishing or not of the fundamental invariants 	 and
. The orbits are strictly related to the set of singular points discussed by Benenti and Rastelli.2

ndeed, the discriminant of the characteristic polynomial of K vanishes on points satisfying

	xy + �x + �y − C = 0,

	�y2 − x2� + 2��y − �x� + A − B = 0. �8�

f 	�0 �i.e., outside S1�, Eq. �8� describes two hyperbolas both centered in �−� /	 ,−� /	�. For
ensors belonging to S2−S1 both conics degenerate into two couples of lines through the center
polar web�. Otherwise, they have two points in common �elliptic-hyperbolic web�. For tensor
elonging to S1 �	=0� the system �8� is linear: if K�S1−S2, it represents the intersection of two
rthogonal lines �parabolic web�; if K� �S1�S2�−S3 the system has no solution �Cartesian web�,

hile for K�S3 all points are singular.
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II. KILLING TENSORS IN THE MINKOWSKI PLANE

On the Minkowski plane M2 with pseudo-Cartesian coordinates �t ,x� and metric g with con-
ravariant components

�gij� = �1 0

0 − 1
�

he general Killing tensor K has contravariant components:

�Kij� = � A + 2�x + 	x2 C + �t + �x + 	tx

C + �t + �x + 	tx B + 2�t + 	t2 � .

e denote by K�M2� the vector space of all the KTs on M2. On this space six kinds of transfor-
ation are defined, which preserve the type of the web associated to the KT: three are induced by

he isometries of the Minkowski plane and a fourth by its dilatation; the last two do not depend on
ny transformation of M2 and are defined directly on K�M2�: adding a multiple of the metric tensor
K�K+
g� and multiplying the tensor for a nonvanishing constant �K��K�. With respect to
he basis of the vector fields on K�M2� given by ��A ,�B ,�C ,�� ,�� ,�	� the infinitesimal generators
re spanned by:

Translation:

V1 = �0,− 2�,− �,0,− 	,0� ,

V2 = �− 2�,0,− �,− 	,0,0� .

Boost �hyperbolic rotation�:

V3 = �2C,2C,A + B,�,�,0� .

Dilatation of M2:

V4 = �2A,2B,2C,�,�,0� .

Addition of the metric:

V5 = �1,− 1,0,0,0,0� .

Scalar multiplication:

V6 = �A,B,C,�,�,	�

see Ref. 10 for the computation of V1, V2, V3, and V5�.
Moreover, similar to the Euclidean case, there are the following discrete transformations

hich are analyzed in detail in Sec. III B: the first is the change in sign of the Killing tensor

R0:K → − K .

he others are induced from the discrete isometries of M2�t̄= t , x̄=−x� and �t̄=−t , x̄=x�, they are

R1:C → − C,� → − � ,

R2:C → − C,� → − � ,
n Refs. 8 and 10 the transformations used are R1 together with
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R2
ˆ :A ↔ B,� ↔ � ,

hich arises from a change of signature of the metric. We prefer transformation R2 instead of R̂2

ecause it preserves the interior �and exterior� of the null cone in M2.

. Study of the distribution rank

The vector fields Vi form a Lie algebra and therefore generate an integrable distribution,
enoted by �M. In to order to study the rank of �M we gather the components of the Vi in the
atrix

M =�
0 − 2� − � 0 − 	 0

− 2� 0 − � − 	 0 0

2C 2C A + B � � 0

2A 2B 2C � � 0

1 − 1 0 0 0 0

A B C � � 	

 �9�

ith determinant:

det M = 2	�	�A + B − 2C� − �� − ��2��	�A + B + 2C� − �� + ��2� .

hus we consider the two surfaces

S1:	 = 0, dim S1 = 5, �10�

S2:�	�A + B − 2C� − �� − ��2��	�A + B + 2C� − �� + ��2� = 0, dim S2 = 5. �11�

e remark that the functions

f1 = 	, f2 = �	�A + B − 2C� − �� − ��2��	�A + B + 2C� − �� + ��2� ,

oincide with the two fundamental algebraic invariants of K�M2� under the action of the isometry
roup augmented by addition of a multiple of the metric given in Ref. 10.

The surface S2 is formed by two branches B1 and B2 given, respectively, by the equations
�A+B−2C�= ��−��2 and 	�A+B+2C�= ��+��2. Nevertheless these two branches are mapped
ne in the other by the transformation R1 and thus it is appropriate to consider them as a unique
bject. The intersection of B1 and B2 is the surface

B1 � B2 = S3:�	�A + B� = �2 + �2

	C = ��
� dim S3 = 4 �12�

he intersection of S1 and S2 is described by the equations 	=0 and �2=�2, while S1�S3 has
quations �=�=	=0.

The surfaces in Fig. 1 represent all the possible �generic� sections of S2 in the space � ,� ,	.
hese sections can be grouped in four kinds, corresponding to the following open sets in the space
f parameters A+B and C:

region I:�A + B − 2C � 0,A + B + 2C � 0� ,

region II:�A + B − 2C � 0,A + B + 2C � 0� ,
region III:�A + B − 2C � 0,A + B + 2C � 0� ,
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region IV:�A + B − 2C � 0,A + B + 2C � 0� .

oreover, there are some nongeneric sections corresponding to the boundaries of the above
egions, where at least one of the functions A+B±2C vanishes; in these cases the corresponding

paraboloid becomes a plane �an example is given by the section T�. Figure 2 describes the relation
between the surfaces S1, S2, and S3 for parameters belonging to region I.

Proposition 10: The rank of �M is 6 on K�M2�− �S1�S2�.
Proof: Since the determinant of the matrix �9� vanishes only on S1�S2, outside of this set the

ank of �M is maximal.
Proposition 11: The rank of �M on S1−S2 is 5.
Proof: In order to study the rank of �M on S1 we set 	=0 in the matrix M: all the nonvan-

shing 5�5 minors contain the factor �2−�2, and one of them is 2��2−�2�2. Thus the rank is
esser than 5 only when �2=�2 that is on S1�S2. �

Proposition 12: The rank of �M on S2− �S1�S3� is 5.
Proof: Let us study now the rank of the distribution on S2 without its intersection with S1:

FIG. 1. The sections of surface S2.
sing the condition 	�0 Eq. �11� of the two branches of S2 becomes
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B =
�� − ��2

	
− A + 2C on the branch B1,

B =
�� + ��2

	
− A − 2C on the branch B2.

ubstituting them in the matrix M �9� and calculating the adjoint we obtain that in both cases all
he nonvanishing 5�5 minors contain the factor ��−	C and one of them is 	2���−	C�. Then
he rank is 5 except when 	C=��, that is outside of S3=B1�B2. �

The surface S2− �S1�S3� is formed by several connected components: in Sec. III B we will
tudy which of these components are mapped one in the other by the discrete transformations and
hen generate the same type of coordinates system.

Proposition 13: The rank of �M on S3−S1 is 4.
Proof: From the previous proposition the rank of �M on S3−S1 is at most 4 and it is lesser if

ll the 4�4 minors of M vanish. Outside of the intersection with S1 �i.e., for 	�0� Eq. �12� of S3

s

B =
�2 + �2

	
, C =

��

	

nd substituting them in M one of the 4�4 minors is 	3�0. Hence, the rank of �M on S3−S1 is
lways 4. �

Let us now analyze the intersection between S1 and S2: S1�S2 is formed by two branches
somorphic to R4 intersecting in the three-dimensional vector space �=�=	=0. The first branch
s described by the equations 	=0 and �=�, while the second by the equations 	=0 and
=−�. Inside S1�S2 we point out the surface �union of two branches, named, respectively, C1

nd C2�

S4:�	 = 0

� = �

A + B = 2C
� � �	 = 0

� = − �

A + B = − 2C
� dim S4 = 3. �13�

e observe that the branches C1 and C2 are both isomorphic to R4 and their intersection �belong-
ng entirely to S1�S3� is the line

C1 � C2 = S5:�� = � = 	 = 0

B = − A

C = 0
� dim S5 = 1. �14�

Proposition 14: The rank of �M on �S1�S2�− �S3�S4� is 4.

FIG. 2. The section of S1, S2, S3 in region I.
Proof: We study the rank of �M on the two branches of S1�S2 separately. Moreover we work
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utside of the intersection with S3 �� and � both different from zero�. On the first branch, where
=0 and �=�, we get that all the nonvanishing 4�4 minors contain the factor �2�2C−B−A�; on

he other branch, where 	=0 and �=−�, all the nonvanishing minors contain the factor
2�B+A+2C�. Then the rank is 4 outside S4. �

Proposition 15: The rank of �M on S4−S3 is 3.
Proof: We study the rank of the distribution on the two branches C1 and C2 of S4. On C1,

here �=� and 2C=A+B it is straightforward that

V2 = V1 − 2�V5,

V4 = V3 + �A − B�V5,

2V6 = V3 + V4 +
A + B

2�
�V1 + V2�

nd so outside of S4�S3, where �=0. In a similar way, on C2�=−� and 2C=−A−B hold, hence

V2 = − V1 − 2�V5,

V4 = − V3 + �A − B�V5,

2V6 = − V3 + V4 +
A + B

2�
�V2 − V1� .

n both cases, the independent vector fields are V1, V3, and V5 only. All the nonvanishing 3�3
inors of the two matrices constructed with these three vectors �restricted on C1 and C2, respec-

ively� are real multiples of �2, thus outside of S4�S3 the rank is 3. �

The rank of the distribution on S1�S3 remains to be evaluated. The space S1�S3 �see Fig. 4�
s a three-dimensional vector space described by the equations �=�=	=0, with coordinates A, B,
nd C. We recall that S3�S4�S3�S1. On S3�S1 the only independent Vi are V3, V5, and V6 and
heir components, with respect to ��A ,�B ,�C� can be collected in the matrix

M̃ = �2C 2C A + B

1 − 1 0

A B C
 . �15�

Proposition 16: The rank of �M on �S3�S1�−S4 is 3.

Proof: The determinant of the matrix �15� is det M̃ = �A+B+2C��2C−A−B� and it vanishes
nly on the intersection with S4. �

Proposition 17: The rank of �M on �S3�S4�−S5 is 2.

Proof: Evaluating the matrix M̃ on the two branches of S3�S4 we get in both cases that all the
onvanishing 2�2 minors contain the factor A+B, and one of them is exactly −�A+B�, then the
ank is lesser than 2 only on the intersection of the branches given by B=−A, that is on the line

5. �

Proposition 18: The rank of �M on S5 is 1.
Proof: On S5 the only independent vector field is the constant vector V5. �

. Discrete transformations

As we already mentioned besides the continuous transformations associated with the vector
elds Vi we have to consider also some discrete transformation leaving unchanged the web asso-

iated with a given Killing tensor: the first one is the change of the sign of the tensor

                                                                                                            



a
�

N
w
s

f

a
f
n
t

T

c
t

c
f
n
b
o
a
c
w
F
c
c
L
g
s
�

073506-13 Geometrical classification of Killing tensors J. Math. Phys. 47, 073506 �2006�

                        
R0:K → − K

nd the others are induced from the discrete isometries of the Minkowski plane �t̄= t , x̄=−x� and
t̄=−t , x̄=x�, they are

R1:C → − C,� → − � ,

R2:C → − C,� → − � .

ow we have to study the connected components of the sets determined in the Sec. III A and
hich of them are linked through one of the above discrete transformations. Since some of these

ets have a quite high dimension we use the sectioning technique presented in Sec. I B.
In order to study the open set K�M2�−S1−S2 we observe that it is the set where the three

unctions

	 ,

Z+ = 	�A + B − 2C� − �� − ��2,

Z− = 	�A + B + 2C� − �� + ��2

re all different from zero, where the notation of Ref. 10 has been used. Then, the continuous
unction K�M2�→R3 given by �= �	 ,Z+ ,Z−� maps K�M2�−S1−S2 in the eight connected compo-
ents of R3 without the coordinate planes. We introduce the eight �not empty� sets �1 , . . . ,�8 such
hat

���1� = �+ , + , + �, ���5� = �− , + , + � ,

���2� = �+ , + ,− �, ���6� = �− , + ,− � ,

���3� = �+ ,− , + �, ���7� = �− ,− , + � ,

���4� = �+ ,− ,− �, ���8� = �− ,− ,− � .

he sets �1 , . . . ,�8 form a partition of K�M2�−S1−S2.
Proposition 19: All the sets �1 , . . . ,�8 are connected and then the set K�M2�− �S1�S2� has 8

onnected components. We have three orbits of the action: �1��5, �4��8 �both linked by the
ransformation R0� and �2��3��6��7 �linked by R0 and R1�.

Proof: We prove that all the sets �1 , . . . ,�8 are connected by showing that all the connected
omponents of their sections are equivalent in the sense of Lemma 3. First of all we remark that
or any two sections with parameter belonging to same region of Fig. 1, the corresponding con-
ected components �of any �i� are trivially equivalent. Hence the sets �1 and �5 are connected
ecause their sections are nonempty only for parameters in regions I and III, respectively. For any
f the other �i there exists a region of the parameter space in which the corresponding section has
unique connected component. On the other hand it is possible to construct a continuous path

onnecting a point of any connected components of the section of a given �i to a point in the one
ith a unique connected component. For instance moving the parameters along the path shown in
ig. 1 �with A+B+2C=const� and leaving �, �, and 	 fixed we link any point in one of the two
onnected components of �3 obtained for parameter in region I, to a point in the unique connected
omponent of the section of �3, obtained for parameters in region II. We conclude, by applying
emma 3, that the sets �i are all connected. From the definition of transformation R0 and R1 we
et that �1 is in the same orbit of �5, �4 is in the same orbit of �8, and all the other �i are in the
ame orbit. Moreover, because all the transformations Ri maps any of the sets �1��5, �4��8,
2��3��6��7 into themselves, they form distinct orbits. �
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In order to study the set S2− �S1�S3� we introduce the eight �not empty� sets �1 , . . . ,�8 such
hat

���1� = �+ ,0, + �, ���5� = �− ,0, + � ,

���2� = �+ ,0,− �, ���6� = �− ,0,− � ,

���3� = �+ , + ,0�, ���7� = �− , + ,0� ,

���4� = �+ ,− ,0�, ���8� = �− ,− ,0� .

he sets �1 , . . . ,�8 form a partition of S2− �S1�S3�.
Proposition 20: All the sets �1 , . . . ,�8 are connected and then the set S2− �S1�S3� has 8

onnected components. We have two orbits of the action: �1��3��5��7 and

2��4��6��8 �both linked by the transformations R0 and R1�.
Proof: As in the previous proposition we prove that all the sets �1 , . . . ,�8 are connected by

howing that all the connected components of their sections are equivalent in the sense of Lemma
. Also in this case for any two sections with parameter belonging to same region of Fig. 1, the
orresponding connected components �of any �i� are trivially equivalent. We observe that because
he plane 	=0 is removed all the paraboloids that form the sections of the sets �i consist of at
east two disconnected parts. For any �i a section with a unique connected component exists. For
nstance in the section labeled T, in Fig. 1, the sets �1 and �5 have a connected section. Moreover
t is possible to construct a continuous path connecting a point of any connected components of the
ection of a given �i to a point in the one with a unique connected component. We conclude, by
pplying Lemma 3, that the sets �i are all connected. From the definition of transformation R0 and

1 we get that �1, �3, �5, and �7 are mapped one into the other and then are in the same orbit,
s well �2, �4, �6, and �8. Moreover, because all the transformations Ri maps the two sets

1��3��5��7 and �2��4��6��8 into themselves, they form distinct orbits. �

Proposition 21: The set S3−S1 has two connected components mapped one in the other by R0,
nd so it forms a unique orbit of the action.

Proof: A section of the set S3−S1 is not empty only if its parameters �A ,B ,C� belong to the
losure of regions I and III, referring to the notation of Fig. 1. All sections with parameters
elonging to the interior of I �respectively, III� have four connected components which are equiva-
ent to the positive part of the axis 	 �respectively, the negative part� in the sections with param-
ters A+B=C=0. The sections with parameters on the boundary of I �respectively, III� and C

0 have two connected components, also equivalent to the positive part of the axis 	 �respec-
ively, the negative part� in the sections with parameters A+B=C=0. Hence just two different
quivalence classes of sections exist, corresponding to two connected components of S3−S1: one
orresponds to positive values of 	, while the other to negative ones. Since the transformation R0

aps the positive part of the 	 axis in the negative one, these two connected components form a
nique orbit. �

Proposition 22: The set S1−S2 is formed by 4 connected components. Each pair of compo-
ents symmetric with respect to the origin are linked by R0, thus two orbit of the action are
resent.

Proof: S1 is homeomorphic to R5, then it is divided in four connected parts by the two
our-dimensional hyperplanes that form S1�S2. The transformation R0 represents a central sym-
etry and links together components symmetric with respect to the origin. The two transforma-

ions R1 and R2 on S1−S2 are symmetries with respect to the � and � axes, hence they map the two
rbits into themselves. �

Proposition 23: The set �S1�S2�− �S3�S4� contains eight connected components. They can
e linked together using the three discrete transformation R0, R1, and R2 and so they form a
nique orbit of the action.

4
Proof: Each of the two branches of S1�S2 is homeomorphic to R . Cutting out from the first
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ne the two three-dimensional hyperplanes S3�S1 and C1, and from the second one S3�S1 and

2, respectively, we obtain four connected components in each case. In order to prove that all the
omponents form a unique orbit, we can consider just the branch defined by �=�, because R1 �or
quivalently R2� maps each branch into the other. The transformation R0 maps one in the other the
omponents symmetric with respect to the origin �see Fig. 3�, while the transformation R1 �R2

corresponding in this branch to the inversion of the �=� axis� maps one in the other the com-
onents symmetric with respect to the hyperplane S3�S1. Therefore all the eight connected
omponents form a unique orbit. �

Proposition 24: The set S4−S3 contains four connected components. They can be linked
ogether using R0 and one between R1 and R2 and so they form a unique orbit of the action.

Proof: Each of the two branches C1 and C2 of S4 is homeomorphic to R3. Cutting out from the
rst one the two two-dimensional hyperplane S3�S4, we obtain two connected components in
ach case. Each of the transformations R1 or R2 maps C1 in C2 and R0 links the two connected
omponents of C2. Thus we have a unique orbit. �

Proposition 25: The space �S3�S1�−S4 has four connected components. The two pairs of
omponents symmetric with respect to the origin (linked by R0) form two different orbits of the
ction.

Proof: As shown in Fig. 4, in the space of coordinates A, B, and C, the set �S3�S1�−S4 is
omposed by the four dihedra determined by the two planes A+B=2C and A+B=−2C. Hence it
as four connected components. The transformation R0 links together the two dihedra containing
he plane C=0 as well as the other pair of dihedra. Unfortunately neither R1 nor R2 is able to
onnect together these two pairs of dihedra. Hence in �S3�S1�−S4 we have two different orbits:
ndeed, the KTs belonging to the pair that contains the plane C=0 define pseudo-Cartesian coor-
inates, while the ones belonging to the other pair are not characteristic tensors, with everywhere
maginary eigenvalues. �

Proposition 26: The space �S3�S4�−S5 has four connected components. They are mapped
ne into the other by the two discrete transformations R0 and R1, hence they form a unique orbit
f the action.

FIG. 3. The two branches of S4 in S1�S2.
FIG. 4. The space S3�S1.
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Proof: As shown in Fig. 4, in the space of coordinates A, B, and C, the set �S3�S4�−S5 is
ormed by two planes intersecting on the line A+B=0, C=0 �S5� without their intersection. Hence
t has four connected components. The transformation R0 maps an half of each plane in the other;
oreover, the transformation R1 maps each plane into the other. �

Proposition 27: The line S5 formed by the (noncharacteristic) tensors of the kind 
 g is a
onnected orbit of the action.

The following list contains all orbits of the action of the group generated by the vector fields

i, extended with the three finite transformations. For each orbit a representative tensor is given.
rbits of characteristic Killing tensors are labeled according both to Refs. 10 and 8 and the

ssociated complete web is plotted. In each picture the set of singular points and the two distinct
oliations of the web are emphasized completing the partial representation given in Refs. 10 and 8:
he leaves belonging to the two foliations are plotted dashed and continuous, respectively, the grey
ines represent the boundaries of the singular set of the web.

M1� The set �1��5, contained in K�M2�− �S1�S2�, where Z+�0 and Z−�0: SC9, elliptic
oordinates of type I. A tensor of this type is

�x2 xt

xt t2 + 1
� .

M2� The set �2��3��6��7, contained in K�M2�− �S1�S2�, where Z+ and Z− have different
ign: SC8, hyperbolic coordinates of type I. A tensor of this type is

� x2 1 + xt

1 + xt t2 � .

M3� The set �4��8, contained in K�M2�− �S1�S2�, where Z+�0 and Z−�0: SC5 and SC10,
lliptic coordinates of type II. A tensor of this type is

�x2 xt

xt t2 − 1
� .

M4� The set �1��3��5��7 contained in S2− �S1�S3�, where the nonvanishing one of the
wo functions Z± is positive: SC6, hyperbolic coordinates of type II. Two tensors of this type are

�x2 + 1 xt + 1

xt + 1 t2 + 1
�, �x2 + 1 xt − 1

xt − 1 t2 + 1
� .

M5� The set �2��4��6��8 contained in S2− �S1�S3�, where the nonvanishing one of the
wo functions Z± is negative: SC7, hyperbolic coordinates of type III. Two tensors of this type are

�x2 − 1 xt − 1

xt − 1 t2 − 1
�, �x2 − 1 xt + 1

xt + 1 t2 − 1
� .

M6� The set S3−S1: SC2, polar coordinates. A tensor of this type is

�x2 xt

xt t2 � .

M7� The subset of S1−S2 containing the � axis: first web for SC4, parabolic coordinate of
ype I. A tensor of this type is

�2x t

t 0
� .
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M8� The subset of S1−S2 containing the � axis: second web for SC4, parabolic coordinate of
ype I. A tensor of this type is

�0 x

x 2t
� .

M9� The set �S1�S2�− �S3�S4�: SC3, parabolic coordinate of type II. Two tensors of this type
re

�1 + 2x x + t

x + t 1 + 2t
�, � 2x + 1 x + t − 1

x + t − 1 2t + 1
� .

M10� The set S4−S3: no characteristic tensors. A tensor of this type is

� 2x x + t

x + t 2t
� .

M11� The subset of �S1�S3�−S4 containing the plane C=0, that is where �=�=	=0 and
A+B	�2	C	: SC1, Cartesian coordinates. A tensor of this type is

�1 0

0 0
� .

M12� The subset of �S1�S3�−S4 not containing the plane C=0, that is where �=�=	=0 and
A+B	�2	C	: no characteristic tensors. A tensor of this type is

�0 1

1 0
� .

M13� The set �S3�S4�−S5, that is where �=�=	=0 and 	A+B	=2	C	: no characteristic
ensors. A tensor of this type is

�1 1

1 1
� .

M14� The line S5, containing tensors multiple of the metric.
As in the Euclidean case, our classification is closely related to the one of Rastelli13 based on

he analysis of the singular set of the tensors. The discriminant of the characteristic polynomial of
he general KT of the Minkowski plane is

� = �	�x + t�2 + 2�� + ���x + t� + A + B + 2C��	�x − t�2 + 2�� − ���x − t� + A + B − 2C� .

or 	�0 �i.e., outside of S1�, we rewrite � as

	2��x + t +
� + �

	
�2

+
1

	2Z+���x − t +
� − �

	
�2

+
1

	2Z−� .
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n this case the set �=0 is made of two couples of lines parallel to x= t and x=−t, respectively. It
s immediate to see that the lines of the first �second� pair are real and distinct, real and coinciding,
maginary according to the fact that Z+ �Z−� is negative, zero, or positive. So the singular set is
mpty when both Z± are positive �SC9�; a strip when Z+Z−�0 �SC8�; two intersecting strips
ithout their intersection when Z± are negative �SC5,SC10�; a line when one of Z± vanishes and

he other is positive �SC6�; a strip and a line orthogonal to it when one of Z± vanishes and the
ther is positive �SC7�; two orthogonal lines if both Z± vanish.

On S1 we have 	=0 and the discriminant reduces to

�2�� + ���x + t� + A + B + 2C��2�� − ���x − t� + A + B − 2C� .

n S4 the discriminant identically vanishes, so the singular set is all the plane and the correspond-
ng tensors are not characteristic tensors. Outside of S4, if the discriminant is not constant �i.e.,
utside of S1�S3�, then �=0 is a pair of orthogonal lines or a single line and the singular set is
ade of two opposite quadrants �the two webs corresponding to SC4� or of a half-plane �SC3�. If
is a positive constant, the singular set is empty �SC1�, while if it is negative all points are

ingular and the tensor is not characteristic ��S1�S3�−S4 not containing the plane C=0�. The
lassification given here can also be compared with that given in Table III of Ref. 10, where the
ype of any separable web in M2 is characterized in terms gamma and I±=sgn�Z±�. Note that in

ef. 10 �as in Ref. 8� the discrete transformation R2
ˆ is used, with the consequence that the number

f distinct types of separable webs is reduced from the ten described in the present paper to nine.
ee the following diagrams:
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V. CONCLUSION

We have classified Killing tensors of valence two in the Euclidean and Minkowski planes
nder the action of a group that preserves the type of the Killing web. The method is based on a
etailed analysis of the rank of the determining system of partial differential equations for the
roup invariants and depends crucially on the fact the generic rank of the system is six, which
quals the dimension of the space of Killing two-tensors. This result is dimensionally dependent.
t is thus unclear whether the method or a modification thereof can be extended to flat spaces of
igher dimension or to spaces of nonzero constant curvature. Nonetheless for the cases where the
ethod is applicable it provides a very elegant algebraic classification for the type of the Killing
eb defined by a characteristic Killing tensor. This classification is equivalent to the classification
f quadratic symmetric operators in the generators of the isometries of M2, given in Ref. 8 and to
he classification given in Ref. 10 in terms of Killing tensor invariants, up to the exchange between
pace and time: since we do not allow a change in signature of the metric, the coordinates of type
C4 �parabolic of type I in Ref. 8� splits into the classes M7 and M8. Our classification, not being
estricted to characteristic Killing tensors, extends the classification given in Ref. 10 through the
nvariant theory of Killing tensors.
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tochastic quantization of topological field theory:
eneralized Langevin equation with memory kernel
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We use the method of stochastic quantization in a topological field theory defined
in an Euclidean space, assuming a Langevin equation with a memory kernel. We
show that our procedure for the Abelian Chern-Simons theory converges regardless
of the nature of the Chern-Simons coefficient. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2219158�

. INTRODUCTION

In the Euclidean version of field theory, we are interested in computing the Schwinger func-
ions of a theory. In order to obtain these functions, Parisi and Wu introduced the stochastic
uantization.1 This formalism was introduced as an alternative quantization scheme, different from
he usual canonical and the path integral field quantization, based in the Hamiltonian and the
agrangian, respectively. The method starts from a classical equation of motion, but not from
amiltonian or Lagrangian, and consequently can be used to quantize dynamical systems without

anonical formalism and therefore it is useful in situations where the other methods lead to
ifficult problems.

The main idea of the stochastic quantization is that a d-dimensional quantum system is
quivalent to a �d+1�-dimensional classical system that undergoes random fluctuations. Some of
he most important papers in the subject can be found in Ref. 2. A brief introduction to the
tochastic quantization can be found in Ref. 3 and Ref. 4. See also Ref. 5.

In a previous paper,6 we studied the stochastic quantization of a self-interacting scalar field
heory, assuming a non-Markovian process, modifying the Langevin equation by introducing a
emory kernel.7–9 We have shown that although a system with a stationary, Gaussian, non-
arkovian Langevin equation with a memory kernel and a colored noise converges in the

symptotic limit of the Markov parameter � to the equilibrium, we obtain a nonregularized theory.
In this paper we would like to continue to investigate the virtues of this non-Markovian

tochastic quantization method, now employed in the case of a topological field theory. One of the
eculiar features within this kind of theory is the appearance of a factor of i in front of the
opological action in Euclidean space. Since the topological theory does not depend on the metric
f space-time, the path integral measure weighing remains to be eiS, even after the Wick rotation.
nother feature of a topological action is that it is the integral of a density that is not bounded

rom below in Euclidean space. So, if one attempts to use a Markovian Langevin equation with a
hite noise to quantize this theory, one will find serious problems if the factor of i is ignored. This
angevin equation will not tend to any equilibrium in the large � limit. So, in this sense, the use
f a Langevin equation with a complex action10 becomes essential for stochastically quantizing a
opological action.11–13

There is, in the literature, an approach to solve the above mentioned convergence problem.
tudying the purely topological Chern-Simons theory, Ferrari et al. introduced a nontrivial kernel

�Electronic mail: gsm@cbpf.br
�
Electronic mail: nfuxsvai@cbpf.br
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n the Langevin equation.14 On the other way, Wu et al.15 showed that the Langevin equation for
Maxwell-Chern-Simons theory converges to the usual equilibrium result without the need to

ntroduce such a kernel. Their method, however, only works in the case where the Chern-Simons
oefficient is real.

We show in this paper that, if one uses a non-Markovian Langevin equation with a colored
andom noise, this convergence problem may be solved in a different way. We will apply this
pproach to three-dimensional Abelian Chern-Simons theory and prove that we obtain conver-
ence toward equilibrium, even with an imaginary Chern-Simons coefficient. To simplify the
alculations we assume the units to be such that �=c=1.

I. STOCHASTIC QUANTIZATION OF ABELIAN CHERN-SIMONS THEORY

Let us consider the following action for the three-dimensional Maxwell-Chern-Simons theory,
n Euclidean space:

S =� d3x� 1

4�2A��x��− ���� + �����A��x� − i
�

8	
���
A��x���A
�x�� , �1�

here � is the three-dimensional Laplace operator. At the end of our calculations we set �→� to
btain the results for the purely topological theory, as discussed in Ref. 15. Notice the factor of i
n front of the topological term, as mentioned before. In order to obtain the Schwinger functions
f the theory, let us use the stochastic quantization method. Let us introduce a non-Markovian
angevin equation given by

�

��
A���,x� = − �

0

�

ds M��� − s�
�S

�A��x� �A��x�=A��s,x� + ���,x� , �2�

here M���−s� is a memory kernel and � is a arbitrary parameter. We will have, from Eqs. �1�
nd �2�, in momentum space:

�

��
A���,k� = −

k2

�2���� −
k�k�

k2 ��
0

�

ds M��� − s�A��s,k� −
�

4	
���
k
�

0

�

ds M��� − s�A��s,k�

+ ���,k� , �3�

here the stochastic field ��� ,k� satisfies the modified Einstein relations:

	���,k�
 = 0, �4�

nd also

	���,k�����,k��
 = 2 ���M���� − �����d�k + k�� . �5�

or the initial condition A��� ,k���=0=0, it is easy to see that the solution of Eq. �3� is given by

A���,k� = �
0

�

d�� G���k;� − �������,k� , �6�

here we introduced the retarded Green’s function G���k ,r�, which satisfies

�

��
G���k,�� = −

k2

�2���
 −
k�k


k2 ��
0

�

ds M��� − s�G
��k,s� −
�

4	
��
�k��

0

�

ds M��� − s�G
��k,s�

+ ������� , �7�

or ��0 and G���k ,��=0 for ��0.

To proceed the calculations, let us introduce the Laplace transform of Eq. �7�:
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zG���k,z� = −
k2

�2���
 −
k�k


k2 �M��z�G
��k,z� −
�

4	
��
�k�M��z�G
��k,z� + ���, �8�

here

M��z� = �
0

�

d� M����e−z�. �9�

or the result without memory �or, formally, when M����→�����, we have, from Eq. �7�,

�

��
G���k,�� = −

k2

�2���
 −
k�k


k2 �G
��k,�� −
�

4	
��
�k�G
��k,�� + ������� , �10�

hose Laplace transform reads as

zG���k,z� = −
k2

�2���
 −
k�k


k2 �G
��k,z� −
�

4	
��
�k�G
��k,z� + ���. �11�

ote the similarity between Eqs. �8� and �11�. The solution to Eq. �10� is given by15

G���k,�� =
k�k�

k2 + ����� −
k�k�

k2 �cos� �

4	
k���� − ����

k�

k
sin� �

4	
k���exp�− k2

�2 �� , �12�

hose Laplace transform is

G���k,z� =
k�k�

k2

1

z
+
����� −

k�k�

k2 �z − ����k�� �

4	
��

�z +
k2

�2�2

+ � �

4	
�2

k2

. �13�

omparing Eqs. �8� and �11�, it is trivial to obtain the analog of Eq. �13� with memory:

G���k,z� =
k�k�

k2

1

z
+
����� −

k�k�

k2 �z − ����k�� ��

4	
��

�z +
k2

��2�2

+ � ��

4	
�2

k2

, �14�

here

1

��2 �
M��z�

�2 �15�

nd

�� � �M��z� . �16�

n the Appendix , we derive in detail the inverse Laplace transform of Eq. �14�. It is given by

G���k,�� = � k�k�

k2 + g��G1�k,�� + g̃��G2�k,������� , �17�

here the quantities Gi�k ,��, i=1,2 ,g�� and g̃�� are defined in the Appendix . We see that our

���k ,�� does not approach zero as �→�. The reason for such behavior is the presence of the
ongitudinal term k�k� /k2, which is common in the stochastic quantization of all gauge theories
ithout gauge fixing and can be eliminated by a suitable stochastic gauge fixing. In spite of this,
he presence of this term will not give any contribution to gauge invariant quantities.
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After this discussion, we are able to present the two-point correlation function. We have that

���k ;� ,��� is given by

D���k,�,��� � 	A���,k�A����k��


= �d�k + k���
0

�

ds�
0

�

ds� G���k,� − s�G���k,�� − s��	k�s,k���s�,k��


= 2�d�k + k���
0

�

ds�
0

�

ds� G���k,� − s�G���k,�� − s��M���s − s��� . �18�

So, inserting Eq. �17� in the above equation and splitting the result in five different contribu-
ions yields

D���k;�,��� = 2�d�k + k���J1 + J2 + J3 + J4 + J5� �19�

here:

J1 � �
0

�

ds�
0

��
ds�

k�k�

k2 M���s − s��� , �20�

J2 � �
0

�

ds�
0

��
ds� g��g��G1�k;� − s�G1�k;�� − s��M���s − s��� , �21�

J3 � �
0

�

ds�
0

��
ds� g̃��g̃��G2�k;� − s�G2�k;�� − s��M���s − s��� , �22�

J4 � �
0

�

ds�
0

��
ds� g��g̃��G1�k;� − s�G2�k;�� − s��M���s − s��� , �23�

nd, finally,

J5 � �
0

�

ds�
0

��
ds� g̃��g��G2�k;� − s�G1�k;�� − s��M���s − s��� . �24�

We can solve these equations by ordering the fictitious times s and s�, s�s� for instance, and
olving the integrals in s �s�� in the interval �0, t� ��0,s��. We obtain for J1, in the limit �→�,

J1 =
1

2

k�k�

k2 �� −
1

�2� . �25�

he integrals J2 and J3 can be solved by analogy with the scalar case.6 Making the following
eplacements:

�k2 + m2�1 →
�

�2 �1 − �4� + �2y1 +
��2 − y1

2�
�2 , �26�

�k2 + m2�2 →
�

�2 �1 + �4� − �2y1 −
��2 − y1

2�
�2 , �27�

here the subscript 1 �2� stands for the G1 �G2� case �see the Appendix �, we will have, in the

symptotic limit �→�, that
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J2 = � �

�2 �1 − �4� + �2y1 +
��2 − y1

2�
�2 �−1� �2

����2��4

4
+

�� + ��2

4
�� �

4	
����
k
��

+ ����−2���4

4
+

�� + ��2

4
�2

−
�4

4
k2� �

4	
�2����� −

k�k�

k2 � , �28�

nd

J3 = � �

�2 �1 + �4� − �2y1 −
��2 − y1

2�
�2 �−1�−

�2

����2��4

4
+

�� − ��2

4
�� �

4	
����
k
��

+ ����−2���4

4
+

�� − ��2

4
�2

−
�4

4
k2� �

4	
�2����� −

k�k�

k2 � . �29�

he remaining integrals J4 and J5 can be solved without any further complications.16 Again, in the
symptotic limit �→�, we obtain

J4 + J5 =
f��,�,��
g��,�,���−

�2

�2���� �

4	
����
k
�� + ����−2���4

4
+

�� + ��2

4
���4

4
+

�� − ��2

4
�

+
�4

4
k2� �

4	
�2����� −

k�k�

k2 � , �30�

here

f��,�,�� � 153�14 + �10�18�� + ��2 + 17�� − ��2 + 9��� + �6��� + ��4 + �� − ��4

+
��

2
��� + ��2 + �� − ��2� −

9

2
����� + ��2 − ���1 − 2����

+ �2��� �� + ��2

2
− ���� + ��2 −

1

2
�� + ��2�� − ��2 , �31�

nd

g��,�,�� � �9�4 + �� − ��2��9�4 + �� + ��2���4 + �2���4 + �2� . �32�

s mentioned before, the linearly divergent longitudinal term, found in Eq. �25�, can be eliminated
y stochastic gauge fixing. Now, taking the limit �→�, it is easy to see that the contribution J2

J3 vanishes identically. Then, finally, we obtain, for the purely topological two-point correlation
unction:

D���k;�,��� = 2�d�k + k���1

2

k�k�

k2 �� −
1

�2� +
f���,�,��
g���,�,���−

�2

2Q�y1��
� �

4	
����
k
����

+ � ��

Q2�y1��
− 1����� −

k�k�

k2 �� , �33�

here ��=���→�= ��4 /4�k2�� /4	�, y1�=y1��→�, and

f���,�,�� = f��→� = 120�14 +
19

2
�10Q�y1�� + 9�6Q2�y1�� −

�6

2
Q�y1�� +

9

2
�4Q�y1�� + �2Q2�y1��

− 18Q2�y1�� +
9

Q�y1�� , �34�

2
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g���,�,�� = g��→� = 64�8Q2�y1�� + 32�4Q3�y1�� + 4Q4�y1�� , �35�

Q�y1�� � „�4y1� − �y1��
2
…

1/2. �36�

e see that in our last expression for the propagator remained a term proportional to the Maxwell
ransversal propagator. This is a anomalous situation, since the Maxwell contribution is absent in
he usual purely topological Chern-Simons theory. The origin of this anomalous situation is the use
f a non-Markovian Langevin equation. To circumvent this problem and recover the usual result,
e have to make the following choice:

�� = Q2�y1�� , �37�

hich leads us to

y1� =
�

2
±

��8 − 4���1/2

2
. �38�

o, if we choose

y1 =
�

2
±

��8 − 4���1/2

2
+

C

�n , �39�

here C is a real constant and n is an arbitrarily large integer number. Inserting this latter equation
n Eq. �A23�, we will get a cubic equation in C. From the usual Galois theory of radical solutions
or polynomials,16–18 we can always choose a real root from the three possible ones. So, in other
ords, we can always choose a real constant such that the two-point correlation function con-
erges to a “purely topological” term, with some minor differences from the usual one. We notice
s well that our approach still works when � is purely imaginary �which is mathematically
nalogous to writing A�=A�� + iA�� , where A�� is real, and taking the real part of the Langevin Eq.
3� in coordinate space�.

II. CONCLUSIONS

In this paper we discussed the stochastic quantization for Maxwell Chern-Simons theory using
non-Markovian Langevin equation and examined the field theory that appears in the asymptotic

imit of this non-Markovian process.
This paper is the second one of a program where the possibility that the Parisi-Wu quantiza-

ion method can be extended is investigated, assuming a Langevin equation with a memory kernel
ith the modified Einstein relations. To make sure that this modification can be used, one must
rst check that the system evolves to the equilibrium in the asymptotic limit. Second, we have to
how that it converges to the correct equilibrium distribution. We proved that although the system
volves to equilibrium, in the propagator remained a term proportional to the Maxwell transversal
ropagator. This is an anomalous situation, since the Maxwell contribution is absent in the usual
urely topological Chern-Simons theory. To circumvent this problem and recover the usual result,
e have imposed a constraint in the parameters of our theory.
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PPENDIX: DERIVATION OF THE RETARDED GREEN’S FUNCTION
OR THE DIFFUSION PROBLEM

In this Appendix, we derive the retarded Green’s function for the diffusion problem G���k ,��.
xpanding the denominator in Eq. �A1�, given by

G���k,z� =
k�k�

k2

1

z
+
����� −

k�k�

k2 �z − ����k�� ��

4	
��

�z +
k2

��2�2

+ � ��

4	
�2

k2

, �A1�

e have

G���k,z� =
k�k�

k2

1

z
+ ���� −

k�k�

k2 �I1�z� − ����k�� �

4	
�I2�z� , �A2�

here

I1�z� �
z

P�z�
, �A3�

I2�z� �
M��z�
P�z�

, �A4�

nd

P�z� � z2 + 2
k2

�2 M��z�z +
k4

�4 M�
2 �z� + � �

4	
�2

k2M�
2 �z� . �A5�

sing the following exponential representation for the memory kernel M����:

M�
n ��� =

1

2n!
�2��2����n exp�− �2���� , �A6�

here � is a parameter, we will have, for the case n=0,

I1�z� =
z3 + 2�2z2 + �4z

��z�
, �A7�

I2�z� =

�2

2
z +

�4

2

��z�
, �A8�

nd

��z� � z4 + 2�2z3 + ��4 + ��z2 + ��2z + � , �A9�

here

� �
k2�2

�2 , �A10�

nd

� � � k4

4 + � � �2

k2��4

. �A11�

� 4	 4
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In order to get the inverse Laplace transform of Eq. �A2�, we must seek for the solutions of the
uartic equation ��z�=0. As it is well known, a general quartic equation is a fourth-order poly-
omial equation of the form:

z4 + a3z
3 + a2z

2 + a1z + a0 = 0. �A12�

sing the familiar algebraic technique developed by Ferrari and Cardano,19 it is easy to show that
he roots of Eq. �A12� are given by

z1 = −
1

4
a3 +

1

2
R +

1

2
D , �A13�

z2 = −
1

4
a3 +

1

2
R −

1

2
D , �A14�

z3 = −
1

4
a3 −

1

2
R +

1

2
E , �A15�

z4 = −
1

4
a3 −

1

2
R −

1

2
E , �A16�

here

R � �1

4
a3

2 − a2 + y1�1/2

, �A17�

D ���F�R� + G�1/2, for R � 0,

�F�0� + H�1/2, for R = 0,
�A18�

E ���F�R� − G�1/2, for R � 0,

�F�0� − H�1/2, for R = 0,
�A19�

F�R� �
3

4
a3

2 − R2 − 2a2, �A20�

H � 2�y1
2 − 4a0�1/2, �A21�

G �
1

4
�4a3a2 − 8a1 − a3

3�R−1, �A22�

nd y1 is a real root of the following cubic equation:

y3 − a2y
2 + �a1a3 − 4a0�y + �4a2a0 − a1

2 − a3
2a0� = 0. �A23�
herefore, the inverse Laplace transform of I1�z� and I2�z� reads
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I1��� =
z1

3 + 2�2z1
2 + �4z1

�z1 − z2��z1 − z3��z1 − z4�
ez1� +

z2
3 + 2�2z2

2 + �4z2

�z2 − z1��z2 − z3��z2 − z4�
ez2� +

z3
3 + 2�2z3

2 + �4z3

�z3 − z1��z3 − z2��z3 − z4�
ez3�

+
z4

3 + 2�2z4
2 + �4z4

�z4 − z1��z4 − z2��z4 − z3�
ez4�, �A24�

nd

I2��� =

�2

2
z1 +

�4

2

�z1 − z2��z1 − z3��z1 − z4�
ez1� +

�2

2
z2 +

�4

2

�z2 − z1��z2 − z3��z2 − z4�
ez2�

+

�2

2
z3 +

�4

2

�z3 − z1��z3 − z2��z3 − z4�
ez3� +

�2

2
z4 +

�4

2

�z4 − z1��z4 − z2��z4 − z3�
ez4�. �A25�

Now, let us study a simple convergence criterion in order that G���k ,��→0 as the Markov
arameter goes to infinity, i.e., �→�. In this situation, the system converges to an equilibrium.
omparing the polynomial ��z� with expression Eq. �A12�, it is trivial to make the following

dentifications: a0=�, a1=��2, a2=�+�4 and, finally, a3=2�2.
For convenience, let us assume that R, defined by Eq. �A17�, does not vanish. To proceed with

he calculations, let us introduce the following real quantities � and � defined, respectively, by

� � �a2 −
1

4
a3

2 − y1�1/2

= �� − y1�1/2 �A26�

nd

� � �a2 + y1 −
1

2
a3

2�1/2

= �� + y1 − �4�1/2, �A27�

here we used the identifications a2=�+�4 and a3=2�2. Then, we shall have

R = i� �A28�

nd

E = i� . �A29�

o, with the above identifications, it is easy to see to prove that G, defined by Eq. �A22�, vanishes
dentically. Therefore, we will have, from Eq. �A18� and Eq. �A19�, that D=E. We also see that

�2 + �2 = 2� − �4 � 0, �A30�

hich implies

k2 �
�2�2

2
, �A31�

here we used Eq. �A10�, which is a convergence criterion similar to the massless scalar field
ase.6

Thus, from Eqs. �A13�–�A16�, Eq. �A28�, and Eq. �A29�, we obtain the following solutions to
�z�=0:

z1 = −
�2

+
1

i� +
1

i� , �A32�

2 2 2
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z2 = −
�2

2
+

1

2
i� −

1

2
i� , �A33�

z3 = −
�2

2
−

1

2
i� +

1

2
i� , �A34�

z4 = −
�2

2
−

1

2
i� −

1

2
i� . �A35�

o, from these last results, we will have, finally, for G���k ,��,

G���k,�� = � k�k�

k2 + g��G1�k,�� + g̃��G2�k,������� , �A36�

here:

G1�k,�� � � �2

�� + ��
sin� �� + ��

2
�� + cos� �� + ��

2
���e−��2/2��, �A37�

G2�k,�� � � �2

�� − ��
sin� �� − ��

2
�� + cos� �� − ��

2
���e−��2/2��, �A38�

nd g�� and g̃�� appearing in Eq. �A36� are defined by

g�� � ��� − h��, �A39�

g̃�� � h�� − �̃��, �A40�

ith

h�� � −
�2

2��
���
k
� �

4	
� , �A41�

��� �
1

��
��4

4
+

�� + ��2

4
����� −

k�k�

k2 � , �A42�

nd

�̃�� � −
1

��
��4

4
+

�� − ��2

4
����� −

k�k�

k2 � . �A43�
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ymmetry of quantum torus with crossed product algebra
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In this paper, we study the symmetry of quantum torus with the concept of crossed
product algebra. As a classical counterpart, we consider the orbifold of classical
torus with complex structure and investigate the transformation property of classi-
cal theta function. An invariant function under the group action is constructed as a
variant of the classical theta function. Then our main issue, the crossed product
algebra representation of a quantum torus with complex structure under the sym-
plectic group, is analyzed as a quantum version of orbifolding. We perform this
analysis with Manin’s so-called model II quantum theta function approach. The
symplectic group Sp�2n ,Z� satisfies the consistency condition of a crossed product
algebra representation of quantum torus times the algebra of functions on the Siegel
space. However, only a subgroup of Sp�2n ,Z� satisfies the consistency condition
for orbifolding of the quantum torus. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2219160�

. INTRODUCTION

Classical theta functions1 can be regarded as state functions on classical tori, and have played
n important role in the string loop calculation.2,3 Recently, Manin4–6 introduced the concept of
uantum theta function as a quantum counterpart of classical theta function. In our previous
ork,7 we clarified the relationship between Manin’s quantum theta function and the theta
ector8–10 that Schwarz introduced earlier. In Ref. 7 we showed the connection between the
lassical theta function and the so-called kq representation that appeared in the physics
iterature.11,12 Then we showed that the Manin’s quantum theta function corresponds to the quan-
um version of the kq representation. In the physics literature, quantum theta functions are related
ith noncommutative solitons13 whose solutions are given in terms of projection operators.13–15

nder the lattice translation, quantum theta function maintains the transformation property of a
lassical theta function. Manin’s construction of quantum theta function5,6 is based on the algebra
alued inner product of the theta vector, and this construction is a generalization of Boca’s
onstruction of projection operators on the Z4 orbifold of a noncommutative two torus.16

In the algebra valued inner product one can make the inner product of the dual algebra, the
epresentation of the perpendicular lattice space, be invertible or proportional to the identity
perator. This makes the algebra valued inner product be a projection operator.17 In Boca’s work,16

he projection operators on the Z4 orbifold of the noncommutative two torus were constructed
ased on the algebra valued inner product that Rieffel17 used in his classic work on projective
odules over noncommutative tori.

One can consider a symmetry group defining an orbifold from the view point of the crossed
roduct algebra of the original algebra with the given symmetry group.13,18,19 Therefore in order to

�Electronic mail: cylee@sejong.ac.kr
�
Electronic mail: hikim@knu.ac.kr

47, 073508-1022-2488/2006/47�7�/073508/10/$23.00 © 2006 American Institute of Physics
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nd a representation of an orbifold algebra, one has to find a representation of the group compat-
ble to that of the original algebra. In Boca’s work, the action of the Z4 quotient was represented
s the Fourier transformation, and the algebra valued inner product was evaluated with the eigen-
tates of Fourier transformation.16

When the consistency conditions for the representation of crossed product algebra are ful-
lled, the group of the crossed product algebra behaves as a symmetry group of the original
lgebra. The consistency conditions for crossed product algebra are basically having compatible
ctions of the group acting on the original algebra and on the module.

For quantum tori, there are two types of symmetries. One is a symmetry under a group action,
nd the other is a symmetry under deformation of the algebra, the so-called Morita equivalence.20

ere, we restrict our discussion to the symmetry under a group action that is not related to the
orita equivalence.

In this paper, we first consider classical functions under orbifolding of torus and try to find an
nvariant function under the symplectic group Sp�2n ,Z�. We then look into the representation of
rossed product algebra as a way of orbifolding in the quantum �noncommutative� case.

The organization of the paper is as follows. In Sec. II, we review orbifolding of the classical
orus and construct an invariant function under the action of Sp�2n ,Z�. In Sec. III, we first review
he crossed product algebra and its consistency conditions. Then, we check the consistency con-
itions of our crossed product algebra with the group Sp�2n ,Z� via the approach of Manin’s model
I quantum theta function. In Sec. IV, we conclude with a discussion.

I. ORBIFOLDING AND CLASSICAL THETA FUNCTION

In this section, we first consider orbifolding under a group action. A classical function f on an
rbifold X=M /G should satisfy

f�g · x� = f�x�, "g � G, x � M . �1�

Now, we consider the case in which M is a complex torus. Let M =Cn /� ���Z2n� be a
omplex torus. If M can be embedded in a projective space CPN for some N, then it is called an
belian variety. For M to be an Abelian variety, there must exist a polarization, a positive line
undle on M. A positive line bundle L on M should satisfy that �Cc1�L��0, for any curve C in M,
here c1�L� is the first Chern class of L as an element of H2�M ,Z��H1,1�M ,R�. Explicitly,

1�L�=���dx�Ùdy�=�q�dz�Ùdz̄�, ���Z, and q� is pure imaginary. In particular, if ��=1, for all
, then the Abelian variety is called principally polarized.21 The moduli space M of principally
olarized abelian varieties is the collection of the pair ��M ,L� 	M =Cn /�; L is a principally polar-

zed line bundle
. Let Hn= �T 	T�Mn�C� ,T t=T , Im T�0
 on which Sp�2n ,Z� acts as follows:

g · T = �AT + B��CT + D�−1, for g = �A B

C D
� � Sp�2n,Z� .

hen, M=Sp�2n ,Z� \Hn.
Now, we consider an action of a group G on M. In other words, a map from G�M to M, such

hat for every g�G, g is an automorphism of M preserving complex structure T and the group
tructure. Then, g induces a linear map from Cn to Cn, sending � to �. It means that g belongs to
L�n ,C� and also GL�2n ,Z�, which is given in terms of the basis of ���Z2n�, whose determinant

s ±1. Additionally, if we impose that g preserves L, then g preserves c1�L�, so that

c1�L� = � dx� Ù dy� = g*
„c1�L�… = � d�g*x�� Ù d�g*y�� .

t implies that g�Sp�2n ,Z�. Then we can define an orbifold M /G with the preserved polarization
.

If g�GL�n ,C� and g�Sp�2n ,Z�, then T�=g ·T=T, as we see later. Hence, only a subgroup of
p�2n ,Z�, namely GL�n ,C��Sp�2n ,Z�, acts as a symmetry group for orbifolding.
For g�Sp�2n ,Z�, it acts on the basis as follows:
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�A B

C D
��T

I
� = �AT + B

CT + D
�  ��AT + B��CT + D�−1

I
� = �T�

I
� .

n the other hand, for g�GL�n ,C� it acts as follows:

�T

I
� · gt = �T · gt

I · gt �  �T · gt · g−t

I
� = �T

I
� .

ince the two actions should yield the same result, we get to the result that T�=g ·T=T.
We now consider whether the classical theta function � is well defined on the above men-

ioned orbifold. The classical theta function � is a complex valued function on Cn satisfying the
ollowing relation.

��z + ��� = ��z�, for z � Cn, �� � ��, �2�

��z + �� = c���eq��,z���z�, for � � � , �3�

here �� � ��Cn is a discrete sublattice of rank 2n split into the sum of two sublattices of rank
, isomorphic to Zn, and c :�→C is a map and q :��C→C is a biadditive pairing linear in z.

The above property reflects the fact that the classical theta function lives on Cn, not on T2n.
he function ��z ,T� satisfying �2� and �3� can be defined as

��z,T� = �
k�Zn

e	i�ktTk+2ktz�, �4�

here T�Hn. With the above definition, c��� and q�� ,z� in �3� are given explicitly by c���
e−	imtTm and q�� ,z�=−2	imtz when �=Tm, m�Zn. Also, z�Cn transforms as

g · z = z� = �CT + D�−tz, for g = �A B

C D
� � Sp�2n,Z� , �5�

here “−t” denotes the transposed inverse. Under this modular transformation, the classical theta
unction transforms as follows:

g · ��z,T� = ��z�,T�� = 
g det�CT + D�1/2e	i�zt�CT + D�−1Cz
��z,T�, "g � Sp�2n,Z� , �6�

here 
g is an eighth root of unity depending on the group element g.1

Now, we like to find a compatible function on the orbifold in which the complex structure is
reserved, g ·T=T. For this, we first try to construct a new function that has the symmetry
roperties of the classical theta function, �2� and �3�. We define a new function as a linear
ombination of the classical theta functions under the group action

�1�z,T� = �
g�G

g · ��z,T� . �7�

learly the above function is invariant under the group action,

h · �1�z,T� = �
g�G

h · g · ��z,T� = �
g��G

g� · ��z,T� = �1�z,T�, "h � G . �8�

owever, this function does not possess the symmetry properties of the classical theta function �2�
nd �3�. This is because the condition �2� is not satisfied by �1�z ,T�, since

g · ��z + ��,T� = ��g · �z + ���,g · T� = ��g · z + g · ��,T� � ��g · z,T� , �9�

here g ·����+�� for some ����� due to the modular transformation g ·��= �CT+D�−t��. For

he condition �3�, each g ·� in �1�z ,T� in �7� gets a different factor for a lattice shift in �:
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g · ��z + �,T� = ��g · �z + ��,g · T� = ��g · z + g · �,T� � ��g · z + �,T�, for � � � , �10�

ince again g ·�= �CT+D�−t��� and belongs to �+�� in general. Thus the function �1�z ,T� fails
o preserve the transformation properties of the classical theta function, �2� and �3�, though it is a
ell defined function on the orbifold.

In �4�, the above result was due to the product ktz in the exponent. So we need to find a new
ombination of this type of product under the modular transformation that preserves the complex
tructure. Since a symplectic product preserves the complex structures, we modify the classical
heta function as follows:

�̃�z,T� = �
k

exp„− 	HT�k,k� + 2	i Im�HT�k,z��… , �11�

here

HT�s,z� � st�Im T�−1z*, for s,z � Cn. �12�

ere, T is the complex structure given before, and k� denotes the lattice point given by k� =Tk1

k2 with k1 ,k2�Zn, and z�Cn is given as usual with z=Tx1+x2 with x1 ,x2�Rn. Here, we notice
hat Im�HT�k� ,z��=Im�k� t�Im T�−1z*�=k1

t x2−k2
t x1. If we denote x� as z=Tx1+x2�x� and the same for

y� =Ty1+y2 with y1 ,y2�Rn, then HT�x� ,y��=x� t�Im T�−1y�
* is an invariant combination under the

odular transformation, T�= �AT+B��CT+D�−1, x��= �CT+D�−tx� and the same for y� , for any

�A B

C D
� � Sp�2n,Z� .

ne can check that the above transformation of the complex coordinate x� is compatible with the
ollowing coordinate transformation in the real basis:

�x1�

x2�
� = �A B

C D
�−t�x1

x2
� . �13�

The first term in the exponent in �11� is invariant under the modular transformation as we shall
ee in the next section, and the second term is also invariant since it is a symplectic product that

reserves the complex structure. Thus, our modified theta function �̃ is invariant under the modu-
ar transformation, and it is a well defined function on the above orbifold.

In fact, we can view this as follows. The classical theta function � in �4� is summed over only

ne of the two Zn lattices � ,�� in the 2n-torus. Our modified theta function �̃ is summed over
oth lattices, and its property under lattice translation is changed from that of the classical theta

unction. The new function �̃ is invariant under the lattice translation in both directions, � and ��.
nd this property is preserved under the group action.

In general, for a manifold M on which a group G is acting, one can define invariant functions
n M under the action of the group G as the functions on the orbifold M /G. In the next section,
e will do a quantum counterpart of the above analysis with crossed product algebra.

II. QUANTUM TORUS WITH CROSSED PRODUCT ALGEBRA

In order to consider an orbifolding of a quantum torus, we have to express the group action in
erms of the representation of the crossed product algebra. So, in this section we first review
riefly about the crossed product algebra and its representation, then we will investigate the
epresentation of crossed product algebra for orbifolding.

. Crossed product algebra

We now consider the crossed product algebra and its representation.13,18
Let G, a group, act on an algebra A. More explicitly, there is a group homomorphism,
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�:G → Aut�A� .

hen we define the crossed product algebra B=A’�G, which is A�G�= �b 	b :G→A
 as a set.
nd we formally express b�B as �g�Gbgg, where bg=b�g��A. Here, the addition and scalar
roduct are defined naturally. To define multiplication we require the following relation:

g · bg�g
−1 = ��g��bg��, g,g� � G, bg� � A . �14�

or b ,c ,d�B with b=�g�Gbgg, c=�g��Gcg�g�, d=�h�Gdhh, we can express the multiplication
��c=d as

b��c = �
g

bgg · �
g�

cg�g� = �
g,g�

bgg · cg�g� = �
g,h

bg��g��cg−1h�h = �
h

dhh = d , �15�

here we set g�=g−1h, dh=bg��g��cg−1h�, and used the relation �14�.
If there are representations 	, u that are a representation of A and a representation of the

roup G, respectively, on a module H,

	:A → End�H�, u:G → Aut�H� ,

hen �14� leads to the following condition for any representation of the crossed product algebra
hat should satisfy

u�g�	�a�u�g−1� = 	„��g��a�…, "a � A, "g � G . �16�

ith the above condition, we can define a representation 	u of B on H as follows:

	u��
g

bgg� = �
g

	�bg�u�g�, for bg � A, "g � G . �17�

hen the condition �16� is satisfied, G is called a symmetry group for the algebra representation
. Furthermore, if there exists an A valued inner product A ��,�� on H, then the following should
e also satisfied for consistency:18

��g��A��
,��� = A��u�g�
,u�g���, for g � G, 
, � H . �18�

ere, A��
 ,�� denotes the A-algebra valued inner product to be defined below, which belongs to
. We changed the notation for the algebra valued inner product from the single bracket in our

revious work7 to the double bracket to distinguish it from the usual scalar product that we will
enote with the single bracket below.

. Symmetry transformation

In Ref. 6, Manin constructed the quantum theta function in two ways that he called model I
nd model II. The model I basically follows the Rieffel’s way of constructing projective modules
ver noncommutative tori. Thus, in model I, one deals with Schwartz functions on Rn a for
omplex n-torus. And the scalar product is defined as

�
,� =� 
�x1��x1�d��x1�, x1 � Rn �19�

here �x1� denotes the complex conjugation of �x1�, and d��x1� denotes the Haar measure in
hich Zn has covolume 1.

n
In model II, one deals with holomorphic functions on C , and the scalar product is defined as
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�
,�T = �
Cn


�x��x�e−	HT�x,x� d� �20�

here d� is the translation invariant measure making Z2n a lattice of covolume 1 in R2n. Here,
� =Tx1+x2 with x1 ,x2�Rn. The complex structure T is given by an n�n complex valued matrix,
nd HT�x� ,x��=x� t�Im T�−1x�* as in �12�.

Now, we do the analysis with model II quantum theta function. For consistency of the repre-
entation of a crossed product algebra B=A’G, we need to define the following as explained in
ec. III A:

I� 	 :A→End�H�
II� u :G→Aut�H�
III� � :G→Aut�A�, such that u�g�	�a�u�g−1�=	(��g��a�)
IV� ��,��: H�H→A, such that ��g���f ,h��= ��u�g�f ,u�g�h��.

Let M be any locally compact Abelian group and M̂ be its dual group and define G�M

M̂. And, let 	 be a representation of G on L2�M� such that

	x	y = ��x,y�	x+y = ��x,y��̄�y,x�	y	x, for x,y � G , �21�

here � is a map � :G�G→C* satisfying

��x,y� = ��y,x�−1, ��x1 + x2,y� = ��x1,y���x2,y� .

e also define S�D� as the space of Schwartz functions on D that we take as a discrete subgroup
f G. For ��S�D�, it can be expressed as �=�w�D��w�eD,��w�, where eD,��w� is a delta func-
ion with support at w and obeys the following relation:

eD,��w1�eD,��w2� = ��w1,w2�eD,��w1 + w2� . �22�

From now on, we take M as Rn. Let A be S�D� valued functions on the Siegel space, Hn.
ore explicitly,

A = S�D� � F�Hn� = �a	a:Hn → S�D�
 , �23�

here F�Hn� is an algebra of smooth complex functions on Hn. Then a�T�=�w�DaT,we�w�, where

T,w�C. Let H be given as follows:

H = � f 	f:Rn � R̂n � Hn → C, �f�x,T�, f�x,T��T =� 	f�x,T�	2e−	HT�x,x� dx � �, "T� , �24�

here x�Rn� R̂n, T�Hn and from here on HT�x ,y� that we used above denotes HT�x� ,y�� defined
n the Sec. II for notational convenience. In other words, H are global sections of H, a vector
undle over Hn, where the fiber over T is

HT = �
	
:Rn � R̂n → C, �
,
�T � �
 . �25�

Let the group G be Sp�2n ,Z� and we now carry out steps �I�–�IV� that we listed previously.
�I� Before we define 	, we need to define a map 	0 from S�D� to End�H�:

	0:e�w� → 	w, for w � D

here

�	wf��x,T� = e−	HT�x,w�−�	/2�HT�w,w�f�x + w,T� . �26�
et a�A, where a�T�=�waT,we�w�. Now, we define 	 as follows:
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�	�a�f��x,T� = �	0„a�T�…f��x,T� . �27�

�II� We define u as follows:

„u�g…f��x,T� = f�g · x,g · T� , �28�

here

g = �A B

C D
� � Sp�2n,Z�, g · x = �A B

C D
�−t

x ,

nd g ·T= �AT+B��CT+D�−1.
For the remaining steps we need to use the following two lemmas.
Lemma 1:

HT�x,y� = Hg·T�g · x,g · y� . �29�

Lemma 2:

�f ,h�g·T = �u�g�f ,u�g�h�T. �30�

Proof of Lemma 1: We first want to show that

Im�g · T� = Im„�AT + B��CT + D�−1
… = �CT̄ + D�−t Im�T��CT + D�−1. �31�

hen the proof of Lemma 1 is given by the following steps:

Hg·T�g · x,g · y� = „�CT + D�−tx…t
„Im�g · T�…−1

„�CT + D�−ty…*

= xt�CT + D�−1�CT + D�„Im�T�…−1�CT̄ + D�t�CT̄ + D�−ty*

= xt
„Im�T�…−1y* = HT�x,y� .

hus, we only have to show �31�. We can prove it with the three generators of Sp�2n ,Z�:1

�i� g = �A 0

0 A−t �, A � GL�n,Z� �32�

�ii� g = � I B

0 I
�, Bt = B, B � gl�n, Z� �33�

�iii� g = �0 − I

I 0
� . �34�

or the first two cases, �31� can be shown trivially. For case �iii�, we need to show the following:

Im T� = T̄ −t�Im T�T −1 = T̄ −1�Im T�T −1, �35�

here T�=g ·T=−T −1.
Now, we prove �35�.
Let T=T1+ iT2 and T�=T1�+ iT2�. Then from T�T=−I, we get T1�T1−T2�T2=−I and T2�T1+T1�T2

0. Then the statement we want to prove becomes T2�= T̄ −1T2T
−1, or equivalently,

T̄T2�T = T2. �36�
he left hand side of �36� is
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lhs = �T1 − iT2�T2��T1 + iT2� = �T1T2�T1 + T2T2�T2� + i�− T2T2�T1 + T1T2�T2� .

sing T1�T1−T2�T2=−I and T2�T1+T1�T2=0 together with the property that Ti ,Ti� are symmetric,
hen we can easily show that

lhs = T2 = rhs.

Proof of Lemma 2: The left hand side of �30� is

lhs = �f ,h�g·T =� f�x,g · T�h�x,g · T�e−	Hg·T�x,x� dx ,

nd the right hand side of �30� is

rhs = �u�g�f ,u�g�h�T =� f�g · x,g · T�h�g · x,g · T�e−	HT�x,x� dx

=� f�x,g · T�h�x,g · T�e−	Hg·T�x,x� dx ,

here we used Lemma 1 in the final step.
�III� We define � :G→Aut�A� such that u�g�	�a�u�g−1�=	(��g��a�).
Let a�T� be �aT,we�w�. The left hand side can be evaluated as follows:

„u�g�	�a�u�g−1�f…�x,T� = „	�a�u�g−1�f…�g · x,g · T�

= �
w

ag·T,we−	Hg·T�g·x,w�−�	/2�Hg·T�w,w�f�x + g−1 · w,T� .

f we define ��g��a��T�=�wag·T,we�g−1 ·w�, then the right hand side is given by

	„��g��a�f…�x,T� = �
w

ag·T,w	�g−1 · w�f�x,T� = �
w

ag·T,we−	Hg·T�g·x,w�−�	/2�Hg·T�w,w�f�x + g−1 · w,T� .

n the last equality we used Lemma 1. So those two sides are equal. Using Lemma 1, one can also
how the following:

u�g�	wu�g−1� = ��g�	w = 	g−1·w. �37�

�IV� We define an A-valued inner product on H as follows:

��f ,h���T� = �
w

�f ,	wh�Te�w� , �38�

here �f ,	w�h��T= �f�x ,T� ,	wh�x ,T��T.
In other words, if a= ��f ,h�� then aT,w= �f ,	wh�T.
Now, we want to check that ��g���f ,h��= ��u�g�f ,u�g�h�� holds.
Recall that

��g��a��T� = �
w

ag·T,we�g−1 · w� .

he left hand side is given by

„��g����f ,h���…�T� = �
w

�f ,	wh�g·Te�g−1 · w� = �
w

�f ,	g·wh�g·Te�w� .
he right hand side is given by
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��u�g�f ,u�g�h��T = �
w

�u�g�f ,	wu�g�h�Te�w� = �
w

�f ,u�g�−1	wu�g�h�g·Te�w� = �
w

�f ,	g·wh�g·Te�w� ,

here we used Lemma 2 and �37�.

. Orbifolding quantum torus

We consider an orbifolding of quantum torus with a polarized complex structure T. The
ymmetry group preserving the polarized complex structure is the subgroup GT= �g

	Sp�2n ,Z�	g ·T=T
 of Sp�2n ,Z�. Orbifolding the quantum torus with a complex structure T
orresponds to the crossed product algebra discussed in the previous section with fixed T.

Let AT=S�D� and HT= �	fT	fT :Rn�Rn→C , �fT�2=�	fT�x�	2e−	HT�x,x�dx��
. Now, we can de-
ne the crossed product algebra, AT’GT, naturally from the construction in Sec. III B:

1� 	T :AT→End�HT�
2� uT :GT→Aut�HT�
3� �T :GT→Aut�AT�, such that uT�g�	T�a�uT�g−1�=	T(�T�g��a�)
4� ��,��T :HT�HT→AT such that �T�g���fT ,hT��T= ��uT�g�fT ,uT�g�hT��T.

Here, 	T, uT, �T, ��,��T, fT satisfy the following relations:

�	T„a�T�…fT��x� = „	�a�f…�x,T� ,

„uT�g�fT…�x� = „u�g�f…�x,T� ,

„��g��a�…�T� = �T�g�„a�T�… ,

��fT,hT��T = ��f ,h���T� ,

here fT�x�= f�x ,T�, a�S�D� � F�Hn�, and g�GT. If we choose f�x ,T�=1, then ��g���1,1��
��u�g�1,u�g�1��= ��1,1��, and thus ��1,1��, which belongs to the algebra A is Sp�2n ,Z� invari-
nt. Since ��1,1���T�=�w�De−�	/2�HT�w,w�e�w� is Manin’s model II quantum theta function; this
lso tells us that the model II quantum theta function is well defined on the orbifolds of a quantum
omplex torus. We further notice that Boca’s projection operator16 on the Z /4Z orbifold of a
uantum 2-torus with T= i corresponds to a special case of this construction.

V. CONCLUSION

In this paper, we investigate the symmetry of quantum torus with the group Sp�2n ,Z�.
First, we investigate the orbifolding of the classical complex torus. It turns out that the

rbifold group for a complex n torus leaving the complex structure and its polarization intact is a
ubgroup of Sp�2n ,Z�. Also, the classical theta function is not invariant under the Sp�2n ,Z�
ransformation, and we construct a variant of the classical theta function as an invariant function
nder the transformation of Sp�2n ,Z�. Then, as a quantum counterpart, we investigate the repre-
entation of crossed product algebra of quatum torus with Sp�2n ,Z� via Manin’s model II quantum

theta function approach.
In Manin’s model I approach, the dimension of the Hilbert space variable x1, which is n for

uantum T2n, does not match the dimension of the fundamental representation of Sp�2n ,Z�, which
s 2n. On the other hand, in the model II case the dimension of the Hilbert space variable x
�x1 ,x2� exactly matches that of the group. Therefore in the model I case the group action cannot
ct directly on the variables of the Hilbert space. Thus, one has to devise a transformation such as
ourier transformation as in the Boca’s work,16 where Z4 acts directly on the functions as a Fourier

ransformation, not on the variables of the functions. This type of difficulty comes from the fact

hat in the model I case the number of variables of the functions is half that of the phase space, as
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s typical in the conventional quantization. In the model II approach, the above mentioned diffi-
ulty does not arise. The group action can be defined nicely on the module as it acts on the
ariables.

In conclusion, in the model II case Sp�2n ,Z� turns out to be the symmetry group for the
uantum torus times Hn. The orbifolding of quantum torus with a complex structure corresponds
o the crossed product algebra, S�D�’GT, where GT is the subgroup of Sp�2n ,Z� fixing the
omplex structure, g ·T=T for g�Sp�2n ,Z�. And Manin’s model II quantum theta function turns
ut to be a well defined function over the above orbifold of the quantum torus.
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he Gell-Mann-Okubo and Coleman-Glashow relations for
ctet and decuplet baryons in the SUq„3… quantum
lgebra
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The q-deformed Clebsch-Gordan coefficients corresponding to the �3�� �21�
reduction of the SUq�3� quantum algebra are computed. From these results and
using the quantum Clebsch-Gordan coefficients for the �21�� �21� reduction found
by Z. Q. Ma, the q-deformed Gell-Mann-Okubo mass relations for octet and de-
cuplet baryons are determined by generalizing the procedure used for the SU�3�
algebra. We also determine the Coleman-Glashow relations for octet and decuplet
baryons in the SUq�3� algebra. Finally, by using the experimental particle masses of
the octet and decuplet baryons, two values of the q-parameter are found and ad-
justed for the predicted expressions of the masses �one for the Gell-Mann-Okubo
mass relations and the other for the Coleman-Glashow relations� and a possible
physical interpretation is given. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2218672�

. INTRODUCTION

The q-deformed algebras extend the domain of classical group theory and constitute a new
nd growing field of mathematics with a vast potential for applications in physics.1–6 The quantum
lgebra SUq�3�, as a generalization of the SU�3� algebra, has been studied by several authors7–11

ith several applications in particle physics, conformal field theory, statistical mechanics, quantum
ptics, condensed matter, molecular, atomic and nuclear spectroscopy.1,3,7,12 In these applications
ither an existing model is identified with a quantum algebraic structure or a standard model is
eformed to show a underlying quantum algebraic structure which reveals new features.3

Applications of quantum algebras in particle physics have been explored in several works.12

n hadronic phenomenology q-deformed mass relations between particle families in the octet and
ecuplet baryons have been determined from the computation of the mass operator’s expectation
alue. In these works, the mass operator has been defined in terms of generators of SUq�4� and
Uq�5� and its expectation value has been computed from the determination of their matrix
lements.

Our aim in this article is to determine the q-deformed Gell-Mann-Okubo and Coleman-
lashow relations for octet and decuplet baryons in the SUq�3� quantum algebra. First, we develop

he SUq�3� quantum algebra and use it to compute the q-deformed Clebsch-Gordan coefficients
orresponding to the �3�� �21� reduction. Second, to derive the q-deformed Gell-Mann-Okubo
ass relations for octet and decuplet baryons in the SUq�3� quantum algebra we generalize the

raditional procedure for the SU�3� algebra13 and use the previous results together with the quan-
um Clebsch-Gordan coefficients corresponding to the �21�� �21� reduction.8 After that, we obtain
he q-deformed Coleman-Glashow relations for octet and decuplet baryons by following the same
rocedure used for the SU�3� algebra.14 Finally, by using the experimental particle masses of the
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ctet and decuplet baryons, two values of the q-parameter are found and adjusted for the Gell-
ann-Okubo and Coleman-Glashow mass relations and a possible physical interpretation is given.

I. THE SUq„3… QUANTUM ALGEBRA

The quantum algebra SUq�3� is generated by the operators Î, ĥ1, ĥ2, X̂1
±, X̂2

±, which satisfy the
ollowing commutation relations10:

�ĥi, ĥj� = 0, �ĥi,X̂j
±� = ± aijX̂j

±, �1�

�X̂i
+,X̂j

−� = �ij�ĥi�q = �ij
qĥi − q−ĥi

q − q−1 , i, j = 1,2 �2�

ogether with

�X̂i
±�2X̂j

± + X̂j
±�X̂i

±�2 − �2�qX̂i
±X̂j

±X̂i
± = 0, i � j , �3�

here aij is the Cartan matrix given by

aij = � 2 − 1

− 1 2
� . �4�

Additional generators X̂3
± are introduced by9:

X̂3
+ = q1/2�X̂1

+,X̂2
+�q−1, X̂3

− = − q−1/2�X̂2
−,X̂1

−�q, �5�

here

X̂1
± = T̂±, X̂2

± = Û±, ĥ1 = 2T̂3, �6�

ĥ2 = − T̂3 + 3
2 Ŷ, �Â,B̂�q = ÂB̂ − qB̂Â . �7�

From the previous expressions, we obtain

�X̂3
+,X̂3

−� = −
qh3
ˆ

− q−h3
ˆ

q − q−1 = − �ĥ3�q, �8�

�ĥi,X̂3
±� = ± X̂3

± with ĥ3 = ĥ1 + ĥ2 = T̂3 + 3
2 Ŷ . �9�

According to the standard coproduct definition at SUq�3�, the following expressions are
btained7:

�T̂± = T̂± � qT̂3 + q−T̂3 � T̂±, �10�

�Û± = Û± � q�3Ŷ−2T̂3�/4 + q−�3Ŷ−2T̂3�/4
� Û±. �11�

Hence, the coproduct of two SUq�3� irreps is defined as7:

T̂±����1,�2����1,�2�� = �q−T̂3���1,�2���T̂±���1,�2�� + �T̂±���1,�2���qT̂3���1,�2�� ,
� � � � � �
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Û±���
��1,�2���

��1,�2�� = �Û±��
��1,�2���q�3Ŷ−2T̂3�/4��

��1,�2�� + �q−�3Ŷ−2T̂3�/4��
��1,�2���Û±��

��1,�2�� ,

here �	
�
�, with 	=1,2 , . . . ,dim��
��, is the state with eigenvalues t	, t3	, and y	, which belongs

o the SUq�3� representation �
�= �
1 ,
2�. �In this article, we consider q�R following the
uesne’s prescription.�

II. THE q-DEFORMED GELL-MANN-OKUBO MASS RELATIONS FOR OCTET
ND DECUPLET BARYONS

In order to get expressions of the masses corresponding to the octet and decuplet baryons, we
ntroduce the following mass operator:

M̂ = M̂S + M̂T, �12�

here M̂S is a SUq�3� invariant and M̂T is an isospin escalar.
By computing the expectation value of the mass operator in a 	�	

���
 state belonging to a ���
epresentation, we obtain that the mass of the particle corresponding to this state is given by

m����,���� = ��	
���	M̂S	�	

���
 + ��	
���	M̂T	�	

���
 �13�

ith

	�	
���
 = 	���,���
 = 	���,y,t,tz
, ��� = �y,t,tz� , �14�

here in order to simplify the notation we have taken y=y	, t= t	, and tz= t3	 with y, t, and tz being
he hypercharge, the isospin, and the z isospin component, respectively.

As M̂S is a SUq�3� scalar, its expectation value is the same for all members of the multiplet
orresponding to a ��� representation. Therefore, according to the previous, we obtain

��	
���	M̂S	�	

���
 = mS����� . �15�

We also note that the M̂T operator can be written as an expansion of irreducible tensor
perators of SUq�3�, according to

M̂T = �
�


T̂�
�
�. �16�

Then, by taking into account that �M̂T , Ŷ�= �M̂T , T̂�=0, from the previous expression we

btain that the irreducible tensor operators T̂�
��� should satisfy the following conditions:

�T̂�
�
�,Ŷ� = 0, �T̂�

�
�,T̂� = 0. �17�

On the other hand, according to the Wigner-Eckart theorem for the quantum group SUq�3�, we

ave that the matrix element of the irreducible tensor operator T̂�2

��2� is given by15

���3�,y3,t3,t3z	T̂�2

��2�	��1�,y1,t1,t1z
 = �
�
��1 �2 �3�

�1 �2 �3
�

q

���3�		T̂��2�		��1�
�, �18�

here the reduced matrix element ���3� 	 	T̂��2� 	 	��1�
� only depends on the representations in-
olved and the sum is performed over �, being � the index which labels the copies of the ��3�
epresentation in the ��1� � ��2� reduction. We also have that the coupling factor in the expression
18� corresponds to the q-deformed Clebsch-Gordan Coefficient of SUq�3�.15

Moreover, in the 	�	
���
= 	��� ,y , t , tz
 basis, we have

����y�t�tz�	T̂�
�
�	���yttz
 = �y

y��t
t��t

tz�����		T̂�
�
�		���
 . �19�
z
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Therefore, by comparing the previous result with the corresponding one to the q-deformed
igner-Eckart theorem, we obtain that � should be �yttz�= �000�.

Then, according to the previous we have that the M̂T operator is given by

M̂T = �



T̂000
�
� , �20�

here the sum is performed over all physically allowed SUq�3� representations. Hence, we have

�= �0� , �21� , �42� , . . . .

Therefore, the particle mass corresponding to a 	�	
���
= 	��� ,y , t , tz
 state of a multiplet belong-

ng to a ��� representation of SUq�3� is given by

m����,y,t,tz� = mS����� + �



����,y,t,tz	T̂000
�
� 	���,y,t,tz
 . �21�

It is important to point out that the ��	
��� 	 T̂000

�0� 	�	
���
 term remains absorbed in the mS����� term,

hich is a SUq�3� scalar. We also have that the dominant contribution comes from the T̂000
�21�

omponent of the octet tensor operator. Hence, according to the previous we obtain7

m����,y,t,tz� = mS����� + ����,y,t,tz	T̂000
�21�	���,y,t,tz
 . �22�

On the other hand, it is well known that the product of the SUq�3� representations �21� and
21� is given by

�21� � �21� = �42� + �3� + �32� + �21�S + �21�A + �0� , �23�

here �42�, �3�, �32�, �21�, and �0� are representations with dimensions equal to 27, 10, 10, 8, and
, respectively. Moreover, �21�S and �21�A are symmetric and antisymmetric representations with
he same transformation properties under the quantum group SUq�3�.

We also have that the �21� representation corresponding to the octet baryon exhibits the
ollowing descomposition under the subgroup U�1�Y �SUq�2�T:

�21�↓�3� � �1� + �0� � �2� + �0� � �0� + �3̄� � �1� , �24�

here the products �3�� �1�, �0�� �2�, �0�� �0�, and �3̄�� �1� represent 2, 3, 1, and 2 states
orresponding to the N, �, , and � particles of the octet baryon.16

Then, by applying the q-deformed Wigner-Eckart theorem to the second term of expression
22� taking into account that in the �21�� �21� reduction, the �3�� �1�, �0�� �2�, �0�� �0�, and

3̄�� �1� states of the first �21� representation are coupled to the �0�� �0� state of the second one
21�, where the coupling coefficients are the q-deformed isoscalar factors, we obtain the following
xpressions corresponding to the masses of the particle families in the octet baryon7:

mN = mS��21�� + ��21� �21�  �21�S
1
21 00  1

21
�

q

��21�		T̂�21�		�21�
S

+ ��21� �21�  �21�A
1
21 00  1

21
�

q

��21�		T̂�21�		�21�
A, �25�

m� = mS��21�� + ��21� �21�  �21�S

10 00  10
�

q

��21�		T̂�21�		�21�
S

+ ��21� �21�  �21�A

10 00  10
� ��21�		T̂�21�		�21�
A, �26�
q
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m = mS��21�� + ��21� �21�  �21�S

00 00  00
�

q

��21�		T̂�21�		�21�
S

+ ��21� �21�  �21�A

00 00  00
�

q

��21�		T̂�21�		�21�
A, �27�

m� = mS��21�� + � �21� �21�  �21�S
1
2 − 1 00  1

2 − 1
�

q

��21�		T̂�21�		�21�
S

+ � �21� �21�  �21�A
1
2 − 1 00  1

2 − 1
�

q

��21�		T̂�21�		�21�
A. �28�

We also have that according to Racah’s factorization lemma, the q-deformed isoscalar factors
or the SUq�3� quantum algebra are given by11

� �1 �2  �3�

t1y1 t2y2  ty
�

q
=

��1 �2 	 �3�

�1 �2 	 �3
�

q

qCt1zt2ztz

t1t2t
=

qC�	1	2���3��	3�
��1����2�

qCt1zt2ztz

t1t2t
, �29�

here qCt1zt2ztz
t1t2t is the q-deformed Clebsch-Gordan coefficient for SUq�2�. For this case, we have1,7

qC1/2 0 1/2
1/2 0 1/2 = qC101

101 = qC000
000 = 1. �30�

hen, for the octet baryon we get

��21� �21�  �21�S,A

ty 00  ty
�

q

= qC�	5��21�S,A�	�
�21���21� . �31�

Therefore, by combining expressions �25�–�28� and using the quantum Clebsch-Gordan coef-
cients corresponding to the �21�� �21� reduction obtained in Ref. 8, the following q-deformed
ass relation for octet baryons is obtained7:

�3�q��3�q + �2�q

�4�q + 1
m + m��C�q� − E�q� − D�q�� = mN�q−2E�q� +

q2

2 �A�q� +
�� 3

2�q�
2��5�q

�3�q� 1

2�q�
5

2�q

B�q���
+ m��q2E�q� +

q3

2 �A�q� −
�� 3

2�q�
2��5�q

�3�q� 1

2�q�
5

2�q

B�q��� , �32�

here A�q�, B�q�, C�q�, and D�q� are functions of the q-real parameter given by

A�q� = 1 − q−1 + q−2 + q−3 − q−4 + q−5, B�q� = 1 + q−1 + q−2 − q−3 − q−4 − q−5,

E�q� =��3�q + �2�q

�4�q + 1
,

C�q� =
q5/2��2�q + 1��q3/2 + q−3/2�

2�3�q

A�q�, D�q� =
q5/2��2�q − 1��q3/2 − q−3/2��� 3

2�q�
2��5�q

2��3�q�2� 1

2�q�
5

2�q

B�q� .
�33�
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By replacing the average multiplet masses17 in the expression �32� and performing a program
n C that finds the roots of this expression, we obtain �In this article we choose between the roots
f the mass relations which satisfy 0�q�1.�

q1 = 0.9870 ± 0.0002. �34�

Throughout this article, the errors of the q-parameters were obtained by applying the formula:

�q =��
i=1

N � �q

�mi
�2

��mi�2, �35�

here N is the number of particles under consideration, �mi is the error of their masses and
q /�m, �q /�m�, �q /�mN, �q /�m�, obtained by performing an implicit differentiation of expres-
ion �32� are respectively given by

�q

�m

=
− F�q�

m

dF�q�
dq

+ m�

dG�q�
dq

− mN
dH�q�

dq
− m�

dI�q�
dq

,

�q

�m�

=
− G�q�

m

dF�q�
dq

+ m�

dG�q�
dq

− mN
dH�q�

dq
− m�

dI�q�
dq

�q

�mN
=

H�q�

m

dF�q�
dq

+ m�

dG�q�
dq

− mN
dH�q�

dq
− m�

dI�q�
dq

,

�q

�m�

=
I�q�

m

dF�q�
dq

+ m�

dG�q�
dq

− mN
dH�q�

dq
− m�

dI�q�
dq

.

ith the functions F�q�, G�q�, H�q�, and I�q� given by

F�q� = �3�q��3�q + �2�q

�4�q + 1
,

G�q� = C�q� − E�q� − D�q� ,

H�q� = q−2E�q� +
q2

2 �A�q� +
�� 3

2�q�
2��5�q

�3�q� 1

2�q�
5

2�q

B�q�� ,

I�q� = q2E�q� +
q3

2 �A�q� −
�� 3

2�q�
2��5�q

�3�q� 1

2�q�
5

2�q

B�q�� .

To determine the q-deformed mass relations for the decuplet baryon, we follow the same
rocedure used for the octet baryon, taking into account that when the q-deformed Wigner-Eckart

¯
heorem is applied to the second term of expression �22�, the �3�� �3�, �0�� �2�, �3�� �1�, and
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6̄�� �0� states of the �3� representation �which represent 4, 3, 2, and 1 states respectively, corre-
ponding to the �, �, �, and � particles of the decuplet baryon� are coupled to the �0�� �0� state
f the �21� representation, where the coupling coefficients are the q-deformed isoscalar factors.
ence, according to the previous, we obtain the following expressions corresponding to the
asses of the particle families in the decuplet baryon7:

m� = mS��3�� + ��3� �21�  �3�
3
21 00  3

21
�

q

��3�		T̂�21�		�3�
 , �36�

m� = mS��3�� + ��3� �21�  �3�
10 00  10

�
q
��3�		T̂�21�		�3�
 , �37�

m� = mS��3�� + � �3� �21�  �3�
1
2 − 1 00  1

2 − 1
�

q

��3�		T̂�21�		�3�
 , �38�

m� = mS��3�� + � �3� �21�  �3�
0 − 2 00  0 − 2

�
q
��3�		T̂�21�		�3�
 . �39�

here for this case, we have1,7

qC3/2 0 3/2
3/2 0 3/2 = qC101

101 = qC1/2 0 1/2
1/2 0 1/2 = 1. �40�

hen, for the decuplet baryon we have

��3� �21�  �3�
ty 00  ty

�
q

= qC�	5��3��	�
�3���21� �41�

Therefore, by combining expressions �36�–�39� and using the q-deformed Clebsch-Gordan
oefficients corresponding to the �3�� �21� reduction given in the Appendix, the following
-deformed mass relations for decuplet baryons is obtained7:

m�* − m� =
1 + q

�2�q
�m� − m�*� , �42�

m�* − m� =
q3

1 + q
�m�* − m�� , �43�

m� − m�* =
q3

1 + q − q3 �m�* − m�*� , �44�

here the q-deformation parameter, according to expression �42� is given by

q =
m� − m�* ± ��m� − m�*�2 − 4�m�* − m���m�* + m�* − m� − m��

2�m�* + m�* − m� − m��
. �45�

As in the case of the octet baryons, we replace the average multiplet masses obtaining the
ollowing values for the q-parameter:

q2 = 0.917 ± 0.012, q3 = 0.986 ± 0.003, q4 = 0.985 ± 0.002. �46�

With the aim to determine a unique q-parameter for the q-deformed Gell-Mann-Okubo mass
2
elations for octet and decuplet baryons, we perform a � adjustment given by the fitted function:
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�2 = �
i=1

4
�qi − q�2

q2 . �47�

y minimizing the �2 function, we obtain the fitted q-parameter given by

q = 0.970 ± 0.003. �48�

Besides that, by comparing the generalization of the Gell-Mann-Okubo mass formula for
seudoscalar meson with its q-deformed version, the following relation is obtained:12

fK
2

f�
2

=
�2�q

2�2�2�q − �3�q�
, �49�

here fK and f� are the decay constants for the K and � mesons, respectively.
Moreover, the ratio fK / f� can be expressed in terms of the Cabbibo angle as follows12:

tan2�C =

m�
2

mK
2

fK

f�
−

m�
2

mK
2

. �50�

rom expressions �49� and �50�, a connection between the q-deformation parameter and the
abbibo angle is observed.12

On the other hand, as we have chosen before that 0�q�1, we can introduce a new �
arameter according to:

q = cos � . �51�

hen, from expressions �48� and �51� we get:

� = �0.246 ± 0.012�rad. �52�

s the Cabbibo angle is equal to �C= �0.226±0.002�rad,17 expression �52� implies:

� = �1.085 ± 0.063��C. �53�

ence, according to the previous result, it is possible to interpret the q-deformation parameter with
he cosine of the Cabbibo angle.

By replacing the q-deformation parameter obtained by the �2 fitting in the Gell-Mann-Okubo
ass relations and comparing with the q=1 case, we obtain Table I. In Table I we can see that for

TABLE I. Error percentages of the Gell-Mann-Okubo mass relations for the
SUq�3� and SU�3� algebras.

Mass relation q 	rhs−lhs	
rhs %

�32� 0.970 0.33
�32� 1.000 0.58
�42� 0.970 2.99
�42� 1.000 4.49
�43� 0.970 4.26
�43� 1.000 3.40
�44� 0.970 7.95
�44� 1.000 8.23
he q-deformed Gell-Mann-Okubo mass relations for the octet and decuplet baryons, a better
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greement with the experimental masses than the predicted by the SU�3� algebra is obtained,
xcept for expression �43� corresponding to the decuplet baryon, where the difference between the
rror percentages is only 0.86%.

V. THE q-DEFORMED COLEMAN-GLASHOW RELATIONS FOR OCTET
ND DECUPLET BARYONS

The center of the octet baryon is degenerate and so the U eigenfunctions differ from isoespin
igenfunctions. The U=1 and U=0 eigenfuntions are

	�U
0 
 =

��3�q

�2�q

	0
 −
1

�2�q

	�0
 , �54�

	U
0 
 =

��3�q

�2�q

	0
 +
1

�2�q

	�0
 . �55�

For this case, we consider the following expression for the mass operator:

M̂ = M̂S + M̂T + M̂U, �56�

here the operators M̂S, M̂T, and M̂U are SUq�3� scalar, isospin scalar and U spin scalar, respec-
ively.

The mass operators M̂T and M̂U have matrix elements related by

mT�n� = mT�p�, mT��+� = mT��0�, mU�n� = mU��U
0 �, mU�p� = mU��U

+ � ,

mT��−� = mT��0�, mT��−� = mT��0�, mU��−� = mU��−�, mU��0� = mU��U
0 � . �57�

oreover, by taking into account that

mU��U
0 � = ��U

0 	M̂U	�U
0 
 ��U

0 	M̂U	U
0 
 = 0,

m��00� = ��0	M̂	0
 = ��0	M̂U	0
 = mU��00�

nd using the expressions corresponding to the 	�U
0 
, 	U

0 
 states, we get:

mU��U
0 � =

�3�qmU�0� + mU��0� − 2��3�qmU��00�

��2�q�2
, �58�

mU�0� − mU��0� = −
�4�q

�2�q
��3�q

m��00� . �59�

hen, from expressions �56�–�58�, we find

m�n� − m�p� + m��+� − m��0� =
�3�q

��2�q�2
�mU�0� − mU��0�� −

2��3�q

��2�q�2
mU��00� , �60�

m��−� − m��0� + m��0� − m��−� =
2��3�q

��2�q�2
mU��00� +

�3�q

��2�q�2
�mU��0� − mU�0�� . �61�
Therefore, by replacing �59� in expressions �60� and �61�, the following relations are obtained:
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mn − mp + m�+ − m�0 = − ��3�qm�00, �62�

m�− − m�0 + m�0 − m�− = ��3�qm�00. �63�

rom the linear combinations of the previous relations we find

m�− − m�0 = m�− − m�+ + mp − mn. �64�

ence, the Colemann-Glashow relation for the octet baryon is independent of q.
On the other hand, it is known that when the electromagnetic interactions are neglected, we

ave that the mass operator for hadron multiplets is given by

M̂ = M̂S + M̂T, �65�

here M̂S is a SUq�3� invariant whereas M̂T is an operator corresponding to the SUq�3� symmetry
reaking.

We also have that under SUq�2�U�U�1�Q the M̂T operator in expression �65� transforms as the
um of a U vector spin and a U scalar.14 Applying the SUq�2� Wigner-Eckart theorem to this
ubgroup, we have

M�U,U3� = A + C�U,q�q−U3U3, �66�

here C�U ,q� is given by11

C�U,q� =
qU+1/2

�2U + 1�q
�	U		M̂U			U
 . �67�

rom expressions �66� and �67� we get

m�U,U3� − m�U,U3 − 1� = C�U,q�q−U3+1 + C�U,q�q−U3�1 − q�U3. �68�

By applying the previous formula to the octet baryon, we find that

m�n� − m��U
0 � = C�1,q�q−1,

m��U
0 � − m��0� = C�1,q�q .

hen, the following relation holds:

TABLE II. Error percentages of the Coleman-Glashow relations for the
SUq�3� and SU�3� algebras.

Mass relation q 	rhs−lhs	
rhs %

�70� 0.973 0.14
�70� 1.000 0.60
�74� 0.973 1.29
�74� 1.000 1.42
�74� 0.973 1.27
�74� 1.000 7.03
�74� 0.973 1.03
�74� 1.000 9.72
�75� 0.973 2.97
�75� 1.000 2.51
                                                                                                            



073509-11 Q-mass relations for octet and decuplet baryons J. Math. Phys. 47, 073509 �2006�

                        
FIG. 1. Representation �21� of SUq�3� �Ref. 7�.
FIG. 2. Representation �3� of SU �3� �Ref. 7�.
q
FIG. 3. Representation �51� of SU �3� �Ref. 7�.
q
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q�mn − m�U
0 � = q−1�m�U

0 − m�0� . �69�

ence, by using �58�, �59�, and �69� we obtain a q deformed mass relation for the particles in the
ctet baryon:

q2mn + mp + q−2m�0 + m�− = �3�qm0 + m�+ + m�− − m�0 �70�

ith the q deformation parameter given by

q = ±�s ± �s2 − 4�mn − m0��m�0 − m0�

2�mn − m0�
�71�

here the s parameter has been introduced according to

s = m�+ + m�− + m0 − mp − m�− − m�0. �72�

By replacing the experimental octet particle masses in expression �71�, we obtain

q1 = 0.965 ± 0.001. �73�

On the other hand, when formula �68� is applied to the decuplet baryon, we get the following
xpressions:

m�− − m�*− = 1
2C� 3

2 ,q�q−3/2�3 − q� ,

m�*− − m�*− = 1
2C� 3

2 ,q�q−1/2�1 + q� ,

m�*− − m�− = 1
2C� 3

2 ,q�q1/2�3q − 1� ,

m�0 − m�*0 = C�1,q�q−1,

m�*0 − m�*0 = C�1,q�q .

ence, for the decuplet baryons we obtain:

q3/2�m�− − m�*−�
−1 =

q1/2�m�*− − m�*−�
=

q−1/2�m�*− − m�−�
, �74�

FIG. 4. Representation �42� of SUq�3� �Ref. 7�.
3 − q 1 + q 3q − 1
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q�m�0 − m�*0� = q−1�m�*0 − m�*0� . �75�

Then, from expressions �74� and �75� and using the experimental decuplet particle masses we
btain:

q2 = 0.976 ± 0.007, q3 = 0.965 ± 0.004, �76�

q4 = 0.970 ± 0.003, q5 = 0.988 ± 0.008. �77�

Up to this point we have obtained five different values for the q-deformation parameter from
he q-deformed Coleman-Glashow relations for octet and decuplet baryons. In order to obtain a
nique q-parameter we perform a �2 adjustment obtaining

q = 0.973 ± 0.002. �78�

or this case, we have obtained the � parameter given by

� = �0.233 ± 0.010�rad = �1.030 ± 0.053��C, �79�

hich implies that the q-deformation parameter can be interpreted with the cosine of the Cabbibo
ngle.

By replacing the q-deformation parameter obtained by the �2 adjustment in the Coleman-
lashow relations and comparing with the predicted by the SU�3� algebra, we obtain the Table II.
rom Table II, a better agreement of the q-deformed Coleman-Glashow relations with the experi-
ent than the predicted by the SU�3� algebra is obtained in all cases except in the last �relation

75��, where the difference between the error percentages is only 0.46%.

. CONCLUSIONS

The quantum group SUq�3� provides a good tool to solve problems in particle physics, espe-
ially when one needs to describe the mass splitting for particles from isomultiplets within octet
nd decuplet baryons.

The q-deformed Clebsch-Gordan coefficients corresponding to the �3�� �21� reduction of the
Uq�3� algebra were computed. The q-deformed mass relations for octet and decuplet baryons
ave been explicity obtained from the quantum Clebsch-Gordan coefficients corresponding to the
21�� �21� and �3�� �21� reductions. The Coleman-Glashow relations for octet and decuplet
aryons have been found in the SUq�3� quantum algebra. From the Coleman-Glashow relation for
he octet baryon, a q-deformed mass relation between its particles has been obtained.

By performing an adjustment of the q-deformation parameter in the q-deformed Gell-Mann-
kubo and Coleman-Glashow relations for octet and decuplet baryons, we obtain that the corre-

ponding values for this parameter are q=0.970±0.003 and q=0.973±0.002, respectively. These
alues are directly connected with the cosine of the Cabbibo angle. That is, a unique relation
etween the q-deformation parameter and the Cabbibo angle has been found, which differs with
he results given in Ref. 12 in the fact that in this reference two different relations, q=e2i�C and
=ei�C, between these parameters have been obtained for the octet and decuplet baryons, respec-

ively, exhibiting error percentages of approximately 0.07% and 0.53% when these relations are
eplaced in the q deformed masses expressions.

In spite of the fact that the error percentages of the q-deformed mass relations obtained in Ref.
2 are lower than those obtained in this article, it is important to point out that we have shown that
hen two approximately equivalent values of the q-deformation parameter are used, the
-deformed Gell-Mann-Okubo and Coleman-Glashow relations for octet and decuplet baryons
xhibit a very good agreement with the experimental results, in most cases better than the pre-
icted by the SU�3� algebra. The error percentages of the q-deformed Gell-Mann-Okubo and

oleman-Glashow relations are lower than 7.95% and 2.97%, respectively.
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PPENDIX: QUANTUM CLEBSCH-GORDAN COEFFICIENTS FOR THE ˆ3‰Ã ˆ21‰
EDUCTION

The product of the SUq�3� representations �3� and �21� is given by

�3� � �21� = �51� + �42� + �3� + �21� , �A1�

where �51�, �42�, �3�, and �21� are representations with dimensions equal to 35, 27, 10, and 8,
respectively. These representations are shown in Figs. 1–4.

Through a straightforward calculation in which the angular momentum addition rules are
taken into account together with the requirements of orthogonality, the q-deformed Clebsch-
Gordan coefficients corresponding to the �3�� �21� reduction are determined and shown in the
Table III. In this case, we have that �i, i=1,2 , . . . ,8 and � j, j=1,2 , . . . ,10 are the wave functions

hich describe the octet and decuplet baryons states corresponding to the �21� and �3� represen-
ations.

ABLE III. The q-deformed Clebsch-Gordan coefficients for the �3�� �21� reduction.

�a� �1
�51� �b� �5

�51� �c� �6
�51� �d� �15

�51� �e� �34
�51� �f� �35

�51�

a� �1�1 �d� �4�6

b� �4�2 �e� �10�7 1

c� �1�3 �f� �10�8

�a� �2
�51� −�1

�42� �b� �4
�51� �3

�42� �c� �3
�51� −�2

�42�

�d� �16
�51� �30

�51� �e� �10
�42� �25

�42� �f� �24
�51� �19

�42�

�g� �23
�51� �33

�51� �h� �18
�42� �27

�42� �i� �29
�51� �24

�42�

a� �2�1 �b� �3�2

d� �5�3 �e� �8�7 �
q�3�q

�4�q
� 1

q3�4�q �
�3�q

q�4�q
−�

q3

�4�q

0 0

g� �7�6 �h� �9�8

c� �2�2 �c� �3�1 q−1�
�2�q

�4�q
−q�

�2�q

�4�q

f� �5�7 �f� �8�3 0 0 0 0

c� �7�8 �c� �9�6 q�
�2�q

�4�q
q−1�

�2�q

�4�q

a� �1�2 �b� �4�1

d� �1�7 �e� �10�3 � 1

q3�4�q
−�

q�3�q

�4�q �
q3

�4�q �
�3�q

q�4�q

0 0

g� �4�8 �h� �10�6

�a� �31
�51� �32

�51� �26
�42� �10

�3� �b� �19
�51� �20

�51�

a��10�4 �b��5�6 �
q3

�4�q

0 �
�3�q

q�4�q

0 �q−3�2�q

�4�q

�2�q

�4�q
� 1

q3�6�q

a��10�5 �b��7�3 0 �q3�3�q

�6�q

0 �
�3�q

q3�6�q

�q5�2�q

�4�q

−
�2�q

�4�q
� 1

q3�6�q

a��8�8 �b��3�7 � q−2�3�q

�2�q�4�q � q−2�3�q

�2�q�6�q

−
q

��2�q�4�q
−� q4�3�q

�2�q�6�q

�q−1�2�q

�4�q

−
�2�q

�4�q
� 1

q9�6�q
                                                                                                            



�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

073509-15 Q-mass relations for octet and decuplet baryons J. Math. Phys. 47, 073509 �2006�

                        
TABLE III. �Continued.�

�a� �31
�51� �32

�51� �26
�42� �10

�3� �b� �19
�51� �20

�51�

a��9�7 �b��2�8 �
�3�q

�2�q�4�q
−� q−4�3�q

�2�q�6�q
−

q2

��2�q�4�q � q2�3�q

�2�q�6�q

�q−5�2�q

�4�q

�2�q

�4�q
� 1

q5�6�q

a��8�7 �b��6�4 0 0 0 0 �2�q�q�2�q

�4�q

�1−q−2��2�q

�4�q�q�6�q

a��9�8 �b��8�2 0 0 0 0 0 � 1

q5�6�q

a��9�5 �b��9�1 0 0 0 0 0 � 1

q3�6�q

a��9�4 �b��6�5 0 0 0 0 0 �
�3�q

�6�q

�a� �26
�51� �20

�42� �21
�42� �8

�3� �7
�21� �b� �5

�21�

a�
10�1

�b� �9�1 q3�
�3�q

�4�q�6�q

0 q�3�q

��2�q�4�q�5�q �
�3�q

�2�q�6�q �
�2�q

q3�5�q

−� 1
�5�q

a� �9�3 �b� �7�3 −
q−1

��4�q�6�q �
�2�q

�3�q�4�q
−

q−1��5�q+q−1�2�q�

��2�q�3�q�4�q�5�q

q2

��2�q�6�q �
q�2�q

�3�q�5�q
−

q−2

��5�q

a� �5�8 �b� �5�6
q−2�2�q

��4�q�6�q
−�

�2�q

�3�q�4�q
−�

�2�q

�3�q�4�q�5�q
−q�

�2�q

�6�q � q5�2�q

�3�q�5�q

−q2

��5�q

a� �6�7 �b� �8�2 −�
�2�q

q7�4�q�6�q
−

q3/2�2�q

��3�q�4�q

� 1

q3�3�q�4�q�5�q
� 1

q�6�q
−

q

��3�q�5�q

q−1

��5�q

a� �8�5 �b� �6�4
�3�q�q�3�q

��2�q�4�q�6�q

0
−

�3�q

�2�q �
q5

�4�q�5�q

��2�q−q3���3�q

�2�q�q3�6�q

−� 1
�5�q

q

��5�q

a� �8�4 �b� �2�8 �
q

�2�q�4�q�6�q

�2�q

�q3�3�q�4�q

�2�q+q�5�q

�2�q�q�3�q�4�q�5�q

−1

�2�q �
q7

�6�q

−
q2

��3�q�5�q

0

�a� �14
�42� �6

�3� �4
�21� �b� �14

�42� �6
�3� �4

�21�

a� �8�2 �b� �9�1 � 1
q�2�q�5�q

� 1

q3�6�q

q−3

��3�q�5�q
� q

�2�q�5�q
� 1

q�6�q

q−2

��3�q�5�q

a� �2�8 �b� �6�5 − 1
�4�q �

�2�q

q�5�q

−� q
�6�q

q2�2�q

��3�q�5�q
−� q3�3�q

�2�q�5�q

q−5/2−q−3/2

�2�q��6�q��3�q�−1

−q−1

��5�q

a� �6�4 �b� �3�7
�1+q4−q−4−q2���2�q

�4�q�q�5�q

q1/2−q5/2

��6�q

q−1−q
��3�q�5�q

�q−5�2�q

�4�q��5�q

�3�q+�2�q−q5

��2�q�2�q5�6�q

−�2�q

��3�q�5�q

a� �5�6 �b� �7�3
��2�q+q5���2�q

�4�q�q5�5�q

−� q3

�6�q

−1
��3�q�5�q

−�q−4+q−2+q2�

�4�q��5�q�q�2�q�−1
� q3

�6�q
� 1

�3�q�5�q

�28
�51� �22

�42� �23
�42� �9

�3� �8
�21�

�10�2 q3�
�3�q

�4�q�6�q

0 q�3�q

��2�q�4�q�5�q �
�3�q

�2�q�6�q �
�2�q

q3�5�q

�8�6
1

��4�q�6�q q−2�
�2�q

�3�q�4�q
−

q−5/2��5�q+q�2�q�

��2�q�3�q�4�q�5�q
−

q3

��2�q�6�q
−� q3�2�q

�3�q�5�q

�7�7 −
q−3�2�q

��4�q�6�q
−q2�

�2�q

�3�q�4�q
−q−1�

�2�q

�3�q�4�q�5�q �
�2�q

�6�q
−� q3�2�q

�3�q�5�q

�6�8 �
�2�q

q3�4�q�6�q
−

q1/2�2�q

��3�q�4�q �
q

�3�q�4�q�5�q
−�

q3

�6�q

q3

��3�q�5�q
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TABLE III. �Continued.�

�28
�51� �22

�42� �23
�42� �9

�3� �8
�21�

�9�5
�3�q�q�3�q

��2�q�4�q�6�q

0
−

�3�q

�2�q �
q5

�4�q�5�q

��2�q−q3���3�q

�2�q�q3�6�q

� 1
�5�q

�9�4 −� 1

q3�2�q�4�q�6�q

�2�q

�q�3�q�4�q

−
�2�q+q�5�q

�2�q�q5�3�q�4�q�5�q

1

�2�q �
q3

�6�q

1
��3�q�5�q

�a� �8
�51� �7

�51� �4
�42� �1

�3� �b� �13
�42�

a� �1�4 �b� �8�2
�3�q

�q3�2�q�4�q�5�q�6�q �
�2�q

q3�5�q

1
�2�q �

q�3�q

�4�q
−

�3�q

�2�q �
q3

�6�q
−

�3�q

�4�q �q3�2�q

�3�q

a� �1�5 �b� �5�6 �
�3�q�5�q

q3�2�q�4�q�6�q

0 −
�3�q

�2�q �
q

�4�q
− 1

�2�q �q3�3�q

�6�q

1
�4�q �

�2�q

q7�3�q

a� �2�3 �b� �7�3 −q−4�
�3�q

�4�q�5�q�6�q
q�

�3�q

�5�q

−q−2� 1
�2�q�4�q q−1�

�3�q

�2�q�6�q

1
�4�q �

q�2�q

�3�q

a� �5�1 �b� �2�8 q�
�3�q�5�q

�4�q�6�q

0 q−1� 1
�2�q�4�q q−2�

�3�q

�2�q�6�q
−

�3�q

�4�q �
�2�q

q�3�q

a� �1�3 �b� �6�4 0 0 0 0 �2�q

�4�q �
�2�q

q3�3�q

�a� �14
�51� �13

�51� �9
�42� �4

�3� �b� �15
�42�

a� �4�4 �b� �8�2
�3�q

�q7�2�q�4�q�5�q�6�q �q3�2�q

�5�q
− 1

�2�q �
�3�q

q3�4�q

�3�q

�2�q
� 1

q�6�q � q3�3�q

�2�q�5�q

a� �4�5 �b� �5�6 �
�3�q�5�q

q3�2�q�4�q�6�q

0 −
�3�q

�2�q �
q

�4�q
− 1

�2�q �q3�3�q

�6�q �
�2�q

q�3�q�5�q

a� �3�6 �b� �7�3 q−1�
�3�q

�4�q�5�q�6�q
q−1�

�3�q

�5�q

q� 1
�2�q�4�q −q2�

�3�q

�2�q�6�q �
�2�q

q5�3�q�5�q

a� �7�2 �b� �9�1 q�
�3�q�5�q

�4�q�6�q

0 q−1� 1
�2�q�4�q q−2�

�3�q

�2�q�6�q
−�

q�3�q

�2�q�5�q

a� �1�3 �b� �6�4 0 0 0 0 −�
�2�q

q3�3�q�5�q

�18
�51� �17

�51� �11
�42� �12

�42� �5
�3� �3

�21�

5�5 �
�3�q

q�6�q

0 0
−�

q3�3�q

�2�q�5�q

q−5/2−q−3/2

�2�q �
�3�q

�6�q
−

q−1

��5�q

1�8 q−3

�4�q �
�2�q�3�q

�6�q

q−3

�4�q −
q−1��3�q

�4�q
− q−1

�4�q �
�3�q

�5�q −�
�3�q

�2�q�6�q �q3�2�q

�5�q

8�1 q−2�
�2�q

�6�q

0 0 � 1
�5�q q−1�

�2�q

�6�q �
�2�q

q5�3�q�5�q

2�7 − q−5

�4�q �
�2�q

�6�q

��3�q

q�4�q
−

q�3�q

�4�q

q−3

�4�q �
1

�5�q

�3�q+�1−q3/2��2�q−q5

�2�q�q3�2�q�6�q
−�

�2�q

q�3�q�5�q

5�4
�2�q

�4�q
� 1

q5�6�q

��2�q�3�q

q1/2�4�q

q−5/2��2�q

�4�q

�2�q+q5

�4�q �
�2�q

q3�5�q
−�

q5

�6�q

− q

��3�q�5�q
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TABLE III. �Continued.�

�18
�51� �17

�51� �11
�42� �12

�42� �5
�3� �3

�21�

6�3 −
�2�q

�4�q
� 1

q�6�q

�q3�2�q�3�q

�4�q

q−1/2��2�q

�4�q

− q−4+q−2+q2

�4�q �
�2�q

q�5�q �
q

�6�q

q−1

��3�q�5�q

�9
�51� �10

�51� �5
�42� �6

�42� �2
�3� �1

�21�

3�3 q2�
�2�q�3�q

�4�q�5�q
−

q−3�2�q

��4�q�5�q�6�q
−

q−1��2�q

��3�q�4�q

q−4��2�q

��3�q�4�q�5�q �
�2�q

�6�q
−�

�2�q

q3�3�q�5�q

6�1 0 �q3�2�q�5�q

�4�q�6�q

� 1
q�3�q�4�q −

�4�q+q−1−1

��3�q�4�q�5�q

� 1

q3�6�q
−

q−3

��3�q�5�q

2�4
�2�q��3�q

�q�4�q�5�q

q−1/2��2�q−q−5�

��2�q�4�q�5�q�6�q

q3/2��2�q−q−4�

�2�q��3�q�4�q
−

�2�q

�q5�3�q�4�q�5�q

q5/2�q−5−�2�q�

�2�q��6�q

�2�q

��3�q�5�q

5�2 0 �
�5�q

�4�q�6�q

q−2

��2�q�3�q�4�q

q3�1+q3�3�q���2�q

��3�q�4�q�5�q

q−3

��2�q�6�q �
�2�q

q3�3�q�5�q

1�6
q−3��2�q

��4�q�5�q

q−3��3�q

��4�q�5�q�6�q

q−1

��2�q�4�q

q−1��2�q

��4�q�5�q
−�

�3�q

�2�q�6�q
−�q3�2�q

�5�q

2�5 0 �
�3�q�5�q

q3�2�q�4�q�6�q
−

�3�q

�2�q �
q

�4�q

0
− 1

�2�q �q3�3�q

�6�q

0

�22
�51� �21

�51� �16
�42� �17

�42� �7
�3� �6

�21�

7�5 �
�3�q

q�6�q

0 0
−� q3�3�q

�2�q�5�q

q−5/2−q−3/2

�2�q �
�3�q

�6�q

−
q−1

��5�q

4�7 −q−4

�4�q �
�2�q�3�q

�6�q

1
�4�q −

q2��3�q

�4�q

q−2

�4�q �
�3�q

�5�q

1+q−1

q2�2�q �
�3�q

�2�q�6�q

−�
q�2�q

�5�q

9�2 q−2�
�2�q

�6�q

0 0 � 1
�5�q q−1�

�2�q

�6�q �
�2�q

q5�3�q�5�q

3�8 q−2

�4�q �
�2�q

�6�q

��3�q

q2�4�q

−
�3�q

�4�q
− 1

�4�q
� 1

�5�q
−q� 1

�2�q�6�q � q3�2�q

�3�q�5�q

6�6
�2�q

�4�q
� 1

q�6�q

��2�q�3�q

q5/2�4�q

q−5/2��2�q

�4�q

�5�q+q−2

�2�q�4�q �
q�2�q

�5�q
−�

q5

�6�q

−
q

��3�q�5�q

7�4 −
�2�q

�4�q
� 1

q5�6�q

�q3�2�q�3�q

�4�q

q−1/2��2�q

�4�q −
q−4+q−2+q2

�4�q �
�2�q

q�5�q �
q

�6�q

q−1

��3�q�5�q

�11
�51� �12

�51� �7
�42� �8

�42� �3
�3� �2

�21�

2�6 q−2�
�2�q�3�q

�4�q�5�q

q−2�2�q

��4�q�5�q�6�q �
�2�q

�3�q�4�q �
�2�q

�3�q�4�q�5�q
−q�

�2�q

�6�q
−� q5�2�q

�3�q�5�q

6�2 0 �
q�2�q�5�q

�4�q�6�q

� 1
q�3�q�4�q

q−1/2�1+q3�3�q�

��3�q�4�q�5�q

� 1

q5�6�q

q−1

��3�q�5�q

3�4
�2�q�q�3�q

��4�q�5�q

q1/2�1−q−5�2�q�

��2�q�4�q�5�q�6�q

q−5/2�q5−�2�q�

�2�q��3�q�4�q
−

�2�q

�q3�3�q�4�q�5�q

q−3/2��2�q−q5�

�2�q��6�q

q�2�q

��3�q�5�q

7�1 0 q2�
�5�q

�4�q�6�q

1
��2�q�3�q�4�q −�

�2�q�4�q

�3�q�5�q

q−1

��2�q�6�q
−�

�2�q

q5�3�q�5�q
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TABLE III. �Continued.�

�11
�51� �12

�51� �7
�42� �8

�42� �3
�3� �2

�21�

4�3
q3��2�q

��4�q�5�q

−q−2��3�q

��4�q�5�q�6�q

− 1
��2�q�4�q

q−3��2�q

��4�q�5�q
q�

�3�q

�2�q�6�q
−�

�2�q

q�5�q

3�5 0 �
�3�q�5�q

q3�2�q�4�q�6�q
−

�3�q

�2�q
� q

�4�q

0
− 1

�2�q �q3�3�q

�6�q

0
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tudy of the validity of the phase-integral connection
ormula for potential barriers of arbitrary thickness
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The validity of the phase-integral connection matrix for potential barriers is dis-
cussed in a concrete way for a particular parabolic barrier, for the symmetric
Eckart-Epstein barrier, and for the inverted Morse potential, when the first-order
phase-integral approximation is used. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2218979�

. INTRODUCTION

The first correct phase-integral connection formula for a real, single-hump potential barrier
as published by Fröman and Fröman in 1965 for the first-order approximation,1 and in 1970 for

n arbitrary-order approximation, but a particular choice of the base function.2 The formula is
alid also for underdense barriers, if the energy does not lie too high above the top of the barrier.
he corresponding connection formula for a possibly complex potential barrier, when the phase-

ntegral appoximation of arbitrary order generated from an unspecified base function �which is
escribed in Sec. 1.3.1 of Ref. 3 and in Sec. 2.2 of Ref. 4� is used, was derived by Fröman et al.
n Chap. 5 of Ref. 3 by means of comparison equation technique and by Fröman and Fröman4 by
nitially using the fact that the wave function is single valued and then, only finally, comparison
quation technique; see Sec. 3.44 in Ref. 4. The previously mentioned connection formula for a
eal, single-hump potential barrier was derived and presented in an alternative way in Ref. 4; see
heir Secs. 2.5 and 3.45. It is valid for a barrier of arbitrary thickness with approximately parabolic
op, when an arbitrary order of the phase-integral approximation is used. The purpose of the
resent article is to verify the correctness of this connection formula for a particular parabolic
arrier, for the symmetric Eckart-Epstein barrier, and for the inverted Morse potential, when the
rst order of the phase-integral approximation is used. For the background we refer to Sec. 1.3.1

n Ref. 3 or to Sec. 2.2 in Ref. 4.

I. FIRST-ORDER PHASE-INTEGRAL CONNECTION FORMULA FOR A REAL,
INGLE-HUMP BARRIER

For a real, single-hump potential barrier of arbitrary thickness with the turning points t� and t�
where t�� t� if the barrier is superdense�, we write in the first order of the phase-integral ap-
roximation generated from an unspecified base function Q�z� the wave function on the real axis
s

��x�� = Ã��x���Q−1/2�x���exp�i�Re �
t�

x�
Q�z�dz�	 + B̃��x���Q−1/2�x���exp�− i�Re �

t�

x�
Q�z�dz�	 ,

�2.1�
ith x� lying to the left of the barrier, and

47, 073510-1022-2488/2006/47�7�/073510/17/$23.00 © 2006 American Institute of Physics
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��x�� = Ã��x���Q−1/2�x���exp�i�Re �
t�

x�
Q�z�dz�	 + B̃��x���Q−1/2�x���exp�− i�Re �

t�

x�
Q�z�dz�	 ,

�2.2�

ith x� lying to the right of the barrier.

The coefficients Ã��x��, B̃��x��, and Ã��x��, B̃��x�� in �2.1� and �2.2� are related to each other
ccording to Eq. �3.45.8� in Ref. 4, i.e.,


Ã��x��

B̃��x��
� = M̃
Ã��x��

B̃��x��
� , �2.3�

ith the connection matrix M̃ given by approximate formula �3.45.9a� in Ref. 4, i.e., in the
rst-order approximation

M̃ = 
 − i exp�K0� �exp�2K0� + 1�1/2 exp�iø̃�

�exp�2K0� + 1�1/2 exp�− iø̃� i exp�K0�
� , �2.4�

here K0 is the first-order phase integral with t� and t� as limits of integration, i.e.,

K0 = − i�
t�

t�
Q�z�dz , �2.5�

ith the phase of Q�z� chosen such that K0 is positive when the barrier is superdense but negative

hen the barrier is underdense, and ø̃ is the parabolic phase correction given by Eqs. �2.5.11� and
2.5.13a-c� in Ref. 4, i.e., in the first order of the phase-integral approximation,

ø̃ = arg ��1/2 + iK̄0� − K̄0 ln�K̄0� + K̄0, K̄0 = K0/� . �2.6�

The matrix �2.4� has the property that

M̃−1 = M̃ , �2.7�

nd therefore it follows from �2.3� that


Ã��x��

B̃��x��
� = M̃
Ã��x��

B̃��x��
� . �2.8�

Formulas �2.3� and �2.8� along with �2.4� and �2.6� are valid under the assumptions that the
oefficient function in the Schrödinger equation is in some sense large and that the top of the
arrier is approximately parabolic. One can express the first assumption more precisely by saying
hat the quantity �0, defined by Eq. �2.2.1� in Ref. 4, be small compared to unity in the relevant
egion of the complex x plane. The second assumption means that the distance from the two
ransition points of the barrier to the transition points that are not associated with the barrier is

uch larger than the distance between the transition points of the barrier.

II. CONNECTION FORMULA FOR A REAL PARABOLIC BARRIER, OBTAINED
ROM EXACT SOLUTIONS

The time-independent Schrödinger equation for a particular parabolic barrier can be written as

d2�

dx2 + R�x�� = 0, �3.1�
ith
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R�x� = 1
4x2 − a , �3.2�

here a is a real constant.
According to Secs. 19.21.1 and 19.17.10 in Ref. 5, differential equation �3.1� along with �3.2�

as a solution E�a ,x� such that

E�a,x� � 
2

x
�1/2

expi�1

4
x2 − a ln x +

1

2
arg ��1/2 + ia� +

�

4
	�, x → + � . �3.3�

sing Secs. 19.17.9, 19.21.1, 19.17.10, 19.21.4, 19.21.5, 19.21.6, and 19.18.3 in Ref. 5, and
oting that arg ��1/2+ ia� is a real quantity, one finds that the behavior of E�a ,x� as x→−� is

E�a,x� � 
 2

�x��
1/2

exp�a + i�1

4
x2 − a ln�x� +

1

2
arg ��1/2 + ia� −

�

4
	�

+ �exp�2�a� + 1�1/2
 2

�x��
1/2

exp− i�1

4
x2 − a ln�x� +

1

2
arg ��1/2 + ia� −

�

4
	�,

x → − � . �3.4�

By expressing the right-hand sides of �3.3� and �3.4� in terms of phase-integral quantities we
hall derive the connection formula described in Sec II.

Choosing

Q�x� = R1/2�x� �3.5�

ith the phase of R1/2�x� in agreement with what is said following �2.5�, and denoting the zeros of
2�x� by t� and t�, where t�� t� if the barrier is superdense, we obtain from �2.5�, with the use of

3.2�,

K0 = − i�
t�

t�
Q�x�dx = �

t�

t� 
a −
1

4
x2�1/2

dx = �a = �K̄0, �3.6�

here

K̄0 = K0/� = a . �3.7�

With the use of �3.2� and �3.5� we obtain

�Re �
t�

x

Q�z�dz� = Re �
2�a

x 
1

4
z2 − a�1/2

dz =
1

4
x�x2 − 4a�1/2 − a ln��x2 − 4a�1/2 + x� + a ln�2��a�� ,

�3.8�

ith x lying to the right of the barrier, and hence, by neglecting terms of the order O�x−2�,

�Re �
t�

x

Q�z�dz� �
1

4
x2 − a ln x +

1

2
a�ln�a� − 1�, x → + � . �3.9�

ecause of the symmetry of Q2�x� we obtain from �3.8�

�Re �
t�

x

Q�z�dz� = �Re �
t�

�x�

Q�z�dz� =
1

4
�x��x2 − 4a�1/2 − a ln��x2 − 4a�1/2 + �x�� + a ln�2��a�� ,

�3.10�
−2
ith x lying to the left of the barrier, and hence, by neglecting terms of the order O�x �,
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�Re �
t�

x

Q�z�dz� �
1

4
x2 − a ln�x� +

1

2
a�ln�a� − 1�, x → − � . �3.11�

Recalling �3.2�, �3.5�, �3.7�, �3.9�, and �3.11�, one can write �3.3� and �3.4� as

E�a,x� � �Q−1/2�x��expi��Re �
t�

x

Q�z�dz� +
ø̃

2
+

�

4	�, x → + � , �3.12�

E�a,x� � �Q−1/2�x��expK0 + i��Re �
t�

x

Q�z�dz� +
ø̃

2
−

�

4	�
+ �exp�2K0� + 1�1/2�Q−1/2�x��exp− i��Re �

t�

x

Q�z�dz� +
ø̃

2
−

�

4	�,

x → − � , �3.13�

ith

ø̃ = arg ��1/2 + iK̄0� − K̄0 ln�K̄0� + K̄0. �3.14�

From �3.12� and �3.13� one finds that the function

�1�x� = exp�− i
 ø̃

2
+

�

4
�	E�a,x� �3.15�

or sufficiently large positive and negative values of x is given by

�1�x� � �Q−1/2�x��exp�i�Re �
t�

x

Q�z�dz�	, x → + � , �3.16�

�1�x� � b1�Q−1/2�x��exp�i�Re �
t�

x

Q�z�dz�	 + b2�Q−1/2�x��exp�− i�Re �
t�

x

Q�z�dz�	, x → − � ,

�3.17�

here

b1 = − i exp�K0� , �3.18�

b2 = �exp�2K0� + 1�1/2 exp�− iø̃� . �3.19�

he function

�2�x� = �1
*�x� �3.20�

s another approximate solution of �3.1� along with �3.2�. It behaves for large positive and negative

alues of x as
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�2�x� � �Q−1/2�x��exp�− i�Re �
t�

x

Q�z�dz�	, x → + � , �3.21�

�2�x� � b2
*�Q−1/2�x��exp�i�Re �

t�

x

Q�z�dz�	 + b1
*�Q−1/2�x��exp�− i�Re �

t�

x

Q�z�dz�	, x → − � .

�3.22�

s x→ +� the general solution is according to �3.16� and �3.21�

��x� � Ã��Q−1/2�x��exp�i�Re �
t�

x

Q�z�dz�	 + B̃��Q−1/2�x��exp�− i�Re �
t�

x

Q�z�dz�	, x → + � ,

�3.23�

here Ã� and B̃� are arbitrary constants. When x→−� this solution behaves according to �3.17�
nd �3.22� as

��x� � Ã�b1�Q−1/2�x��exp�i�Re �
t�

x

Q�z�dz�	 + b2�Q−1/2�x��exp�− i�Re �
t�

x

Q�z�dz�	�
+ B̃�b2

*�Q−1/2�x��exp�i�Re �
t�

x

Q�z�dz�	 + b1
*�Q−1/2�x��exp�− i�Re �

t�

x

Q�z�dz�	�
= Ã��Q−1/2�x��exp�i�Re �

t�

x

Q�z�dz�	 + B̃��Q−1/2�x��exp�− i�Re �
t�

x

Q�z�dz�	, x → − � ,

�3.24�

here

Ã� = b1Ã� + b2
*B̃�, �3.25�

B̃� = b2Ã� + b1
*B̃�, �3.26�

.e.,


Ã�

B̃�
� = M̃
Ã�

B̃�
� , �3.27�

ith

M̃ = 
b1 b2
*

b2 b1
* � . �3.28�

nserting �3.18� and �3.19� into �3.28� one obtains

M̃ = 
 − i exp�K0� �exp�2K0� + 1�1/2 exp�iø̃�

�exp�2K0� + 1�1/2 exp�− iø̃� i exp�K0�
� . �3.29�

t is seen that �3.27� along with �3.29� and �3.14� agrees with the first-order phase-integral result
iven by �2.8� along with �2.4� and �2.6�. This is true for any real value of the constant a in �3.2�.
ccording to �3.6� K0=�a, so the barrier can therefore be of arbitrary thickness �overdense or

nderdense�.
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Of the conditions stated following �2.8� for the validity of the general connection formula for
real barrier described in Sec. II the second condition is automatically fulfilled for the particular

arrier now considered. Further, in the present section we did not use the first condition, i.e., the
equirement that the absolute value of �0 be much smaller than unity in the relevant region of the
omplex plane. The reason for this is that the Schrödinger equation with a parabolic barrier was
sed as comparison equation in the derivation of the general connection formula presented in Sec.
II, and therefore the condition in question is not needed here.

V. CONNECTION FORMULA FOR THE REAL, SYMMETRIC ECKART-EPSTEIN
ARRIER, OBTAINED FROM EXACT SOLUTIONS

Consider the real, symmetric Eckart-Epstein potential barrier

V�x� =
4V0 exp�x/x0�

�exp�x/x0� + 1�2 , �4.1�

here x0 is a positive constant with the dimension of length, and V0 is a positive constant, which
as the dimension of energy and is equal to the height of the barrier. With obvious notations the
ime-independent Schrödinger equation for a quantal particle in the potential �4.1� is

d2�

dx2 + R�x�� = 0, �4.2�

here

R�x� =
2m

�2 E −
4V0 exp�x/x0�

�exp�x/x0� + 1�2� . �4.3�

From Eckart’s6 paper one finds that there is a solution ��x� of �4.2� along with �4.3� that for
arge positive and negative values of x behaves as

��x� � 
 �

x0
�−1/2

exp�i�x/x0�, x → + � , �4.4�

��x� �
��− 2i����1 − 2i��

��1/2 + i�	 − 2�����1/2 − i�	 + 2���

 �

x0
�−1/2

exp�i�x/x0�

+
��2i����1 − 2i��

��1/2 + i	���1/2 − i	�

 �

x0
�−1/2

exp�− i�x/x0�, x → − � , �4.5�

here

� = 
2mEx0
2

�2 �1/2

�4.6�

s a dimensionless, positive parameter. By expressing the right-hand sides of �4.4� and �4.5� in
erms of phase-integral quantities we shall in the following derive the phase-integral connection
ormula for a real barrier described in Sec. II.

When x lies sufficiently close to an arbitrary pole xp of R�x� one has the formula

exp�x/x0�
4x0

2�exp�x/x0� + 1�2 � −
1

4�x − xp�2 . �4.7�
eferring to Sec. 2.2 in Ref. 4, we therefore choose
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Q2�x� = R�x� +
exp�x/x0�

4x0
2�exp�x/x0� + 1�2 �4.8�

nd hence, with the use of �4.3�,

Q2�x� =
�2�exp�x/x0� + 1�2 − 	2 exp�x/x0�

x0
2�exp�x/x0� + 1�2 �4.9�

=
�2�exp�2x/x0� − �
2 − 2�exp�x/x0� + 1�

x0
2�exp�x/x0� + 1�2 �4.10�

here � �dimensionless and positive� is defined by �4.6�, and

	 = 
8mV0x0
2

�2 −
1

4
�1/2

, �4.11�


 =
	

�
, �4.12�

re other dimensionless parameters, which are also assumed to be positive.
One finds from �4.10� that the turning points t� and t� �where t�� t� when the barrier is

uperdense�, i.e., the zeros of Q2�x� on the real axis, are obtained from

− t� = t� = x0 ln

2 − 2 + 
�
2 − 4�1/2

2
= x0 ln

�
 + �
2 − 4�1/2�2

4
= x0 ln


 + �
2 − 4�1/2


 − �
2 − 4�1/2

= x0 ln
1 + �1 − 4/
2�1/2

1 − �1 − 4/
2�1/2 ,

.e.,

− t� = t� = x0 ln
1 + �1 − 4/
2�1/2

1 − �1 − 4/
2�1/2 . �4.13�

According to �2.5� one has

K0 = − i�
t�

t�
Q�z�dz = �

t�

t�
�− Q2�z��1/2dz , �4.14�

here the phase of the integrand is to be chosen appropriately. In Appendices A and B it is shown
hat by inserting the expression for Q�z� obtained from �4.9� into �4.14� and evaluating the integral
ne obtains

K0 = ��	 − 2�� , �4.15�

here � and 	 are given by �4.6� and �4.11�, respectively.
One finds with the use of �4.10� that

lim
x→−�

�Q−1/2�x�� = lim
x→+�

�Q−1/2�x�� = 
 �

x0
�−1/2

, �4.16�
nd according to �C3� and �C4� in Appendix C one has
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lim
x→+�

��Re �
t�

x

Q�z�dz� −
�

x0
x	 = lim

x→−�
��Re �

t�

x

Q�z�dz� +
�

x0
x	 = 2� ln�2�� −

	 + 2�

2
ln�	 + 2��

+
	 − 2�

2
ln�	 − 2�� . �4.17�

With the use of �4.4�, �4.5�, �4.16�, and �4.17� one finds that the function

�1�x� = expi�2� ln�2�� −
	 + 2�

2
ln�	 + 2�� +

	 − 2�

2
ln�	 − 2��	���x� �4.18�

as the following behavior for large positive and negative values of x

�1�x� � �Q−1/2�x��exp�i�Re �
t�

x

Q�z�dz�	, x → + � , �4.19�

�1�x� � b1�Q−1/2�x��exp�i�Re �
t�

x

Q�z�dz�	 + b2�Q−1/2�x��exp�− i�Re �
t�

x

Q�z�dz�	, x → − � ,

�4.20�

here

b1 =
��2i����1 − 2i��

��1/2 + i	���1/2 − i	�
, �4.21�

b2 = exp2i�2� ln�2�� −
	 + 2�

2
ln�	 + 2�� +

	 − 2�

2
ln�	 − 2��	�

�
��− 2i����1 − 2i��

��1/2 + i�	 − 2�����1/2 − i�	 + 2���
. �4.22�

Using the formulas in Secs. 6.1.17 and 6.1.30 of Ref. 5 and �4.15�, one can write �4.21� as

b1 =
cosh��	�
sin�2i���

= − i
exp��	� + exp�− �	�

exp�2��� − exp�− 2���
= − i exp���	 − 2���

1 + exp�− 2�	�
1 − exp�− 4���

= − i exp�K0�
1 + exp�− 2�	�
1 − exp�− 4���

, �4.23�

nd with the use of the formulas in Secs. 6.1.15, 6.1.29, and 6.1.30 of Ref. 5 one obtains from
4.22�

�b2� = � ��− 2i����1 − 2i��
��1/2 + i�	 − 2�����1/2 − i�	 + 2���

� = � − 2i����− 2i���2

��1/2 + i�	 − 2�����1/2 − i�	 + 2���
�

=
2����− 2i���2

����1/2 + i�	 − 2����2���1/2 − i�	 + 2����2�1/2 =
cosh1/2���	 − 2���cosh1/2���	 + 2���

sinh�2���

=
�1 + exp�− 2��	 + 2����1/2�exp�2��	 − 2��� + 1�1/2

1 − exp�− 2���
. �4.24�

The conditions under which the phase-integral connection formula given by �2.3� or �2.8�
ogether with �2.4� and �2.6� is valid are stated following �2.8�. They require that �0, defined by

q. �2.2.1� in Ref. 4, be small compared to unity in the relevant region of the complex plane, and
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hat the distance from the two transition points of the barrier to the transition points not associated
ith the barrier be much larger than the distance between the transition points of the barrier.

The requirement that the distance between the transition points of the barrier, obtained from
4.13�, be small compared to their distance from the other transition points yields

2x0 ln�1 + �1 − 4/
2�1/2

1 − �1 − 4/
2�1/2� � �x0, �4.25�

nd this requirement is fulfilled when ��1−4/
2�1/2��� /4, i.e., when �
−2�1/2�� /4, which is the
ase when

�
 − 2�1/2 � 1. �4.26�

In order for the phase-integral approximation to be valid, one requires the absolute value of �0

o be small compared to unity in the relevant region of the complex plane. According to �4.8�,
4.10�, and �4.26� and definition �2.2.1� in Ref. 4 of �0 this is the case when � is sufficiently large.
or the moment we do not know how large � must be, and therefore we now impose only the
ondition

�  1 �4.27�

ithout specifiying for the moment how large � must be. From �4.12�, �4.26�, and �4.27� it follows
hat

	 � 2�  1, �4.28�

nd hence �4.23� gives

b1 � − i exp�K0��1 + exp�− 4��� + exp�− 2�	�� . �4.29�

Having already obtained formula �4.24� for �b2�, one needs a formula for arg b2 in order to
btain b2. To derive it one recalls �4.22�, �4.27�, and �4.28�, and starts by making, with the use of
symptotic expansion �5� in Luke �Ref. 7, p. 32�, i.e.,

ln ��1/2 + z� � z ln z − z + ln�2��1/2 −
1

24z
, z → �, �arg z� � � − �, � � 0, �4.30�

he following calculation:

ln
��− 2i����1 − 2i��
��1/2 − i�	 + 2���

= ln
− 2i����− 2i���2

��1/2 − i�	 + 2���
= ln�− 2i�� + 2 ln ��− 2i�� − ln ��1/2 − i�	 + 2���

= ln�− 2i�� + 2 ln ��1/2 − �1/2 + 2i��� − ln ��1/2 − i�	 + 2���

� ln�2�� − i
�

2
+ 2ln�2��1/2 + �− 1/2 − 2i���ln�− 1/2 − 2i�� − 1�

−
1

24�− 1/2 − 2i��� − ln�2��1/2 − i�	 + 2���ln�− i�	 + 2��� − 1�

−
1

24�− i�	 + 2���� � ln�2�� − i
�

2
+ 2ln�2��1/2 − �1/2 + 2i��

��ln�4�2 + 1/4�1/2 − i
�

2
+

1

4�
� − 1	 −

i

48�
� − ln�2��1/2 − i�	 + 2��

��ln�	 + 2�� − i
�

− 1	 −
i � � ln�2��1/2 + �	 − 2��

�

2 24�	 + 2�� 2
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−
1

32�2 + i��	 + 2��ln�	 + 2�� − 4� ln�2�� − �	 − 2�� +
1

12�

+
1

24�	 + 2��	 . �4.31�

From �4.22� and �4.31� one obtains

ln b2 � ln�2��1/2 + �	 − 2��
�

2
−

1

32�2 − ln ��1/2 + i�	 − 2��� + i��	 − 2��ln�	 − 2�� − �	 − 2��

+
1

12�
+

1

24�	 + 2��	 . �4.32�

ith the use of the formula in Sec. 6.1.30 of Ref. 5 together with �4.27� and �4.28� one can
onfirm that �4.32� is in approximate agreement with the exact formula �4.24�. From �4.32� one
btains

arg b2 = Im ln b2 � �	 − 2��ln�	 − 2�� − �	 − 2�� +
1

12�
+

1

24�� + 2	�
− arg ��1/2 + i�	 − 2��� .

�4.33�

ith the use of �4.15� and �4.28� one obtains from �4.24� and �4.33�

b2 � �exp�2K0� + 1�1/21 + exp�− 2��� +
1

2
exp�− 2��	 + 2����

� exp− i�ø̃ −
1

12�
−

1

24�� + 2	�	� , �4.34�

here

ø̃ = arg ��1/2 + iK̄0� − K̄0 ln�K̄0� + K̄0 �4.35�

ith

K̄0 = K0/� . �4.36�

e have thus found that the solution �1�x� behaves for large positive and negative values of x
ccording to �4.19� and �4.20�, where b1 and b2 are given by �4.29� and �4.34�.

Putting

�2�x� = �1
*�x� , �4.37�

ne obtains with the use of �4.19� and �4.20�

�2�x� � �Q−1/2�x��exp�− i�Re �
t�

x

Q�z�dz�	, x → + � , �4.38�

�2�x� � b2
*�Q−1/2�x��exp�i�Re �

t�

x

Q�z�dz�	 + b1
*�Q−1/2�x��exp�− i�Re �

t�

x

Q�z�dz�	, x → − � .

�4.39�

hen x→ +� the general solution Ã��1�x�+ B̃��2�x�, where Ã� and B̃� are arbitrary constants,

ehaves according to �4.19� and �4.38� as
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Ã��1�x� + B̃��2�x� � Ã��Q−1/2�x��exp�i�Re �
t�

x

Q�z�dz�	
+ B̃��Q−1/2�x��exp�− i�Re �

t�

x

Q�z�dz�	, x → + � . �4.40�

hen x→−� this solution behaves according to �4.20� and �4.39� as

Ã��1�x� + B̃��2�x� � Ã�b1�Q−1/2�x��exp�i�Re �
t�

x

Q�z�dz�	 + b2�Q−1/2�x��

�exp�− i�Re �
t�

x

Q�z�dz�	� + B̃�b2
*�Q−1/2�x��

�exp�i�Re �
t�

x

Q�z�dz�	 + b1
*�Q−1/2�x��exp�− i�Re �

t�

x

Q�z�dz�	�
= Ã��Q−1/2�x��exp�i�Re �

t�

x

Q�z�dz�	 + B̃��Q−1/2�x��

�exp�− i�Re �
t�

x

Q�z�dz�	, x → − � , �4.41�

here

Ã� = b1Ã� + b2
*B̃�, �4.42�

B̃� = b2Ã� + b1
*B̃�, �4.43�

.e.,


Ã�

B̃�
� = M̃
Ã�

B̃�
� , �4.44�

ith

M̃ = 
b1 b2
*

b2 b1
* � . �4.45�

nserting �4.29� and �4.34� into �4.45� and recalling �4.28�, one obtains, when 12� is much larger
han unity,

M̃ �
 − i exp�K0� �exp�2K0� + 1�1/2 exp�iø̃�

�exp�2K0� + 1�1/2 exp�− iø̃� i exp�K0�
� . �4.46�

It is seen that �4.44� along with �4.46� and �4.35� agrees with the first-order phase-integral
onnection formula given by �2.8� along with �2.4� and �2.6�. This result is obtained under the

onditions �4.26�, which with the use of �4.12�, �4.15�, and �4.36� can be written as �K̄0 /��1/2

1, and �4.27�, or more precisely 12�1 according to what is said immediately prior to �4.46�.
or any value of K0 �positive or negative� it is possible to find values of � such that these

onditions are fulfilled. The barrier may thus be of arbitrary thickness.
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. CONNECTION FORMULA FOR THE INVERTED, REAL MORSE POTENTIAL
ARRIER, OBTAINED FROM EXACT SOLUTIONS

The present section concerns the inverted Morse potential

V�x� = V0�2 exp�− x/b� − exp�− 2x/b��, V0 � 0, b � 0. �5.1�

hen the energy E is positive, the Schrödinger equation associated with this potential describes a
uantal particle subject to the influence of a single-hump potential barrier with the top at x=0 and
�0�=V0, where V0 is the height of the barrier. Lundborg8 has treated the connection problem for
barrier given by �5.1� with the use of exact solutions of the Schrödinger equation. According to
qs. �4� and �3a–c� in Ref. 8 the time-independent Schrödinger equation in question can be written
s

d2�

dz2 + R�z�� = 0 �5.2�

ith

R�z� = G2�p2 − 2 exp�− z� + exp�− 2z�� �5.3�

here, with obvious notations,

z = x/b , �5.4�

G = b
2mV0

�2 �1/2

� 0, �5.5�

p = 
 E

V0
�1/2

� 0. �5.6�

Lundborg8 relates the exact solution to the phase-integral approximation generated from an
nspecified base function and chooses the square of the base function to be

Q2�z� = R�z� . �5.7�

he barrier is superdense for 0�p�1 but underdense for p�1. The transition zeros, i.e., the
eros of Q2�z�, obtained from �5.7� and �5.3�, are t�+2�ki and t�+2�ki, k=0, ±1, ±2, . . ., with

t� = ln
1 − �1 − p2�1/2

p2 , �5.8�

t� = ln
1 + �1 − p2�1/2

p2 , �5.9�

� and t� being the zeros of Q2�z� associated with the barrier. From �5.8� and �5.9� one obtains

t� − t� = ln
1 + �1 − p2�1/2

1 − �1 − p2�1/2 . �5.10�

According to what is said following �2.8�, the phase-integral expression �2.4� for the connec-

ion matrix M̃ is valid when the quantity �0, defined in Eq. �2.2.1� in Ref. 4, is much smaller than
nity in the relevant region of the complex plane, and the distances from t� and t� to the transition
oints not associated with the barrier are much larger than �t�− t��. Recalling �5.3� and �5.7� one
ees that the first of these conditions is fulfilled when G is sufficiently large. With the use of �5.10�

he second condition can be written as
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ln�1 + �1 − p2�1/2

1 − �1 − p2�1/2� � 2� , �5.11�

nd this condition is undoubtedly fulfilled when

�1 − p�1/2 � 1. �5.12�

According to Ref. 8 �p. 466� the functions f1 and f2 are the same in Lundborg8 as in Fröman
nd Fröman.2 According to Eqs. �16a,b�, �17a,b�, and �9a,b� in the latter paper one therefore has in
he first order of the phase-integral approximation and with the notation of the present paper

f1�x�� = �Q−1/2�x���exp�− i�Re �
t�

x�
Q�z�dz�	 , �5.13�

ith x� lying to the left of the barrier,

f2�x�� = �Q−1/2�x���exp�i�Re �
t�

x�
Q�z�dz�	 , �5.14�

ith x� lying to the left of the barrier, and

f1�x�� = �Q−1/2�x���exp�+ K0 − i�Re �
t�

x�
Q�z�dz� + i�/2	 , �5.15�

ith x� lying to the right of the barrier,

f2�x�� = �Q−1/2�x���exp�− K0 + i�Re �
t�

x�
Q�z�dz� − i�/2	 , �5.16�

ith x� lying to the right of the barrier, where x� and x� are points in the classically allowed
egions to the left and to the right, respectively, of the barrier. According to Eq. �24a� in Lundborg8

he first-order quantity K0 in �5.15� and �5.16� is given by

K0 = �K̄0 = �G�1 − p� . �5.17�

ith the use of Eq. �18� in Ref. 2, i.e.,

��z� = a1�z�f1�z� + a2�z�f2�z� , �5.18�

ogether with �5.13�–�5.16� in the present paper one obtains

��x�� = Ã��Q−1/2�x���exp�i�Re �
t�

x�
Q�z�dz�	 + B̃��Q−1/2�x���exp�− i�Re �

t�

x�
Q�z�dz�	 ,

�5.19�

here

Ã� = a2�x�� , �5.20�

B̃� = a1�x�� , �5.21�
nd
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��x�� = Ã��Q−1/2�x���exp�i�Re �
t�

x�
Q�z�dz�	 + B̃��Q−1/2�x���exp�− i�Re �

t�

x�
Q�z�dz�	 ,

�5.22�

here

Ã� = i exp�− K0�a2�x�� , �5.23�

B̃� = i exp�K0�a1�x�� . �5.24�

ith the use of the formula �30� for F�−� , +�� in Lundborg,8 and �5.20�, �5.21�, �5.23�, and
5.24� in the present paper one can write Eq. �19� in Ref. 2, i.e.,


a1�x��
a2�x��

� = F�x�,x��
a1�x��
a2�x��

� �5.25�

n the first order of the phase-integral approximation and in the limit when x�→−� and x�
+� as


Ã�

B̃�
� = M̃
Ã�

B̃�
� �5.26�

here

M̃11 = M̃22
* = − i�F22�exp�K0 + i arg F22� �5.27�

M̃12 = M̃21
* = �F12�exp�K0 − 2i�� , �5.28�

undborg’s notation � being related to our notation ø̃ according to the formula

ø̃ = − 2� . �5.29�

sing �5.29� and Lundborg’s8 formulas �32a,b� for �F12� and �F22� in the first-order approximation,
ne can write �5.27� and �5.28� as

M̃11 = M̃22
* = − i�1 + exp�− 2�G�1 + p��

1 − exp�− 4�Gp� 	1/2

exp�K0 + i arg F22� , �5.30�

M̃12 = M̃21
* = � exp�2K0� + 1

1 − exp�− 4�Gp�	1/2

exp�iø̃� . �5.31�

or the first-order phase-integral approximation one obtains from �5.29� and Lundborg’s8 Eq.
33a�

ø̃ = arg ��1/2 + iK̄0� − K̄0 ln�K̄0� + K̄0 + Im ln ��2iGp� − 2Gp�ln�2Gp� − 1� + �/4,

�5.32�

nd from Lundborg’s8 Eq. �34a�, after correction by addition of a term −� /4 on the right-hand

ide,
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arg F22 = Im ln ��1/2 + iG�1 + p�� − G�1 + p��ln�G�1 + p�� − 1� − Im ln ��2iGp�

+ 2Gp�ln�2Gp� − 1� − �/4. �5.33�

he logarithms of the gamma functions ��2iGp� and ��1/2+ iG�1+p�� in �5.32� and �5.33� are
xpanded for large arguments by the use of the asymptotic expansion �4.30�, yielding

Im ln ��2iGp� � 2Gp�ln�2Gp� − 1� −
�

4
−

1

24Gp
, �5.34�

Im ln ��1/2 + iG�1 + p�� � G�1 + p��ln�G�1 + p�� − 1� +
1

24G�1 + p�
, �5.35�

nserting �5.34� and �5.35� into �5.32� and �5.33� we obtain

ø̃ � arg ��1/2 + iK̄0� − K̄0 ln�K̄0� + K̄0 −
1

24Gp
, �5.36�

arg F22 �
1

24G�1 + p�
+

1

24Gp
. �5.37�

Recalling condition �5.12� and assuming that 24G1, one can in �5.36� and �5.37� neglect the

erms containing G. Inserting the resulting formulas for ø̃ and arg F22 into �5.30� and �5.31�, where
he terms containing G can also be neglected, one obtains �2.4� along with �2.6�. With the use of

5.17� condition �5.12� can be written as �K̄0 /G�1/2�1. For any value of K0 �positive or negative�
t is possible to find values of G such that the condition 24G1 and �K̄0 /G�1/2�1 are fulfilled.
he barrier may thus be of arbitrary thickness.

PPENDIX A: PREPARATION FOR THE DERIVATIONS OF „4.15… and „4.17…

With the use of �4.9� and �4.12� one obtains

�±Q2�x��1/2 =
��±�exp�x/x0� + 1�2 � 
2 exp�x/x0��1/2

x0�exp�x/x0� + 1�

=
��±�exp�x/x0� + 1�2 � 
2 exp�x/x0��

x0�exp�x/x0� + 1��±�exp�x/x0� + 1�2 � 
2 exp�x/x0��1/2

=
��±�exp�x/x0� + 1� � 
2 exp�x/x0�/�exp�x/x0� + 1��

x0�±�exp�x/x0� + 1�2 � 
2 exp�x/x0��1/2 . �A1�

Using �A1� one gets

� �±Q2�x��1/2dx = ±
�

x0
� �±�exp�x/x0� + 1�2 � 
2 exp�x/x0��−1/2 exp�x/x0�dx

±
�

x0
� �±�exp�x/x0� + 1�2 � 
2 exp�x/x0��−1/2dx

�
�
2

x0
� �±�exp�x/x0� + 1�2 � 
2 exp�x/x0��−1/2 exp�x/x0�

�exp�x/x0� + 1�
dx .

�A2�
ere one introduces instead of the integration variable x in the first integral
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y1 = y1�x� =
2 exp�x/x0� + 2 − 
2


�
2 − 4�1/2 , �A3�

n the second integral

y2 = y2�x� =

2 − 2 − 2 exp�− x/x0�


�
2 − 4�1/2 , �A4�

nd in the third integral

y3 = y3�x� =
2


�
2 − 4�1/2�1

2
−

1

exp�x/x0� + 1
	 , �A5�

he functions y1�x�, y2�x�, and y3�x� being equal to −1 and +1 at the turning points t� and t�,
espectively. With the aid of �A2�–�A5� one obtains

� �±Q2�x��1/2dx = ± �� dy1

�±�y1
2 − 1��1/2 ± �� dy2

�±�y2
2 − 1��1/2 � �
� dy3

�±�y3
2 − 1��1/2 .

�A6�

PPENDIX B: DERIVATION OF „4.15…

Inserting �A6� with the lower signs into �4.14�, one obtains

K0 = − ��
−1

1 dy1

�1 − y1
2�1/2 − ��

−1

1 dy2

�1 − y2
2�1/2 + �
�

−1

1 dy3

�1 − y3
2�1/2 = ��
 − 2���

−1

1 dy

�1 − y2�1/2

= ���
 − 2�� = ��	 − 2�� , �B1�

here the last equality has been obtained with the use of �4.12�.

PPENDIX C: DERIVATION OF „4.17…

Using �A6� with the upper signs, and recalling that y1�t��=y2�t��=y3�t��= +1, one obtains
hen x is real and lies to the right of the barrier

�Re �
t�

x

Q�z�dz� = Re �
t�

x

�Q2�z��1/2dz = � Re �
+1

y1�x� dy1

�y1
2 − 1�1/2 + � Re �

+1

y2�x� dy2

�y2
2 − 1�1/2

− �
 Re �
+1

y3�x� dy3

�y3
2 − 1�1/2 , �C1�

nd after evaluation of the integrals

�Re �
t�

x

Q�z�dz� = � Re ln�y1�x� + �y1
2�x� − 1�1/2� + � Re ln�y2�x� + �y2

2�x� − 1�1/2�

− �
 Re ln�y3�x� + �y3
2�x� − 1�1/2� . �C2�
rom this formula one obtains with the aid of �A3�–�A5� and �4.12�
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lim
x→+�

��Re �
t�

x

Q�z�dz� −
�

x0
x	 = � Re ln

4


�
2 − 4�1/2 + � Re ln



�
2 − 4�1/2 − �
 Re ln

 + 2

�
2 − 4�1/2

= � Re�ln
4


2 − 4
−




2
ln


 + 2


 − 2
	 = 2� ln�2�� −

	 + 2�

2
ln�	 + 2��

+
	 − 2�

2
Re ln�	 − 2�� = 2� ln�2�� −

	 + 2�

2
ln�	 + 2��

+
	 − 2�

2
ln�	 − 2�� . �C3�

s the barrier is symmetric, one obtains with the use of �C3�

lim
x→−�

��Re �
t�

x

Q�z�dz� +
�

x0
x	 = lim

x→+�
��Re �

t�

x

Q�z�dz� −
�

x0
x	 = 2� ln�2�� −

	 + 2�

2
ln�	 + 2��

+
	 − 2�

2
ln�	 − 2�� . �C4�
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oherent states expectation values as semiclassical
rajectories

N. C. Dias,a� A. Miković,b� and J. N. Pratac�

Departamento de Matemática, Universidade Lusófona de Humanidades e Tecnologias,
Av. do Campo Grande, 376, 1749-024 Lisboa, Portugal

�Received 9 February 2006; accepted 8 June 2006; published online 1 August 2006�

We study the time evolution of the expectation value of the anharmonic oscillator
coordinate in a coherent state as a toy model for understanding the semiclassical
solutions in quantum field theory. By using the deformation quantization tech-
niques, we show that the coherent state expectation value can be expanded in
powers of � such that the zeroth-order term is a classical solution while the first-
order correction is given as a phase-space Laplacian acting on the classical solu-
tion. This is then compared to the effective action solution for the one-dimensional
�4 perturbative quantum field theory. We find an agreement up to the order ��,
where � is the coupling constant, while at the order �2� there is a disagreement.
Hence the coherent state expectation values define an alternative semiclassical dy-
namics to that of the effective action. The coherent state semiclassical trajectories
are exactly computable and they can coincide with the effective action trajectories
in the case of two-dimensional integrable field theories. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2227259�

. INTRODUCTION

The notion of a semiclassical trajectory as a quantum corrected classical trajectory is a very
seful idea in various areas of physics. In the case of field theories, the classical trajectory
epresents a classical field configuration, and the semiclassical field configurations are usually
alculated from the effective action,2,3 i.e., by solving the corresponding equations of motion.
owever, the semiclassical dynamics depends on the initial quantum state, so that one can have in
rinciple many different semiclassical dynamics �for a review see Ref. 1�.

In the effective action approach the initial state is the in-vacuum state. �This state can be
escribed as a vacuum state of the Hamiltonian coupled to a source with appropriate boundary
onditions.4� Since the effective action approach was tailor-made for the problems of scattering of
he elementary particles, one is not calculating the expectation value of an appropriate operator,
ut a matrix element between the “in” and the “out” vacuum. This means that the obtained values
an be complex and this is a problem in the context of quantum gravity and quantum cosmology
pplications because the field operator is a metric, and the effective metric has to be real. This
roblem can be resolved by using the effective action formalism where the field variable is a true
xpectation value.5,6 However, in order to obtain a semiclassical trajectory, one needs to solve the
orresponding effective equation of motion, which is often a difficult task.

These types of problems were encountered in the context of two-dimensional dilaton gravity
odels of quantum black holes, where the effective metric gives the information about the back-

eaction of the black hole evaporation �for a review and references see Ref. 7�. These models are
xactly integrable two-dimensional field theories, and in the case of the CGHS model,8 it was

�Electronic mail: ncdias@mail.telepac.pt
�Electronic mail: amikovic@ulusofona.pt
�
Electronic mail: joao.prata@ulusofona.pt

47, 082101-1022-2488/2006/47�8�/082101/14/$23.00 © 2006 American Institute of Physics
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emonstrated in Ref. 9 that a relevant one-loop �O���� solution could be obtained as an expecta-
ion value of the metric operator in the coherent state corresponding to the initial matter distribu-
ion. Furthermore, a two-loop �O��2�� solution was found by using this approach,10 which was
therwise impossible to do by solving the corresponding two-loop effective action equations.

These results suggest an approach to constructing semiclassical trajectories for field theories
ia expectation values of the appropriate operators in the coherent states. A coherent state �and a
elated squeezed state� is the best possible description of a classical phase-space point, since they
aturate the Heisenberg uncertainty relations. In quantum mechanics one can prove that for a
eneral quadratic Hamiltonian, a coherent state wave packet follows the classical trajectory, while
n the case of interactions, the wave packet is well approximated by the coherent state during the
hrenfest time.11–14 In the case of field theories one then expects that the coherent state trajectories
hould be the same as the effective action trajectories in the case of free-field theories, while in the
ase of interactions one expects that the coherent state trajectories should be a good approximation
or the effective action ones.

The effective action quantum dynamics can be studied via the anharmonic oscillator �AHO�
oy model.15,16 One can then study the time evolution of the coherent states for the AHO and
ompare it to the effective action trajectories. However, the effective action trajectories were
btained only in the effective potential approximation. It is possible to improve this approximation
y including more relevant terms in the effective action,15 but there is no simple expression for the
omplete one-loop contribution, i.e., the � correction. On the other hand, it has been known from
he deformation quantization applications to quantum optics how to evaluate the coherent states
xpectation values.17 Hence one can apply these techniques to the case of the AHO and calculate
he complete � contribution for the coherent states. The result can then be expanded perturbatively
n the coupling constant and compared to the corresponding effective action expansion.

Given that it is easier to obtain semiclassical trajectories from the coherent states expectation
alues than from solving the equations of motion of the effective action, a natural question is to
hat extent one can approximate the effective action trajectories by the coherent states trajecto-

ies. In this paper we explore this and related issues by studying the example of the anharmonic
scilator. We calculate the coherent states trajectories by using the deformation quantization tech-
iques, while for the effective action trajectories we use the Feynman diagram techniques and the
esults are compared order by order in the perturbative expansion. In Sec. II we introduce the basic
oncepts of deformation quantization �DQ� and derive a new formula for the expectation value
EV� of a generic dynamical variable in an arbitrary state. We then use this result in Sec. III to
erive the O��� contribution to the coherent state EV of a generic dynamical variable. We then
erive the corresponding quantum equation of motion for the coordinate EV and in Sec. IV we
pecialize to the case of an AHO. In Sec. V we derive the perturbative quantum equations of
otion for an AHO coming from the effective action formalism and compare the results of the two

pproaches. In Sec. VI we present our conclusions and in the Appendix we describe how to solve
he perturbative equations of motion.

I. EXPECTATION VALUES

Let us consider an N-dimensional system with coordinates q= �q1 , . . . ,qN� and canonical mo-
enta p= �p1 , . . . , pN�. We shall assume a flat phase space T*M �R2N with symplectic form
�z ,z��=q · p�− p ·q�, where z= �p ,q�, z�= �p� ,q��.

In the context of deformation quantization17–34one computes the expectation value of a ge-

eric operator Â�ẑ , t� from the algebra of observables at time t in a state ��L2�RN ,dq� as

A�t� � ���Â�ẑ,t���	 =
 dz FW�z�AW�z,t� , �1�

19
here FW�z� is the Wigner function associated with �,
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FW�p,q� =
1

�� � �N 
 dy e−2ip·y/��*�q − y���q + y� . �2�

W�z , t� is the Weyl symbol18 associated with Â�ẑ , t� given by

AW�z,t� = � �

2�
�N
 d� TrÂ�ẑ,t�ei�·ẑ�e−i�·z. �3�

he Weyl symbol defines a noncommutative twisted product,20

�Â · B̂�W � �AW�WBW = exp� i�

2
�� �

�z1
,

�

�z
��AW�z1�BW�z��

z1=z

= AW�z�BW�z� + O��� , �4�

here � /�z= �� /�p ,� /�q�. Likewise, one may define a bracket—the Moyal bracket—according
o21

�AW,BW�W � � 1

i�
�Â,B̂��

W

=
1

i�
�AW�WBW − BW�WAW� = � 2

�
sin��

2
�� �

�z1
,

�

�z
��AW�z1�BW�z��

z1=z

= AW�z�,BW�z�� + O��2� . �5�

hese algebraic operations are formal deformations of the usual product and of the Poisson
racket with deformation parameter �.

The dynamics is governed by the Moyal equation

ȦW�z,t� = �HW�z�,AW�z,t��W = HW�z�,AW�z,t�� + O��2� , �6�

here HW is the Weyl symbol of the quantum Hamiltonian.
The following remark is important for the sequel. If the Hamiltonian is of the form

H =
p2

2m
+ U�q� , �7�

hen there are no ordering ambiguities and we conclude that Eq. �6� only yields corrections of even
rder in � to the classical solution Acl�z , t� so that

AW�z,t� = Acl�z,t� + O��2� . �8�

The Wigner function being a square integrable function admits a Fourier transform:

F̃W�a� =
 dzFW�z�eia·z =
 dx eiv·x�*�x −
�u

2
���x +

�u

2
� , �9�

ith the inverse

FW�z� =
1

�2��2N 
 da F̃W�a�e−ia·z. �10�

ere a= �u ,v� lives in the dual of the phase space. The function F̃�ã�, with ã= �u ,−v�, is known
s the symplectic Fourier transform or chord function and finds many applications in the context
f deformation quantization and decoherence.32–34
If we substitute �10� into �1�, we obtain
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A�t� = �F̃W�1

i

�

�z
�AW�z,t��

z=0
. �11�

quation �11� has a nice interpretation in the context of deformation quantization. In Eq. �1� the
bjects appearing on the right-hand side are defined up to an isomorphism, in the following sense.
he Weyl symbol stems from a correspondence rule according to which operators are first written

n a fully symmetric form—the Weyl order—before they are “dequantized.” Alternatively, one
ay choose other ordering prescriptions for the operators �e.g., normal ordering�. The price to pay

s that one also needs to change the corresponding quasidistribution, in order to leave the expec-
ation value �1� unchanged. This ambiguity has been systematized by Cohen.31 Each correspon-
ence rule is associated with an analytic so-called Cohen function f���, such that f�0�=1, which
llows us to define a new f-symbol17

Af�z,t� = f�1

i

�

�z
�AW�z,t� , �12�

nd the corresponding quasidistribution

Ff�z� = f−1�i
�

�z
�FW�z� . �13�

ikewise one naturally defines a � f-product and an f-bracket

Af� fBf = f�1

i

�

�z
�AW�WBW, �Af,Bf� f = f�1

i

�

�z
��AW,BW�W. �14�

he dynamics is then dictated by

Ȧf�z,t� = �Hf�z�,Af�z,t�� f . �15�

quation �11� can thus be interpreted in the following terms. If we regard F̃W as one of Cohen’s

unctions, then AF̃�z , t�� F̃W��1/ i��� /�z��AW�z , t� is just the F̃W symbol associated with the opera-

or Â. The only difference is that one eventually sets z=0. The symbol AF̃�t� is a solution of Eq.
15�.

Note that Eq. �11� remains valid even if FW is the Wigner function of a mixed state given by
density matrix �. However, in this paper we will be concerned with the pure states only.

II. COHERENT STATES

Equation �11� derived in Sec. II simplifies drastically if we choose the state � to be the
oherent state

�	0
�q� = �m


��
�N/4

exp�−
m


2�
�q − q0�2 +

ip0

�
· �q −

q0

2
�� , �16�

here in the standard notation

	0 ��m


2�
q0 +

ip0

�2m
�
. �17�

rom �9� we have

F̃W�u,v� = exp�−
m
 � u2

4
−

�v2

4m

+ iu · p0 + iv · q0� . �18�
ubstituting into �11�, we obtain
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A	0
�t� = �exp� �

4m


�2

�q2 +
�m


4

�2

�p2�AW�p + p0,q + q0,t��
q=p=0

= exp� �

4m


�2

�q0
2 +

�m


4

�2

�p0
2�AW�p0,q0,t� . �19�

he last expression is well known to be the phase space symbol stemming from normal ordering.17

ow, this equation is particularly well suited for semiclassical expansions in powers of �. Fol-
owing the remark after Eq. �6�, we conclude that if the Hamiltonian is of the form �7�, then we get
t the order � �cf. �8�, �19��,

A	0
�t� = Acl�p0,q0,t� + � �

4m


�2

�q0
2 +

�m


4

�2

�p0
2�Acl�p0,q0,t� + O��2� . �20�

xpression �20� is valid for any trace-class operator Â and any Hamiltonian of the form �7�
rovided the wave function is the coherent state �16�.

In fact these semiclassical expansions can be performed for other states, by using �11�, as long
s the chord function admits a regular expansion in powers of �,

F̃W�a� = �
n=0

�

�n�a��n. �21�

In most applications one is interested in the case Â= q̂. For simplicity, we shall henceforth
onsider a one-dimensional system. Let us define Q�p0 ,q0 , t����	0

� q̂ ��	0
	 and qcl�p0 ,q0 , t�

q�p0 ,q0 , t�. In order to compare to the effective action approach, let us derive the equations of
otion to order � for Q�p0 ,q0 , t�. From �20� we have

mQ̈ = mq̈ +
�

4


�2

�q0
2 q̈ +

�m2


4

�2

�p0
2 q̈ + O��2� = − U��q� −

�

4m


�2

�q0
2U��q� −

�m


4

�2

�p0
2U��q� + O��2� .

�22�

otice that U�q� depends on p0 ,q0 only through q�p0 ,q0 , t�. Consequently

mQ̈ = − U��q� −
�

4m

�U��q�� �q

�q0
�2

+ U��q�
�2q

�q0
2� −

�m


4
�U��q�� �q

�p0
�2

+ U��q�
�2q

�p0
2� + O��2� .

�23�

We then obtain

U��q� = U��Q� − U��q�� �

4m


�2q

�q0
2 +

�m


4

�2q

�p0
2� + O��2� . �24�

y substituting �24� into �23�, we finally obtain

mQ̈ = − U��Q� −
�

4
U��Q�� 1

m

� �Q

�q0
�2

+ m
� �Q

�p0
�2� + O��2� . �25�

This is a partial differential equation for Q�p0 ,q0 , t� where �p0 ,q0� play a double role. They
re variables, but also the initial conditions

�Q�p0,q0,t��t=0 = q0, �Q̇�p0,q0,t��t=0 =
p0 . �26�

m
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One may instead derive an ordinary differential equation for Q and its time derivatives which
s more suited for comparison with the effective action formalism. In order to do this let us
onsider the solution for q of the classical equations of motion given by

t = ± 

q0

q

dx� 2

m
�E − U�x���−1/2

, �27�

here

E =
p0

2

2m
+ U�q0� =

1

2
mq̇2 + U�q� �28�

s the total energy of the classical system. Taking into account that E and q depend on p0 and q0,
nd applying the implicit function theorem we obtain

�q

�q0
=

m

p0
q̇ +

q̇U��q0�
2

�m

2
f�q,p0,q0�,

�q

�p0
=

p0q̇

2�2m
f�q,p0,q0� , �29�

here

f�q,p0,q0� � 

q0

q

dx�E − U�x��−3/2. �30�

In Eq. �25� it is immaterial whether we write q or Q in the terms proportional to �. From �29�
e then obtain

mQ̈ = − U��Q� −
�

4
Q̇2U��Q�� m


p0
2 +

U��q0�

p0

�m

2
f�Q,p0,q0� + � �U��q0��2

8

+


p0
2

8
� f2�Q,p0,q0��

+ O��2� . �31�

If we neglect the O��2� terms in �31� we obtain a second-order nonlinear ordinary differential
quation for Q�t� with the initial conditions �26�.

V. THE ANHARMONIC OSCILLATOR

As an application we consider the quartic anharmonic oscillator

H =
p2

2m
+

1

2
m
2q2 +

�

4!
q4, �32�

here � is a positive coupling constant. Let us define �=� /4! and

	2 �
�m2
4 + 16E� − m
2

4�
, 2 �

�m2
4 + 16E� + m
2

4�
. �33�

y substituting

x =
	 sin �

�2 + 	2 cos2 �
�34�
nto �30� we obtain
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f�q,p0,q0� =
1

���	2 + 2��3/2� 1

2E���q��n� +
1

	2 �tan ��q��1 − n sin2 ��q� + F���q��n�

− E���q��n�� − �q ↔ q0�� , �35�

here h�q�− �q↔q0��= h�q�−h�q0��,

��q� � arcsin� q2

n�q2 + 	2�
, n �

	2

	2 + 2 , 0 � n � 1, �36�

nd

F���m� � 

0

�

d�
1

�1 − m sin2 �
, E���m� � 


0

�

d��1 − m sin2 � �37�

re the incomplete elliptic integrals of the first and second kind, respectively.35

In order to compare this with the equations of motion stemming from the effective action, let
s expand the right-hand side of �31� in powers of �,

Q̈ = − 
2Q −
�

6m
Q3 − � �

kt
2xt

4m2� 1


p0
2 +

m
q0

p0
�2m

f0�xt,p0,q0� +

E0

4
f0

2�xt,p0,q0�� + O���2� ,

�38�

here xt and kt are the classical harmonic oscillator �HO� solutions for the coordinate and the
omentum

xt = q0 cos�
t� +
p0

m

sin�
t�, kt = p0 cos�
t� − m
q0 sin�
t� , �39�

ith the energy

E0 =
p0

2

2m
+

1

2
m
2q0

2. �40�

Moreover

f0�xt,p0,q0� = 

q0

xt

dx�E0 −
1

2
m
2x2�−3/2

=
�2m

E0
� xt

kt
−

q0

p0
� . �41�

he terms proportional to �� in �38� yield −��xt /4m2
 and up to order �� we may replace xt by
in the terms proportional to ��. By neglecting the O���2� terms we obtain

Q̈ + �
2 +
��

4m2

�Q +

�

6m
Q3 = 0, �42�

s a semiclassical equation of motion.

. THE EFFECTIVE ACTION RESULTS

Let us consider a D-dimensional scalar field theory given by the action

S��� =
 dDx�1

2
�����2 −

1

2
M2�2 − V���� , �43�

36
here V��� is polynomial in �. The corresponding effective action can be written as
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���� = �
n=2

� 
 dDx1 ¯
 dDx1
1

n!
��n��x1, . . . ,xn���x1� ¯ ��xn� , �44�

here

��n��x1, . . . ,xn� =
 dDp1 ¯
 dDpnei�p1x1+¯+pnxn����n��p1, . . . ,pn���n. �45�

he ��n��p� are the momentum space n-particle irreducible Greens functions whose external legs
re amputated for n�2 and �n=−1 for n=2 and �n=1 for n�2. These objects can be calculated
erturbatively via the Feynman diagrams and for V=��4 /4! the perturbative expansion can be
rganized in powers of � �number of the vertices� and in powers of � �number of the loops�, so
hat

��n��p� = �
v,l

�v�l�v,l
�n��p� . �46�

Up to the order of �� only the tadpole diagram contributes,36 so that in the case of D=1 field
heory, i.e., quantum mechanics �QM�, one obtains

�E
�2��p� =

1

p2 + M2 −
� � /2

�p2 + M2�2

−�

� dq

2�

1

q2 + M2 + O��2 � � =
1

p2 + M2 −
��

2�p2 + M2�2

1

2M

+ O��2 � � , �47�

here �E is the Euclidean propagator. The physical �Minkowski� propagator is given by ��2��p�
−�E

�2��ip�, and the position space vertex function is given by

��2��x1,x2� = 2�
 dp1

2�

 dp2

2�
��p1 + p2����2��p1��−1ei�p1x1+p2x2�. �48�

his gives

���� = S��� +
��

8M



x1

x2

dx �2�x� + O��2 � � . �49�

assing to the anharmonic oscillator parameters �M→
 ,�→� /m2� gives

��q� = S�q� +
��

8m2




t1

t2

dt q2�t� + O��2 � � . �50�

p to order O���� this action gives the same equation of motion as �42�.
When going to higher orders in perturbation theory, one obtains the nonlocal terms in the

ffective action. For example, at the order �2� one has to include four ��4� diagrams �one three-
iagram plus three one-loop diagrams36� so that

�E
�4��p� = − � + �2 � 


−�

� dq

2�

1

q2 + M2

1

�p1 + p2 − q�2 + M2 + �2 � 

−�

� dq

2�

1

q2 + M2

1

�p1 − p3 + q�2 + M2

+ �2 � 

−�

� dq

2�

1

q2 + M2

1

�p1 − p4 + q�2 + M2 . �51�

his gives

�E
�4��p� = − � +

�2��−
1

2 2 +
1

2 2 +
1

2 2� . �52�

M �p1 + p2� + 4M �p1 − p3� + 4M �p1 − p4� + 4M
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The physical vertex function is given by ��4��p�=�E
�4��ip�, and the position space vertex

unction is given by

��4��x1, . . . ,x4� = 2�
 dp1

2�
¯
 dp4

2�
��p1 + ¯ + p4���4��p1, . . . ,p4�ei�p1x1+¯+p4x4�. �53�

ne then obtains the effective action contribution


 dx�−
�

4!
�4 −

�2�

4 ! M

 dy G2M�x − y��2�x��2�y�� , �54�

here

G��x� = Re
 dp

2�

eipx

p2 − �2 + i�
=

1

2�
sin��x����− x� − ��x�� �55�

s the real part of the D=1 Feynman propagator and ��x�=1 for x�0 and ��x�=0 for x�0.
By going to the QM parameters via �→� /m2, M→
, and �→�mq, one obtains the follow-

ng effective equations of motion:

0 = q̈ + 
2q +
�

6m
q3 +

��

4m2

q +

�2�

6m3

q


−�

�

d� G2
�t − ��q2��� + O��3 � � . �56�

his effective equation of motion can be solved perturbatively as

q�t� = q0,0�t� + �
m�1,n�0

�m�nqn,m�t� , �57�

here q0,0�t� is the classical HO solution. The first and the second quantum correction will satisfy

q̈1,1 + 
2q1,1 = −
1

4m2

q0,0, �58�

q̈1,2 + 
2q1,2 = −
1

2m
q0,0

2 q1,1 −
1

4m2

q0,1 −

1

6m3

q0,0


−�

�

d� G2
�t − ��q0,0
2 ��� . �59�

The solution �57� has a classical part given by

qc = q0,0 + �q0,1 + �2q0,2 + ¯ . �60�

p to the order of �2 the classical solution is given by

q0,0 = a cos 
t + b sin 
t , �61�

q0,1 = a1 cos 3
t + b1 sin 3
t + �c1t + e1�cos 
t + �d1t + f1�sin 
t , �62�

q0,2 = a2 cos 5
t + b2 sin 5
t + �c2t + c2��cos 3
t + �d2t + d2��sin 3
t + �e2t2 + e2�t + g2�cos 
t

+ �f2t2 + f2�t + h2�sin 
t , �63�

here a=q0, b= p0 /m
 and the coefficients ak ,bk , . . . are the homogeneous polynomials of a and
of the order 2k+1, see Eqs. �A4� and �A5�.
From �61� and �58� it follows that
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q1,1 =
t

8m2
2 �b cos 
t − a sin 
t� −
b

8m2
3 sin 
t , �64�

hich coincides with the coherent state result

Q1,1 =
1

4m

� �2

�a2 +
�2

�b2�q0,1. �65�

his is an expected result since the equations of motion coincide up to this order.
In order to solve the equation for q1,2 we need to evaluate

I�t� = 

−�

�

d�G2
�t − ���a cos�
�� + b sin�
���2

=
�

32
2 ��b2 − a2�cos�2
t� − 2ab sin�2
t� − 4�a2 + b2�� , �66�

here �=�0
�dx sin x. The divergent integral can be regularized by the formula



0

�

dx e−�x+ix = �� − i�−1, � � 0, �67�

hich in the �→0 limit gives �=1. The solution will then have the form

q1,2 = ��2t + �2��cos 3
t + ��2t + �2��sin 3
t + ��2t2 + �2�t + �2�cos 
t + ��2t2 + �2�t + �2�sin 
t ,

�68�

ee Eq. �A7�.
The coherent state expectation value will give the correction of the form

Q1,2 =
1

4m

� �2

�a2 +
�2

�b2�q0,2 = �c̃2t + c̃2��cos 3
t + �d̃2t + d̃2��sin 3
t + �ẽ2t2 + ẽ2�t + g̃2�cos 
t

+ � f̃2t2 + f̃2�t + h̃2�sin 
t , �69�

ee Eq. �A6�, which could in principle coincide with �68� if the corresponding coefficients were
dentical. However, by comparing �A6� to �A7� one can see that q1,2�Q1,2, and therefore there is
discrepancy at the order �2�.

One can also try to obtain a nonperturbative in � effective action equations of motion, which
mounts to summing all the diagrams with different powers of � at a fixed order in �. This can be
chieved by using the saddle point approximation in the path-integral formalism, see Ref. 36. This
hen boils down to evaluating the traces of D-dimensional differential operators. The drawback of
his approach is that one can only obtain certain terms at a fixed order of �, i.e., not the complete
orrection. The standard approximation is

���� � 
 dDx�1

2
�1 + Z���������2 −

1

2
M2�2 − Veff���� , �70�

here Veff is the effective potential. In the D=1 case one obtains at O���,15

Veff�q� = V�q� +
�


2
��1 +

V��q�
m
2 − 1�, Z�q� =

�

32m3

�V��q��2

�
2 +
V��q�

m
�5/2 , �71�
o that
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��q� � 

t1

t2

dt�1

2
m�1 + Z�q���q̇�2 −

1

2
m
2q2 − Veff�q�� . �72�

The equations of motion coming from �72� are given by

0 = �1 + Z�q̈ +
1

2
Z��q��q̇�2 + 
2q + Veff� �q� . �73�

y using

Veff�q� = �
q4

4!
+ � �

q2

8m

− � �2 q4

64m2
3 + O��3 � � , �74�

Z�q� = � �2 q2

32m3
5 + O��3 � � , �75�

73� can be expanded in powers of � and one can see that �73� agrees with �56� up to O��� �. At
��2� � there is a disagreement, reflecting the fact that there are other terms contributing at O���
hich we have not included in the approximation �72� �for example, �dt A�q��q̇�4 or nonlocal

erms�.
One can also compare the perturbative solutions, and it can be shown by using the techniques

rom the Appendix that the O���2� perturbative solution of �73� has a form

q̃1,2 = �̃2� cos 3
t + �̃2� sin 3
t + ��̃2t2 + �̃2�t + �̃2�cos 
t + ��̃2t2 + �̃2�t + �̃2�sin 
t , �76�

hich differs from the coherent state and the perturbative effective action results by the absence of
he t cos 3
t and t sin 3
t terms.

I. CONCLUSIONS

Comparing the effective action equations of motion �56� and �73� to the coherent state expec-
ation value equation of motion �38� gives an agreement up to O��� �. For the higher orders it is
impler to compare the solutions and we find that at O��2� � there are discrepancies between all
hree approaches. Although all three solutions �68�, �69�, and �76� are linear combinations of
n cos�2k+1�
t and tn sin�2k+1�
t functions, the corresponding coefficients differ.

Note that the effective action perturbative solution �68� depends on a regularization dependent
arameter �. However, the �-independent coefficients are different from the corresponding expec-
ation value solution coefficients, see the Appendix. Hence the discrepancy cannot be explained as
regularization scheme artifact. Therefore the state whose EV gives the effective action trajectory

s not the coherent state in the AHO case. This agrees with the assumption made in Ref. 16, where
he effective action state was taken to be the ground state of the AHO with a source. The argu-
ents for this state were first presented in Ref. 4.

The discrepancy between the perturbative effective action solution �68� and the perturbative
ffective potential solution �76� is simply due to the fact that the effective potential method is an
pproximation which did not take into account all possible terms which could contribute at a given
rder.

Although the formula �20� is valid for the coherent states, it can be used as an approximation
or the field expectation value coming from the effective action. We expect that the expansion �20�
an give the same result as the effective action in the case of two-dimensional integrable field
heories. This happens in the case of the CGHS dilaton gravity model and the rationale is that the
wo-dimensional integrable field theories are closely related to the free-field theories, and for these
he effective action and the coherent state expectation values give the same dynamics. In order to
se formula �20� in the field theory case, one would have to extend the DQ formalism to the field

heory case, see Ref. 37.
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Our results imply that the coherent state expectation values define in general an alternative
emiclassical dynamics to that coming from the effective action. The reason is that the effective
ction initial state is different from the coherent state in the case when the interactions are present.
he coherent states expectation values could then be used as an approximation for the effective
ction trajectories, or one can obtain the exact trajectories in the situations where the system is
repared to be in the initial coherent state. The advantage of studying the semiclassical dynamics
f coherent states is that one can obtain directly a semiclassical trajectory through computable �n

orrections to the classical one. In contrast, in the effective action case one has to obtain first the
n corrections to the classical equations of motion, which can be only done approximately. Fur-

hermore, the corresponding effective action equations of motion are nonlocal and difficult to
olve nonperturbatively in the coupling constant.
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PPENDIX

The classical AHO equation of motion can be solved perturbatively via the expansion �60�.
ne then obtains

Lq0,1 = −
q0,0

3

6m
, Lq0,2 = −

q0,0
2 q0,1

2m
, . . . , �A1�

here L=d2/dt2+
2. These equations can be solved by the method of undetermined coefficients
or the forced HO equation of motion Lq= f�t�.

In order to solve the first two equations in �A1� we will need a particular solution for

f�t� = �At + A��cos �t + �Bt + B��sin �t .

t is given by

q�t� = � At + A�


2 − �2 −
2B�

�
2 − �2�2�cos �t + � Bt + B�


2 − �2 +
2A�

�
2 − �2�2�sin �t , �A2�

or ��
 and by

q�t� =
1

4

�− Bt − 2B� +

A



�t cos 
t +

1

4

�At + 2A� +

B



�t sin 
t , �A3�

or �=
.
By using formulas �A2� and �A3� we obtain �62� and �63�. The initial conditions

q�0� = a, q̇�0� = 
b

re imposed by requiring

qn,m�0� = 0, q̇n,m�0� = 0,

or �n ,m�� �0,0�. These conditions determine the coefficients of the HO terms as

e1 = − a1, f1 = −
c1



, g2 = − a2 − c2�, h2 = − 5b2 −

c2 + e2�



,

tc.

One then obtains
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q0,1 =
1

192m
2 a�a2 − 3b2�cos 3
t − b�b2 − 3a2�sin 3
t + �− a3 + 3ab2 + 12b�a2 + b2�
t�cos 
t

+ �21a2b + 9b3 + 4a�a2 + b2�
t�sin 
t� , �A4�

nd

q0,2 =
1

36 864m2
4 �a5 − 10a3b2 + 5ab4�cos 5
t − 12�2a5 − 15a3b2 − �9a4b + 6a2b3

− 3b5�
t�cos 3
t + �23a5 − 170a3b2 − 113ab4 − 48b�7a4 + 19a2b2 + 8b4�
t − 72a�a2

+ b2�2
2t2�cos 
t + �b5 − 10a2b3 + 5a4b�sin 5
t + �132a4b + 12a2b3 + 48b5 − �36a5 − 72a3b2

− 108ab4�
t�sin 3
t + �599a4b + 854a2b3 + 271b5 + �96a5 + 528a3b2 + 240ab4�
t + �72a4b

− 144a2b3 − 72b5�
2t2�sin 
t� . �A5�

The coherent state expectation value is then obtained from �20�. This gives �64� and

Q1,2 =
1

6144m3
5 �24�3a2b − b3�
t + 99ab2 − 5a3�cos 3
t − �63a2b − 41b3 + 24�a3

− 3ab2�
t�sin 3
t + �5a3 − 99ab2 − 396b�a2 + b2�
t − 72a�a2 + b2�
2t2�cos 
t + �27b�19a2

+ 11b2� + 4a�31a2 + 63b2�
t − 72b�a2 + b2�
2t2�sin 
t� . �A6�

The O���2� correction from the effective action equation of motion �56� can be obtained by
olving

Lq1,2 = −
1

2m
q0,0

2 q1,1 −
1

4m
2q0,1 +
�

96m3
2�2a2 + 2b2 +
a2 − b2

2
cos 2
t + ab sin 
t�q0,0,

here � is a regularization dependent constant. The Cauchy problem solution will have the form
68�, and the � independent coefficients are �2, �2, �2, and �2. For �=1 one obtains

q1,2 =
1

3072m3
5 �27ab2 − 5a3 + 6�3a2b − b3�
t�cos 3
t + �11b3 − 21a2b + 6�3ab2 − a3��sin 3
t

+ �5a3 − 27ab2 − 6b�21a2 + 25b2�
t − 24a�a2 + b2�
2t2�cos 
t + �3b�57a2 + 41b2�

+ 2a�31a2 + 51b2�
t − 24b�a2 + b2�
2t2�sin 
t� . �A7�

We have checked the results �A4�–�A7� by using the MATHEMATICA program.38
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inimally disturbing Heisenberg–Weyl symmetric
easurements using hard-core collisions

f Schrödinger particles
Dominik Janzinga� and Thomas Decker
Arbeitsgruppe Quantum Computing, Institut für Algorithmen und Kognitive Systeme,
Fakultät für Informatik, Universität Karlsruhe (TH), Am Fasanengarten 5,
D-76131 Karlsruhe, Germany

�Received 22 August 2005; accepted 19 June 2006; published online 3 August 2006�

In a previous paper we have presented a general scheme for the implementation of
symmetric generalized measurements �POVMs� on a quantum computer. This
scheme is based on representation theory of groups and methods to decompose
matrices that intertwine two representations. We extend this scheme in such a way
that the measurement is minimally disturbing, i.e., it changes the state vector ��� of
the system to �� ��� where � is the positive operator corresponding to the mea-
sured result. Using this method, we construct quantum circuits for measurements
with Heisenberg–Weyl symmetry. A continuous generalization leads to a scheme
for optimal simultaneous measurements of position and momentum of a
Schrödinger particle moving in one dimension such that the outcomes satisfy
�x�p��. The particle to be measured collides with two probe particles, one for
the position and the other for the momentum measurement. The position and mo-
mentum resolution can be tuned by the entangled joint state of the probe particles
which is also generated by a collision with hard-core potential. The parameters of
the POVM can then be controlled by the initial widths of the wave functions of the
probe particles. We point out some formal similarities and differences to simulta-
neous measurements of quadrature amplitudes in quantum optics. © 2006 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2222080�

. INTRODUCTION

The question of how to implement quantum measurements is an important issue of quantum
nformation theory. Even though the standard model of quantum computers uses only 1 qubit
easurements in the computational basis at the end or during the computation,1 other measure-
ents are also relevant for quantum information for several reasons.

In quantum computing, models have been proposed where collective measurements on more
han 1 qubit are necessary.2 In Ref. 3 a quantum algorithm is described which uses even more
eneral measurements than the usual von Neumann measurements, i.e., they are not described by
family of mutually orthogonal projections but by a so-called positive operator-valued measure

POVM�.
In noncomputing applications of quantum information theory, like future nanoscience, it may,

or instance, be useful to implement approximative simultaneous measurements of observables
hich are actually incompatible when measured accurately. An important example would be the
osition and the momentum of a Schrödinger particle.

The implementation of generalized measurements is not trivial since this is also true for the
maller class of von Neumann measurements.4 Even though it is known that it is in principle
ossible to reduce every POVM measurement to a von Neumann measurement on an extended

�
Electronic mail: janzing@ira.uka.de

47, 082102-1022-2488/2006/47�8�/082102/22/$23.00 © 2006 American Institute of Physics
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uantum system it is little known so far about how to realize the required transformation by
hysical processes, particularly when the implementation should disturb the quantum state in a
inimal way. In Refs. 5 and 6 the class of POVMs is described which can be measured using

inear optics. Some special POVM measurements on low-dimensional spaces are described in
efs. 7–12.

In Ref. 13 we have described a general design principle to implement symmetric POVMs on
quantum register where universal quantum computation capabilities are available. However,

hese implementations are not minimally disturbing.
Here we describe an extension of the theory of Ref. 13 such that the symmetric measurements

isturb the state in a minimal way and apply it to the Heisenberg–Weyl group in finite dimensions.
ince the latter actually defines a family of groups it is desirable to have an implementation which

s efficient in the sense that its running time scales polynomially in the logarithm of the dimension,
.e., with the number of qubits. We show that this can indeed be achieved for Heisenberg–Weyl
roups with a power of 2 as dimension.

We then adapt the implementation scheme to the continuous situation. The corresponding
OVM provides a good example for a measurement where the feature of minimal disturbance
akes sense: Given the motivation to measure position and momentum of a particle in order to
onitor its motion one would clearly try to avoid disturbance as far as possible.

The general idea of the paper is to show that the finite dimensional circuits provide a paradigm
or the continuous variable implementation. By replacing the finite dimensional gates with appro-
riate analogs, we also obtain a possible measurement scheme even though it is not a priori clear
ow the required “gates” could be implemented physically. However, we show that a modification
f the gate sequence could in principle be realized by three hard-core scattering processes. This
ind of idealized scattering is not unphysical since hard-core potential can be a useful approxi-
ation in many real collision processes.

We proceed as follows. In Sec. II we recapitulate the definition of POVMs and recall a general
cheme for the implementation of general measurements by orthogonal measurements. In Sec. III
e define the symmetry of POVMs and present a method for designing measurement algorithms

or symmetric POVMs. In Sec. IV we consider the implementation for two special classes of
OVMs to illustrate the latter. Explicitly, we consider POVMs on qubits with cyclic symmetry
roups and POVMs on d-dimensional quantum systems with Heisenberg–Weyl symmetry. In Sec.

we convert the implementation to quantum systems with Hilbert spaces of infinite dimension
nd describe a potential realization by scattering processes on an abstract level. In Sec. VI we
ompare this scheme to a quantum optical implementation of simultaneous measurements for the
uadrature amplitudes.

I. MINIMALLY DISTURBING IMPLEMENTATION BY VON NEUMANN MEASUREMENTS

In this section we briefly outline a general scheme1 for the minimally disturbing implemen-
ation of a POVM. Consider a quantum system with Hilbert space Cd. A POVM consists of n
perators � j �Cd�d with � j �0 and � j� j = Id, where Id denotes the identity matrix of size d�d.
definition for POVMs on infinite dimensional quantum systems and an infinite number of results

an be found in Ref. 14. In Sec. V we use this more general definition but here we start with finite
OVMs since we consider implementation schemes on quantum computers at first. Following
efs. 15 and 16 we define:

Definition 1 (Minimally disturbing measurement): Let �� j� be a POVM. Then a measurement
s called minimally disturbing if it changes the state vector according to

��� �
�� j���

	�� j���	
,

iven that the measurement result is j.
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The motivation for this definition is given by a theorem in Ref. 15 stating that the above type
f measurements maximizes the average fidelity between the input and the output state if the input
s drawn from a uniformly distributed ensemble of pure states.

The following lemma1 reduces the implementation of this kind of measurements to von
eumann measurements �with Lüder’s projection postulate� in the standard basis.

Lemma 2 (Reduction of a POVM to a von Neumann measurement): Let P be a POVM with the
operators � j �Cd�d. Furthermore, let Cn be the Hilbert space of an ancilla that is initialized
ith �0�. Then, a minimally disturbing measurement of P can be achieved by a measurement in the

tandard basis of the ancilla after the implementation of a unitary U�Cdn�dn satisfying the
quation

U��0� � ���� = �
j=0

n−1

�j� � �� j��� . �1�

quation �1� states that U is a unitary extension of the matrix

M ª �
j

�j� � �� j = ���1,��2, . . . ,��n�T � Cdn�d, �2�

hich is defined by P. In the following section we consider this extension for symmetric POVMs.
n some cases, the following observations help to show that a unitary U implements a POVM in
minimally disturbing way:

Lemma 3 (Linear assignment of Kraus operators�: Let U�Cdn�dn be a unitary operating on
bipartite system which is initialized with ��� � ��� where ����Cn and ����Cd. Let the first

omponent be measured in the standard basis after the joint system has been subjected to the
nitary U. Then the conditional postmeasurement state is pure.

Let AU,�,j be the Kraus operator describing the corresponding state change

��� �
AU,�,j���

	AU,�,j���	
,

here j is the measurement result. For each U and j, the mapping ����AU,�,j is linear.
The proof is straightforward since the projected state of the composed system is a product

tate and the map given by the partial trace is linear. We find:
Corollary 4 (Minimally disturbing Kraus operators): Let P be a POVM with operators � j.

urthermore, let U, ���, and AU,�,j be as defined in Lemma 3. If the equation

AU,�,j = �� j

olds for all j then U gives rise to a minimally disturbing measurement of P. In other words,
henever AU,�,j is positive for each j, it defines a minimally disturbing measurement for the
OVM given by

� j ª AU,�,j
2 .

II. IMPLEMENTATION OF SYMMETRIC POVMS

In this section we analyze how the symmetry of a POVM can be used for the implementation
cheme of Lemma 2. Here, we follow the approach of Ref. 13 where we have obtained a general
mplementation scheme for POVMs without consideration of the disturbance of the measurement
rocess. This implementation scheme also relies on the unitary extension of a matrix that is
efined by the POVM operators. It turned out that the symmetry of the POVM leads to a sym-
etry of the matrix which can be exploited for the extension. In this section we show that a similar

onstruction is possible for the minimally disturbing implementation of POVMs.

To begin with, we define the symmetry of POVMs:
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Definition 5 (Symmetric POVMs): Let � :G→Cd�d be a unitary representation of a finite
roup G. A POVM with operators �0 , . . . ,�n−1 is called �� ,	� symmetric if there is a permutation
epresentation 	 :G→Sn of the indices such that

��g�� j��g�† = �	�g�j .

ere, Sn denotes the symmetric group consisting of all permutations of n objects.
As mentioned above, the symmetry of a matrix is a useful tool for the implementation of

OVMs. Here we define the symmetry of a matrix as in Refs. 17–19.
Definition 6 (Matrices with symmetry and intertwining spaces): Let G be a finite group and

:G→Cm�m as well as 
 :G→Cn�n be unitary representations. A matrix A�Cm�n is �� ,
� sym-
etric if it satisfies

��g�A = A
�g�

or all g�G. We also write �M =M
 for the �� ,
� symmetry. We call the set

Int��,
� = 
A � Cm�n:�A = A
�

f all such matrices the intertwining space of � and 
.
The structure of the intertwining space of two representations can be easily specified if both

epresentations are decomposed into a direct sum of irreducible representations of the group as the
ollowing lemma19 shows:

Lemma 7 (Structure of intertwining space): Let � and 
 be decomposed into the direct sums

� = �
j

�Imj
� � j� and 
 = �

j
�Inj

� � j�

f different irreducible representations � j of the group G. Then

Int��,
� = �
j

�Cmj�nj � Ideg��j�
�

here deg�� j� denotes the degree of � j. For mj =0 and nj =0 we insert nj deg�� j� zero columns or

j deg�� j� zero rows, respectively.
The key observation used for the extension of the matrix M from Eq. �2� to a unitary is that

he symmetry of a POVM leads to a matrix M with symmetry. This is summarized in the following
emma which can be proved by direct calculation:

Lemma 8 (Symmetry of a POVM and its matrix): If the POVM with operators �1 , . . . ,�n is
� ,	� symmetric then the corresponding matrix M is ��	 � � ,�� symmetric with the permutation
atrix representation �	�g�=� j�	�g�j�� j�.

The following theorem explicitly shows how the ��	 � � ,�� symmetry of M can be extended

o a ��	 � � ,� � B̃†��B̃� symmetry of U where �� is an appropriate representation and B̃ a unitary.
Theorem 9 (Implementation of symmetric POVMs): Let M be the matrix of Eq. (2) for a �� ,	�

ymmetric POVM with symmetry group G. Let A and B be transformations that decompose �	

� � and � into irreducible representations, respectively. Then there is a representation �� of G
uch that B�B† � �� is equal to A��	 � ��A† up to a permutation of the irreducible components.
urthermore, there is a transformation W� Int�A��	 � ��A† ,B�B† � ��� which is a unitary ex-

ension of AMB†. Then

U ª A†W�B � B̃�

mplements the POVM for every unitary B̃. The unitary U is ��	 � � ,� � B̃��B̃†� symmetric.
Proof: We decompose �	 � � and � with the unitaries A�Cdn�dn and B�Cd�d, i.e., we obtain
he equations
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A��	 � ��A† = �
j

�Imj
� � j� and B�B† = �

j
�Inj

� � j� .

herefore, the equation

�
j

�Imj
� � j��AMB† = AMB†�

j
�Inj

� � j��
olds. Following Lemma 7 the matrix NªAMB† has the decomposition

N = �
j

�Aj � Idj
�

ith Aj �Cmj�nj and djªdeg�� j�. From Theorem 5 of Ref. 13 it follows that B�B† can be
xtended to A��	 � ��A†, i.e., the representations A��	 � ��A† and B�B† � �� with

�� = �
j

�Imj−nj
� � j�

re equal up to a permutation of the irreducible components. We choose a unitary extension W

Int�A��	 � ��A† ,B�B̃ � ��� of N. This extension can be achieved by appending appropriate
olumns to the right side of N since the matrix N has orthogonal columns. We can write W

�N � Ñ� for this extension if we denote the new columns by Ñ. With this matrix we obtain for an

rbitrary unitary B̃�Cn�d−1��n�d−1� the unitary extension

A†�N�Ñ��B � B̃� = �M�A†ÑB̃�

f M. �

As shown in the following section, the unitary W of Theorem 9 can be chosen to be sparse for
ome POVMs. Within the standard model of quantum computing, this can be used for obtaining
fficient decompositions into elementary gates for the cases discussed in the next section. Further-

ore, there are methods known to decompose the transformations A and B � B̃ into products of
impler matrices.17–19

V. EXAMPLES

In this section we explicitly construct quantum circuits and implementation schemes for the
inimally disturbing implementation of two families of symmetric POVMs. First, we introduce

he following notations: For m�N define �mªexp�−2	i /m� and let

Xm ª �
j=0

m−1

��j + 1�mod m�� j� � Cm�m

e the cyclic shift of the basis vectors of an m-dimensional space. Furthermore, define the diagonal
hase matrix

Zm ª �
j=0

m−1

� m
j �j�� j� � Cm�m

nd the Fourier transform

Fm ª� 1

m
�

j,k=0

m−1

� m
jk�j��k� � Cm�m.

We obtain the equalities FmXmFm
† =Zm and ZmXm=�mXmZm which we will use in the following
ithout proof.
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. Cyclic groups

Simple examples for our implementation scheme are POVMs operating on a qubit with a
yclic symmetry. Measurements with cyclic symmetry can, for instance, provide an estimation of
ime when applied to a dynamical quantum system. The reason for this is that the time evolution
f a quantum system with energy eigenvalues being rational multiples of each other is periodic
nd the dynamics is therefore a unitary representation of SO�2�. This leads naturally to the finite
yclic groups after discretization.

Fix n�2. We consider the cyclic group Cn= �r :r n=1� with n elements, the unitary matrix
epresentation � :Cn→C2�2 with �� j�=Rn

j for

Rn ª �1 0

0 �n
� � C2�2, �3�

nd the orbit of the vector �1/n�1,1�T�C2 with respect to this representation of Cn. We have the
OVM operators

� j ª
1

n
�1 0

0 � n
j ��1 1

1 1
��1 0

0 �n
−j � =

1

n
� 1 �n

−j

� n
j 1

� �4�

or j� 
0, . . . ,n−1�.
Applying the methods discussed in Sec. III we obtain the following unitary for the minimally

isturbing implementation of the POVM with cyclic symmetry:
Theorem 10 (Implementation of POVMs with cyclic symmetry): The POVM with the

perators of Eq. (4) can be implemented by the unitary

U ª �Fn
†

� I2�X2n
† �In � F2�K† � C2n�2n

here K denotes the permutation matrix which is defined by

K�2j� = �j� and K�2j + 1� = �n + j� .

The rather technical proof can be found in the Appendix. The idea is as follows: The trans-
ormation A must diagonalize the cyclic shift Xn � I2. This can be achieved by Fn

†
� I2. Further-

ore, we need the cyclic shift X2n
† to obtain the correct order of the irreducible representations.

he transformation B is trivial since � is already diagonal. The remaining transformation �In

� F2�K† is the sparse matrix in the intertwining space.
If n is a power of 2 the ancilla system can be a qubit register and the unitary of Theorem 10

an be implemented efficiently as the following corollary states.
Corollary 11 (Circuits for cyclic POVM): For n=2m, m�1, the unitary U of Theorem 10 can

e implemented efficiently with the circuit of Fig. 1.
1,20

IG. 1. Circuit for the implementation of POVMs with cyclic symmetry group C2m on a qubit. The circuit operates on m+1
ubits. On the right side the upper m qubits are measured in the standard basis.
Proof: Since Fourier transforms can be implemented with a polynomial number of elemen-
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ary gates, i.e., 1 and 2 qubit gates, Fn
†

� I2 can be implemented efficiently. Furthermore, the cyclic
hift X2n

† can be written as X2n
† =F2n

† Z2n
† F2n with

Z2n
† = R2n

−n
� R2n

−n/2
� . . . � R2n

−1.

he unitary K is only a cyclic shift of qubits. �

. Heisenberg–Weyl groups

The operators Xd and Zd are discrete analogs of translations in position and momentum space.
f Cd denotes the d possible positions of a particle on a cyclic chain, the eigenvectors of Zd can be
nterpreted as positions eigenstates and the eigenvectors of Xd as eigenvectors of crystal
omentum.21 As for continuous quantum systems these observables are incompatible and it can be

esirable to have approximative simultaneous measurements such that the result can be interpreted
s a point in 2d-dimensional “phase space.” In Sec. V we discuss the continuous analog.

The basis of simultaneous measurements of position and momentum are POVMs with
eisenberg–Weyl symmetry. For all d�2, the Heisenberg–Weyl group is given by G= �Xd ,Zd�

nd has order d3. For a positive operator  with tr��=1/d we consider the POVM with the d2

perators

Zd
kXd

j Xd
−jZ d

−k for k, j = 0, . . . ,d − 1. �5�

he following theorem shows how to implement this type of POVMs:
Theorem 12 (POVMs with Heisenberg–Weyl symmetry): Given the Heisenberg–Weyl

OVM P with the d2 operators from Eq. (5) with ª ������ /d for some state vector ���. Then P
an be implemented by the circuit in Fig. 2 where the inputs of the ancillas are given by ���

� ��̄� with the complex conjugated wave function �̄. For general  the ancilla input has to be
eplaced with the state vector

��� ª �d �
j,k=0

d−1

� jk�j� � �k� � Cd2
,

here � jk denotes the entry of � in the jth row and kth column.
The proof of the theorem can be found in the Appendix. In the following we briefly sketch the

ain points of the proof. For the decomposition of �	 � � we observe that the permutation 	
iven by the action of the Heisenberg–Weyl group on the operators is a translation in the finite
lane �Z /dZ�2. This translation is diagonalized by the inverse Fourier transform Fd

†
� Fd

†
� Id at the

nd of the circuit in Fig. 2. This transformation already block diagonalizes �	 � �. However, the
rreducible components are only equivalent, but not equal, to �. We apply the controlled Z and
ontrolled X† operations to obtain equality. Hence, these operations correspond to the matrix A.
he matrix B is trivial since � is an irreducible representation. The unitary extension W used in
heorem 12 is decomposed into two components. One component is given by the first two gates
f the circuit in Fig. 2, the other is absorbed into the preparation procedure for the initial state.

As already stated, we can efficiently implement Fd by elementary gates on a qubit register. We

IG. 2. Schematic circuit for the POVM with Heisenberg–Weyl symmetry. The basis state �j� of the control wire causes the
mplementation of the jth power of the controlled operation. On the right side of the circuit the two upper systems are

easured in the standard basis.
lso obtain efficient implementations of controlled X and Z gates by concatenations of controlled
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d gates as defined in Eq. �3�. Hence, we can implement the POVM with initial operator 
������ /d efficiently if the same is true for the preparation of the states ��� and ��̄�.

. CONTINUOUS MEASUREMENTS

Here we want to address how to implement Heisenberg–Weyl symmetric POVMs for con-
inuous quantum systems such that we have also minimal disturbance. For a detailed mathematical
escription of such POVMs we refer also to Refs. 22 and 23.

The continuous degree of freedom can either be a Schrödinger wave of a quantum particle
oving on a line �where the Heisenberg–Weyl group formalizes translations in position and
omentum space� or a quantum optical light mode �where the translations shift the quadrature

mplitudes�. The most natural representation of the Hilbert space of a particle in one dimension is
ªL2�R�, the space of square integrable functions over the real line. For a light mode, it is often
ore appropriate to choose the isomorphic Hilbert space l2�N0� of square-summable sequences. In

his section, we will focus on Schrödinger particles since simultaneous measurements of quadra-
ure amplitudes in quantum optics have already been implemented.24 We will compare our imple-

entation to the latter in the next section.
We first describe the continuous analogs of the “gates” in Fig. 2 and show that their concat-

nation leads indeed to a correct implementation. Later we will discuss a modification of the
cheme which can be implemented by hard-core scattering processes. The description below refers
o the Schrödinger representation where the position operator X, defined on a dense subspace of

, is the multiplication operator

X��x� ª x��x� .

he momentum operator is

P��x� ª − i
d

dx
��x� ,

here we have chosen the units such that �=1. Following Sec. 3.4 of Ref. 14 �with a slight
odification of the sign� we introduce a family �Us,t� of unitaries

�Us,t���x� ª e−ixs��x − t� ,

hich formalize shifts in momentum and position space. These unitaries define a measurement by
he positive operators

�s,t ª
1

2	
Us,t������Us,t

† ,

here ����H is a wave function which is sufficiently localized in momentum and position space.
he probability density for the result �s , t� is tr���s,t� if the system state is described by the density
perator �. The outcome �s , t� is interpreted as momentum s and position t of the particle in a
coarse grained phase space.” We can clearly generalize the POVM above by replacing
����� / �2	� with any operator  having trace 1/ �2	�.

In agreement with the discussions of finite POVMs in the preceding sections we want to
mplement the POVM in such a way that the state changes according to

� �
��s,t���s,t

tr��s,t��
,

iven that the measurement outcome is �s , t�.
Now we describe how to find a continuous analog of the circuit in Fig. 2. The system Hilbert

d �3 �3
pace �C � is replaced by H , i.e., in additional to the particle to be measured one uses two
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articles in one dimension as an ancilla system. The final von Neumann measurement is a position
easurement on both ancillas. �One could also use the remaining two dimensions of a particle in

hree dimensions as an ancilla system.�
The continuous analogs of the required gates are as follows. The discrete Fourier transform

whose inverse is occurring three times in Fig. 2� is replaced with the continuous unitary Fourier
ransform

�F���x� =� 1

2	
�

−�

�

e−ixy��y�dy . �6�

he controlled cyclic shift is replaced by a unitary Y describing controlled translations on the real
ine. It acts on the wave function � of two particles according to

�Y���x,y� = ��x,y − x� , �7�

ince this transformation would correspond to the transformation

�x� � �y� � �x� � �x + y� ,

f such position eigenstates �x� and �y� existed. Conjugating Y with the Fourier transform on the
econd tensor component makes it more apparent that it is indeed a unitary map since we obtain
hen the multiplication operator

V ª ��I � F�Y�I � F†����x,y� = e−ixy��x,y� . �8�

ere I denotes the identity operator on H. The unitary in Eq. �8� is the straightforward generali-
ation of the controlled phase-shift operation that is the fourth gate in Fig. 2. The following
heorem shows that the above described replacements provide in fact the desired measurement
rocedure:

Theorem 13: Replace the gates in Fig. 2 with their continuous analogs as follows:

1� Set the inverse of the continuous unitary Fourier transform given by Eq. (6) instead of Fd
†;

2� Set the inverse of Y given in Eq. (7) instead of the controlled Xd
† gate; and

3� Set V as given by Eq. (8) instead of the controlled Zd gate.

Let  be an arbitrary positive operator with tr��=1/ �2	� and the two ancilla systems be in
he state � with

��� ª �
j=0

�

�� j�� j� � ��̄ j� , �9�

here �� j� is an eigenvector basis of  such that

2	 = �
j

� j�� j��� j� .

hen the resulting transformation on H�3 implements a minimally disturbing measurement for the
OVM

�s,t ª Us,tUs,t
† ,

hen followed by position measurements on both ancillas at the end and interpreting the position
f the first particle in Fig. 2 as t and the position of the second as s.

Proof: Due to Lemma 3 and its corollary it is sufficient to restrict the attention to rank-one
perators ª ������ / �2	� and show that the unnormalized output state coincides with the desired

tate. The linearity argument holds also if  is an infinite series since one can check that the map
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� � AU,�,j

s continuous with respect to the topologies induced by the Hilbert space norm and the operator
orm, respectively. This is seen from

	�	2 = tr�AU,�,j
† AU,�,j� � 	AU,�,j

† AU,�,j	 = 	AU,�,j	2.

The whole “circuit” creates some wave function �̃�H�3. After measuring t and s we obtain
n unnormalized conditional state vector given by the wave function

z � �̃�t,s,z� ª �̃t,s�z� .

e want to show that it satisfies

��̃t,s� = ��s,t��� =� 1

2	
Us,t������Us,t

† �� .

his means explicitly that

�̃t,s�z� =� 1

2	
e−izs��z − t��

−�

�

�̄�u − t�eius��u�du . �10�

Now we calculate the effect of the circuit starting with the joint state

��x��̄�y���z� ,

here � is the wave function of the measured particle. First, we apply the controlled inverse
ranslation and obtain

��x��̄�y + x���z� .

he inverse Fourier transform changes this state to

� 1

2	
�

−�

�

eiux��u��̄�y + u���z�du .

he second controlled inverse shift followed by the controlled phase yields

� 1

2	
�

−�

�

eiux��u��̄�y + u�e−ixz��z + y�du .

fter applying the inverse Fourier transform to both ancilla registers we obtain

� 1

8	3�
−�

� �
−�

� �
−�

�

eiyweixveiuv��u��̄�w + u�e−ivz��z + w�du dv dw .

e simplify this term into

� 1

8	3�
−�

� �
−�

� �
−�

�

eiywei�x−z+u�v��u��̄�w + u���z + w�du dv dw .

he integral over v is only nonvanishing for x−z+u=0. Hence, we obtain

� 1

2	
�

−�

�

eiyw��z − x��̄�z + w − x���z + w�dw .
ith the substitution uªz+w we get
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� 1

2	
e−iyz��z − x��

−�

�

eiyu�̄�u − x���u�du .

he conditional state given that we obtain the result x= t and y=s coincides with Eq. �10�. �

In order to realize the transformation in Theorem 13 by a physical process we first observe
hat scattering processes realize quantum gates which are close to the controlled phase shift in Eq.
7�: Consider two particles interacting with hard-core potential, i.e., the interaction energy is zero
henever their distance is larger than some a�0 and infinite if the distance is smaller than a. In
ef. 25 we have discussed the state change caused by such a scattering provided that the consid-
red time scale is small compared to the time scale on which the width of wave packets grows by
ispersion. We will first explain the scattering process in momentum space since the change of
omenta of classical particles provide a good intuition about the quantum case. The momentum

p2 of the light particle obtains a sign change since it is reflected. Due to the conservation of total
omentum, the heavy particle acquires an additional momentum 2p2. The vector of momenta of

oth particles is therefore changed according to a linear transformation N given by

N�p1

p2
� = �p1 + 2p2

− p2
� .

eglecting irrelevant translations in position space, the corresponding linear transformation M in
osition space is already given by the requirement that the 4�4 matrix transformation M � N
cting on the two positions and the two momenta has to be symplectic. We have therefore M
�NT�−1 and obtain in agreement with Ref. 25

M = �1 0

2 − 1
� .

he scattering process S acts therefore on the wave function in position space by multiplying the
oordinate vector with M, i.e.,

�S���x� ª ��Mx�, x � R2.

e obtain

�S���x,y� = ��x,− y + 2x� .

n order to understand the relation to the gates in Theorem 13, we may represent this operation by
he circuit in Fig. 3. The “reflection” gate R corresponds to a change of the wave function
ccording to

�R���x� ª ��− x� .

Elementary calculations show that Fig. 2 is equivalent to the circuit in Fig. 4 where we have
bsorbed the Fourier transform on the wire in the middle by replacing an X measurement with a

P measurement.
After we have converted the desired circuit into the equivalent one that avoids controlled

hase gates in Fig. 4 we still have the problem that it requires controlled X gates and its inverse
nstead of a controlled X2 gate which implements the shift twice. However, we observe that we

IG. 3. Correspondence between gates and a scattering of two particles with extreme mass ratio. The scattering is called
ontrolled SC gate.
ay convert these gates into each other by conjugating them with the unitary squeezing operator
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S2�x� ª �2x�

ombined with reflections when needed. �Note that the described reduction of controlled SC to
ontrolled X is also possible in finite dimensions d. The definition R�x�ª �−x� is always possible
nd �x�� �2x mod d� is bijective if d is odd. Then the ring Z /dZ allows division by 2.� We will see
ater that we do not have to worry about the physical realization of S2 since we need this gate and
ts inverse only at the end or at the beginning of the first or the second wire. Hence, they can either
e absorbed into the preparation procedure or into the measurement by reinterpreting the result.

We will furthermore modify the entangling operation on ancilla 1 and 2, i.e., the first gate of
he circuit in Fig. 4 for the following reason. An important feature of the circuits in Figs. 2 and 4
s that the POVM consists of rank-one operators if the input ancilla state is the product state
�� � ��̄� and entangled inputs lead to POVM operators of higher rank. The preparation of these
ntangled states was not considered in Subsection IV B. Here we also want to describe how to
ntangle ancilla 1 and 2 when POVMs of higher rank are desired. The goal is therefore to change
he operation on ancilla 1 and 2 preceding the interaction with the system to be measured such that

family of product input states allows the implementation of POVMs of higher rank. In other
ords, we want to tune the achieved information and the caused disturbance of the measurements
y plugging different product states into the circuit.

After subsequently replacing the gates in Fig. 4 with scattering processes combined with
queezing operations and reflections and modifying the entangling operation between the ancillas,
e found that an interesting class of POVMs can indeed be implemented by three scattering
rocesses as depicted in Fig. 5 when the initial ancilla states are Gaussian wave packets.

To understand the effect of the “circuit” in Fig. 5 we shall compute a 3�3 matrix that
escribes the effect of the whole circuit on the three position coordinates. For doing so, we recall
see Fig. 5� that the masses of the particles satisfy

m1 � m3 � m2.

irst, we implement a collision between particles 1 and 2. Here, the position of particle 2 controls
he position of particle 1. In analogy to the remarks above we describe the scattering and reflection
y matrices that act on the vector of position coordinates of the three particles. The scattering
rocesses with the pairs �2,1�, �2,3�, and �3,1� correspond to the matrices

FIG. 4. Circuit equivalent to the circuit in Fig. 2.

IG. 5. Implementation of minimally disturbing simultaneous measurement of position and momentum by three scattering
rocesses and one reflection. The masses m1 and m2 of the two ancilla particles are extremely small or extremely large

ompared to the mass m3 of the particle to be measured.
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S21 ª �− 1 2 0

0 1 0

0 0 1
�, S23 ª �1 0 0

0 1 0

0 2 − 1
�, S31 ª �− 1 0 2

0 1 0

0 0 1
� .

he scatterings are followed by a reflection of the z coordinate �the R gate�. Taking into account
hat we have to concatenate the effect on the coordinates from the left to the right, the complete
ransformations in position coordinate space is given by

A ª S31S23S21R3 = �1 2 2

0 1 0

0 2 1
� .

et the initial state of the three particles be given by the wave function

��x���y���z� .

fter subjecting the arguments to A we obtain

��x + 2y + 2z���y���2y + z� . �11�

n order to reduce a momentum measurement on the second wire to a position measurement we
pply a Fourier transform to the state �11� and obtain

� 1

2	
�

−�

�

��x + 2w̃ + 2z���w̃���2w̃ + z�e−iw̃y dw̃ .

ith wª2w̃+z we get

� 1

8	
�

−�

�

��x + w + z����w − z�/2���w�ei�−y/2��w−z� dw .

e define the integral kernel

kx,y�z,w� ª� 1

8	
��x + w + z����w − z�/2�ei�−y/2��w−z�.

t defines for fixed x ,y an operator Kx,y on H by

�Kx,y���z� ª �
−�

�

kx,y�z,w���w�dw .

ote that the Kraus operators Kx,y describe the unnormalized output state Kx,y��� of particle 3
iven that we have measured x and y on the first and second particle, respectively �in straightfor-
ard analogy to the Kraus operators in Lemma 3 for the discrete setting�.

Now we show that Kx,y can be obtained by subjecting K0,0 to the Heisenberg–Weyl group
lements by

Kx,y = U−x/2,−yK0,0U−x/2,−y
† .

o see this, we observe that the translation by −x /2 in position space changes the integral kernel

0,0�z ,w� into k0,0�z+x /2 ,w+x /2� and the additional translation in momentum space by −y /2
hanges it into

k0,0�z + x,w + x�ei�−y/2��w−z� = kx,y�z,w� .
his shows that the process in Fig. 5 implements a measurement for the POVM
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�s,t ª Us,tK0,0
† K0,0Us,t,

hen reinterpreting the measurement outcomes x ,y on particles 1 and 2 as t=−x /2 and s=−y,
espectively. In order to obtain a minimally disturbing implementation, we have to ensure that K0,0

s positive �in straightforward generalization of Corollary 4 to the continuous setting� because it
an then be interpreted as �. If � and � are real and � is an even function, i.e., ��−y�=��y�, K0,0

s self-adjoint due to

k0,0�z,w� = k0,0�w,z� .

he integral kernel of K0,0 is explicitly given by

k0,0�z,w� =
1

�2	
��w + z����w − z�/2� .

ow we assume that � and � are both real Gaussian wave functions with widths �1 and �2,
espectively, i.e.,

��x� ª
1

��1	1/4
exp�−

x2

2�1
2� and ��y� ª

1
��1	1/4

exp�−
y2

2�2
2� .

nder these conditions, k0,0 defines a positive operator whenever �1�2�2. This follows from the
ollowing lemma after replacing a and b with 1/ �2�1

2� and 1/ �8�2
2�, respectively.

Lemma 14: The operator given by the integral kernel

k�x,y� ª de−a�x + y�2−b�x − y�2

ith d�0 is for all b�a�0 positive.
Proof: Rewrite the kernel as

k�x,y� = de−2ax2
e−�b−a��x − y�2

e−2ay2
. �12�

t is known that the integral kernel

k̃�x,y� ª de−c�x − y�2

efines for all positive c ,d a positive operator26 which we shall denote by K̃. Then the operator K

iven by the kernel �12� can be written as K=DK̃D where D is the multiplication operator

�D���x� ª e−2ax2
��x� .

ence, K is also positive. �

Since we have now described sufficient conditions for which K0,0 is positive, we would like to
etter understand the POVM operator =K0,0

2 . As simple computations show, it is �up to the
ormalization factor 2	� given by the reduced state of one particle in a two-particle system, if the
atter is described by the wave function

��x,y� ª �2	k0,0 = ��x + y����x − y�/2� . �13�

t can be obtained from the state ��� � ��� by a linear mapping of the wave function arguments

ccording to
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�x

y
� � � 1 1

1/2 − 1/2
��x

y
�¬ G�x

y
� .

uch a linear operation transforms the initial Gaussian state into an entangled Gaussian state.
ince Gaussian states are completely determined by their covariance matrix,27 we will compute

he latter for the state in Eq. �13�.
For doing so, we must describe the linear transformation corresponding to G that acts on the

rguments of the wave function in momentum space. According to the remarks at the beginning of
his section, it is given by the transposed inverse:

�px

py
� � �GT�−1�px

py
� .

he covariance matrix of a two-particle state � consists of the entries

tr��XiXj� − tr��Xi�tr��Xj� with i, j = 1, . . . ,4

here X1 ,X2 denote the position operators and X3 ,X4 the momentum operators of particles 1 and
, respectively. For the state ��� � ��� it is given by �see Ref. 27�

� =�
�1

2/2 0 0 0

0 �2
2/2 0 0

0 0 1/�2�1
2� 0

0 0 0 1/�2�2
2�
� .

f the coordinate vector in the position wave function is subjected to some area-preserving linear
ap G and the coordinates of the momentum wave function to �GT�−1, the covariance matrix

ransforms in the following way:

�� ª �G−1 0

0 GT ����GT�−1 0

0 G
� =

1

8�
�1

2 + 4�2
2 �1

2 − 4�2
2 0 0

�1
2 − 4�2

2 �1
2 + 4�2

2 0 0

0 0
4

�1
2 +

1

�2
2

4

�1
2 −

1

�2
2

0 0
4

�1
2 −

1

�2
2

4

�1
2 +

1

�2
2

� ,

s simple computations show. The covariance matrix of the reduced state of each particle is given
y the 2�2 submatrices that refer to its position and momentum. Due to the symmetry of our
tate, it is for both particles given by

1

8��1
2 + 4�2

2 0

0
4

�1
2 +

1

�2
2 � . �14�

t is known27 that such a state is pure if and only if the determinant is 1
4 . This is given for �1

2�2. One can rewrite a Gaussian state of a single mode having diagonal covariance matrix as a
hermal state of a harmonic oscillator with frequency �, mass m, and average phonon number N.
In quantum optics, one would also need squeezing transformations to obtain a general diagonal
aussian state. But here the product of frequency and mass of the oscillator provides an additional
ree parameter.� It is explicitly given by
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�N,� = �1 − e−1/N��
n=0

�

e−n/N�n��n� ,

here �n� with n�N0 denotes the nth energy eigenstate of the oscillator. We will first use dimen-
ionless position and momentum variables

X� ª
1
�2

�a + a†� = �m�X �15�

nd

P� ª
1

i�2
�a − a†� =

1
�m�

P , �16�

ith creation operator a† and annihilation operator a. In these coordinates, the covariance matrix
f the thermal state with average phonon number N is the identity matrix times �N+1� /2. This
ollows, e.g., from Eqs. �2.16� in Ref. 27. In natural units, we therefore have the covariance matrix

N + 1

2 � 1

m�
0

0 m�
� . �17�

omparing Eq. �14� to Eq. �17� we obtain

�m��2 =
4/�1

2 + 1/�2
2

�1
2 + 4�2

2

nd

�N + 1�2 =
1

4
��1

2 + 4�2
2�� 1

�1
2 +

1

4�2
2� .

ence

N =
1

2
�2 +

4�2
2

�1
2 +

�1
2

4�2
2 − 1.

or �1=2�2 one obtains N=0, i.e., the ground state of the oscillator that corresponds to a rank-one
perator . We rephrase the findings implied by the above discussion as a theorem:

Theorem 15: Given three particles such that their masses satisfy

m1 � m3 � m2.

et the first and the second particle be in Gaussian states with real wave functions such that their
idths satisfy �1�2�2. Then the sequence of scattering processes depicted in Fig. 5 implements

he Heisenberg–Weyl POVM �Us,tUs,t
† �s,t in a minimally disturbing way when the position of

article 1 and the momentum of particle 2 is measured and the result �x ,y� is interpreted as
=−x /2 and s=−y. The initial operator  of the POVM is given by

 =
1

2	
�N,m�,

here �N,m� is the thermal equilibrium state of a harmonic oscillator with mass m and frequency
when the temperature is chosen such that the average phonon number is N. The parameters N
nd m� are determined by the widths �1 and �2 according to
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�m��2 =
4/�1

2 + 1/�2
2

�1
2 + 4�2

2 ,

nd

N =
1

2
�2 +

4�2
2

�1
2 +

�1
2

4�2
2 − 1.

We want to briefly explain qualitatively how the measured POVM is tuned by the parameters

1 and �2. The ratio of both determine the purity of , for �1=2�2 we obtain a rank-one
easurement. By increasing or decreasing both we can achieve a better resolution in momentum

pace or in position space: Small values �1 ,�2 lead to good position measurements for the cost of
aving large errors in the momentum measurement. If �1�2�2 both position and momentum
easurements are bad and we obtain a measurement with small disturbance.

For detailed discussions on the disturbance and accuracy of the measurements we also refer to
efs. 22 and 23. It is shown that the outcomes for position and momentum in POVMs of the above

ype satisfy the inequality �x�p�� in contrast to the Heisenberg uncertainty relation �x�p
� /2.

I. Comparison to quantum optics implementations

Meanwhile there are several methods known to measure the quadrature amplitudes of a light
ode simultaneously �see Ref. 24�. We will consider the scheme shown in Fig. 6 which has some

ice similarities to the continuous analog of our circuit in Fig. 2. In the following, we will use the
imensionless formal position and momentum operators as given in Eqs. �15� and �16� which
enerate the momentum and position translations in the Heisenberg–Weyl group and furthermore
efine implicitly a Schrödinger representation of a single mode state as wave function �
L2�R� in position state.

The method in Fig. 6 also uses two ancilla modes. As in our proposal, the entanglement of the
wo modes tunes the POVM operator. One part of an entangled two-mode state �wires 2 and 3 in
ig. 6� interferes with the input state �wire 1� in a beam splitter. One of its output modes is
ubjected to a position measurement, the other to a momentum measurement. The results of the
easurement determine furthermore displacements performed on the second component of the

ntangled input. The idea behind the scheme is to perform a teleportation using a nonmaximally
ntangled bipartite state �a maximally entangled state does not exist anyway in continuous vari-

IG. 6. Measurement scheme of Ref. 24. The box at the beginning of mode 2 and 3 indicate the entangled input on these
wo modes. The entanglement tunes the POVM. In the limit of infinite entanglement the output coincides with the input
tate and no information is gained. If mode 2 and 3 start in a product state, a rank-one POVM is implemented. The input
nterferes with mode 2 in a balanced beam splitter where one output mode is subjected to a position measurement and the
ther to a momentum measurement. The results determine the displacements in position and momentum the output is
ubjected to.
bles� as a resource. Then the transfer of quantum information is not perfect but the measurements
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erformed during the “bad” teleportation provide some information on the input state. Similar to
ur scheme, the more entangled the joint state, the less information provides the measurement and
he less disturbance on the output state will be observed.

One technical difference to our scheme is that the input and output are not on the same wire.
he main difference is, however, that the interaction between input and entangled ancilla is given
y a beam splitter, whereas we use scattering processes. This is geometrically the difference
etween a rotation or a shear in coordinate space �for details see Ref. 25�. Note, however, that the
ffect of the controlled displacements of Fig. 6 could be mimicked by a controlled-X gate from
ire 1 to 3 and a controlled-Z gate from wire 2 to 3 if the latter gate is conjugated by a Fourier

ransform on wire 2. The reason is that it does not make a difference whether the controlled
peration is performed before the measurement or afterward. The scheme therefore contains ele-
ents quite similar to ours.

In Ref. 24 we did not find an explicit remark stating that their implementation scheme is
inimally disturbing in the sense considered here since the authors use the term “minimally

isturbing” in a different sense. Furthermore, the attention was restricted to Gaussian states for
oth the input as well as for the ancilla states. We have observed that the implementation is also
pplicable for non-Gaussian states and non-Gaussian POVM operators:

Theorem 16: The scheme of Ref. 6 can in principle be used for a minimally disturbing
mplementation of any Heisenberg–Weyl symmetric POVM

Us,tUs,t
†

y preparing the ancilla state

�
j

�� j�� j� � �� j� ,

here the �� j� denote the eigenvector basis for  and � j / �2	� the corresponding eigenvalues.
Proof: Due to the linearity argument in Lemma 3 we may prove our statement for the case

here the two ancillas are in a product state. The initial three mode wave function is then given
y

��x,y,z� = ��x���y���z� ,

here � is the wave function of the mode to be measured. The beam splitter transfers it to the
ave function

���x + y�/�2����x − y�/�2���z� .

e simulate the momentum measurement by an inverse Fourier transform followed by a position
easurement. Conditioned on the measurement result �x ,y� we therefore obtain a one-mode wave

unction �having z as argument� which is given by

� 1

2	��−�

�

���x + w�/�2����− x + w�/�2�eiwydw���z� .

fter obtaining the measurement results x and y on wires 1 and 2, respectively, the conditioned
� �
isplacement of position and momentum by 2x and 2y, respectively, leads to
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� 1

2	��−�

�

���x + w�/�2����− x + w�/�2�eiwydw���z − �2x�e−iz�2y

=� 1

2	
� ��w���− �2x + w�eiw�2ydw���z − �2x�e−iz�2y .

his shows that the unnormalized state vector of the third particle, given that x ,y was measured,
eads

U�2y,�2x�����̄�U�2y,�2x
† ��� .

fter taking into account that the quantum optics convention for position and momentum differs
rom the canonical definition of Eqs. �15� and �16� by the factor �2 �see Ref. 27�, this is exactly
he desired output state.

By choosing the input ��̄� � ��� we therefore have = ������=�. Similarly we can obtain
perators  with higher rank by choosing entangled input states. �

Note that the calculations which show that the scheme does indeed implement a minimally
isturbing POVM is very similar to the calculations in Sec. V which show the close formal
nalogy of both methods.

II. CONCLUSIONS

We have presented a general scheme to implement minimally disturbing symmetric measure-
ents by quantum circuits. By applying it to the Heisenberg–Weyl group, we obtain circuits for

imultaneous measurements of position and momentum of a particle moving on a discrete cyclic
hain. We show that an infinite dimensional generalization of this circuit leads to a well-defined
easurement process on a Schrödinger particle moving on the real line using two probe particles.
he “circuit” for this continuous variable quantum system can, in principle, be obtained by particle
ollisions with hard-core potential. The whole measurement process on the three particles shows
ome analogies but also differences to simultaneous measurements of the quadrature amplitudes in
uantum optics using two ancilla modes.
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PPENDIX

. Proof of Theorem 10

The �2n�2� matrix M of Eq. �2� has the ��	 � � ,�� symmetry that is defined by

�Xn � Rn�M = MRn,

s straightforward computation shows, i.e., we have ��	 � ���j�=Xn
j

� Rn
j and ��j�=Rn

j . To find the
iagonalizing operations A and B of Theorem 9 we observe that � is already decomposed into
rreducible representations and B is therefore trivial. To decompose �	 � � we diagonalize �	 by
he Fourier transform Fn. The eigenvalues of �FnXnF†� � Rn are in the order
,�n ,�n ,�n

2 ,�n
2 , . . . ,�n

n−1 ,�n
n−1 ,1. We apply the cyclic shift X2n to group them into a sequence of

airs �� n
j ,� n

j � as in Lemma 7. Therefore, we have A=X2n�Fn � I2�. Following Theorem 9 we only
ave to find W� Int�A��	 � ��A† ,B�B† � ��� which is a unitary extension of NªA†MB. Hence,

e can choose
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W ª�1

2�
1 0 ¯ 0 1 0 ¯ 0

1 0 ¯ 0 − 1 0 ¯ 0

0 1 ¯ 0 0 1 ¯ 0

0 1 ¯ 0 0 − 1 ¯ 0

] ] ] ] ] ]

0 0 ¯ 1 0 0 ¯ 1

0 0 ¯ 1 0 0 ¯ − 1

� ,

ince the first two columns of this matrix coincide with N. This is verified by straightforward
omputations, too. One can also easily check that W can be written as W= �In � F2�K† where K is
efined in Theorem 10.

. Proof of Theorem 12

To define M as in Eq. �2� we have to define a correspondence between ancilla basis states and
OVM operators. Since our ancilla system is a tensor product of two d-dimensional systems, this
orrespondence is canonical and we obtain

M = �
j,k=0

d−1

�j� � �k� � Zd
kXd

j �X d
−jZ d

−k � Cd3�d. �A1�

he symmetry ��	 � ��M =M� of M is defined by

�Id � Xd � Zd�M = MZd and �Xd � Id � Xd�M = MXd,

s straightforward computations show. Following Theorem 9 we decompose the representation on
he left side into a direct sum of irreducible representations. First of all, we diagonalize the shifts

d in the first and second tensor components by the Fourier transform. We obtain

�Id � Zd � Zd��Fd � Fd � Id�M = �Fd � Fd � Id�MZd

nd

�Zd � Id � Xd��Fd � Fd � Id�M = �Fd � Fd � Id�MXd.

he matrices on the left side can be written as

�Id � Zd � Zd� = �
j=0

d2−1

� d
j mod dZd and �Zd � Id � Xd� = �

j=0

d2−1

� d
j div dXd.

herefore, the representation is decomposed into a direct sum of representations that are equal to
up to phase factors. We now eliminate these factors. To simplify notation we define the block

iagonal matrices

Xmod ª �
j=0

d2−1

Xd
j mod d and Zdiv ª �

j=0

d2−1

Zd
j div d.

sing Zd
†XdZd=�d

−1Xd and XdZdXd
†=�d

−1Zd we obtain

Xmod��
j=0

d2−1

� d
j mod dZd�Xmod

† = �
j=0

d2−1

Zd
nd
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Zdiv
† ��

j=0

d2−1

� d
j div dXd�Zdiv = �

j=0

d2−1

Xd.

sing both equations we can write

XmodZdiv
† �Id � Zd � Zd�ZdivXmod

† = �Id � Id � Zd�

nd

XmodZdiv
† �Zd � Id � Xd�ZdivXmod

† = �Id � Id � Xd� ,

here we have no phase factors. Consequently, we obtain

�Id � Id � Zd�XmodZdiv
† �Fd � Fd � Id�M = XmodZdiv

† �Fd � Fd � Id�MZd

nd

�Id � Id � Xd�XmodZdiv
† �Fd � Fd � Id�M = XmodZdiv

† �Fd � Fd � Id�MXd.

e can rewrite this as

�Id � Id � ��N = N� �A2�

ith N=XmodZdiv
† �Fd � Fd � Id�M. Hence, using the notation of Theorem 9 we have

A ª XmodZdiv
† �Fd � Fd � Id� and B = Id

ince � is an irreducible representation. The matrix N is an element of the intertwining space

nt�� j=0
d2−1� ,��. Following Lemma 7 it has the decomposition

N = ��1� � Id � Cd3�d

ith ��1��Cd2
. Elementary but cumbersome computations �write �=� j=0

d−1Xd
j � j with appropriate

iagonal matrices � j and powers of the shift Xd� show

��1� = �Fd
†

� Id���
q=0

d−1

�q��q� � X d
−q���d �

j,k=0

d−1

� jk�j� � �k�� . �A3�

We extend the representation � on the right side of Eq. �A2� to the direct sum of d2 copies of
. The matrix W of the resulting intertwining space has the decomposition C � Id with C
Cd2�d2

. Therefore, we extend 
��1�� to an orthonormal basis 
��1� , ��2� , . . . , ��d2�� of Cd2
. We

an define the unitary

U ª A†W�B � B̃� = A†����1���2� . . . ��d2�� � Id�

hat extends M with B̃ª I�n−1�d. Now we show how to simplify the implementation by preparing
n appropriate ancilla state. We have

U��0� � ���� = A†����1���2� . . . ��d2�� � Id���0� � ���� = A†���1� � ���� .

ence, we can omit the implementation of W if we initialize the ancilla with ��1� of Eq. �A3�. In
ummary, we have to implement the unitary

�Fd
†

� Fd
†

� Id�ZdivXmod
† �Fd

†
� Id � Id���

q=0

d−1

�q��q� � X d
−q

� Id�

fter we have initialized the ancillas with the state vector
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��� ª �d �
j,k=0

d−1

� jk�j� � �k� � Cd2
. �A4�

As a special case consider the initial operator = ������ /d with ����Cd and �� ���=1. In this
ase we have �= ������ /�d. Furthermore, we have

��� = ��� � ��̄� .
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The long time behavior of the reduced time evolution operator for unstable multi-
level systems is studied based on the N-level Friedrichs model in the presence of a
zero energy resonance. The latter means the divergence of the resolvent at zero
energy. Resorting to the technique developed by Jensen and Kato �Duke Math. J.
46, 583 �1979��, the zero energy resonance of this model is characterized by the
zero energy eigenstate that does not belong to the Hilbert space. It is then shown
that for some kinds of the rational form factors the logarithmically slow decay
proportional to �log t�−1 of the reduced time evolution operator can be realized. ©
2006 American Institute of Physics. �DOI: 10.1063/1.2227260�

. INTRODUCTION

The exponential decay of unstable systems has been a well-known law since the early days of
uantum theory. The quantum description of those systems, however, allows deviation from ex-
onential decay both at shorter and longer times1 than those times over which the exponential
ecay law dominates.2,3 The short time deviation was actually found in a quantum tunneling
xperiment,4 while the long time deviation seems still not to have been detected in any quantum
ystem.5 The main cause that hinders the detection is considered as the smallness of the deviation
t such long times.6

In a recent study, a method enhancing the long time deviation was proposed.7 The decay of the
nstable systems is theoretically modeled in the time evolution of the survival probability of
nstable initial state. The survival probability is just the probability of finding the initial state in
he state at a later time t. Since it is rewritten in a Fourier integral of the spectral function, its
ehavior at long times is determined by that of the spectral function near the threshold of the
nergy continuum.2,3 The essential aspect of the method is then distorting the spectral function
rom the Breit-Wigner form and dislocating its peak toward the threshold energy. Mathematically,
his causes a divergence of the spectral function, i.e., the resolvent at the threshold. Then, it is
xpected that the exponential decay period disappears and the survival probability at long times is
ncreased. A similar idea was also considered in a related context.5,8 In addition, in the analysis of
he Friedrichs model9,10 that is often used for the study on the decays of the unstable systems, the
urvival probability at long times sometimes exhibits a power decay law slower than that in cases
f no divergence.11–13

These facts remind the author of the zero energy resonance proposed by Jensen and Kato.14

ccording to them, such zero energy singularities are classified by the zero energy eigenstates of
he total Hamiltonian that either belong to or do not belong to the Hilbert space. The cases where
uch eigenstates exist are called the exceptional cases; otherwise they are referred to as the regular
ase. The result in Ref. 14 is concerned with the three-dimensional system of the one particle in
hort-range potentials, and they proved that the time evolution operator asymptotically decreases
s O�t−1/2� for the exceptional cases, which is slower than O�t−3/2� for the regular case. However,

�
Electronic mail: miyamo@hep.phys.waseda.ac.jp
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o the author’s knowledge, the zero energy resonance for the Friedrichs model seems not to have
een examined in the previous studies including Refs. 7 and 11–13, in spite of the wide applica-
ility of the model to the various physical systems.8,11,13,15,16

In the present paper, we examine the zero energy singularities of the resolvent at the threshold
nergy for the Friedrichs model from the viewpoint of the zero energy resonance,14 and clarify
ow the asymptotic behavior of the survival probability at long times is affected. The Friedrichs
odel9,10 describes the system of the finite discrete levels coupled with the continuous spectrum,

n which the former can be interpreted as the unstable excited levels of atoms and the latter as the
nvironmental electromagnetic fields.11,15,16 We emphasize that the model is not restricted to the
ingle level case7–13,15,16 but, rather, the N-level case.10,17–21 In addition, we assume that the square
odulus of the form factors vanishes at zero energy with an integer power,15,16,22 however it is

reated without restriction to a specific form to some extent. Furthermore, since we only consider
he initial state spanned by the discrete states, it is sufficient for us to see the reduced resolvent

�z� that is just the restriction of the resolvent to the subspace spanned by the discrete states. Then,

he Fourier integral of R̃�z� that we call the reduced time evolution operator Ũ�t� enables us to
alculate the survival probability. In fact it is expressed by the square modulus of the expectation

alue ofŨ�t� in a given initial state. We first study the zero energy eigenstates of the model which
ither belong to or do not belong to the Hilbert space. It is then possible to estimate correctly the

symptotic behavior of R̃�z� at small energies both in the regular case and the exceptional cases.
he latter cases are examined in detail only for the first kind, where only the zero energy eigen-
tate not belonging to the Hilbert space exists. On the basis of this analysis, we can derive the

ong-time asymptotic formula for Ũ�t� in those cases. In particular, the logarithmic decay propor-

ional to �log t�−1 of Ũ�t� is shown to occur in the exceptional case of the first kind for our form
actors, which is extremely slower than the power decays in the regular case and in the exceptional
ase for another type of form factor.11–13 These results are shown in Theorems VII.1 and VII.2.

The organization of the paper is as follows. We first explain in Sec. II the N-level Friedrichs
odel with an appropriate Hilbert space, and then in Sec. III we introduce the reduced resolvent

�z�. Section IV is devoted to the identification of zero energy eigenstates in this model. It is then

ossible to obtain the asymptotic expansion of R̃�z� at small energies in Sec. V, where we examine

he regular and the exceptional case of the first kind. By making sure of the relation between R̃�z�
nd Ũ�t� in Sec. VI, the asymptotic formula for Ũ�t� in the regular and the exceptional case of the
rst kind are derived in Sec. VII. Concluding remarks are given in Sec. VIII.

I. HILBERT SPACE AND THE N-LEVEL FRIEDRICHS MODEL

We shall use bracket notation; however it can be understood in a standard treatment based on
unctional analysis as in Refs. 10 and 17. The Hilbert space describing the unstable multilevel
ystems is here defined by

H ª CN
� L2��0, � �� . �1�

vector �c��CN is expressed by �c�=�n=1
N cn �n�, where �n�’s are the orthonormal basis of CN, so

hat �n �n��=�nn�, where �nn� is Kronecker’s delta. L2��0, � �� is the Hilbert space of the square-
ntegrable complex function �f� of the variable � defined on �0, � �, i.e.,

�f� � L2��0, � �� Û 	
0

�

�f����2d� � � . �2�

n a standard notation using the �generalized� eigenstate ��� of the multiplication operator by �, �f�

s nothing more than
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�f� = 	
0

�

f������d� , �3�

here �� ����=���−��� and ���−��� is Dirac’s delta. Then, an arbitrary vector ����H com-
osed of �c��CN and �f��L2��0, � �� is denoted by

��� ª �c� + �f� , �4�

nd the inner product between any two vectors ��� and ����H is defined by23

����� ª �d�c� + �g�f� = �
n=1

N

dn
*cn + 	

0

�

g*���f���d� , �5�

here �*� denotes the complex conjugate and ���= �d�+ �g� with �d��CN and �g��L2��0, � ��. In

articular, the associated norm of ��� is 
� 
 ª��� ���, which is ensured to be finite for all
���H.

Let us now introduce the N-level Friedrichs model for a description of the decay of the
nstable multilevel systems. The Hamiltonian H of this model is defined by

H ª H0 + �V , �6�

here H0 is the free part and V the interaction part of H, respectively, and ��R is the coupling
onstant. H0 is defined by

H0 ª �
n=1

N

�n�n��n� + 	
0

�

�������d� , �7�

here �n�R with �1��2� ¯ ��N, and its action is prescribed by H0 ���=�n=1
N �ncn �n�

� � f� for any ���= �c�+ �f��D�H0�. D�H0� is the domain of H0 defined by D�H0�ª ����
H � 0

� ��f����2d�� � �, and then the self-adjointness of H0 is guaranteed. The interaction part V
s defined by

V ª �
n=1

N 	
0

�

�vn
*����n���� + vn�������n��d� , �8�

here we assumed that �vn��L2��0, � ��.24 We call the L2-functions vn��� the form factors of the
ystem under consideration. The action of V is then given by V ���=�n=1

N �vn � f� �n�+�n=1
N cn �vn� for

ny ����H. Note that since D�V�=H and V is a bounded self-adjoint operator, H is self-adjoint
ith the domain D�H�=D�H0��D�V�=D�H0�.

In the whole of the paper, we will restrict ourselves to the special kind of the form factor:
uppose that the product vm

* ���vn��� between an arbitrary pair of vm
* ��� and vn��� is written in a

ational function, i.e., it is expressed by

vm
* ���vn��� =

	mn���

mn���

, �9�

here 	mn��� and 
mn��� are the polynomials of the degree Mmn and Nnm, respectively, and we
ssume that 
mn��� has no zeros in �0, � �. It is also assumed that Mmn+2�Nmn and 	mn�0�=0.
he former condition ensures that vm

* ���vn��� is integrable in �0, � � and lim�→�vm
* ���vn���=0,

hile the latter condition implies that the rational function vm
* ���vn���=O��� as �→ +0. The

orm factors with such properties are often found in actual systems involving the process of the
pontaneous emission of photons from the hydrogen atom,15,22and quantum dots.16 We do not treat
he algebraic form factor that behaves as O��1/2� as �→ +0 instead, associated with the photo-

8,12,13,25
etachment of electrons from the negative ion and the spontaneous emission from the
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toms in the photonic crystals;11 however, the discussion developed in the following could be
asily extended to such a case.

II. REDUCED RESOLVENT FOR THE N-LEVEL FRIEDRICHS MODEL

In the following, we introduce the reduced resolvent that is simply the restriction of the
esolvent of H to the N dimensional subspace CN � �0�. Since we only consider the initial state
elonging to this subspace, this restriction is sufficient for our study. In a technical sense, this
reatment corresponds to the appropriate choice of a weighted Sobolev space.14,30 In the later
ections, we do not distinguish the vector in CN from that in CN � �0�. After introducing the
educed resolvent, we see the existence of the boundary values of the reduced resolvent on the
ositive real line. The large-energy behavior of the reduced resolvent is also examined, which is
ecessary for a rigorous estimation of the long time behavior of the reduced time evolution
perator.

. Reduced resolvent

The resolvent of H0 and that of H are defined by R0�z�= �H0−z�−1 and R�z�= �H−z�−1, respec-
ively, where we assume that z�C \ ���H0����H��. ��H0� �or ��H�� is the spectrum of H0 �or H�,
.e., the set of the singular points of R0�z� �or R�z��. Then, we have

R�z� − R0�z� = − R0�z�VR�z� �10�

=− R0�z�VR0�z� + R0�z�VR0�z�VR�z� . �11�

rom Eq. �10�, one obtains the equation R�z�= �1+R0�z�V�−1R0�z�, which is the starting point of
he asymptotic expansion of R�z� for the short-range potential systems.14 On the other hand, we
nstead start from Eq. �11� to obtain

�H0 − z − VR0�z�V�R�z� = 1 − VR0�z� . �12�

his equation can be solved for our model if we confine ourselves to the state subspace CN

� �0�.10 In fact, from the fact that �n �VR0�z� �n��=0 for any �n� and �n���CN � �0�, Eq. �12� reads

�
m=1

N

���n − z��nm − �2Snm�z��R̃mn��z� = �nn�, �13�

here S�z� and R̃�z� are the N�N matrix defined with the matrix components

Smn�z� ª �m�VR0�z�V�n� = 	
0

� vm
* ���vn���

� − z
d�, R̃mn�z� ª �m�R�z��n� . �14�

e call S�z� and R̃�z� the self energy and the reduced resolvent, respectively. Note that S�z� can be
nalytically defined for all z�C \ �0, � �. For a later convenience, we also introduce the matrix K0

nd K�z� by

K0mn ª �m�H0�n� = �n�mn, Kmn�z� ª �K0 − �2S�z��mn, �15�

espectively. Then, Eq. �13� is equivalent to

�K�z� − z�R̃�z� = 1, " z � C \ ���H0� � ��H�� , �16�

hich implies that det�K�z�−z�det�R̃�z��=1, so that det�K�z�−z��0 and det�R̃�z���0 for all z
C \ ���H0����H��. Thus, the inverse of K�z�−z exists, and we have

˜ −1
R�z� = �K�z� − z� , " z � C \ ���H0� � ��H�� . �17�
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. The boundary values of R̃„z… and its large energy behavior

From the assumption on the form factors, every vm
* ���vn��� is continued to the whole com-

lex plane as a meromorphic function which we merely denote as vm
* �z�vn�z�. It may have a finite

umber of poles. Then, it follows from Lemma A.1 that S�z� can be reduced to the form

S�z� = S�0� + A�z� − �log�− z���z� , �18�

where we choose arg�−z�=arg�z�−	 and 0�arg�z��2	. The matrix �z� is defined with the
omponents

mn�z� ª vm
* �z�vn�z� , �19�

nd satisfies �z�→0 as z→0 in C. S�0� is the limit of S�z� as z→0 in C \ �0, � �, which turns out
o be unique. Indeed, as we see from the Appendix in Ref. 21, Smn�0�=0

�vm
* ���vn��� /�d�. A�z�

s then defined through Eq. �18� and becomes a Hermitian matrix for real �, whose components
re the rational functions of z without any singularity on �0, � �. By definition, A�z� satisfies
�z�→0 as z→0. One sees that the boundary values of S�z� at the half line �0, � � exist and
atisfy10

lim
�→+0

S�� ± i�� = D��� ± 	i��� , �20�

here

D��� ª S�0� + A��� − �log ����� . �21�

he matrix D��� is just of the components

Dmn��� ª P	
0

� vm
* ����vn����

�� − �
d��, �22�

here P denotes the principal value of the integral. Note that both D��� and ��� are Hermitian
atrices and ����0.

In all the discussion developed in the following, we assume that

det�K±��� − �� � 0, " � � 0, �23�

here we introduced

K±��� ª lim
�→+0

K�� ± i�� = K0 − �2D��� � �2	i���, " � � 0. �24�

t is worth noting that condition �23� is equivalent to the requirement of no positive eigenvalues of

0, whose eigenstates are normalizable. Indeed, if det�K±���−��=0 for some ��0, there is a
onzero vector ���=�n=1

N �n �n��CN such that �K±���−�� ���=0. Since both D��� and ��� are
ermitian matrices, the latter equation implies that

����K0 − � − �2D������� = 0, ��������� = ��
n=1

N

vn����n�2

= 0. �25�

ote that the latter relation means that ��� ���=0 because ����0. Thus, Eq. �25� implies that
��� ���=0 and �K0−�2D���� ���=� ���, i.e.,

�
n=1

N

vn����n = 0, �
n=1

N

��m�mn − �2Dmn�����n = ��m, �26�

or all m=1, . . . ,N. This is merely the condition for the existence of a positive eigenvalue � of
21
.
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Lemma III.1: Under the assumption �23�, it holds that R̃±���ª lim�→+0R̃��± i�� exists for all

�0 and R̃±���= �K±���−��−1.
Proof: Under the assumption �23�, �K±���−��−1 exists. Then


�K±��� − ��−1 − R̃�� ± i��


� 
�K±��� − ��−1
 
 ± i� + �2S�� ± i�� − �2D��� � �2	i���
 
R̃�� ± i��
 . �27�

ote that for any nonzero �y��CN ��0� there is a nonzero �x��CN such that �y�= �K��± i��
�� i�� �x�. We then obtain


R̃�� ± i���y�


y


�

x


�
�K±��� − ���x�
 − 
�±i� + �2S�� ± i�� − �2D��� � �2	i�����x�
�

� � inf
�x��0,�x��CN


�K±��� − ��


x


− 
 ± i� + �2S�� ± i�� − �2D��� � �2	i���
�−1

,

�28�

hich implies that

lim
�→+0

�


R̃�� ± i��
 � � inf
�x��0,�x��CN


K±��� − �


x
 �−1

� � , �29�

here the norm of an N�N matrix A is defined by 
A 
 =sup�x��0,�x��CN 
A �x� 
 / 
x
. In Eq. �28�, we
sed the fact that there is some �0�0 such that for any positive ���0 and for any nonzero �x�
CN,


�K±��� − ���x�


x


� inf
�x��0,�x��CN


�K±��� − ���x�


x


� 
 ± i� + �2S�� ± i�� − �2D��� � �2	i���


�

�±i� + �2S�� ± i�� − �2D��� � �2	i�����x�



x

, �30�

here the assumption �23� is taken into account. Thus, by using Eq. �29�, Eq. �27� leads us to

lim
�→+0


�K±��� − ��−1 − R̃�� ± i��
 = 0, �31�

hich completes the proof of the lemma. �

Lemma III.2: Under the assumption �23�, R̃±��� is r-times differentiable in �� �0, � �, and it
ehaves as

drR̃±���
d�r = O��−r−1� as � → � . �32�

Proof: We first show the statement for r=0. From the assumption on the form factors and
emma A.1, one sees that

lim
�→�

D��� = 0, lim
�→�

��� = 0. �33�

ince from the assumption �23� K±���−� is invertible for all ��0, it holds that there is some
ositive �̄��N such that for any ���̄,


R̃±����y�

�


x

2 �34�

y
 
�K0 − ���x�
 − � 
�D��� ± 	i�����x�
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�
1

� − �N − �2
D��� ± 	i���

= O��−1� , �35�

here the last inequality is obtained as follows: we can choose some positive �̄��N such that for
ny ���̄,


�K0 − ���x�


x


� min
n

�� − �n� = � − �N � �2
D��� ± 	i���
 � �2 
�D��� ± �2	i�����x�


x


,

�36�

here Eq. �33� was used. Thus Eq. �35� reads just as Eq. �32� does for r=0. In the case of r
1, we first note that from our assumptions on the form factors and Lemma A.1 again, A��� and

���, which are connected through D���=S0+A���−log ����, also satisfy

drA���
d�r = O��−1−r�,

dr log ����
d�r = O��−1−rlog �� , �37�

s �→�, where we used the estimation that dr��� /d�r=O��−1−r�. Thus, for r=1, we have

dR̃±���
d�

= R̃±���
d

d�
�� + �2D��� ± �2	i����R̃±��� = O��−2� , �38�

s �→�, where Eq. �32� for r=0 was used. For r�1, we obtain

drR̃±���
d�r = �

j=1

r

�
�si�i=1

j

�a�r���si�i=1
j ���

i=1

j

R̃±���
dsi

d�si
�� + �2D��� ± �2	i�����R̃±��� , �39�

here a�r���si�i=1
j � is an appropriate positive integer. Note that the symbol ��� means that the

ummation over �si�i=1
j is taken under the condition that si�1 for all i and �i=1

j si=r. If r=1, Eq.
39� reproduces Eq. �38� with a�1���si�i=1

1 �=1. In the general case, if Eq. �39� holds for r=k, then
ts derivative is made up of a linear combination of

��
i=1

j+1

R̃±���
dsi

d�si
�� + �2D��� ± �2	i�����R̃±��� , �40�

here �i=1
j+1si=k+1 for 1� j�k, and

��
i=1

j+1

R̃±���
dsi

d�si
�� + �2D��� ± �2	i�����R̃±��� , �41�

here �i=1
j si=k+1 for 1� j�k. On the other hand, they are actually included in the right-hand

ide �rhs� of Eq. �39� for r=k+1. Thus Eq. �39� is valid for all integer r�1. Let us now evaluate

he asymptotic behavior of drR̃±��� /d�r for large �. One can see that the summand for j=r in Eq.

39�, where all si=1, contributes O��−r−1� to drR̃±��� /d�r, while the other summands for j�r
pecified by �si�i=1

j contribute O��−r−1−2s0�log ��s0�� at most, where s0 is a number of si satisfying

i�2 and never vanishes for j�r. Therefore, the summand dominating for large � is that for j
r. Since we recursively show a�r���s1�i=1

r �=r!, which never vanishes, the statement is proved. �

V. CLASSIFICATION OF THE ZERO-ENERGY SINGULARITY OF R̃±
„�…

In order to prescribe the zero energy resonance in the N-level Friedrichs model, we should

dentify the zero energy eigenstates in this model which either belong to or do not belong to H. In
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he case of the short-range potential systems,14 this task needs some elaborate examination with an
ppropriately extended Hilbert space. On the other hand, in our case, it is rather easily performed,
s is seen in the following.

Let us first see whether the eigenvector ����CN of K0−�2S�0�, belonging to the zero eigen-
alue, can be actually extended to the eigenvector of H belonging to the zero eigenvalue of H. If

��= ���+ �f��D�H��H is a zero eigenvector of H, it should satisfy H ���=0, or equivalently21

�n�n + ��vn�f� = 0 for n = 1, . . . ,N, �f��� + ��
n=1

N

�nvn��� = 0. �42�

he latter equation of Eq. �42� is immediately solved as

f��� = − �
�n=1

N
�nvn���

�
, �43�

hich should be square integrable because we intend to find ��� in H. If this is the case,
f����L2��0, � ��, i.e., ����D�H� is ensured, and the substitution of Eq. �43� into �vn � f� is

afely done. Then, we find that the former equation of Eq. �42� is nothing more than

�K0 − �2S�0���� � = K�0��� � = 0, �44�

here K�0�ªK±�0�=K0−�2S�0�. However, it is noted that such an f��� associated with ��� is not
ecessarily square integrable. Hence, we shall decompose the zero eigenspace of K�0�, denoted by

M = �����CN �K�0� ���=0�, into two kinds of subspaces: M1= �M0 � M2�� and M2= ����
M � f����L2��0, � ���. Here M0=M�, and D� denotes the orthogonal complement of the sub-

pace D. In short we have CN=M0 � M1 � M2. Then, as is expected from the definition, we have

M1 � ���� � M�f��� � L2��0, � ��� . �45�

ote that in general the subset on the rhs of the above is not a subspace. We call 0 the zero energy
esonance �or merely zero resonance� of H if M1 is not empty. We also introduce the projection
perators Q0, Q1, and Q2, associated with M0, M1, and M2, respectively. What we next do is to
ntroduce the terminology following the study of Jensen and Kato.14

Definition IV.1: We call the system a regular case if it holds that 0���K�0��, i.e.,

det�K�0�� � 0. �46�

n this case, 0 is said to be a regular point for H.
Definition IV.2: We call the system the exceptional case if, instead of Eq. �46�, it holds that

���K�0��, i.e.,

det�K�0�� = 0. �47�

n particular, if 0 is a resonance but not an eigenvalue �Q1�0, Q2=0�, 0 is said to be an
xceptional point for H of the first kind. If 0 is not a resonance, but an eigenvalue �Q1=0, Q2

0�, 0 is said to be an exceptional point of the second kind. If 0 is both a resonance and an
igenvalue �Q1�0, Q2�0�, 0 is said to be an exceptional point of the third kind.

We here remark that in general a nontrivial solution of Eq. �44� does not exist, however we
an find a special case where such a solution surely exists. Suppose that N+ eigenvalues �n of H0

re positive, and all form factors vn��� satisfying the assumption �9� are linearly independent.
hen increasing � gradually from 0 to �, we can find some critical values of � for which K�0� has

he zero eigenvalue. Let us denote the nth eigenvalue of K�0� by �n�0� where �1�0���2�0�

¯ ��N�0�. Then, �n�0� turns out to satisfy the inequality
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�n − �2�N�0� � �n�0� � �n − �2�1�0� , �48�

here both of �1�0� and �N�0� are positive constants and ensured not to vanish.21 Thus, for a
ufficiently small ��� �n�0� for each n�N−N++1 should be positive, while for a sufficiently large
�� they should be negative. Furthermore, one easily sees that all �n�0� are continuous functions of
2. Therefore, we conclude from the intermediate value theorem that there is at least one critical
alue of � to make �n�0�=0 for each n�N−N++1. We can actually find such special values of �
n Fig. 1 depicted in Ref. 21. The example mentioned here could be treated in a more general way
ith resort to the analytic Fredholm theorem,26,27 which tells us at most a finite number of the

ritical values exists.
It is also worth remarking that the existence of the zero energy eigenstates that either belong

o or not to the Hilbert space necessarily prescribes the small energy behavior of the form factors
n the following way. Remember that under the assumption on the form factors, ��� defined by
q. �19� has an asymptotic form like

��� = �
n=1

N

�nn + O��N+1� , �49�

s �→ +0. Then, if ����M1 exists, it should satisfy

���1��� � 0. �50�

n fact, if �� �1 ���=0, we see that f��� in Eq. �43� has to satisfy �f����2=�2�� ���� ��� /�2

O�1� as �→ +0, however which concludes that f��� is square integrable. This contradicts the
ssumption that ����M1. In order to make the condition �50� be satisfied, at least 1 should not
anish identically. We can find such form factors in the physical systems for the spontaneous
mission process of photons from the hydrogen atom15,22 and the quantum dot.16 On the other
and, the discussion mentioned here immediately implies the fact that if ����M2 exists, this time
t should satisfy

���1�� � = 0, �51�

hich just ensures the requirement that f����L2��0, � ��. However, note that Eq. �51� does not
mply 1=0 identically and only requires 1=0 on the subspace M2.

. The small-energy behavior of R̃±
„�… in the regular case

In this case, the same as in Eq. �31�, we can show that R̃±�0�= �K�0��−1. Furthermore, we can
hoose some positive �0�0 such that


�K�0��−1
 
�� + �2D��� ± �2	i��� − �2S�0��
 � 1, �52�

or all positive ���0. Then, R̃±��� is expanded as a Neumann series,

R̃±��� = �K�0��1 − �K�0��−1�� + �2D��� ± �2	i��� − �2S�0����−1 = lim
N→�

SN��� , �53�

here

SN��� = �
j=0

N

��K�0��−1�� + �2D��� ± �2	i��� − �2S�0��� j�K�0��−1, �54�

or all positive ���0 with ��K�0��−1��+�2D���±�2	i���−�2S�0���0=1. Under our assump-

ions on the form factors, A��� defined in Eq. �21� is asymptotically expanded as

                                                                                                            



a

a

a

B

+

W

w
s

f
t

w
t
t
i
s

f

w

082103-10 Manabu Miyamoto J. Math. Phys. 47, 082103 �2006�

                        
A��� = �
n=1

N

�nAn + O��N+1� , �55�

s �→0. By using Eqs. �49� and �55�, it also follows that

D��� = S�0� − � log �1 + �A1 + O��2 log �� , �56�

s �→ +0. Then, Eq. �53� tells us the dominant asymptotic behavior of R̃±��� becomes

R̃±��� = �K�0��−1 + O�� log �� , �57�

s �→ +0, where �K�0��−1 never vanishes in the regular case.

. The small-energy behavior of R̃„z… in the exceptional case of the first kind

In the exceptional case of the first kind, from the definition, Q1�0 while Q2=0, so that Q0

Q1=1. Then, R̃�z� is divided into the following four terms,

R̃�z� = Q0R̃�z�Q1 + Q0R̃�z�Q0 + Q1R̃�z�Q0 + Q1R̃�z�Q1. �58�

e now introduce the four matrices:

Ekl�z� = Qk�K�z� − z�Ql = Qk�K0 − z − �2�S�0� + A�z� − �log z��z� + i	�z���Ql, �59�

here k , l=0,1, and log�−z�−log z=−i	 is used. From the relation that �K�z�−z�R̃�z�=1, they
atisfy

Ek0Q0R̃Ql + Ek1Q1R̃Ql = Qk�kl, �60�

or k , l=0,1. To solve the above equations we need to check whether E11 and E00 are invertible in
he subspaces M1 and M0, respectively. By using Eq. �49�, E11�z� is rewritten as

E11�z� = �2z�log z�Q11Q1 − zQ1 − �2Q1�A�z� − �log z���z�� − z1� + i	�z�� Q1, �61�

here Q1K�0�Q1=0 is used. Note that A�z�=O�z� and �z�−z1=O�z2� for our form factors, so
hat all terms excepting the first one of the rhs of Eq. �61� are of the order of O�z�. Furthermore,
he exceptional case of the first kind imposes the fact that Q11Q1�0 �see Eq. �50��, and Q11Q1

s positive definite in M1 and thus invertible in M1. Hence, E11��� is invertible for sufficiently
mall �z � �0, and the inverse can be expanded by the Neumann series as

E11
−1�z� = �

j=0

�

�Ẽ11�z�� j 1

�2z log z
�Q11Q1�−1 �62�

=
1

�2z log z
�Q11Q1�−1 + O�z−1�log z�−2� = O�z−1�log z�−1� ,

�63�

or small �z�, where we define

Ẽ11�z� ª
1

�2z log z
�Q11Q1�−1�zQ1 + �2Q1�A�z� − �log z���z� − z1� + 	i�z��Q1� , �64�
hich behaves as 1/ log z as z→0. For E00 we have
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E00�z� = Q0K�0�Q0 − Q0�z + �2�A�z� − �log z��z� + i	�z���Q0, �65�

here the first term of the above is invertible in M0, and the last term vanishes as z→0. Hence,

00�z� is invertible in M0 for sufficiently small �z � �0 and is expanded as

E00
−1�z� = − �

j=0

�

��Q0K�0�Q0�−1�z + �2�A�z� − �log z��z� + i	�z���Q0� j�Q0K�0�Q0�−1 = O�1� ,

�66�

or small �z�. Furthermore, we obtain

Ekl�z� = − �2Qk�A�z� − �log z��z� + 	i�z��Ql = O�z log z� , �67�

or k� l as z→0, because Q0K�0�Q1=Q1K�0�Q0=0. Solving Eq. �60�, we obtain28

Q0R̃Q0 = �E00 − E01E11
−1E10�−1 = O�1� , �68�

Q0R̃Q1 = − E00
−1E01Q1R̃Q1 = − E00

−1E01�E11 − E10E00
−1E01�−1 = O�1� , �69�

Q1R̃Q0 = − Q1R̃Q1E10E00
−1 = − �E11 − E10E00

−1E01�−1E10E00
−1 = O�1� , �70�

Q1R̃Q1 = �E11 − E10E00
−1E01�−1 = O�z−1�log z�−1� . �71�

t is worth noting that since the relation �K�z�−z�R̃�z�=1 is analytically continued to the second
iemann sheet through the cut �0, � �, the above-mentioned results are also valid for such a
ontinued region and the estimations obtained here can be applied without any corrections.

When we consider the small energy behavior of R̃−���, it is convenient to expand E11, differ-
ntly from Eq. �61�, as

E11�z� = �2z�log z − 2	i�Q11Q1 − zQ1 − �2Q1�A�z� − �log z − 2	i���z� − z1� − i	�z��Q1.

�72�

ll the above-obtained results are only changed by replacing the term log z with log z−2	i. Then,
e can obtain from Eq. �61�

E11
+ ��� = lim

�→+0
E11�� + i�� = �2�log ��Q1���Q1 − �Q1 − �2Q1�A��� − i	����Q1, �73�

hile from Eq. �72�

E11
− ��� = lim

�→+0
E11�� − i�� = �2�log ��Q1���Q1 − �Q1 − �2Q1�A��� + i	����Q1. �74�

. The small-energy behavior of R̃„z… in the exceptional case of the second kind

In the exceptional case of the second kind, it follows that Q1=0, Q2�0, and Q0+Q2=1. Let
s consider the asymptotic behavior of the reduced resolvent at small energies, which is written in

he following form, R̃�z�=�k,l=0,2QkR̃�z�Ql. We now introduce the four matrices again,

Ekl�z� = Qk�K�z� − z�Ql, �75�

˜
here k , l=0,2. From the relation that �K�z�−z�R�z�=1, they satisfy that
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Ek0Q0R̃Ql + Ek2Q2R̃Ql = Qk�kl, �76�

or k , l=0,2. This time, E22 and E00 are invertible in M2 and M0, respectively. In fact, from Eqs.
49� and �55� we have

E22�z� = − zQ2�1 + �2A1�Q2 − �2Q2�A�z� − zA1 − �log z��z� + i	�z��Q2, �77�

here Q2K�0�Q2=0 was used. Note that since A�z�−zA1=O�z2� and Q21Q2=0 �see Eq. �51��, the
econd term of the rhs of Eq. �77� is of the order of O�z2 log z�. Furthermore, since Q2A1Q2�0
rom Q21Q2=0 and Lemma A.2, Q2�1+�2A1�Q2�0 and invertible in M2. These facts bring us
he fact that E22�z� is invertible in M2 for sufficiently small z�0, that is

E22
−1�z� = − �

j=0

�

�− Ẽ22�z�� j 1

z
�Q2�1 + �2A1�Q2�−1 �78�

=
1

z
�Q2�1 + �2A1��Q2

−1 + O�log z� = O�z−1� , �79�

here

Ẽ22�z� ª
1

z
�Q2�1 + �2A1�Q2�−1�2Q2�A�z� − zA1 − �log z��z� + i	�z��Q2. �80�

or E00, we next have

E00�z� = Q0K�0�Q0 − Q0�z + �2�A�z� − �log z��z� + i	�z���Q0, �81�

here the first term of the above is invertible in M0, and the last term vanishes as �z � →0. Hence,

00�z� is invertible in M0 for sufficiently small �z � �0, and the inverse is obtained as a Neumann
eries. On the other hand, E20 and E02 behave as

Ekl�z� = Qk�− z�1 + �2A1� − �2�A�z� − zA1 − �log z��z� + 	i�z���Ql = O�z� , �82�

or small �z� where k� l. Solving Eq. �76� as in Eqs. �68�–�71�, one sees that Q0R̃Q0=O�1�, for
, l=0,2, except

Q2R̃Q2 = �E22 − E20E00
−1E02�−1 = O�z−1� , �83�

s z→0. In particular, the last equation is expanded as

Q2R̃�z�Q2 = �
j=0

�

�E22
−1E20E00

−1E02� jE22
−1 = −

1

z
�Q2�1 + �2A1�Q2�−1 + O�log z� , �84�

or small �z�, where we used Eq. �79�.
We now remark that the zero energy eigenspace of H denoted by N0 is completely charac-

erized by M2. That is, there is a bijection from M2 � �0� to N0. From the discussion concerning
qs. �42�–�44�, for any ����M0, there is a vector ����M2 � �0� such that

��� = ��� − �	
0

� �n=1

N
vn����n

�
���d� = �1 − �R0�0�V���� , �85�

here V is restricted to CN � �0� and R0�0� is the �unbounded� multiplication operator of 1 /� in
2��0, � ��. Then we see V ����D�R0�0�� because ����M2 � �0�. Thus 1−�R0�0�V is well defined
s an operator from M2 � �0� to H. Now, Eq. �85� tells us that 1−�R0�0�V is a surjection from
M2 � �0� to N0. On the other hand, for any ����N0,if ���=0, i.e., 0= �� ���, Eq. �85� implies
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hat 0= �� ���� �� ���. Therefore, 1−�R0�0�V is also an injection from M2 � �0� to N0, and the
roof is completed.

. The small-energy behavior of R̃±
„�… in the exceptional case of the third kind

In the exceptional case of the third kind, from the definition, Q1�0, Q2�0, and Q0+Q1

Q2=1. The reduced resolvent is written in the form, R̃±���=�k,l=0
2 QkR̃

±���Ql. This time, we need
ine matrices,

Ekl
± ��� = Qk�K±��� − ��Ql, �86�

or k , l=0,1 ,2. From the relation that �K±���−��R̃±���=1, they satisfy that

Ek0
± Q0R̃±Ql + Ek1

± Q1R̃±Ql + Ek2
± Q2R̃±Ql = Qk�kl, �87�

or k , l=0,1 ,2. The asymptotic behaviors of Ekl
± ��� are essentially examined in the preceding

ubsections, except for E12
± ��� and E21

± ���. Then, E12
± ��� becomes

E12
± ��� = − ��2Q1A1Q2 − �2Q1�A��� − �A1 − �log ������ − �1� ± 	i���� − �1��Q2

�88�

=− ��2Q1A1Q2 + O��2 log �� , �89�

here Q1K�0�Q2=0, Q1Q2=0, and 1Q2=0 are used. The last relation follows from the fact that

21Q2=0 and 1�0. In addition, since Q1���Q2=O��2�, we see that Q1A1Q2

0
�Q1���Q2�−2d�. By the same way, we also see that

E21
± ��� = − ��2Q1A1Q2 + O��2 log �� . �90�

o solve Eq. �87�, let us now put the N�N matrix E as

E = �E00 E01 E02

E10 E11 E12

E20 E21 E22
� , �91�

nd partition it into A= �E00 E01

E10 E11
�, B= �E02

E12
�, C= �E20 E21 �, D= �E22 �. Then, from the inverse

atrix formula again, E−1 �=R̃� is expressed as28

E−1 = � �A − BD−1C�−1 − A−1B�D − CA−1B�−1

− �D − CA−1B�−1CA−1 �D − CA−1B�−1 � . �92�

he validities of A−1 and D−1 are already ensured in the exceptional cases of the first and second
inds, respectively. Then, one sees that since A−1=O��−1�log ��−1�, B=O���, C=O���, and
−1=O��−1�, it holds that A−1BD−1C=O��log ��−1�. Thus, �A−BD−1C�−1 exists for small � and

A−BD−1C�−1=O��−1�log ��−1�. We also show that �D−CA−1B�−1 exists for small � and �D
CA−1B�−1=O��−1�. To obtain the asymptotic forms of the matrix components of E−1 explicitly,

ome redundant calculation is required; however, it could be achieved by a manner as similar to
hat used in the preceding subsections.

. ASYMPTOTIC EXPANSION OF THE REDUCED RESOLVENT AT SMALL z

We examine the small-energy behavior of the reduced resolvent only for the regular case and
he exceptional case of the first kind. This analysis is crucial for determining the asymptotic

ehavior of the reduced time evolution operator at long times.
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. The regular case

Here, we introduce Ã���ª� /�2+A��� and suppose that Ã��� and ��� behave as

Ã��� ª
1

�2� + A��� = �
n=na

na+N

�nÃn + O��na+N+1�, ��� = �
n=nb

nb+N

�nn + O��nb+N+1� , �93�

s �→0, respectively, that is, Ãn=0 for all n�na and nb
=0 for all n�nb, while Ãna

�0 and

nb
�0. Then, we obtain

1

�2� + D��� = S�0� + Ã��� − �log ����� = S�0� − �nb log �nb
+ �naÃna

+ O��h���� ,

�94�

s �→ +0, where

h��� = ��nb log � �nb � na�
�na �nb � na�

�95�

It is important to note that the values of two parameters na and nb are not determined inde-
endently. We shall here consider nb as a controllable one. We first note that if nb�2 then na

1 should be concluded, because from Lemma A.2 we have A1�0, so that Ã1=1/�2+A1�0
olds. Therefore, the conditions nb�na and nb�na can be realized only in the situations

nb = 1 and na � 1, nb � 2 and na = 1, �96�

espectively.

Lemma V.1: Assume that 0 is a regular point for H. Then the rth derivative of R̃±��� asymp-
otically behaves as

drR̃±���
d�r = �O�1� �r = 0�

O��1−r�log ����1−r�� �r � 1�
, or �O�1� �r = 0�

O���1 − r�+
� �1 � r � nb�

O��nb−r�log ����nb−r�� �nb � r � 2nb� ,

�97�

or nb=1, or nb�2, respectively, as �→0, where �x�+=max�x ,0� and ��x�=1 for x�0 or 0 for

�0. In addition, the rth derivative of R̃±��� is approximated by that of a finite series

�K�0��−1 + �K�0��−1�− �nb�log ���2nb
+ �na�2Ãna

± �2	i�nbnb
��K�0��−1, �98�

hat is, it is shown that

� dr

d�r �R̃±��� − �K�0��−1 − �K�0��−1�− �nb�log ���2nb
+ �na�2Ãna

± �2	i�nbnb
��K�0��−1��

=O��2−r�log ��1+��2−r�� �r � 0�

or �O���2 − r�+
� �0 � r � nb�

O��nb+1−r�log ����nb+1−r�� �nb + 1 � r � 2nb�
, �99�

or nb=1, or nb�2, respectively, as �→0. Here, na is restricted to the condition �96�.

Proof: The left-hand side �lhs� of Eq. �99� is written as follows:
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�100�

here SN��� is defined by Eq. �54�. When r=0, the first term on the rhs of Eq. �100� is estimated
rom the special case of Eq. �101� for N=1,


R̃±��� − SN���
 �

� + �2D��� ± �2	i��� − �2S�0�
N+1
�K�0��−1
N+2

1 − 
�K�0��−1
 
�� + �2D��� ± �2	i��� − �2S�0��

= O�h���N+1� ,

�101�

s �→0. When r�1, instead we have

� dr

d�r �R̃±��� − S1�����
� ��

j=2

r

�
�si�i=1

j

�a�r���si�i=1
j ���

i=1

j

R̃±���
dsi

d�si
�� + �2D��� ± �2	i�����R̃±����

+ �R̃±���
dr

d�r �� + �2D��� ± �2	i����R̃±��� −
dr

d�rS1���� , �102�

here Eq. �39� is used, and here si�1 and �i=1
j si=r should be satisfied. Note that the first term on

he rhs of Eq. �102� in the following appears only for r�2, which is estimated in the following.
n the following estimations, we temporarily forget the restriction �96� and consider the two
eneral cases: nb�na and nb�na. In the case of nb�na, we can obtain for r�2,

��
j=2

r

�
�si�i=1

j

�a�r���si�i=1
j ���

i=1

j

R̃±���
dsi

d�si
�� + �2D��� ± �2	i�����R̃±����

��
j=2

r

�
�si�i=1

j

�a�r���si�i=1
j �
R̃±���
 j+1O�� jnb−r��

i=1

j

O��log ����nb−si��

=O��2nb−r�log ����nb+1−r�+��2nb+1−r�� , �103�

s �→0. For na�nb,

��
j=2

r

�
�si�i=1

j

�a�r���si�i=1
j �R̃±����

i=1

j � dsi

d�si
�� + �2D��� ± �2	i����R̃±�����

=�O���2na − r�+
� �2 � r � na + nb − 1�

O��na+nb−r�log ����na+nb−r�� �na + nb � r � 2nb� ,
�104�
s �→0. We here used that
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dr

d�r �� + �2D��� ± �2	i��� − �2S�0��

=O��nb−r�log ����nb−r��, or �O���na − r�+
� �0 � r � nb�

O��nb−r�log ����nb−r�� �r � nb�
, �105�

or nb�na, or na�nb, respectively, as �→0. Equation �105� follows from

drÃ���
d�r = O���na − r�+

�,
dr���

d�r = O���nb − r�+
�,

dr�log �����
d�r = O��nb−r�log ����nb−r�� ,

�106�

s �→0. Incorporating Eqs. �103�–�105�, with

�drR̃±���
d�r � � ��

j=2

r

�
�si�i=1

j

�a�r���si�i=1
j ��R̃±����

i=1

j
dsi

d�si
�� + �2D��� ± �2	i�����R̃±����

+ �R̃±���
dr

d�r �� + �2D��� ± �2	i����R̃±���� , �107�

e have

�drR̃±���
d�r �

�108�
or nb�na, or na�nb, respectively, as �→0. Then, the first part of the statement can be shown
nder the restriction �96�. Let us next examine the second term on the rhs of Eq. �102�, which
eads for r�1,

�R̃±���
dr

d�r �� + �2D��� ± �2	i����R̃±��� −
dr

d�rS1����

�2
R̃±��� − �K�0��−1
� dr

d�r �� + �2D��� ± �2	i�����
R̃±���


=O��2nb−r�log ��1+��nb−r��, or �O��na+�na − r�+
� �r � nb�

O��na+nb−r�log ����nb−r�� �r � nb� ,
�109�

or nb�na or nb�na, respectively, as �→0. We here used Eq. �101� with N=0. Therefore,

ubstituting Eqs. �103�, �104�, and �109� into Eq. �102�, one has for r�1,

                                                                                                            



f
b

f

a

f
s

m

o
i

ª

i

082103-17 Zero energy resonance and the logarithmic decay J. Math. Phys. 47, 082103 �2006�

                        
� dr

d�r �R̃±��� − S1�����
= O��2nb−r�log ��1+��nb+1−r��, or �O���2na − r�+

� �r � na + nb − 1�

O��na+nb−r�log ����na+nb−r�� �na + nb � r � 2nb�

�110�

or nb�na or nb�na, respectively, as �→0. Note that this estimation is also valid for r=0
ecause it reproduces Eq. �101� for N=1.

Let us now evaluate the last term in Eq. �100�. For r�0, we have

� dr

d�r�S1��� − �K�0��−1 − �K�0��−1�− �nb�log ���2nb
+ �na�2Ãna

± �2	i�nbnb
��K�0��−1��

�
�K�0��−1
2� dr

d�r �− �log ���2���� − �nbnb
� + �2�Ã��� − �naÃna

�� ± �2	i���� − �nbnb
�� �

=O��nb+1−r�log ����nb+1−r��, or �O���na + 1 − r�+
� �0 � r � nb�

O��nb+1−r�log ����nb+1−r�� �r � nb + 1�
, �111�

or nb�na or nb�na, respectively, as �→0 for any r�0. We here used that for r�0,

dr���� − �nbnb
�

d�r = O���nb + 1 − r�+
�,

dr�log ������ − �nbnb
�

d�r = O��nb+1−r�log ����nb+1−r��

�112�

s �→0, and so forth. Thus, setting Eqs. �110� and �111� into Eq. �100�, we conclude that

� dr

d�r �R̃±��� − �K�0��−1 − �K�0��−1�− �nb�log ���2nb
+ �na�2Ãna

± �2	i�nbnb
��K�0��−1��

=�O��2nb−r�log ��1+��nb+1−r�� �r � 0,nb = 1�
O��nb+1−r�log ����nb+1−r�� �r � 0,nb � 2� ,

or �O���na + 1 − r�+
� �0 � r � nb�

O��nb+1−r�log ����nb+1−r�� �nb + 1 � r � 2nb� ,
�113�

or nb�na or nb�na, respectively, as �→0. By taking into account the restriction �96�, we can
how the last part of the lemma. �

To estimate the long time behavior of the reduced time evolution operator, the above-
entioned lemma seems not precisely appropriate because the reduced time evolution operator is

btained from the Fourier transform of the imaginary part of R̃+���, not from R̃+��� itself, which
s explained in the next section. Hence, the following lemma is more appropriate for our purpose.

Lemma V.2: Assume that 0 is a regular point for H. Then the rth derivative of Im R̃+���
�R̃+���− R̃−���� /2i is approximated by that of

�K�0��−1�2	�nb�nb
+ �nb+1 + �2nb+2��K�0��−1, �114�
n the sense that for 0�r�nb+1 the remainder is estimated as
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� dr

d�r �Im R̃+��� − �K�0��−1�2	�nb�nb
+ �nb+1 + �2nb+2��K�0��−1��

=O��2−rlog �� or O��1+nb−r� , �115�

or nb=1, or nb�2, respectively, as �→0. For r=nb+2, the estimation is replaced by O��−1� for

b=1, O�log �� for nb=2, or O�1� for nb�3, respectively, as �→0.

Proof: Since Im R̃+���=�2	R̃+������R̃−���, one has

� dr

d�r �Im R̃+��� − �K�0��−1�2	�nb�nb
+ �nb+1 + �2nb+2��K�0��−1�� �116�

��2	 �
s�0,t�0,u�0,

�s+t+u=r�

r

�F1�s,t,u� + F2�s,t,u� + F3�s,t,u�� , �117�

ith

F1�s,t,u� = Cstu�dsR̃+���
d�s ��dt���

d�t �� du

d�u �R̃−��� − �K�0��−1�� , �118�

F2�s,t,u� = Cstu�dsR̃+���
d�s �� dt

d�t ���� − �nb�nb
+ �nb+1 + �2nb+2��� �du�K�0��−1

d�u � ,

�119�

F3�s,t,u� = Cstu� ds

d�s �R̃+��� − �K�0��−1��� dt

d�t�
nb�nb

+ �nb+1 + �2nb+2�� �du�K�0��−1

d�u � ,

�120�

here Cstu’s are appropriate constants. For 1�r�nb+1, the summation of the first summand in
q. �117� can be estimated as

�
s�0,t�0,u�0,

�s+t+u=r�

r

F1�s,t,u� = F1�0,r,0� + �
t�0,u�1

r

F1�0,t,u� + �
s�1,t�0

r

F1�s,t,0� + �min�s,u��1

r
F1�s,t,u�

= O�F1�0,r − 1,1�� = O��2nb−r log �� or O��na+nb−r� , �121�

or nb�na or nb�na, respectively, as �→0. Note that from Eq. �101� for N=0 this estimation is
alid for r=0 too. For r=nb+2, it is estimated as

�O��nb−1log �� �nb � 2�
O��log ��2� �nb = 1�

or O��na−1� , �122�

or nb�na or nb�na, respectively, as �→0. The summation of the second summand in Eq. �117�

or 0�r�nb+3 is also estimated as
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�2	 �
s�0,t�0,u�0,

�s+t+u=r�

r

F2�s,t,u� = �
�s+t=r�

r

F2�s,t,0� = O�F2�0,r,0�� = O��nb+3−r� , �123�

oth for nb�na and for nb�na, as �→0. The summation of the last summand in Eq. �117� for
�r�nb+1 is estimated as

�2	 �
s�0,t�0,u�0,

�s+t+u=r�

r

F3�s,t,0� = �
�s+t=r�

r

F3�s,t,0� = O�F3�1,r − 1,0��

= O��2nb−rlog ��, or O��na+nb−r� , �124�

or nb�na or na�nb, respectively, as �→0. For r=nb+2, the estimation is replaced by

O��nb−2�log ����nb−2��, or �O���na − 2�+
� �nb � 3�

O�log �� �nb = 2� ,
�125�

or nb�na or na�nb, respectively, as �→0. Then, by summarizing the above-noted estimations
rom Eqs. �121� and �125�, and by taking into account the restriction �96� again, the proof of the
emma is completed. �

. The exceptional case of the first kind

In this case, we first remember that from the discussion around Eq. �50� it necessarily holds
hat 1�0, i.e., nb=1 in Eq. �93�.

Lemma V.3: Assume that 0 is an exceptional point of the first kind for H. the 0th and the first

erivative of R̃�z� are approximated by those of a finite series

1

�2z log z
�Q11Q1�−1 +

1

�4z�log z�2 �Q11Q1�−1�Q1 + �2Q1A1Q1 + �2	iQ11Q1��Q11Q1�−1,

�126�

hat is, it is shown that

� dr

dzr�R̃�z� −
1

�2z log z
�Q11Q1�−1 −

1

�4z�log z�2 �Q11Q1�−1�Q1 + �2Q1A1Q1 + �2	iQ11Q1�

��Q11Q1�−1�� = O�z−1�log z�−3� for r = 0, or O�z−2�log z�−3� for r = 1, �127�

s z→0.
Proof: Let us first consider the quantity that

� dr

dzr�R̃�z� −
1

�2z log z
�Q11Q1�−1 −

1

�4z�log z�2 �Q11Q1�−1�Q1 + �2Q1A1Q1 + �2	iQ11Q1�

��Q11Q1�−1�� � � dr

dzr �R̃�z� − Q1R̃�z�Q1�� + � dr

dzr�Q1R̃�z�Q1 −
1

�2z log z
�Q11Q1�−1����

−
1

�4z�log z�2 �Q11Q1�−1�Q1 + �2Q1A1Q1 + �2	iQ11Q1��Q11Q1�−1�� . �128�
or r=0, the first term on the rhs of Eq. �128� is estimated as follows:
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R̃�z� − Q1R̃�z�Q1
 � 
Q0R̃�z�Q0
 + 
Q0R̃�z�Q1
 + 
Q1R̃�z�Q0
 = O�1� , �129�

s z→0, where Eqs. �68�–�70� are used. For r=1, one obtains

�dR̃�z�
dz

−
dQ1R̃�z�Q1

dz
� � �dQ0R̃�z�Q0

dz
� + �dQ0R̃�z�Q1

dz
� + �dQ1R̃�z�Q0

dz
� = O�z−1� . �130�

n fact, by using expression �68� the first term on the rhs of Eq. �130� is estimated as follows:

dQ0R̃�z�Q0

dz
= − Q0R̃�z�Q0�dE00

dz
−

dE01

dz
E11

−1E10 − E01
dE11

−1

dz
E10 − E01E11

−1dE10

dz
� Q0R̃�z�Q0

�131�

=O�log z� . �132�

our derivatives in Eq. �131� have the same order, which can be shown from the use of Eqs. �61�,
63�, �65�, and �67�: We here note that

dE00

dz
= O�log z�,

dE01

dz
= O�log z�,

dE10

dz
= O�log z� , �133�

nd from Eqs. �61� and �63�

dE11
−1

dz
= E11

−1� d

dz
Q1�z + �2�A�z� − log z�z� + 	i�z���Q1�E11

−1 �134�

=E11
−1Q1�1 + �2�dA�z�

dz
− �z�/z − log z

d�z�
dz

+ 	i
d�z�

dz
��Q1E11

−1 �135�

=O�z−2�log z�−1� . �136�

n the same way, the second term in the rhs of Eq. �130� is also estimated as follows:

dQ0R̃�z�Q1

dz
= − �dE00

−1

dz
E01 + E00

−1dE01

dz
�Q1R̃Q1 + E00

−1E01Q1R̃Q1�dE11

dz
−

dE10

dz
E00

−1E01 − E10
dE00

−1

dz
E01

− E10E00
−1dE01

dz
�Q1R̃Q1 �137�

=O�z−1� , �138�

here we used Eq. �69� and the fact that

dE00
−1

dz
= O�log z�,

dE11

dz
= O�log z� . �139�

n a similar manner, we can also show

dQ1R̃�z�Q0

dz
= O�z−1� . �140�
Let us next consider the last term in Eq. �128�. For r=0, it reads

                                                                                                            



w

a
r

082103-21 Zero energy resonance and the logarithmic decay J. Math. Phys. 47, 082103 �2006�

                        
�Q1R̃�z�Q1 −
1

�2z log z
�Q11Q1�−1�− 1

�4z�log z�2 �Q11Q1�−1�Q1 + �2Q1A1Q1 + �2	iQ11Q1�

��Q11Q1�−1� �141�

��E11
−1 −

1

�2z log z
�Q11Q1�−1�− 1

�4z�log z�2 �Q11Q1�−1�Q1 + �2Q1A1Q1 + �2	iQ11Q1�

��Q11Q1�−1� + 
�Q11 − E11
−1E10E00

−1E01�−1E11
−1 − E11

−1
 �142�

��Ẽ11�z�
1

�2z log z
�Q11Q1�−1 −

1

�4z�log z�2 �Q11Q1�−1�Q1 + �2Q1A1Q1 + �2	iQ11Q1�

��Q11Q1�−1� + ��
j=2

�

�Ẽ11�z�� j 1

�2z log z
�Q11Q1�−1� + O�1� �143�

=O�z−1�log z�−3� , �144�

here in the second inequality we used Eq. �62� and that


�Q11 − E11
−1E10E00

−1E01�−1E11
−1 − E11

−1
 �

E11

−1E10E00
−1E01
 
E11

−1

1 − 
E11

−1E10E00
−1E01


= O�1� , �145�

s z→0. Substituting Eqs. �129� and �144� into Eq. �128�, we can obtain the estimation �127� for
=0.

For r=1, we can obtain

� d

dz
�Q1R̃�z�Q1 −

1

�2z log z
�Q11Q1�−1 −

1

�4z�log z�2 �Q11Q1�−1�Q1 + �2Q1A1Q1 + �2	iQ11Q1�

��Q11Q1�−1�� �146�

�� d

dz
�E11

−1 −
1

�2z log z
�Q11Q1�−1 −

1

�4z�log z�2 �Q11Q1�−1�Q1 + �2Q1A1Q1

+ �2	iQ11Q1��Q11Q1�−1�� + � d

dz
��Q11 − E11

−1E10E00
−1E01�−1E11

−1 − E11
−1��

�147�
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��E11
−1� d

dz
Q1�z + �2�A�z� + 	i�z���Q1�E11

−1 −
1

�4z2�log z�2 �Q11Q1�−1�Q1

+ �2Q1A1Q1 + �2	iQ11Q1��Q11Q1�−1� + �− E11
−1� d

dz
�2�log z�Q1�z�Q1�E11

−1

−
d

dz

1

�2zlog z
�Q11Q1�−1 − z� d

dz

1

�4z2�log z�2��Q11Q1�−1�Q1 + �2Q1A1Q1

+ �2	iQ11Q1��Q11Q1�−1� + ���Q11 − E11
−1E10E00

−1E01�−1 − Q11�
dE11

−1

dz
�

+ �� d

dz
�Q11 − E11

−1E10E00
−1E01�−1�E11

−1� �148�

=O�z−2�log z�−3� , �149�

here we used the expression for dE11
−1 /dz in Eq. �134�. Actually, the first term in Eq. �148� is

stimated as

�E11
−1� d

dz
Q1�z + �2�A�z� + 	i�z���Q1�E11

−1 −
1

�4z2�log z�2 �Q11Q1�−1�Q1 + �2Q1A1Q1

+ �2	iQ11Q1��Q11Q1�−1� � �E11
−1 −

1

�2z log z
�Q11Q1�−1�� d

dz
Q1�z + �2�A�z�

+ 	i�z���Q1�
E11
−1
 +


�Q11Q1�−1

�2�z log z� � d

dz
Q1�z + �2�A�z� + 	i�z���Q1��E11

−1

−
1

�2z log z
�Q11Q1�−1� +


�Q11Q1�−1
2

�4z2�log z�2 � d

dz
Q1�z + �2�A�z� + 	i�z���Q1 − Q1�1 + �2A1

+ �2	i1�Q1� �150�

=O�z−2�log z�−3� , �151�

s z→0. On the other hand, the second term in Eq. �148� is slightly complicated to evaluate:

�− E11
−1� d

dz
�2�log z�Q1�z�Q1�E11

−1 −
d

dz

1

�2z log z
�Q11Q1�−1

− z� d

dz

1

�4z2�log z�2��Q11Q1�−1�Q1 + �2Q1A1Q1 + �2	iQ11Q1��Q11Q1�−1�
�152�

��− 1

�2z log z
�Q11Q1�−1� d

dz
�2�log z�Q1�z�Q1� 1

�2z log z
�Q11Q1�−1 −

d

dz

1

�2z log z
�Q11Q1�−1

−
1

�2z log z
�Q11Q1�−1� d

dz
�2�log z�Q1�z�Q1�Ẽ11

1

�2z log z
�Q11Q1�−1

− Ẽ11
1

2 �Q11Q1�−1� d
�2�log z�Q1�z�Q1� 1

2 �Q11Q1�−1
� z log z dz � z log z
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+ z
2

��2z log z�3� d

dz
�2z log z��Q11Q1�−1�Q1 + �2Q1A1Q1 + �2	iQ11Q1��Q11Q1�−1�

+ � 1

�2z log z
�Q11Q1�−1� d

dz
�2�log z�Q1�z�Q1��

j=2

�

Ẽ11
j 1

�2z log z
�Q11Q1�−1� �153�

+ �Ẽ11
1

�2z log z
�Q11Q1�−1� d

dz
�2�log z�Q1�z�Q1��

j=1

�

Ẽ11
j 1

�2z log z
�Q11Q1�−1�

+ ��
j=2

�

Ẽ11
j 1

�2z log z
�Q11Q1�−1� d

dz
�2�log z�Q1�z�Q1�E11

−1�
��− 1

�2z log z
�Q11Q1�−1� d

dz
�2 log zQ1�z�Q1� 1

�2z log z
�Q11Q1�−1

−
d

dz

1

�2z log z
�Q11Q1�−1�

+ �− 1

�2z log z
�Q11Q1�−1� d

dz
�2�log z�Q1�z�Q1�Ẽ11

1

�2zlog z
�Q11Q1�−1

+ z
1

��2z log z�3� d

dz
�2z log z��Q11Q1�−1z�Q1 + �2Q1A1Q1 + �2	iQ11Q1��Q11Q1�−1�

+ �− Ẽ11
1

�2z log z
�Q11Q1�−1� d

dz
�2�log z�Q1�z�Q1� 1

�2z log z
�Q11Q1�−1

+ z
1

��2z log z�3� d

dz
�2z log z��Q11Q1�−1�Q1 + �2Q1A1Q1 + �2	iQ11Q1��Q11Q1�−1�

+ O�z−2�log z�−3� �154�

=O�z−2�log z�−3� . �155�

n fact, the first term in Eq. �154� reads

�− 1

�2z log z
�Q11Q1�−1� d

dz
�2 log zQ1�z�Q1� 1

�2z log z
�Q11Q1�−1 −

d

dz

1

�2z log z
�Q11Q1�−1�

� �− �Q11Q1�−1� d

dz
�2�log z�Q1�z�Q1� +

d

dz
�2z�log z�Q1� 
�Q11Q1�−1


��2z log z�2 �156�

��2��− �Q11Q1�−1Q1
�z�

z
Q1 + Q1� + �− �Q11Q1�−1Q1

d�z�
dz

Q1 + Q1��log z��
� 
�Q11Q1�−1


1

�2z log z
�157�

=O��z log z�−1� . �158�
he second term in Eq. �154� also reads
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�− 1

�2z log z
�Q11Q1�−1� d

dz
�2�log z�Q1�z�Q1�Ẽ11

1

�2z log z
�Q11Q1�−1

+ z
1

��2z log z�3� d

dz
�2z log z��Q11Q1�−1�Q1 + �2Q1A1Q1 + �2	iQ11Q1��Q11Q1�−1�

� 
�Q11Q1�−1
�− � d

dz
�2�log z�Q1�z�Q1��Q11Q1�−1�zQ1 + �2Q1�A�z� − log z��z� − z1�

+ 	i�z��Q1� + z� d

dz
�2z log z��Q1 + �2Q1A1Q1 + �2	iQ11Q1�� 
�Q11Q1�−1


��2z log z�3 �159�

�
�Q11Q1�−1
�� d

dz
�2�log z�Q1�z�Q1��Q11Q1�−1�
− �zQ1 + �2Q1�A�z� − log z��z� − z1�

+ 	i�z��Q1� + z�Q1 + �2Q1A1Q1 + �2	iQ11Q1�


�Q11Q1�−1

��2z log z�3 + 
�Q11Q1�−1


��− � d

dz
�2�log z�Q1�z�Q1��Q11Q1�−1 + � d

dz
�2z log z�Q1�
z�Q1 + �2Q1A1Q1

+ �2	iQ11Q1�


�Q11Q1�−1

��2z log z�3 �160�

=O��z log z�−1� , �161�

s z→0. The third term gives the same contribution to the order as the second one does. Further-
ore, the last term in Eq. �154� comes from the estimations of the second, third, and last terms in
q. �153�, where each contributes the same order as O�z−2�log z�−3�. Therefore, Eq. �155� is
roved.

On the other hand, the third term in Eq. �148� reads

���Q11 − E11
−1E10E00

−1E01�−1 − Q11�
dE11

−1

dz
� �


E11
−1E10E00

−1E01

1 − 
E11

−1E10E00
−1E01


�dE11
−1

dz
� = O�z−1� , �162�

s z→0, where Eqs. �63�, �65�, �67�, and �136� are used. In the same way, the last term in Eq.
148� reads

�E11
−1 d

dz
�Q11 − E11

−1E10E00
−1E01�−1� � 
E11

−1

�Q11 − E11
−1E10E00

−1E01�−1
2��dE11
−1

dz
E10E00

−1E01�
+ �E11

−1dE10

dz
E00

−1E01� + �E11
−1E10E00

−1dE01

dz
� + �E11

−1E10
dE00

−1

dz
E01��

�163�

=O�z−1 log z� , �164�

s z→0. By substituting Eqs. �151�, �155�, �162�, and �164� into Eq. �148�, one finally obtains Eq.
149�. We can now show Eq. �127� for r=1 by setting Eqs. �130� and �149� into Eq. �128�. �

If we start with expression �72�, we obtain the following lemma instead of Lemma V.3.
Lemma V.4: Assume that 0 is an exceptional point of the first kind for H. Then the 0th and the

˜
rst derivative of R�z� are approximated by those of a finite series
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1

�2z�log z − 2	i�
�Q11Q1�−1 +

1

�4z�log z − 2	i�2 �Q11Q1�−1�Q1 + �2Q1A1Q1 − �2	iQ11Q1�

��Q11Q1�−1, �165�

hat is, it is shown that

� dr

dzr�R̃�z� −
1

�2z�log z − 2	i�
�Q11Q1�−1 −

1

�4z�log z − 2	i�2 �Q11Q1�−1�Q1 + �2Q1A1Q1

− �2	iQ11Q1��Q11Q1�−1�� = O�z−1�log z − 2	i�−3� for r = 0, or O�z−2�log z

− 2	i�−3� for r = 1, �166�

s z→0.

I. THE REDUCED TIME EVOLUTION OPERATOR

In this section, we show that the reduced time evolution operator is expressed by the Fourier
ransform of the imaginary part of the reduced resolvent both in the regular case and the excep-
ional case of the first kind. We here define the reduced time evolution operator by the N�N

atrix Ũ�t� of the components Ũmn�t�ª �m � Pe−itHP �n�, where P=E��0, � �� and �E�B� �B�B� is
he spectral measure of H, which is a family of the projection operator. B is the Borel field of R.

Lemma VI.1: We assume that Eq. �23� holds so that there is no positive eigenvalue. Then, for
he system with the rational form-factor �9�, it holds that

Ũ�t� =
1

	
	

�0,��
e−it�Im R̃+���d� = lim

r→+0

1

	
	

r

�

e−it�Im R̃+���d� , �167�

oth in the regular case and the exceptional case of the first kind, where

Im R̃+��� ª
1

2i
�R̃+��� − R̃−���� , �168�

hich is sometimes called the spectral density.

Proof: Let us remember that the matrix Ũ�t� is expressed by the spectral measure as

Ũmn�t� = 	
�0,��

e−it�d�m�E����n� =	
�0,��

e−it�dẼmn��� , �169�

here Ẽ�B� is the matrix of the components �m �E�B� �n�. Therefore, what we first should do is to

larify the relation between Im R̃+��� and Ẽ���. Resorting to Stone’s formula between E�B� and
�z�, we clearly see

1

2
�Ẽ��a,b�� + Ẽ��a,b��� = lim

�→+0

1

2	i
	

a

b

�R̃�� + i�� − R̃�� − i���d� , �170�

or a ,b�R with a�b. Under the assumption �23�, Lebesgue’s dominated convergence theorem
nd the proof of Lemma III.1 tell us that the exchange between the limit and the integration in Eq.

170� is allowed for �a ,b�� �0, � �. If �a ,b�� �−� ,0� \��H�, then R̃±���= R̃���, and thus

��a ,b��= Ẽ��a ,b��=0. In addition, by the continuity of R̃±���, Eq. �170� tells us that Ẽ��a��=0

or all a�0, which leads to
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Ẽ��a,b�� = Ẽ��a,b�� =
1

	
	

a

b

Im R̃+���d� , �171�

or all a ,b with b�a�0.
Let us now consider the regular case and in particular the validity of the expression �171� for

he interval including the origin. In this case, R̃±�0�ª lim�→+0R̃±��� exists to be finite. Further-

ore, lim�→�R̃±���=0 from Lemma III.2. Thus, R̃±��� is uniformly continuous on �0, � �. There-
ore, we can take the limit of Eq. �171� as a→ +0 to obtain lima→+0E��a ,b��=E��0,b��. We next

ee that all components of Im R̃+��� are integrable, i.e., belong to L1��0, � ��. Suppose that ���
CN,then �� � Ẽ��0,��� ��� is positive and a monotonically increasing function of �, and it is also

ifferentiable in this case. Thus Eq. �171� tells us that �� � Im R̃+��� ����0. In addition,


�
2 � lim�→����Ẽ��0,������ = lim
�→�

1

	
	

0

�

���Im R̃+������d� =
1

	
	

0

�

���Im R̃+������d� .

�172�

ence, from the monotonic convergence theorem, we see that �� � Im R̃+��� ����L1��0, � ��. From
his fact and the use of the polarization identity, we can prove that all components of the matrix

m R̃+��� are integrable. Thus, extending the rhs of Eq. �171� to arbitrary B� �B
B �B� �0, � ��, BIm R̃+���d� defines a measure. We can now see from Eq. �171� and from E.
opf’s extension theorem that

Ẽ�B� =
1

	
	

B

Im R̃+���d� �173�

olds for all B� �B�B �B� �0, � ��. Note that this expression means that the restriction of Ẽmn�B�
o �B�B �B� �0, � �� is absolutely continuous. Therefore, rewriting of Ũ�t� in Eq. �169� into �167�
s straightforward.

In the exceptional case of the first kind, from the assumption �23�, R̃±��� is continuous on

0, � �, while R̃±���=O��� log ��−1� as �→ +0, so that it is not integrable around 0. See, Eq.

71�. However, Im R̃+��� is of the order O��−1�log ��−2� from Lemmas V.3 and V.4, and thus it is
ntegrable around 0. Hence, Eq. �173� holds again, and Eq. �167� is valid for this exceptional
ase. �

We remark that in the case of no negative eigenvalues �point spectrum� of H,21 the restriction

f Ũ�t� to the continuous energy spectrum is removed because in such a case P= I the identity.

urthermore, the connection between Ũ�t� and the observables is easily found, e.g.,

�� � Ũ�t� ����2 / 
P ���
4 for ����CN �or CN � �0�� is the survival probability of P ��� which is the
robability of finding the system in the state P ��� at the later time t, where P ��� is just the
ecaying component of the initial state���.

II. THE ASYMPTOTIC EXPANSION OF THE REDUCED TIME EVOLUTION OPERATOR

We can finally show the asymptotic formula for Ũ�t� at long times for the rational form factors
atisfying our assumptions. In the following, we assume that Eq. �23� holds, i.e., there is no
ositive eigenvalue. However, this is not explicitly mentioned in the statements of the theorems.
et us first consider the regular case. For this purpose, according to Lemma V.2, we introduce the
emainder F��� in the following way:
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1

	
Im R̃+��� = �2�K�0��−1�nb�nb

+ �nb+1 + �2nb+2��K�0��−1 + F��� , �174�

or ��0.
Theorem VII.1: Assume that 0 is a regular point for H. For a system with the rational form

actor �9� characterized by the positive integers na and nb that satisfy that nb�2 and na=1, the

educed time evolution operator Ũ�t� behaves asymptotically as

Ũ�t� = �2�1 + nb�
�it�nb+1 �K�0��−1nb

�K�0��−1 + O�t−nb−2� , �175�

s t→�. When nb=1 and na�1, the error term is replaced by O�t−3log t�.
Proof: We first summarize the several properties of Im R̃+���. By Lemma V.2, we see that the

emainder F��� in Eq. �174� is arbitrary-times differentiable. Particularly it holds that
im�→0drF��� /d�r=0 for all r�nb, and

�dnb+1F���
d�nb+1 � = O�log ��, or O�1� , �176�

or nb=1 and na�1, or nb�2 and na=1, respectively, and

�dnb+2F���
d�nb+2 � = O��−1�, or � O�1� �nb � 3�

O�log �� �nb = 2�
, �177�

or nb=1 and na�1, or nb�2 and na=1, respectively, as �→0. On the other hand, we see from

emma III.2 that �d/d��rIm R̃+���=O��−r−1� as �→�. In particular, if m�1, �d/d��mIm R̃+���
s integrable on �� , � � for an arbitrary ��0.

Let us now split the integral in Eq. �167� into two parts by writing

Im R̃+��� = ����Im R̃+��� + �1 − �����Im R̃+��� , �178�

here ��C0
���0, � �� and satisfies ����=1 in a neighborhood of �=0. Such a function is realized

y f���=1−0
�g�x�dx, where g�x�=h�x� /Rh�x�dx and h�x�=exp�−1/ �a2− �x−d�2�� ��x−d � �a�

r 0 ��x−d � �a� with d�a�0.
From Lemma 10.1 in Ref. 14 and the above-mentioned discussion, we see that �1

�����Im R̃+��� has a contribution of O�t−m� to Ũ�t� for an arbitrary m�1, i.e., this term decays
aster than any negative power of t.

On the other hand, the contribution of ����Im R̃+��� to Ũ�t� gives the main part of the
symptotic expansion. Then, the coefficient of nb

, nb+1, and nb+2 is given by the form29

	
0

�

�����qe−it�d� = �
k=0

N−1
1

�it�k+1�dk�q����
d�k �

�=0
+ RN�t� =

�1 + q�
�it�1+q + RN�t� , �179�

or all N�1+q, where q takes the value nb, nb+1, or nb+2. We here used that

�dk�q����
d�k �

�=0
= �

j=0

min�k,q� � k

j
��d j�q

d� j �
�=0
�dk−j����

d�k−j �
�=0

= �1 + q��kq, �180�

here �1+n�=0
�xne−xdx is the gamma function. In addition, the remainder RN�t� is bounded
bove by
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�RN�t�� �
1

tN�	
0

� dN�q����
d�N e−i�td�� = o�t−N� . �181�

ote that since all derivatives of ���� vanish in the neighborhood of �=0, Eq. �179� is valid for
ll N�q+1 and thus RN�t� decays faster than any negative power of t. Furthermore, we under-
tand, by applying Eq. �B1� in Lemma B.1 directly to ����F��� with the discussion in the first
art of this section, that the contribution of the Fourier transform of the remainder ����F��� to

˜ �t� is

O�t−3 log t� or �t−nb−2� , �182�

or nb=1 and na�1, or nb�2 and na=1, respectively, as �→0, where we used the formula of the
ndefinite integral that �log ��2d�=���log ��2−2 log �+2�. Summarizing the above-noted re-
ults, we finally obtain that

�Ũ�t� − �2�K�0��−1��1 + nb�
�it�nb+1 nb

+
�2 + nb�
�it�nb+2 nb+1 +

�3 + nb�
�it�nb+3 nb+2��K�0��−1� � � 1

	
	

0

�

�1

− �����Im R̃+���e−it�d�� + � 1

	
	

0

�

����F���e−it�d�� + O�t−N� = O�t−3 log t� or O�t−nb−2� ,

�183�

or nb=1 and na�1, or nb�2 and na=1, respectively, as t→�, where O�t−N� is due to the

ontribution from RN�t�. This is just the asymptotic expansion of Ũ�t� in the statement. �

It is worth noting that if we resort to Lemma V.1, instead of Eqs. �176� and �177�, we have

drF���
d�r = O��2−r�log ��1+��2−r��, or �O���2 − r�+

� �0 � r � nb�

O��nb+1−r�log ����nb+1−r�� �r � nb + 1� ,

�184�

or nb=1 and na�1, or nb�2 and na=1, respectively. However, in the latter case, we see that the
ourier transform of ����F��� gives the contribution of the order O�t−nb−1�, which is just the same
rder as that coming from the dominant one. Hence, we can only obtain a useless estimation.

We next show the asymptotic formula for Ũ�t� at long times for a system with an exceptional

oint of the first kind. To this end, we write Im R̃+��� with the remainder F��� again as follows:

1

	
Im R̃+��� =

1

�2��log ��2 �Q11Q1�−1 + F��� . �185�

Theorem VII.2: Assume that 0 is an exceptional point of the first kind for H, which neces-

arily imposes that nb=1. Then, the reduced time evolution operator Ũ�t� for the rational form
actor �9� behaves asymptotically as

Ũ�t� =
1

�2 log t
�Q11Q1�−1 + O��log t�−2� , �186�

s t→�.

Proof: Let us first look over some properties of Im R̃+��� again. By Lemmas V.3 and V.4, we
ee that the remainder F��� in Eq. �185� is arbitrary-times differentiable, satisfies that F���
O��−1�log ��−3�, and dF��� /d�=O��−2�log ��−3�, as �→ +0. On the other hand, we see from

emma III.2 that �d/d��rIm R̃+���=O��−r−1� as �→�. In particular, if m�1, �d/d��mIm R̃+���

s integrable on �� , � � for an arbitrary ��0.
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We now split the integral in Eq. �167� into two parts as in Eq. �178� again using the

0
�-function ����. From Lemma 10.1 in Ref. 14 and the above-mentioned discussion, �1
�����Im R̃+��� has a contribution of O�t−m� to Ũ�t� for an arbitrary m�1. On the other hand, the

ontribution of ����Im R̃+��� to Ũ�t� gives the dominant part of the asymptotic expansion. Then,

he dominant time dependence of the asymptote of Ũ�t� follows from Lemma B.2, that is,

	
0

�

�������log ��2�−1e−it�d� = �log t�−1 + O��log t�−2� . �187�

urthermore, the contribution of the Fourier transform of the remainder ����F��� to Ũ�t� can be
stimated by a similar manner to Lemma B.2, rather than Lemma B.1. By setting ����
F���e−it� instead in the proof of Lemma B.1 of inverse-lagarithmic-fourier-integral, we can
pply it to this case, and we have

	
0

�

F�������e−it�d� = − lim
�→+0

�Î����� + �− 1�N	
0

�

�ÎN�����
dN����

d�N d� . �188�

hen, corresponding to Eq. �B10�, we have


�Î�����
 � �ie−it�	
0

�

F�� − i��e−t�d�� + E�t� � C	
0

�

��� − i��−1�log�� − i���−3�e−t�d� + E�t� ,

�189�

ith an appropriate constant C. Note that in this procedure, R̃+��� is analytically continued to the

ower plane of the second Riemann sheet, while R̃−��� still remains in the lower plane of the first
iemann sheet. Then, both are ensured to contribute the remainders of the same order to F��
i�� in the above integral from Lemmas V.3 and V.4. The remainder term E�t� in Eq. �189� that

ives the order of O�e−�t� for some ��0 is responsible for the possible poles of R̃+��� continued
o the second Riemann sheet, the number of which are guaranteed to be finite from the analytic

redholm theorem26 and Lemma III.2 for the continued R̃+���. Thus, it follows from Lemma B.2

hat lim�→+0 
 �Î����� 
 =O��log t�−2�. By the same argument as in Lemma B.2, one also sees that
he remainder term in Eq. �188� is of the order of O�t−N+1�. Summarizing these arguments, we can
nish the proof of the theorem. �

III. CONCLUDING REMARKS

We have rigorously derived the asymptotic formula of the reduced time evolution operator for
he N-level Friedrichs model in the context of the zero energy resonance14 both for the regular case
nd the exceptional case of the first kind. Then, in the latter case, the logarithmically slow decay
roportional to �log t�−1 has been found, and the expansion coefficient has been explicitly pre-
ented by the projection operator associated with the zero energy eigenstates of the total Hamil-
onian, which is an extended state not belonging to the Hilbert space. We note that the decay
nvolving the logarithmic function expressed by t−j�log t�k �j=1,2 , . . . and k=0, ±1, . . .� can occur
n the short range potential systems in the even dimensional space.30 It should be noted that a
ealization of the exceptional cases requires the parameters, e.g., the coupling constant �, to take
uch special values that the matrix K�0� in Eq. �44� has a zero eigenvalue. In addition, some of the
orm factors vn��� have to behave as �vn����2�cn� around �=0. In other words, if all of them
ehave as �vn����2�cn�qn with qn�2, the exceptional case of the first kind never occurs though
hat of the second kind could happen. These circumstances explain how the exceptional cases are
urely exceptional. The presented results also enable us to calculate the asymptotic formula for the
urvival probability of an arbitrary initial state ��� localized over the N discrete levels. If we

−1 −1
hoose the special initial state to satisfy nb
�K�0�� ���=0 in Eq. �175� or �Q11Q1� ���=0 in
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q. �186��, our estimations are useless and other decay laws could appear.20 The long time behav-
or of the reduced time evolution operator for the exceptional case of the second and the third kind
re not examined. As is expected, in the former case, the nondecaying component associated with

he localized zero energy eigenstate will appear due to the divergent behavior of Q2R̃�z�Q2

O�z−1� in Eq. �83�. The latter case can occur in the N-level cases of the model only for N�3,
hich yields a more complicated situation. In the whole of the paper, we assumed that there is no
ound eigenstate with a positive eigenenergy. This situation is actually realized in the weak
oupling cases.17,21However, its compatibility with the existence of the extended zero energy
igenstate is still not clear in the multilevel cases �except the single level case�. The emergence of
he logarithmic decay �log t�−1 is just due to the logarithmic energy dependence of the self energy
��� and it comes from the assumption �9� where �vn����2�cn�qn with a positive integer qn is
equired. Therefore, if we choose another type of form factor, it is not necessary for such a slow
ecay to occur even in the exceptional case.11–13 However, we stress that our assumption is often
atisfied by actual systems.15,16 The experimental realization of the exceptional case requires the
etup of parameters like �1��2�, where � is a typical cutoff constant. This seems to be naturally
atisfied in a strong coupling region,7,31 and hence it could be suggested to invoke the artificial
uantum structures for a realization.
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PPENDIX A: CHARACTERISTICS OF SELF ENERGY FOR THE RATIONAL FORM
ACTOR

Lemma A.1: Suppose that ���� is a rational function, i.e., it is expressed by ����
	��� /
���, where 	��� and 
��� are the polynomials of the degree m and n, respectively.
urthermore, we assume that n�m+1 and 
�z� has no zeros in �0, � �. Then

	
0

� ����
� − �

d� =
Pn−1��� − 	���log �− ��


���
, �A1�

or all ��C \ ��0, � �� �ak�k=1
N �, where ak is a pole of mk-th order of ��z�, N is the number of such

oles, and Pn��� is a polynomial of � of the degree not greater than n. For �= �� �ei� with 0��
2	, we define −�= �� �ei� with −	���	.

Proof: From the fundamental theorems for the complex functions, it holds that

	
0

� ����
� − �

d� = − �
k=1

N+1

Res� ��z�
z − �

log�− z�,z = ak� , �A2�
here aN+1=�. Then the residue at z=ak for k�N is deduced to explicitly
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1

�mk − 1�! �
j=0

mk−1 �mk − 1

j
��� dmk−1−j

dzmk−1−j �z − ak�mk
��z�
z − �

�� d j

dzj log�− z���
z=ak

= − �
j=1

mk−1 Pmk−1−j���

�ak − ��mk−j −
Pmk−1���

�ak − ��mk
log�− ak� . �A3�

or z=�, which is a simple pole, the residue becomes

Res� ��z�
z − �

log�− z�,z = �� = ����log�− �� . �A4�

herefore, by setting Eqs. �A3� and �A4� into Eq. �A2�, one obtains Eq. �A1�, and the proof is
ompleted. �

Lemma A.2: Suppose that the function ���� belonging to L1��0, � �� is of the form

���� ª �pr��� , �A5�

here p�1 and r��� is a C1-function defined in �0, � �. Then it holds that both ���� /� and
��� /�2�L1��0, � ��, and

lim
E→+0

1

E�P	
0

� ����
� − E

d� − 	
0

� ����
�

d�� = 	
0

� ����
�2 d� . �A6�

Proof: From the proof of Proposition 3.2.2 in Ref. 10, the principal value of the integral on the
hs is written by the absolutely integrable function as follows:

P	
0

� ����
� − E

d� = 	
0

� ���� − ��E����� − E�
� − E

d� , �A7�

or all E�0, where ����� is a C0
�-function with support �−� ,�� �0���E�, even with respect to

he origin, and such that ���0�=1. In the following, we choose such that �����=exp�1−1/ �1
�� /��2�� for �� �−� ,�� or 0 otherwise, and �=E /2. Then, the proof of Eq. �A6� is equivalent to

hat of

lim
E→+0

	
0

� � 1

E
�����

�
−

���� − ��E����� − E�
� − E

� +
����
�2 �d� = 0, �A8�

hich will be shown in the following. We note that the above-mentioned integrand can be rewrit-
en as

− E
����

�2�� − E�
+

��E����� − E�
E�� − E�

�A9�

=
��E����� − E�

E�
−

E���� − ���E����� − E�
�2�� − E�

. �A10�

e also put I1= �0,E /2�, I2= �E /2 ,3E /2�, and I3= �3E /2 , � �.
Let us first consider the case that �� I1� I3. Then, since ����−E�=0, we can use Eq. �A9� to

stimate the integrand in Eq. �A8�, which reads

�E
����

�2�� − E�
� � 2�����

�2 � , �A11�

here the rhs is absolutely integrable and independent of E. Furthermore, it follows that

imE→+0E�I1�I3

������� / ����−E��=0 for every �� �0, � �, where �I1�I3
���=1 ��� I1� I3� or 0
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�� I2�, being the characteristic function. Thus, by the dominated convergence theorem, we can
ee that

lim
E→+0

	
I1�I3

E
����

�2�� − E�
d� = lim

E→+0
	

0

�

E�I1�I3
���

����
�2�� − E�

d� = 0. �A12�

Next, for �� I2, we can use Eq. �A10�. The integration of the first term of Eq. �A10� is
stimated by

�	
I2

��E����� − E�
E�

d�� �
��E�
E2/2

	
I2

���� − E�d� =
��E�

E
	

−1

1

�1�x�dx → 0, �A13�

s E→ +0, because ����=O��p� where p�1. The second term of Eq. �A10� is also estimated
ith the decomposition

�E���� − ���E����� − E�� � ��E − ������� + ������� − ��E��� + ����E���1 − ���� − E�� .

�A14�

he integral corresponding to the first term on the rhs of Eq. �A14� is evaluated as

	
I2

��E − �������
�2�� − E�

d� → 0, �A15�

s E→ +0, because of the fact ���� /�2�L1��0, � ��. The integral corresponding to the second
erm is also evaluated as

	
I2

������ − ��E��
�2�� − E�

d� � �ln3� sup
��I2

������� → 0, �A16�

s E→ +0, because of the assumption on ����, where ����� is the derivative of ����. The
ntegral corresponding the last term on the rhs of Eq. �A14� is also estimated as

	
I2

����E���1 − ���� − E��
�2�� − E�

d� � �ln3�
���E��

�
sup
�x��1

��1��x�� → 0, �A17�

s E→ +0. Thus, we see from Eqs. �A15�–�A17�,

lim
E→+0

	
I2

E���� − ���E����� − E�
�2�� − E�

d� = 0. �A18�

quations �A12�, �A13�, and �A18� mean the completion of the proof of Eq. �A8�. �

PPENDIX B: ASYMPTOTIC EXPANSION OF THE FOURIER INTEGRALS

We have to estimate the integrals of the form U�t�=0
�e−it�F���d� in which F���=0 identi-

ally either for small ��0 or for large � where F is supposed to take values in an arbitrary
anach space B. The following lemma is essentially the same as Lemma 10.2 in Ref. 14.

Lemma B.1: Suppose that F���=0 for ��a�0, �F�Ck+1�� , � ;B��, F�k+1��L1�� , � ;B� for
ny ��0 and for an integer k�0, and that F�j��0�=0 for j�k−1. Then


U�t�
 �
1

tk�	
0

2	/t


F�k����
d� +
	

2t
	

	/t

a

sup
����,�+	/t�


F�k+1����
d�� , �B1�

or all t�	 /a. Here F�k���� denotes the kth derivative of F��� and so forth.
Proof: By extending F by F���=0 to ��0, we obtain a function F on �−� , � � with F�k�

1
L �−� , � ;B�. Then we have that
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−�

�


F�k��� + h� − F�k����
d� = �	
−�

h

+ 	
h

a �
F�k��� + h� − F�k����
d� �B2�

�2	
0

2h


F�k����
d� + 	
h

a

d�	
�

�+h


F�k+1����
d� �B3�

�2	
0

2h


F�k����
d� + h	
h

a

sup
����,�+h�


F�k+1����
d� .

�B4�

y noting that e−it�=−e−it��−	/t�, one sees that the lhs of Eq. �B2� is just an upper bound of the
ourier transform of 2F�k�. Remember that the Fourier transform of F�k� is equal to �it�kU�t� under

he assumption of the lemma, i.e., F�j��0�=0 for j�k−1, then the desired result follows. �

Lemma B.2: Suppose that ��C0
���0, � �� and satisfies ����=1 in a neighborhood of �=0. It

hen holds that for any positive integer q�2 and N�1,

	
0

�

�−1�log ��−q����e−it�d� =
�− 1�q

q − 1 �
j=0

N−1 �q + j − 2

j
��log t�1−q−j� d

d�
−

	

2
i� j

�����=1

+ O��log t�1−q−N� �B5�

s t→�.

Proof: We first put ����=�−1�log ��−qe−it� and introduce the indefinite integral operator Î as29

�Î����� = 	
c

�

s−1�log s�−qe−itsds , �B6�

here c is an arbitrary complex number. We can also recursively show

�Îk����� =
1

�k − 1�!	c

�

�� − s�k−1s−1�log s�−qe−itsds . �B7�

hen, repeating the partial integration, we obtain

	
0

�

�−1�log ��−q����e−it�d� = − �Î�����������=0 + RN�t� , �B8�

or all N�1 with

RN�t� = �− 1�N	
0

�

�ÎN�����dN����/d�Nd� , �B9�

here we used the fact that dk���� /d�k=�k0 at �=0 for any k�0, and dk���� /d�k=0 at �
� for any k�0. We now choose c=�− i� and change the variable as sª�− i�, which leads to

�Î����� = ie−it�	
0

�

�� − i��−1�log �� − i���−qe−t�d� . �B10�
hen, we can use the dominated convergence theorem to obtain
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lim
�→+0

�Î����� = i	
0

�

�− i��−1�log �− i���−qe−t�d� . �B11�

ere we used the fact that there is a positive number �0�1/ �eq�2� such that

��� − i��−1�log �� − i���−qe−t�� � ��−1�log ��−qe−t� �0 � � � �0�
Ce−t� ��0 � ��

� �����0
����−1�log ��−q + C�e−t�, �B12�

or all 0����0 and all 0����, where ����0
���=1 for ���0 or 0 otherwise, and C is an

ppropriate constant. The existence of such a C is ensured by the fact that log ��− i�� has no zeros
n the rectangular region ��− i� �0����0 ,�0��� � �, and its modulus diverges as �→�. The
unction on the rhs of Eq. �B12� is integrable, so that the use of the dominated convergence
heorem is valid. To evaluate the asymptotic behavior of Eq. �B11�, putting �= �log t�−1 and t�
�, one obtains

lim
�→+0

�Î����� = i�− ��q	
0

� − i�−1

1 − q
� d

d�
�1 − � log �− i���1−q�e−�d� �B13�

=−
�− ��q−1

1 − q
	

0

�

�1 − � log �− i���1−qe−�d� �B14�

=−
�− ��q−1

1 − q ��
j=0

N−1 �q + j − 2

j
�� j� d

d�
−

	

2
i� j

�����=1

+ �NN�q + N − 2

N
�	

0

� �	
0

1 �1 − u�N−1

�1 − �u log �− i���q+Ndu��log �− i���Ne−�d�� , �B15�

here we used the formulas that f���=� j=0
N−1� j f �j��0� / j ! + ��N / �N−1� ! �0

1�1−u�N−1f �N���u�du with
f���= �1−� log �−i���1−q, and 0

�x�−1e−�x�log x� jdx=� j��−����� /�� j. The last integral in Eq. �B15�
urns out to be finite because we have

�	
0

� �	
0

1 �1 − u�N−1

�1 − �u log �− i���q+Ndu��log �− i���Ne−�d�� � 	
0

� ��	/2�2 + �log ��2�q/2+N

�	/2�q+N e−�d� ,

�B16�

here we used that

�1 − �u log �− i���2 = �1 − �u log ��2 + ��u	/2�2 �
�	/2�2

�	/2�2 + �log ��2 . �B17�

et us now evaluate the upperbound of ��ÎN������. Using the estimation �B12�, we have

��ÎN������ =
1

�N − 1�!�	0

�

�i��N−1�� − i��−1�log �� − i���−qe−t�d�� �B18�

�
1

�N − 1�!	0

�

��N−2�log �0�−q + C�N−1�e−t�d� = O�t−N+1� . �B19�

ubstituting this result into the error term RN�t� in Eq. �B9�, we see that RN�t�=O�t−N+1� for any

nteger N�2. This proves the statement of the lemma. �
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The fractional Schrödinger equation is solved for a free particle and for an infinite
square potential well. The fundamental solution of the Cauchy problem for a free
particle, the energy levels and the normalized wave functions of a particle in a
potential well are obtained. In the barrier penetration problem, the reflection coef-
ficient and transmission coefficient of a particle from a rectangular potential wall is
determined. In the quantum scattering problem, according to the fractional
Schrödinger equation, the Green’s function of the Lippmann-Schwinger integral
equation is given. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2235026�

. INTRODUCTION

The Schrödinger equation is the fundamental equation of physics for describing nonrelativistic
uantum mechanical behavior. It is also often called the Schrödinger wave equation, and is a
artial differential equation that describes how the wave function of a physical system evolves
ver time. The time-dependent one-dimensional Schrödinger equation is given by

i�
���x,t�

�t
= −

�2

2m

�2��x,t�
�x2 + V�x,t���x,t� , �1�

here i is the imaginary unit, ��x , t� is the time-dependent wave function, � is Planck’s constant
strictly speaking, is Plank’s constant divided by 2�; this is Dirac’s notation�, V�x , t� is the
otential.

It is well known that Feynman and Hibbs1 used path integrals over Brownian paths to derive
he standard �nonfractional� Schrödinger equation. In quantum physics, the Feynman path integral
pproach to quantum mechanics was the first successful attempt applying the fractality concept
hat was first introduced by Mandelbrot.2 Recently, Laskin3–6 extended the fractality concept and
ormulated fractional quantum mechanics as a path integral over the Lévy flights paths. Through
ntroducing the quantum Riesz fractional derivative

�− �2���/2��x,t� =
1

2��
�

−�

+�

eipx/��p����p,t�dp , �2�

��	2, they constructed the space fractional Schrödinger equation

i�
��

�t
= D��− �2���/2� + V�x,t�� �3�

here �=�2 /�x2 is the Laplacian�. Laskin showed the Hermiticity of the fractional Hamilton
perator and established the parity conservation law. Energy spectra of a hydrogenlike atom and of

�Electronic mail: xyguosdu@hotmail.com
�
Electronic mail: xumingyu@sdu.edu.cn

47, 082104-1022-2488/2006/47�8�/082104/9/$23.00 © 2006 American Institute of Physics
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fractional oscillator were also computed. Afterwards, Naber7 considered the Schrödinger equa-
ion with the first-order time derivative changed to a Caputo fractional detivative, the time frac-
ional Schrödinger equation, and discussed the solutions of this kind of equation for a free particle
nd for a potential well.

In this paper, some other physical applications of the space fractional Schrödinger equation
re considered, which are organized as follows. In Sec. II we solve the time-dependent fractional
chrödinger equation for a free particle and give the fundamental solution of the Cauchy problem,
sing the properties of Fox’s H function. In Sec. III the energy levels and the normalized wave
unctions of a particle in an infinite square potential well are discussed. In Sec. IV according to the
ime-independent fractional Schrödinger equation we calculate the reflection coefficient and trans-

ission coefficient of a particle from a rectangular potential wall. The quantum scattering problem
s the basis of the quantum mechanics. Lippmann-Schwinger equation as the fundamental equation
f quantum scattering theory obtains the widespread application in the three-dimensional quantum
cattering.8,9 In Sec. V the Lippmann-Schwinger equation equivalent to the fractional time-
ndependent Schrödinger equation is considered, and the Green’s function of it is determined in
erms of Fox’s H function. Finally, the paper is concluded with a discussion and summary.

I. FREE PARTICLE SOLUTION

The fractional Schrödinger equation for a free particle is given by

i�
��

�t
= D��− �2���/2� . �4�

aking into account the definitions of the Fourier transforms on the spatial coordinate

��p,t� = �
−�

+�

e−ipx/���x,t�dx �5�

nd the quantum Riesz fractional derivative �2�, we have

i�
���p,t�

�t
= D��p����p,t� , �6�

nd

��p,t� = C exp�− iD��p��t/�� , �7�

here C is a constant. Inverse Fourier transforming gives the final solution

��x,t� =
C

2��
�

−�

+�

eipx/� exp�− iD��p��t/��dp , �8�

hich also can be expressed in terms of Fox’s H functions

��x,t� =
C

��x�
H2,2

1,1	 1

�

 �

iD�t
�1/�

�x���1,1/��,�1,1/2�
�1,1�,�1,1/2� �, �9�

y using the identical formula and the formula of the Fourier cosine transform of Fox’s H
unction.10,11 When C=1, Eq. �9� is the fundamental solution of the Cauchy problem, i.e., the

olution to Eq. �4� with the initial condition ��x ,0�=
�x�.
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II. POTENTIAL WELL SOLUTION

Now consider a particle in a potential well

V�x� = �0 for �x� � a

� for �x� � a .
� �10�

e need to solve Eq. �4� for �x��a, with the condition ��x , t�=0, for �x��a.
By separation of variables �= f�t��x�, we get

f�t� = e−�iE/��t �11�

let f�t=0�=1�,

D��− �2���/2 = E , �12�

n which E is the energy of the particle.
Let

k� =
E

D��� . �13�

hen considering

�− �2���/2 exp�i
px

�
� = �p�� exp�i

px

�
� , �14�

nd E=D��p��, the solution of Eq. �12� is

�x� = e±ikx, �15�

r

�x� = A sin�kx� + B cos�kx� . �16�

he boundary conditions �−a�=�a�=0 give

A sin�ka� = 0,

�17�
B cos�ka� = 0.

o the solutions fall into two classes: those with A=0 and those with B=0.
The odd solutions have B=0, so ka=n� /2, for n=2,4 ,6 , . . .,

En
�o� = D�
�n�

2a
��

, �18�

n
�o��x� = �A sin
n�

2a
x� for �x� � a

0 for �x� � a .
� �19�

he even solutions have A=0, so ka=n� /2, for n=1,3 ,5 , . . .,

En
�e� = D�
�n���

, �20�

2a
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n
�e��x� = �B cos
n�

2a
x� for �x� � a

0 for �x� � a .
� �21�

ombining even and odd solutions gives the energy levels

En = D�
�n�

2a
��

, �22�

n�x� = �C0 sin
n�

2a
�x + a� for �x� � a

0 for �x� � a ,
� �23�

or n=1,2 ,3 , . . .. Normalizing gives �−�
+���x��2dx=1, so C0=1/�a.

Thus the time-dependent wave functions of a particle in a one-dimensional infinite square
otential well are

�n�x,t� = e−�i/��Entn�x� = C0e
−�i/��Ent sin

n�

2a
�x + a� , �24�

or n=1,2 ,3 , . . . and �x��a, which also can be expressed in terms of exponential function

�n�x,t� = C1e
i/��n��x/2a−Ent� + C2e

i/��n��x/2a+Ent�, �25�

here C1 and C2 are constants.
It should be noted that the results �Eqs. �22� and �23�� are equivalent to those given by

askin.6

V. BARRIER PENETRATION

Let us consider the motion of particles in a rectangular potential barrier

V�x� = �V0, 0 � x � a

0, x � 0,x � a .
� �26�

ccording to classical physics, a particle of energy E less than the height V0 of a barrier could not
enetrate the region inside the barrier. But the wave function associated with a free particle must
e continuous at the barrier and will show an exponential decay inside the barrier. The wave
unction must also be continuous on the far side of the barrier, so there is a finite probability that
he particle will tunnel through the barrier.

First we suppose that the energy of the particle satisfies E�V0 and the incident particle is
oving from the left of the potential wall to the right. Then for x�0 or x�a, the time-

ndependent fractional Schrodinger equation is Eq. �12�. Its solution is �15�, with �13�. For 0
x�a, the time-independent fractional Schrödinger equation is

D��− �2���/2�x� + V0�x� = E�x� . �27�

olving this equation yields

�x� = e±i�x, �28�
n which
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� = 
E − V0

D��� �1/�

. �29�

hen we have for the time-independent wave function  in the different regions expressions of the
orm

for x � 0,  = eikx + Re−ikx, �30�

for 0 � x � a,  = Aei�x + Be−i�x, �31�

for x � a,  = Seikx. �32�

In �30�, the first term corresponds to a particle incident on the barrier �we suppose  normal-
zed so that the coefficient of this term is unity�; the second term represents a particle reflected
rom the barrier. In �32�, the wave function describes a particle, which has passed “above the wall”
nd is moving in the positive direction of x. The fractional probability current density in the
ncident wave is �see Ref. 5�

ji�x� =
D��

i
	*�x��− �2���/2−1 �

�x
�x� − �x��− �2���/2−1 �

�x
*�x� . �33�

hen we have

ji�x� =
D��

i
	e−ikx�− �2���/2−1 �

�x
eikx − eikx�− �2���/2−1 �

�x
�e−ikx� = 2D��k���−1. �34�

imilarly, the fractional probability current density in the reflected wave is 2D��k���−1�R�2, in the
ransmitted wave 2D��k���−1�S�2. Then the transmission coefficient T of the particle as the ratio of
he probability current density in the transmitted wave to that in the incident wave is �S�2, and the
eflection coefficient of the particle as the ratio of the probability current density in the reflected
ave to that in the incident wave is �R�2. The constants R and S are determined from the conditions

hat  and �−�2���/2−1 are continuous at x=0:

1 + R = A + B , �35�

�ik��−1 + �− ik��−1R = �i���−1A + �− i���−1B , �36�

t x=a:

Aei�a + Be−i�a = Seika, �37�

�i���−1Aei�a + �− i���−1Be−i�a = �ik��−1Seika. �38�

ombining �35� and �36� gives

A =
1

1 + �− 1���	1 − 
 k

− �
��−1 + R	1 − 
 k

�
��−1� ,

B =
1

1 + �− 1���	1 − 
 k

�
��−1 + R	1 − 
 k

− �
��−1� .

ombining �37� and �38� gives

A =
S

�	1 − 
 k ��−1ei�ka+�a�,

1 + �− 1� − �
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B =
S

1 + �− 1��	1 − 
 k

− �
��−1ei�ka−�a�.

hen we have

1

1 + �− 1���	1 − 
 k

− �
��−1 + R	1 − 
 k

�
��−1� =

S

1 + �− 1��	1 − 
 k

− �
��−1ei�ka+�a�,

1

1 + �− 1���	1 − 
 k

�
��−1 + R	1 − 
 k

− �
��−1� =

S

1 + �− 1��	1 − 
 k

�
��−1ei�ka−�a�.

ence

Seika =
	1 − 
 k

�
��−12

− 	1 − 
 k

− �
��−12

	1 − 
 k

�
��−12

ei�a − 	1 − 
 k

− �
��−12

e−i�a

, �39�

R =
	1 − 
 k

�
��−1	1 − 
 k

− �
��−1�e−i�a − ei�a�

	1 − 
 k

�
��−12

ei�a − 	1 − 
 k

− �
��−12

e−i�a

. �40�

inally the transmission coefficient T is given by

T = �S�2 =

�	1 − 
 k

�
��−12

− 	1 − 
 k

− �
��−12�2

�	1 − 
 k

�
��−12

− 	1 − 
 k

− �
��−12�2

+ 4	1 − 
 k

�
��−12	1 − 
 k

− �
��−12

sin2 �a

,

T =�1 +

4	1 − 
 k

�
��−12	1 − 
 k

− �
��−12

sin2 �a

�	1 − 
 k

�
��−12

− 	1 − 
 k

− �
��−12�2 �

−1

, �41�

nd the reflection coefficient is

�R�2 =

4	1 − 
 k

�
��−12	1 − 
 k

− �
��−12

sin2 �a

�	1 − 
 k

�
��−12

− 	1 − 
 k

− �
��−12�2

+ 4	1 − 
 k

�
��−12	1 − 
 k

− �
��−12

sin2 �a

.

�42�

bviously �R�2+ �S�2=1.
For E�V0, the corresponding expressions for T and �R�2 are also obtained by replacing � by

1/� � 1/�
�, where k�= �−1� ��V0−E� /D�� � .
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When the particle is passing over a rectangular potential well instead of a potential barrier,
.e.,

V�x� = �− V0, 0 � x � a

0, x � 0,x � a
�

V0�0�, the above theory still holds, in which �= ��E+V0� /D����1/��k= �E /D����1/�. In that
ase, it is interesting to note that T=1 ��R�2=0�, if sin2 �a=0, i.e., a�=n�, thus E=En=−V0

D��n�� /a��, for n=1,2 ,3 , . . .. This phenomenon is called resonance transmission, and En is
esonance energy levels.

. THE GREEN’S FUNCTION IN QUAUTUM SCATTERING

Consider the incident particles with E=D��p�� are scattered by potential field V�x�. This
roblem sums up for solving the one-dimensional fractional Schrödinger equation

�− D��− �2���/2 + E��x� = V�x��x� . �43�

ccording to the theory of Green’s function of a fractional differential equation,12 the solution of
q. �43� can be expressed by

�x� = 0�x� + �
−�

+�

G�x,x��V�x���x��dx�, �44�

n which G�x ,x�� is the Green’s function, satisfying

�− D��− �2���/2 + E�G�x,x�� = 
�x − x�� , �45�

nd 0�x� is an arbitrary solution of the homogeneous equation

�− D��− �2���/2 + E��x� = 0. �46�

upposing the incident wave i�x�=eikx, with k�=E /D���, then the quantum scattering problem
ums up for solving the generalized Lippmann-Schwinger integral equation equivalent to Eq. �43�
s follows:

�x� = eikx + �
−�

+�

G�x,x��V�x���x��dx�. �47�

In the following we calculate the Green’s function. From Eq. �45�, using Fourier transform we
ave

G�x,x�� = G�x − x�� =
1

2�
�

−�

+� 1

E − D����q��
eiq�x−x��dq =

1

�
�

0

� 1

E − D���q� cos q�x − x��dq

=
1

�E
�

0

� 1

1 −
D���

E
q�

cos q�x − x��dq .

onsidering the identical formula

z�

1 + az� = a−�/�H1,1
1,1	az����/�,1�

��/�,1� � ,

he properties of Fox’s H function and the formula of the Fourier cosine transform of Fox’s H
11
unctions, we get
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G�x − x�� =
1

�E
�

0

�

H1,1
1,1�
−

D���

E
�q���0,1�

�0,1� �cos q�x − x��dq

=
1

�E�x − x��
H2,3

2,1� �x − x��


−
D���

E
�1/���1,1/�� �1,1/2�

�1,1� �1,1/���1,1/2� �
=

− 1

�D���
−
D���

E
�1−1/�

H2,3
2,1� �x − x��


−
D���

E
�1/���1 − 1/�,1/�� �1/2,1/2�

�0,1� �1 − 1/�,1/�� �1/2,1/2� �.

�48�

I. CONCLUSION

Some physical applications of the fractional Schrödinger equation have been studied. The
ime-dependent free particle fractional Schrödinger equation was solved, using method of integral
ransform. The fundamental solution of the Cauchy problem was obtained in term of Fox’s H
unction, which can be used for calculating boundary value problem in quantum mechanics. The
otion of a particle in an infinite square potential well was discussed. We outlined the energy

evels and wave functions. Also the reflection and transmission coefficient of a particle from a
otential barrier or a potential well was derived. Last we gave the Green’s function of the gener-
lized Lippmann-Schwinger equation equivalent to time-independent fractional Schrödinger equa-
ion in quantum scattering processes. Equations �9�, �22�, �25�, �41�, �42�, and �48� include the
ell-known equations as their special cases at �=2.

On the other hand, we also can show that Eq. �48� is consistent with more general three-
imensional Green’s function Eq. �47� obtained by Laskin.13 According to his ideas, the one-
imensional fixed-energy kernel, i.e., the one-dimensional Green’s function can be given by �using
he expressions in Ref. 13�

kL
�0��x2x1;E� = �

t1

�

dt2e
�i/��E�t2−t1�KL

�0��x2t2�x1t1� ,

here

KL
�0��x2t2�x1t1� =

1

��x2 − x1�
H2,2

1,1	 1

�

 �

iD��t2 − t1��
1/�

�x2 − x1���1,1/��,�1,1/2�
�1,1�,�1,1/2� �.

Then we get the one-dimensional Green’s function

kL
�0��x2x1;E� =

i�

�E�x2 − x1�
H2,3

2,1� �x2 − x1�


−
D���

E
�1/�� �1,1/���1,1/2�

�1,1��1,1/���1,1/2� �.

o we can see that Eq. �48� in this paper is a particular case of the more general Laskin’s Eq. �47�
n Ref. 13.
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nd codimensions
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We consider the thin layer quantization with use of only the most elementary
notions of differential geometry. We consider this method in higher dimensions and
get an explicit formula for quantum potential. For codimension 1 surfaces the
quantum potential is presented in terms of principal curvatures, and equivalence
with Prokhorov quantization method is proved. It is shown that, in contrast with
original da Costa method, Prokhorov quantization can be generalized directly to
higher codimensions. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2213787�

. INTRODUCTION

We consider free particle motion on a curved surface. Probably, the first quantum theory of it
as proposed by Podolsky in Ref. 1; he postulated that the Hamiltonian operator is

ˆ =−��2 /2��LB with �LB being the Laplace-Beltrami operator on the surface. One may try to get
he Podolsky theory by some quantization procedure. Different methods of quantization yield
arious results which usually have the following general form:

Ĥ = −
�2

2
�LB + Vq�x� , �1�

he function Vq�x� is commonly called “quantum potential.” The Dirac canonical quantization2 and
he Abelian conversion method3,4 were discussed in our previous work5 for surfaces of codimen-
ion 1 in Rn. �The codimension is the difference between the bulk space dimension and the
imension of the submanifold. In particular, codimension 1 surfaces can be defined by one equa-
ion and have one-dimensional normal space at each point. For these surfaces all notions of
lassical differential geometry are valid after obvious generalizations in the number of coordi-
ates. For example, in the next section we would use the principal curvatures6 of codimension 1
urfaces. At the same time, higher-codimensional surfaces present certain difficulties, and we
ncounter some of them in Sec. VI�. This paper is devoted to another theory: the thin layer
uantization. In this approach the particle moves between two equidistant infinite potential walls7

r it is subject to some potential force which in a proper limit makes it moving strictly along the
urface.8

The thin layer method seems to be natural for description of low dimensional motions in
anoelectronics. Recent progress in nanotechnology caused a great activity in the field. Free
article energy spectrum was investigated for thin layers around cylinders,9 tori,10 and arbitrary
urfaces of revolution.11 In this paper we clarify the general properties of the thin layer method
nd establish its equivalence with Prokhorov quantization procedure12,13 for codimension 1 sur-
aces. For a vast majority of higher codimensional cases the thin layer method fails to yield
eaningful results,14 at least of the general form �1�, while the Prokhorov quantization can be

eneralized directly as we show in Sec. VI.

�
Electronic mail: alex@amber.ff.phys.spbu.ru
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In Sec. II we describe the thin layer quantization method in a geometrically clear manner
hich allows us to deal with any codimension 1 surface in Rn without any complications in

omparison with two-dimensional surfaces in R3. In contrast with Ref. 8 we use only the most
lementary notions of differential geometry. In Sec. III we establish the equivalence of the thin
ayer approach with Prokhorov quantization method12,13. In Sec. IV a method of quantization with
ermitian momenta recently proposed by Encinosa15 is analyzed. In Secs. V and VI we consider

urfaces of codimension greater than 1.

I. QUANTIZATION FOR CODIMENSION 1 SURFACES

We consider �n−1�-dimensional smooth surface in Rn and two infinite potential walls at the
istance �→0 from the surface. Free quantum particle moves in the thin layer of width 2�
etween these potential walls. We introduce a curvilinear coordinate system in which �xn� equals
he distance from the surface to the given point, and the coordinate lines of x1 , . . . ,xn−1 are
rthogonal to coordinate lines of xn. We have the boundary condition ��xn=�=��xn=−�=0 and

amiltonian H̃=−��2 /2��̃ with �̃ being the Laplace operator in Rn,

�̃ = �
i=1

n

�
k=1

n

g̃ −1/2�ig̃
1/2g̃ik�k = �n

2 + �g̃−1/2�ng̃
1/2��n + �LB,

g̃ik = �gab 0

0 1
� ,

here �LB is the Laplace-Beltrami operator on the surface xn=const. One can prove5 that
−1/2�ng̃

1/2=div n� with n� being a unit normal vector to the surface, hence

�̃ = �n
2 + div�n�� · �n + �LB. �2�

ndeed, let us consider two surfaces, xn=0 and xn=�. Suppose we have an infinitesimal area dS at
he surface xn=0. We denote the corresponding area element on xn=� surface by dS�:

We have div�n��= ��dS�−dS� /dV�+O���= ��dS�−dS� /�dS�+O���, so g̃−1/2�ng̃
1/2=div�n��.

Now, let us take some point at the surface and consider another coordinate system y1 , . . . ,yn.
e choose it to be Cartesian and such that at the given point the tangent paraboloid of the surface

s presented in its canonical form: yn= 1
2�a=1

n−1kaya
2. So, in the vicinity of the chosen point �y� =0� the

quation of surface is yn= 1
2�a=1

n−1kaya
2+O�ya

3�, ka’s are the principal curvatures. The unit normal is

na =
kaya

	1 + �
a=1

n−1

ka
2ya

2

+ O�ya
2� = kaya + O�ya

2�, nn = − 1 + O�ya
2�

nd

div n� = �
a=1

n−1

ka + O�ya� . �3�

� � � �
The surface xn=� can be obtained by y→y�=y+�n, and dya�=dya�1+�ka+O�ya��. It yields
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dS�

dS
=



a=1

n−1

�1 + O�ya�2��dya�



a=1

n−1

�1 + O�ya
2��dya

= 

a=1

n−1

�1 + �ka� + O�ya�

ear the point y� =0. At the line ya=0 "a=1, . . . ,n−1 one has

dS�

dS
= 1 + ��

a=1

n−1

ka +
1

2
�2���

a=1

n−1

ka�2

− �
a=1

n−1

ka
2� + O��3� . �4�

he relation �4� is valid at every point of the surface provided that one takes the principal
urvatures at the same point.

Following Refs. 7 and 8 we introduce a wave function

��x� = ��x�	dS�

dS
.

t is natural because

�
�xn���

dV���x��2 = �
−�

�

dxn� dS���x��2,

o that the normal and tangential coordinates are completely separated. For the lowest energy
olutions the normal motion is restricted only to the factor of cos��xn /2��, and the integration
ver xn yields just the constant number. It means that the conservation of norm for ��x� is satisfied.
rom �2�–�4� one gets

�̃��x� = �̃
��x�

	dS�

dS

= �LB
��x�

	dS�

dS

+
�n

2��x�

	dS�

dS

+ ��x��n
2 1

	dS�

dS

+ 2�n��x��n
1

	dS�

dS

+ div n� ·
�n��x�

	dS�

dS

+ div n� · ��x��n
1

	dS�

dS

= �LB��x� + �n
2��x� + �1

2�
a=1

n−1

ka
2 −

1

4
��

a=1

n−1

ka�2���x� + O�xn� .

or the lowest energy levels we have

��x1, . . . ,xn� = f�x1, . . . ,xn−1�cos
�xn

2�
�5�

nd, after taking �→0 limit and subtracting an infinite �proportional to 1 /�2� energy, the Hamil-
onian

Ĥ = −
�2

2
�LB +

�2

8
���

a=1

n−1

ka�2

− 2�
a=1

n−1

ka
2� �6�

s obtained. In simple cases the factorization �5� works very good even for not so small values of
.11

What was presented before �infinite potential walls� is rather the approach of Ref. 7 than of
ef. 8. But the difference is not very important. One could use an appropriate confining potential

nstead of infinite walls. It would lead to the lowest energy level function of the potential

conf�xn /�� instead of cos��xn /2�� and to another infinite energy.

Hamiltonian �6� contains quantum potential
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Vq =
�2

8
���

a=1

n−1

ka�2

− 2�
a=1

n−1

ka
2� .

or two-dimensional surfaces in R3 we get the result of da Costa:8 Vq=−��2 /8��k1−k2�2. For a
phere ka=1/R and the potential is Vq=�2�n−1��n−3� /8R2.

Physically this quantization can describe lower dimensional motions in nanoelectronics pro-
ided that the restricting potential makes a layer of uniform effective width. Of course, it would be
till a severe problem to check this potential experimentally due to the great energy proportional
o the width of layer powered by −2. �Actually, it is not so great in comparison with the kinetic
nergy of chaotic motion at ordinary temperatures. It means that the method would not work well
ue to excitation of higher energy levels of the transverse motion. So, a cryogenic experiment is
eeded.� This energy is constant on the physical surface if the potential depends only on a distance
rom the surface. For more complex potentials the results may differ. One can get different infinite
nergies in different parts of the surface. It would mean infinite tangential forces, of course. But if
ariation of width becomes smaller and smaller while �→0 it is obviously possible to obtain some
nite additional potential.

II. EQUIVALENCE WITH PROKHOROV QUANTIZATION

We should mention that there is one more method of quantization proposed by Prokhorov.12

he motion of a particle is considered as a system with two second class constraints but the only

ne condition is imposed on the physical sector: P̂n�phys�x�=0 with P̂n=−i� �1/ g̃1/4��� /�xn�g̃1/4. It
eans that

�n�	dS�

dS
�phys�x�� = 0. �7�

aving solved some task by this method, one should set xn=0 in the results after all the differ-
ntiations over xn are performed. Due to �7� the probability to find a particle at the distance �xn�
rom the surface does not depend on the value of xn, and we choose one value we need. For
rokhorov’s view see Refs. 12 and 13.

From �7� and �4� we conclude that

�n�phys�x� = −
�phys�x�

	dS�

dS

�n	dS�

dS
= − �phys�x��1

2�
a=1

n−1

ka −
1

2
xn�

a=1

n−1

ka
2 + O�xn

2�� ,

�n
2�phys�x� = �phys�x��1

4
��

a=1

n−1

ka�2

+
1

2�
a=1

n−1

ka
2 + O�xn�� .

ow �2� and �3� yield

−
�2

2
�̃�phys�x� = −

�2

2
�LB�phys�x� +

�2

8
���

a=1

n−1

ka�2

− 2�
a=1

n−1

ka
2��phys�x� .

o, the quantum potential coincides with the one obtained by the thin layer method. The reason is
lear. The lowest energy level wave functions �in the model with two infinite potential walls� have

odes at xn= ±� and the bunch at xn=0: �n�=0 or, equivalently, P̂n�=0. The methods of da Costa
nd Prokhorov are equivalent �disregarding the infinite energy of the thin layer quantization�.

Actually, one could use the calculation of �̃��x� from Sec. II and set �n��0 �but note that in

rokhorov method one uses � as a wave function, not ��.

                                                                                                            



I

T

a
t

t

t
c
o

i
p

i
t
+
t

E

A

V

p

�
n
s

082105-5 Thin layer quantization J. Math. Phys. 47, 082105 �2006�

                        
V. ON HERMITIAN MOMENTA OF ENCINOSA

Recently Encinosa15 proposed one more quantization method for a constrained free motion.
he starting point is the Hamiltonian in curvilinear coordinates xi,

H =
1

2
��

i−1

n−1
pi

2

hi�x�
+ pn

2� ,

nd the recipe is simple, pi→ p̂i=−i� g̃−1/4�ig̃
1/4 followed by the thin layer method. According to

hese rules we have in our notations

Ĥ

f�x1, . . . ,xn−1�cos
�xn

2�

	dS�

dS

=
1

2�
i−1

n−1
p̂i

2

hi�x�

f�x1, . . . ,xn−1�cos
�xn

2�

	dS�

dS

−
1

2

�2f�x1, . . . ,xn−1�

	dS�

dS

�n
2 cos

�xn

2�
.

Effectively this result may be considered as zero quantum potential �geometric potential in the
erminology of Ref. 15�. We should make two important comments on this point.

�a� Quantization in curvilinear coordinates is dangerous, because the results usually depend on
he choice of coordinate system. Nevertheless, the meaning of the method considered could be
lear if momenta operators were self-adjoint, but it is not the case even for spherical coordinates
n the sphere.

�b� Strictly speaking, the recipe is not defined correctly, because the operator ordering problem
n p̂i

2 /hi�x� terms is not solved. It is not difficult to deduce the correct ordering for the zero
otential theory from the relation

− �2�̃ = − �2�
i=1

n

�
k=1

n

g̃ −1/2�ig̃
1/2g̃ik�k = �

i=1

n

g̃ −1/4p̂ig̃
1/4g̃iip̂i

n any orthogonal coordinate system. But this particular ordering is not natural a priori. Let us turn
o the case of S2 with stereographic coordinates x1=2�R+x3�cot�	 /2�cos 
 and x2=2�R
x3�cot�	 /2�sin 
. In Ref. 16 it was shown that in these coordinates the Laplace-Beltrami opera-

or on the sphere of radius R+x3 equals

−
�2

2
�LB = �1 +

x1
2 + x2

2

4�R + x3�2� �p̂1
2 + p̂2

2�
2

�1 +
x1

2 + x2
2

4�R + x3�2� .

ven less natural it would seem for Sn in Rn+1,

−
�2

2
�LB =

1

2
�1 +

x1
2 + ¯ + xn

2

4�R + xn+1�2 �n/2

� �
i=1

n �p̂i�1 +
x1

2 + ¯ + xn
2

4�R + xn+1�2 �2−n

p̂i��1 +
x1

2 + ¯ + xn
2

4�R + xn+1�2 �n/2

.

nd, of course, for coordinates of Sec. 5 in Ref. 16 the situation would not be better.

. ELEMENTARY CASES OF CODIMENSION >1

In general let us consider m-dimensional smooth surface in Rn represented by its tangent
araboloid at some point,

y� =
1

2�
a=1

m

�
b=1

m

kab
���yayb + O�ya

3� , �8�

=m+1, . . . ,n, kab
���=kba

���. In general n−m curvature forms k��� cannot be diagonalized simulta-
eously and the notion of principal curvatures does not exist, but in this section we treat the

implest cases for which the diagonalization can be performed.
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First of all, for one-dimensional manifolds �curves� curvature forms k��� are just real numbers.
n this case by a rotation in the space of y� one can get y2= 1

2ky1
2+O�y1

3�, y3 , . . . ,yn=O�y1
3�. The

nit normal vectors are n1
�2�=ky1+O�y1

2�, n2
�2�=−1+O�y1

2�, n3
�2�= ¯ =nn

�2�=O�y1
2�; ni

���=−�i�

O�y1
2� for �3. We have n� ���n� ���=���+O�y1

2� and after the transformation y� →y��=y�
��=2

n ��n� ��� one gets dy1�= �1+�2k+O�y1��dy1, dy�� = �1+O�y1��dy�.
Now we consider a smooth family of such coordinate systems and normals along the curve.

e introduce a curvilinear coordinate system in which x1 is just the length along the curve while

�=n� ��� ·r� where r� is the minimal norm radius vector from the curve to a given point and n� ��� is
aken at the same point on the curve as r�. In this coordinate system we have

g̃ik = ��1 + x2k�2 0

0 I
�

nd

�̃ = �c + �n + � 1

1 + x2k
�2�1 + x2k���2 = �c + �n +

k

1 + x2k
�2,

here �c is Laplace-Beltrami operator on a curve x�=const and �n=��=2
n ��

2 is the Laplace op-
rator in a hyperplane x1=const.

To proceed with the thin layer quantization we introduce a thin layer ��=2
n x�

2 =�2 around the
urve and a wave function ��x�=	1+x2k ��x� such that dx1dSnormal ���x��2=dV ���x��2:

�̃��x� = �̃
��x�

	1 + x2k
= �c��x� + �n��x� +

k2

4
��x� + O�x�� .

fter subtracting an infinite energy due to �n��x� it yields the quantum potential Vq=−��2 /8�k2 as
n Ref. 8.

We should mention that it is very important for this result that the thin layer is spherical at
very point of the curve. Indeed, suppose we have a straight line in R3. We can first embed a
ylinder of any radius R into R3 and after that, with much more thin layer, we embed a line into
he cylinder. The first embedding results in Vq=−�2 /8R2 and the second one changes nothing
ecause the line is geodesic in the cylinder. Note that it is possible to generalize our considerations
o the case of embedding into non-Euclidean spaces in a sense that, if one has a free particle
amiltonian �probably, with some quantum potential� in a Riemannian manifold, he may consider
thin layer of constant width around any codimension 1 submanifold. For a cylinder it would

iterally reproduce the demonstrations of Sec. II because in intrinsic geometry the cylinder is flat.
As another simple example we consider two-dimensional flat torus isometrically embedded in

4,

x1
2 + x2

2 = R1
2,

x3
2 + x4

2 = R2
2.

e use the following coordinate system:

�1 = arctan
x2

x1
,

�2 = arctan
x4

x3
,
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r1 = 	x1
2 + x2

2 − R1,

r2 = 	x3
2 + x4

2 − R2

ith

g̃ik =�
�r1 + R1�2 0 0 0

0 �r1 + R1�2 0 0

0 0 1 0

0 0 0 1
�

nd �̃=�t+�n+ �1/ �r1+R1���r1
+ �1/ �r2+R2���r2

where �t is the Laplace-Beltrami operator on the
orus r1=const, r2=const. We have the volume element dV= �r1+R1��r2+R2�dr1 dr2 d�1 d�2, the
ave function �=	�1+ �r1 /R1���1+ �r2 /R2��� and the quantum potential Vq=−��2 /8��k1

2+k2
2�

ith ka=1/Ra.

I. GENERAL THEORY

In general the geometric construction is very similar to that of the one-dimensional case. The
nit normals to the surface �8� at y� =0 are n�

���=����−1+O�ya
2��, na

���=�b=1
m kab

���yb+O�ya
2�, � ,�

m+1, . . . ,n, a ,b=1, . . . ,m, and after the replacement y� →y��=y� +��=m+1
n ��n� ��� one gets

dya� = �
b=1

m ��ab + �
�=m+1

n

��kab
��� + O�yc��dyb,

y�� = �1+O�yc��dy�. It means that in curvilinear coordinate system

gab�x1, . . . ,xn� = �
c=1

m ��ca + �
�=m+1

n

x�kca
���� � ��cb + �

�=m+1

n

x�kcb
���� fab�x1, . . . ,xm�

ith x�=n� ��� ·r� as in the preceding section and fab�x1 , . . . ,xm�=gab�x1 , . . . ,xm ,0 , . . . ,0�. In this
ystem if some point has coordinates �x1 , . . . ,xn� then its position can be found by adding the
ector ��=m+1

n x�n� ��� to the radius vector of the initial surface point with coordinates �x1 , . . . ,xm�. If
e choose xa=ya at the surface x�=0, then at the xa=0 hyperplane fab=�ab, x�=��, and gab

�ab+2����kab
���+��,�,c����kac

���kbc
���. An easy computation yields

g = 1 + 2�
�,a

��kaa
��� + 2 �

�,�,a,b
����kaa

���kbb
��� − 2 �

�,�,a
����kaa

���kaa
��� + 3�

a,b
��

�

��kab
����2

− 2�
a
��

�

��kaa
����2

+ O��3� .

The problem is that the coordinates xi are not orthogonal. Parallel translations of the surface
long one of the normals breaks its orthogonality to other normals. Indeed, we have �nb

��� /�ya

kab
���+O�yc� and �n�

��� /�ya=O�yc�. We suppose that all normals have unit length, hence

0 =
�n� ���

�ya
· n� ��� = �

b,c
kbc

���yckab
��� −

�n�
���

�ya
+ O�yc

2�

nd

�n�
���

�ya
= �

b,c
kab

���kbc
���yc + O�yc

2� .
ow we see that parallel translations lead to violation of orthogonality condition because
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�n� ���

�ya
· n� ��� = �

b,c
�kab

��� − kab
����kbc

���yc + O�yc
2� � 0.

We introduce a notation f�a
���= fa�

���=�b,c�kab
���−kab

����kbc
���yc and find the metric tensor

g̃ik = � gab �
�

fa�
����� + O��2�

�
�

f�a
����� + O��2� ���

� ,

ts determinant g̃=g+O��2� and the reciprocal tensor

g̃ik = � gab − �
c,�

gacfc�
����� + O��2�

− �
c,�

f�c
���gcb�� + O��2� ���

� .

a Costa concluded14 that the thin layer quantization would not work well in this situation

ecause �̃ contains terms with both derivatives �a and ��.

The situation is quite different for the method proposed in Ref. 12. All new terms in �̃ have
oefficients of order O���; the only suspicious term,

�
a,�

���ga���a = �− �
a,c,�,�

gacfc�
������ + O�����a = O����a,

s not dangerous because fc�
���=0. In Prokhorov quantization method the condition ���g1/4�phys�

0, "�=m+1, . . . ,n is imposed. For a function ��x�= �g / f�1/4��x� it means ���=0, and we get

�̃
��x�

�g

f
�1/4 = �LB

��x�

�g

f
�1/4 + ��x��n

1

�g

f
�1/4 + ��x� �

�=m+1

n � 1
	g

��
	g���

1

�g

f
�1/4 + O�x�� ,

n���=m+1
n ��

2 . It is easy to see that �1/	g���
	g=−2g1/4��g−1/4, and the Hamiltonian is

ˆ =−��2 /2��LB+Vq�x�,

Vq = −
�2

2
��g1/4�ng

−1/4 − 2 �
�=m+1

n

�g1/4��g−1/4�2��
x�=0

.

ne more �not too difficult� calculation yields

Vq =
�2

8 �
�=m+1

n ���
a=1

m

kaa
����2

+ 6�
a=1

m

�
b=1

m

�kab
����2 − 8�

a=1

m

�kaa
����2� . �9�

The thin layer method would not give this answer because in this method we have ���=0 only
t the original surface and generally ����1/�, so that terms with ��� are not negligible and
actorization similar to �5� is not a good approximation of the exact thin layer solution. It is not
urprising. Let us take a small element of the surface and its �-neighborhood, �→0. The well-

nown theorem states that dV ��=dS� ·�� �. We have ���dS� ·�� � /V and in the codimen-

ion 1 case the normal projection of �� � leads to 1/�2 term in �� �because �n��1/� and V

��. Tangential components of �� � result in finite values of �� due to dS���. In the general

ase V�� n−m and dS�� n−m, hence the tangential components of ��� yield finite terms in ��

gain; but normal projections gain some components orthogonal to transverse hyperplanes �xa
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const�. The corresponding angles are of order � but ����1/�. It results in finite terms in ��.

o, normal components of �� � influence the tangential dynamics. Hence, the thin layer method of
efs. 7, 8, and 14 does not yield the result of the general form �1�. It means that the Prokhorov
ethod in such cases does not correspond to the motion in the uniform thin layer but it turns out

o be more powerful as an abstract quantization method for second class constrained systems. One
ould find, of course, some orthogonal coordinate system in the whole vicinity of the surface with
ormals depending on x� and, maybe, one would be able to determine a geometry of the thin layer
or which some factorization similar to �5� would be a good approximation. Quantum potential in
his approach is likely to coincide with �9� at least with a certain realization of it, but generally the
ayer would not have constant width and the setup of the quantization would not be as easy and
lear as the original one.
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By using the recent mathematical tools developed in quaternionic differential op-
erator theory, we solve the Schrödinger equation in the presence of a quaternionic
step potential. The analytic solution for the stationary states allows one to explicitly
show the qualitative and quantitative differences between this quaternionic quan-
tum dynamical system and its complex counterpart. A brief discussion on reflected
and transmitted times, performed by using the stationary phase method, and its
implication on the experimental evidence for deviations of standard quantum me-
chanics is also presented. The analytic solution given in this paper represents a
fundamental mathematical tool to find an analytic approximation to the quater-
nionic barrier problem �up to now solved by numerical method�. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2227635�

. INTRODUCTION

Since a quaternionic equation can be equivalently written as a two-component complex equa-
ion, it is natural to ask whether the quaternionic Schrödinger equation is simply another way of
ewriting complex quantum mechanics. The answer to this question is given in the famous book1

y Adler. Probabilities in quaternionic dynamical system are different from those of standard
omplex theory. In the first papers on the quaternionic Schrödinger equation, deviations from
omplex quantum mechanics were studied by considering quaternionic perturbation potentials.2,3

ecent progress on the solution of quaternionic differential equations4–6 has improved the physical
iscussion on quaternionic tunneling phenomena7 and bound states.8

In this paper, an interesting simple quaternionic quantum mechanical system is analytically
olved. This allows one to discuss both qualitative and quantitative differences between quater-
ionic and complex quantum mechanics. The explicit stationary wave solution for the quaternionic
otential step shows some important results which could be very useful in looking for deviations
rom the standard quantum theory. For example, the quaternionic step diffusion is characterized by
eflected and transmitted waves which are not instantaneous. The analytic solution is also very
seful to understand the effect that quaternionic potentials play on the phase of stationary waves.
he advantage to analytically solve a quaternionic problem is surely represented by the possibility

o deeply study the quaternionic solution and understand where and if deviations from complex
uantum theory could be seen.
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�
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I. FQUATERNIONIC SCHRÖDINGER EQUATION

In the quaternionic formulation of nonrelativistic quantum mechanics, the dynamics of a
article without spin subject to the influence of the anti-Hermitian scalar potential,

iV1�r,t� + jV2�r,t� + kV3�r,t� ,

s described by

��t��r,t� = �i
�2

2m
�2 − iV1�r,t� − jV2�r,t� − kV3�r,t����r,t� , �1�

ith

V1,2,3: �R3,R� → R and �:�R3,R� → H .

quation �1� is known as the Schrödinger equation for quaternionic quantum mechanics.1 It is
atural to try to relate the new results coming from this quaternionic formulation with the well-
nown phenomena discussed in the standard textbooks of �complex� quantum mechanics.9–11 In
his spirit, the complex limit, i.e., V2,3→0, surely represents a useful mathematical tool to test
uaternionic calculations and to understand, by explicitly showing the difference between the
uaternionic and complex formulation, if and where quaternionic deviations from standard quan-
um mechanics could be seen and investigated.

The linearity in �t of the evolution time operator in Eq. �1� guarantees to obtain a positive
robability density

��r,t� = �̄�r,t���r,t� , �2�

ogether with a continuity equation

�t��r,t� + � · J�r,t� = 0. �3�

o find the explicit form of the current density J�r , t�, let us first derive the Schrödinger equation

or �̄�r , t� �the quaternionic conjugate of ��r , t�, i.e., �i , j ,k�→−�i , j ,k��,

��t�̄�r,t� = −
�2

2m
�2�̄�r,t�i + �̄�r,t��iV1�r,t� + jV2�r,t� + kV3�r,t�� . �4�

ombining Eq. �1� �multiplied from the left by �̄�r , t�� and Eq. �4� �multiplied from the right by
�r , t��, we obtain

�t��̄�r,t���r,t�� +
�

2m
���2�̄�r,t��i��r,t� − �̄�r,t�i�2��r,t�� = 0.

onsequently, the density current in quaternionic quantum mechanics is formally equal to that one
f the usual complex theory, i.e.,

J�r,t� =
�

2m
����̄�r,t��i��r,t� − �̄�r,t�i � ��r,t�� . �5�

t is worth pointing out that, due to the noncommutativity nature of quaternions, the position of the
maginary unit i is not a choice but it is imposed by the anti-Hermiticity of evolution time operator
n Eq. �1�.

. Time independent potentials

In this paper, we are going to be concerned with a particle in a time independent potential. In

omplex quantum mechanics, the rapid spatial variations of a square potential introduce purely
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uantum effects in the motion of the particle. The same is valid for perturbative quaternionic
otentials. Before beginning our investigation, we shall discuss some important mathematical
roperties of the quaternionic Schrödinger equation in the presence of time independent potentials,

��t��r,t� = �i
�2

2m
�2 − iV1�r� − jV2�r� − kV3�r����r,t� . �6�

aking into account that ��r , t� is a quaternionic function, we apply the method of separation of
ariables with the time dependent function appearing on the right-hand side,4

��r,t� = ��r�exp�−
i

�
Et� , �7�

ith

�: R3 → H .

his stationary solution of the Schrödinger equation leads to a time-independent probability den-
ity ��r�. Consequently, the current density satisfies

� · ����̄�r��i��r� − �̄�r�i � ��r�� = 0. �8�

y using the separation of variable �7�, Eq. �6� reduces to the following quaternionic �right�
igenvalue problem:12,13

�i
�2

2m
�2 − iV1�r� − jV2�r� − kV3�r����r� + ��r�iE = 0. �9�

. Time reversal invariance

From Eq. �6�, we can immediately obtain the time-reversed Schrödinger equation

��t�T�r,− t� = − �i
�2

2m
�2 − iV1�r� − jV2�r� − kV3�r���T�r,− t� . �10�

n complex quantum mechanics the *-conjugation yields a time-reversed version of the original
chrödinger equation. In quaternionic quantum mechanics there does not exist a universal time
eversal operator.1 Only a restricted class of time-independent quaternionic potentials �V2�r�
V3�r��, i.e.,

W�r� = V2�r� − iV3�r� = 	W�r�	exp�i�� �� = const� ,

s time reversal invariant. For these potentials,

�T�r,− t� = u��r,t�ū, u = k exp�i�� . �11�

n the standard quantum mechanics limit, due to the complex nature of the wave function �C�r , t�,
e recover the well-known result

�C,T�r,− t� = �C
*�r,t� .

. One-dimensional square potentials

Let us consider one-dimensional potentials. In the case of square shapes, the potential is a
uaternionic constant in certain regions of space. In such regions, the stationary wave function
�x� is obtained by solving the following second-order differential equation with �left� constant
uaternionic coefficients,
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�i
�2

2m
���x� − iV1 − jV2 − kV3���x� = − ��x�iE . �12�

t is not our purpose here to discuss the theory of quaternionic differential equations and we refer
he interested reader to the papers cited in Refs. 4–6 where a detailed exposition of the subject is
ound. The solution of Eq. �12� is

��x� = �1 + jw��exp��−x�c1 + exp�− �−x�c2� + �z + j��exp��+x�c3 + exp�− �+x�c4� , �13�

here c1,. . .,4 are complex coefficients to be determined by the boundary conditions and

�± = 
2m�V1 ± 
E2 − V2
2 − V3

2�/ � ,

z = i�V2 + iV3�/�E + 
E2 − V2
2 − V3

2� ,

w = − i�V2 − iV3�/�E + 
E2 − V2
2 − V3

2� � C�1,i� .

n the free potential region �V1,2,3=0� the previous solution reduces to

��x� = exp�i�x�c1 + exp�− i�x�c2 + j�exp��x�c3 + exp�− �x�c4� , �14�

here

� = 
2mE/ � � R .

II. BOUNDED SOLUTIONS AND CURRENT DENSITY

Let us now calculate the stationary states in the case of a quaternionic step potential. The
rocedure follows the standard one. We use Eq. �13� in the region where the potential is a constant
nd Eq. �14� in the free region. We then impose that such solutions remain bounded and, finally,
e match these functions by requiring the continuity of ��x� and its derivative in x=0. Before
roceeding with our calculations, the only point deserving further discussion concerns the classi-
cation of the energy zones in the potential region �in order to distinguish between partial and total
eflection�. To do this, we have to analyze the complex exponential factors �±. The possible cases
re sketched in the following figure

o avoid any confusion between real and imaginary coefficients and to facilitate the reading of this
aper, in the sequel, we shall adopt the following notation:

zone A: �− = i�−, �+,

zone B: �−, �+,

zone C: �− = 	+ − i	−, �+ = 	+ + i	−,
here
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�− =
2m

�2 �
E2 − V2
2 − V3

2 − V1�, 	± =
m

�2 �
V1
2 + V2

2 + V3
2 − E2 ± V1� � R .

. Region I

For the solution to remain bounded when x→−
, it is necessary to have c4=0 in Eq. �14�. So,
he solution in region I becomes

�I�x� = ei�x + re−i�x + jr̃e�x, �15�

here c2=r and c3= r̃ represent the reflection coefficients to be determined by the matching
onditions. From Eq. �8�, we immediately find the constant value of the current density in this
egion, i.e.,

JI = �1 − 	r	2� � �/m . �16�

. Region II - zone A: Partial reflection

The condition on the boundedness of the solution implies that c3=0 in Eq. �13�. Since the
ncident particle is coming from x=−
, we also have to impose c2=0. The stationary wave
unction, in zone A, is then given by

�II,A�x� = �1 + jw�tei�−x + �z + j�t̃e−�+x, �17�

here c1= t and c4= t̃ represent the transmission coefficients to be determined by the matching
onditions. In this region the current density is

JII,A = �1 − 	w	2�	t	2 � �−/m . �18�

his means a non-null transmission probability and consequently partial reflection in region I.

. Region II - zone B: Total reflection

For the solution to remain bounded when x→ +
, it is necessary that c2=c4=0 in Eq. �13�.
hus, the solution in zone B is

�II,B�x� = �1 + jw�te−�−x + �z + j�t̃e−�+x. �19�

n this zone, the current density is null

JII,B = 0. �20�

his characterizes a total reflection in region I.

. Region II - zone C: Total reflection

The boundedness condition of the solution implies that c1=c3=0 in Eq. �13�. Thus, we have

�II,C�x� = ��1 + jw�tei	−x + �z + j�t̃e−i	−x�e−	+x, �21�

ith

w = − i
V2 − iV3


V2
2 + V3

2
e−i�, z = i

V2 + iV3


V2
2 + V3

2
e−i�, � = arctan�
V2

2 + V3
2 − E2

E
� .
s in the previous zone, the current density is null
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JII,C = 0. �22�

his implies total reflection in region I.

. Relation between reflection and transmission coefficients

The stationary wave solution of the Schrödinger equation in the presence of a quaternionic
tep potential can then be expressed in terms of complex reflection �r , r̃� and transmission �t , t̃�
oefficients:

�I�x� = ei�x + re−i�x + jr̃e�x, �23�

�II�x� = ��1 + jw�tei�−x + �z + j�t̃e−�+x zone A

�1 + jw�te−�−x + �z + j�t̃e−�+x zone B

��1 + jw�tei	−x + �z + j�t̃e−i	−x�e−	+x zone C.

�24�

s we saw, the current density assumes a constant value. This value has been calculated in the free
otential region and in each of the three different zones of region II. The continuity of ��x� and
ts derivative in x=0 implies the continuity of the current density, i.e., JI=JII. This gives an
mmediate relation between reflection and transmission coefficients,

R + T = 1, �25�

ith

R = 	r	2 and T =
�−

�
�1 − 	w	2�	t	2 for E � 
V1

2 + V2
2 + V3

2,

R = 	r	2 and T = 0 for E  
V1
2 + V2

2 + V3
2.

bserve that both in complex and quaternionic quantum mechanics, to find the relation between R
nd T we do not have the necessity to find the explicit value of plane wave coefficients r and t.

V. EXPLICIT PLANE WAVE SOLUTIONS

The usual method for determining the stationary states in a square potential requires the
ontinuity of ��x� and its derivative at the point where the potential is discontinuous �in this case
=0�. Then, we impose that

�I�0� = �II�0� ,

�26�
�I��0� = �II� �0� .

. Region II - zone A: Continuity

Matching the conditions at x=0, we get

1 + r + jr̃ = �1 + jw�t + �z + j�t̃ ,

i��1 − r� + j�r̃ = �1 + jw�i�−t − �z + j��+t̃ .

fter separating the complex from the pure quaternionic part, we find

˜
1 + r = t + zt ,
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r̃ = wt + t̃ ,

1 − r =
�−

�
t + i

�+

�
zt̃ ,

r̃ = i
�−

�
wt −

�+

�
t̃ ,

hich gives

t =
2�

� + �−
�1 − zw

� + i�+

� + �+

� − i�−

� + �−
�−1

,

r =
� − �−

2�
�1 − zw

� − i�+

� + �+

� − i�−

� − �−
�t ,

�27�

t̃ = −
� − i�−

� + �+
wt ,

r̃ =
�+ + i�−

� + �+
wt .

e have determined the stationary states of a particle in the presence of a quaternionic step
otential for plane waves of energy E�V0=
V1

2+V2
2+V3

2. In Fig. 1, we plot, for different ratios of

 2 2

IG. 1. Space is divided into region I �x0� and region II �x�0�. There is a constant quaternionic potential �iV1+ jV2

kV3� in region II whereas in region I there is no potential. The space dependence of the quaternionic stationary wave
unction ��x� is plotted for the energy zone A �E�V0=
V1

2+V2
2+V3

2� and for different complex/pure quaternionic potential
atios. The plots for the complex part of ��x� exhibit an oscillatory behavior both for region I and region II. The pure
uaternionic part is practically absent in the free potential region.
he complex and pure quaternionic potential �V1 / V2+V3 �, the four real component of ��x�
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ersus the adimensional space variable 
2mV0x /�. In region I, only the complex part of ��x�
resents an oscillatory behavior. The pure quaternionic part decreases exponentially due to the
resence of the evanescent wave e�x. In region II, we have a new oscillatory pure quaternionic
ave. It is also important to note here that increasing the value of pure quaternionic potential, we

mooth the phase changes expected in the potential region by standard quantum mechanics. Thus,
e can conclude that this change in the phase is caused by the complex part of the quaternionic
otential.

These plane waves do not represent a physical state for a localized incoming particle. They
ave to be linearly superposed to form wave packets. It is not our purpose to introduce the wave
acket treatment for quaternionic wave functions in this paper. This topic deserves a deeper
nalysis and is, currently, under investigation. Nevertheless, a simple discussion can done at this
tage. By using the stationary phase method,9 we can follow the maximum of the reflected and
ransmitted wave packets. The use of a real modulation function g��� implies that the incident
ave packets reach the point x=0 at t=0. Any phase in the reflected and/or transmitted waves will

ntroduce a shift in time. To clarify this point, it can be useful to rewrite the reflection and
ransmission coefficients in terms of their modulus and phases. By simple algebraic manipulations,
e find

r =
�� − �−��� + �+� − zw��2 − �−�+� + izw���− + �+�
�� + �−��� + �+� − zw��2 + �−�+� + izw���− − �+�

=
��� − �−��� + �+� − zw��2 − �−�+��2 + z2w2�2��− + �+�2

��� + �−��� + �+� − zw��2 + �−�+��2 + z2w2�2��− − �+�2 exp�i��n − �d�� �28�

nd

t =
2�

� + �−
� �� + �−��� + �+�

�� + �−��� + �+� − zw�� − i�−��� + i�+��
=

2��� + �+�

��� + �−��� + �+� − zw��2 − �−�+��2 + z2w2�2��− + �+�2

exp�− i�d� , �29�

here

�n = arctan� zw���− + �+�
�� − �−��� + �+� − zw��2 − �−�+�� , �30�

�d = arctan� zw���− − �+�
�� + �−��� + �+� − zw��2 + �−�+�� . �31�

he phases of the reflected and transmitted waves are then given by

�r��;x,t� = �n��� − �d��� − �x −
��2

2m
t ,

�32�

�t��;x,t� = − �d��� + �−���x −
��2

2m
t .

he stationary phase method suggests that the maximum of the reflected and transmitted waves is
ound at the point x=0 for the following time values:

�r =
m �n���0� − �d���0�

,

� �0
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�t = −
m

�

�d���0�
�0

, �33�

here �0 is the maximum of the modulation function g���. In this energy zone �E�V0�, an
mmediate qualitative difference between complex and quaternionic quantum mechanics is found.
or quaternionic potential the reflection and transmission are not instantaneous. We shall come
ack to this point later.

. Region II - zone A: Complex limit

Performing the complex limit, V2,3→0, we obtain

�+ → 
2m�E + V1�/ � ,

�− → 
2m�E − V1�/ � ,

z,w → 0.

rom Eq. �27�, we find the reflection and transmission coefficient of standard �complex� quantum
echanics

tC = 2
E/�
E + 
E − V1� ,

rC = �
E − 
E − V1�/�
E + 
E − V1� ,

r̃C, t̃C = 0.

ue to the real nature of rC and tC, we find instantaneous reflection and transmission. This means
hat at time zero, the maximum of the incident, reflected and transmitted waves are at x=0.

. Region II - zone B: Continuity

Matching the continuity conditions at x=0, we obtain

t =
2�

� + i�−
�1 − zw

� + �−

� + i�−

� + i�+

� + �+
�−1

,

r =
� − i�−

2�
�1 − zw

� + �−

� − i�−

� − i�+

� + �+
�t ,

�34�

t̃ = −
� + �−

� + �+
wt ,

r̃ =
�+ − �−

� + �+
wt .

n Fig. 2, we plot the four real component of ��x� versus the adimensional space variable
2mV0x /�. Zone B is characterized by 
V2

2+V3
2EV0. In Fig. 2, we have considered the case

=V0 /
2. Consequently, the behavior of the stationary waves in this zone is given by the plots
orresponding to 
V2

2+V3
2 /V01/
2. In this zone, due to the presence of evanescent exponentials

n the transmitted waves, we find a nonzero probability to find the particle in the region of space
here x is positive only for short times. The stationary phase method can be applied to the
eflected wave. The coefficient r can be rewritten as follows
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r =
���� + �+� − zw�� + �−�� + i�zw�+�� + �−� − �−�� + �+��
���� + �+� − zw�� + �−�� − i�zw�+�� + �−� − �−�� + �+��

= exp�2i�� , �35�

here

� = arctan� zw�+�� + �−� − �−�� + �+�
��� + �+� − zw��� + �−� � .

he phase of the reflected wave is then given by

�r��;x,t� = 2���� − �x −
��2

2m
t . �36�

t is important to observe that here we have a quantitative difference between complex and
uaternionic quantum mechanics. Indeed, also for the standard quantum theory the reflection is not
nstantaneous. The reflect wave reaches x=0 at time

�r = 2
m

�

����0�
�0

. �37�

. Region II - zone B: Complex limit

Performing the complex limit, V2,3→0, we obtain

t → tC = 2
E/�
E + i
V1 − E� ,

IG. 2. The space dependence of the quaternionic stationary wave function ��x� is plotted for the energy zone B

V2

2+V3
2EV0� and C �E
V2

2+V3
2�, and for different complex/pure quaternionic potential ratios. The plots for the

omplex part of ��x� exhibit an evanescent behavior in region II. The pure quaternionic part is practically zero far from
he discontinuity point. An interesting oscillatory behavior smoothed by the evanescent waves is also present in region II
or energy values in zone C. This remembers the Klein zone in the Dirac equation.
r → rC = �
E − i
V1 − E�/�
E + i
V1 − E� ,
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r̃, t̃ → 0.

he presence of the phase

�C = arctan�−
V1 − E

E


n rC shows that the reflection is not instantaneous. The delay time9 is

�r,C = 2
m

�

�C���0�
�0

=
�

E0

 E0

V1 − E0
. �38�

. Region II - zone C: Continuity

The last zone is characterized by E
V2
2+V3

2. Continuity conditions give

t =
2�

� + 	− + i	+
�1 − zw

� + 	+ − i	−

� + 	− + i	+

� − 	− + i	+

� + 	+ + i	−
�−1

,

r =
� − 	− − i	+

2�
�1 − zw

� + 	+ − i	−

� − 	− − i	+

� + 	− − i	+

� + 	+ + i	−
�t ,

�39�

t̃ = −
� + 	+ − i	−

� + 	+ + i	−
wt ,

r̃ =
2i	−

� + 	+ + i	−
wt .

he stationary waves corresponding to this case are also shown in Fig. 2, see the plots with
V2

2+V3
2 /V0�1/
2. To discuss the time reflection, we rewrite r in terms of its modulus and phase,

r =
�� − 	− − i	+��� + 	+ + i	−�ei� − �� + 	+ − i	−��� + 	− − i	+�e−i�

�� + 	+ + i	−��� + 	− + i	+�ei� − �� + 	+ − i	−��� − 	− + i	+�e−i� = exp�2i�� �40�

here

� = arctan� ��� + 	+�tan � + �	−

�	− − ��	+ + 	−
2 + 	+

2�tan �
� .

n this zone, we do not have a complex limit case. It is important to observe that a new phenom-
non appears. The oscillatory behavior of the particle in region II is damped due to the presence
f the evanescent wave e−	+x. Thus, a nonzero probability to find the particle in the potential
egion only exists for short times.

. RELATIONSHIPS BETWEEN COMPLEX AND QUATERNIONIC QUANTUM
ECHANICS

In the last several years, the Schrödinger equation in the presence of quaternionic �constant�
otentials has been a matter of study and discussion in the literature. This is justified in view of a
ossible understanding of the role that a quaternionic quantum theory could play in the real
hysical world. As remarked by Adler1 all known physical phenomena appear to be very well
escribed by complex quantum mechanics. Nevertheless, to see if quaternionic quantum mechan-
cs represents a possible way to describe the nature or if it is only an interesting mathematical

xercise, we have to use and test this formalism in simple quantum mechanical systems. With

                                                                                                            



r
i
m

a
s
t
o
s
q
n
s
w
b

A

m
B
r
W
a
t
m
n
t
m

a
c
D
n
t
t
p
m
d
w
W
M
i

c
q
A
r

B

f
c
r

082106-12 De Leo, Ducati, and Madureira J. Math. Phys. 47, 082106 �2006�

                        
espect to previous works regarding potential barrier diffusion2,3,7 and potential well bound states,8

n this paper, we have preferred to go back in our analysis of nonrelativistic quaternionic quantum
echanics by studying the potential step.

The study presented in this paper can be seen as an attempt to understand, by starting from an
nalytic solution of a simple quantum mechanical system, where and if differences between
tandard quantum mechanics and theoretical solutions obtained by solving the Schrödinger equa-
ion in the presence of a quaternionic step perturbation can be observed. The main difficulty in
btaining quaternionic solutions of a physical problem is due to the fact that, in general, the
tandard mathematical methods of resolution break down. Nevertheless, the recent progress in
uaternionic differential theory4–6 and linear algebra12,13 gives the possibility to use “new” quater-
ionic mathematical tools. As a direct consequence of this, we have been able to find an analytic
olution for the stationary states in the presence of a quaternionic potential step. This means that
e have now �for the first time� the possibility of describing in detail qualitative differences
etween complex and quaternionic quantum mechanics.

. Experimental proposals in quaternionic quantum mechanics

The earliest experimental proposals to test quaternionic deviations from complex quantum
echanics14 suggested that the noncommutativity of quaternionic phases could be observed in
ragg scattering by crystal made of three different atoms, in neutron interferometry and in meson

egeneration. In 1984, the neutron interferometric experiment was realized by Kaiser, George, and
erner.15 The neutron wave function traversing slabs of two dissimilar materials �titanium and

luminum� should experience the noncommutativity of the phase shifts when the order in which
he barriers are traversed is reversed. The experimental result showed that the phase shifts com-

ute to better than one part in 3�104. To explain this null result, Klein postulated16 that quater-
ionic potentials act only for some of the fundamental forces and proposed an experiment for
esting possible violations of the Schrödinger equation by permuting the order in which nuclear,

agnetic, and gravitational potentials act on neutrons in an interferometer.
The first theoretical analysis of two quaternionic potential barriers was developed by Davies

nd McKellar.3 In their paper, by translating the quaternionic Schrödinger equation into a pair of
oupled complex equations and solving the corresponding complex system by numerical methods,
avies and McKellar showed that, notwithstanding the presence of complex instead of quater-
ionic phases, the predictions of quaternionic quantum mechanics differ from those of the usual
heory. In particular, they pointed out that different from the complex quantum mechanics predic-
ion, where the left and right transmission amplitudes, tL and tR, are equal in magnitude and in
hase, in the quaternionic quantum mechanics only the magnitudes 	tL	 and 	tR	 are equal. So, the
easurement of a phase shift should be an indicator of quaternionic effects and of space depen-

ent phase potentials. However, this conclusion leads to the embarrassing question of why there
as no phase change in the experiment proposed by Peres14 and realized by Kaiser, George, and
erner.15 To reconcile the theoretical predictions with the experimental observations, Davies and
cKellar reiterated the Klein conclusion and suggested to subject the neutron beam to different

nteractions in permuted order.
In the final chapter of the Adler book,1 we find an intriguing question. Do the Kayser and

olleagues’1 experiment, and the elaborations on it proposed by Klein actually test for residual
uaternionic effects? According to the nonrelativistic quaternionic scattering theory developed by
dler1 the answer is clearly no. Experiments to detect a phase shift are equivalent to detect time

eversal violation, which so far has not been detectable in neutron-optical experiments.

. Quaternionic potential step, CP violation, and kaons system

Based on the previous considerations, experimental proposals to test quaternionic deviations
rom standard quantum mechanics should involve CP violation dynamical systems. A natural
andidate to such an investigation could be the system of K-mesons.17,18 The quaternionic time

eversal violation potential �see Sec. II�
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W�r� = 	W�r�	exp�i��r��

hould be directly responsible for CP violation effects. The experimental results on KS,L �a KL

eson decays more often to �−e+�̄e than to �+e−�e Ref. 19� could be useful to estimate the
odulus and phase of the pure quaternionic part of this “effective” potential.

Once determined the magnitude of the quaternionic perturbation, by using the analytic solu-
ion obtained in this paper, could be possible �through a stationary phase analysis� to explicitly
alculate the reflection and transmission times of a K-meson particle scattered by a complex
otential step in the presence of a quaternionic �CP violating� perturbation. In the case of an
bove-potential incident particle the diffusion from a pure complex potential �standard quantum
echanics� happens instantaneously, i.e.,

�r,C = �t,C = 0.

he possibility to analytically solve the corresponding quaternionic problem gives us the chance
o see an immediate qualitative difference between complex and quaternionic quantum mechanics.
he presence of a quaternionic potential surprisingly modifies the reflection and transmission

imes which are now nonzero,

�r =
m

�

�n���0� − �d���0�
�0

, �t = −
m

�

�d���0�
�0

,

here �0 is the maximum of the wave packet modulation function.
With this paper, we would have liked to close the debate on the role that quaternionic poten-

ials could play in quantum mechanics, but more realistically, we simply contribute to the general
iscussion. Physical interpretations of quaternionic solutions still represent a delicate question and
efore proposing a detailed experimental test, we think that more mathematical questions should
e addressed and deeply investigated.

. Complex and quaternionic geometries

To give a satisfactory probability interpretation, amplitudes of probability must be defined in
ssociative division algebras.1 Amplitudes of probabilities defined in nondivision algebras fail to
atisfy the requirement that in the absence of quantum interference effects, probability amplitude
uperposition should reduce to probability superposition. The associative law of multiplication
which fails for the octonions� is needed to satisfy the completeness formula and to guarantee that
he Schrödinger anti-self-adjoint operator leaves invariant the inner product.

At first glance it appears that we cannot formulate quantum theories by using wave functions
efined in nondivision or nonassociative algebras. This is an erroneous conclusion because the
onstraint concerns the inner product and not the kind of Hilbert space in which we define our
ave functions. Amplitudes of probability have to be given in C or H �complex or quaternionic
eometry� but vectors in the Hilbert space have no limitation. We can formulate a consistent
omplexified quaternionic20–24 or octonionic25,26 quantum mechanics by adopting complex inner
roducts. The use of complex inner product represents a fundamental tool in applying a Clifford
lgebraic formalism to physics and plays a fundamental role in looking for geometric interpreta-
ion of the algebraic structures in relativistic equations and gauge theories.27–31 The choice of
uaternionic inner product seems to be best adapted to investigate deviations from the standard
omplex theory in quantum mechanics32,33 and field theory.34,35

. Conclusions and outlooks

We conclude this paper by listing the most interesting features of our analysis and future
nvestigations suggested by our results.

�1� An analytic solution for a simple quantum mechanical system �quaternionic potential step�
as been given �previous studies on the quaternionic Schrödinger equation have been performed

y numerical calculations�.
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�2� Our plane wave analysis immediately show qualitative differences between complex and
uaternionic quantum mechanics �see, for example, the reflection and transmission times for
bove-potential diffusion and the oscillatory behavior in the new region below the potential�.

�3� A plane wave analysis for a quaternionic barrier can be now developed by using an
nalytic two step approach.

�4� The plane wave results �valid in the physical situation of complete interference� should be
evised by introducing a quaternionic wave packet formalism �particle viewpoint�. This should
onfirm and explain the reflection and transmission times obtained by the stationary phase method.

�5� In the quaternionic barrier analysis, we expect qualitative differences between complex
nd quaternionic quantum dynamical system.

�5.1� For above-potential diffusion, the quaternionic wave packets will be characterized by
ew reflection and transmission times with respect to the standard �complex� case.36,37

�5.2� In the tunneling zone, the quaternionic Hartman effect has to be investigated and con-
ronted with the standard one which predicts �for a long barrier� instantaneous transmission.38–40

�5.3� In the new below-potential region, a Klein-like phenomenon41,42 appears and it should be
nterpreted within a nonrelativistic context.

�6� The natural candidate to quaternionic experimental proposals seems to be the system of
-mesons. The above-suggested investigations should give a more clear idea about the possibility

o really perform an experiment involving nonrelativistic oscillating particles and CP violating
otential barriers. This probably should close the debate on the use of a quaternionic mathematical
ormalism in quantum theories.
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. INTRODUCTION

Spectral theory of Toeplitz operators and its connection with C*-algebras is a vast topic. We
nly indicate Ref. 6 as a textbook systematization of part of the early theory. Since the appearance
f Douglas’ book, the theory has evolved by extension and abstraction in many directions. The
orks closest to the present paper are the ones relating Toeplitz operators and Toeplitz algebras to
rdered groups.11,13,20,21

Our interest in the topic has been aroused by the remark15,16,14 that the one-dimensional
eisenberg Hamiltonian H of ferromagnetism can be written as a direct sum H= �N�NHN, where

N can be interpreted as the Laplace operator on the subgraph

Z�
N
ª ��x1, . . . ,xN� � ZN:x1 � x2 � ¯ � xN�

f the standard �Cayley� graph ZN. In Sec. II we show that HN �when suitably restricted to Z�
N � is

qual to the sum of a Toeplitz operator and a multiplicative potential, both belonging to the
oeplitz-like C*-algebra T��ZN� generated by the unilateral shifts on Z�

N .
Although T��ZN� is of none of the types thoroughly studied in the literature, its structure is

imple enough to suggest spectral results for the operators it contains �see Sec. III�. Since the
lements of T��ZN� can be written as direct integrals over a torus, we are mainly concerned with
pectral properties of the fibers �this presents a particular interest in the case of the one-
imensional Heisenberg model �see Refs. 14 and 22��. In Sec. IV we express the essential spec-
rum of the fibers as a union of spectra of a family of subhamiltonians, improving part of the
tatements of Zholondek,23 which concerns a larger class of operators but imposes an unnecessary
xponential decay condition. We consider that our formalism and proofs are much more simple
nd natural than those of Zholondek.23 In Sec. V we show the following type of result concerning
he whole Hamiltonian HN. If � is a continuous real function with suitable support, then there
xists a natural family of multiplication operators ��n�n�N for which ��n��HN�� is arbitrarily small
f n is large enough. This can be reformulated in terms of the evolution group �e−itHN�t�R: at

�Electronic mail: mondher.damak@fss.rnu.tn
�Electronic mail: marius.mantoiu@imar.ro
�
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nergies belonging to supp���, the system governed by HN stays “out of supp��n�” uniformly in
ime. Practically, supp��� must not intersect the spectrum of a certain subhamiltonian associated to
ome ideal of T��ZN�. For the Heisenberg model we put into evidence a nice interpretation
nvolving cluster properties of N-magnon states. The related issue of determining a Plancherel
ormula for the one-dimensional Heisenberg model has been discussed in Refs. 17 and 4 in the
sotropic case and in Ref. 3 for the XXZ model.

We think that the structure of T��ZN� may also be crucial for proving finer spectral and
cattering properties. The attainment of a Mourre estimate, which is a first step in this direction, is
problem under review.

Actually the setting generalizes from ZN to �Zlex
m �N, where Zlex

m is the group Zm ordered lexi-
ographically. This relies on rather deep results of Murphy13 on Toeplitz algebras associated to
ertain ordered groups. The statements of the present paper can be pushed to this more general
ase; they just require more involved notations. Unfortunately, this is not the right framework to
tudy the m-dimensional Heisenberg model �another type of Toeplitz algebra is needed�, so we
efrained from giving explicit detailed results in this situation; see however Remark 4.3.

Let us finally mention that our treatment has few direct connections with previous work on the
pectral theory of Toeplitz operators. We were actually guided by the C*-algebra approach to
pectral analysis for Schrödinger operators, as in Refs. 1, 5, 8, 9, and 2.

I. THE ONE-DIMENSIONAL HEISENBERG MODEL

In order to justify the class of operators we study, we present here briefly and rather formally
he one-dimensional Heisenberg model. Further details may be found in Refs. 14–17.

We consider the one-dimensional lattice Z with a spin-1
2 attached at each vertex. Let

F�Z� ª ��:Z → �0,1�:supp��� is finite� ,

nd write �e0 ,e1�ª ��0,1� , �1,0�� for the canonical basis of the spin-1
2 Hilbert space C2. For any

�F�Z� we denote by e� the element �e��x��x�Z of the direct product �x�ZCx
2. We distinguish the

ector e�0; where �0�x�ª0 for all x�Z. Each element e� is interpreted as a pure state of the
ystem of spins, and e�0 as its ground state with all spins pointing down. The Hilbert space L of
he system �which is spanned by the states with all but finitely many spins pointing down� is the
ncomplete tensor product Ref. 15, Sec. II, and Ref. 16, Sec. II�

L ª �
x�Z

�0

Cx
2 	 closed span�e�:� � F�Z�� .

he dynamics of the spins is given by the nearest-neighbor Heisenberg Hamiltonian

L ª −
1

2 

�x−y�=1

�a��1
�x��1

�y� + �2
�x��2

�y�� + b��3
�x��3

�y� − 1�� .

he operator � j
�x� acts in L as the identity operator on each factor Cy

2, except on the component Cx
2

here it acts as the Pauli matrix � j. The scalars a ,b�R prescribe the anisotropy of the system.
he case a�b corresponds to the XXZ model, whereas the standard Heisenberg model is obtained

or a=b.
Let Hª�2�F�Z��. Then the Hilbert spaces L and H are isomorphic due to the unitarity of the

apping � :L→H sending e� onto ���� for all � ����� stands for the characteristic function of the
ingleton ��. In particular, the set F�Z� may be considered as the configuration space for the
ystem of spins. The Hamiltonian L is unitarily equivalent to a difference operator in H. Given
�F�Z� and x�supp���,y�supp���, we write �x

y for the function of F�Z� such that supp��x
y�

supp���� �y� \ �x�.

Lemma 2.1: For any f �H, ��F�Z�, one has the equality
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��L�−1f���� = − 2 

�x−y�=1

��x��1 − ��y���af��x
y� − bf���� .

Proof: The claim follows from a direct calculation using the properties of the Pauli matrices.�
For N�N, let FN�Z�ª ���F�Z� : supp��� has N elements� and set HNª�2�FN�Z��. Lemma

.1 shows that the subspace HN of H is left invariant by �L�−1. This is due to the fact that the
amiltonian L commutes with the �magnon� number operator 1

2
x�X��3
�x�+1�. Moreover it is

traightforward to show that the restriction HNª ��L�−1��HN is bounded and symmetric.
The operator HN has a more convenient form in another representation, which deserves the

ntroduction of some notations. Elements of ZN are denoted generically by �	�x1 , . . . ,xN�, �
�y1 , . . . ,yN�, or 		�z1 , . . . ,zN�, and P� stands for the multiplication operator in �2�ZN� by the

haracteristic function �Z
�
N . We shall often interpret this projection as an operator from �2�ZN� to

2�Z�
N �. For each ��ZN we define the unitary “bilateral shift” u� in �2�ZN�by

�u�f���� ª f�� − ��, f � �2�ZN�, � � ZN.

e also define the “unilateral shift” v�
�
ªP�u���2�Z�

N �, which is a partial isometry in �2�Z�
N �.

hus, for any 
��1�ZN�, one can consider the convolution operator

C
 ª 

��ZN


���u�

n �2�ZN�, and the Toeplitz operator

T

�
ª 


��ZN


���v�
�

n �2�Z�
N �. These operators are related by the formula T


�= P�C
��2�Z�
N �. Let us also consider the

rojections q�
�
ªv�

��v�
��* on the range of the partial isometries v�

�. One sees easily that q�
� is the

ultiplication operator by the characteristic function of the set Z�
N � �Z�

N +��. Finally, among the
ultiplication operators in �2�Z�

N �, we distinguish those of the form

V

�
ª 


��ZN


���q�
�, 
 � �1�ZN� .

e identify now the Heisenberg Hamiltonian as an operator of the form above. The set S stands
or the collection of vectors �si

±�i=1
N �ZN with components �si

±� jª ±�ij. Notice that S is a symmet-
ic family of generators for the group ZN.

Proposition 2.2: The Hamiltonian HN is unitarily equivalent to the operator T

�+V�

�, where
ª−2a�S and �ª2b�S.

Proof: Let  :Z�
N →FN�Z� be the one-to-one map ����x1,. . .,xN�. Let � :HN→�2�Z�

N � be the
nitary operator given by ��f�ª f � for any f �HN. Then one has for g��2�Z�

N �, ��Z�
N

��H�−1g���� = − 2

j=1

N



y=xj±1

y��x1,. . .,xN�

�ag�−1���x1,. . .,xj−1,y,xj+1,. . .,xN��� − bg���� .

n the other hand

−1��� = �min �, min�� \ �min ���, . . . �

or any ��FN�Z�. Thus

�−1���x1,. . .,xj−1,y,xj+1,. . .,xN�� = �x1, . . . ,xj−1,y,xj+1, . . . ,xN�
f y=xj ±1, y� �x1 , . . . ,xN� and x1� ¯ �xN. This implies that
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��H�−1g���� = − 2

s�S

�Z
�
N �� − s��ag�� − s� − bg����

= − 2

s�S

��avs
� − bqs

��g���� = ��T

� + V�

��g���� .

�

Proposition 2.2 is one of the motivations to study operators of the form T

�+V�

� for general
unctions 
 ,���1�ZN�. Actually, we can even indicate a larger class of operators T


�+V�
� which

ave an interpretation on their own, outside the Toeplitz theory. If M �ZN is a finite subset such
hat ��M implies −��M, then one can associate to it a Cayley graph having ZN as a set of
ertices by declaring that � and 	 are connected iff �−	�M. The Laplace operator �M of this
ayley graph is a convolution operator in �2�ZN�, easy to understand when applying a Fourier

ransformation. On the other hand Laplacians �E
M on subgraphs E of this Cayley graph could be

omplicated objects. However it easy to show the identity �Z
�
N

M =T�M

� +V−�M

� , which essentially

pplies to the Heisenberg model in the case M =S. Thus the Laplacians �Z
�
N

M are subject of the

pectral results that follow below.

II. TOEPLITZ ALGEBRAS

In this section we collect some results on the Toeplitz-like algebra T��ZN�. We first introduce
he appropriate abstract setting.

Let X be a �discrete� Abelian group and E be a nonvoid subset of X. The projection
PE :�2�X�→�2�E� is defined in �2�X� as the multiplication operator by the characteristic function

E. As before we introduce the unitary translation operators �u����X in �2�X� and the partial
sometries �v�

E
ªPEu���2�E����X in �2�E�. Once again, for 
��1�X�, the “Toeplitz operator”

T

E
ª 


��X


���v�
E

nd the “potential”

V

E
ª 


��X


���q�
E 	 


��X


���v�
E�v�

E�*

re available as operators in �2�E�.
Definition 3.1: The C*-algebra TE�X��B��2�E�� generated by the family �v�

E���X is called the
oeplitz algebra of the group X with respect to the subset E.

Obviously TE�X� contains all the operators of the form T

E+V�

E, 
 ,���1�ZN� �and many
thers�. In fact TE�X� is also generated by the family �T


E :
��1�X�� as in the case of usual
oeplitz algebras. If E=X, TE�X� is equal to Cr

*�X�, the reduced group C*-algebra of X. Since X is
belian, we may identify it with C*�X�, the enveloping C*-algebra of the convolution Banach
-algebra �1�X�. The identification puts into correspondence u� with ��ª����. Due to the Fourier

ransform, C*�X� is isomorphic to the C*-algebra C�X̂� of continuous complex functions on X̂,

here X̂ is the �compact, Abelian� dual group of X. The conventions “in dimension zero” are clear:
he group is X= �0�, with subset E= �0�, all functions are scalars, and for 
�C one sets T
=V



1 in �2�X�	C.
The algebras TE�X� were mainly studied for X an ordered group and E its positive

one.11,13,20,21 The standard case is the “classical” Toeplitz algebra TN�Z�	T �Ref. 6� associated
ith the unilateral shift on �2�N� �often presented in a Fourier transformed realization�. In our
roofs the isomorphic algebra T*

ªTN*
�Z�, N*

ª �1,2 , . . . �, will appear more naturally. The case
=Z2, E=N2 is studied in Ref. 7. The most relevant Toeplitz algebra for us is T��ZN�
TZ�

N
�ZN�, which is not of ordered type. We shall point out its structure, which will be the main

ool in analyzing the operators T

�+V�

�.

The key facts are as follows:
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�A� If � :X→X� is a group isomorphism sending E onto E�, then TE�X� and TE��X�� are

naturally isomorphic, the element v�
E of TE�X� being sent onto v����

E� �TE��X��.
�B� If Ej is a subset of a group Xj, j=1, . . . ,m, then TE1�¯�Em�X1� ¯ �Xm� can be identi-

fied with the spatial tensor product C*-algebra � j=1
m TEj�Xj�, v��1,. . .,�m�

E being identified
with � j=1

m v�j

Ej.

oth isomorphisms are unitarily implemented, but this will not be used explicitly in the sequel.
Let � :ZN→ZN be the group automorphism defined by

��y1, . . . ,yN� ª �y1,y2 − y1, . . . ,yN − yN−1� ,

ith inverse

�−1�z1, . . . ,zN� = �z1,z1 + z2, . . . ,z1 + ¯ + zN� .

bviously, Eª��Z�
N �=Z� �N*�N−1. Thus, by �A�, T��ZN� and TE�ZN� are isomorphic, v�

� being
ent onto v����

E for any ��ZN. Consequently, this isomorphism sends T

� onto T


��−1
E and V�

� onto

���−1
E . In the next few lines we only consider the case of T


�.

By applying �B�, one gets an isomorphism between TE�ZN� and TZ�Z� � �TN*
�Z����N−1�

C*�Z� � �T*���N−1�, under which T

��−1
E is transformed into



�z1,. . .,zN��ZN

�
 � �−1��z1, . . . ,zN��z1
� vz2

N*
� ¯ � vzN

N*
. �3.1�

ow we apply the partial Fourier transform on the first variable. It maps �z1
�C*�Z� onto ez1

C�T�, where T is equal to the interval �0,1� �with 0 identified to 1� and ez���ªe−2�iz� for all
�Z, ��T. Namely we use F1ªF � 1, where �Ff����ª
z�Zez���f�z� for all ��T, f ��1�Z�.
hen performing the sum over z1, the operator �3.1� becomes



�z2,. . .,zN��ZN−1

�F1�
 � �−1���· ,z2, . . . ,zN�vz2

N*
� ¯ � vzN

N*
,

hich will be regarded as an element of C�T� � T��N−1�	C�T ;T��N−1��. Similar arguments can be
arried on for V�

�. When summing up we get the following lemma. For any ���1�ZN� and
�T we define �������1�ZN−1� by

��������z2, . . . ,zN� ª �F1�� � �−1����,z2, . . . ,zN� .

Lemma 3.2: The C*-algebras T��ZN� and C�T� � T��N−1� are naturally isomorphic. The iso-
orphism sends T


�+V�
� onto the direct integral

�
T

�

d��T����

N−1 + V��0��

N−1 � ,

here the exponent of the Toeplitz operators refers to the subset �N*�N−1 of the group ZN−1.
The presence of a direct integral is connected to the invariance of our operators under a

atural action of Z on Z�
N by translations. For the Heisenberg model, this can be traced back to any

f the earlier representations of the Hamiltonian.
As a rule, the spectral results will be stated only for operators of the form T


�+V�
�. By

ntroducing suitable notations, they could be extended to all the elements of T��ZN�.
Corollary 3.3: For any real functions 
 ,���1�ZN�, one has

�ess�T

� + V�

�� = ��T

� + V�

�� = �
��T

��T����

N−1 + V��0��

N−1 � . �3.2�

*
Proof: The essential spectrum of an element A of a C -algebra C composed of bounded
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perators in a Hilbert space G coincides with the spectrum of its image in the quotient
/ �C�K�G��, where K�G� denotes the compact operators in G. Thus the first equality follows

rom the obvious fact that there is no nontrivial compact operator in C�T� � T��N−1�. For the
econd equality, we apply Lemma 3.2 and the discussion in Ref. 1, Sec. 8.2.4 on the spectrum of
bservables defined by a continuous family of selfadjoint operators. Note that the union on the
ight-hand side �r.h.s.� is automatically closed. �

If N=1, then T

� is the convolution operator C
 and V�

� is the multiplication operator by

z�Z��z�= �F���0��R. Thus the spectrum �3.2� reduces to

��T

� + V�

�� = �F
��T� + �F���0� = �min�F
�,max�F
�� + �F���0�

s it should be.

V. THE ESSENTIAL SPECTRUM OF THE FIBER HAMILTONIANS

The fiber Hamiltonians H���ªT����

N−1 +V��0��

N−1 can be interpreted physically as “energy opera-
ors at fixed quasi-momentum �.” We now study their essential spectrum. We again use the well
nown fact that, given a Hilbert space G, the essential spectrum of an operator A�B�G� coincides
ith the spectrum of its image in the Calkin algebra B�G� /K�G�, where K�G� is the ideal of

ompact operators.
The fibers H��� act in �2��N*�N−1��2�N*���N−1� and belong to the C*-algebra �T*���N−1�. So

e are faced with the problem of understanding the quotient of �T*���N−1� by K��2�N*���N−1��, the
atter being identified as �K*���N−1�, where K*

ªK��2�N*��. The discussion in Ref. 7 is relevant
ere, especially in the case N=2. We start by proving a result in a more abstract setting �see Ref.
, Theorem 2.3 for an alternate proof�.

Lemma 4.1: Let I j be an ideal of a nuclear C*-algebra C j, j=1,2. Let � j :C j→C j /I j be the
anonical �-morphism. Then the mapping

�̄:C1 � C2 → ��C1/I1� � C2� � �C1 � �C2/I2��

A � ���1 � 1��A�,�1 � �2��A��

s a �-morphism, and ker��̄�=I1 � I2.
Proof: Since C1 and C2 are nuclear, the mappings �1 � 1 and 1 � �2 are �surjective�

-morphisms with ker��1 � 1�=I1 � C2 and ker�1 � �2�=C1 � I2 �Ref. 12, Theorem 6.5.2�. From
his it follows that �̄ is a �-morphism with ker��̄�= �I1 � C2�� �C1 � I2�. Since ideals in nuclear

*-algebras are nuclear, the triple �I1 ,C2 ,I2� verifies the �right� slice map conjecture �Ref. 19,
roposition 10�. Thus one gets the equality ker��̄�=I1 � I2 by an easy adaptation of the proof of
Ref. 18, Corollary 5�. �

We need two more notations. For any j� �2, . . . ,N�, ���1�ZN−1� and ��T, we define

j������1�ZN−2� by

�� j������z2, . . . ,zj−1,zj+1, . . . ,zN� ª �F j���z2, . . . ,zj−1,�,zj+1, . . . ,zN� ,

j being the Fourier transformation in the jth variable. Furthermore we denote by � j�� ,��� the
pectrum of the Toeplitz operator �relative to the pair �ZN−2 , �N*�N−2��

T
�j��������

N−2 + V�j�0���0��

N−2

cting in �2��N*�N−2�.
Theorem 4.2: Let 
 ,���1�ZN� be real functions and ��T. Then one has

�ess�T����

N−1 + V��0��

N−1 � = �
j=2

N

� � j��,��� .

���T

                                                                                                            




b

t


C

s

O

I
=
fi

T

o

T
�
T
T

V

t
p

m
m
�

W
t

L

082107-7 Toeplitz algebras and Heisenberg model J. Math. Phys. 47, 082107 �2006�

                        
Proof: By analogy to �the Fourier transformed version of� the isomorphism T /K��2�N��
C�T� �Ref. 6, Theorem 7.23� one has a canonical isomorphism T* /K*C�T�, uniquely defined

y the fact that for any z�Z the operator vz
N*

�T* is sent onto the function ez�C�T�. Therefore

he class of operators Tf
N*

�T*, f ��1�Z�, must be sent onto the class of functions Ff �C�T�.
The Toeplitz algebra T* is nuclear, since it is the extension of the Abelian quotient T* /K*

C�T� by the nuclear ideal K*. So we may use the analog of Lemma 4.1 for the N−1 factors

2= ¯ =CN=T* and I2= ¯ =IN=K*. We get an injective �-morphism

�T*���N−1�/�K*���N−1�
� � j=2

N �T*
��j−2�

� C�T� � T*
��N−j��

 � j=2
N �C�T� � T*

��N−2�� ,

ending T����
+V��0�� onto the collection

��
T

�

d���T�j��������

N−2 + V�j�0���0��

N−2 ��
j=2,. . .,N

.

ne concludes by using Ref. 1, Sec. 8.2.4. �

As an example, if N=2, one has

�ess�T����

1 + V��0��

1 � = ��F1F2
��� − ��,��� + �F1F2���0,0�:�� � T� .

n the case of the Heisenberg model �see Proposition 2.2�, one has to take 
=−2a�S and �
2b�S. Since �F1F2�S���−�� ,���=2 cos�2����+2 cos�2���−����, the essential spectrum of the
ber operator coincides with the interval �8b−4a cos�2����−4a cos�2���−���� :��� �0,1��.

Remark 4.3: Results of this section �and also of the next one� can easily be generalized to
oeplitz-like operators T


�+V�
� acting on the subset

E = �Zlex
m ��

N
ª ��x1, . . . ,xN� � �Zlex

m �N:x1 � x2 � ¯ � xN�

f X= �Zlex
m �N, where Zlex

m is the group Zm ordered lexicographically. In analyzing the structure of
E�X� for this case, the Toeplitz algebra T should be replaced by TmªT�Zlex

m �+�Zlex
m �, where

Zlex
m �+ª �x�Zlex

m :0�x�. The only important change concerns the calculation of the quotients

m /Km, where KmªK��2��Zlex
m �+��. Namely one has to call for the rather deep result �Ref. 13,

heorem 2.3�, which implies that Tm /Km and Tm−1 � C�T� are �-isomorphic.

. LOCALIZATION

In the sequel we determine localization properties of the operators T

�+V�

� by adapting them
o the Toeplitz algebra T��ZN�, a technique developed in Ref. 2 �see also Ref. 10� for crossed
roduct C*-algebras, with applications to Schrödinger operators in Rn.

Let H be a self-adjoint operator in �2�Z�
N � �or in some other L2 space� and � a nontrivial

ultiplication operator �for example the characteristic function of a set having a strictly positive
easure�. If � is a continuous function with support intersecting the spectrum of H, the operator
��H� has no reason to be small in general. The unique a priori bound would be

����H�� � ���� sup
����H�

������ . �5.1�

e are going to correlate � to � in such a way to make the norm small without asking any of the
wo factors on the r.h.s. of �5.1� to be small.

Theorem 5.1: Fix j� �2, . . . ,N� and let 
 ,� be real elements of �1�ZN�. For any n�N set

� j�n� ª ��y1, . . . ,yN� � Z�
N :yj − yj−1 � n� .
et � :R→R be a continuous function with
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supp � � ���,���T� j��,���� = � .

hen for each ��0 there exists n��N such that

���j�n���T

� + V�

��� � � �5.2�

or each n�n�.
Proof: Denote by T


��−1
E +V

���−1
E the image of T


�+V�
� through the isomorphism T��ZN�

C�T� � �T*���N−1�, defined by the change of variables �. One verifies easily that the estimate
5.2� is equivalent to

���j
˜�n���T


��−1
E + V���−1

E �� � � ,

here � j
˜�n�ª��� j�n��= ��z1 , . . . ,zN��Z� �N*��N−1� :zj �n�. Moreover the operator ��T


��−1
E

V
���−1
E � belongs to the ideal

I j ª C�T� � �T*���j−2�
� K*

� �T*���N−j�

f CªC�T� � �T*���N−1�. Indeed the image of T

��−1
E +V

���−1
E in the quotient

C/I j  C�T� � �T*���j−2�
� C�T� � �T*���N−j�  C�T��2

� �T*���N−2�

s

�
T2

�

d� d���T�j��������

N−2 + V�j�0���0��

N−2 � ,

ith spectrum ��,���T� j�� ,���	�Ij
�T


��−1
E +V

���−1
E �. Thus, since supp���� ���,���T� j�� ,����=�,

t follows by Ref. 2, Lemma 1 that ��T

��−1
E +V

���−1
E ��I j. Now

��j
˜�n� = 1 j−1 � ��zj�n� � 1N−j ,

here ��zj�n� converges strongly to 0 in B��2�N*�� as n→�. Thus, by examining the structure of

j, one gets

���j
˜�n���T


��−1
E + V���−1

E �� → 0

s n→�. �

Let H be a self-adjoint operator in a Hilbert space G with spectral measure EH, and let f
G be an arbitrary vector. We call spectral support of f with respect to H, and write supp�f ;H�,

or the smallest closed subset F of R such that EH�F�f = f . Alternatively one can characterize
upp�f ;H� as follows:

� � supp�f ;H� iff $ � � 0 such that EH�� − �,� + ��f = 0.

bviously one has supp�f ;H����H�. If H is the Hamilton operator describing some quantum
ystem in G, we say that f is a state with energy in supp�f ;H�.

Corollary 5.2: Let 
 ,� and j be as in Theorem 5.1. Then, for any ��0, there exists n��N
uch that

���j�n�e
−it�T


�+V�
��f� � ��f�

or all n�n�, t�R and all f ��2�Z�
N � satisfying

supp�f ;T� + V�� � �� � ��,���� = � .

 � �,���T j

                                                                                                            



i
i
c
r
b

c
m
s
u

I
+

A

p
S
G

1

1

1

1

1

1

1

1

1

1

2

2

082107-9 Toeplitz algebras and Heisenberg model J. Math. Phys. 47, 082107 �2006�

                        
Corollary 5.2 follows trivially from Theorem 5.1. We put it into evidence for its physical
nterpretation in the case of the one-dimensional Heisenberg model: Intuitively, if f is a normal-
zed initial state with energy outside ��,���T� j�� ,���, the decomposition of the system into two
lusters of spins pointing up, one “at the left” composed of j−1 elements, and the other one “at the
ight” composed of N− j+1 elements, is highly unprobable uniformly in time if the distance n
etween the clusters is large enough.

It is obvious that several variants are available. One can consider ideals smaller than I j, by
ollapsing more than one factor to the ideal of compact operators in �2�N*�. In this way, one gets
ore detailed clustering information for the one-dimensional Heisenberg model, but for a priori

maller sets of energy values. The fiber Hamiltonians T����

N−1 +V��0��

N−1 can be studied identically by
sing ideals in the C*-algebra �T*���N−1�.

From Corollary 3.3 and Theorem 4.2 we know that

�
j=2

N

�
�,���T

� j��,��� = �
��T

�ess�T����

N−1 + V��0��

N−1 � � ��T

� + V�

�� .

t does not seem easy to determine under which conditions there is room in the spectrum of T

�

V�
� outside ��,���T� j�� ,��� for a given j. However one may expect it is often the case.
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We examine the general form of potentials with zero reflection coefficient in one-
dimensional Hamiltonians connected with Casimir invariants of non-compact
groups. © 2006 American Institute of Physics. �DOI: 10.1063/1.2259579�

. INTRODUCTION

There are a number of potentials for the Schrödinger equation in one dimension for which the
eflection amplitude vanishes identically while the transmission amplitude is a complex number of
odulus 1 for all energy values.1,2 Such potentials are called the reflectionless or transparent

otentials. The best known of these is a modified Pöschl-Teller potential hole.3 �For scattering of
he Gaussian wave packet by the modified Pöschl-Teller potential hole see Ref. 4.� A number of
uthors have already discussed reflectionless potentials within the frameworks of inverse scatter-
ng theory,5–12 supersymmetric quantum mechanics,13–17 and a Darbox transformation approach.18

he relation between the reflectionless potentials and the soliton solutions of nonlinear �such as
orteweg-de Vries, sine-Gordon, and nonlinear Schrödinger� equations has been investigated in
efs. 7 and 19–21 In the present work, we provide a group-theoretical approach to the problem.

In a previous paper,22 G. A. K. discussed one-dimensional scattering problems related to the
rincipal series of SO�2,2�, in the sense that the Hamiltonian, H, of the system is related to the
asimir operator, C, of SO�2,2� as follows:

Q�H − E� = ��CSO�2,2� − ��� + 2���H,

here H are the subspaces occurring in the subgroup reductions, ���+2� is an eigenvalue of C,
nd Q is some nontrivial operator. In Ref. 22 it was shown that the scattering problem can be
ompletely solved within the framework of group theory, without explicit knowledge of the
nteraction potentials. Namely, the S-matrices for systems under consideration are determined by
iagonal elements of the intertwining operator, A, between Weyl-equivalent representations of
O�2,2�.23 At this stage we note that the operator A is said to be intertwining if relation

AU��g� = U�̃�g�A for all g � G �1�

r relation

AdU��b� = dU�̃�b�A for all b � g �2�

olds, where U� and U�̃ are Weyl-equivalent unitary irreducible representation’s �UIRs� of prin-
ipal series of the group G, while dU� and dU�̃ are the corresponding representations of the
lgebra g of G. It is worthwhile to point out that representations U� and U�̃ have the same Casimir
igenvalues. Such representations are called Weyl equivalent. Equations �1� and �2� have much

�
Electronic mail: gkerimov@trakya.edu.tr
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estriction power, determining the intertwining operator up to a constant. Therefore, one can
valuate the S-matrix without writing a Schrödinger equation, or computing the wave functions.24

Reference 22 explained a method of extracting the corresponding �Natanzon� potentials from
he Casimir operator and applied it in detail to the reductions SO�2,2��SO�2�

� SO�2� ,SO�2,2��SO�2� � E�1�, and SO�2,2��SO�2� � SO�1,1�. The same article explained
he occurrence of reflection and transmission amplitudes in the S-matrix for potentials related to
O�2,2��SO�2� � SO�1,1� reduction: this happens because within a principal series of SO�2,2�
ach UIR of SO�1,1� appears twice. We notice that, in one-dimensional scattering problems, the
-matrix can be written as a 2�2 matrix1

S = �Rl Tr

Tl Rr
� , �3�

here Rl and Tl are the reflection and transmission amplitudes for a wave incident from the left
hile Rr and Tr are the reflection and transmission amplitudes for a wave incident from the right.

For other definitions of S-matrix see, e. g., Ref. 25, and references therein.� If potential V�x� is
eal and symmetric �i.e., V�−x�=V�x�� then Tl=Tr and Rl=Rr.

If one chooses the chain SO�2,2��SO�2,1��SO�2� then both principal and discrete series
epresentations of SO�2,1� appear in the reduction. Moreover, the principal series representation of
O�2,1� is double degenerate therein, while the discrete series representation of SO�2,1� appears at
ost once. One can calculate the matrix form of the intertwining operator in the basis correspond-

ng to the reduction with respect to SO�2,1�. Everything here follows exactly as in Appendix A of
ef. 23. As a result, we come to following conclusion: the S-matrices of one-dimensional scatter-

ng systems related to the SO�2,2��SO�2,1��SO�2� reduction have the form �3� with Rl=Rr

R and Tl=Tr=T where

R = c
1

�
sin��j���� + j + 2���� − j + 1� ,

T = c
1

�
sin������� + j + 2���� − j + 1� .

ere, c is a complex number of unit modulus, j=−1/2− i�, for principal series representations of
O�2,1�, while j=0,1 ,2 , . . ., for discrete series representations of SO�2,1� and �=−1− i� labels

he principal series of the most degenerate representations of SO�2,2� �see Sec. II�.
The square modulus of the transmission amplitude is

�T�2 =
sinh2 ��

cosh2 �� + sinh2 ��
�4�

f j belongs to the continuous series, while

�T�2 = 1, �5�

f j belongs to the discrete series. Hence, the corresponding class of Natanzon potentials contains
ymmetric reflectionless potentials.

Moreover, it is not difficult to see that all the potentials related to the Poincaré group in 2
1 dimensions, ISO�2,1�, are reflectionless, too. Indeed, the connection between anti de-Sitter
roup in 2+1 dimensions SO�2,2� and Poincaré group in 2+1 dimensions ISO�2,1� naturally
ndicates a connection between intertwining operators of these groups. We notice that the group
O�2,2� contracts with respect to SO�2,1� to the group ISO�2,1� in the sense of Inönü and Wigner
see, e.g., Refs. 26 and 27, and references therein�. Thus, the intertwining operator of the group
SO�2,1� must arise through a limiting process �→� from the intertwining operators of the group
O�2,2�. As a result, we obtain �T�2=1 for all potentials related to ISO�2,1�. Moreover, due to

2 � 1 �
T� =1 for both the discrete spectrum �j=0,1 ,2 , . . . � and the continuous spectrum j=− 2 − i� of
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SO�2,1�, we can restrict ourselves to the Poincaré group in 1+1 dimensions in our study. In fact,
ne can show that the one-dimensional potentials connected with Poincaré group in n+1 dimen-
ions have the same shape. �The intertwining operators of ISO�1,1� are discussed in Sec. 4.2.3 of
ef. 28.� The general form of Hamiltonians for reflectionless potentials connected with Casimir

nvariants of noncompact groups SO�2,2� and ISO�1,1� will be constructed in the following in a
ystematic way. We show that the reflectionless potentials under considerations are given by
olutions of nonlinear equations �33� and �95�.

I. REFLECTIONLESS POTENTIALS RELATED TO SO„2,2…

By SO�2,2� we denote the connected component of the group of linear transformations of R2,2

reserving the bilinear form

	 · 
 � 	1
1 + 	2
2 − 	3
3 − 	4
4,

ith 	 ,
�R2,2. We consider SO�2,2� matrices acting on R2,2 on the right. In accordance with this,
e write four-vectors 	 in row form: 	= �	1	2	3	4�.

Let us denote 	gij�t�
 , i� j , i , j=1,2 ,3 ,4 the six one-parameter subgroups of SO�2,2� consist-
ng of rotations or pseudorotations in the 	i−	 j planes, that is, transformations of the form

	k� = 	k, k � i, j, 	i� = 	i cos t + 	 j sin t, 	 j� = − 	i sin t + 	 j cos t ,

r

	k� = 	k, k � i, j, 	i� = 	i cosh t + 	 j sinh t, 	 j� = 	i sinh t + 	 j cosh t .

The matrices

aij =
d

dt
gij��t��t=0, i � j �6�

orm a basis of the Lie algebra, SO�2,2�, of the group, with commutation relations

�a12,a13� = a23, �a12,a14� = a24,

�a12,a23� = − a13, �a12,a24� = − a14,

�a13,a23� = − a12, �a14,a24� = − a12,

�a23,a24� = − a34, �a13,a14� = − a34,

�a23,a34� = − a24, �a13,a34� = − a14,

�a24,a34� = a23, �a14,a34� = a13.

The unitary irreducible representations �UIRs� of SO�2,2� are known to form three series:26,28

rincipal, supplementary, and discrete. It is also known that only the principal series of SO�2,2�
escribe scattering states. Consequently, the relevant UIRs are those in the principal series. More-
ver, the discussion will be limited to the most degenerate representations.

The principal series of the most degenerate representations of SO�2,2� is characterized by the
air of quantum numbers �= �� ,��, where �=0, or 1 and 0�� +�. The representations speci-
ed by labels �= �� ,�� and �̃= �−� ,�� are Weyl-equivalent. For the sake of simplicity, we consider
ere the representations with �=0.
We want to construct the Hamiltonians for which the relation
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Q�H − E� = ��CSO�2,2� − ��� + 2���H, �7�

olds, where �=−1− i� specifies the most degenerate principal series of SO�2,2� and H is a
ubspace occurring in SO�2,2��SO�2,1��SO�2� subgroup reduction. The key to the construc-
ion of it lies in the observation that the Schrödinger energy eigenvalue equation for such systems
s nothing but the condition imposed on the carrier space of SO�2,2� to be irreducible. Thus, in
rder to find the Hamiltonians for the systems under consideration, we should look for a reducible
epresentation of SO�2,2� containing the principal series.

Let us consider a quasiregular representation T�g� of SO�2,2� realized in the Hilbert space of
quare-integrable functions f�	� on the hyperboloid ��SO�2,2� /SO�2,1� defined by

	1
2 + 	2

2 − 	3
2 − 	4

2 = 1. �8�

n general, one can use for construction of the quasiregular representation the carrier space
2�� ,d�� with any quasi-invariant measure d��	� on �.26 Representations with different mea-
ures are unitarily equivalent, and are given by

T�g�f�	� = �d��	g�
d��	� �

1/2

f�	g� , �9�

here d��	g� /d��	� is the Radon-Nikodym derivative.
Without loss of generality, we can put

d��	� = h�	�d	 , �10�

here d	=d	1d	2d	3 / �	4� is an invariant measure on �. The requirement that the measure is
uasi-invariant implies the condition

h�	� � 0. �11�

hen, it is not difficult to see that the Hermitian infinitesimal operators

Ajk = − i
d

dt
T��gjk�t���t=0 �12�

f the representation T�g� corresponding to the one-parameter subgroup are given by

iA12 = h−1/2 � �	2
�

�	1
− 	1

�

�	2
� � h1/2,

iA13 = h−1/2 � �	3
�

�	1
+ 	1

�

�	3
� � h1/2,

iA23 = h−1/2 � �	3
�

�	2
+ 	2

�

�	3
� � h1/2,

iA14 = h−1/2 � �	4
�

�	1
� � h1/2,

iA24 = h−1/2 � �	4
� � � h1/2,
�	2
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iA34 = h−1/2 � �	4
�

�	3
� � h1/2. �13�

here � denotes composition of operators. Here, we have assumed 	1, 	2, and 	3 as the indepen-
ent variables on �.

The representation T�g� is decomposed into principal and discrete series of most degenerate
IRs of SO�2,2�.27 The irreducible components are obtained if all functions f are eigenfunctions
f the Casimir operator CSO�2,2�,

CSO�2,2�f = ��� + 2�f , �14�

here �=−1− i� ,0�� +� for the principal series representations, while �= l , l=0,1 ,2 , . . ., for
iscrete series representations and

CSO�2,2� = A12
2 + A34

2 − A13
2 − A14

2 − A23
2 − A24

2 = h−1/2 � �−
�2

�	1
2 −

�2

�	2
2 +

�2

�	3
2 + L�L + 2� � h1/2,

�15�

ith

L = 	1
�

�	1
+ 	2

�

�	2
+ 	3

�

�	3
. �16�

ince we are interested only in the continuum, we put �=−1− i�. Next, imposing the reduction
ondition, we can extract the corresponding one-dimensional potentials from the Casimir operator.

We want to consider the SO�2,2��SO�2,1��SO�2� reduction chain; but there are four
ubgroups which are isomorphic to SO�2,1�. Namely, the subgroups G1 ,G2 ,G3, and G4 generated
y 	a12,a13,a23
 , 	a12,a14,a24
 , 	a23,a24,a34
, and 	a13,a14,a34
, respectively. Although these sub-
roups are mathematically equivalent, they may be related to different physical problems. For this
eason we shall consider various SO�2,1� subgroup reductions

�i� The SO�2,2��G1 reduction. Then, the reduction conditions are

A12f jm = mf jm, CG1f jm = j�j + 1�f jm

here

CG1 = A12
2 − A13

2 − A23
2 = h−1/2 � ��1 + 	4

2��−
�2

�	1
2 −

�2

�	2
2 +

�2

�	3
2� + L�L + 1� � h1/2. �17�

t is known that26,27 the spectrum of CG1 consists of a discrete part

j = l, l = 0,1,2, . . . ��m� = l + 1 + n,n = 0,1,2, . . . �

nd a continuous part

j = − 1
2 − i�, 0  � � � �m = 0, ± 1, ± 2, . . . � .

According to this, we impose d� to be invariant under G1,

h�	g� = h�	� , �18�

here g�G1. Hence we can, without loss of generality, put h=h�u�, u=	1
2+	2

2−	3
2.

The parametrization that we seek for manifold �8� must be such as to make A12 and CG1

articularly simple. The corresponding coordinate system on �8� is obtained by sections of the

anifold �8� by the planes 	4=c. These sections are one-sheeted hyperboloids
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	1
2 + 	2

2 − 	3
2 = 1 + c2

eing invariant under G1. Hence we introduce in place of 	1, 	2, and 	3 the new variables x, �, and
by

	1 =
1

�1 − z2�x�
cosh � cos � ,

	2 =
1

�1 − z2�x�
cosh � sin � ,

	3 =
1

�1 − z2�x�
sinh � ,

	4 =
z�x�

�1 − z2�x�
, �19�

here −��x ,��� ,0��2� and z�x� is a differentiable function on R with values in �−1,
1�. Then

A12 = i
�

��
, CG1 =

�2

��2 + tanh �
�

��
−

1

cosh2 �

�2

��2 �20�

hile

CSO�2,2� = �1 − z2

ż
�2� �2

�x2 + � ḣ

h
−

z̈

ż
� �

�x
+

1

2

ḧ

h
−

1

4
� ḣ

h
�2

−
z̈

ż

ḣ

2h

+
�ż�2

1 − z2� �2

��2 + tanh �
�

��
−

1

cosh2 �

�2

��2� , �21�

here dots represent derivatives with respect to x, i.e., ż=dz /dx, z̈=d2z /dx2, and so on.
In order to eliminate the term that is linear in � /�x, we impose

ḣ

h
−

z̈

ż
= 0. �22�

quation �22� is obviously satisfied by

h = �ż , �23�

here � is a constant. Substituting Eq. �23� into formula �21�, we readily obtain

CSO�2,2� = �1 − z2

ż
�2� �2

�x2 +
1

2

z�

ż
−

3

4
� z̈

ż
�2

+
�ż�2

1 − z2� �2

��2 + tanh �
�

��
−

1

cosh2 �

�2

��2� . �24�

Let us denote by Cjm
SO�2,2� a restriction of CSO�2,2� on the subspace H jm spanned by functions f jm

ith fixed j and m. It turns out that

Cjm
SO�2,2� = �1 − z2

ż
�2� d2

dx2 +
1

2

z�

ż
−

3

4
� z̈

ż
�2

+ j�j + 1�
�ż�2

1 − z2 , �25�

here we have replaced the Casimir operator of G1 on the right-hand side of formula �24� with its

igenvalue.
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We allow now the eigenvalues of CSO�2,2� and of CG1 to be linear functions of the energy, i.e.,

j�j + 1� = �1E + �1 �26�

nd

1 + �2 = �2E + �2. �27�

On the above-given conditions, we have

Cjm
SO�2,2� − ��� + 2� = − �1 − z2

ż
�2�−

d2

dx2 −
1

2

z�

ż
+

3

4
� z̈

ż
�2

+ ż2ER�z� + �1�1 − z2� + �2

�1 − z2�2  ,

�28�

here

R�z� = �1�1 − z2� + �2. �29�

This equation is easily reduced to the form �7� with

Q = − �1 − z2

ż
�2

, �30�

nd

H = −
d2

dx2 + V�z� = −
d2

dx2 −
1

2

z�

ż
+

3

4
� z̈

ż
�2

−
�1�1 − z2� + �2

R
�31�

rovided that

�ż�2 =
�1 − z2�2

R�z�
. �32�

We are using units with 2M =�=1.�
Taking into account Eq. �32�, the potential, V, in Eq. �31� can be rewritten in the form

V�z� = −
�4�1 + 1��1 − z2� + 4�2 − 5

4R�z�
−

1

2
�2�2 + �1 +

�2

2�1 − z2�
+

5�

8R�z�1 − z2

R�z�2 , �33�

here �=−4��1+�2��2.
To make the potential V vanish as �x�→� �i.e., as �z�→1� we set �2=1. Hence the relation �27�

educes to

�2 = �2E . �34�

According to this we shall assume that �2�0.
The expression �33� simplifies for some convenient choice of �1 and �2. Let us start with the

implest case when �1=0, but �2 and �1 are still arbitrary. Then Eq. �32� reduces to

�ż�2 =
1

�2
�1 − z2�2. �35�

he solution to this equation is given by

z = tanh
x

��2

. �36�

3
ith this z, the Hamiltonian in �31� simplifies to the modified Pöschl-Teller Hamiltonian,
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HPT = −
d2

dx2 −
j�j + 1�

�2 cosh2�x/��2�
. �37�

It is also worth noting that potentials �33� include important families of Ginocchio
otentials.29 Indeed, putting

�1 =
1

�2 −
1

�4 , �2 =
1

�4 , �1 = ��� + 1�, �2 = 1 �38�

ith 0���� and introducing a new variable y, −1y1,

y =
z

�z2 + �2�1 − z2�
, �39�

qs. �33� and �32� reduce to

H = −
d2

dx2 − �2��� + 1��1 − y2� +
�1 − �2�

4
�5�1 − �2�y4 − �7 − �2�y2 + 2��1 − y2� �40�

nd

dy

dx
= �1 − y2��1 − �1 − �2�y2� , �41�

espectively. Moreover, it follows from �41� that

x =
1 − �2

�2 � dy

�1 − �2�y2 − 1
−

1

�2 � dy

y2 − 1

r30

x = �
1

�2 �arctanh�y� − �1 − �2 arctanh��1 − �2y�� if 0 � � � 1

1

�2 �arctanh�y� + ��2 − 1 arctan���2 − 1y�� if 1  � � � ,� �42�

hich is just relation �2.8� of Ref. 29.
The family of potentials given in �40� is a two parameter generalization of the modified

öschl-Teller potential hole. �Observe that �40� reduces to the modified Pöschl-Teller Hamiltonian
hen �=1.� They are symmetric about the origin as we expected. The parameter � is related to the

hape of the potential while the parameter � is related to the depth of the potential and determines
he nature of the scattering. If the depth parameter � is an integer then �T�2=1, �R�=0 �see Eqs.
5.9� and �5.10� of Ref. 29�.

By making use of traditional techniques, i.e., by considering the asymptotic behavior of the
cattering wavefunctions, one can check that the potentials in �33� are reflectionless when j is an
nteger. In order to apply such a technique we require first a solution for the Schrödinger equation

H� = E�

ith Hamiltonian �31�. If we substitute �= �ż�−1/2�̌ the equation for �̌ becomes

�− �ż�2 d2

dz2 −
ż2

�1 − z2�2 ��1�1 − z2� + �2���̌ = E�̌ . �43�
aking into account Eqs. �32�, �26�, and �27�, we arrive at
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�− �1 − z2�
d2

dz2 − j�j + 1��1 − z2� + ��� + 2��̌ = 0. �44�

f we set w=z2 and substitute �̌= �1−w���+2�/2u, this differential equation becomes

w�1 − w�
d2u

dw2 + �1

2
− �� +

5

2
�w du

dw
−

1

4
��� + 2��� + 1� − j�j + 1��u = 0. �45�

his is equivalent to the hypergeometric equation30

w�1 − w�
d2u

dw2 + �c − �a + b + 1�w�
du

dw
− abu = 0, �46�

hich has two linear independent solutions

u1 = 2F1�a,b;c;w� ,

u2 = w1−c
2F1�a − c + 1,b − c + 1;2 − c;w� .

Before proceeding further, we note that with �2�0 the function z carries the points x= ±� to
= ±1, respectively. It follows from �32� that

z → ± �1 − 2e−2��x�−x0�/��2� for x → ± � , �47�

here x0 is a constant depending on �1 and �2. Hence, two linear independent scattering solutions

l and �r satisfying the boundary conditions

�l = �eikx + Rle
−ikx for x → − �

Tle
ikx for x → + � ,

� �48�

nd

�r = �Tre
−ikx for x → − �

e−ikx + Rre
ikx for x → + �

� �49�

ith E=k2, are given by

�l = N�4 �1�1 − z2� + �2�1 − z2���+1�/2���� + j + 2

2
���� − j + 1

2
�u1

− ��� + j + 3

2
���� − j + 2

2
�u2

nd

�r = N�4 �1�1 − z2� + �2�1 − z2���+1�/2���� + j + 2

2
���� − j + 1

2
�u1

+ ��� + j + 3

2
���� − j + 2

2
�u2 ,

here

N =

exp�� x0

��2

+ ln �2��� + 1�
� 1/4

, �50�

2 ���2� ��� + 1�
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u1 = 2F1�� + j + 2

2
,
� − j + 1

2
;
1

2
;z2� , �51�

u2 = z2F1�� + j + 3

2
,
� − j + 2

2
;
3

2
;z2� . �52�

sing �47� together with the transformation30

2F1�a,b;c;w� = A1 2F1�a,b;a + b − c + 1;1 − w�

+ A2�1 − w�c−a−b
2F1�c − a,c − b;c − a − b + 1;1 − w� ,

here

A1 =
��c���c − a − b�
��c − a���c − b�

, A2 =
��c���a + b − c�

��a���b�
,

ne can check that the reflection and transmission amplitudes are

Rl = Rr = c
1

�
sin��j���� + j + 2���� − j + 1� �53�

nd

Tl = Tr = c
1

�
sin������� + j + 2���� − j + 1� , �54�

here c is a complex number of unit modulus

c =
��− 1 − ��
��1 + ��

exp�� 2x0

��2

− ln 2��� + 1� . �55�

hus, when j is an integer the family of potentials given in �33� is reflectionless as we expected.
Finally, by arguments very similar to those used to obtain �33� we can show that the potentials

ained for SO�2,2��G2 reduction have just the same shape as �33�.
�ii� The SO�2,2��G3 reduction. Then, the reduction conditions are

A34f jm = mf jm, CG3f jm = j�j + 1�f jm, �56�

here

CG3 = A34
2 − A23

2 − A24
2 = h−1/2 � ��	1

2 − 1�� �2

�	2
2 −

�2

�	3
2� + M�M + 1� � h1/2 �57�

ith

M = 	2
�

�	2
+ 	3

�

�	3
.

ccording to this, we impose d� to be invariant under G3,

h�	g� = h�	� , �58�

here g�G3. Hence we can, without loss of generality, put h=h�v�, v=	2
2−	3

2−	4
2.

Since A34 and A34
2 −A23

2 −A24
2 are sought to be diagonal, the appropriate parametrization for �8�

n these circumstances is obtained by sections of the manifold �8� by the planes 	1=c. It is not

ifficult to see that the sections are one-sheeted hyperboloids
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− 	2
2 + 	3

2 + 	4
2 = c2 − 1

f �c��1 and two-sheeted hyperboloids

	2
2 − 	3

2 − 	4
2 = 1 − c2

f �c��1. The whole of � can be expressed as the union of two regions, �1 in which �	1��1 and

2 in which �	1��1. Since the discrete series of SO�2,1� is related to the one-sheeted hyperboloid
e shall restrict ourselves to �1.

We proceed with the determination of the new coordinates in �1:

	1 =
z�x�

�z2�x� − 1
,

	2 =
1

�z2�x� − 1
sinh � ,

	3 =
1

�z2�x� − 1
cosh � sin � ,

	4 =
1

�z2�x� − 1
cosh � cos � , �59�

here −��x, ���, 0��2� and z�x� is a differentiable function on R with values in
−� ,1�� �1,��. Then

A34 = − i
�

��
, CG3 =

�2

��2 + tanh �
�

��
−

1

cosh2 �

�2

��2 �60�

hile

CSO�2,2� = �1 − z2

ż
�2� �2

�x2 + � ḣ

h
−

z̈

ż
� �

�x
+

1

2

ḧ

h
−

1

4
� ḣ

h
�2

−
z̈

ż

ḣ

2h

+
�ż�2

1 − z2� �2

��2 + tanh �
�

��
−

1

cosh2 �

�2

��2� . �61�

lthough the operators �21� and �61� have the same form �in terms of z, � ,��, the functions z are
ot the same.

It is immediately evident from the above-noted sets of equations that the potentials gained for
O�2,2��G3 reduction are also given by �33�, but the values of z are in �−� ,1�� �1,��. Hence
e have a new family of reflectionless potentials. For example, if �1=0 then z satisfies Eq. �35�
hose �nonsingular� solution now becomes

z =�coth
x − a
��2

for x � 0

coth
x + a
��2

for x � 0,� �62�
here a, 0�a, is a constant of integration. So that
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V =�
j�j + 1�

�2 sinh2� x − a
��2

� for x � 0

j�j + 1�

�2 sinh2� x + a
��2

� for x � 0.� �63�

Observe that the potential �63� is symmetric about the origin.� This reflectionless potential has
een discussed in detail in the context of supersymmetric quantum mechanics.17

Finally, we note that we have the same results for the SO�2,2��G4 reduction.

II. REFLECTIONLESS POTENTIALS RELATED TO ISO„1,1…

We denote by M a two-dimensional Minkowski space with bilinear form

	 · 
 � 	1
1 − 	2
2. �64�

oincaré transformations in M are translations and hyperbolic rotations of the type28

	1� = 	1 cosh � + 	2 sinh � + b1,

	2� = 	1 sinh � + 	2 cosh � + b2,

here the three parameters b1, b2, and � range from −� to +�. The above-noted transformations
an be conveniently written in matrix form

	� = 	g , �65�

ith

g = �cosh � sinh � 0

sinh � cosh � 0

b1 b2 1
�, 	 = �	1,	2,1� . �66�

he UIRs of the Poincaré group in 1+1 dimensions are labeled with a quantum number, �,
anging from 0 to +�. Representations labeled with � and −� are Weyl-equivalent.

The matrices corresponding to translations along the 	1 axis and the 	2 axis, as well as to
yperbolic rotations are, respectively,

g1�t� = �1 0 0

0 1 0

t 0 1
�, g2�t� = �1 0 0

0 1 0

0 t 1
�, g3�t� = �cosh t sinh t 0

sinh t cosh t 0

0 0 1
� . �67�

The generators of the corresponding Lie algebra, ISO�1,1�, denoted by ak�k=1,2 ,3�, are, by
efinition

ak = �dgk

dt
�

t=0
. �68�

They satisfy the following commutation relations:

�a1,a2� = 0, �a3,a1� = − a2, �a3,a2� = − a1. �69�
Now, we want to construct the Hamiltonian H for which
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Q�H − E� = ��C − �2��H�
, �70�

here H� is a one-dimensional subspace occurring in the ISO�1,1��SO�1,1� reduction.
Let us consider a quasiregular representation of ISO�1,1� induced by a one-dimensional iden-

ity representation of SO�1,1�. It is known that28 this representation is decomposed into the direct
ntegral of UIRs of ISO�1,1� labeled with ��0����� and each UIR appears in the decomposition
our times.

The quasiregular representation can be realized in the Hilbert space L2�M ,d�� of square-
ntegrable functions defined on M � ISO�1,1� /SO�1,1�. In general, for construction of the quasi-
egular representation, one can use the carrier space, L2�M ,d��, with any quasi-invariant measure
��	� on M. The representations with different measure are unitarily equivalent, and given by

T�g�f�	� = �d��	g�
d��	� 1/2

f�	g� , �71�

ith inner product

�f , f�� =� f�	�f��	�d��	� , �72�

here f�	� is the complex conjugate of f�	� and d��	g� /d��	� is the Radon-Nikodym derivative.
Without loss of generality, we can put

d��	� = h�	�d	 , �73�

here d	=d	1d	2 is an invariant measure on M.
It is not difficult to show that the infinitesimal operators Ak= �− i�d/dt�T�gk�t���t=0 of the

epresentation �71� corresponding to the three one-parameter subgroups of ISO�1,1� are given by

iA1 =
�

�	1
+

1

2h

�h

�	1
, �74�

iA2 =
�

�	2
+

1

2h

�h

�	2
, �75�

iA3 = 	2
�

�	1
+ 	1

�

�	2
+

1

2h
�	2

�h

�	1
+ 	1

�h

�	2
� . �76�

f we compute the Casimir operator C=A1
2−A2

2, it becomes

C = −
�2

�	1
2 +

�2

�	2
2 −

1

2h
� �h

�	1

�

�	1
−

�h

�	2

�

�	2
� −

1

2h
� �2h

�	1
2 −

�2h

�	2
2� +

1

4h2�� �h

�	1
�2

− � �h

�	2
�2� .

�77�

Hence, we can construct the irreducible representations of ISO�1,1� as subrepresentations of
he quasi-regular representation �71�. To do this, we require the representation space to be irre-
ucible. Such a restriction is obtained if all functions f are eigenfunctions of the Casimir operator

of �71�,

Cf = �2f . �78�

Next, imposing the reduction condition, we can choose a different basis in the carrier space. In

rder to diagonalize the SO�1,1� subgroup, we exploit the reduction condition
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A3f� = �f�. �79�

ccording to this, we want d� to be invariant under SO�1,1�, i.e.,

h�g3	� = h�	�, g3 � SO�1,1� . �80�

s a consequence, we find

�	2
�

�	1
+ 	1

�

�	2
�h = 0. �81�

The parametrization of M we are searching for must be such as to make A3 particularly
imple. For this purpose, we must introduce hyperbolic variables; this requires dividing the
inkowski space into two regions. The new variables x and �, both ranging from −� to +�, are

ntroduced in each region in this way:

	1
2 � 	2

2: 	1 = z�x�cosh �, 	2 = z�x�sinh � , �82�

	1
2 � 	2

2: 	1 = z�x�sinh �, 	2 = z�x�cosh � , �83�

here z�x�, −��z��, is a differentiable function on R.
Without loss of generality, we replace 	1 and 	2 with the new variables x and � via Eq. �82�.

hen, Eq. �81� reduces to

�h

��
= 0. �84�

hen operator A3 �76� is simply

A3 = i
�

��
, �85�

s expected, and the Casimir operator becomes, in the new parametrization,

C = −
1

�ż�2� �2

�x2 + �1

h

dh

dx
+

ż

z
−

z̈

ż
� �

�x
− � ż

z
�2 �2

��2 −
1

4h2�dh

dx
�2

+
1

2h
�d2h

dx2 −
z̈

ż

dh

dx
+

ż

z

dh

dx
� ,

�86�

here ż�dz /dx, z̈�d2z /dx2, and so on. In order to eliminate the term containing � /�x, we require

1

h

dh

dx
+

ż

z
−

z̈

ż
= 0. �87�

The solution to this equation is given by

h = �
ż

z
, �88�

here � is a constant. Substituting Eq. �88� into formula �86�, we get

C = −
1

�ż�2� �2

�x2 + � ż

z
�2�1

4
−

�2

��2� +
1

2

z�

ż
−

3

4
� z̈

ż
�2 . �89�

Let H� be a one-dimensional subspace spanned by functions f� with fixed � : the Casimir

perator restricted to H� becomes a differential operator in x alone; it turns out that
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C� = −
1

�ż�2� d2

dx2 + �1 + �2�� ż

z
�2

+
1

2

z�

ż
−

3

4
� z̈

ż
�2 , �90�

here C� denotes the restriction of C to H�.
Let the quantum numbers �2 and �2 be linear functions of energy, E. Without loss of gener-

lity, we can assume

�2 + 1
4 = �1E + �1, �91�

nd

�2 = �2E + �2. �92�

hen, formula �90� becomes

C� − �2 =
1

�ż�2�−
d2

dx2 − �ER�z� + �2z2 + �1�� ż

z
�2

−
1

2

z�

ż
+

3

4
� z̈

ż
�2 , �93�

here now

R�z� = �2z2 + �1. �94�

In order that relation �70� be satisfied, with Q=1/ �ż�2, we now impose

�ż�2 =
z2

R�z�
. �95�

f the above-presented condition holds, the operator within square brackets on the right-hand side
f Eq. �93� can be written as H−E, where

H = −
d2

dx2 + V�z� = −
d2

dx2 −
1

2

z�

ż
+

3

4
� z̈

ż
�2

−
�2z2 + �1

R
.

ence, the ISO�1,1� related potentials V are given by

V = −
�2z2 + �1

R
+

3�1

2R2 −
5�1

2

4R3 . �96�

In order to make the potential V vanish as �x�→� �i.e., as �z�→�� we set �2=0. Hence
elation �92� reduces to

�2 = �2E . �97�

A simple case comes about by choosing �1=0. In this case Eq. �95� reduces to

�ż�2 = 1/�2, �98�

hose solution is given by

z = ��x − a�/��2, for x � 0

�x + a�/��2, for x � 0,
� �99�
here a, 0�a, is a constant of integration. According to �96� and �99� we obtain
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V�x� =�−

1

4
+ �2

�x − a�2 ,
for x � 0

−

1

4
+ �2

�x + a�2 ,
for x � 0.� �100�

urthermore one can check that the potential �63� with j=−1/2− i� goes over in the limit �2

� into �100�. Hence �see Eq. �34�� we can obtain the S-matrix for �100� by the limiting process
→� from �53� and �54� as mentioned in Sec. I.

It is worthwhile to point out that potential �100� was obtained in the supersymmetric
pproach17 as a partner of the null potential. �In Ref. 31 a singular potential V�1/x2 has been
tudied on the line.� Finally, we note that the potentials related to ISO�2,1��SO�2,1� are also
iven by �96�, but the left-hand side of �91� must be replaced by −j�j+1�, where j=−1/2− i�, for
rincipal series representations of SO�2,1�, while j=0,1 ,2 , . . ., for discrete series representations
f SO�2,1�.
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We describe a decomposition of the Lie group of unitary evolutions for a bipartite
quantum system of arbitrary dimensions. The decomposition is based on a recursive
procedure that systematically uses the Cartan classification of the symmetric spaces
of the Lie group SO�n�. The resulting factorization of unitary evolutions clearly
displays the local and entangling character of each factor. © 2006 American Insti-
tute of Physics. �DOI: 10.1063/1.2245205�

. INTRODUCTION

Decompositions of a Lie group G are methods to factorize every element X�G as

X = X1X2 . . . Xm, �1.1�

here the factors X1 , . . . ,Xm belong to one dimensional subgroups. Decompositions of unitary
volutions in simpler terms are of interest in quantum control and information theory for at least
hree reasons. They allow us to simplify the task of controlling the evolution of a quantum system
o a target into a sequence of simpler subtasks, consisting of control problems to more easily
eachable targets �see, e.g., Refs. 1–3�. They allow the analysis of several features of quantum
ynamics such as entanglement generation, time optimality, and parameter identification �see, e.g.,
efs. 4–7�. They give methods to produce unitary evolutions in a laboratory by combining a

equence of readily reproducible evolutions. In particular, in quantum information theory, a de-
omposition can be seen as a method to generate a quantum logic operation from a sequence of
lementary operations.6,8

In many cases, decompositions of the unitary group U�n� correspond to vector space decom-
ositions of the corresponding Lie algebra u�n�, and each element H� iu�n� represents the Hamil-
onian of a possible evolution. In the analysis of multipartite quantum systems, it is useful to
istinguish Hamiltonians acting on single subsystems, called local Hamiltonians, and Hamilto-
ians describing the coupling between two or more systems, called interaction (or entangling)
amiltonians. In the unitary group, these Hamiltonians generate local and entangling evolutions,

espectively. In particular, if one considers a multipartite system composed of N subsystems of
imensions n1 , . . . ,nN, the space of all possible Hamiltonians is given by iu�n1n2¯nN�. Once we
ave an orthogonal basis in iu�nj�, j=1, . . . ,N, given by Hlj

j , lj =1, . . . ,nj
2, then a basis of

�n1n2¯nN� is given by

iHl1
1

� Hl2
2

� ¯ � HlN
N . �1.2�

he subalgebra of local Hamiltonians is spanned by elements where all the factors in the tensor
roduct are equal to the identity except one. They produce unitary evolutions of the factorized
orm X1 � X2 � ¯ � XN, which correspond to transformations on the single subsystems. In this
pirit, the decomposition given in Ref. 6 recursively factorizes a unitary transformation on n qubits

�Electronic mail: daless@iastate.edu
�
Electronic mail: rromano@iastate.edu

47, 082109-1022-2488/2006/47�8�/082109/13/$23.00 © 2006 American Institute of Physics
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n local and entangling transformations, the latter one acting on two subsystems at a time only. In
recent paper,9 a method was given to generate decompositions in the tensor product space for

eneral multipartite quantum systems of arbitrary dimensions, starting from decompositions of
volutions on the single subsystems.

In the spirit of the last two works cited, we present in this paper a recursive procedure to
ecompose the unitary evolution of a bipartite system of arbitrary dimensions so that every
volution is factorized into simple terms, and it is clear what the entangling and local contributions
f a single transformation are. The procedure we present applies recursively the Cartan decom-
osition of the Lie algebra so�n� by keeping the tensor product basis representation of the Lie
lgebra u�n�. In this basis, at the end of the procedure, it is easy to analyze the local and entangling
haracter of each factor.

The paper is organized as follows: in the next section we review some basic concepts and
esults on the Cartan classification of symmetric spaces and Cartan decompositions. We shall
ention only the facts needed in the sequel of the paper. A detailed treatment can be found in Ref.

0. The decomposition procedure we describe consists of an initial step that reduces the problem
o a decomposition of the orthogonal group and a recursive procedure, which allows us to decom-
ose further the elements of the orthogonal group. These steps are described in Secs. III and IV,
espectively. We give several remarks highlighting the local and entangling factors needed in the
actorization. Section V is devoted to a discussion and a numerical example.

Notation: In the following we will use several times the definition of the elementary matrices

mn,

�Emn�rs = �mr�ns, �1.3�

nd of their antisymmetric and symmetric superposition, respectively as

�mn ª Emn − Enm, �mn ª Emn + Enm. �1.4�

e denote by AT the transposed of the matrix A. An n�m rectangular matrix is denoted by An�m;
he n�n identity matrix by 1n. Finally, we call a sign matrix a matrix of the form
iag�±1, ±1, . . . , ±1� with all the possible combinations of + and −.

I. BACKGROUND MATERIAL

In the following, we shall use �in a recursive manner� Cartan decompositions of the Lie
lgebras su�n� and so�n� as well as Cartan decompositions of direct products of �isomorphic
opies of� these Lie algebras. A Cartan decomposition of a semisimple Lie algebra L is a vector
pace decomposition

L = k � p , �2.1�

here k is a subalgebra, namely

�k,k� � k , �2.2�

nd the complement subspace p=k� is such that

�p,p� � k, �p,k� � p . �2.3�

ere the orthogonal complement � is with respect to the Killing form. The Killing form on a Lie
lgebra L is an inner product defined in terms of the adjoint representation of L. In particular,
very l�L acts on the vector space L according to the linear map adl, defined as

adl�x� ª �l,x� . �2.4�
he Killing form Kill is a bilinear form defined as
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Kill�x,y� ª Tr�adxady� . �2.5�

or the Lie algebras su�n� and so�n�, which are the main Lie algebras considered in this work, the
illing form is proportional to the matrix inner product �x ,y�ªTr�xy*�.10 Therefore, we shall refer

o this inner product in the following any time we mention orthogonality relations.
To a Cartan decomposition of L there corresponds a factorization of eL, the connected Lie

roup associated to L, such that every element X�eL can be written as

X = KP , �2.6�

here K belongs to ek, the connected Lie group corresponding to k, and P is the exponential of an
lement in p. The coset space eL /ek is called a symmetric space of eL. A maximal Abelian
ubalgebra of L in p is called a Cartan subalgebra associated to the decomposition, and it is
enoted by a. One can show, under appropriate assumptions, that

�
K�ek

KaK−1 = p , �2.7�

o that the factorization �2.6� refines to

X = K1AK2, �2.8�

ith K1 ,K2�ek, and A�ea. The dimension of the Cartan subalgebra a is called the rank of the
ecomposition �or of the associated symmetric space�.

Cartan has classified all the symmetric spaces of the classical Lie groups, i.e., the Lie groups
U�n�, Sp�n�, and SO�n�, and has shown that, up to conjugacy, the corresponding decompositions
all in one of few classes that he has described. �A conjugacy on L is a map m :L→L such that
�L�=MLM−1 for some M �eL.� In particular, for L=su�n�, there are three types of decomposi-

ions labeled by AI, AII, AIII. In the following, we shall use only decompositions of the type AI,
iven by

k = so�n�, p = so�n��, �2.9�

ith so�n�� the subspace of su�n� spanned by purely imaginary matrices. The rank of this de-
omposition is n−1. Decompositions of the type AII and AIII will not be considered here.

We consider now the Lie algebra L=so�n�. If n=1, this algebra contains only the null matrix
. For n�2, when n is odd there is only one type of Cartan decomposition, denoted by BDI.
ixing two positive integers r and q such that r�q�1 and r+q=n, the matrices k�k have the

form

k = �A 0

0 B
� , �2.10�

ith A�so�r� and B�so�q�. Matrices p�p have the form

p = � 0 C

− CT 0
� , �2.11�

or a general r�q matrix C. The rank of this decomposition is q. In this paper, we will not
onsider other decompositions.

II. DECOMPOSITION OF UNITARY EVOLUTIONS IN U„d1d2…; INITIAL STEP

Consider two interacting quantum systems S1 and S2 whose associated Hilbert spaces have
imensions d1 and d2, respectively. According to the procedure described in Ref. 9, it is possible
o obtain a decomposition for su�d1d2� from decompositions of type AI of the Lie algebras
ssociated to each subsystem, i.e., su�d1� and su�d2�. In the following instead of decompositions

f su�n� we shall refer to decompositions of u�n�. To a decomposition of su�n�,
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su�n� = k � p , �3.1�

ith k and p satisfying the conditions �2.2� and �2.3�, there corresponds a decomposition of u�n�,

u�n� = k � p�, �3.2�

here p� is defined by p�ªp � span	i1
. k and p� still satisfy the relations �2.2� and �2.3�, with p

eplaced by p�. What we have said in the previous section, in particular for the decomposition of
he associated Lie group, can be repeated by including span	i1
 in the maximal Abelian subalge-
ra. With some abuse of terminology, we shall refer to this decomposition also as a Cartan
ecomposition of u�n�. We write

u�d1� = so�d1� � so�d1��, u�d2� = so�d2� � so�d2��. �3.3�

et � j, j=1,2, be a generic element of an orthogonal basis of iso�dj�, and Sj, j=1,2, a generic
lement of an orthogonal basis of iso�dj��. Then the subalgebra of u�d1d2�, defined by

k ª span	i�1
� S2,iS1

� �2
 , �3.4�

long with its orthogonal complement in u�d1d2�,

p ª span	i�1
� �2,iS1

� S2
 , �3.5�

efine a Cartan decomposition of u�d1d2� as

u�d1d2� = k � p . �3.6�

his decomposition is of type AI9 as k is conjugate to so�d1d2� and p to so�d1d2��. The rank of this
ecomposition is d1d2. A basis of the maximal Abelian subalgebra a�p is given by tensor prod-
cts of elements of the orthogonal basis of the maximal Abelian subalgebras associated to the
ingle subsystems, which are of dimensions d1 and d2, respectively. Denoting by D1 the diagonal
lements of the type S1, and by D2 those of the type S2, a is given by

a ª span	iD1
� D2
 . �3.7�

he associated Cartan factorization of X�U�d1d2� is

X = K1AK2, �3.8�

ccording to the notation of the previous section.
Remark III.1: Only in the simplest case of the decomposition of su�4� �i.e., d1=2 and d2=2�,

tudied, for example, in Ref. 7, the decomposition �3.8� is a decomposition in local and nonlocal
ransformations. The local transformations are products of exponentials of matrices of the form
H � 1 or 1 � iH, where 1 is the identity matrix of appropriate dimensions and H is a generic
atrix in iu�d1� or iu�d2�. Both local and nonlocal transformations are possibly present in the K1

nd K2 factors as well as in the A factor. However, obtaining a decomposition in terms of tensor
roduct matrices will allow us to identify exactly where the local and nonlocal transformations are
resent in the final transformation.

Remark III.2: We notice that, in general, only one nonlocal transformation, along with the set
f the local transformations, is sufficient to obtain all the possible values for A in �3.8�. To see this,
otice that the factor A is the finite product of exponentials of elements of the form i� jkEjj

� Ekk, with j=1, . . . ,d1, k=1, . . . ,d2, and � jk real numbers. Since, for every l, Ell is unitarily
quivalent to E11, the Hamiltonian H=E11 � E11, along with local transformations, is sufficient to
enerate any element of the form A. Notice that an alternative �universal� nonlocal Hamiltonian is
iven by an Ising interaction between two spins, which in our notation reads as �E11−Ed1d1

�
� �E11−Ed2d2

�.
We now turn our attention to decomposing the elements K1 and K2 in �3.8�. This will be
btained through a recursive procedure via iterate decompositions of so�n�.
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V. DECOMPOSITION OF UNITARY EVOLUTIONS IN U„d1d2…; RECURSIVE PROCEDURE

The Lie algebra k defined in �3.4� is conjugate to so�d1d2�. We rewrite its definition below:

k ª span	i�1
� S2,iS1

� �2
 ,

ith � j, j=1,2, belonging to an orthogonal basis of iso�dj� and Sj, j=1,2, belonging to an
rthogonal basis of iso�dj��.

A special case arises when d1=d2=1, and only the matrix 0 belongs to the corresponding Lie
lgebra. This case is not of physical interest, as it would imply a one-dimensional quantum system.
owever, it may arise as the final step of the recursive procedure we are going to present. A

pecial, nonphysical case is also d1=2 and d2=1, or vice versa. In this case, the Lie algebra k

ontains only one element. Another special case is given by d1=d2=2. In this case, consider the
auli matrices,

�x ª �0 1

1 0
�, �y ª �0 − i

i 0
�, �z ª �1 0

0 − 1
� , �4.1�

nd the 2�2 identity matrix 1. Then k=so�4� is the direct sum of two commuting subalgebras, s1

nd s2, each isomorphic to so�3�, and given by

s1 ª span	i�y � 1,i�x � �y,i�z � �y
 ,

�4.2�
s2 ª span	i1 � �y,i�y � �x,i�y � �z
 .

herefore K1 �and analogously K2� in �3.8� can be written as the product

K1 = F1F2 = F2F1, �4.3�

ith F1 and F2 in the Lie group corresponding to s1 and s2, respectively. A Cartan decomposition
an be performed on s1 �and analogously on s2�, which is an Euler decomposition as s1 is
somorphic to so�3�, and allows us to express F1 as

F1 = L1NL2, �4.4�

ith Lj =e�ji�y�1, j=1,2, for real parameters � j, and N=e	i�x��y for a real parameter 	. Notice
hat L1 and L2 are local transformations while N is nonlocal. The same can be done for F2,

oreover, the nonlocal transformation for F2 can be obtained using a local similarity transforma-
ion from the one for F1, or vice versa, so that for F1 and F2 we need only one nonlocal
amiltonian.

Consider now the case where at least one between d1 and d2 is greater than 2. As it was done
or the initial step in the previous section, we look for decompositions concerning the single
ubsystems to induce a decomposition on the total bipartite system. The elements of the type i�1

nd i�2 are real, skew-symmetric, square matrices of dimensions d1 and d2, respectively. Let d1

2 without loss of generality. On the Lie algebra of d1�d1, skew-symmetric matrices �that is,
atrices of the type �1�, we perform a decomposition of the type BDI �see the previous section�

y selecting two positive integers r1�q1�1 so that r1+q1=d1. In the resulting Cartan decompo-
ition, so�d1�=k � p, the Lie algebra k is spanned by block diagonal skew-symmetric matrices with
he upper block of dimension r1 and the lower block of dimension q1. We denote this type of
atrices by i�1,D �where D stands for “diagonal”�. The skew-symmetric matrices in the comple-
ent p will be denoted by i�1,A �where A stands for “antidiagonal”�. We as well separate matrices

f the type S1 into block diagonal and block antidiagonal and denote them by iS1,D and iS1,A,
espectively. Analogously, we define a decomposition of type BDI on so�d2� introducing two
ositive integers r2�q2�1, with r2+q2=d2 and matrices of the type i�2,D, i�2,A, iS2,D and iS2,A.
n the special case where d2=2, we can only choose r2=q2=1 and we do not, in fact, obtain a

ecomposition of so�d2� of the type BDI. However, we still formally decompose matrices of the
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orm � 2 and S2 in �block� diagonal and �block� antidiagonal components and notice that, in this
ase, the only matrix of the type i� 2,D and iS2,A is the 2�2 zero matrix.

These decompositions on the two subsystems induce a decomposition on the overall bipartite
ystem. More precisely we decompose k in �3.4� as follows:

k ª k� � p�, �4.5�

ith

k� = span	i�1,D
� S2,D,iS1,D

� � 2,D,i�1,A
� S2,A,iS1,A

� � 2,A
 ,

�4.6�
p� = span	i�1,A

� S2,D,i�1,D
� S2,A,iS1,D

� � 2,A,iS1,A
� � 2,D
 .

The following Theorem summarizes the features of this decomposition. It also gives, in its
roof, a coordinate transformation to write the elements of the subalgebra k� and its complement
� in the standard form.

Theorem 1: The decomposition of k defined in �4.5�, �4.6� is a Cartan decomposition, i.e.,

�k�,k�� � k�, �k�,p�� � p�, �p�,p�� � k�.

s a decomposition of so�d1d2�, it is a Cartan decomposition of type BDI with indices r and q
atisfying r�q�1, r+q=d1d2, and with

r = r1r2 + q1q2, q = r1q2 + q1r2. �4.7�

ccordingly, the dimension of the associated Cartan subalgebra a��p� is q=r1q2+q1r2.
Proof: We explicitly exhibit a conjugacy that transforms elements of k� into the form �2.10�

nd elements of p� into the form �2.11�. In particular, notice that the matrices i�1,D � S2,D, iS1,D

� � 2,D have the form

k1 ª�
Ar1�r1

� Cr2�r2
0 0 0

0 Ar1�r1
� Dq2�q2

0 0

0 0 Bq1�q1
� Cr2�r2

0

0 0 0 Bq1�q1
� Dq2�q2

� , �4.8�

hile the matrices i�1,A � S2,A and iS1,A � �2,A are of the form

k2 ª�
0 0 0 Fr1�q1

� Gr2�q2

0 0 ±Fr1�q1
� Gq2�r2

T 0

0 
Fr1�q1

T
� Gr2�q2

0 0

− Fq1�r1

T
� Gq2�r2

T 0 0 0
� .

�4.9�

straightforward calculation shows that, defining

R ª�
1r1r2

0 0 0

0 0 0 1q1q2

0 1r1q2
0 0

0 0 1r2q1
0
� , �4.10�
he matrices
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k̃1 ª Rk1RT, k̃2 ª Rk2RT, �4.11�

ave the form given in �2.10�, where the upper block has dimension r=r1r2+q1q2 and the lower
lock has dimension q=r1q2+q1r2. Analogously one shows that the conjugacy defined in �4.10�
ransforms elements in p� into elements of the form p in �2.11�. �

In view of the decomposition �4.5�, any element K1 �and analogously for K2� in �3.8� can be
ritten as

K1 = K1�A�K2�, �4.12�

here K1� and K2� belong to the Lie group associated with the Lie algebra k�, conjugate to so�r�
� so�q�, and are to be further factorized. The matrix A� belongs to the Abelian Lie subgroup
ssociated to the maximal Abelian subalgebra a��p�. In the following proposition we find an
rthogonal basis for such a Cartan subalgebra expressing it in terms of tensor products. �An
lternative procedure is to transform the Lie algebra k� according to the change of coordinates
4.10� and to find the Cartan subalgebra in the standard basis.�

Proposition IV.1: The �r1+q1�q2 matrices

Njk ª Ejj � �k,r2+k, j = 1, . . . ,r1 + q1, k = 1, . . . ,q2, �4.13�

long with the �r2−q2�q1 matrices

Mfl ª � f ,r1+f � Ell, l = q2 + 1, . . . ,r2, f = 1, . . . ,q1, �4.14�

pan a Cartan subalgebra a��p�.
Proof: The dimension of the vector space spanned by the matrices in �4.13� and �4.14� is, in

act, �r1+q1�q2+ �r2−q2�q1=r1q2+q1r2. Therefore, we only have to verify that matrices of the type
4.13� and �4.14� commute with each other. The commutator between two matrices of the type
4.13� always vanishes. Analogously, matrices of the type �4.14� commute with each other. The
ie bracket of matrices of the type �4.13� and �4.14� vanishes too, since the products of matrices

k,r2+k and Ell in the second factors are always zero.
Remark IV.2: It follows from Proposition IV.1 that the element A� in �4.12� is the exponential

f a linear combination of matrices �4.13� and �4.14� or �equivalently� the product of exponentials
f matrices proportional to these. The resulting unitary transformations may be entangling or local.
owever, since all the matrices of the form Ejj are unitarily equivalent to each other and the
atrices of the type �kl are also unitarily equivalent to each other, only one �entangling� Hamil-

onian of the type �4.13�, one of the type �4.14� along with local operations are sufficient �and
ecessary� to generate all the possible factors A� in �4.12�.

Remark IV.3: A further reduction of the nonlocal Hamiltonians to be used is obtained by
oticing that all the transformations in Remark III.2 and in Proposition IV.1 can be obtained with
nly one Ising Hamiltonian and local transformations. Therefore only one nonlocal Hamiltonian is
eeded to implement all of these transformations.

We now further factorize the elements K1� and K2� in �4.12� using, once again, a Cartan
ecomposition of the Lie algebra k� isomorphic to so�r� � so�q�, with r and q defined in �4.7�. In
articular, we decompose k� as follows:

k� = k� � p�, �4.15�

ith

k� = span	i�1,D
� S2,D,S1,D

� i�2,D
 ,

�4.16�
p� = span	i�1,A

� S2,A,S1,A
� i�2,A
 .
he matrices in k� are block diagonal matrices and k� is
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k� = so�r1r2� � so�r1q2� � so�q1r2� � so�q1q2� , �4.17�

here each term refers to a block on the diagonal. For example, the first block corresponding to
o�r1r2� contains matrices obtained as tensor products i�1,D � S2,D or S1,D � �2,D, where all matri-
es involved have the second block equal to zero. This corresponds to two decompositions of the
ype BDI: one on so�r� and the other on so�q�. The Cartan subalgebra in p� is the direct sum of the
wo Cartan subalgebras of the two decompositions. It has dimension q1q2+min	r1q2 ,q1r2
. The
ollowing proposition explains how to find a basis of this Cartan subalgebra as tensor product
atrices. �Alternatively, one can construct a basis for this Cartan subalgebra working in the

tandard representation using the conjugacy given in �4.10�.�
Proposition IV.4: A Cartan subalgebra of the decomposition �4.15�, �4.16� is spanned by the

1q2 matrices,

Njm,ln ª � 0 Ejl

− Ejl
T 0

� � � 0 Emn

Emn
T 0

� + � 0 Ejl

Ejl
T 0

� � � 0 Emn

− Emn
T 0,

� �4.18�

ith 1� j�r1, 1� l�q1 and 1�m�r2, 1�n�q2 satisfying

�j − 1�r2 + m = s, �l − 1�q2 + n = s , �4.19�

ith s=1, . . . ,q1q2, along with matrices

Mjm,ln ª � 0 Ejl

− Ejl
T 0

� � � 0 Emn

Emn
T 0

� − � 0 Ejl

Ejl
T 0

� � � 0 Emn

− Emn
T 0

� , �4.20�

ith 1� j�r1, 1� l�q1 and 1�m�r2, 1�n�q2 satisfying

�j − 1�q2 + n = s, �l − 1�r2 + m = s , �4.21�

ith s=1, . . . ,min	r1q2 ,q1r2
.
Remark IV.5: For all s, there is a unique pair �l ,n� so that the second relation in �4.19� is

erified. There is some freedom in choosing the pairs �j ,m� satisfying the first relation in �4.19�.
owever, for every value of s, and therefore of l and n, one is allowed to choose a unique pair

j ,m�. The notation in �4.20� and �4.21� has an analogous meaning.
Proof: Matrices of the form �4.18� commute with matrices of the form �4.20�, since these

atrices form Cartan subalgebras associated to decompositions of so�r� and so�q�, respectively.
o show that matrices of type �4.18� commute, one verifies that the commutators of two matrices
orresponding to indices �j1m1 , l1n1� and �j2m2 , l2n2� vanish. In fact, all the blocks of such matri-
es are zero except for the 1 ,1 and 2,2 blocks, which, from a direct calculation, turn out to be
qual to

4�Ej2j1
�l1l2

� Em2m1
�n1n2

− Ej1j2
�l1l2

� Em1m2
�n1n2

� , �4.22�

nd

4�El2l1
� j1j2

� En2n1
�m1m2

− El1l2
� j1j2

� En1n2
�m1m2

� , �4.23�

espectively. However these are also zero if n1�n2 and/or l1� l2 as well as in the case l1= l2,

1=n2 �and therefore j1= j2, m1=m2; see Remark IV.5�. A perfectly analogous argument holds in
he case of commutators of matrices of the form �4.20�. �

Remark IV.6: Notice that all the Hamiltonians �4.18� are locally unitarily equivalent to each
ther. The same is true for the Hamiltonians �4.20�. Therefore only two more entangling Hamil-
onians are needed.

At this point we are left with the Lie algebra so�p1p1� � so�q1q2� � so�p1q2� � so�p2q1�. The

onstruction proceeds recursively by decomposing each one of the four component Lie algebras
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nd so on, until one finds one of the Lie algebras so�1� �which we define as the element zero�,
o�2� �which consists of a single element�, so�3�, or so�4� �which are treated as it was explained
t the beginning of the procedure�.

. DISCUSSION AND AN EXAMPLE

In order to illustrate the Lie group decomposition described in the previous sections, we
onsider the generalized SWAP operator Xsw acting on three qubits and rotating their states in a
yclic fashion. Its action is defined in the tensor product basis as

Xsw:i�1 � j�2 � k�3 → k�1 � i�2 � j�3, �5.1�

here i , j ,k=0,1 and 	0� , 1�
1,2,3 are orthonormal bases for the Hilbert spaces of the three
ystems.

This operator is relevant in quantum information and computation since it enables us to switch
he quantum states of different systems. For example, assume that one is interested in the state of
he third system, but only the first system is accessible and can be controlled; then the application
f the generalized SWAP operator will enable to transfer the state of the third system to the first
ystem. As local operations alone clearly cannot implement the generalized SWAP, this has to
nvolve some degree of entanglement among the various subsystems. We consider an hypothetical
ituation where it is possible to create an interaction between the first qubit and the other two as
whole although it is difficult to create interactions with the single qubits 2 and 3. This justifies

o consider the total Hilbert space as the tensor product of a two-dimensional subspace with a
our-dimensional one �that is, d1=2 and d2=4�. Therefore Xsw�U �8� will be decomposed ac-
ordingly. �We believe that extensions of the procedure presented here to multipartite systems are
ossible at the price of an increased notational complexity.�

In the specified basis, with standard ordering, the matrix representation of this operator is
iven by

Xsw =�
1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

� . �5.2�

his transformation belongs to SO�8�, therefore the first step of the decomposition of U�8� is
rivial: K1=Xsw and A=K2=1.

For the first step of the recursive part of the procedure, we choose r1=q1=1 and r2=q2=2. We
nd it convenient to work in the basis of the Hilbert space such that k�=so�2� � so�4�, obtained by
erforming the change of basis R  ijk�→ ijk��, with R given in �4.10�, which, in this particular
ase �r1=q1=1, r2=q2=2�, takes the form

R =�
12 0 0 0

0 0 0 12

0 12 0 0

0 0 12 0
� . �5.3�

˜ T
n these coordinates, the SWAP operator is written as Xsw=RXswR , that is
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X̃sw =�
1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

� . �5.4�

he elements of the Cartan subalgebra a� �defined in Proposition IV.1�, which in this case are only
f the form �4.13�, are transformed by R into elements of the form

ã� = � 0 D

− D 0
� .

he computational problem is to find two 4�4 diagonal matrices, D1 and D2, with

Ã� = eã� = � D1 D2

− D2 D1
� ,

��SO�8�, and matrices Kij �SO�4�, i , j=1,2, such that

K̃1� = �K11 0

0 K12
�, K̃2� = �K21 0

0 K22
� �5.5�

nd X̃sw= K̃1�Ã�K̃2�. To perform this task we propose an algorithm that uses ideas similar to the ones
or other Cartan decompositions �cf., e.g., Ref. 5 and references therein�. We illustrate this algo-
ithm for the dimensions of our problem but generalizations to other dimensions are obvious. Let

s write X̃sw with 4�4 blocks X̃ij, i , j=1,2, as

X̃sw = �X̃11 X̃12

X̃21 X̃22

� . �5.6�

quation �5.5� is equivalent to the four matrix equations:

X̃11 = K11D1K21, �5.7�

X̃12 = K11D2K22, �5.8�

X̃21 = − K12D2K21, �5.9�

X̃22 = K12D1K22. �5.10�

rom the first one, we obtain

X̃11X̃11
T K11 = K11D1

2, �5.11�

hich is an eigenvalue equation as D1
2 is diagonal. In the generic case, when all the eigenvalues of

11X̃11
T are different, Eq. �5.11� determines K11 and D1 up to the right product by a sign matrix �and

he fact that det�K11�=1�. Moreover, D1 gives D2 up to a sign matrix from the requirement that
2 2

1+D2=14. Using K11 and D2 in �5.8�, we obtain K22 up to a sign matrix. Plugging K22 in �5.10�,
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e get K12 up to a sign matrix and from �5.9� we find K21. Finally, we adjust the sign matrices to

ake �5.7�–�5.10� consistently verified. In the case where X̃11X̃11
T has multiple eigenvalues, there is

ore freedom in the choice of K11 at the initial step, but then one proceeds in the same way and
etermines the other matrices up to some degree of freedom. At the end of the procedure, these
egrees of freedom are exploited to make �5.7�–�5.10� jointly satisfied.

Using this procedure, we have found, for our example,

K11 =�
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 − 1
�, K12 = −�

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0
� ,

K21 =�
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
�, K22 =�

0 − 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0
� , �5.12�

D1 =�
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 − 1
�, D2 =�

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0
� .

e can repeat the same procedure as above to further factorize K11, K12, K21, K22, and to obtain
˜

1�= K̃1�Ã1�K̃2� and K̃2�= K̃3�Ã2�K̃4�. We finally get the decomposition of X̃sw,

X̃sw = K̃1�Ã1�K̃2�Ã�K̃3�Ã2�K̃4�, �5.13�

here

Ã1� = diag��
1 0 0 0

0 0 0 1

0 0 1 0

0 − 1 0 0
�,�

0 0 − 1 0

0 0 0 1

1 0 0 0

0 − 1 0 0
�� ,

Ã2� = diag�14,�
1 0 0 0

0 0 0 1

0 0 1 0

0 − 1 0 0
�� ,

K̃1� = diag�12,�0 − 1

1 0
�,�0 − 1

1 0
�,� 0 1

− 1 0
�� ,

�5.14�

K̃2� = diag�12,�0 − 1

1 0
�,12,12� ,

K̃3� = diag�12,12,12,�0 − 1 �� ,

1 0
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K̃4� = diag�12,12,�0 − 1

1 0
�,12� .

e now use the transformation R in �5.3� to write Xsw in the original coordinates as

Xsw = K1�A1�K2�A�K3�A2�K4�, �5.15�

ith A�=RTÃ�R, A�=RTÃ�R, and Kj�=RTK̃j�R, j=1,2. We can write all the factors in �5.15� as
xponentials of appropriate matrices in the tensor product basis:

A� = ea�, Ak� = eak�, k = 1,2,

�5.16�
Kj� = ekj�, j = 1, . . . ,4

here

a� =
�

2
�E11 � �24� +

3�

2
�E22 � �13� + ��E22 � �24� ,

a1� =
�

4
��12 � �24 + �12 � �24� +

�

4
��12 � �24 − �12 � �24� +

3�

4
��12 � �13 − �12 � �13� ,

a2� =
�

4
��12 � �24 − �12 � �24� ,

k1� =
3�

2
�E22 � �34� +

�

2
�E22 � �12� +

3�

2
�E11 � �34� , �5.17�

k2� =
3�

2
�E22 � �34� ,

k3� =
3�

2
�E22 � �12� ,

k4� =
3�

2
�E11 � �34� .

It is interesting to observe what number of nonlocal transformations are needed to perform the
iven task if we are able to perform any local transformation on the two subsystems. Notice that
e are considering the system as a bipartite system of a two level system with a four level system.

n essence, we assume that we have to decide appropriate interactions between the two subsystems
two and four dimensional�, which along with local transformations will allow us to perform the
iven task. By grouping the matrices that are equivalent through local similarity transformations it

s clear that the Hamiltonians
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H1 ª E11 � �34,

H2 ª �12 � �24 + �12 � �24, �5.18�

H3 ª �12 � �24 − �12 � �24,

re sufficient. �In view of �5.17�, one can replace H2 with H̃2ª�12 � �24.�
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This work is intended as an attempt to study the nonperturbative renormalization of
bound state problem of finitely many Dirac-delta interactions on Riemannian mani-
folds, S2, H2, and H3. We formulate the problem in terms of a finite dimensional
matrix, called the characteristic matrix �. The bound state energies can be found
from the characteristic equation ��−�2�A=0. The characteristic matrix can be
found after a regularization and renormalization by using a sharp cut-off in the
eigenvalue spectrum of the Laplacian, as it is done in the flat space, or using the
heat kernel method. These two approaches are equivalent in the case of compact
manifolds. The heat kernel method has a general advantage to find lower bounds on
the spectrum even for compact manifolds as shown in the case of S2. The heat
kernels for H2 and H3 are known explicitly, thus we can calculate the characteristic
matrix �. Using the result, we give lower bound estimates of the discrete
spectrum. © 2006 American Institute of Physics. �DOI: 10.1063/1.2259581�

. INTRODUCTION

It is well known that the exactly solvable Dirac-delta interactions on the plane and three-
imensional Euclidean space in quantum mechanics give rise to some unphysical results for
hysical observables, i.e., bound state energy and scattering cross section are infinite and the
roblem is said to be ultraviolet divergent. Nevertheless, there is a systematic way to dispense
ith these infinities by means of a so-called regularization and renormalization, which is first

ntroduced in quantum field theory for the same reason. This problem constitutes an analytical
xample of regularization and renormalization in quantum mechanics so that it helps us to under-
tand and deal with it in a more elementary context rather than field theory and it has been studied
n the literature from several point of views.1–13 Moreover, a single point interaction in two-
imensional flat space is an instructive example of dimensional transmutation in nonrelativistic
uantum mechanics.3,14–16 That is, the original Hamiltonian does not contain any intrinsic energy
cale due to the dimensionless coupling constant in natural units. Nevertheless, a new parameter
2, which specifies the bound state energy, must be introduced after the renormalization procedure
hich then fixes the energy scale of the system. �A detailed discussion of dimensional transmu-

ation in nonrelativistic quantum mechanics is given in a relatively recent article.16�
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In this study, we consider a bound state problem in which a nonrelativistic particle living in a
iemannian manifold �in particular S2, H2, and H3� interacts with finitely many Dirac-delta inter-
ctions. Similar to the corresponding bound state problem on R2 and R3, we encounter divergences
n this case as well. The main purpose of this paper is to show how to nonperturbatively regularize
nd renormalize the problem by means of heat kernel �even in the case where we do not have an
xplicit expression for it�. After the renormalization, we estimate a lower bound for the ground
tate energy for each particular Riemannian manifold. This problem on two-dimensional Riemann-
an manifolds, such as S2 and H2, also displays a kind of dimensional transmutation,16 where new
nergy scales different from the intrinsic energy scales of the system appear after the renormal-
zation. We will briefly discuss it in Secs. III and IV B.

Many body version of this problem on R2 and R3 is known as the formal nonrelativistic limit
f the ��4 scalar field theory in �2+1� and �3+1� dimensions. All these are extensively discussed
rst by Hoppe31 and later from a new perspective in Ref. 17. Our primary motivation here is
oming from the question of how the renormalization method for the singular interactions in
uantum mechanics would be performed on Riemannian manifolds, hoping that this may help us
o understand the problem in the realm of quantum field theory. However, we shall postpone the
iscussion of the many body extension of it for future work and study first the one-particle
chrödinger problem.

The paper is organized as follows. In Sec. II, we first define the bound state problem on
ompact and connected Riemannian manifolds and reformulate the problem in terms of a finite
imensional matrix �, which we will call the characteristic matrix.17 Then, we emphasize the
elation of the characteristic matrix with the corresponding spectral functions, resolvent and heat
ernel. This allows us to reformulate the renormalization in terms of heat kernel. After that we
ontinue to the discussion in the following sections by working out concrete examples. In Sec. III,
e consider the delta interaction problem on S2 as an example for compact and connected mani-

olds. Considering the properties of the operator � and using some properties and upper bound
stimates of the heat kernel, Geršgorin theorem allows us to estimate a lower bound for the ground
tate energy of the system. In Sec. IV, we apply a similar methodology, developed in the section
f heat kernel method for S2, to the noncompact manifolds, such as H2 and H3, and show that the
ethods developed for compact manifolds work for some particular noncompact manifolds as
ell. Therefore, we renormalize the problem on hyperbolic spaces and give estimates on the
round state energy of each system.

I. RENORMALIZATION OF FINITELY MANY DIRAC-DELTA INTERACTIONS ON
OMPACT AND CONNECTED RIEMANNIAN MANIFOLDS „M ,g…

The canonical quantization on nontrivial manifolds is known to have some ambiguities in
uantum mechanics. For the path integral approach to the quantum system, the ambiguity in the
anonical formalism is replaced by the undetermined parameter � and it can take various possible
alues.18 We remove this term for simplicity in all our examples, in which the curvature term is
onstant and it corresponds to an overall shift in energy levels so that we can safely set � to be
ero.

Now, we consider a nonrelativistic point particle living on a Riemannian manifold M inter-
cting with a finite number of delta interactions located on the manifold and study bound states of
he problem. We first investigate the delta interactions on a compact and connected Riemannian

anifold �M ,g� without boundary, of dimension D=2,3 with the Riemannian metric g. The
inetic energy operator on Riemannian manifold �M ,g� is just the Laplace-Beltrami operator or
imply Laplacian, which is defined, in local coordinates x��x1 , . . . ,xD� for a neighborhood in the

anifold, as follows:
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�g = −
1

�det g
�

�,�=1

D
�

�x��g���det g
�

�x�	 , �1�

here g�� is the metric tensor and g= �g���. We shall usually denote the Laplacian as �g to specify
hich metric structure on Riemannian manifold it is associated with.

The spectral theorem19,20 states that the eigenvalue problem �g�l=�l�l on a compact and
onnected Riemannian manifold �M ,g� has a complete orthonormal system of C	 eigenfunctions

0 ,�1 , . . . in L2�M� and the spectrum Spec ��g��Spec�M ,g�= 
�l�= 
0=�0
�1��2� . . . �, with

l tending to infinity as l→	. As a corollary of this theorem, the Laplacian on �M ,g� provides us
ith all the tools of Fourier analysis, so that we can expand any “sufficiently good” function ��x�
n M in terms of the complete orthonormal eigenfunctions �l�x�,

��x� = �
l0

Cl�l�x� , �2�

ith the normalization

�
M

�l�x��l�
* �x��det g dx1 Ù ¯ Ù dxD = �ll�,

here Cl’s are expansion coefficients. Note that extra labels in the eigenfunction expansion must
e taken into account if the problem admits degeneracy. Delta functions on M can also assumed to
e represented by these eigenfunctions

�D�x − ai� = �
l0

�l�x��l
*�ai� , �3�

ith ai�M and �D�x−ai� being the D-dimensional normalized delta function at point ai,

�
M

�D�x − ai��det g dx1 Ù ¯ Ù dxD = 1.

A typical Hamiltonian operator in quantum theory consists of a kinetic term, the Laplacian �g

ith the factor �2 /2m, and a potential function of position, attractive delta interactions in our
roblem. The time-independent Schrödinger equation on M for the bound states of a particle under
he influence of N attractive delta interactions reads

 �2

2m
�g − �

i=1

N

gi�
D�x − ai����x� = − �2��x� , �4�

here gi�R+ is the strength of the delta interaction at ai and −�2 is the bound state energy of the
ystem. If we substitute �2� and �3� into the Schrödinger equation, it yields

�
l0
 �2

2m
�lCl − �

i=1

N

Aigi�l
*�ai� + �2Cl��l�x� = 0,

here Ai���ai� for simplicity of notation. The fact that �l’s form a complete orthonormal system
llows us to write Cl in terms of them:

Cl =
1

�2

2m
�l + �2

�
i=1

N

Aigi�l
*�ai� . �5�
Substituting �5� into the definition of Ai,
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Ai = �
j=1

N

Ajgj�
l0

�l�ai��l
*�aj�

�2

2m
�l + �2

,

nd grouping the Ai terms we find

�gi
−1 − �

l0

��l�ai��2

�2

2m
�l + �2�Ai − �

j=1
j�i

N

�gj

gi
�
l0

�l�ai��l
*�aj�

�2

2m
�l + �2 �Aj = 0.

he observation that the preceding equation is linear in Ai permits us to write it naturally as a
atrix equation

��− �2�A = 0, �6�

here ��−�2� is called the characteristic matrix and defined as

�ij�− �2� =�
gi

−1 − �
l0

��l�ai��2

�2

2m
�l + �2 if i = j

−
gj

gi
�
l0

�l�ai��l
*�aj�

�2

2m
�l + �2 if i � j .

�7�

As we shall see in the following the resolvent is intimately related to it and this allows us to
tate that the equation det ��−�2�=0 gives the bound state energies of our problem. In other
ords, this equation is considered to be the determining equation of the ground state energy.
nfortunately, this nontrivial eigenvalue problem cannot be solved analytically, that is, we cannot
btain an exact expression for the bound state energy for arbitrary N since the characteristic matrix
epends nonlinearly on the bound state energy. Indeed, the problem is even worse than that,
ecause we do not have finite expressions in the matrix elements of �ij�−�2�. Fortunately, there
xists a way to redefine the problem so that the physical observables yield finite values with the
elp of regularization and renormalization. Before introducing this procedure for our problem, it
ould be good to review first the problem in flat spaces. The infinite sums in the characteristic
atrix on R2 or R3 are then replaced by integrals. The idea in that case is to take Fourier transform

f the wave function

��x� =� �̃�k�eik.x dDk

�2��D ,

nd substitute into the Schrödinger equation. Then we find that the diagonal part of the charac-
eristic matrix is

1

gi
−

1

�2��D � dDk

k2 + �2 ,

here D=2,3. This integral does not converge as it stands. The well-known method to remove the
ivergence is to put a cut-off � to the integral’s upper limit and consider the equation as a
etermining equation of bound state energy for a given coupling constant g. If this regularization
s performed, we realize that as the cut-off goes to infinity, ground state energy becomes divergent.
n order to get a physically acceptable result, one assumes that the coupling constant depends on
his cut-off and performs the limit �→	 in such a way that bound state energy remains finite.
hese infinities should be removed properly since all the physical observables are measured

xperimentally as finite quantities. The cut-off dependence of the coupling constant is chosen as
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1

gi���
=

1

�2��D�
�k�
�

dDk

k2 + �i
2 . �8�

The determination of this coupling constant is called renormalization. Now, we follow the
ame idea to remove the divergence from our problem. By using Weyl’s asymptotic formula,21 one
xpects that the diagonal term

�
l0

��l�ai��2

�2

2m
�l + �2

n the above-noted matrix does not converge and this will be explicitly seen for a particular
anifold S2. For a general compact manifold, we introduce cut-off to the upper bound of the

nfinite sum and choose the coupling constant as

gi
−1��� = �

l=0

� ��l�ai��2

�2

2m
�l + �i

2

, �9�

here −�i
2 is the measured binding energy to a single delta interaction. Then, we take the limit

→	,

lim
�→	��l=0

� ��l�ai��2

�2

2m
�l + �i

2

− �
l=0

� ��l�ai��2

�2

2m
�l + �2� , �10�

nd this should give us a finite result in two and three dimensions. Hence, the divergence has been
emoved and bound state energy becomes finite. A rigorous proof of this is not trivial, so we will
tay at a heuristic level and study special cases only.

As we will show in Sec. II, the heat kernel is intimately related to the characteristic matrix �
nd this relation helps us to see easily which part of the matrix is divergent or convergent and then
ow to renormalize the problem nonperturbatively. Furthermore, heat kernel is especially very
elpful to remove the divergences for our problem on noncompact manifolds, as we shall discuss
n Sec. IV. We will see that the above-noted method can easily be extended to find the renormal-
zed resolvent of the singular Hamiltonian.

. The relation of matrix � with heat kernel and resolvent

The resolvent �or Green’s function� and heat kernel play a very essential role in establishing
he connection between spectral properties of the operator and corresponding geometrical notions.
p to now, we have been dealing with a matrix �, and do not refer to resolvent and heat kernel.

n order to see the relation between the matrix � and heat kernel we consider the separable
amiltonians H=H0−�i=1

N gi � f i��f i�, where �f i� is a particular Dirac ket. We work out the resolvent
ormula of H in terms of H0 and assume that the two Dirac kets ��� and ��� are related in such a
ay that the equality �H−z� ���= ��� is satisfied. Then, we have

H0 − z − �
j=1

N

gj�f j��f j����� = ��� , �11�

ssuming complex number z�Spec�H0�. Acting the operator �H0−z�−1 on both sides and project-

ng it onto �f i�, we obtain
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�
j=1

N

�ij�z��f j��� = gi
−1�f i��H0 − z�−1��� ,

here we define a matrix �ij�z� as1

�ij�z� = �gi
−1 − �f i��H0 − z�−1�f i� if i = j

−
gj

gi
�f i��H0 − z�−1�f j� if i � j .

�12�

fter a little algebra, it is evident that

�H − z�−1 = �H0 − z�−1 + �H0 − z�−1�
i,j=1

N

�f i��ij�z�−1�f j���H0 − z�−1, �13�

s long as �ij�z�−1 exists. Such formulas were extensively discussed in problems associated with
elf-adjoint extensions of operators, notably by Krein and his school, and also for such singular
nteractions in flat spaces.12,22 Therefore, our problem can also be considered as a kind of self-
djoint extension of the free Hamiltonian. It is defined through regulating �or controlling� the
ehavior of the wave function in the vicinity of these interaction points.

If we take the matrix element of �13� by projecting on to the Dirac kets �x� and �y�, we have
ound the resolvent kernel R�x ,y �z���x � �H−z�−1 �y� corresponding to �11�

R�x,y�z� = R0�x,y�z� +� dx�dy�R0�x,x��z� �
i,j=1

N

fi�x���ij�z�−1f j�y���R0�y�,y�z�

= R0�x,y�z� + �
i,j=1

N � dx�R0�x,x��z�f i�x����ij�z�−1� dy�R0�y�,y�z�f j�y��� .

y choosing the functions f i�x�’s as bump functions centered at x=ai such that the sequences of
he functions admit the limit f i�x�→�D�x−ai� �in the appropriate topology�, it turns out that

R�x,y�z� = R0�x,y�z� + �
i,j=1

N

R0�x,ai�z��ij�z�−1R0�aj,y�z� . �14�

The important point to note here is the relation between the resolvent operator, defined on an
nfinite dimensional space and the characteristic matrix, defined on a finite dimensional space.
his allows us to find the bound state spectrum of the separable Hamiltonian operator H with the
elp of a finite dimensional matrix ��z�−1. Since discrete spectrum is the set of complex numbers
uch that the resolvent does not exist, this proves that the equation det �=0 gives the bound state
pectrum of our system. The fact that the free Hamiltonian is bounded from below allows us to
rite the free resolvent operator as an integral for R�z�
0,

�H0 − z�−1 =
1

�
�

0

	

e−�t/�����2/2m��g−z�dt , �15�

he result of which should be continued analytically to its largest set in the entire complex plane.
s a consequence of this, the free resolvent kernel is

There is no confusion in notation because we will see that this matrix � is exactly the same matrix considered in the

revious sections.
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�f i��H0 − z�−1�f j� =
1

�
�

0

	

ezt/��f i�e−� t
����2/2m��g�f j�dt .

aking the limit f i�x�→�D�x−ai�, it results in

R0�ai,aj�z� = �ai��H0 − z�−1�aj� =
1

�
�

0

	

ezt/�Kt�ai,aj�dt , �16�

here Kt�ai ,aj� is the so-called heat kernel, and the operator e−�t/�����2/2m��g� is the formal solution
o the heat equation.19,20 Hence, the matrix � is written in terms of the heat kernel in the following
ay:

�ij�z� = �gi
−1 −

1

�
�

0

	

ezt/�Kt�ai,ai�dt if i = j

−
gj

gi

1

�
�

0

	

ezt/�Kt�ai,aj�dt if i � j .

�17�

he matrix �ij is exactly the same matrix mentioned in the previous sections. This can be shown
asily from the spectral theorem19 for compact manifolds

Kt�ai,aj� = �
l0

e−��2/2m��l�t/���l�ai��l
*�aj� , �18�

hich converges uniformly on M �M for each t�0:

�f i��H0 − z�−1�f j� → �
0

	

ezt/�Kt�ai,aj�
dt

�
= �

l0
�l�ai��l

*�aj��
0

	

e−���2/2m��l−z��t/��dt/ �

= �
l0

�l�ai��l
*�aj�

�2

2m
�l − z

,

here summation and integral are interchanged since summation converges uniformly. This is the
ame result for z=−�2 that we already obtained for the nondiagonal part of the characteristic
atrix in Sec. II. One can understand how the nondiagonal part of it in �7� is convergent by using

he smooth behavior of the heat kernel and the integral �0
	�dt /��ezt/�Kt�ai ,aj� is convergent for

i�aj. However, the asymptotic behavior of the heat kernel as t→0+ for every point x on a
ompact manifold M19 is given by

Kt�x,x� � �4�
�t

2m
	−D/2

�
k=0

	

uk�x,x�� �t

2m
	k

, �19�

here D is the dimension of the manifold and the uk�x ,x� are functions given in terms of the
urvature tensor of M and its covariant derivatives at the point x. This result shows that the
iagonal part of the heat kernel as t→0+ for D=2,3 leads to a divergence since u0�x ,x�=1 �there
re no infinities for D=1 as it can be easily realized�. In other words, the sum in the diagonal term
n � is divergent while the sum in the nondiagonal term is convergent. However, we have already
hown that bound state energies are related to the characteristic matrix, i.e., det ��z�=0 contains
nformation about bound states. If some of the elements of the characteristic matrix have infinities,
t is impossible to get sensible bound state energies for our problem. Before establishing the
enormalization of our problem with the help of heat kernel, we must indicate why this problem
ccurs. Although the delta interactions may approximately describe a system in which a particle
nteracting with a point-like centers when its de Broglie wavelength is large compared to the

ypical range of a potential, we have not encountered in nature this type of contact interaction.
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his means that substituting the Dirac-Delta interactions into the Hamiltonian for D=2,3 directly
s not a proper way. Therefore, we must modify our problem such that it has a finite range and then
onsider the zero range limit. In our renormalization method with heat kernel, short range is
eplaced with the short time as we will see.

We introduce a small constant �, in the lower limit of the integral. We then take the limit as the
ut-off � goes to zero in such a way that the experimentally measured ground state energy remains
nite. This requires that some quantities in the problem, e.g., coupling constant, should have a
ut-off dependence in a definite way. For our problem, we naturally choose

gi
−1��,�i� =

1

�
�

�

	

e−�i
2t/�Kt�ai,ai�dt . �20�

fter performing the limit �→0, we have the renormalized characteristic matrix

�ij�z� = �
1

�
�

0

	

Kt�ai,ai��e−�i
2t/� − ezt/��dt if i = j

−
1

�
�

0

	

ezt/�Kt�ai,aj�dt if i � j ,� �21�

here R�z�
0 and �ij�z� can be analytically continued to its largest set in the entire complex
lane. One can naturally ask whether the renormalization performed with heat kernel is compatible
ith the one introduced in Sec. II. The answer is affirmative and one can easily show that the

ut-off � for the infinite sum introduced in Sec. II corresponds to the cut-off � for the lower bound
f integral in the heat kernel method. This can be realized easily by using the spectral theorem in
he diagonal part of Eq. �21� and taking z=−�2:

gi
−1��,�i� −

1

�
�

�

	

e−�2t/��
l0

e−��2/2m��l�t/���l�ai��l
*�ai�dt

= gi
−1��,�i� −

1

�
�
l0

�l�ai��l
*�ai��

�

	

e−�2t/�e−��2/2m��l�t/��dt , �22�

here we have used the uniform convergence of the sum. Now, in order to remove the divergence,
e can naturally choose the coupling constant as

gi
−1��,�i� =

1

�
�
l�0

�l�ai��l
*�ai��

�

	

e−�i
2t/�e−��2/2m��l�t/��dt . �23�

hen, we have

lim�→0� 1

�
�
l�0

�l�ai��l
*�ai��

�

	

e−�i
2t/�e−��2/2m��l�t/��dt − �

�

	

e−�2t/�e−��2/2m��l�t/��dt��
=

1

�
�
l0

��2 − �i
2��l�ai��l

*�ai�

 �2

2m
�l + �i

2� �2

2m
�l + �2� , �24�

hich is the same result we would have obtained by the eigenfunction expansion by introducing
cut-off � �Eq. �10��. After finding the renormalized characteristic matrix, the resolvent can be

ritten explicitly
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R�x,y�z� = R0�x,y�z� + �
i,j=1

N

R0�x,ai�z��ij�z�−1R0�aj,y�z� , �25�

here

R0�x,y�z� =
1

�
�

0

	

ezt/�Kt�x,y�dt . �26�

Once we have given the resolvent of an operator, all the information about the operator is
ontained in it. Nevertheless, it is instructive to check that the wave functions can also be obtained
nd they are normalizable. We write the normalized wave function with a cut-off � and then take
he limit �→	, this way we will not get a vanishing wave function. So the normalization constant
an be found easily

�C����−2 = �
i,j=1

N

gi���gj���Ai
*���Aj��� � dDx�g �

l,l�=0

�
�l�ai��l

*�x�

� �2

2m
�l + �2	

�l�
* �aj��l��x�

� �2

2m
�l� + �2	

= �
i,j=1

N

gi���gj���Ai
*���Aj����

l=0

�
�l�ai��l

*�aj�

� �2

2m
�l + �2	2 . �27�

ne expects from the Weyl asymptotic formula that the wave function is not normalizable if we
re on a space of dimension bigger than three. Moreover, we can see that the summation over the
igenmodes is exactly the derivative of ��−�2� with respect to �, hence we get

�C����−2 =
1

2�
�
i,j=1

N

gj���2Ai
*���

��ij��,− �2�
��

Aj��� . �28�

erforming the limit �→	, the properly normalized wave function of nth state becomes

�n�x� = �2�n �
r,s=1

N

Ar
*��n�� ��rs�− �2�

��
�

�=�n

As��n��−1/2

�
l0

�
i=1

N

Ai��n�
�l

*�ai��l�x�

� �2

2m
�l + �n

2	 ,

here �n is the nth root of the energy equation det ��−�2�=0. This can further be simplified to an
xpression in terms of the heat kernel

�n�x� = �2�n �
r,s=1

N

Ar
*��n�� ��rs�− �2�

��
�

�=�n

As��n��−1/2

� �
l0

�
i=1

N

Ai��n��l
*�ai��l�x��

0

	

e−�t/�����2/2m��l+�n
2�dt

�

= �2�n �
r,s=1

N

Ar
*��n� � ��rs�− �2�

��
�

�=�n

As��n��−1/2�
0

	

e−t�n
2/��

i=1

N

Ai��n�Kt�ai,x�
dt

�
,

�29�
n which one can easily see that �n�x� is finite.
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II. FINITELY MANY DIRAC-DELTA INTERACTIONS ON S2

Since the simplest and one of the most familiar compact manifolds is the sphere S2, we shall
ork out the problem of point interactions on a sphere as a concrete example. Suppose that point

nteractions are located at the points given by the local coordinates ��i ,�i�i=1
N on a sphere of radius

. Then, the Schrödinger equation for the bound states of a particle living on the sphere under the
nfluence of N attractive delta interactions becomes

 �2

2m
�S2 − �

i=1

N

gi�
2�� − �i,� − �i��� = − �2� , �30�

here �S2 is Laplacian on the sphere in spherical coordinates

�S2 = −
1

R2 sin �

�

��
�sin �

�

��
	 −

1

R2 sin2 �

�2

��2 , �31�

nd �2��−�i ,�−�i�=���−�i����−�i� /R2 sin2 � is the two-dimensional delta function on the
phere centered at ��i ,�i�. It is well known that spherical harmonics Yl

m are eigenfunctions of the
aplacian �S2 with the eigenvalues l�l+1� /R2 and form a complete orthonormal basis on S2. In
rder to be consistent with the standard normalization of spherical harmonics, we choose �lm

Yl
m /R. From the following identity

�
m=−l

l

Yl
m��i,�i�Yl

m*�� j,� j� =
2l + 1

4�
Pl�cos �icos � j + cos��i − � j�sin �i sin � j� =

2l + 1

4�
Pl�1 −

dij
2

2
	 ,

here dij=dij /R= �r̂i− r̂ j � � �0,2� being rescaled distance between point centers with radius of the
phere R, the matrix �ij�−�2� in �7� becomes

�ij�− �2� =�
gi

−1 −
1

4�R2 �
l0

2l + 1

�2

2mR2 l�l + 1� + �2 i = j

−
gj

gi

1

4�R2 �
l0

2l + 1

�2

2mR2 l�l + 1� + �2

Pl�1 −
dij

2

2
	

i � j .� �32�

t follows easily from the Cauchy-MacLaurin integral test that the infinite sum

1

4�R2 �
l0

2l + 1

�2

2mR2 l�l + 1� + �2

s divergent. To get a sensible result for our problem, we must modify our original problem as
utlined in Sec. II. Therefore, considering our problem in light of this method, we first define the
oupling constant gi as a function of the parameter � �cut-off�. Then, by choosing gi

−1���’s
aturally

gi
−1��� =

1

4�R2�
l=0

�
2l + 1

�2

2mR2 l�l + 1� + �i
2

,

here �i is the experimentally measured value of bound state energy for the single delta interac-

ion and taking the limit �→	 of the difference, we have obtained
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lim
�→	� 1

4�R2�
l=0

�
2l + 1

�2

2mR2 l�l + 1� + �i
2

−
1

4�R2�
l=0

�
2l + 1

�2

2mR2 l�l + 1� + �2�
→

1

4�R2�R
2 �� �i

�R
	 − �� �

�R
	� ,

here �R
2 ��2 /2mR2. The function � here is defined as

��x� �
1

x2 − H1/2−�1/4−x2 − H1/2+�1/4−x2, x � R+,

here H’s are the harmonic numbers, commonly defined on integers as Hn=�k=1
n 1/k and can be

xtended by analytical continuation to its largest domain in the entire complex plane as Hz=��z
1�+�, where ��z�=���z� /��z� being the digamma function and � being the Euler-Mascheroni
onstant. The digamma function has several useful integral representations,23 some of which are

��z� = �
0

	 � e−t

t
−

e−zt

1 − e−t	dt , �33�

��z� = log z + �
0

	 � 1

1 − e−t +
1

t
− 1	e−ztdt , �34�

here R�z��0 and these can be useful for the estimates of its upper and lower bounds. Due to the

chwarz reflection principle of harmonic numbers �Hz
¯ =Hz̄�, the function ��x� is real valued ��

R� for all x�R+. It is also easy to check lim�→	gj��� /gj���→1 in the nondiagonal part of
32�, simply because of their same form of the divergence. Then, the renormalized matrix
�−�2� for bound states can be eventually written as

�ij�− �2� =
1

4�R2�R
2��� �i

�R
	 − �� �

�R
	 i = j

− �
l0

2l + 1

l�l + 1� +
�2

�R
2

Pl�1 −
dij

2

2
	

i � j .� �35�

By the analytical continuation of the characteristic matrix to its largest domain in the entire
omplex plane, we have

�ij�z� =
1

4�R2�R
2��� �i

�R
	 − ���− z

�R
	 i = j

− �
l0

2l + 1

l�l + 1� −
z

�R
2

Pl�1 −
dij

2

2
	

i � j ,� �36�

rom which we can write the resolvent equation �14�. Hence, we have obtained a well-defined
ormulation of our problem, that is, the infinities have been removed. Moreover, we see that the
roblem realizes a generalized dimensional transmutation. In this case, the coupling constants gi

ave the same dimension as �2 /2m by dimensional analysis. In contrast to the flat case, we have
ne more parameter R coming from the geometry of the space. Thus, we expect that the system
ust have an intrinsic energy scale �2 /2mR2 as well as �2 /mdij

2 terms. However, after the renor-
alization, we obtain a set of new dimensional parameters �i

2. Hence, the first set of scales we

xpect by naive dimensional analysis at the beginning is not sufficient. Instead, a specific combi-
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ation of all these parameters together determine the scale of our problem. This means that delta
otentials on a sphere are an example of a kind of dimensional transmutation. However, there is a
light difference, especially in the case of single delta attractor: in the flat case there is no
ombination of dimensional parameters to come up with an energy scale, whereas in the case of a
phere we have a geometric length scale R which already defines an energy scale �2 /2mR2. The
imensional transmutation is most striking in such cases where there is no intrinsic energy scale.

In order to estimate the nondiagonal part of the matrix � for sphere S2, we follow a different
trategy, using the heat kernel.

. Lower bound of Egr by heat kernel method for S2

Heat kernel Kt�x ,y� is the unique fundamental solution to the heat equation ��2 /2m��g�
−��t. It has the symmetry �Kt�x ,y�=Kt�y ,x�� and semigroup property.19,20 As well as being a
seful computational tool in establishing the existence and some of the properties of the spectrum
f the Laplacian of the eigenfunctions on Riemannian manifolds, it is very helpful to understand
he nature of the divergences for our purposes, as we have shown in the previous section.

By means of relation �21� and explicit form of the heat kernel, one can calculate the matrix

ij. However, there are some situations in which one cannot calculate the heat kernel explicitly,
.g., we do not have an explicit expression of the heat kernel for two-dimensional sphere. In this
ase, one can still find some bound estimates on matrix �ij without having an explicit form of the
eat kernel, but instead some properties of it. In order to analyze this for S2, we will use some
stimates on the heat kernel, based on a work by Li and Yau.24 Let us recall the corollary of the
heorem �3.1� in Ref. 24.

Let M be a complete manifold without boundary. If the Ricci curvature of M is bounded from
elow by −K, for some constant K0, then for 1
�
2 and 0
�
1, the heat kernel satisfies

Kt�x,y� �
C����

�V�x,�t�V�y,�t�
eC7��� − 1�−1Kt−d�x,y�2/�4+��t,

here V�x ,r�=��B�x ,r��, B�x ,r� is the geodesic ball of radius r centered at x�M and d�x ,y� is
he geodesic distance between two points x and y on the manifold. The constant C7 depends only
n the dimension of the manifold D, while C��� depends on � with C���→	 as �→0. When
=0, the above-noted estimate, after letting �→1, can be written as

Kt�x,y� �
C���

�V�x,�t�V�y,�t�
e−d�x,y�2/�4+��t. �37�

ince S2 satisfies the above-noted conditions as a particular case, this corollary can be applied to
t as well. On the other hand, we have a different purpose from the original corollary of the
heorem for the estimates on the upper bound of the heat kernel, in which the sharp estimate for
he heat kernel is found. Instead, we are trying to find a best lower bound of the ground state
nergy of the system. Therefore, we shall modify the original corollary in Ref. 24. Using this
heorem with relaxed condition 0
�
1, we have found the upper bound estimate for heat kernel
f sphere S2 in our problem:

Kt�ai,aj� �
C����

�V�x,� �t

2m
	V�y,� �t

2m
	 e−2mdij

2 /D����t, �38�

here

C���� � �1 + ��2exp 1

4��1 + ���1 + 2��
+

1

2��2 + ��
+

1

4�
� , �39�
nd
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D��� � 4�1 + 2���1 + ��2, �40�

is merely required to be positive. When we want to find a lower bound for the energy, the
umerical values of the coefficients C���� and D��� will be determined explicitly. It is easy to see
hat V�x ,��t /2m�=V�y ,��t /2m�=2�R2�1−cos��t /2mR2� as long as 0� t�2m�2R2 /�. For t

2m�2R2 /�, we have V�x ,��t /2m�=V�y ,��t /2m�=4�R2. According to our corollary and posi-
ive definiteness of heat kernel, the following integral has an upper bound:

1

�
�

0

	

e−�2t/�Kt�ai,aj�dt

�
C����

�
�

0

2m�2R2/� e−2mdij
2 /D����t−�2t/�

2�R2�1 − cos� �t

2mR2	
dt +

C����
4�R2�

�
2m�2R2/�

	

e−2mdij
2 /D����t−�2t/�dt ,

here we have taken z as −�2. With the help of the identity 1−cos��t /2mR2=2 sin2��t /8mR2 and
he inequality 1 /sin ��� /2� for 0���� /2, we obtain

1

�
�

0

	

e−�2t/�Kt�ai,aj�dt �
m�C����

2�2 �
0

	 e−2mdij
2 /D����t−�2t/�

t
dt +

C����
4�R2�

�
0

	

e−2mdij
2 /D����t−�2t/�dt .

valuating these integrals, we find

�− �i�j�− �2�� � �Kij� =
1

�
�

0

	

e−�2t/�Kt�ai,aj�dt � C����m�

�2 K0��ij�� +
�ij

4�

K1��ij��
�R2 � ,

here

�ij �� 8mdij
2

D����2 , �41�

nd K0�x�, K1�x� are modified Bessel functions. This shows us that the infinite series in the
ondiagonal part of the characteristic matrix is finite and bounded from above according to �41�.
n order to find a lower bound for the diagonal part, denoted by D, of the matrix � for sphere S2,
e first recall how the diagonal part of the matrix � appears in �36�:

Di =
1

4�R2 lim
�→	��l=0

�
2l + 1

�2

2mR2 l�l + 1� + �i
2

− �
l=0

�
2l + 1

�2

2mR2 l�l + 1� + �2�  0.

nstead of calculating explicitly this limit as we have done in Sec. III, we estimate a lower bound
f it by means of integrals replaced by the sums as follows:

Di 
1

4�R2 lim
�→	��0

�+1 2t + 1

�2

2mR2 t�t + 1� + �i
2

dt − �
0

� 2t + 1

�2

2mR2 t�t + 1� + �2

dt −
1

�2� .

fter taking the limit we find

Di   m

��2 log��/�i� −
1

4�R2�2� , �42�
nd using the estimate for logarithmic functions in Ref. 25
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log x �
x − 1

x
for x � 0, x � 1, �43�

e obtain

Di   m

��2 log��/�i� −
1

4�R2�2� �  m

��2 −
m�i

��2�
−

1

4�R2�2� � 0. �44�

or positive definiteness, we have assumed � is sufficiently large, which is not a particularly
estrictive condition. In fact, one can try to find sharper estimates by means of the integral
epresentations of digamma functions �33� and �34� without this assumption. However, the esti-
ated functions in this case are too complicated to suggest a bound for ground state energy.

A well-known theorem in matrix analysis, called Geršgorin Theorem,26 states that all the
igenvalues �i of the renormalized matrix � are located in the union of N discs

�
i=1

N


��i − �ii� � Ri����� � G��� , �45�

here Ri������i�j=1
N ��ij� and 1� i�N. If we want �=0 not to be an eigenvalue, then none of the

iscs should contain �=0. Then, we should impose

�− Di���� � �
i�j

N

�Kij���� , �46�

or all i. This is possible for a critical value ���* since the left-hand side is an increasing function
f � and the right-hand side is a decreasing function of it for a given d and N. In fact, this
nequality obviously provides a lower bound for the bound state energy by just plotting the
unctions on both sides in spite of how complicated the form of functions are. However, we shall
ry to find an explicit expression for the lower bound of the ground state energy depending on the
umber of delta interactions. In order to achieve this, we choose � such that

�− Di���� �  m

��2 −
m�i

��2�
−

1

4�R2�2� ,

�N − 1�C����m�

�2 K0���� +
�

4�

K1����
�R2 � � �

i�j

N

�Kij���� , �47�

here we have used the monotonic behavior of the functions in Dij and Kij and defined �
maxi�i and ��mini�j�ij or d�mini�jdij. From the integral representations of the Bessel func-

ions for z�R+,27

K0�z� = �
0

	

e−z cosh tdt ,

K1�z� = z�
0

	

e−z cosh tsinh2 tdt ,

nd using the inequalities et /2
cosh t, sinh2 t
e2t /4 for all t�R+, we can find the upper bounds
or the functions K0 and K1,

K0���� 

2e−��/2

,

��
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K1���� 
 e−��/2� 1

��
+

1

2
	 , �48�

here ���R+. Considering the estimated bounds for Bessel functions, it is easy to see that

m

��2 �N − 1�C����2�2e−��/2

��
+

e−��/2�R
2

2�2 +
e−��/2�R

2�

4�
�

� �N − 1�C����m�

�2 K0���� +
�

4�

K1����
�R2 � .

sing the argument ���2�R in Eq. �44� and the last inequality, we impose the following inequal-
ty with the help of the Geršgorin Theorem:

� � � +
�R

2�2
+ �N − 1�C����e−��/22�2

�
+

�R

2�2
+

�R
2�

4 � . �49�

Let us make the following reasonable assumptions and take these for granted for the present
we will later show that they indeed satisfy these conditions by finding the extremum of ground
tate energy with respect to the parameter ��

�R
2�

4



2�2

�
, �50�

�R

2�2



2�2

�
, �51�

1
�D���

�
1

5
, �52�

o that the inequality becomes

� � � +
�R

2�2
+ 3�2�d�N − 1�C�����D���e−�/5�d, �53�

rom which we conclude that there exists a critical value ���* for a given N such that ��0 and
hen the ground state energy cannot be less than −�*2:

Egr  − �*2 = − �� +
�R

2�2
+ 5�dW3�2

5
C�����D����N − 1�e−��+�R/2�2�/5�d��2

, �54�

here W is the Lambert W function, also called the Omega function or product-log function.28

ow, we choose � in such a way that the energy bound takes its minimum value. This is accom-
lished if � is chosen approximately 0.508, which is independent of the parameters in the problem.
his independence can be easily realized from the form of inequality �53�. By substituting the
alues of C���� and D���, we estimate a lower bound for the ground state energy:

Egr  − �*2 = − �� +
�R

2�2
+ 5�dW�28�2�N − 1�e−��+�R/2�2�/5�d��2

. �55�

y using this value of � and the fact that d
2�R, the consistency of the assumption we made can
e shown easily. Finally, we shall consider the large N behavior of the ground state energy. The

28
symptotic expansion of product-log function W for large z is given as
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W�z� � log z − log log z . �56�

ence, this leads to

Egr � − �d
2�log�N� − log log�N��2. �57�

The method we have introduced for the two-dimensional sphere S2 can also be applied to a
eneral compact manifold. The main idea is based on finding an upper and lower bound for the
haracteristic matrix or heat kernel �based on the work by Li and Yau�. Then, Geršgorin theorem
llows us to estimate a lower bound for the ground state energy.

V. FINITELY MANY DIRAC-DELTA INTERACTIONS ON HYPERBOLIC SPACES

The hyperbolic space Hn is defined as maximally symmetric and simply connected complete
-dimensional Riemannian manifold with a constant negative sectional curvature −1/R, which is
lso in some sense considered to be the negative curvature analog of the sphere Sn. We shall deal
ith the delta interactions on the hyperbolic spaces H3 and H2 in the following sections. The
ethod developed in the previous sections for S2 will be useful as well for the hyperbolic spaces.
he heat kernel on hyperbolic spaces,29 written in terms of dimensionless quantities:

Kt�x,y� =
1

�4�t�3/2

d

sinh d
e−t−d2/4t on H3,

Kt�x,y� =
�2

�4�t�3/2e−t/4�
d

	 se−s2/4t

�cosh s − cosh d�1/2ds on H2, �58�

here d�dist�x ,y�, geodesic distance between two points x and y on Hn.
Although spectral theorem and asymptotic expansion of heat kernel discussed in the previous

ections may not be valid for general noncompact manifolds, we shall demonstrate that for the
pecific examples in noncompact manifolds, such as H2 and H3, our viewpoint still works. It
ould be desirable to show the equivalence between the eigenfunction expansion and the heat
ernel method for the regularization in noncompact manifolds rigourously. Nevertheless, we have
ot been able to do this. The main idea is similar in spirit to the renormalization procedure
ntroduced for the compact manifolds.

. Finitely many Dirac-delta interactions on hyperbolic space H3

In the hyperbolic space H3= 
x�R3 �x3�0�, the geodesic distance d is defined as

cosh
d�x,y�

R
= 1 +

�x − y�2

2x3y3
,

here R is the scaling parameter. The Schrödinger equation for the bound states of a particle living
n H3 under the influence of N attractive delta interactions is

 �2

2m
�H3 − �

i=1

N

gi�
3�� − �i,� − �i,� − �i��� = − �2� , �59�

here Laplacian �H3 in polar coordinates �� ,� ,��,

�H3 = −
1

R3

�2

��2 −
2 coth �

R3

�

��
+

1

R sinh2 �
�S2. �60�

We have an explicit formula29 for the heat kernel of the three-dimensional hyperbolic plane H3
ritten by using physical constants
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Kt�x,y� =
1

R3

d�x,y�
R

�4� �

2mR2�t	3/2

sinh
d�x,y�

R

exp�−
�t

2mR2 −
md�x,y�2

2 � t
	 �61�

uch that as R→	, we can obtain the heat kernel on R3. Hence we have the free resolvent kernel
s

�ai��H0 − z�−1�aj� =
1

�R3�
0

	

dij

R
exp� zt

�
−

�t

2mR2 −
mdij

2

2 � t
	

�4� �

2mR2�t	3/2

sinh
dij

R

dt

= � 1

4�R3

dij

R

sinh
dij

R

exp�−
�R

�dij

�1 −
z

�R
2 	��dij

�R
3 , �62�

here dij�d�ai ,aj�, �R
2 ��2 /2mR2, �dij

2 ��2 /2mdij
2 . It follows easily that this term gives infinity

hen i= j, that is, the diagonal term in the characteristic matrix is divergent. Then, we can now
roceed to the regularization and renormalization schemes analogously for the hyperbolic spaces.
owever, the divergence in hyperbolic space H3 is due to fact that the lower bound t of integral

62� is zero. Hence we regularize the divergent term by introducing a lower cut-off �, as we have
hown in Sec. II and we expect this should in some way be related to the ultraviolet regularization.
e next define the coupling constant as a function of this cut-off:

�ii�z� = lim
�→0+

gi
−1��� −

1

�4��3/2�R
2R3�

�

	

u−3/2e−�1−z/�R
2 �udu� ,

here the integration variable u���2 /2mR2�t is introduced for simplicity. The natural choice for

i
−1��� is simply

gi
−1��� =

1

�4��3/2�R
2R3�

�

	

u−3/2e−�1+�i
2/�R

2 �udu ,

here �i is an experimentally measured bound state energy for the single delta interaction and it
elps us to keep track of the strength of point interactions. In �→0+ limit, we have found the
xplicit renormalized characteristic matrix for H3,

�ij�z� =
1

4�

1

�R
2R3��1 −

z

�R
2 −�1 +

�i
2

�R
2 if i = j

−
�dij

�R

dij

R

sinh
dij

R

exp�−
�R

�dij

�1 −
z

�R
2 	 if i � j .� �63�

3
hen, we have the resolvent equation �14� with the free resolvent kernel R0�x ,y �z� for H given by
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R0�x,y�z� =
1

4�

1

�R
2R3

�d�x,y�

�R

d�x,y�
R

sinh
d�x,y�

R

exp�−
�R

�d�x,y�
�1 −

z

�R
2 	 , �64�

rom which we can get all information about the system. Using the Geršgorin Theorem �45� for
his matrix, and following the same ideas introduced for S2 we obtain

�1 +
�2

�R
2 −�1 +

�2

�R
2 � � �N − 1�

�d

�R

d

R sinh
d

R

exp�−
�R

�d
�1 +

�2

�R
2 	 ,

here we have taken z=−�2 and chosen d�mini�jdij, and ��maxi�i. It turns out that this
nequality indicates that there exists a critical ���* for a given d and N for which this inequality
s satisfied and zero is not an eigenvalue. Therefore, the ground state energy cannot be less than
�*2:

Egr  − �*2 = − �2 − 2�d
��R

2 + �2W� e−��R/�d��1+�2/�R
2
d�N − 1�

R sinh
d

R
�

− �d
2W� e−��R/�d��1+�2/�R

2
d�N − 1�

R sinh
d

R
�

2

. �65�

or the large N behavior of the ground state energy, the estimate becomes

Egr � − 2�d
��R

2 + �2�log N − log log N� − �d
2�log N − log log N�2.

ow let us consider the two center case on the hyperbolic plane H3 and assume again that their
trengths �or bound state energies of each center� are the same. In this way, determining equation
det �=0� becomes

�1 +
�2

�R
2 −�1 +

�2

�R
2 = ±

�d

�R

d

R

sinh
d

R

exp�−
�R

�d
�1 +

�2

�R
2 	 .

f we expand it for small d we have

�1 +
�2

�R
2 −�1 +

�2

�R
2 = ±

�d

�R
1 −��R

2

�d
2 +

�2

�d
2� ,

rom which we can conclude

Egr = − �2 �
3

4
�R

2 −
�2

4
−

�d
2

4
−

�d�R

2
�1 +

�2

�R
2 .

imilarly, for large values of d, the right-hand side of the energy equation for two dirac delta
2 2
nteractions vanishes, so that we obtain the ground state energy Egr=−� =−� .
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. Finitely many Dirac-delta interactions on hyperbolic plane H2

The geodesic distance on the hyperbolic plane H2 is defined by

cosh
d�x,y�

R
= 1 +

�x − y�2

2x2y2
,

here R is a scale distance. Then, the Schrödinger equation for the bound states of a particle living
n H2 in the presence of N attractive delta interactions is

 �2

2m
�H2 − �

i=1

N

gi�
2�� − �i,� − �i��� = − �2� , �66�

here the Laplacian �H2 in polar coordinates �� ,�� is given by

�H2 = −
1

R2

�2

��2 −
2 coth �

R2

�

��
−

1

R2 sinh2 �

�2

��2 . �67�

he heat kernel for H2 �Ref. 29� with the proper physical parameters is

Kt�x,y� =
�2

�4� �

2mR2�t	3/2

e−��/2mR2�t/4

R2 �d�x,y�
R

	 re−�r2/4��2mR2/��1/t

�cosh r − cosh
d�x,y�

R

dr . �68�

ne can check that this goes to the heat kernel on R2 as R→	. Then, the free resolvent kernel is
mmediately obtained

�ai��H0 − z�−1�aj� =
1

�R2�
0

	

ezt/�
�2

�4� �

2mR2�t	3/2e−��/2mR2�t/4��dij/R

	 re−�r2/4��2mR2/��1/t

�cosh r − cosh
dij

R

dr�dt

=
1

4��R
2R2�

dij/R

	 e−�1/2�r�1−4z/�R
2

�cosh r − cosh
dij

R

dr .

e see that the diagonal term, which corresponds to dij=0, is divergent, as expected. Therefore we
gain repeat the similar regularization and renormalization procedure as we have done for H3.
fter introducing a cut-off to the lower limit of the integral

�ii�z� = lim
�→0+

gi
−1��� −

1

4��R
2R2�

�

	 e−�1/2�r�1−4z/�R
2

�cosh r − 1
dr�

= lim
�→0+

gi
−1��� −

�2

4��R
2R2�

�/2

	 e−u�1−4z/�R
2

sinh u
du� .

nd by the natural choice for gi
−1���,

gi
−1��� =

�2

4��R
2R2�

�/2

	 e−u�1+4�i
2/�R

2

sinh u
du ,

2
e have obtained the renormalized characteristic matrix for H in the �→0 limit,
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�ij�z� =
1

4�R2

1

�R
2��2��1

2
+�1

4
−

z

�R
2 	 − ��1

2
+�1

4
+

�i
2

�R
2 	� if i = j

− �dij

R

	 e−�1/2�r�1−4z/�R
2

�cosh r − cosh
dij

R

dr
if i � j ,� �69�

here � is the digamma function. Then, we have the resolvent equation �14� in which the free
esolvent kernel R0�x ,y �z� for H2 is given by

R0�x,y�z� =
1

4�R2

1

�R
2�

d�x,y�/R

	 e−�1/2�r�1−4z/�R
2

�cosh r − cosh
d�x,y�

R

dr . �70�

he integral on the right-hand side is in fact one of the integral representations of the Legendre
olynomials of second type27

�2Q��cosh
d�x,y�

R
	 = �

d�x,y�/R

	 e−��+1/2�r

�cosh r − cosh
d�x,y�

R

dr , �71�

hich are defined for R����−1 and in our case R���=R� 1
2
�1−4z /�R2 −1/2��−1. Therefore,

he free resolvent in terms of Q�,

R0�x,y�z� =
1

4�R2

1

�R
2
�2Q1/2�1−4z/�R2−1/2�cosh

d�x,y�
R

	 . �72�

eršgorin theorem allows us to estimate the lower bound for the bound state energy as done for S2

nd H3. In order not to have zero as an eigenvalue, we must have

�2��1

2
+�1

4
+

�2

�R
2 	 − ��1

2
+�1

4
+

�i
2

�R
2 	� � �

i�j
�

dij/R

	 e−�1/2�r�1+4�2/�R
2

�cosh r − cosh dij/R
dr , �73�

or all i and we have taken z=−�2 and ��maxi�i. It is easy to see this inequality is satisfied for
ome values of � because the left-hand side is an increasing function, whereas the right-hand side
s a decreasing function of �. However, it is not so easy to give an explicit estimate for � by this
nequality so we will estimate the functions on both sides. The inequality for the digamma
unctions30

��x� � log x −
1

x
, x � 0, �74�

hich can be obtained from the integral representation �34�, and 1/2+�1/4+x2x for all x�0
elps us that we can find the following inequality by assuming � is sufficiently large,

��1

2
+�1

4
+

�2

�R
2 	 − ��1

2
+�1

4
+

�i
2

�R
2 	� � log

�

�R
−

�R

�
− ��1

2
+�1

4
+

�i
2

�R
2 	� .

�75�

Since the right-hand side of Eq. �73� is �N−1��2Q��cosh dij /R� we can find an upper bound
27
or this function, using another integral representation of the second type Legendre polynomials:
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Q��cosh
dij

R
	 =

1

��� + 1��0

	

e−t cosh dij/RK0�t sinh
dij

R
	t�dt , �76�

here I�dij /R�=0 and �= 1
2
�1+4�2 /�R

2 −1/2. Using the estimate for the function K0 given in Eq.
48�, we obtain

�2Q��cosh
dij

R
	 


2�2

��� + 1�sinh
dij

R

�
0

	

e−t�cosh dij/R+�1/2� sinh dij/R�t�−1dt

nd the right-hand side is just the gamma function, then the estimate becomes

�2Q��cosh
dij

R
	 


2�2����

��� + 1��cosh
dij

R
+

1

2
sinh

dij

R
	�

sinh
dij

R

.

sing identity ���+1�=����� and the assumption � /�R�1 and �1+4�2 /�R
2 �2� /�R, we get

�2Q��cosh
dij

R
	 


4�2

� 2�

�R
− 1	

1

�cosh
dij

R
+

1

2
sinh

dij

R
	�

sinh
dij

R



4�2

�

�R

e−��/�R−1/2�log�cosh dij/R+�1/2� sinh dij/R�

sinh
dij

R

. �77�

lso, by choosing d�mini�jdij and ��maxi�i, we easily find

log
�

�R
−

�R

�
− ��1

2
+�1

4
+

�i
2

�R
2 	� � log

�

�R
−

�R

�
− ��1

2
+�1

4
+

�2

�R
2 	� , �78�

nd

e−��/�R−1/2�log�cosh dij/R+�1/2�sinh dij/R�

sinh
dij

R



e−��/�R−1/2�log�cosh d/R+�1/2�sinh d/R�

sinh
d

R

. �79�

herefore, we impose

log
�

�R
−

�R

�
− ��1

2
+�1

4
+

�2

�R
2 	� �

4�N − 1�
�

�R

e−��/�R−1/2�log�cosh d/R+�1/2�sinh d/R�

sinh
d

R

. �80�

t is immediately seen that there exists a critical value ���* for a given d and N for which this
nequality is satisfied and zero is not an eigenvalue. The last inequality can be written as

e��/�R−1/2�log�cosh d/R+�1/2�sinh d/R�� �

�R
log� �

�Re��1/2+�1/4+�2/�R
2 �	 − 1	 �

4�N − 1�

sinh
d

R

.

f � /�R�e��1/2+�1/4+�2/�R
2 �+1 �independent of N�, then we have the lower bound of the ground state
nergy
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Egr  − �*2 = − �R
2�A + W�4�N − 1�Ae−A/2

sinh
d

R
�

A
�

2

, �81�

here we define A� log�cosh d /R+ �1/2�sinh d /R� for simplicity of notation. For large values of
as long as the ratio � /�R and d /R is finite, the behavior of the bound state energy is given by

Egr � − �R
2� log N − log log N

log�cosh
d

R
+

1

2
sinh

d

R
	�

2

. �82�

his problem again is an example of a certain kind of dimensional transmutation in nonrelativistic
uantum mechanics. By dimensional analysis, the Hamiltonian of the system contains intrinsic
nergy scales �2 /mdij

2 and �2 /2mR2. However, after the renormalization, we obtain new param-
ters �i

2 with energy dimensions. Hence, the number of parameters we expect for the energy at the
eginning has changed after the renormalization. As it happens in the S2 case, the delta potentials
n H2 are an example of a generalized dimensional transmutation.

. CONCLUSION

In this work, we studied a particle moving under the influence of N attractive Dirac delta
nteractions on some special Riemannian manifolds. We renormalized the problem and find a finite
imensional matrix �, called the characteristic matrix, by means of which a well-defined expres-
ion for the resolvent can be written. All the information about the bound states can be obtained
rom the characteristic matrix. The renormalization can be done by means of the heat kernel and
his is equivalent to the sharp cut-off method for the eigenvalues of the Laplacian, in the case of
ompact manifolds. We have studied the problem on particular compact and noncompact mani-
olds, S2, H2, and H3 and we give explicit lower bound estimates on the bound state energies for
ach problem. Although we are concerned with particular manifolds, the basic idea for the renor-
alization can be applied also to general manifolds.
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We present new techniques for finding anomaly-free sets of fermions. Although the
anomaly cancellation conditions typically include cubic equations with integer vari-
ables that cannot be solved in general, we prove by construction that any chiral set
of fermions can be embedded in a larger set of fermions which is chiral and
anomaly-free. Applying these techniques to extensions of the standard model, we
find anomaly-free models that have arbitrary quark and lepton charges under an
additional U�1� gauge group. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2222081�

. INTRODUCTION

Gauge symmetries successfully describe the electromagnetic, weak, and strong interactions of
article physics. Nevertheless, unitarity and renormalizability of the standard model do not nec-
ssarily follow from a classical invariance of the Lagrangian under SU�3�C�SU�2�W�U�1�Y

auge transformations: one-loop SU�N� and U�1� gauge anomalies must also be absent.1–3

In order to avoid these local gauge anomalies, the sum over triangle diagrams with gauge
osons as external lines and charged fermions running in the loops must vanish. As a consequence,
he sums over loops with more external lines and over higher-order diagrams automatically
anish.4,2 Similarly, the sum over triangle diagrams involving two gravitons and one U�1� gauge
oson in the external lines must vanish, or else this mixed gravitational U�1� anomaly will also
ead to an explicit breaking of the gauge symmetry by gravitational interactions �for a review see
ef. 5�. Finally, the SU�2� gauge symmetry may suffer from a global gauge anomaly unless the
umber of Weyl fermion doublets is even.6

A remarkable property of all elementary fermions discovered so far is that they form a chiral
et—none of them can have a gauge invariant mass term. The cancellation of anomalies within a
hiral set of fermions is highly nontrivial. Given the observed SU�3�C�SU�2�W representations
ound in the standard model, the anomaly cancellation conditions are restrictive enough to
niquely determine the U�1�Y charges, assuming that not all of them are zero. More strikingly, the
inimal anomaly-free chiral set of fermions charged under SU�3�C�SU�2�W�U�1�Y is exactly
iven by a standard model generation.7 Therefore, anomaly cancellation provides an explanation
or the fermion structure of the standard model which is an alternative to the explanation provided
y grand unified theories where, for example, an entire standard model generation and right-
anded neutrino can be embedded in a single, anomaly-free SO�10� representation—although it
ust be noted that many low energy hypercharge assignments are consistent with this embedding.8

Anomaly cancellation will constrain the charges of the standard model fermions under any
ewly discovered gauge groups, whether these groups follow from grand unification or not. Many
odels of physics beyond the standard model incorporate new gauge groups, and the couplings of

�
Electronic mail: pbatra@post.harvard.edu

47, 082301-1022-2488/2006/47�8�/082301/13/$23.00 © 2006 American Institute of Physics
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he standard model fermions to the gauge bosons associated with these groups are completely
etermined by the spectrum of charges. It is therefore useful to have methods that allow finding,
n general, sets of fermions which are anomaly free under arbitrary gauge groups. Since vector-
ike pairs of fermions do not contribute to these anomalies, a complete description of anomaly-free
ets hinges only on the identification of all chiral anomaly-free sets.

Furthermore, if the chiral set of standard model fermions is charged under a new gauge group,
nomaly cancellation usually dictates the presence of additional fermions. The complete set of
ermions under the full gauge group would most likely be chiral. Imagine instead that the full
heory was completely vector-like—after the breaking of the extended gauge symmetry to
U�3�C�SU�2�W�U�1�Y, one would be left with both the observed standard model fields and a
et of conjugate partners. To avoid mixing with the standard model fields, these conjugate partners
hould have large masses that proceed through electroweak symmetry breaking, which would
nduce too large corrections to electroweak observables.

In the case of SU�N� gauge groups, comprehensive lists of anomaly-free sets have been
dentified using numerical methods.9 By contrast, anomaly-free sets of chiral fermions charged
nder a U�1� gauge group, or under direct products of gauge groups including at least one U�1�
roup, have been less thoroughly catalogued, despite the common appearance of extra U�1�
roups in connection to flavor symmetry �see, e.g., Refs. 10 and 11�, supersymmetry breaking
see, e.g., Ref. 12�, neutrino masses,13–17 and many other model building issues �see, e.g., Ref. 18�.

any of these constructions depend on the existence of a chiral set of fermions.
If the quarks and leptons have arbitrary charges under a new U�1�, then there are a number of

auge anomalies that need to be cancelled. Usually, this is achieved by the inclusion of additional
ermions with carefully chosen charges. An alternative is available in the context of string theory,
hen the U�1� symmetry is spontaneously broken at a scale close to the string scale: the four-
imensional gauge anomalies associated with the U�1� can be cancelled by the Green–Schwartz
echanism.19 The question of when can anomalies be cancelled by additional fermions has not

een given a general answer. It is often stated, though, that there are cases where the anomalies
an be cancelled only by the Green–Schwartz mechanism20,10 �in these cases it is usually said that
here is an “anomalous U�1�,” albeit this is a misleading phrase�.

In this paper we prove that any set of fermions with arbitrary charges under a gauge symmetry
nvolving any number of non-Abelian and U�1� groups can be embedded in an anomaly-free chiral
et that contains additional fermions—even when any ratio of charges is a rational number. This
onclusion is far from obvious: it involves cubic Diophantine equations �i.e., cubic equations with
nteger solutions�, which include for the case of three fermions the �in�famous Fermat’s last
heorem.

We focus on rational charges since such charges seem more natural, but more importantly,
hey solve a real problem: any U�1� gauge theory eventually hits a Landau pole unless it is
mbedded in a non-Abelian group, which is possible only if these fermions have commensurate
harges. �i.e., rational up to a normalization of the gauge coupling�.21 Even in string theory the
auge charges appear to be commensurate, although we are not aware of a general proof of this
tatement.

In particular, we find that any “anomalous U�1�” that can be made nonanomalous by the
reen–Schwartz mechanism can also be made nonanomalous by new fermions. More importantly,
ur theorem shows that it is possible to add new fermions such that the anomalies cancel for any
harges of the standard model fermions under a new U�1�. This is relevant for the experimental
earches for Z� bosons,22,23 because the Z� couplings to quarks and lentons are fixed, up to an
verall normalization, by the U�1� charges.

In Sec. II we discuss U�1� gauge anomalies, and derive our main results. These results are
hen generalized to any gauge group in Secs. III and IV. In Sec. V we apply our results to the
henomenologically interesting case of a U�1� extension of the standard model gauge group. Our

onclusions are presented in Sec. VI.
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I. U„1… GAUGE ANOMALIES

Consider a set of n left-handed Weyl fermions with charges zi , i=1, . . . ,n under a U�1� gauge
heory. The �U�1��3 and mixed U�1�-gravitational anomaly cancellation conditions are given by

�
i=1

n

zi
3 = 0,

�
i=1

n

zi = 0. �2.1�

e are interested in chiral sets, so the charges of the fermions must satisfy

zi + zj � 0 �2.2�

or any i, j, and in particular zi�0. For n�4, the first Eq. �2.1� can be easily solved once the
onstraint given by the second Eq. �2.1� is imposed, and the result is that all the fermions are
ector-like, i.e., do not satisfy Eq. �2.2�. Hence, at least five chiral fermions are needed to satisfy
qs. �2.1�.14,16

When the charges are arbitrary real numbers, it is evident that there are solutions to Eqs. �2.1�
or any n�5. In realistic physics theories, however, it is generally expected that the charges are
ational numbers up to an overall normalization of the gauge coupling. The reason for that is that
he U�1� gauge coupling increases with the energy, and the gauge theory appears to need a cutoff
bove which some new physics would have to soften the running of the gauge coupling. Typically,
hat new physics involves the embedding of the U�1� group in a non-Abelian gauge group, which
uarantees that the ratio of U�1� charges are rational numbers. We will therefore concentrate on
he case where the ratio of any two zi charges is rational. Furthermore, the overall normalization
f the U�1� charges is arbitrary, so we can take all zi to be integers without loss of generality. For
nteger charges zi, Eqs. �2.1� are equivalent to identifying the integer points in the intersection of
cubic hypersurface and a hyperplane in Rn. The first Eq. �2.1� is a cubic Diophantine equation,

nd there are no known methods of solving it in general for a fixed but arbitrary value of n.

. Construction of anomaly-free chiral sets

There is often a more straightforward problem that arises in model building: given a chiral set
f fermions, which is anomalous, is it possible to include more fermions such that the larger set is
hiral and anomaly free? To address this issue, we make the important observation that any
ermion with integer charge z is part of the following anomaly-free set:

�1 � �z�,
z

6
�z2 − 1� � �− 2�,

z

3
�z2 − 4� � �1�� . �2.3�

here the notation p� �x� means that there are �p� left-handed fermions with charge ±x, the + and
signs corresponding to p�0 and p�0, respectively. It is not surprising that the two anomaly

onditions can be satisfied by two numbers, the numbers of fields of charge 1 and −2. What is
ontrivial is that the coefficients p are always integers for any integer z, as a physical number of
elds must be. Since fermions with charge ±1, ±2 are central to this construction, we call them
asic charges for U�1�. If z is one of the basic charges, then the set is vector-like. Otherwise, the
et is chiral.

Given a chiral set of charges S= 	zi , i=1, . . . ,n
 that may not be anomaly free, we construct a
hiral anomaly free set that consists only of charges in S and, for each one, the appropriate number
f fermions with the basic charges, ±1 and ±2, as in Eq. �2.3�. If some of the charges in S are
hemselves basic charges, then we must initially rescale all charges so this is no longer the case.

n many cases the resulting anomaly-free set will still contain some vector-like pairs of ±1 and ±2,
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o the final step is to remove all such pairs. This completes our proof by construction that for any
hiral set of charges S there is a larger set which includes S and is chiral and anomaly free.

. Anomaly-free chiral sets with a small number of fermions

The above successful construction of chiral, anomaly-free sets often requires a disturbingly
arge number of basic charges. We now discuss methods for obtaining smaller sets of fermions
hich have the advantage of pushing the Landau pole to higher energies.

First, to show that smaller sets are even possible, let us first observe that for any number n
5 of chiral fermions there is a chiral set of U�1� charges that is anomaly free. To prove this

tatement it is sufficient to show that there is a chiral set for each n=5, . . . ,9. An anomaly-free
hiral set with arbitrary n�10 can always be constructed using linear combinations of chiral sets
ith n=5, . . . ,9. In Table I we show anomaly-free chiral sets with n=5, . . . ,9 integer charges that
ave the maximum charge, chosen to be positive, as small as possible �we include all sets with the
wo smallest values of the maximum charge�.

To reduce the numbers of fermions in a set S we again rely on the construction of Eq. �2.3�.
ust as the anomaly contribution from a single charge z can be cancelled by the prescribed number
f fields with charges +1 and −2, the reverse is also true: the anomaly contribution from a number
f fields of charges +1 and −2 can be cancelled off by a single charge z�. In this way, large
umbers of basic charges are exchanged for a single fermion with a large charge.

The numerical techniques that can address the problem of finding small anomaly-free sets are
efined on lattices. For our purposes, a lattice is any set of vectors in Rn, that is closed under
ddition and subtraction �i.e., for any two vectors x, y in a lattice, both x+y and x−y are also in
he lattice�. Each axis of Rn represents a possible value of fermion charge, and the coordinates on
n axis indicate the number of fermions with that charge. Negative coordinates correspond to
ositive numbers of fermions with the conjugate charge.

The set of chiral, anomaly-free sets forms a lattice, denoted L. For any chiral set X, let V�X�
enote the vectorization of X, which is the image of X in the space Rn. For example, if X is the set
1 ,5 ,−7 ,−8,9
, we would define V�X� to be the vector �1,0 ,0 ,0 ,1 ,0 ,−1 ,−1,1 ,0 ,0 , . . . � corre-
ponding to the fact that there is one fermion of charge 1, zero of charge 2, one of charge −7, etc.
et L denote the set of all such vectorizations L= 	V�X� �X is chiral and anomaly free
. We can add
lements of L: for any two chiral, anomaly-free sets X and Y, the sum V�X�+V�Y� corresponds to
he anomaly-free chiral set that contains all the fermions in both X and Y, followed by the removal
f all vector-like pairs. We can similarly subtract any two elements of L to find another element of
; therefore L is a lattice.

For a given z, the vectorization of the construction given in Eq. �2.3� is an element of L, which

TABLE I. Anomaly-free chiral sets with n=5, . . . ,9 integer charges.

Number of fermions Charges

5 	1,5 ,−7 ,−8,9

	2,4 ,−7 ,−9,10


6 	1,1 ,1 ,−4 ,−4,5

	−1,2 ,3 ,−5 ,−5,6


7 	1,2 ,2 ,−3 ,−3,−3,4

	−1,−1,3 ,4 ,−6 ,−6,7

	1,3 ,−4 ,5 ,−6 ,−6,7

	2,3 ,3 ,−4 ,−5,−6,7


8 	1,1 ,2 ,3 ,−4 ,−4,−5,6

	2,2 ,2 ,2 ,−5 ,−5,−5,7


9 	2,2 ,2 ,−3 ,−3,4 ,−5 ,−5,6

	1,1 ,1 ,2 ,−4 ,5 ,−7 ,−9,10


	1,−3,4 ,5 ,5 ,−6 ,−7,−9,10

e call C�z�. C�z� contains one fermion with charge z, and the needed number of basic charges to
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atisfy the anomaly equations. The set 	C�zi� �zi� ±3,4 ,5 , . . . 
 actually spans L: any element of L
an be written, by construction, as a unique linear combination of the C�zi�.

It follows that finding the smallest sets of anomaly-free chiral fermions is similar to finding
he shortest vectors in L. This latter problem is called the “short vector problem” and has been
tudied extensively by mathematicians and computer scientists �for a review, see Ref. 24�. An
mportant distinction is that short vectors are here defined in terms of the �2 norm, which can
iffer from the �1 norm actually used to determine the number of fermions. Nevertheless, short-
ess in the �2 norm is a good approximation to shortness in the �1 norm, and sufficient for our
urposes of finding small sets.

Even finding a vector which is at most �2 times as long as the shortest vector remains an
ondeterministic polynomial �NP�-hard problem, i.e., at least as hard as any NP time problem.25

his means that for very large numbers of fermions, it is impossible to have both accuracy and
peed in an algorithm.

To set up the problem concretely, consider searching for an anomaly-free, chiral set with at
ost N fermions, whose maximum charge is m. A simple iterative approach over all possible

umbers of fermions has a time complexity of the order of

2m−1 �N + m�!
N ! m!

. �2.4�

iven a computing power of 1010 operations per second, it would take �100 years to find the
hortest solution for N=30, m=20. A better algorithm would be to search over all linear combi-
ations of the basis vectors, C�zi�. This has a time complexity of the order of

2m−3 �N + m − 2�!
N ! �m − 2�

, �2.5�

nd would take �1 year for N=30, m=20.
Consider instead the Lenstra–Lenstra–Lovasz �LLL� algorithm,26 readily available in math-

matical packages, for attacking the shortest vector problem. The LLL algorithm requires as input
he basis vectors C�zi� for �zi � �m, and outputs a shorter, closer to orthogonal set of basis vectors
hat span the same lattice. The LLL algorithm has a time complexity of O�m4 log m�, and takes

10−5 s for m=20. Note that this is polynomial in m instead of exponential, and does not involve
he number of fermions N �this is possible because the solutions found using the LLL algorithm
re by no means guaranteed to be minimal�. In fact, they can be up to 2�m−1�/2 times larger than the
inimal solutions. In practice, however, the solutions found are almost always reasonably short,

nd the significant decrease in time and ease of implementation make this approach worthwhile.
Since the LLL algorithm actually returns a new basis of short vectors which spans L, the

lgorithm can easily be adapted to solving another common problem in polynomial time: finding
he shortest vector that contains a specific spectrum of fermion charges. Consider a specific set of
harges 	xi
. To make the LLL algorithm handle this problem, we exchange the basis vectors C�xi�
or the single basis vector �iC�xi�. The output basis set is guaranteed to include at least one short
ector that includes the specified charges 	xi
.

Since we are interested in numbers of fermions that are not particularly large, it may eventu-
lly prove useful to adapt even exponential-time solutions to the shortest vector problem in order
o identify anomaly-free sets. Although these solutions are exponential in m, a recent algorithm
as a time complexity of order O�2m log m�, which take �1 s for m=20.24

II. U„1…1Ã¯ÃU„1…m

Now consider a set of fermions, �i , i=1, . . . ,n, which are charged under U�1�1� ¯
U�1�m gauge group. Let us denote the charges of �i under U�1�a, a=1, . . . ,m, by za,i. The
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onstruction of anomaly-free sets will proceed as in the case of a single U�1�: we will identify the
umber and structure of basic charges that are needed to cancel off the anomalies for any single
ermion.

. m=2

In the case of U�1�1�U�1�2 gauge group there are six types of anomalies: �U�1�1�3, mixed
�1�1 gravitational, �U�1�2�3, mixed U�1�2 gravitational, �U�1�1�2U�1�2, and U�1�1�U�1�2�2. These

nomalies cancel if and only if

�
i=1

n

z1,i
3 = �

i=1

n

z1,i = �
i=1

n

z2,i
3 = �

i=1

n

z2,i = �
i=1

n

z1,i
2 z2,i = �

i=1

n

z1,iz2,i
2 = 0. �3.1�

A set of fermions is chiral with respect to U�1�1�U�1�2 if

z1,i + z1,j � 0 or z2,i + z2,j � 0, �3.2�

or any i and j. Note that a chiral set with respect to U�1�1�U�1�2 may be chiral, partially
ector-like, or entirely vector-like with respect to each of the individual U�1�s.

We now show that any set of fermions which is chiral with respect to U�1�1�U�1�2 can be
mbedded into an anomaly-free set of chiral fermions, as we showed in the previous section for a
�1� gauge theory. This follows from the fact that any fermion with integer charges �z1 ,z2�, is part
f the following anomaly-free set

��z1,z2�, −
z1z2

2
�z1 + z2� � �1,1�, −

z1z2

2
�z1 − z2� � �− 1,1�, −

z1

6
�z1

2 − 1� � �2,0�,

z1

3
�z1

2 + 3z2
2 − 4� � �1,0�, −

z2

6
�z2

2 − 1� � �0,2�,
z2

3
�3z1

2 + z2
2 − 4� � �0,1�� �3.3�

here the notation p� �x1 ,x2� means that there are �p� left-handed fermions with U�1�1�U�1�2

harges �x1 ,x2� for p�0, or �−x1 ,−x2� for p�0. We now have 12 basic pairs of charges
	�1,1� , �1,−1� , �2,0� , �1,0� , �0,2� , �0,1�
 that are needed to ensure anomaly cancellation. Note

hat the number of fermions with basic charges prescribed by Eq. �3.3� is automatically an integer.
he proof for constructing an anomaly-free chiral set from any chiral set S proceeds exactly as in
ec. II A.

Finding small anomaly-free sets from this construction proceeds through a lattice construction
imilar to that of Sec. II B. With the larger gauge group U�1��U�1�, the only change we make is

to make each axis of Rn correspond to a specific �z1 ,z2� charge, instead of a single U�1� charge z.
his adaptation works for finding small anomaly-free sets for all of the other gauge groups
onsidered in the remainder of this paper.

. mÐ3

In the case where the number of U�1� gauge groups is m�3, there are m�m2+3m+8� /6
quations that must be satisfied to ensure that the theory is anomaly free:

�
i=1

n

za,i = �
i=1

n

za,izb,izc,i = 0, �3.4�

or any a, b, c=1, . . . ,m.
We construct anomaly-free chiral sets by showing that the anomalies of any fermion �i can be

ancelled by the anomalies of a set of additional chiral fermions, which is a generalization of the
asic charges 	�1,1� , �1,−1� , �2,0� , �1,0� , �0,2� , �0,1�
 from Eq. �3.3�.

Consider a fermion � with charges �z1 , . . . ,zm�. Its U�1�aU�1�bU�1�c anomalies can be can-

elled for any unequal a, b, c=1, . . . ,m by a number �−zazbzc� of fermions, labeled by �abc ,a
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b�c, with charges �+1, +1, +1� under U�1�a�U�1�b�U�1�c and charge 0 under all other
roups. Then the �U�1�a�2U�1�b anomalies of � and �abc can be cancelled for any unequal a ,b
1, . . . ,m by a set of fermions composed of Nab

	 fermions, labeled by 	ab ,a�b, with charges
+1, +1� under U�1�a�U�1�b and charge 0 under all other groups, Nab

	 � fermions, labeled by

ab� ,a�b, with charges �−1, +1� under U�1�a�U�1�b and charge 0 under all other groups, where

Nab
	 = zazb�

c=1

m

zc −
3

2
�za + zb�� ,

Nab
	 � = −

1

2
zazb�za − zb� . �3.5�

he remaining �U�1�a�3 and mixed U�1�a gravitational anomalies can be cancelled for any a
1, . . . ,m by a set of fermions composed of Na


 fermions, labeled by 
a, with charges +2 under
�1�a and charge 0 under all other groups, and Na


� fermions, labeled by 
a�, with charges +1 under
�1�a and charge 0 under all other groups, where

Na

 = −

1

6
za�za

2 − 1� ,

Na

� =

1

3
za�za

2 − 4� + za �
b�a

�zb
2 − zb �

c�a,c�b

zc� . �3.6�

Therefore, we have constructed an anomaly-free chiral set that includes a fermion � of
rbitrary charges �z1 , . . . ,zm�

	�, − zazbzc � ��abc�, Nab
	 � �	ab�, Nab

	 � � �	ab� �, Na

 � �
a�, Na


� � �
a��
 �3.7�

n Table II we show the charges in the particular case m=3. Here, the basic charges are the fields
,	 ,
.

The proof for constructing an anomaly-free chiral set S� from any set chiral set S proceeds

TABLE II. Anomaly-free chiral set of charges under three U�1� groups.

Number of fermions U�1�1 U�1�2 U�1�3

1 z1 z2 z3

−z1z2z3 +1 +1 +1
−z1z2�z1+z2−2z3� /2 +1 +1 0
−z1z2�z1−z2� /2 −1 +1 0
−z2z3�z2+z3−2z1� /2 0 +1 +1
−z2z3�z2−z3� /2 0 −1 +1
−z3z1�z3+z1−2z2� /2 +1 0 +1
−z3z1�z3−z1� /2 +1 0 −1
−z1�z1

2−1� /6 +2 0 0
z1�z1

2−4� /3+z1�z2
2+z3

2−z2z3� +1 0 0
−z2�z2

2−1� /6 0 +2 0
z2�z2

2−4� /3+z2�z3
2+z1

2−z3z1� 0 +1 0
−z3�z3

2−1� /6 0 0 +2
z3�z3

2−4� /3+z3�z1
2+z2

2−z1z2� 0 0 +1
xactly as in Sec. II A.
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V. GENERALIZATION TO ANY GAUGE GROUP

We now extend our results to G�U�1� gauge groups, where G is any non-Abelian group.
onsider a set of chiral fermions �i, i=1, . . . ,n, whose charges are �Ri ,zi� under G�U�1�. Ri are

ome irreducible representations of G. In addition to the U�1� and U�1�3 anomalies, the G3 and
2U�1� anomalies also must cancel �all other mixed anomalies are zero�. The G3 anomaly is given
y

AGGG = �
i

A�Ri� , �4.1�

here the anomaly of Ri, A�Ri�, is defined by

Tr�	Ta�Ri�,Tb�Ri�
Tc�Ri�� = 1
2A�Ri�dabc. �4.2�

he totally symmetric tensor dabc is determined by the anticommutation relation among the group
enerators Ta�Ri�. The G2U�1� anomaly is given by

AGG1 = �
i

C�Ri�zi, �4.3�

here the Casimir of Ri, C�Ri�, is defined by

Tr�Ta�Ri�Tb�Ri�� = �abC�Ri� . �4.4�

inally, the U�1� and U�1�3 anomalies take the following form up to an overall normalization:

A1GG = �
i

d�Ri�zi,

A111 = �
i

d�Ri�zi
3, �4.5�

here d�Ri� is the dimension of Ri. The set of fermions �i is anomaly free if

AGGG = AGG1 = A1gg = A111 = 0. �4.6�

f any of these conditions is not satisfied, then we prove by construction that one can add more
ermions such that the larger set is both chiral and anomaly free.

For each fermion with charges �R ,z� with z�0, we can construct an anomaly-free set

��R,z�,
z

6
�z2 − 1� � �R,− 2�,

z

3
�z2 − 4� � �R̄,1�,

1

6
�z + 1��z + 2��z − 3� � �R,0�� ,

�4.7�

here R̄ is the conjugate of R: A�R̄�=−A�R�, C�R̄�=C�R�, d�R̄�=d�R�. The notation p� �R ,x�
eans that if p�0 then there are p left-handed fermions with charge �R ,x�, while if p�0 then

there are −p left-handed fermions with charge �R̄ ,−x�. The additional fermions with charge �R ,0�
re included to make the entire set vector-like under the G group. We have chosen a basis that is
asy to write down explicitly, but in many cases is larger than necessary—one could instead make

ome of the �R ,1� fermions into �R̄ ,1� fermions and remove the appropriate number of �R ,0�
ermions leaving at most one fermion with charge 0 under U�1�.

To render the entire set 	�i , i=1, . . . ,n
 anomaly free and chiral, we first rescale the zi charges
o be different than +1 and −2, add the fermions for each field � according to Eq. �4.7�, then

iscard any remaining vector-like pairs. Note that if any of the zi charges is zero, then one could
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dd other fermions which are neutral with respect to U�1� that belong to nontrivial representations
f G such that the entire set is anomaly free and chiral �as done in Ref. 9 for the case where G
SU�N��.

Typically, the total number of additional fermions can be further reduced if instead of fermi-
ns transforming nontrivially under G we add some fermions which are singlets �belong to the 1
epresentation of G�. For example, consider the case where the set 	�i , i=1, . . . ,n
 is anomaly free
ith respect to the non-Abelian group G�AGGG=0�. In order to cancel the G2U�1� anomaly we

ould add two more fermions with charges �R ,z� and �R̄ ,z�� such that

z + z� = −
1

C�R��i

C�Ri�zi. �4.8�

ne may ensure that all the U�1� charges are integers by an appropriate rescaling. The U�1� and
�1�3 anomalies can be finally cancelled by including a number N1 of fermions with charges

1 , +1�, and a number N2 of fermions with charges �1,−2�, as prescribed in Sec. II A

N1 =
1

3��i

d�Ri�zi�zi
2 − 4� + d�R��z�z2 − 4� + z��z�2 − 4��� ,

N2 =
1

6��i

d�Ri�zi�zi
2 − 1� + d�R��z�z2 − 1� + z��z�2 − 1��� . �4.9�

he remarkable feature that enables this construction is that N1 and N2 are integers for any integer
harges z, z�, zi.

This procedure can immediately be extended to groups of the form G1� . . . �Gm�U�1�,
here Gi are non-Abelian gauge groups. For example, a single fermion � with charge

Ri , . . . ,Rm ,z� is part of the anomaly free set

��R1, . . . ,Rm,z�,
z

6
�z2 − 1� � �R1, . . . ,Rm,− 2�,

z

3
�z2 − 4� � �R̄1, . . . ,R̄m,1�,

1

6
�z + 1��z + 2��z + 3� � �R1, . . . ,Rm,0�� . �4.10�

o extend these results to arbitrary G1� . . . �Gm�U�1�1� . . . �U�1�m� groups, one may simply
se the coefficients and the set of fermions �, 	, 	�, 
, 
� described in Sec. III B in place of the
ingle z charges written above.

. U„1… EXTENSION OF THE STANDARD MODEL GAUGE GROUP

The results presented in the previous sections have various applications to physics beyond the
tandard model. In this section we study a particularly important application. The elementary
ermions discovered in experiments so far, with charges under the SU�3�C�SU�2�W�U�1�Y

auge group listed in Table III, may be charged under a new Abelian gauge group, U�1�z, provided
his is spontaneously broken. The U�1�z charges of these standard model fermions determine the
elative couplings of the Z� boson �the heavy gauge boson associated with U�1�z�, and therefore its
xperimental signatures.

The discovery of a Z� boson with couplings to the known fermions which are not proportional
o hypercharge would imply the existence of certain additional fermions27 or antisymmetric tensor
elds in extra dimensions.19 Here, as an application of our results, we show that any couplings of
Z� boson to the standard model fermions are allowed by anomaly cancellation if additional

ermions are present. For simplicity, we concentrate on generation-independent couplings. The
ame method can be easily applied to generation-dependent couplings �in that case, though, there

28,23
re stronger phenomenological constraints from flavor-changing neutral currents�.
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The U�1�z charges of the standard model fermions lead in general to six different gauge
nomalies: SU�3�C

2 U�1�z, SU�2�W
2 U�1�z, U�1�Y

2U�1�z, U�1�YU�1�z
2, U�1�z

3, and U�1�z. It is impera-
ive to ask whether these anomalies can all be cancelled simultaneously by including additional
ermions. According to the prescription outlined in Sec. IV one can construct anomaly-free sets for
ny rational values of the U�1�z charges.

However, realistic extensions of the standard model need additional constraints to be satisfied.
ne constraint is that there are no new stable particles with fractional electric charges �for a

eview of experimental limits, see Ref. 29�. To avoid fractional electric charges, we choose to
ntroduce only fermions that transform under the standard model gauge group in the same repre-
entations �or the conjugated ones� as the observed fermions, or are not charged under the standard
odel gauge group. One could relax this restriction, for example, by including fermions with

arger integer electric charges, but we will not need this freedom here.
Electroweak measurements restrict severely the number of new chiral fermions charged under

U�2�W. In order to satisfy this constraint, we require the new fermions to be vector-like with
espect to the SU�3�C�SU�2�W�U�1�Y, but chiral with respect to U�1�z. Another constraint is
hat both the standard model fermions and the new ones must have masses, so that some Yukawa-
ype couplings to Higgs fields need to be gauge invariant. For any specified Higgs sector, this
eads to constraints on the U�1�z charges. However, one can keep the U�1�z charges of the fermi-
ns arbitrary and still give masses to all fermions by including a sufficient number of scalars with
�1�z-breaking Vacuum Expectation Value �VEV�s that have higher-dimensional interactions with

he fermions.
To allow for completely arbitrary charge for the standard model fields under the new U�1�z,

he spectrum of fields listed in Table IV suffice, although other choices are possible as long as

TABLE III. Gauge charges of the Standard Model fermions in the presence
of a new U�1� group. An index labeling the three generations is implicit.

SU�3�C SU�2�W U�1�Y U�1�z

qL 3 2 +1/3 zq

uR 3 1 −4/3 zu

dR 3 1 −2/3 zd

lL 1 2 −1 zl

eR 1 1 −2 ze

TABLE IV. New fermions which, together with the three standard model
generations �see Table III�, form an anomaly-free set. The charges under the
new U�1�z gauge group are restricted by Eqs. �5.1� and �5.3�, while N1 and
N2 are given in Eq. �5.4�

SU�3�C SU�2�W U�1�Y U�1�z

�L
l

1 2 �1
zL

l

�R
l zR

l

�L
e

1 1 −2
zL

e

�R
e zR

e

�L
d

3 1 2
3

zL
d

�R
d zR

d

R
j , j=1, . . . ,N1 1 1 0 −1

R�
k ,k=1, . . . ,N2 1 1 0 +2
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here is at least one fermion charged under SU�3�, another one charged under SU�2�W, and yet
nother one charged under U�1�Y. We will eventually show that the anomaly cancellation condi-
ions can be solved for arbitrary rational values of zq ,zu ,zd ,ze, and zl, as well as rational values of
ll other charges. Given the freedom in choosing the normalization of the gauge coupling, we can
ake zq, zu, zd, ze, and zl to be integers. Our method of approach is to first impose that all of the
nomalies cancel except for the U�1�z gravitational and U�1�z

3 ones. Finding the U�1�z charges of
he � fields requires solving three linear equations, corresponding to the SU�3�C

2 U�1�z,
U�2�W

2 U�1�z, and U�1�Y
2U�1�z anomalies, and one quadratic equation, corresponding to the

�1�YU�1�z
2 anomaly. Note that if we can guarantee that the U�1�z values of all fields are still

ational after having imposed these relations, then the U�1�z and U�1�z
3 anomaly equations can be

ancelled as described in Sec. II by adding the needed number of fields R and R� . The remaining
nomaly conditions are not affected by the R and R� fields, so the most difficult part of satisfying
he anomaly conditions, the cubic U�1�z

3 equation, is removed from the process.
Notice that we have chosen some of the fermions in Tables III and IV to be right handed.

heir contributions to the anomalies are the same as those of a left-handed fermion in the complex
onjugated representation. The three linear equations due to the SU�3�2U�1�z, SU�2�2U�1�z, and
�1�Y

2U�1�z anomalies constrain linear combinations of the charges of the new fields to be

zL
d − zR

d = − 3�2zq − zu − zd� ,

zL
l − zR

l = − 3�3zq + zl� ,

zL
e − zR

e = 3�2zq + zu + ze� . �5.1�

o proceed with the U�1�YU�1�z
2 anomaly cancellation condition, given by

�zL
d�2 − �zR

d�2 + �zL
l �2 − �zR

l �2 + �zL
e�2 − �zR

e �2 = 3�zq
2 − 2zu

2 + zd
2 − zl

2 + ze
2� , �5.2�

e consider the particular case where the three remaining linear combinations of � charges can
lso be written as linear combinations of zq, zu, zl, zd, and ze. This reduces the U�1�YU�1�z

2 anomaly
quation to a linear equation in the unknown coefficients which has a three parameter solution for
eneral values of zq, zu, zl, zd, and ze. We find that the charges of the new fields are given by

zL
d = �− 2 −

3

2
a2 + a1�zq + �1 +

a1

2
�zu + 2zd −

a2

2
zl +

a1

2
ze,

zL
l = �− 6 + a2 − a3�zq −

1

2
�a2 + a3�zu −

a2

2
zd − zl −

a3

2
ze,

zL
e = �2 + a1 −

3

2
a3�zq + �1 −

a1

2
�zu −

a1

2
zd −

a3

2
zl + 2ze, �5.3�

here a1, a2, and a3 are arbitrary even integers.
To complete the proof, we add the necessary number of R and R� fields as described in Sec.

I to cancel the U�1�z gravitational and U�1�z
3 anomalies

1 =
1

3�
f

dfzf�zf
2 − 4� = �zL

d�3 − �zR
d�3 +

2

3
��zL

l �3 − �zR
l �3� +

1

3
��zL

e�3 − �zR
e �3� + 6zq

3 − 3zu
3 − 3zd

3 + 2zl
3

− ze
3 + 16zq − 4zu,

2 =
1

6� dfzf�zf
2 − 1� =

1

2
�N1 − 12zq + 3zu� , �5.4�
f
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here f runs over all fermions, zf is the U�1�z charge of the fermion, and df is the dimensionality
f the SU�3�C�SU�2�W representation times ±1 for left-handed and right-handed fermions, re-
pectively. We emphasize that Eqs. �5.4� yield integer values for N1 and N2 for any integers

q ,zu ,zd ,ze, and zl and the values of N1 and N2 can be reduced using the numerical methods of
ec. II B. Our construction shows that all couplings of a Z� boson to the standard model fermions
re allowed by anomaly cancellation, as long as additional fermions are present.

For illustration, let us pick some simple U�1�z charges for the standard model fermions, zd

zl=ze=0 and zq=zu=1, and compute the number of right-handed neutrinos in Table IV that need
o be included in an anomaly-free set. We could use the freedom to choose a1, a2, and a3 in order
o minimize N1 and N2, but for this simple case we just take a1=a2=a3=0. Therefore, the charges
f the � fermions follow from Eqs. �5.3� and �5.2�: zL

d =−1, zR
d =2, zL

l =zR
e =−6, and zR

l =zL
e =3.

quation �5.4� then gives N1=−75 and N2=−42, which means that there are 75 right-handed
eutrinos of U�1�z charge +1 and 42 right-handed neutrinos of U�1�z charge −2. This large number
f right-handed neutrinos can be substantially reduced using Eq. �2.3�. For example, the set 	42
�−2� ,75� �+1�
 can be replaced by one of the following sets of five right-handed neutrinos:

2� �−5� ,1� �−3� ,2� �+2�
 or 	1� �−6� ,2� �−3� ,1� �+2� ,1� �+1�
.

I. CONCLUSIONS

The need to embed new U�1� gauge groups in non-Abelian groups forces a focus on integer-
alued charges, up to a possible rescaling of the gauge coupling constant. Our results show that
nomaly cancellation in a gauge theory, while highly constraining, can occur for any set of integer
ermion charges through the addition of new integer-charged fields. This is akin to gauging
�1�B−L in the standard model: one is forced to add a right-handed neutrino to prevent gauge

nomalies from appearing. That such anomaly-free sets exist is obvious when one constructs
ector-like sets, but highly nontrivial for chiral integer-valued sets.

The main result is presented in Sec. II A for fermions charged under a U�1� gauge group, and
ubsequently extended to any other gauge groups. The key observation is that there always exists
certain integer number of basic charges that can cancel off the anomaly from a single fermion.
hen the sets are large, the numerical techniques discussed in Sec. II B allow a quick reduction

f the set size.
Our solution is a complete description of chiral anomaly-free sets for U�1�m gauge theories.

or gauge groups that have additional non-Abelian factors G1� . . . �Gm�U�1�m� we have con-
entrated on chiral anomaly-free sets that include vector-like fermions with respect to some of the
on-Abelian groups. This is sufficient to prove that any fermion can be included in a larger chiral
et of fermions that is anomaly free. Nevertheless, it would be interesting to extend our results and
nd a complete description of anomaly-free sets under gauge groups of the form G1� . . . �Gm

U�1�m� which are chiral with respect to each of the Gi groups.
If a gauge extension of the standard model is discovered, then we have argued that the full

pectrum of the new theory will still be chiral: a completely vector-like theory would leave behind
oth the observed standard model fermions and a set of conjugate partners after the extended
auge symmetry breaks to SU�3�C�SU�2�W�U�1�Y, which is not phenomenologically accept-
ble. Therefore, our results should have applications to a variety of extensions of the standard
odel. In Sec. V we have presented a particular application: if the standard model gauge group is

xtended to include a new U�1� group, then the standard model fermions may have arbitrary
ational charges under the new U�1� and still the anomalies would cancel in the presence of certain
dditional fermions with rational charges.
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xact analytical solution to the relativistic Klein-Gordon
quation with noncentral equal scalar and vector
otentials
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We present an alternative and simple method for the exact solution of the Klein-
Gordon equation in the presence of the noncentral equal scalar and vector potentials
by using Nikiforov-Uvarov method. The exact bound state energy eigenvalues and
corresponding eigenfunctions are obtained for a particle bound in a potential of
V�r ,��=� /r+� / �r2 sin2 ��+�cos � / �r2 sin2 �� type. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2227258�

. INTRODUCTION

In nuclear and high energy physics, one of the interesting problems is to obtain exact solutions
f the Klein-Gordon, Duffin-Kemmer-Petiau, and Dirac equations for mixed vector and scalar
otentials. The Klein-Gordon, Dirac, and Duffin-Kemmer-Petiau wave equations are frequently
sed to describe the particle dynamics in relativistic quantum mechanics. In recent years, a great
eal of effort has been spent to solve these relativistic wave equations for various potentials by
sing different methods. These relativistic equations contain two objects: the four-vector linear
omentum operator and the scalar rest mass. They allow us to introduce two types of potential

oupling, which are the four vector potential �V� and the space-time scalar potential �S�.
The Klein-Gordon equation with the vector and scalar potentials can be written as follows:

�− �i
�

�t
− V�r���2

− �� 2 + �S�r�� + M�2���r�� = 0. �1�

or the case S�r��= ±V�r��, the solution of the Klein-Gordon equation has been studied recently.1,2

he exact solutions of these equations are possible only for certain potentials such as Coulomb,
orse, Pöschl-Teller, Hulthen, and harmonic oscillator, etc., by using different methods.3 The

ther exactly solvable ones are the ring-shaped potentials introduced by Hartmann4 and Quesne.5

hese potentials involve an attractive Coulomb potential with a repulsive inverse square potential
ne. In particular, the Coulombic ring-shaped potential6 revived in quantum chemistry by Hart-
ann and co-workers7 and the oscillatory ring-shaped potential, systematically studied by
uesne,5 have been investigated from a quantum mechanical viewpoint by using various ap-
roaches. The special case of the potential in spherical coordinates is

V�r,�� =
�

r
+

�

r2 sin2 �
+ �

cos �

r2 sin2 �
�2�

ntroduced by Makarov et al.8 This potential can be used in quantum chemistry and nuclear
hysics to describe the ring-shaped molecules like benzene and the interactions between the
eformed pairs of the nuclei.

�
Electronic mail: yasuk@erciyes.edu.tr
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In this paper, we introduce an alternative and simple method for the exact solution of the
lein-Gordon equation for the case where S�r��= ±V�r��, considering a general angle dependent

noncentral� potential by using Nikiforov-Uvarov �NU� method.9 This method is based on solving
he second-order linear differential equations by reducing to a generalized equation of hypergeo-

etric type.
The NU method is used to solve Schrödinger, Dirac, Klein-Gordon, and Duffin-Kemmer-

etiau wave equations in the presence of the exponential type potentials such as Woods-Saxon,
öschl-Teller,10 and Hulthen11,12 and noncentral potential.13 The aim of this study is to show that

he NU method can be used to obtain exact solutions of noncentral potentials for Klein-Gordon
quation. Thus, radial and angular parts of the Klein-Gordon equation with noncentral potential
re solved by the NU method and it is seen that this method is applicable to noncentral type
otential for relativistic wave equations.

In Sec. II, the Klein-Gordon equation with equal scalar and vector potentials is examined. In
ec. III, the Klein-Gordon equation in spherical coordinates for a particle in the presence of
oncentral potential is separated into radial and angular parts. Section IV is devoted to a brief
escription of the NU method. Solutions of the radial and angular parts of the Klein-Gordon
quation by using the NU method are presented in Sec. V. Finally, concluding remarks are given
n Sec. VI.

I. KLEIN-GORDON EQUATION WITH EQUAL SCALAR AND VECTOR POTENTIALS

For the time-independent potentials we can write the total wave function as ��r� , t�
e−i�t��r��, where � is the relativistic energy. The three-dimensional Klein-Gordon equation with

he mixed vector and scalar potentials can be written as follows:

��� 2 + �V�r�� − ��2 − �S�r�� + M�2���r�� = 0, �3�

here M is the mass, � is the energy, and S�r�� and V�r�� are the scalar and vectorial potentials,
espectively. Now, if we take S�r��= ±V�r��, the Klein-Gordon equation becomes

��� 2 − 2�� ± M�V�r�� + �2 − M2���r�� = 0. �4�

his equation describes a scalar particle, i.e., spin-0 particle. It is the Schrödinger equation for the
otential 2V in the nonrelativistic limit. Thus, Alhaidari et al. conclude that only the choice
= +V produces a nontrivial nonrelativistic limit with a potential function 2V, and not V. Accord-

ngly, it would be natural to scale the potential terms in Eq. �3� so that in the relativistic limit the
nteraction potential becomes V, not 2V. Therefore, they modify Eq. �3� to read as follows:1

��� 2 + � 1
2V�r�� − ��2 − � 1

2S�r�� + M�2���r�� = 0. �5�

hus, Eq. �4� is acquired as

��� 2 − �� ± M�V�r�� + �2 − M2���r�� = 0. �6�

n Sec. III, for S�r��= +V�r��, if we take V�r�� as a general noncentral potential, the three-
imensional Klein-Gordon equation is separated into variables and the equation can be solved
sing the NU method.

II. SEPARATING VARIABLES OF THE KLEIN-GORDON EQUATION WITH NONCENTRAL
OTENTIAL

In the spherical coordinates, the Klein-Gordon equation for a particle in the presence of a

eneral noncentral potential V�r ,�� becomes
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� 1

r2

�

�r
�r2 �

�r
� +

1

r2 sin �

�

��
�sin �

�

��
� +

1

r2 sin2 �

�2

��2 − �� + M�V�r,�� + �2 − M2���r,�,�� = 0,

�7�

here V�r ,�� is a general noncentral potential as given by Eq. �2�. If one assigns the correspond-
ng spherical total wave function as ��r ,� ,��= �1/r�R�r�Y�� ,��, then by selecting Y�� ,��
����	���, the wave equation �7� for a general noncentral potential is separated into variables
nd the following equations are obtained:

� d2

dr2 −



r2 − �� + M�
�

r
+ �2 − M2�R�r� = 0, �8�

d2����
d�2 + cot �

d����
d�

+ �
 −
m2

sin2 �
− �� + M��� + � cos �

sin2 �
������ = 0, �9�

d2	���
d�2 + m2	��� = 0, �10�

here m2 and 
 are the separation constants. The solution of Eq. �10� is well known and it is the
zimuthal angle solution,

	m = Aeim� �m = 0, ± 1, ± 2, . . . � . �11�

quations �8� and �9� are radial and polar-angle equations and they will be solved by using the NU
ethod,9 given briefly in the following Sec. IV.

V. NIKIFOROV-UVAROV METHOD

The nonrelativistic Schrödinger equation or similar time-independent second-order differential
quations can be solved by using the NU method which is based on solutions of a general
econd-order linear differential equation with special orthogonal functions. In this method, for a
iven real or complex potential, the Schrödinger equation is transformed into a generalized equa-
ion of hypergeometric type with an appropriate s=s�r� coordinate transformation and it can be
ritten in the following form:

��s�� +
�̃�s�
��s�

���s� +
�̃�s�
�2�s�

��s� = 0, �12�

here ��s� and �̃�s� are polynomials, at most second degree, and �̃�s� is a first-degree polynomial.
ence, from Eq. �12�, the Schrödinger equation or the Schrödinger-type equations can be solved
y means of this method for potentials we consider. In order to find a particular solution of Eq.
12�, we use the separation of variables with the transformation

��s� = �s�y�s� , �13�

t reduces Eq. �12� to an equation of hypergeometric type,

��s�y� + ��s�y� + � y = 0 �14�

nd �s� is defined as a logarithmic derivative in the following form and its solutions can be
btained from

��s�/�s� = ��s�/��s� . �15�

he other part y�s� is the hypergeometric type function whose polynomial solutions are given by

he Rodrigues relation
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yn�s� =
Bn

��s�
dn

dsn ��n�s���s�� , �16�

here Bn is a normalizing constant and the weight function ��s� must satisfy the condition

����� = �� . �17�

he function � and the parameter � required for this method are defined as follows:

��s� =
�� − �̃

2
±	��� − �̃

2
�2

− �̃ + k� , �18�

� = k + ��. �19�

n the other hand, in order to find the value of k, the expression under the square root must be
quare of a polynomial. Thus, a new eigenvalue equation for the Schrödinger equation becomes

� = �n = − n�� −
n�n − 1�

2
��, �20�

here

��s� = �̃�s� + 2��s� �21�

nd its derivative is negative. By comparison of Eqs. �19� and �20�, we obtain the energy eigen-
alues.

. SOLUTIONS OF THE RADIAL AND ANGLE-DEPENDENT EQUATIONS

. Solutions of the radial equation and energy eigenvalues

The radial part of the Klein-Gordon equation is given as

� d2

dr2 −



r2 − �� + M�
�

r
+ �2 − M2�R�r� = 0. �22�

his equation can be further arranged as

R��r� + �− �2r2 − �2r − 
�
1

r2R�r� = 0 �23�

ith

�2 − M2 = − �2, �� + M� = �2, 
 = � �� + 1�, � = − Ze2, �24�

hich is now amenable to a NU solution. In order to find the solution of this equation, it is
ecessary to compare Eq. �23� with Eq. �12�. By comparison, we obtain the following polynomi-
ls:

�̃ = 0, � = r, �̃ = − �2r2 − �2r − 
 . �25�

ubstituting these polynomials in Eq. �18�, we obtain � function as

� = 1
2 ± 1

2
	4�2r2 + 4r�k + �2� + 4
 + 1. �26�

he expression in the square root must be the square of polynomial in respect to the NU method.
Therefore, we can determine the constant k by using the condition that the discriminant of the
quare root is zero, that is
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k = − �2 ± 2	�2�� + 1
2� . �27�

n view of that, one can find new possible functions for each k as

� = 

1

2
± �	�2r + �� +

1

2
�� , for k = − �2 + 2	�2�� +

1

2
�

1

2
± �	�2r − �� +

1

2
�� , for k = − �2 − 2	�2�� +

1

2
� .� �28�

or the polynomial of �= �̃+2� which has a negative derivative, we get

k = − �2 − 2	�2�� + 1
2�, � = 1

2 − �	�2r − �� + 1
2�� . �29�

sing �=k+�� together with the values k and �, � and � can be respectively obtained as

� = 2�� + 1 − 	�2r� , �30�

� = − �2 − 	�2�2 � + 2� . �31�

nother definition of �N is given at Eq. �20�,

�N = 2N	�2. �32�

omparing this with Eq. �31� and inserting the values of � and �, the exact energy eigenvalues of
he radial part of the Klein-Gordon equation with the noncentral potential are derived as

�N� = M
��N + � + 1�2 −

�2

4
�

��N + � + 1�2 +
�2

4
� , �33�

here N denotes the radial quantum number. This is not equal to the well-known positive energy
pectrum of the relativistic Klein-Gordon-Coulomb problem but gives the correct nonrelativistic
imit in the case of weak coupling.

Using � and � in Eqs. �14�–�16�, we can find the wave functions y�r�=yN��r� and �r�:

RN��z� = CN�z
�+1exp�−

z

2
�LN

2�+1�z� , �34�

here LN
2�+1�z� stands for the associated Laguerre functions whose argument is equal to z= ���

M�Ze2 / �N+ � +1��r and CN� is normalization constant determined by �0
�RN�

2 �r�dr=1,14 the cor-
esponding normalized wave functions are finally obtained as

Rn���r� = �2�� + M�Ze2

n�
�1/2� �n� − � − 1�!

n���n� + � + 1��
1/2�2�� + M�Ze2

n�
��+1

� r�+1exp�−
�� + M�Ze2

n�
r�Ln�−�−1

2�+1 � �� + M�Ze2

n�
r� , �35�

here n�=N+ � +1. This equation is also stands for solution of the radial Klein-Gordon equation
ith Coulomb potential, since the radial Klein-Gordon equation with noncentral potential contains

nly Coulombic potential terms.
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. Eigenvalues and eigenfunctions of the angle-dependent equation

As for the solutions of the angle-dependent part of the Klein-Gordon equation, we may also
erive eigenvalues and eigenfunctions of the polar angle part of the Klein-Gordon equation similar
o the method as given in Sec. IV.

Equation �9� can be written in the following form by introducing a new variable, x=cos �,

d2��x�
dx2 −

2x

1 − x2

d��x�
dx

+ �
�1 − x2� − m2 − �� + M��� + �x�
�1 − x2�2 ���x� = 0. �36�

o apply the NU method, we compare Eq. �36� with Eq. �12�. By comparison, we obtain the
ollowing polynomials:

�̃ = − 2x, � = 1 − x2, �̃ = − 
x2 − �x + �
 − m2 − �� . �37�

he function � is obtained by putting the above-noted expression in Eq. �18�,

� = ± 	x2�
 − k� + �x − �
 − m2 − � − k� . �38�

he expression in the square root must be square of a polynomial. Then, one can find new possible
unctions for each k as

� = ±
x	m2 + � + u

2
+	m2 + � − u

2
, for k =

2
 − m2 − �

2
−

1

2
u

x	m2 + � − u

2
+	m2 + � + u

2
, for k =

2
 − m2 − �

2
+

1

2
u ,

�39�

here u=	�m2+��2−�2. For the polynomial of �= �̃+2� which has a negative derivative,

� = − 2	m2 + � − u

2
− 2x�1 +	m2 + � + u

2
� . �40�

sing �=k+�� and its other definition �n=−n��− �n�n−1� /2��� given by Eqs. �19� and �20�,
ollowing expressions for � are obtained, respectively,

� =
2
 − �m2 + ��

2
−

1

2
u −	m2 + � + u

2
, �41�

�n = 2n�1 +	m2 + � + u

2
� + n�n − 1� . �42�

quating Eqs. �41� and �42� and using the definition of 
= � ��+1�, we obtain the � values as

� =	m2 + � + 	�m2 + ��2 − �2

2
+ n . �43�

f we insert � values obtained by Eq. �43� into eigenvalues of the radial part of the Klein-Gordon
quation with the noncentral potential given by Eq. �33�, we finally find the energy eigenvalues for

bound electron in the presence of a noncentral potential by Eq. �2�
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ENnm = M

��N +	m2 + � + 	�m2 + ��2 − �2

2
n + 1�2

−
�2

4
�

��N +	m2 + � + 	�m2 + ��2 − �2

2
+ n + 1�2

+
�2

4
� , �44�

here �= ��+M�� and �= ��+M��. The nonrelativistic limit ���1� of the energy spectrum for
he Hartmann problem where ��0 and �=0 is

ENnm = −
M�2

2
�N + n + 1 + 	m2 + ��� + M�� . �45�

hen, the wave functions of the polar-angle part of the Klein-Gordon equation, using � and � in
qs. �14�–�16�, are obtained:

 = �1 − x�B+C/2�1 + x�B−C/2, �46�

� = �1 − x2�B�1 + x

1 − x
�−C

, �47�

yn = Bn�1 − x�−�B+C��1 + x�−�B−C� dn

dxn ��1 + x�n+B−C�1 − x�n+B+C� , �48�

here B=	��m2+�+u� /2� and C=	��m2+�−u� /2�. The polynomial solution of yn is expressed
n terms of Jacobi polynomials which are one of the orthogonal polynomials, giving

Pn
�B+C,B−C��x�. Substituting Eqs. �46�–�48� into Eq. �13�, the corresponding wave functions are

ound to be

�n�x� = Nn�1 − x��B+C�/2�1 + x��B−C�/2Pn
�B+C,B−C��x� , �49�

here Nn is normalization constant determined by �−1
+1��n�x��2dx=1 and using the orthogonality

elation of Jacobi polynomials,14,15 the normalization constant becomes

Nn =	 �2n + 2B + 1���n + 1���n + 2B + 1�
22B+1��n + B + C + 1���n + B − C + 1�

. �50�

I. CONCLUSIONS

This paper presented a different approach, the NU method, to the calculation of the nonzero
ngular momentum solutions of the relativistic Klein-Gordon equation. Exact eigenvalues and
igenfunctions for the Klein-Gordon equation in the presence of the noncentral equal scalar and
ector potentials are derived easily. In the nonrelativistic limit, the energy eigenvalue spectrum is
hown to be equivalent to the Hartmann one and the radial and polar angle wave functions are
ound in terms of Laguerre and Jacobi polynomials, respectively. The method presented in this
tudy is general and worth extending to the solution of other interaction problems.
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We begin a systematic study of quantum energy inequalities �QEIs� in relation to
local covariance. We define notions of locally covariant QEIs of both “absolute”
and “difference” types and show that existing QEIs satisfy these conditions. Local
covariance permits us to place constraints on the renormalized stress-energy tensor
in one spacetime using QEIs derived in another, in subregions where the two
spacetimes are isometric. This is of particular utility where one of the two space-
times exhibits a high degree of symmetry and the QEIs are available in simple
closed form. Various general applications are presented, including a priori con-
straints �depending only on geometric quantities� on the ground-state energy den-
sity in a static spacetime containing locally Minkowskian regions. In addition, we
present a number of concrete calculations in both two and four dimensions that
demonstrate the consistency of our bounds with various known ground- and
thermal-state energy densities. Examples considered include the Rindler and
Misner spacetimes, and spacetimes with toroidal spatial sections. In this paper we
confine the discussion to globally hyperbolic spacetimes; subsequent papers will
also discuss spacetimes with boundary and other related issues. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2212669�

. INTRODUCTION

Over the past 30 years, much effort has been devoted to calculations of the renormalized
tress-energy tensor in ground states of quantum fields on stationary background spacetimes.

any analogous calculations have been made in flat spacetime equipped with reflecting bound-
ries, in connection with the Casimir effect. However, it would be fair to say that only limited
ualitative insight has been gained. For example, the energy density is sometimes positive and
ometimes negative, and there is no known way of predicting the sign in any general situations
ithout performing the full calculations.1 At least analytically, these calculations are restricted to

ases exhibiting a high degree of symmetry. The aim of this paper, and a companion paper,2 is to
oint out that there are situations in which one may gain some qualitative insight into the possible
agnitude of the stress-energy tensor based on simple geometric considerations.

The situation we study in this paper arises when a spacetime contains a subspacetime that is
sometric to �a subspacetime of� another spacetime, which will usually have nontrivial symmetries.
y using quantum energy inequalities �QEIs� together with the locality properties of quantum field

heory, we are then able to use information about the second �symmetric� spacetime to yield
nformation about the stress-energy tensor of states on the first spacetime �which need have no
lobal symmetries� in the region where the isometry holds. We will work on globally hyperbolic

�Electronic mail: cjf3@york.ac.uk
�
Electronic mail: Michael.Pfenning@usma.edu

47, 082303-1022-2488/2006/47�8�/082303/39/$23.00 © 2006 American Institute of Physics
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pacetimes in this paper, deferring the issue of spacetimes with boundary to a companion paper.2

s well as setting out the theory behind the method, we will demonstrate it in several locally
inkowskian spacetimes. Marecki3 has also illustrated our approach by considering the case of

pacetimes locally isometric to portions of exterior Schwarzschild. Also begun here for the free
assless scalar field is a similar discussion for conformally related regions of two-dimensional

pacetimes. In a separate paper we will extend this to the generalized Maxwell field in higher
imensional manifolds related by conformal diffeomorphisms.

To be more specific, consider a globally hyperbolic spacetime N, consisting of a manifold of
imension d�2, a Lorentzian metric with signature ��¯�, and choices of orientation and
ime-orientation �which, together, are required to fulfill the demands of global hyperbolicity.4

uppose an open subset of N, when equipped with the metric and �time� orientation inherited from
, is a globally hyperbolic spacetime N� in its own right. If, moreover, any causal curve in N
hose endpoints lie in N� is contained completely in N�, then we will call N� a causally embedded
lobally hyperbolic subspacetime �c.e.g.h.s.� of N. Our main interest will be in the situation where
c.e.g.h.s. N� of N is isometric to a c.e.g.h.s. M� of a second globally hyperbolic spacetime M,
ith the isometry also respecting the �time� orientation. �We speak of a causal isometry in this

ase.� By the principle of locality, we expect that any experiment conducted within N� should have
he same results as the same experiment �i.e., its isometric image� conducted in M�. No observer
n N� should be able to discern, by such local experiments that she does not, in fact, inhabit M�;
n particular, energy densities in N� should be subject to the same QEIs as those in M�. We will
emonstrate explicitly that these expectations are met by the QEIs we employ.

Among our results are the following, which we state for the case of a Klein-Gordon field of
ass m�0 in four dimensions:

Example 1: Suppose a timelike geodesic segment � of proper duration �0 in a globally
yperbolic spacetime N can be enclosed in a c.e.g.h.s. N� that is causally isometric to a c.e.g.h.s.
f four-dimensional Minkowski space as shown in Fig. 1. Then any state � of the Klein-Gordon
eld �of mass m�0� on N obeys

sup
�

�Tabuaub�� � −
C4

�0
4 , �1�

here the constant C4=3.169858. . . �if m�0, one may obtain even more rapid decay�.
Example 2: Suppose a globally hyperbolic spacetime N is stationary with respect to a timelike

illing field ta and admits the smooth foliation into constant time surfaces N�R�	. Suppose the
etric takes the Minkowski form �with respect to some coordinates� on R�	0 for some subset 	0

f 	 with nonempty interior. �We may suppose that 	0 has been taken to be maximal.� For any x
n the interior of 	0, let r�x� be the radius of the largest Euclidean 3-ball that can be isometrically
mbedded in 	0, centered on x, as in Fig. 2. Then any stationary Hadamard state5 �N on N obeys

IG. 1. Illustration for Example 1: The curve � in N is enclosed in a causally embedded globally hyperbolic subspacetime
�, which is causally isometric to a causally embedded globally hyperbolic subspacetime M� of four-dimensional
inkowski space M under 
 :M�→N�.
he bound
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�Tabnanb��N
�t,x� � −

C4

�2r�x��4 �2�

or any x�	0, where na is the unit vector along ta.
Example 3: Suppose � :R→N is a uniformly accelerated trajectory �parametrized by proper

ime� with proper acceleration �, and suppose � can be enclosed within a c.e.g.h.s. N� of N that
s causally isometric to a c.e.g.h.s. of four-dimensional Minkowski space. Then, for any Hadamard
tate � on N, and any smooth compactly supported real-valued g, with �−�

� g���2d�=1,

lim inf
�0→�

1

�0
	
�

�Tabuaub�� g��/�0�2d� � −
11�4

4802 . �3�

ote the remarkable fact that the right-hand side is precisely the expected energy density in the
indler vacuum state along the trajectory with constant proper accleration �. In particular, if the
nergy density in some state � is constant along �, it must exceed or equal that of the Rindler
acuum. We emphasize that our derivation does not involve the Rindler vacuum, but only the
inkowski vacuum state two-point function and the QEIs.

Variants of these results hold in other dimensions, and also for other linear field equations
uch as the Maxwell and Proca fields �which we will treat elsewhere�.

To prepare for our main discussion, it will be useful to make a few general remarks about
EIs, also often called simply quantum inequalities �QIs�. QEIs have been quite intensively
eveloped over the past decade, following Ford’s much earlier insight6 that quantum field theory
ight act to limit the magnitude and duration of negative energy densities and/or fluxes, thereby

reventing macroscopic violations of the second law of thermodynamics �see Ref. 7 for rigorous
inks between QEIs and thermodynamical stability�. Detailed reviews of QEIs may be found in
efs. 8–10.

QEIs take various forms, but we will distinguish two basic types: absolute QEIs and differ-
nce QEIs. An absolute QEI bound consists of a set F of sampling tensors, i.e., second rank
ontravariant tensor fields against which the renormalized stress-energy tensor will be averaged, a
lass S of states of the theory �which may be chosen to have nice properties� and a map Q :F
R such that

	 �Tab�� fabdvol � − Q�f� � − � �4�

or all states ��S. �It would also be natural to demand that F be convex �i.e., if f1 and f2 are in
then so is �f1+ �1−��f2 for all �� �0,1�, and for Q to obey Q��f1+ �1−��f2���Q�f1�+ �1

��Q�f2�, but we shall not make these requirements.� Here Tab is the renormalized stress-energy
ensor defined in a manner compatible with Wald’s axioms,11 and we have adopted the convention
hat the same tensor may be written f �without indices� or fab �with�. We will permit F to include
ensors singularly supported on timelike curves or other submanifolds of spacetime, so, for ex-

FIG. 2. Diagram showing open ball about the point x in Example 2.
mple, we can treat worldline averages such as
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�

�Tab�� fabd� = 	
I

�Tab�������� uaubg���2d� , �5�

here � is a smooth timelike curve parametrized by an open interval I of proper time �, with
elocity ua, and for g�C0

��I�. �To be precise, F is required to be a set of compactly supported
istributions on smooth rank two covariant test tensor fields.�

Absolute QEIs are known �with explicit formulae for Q, and specific F and S� for �a� the
calar field of mass m�0 in d-dimensional Minkowski space12–14 �see also Ref. 15 for d�2�, �b�
he massless scalar and Fermi fields in arbitrary two-dimensional globally hyperbolic
pacetimes,16–19 �c� general �interacting� conformal field theories in two-dimensional Minkowski
pace,20 and �d� a variety of higher spin linear fields in two- and four-dimensional Minkowski
pace.13,21–26 For the most part only worldline bounds involving averages of the form Eq. �5� have
een studied; it has been found that replacing g by a scaled version �0

−1/2g�� /�0� has the effect of
ending the QEI bound to zero as �0

−d �or faster, for massive fields� as �0→�, where d is the
pacetime dimension.

Difference QEI bounds also involve the specification of F and S as before, but now the bound
ought takes the form

	 ��Tab�� − �Tab��0
�fabdvol � − Q�f,�0� � − � , �6�

here �0 is called the reference state. If the theory were represented in a Fock space built on �0

when this is possible�, the left-hand side would be an average of the normal ordered stress-energy
ensor. However, it is not always necessary to assume that � and �0 are represented in this way.
ifference QEIs have proved to be the easiest to establish in curved spacetimes, or where bound-

ries are present. First developed in the case of �ultra�static spacetimes with the �ultra�static
round state chosen as the reference state �0,21,27–29 they are now known for scalar, spin-1 /2, and
pin-1 fields in arbitrary globally hyperbolic spacetimes.22,30,31 In these general results, S is the
lass of Hadamard states and the bounds are sufficiently general that �0 may be any element of S,
o Q becomes a function Q :F�S→R. The general results do not make use of a Hilbert space
epresentation.

Clearly, difference and absolute QEIs are quite closely related. In particular, Wald’s fourth
xiom requires �Tab��0

to vanish identically if �0 is the Minkowski vacuum, so difference QEIs
ecome absolute in this case. �The extension of this observation to locally Minkowskian spaces is
key idea in this paper.� More generally, we may convert a difference QEI to an absolute QEI by
oving all the terms in �0 onto the right-hand side. In cases where the renormalized stress-energy

ensor is known explicitly for the reference state, this is perfectly satisfactory. However, there are
wo �related� drawbacks: �i� there is no canonical choice of reference state �0 in a general space-
ime �which might have no timelike Killing fields, for example�; �ii� one does not normally have
vailable a closed form expression for �Tab��0

for any state on a general spacetime, so the QEI
ound becomes somewhat inexplicit. This weakens the power of QEIs to constrain exotic space-
ime configurations such as macroscopic traversable wormholes or “warp drive.” �On sufficiently
mall scales, one expects that the absolute QEI bounds should strongly resemble those of
inkowski space—as first argued in Ref. 32, and proven in various situations in Refs. 28 and

9—however one still needs to know the magnitude of �Tab��0
to know on what scales this

pproximation holds.�
The present paper and its companion represent first steps towards absolute QEIs in more

eneral spacetimes, starting with spacetimes containing regions isometric to others where refer-
nce states are known. Work is under way on generally applicable absolute QEIs and will be
eported elsewhere; however, we expect the results and methods presented here to be of continuing
nterest, as they reduce to very simple geometrical conditions.

The paper is structured as follows. In Sec. II we give a brief introduction to some of the

elevant notions of locally covariant quantum field theory before defining locally covariant QEIs
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nd developing their simple properties in Sec. II C. The following two subsections show how
xisting QEIs in the literature may be expressed in the locally covariant framework, and address
ome technical points along the way. In Sec. III we show how local covariance permits a priori
ounds to be placed on energy densities in spacetimes with Minkowskian subspacetimes using
eometric data. The main technique here, in addition to local covariance, is the conversion of QEIs
o eigenvalue problems, first introduced in Ref. 33. These are applied in Sec. IV to specific
pacetime models where the energy densities of ground states and thermal states are known,
ermitting comparison with our a priori bounds. In some cases these bounds are saturated by the
xact values. After a summary, the appendices collect various results needed in the main text.

I. QUANTUM ENERGY INEQUALITIES AND LOCAL COVARIANCE

. Geometrical preliminaries

Suppose two globally hyperbolic spacetimes of the same dimension, M1 and M2, are given
we denote the corresponding manifolds and metrics by Mi, gi for i=1,2�. An isometric embed-
ing of M1 in M2 is a smooth map 
 :M1→M2 which is a diffeomorphism of M1 onto its range
�M1� in M2 and so that the pull-back 
*g2 is everywhere equal to g1 on M1. In local coordinates,

g1ab�x� =
�ya�

�xa

�yb�

�xb g2a�b��y� �7�

hould hold for all x�M1, where y=
�x�. We do require that all of M1 is mapped into M2, but we
o not require that the image of M1 under 
 consists of the whole of M2. There are two possible
hoices of orientation and time orientation on 
�M1�: that induced by 
 from the �time� orientation
f M1, and that inherited from M2. If these coincide and we have the further property that every
ausal curve in M2 with endpoints in 
�M1� lies entirely in 
�M1�, then we say that 
 is a causal
sometric embedding. An important class of examples arises where M1 is a causally embedded
lobally hyperbolic subspacetime �c.e.g.h.s.� of M2 as defined in Sec. I, in which case 
 is simply
he identity map. It is also worth mentioning an example of a noncausal embedding, namely, the
helical strip” described by Kay.34 In this example a long thin diamond region of two-dimensional
inkowski space is isometrically embedded in a “timelike cylinder” that is the quotient of
inkowski space by a spacelike translation. The wrapping is arranged so that points that are

pacelike separated in the original diamond are timelike separated in the geometry of the timelike
ylinder. The definition of a causal embedding is designed precisely to ensure that the induced and
nherited causal structures cannot differ in this way.

. Local covariance

The relevance of local covariance to quantum field theory on manifolds has long been
nderstood35,36 but has recently been put in a new setting by Brunetti, Fredenhagen, and Verch37

see also Refs. 38 and 39� and related work of Hollands and Wald �see, e.g., Refs. 40 and 41�. This
rovides a very elegant and general framework for local covariance in the language of category
heory. The recent interest in local covariance has already had a significant impact in completing
he renormalization program in curved spacetimes,40,41 in providing a rigorous spin-statistics con-
ection in curved spacetimes,38 and in the theory of superselection sectors.42 For our current
urposes, we will only need a few of the main ideas of this analysis and will not describe the
hole structure, referring the reader to the references just mentioned for further details. A discus-

ion of QEIs in the categorical description of local covariance will appear elsewhere.43

In this section we will restrict ourselves to the Klein-Gordon field of mass m�0, although
imilar comments can be made for the Dirac, Maxwell, and Proca fields. There is a well-defined
uantization of the theory on any globally hyperbolic spacetime M, in terms of an algebra of
bservables AM and a space of Hadamard states SM which determine expectation values for
bservables in AM. For the purposes of this section, it suffices to know that AM is generated by

�
meared field objects �M�f� labeled by smooth, compactly supported test functions f �C0 �M�,
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ubject to relations expressing the field equation and commutation relations, and the hermiticity of
he field. �The structure is given in detail in Appendix A.� The Hadamard states of the theory are
hose states on AM whose two-point functions have singularities of the Hadamard form, which at
eading order are just those of the Minkowski vacuum two-point function. More precisely,44 on
ny causal normal neighborhood O in M there is a sequence of bidistributions Hn so that �for any
� the two-point function of any Hadamard state differs from Hn on O by a state-dependent
unction of class Cn. It is of key importance that Hn�x ,x�� is fixed entirely by the local metric and
ausal structure, through the Hadamard recursion relations. Given a Hadamard state �, we may
onstruct the expected renormalized stress-energy tensor �Tab�� by the point-splitting technique
see, e.g., Ref. 11�: first subtract Hn from the two-point function �for n�2�, then apply appropriate
erivatives before taking the points together again. Next, one subtracts a term of the form Qgab,
here Q is locally determined �and state independent�, in order to ensure that the resulting tensor

s conserved and vanishes in the Minkowski vacuum state. The tensor defined in this way obeys
ald’s axioms mentioned above; however, these axioms would also be satisfied if one were to add
conserved local curvature term. Such terms are sometimes described as undetermined or arbi-

rary; we take the view, however, that they are part of the specification of the theory, just as the
ass and conformal coupling are, even though they do not appear explicitly in the Lagrangian �a

imilar attitude is expressed in Ref. 45�. For simplicity, and because our main applications will
oncern locally Minkowskian spacetimes, we will assume that these terms are absent—that is, we
estrict to those scalar particle species for which this is the case.

The above structure is locally covariant in the following sense. Suppose a globally hyperbolic
pacetime M is embedded in a globally hyperbolic spacetimes N by a causal isometry 
, and let

* denote the push-forward map on test functions. That is, 
* :C0
��M�→C0

��N� is defined by

�
*f��y� = 
 f�
−1�y�� if y = 
�x� for some x � M

0 otherwise.
� �8�

hen there is a natural mapping of the field on M to the field on N given by �M�f���N�
*f�; we
lso write this as 
*��M�f��=�N�
*f�. Moreover, 
* can be extended to any element of AM,
especting the algebraic relations and mapping the identity in AM to the identity in AN; technically,
t is a unit-preserving injective �-homomorphism of AM into AN.

On account of the correspondence �M�f���N�
*f�, we say that the field is covariant �the
ransformation goes “in the same direction” as 
; see the remarks below on the underlying
ategory theory at the end of Appendix A�. By contrast, the state spaces transform in a contra-
ariant way �in the “opposite direction” to 
�: for any state � on AN there is a pulled-back state,
hich we denote 
*�, on AM, so that the expectation values of A�AM and 
*A�AN are related
y

�A�
*� = �
*A��. �9�

he correspondences just described are summarized graphically in Fig. 3. The use of pull-back
otation may be justified by the observation that Eq. �9� entails that the n-point functions of the
wo states are related by

��M�x1� ¯�M�xn��
*� = ��N�
�x1�� ¯�N�
�xn���� �10�

adopting an “unsmeared” notation�. That is, the n-point function of 
*� is simply the pull-back
f the n-point function of � by 
 �or more precisely, by the duplication of 
 across n copies of M�.
his has an important consequence when the state � is Hadamard, i.e., ��SN: because the
adamard condition is based on the local metric and causal structure, both of which are preserved
y 
, it is clear that 
*� is also Hadamard. �A more elegant proof of this37 is to use Radzikowski’s
haracterization of the Hadamard condition in terms of the wave-front set of the two-point
unction,46 and the transformation properties of the wave-front set under pull-backs.� This may be

*
xpressed by the inclusion 
 SN�SM.
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As noted above, the expectation values of the stress-energy tensor are also constructed in a
urely local fashion from the two-point function of the state. It therefore follows that

�TMab�x��
*� =
�ya�

�xa

�yb�

�xb �TNa�b��y���, �11�

here we have written y=
�x�: like the n-point functions, the expected stress-energy tensor in
tate 
*� is simply the pull-back of that in state �. In coordinate-free notation we may write

�TM�
*� = 
*�TN��. �12�

n the above equations we have written the stress-energy tensor as if it is an element of the algebra

M, which it is not. One may proceed in two ways: either interpreting Eq. �12� as the extension of
q. �9� to an algebra of Wick polynomials that contains AM as a subalgebra, and in which TM may
e defined as a locally covariant field.40,47 For our purposes, however, it will be simpler to define
he smeared stress-energy tensor only through its expectation values; more technically, we think of
t as a linear functional on the space of Hadamard states, with the notation �TM�f��� expressing the
alue of this functional applied to the state �. This has the advantage that one may deal with all
adamard states, rather than those which extend to the Wick algebra.47

We emphasize the fact that states are pulled back in this setting; although one could push
orward a state ��SM to obtain a state on A
�M�, there is no guarantee that this can be extended
o a Hadamard state on AN, and indeed, such extensions do not always exist. For example, the
indler vacuum state on the Rindler wedge is Hadamard in the interior of the wedge,48 but cannot
e extended to a Hadamard state on the whole of Minkowski because its stress-energy tensor
iverges at the boundary of the wedge. See Ref. 49 for further discussion of these issues.

. QEIs in a locally covariant setting

We now introduce two types of locally covariant QEIs. A more abstract �and general� defini-
ion can be given in the language of categories—this will be pursued elsewhere. Recall that a set
f sampling tensors on a globally hyperbolic spacetime is a set of compactly supported distribu-
ions on smooth second rank covariant tensor fields.

Definition II.1: A locally covariant absolute QEI assigns to each globally hyperbolic space-
ime M a set of sampling tensors FM on M and a map QM :FM→R such that (i) we have

�TM�f��� � − QM�f� �13�

or all f�FM and ��SM, and (ii) if 
 :M→N is a causal isometric embedding then 
*FM�FN
nd

IG. 3. If M is embedded in N by a causal isometry 
, then test functions and smeared fields may be pushed forwards from
to N, while states �and expectation values� are pulled back from N to M.
QM�f� = QN�
*f� �14�
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or all f�FM. �We might also express this in the form QM=
*QN.�
A locally covariant difference QEI assigns to each globally hyperbolic M a set of sampling

ensors FM as before, and a map QM :FM�SM→R such that (i)

�TM�f��� − �TM�f���0
� − QM�f,�0� �15�

or each f�FM and all � ,�0�SM; �ii�

QM�f,
*�0� = QN�
*f,�0� �16�

olds for all f�FM and �0�SN.
We will shortly give examples of each type: Flanagan’s two-dimensional QEIs for massless

elds18 will be exhibited as a locally covariant absolute QEI, while �generalizations of� the QEI
btained in Ref. 30 provide examples of locally covariant difference QEIs. Before that, let us
xamine some simple consequences of these definitions.

First, suppose that M� is a c.e.g.h.s. of M, so the identity map � :M�→M is a causal isometric
mbedding, and we must have �*FM��FM and QM��f�=QM��*f�. It is sensible to drop the identity
appings, and write the above in the form

FM� � FM, and QM��f� = QM�f� for all f � FM�. �17�

f 
 :M�→N is a causal isometric embedding, as shown in Fig. 4, we then obtain

QM�f� = QM��f� = QN�
*f� �18�

or all f�FM�. As one would expect, this shows that locally covariant absolute QEIs are indiffer-
nt to the larger spacetime; one obtains the same bound whether one is in M� or its image N� in
. Although this barely extends the original definition, it is worth isolating it as a separate result.

Proposition II.2: Suppose a c.e.g.h.s. M� of M is causally isometric to a c.e.g.h.s. N� of N
nder the map 
. Then a locally covariant absolute QEI obeys

QM�f� = QN�
*f� �19�

or all f�FM��FM.
Let us now examine locally covariant difference QEIs in this situation. Given arbitrary Had-

mard states �M�SM and �N�SN on the parent spacetimes M and N, there are states �*�M and
*�N in SM�, i.e., Hadamard states on AM�. Applying the difference QEI to 
*�N with �*�M as

eference state, we find

�TM��f��
*�N
− �TM��f���*�M

� − QM��f,�
*�M� = − QM��*f,�M� , �20�

here we have used the transformation property Eq. �16�. On the other hand, we could equally
* *

FIG. 4. �Color online� Diagram showing the various spacetimes and embeddings in Sec. II C.
ell apply the difference QEI to � �M, with 
 �N as reference state, to obtain

                                                                                                            



C

w
e
t

u

f

s
p
g
a

M
p
S
s
f

c

f

D

i
s
d
t
p
h

c
t
c
o

f
i
u

082303-9 Quantum energy inequalities and local covariance I J. Math. Phys. 47, 082303 �2006�

                        
�TM��f���*�M
− �TM��f��
*�N

� − QM��f,

*�N� = − QN�
*f,�N� . �21�

ombining these inequalities yields

QN�
*f,�N� � �TM��f��
*�N
− �TM��f���*�M

� − QM��*f,�M�; �22�

e may also use the covariance of T to reexpress the central member of this inequality in terms of
xpectation values on N and M, rather than M�. The result, on dropping identity mappings from
he notation, is the following.

Proposition II.3: Suppose a c.e.g.h.s. M� of M is causally isometric to a c.e.g.h.s. N� of N
nder the map 
. Then a locally covariant difference QEI obeys

QN�
*f,�N� � �TN�
*f���N
− �TM�f���M

� − QM�f,�M� , �23�

or all f�FM��FM and any �M�SM, �N�SN.
Note that the QEIs used are those associated with the full spacetimes M and N; similarly, the

tates �M, �N are states of the field on the full spacetimes. However, the isometry 
 connects only
ortions of the spacetime together and the restriction on the support of f is therefore crucial: in
eneral, the above result will not hold when sampling extends outside the isometric region. It is
lso worth noting that we have both lower and upper bounds.

In this paper we will study the simplest possible setting for this result, in which M is
inkowski spacetime and �M is the Minkowski vacuum state. However, other situations are

ossible. For example, Marecki3 has employed our framework in the case where M is the exterior
chwarzschild spacetime and �M is the Boulware vacuum. In the Minkowski case, the result
implifies because the renormalized stress-energy tensor vanishes in the state �M, and we have the
ollowing statement.

Corollary II.4: Suppose a c.e.g.h.s. M� of Minkowski space M is causally isometric to a
.e.g.h.s. N� of N under the map 
. Then a locally covariant difference QEI obeys

QN�
*f,�N� � �TN�
*f���N
� − QM�f,�M� �24�

or all f�FM��FM and any �N�SN, where �M is the Minkowski vacuum state.

. A locally covariant absolute QEI for massless fields in two dimensions

The QEI we now describe was originally developed by Flanagan16 for the massless scalar field
n two-dimensional Minkowski space, in work which was subsequently generalized to curved
pacetimes17–19 and also to arbitrary unitary positive energy conformal field theories in two-
imensional Minkowski space.20 The results of Ref. 18 were obtained for two-dimensional space-
imes globally conformal to the whole of Minkowski space; as noted in Ref. 19, however, any
oint of a globally hyperbolic two-dimensional spacetime has a �causally embedded� neighbor-
ood that is conformal to the whole of Minkowski space, and to which Flanagan’s result applies.

We first state the result of Ref. 18, and then show that it meets our definition of a locally
ovariant absolute QEI. Let M be a globally hyperbolic two-dimensional spacetime, and suppose
hat � is a smooth, future-directed timelike curve, parametrized by proper time �� I, which is
ompletely contained within a c.e.g.h.s. M� of M, such that M� is globally conformal to the whole
f two-dimensional Minkowski space. Then all Hadamard states � on M obey the QEI

	
I

�TMabu
aub��������g���2d� � −

1

6
	

I

�g����2 + g���2�RM������ − ac���ac����d� �25�

or any smooth, real-valued g compactly supported in I,50 where ua is the two-velocity of �, ac is
ts acceleration and RM is the scalar curvature on M. �Note that Ref. 18 uses conventions in which
a a
ua�0 for timelike u ; the bound is therefore modified slightly.�
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As we now describe, Flanagan’s bound is a locally covariant absolute QEI. Given I, �, and g
s above, we may define a compactly supported distribution fI,�,g acting on smooth second rank
ovariant tensor fields t, by

fI,�,g�t� = 	
I

�g���2uaubtab�����d� . �26�

ur set of sampling tensors FM
conf �“conf” abbreviating “conformal”� will be the set of all distri-

utions formed in this way. �A distribution of the form fI,�,g is singularly supported on the curve �;
e could also write it in the form

�f I,�,g
ab �p = 	

I

uaubg���2������p�d� , �27�

here �q�p� is the � function at q, obeying �M�q�p�F�p�dvol=F�q�.�
The QEI bound QM

conf is then defined by

QM
conf�f� =

1

6
	

I

�g����2 + g���2�RM������ − ac���ac����d� �28�

or any I, �, g for which f= fI,�,g. For this to make sense, we must ensure that the right-hand side

s unchanged if we replace I, �, and g by Ĩ, �̃ and g̃ such that fI,�,g= fĨ,�̃,g̃. Since � and �� are both
ssumed to be parametrized by proper time, our two sampling tensors must be related in a simple
ay: supp g̃ is the translation of supp g by some �0, so that �̃���=���+�0�, g̃���2=g��+�0�2 for all
�supp g̃. The only possible ambiguity stems from the fact that g̃��� and g��+�0� might differ by
relative sign that can change at zeros of g̃ of infinite order. However, it is simple to show that,

evertheless, g̃���2=g���+�0�2,51 ensuring that the right-hand side of Eq. �28� is unchanged under
he reparametrization of f.

The bound Eq. �25� now takes the form of Eq. �13�, so it remains only to verify that FM
conf and

M
conf have the required transformation properties. Suppose 
 :M→N is a causal isometric em-

edding. The push-forward 
* acts on fI,�,g�FM
conf so that, for any smooth tensor field tab on N, we

ave

�
*fI,�,g��t� = fI,�,g�
*t� = 	
I

�g���2uaub�
*t�ab�����d� = 	
I

�g���2�
*u�a�
*u�btab�����d� = fI,
 ��,g�t� .

�29�

ow the image curve 
 �� can certainly be enclosed in a c.e.g.h.s. of N which is conformal to the
hole of Minkowski space: namely the image under 
 of that which enclosed �. Moreover, the

mage curve has velocity 
*u. It is therefore clear that 
*fI,�,g= fI,
 ��,g is a legitimate sampling
ensor in FN

conf, so we have shown that 
*FM
conf�FN

conf. It is obvious that QM
conf�f�=QN

conf�
*f�
ecause all quantities involved in the bound are invariant under the isometry.

We have thus shown that two-dimensional massless fields obey a locally covariant absolute
EI. One need not restrict to worldline averages such as those described above: see Refs. 16 and
8 for averages along spacelike or null curves, and Ref. 20 for worldvolume averages �in
inkowski space�. We summarize as follows:

Theorem II.5: Let M be a two-dimensional globally hyperbolic spacetime and let SM be the
lass of Hadamard states of the massless Klein-Gordon field on M. Let FM

conf consist of all
ampling tensors of the form Eq. (26) where (i) � : I→M is a smooth future-directed timelike curve
arametrized by proper time, with velocity u= �̇; (ii) � may be enclosed in a c.e.g.h.s. of M
lobally conformal to the whole of Minkowski space; (iii) g�C0

��I ;R�. Then, defining QM
conf�f� by
q. (28) for any I, �, g for which f= fI,�,g, the absolute QWEI
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�

�TMab�� uaubg���2d� � − QM
conf�fI,�,g� �30�

olds for all ��SM and fI,�,g�FM
conf, and is locally covariant.

. Examples of locally covariant difference QEIs

We now give two related examples of locally covariant difference QEIs, based on methods
rst introduced in Ref. 30. The first is a quantum null energy inequality �QNEI�, constraining
verages of the null-contracted stress-energy tensor along timelike curves,52 while the second is a
uantum weak energy inequality �QWEI�, constraining averages of the energy density along
imelike curves.30

Suppose that M is any globally hyperbolic spacetime of dimension d�2, and � : I→M is any
mooth, future-directed timelike curve. Suppose further that ka is a smooth nonzero null vector
eld defined near �. Then for any smooth, real-valued g, compactly supported in I, there is a
ifference QNEI,52

	
�

��TMab�� − �TMab��0
�kakbg���2d� � − 	

0

� d�


F̂�,g,k,�0

�− �,�� �31�

or all � ,�0�SM, where the hat denotes Fourier transform and

F�,g,k,�0
��,��� = g���g������k�M�������k�M���������0

. �32�

n which we have written �k for ka�a. �More precisely, the last factor is a distributional pull-back
f the differentiated two-point function. We also adopt the nonstandard convention

f̂��� =	 dt ei�t f�t� �33�

or Fourier transforms; for purposes of comparison, we note that the same convention was used in
ef. 30, but not in Ref. 52.� The integral on the right-hand side of Eq. �31� is finite as a conse-
uence of �0 being Hadamard. We emphasize that there is no necessity for � and �0 to be
epresented as vectors or density matrices in a common Hilbert space representation in order to
rove the QEIs described in this section, because the proof may be phrased entirely in the alge-
raic formulation of QFT.

The above result was derived in Ref. 52 based on an earlier result in Ref. 30, described below.
owever, it is slightly easier to show that it is locally covariant, which is why we have presented

t first. To accomplish our task, we define FM
null to consist of all compactly supported distributions

I,�,k,g on smooth second rank covariant tensor fields t on M, such that

fI,�,k,g�t� = 	
I

g���2kakbtabd� �34�

or � ,ka ,g, obeying the conditions already mentioned in this subsection and with g having con-
ected support with no zeros of infinite order in its interior, for reasons to be explained shortly. We

rite C̃0
��I ;R� for the set of functions g of this type. As in the two-dimensional case it is clear that

he assignment M→FM
null is covariant in the required sense.

The QEI bound is then defined by setting QM
null�f ,�0� equal to minus the right-hand side of Eq.

31�, for any I ,� ,k, and g such that f= fI,�,k,g. The particular parametrization is not important, for
easons similar to those explained in the previous subsection. However, here it is important that

� C̃0
��I ;R�: otherwise we could change g to h���=����g��� with � changing sign from +1 to −1
t a zero of g of infinite order, say at �0; although fI,�,k,h= fI,�,k,g, the two functions F�,h,k,�0
and
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�,g,k,�0
differ when, for example, ���0���. �The restriction to C̃0

��I ;R� is not, however, very
ignificant because it is dense in C0

��I ;R�, as is shown in Appendix C.� Finally, the covariance
roperty Eq. �16� follows because Eq. �10� �for the case n=2� implies

F�,g,k,
*�0
��,��� = F
 ��,g,
*k,�0

��,��� . �35�

e summarize what has been proved.
Theorem II.6: Let M be a globally hyperbolic spacetime of dimension d�2 and let SM be the

lass of Hadamard states of the Klein-Gordon field of mass m�0 on M. Let FM
null consist of all

ampling tensors of the form Eq. (34) where � : I→M is a smooth future-directed timelike curve
arametrized by proper time, k is a smooth nonzero null field defined near the track of � and g

C̃0
��I ;R�. For each f�FM

null and reference state �0�SM define

QM
null�f,�0� = 	

0

� d�


F̂�,g,k,�0

�− �,�� �36�

or any I ,� ,k ,g with f= fI,�,k,g. Then the difference QNEI

	
�

��TMab�� − �TMab��0
�kakbg���2d� � − QM

null�f,�0� �37�

olds for all � ,�0�SM, and fI,�,k,g�FM
null, and is locally covariant.

Our second example of a locally covariant difference QEI constrains the energy density. We
eep � and g as before, but replace ka by the velocity ua of the trajectory. Then the following
ifference QWEI holds for all � ,�0�SM �Ref. 30�:

	
�

��TMab�� − �TMab��0
�uaubg���2d� � − 	

0

� d�


Ĝ�,g,e,�0

�− �,�� , �38�

here

G�,g,e,�0
��,��� =

1

2
g���g�����������e�

�M�������e��
�M���������0

+ m2��M�������M���������0
�

�39�

nd e= �e�
a ��=0. . .,d−1 is a smooth d-bein defined in a neighborhood of � with e0

a=ua on �.
The frame e adds a new ingredient to the discussion of covariance, which was not explored in

ef. 30. Subject to the condition e0
a��=ua, any choice of e will give a QEI bound, which may have

iffering numerical values. When considering a causal isometry 
 :M→N, we must therefore find
way of choosing frames in the two spacetimes so as to give equal values to the QWEI bound, in

ccordance with covariance. One solution would be to incorporate the frame as part of the data in
he QWEI, �i.e., writing QM

weak�f ,e ,�0� and using the push-forward 
*e on 
�M�� but this seems
ather inelegant. Fortunately, a better solution is at hand: it turns out that we can covariantly
pecify a subclass of frames guaranteed to yield the same numerical bound. This is accomplished
y requiring, in addition to e0

a��=ua, that the d-bein e be invariant under Fermi-Walker transport
long �, i.e.,

DFWe�
a

d�
� ub�be�

a + abe�
b ua − ube�

b aa = 0 �40�

or each �=0, . . . ,d−1, where aa is the acceleration of �. If e� is another d-bein also invariant
nder Fermi-Walker transport and with e�0

a=e0
a=ua, then it must be that e� is related to e by a rigid

otation along �, i.e., e�i
a�����=Si

jej
a����� for some fixed S�SO�d−1�, because Fermi-Walker trans-
ort preserves inner products. It is now easy to see that G�,g,e,�0
=G�,g,e�,�0

, because the form of e
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ff the curve � is irrelevant, provided it is smooth. Accordingly this QEI depends only on the
mearing tensor f �defined by analogy with Eq. �34�� and the reference state.

We emphasize that this is only one method of constructing a locally covariant bound in this
etting, and others may be convenient in other contexts. For example, it would be possible to
imply take the infimum of the bound over all d-beins with e0=u; this is certainly locally cova-
iant, but impractical for calculational purposes.

With this detail addressed, it is now straightforward to show that this QEI is locally covariant
y exactly the same arguments as used in the null-contracted case, and the additional observation
hat 
*e is Fermi-Walker transported along 
 �� if e is along �. Again, we summarize what has
een established.

Theorem II.7: Let M be a globally hyperbolic spacetime of dimension d�2 and let SM be the
lass of Hadamard states of the Klein-Gordon field of mass m�0 on M. Let FM

weak consist of all
ampling tensors of the form Eq. (26) where � : I→M is a smooth future-directed timelike curve

arametrized by proper time and with velocity u= �̇, and g� C̃0
��I ;R�. For each f�FM

weak and
eference state �0�SM define

QM
weak�f,�0� = 	

0

� d�


Ĝ�,g,e,�0

�− �,�� �41�

or any I, �, g with f= fI,�,g, and any smooth tetrad e defined near the track of � with e0��=u and
hich is invariant under Fermi-Walker transport along �. Then the difference QWEI

	
�

��TMab�� − �TMab��0
�uaubg���2d� � − QM

weak�f,�0� �42�

old for all � ,�0�SM and fI,�,g�FM
weak, and is locally covariant.

Most cases considered in the sequel will actually involve averages in static spacetimes along
imelike curves that are static trajectories �i.e., orbits of a hypersurface orthogonal timelike Killing
eld �� and with �0 chosen to be a static Hadamard state �with respect to the same Killing field�.
n these cases the bounds derived above simplify considerably, because the two-point function of

0 obeys

w2�
tx,
tx�� = w2�x,x�� �43�

or any t, x ,x�, where 
t is the one-parameter group of isometries obtained from �. We fix a
articular orbit ����=
��x0�, which may be assumed to be a proper-time parametrization �as �a�

a

s constant along � and may be set equal to unity�. Then the two-point function, restricted to �, can
e expressed as

w2�����,������ = w2�
��x0�,
���x0�� = w�� − ��� , �44�

here w���=w2�
��x0� ,x0�. The same time-translational invariance is obtained for derivatives
�v � �v�w2����� ,������, provided that v is invariant under the Killing flow, or equivalently, has
anishing Lie derivative with respect to � on �, i.e., £�v��=0.

This simplifies the QWEI bound �38� as follows. If e is Lie-transported along � then

G�,g,e,�0
��,��� = g���g����T�,�0

�� − ��� �45�

olds for some “single variable” distribution T�,�0
; moreover, e is also invariant under Fermi-

alker transport along � �owing to hypersurface orthogonality of ��.53 Then, as shown in Refs. 7

nd 30 the QEI Eq. �38� becomes
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�

��TMab�� − �TMab��0
�uaubg���2d� � − 	

−�

�

du�ĝ�u��2Q�,�0
�u� , �46�

here Q�,�0
�u� is a positive polynomially bounded function defined by

Q�,�0
�u� =

1

22	
�−�,u�

dvT̂�,�0
�v� . �47�

dditionally, if �0 is a ground state �as was the case in Ref. 30� one may show that T̂�,�0
���=0 for

�0, and so the function Q�,�0
is supported on the positive half-line only. More generally, it is

lways the case that T̂�,�0
��� decays rapidly as �→−�, so Q�,�0

is always well defined.7 Tech-

ically, T̂�,�0
��� is a measure, and may have �-function spikes that would exhibit themselves as

iscontinuities in Q�,�0
�u�. Since we define Q�,�0

�u� as an integral over the open interval
−� ,u�, it is continuous from the left.

A similar analysis holds for the QNEI Eq. �31�, provided that the null vector field k has
anishing Lie derivative along �, £�k=0, because we have

F�,g,k,�0
��,��� = g���g����S�,k,�0

�� − ��� �48�

or some distribution S�,k,�0
.

To conclude this section, we mention that more general QEI bounds may be constructed along
imilar lines, based on other decompositions of the contracted stress-energy tensor as a sum of
quares. This includes bounds averaged over spacetime volumes �see, e.g., Ref. 9�. However, we
ill not need this generality here, and observe only that one would need to ensure that such
ecompositions are made in a canonical fashion to obtain a locally covariant bound.

II. APPLICATIONS: GENERAL EXAMPLES

In this section we develop some simple consequences of the QEIs described in Secs. II D and
I E specialized to Minkowski space. These will then be utilized in more general spacetimes using
he local covariance properties of these bounds. Our results are obtained by converting QEI
ounds into eigenvalue problems that can then be solved.

For the most part, we will consider the scalar field of mass m�0 on d-dimensional globally
yperbolic spacetimes for d�2; special features of massless fields in two dimensions will be
reated in Sec. III C. Accordingly, let N be a d-dimensional globally hyperbolic spacetime, and let

d denote d-dimensional Minkowski space. As illustrated in Fig. 1, let � : I→N be a smooth,
uture-directed timelike curve, parametrized by proper time �� I, and assume � may be enclosed
n a c.e.g.h.s. N� of N so that N� is the image of a c.e.g.h.s. M� of Md under a causal isometric
mbedding 
 :M�→N. Thus the curve � is the image of a curve �̃���=
−1������ in Md; because

is an isometry, �� �̃��� is also a proper time parametrization, and �̃ has the same proper
cceleration as � for each �� I.

Given any g� C̃0
��I ;R�, define a sampling tensor on Minkowski space f�FMd

weak by

f�t� = 	
I

�tab��̃���ũ
aũbg���2d� �49�

n smooth covariant rank-two tensor fields t on Md, where ũ is the velocity of �̃. �Recall that g

C̃0
��I ;R� means that g is a real-valued smooth function whose support is compact, connected

nd contained in I, and that g has no zeros of infinite order in the interior of its support.� Under the

sometry, f is mapped to 
*f, with action
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*f�t� = 	
I

�tab�����u
aubg���2d� , �50�

here t is now any smooth covariant rank-2 tensor field on N. Applied to the stress-energy tensor,

*f therefore provides a weighted average of the energy density along �. Our aim is to place
onstraints on these averages using the locally covariant difference QWEI given in Theorem II.7.
y local covariance, Corollary II.4 guarantees that

	
I

�TNab��������uaubg���2d� = �TN�
*f��� � − QMd

weak�f,�Md
� , �51�

here �Md
is the Minkowski vacuum state.

We will be particularly interested in the least upper bound of the energy density along �,

E ª sup
�

�TN abuaub��. �52�

ince the energy density is smooth, this value must be the maximum value taken by the field on
he closure of the track of �. Using the trivial estimate E� �TN abuaub�������� for each �� I, we
ave

E	
I

g���2d� � 	
I

�TN ab��������uaubg���2d� �53�

nd, putting this together with Eq. �51�, we obtain the inequality

E	
I

g���2d� � − QMd

weak�f,�Md
� , �54�

hich holds, in the first place, for all g� C̃0
��I ;R�. In the next two subsections we will analyze this

n two special cases: namely, inertial motion and uniform acceleration.

. Inertial curves

When � is inertial the QWEI of Theorem II.7 takes the simpler form described in Eqs. �46�
nd �47� above:14

QMd

weak�f,�Md
� = Kd	

m

� du


ud�ĝ�u��2Qd�u/m� , �55�

here

Qd�x� =
d

xd	
1

x

dy y2�y2 − 1��d−3�/2, �56�

nd the constant Kd is Kd=Ad−2 / �2d�2�d−1�, where Ak is the area of the unit k-sphere. �Notation
aries slightly from that used in Ref. 14.�

For all d�3, it is clear that Qd�x��1 for all x�1, while one may show that Q2�x��1.2 on
he same domain.54 Using these results, we may estimate Eq. �55� rather crudely by

QMd

weak�f,�Md
� � Kd�	

0

� du


ud�ĝ�u��2, �57�

ith Kd�=Kd for d�3 and K2�=1.2K2. Note that we have made two changes here: �a� Qd�u /m� has

een replaced by unity; �b� the lower integration limit m has been replaced by zero.
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We now specialize to even dimensions d=2k, k�1. Because g is real-valued, �ĝ�u�� is even
nd we may write

	
0

� du


ud�ĝ�u��2 = 	

−�

� du


u2k�ĝ�u��2 = 	

I

d� ��Dkg�����2, �58�

here D is the differential operator D=−id/d� and we have used Parseval’s theorem, and the fact
hat g vanishes outside I.

Inserting the above in Eq. �54�, we have shown that E obeys the inequality

E	
I

�g����2d� � − Kd�	
I

d� ��Dkg�����2 �59�

or all g� C̃0
��I ;R�. The class C̃0

��I ;R� is inconvenient to work with directly; fortunately, the same

nequality holds for general g�C0
��I�, as we now show. First, any g� C̃0

��I ;R� is the limit of a

equence of gn� C̃0
��I ;R� for which gn→g and Dkgn→Dkg in L2�I� �see Appendix C�. Applying

he above inequality to each gn, we may take the limit n→� to conclude that it holds for g as well.
aving established the result for arbitrary real-valued g�C0

��I�, we extend to general complex-
alued g by applying it to real and imaginary parts separately, and then adding. Accordingly the
nequality Eq. �59� holds for all g�C0

��I�.
Integrating by parts k times, and noting that no boundary terms arise because g vanishes near

he boundary �I of I, Eq. �59� may be rearranged to give

−
E

Kd�
�

�g�Lg�
�g�g�

, �60�

here �·�·� denotes the usual L2-inner product on I, and the operator L= �−1�kd2k /d�2k on C0
��I�.

ur aim is now to minimize the right-hand side over the class of g at our disposal �excluding the
dentically zero function�. Now the operator L is symmetric55 and positive, i.e., �g �Lg��0 for all
�C0

��I�. By Theorem X.23 in Ref. 56, the solution to our minimization problem is the lowest

lement �0 of the spectrum of L̂, the so-called Friedrichs extension of L. This is a self-adjoint
perator with the same action as L on C0

��I�, but which is defined on a larger domain in L2�I�. In

articular, every function in the domain of L̂ obeys the boundary condition g=g�= ¯ =g�k−1�=0 at
I. �See Ref. 33, where the technique of reformulating quantum energy inequalities as eigenvalue
roblems was first introduced, and which contains a self-contained exposition of the necessary
perator theory.� One may think of this as a precise version of the Rayleigh-Ritz principle. Once
e have determined �0, we then have the bound

E � − �0Kd�, �61�

o the problem of determining the lower bound is reduced to the analysis of a Schrödinger-like
quation, subject to the boundary conditions mentioned above.

The two examples of greatest interest to us are k=1 and k=2, representing two- and four-
imensional spacetimes. Starting with k=1, let us suppose that I is the interval �−�0 /2 ,�0 /2� for
ome �0�0. We therefore solve −g�=�g subject to Dirichlet boundary conditions at ±�0 /2; as is
ell known, the lowest eigenvalue is �0=2 /�0

2 and corresponds to the eigenfunction g���
cos�� /�0�. �A possible point of confusion is that, if g is extended so as to vanish outside I, it
ill not be smooth. However, there is no contradiction here: the point is that the infimum is not

�
ttained on C0 �I�.� Thus we have
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E � −
3

10�0
2 , �62�

ecause K2�=1.2K2=1.2/ �4�=3/ �10� �by convention, the zero sphere has area A0=2�. We may
nfer, without further calculation, that the bound must be zero if I=R, because �returning to the
itz quotient Eq. �60��, the infimum over all functions in C0

��R� must be less than or equal to the
nfimum over all functions in C0

��I� for any bounded I �a similar argument applies to the semi-
nfinite case�. Thus �0 can be no greater than zero; on the other hand, the minimum cannot be
egative either, because the original functional is nonnegative. Accordingly Eq. �62� holds in all
ases, with �0 equal to the length of the interval I.

In the four-dimensional case k=2, we proceed in a similar way, solving g����=�g subject to
=g�=0 at �I. In the case where I is bounded, I= �−�0 /2 ,�0 /2� �without loss of generality�, the
pectrum consists only of positive eigenvalues. It is easy to see that the solutions to the eigenvalue
quation g����=�4g are linear combinations of trigonometric and hyperbolic functions. The lowest
igenfunction solution that obeys the boundary conditions is

g��� = cosh���/�0� −
cosh��/2�
cos��/2�

cos���/�0� , �63�

here ��4.730 040 745 is the minimum positive solution to

tan��/2� = − tanh��/2� . �64�

ince K4�=1/ �162�, we obtain

E � −
500.5639

162�0
4 = −

3.169 858

�0
4 . �65�

f I is semi-infinite or infinite, we may argue exactly as in the two-dimensional case that the bound
anishes, in agreement with the formal limit �0→�.

Clearly this approach will give similar results in any even dimension, with a consequent
ncrease in complexity in solving the eigenvalue problem. Nonetheless, it is clear that the resulting
ound will always scale as �0

−d. In fact, this is even true in odd spacetime dimensions, where the
igenvalue problem would involve a nonlocal operator and is not easily tractable.

We summarize what has been proved so far in the following way.
Proposition III.1: Let N be a globally hyperbolic spacetime of dimension d�2 and suppose

hat a timelike geodesic segment � of proper duration �0 may be enclosed in a c.e.g.h.s. of N,
hich is causally isometric to a c.e.g.h.s. of Minkowski space Md, then

sup
�

�TNabuaub�� � −
Cd

�0
d �66�

or all Hadamard states � of the Klein-Gordon field of mass m�0 on N. The constants Cd depend
nly on d. In particular, C2=3 /10=0.942 478. . ., while C4=3.169 858. . ..

Remark: When the field has nonzero mass, we can expect rather more rapid decay than given
y this estimate. To see why, return to the argument leading to Eq. �57�. If we reinstate m as the
ower integration limit, we have

QMd

weak�f,�Md
� � Kd�	

m

� du


ud�ĝ�u��2. �67�

uppose for simplicity that I= �−�0 /2 ,�0 /2�. If we write g�0
���=�0

−1/2g0�� /�0�, for
�

0�C0 �−1/2 ,1 /2�, a change of variables yields
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QMd
�f,�M2

� �
Kd�Gd�m�0�

�0
d , �68�

here the nonnegative quantity

Gd�x� = 	
x

� dy


yd�ĝ0�y��2 �69�

ecays rapidly as x→�, owing to the rapid decay of ĝ. Thus the estimate Eq. �66� is quite crude
hen m�0�1; it is hoped to return to this elsewhere.

Equipped with Proposition III.1, we may now address the first two examples presented in Sec.
. First, the proposition asserts that no Hadamard state can maintain an energy density lower than
Cd /�0

d for proper time �0 along an inertial curve in a Minkowskian c.e.g.h.s. of N. In particular,
his justifies the claim made in Example 1 in Sec. I.

Our bounds clearly depend only on �0, which in turn is controlled by the size of the
inkowskian region N�. By choosing the curve � and N� in an appropriate way, fairly simple

eometrical considerations can thus provide good a priori bounds on the magnitude and duration
f negative energy density. A good illustration is the following �which includes Example 2 in Sec.
�.

Suppose that a d-dimensional globally hyperbolic spacetime N with metric g is stationary with
espect to timelike Killing vector ta and admits the smooth foliation into constant time surfaces
�R�	. Suppose there is a �maximal� subset 	0 of 	, with nonempty interior, for which g takes

he Minkowski form on R�	0. Choose any point �t ,x� in N, with x�	0, and suppose that we
ay isometrically embed a Euclidean �d−1� ball of radius r in 	0, centered at x �see Fig. 2�. Then

he interior of the double cone J+���t−r ,x���J−���t+r ,x�� is a c.e.g.h.s. of N, which is isometric
o a c.e.g.h.s. of Minkowski space, and contains an inertial curve segment ����= �� ,x� param-
trized by the interval �t−r , t+r� of proper time. Any Hadamard state � on N therefore obeys

sup
�

�TNabuaub�� � −
Cd

�2r�d �70�

long �. Writing r�x� for the minimum distance from x to the boundary of 	0, it is clear that this
nequality holds for all r�r�x� and hence, by continuity, for r=r�x�. Moreover, if the state is
tationary �for example, if it is the ground state�, then the energy density takes a constant value
long � and we obtain

�Tabnanb���t,x� � −
Cd

�2r�x��d �71�

or any x�	0, where na is the unit vector along ta. In this way we obtain a universal bound on the
all-off of negative energy densities in such spacetimes, which could be used to provide a quan-
itative check on exact calculations, if these are possible, or to provide some precise information
n situations where they are not. The bound is of course very weak close to the boundary of 	0:
his does not imply that the energy density diverges as this boundary is approached, of course, but

erely indicates that it would not be incompatible with the quantum inequalities for there to exist
eometries on R� �	 \	0� for which the stationary energy density just outside might be very
egative.

To conclude this subsection, let us briefly discuss the null-contracted QEI Eq. �31� in the

resent context. For simplicity, we restrict ourselves to four dimensions. Suppose k̃a is a nonzero

ull vector field that is covariantly constant along �̃, so, in particular, ũak̃a is also constant on �̃.
null
ur sampling tensor is now defined to be f�FM4

with action
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f�t� = 	
I

�tab��̃���k̃
ak̃bg���2d� �72�

n smooth covariant rank-2 tensor fields t on M4. In exactly the same way as for the QWEI
iscussed above, we may apply local covariance to the QNEI of Theorem II.6, so yielding

	 �TNab�� kakbg���2d� � − QM4

null�f,�M4
� , �73�

here, as shown in Ref. 52,

QM4

null�f,�M4
� = −

�uaka�2

122 	
−�

�

g����2d� �74�

or the massless scalar field �and in fact this bound also constrains the massive field too�. This
iffers from the corresponding QWEI by a factor of 4�uaka�2 /3 �recall that K4�=1/ �162��, so we
ay immediately deduce the following result.

Proposition III.2: Let N be a four-dimensional globally hyperbolic spacetime and suppose
hat a timelike geodesic segment � of proper duration �0 may be enclosed in a c.e.g.h.s. of N,
hich is causally isometric to a c.e.g.h.s. of Minkowski space. If ka is a covariantly constant null
ector field on � then we have

sup
�

�TNab��kakb � −
C4��u

aka�2

�0
4 �75�

or any Hadamard state � of the Klein-Gordon field, where C4�=4C4 /3=4.226 477. . ..
This result justifies the claim made above Eq. �38� of Ref. 57, where an application is pre-

ented.

. Uniformly accelerated trajectories in four dimensions

We now turn to the case where � has uniform constant proper acceleration �. For simplicity
e consider only massless fields in four dimensions, but expect similar results in more general

ases. We need to estimate QM4

weak�f ,�M4
� where f is supported on the uniformly accelerated

orldline �̃ in M4. It will be convenient to drop the tilde from �̃ and the subscript from M4.
ithout loss of generality, we may assume � : I→M is parametrized so that

���� =�
�o sinh��/�o�
�o cosh��/�o�

yo

zo

� with ua��� =
d����a

d�
=�

cosh��/�o�
sinh��/�o�

0

0
� , �76�

here �o=�−1.
The first step in our calculation is to set up an orthonormal tetrad field surrounding the

orldline,

e0
a =

1
�x2 − t2�

x

t

0

0
�, e1

a =
1

�x2 − t2�
t

x

0

0
�, e2

a =�
0

0

1

0
�, e3

a =�
0

0

0

1
� , �77�

hich satisfies the two properties required: namely, that e0
a agrees with the velocity ua on �, and

hat the frame is invariant under Fermi-Walker transport along �. The required bound is then given

y
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QM
weak�f,�M� = 	

0

� d�

2
Ĝ�,g,e,�M

�− �,�� , �78�

here

G�,g,e,�M
��,��� =

1

2
g���g����������e�

�M�������e��
�M���������M

. �79�

e evaluate this quantity in stages, beginning by noting that

������e�
�M�x��e��

�M�x����M

= � �xx� + tt����t�t� + �x�x�� + �xt� + tx����t�x� + �x�t��
�x2 − t2�x�2 − t�2

+ �y�y� + �z�z��WM
�2��x,x�� , �80�

here

WM
�2��x,x�� = − lim

�→0+

1

42 ��t − t� − i��2 − �x − x��2�−1 �81�

s the Wightman function of the vacuum state. Performing the necessary derivatives and pulling
ack to the worldline, we obtain, after some calculation,

G�,g,e,�0
��,��� = g���g����T�� − ��� , �82�

here T is the limit �in the distributional sense� as �→0+ of

T���� =
3

322�o
4 cosech4� �

2�o
− i

�

�o
� . �83�

hus we are in the situation of Eq. �45�, and the bound becomes

QM
weak�f,�M� = 	

−�

�

du�ĝ�u��2Q�u� , �84�

here

Q�u� =
1

22	
�−�,u�

dvT̂�v� . �85�

o obtain the required Fourier transform, we first use contour integration58 to find

T̂��u� =
e−2u�

2�o
4� �o

4u3 + �o
2u

1 − e−2�ou� , �86�

hich decays exponentially as u→−�, provided ���o. Taking the limit �→0+ it is easy to
heck that

T̂�u� =
1

2�o
4� �o

4u3 + �o
2u

1 − e−2�ou� . �87�

ote that this Fourier transform has support on the whole real line, not just the positive half-line.

hus
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Q�u� =
1

43�o
4	

−�

u �o
4v3 + �o

2v
1 − e−2�ovdv . �88�

ur aim is now to estimate Q�u� in order to obtain a bound that may be analyzed by eigenvalue
echniques as in the previous subsection. Beginning in the half-line u�0, we may estimate

Q�u� � Q�0� =
11

9603�o
4 �89�

ince Q�u� is everywhere increasing. On the other hand, for u�0, we may split the integral into
�0� and the contribution from �0,u� to give

Q�u� =
11

9603�o
4 +

1

43�o
4�	

0

u

��o
4v3 + �0

2v�dv + 	
0

u �o
4v3 + �o

2v
e2�ov − 1

dv� �90�

fter rearranging. Now the last integral is increasing in u, so we may bound it by its limit as u
+� to yield

Q�u� �
1

163�o
4��o

4u4 + 2�o
2u2 +

11

30
� �91�

or u�0. Using the estimates Eqs. �89� and �91�, and the fact that �ĝ�u��2 is even,

QM
weak�f,�M� �

11

9603�o
4	

−�

0

du�ĝ�u��2 +
1

163�o
4	

0

�

du�ĝ�u��2��o
4u4 + 2�o

2u2 +
11

30
�

=
1

162�o
4	

−�

� du

2
�ĝ�u��2��o

4u4 + 2�o
2u2 +

11

20
� . �92�

pplying Parseval’s theorem, we arrive at

QM
weak�f,�M� �

1

162	
−�

�

d���g�����2 +
2

�o
2 �g�����2 +

11

20�o
4 �g����2� , �93�

nd, together with Eq. �54�, we now have

E	
I

�g����2d� �
1

162	
−�

�

d���g�����2 +
2

�o
2 �g�����2 +

11

20�o
4 �g����2� , �94�

or any g� C̃0
��I ;R�. As in the previous subsection, we may extend this inequality to arbitrary

�C0
��I�, and then optimize over this class. This leads to the conclusion that

E � −
�0

162 , �95�

here �0 is the lowest �positive� eigenvalue for the equation

g���� −
2

�o
2g� +

11

20�o
4g = �g �96�

n I, subject to boundary conditions g=g�=0 at �I.
Let us suppose that I is bounded, writing I= �−�0 /2 ,�0 /2� without loss of generality. It is
onvenient to write
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� =
20�2 − 9

20�o
4 �97�

or then the eigensolutions must be scalar multiples of

g��� = cosh
�� + 1�

�o
+ A cos

�� − 1�

�o
, �98�

here

A =
�� + 1 sinh��� + 1�0/�2�o��
�� − 1 sin��� − 1�0/�2�o��

�99�

nd ��1 solves

�� + 1 tanh
�� + 1�0

2�o
= − �� − 1 tan

�� − 1�0

2�o
. �100�

e shall denote the minimum solution to this equation in �1,�� by �0 �see Fig. 5�; clearly �0

epends only on the ratio of the sampling time �0 to the acceleration scale �o. Two limits are of
nterest. First, when �0 /�0�1, one may show that �0

2��4�o
4 /�0

4 where � is as in Eq. �64�. Thus we
egain the usual short-timescale constraint Eq. �66�. This supports the “usual assumption” �see
ef. 19 for references� that sampling at scales shorter than those determined by the acceleration or
urvature is governed by the bound obtained for inertial curves in Minkowski space. On the other
and, if we take �0��o, we see that �0→1, so

E � −
11

3202�o
4 �101�

FIG. 5. �Color online� The first three solutions � to Eq. �100�, showing the dependence on �=�0 /�0.
n this limit.
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In fact, more can be said for the inextendible case �0=�, because the approximations made to
ain Eq. �91� are rather wasteful in this limit. Choose any g�C0

���−1/2 ,1 /2�� with g�0��0 and
efine g�0

���=�0
−1/2g�� /�0�, denoting the corresponding sampling tensor f�0

. Then a simple change
f variables argument applied to Eq. �84� shows that

QM
weak�f�0

,�M� = 	
−�

�

dv�ĝ�v��2Q�v/�0� , �102�

nd the limit �0→� may be taken under the integral sign to yield

lim
�0→�

QM�f�0
,�M� = 2Q�0�	

−�

�

d��g�0
����2. �103�

n particular, if g has unit L2-norm, we have

lim inf
�0→�

1

�0
	
�

�Tabuaub��g��/�0�2d� � −
11�4

4802 , �104�

here �=�o
−1 is the proper acceleration of the curve, as asserted in Example 3 in Sec. I. Thus long

erm averages of the energy density measured along the curve are bounded from below, and no
nergy density can be less than this bound over the entire worldline. This is an improvement by a
actor of 3 /2 over the bound given in Eq. �101�. Using a more refined analysis one could pre-
umably extract it as the limit of a result for general �0, but we will not pursue this here. To
ummarize, we have reached the following conclusions.

Proposition III.3: Let N be a four-dimensional globally hyperbolic spacetime containing a
imelike curve � of proper duration �0 and constant proper acceleration �. If � may be enclosed
n a c.e.g.h.s. of N, which is causally isometric to a c.e.g.h.s. of Minkowski space, then we have

sup
�

�TNabuaub�� � −
�20�0

2 − 9��4

3202 �105�

or any Hadamard state � of the massless Klein-Gordon field, where �0 is the smallest solution to
q. �100� in �1,�� and depends on ��0. If � has infinite proper duration, we also have the more
tringent constraint Eq. �104�.

. Massless fields in two dimensions

So far, we have only utilized the locally covariant difference QEIs of Sec. II E. For massless
elds in two dimensions, however, we also have the absolute QEI developed by Flanagan and
thers, described in Sec. II D, which are also known to be optimal bounds. In this subsection we
riefly discuss how the results of the previous subsections may be sharpened and generalized in
his context. In fact the formula for the QEI bound is sufficiently simple that we may work directly
n curved spacetime, rather than in Minkowskian subregions.

Let � : I→N be a smooth future-directed timelike curve, with velocity ua and accleration ac in
two-dimensional globally hyperbolic spacetime N. As before, I is an open interval of proper

ime. In order to apply Flanagan’s bound, we make the additional assumption that � may be
nclosed within a c.e.g.h.s. N� of N, which is globally conformal to the whole of Minkowski
pace. Then Flanagan’s QEI asserts that

	
I

�TNabuaub��������g���2d� � −
1

6
	

I

�g����2 + g���2�RN������ − ac���ac����d� �106�

or all Hadamard states � and any smooth, real-valued g compactly supported in I, i.e., g
C0
��I ;R�.

We proceed as above, obtaining the estimate
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E	
I

g���2d� � −
1

6
	

I

�g����2 + g���2�RN������ − ac���ac����d� , �107�

or all g�C0
��I ;R�, where E=sup��TM abuaub�� as usual. Converting to an eigenvalue problem, we

educe that

E � −
�0

6
, �108�

here �0 is the lowest element in the spectrum of the Friedrichs extension of the operator

�Lg���� = − g���� + �RN������ − ac���ac����g��� , �109�

n C0
��I�. Provided RN and acac are bounded along �, the correct boundary conditions are Dirichlet

onditions g=0 on �I �see, e.g., Ref. 33�. We now give two illustrative examples.
Proposition III.4: Suppose N is a globally hyperbolic two-dimensional spacetime with a

.e.g.h.s. N�, which is globally conformal to the whole of Minkowski space. Then the following
old for all Hadamard states � on N:

�a� If � is a curve of proper duration �0 contained in N�, with RN−acac�S constant along �,
hen

sup
��I

�TNabuaub�������� �
S

6
−



6�0
2 . �110�

�b� If � :R→N has (signed) proper acceleration growing linearly with proper time, d� /d�
p, and RN�0 on �, then

sup
��I

�TNabuaub�������� � −
�p�
6

. �111�

he proof is straightforward: for �a�, the eigenvalue problem is −g����= ��+6S�g��� on an
nterval of length �0 subject to Dirichlet boundary conditions, which easily yields the stated result.
or �b�, we may choose the origin of proper time so that acac=−p2�2 for some constant p. The
igenvalue problem is then

− g���� + p2�2g��� = �g��� , �112�

hich is the harmonic oscillator equation �and the Friedrichs extension is also the standard har-
onic oscillator Hamiltonian�. The minimum value of � is therefore the “zero-point” value �0

�p�. �The comparison with the usual quantum mechanical harmonic oscillator would correspond
o units in which the mass and Planck’s constant are both set to 2.� Thus we obtain the required
esult.

V. CALCULATIONS IN SPECIFIC SPACETIMES

In this section we illustrate our general method by some concrete calculations in a variety of
ocally Minkowskian spacetimes in both two and four dimensions. For the most part, we focus on
he lower bounds, but upper bound calculations are included where they are enlightening. For each
pacetime we consider, exact values of the renormalized stress-energy tensor are known �or easily
btained from existing results� for one or more states. This permits comparison with the results of
ur method.

. Two-dimensional timelike cylinder

Consider the massless scalar field on the two-dimensional timelike cylinder, C, i.e.,
inkowski space M2 quotiented by the group of translations �t ,x�� �t ,x+nL� �n�Z�. The Ca-
imir vacuum �C is the ground state of the scalar field on C �more precisely, it is a state on the
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lgebra of first derivatives of the field—we will ignore this subtlety, which does not modify any of
ur conclusions below�. The renormalized expectation value of the vacuum stress-tensor has the
orm

�TCab��C
�x� = �C�1 0

0 1
� , �113�

here �C is a constant. Our aim is to use quantum inequalities to provide upper and lower bounds
n �C. The value of �C is, of course, well known, and will satisfy the bounds we now derive; our
im is to demonstrate how it may be bounded without direct calculation.

In order to apply our method, we must identify suitable globally hyperbolic subspacetimes of
. For any 0��0�L, we may define a timelike geodesic � : �0,�0�→C by ����= �� ,0�. Then the
ouble cone int�J+���0���J−����0��� is a causally embedded globally hyperbolic subspacetime of
, containing �. As this subspacetime is globally conformal to the whole of Minkowski space and

he energy density is constant along �, we have the lower bound

�C � −


6�0
2 , �114�

rom Proposition III.4�a� �in the case S=0�. This bound clearly becomes more stringent as �0 is
ncreased, so we obtain the best bound possible �within this method� by taking �0=L. As shown in
ig. 6, the corresponding diamond is one for which the corners of the diamond just barely fail to

ouch on the back of the cylinder. This gives the final result

�C � −


6L2 . �115�

e now demonstrate how to find an upper bound on �C for which we must employ our locally
ovariant difference QWEI. Let �̃ be the curve �̃���= �� ,0� in M2 and let M�
int J+��̃�0���J−��̃��0��, for some 0��0�L, which is a c.e.g.h.s. of M2. Then the quotient map
:M2→C defines a causal isometric embedding of M� in C, with q�M�� equal to the double cone
onstructed earlier in this subsection. By Corollary II.4 we have

�TC�q*f���C
� QC

weak�f,�C� �116�

or any sampling tensor f�FM�
weak. We define f by Eq. �49� for g� C̃0

���0,�0� ;R� and then use the

IG. 6. �Color online� Diagram showing the “largest” causal diamond in two-dimensional Minkowski space that can be
sometrically embedded into the two-dimensional cylinder spacetime with periodicity L in the z direction. To an observer
nside the diamond in the cylinder spacetime, the quantum field theory and states would be indistinguishable from that in

inkowski space. The dashed vertical line is the worldline of a stationary observer.
onstancy of the energy density along � to find
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�C	
0

�0

g���2d� � QC
weak�f,�C� �

1

2
	 �g�����2d� , �117�

here the last inequality is derived in Appendix B. As usual, this may be converted into an
igenvalue problem: here, �C��0 / �2� where �0= � /�0�2 is the minimum eigenvalue of −d2/d�2

n �0,�0� subject to Dirichlet boundary conditions. Combining with our earlier lower bound, we
hus have

−


6L2 � �C �


2L2 . �118�

he known value of �C is exactly − / �6L2� �see Ref. 59�, which, remarkably, saturates the lower
ound. Thus we have shown that, in the cylinder spacetime, the Casimir vacuum energy density is
he lowest possible static energy density compatible with the quantum energy inequalities. This,
owever, is not always the case, as we will see in later examples.

Because the energy density is in fact negative, the upper bound was not particularly enlight-
ning in this example. However, the situation is different for thermal equilibrium states. Let �C,�

e the thermal equilibrium �KMS� state at inverse temperature �, relative to the static time
ranslations. The stress-energy tensor is again diagonal

�TCab��C,�
�x� = �C,��1 0

0 1
� , �119�

here

�C,� = −


6L2 +


L2 �
n=1

�

cosech2 n�

L
, �120�

ee, e.g., Sec. 4.2 of Ref. 59. By our general theory, these states should be constrained by the same
ower bound as before, and this is evidently true, because the series contribution to �C,� is clearly
ositive. The upper bound depends on the temperature according to the formula

�C,� �
QC

weak�f,�C,��

	
0

�0

g���2d�

�121�

or any g� C̃0
���0,�0� ;R�. In Appendix B we obtain the estimate

QC
weak�f,�C,�� �

QC
weak�f,�C�

1 − e−2�/L +
e�/L

2L2 sinh3 �/L
	

−�

�

�g����2d� �122�

nd we may now immediately optimize over g using our result for the ground state to obtain

−


6L2 � �C,� �


2L2�1 − e−2�/L�
+

e�/L

2L2 sinh3 �/L
. �123�

s shown in Fig. 7 this is consistent with the known value of �C,�.

. Spatial topology R3−jÃTj, j=1,2,3

Let us now consider various quotients of four-dimensional Minkowksi space by subgroups of
he group of spatial translations. To begin, consider the quotient of four-dimensional Minkowski
pace, with inertial coordinates �t ,x ,y ,z� by the spatial translation subgroup
t ,x ,y ,z�� �t ,x ,y ,z+nL1� �n�Z� for some fixed periodicity length L1�0. We will denote the

esulting spacetime by N1, and consider the ground state �N1

, which has a nonzero Casimir
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acuum stress-energy tensor. A calculation using the method of images and the Minkowski space
acuum two-point function yields the renormalized vacuum stress-tensor for the massless scalar
eld in this spacetime, �see, e.g., Ref. 60�

�TN1ab��N1
= −

2

90L1
4 diag�1,− 1,− 1,3� . �124�

e will now show that this is consistent with the lower bound arising from the QEIs. To this end,
et ����= �� ,x0� for some fixed x0�R2�T. Then the double cone int�J+���0���J−���L1��� is a
.e.g.h.s. of N1, which is causally isometric to a double cone in Minkowski space. Thus the portion
f � parametrized by �0,L1� meets the hypotheses of Proposition III.1 and we have

sup
�

�TN100�� � −
C4

L1
4 �125�

or any Hadamard state � of the Klein-Gordon field. In particular, the state �N1
obeys this bound,

s 2 /90�0.109 662�C4. In fact, the energy density is about 30 times smaller than the QEI
ound in this case.

Thus the QEI bounds can be rather weak. But this is necessary, as can be seen from the next
xamples, in which the same lower bound must constrain a more negative energy density. Con-
ider the spacetime N2�R�R�T2, which may be obtained by quotienting N1 by the translation
roup �t ,x ,y ,z�� �t ,x ,y+nL2 ,z� �n�Z� for some nonnegative L2, which, without loss of gener-
lity, we take to be no less than L1. Because L2�L1 we may apply Proposition III.1 to a double
one of the same size as before, so the lower bound is unchanged. However the stress tensor is
ow60

�TN2ab��N2
= −

1

22L1
4 �

�m,n��Z2\�0

1

�m2 + n2�2 diag�1,− 1,1,1� �126�

n the special case L2=L1. The sum can no longer be given in closed form, but numerically the
verall prefactor �equal to the energy density on the worldline �� �� ,x0�� is given in Ref. 60 as
0.305/L1

4. This is still consistent with Eq. �125�, with energy density now only around ten times

IG. 7. �Color online� A graph showing the energy density �C,� in units of L−2 of the thermal equilibrium state at
emperature �−1 on a cylinder of circumference L. The shaded region indicates the range permitted by the upper and lower
ounds obtained from QEIs, illustrating Eq. �123�.
maller than the bound.
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In exactly the same way we may quotient N2 by the translation subgroup �t ,x ,y ,z�� �t ,x
nL3 ,y ,z� �n�Z�, thereby forming N3�R�T3. If we again suppose that L1�L2�L3, then the
ound Eq. �125� still applies to the ground state on this spacetime. �Since this spacetime supports
ormalizable zero modes for the massless scalar field, one must regard this as a state on the
lgebra of derivatives of the field, much as for massless fields in two dimensions.� On the other
and, the stress-energy tensor in the natural ground state is

�TN3ab��N3
= −

1

22L1
4 �

�l,m,n��Z3\�0

1

�l2 + m2 + n2�2 diag�1,
1

3
,
1

3
,
1

3
� �127�

n the special case L1=L2=L3. The energy density along �� �� ,x0� in this case is numerically
omputed to be 0.838/L1

4, which is again consistent with the QEI constraint Eq. �125�, which is
ow weaker by a factor of less than 4.

Let us note that the massless QEI bound also provides a lower bound on the ground state
nergy densities of massive scalar fields in these spacetimes. Consistency here is seen from the
act that the mass diminishes the magnitude of the energy density61 �note the misprints in Ref. 61
oted in Ref. 62 that do not, however, affect the final result�.

. Misner universe

Our third example concerns �the globally hyperbolic portion of� the Misner universe U;
amely, the quotient of �0,���R3 with metric

ds2 = dt2 − t2�dx1�2 − �dx2�2 − �dx3�2, �128�

y the translation group �t ,x1 ,x2 ,x3�� �t ,x1+na ,x2 ,x3� �n�Z� for some constant a�0. That is,
he x1 coordinate has been compactified onto a circle. We restrict to t�0 to avoid the closed null
eodesics that would appear at t=0 and the closed timelike curves appearing for t�0. Under the
oordinate transformation

y0 = t cosh�x1�, y1 = t sinh�x1�, y2 = x2, y3 = x3, �129�

e may, equivalently, regard Misner space as the wedge y0� �y1� of Minkowski spacetime with the
oints �y0 ,y1 ,y2 ,y3� and �y0 cosh�na�+y1 sinh�na� ,y1 cosh�na�+y0 sinh�na� ,y2 ,y3� identified for
ach n�Z.

Define a curve ����= �� ,xo� in the original coordinates, for some constant x0�T�R2. This is
timelike geodesic, with velocity ua= �1,0�. In the Minkowski space cover, this worldline is given
y

���� =�
� cosh�xo

1�
� sinh�xo

1�
xo

2

xo
3

� with ua��� =�
cosh�xo

1�
sinh�xo

1�
0

0
� , �130�

hich is a constant velocity geodesic, as shown by the bold dashed line in Fig. 8. Let us consider
portion of this curve, running between P=���P� and F=���F�, which is such that

nt�J+�P��J−�F�� is a c.e.g.h.s. of Misner space isometric to a double cone in Minkowski space.
ssuming that this region is maximal, it must be that the geodesic joining the n= +1 image P+1 of

P to F is null. Setting �O= ��F+�P� /2 and L= ��F−�P� /2, this yields the condition

���O +
L

2
�cosh�xo

1� − ��O −
L

2
�cosh�xo

1 + a��2

− ���O +
L

2
�sinh�xo

1� − ��O −
L

2
�sinh�xo

1 + a��2

= 0,

�131�
hich entails
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L = 2�O tanh�a

2
� . �132�

his is the largest double cone of this type, centered on O, in which an observer cannot detect the
ompactified nature of the x1 direction. We may therefore apply Proposition III.1 to the portion

PF of � lying between P and F. This gives

sup
�PF

�TUabuaub�� � −
C4

L4 = −
C4

�2�O tanh�a/2��4 �133�

or any Hadamard state � on Misner space. In particular, an energy density ����
�TUabuaub�������� of the form ����=−C /�4, for which sup� �=−C /�F

4 , would be subject to the
onstraint

C �
C4

16
�2 + coth�a/2��4. �134�

y adapting the eigenvalue method, we may obtain a better bound. Let us suppose that � obeys

���� �
K

162�4 �135�

n I= ��O−L /2 ,�0+L /2�. Then by exactly the same arguments as in Sec. III A, we may deduce

K � − inf
g

	 �g�����2d�

	 �−4�g����2d�

, �136�

here the �−4 in the denominator comes from the form of �, and the infimum is taken over all
�C0

��I�. The denominator can be reinterpreted as the norm of g in L2�I ,�−4d��. Integrating by
arts twice, we may rewrite the numerator as −�g �Lg�, where the inner product is that of
2�I ,�−4d�� and L is defined on C0

��I� by

�Lg���� = �4g������� �137�

nd is symmetric, i.e., �h �Lg�= �Lh �g� for all g ,h�C0
��I�. The minimization problem is then

olved by finding the lowest spectral point of the Friedrichs extension of L. It may be shown that
he Friedrichs extension again amounts to the imposition of Dirichlet boundary conditions g=g�

63

IG. 8. �Color online� The covering space of the Misner universe is the wedge y0� �y1� of Minkowski spacetime, shown
ere in cross section in the y0−y1 coordinates. Points in the covering space are identified, as described in the text, along the
ackground hyperbolæ. Also shown is a stationary geodesic in the Misner universe, which in the covering space is a
onstant velocity observer �dashed line�. For such an observer, the largest causal diamond for a given center point that is
somorphic to a subset of Minkowski space is shown in gray. Identified images of this diamond are also shown in white.
0 on �I, and the problem now reduces to the study of the ODE
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g������� −
�

�4g��� = 0. �138�

gain we wish to determine the minimum eigenvalue � for eigensolutions that satisfy the bound-
ry conditions. The substitution g���=h� 1

2 ln���� converts the equation to a constant coefficient
inear equation, and one may determine the general solution �e.g., using Mathematica� as

h�l� = c1e3l cos�l�4�� + 1 − 5� + c2e3l sin�l�4�� + 1 − 5� + c3e�3+�4��+1+5�l + c4e�3−�4��+1+5�l,

�139�

here �c1 ,c2 ,c3 ,c4� are constants. Imposing three of the boundary conditions fixes three of the
onstants in terms of the fourth, which serves as an overall magnitude for the test function. The
ourth boundary condition can then be used to determine the eigenvalues. A somewhat involved
alculation leads to the transcendental equation to determine � implicitly in terms of a:

�16� − 9

5
=

sin�a

2
�4�� + 1 − 5�sinh�a

2
�4�� + 1 + 5�

cos�a

2
�4�� + 1 − 5�cosh�a

2
�4�� + 1 + 5� − 1

. �140�

e denote �, so determined, as ��a�; this constrains our original value K by

K � − ��a� . �141�

ur interest in energy densities proportional to �−4 stems from the state constructed by Hiscock
nd Konkowski.64 This quasifree state, which we denote �U, is obtained by applying the method
f images to the Minkowski space two-point function in the wedge y0� �y1�, and then carrying it
ack to the original Misner coordinates to find the renormalized vacuum expectation value of the
tress tensor. Hiscock and Konkowski considered the conformally coupled scalar field, but their
alculations can be easily reproduced in the minimally coupled case to yield

�TUab��U
�t� =

K�a�
162t4 diag�1,3t2,− 1,− 1� , �142�

here

K�a� = − �
n=1

�

cosech4�na

2
� �143�

s a negative constant depending on the x1-period a.65 Both the coefficient K�a� and the numerical
valuation of the lower bound −��a� are plotted in Fig. 9. It is obvious that K�a�, and thus the

IG. 9. �Color online� The numerical factor K�a� for the vacuum stress tensor in the Misner universe �solid line� plotted
or a range of the closure scale a. Also shown is the lower bounds from −��a� �dashed line�. The lower bound from Eq.
134� is so weak �it asymptotically approaches �−2500 from below for large a� that it is not included to preserve detail in
he figure above.
nergy density obey the QEI constraint for all values of a. The bound Eq. �134� is still weaker.
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. Rindler spacetime

The Rindler spacetime R is the “right wedge” of Minkowski space, i.e., the region
�t ,x ,y ,z��R4 :x� �t� in inertial coordinates �t ,x ,y ,z�. We may also make the coordinate trans-
ormation

t = � sinh���, y = y ,

x = � cosh���, z = z , �144�

o obtain the metric in the form

ds2 = �2d�2 − d�2 − dy2 − dz2, �145�

ith coordinate ranges � ,y ,z�R, �� �0,��. Lines of constant �, when mapped into Minkowski
pace, are worldlines for observers undergoing constant proper acceleration �=�−1. Rindler space-
ime is static with respect to � �corresponding to Lorentz invariance in the xt plane� and is
nvariant under Euclidean transformations of the yz plane. �See Fig. 10.�

Clearly any line of constant � meets the conditions of Proposition III.3 and we may immedi-
tely read off that any static Hadamard state � on R must obey

�TRabuaub����,�,y,z� � −
11

4802�4 , �146�

here ua is the unit vector parallel to � /��. In particular, this provides a constraint on the energy
ensity �R= �TRabuaub��R

in the ground state �R �which is Hadamard�. This may also be computed
66

IG. 10. Diagram showing Rindler spacetime �with the two perpendicular space dimensions suppressed� embedded into
inkowski spacetime. The dashed hyperbolic line, the worldline of a constantly accelerating observer, is the image of a

onstant � observer’s worldline in Rindler coordinates. The gray diamond is a causal region that can be isometrically
dentified between the two “different” coordinate systems.
xactly: it was first computed for the conformally coupled scalar field by Candelas and Deutsch
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nd one can easily generalize their results to the minimally coupled scalar field to obtain67

�R = −
11

4802�o
4 , �147�

hich is exactly the lower bound given above. Thus, remarkably, the Rindler ground state satu-
ates the QEI constraints, which were obtained using local covariance and the Minkowski vacuum,
nd nowhere involved �R.

Let us also examine how an upper bound might be obtained. Let ����= �� /�o ,�o ,0 ,0� in
� ,� ,y ,z� coordinates and set u= �̇ as usual. We consider sampling along �, with sampling tensors
f form

f�t� =	 �tab�����u
aubg���2d� �148�

or g� C̃0
��R ;R�. Since the energy density is constant along �, the upper bound of Corollary II.4

ives

�R	 g���2d� = �TR�f���R
� QR

weak�f,�R� . �149�

he right-hand side can be read off from the difference QEI derived by Pfenning21 for the elec-
romagnetic field, because the corresponding bound for the scalar field is exactly half of the
lectromagnetic expression68

QR
weak�f,�R� =

1

163	
0

�

�ĝ�u��2�u4 + 2� o
−2u2�du =

1

162	
−�

�

��g�����2 + 2� o
−2�g�����2�d� .

�150�

ext consider scaling the test function, replacing g by g����=�−1/2g�� /��. We find, considering
he scaling behavior of the above expression,

�R �
1

162

	 ��g�����2 + 2�2� o
−2�g�����2�d�

�4	 g���2d�

�151�

or which the right-hand side vanishes in the limit of �→�. Thus we find consistency with the
nown fact that the expectation value of the Rindler ground state is bounded above by zero, i.e.,

R�0.

. SUMMARY

In this paper we have initiated the study of interrelations between quantum energy inequalities
nd local covariance. We have formulated definitions of locally covariant QEIs, and shown that
xisting QEIs obey them, modulo small additional restrictions �Sec. II�. The main thrust of our
ork has been directed at providing a priori constraints on renormalized energy densities in

ocally Minkowskian regions, accomplished in Sec. III. The simple geometric nature of these
ounds makes them easy to apply in practice, and a number of future applications are envisaged.
n particular, we will discuss applications to the Casimir effect in a companion paper;2 at the
heoretical level, it is possible to place the present discussion in the categorical language of Ref.
7, and this will be done elsewhere. Equally important are the specific calculations reported in
ec. IV. Here we saw that, in some situations, the QEI bounds give best-possible constraints on the
nergy density, and that typical ground-state energy densities are not overestimated by the QEI

ound by more than a factor of about 30 at worst �in the examples studied so far�.
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Finally, although we confined our attention largely to locally Minkowskian spacetimes in
ecs. III and IV, we emphasize again that other interesting cases may be studied using our general
ormalism, as, for example, in the work of Marecki3 on spacetimes with locally Schwarzschild
ubregions.
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PPENDIX A: THE LOCALLY COVARIANT QUANTUM FIELD THEORY OF A SCALAR
IELD

In this Appendix we describe the construction of the quantized Klein-Gordon field within the
lgebraic approach to quantum field theory, and explain the construction of pulled back states used
n Sec. II B.

The free scalar field of mass m�0 may be quantized on any globally hyperbolic spacetime M
n the sense that one may construct a complex unital �-algebra A�M� whose elements may be
nterpreted as “polynomials in smeared fields.” A typical element of the algebra is a complex linear
ombination of the identity 1 and a finite number of terms, each of which is a finite product of a
umber of objects �M�f�, where f is a test function �i.e., smooth and compactly supported� on M.
he algebra also satisfies a number of relations:

. �M��f +�g�=��M�f�+��M�g�

. �M�f�*=�M� f̄�

. �M���+m2�f�=0

. ��M�f� ,�M�g��= iEM�f ,g�1

or all test functions f ,g on M and complex scalars � ,�, where EM is the advanced-minus-
etarded fundamental solution to �+m2 on M. The first two axioms are necessary for compat-
bility with the idea of �M�f� as a smeared hermitian field; the third expresses the field equation
n “weak” form; the fourth expresses the commutation relations.

Now let 
 be a causal isometric embedding of M1 into M2. Any test function f on M1 now
orresponds to a test function 
*f on M2, defined by �
*f��x�= f�
−1�x�� for x�
�M1� and

*f��x�=0 otherwise. We may use this to define a map �
 between A�M1� and A�M2� such that

. �
1A�M1�=1A�M2�

. �
��M1
�f��=�M2

�
*f� for all test functions f on M1

. �
 extends to general elements of A�M1� as a �-homomorphism, i.e., �
 is linear and obeys
�
�AB�=�
�A��
�B� and �
�A*�=�
�A�* for all A ,B�A�M1�.

In the body of the text we have used the notation 
* for �
, relying on the context for the
ppropriate meaning; here, it is convenient to distinguish the two maps. One must check that the
ast statement is compatible with the axioms stated above—the only nontrivial one is the commu-
ation relation, where the causal nature of 
 plays a key role and guarantees that �
 is well-

efined. What needs to be proved boils down to checking that
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EM1
�f ,g� = EM2

�
*f ,
*g� �A1�

or all test functions f ,g on M1. This equivalence is proved as follows. Writing EM
± for the

dvanced ��� and retarded ��� Green functions on M, EM2

± 
*f solves the inhomogeneous Klein-
ordon equation on M2 with source 
*f and support in JM2

± �suppf�. Because 
 is a causal isom-
try, the pull-back 
*EM2

± 
*f solves the inhomogeneous Klein-Gordon equation on M1 with source
f and support in JM1

± �suppf�; by uniqueness of solution, we have EM1

± f =
*EM2

± 
*f . Accordingly

*EM1
=EM2


* and the required result follows.
In the algebraic approach we have been pursuing, a state of the quantum field on M is a linear

ap � from A�M� to the complex numbers, obeying ��1�=1 and ��A*A��0 for any A�A�M�.
ne interprets ��A� as the expectation value of observable A in state �. In particular, each state
ields a hierarchy of n-point functions, i.e., maps of the form

�f1, . . . , fn� � ���M�f1� ¯�M�fn��; �A2�

e will restrict attention to those states whose corresponding n-point functions are distributions. A
tate � is Hadamard if its two-point function has a particular singular structure, which is deter-
ined by the local metric and causal properties of the spacetime. Note that none of the structures

ntroduced so far invoke any particular Hilbert space representation of the theory.
Now suppose again that 
 is a causal isometric embedding of M1 into M2 and let �2 be a state

n A�M2�. We obtain a state �1 on A�M2� by

�1�A� = �2��
�A�� �A3�

or any A�A�M1�; that is, �1=�

*�2, where �


* is the dual map to �
 �in the body of the text, we
ave written 
* for �


*�. The n-point functions are therefore related by

�1��M1
�f1� ¯�M1

�fn�� = �2��
��M1
�f1� ¯�M1

�fn��� = �2��M2
�
*f1� ¯�M2

�
*fn�� .

�A4�

t is useful to write this in “unsmeared” notation. Let wj
�n� be the n-point functions of � j. Then the

ast equation becomes

	
M1

dvolg1
�x1� ¯ 	

M1

dvolg1
�xn�w1

�n��x1, . . . ,xn�f1�x1� ¯ fn�xn�

= 	
M2

dvolg2
�y1� ¯ 	

M2

dvolg2
�yn�w2

�n��y1, . . . ,yn�
*f1�y1� ¯ 
*fn�yn�

= 	
M1

�n
dvolg1

�x1� ¯ dvolg1
�xn�w1

�n��
�x1�, . . . ,
�xn��f1�x1� ¯ fn�xn� , �A5�

here the change of variables employed in the last step is justified by the fact that 
 is an
sometry. As this holds for all choices of fk, we may deduce that

w1
�n��x1, . . . ,xn� = w2

�n��
�x1�, . . . ,
�xn��; �A6�

hat is, the n-point functions of �1 are the pull-backs by 
 of those of �2. It follows that if �2 is
adamard then so too is �1, because the two-point function is simply pulled back under 
 and the
adamard series is constructed from the local causal and metric structure, which is preserved
nder 
. Since the stress-energy tensor is renormalized by subtracting the first few terms of the
adamard series from the two-point function, and then taking suitable derivatives before taking

he coincidence limit �making a further locally constructed correction to ensure conservation of the
tress tensor�, we have the following important consequence, which we isolate as a theorem.
Theorem A.1: Suppose 
 is a causal isometric embedding of globally hyperbolic spacetime
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1 in a globally hyperbolic spacetime M2. Any Hadamard state of the massive Klein-Gordon
uantum field on M2 induces a Hadamard state of the same theory on M1, whose n-point functions
nd renormalized expected stress-energy tensor are the pull-backs by 
 of the corresponding
uantities on M2.

This fits in with the principle that one should not be able to tell, by local experiments, whether
ne is in M1 or its image within the larger spacetime M2. It also justifies us in the abuse of notation
erpetrated in Sec. II B, where we wrote 
* in place of �


* , and �dually� 
* in place of �
.
Let us conclude by briefly describing more of the structure set out by Ref. 37. The key is the

bservation that the globally hyperbolic spacetimes of given dimension form the objects of a
ategory in which the morphisms are causal isometric embeddings. One may also consider a
ategory of unital �-algebras with injective unit-preserving �-homomorphisms as morphisms. The
ssociation of a globally hyperbolic spacetime M with the corresponding algebra A�M� is then
hown to be a covariant functor between these categories and gives a precise meaning to the
otion of “the same field theory on different spacetimes” �and the same would be true even for
heories not necessarily described in terms of a Lagrangian�. A similar functorial description may
e given to the association of the state space of the theory, and quantum fields are reinterpreted as
atural transformations between functors. We refer the reader to Ref. 37 for full details.

PPENDIX B: DERIVATION OF A SCALAR FIELD QUANTUM WEAK ENERGY
NEQUALITY IN THE CYLINDER SPACETIME

In this Appendix we calculate quantum weak energy inequalities for the massless, minimally
oupled real scalar field in the two-dimensional cylinder spacetime relative to the ground and
hermal equilibrium states. We use the notation of Sec. IV A. The KMS state �C,� at inverse
emperature � has two-point function �see, e.g., Eq. �2.43� of Ref. 69�

w2,��x,x�� =
1

2L
�

n�Z\�0

eikn�z−z��

�n�1 − e−��n�
�e−i��t−t�� + e−��nei��t−t��� , �B1�

here kn=2n /L and �n= �kn�, and the sum converges in the distributional sense �i.e., after
mearing each term with test functions, the resulting series converges and its sum depends con-
inuously on the test functions�. We exclude the zero mode n=0 as usual, regarding �C,� as a state
n the derivative fields. The two-point function of the ground state �C is obtained as the zero
emperature ��→�� limit of this expression. We will be interested in the static curve ����
�� ,0�, and employ the tetrad e0=� /�t, e1=� /�z, which is invariant under Fermi-Walker transport
long �. Following the procedure of Sec. II E, we find

Q�,�C,�
�u� =

1

22	
�−�,u�

dvT̂�,�C,�
�v� �B2�

nd

T�,�C,�
��� =

1

L
�
n=1

�
�n

1 − e−��n
�e−i�n� + e−��nei�n�� . �B3�

aking the Fourier transform, we have

T̂�,�C,�
�v� =

2

L
�
n=1

�
�n

1 − e−��n
���v − �n� + e−��n��v + �n�� �B4�
nd therefore obtain
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Q�,�C,�
�u� =

1

L
 �
n�N

s.t.�n�u

�n

1 − e−��n
+ �

n�N

s.t.−�n�u

�ne−��n

1 − e−��n� . �B5�

ote that Q�,�C,�
is supported on R+ in the �=� case, but otherwise on the whole of R, albeit

xponentially suppressed on the negative half-line.
To arrive at convenient QEI bounds we estimate Q�,�C,�

by

Q�,�C,�
�u� � Q�,�C,�

�0� +
��u�

L�1 − e−2�/L� �
n�N

s.t.�n�u

�n, �B6�

here � is the Heaviside step function. To see that this estimate is valid, we note that Q�,�C,�
�u�

s clearly increasing on the negative half-line, so it is valid to bound it by Q�,�C,�
�0� on u�0; the

econd term in the estimate arises by noting that �1−e−��n�−1� �1−e−2�/L�−1 for all n. Using this
stimate again, we also have

Q�,�C,�
�0� = �

n�N

�ne−��n

1 − e−��n
�

1

L�1 − e−2�/L��n=1

�
2n

L
e−2�n/L =

e�/L

4L2 sinh3�/L
, �B7�

hile for u�0

1

L
�

n�N

s.t.�n�u

�n =
1

L2 ñ�ñ + 1� �
2

L2 ñ2 �
u2

22 , �B8�

here ñ is the greatest integer strictly less than uL / �2�. Thus we have the estimate

Q�,�C,�
�u� �

e�/L

4L2 sinh3 �/L
+

��u�u2

22�1 − e−2�/L�
. �B9�

t then follows that, in the notation of Sec. IV A

QC
weak�f,�C,�� = 	

−�

�

du�ĝ�u��2Q�,�C,�
�u�

�
e�/L

4L2 sinh3�/L
	

−�

0

�ĝ�u��2du +
1

22�1 − e−2�/L�	0

�

u2�ĝ�u��2du �B10�

�
e�/L

2L2 sinh3�/L
	

−�

�

�g����2d� +
1

2�1 − e−2�/L�	−�

�

�g�����2d� , �B11�

here we have used Parseval’s theorem and the fact that �ĝ�u�� is even for real-valued g to convert
he integral over R+ into one over R. For the ground state, of course, this yields

QC
weak�f,�C� �

1

2
	

−�

�

�g�����2d� �B12�

nd Eq. �122� follows immediately. Although our estimates are not very sharp, they have led to a
ery simple quantum inequality. In fact, for the ground state, this inequality is only three times less
estrictive than the optimal quantum inequality bound found in two-dimensional Minkowski

pacetime.
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PPENDIX C: A LEMMA CONCERNING SMOOTH FUNCTIONS

Recall from Sec. II E that we define C̃0
��I ;R� to be the set of smooth compactly supported

eal-valued functions g on I whose support is connected and which have no zeros of infinite order
n the interior of that support �equivalently, g has no zeros in �inf supp g , sup supp g� of infinite
rder�. Our aim is to prove the following result.

Lemma 1: Let g�C0
��I ;R� and choose any �� C̃0

��I ;R� with �=1 on supp g. Then there is a

equence �n→0 for which each gn=g+�n� is an element of C̃0
��I ;R�.

Proof: If g is identically zero the result is trivial, so we assume henceforth that it is not, so
M =sup �g�� is strictly positive. Suppose the stated result is false, so there exists an �0�0 such that

+��� C̃0
��I ;R� for all �� � ��0. Choose N�N sufficiently large that �N−1��2�0 / �MN� exceeds

he diameter of the support of g. By hypothesis, for each �����0 the function g+ n� has a zero of

nfinite order within its support; since �� C̃0
��I ;R� this zero must lie in the support of g and is

herefore a point at which g� vanishes, while g takes the value −�n. We may therefore choose

1�z2� . . . �zN such that g��zk�=0 for each k and g�zk� runs through the values �−k�0 /N :k
1, . . . ,N �not necessarily in order�. Using Taylor’s theorem with remainder at each zk,

�0

N
� �g�zk+1� − g�zk�� �

M

2
�zk+1 − zk�2 �C1�

o

zN − z1 = �
k=1

N−1

�zk+1 − zk� � �N − 1�� 2�0

MN
� diam supp g �C2�

hich is a contradiction, since z1 and zN must belong to the support of g. �

Since gn−g=�n�, it is clear that gn→g and gn
�k�→g�k� in L2�I� as n→�. This is the property

equired in Sec. III A.
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A few years ago Zamolodchikov and Zamolodchikov proposed an expression for
the four-point classical Liouville action in terms of the three-point actions and the
classical conformal block �Nucl. Phys. B 477, 577 �1996��. In this paper we de-
velop a method of calculating the uniformizing map and the uniformizing group
from the classical Liouville action on n-punctured sphere and discuss the conse-
quences of Zamolodchikovs conjecture for an explicit construction of the uni-
formizing map and the uniformizing group for the sphere with four punctures.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2234272�

. INTRODUCTION

The uniformization problem for n-punctured �n�3� spheres can be formulated as follows:2

Given X=C \ �z1 , . . . ,zn−1�, find the (unique to within conjugacy) Fuchsian group
�PSU�1,1� which makes X conformally equivalent to the quotient � /G of the unit disc �
�z�C : �z��1� by G.

The existence of solution to this problem, called the uniformization theorem, was first proved
y Poincaré and Koebe in 1907. The universal covering map � :�→� /G is however explicitly
nown only for the thrice-punctured sphere3 and in a few very special, symmetric cases with a
igher number of punctures.2 In particular an explicit construction of this map for the four-
unctured sphere is a long-standing and still open problem.

One possible approach, going back to Poincaré, is based on the relation of the uniformization
roblem to a certain Fuchs equation on X. If � :�→� /G�X is the universal covering map, the
nverse �=�−1 :X→� is a multivalued function with branching points zj and with branches related
y elements of the covering group G�PSU�1,1�. One can show that the Schwarzian derivative of
is a holomorphic function on X of the form2

��,z� =
1

2	
k=1

n−1
1

�z − zk�2 + 	
k=1

n−1
2ck

z − zk
, �1.1�

��,z� =
z→� 1

2z2 + O�z−3� , �1.2�

here the accessory parameters cj satisfy the relations
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�
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k=1

n−1

ck = 0, 	
k=1

n−1

�4ckzk + 1� = 1. �1.3�

It is a well-known property of the Schwarzian derivative2,4 that the map � is, to within a
öbius transformation, a quotient of two linearly independent solutions of the Fuchs equation

�z
2� +

1

2
��,z�� = 0. �1.4�

his, in particular, means that there exists a unique to within SU�1,1� transformation fundamental
ystem ��1 ,�2� of normalized �i.e., with the Wronskian equal to 1� solutions for which

� =
�1

�2
. �1.5�

ote that any such system has to have an SU�1,1� monodromy with respect to all punctures.
Whether the Fuchs equation can be used to calculate the map � depends on our ability to

alculate the accessory parameters and to choose an appropriate fundamental system of normal-
zed solutions. The first problem can be easily solved for three punctures where the accessory
arameters are completely determined by relations �1.3�. It is, however, difficult and still unsolved
or n�3.

One can get some more insight by relating this problems to the Liouville equation on X. Since
SU�1,1� is the isometry group of the Poincaré hyperbolic metric g�=4d�d�̄ / �1− ���2�2 on � the
ull back

�*g� =
4

�1 − ���2�2
 ��

�z

2

dz dz̄ = e	�z,z̄�dz dz̄ �1.6�

s a regular hyperbolic metric on X, conformal to the standard flat metric dz dz̄ on X�C. Its
onformal factor 	 satisfies the Liouville equation

�z�z̄	�z, z̄� = 1
2e	�z,z̄� �1.7�

nd has the following asymptotic behavior at punctures

	�z, z̄� = �− 2 log�z − zj� − 2 log�log�z − zj�� + O�1� as z → zj

− 2 log�z� − 2 log�log�z�� + O�1� as z → � .
� �1.8�

It is known that there exists a unique solution to �1.7� and �1.8�.5 One can show that the
nergy-momentum tensor T�z� of this solution is equal to one half of the Schwarzian derivative
1.1�:

T�z�  − 1
4 ��	�2 + 1

2�2	 = 1
2 ��,z� . �1.9�

his allows one to calculate all accessory parameters once the classical solution 	 is known.
The problem of selecting an appropriate fundamental system is slightly less demanding. As we

hall see it is sufficient to know the next to the first two leading terms of the asymptotic of the
lassical solution 	 at one arbitrary puncture.

Unfortunately, the problem to find solutions to the Liouville equation seems to be at least as
ard as the problem of calculating the map � itself, and the reformulation does not help much on
his stage. In this framework however one can consider a more general problem of spheres with n
lliptic singularities characterized by real parameters 0�
 j �1. Instead of asymptotic conditions

1.8� we impose
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	�z, z̄� = �− 2�1 − 
 j�log�z − zj� + O�1� as z → zj

− 2�1 + 
n�log�z − zj� + O�1� as z → � .
� �1.10�

he existence and uniqueness of 	 was in this case proved by Picard6,7 �see also Ref. 8�. The
olution can be interpreted as a conformal factor of the complete, hyperbolic metric with the
aussian curvature R=−1 on X=C \ �z1 , . . . ,zn−1� and conical singularities of the opening angles
�2�
 j �2� at the points zj. The n-punctured sphere discussed so far corresponds to the limiting
ase 
 j→0 for all j=1, . . . ,n.

The notion of accessory parameters can be introduced in terms of the energy momentum
ensor of the solution 	. In the present case it takes the form:4

T�z� = 	
j=1

n−1 � � j

�z − zj�2 +
cj

z − zj
� ,

�1.11�

T�z� =
z→��n

z2 + O�z−3� ,

here � j = �1−
 j
2� /4, j=1, . . . ,n are classical conformal weights. The multivalued function � :X

� is still of interest although it is no longer an inverse to the universal covering of X. It can be
sed as before in formula �1.6� to construct solutions to the Liouville equation with asymptotic
ehavior �1.10�.

The above-described ideas are classic and most of them were already pursued by Poincaré.
or almost a century the problem of accessory parameters had remainded unsolved. An essentially
ew insight was brought in by the so-called Polyakov conjecture in 1982.9 It states that the
properly defined and normalized� Liouville action functional evaluated on the classical solution

cl�z , z̄� is a generating function for the accessory parameters:

cj = −
�S�cl���i;zi�

�zj
. �1.12�

his formula was derived within path integral approach to the quantum Liouville theory as the
uasiclassical limit of the conformal Ward identity.10 In the case of the parabolic singularities on
-punctured Riemann sphere a rigorous proof based on the theory of quasiconformal mappings
as given by Zograf and Takhtajan.11 Other proofs, valid both in the case of parabolic and general

lliptic singularities, were proposed in Refs. 12 and 14.
The next significant step was done by Zamolodchikov and Zamolodchikov.1 Analyzing the

lassical limit of the four-point function of the quantum Liouville theory they argued that the
lassical Liouville action for four elliptic �parabolic� singularities can be expressed in terms of the
lassical Liouville action for three singularities and some special function called the classical
onformal block. Recently this conjecture has been successfully tested by symbolic and numerical
alculations in Ref. 13. It should be stressed however that it is still far from being rigorously
roved. The basic problem is the classical block itself which is so far accessible only via term by
erm calculation of the classical limit of the quantum conformal block.

The aim of the present paper is to analyze to what extent the Zamolodchikovs conjecture can
rovide an explicit construction of the uniformization of four-punctured sphere. Our motivation is
o get a better insight into a geometric content of this conjecture and to develop a theoretical
ramework for its new numerical tests. The results indicate that the classical conformal block plays
central role in the problem and certainly deserves further investigation.

The content of the paper is as follows. In Sec. II we analyze the problem of selecting an
ppropriate pair of solutions to the Fuchs equation in the case of elliptic weights. It is shown that
ll the information required is encoded in the derivatives of the classical Liouville action with

espect to the parameters 
 j. The case of parabolic singularities is obtained by taking an appro-
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riate limit. The main result is that in order to calculate the map � from the Fuchs equation it is
ufficient to know the classical Liouville action as a function of zj’s and 
 j’s.

In Sec. III we analyze the problem of calculating monodromies of the Fuchs equation once the
ccessory parameters are known. Only the case of four punctures is considered. For the standard
ocations 0 ,x ,1 ,� we develop systematic expansions of monodromy matrices at 0 ,x ,1 in terms of
ower expansions in x and 1−x. The results of Secs. II and III are general and are independent of
he form in which the classical Liouville action is available.

In Sec. IV the Zamolodchikovs conjecture is formulated and some schemes of calculation of
he classical Liouville action and accessory parameters are developed. They lead to very efficient

ethods of numerical calculations. It should be stressed, however, that many steps in their deri-
ation still require sound mathematical proofs. Concluding this section we discuss some open
roblems and possible extensions of our work.

I. MAP � :X\�

In the case of the sphere with n elliptic singularities with weights � j = �1−
 j
2� /4 we define the

unctional

SL��i;� =
1

4�
lim
�→0

SL
���i;� ,

SL
���i;� = �

X�

d2z����2 + e� + 	
j=1

n−1

�1 − 
 j��
�z−zj�=�

�dz��z + �1 + 
n��
�z�=1/�

�dz��z

− 2�	
j=1

n−1

�1 − 
 j�2 log � − 2��1 + 
n�2 log � ,

here X�=C \ �� j=1
n ��z−zj����� ��z��1/���.

The classical Liouville action S�cl���i ;zi� is then defined as4,12

S�cl���i,zi� = SL��i;	cl� ,

here 	cl�z , z̄� is the unique solution to �1.7� and �1.10�.
Once the classical action is known one can use the Polyakov conjecture �1.12� to calculate the

ccessory parameters and write down the corresponding Fuchs equation

�z
2� + T� = 0, �2.1�

ith the energy momentum tensor T given by �1.11�. Our aim in this section is to select a
undamental system of solutions to this equation such that their quotient yields a multivalued
unction � :X→� with SU�1,1� monodromy at each zj and regular for all z�X.

To this end let us first observe that �1.7� and �1.9� imply that e−	�z,z̄�/2 is a real solution to the
uchs equations �2.1� and its complex conjugate. It can therefore be expressed as a bilinear
ombination of any fundamental system and its complex conjugate. In order to fix the freedom
elated to the SU�1,1� transformations let us choose a normalized system with diagonal mono-
romy at an arbitrarily chosen singular point zj:

�
,±
�j� �z� =

Aj
±1

�
 j

�z − zj��1±
j�/2�1 + O�z − zj��, Aj � R . �2.2�

It follows from reality, positivity, and single valuedness of e−	�z,z̄�/2 on X that the parameter Aj
an be adjusted such that

                                                                                                            



w
a
p

O
c
a

A
i

a

T
t

t

F
i

w

e

i

082304-5 Liouville theory and uniformization J. Math. Phys. 47, 082304 �2006�

                        
e−	�z,z̄�/2 =
Dj

2
���
,−

�j� �z��2 − ��
,+
�j� �z��2� ,

here Dj is a positive constant. Although the above-presented formula is derived by considering
small neighborhood of zj, it holds for all z�X. Using it one easily derives all the required

roperties of the map

� j�z� =
�
,+

�j� �z�
�
,−

�j� �z�
.

ne can in particular apply the formula �1.6� to construct the hyperbolic metric with Gaussian
urvature −1 on X. As this metric coincides with e	�z,z̄�dz dz̄, the constant Dj has to be equal to 1
nd

e−	�z,z̄�/2 = 1
2 ���
,−

�j� �z��2 − ��
,+
�j� �z��2� . �2.3�

nalyzing the limit z→zj one finds that Aj
2= �1/2
 j�e�1/2�f j, where f j is the next to the leading term

n the 	cl�z , z̄� asymptotic at z→zj. On the other hand,

�S�cl���i;zi�
�
 j

= lim
�→0

��1 − 
 j�log � −
1

4�
�

�z−zj�=�

�dz��z� =
1

2
f j , �2.4�

nd consequently

Aj
2 =

1

2
 j
exp� �

�
 j
S�cl���i;zi�� . �2.5�

his equation, along with the Polyakov conjecture, shows that the classical Liouville action con-
ains all the information needed to calculate the map � :X→� from the Fuchs equation.

To study the parabolic limit 
 j→0 we shall first define the pair �̃
,±
�j� �z�, related to �
,±

�j� �z�
hrough the SU�1,1� transformation,

��̃
,+
�j� �z�

�̃
,−
�j� �z�

� =
1

2
�
 j

1/2 + 
 j
−1/2 
 j

1/2 − 
 j
−1/2


 j
1/2 − 
 j

−1/2 
 j
1/2 + 
 j

−1/2 ���
,+
�j� �z�

�
,−
�j� �z�

� .

rom �2.5� it can be shown in the general case �and will be illustrated by the explicit calculation
n the next section� that

Aj = 1 + 
 jaj + O�
 j
2� = e
jaj + O�
 j

2� , �2.6�

ith aj independent of 
 j. From this fact and �2.2� it follows that the limit

��+
�j��z�

�−
�j��z�

� = lim

j→0

��̃
,+
�j� �z�

�̃
,−
�j� �z�

� �2.7�

xists.
The inverse of the map

��j��z� =
�−

�j��z�
�+

�j��z�
�2.8�
s the universal covering map of the punctured sphere X by the Poincaré disc �. In particular, as
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 lim
z→zj

�−
�j��z�

�+
�j��z�


 = 1,

he puncture is mapped onto the point on the boundary of the Poincaré disc.

II. MONODROMY MATRICES

In this section we shall consider the Riemann sphere with four punctures at the standard
ocations z=0,x ,1 and �. In this case

T�z� =
1

4z2 +
1

4�z − x�2 +
1

4�z − 1�2 +
c1�x�

z
+

c2�x�
z − x

+
c3�x�
z − 1

,

nd the relations �1.3� can be written in the form

c1�x� = 1
2 − �1 − x�c2�x�, c3�x� = − 1

2 − xc2�x� . �3.1�

ur aim is to calculate in this case the monodromies of the fundamental systems of solutions to
he Fuchs equation �1.4� constructed in the previous section.

To this end we shall split T�z� onto the “free” term T0�z� and the “interaction” −V�z�,

T�z� = T0�z� − V�z� .

0�z� contains by construction all terms in T�z� singular at z=0, term with a second-order pole at
=x plus a “correction” enforcing the behavior �z−2 at the infinity,

T0�z� =
1

4z2 +
1

4�z − x�2 +
c1�x�

z
−

c1�x�
z − x

=
1

4z2 +
1

4�z − x�2 −
xc1�x�

z�z − x�


1

4z2 +
1

4�z − x�2 −
1 + �2�x�
4z�z − x�

ith

�2�x� = 4xc1�x� − 1 = − 4x�1 − x�c2�x� + x − �1 − x� , �3.2�

nd

V�z� = −
�1 − x�c3�x�

�z − x��z − 1�
−

1

4�z − 1�2 .

olutions to the “free” equation

�z
2f�z� + T0�z�f�z� = 0

re then expressible through the hypergeometric functions with the well-known monodromies
round z=0,x, while the solutions �and monodromies� of the “full” equation

�z
2��z� + T0�z���z� = V�z���z� �3.3�

an be obtained by perturbation theory with an nth order correction proportional to xn.
One then repeats the above-presented calculation with x→1−x. Since this problem is related

hrough the global conformal transformation z→w=1−z to our original problem with the points 0
nd 1 exchanged �and opposite orientation of the z and w planes� it is clear that the monodromy
atrix around w=0 yields the monodromy matrix around z=1. Note however that this time the

arameter in the perturbative expansion is 1−x. Our method thus yields all three monodromy
atrices �the monodromy matrix around the puncture z=� is equal to the inverse of the product

f the remaining three matrices� only for those x for which both x and 1−x are small enough.

Let
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T0
�
,���z� =

1 − �2

4z2 +
1 − 
2

4�z − x�2 +

2 + �2 − �2 − 1

4z�z − x�
. �3.4�

e can choose the normalized basis in the space of solutions to

�2f�z� + T0
�
,���z�f�z� = 0

n the form of the pair of functions with the diagonal monodromy matrix around z=0,

±
�
,���z� =�x

�
� z

x
��1±��/2�1 −

z

x
��1+
�/2

2F1�1 + 
 + � ± �

2
,
1 + 
 − � ± �

2
,1 ± �,

z

x
� ,

r in the form of the pair of functions with the diagonal monodromy matrix around z=x,

�±
�
,���z� = e±
a�x



� z

x
��1+��/2�1 −

z

x
��1±
�/2

2F1�1 ± 
 + � + �

2
,
1 ± 
 − � + �

2
,1 ± 
,1 −

z

x
� .

hese two pairs of functions are obviously expressible through each other,

��+
�
,���z�

�−
�
,���z�

� = C�
,�� · �+
�
,���z�

−
�
,���z�

�
ith14

C�
,�� =��


�
e
a��− ����1 + 
�

��1 + 
 + � − �

2
���1 + 
 − � − �

2
�

������1 + 
�

��1 + 
 + � + �

2
���1 + 
 − � + �

2
�

��− ����1 − 
�

��1 − 
 + � − �

2
���1 − 
 − � − �

2
�

e−
a������1 − 
�

��1 − 
 + � + �

2
���1 − 
 − � + �

2
� � .

o take the limit �→0 we define, similar to �2.7�,

�+
�
��z�

−
�
��z�

� = lim
�→0

B��+
�
,���z�

−
�
,���z�

� �3.5�

nd

C�
� = lim
�→0

C�
,�� · B�
−1

ith

B� =
1

2��� +
1
��

�� −
1
��

�� −
1
��

�� +
1
��
� .

or z→x,

±
�
��z� = �z�1 ±

1

2
log

z

x
� + o�z� ,

2�i
nd the monodromy matrix of this pair around z=0 �for z→e z� is
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M�
�
�z=0� = −�1 +

i�

2

i�

2

−
i�

2
1 −

i�

2
� .

ne thus gets a monodromy matrix of the pair �±
�
�=lim�→0 �±

�
,�� around z=0 in the form

M��
�
�z=0� = C�
� · M�
�

�z=0� · �C�
��−1.

The limit 
→0 can be taken as in �2.7�,

��+

�−
� = lim


→0
B
 · ��+

�
�

�−
�
� � �3.6�

ith

B
 =
1

2��
 +
1
�


�
 −
1
�


�
 −
1
�


�
 +
1
�

� .

e have

�+�z� = �x − z�1 + a� +
1

2
�x − z log�1 −

z

x
� + o�z − x� ,

�−�z� = �x − z�1 − a� −
1

2
�x − z log�1 −

z

x
� + o�z − x� .

he monodromy matrix of this pair around z=x �in the counterclockwise direction, �z−x�
e2�i�z−x�� thus reads

M�
�z=x� = −�1 −

i�

2
−

i�

2

i�

2
1 +

i�

2
� ,

nd the monodromy matrix of the �± pair around z=0 �in the counterclockwise direction, z
e2�iz� can be calculated as

M�
�z=0� = lim


→0
B
 · M��
�

�z=0� · B

−1 =

i

2��2i� + ��2�x� − 4�cos2 ���x�
2

���x� − 2�2 cos2 ���x�
2

− ���x� + 2�2 cos2 ���x�
2

2i� − ��2�x� − 4�cos2 ���x�
2

� .

�3.7�

ere

��x�  �0�1 − ��x�
2

� + �0�1 + ��x�
2

� + 2�E − 2a�x� ,
0�z�= �d/dz�log ��z� is the digamma function and �E denotes the Euler-Mascheroni constant.
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Monodromy matrix around z=1 can now be obtained �paying attention to the opposite orien-
ation of the planes z and w=1−z� by repeating the above-presented calculation with x substituted
y 1−x. As these calculations are fairly straightforward we refrain from writing them down
xplicitly.

We shall now turn to the power-like corrections. Define

�Ĝf��z� = �
x

z

dz���+�z��−�z�� − �−�z��+�z���f�z��

ith �± given by �3.6�. Since

��2 + T0�Ĝ = 1,

e can rewrite �3.3� in the form of an integral equation

�± = �± + ĜV�±

ith a �formal� solution

�± = �1 − ĜV�−1�±. �3.8�

rom �3.8� one can read off the nth order correction to the functions �±�z�,

��n��±�z� = �
x

z

dznG�z,zn�V�zn��
x

zn

dzn−1G�zn,zn−1�V�zn−1� . . . �
x

z2

dz1G�z2,z1�V�z1��±�z1� .

�3.9�

et us discuss in some detail the case n=1,

��1��±�z� = �+�z��
x

z

dz� �−�z��V�z���±�z�� − �−�z��
x

z

dz� �+�z��V�z���±�z�� .

he functions �±�z��V�z���±�z�� have integrable �logarithmic� singularities for z→x and z→0.
onsequently,

��1��±�z� = o�z − x� for z → x ,

hich means that the monodromy matrix of the �± pair remains unchanged. For z→0 the leading
orrection takes the form

��1��±�z� = �±,+
�1� · �+�z� + �±,−

�1� · �−�z� + o�z� ,

ith

�±,±
�1� = �

x

0

dz� �±�z��V�z���±�z�� .

he monodromy matrix of the �±+��1��± pair is therefore given by

M�+��1��
�0� = �1 + ��1��M�

�0��1 + ��1��−1.

otice further that �1/�x��±�x�� does not depend on x and V�xz�=O�x−1�, so that �with z�=x��

�±,±
�1� = x�

1

0

d�� 1
�x

�±�x���xV�x��� 1
�x

�±�x��� = O�x� .
imilarly one gets
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��n��±�z� = o�z − x� for z → x ,

nd

��n��±�z� = �±,+
�n� · �+�z� + �±,−

�n� · �−�z� + o�z� for z → 0,

ith

�±,±
�n� = O�xn� .

p to this order the monodromy of the pair �± around z=0 is therefore given by

M�
�0� = �1 + 	

k=1

n

��k��M�
�0��1 + 	

k=1

n

��k��−1

.

et us remark that although the matrices ��k� are difficult to evaluate analytically, their numerical
alculation is rather straightforward.

V. ZAMOLODCHIKOVS CONJECTURE

The four-point function of the DOZZ theory with the operator insertions at z1=0, z3=1, z4

�, and z2=x, can be expressed as an integral of s-channel conformal blocks and DOZZ couplings
ver the continuous spectrum of the theory. In the semiclassical limit the integrand can be written
n terms of three-point classical Liouville actions and the classical block,1

�V4��,��V3�1,1�V2�x, x̄�V1�0,0�� � �
0

�

dp e−Q2S��i;x;��, �4.1�

here �= 1
4 + p2 and

S��i;x;�� = S�cl���4,�3,�� + S�cl���,�2,�1� − f���3 �2

�4 �1
��x� − f̄���3 �2

�4 �1
��x̄� . �4.2�

he three-point classical Liouville action with a parabolic �1= 1
4 , an elliptic �2= 1

4 �1−
2�, and a
yperbolic weight �= 1

4 + p2, reads1,15

S�cl���,�2,�1� = − �1 − 
�log 2 + 2F�1 − 


2
+ ip� + 2F�1 − 


2
− ip� − F�
� + H�2ip� + ��p� + const,

�4.3�

here

F�x� =�
1/2

x

dy log
��y�

��1 − y�
, H�x� =�

0

x

dy log
��− y�
��y�

.

f��
�3�2

�4�1
��x� is the classical conformal block1 �or the “classical action” of Refs. 16 and 17�, defined

s the semiclassical asymptotic

F1+6Q2,���3 �2

�4 �1
��x� � exp�Q2f���3 �2

�4 �1
��x�� �4.4�

f the BPZ conformal block.18

In the classical limit Q2→� the integral on the right-hand side of relation �4.1� is dominated

y its saddle point value. One thus gets
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S�cl���i;x� = S��i;x;�s� = S�cl���4,�3,�s� + S�cl���s,�2,�1� − f�s
��3 �2

�4 �1
��x� − f̄�s

��3 �2

�4 �1
��x̄� ,

�4.5�

here �s= 1
4 + ps

2�x� and the saddle point momentum ps�x� is determined by

�

�p
S��i;x;

1

4
+ p2�

�p=ps

= 0. �4.6�

ince the semiclassical limit should be independent of the choice of the channel in the factoriza-
ion of the DOZZ four-point function the Zamolodchikovs’ conjecture �4.5� yields three different
xpressions for the four-point classical Liouville action. The corresponding consistency equations
classical bootstrap equations� have been numerically verified for punctures13 and for punctures
nd one and two elliptic singularities.19

Taking into account the classical geometry corresponding to hyperbolic weights20 one may
xpect that the saddle point momentum ps�x� in the s-channel is related to the length �s�x� of the
losed geodesic separating the “initial” z=0,x from the “final” z=1,� singularities:

�s�x� = 4�ps�x� . �4.7�

n the case of punctures this conjecture has strong numerical support.13

The classical limit of the quantum conformal block is up to now the only method of calcu-
ating the classical conformal block. Let us note that it is by no means obvious that the quantum
onformal block for “heavy” weights does have the asymptotic of the form assumed in �4.4�. This
s however very well supported by symbolic calculations for the first few terms in a number of
ases. An efficient recursive method of calculating coefficients of the expansion of the quantum
lock in powers of x was developed by Zamolodchikov.16 Using this method and taking the limit
→� one can calculate term by term the coefficients of the power expansion

f���3 �2

�4 �1
��x� = �� − �1 − �2�log x + 	

n=1

�

xnf�
n��3 �2

�4 �1
� . �4.8�

n the case of three punctures and one elliptic singularity the first few terms of this expansion read

f �1/4�+p2�
1

4

1 − 
2

4

1

4

1

4
��x� = �p2 −

1 − 
2

4
�log x + �1 − 
2

8
+

p2

2
�x

+ �9�1 − 
2�
128

+
13p2

64
+

�1 − 
2�2

1024�1 + p2��x2 + O�x3� . �4.9�

The limitation of formulas �4.8� and �4.9� is that the power series involved are supposed to
onverge only for �x��1. A more convenient representation of the conformal block was developed
y Zamolodchikov in Ref. 17, where he proposed to regard the block as a function of the variable

q�x� = e−��K�1−x�/K�x��, K�x� = �
0

1 dt
��1 − t2��1 − xt2�

.

n terms of q the classical conformal block reads:
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f���3 �2

�4 �1
��x� = �1

4
− �1 − �2�log x + �1

4
− �2 − �3�log�1 − x�

+ �3

2
− 2��1 + �2 + �3 + �4��log� 2

�
K�x��

+ �� −
1

4
�log 16 − �� −

1

4
��

K�1 − x�
K�x�

+ h���3 �2

�4 �1
��q� , �4.10�

here

h���3 �2

�4 �1
��q� = 	

n=1

�

�16q�nh�
n��3 �2

�4 �1
� �4.11�

s supposed to converge uniformly on each subset �q : �q��e−��1�.
The coefficients of power series �4.11� can be determined term by term using Zamolodchikovs

ecursive method to calculate coefficients in the q-expansion of the quantum block17 and then
aking the limit Q→�. This for instance yields:

h�1/4�+p2�
1

4

1 − 
2

4

1

4

1

4
��q� =

�1 − 
2�2

4�1 + p2�
q2 + � �1 − 
2�2�15 + 18
2 − 
4�

128�1 + p2�
+

�1 − 
2�2�9 − 
2�2

128�4 + p2�

+
3�1 − 
2�4

128�1 + p2�2 −
�1 − 
2�4

32�1 + p2�3�q4 + O�q6� . �4.12�

In the case of four punctures the saddle point equation determining ps�x� reads

0 =
�

�p
S�1

4
;x;

1

4
+ p2� = 2� + 4i log

�2�1

2
+ ip���− 2ip�

�2�1

2
− ip���2ip�

− 2R
�

�p
f �1/4�+p2�

1

4

1

4

1

4

1

4
��x� ,

�4.13�

nd the classical Liouville action is given by

S�cl��1

4
;x� = S�1

4
;x;

1

4
+ ps

2�x�� . �4.14�

sing �4.2�, �4.3�, and �4.9� one gets

c2�x� = −

�S�cl��1

4
;x�

�x
= − � �S�1

4
;x;

1

4
+ p2�

�p
�

p=ps�x�
·
�ps�x�

�x
− � �S�1

4
;x;

1

4
+ p2�

�x
�

p=ps�x�

= − � �S�1

4
;x;

1

4
+ p2�

�x
�

p=ps�x�
= � �

�x
f �1/4�+p2�

1

4

1

4

1

4

1

4
��x��

p=ps�x�

=
4ps

2�x� − 1

4x
+

1

8
�4ps

2�x� + 1� + �9

2
+ 13ps

2�x� +
1

8

1

1 + ps
2�x�� x

32
+ O�x2� �4.15�
r, employing the q expansion of the classical block,
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c2�x� = −
1

4x�1 − x�
�E�x�

K�x�
− x� −

�2

4x�1 − x�K2�x��ps
2�x� +

1

1 + ps
2�x�

q2

2

+ � 15

1 + ps
2�x�

+
81

4 + ps
2�x�

+
3

�1 + ps
2�x��2 −

4

�1 + ps
2�x��3� q4

32
+ O�q6�� , �4.16�

here E�x� denotes the complete elliptic integral of the second kind. Equations �4.15� and �4.16�
re simple consequences of the Zamolodchikovs conjecture. They provide a new relation between
he accessory parameters, the classical conformal block, and the geodesic length function �s�x�
hich is certainly worth further investigations.

In order to calculate a2a for four punctures one can replace one puncture by an elliptic
ingularity and then take the limit

2a = lim

→0

1



log A2.

sing �2.5�, �4.2�, �4.3�, and �4.9� one obtains

2a�x� = lim

→0� 1



log

��1 + 


2
− ips�x����1 + 


2
+ ips�x��

��1 − 


2
− ips�x����1 − 


2
+ ips�x�� −

2



R

�

�
� f �1/4�+p2�
1

4

1 − 
2

4

1

4

1

4
��x��

p=ps�x�
�

= �0�1

2
+ ips�x�� + �0�1

2
− ips�x�� −

2



R

�

�
� f �1/4�+p2�
1

4

1 − 
2

4

1

4

1

4
��x��

p=ps�x�,
=0

= �0�1

2
+ ips�x�� + �0�1

2
− ips�x�� −

1

2
log xx̄ +

Rx

2
+ �36 +

1

1 + ps
2�x��Rx2

27 + O�x3� , �4.17�

r, using �4.10� and �4.12�:

2a�x� = �0�1

2
+ ips�x�� + �0�1

2
− ips�x�� −

1

2
log xx̄ −

1

2
log�1 − x�2 − log
 2

�
K�x�
2

+
2

1 + ps
2�x�

Rq2 + � 45

4 + ps
2�x�

+
3

1 + ps
2�x�

+
3

�1 + ps
2�x��2 −

4

�1 + ps
2�x��3�Rq4

8
+ O�q6� .

�4.18�

ote that in the above-mentioned formulas one only needs the saddle point momentum ps�x� for
our punctures �
=0�.

Let us finally turn to the problem of determining the saddle point momentum ps�x�. As was
iscussed in Ref. 13 ps�x� can be determined numerically, using the q expansion of the classical
lock, with an essentially arbitrary high precision everywhere but at small vicinities of the singular
oints x=1 and x=�. On the other hand, the problem of analytic determination of the saddle point
omentum still remains to be solved and only partial results are available.

Both geometrical arguments and the form of �4.9� indicate that for x→0 the solution of �4.13�

hould also tend to zero. For p→0,
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4i log

�2�1

2
+ ip���− 2ip�

�2�1

2
− ip���2ip�

= − 4� + 32p log 2 + 16	
k=1

�
�− 1�k��2k + 1�

2k + 1
�22k − 1�p2k+1

�4.19�

o that, up to the leading terms, the saddle point equation �4.13� takes the form

− � + 16p log 2 − p log xx̄ = 0 �4.20�

nd, to this order,

ps�x� � ��x� 
�

− log xx̄ + 16 log 2
. �4.21�

e can now solve �4.13� by iteration, in the form of a double series expansion in Rx and ��x�
since x=exp�−1/ �1/ �−log x���, the powers of x can be viewed as “nonperturbative” corrections to
he ��x� series�. For instance, keeping in �4.13� terms up to p3 and x2 we get

ps =
�

− log xx̄ + 16 log 2 − Rx −
207

512
Rx2

+

8��3� +
1

256
Rx2

− log xx̄ + 16 log 2 − Rx −
207

512
Rx2

ps
3 + O���x�6,x3��x��

=
�

− log xx̄ + 16 log 2 − Rx −
207

512
Rx2

+

8�3��3� +
�3

256
Rx2

�− log xx̄ + 16 log 2 − Rx −
207

512
Rx2�4 + O���x�6,x3��x��

= ��x� +
8��3�

�
�4�x� + � 1

�
�2�x� +

32��3�
�2 �5�x��Rx +

�2�x�
�2 �Rx�2

+ � 207

512�
�2�x� +

1

256�
�4�x� +

207��3�
16�2 �5�x��Rx2 + O���x�6,x3��x�� . �4.22�

s in the case of the accessory parameters, one can also work out the formula for the saddle point
omentum involving the q expansion of the classical conformal block.

For a sufficiently small x the right-hand side of �4.22� agrees with the numerically calculated
addle point momentum and is well within the know analytic bounds on �s�x� /4�.2,13 However, to
etermine the radius of convergence of the series in �4.22� or to give an estimate on the omitted
erms one would need to know the classical conformal block exactly.

As discussed in the previous section in order to determine the monodromy matrix at x=1 one
eeds a power expansion of ps�x� at this point. In other words, an analytic continuation of the
lassical block from the vicinity of x=0 to x=1 is required. One possible approach to this problem
s to consider the classical limit of the braiding relation for the quantum BPZ block �for conformal

locks corresponding to degenerated fields this calculation is quite straightforward�.
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We believe that a better understanding of the classical conformal block and the geodesic
ength function may provide an essentially new insight into the problem of finding an analytic
xpressions for the map � and the uniformizing group. Further studies of these structures are
efinitely worth pursuing.
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A specific class of gauge theories is geometrically described in terms of fermions.
In particular, it is shown how the geometrical frame presented naturally includes
spontaneous symmetry breaking of Yang-Mills gauge theories without making use
of a Higgs potential. In more physical terms, it is shown that the Yukawa coupling
of fermions, together with gravity, necessarily yields a symmetry reduction
provided the fermionic mass is considered as a globally well-defined concept. The
structure of this symmetry breaking is shown to be compatible with the symmetry
breaking that is induced by the Higgs potential of the minimal Standard Model. As
a consequence, it is shown that the fermionic mass has a simple geometrical inter-
pretation in terms of curvature and that the �semiclassical� “fermionic vacuum”
determines the intrinsic geometry of space-time. We also discuss the issue of “fer-
mion doubling” in some detail and introduce a specific projection onto the “physi-
cal subspace” that is motivated by the Standard Model. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2218673�

. INTRODUCTION

The aim of this article is to put emphasis on the role of fermions in a geometrically unified
escription of different kinds of gauge theories as, for instance, Yang-Mills and Einstein’s theory.
specially, we discuss in some detail the role of the “Yukawa coupling” of fermions with respect

o the mechanism of spontaneous symmetry breaking. This may provide us with a better geometri-
al understanding of the relation between inertia and gravity.

Let us start out with some general remarks on the notion of “gauge symmetry.” The notion of
auge symmetry, in general terms, expresses certain redundancies in the mathematical description
f the interactions considered. In mathematics, by gauge theory one usually refers to gauge
heories of the Yang-Mills type with the underlying geometry given by a principal G-bundle over
smooth orientable �compact� manifold endowed, in addition, with a �semi-�Riemannian structure

see, for instance, in Refs. 5, 34, 35, 38, and 49�. This notion of gauge theory, however, is clearly
ar too restrictive when considered from a physical point of view. For instance, gravity is also
sually regarded as a kind of gauge theory though it is certainly not of the Yang-Mills type. The
nderlying geometrical structure of gravity, regarded as a gauge theory, is that of a fiber bundle
aturally associated with the frame bundle of the base manifold M with typical fiber given by
L�n� /SO�p ,q�. Here, respectively, dim�M��n= p+q equals the dimension of the oriented base
anifold and s= p−q is the signature. The bundle structure of the two gauge theories is obviously

ery different. In contrast to Yang-Mills theory, the bundle structure of gravity is fully determined
modulo diffeomorphisms� by fixing the �topology of the� base manifold and the signature s. In
his sense, the bundle structure in Einstein’s theory of gravity is more natural than in the Yang-

ills theory. Moreover, the mathematical notion of a local trivialization has a physical meaning in

�Electronic mail: juergen.tolksdorf@mis.mpg.de
�
Electronic mail: thum@euler.math.uni-mannheim.de
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he case of gravity, however, not in Yang-Mills gauge theories �there is no “exponential map”
efined in Yang-Mills theories for, in contrast to gravity, Yang-Mills connections only determine
econd order vector fields but no spray fields�.

The respective Lagrangian densities of gravity and Yang-Mills gauge theory differ in that the
ormer is known to be linear in the curvature of the base manifold whereas the latter is quadratic
n the curvature of the bundle space. This difference is known to yield far-reaching consequences,
or example, when quantization is taken into account. But also on the purely “classical” level �i.e.,
ravity and electromagnetism� there are fundamental differences in these two kinds of gauge
heories. For example, electromagnetism �more general, Yang-Mills gauge theories over even-
imensional base manifolds� is known to be scale invariant but not invariant with respect to the
ction of the diffeomorphism group �except isometries�. In contrast, gravity is covariant with
espect to diffeomorphisms but not scale invariant. Of course, despite these profound mathemati-
al and physical differences there are, nonetheless, formal similarities between these two types of
auge theories. Especially, the dynamics that is defined by both theories can be expressed with
espect to top-forms on the base manifold with the property of being invariant with respect to the
ction of their respective symmetry groups. A natural question then is whether these two funda-
ental kinds of gauge theories have a common geometrical root �for a discussion about the

naturality” of these two top-forms see Refs. 50 and 33�.
Of course, over the last few decades there have been various attempts to geometrically unify

ravity with the Yang-Mills gauge theory. This holds true for string theory and, in particular, for
arious aspects of noncommutative geometry, see, e.g., Refs. 8, 9, 14, and 40, and references
here. The fruitful idea to consider the Higgs boson of the Standard Model as an integral part of
he Yang-Mills theory goes back to fundamental works, e.g., Refs. 15–17 and 10. It is well known
hat this idea actually has had a tremendous impact on a vast variety of articles of the same theme
see, for instance, Refs. 18, 27, 36, and 37 in the context of noncommutative geometry, or Refs. 25
nd 39 in the case of “superalgebras”�. Basically, all of these geometrical descriptions of gauge
heory use the purely algebraic content of gauge theories of the Yang-Mills type �e.g., the exterior
ifferential is a nilpotent derivation and a connection is the sum of the latter and a one-form� as
heir starting point. However, gravity seems not to fit in this basic algebraic vision. Also, sponta-
eous symmetry breaking is described only in terms of �the algebraic aspects of� Yang-Mills gauge
heories without using gravity. The notion of fermions only arises because in the algebraic context
he exterior differential is defined in terms of specific generalizations of the notion of a Dirac
perator. These purely algebraic generalizations of the latter, however, seem to have no geometri-
al counterpart �see, for instance, the “internal Dirac operator” in the geometrical description of
he Standard Model in terms of “almost commutative models�.”26

In the following we shall discuss a specific class of gauge theories including Einstein’s theory
f gravity and �spontaneously broken� Yang-Mills theory from the point of view of fermions. The
atter will be geometrically treated as certain Hermitian vector bundles over arbitrary smooth
rientable manifolds of even dimension. These “fermion bundles” correspond to a global specifi-
ation of a certain class of first order differential operators, called “Dirac type operators.” We
ntroduce a canonical mapping which associates with every Dirac type operator a specific top-form
n the base manifold. This canonical mapping is then referred to as the “Dirac-Lagrangian” on the
etup to be discussed. The Dirac-Lagrangian turns out to be equivariant with respect to bundle
quivalence. In particular, it is invariant with respect to the action of the Yang-Mills and the
instein-Hilbert gauge groups. The diffeomorphism group of the base manifold is naturally in-
luded by the pull-back action. We also consider a distinguished class of Dirac type operators
ithin this setup. The corresponding top-form associated with these Dirac type operators is shown

o define a spontaneously broken gauge theory without referring to a Higgs potential. In more
hysical terms, it is shown that the Yukawa coupling together with gravity yields a symmetry
eduction which is compatible with the symmetry breaking induced by a Higgs potential of the

orm used in the �minimal� Standard Model of Particle Physics. In fact, the latter is shown to be
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aturally generated by a “fluctuation of the fermionic vacuum.” We will also reformulate the
otion of “unitary gauge” in terms of Dirac type operators and give necessary and sufficient
onditions for its global existence.

The geometrical description of gauge theories discussed in the present article is a considerable
efinement of the geometrical frame that has been introduced in Ref. 45 in the case of elliptic
irac type operators on a smooth even-dimensional closed Riemannian spin manifold. In contrast

o the latter we will consider in this article the more physically appropriate case of arbitrary
ignature and noncompact manifolds. Also, we do not assume that “space-time” has a spin struc-
ure �please see the following discussion�. For this, however, we will focus on �globally defined�
ensities instead of action functionals. Accordingly, we have to demand that the densities them-
elves are covariant with respect to the underlying symmetry action and thus well defined on the
ppropriate moduli spaces. This is achieved mainly since the densities in question are derived
rom evaluating a natural object �within the frame considered� with respect to specific first order
ifferential operators. As a consequence, one ends up with densities which are linear in the
urvature of the base manifold and quadratic in the curvature of the bundle space. For instance, it
s shown that the total curvature of the “fermionic vacuum” decomposes into the sum of the
urvature of the base manifold together with the �square of the� fermionic mass operator. Also a
asic difference relative to the frame considered here �and subsequent articles thereof� is that all
undles, including the Higgs and the Yang-Mills bundles, are considered as specific subbundles of
he fermion bundle �respectively, of the bundle of endomorphisms of the latter�. The fermion
ensity will be considered as a specific mapping on the affine set of all Dirac type operators on a
ermion bundle. Here, we also discuss the issue of the doubling of the fermionic degrees of
reedom that is necessary to apply the general Bochner-Lichnerowicz-Weizenböck formula.

Finally, we want to comment on the notion of “fermions” without assuming the existence of
pin structures. At least in the so-called “semi-classical approximation” of a full quantum field
heory it is common to geometrically treat the “states of a fermion” as sections of a �twisted�
pinor bundle over space-time. For this, of course, the topology of space-time must guarantee the
xistence of a spin structure �i.e., the vanishing of the second Stiefel-Whitney classes�. Moreover,
t is known that a noncompact Lorentzian four manifold possesses a spin structure if and only if its
rame bundle is trivial �“Geroch’s Theorem,” c.f. Refs. 19 and 20�. Therefore, the existence of a
pin structure provides severe restrictions to the topology of space-time. However, the experiments
erformed to demonstrate that the double cover of the �proper orthochroneous� Lorentz group is
ore fundamental are purely local in nature. Also, in order to obtain a topologically nontrivial

tatement about the existence of spin structures, space-time has to be covered by at least three
trivializing� local charts. This, of course, raises the question of the physical sense of “locality” in
his context to give the mathematical construction a physical meaning. Hence, from our point of
iew, the assumption of the existence of a spin structure is a purely mathematical one without a
hysically meaningful counterpart. In fact, in this respect the notion of locality, as it is used in
athematics, seems physically as spurious as in the case of the Yang-Mills gauge theories which

o not provide any scale. Basically, this is the reason to consider in this work the more general
otion of “Clifford module bundles” instead of “twisted spinor bundles” as an appropriate geo-
etrical background. In contrast to the latter, the existence of Clifford module bundles yields no
ore topological restrictions on space-time than the existence of a metric itself. For instance, the

undle of Grassmann algebras serves as a natural Clifford module bundle for every space-time
anifold. However, the topology of the Clifford module bundles cannot be arbitrary. The physical

nterpretation of the sections of Clifford module bundles in terms of the states of fermions yields
estrictions to the topology of the considered Clifford module bundles �please, see the following
ext�.

This article is organized as follows. In the next section we introduce the concept of fermion
undles as a specific class of Clifford module bundles and define Dirac type gauge theories. In the
hird section we consider a distinguished class of such gauge theories and discuss spontaneous
ymmetry breaking in this context. In the Sec. IV we introduce the fermionic density within the

resented geometrical setup and discuss the issue of fermionic doubling. In the fifth section we
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ant to specify what we mean by a fluctuation of the fermionic vacuum. This is done in terms of
et another class of Dirac type operators. Finally, in Sec. VI we close with an outlook. In the
ppendix we present a detailed proof of the explicit form of “simple type Dirac operators” of

rbitrary signature, for these operators turn out to be fundamental, e.g., in our discussion of
pontaneous symmetry breaking.

I. FERMION BUNDLES AND DIRAC TYPE GAUGE THEORIES

In this section we introduce a specific class of Clifford module bundles which will serve as
ur geometrical background for gauge theories. With respect to this background there exists a
anonical mapping which permits to associate with the local data of a fermion bundle a specific
op form on the base manifold. This top form turns out to be equivariant with respect to the
utomorphism group of the underlying geometrical structure.

. Fermion bundles, Dirac type operators and connections

In this subsection we define our notion of fermion bundles as a specific class of Clifford
odule bundles. For this let �ª �E ,�� ,M� be a smooth complex vector bundle with total space
, base manifold M and projection map �� :E→M. The rank, rk����N, of the bundle is N
1. In what follows the base manifold is assumed to be orientable and of even dimension n
2k. As a topological space M is a paracompact and �simply� connected Hausdorff-space. On

his geometrical background we consider the following local data:

�G,�F,D� . �1�

ere, G is a semisimple, compact and real Lie group and �F :G→SU�NF� is a unitary and faithful
epresentation thereof. Moreover, D :����→���� is a first order differential operator, acting on
ections of the bundle � such that the bilinear extension gM of the mapping �df ,dh�� tr��D , f�
�D ,h�� / rk��� is nondegenerated for all smooth functions f ,g�C��M�. The operator D is said to

ave the signature s�Z, provided that the quadratic form associated with the �semi-� Riemannian
etric gM has signature s. The mapping gM corresponds to a section of the “Einstein-Hilbert

undle” �EHª �FM�GL�n�GL�n� /O�p ,q� ,�EH,M�, with, respectively, FM the total space of the
rame bundle FM of the base manifold M and n� p+q ,s� p−q.

Let 	Cl�	Cl
�±� be the algebra bundle of Clifford algebras which are point-wise generated by

	M
� ,gM�, with 	M

� being the cotangent bundle of M �with total space T*M�. The corresponding
lifford relations are defined by 
2

ª ±gM�
 ,
� for all 
�T*M �Cl�M� �the total space of 	Cl�.
n the following, it is assumed that the principal symbol of the operator D induces a Clifford �left�
ction � :	Cl→End��� via the mapping

	Cl � �→ � ,

�2�
�df ,z� � �D, f�z ,

or all smooth functions f �C��M�. In other words, besides the assumption that �D , f�2 induces an
somorphism 	M�	M

* , it is also supposed to be in the commutant of End���. As a consequence, the
lgebra bundle of endomorphisms on � globally decomposes as

End��� � 	Cl
C

�MEndCl��� . �3�

ere, EndCl����End��� denotes the subbundle of endomorphisms which supercommute with the
lifford action � �c.f., for instance, in Refs. 2 and 3�.

Definition 2.1: The vector bundle ���F is called a “fermion bundle” with respect to the
local� data �1� if the structure group of � can be reduced to Spin�p ,q���F�G�. A fermion bundle
s called “chiral” provided �F=�F

+
� �F

− is Z2-graded with respect to some involution ���M � �
��End��F��. Here, the canonical involution �M���	Cl

C � is defined in terms of the �semi-� Rie-
n
annian volume form M�� �M� that is induced by gM. Moreover, �F is called “real” if all of
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ts odd Chern classes vanish. With respect to � the operator D is supposed to be odd and the
epresentation �F is assumed to be even. In this case, D is called a “Dirac type operator” and �1�
“Dirac triple.”

A fermion bundle encodes the global data of a Dirac type gauge theory. With respect to these
ata we consider the set D��F� of all Dirac type operators D��D��F� to satisfy the condition
D�−D , f��0 for all f �C��M�. The set D��F� naturally becomes an affine space with vector
pace ��End−��F��. In what follows we summarize the basic features of this affine space.

The affine space A��F� of linear connections on �F has a distinguished affine sub-space

Cl��F��A��F� that is defined by all linear connections which are compatible with the Clifford
ction �. That is, A�ACl��F� defines a covariant derivative �A satisfying ��A ,��a��=���Cla� for
ll sections a���	Cl

C � with �Cl being the covariant derivative with respect to the lifted Levi-Civita
onnection of gM. Accordingly, such a connection is referred to as a “Clifford connection.” Hence,
very D��D��F� may be written as D�=�”A+� where, respectively, �”A�� ��A is the analogue of
twisted spin Dirac operator in the case where M denotes a spin manifold and ��D−�”A

��End��F��. Notice, however, that in general the zero order operator � also depends on the
lifford connection A. Moreover, the relation between the two affine spaces D��F� and A��F� on
fermion bundle is given by the �signature independent� bijection �c.f. Ref. 45�

D��F� � A��F�/ker���� , �4�

here

��: �
1�M,End�E�� →�0�M,End�E�� 
 � ��
� . �5�

herefore, to each Dirac type operator on �F there corresponds an equivalence class of connec-
ions. However, each connection class has a natural representative that is constructed as follows:
irst, on every chiral fermion bundle there is a canonical odd one-form ���1�M ,End−�E�� that

s given by the �normalized� lifted soldering form of FM. More precisely, let �
�eq,hor

1 �FM ,Rn� be the soldering form on the �total space of the� frame bundle of M. Here, the
anonical identification �eq,hor

* �FM ,Rn���*�M ,TM� and the injection �here, �eq,hor
* �FM ,Rn�

enotes the “right-equivariant” and “horizontal” forms on the total space of the frame bundle of
�

��	M
�

�M	M� →
id�x�

��	M
*

�M	M
* � � ��	M

*
�M	Cl� →

id��

��	M
*

� MEnd��F�� �6�

ields �ª ± �̃ /n with �̃�� �����1�M ,End�E��. If �X1 , . . . ,Xn� denotes a local frame on M
nd �X1 , . . . ,Xn� its dual, then �throughout this article Einstein’s summation convention is used in

ocal formulas except where this may lead to confusions� �̃ =
loc.

Xk � ��Xk
�� � id, with the usual

musical” isomorphism u��v�ªgM�u ,v� for all u ,v�TM. The normalized soldering form � has
he two basic properties: It is covariantly constant with respect to every Clifford connection and it
nduces a canonical right inverse of the Clifford action, i.e., �� �ext�=id. Here, ext��End�	�M

*

�MEnd���� denotes the operator of �point-wise� left-multiplication by �, and 	�M
* is the bundle of

rassmann algebras that is, again, generated by 	M
� . Note that the linear equivalence 	Cl�	�M

� is
sed but not explicitly indicated. Second, to each Dirac type operator D��D��F� there exists a

orrespondingly unique connection ÂD� �A��F� such that D�2−�D� ���End��F��. The second or-

er operator �D� ª−tr��̂T*M�E � �̂E� is called the “Bochner-Laplacian” of D� �c.f., e.g., Refs. 3 and

, or 21�. Here, �̂E denotes the covariant derivative that corresponds to the connection ÂD� . As a
onsequence, the covariant derivative that is defined by

�D� ª �̂E + � Ù �D� − � � �̂E� �7�

ields a connection AD� �A��F� which clearly represents the Dirac type operator D�, i.e., D�=�

�D�. We call, respectively, AD� the Dirac connection associated with D� and the one-form
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�D� ª� Ù �D� − � � �̂E� � �1�M,End�E�� �8�

he “Dirac form” associated with D��D��F�. Of course, if the connections ÂD� and AD� are iden-
ified with the respective connection forms �̂ ,�D� ��1�E ,TE�, then

�E
*�D� = �D� − �̂ . �9�

Remark: As a first order differential operator each Dirac type operator D is known to be of the
local� form: D=���+�� with the appropriate “�-matrices” ��End�C2k

� satisfying either of
he Clifford relations ���+���� ±2g�1, and

� � �
Cl

� 1 + 1 � A ± 1
ng� �

0�k�n
�

1�i1�i2¯�ik�n

���i1�i2
¯ �ik � �i1i2¯ik

. �10�

Here, respectively, �
Cl is the component of the lifted Levi-Civita form with respect to the

ppropriate metric coefficients g�, and A ,�i1i2¯ik
are the components of locally defined differ-

ntial forms of various degrees which take their values in �F��Lie�G���End�CNF�. Obviously, these
orms determine each specific Dirac type operator D�D��F� locally. More precisely, let
�U
 ,�
� 	
��
 be a family of local trivializations of the underlying vector bundle �, i.e.,


 :�E
−1�U
�→

�
U
�CN. Accordingly, let �
� :U
�U�→GL�N,C� be the appropriate transition

unctions. Then, a family of first order differential operators D
 of the form D
=�
 ��
, with


�d+�
 and �
 defined by �10�, gives rise to a Dirac type operator D on � provided the
rincipal symbols �
 define a family of Clifford mappings Rp,q→End�C2k

��C � Clp,q and the
ransition functions take their values in the subgroup Spin�p ,q���F�G� such that the family
�U
 ,D
� 	
��
 fulfills the compatibility condition D
=�
� �D� ��
�

−1 for all x�U
�U��M.
ence, the notion of a Dirac triple on � �i.e., �F� globalizes what is encoded in the local data

pecifying D. In other words, the notion of a fermion bundle simply permits globalization of the
ocal data �U
 ,D
�
�� usually encountered in physics.

. Gauge theories of Dirac type and their gauge groups

In this subsection we show that the geometrical setup of fermion bundles permits to naturally
ntroduce a specific class of gauge theories which we call gauge theories of Dirac type �GTDT�.
he corresponding gauge group is the automorphism group of the underlying geometrical struc-

ure. It is shown that this group decomposes into certain subgroups which can be identified with
he usual Yang-Mills gauge group, the Einstein-Hilbert gauge group, and the diffeomorphism
roup of the base manifold.

Definition 2.2: Two fermion bundles �F and �F� are considered to be equivalent if G�G� and

F is similar to �F�. Moreover, there is a bundle isomorphism �
 ,�� :�→�� �i.e., diffeomorphisms
:M→M� and � :E→E�, with � being fiber-wise linear and 
 ��E=�E� ��� such that D�=�

D ��−1.
Notice that the condition D�=� �D ��−1 actually is equivalent to gM�=
−1*gM.
The presented geometrical setup permits the formulation of a class of gauge theories which

re based on a “universal Lagrangian” that is covariant with respect to the action of the automor-
hism group

GF � Aut��F� ª ��
,�� � Diff�M� � Aut�E�	�E � � = 
 � �E
 �11�

f the fermion bundle in question. This group may be identified with the group of right-equivariant

utomorphisms of the frame bundle associated with �F. That is,
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GF � Auteq�FE� ª �f � Aut�FE�	Rg � f = f � Rg,g � GF
 , �12�

here, respectively, FE��FE ,M ,� ,GF� is the associated frame bundle of the fermion bundle
onsidered, GF�Spin�p ,q���F�G� its structure group and R the right action of the latter on the
otal space FE of the frame bundle.

Therefore, the automorphism group �11� has several important subgroups. In particular, it
ontains the “inner gauge group” of the fermion bundle �F:

Gin ª ��
,�� � GF	
ª idM
 , �13�

hich may be identified with the gauge group of FE. The latter contains two mutually commuting
ormal subgroups GEH and GYM, such that GEH�GYM= �e
. Therefore,

Gin � GEH�MGYM. �14�

Here, the “Yang-Mills gauge group” GYM can be identified with the subgroup ��
 ,��
Aut��F� 	
=idM ,��AutCl�E�
 of the inner gauge group �14�. Note that the Yang-Mills gauge

roup is in fact an invariant subgroup of the inner gauge group. Hence, with respect to the
bove-mentioned identification, the “Einstein-Hilbert gauge group” GEH may be identified with the
uotient group Gin /GYM according to the decomposition �3�.

Moreover, the diffeomorphism group of the base manifold M has a natural nontrivial embed-
ing into Aut��F�. Indeed, if �F is merely considered as a vector bundle, one gets the �trivial�
mbedding

Diff�M� � Aut��F� ,

�15�

 � �
,�ª �E

*
 � idE� .

his embedding may actually be identified with the inclusion according to the definition �11� of
he automorphism group and the identification


−1*E � ��y,z� � M� E	�E�z� = 
−1�y�
 = ���*
�z�,z�	z � E
 � E . �16�

Hence, one has 
−1*�F= �
−1*E ,M ,pr1�= �E ,M ,�*
�, which permits to replace �=�*

idE �with inverse given by pr2� simply by �ª idE. However, as �F is a Clifford module bundle

ver �M ,gM�, the embedding of Diff�M� into Aut��F� becomes non-trivial. In other words, there
s an inner automorphism on End�E�, induced by 
, such that ��= 
̃ �� � 
̃−1. Here, ��	TM ��	TM

T
−1 is the Clifford action on 
−1*�F that is defined with respect to 
−1*gM and 
̃�End�E� an
ppropriate lift of 
.

As a consequence, one obtains

Diff�M� � Aut��F� ,

�17�

 � �
,�ª 
̃� .

e call the image of this embedding the “outer gauge group” of the fermion bundle �F. It is
enoted by Gex.

Finally, since Gin�GF is normal and Gin�Gex= �e
, one ends up with the semidirect decom-
osition of the automorphism group into the gauge and diffeomorphism group, i.e.,

GF = Gin ’ Gex. �18�

n fact, each g�GF may be written as g=gingex�Gin’Gex such that

−1
GF � gg� = �gingex��gin� gex� � � �gingexgin� gex ��gexgex� � � Gin ’ Gex. �19�
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We call the automorphism group GF�Aut��F� the “�fermionic� gauge group” of the fermion
undle �F.

In order to define a GF−covariant theory �by which we mean that symbolically L � �
 ,��

−1*L, where L is an appropriate “Lagrangian density” defining the theory� we first consider, for
given fermion bundle �F, the canonical mapping

VD:D��F� → C��M�

D� � tr�D�2 − �D� � , �20�

hich is called the “Dirac potential” on �F. Here again, the second order differential operator �D�
enotes the Bochner-Laplacian that is uniquely defined with respect to D� such that �D� + �D�2

�D� � is the �general� Lichnerowicz decomposition of D�2 �c.f. in Refs. 3 and 21�.
The universal top form

LD:D��F� →�n�M� ,

D� → � VD�D�� �21�

s called the “Dirac-Lagrangian” on the fermion bundle �F. This canonical mapping is universal in
he sense that it is indeed covariant with respect to the action of GF. In particular, it is invariant
ith respect to the action of the inner gauge group Gin�GF.

Definition 2.3: Let �F be the fermion bundle with respect to the data �G,�F ,D�. We call �the
bosonic part” of� the theory defined by the corresponding Lagrangian density LD�D���n�M� a
gauge theory of Dirac type”.

Let again A��F� be the set of all linear connections on �F and AD��F��A��F� be the subset of
ll connections which yield D �i.e., � ��E=D, with �E a corresponding covariant derivative�. Then,
he top form LD�D���n�M� is indeed well-defined on the moduli-space MD��F��AD��F� /Gin.

oreover, it transforms covariantly with respect to the �left� action of the fermionic gauge group

F, i.e.,

LD� �� � D � �−1� = �
−1*LD��D� . �22�

To obtain an explicit formula for the top form LD�D� associated with a Dirac type operator D,
ne could use the generalized Bochner-Lichnerowicz-Weizenböck formula of D2−�D

��End��F��. As a consequence, the Dirac potential reads

VD�D� = tr���FD� + evgM
��D

T*M�End�E�� + �2�� . �23�

ere, respectively, FD��2�M ,End�E�� is the total curvature with respect to the Dirac connection

D�A��F� and the one-form ���1�M ,End�E�� measures the deviation of AD from being a
lifford connection. With respect to a local co-frame �X1 , . . . ,Xn� on M this one-form reads

� =
loc.

− 1
2gliX

l
� ��Xj����D,Xj

,��Xi�� + � jk
i ��Xk�� , �24�

here �X1 , . . . ,Xn� is the dual frame of �X1 , . . . ,Xn� and � jk
i
ªXi��Xj

TMXk� are the corresponding
evi-Civita connection coefficients with respect to gM and the chosen frame. Again, gij

C��U
� is the matrix element of �gM�Xi ,Xj��−1. Also, evgM
denotes the evaluation map �contrac-

ion� with respect to the isomorphism 	M
* �	M of the tangent and the cotangent bundle of M that

s provided by gM �c.f. Refs. 1 and 45�.
Remark: Let again, ��U
 ,�
� 	
��
 be a family of local trivializations of a given fermion

undle �F. According to �10�, D
ª�
 �D ��

−1 is fully determined by ��
 ,A
 ,�
�. Hence,
D��F��A��F� may locally be identified with the set of differential forms �
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�*�U
 ,End�CN�� which, together with gik�C��U
�, determine D
. Accordingly, the Euler-
agrange equations

ELD�D� = 0 �25�

re obtained by the first variation of the �locally defined� functional ���U
, compact�

S��
,A
,�
� ª �
�

L��
,A
,�
� , �26�

ith L��
 ,A
 ,�
����

−1*LD��D���n�U
�. Notice, however, it can easily be inferred from the

ocal version of the Dirac potential �20� that S=S��
 ,�
�. Indeed, the local version of �23� reads

V��
,A
,�
� � ��

−1*VD��D� = N

2 rM + 1
2 tr���


i ,�

j ���
,i,�
,j�� + 1

8gijtr��

k ��
,k,�


i ��

l ��
,l,�


j �� .

�27�

he notation used is as follows: �
�Xi � �
,iª ± �1/n�g��0�k�n�1�i1�i2¯�ik�nX

� �

��


i1�

i2
¯�


ik � �i1i2¯ik
, with the abbreviation �


i
ª�
�Xi���
 ���Xi� ��


−1. Moreover, rM

C��M� denotes the scalar curvature of M with regard to gM.
It follows that Einstein’s field equation of gravity is an integral part of the Euler-Lagrange

quations of Dirac type gauge theories. In particular, the “energy-momentum tensor” is specified
y the Dirac type operator in question �i.e., locally fixed by the one-form ���1�U ,End�E���.

In the next section we discuss a specific class of Dirac type operators which is distinguished
y its Lichnerowicz decomposition �c.f. Ref. 30�. Moreover, it is shown that, as a solution of the
uler-Lagrange equations, these Dirac type operators spontaneously break the gauge symmetry.

II. SIMPLE TYPE DIRAC OPERATORS AND SPONTANEOUS SYMMETRY
REAKING

In what follows we discuss a specific class of Dirac type gauge theories. The main feature of
his class consists of permitting us to naturally include the notion of “spontaneous symmetry
reaking” in the realm of Dirac type gauge theories. Eventually, we will show that the Yukawa
oupling of the fermions, together with gravity, induces spontaneous symmetry breaking without
se of a “Higgs potential.” The inner geometry of M �i.e., of space-time in the case of �n ,s�
�4,�2�� in the “ground state” of the gauge theory is fully determined �up to boundary condi-

ions� by the “fermionic masses.” Here, the latter are shown to correspond to the spectrum of a
ertain Hermitian section of the bundle End��F�. Because this spectrum turns out to be constant
ver M one may thus decompose the fermion bundle �F into the Whitney sum of the appropriate
igenbundles of the “fermionic mass operator” that is induced by spontaneous symmetry breaking.
f the spectrum is non-degenerated �like in the case of the Standard Model� the eigenbundles are
ermitian line bundles which one may consider to geometrically model “asymptotically free

ermions.”
Let �F be a chiral fermion bundle with respect to some Dirac triple �G,�F ,D�.
Definition 3.1: A Dirac type operator D��D��F� is called of “simple type” if the Bochner-

aplacian of D� is defined by a Clifford connection, i.e., ÂD� �ACl��F��A��F�.
We denote the corresponding covariant derivative again by �A. As a result, the covariant

erivative of the Dirac connection AD� �A��F� reads

�D� = �A + �D� �28�

ith a unique one-form �D� ��1�M ,End�E��. The next Proposition permits us to characterize the
irac forms of simple type Dirac operators of arbitrary signature.

Proposition 3.1: A Dirac type operator D��D��F� is of simple type if and only if it reads
D� = �”A + �M � � , �29�
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ith ����EndCl
− ��F��.

Proof: The proof of the statement is lengthy and somewhat technical though elementary. It is
imilar to the proof already presented in Ref. 1 for the special case s=n. A detailed proof for
rbitrary signature s can be found in the Appendix. �

Note that a simple type Dirac operator is fully determined by a Clifford connection in the case
here �F is not chiral and thus has a vanishing Dirac form. In general, however, the Dirac

onnection of a simple type Dirac operator is given by a unique Clifford connection A
ACl��F� together with the specific Dirac form

�D� = � Ù ��M � �� . �30�

With respect to a local trivialization �U
 ,�
� of �F the Dirac form is determined by

�
 = ± 1
ngijX

i
� �


j �M � �
, �31�

ith 1 ��
ª�
 � �1 ��� ��

−1�C��U
 ,End−�CNF�� and �
��


−1*�D� .
Dirac operators of simple type define the largest class of Dirac type operators with the

orresponding Bochner-Laplace operators defined by Clifford connections. Of course, the most
mportant subclass of Dirac type operators is given by D�=�”A. They correspond to “twisted spin
irac operators” in the case where M denotes a spin manifold. Notice that in the elliptic case,
irac operators of simple type turn out to be of importance in the discussion of the family index

heorem �c.f. Refs. 4 and 41�. They are also known to play a fundamental role in the description
f the minimal Standard Model within the realm of noncommutative geometry �please see, e.g.,
he corresponding references already cited in Sec. I�. This kind of first order differential operator
s thus well known in physics �please, see the following�, as well as in mathematics. However, in
his article we discuss them from a purely geometrical perspective of gauge theories.

We turn now to the discussion of spontaneous symmetry breaking within the realm of the
resented geometrical frame. For this let again �F be a chiral fermion bundle with respect to
G,�F ,D� where D is of simple type.

Proposition 3.2: Let D be a global solution of the Euler-Lagrange equation

ELD�D� = 0 �32�

uch that GYM acts transitively on the image of D−�”A. Consequently, there exists a constant
skew-Hermitian� section D���EndCl

− ��F�� such that �M ,gM� is an Einstein manifold with the
calar curvature given by

rM = ��MF�2. �33�

ere, �MF�2� tr�MF
†MF� with iMFª�M � D representing the “total fermionic mass operator”; �

R is an appropriate nonzero constant which may also depend on a suitable normalization of

D�D�.
Proof: The Dirac-Lagrangian of a simple type Dirac operator reads

LD�D� = 2k�NFrM + tr�2�M. �34�

We remark that this Lagrangian depends on the connection that is defined only with respect to
gM,��. Moreover, the Euler-Lagrange equation concerning ����EndCl

− ��F�� is trivial. Whence,
ne may conclude that a global solution of �32� yields: D=�”A with A�ACl��F� arbitrary and
M ,gM� Ricci flat. However, there is actually a bigger class of solutions of �32�. As the latter does
ot provide any dynamical condition on the sections � one may treat the latter as “background
elds”, similar to the metric in the case of pure Yang-Mills gauge theory. The Euler-Lagrange
quations with respect to the corresponding Dirac-Lagrangian then reduces to the Einstein equa-

ion
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Ric�gM� = �grtr�
2idTM �35�

ith �gr�R being some nonzero constant which also depends on the chosen normalization of

D�D�. It also takes into account the appropriate physical �length� dimension, where � is accord-
ngly rescaled. The section Ric���End�	M�� denotes the Ricci tensor with respect to gM. From
he Einstein equation it follows that d�tr �2�=0. Hence, the Dirac-Lagrangian �34� of a simple
ype Dirac operator reduces, in general, to the Einstein-Hilbert Lagrangian with a “cosmological
onstant” included. This constant is generated by a section ����EndCl

− ��F�� subject to the con-
ition that ���2

ª�� ,��� tr��†�� must be constant. Note that �†= ±�, depending on whether
is supposed to be Hermitian or skew-Hermitian. The basic idea here is to make a polar decom-

osition � =
loc.
�F�g� �D ��F�g�−1 with D being a fixed vector of the same length as �. To make this

ore precise let WªEndCl
− ��F� be the Hermitian vector bundle of �complex� rank NF

2 with total
pace WªEndCl

− �E�. Accordingly, let Pª �P ,M ,�P� be the frame bundle associated with W.
lso, let Eª �E ,M ,�E� be the associated Hermitian vector bundle with total space defined by
ªP�GEnd�CNF�. By construction E�W, and we do not distinguish between these two vector
undles. In particular, we may write W�Z= ��p ,z��. Equivalently, if ��0 we may consider the
ormalized section  ª� / �� � ���S� with S�W being the sphere sub-bundle. According to the
dentification E�W any section  corresponds to a G-equivariant mapping  ̃ : P→SN�−1 �N�
2NF

2�, such that  �x�= ��p ,  ̃�p��	p��P
−1�x�. By assumption, G acts transitively on im� ̃��SN�−1.

ence, for arbitrarily chosen z0� im� ̃� we may identify the orbit of z0, orbit�z0�, with im� ̃�. Let
�z0���F�G� be the isotropy group of z0. The mapping

��:P → orbit�z0� .

p � �F�g�z0�F�g−1� , �36�

efines an “H-reduction” �Q� , !�� of P with g�G being determined �modulo I�z0�� by the rela-
ion  ̃�pg�=z0. Indeed, the corresponding section

V�:M → P�GG/H

x � ��p,���p��	p��P
−1�x� �37�

s known to be equivalent to a specific principal H-bundle Q���Q ,M ,�Q,H� together with an
quivariant embedding !� :Q��P of principal bundles �c.f., e.g., Ref. 29�. For “bundle reduction”
n the context of Yang-Mills-Higgs gauge theories see also, e.g., Refs. 11, 43, and 49. Here, H�G
s the unique sub-group equivalent to I�z0�, and thus orbit�z0��G/H. Finally, we may define D
��EndCl

− ��F�� by the section

D:M → E

x � ��!��q�,z0��	q��Q
−1�x�. �38�

Of course, the section D also gives rise to an �equivalent� H-reduction �Q , !� of P which may
e identified with �Q� , !�� by H� I�g̃z0g̃−1�. Here, g̃�G is determined �up to I�z0�� by a choice of

0�Q� and the corresponding relation  �!��q0��� z̃0= : g̃z0g̃−1. The rest of the statement is a
irect consequence of the Einstein equation. �

A simple type Dirac operator D is said to be in the unitary gauge provided it reads
D = �”A + �M � D . �39�
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A necessary condition for the existence of the unitary gauge is that D−�”A�0. If GYM acts
ransitively on the image of the latter operator, this condition is also sufficient. A simple type Dirac
perator in the unitary gauge spontaneously breaks the Yang-Mills gauge symmetry since in
eneral

HYM ª �g � GYM	�D,g� = 0
 �40�

s a proper sub-group of the Yang-Mills gauge group GYM�GF. In this case, the Lagrangian LD�D�
s said to define a “spontaneously broken fermionic gauge theory.” Note that in the case where

YM acts transitively on the sphere subbundle S�EndCl��F� any global solution of �32� satisfying
−�”A�0 defines a spontaneously broken fermionic gauge theory.

Remark: The notion of unitary gauge and its existence is similar to that presented in �Ref. 46�
Proposition 3.2� in the case of rotationally symmetric Higgs potentials. However, the “mass term”
��2 in the Lagrangian of a simple type Dirac operator itself does not break the symmetry, of
ourse. The symmetry breaking is caused by assuming that the fermionic mass generates a non-
rivial geometry. Indeed, the geometry is fully determined by the spectrum of the �square of the�
ermionic mass operator MF

2 ���End��F��. Also, since the spectrum spec�MF
2� is constant through-

ut M, one may decompose the fermion bundle into the Whitney sum of the corresponding
igenbundles of MF

2, i.e. �c.f. Ref. 47�,

�F = �

m2�spec�MF
2�
�F,m2 = ker�MF

2� �  �

m2�spec�MF
2�\�0


�F,m2� . �41�

he total curvature on �F with respect to a simple type Dirac operator satisfying �32� is given by

FD = R” + FA + MF
2� Ù � − �A

End�E�MF Ù � . �42�

ere, respectively, R” ��2�M ,End�E�� is the lifted �semi-�Riemannian curvature with respect to

M, and FA�F�”A
−R” ��2�M ,End�E�� is the “twisting curvature” with respect to the Clifford

onnection A�ACl��F� that is determined by D. In contrast to R” , which is determined by the
pectrum of MF

2, the twisting curvature FA is completely arbitrary. For this reason it is natural to
ssume that A is purely topological, i.e., flat. In this case, the curvature of �F is fully determined
y the spectrum of the fermionic mass operator. As a consequence, for n=4 the chiral fermion
undle must indeed be real. If in addition M is a spin manifold, then �F,m2 �	spin�M"F,m2, where
he latter is a Hermitian line bundle if and only if spec�MF

2� \ �0
 is non-degenerated. Consequently,
hen restricted to the residual group H, the fermionic representation �F decomposes into the sum
f the trivial representation and irreducible U�1�-representations. �To date, electromagnetism is
he only Abelian gauge theory that is physically well-established. Moreover, as a matter of fact,
assless but electrically charged particles are unknown in nature�. The latter are either trivial,
nd hence �F,m2 corresponds to an electrically uncharged but massive fermion or, for non-trivial
epresentations, �F,m2 corresponds to a massive electrically charged particle. Apparently, together
ith spin, the assumption that the Clifford connection A is flat imposes crucial restrictions on the

ermion bundle. In fact, in this case �up to algebraic torsion� �F� �k=1
NF 	spin. Note that, if n=4 and

pec�MF
2� is nondegenerate, the existence of a flat Clifford connection on �F �again, up to torsion�

ecomes equivalent to the reality of the latter.
Definition 3.2: A fermion bundle �F is said to be in the unitary gauge provided it is defined

ith respect to a Dirac triple �G,�F ,D� such that D is in the unitary gauge. More generally, a
ermion bundle is called “massive” if it is gauge equivalent to a fermion bundle in the unitary
auge. The corresponding element of GYM�GF is referred to as a “unitary gauge transformation.”

On a massive fermion bundle there exists a distinguished class of connections.
Definition 3.3: A connection A�A��F� on a massive fermion bundle �F is called compatible

ith D provided the corresponding covariant derivative �E commutes with the appropriate total
ermionic mass operator. That is,

�End�E�MF = 0 �43�
X
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or all smooth tangent vector fields X���	M�.
This definition expresses the H-reducibility of a connection on �F in terms of Dirac type

perators which spontaneously break the gauge symmetry. The Definition �3.3� is in fact analo-
ous to the Definition 2.1 in Ref. 46 for a spontaneously broken Yang-Mills-Higgs gauge theory.
ote that �43� is equivalent to the condition

D� � MF = − MF � D�, �44�

ith D��D��F� being identified with � ��E. In particular, one may assume that the Clifford
onnection which defines the Bochner-Laplacian of D=�”A+ iMF is compatible with the latter. This
olds true if and only if

D2 = �”A
2 − MF

2 . �45�

Hence, the Clifford connection of the Bochner-Laplacian �D is compatible with spontaneous
ymmetry breaking if and only if “the square of the sum equals the sum of the squares.” We note
hat, from a geometrical point of view, it is the condition �End�E�MF�0 that yields “massive vector
osons” �please see the following�. In other words, the existence of a nontrivial “Yang-Mills mass
perator” can be expressed by the violation of compatibility condition �45�.

Definition 3.4: We consider a Dirac operator D of simple type to define a “�semi-classical�
ermionic vacuum” if D is gauge equivalent to �”A+ iMF where the corresponding Clifford connec-
ion A�A��F� is purely topological. In this case, D in the unitary gauge is denoted by

�”D � �” + iMF. �46�

Clearly, when restricted to the appropriate eigenbundles this operator corresponds to Dirac’s
ell-known first order differential operator i�”−m and thus provides us with the appropriate physi-

al interpretation of spec�MF
2� �and hence also with D�. For example, in the case of �n ,s�

�4,�2� there is always a local frame such that the total symbol #�i�”D� coincides with the
rincipal symbol of �46�. Every time-like ��T*M�End�E� and eigenvector z�E of MF

2 �with

igenvalue m2� yields #�i�”����z =
loc
����z= ±mz. Hence, one obtains the usual relation between

omentum and mass: gM�� ,��= ±m2 of a point-like particle.
From a geometrical point of view a fermionic vacuum may be regarded as a fermion bundle

F,redª �Ered ,M ,�E,red� with respect to the Dirac triple �H,�F,red ,�”D�. Here, respectively, Ered

Q�HC2k
� CNF and �F,redª�F	H. Notice that �F��F,red via the bundle mapping

�q ,z��� ��!�q� ,z��. Accordingly, we shall not distinguish between these two bundles and proceed
o say that a fermion bundle �F can be generated from a fermionic vacuum if it is determined by
Dirac triple of the form �H,�F,red ,�”D�. In other words, �F is generated from a fermionic vacuum
rovided the corresponding frame bundle P can be considered as a prolongation of the frame
undle Q that corresponds to some fermion bundle �F,red. Finally, the Dirac potential of a fermi-
nic vacuum has the particular simple form �c.f. Ref. 47�

VD��”D� =
�

2
�MF

2� , �47�

here �MF
2�ª �1/NF��a=1

NF ma
2 and ��R is a suitable nonzero constant.

The idea of a fermionic vacuum is mainly motivated by a geometrical description of pertur-
ation theory used in quantum field theory. As already mentioned the fermion bundle �F is con-
idered as a “perturbation” of a fermionic vacuum �F,red. Such a perturbation cannot change the
opology of �F but its geometry. The notion of a fermionic vacuum itself puts severe topological
estrictions on a fermion bundle. �One might speculate that “quantum fluctuations” will lead to a
hange of the topology of the fermionic vacuum for it basically adds “quantum corrections” to the
ermionic mass spectrum�. Before we explain this in more detail, however, we shall discuss in the
ext section a more specific class of simple type Dirac operators which takes into account that,

ithin the Standard Model of Particle Physics, the Higgs boson is described by a subrepresenta-
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ion of �F instead of the fundamental representation. Moreover, we shall discuss the need for
fermionic doubling” and the fermionic Lagrangian within the presented setup.

V. DIRAC-YUKAWA OPERATORS AND THE FERMIONIC LAGRANGIAN

In the previous section we discussed a distinguished class of Dirac type operators on a fermion
undle. Their basic feature is to give rise to a reduction of the underlying gauge symmetry.
oreover, these Dirac type operators also determine a distinguished class of connections on the

ermion bundle. In the next two sections we specialize the presented frame in order to geometri-
ally describe the action of the Standard Model of Particle Physics in terms of a specific Dirac-
agrangian. For this, we first discuss a certain “refinement” of simple type Dirac operators which
e call “Dirac-Yukawa operators.” In what follows, we also discuss an important consequence of

he occurrence of the grading involution �M in the definition of simple type Dirac operators. This
urns out to parallel the occurrence of this grading involution in A. Connes’ noncommutative
eometry �c.f., e.g., Refs. 12, 22, 23, 28, 31, 32, and 42�.

. Yukawa bundles and Dirac operators of Yukawa type

To start with, let again �F be a chiral fermion bundle with respect to �G,�F ,D�, where D is of
imple type. Also let �H��F be a sub-vector bundle of rank NH�NF on which 	Cl acts trivially.
e denote its dual by �H

* . The structure group of �H is a specific subgroup of �F�G�. It will be
enoted by �H�G�. The gauge group of �H is accordingly denoted by

H�GYM�Aut��H��Aut��F� �the bundle automorphisms of �H over the identity on M.�
Definition 4.1: Let EH�E be the total space of �H, and let �H be the appropriate projection

apping onto the base manifold M. Also, let again WªEndCl
− �E�. We call the subvector bundle

Y��H
*

�M�W the “Yukawa bundle” �with respect to the previous data� if its structure group acts
s follows: For each h�Aut�EH� there is a unique g�AutCl

+ �E� such that Y�h−1z�=Adg−1�Y�z��
or all z�EH and Y�EH

*
� W. In this case we call �H the“Higgs bundle” �again, with respect to

he previous data�. A section Y����Y� of the Yukawa bundle is called a “Yukawa mapping”
rovided that it fulfills the following conditions: Considered as a bundle mapping the Yukawa
apping Y is injective and anti-Hermitian, i.e., Y�z�†=−Y�z� for all z�EH. Moreover, we assume

hat it satisfies the requirement Y��A,X �= ��A,X ,Y� �� for all Clifford connections on �F �and thus
or all induced connections on �H�, sections  ����H� and tangent vector fields X���	M�.

Note that for each connection on �F with covariant derivative �E, the operator

��X
E,Y� �� − Y��X

EH � �48�

n the fermion bundle �F defines a connection on �H
*

� �W with the covariant derivative �EH
*

�W

�EH
*

� 1+1 � �W. Hence, a Yukawa mapping is assumed to be covariantly constant with respect
o any Clifford connection. By the definition of the Yukawa bundle it then follows that a Yukawa

apping �4.1� has to be a constant section. For instance, in the case of the Standard Model the
ukawa mapping �4.1� is parameterized by the “Yukawa coupling constants.” The representations

H and �F are known to be related by the “hypercharges” of the fermions and the Higgs boson.
Definition 4.2: We call a Dirac type operator D on a fermion bundle �F a “Dirac-Yukawa

perator” if there is a section of the Higgs bundle,  ����H�, such that

D = �”A + �M � Y� � . �49�

ccording to its physical interpretation we call the section Y� ����EndCl
− ��F�� the “Yukawa

oupling term” with respect to �Y , �����Y�M�H�.
A Yukawa mapping defines an additional data on a fermion bundle which in some sense is not

atural within the frame of Dirac type gauge theories. For this reason we shall refer to the data
G,�F ,D�, with D being a Dirac-Yukawa operator, as a “Dirac-Yukawa model.” A necessary
ondition for a Dirac-Yukawa operator to spontaneously break the underlying gauge symmetry is

hat  ����H� does not vanish. Again, this condition is also sufficient provided G acts transitively
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n the image of the section Y� �. Assuming this is the case it follows from the definition of the
iggs bundle and the Yukawa mapping that there must exist a constant section V����H� \ �O


with O being the zero-section� such that in the unitary gauge

D = �”A + �M � Y�V� . �50�

Analogously to our previous definition we consider a Dirac-Yukawa operator to define a
semiclassical� fermionic vacuum if it is gauge equivalent to �”V��”+ iMF with the total fermionic
ass operator iMFª�M � Y�V�. Notice that the spectrum of the total fermionic mass operator is

ndependent of the choice of Z0�End�CNF�. This reduces to Z0=GY�z0� in the case where the
auge symmetry is spontaneously broken by a Dirac-Yukawa operator. Here, GY

Hom�CNH ,End�CNF�� is the matrix of the Yukawa coupling constants and z0�CNH. In particular,
e obtain orbit�Z0�=GY�orbit�z0��. Hence, from the properties of the Yukawa mapping it can be

nferred that the “little group” H�G crucially depends on �H��F.

. The fermionic Lagrangian

Next, we discuss the fermionic Lagrangian within the presented frame. By definition, the
rading involution of a chiral fermion bundle �F=�F

+
� �F

− reads �=�M � �. Consequently, the total
pace E of the fermion bundle decomposes as

E = E+
� E− = �ELL � ERR� � �ERL � ELR� , �51�

here, respectively,

ELL ª �z � E	��M � 1�z = − z,�1 � ��z = − z
 ,

ERR ª �z � E	��M � 1�z = z,�1 � ��z = z
 ,

�52�
ERL ª �z � E	��M � 1�z = z,�1 � ��z = − z
 ,

ELR ª �z � E	��M � 1�z = − z,�1 � ��z = z
 .

et �R/Lª
1
2 �1± ��M � 1�� and �R/Lª

1
2 �1± �1 � ���. The appropriate projection mappings of the

espective subspaces �52� of E are denoted by �LL��L ��L=�L ��L, �RR��R ��R=�R ��R, �RL

�R ��L=�L ��R and �LR��L ��R=�R ��L. Consequently, �+=�RR+�LL and �−=�RL+�LR. For
���EndCl��F�� we also define 1 ��LLª�L � �1 ��� ��L���EndCl��F,LL � �F,RL��
��EndCl��F,LL�� ���EndCl��F,RL��, 1 ��RLª�R � �1 ��� ��L���HomCl��F,LL � �F,RL,�F,LR

� �F,RR�����HomCl��F,LL,�F,LR�� ���HomCl��F,RL,�F,RR��, etc.
If M denotes a spin manifold, then E�S � EF, where S is the total space of the spinor bundle

spin �with respect to some chosen spin structure� and EF is the total space of some Hermitian
ector bundle "F. In this case, the fermion bundle �F�	spin � "F is chiral if and only if "F is

2−graded, i.e., EF=EF,R � EF,L. Here, EF,R/L are considered as the eigenspaces of � with respect
o the eigenvalues ±1. Then, for instance, ELL�SL � EF,L, etc. Consequently, like in noncommu-
ative geometry, the fermionic degrees of freedoms are doubled in the geometrical description
resented here �c.f. again the corresponding discussion in Refs. 31 and 32�. Indeed, as far as the
tandard Model is concerned only

Ephy � E+ = �ELL � ERR� �53�

epresents the “true” physical degrees of freedom.
With this in mind the “fermionic Lagrangian” of D may be defined as the following specific

uadratic form on ���F� �taking its value in the top forms of M�:

n *
LF:D��F� → ���F�M� 	M�
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D � ����F� → �n�M�

$ � �$,D+$�EM.
�54�

ere, � · , ·�E is the Hermitian product on E and D±��� �D ��± :���F
±�→���F

�� such that D
D��F� reads

D = � 0 D−

D+ 0
�:

���F
+�

�

���F
−�

→
���F

+�
�

���F
−�

. �55�

It is common use to also refer to the operators D± themselves as Dirac type operators although
he square of these operators is usually not defined. �Equivalently, if, for instance, the operator

+ :���F
+�→���F

−� is identified by the operator � 0 0

D+ 0 � :���F�→���F� it follows that D+
2 �0.

ence, it is not a Dirac type operator in the sense presented here. However, every �anti-� sym-
etric Dirac type operator D is fully determined by D+.� The Hermitian product on E depends on

he signature of D. For instance, in the respective cases of Lorentzian and Euclidean signature the
ollowing is obtained for all z ,z��E:

�z,z��E ª�z−̄z+� + z+̄z−� �Lorentzian sign.�

z+̄z+� + z−̄z−� �Euclidean sign.� ,

here z̄ means either the Dirac or Hermitian conjugate of the “spinor degrees” of freedom of z.

ore precisely, let � :FE→M be the frame bundle of �F, such that E�z���p ,z=�i=1
2k

si � zi��
FE�spin�n���F�G�C2k

� CNF. Then, the notation z1z2 means: z1z2�z1z2ª�i=1
2k

�s1,i s2,i��z1,i
† z2,i�. By

he definition of the fermion bundle, this value is clearly independent of the choice of p�FE and
hus independent of the representative z of z. Hence, in the cases considered, the fermionic
agrangian �54� reads

LF�D��$� ª ��$+D+$+�M �Lorentzian sign.�

�$−D+$+�M �Euclidean sign.� .

The D+ part of simple type Dirac operators has the form

D+ = � �”A �LR

− �RL �”A
� � �”A + �M � �+ �56�

here, respectively, �LRª�M � �̃LR���Hom��F,RR,�F,RL�� and �RLª−�M � �̃RL

��Hom��F,LL,�F,LR��. The mapping �̃LR equals �LR restricted to ��HomCl��F,LL,�F,LR�� and �̃RL

quals −�RL, restricted to the sub-space ��HomCl��F,RR,�F,RL��. As �56� formally looks like a
imple type Dirac operator, we also refer to it as a Dirac operator of simple type. For Lorentzian
r Euclidean signature the corresponding fermionic Lagrangian reads:

LF��”A + �M � ���$� = ��$+��”A + �M � �+�$+�M �Lorentzian sign.�
�$−��”A + �M � �+�$+�M �Euclideansign.�

= �
�$LL�”A$LL + $RR�”A$RR�M+

�$LL�1 � �̃LR�$RR + $RR�1 � �̃RL�$LL�M,

�$RL�”A$LL + $LR�”A$RR�M+

˜ ˜
�$RL�1 � �LR�$RR + $LR�1 � �RL�$LL�M.

                                                                                                            



i
e

r

w

t
H
o

L
ª

w
r
e
m
a

c

r

T

c
D
s
i
e
�
a
i
s
a
t

w

082305-17 Dirac type gauge theories J. Math. Phys. 47, 082305 �2006�

                        
Note that D is formally self-adjoint if and only if D−=D+
†. Also note that �†=−� if and only

f �+
† =−�+, which in turn is equivalent to �1 � �̃RL�= �1 � �̃LR�†. Here, all mappings are consid-

red to be defined on the total space ���F�. In case of D being �anti-� Hermitian we may set,

espectively, �1 � �̃�ª �1 � �̃LR� and �̃��M � �̃.
Finally, for a Dirac-Yukawa operator one obtains

D+ = � �”A GY� �

− GY� �† �”A
� � �”A + �M � Ỹ� � , �57�

ith a smooth mapping

GY:���H� → ��Hom��F,RR,�F,RL��

 � �M � �̃ª GY� � �58�

hat is induced by an appropriate Yukawa mapping �4.1� and where  ����H� is a section of the
iggs bundle. We may therefore formally refer to the operator �57� also as a Dirac-Yukawa
perator.

As an example, we consider the fermionic Lagrangian of a Dirac-Yukawa type operator of
orentzian signature which spontaneously breaks the gauge symmetry. In the case of NF,L

2 ,NF,Rª1 the fermionic Lagrangian �54� reads

LF�iD��$� = ��L,i�”�L�E� M + �e,�i�” − m�e�Ee
M, �59�

ith the physical notation $LL���L ,eL� and $RR�eR for the “state” of the left-handed and
ight-handed leptons, respectively. Here, �L��LL � �RL and e�eL � eR are considered as
igensections of the total fermionic mass matrix which correspond to the eigenvalues zero and
�R+

�. Physically, one may interpret the corresponding �isomorphism class of� eigenbundles �F
�

nd �F
e �with �F��F

�
� �F

e� as “asymptotically free particles.”
Remark: To “lowest order” �c.f. our discussion in the next section� the energy-momentum

urrent Ltot
* �M���End�	M�� of the “total Lagrangian”

Ltot�i�” − MF��$� � LF�i�” − MF��$� + LD�i�” − MF� �60�

eads

Ltot
* �M�%→0�grtr MF

2idTM + O�%� . �61�

his holds true for every gauge theory that is based on a Dirac-Yukawa type operator.
In this section we introduced the Higgs bundle as a specific Hermitian subvector bundle of a

hiral fermion bundle and discussed a specific subclass of simple type Dirac operators, called
irac-Yukawa operators. We also introduced the fermionic Lagrangian within our geometrical

etup. In particular, in the case of the Lorentzian signature the definition of the fermionic Lagrang-
an simply looks like the restriction to the physical subbundle �phy of the fermion bundle. How-
ver, this is not the case. In order to obtain the “correct” fermionic couplings one also needs

F
−��F. Indeed this doubling of the fermionic degrees of freedom is necessary in order to consider
Dirac type operator as an endomorphism on the vector space of sections of a fermion bundle. It

s only in this case that one can make use of the general Lichnerowicz decomposition of �the
quare of� a Dirac type operator which in turn permits to consider the universal Lagrangian �21� as
canonical mapping between the affine set of all Dirac type operators on a fermion bundle and the

op forms of the underlying base manifold M.
In the next section we will consider a natural generalization of Dirac-Yukawa type operators
hich encodes the dynamics of the sections of the Higgs bundle �H and the “Yang-Mills bundle”
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YM. It also yields the appropriate mass matrices in such a way that spontaneous symmetry
reaking induced by a minimum of the Higgs potential is in accordance with spontaneous sym-
etry breaking induced by the Yukawa coupling and gravity.

. THE LAGRANGIAN OF THE STANDARD MODEL AS THE “SQUARE” OF PAULI-
IRAC-YUKAWA TYPE OPERATORS

From our discussion of the preceding section it follows that the total Lagrangian of a simple
ype Dirac operator to lowest order only yields the “free field” equations of the eigensections of
he fermionic mass matrix. �This is because the energy momentum current is at least homogeneous
f degree two with respect to the appropriate sections.� Moreover, space-time should be an Ein-
tein manifold that is physically determined by the �sum of the� fermionic masses. As a conse-
uence, one has to appropriately generalize simple type Dirac operators in order to obtain non-
rivial Euler-Lagrange equations also for the Yang-Mills gauge fields and the sections of the Higgs
undle. Of course, such a generalization of a simple type Dirac operator on a fermion bundle must
e done in such a way that it is consistent with spontaneous symmetry breaking induced by the
ukawa coupling and gravity. For this we first introduce a new class of Dirac type operators which
e call “Dirac operators of Pauli type” �PD�. These operators act on sections of a specific sub-
undle of the doubled fermion bundle, where the latter is defined by the data of a simple type
irac operator that underlies the corresponding PD. Doubling the fermion bundle has the physical
eaning of simultaneously dealing with “particles and antiparticles.” The above mentioned sub-

undle turns out to be equivalent to the fermion bundle one starts with, and the corresponding
ermionic Lagrangian reduces to the one which is defined only by the underlying Dirac operator of
imple type. To make this precise, we have to consider real fermion bundles.

. Real fermion bundles and operators of Pauli type

Let "2F be a real vector bundle of rank 2N and total space W2F. Also let I2F�EndR�"2F� be a
omplex structure. We denote by �F the complex vector bundle of rank N which is defined by the
−action: zzªxz+yI2F�z�, for all z�x+ iy�C and z�W2F. The corresponding total space is
enoted again by E. Also, let �2FªC � "2F with total space E2FªC � W2F. The complex vector
undle �2F of rank 2N is naturally Z2−graded as

�2F � �F � �F. �62�

ere, �F is the conjugate complex vector bundle of �F. The elements of its total space E are
enoted by z. They may be identified either with elements z�W2F, such that zzªxz−yI2F�z�, or
onsidered as antilinear functionals on E* �dual of E�. Of course, the subspaces of decomposition
62� are but the eigenspaces of I2F �considered as a complex linear mapping� with respect to the
igenvalues ±i.

The canonical real structure on �2F is denoted by J2F. It is given by J2F�z1 ,z2�ª �z2 ,z1�. The
orresponding real sub-space

��z,z� � E2F	z � E
 � W2F �63�

an be identified with E via the canonical complex structure: i�z ,z�ª �iz ,−iz�. Note that, likewise,

2F may be viewed as the complex space W4F�W2F � W2F with the complex structure given by
he action I4F�w1 ,w2�ª �−w2 ,w1�. Clearly, this complex structure in turn can be identified with

2F under the identification of W2F with E.
In what follows, it is assumed that the complex vector bundle �F is a fermion bundle with

espect to �G,�F ,D�. Both the signature s�Z of D and the dimension n=2k�N of the orientable
ase manifold M are again arbitrary, although we are mainly interested in the physically distin-
uished case of �n ,s�= �4,�2�. Likewise, the complex vector bundle �F is treated as the conjugate

omplex �“charge conjugate”� fermion bundle with respect to �G,�F , D̄�. Here, �F is the conjugate
¯ ¯
epresentation of G, and the �charge conjugate� Dirac type operator D is defined by D$ªD$ for
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ll $����F�. If � · , ·�E denotes again the Hermitian product �the Hermitian product on E is
ssumed to be antilinear in the first, and linear in the second argument; also, the “bar” notation, as
or instance z, should not be confounded with the Dirac conjugation in the case of the Lorentz

ignature� on E, one has �z1 ,z2�Ēª�z2 ,z1�E. Hence, the sum �$ ,D$�E+�$ , D̄$�Ē van-
shes if D is anti-symmetric.

Although they are anti-isomorphic to each other, there is no natural way to identify the
ermion bundle �F with its charge conjugate �F. In order to do so we still have to give additional
nput. For this let J be a real structure on �F such that

C:E → Ē

z � J�z�¯ �64�

efines a linear bundle isomorphism over the identity on M, usually referred to as “charge
onjugation” �see, for instance, in Ref. 7 in the context of Clifford algebras and in Ref. 13 in the
ontext of noncommutative geometry�. Notice that C−1�z�=J�z�. As a result, the charge conjugate
irac operator may be written as

D̄ = CJ � D � CJ
−1, �65�

here CJ�z�ªC�J�z��=z.
The existence of J depends on the topology of �F. Indeed, it can be shown that a complex

ector bundle possesses a real structure if and only if all of its odd Chern classes vanish �see, for
nstance, Ref. 24�.

Definition 5.1 Let �F be a real fermion bundle over M with respect to the Dirac triple
G,�F ,D�. Also, let FD��2�M ,EndCl

+ �E�� be the twisting curvature of �D. We call the associated
rst order differential operator

DP ª �D + i��FD� 0

0 CJ
−1 � �D − i��FD�� � CJ

�:

���F�
�

���F�
→
���F�

�

���F�
�66�

Dirac operator of “Pauli type” �or “Pauli-Dirac operator”� with respect to the grading involu-
ion �2F that is defined by the action �2F�z1 ,z2�ª ���z2� ,��z1�� and the real structure J.

Equivalently, one may also express a Pauli-Dirac operator with respect to the diagonal repre-
entation of the grading involution �2F �i.e., where �2F=diag�� ,−���, in which case

DP = � D − ��FD�
��FD� D

� � D + I � ��FD� . �67�

he bundle mapping I�EndC�E � E�, which is defined by I�z1 ,z2�ª �−z2 ,z1�, corresponds to the
omplex structure I4F with help of the identification of W2F�E � E with E.

If D��”A, then the zero order term DP−�”A formally looks like the well-known “Pauli-term”
��FA� which has been introduced by physicists in order to correctly describe the anomalous
agnetic moment of the proton. However, the first order operator �”A+ i��FA� is not a Dirac type

perator in our sense for the Pauli term is an even operator. To remedy this flaw we again have to
double the fermionic degrees of freedom,” in this case, however, by adding the corresponding
antifermions.” As a consequence, for diagonal sections, which one may physically interpret as
epresenting the state of a “particle-antiparticle” �with the help of the identification �F��F�, &
�$ ,$�����F� ����F�=���F � �F�����2F�, we obtain the identity
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�&,DP&�E2F
= 2�$,D$�E. �68�

ence, the Pauli term does not contribute to the fermionic Lagrangian as far as “particle-anti-
article states” are simultaneously taken into account. This is certainly desirable, for it is well-
nown that the coupling of the fermions to the curvature actually spoils the theory of their
enormalizability. Hence, to lift the first order differential operator �”A+ i��FA� to a true Dirac type
perator restores a basic feature of �perturbative� quantum field theory. Again, by formal similarity
e also refer to the operator �”A+ i��FA� itself as a Dirac operator of Pauli type, analogous to
perator �57� is formally referred to as Dirac operator of Yukawa type.

Let �F be the real chiral fermion bundle with respect to �G,�F ,D�, with D being of simply
ype.

Proposition 5.1: The top form of DP decomposes into the sum

LD�DP� = LEH ± LYM ± LH �69�

here, respectively, LEH is the Einstein-Hilbert Lagrangian, LYM the Yang-Mills Lagrangian and

H the “Higgs” Lagrangian of the Standard Model of Particle Physics.
Proof: The proof is basically a copy of the proof of the corresponding statement that has been

resented already in Ref. 45 in the case of s=n �c.f. Theorem 1�. We note that the top form

D�D����n�M� is independent of the connection representing D��D��F�. Hence, one may
hoose any representative of the connection class that corresponds to DP to define the Pauli term
��FA�. The relative signs of �69� depend on the signature of D and of the definition of the Clifford
ultiplication. In particular, the relative sign in front of the kinetic term ��A

W� ,�A
W�� of the Higgs

agrangian depends on whether �the complexified� 	Cl
�+� or 	Cl

�−� is considered to act on �F. Finally,
e stress that decomposition �69� is actually independent of the existence of a real structure on �F.

n particular, it does not depend on the choice of J. �

The top form �69� clearly reduces to the combined Einstein-Hilbert-Yang-Mills Lagrangian in
he case where �F is not chiral. However, if D denotes a Dirac-Yukawa type operator, then the total
agrangian

Ltot�DP��&� � LF�DP��&� + LD�DP� = LF�D��$� + LD�DP� �70�

quals the total Lagrangian of the Standard Model, including Einstein’s theory of gravity. Here, we
sed the homogeneity property of the fermionic density: LF�DP���&�=�2LF�DP��&� and put &
�$ ,$� /�2. Note that the corresponding Euler-Lagrange equations form a dynamically closed

ystem. For this reason, we refer to DP also as a Dirac operator of “Pauli-Yukawa” type �or
Pauli-Dirac-Yukawa” operator, PDY� if operator �66� is defined in terms of a Dirac-Yukawa type
perator �49�. Therefore,

��F,DP� �71�

ay be regarded as a “square root” of �the Lagrangian of� the Standard Model. �Of course, the
ata ��F ,DP� covers the geometrical properties of the Standard Model only up to the semiclassical
pproximation of the latter. It also seems worth noting that because decomposition �69� is inde-
endent of the existence of the reality of the fermion bundle, it is possible to also take into account
agnetic monopoles within the Standard Model as topologically nontrivial ground states of the
iggs boson. Moreover, it is well-known that the weak interaction actually spoils the symmetry
nder charge conjugation�.

. “Fluctuation” of a fermionic vacuum and the YM-mass matrix

Before we proceed let us come back to the notion of a “�semiclassical� fermionic vacuum” and
ow this is related to the reality of a fermion bundle. Essentially, a chiral fermion bundle �F

�F
+

� �F
− is related to a Dirac triple �G,�F ,D�, with D being of simple type. The existence of a

ermionic vacuum crucially depends on the existence of a non-vanishing section �
−
��EndCl��F�� and a purely topological Clifford connection A�ACl��F�. This in fact reduces the
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revious Dirac triple to �H,�F,red ,�”� and �F may be regarded, accordingly, as a perturbation of the
orresponding �F,red. Clearly, such a reduction causes severe topological restrictions on a fermion
undle. Of course, this holds true also for the existence of a Dirac-Yukawa type operator. For
xample, in the case of the electroweak interaction, a fermionic vacuum exists if and only if the
orresponding Yang-Mills gauge bundle of the electroweak interaction is trivial. This in turn holds
rue if and only if the �charged� electroweak vector bosons are charge conjugate to each other �c.f.
ef. 48�. In the �algebraic� torsion free case this is equivalent to the existence of a flat Yang-Mills
onnection. This example may motivate the following

Definition 5.2: A fermion bundle �F is called “perturbative” provided there is a Dirac type
perator D�D��F� such that FD=R” .

A fermionic vacuum is thus geometrically described by a perturbative massive fermion
undle. Next, we introduce a specific subvector bundle of �F

*
�M�F and discuss the “bosonic mass

atrix” within the presented fermionic frame.
Definition 5.3: Let again �F be a massive fermion bundle with respect to a Dirac-Yukawa

odel �G,�F ,D�. The real sub-bundle

�YM ª 	M
*

�MEndCl
+ ��F� � End��F� �72�

s called the Yang-Mills bundle with respect to the appropriate fermionic vacuum �F,red.
With respect to a fermionic vacuum the �real form of the� Higgs bundle decomposes into the

hitney sum of two real vector bundles

�H � �G � �H,phys �73�

ith �G��H��F being the “Goldstone bundle” and �H,phys��F being the “physical Higgs bundle”
c.f. Lemma 3.1 in Ref. 46 for Yang-Mills-Higgs gauge theories�. Therefore, any Dirac-Yukawa
ype operator on a massive fermion bundle �F is parametrized by �A , H�����YM�M�H,phys�. In
articular, for t� �0,1� one may consider the one-parameter family �At , t��A��H�����H� which
s defined by �A,tª�+ tA,  tªV+ t H. Hence, the “Yang-Mills-Higgs pair” �A , H�����YM

M�H,phys� may be physically regarded as a “fluctuation” of the corresponding fermionic vacuum

F,red.
Like in the Yang-Mills-Higgs gauge theories, a fluctuation �A , H� of a fermionic vacuum

ields a self-adjoint section MH���End��H�����EndCl��F�� such that the rank of the Goldstone
undle equals the dimension of the kernel of the “Higgs mass operator” MH. Moreover, �H,phys

ecompose into the Whitney sum of eigenbundles of the Higgs mass matrix. Likewise, since in
eneral A����YM� gives rise to a connection on �F that is not compatible with the fermionic
acuum �i.e., the corresponding covariant derivative does not commute with the total fermionic
ass operator�, a fluctuation of the fermionic vacuum also yields a nontrivial Yang-Mills mass

perator MYM���End��YM�� �see Ref. 46�. As a consequence, the Yang-Mills bundle decomposes
nto the eigenbundles of MYM for again spec�MYM� is constant throughout M. In particular, one
btains the decomposition �see, again, Ref. 46�

�YM � 	M
*

�M�ad�Q� � �G� �74�

ith ad�Q��Lie�HYM� being the “adjoint bundle” of the reduced frame bundle Q�

!

P associated
ith the fermionic vacuum �F,red. As rk�MYM�=rk��G� the equivalence �74� is a geometrical
ariant of the famous “Higgs-Dinner.” It follows that A����YM� decomposes into A=AYM+AG.
ence, the deviation from A being compatible with the fermionic vacuum can be expressed by

�A
End�E�MF = ad�AG�MF. �75�

s already mentioned, the nonvanishing of the right-hand side �i.e., of AG�	M
*

�M�G� yields a

ontrivial Yang-Mills mass operator MYM. In fact, one has
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MYM�A� = ad�MF��A� �76�

ith �MYM�A��2=MYM
2 �A ,A� and the symmetric bilinear form

MYM
2 :���YM�M�YM� → C��M�

�A,A�� � 1
2MYM

2 �Ta,Tb�gM�Aa,A�b� . �77�

ere, respectively, A =
loc

Aa � Ta ,A� =
loc

A�a � Ta and

MYM
2 �Ta,Tb�	x ª 2�GY�2�V�x�,�Ta,Tb�+V�x��E �78�

s the �squared� “Yang-Mills mass matrix,” with �· , · �+ being the anticommutator. Note that we
sed �H��F, such that a vacuum section V can also be regarded as a section of the fermion
undle. We also extensively used the properties of the Yukawa mapping �4.1�. In particular, we
ade use of the fact that ad�D�A=Y�AV� where, by abuse of notation, A refers to two different

epresentations. Also note that the eigenvalues of �78� are actually independent of x�M. Of
ourse, the rank of �78� equals the rank of the Goldstone bundle �G��F. Accordingly, one may
ewrite �75� as

��A
End�E�MF�2 = 2nMYM

2 �A,A� . �79�

hat is, the fermionic mass matrix is covariantly constant with respect to a Clifford connection on
massive fermion bundle iff this Clifford connection is in the kernel of the Yang-Mills mass
atrix. The latter, of course, is in one-to-one correspondence with the residual gauge fields.

Let D�D��F� be a Dirac operator of simple type such that D−�”A�0 and GYM acts transi-
ively on the image of D−�”A. Then, there is a nonvanishing smooth function ��C��M� such that

=�”A+ i�MF. Let �F,red��F be a fermionic vacuum with respect to �H,�F,red ,�”D�. Then, D defines
fluctuation of �F,red iff

D = �”A + ���”D − �”� . �80�

ote that this condition is in full accordance with the usual definition of the Higgs boson as being
n the unitary gauge. Here, however, this condition is expressed purely in terms of fermions.

Proposition 5.2: Let �F,red��F be a fermionic vacuum with respect to a Dirac-Yukawa model
H,�F,red ,�”V�. Also, let �A , H�����YM�M�H,phys� be a fluctuation of the fermionic vacuum. Then,
he total curvature on �F of the connection determined by the Dirac-Yukawa operator

D = �”A + �M � � = �” + �M � Y�V� + ��A� + �M � Y� H� � �”D + ��Afl� �81�

eads

FD = R” + FA + FH + Fmass = R” + FYM + FG + FH + Fmass. �82�

ere, respectively,

FYM ª �AYM + AYM Ù AYM,

FG ª �AG + AG Ù AG,

FH ª �AH + AH Ù AH �83�

re the Yang-Mills curvature with respect to the reduced Yang-Mills gauge group

YM�GYM�GF, the curvature on �F of the �massive� vector boson that corresponds to the
oldstone boson and the curvature induced by the �physical part of the� Higgs boson according to
he decomposition
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Afl = A + AH = AYM + AG + AH, �84�

ith AHªext���M � Y� H��.
Finally, the “mass-curvature” Fmass��2�M ,End�E�� is given by

Fmass ª �1 − 2� H��MF
2� Ù � + �1 + � H��MYM�AG� Ù � = ext���1 − 2� H��F + �1 + � H��YM� .

�85�

We call, respectively, Fªext��MF
2���1�M ,End�E�� and YMªMYM�AG���M

� MYM�A���1�M ,End�E�� the “fermionic mass form” and the “Yang-Mills mass form.”
Proof: First, note that the Yang-Mills mass form YM contributes to the total curvature even if

A= H=0 is supposed to hold true. Hence, it also gives rise to a fluctuation of gM. In contrast to
hat one may infer from Fmass, however, the contribution of the bosonic mass is of “higher order”

n comparison to the curvature that is induced by the fermionic mass. In other words, Fmass

ext��F�+O�t� in accordance with �42�. We stress that �82� indeed reduces to �42� if  H=0.
ence, it gives a physical interpretation, in particular, of the last term of the decomposition �42� of

he curvature of a simple type Dirac operator which spontaneously breaks the gauge symmetry.
ne may express this also in more physical terms by saying that it is the interaction of the gauge
eld with the fermionic vacuum that yields massive vector bosons.

To prove decomposition �82� one uses decomposition �73� and the Higgs-Dinner �74�, as well
s �MF

2 ,��= �MYM,��=0. Moreover, due to our previous remark concerning fluctuations one may
ake into account that  H= � H �V �where �V � =1 is assumed without loss of generality�. Note also
hat both the �lifted� soldering form � and the Yukawa-mapping Y are covariantly constant with
espect to any Clifford connection. Finally, taking also into account that � acts on Afl like the usual
xterior derivative, the proof actually becomes a straightforward calculation. �

We emphasize that spontaneous symmetry breaking induced by a fermionic vacuum is com-
atible with spontaneous symmetry breaking induced by the Higgs potential arising from a fluc-
uation of the fermionic vacuum �i.e., �”D�DP�. Clearly, G acts transitively on
m����Orbit�Z0��P�GG/H for any chosen minimum Z0�End�CNH� of the Higgs potential
nduced by DP. Therefore, the condition ����End��H�� \ �O
 is necessary and sufficient for the
nitary gauge to exist. In particular, if �F is defined with respect to a Dirac-Yukawa model, then for
ach  ����H� \ �O
 there exists a “vacuum section” V ���Orbit�z0������H� such that  
���H,phys�. This holds true for any rotationally symmetric Higgs potential �like the Higgs poten-

ial generated by a Pauli-Dirac type operator�. By the very definition of the Yukawa mapping the
tructure group G then acts transitively also on im�Y� � / �Y� � � ��S�EndCl��F�.

I. OUTLOOK

We discussed a certain class of gauge theories with the basic property of having a square root
n the sense of the data of Dirac type operators. These Dirac type gauge theories have in common
hat they are derived by a universal Lagrangian which is shown to be equivariant with respect to
undle automorphisms. Moreover, these gauge theories naturally include Einstein’s theory of
ravity, and the fermionic gauge group of the universal �Dirac-� Lagrangian contains both Yang-
ills and Einstein-Hilbert type symmetry groups. In particular, the action of the diffeomorphism

roup of the base manifold is naturally represented by pull-back. We also considered a distin-
uished class of Dirac type operators whose associated top form gives rise to spontaneous sym-
etry breaking without using Higgs-like potentials. Indeed, the latter naturally arises when a
uctuation of the fermionic vacuum is taken into account. The geometrical meaning of the induced
osonic mass operators can be shown to consist of defining the extrinsic curvature of the “physical
pace-time” Mphys. The intrinsic curvature of the latter, however, was shown to be defined by the
ermionic vacuum. In the case where the fermionic vacuum is defined with respect to a Dirac-
ukawa model, the appropriate Higgs and Yang-Mills bundle can be naturally regarded as specific
ub-vector bundles of �F, respectively, of �F

*
�M�F. For this we discussed the Yukawa couplings
rom a geometrical point of view in terms of specific sections of the Yukawa bundle, which is
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hown to yield the connection between the fermion and the Higgs bundle. To consider the Yukawa
undle �Y as a specific sub-vector bundle of �H

*
�M�F

*
�M�F permits a geometrical understanding

f the well-known “hypercharge relations” between the physical Higgs boson �H,phy and the
symptotically free fermions �F,m2 ��F in the case of the minimal Standard Model. In this sense,
he presented frame makes it possible to treat the geometrical properties of spontaneously broken
ang-Mills-Higgs gauge theories in terms of fermions, as discussed in Ref. 46. In particular, it is
hown that this kind of gauge theories can be expressed in the geometrical setup needed to
escribe fermions without use of spin structures. Note that the latter actually has no obvious
hysical meaning. Indeed, all experiments carried out to date demonstrating the physical signifi-
ance of the twofold cover of SO�3� are local. The assumption of orientability, however, is
ecessary to derive the Einstein equation from a globally defined density which seems to also have
ome significance in our understanding of mass.

The “fermion doubling” within the presented geometrical setup is shown to be tied to the
ichnerowicz decomposition of a Dirac type operator. As the latter gives rise to the universal
agrangian and, moreover, to a specific class of Dirac type operators which yield spontaneous
ymmetry breaking, the projection onto the physical sub-space �phy��F clearly indicates a non-
rivial relation between the fermionic Lagrangian LF and the Dirac Lagrangian LD.

As the Dirac Lagrangian is a canonical element within the presented geometrical frame, it will
e useful to discuss it also in terms of the geometry of variational bicomplexes. This may offer a
ore profound mathematical understanding of operators of Pauli-Dirac type as has been intro-

uced here as a “fluctuation of a fermionic vacuum.” These kinds of Dirac type operators obvi-
usly play a fundamental role in the Standard Model of Particle Physics. In a forthcoming article
e shall thus discuss the Dirac triple of the Standard Model in more detail. In particular, we shall

how how this triple permits specification of spec�MH�. In the case of the “minimal” Standard
odel rk��H,phys�=1 which allows a prediction of the mass of the Higgs boson. For this, however,

ne still has to carefully take into account possible “coupling constants” within the frame of Dirac
ype gauge theories. In general, one may modify the total Lagrangian Ltot as

Ltot�D��$� � Lphys�D��$� ª LF�D��$� + �LD�D� , �86�

ith the Dirac-Lagrangian being refined by

LD�D� ª * tr�"�D2 − �D�� . �87�

ere, respectively, ��R is a “relative weight” between the fermionic and bosonic Lagrangian and
is the most general element of the commutant with respect to the fermionic representation �F of

he structure group G. More precisely, "���EndCl
+ ��F�� is a positive Hermitian operator satisfying:

D ,"�=0= �" ,g�, for all g�GYM. It therefore may be considered as generalizing the Yang-Mills
oupling constant of a “pure” Yang-Mills gauge theory. Actually, the constant � may be fixed by
n appropriate normalization of the Einstein-Hilbert Lagrangian.

Due to formula �78� the Yang-Mills mass matrix is proportional to the �squared� norm of the
ukawa-coupling constants GY. However, the “physical” Yang-Mills mass matrix is known to be
roportional to the Yang-Mills coupling constants gYM�0 which parameterize the most general
illing form on Lie�G�. Hence, we have to re-scale AG by a positive constant gG for each simple

actor of G, i.e., AG
a �AG

a /gG
�a� �no summation involved�, such that

gYM
�a� = gG

�a�gY �88�

ith the abbreviation gY��GY�.
Finally, one also has to take into account that in general �V � �1, and that the various differ-

ntial forms defining the Dirac type operator in question have different dimensions. Besides the
Planck scale” �which comes in because of the generic Einstein-Hilbert part of the total Lagrang-
an� this will bring in an additional length scale within Dirac type gauge theories. However, in the
ase of the Lagrangian of a PDY this additional length scale turns out to be proportional to the

inverse of the� Higgs mass. Hence, in the case of the Standard Model the two length scales
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ecouple within GTDT, and gravity effects can be neglected as it is commonly expected. For this
o be consistent, however, we stress again the necessity of the compatibility of the two different
ymmetry reductions obtained by the fermionic vacua �i.e., simple type Dirac operators� and the
round states of the Higgs boson �i.e., Pauli type Dirac operators�.
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PPENDIX

Because of its relevance within Dirac type gauge theories we present here in some detail the
roof of Proposition 3.1. In particular, it is shown that it holds true for arbitrary signature of D. In
ef. 1 a similar proof was presented for the special case of elliptic Dirac type operators.

. Tensor decomposition

In this subsection we collect some useful formulas which will be needed to prove the explicit
orm of the Dirac forms �D��1�M ,End�E�� of simple type Dirac operators. Though interesting
n its own we will not prove these formulae here �since the proof would be technical but straight-
orward�.

To get started let ����	M
*

�M�n−1	M
*

�MEnd��F��. Throughout this Appendix, let
X1 , . . . ,Xn� be a locally defined orthonormal frame on M and �X1 , . . . ,Xn� its dual frame. Then,
ocally one has

��Xi1
, . . . ,Xin

� = :�i1¯in
� �i1�i2¯in�,

�A1�
���� = :�” � �i1 . . . �in � �i1¯in

.

ere, the square brackets �¯� indicate skew-symmetrization with the convention: n !��i1¯in�
�#�Sn

sgn #�#�i1�¯#�in� and, again, �k���Xk�. In what follows, we restrict ourselves to the Clif-
ord relation 
�+�
= +2gM�
 ,�� for all 
 ,��T*M�Cl�M� �the total space of 	Cl

�+��.
First, we have the following decomposition �the “↑

j

” means that i1 is at the jth position�

�i1¯in
= ��i1¯in� +

1

n
�
j=2

n �
�i1¯in

+ �

ij i2 ¯ i1 ¯ in

↑
j

� . �A2�

As a consequence, it follows that ���� may locally be written as

�i1�i3
¯ �in � �i1i3¯in

= −
n

n − 1
�i1�i3

¯ �in � ��i1i3¯in� +
1

n − 1
�i1�i3

¯ �in � �i1i3¯in

− �n − 2�g
��i4
¯ �in � �
�i4¯in

�A3�

here, again, gij �gM�Xi ,Xj�.
Using these two formulas one finally proves the following local decomposition which turns

ut to be particularly useful in what follows:

���� =
loc.

�i1
¯ �in � ��i ¯i � + �n − 1�g
��i3

¯ �in � �
�i ¯i . �A4�

1 n 3 n
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. Proof of Proposition 3.1

Let �= �E ,M ,�%� be an arbitrary Z2−graded Clifford module bundle over any smooth �semi-�
iemannian manifold �M ,gM� with dim M=n and n even. Every Dirac type operator D may be
lobally decomposed as D=�”A+�” , with A being a Clifford connection and ���1�M ,End+�E��
eing given by �ª�Ù �D−�”A�. Notice again that � may also depend on the choice of A unless D
s of simple type. Locally, � reads

� =
loc.

Xi
� �i

a
� ea � Xi

� ��
k=0

n

�i1
¯ �ik�ii1¯ik

a � � ea, �A5�

ith �ii1¯ik
a =�i�i1¯ik�

a and �e1 , . . . ,eN� being a local frame in EndCl��� such that � is odd with
espect to the total grading.

By definition, D is of simple type if the Clifford connection A also defines the Bochner-
aplacian of D. Using the general Bochner-Lichnerowicz-Weizenböck decomposition of D2 it can
e shown that, independently of the signature of gM, this holds true if and only if �in the case s
n this has been proved in Ref. 1; the more general case of arbitrary signature has been proved in
ef. 44�

2gij� j
a + � j�� j

a,�i� = 0. �A6�

As this relation is linear with respect to the frame �e1 , . . . ,eN� we may suppress the index a in
hat follows.

Lemma 7.1: Let ����	M
*

�M	Cl
�+�� be a Clifford algebra valued one-form where the coeffi-

ients �� fulfill the relation �A6�. Then, the most general form of �� reads

�� = �
k=0

n

�i1
¯ �ik���i1¯ik�

�k� �A7�

here the coefficients satisfy the relations:

���i1¯in�
�n� = 0,

���i1¯in−1�
�n−1� = ��i1¯in−1

f ,

kg
��
�i1¯ik−1

�k� + ��i1¯ik−1�
�k−2� = 0, k = n − 1, . . . ,2,

g
��
�
�1� = 0. �A8�

ere, respectively, ��i1¯ik

�k� ����i1¯ik�
�k�

ª��
�k��Xi1

, . . . ,Xik
� are the local coefficients of appropriate

-forms ��
�k���1�U� �U�M open, �=1, . . . ,n�, f �C��U� and %i1...in

�M�Xi1
, . . . ,Xin

� the Levi-
ivita symbol.

Proof: To get started we rewrite condition �A6� as �����+�����
=0 and then appropriately

earrange both terms on the left-hand side.

�����
 = �

k=0

n

�− 1�k������i1
¯ �ik��i1¯ik

�k� − 2kgi1���i2
¯ �ik��i1i2¯ik

�k� � . �A9�
Using this re-arrangement and formula �A3� one obtains
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0 = �
k=0

n

��1 − �− 1�k������i1
¯ �ik���i1¯ik�

�k� + k��i2
¯ �ikg
��
�i2¯ik

�k� � + �− 1�k2�k

+ 1�g��i1
¯ �ik���i1¯ik�

�k� + �− 1�k2k�k − 1�g��i3
¯ �ikg
��
��i3¯ik

�k� � . �A10�

This sum may be further split into two sums of an even and odd number of Clifford elements.
ince these terms are linearly independent one may evaluate each sum separately. For example,

he sum of an odd number of Clifford elements gives rise to the condition:

0 = �
�k odd�

k=1

n

�����i1
¯ �ik���i1¯ik�

�k� + k��i2
¯ �ikg
��
�i2¯ik

�k� − �k + 1�g��i1
¯ �ik���i2¯ik�

�k� − k�k

− 1�g��i3
¯ �ikg
��
��i3¯ik

�k� � . �A11�

As �the caret denotes the omission of the “hated” object�

����i1
¯ �in−1���i1¯in−1�

�n−1� = ng��i1
¯ �iˆ

¯ �in���i1¯i
ˆ
¯in�

�n−1�
, �A12�

ondition �A11� becomes equivalent to

0 = ��i2
¯ �in−1��n − 1�g
��
�i2¯in−1

�n−1� + ��i2¯in−1�
�n−3� � + �

�k odd�
k=3

n−3

�− �k + 1�g��i1
¯ �ik��k

+ 2�g
��
��i1¯ik
�k+2� + ���i1¯ik�

�k� � + ��i2
¯ �ik�kg
��
�i2¯ik

�k� + ��i2¯ik�
�k−2� �� + �g
��
�

�1� .

�A13�

The term with the highest degree in the �ij vanishes. By an induction argument one ends up
ith the recursion relation:

kg
��
�i2¯ik
�k� + ��i2¯ik�

�k−2� = 0, k = 3, . . . ,n − 1. �A14�

s a consequence, it follows that g
��
�
�1� =0. Moreover, the term ���i1...in−1�

�n−1� drops out and thus is

ndetermined. Its most general form is given by

���i1...in−1�
�n−1� = ��i1. . .,in−1

f , �A15�

ith f being an arbitrary locally defined smooth function on M.
Next, we consider the sum of an even number of Clifford elements. This yields the relation

�
�k even�

k=0

n

��k + 1�g��i1
¯ �ik���i1¯ik�

�k� + k�k − 1�g��i3
¯ �ikg
��
��i3¯ik

�k� � = 0, �A16�

hich in turn gives rise to the following constraint equations:

0 = �n + 1�g��i1
¯ �in���i1¯in�

�n−1� ,

0 = �n − 1�g��i1
¯ �in−2�ng
��
��i1¯in−2

�n� + ���i1¯in−2�
�n−2� � ,

�

0 = �k + 1�g��i1
¯ �ik��k + 2�g
��
��i ¯i

�k+2� + ���i1¯ik�
�k� � ,
1 k

                                                                                                            



w
C

w
=

a
p



W

s

H

r
s

082305-28 J. Tolksdorf and T. Thumstädter J. Math. Phys. 47, 082305 �2006�

                        
�

0 = g��i� j�2g
��
��
�2� + ��

�0�� . �A17�

These are satisfied provided that

0 = ���i1¯in�
�n�

0 = �k + 2�g
��
��i1¯ik
�k+2� + ���i1¯ik�

�k� , k = 0, . . . ,n �A18�

hich, when combined with our previous result with respect to the sum of an odd number of
lifford elements, finally proves the statement. �

Corollary 7.1: Let �F be the chiral fermion bundle with respect to the Dirac triple �G,�F ,D�,
ith D being of simple type and of arbitrary signature. The Dirac form of D reads �D

�Ù ��M ���, with ����EndCl
− ��F�� uniquely determined by D.

Proof: Again, in the sequel we shall suppose that the induced Clifford relations, defining 	Cl,
re given by 
�+�
= +2gM�
 ,��. Locally, we may write �D�X�=�

a
� ea and, again, decom-

ose the coefficients into the sum of odd and even terms with respect to the canonical involution
�−
 for all 
�T*M�Cl�M�:

�
a = �

k=1

n

�i1
¯ �ik��i1¯ik�

a = �
�k odd�

k=1

n−1

�i1
¯ �ik��i1¯ik�

a + �
�k even�

k=0

n

�i1
¯ �ik��i1¯ik�

a � 

a + �

a .

�A19�

e then compute ��
a ��


a +��
a to show that ��

a
� ea=�M ��.

With the help of formula �A4� one obtains �for notational convenience the index a is again
uppressed�

�
 = ��i1
¯ �in−1��i1¯in−1�

�n−1� + 2gij�ij
�1� + �

�k odd�
k=1

n−3

��k + 2��i2
¯ �ik+2gij�ij�i2¯ik+2�

�k+2�

+ ��i1
¯ �ik��i1¯ik�

�k� � . �A20�

ence, using Lemma 7.1, one concludes that

�
 = ��i1
¯ �in−1��i1¯in−1�

�n−1� . �A21�

Next, we consider �� and find, using similar arguments like those given earlier, that

�� = ��i1
¯ �in��i1¯in�

�n� + �
�k even�

k=0

n−2

��k + 2��i2
¯ �ik+2gij�ij�i2¯ik+2�

�k+2� + ��i1
¯ �ik��i1¯ik�

�k� � = 0.

�A22�

Finally, using Lemma 7.1 again, we end up with

�� = ��i1
¯ �in−1��i1¯in−1�

�n−1� = f�1
¯ �n = f̃�M. �A23�

If we set �� f̃ aea, where �e1 , . . . ,eN−� is a local frame in EndCl
− ��F�, we obtain the desired

esult and thus have also proved Proposition 3.1 in the case of 	M. Of course, for 	Cl
�−� the proof is
imilar. �
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We present Jordan-Brans-Dicke and general scalar-tensor gravitational theory in
extra dimensions in an asymptotically flat or anti de Sitter spacetime. We consider
a special gravitating, boson field configuration, a q star, in three, four, five, and six
dimensions, within the framework of the above gravitational theory, and find that
the parameters of the stable stars are a few percent different from the case of
General Relativity. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2245208�

. INTRODUCTION — JORDAN-BRANS-DICKE THEORY IN ANY DIMENSION

Boson stars are stable configurations of a massive, complex scalar field coupled to gravity.1,2

elf-interactions,3,4 the coupling of the matter scalar field to a gauge field,5 or the rotation of the
olitonic object,6 were taken into account. When the nonrelativistic theory admits nontopological
oliton solutions, the corresponding relativistic generalizations, which are very large field configu-
ations, are the soliton stars.7–9 Q balls is a special class of nontopological solitons, appearing in
agrangians with a global U�1� symmetry,10 a local U�1�,11 or a non-Abelian SU�3� or SO�3�
ymmetry.12 Q-stars have been investigated in various models, with one and two scalar fields,13

on-Abelian symmetries,14 with a scalar and a fermion field,15 and with a local U�1� symmetry16

n asymptotically anti de Sitter spacetime,17 and in four or more dimensions.18

Scalar-tensor gravitational theories appeared in the original papers of Brans and Dicke and
ordan.19,20 The Newtonian constant G is replaced by the inverse mean value of a scalar field, �BD,
nd the total action contains kinetic terms for the new field times an �BD quantity, which is
egarded as a constant in the original theory. The theory can be generalized by replacing the
onstant �BD by a function usually of the Brans-Dicke �BD� scalar field.21,22 The theory of a scalar
eld with quartic self-interactions coupled to the metric and the BD scalar formulated in Ref. 23.
arious properties of such configurations have been studied in a series of papers,24,25 where
specially the matter of gravitational memory of boson stars in scalar tensor gravity has been
nalyzed.26,27 Their results generalized in scalar-tensor gravitational theories with �BD no more a
onstant, but a function of the BD scalar.30–32

The purpose of the present work is two-fold: We write the BD gravitational theory in D
imensions and apply our results in a realistic case of a scalar field, admitting q-ball type solutions
n the absence of gravity. We compare our results with the corresponding ones obtained in General
elativity and we investigate the influence of the space-time dimensionality in the parameters of

he star.
All the field configurations under consideration are spherically symmetric and static, so we

se a static, spherically symmetric metric in D dimensions:

�
Electronic mail: aprikas@central.ntua.gr
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ds2 = − e� dt2 + e� d�2 + �2 d�D−2
2 , �1�

ith gtt=−e� and d�D−2
2 the line element on a �D−2�-dimensional unit sphere. The action is

S =
1

16�
� dDx�− gD��BD�R − 2�� −

�BDg	� ���BD ���BD

�BD
2 � + Smatter, �2�

ith Smatter the contribution to the total action of the matter fields. � stands for the negative, or
ero, cosmological constant. The Einstein equations take the form

G	� =
8�

�BD
T	� +

�BD

�BD
2 	�	�BD ���BD −

1

2
g	� ���BD ���BD
 +

1

�BD
��BD,	;� − g	��BD;�

;�� − �g	�,

�3�

here T	
� =diag�−
 ,p , . . . ,p� is the energy momentum tensor with trace T=
+Dp. The equation

f motion for the BD field is

2�BD

�BD
�BD;�

;� −
�BD ���BD ���BD

�BD
2 + R − 2� = 0. �4�

ontracting Eq. �3�, and substituting the trace in Eq. �4�, we find the final form for the equation of
otion of the BD field

�BD;�

;� =
8�T − 2��BD

�D − 2��BD + D − 1
. �5�

quation �5� reveals the dimensional sensitivity of the BD theory. Both T and the �BD-dependent
actor depend on the space-time dimensionality.

We will now find the asymptotic relation for the BD field. For p�
 and �=0, the tt com-
onent of the Einstein equations gives

Gt
t = −

8�


�BD

�D − 2��BD + D

�D − 2��BD + D − 1
. �6�

he corresponding result of the Einstein gravity is

Gt
t = − 8�GD
 . �7�

e know that for 
�, the limit of the BD theory is the Einstein gravity. So, for localized matter
onfigurations, the right boundary value at infinity for the BD field is

�BD =
1

GD

�D − 2��BD + D

�D − 2��BD + D − 1
. �8�

ne can verify that Eqs. �6� and �8� give the right result for the well-known four-dimensional case.
e will now apply our results to a certain case of gravitating scalar matter, namely q stars. See

Figs. 1–4�.

I. q STARS IN BD GRAVITATIONAL THEORY

The Lagrangian resulting from the presence of a matter scalar field is:

Lmatter = − ��	��*����� − U , �9�

here � is the matter scalar and U a suitable potential, admitting q-ball type solutions in the

bsence of gravity. We will now insert the q-soliton ansatz:
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IG. 1. The radius of a q star as a function of �BD. The numbers within the figures denote the space-time dimensionality.
or �BD�1000, the results of General Relativity are approximately reproduced. In Figs. 1–4 and 6–14 �later� we use

=0.45; equivalently Asur=0.81. When decreasing �BD, the star parameters are a few percent larger.
FIG. 2. The value of the matter scalar field at the center of the q star as a function of �BD.
FIG. 3. The total energy of a q star as a function of �BD.
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���� ,t� = ����e−��t. �10�

he equation of motion for the scalar field,

�;�
;� −

dU

d���2
� = 0, �11�

ow takes the form

�� + �D − 2

�
+

1

2
��� − ������ + e��2e−�� − e� dU

d�2� = 0, �12�

here the prime denotes the derivative with respect to �. We define

A = e−�, B = e−�, �13�

W  e−�	 ��

�t

*	 ��

�t

 = e−��2�2,

V  e−�	 ��

��

*	 ��

��

 = e−���2, �14�

nd rescale:

�̃ = �m, �̃ = �/m, �̃ = �/mD−2/2,

U˜ = U/mD, W˜ = W/mD, V˜ = V/mD. �15�

e also rescale for convenience the BD scalar field:

BD = �BDGD
�D − 2��BD + D − 1

�D − 2��BD + D
. �16�

omparing Eqs. �8� and �16� we find that BD→1 for �→� and for localized field configurations.
Gravity becomes important when RD−3�GDM�R�, where M�R� is a parameter, dependent on

FIG. 4. The particle number of a q star as a function of �BD.
he mass trapped within a sphere of radius R. We define
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�  �8�GDmD−2, �17�

hich is a very small quantity for m of the order of magnitude of some �hundreds� GeV. We find
or the interior of a q star that U�W�mD, V��2mD, so the energy resulting from the spatial
ariation of matter field can be neglected within the star. We also define

r̃ = ��̃ . �18�

e use a rescaled potential:

U˜ = ��̃�2	1 − ��̃�2 +
1

3
��̃�4
 = �̃2	1 − �̃2 +

1

3
�̃4
 . �19�

his potential admits q-ball type solutions in the absence of gravity with 1��� ��U / ���2min�
1/2. Dropping from now on the overtildes and the O��� quantities, we find an analytical solution

or the scalar field:

� = �1 + �B1/2�1/2, W = B�2�1 + �B1/2�, U =
1

3
�1 + �3B3/2� . �20�

The eigenvalue equation for the frequency � of the scalar field can be found from the equation
f motion of the matter field within the surface. As we know from Refs. 13–15 q-type solitons are
haracterized by a large interior where the scalar field is approximately constant and a thin surface
f width of order of m−1, where the scalar field varies rapidly from the � value at the inner edge
f the surface, to the zero value at the outer edge. The soliton exterior is clearly distinguished from
he soliton interior and the surface, because the scalar field vanishes at the exterior. The situation
s different in the case of nonsolitonic boson stars, where the star radius is of order of m−1, the
calar field varies from �MPI at the center of the soliton to the zero value outside, and there is no
lear distinction between the star interior and the star surface. In the case of solitonic stars, the
oliton radius is uniquely definned by the outer edge of the surface. Dropping the O��� quantities
rom the Lagrange equation within the surface, we find

V + W − U = 0. �21�

he above equation holds true only within the surface. At the inner edge of the surface �� and,
onsequently, V are zero, in order to match the interior with the surface solution, so W=U. Using
lso Eq. �20�, we find

� =
Asur

1/2

2
=

Bsur
−1/2

2
, �22�

here Asur ,Bsur denote the value of the metrics at the surface of the star. In the absence of gravity,
�r�=B�r�=1, so �=1/2.

We will now turn to the Einstein equations. In D dimensions,

Gt
t =

A − 1

2r2 �D − 3��D − 2� +
A�

2r
�D − 2� ,

Gr
r =

A − 1

2r2 �D − 3��D − 2� −
AB�

2Br
�D − 2� . �23�

he energy-momentum tensor for the matter scalar field is

T	� = ��	��*����� + ��	�������* − g	��g�������*������ − g	�U . �24�

sing Eqs. �10�, �13�–�15�, and �20�, and dropping the O��� quantities, we can write the Einstein

quations:
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Gt
t =

�D − 2��BD + D − 1

��D − 2��BD + D�BD
� �− W − U −

�D − 2�W − DU − 2�BD
�D − 2��BD + D

�D − 2��BD + D − 1

�D − 2��BD + D − 1
�

−
�BDABD� 2

2BD
2 −

AB�BD�

2BDB
, �25�

Gr
r =

�D − 2��BD + D − 1

��D − 2��BD + D�BD
� �W − U −

�D − 2�W − DU − 2�BD
�D − 2��BD + D

�D − 2��BD + D − 1

�D − 2��BD + D − 1
�

−
�BDABD� 2

2BD
2 +

ABD�

BD
+

A�BD�

2BD
, �26�

nd the equation of motion for the BD field,

A�BD� + 	D − 2

r
+

A�

2A
−

B�

2B

BD� � =

�D − 2�W − DU − 2�BD
�D − 2��BD + D

�D − 2��BD + D − 1

�D − 2��BD + D
.

�27�

e numerically solve the coupled system of equations �25�–�27�.
We can find the total mass of the field configuration by the relation

A��� = 1 −
2GDm�

�D−3 −
2��2

�D − 2��D − 1�
, �28�

here m� is straightforward connected to the total mass, M�, trapped within a sphere of radius �:

M� =
D − 2

8�

2��D−2�/2

�	D − 1

2

m�, �29�

hich, with our rescalings, gives for the total mass, M:

M = �D − 2�
��D−1�/2

�	D − 1

2

 rD−3�1 − A�r� −

2�r2

�D − 2��D − 1��, r → � . �30�

n the case of a rotating star, one should embed General Relativity in a more general framework,
etric-affine Gravity, where the correct renormalized mass is �in four dimensions�:

M

1 +
�

3

J2

M2

,

ith J the total angular momentum of the star.28,29 In our case the anti de Sitter mass is identical
ith the above renormalized mass, because J=0. The mass of Eqs. �28�–�30� is the Schwarzschild
ass, which corresponds to the ADM mass in the Jordan frame. In the literature,25,26 apart from

he above mentioned mass, one also defines the ADM mass in the Einstein frame, or tensor mass
MT, and the Keplerian mass, MK. In the framework of a scalar tensor gravitational theory, these
asses are obtained from the relations
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MK = M + 1 MT = M +
1

2
, �31�

ith

1 = lim
r→�

�r2BD� � . �32�

n our case we used the ADM mass in the Jordan frame for three reasons: It comes naturally from
he Schwarzschild mass, we can deduce the Keplerian and tensor mass from Eqs. �31� and �32�,
nd in our case is always larger from MK and MT. For the �BD=−1 case, and according to the
iterature,25,26 BD� �0 holds at infinity. For our case ��BD�5�, we found numerically that BD�

0, not only at infinity, but also for the whole region outside the soliton star. Because, in our case,
M �MK,MT, and because the energy of the same number of free particles is larger than M, we

nd that the energy of the free particles is always larger than MK and MT, confirming the stability
f the soliton with respect to fission into free particles.

The Noether current that leads to the conserved particle number is

j	 = i�− gDg	��� ���* − �* ���� , �33�

hich gives a conserved Noether charge:

N = �
0

�

dD−1x jt =
4��D−2�/2

�	D − 1

2

�0

R

dr ��2rD−2�B

A
. �34�

II. GENERAL SCALAR-TENSOR THEORY

In the original BD gravitational theory �BD is a constant. In a more general theory it may be
egarded as a function, usually of the BD scalar. We use one of the simple functions investigated
n a cosmological framework,33,34 namely,

�D − 2��BD + D − 1 = �0�BD
n , �35�

ith �0 and n constants. The equation of motion for the BD field is

�BD;�

;� =
1

�D − 2��BD + D − 1
	8�T −

d�BD

d�BD
�BD

,��BD;�
 . �36�

e set for simplicity �=0. We rescale

�̃0 =
�D − 2��BD + D − 1

�D − 2��BD + D
GD

n �0, �37�

nd the other quantities as in Eqs. �15�–�18�. We will use for our calculations n=1. For n
2,3 ,4 the behavior of the star parameters is similar. Dropping the overtildes and the O���
uantities we find for the Einstein equations:

Gt
t =

�0

�0BD + 1
�− W − U −

1

�0BD
�� � 	�D − 2�W − DU −

ABD� 2

D − 2

�0BD + 1

BD

�

−
�0BD − D + 1

D − 2

ABD� 2

22 −
AB�BD�

2�BDB
, �38�
BD
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Gr
r =

�0

�0BD + 1
�W − U −

1

�0BD
�� � 	�D − 2�W − DU −

ABD� 2

D − 2

�0BD + 1

BD

�

−
�0BD − D + 1

D − 2

ABD� 2

2BD
2 +

ABD�

�BD
+

A�BD�

2BD
. �39�

he equation of motion for the BD field is

A�BD� + 	D − 2

r
+

A�

2A
−

B�

2B

BD� �

=
1

�0BD + 1
��D − 2�W − DU −

ABD� 2

D − 2

�0BD + 1

BD
� . �40�

We solve numerically the coupled system of equations �38�–�40�. The mass and particle
umber of the star are given by Eqs. �30� and �34�, respectively. We start from �0=5 up to �0

1000, where the results of general relativity are approximately reproduced.

V. CONCLUSIONS

In the present work we write the Brans-Dicke and a simple scalar-tensor gravitational theory
n D dimensions and apply it in a special case of stable, gravitating, scalar field configuration,
amely that of a q star. The results of general relativity are reproduced for �BD,�0→�. A
enerally accepted, lower experimental limit is �BD�500. Even for this value, the results almost
oincide with General Relativity, and one can regard that the results of General Relativity are
ractically obtained from our figures when �BD,�0=1000. We investigate the phase space from

BD,�0=5 up to 1000 so as to gain a detailed picture of the behavior of the star parameters,
adius, value of the matter scalar field at the center of the star, total mass, and particle number. For

BD,�0�500 the star parameters are a few percent larger than in the case of General Relativity.
hese differences are D dependent. For example, for �BD=5 the particle number is 33%, 24%,
1%, and 18% larger from the corresponding results in General Relativity, for D=3,4 ,5, and 6
imensions, respectively; the radius is 15%, 7%, 4%, and 3% larger, respectively; and the total
ass is �0%, 7%, 9%, and 10% larger. One can find similar differences for the scalar-tensor

heory.
The results of Figs. 1–5 and 11–14 refer to a zero cosmological constant. Figure 5 shows the

IG. 5. The ratio of the star mass to its particle number as a function of the particle number for �BD=500. Small values
f the particle number correspond to small stars, whose limiting value is the nongravitating q ball.
atio M /N of the star as a function of its particle number �M is the ADM star mass and N is the
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article number�. As one can see, every field configuration is stable with respect to fission into free
articles. This feature is characteristic for solitonic gravitating objects, which are stable even in the
bsence of gravity. For example, a q star with very small particle number and mass corresponds to
�nongravitating� q ball �in the thin-wall approximation�. For small q stars, one can see from Fig.
that M / �mN�→0.5, with m the mass of the free particles �here equal to unity with our rescal-

ngs�. This is the correct limiting value in the absence of gravity, for the potential of 19, for which

min��U /�2�min=0.5. The picture is absolutely different for nonsolitonic boson stars,35 where
ravity and not the scalar potential is the main stabilizing factor. This means that for some region
f the phase space, gravity is not strong enough to make the binding energy negative �equivalently,
o make M / �mN��1�. In Figs. 6–9 and for four, five, and six dimensions we start from a zero
alue of the cosmological constant, gradually decrease its value, and stop our calculations when
�0�→�, or ��0�→�, showing in this way the formation of an anomaly at the center of the star.
or D=3, when decreasing the value of �, we find that both mass and particle number increase up

o their maximum value at approximately ��−3, and below this value, the energy is approxi-
ately constant, when the particle number decreases slowly. Below ��−10, the energy of the

ree particles �identified with the particle number for m=1� is less than the soliton energy, which
eans that the decay into free particles is energetically favorable. All the other field configurations

epicted in our figures are stable with respect to decay into free particles. �See Figs. 10–14�.

IG. 6. The radius of a q star as a function of the cosmological constant. In Figs. 6–10, the dashed lines correspond to

BD=500 and the solid lines to �BD=5.
FIG. 7. The value of the matter scalar field at the center of a q star as a function of the cosmological constant.
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FIG. 8. The mass of a q star as a function of the cosmological constant.
FIG. 9. The particle number of a q star as a function of the cosmological constant.
IG. 10. The mass, M, and the particle number, N, of a q star in 2+1 dimensions as a function of the cosmological
onstant.
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FIG. 11. The radius of a q star as a function of � .
0
FIG. 12. The value of the matter scalar field at the center of the q star as a function of �0.
FIG. 13. The total energy of a q star as a function of �0.
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In this paper, we provide mathematical analysis for the controllability of chaos in
wavelet subspaces. We prove that depending on the scale of the wavelet operation
and the number of the coupled oscillators, the critical coupling strength for the
occurrence of chaos synchronization becomes many times smaller if the original
coupling matrix is appropriately treated with the wavelet transform. Moreover, we
obtain rigorous relations connecting the critical values and the wavelet subspace
operations. Our mathematical results are completely consistent with early numeri-
cal simulations. © 2006 American Institute of Physics. �DOI: 10.1063/1.2203229�

. INTRODUCTION

Chaos is ubiquitous in nature. Controlling chaos is of both theoretical and of practical
mportance.1–5 Recently, a new paradigm of chaos control via wavelet transform has been intro-
uced by Wei, Zhan, and Lai in Ref. 6 �also see Ref. 7�. It is found that the transverse stability of
he synchronous manifold of a chaotic system could be dramatically enhanced by the means of

odifying a tiny fraction of the wavelet subspaces of a coupling matrix. Nevertheless, rigorous
athematical analysis of the aforementioned control has not been reported in the literature. Our

bjective in the present work is to present detailed mathematical analyses of the wavelet
pproach.6

To be more precise, let du /dt= f�u� be a given chaotic oscillator. Consider a coupled nonlinear
ynamical system of N chaotic oscillators,

du

dt
= F�u� + �Au, u = �u1,u2, . . . ,uN�T, �1.1�

here (F�u�)i= f�ui� is a nonlinear function of the ith oscillator, which has a state function ui

�0, � ��Rn, � is a coupling strength, and A is a coupling matrix having the periodic structure at
he boundaries.

The synchronous manifold of the chaotic system, as a subspace of the original coupled sys-
em, Eq. �1.1�, can be studied by setting u1�t�=u2�t�= ¯ =uN�t�=s�t�, where the chaotic solution
�t� satisfies the single oscillator equation ds /dt= f(s�t�). The stability property of the synchronous
anifold can be studied in the space of difference variables �ui�t�=ui�t�−s�t�, which are governed

y

�
Corresponding author.
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d�u

dt
= „DF�S�t�… + �A��u, �u = ��u1,�u2, ¯ ,�uN�T, �1.2�

here DF�u�=diag(f��u1� , f��u2� , ¯ , f��uN�) and S�t�T= (s�t� ,s�t� , . . . ,s�t�)1�N. The second larg-
st eigenvalue �2 of the matrix A plays a dominant role in controlling the stability of chaotic
ynchronization.8–10 A critical coupling strength �c can be determined in terms of �2,

�c =
Lmax

− �2
, �1.3�

here Lmax�0 is the largest Lyapunov exponent of a single chaotic oscillator.
For the nearest neighbor coupling case, the eigenvalue spectrum of an appropriately normal-

zed A is given by

− 4 sin2 ��i − 1�
N

, i = 1,2, . . . ,N . �1.4�

n general, a wider coupling width gives a smaller �2, while a larger number of oscillators requires
larger �c. In controlling a given system, it is desirable to reduce the critical coupling strength �c.

Denote the two dimensional wavelet decomposition and its inverse with periodic boundary
ondition by W and W−1, respectively. For a given matrix A, the wavelet decomposition allows a
erfect reconstruction, by which there is nothing to gain: A=W−1(W�A�). In Ref. 6, a simple
peration is used to attain a desirable coupling matrix:

Ã = W−1�OK„W�A�…� , �1.5�

here OK is limited to be the multiplication of a scalar factor K on the elements of subspaces LL1,
hich corresponds to the lowest resolution subspace in both the horizontal and vertical directions

n a two-dimensional multiscale wavelet decomposition. A numerical simulation of a coupled
ystem of 512 Lorenz oscillators in Ref. 6 shows that for the nearest neighbor coupling case, the
ritical coupling strength �c decreases linearly with respect to the increase of K up to a critical
alue Kc. The smallest �c is about 6, which is about 103 times smaller than the original critical
oupling strength, indicating the efficiency of the proposed approach.

In this paper we will provide a rigid mathematical analysis of the above wavelet scheme. For
implicity and without loss of generality, we only consider the wavelet transformation and the
everse transformation based on the Daubechies wavelet, db1.11

By an i-scale wavelet operation W=W�i� based on the db1 wavelet, a 2k�2k matrix A is
ransformed into another 2k�2k matrix W�A�. Moreover, the subspaces LL1 or equally the 2k−i

2k−i up-left block of W�A� equals �A�T, where

� =
1

22i�
e 0 ¯ 0 0

0 e ¯ 0 0

· · ¯ · ·

0 0 ¯ e 0

0 0 ¯ 0 e
�

2k−i�2k

,

ith e= �1,1 , . . . ,1�1�2i and 0= �0,0 , . . . ,0�1�2i. In other words, every entry of �A�T is the
verage value of all items of some 2i�2i block of A. With the transformation OK, �A�T is
ransformed into K�A�T. Since A=W−1(W�A�), we have that

Ã = W−1�OK„W�A�…� = A + �K − 1��A�T. �1.6�
�
Before stating the main theorem, we introduce some notations. Define series ��i�i=1 by
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�i = 2 cos
�

2i − 2, i = 1,2,3, . . . . �1.7�

oreover, we denote

Kc�i,N� =
− 2i�i

4 sin2 2i�

N

+ 1, i = 1,2,3, . . . . �1.8�

Theorem 1: For any i�N, assume �i is defined as in �1.7� and the nature numbers N satisfy
/2i+2�N. Let A be the nearest neighbor-coupling matrix of order N�N defined as in Eq. �1.1�.

uppose by i-scale wavelet operation �1.5� with the scalar factor K	1 that the coupling matrix is

ransformed from A to Ã. Then for any such K, all the eigenvalues of Ã are nonpositive; More-

ver, it holds that �i is an eigenvalue of the matrix Ã.

Theorem 2: Let i, �i, N, A, Ã, K be defined as in Theorem 1. Assume Kc�i ,N� are defined by

1.8�. Then the second largest eigenvalue of Ã is a decreasing function of K. Moreover, the second

argest eigenvalue of Ã is equal to �i for any K	Kc�i ,N� and is strictly larger than �i �thus its
bsolute value is strictly less than −�i� for any 1
K�Kc�i ,N�.

Since the critical coupling strength is determined in terms of the second largest eigenvalue of
he coupling matrix, by Theorem 2 and �1.4� we have the following result.

Corollary 1.1: The i-scale wavelet control method with Kc�i ,N� as the scalar factor can
nhance the stability of a synchronous manifold of an N coupled system by reducing the critical
oupling strength as much as �i /4 sin2�� /N� time.

In the following, we denote a “block circulant matrix” with blocks A1 ,A2 , . . . ,An by

bcirc�A1,A2, . . . ,An� = �
A1 A2 A3 ¯ ¯ An

An A1 � � � �

� � � � � �

A4 � � � A2 A3

A3 A4 � � A1 A2

A2 A3 A4 ¯ An A1

� .

oreover, we denote average values of all elements of a matrix A= �aij�n�n by aver�A�, that is,
ver�A�= �1/n2�	i,j=1

n aij.

I. PROOF OF THE MAIN THEOREMS

In this section, we will prove Theorem 1 and Theorem 2. First, we introduce some useful
emmas.

. Preliminaries

Lemma 2.1: Assume matrix A is of order N�N and Ã is defined by i-scale wavelet operation
1.5� with the scalar factor K	1. Then it holds that

Ã − A =
K − 1

22i ANi
� Bi, �2.1�
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ith

ANi
= �

− 2 1 1

1 − 2 �

� � �

� � 1

1 1 − 2
�

Ni�Ni

nd

Bi = eTe ,

here Ni=N /2i, e is defined as in the introduction, and � represents tensor product of matrices.
Proof: First note that the nearest neighbor matrix A can be written in the form

bcirc�A1,A2, . . . ,ANi
�, Ni =

N

2i ,

here matrix A j of order 2i�2i �j=1,2 , . . . ,Ni� satisfies

A1 = �
− 2 1 ¯ 0

1 − 2 � 

� � �


 � � 1

0 ¯ 1 − 2
�, A2 = ANi

T = �
0 . . . 0 0


 
 

0 . . . 0 0

1 . . . 0 0
� ,

�2.2�

Al = 0, 3 
 l 

N

2i − 1. �2.3�

t is obvious to see that aver�A1�=−1/22i−1 and aver�A2�=aver�ANi
�=1/22i.

From �1.6�, we obtain that Ã is of the form

Ã = bcirc�Ã1,Ã2, . . . ,ÃNi
� , �2.4�

ith

Ã1 = −
K − 1

22i−1 Bi + A1, Ã2 =
K − 1

22i Bi + A2, ÃNi
=

K − 1

22i Bi + ANi
,

Ã j = 0, 3 
 j 
 Ni − 1. �2.5�

hus the lemma can be obtained easily. �

Proposition 2.1: Let A=bcirc�A1 ,A2 , . . . ,An� be a real symmetric block circulant matrix.
enote Ck=	 j=1

n eı�k�j−1�/n�2�A j, k=0,1 , . . . ,n−1, �=�−1. Then eigenvalues of A consist of eigen-
alues of Ck, k=0,1 , . . . ,n−1.

Proof: See p. 211 in Ref. 12. �

. Proof of Theorem 1

Proof of nonpositivity: First, we prove that for any K	1, all the eigenvalues of Ã are non-

ositive. From Lemma 2.1, we have that
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Ã = A +
K − 1

22i ANi
� Bi. �2.6�

e will prove that ��K−1� /22i�ANi
� Bi is seminegative definite. Then by the seminegative defi-

iteness of A and the fact that the sum of two seminegative definite matrices is seminegative

efinite, we obtain that Ã is also seminegative definite. Thus all its eigenvalues are nonpositive.
ince ��K−1� /22i�ANi

� Bi is a real symmetric block circulant, by Proposition 2.1, it is sufficient
o prove the nonpositivity of eigenvalues of matrices,

− 2Bi + eı�k2i/N�2�Bi + eı�k�N−2i�/N�2�Bi, k = 0,1, . . . ,
N

2i − 1, �2.7�

r equally,

�− 2 + 2 cos
k2i

N
2�Bi, k = 0,1, . . . ,

N

2i − 1. �2.8�

bviously, Bi has 0 and 1 as its eigenvalues and the term in the parentheses is less than or equal
o 0. Thus, each eigenvalue of the matrices defined in �2.7� and �2.8� is nonpositive. Then from the
ymmetry, we obtain that �K−1� /22jANi

� Bi is seminegative definite. Thus, the proof is com-
leted. �

Remark 2.1: From the fact that A has only one zero eigenvalue, we conclude that Ã has at

ost one zero eigenvalue. On the other hand, since the sum of elements in every column of Ã is

ero, we obtain that Ã has at least one zero eigenvalue. In a word, it has and only has one zero
igenvalue.

Now we prove the second part of Theorem 1, that is, for any K	1, �i is an eigenvalue of the

atrix Ã.

Combining �2.4�, �2.5� and Proposition 2.1, we have that the set of eigenvalues of Ã is equal
o the collection of the eigenvalue of the 2i�2i matrix,

D1�l� + dlD2�l� ª �
− 2 1 e−i�2�l/n�

1 − 2 �

� � �

� � 1

ei�2�l/n� 1 − 2
� + dl� 1



1
��1 . . . 1� ,

l = 0,1, . . . ,n − 1,

ith n=N /2i , dl= �c /22i��2 cos�2�l /n�−2�, c=K−1.
The following two propositions are useful for the proof of Theorem 1 and Theorem 2.
Proposition 2.2 �rank one update for Hermitian matrices�: Let A be an N�N Hermitian

atrix and u�CN. Suppose ��k ,uk� and ��̃k�� , ũk���, k=1, . . . ,N, be, respectively, the eigen-

airs for A and A+uuH with the order �1
�2
 ¯ 
�N and �̃1
�̃2
 ¯ 
�̃N.

(i) Assume �0. If uHuk�0 and uHuk��0 for some k��k; then �k
�̃k��
�k�.

(ii) If uHuk�=0 for some k�; then �̃k���=�k� for all .

Proof: See Ref. 13. �

                                                                                                            



w

a

w

a

H

e

w

E

T

w

S

082701-6 Shieh et al. J. Math. Phys. 47, 082701 �2006�

                        
Proposition 2.3: Denote ��k ,uk�, k=0, . . . ,m−1, the eigenpair of the matrix

G = �
− 2 1 e−ı

1 − 2 �

� � �

� � 1

eı 1 − 2
�

m�m

ith  any real number. Then

�k = 2 cos �k − 2

nd

uk = �uk,j� j=1
m ,

here

�k =
2k�

m
+



m
, k = 0, . . . ,m − 1,

nd

uk,j = �1, if k2 + 2 = 0,

c1„sin j�k + e−ı sin�m + j��k… + c2„sin�m + 1 + j��k + eı sin�j + 1��k… , otherwise.

ere c1 and c2 are arbitrary complex numbers.
Proof: By directly solving the eigenvalue problem for G, Gu=�u, we obtain the difference

quation

uj+1 − �2 + ��uj + uj−1 = 0, j = 2, . . . ,m − 1, �2.9�

ith

u0 = e−ıum,

um+1 = eıu1. �2.10�

quation �2.9� has characteristic equation r2− �2+��r+1=0, which yields

r1,2 =
�2 + �� ± ��2 + ��2 − 4

2
¬ e±ı�. �2.11�

he second equality holds since eigenvalues of G are nonpositive. Now set

uj = Ar1
j + Br2

j = Aeıj� + Be−ıj�, �2.12�

here A and B are constant coefficient to be determined. Substituting �2.12� into �2.10�, we obtain

A + B = e−ı�Aeım� + Be−ım�� ,

Aeı�m+1�� + Be−ı�m+1�� = eı�Aeı� + Be−ı�� . �2.13�
ince �A ,B� is a nonzero solution of Eq. �2.13�, it turns out that
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� 1 − eı�m�−� 1 − e−�ım�+�

eı�m+1�� − eı��+� e−ı�m+1�� − e−ı��−� � = 0,

r, equivalently,

cos m� = cos  .

hus, �k=2k� /m+ /m, k=0, . . . ,m−1, and, hence, by using �2.11�, we have �k=2 cos �k−2.
his gives the proof of the first assertion.

To see the eigenvector of G corresponding to eigenvalue �k, we first consider that for =0
nd k=0, i.e., �0=0. It is easy to see that the vector �1, . . . ,1�T is the eigenvector of G corre-
ponding to 0. Now, assume �0 and k�0. For convenience, we write �=�k and uj =uk·j. Choose

1=1−eı�m�−�, B1=−1+e−ı�m�+�, A2=eı�m+1��−eı��+�, and B2=−e−ı�m+1��+e−ı��−�with �=�k for
ome k. Note that �A1 ,B1� and �A2 ,B2� are solutions of �2.13�. Set uj =

1
2 �c1A1+c2A2�eıj�

1
2 �c1B1+c2B2�e−ıj�=c1(sin j�k+e−ı sin�m+ j��k)+c2(sin�m+1+ j��k+eı sin�j+1��k) and the

econd assertion follows. �

Proof of the second part of Theorem 1: Let =� and m=2i. From Proposition 2.3, it follows
hat �i is an eigenvalue of D1�n /2�. To see that �i is also an eigenvalue of D1�n /2�
dn/2D2�n /2�, we choose c1=1 and c2=0. From Proposition 2.3 again, D1�n /2� has an eigenvector
= �sin�j� /m�� j=1

m corresponding to the eigenvalue �i. Since D2=eeT and eTu=	 j=1
m sin�j� /m�=0,

pplying �ii� of Proposition 2.2, we see that �i is an eigenvalue of D1�n /2�+dn/2D2�n /2�. �

. Proof of Theorem 2

Proof of the first part of Theorem 2: Let n=N /2i and D1�l� ,D2�l� ,dl , l=0,1 , ¯ ,n−1 be
efined as in the last subsection. Since dl
0, applying Proposition 2.2 to −D1�l�−dlD2�l�, we
ave that the eigenvalues of D1�l�+dlD2�l� are increasing functions of dl, which, by Proposition

.1, implies the first part of Theorem 2, that is, the second largest eigenvalue of Ã is a decreasing
unction of K. �

Now we are in a position to prove the second part of Theorem 2.
Denote =2�l /n. We have

D1�l� = �
− 2 1 e−ı

1 − 2 �

� � �

� � 1

eı 1 − 2
� . �2.14�

rom Proposition 2.3, we have that any eigenvalue of D1�l� can be written in the form

� = 2 cos ��k,l� − 2,

ith ��k , l�=2k� /2i+ /2i , k=0,1 , . . . ,2i−1, l=0,1 , . . . ,n−1. Obviously, for every such l and

1 ,k2 with k1�k2, it holds that ���k1 , l�−��k2 , l� � 	2·� /2i, which implies that there is at most one
� �0,1 , . . . ,2i−1� such that ���k , l� � 
� /2i. Then we have that for every matrix D1�l�+dlD2�l�
l=0,1 , . . . ,n−1�, there is at most one nonzero eigenvalue that is larger than or equal to �i

2 cos�� /2i�−2. It implies that if for some dl=dl
*, D1�l�+dlD2�l� has eigenvalue �i, then all its

ther eigenvalues are less than �i.
Remark 2.2: If such dl

* exists for D1�l�+dlD2�l�, then by the first part of Theorem 2, we have
hat all its eigenvalues will be less than or equal to �i for all dl�dl

*. Then for the proof of the
econd part of Theorem 2, it is sufficient to prove that the existence of such dl

* for every l.

The following proposition will help us to complete the proof of Theorem 2.
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Proposition 2.4: Let d= �2 cos�� /m�−2� /m. Then the matrix

G = �
− 2 1 e−ı

1 − 2 �

� � �

� � 1

eı 1 − 2
� + d�

1





1
��1, . . . ,1� � Rm�m,

as eigenvalue 2 cos�� /m�−2 for and �0, ±�.
Proof: Consider the eigenproblem of the matrix G, which is equivalent to

uk−1 − �� + 2�uk + uk+1 + d	
j=1

m

uj = 0, k = 2, . . . ,m − 1, �2.15�

u2 − 2u1 + e−ıum + d	
j=1

m

uj = 0, �2.16�

um−1 − 2um + eıu1 + d	
j=1

m

uj = 0. �2.17�

enote ũk=uk /	 j=1
m uj. Then we have

ũk−1 − �� + 2�ũk + ũk+1 + d = 0,

ũ2 − 2ũ1 + e−ıũm + d = 0,

ũm−1 − 2ũm + eıũ1 + d = 0. �2.18�

n the following, for the sake of notation without leading confusion, we use the notation uk with
he restriction 	 j=1

m uj =1 to replace the notation ũk.
Obviously, �2.18� has a special solution of the form uk=d /� , k=1, . . . ,m. Thus the general

olution of �2.18� is of the form

uk = C1eık� + C2e−ık� +
d

�
, �2.19�

ith the boundary condition

u0 = e−ıum, um+1 = eıu1, �2.20�

here cos �= ��+2� /2.
Now we determine C1 and C2 with the boundary condition

C1 + C2 +
d

�
= C1eı�−+m�� + C2e−ı�+m�� + e−ı d

�
�2.21�

nd

C1eı�m+1�� + C2e−ı�m+1�� +
d

�
= C1eı��+� + C2eı�−�+� + ei d

�
. �2.22�
hus we have
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� 1 1

− eı��+� − eı�−�+� ��1 − eı�−+m�� 0

0 1 − e−ı�+m�� ��C1

C2
� =

d

�
�e−ı − 1

eı − 1
� .

hen we have

C1 =
− �e−ı − 1�e−ı��−� − �eı − 1�

�1 − eı�−+m����eı��+� − eı�−�+��
d

�
�2.23�

nd

C2 =
eı − 1 + �e−ı − 1�eı��+�

�1 − e−ı�+m����eı��+� − eı�−�+��
d

�
. �2.24�

rom 	 j=1
m uj =1, we obtain that

C1
eı��1 − eım��

1 − eı� + C2
e−ı��1 − e−ım��

1 − e−ı� + m
d

�
= 1. �2.25�

ombining �2.23�–�2.25�, we have

eı − 1

eı� − e−ı�� 1 − eım�

eı − eım� −
1 − e−ım�

eı − e−ım� + m =
�

d
. �2.26�

e note that �=arcos���+2� /2�=� /m. Substituting d= �2 cos�� /m�−2� /m into �2.26� and by
irect computation, we obtain that 2 cos�� /m�−2 is a root of �2.26� thus an eigenvalue of G. �

Proof of the second part of Theorem 2: Denote �1
�l��K� and �2

�l��K�, respectively, the largest and
econd largest eigenvalue of D1�l�+dlD2�l�. From Proposition 2.3, it follows that

�1
�l��1� =�

2 cos�2�l

mn
 − 2, 0 � l �

n

2
,

2 cos
�

m
− 2 = �i, l =

n

2
,

2 cos�2�m − 1��
m

+
2�l

mn
 − 2,

n

2
+ 1 � l � n − 1,

�
nd

�2
�l��1� =�

2 cos�2�m − 1��
m

+
2�l

mn
 − 2, 0 � l �

n

2
,

2 cos
�

m
− 2 = �i, l =

n

2
,

2 cos�2�l

mn
 − 2,

n

2
+ 1 � l � n − 1,

�
here m=2i and n=N /m. Here we note that �1

�l��1���i��2
�l��1� for l=0, . . . ,n /2−1,n /2

1 , . . . ,n−1. Since the largest eigenvalue of Ã equals 0=��0��K�� �̄1�K�, we see that the second

argest eigenvalue of Ã at K=1 equals max��1
�l��1� � l=0, . . . ,n /2−1,n /2+1, . . . ,n−1�. On the

ther hand, applying Proposition 2.4 with m=2i, we have that for l�0,n /2 and dl=�i /m, i.e.,

K =
m�i

2 cos
2�l

n
− 2

+ 1 � Kc
�l�,

�l�

1�l�+dlD2�l� has eigenvalue �i. By using Proposition 2.2, �1 �K� is decreasing in K. Hence
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�1
�l��K� � �i,

or K�Kc
�l� and l�0, n /2. Thus, for K�maxl�0,n/2�Kc

�l��=Kc
�1�=Kc�i ,N�, we have �̄2�K�=�i. Also,

or 1�K�Kc�i ,N�, �̄2=maxl�0,n/2 �1
�l��K� �see Fig. 1 for an illustration�. This completes the

roof. �
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A new solvable many-body problem of goldfish type is identified and used to revisit
the connection between two different approaches to solvable dynamical systems.
An isochronous variant of this model is identified and investigated. Alternative
versions of these models are presented. The behavior of the alternative isochronous
model near its equilibrium configurations is investigated, and a remarkable Dio-
phantine result, as well as related Diophantine conjectures, are thereby obtained.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2235035�

. INTRODUCTION

Recently a method has been introduced and exploited to identify new exactly solvable
namely solvable by purely algebraic operations, such as diagonalizing a matrix� many-body
roblems characterized by equations of motion of Newtonian type �“the acceleration of each
article is determined by the positions and velocities of all particles”�, including in particular
odels of goldfish type �see, for instance, Ref. 4, and the following�. The main idea of this

pproach—hereafter referred to as the direct method—is to start from an explicitly solvable matrix
volution equation �possibly even quite a trivial one�, and to then focus on the time evolution of
he eigenvalues of this matrix. For an overview of this method �including an explanation of the
erminology used herein� of the main results yielded by it so far, and the quotation of relevant
eferences, we refer to the very recent paper Ref. 2.

Another method has been introduced some years ago to treat certain well-know solvable
ynamical systems and to illuminate their connection with developments in theoretical particle
hysics. The main idea of this approach—hereafter referred to as the gauge theory method—is to
tart from a gauge invariant matrix evolution equation and to exploit the possibility that in one
auge this evolution be trivially simple hence solvable while in another gauge it can be related to
nteresting evolutions, in particular to the equations of motion of Newtonian type of certain

any-body problems. For an overview of this approach and the quotation of relevant references,
e refer to the relatively recent paper �Ref. 1�. An analysis of the gauge theory approach entailing
clarification of the relation of this method to the direct approach is already provided in the more

ecent paper published by one of us.11

In the present paper, in the context of revisiting this connection, we identify a new solvable
any-body problem of goldfish type. This finding hinges on a result obtained many years ago by

nozemtsev.10 We also present the isochronous variant of this many-body problem, as well as
lternative formulations of these two models, and by investigating the behavior of the alternative
sochronous model in the neighborhood of its equilibrium configurations we identify certain re-

arkable Diophantine relations.
The main new results obtained in this paper are reported in Sec. II. The hasty browser eager

�Electronic mail: francesco.calogero@roma1.infn.it
�
Electronic mail: langmann@kth.se
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o see immediately the equations of motion of the new solvable many-body problems of goldfish
ype should jump to �1� and for the isochronous variant to �6�, and for the alternative versions of
hese models to �14� and �21�; a Diophantine finding and related conjectures are reported at the
nd of Sec. II. In Sec. III the solvable character of the new many-body problems of goldfish type
s demonstrated, first via the direct method and then via the gauge theory method; the connection
mong these two approaches is thereby illuminated. In Sec. IV solvable dynamical systems are
erived, which constitute nontrivial alternative reformulations of the many-body problems of
oldfish type treated in Sec. III. In Sec. V the behavior of the alternative isochronous model in the
eighborhood of its equilibrium configurations is investigated and remarkable Diophantine rela-
ions are thereby obtained. In Sec. VI possible future developments are mentioned. The Appendix
ontains some findings the insertion of which where they are first mentioned �see Remark 2.9 in
ec. II� would have been too distracting.

I. MAIN RESULTS

In this section we report the main new findings obtained in subsequent sections.
The solvable N-body problem of goldfish type identified in this paper is characterized by the

ollowing equations of motion of Newtonian type:

z̈n = 2zn�zn
2 − a2� + 2 �

m=1,m�n

N �żn + zn
2 − a2��żm + zm

2 − a2�
zn − zm

. �1�

Notation: zn�zn�t� are the dependent variables, t is the independent variable �“time”�, super-
mposed dots denote time-differentiations, a2 is an arbitrary constant �we use a2 rather than a
erely for notational convenience, see the following�, N is a positive integer �generally we assume
�1�, and indices such as n ,m generally take all the values 1 ,2 , . . . ,N unless otherwise men-

ioned.
Remark 2.1: Trivially related models involving additional arbitrary constants could of course

e obtained by rescaling the �dependent and independent� variables and by shifting by a constant
mount the dependent variables; note incidentally that the first factor 2 on the right-hand side of
1� could be changed by rescaling �we put it there for notational convenience, see the following�,
hile the second factor 2 �that multiplying the sum� cannot of course be changed.

Remark 2.2: Although for real a2 and for real initial data zn�0�, żn�0� the time evolution �for
eal time� of this many-body model entails that the dependent variables zn�t� are as well real, we
enerally assume the time evolution to take place in the complex z-plane �and generally allow the
onstant a to be as well complex�; indeed such an evolution is much more interesting due to the
ossibility of the “particles” characterized by the complex coordinates zn�t� to go round each other
nd the related fact that initial data zn�0�, żn�0� leading to particle collisions are then exceptional
they generally have vanishing dimensionality relative to generic initial data�. �If attention is
nstead restricted to real motions, then the trivial change of dependent variables zn→ iyn with yn

eal might be expedient in order to deal with confined motions.� It is possible to reformulate these
omplex equations of motions as real �and even covariant, even rotation-invariant� equations of
otion describing the motion of real point particles in the real �say, horizontal� plane, but we will

ot take space here to reformulate them in this manner, since the technique to do so is well known
see for instance Ref. 5�.

The solvable character of these equations of motion is evidenced by the well-known fact10,5

hat the N�N matrix evolution equation

Ü = 2U�U2 − a2� �2�

s itself solvable �in terms of appropriate sigma functions10�, together with the following.
Proposition 2.3: The solution of the initial-value problem for the equations of motion (1) is

rovided by the following prescription: the coordinates zn�t� are the N eigenvalues of the N�N

atrix U�t� solution of (2) and determined by the following initial data:
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Unm�0� = �nmzn�0� , �3a�

U̇nm�0� = − �nm�zn
2�0� − a2� + �żn�0� + zn

2�0� − a2�1/2�żm�0� + zm
2 �0� − a2�1/2. �3b�

ote that the matrix U�0� is diagonal, while the matrix U̇�0� is the sum of a diagonal matrix and
dyadic matrix.

Notation: here and hereafter �nm��n,m is the Kronecker delta symbol, �nm=1 if n=m, �nm

0, if n�m.
To obtain the isochronous variant of this many-body problem one starts from the equations of

otion

�n� = 2�n
3 + 2 �

m=1,m�n

N ��n� + �n
2���m� + �m

2 �
�n − �m

, �4�

hich correspond to �1� with a=0 and with the merely notational replacement of the dependent
ariables zn�t� with the dependent variables �n��� �and of course now the appended primes denote
ifferentiations with respect to ��. One can then apply the procedure usually referred to as “the
rick” �see for instance Refs. 4 and 5�, i.e. �in this case� the following change of dependent and
ndependent variables:

z̃n�t� = exp�it��n��� , �5a�

� = i�1 − exp�it�� . �5b�

his yields the equations of motion

z̈̃n = 3iż̃n + 2z̃n�1 + z̃n
2� + 2 �

m=1,m�n

N �ż̃n − iz̃n + z̃n
2��ż̃m − iz̃m + z̃m

2 �
z̃n − z̃m

. �6�

The solution of the initial-value problem is then obviously given by the solution �via Propo-
ition 2.3� of the problem �4� and by the “trick” relations �5�, which clearly also imply

�n�0� = z̃n�0�, ���0� = ż̃n�0� − iz̃n�0� . �7�

quivalently, the solution of this model �6� is clearly given by the following.
Proposition 2.4: The dependent variables z̃n�t� that solve the initial-value problem for the

ewtonian N-body problem (6) are the N eigenvalues of the N�N matrix Ũ�t� evolving according
o the solvable matrix evolution equation

Ũ
¨

− 3iŨ
˙

− 2Ũ = 2Ũ3 �8�

nd being moreover characterized by the following initial data:

Ũnm�0� = �nmz̃n�0� , �9a�

Ũ
˙

nm�0� = − �nm�z̃n
2�0�� + �ż̃n�0� − iz̃n�0� + z̃n

2�0��1/2�ż̃m�0� − iz̃m�0� + z̃m
2 �0��1/2. �9b�

ote that the matrix Ũ�0� is diagonal, while the matrix Ũ
˙ �0� is the sum of a diagonal matrix and

dyadic matrix.

The solvable character of the matrix evolution equation �8� is implied by the “trick” formula
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Ũ�t� = exp�it�U���, � = i�1 − exp�it�� �10�

elating the N�N matrix Ũ�t� evolving according to �8� to the N�N matrix U�t� evolving
ccording to �2� with a=0.

Remark 2.5: The solvable character10 of the matrix evolution equation �2� entails that all its
olutions U�t� are meromorphic functions of the independent variable t. Hence �see �10�� all the

onsingular solutions Ũ�t� of the matrix evolution equation �8� are periodic with period 2�,

Ũ�t + 2�� = Ũ�t� . �11�

he singular solutions of �8� are exceptional, corresponding to a set of initial data having vanish-
ng measure with respect to the set of generic initial data.

As an immediate consequence of Proposition 2.4 and of this Remark 2.5 there holds the
ollowing.

Proposition 2.6: All the solutions of the many-body problem (6) (except those exceptional
nes that run into a collision of two or more particles, which correspond to nongeneric initial
ata) are completely periodic with a period which is a positive integer multiple p of 2�:

z̃n�t + 2p�� = z̃n�t�, p = 1 or 2or . . . or N . �12�

he positive integer p accounts for the possibility that the eigenvalues get exchanged among each
ther through the motion: it depends on the initial data, but it does not change for sufficiently
mall, if finite, changes of these data and it clearly is not larger than N.

This proposition displays the isochronous character of the N-body problem �6�, indeed it
ustifies considering it as one more instance of nonlinear harmonic oscillators.7

There exists a, by now rather standard, technique to reformulate these types of N-body prob-
ems, by identifying the N “particle coordinates” zn�t� as the N zeros of a �monic� polynomial in
of degree N, and by then focusing on the corresponding time evolution of the N coefficients cm�t�
f this polynomial �see for instance Refs. 6 and 5�:

��z,t� = �
n=1

N

�z − zn�t�� = �
m=0

N

cm�t�zN−m, c0 = 1. �13�

n Sec. IV we show how such a procedure is applicable in our case, and we thereby obtain the
ollowing alternative formulation of the N-body problem �1�:

c̈m + 2�m − 1�ċm+1 − 2c1ċm + 2�N + 1 − m�a2ċm−1 + �m + 2��m − 3�cm+2 − 2�m − 1�c1cm+1 + 2�m�N

+ 2 − m�a2 + ċ1 − c1
2 + 3c2�cm − 2�N + 1 − m�a2c1cm−1 + �N + 2 − m��N + 1 − m�a4cm−2 = 0,

m = 1, . . . ,N, c0 = 1, c−1 = cN+1 = cN+2 = 0. �14�

Remark 2.7: The ODE of this system with m=0 is identically satisfied; the ODE with m
N+1 is also satisfied provided one sets cN+3=0, and even the ODE with m=N+2 is identically

atisfied if one moreover sets cN+4=0.
Remark 2.8: A superficial look at this system of ODEs might suggest that it is a linear system

f evolution equations for the quantities cm�t�; but this is of course not the case, due to the
resence of the quantities c1�t� and c2�t�. Indeed the highly nonlinear character of this system is
lready evident by looking at the N=2 case, in which case it yields the following �solvable!�
ourth-order ODE for f�t��c1�t�:

f��f2 − 2f�f�f2 − 2f�f3 − 2�f��2f + 2f��f��2 + 4f�f�f2 − 2f�f4

− 4�f��2f3 + 4f�f5 + 4a2�f�f2 − 2f�f3� = 0 �15�

here for typographical convenience differentiations are denoted by appended primes rather than

uperimposed dots�.
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Remark 2.9: Two equilibrium �namely, time-independent� solutions of this system �14� are
rovided by the formula

cm = �±a�m�N

m
	 . �16�

hey are not, however, the only equilibrium configurations of this system. A technique to obtain
ll these configurations �including this one!� is described in the Appendix.

As indicated earlier, see �13�, the quantities cm�t� that evolve according to the system of ODEs
14� are just the coefficients of the monic polynomial ��z , t� of degree N in z, the N zeros zn�t� of
hich evolve according to the equations of motion �1�. Hence �see Proposition 2.3� the solution of

he system of ODEs �14� is given by the following.
Proposition 2.10: The dependent variables cm�t� that solve the initial-value problem for the

ystem of nonlinear ODEs (14) are the N coefficients of the polynomial ��z , t�, see (13), which is
tself given by the formula

��z,t� = det�z − U�t�� , �17�

here the N�N matrix U�t� evolves according to the solvable matrix evolution equation (2) and
s moreover characterized by the initial data (3), with the initial values zn�0�, żn�0� related to the
nitial values cm�0�, ċm�0� by the formulas implied by (13),

�
n=1

N

�z − zn�0�� = �
m=0

N

cm�0�zN−m, c0 = 1, �18a�

− �
n=1

N

żn�0� �
m=1,m�n

N

�z − zn�0�� = �
m=1

N

ċm�0�zN−m. �18b�

To obtain an alternative version of the isochronous N-body problem �6� we use the following
ersion of the “trick:”

c̃m�t� = �− i�m exp�mit��m��� , �19a�

� = i�1 − exp�it�� . �19b�

ere the quantities �m��� are the dependent variables of the previous model, �14�, with a=0, up to
he �purely notational� change consisting in calling the independent variable � �instead of t� and
he dependent variables �m �instead of cm�, so that these variables satisfy the following system of
DEs:

�m� + 2�m − 1��m+1� − 2�1�m� + �m + 2��m − 3��m+2 − 2�m − 1��1�m+1 + 2��1� − �1
2 + 3�2��m = 0,

m = 1, . . . ,N, �0 = 1, �−1 = �N+1 = �N+2 = 0, �20�

here of course appended primes denote differentiations with respect to the independent variable
�which we allow to be complex, see �19b��.

Then clearly by applying the “trick” �19� to the system �20� the following new system of
onlinear ODEs is obtained:

c̈̃m + 2�m − 1�iċ̃m+1 − �2m + 1 + 2c̃1�iċ̃m − �m + 2��m − 3�c̃m+2 + 2�m − 1��m + 1 + c̃1�c̃m+1

+ �− m�m + 1� + 2iċ̃1 − 2�m − 1�c̃1 + 2c̃1
2 − 6c̃2�c̃m = 0,

˜ ˜ ˜ ˜
m = 1, . . . ,N, c0 = 1, c−1 = cN+1 = cN+2 = 0. �21�
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Remark 2.11: The prefactor �−i�m in �19a� is of course unessential, it has been introduced
erely to give a marginally nicer look to this system �21� and to some other formulas, see the

ollowing. With this version, �19�, of the “trick” the relation among the particle coordinates
atisfying the equations of motion of the isochronous N-body problem �6� and the quantities c̃m�t�
atisfying this system of ODEs �21� reads now

�̃�z,t� = � �z − z̃n�t�� = �
m=0

N

�i�mc̃m�t�zN−m, c̃0 = 1, �22�

ee �5�, �19�, and �13�. Note that we introduced here the �new� monic polynomial �̃�z , t� having as
ts N zeros the N dependent variables z̃n�t� satisfying �6� and as its N coefficients the N dependent
ariables c̃m�t� satisfying �21�.

This model, �21�, is obviously just as solvable as the previous one, �14�, indeed the solution of
ts initial-value problem can be obtained from the solution of the corresponding problem for �14�
ia the formulas �19� that clearly imply the following relations among the initial data of the two
odels:

c̃m�0� = �− i�m�m�0� , �23a�

ċ̃m�0� − mic̃m�0� = �− i�m�m�0� . �23b�

quivalently, the solution of this model �21� is clearly given by the following.
Proposition 2.12: The dependent variables c̃m�t� that solve the initial-value problem for the

ystem of nonlinear ODEs (21) are the N coefficients of the polynomial �̃�z , t�, see (22), which is
tself given by the formula

�̃�z,t� = det�z − Ũ�t�� , �24�

here the N�N matrix Ũ�t� evolves according to the solvable matrix evolution equation �8� and

s moreover characterized by the initial data (9) with the initial values z̃n�0�, ż̃n�0� related to the

nitial values c̃m�0�, ċ̃m�0� by the following formulas implied by (22),

�
n=1

N

�z − z̃n�0�� = �
m=0

N

�i�mc̃m�0�zN−m, c̃0 = 1, �25a�

− �
n=1

N

�ż̃n�0� − iz̃n�0�� �
m=1,m�n

N

�z − z̃n�0�� = �
m=1

N

�i�mċ̃m�0�zN−m. �25b�

As an immediate consequence of this Proposition 2.12 and of Remark 2.5 there holds the
ollowing.

Proposition 2.13: All the nonsingular solutions of the system of ODEs (21) are completely
eriodic with period 2�,

c̃m�t + 2�� = c̃m�t� , �26�

hile the singular solutions are exceptional, corresponding to a set of initial data having vanish-
ng measure with respect to the set of generic initial data.

This proposition displays the isochronous character of the N-body problem �21�, indeed it
ustifies considering it as one more instance of nonlinear harmonic oscillators.7

Finally, in Sec. V we obtain all the equilibrium configurations of the isochronous systems �6�
nd �21� and we study the behavior of the system of nonlinear harmonic oscillators �21� in the

eighborhood of its equilibrium configurations. The interested reader will find these results in that
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ection, but we advertise here the Diophantine findings arrived at via this study.
Proposition 2.14: Let the two N�N matrices A and B be defined componentwise as follows:

Anm = 2�n − 1��n+1,m − �2n + 1 + 2c̄1��n,m + 2c̄n�1,m, �27a�

Bnm = �n + 2��n − 3��n+2,m − 2�n − 1��n + 1 + c̄1��n+1,m + �n�n + 1� + 2�n − 1�c̄1 − 2c̄1
2 + 6c̄2��n,m

+ 2�− �n − 1�c̄n+1 + �n − 1 − 2c̄1�c̄n��1,m + 6c̄n�2,m, �27b�

ith the numbers c̄m defined as follows:

for 	 = 0, c̄m = �− �m�


m
	 , �28a�

for 	 = 1, c̄m = �0m + �1m if 
 = 1, c̄m = �− �m
�
 − 2

m
	 − �
 − 2

m − 2
	� if 
 � 1, �28b�

for 	 = 3, c̄m = �− �m
�
 − 3

m
	 + 6�
 − 3

m − 1
	 + 14�
 − 3

m − 2
	 + 14�
 − 3

m − 3
	� , �28c�

for 	 = 4, c̄m = �− �m�
k=0

4 �
 − 4

m − k
	�5

k
	 , �28d�

for 	 = 5, c̄m = �− �m
c�
 − 5

m − 5
	 + �

k=0

5 �
 − 5

m − k
	�5

k
	�, c arbitrary. �28e�

s indicated earlier the parameter 	 (the role of which here is mainly to distinguish five different
ases) can take any one of the 5 values 0, 1, 3, 4, 5, while the parameter 
 can take any positive
nteger value in the range 	�
�N. Let the 2N numbers pn

�±� be the eigenvalues of the general-
zed eigenvalue problem

�p2 + Ap + B�r� = 0, �29a�

where r� ��r1 , . . . ,rN� denotes the corresponding eigenvector) implying

det�p2 + Ap + B� = �
n=1

N

��p − pn
�+���p − pn

�−��� . �29b�

hen the 2N numbers pn
�±� are all integers.

Notation: here and throughout the symbol �y
x� is the standard binomial coefficient,

�x

y
	 =

��x + 1�
��y + 1���x − y + 1�

. �30�

We have verified with the help of symbolic programing languages �we used MAPLE and
ATHEMATICA� and for an ample sample of values of N and of the other parameters the validity of

his proposition �proven in Sec. V�, and from these computer-aided checks we are led to formulate
he following Diophantine conjectures.

Conjecture 2.15: For 	=0, 1, 3, 4, 5 and 
 integer in the range 	�
�N the eigenvalues of
he generalized eigenvalue problem (29a) (with (27) and (28)) are given by the following formu-

as:
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for 	 = 0, det�p2 + Ap + B� = ��
n=1

N−


��p − n��p − n − 1����
n=1




��p + n��p + n − 5�� ,

�31a�

for 	 = 1, det�p2 + Ap + B� = �p + 1��p − 4���
n=1

N−


��p − n��p − n − 5��
���

n=1


−1

��p + n��p + n − 7�� , �31b�

for 	 = 3, det�p2 + Ap + B� = �p + 1��p − 4���
n=1

N−


��p − n��p − n + 5��
���

n=1


−1

��p + n��p − n + 
 − 7�� , �31c�

for 	 = 4, det�p2 + Ap + B� = �p + 1�
�
n=1

3

�p − n − 1����
n=1

N−


��p − n��p − n + 1��
�
n=1


−4

�p + n��
�
�

n=1




�p + n + 1�� , �31d�

for 	 = 5, det�p2 + Ap + B� = ��
n=1

N−


��p − n��p − n − 1����
n=1




��p + n��p − n + 
 − 4�� .

�31e�

ere we use the standard convention according to which a product equals unity if the lower limit
f the running index exceeds the upper limit.

Remark 2.16: For 
=	=0 the validity of this conjecture is certainly true, indeed trivially so
see below the Remark 5.4�.

The Conjecture 2.15 only refers to integer values of the parameter 
 in the range 	�
�N.
ut our computer-aided exploration also indicates the validity, for arbitrary values of the param-
ter 
, of the following conjecture �which is only formulated in the following for sufficiently large
alues of N, to avoid less interesting complications�.

Conjecture 2.17: The generalized eigenvalue problem �29a� �with �27� and �28a�� features,
or arbitrary 
, the N−1 eigenvalues

2,3,4,5 − 
,6 − 
, . . . ,N − 
, if 	 = 0 or 	 = 5 and N  5, �32a�

2,3,4,4 − 
,5 − 
, . . . ,N − 1 − 
, if 	 = 4 and N  5, �32b�

nd the N−4 eigenvalues

− 1,4,6,8 − 
,9 − 
, . . . ,N − 
, if 	 = 1 and N  8, �32c�

− 1,4,6,3 − 
,4 − 
, . . . ,N − 5 − 
, if 	 = 3 and N  8. �32d�

Remark 2.18: The Conjecture 2.17—in contrast to the Conjecture 2.15—does not provide the

ntire spectrum of the eigenvalue problem �29a�, which of course features 2N eigenvalues.
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Some aspects of these conjectures are easy to prove. For instance Conjecture 2.15 can be
roven by induction for all N�
 if one assumes its validity for N=
. But complete proofs of
hem do not seem quite trivial �see Sec. VI�.

II. TWO PROOFS OF PROPOSITION 2.3

In this section �part of� the results reported in the Sec. II are proven, first by the direct method,
hen by the gauge theory method.

. Direct method

The starting point of the direct method is the solvable N�N matrix evolution equation �2�. We
hen introduce the eigenvalues of the matrix U�t� and the corresponding diagonalizing matrix R�t�
ia the formulas

U�t� = R�t�Z�t��R�t��−1, �33a�

Z�t� = diag�zn�t�� , �33b�

ith moreover

R�0� = 1 . �33c�

ere and in the following 1 is the N�N identity matrix. Note that the first two of these equations,
33a� and �33b�, identify �consistent with Proposition 2.3� the N coordinates zn�t� as the N eigen-
alues of the N�N matrix U�t�, while the third, �33c�, is consistent via the first two with the
ssignment �3a�.

It is then easy to see �for the derivation of these formulas see, if need be, for instance Ref. 2�
hat, after introducing the N�N matrix M�t� via the assignment

M�t� = �R�t��−1Ṙ�t� , �34�

ne gets

U̇�t� = R�t��Ż�t� + �M�t�,Z�t����R�t��−1, �35a�

ntailing �see �33c��

U̇�0� = Ż�0� + �M�0�,Z�0�� , �35b�

s well as the following system of evolution ODEs for the coordinates zn�t� and for the matrix
lements Mnm�t� of the matrix M�t�:

z̈n = 2zn�zn
2 − a2� + 2 �

m=1,m�n

N

�zn − zm�MnmMmn, �36a�

Ṁnm

Mnm
= − 2

żn − żm

zn − zm
− Mnn + Mmm + �

�=1;��n,m

N
�zn + zm − 2z��

zn − zm

Mn�M�m

Mnm
, n � m . �36b�

ote that the time evolutions of the diagonal elements Mnn�t� of the matrix M�t� remain unre-
tricted: it is indeed clear from �33� �implying that R�t� is defined only up to multiplication from
he right by an arbitrary diagonal matrix D�t�� and from �34� that these N functions of time can be
hosen arbitrarily without affecting the eigenvalues of U�t�, namely the coordinates zn�t�. Indeed
t is clear that the N�N matrix evolution equation �2�, characterizing the time evolution of the N2
atrix elements Mnm�t�, has now been turned into the system �36�, characterizing the time evo-
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ution of the N coordinates zn�t� and the N�N−1� off-diagonal elements Mnm�t� �with n�m� of the
�N matrix M�t�.

Clearly this system �36� is no less solvable than the original matrix evolution �2�, because its
olution can be retrieved from the solution of �2� by purely algebraic operations �essentially, by
iagonalizing an N�N matrix�.

But we are interested in obtaining an N-body problem involving only the N “particle coordi-
ates” zn�t�, hence our next task is to eliminate the N�N−1� “auxiliary quantities” Mnm�t� �with
�m�. To do this one must find �assuming it exists� an appropriate ansatz expressing the N�N
1� auxiliary quantities Mnm�t� �with n�m� in terms of the N particle coordinates zn�t�, taking
dvantage if need be of the freedom to assign the N quantities Mnn�t� at our convenience.

An ansatz that works �in the sense of turning the N�N−1� evolution equations �36b� into
dentities� is

Mnn�t� = − �
�=1

N
g

�zn�t� − z��t��2 , �37a�

Mnm�t� =
g

�zn�t� − zm�t��2 , n � m , �37b�

ith g an arbitrary constant. This leads however to an N-body model the solvable character of
hich is already well known,9,13,3,12 hence we do not pursue this development here �we elaborate
n this point a little further in the following version of the proof�.

Remark 3.1: Clearly insertion of this ansatz �37� in the more general matrix evolution equa-
ion

Ü = ��U� , �38a�

ith ��z� an arbitrary scalar function would also work �since this does not depend on the
quations of motion satisfied by the coordinates zn, see the following�, and it would lead to the
-body problem characterized by the Newtonian equations of motion

z̈n = ��zn� − 2 �
n=1,m�n

N
g2

�zn − zm�3 . �38b�

his was already noted, many years ago, by Veselov.12 But it appears that, so far, the most general
up to trivial transformations� solvable N�N matrix evolution of type �38a� is just �2�.

Another ansatz that also does �as it were miraculously� work �namely, transform the evolution
quations �36b� into identities� reads as follows:

Mnm�t� = −
��żn + zn

2 − a2��żm + zm
2 − a2��1/2

zn − zm
, n � m . �39�

ote that this ansatz, in contrast to the previous one, contains no arbitrary �“coupling”� constant g.
n this case the appropriate assignment for the diagonal elements Mnn�t� is quite trivial: Mnn�t�
0, or equivalently �see �36b�� Mnn�t�=
�t�, 
�t� being an arbitrary function of time �but inde-
endent of the index n�. The truth of this assertion can be verified by a trivial if tedious calcula-

ion: note that the evolution equations �36a� must also be used in the process.
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And it is now clear that the insertion of this ansatz in �36a� yields �1�, while its insertion in
35b� yields the assignment �3b�. The proof of Proposition 2.3 is thus completed.

. Gauge theory approach

Let us now prove again Proposition 2.3, but via the gauge theory method. Although this
ntails some repetitions we believe it is useful to go through this exercise in some detail, espe-
ially because we will now use a somewhat different language—and one purpose of this paper is
recisely to clarify the relations among these two different approaches. Moreover this presentation
rovides some indication of the extent to which these kinds of fishing expeditions are likely to
ield new goldfishes, namely new interesting solvable models.

Let us start by reviewing �but in a notation more conducive to a direct comparison with the
receding treatment� the gauge theory approach to a more standard model referred to in the
iterature as rCM1,11 characterized by the Newtonian equations of motion

z̈n = − zn − 2 �
m=1,m�n

N
g2

�zn − zm�3 . �40�

e then present a variant of this approach which leads us to the new solvable N-body model of
oldfish type presented earlier.

We start with the following system of dynamical equations for the N�N matrices U�U�t�,
M �M�t�, and W�W�t�:

U̇ + �M,U� = W , �41a�

Ẇ + �M,W� = ��U� , �41b�

with the square brackets indicating matrix commutators. As discussed in the following, to get the
rCM model one should assign the function ��U� as follows:

��U� = − U . �42�

It is however convenient to leave this function � unspecified for the moment; but we require that
it contain no other matrix besides U, so that R−1��U�R=��R−1UR� for any �invertible� matrix R.

Equation �41� has a natural interpretation as gauge theory in 0+1 dimensions: they are indeed
f the form �Dt ,U�= P, �Dt , P�=��U�, with Dt=�t+M being the so-called covariant time deriva-
ive with M regarded as gauge field. In particular, they are invariant under the following gauge
ransformations,

U → Ũ = R−1UR, W → W̃ = R−1WR , �43a�

M → M̃ = R−1MR + R−1Ṙ , �43b�

here the matrix R�R�t� characterizing the gauge transformation is an arbitrarily time-dependent

nvertible matrix �the transformation rule for M follows from R−1DtR=�t+R−1Ṙ+R−1MR�. One
an exploit this invariance to impose additional conditions. In particular for any solution U�t�,

M�t�, and W�t� of �41�, one can find a gauge transformation R�t� such that the gauge-transformed

atrix M̃�t�, see �43b�, vanishes, M̃�t�=0. Indeed, this is implied by the fact that the linear
rst-order matrix ODE

Ṙ + MR = 0, R�0� = 1 �44a�
lways has a �unique� solution, which can be written as
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R�t� = T exp
− �
0

t

ds M�s�� �44b�

here the symbol T denotes time-ordering. This shows that we can impose the condition

M�t� = 0 �45�

or all times t, without loss of generality. Note that this also implies that, if we impose �45�, we
ill not lose any solution: indeed any solution to our gauge theory equations can be obtained by

olving these equations with the condition �45� imposed, and performing a gauge transformation
fterwards. In particle physics this latter condition is often called Weyl gauge. We will also use
nother gauge condition, namely

Unm�t� = �nmzn�t� �46�

or all times t, which we call diagonal Coulomb gauge. Note that we can impose this latter
ondition if the matrix U�t� is such that there exists an invertible matrix R�t� such that
−1�t�U�t�R�t� is a diagonal matrix, and this is obviously true in the generic case when the matrix
�t� is nondegenerate. The cases when the matrix U�t� is degenerate correspond to particles in our
-body system colliding, and then our solution breaks down �as it should�: but this can only
appen for exceptional—i.e., nongeneric—initial data, if we allow the particle coordinates zn�t� to
ove in the complex plane, as we generally do �see Remark 2.2�.

The idea now is that, by imposing the gauge condition �45�, we get the matrix equation Ü
��U� which might be �chosen to be� exactly solvable, whereas by imposing the condition �46�,
e get a �hopefully� interesting dynamical system for the variables zn�t�. The latter dynamical

ystem can then be solved explicitly as follows: one first determines the solution U�t� of the matrix
quation obtained from �41� in the Weyl gauge and with the initial conditions

Unm�0� = �nmzn�0�, U̇nn�0� = żn�0� . �47�

hen the eigenvalues of U�t� give the solution of the dynamical system. Note that we can only

ssign the diagonal elements of U̇�0� since, as we will see, the off-diagonal elements of U̇�0� are
etermined by another condition which we have to add.

Indeed, to get an interesting dynamical system, we need to add one more gauge invariant
quation to �41�. In particular, to get the rCM model �40�, one has to add

�W,U� = J , �48�

hich is often called Gauss law or momentum map. This latter equation is gauge invariant if the

atrix J=J�t� introduced here transforms under gauge transformations as J→ J̃=R−1JR. It turns
ut indeed1,11 that if one makes the assignment

Jnm�0� = g�1 − �nm� �49�

nd chooses ��U� as in �42�, then the coordinates zn�t� obey the equations of motion of the rCM
odel �40�.

To obtain goldfish type dynamical systems one must instead replace the Gauss’ law condition
48� by

BnmBn�m� = Bnm�Bn�m �50a�

ith

B = W + f�U� , �50b�

here f�x� is another function to be assigned later. To see that this condition is gauge invariant we

ote that it can be written as B � B=PB � B where � is the tensor product �so that �B � B��u
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� v�= �Bu� � �Bv� where u and v are N-vectors� and P is the permutation matrix defined as
ollows, Pu � v=v � u: the gauge invariance of �50a� follows from the obvious fact that P com-
utes with R � R.

A new finding �proved at the end of this section� is then given by the following.
Proposition 3.2: The gauge theory equations (41) and (50) are consistent if

f�x� = � + �x + �x2, �51a�

��x� = �� + �x + �x2��� + 2�x� = f�x�f��x� , �51b�

or arbitrary constants � ,� ,�. Imposing the diagonal Coulomb gauge (46) these equations imply

z̈n = ��zn� + �
m=1,m�n

N
�żn + f�zn���żm + f�zm��

zn − zm
, �52�

nd thus the solution of the initial-value problem for this dynamical system can be obtained by
olving the corresponding gauge theory equations in the Weyl gauge, see (45). More specifically:
he solution of the initial-value problem for this dynamical system, (52), is given by the eigenval-
es of the matrix equation

Ü = ��U� �53�

ith the initial conditions

Unm�0� = �mnzn�0� �54�

nd

U̇nn�0� = żn, �55a�

U̇nm�0� = ��żn�0�� + f�zn�0���1/2��żm�0�� + f�zm�0���1/2, n � m . �55b�

Remark 3.3: In the special case �=0 a model is obtained whose solvability was already
nown.8 Our new model reported in Sec. II �and already derived by our other method in Sec.
II A� is obtained for �=0, �=1, and �=−a2. But the greater generality of the result as formulated
n Proposition 3.2 is only apparent: if ��0, one can always reduce this more general case to the

pecial case with �=0 by the �rather trivial� transformations U→ Ŭ=U− �� /2��1, t→ t̆=�t. And
ote that, for f�z�=z2−a2, the right-hand sides of �55� and �3b� coincide: the apparent differences
re merely notational.

Let us end this section by outlining the proof of this result, whose analogy with that proven in
he first part of this section is we trust evident enough not to require further elaboration. We first
rite out �41� and �50� by imposing condition �45�. Then �41a� becomes

�nmżn + Mnm�zm − zn� = Wnm, �56�

hich for the diagonal elements �i.e., n=m� implies

Wnn = żn. �57�

or the off-diagonal elements we obtain the assignment

Mnm = −
1

zn − zm
Wnm, n � m , �58�
hereas the diagonal elements Mnn remain unassigned. Then �41b� reads
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Ẇnm + �
�=1

N

�Mn�W�m − Wn�M�m� = �nm��zn� . �59�

he diagonal elements of this equation give �via �58� and �57��

z̈n − 2 �
�=1,��n

N
Wn�W�n

zn − z�

= ��zn� , �60�

hile the off-diagonal elements imply the following important consistency conditions,

Wnm + �Mn − Mm�Ẇnm +
żn − żm

zn − zm
Wnm − �

�=1,��n,m

N

Wn�W�m� 1

zn − z�

−
1

z� − zm
	 = 0, n � m .

�61�

n particular �50a� implies BnmBmn=BnnBmm. Inserting in this equation the assignment Bnm=Wnm

�nmf�zn� �see �50b�� and in particular Bnn= żn+ f�zn� �see �57��, we get

WnmWmn + �nm�2żn + f�zn��f�zn� = �żn + f�zn���żm + f�zm�� . �62�

hus the solution of �50� for n�=m and m�=n is

Wnm = exp��n − �m��− �nm�2żn + f�zn��f�zn� + �żn + f�zn���żm + f�zm���1/2, �63�

here the functions �n�t� are arbitrary, and it is easy to check that this is a solution of �50� also
or all the other values of n� ,m�. Inserting this in �60� we obtain

z̈n = ��zn� + 2 �
�=1,��n

N
�żn + f�zn���ż� + f�z���

zn − z�

. �64�

It remains to check the consistency relations �61�. We note that, for ��n ,m and n�m, �63�
ntails Wn�W�m=Wnm�ż�+ f�z���, hence �61� is implied by

Ẇnm

Wnm
= − �Mn − Mm� −

żn − żm

zn − zm
+ �

�=1,��n,m

N

�ż� + f�z���� 1

zn − z�

−
1

z� − zm
	, n � m . �65�

nserting the logarithmic derivative of �63� for n�m and using �64� we find by straightforward
omputations that the condition �61� is identically satisfied provided

�̇n = − Mn �66�

nd the functions f and � satisfy the following functional equations,

f��x� + f��y� = 2
f�x� − f�y�

x − y
, ��x� = f�x�f��x� , �67�

or all x�y. The general solution of these functional equations is given by �51�, and this concludes
ur proof. Note that at the end we can make the simplifying assignment �n=Mn=0.

V. ALTERNATIVE FORMULATIONS

The strategy to obtain alternative formulations of “goldfish-type” N-body problems is by now
tandard �and quite old;6 for a convenient up-to-date presentation see Ref. 2�. One introduces a
onic polynomial ��z , t� of degree N in z, the N zeros zn�t� of which evolve according to the

quations of motion of the N-body problem under consideration, and then investigates the corre-
ponding evolution of the N coefficients cm�t� of this polynomial. The route we follow to obtain

he equations of motions satisfied by the coefficients cm�t�—equations that are of course no less
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olvable than the equations of motion satisfied by the zeros zn�t�, since the relationship among
hese quantities, the N zeros zn and the N coefficients cm of a polynomial of degree N, is purely
lgebraic—is via the evolution equation satisfied by the polynomial ��z , t�: note that this entails
hat this evolution equation is itself solvable. Since this technique is by now standard, and appro-
riate formulas to implement it are available �see in particular the Appendix in Ref. 2�, we present
ithout further ado the relevant results.

The evolution equation satisfied by the polynomial ��z , t� �see �13�� the zeros of which evolve
ccording to the equations of motion �1� reads

�tt − 2�z2 − a2��tz + 2��N − 2�z − c1��t + �z2 − a2�2�zz − 2��N − 3�z − c1��z2 − a2��z

+ �N�N − 5�z2 − 2�N − 2�c1z + 2�2Na2 + ċ1 − c1
2 + 3c2��� = 0. �68�

Notation: Here and hereafter subscripted variables denote partial differentiations with respect
o them.

Remark 4.1: This evolution equation, �68�, contains also certain coefficients cm�cm�t�, which
re obviously �linearly� related to the function ��z , t�, indeed clearly �see �13��

cm�t� = ��N − m�!�−1� �N−m��z,t�
�zN−m �

z=0
. �69�

ence �68� is in fact a nonlinear functional equation satisfied by the polynomial ��z , t�, and the
act that it is indeed satisfied by a polynomial of degree N in z, while not evident, is implied by the
ay it has been obtained.

From this evolution equation one obtains �using if need be the results in Ref. 2� the corre-
ponding system of ODEs satisfied by the coefficients cm�t�, see �14�; and this of course justifies
he relevant results about the solvability of this system reported in Sec. II.

Exactly the same procedure yields �21� from �6�, although a more direct route is via the “trick”
ormula �5�, as indicated in Sec. II. Anyway we also display here, for completeness, the equation

or the polynomial �̃�z , t� �see �22�� that provides the bridge connecting these two systems of
DEs �deriving this equation is particularly easy using the formulas given in the Appendix in Ref.
; but beware of the slight notational change in the definition of the coefficients cm due to the �i�m

actor on the right-hand side of �22��:

�̃tt − 2z�z − i��̃tz + �2�N − 2�z − �2N + 1�i − 2ic̃1��̃t + z2�z − i�2�̃zz − 2z�z − i��N�z − i� − 3z − ic̃1��̃z

+ �N�N − 5�z2 − 2N2iz − N�N + 1� − 2�N − 2�ic̃1z − 2�N − 1�c̃1 + 2�i · c̃1 + c̃1
2 − 3c̃2���̃ = 0.

�70�

. EQUILIBRIUM CONFIGURATIONS, BEHAVIOR IN THEIR VICINITY, DIOPHANTINE
ELATIONS

In this section we discuss the equilibrium configurations �namely, the time-independent solu-
ions� of the isochronous models �6� and �21� and the behavior of these models in the vicinity of
heir equilibria. A motivation for focusing on the isochronous models is that they lead to the
emarkable Diophantine relations reported at the end of Sec. II, as indicated below.

Clearly the equilibrium configuration c̃m�t�= c̄m, ċm�t�=0 of the system of ODEs �21� is char-
cterized by the following system of N algebraic equations:

− �m + 2��m − 3�c̄m+2 + 2�m − 1��m + 1 + c̄1�c̄m+1 + �− m�m + 1� − 2�m − 1�c̄1 + 2c̄1
2 − 6c̄2�c̄m = 0,

m = 1, . . . ,N, c̄0 = 1, c̄−1 = c̄N+1 = c̄N+2 = 0. �71�

Likewise the equilibrium configuration z̃n�t�= z̄n, ż̃n=0, of the N-body problem �6� is charac-

erized by the following N algebraic equations:
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z̄n�z̄n − i�
z̄n + i + �
m=1,m�n

N
z̄m�z̄m − i�

z̄n − z̄m
� = 0. �72�

These two configurations are related to each other by the polynomial formula �see �22��

�̄�z� = �
n=1

N

�z − z̄n� = �
n=0

N

�i�mc̄mzN−m, c̄0 = 1, �73�

here �̄�z� is the “equilibrium” �namely, time-independent� polynomial solution of �70�.
The general solution of the algebraic problem �72� can clearly be broken down as follows:

z̄n + i + �
m=1,m�n

	
z̄m�z̄m − i�

z̄n − z̄m

= 0 for n = 1, . . . ,	 , �74a�

z̄n = i for n = 	 + 1, . . . ,
 , �74b�

z̄n = 0 for n = 
 + 1, . . . ,N , �74c�

ith 	 and 
 non-negative integers, 0�	�
�N. Of course each of these three sectors will be
mpty if the corresponding range of values of n is empty �recall that n=1, . . . ,N�.

Remark 5.1: In any equilibrium configuration the labeling of the particles can be freely
ermuted. To write the breakdown �74� we identified, without loss of generality, a �somewhat�
efinite assignment of particle labels.

Remark 5.2: Genuine equilibrium configurations of the N-body problem �6� are characterized
y the requirement that z̄n� z̄m if n�m: indeed, whenever this condition is violated, the equilib-
ium condition �72� becomes ambiguous due to the vanishing of some denominator in the sum,
ompensated by a vanishing of the corresponding numerator or by some other cancellation. Hence
necessary condition in order that the configuration associated with the breakdown indicated in

74� correspond to a genuine equilibrium configuration of the N-body problem �6� is that 
N
1 and 	
−1, so that at most one of the z̄n’s vanishes �in which case we assign to it the highest

abel, z̄N=0� and at most one takes the value i �in which case we assign to it the highest or
ext-to-highest label, z̄N= i, or z̄N−1= i if z̄N=0�. But in the following it is convenient to consider all
ossible equilibrium configurations, including nongenuine ones, because, as we will see, such
onfigurations, while problematic to deal with in the context of the N-body problem �6�, corre-
pond to equilibrium configurations c̄m of the system of ODEs �21� which are instead perfectly
egitimate in the context of this nonlinear harmonic oscillators model. Indeed their consideration
n such a context yields interesting findings �see the following�.

To get more information on the roots z̄n of �74a� we now introduce a monic polynomial ��z�
f degree 	 having the 	 numbers z̄n with n=1, . . . ,	 as its zeros:

��z� = �
n=1

	

�z − z̄n� = �
m=0

	

�i�m�mz	−m, �0 = 1. �75�

ote that via this formula we also introduced the 	 coefficients �m of this polynomial.
It is now straightforward �and particularly easy using the formulas given in the Appendix in

ef. 2; but beware of the slight notational change in the definition of the coefficients c̄m due to the
i�m factor on the right-hand side of �75�� to conclude that this polynomial must then satisfy the
ollowing equation, implied by �74a�:

z2�� − 2�	 − 3�z�� + 	�	 − 5�� = i�z�� − 2�	 + �1���� . �76�

It is now easily seen that, via �75�, this ODE �76� yields for the coefficients �m the recurrence

elation
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m�m − 5��m = �m − 	 − 1��m + 	 + 2�1��m−1, �77a�

hich must be complemented by the two extremal conditions �see �75��

�−1 = �	+1 = 0 �77b�

nd by the normalization condition �see �75��

�0 = 1. �77c�

Clearly the two extremal conditions �77b� are identically satisfied �for m=0, respectively, m
	+1�, while the condition �77c� yields �for m=1�

�1 =
	�	 + 1�
2�2 − 	�

, �78�

ntailing the requirement �hereafter assumed to hold�

	 � 2. �79�

nsertion of �78� in �77a� yields finally the recursion

m�m − 5��m = �m − 	 − 1��m +
3	

2 − 	
	�m−1, �80�

he solution of which is easily seen to exist only if 	�5. For the remaining cases,

	 = 0 or 1 or 3 or 4 or 5, �81�

ee �79�, we get the following solutions �recall �77c��:

for 	 = 0, ��z� = �0 = 1, �82a�

for 	 = 1, �0 = �1 = 1, ��z� = z + i , �82b�

for 	 = 3, �0 = 1, �1 = − 6, �2 = 14, �3 = − 14, �82c�

for 	 = 4, �m = �− �m� 5

m
	, m = 0,1, . . . ,4, �82d�

for 	 = 5, �m = �− �m� 5

m
	, m = 0,1, . . . ,4, �5 arbitrary. �82e�

Via �74� and �75� it is clear that the monic polynomial �̄�z� of degree N in z, see �73�—which
dentifies as its N zeros z̄n, respectively, its N coefficients c̄m the equilibrium configurations of the

odels �6�, respectively, �21�—is given by the formula

�̄�z� = ��z��z − i�
−	zN−
. �83�

t is thereby seen, via �82�, that the coefficients c̄m are given by the formulas �28� �with the
rbitrary constant c=�5−1 in �28e�, see �28e��.

Remark 5.3: Clearly the coefficients c̄m vanish for m�
, hence they all vanish �except of
ourse c̄0=1� if 
=0 �this assignment provides indeed a solution of �71��.

Next, let us discuss the behavior of the system �21� in the neighborhood of its equilibrium

onfigurations. To this end we set
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c̃n�t� = c̄n + ��n�t� + O��2� , �84�

ith c̄m the coefficients cm at equilibrium �as determined in the following� and � a small param-
ter. We thereby obtain in the standard manner the linearized equations of motion

�̈m + 2�m − 1�i�̇m+1 − �2m + 1 + 2c̄1�i�̇m − �m + 2��m − 3��m+2 + 2�m − 1��m + 1 + c̄1��m+1

+ �− m�m + 1� − 2�m − 1�c̄1 + 2c̄1
2 − 6c̄2��m + 2ic̄m�̇1 + 2��m − 1�c̄m+1 − �m − 1 − 2c̄1�c̄m��1

− 6c̄m�2 = 0,

m = 1, . . . ,N, �0 = 0, �N+1 = �N+2 = 0. �85�

The general solution of this linear system of ODEs, �85�, reads

�m�t� = �
n=1

N

�an
�+�rm

�+��n� exp�ipn
�+�t� + an

�−�rm
�−��n� exp�ipn

�−�t�� , �86�

here the 2N numbers an
�±� are arbitrary �to be fixed by the initial data� while the 2N numbers pn

�±�,
espectively, the 2N corresponding �t-independent� N-vectors r��±��n���r1

�±��n� , . . . ,rN
�±��n��, are the

igenvalues, respectively, the eigenvectors, of the �N-vector� generalized eigenvalue equation
29a�. This implies �29b� with the two N�N matrices A and B defined �componentwise� by the
ormulas �27�. But we know �see Proposition 2.13� that all the nonsingular solutions of the system
f nonlinear harmonic oscillators �21� are completely periodic with period 2�, hence the �cer-
ainly nonsingular� solutions describing the behavior of this system around equilibrium must have
he same periodicity property, implying that all the eigenvalues pn

�±� yielded by the generalized
igenvalue problem �29a� must be integers. And this entails the validity of Proposition 2.14.

Remark 5.4: In the special case of the equilibrium configuration c̄m=0 �for m=1, . . . ,N, while
f course c̄0=1; see the Remark 5.3�, the matrices A and B become triangular and the computation
f the eigenvalues pn

�±� is then a trivial task, yielding

pn
�+� = n + 1, pn

�−� = n . �87�

I. OUTLOOK

It is remarkable that a research project started with the main purpose to clarify a methodologi-
al issue—namely, the relationship among two different approaches to the same question: that of
dentifying solvable many-body problems—resulted in the identification of a novel solvable many-
ody problem. To the readers who might imagine—in view of the recent discovery of several such
ew models, as reviewed in Ref. 2—that this is a relatively trivial task, we suggest to try and find
hemselves some new model. Our educated guess is that such a task is quite challenging. We are
evertheless ourselves hopeful that new many-body models exist, and that they might be
iscovered/manufactured by the techniques described in this paper. In any case this possibility
emains as a tantalizing prospect, until a way is found to ascertain conclusively that these ap-
roaches have exhausted their capability to yield many-body models of the kind investigated
erein which are both new and interesting �although the second of these two qualities involves of
ourse a value judgment�.

Another research direction �perhaps suitable as a PhD project� is toward proving the Diophan-
ine conjectures proffered in this paper �see the end of Sec. II� and in previous ones �see Ref. 2�
nd other papers referred to there�, as well as obtaining additional findings of this kind �for
nstance by applying techniques analogous to those of Sec. V to the model �14�, taking advantage

f the results reported in the Appendix�.
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PPENDIX: EQUILIBRIUM CONFIGURATIONS OF MODELS „14… AND „1…

In Remark 2.9 it was mentioned that there exist additional equilibrium �i.e., time-independent�
olutions of the model �14� besides �16�. In this appendix we first list all these equilibrium
onfigurations �as obtained via MAPLE� for N=2, 3, 4, and 5. We then outline a technique allowing
ne to obtain all the equilibrium configurations for arbitrary N �we of course did check that these
ndings reproduce, for N=2,3 ,4 ,5, those obtained via MAPLE�.

These equilibrium configurations are clearly solutions of the following set of N algebraic
quations �see �14��:

�m + 2��m − 3�cm+2 − 2�m − 1�c1cm+1 + 2�m�N + 2 − m�a2 − c1
2 + 3c2�cm − 2�N + 1 − m�a2c1cm−1

+ �N + 2 − m��N + 1 − m�a4cm−2 = 0,

m = 1, . . . ,N, c0 = 1, c−1 = cN+1 = cN+2 = 0. �A1�

The following solutions of this algebraic system have been obtained via MAPLE.
For N=2

c1 = 0, c2 = − a2, �A2a�

r

c2 =
c1

2

3
−

a2

3
, c1 arbitrary �A2b�

the equilibrium configurations �16� correspond to the latter one, �A2b�, with c1= ±2a�.
For N=3,

c2 =
c1

2

3
±

ac1

3
− a2, c3 = ±

ac1
2

3
−

2a2c1

3
, c1 arbitrary �A3�

the equilibrium configurations �16� obtain for c1= ±3a�.
For N=4,

c2 =
c1

2

3
−

4a2

3
, c3 = − a2c1, c4 = −

a2c1
2

3
+

a4

3
, c1 arbitrary, �A4a�
r
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c2 =
c1

2

3
±

2ac1

3
− 2a2, c3 = ±

2ac1
2

3
−

5a2c1

3
,

�A4b�

c4 =
a2c1

2

3
�

4a3c1

3
+ a4, c1 arbitrary

the equilibrium configurations �16� obtain from �A4b� for c1= ±4a.
For N=5,

c2 =
c1

2

3
±

ac1

3
− 2a2, c3 = ±

ac1
2

3
−

5a2c1

3
, c4 = −

a2c1
2

3
�

a3c1

3
+ a4,

�A5a�

c5 = �
a3c1

2

3
+

2a4c1

3
, c1 arbitrary,

r

c2 =
c1

2

3
± ac1 −

10a2

3
, c3 = ± ac1

2 − 3a2c1, c4 = a2c1
2p5a3c1 + 5a4,

�A5b�

c5 = ±
a3c1

2

3
− 2a4c1 ±

8a5

3
, c1 arbitrary

the equilibrium configurations �16� obtain from �A5b� for c1= ±5a�.
The route we follow to obtain all the solutions of the system �A1� is analogous to that

ollowed in Sec. V. The starting point is to introduce a monic polynomial �̄�z� of degree N that has
he N numbers cm solutions of �A1� as its N coefficients:

�̄�z� = �
n=1

N

�z − z̄n� = �
m=0

N

cmzN−m, c0 = 1. �A6�

ote the analogy of these formulas with �13�, and the fact that we also introduced the N zeros z̄n

f this polynomial �̄�z�, which clearly provide the equilibrium configuration of the N-body prob-
em �1� �although not necessarily a genuine equilibrium configuration�, hence satisfy the following
ystem of N algebraic ODEs:

�z̄n
2 − a2�
z̄n + �

m=1,m�n

N
z̄m

2 − a2

z̄n − z̄m
� = 0. �A7�

Our strategy to find all the solutions of the system �A1� is to find first all the solutions of this
ystem, �A7�, and then use �A6�.

Clearly the solutions of �A7� can be broken down as follows:

z̄n + �
m=1,m�n

	
z̄m

2 − a2

z̄n − z̄m

= 0 for n = 1, . . . ,	 , �A8a�

z̄n = a for n = 	 + 1, . . . ,	 + 
 , �A8b�

z̄n = − a for n = 	 + 
 + 1, . . . ,N , �A8c�
ith the two non-negative integers 	 and 
 arbitrary except for the constraint
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	 + 
 � N �A8d�

implying of course that neither one of these two non-negative integers can exceed N�.
This assignment, �A8�, clearly entails that

�̄�z� = �z − a�
�z + a�N−
−	�	�z� , �A9a�

ith �	�z� the monic polynomial of degree 	,

�	�z� = �
n=1

	

�z − z̄n� = �
m=0

	

fmz	−m, f0 = 1, �A9b�

he zeros of which satisfy the algebraic relations �A8a�. Hence this polynomial �	�z� satisfies

�z2 − a2��	� − 2��	 − 3�z − f1��	� + 	�	 − 5��	 = 0, �A10�

s implied by the �by now standard� technique to transform algebraic equations such as �A8a� into
ifferential equations �see for instance the Appendix in Ref. 2�. Here and in the following primes
enote of course differentiations with respect to the argument of the function they are appended to.

Before proceeding to discuss the solution of this equation let us consider the special case with
=0 entailing �0�z�=1 �which solves �A10� trivially�. In this case �A9a� and �A8d� yield

�̄�z� = �z − a�
�z + a�N−
, 
 = 0,1, . . . ,N . �A11a�

t is then easily seen from �A6� that this entails

cm = am �
�=max�0,m+
−N�

min�
,m�

�− ���


�
	�N − 


m − �
	 . �A11b�

his formula provides a set of equilibrium configurations, characterized by the integer 
 in the
ange 0�
�N; in particular the two solutions corresponding to 
=0 and to 
=N are easily seen
o yield the two solutions �16�.

Let us now return to �A10�, assuming hereafter that the integer 	 is positive, 	�0 �to avoid
nnecessary notational complications�. To solve this equation, �A10�, we set

�	�z� = a	��x�, z = a�x − 1� . �A12�

his formula implies that ��x� is again a monic polynomial of degree 	 �although for notational
implicity we do not signal this via a subscript 	�. We also set �in analogy to �A9b��

��x� = �
n=1

	

�x − xn� = �
m=0

	

�mx	−m, �0 = 1, �A13�

nd we then note that this formula, together with �A9b�, entails

fm = am�
�=0

m � 	 − �

m − �
	��, �A14a�

ence in particular

f1 = a�	 + �1� . �A14b�

Via this formula and �A12� the differential equation �A10� now reads

x�x − 2��� − 2��	 − 3�x − 2	 + 3 − �1��� + 	�	 − 5�� = 0, �A15a�
ntailing, via �A13�, the two-term recurrence
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m�m − 5��m = 2�	 + 1 − m��3 − 	 − �1 − m��m−1, �A15b�

mplying �for m=0 and m=	+1� the extremal conditions �−1=�	+1=0 �consistent with �A13��.
For m=1 the recurrence formula �A15b� �together with �0=1, see �A13�� yields the relation

�	 − 2��1 = − 	�	 − 2� , �A16�

equiring that the two cases with 	=2 and 	�2 be treated separately.
For 	=2 one easily obtains the solution

�0 = 1, �1 arbitrary, �2 =
�1��1 + 1�

3
. �A17a�

Remark A.1: Let us note as a curiosity that the recursion �A15b� with 	=2 allows this solution
A17a� to be extended as follows:

�3 = �4 = 0, �5 also arbitrary,

�m =
2m−315

m�m − 1��m − 2�
�m − 1 + �1

m − 5
	�5, m = 5,6, . . . . �A17b�

ut we are only interested in the solution �A17a� with �m=0 for m�2, entailing that ��x� is a
olynomial of degree 	=2.

So in this 	=2 case we get

��x� = x2 + �1x +
�1��1 + 1�

3
�A18�

ence, via �A12�,

�2�z� = z2 + f1z +
f1

2 − a2

3
, f1 arbitrary, �A19�

here we set, consistent with �A9b�, f1= �2+�1�a.
For 	�2 the recursion �A15b� with �A16� yields

�0 = 1, �1 = − 	, �2 =
	�	 − 1�

3
, �3 = �4 = 0, �5 arbitrary,

�m =
�− �m−12m−315

m�m − 1��m − 2�
� 	 − 5

m − 5
	�5, m = 6, . . . ,	 . �A20�

f course the second line of this equation is only relevant if 	�5, which can only happen if N
5.

From these results, via �A9a� with �A8d� and �A12�, we arrive finally, after a bit of trivial

lgebra, at the following two determinations of the polynomial �̄�z� �see �A6��:

�̄�z� = �z2 + cz +
c2 − a2	�z − a�
�z + a�N−2−
, 
 = 0,1, . . . ,N − 2, �A21a�
3
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�̄�z� = �z − a�
�z + a�N−

1 −
	a

z + a
+

	�	 − 1�a2

3�z + a�2 + c�
�=0

	−5
�− 2��

�� + 5��� + 4��� + 3�
�	 − 5

�
	� a

z + a
	�+5� ,

	 = 5,6, . . . ,N, 
 = 0,1, . . . ,N − 	 . �A21b�

he first, �A21a�, of these two formulas is applicable for N2, having been obtained from the
revious results corresponding to 	=2, with c= f1 an arbitrary number. It includes the results
btainable from the cases with 	=1 and 	=3; likewise, the result corresponding to 	=4 has not be
eported, as it is encompassed by the result �A11a�. The second, �A21b�, of these two formulas is
f course only applicable provided N5, having being obtained from �A20� for 	5, with c
�5 /60 an arbitrary number. Together with �A11a� these two formulas determine all the equilib-

ium configurations cm of the system �14� �and as well all the equilibrium configurations–not
ecessarily genuine—of the N-body problem �1��—up to a final �trivial but tedious� step, to be
erformed using �A6� �as done earlier to obtain �A11b� from �A11a��, which we leave as a task for
he diligent reader.
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This paper concerns optimization problems related to bi-harmonic equations
subject to either Navier or Dirichlet homogeneous boundary conditions. Physically,
in dimension two, our equation models the deformation of an elastic plate which is
either hinged or clamped along the boundary, under load. We discuss existence,
uniqueness, and properties of the optimizers. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2227257�

. INTRODUCTION

Let � be a bounded domain in RN. This paper is concerned with optimization problems
elated to either the following boundary value problem �with Navier boundary conditions�

�2u = f in �, u = �u = 0, on � � , �1�

r to the problem �with Dirichlet boundary conditions�

�2v = f in �, v = ��v� = 0, on � � . �2�

s usual, �2=����. Let f0�L2���, f0�0, and let F=F �f0� be the class of rearrangements of f0.
imilarly, let g0�L2���, g0�0, and let G=G �g0� be the class of rearrangements of g0. We say

hat f�x��0 if the set �x�� : f�x��0� has a positive measure. We are interested in the following
roblems:

sup
f�F,g�G

	
�

guf dx, inf
f�F,g�G

	
�

guf dx , �3�

sup
f�F,g�G

	
�

gv f dx, inf
f�F,g�G

	
�

gv f dx , �4�

here uf is the �unique� solution of �1�, and v f is the �unique� solution of �2�.
In dimension two, problem �1� models the deformation of an elastic plate which is hinged

long the boundary �under load f�, whereas problem �2� models the deformation of an elastic plate
hich is clamped along the boundary. The solution uf stands for the deformation of the hinged
late from the rest position. Therefore, the functional 
�guf dx measures the average deformation
with respect to the measure g dx� of the plate and similarly for v f. Thus, any solution to �3� or �4�
etermines an extremal configuration.

�Electronic mail: bemamizadeh@pi.ac.ae
�
Electronic mail: porru@unica.it

47, 082901-1022-2488/2006/47�8�/082901/12/$23.00 © 2006 American Institute of Physics
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Our interest in the above-mentioned optimization problems spans questions such as existence,
niqueness �in case � is a ball�, and qualitative properties of maximizers or minimizers. The case
f the equation −�u= f is well understood, see Refs. 3–6 and 13. As far as we know, the optimi-
ation problems for bi-harmonic equations have not been investigated yet. We show that the
orresponding results of existence continue to hold. In the case of hinged plates we also find a
esult of representation of the optimizers and, for the maximizer, a result of uniqueness in the ball.
n example of interest is the following.

Example 1: Suppose g0=1 and f0=�F0
, where �F0

is the characteristic functions of the mea-
urable sets F0�� with �F0 � � ���. Denoting by fM a maximizer of �3� in this special situation,
nd denoting by w the solution to problem �1� with f =1, we show that �see Theorem 5� fM

�FM
for the measurable set FM = �w�x�� tM� with tM such that �FM � = �F0�. Moreover, denoting by

fm a minimizer of �3� we prove that fm=�Fm
for the measurable set Fm= �w�x�� tm� with tm such

hat �Fm � = �F0�. So, physically speaking, in order to maximize the average deformation of the
inear hinged plate under uniform loads �given by the appropriate rearrangement class� it is best to
lace the load away from the boundary �independent of the geometry of the plate�; in order to
inimize the average deformation it is best to place the load in a tubular neighborhood of the

oundary. The above-mentioned results give some information on the location of extremal do-
ains.

For clamped plates the representation result seems to be more difficult due to the lack of
ppropriate maximum principles for the corresponding equation; however, if the domain is a ball
e prove a particular result of symmetry for the optimizers. A special example is the following.

Example 2: Let � be a disc. Suppose g=�G, where G�� is a disc concentric with �. Let
f0=�F0

, with F0��. Denoting a maximizer of

sup
f�F
	

�

gv f dx

y f̄ we show that �see Theorem 7� f̄ =�FM
, where FM is the disc concentric with � with �FM �

�F0�. Similarly, denoting a minimizer of

inf
f�F
	

�

gv f dx

y f we have f =�Fm
, where Fm is the annulus concentric with � with �Fm � = �F0� and such that its

xterior boundary coincides with ��. So, physically speaking, in order to maximize the average
eformation over the set G of the linear circular clamped plate under uniform loads �given by the
ppropriate rearrangement class� it is best to place the load centered with �. To minimize the
nalogous deformation it is best to place the load close to the boundary of �. Of course, these
esults agree with the physical intuition.

Some theorems of the present paper are based on results by Burton summarized by Lemmas
–3 in the following. Burton and McLeod have used these results to investigate the problems

sup
f�F
	

�

fuf dx, inf
f�F
	

�

fuf dx ,

here uf is the solution of the homogeneous Dirichlet problem −�u= f .
We study the problems �3� and �4�, where F and G are two �possibly different� classes of

earrangements. A remarkable fact is that �Theorem 3� when F=G then

sup
f ,g�F

	 guf dx = sup
f�F
	 fuf dx .
� �
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I. PRELIMINARIES

In this section we collect some well-known results.
Recall that a function u�uf �W0

1,2��� with �uf �W0
1,2��� is a weak solution of �1� provided

	
�

�u�� dx = 	
�

f� dx, " � � W0
1,2��� with �� � W0

1,2��� .

his problem can be described by a system of second-order elliptic equations with Dirichlet
oundary conditions. It is well known that it has a unique solution. Alternatively, in smooth
omains, one could work in H2����H0

1��� with the test functions in the same space. The differ-
nce between these two approaches in nonsmooth domains is investigated in Ref. 12. See also,
efs. 8, 9, and 16. Using standard results on regularity �see Refs. 1 and 10� we find that u is a
lassical solution in the sense that u�W4����C3���. Moreover, using the continuity �with re-
pect to weak convergence� of the inverse of the Laplacian, one proves the following result: If �f i�
s a sequence of functions in L2��� which converges weakly �in L2���� to a function � then the
orresponding solutions ufi

to problem �1� converge strongly in L2��� to the solution u�.
A function v�v f �W0

2,2��� is a weak solution of �2� provided

	
�

�v�� dx = 	
�

f� dx, " � � W0
2,2��� .

or results of the existence and regularity of this problem we refer to Refs. 1 and 11. It has a
nique solution. Moreover, if �f i� is a sequence of functions in L2��� which converges weakly �in
2���� to a function � then the corresponding solutions v f i

to problem �2� converges weakly in

0
2,2��� to the solution v�. As a consequence, v f i

converges strongly in L2��� to the solution v�.
If ug is the solution of �1� with f replaced by g then we have

	
�

guf dx = 	
�

��ug���uf�dx = 	
�

fug dx . �5�

imilarly, if vg is the solution of �2� with f replaced by g then we have

	
�

gv f dx = 	
�

��vg���v f�dx = 	
�

fvg dx . �6�

Definition: Suppose f , f0 :�→R are �Lebesgue� measurable functions. We say that f and f0

re rearrangements of each other if and only if

��f�x� 	 
�� = ��f0�x� 	 
��, " 
 � R .

ere and in what follows we write �f�x�	
� instead of �x�� : f�x�	
�, and denote with �E� the
ebesgue measure of the �measurable� set E. For any f :�→R, f* denotes the decreasing Schwarz

earrangement of f; that is, f* is radially symmetric, decreases as �x� increases, and it is a rear-
angement of f . Recall that f* is defined on B, the ball centered at the origin with volume equal to
��.

Lemma 1: Let f ,u�L2���. Suppose that every level set of u �that is, sets of the form u−1��
���
as measure zero. Then there exists an increasing function � such that � �u is a rearrangement of

f .
Lemma 2: Let F be the set of rearrangements of a fixed function f0�L2���, f0�0, and let

�L2���, u�0. If there is an increasing function � such that ��u��F then: �a�

	 fu dx � 	 ��u�u dx, " f � F̄;

� �
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b� the function ��u� is the unique maximizer relative to F̄.
Lemma 3: Let F be the set of rearrangements of a fixed function f0�L2���, f0�0, and let

�L2���, u�0. There exists f̂ �F such that

	
�

fu dx � 	
�

f̂u dx, " f � F̄ .

n the above-mentioned lemmas and in what follows, we denote with F̄, the weak closure of F in
2���. For the proof of Lemma 1, see Ref. 4 �Lemma 2.9�, and for Lemmas 2 and 3, see Ref. 4
Lemma 2.4�.

Next we recall a well-known rearrangement inequality. If u�W0
1,2��� is non-negative and if

* denotes the Schwarz rearrangement of u, then u*�W0
1,2��� and the inequality

	
B

��u*�2 dx � 	
�

��u�2 dx �7�

olds. The case of equality in �7� has been considered in Ref. 2. The following result can be
educed from Lemma 3.2, Theorem 1.1, and Lemma 2.3�v�, in Ref. 2.

Theorem 1: Let u�W0
1,2��� be non-negative, and suppose equality holds in �7�. Then

−1�
 , � � is a translate of u*−1�
 , � �, for every 
� �0,M�, where M is the essential superior of
over �, modulo sets of measure zero. Moreover, if

��x � �:�u�x� = 0,0 � u�x� � M�� = 0, �8�

hen u is a translation of u*.

II. EXISTENCE RESULTS

To state the next theorem we use the notion of weak continuity in the following sense: A linear
perator K :L2���→L2��� is weakly continuous if for every sequence f i which converges weakly
n L2��� to f , the sequence Kfi converges strongly to Kf .

The existence of solutions to problems �3� and �4� follows from the following.
Theorem 2: Let K :L2���→L2��� be a linear operator weakly continuous and such that

	
�

gKf dx = 	
�

fKg dx, " g, f � L2��� .

hen there exist fM �F and gM �G such that

	
�

gMKfM dx = sup
g�G,f�F

	
�

gKf dx;

urthermore, there exist fm�F and gm�G such that

	
�

gmKfm dx = inf
g�G,f�F

	
�

gKf dx .

Proof: Let

I = sup
g�G,f�F

	
�

gKf dx .
e first show that I is finite. Since K is continuous we must have
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�Kf �2 � C� f �2, " f � L2��� .

oreover, since

�g�2�Kf �2 � C�g0�2� f0�2,

is finite. Let �gi , f i� be a maximizing sequence and let ui=Kfi. Since �f i� is bounded in L2���, it

ust contain a subsequence �still denoted �f i�� converging weakly to ��L2���. Note that �� F̄,
he weak closure of F in L2���. Since K is assumed to be weakly continuous, Kfi converges
strongly� in L2��� to K�. Moreover, �gi� must contain a subsequence �still denoted �gi�� converg-

ng weakly to �L2���, with � Ḡ. Thus,

I = lim
i→�
	

�

giKfi dx = 	
�

K� dx . �9�

y Lemma 3 we infer existence of gM �G that maximizes the linear functional 
�hK� dx, relative

o h� Ḡ. As a consequence we obtain

	
�

K� dx � 	
�

gMK� dx . �10�

y assumption we also have

	
�

gMK� dx = 	
�

�KgM dx .

pplying again Lemma 3, we find fM �F such that

	
�

gMK� dx = 	
�

�KgM dx � 	
�

fMKgM dx = 	
�

gMKfM dx � I .

rom �9� and �10� and the last inequality it follows that

I =	
�

gMKfM dx .

hus �gM , fM� is a maximizer, as desired.
Now define −G= �h�L2��� :−h�G�. The class −G coincides with the class of all rearrange-

ents of −g0. Since

inf
g�G,f�F

	
�

gKf dx = − sup
g�G,f�F

	
�

�− g�Kf dx = − sup
h�−G,f�F

	
�

hKf dx ,

he existence of a minimizer follows by the proof for the maximizer. �

Theorem 3: Let K :L2���→L2��� satisfy the assumptions of Theorem 2 and, in addition,

	
�

fKf dx 	 0, " f � L2���, 	
�

fKf dx = 0 Û f = 0.

hen,

sup
f ,g�F

	
�

gKf dx = sup
f�F
	

�

fKf dx .
Proof: Let �gM , fM� be a maximizing pair. From
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0 � 	
�

�gM − fM�K�gM − fM�dx = 	
�

gMKgM dx + 	
�

fMKfM dx − 2	
�

gMKfM dx ,

t follows that

2	
�

gMKfM � 	
�

fMKfM dx + 	
�

gMKgM dx

ith equality if and only if gM = fM. We can rewrite the latter inequality as

	
�

gMKfM � 	
�

fM + gM

2

KfM + KgM

2
. �11�

ince F̄ is convex �Ref. 3, Theorem 6 �, we have �fM +gM� /2� F̄. Moreover, since K is linear we
ave �KfM +KgM� /2=K��fM +gM� /2�. Hence, using �11� we find

I = 	
�

gMKfM � 	
�

fM + gM

2
K fM + gM

2
� � I .

t follows that equality must hold in �11�. Hence, gM = fM. The theorem follows. �

Remark: Note that all conditions in Theorems 2 and 3 hold when Kf =uf, the solution to
roblem �1�, and when Kf =v f, the solution to problem �2�. In particular, by theorems 2 and 3 we
ave existence for the problems

sup
f�F
	

�

fuf dx, sup
f�F
	

�

fv f dx .

e cannot have, in general, a corresponding result for the inferior.

V. NAVIER BOUNDARY CONDITIONS

In this section we consider optimizers of problems �3�. We will use a strong maximum
rinciple for Eq. �1�. That is, if f�x�	0, f �0, we must have −�uf�x��0 in �. This fact follows
asily from the strong maximum principle of the Laplacian and from the special boundary con-
itions of problem �1�. A further application of the strong maximum principle for the Laplacian
ields uf�x��0 in �.

Theorem 4: Let g0�x��0 with either g0�x�	0 or g0�x��0, and let G=G�g0�. Let f0�x��0
ith either f0�x�	0 or f0�x��0, and let F=F�f0�.

(i) If �gM , fM� is a maximizing pair of �3� then there exist increasing functions � and � such
hat

fM = ��ugM
�, gM = ��ufM

� , �12�

lmost everywhere in �.
(ii) If �gm , fm� is a minimizing pair of �3� then there exist decreasing functions � and � such

hat

fm = ��ugm
�, gm = ��ufm

� , �13�

lmost everywhere in �.
Proof: �i� Let �gM , fM� be a maximizing pair and let ugM

�ufM
� be the corresponding solutions

o �1� with gM �fM� in place of f . If g0�x�	0, the set �x�� :gM�x��0� has a positive measure,
nd by �1� �with gM in place of f� we get −�ugM

�x��0 in �. If g0�x��0, the set �x�� :gM�x�
0� has a positive measure, and by �1� we get −�ugM

�x��0 in �. In both cases, all level sets

= �x�� :ugM
�x�=
� have measure zero �this follows from Ref. 10, Lemma 7.7�. By Lemma 1

                                                                                                            



w
m
fi
i

w

B

W

w
p

�

i

M
m

i

T

t
�
s
m

082901-7 Optimization problems for an elastic plate J. Math. Phys. 47, 082901 �2006�

                        
e infer the existence of � increasing such that ��ugM
� is a rearrangement of fM. Since fM is a

aximizer of 
�fugM
dx for f �F, by Lemma 2 we must have fM =��ugM

�. We have proved the
rst equation of �12�. To prove the second equation of �12�, we can proceed as before interchang-

ng the roles of fM and gM. We find a function � increasing such that gM =��ufM
�.

�ii� Let �gm , fm� be a minimizing pair. As already observed in the proof of Theorem 2, we have

	
�

gmufm
dx = − sup

h�−G,f�F
	

�

huf dx ,

here −G=G �−g0�. We can write the previous equation as

	
�

�− gm�ufm
dx = sup

h�−G,f�F
	

�

huf dx .

y our previous result there exist �̃ and �̃ increasing such that

fm = �̃�u−gm
�, − gm = �̃�ufm

� .

e can rewrite the previous equations as

fm = �̃�− ugm
� = ��ugm

�, gm = − �̃�ufm
� = ��ufm

� ,

ith ��s�= �̃�−s�, and ��s�=−�̃�s�. Of course, ��s� and ��s� are decreasing. The theorem is
roved. �

Theorem 5: Let g0�x�	0, g0�x��0, f0�x�	0, f0�x��0. Let �gM , fM� be a maximizing pair of
3�. If GM = �gM�x��0� then (up to sets of zero measure) we have

GM = �ufM
�x� � tM�, tM = inf

x�GM

ufM
�x�; �14�

f FM = �fM�x��0� then (up to sets of zero measure) we have

FM = �ugM
�x� � �M�, �M = inf

x�FM

ugM
�x� . �15�

oreover, let �gm , fm� be a minimizing pair of �3�. If Gm= �gm�x��0� then (up to sets of zero
easure) we have

Gm = �ufm
�x� � tm�, tm = sup

x�Gm

ufm
�x�; �16�

f Fm= �fm�x��0� then (up to sets of zero measure) we have

Fm = �ugm
�x� � �m�, �m = sup

x�Fm

ugm
�x� . �17�

Proof: Let us prove that

�ufM
�x� � tM� � GM � �ufM

�x� 	 tM� . �18�

he inclusion on the right follows from the definition of tM. If we define

� = sup
x��\GM

ufM
�x� ,

he inclusion on the left is clear if we prove that tM 	�. To derive a contradiction assume tM

�. Let us fix tM ��1��2��. Since �1� tM, there exists a set A�GM, with positive measure,
uch that ufM

�x���1 on A. Similarly, �2�� implies that there exists a set B�� \GM, with positive

easure, such that ufM

�x�	�2 on B. Without loss of generality we may assume that �A � = �B�. Next,
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onsider a measure preserving map T :A→B, see Ref. 14. Using T we define a particular rear-
angement of gM�x�, denoted ḡ,

ḡ�x� = �gM�Tx� , x � A

gM�T−1x� , x � B

gM�x� � \ �A � B� .

Thus

	
�

ḡufM
dx − 	

�

gMufM
dx = 	

A�B

ḡufM
dx − 	

A�B

gMufM
dx = 	

B

ḡufM
dx − 	

A

gMufM
dx

	 �2	
B

ḡ dx − �1	
A

gM dx = ��2 − �1�	
A

gM dx � 0.

herefore

	
�

ḡufM
dx � 	

�

gMufM
dx ,

hich contradicts the maximality of gM. Hence, tM 	�, and �18� follows. By the proof of Theorem
we know that the level sets of ufM

�x� have zero measure, hence, �14� follows from �18�. The
roof of �15� is the same �interchanging the roles of gM and fM�. To prove �16�, we observe that

	
�

gmu�−fm� = sup
g�G,f�F

	
�

gu�−f�.

f Gm= �gm�x��0�, by our previous result we have

Gm = �u�−fm��x� � t̄M�, t̄M = inf
x�Gm

u�−fm��x� .

quivalently, since u�−fm�=−ufm
, we have

Gm = �ufm
�x� � tm�, tm = sup

x�Gm

ufm
�x� ,

ith tm=−t̄M. Similarly, one proves �17� interchanging the roles of gm and fm. The proof of the
heorem is complete. �

Remark: Note that ��gM�x��0� � = ��gm�x��0� � = ��g0�x��0��. Therefore, if ��g0�x��0� �
���, by Theorem 5 it follows that tM and tm are strictly positive. If we assume f0�L���� then
e have the continuity of the solutions ufM

and ufm
�see Ref. 10�. In this situation, by Theorem 5

e have

�GM � �ufM
= tM�, � �� \ Gm� � �ufm

= tm� .

his result establishes a link between gM and fM or gm and fm. We remark that we may have
ifferent solutions of the optimization problems, and the above link holds for any solution.

We now address the question of uniqueness in a ball.
Theorem 6: Suppose � is a ball centered at the origin. Suppose f0�x�	0, f0�x��0 and

0�x�	0, g0�x��0. Then the maximization problem in �3� has a unique solution, namely, �g0
* , f0

*�.
Proof: Let �g , f� be a maximizing pair. If uf and ug are the solutions of problem �1� with f and

, respectively, put

− �uf = zf, − �ug = zg.
e have
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− �zf = f in �, zf = 0 on � � , �19�

nd

− �zg = g in �, zg = 0 on � � . �20�

hen

	
�

guf dx = 	
�

��ug���uf� dx = 	
�

zgzf dx . �21�

y a well-known result of Talenti �Ref. 15� we have

zf
*�x� � zf*�x�, zg

*�x� � zg*�x� in � , �22�

here zf*�x� is the solution to problem �19� with f* in place of f and zg*�x� is the solution to
roblem �20� with g* in place of g. Using �21�, the Hardy-Littlewood inequality and �22� we find

	
�

guf dx = 	
�

zgzf dx � 	
�

zg
*zf

* dx � 	
�

zg*zf* dx = 	
�

g*uf* dx � 	
�

guf dx ,

here uf* denotes the solution to �1� with f* in place of f . Therefore

	
�

zg
*zf

* dx = 	
�

zg*zf* dx .

he latter equation and �22� yield

zf
*�x� = zf*�x�, zg

*�x� = zg*�x� in � . �23�

y using �23�, the variational characterization of the solution of �19� and standard inequalities
bout rearrangements we find

	
�

��zf�2 dx = 	
�

�2fzf − ��zf�2�dx � 	
�

�2f*zf
* − ��zf

*�2�dx = 	
�

�2f*zf* − ��zf*�2�dx

= 	
�

��zf*�2 dx = 	
�

��zf
*�2 dx .

he last inequality and �7� yield

	
�

��zf
*�2 dx = 	

�

��zf�2 dx .

e find easily that

��x � �:�zf
*�x� = 0�� = ��x � �:�zf*�x� = 0�� = 0.

herefore, using Theorem 1 and �23� we find zf�x�=zf
*�x�=zf*�x�. As a consequence, by �19� we

et f�x�= f*�x�= f0
*�x�. Similarly, one finds that g�x�=g*�x�=g0

*�x�. The theorem is proved. �

. DIRICHLET BOUNDARY CONDITIONS

This problem seems to be more complicated than that with Navier boundary conditions. We
rove the following �partial� result.

Theorem 7: Let � be an N-ball centered at the origin. Let 0�g�x��M, g�x��0, g�x�
g*�x� in �, and let 0� f0�x��M, f0�x��0. Let F be the family of rearrangements of f0 in �.

or f �F, let v f be the solution to problem �2�. Then
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sup
f�F
	

�

gv f dx �24�

as a unique solution f̄; namely f̄ = f0
*. Moreover,

inf
f�F
	

�

gv f dx �25�

as a unique solution f; namely f =−�−f0�*.
The following lemma, which is an extension of Ref. 3, Theorem 2.4 to weak solutions, will be

sed in the proof of Theorem 7.
Lemma 4: Suppose 0�g�x��M is a radial function defined in the N-ball �, and suppose

=vg is the corresponding solution to problem �2�. Then v�x�=v*�x�, almost everywhere in �.
Proof: We begin by showing that v�x� is radial. To do this we fix a rotation map R. Let G

enote the Green function given by �see Ref. 7�

G�x,y� = CN�x − y�4−N	
0

�1−�x�2��1−�y�2�/�x − y�2

t�1 + t�− N
2 dt ,

here CN is a positive constant. Then

v�x� = 	
�

G�x,y�g�y�dy .

imple calculations confirm that G�Rx ,Ry�=G�x ,y�, hence

v�Rx� = 	
�

G�Rx,y�g�y�dy =	
�

G�Rx,Ry�g�Ry�dy = 	
�

G�x,y�g�y�dy = v�x� ,

o v is radial. Next, note that v�x� is non-negative since g�x� is non-negative. Consider a radial test
unction ��C0

��RN�, say

��x� = �cNe−1/�1−�x�2�, �x� � 1

0, �x� 	 1,

here cN is a suitable normalizing constant. Let us set ���x�=�−n��x /��, the standard mollifier. By
xtending g to all of RN, defining it to be zero outside �, we have g� : =��*g→g, in L2���, as
→0. Next we consider

�2v� = g� in �, v� = ��v�� = 0 on � � . �26�

ince g��C0
���̄�, v� belongs �at least� to C4��̄�. Also g� is radial, indeed for R, a rotation map, we

ave

g��Rx� = 	
RN

g�y����Rx − y�dy = 	
RN

g�Ry����Rx − Ry�dy = 	
RN

g�y����x − y�dy = g��x� .

ow applying Ref. 3, Theorem 2.4 we derive v�=v�
*. By the weak formulation of the solutions of

26� we have

	
�

�v��w dx = 	
�

g�w dx, " w � H0
2��� .

o �v��H0
2���

2 =
�g�v� dx� �g��L2��� �v��L2���. An application of the Sobolev embedding theorem

2
hen yields �v��H0����C, for some constant C. Thus �v�� is bounded �uniformly with respect to ��
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n H0
2���. Therefore it has a subsequence, denoted �vi�, that converges to some v̄�H0

2���, weakly
n H0

2��� and strongly in L2���. As a consequence we find

	
�

�v̄�w dx = 	
�

gw dx, " w � H0
2��� ,

ince gi→g in L2���. Therefore v̄ is the solution of the following boundary value problem:

�2v̄ = g in �, v̄ = ��v̄� = 0, on � � ,

nd v̄=v. On the other hand, from a standard property of rearrangements, we have

�vi
* − v*�L2��� � �vi − v�L2���,

o vi
*→v*, in L2���, since vi→v, in L2���. Since vi

*=vi, it readily follows that v=v*, almost
verywhere in �, as desired. �

We are now ready to prove Theorem 7.
Proof of Theorem 7: Let vg denote the solution of

�2vg = g in �, vg = ��vg� = 0 on � � .

ince 0�g�x��M, g�x��0, an inspection of the representation formula via Green’s function

hows that vg�x� is strictly positive in � and continuous on �̄.
It is easy to show that

	
�

gv f dx = 	
�

fvg dx ,

or every f �F, where v f is the solution of �2�. Therefore, we are interested in the following
aximization problem:

sup
f�F

	 fvg dx .

y Lemma 3 we know that there is a maximizer f̄ . Now let us prove that all level sets A
= �x
� :vg�x�=
� have measure zero. If B is the ball �x�� :g�x��0�, the set A
�B has measure

ero because �2vg=g�0 there. The boundary of B has �N-dimensional� measure zero. On � \ B̄

e have �2vg=0. If the set A
� �� \ B̄� has a positive measure then vg�x�=
 on � \ B̄. Since

g�x�=0 on ��, if 
�0 we find a contradiction. If 
=0 we have vg�x�=0 on a set of positive
easures, but we know that vg�x��0 in �. Therefore, all sets A
 have measure zero. Then, by

emma 1, there is an increasing function � such that ��vg�x�� is a rearrangement of f̄ . Finally, by

emma 2 we get f̄ =��vg�x��. As a consequence, since �by Lemma 4� vg�x�=vg
*�x� and � is

ncreasing, we must have f̄�x�= f̄*�x�= f0
*�x�. The first assertion of the theorem is proved. The proof

f the second assertion is very similar. We have

− inf
f�F
	

�

gv f dx = sup
f�F
	

�

�− g�v f dx = sup
f�F
	

�

fv−g dx ,

here v−g denotes the solution to �2� with −g in place of f . By Lemma 3 we find a maximizer
of the last functional� f . The level sets A
= �x�� :v−g�x�=
� have measure zero �note that v−g

−vg, with vg as in the previous case�. Therefore, by Lemma 1, there is an increasing function �̃
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uch that �̃�v−g�x�� is a rearrangement of f . Finally, by Lemma 2 we get f = �̃�v−g�x��. Equiva-
ently, since v−g�x�=−vg�x�, we have−f =��vg�x��, with � increasing. As a consequence, since

g�x�=vg
*�x� and � is increasing, we must have −f�x�= �−f�*�x�= �−f0�*�x�. Therefore, f�x�

=−�−f0�*�x� as claimed. The theorem is proved. �
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Two nonlinear anelastic models with fractional derivatives, describing the proper-
ties of a series of materials as polymers, and polycrystalline materials are presented
in this paper. These models are studied analytically, using a variational iteration
method. The paper clarifies the different ways in which the fractional differentiation
operator can be defined. A Volterra series method of model parameters identifica-
tion from the experimental data is also presented. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2234273�

. INTRODUCTION

In order to describe accurately the anelastic properties of polymers, anelastic rheologic equa-
ions were used, in which terms containing fractional derivatives1–3 appear. The validity of these

odels is extensively discussed.
Linear five-parameter fractional anelastic models4 are currently used to explain the anelastic

roperties of plastics or rubber.
It was found that the difference between the order of strain and stress time derivatives is

elated to the high frequency limit value of the loss factor.5

The investigation of the constitutive equations, which describes these models, is based on
ourier6,7 and Laplace transform,8 averaging methods,9 finite element method,4 and numerical
ethods.10,11

Unfortunately, only a restricted number of differential equations involving fractional deriva-
ives have exact, or closed form solutions.

The aim of this paper is to build a nonlinear anelastic model with fractional damping, and to
xpress the efficiency of the variational iteration method of He,12–15 based on the Lagrange mul-
iplier. The advantages of this method were widely presented in Ref. 16 as being useful for all
inds of differential equations, including strongly nonlinear equations. The method is strongly
onvergent, and was applied to a series of problems as waves,17 fractional differential equations,18

nd differential equations with convolution product nonlinearity.19 It is important to underline that
he variational iteration method of He is not yet sufficiently investigated, which in the case of
inear differential equations yields the solution after one iteration.

While the method has been applied to various nonlinear problems by many authors, a com-
lete review is available in the He’s monograph.20

This paper also tries to clarify the different ways in which the fractional differentiation op-
rator can be defined.

�
Electronic mail: ghed@mec.utt.ro
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I. FRACTIONAL DIFFERENTIATION

The fractional derivative represents a generalization of the standard derivative and was intro-
uced 300 years ago by Leibniz, and investigated by mathematicians such as Liouville, Riemann,
ourier, and Laplace.

The fractional derivative Dt,a
� , operator represents a linear operator, which can be written with

he aid of the Riemann-Liouville definition as21

Dt,a
� x�t� =�

1

��n − ��
dn

dtn�
a

t

�t − y�n−�−1f�y�dy , n − 1 � � � n

dn

dxn f�t� , � = n , � �1�

here � is a noninteger number which verifies n−1���n, n=0,1 , . . . . This definition of the
ractional derivative is useful since for negative values of �, the operator D� represents the
ractional integration operator.

The fractional differentiation operator also verifies the following rules:
Composition or semigroup rule:

Dt,a
� Dt,a

� = Dt,a
�+�.

Zero rule:

Dt,a
0 x�t� = x�t� .

Fractional differentiation of a product of two functions f�t�g�t� �Leibniz rule�:

Dt,a
� f�t�g�t� = �

k=0

� 	 k

�

Dt,a

k f�t�Dt,a
�−kg�t� . �2�

For different values of a, different particular derivatives result, for which different differen-
iation rules result. This apparent contradiction was discussed and pointed out in the paper of
avoie, Osler, and Tremblay.22

The value a=−� gives the Dt,−�
� operator, to which the following differentiation rule corre-

ponds:

Dt,−�
� exp�ut� = u� exp�ut� , �3�

here u is a complex valued quantity, u�C.
The following differentiation rules result:

Dt,−�
� exp�iat� = a� exp	i	at +

�

2
�

 ,

Dt,−�
� sin��t� = �� sin	�t +

�

2
�
 , �4�

Dt,−�
� cos��t� = �� cos	�t +

�

2
�
 .
For a=0 the differentiation operator,
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Dt
� = Dt,0

� , �5�

esults, which will be used in our calculation since the process investigated by us corresponds to
ositive values of time. For this kind of fractional derivative it results:21,22,28

Dt
�tk =

n!

��k − � + 1�
tk−�, �6�

here k�N.
The differentiation rule for the constant function f�t�=121,22 is

Dt
�1 =

n!

��1 − ��
t−�, �7�

nd it is valid for �	0 and t
0, where � represents the Euler function.27

An interesting category of functions are the Mittag-Leffler functions, E��t� and E�,��t�:21

E��z� = �
k=0

�
zk

���k + 1�
, E�,��z� = �

k=0

�
zk

���k + ��
, �8�

alid for �	0, ��C and z�C.
It is important to note that the eigenfunctions ���t� of the Dt,0

� operator can be expressed in
erms of E�,� and the initial conditions x�0�=x0, ẋ�0�=x1, ẍ�0�=x2 , . . ., in the form23

���t� = �
j=0

���−1

xjE�,j+1��t�� , �9�

hich obeys the eigenvalue equation:

Dt,0
� ���t� = ����t� . �10�

The identity:

Dt,0
� E��− �at��� = − a�E��− �at��� , �11�

an also be proved.

II. THE FRACTIONAL ANELASTIC MODELS

So far, a series of linear fractional anelastic models have been introduced in the literature for
he investigation of a number of materials, as presented in Sec. II. We introduce the stress  and
he strain �. A general linear anelastic model of this type can be written in the following form:6

 + �
i=1

n

��
�iDt,a

�i  = E0	� + �
j=1

m

�
�jDt,a

�j �
 , �12�

here n ,m�N are positive integers, � ,�� are time constants, �i ,� j are fractional and/or integer
arameters �where �i
0, 0�� j �1�, and E0 the relaxed elastic modulus. Dt,a

�i,�j are the Riemann-
iouville differentiation operators.

There are known nonlinear anelastic models with fractional damping,24 used for the study of
ubbers and plastic materials.

Also, there are nonlinear anelastic models, based on the structural properties of polycrystalline
olids, in which the rate of the relaxation process is a linear function of the stress applied on the

25
rain boundaries:
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v �
1

�
=

� + �

�0
, �13�

here � is the nonlinear relaxation time, � and � are constants of the material, and �0 is the time
onstant in the linear model approximation.

The relaxed and the unrelaxed Young moduli, will be denoted by Er and by Eu=Er+�E,
espectively. If the nonlinear processes are weak, � is a small parameter, and ��1. For this kind
f material, the nonlinear constitutive equation was established:25

�̇ − Er�̇� +
1

�0
��� − Er�� + ��� − Er�� = �E�̇ . �14�

We consider the case of harmonic excitation

� = A sin �t ,

here A is the amplitude of the excitation strain and � is the angular frequency of the excitation.
Equation �14� can be written in a more general form, considering the dependency on fractional

erivatives:

Dt,a
1 x + �Dt,a

� x + �x + �x2 = A0 cos �t , �15�

here x=−Er�, A0=�E�A, � has noninteger values, and � and � are positive material con-
tants.

Assuming that the initial condition at t=0 is

0 = �Er + �E��0, �16�

t corresponds to instantaneous response to the constant strain �0.
If �=1 and �=0 the standard case of linear anelastic model results. Considering that � is a

mall parameter 0���1� the anelastic solid with small nonlinearities is obtained.
By optimal selection of the parameters of this model solutions with a strong linear behavior of

he response to vibrations and with a nonlinear manifestation for the exponential response can be
btained.

V. VARIATIONAL ITERATION METHOD

In order to find an analytical solution of Eq. �15� we will use a powerful variational iteration
ethod established by He,12,13 a new type of Lagrange multiplier method.

This universal method gives the possibility to solve all kinds of nonlinear equations. The
pplication of the powerful method is limited to the case of a nonlinear system of type:

Lx�t� + Nx�t� = g�t� , �17�

here L is a linear operator, N is a nonlinear operator, and g�t� is a known excitation function.
The variational iteration method gives the possibility to write the solution of Eq. �17� with the

id of the correction functional:

xn+1�t� = xn�t� + �
0

t

�����Lx��� + Nx̃��� − g����d� , �18�

here xn is an initial approximation with possible unknowns, � is a Lagrange multiplier, and ỹ
epresents a term with a restricted variation, i.e., �ỹ=0. The � multiplier can be found from the
tationary condition of the correction functional �xn+1=0.

The variational iteration method was proposed in 1998, and it is used to solve fractional
14
ifferential equations arising in seepage flow.

                                                                                                            



t

f

c

t

A

e

w

082902-5 A variational iteration method J. Math. Phys. 47, 082902 �2006�

                        
We will use this method to obtain the solution of the constitutive equation �15�. In our case we
ake

L =
dx

dt
+ �x ,

g = A0 cos �t ,

N = �Dt,a
� x + �x2.

Imposing the stationary condition ��xn+1=0� on the correction functional it results

�̇��� − ����� = 0, �19�

�1 + ������=t = 0, �20�

rom which the Lagrange multiplier can be identified as

���� = − exp���� − t�� . �21�

We will consider an initial approximation of the solution of

x0�t� = c exp�− �t� +
A0�

�2 + �2 sin �t +
A0�

�2 + �2 cos �t �22�

ontaining the integration constant c.
We will investigate the solution of Eq. �15� for two particular forms of the fractional deriva-

ive, i.e., for Dt,0
� and Dt,−�

� .

. Case of Dt,0
�

A fractional oscillator was studied on the basis of He’s method in a previous paper.26

In this case, for the linear model �=0 replacing �19�, �21�, and �22� in �18� based on differ-
ntiation rules �6� and �7�, it results:

xlin�t� = c�exp�− �t� −
�

�t���1 − ���− e−�t�
n=0

�
�− �t�1

nF1�n − �;n + 1 − �;�t�
�1 − ��n

+ 1F1�1;1 − �;− �t��� +
A0�

�2 + �2 sin �t +
A0�

�2 + �2 cos �t − �A0
1

��2 + �2��t���1 − ��

���� − i���− e−�t�
n=0

�
�i�t�1

nF1�n − �;n + 1 − �;�t�
�1 − ��n

+ 1F1�1;1 − �;i�t��
+ �� + i���− e−�t�

n=0

�
�− i�t�1

nF1�n − �;n + 1 − �;�t�
�1 − ��n

+ 1F1�1;1 − �;− i�t��� , �23�

here 1F1�a ;b ;z� represents the confluent hypergeometric function:27,28

1F1�a;b;z� = �
n=0

�
�a�nzn

�b�nn1
.

27
The quantity �a�n represents

                                                                                                            



w

w

i

a

w

=
f

w

B

d

082902-6 G. E. Drăgănescu J. Math. Phys. 47, 082902 �2006�

                        
�a�n = a�a + 1��a + 2� . . . �a + n − 1� ,

here �a�0=1. The quantity �a�n is connected to the � function by

�a�n =
��a + n�

��a�
.

For the nonlinear case ���0� we obtain

x1�t� = xlin�t� + xn�t� , �24�

here xn�t� is

xn�t� = −
�

�
e−�t�c2�1 − e−�t� +

1

2

A0
2

��2 + �2�
�e�t − 1� +

1

2

A0
2��2 − �2��

��2 + �2�2�4�2 + �2�

��− � + �e�t cos 2�t + 2�e�t sin 2�t� +
A0

2��2��
��2 + �2�2�4�2 + �2�

��2� − 2�e�t cos 2�t + �e�t sin 2�t� + 2
A0c

��2 + �2��− 2��cos �t − 1� +
�2

�
sin �t�� ,

�25�

It is important to underline that for the linear case, the first iteration of solution �23� must be
n principle the exact solution.

It can be noted that, using the properties of the hypergeometric functions, the series which
ppear in �23� can be written in a more compact form:

�
n=0

�
�at�nF�n − �;n + 1 − �;�t�

�1 − ��n
= �

n=0

�
�at�n

�− ��n
	 d

d��t�

n

F�− �;1 − �;�t� = HF�− �;1 − �;�t� ,

here H is a linear operator.
An alternate way to find the solution consists of taking the linear operator L from �17� as L

Dt,a
� x+ �� /��x and expressing the solution for Lx0=0 in terms of Mittag-Leffler E� or E�,j

unctions due to properties �10� and �11�.
The stress response resulting after the use of the initial condition �16�, for the both cases, is

�t� = x + ErA sin �t ,

here x=xlin or x=x1.

. Case of Dt,−�
�

In this case, for the linear model �=0 replacing �19�, �21�, and �22� in �18�, based on
ifferentiation rules �3� and �4� it results:

xlnr�t� = c�1 − ��− ���t�exp�− �t� +
A0�

�2 + �2 sin �t +
A0�

�2 + �2 cos �t −
�A0

�2 + �2e−�t

��−

�	− � cos	��

2

 + � sin	��

2

 + �e�t cos	�t +

��

2

 − �e�t sin	�t +

��

2




�2 + �2

−

�	� cos	��

2

 + � sin	��

2

 − �e�t cos	�t +

��

2

 − �e�t sin	�t +

��

2




2 2 � . �26�

� + �
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For the nonlinear case ���0� the solution will be of the form:

x1�t� = xlnr�t� + xn�t� , �27�

here xn is given by �25�.
It is important to underline that also for this linear case, the first iteration of solution �26� must

e in principle the exact solution.
The use of Dt,−�

� differentiation operator gives different results with respect to Dt,0
� . It must be

oted that this situation is more restrictive, and can be considered similar to the use of the Fourier
ransform for solving nonhomogeneous differential linear equations: this case gives only the part
f solution connected to the permanent response.

Also, the results become incorrect when �−��� are complex valued. Consequently, in order to
btain valid solutions, the terms containing complex valued quantities must be eliminated from the
olution.

The stress response that results after the use of the initial condition �16�, for the both cases, is

�t� = x + ErA sin �t ,

here x=xlnr or x=x1.

. VOLTERRA SERIES METHOD

There are methods for the identification of nonlinear systems from experimental data. For a
onlinear system described by equations of type �15� the response can be expressed in terms of
olterra series:29,30

x�t� = �
0

�

h1��1�u�t − �1�d�1 + �
0

� �
0

�

h2��1,�2�u�t − �1�u�t − �2�d�1d�2

+ �
0

� �
0

� �
0

�

h3��1,�2,�3�u�t − �1�u�t − �2�u�t − �3�d�1d�2d�3 + ¯ , �28�

here hi��1 ,�2 , . . . � �with i=1,2 ,3 , . . ..� is the ith order transfer function, and u represents the
nput function. In our case u�t�= �̇�t�.

If we consider that the excitation is ��t�=Aei�t, by replacing �28� in �15� we can calculate
ifferent orders of the transfer function for harmonic excitation. In this case the response will have
he form:29,30

x�t� = �
i=1

+�

�i�0��E�nHi��,�,¼. �exp�in�t� = � �nein�t, �29�

epresenting a superposition of harmonics.
The amplitudes �n can be found from the constitutive equation �15�. The problem can be

orrectly formulated only for systems described by constitutive equations with fractional differ-
ntiation operators connected to the Fourier transforms, i.e., for Dt,−�

� . We take �15�, for the case
f Dt,−�

� , and use the notation:

F�p� = ip + �ei���/2���� .

Thus, the following results are obtained:

�1 =
1

F���
,

�2 = − 2
� �1

2

, �30�

�0 F�2��
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�3 = − 6
�

�0

�1�2

F�3��
.

The different amplitudes �1 and finally the parameters of the rheologic model may be obtained
rom experimental data.

I. CONCLUSIONS

In order to find an analytical solution of Eq. �15� we used a powerful variational iteration
ethod established by He,12,13 a new type of Lagrange multiplier method. The strength of this
ethod consists in its convergence. We limited our investigations to the first iteration.

We used these methods to establish the solution for a class of linear and nonlinear anelastic
odels, �15�, in which the dependency of fractional damping process �fractional differentiation�

ppears.
We introduced an anelastic model using a more general definition of fractional differentiation

f order �, using Riemann-Liouville Dt,a
� operator.

Two cases were investigated. For a=0 we established the solution for linear and nonlinear
ases. It is important to underline that for the linear case, the first iteration of the solution �23�
ust be in principle the exact solution.

The case a=−� was also investigated, establishing the solution for linear and nonlinear
ituations. The obtained solution was simpler. It was underlined that this situation was more
estrictive, and could be considered similar to the use of the Fourier transform for solving non-
omogeneous differential linear equations: this case gives only the part of solution connected to
he permanent response. The results cannot be valid when �−��� are complex valued.

The variational iteration method of He can be used for finding general solutions for the partial
ifferential equations, starting with a particular solution, as suggested in Ref. 31.

As a generalization of the Fourier transform rheology we introduced the Volterra-Fourier
eries in order to study the response of nonlinear systems to harmonic excitation.
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n the simultaneous presence of unilateral and kinetic
onstraints in time-dependent impulsive mechanics
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The simultaneous presence of unilateral and kinetic constraints acting on a me-
chanical system with a finite number of degrees of freedom is framed in the geo-
metric context of left and right jet-bundles of the classical space–time bundle of the
system. The survey gives three main cases and several subcases, some of which are
mathematically correct but physically meaningless. The existence of at least one
frame of reference for which the whole set of constraints can be at rest is the
criterion selecting the physically relevant systems. For these systems, the conser-
vation of kinetic energy, possibly together with a standard Gauss’s requirement on
the impulsive reaction, is shown to give a well posed criterion of ideality of the
constraints. The application of the criterion to several examples is presented and the
corresponding results are critically analyzed. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2234728�

. INTRODUCTION

Differential geometric techniques have been recently discovered again as useful tools for the
tudy of classical impulsive mechanics of systems with a finite number of degrees of freedom, in
oth cases of free or constrained systems. Besides the usual instruments of differential geometry
for whose applications to impulsive mechanics see, e.g. Refs. 1–5�, several results in time-
ependent impulsive mechanics were obtained by the author by introducing the framework of left
nd right jet-bundles of the classical configuration space–time of the mechanical system. In par-
icular, this setup allows deeper insights into the study of the behavior of free systems subject to
ctive impulses,6 of constrained systems subject to ideal bilateral positional or kinetic
onstraints,7,8 and in the study of the concept of ideality for unilateral positional constraints.9

In this paper, going in the same direction as the previous cited papers of the author, we present
geometric framework for the study of impulsive systems simultaneously subject to unilateral and
inetic constraints. In particular, we distinguish three different cases: when the system is subject to
kinetic constraint only when it impacts with a unilateral positional constraint �the kinetic con-

traint “lives” on the positional unilateral constraint�; when the system is permanently subject to a
inetic constraint and impacts with unilateral positional constraints; when both situations simul-
aneously occur, i.e., the system is subject to a permanent kinetic constraint and impacts with a
nilateral positional constraint where an ulterior kinetic constraint acts on the system.

For all three cases, following the same line of thought presented in Ref. 9, we propose an
deality criterion of the constraints based on the conservation of the kinetic energy of the system
ogether with, when this requirement turns out to be insufficient to restore the principle of deter-

inism, a Gauss’s “extremality” requirement for the impulsive reaction. As usually happens in
mpulsive problems involving kinetic constraints, Gauss’s condition is automatically well posed if

�
Electronic mail: stefano.pasquero@unipr.it

47, 082903-1022-2488/2006/47�8�/082903/19/$23.00 © 2006 American Institute of Physics
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he kinetic constraint has a linear-affine nature, but, if the constraint has a nonlinear nature, the
xistence of the extremum, in general, is not ensured �see Ref. 7�. Nevertheless, linear-affine
onstraints can provide several meaningful examples.

The paper is divided into four sections. Section II presents, in order to fix notation, a brief
urvey on the general geometric setup for the study of systems subject to bilateral constraints,
ositional or kinetic, and systems subject to unilateral positional ones. Almost all its material is not
ew and can be found in literature �see, for example, Refs. 10, 11, 6, 7, and 9�. Nevertheless, the
eorganization of this material in a form suitable to approach the subsequent problems is new stuff.
ection III presents the geometric framing of the three possible cases of coexistence of kinetic and
ositional unilateral constraints in the general context illustrated in Sec. II, together with a detailed
iscussion on the conditions determined by the geometry itself on the impulsive reaction. More-
ver it presents, for all three possibilities, the ideality criterion based on the conservation of kinetic
nergy and Gauss’s principle. Section IV is devoted to examples of the three possibilities, and it
resents a detailed discussion of the behavior of four simple mechanical systems: a cogwheel
oving in the plane and impacting with a linear rack; a cogwheel rolling on a horizontal rack and

mpacting in a smooth vertical wall; a ball rolling on a horizontal plane and impacting in a smooth
ertical wall; a ball rolling on a horizontal plane and impacting in a rough vertical wall. Section V
riefly presents a critical analysis of the results obtained in Sec. IV, together with conclusions.

I. PRELIMINARIES

. Geometric aspects of bilateral constraints

The configuration space–time of a mechanical system with a finite number n of degrees of
reedom is a bundle � :V→E1, where E1 is the affine line. The set V is an �n+1�-dimensional
ifferentiable manifold �noncanonically� diffeomorphic to the Cartesian product R�Q, where the
anifold Q is the usual configuration space of the system. The composition of � with the Carte-

ian coordinate of E1 determines the absolute time function t :V→R. The bundle V will be referred
o admissible coordinates �t ,x1 , . . . ,xn�.

The first jet-extension � :J1�V�→V of the configuration space–time represents the absolute
elocity space of the system. It can be viewed as a subbundle of the tangent bundle T�V� of V
iven by those vectors having the form p=� / ��t�+ ẋi� / ��xi� or, that is the same, determined by the
ondition �X�T�V� � �dt ,X� =1�. This condition also shows that J1�V� is an affine bundle,
odeled on the so-called vertical vector bundle � :V�V�→V of the tangent vectors X�T�V�

atisfying the condition �X�T�V� � �dt ,X� =0�, or that is the same, having the form V
Xi� / ��xi�. The bundles J1�V� andV�V� will be both referred to admissible jet-coordinates

t ,xi , ẋi�.
The fibers of V�V� are endowed with a positive definite scalar product � :V�V��VV�V�→R,

here �V denotes the usual fiber product of bundles on V. The map � is called the vertical scalar
roduct of V and can be locally described by the functions gij�p�=���� / ��xi��p , �� / ��xj��p�. We
ecall that � takes intrinsically into account the mass properties of the system �for a detailed
iscussion of these arguments, see, e.g., Ref. 11, and the references therein�.

A frame of reference for the system �without any assumption of rigidity� is a global section
:V→J1�V�. It can be represented by a globally defined vector field h=� / ��t�+Hi�t ,xj�� / ��xi�
nd it determines a “vectorialization” of J1�V�, i.e., a diffeomorphism �h defined by

�h:J1�V� → V�V� such that �h�p� = p − h���p�� .

iven a frame h, the vertical vector

�h�p� = p − h = �ẋi − Hi�t,xj��
�

�xi
epresents the relative velocity of p�J1�V� with respect to h. Moreover, the function
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hK:J1�V� → R such that hK�p� = 1
2��p − h,p − h� �1�

s the kinetic energy of the system with respect to h.
Additional positional constraints acting on the system are given by a globally time-fibered

ubbundle i :S→V, where the manifold S has dimension �r+1� ,r�n. Of course, the bundle
:S→R is the space–time bundle of the system that takes into account the constraint S as a
ilateral constraint. The bundle S will be referred to admissible coordinates �t ,q1 , . . . ,qr�, and the
mmersion i can be briefly described by the relations xi=xi�t ,q1 , . . . ,qr�. The bundle S determines
ts own first jet-extension � :J1�S�→S with its vertical bundle � :V�S�→S. They both are de-
cribed by admissible jet-coordinates �t ,q� , q̇��, and their elements have the vector representations
=� / ��t�+ q̇�� / ��q�� and V=V�� / ��q��, respectively.

The tangent map i* :T�S�→T�V� determines by restriction the fibered immersions i* :J1�S�
J1�V� and i* :V�S�→V�V�. As a consequence, the vertical scalar product � of V can be pulled

ack to V�S�, defining the vertical scalar product � of S.
The standard pull-back techniques allow the construction of the pull-back bundles

: i*�J1�V��→S and � : i*�V�V��→S �see Ref. 9�, both referred to fibered admissible coordinates
t ,q� , ẋi�. A frame of reference h and the corresponding vectorialization �h and kinetic energy hK
an be naturally restricted to maps h :S→ i*�J1�V�� ,�h : i*�J1�V��→ i*�V�V�� and hK : i*�J1�V��
R.

The framing of kinetic constraints in this global geometric context needs some clarifications.
he presence of kinetic constraints permanently acting on the system �without considering the
ossible presence of additional positional constraint� is modeled, as it is well known �see, e.g.,
ef. 10�, by a subbundle h :A→J1�V�. The manifold A is globally fibered over V �and then over

he real line�, and A has dimension �n+s+1� ,s�n. The bundle A will be called a permanent

inetic constraint and will be referred to admissible coordinates �t ,xi , 	̇A�. The standard pull-back
rocedure determines the subbundle � : i*�A�→S of the bundle � : i*�J1�V��→S described by

dmissible coordinates �t ,q
 , 	̇A�.
However, in the presence of an additional positional constraint S, a kinetic constraint can be

efined only on S. Then a subbundle k :B→J1�S� can be introduced for the bundle J1�S�, with the
anifold B globally fibered over S, and B of dimension �r+m+1�, m�r. The bundle B will be

eferred to admissible coordinates �t ,q� , �̇��. This kinetic constraint can act on the system only
hen the system is in a configuration of S: for this reason, slightly improperly, B will be called an

nstantaneous kinetic constraint.
Of course, both kinds of kinetic constraints can be simultaneously present on the system. The

hole situation is summarized with the following diagram:

. Geometric aspects of impulsive constraints

In order to approach the study of impulsive aspects of the system, it is useful to introduce the

undles � :L1�V�→V of the left velocities of the system and � :R1�V�→V of the right velocities
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f the system �see Ref. 6�. They are both affine bundles canonically diffeomorphic to J1�V� in the
eometric sense, with diffeomorphism IdL :J1�V�→L1�V� and IdR :J1�V�→R1�V�, but their physi-
al interpretation is slightly different from that of J1�V�. The action of the diffeomorphisms IdL

nd IdR will frequently be implicitly understood. We will use jet-coordinates �t ,xi , ẋL
i � to describe

1�V� and �t ,xi , ẋR
i �i to describe R1�V�. The elements pL of L1�V� can be represented in the vector

orm pL=� / ��t�+ ẋL
i � / ��xi�, and, analogously, pR�R1�V� can be written as pR=� / ��t�

ẋR
i � / ��xi�.

Due to the affine structure of L1�V� and R1�V� and to the diffeomorphisms IdL and IdR, we can
efine two fibered maps

: L1�V��VV�V� → R1�V�such that �pL,V� = pL + V ,

�2�
�: L1�V��VR1�V� → V�V� such that ��pL,pR� = pR − pL.

In the presence of additional positional constraints, identical constructions can be repeated for
he bundle t :S→R, obtaining the bundles L1�S� and R1�S� canonically diffeomorphic to J1�S�
ith diffeomorphisms IdL :J1�S�→L1�S� and IdR :J1�S�→R1�S�. They are described by jet-

oordinates �t ,q� , q̇L
�� and �t ,q� , q̇R

�� respectively, and their elements admit the vector representa-
ion qL=� / ��t�+ q̇L

�� / ��q�� and qR=� / ��t�+ q̇R
�� /�q�.

The immersion i* :J1�S�→J1�V� determines, thanks to the diffeomorphisms IdL , IdR, the im-
ersions i* :L1�S�→L1�V� and i* :R1�S�→R1�V�. Therefore, applying once again the pull-back

rocedure, we can construct the bundles � : i*�L1�V��→S and � : i*�R1�V��→S, locally described
y coordinates �t ,q� , ẋL

i � and �t ,q� , ẋR
i �, respectively. Of course, as it happens for the immersion

* :J1�S�→ i*�J1�V��, the images i*�L1�S�� and i*�R1�S�� are affine subbundles of i*�L1�V�� and
*�R1�V��, respectively.

The pull-back bundle h : i*�A�→ i*�J1�V�� of the permanent kinetic constraint A determines,
sing the diffeomorphisms IdL and IdR, the subbundles h : i*�A�→ i*�L1�V�� and h : i*�A�

i*�R1�V��. Similarly, the instantaneous constraint B gives rise to subbundles k : i*�B�
i*�L1�S�� and k : i*�B�→ i*�R1�S��. Later on, when no confusion can arise, the action of the

mmersion h and k will be often omitted and implicitly understood.
Focusing our attention only on the part of the construction that will be intensively used in the

aper, the geometric setup is synthesized by the following diagram:

�3�

An impulse acting on the system can be equivalently described by a map I :L1�V�→R1�V�
ssigning to each left velocity pL of the system a corresponding right velocity pR, or, preferably in
rder to preserve some similarities with the usual definition of forces �see, e.g., Refs. 10 and 11�,
y a map I :J1�V�→V�V� assigning to each velocity p of the system the corresponding jump of
elocity V=I�p� �see, e.g., Ref. 6�. The equivalence of the two definitions is synthesized by the

elation pR=pL+I�pL� and it is easily proved taking into account the maps �2�.
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. Geometric aspects of unilateral constraints

The bundle i*�J1�V�� is, by its very nature, the set of all possible absolute velocities of the
ystem when the system itself is in a configuration of S, but without thinking of S as a constraint.
herefore, i*�J1�V�� is the most suitable geometric environment to approach the analysis of S as a
nilateral constraint acting on the system.

Every map I : i*�J1�V��→ i*�V�V�� defined on the bundle i*�J1�V�� can be thought of as an
ssignment of the impulsive reaction of S considered as a unilateral constraint acting on the
ystem: given an “entrance” velocity of the system in a configuration of S, the map I determines,
hrough the map  defined in �2�, a corresponding “exit” velocity of the system from the same
onfiguration of S. Therefore, once S is assigned, every criterion fit to determine a unique impulse
: i*�J1�V��→ i*�V�V�� is a so-called �impulsive� constitutive characterization of the unilateral
onstraint S �see Ref. 9�.

The immersions i* :J1�S�→ i*�J1�V�� and i* :V�S�→ i*�V�V�� play a crucial role in the geo-
etric model of S as unilateral constraint. Since their images i*�J1�S�� and i*�V�S�� are an affine

ubbundle of i*�J1�V�� and a vector subbundle of i*�V�V��, respectively, then the vertical metric �
efined on i*�V�V�� determines, with obvious meaning of the notation, the splits

i*�V�V�� = i*�V�S�� � �i*�V�S����,

� = � � � , �4�

nd the projection operators

P�: i*�V�V�� → i*�V�S��, P�: i*�V�V�� → �i*�V�S����.

t is a straightforward matter9 to show that an analogous split

i*�J1�V�� = i*�J1�S�� � �i*�V�S���� �5�

nd analogous projection operators

PS
� : i*�J1�V�� → i*�J1�S��, PS

�: i*�J1�V�� → �i*�V�S����

an be introduced for the affine bundle i*�J1�V��. Note moreover that �see, for example, Refs. 10
nd 3�, from the computational point of view, the operators PS

� and PS
� can be determined through

minimum principle, since, for every point p� i*�J1�V��, the projection PS
� �p� realizes the mini-

um of the scalar function

fp:i*�J1�S�� → R such that fp�y� = ��p − y,p − y� .

The presence of the constraint S allows the selection of the class H of the frames of reference
hat are tangent to S. The set H is formed by all the frames of reference whose one-parameter
roup of transformations maps the constraint S into itself. The kinematical meaning of this prop-
rty is that H is formed by those frames for which S can be “at rest” �see Ref. 9�.

For every absolute velocity p� i*�J1�V��, the component P��p−h�� �i*�V�S���� of the rela-
ive velocity p−h orthogonal to the constraint S is invariant with respect to the choice of the
rame h in H. Equivalently, given an absolute velocity p� i*�J1�V��, the condition P��p−h�
PS

��p� holds if and only if h�H �see Ref. 9�. Restricting our attention to the frames in H, the
ertical vector PS

��p�� �i*�V�S���� assumes the absolute �in the sense of independent of the
rame� meaning of orthogonal �to S� absolute velocity of p. The component PS

� �p�� i*�J1�S�� can
e called the tangent �component of the� absolute velocity.

Suitable splits and projection operators defined on vector or affine bundles and special classes
f frames of reference will turn out to be very useful in the analysis of possible constitutive
haracterizations also when both kinetic and unilateral constraints act on the system. For the

nalysis of these cases we need the following two lemmas:
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Lemma 1.1: Let K be an affine space modeled on a �finite dimensional� vector space W
ndowed with a scalar product �, and let A be an affine subspace of K modeled on the vector
ubspace U of W. Then

�1� K=A � U� �where, of course, W=U � U�� or, that is the same, "k�K there exists a
unique pair a�A ,u�U� such that k−a=u;

�2� introduced the natural projection operators PW,U� :W→U� and PK,U� :K→U�, deter-
mined by the splits W=U+U� and K=A � U�, then PW,U��k−a�=PK,U��k� if and only
if a�A.

o prove the first part of the lemma, it is sufficient to consider the pair a�A ,u�U� that realizes
he minimum of the function

fk:A → R such that fk�x� = ��k − x,k − x� .

his is the unique pair giving the split.
To prove the second part, it is sufficient to show that, due to the linearity of the operators

nvolved, for every pair k1 ,k2�K, the identity

PW,U��k1 − k2� = PK,U��k1� − PK,U��k2�

olds. The details of both these proofs are straightforward and left to the reader.
Lemma 1.2: Let K be an affine space modeled on the vector space W, and let A, B be two

ffine subspaces of K respectively modeled on the vector subspaces U, V of W. Let A, B be such
hat A�B��. Then A�B is an affine subspace of K �possibly given by a single point of K�
odeled on the vector space U�V.

Once again the proof is straightforward and it is left to the reader.

II. CLASSIFICATION OF CONSTRAINTS AND IDEALITY CRITERION

Taking into account diagram �3�, we can note that three distinct impulsive situations can occur
o the system when it impacts with a unilateral positional constraint S:

Case I: No permanent kinetic constraints A act on the system, and an impulsive kinetic
onstraint B must be satisfied when the system impacts with S. The geometric setup is illustrated
n diagram �3� without the part on the right involving the bundle A. A simple mechanical system
escribed by this situation is a cogwheel moving in a plane and impacting with a linear rack.

Case II: The motion of the system obeys a permanent kinetic condition A before and after the
mpact with S, but no impulsive kinetic constraint B is present on S. The geometric setup is
llustrated by �3� but this time without the part on the left involving the bundle B. Examples of this
ituation are a cogwheel rolling on a horizontal rack and impacting with a smooth vertical wall or,
ore significantly, a sphere rolling on a horizontal plane and impacting with a smooth vertical
all.

Case III: Both a permanent kinetic constraint A and an impulsive kinetic constraint B must be
atisfied by the motion of the system, the first before and after the impact with S, and the second
uring the impact. This case requires the whole diagram �3� to be illustrated. A simple example of
his situation is a sphere rolling on a horizontal plane and impacting with a rough vertical wall
here an ulterior condition of rolling must be satisfied.

The next part of the section presents a separate analysis of the three cases, in the following
ypotheses:

H1: The positional constraint S has codimension 1 as subbundle of V, or, that is the same,
=n−1.

H2: The kinetic constraints A and B are affine subbundles of J1�V� and J1�S�, respectively.
The first hypothesis is required mainly with the intention of avoiding some pathological �and

hysically almost meaningless� systems, such as a point mass moving in a three-dimensional space
nd impacting with a one-dimensional thread. This intention will permeate through the whole

ection, since it will be shown that, depending on the nature of the constraints A, B and S �in
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ases II and III�, several physically meaningless situations can occur. Note moreover that hypoth-
sis H1 implies that the vector bundle �i*�V�S���� is a �line� bundle whose fibers have dimension
. Therefore we can introduce a vector field VS

� such that �i*�V�S����=L�VS
��.

The second hypothesis, as we already pointed out, is required mainly in order to avoid
echnicalities regarding the existence of the extremum in the Gauss’s requirement about the reac-
ion. Using admissible coordinates, this means that the immersion h :A→J1�V� can be synthesized

y the relations ẋi=EA
i 	̇A+Fi, and the immersion k :B→J1�S� can be synthesized by the relations

˙
=M�

�̇�+N
, with the coefficients EA

i ,Fi ,M�

 ,N
 independent of dotted coordinates. In particu-

ar, when H2 holds, the affine structure of the constraints A and B implies that the sets

V�A� = �A = a1 − a2�a1,a2 � i*�A�� ,

V�B� = �B = b1 − b2�b1,b2 � i*�B�� , �6�

ave the structure of vector subbundles of i*�V�V�� and i*�V�S��, respectively.
We underline however that, even imposing conditions H1 and H2, the situation remains

eneral enough to describe a wide variety of mechanical systems, such as the four examples
escribed earlier.

The determination of a constitutive characterization of the constraints follows the same line of
hought for all three cases. This line of thought is analogous to the one presented in Ref. 9, when
single unilateral positional constraint acts on the system, and it is synthetically described by the

ollowing step-by-step procedure:
Step 1: A geometric analysis of the case is performed in order to determine the set of the

dmissible left and right velocities pL ,pR of the system, the corresponding admissible impulsive
eactions I�pL�, the set H of the frames of reference for which all the constraints can be at rest �if
t exists�, and a particular component V��pL� of the left velocity that, in the simplest cases,
oincides with the component orthogonal to the whole set of constraints.

Step 2: Conservation of kinetic energy before and after the impact is required, if possible, for
ll the frames in H.

Step 3: If the impulsive reaction is not uniquely determined, a Gauss’s criterion is imposed.
We will show that the procedure can already fail at the first step since the set H of rest frames

an be empty. However, the corresponding systems do not have a clear physical meaning. In fact,
he integral lines of the elements of H represent the possible motions of the system respecting the
hole set of constraints, and the condition H=� implies that no such motions exist. This is
athematically admissible, but physically meaningless. In a Poisson-type approach, with the

mpulsive reaction divided in a first part determined by the entrance of the system in the unilateral
onstraint and a second part determined by the exit of the system out of the constraint �see Ref. 9�,
f H=� the first part of the impulse is undeterminable. Two simple examples should clarify these
ituations:

Example 1: A point mass moving in the xy-plane is subject to the permanent kinetic constraint
ẏ=c1�0 and impacts with a horizontal guide y=0.

Example 2: A point mass moving in the xy-plane is subject to the permanent kinetic constraint
˙ =c1 and impacts with a horizontal guide y=0 where an instantaneous kinetic constraint ẋ

c2 , c2�c1 is defined.
When the first step can be performed with meaningful results, taking into account �1�, the

econd step consists in the requirement

hK�pL� = hK�pR�, " h � H .

straightforward calculation shows that this condition is equivalent to

��2�pL − h�,I�pL�� + ��I�pL�,I�pL�� = 0, " h � H �7�
r, that is the same,
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��2�pL − h� + I�pL�,I�pL�� = 0, " h � H . �8�

f course, the trivial solution I�pL�=0 is not admissible, since it implies that the constraints do not
ct on the system.

However, depending on the nature of the constraints, conditions �7� or �8� could not determine
unique nontrivial impulsive reaction I�pL�. In this case, in order to restore the principle of

eterminism, we should perform the third step of the procedure.
We advance that, in all the meaningful situations, the result of the above-described procedure

s I�pL�=−2V��pL�, once again analogous to the impulsive reaction in the case of single unilateral
ositional constraint acting on the system. However, this conclusion is the result of a detailed
nalysis of two subcases of Case I, four subcases �with only two of them physically meaningful�
f Case II and the other five �once again with only three of them physically meaningful� subcases
f Case III. Before delving, in the following, into this analysis, we list the vector expressions in
dmissible coordinates of the elements of the involved affine and vector spaces, recalling that the
ectors must be thought of as having base point in S:

i*�J1�V�� = 	p =
�

�t
+ ẋi �

�xi
 ,

i*�V�V�� = 	V = Xi �

�xi
 = L	 �

�xi
 ,

i*�J1�S�� = 	q =
�

�t
+ � �xi

�t
+ q̇
 �xi

�q
� �

�xi
 ,

i*�V�S�� = 	U = Q
 �xi

�q


�

�xi
 = L	 �xi

�q


�

�xi
 ,

�9�

i*�A� = 	a =
�

�t
+ �EA

i 	̇A + Fi� �

�xi
 ,

V�A� = 	� = AEA
i �

�xi
 = L	EA
i �

�xi
 ,

i*�B� = 	b =
�

�t
+ � �xi

�t
+ �M�


�̇� + N
� �xi

�q
� �

�xi
 ,

V�B� = 	� = ��M�

 �xi

�q


�

�xi
 = L	M�

 �xi

�q


�

�xi
 .

. Case I

By the nature of the constraints acting on the system, the admissible left velocities pL of the
ystem are elements of i*�L1�V��, and the admissible right velocities pR of the system are elements
f i*�R1�V��. Then, the reactive impulse I�pL�=pR−pL given by the constraints must be in general
n element of i*�V�V��.

Since i*�B� is an affine subbundle of i*�J1�S��, applying Lemma 1.1 to i*�J1�S��, modeled on

he vector bundle i*�V�S�� endowed with the scalar product � induced by �, we obtain the splits
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i*�V�S�� = V�B� � �V�B���,

i*�J1�S�� = i*�B� � �V�B���. �10�

eplacing them in �4� and �5�, we have

i*�V�V�� = V�B� � �V�B���
� �i*�V�S����,

i*�J1�V�� = i*�B� � �V�B���
� �i*�V�S����. �11�

The space H of the frames of rest of the whole set of constraints coincides with i*�B�. In fact,
ince i*�B�� i*�J1�S��, every h� i*�B� is automatically tangent to S. This implies that H is not
mpty �even if it can be given by a single point�.

Given a left velocity pL� i*�L1�V�� i*�J1�V��, we can therefore determine, by introducing
he natural projection operators P�

B : i*�J1�V��→ i*�B� and P�
B : i*�J1�V��→ �V�B���

� �i*�V�S���� induced by the second split of �11�, the component V��pL�=P�
B�pL� of the velocity

rthogonal to the whole set of constraints. Lemma 1.1 ensures that, introducing the natural pro-
ection operators P� : i*�V�V��→V�B� and P� : i*�V1�V��→ �V�B��� � �i*�V�S���� induced by the
rst split of �11�, for every h� i*�B� the vector V��pL� coincides with the component P��pL

h� of the relative velocity pL−h. This concludes Step 1 of the procedure.
In order to determine possible constitutive characterizations I�pL� of the constraints, we im-

ose the conservation of kinetic energy in the impact with respect to all the frames in H. Taking
nto account the natural decompositions pL−h=P��pL−h�+P��pL−h� and I�pL�=P��I�pL��
P���pL��, condition �7� gives

��2�P��pL − h�,P��I�pL��� + ��2V��pL�,P��I�pL��� + ��P��I�pL��,P��I�pL���

+ ��P��I�pL��,P��I�pL��� = 0. �12�

he first addendum is the only one depending on the frame h�H. So �omitting for brevity the
ependence on pL� we have that:

Case Ia: If H is not formed by a single frame, a straightforward computation using admissible
oordinates �see Ref. 9� shows that P��I�=0 and then I=P��I�. The conservation of kinetic energy
an be expressed by the condition

��2V� + P��I�,P��I�� = 0, �13�

ompletely analogous to the one presented in Ref. 9. This concludes Step 2 of the procedure.
However, in this situation, both V� and P��I� belong to �V�B��� � �i*�V�S����, that is a

ector bundle whose fibers have dimension greater than 1, and therefore condition �13� alone does
ot determine P��I�=−2V� as unique nontrivial solution. In complete analogy with Ref. 9, this
esult can be recovered only with an additional Gauss’s “maximality” requirement on the impul-
ive admissible reaction I. This concludes Step 3 and the whole procedure.

To conclude the analysis of this case, note moreover that, with obvious notation, the impulsive
eaction I�pL�� �V�B��� � �i*�V�S���� can be decomposed a part I�

B tangent to the unilateral
onstraint S but orthogonal to the instantaneous kinetic constraint B, and a part I�

S orthogonal to
he unilateral constraint S.

Case Ib: if H= �h̄�, then V�B�= �0�, and the splits �4� and �5� become

i*�V�V�� = �0� � �V�B���
� �i*�V�S����, i*�J1�V�� = �h̄� � �V�B���

� �i*�V�S����.

hen, for every admissible impulsive reaction I� i*�V�V��, we have P��I�=0 and for every ad-
issible left velocity pL� i*�J1�V�� we have pL=h+V�. Condition �8� directly assumes the form

13� and, using the same arguments of Case Ia about the Gauss’s “maximality” requirement, we
�
btain the impulsive reaction I�pL�=−2V �pL�.
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. Case II

By the nature of the constraints acting on the system, both the admissible left velocities pL and
he admissible right velocities pR of the system are elements of i*�A�. Then, the reactive impulse
�pL�=pR−pL given by the constraints must be an element of V�A�. Moreover, the set H is
bviously given by the intersection H= i*�A�� i*�J1�S��. Taking into account Lemma 1.2 and
ecalling that the fibers of the vector bundles V�A� and i*�V�S�� have dimensions s�n and n
1, respectively �so that, in particular, the fibers of i*�V�S�� have codimension 1�, we have three
ossible situations:

• V�A�� i*�V�S�� and i*�A�� i*�J1�S��=�. Then H=� and the system does not have
physical meaning �this is the situation of Example 1 described earlier�.

• V�A�� i*�V�S�� and i*�A�� i*�J1�S��. Then the system cannot impact with the positional
constraint S, since every admissible left velocity pL� i*�A� is already tangent to the
positional constraint S. In this case V��pL�=0 and the corresponding impulsive reaction is
I�pL�=0.

• V�A�� � i*�V�S��. This situation can be divided into two cases: V�A�� i*�V�S��� �0�,
which we will study as Case IIa, and V�A�� i*�V�S��= �0�, which we will study as Case
IIb.

The only nontrivial situation is the last one. To start the geometric analysis when
�A��” i*�V�S��, we need the following:

Lemma 2.1: V�A��” i*�V�S�� if and only if i*�A��” i*�J1�S�� and i*�A�� i*�J1�S����.
Proof: “Ü” Let ā� i*�A�� i*�J1�S�� and let a be such that a� i*�A� and a� i*�J1�S��. Then

− ā�V�A� and a− ā� i*�V�S��.
“Þ” Of course i*�A��” i*�J1�S��, since otherwise, for the definition �6� of V�A�, it would

ollow the inclusion V�A�� i*�V�S��. Moreover, since V�A��” i*�V�S�� and i*�V�S�� has dimension
−1, the �nondirect� sum V�A�+ i*�V�S�� generates the whole i*�V�V��. Introducing two bases of

he vector bundles V�A� and i*�V�S��, or equivalently taking into account the vector forms �9�, the
xistence of an element in i*�A�� i*�J1�S��can be proved by solving a nonhomogeneous under-
etermined linear system with maximum rank. �

Case IIa: If V�A�� i*�V�S��� �0�, then, applying Lemma 2.1, we have i*�A�� i*�J1�S��
�. Now taking into account Lemma 1.2, we have that i*�A�� i*�J1�S�� is an affine subspace of

*�A� modeled on the vector space V�A�� i*�V�S��. Therefore we have the splits

V�A� = �V�A� � i*�V�S��� � �V�A� � i*�V�S����,

i*�A� = �i*�A� � i*�J1�S��� � �V�A� � i*�V�S����. �14�

his case is then structurally similar to Case Ia, with the vector bundle V�A� of the admissible
mpulsive reaction split into a vector bundle V�A�� i*�V�S�� modeling the affine bundle of the
rames of rest of the constraints and the vector bundle �V�A�� i*�V�S���� of the admissible
rthogonal velocities. The requirement �12� of conservation of kinetic energy for all the frames in

implies once again P��I�=0 and then I=P��I�. Furthermore, the conservation of kinetic energy
an be once again expressed by condition �13�. However, in this case, the result I=−2V� can be
btained without imposing additional Gauss’s “maximality” requirement as in Case Ia, but as a
traightforward consequence of the following:

Proposition 2.1: The vector bundle �V�A�� i*�V�S���� is a line bundle. In particular, if UA
� is

he projection on V�A� of the velocity VS
�, then �V�A�� i*�V�S����=L�UA

��.
Proof: The first statement easily follows by dimensionality arguments: since the fibers of

*�V�S�� are of dimension n−1, then those of V�A�� i*�V�S�� have dimension s−1 �that is greater
han 0, for the condition V�A�� i*�V�S��� �0��. Then �V�A�� i*�V�S���� is a line bundle.

The second statement can be proved in two steps: the first shows that UA
��0, the second

� �
hows that UA � �V�A�� i*�V�S��� .
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If UA
�=0, then, since UA

� is the projection on V�A� of VS
�, we should have ��VS

� ,��
0 "��A�, and therefore V�A�� i*�V�S��, that is not possible in this case.

Moreover, a straightforward computation using admissible coordinates and the vector repre-
entations �9� shows that for every ��V�A� we have that ��� ,UA

��=0 if and only if
�� ,VS

��=0, that is if and only if �� i*�V�S��. Then UA
� is orthogonal to V�A�� i*�V�S��, or,

hat is the same, UA
�� �V�A�� i*�V�S����.

Case IIb: If V�A�� i*�V�S��= �0� with the condition V�A��” i*�V�S��, then the fibers of V�A�
ust have dimension 1. However, applying Lemma 2.1, we have once again i*�A�� i*�J1�S��
� and then H= �h̄�.

The splits �14� assume the trivial aspect

V�A� = �0� � V�A� ,

i*�A� = �h� � V�A� .

imilar to Case Ib, for every admissible impulsive reaction I�V�A�, we have P��I�=0 and for

very admissible left velocity pL� i*�A� we have pL= h̄+V�. Condition �8� directly assumes the
orm �13� and, if we take into account that V�A� is a line bundle, once again without Gauss’s
equirement, it follows that I=−2V�.

. Case III

Clearly, since both kinds of kinetic constraints A and B and the unilateral constraint S
imultaneously act on the system, both splits �10� and �14� hold.

Once again, both the admissible left and right velocities pL and pR are elements of i*�A�.
hen, the reactive impulse I�pL�=pR−pL given by the constraints must be an element of V�A�.
oreover, the set H is obviously given by the intersection H= i*�B�� i*�A�. Since

*�B�� i*�J1�S�� and V�B�� i*�V�S��, the splits �14� do not have relevance in this case.
Taking into account Lemma 1.2 and recalling that the fibers of the vector bundles V�B� and

�A� have dimensions m�n−1 and s�n, respectively �so that this time, in the general case, we
o not have bundles with fibers of codimension 1�, we have five possibilities about the nature of
:

• The intersection i*�B�� i*�A� is not trivial. Then we have two possible situations:

�1� V�B��V�A�� �0�, which we will study as Case IIIa;
�2� V�B��V�A�= �0�, which we will study as Case IIIb.

• The intersection i*�B�� i*�A� is trivial. Then we have three possible situations:

�1� i*�B�� i*�A�=�. Then H=� and the system does not have physical meaning �this is the
situation of Example 2 described earlier�.

�2� i*�A�� i*�B�. Then the system cannot impact with the positional constraint S, since every
admissible left velocity pL� i*�A� is already tangent to the positional constraint S and pL

also obeys the instantaneous kinetic constraint B. In this case V��pL�=0 and the corre-
sponding impulsive reaction is I�pL�=0.

�3� i*�B�� i*�A�, which can be considered as a particular case of Case IIIa if the fibers of
i*�B� are not given by a single point, or a particular case of Case IIIb otherwise.

Case IIIa: If i*�B�� i*�A��� and V�B��V�A�� �0�, taking into account Lemma 1.2, with
bvious notation we have the splits

�
V�A� = �V�B� � V�A�� � �V�B� � V�A�� ,
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i*�A� = �i*�B� � i*�A�� � �V�B� � V�A���.

he procedure is then completely similar to Cases Ia and IIa. The conservation of kinetic energy
12� for all the frames in H implies once again P��I�=0, so that I=P��I�. The conservation of
inetic energy can therefore be rewritten as �13� and, if the vector bundle �V�B��V�A��� is a line
undle, this suffices to conclude that I=−2V�. If the bundle �V�B��V�A��� has fibers of dimen-
ion greater than 1, we need Gauss’s requirement to reach the same conclusion.

Case IIIb: If i*�B�� i*�A��� and V�B��V�A�= �0�, then H= i*�B�� i*�A�= �h̄�. With ob-
ious notation we have the splits

V�A� = �0� � V�A� ,

i*�A� = �h� � V�A� .

imilar to Cases Ib and IIb, for every admissible impulsive reaction I�V�A�, we have P��I�=0

nd for every admissible left velocity pL� i*�A� we have pL= h̄+V�. Condition �8� directly
ssumes the form �13�. Similar to Case IIIa, dimension of the bundle V�A� of the admissible
mpulsive reactions determines whether or not we need Gauss’s requirement to obtain the result
=−2V�.

V. EXAMPLES

It is clear that a list of examples exhausting all the possibilities described in the previous
ection would be very tedious and, in some cases, even of minimum interest, since the correspond-
ng mechanical systems would be rather artful. Therefore, although several significant examples
ould be listed and analyzed, in this section we present only the four examples described at the
eginning of Sec. II.

In the following we extensively use the representations in admissible coordinates listed in �9�
f the elements of the various bundles involved in the description.

. Example of Case I

A cogwheel of mass m and radius R is moving in a plane and impacts with a straight rack. The
pace–time bundle V is a four-dimensional manifold, locally described by admissible coordinates
t ,x ,y ,�� where x ,y are the Cartesian coordinates of the center of the cogwheel in the plane of the
otion and � is the orientation of the cogwheel. The vertical scalar product � on V is described

y the matrix gij =diag�m ,m ,A� with A= 1
2mR2. The unilateral constraint S can be described by the

ondition y=R or, choosing admissible coordinates �t ,x ,�� in S, by the injection

i:S → V such that �t,x,�� � �t,x,R,�� .

he instantaneous kinetic constraint B is given by the condition ẋ+R�̇=0, or by the injection

k:B → J1�S� such that �t,x,�,�̇� � �t,x,�,− R�̇,�̇� .

he velocity and vertical spaces are

i*�J1�V�� = 	p =
�

�t
+ ẋ

�

�x
+ ẏ

�

�y
+ �̇

�

��

 ,

i*�V�V�� = L	 �
,

�
,

� 
 ,

�x �y ��
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i*�J1�S�� = 	q =
�

�t
+ ẋ

�

�x
+ �̇

�

��

 ,

i*�V�S�� = L	 �

�x
,

�

��

 ,

�i*�V�S���� = L	 �

�y

 ,

i*�B� = 	b =
�

�t
− R�̇

�

�x
+ �̇

�

��

 ,

V�B� = L	− R
�

�x
+

�

��

 ,

�V�B��� = L	−
A

mR

�

�x
+

�

��

 .

ince H= i*�B� is not given by a single frame, the situation is the one described in Case Ia.

Given a left velocity pL=� / ��t�+ ẋL� / ��x�+ ẏL� / ��y�+ �̇L� / ����, we have

V��pL� =
A

mR2 + A
�ẋL + R�̇L�

�

�x
+ ẏL

�

�y
+

mR

mR2 + A
�ẋL + R�̇L�

�

��
.

he corresponding ideal reactive impulse I�pL�=−2V��pL� gives then the right velocity

pR = pL + I�pL� =
�

�t
+ �mR2 − A

mR2 + A
ẋL −

2A

mR2 + A
R�̇L� �

�x
− ẏL

�

�y
+ �−

2mR

mR2 + A
ẋL +

A − mR2

mR2 + A
�̇L� �

��
.

learly the result does not have an immediate physical interpretation. However it is worth noticing
hat, such as in the case of smooth unilateral constraint �i.e., in the absence of the instantaneous
onstraint B—see Ref. 9�, the velocity of the cogwheel along the y-axis simply reverses.

Simple tests of reasonableness of the result follow from the analysis of particular impact
onfigurations. A first possibility is the impact of the cogwheel without initial spin, that is in the
ase pL=� / ��t�+ ẋL� / ��x�+ ẏL� / ��y�. The corresponding right velocity is

pR =
�

�t
+

mR2 − A

mR2 + A
ẋL

�

�x
− ẏL

�

�y
−

2mR

mR2 + A
ẋL

�

��
.

his result shows that, unlike the smooth situation, the rule “incidence angle equal to reflection
ngle” is not fulfilled, since the rack clasps the cogwheel, giving it a �correctly directed� spin but
ringing the exit direction nearer to the direction orthogonal to the rack.

A second possibility of particular impact is when the cogwheel has an initial “pure rolling”

pin, that is in the case pL=� / ��t�−R�̇L� / ��x�+ ẏL� / ��y�+ �̇L� / ����. The corresponding right

elocity is pR=� / ��t�−R�̇L� / ��x�− ẏL� / ��y�+ �̇L� / ����, which shows that, this time, the rack
oes not clasp the cogwheel and the rule “incidence angle equal to reflection angle” is fulfilled.

. Examples of Case II

Example 1: A cogwheel of mass m and radius R is moving in a plane rolling on a horizontal
ack and impacts with a vertical smooth wall. Due to the integrability of the pure rolling kinetic

onstraint given by the rack on the cogwheel, the system can be studied as a “one degree of
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reedom” system subject to an ideal unilateral constraint given by the wall, without the introduc-
ion of kinetic constraints. The results presented in Ref. 9 immediately give the �obvious� behavior
f the cogwheel.

Nevertheless, the system can also be viewed as a “two degrees of freedom” system subject to
kinetic constraint. The space–time bundle V can be chosen as a three-dimensional manifold,

ocally described by admissible coordinates �t ,x ,�� where x is the Cartesian abscissa of the center
f the cogwheel in the plane of the motion and � is the orientation of the cogwheel. The vertical
calar product � on V is described by the matrix gij =diag�m ,A� with A= 1

2mR2. The unilateral
onstraint S is given by the condition x=K=constant or, choosing admissible coordinates �t ,�� in
, by the injection

i:S → V such that �t,�� � �t,K,�� .

he kinetic constraint A is given by the condition ẋ+R�̇=0, or by the injection

h:A → J1�V� such that �t,x,�,�̇� � �t,x,�,− R�̇,�̇� .

he velocity and vertical spaces are

i*�J1�V�� = 	p =
�

�t
+ ẋ

�

�x
+ �̇

�

��

 ,

i*�V�V�� = L	 �

�t
,

�

��

 ,

i*�J1�S�� = 	q =
�

�t
+ �̇

�

��

 ,

i*�V�S�� = L	 �

��

 ,

�i*�V�S���� = L	 �

�x

 ,

i*�A� = 	a =
�

�t
− R�̇

�

�x
+ �̇

�

��

 ,

V�A� = L	− R
�

�x
+

�

��

 .

ince V�A�� i*�V�S��= �0�, the situation is the one described in Case IIb. In fact we have H
i*�A�� i*�J1�S��= �� /�t�.

Given a left velocity pL=� / ��t�−R�̇L� / ��x�+ �̇L� / ����, we have

V��pL� = − R�̇L
�

�x
+ �̇L

�

��
.

he corresponding ideal reactive impulse I�pL�=−2V��pL� gives then a right velocity pR
˙ ˙
� / ��t�+R�L� / ��x�−�L� / ����, as it can be easily foreseen.
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Passing over the obviousness of the result, this approach shows that the impulsive reaction

�pL�=2R�̇L� / ��x�−2�̇L� / ���� cannot be due only to the smooth unilateral constraint S, that can
ive only impulsive reactions in �i*�V�S����, but also to the kinetic constraint A.

Example 2: A homogeneous billiard ball of mass m and radius R is rolling on a horizontal
lane and impacts with a smooth vertical wall. The space–time bundle V is a six-dimensional
anifold, locally described by admissible coordinates �t ,x ,y ,� ,� ,�� where x ,y are the Cartesian

oordinates of the center of the ball and � ,� ,� are the usual Euler angles describing the orien-
ation of the ball. The vertical scalar product � on V is given by the matrix

gij =�
m 0 0 0 0

0 m 0 0 0

0 0 A 0 A cos �

0 0 0 A 0

0 0 A cos � 0 A
�

ith A= 2
5mR2 �and it is nonsingular when sin ��0�. The unilateral constraint S is given by the

ondition y=R or, choosing admissible coordinates �t ,x ,� ,� ,�� in S, by the injection

i:S → V such that �t,x,�,�,�� � �t,x,R,�,�,�� .

he permanent kinetic constraint A is given by the conditions

ẋ − R�̇ sin � + R�̇ sin � cos � = 0,

ẏ + R�̇ cos � + R�̇ sin � sin � = 0,

r by the injection

h:A → J1�V� such that

�t,�,�,�,�̇,�̇,�̇� � �t,�,�,�,R�̇ sin � − R�̇ sin � cos �,− R� cos � − R�̇ sin � sin �,�̇,�̇,�̇� .

he velocity and vertical spaces are

i*�J1�V�� = 	p =
�

�t
+ ẋ

�

�x
+ ẏ

�

�y
+ �̇

�

�y
+ �̇

�

��
+ �̇

�

��

 ,

i*�V�V�� = L	 �

�x
,

�

�y
,

�

��
,

�

��
,

�

��

 ,

i*�J1�S�� = 	q =
�

�t
+ ẋ

�

�x
+ �̇

�

��
+ �̇

�

��
+ �̇

�

��

 ,

i*�V�S�� = L	 �

�x
,

�

��
,

�

��
,

�

��

 ,

�i*�V�S���� = L	 � 
 ,

�y
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i*�A� = 	a =
�

�t
+ �R�̇ sin � − R�̇ sin � cos ��

�

�x

+ �− R�̇ cos � − R�̇ sin � sin ��
�

�y
+ �̇

�

��
+ �̇

�

��
+ �̇

�

��

 ,

V�A� = 	V = �RV4 sin � − RV5 sin � cos ��
�

�x

+ �− RV4 cos � − RV5 sin � sin ��
�

�y
+ V3 �

��
+ V4 �

��
+ V5 �

��

 .

�15�

ince V�A�� i*�V�S��� �0�, the situation is the one described in Case IIa. Given a left velocity

pL =
�

�t
+ �R�̇L sin � − R�̇L sin � cos ��

�

�x
+ �− R�̇L cos � − R�̇L sin � sin ��

�

�y

+ �̇L
�

��
+ �̇L

�

��
+ �̇L

�

��
, �16�

e have

V��pL� = �− R�̇L cos � − R�̇L sin � sin ��
�

�y
+ �− �̇L

cos � sin � cos �

sin �
− �̇L cos � sin2 �� �

��

+ ��̇L cos2 � + �̇L sin � sin � cos �� �

��
+ ��̇L

sin � cos �

sin �
+ �̇L sin2 �� �

��
.

he corresponding ideal reactive impulse I�pL�=−2V��pL� gives then a right velocity

pR =
�

�t
+ �R�̇ sin � − R�̇ sin � cos ��

�

�x

+ �R�̇L cos � + R�̇L sin � sin ��
�

�y

+ ��̇L + 2�̇L
cos � sin � cos �

sin �
+ 2�̇L cos � sin2 �� �

��

+ ��̇L�1 − cos2 �� − 2�̇L sin � sin � cos �� �

��

+ �− 2�̇L
sin � cos �

sin �
+ �̇L�1 − sin2 ��� �

��
.

Although the result seems quite complicated, some tests can be performed in order to prove
he reasonableness of the result. The results ẋR= ẋL , ẏR=−ẏL show that the impact obeys the rule
incidence angle equal to reflection angle.” Moreover, if we assume a very classical point of view,
nd we denote with �=�1e1+�2e2+�3e3 the usual angular velocity of the ball, where e1 is a unit
ector in the direction x, e2 is a unit vector in the direction y, and e3 is a unit vector in the direction
rthogonal to the horizontal plane where the ball rolls, a tedious but straightforward calculation
hows that, independent of the angles �� ,� ,�� for which the impact happens, we have �R

1 =
�L

1 ,�R
2 =�L

2 �that once again proves the rule “incidence angle equal to reflection angle”� and

R
3 =�L

3, which proves that the smooth vertical wall �obviously� does not clasp the ball during the

mpact.
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Note also that, such as in the previous example, the impulsive reaction cannot be due only to
he smooth unilateral constraint S, which can give only impulsive reactions in �i*�V�S����, but
lso to the kinetic constraint A.

. Example of Case III

The same billiard ball of the previous example is rolling on the horizontal plane but this time
mpacts with a rough vertical wall where a kinetic condition of rolling must be fulfilled. The
pace–time bundle V, the admissible coordinates �t ,x ,y ,� ,� ,��, and the vertical scalar product �
n V are the same as in the previous example, such as the unilateral constraint S and the perma-
ent kinetic constraint A, with their Cartesian or parametric representations. The instantaneous
inetic constraint B is given by the conditions

ẋ + R�̇ + R�̇ cos � = 0,

ẏ = 0,

�̇ cos � + �̇ sin � sin � = 0

with the second condition that simply expresses the fact that B “lives” on i*�J1�S��� or by the
njection

k:B → J1�S� such that

�t,x,�,�,�,�̇,�̇� � �t,x,�,�,�,− R�̇ − R�̇ cos �,�̇,− �̇
sin � sin �

cos �
,�̇� .

Then, together with the spaces given by �15�, we have also the bundles

i*�B� = 	b =
�

�t
+ �− R�̇ − R�̇ cos ��

�

�x
+ �̇

�

��
− �̇

sin � sin �

cos �

�

��
+ �̇

�

��

 ,

V�B� = 	W = �− RV3 − RV5 cos ��
�

�x
+ V3 �

��
−

sin � sin �

cos �
V5 �

��
+ V5 �

��

 .

We have V�B��V�A�� �0� and the space H is given by

H = 	 �

�t
− R�̇

sin �

cos �

�

�x
+ �̇� sin �

cos �
− cos �� �

��
− �̇

sin � sin �

cos �

�

��
+ �̇

�

��

 .

hen the situation is the one described in Case IIIa. Given a left velocity pL as in �16�, we obtain

V��pL� = �R��̇L sin � − �̇L sin � cos � − �L��
�

�x
+ �R�− �̇L cos � − �̇L sin � sin ���

�

�y

+ ��̇L − �1 −
cos � cos �

sin �
��L� �

��
+ ��̇L + �sin ���L� �

��
+ ��̇L − � cos �

sin �
��L� �

��

ith

�L =
A

mR2 + 2A
�̇L − � mR2 + A

mR2 + 2A
sin ���̇L + � mR2 + A

mR2 + 2A
sin � cos � +

A

mR2 + 2A
cos ���̇L.

�
The corresponding ideal reactive impulse I�pL�=−2V �pL� gives the right velocity
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pR =
�

�t
+ �− R��̇L sin � − �̇L sin � cos � + 2�L��

�

�x
+ �R��̇L cos � + �̇L sin � sin ���

�

�y

+ �− �̇L + 2�1 −
cos � cos �

sin �
��L� �

��
+ �− �̇L − 2�sin ���L�

�

��

+ �− �̇L + 2� cos �

sin �
��L� �

��
.

Once again, the result does not have an immediate reading. If we assume the classical point of
iew, denoting with �=�1e1+�2e2+�3e3 the angular velocity of the ball and with u= ẋe1+ ẏe2 the
inear velocity of the center of mass of the ball, a straightforward calculation shows that, inde-
endent of the angles �� ,� ,�� for which the impact happens, we have the relations

ẋL = R�L
2, ẋR = R� mR2

mR2 + 2A
�L

2 −
2A

mR2 + 2A
�L

3� ,

ẏL = − R�L
1, ẏR = R�L

1 .

his shows that, in general, the rule “incidence angle equal to reflection angle” is not fulfilled, and
hat the vertical wall clasps the ball. Moreover, this also shows that the exit direction is influenced
y the initial spin in the direction e3 orthogonal to the horizontal plane. The same result can be
educed by the relations

�R
1 = − �L

1 ,

�R
2 =

mR2

mR2 + 2A
�L

2 −
2A

mR2 + 2A
�L

3 ,

�R
3 = − 2

mR2 + A

mR2 + 2A
�L

2 −
mR2

mR2 + 2A
�L

3 ,

hich prove that the impact with the vertical wall changes the spin in the direction e3 orthogonal
o the horizontal plane.

. FINAL REMARKS AND CONCLUSIONS

Let us delve more deeply into the analysis of the results of the examples described in Sec. III.
It is intuitively clear that the behavior of the billiard ball of Example 2 of Case II is the most

atural and foreseeable. Unfortunately, we cannot say the same for the examples of Cases I and
II.

We focus our attention on the example of Case III in the particular situation when the motion
f the ball before the impact is a pure rolling, so that �L

3 =0: if we denote with �L the “incident”
ngle formed by the direction of the entrance velocity uL= ẋLe1+ ẏLe2 of the center of mass of the
all and the orthogonal to the vertical wall and with �R the “reflection” angle formed by the
irection of the exit velocity uR= ẋRe1+ ẏRe2 and the orthogonal to the vertical wall, we have the
elation

tan �R =
mR2

mR2 + 2A
tan �L =

5

9
tan �L. �17�

f, on the one side, this relation has some correct behaviors �such as �R=0 if and only if �L=0 or
im�L→�/2�R=� /2�, on the other side Eq. �17� shows that the vertical wall clasps the ball very

ard �too much with respect to the behavior of the true billiard game, like every billiard player
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nows�. Moreover, the wall gives to the ball a �correctly oriented but� very great spin �R
3 =

14
9 �L

2 in the vertical direction. Furthermore, the “clasp” effect shows itself both for almost or-
hogonal �ẋL0� and almost tangent �ẋL� ẏL� impacts with the vertical wall.

Completely analogous considerations can be done for the results of Example 1. Let us denote
ith u= ẋe1+ ẏe2 the linear velocity of the center of mass of the cogwheel, where e1 is a unit
ector in the direction x of the rack, e2 is a unit vector in the direction y orthogonal to the rack, and
nce again let us denote with �L and �R the “incident” and the “reflection” angles formed by the
irection of the entrance and exit velocities with the direction orthogonal to the rack. Then, in the
ase of initial motion of the cogwheel without spin, we obtain the relation

tan �R =
mR2 − A

mR2 + A
tan �L =

1

3
tan �L.

oreover, the cogwheel assumes �with obvious notation� an angular velocity �=− 4
3 �ẋL /R�e3. If it

s intuitively clear that a rack clasps very hard a cogwheel, it is also intuitively clear that a similar
ituation is very difficult to realize in practice.

Then we must conclude by pointing out that the theoretical approach described in the paper
ives results that are correct from the qualitative point of view but, when compared with the real
in the sense of “in the real world”� behaviors of some simple and well-known systems, the results
re improvable from the quantitative point of view. This improvability is obviously due to the
ternness of the ideality requirement on the constraints: the analysis of nonideal unilateral con-
traints, starting from a coherent definition of the coefficient of restitution, should improve the
esults in this direction and will be the argument of a forthcoming paper.
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Many physical models have boundaries. For the Boltzmann equation, the study on
the boundary layer in the region of the width in the order of the Kundsen number
along the boundary is important both in mathematics and physics. In this paper, we
consider the nonlinear stability of boundary layer solutions to the Boltzmann equa-
tion for hard potentials with angular cut-off. The boundary condition is imposed on
incoming particles of the Dirichlet type and the solution tends to a global Maxwell-
ian in the far field. For the existence of the boundary layer solutions, it is proved by
Chen et al. �Anal. Appl. 2, 337–363 �2004�� by introducing a weight function
which is a function of both position and velocity to overcome the difficulty from
the sublinear growth in the collision frequency. Unlike the hard sphere model, even
for stability in the case when the Mach number of the far field is less than −1,
exponential decay in time cannot be expected for the cutoff hard potentials. Instead,
an algebraic decay in time to the boundary layer solution is proved in this paper by
using some recursive weighted energy estimates and the bootstrap argument.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2229421�

. INTRODUCTION

Consider the Boltzmann equation for the rarefied gas

Ft + � · �xF =
1

�
Q�F,F� ,

here F�t ,x ,�� is the number density distribution function of particles at space-time �t ,x�
�t ,x1 ,x2 ,x3� with velocity �. When the problem involves a boundary, there is usually a layer of
idth of order � along the boundary which is called the boundary layer. The equation for the
oundary layer is a stationary equation which can be obtained by the standard scaling in the
eighborhood of the boundary. In this paper, we consider the case when the boundary is an infinite
lane, such as the �x2 ,x3� plane, and the layer depends only on �t ,x1 ,��. In this case, the dimension
f the space variable becomes one, while the velocity variable is still three dimensional. In what
ollows, we still use x to denote x1 for simplicity of notations. For general knowledge of the
oltzmann equation, please refer to Refs. 3–5, 10, and 11 and references therein.

�
Electronic mail: matyang@cityu.edu.hk
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Since it is expected that the gas tends to an equilibrium away from the layer, the distribution
unction is assumed to be a global Maxwellian. Moreover, for the problem to be well-posed, the
irichlet boundary condition is imposed by giving the incoming particle distribution. Under these

ssumptions, the problem in its linearized version and some other settings has been extensively
tudied, cf. Refs. 2, 12, 13, and 7–9. In addition, there are some elaborate numerical studies on this
roblem, cf. Ref. 1, and references therein. For the nonlinear problem, the existence for both hard
phere model and hard potentials with angular cut-off were obtained in Refs. 15 and 6, respec-
ively. Furthermore, the stability of the boundary layer for the hard sphere model was proved when
he Mach number of the far field is less than −1 in Ref. 16. In this stability analysis, the linear
rowth in the collision frequency is crucially used where exponential decay in time to the bound-
ry layer can be proved by combining the energy method and a bootstrap argument. However, for
he cut-off hard potentials, the sublinear growth in the collision frequency prevents the exponential
ecay both in space and time. Therefore, the analysis on the stability which is the topic in this
aper is more subtle. By using some new recursive energy estimates, an algebraic decay rate will
e proved for the convergence of the time evolutional solution to the boundary layer when Mach
umber of the far field is also less than −1.

From now on, F is assumed to be a function of time t�R+, position x�R and particle
elocity �= ��1 ,�2 ,�3��R3. Here, �1 stands for the velocity component along the x axis. The
oundary layer F�x ,�� is governed by the stationary Boltzmann equation

�1Fx = Q�F,F�, x � 0, � � R3,

F�x=0 = Fb���, �1 � 0, ��2,�3� � R2, �1.1�

F → M�����x → � �, � � R3,

here

M� = M���,u�,T����� =
��

�2�T��3/2exp�−
�� − u��2

2T�
� . �1.2�

ere ���0,u�= �u�,1 ,u�,2 ,u�,3��R3 and T��0 represent the macroscopic density, velocity, and
emperature, respectively, and the gas constant R is normalized to one. Up to a linear transforma-
ion in the � variable, u�,2 and u�,3 can be assumed to be zero. In this case, the sound speed and

ach number of the far field equilibrium state are given, respectively, by

c� =�5

3
T�, M� =

u�,1

c�

.

As usual, the collision operator Q which is a bilinear integral operator takes the form

Q�F,F� =	 	
R3�S2

�F����F��*�� − F���F��*��q�V,��d�*d	 ,

here

�� = � − ��� − �*� · 	�	, �*� = �* + ��� − �*� · 	�	

re the relations between velocities before and after an elastic collision by using the conservation
f momentum and energy. Here the relative velocity V=�−�* and collision angle �=cos−1


V ,	� / �V � � with 	�S2.

Set
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F = M� + M�
1/2f .

hen the problem �1.1� is reduced to

�1fx − Lf = h, x � 0, � � R3,

f �x=0 = b0��� = M�
−1/2�Fb��� − M��, �1 � 0, ��2,�3� � R2, �1.3�

f → 0 �x → � �, � � R3,

here

h � 
�f , f� = M�
−1/2Q�M�

1/2f ,M�
1/2f�, Lf = M�

−1/2Q�M�,M�
1/2f� + Q�M�

1/2f ,M���

re the nonlinear and linear parts in the collision operator.
It is known that the operator L can be written as, cf. Ref. 6,

L = − ������ − K1 + K2,

here K1 and K2 are compact operators with kernels k1�� ,�*� and k2�� ,�*�, respectively. For
ut-off hard potentials, there exists 0�1�1 such that

k1��,�*� � C��� − �*� + �� − �*�−1�exp�−
�� − u��2

4T�

−
��* − u��2

4T�
� ,

k2��,�*� � C�� − �*�−1exp�−
��� − u��2 − ��* − u��2�2

8T��� − �*�2
−

�� − �*�2

8T�
� .

ometimes, we use the notation K=−K1+K2.
In the following discussion, the same assumption on the collision kernel as in Ref. 6 for the

xistence of the boundary layer is imposed. That is, assume, cf. Ref. 14:
Assumption 1: There is 0�1�1 such that

0 � q�V,�� � c��V� + �V�−1��cos �� .

Assumption 2: There exists a positive constant c�0 such that

	
R3
	

R3
e−��*�2/2q�� − �*,��d�*d	�	

R3
	

R3
e−��*�2q�� − �*,��d�*d	�−1

� c .

Assumption 3: There are constants 0��1��2�1 such that

c1�1 + �����1 � ���� � c2�1 + �����2.

For both hard sphere model and cut-off hard potentials, the results in Refs. 15 and 6 show that
he existence of boundary layer solution depends on the Mach number M� at x=�. When M�

0, ±1, a solvability condition can be obtained implicitly with given co-dimensions of the mani-
old for the admissible boundary data Fb���. In particular, when M��−1, the boundary layer
olution exists as long as the boundary data Fb��� is close to the Maxwellian at x=� because all
he information at infinity in some sense goes into the layer.

To prove the existence of the boundary layers for the cut-off hard potentials, the following
eight function ��x ,�� is introduced in Ref. 6. Let � : �0, � �→R be a smooth nonincreasing

unction satisfying ��s�=1, for s�1, ��s�=0 for s�2, and 0���1. The weight function to cope

ith the sublinear growth in the collision frequency is
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��x,�� = 5�x + l�2/�3−�1��1 − �� x + l

�1 + �� − u���3−�1
��

+ � x + l

�1 + �� − u���1−�1
+ 3�� − u��2��� x + l

�1 + �� − u���3−�1
� ,

or some large positive constant l and a small positive constant . For later use, set

W���� = �1 + ����−��M�1,u�,T���1/2. �1.4�

In the study on the nonlinear stability of the boundary layer for the hard sphere model when
��−1 given in Ref. 16, the perturbation decays exponentially in time because the collision

requency has linear growth in the velocity. However, for the hard potentials with angular cutoff,
he convergence rate will be shown to be algebraic depending on the spatial decay of the initial
ata.

In what follows, we will use the following norm for the perturbation of the layer in the time
volution equation,

��f��� = sup
x,�

�x
1/2�1 + ������f�x,��� .

Consider the initial boundary value problem,

Ft + �1Fx = Q�F,F�, t � 0,x � 0, � � R3,

F�t=0 = F0�x,��, x � 0, � � R3,

�1.5�
F�x=0 = Fb���, t � 0,�1 � 0, ��2,�3� � R2,

F → M����, �x → � �, t � 0, � � R3.

he main result in this paper can be stated as follows.
Theorem 1.1: When the Mach number M��−1, if the boundary data satisfy

�Fb��� − M����� � �0�x
−1/2�0,��e−���0,��W����, � � R+

3, � �
5
2 ,

here the weight function W� and ��x ,�� are defined above and �0 is a sufficiently small positive

onstant, then there exists a boundary layer solution F̄�x ,�� to �1.1� obtained in Ref. 6. For the
nitial boundary value problem �1.5�, if the initial data satisfy

��x
−1e���x,��M�

−1/2�F0 − F̄��Lx,�
2 + ��e���x,��M�

−1/2�F0 − F̄���� � �1, � � 3 −
�1

2
, �1.6�

here �1�0 is a sufficiently small constant, and l satisfies l��−3+�1, then there exists a unique
olution F�t ,x ,�� such that

��e���x,��M�
−1/2�F − F̄���� � C�1�1 + t�−3/2.

his implies that the perturbation of the boundary layer converges to zero in time with an alge-
raic rate �1+ t�−3/2, that is, the boundary layer solution is nonlinearly stable.

Remark 1.2: If we impose faster spatial decay on the initial data, then faster time decay on the
erturbation can be obtained. More precisely, for m�2, if we replace �1.6� by

��x
−m/2e���x,��M�

−1/2�F0 − F̄��Lx,�
2 + ��e���x,��M�

−1/2�F0 − F̄���� � �1, for � �
m + 4

2
−

m − 1

2
�1,

−�m+1�/2
hen similar analysis gives that the decay rate as �1+ t� .
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The rest of the paper is organized as follows. In Sec. II, we will recall some lemmas from Ref.
and present some basic lemmas for the later stability analysis. In Sec. III, we will consider the

inearized equation and derive some recursive energy estimates using various weight functions.
ased on this, the time decay estimate of perturbation is proved by a bootstrap argument in the last

ection.

I. PRELIMINARIES

For later use, we introduce some notations �= �1−�1� / �3−�1� and �̃=�−u�. c and C are
eneric positive numbers. For the weight function ��x ,�� defined in the previous section, we have
he following estimates on its derivative by straightforward calculation.

Lemma 2.1: There exists a constant c�0 such that

�x�x,�� = ��1 + ��̃��−1+�1 �x,�� � �1

c��x + l�−� + ��̃�−1+�1� �x,�� � �2

10

3 − �1
�x + l�−� �x,�� � �3,

here

�1 = �x,���x + l � �1 + ��̃��3−�1�, �3 = �x,���x + l � 2�1 + ��̃��3−�1� ,

�2 = �x,����1 + ��̃��3−�1 � x + l � 2�1 + ��̃��3−�1� .

urthermore,

��xx�x,��� � �0 �x,�� � �1

c�x + l�−�−1 �x,�� � �2 � �3.

It is well known that the collision operator Q has five collision invariants

�0 = 1, �i = ��i = 1,2,3�, �4 = ���2,

atisfying


��,Q�F,F�� = 0, � = 0,1, . . . ,4,

or any distribution function F. Here 
. , . � is the inner product in L�
2. The null space of the

inearized collision operator L in the space L�
2 is

N = spanM�
1/2��,� = 0,1,2,3,4� = span��,� = 0,1,2,3,4� .

In what follows, N� denotes the orthogonal complement of N in L�
2. With these notations, the

issipation of the modified linearized collision operator on N� is given as follows.
Lemma 2.2: There is constant �2�0 such that for 0����2 and g�N�,


g,�x
−m/2e��Le−���x

m/2g� � − �1
������g,g�, m = − 1,0,1,2,

or some positive constant �1=�1��2�.
Proof: Similar to Lemma 2.2 in Ref. 6, we only need to estimate the term related to the

perator K2 as follows. It is because L=−���� � �−K1+K2 and ���� � � commutes with the multiple

perator and the estimation on the terms related to K1 is simpler. Set
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s��,�,�*� = �x
−m/2�x,��exp�−

1

8T�

���̃�2 + ��̃*�2�2

�� − �*�2
−

1

8T�

�� − �*�2�
��exp�����x,�� − ��x,�*��� − 1��x

m/2�x,�*� .

It suffices to show that

sup
�,�*

s��,�,�*� → 0 as � → 0, �2.1�

ecause of the classical dissipative effect of L on the functions in N�. �2.1� can be proved by
onsidering the cases when �x ,�� in different �i , i=1,2 ,3. For illustration, we only consider two
ases for m=−1 because the other cases can be discussed similarly.

Case 1: When �x ,�� and �x ,�*���3, �x�x ,��=�x�x ,�*�= �10 / �3−�1���x+ l�−�. In this case,
e have

���x,�� − ��x,�*�� � c��̃�2 − ��̃*�2� ,

hich implies �2.1�.
Case 2: When �x ,����1 and �x ,�*���3 ,�x�x ,��−1�c�1+ ��̃ � �1−�1 + �1+ ��−�* � �1−�1� and

��x ,��−��x ,�*� � �c � �̃�2− ��̃*�2�. In this case, we have

s��,�,�*� � exp�−
1

16T�

���̃�2 − ��̃*�2�2

�� − ��2
−

1

16T�

�� − �*�2��exp����̃�2 − ��̃*�2�� − 1� ,

hich also implies �2.1�.
This completes the proof of the lemma.
To apply the energy method, define the following orthogonal projections on the macroscopic

nd microscopic subspaces:

P0:L�
2 → N, P1:L�

2 → N�.

otice that the macroscopic convection A=P0�1P0 is a linear bounded self-adjoint operator on N.
t is straightforward to show that A has five eigenvalues

�1 = u�,1 − c�, �i = u�,1�i = 2,3,4�, �5 = u�,1 + c�.

hus, A is negative definite on N when M��−1. For later use, denote

�0 = P0� = �
j=0

4

bj� j = �
j=0

4


�,� j�� j, �1 = P1� = � − P0� .

he following lemma is from Ref. 6 and we include it here for the self-containess of the paper.
Lemma 2.3: Assume M��−1, and the constant l in ��x ,�� is sufficiently large. Then there is

2�0 such that for any ��L�
2,

	
��̃�3−�1�l/2

�P0�1P0�d� � − �2	
R3

s

�0
2d� .

Denote L�=e��Le−��. Lemmas 2.2 and 2.3 imply the following lemma.
Lemma 2.4: Assume that M��−1,� is sufficiently small, and l��−1. Then there exist c ,C

0 such that

− 
�x�1�,�� �
C�2 
�x + l�−�/2�0,�x + l�−�/2�0� − c
�����1,�1� ,
4
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− 
L��,�� � − c�2
�x + l�−�/2�0,�x + l�−�/2�0� + C�2
�����1,�1� .

urthermore,

− �
�x�1�,�� − 
L��,�� �
C�2�

8

�x + l�−�/2�,� + l�−�/2�� .

The following lemma is also needed in the convergence rates analysis.
Lemma 2.5: When M��−1,� is sufficiently small, and l��−3+�1, there exists a constant c

0 such that for any �,

�	
R3

�xx

�x
�1�2d�� � c�2�x + l�−�
�0,�0� + c�4/3
�������1,�1� .

Proof: The integral on the left-hand side of the above-presented estimate can be discussed as
ollows. First, notice that by Lemma 2.1,

��xx

�x
� � �0 �x,�� � �1

c�x + l�−1 � c�x + l�−1+��x �x,�� � �2 � �3.

hen, for l��3−�1, we have

�	
R3

�xx

�x
�1�0

2d�� = �	
�2��3

�xx

�x
�1�0

2d�� � c�x + l�−1
����0,�0�

� c�2�x + l�−�
�0,�0� . �2.2�

hus,

	
R3

�xx

�x
�1�0

2d� � 2	
R3

�xx

�x
�1�0

2d� + + 2	
R3

�xx

�x
�1�0

2d�

� c�2�x + l�−�
�0,�0� + c�x + l�−1+�
�������1,�1�

� c�2�x + l�−�
�0,�0� + c�4/3
�������1,�1� .

ere we have used ��x�1 � �c���� � � ,−1�−1+��− 2
3 for 0��1�1, �x+ l�−1+���2�3−�1�/3

�4/3 when l��3−�1. And this completes the proof of the lemma.

Denote K̃=e��Ke−��. The following properties of the operator K̃ are also proved in Ref. 6.

Lemma 2.6: When � is sufficiently small, then K̃ satisfies:

1. �x
1/2K̃�x

−1/2 is a bounded operator from L�
2 to itself.

2. �x
1/2K̃�x

−1/2 is a bounded operator from L�
2 to L�

�.

3. ��K̃h����c��h���−1, for ��R.

We now recall some property on the nonlinear term 
�g ,h� from Lemma 4.5 in Ref. 6.
Lemma 2.7: The projection of 
�g ,h� on the null space of L vanishes and there exists a

ositive constant c such that, for all �x ,���R�R3,

��x
1/2�−1�e��g,e−��h��x,��� � C�1 + ����−�exp�− �2�x + l�2/�3−�1����g�����h���

or any �� �1−�1� /2 and sufficiently small constant ��0.
The last lemma in this section is about how to transfer the decay in space to the decay in time

hrough some recursive relations in terms of energy inequalities. This lemma is used to obtain the
ime convergence rate for the solution to the initial boundary value problem �1.5�.
Lemma 2.8: Suppose that y and ��t ,x ,���1 are functions of �t ,x ,��. Define
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Im�t� = 	
R�R3

��t,x,��my�t,x,��2dx d� for all m � − 1.

f there exists a positive constant � such that

d

dt
I−1 � 0, ¯ ,

d

dt
Im−1 + �Im−2 � 0,

d

dt
Im + �Im−1 � 0, �2.3�

hen there exists constant cm,�, for −1�n�m, we have

�1 + t�m−nIn�t� � cm,�Im�0� . �2.4�

Proof: By definition, notice that I−1�t��I0�t�� ¯ �Im�t� for all t�0 because ��1. Define

F�t� =
m ! �

�m + 1�!
�1 + t�m+1I−1 +

m!

m!
�1 + t�mI0 + ¯ +

m!

1!
�−m+1�1 + t�Im−1 +

m!

0!
�−mIm.

rom �2.3�, it is straightforward to obtain

d

dt
F�t� =

�1 + t�m+1�

m + 1

d

dt
I−1 + �1 + t�m� d

dt
I0 + �I−1� + ¯ + m ! �−m� d

dt
Im + �Im−1� � 0.

hus, F�t��F�0� which implies that there exists a constant cm,� such that

�1 + t�m−nIn�t� � cm,�Im�0� for − 1 � n � m .

he proof of the lemma is then completed.

II. LINEARIZED PROBLEM

The purpose of this section is to obtain some time decay estimate on the solutions to the
inearized problem. Recall F=M�+M�

1/2f , and let f =e−��g. Then the problem �1.5�

gt + �1gx − ��x�1g − L�g = e��
�e−��g,e−��g�, t � 0, x � 0, � � R3,

g�t=0� = g0�x,�� = e��M�
−1/2�F0 − M��, x � 0, � � R3,

�3.1�
g�x=0� = b0��� = e��M�

−1/2�Fb − M��, t � 0, �1 � 0, ��2,�3� � R2,

g → 0�x → � �, t � 0, � � R3.

enote the corresponding stationary boundary layer solution to �3.1� by ḡ and let the initial g0 be
small perturbation of ḡ. Then the problem on the perturbation g̃ is

g̃t + �1g̃x − ��x�1g̃ − L�g̃ = e��L̄�g̃ + 
�e−��g̃,e−��g̃��, t � 0, x � 0, � � R3,

g̃�t=0� = g̃0 = e��M
�

− 1
2�F0 − F̄�, x � 0, � � R3,

�3.2�
g̃�x=0� = 0��1 � 0�, t � 0, ��2,�3� � R2,

g̃ → 0�x → � �, t � 0, � � R3.

ere g̃=g− ḡ, g̃0=g0− ḡ and L̄�=2
�e−��ḡ ,e−��g̃�.
We are going to derive some energy estimates on the solution to the corresponding linearized
quation using several weight functions. Let S�t� be the solution operator of the linear problem:
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ht + �1hx − ��x�1h − L�h = 0, t � 0, x � 0, � � R3,

h�x=0� = 0��1 � 0�,h → 0�x → � �, t � 0, � � R3, �3.3�

h�t=0� = h0�x,��, x � 0, � � R3.

hat is, h�t�=S�t�h0�x ,��.
For the hard sphere model, the solution operator S�t� has exponential decay property when the

ach number M� is less than −1. For the cut-off hard potentials, we will use the spatial-temporal
stimates in Lemma 2.8 to derive an algebraic decay.

In what follows, �· , · � denotes the inner product of Lx,�
2 with norm � · �= � · �Lx,�

2 . The inner
roduct corresponding to the boundary value is � · , ·�−= �· , · �Lx,�

2 ��1�0�.
Set

�−1 = �x
1/2h, �0 = h, �1 = �x

−1/2h, �2 = �x
−1h .

t is straightforward to derive the following equations for �i , i=−1, . . . ,2:

�t
−1 + �1�x

−1 −
�xx

2�x
�1�−1 − ��x�1�−1 − �x

1/2L��x
−1/2�−1 = 0,

�t
0 + �1�x

0 − ��x�1�0 − L��
0 = 0,

�3.4�

�t
1 + �1�x

1 +
�xx

2�x
�1�1 − ��x�1�1 − �x

−1/2L��x
1/2�1 = 0,

�t
2 + �1jx

2 +
�xx

�x
�1�2 − ��x�1�2 − �x

−1L��x�
2 = 0.

By multiplying �3.4�1 by �−1 and integrating it over R+�R3, when � is sufficiently small,
emmas 2.4 and 2.5 give

��−1,�−1�t + 
��1��−1,�−1�− + c���x + l�−�/2�−1, �x + l�− �
2 �−1� � 0. �3.5�

imilarly, for sufficiently small �, we have

��0,�0�t + 
��1��0,�0�− + c���x + l�−�/2�0, �x + l�−�/2�0� � 0,

��1,�1�t + 
��1��1,�1�− + c���x + l�−�/2�1, �x + l�−�/2�1� � 0,

��2,�2�t + 
��1��2,�2�− + c���x + l�−�/2�2, �x + l�−�/2�2� � 0.

ince �x�x ,��� �x+ l�−� and 
��1 ��i ,�i�−�0 for i=−1, . . . ,2, by the definition of �i ,
=−1,0 ,1 ,2, we have

��−1,�−1�t � 0, ��0,�0�t + c���−1, �−1� � 0,

��1,�1�t + c���0,�0� � 0, ��2,�2�t + c���1,�1� � 0.

orresponding to Lemma 2.8, if we choose y=�−1 ,�=�x
−1/2 ,m=2 and n=−1, then

��−1,�−1��t� � c��1 + t�−3��2,�2��0� ,
hat is,
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��x
1/2S�t�h0�Lx,�

2 � c��1 + t�− 3
2��x

−1h0�Lx,�
2 . �3.6�

Based on this energy estimate, the following decay estimate on the solution operator S�t� in
�·��� norm is essential to obtain the global existence and convergence rate for the nonlinear
roblem through the fixed point theorem in Sec. IV. That is, we want to show that for some �
0,

��S�t�h0��� � c�1 + t�−3/2��h0��� + ��x
−1h0�Lx,�

2 � , �3.7�

here ��·��� is defined in Sec. I. To prove �3.7�, we consider a simpler linear solution operator. Let

0�t� be the solution operator of

ht + �1hx − ��x�1h + ����h = 0, t � 0, x � 0, � � R3,

h�t=0 = h0�x,��, x � 0, � � R3,

�3.8�
h�x=0 = 0, t � 0, �1 � 0, ��2,�3� � R2,

h → 0�x → � �, t � 0, � � R3.

t is straightforward to check that the solution to the above-presented linear initial boundary value
roblem has the following explicit expression:

h�x,t� = S0�t�h0 = h0�x − �1t,����x − �1t�exp�− 	
0

t

����� − ��x�x − �1�t − s�,���1�ds� ,

here ��y� is the characteristic function for y�0. By using this expression and the positive lower
ound of the collision frequency ���� � �, the following lemma gives the exponential decay estimate
n the operator S0�t�.

Lemma 3.1: For S0�t� defined earlier, there exist positive constants C and � such that

�S0�t�h0�X � Ce−�t�h0�X, �3.9�

here the norm in X can be ��·��� and � · �Lx,�
2 .

Proof: We only prove �3.9� for the norm ��·���, and the case for the norm � · �Lx,�
2 can be proved

imilarly.
For  being sufficiently small, ��x�1 � ����� � � and ���� � ���0. Thus, there exists a positive

onstant � such that

��1 + ������x
1/2�x,��h�t,x,��� � H�t,x,��e−�t��h0���,

here H�x , t ,��=�x
1/2�x ,���x

−1/2�x ,−�1t ,��e−������t/4. We now show that there exists a constant c
uch that H�t ,x ,���c by considering the following two cases.

Case 1: When �x ,����1��2, if �x−�1t ,����1��2, we have both �x�x ,����1
��̃ � �−1+�1 and �x

−1�x−�1t ,����1+ ��̃ � �1−�1. Thus, it is obvious that there exists a constant c such
hat H�t ,x ,���c. On the other hand, if �x−�1t ,����3, we have �x�x ,���c�x+ l�−� and �x�x
�1t ,��=10 / �3−�1��x+ l�−� which also immediately implies H�t ,x ,���c for some c.

Case 2: For �x ,����3. If �x−�1t ,����1, then ��1 � t= ��x+ l�− �x+ l−�1t� � � �1+ ��̃ � �3−�1

c�1+ �� � �3−�1. Thus, for �1�0,

������t � c�1 + �����1t � c�1 + �����1
�1 + ����3−�1

��1�
� c�1 + ����2.
his implies that
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H�t,x,�� � c�1 + �����1−�1�/2e−c�1 + ����2
� c .

f �x−�1t ,����2��3, then �x
−1�x−�1t ,���c��x−�1t�+ l��. Since �x�x ,��=10 / �3−�1��x

l�−�. Hence, it is straightforward to see that there exists constant c such that H�t ,x ,���c by
sing the decay property of e−������t/4 and �1�0. This completes the proof of the lemma.

As in Ref. 16, from �3.3� and �3.8�, we can rewrite S�t� in terms of S0�t� and K̃=e��Ke−��:

ith h=S�t�h0. Here, the notation � stands for the convolution in t. By using the estimate �3.9� and

he regularizing property of the compact operator K̃ given in Lemma 2.6, we have for �� j�0, cf.
ef. 16,

��Ij�t���� � Cje
−�t��h0���.

he estimate on Jm given in the following is more complicated and can be obtained by a bootstrap
rgument as in Ref. 16 for the hard sphere model.

Lemma 3.2: For ��0, there exists a constant C such that

��J�+3�t���� � C�1 + t�−3/2��x
−1h0�Lx

��L
�
2�.

Proof: The following proof mainly follows from the proof of Lemma 2.2 in Ref. 16 with K

eplaced by �x
1/2K̃�x

−1/2 and the norm � · �� replaced by ��·���. Moreover, the exponential decay for
he hard sphere model in Ref. 16 becomes the algebraic decay.

By using the property of �x
1/2K̃�x

−1/2 in Lemma 2.6 and �3.9�, it is straightforward to have

��J�+3�t���� �
C

�!
	

0

t

�t − ���e−���J2�Lx,�
2 ���d� , �3.10�

here

J2�t� = �x
1/2�S0K̃� * �S0K̃� * h = S0 * J̄ , �3.11�

ith

J̄ = �x
1/2K̃S0K̃ * h = 	

0

t

J̄0�t − s,s�ds .

1/2˜ −1/2

0�t ,s� can be estimated as follows by using the properties of the operator �x K�x . In fact, since
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J̄0�t,s� = �x
1/2K̃S0�t�K̃h�s� = 	

R3�R3
�x

1/2K̃��,���K̃���,���

�exp�− 	
0

t

������ − ��1��y�x − �1�s,����ds���y�h�t,y,���d�� d��,

here y=x−�1�t, we have

�J̄0�t,s�� � e−�t	
R�R3

K̃0��,�1�,�����y��x
1/2h�t,y,���d�� d��,

here

K̃0��,�1�,��� = 	
R2

�x
1/2�K̃��,�����x

−1/2�x
1/2�K̃���,�����x

−1/2d�2�d�3�, �� = ��1�,�2�,�3�� .

imilar to the properties of the kernel K�� ,��� stated in Ref. 16, it is straightforward to check that
he following estimates hold:

	
R3

�x
1/2�K̃��,�����x

−1/2d�� = 	
R3

�x
1/2�K̃���,����x

−1/2d�� � C0,

	
R3

�x
1/2�K̃��,�����x

−1/2d�2� d�3� � C1,

here C0 and C1 are some positive constants depending only on the parameters ��, u�, T�. Thus,

	
R�R3

K̃0��,�1�,���d�1� d�� � C0
2, 	

R3
K̃0��,�1�,���d� � C0C1,

hich implies that

�J̄0�t,s��2 � e−2�t�	
R�R3

K̃0��,�1�,���d�1� d����	
R�R3

K̃0��,�1�,�����y���x
1/2h�s,y,����2d�1� d���

� C0
2e−2�t	

R�R3
K̃0��,�1�,�����y���x

1/2h�s,y,����2d�1� d��.

ence, we have

�J̄0�t,s��
Lx

��L�
2�

2
= sup

x�0
	

R3
�J̄0�t,s��2d� � C0

2C0C1e−2�t	
R�R3

��y���x
1/2h�s,y,����2d�1� d��

=
ce−2�t

t
	

0

� 	
R3

��x
1/2h�s,y,����2d�� dy �

ce−2�t

t
�1 + s�−3��x

−1h0�Lx,�
2

2 .

ere, we have used the Lx,�
2 decay estimate �3.6�. Hence, the definition of J̄ and the above-

resented estimate give

�J̄�t��Lx
��L

�
2� � 	

0

t

�J̄0�t − s,s��Lx
��L

�
2�ds � c	

0

t e−�t−s

�t − s
�1 + s�−3/2��x

−1h0�Lx,�
2 ds � c�1 + t�−3/2��x

−1h0�Lx,�
2 .
hus, �3.9� and �3.11� yield
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�J2�t��Lx
��L

�
2� = c�S0 * J̄�Lx

��L
�
2�	

0

t

e−��t−s��J̄�Lx
��L

�
2��s�ds

� c	
0

t

e−��t−s��1 + s�−3/2ds��x
−1h0�Lx

��L
�
2� � c�1 + t�−3/2��x

−1h0�Lx
��L

�
2�,

hich together with �3.10� give

��J�t����+3 �
C

�!
	

0

t

�t − ���e−��t−����x
1/2h�Lx

��L
�
2����d� � C�1 + t�−3/2��x

−1h0�Lx
��L

�
2�.

his completes the proof of the lemma.
As a consequence of Lemmas 3.1 and 3.2,. the main estimate in this section stated in �3.7�

bout the time decay for the solutions to the linearized Boltzmann equation holds.

V. NONLINEAR STABILITY

In this section, we will prove the main result on the stability of the boundary layer. In order to
stimate the nonlinear term and the coupling term with the boundary layer defined in �3.2�, we
eed the following lemma.

Lemma 4.1: When ��0, for the two semigroups S0 and S defined in Sec. III, we have

��S0 * �h����t� � C�1 + t�−3/2 sup
0���t

�1 + ��3/2��h������� ,

��S * �h����t� � C�1 + t�−3/2 sup
0���t

�1 + ��3/2��h������ + �1 + ��3/2��x
−1�h�Lx,�

2 ���� ,

or any function h�t ,x ,�� with the corresponding norm bounded.
Proof: The explicit expression for S0 gives

��S0�t� * �h��� � sup
x,�
	

0

t

�x
1/2�1 + �����e−����/2�t−s���x − �1s��h�s,x − �1s,��ds

� c sup
0���t

�1 + ��3/2��h�������sup
�
�	

0

t

e−��/2��t−s��1 + s�−3/2����ds�
� c�1 + t�−3/2 sup

0���t
�1 + ��3/2��h������� .

he estimate on S�t� can be obtained by using the relation between S�t� and S0�t�:

S�t� = S0�t� + S0�t� * K̃S�t� .

ince �3.7� implies that

��S�t�h0��� � C�1 + t�−3/2h0��� �4.1�

ith

h��� � ��h��� + ��x
−1h�Lx,�

2 , � � 0.

˜
or ��1, by the regularizing property of the operator K, we have
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��S0 * K̃S * �h��� � 	
0

t

e−��t−s���k̃S * �h����s�ds � 	
0

t

e−��t−s���S * �h���−1�s�ds

� 	
0

t

e−��t−s�	
0

s

�1 + s − ��−3/2�h���−1���d� ds

� c sup
0���t

��1 + ��3/2�h���−1����	
0

t

e−��t−s��1 + s�−3/2ds

� c�1 + t�−3/2 sup
0���t

��1 + ��3/2�h���−1���� .

ombining this with the estimate for S0 yields

��S * �h��� � C�1 + t�−3/2 sup
0���t

��1 + ��3/2��h������ + �1 + ��3/2�h���−1���� .

ith this estimate, the sublinear growth of ���� and the definition ·�� give the estimate in the
emma.

With the above-presented estimates, the global solution to the nonlinear problem �3.2� can be
roved as follows. Note that, we formally have

g̃ = S�t�g̃0 + S * e���L̄�g̃ + 
�e−��g̃,e−��g̃��� .

y denoting the right-hand side of the above equation by T�g̃�, we have

��T�g̃���� � ��S�t�g̃0��� + ��S * ��−1e���L�g̃ + 
��−��g̃,e−��g̃�����

� C�1 + t�−3/2��x
−1g̃0��� + sup

0���t
��1 + ��3/2���−1e���L̄�g̃ + 
�e−��g̃,e−��g̃������

+ sup
0���t

��1 + ��3/2��x
−1��−1e���L̄�g̃ + 
�e−��g̃,e−��g̃���Lx,�

2 ��
� c�1 + t�

3
2g̃0��� + ��ḡ����g̃�� + ��g̃��2� ,

here

��h�� = sup
t�0

�1 + t�
3
2 ��h����t�� .

ere, we have used Lemma 2.7 in estimating

��x
−1e��
�e−��g,e−��h��Lx,�

2 = 	
0

�

dx	
R3

��x
−3������2��������−1�x

1/2e��
�e−��g,e−��h��2d�

� c	
0

�

dx	
R3

��x
−3������2�e−c�2

�x + l�2/�3−�1��1 + ����−2�d���g�����h���

� c	
0

�

dx	
R3

��x + l�3� + �1 + ��̃��3�1−�1��e−c�2�x+l�2/�3−�1�

��1 + ����−2��−�1�d���g�����h��� � c��g�����h��� for � � 3 −
�1

2
.

onsequently,

��T�g̃��� � c�g̃0��� + ��ḡ�����g̃�� + ��g̃��2� .
imilar argument gives
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��T�g̃� − T�h̃��� � c���ḡ0�����g̃ − h̃�� + ��g̃ + h̃����g̃ − h̃��� ,

or the some constant c.
Finally, the smallness assumptions on g̃0��� and ��g̃��� coming from the smallness assump-

ion on the initial data g̃0 and the boundary data b0 in �3.1� assure that the nonlinear map T is
ontractive in a small neighborhood of the origin in the Banach space with the norm ��·���.
herefore, there is a unique fixed point which implies that �3.2� has a unique global in time
olution converging to 0 with an algebraic rate as c�1+ t�−3/2. This gives the proof of Theorem 1.1.
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A derivation of the statistical nature of quantum probabilities is presented by con-
sidering a system of bosonic particles in a coherent state. A comparison between the
current approach and a former derivation is also discussed. The current approach,
which is an evaluation of the field operator matrix in the coherent Glauber state,
proved to be a concise method which can be applied to relativistic particles as well.
An extension of the coherent state method to the fermionic type of particles is also
presented and thus the generality of the coherent state method is established.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2259583�

. INTRODUCTION

In an attempt to relate the quantum probabilities to the statistical probabilities the Wigner

ransform1 was applied2 to the field operator �̂†�x��, the operator which creates a particle at point x�,
nd the resulting function was related to the quantum mechanical state function, the square of
hich should yield the probability density. Wigner transforms3 are transformation procedures
hich assign a classical function to every quantum operator. When applying the Wigner transfor-
ation to the density operator one gets the Wigner function which has been widely used to

nvestigate quantum mechanics in phase space.4 However, usage of the Wigner transformation to
educe the statistical nature of the quantum probabilities turned out to be a difficult, if not
mpossible, method. For example, one of the steps that was needed to connect the quantum
robability to the statistical probability was to impose the ansatz �i�x� ±z� /2�=�i�x���i�±z� /2�. This
ondition is not satisfied if the set ��i� consists of single particle solutions of the Schrödinger
quation with a nonzero potential operator. Another difficult condition to satisfy was the neglect of
uctuations. The relative fluctuations5 are defined as f = �nk�−1−a where �nk� is the average occu-
ation number per mode and a is a constant which depends on particle type. For classical
axwell-Boltzmann particles a=0, for bosons a=−1, and for fermions a= +1. Therefore, one
ay neglect relative fluctuations for classical particles only, and in the limit when �nk��1. Yet

nother disadvantage of the previous method2 is the fact that the result for N particles needed to be
nductive in the sense that the general result for N particles relied on the result for two and three
articles and that one may not do the calculations for N particles in an exact way.

A far more legitimate and elegant way of relating the quantum probabilities to statistical

robabilities is by calculating the field operator �̂†�x� , t� in the coherent state which is a clever
uantum state invented by Glauber.6 One will not need the above-mentioned disadvantageous
pproximations, and the calculations are quite simple and exact. A possible shortcoming in using
he coherent state is the fact that the method is limited to bosons only as one may not speak of a
ingle particle state being occupied by more than one fermion. However, the application of the
oherent states method to fermionic particles is simple as one will just need to reinterpret the
esults of the coherent state for bosons. A more serious problem to think about in the current
pproach is the fact that there needs to be a physical justification for the presence of the N bosons,

�
Electronic mail: aliamh@hotmail.com
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r the N fermionic orbitals, by means of which one may attribute a statistical nature to the wave
unction ��x� , t� for the single bosonic or the single fermionic particle at x� and t. For bosons one
an contemplate an analogy between this situation and that of the zero point field �ZPF� bosons.
aisch et al.7 argue that while the quantization of the radiation field predicts the existence of an

lectromagnetic ZPF, there is, on theoretical grounds, a possibility of assuming a ZPF a priori. In
act, they explain, that several quantum effects can be derived by assuming a ZPF and using the
heoretical method of stochastic electrodynamics. while it is tempting to think of the ZPF bosons
s the N bosons needed for the present situation, the fact is the N bosons in the present paper are
assive and the ZPF bosons are massless. Thus, one is compelled to assume the existence of
assive bosons with an uncertainty in their number which promotes the statistical nature of the

osonic particle field. As for fermions one needs to assume the existence of an infinite number of
rbitals which by themselves are bosons, nevertheless they are occupied by fermions and their
umerical uncertainty will promote an uncertainty in the number of fermions and this will lead to
formalism appropriate for fermions yet quite similar to that of the bosons.

I. DERIVATION OF THE BOSONIC STATISTICAL QUANTUM PROBABILITY

The best theoretical way to describe a physical state with an uncertainty in particle number is
y means of the coherent state.8,9 The general coherent state is given by 	 �=
 j=1

� 	� j�
	�1�2¯�k¯ �, where for the jth mode, or the jth quantum number, the coherent state is given
y

	� j� = �
nj=0

� � j
nj

�nj!
e−1/2	�j	

2
	nj� �1�

nd where �	nj��nj=0
� is a complete orthonormal set of basis in the Fock space. The norm 	� j	2

� j
*� j is equal to the average occupation number for the jth mode, and that can be seen by

alculating the number operator n̂= âj
†âj in the coherent state representation

�� j	n̂j	� j� = �
mj=0

�

�
nj=0

�
� j

*mj� j
nj

�mj!�nj!
e−	�j	

2
nj�mj	nj� = �

nj=0

�
� j

*nj� j
nj

nj!
nje

−	�j	
2

= e−	�j	
2
� j

*� j �
nj=1

�
� j

*nj−1� j
nj−1

�nj − 1�!
= e−	�j	

2
� j

*� je
	�j	

2
= � j

*� j = 	� j	2 �2�

r by observing the fact that the norm square of the coefficients in the coherent state expansion is
ust the Poisson distribution P�nj�= �	� j	2nje−	�j	

2
� /nj!,

9

�nj� = �
nj=0

�

njP�nj� = �
nj=0

�
nj	� j	2nj

nj!
e−	�j	

2
= 1

2
	� j	

de	�j	
2

d� j
�e−	�j	

2
= 	� j	2. �3�

quation �2� relates a diagonal element to an expectation value which is the quantum mechanical
ethod of calculating average values, however, Eq. �3� does not follow that recipe and for that

eason it is better to refer to Eq. �3� in this derivation. Given the complete orthonormal set
� j�x��� j=1

� , where each function � j�x�� is the solution to the Schrödinger equation for a particle with

ass m, the evaluation of the field operator �̂†�x��=� j=1
� âj

†� j
*�x��, which creates a particle at point

�, in the coherent states representation will make the relation of quantum probabilties to statistical

robabilities evident. Therefore one should evaluate the matrix element given by
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� 	�̂†�x��	 � = �
j=1

�

��1�2 ¯ �k ¯ 	âj
†� j

*�x��	�1�2 ¯ �k ¯ � = ��1	â1
†	�1��1

*�x��

j=2

�

�� j	� j�

+ ��2	â2
†	�2��2

*�x�� 

j=1

j�2

�

�� j	� j� + ¯ + ��k	âk
†	�k��k

*�x�� 

j=1

j�k

�

�� j	� j� + ¯

= �
j=1

�

�� j	âj
†	� j�� j

*�x�� = �
mj=0

�

�
nj=0

�

�
j=1

�
� j

*mj� j
nj

�mj!�nj!
e−	�j	

2
�mj	âj

†	nj�� j
*�x�� , �4�

here �� j 	� j�=1, and where 	� j� is given by Eq. �1�. The equation âj
†	nj�=�nj+1	nj+1�, and the

rthonormal property of the Fock space basis �	nj��nj=0
� can be used in Eq. �4�,

� 	�̂†�x��	 � = �
j=1

�

�
nj=0

� � j
*�nj+1�� j

nj

��nj + 1�!�nj!
e−	�j	

2�nj + 1� j
*�x�� = �

j=1

�

�
nj=0

� � j
*nj� j

*� j
nj

�nj!�nj!
e−	�j	

2
� j

*�x�� . �5�

simple rearrangement of Eq. �5� will give the final result

� 	�̂†�x��	 � = �
j=1

�

� j
*�

nj=0

� 	� j	2nj

nj!
�e−	�j	

2
� j

*�x�� = �
j=1

�

� j
*e	�j	

2
e−	�j	

2
� j

*�x�� = �
j=1

�

� j
*� j

*�x�� . �6�

The coefficients in the final form of Eq. �6� are complex, and one may write them as � j

	� j	ei�� j. Also, Eq. �3� indicates that 	� j	=��nj� which means that � j
*= 	� j	e−i�� j or

� j
* = ��nj�e−i�� j. �7�

ow define the function

�*�x�� =
� 	�̂†�x��	 �

�N
, �8�

hich along with Eqs. �6� and �7� will give

�*�x�� = �
j=1

�  �nj�
N

�1/2

e−i�� j� j
*�x�� . �9�

y employing the grand canonical equation5 N=� j=1
� �nj�, and the orthonormal property of the set

� j�x��� j=1
� one can show that the integral of the product �*�x����x��d3x is unity

� �*�x����x��d3x = �
j=1

�

�
k=1

�  �nj�
N

�1/2 �nk�
N

�1/2

e−i�� jei��k� � j
*�x���k�x��d3x = �

j=1

�  �nj�
N

� = 1.

�10�

urthermore the function ��x��, defined as the Hermitian conjugate of Eq. �9�, obeys the

chrödinger equation for a particle at point x� as one can see by applying the Hamiltonian, Ĥ
2 2 � �
−�� /2m�� +V�x�, to the function ��x , t�,
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Ĥ��x�,t� = �
j=1

�  �nj�
N

�1/2

ei�� jĤ� j�x�,t� = �
j=1

�  �nj�
N

�1/2

ei�� ji�
�� j�x�,t�

�t

= i�
�

�t�j=1

�  �nj�
N

�1/2

ei�� j� j�x�,t� = i�
���x�,t�

�t
, �11�

here

Ĥ� j�x�,t� = i�
�� j�x�,t�

�t

nd where � j�x� , t�=� j�x��e−i�jt/�, which is the time dependence that one gets when solving the
eisenberg equation for the annihilation operator.2 Alternatively, one can evaluate the bosonic
eld equation

−
�2

2m
�2�̂�x�,t� + V�x���̂�x�,t� = i�

��̂�x�,t�
�t

�12�

n the coherent state representation and that, together with the Hermitian conjugate of Eq. �8�, will
rove that the function ��x� , t� obeys the Schrödinger equation. In fact, using the alternative
ethod one can show that the relativistic ��x� , t� function can be retrieved from the field operator

ˆ �x� , t� which obeys10

�2�̂�x�,t� −
1

c2

�2�̂�x�,t�
�t2 =

m2c2

�2 �̂�x�,t� , �13�

here the relation between ��x� , t� and �̂�x� , t� is again given by the Hermitian conjugate of Eq. �8�.
he field operator in Eq. �13� satisfies the equal-time commutation relations, and consequently
ill satisfy the Bose-Einstein statistics.10 For a charged Klein-Gordon field10 one may write the
ox normalized non-Hermitian field as

�̂�x�,t� = �̂�+��x�,t� + �̂�−��x�,t� = �
�

âp�
�p�

�x�,t� + b̂p�

† �p�

* �x�,t� , �14�

here the positive sign indicates particle, and the negative sign indicates antiparticle. The set
�p�

�x� , t�� is a complete orthonormal set of solutions to the Klein-Gordon equation, and for a box

olume V=L3 the momentum is p��= �2	 /L��� with �� = ��1 ,�2 ,�3�, and �i=0, ±1, ±2, . . . , where
=1,2 ,3. The Glauber state which should be used in Eq. �8� is

	 � = 

�=1

�

	���

�=1

�

	�̄�� �15�

nd the total number of particles is given by N=����n��+ �n̄���, where �n̄�� is the average number
f antiparticles that occupies the �th mode. The elements of the set �	���� are coherent states which
orrespond to particles and are defined in Eq. �1�. Those of the set �	�̄��� correspond to antipar-
icles and one may define them as

	�̄�� = �
n̄�=0

�
�̄�

n̄�

�n̄�!
e−1/2	�̄�	2	n̄�� .

ne may define the relativistic wave function by means of the Hermitian conjugate of Eqs. �8�,
14�, and �15�. Therefore, using plane wave solutions to the Klein-Gordon equation one can write

�
he relativistic ��x , t� as
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��x�,t� =
1

�N
� 	�̂�x�,t�	 � =

1
�N

�� 	�̂�+��x�,t�	 � + � 	�̂�−��x�,t�	 ��

=
1

�N
�

�

���	â�	���N�e
�i/���p��·x�−	E�	t� +

1
�N

�
�

��̄�	b̂�
†	�̄��N�

*e−�i/���p��·x�−	E�	t�, �16�

here N�= �mc2 /L3	E�	�1/2 is the normalization constant,11 	E�	=�p2c2+m2c4, and the summation
ndex is simplified. The particle part in Eq. �16� should be evaluated using the coherent state
efined in Eq. �1�,

�
�

���	â�	������x�,t� = �
�

�
n�=0

�
��

*�n�−1���
n�

��n� − 1�!�n�!
�n�e

−	��	2���x�,t� = �
�

�
n�=0

�
��

*n���
n�

�n�!�n�!

n�

��
*e−	��	2���x�,t�

= �
�

�
n�=0

� 	��	2n�

n�!

n�

��
*e−	��	2���x�,t� = �

�

1

2
	��	

de	��	2

d��
� 1

��
*e−	��	2���x�,t�

= �
�

	��		��	
	��	e−i���

���x�,t� = �
�

	��	ei������x�,t� = �
�

��n��ei������x�,t� , �17�

here in getting Eq. �17� one needs to refer to Eq. �7�. The antiparticle part in Eq. �16� is similar
o the result in Eq. �9� except that the average occupation number will be for antiparticles. With
qs. �9� and �17� one may write Eq. �16� in terms of average occupation numbers of particles and
ntiparticles

��x�,t� = �
�
 �n��

N
�1/2

ei���N�e
�i/���p��·x�−	E�	t� + �

�
 �n̄��

N
�1/2

e−i��̄�N�
*e−�i/���p��·x�−	E�	t�. �18�

quation �18� can now be substituted into the equation which is supposed to be the probability
ensity for relativistic particles11


�x�� =
i�

2mc2�*�x�,t�
���x�,t�

�t
− ��x�,t�

��*�x�,t�
�t

� . �19�

ntegration of Eq. �19� along with the orthonormal property of the basis set12 will give

� d3x
�x�� = �
�

�n�� − �n̄��
N

. �20�

Equation �20� can be utilized to investigate a possible physical condition which will cause the
ailure of Eq. �19� to represent the probability density. It states that if particles and antiparticles are
qual in number then there is no chance of finding any massive entity which may be interpreted as
total annihilation. This can be seen be setting �n��= �n̄�� which will lead to

� d3x
�x�� = 0. �21�

n the other hand, if there are no antiparticles present then the system consists of particles only
nd N=���n�� which will lead to

� d3x
�x�� = �
�

�n��
N

= 1, �22�

hich is similar to the result Eq. �10�. The third possibility is when there are no particles and the

ystem consists of antiparticles only in which case Eq. �20� will be
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� d3x
�x�� = − �
�

�n̄��
N

= − 1. �23�

owever, a negative sign for a function which is supposed to represent a probability density is a
irect indication that Eq. �19� fails to be a probability density for the third possibility being
iscussed here. The reasons for the negative sign have been traced to Eq. �19� which one derives
rom the Klein-Gordon equation.11 It is said that since ��x� , t� and its time derivative may have
rbitrary value the function in Eq. �19� can be negative. Nevertheless, one may think in terms of
q. �20� in which the function that is supposed to represent the probability density will acquire a
egative sign only under one physical circumstance, and that is whenever the total number of
ntiparticles exceed the total number of particles. On physical grounds this line of reasoning
rovides a better arguement for the failure of that function to represent the probability density.

The application of the coherent states method to fermions is an important task which will
eneralize the statistical nature of quantum wave functions and will render it nonaxiomatic. How-
ver, to apply it to fermions one needs to make up a state that does not include uncertainties in
article number and that suggests a different kind of Glauber state, one which does not consist of
superposition of states with many particles in each state. Although that might seem to be a

ormidable task at first, the fact is one can easly extend the bosonic formalism to include the
ermionic particles as well.

II. DERIVATION OF THE FERMIONIC STATISTICAL QUANTUM PROBABILITY

Here one needs to think in terms of quantum orbitals and fermions which can occupy the
rbitals in accordance with the Pauli principle. The orbitals may be occupied by either one fermion
r no fermion. If the total number of orbitals in the jth quantum state is kj then nj will be the
umber of orbitals which are filled with a single fermion. This situation is similar to the Bernoulli
rials13 in which there are two possible outcomes for each trial. The probabilities of the two
utcomes are denoted by p as the probability of a success S, and q as the probability of a failure
. In this approach the trials are independent, and the probability of any specific sequence, say

SSFSF¯FFS�, is given by

P��SSFSF ¯ FFS�� = ppqpq ¯ qqp . �24�

hus if one defines a filled orbital as a success and an empty one as a failure then the above
equence can be written for the jth quantum state

P��11010 ¯ 001�� = pjpjqjpjqj ¯ qjqjpj , �25�

here there are kj elements in the set �11010¯001�, nj of them are ones and kj−nj of them are
eros, and where pj+qj=1; "j. For example, if nj=1 then there are kj ways of placing the one
ermion in the orbitals with the jth quantum state. One can define the mutually exclusive sets

1= �10000¯000� j ,A2= �01000¯000� j ,A3= �00100¯000� j , ¯ ,Akj
= �00000¯001� j, and that

ill give �i=1
kj Ai=�, which along with the definition P���=0 will give the probability of the

nion of all the events as13

P��
i=1

kj

Ai� = �
i=1

kj

P�Ai� = pjqjqj ¯ qj + qjpjqj ¯ qj + qjqjpj ¯ qj + ¯ + qjqjqj ¯ pj

= kjpjqjqj ¯ qj =
kj!

1!�kj − 1�!
pj

1qj
�kj−1�. �26�

n general, the probability that kj orbitals �Bernoulli trials�, with probabilities pj for finding a
ermion in one of the kj orbitals and qj=1−pj for failure to find one, results in nj successes �filled

rbitals� and kj−nj failures �empty orbitals� is
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P�nj� =
kj!

nj!�kj − nj�!
pj

njqj
�kj−nj�, �27�

hich is the binomial distribution. Note that the multiplicative factor in Eq. �27� is precisely the
ne which corresponds to the Fermi-Dirac statistics of distributing nj fermions among kj energy
evels. This probability satistfies the axiom of a probability function as one can see by summing
ver all possible values of nj,

�
nj=0

kj

P�nj� = �
nj=0

kj kj!

nj!�kj − nj�!
pj

njqj
�kj−nj� = �pj + qj�kj = 1. �28�

hen considering the limit kj�1 such that the product kjpj is moderate then the binomial distri-
ution may be approximated by the Poisson distribution.13 Therefore, the probability that nj

rbitals among a total of kj orbitals are filled is

P�nj� =
� j

nj

nj!
e−�j , �29�

here � j=kjpj, and kj�1. Accordingly

�nj� = �
nj=0

�

njP�nj� = �
nj=0

�

nj

� j
nj

nj!
e−�j = �

nj=1

� � j
nj

�nj − 1�!
e−�j = � je

−�j �
nj=1

� � j
nj−1

�nj − 1�!
= � je

−�je+�j = � j

�30�

nd therefore

P�nj� =
�nj�nj

nj!
e−�nj�. �31�

ow one can construct a state for fermions which may be expanded in terms of the Fock space
asis given by the form 	� j�=�nj=0

� Cnj
	nj�, where 	Cnj

	2 should be the probability that nj of the kj

rbitals are filled with fermions. To ensure the normalization of the set �	� j�� it must be true that

nj

� 	Cnj
	2=1 which along with Eq. �31� suggests that

Cnj
=

��nj�ei�j�nj/2

�nj!
e−�nj�/2. �32�

ow define the annihilation operator âj, which annihilates an orbital of the filled type when it
perates on the state 	nj�. One needs to be aware of the fact that the state 	� j� describes fermionic
articles by using a formalism which is similar to the bosonic particles. There are no bosonic
articles here, however, for the jth quantum state there can be an infinite number of orbitals and
ny number of these may be occupied by fermions such that each fermion occupy only one orbital.
t is easy to show the equality

âj	� j� = ��nj�ei�j/2	� j� �33�

rom which it follows that

�� j	âj
† = �� j	��nj�e−i�j/2. �34�

he operator �̂�x��=� jâj� j�x�� annihilates a filled orbital at position x�, and hence annihilates one
ermion at that position. The quantum state of the totality of all the fermions can be defined by the

irect product
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	 � = 

j=1

�

	� j� . �35�

his state accommodates an infinite number of orbitals for each quantum state j with each orbital
ither being filled with one fermion or with no fermion. The function

��x�� =
1

�N
� 	�̂�x��	 � �36�

ill now be the state function for a fermionic particle, and N=� j�nj� is the total number of filled
rbitals, or the total number of fermions. With Eq. �35� a direct evaluation of Eq. �36� will give

��x�� =
1

�N
�
j=1

�

��1�2 ¯ �k ¯ 	âj	�1�2 ¯ �k ¯ �� j�x�� =
1

�N
�
j=1

�

�� j	âj	� j�� j�x�� . �37�

ith the help of Eq. �33� one can achieve the final form of the fermionic state function which
mbeds the statistical information

��x�� = �
j=1

�  �nj�
N

�1/2

ei�j/2� j�x�� . �38�

he orthonormality of the set �� j�x��� will directly lead to the result

� d3x�*�x����x�� = 1, �39�

hich makes clear the statistical interpretation of the fermionic state function ��x��.
In conclusion, using coherent states is a far superior way to derive the statistical nature of

uantum probabilities as the Wigner transformation method necessitated some unfavorable ap-
roximations. The coherent state method can be applied to relativistic as well as nonrelativistic
articles. It can also be applied to both bosons and fermions which makes the coherent state
ethod as general as the previous method but at the same time more reliable and much more

recise.
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Cartan calculi on the extended quantum superplane are given. To this end, the
noncommutative differential calculus on the extended quantum superplane is
extended by introducing inner derivations and Lie derivatives. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2227638�

. INTRODUCTION

Noncommutative geometry1 has started to play an important role in different fields of math-
matical physics over the past decade. The basic structure giving a direction to the noncommuta-
ive geometry is a differential calculus on an associative algebra. The noncommutative differential
eometry of quantum groups was introduced by Woronowicz.2,3 In this approach the differential
alculus on the group is deduced from the properties of the group and it involves functions on the
roup, differentials, differential forms, and derivatives. The other approach, initiated by Wess and
umino,4 followed Manin’s emphasis5 on the quantum spaces as the primary objects. Differential

orms are defined in terms of noncommuting coordinates, and the differential and algebraic prop-
rties of quantum groups acting on these spaces are obtained from the properties of the spaces.
he natural extension of their scheme to superspace6 was introduced by Soni in Ref. 7 and Chung

n Ref. 8. The noncommutative geometry of the quantum superplane was given in Ref. 9.
The differential calculus on the quantum superplane similarly involves functions on the su-

erplane, differentials, differential forms, and derivatives. The exterior derivative is a linear op-
rator d acting on k-forms and producing �k+1�-forms, such that for scalar functions �0-forms� f
nd g we have

d�1� = 0,

�1�
d�fg� = �df�g + �− 1�deg�f�f�dg� ,

here deg�f�=0 for even variables and deg�f�=1 for odd variables, and for a k-form �1 and any
orm �2,

d��1 Ù �2� = �d�1� Ù �2 + �− 1�k�1 Ù �d�2� . �2�

fundamental property of the exterior derivative d is

dd ¬ d2 = 0. �3�

There is a relationship between the exterior derivative and the Lie derivative. To describe the
elation between exterior derivative and the Lie derivative, we introduce a new operator: the inner
erivation. Hence the differential calculus on the quantum superplane can be extended into a large
alculus. We call this new calculus the Cartan calculus. The connection of the inner derivation
enoted by ia and the Lie derivative denoted by La is given by the Cartan formula:

�
Electronic mail: sacelik@yildiz.edu.tr
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La = d � ia + ia � d . �4�

his and other formulas are explained in Refs. 10–12. Here we do not give any details. In the
elated section we shall give a brief overview without much discussion.

The extended calculus on the quantum plane was introduced in Ref. 13 using the approach of
ef. 10. In this work we explicitly set up the Cartan calculi on the quantum superplane. In Secs.

I and III we give some information on the Hopf algebra structures of the quantum superplane and
ts differential calculus which we shall use in order to establish our notions. The differential
tructures of Types II and III which appeared in Sec. III A exist in Ref. 8, but here they are
epeated because we need them. In Sec. IV we present the commutation rules of the inner deri-
ations and the Lie derivatives with functions on the quantum superplane, differentials, and partial
ifferentials.

I. REVIEW OF HOPF ALGEBRA A

Elementary properties of the quantum superplane are described in Ref. 9. We state briefly the
roperties we are going to need in this work.

. The algebra of functions on the quantum superplane

Let us begin with the definition of the coordinate ring of the quantum superplane Rq
1�1. It is

ell known that the quantum superplane6 is defined as an associative algebra generated by two
oncommuting coordinates x and � with the relations

x� = q�x ,

�5�
�2 = 0,

here q is a nonzero complex deformation parameter. The algebra of q polynomials will be called
he algebra of functions on the quantum superplane and will be denoted by A0¬A�Rq

1�1�. In the
imit q→1, this algebra is commutative and can be considered as the algebra of polynomials R1�1

ver the usual superplane, where x and � are the two coordinate functions.
Let A0=A�Rq

1�1� be a free unital associative algebra generated by even coordinate x and odd
oordinate � obeying relations �5�. We extend the algebra A0 by including the inverse of x which
atisfies

xx−1 = 1 = x−1x

nd we denote it by A. We know that the algebra A is a graded Hopf algebra with the following
ostructures.9

. Hopf algebra structure on A

The definitions of a coproduct, a counit, and a coinverse on the algebra A are as follows:
�1� the coproduct �A :A→A � A is an algebra homomorphism and is defined by

�A�x� = x � x ,

�6�
�A��� = � � x + x � � .

�2� The counit �A is an algebra homomorphism from A to the complex numbers C and is given
y

�A�x� = 1,

�7�

�A��� = 0.
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�3� The antipode SA :A→A is an algebra antihomomorphism and is given by

SA�x� = x−1,

�8�
SA��� = − x−1�x−1.

hese comaps satisfy the Hopf algebra axioms:

��A � id� � �A = �id � �A� � �A,

mA � ��A � id� � �A = mA � �id � �A� � �A, �9�

mA � �SA � id� � �A = �A = mA � �id � SA� � �A,

here id denotes the identity map on A and mA stands for the algebra product A � A→A. The
ultiplication in A � A is defined with the rule

�A � B��C � D� = �− 1�deg�B�deg�C��AC � BD� . �10�

II. DIFFERENTIAL CALCULI ON THE QUANTUM SUPERPLANE

Here, we shall build up the noncommutative differential calculi on the quantum superplane
ith help of the covariance point of view, using the Hopf algebra structure of the quantum

uperplane.14

. Differential algebra

It is well known that in classical differential calculus, functions commute with differentials.
rom algebraic point of view, the space of one-forms is a free bimodule over the algebra of
mooth functions generated by the first-order differentials and the commutativity shows how its
eft and right structures are related to each other.

In order to establish a noncommutative differential calculus on the quantum superplane, we
ssume that the commutation relations between the coordinates and their differentials are of the
ollowing form:

xdx = Qdxx ,

xd� = Q11d�x + Q12dx� ,

�11�
�dx = Q21dx� + Q22d�x ,

�d� = d�� .

he coefficients Q and Qij �1� i , j�2� will be determined using the covariance of the noncom-
utative differential calculus. We also have assumed that

dx Ù d� = Q�d� Ù dx, dx Ù dx = 0, �12�

here Q� is a parameter that will be described later.
We shall denote the algebra generated with relations �11� by �1 and the algebra generated

ith relations �12� by �2.

. Covariance

We first note that consistency of a differential calculus with commutation relations �5� means

hat the differential algebra is a graded associative algebra generated by the elements of the set
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x ,� ,dx ,d��. Let � be a free left module over the algebra A generated by the elements of this set.
o the � has to be generated by �0��1��2, where �0 is isomorphic to A. One says that �� ,d�

s a first-order differential calculus over the Hopf algebra �A ,�A ,�A ,SA�. We begin with the
efinitions of a left- and right-covariant bimodule.

�1� Let � be a bimodule over A and �R :�→� � A be a linear homomorphism. We say that
� ,�R� is a right-covariant bimodule if

�R�a� + ��a�� = �A�a��R��� + �R�����A�a�� �13�

or all a ,a��A and � ,����, and

��R
� id� � �R = �id � �A� � �R,

�14�
�id � �� � �R = id.

he action of �R on the first-order differentials is

�R�dx� = dx � x ,

�15�
�R�d�� = d� � x + dx � �

ince

�R�da� = �d � id��A�a�; " a � A . �16�

We now apply the linear map �R to relations �11�:

�R�xdx� = �A�x��R�dx� = Q�R�dxx� ,

�R�xd�� = �R�Q11d�x + Q12dx�� + �qQ − Q11 − qQ12�dxx � �x ,

�17�
�R��dx� = �R�Q21dx� + Q22d�x� − �q−1Q + Q21 + q−1Q22�dxx � x� ,

�R��d�� = �R�d��� + �q−1Q11 + Q22 − 1�d�x � x� + �Q12 + qC21 + 1�dx� � �x .

o we must have

Q11 + qQ12 = qQ, Q11 + qQ22 = q ,

�18�
Q12 + qQ21 = − 1, qQ21 + C22 = − Q .

�2� Let � be a bimodule over A and �L :�→A � � be a linear homomorphism. We say that
� ,�L� is a left-covariant bimodule if

�L�a� + ��a�� = �A�a��L��� + �L�����A�a�� �19�

or all a ,a��A and � ,����, and

��A � id� � �L = �id � �L� � �L,

�20�
�� � id� � �L = id.

ince

�L�da� = �� � d��A�a�, " a � A �21�
L
he action of � on the first-order differentials gives rise to the relations
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�L�dx� = x � dx ,

�22�
�L�d�� = x � d� − � � dx .

ere � :�→� is the linear map of degree zero which gives ��a�= �−1�deg�a�a. If we apply �L to
elations �11�, we do not have any new relations between Q’s. Consequently, we may have three
istinct solutions:

Type I: includes one deformation parameter

Q12 = 0, Q22 = 0 Þ �
Q = 1

Q11 = q

Q21 = − q−1

Q� = q .
	 �23�

Type II: includes two parameters

Q22 = 0, Q = r Þ �
Q11 = q

Q12 = r − 1

Q21 = − q−1r

Q� = qr−1.
	 �24�

Type III: includes two parameters

Q12 = 0, Q = p Þ �
Q11 = pq

Q21 = − q−1

Q22 = 1 − p

Q� = pq .
	 �25�

ence we see that solution of the form Type I is a special case of solution of the form Type II for
=1 or Type III for p=1. Therefore it may be omitted. However the Type I solution, as we will see
n Sec. IV, gives rise to interesting and important results. Therefore it is convenient as a special
ype.

Note that it can be checked that the identities �14� and �20� and also the following identities
re satisfied:

�id � d��A�a� = �L�da� ,

�d � id��A�a� = �R�da� , �26�

��L
� id� � �R = �id � �R� � �L.

Note that the Type I has a special importance. We will see in Sec. IV, that in this case the
xtended calculus on the quantum superplane has linear commutation relations, for example, the
ommutation rules of the Lie derivatives with functions do not contain the inner derivations.

We call the A0=A�Rq
1�1�-bimodule generated by dx, d� with relations �11� a cotangent bimo-

ule and denote it by ��T*Rq
1�1�. Further work on this and on the tangent bimodule is in progress.

. Cartan-Maurer one-forms on A

In analogy with the left-invariant one-forms on a Lie group in classical differential geometry,
9
ne can construct two one-forms using the generators of A as follows:
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�x = dxx−1,

�27�
�� = d�x−1 − dxx−1�x−1.

he commutation relations between the generators of A and one-forms are

x�x = Q�xx ,

x�� = Q11��x ,

�28�
��x = − Q�x� + Q22��x ,

��� = Q11��� .

he commutation rules of the one-forms �x and �� are

�x Ù �� = �� Ù �x,

�29�
�x Ù �x = 0.

We denote the algebra of the forms generated by the two elements �x and �� by W. We make
he algebra W into a graded Hopf algebra with the following co-structures:9 the coproduct

W :W→W � W is defined by

�W��x� = �x � 1 + 1 � �x,

�30�
�W���� = �� � 1 + 1 � ��.

he counit �W :W→C is given by

�W��x� = 0,

�31�
�W���� = 0

nd the coinverse SW :W→W is defined by

SW��x� = − �x,

�32�
SW���� = − ��.

. The algebra of partial derivatives

Here, we introduce commutation relations between the coordinates of the quantum superplane
nd their partial derivatives. Later, we illustrate the connection between the relations in Sec. III E.

To proceed, let us obtain the relations of the coordinates with their partial derivatives. We
now that the exterior differential d can be expressed in the form

df = �dx�x + d����f . �33�

hen, for example,

d�xf� = dxf + xdf = �dx�1 + Qx�x + Q12���� + Q11d����f = �dx�xx + d���x�f

o that, after some calculations
�xx = 1 + Qx�x + Q12���,
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�x� = − Q21��x,

�34�
��x = Q11x��,

��� = 1 − ��� − Q22x�x.

e shall denote the A-module generated by the partial derivatives �x and �� with relations �34� by
1. This space D1 is the bimodule of first-order partial differential operators.

The commutation relations between derivatives are

�x�� = Q����x,

�35�
��

2 = 0.

The relations between partial derivatives and differentials are found as

�xdx = Q−1dx�x − �1 + Q�−1Q21
−1�d���,

�xd� = Q11
−1d��x,

�36�
��dx = Q21

−1dx��,

��d� = d��� + �1 − Q�Q11
−1�dx�x.

The relations between partial derivatives and the exterior derivative, which guarantee the
onsistence with the basic requirement for the nilpotency of d, are

�xd = Q−1d�x,

�37�
��d = − Q−1d��.

. Quantum Lie superalgebra

The commutation relations of Cartan-Maurer forms allow us to construct the algebra of the
enerators. In order to obtain the quantum Lie superalgebra of the algebra generators we first write
he Cartan-Maurer forms as

dx = �xx ,

�38�
d� = �x� + ��x .

he differential d can then be expressed in the form

d = �xH + �� � . �39�

ere H and � are the quantum Lie superalgebra generators �vector fields�. We now shall obtain the
ommutation relations of these generators. Considering an arbitrary function f of the coordinates
f the quantum superplane and using that d2=0 and

d�x = 0,

�40�
d�� = 0,
ne has the following commutation relations for the quantum Lie superalgebra:
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H � = �H ,

�41�
�2 = 0.

The commutation relation �41� of the algebra generators should be consistent with monomials
f the coordinates of the quantum superplane. To do this, we evaluate the commutation relations
etween the generators of algebra and the coordinates. The commutation relations of the genera-
ors with the coordinates can be extracted from the graded Leibniz rule:

d�xf� = �dx�f + x�df� = �x�x + QxH�f + ���x � �f = ��xH + �� � �xf

nd

d��f� = �d��f + ��df� = �x�� + Q�H�f + ���x − Q11� � − Q22xH�f = ��xH + �� � ��f .

his yields

Hx = x + QxH ,

H� = � + Q�H ,

�42�
�x = Q11x � ,

�� = x − Q11� � − Q22xH .

e know, from Sec. III D, that the exterior differential d can be expressed in the form �33�, which
e repeat here,

df = �dx�x + d����f .

onsidering �39� together with �33� and using �27� one has

H 
 x�x + ���,

�43�
� 
 x��.

ote that, using relations �34� and �35� one can check that the relation of the generators in �43�
oincide with �41�. It can also be verified that the action of the generators in �43� on the coordi-
ates coincide with �42�. Of course, these relations can also be found using the dual pairing. This
ase will be considered at the end of this section.

The commutation relations of the vector fields H and � with the differentials are the
ollowing:

Hdx = dxH ,

Hd� = d�H ,

�44�
�dx = QQ21

−1dx � ,

�d� = Q11d� � + Q12dxH .

ere we used that

Q22 − Q11Q21 − Q11Q�−1 = 0, Q12 + Q21�Q11 − Q�� = 0,
Q�Q11 − Q�� − Q11Q12 = 0, �45�
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Q12�1 + Q�Q21� = 0, Q22�Q11 − Q�� = 0.

Using relations �44� together with �42� we obtain the commutation rules of the vector fields
ith one-forms as follows:

H�x = − Q−1�x + Q−1�xH ,

H�� = − Q−1�� + Q−1��H ,

�46�
��x = − �x � ,

��� = Q−1�x + �� � + �Q − 1��xH

r taking

T = 1 + �Q − 1�H �47�

ne has

T�x = Q−1�xT ,

T�� = Q−1��T ,

�48�
��x = − �x � ,

��� = �� � + Q−1�xT .

ere we used that

Q12 − Q22 = Q − 1. �49�

imilarly, we can find the commutation relations between the vector fields and the partial deriva-
ives as

�xH = �x + QH�x,

��H = �� + QH��,

�50�
�x � = �� + QQ� � �x,

�� � = − ���.

e here again used that

Q12 − Q�Q21 = 1, Q11 − Q��Q + Q22� = 0. �51�

We know that the differential operator d satisfies the graded Leibniz rule. Therefore, the
enerators H and � are endowed with a natural coproduct. To find them, we need the following
ommutation relation:

Hxm =
1 − Qm

1 − Q
xm + QmxmH , �52�

here use was made of the first relation of �42�. Relation �52� is understood as an operator
m
quation. This implies that when H acts on arbitrary monomials x �,
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H�xm�� =
1 − Qm+1

1 − Q
�xm�� + Qm+1�xm��H �53�

rom which we obtain

H =
1 − QN

1 − Q
, �54�

here N is a number operator acting on a monomial as

N�xm�� = �m + 1�xm� . �55�

e also have

��xm�� = Q11
m xm+1 − Q11

m+1�xm�� � − Q11Q22x
m+1H . �56�

So, applying the graded Leibniz rule to the product of functions f and g, we write

d�fg� = ���xH + �� � �f�g + f��xH + �� � �g �57�

ith help of �39�. From the commutation relations of the Cartan-Maurer forms with the coordi-
ates of the quantum superplane, we can compute the corresponding relations of �x and �� with
unctions of the coordinates. From �28� we have

�xm���x = − Qm+1�x�xm�� + QmQ22��xm+1,

�58�
�xm���� = Q11

m+1���xm�� .

Inserting �58� in �57� and equating coefficients of the Cartan-Maurer forms, we get, for
xample,

H�fg� = �Hf�g + �1 + �Q − 1�H�f�Hg� . �59�

Consequently, we have the coproducts for Type II

��H� = H � 1 + �1 + �r − 1�H� � H ,

�60�
���� = � � 1 + �1 + �r − 1�H�h2/h1 � � ,

here

h1 = ln r, h2 = ln q , �61�

r with �54�

��N� = N � 1 + 1 � N ,

�62�
���� = � � 1 + qN

� � .

he counit and coinverse may be calculated by using the axioms of Hopf algebra:

m�� � id���u� = u = m�id � ����u� ,

�63�
m�id � S���u� = ��u� = m�S � id���u� .

o we have
��N� = 0,
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���� = 0,

�64�
S�N� = − N ,

S��� = − qN � .

The dual of A, denoted by U is generated by the elements H and � obeying relations �41�.
ultiplication and comultiplication in U can be obtained from the corresponding ones in its dual
, but in the above we get the relevant formulas �Eqs. �41�, �62�, and �64�� without using its

uality with A. We now call �U ,a� the evaluation of U on a where U�U and a�A. Using

�U1U2,a� = �U1 � U2,�A�a�� ,

�65�
�U,a1a2� = ��U�U�,a1 � a2�

nd

�U,1A� = �U�U�, �1U,a� = �A�a� �66�

e then can compute all possible pairings from those between the generators H, �, and x, �. They
re given by for Type II

T,�x

�
�� = �r

0
�, �,�x

�
�� = �0

1
� . �67�

o obtain the �left� action of the elements of U on the elements of A, we now may use the
ollowing properties:15

U�a� = a�1��U,a�2�� ,

�68�
U�af� = m � �U�U��a � f� ,

here �A�a�=�a�1� � a�2� is the coproduct of a. For example, one has

T�xf� = m � �U�T��x � f� = m�T � T��x � f� = T�x�T�f� = rxT�f� , �69�

o that

Tx = rxT . �70�

imilarly, we find

T� = r�T ,

�x = qx � , �71�

�� = x − q� � .

V. EXTENDED CALCULUS ON THE QUANTUM SUPERPLANE

A Lie derivative is a derivation on the algebra of tensor fields over a manifold. The Lie
erivative should be defined in three ways: on scalar functions, vector fields, and tensors.

The Lie derivative can also be defined on differential forms. In this case, it is closely related
o the exterior derivative. The exterior derivative and the Lie derivative are set to cover the idea of
derivative in different ways. These differences can be hasped together by introducing the idea of
n antiderivation which is called an inner derivation.
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. Inner derivations

Let us begin with some information about the inner derivations. Generally, for a smooth
ector field X on a manifold the inner derivation, denoted by iX, is a linear operator which maps
-forms to �k−1�-forms. If we define the inner derivation iX on the set of all differential forms on
manifold, we know that iX is an antiderivation of degree −1:

iX�	 Ù 
� = �iX	� Ù 
 + �− 1�k	 Ù �iX
� , �72�

here 	 and 
 are both differential forms. The inner derivation iX acts on zero- and one-forms as
ollows:

iX�f� = 0,

�73�
iX�df� = X�f� .

We now wish to find the commutation relations between the coordinates x, �, and the inner
erivations associated with them. In order to obtain the commutation rules of the coordinates with
nner derivations, we shall assume that they are of the following form:

ixx = A1xix + A2�i�,

ix� = A3�ix + A4xi�,

�74�
i�x = A5xi� + A6�ix,

i�� = A7�i� + A8xix.

he coefficients Ak �1�k�8� will be determined in terms of the deformation parameters in
elations �11�. But the use of the relations �5� does not give rise to any solution in terms of the
arameters Q and Qij �1� i , j�2� in �11�. Howover, we have, at least, the system

A4�A1 − qA5� = 0, A4�A3 + qA7� = 0, A2A8 = 0,

�75�
A8�A5 − qA1� = 0, A8�qA1 + A7� = 0, A4A8 = 0.

o find the coefficients, we need the commutation relations of the inner derivations with the
ifferentials of x and �. Since

iXi
�dXj� = �ij �76�

e can assume that the relations between the differentials and the inner derivations are of the
ollowing form

ixdx = 1 + a1dxix + a2d�i�,

ixd� = a3d�ix + a4dxi�,

�77�
i�dx = a5dxi� + a6d�ix,

i�d� = 1 + a7d�i� + a8dxix.
sing relations �12� we get the system
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a2�a5 − Q�� = 0, a5 = Q��1 + a8�, a1 = − 1,

�78�
a2�a7 − Q�a3� = 0, a2 = Q�a3 − 1, a2a6 = 0.

ow the use of the relations �11� will give

A1 = Q, A2 = Q12, A3 = Q21, A4 = 0,

�79�
A5 = Q11, A6 = 0, A7 = 1, A8 = Q22

nd some additional relations consisting Ak, ak and

a6 = 0.

To find the remaining parameters ak, this time we assume that the commutation relations of
he inner derivations with the partial derivatives �x and �� are in the following form:

ix�x = B1�xix + B2��i�,

ix�� = B3��ix + B4�xi�,

�80�
i��x = B5�xi� + B6��ix,

i��� = B7��i� + B8�xix.

hen using the relations �34� we obtain

B1 = Q−1, B2 = 0,

B3 = Q21
−1, B4 = − Q1

−1Q21
−1Q12,

�81�
B5 = Q11

−1, B6 = − Q11
−1Q21

−1Q22,

B7 = 1, B8 = 0.

If we demand that the commutation rules of the inner derivations with d in the form

ix � d − Fd � ix = �x,

�82�
i� � d − F�d � i� = ��,

ne has

F = − Q−1, F� = − F ,

a2 = − Q−1Q12, a4 = 0, a7 = Q−1, �83�

a3 = − Q−1Q21, a5 = Q−1Q11, a8 = Q�−1Q−1Q22.

onsequently, we have the following commutation relations:

• the commutation relations of the inner derivations with x and �
ixx = Qxix + Q12�i�,

                                                                                                            



B

a
t
w

F
v

T
m

i

w

083501-14 Salih Çelik J. Math. Phys. 47, 083501 �2006�

                        
ix� = Q21�ix,
�84�

i�x = Q11xi�,

i�� = �i� + Q22xix,

• the commutation relations between the differentials and the inner derivations

ixdx = 1 − dxix − Q−1Q12d�i�,

ixd� = − Q−1Q21d�ix,
�85�

i�dx = Q−1Q11dxi�,

i�d� = 1 + Q−1d�i� + �QQ��−1Q22dxix,

• the relations of the inner derivations with the partial derivatives �x and ��,

ix�x = Q−1�xix,

ix�� = Q21
−1��ix − �Q11Q21�−1Q12�xi�,

�86�
i��x = Q11

−1�xi� − �Q11Q21�−1Q22��ix,

i��� = ��i�.

. Lie derivatives

We know, from the classical differential geometry, that the Lie derivative L can be defined as
linear map from the exterior algebra into itself which takes k-forms to k-forms. For a zero-form,

hat is, an ordinary function f , the Lie derivative is just the contraction of the exterior derivative
ith the vector field X:

LXf = iXdf . �87�

or a general differential form, the Lie derivative is likewise a contraction, taking into account the
ariation in X:

LX	 = iXd	 + d�iX	� . �88�

he Lie derivative has the following properties. If F�M� is the algebra of functions defined on the
anifold M then

LX:F�M� → F�M� �89�

s a derivation on the algebra F�M�:

LX�af + bg� = a�LXf� + b�LXg� ,

�90�
LX�fg� = �LXf�g + f�LXg� ,

here a and b real numbers.
The Lie derivative is a derivation on F�M��V�M� where V�M� is the set of vector fields on
M:
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LX1
�fX2� = �LX1

f�X2 + f�LX1
X2� . �91�

he Lie derivative also has an important property when acting on differential forms. If 	 and 
 are
wo differential forms on M then

LX�	 Ù 
� = �LX	� Ù 
 + �− 1�k	 Ù �LX
� , �92�

here 	 is a k-form.
In this section we now wish to find the commutation rules of the Lie derivatives with func-

ions, i.e., the elements of the algebra A, their differentials, etc. For example, the relation of Lx

ith x can be obtained, using relations �74� and �77�, as follows:

Lxx = �ix � d + d � ix�x

= ixdx + d�ixx�

= 1 + a1dxix + a2d�i� + d�A1xix + A2�i��

= 1 + A1xLx + A2�L� + �A1 + a1�dxix + �A2 + a2�d�i� = 1 + QxLx + Q12�L� + �Q − 1��dxix

+ Q−1Q12d�i�� . �93�

imilarly, one has

Lx� = − Q21�Lx + Q21�1 − Q−1�d�ix,

L�x = �i� � d − d � i��x = Q11xL� + Q11�Q−1 − 1�dxi�, �94�

L�� = 1 − �L� − Q22xLx − Q22��QQ��−1 − 1�dxix + �Q−1 − 1�d�i�.

he following relations can be obtained from �85�:

Lxdx = dxLx + Q−1Q12d�L�,

Lxd� = − Q−1Q21d�Lx,

�95�
L�dx = − Q−1Q11dxL�,

L�d� = Q−1d�L� + �QQ��−1Q22dxLx.

Other commutation relations can be similarly obtained. To complete the description of the
bove-presented scheme, we get in the following the remaining commutation relations as follows:

• the Lie derivatives and partial derivatives

Lx�x = �xLx,

Lx�� = − QQ21
−1��Lx + Q�Q11Q21�−1Q12�xL�,

�96�
L��x = QQ11

−1�xL� − Q�Q11Q21�−1Q22��Lx,

L��� = − Q��L�,
• the inner derivations
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ixi� = − Q11�Q12 − Q�−1i�ix,
�97�

ixix = 0.

• the Lie derivatives and the inner derivations

Lxix = ixLx,

Lxi� = − QQ21
−1i�Lx + Q12�Q − Q12�−1ixL�,

�98�
L�ix = − QQ11

−1ixL� − �Q�Q21�−1QQ22i�Lx,

L�i� = Q−1i�L�,

• the Lie derivatives

LxL� = Q21
−1�Q12 − Q�L�Lx,

�99�
L�

2 = 0.

ote that the Lie derivatives can be written as follows:

Lx = �x + �1 − Q−1�d � ix,

�100�
L� = �� − �1 − Q−1�d � i�,

r in terms of vector fields and coordinates

Lx = x−1H − x−1�x−1 � + �1 − Q−1�d � ix,

�101�
L� = x−1 � − �1 − Q−1�d � i�.

CKNOWLEDGMENT

This work was supported in part by TBTAK the Turkish Scientific and Technical Research
ouncil.

1 A. Connes, Publ. Math., Inst. Hautes Etud. Sci. 62, 257 �1985�.
2 S. L. Woronowicz, Commun. Math. Phys. 111, 613 �1987�.
3 S. L. Woronowicz, Commun. Math. Phys. 122, 125 �1989�.
4 J. Wess and B. Zumino, Nucl. Phys. B, Proc. Suppl. 18, 302 �1990�.
5 Y. I. Manin, Montreal University, Preprint, 1988.
6 Y. I. Manin, Commun. Math. Phys. 123, 163 �1990�.
7 S. Soni, J. Phys. A 24, 619 �1990�.
8 W. S. Chung, J. Math. Phys. 35, 2484 �1994�.
9 S. Celik, J. Phys. A 31, 9695 �1998�.
0 P. Schupp, P. Watts, and B. Zumino, Lett. Math. Phys. 25, 139 �1992�.
1 P. Schupp, P. Watts, and B. Zumino, hep-th/9312073.
2 P. Schupp, hep-th/9408170.
3 C. Chryssomalakos, P. Schupp, and B. Zumino, hep-th/9401141.
4 S. Celik, J. Phys. A 35, 4257 �2002�.
5
 R. Coquereaux, A. O. Garcia, and R. Trinchero, math-ph/9807012.

                                                                                                            



Y
o

I

s
a
a
n
r

→

i
V
a
c
t
e
s

i
t
w

a

b

JOURNAL OF MATHEMATICAL PHYSICS 47, 083502 �2006�

0

                        
ang-Baxter maps and symmetries of integrable equations
n quad-graphs

Vassilios G. Papageorgioua�

Department of Mathematics, National Technical University of Athens, 15780 Zografou,
Greece

Anastasios G. Tongasb�

Department of Mathematics, University of Patras, 26500 Patras, Greece

Alexander P. Veselov
Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
and Landau Institute for Theoretical Physics, Kosygina 2, Moscow, 117940, Russia

�Received 17 April 2006; accepted 19 June 2006; published online 4 August 2006�

A connection between the Yang-Baxter relation for maps and the multidimensional
consistency property of integrable equations on quad-graphs is investigated. The
approach is based on the symmetry analysis of the corresponding equations. It is
shown that the Yang-Baxter variables can be chosen as invariants of the multipa-
rameter symmetry groups of the equations. We use the classification results by
Adler, Bobenko, and Suris to demonstrate this method. Some new examples of
Yang-Baxter maps are derived in this way from multifield integrable equations.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2227641�

. INTRODUCTION

The quantum Yang-Baxter �YB� equation has its origins in the theory of solvable models in
tatistical mechanics1,2 and the quantum inverse scattering method.3 The fact that this equation has
lso found many applications in representation theory, the construction of invariants in knot theory
nd that it lies at the foundation of quantum groups, gives to the quantum YB equation a promi-
ent position among the basic equations in mathematical physics, see, e.g., Refs. 4 and 5, and
eferences therein.

In its original form, the quantum YB equation is a relation for a linear operator R :V � V
V � V, where V is a vector space. The relation has the form

R23R13R12 = R12R13R23, �1�

n End �V � V � V�, where R13 is meant as the identity in the second factor of the tensor product
� V � V and as R in the first and third factors, and analogously for R12, R23. Supposing that X is

ny set, the maps R from the Cartesian product X�X into itself, which satisfy the relation �1� of
omposite maps are called set theoretic solutions of the quantum YB relation. The study of set
heoretic solutions of the quantum YB equation was originally suggested by Drinfeld6 �see also
arlier work by Sklyanin7 where the first interesting example of such solutions was found� and
ince then they have attracted the interest of many researchers.

More recently, a general theory on the set theoretic solutions to the YB relation was developed
n Ref. 8 and the notion of transfer maps, which can be considered as the dynamical analogues of
he monodromy and transfer matrices in the theory of solvable models in statistical mechanics,
as introduced in Ref. 9. In many interesting examples of YB maps,10 such as maps arising from

�On leave of absence from Department of Mathematics, University of Patras, 26500 Patras, Greece.
�
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eometric crystals,11 the set X has the structure of an algebraic variety and R is a birational
somorphism. The case of CP1�CP1 has been recently discussed in Ref. 12 in relation to the
lassification of the so-called quadrirational maps.

In this paper we investigate the relation between the YB property for maps and the multidi-
ensional consistency condition for equations on quad-graphs, which is now commonly accepted

s a definition of integrability for such equations �see Refs. 13–15�. Although the link between
hese two notions was known before �see, e.g., concluding remarks in Ref. 15� it was never
xplored systematically.

Our approach is based on the symmetry analysis of integrable equations on quad-graphs. The
ain idea is that the YB variables are suitable invariants of their symmetry groups. A good

xample is the discrete potential Korteweg–de Vries equation �dpKdV�16–18

�f1,2 − f��f1 − f2� − �1 + �2 = 0 �2�

see notation in Fig. 1�. It is clearly invariant under the translation f → f +const. The invariants

x = f1 − f , y = f1,2 − f1, u = f1,2 − f2, v = f2 − f , �3�

atisfy the relation

x + y = u + v . �4�

nd Eq. �2� is written in terms of them as

�x + y��x − v� = �1 − �2. �5�

his allows one to express u ,v as functions of x ,y, which leads to the following YB map:

u = y +
�1 − �2

x + y
, v = x −

�1 − �2

x + y
, �6�

nown as the Adler map.19 Note that the YB variables x, y, u, v, are attached to the edges of the
attice. The fact that the corresponding map satisfies the YB property follows directly from the
hree dimensional �3D� consistency property of dpKdV �see Fig. 5�. This construction works for
ntegrable equations on quad-graphs with one-parameter symmetry group.

One of the main findings of our paper is that this idea works for multiparameter symmetry
roups if one considers the extension of the equation on a multidimensional lattice. In that case the
dges are replaced by higher dimensional faces. We show that in such a way one can derive from
he same discrete potential KdV the following YB map:

u = yQ, v = xQ−1, Q =
�1 − �2� + ��2 − �1�x + �2��1 − 1�xy

�1 − �1� + ��1 − �2�y + �1��2 − 1�xy
. �7�

FIG. 1. An elementary quadrilateral.
e will call it Harrison map since it is closely related to the superposition formula of the
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äcklund transformation for the Ernst equation in general relativity introduced by Harrison.20

fter the change of variables x�1/x ,v�1/v ,y�y /�2 ,u�u /�1 it coincides with the FI quadri-
ational map in Ref. 12, which corresponds to the most general case of two conics. Note that the
ost degenerate case FV in the classification of Ref. 12 is simply related to the Adler map.

The plan of the paper is the following. We start in Sec. II with the discussion of the 3D
onsistency property for equations on quad-graphs. As examples we choose three equations from
he classification list in Ref. 15. By considering the invariants of their one-parameter symmetry
roups we derive all five types of the quadrirational maps from Ref. 12. Next, in Sec. III, we show
ow this symmetry method can be generalized in the case where the lattice equation admits a
ultiparameter symmetry group. This is demonstrated on the example of the lattice KdV equation

y extending it to a three-dimensional cube and using the invariants of a two-parameter symmetry
roup as YB variables. Finally, we show how the Harrison map can be retrieved from the lattice
dV equation by exploiting its full three-parameter symmetry group and the consistency property
n a four-dimensional cube.

In Sec. IV we show that the same idea works equally well for multifield integrable lattice
quations and we derive certain examples of multidimensional YB maps from lattice equations in
he Boussinesq family, vector Calapso equation and its specialization to an integrable discrete
ersion of the O�n+2� nonlinear � model, introduced recently by Schief.21 The paper concludes
ith perspectives where we address some questions for future study.

I. MULTIDIMENSIONAL CONSISTENCY AND YB MAPS

. Equations on quad-graphs and the 3D consistency property

Central to our considerations are integrable discrete equations on quad-graphs, which are
pecific equations associated to planar graphs with elementary quadrilaterals faces. In the simplest
ase one has complex fields f :Z2→C assigned on the vertices at sites �n1 ,n2� and two complex
attice parameters �1 ,�2 assigned on the edges of an elementary square being equal on opposite
dges �see Fig. 1�. The basic building block of such equations consists of a relation of the form

E�f , f1, f2, f1,2;�1,�2� = 0, �8�

etween the values of four fields residing on the vertices of each elementary quadrilateral for
hich we use the shorthand notation:

f ª f�n1,n2�, f1 ª f�n1 + 1,n2�, f2 ª f�n1,n2 + 1�, f1,2 ª f�n1 + 1,n2 + 1� . �9�

Integrable discrete equations of the above mentioned type �8� are listed in a recent
lassification15 where the 3D consistency property �see the following� and some additional con-
itions were imposed. From that list we consider the following:

E1: �f1,2 − f��f1 − f2� − �1 + �2 = 0, �10�

E2: �1�f f1 + f2f1,2� − �2�f f2 + f1f1,2� + ���1
2 − �2

2� = 0, �11�

E3: �1 − �2
2��f1 − �1f��f2 − �1f1,2� − �1 − �1

2��f2 − �2f��f1 − �2f1,2� = 0. �12�

Equation E1 is already mentioned as the dpKdV equation. Equation E2 with �=0 is the
odified discrete KdV or Hirota equation.16 If ��0, we may always assume that �=1 using an

ppropriate gauge. Equation E3 corresponds to the equation labeled as Q3�=0 in the classification
f Ref. 15. It is contained in the four-parameter family of the equations derived earlier in Ref. 22,
hich contains also discrete versions of potential KdV, modified KdV, and Schwarzian KdV �see
ef. 23 for a more recent discussion�.

The integrability of such equations can be defined using the three-dimensional consistency

roperty. This means that the overdetermined system consisting of the difference equations
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E�f , f i, f j, f i,j;�i,� j� = 0, 1 � i � j � 3, �13�

nd their shifted versions, is consistent on the three-dimensional lattice Z3. In practice, this prop-
rty is verified as follows.13–15 Consider an elementary initial value problem on the three-
imensional cube with initial data assigned on four vertices, exactly three of them lying on the
ame face. One such initial configuration is depicted in Fig. 2�a� with initial values f , f i ,1� i

3. Using Eq. �13� on the three faces adjacent to the vertex with value f , we determine uniquely
he values f i,j ,1� i� j�3, in terms of the initial data. Then using shifted versions of �13� on each
f the remaining three faces, we evaluate f1,2,3 in three different ways. Consistency means that one
btains the same value for f1,2,3 in terms of the initial data f , f i ,1� i�3 �independent of the way
e choose to evaluate it�. For the dpKdV equation �2� this value is

f1,2,3 =
��1 − �2�f1f2 + ��3 − �1�f1f3 + ��2 − �3�f2f3

��2 − �1�f3 + ��1 − �3�f2 + ��3 − �2�f1
. �14�

ote that the right-hand side of Eq. �14� is invariant under any permutation of the indices �1,2,3�
hich label the field variables and the associated lattice parameters.

Another initial data configuration, which is best adapted to the YB property that we consider,
s depicted in Fig. 2�b�. A third possible initial configuration is to give the values f , f1 , f2 , f1,2,3.
he latter two configurations are equivalent to the first one by using the equation on one of the

aces. For example, by using the front face equation we can exchange the value f1,3 to f3 in the set
f initial data.

Using the fact that dpKdV equation possesses the 3D consistency property, one can show in a
imilar manner that it can be consistently imposed on each two-dimensional face of a four-cube.
ince we are going to use this property later on we describe explicitly its derivation.

For given initial values f , f i i=1,2 ,3 ,4, we determine the shifted values of the fields involv-
ng any two different directions, using

�f i,j − f��f i − f j� = �i − � j , �15�

� i� j�4 �see Fig. 3�. Successively, since dpKdV is three-dimensional consistent, we determine
he values f ijk ,1� i� j�k�4. Then the value f1,2,3,4 can be found in six different ways, using the
pKdV equations on the six two-dimensional facets containing the vertex where the value f1,2,3,4

s assigned. This vertex is contained also in four cubes, each one of them containing three of the
ix facets, and the incidence relations are such that taking into account the three-dimensional
onsistency on each of the four cubes one proves that the value f1,2,3,4 is uniquely determined in
erms of initial data. By direct calculations also we find that this value is independent of the way

FIG. 2. Elementary initial value problems on the cube.
hat we used to calculate it, and equals
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f1,i,j,k =

�
ijk

��1�i f i,j + � j�kf j,k��f1 − f i��f j − fk�

�
ijk

��1�i + � j�k��f1 − f i��f j − fk�
, �16�

here �
ijk

denotes the cyclic sum over the subscripts �i , j ,k�= �2,3 ,4� , �4,2 ,3� , �3,4 ,2�. It can be

asily checked that f1,2,3,4 given by �16� remains invariant under any permutation of the indices
1,2,3,4�, thus dpKdV is four-dimensional consistent.

. YB relation and 3D consistency property

Let X be any set and R a map of X�X into itself. Let Rij: Xn→Xn, where Xn=X�X� ¯

X, denotes the map which acts as R on the i and j factors and as the identity on the others. More
xplicitly, let us write R�x ,y� ,x ,y�X, as

R�x,y� = �f�x,y�,g�x,y�� . �17�

Then, for n�2 and 1� i , j�n , i� j we define

Rij�x1,x2, . . . ,xn� = ��x1, . . . ,xi−1, f�xi,xj�,xi+1, . . . ,xj−1,g�xi,xj�,xj+1, . . . ,xn�, i � j

�x1, . . . ,xj−1,g�xi,xj�,xj+1, . . . ,xi−1, f�xi,xj�,xi+1, . . . ,xn�, i 	 j
. �18�

n particular, for n=2 we find that R12=R and R21�x ,y�= �g�y ,x� , f�y ,x��. The latter map can be
ritten as a composition of maps as follows:

R21 = PRP , �19�

here P is the permutation map, i.e., P�x ,y�= �y ,x�.
A map R is called a YB map if it satisfies the YB relation �1�, regarded as an equality of maps

rom X�X�X into itself. If in addition the relation R21R
Id holds, then R is called reversible
B map.

In a more general setting we may consider a whole family of YB maps parametrized by
ontinuous parameters �i rather than a single map. The YB relation then takes the parameter-
ependent form

R23��2,�3�R13��1,�3�R12��1,�2� = R12��1,�2�R13��1,�3�R23��2,�3� , �20�

nd the reversibility condition becomes

21

FIG. 3. Discrete potential KdV in Z4.
R ��2,�1�R��1,�2� = Id. �21�
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The relation between YB maps and integrable equations on quad-graphs can be demonstrated
n the example of the discrete potential KdV equation E1. As we have already shown in Sec. I, by
onsidering the differences of the values of the fields assigned on two adjacent vertices �3�, we
rrive at the Adler map �6�. There is a different combination for the variables assigned on the
dges of the square, namely

x = f f1, y = f1f1,2, u = f2f1,2, v = f f2. �22�

rom the above-noted relations �22� we deduce that

xu = yv . �23�

oreover, dpKdV can also be written in terms of the variables �22� as follows:

y + v − x − u = �1 − �2. �24�

olving Eqs. �23� and �24� for �u ,v� we get the following map:

u = y�1 +
�1 − �2

x − y
�, v = x�1 +

�1 − �2

x − y
� . �25�

The maps �6� and �25� automatically satisfy the parameter dependent YB relation �20�. In-
eed, it is easily shown that the consistency property for a configuration of initial data on the
ertices of a cube, as depicted in Fig. 2, is equivalent to that with initial values f , f1 , f1,2 , f1,2,3.
hese initial data correspond to the values �x ,y ,z� on the edges �Fig. 5�. The 3D consistency
roperty guarantees that the composite maps

�a�: �x,y,z�→
R12

�x2,y−1,z�→
R13

�x2,3,y−1,z−2�→
R23

�x2,3,y−1,3,z−1,−2� , �26�

�b�: �x,y,z�→
R23

�x,y3,z−2�→
R13

�x3,y3,z−1,−2�→
R12

�x2,3,y−1,3,z−1,−2� �27�

ppearing in Eq. �20�, applied on �x ,y ,z� give identical values for �x2,3 ,y−1,3 ,z1,−2�.
Analyzing these two examples one notices that the variables x ,y ,u ,v, which we call YB

ariables, are invariants of certain symmetry groups of the relevant lattice equation. Now we are
oing to show that this symmetry method can be applied in more general situations as well.

. Lattice invariants of symmetry groups and YB variables

Let us first recall the basic notions of Lie symmetry methods applied to lattice equations of the
orm �8�. With minor modifications these are in accordance with the symmetry methods applied to
lgebraic or differential equations �see, e.g., Ref. 24 for an extensive study on the subject�.

Consider a lattice equation of the form �8� involving one field f :Z2→C�or CP1�. Let G be a
ne-parameter group of transformations acting on the domain of the dependent variables,

G:f � ��n1,n2, f ;��, � � C . �28�

he prolongation of the group action on the lattice jet space J with coordinates �f , f1 , f2 , f1,2� is
pecified by

G:�f , f1, f2, f1,2� � ���n1,n2, f ;��,��n1 + 1,n2, f1;��,��n1,n2 + 1, f2;��,��n1 + 1,n2 + 1, f1,2;��� .

�29�
he infinitesimal generator of the group action of G on f is the vector field
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v = Q�n1,n2, f�� f, where�Q�n1,n2, f� =
d

d�
��n1,n2, f ;���=0. �30�

here is a one-to-one correspondence between connected groups of transformations and their
ssociated infinitesimal generators since the group action is reconstructed by the flow of the vector
eld v by exponentiation

��n1,n2, f ;�� = exp��v�f . �31�

he prolongation of the infinitesimal action of G given by �29� is generated by the prolonged
ector field

v̂ = Q� f + Q1� f1
+ Q2� f2

+ Q1,2� f1,2
, �32�

here subscripts denote Q1=Q�n1+1 ,n2 , f1� ,Q1,2=Q�n1+1 ,n2+1 , f1,2�, and so on.
The transformation G is a symmetry of the lattice equation �8�, if it transforms any solution of

8� to another solution of the same equation. Equivalently, G is a symmetry of Eq. �8�, if the
quation is not affected by the transformation �29�. The infinitesimal criterion for G to be a
ymmetry of Eq. �8� is

v̂�E�f , f1, f2, f1,2;�1,�2�� = 0, �33�

henever Eq. �8� holds.
A function I :J→C is a lattice invariant of the transformation group G, if I is not affected

nder the action of G. The infinitesimal invariance condition for the lattice invariants is

v̂�I� = 0. �34�

nce we have determined a symmetry generator v of the lattice equation �8�, the corresponding
attice invariants can be found from the solution of the first-order partial differential equation �34�,
y using the method of characteristics. From the corresponding system of ordinary differential
quations we may easily obtain the general solution, since it consists of equations with separated
ariables. We assign now to the edges of an elementary quadrilateral the following YB variables
Fig. 4�:

x = I�f , f1�, y = I�f1, f1,2�, u = I�f2, f1,2�, v = I�f , f2� , �35�

here I is an invariant depending on two neighboring values of f . Since G is a symmetry of the
attice equation, the latter can be written in terms of these variables:

D�x,y,u,v;�1,�2� = 0. �36�

his can be done in different ways since the variables �35� are not independent; there exists a

FIG. 4. An oriented quadrilateral for the map R�x ,y�= �u ,v�.
elation among them
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F�x,y,u,v;�1,�2� = 0, �37�

ollowing from the fact that the space of G-orbits is three-dimensional.
Solving the system of equations �36� and �37� for u ,v in terms of x ,y and assuming that the

olution is unique, we obtain a map R�x ,y�= �u ,v�.
Proposition II.1: If the discrete equation E satisfies the 3D consistency property, then the map

�x ,y�= �u ,v�, which relates the lattice invariants �35�, satisfies the YB relation.
The proof follows from Fig. 5. Similar considerations hold for multifield lattice equations,

hich give rise to multicomponent YB maps �see Sec. IV�.
Example II.2: Consider the dpKdV equation �2�. Two infinitesimal symmetry generators of the

atter equation are

v1 = � f, v2 = �− 1�n1+n2f� f �38�

see Ref. 25�. They generate the symmetry transformations

G1:f � f + �1, G2:f � f exp��2�− 1�n1+n2�, �1,�2 � C , �39�

espectively. The lattice invariants assigned on the edges of a square for each one of the above-
oted symmetry transformations are the variables �3� and �22�, respectively.

The consideration of the remaining two equations from the list �10�–�12�, with the correspond-
ng symmetry generators

vE2
= �− 1�n1+n2f� f, vE3

= f� f , �40�

eads to the results summarized in the Table I.
These maps are simply related to quadrirational maps FI−FIII from the Adler-Bobenko-Suris

ABS� list of Ref. 12. Namely, setting �=0 in the YB map constructed from E2, we retrieve the
ap labeled as FIII map in Ref. 12. The case �=−1 corresponds to the FII map. Finally, the YB
ap constructed from E3 under the transformation x�1/x, v�1/v, y�y /�2, u�u /�1 turns into

u = �1yQ̃, v = �2xQ̃, Q̃ =
�1 − �2�x + �2 − �1 + ��1 − 1�y

�2�1 − �1�x + ��1 − �2�xy + �1��2 − 1�y
, �41�

hich corresponds to the FI map in the classification in Ref. 12. As we have already mentioned it
s closely related to the superposition formula of the Bäcklund transformation for the Ernst equa-
ion in general relativity introduced by Harrison,20 cf. Ref. 26.

The remaining maps FIV and FV from Ref. 12 are related in a simple way to the maps �6� and
25� derived from dpKdV already in Sec. II B.

Thus all five types of quadrirational maps from the ABS classification are equivalent to the
B maps coming from the integrable equations on quad-graphs.

Remark II.3: We should mention that the equivalence of the quadrirational maps considered in
ef. 12 allows independent change of variables x ,y ,u ,v and therefore does not respect the YB

FIG. 5. Three-dimensional representation of the YB relation.
roperty, which is preserved in general only under the diagonal action of the Möbius group. In
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articular, quadrirational maps in general do not satisfy the YB relation �contrary to what one
ight conclude from Ref. 12�. However sometimes two YB maps are related by nondiagonal

ction �see the example of Harrison map and FV noted earlier�. The question how many such pairs
xist needs further investigation �see the discussion of this in Ref. 27�.

II. MULTIPARAMETER SYMMETRY GROUPS AND MULTIDIMENSIONAL CONSISTENCY

The purpose of this section is to show that the symmetry method described in the preceding
ection works equally well for multiparameter symmetry groups. The idea is to consider the
xtension of the equation into many dimensions using the 3D-consistency property and then
rescribe the YB variables not to the edges but, for example, to higher dimensional faces.

We demonstrate how the method works in the example of dpKdV equation, which is invariant
nder the three-parameter symmetry group G with infinitesimal generators

v1 = � f, v2 = �− 1�n1+n2f� f, v3 = �− 1�n1+n2� f . �42�

heir commutators are

�v1,v2� = v3, �v2,v3� = − v1, �v1,v3� = 0, �43�

rom which it is immediately seen that 	v1 ,v2 ,v3
 span a solvable Lie algebra. This algebra is
ctually isomorphic to the Lie algebra of the group Iso �R1,1� of isometries of the Minkowski
lane, so G can be considered as the connected component of identity of this group.

. Consistency of dpKdV around a three-cube and the FIII map

Consider the dpKdV equation imposed on each face of an elementary cube �see Fig. 2� and the
belian subgroup H of the full symmetry group G generated by 	v1 ,v3
 �translations of the
inkowski plane�. These two symmetries can be extended to the corresponding system on Z3,

.g., v3= �−1�n1+n2+n3� f.
We consider now the following invariants of the subgroup H:

x = f1 − f3, y = f1,2 − f1,3, u = f1,2 − f2,3, v = f2 − f3, �44�

ABLE I. YB maps arising from equations E2 and E3.

YB variables
Functional relation
and lattice equation YB Map

2

x= f f1 /�1 �1xu=�2yv u=
y

�1

�1�x+��−�2�y+��

x−y

y= f1f1,2 /�2 �1�x+u+��=�2�y+v+�� v=
x

�2

�1�x+��−�2�y+��

x−y

u= f2f1,2 /�1 where �i=�i
2

v= f f2 /�2

3

x= f1 / ��1f� xy=uv u=yQ , v=xQ−1

y= f1,2 / ��2f1� 1−x−1

1−v−1 =
1−�1

1−�2

1−�2y

1−�1u

u= f1,2 / ��1f2� where �i=�i
2

Q=
�1−�2�+ ��2−�1�x+�2��1−1�xy

�1−�1�+ ��1−�2�y+�1��2−1�xy

v= f2 / ��2f�
ssigned on four faces of the three-cube. Using the dpKdV equations
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f1,2 − f =
�1 − �2

f1 − f2
, f1,3 − f =

�1 − �3

f1 − f3
, f2,3 − f =

�2 − �3

f2 − f3
, �45�

e easily find that the invariants �44� are related by

uv = xy, u −
1

x
= y −

2

v
, �46�

here 1=�1−�3 ,2=�2−�3. Solving the system �46� for �u ,v� in terms of �x ,y� we obtain the
ap

u = yP, v = xP−1, P =
1 + xy

2 + xy
, �47�

hich satisfies the YB relation as it can be checked by direct calculations. This fact is also related
o the higher dimensional consistency of dpKdV on Z4 as it is explained in the following.

Considering the five initial values f3 , f1,3 , f1 , f1,2 , f1,2,4 on the vertices of the four-cube �see
ig. 3� one can find the values on all other vertices in a unique way using the dpKdV equation on
ach two-dimensional face because of its four-dimensional consistency. From these five initial
alues we form the differences

x = f1 − f3, y = f1,2 − f1,3 z = f1,2,4 − f1,2,3, �48�

hich are assigned on �the diagonals of� the two-dimensional faces of the four-cube �Fig. 3�. We
ote that the value f1,2,3 can be expressed already in terms of f3 , f1,3 , f1 , f1,2 through the three-
imensional consistency of dpKdV on the “inner” cube. Next we apply successively the map
: �x ,y�� �u ,v� given by �47� on the �a� “inner,” “front,” “left” and �b� “right,” “back,” “outer”

hree-dimensional cubes to obtain the following composite maps:

�a�: �x,y,z�→
R12

�x2,y−1,z�→
R13

�x2,4,y−1,z−1�→
R23

�x2,4,y−1,4,z−1,−2� , �49�

�b�: �x,y,z�→
R23

�x,y4,z−2�→
R13

�x4,y4,z−1,−2�→
R12

�x2,4,y−1,4,z−1,−2� . �50�

he fact that the two ways of obtaining the values for �x2,4 ,y−1,4 ,z−1,−2� lead to identical results,
nd thus to the YB property of the map �47�, is guaranteed by the four-dimensional consistency.
ne can notice that the evolution of the Yang-Baxter variables takes place on two parallel layers
f the Z3 lattice, i.e., 	�n1 ,n2 ,0� , �n1 ,n2 ,1� ,n1 ,n2�Z
. This is reflected to the fact that there are
ix out of the eight three-dimensional faces �cubes� of the four-cube involved in the compatibility.

A final comment about the map �47� is that under the transformation x�−x−1, v�v−1,
�1u, y�2y it becomes the first YB map in Table I for �=0. Thus the FIII map in the
lassification of Ref. 12 is also retrieved from dpKdV in Z3, by using the invariants of the
ymmetry subgroup H.

. Consistency of dpKdV around a four-cube and the Harrison map

We are going to show that the Harrison map �7� appears in a similar manner as previously
sing now the invariants of the full symmetry group G of dpKdV and extending both the equation
nd its symmetry group in Z4.

The symmetry group G can be naturally extended to the corresponding system in Z4. Now let

s consider the following invariants of this group:
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x =
f1 − f3

f2 − f3
, v =

f1 − f4

f2 − f4
, y = � f1 − f4

f2 − f4
�

3
, u = � f1 − f3

f2 − f3
�

4
, �51�

here the subscript i means the shift in the ith direction. The natural place for them to live in are
he corresponding two-dimensional faces. Next we derive the relations between these variables.

First of all Eq. �15� and its forward shifts with respect to the lattice directions 3 and 4 imply
hat the following relations:

�f1 − f3��f1 − f4�3 = �f1 − f4��f1 − f3�4, �52a�

�f2 − f3��f2 − f4�3 = �f2 − f4��f2 − f3�4, �52b�

�f1,3 − f��f1,4 − f�3 = �f1,4 − f��f1,3 − f�4, �52c�

�f2,3 − f��f2,4 − f�3 = �f2,4 − f��f2,3 − f�4, �52d�

old on the “back” and “left” three-cubes of the four-cube depicted in Fig. 3. Dividing member-
ise Eqs. �52a�, �52b� and rearranging terms we get

f1 − f3

f2 − f3
� f1 − f4

f2 − f4
�

3
=

f1 − f4

f2 − f4
� f1 − f3

f2 − f3
�

4
. �53�

n terms of the variables �51� Eq. �53� reads

xy = uv . �54�

n the other hand, we can rewrite Eq. �52c� in the equivalent form

�f1,3 − f��1 −
�f2,3 − f�4

�f1,3 − f�4
� = �f1,4 − f��1 −

�f2,4 − f�3

�f1,4 − f�3
� , �55�

hich by using Eq. �15� reads

�1 − �3

f1 − f3
�1 −

�2 − �3

�1 − �3
� f1 − f3

f2 − f3
�

4
� =

�1 − �4

f1 − f4
�1 −

�2 − �4

�1 − �4
� f1 − f4

f2 − f4
�

3
� . �56�

ultiplying both terms of Eq. �56� with ��1−�2��f1− f2� and rearranging terms, the latter takes the
orm

�1 −
�2 − �4

�1 − �4
��1 −

f2 − f3

f1 − f3
��1 −

�2 − �3

�1 − �3
� f1 − f3

f2 − f3
�

4
� = �1 −

�2 − �3

�1 − �3
��1 −

f2 − f4

f1 − f4
��1

−
�2 − �4

�1 − �4
� f1 − f4

f2 − f4
�

3
� . �57�

inally, recalling the defining relations of the variables x ,y ,u ,v, Eq. �57� becomes

�1 − �2��1 − x−1��1 − �1u� = �1 − �1��1 − v−1��1 − �2y� , �58�

here

�1 =
�2 − �3

�1 − �3
, �2 =

�2 − �4

�1 − �4
. �59�

similar calculation starting with �52d� and using �54�, delivers the same relation �58�.
Proposition III.1: The invariants �51� of the symmetry group G of the dpKdV equation ex-

4
ended to Z are related by the YB map, which coincides with the Harrison map �7�.
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Indeed, comparing �54� and �58� with the relations from which we obtain the last map in Table
, we deduce that x ,y and u ,v are related by the Harrison map. The fact that this map satisfies the
B relation can also be derived from the consistency property and geometry of the five-
imensional lattice.

V. MULTICOMPONENT YB MAPS

In this section we show that YB maps can be constructed equally well from 3D consistent
ultifield discrete equations, for which no classification scheme exploiting the multidimensional

onsistency property has been obtained yet.

. YB map from the discrete modified Boussinesq system

The discrete modified Boussinesq �dmBSQ� equations28 involve two fields f ,g :Z2→CP1 and
re given by the system

f1,2 = g
�1f2 − �2f1

�1g1 − �2g2
, g1,2 =

g

f

�1f1g2 − �2f2g1

�1g1 − �2g2
. �60�

ts 3D consistency is provided by a lengthy but straightforward calculation that delivers the
ymmetric values

f1,2,3 = f

�
ijk

�i� j fk��igi − � jgj�

�
ij

�i� j��i f igj − � j f jgi�
, g1,2,3 = g

�
ijk

�i� jgk��i f j − � j f i�

�
ij

�i� j��i f igj − � j f jgi�
, �61�

ith respect to any permutation of the indices �1,2,3�. Here the cyclic sum �
ijk

is over the subscripts

i , j ,k�= �1,2 ,3�, �3,1,2�, �2,3,1�, and similarly the cyclic sum �
ij

is over �i , j�= �1,2�, �2,3�, �3,1�.

he explicit dependence of f1,2,3,g1,2,3 on the values f ,g implies that dmBSQ does not satisfy the
o-called tetrahedron property, which is an additional assumption in the classification scheme in
ef. 15 for one-field discrete equations.

Using the symmetry generators

v1 = f� f, v2 = g�g, �62�

f the dmBSQ equations, we define as YB variables the following joint lattice invariants:

x1 =
f1

f
, y1 =

f1,2

f1
, u1 =

f1,2

f2
, v1 =

f2

f
, �63�

x2 =
g1

g
, y2 =

g1,2

g1
, u2 =

g1,2

g2
, v2 =

g2

g
. �64�

t is immediately seen that the above-mentioned equations imply that

x1y1 = u1v1, x2y2 = u2v2. �65�

oreover, the lattice equation �60� can be expressed in terms of the above-noted invariants as
ollows:

u1v1 =
�1v

1 − �2x1

�1x2 − �2v
2 , u2v2 =

�1x1v2 − �2v
1x2

�1x2 − �2v
2 . �66�

i i
inally, solving Eqs. �65�, �66� for �u ,v � we obtain the reversible YB map
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u1 = y1A, v1 = x1A−1, A =
�1

2x1 + �2
2x1x2y1 + �1�2x2y2

�1�2x1 + �1
2x1x2y1 + �2

2x2y2 , �67a�

u2 = y2B, v2 = x2B−1, B =
�1

2x1 + �2
2x1x2y1 + �1�2x2y2

�2
2x1 + �1�2x1x2y1 + �1

2x2y2 . �67b�

. YB map from the discrete potential Boussinesq system

Discrete potential Boussinesq �dpBSQ� equations is the second member in the so-called lattice
el’fand-Dikii hierarchy.29 The dpBSQ equations, in the form they were studied recently in Ref.
0, involve three fields f ,g ,h :Z2→CP1, and they are given by the following system:

h1 = f f1 − g , �68a�

h2 = f f2 − g , �68b�

h = f f1,2 − g1,2 −
�1 − �2

f1 − f2
. �68c�

or the purposes of the present discussion, Eq. �68� exhibits the interesting feature that the joint
nvariants of two symmetry generators are enough to construct a YB map. In connection with this
ssue we note that for an elementary Cauchy problem on a staircase, we should impose initial
alues �f ,g ,h�, �f1 ,g1�, �f2 ,g2�, only. From these data the values �h1 ,h2� and �f1,2 ,g1,2 ,h1,2� are
etermined uniquely. In particular, Eqs. �68a�, �68b� imply that

f1,2 =
g1 − g2

f1 − f2
, �69�

nd subsequently the values h1,2 and g1,2 are determined from Eq. �68a� �or equivalently �68b� and
68c��, respectively.

Using the infinitesimal invariance criterion �33� to determine the symmetries of Eq. �68�, we
nd that two particular symmetry generators are given by the following vector fields:

v1 = � f + f�g + f�h, v2 = �g − �h. �70�

hey generate the symmetry transformations

G1:�f ,g,h� � � f + �1,g + �1f +
�1

2

2
,h + �1f +

�1
2

2
� , �71�

G2:�f ,g,h� � �f ,g + �2,h − �2� , �72�

espectively. We now define as YB variables the following invariants:

x1 = f1 − f , y1 = f1,2 − f1,

x2 = g1 − g − f�f1 − f� , y2 = g1,2 − g1 − f1�f1,2 − f1� ,

x3 = h1 − h − f�f1 − f� , y3 = h1,2 − g1 − f1�f1,2 − f1� ,

�73�
u1 = f1,2 − f2, v1 = f2 − f ,

u2 = g1,2 − g2 − f2�f1,2 − f2� , v2 = g2 − g − f�f2 − f� ,

u3 = h1,2 − h2 − f2�f1,2 − f2� , v3 = h2 − h − f�f2 − f� .
hey are functionally related by
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u1 + v1 = x1 + y1, �74a�

u2 + v2 = x2 + y2 + x1y1 − u1v1, �74b�

u3 + v3 = x3 + y3 + x1y1 − u1v1 �74c�

oreover, the system of equations formed by �68a�–�68c�, �68b�, �68c�, and �69� can be written in
erms of the above-mentioned invariants as follows:

x1 = − y1 +
x2

x1 − v1 −
v2

x1 − v1 , �75a�

x3 = x2 + y2 + x1y1 +
�1 − �2

x1 − v1 , �75b�

v3 = u2 + v2 + u1v1 +
�1 − �2

x1 − v1 . �75c�

olving the system of Eqs. �74�, �75� for �ui ,vi� we obtain the following YB map:

u1 = y1 − ��1 − �2��−1, v1 = x1 + ��1 − �2��−1,

u2 = y2 + ��1 − �2���1 − �2 − 2y1���−2, v2 = x2 + ��1 − �2��x1 + y1��−1,

u3 = y3 + ��1 − �2���1 − �2 + �x1 − y1����−2, v3 = x3,

�76�

here �=x2−x3+x1y1+y2.

. YB map from discrete Calapso equation and nonlinear �-model

In a recent study on discrete isothermic surfaces, Schief21 introduced the following vector
eneralization of the dpKdV:

�f1,2 − f� =
�1 − �2

�f1 − f2�2
�f1 − f2� , �77�

:Z2�Cn, under the name discrete Calapso equation. Equation �77� is three-dimensional consis-
ent since for an initial value configuration f , fi as in Fig. 2�a�, one finds that the value f1,2,3 is
iven by

f1,2,3 =
��f2 − f3�2f1 − ��f1 − f3�2f2 + ��f1 − f2�2f3

��f2 − f3�2 − ��f1 − f3�2 + ��f1 − f2�2
, �78�

here

� = ��1 − �2���1 − �3�, � = ��1 − �2���2 − �3�, � = ��1 − �3���2 − �3� . �79�

he consistency property is readily checked since f1,2,3 is invariant under any permutation of the
ndices �1, 2, 3� labeling the field variables and the corresponding lattice parameters.

The aim now is to construct a YB map from Eq. �77�. Using the translational invariance of Eq.
77�, we define the following YB variables:

x = f1 − f, y = f1,2 − f1, u = f1,2 − f2, v = f2 − f , �80�
n the edges of a square, which are related by
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x + y = u + v . �81�

n the other hand, Eq. �10� can be written in terms of the variables �80� in the form

�u − y� =
�1 − �2

�x + y�2
�x + y� . �82�

ence, Eqs. �81� and �82� deliver the following reversible YB map:

u = y +
�1 − �2

�x + y�2
�x + y�, v = x −

�1 − �2

�x + y�2
�x + y� . �83�

oreover, in Ref. 21 it was shown that discrete Calapso equation �77� can be specialized to an
ntegrable discrete version of the O�n+2� nonlinear �-model. This reduction is accomplished by
mposing the constraint

�f�2 = 1, �84�

n the discrete Calapso equation �77�. Since the shifted values of f with respect to any lattice
irections should also satisfy constraint �84�, Eq. �77� is compatible with this constraint whenever

2f · f2 − 2f · f1 = �1 − �2. �85�

his requirement can be satisfied by taking

− 2f · f1 = �1, − 2f · f2 = �2. �86�

n terms of the variables �80�, the above-mentioned constraints translate to

�x�2 = 2 + �1, �y�2 = 2 + �2. �87�

n view of the previous relations the map �83� obtains the form

u = y +
�x�2 − �y�2

�x + y�2
�x + y�, v = x −

�x�2 − �y�2

�x + y�2
�x + y� . �88�

y straightforward calculations one finds that

�u�2 = �x�2, �v�2 = �y�2. �89�

sing the above-mentioned identity it is easily established that the map R : �x ,y�� �u ,v� given by
88� is a reversible YB map. Up to a permutation this map was first considered by Adler31 in the
eometric problem about recuttings of polygons.

. PERSPECTIVES

We have shown how the symmetry analysis of integrable equations on quad-graphs can be
sed in order to construct YB maps. In particular, we derived the Harrison map from the consis-
ently extended discrete potential Korteweg–de Vries equation to the four-dimensional lattice. The
ain question now is how far this example can be generalized. In particular, for a given multi-

arametric symmetry group, is there a general relation between the structure of the invariants and
he geometry of the objects which the YB variables are assigned to? What is the dimension of the
attice in which the discrete equation should be extended to? The analysis of other equations from
ef. 15 may clarify these issues.
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new multisymplectic scheme for generalized
adomtsev-Petviashvili equation

Bin Jiang, Yushun Wang, and Jiaxiang Cai
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From the multisymplectic Euler box scheme, we derive a new multisymplectic
16-point scheme for the generalized Kadomtsev-Petviashvili equation by eliminat-
ing the auxiliary variables. The new scheme is an explicit scheme in sense that it
does not need iteration. The results of backward error analysis for the Euler box
scheme show that the modified equation associated with the new scheme is not
multisymplectic but of a high order approximation to a multisymplectic partial
differential equations with a modified structure. Numerical results on one soliton
and lump-type solitary waves are reported to illustrate the efficiency of the multi-
symplectic scheme. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2234261�

. INTRODUCTION

Many years ago, Korteweg and de Vries1 �KdV� derived an equation equivalent to

ut + �3u2�x + uxxx = 0 �t � 0,− � � x � + �� , �1.1�

o describe approximately the slow evolution of long water waves of moderate amplitude as they
ropagate under the influence of gravity in one direction in shallow of uniform depth.

The two-dimensional KdV, or the generalized Kadomtsev-Petviashvili �GKP� equation

�ut + �xf�u� + uxxx�x + �uyy = 0 �t � 0,− � � x,y � + �� , �1.2�

as first introduced by Kadomtsev and Petviashvili2 in order to study the stability of one-
imensional solitons against transverse perturbations, where � is a constant and f�u� is a smooth
unction. In the case of f�u�=3u2 and �=−3, Eq. �1.2� is usually called the KPI equation, whereas
he KPII equation with f�u�=3u2 and �=3. In this paper, we mainly discuss the KPI equation. The
PII equation can be discussed similarly.

As far as we know, several numerical schemes have been proposed for the KP equation. These
nclude the following: the explicit finite difference method proposed by Katsis;3 the pseudospectral
ethod developed by Fornberg and Whitham;4,5 a linearized implicit method proposed by Feng,6

nd so on.
Recently, Marsden, Patrik, and Shkoller7 and Bridges and Reich8 proposed the concept of

ultisymplectic partial differential equations �PDEs� and multisymplectic schemes that can be
iewed as the generalization of symplectic schemes. The KPI equation can be described in the
anguage of multisymplectic geometry and reformulated to the multisymplectic form, which was
rst proposed by Bridges in Ref. 9. Liu and Qin,10 from the Preissman scheme for multisymplectic
quations, derived a multisymplectic numerical scheme for the KPI equation that can be simplified
o an implicit 45-point scheme. They also claimed the robusticity of the 45-point scheme by
everal numerical experiments. In this paper, the multisymplectic Euler box scheme for the KPI
quation is investigated and an explicit scheme is derived. So, the first question we must address
s, why another study of numerics for the KPI equation? We start with several reasons: First, the

5-point scheme, as well as many other schemes for the GKP equation, is fully implicit and thus

47, 083503-1022-2488/2006/47�8�/083503/14/$23.00 © 2006 American Institute of Physics
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umbersome and expensive to work with for the high dimensional equations like the GKP equa-
ion. An efficient explicit scheme is of value in this case. Second, there is growing interest in the
ultisymplectic PDEs and multisymplectic schemes. As we know, there are two basic multisym-

lectic schemes: the Preissman scheme and the Euler box scheme. For details, we refer to Refs. 8,
9, and 22 for a recent survey. The Preissman scheme has been a hot topic in the past years,10–15

owever, little work has been done with the Euler box scheme. We know that the Preissman
cheme is compact while the Euler box scheme is not. So, we want to know whether the noncom-
act Euler box scheme has as good a numerical performance as has the Preissman scheme. Third,
any of numerical experiments have been reported to illustrate the good numerical performance

f the multisymplectic schemes. However, all of them are implicit. We may ask the following
uestion, as to whether only implicit multisymplectic schemes have a good numerical perfor-
ance.

In this paper, we derive a new multisymplectic numerical scheme for the GKP equation that
an be simplified to the 16-point scheme. This is an explicit scheme in sense that it does not need
teration in each time integration because the nonlinear term �f�u��xx is treated explicitly. Numeri-
al results show that it is a good-performance scheme. Furthermore, the new scheme can be easily
arried out, so it may be a useful tool for engineering applications to study the GKP equation.

The backward error analysis �BEA� for ODEs is a useful technique for studying the qualitative
ehavior of a discretization. This helps us to understand why the symplectic schemes for Hamil-
onian systems can give accurate and efficient results for long time integration.16,17 BEA for

ultisymplectic schemes was developed by Moore and Reich18,19 and later by Islas and Schober
n Ref. 20. Though their results show that the multisymplectic structure of the modified system has
hanged, they still help us to get further insight into the multisymplectic discretizations. In this
aper, following their methods, we take BEA for the Euler box scheme for the KPI equation. We
btain the associated modified equations and the modified multisymplectic structure. However, the
uxiliary variables in the modified equations cannot be eliminated completely to generate the
orresponding modified equation associated with the 16-point scheme. Actually, a high order
pproximation is generated.

The paper is organized as follows: In Sec. II we take a brief view of multisymplectic structure
f the KPI equation. We derive a new scheme and verify that it satisfies the multisymplectic
onservation law. In Sec. III we implement BEA for PDE discretizations of the Euler box scheme
or the KPI equation. In Sec. IV, some numerical results on one soliton and lump-type solitary
aves over long time intervals are given. Section V gives concluding remarks.

I. DERIVATION OF A NEW EXPLICIT SCHEME FOR THE KPI EQUATION

The KPI equation can be written as

�ut + 6uux + uxxx�x + �uyy = 0 �t � 0,− � � x,y � + �� , �2.1�

here �=−3. To put the KPI equation in the variational framework, we let �xx=u, then � satisfies
he following equation:

�xxxt + 6�xx�xxxx + 6�xxx
2 + �xxxxxx + ��xxyy = 0. �2.2�

ow, we introduce some variables: v=�x, u=�xx, w=�xy, p= 1
2�xt, px=−�xxt−6�xx�xxx−��xyy

�xxxxx, pxx= 1
2�xt+3�xx

2 +�xxxx, pxt=�xx, pxy =��xy, and pxxx=−�xxx.
According to the covariant De Donder-Weyl Hamilton function theories and the multisym-

lectic concept introduced by Bridges,21 the KPI equation can be reformulated as a system of ten
rst-order partial differential equations, which can be written in the form

Mzt + Kzx + Lzy = �zS�z�, z = ��,v,u,w,p,px,pxx,pxy,pxt,pxxx�T � R10, �2.3�
here
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M =�
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1

2
0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 −
1

2
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

� ,

K =�
0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

− 1 0 0 0 0 0 0 0 0 0

0 − 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 − 1 0 0 0 0 0 0 0

� ,

L =�
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 − 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

� ,

here S�z�=up+ 1
2 �pxxx�2+� /2w2+u3−pxv−pxxu−pxtp−pxyw. For details, we refer to Ref. 10.

zS�z� is the gradient of S�z� with respect to the standard inner product on R10. The system �2.3�
s a Hamiltonian formulation of the KPI equation on a multisymplectic structure, where M ,K ,L

Rn�n are skew-symmetric matrices and S�z� :Rn→R is a smooth function of the z�x ,y , t�.
For Eq. �2.3�, one of the most important characteristic is that it satisfies the multisymplectic

onservation law

�w

�t
+

�k

�x
+

�q

�y
= 0, �2.4�
here
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w =
1

2
�dz Ù Mdz�, k =

1

2
�dz Ù Kdz�, q =

1

2
�dz Ù Ldz� , �2.5�

re differential two-forms. So, when a numerical scheme is developed, we expect that the multi-
ymplectic conservation law �2.4� should be preserved. Bridges and Reich defined a numerical
cheme as a multisymplectic scheme if the scheme preserves a discrete multisymplectic conser-
ation law.8 Specifically, if we discretize Hamiltonian PDEs �2.3� as follows,

M�t
i,j,nzi,j

n + K�x
i,j,nzi,j

n + L�y
i,j,nzi,j

n = ��zS�z��i,j
n , �2.6�

here zi,j
n =z�xi ,yj , tn�, �t

i,j,n, �x
i,j,n, and �y

i,j,n are the discretizations of the derivatives �t, �x, and �y,
espectively, then the scheme is multisymplectic provided that it can preserve the following dis-
rete conservation law:

�t
i,j,nwi,j

n + �x
i,j,nki,j

n + �y
i,j,nqi,j

n = 0, �2.7�

here

wi,j
n =

1

2
�dzi,j

n Ù Mdzi,j
n �, ki,j

n =
1

2
�dzi,j

n Ù Kdzi,j
n �, qi,j

n =
1

2
�dzi,j

n Ù Ldzi,j
n � . �2.8�

et tn, n=1,2 , . . . ,N1; xi, i=1,2 , . . . ,N2; yj, j=1,2 , . . . ,N3 is the regular grids of the integral
omain, zi,j

n is an approximation to z�xi ,yj , tn�, �t is the time step, �x is the x direction step, �y is
he y direction step, and

Dt
±zi,j

n = ±
zi,j

n±1 − zi,j
n

�t
, Dx

±zi,j
n = ±

zi±1,j
n − zi,j

n

�x
, Dy

±zi,j
n = ±

zi,j±1
n − zi,j

n

�y
.

he Euler box scheme for �2.3� is

M+Dt
+zi,j

n + M−Dt
−zi,j

n + K+Dx
+zi,j

n + K−Dx
−zi,j

n + L+Dy
+zi,j

n + L−Dy
+zi,j

n = ��zS�z��i,j
n , �2.9�

here M+, M−, K+, K−, L+, and L− are matrix splitting for the symplectic structure matrices M, K,
nd L, respectively, s.t.,

M = M+ + M−, M+
T = − M−,

K = K+ + K−, K+
T = − K−,

L = L+ + L−, L+
T = − L−. �2.10�

cheme �2.9� satisfies the discrete multisymplectic conservation law.
Theorem 1. �Ref. 19� Euler box scheme �2.9� is multisymplectic with the following discrete

ultisymplectic conservation law:

Dt
+wi,j

n + Dx
+ki,j

n + Dy
+qi,j

n = 0, �2.11�

here

wi,j
n =

1

2
�dzi,j

n−1 Ù M+dzi,j
n �, ki,j

n =
1

2
�dzi−1,j

n Ù K+dzi,j
n �, qi,j

n =
1

2
�dzi,j−1

n Ù L+dzi,j
n � .

roof: The variational equation associated with �2.9� is

M+Dt
+dzi,j

n + M−Dt
−dzi,j

n + K+Dx
+dzi,j

n + K−Dx
−dzi,j

n + L+Dy
+dzi,j

n + L−Dy
−dzi,j

n = Szzdzi,j
n . �2.12�

n n
or dzi,jÙSzzdzi,j=0, then we have
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dzi,j
n Ù �M+Dt

+dzi,j
n + M−Dt

−dzi,j
n + K+Dx

+dzi,j
n + K−Dx

−dzi,j
n + L+Dy

+dzi,j
n + L−Dy

−dzi,j
n � = 0.

�2.13�

ote that

dzi,j
n Ù M+Dt

+dzi,j
n + dzi,j

n Ù M−Dt
−dzi,j

n = dzi,j
n Ù M+Dt

+dzi,j
n + Dt

−dzi,j
n Ù M+dzi,j

n = − Dt
+dzi,j

n Ù M+dzi,j
n

− dzi,j
n Ù Dt

−M+dzi,j
n = − Dt

+�dzi,j
n−1 Ù M+dzi,j

n �; �2.14�

imilarly, we have

dzi,j
n Ù K+Dx

+dzi,j
n + dzi,j

n Ù K−Dx
−dzi,j

n = − Dx
+�dzi−1,j

n Ù K+dzi,j
n � , �2.15�

dzi,j
n Ù L+Dy

+dzi,j
n + dzi,j

n Ù L−Dy
−dzi,j

n = − Dy
+�dzi,j−1

n Ù L+dzi,j
n � . �2.16�

ombining �2.14�–�2.16�, we have

Dt
+�dzi,j

n−1 Ù M+dzi,j
n � + Dx

+�dzi−1,j
n Ù K+dzi,j

n � + Dy
+�dzi,j−1

n Ù L+dzi,j
n � = 0. �2.17�

he proof is completed. �

We start from the Euler box scheme �2.9�. Note that the matrix splitting �2.10� is not unique.
e can obtain different schemes with different splitting methods. Now we take M+, K+, and L+ as

pper triangle matrices. They are

M+ =�
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1

2
0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

� ,

K+ =�
0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
� ,
0 0 0 0 0 0 0 0 0 0
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L+ =�
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

� .

ubstituting the above splitting into Euler box scheme �2.10�, we get the discrete forms of the
ultisymplectic PDEs �2.3�:

Dx
+px = 0, �2.18�

1

2
Dt

+pxt + Dx
+pxx + Dy

+pxy = − px, �2.19�

Dx
+pxxx = p + 3u2 − pxx, �2.20�

pxy = �w , �2.21�

pxt = u , �2.22�

Dx
−� = v , �2.23�

Dx
−v = u , �2.24�

Dy
−v = w , �2.25�

1

2
Dt

−v = p , �2.26�

Dx
−u = − pxxx. �2.27�

ubstituting �2.26� and �2.27� into �2.20�, we have

− Dx
+Dx

−u =
1

2
Dt

−v + 3u2 − pxx. �2.28�

ombining �2.21�, �2.22�, �2.25�, and �2.19�, then

1

2
Dt

+u + Dx
+pxx + �Dy

+Dy
−v = − px. �2.29�

pplying Dx
− to Eq. �2.28�, Dx

+Dx
− to �2.29�, noting that the finite difference operators mutually
ommute, and combining �2.18�, we have
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− Dx
+Dx

−Dx
−u =

1

2
Dt

−Dx
−v + 3Dx

−�u2� − Dx
−pxx, �2.30�

1

2
Dx

+Dx
−Dt

+u + Dx
+Dx

+Dx
−pxx + �Dx

+Dy
+Dy

−Dx
−v = − Dx

+px = 0. �2.31�

ote that Dx
−v=u, �2.30� and �2.31� can be reformulated as follows:

Dx
−pxx =

1

2
Dt

−u + 3Dx
−�u2� + Dx

+Dx
−Dx

−u , �2.32�

1

2
Dx

+Dx
−Dt

+u + Dx
+Dx

+Dx
−pxx + �Dx

+Dy
+Dy

−u = 0. �2.33�

ubstituting �2.32� into �2.33�, we obtain the following multisymplectic 16-point scheme:

1

2
Dt

+Dx
−Dx

+ui,j
n + Dx

+Dx
+�1

2
Dt

−ui,j
n + 3Dx

−f i,j
n + Dx

+Dx
−Dx

−ui,j
n � + �Dx

+Dy
+Dy

−ui,j
n = 0, �2.34�

here f =u2. In finite difference format the 16-point scheme is given as follows:

1

2�t��x�2 �ui+1,j
n+1 − 2ui,j

n+1 + ui−1,j
n+1 � =

1

2�t��x�2 �ui+1,j
n − 2ui,j

n + ui−1,j
n �

−
1

2�t��x�2 �ui+2,j
n − 2ui+1,j

n + ui,j
n − ui+2,j

n−1 + 2ui+1,j
n−1 − ui,j

n−1�

−
3

��x�3 ��u2�i+2,j
n − 3�u2�i+1,j

n + 3�u2�i,j
n − �u2�i−1,j

n �

−
1

��x�5 �ui+3,j
n − 5ui+2,j

n + 10ui+1,j
n − 10ui,j

n + 5ui−1,j
n − ui−2,j

n �

−
�

�x��y�2 �ui+1,j+1
n − ui,j+1

n − 2ui+1,j
n + 2ui,j

n + ui+1,j−1
n − ui,j−1

n � .

�2.35�

t couples three time levels �see Figs. 1 and 2�. It is an explicit scheme in the sense that the scheme
oes not need iteration because the third time level �t=n+1� does not include nonlinear terms.

II. BACKWARD ERROR ANALYSIS FOR THE SCHEME

We now assume z is a sufficiently smooth function that, when evaluated at the lattice points,
atisfies �2.10�. Using the Taylor series expansions in t about z�xi ,yj , tn�,

zi,j
n±1 = zi,j

n ± �t�zi,j
n �t +

1

2
��t�2�zi,j

n �tt ± . . . , �3.1�
nd equivalent expansions in x and y, then we have the following first order equation:
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Mzt = �M+ + M−�zt = 	�M+zt +
1

2
�tM+ztt� + �M−zt −

1

2
�tM−ztt�
 + o��t�

= Mzt +
1

2
�t�M+ − M−�ztt + o��t� . �3.2�

imilarly, the space terms are approximated by

FIG. 1. �Color online� Left: points used by the first time level. Right: points used by the second time level.
FIG. 2. �Color online� Points used by the third time level.
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Kzx = Kzx +
1

2
�x�K+ − K−�zxx + o��x� , �3.3�

Lzy = Lzy +
1

2
�y�L+ − L−�zyy + o��y� . �3.4�

ubstituting these expansions into �2.3�, we obtain to first order the following modified equation:

Mzt +
1

2
�t�M+ − M−�ztt + Kzx +

1

2
�x�K+ − K−�zxx + Lzy +

1

2
�y�L+ − L−�zyy = �zS�z� . �3.5�

quation �3.5� can be written in the multisymplectic form:

M̃zt̃ + K̃zx̃ + L̃zỹ = ��z̃S̃�z̃�� , �3.6�

here z̃= �z ,zt ,zx ,zy�T and

M̃ =�
M �tP 0 0

− �tP 0 0 0

0 0 0 0

0 0 0 0
�, K̃ =�

K 0 �xQ 0

0 0 0 0

− �xQ 0 0 0

0 0 0 0
� ,

L̃ =�
L 0 0 �yR

0 0 0 0

0 0 0 0

− �yR 0 0 0
� ,

�z̃�=S− 1
2�tzt

TPzt−
1
2�xzx

TQzx− 1
2�yzy

TRzy, P, Q, and R are new matrices

P =
1

2
�M+ − M−�, Q =

1

2
�K+ − K−�, R =

1

2
�L+ − L−� . �3.7�

pplying Eq. �3.5� to the example, we can obtain

�px�x +
1

2
�x�px�xx = 0,

1

2
�pxt�t + �pxx�x + �pxy�y +

1

4
�t�pxt�tt +

1

2
�x�pxx�xx +

1

2
�y�pxy�yy = − px,

�pxxx�x +
1

2
�x�pxxx�xx = p + 3u2 − pxx,

pxy = �w ,

pxt = u ,

���x −
1

�x���xx = v ,

2
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�v�x −
1

2
�x�v�xx = u ,

�v�y −
1

2
�y�v�yy = w ,

1

2
�v�t −

1

4
�t�v�tt = p ,

�u�x −
1

2
�x�u�xx = − pxxx. �3.8�

e tried to eliminate the auxiliary variables in Eqs. �3.8� to get the expected modified equation
ssociated with the 16-point scheme. Unfortunately, we failed. We just obtain the following ap-
roximate equation, by ignoring the high order items,

FIG. 3. The wave form of one soliton at t=0.
FIG. 4. Numerical solution of one soliton at t=3 with �x=0.1, �y=0.1, and �t=0.00005.
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�ut + 6uux + uxxx�x + �uyy = − �x�uxxt + �3u2�xxx + uxxxxx + �uxyy� +
1

4
�x�t�uxxtt� +

1

4
�y2�uyyyy�

+
1

4
�x�y2�uxyyyy� + O��t2 + �x2 + �y3� , �3.9�

hich is an O��t+�x+�y2� perturbation of the KPI.

V. SOME NUMERICAL RESULTS

For our numerical experiments, we test the 16-point scheme on one soliton and lump-type
olitary over long time intervals. We consider the KPI equation with an exact boundary condition.
irst we consider the one soliton with initial conditions

u�x,y,0� = 2 sech2�x −
�2

2
y − 6� . �4.1�

he KPI equation has the theoretic solution

u�x,y,t� = 2 sech2�x −
�2

2
y −

5

2
t − 6� , �4.2�

hich represents one soliton propagating with the velocity 5
2 in the direction with the angle

f tan−1��2� to the positive x axis. We carry out our numerical computation on the domain

FIG. 5. Numerical solution of one soliton at t=6 with �x=0.1, �y=0.1, and �t=0.00005.

IG. 6. The error between the numerical solution and the exact solution of one soliton at t=6 with �x=0.1, �y=0.1, and

t=0.00005.
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0,40�� �0,2� and choose �x=0.1, �y=0.1, �t=0.00005. Figure 3 shows the wave form of one
oliton at t=0. Figures 4 and 5 show the numerical solution at t=3 and t=6, respectively. We can
ee the moving of one soliton from the graph. Figure 6 shows the error between the numerical
olution and the exact solution at t=6. For fixed n, we give the definition of maxerror�n�:

maxerror�n� = max
ij

�ui,j
n − u�xi,yj,tn�� , �4.3�

here ui,j
n is the numerical solution while u�xi ,yj , tn� is the exact solution. Figure 7 shows the trend

f the maxerror�n� as time evolves. From that, we can see that the scheme has the good numerical
erformance over long time intervals.

Next, we try the lump-type solitary waves of the KPI equation with the following initial
ondition:

u�x,y,0� = 4
�− �x − x0�2 + �2�y − y0�2 +

1

�2�
��x − x0�2 + �2�y − y0�2 +

1

�2�2 . �4.4�

e compute in a rectangle �0,20�� �0,20� with the parameters �2=1.0, x0=10.0, y0=10.0, and
hoose �x=0.1, �y=0.2, �t=0.00005. The lump solution of the KPI equation can be expressed as

IG. 7. �Color online� The trend of the maxerror�n� of one soliton as time evolves with �x=0.1, �y=0.1, and �t
0.00005.
FIG. 8. The lump-type solitary wave at t=0.
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u�x,y,t� = 4
�− �x − x0 − 3�2t�2 + �2�y − y0�2 +

1

�2�
��x − x0 − 3�2t�2 + �2�y − y0�2 +

1

�2�2 . �4.5�

igure 8 shows the lump-type solitary wave at t=0. Figures 9 and 10 show the numerical solution
t t=0.5 and t=1, respectively. Figure 11 shows the error between the numerical solution and the
xact solution at t=1.

According to �4.5�, this lump-type solitary wave will move to the positive x direction with
elocity 3�2. Figures 9 and 10 shows the moving of the lump-type solitary wave.

. CONCLUDING REMARKS

We investigate the noncompact Euler box for the GKP equation. A new equivalent scheme
6-point for KPI equation is derived. It is an explicit scheme, therefore it could be faster, less
torage consuming, and more easy to carry out than the multisymplectic 45-point scheme when it
s applied into computers. The good numerical performance of the derived scheme in several
umerical experiments illustrates that the multisymplectic Euler box scheme is as good the as
ultisymplectic Preissman scheme. Thus we may draw the conclusion that not only compact

mplicit multisymplectic schemes but also noncompact explicit multisymplectic can be high qual-
ty schemes for the long time integration of nonlinear PDEs.

Remark. In Ref. 23, Frank, Moore, and Reich have shown that the explicit noncompact

FIG. 9. Numerical solution of lump-type solitary wave at t=0.5 with �x=0.1, �y=0.2, and �t=0.00005.
FIG. 10. Numerical solution of lump-type solitary wave at t=1 with �x=0.1, �y=0.2, and �t=0.00005.
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idpoint multisymplectic scheme may exhibit spurious roots in the numerical dispersion relation
or any value of �t /�x. This may lead to numerical instabilities. Our 16-point scheme is also an
xplicit multisymplectic and the numerical experiments do not exhibit instabilities. In future work,
e will take the dispersion relation analysis for the new scheme and the von Neumann stability

nalysis to get a linear stability condition. Further, we will test numerically the scheme on a more
hallenging problem, which was reported by Bridges in Ref. 24.
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We study pseudo Yang–Mills fields on a compact strictly pseudoconvex CR mani-
fold M, i.e., the critical points of the functional PYM�D�= 1

2�M��HRD�2�Ù �d��n,
where D is a connection in a Hermitian CR holomorphic vector bundle �E ,h�
→M. Let �= ���0��Cn be a smoothly bounded strictly pseuodoconvex domain
and g the Bergman metric on �. We show that boundary values Db of Yang–Mills
fields D on �� ,g� are pseudo Yang–Mills fields on ��, provided that iTRDb =0 and

iNRD=0 on H����. If S1→C�M�→
�

M is the canonical circle bundle and �*D is a
Yang–Mills field with respect to the Fefferman metric F� of �M ,�� then D is a
pseudo Yang–Mills field on M. The Yang–Mills equations ��

*DR�*D=0 project on
the Euler–Lagrange equations �b

DRD=0 of the variational principle �PYM�D�=0,
provided that iTRD=0. When M has vanishing pseudohermitian Ricci curvature the
pullback �*D of the �CR invariant� Tanaka connection D of �E ,h� is a Yang–Mills
field on C�M�. We derive the second variation formula �d2PYM�Dt� /dt2�t=0

=�M�Sb
D��� ,���Ù �d��n, Dt=D+At 	provided that D is a pseudo Yang–Mills field

and �
�dAt /dt�t=0�Ker��D��, and show that Sb
D���
�b

D�+Rb
D���, �

��0,1	Ad�E��, is a subelliptic operator. © 2006 American Institute of Physics.
	DOI: 10.1063/1.2222082�

. INTRODUCTION

A series of papers published in the last decade21,24,25 are devoted to exploring the relationship
mong CR structures on three-dimensional manifolds and null solutions to Einstein equations,
axwell equations, and Yang–Mills equations �see also Ref. 28�. Specifically, if 	M ,T1,0�M�� is a

ondegenerate three-dimensional CR manifold endowed with the contact form � and with the
locally defined� complex 1-form �1 such that �1�T1�=1, �1�T1̄�=0 	where T1 is a local generator
f the CR structure T1,0�M�� let us consider the semi-Riemannian metric

F = 2p2	��*�1����*�1̄� − ��*����� , �1�

n M	R, where p is a real valued function on M	R and � is a real 1-form on M	R such that

�*�� Ù �1 Ù �1̄� Ù �� 0.

ere � :M	R→M is the projection. Nurowski24 has determined local solutions to the Yang–
ills equations on �M	R ,F�, under the additional assumption that the shear-free congruence of

�Electronic mail: barletta@unibas.it
�Electronic mail: dragomir@unibas.it
�
Electronic mail: urakawa@math.is.tohoku.ac.jp
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ull geodesics tangent to � /�
 �
 is the natural coordinate function on R� possesses three linearly

ndependent symmetries �Xi :1� i�3�. Let D be a SU�3� connection in a vector bundle Ê→M

R locally described by a matrix of 1-forms A=b�*�1+ b̄�*�1̄+c�*�+e�, where a, b, c, and e
re G � C-valued functions 	G=su�3�� on M	R. When the Lie group G3 �whose Lie algebra is
enerated by the Xis� consists of symmetries of D �i.e., each element of G3 induces a gauge
ransformation of A� then �by a result of Harnad et al.12� up to some gauge transformation A is
trictly invariant under G3. Then LXi

A=0, conditions which may be exploited to show that locally

may be looked for in the form A=B�*�1+ B̄�*�1̄+C�*�, with B ,C�G � C. Here � and �1

re a new contact form and a new local coframe such that

LX̃i
� = 0, LX̃i

�1 = 0, d� = 2�− 1�1 Ù �1̄ , �2�

hile X̃i are the projections on M of the �nontrivial� symmetries Xi. Finally the Yang–Mills
quations 	for SU�3� fields� on M	R may be solved 	together with the condition that D is null,

.e., dA+AÙA= ��*��Ù ���*�1+�̄�*�1̄�, for some G � C-valued function ��. For instance 	see
q. �5.10� in Ref. 24, p. 805�

A = n · f�*�ei��1 + e−i��1̄� �3�

s a solution, where n�R3 is a unit vector, �R, �� 	0,2��, and f = �e1 ,e2 ,e3� is a basis in G. It

s noteworthy that X̃i turn out to be symmetries of the CR structure T1,0�M� �in a sense that will be
xplained in Sec. III� and that the CR structures admitting the three-dimensional symmetry group

3 are fully classified in Ref. 21, according to the Bianchi type of G3. For instance, if M
��x ,y ,z��R3 :y�0� carries the CR structure T1,0�M�=CT1 with

T1 =
y

1 + y2

�

�x
−

iy

2

�

�y
+

1

y�1 + y2�
�

�z
�4�

nd the contact form �= �1/y�dx−ydz �such M possesses a symmetry group of Bianchi type VI0�
hen a local solution A �to the Yang–Mills equations� of the form �3� may be produced. The
xample �4� of a CR structure on R3 \ �y=0� will be encountered again in Sec. III. Now let M be
compact strictly pseudoconvex CR manifold, of arbitrary CR dimension n. Let S1→C�M�

�

M be the canonical circle bundle �cf. Sec. III for definitions�. Note that C�M� and M	R are
ocally diffeomorphic. If � is a contact form on M then C�M� carries a natural Lorentz metric F�

the Fefferman metric� and a moment’s thought 	compare to Eq. �70� in Sec. V� shows that when
M is three-dimensional the Fefferman metric F� is of the form �1�. Then, under the symmetry
ssumptions above, �3� is a �local� solution to the Yang–Mills equations

�DRD = 0 �5�

n 	C�M� ,F�� �with n=1�, and in general it is conceivable that when the CR structure T1,0�M�
ossesses a symmetry group G2n+1, Nurowski’s scheme may produce local symmetric null solu-
ions to �5�. A first step toward the achievement of this goal is performed in Sec. III. Note that �3�
s the pullback �via �� to M	R of a field on M. It is then a natural question whether given a
ang–Mills field on 	C�M� ,F�� of the form �*D, it follows that D is a Yang–Mills field on

M ,g��, where g� is the Webster metric. This question is answered in Sec. V, where we integrate

long the fiber in the Yang–Mills functional YM̂ on C�M� and produce the new functional �7�. As
t turns out, D is a pseudo Yang–Mills field 	i.e., a critical point of �7�� rather than a Yang–Mills
eld on �M ,g�� �however, the two notions coincide in the special case iTRD=0�. The converse
i.e., whether given a pseudo Yang–Mills field D on M its pullback �*D is a Yang–Mills field on
�M�� is examined in Theorem 2. Solving �5� on C�M� is therefore closely related to solving the

seudo Yang–Mills equations
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�b
DRD = 0 �6�

n M, and indeed �5� projects �under additional conditions, cf. Sec. V� on M to give �6�. One of
he main results in this paper is that solutions to �6� occur as boundary values of Yang–Mills fields
n a strictly pseudoconvex bounded domain ��Cn endowed with the Bergman metric g �cf.
heorem 1�. For the proof of Theorem 1 we draw inspiration from Ref. 11 and make use of their
anonical connection � �the Graham–Lee connection� whose pointwise restriction to a level set
near ��� of a defining function of � is the better known Tanaka–Webster connection of the level
et. Using the fine asymptotic properties of the Bergman kernel of � we may choose a defining
unction allowing an explicit relationship among the Bergman metric g and the Webster metric of
ach level set, and therefore an explicit relationship among the Levi–Civita connection of �� ,g�
nd the Graham–Lee connection. In the end, an elementary asymptotic analysis shows that bound-
ry values Db of Yang–Mills fields D on �� ,g� satisfy �6� provided that Db satisfy certain com-
atibility conditions along �� �cf. Sec. IV�. In Secs. VI and VII we obtain the first and second
ariation formulae for the functional �7�. The relevant operator occurring in the second variation
ormula is shown to be subelliptic of order 1

2 �cf. Theorem 3�. The problem of building an
ppropriate stability theory �along the lines of Ref. 4, yet relying on the subelliptic rather than on
he elliptic theory� remains open. We feel that the importance of the Graham–Lee connection � in
pplications deserves the Appendix: there we provide a new axiomatic description of � together
ith a index-free proof.

I. STATEMENT OF MAIN RESULTS

Let �M ,T1,0�M�� be a compact strictly pseudoconvex CR manifold, of CR dimension n, and �
contact form on M. Let �E , �̄E�→M be a CR-holomorphic vector bundle and h a Hermitian
etric in E. Let C�E ,h� be the affine space of all connections D in E such that Dh=0. We consider

he functional

PYM�D� =
1

2


M

��HRD�2� Ù �d��n. �7�

ere �H :�2�Ad E�→�2�Ad E� /J�
2 is the natural projection and J�

• the ideal generated by � in
•�Ad E�. A pseudo Yang–Mills field on M is a critical point of PYM :C�E ,h�→ 	0, +��.

Let T be the characteristic direction of ��� ,��, �
 i /2��̄−���, and let H���� be the Levi
istribution of �the CR manifold� ��. Also we set N=−JT �where J is the complex structure on
n�. We shall show that:

Theorem 1: Let �= 	z�U :��z��0� be a smoothly bounded strictly pseudoconvex domain in
n and g its Bergman metric. Let � :F→U be a holomorphic vector bundle and h a Hermitian
etric on F. Let Db�C�E ,h� 	E=�−1����� be the boundary values of a Yang–Mills field D
C�F ,h� on �� ,g�. Assume that iTRDb =0. Then Db is a pseudo Yang–Mills field if and only if

NRD=0 on H����.
The proof relies on the explicit relationship among the Levi–Civita connection �g of �� ,g�

nd the Graham–Lee connection � of � �cf. Ref. 11 and our Appendix for the description and
ain properties of the Graham–Lee connection�.

Urakawa 30–32 has started a study of Yang–Mills fields on M, that is of critical points of the
unctional

YM�D� =
1

2


M

�RD�2d vol�g�� ,

here d vol�g�� is the canonical volume form associated to the Webster metric g� of �M ,��. As it
ill be shortly shown, YM and PYM are related. To motivate the definition of PYM let F� be

he Fefferman metric of �M ,�� 	a Lorentz metric on C�M�, the total space of the canonical circle
18 2
undle � :C�M�→M �cf. e.g., Lee, ��. By a result of Barletta et al., the base map � :M→N
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orresponding to any smooth S1-invariant harmonic map � :C�M�→N from 	C�M� ,F�� into a
iemannian manifold �N ,gN� is locally a subelliptic harmonic map �in the sense of Jost and Xu15�.
lso � is a critical point of the functional E���= 1

2�MtraceG�
��H�

*gN��Ù �d��n, where G� is the
evi form. Here, if B is a bilinear form on T�M�, then �HB denotes the restriction of B to H�M�,

he Levi distribution of 	M ,T1,0�M��. The functional E itself is obtained by integration along the
ber in the Dirichlet functional E���= 1

2�C�M�traceF�
��*gN�d vol�F��, where �=� ��. Then per-

aps subelliptic harmonic maps �rather than harmonic maps, with respect to the Webster metric�
re the natural objects of study in CR geometry. Another example of the sort is the CR Yamabe
roblem, i.e., given a contact form � on M such that G� is positive definite, find a contact form

ˆ =eu�, u�C��M�, such that the pseudohermitian scalar curvature ̂ of �M , �̂� is a constant �. By
he result of Lee,18 the Fefferman metric changes conformally F�̂=eu��F�. Also the scalar curva-
ure K :C�M�→R of 	C�M� ,F�� is S1 invariant and the corresponding base function �*K :M

R is, up to a constant, the pseudohermitian scalar curvature  of �M ,�� 	precisely �*K= �2n
1� / �n+1��. Therefore, the CR Yamabe problem is nothing but the Yamabe problem for the
efferman metric and the relevant equation �the Yamabe equation on 	C�M� ,F��� projects on

n�bu+u=�up−1 �the CR Yamabe equation�, a nonlinear subelliptic equation on M �which may
e analyzed with the techniques in Ref. 9, cf. Jerison and Lee,13,14 and Gamara and Yacoub,10 for
complete solution to the CR Yamabe problem�. The common feature of the two examples above

s that both provide natural objects on M, as projections of �S1 invariant� geometric quantities on
�M�, associated to the Fefferman metric. A more refined statement is that both examples lead to
onlinear subelliptic problems on M. This has already been emphasized for the CR Yamabe
roblem. As to the example of S1-invariant harmonic maps � :C�M�→N, the base map is a

olution to �b�
i+g��̄T��� j�T�̄��k�	��N� jk

i ���=0, where ��N� jk
i are the Christoffel symbols of the

econd kind of gN. On the same line of thought, we may state the following:
Theorem 2: Let M be a compact strictly pseudoconvex CR manifold, of CR dimension n. Let

be a contact form on M with G� positive definite. Let �E , �̄E�→M be a CR-holomorphic vector
undle and h a Hermitian metric in E. (i) There is a constant cn depending only on the dimension
nd the orientation of M such that

cnYM�D� = PYM�D� + 2
M

�iTRD�2� Ù �d��n, D � C�E,h� . �8�

onsequently, given a Hermitian connection D in E whose curvature RD is of type �1, 1�, D is a
seudo Yang–Mills field on M if and only if D is the Tanaka connection of �E , �̄E ,h�. (ii) Let

M̂�D�= 1
2�C�M��RD ,RD�d vol�F�� be the Yang–Mills functional on C�M�, for D�C��*E ,�*h�.

hen

YM̂��*D� = 2�PYM�D�, D � C�E,h� . �9�

onsequently, if �*D is a Yang–Mills field on 	C�M� ,F�� then D is a pseudo Yang–Mills field on
M. Vice versa, let D be a pseudo Yang–Mills field on M such that iTRD=0. Then �*D is a
ang–Mills field on C�M� if and only if

�R��̄ −


2�n + 1�
g��̄�RD�T�,T�̄�u = 0, �10�

or some local frame �T� :1���n� of T1,0�M� at any point x�M, and

��R
D = 0. �11�

n particular, if M is (pseudohermitian) Ricci flat then the pullback �*D of the canonical Tanaka
onnection D of �E ,h� is a Yang–Mills field.

The main ingredients in the proof of Theorem 2 are a local coordinate calculation of the
C�M�
efferman metric of �M ,��, the explicit relationship among the Levi–Civita connection � of
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C�M� ,F��, and the Tanaka–Webster connection � of �M ,�� �cf. Lemma 2�, and Theorem 2.3 in
ef. 30, p. 551. We may also state �delegating the definitions to Sec. II�:

Theorem 3: Let D be a pseudo Yang–Mills field and Dt=D+At, �t���, a smooth variation of
whose first order part �
�dAt /dt�t=0 satisfies iT�=0 and �b

D�=0. Then

d2

dt2 	PYM�Dt��t=0 = 
M

�Sb
D���,��� Ù �d��n �12�

here Sb
D���
�b

D�+Rb
D��� and �b

D�
db
D�b

D�+�b
Ddb

D� is the generalized sublaplacian. The op-
rator Sb

D :�0,1	Ad�E��→�0,1	Ad�E�� is subelliptic of order 1
2 .

As Rb
D is a zero order operator, the crucial point in the proof of Theorem 3 is to show that

��b
D�� � ej = 2�!b� j

i + �n − 1���T� j
i + � j

i � �� � J� � ei + lower order terms, �13�

or any ���0,1	Ad�E��, �ej =� j
i

� ei, and then exploit the subellipticity of the Kohn–Rossi op-
rator �b on scalar �0, 1� forms.

II. CR AND PSEUDOHERMITIAN GEOMETRY

. Basic definitions and results

Let M be a C� manifold, of real dimension �2n+1�. A complex subbundle T1,0�M��T�M�
� C, of complex rank n, is a CR structure on M �of CR dimension n� if

T1,0�M� � T0,1�M� = �0� ,

Z,W � ��	T1,0�M�� Þ �Z,W� � ��	T1,0�M�� .

ere T0,1�M�=T1,0�M� is the complex conjugate of T1,0�M�. Also, if E→M is a vector bundle then
��E� denotes the space of C� sections in E �eventually defined on some open set U�M, to be
nderstood from the context�. The tangential Cauchy–Riemann operator

�̄b:C��M� → ��	T0,1�M�*�

s given by ��̄bf�Z̄= Z̄�f�, for any C� function f :M→C and any Z�T1,0�M�. Let E→M be a
omplex vector bundle over a CR manifold. A pre-�̄-operator is a first-order differential operator

�̄E:���E� → ��	T0,1�M�*
� E�

uch that

�̄E�fu� = f �̄Eu + ��̄bf� � u ,

or any f �C��M� and any u����E�. A pair �E , �̄E� consisting of a complex vector bundle and a
re-�̄-operator is a CR-holomorphic vector bundle if �̄E satisfies the integrability condition

�Z̄,W̄� · u = Z̄ · W̄ · u − W̄ · Z̄ · u ,

or any u����E�, Z ,W�T1,0�M�. Here Z̄ ·u is short for ��̄Eu�Z̄.

Let H�M�=Re�T1,0�M� � T0,1�M�� be the Levi distribution and J :H�M�→H�M�, J�Z+ Z̄�
i�Z− Z̄�, Z�T1,0�M�, its complex structure �i=�−1�. When M is oriented, which is assumed

hroughout this paper, the conormal bundle H�M�x
�= ���Tx

*�M� :Ker����H�M�x�, x�M, is an
riented real line bundle, hence trivial 	H�M���M	R, a vector bundle isomorphism�. Therefore
�M��→M admits globally defined nowhere zero sections ����	H�M���, each of which is
eferred to as a pseudohermitian structure on M. The Levi form is
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L��Z,W̄� = − i�d���Z,W̄� ,

or any Z ,W�T1,0�M�. 	M ,T1,0�M�� is nondegenerate if L� is nondegenerate for some �. If this is
he case, each pseudohermitian structure � is a contact form, i.e., �Ù �d��n is a volume form on M.

wo pseudohermitian structures � , �̂���	H�M��� are related by �̂= f�, for some C� function
f :M→R \ �0�. Then L�̂= fL�, hence nondegeneracy is a CR invariant notion �i.e., invariant under a
ransformation �� f� of the pseudohermitian structure�. Let T be the unique nowhere zero glo-
ally defined tangent vector field on M, transverse to the Levi distribution, determined by ��T�
1 and iT d�=0 �the characteristic direction of d��. Also, let us consider the semi-Riemannian
etric g� 	the Webster metric of �M ,��� given by

g��X,Y� = G��X,Y�, g��X,T� = 0, g��T,T� = 1,

here G��X ,Y�= �d���X ,JY�, X ,Y �H�M�, is the �real� Levi form �note that L� and 	the C-linear
xtension of� G� coincide on T1,0�M� � T0,1�M��. 	M ,T1,0�M�� is strictly pseudoconvex if L� is
ositive definite for some �. For instance, if M = ��x ,y ,u��R3 :y�0� is endowed with the CR
tructure given by �4� in Sec. I then a calculation shows that the characteristic direction 	corre-
ponding to the contact form �= �1/y�dx−ydz� is

T =
y�3 + y2�
4�1 + y2�

�

�x
−

i

8
y�1 − y2�

�

�y
−

1 + 3y2

4y�1 + y2�
�

�z

o that

	T1,T1̄� =
i

2
T1 −

i

2
T1̄ −

2i

1 + y2T

where T1̄= T̄1�. Consequently,

L��T1,T1̄� = �i/2��	�T1,T1̄�� = 1/�1 + y2� ,

ence M is strictly pseudoconvex. A fundamental result in pseudohermitian geometry �established
ndependently by Tanaka29 and Webster34� is that on any nondegenerate CR manifold on which a
ontact form � has been fixed there is a unique linear connection � 	the Tanaka–Webster connec-
ion of �M ,��� such that �i� H�M� is parallel with respect to �; �ii� �g�=0, �J=0; and �iii� the
orsion T� of � is pure, i.e.,

T��Z,W� = 0, T��Z,W̄� = 2iL��Z,W̄�T, Z,W � T1,0�M� ,

� � J + J � � = 0,

here ��X�=T��T ,X�, X�T�M�, is the pseudohermitian torsion. If M is three dimensional �n
1� and T1 is a local generator of the CR structure we set

�T1
T1 = �11

1 T1, �T1̄
T1 = �

1̄1

1
T1, �TT1 = �01

1 T1.

calculation 	based on �i�-�iii�� shows that

�11
1 = g11̄�T1�g11̄� − g�	T1,�T1,T1̄��� , �14�

�¯
1

= g11̄g�	�T1̄,T1�,T1̄� , �15�

11
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�01
1 = g11̄g�	�T,T1�,T1̄� . �16�

ere g11̄=L��T1 ,T1̄� and g11̄=1/g11̄. Going back to the example R3 \ �y=0� with the CR structure
4� we have

�T,T1� =
i

8
�1 − y2�T1 +

i

8
�1 + y2�T1̄

ence 	by �14�–�16��

�11
1 = i�1

2
+

y2

1 + y2�, �
1̄1

1
= −

i

2
�1 + y2�, �01

1 =
i

8
�1 − y2� .

e assume from now on that, unless otherwise stated, M is strictly pseudoconvex. A complex
alued differential p form � on M is of type �p ,0� 	or a �p ,0� form on M� if T0,1�M���=0. Let �
e a contact form on M and T the characteristic direction of d�. Let �T� :1���n� be a local
rame in T1,0�M�, defined on an open set U�M. Let ��� :1���n� be the corresponding admis-
ible coframe, i.e, the �locally defined� complex 1-forms determined by ���T��=��

�, ���T�̄�=0,
nd ���T�=0. Here T�̄=T�. Then ��� ,��̄ ,�� is a �local� frame of T*�M� � C on U and a �p ,0� form

on M may be locally expressed as sums of monomials of the form ��1 Ù ¯ Ù��p or
Ù��1 Ù ¯ Ù��p−1 	with C��U� coefficients�. Therefore, the top degree complex forms � such that

1,0�M���=0 are �unlike the case of complex manifolds, where the top degree is the complex
imension� the forms of type �n+1,0� �where n is the CR dimension�. Let K�M�=�n+1,0�M�

M be the bundle of �n+1,0� forms on M �the canonical line bundle�. There is a natural action
f R+= �0, +�� on K�M�\�zero section�. Let C�M� be the quotient space and � :C�M�→M the
rojection. Then C�M�→M is a principal S1 bundle �the canonical circle bundle�. Its locally
rivial structure is described by

�−1�U� → U 	 S1, 	�� � �x,�/���� ,

� = ��� Ù �1 Ù ¯ Ù �n�x, x � U, � � C* = C \ �0� .

e shall need the local fiber coordinate


:�−1�U� → R, 
�	��� = arg��/���� ,

here arg: S1→ 	0,2��. Let �E , �̄E�→M be a CR holomorphic vector bundle. Let h be a Hermit-
an metric in E. Let C�E ,h� be the affine space of all connections D in E such that Dh=0, i.e.

X	h�u,v�� = h�DXu,v� + h�u,DX̄v� ,

or any X�T�M� � C and any u ,v����E�. A connection D�C�E ,h� is Hermitian if D0,1= �̄E.
ere D0,1u is the restriction of Du to T0,1�M�. Let Ad�E�→M be the subbundle of End�E�→M

onsisting of all skew-symmetric endomorphisms S, i.e., h�Su ,v�+h�u ,Sv�=0, for any u ,v
���E�. By a result in Ref. 6 p. 43, given a contact form � and an endomorphism S
��	Ad�E�� there is a unique Hermitian connection D=D�h ,� ,S� in E �the canonical

connection� such that

��R
D = 2nS . �17�

ere RD=D �D :�0�E�→�2�E� is the curvature 2-form of D. Also we set �k�E�=��	�kT*�M�
� E�, k�0. If F→M is a vector bundle and ����	T*�M� � T*�M� � F� the trace ��� of � is

iven by
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i�����x = �
�=1

n

��Z�,Z�̄�x,

here �Z�� is a �local� orthonormal 	i.e., L��Z� ,Z�̄�=���� frame of T1,0�M� on U�x. Therefore

������F�. When S=0 the canonical S connection is the Tanaka connection D�h ,� ,0� in E
M �cf. Ref. 29�. D�h ,� ,0� is a CR invariant. Assume M to be compact. The Yang–Mills

unctional YM :C�E ,h�→ 	0, +�� is given by

YM�D� =
1

2


M

�RD�2� Ù �d��n.

Yang–Mills field on M is a critical point D�C�E ,h� of YM, i.e., a solution to the Yang–Mills
quations

�DRD = 0. �18�

et � be a differential 2-form on M. Then � is of type �1,1� if ��Z ,W�=0, ��Z̄ ,W̄�=0, for any
,W�T1,0�M�, and iT�=0. Let D�C�E ,h� be a Hermitian connection such that its curvature RD

s a form of type �1,1�. By a result in Ref. 30, D is a Yang–Mills field if and only if D is the
anaka connection D�h ,� ,0�. In general, canonical S connections solve the inhomogeneous Yang–
ills equations �DRD= f , in the presence of suitable compatibility conditions satisfied by f �cf.

heorem 2 in Ref. 6, pp. 44–45�.

. Symmetric CR structures

The CR structure T1,0�M� is symmetric if there is X�X�M� such that

LX� = t�, LX�
� = w�

��� + ��� ,

or some functions t ,w�
� ,�� on M �t real valued� and X is a symmetry of T1,0�M�. If

�̂ = eu�, �̂� = U�
��� + v�� ,

where 	U�
�� is GL�n ,C� valued� and X is a symmetry of the CR structure then

LX�̂ = t̂�̂, t̂ 
 t + X�u� , �19�

LX�̂
� = ŵ�

��̂� + �̂��̂ ,

ŵ�
� 
 �U−1��


	X�U

�� + U

�w

� ,

�̂� 
 e−u�X�v�� + U�
��� + v�t − �U−1�


v	X�U

�� + U�

�w

��� . �20�

n particular �19� and �20� show that the notion of symmetric CR structure is globally defined.
ssume from now on that the CR structure T1,0�M� admits 2n+1 linearly independent symmetries

1 , ¯ , X̃2n+1�X�M� such that 	X̃i , X̃j�=cij
k X̃k, for some cij

k �R.
Proposition 1: �Ref. 24� Let M be a strictly pseudoconvex CR manifold with H1�M ;R�=0.

here is a transformation �� ,���� �� ,��� of the form

� = eu�, �� = U�
��� + v�� , �21�

�
here 	U�� is GL�n ,C� valued, such that
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LX̃i
� = 0, LX̃i

�� = 0, 1 � i � 2n + 1.

ere H1�M ;R� is the first de Rham cohomology group. Its vanishing guarantees that the solution
to �22� is globally defined.

Proof of Proposition 2: As X̃i are symmetries of the CR structure

LX̃i
� = ti�, LX̃i

�� = wi�
� �� + �i

�� .

e must solve the system of first-order linear Partial different equations

ti + X̃i�u� = 0, �22�

X̃i�U�
�� + U


�wi�

 = 0, �23�

X̃i�v�� + U�
��i

� + v�ti = 0, �24�

ith the unknowns u, U�
�, and v�. Let ���1�M� be defined by ��X̃i�= ti, 1� i�2n+1. Then �22�

ay be written du+�=0. We have

LX̃i
LX̃j

� = LX̃j
LX̃i

� + L	X̃i,X̃j�
�

ence

X̃i�tj� − X̃j�ti� − cij
k tk = 0

hat is d�=0. Thus there is a globally defined real valued function g�C��M� such that �=dg and

−g solves �22�. Next, we consider the �locally defined� 1-forms ��

� and �� given by

��
��X̃i� = wi�

� , ���X̃i� = �i
�, 1 � i � 2n + 1.

hen �23� and �24� may be written

dU�
� + U


���

 = 0, �25�

dv� + v�� + U�
��� = 0. �26�

ssuming that �25� has been solved in a neighborhood U of each point, let us solve �26�. Multi-
lying in both sides by e−u 	where u is a solution to �22�� leads to

d�e−uv�� + e−uU�
��� = 0.

herefore, to prove existence of a �local� solution v� to �26� it suffices to show that e−uU�
��� is

xact �in a neighborhood of a point�. The identity

LX̃i
LX̃j

�� = LX̃j
LX̃i

�� + L	X̃i,X̃j�
��

ields

d��
� = �


� Ù ��

 , �27�

d�� = ��
� Ù �� + �� Ù � . �28�

�
et U� be a solution to �25�. Then 	by �28��
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d�e−uU�
���� = e−u�dU�

� Ù �� + U�
�d�� − U�

�du Ù ��� = e−uU�
��d�� − �


� Ù �
 − �� Ù �� = 0.

hus there is a function f��C��U� such that e−uU�
���=df� and v�
−euf� solves �26�. To solve

25� let �U ,xi� be a normal coordinate neighborhood at a point x0�M �we think of M as a
iemannian manifold with the Webster metric g��. We shall show that for any c�

��C there is a
nique solution to �25� with the initial condition U�

��x0�=c�
�. Let a= �a1 , ¯ ,a2n+1��U be an

rbitrary point and let us consider the geodesic at= �a1t , ¯ ,a2n+1t�. Let f�
��t� be the solution to the

auchy problem for the system of ordinary differential equations

df�
�

dt
+ f


��t���

�ȧt� = 0,

ith the initial condition f�
��0�=c�

�, where ȧt is the tangent vector at at. We define U�
��C��U� by

etting U�
��a�= f�

��1�. Of course, if we start with det�c�
���0 then 	U�

�� is GL�m ,C� valued on a
eighborhood of x0. We wish to show that U�

� satisfies �25�, i.e.

Y�U�
�� + U


��a���,a

 �Y� = 0, �29�

or any Y =bj�� /�xj�a�Ta�M�. We start by extending Y to the vector field Y =bj� /�xj with constant
omponents bj on U. Similarly, let us extend the vector field ȧt along the geodesic at to the vector
eld X=ai� /�xi. We shall show that along at

X	Y�U�
�� + U

���
�Y�� + 	Y�U


�� + U
��


�Y����

�X� = 0. �30�

hen this is done, we see that Y�U�
��+U

���
�Y�, clearly satisfying Y�U�

��+U
���

�Y�=0 at x0, must
e the zero function 	which satisfies �30� with the same initial condition�, i.e. �29� is verified. It
emains that we prove �30�. This follows from �27�. Indeed �as 	X ,Y�=0�

X	��
��Y�� = Y	��

��X�� + �

��X���


�Y� − �

��Y���


�X�

nd the proof of �30� is straightforward. Proposition 1 is a first step toward recovering the methods
f Nurowski,24 �eventually leading to local solutions of the Yang–Mills equations on 	C�M� ,F���
s mentioned in Sec. I. The result in Proposition 1 may be refined to show that there is a coframe
� ,��� such that

LX̃i
� = 0, LX̃i

�� = 0, d� = 2i�
�=1

n

�� Ù ��̄

compare to Eq. �2� in Sec. I�. The proof is illustrative of the local methods in pseudohermitian
eometry. Let �� ,��� be the 1-forms furnished by Proposition 21, given by a transformation of
he form �21�. If �T ,T�� is such that ��T�=1, iT d�=0, and ���T��=��

�, ���T�̄�=0, ���T�=0, let us
et W�= �U−1��

�T�. One may easily show that

d� = 2iG��̄�
� Ù ��̄ + � Ù � , �31�

here G��̄=eu�U−1��

U

�̄

̄
g
̄ and �=e−u	W��u���+W�̄�u���̄�. By LX=d � iX+ iX �d it follows that

X̃i
d�=0. Taking the Lie derivative of �31� gives

0 = LX̃i
d� = 2�− 1LX̃i

�G��̄��� Ù ��̄ + �LX̃i
�� Ù �

ence �as LX̃i
�
0, mod �� on one hand X̃i�G��̄�=0, i.e., G��̄=a��̄�C, and on the other LX̃i

�

0. The latter may be written du�−u� du=0 	where u�=W��u��. Hence d�e−uu��=0, i.e., u�
c�eu, for some c��C. Therefore �=c��

�+c�̄�
�̄. Finally, let 	b�

�� be a square root of 	a��̄� �as
¯
a��� is positive definite� and consider the transformation
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�̂� = b�
��� +

i

2
c�̄�b−1��̄

�̄� .

hen d�=2i ��=1
n �̂�Ù�̂�̄ and LX̃i

�̂�=0. Q.E.D.

V. BOUNDARY VALUES OF YANG–MILLS FIELDS

Let ��Cn be a bounded domain with smooth boundary ��, i.e., there is a neighborhood

��̄ and a real valued function ��C��U� such that �= 	z�U :��z��0�, ��= 	z�U :��z�
0�, and ���z��0, for any z���. We assume that � is strictly pseudoconvex, i.e., �� is a

trictly pseudoconvex CR manifold �with the natural CR structure T1,0����=T1,0�Cn�� 	T����
� C� induced by the complex structure of the ambient space�.

Let � :F→U be a holomorphic vector bundle. The portion E=�−1���� of F over the bound-
ry of � is CR holomorphic. Indeed, as F is holomorphic, there is a natural differential operator

�̄F:���F� → ��	T0,1�U�*
� F�

here T0,1�U� is the antiholomorphic tangent bundle over U. Given u����E� let ũ����F� be a
� extension of u as a cross section in F and set ��̄Eu�z= ��̄Fũ�z for any z���. The definition of

�̄Eu�z does not depend upon the choice of extension ũ of u because ���̄f��T0,1����= �̄b��f ���� for any
� function f :U→C. Let ��� :�−1����→��	Cm :�� I� be a trivialization atlas for F and

�� :�����→GL�m ,C� the corresponding transition functions. Set U�=����� and g��
�G���U��U�

. As G�� are holomorphic, it follows that E→�� is a peculiar type of CR-
olomorphic vector bundle �called locally trivial by Le Brun17� in that its transition functions g��
re matrix valued CR functions on ��.

Let K�� ,z� be the Bergman kernel of �. By a classical result in Ref. 8

K��,z� = c�����z��2 · det L��z� · ���,z�−�n+1� + H��,z� , �32�

the Fefferman asymptotic expansion formula for the Bergman kernel� where H�C���̄	�̄ \��,
is the diagonal of ��	��, and H satisfies the estimate

�H��,z�� � c�� ����,z��−�n+1�+1/2 · �log����,z��� . �33�

ere L�=��̄�. Also we set

���,z� = 	F��,z� − ��z������ − z�� + 	1 − ���� − z����� − z�2

here

F��,z� = − �
j=1

n
��

�zj �z��� j − zj� −
1

2 �
j,k=1

n
�2�

�zj�zk �z��� j − zj���k − zk�

nd ��t� is a C� cutoff function with ��t�=1 for �t���0 /2 and ��t�=0 for �t��3�0 /4. As a
onsequence of �32�

K�z,z�−1/�n+1� = ���z��	��z� + H�z,z����z��n+1�−1/�n+1�

here ��z�
c�����z��2 det L��z� stays finite near �� and 	by �33��

�H�z,z�����z��n+1 � c�� ���z��1/2�log���z��� → 0, as z → �� .

herefore K�z ,z�−1/�n+1� vanishes at ��. Also, as ��z��0 near the boundary, �K�z ,z�−1/�n+1��0
−1/�n+1�
long ��, hence K�z ,z� may be used as a defining function for �.
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For the rest of this section we assume that ��z�
−K�z ,z�−1/�n+1� and set �
�i /2���̄−���.
hen d�= i��̄�. Let us differentiate log���=−	1/ �n+1��log K 	where K is short for K�z ,z�� so that

o obtain

1

�
�̄� = −

1

n + 1
�̄ log K .

pplying the operator i� leads to

1

�
d� −

i

�2�� Ù �̄� = −
i

n + 1
��̄ log K . �34�

e shall need the Bergman metric

g =
�2 log K

�zj�z̄k dzj�dz̄k.

s is well known, g is a Kähler metric on � �Kähler–Einstein when � is homogeneous�. Here �

enotes the symmetric tensor product, i.e., ���= 1
2 ����+����. Let us set ��X ,Y�=g�X ,JY�

the Kähler 2-form of �� ,J ,g�, where J is the underlying complex structure�. Then �=
i��̄ log K and �34� may be written

g�X,Y� =
n + 1

�
� i

�
��� Ù �̄���X,JY� − d��X,JY�� , �35�

or any X ,Y �X���.
We denote by M�= �z�� :��z�=−�� ���0� the level sets of �. For � sufficiently small M� is

till a strictly pseudoconvex CR manifold �of CR dimension n−1�. Therefore, there is a one-sided
eighborhood V of �� which is foliated by the �strictly pseudoconvex� level sets of �. Let F be
he relevant foliation and let us denote by H�F�→V 	respectively, by T1,0�F�→V� the bundle
hose portion over M� is the Levi distribution H�M�� 	respectively, the CR structure T1,0�M���.
ote that

T1,0�F� � T0,1�F� = �0� ,

���	T1,0�F��,��	T1,0�F��� � ��	T1,0�F�� .

ere T0,1�F�=T1,0�F�. By a result in,20 there is a unique complex vector field � on V, of type �1,0�,
uch that �����=1 and � is orthogonal to T1,0�F� with respect to ��̄�, i.e., ��̄��� , Z̄�=0, for any

�T1,0�F�. We set r
2��̄��� , �̄� �r is the transverse curvature of ��. Let �= 1
2 �N− iT� be the real

nd imaginary parts of �. Then

�d���N� = 2, �d���T� = 0,

��N� = 0, ��T� = 1,

���N� = 1, ���T� = i .

n particular, T is tangent to �the leaves of� F. F carries the tangential Riemannian metric g�
defined by �A1� in the Appendix�. Note that the pullback of g� to each leaf M� of F is the Webster

*
etric of M� �associated to the contact form j��, where j� :M��V�. As a consequence of �35�
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g�X,Y� = −
n + 1

�
g��X,Y�, X,Y � H�F� . �36�

lso �by JT=−N and �A4��

g�X,T� = 0, g�X,N� = 0, X � H�F� , �37�

g�T,N� = 0, g�T,T� = g�N,N� =
n + 1

�
� 1

�
− r� . �38�

n particular 1−r��0 everywhere in �. Using �36�–�38� we may relate the Levi–Civita connec-
ion �g of �V ,g� to the Graham–Lee connection � �see the Appendix�. By �36� 	as X���=0, X

T�F��

g��X
gY,Z� = g��XY,Z�, X,Y,Z � H�F� . �39�

ote that any tangent vector field X�T�V� decomposes as

X = �HX + ��X�T +
1

2
�d���X�N ,

�H :T�V�→H�F� is the projection�. By �A3� ��	T ,X��=0, X�H�F�. Also 	T ,X��T�F�, hence
T ,X��H�F�, for any X�H�F�. Taking into account the identity

2g��X
gY,Z� = X�g�Y,Z�� + Y	g�X,Z�� − Z�g�X,Y�� + g�	X,Y�,Z� + g�	Z,X�,Y� + g�X,	Z,Y�� ,

�40�

or any X ,Y ,Z�T�V�, one has 	by �37��

2g��X
gY,T� = − T	g�X,Y�� + g	�X,Y�,T� + g	�T,X�,Y� + g	X,�T,Y�� =

n + 1

�
�T	g��X,Y��

− g�	�T,X�,Y� − g�	X,�T,Y��� +
n + 1

�
� 1

�
− r��	�X,Y�� ,

or any X ,Y �H�F�. By �A13� and �A14� and �XY �H�F� it follows that

T	g��X,Y�� − g�	�T,X�,Y� − g�	X,�T,Y�� = 2g���X,Y�

note that one makes use of the fact that � :H�F�→H�F� is self-adjoint, i.e., g���X ,Y�
g��X ,�Y�, X ,Y �H�F�� hence

g��X
gY,T� = − g��X,Y� −

n + 1

�
� 1

�
− r��d���X,Y�

r

g��X
gY,T� = − g��X,Y� − � 1

�
− r�g�X,�Y� , �41�

or any X ,Y �H�F�. Exploiting again �gg=0 �and g	�X ,Y� ,N�=0� we get

2g��X
gY,N� = − �LNg��X,Y�,X,Y � H�F� .
ence 	by �A23� in Lemma 4�
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2g��X
gY,N� = −

n + 1

�2 N���g��X,Y� +
n + 1

�
�LNg���X,Y� = 2� 1

�
− r�g�X,Y� +

2�n + 1�
�

�d���X,�Y�

hat is

g��X
gY,N� = � 1

�
− r�g�X,Y� + g�X,��Y� , �42�

or any X ,Y �H�F�. Note that �42� may be also derived from �41� by using the fact that g is a
ähler metric. Indeed

g��X
gY,N� = g�J�X

gY,JN� = g��X
gJY,T� = − g��X,�Y� − � 1

�
− r�g�X,�2Y� ,

tc. For further use, let us also remember that

�LNg��X,Y� = − 2� 1

�
− r�g�X,Y� − 2g�X,��Y� , �43�

or any X ,Y �H�F�. At this point, the identities �39� and �41� and �42� lead to

�X
gY = �XY + � �

1 − �r
g���X,Y� + g��X,�Y��T − �g��X,Y� +

�

1 − �r
g��X,��Y��N , �44�

or any X ,Y �H�F�. To compute �X
gT we use �44� and

g��X
gT,Y� = − g�T,�X

gY�

o that

g��X
gT,Y� = g��X,Y� + � 1

�
− r�g�X,�Y� . �45�

he component along T is 1
2X��T�2� hence

g��X
gT,T� = −

n + 1

2�
X�r� . �46�

oreover 	by �A5� in the Appendix A�

2g��X
gT,N� = g	X,�N,T�� = − g�X,��Hr�

hat is

g��X
gT,N� = −

n + 1

2�
��X��r� . �47�

umming up 	by �45�–�47��

�X
gT = �X − � 1

�
− r��X −

�

2�1 − r��
	X�r�T + ��X��r�N� , �48�

or any X�H�F�. Again by �44� and

g��X
gN,Y� = − g�N,�X

gY�
e get
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g��X
gN,Y� = − � 1

�
− r�g�X,Y� − g�X,��Y� . �49�

ext 	by �A5��

g��X
gN,T� =

n + 1

2�
��X��r� . �50�

inally, the component along N is 1
2X��N�2� hence

g��X
gN,N� = −

n + 1

2�
X�r� . �51�

umming up 	by �49�–�51��

�X
gN = − � 1

�
− r�X + ��X +

�

2�1 − r��
	��X��r�T − X�r�N� , �52�

or any X�H�F�. We wish to compute �T
gX. To this end �by �g�=0�

2g���TX,Y� = T	g��X,Y�� + g�	�T,X�,Y� + g�	�Y,T�,X� + g�	T,�Y,X�� + g���X,Y� − g���Y,X�

− 2�d���X,Y�

ielding 	upon multiplication by −�n+1� /��

T	g�X,Y�� + g	�T,X�,Y� + g	�Y,T�,X� = 2g��TX,Y� .

herefore �by �gg=0�

2g��T
gX,Y� = T	g�X,Y�� + g	�T,X�,Y� + g	�Y,T�,X� + g	T,�Y,X�� = 2g��TX,Y� − �	�X,Y���T�2

r

g��T
gX,Y� = g��TX,Y� + � 1

�
− r�g�X,�Y� . �53�

imilar to the above

g��T
gX,T� = −

n + 1

2�
X�r� , �54�

g��T
gX,N� = −

n + 1

2�
��X��r� . �55�

ollecting the information in �53�–�55�, we have proved

�T
gX = �TX − � 1

�
− r��X −

�

2�1 − r��
	X�r�T + ��X��r�N� , �56�

or any X�H�F�. Let us compute �N
g X. We have

2g��N
g X,Y� = N	g�X,Y�� + g	�N,X�,Y� + g	�Y,N�,X� = 2g	�N,X�,Y� + �LNg��X,Y� .

sing �43� and

�N,X� = �NX − rX − ���X�
see the Appendix� one shows that

                                                                                                            



C

U

f

s

S

L
E
D
a
�
g

083504-16 Barletta, Dragomir, and Urakawa J. Math. Phys. 47, 083504 �2006�

                        
g��N
g X,Y� = g��NX,Y� −

1

�
g�X,Y� . �57�

alculations similar to the above also furnish

g��N
g X,T� =

n + 1

2�
��X��r� , �58�

g��N
g X,N� = −

n + 1

2�
X�r� . �59�

sing �57�–�59� we may now conclude that

�N
g X = �NX −

1

�
X +

�

2�1 − r��
	��X��r�T − X�r�N� , �60�

or any X�H�F�. Moreover �omitting the details�

g��N
g T,X� = −

n + 1

2�
��X��r� ,

g��N
g T,T� = −

n + 1

2�
�N�r� +

4

�2 −
2r

�
� ,

g��N
g T,N� = −

n + 1

2�
T�r� ,

o that

�N
g T = −

1

2
��Hr −

�

2�1 − r����N�r� +
4

�2 −
2r

�
�T + T�r�N� . �61�

imilarly we find

�T
gN =

1

2
��Hr −

�

2�1 − r����N�r� +
4

�2 −
6r

�
+ 4r2�T + T�r�N� , �62�

�T
gT = −

1

2
�Hr −

�

2�1 − r���T�r�T − �N�r� +
4

�2 −
6r

�
+ 4r2�N� , �63�

�N
g N = −

1

2
�Hr +

�

2�1 − r���T�r�T − �N�r� +
4

�2 −
2r

�
�N� . �64�

et us consider a holomorphic vector bundle � :F→U, carrying the Hermitian metric h, and set

�=�−1�M�� �the portion of F over a leaf of F�. A connection D�C�F ,h� induces a connection
��C�E� ,h�� �where h�,z=hz, z�M��. D� is most easily described with respect to a local trivi-

lization � :�−1�O�→O	Cm of F, for some open subset O�U. Let us set �i�z�=�−1�z ,ei�, z
O, 1� i�m, where �e1 , ¯ ,em� is the canonical linear basis in Cm. If �ui
�i�O�M�

then D� is

iven by
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�DX
�u�z = X�f i�zui�z� + f i�z��D�dj��X�i�z, z � O � M�,

or any section u= f iui, f i�C��O�M��, and any X�X�M��. It is easily shown that the definition
f �DX

�u�z doesn’t depend upon the local trivialization chart � at z 	i.e., if g= 	gij� :O�O�
GL�m ,C�, g�z�=�z� ��z

−1, are the transition functions of F then �DX
�u�z is invariant under the

ransformation � j�z�=gj
i�z��i��z��. Let RD��2	Ad�F�� and � j

i be the curvature tensor field and
onnection 1-forms of D �D� j =� j

i
��i�, so that RD� j =2�d� j

i −�k
i Ù� j

k� ��i. Also, let R�

�2	Ad�E��� and ���� j
i be the curvature tensor field and the connection 1-forms of D�, respec-

ively. Then ���� j
i = j�

*� j
i yields

R�ui = �j�
*RD��i, 1 � i � m . �65�

et �W�� be a local orthonormal 	g��W� ,W�̄�=���� frame of T1,0�F� and set

E� 
�−
�

n + 1
W�, 1 � �� n − 1, En 
� 2f�

n + 1
� ,

here f 
� / �1−r��. Then, given a connection D in F→U, for any X�H�M��

��DRD�X = − �
a=1

n

	�DEa
RD��Eā,X� + �DEā

RD��Ea,X�� =
�

n + 1 �
�=1

n−1

	�DW�
RD��W�̄,X� + �DW�̄

RD�

	�W�,X�� −
2f�

n + 1
	�D�R

D���̄,X� + �D�̄R
D���,X��

nd

�
�=1

n−1

�DW�
RD��W�̄,X�� j = �

�

	DW�
�RD�W�̄,X�� j� − RD�W�̄,X�DW�

� j − RD��W�

g W�̄,X�� j

− RD�W�̄,�W�

g X�� j� = 	by �44�� = �
�

��DW�

� R���W�̄,X�uj − 	fg���W�,W�̄�

+ g��W�,�W�̄��RD�T,X�� j + 	g��W�,W�̄� + fg��W�,��W�̄��RD�N,X�� j

− 	fg���W�,X� + g��W�,�X��RD�W�̄,T�� j + 	g��W�,X�

+ fg��W�,��X��RD�W�̄,N�� j� .

herefore 	by the purity axiom �A6��

�
�

�DW�
RD��W�̄,X� = �

�

�DW�

� R���W�̄,X�uj + i�n − 1�RD�T,X�� j + �n − 1�RD�N,X�� j

− fRD��0,1�X,T� − RD��0,1�X,T� + RD��0,1X,N� + fRD��0,1��X,N� .

e obtain

�
�

	�DW�
RD��W�̄,X� + �DW�̄

RD��W�,X�� = − ��b
D�

R��Xuj + 	RD�N,�2n − 3�X − f��X�

+ RD�T,�X + f�X��� j �66�

D�

cf. Sec. V for the definition of the operator �b �. Moreover
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	�D�R
D���̄,X� + �D�̄R

D���,X��� j =
1

2
�DN	RD�N,X�� j� + DT	RD�T,X�� j� − RD�N,X�DN� j

− RD�T,X�DT� j − RD��N
g N,X�� j − RD��T

gT,X�� j − RD�N,�N
g X�� j

− RD�T,�T
gX�� j� .

ubstitution from �56�, �60�, �63�, and �64� gives

− RD��N
g N,X� − RD��T

gT,X� − RD�N,�N
g X� − RD�T,�T

gX� = RD��Hr,X� − RD�T,�TX� − RD�N,�NX�

+
1

f
RD�T,�X� + f��X��r�RD�T,N� + � 1

�
+ 2r�RD�N,X� .

e conclude that

	�D�R
D���̄,X� + �D�̄R

D���,X��� j =
1

2
��DNiNRD�X� + �DTiTRD�X + RD��Hr,X� +

1

f
RD�T,�X�

+ f��X��r�RD�T,N� + � 1

�
+ 2r�RD�N,X� �67�

the covariant derivatives in the right hand member of �67� are defined with respect to D and ��.
inally 	by �66� and �67��

��DRD�X� j =
�

n + 1
�− ��b

D�
R��Xuj + 	RD	N,�2n − 3�X − f��X� + RD�T,�X + f�X��� j�

−
f�

n + 1
��DNiNRD�X + �DTiTRD�X + RD��Hr,X� + RD�T,

1

f
�X + f��X��r�N�

+ � 1

�
+ 2r�RD�N,X��� j .

ssume that D is a Yang–Mills field on �� ,g�, i.e., �DRD=0 in �. Then, for �→0 �as r and �Hr
emain finite near ��, �see Ref. 11, p. 164�

��b
DbRDb�Xuj = 2�n − 2�RD�N,X�� j , �68�

here Db
D0 is the boundary values of D. Therefore, if iTRDb =0 then 	cf. �86� in Sec. V� Db is
pseudo Yang–Mills field on �� if and only if iNRD=0 on H����. Theorem 1 is proved. With the

ame techniques we may show that
Corollary 1: Let D�C�F ,h� be a Yang-Mills field on �� ,g� such that iNRD=0. Then the

oundary values Db of D satisfy ��R
Db =0.

Corollary 1 shows that the axiom �17� �with S=0� in the description of the Tanaka connection,
s well as �11� in Theorem 2, are rather natural occurrences. The proof is

0 = ��DRD�T� j =
�

n + 1�
�

	�DW�
RD��W�̄,T� + �DW�̄

RD��W�,T��� j −
2f�

n + 1
�DN	RD�N,T�� j�

− RD�N,T�DN� j − RD��N
g N,T� − RD�N,�N

g T�� j�
r 	by �44�, �48�, �61�, and �64��
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0 = �	��D�
R��Tuj + 2�n − 1�RD�T,N�� j� +

1

2
��f	RD�T,�Hr� + RD�N,��Hr�� + trace �HRD�· ,� · ��� j

+ �n + 1�f	2�DNiNRD�T + RD�N,��Hr� − RD�T,�Hr��� j −
2�

f
��R

D� j

− �n + 1�f2�N�r� +
4

�2 −
2r

�
�RD�T,N�� j .

hen �→0 one observes � / f →1 and f2 /�2→1 hence

���R
Db�uj = − 2�n + 1�RD�T,N�� j .

Q.E.D.
Summing up, in this section we considered the Dirichlet problem for the Yang–Mills equa-

ions

�DRD = 0 in �

D = D0 on �� �69�

nd dealt with the C� regularity up to the boundary of a solution to �69�. As a consequence of �68�
e may also state:

Corollary 2: Let ��C2 be a smoothly bounded strictly pseudoconvex domain and D
C�F ,h� a solution to �69� for some C� connection D0�C�E ,h�. Then Db
D0 must satisfy the

ompatibility relations �b
DbRDb =0. If moreover iTRDb =0 then Db is a pseudo Yang–Mills field on

�.
The problem whether a given a pseudo Yang–Mills field D0 on �� may be extended to a

ang–Mills field at the interior of � 	i.e., the existence question for �69�� is open.

. YANG–MILLS FIELDS AND THE FEFFERMAN METRIC

We wish to relate PYM to the Yang–Mills functional on C�M�. Given a contact form � on M
uch that the Levi form L� is positive definite, let F� be the corresponding Fefferman metric 	a
orentz metric on C�M��. We recall �cf. Ref. 18� that

F� = �*G̃� + 2��*���� , �70�

� =
1

n + 2
�d
 + �*�i��

� −
i

2
g��̄dg��̄ −



4�n + 1�
��� . �71�

ere ��
� are the connection 1-forms of the Tanaka–Webster connection of �M ,��, i.e., �T�=��

�

� T�, and g��̄=L��T� ,T�̄�. Moreover =g��̄R��̄ is the pseudohermitian scalar curvature �cf. e.g.,

ef. 5, p. 229�. The �0,2�-tensor field G̃� is obtained by extending the Levi form G� to the whole

f T�M�. Precisely, one requests that G̃�=G� on H�M� � H�M�, while G̃��X ,T�=0, for any X

T�M� �obviously G̃� is degenerate�. Note that when M is compact C�M� is compact, as well. It
s noteworthy that � 	given by �71�� is a connection 1-form in S1→C�M�→M. Let T↑ be the
orizontal lift �with respect to �� of the characteristic direction of d� and S the tangent to the S1

ction. Then T↑−S is timelike, hence 	C�M� ,F�� is time oriented by T↑−S, i.e., 	C�M� ,F�� is a
pace–time �see Ref. 3, p. 17�. However, as M is compact 	C�M� ,F�� is not chronological �cf.
roposition 2.6 in Ref. 3, p. 23�.

Let S�X	C�M�� be the tangent to the S1 action �locally S= 	�n+2� /2�� /�
�. Then 	by �70��
��S ,S�=0. Next �by Lemma 2� �S

C�M�S=0, i.e., the integral curves of S are �null� geodesics of
C�M� ,F��. Also LSF�=0, hence 	cf. �28� in Ref. 26 p. 185� S generates a shear-free congruence

f null geodesics. The congruence is symmetric if there is a vector field X�X	C�M�� such that
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LX��*�� = t�*�, LX��*��� = w�
��*�� + ���*� ,

here t is a real function and w�
� ,�� are complex functions on C�M�. We say that X is a symmetry

f the congruence. We may look for LXS in the form

LXS = a�T�
↑ + a�̄T�̄

↑ + bT↑ + fS .

s X is a symmetry a�=0, b=0 and f =−2�LX��S. Therefore

LXS = fS . �72�

lso one may easily check �by using the local frame �T�
↑ ,T�̄

↑ ,T↑ ,S� of T	C�M�� � C� that

LS��*�� = 0, LS��*��� = 0. �73�

sing �72� and �73� and LYLZ�=LZLY�+L	Y,Z�� 	for any Y ,Z�X�C�M���, ���1	C�M�� we
btain

S�t� = 0, S�w�
�� = 0, S���� = 0. �74�

or instance

S�t��*� = L	S,X��
*� = − fLS�

*� − ��*���S�df = 0.

ur considerations draw inspiration from the calculations in Ref. 24 	which are both purely local
nd confined to the three-dimensional case �n=1��. For this reason some of the results �e.g.,
ropositions 1 and 2� are attributed to Ref. 24 �the proofs are however new�. �74� implies that
,w�

� ,�� are vertical lifts of functions on M. A vector field of the form S, for some function 
0, is a trivial symmetry of the congruence.

Proposition 2: �Ref. 24� Each nontrivial symmetry of the shear-free congruence 	of null
eodesics on C�M�� projects on a unique symmetry of the CR structure on M.

Indeed, if X is a symmetry of S then X−2��X�S�Ker���, hence there is a unique vector field

�X�M� such that

X̃↑ = X − 2��X�S .

hen

�*�t�� = LX��*�� = LX̃↑��*�� + 2L��X�S��*�� = LX̃↑��*�� .

onsequently, for any Z�X�M�

t��Z� = 	�*�t���Z↑ = 	LX̃↑��*���Z↑ = X̃	��Z�� − ��*��	X̃↑,Z↑�

ence, as 	X̃ ,Z�↑ is the Ker���-component of 	X̃↑ ,Z↑� 	with respect to the decomposition
	C�M��=Ker��� � RS�, we obtain LX̃�= t�. It may be shown in a similar manner that LX̃�

�

w�
���+���, i.e., X̃ is a symmetry of the CR structure. Q.E.D.

Let E→M be a complex vector bundle and Ê=�*E→C�M� the pullback of E via �. The

atural lift û :�−1�U�→ Ê of a section u :U→E is given by û�z�= �x ,u	��z���, z��−1�U�. If E

arries a Hermitian metric h then so does Ê. Indeed we may set ĥ�êi , êj�=hij̄ ��, where hij̄

h�ei ,ej� and �e1 , ¯ ,em� is a �local� frame in E on U. There is a natural inner product �,� on
2 ˆ
	Ad�E�� induced by the inner product on scalar 2-forms
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F�
*��,��d vol�F�� = � Ù � � ,

,������2T*	C�M���, and by the Killing–Cartan form of u�m�, m=rankCE, respectively. Here �

s the Hodge operator associated with the Fefferman metric F�. Precisely, if S ,T��0	Ad�Ê�� then

�� � S,� � T� = F�
*��,���Sj

i� · �Tj
i� ,

here Sêj =Sj
iêi, Têj =Tj

iêi with respect to a �local� orthonormal 	h�ei ,ej�=�ij� frame �ej� in E, and
·B=−trace�AB� ,A ,B�u�m�. The Yang–Mills functional is given by

YM̂�D� =
1

2


C�M�
�RD,RD�d vol�F��, D � C�Ê, ĥ� .

ny D�C�E ,h� induces a connection D̂=�*D�C�Ê , ĥ� which is described �in local coordinates�
s follows. Let �U ,xA� be a local coordinate system on M. Then 	�−1�U� , x̂A

ªxA �� ,
� are local
oordinates on C�M�. We set by definition

D̂�/�x̂Aêj = ��Aj
i � ��êi, D̂�/�
êj = 0,

here D�/�xAej =�Aj
i ei. Our conventions as to the range of indices are A ,B ,C , ¯ � �1, ¯ ,2n

1� and i , j ,k , ¯ � �1, ¯ ,m�. We consider the linear map

�*:���U,�kT*�M� � E� → ����−1�U�,�kT*	C�M�� � Ê�

iven by

�*�� j
� ej� = ��*� j� � êj, � j � �k�U� ,

pullback and natural lifting�. As �êj� is a local frame in Ê→C�M� it suffices to specify D̂ on

atural lifts of sections in E→M. Then D̂ admits the following coordinate-free description:

D̂û = �*�Du�, u � �0�E� .

learly, if Dh=0 then D̂ĥ=0. Let us consider the functional PYM :C�E ,h�→ 	0, +�� given by

PYM�D� =
1

2


M

��HRD�2� Ù �d��n.

ere �H :�2	Ad�E��→�2	Ad�E�� /J�
2 is the projection described in Sec. II. Of course, when an

dmissible coframe ���� is fixed �·	Ad�E�� /J�
· may be identified with the subalgebra

H
· 	Ad�E��= ����·	Ad�E�� : iT�=0�. Integration along the fiber in YM̂��*D�, D�C�E ,h�, leads

o �9� in Theorem 2. Indeed, let us set

RABj
i ei = �RDej���/�xA,�/�xB� .

hen

RD̂êj = 	�RABj
i � ��dx̂A Ù dx̂B� � êi

ence

RD̂êj = �*�RDej� . �75�
j 2 j j A B
iven �=� � ej �� �E�, � =�AB dx Ùdx , we set
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��*�,�*�� = F�
*��*� j,�*�k̄��hjk̄ � �� . �76�

f course �*� j = ��AB
j ���dx̂AÙdx̂B and the main technical difficulty in calculating �76� is the need

or FAB=F�
*�dx̂A ,dx̂B�, where 	FAB�= 	FAB�−1 and FABªF��� /�x̂A ,� /�x̂B�. Let

F�:� FAB FA,2n+2

F2n+2,B F2n+2,2n+2
�

e the components of the Fefferman metric with respect to �x̂A ,
�. Let us set � /�xA=�A
BTB, �A

B

C��U�. Here one either adopts the convention A ,B ,C , ¯ � �0,1 , ¯ ,n , 1̄ , ¯ , n̄� �with T0=T�
r relabels the vector fields �T ,T� ,T�̄ :1���n�. Then 	by �70��

FAB = G̃�� �

�xA ,
�

�xB� + �� �

�xA��� �

�x̂B� + �� �

�xB��� �

�x̂A� = g��̄��A
��B

�̄ + �B
��A

�̄� + �A
0�B + �B

0�A

here �A=��� /�x̂A�. A calculation based on �71� shows that

�A =
1

n + 2
�i�A

B��B�
� −

1

2
g��̄TB�g��̄�� −



4�n + 1�
�A

0� � �

here �B�
� are �among� the coefficients of the Tanaka–Webster connection of �M ,�� �i.e., �TB

T�
�B�
� T��. Moreover 	by �70��

FA,2n+2 = 2	��*������ �

�x̂A ,
�

�

� =

1

n + 2
�A

0 ,

F2n+2,2n+2 = 0.

ext, using FabFbc=�c
a �with a ,b ,c , ¯ � �1, ¯ ,2n+2�� we find

FABFBC +
�C

0

n + 2
FA,2n+2 = �C

A

FAB�B
0 = 0

�77�

F2n+2,BFBC +
�C

0

n + 2
F2n+2,2n+2 = 0

F2n+2,B�B
0 = n + 2.

et us set

PAB
i
jei = �RDej��TA,TB�

o that RABj
i =�A

C�B
DPCD

i
j. In the sequel, for the sake of simplicity, we do not distinguish notation-

lly between f �C��M� and its vertical lift f ��. Then

�RD̂,RD̂� = hjk̄�RD̂êj,R
D̂êk� = hjk̄hrs̄F�

*�RABj
r dx̂A Ù dx̂B,RCDk

s dx̂C Ù dx̂D�

=
1

2
hjk̄hrs̄RABj

r R
CDk̄

s̄ �FACFBD − FADFBC� ,

ī i
here R
ABj̄

=RABj. We obtain
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�RD̂,RD̂� =
1

2
hjk̄hrs̄�A

E�B
F�C

Ḡ�D
H̄PEF

r
jPḠH̄

s̄
k̄
�FACFBD − FADFBC� , �78�

here �A
B̄=�A

B and P
ĀB̄

ī
j̄
= PAB

i
j. Note that �A

0 is real valued while �A
�̄=�A

�+n. To calculate

A
E�B

F�C
Ḡ�D

H̄�FACFBD−FADFBC� we need the identities

FAB�A
��B

�̄ = g��̄, �79�

FAB�A
��B

� = 0. �80�

he proof of �79� and �80� follows from �77�. Indeed �77� may be written

FABg��̄��B
��C

�̄ + �C
��B

�̄� + FAB�C
0�B +

1

n + 2
FA,2n+2�C

0 = �C
A ,

FAB�B
0 = 0,

F2n+2,Bg��̄��B
��C

�̄ + �C
��B

�̄� + �n + 2��C + F2n+2,B�C
0�B +

1

n + 2
F2n+2,2n+2�C

0 = 0,

F2n+2,B�B
0 = n + 2.

f �ª =�−1 then �by the first of the previous four identities�

�D
A = � 1

n + 2
FA,2n+2 + FAB�B��D

0 + FABg��̄��B
��D

�+n + �B
�̄�D

��

ielding

�0
A =

1

n + 2
FA,2n+2 + FAB�B

��
A = FABg��̄�B

�̄ �81�

��+n
A = FABg��̄�B

�.

he second and third of the identities �81� lead to �79� and �80�, respectively. A calculation based
n �79� and �80� shows that �78� may be written

�RD̂,RD̂� = P�̄�̄k̄ jP�̄�̄k̄ j + P��k̄ jP��k̄ j + P�̄�k̄ jP�̄�k̄ j + P��̄k̄ jP��̄k̄ j �82�

here PABk̄j =hjs̄PABk̄
s̄ and PABk̄j =hrk̄PAB

r
j. Also P��

r
j =g��̄g��̄P

�̄�̄r
j, etc. As RDej = �PAB

i
j�

AÙ�B�
� ei it follows that

��HRD,�HRD� = hjk̄���HRD�ej,��HRD�ek�

= hjk̄hrs̄G�
*�P��

r
j�
� Ù �� + 2P ¯

r
j�
� Ù ��̄ + P¯¯

r
j�
�̄ Ù ��̄� ,
�� ��
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�P��
s
k�
� Ù �� + 2P��̄

s
k�
� Ù ��̄ + P

�̄�̄
s
k�
�̄ Ù ��̄� =

1

2
P��

k̄ jP�̄�̄k̄ j�g��̄g��̄ − g��̄g��̄�

+ 2g��̄g�̄�P
��̄

k̄ jP�̄�k̄ j +
1

2
P
�̄�̄

k̄ jP��k̄ j�g�̄�g�̄�

− g�̄�g�̄�� = P�̄�̄k̄ jP�̄�̄k̄ j + 2P�̄�k̄ jP�̄�k̄ j

+ P��k̄ jP��k̄ j

ence 	by �75� and �82��

�RD̂,RD̂� = ���HRD� � ��2.

inally we may integrate over C�M� and use the identity


C�M�

�f � ��d vol�F�� = 2�
M

f� Ù �d��n, f � C��M� .

he identity �9� in Theorem 1 is proved. �The symbol � on the right hand side denotes the

rrational number ��R.� Assume now that D̂=�*D is a Yang–Mills field on C�M�. Let Dt=D
t�, ���1	Ad�E��, be a variation of D. Then

�*Dt = D̂ + t�*� . �83�

word on the conventions in �83�. As seen earlier in this section, there is a natural map
*:�1	Ad�E��→�1	�*Ad�E��. Yet Ad��*E���* Ad�E� �a vector bundle isomorphism� hence
*� is an Ad��*E�-valued 1-form on C�M�. Then 	by �9��

0 =
d

dt
	YM̂�D̂ + t�*���t=0 =

d

dt
	YM̂��*Dt��t=0 = 2�

d

dt
	PYM�Dt��t=0,

.e., D is a pseudo Yang–Mills field on M. The converse requires the first variation formula for the
unctional PYM 	as well as the fact that the Yang–Mills equations on C�M� project on M via �
o give the Euler–Lagrange equations of the variational principle �PYM=0, see Sec. IV�. To
stablish �8� we need the following:

Lemma 1: Let M be a nondegenerate CR manifold, � a contact form on M, and d vol�g�� the
anonical volume form associated to the Webster metric g�. Then �Ù �d��n= ±cnd vol�g�� where

n= �−1�s2nn!, provided that the Levi form L� has s negative eigenvalues.
This corrects the constant cn from Ref. 30, p. 546. If the Levi form L� has r positive and s

egative eigenvalues �r+s=n� then g� is a semi-Riemannian metric of signature �2r+1,2s�. Let O
e a fixed orientation of M. To prove Lemma 1, let GAB be the components of the Webster metric
ith respect to a chart �U ,xA��O, so that d vol�g��=��det�GAB��dx1Ù ¯ Ùdx2n+1. Let �T�� be a

ocal frame of T1,0�M� and ��GL�2n+1,C� such that TA=�A
B� /�xB. Then d vol�g��

��det�GAB��det����01¯n1̄¯n̄, where �01¯n1̄¯n̄ is short for �Ù�1Ù ¯ Ù�nÙ�1̄Ù ¯ Ù�n̄, hence
et���= �−1�n2

det��� 	as d vol�g�� is a real form�. It follows that ��det�GAB��
= �−1�s �det����−1 det�g��̄�. A calculation shows that

� Ù �d��n = 2nin2
n!det�g��̄��01¯n1̄¯n̄

see also Ref. 19� and then �Ù �d��n= ±cnd vol�g��. The sign is +1 if O and the orientation of
�M� �induced by its complex structure J� agree. Lemma 1 is proved. Let us prove �8�. As

RDej = ��HRD�ej − 2P0A
i
j�� Ù �A� � ei
t follows that
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�RD�2 = ��HRD�2 + 4gAB̄P0A
i
jP0B

j
i.

et iTRD=�B � 	P0B
i
j���1	Ad�E�� hence �RD�2= ��HRD�2+4�iTRD�2. At this point we may inte-

rate over M with respect to �Ù �d��n and use Lemma 1. The proof of the last statement in �i� of
heorem 2 is delegated to the next section.

I. THE FIRST VARIATION FORMULA

Let E→M be a vector bundle and D a connection in E. We shall need the differential operator
D :�k�E�→�k+1�E� given by

�dD���X1, ¯ ,Xk+1� = �
i=1

k+1

�− 1�i+1DXi
	��X1, ¯ ,X̂i, ¯ ,Xk+1��

+ �
1�i�j�k+1

�− 1�i+j��	Xi,Xj�,X1, ¯ ,X̂i, ¯ ,X̂j, ¯ ,Xk+1�

or any ���k�E� and any Xi�T�M�, 1� i�k. Here a hat indicates, as usual, the suppression of
term. Let D�C�E ,h� and let us denote by the same symbol the connection induced by D in
d�E�→M. The operator �D in �18� is the formal adjoint of dD :�1	Ad�E��→�2	Ad�E�� with

espect to the inner product

��, � = 
M

��, �� Ù �d��n, �, � �k�E� . �84�

et ���1	Ad�E��. A standard calculation shows that RD+t�=RD+ tdD�+ t2	�Ù�� �where
�Ù �X,Y = 	�X , Y�− 	�Y , X�, X ,Y �T�M�, � , ��1	Ad�E��� hence

��HRD+t��2 = ��HRD�2 + 2t��HRD,�HdD�� + O�t2�

nd

d

dt
	PYM�D + t���t=0 =

1

2


M

d

dt
���HRD+t��2�t=0� Ù �d��n = 

M

��HRD,dD��� Ù �d��n

= 
M

��D�HRD,��� Ù �d��n.

hen �d /dt�	PYM�D+ t���t=0=0 yields

�D�HRD = 0. �85�

et D�C�E ,h� such that iTRD=0. Then 	by �18� and �85�� D is a pseudo Yang–Mills field if and
nly if D is a Yang–Mills field, and the last statement in part �i� of Theorem 2 follows from
heorem 2.3 in Ref. 30, p. 551.

Let us consider the operator �b
D :�k+1�E�→�k�E� given by

��b
D���X1, ¯ ,Xk� = − �

a=1

2n

�DEa
���Ea,X1, ¯ ,Xk� ,

or any ���k+1�E� and Xi�T�M�, 1� i�k, where �Ea :1�a�2n� is a local G� orthonormal
rame of H�M�. Clearly, if ���H

k �E� then �D�=�b
D� and iT�b

D�=0. Consequently, if iTRD=0 then

qs. �85� may also be written
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�b
DRD = 0. �86�

ow we attack the problem whether the pullback D̂=�*D of a pseudo Yang–Mills field D on M
s a Yang–Mills field on C�M�. As argued in the previous section, this doesn’t follow directly from
9�. In turn, the Yang–Mills equations on C�M� are related to �85� due to

��D̂RD̂��X↑�û = 	��b
DRD��X�u + RD�T,JX�u�Ù, �87�

��D̂RD̂��T↑�û = 	��b
DRD��T�u�Ù −

i

n + 2
�R��̄ −



2�n + 1�
g��̄�	RD�T�,T�̄�u�Ù, �88�

��D̂RD̂��S�û = 2	���R
D�u�Ù, �89�

or any X�H�M� and u��0�E�. Here X↑ is the horizontal lift of X with respect to the connection
-form � in S1→C�M�→M. Let D�C�E ,h� be a pseudo Yang–Mills field with iTRD=0. Then 	by

87�–�89�� �D̂RD̂=0 if and only if �10� and �11� hold. This completes the proof of Theorem 2.
It remains that we prove �87�–�89�. The formal adjoint �D of dD :�1	Ad��*E��
�2	Ad��*E�� is given by

��D ��Y�v = − �
j=1

2n+2

� j�DXj
 ��Xj,Y�v = − �

j=1

2n+2

	DXj
 �Xj,Y�v −  ��Xj

C�M�Xj,Y�v −  �Xj,�Xj

C�M�Y�v

−  �Xj,Y�DXj
v� ,

or any  ��2	Ad��*E��, Y �T	C�M��, and v��0��*E�, where �Xj :1� j�2n+2� is a local
rthonormal 	i.e., F��Xj ,Xk�=� j� jk, �1= ¯ =�2n+1=−�2n+2=1� frame of T	C�M�� and �C�M� is the
evi–Civita connection of 	C�M� ,F��. As S1→C�M�→M is a principal bundle, the projection �

s a submersion. However, if S= 	�n+2� /2�� /�
 then F��S ,S�=0, i.e., S is null, so that � is not a
emi-Riemannian submersion 	in the sense of Ref. 22, p. 212, as the fibers of � are degenerate
ubmanifolds�. Nevertheless, we may relate �C�M� to the Tanaka–Webster connection � of �M ,��,
ery much in the spirit of Ref. 23. Precisely, we may state

Lemma 2: For any X ,Y �H�M�

�X↑
C�M�Y↑ = ��XY�↑ − �d���X,Y�T↑ − 	A�X,Y� + �d���X↑,Y↑��S ,

�X↑
C�M�T↑ = ��X + �X�↑,

�T↑
C�M�X↑ = ��TX + �X�↑ + 2�d���X↑,T↑�S ,

�X↑
C�M�S = �S

C�M�X↑ = �JX�↑,

�T↑
C�M�T↑ = V↑, �S

C�M�S = 0,

�S
C�M�T↑ = �T↑

C�M�S = 0,

here � :H�M�→H�M� is given by G���X ,Y�= �d���X↑ ,Y↑�, and V�H�M� is given by

��V ,Y�=2�d���T↑ ,Y↑�.

Proof of Lemma 2: Let us recall that
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2F���X̃

C�M�
Ỹ,Z̃� = X̃	F��Ỹ,Z̃�� + Ỹ	F��X̃,Z̃�� − Z̃	F��X̃,Ỹ�� + F�	�X̃,Ỹ�,Z̃� + F�	�Z̃,X̃�,Ỹ�

+ F�	X̃,�Z̃,Ỹ�� �90�

or any X̃ , Ỹ , Z̃�T	C�M��. In particular for X̃=X↑, Ỹ =Y↑, Z̃=Z↑, for any X ,Y ,Z�H�M�

F���X↑
C�M�Y↑,Z↑� = g���X

MY,Z� ,

here �M is the Levi–Civita connection of �M ,g��. Here one used the fact that 	X ,Y�↑ is the
orizontal component of 	X↑ ,Y↑�, with respect to � �cf., e.g., Ref. 16 Vol. I, p. 65�. The Levi–
ivita connection �M and the Tanaka–Webster connection � of �M ,�� are related by 	cf. �1� in
ef. 1 p. 238�

�M = �− �d� + A� � T + � � � + 2��J , �91�

here A�X ,Y�=g��X ,�Y�. Recall that A is symmetric and � traceless �cf. Ref. 34�. As H�M� is �
arallel �H�X

MY =�XY, where �H :T�M�→H�M� is the projection associated with the direct sum
ecomposition T�M�=H�M� � RT. Therefore, by taking into account the decomposition
	C�M��=Ker��� � Ker�d��=H�M�↑ � RT↑ � RS

�X↑
C�M�Y↑ = ��XY�↑ + �T↑ + �S , �92�

or some � ,��C�	C�M��, depending on X ,Y. We may determine �, � by taking the inner
roduct with S, T↑, respectively. To this end let us first observe that

F���X↑
C�M�Y↑,S� = − �d���X,Y� .

ere we again used �90� together with the fact that 	X↑ ,S�=0 �cf. e.g. Ref. 16 Vol. I, p. 79�.
imilarly

2F���X↑
C�M�Y↑,T↑� = �	�X↑,Y↑�� − T	g��X,Y�� + g�	�T,X�,Y� + g�	X,�T,Y��

nd

2g���X
MY,T� = − T	g��X,Y�� + �	�X,Y�� + g�	�T,X�,Y� + g�	X,�T,Y��

ence

2F���X↑
C�M�Y↑,T↑� = 2���X

MY� − �	�X,Y�� + �	�X↑,Y↑��

r 	by �91��

F���X↑
C�M�Y↑,T↑� = − A�X,Y� − �d���X↑,Y↑� .

umming up, �92� leads to the first identity in Lemma 2. The proof of the remaining identities in
emma 2 may be obtained in a similar manner. Let us go back to the proof of �87�–�89�. Let

Ea :1�a�2n� be a local orthonormal frame of the Levi distribution H�M�. Then �Ea
↑ ,T↑±S� is a

ocal orthonormal frame of T	C�M�� with respect to the Feferman metric F�. We make use of
ˆ ˆ D̂ ˆ 0
S�Du�=0 and iS�R u�=0, for any u�� �E�. Then �by Lemma 2�
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��D̂RD̂��X↑�û = − �
a=1

2n

�D̂Ea
↑RD̂��Ea

↑,X↑� − �D̂T↑+SRD̂��T↑ + S,X↑� + �D̂T↑−SRD̂��T↑ − S,X↑�

= 	��b
DRD��X�u + 2RD�T,JX�u� − �

a=1

2n

	�d���Ea,X�RD�Ea,T�u�

nd

�
a=1

2n

�d���Ea,X�Ea = − JX

ence �87� is proved. Similarly

��D̂RD̂��T↑�û = 	��b
DRD��T�u� + �

a=1

2n

	RD�Ea,�Ea + �Ea�u� . �93�

ow, on one hand

�
a=1

2n

RD�Ea,�Ea�u = g��̄	RD�T�,�T�̄�u + RD�T�̄,�T��u� = A�
RD�T�,T
�u + A�̄
̄RD�T�̄,T
̄�u = 0

as A��=A��� with the corresponding simplification of �93�. On the other hand

�
a=1

2n

RD�Ea,�Ea�u = ��
RD�T�,T
�u + ��
̄RD�T�,T
̄�u + ��̄
RD�T�̄,T
�u + ��̄
̄RD�T�̄,T
̄�u ,

here �T�=��
�T�+��

�̄T
�̄
, ���=g�
̄�
̄

�, etc. Let us take the exterior derivative of �71� so that to
btain

�n + 2�d� = �*�id��
� −

i

2
dg��̄ Ù dg��̄ −

1

4�n + 1�
d���� .

sing the identities dg��̄=g�
̄��̄

̄+��


g

�̄

�a consequence of �g�=0� and dg��̄=−g
�̄g�̄dḡ
 �a

onsequence of g��̄g�̄
=�

�� it follows that

dg��̄ Ù dg��̄ = ���̄ Ù ���̄ + ��̄� Ù ��̄� = 0.

lso �cf. e.g., Ref. 34�

d��
� = R��̄�

� Ù ��̄ + �W��
� �� − W��̄

� ��̄� Ù �

here R��̄ is the pseudohermitian Ricci curvature and W��
� �respectively W��̄

� � are certain con-
ractions of the covariant derivatives of A

�̄

�
. It follows that

�n + 2�G���X,Y� = i�R��̄�
� Ù ��̄��X,Y� −



4�n + 1�
�d���X,Y� ,

or any X ,Y �H�M�. Therefore

��̄� =
i

2�n + 2��R�̄� −


2�n + 1�
g�̄��, ��� = 0.
e may conclude that
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�
A=1

2n

RD�Ea,�Ea�u = −
i

n + 2
�R��̄ −



2�n + 1�
g��̄�RD�T�,T�̄�u

nd �93� leads to �88�. Finally �again by Lemma 2�

��D̂RD̂��S�û = �
a=1

2n

	RD�Ea,JEa�u� = − 2i	g��̄RD�T�,T�̄�u� = 2	���R
D�u�

nd �89� is proved.
The functional �7� may be generalized by considering PYMp�D�=�M��HRD�p�Ù �d��n with

p�0. As well known, in Riemannian geometry there is a choice of p such that YMp�D�
�M�RD�pd vol�g� becomes a conformal invariant 	precisely 2p should be the dimension of the
iven Riemannian manifold �M ,g�� and it is a natural question �raised by the Referee� whether for
n appropriate p the number PYMp�D� is a CR invariant, i.e., invariant under a transformation

=e2u� with u�C��M�. Unfortunately, unlike the Riemannian case beside from the norm and
olume form the integrand �HRD transforms as well according to the law

��̃HRD�ej = ��HRD�ej + i	�2u�� j��
i − u�̄�

j��̄

i ��� Ù � − �2u�̄�
j�̄�̄

i
+ u�� j��̄

i ���̄ Ù �� � ei

here RDej =� j
i

� ei and �̃H :�2	Ad�E��→�2	Ad�E�� /J
�̃

2
is the natural projection. The problem

f building a CR invariant version of PYM�D� 	an analog to YMn+1/2�D�, g=g�� is open.

II. THE SECOND VARIATION FORMULA

Let �Dt : �t���� be a smooth family of connections in E, where D=D0 is a pseudo Yang–Mills
eld. We write Dt=D+At, where At��1	Ad�E�� for each �t���. The curvature Rt of Dt is then
iven by

Rt = RD + dDAt +
1

2
	At Ù At�

cf. e.g., �6.2� in Ref. 4, p. 212�. Next, let us set �= �dAt /dt�t=0 and  = �d2At /dt2�t=0 and observe
hat

��HRt�2 = ��HRD�2 + 2t��HRD,dD�� + t2�2��HRD,dD � + ��HRD,	� Ù ��� + ��HdD��2� + O�t3� .

ntegrating by parts and using �D�HRD=0 we obtain

d2

dt2 	PYM�Dt��t=0 = 
M

���HdD��2 + ��HRD,	� Ù ����� Ù �d��n. �94�

e shall need the �zero order� operator RD :�1	Ad�E��→�1	Ad�E�� given by

RD���X = �
A=1

2n+1

	REA,X
D ,�EA

� ,

or any X�T�M�, ���1	Ad�E��, where �EA� is a local orthonormal frame of 	T�M� ,g��. Then
see �6.7� in Ref. 4, p. 213�

�	� Ù ��,RD� = ��,RD���� . �95�
et us set
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Rb
D���X = �

a=1

2n

	REa,X
D ,�Ea

�, R0
D���X = 	RT,X

D ,�T� ,

here �Ea� is a local orthonormal frame of �H�M� ,G��, so that RD=Rb
D+R0

D. Taking into account
he identities

	� Ù ��ej = 4��k
i Ù � j

k� � ei,

�� Ù iTRD�ej = �P0A
i
j� Ù �A� � ei,

R0
D���ej = 	� j

k�T�P0A
i
k − P0A

k
j�k

i �T���A
� ei,

here �ej =� j
i

� ei, � j
i ��1�U�, we may conduct the calculations

�	� Ù ��,� Ù iTRD� = hjr̄�	� Ù ��ej,�� Ù iTRD�er� = 4hjr̄his̄g�
*��k

i Ù � j
k,P0A

s
r� Ù �A�

= 2hjr̄his̄g
AB̄	�k

i �T�� j
k�TA� − �k

i �TA�� j
k�T��P

0B̄
s̄
r̄,

nd

��,R0
D���� = hjr̄his̄� j

i�TA�	�r̄
k̄�T�P

0B̄
s̄
k̄

− P
0B̄

k̄
r̄�k̄

s̄�T��gAB̄ = � j
i�TA�gAB̄	hjk̄his̄�k̄

r̄�T� − hjr̄hik̄�s̄
k̄�T��P

0B̄
s̄
r̄.

ssume now that �ej� is orthonormal �hij̄ =�ij�, so that �
j̄
ī =−�i

j 	as � is Ad�E� valued�. Then

�	� Ù ��,� Ù iTRD� = 2�
i,j

	�k
i �T�� j

k�TA� − �k
i �TA�� j

k�T��gAB̄P
0B̄

ī
j̄

��,R0
D���� = �

r,s
	�i

s�T��r
i�TA� − � j

s�TA��r
j�T��gAB̄P

0B̄
s̄
r̄

ence

�	� Ù ��,� Ù iTRD� = 2��,R0
D���� .

inally, let us take into account �95� and the identity

RD = �HRD + 2� Ù iTRD.

e obtain

�	� Ù ��,�HRD� = ��,RD��� − 4R0
D���� ,

o that �94� becomes

d2

dt2 	PYM�Dt��t=0 = 
M

��D�HdD� + RD��� − 4R0
D���,��� Ù �d��n. �96�

e now restrict our variations to those whose first-order part � satisfies iT�=0 and �D�=0. Also,
et us introduce the first-order differential operator db

D :�1	Ad�E��→�H
2 	Ad�E�� given by db

D

�H �dD. Then �D�HdD�=�b
Ddb

D�=�b
D� and R0

D���=0, so that �96� yields �12� in Theorem 3.
ere �b

D
db
D�b

D+�b
Ddb

D is the generalized sublaplacian. The Riemannian counterpart SD=�D

RD �cf. Ref. 4, p. 213, where �D is the generalized Hodge–de Rham laplacian� of Sb
D=�b

D

Rb
D in Theorem 3 is an elliptic operator, hence its restriction to Ker��D���1	Ad�E�� has a

iscrete spectrum tending to +� and the eigenspace corresponding to each eigenvalue of SD is

nite dimensional. This allows one to employ concepts from Morse theory �cf. Definition 6.10 in
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ef. 4, p. 213� in order to discuss stability and weak stability of Yang–Mills fields �cf. Ref. 4, p.
14�. The CR analog of this phenomenon is that �b

D :�0,1	Ad�E��→�0,1	Ad�E�� is subelliptic of
rder 1

2 , where �0,q	Ad�E��=��	�0,q�M� � Ad�E��. A complex valued q-form � on M is of type
0,q�, or a �0,q� form, if T1,0�M���=0 and iT�=0. We denote by �0,q�M�→M the relevant bundle
nd set �0,q�M�=��	�0,q�M��. Let M be a strictly pseudoconvex CR manifold �not necessarily
ompact�. It is the proper place to recall that a formally self-adjoint second-order differential
perator L :C��M�→C��M� is subelliptic �of order 0���1� at a point x�M if there is a neigh-
orhood U of x such that

�u��
2 � C	�Lu,u� + �u�2�

or any u�C0
��U�, where �u�� is the Sobolev norm u of order �, �u�= �u ,u�1/2, and

�u,v� = 
M

uvd vol�g�� �97�

s the ordinary L2 inner product. L is subelliptic �of order �� if it is subelliptic at any x�M. A
ypical example is the sublaplacian

�bu = − div��Hu�, u � C��M� ,

here �Hu
�H�u, �u is the gradient of u with respect to the Webster metric g�, and the
ivergence is defined with respect to the volume form �
�Ù �d��n, i.e.,

LX� = div�X�� ,

or any X�X�M�, where LX is the Lie derivative. It is easily seen that �bu=−�a=1
2n Ea

*Eau, for any
ocal orthonormal frame �Ea� of H�M� hence, by a well known lemma of Radkevic,27 it follows
hat �u�1/2

2 �C	��bu ,u�+ �u�2�, for any u�C0
��U�, i.e., �b is subelliptic of order 1

2 . Here Ea
* is the

ormal adjoint of Ea with respect to the inner product �97�. In the next section we relate �b
D to the

ohn–Rossi operator �b and explain the subellipticity of �b on �0, 1� forms.

III. SUBELLIPTICITY OF �b
D

Let �T�� be a local frame of T1,0�M�. We start by computing

��b
Ddb

D��T� = − �
a=1

2n

�DEa
db

D���Ea,T�� ,

or any ���H
1 	Ad�E��. Let us take into account the identities

g��̄�DT�
db

D���T�̄,T�� = g��̄�DT�
	�db

D���T�̄,T��� − �
��̄


̄ �db
D���T
̄,T�� − ���


 �db
D���T�̄,T
�� ,

�db
D���T�,T�̄�ej = 	��T�

� j
i�T�̄ − ��T�̄

� j
i�T� + 2��k

i Ù � j
k + �k

i Ù � j
k��T�,T�̄��ei,

here � j
i are the connection 1-forms of D with respect to �ei�. Also, let us set

��̄�� �̄ 
 ��T�̄
�  ��T�,T�̄� = T�̄��� �̄� − ��̄�

 � �̄ − ��̄�̄
̄  ̄,

�̄ 0,1 ¯ ¯
or any  = �̄� �� �M�, where �� �
��T�
 �T�. We obtain
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g��̄�DT�
db

D���T�̄,T��ej = − g��̄������ j�̄

i
− ����̄� j�

i + � j
k�T�̄�Ak

i �T�,T�� − � j
k�T��Ak

i �T�,T�̄�

+ �k
i �T��Bj

k�T�,T�̄� − �k
i �T�̄�Bj

k�T�,T�� + �k
i �T��	��T�

� j
k�T�̄ − ��T�̄

� j
k�T��

+ � j
k�T��	��T�̄

�k
i �T� − ��T�

�k
i �T�̄� + �

j�̄

k
Ck

i �T�,T�� − � j�
k Ck

i �T�,T�̄�

+ �k�
i Dj

k�T�,T�̄� − �
k�̄

i
Dj

k�T�,T�̄�� � ei

here

Aj
i 
 �� j

i + �k
i

� � j
k, Bj

i 
 �� j
i − � j

k
� �k

i ,

Cj
i 
 �� j

i + �k
i

� � j
k, Dj

i 
 �� j
i − � j

k
� �k

i ,

nd � jA
i =� j

i�TA�, so that ����̄� j�
i �respectively, ����� j�̄

i � is the second-order covariant derivative
f the �1,0� form �1,0� j

i 	respectively, of the �0,1�-form �0,1� j
i� 	�1,0 :�1�M�→�1,0�M� and

0,1 :�1�M�→�0,1�M� are the natural projections�. The previous identity is rather involved, yet
ne is interested in the second-order terms alone. Together with the similar expression for
��̄�DT�̄

db
D���T� ,T��ej this leads to

��b
Ddb

D���T��ej = g��̄������ j�̄

i
+ ��̄��� j�

i − ����̄� j�
i − ��̄��� j�

i �ei + lower order terms.

�98�

y lower order terms �l.o.t.� we mean a linear combination of �A� jB
i and � jB

i 	with C��U�
oefficients�. Next, we need to compute

�db
D�b

D��T� = DT�
��b

D�� = − �
a=1

2n

DT�
	�DEa

��Ea� .

e have

�DT�
	g��̄�DT�

��T�̄��ej = g��̄	����� j�̄

i
− � j

k�T��Ak
i �T�,T�̄� + �k

i �T��Bj
k�T�,T�̄� − �k

j�T����T�
�k

i �T�̄

+ �k
i �T����T�

� j
k�T�̄ + �

j�̄

k
Ck

i �T�,T�� − �
k�̄

i
Dj

k�T�,T���ei.

ogether with a similar expression for DT�
	g��̄�DT�̄

��T�� this yields

�db
D�b

D���T��ej = − g��̄������ j�̄

i
+ ����̄� j�

i �ei + l.o.t. �99�

e shall need the commutation formulae

�����
̄ − �����
̄ = − �̄R
̄
̄
��,

��̄���
 − ����̄�
 = 2ig��̄�0�
 − �R


�̄�

,

here the convention for the curvature components �of the Tanaka–Webster connection� is
D
�TA ,TB�TC=RC ABTD. Then 	by �98� and �99��
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��b
D���T��ej = g��̄������ j�̄

i
− ����� j�̄

i
+ ��̄��� j�

i − ����̄� j�
i − ����̄� j�

i − ��̄��� j�
i �ei + l.o.t.

= 	− � j
i�T̄�g��̄R

�̄
̄
�� + 2�− 1�0� j�

i − � j
i�T�g��̄R�


�̄�

− 2g��̄��̄��� j�
i

+ 2�− 1n�0� j�
i − � j

i�T�g��̄R�

�̄�

�ei + l.o.t.

t this point we need the Kohn–Rossi operator �b on �0,1�M�. We start by extending �̄b �origi-
ally defined on functions, see Sec. III� to �0,1� forms. Precisely, if ���0,1�M� then �̄b� is the
nique �0,2� form on M coinciding with d� on T0,1�M� � T0,1�M�. Next, let us set �b
 �̄b

*�̄b

�̄b�̄b
*, where �̄b

* is the formal adjoint of �̄b with respect to the L2 inner product �� ,��
�Mg�

*�� , �̄��. A straightforward calculation leads to

�b� = �− g��̄����̄�
̄ − 2i�0�
̄ + �̄R
̄

̄��


̄, �100�

or any �=�
̄�

̄��1,0�U�. Consequently

�̄b��1,0� j
i� = 	�b��1,0� j

i�−�− = 	− g��̄��̄��� j�
i + 2i�0� j�

i + � j
i�T�R


���

�

ence

��b
D���T���� � ej = 2�̄b��1,0� j

i�ei + �2�n − 1��− 1�0� j�
i − � j

i�T̄�g��̄R
�̄
̄
�� − � j

i�T�	2R
�

+ g��̄�R�

�̄�

+ R�

�̄�

����� � ei + l.o.t.

o compute the curvature terms we need the identities

R��̄ = R�
�
��̄,

R�

�� = 2i�A����

 − A����
 � ,

R�

�̄�̄

= 2i�g��̄A�̄
 − g��̄A

�̄

� ,

R��̄��̄ = R��̄��̄, R��̄��̄ = − R�̄���̄,

ollowing essentially by the techniques developed in Ref. 34. Indeed we have

g��̄R
�̄
̄
�� = − 2i�n − 1�A�

̄ ,

2R
� + g��̄�R�


�̄�

+ R�

�̄�

� = 0,

ence

��b
D���T���� � ej = 2�̄b��1,0� j

i� � ei + 2�n − 1��− 1	��T� j
i�T� + A�

̄� j
i�T̄���� � ei + l.o.t.

�101�

ecall that �T�=A�
�̄T�̄. Then �101� together with the similar identity ��b

D���T�̄�ej
i ¯ � i  i
2	��b�0,1� j��− �n−1� −1��0� j�̄

+A
�̄
� j��ei+ l.o.t.. leads to
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��b
D�� � ej = 2	�b��0,1� j

i� + �̄b��1,0� j
i� + �n − 1���T� j

i + � j
i � �� � J� � ei + l.o.t.

nd therefore to �13� when � is a �0,1� form. Finally, let us show that �b is subelliptic on �scalar�
0,1� forms. As ��=0, the sublaplacian may be computed as

�bf = − trace�TA � �TA
�Hf� = − ��f� − ��̄f �̄,

or any C� function f :M→C, where f�=g��̄T�̄�f�. As �g�=0

g��̄����̄��̄ = ���g��̄��̄��̄� = �����̄�� − ���g��̄�
�̄�̄

̄
�̄� .

similar expression holds for g��̄���̄����̄�. Adding up the two identities leads to

g��̄�����̄��̄ + ��̄����̄� = − �b��̄ + l.o.t.

r 	by the commutation formulae for the second order derivatives and �100��

2��b���̄ − 2i�n − 1��0��̄ − �̄R
̄
�̄

= �b��̄ + g��̄	����
�̄�̄

̄
�̄� + ��̄��

��̄

̄
�̄�� .

ence �b is subelliptic on �0,1�M�, i.e., �b� is locally given by a subelliptic operator acting on
he coefficients of �, plus lower order terms. In particular 	by �13�� ��b

D�� � ej =�b	� j
i�T�̄����̄

� ei+l.o.t. Theorem 3 is completely proved.

PPENDIX: THE GRAHAM–LEE CONNECTION

Let �= ���0��Cn be a strictly pseudoconvex domain and F the foliation by level sets of �
f a one-sided neighborhood V of �� �as in Sec. III of this paper�. Let �W� :1���n−1� be a
ocal frame of T1,0�F�, so that �W� ,�� is a local frame of T1,0�V�. Let g� be the tensor field given
y

g��X,Y� = �d���X,JY�, g��X,T� = 0, g��T,T� = 1, �A1�

or any X ,Y �H�F�. Then g� is a tangential Riemannian metric for F, i.e., a Riemannian metric in
�F�→V. We consider as well

L��Z,W̄� 
 − i�d���Z,W̄�, Z,W � T1,0�F� .

ote that L� and �the C-linear extension of� g� coincide on T1,0�F� � T0,1�F�. We set g��̄
g��W� ,W�̄�. Let ��� :1���n−1� be the �locally defined� complex 1 forms on V determined by

���W�� = ��
�, ���W�̄� = 0, ���T� = 0,���N� = 0.

hen ��� ,��̄ ,� ,d�� is a local frame of T�V� � C and we may look for d� in the form

d� = B���
� Ù �� + B��̄�

� Ù ��̄ + B�̄�̄�
�̄ Ù ��̄ + �B��

� + B�̄�
�̄� Ù � + �C��

� + C�̄�
�̄� Ù d�

+ D d� Ù � .

s d�= i��̄���1,1�U� it follows that B��=0, B�̄�̄=0. Also

g��̄ = g��W�,W�̄� = − i�d���W�,W�̄� = −
i

2
B��̄

¯ ¯
.e., B��=2ig��. Next
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1

2
B� = �d���W�,T� = i��̄��W�,T� = 0

s T= i��− �̄� 	and � is orthogonal to T1,0�F� with respect to ��̄��, i.e., B�=0, B�̄=0. Similarly

�=0, C�̄=0. Finally

D = �d���N,T� = i��̄��N,T� = 2��̄���, �̄� = r

.e., D=r. We obtain the identity

d� = 2ig��̄�
� Ù ��̄ + r d� Ù � . �A2�

s an immediate consequence

iT d� = −
r

2
d� , �A3�

iN d� = r� . �A4�

or instance 	by Eq. �A2��

�d���X,T� =
r

2
	�d���X� − �d���T���X�� ,

or any X�T�F�, hence 	as �d���T�=0� one derives �A3�. As an application of �A2� we decom-
ose 	T ,N� 	according to T�V� � C=T1,0�F� � T0,1�F� � CT � CN�. This is a bit trickier, as shown
elow. By �A3�

��	T,N�� = − 2�d���T,N� = r d��N� = 2r .

ext

2�d��	W�,�T,N�� = 2W��r� − ��	W�,�T,N��� = �Jacobi’s identity� = 2W��r� + ��	T,�N,W����

+ ��	N,�W�,T��� = 2W��r� + 2�d��	T,�W�,N�� − T��	�W�,N���

+ 2�d��	N,�T,W��� − N��	�T,W����

ence 	by �A3� and �A4��

�d��	W�,�T,N�� = W��r� .

e conclude that

�T,N� = iW��r�W� − iW�̄�r�W�̄ + 2rT , �A5�

here W��r�=g��̄W�̄�r� and W�̄�r�=W��r�.
Let � be a linear connection on V. Let us consider the T�V�-valued 1 form � on V defined by

��X� = T��T,X�, X � T�V� ,

here T� is the torsion tensor field of �. We say T� is pure if

T��Z,W� = 0, T��Z,W̄� = 2iL��Z,W̄�T , �A6�

T��N,W� = rW + i��W� , �A7�
or any Z ,W�T1,0�F�, and
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�	T1,0�F�� � T0,1�F� , �A8�

��N� = − J�Hr − 2rT . �A9�

ere �Hr is defined by �Hr=�H�r and g���r ,X�=X�r�, X�T�F�. Also �H :T�F�→H�F� is the
rojection associated to the direct sum decomposition T�F�=H�F� � RT. The Appendix is aimed
t the following:

Theorem 4: �Ref. 11� There is a unique linear connection � on V such that: �i� T1,0�F� is
arallel with respect to �, �ii� �L�=0, �T=0, �N=0, and �iii� T� is pure.

� given by Theorem 4 is the Graham–Lee connection. Compare to Proposition 1.1 in Ref. 11,
p. 701–702. The axiomatic description in Theorem 4 is however new �cf. also Theorem 2 in Ref.
�. We first establish

Lemma 3: Let � :T�F�→T�F� be the bundle morphism given by ��X�=JX, for any X
H�F�, and ��T�=0. Then

�2 = − I + � � T ,

g��X,T� = ��X� ,

g���X,�Y� = g��X,Y� − ��X���Y� ,

or any X ,Y �T�F�. Moreover, if � is a linear connection on V satisfying the axioms �i�–�iii� in
heorem 4 then

� � � + � � � = 0 �A10�

long T�F�. Consequently � may be computed as

��X� = −
1

2
��LT��X , �A11�

or any X�H�F�.
Proof: For any X�T�F�

��X� = �	�HX + ��X�T� = J��HX� � H�F� ,

�2�X� = J2��HX� = − �HX = − X + ��X�T .

he second statement in Lemma 112 follows from definitions 	cf. �A1��. The third identity follows
rom

g���X,�Y� = �d�����HX,�2�HY� = g���HY,�HX� = g��Y,X� − ��X�g��Y,T� .

et us prove �A10�. As �	T1,0�F���T0,1�F� 	cf. axiom �A8�� there are complex valued functions

�
�̄ such that ��W��=A�

�̄W�̄. Then

�� � � + � � ��W� = i��W�� + A�
�̄��W�̄� = 0.

t remains that we check �A11�. As T1,0�F� is parallel with respect to � and � is a real operator it
ollows that T0,1�F� is parallel, hence both H�F� and its complex structure JF
�J�H�F� are parallel.

oreover, as �T=0, it follows that � is parallel, as well. Let X�H�F�. Then 	by �A10��

��X = − T��T,�X� = − �T�X + 	T,�X� .
pplying � in both sides gives �as ��=0�
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�X = − �TX − �	T,�X� = − 	T,X� − �X − �	T,�X�

r

2�X = − LTX − �LT�X .

Q.E.D.
Proof of Theorem: To establish uniqueness, note first that, for any X=X1,0+X0,1+��X�T

T�F� 	with X1,0�T1,0�F�, X0,1=X1,0� one has �by �N=0�

�NX = 	N,X� + T��N,X� = 	by �A6� – �A7�, �A9�� = 	N,X� + rX1,0 + i�X1,0 + rX0,1 − i�X0,1 + ��X�

	�J�Hr + 2rT�

hat is

�NX = rX + ��X − 	X,N� + ��X��J�Hr + rT� , �A12�

or any X�T�F�. In view of �A11� �NX is determined. As �N=0, �T=0 it remains that we
ompute �XZ, for X�T�F� and Z�T1,0�F�. Note that �T=0, �L�=0 and �JF=0 yield �g�=0,
.e.,

X	g��Y,Z�� = g���XY,Z� + g��Y,�XZ� ,

or any X ,Y ,Z�T�F�. The well known Christoffel process then leads to

2g���XY,Z� = X	g��Y,Z�� + Y	g��X,Z�� − Z	g��X,Y�� + g�	�X,Y�,Z� + g�	T��X,Y�,Z�

+ g�	�Z,X�,Y� + g�	T��Z,X�,Y� + g�	X,�Z,Y�� + g�	X,T��Z,Y�� . �A13�

ote that �again by the purity axioms�

T��X,Y� = 2�d���X,Y�T + 2�� Ù ���X,Y� , �A14�

or any X ,Y �T�F�. Indeed 	by �A6��

T��X,Y� = − 2g��X,�Y�T + 2�� Ù ���X,Y� .

oreover

g��X,�Y� = g���HX,��HY� + ��X�g��T,��HY� = − �d����HX,�HY�

= − �d���X,Y� + ��X��d���T,Y� + ��Y��d���X,T� .

inally 	by �A3�� �d���X ,T�=0, X�T�F�, and �A14� is proved. Replacing the torsion terms 	from
A14� into �A13�� leads to

2g���XZ,W̄� = X	g��Z,W̄�� + Z	g��X,W̄�� − W̄	g��X,Z�� + g�	�X,Z�,W̄� + g�	�W̄,X�,Z�

+ g�	X,�W̄,Z�� , �A15�

or any X�T�F� and Z ,W�T1,0�F�, as 	by �A8��

��X�	g���Z,W̄� − g���W̄,Z�� = 0.

he uniqueness statement in Theorem 4 is proved. The following explicit expressions of �the
arious components of� � are also available. By �A6�

�ZW̄ = �0,1�Z,W̄�, Z,W � T1,0�F� , �A16�
here �0,1 :T�F� � C→T0,1�F� is the projection. Of course
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�Z̄W = �ZW̄ .

oreover 	by �L�=0 and �A16��

L���ZW,V̄� = Z	L��W,V̄�� − L�	W,�0,1�Z,V̄�� ,

or any Z ,W ,V�T1,0�F�, i.e.,

�ZW = g��̄�Z	L��W,W�̄�� − L�	W,�0,1�Z,W�̄���W� �A17�

nd

�Z̄W̄ = �ZW .

ext 	by �A7� and �A8��

�NZ = rZ + �1,0	N,Z� , �A18�

or any Z�T1,0�F�, and

�NZ̄ = �NZ .

inally

�TZ = −
1

2
��LT��Z − 	Z,T� ,

�TZ̄ = �TZ, Z � T1,0�F� . �A19�

o establish the existence statement in Theorem 4 let � be the linear connection on V defined by
A16�–�A19� and �T=0, �N=0. Let us check �i�–�iii� in Theorem 4. Clearly

�ZW, �Z̄W, �NW � T1,0�F� ,

or any W�T1,0�F�, by the very definitions 	cf. �A16�–�A18�. Moreover 	by �A19��

�TZ =
1

2
�LTZ − i�LTZ�

s 	by �A3�� LTZ�H�F� � C. Therefore

��TZ = i�TZ

hat is 	as T1,0�F� is the eigenspace corresponding to the eigenvalue i of 	the C-linear extension to
�F� of� �� �TZ�T1,0�F�. We conclude that � obeys to �i�. Let us check purity. By �A17�

L�	�ZW − �WZ − �Z,W�,V̄� = Z	L��W,V̄�� − L�	W,�0,1�Z,V̄�� − W	L��Z,V̄�� + L�	Z,�0,1�W,V̄��

− L�	�Z,W�,V̄� = 3�d2���Z,W,V̄� = 0.

herefore T��Z ,W�=0. Next 	by �A16� and �0,1X=�1,0X̄, X�T�F� � C�

T��Z,W̄� = �0,1	Z,W̄� − �0,1�W,Z̄� − �Z,W̄� = − �	�Z,W̄��T = 2iL��Z,W̄�T .
oreover 	by �A18��
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T��N,Z� = �NZ − �N,Z� = rZ − �0,1�N,Z� .

lso 	by �A19��

��Z� = −
1

2
��LT��Z, Z � T1,0�F� ,

o that on one hand �A8� is satisfied, and on the other

��Z� = −
1

2
	i��T,Z� + �T,Z�� = − �0,1�T,Z� = i	�0,1��̄,Z� − �0,1��,Z�� = i�0,1��̄,Z�

.e.,

��Z� = i�0,1�N,Z�, Z � T1,0�F� . �A20�

ere we made use of T= i��− �̄�, N=�+ �̄, and �0,1�� ,Z�=0. Then �A20� yields �A7�. Finally
T=�N=0 and �A5� yield �A9� and we conclude that � obeys to �iii�. It remains that we check
L�=0. Clearly �ZL�=0, Z�T1,0�F� 	by �A16� and �A17��. Next 	by �A19� and �A8��

��TL���Z,W̄� = �LTL���Z,W̄�, Z,W � T1,0�F� ,

nd

�LTL���Z,W̄� = − i�T	d��Z,W̄�� − d�	�T,Z�,W̄� − d�	Z,�T,W̄��� =
i

2
�T��	�Z,W̄��� − ��	�T,Z�,W̄��

− ��	Z,�T,W̄���� = �by applying the Jacobi identity to the term ��	�T,Z�,W̄���

=
i

2
�T��	�Z,W̄��� + ��	�Z,W̄�,T��� = i�d��	T,�Z,W̄�� = −

ir

2
�d��	�Z,W̄�� = 0

by �A3� and �Z ,W̄��T�F� � C�. Hence �TL�=0. Finally 	by �A18��

��NL���Z,W̄� = − 2rg��Z,W̄� + �LNg���Z,W̄�, Z,W � T1,0�F� ,

nd �NL�=0 follows from �A23� in Lemma 124 below.
Lemma 4: The following identities hold for any X�T�F�:

T��N,X� = rX + ���X� + ��X����Hr + rT� , �A21�

	N,�X� − �	N,X� = 2��X� − ��X��Hr , �A22�

oreover

�LNg���X,Y� = 2rg��X,Y� + 2�d��	X,��Y�� , �A23�

or any X ,Y �H�F�.
Proof: �A21� follows from �A7�. Let us replace X by �X in �A21�

�N�X − �N,�X� = r�X − ��X�

nd subtract the identity got from �A21� by applying � to both sides. Since ��=0 we obtain

A22�. The proof of �A23� is a consequence of �A4� and �A22�, and the Jacobi identity
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�LNg���X,Y� = N	�d���X,�Y�� − �d��	�N,X�,�Y� + 2�d��	X,��Y�� − �d��	X,�N,�Y��

= −
1

2
N��	�X,�Y��� +

1

2
��	�N,X�,�Y�� + 2�d��	X,��Y�� +

1

2
��	X,�N,�Y���

= −
1

2
N��	�X,�Y��� −

1

2
��	�X,�Y�,N�� − ��	X,��Y��� = − �d��	N,�X,�Y��

− ��	X,��Y��� = − r�	�X,�Y�� − ��	X,��Y���

= 2r�d���X,�Y� + 2�d��	X,��Y�� = 2rg��X,Y� + 2�d��	X,��Y�� .

Theorem 4 is proved. Q.E.D.
As to the local calculations, if ��

� are the connection 1 forms of the Graham–Lee connection
i.e., �W�=��

�
� W�� then we may look for d�� in the form

d�� = B�

� �� Ù �
 + B�
̄

� �� Ù �
̄ + B
�̄
̄

�
��̄ Ù �
̄ + �B�

��� + B
�̄

�
��̄� Ù � + �C�

��� + C
�̄

�
��̄� Ù d�

+ D d� Ù � . �A24�

ndeed, applying this identity to the pair �W� ,W
� 	respectively, to �W� ,W
̄� and �W� ,T�� gives

B�

� − B
�

� = ��
��W
� − �


��W��, B�
̄
� = ��

��W
̄�, B�
� = ��

��T� .

imilarly 	applying �A24� to �W�̄ ,T�, �W� ,N�, and �W�̄ ,N� respectively�

B
�̄

�
= − A

�̄

�
, C�

� =
1

2
	��

��N� − r��
��, C

�̄

�
=

i

2
A
�̄

�
.

inally 	by �A5��

D d��N� = 2�d����N,T� = − ��	�N,T�� = iW��r� .

umming up

d�� = �� Ù ��
� − i�� Ù �� +

i

2
W��r�d� Ù � +

r

2
d� Ù ��, �A25�

here ��
A
�̄

�
��̄.

Given a linear connection � on V we set ��X ,Y�
!�XY, for any X ,Y �T�F�. If � is the
raham–Lee connection then �by the proof of Theorem 4� �=0. One may identify, as usual, the
ormal bundle "�F�=T�V� /T�F� with RN. If !� :T�V�→T�F� is the projection, let us set �F

!��. It is easily seen that �F is the Tanaka–Webster connection of each M� �i.e., the pointwise
estriction of the Graham–Lee connection to a leaf of F is the Tanaka–Webster connection of the
eaf�. In particular � :T�F�→T�F� is the pseudohermitian torsion of each leaf 	hence g���X ,Y�
g��X ,�Y�, for any X ,Y �T�F��.9,20,31–33

1 E. Barletta and S. Dragomir, Matematiche 2, 237 �1995�.
2 E. Barletta, S. Dragomir, and H. Urakawa, Indiana Univ. Math. J. 50, 719 �2001�.
3 J. K. Beem and P. E. Ehrlich, Global Lorentzian Geometry �Marcel Dekker, New York, 1981�.
4 J.-P. Bourguignon and H. B. Lawson, Jr., Commun. Math. Phys. 79, 189 �1981�.
5 S. Dragomir, Bull. Math. Sci. Math. Roumanie 43, 225 �2000�.
6 S. Dragomir and H. Urakawa, Interdisciplinary Information Sciences 6, 41 �2000�.
7 S. Dragomir and S. Nishikawa, J. Math. Soc. Jpn. 56, 1031 �2004�.
8 C. Fefferman, Invent. Math. 26, 1 �1974�.
9 G. B. Folland and E. M. Stein, Commun. Pure Appl. Math. 27, 429 �1974�.
0 N. Gamara and R. Yacoub, Pac. J. Math. 201, 121 �2001�.
1 C. R. Graham and J. M. Lee, Duke Math. J. 57, 697 �1988�.
2 J. Harnad, S. Shnider, and L. Vinet, J. Math. Phys. 21, 2719 �1980�.
3
 D. Jerison and J. M. Lee, J. Diff. Geom. 25, 167 �1987�.

                                                                                                            



1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

083504-41 Yang–Mills fields on CR manifolds J. Math. Phys. 47, 083504 �2006�

                        
4 D. Jerison and J. M. Lee, J. Guid. Control Dyn. 29, 303 �1989�.
5 J. Jost and C.-J. Xu, Trans. Am. Math. Soc. 350, 4633 �1998�.
6 S. Kobayashi and K. Nomizu, Foundations of Differential Geometry �Interscience, New York, 1963�, Vol. I �1969�, Vol.
II.

7 C. R. Lebrun, Trans. Am. Math. Soc. 284, 601 �1984�.
8 J. M. Lee, Trans. Am. Math. Soc. 296, 411 �1986�.
9 J. M. Lee, Am. J. Math. 110, 157 �1988�.
0 J. M. Lee and R. Melrose, Acta Math. 148, 159 �1982�.
1 J. Lewandowski and P. Nurowski, Class. Quantum Grav. 7, 309 �1990�.
2 B. O’Neill, Semi-Riemannian Geometry �Academic, New York, 1983�.
3 B. O’Neill, Mich. Math. J. 13, 459 �1966�.
4 P. Nurowski, J. Math. Phys. 33, 802 �1992�.
5 P. Nurowski and J. Tafel, Lett. Math. Phys. 15 31 �1988�.
6 P. Nurowski and A. Trautman, Diff. Geom. Applic. 17, 175 �2002�.
7 E. V. Radkevic, Math. USSR. Sb. 8, 181 �1969�.
8 J. Tafel, Lett. Math. Phys. 12, 163 �1986�.
9 N. Tanaka, A Differential Geometric Study on Strongly Pseudo-Convex Manifolds �Kinokuniya Book Store Co., Ltd.,
Kyoto, Japan, 1975�.

0 H. Urakawa, Math. Z. 216, 541 �1994�.
1 H. Urakawa, Differential Geometry, Proceedings of the Symposium in Honour of Professor Su Buchin on his 90th
Birthday, Shanghai, China, September 17–23, 1991, edited by C. H. Gu, H. S. Hu, and Y. L. Xin �World Scientific,
Singapore, 1993�, pp. 233–242.

2 H. Urakawa, Proceedings of the 3rd MSJ International Research Institute on Geometric Complex Analysis, Hayama,
Japan, March 19–29, 1995 �World Scientific, Singapore, 1995�.

3 H. Urakawa, Ann. Global Anal. Geom. 25, 365 �2004�.
4 S. M. Webster, J. Diff. Geom. 13, 25 �1978�.
                                                                                                            



T
s

I

s
p
s
a
u
e
t
p
a
e
e
f
f
d
f
s

a

b

JOURNAL OF MATHEMATICAL PHYSICS 47, 083505 �2006�

0

                        
he use of quadratic forms in the calculation of ground
tate electronic structures

Jaime Kellera�

Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional
Autónoma de México, AP 70-528, 04510, México D.F., Mexico

Peter Weinbergerb�

Center for Computational Materials Science, Physics Department, Technical University of
Vienna, Gumpendorferstrasse 1A, A-1060, Vienna, Austria

�Received 8 May 2006; accepted 19 June 2006; published online 9 August 2006�

There are many examples in theoretical physics where a fundamental quantity can
be considered a quadratic form �=�i�i= ���2 and the corresponding linear form
�=�i�i is highly relevant for the physical problem under study. This, in particular,
is the case of the density and the wave function in quantum mechanics. In the study
of N-identical-fermion systems we have the additional feature that � is a function
of the 3N configuration space coordinates and � is defined in three-dimensional real
space. For many-electron systems in the ground state the wave function and the
Hamiltonian are to be expressed in terms of the configuration space �CS�, a replica
of real space for each electron. Here we present a geometric formulation of the CS,
of the wave function, of the density, and of the Hamiltonian to compute the elec-
tronic structure of the system. Then, using the new geometric notation and the
indistinguishability and equivalence of the electrons, we obtain an alternative com-
putational method for the ground state of the system. We present the method and
discuss its usefulness and relation to other approaches. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2229423�

. INTRODUCTION

Since the creation of wave quantum mechanics, in 1926, the calculation of the electronic
tructure of a many electron system, in its ground state, or near it, is an open subject. This central
roblem, with no exact analytic solution, has been studied from many points of view. When the
tudy is to be used for the analysis of atoms, molecules, or condensed matter a first useful
pproximation is to solve the many electron Schrödinger equation for the system. This implies the
se of the Coulomb potential of a configuration of nuclei as external potentials and of the electron-
lectron interaction potentials to a desired degree of accuracy. In this paper, after a brief review of
he basic problem for a many electron system in a molecule, we start a systematic analysis of the
roblem using an accurate formulation, compatible with the initial conditions of the calculation,
nd through a systematic, geometric algebra based, definition of the configuration space, of the
xternal potentials, of the one electron operators for a many electron system and of the electron-
lectron interaction terms, we arrive at a formal equation for the total energy. From this, using the
act that we are interested either in the ground state or in stationary states near the ground state, we
ormulate a variational problem from which a set of tractable equations, which self-consistently
efine the many electron wave function and density, is obtained. Finally we compare our resulting
ormalism with the more widely used procedures, showing that those methods are contained as
pecial cases of ours.
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�
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The basic approach for the calculation of the ground state electronic structures of atoms,
olecules, and solids1–3 considers the steady state Born-Oppenheimer approximation: a fixed

iven configuration of positively charged point-like nuclei, the so-called “structure” of the mol-
cule, cluster, or crystal. The computational procedure involves the simultaneous calculation of:
he N electron ground state electronic wave function �N a function of 3N coordinates, the �ground
tate� electronic density �N�x� a function of three coordinates, the total electronic energy EN for the

electrons, a set of M �N auxiliary spin-orbitals � �called the SO�, and the SO-energy eigen-
alues �a. A minimum set of N auxiliary functions is required by Pauli’s exclusion principle. The
O and the �a are important as far as they are related to the different type of response functions of

he electronic system and as such to the set of its spectroscopic properties. The electronic density,
ave function, SO, and �a are not observable in themselves but, through several spectroscopies,

hey can be studied as indirect observables. Point-contact spectroscopy and other recent techniques
see Ref. 4, and references therein� are good examples of such tools. The computational tech-
iques can also be extended to time dependent5,6 and to beyond Born-Oppenheimer7 cases. In
hese approaches the electron is defined as a physical entity which obeys the Dirac equation for the
lectron’s experimental mass and charge, the nonrelativistic limit of the Dirac equation is given by
he Schrödinger equation if the spin of the electron is considered for magnetic interactions and for
tatistics.

Recently we have shown that there is a new, geometrical, starting point for formulating a
athematical theory for the density and for the related wave function,8–12 we call KKW. There is
resulting methodology developed here.

In the calculation of the stationary ground state of the many electron �many indistinguishable
quivalent fermions in general� wave function and densities a variational approach optimizes the
olutions with respect to desirability criteria, in our case, the lowest ground state energy E. The
ariational procedure provides a suitable set of constants and a set of auxiliary functions. For

omputational method M of lowest ground state energy E=��̄ĤM�dV we should consider the
ariation of a functional

��	
 �̄ĤM�dV − E� − �	
 �̄�dV − N�� = 0, �1�

here the second square parentheses impose the condition that this is an N electron system. Note

hat both �̄ĤM�=E�x� and �̄�=�N�x� imply a projection into real space.
The basic formulation can be summarized as follows: to the N equivalent electron system, in

eal space x�R3, in volume V, obeying the Pauli’s exclusion principle, corresponds an analytical
nite non-negative total density function �N�x� such that the total electronic energy E
���N�x�dV is well defined in the system’s volume. To fulfill this condition there should exist a
any electron analytical square integrable wave function �N�xn� ;n=1, . . . ,N� with xn�� �R3�N

uch that �N�x� ���N�2 	�̄�=�c=1
N �c�x� 	�u=1

M�N�u�x�.
Notice that two different expansions of the density are used simultaneously: one ��c=1

N �c�x�� is
he description of the N equivalent electrons in the system, the second ��u=1

M�N�u�x�� describes the
hell structure �M atomic or molecular orbitals�. This generates a matrix of descriptions: one
escription, the shell structure, corresponds to the M �N columns and the other, the per equivalent
lectron contribution, to the N rows of the matrix.

We have also indicated that this Hermitian square should be describable as either a sum of
on-negative, finite analytical functions �c�x�= ��c�2, one equivalent �c for each electron in the
ystem, or �to be able to agree with the Pauli’s principle� as a sum of M �N, weighted by wu

�bu�2, spin-orbital 
u contributions �u�x�= �bu
u�2. This ensures that the physical conditions,
hich must be obeyed by the wave function itself and by the density, are fulfilled. In the case of

he many electron �fermion� system all N electrons �fermions� are equivalent. The “system” to be
tudied is such that no electron can be distinguished by position. This equivalence requires that the
ensity itself should be describable as a sum of N equal densities �one electron�x� which should be

enerated by equivalent contributions. That is �one electron�x�=1/N�u�u�x�. The many-electron
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ave function �N�xn� ;n=1, . . . ,N� should be used to compute the total energy and other prop-
rties of this ground state of the system. Historically the Hartree-Fock method �and its comple-
ent configuration interaction� fulfilled the conditions above.

What is needed is to find the analytical, possible complex, function ��xn�� of a set xn ;n
1, . . . ,N� of N coordinates which allows the factorization of a finite non-negative function

��x� = �†�xn��N̂�x,xn�,xn�
� ����xn�

� �� � R+

the real numbers R= R− ,0 ,R+� are either negative, zero or positive�. Here N̂�x , xn� , xn���
�nn��xnxn�

� �xxn is a projector from configuration space X into the real space coordinates x.
In the KKW theory �all relevant points are presented in the following� the basic idea is that the

ensity appears as a sum of densities and then the wave function �N should both be the square
oot of the total density function ��x�=�u�u�x� and also provide the square root 
u of each one of
he contributions �u�x� to the total density. For this we require the use of geometric �multivector
nalysis� techniques. In fact the problem is similar to that of finding the linear form �geometric
quare root� d=ae1+be2+ce3+¯, which corresponds to the quadratic form d2=a2+b2+c2

¯ �R+. Here d is the geometric square root of the scalar quantity d2.
For a positive definite function ��x�=d†�x�d�x��R+ an ordinary �scalar� square root d�x�	

d†�x�d�x�=�a2�x�+b2�x�+c2�x�+. . . is not necessarily analytical, whereas the geometric square
oot function d�x�=a�x�e1+b�x�e2+c�x�e3+¯, through the use of an analytical set 
 of auxiliary
omplex functions 
= a�x� ,b�x� ,c�x� , . . . ��C, can be demanded to be analytical. The Hermitian
quares a2�x� ,b2�x� ,c2�x� , . . . ��R+. The analyticity property allows that a set of differential

quations D̂a�x�=�aa�x�, D̂b�x�=�bb�x� , . . . , which incorporates physical and mathematical
oundary conditions can be found.

The geometric square root. There is a freedom to choose for the description of the shell
tructure the most convenient anticommuting normalized basis set �u , ��u�2=1; and �u�v=
�v�u, u�v, u ,v=1, . . . ,M �N�.

Otherwise, as the electrons are equivalent, we will also need a symmetrized form of d. For
his purpose we will simultaneously introduce a second �one basis element per electron� anticom-
uting normalized basis set i

S, �i
S�2=1; and i

SSj=− j
Si

S, j� i, i=1, . . . ,N� and a normalized
ector S=�1/N�1

S+2
S+3

S+ ¯ +N
S � where our definitions imply that ��1/N�1

S+2
S+3

S+ ¯

N
S ��2=S2=1. The i

S, therefore S, are defined to commute with the �u. Consider d= �b1�1

b2�2+b3�3+ ¯ +bM�M�S, then d2=�i �bi�2. There is a double summation: over the basis set �u�
nd over the per electron in the system set i

S�. The summations can be interchanged. This is what
s called the geometric procedure as used in the following. The algebra of the �u� or of the i

S�
s a Grassmann-Clifford algebra �see Refs. 10–12�. Although there is no need to define a vector
calar-product we will define in the following an equivalent procedure to simplify the reading of
he equations.

I. GEOMETRIC FORMULATION OF THE CALCULATION OF THE STATIONARY
ROUND STATE OF A MANY-ELECTRON SYSTEM

Here we present the formalism for the calculation of the stationary ground state of the many
lectron �many equivalent fermions in general� wave function and densities and the corresponding
ariational approach.

. Configuration space and real space

A basic concept in the study of a many-electron system �N interacting fermions� is, from the
bove-noted considerations, the simultaneous, repeated, use of real space �the space of the ob-
erver� for each one of the fermions of the system: configuration space. Then, if x represents a
oint in real space, it is customary to represent by X= xa ;a=1, . . . ,N�� the set of points in the

onfiguration space X for N fermions.
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The volume integral �d� when referred to the coordinates of fermion a is denoted by �d�a.
lso �d�N indicates the integration over all N space replicas �d�a. In the formal notation to

ollow we introduce an integration operator �d�N̂ to denote that repeated space integration for all

electrons is to be performed. Also �d�N−î to denote that the repeated space integration for all N
lectrons except the ith is to be performed. The absolute value of the distance between two
ermion points xab= �xb−xa�.

Here and in the rest of our presentation we use a geometric notation

X = �a
axa;a = 1, . . . ,N;ab = − ba,b � a� , �2�

ntroducing the per electron operator a and, also, the projection operators ̄a such that ̄ab

�ab selecting the part of the configuration space which corresponds to electron a; this is ̄aX
xa.

This construction allows a clear formal definition of the electrons involved in each part of the
alculation. Our geometric procedure introduces one feature of the statistics of the fermion system
rom the beginning because the interchange a↔b in the products ab for two electrons, in any
iven expression, will change the sign of the corresponding terms.

When the argument of a function is position, for a=1 for example, we will also use a nonbold
otation or the fermion’s numeral, say 
�x1��
�x1�=
�1�, as equivalent argument.

. Basic principles

The Principles implied without further discussion in this paper are the same as those of the
o-called ab initio approaches:1

• The total energy is a functional of the wave function.
• The possibility of using the Schrödinger equation for the N electron system. The kinetic

energy is the sum of independent-electron-like kinetic energies for each electron.
• The ground state of the many electron system corresponds to the lowest total energy.
• The Pauli exclusion principle requires that the description for N electrons, included in the

wave function, contains the occupancy of at least M�N pseudo-electron orthonormal
spin-orbitals 
u.

• The equivalency and indistinguishability of the electrons require that all electrons are
equivalently described.

• The operators acting on the 
u are: multiplicative operators �constant, variable, and self-
consistent variable functions, differential �the Laplace operator ��xu�

2 , in our case� and the

integral operators �d�û defined earlier.
• A variational approach can be used.

The electronic structure calculation of a many electron system in the ground state requires
hen the simultaneous calculation of: the ground state electronic wave function �N, the �ground
tate� electronic density �N�x�, the total electronic energy EN for the N electrons, a set of M �N
uxiliary spin-orbitals �SO�, and the SO-energy eigenvalues �a. A minimum set of N functions is
equired by Pauli’s principle.

From ��x�=�̄� both quantities, wave function ��X� and density ��x� could be considered as

he fundamental variable, provided that derivatives of ��x� are considered derivatives of �̄�.

In our theory the density appears as a sum of densities and then the wave functions �̄ ,��
hould together:

�1� be a factorization of the total density ��x�=�n=1
N �one electron�x�=�i=1

M �i�x�= ���2, the first
equality from the equivalence of the electrons, and

�2� provide the square root of each one of the M shell structure contributions �i�x�= �bi
i�2 to

the total density.
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. The energy calculation

We rewrite the usual expression for the total nonrelativistic electronic energy operator or

amiltonian Ĥ0 in correspondence with our formal definition of configuration space �an atomic
lectron structure is used in the following to simplify the notation, otherwise a summation �A and
he relative distances xaA should be used in the electron-nucleus potential energy�. We use the
bove-defined per electron geometric notation b , ̄b� to select, from the wave function �N

KKW

nd its conjugate �N
KKW, the corresponding contributions. A per electron operator is an effective

ne-body operator.
We consider first the per electron “a” kinetic energy operator

− a��2��xa�
2 /2me�̄a

nd the electron a to nucleus A �considered at the origin of coordinates� potential energy operator
a�ZAe2 / �xa � �̄a. The sum of the contributions of these two terms will be called “core” energy in

he following.
Second, the pairwise Coulomb interaction Ve−e,

Coul between the electrons: a half of the sum over
ll a, of the for electron “a” in the pair a ,b, electron-electron potential energy, we have

Ve−e
Coul =

1

2�a=1

N
a
 d�N−â �

b�a
�b

e2

�xab�
̄b�̄a

notice that after performing the indicated �d�N−â integration for all b�a each term has been
educed to a per electron operator�.

Then

Ĥ0 = �a=1

N
a	−

�2��xa�
2

2me
−

ZAe2

�xa�
+

1

2

 d�N−â �

b�a

N �b
e2

�xab�
̄b��̄a. �3�

orrespondingly, the wave function �N
KKW is �first in a per electron n�N basis and second in a per

rbital i�M description, using the geometric operators �i per auxiliary basis function 
i �SO�
ith weight bi, obeying �i� j =−� j�i, j� i, and the projection operators �̄i� j =�ij�:

�N
KKW = �

n=1

N

���n, �4�

where ���n = n	 �
i=1

M�N

bi�i
i�xn�� , �5�

and �N
KKW = �

n=1

N

��̄��n, �6�

where ��̄��n = 	 �
i=1

M�N

bi
*�̄i
i

*�xn���n, �7�

ith normalization

N =
 �N
KKW�N

KKWd�N � �
c=1

N 
 �N
KKWc̄c�N

KKWd�c� , �8�
nd, when written in terms of the auxiliary spin-orbitals 
i,
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N = N
 �̄�d� = N �
i=1

M�N 
 
i
*bi

*�i�ibi
id� = N �
i=1

M�N

�bi�2
 �
i�2d� � N �
i=1

M�N

�bi�2�i�i� . �9�

n this paper we assume equal number of spin up and spin down electrons, the spin restricted case.
he second line in �8�, from the definition of �d�N in Sec. II A is an identity. In �9� we use the
rthonormality generated by �i� j =�ij.

Note that a double set of Grassmann �anticommuting� numbers a ;�i� has been introduced,
his has an analytical analogue in the determinants of the ab initio methods where either the
xchange of columns or of rows change the sign of the determinant. Formally the wave function

could be represented by a rectangular M �N matrix with entries �ia. The second line in �4�
ould correspond to the �real positive number� trace of �̄�. Exchange terms will arise from �4�
hen used in �3�. The 
i’s are defined to form an orthonormal set of spin-orbitals �i � j�
�
i

*
 jd�=�ij�si

sj. The �si

sj ensures that the spin of i and j are the same, this is superfluous here
ut will be used in the following. We introduce the normalization �i �bi�2=1, then the one electron

ensity �1�x�= �̄�x���x�=�i �bi�2
i
*�x�
i�x�.

In �3� the Hamiltonian Ĥ0 for electron n: Hcore�x�+Hinteraction�x� where the second term is an
ffective local one-electron operator, even if the electron repulsion, being dependent on the inter-
lectron distance, is a two-electron �i for n, j for m� operator. The resulting potential is the same
or all components of �.

. Core energy

Rewrite the first two terms in �3� as �c=1
N cĤ

core�c�̄c, then

Ecore = �
c=1

N 
 �̄cĤ
core�c�̄c��d�c = �

c=1

N 
 �
d�

̄d��̄d��xd��cĤ
core�c�̄c� � �

d

d�d�xd�d�c,

�10�

nd from �5� and �7�, orthonomality and equivalence:

Ecore = N
 �̄1�x1�Ĥcore�1��1�x1�d�1 = N
 �
i

�bi�2
i
*Ĥcore
id� . �11�

he above-mentioned c ,�c� and the �i ,�i� have selected the sum of the diagonal elements in
10�. Note that the shell structure cannot be avoided.8,9

. Electron-electron interaction energy

For the electron-electron interaction �e-e�

Ee-e =
 �N
KKW�a

a � 	1

2 �
b�a

N 
 �b
e2

�xab�
̄b�d�b�̄a�N

KKWd�a. �12�

ere, from the equivalence of the N electrons, we have N equal pairwise 1Û2� contributions
hich consider all spin-orbitals. Using the expansion of the �, we obtain

Ee-e =
N

2

 
 �

i


i
*�1�bi

*�̄i�
j


i
*�2��̄ j

e2

�x12�
� �

k


i�2��k�
l


i�1��ld�1d�2. �13�

Considering the property �̄i� j =�ij there are three types of e-e terms:

�I� j=k and i= l which gives
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N

2

 ��

i

 	�

j�i

�bj�2�
 j�2��2
e2

�x12�
�1�x2�d�2 � �bi�2�
i�1��2�1�x1�d�1

=
N

2 �
i

�
j�i

�bj�2�bi�2�ij,ij� =
N

2
EI , �14�

here we have introduced the notation �ij , ij� for the integrals, as they are “Coulomb integrals” in
he accepted electronic structure calculation language. Also the formal local unit factor 1�x�
�̄�x���x� /�1�x� will be fundamental to perform the variational procedure in the following to find

he effective equations for the ��x�. Note that the 1�x� appear twice in this term, this will result in
factor 2 in the variational wave equation.

�II� j= l� i and i=k �the �si

sj from spin orthonormality, and one change of sign from the
nterchange �i� j =−� j�i is needed!�

−
N

2 �
i,j�i

�si

sj�bj�2�bi�2 �
 
 	
 j
*�1�
i

*�2�
e2

�x12�

i�1�
 j�2��d�21�x1�d�1

= −
N

2 �
i,j�i

�si

sj�bj�2�bi�2�ji,ij� =
N

2
EII, �15�

here we have used the notation �si

sj�ji , ij� for the integrals, as they are “exchange integrals”
orresponding to the �i , j� pair of spin-orbitals in the accepted electronic structure calculation
anguage; the �si

sj requires si=sj and ensures that the product 
 j
*�1�
i�1� of the SO, with spin si and

j, respectively, is not null. We use again the formal local unit factor 1�x�.
�III� Null terms, all others, where �i� l and i�k� or �j� l and j�k�.
EI and EII also contribute to the formal interpretation of the Pauli exclusion principle: first a

iven electron is not interacting with itself and, second, there is an “exchange” term for fermions,
here from �i� j =−� j�i a negative sign appears.

II. VARIATION OF THE TOTAL ENERGY WITH RESPECT TO THE �̄

Here we consider the total energy in terms of the � as noted earlier. From the normalization

9� the per electron density is �one-electron�x�= �̄�x���x� and the total density N�one-electron�x�.
We write the total energy

Etotal = Ecore +
N

2
�EI

e-e + EII
e-e� . �16�

or the core term

Ecore/N =
 �̄1�x1�Ĥcore�1��1�x1�d�1, �17�

he variation with respect to �̄1�x1� gives

Ĥcore�1��1�x1� = �−
�2��1�

2

2me
−

ZAe2

�x1� ��1�x1� . �18�

or the variation of EI
e-e /2 with respect to �̄1�x1� we obtain, defining

VI�x1� = �
i
� �bi�2�
i�x1��2

�1�x1�
�
 	�

j�i

�bj�2�
 j�2��2
e2

�x12�
��d�2, �19�
nd, considering that the factor 1�xk� appears twice in �14�, the repulsive electron-electron term
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2 1
2VI�x1��̄1�x1� = VI�x1��̄1�x1� . �20�

inally for the variation of EII
e-e /2 with respect to �̄1�x1� we obtain �assuming here, for simplicity

ot as a restriction in the method, to avoid introducing summations over spin coordinates, equal
umber of spins “up” and “down”�, defining

VII�x1� = − �
i,j�i

�si

sj�bj�2�bi�2

2�1�x1�
�
 	
 j

*�1�
i
*�2�

e2

�x12�

i�1�
 j�2��d�2, �21�

he “attractive-like functions interchange” electron-electron term

VII�x1��̄1�x1� . �22�

. The KKW auxiliary equations

The variational procedure has been carried with respect to the �̄’s, to obtain the formal
quation which describes any electron n in the system �reminder � is a vectorial sum of functions

i�. We collected the different terms of ��N
† Ĥ0�Nd� from �11� to �15� as in �16�, and performed

he variation with respect to �̄�x�, as shown in the previous section. We obtain all together an

ffective Hamiltonian HKKŴ eigenvalue equation

HKKŴ��x� = ���x� ,

HKKŴ � �−
�2�2

2me
−

Ze2

�x�
+ VI�x� + VII�x�� . �23�

his is not yet a practical equation. Use now the expansion of the � in terms of the 
 for a further
eduction. Write �23� as

HKKŴ�i=1

M�N
bi�i
i�xn� = ��i=1

M�N
bi�i
i�xn� , �24�

pply on both sides the projector �i to obtain the practical equations for the set of auxiliary
rthonormal functions 
i �from �̄i�=bi
i�,

HKKŴ
i = �i
i. �25�

inally we obtain, by left multiplication with �̄ of �23�, integration and the normalization �� ���
1, �
i �
i�=1, a relation between the � and the �i’s given by �=�i�i �bi�2= �̄, that is: � in �23� is

he weighted average eigenvalue.

. A more familiar and practical form of the auxiliary wave equations

We can rewrite the electron-electron interaction energy in a computationally more practical
orm �related to the ab initio methods.1� Consider

Ee-e =
N

2
EI + EII� ,
nd rewrite as
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Þ
N

2

 �̄�x1�ECoul�x1� + EXC�x1����x1�d�1,

btained if, in the above-presented definitions, the “self-Coulomb” integrals �bi�2�ii , ii� are added
o remove the condition j� i, to EI. The “self-exchange” integrals −�bi�2�ii , ii� are added to remove
he condition j� i, to EII. �The EII is now as in the formally equivalent considerations of the first
art of the Slater �1951� idea,13 which here is no longer an approximation.� Then

HKKŴ � �−
�2�2

2me
−

Ze2

�x�
+ VCoul�x� + Vxc�x�� ,

VCoul�x1� = N
 	��2�
e2

�x12�
�d�2,

Vxc�x1� = −
N

��x��i,j �si

sj�bj�2�bi�2 �
 	
 j
*�1�
i

*�2�
e2

�x12�

i�1�
 j�2��d�2. �26�

By substitution of �26� in �25�

�−
�2�2

2me
−

Ze2

�x�
+ VCoul�x� + Vxc�x��
i�x� = �i
i�x� . �27�

Reminder HKKŴ is the same for all 
i’s.
The total energy is obtained by direct integration of the set of equations �27� multiplied on the

eft by �i �bi�2
i
* and comparing with �16�:

E��� = �
i

�bi�2�i −
ECoul

2
−
 VXC�x���x�d� + EXC �28�

we must remember that ECoul and EXC include the “self-Coulomb” and the “self-exchange,”
espectively�.

With additional variational constants bij defined through bi=��1−� j�Nbij� /N for i�N and

j =��i�Nbij� /N j�N, we obtain a �twice� variational procedure to obtain a set bij� and the 
i. A
ecular determinant can be constructed and solved. If the basis 
i� is large enough a time-
ependent formulation with �V�t� can be constructed where biÞbi�t� and the bij Þbij�t� describe
nduced transitions.

Finally the basic definition for the total energy E=E��̄�x���x�� of N equivalent carriers

electrons�, can be formally written in terms of the density N�̄�x���x� defining

Ecore = N
 	�
i

�bi�2
i
*�x1�Ĥcore
i�x1�

�1�x1� � � �̄�x1���x1�d�1 = N
 �core�x1��̄�x1���x1�d�1.

�29�

E = N
 �core�x1� + �inter�x1���̄�x���x�d�1, �30�

nd, considering E=N���̄�x���x�d�1, we define

core inter
� �x1� + � �x1� = � .
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V. THE PROPERTIES OF THE WAVE FUNCTION: CONCLUSIONS

The KKW wave function describes a system of N electrons with an expansion based on M
N auxiliary, mutually orthogonal functions, solutions of the same “KKW” Hamiltonian. The

omplete wave function, then the one density, is directly optimized and not each auxiliary function
t a time.

From the many possibilities to construct the � it is useful to choose the one presented here
ecause the eigenvalues �i, by construction the rate of change of the total energy with respect to
ccupation of the “i” spin-orbital, are an approximation to the removal energy of one electron,
rom that 
i, in the system. Also because the SO functions, being related to the response function
f the system, have become observables.

• The KKW method offers a complete variational solution to the problem of finding the
wave function and simultaneously the energy of the ground state of the N electron system.

• To find the limit for the ground state energy of the system the number of auxiliary
functions to be considered is M �N. The practical approach to this calculation will be
twice variational, first in the sense that the auxiliary functions are found from the variation
of a functional, and second because the weight of the contributions of the set of M �N
functions requires a set of variational parameters to be found.

• The new method systematically includes the kinetic and the potential energy for all the
M�N auxiliary functions. It has the advantage that all spin-orbitals are simultaneously
optimized. An alternative would be to obtain M��N functions from the results for M
=N and, in a second step, the best possible bij for the M� case.

• The calculations can include the use in the Hamiltonian of selective pairwise interaction
terms

��Ve-e�ab = ab��Vmn�̄b̄a,

allowing the description of pair-correlations of any origin: magnetic, or electron-phonon
or from any other indirect type. Also specific one spin-orbital cases ��V�a=a��Va�̄a.
This being a further advantage of the geometric notation.

• The self-consistent solution requires, in general, numerical solutions. Nevertheless all
analytic and computational methodologies in usual practice can be used without major
changes.

Comparison with previous methodologies: Conclusions. In practice several features made the,
ow known as the Hartree-Fock method �HF2,3�, the reference for atomic, molecular, and ground
tate condensed matter calculations: it is a formally correct variational procedure based on the use
f a determinant of auxiliary functions for which a differential equation is deduced within the
ethod. It includes �through the basic properties of the Slater determinant� the Pauli exclusion

rinciple as well as the indistinguishability of equivalent fermions. HF is also a suitable starting
alculation for establishing the procedure known as configuration interaction �CI�, introducing a
et of variational constants, when the spin-orbitals resulting from the HF calculation are used to
onstruct a formally complete wave function as a sum of mutually orthogonal Slater determinants.
he standard definition of “exchange energy” and of “correlation energy” is given in relation to

he HF+CI procedures. In the determinants no two-electron-relative-coordinates functions are
sed, neither in these approaches nor in the one described earlier.

Another widely used methodology, based on the density functional theory �DFT� a correct
ormal procedure itself,14,15 can be considered as related to HF+CI as the standard calculations
nclude local density functionals for the exchange and correlation energies and potentials.

The methodology developed here shares both all the favorable features of the HF+CI method
nd the advantages of the DFT procedure. This suggests that there should be a relation among all
hree procedures HF+CI, DFT, and KKW.
• The KKW method �M =N� requires the self-consistent solution of N differential equations,
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as in DFT, unlike the HF which is an N�N formulation. Compared to the ab initio
techniques, our methodology employs a simpler set of equations.

• If, as in the HF method, using M =N, each auxiliary function were to be optimized
separately one at a time in a self-consistent set, from our expressions �16� for the total
energy, we go back to the HF procedure and results. Our method has the advantage that
the complete set is optimized simultaneously to search for the lowest total energy.

• The KKW method in the minimum auxiliary functions procedure is equivalent to the
Slater �1951� average exchange proposal �with the so-called “exact” exchange� and in fact
transforms this Slater “approximation” into a nonapproximate procedure where all auxil-
iary functions are optimized simultaneously. This is independent of the DFT approxima-
tion for EXC.

• The formal structure of the new method enriches the methodology of the DFT by showing
that the Slater exchange and the Kohn-Sham procedures are formally integrated to the
general scheme and also because an N-electron wave function �, which is required in the
theorems of the formal DFT theory, is constructed and used within the formalism.

The KKW approach also shows, from the different analysis presented here, DFT both as an ab
nitio and as a first principles method. This is an important formal contribution of our study.

In the following we quote standard use of the so called ab initio and DFT methods, see, for
xample Refs. 1, 16, and 17.

Computationally there is no need to consider a self-Coulomb energy. As all electrons have
quivalent descriptions, with the same density per electron, there is an exact resultant factor ��N
1� /N� in the electron-electron Coulomb interaction. It is basic for the calculation of the hydrogen
tom. It is dominant in the calculation of the helium atom where each of the two electrons interact
ith the other but not with itself, and progressively less important for larger systems where the

nterchange part of the interaction grows. Standard DFT programs18,19 for atomic electronic struc-
ure calculations are easily modified, an �N−1� /N factor in the Coulomb potential, replacement of
he exchange-correlation and total energy subroutines, to solve the KKW equations �27�. As a
umerical test the relativistic program “David”19 was adapted, the H atom calculation used as a
rst check of the numerical procedures, the He atom with M =N, the Hartree-Fock limit for the
oulomb interaction, and the He atom with �1s ,2s ,2p� for the M �N case, beryllium and krypton

n the M =N as further tests. All results are acceptable in the limit of the corresponding approxi-
ations �Hartree atomic units�:

tom Etotal EHF EDFT Eexp

−0.5 −0.5 ¯ −0.5
e −2.886 −2.864 −2.867 −2.90
e −14.603 −14.573 −14.592 −14.673
e −128.87 −128.55 −128.62 −128.94
r −2799.49 −2796.72 −2787.80 ¯

In our analysis we have gone beyond complex algebra and calculus, in fact we have gone to
he more general domain of the Grassmann-Clifford algebra and analysis.
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We provide a complete picture of contractivity of trace preserving positive maps
with respect to p-norms. We show that for p�1 contractivity holds in general if
and only if the map is unital. When the domain is restricted to the traceless sub-
space of Hermitian matrices, then contractivity is shown to hold in the case of
qubits for arbitrary p�1 and in the case of qutrits if and only if p=1, �. In all
noncontractive cases best possible bounds on the p-norms are derived. © 2006
American Institute of Physics. �DOI: 10.1063/1.2218675�

. INTRODUCTION

This article addresses the following question: Given a positive and trace preserving linear
ap T between matrix spaces, when is T contractive with respect to the p-norm, with 1�p��.

This problem has come up in several contexts in recent years. For instance, Olkiewicz,1 in his
nvestigation of the superselection structure of dynamical semigroups, needs as a starting point the
act that a 2-positive map that is contractive with respect to both the trace and operator norm is
lso contractive with respect to the Hilbert-Schmidt norm. The same result is needed by Raginsky2

n his study of entropy production of a quantum channel. In the context of quantum information
his question arose again in Ref. 3, in the study of entanglement measures. It is shown there that
ny distance �in the space of matrices� that is contractive under completely positive trace preserv-
ng maps gives rise to a “suitable” entanglement measure. Their conjecture that the Hilbert-
chmidt norm is such a distance was disproved shortly thereafter by Ozawa in Ref. 4. In Ref. 5,
ielsen stated �without proof� that the Hilbert-Schmidt distance is contractive in the space of
ubits, with respect to any completely positive trace preserving map. He also encouraged further
tudy of this problem. Recently, the fact that a completely positive trace preserving map is con-
ractive with respect to the trace norm was used in Ref. 6 in the context of condensed matter
heory in a theoretical justification for the high accuracy of renormalization group algorithms.

Motivated by the appearance of the previous question in so many different areas of physics,
e will try in this note to give a complete picture of the solution. We will first study the general

ase and then restrict the domain of the maps to the traceless hyperplane.

�
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I. THE GENERAL CASE

In the following Mn will denote the space of n�n matrices. A linear map T :Mn→Mr is
alled positive if it maps positive semidefinite matrices to positive semidefinite matrices, trace
reserving if tr T�A�=tr A for all A�Mn, and unital if T�1�=1. It is easy to see that T is trace
reserving if and only if its adjoint T* :Mr→Mn is unital, and that T is positive if and only if T*

s positive.
The p-norm �we will assume always 1�p��� of a matrix A is defined as �tr�A�p�1/p

��i�i
p�1/p, where the �i are the singular values of A �i.e., the eigenvalues of �A���A*A�. We write

p
n for Mn endowed with the p-norm. For T :Mn→Mr, we use 	T	p−p to denote the operator
orm of T when we consider the p-norm in both the original and the final space, i.e., 	T	p−p

supA�Mn
�	T�A�	p / 	A	p�. T is called contractive under the p-norm if 	T	p−p�1. Our first result is

Theorem 2.1: If T :Mn→Mr is positive and trace preserving, then 	T	p−p�n1−1/p.
Moreover, the bound n1−1/p is attained when T is the the trace operator tr:Mn→C �which is

ompletely positive and trace preserving�.
The main ingredient in the proof is a noncommutative version of the Riesz-Thorin theorem.

See Ref. 7 or Sec. IX.4 of Ref. 8.� We will also use a theorem of Russo and Dye �Ref. 9,
orollary 2.9�.

Theorem 2.2 (Noncommutative Riesz-Thorin): If T :Mn→Mr is a linear map, then

	T	p−p � 	T	1−1
1/p 	T	�−�

1−1/p.

Theorem 2.3 (Russo-Dye). If T :Mn→Mr is positive, then 	T	�−�= 	T�1�	�.
Proof. To prove Theorem 2.1, first note that under its hypotheses, T* is positive and unital.

hen Theorem 2.3 implies that 	T*	�−�= 	T*�1�	�= 	1	�=1. Hence, using the duality �S1
n�*=S�

n , we
an conclude that 	T	1−1=1. Moreover, 	T	�−�= 	T�1�	�� 	T�1�	1= 	1	1=n. Combining these
ounds with Theorem 2.2 gives the claimed result. �

We used the fact that when T is trace preserving, then T positive implies 	T	1−1=1. In Ref. 9,
roposition 2.11 it is shown that for T trace preserving, T is positive if and only if 	T	1−1=1.

When T is positive, trace preserving and unital the argument used to prove Theorem 2.1 shows
hat 	T	1−1= 	T	�−�=1. Then Theorem 2.2 implies that T is contractive for all p-norms. The next
heorem shows that this is an equivalence.

Theorem 2.4: If T :Mn→Mn is positive and trace preserving, the following are equivalent:

i� 	T�1�	p�n1/p for some 1�p��;
ii� T is unital;
iii� T is contractive for the p-norm for every 1�p��; and
iv� T is contractive for the p-norm for some 1�p��.

Proof. It only remains to prove that �i�Þ �ii�. To do this, let ��i�i=1
n denote the eigenvalues of

�1�. Since T is positive, �i�0; and since T is trace-preserving, �i�i=tr T�1�=tr 1=n. Hölder’s
nequality can then be used to conclude that �i�i

p�n with equality if and only if �i=1 for all i.
ut, by assumption, 	T�1�	p�n1/p for some p�1. Thus, we must have equality so that T�1�=1.�

The hypothesis that T is both unital and trace preserving can only be satisfied when r=n. In
hat case, when T is trace preserving, but not unital, it follows that 	T	p−p�1. When n�r, this
oes not hold, i.e., there are non-unital trace-preserving completely positive maps T :Mn→Mr

or which 	T	p−p�1. To see this one needs Jencova’s result10 that 	T	p−p=�p�TC� where �p�T� is
he completely bounded 1→p norm studied in Ref. 11 and TC denotes the conjugate or comple-
entary channel defined in Refs. 12 and 13. From the results in Ref. 11 one can find depolarizing

hannels Tdep such that �p�Tdep��1. To see this let 	=1/ �n+1� in Eq. �5.4� in Ref. 11. Since
=1/ �n+1� is the boundary between depolarizing channels which are entanglement breaking and

hose which are not, this yields examples in both classes. As the conjugate Tdep
C is not unital,13 we

ave explicit examples of non-unital trace-preserving completely positive maps T :Mn→Mn2 for
hich 	T	p−p�1.
The implication �ii�Þ �iii� was proved using complex interpolation. For p=2, one can obtain
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n elementary proof by using that 	T	2−2
2 is the largest eigenvalue of T* �T considered as an

perator on the Hilbert space Mn with inner product 
A ,B�=tr A*B. When T is both trace-
reserving and unital, 1 is an eigenvector with eigenvalue 1, and the orthogonality of eigenvectors
mplies that tr G=tr 1G=0 for any other eigenvector G �which we can assume is Hermitian
ithout loss of generality�. Now let G be one of these eigenvectors and let � be the largest real
umber for which 1+�G is positive semi-definite. Since T* �T is also positive, �T* �T��1+�G�
1+��G�0. But this implies that ��1 by the definition of � so that 	T* �T	�=1.

II. THE TRACELESS HYPERPLANE

Using the p-norm to measure the distance between density matrices, gives expressions of the
orm 	
−
�	p, where 
−
� is a Hermitian matrix with trace 0. In this section we investigate the
ehavior of such distances under positive and trace preserving maps. Let �T�H0

denote the restric-
ion of T to the hyperplane H0 of traceless Hermitian matrices.

Theorem 3.1. Let T :Mn→Mn be a positive trace preserving linear map. Then

	�T�H0
	p−p � � n

2
�1−1/p

, n even

 22−p

�n − 1�1−p + �n + 1�1−p�1/p

, n odd � .

Moreover, this bound is optimal, as there exists a completely positive trace preserving map
hat saturates the inequality.

Proof. We begin by proving the upper bound. For an arbitrary positive trace preserving map
:Mn→Mn, consider A Hermitian, traceless and with 	A	p�1. We can write A=A+−A− with A+

nd A− both positive semi-definite and A+A−=0. As T is positive, �T�A��+�T�A+� and �T�A��−

T�A−�. Then,

	T�A�	p
p = tr�T�A��p = tr��T�A��+�p + tr��T�A��−�p = 	�T�A��+	p

p + 	�T�A��−	p
p � 	T�A+�	p

p + 	T�A−�	p
p.

all r=range�A+� and s=range�A−� and denote the eigenvalues of A+ and A− by �1 , . . . ,�r and

1 , . . . ,	s, respectively. It follows from Theorem 2.4 that 	T�A+�	p
p�rp−1	A+	p

p and 	T�A−�	p
p

sp−1	A−	p
p. Using Lagrange multipliers in the problem

maximize�rp−1�
i=1

r

�i
p + sp−1�

i=1

s

	i
p�

estricted to

�
i=1

r

�i
p + �

i=1

s

	i
p = 1,

�
i=1

r

�i − �
i=1

s

	i = 0

ne finds that at least one of the following two conditions is satisfied: �i=� j and 	i=	 j for every
, j, or s=r.

In the first case we have that �assuming now without loss of generality that tr�A+�=1�

	T�A�	p
p

	A	p
p �

2

r1−p + s1−p .

his is in turn maximized and leads to the inequality in Theorem 3.1 if s=n−r and r=n /2 for even

, and r= �n+1� /2 for odd n respectively. In the second case r=s we have that
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	T�A�	p
p � rp−1�	A+	p

p + 	A−	p
p� ,

ielding the sought inequality for r=n /2 �even n�; whereas r�n /2 does not lead to a new
nequality.

To prove optimality of the bound above, consider the completely positive and trace preserving
ap T :Mn→Mn given by

T�A� = �0�
0�tr�PA� + �1�
1�tr��1 − P�A� ,

here P is a projector of dimension d=tr P. If we apply this map to a traceless Hermitian operator
of the form A= P− (d / �n−d�)�1− P� we obtain

	T�A�	p

	A	p
=  2dp

d + dp�n − d�1−p�1/p

.

his achieves the above bound if d=n /2�d= �n+1� /2� for n even �odd�. �

Any trace-preserving map can be written uniquely in the form T�A�=N tr�A�+T1�A� where

1�A� is a unital trace-preserving map and N= �1/d��T�1�−1� is traceless. If T1 is also positive, it
ollows from Theorem 2.4, that �	T��tr=0�	p−p�1 and we can drop the restriction to Hermitian
atrices. Unfortunately, the previous results demonstrate that even when T is positive and trace

reserving, T1 need not be positive.

. Maps on qubits

When n=2, Theorem 3.1 implies contractivity in the traceless subspace of Hermitian matrices,
.e., �	T�H0

	p−p=1. Here, however, there is no need to restrict to Hermitian matrices. For qubits, T
ositive and trace preserving implies that the previous map T1 is always positive.

Theorem 3.2. For any positive trace preserving linear map T :M2→M2 and 1�p�� we
ave that

max
tr�A�=0,	A	p=1

	T�A�	p � 1.

Proof. The theorem is proved by showing that the T1 defined above is indeed positive. Con-
ider the action of T on a density operator 
= 1

2 �1+w ·�� represented as a vector w�R3 on the
loch sphere. Any trace preserving and positive linear map acts as

T�1 + w · �� = 1 + �r + Rw� · � ,

here r�R3 and R is a real 3�3 matrix. T is positive iff 	w	2�1 implies 	r+Rw	2�1. Let � be
he largest singular value of R. Then there are unit vectors u ,w�R3 such that Rw=�u. As
�−w�=��−u�, one can choose the sign of w such that r ·u�0, and thus 1� 	r+�u	2��. This

mplies that the unital trace preserving map T1�1+w ·��ª1+ �Rw� ·� is indeed positive, and the
esult follows from Theorem 2.4. �

. The case of qutrits

Theorem 3.1 still implies contractivity in H0 for the case n=3 if p=1 or p=� �whereas this
ails for 1�p���. As in the case of qubits one might expect that the result for p=� also extends
o non Hermitian matrices. This is, however, not the case. A simple counterexample is given by the

ap

T�A� = �
i=0

1


i�A�i��0�
0� + 
2�A�2��1�
1� ,

cting on A=a0�0�
0�+a1�1�
1�+a2�2�
2�, where a0 ,a1 ,a2 are the three complex cubic roots of

nity. In this case we have that tr�A�=0, 	A	�=1, but 	T�A�	��1.
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ontraction of broken symmetries via Kac-Moody
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I investigate contractions via Kac-Moody formalism. In particular, I show how the
symmetry algebra of the standard two-dimensional Kepler system, which was iden-
tified by Daboul and Slodowy as an infinite-dimensional Kac-Moody loop algebra,
and was denoted by H2, gets reduced by the symmetry breaking term, defined by
the Hamiltonian H���= �1/2m��p1

2+ p2
2�−� /r−�r−1/2 cos���−�� /2�. For this H���

I define two symmetry loop algebras Li���, i=1,2, by choosing the “basic genera-
tors” differently. These Li��� can be mapped isomorphically onto subalgebras of
H2, of codimension two or three, revealing the reduction of symmetry. Both factor
algebras Li��� / Ii�E ,��, relative to the corresponding energy-dependent ideals
Ii�E ,��, are isomorphic to so�3� and so�2,1� for E�0 and E�0, respectively,
just as for the pure Kepler case. However, they yield two different nonstandard
contractions as E→0, namely to the Heisenberg-Weyl algebra h3=w1 or to an
Abelian Lie algebra, instead of the Euclidean algebra e�2� for the pure Kepler case.
The above-noted example suggests a general procedure for defining generalized
contractions, and also illustrates the “deformation contraction hysteresis,” where
contraction which involves two contraction parameters can yield different con-
tracted algebras, if the limits are carried out in different order. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2234726�

. INTRODUCTION

In 1926 Pauli1 obtained the energy levels of the relativistic hydrogen atom algebraically, by
sing the conserved angular-momentum L=rÃp and the Hermitian form of the Laplace-Runge-
enz vector

A =
1

2
�p Ã L − L Ã p� − m�r̂ . �1�

he commutation relations among their components are given by

�Li,Lj� = i��ijkLk, i, j,k = 1,2,3,

�Li,Aj� = i��ijkAk, �2�

�Ai,Aj� = − i2mH��ijkLk,

here H is the Hamiltonian of the nonrelativistic three-dimensional �3D� hydrogen atom. The
ommutation relations in �2� do not define a closed algebra, since the H on the right-hand side of
2� is an operator and not a number. To nevertheless obtain closed algebras physicists for 70 years

�On Sabbatical leave from the Physics Department, Ben Gurion University of the Negev, 84105 Beer Sheva, Israel;

electronic mail: daboul@bgu.ac.il

47, 083507-1022-2488/2006/47�8�/083507/13/$23.00 © 2006 American Institute of Physics
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ave replaced the Hamiltonian H by its eigenvalues E, and thus obtained three different identifi-
ations of the symmetry algebra of the hydrogen atom, namely so�4�, so�3,1� and e�3�, for E

0, E�0 and E=0, respectively.2 The same conclusion can be reached by formally “normaliz-
ng” the Runge-Lenz vector A by dividing it by �2m�H�, but the resulting quotient vector becomes
nfinite for H=0.

Instead of the above-noted “conventional procedure,” Daboul and Slodowy3 showed that one
an obtain a single closed algebra based on the commutation relations �2�. This algebra is spanned
y the following infinite set of generators:

H3 ª �hnLi,h
nAi�i = 1,2,3,n = 0,1, . . . � ,

�3�
where h ª − 2mH .

he algebra H3 and its generalizations HN, the symmetry algebras of the N-dimensional hydrogen
tom, were identified3,4 as positive loop algebras of twisted or untwisted Kac-Moody algebras,5,6

or N odd or even, respectively. They were called the hydrogen algebras. The above-mentioned
ormalism will be reviewed in Sec. II, and applied to H2, the hydrogen algebra of the standard
wo-dimensional �2D� Kepler system, defined by the Hamiltonian H0 of Eq. �5�.

The algebras HN depend on the Hamiltonian H, but not on its energy eigenvalues E. However,
ne can reproduce the usual three corresponding finite-dimensional algebras, so�N+1�, so�N ,1�,
nd e�N�, as factor algebras HN / I�E� relative to energy-dependent ideals I�E�; The ideals and
actor-algebra formalism will be discussed and applied to H2 in Sec. II A.

In the present paper I investigate what happens to the algebra H2 and its factor algebra, if the
riginal symmetry of the 2D hydrogen atom is broken. In particular, I shall study the following
amiltonian:

H ª H0 − �r−1/2 cos� 1
2 �� − ��� �� = 0 in the present paper� , �4�

here H0 is the Hamiltonian of the two-dimensional Kepler problem

H0 ª
1

2m
�p1

2 + p2
2� −

�

r
=

1

2m
	pr

2 +
p�

2

r2 
 −
�

r
. �5�

hroughout this paper I shall set the phase angle � in �4� equal to zero, since it can always be
emoved by appropriate choice of the coordinate system �see, however, the discussion in Sec. V�.

The Hamiltonian �4� has an interesting history: It was discovered by Winternitz et al.7 already
n 1967 in their systematic search for super-integrable systems. It was also derived in a more
eneral complex form by Sen �Ref. 8, Eq. �3.14�� in 1987.

The symmetry of �4� was originally studied by Gorringe and Leach9 in 1993 and recently
eviewed by Leach and Flessas—Ref. 10, Sec. §3.3 �see also Ref. 11�. The above-noted authors
ollowed the conventional method and found that the symmetry algebras of �4� are so�3� and
o�2,1� for E�0 and E�0, exactly as for the pure 2D Kepler problem �5�. However, for E=0

hey obtained the Heisenberg-Weyl algebra h3=w1 �which they denoted by W�3,1��,9,10 instead of
he Euclidean algebra e�2� for the Kepler case �5�.

This result was intriguing, since the symmetry breaking does not affect the symmetry for E
0, and only affect it for E=0. And I wondered whether and how the above type of symmetry

reaking can be treated via the Kac-Moody formalism. It turned out that the symmetry algebra of
4� can be treated, via the Kac-Moody formalism, similar to the pure Kepler case, with some
mportant modifications. For example, it is possible to describe the symmetry algebra of �4� by
wo loop algebras, L1 and L2, depending on the choice of the “basic generators.” It is remarkable
hat these two algebras can be mapped onto subalgebras of H2 of codimension two and three, i.e.,

2 is larger than these image subalgebras by only two and three generators, out of infinitely many.
he “missing” generators are manifestations of the symmetry breaking.
Moreover, I will show that the factor algebras Li / Ii�E ,�� relative to the corresponding energy-
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ependent ideals yield different types of contractions,12–14 which are included in Table I. This
esult is important, since the contraction procedure for the above-noted specific system can be
eneralized to other algebras, as discussed in Sec. VI.

In Sec. II I review Inönü-Wigner contraction and its generalization and in Sec. III I review the
onstruction of the hydrogen algebra H2 for the pure 2D Kepler problem �5�. In Secs. IV and V I
onstruct two loop algebras L1 and L2 for the system �4� and their factor algebras Li / Ii�E ,��. In
ec. VI I map the Li onto subalgebras H2, and as I already noted, I shall suggest a general
rocedure for defining contraction via Kac-Moody formalism and then give some conclusions.

I. REVIEW OF GENERALIZED INÖNÜ-WIGNER CONTRACTION

There are many formulations of contractions.12,13 I shall give my own definition and notation:
Definition: Let gª �Xa ,Cab

c � be a finite-dimensional Lie algebra with a basis Xa, a
1,2 , . . . ,N and structure constants Cab

c , and let the parameter-dependent Lie algebra g�

�Xa
� ,Cab

c ���� be defined, such that the one-to-one linear map f� between g and g�,

f�:g � g�, f��Xa� = �−naXa
� , �6�

s an isomorphism of Lie algebras as long as ��0. If the powers na satisfy the condition,

na + nb 	 nc �7�

hen the limit algebra g0= �Xa
0 ,Cab

c �0�� with the structure constants

Cab
c �0� ª lim

�→0
Cab

c ���

xists and it is called the contracted algebra. I shall refer to g� as the contracting algebra and to
ts generators Xa

� as the contracting generators.
It is important to emphasize that Xa

� and Xa
0 denote the generators of the Lie algebras g� and

0 which are defined via the structure constants Cab
c ��� and Cab

c �0�, respectively. Therefore, the Xa
0

re not to be regarded as the limits of Xa
� for �→0. Thus, the Xa

0 always exist, by definition, as
enerators of the contracted algebra g0, even though representations r�Xa

�� of g� might exist with
ome of the generators having vanishing limits, i.e., lim�→0r�Xb

��=0. Such representations could be
alled not saved or unsaved. Otherwise, they are called saved representations.15 Actually in Sec.

I shall give a realization of a saved representation of an algebra whose contraction yields an
belian algebra, i.e., Cab

c =0 for all a ,b ,c. For this contraction even the adjoint representation13 is
ot saved.

Usually Xa is used also to denote the contracting and contracted generators Xa
� and Xa

0.13 This
onvention is probably used to avoid confusing Xa

0 as the limit of Xa
� for �→0. To distinguish the

lgebras g� from g and g0 one attaches an index � to the commutators �,��, as it is done in Eq. �8�
elow. I find this usual notation confusing, since Xa

0 are the generators of a different algebra g0. I

TABLE I. The three factor algebras H2 / I�E� and Li / Ii of the loop algebras
H2 and Li relative to the corresponding energy-dependent ideals I�E� and
Ii�E ,��. For E�0 all three factor algebras are isomorphic to so�3� for E
�0 and to so�2,1� for E�0, but yield different contractions for E→0.

Hamiltonian Factor algebra E�0 E=0 E�0

H0 in �5� H2 / I�E� so�3� e�2� so�2,1�
H in �4� L1��� / I1�E ,�� so�3� h3=w1 so�2,1�
H in �4� L2��� / I2�E ,�� so�3� R3 so�2,1�
refer attaching the � to the generators but keep the commutator symbol �,� unchanged. This
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otation is more useful and user-friendly, especially if matrix representations exist, since one uses
A ,B�=AB−BA and the standard matrix multiplication, whether the matrices A and B represent
enerators of the original or the contracted algebras.

In contrast to the formal definition of Xa
0, the limits r�Xb

0�ª lim�→0r�Xb
�� of representations or

ealizations r�Xa
��, if they exist, should satisfy the commutation relations of g0, although some of

hese representations may not be saved.
The condition �7� is necessary and sufficient to make the limit algebra g0 well defined. It

nsures that the contracting structure constants Cab
c ���, defined by


c=1

N

Cab
c ���Xc

�
ª �Xa

�,Xb
��� = �na+nb�f��Xa�, f��Xb��� = �na+nbf���Xa,Xb�� = �na+nbf�	

c=1

N

Cab
c Xc


= 
c=1

N

�na+nb−ncCab
c Xc

�, �8�

ave finite limits for �→0.
The Inönü-Wigner contraction is a special case of the above-presented definition, where

ni = 0 for i = 1,2, . . . ,M ,

�9�
n� = const � 0 for � = M + 1,M + 2, . . . ,N .

n this case, and by choosing const=1 for convenience, we obtain for �→0:

�Xi
�,Xj

�� = 
k=1

M

Cij
k Xk

� Þ 
k=1

M

Cij
k Xk

0,

�10�
where Xk

0
ª lim

�→0
Xk

�,

�Xi
�,X�

� � = 
k=1

M

�Ci�
k Xk

� + 
�=M+1

N

Ci�
� X�

� Þ 
�=M+1

N

Ci�
� X�

0 , �11�

�X�
� ,X�

� � = 
k=1

M

�2C��
k Xk

� + 
�=M+1

N

�C��
� X�

� Þ 0. �12�

e see that the commutation relations �10� define a subalgebra gRª �Xi
0���Xi�, because Cij

� must
anish to satisfy the condition �7�, as was originally concluded in Ref. 12. Note that �12� tells us
hat I0= �X�

0� is an Abelian subalgebra, whereas �11� tells us that I0 is an ideal of g0.
The contractions which are not of the Inönü-Wigner type are called generalized Inönü-Wigner

ontractions. In the present paper we shall encounter one example of Inönü-Wigner contractions
nd two examples of generalized Inönü-Wigner contractions.

To give the reader an intuitive understanding of the above-presented definitions and notation,
et us consider the famous example of contracting the Lorentz algebra to the Galilean algebra: Let

ij denote a basis of 4
4 matrices, defined by �eij�kl=�ik� jl. They have the following commutation
elations:

�eij,est� = � jseit − �itesj, i, j,s,t = 1,2,3,4. �13�
e define the three contracting boosts by
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Bi
�
ª �2ei4 + e4i = �	�ei4 +

1

�
e4i
¬ �f��Bi�, i = 1,2,3. �14�

hese commute as follows:

�Bi
�,Bj

�� = �2�ei4,e4j� = �2�eij − eji� ¬ − �2Lij Þ 0, �15�

hich shows how the Lorentz algebra so�3,1� for �=1 is contracted to the Galilei algebra, which
s the Euclidean algebra e�3�, in which the limits of the boosts Bi

0=e4i generate an Abelian ideal.

II. THE HYDROGEN ALGEBRA H2 of H0

Instead of the six generators L and A for the 3D Kepler problem, only three generators are
onserved for the 2D Kepler problem.10 These are the third component of angular momentum L3

nd two components of the Runge-Lenz vector A:

L � L3 ª xpy − ypx = p�,

�16�
A ª �A1,A2� = Lpyx̂ − Lpxŷ − m�r̂ .

n the following I shall use the following notation:

h0 � − 2mH0, h � − 2mH, � � − 2mE . �17�

or simplicity and also in order to compare my results with those of Ref. 10, I shall use from now
n Poisson brackets instead of commutation relations. But I shall nevertheless refer sometimes to
hese Poisson brackets as commutators.

The Poisson brackets of the above-mentioned generators are

�L,A1� = A2,

�A2,L� = A1, �18�

�A1,A2� = h0L ,

here h0ª−2mH0. The loop algebra H2 is spanned by the following generators:

L�2n�
ª h0

nL, Ai
�2n+1�

ª h0
nAi �i = 1,2�, n 	 0. �19�

call the upper index the grade of the corresponding operator. According to the above-presented
onstruction, every multiplication by h0 raises the grade of the generators by 2. With the commu-
ators �18� the set

H2 ª �A1
�2n+1�,A2

�2n+1�,L�2n��n 	 0� �20�

ecomes a closed Lie algebra, which is a subalgebra of the affine Kac-Moody algebra A1
�1�.

. The factor algebra H2 / I„E…

The three standard finite-dimensional algebras, so�3�, so�2,1�, and e�2� can be recovered
rom H2, as in Refs. 3 and 4, as follows: First we define an energy-dependent ideal of H2 by

I�E� ª �H0 − E�H2 = �h0 − ��H2,

where � ª − 2mE . �21�

ext, we define the energy-dependent factor algebra H2 / I�E� relative to the above-noted ideal.

his factor algebra consists of three elements or classes,
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H2/I�E� = �A1
�,A2

�,L�� , �22�

hich obey the following commutation relations:

�L�,A1
�� = A2

�, �A2
�,L�� = A1

�, �A1
�,A2

�� = �L�. �23�

he commutation relations �23� are exactly those of �18�, except that the operator h0 in �18� is now
eplaced by the numerical parameter �. This is what physicists usually obtain by directly replacing
he Hamiltonian H by its energy eigenvalue E.

The above-mentioned classes can be identified by their representatives as follows:

A1
� = A1 + I�E�, A2

� = A2 + I�E�, L� = L + I�E� . �24�

o see why each “basic element” becomes a representative of its class, we recall that quite
enerally an ideal I of an algebra g acts additively as the zero element of the factor algebra g / I.
n our case, this fact yields the following equivalence relation in H2 / I�E�:

h0
nXi � �nXi, mod �I�E�� , �25�

here Xi is a basic generator, i.e., the element which generates the whole infinite “tower”
h0

nXi �n=0,1 , . . . �. The above-mentioned equivalence relation can be proved easily as follows:

h0
nXi − �nXi = �h0

n − �n�Xi = �h0 − ��	
k=0

n−1

�n−1−kh0
k
Xi � I�E� . �26�

quation �25� tells us that in the factor algebra we can replace every element h0
nXi�H2 by �nXi,

hich is simply a numerical multiple of Xi. Hence, in H2 / I�E� we can replace every element in the
ower �h0

nXi �n=0,1 , . . . � by a single element Xi, so that H2 / I�E� is a finite-dimensional algebra
enerated by the Xi, which in our case are the three elements given in �24�.

Note that the Hamiltonian H0 by itself is not an element of the ideal I�E�.

. Contraction of the factor algebra H2 / I„E…

It is easy to check that the map

f���sgn ���Li� =
1

����
Ai

�, i = 1,2,

�27�
f��L3� = L�,

efines an isomorphism between the algebras so�3�, so�2,1�, and the factor algebra H2 / I�E� for
�0, ��0. Hence, by treating �=−2mE as a contraction parameter �, the classes A1

�, A2
�, and L�

ith the commutation relations �23� can be regarded as the generators of a contracting algebra g�

see Sec. II�, for ��0 �!�.
For �→0 the algebras H2 / I��� are contracted to H2 / I�0�, whose commutation relations follow

rom �23�

�L0,A1
0� = A2

0, �A2
0,L0� = A1

0, �A1
0,A2

0� = 0. �28�

ince these are the commutation relations of the Euclidean algebra e�2�, it follows that H2 / I�0�
e�2�. Since f� is an isomorphism for ��0, we conclude that a contraction of H2 / I��� for the

onbroken Hamiltonian H0 in �5� is the same as the well-known contraction of so�3� and so�2,1�
o the Euclidean algebra e�2�, as �→0. Note that the number of generators remains the same after
ontraction. In the present case, the contraction is of the Inönü-Wigner type.

In the next two sections we shall see that the Factor algebras associated with the “broken

amiltonian” H of �4� yield two contractions of the generalized Inönü-Wigner type.
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V. THE LOOP ALGEBRA L1„�… of H in „4…

For the Hamiltonian �4� there exist a generalized conserved Runge-Lenz vector,10 which is
iven by

M � M��� ª A − m��r sin��/2��̂��� = 	 p�
2

r
− m�
r̂��� − �prp� + m��r sin��/2���̂��� .

�29�

ote that M�0�=A. The commutator of the two components of M in �29� yield a third conserved
uantity, which I shall denote by S �It is called −I in Ref. 10�: It is defined by10

S ª �M1,M2� = hp� − m��prr
1/2 sin��/2� + p�r−1/2 cos��/2�� . �30�

he commutators of S with Mi are10

�S,M1� = hM2, N1 ª �M2,S� = hM1 − m2�2/2. �31�

e can summarize the above-mentioned commutators as follows:

�S,N1� = h2M2, �M2,S� = N1, �N1,M2� = hS . �32�

herefore, I call the following three generators “basic generators:”

N1, M2, S , �33�

ecause they can yield a closed algebra by multiplying them with powers of h as in �34�. The
bove-mentioned basic generators were chosen, such that none of them vanishes nor blows up for
=0.

As before, since H commutes with the basic generators, we can close the algebra in �32� by
ncluding the following generators:

hnM2, hnN1, hnS, n 	 0. �34�

t is interesting to note that by commuting the basis generators N1, M2, and S, among themselves
nd with their commutators, we can never produce hM2. This means that it is possible to obtain a
losed algebra even without hM2. Nevertheless, I included hM2 in �34� in order to obtain a closed
lgebra which is generated by the basic generators over the polynomial ring R�h�.

A crucial step in identifying the algebra generated by the operators in �34� is to assign grades
o each operator, because for Lie algebras of the Kac-Moody type the sum of the grades �which I
m writing as upper indices� must be conserved under commutation. It is easy to check that the
ollowing identification of the grades is consistent:

M2
�2n+1�

ª hnM2, N1
�2n+3�

ª hnN1, S�2n+2�
ª hnS, n 	 0. �35�

or example, using �32� we obtain

�N1
�2m+3�,M2

�2n+1�� = hm+n�N1,M2� = hm+n+1S = S�2m+2n+4�.

herefore the above-presented infinite generators span the following graded Loop algebra of the
ac-Moody type,

L1��� ª �M2
�2n+1�,N1

�2n+3�,S�2n+2��n 	 0� . �36�

ote that the basic generators are graded as follows:

M2 = M�1�, S = S�2�, N1 = N�3�.
2 1
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. The factor algebra L1„�… / I1„E ,�…

As before, the factor algebra

L1���/I1�E,�� = �M2
�,N1

�,S�� , �37�

elative to the following energy-dependent ideal

I1�E,�� ª �H − E�L1��� = �h − ��L1��� , �38�

here �=−2mE, has three classes, which commute as follows:

�S�,N1
�� = �2M2

�, �M2
�,S�� = N1

�, �N1
�,M2

�� = �S�. �39�

. Contraction of the factor algebra L1 / I1„E ,�…

In the present case we need a different map

f���sgn���L1� = N1
�/���3/2

¬ N1
ˆ �,

f���sgn���L2� = M2
�/���1/2

¬ M2
ˆ �, �40�

f��L3� = S�/��� ¬ Ŝ�,

hich again defines an isomorphism between the algebras so�3�, so�2,1� and the factor algebra

1 / I1�E ,�� for ��0, ��0. The three generators N̂1
�, M̂2

�, and Ŝ� may be called “normalized”
enerators.

The contraction of the factor algebras L1 / I1�E ,�� yields L1 / I1�0,��, whose commutation
elations follow from �39�. They are given by

�N 1
0,M2

0� = lim
�→0

�3/2+1/2−1S� = 0,

�41�
�S0,N1

0� = lim
�→0

�1+3/2−1/2M2
� = 0,

�M2
0,S0� = lim

�→0
�1/2+1−3/2N 1

� = N 1
0. �42�

hese are the commutation relations of the Heisenberg-Weyl algebra h3=w1, as we can see by
sing the following map:

M2
0 → �x, S0 → x, N 1

0 → 1.

It is important to note that in the factor algebra L1��� / I1�E ,�� we are not allowed to replace
he h in N1 of �31� by �, since neither h nor �h−��M1 are elements of the ideal I1�E ,��. Hence, N1

s independent of E and thus it should not be replaced by the constant −m2�2 /2 for E=0.

. A SECOND LOOP ALGEBRA L2„�… OF H IN „4…

In this section I show that a different choice of the basic generators yields different contrac-
ions. Instead of the three generators in �33� I now choose the basic generators as follows:

N1, N2 ª hM2, S . �43�
he choice of N2 in �43� may seem unjustified. But I chose it nevertheless in order to illustrate
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ow we can obtain different contractions by simply removing some generators from the same loop
lgebra.

The choice �43� would seem less strange, had I kept the phase angle � in �4� arbitrary: In this
ase I would have obtained

Ñ1 ª �M̃2, S̃� = h̃M̃1 − 1
2m2�2 cos � ,

�44�
Ñ2 ª �S̃1,M̃1� = h̃M̃2 − 1

2m2�2 sin � ,

here the tilde over the quantities denotes the quantities of the previous section, but with ��0.

ence, for � arbitrary, the Ñ1, Ñ2, and S̃ would have seemed to be the natural choice for the basic
enerators. In fact, these generators were originally chosen by Leach and Flessas �Ref. 10, Eq.
3.4.5�� as the symmetry generators of the Hamiltonian �4� for E�0. However, for E=0 they

ade a different choice, and chose the following linear combinations of Ñ1 and Ñ2:

N1 = cos �Ñ1 + sin �Ñ2 = hM1 − 1
2m2�2,

�45�

M2 =
1

h
�sin �Ñ1 − cos �Ñ2� .

e see that their second choice �45� corresponds exactly to the generators which I used in Sec. IV,
y setting �=0 from the beginning. This explains why they were able to obtain the algebra w1 as
he symmetry algebra for E=0; for E�0 it does not matter which linear combinations one
hooses: one always obtains so�3� or so�2,1�.

The generators in �43� commute as follows:

�N1,N2� = h2S, �N2,S� = hN1, �S,N1� = hN2. �46�

ollowing the same procedure as before, the following operators

N1
�2n+3�

ª hnN1,

N2
�2n+3�

ª hnN2. �47�

S�2n+2�
ª hnS ,

or n	0, yield the following Loop algebra, provided one uses the grading in �47�

L2 ª �N1
�2n+3�,N2

�2n+3�,S�2n+2��n 	 0� . �48�

The factor algebra L2��� / I2�E ,��. The factor algebra in this case consists also of three
lasses, namely

L2���/I2�E,�� = �N1
�,N2

�,S�� , �49�

here

I2�E,�� ª �H − E�L2��� = �h − ��L2��� . �50�

hese classes commute as follows:

�N1
�,N2

�� = �2S�, �N2
�,S�� = �N1

�, �S�,N1
�� = �N2

�. �51�

ence, in this case we obtain for �→0 a contraction of so�3� and so�2,1� to an Abelian algebra,
3
hich I denote by R . This is a generalized Inönü-Wigner contraction.
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Note that if N2=hM2, as defined in �43�, then N2
�2n+3�=M2

�2n+3�, so that L2 is just a subalgebra
f L1, with just the element M2 removed, i.e.,

L2 = L1 \ M2
�1� = L1 \ M2. �52�

gain note that in the factor algebra L2��� / I2�E ,�� we are not allowed to replace N2=hM2 by
M2, since �h−��M2 is NOT an element of the ideal I2�E ,��, because �52� tells us that M2�L2.
hus, the class N2

0=N2+ I2�0�� I2�0�, which means that the contracted factor algebra

2��� / I2�0,�� remains 3D, as it should. Note that with the formal factor-algebra construction
very one of the three generators is well defined and will not vanish in the limit �→0, so that this
ealization is saved.15 In contrast, if instead we follow the standard procedure and work directly
ith the generators N1, N2, and S and just replace the h by �, then N2=hM2 will become N2

�M2 and thus it will vanish in the limit �→0, so that N2 will not be saved.

I. SUMMARY AND CONCLUSIONS

In the present paper I constructed two Kac-Moody loop algebras L1��� and L2���. The second
lgebra L2��� was studied simply to show that one has the freedom of constructing more than one
oop algebra from the conserved constants of motion, M1, M2, S, and H. These two infinite-
imensional algebras are operator-valued and thus do not depend on energy E.

To study contractions I first constructed E-dependent factor algebras, in order to obtain finite-
imensional algebras out of the infinite-dimensional ones. As I explained in Eq. �25�, this con-
truction enables us to replace all the higher generations Xi

n
ªhnXi by �nXi, so that within the

actor algebras all the generators Xi
n become numerical multiples of the basic generators Xi=Xi

0. In
articular, for E=0 we obtain �nXi=0 for n	1.

To avoid any misunderstanding, I want to emphasize again that I am not contracting the
nfinite-dimensional Kac-Moody loop algebras, H2, L1��� and L2���; I am only contracting their
3D) factor algebras, H2 / I�E�, L1��� / I1�E ,��, and L2��� / I2�E ,��, by using the energy E as the
ontraction parameter. It is interesting that although all three factor algebras are isomorphic to
o�3� and so�2,1� for E�0 and E�0, they contract for E→0 to three different algebras e�2�,

1, and R3, which are also 3D. The first contraction is of the Inönü-Wigner type while the other
wo are of the generalized Inönü-Wigner type. In all these contractions the dimension of the
lgebras is preserved, since the factor algebras do not change their dimensions as E→0. These
ontractions are summarized in Table I.

The effect of symmetry breaking in H��� manifests itself differently in the standard and the
ac-Moody treatments: In the standard procedure, which was followed by Leach et al.,9,10 the

ymmetry algebras for H0 and H��� are exactly the same, namely so�3� and so�2,1�. The effect
f symmetry breaking manifests itself only for E�0.

In contrast, as we shall now see, the Loop algebras L1 and L2 for the “broken Hamiltonian”
��� are smaller than the hydrogen algebra H2 for H0 �irrespective of the energy !�. They are

maller by two and three elements, respectively, thereby revealing the symmetry breaking:
To compare L1 and L2 with H2, I define two maps, as follows: f1 :L1�H2, defined by

f1�N1
�2n+3����� ª A1

�2n+3�,

f1�M2
�2n+1����� ª A2

�2n+1�,

f1�S�2n+2����� ª L�2n+2�, �53�

or n	0, and f2 :L2�H2, defined by

f2�N1
�2n+3����� ª A1

�2n+3�,

f2�N�2n+3����� ª A�2n+3�, �54�
2 2
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f2�S�2n+2����� ª L�2n+2�,

or n	0. It is easy to check that these two maps, which keep the grades of the generators
nchanged, define isomorphisms from L1 and L2 onto subalgebras of H2 of codimension two and
hree, respectively. Hence,

H2 = � f1�L1���� � �L,A1�
f2�L2���� � �L,A1,A2� .

� �55�

hus, we can conclude that symmetry breaking of the type �4� reduces the loop algebra H2 of the
riginal system H0 by only finite number of generators. By constructing the corresponding factor
lgebras, I obtained different contractions depending on the missing terms �see Table I�.

By defining the �-dependent ideals and constructing the factor algebras, we are essentially

eplacing each infinite-dimensional “tower” �Xi
n� by one element Xi

ni
min

which has the lowest grade.
y removing generators from the original loop algebra, we increase the grade of the correspond-

ng basic generators. This in turn increases the powers of the contraction parameter � which
ultiply the structure constants of the original algebra g, which is being contracted.

The results obtained in the present paper suggest a general procedure for defining contractions
ia Kac-Moody formalism as follows:

• Start with of a finite dimensional Lie algebra g, which may be graded, via s-dimensional
automorphism, as follows:

g = �
k=0

s−1

gk with �gi,g j� � gi+j , �56�

where the indices are modulo s.
• Then consider the positive subalgebra of a general �twisted or untwisted� loop algebra of a

finite dimensional algebra g,

L = � �
k=0

s−1

zsn+k
� gk�n 	 0� , �57�

where z may be a scalar or an operator which commutes with all the generators of Xi�g.
• Then remove some generators from L, and make sure that the remaining set LR yields a

subalgebra of L. This is not automatic: see, for example, the conditions in �60�. Then make
sure that the set

IR��� = �z − ��LR �58�

is an ideal of LR, since for some choices �z−��LR is not a subalgebra of LR.
• Finally, define the factor algebras LR / IR���, which will be isomorphic to one or two real

forms of g, depending on the sign of parameter �. The � can be used as a contraction
parameter. One may get different contractions for the same original algebra g as �→0,
depending on the removed generators.

For example, we can define subalgebras of H2 by

H2�n1,n2,n3� ª �hn1+nA1,hn2+nA2,hn3+nL3,n 	 0� �59�

f the ni satisfy the following conditions:

n1 + n2 − n3 + 1 	 0, n3 + n1 − n2 	 0, n3 + n2 − n1 	 0. �60�

n particular, as I showed explicitly in �53� and �54�, the loop algebras Li are isomorphic to the
ollowing subalgebras of H2, and thus give us intuitive physical realizations of the formal defini-

ion in �59�:
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L1 � H2�1,0,1�, L2 � H2�1,1,1� . �61�

n these subalgebras of H2 the conditions �60� are clearly satisfied.
The conditions �60� follow from two different arguments:
�1� The generators of the subalgebra H2�n1 ,n2 ,n3� commute as follows:

�hn1A1,hn2A2� = hn1+n2+1L3, hence n3  n1 + n2 + 1,

�hn3L3,hn1A1� = hn3+n1A2, hence n2  n3 + n1, �62�

�hn3L3,hn2A2� = − hn3+n2A1, hence n1  n3 + n2.

he conditions �60� are necessary to ensure that the right-hand side of the above-mentioned
ommutators are elements of H2�n1 ,n2 ,n3�.

�2� In the factor algebra H2�n1 ,n2 ,n3� / ��h−��H2�n1 ,n2 ,n3�� only the generators with lowest
rade are linearly independent. Their commutators are

��n1A1,�n2A2� = �n1+n2−n3+1��n3L3� ,

��n3L3,�n1A1� = �n3+n1−n2��n2A2� , �63�

��n3L3,�n2A2� = − �n3+n2−n1��n1A1� .

ence, in order for the right-hand side of the above three equations to exist as �→0, the exponents
f � must be non-negative. This requirement yields exactly the same conditions on the ni as those
iven in �62�, which were necessary for the existence of subalgebras of H2.

• More generally, given an N-dimensional semisimple algebra g, we can define subalgebras gn
by

gn ª �hniXi�n 	 0 and i = 1,2, . . . ,N� . �64�

Instead of an operator h, with �h ,Xi�=0, we can also use a formal variable z.
These subalgebras yield well-defined contractions via the factor-algebra gn / ��h−��gn�, pro-
vided the ni satisfy the general condition �7�, namely �ni+nj−nkCij

k ��.

Finally, we note that by taking the limit �→0 in the “deformed Hamiltonian” H��� of �4� we
ecover the original Hamiltonian H0 and thus obtain the symmetry algebra H2. In contrast, for as
→0 the loop symmetry algebras Li��� �and thus also their factor algebras� remain unchanged

nd do not go back to H2 �and its factor algebras�. I call this phenomenon the DC (deformation-
ontraction) hysteresis, since we obtain different contractions depending on the order of taking the
imits E→0 and �→0. The subtlety of the DC hysteresis, which yields w1 instead of e2, is
llustrated in Fig. 1.
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IG. 1. The “DC hysteresis” in the �E ,�� parameter plane, by comparing the contraction limits E→0 of the factor algebras

2 / I�E� and L1 / I1�E ,��, is illustrated: If we contract the factor algebras H2 / I�E� of H0 along the horizontal energy E-axis,
hich corresponds to �=0, we obtain e�2�. This contraction is indicated by the double arrows �eÞOÜa�. In contrast, for
�0 the contraction of L1 / I1�E ,�� of H yields the Weyl algebra L1 / I1�0,��=w1, as illustrated by d→c←b. Finally,

aking the limit of L1 / I1�0,�� as �→0 downwards along the vertical ���-axis to the origin �E ,��= �0,0� leaves the algebra

1 unchanged. Thus, the two paths originating in a yield different limits: so�3��H2 / I�E��L1��� / I1�E ,��
L1��� / I1�0,���L1�0� / I1�0,0��w1�e�2��H2 / I�0�ÜH2 / I�E�.
                                                                                                            



E
f

I

c
w
fl
s
t
i
t
a
c
l
P

m
t
c
t
t
R
W
w
l
N
s
p
e
f
m

a

JOURNAL OF MATHEMATICAL PHYSICS 47, 083508 �2006�

0
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or the moist atmospheric equations in geophysics
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In this paper, we consider the initial boundary value problem for the primitive
equations of moist atmospheric dynamics that are used to describe the turbulent
behavior of long-term weather prediction and climate changes. By the Faedo-
Galerkin method, we obtain the existence of global weak solutions to the problem
in a large-scale atmosphere. By studying the long-time behavior of solutions, we
obtain trajectory and global attractors for the primitive equations of moist
atmosphere. © 2006 American Institute of Physics. �DOI: 10.1063/1.2245207�

. INTRODUCTION

There are two ways to describe the mechanism of long-term weather prediction and climate
hanges. First, one can use history records and numerical computations to predict the future
eather and possible global changes. Second, since the atmosphere is a specific compressible
uid, one can study the mathematical equations and models governing the motion of the atmo-
phere. Bjerkness, one of the pioneers of meteorology, said that the weather forecasting can be
hought of as an initial boundary value problem in mathematical physics. In 1922, Richardson
ntroduced the so-called primitive atmospheric equations that consisted of the hydrodynamic,
hermodynamic, and state equations with Coriolis force; cf. Ref. 1. At that time, the primitive
tmospheric equations were too complicated to be studied theoretically or to be solved numeri-
ally. However, there were some simple numerical models, such as the barotropic model formu-
ated by Neumann, etc. in Ref. 2 and the quasigeostrophic model introduced by Charney and
hilips in Ref. 3.

In recent years, due to the considerable improvement in computer capacity and the develop-
ent of atmospheric science, there were some mathematicians who began to consider the primi-

ive equations of atmosphere. Since the momentum conservation equation in the vertical direction
an be replaced by the hydrostatic equation given later, which satisfies meteorological observa-
ions and history data in a large-scale atmosphere, the fundamental equations governing the mo-
ion of the atmosphere can be reduced to the primitive equations of large-scale atmosphere; cf.
ef. 1. In Ref. 4, introducing the viscosity terms and some technical treatment, Lions, Temam, and
ang obtained a new formulation of the primitive equations of large-scale dry atmosphere that
as amenable to mathematical treatment. In a p-coordinate system �the definition will be given

ater�, the new formulation of the primitive equations is similar to but more complicated than
avier-Stokes equations of incompressible fluid. By the methods used to solve Navier-Stokes

ystem in Ref. 5, they obtained the existence of global weak solutions of the initial boundary value
roblem for the new formulation of the primitive equations. And under the hypothesis that there
xist global strong solutions for the problem, they established some physically relevant estimates
or the Hausdorff and fractal dimensions of attractors for the primitive equations. By the same
ethods, in Ref. 6 they established some mathematical theory for the models of the coupled

�
Corresponding author. Electronic mail: hdw55@tom.com
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tmosphere and ocean introduced in Ref. 7. In Refs. 8 and 9, under the hypothesis of the existence
f the global strong solutions for the initial boundary value problem of the dry and moist atmo-
pheric fundamental equations, Li and Chou studied asymptotic behavior of solutions for the
roblem. By taking advantage of the geostrophic balance and other geophysical consideration,
everal intermediate models have been the subject of studying the long-time dynamics and global
ttractors in order to describe the mechanism of weather prediction and climate dynamics �see,
.g., Refs. 10–13�.

In the present paper, we are interested in finding the existence of global weak solutions,
rajectory, and global attractors for the large-scale moist atmospheric primitive equations. Our

ain results are Theorem 3.8 and Theorem 4.15. Without the hypothesis that there exist global
trong solutions for the initial boundary problem of the new formulation of large-scale moist
tmospheric primitive equations �IBVP�, which will be given in Sec. II, we obtain global attractors
or the moist atmospheric primitive equations in some weak sense �the details will be given in Sec.
V�. �IBVP� generalizes the work in Ref. 4, where the authors considered the dry atmospheric
rimitive equations. Since the moist atmospheric equations are more complicated than the dry
tmospheric primitive equations, we must study more nonlinear terms than those in Ref. 4. Under
ome technical treatment, �IBVP� is corresponding to Problem 3.1 given in the Sec. III C. Using
he methods in Ref. 4, we can make full use of the hydrostatic equation, which provides a relation
etween pressure and density to obtain the existence of global weak solutions for Problem 3.1.
roblem 3.1 is similar to but more complicated than Navier-Stokes systems of incompressible
uids. In particular, the nonlinear terms in Problem 3.1 is more complicated than those in the
avier-Stokes system. Since the existence of global strong solutions of Problem 3.1 remains
nproved �recently, in Ref. 14, Cao and Titi have proved the global existence and uniqueness of
trong solutions to a three-dimensional viscous primitive equations in a cylindrical domain�, we
annot use the well-known methods based on the analysis of global attractors of the corresponding
emigroup. Our approach to finding the existence of trajectory and global attractors for the moist
tmospheric equations is inspired by Refs. 15 and 16. In those papers, Vishik and Chepyzhov
btained the trajectory and global attractors of three-dimensional Navier-Stokes system without
he assumption that there exist global strong solutions for the system. Here, the trajectory and
lobal attractors is related to the time translation semigroup �T�t�� given in the subsection IV A.

The paper is organized as follows: In Sec. II, we shall pose the new formulation of the
rimitive equations of a large-scale moist atmosphere. In Sec. III, we shall give a mathematical
etting for the initial boundary value problem for the new formulation of primitive equations of
arge-scale moist atmosphere and obtain the existence of global weak solutions to Problem 3.1. In
ec. IV, we shall prove the existence of trajectory and global attractors of the moist atmospheric
rimitive equations.

I. THE PRIMITIVE EQUATIONS OF LARGE-SCALE MOIST ATMOSPHERE

Inspired by the methods used by Lions, Temam, and Wang introduced in Refs. 4 and 7, we
hall give the new formulation of the primitive equations of large-scale moist atmosphere in this
ection.

In a noninertial coordinate system, the atmosphere motion is described by the following
quations �see, e.g., Refs. 17, 9, and 18�:

The momentum conservation equation,

dV3

dt
= −

1

�
grad3 p + G − 2� � V3 + D . �2.1�

The continuity equation;

d�

dt
+ � div3 V3 = 0. �2.2�
The first law of thermodynamics,
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cp
dT

dt
−

RT

p
�1 + cq�

dp

dt
=

dQ

dt
. �2.3�

The equation of state,

p = R�T�1 + cq� . �2.4�

The conservation equation of water vapor in the air,

dq

dt
=

1

�
W1 + W2, �2.5�

here the unknown functions are V3, �, q, p, T. V3 is the three-dimensional velocity, � density, p
ressure, q=�1 /� the mixing ratio of water vapor in the air, �1 density of water vapor in the air, T
emperature, G gravity, −2��V3 Coriolis force, � angular velocity of the earth, D the viscosity
erms �which include the diabatic heating and the friction of the atmosphere�, dQ /dt the heat flux
er unit density in a unit time interval, W1 the rate of condensation of water vapor per unit volume,

2 the time rate of change of water vapor content per unit mass due to the vertical and horizontal
iffusion of water vapor, R gas constants for dry air, cp specific heat of air at constant pressure, c
s a positive constant �c�0.618�, grad3 and div3 gradient and divergence in the three-dimensional
tmosphere, respectively.

Remark 2.1: The equations �2.1�–�2.5� are different from the atmospheric equations in Ref. 7,
here the authors only considered the equations �2.1�, �2.2�, �2.5� with �2.3� and �2.4� when c
0.

In the spherical coordinate system, let ��0����� denote the colatitude of the earth, ��0
��2�� the longitude of the earth, r the radial distance, z=r−a the height above sea level, a the

adius of the earth,

V3 = v�e� + v�e� + vrez,

here e�, e� and ez are unit vectors in the �, �, z direction, and

e� =
1

a

�

��
, e� =

1

a sin �

�

��
, ez =

�

�z
.

hen the equations �2.1�–�2.5� can be written as the following fundamental equations of the moist
tmosphere �see, for details, Ref. 17�

dv�

dt
+

1

r
�vrv� − v�

2 cot �� = −
1

�r

�p

��
+ 2� cos �v� + D�, �2.6�

dv�

dt
+

1

r
�vrv� + v�v� cot �� = −

1

�r sin �

�p

��
− 2� cos �v� − 2� sin �vr + D�, �2.7�

dvr

dt
−

1

r
�v�

2 + v�
2� = −

1

�

�p

�r
− g + 2� sin �v� + Dr, �2.8�

d�

dt
+ �� 1

r sin �

�v� sin �

��
+

1

r sin �

�v�

��
+

1

r2

�r2vr

�r
	 = 0, �2.9�

cp
dT

−
RT

�1 + cq�
dp

=
dQ

, �2.10�

dt p dt dt
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p = R�T�1 + cq� , �2.11�

dq

dt
=

1

�
W1 + W2, �2.12�

here

d

dt
=

�

�t
+

v�

r

�

��
+

v�

r sin �

�

��
+ vr

�

�r
,

nd D= �D� ,D� ,Dr� are the viscosity terms.
Under the coordinate transformation �t ,� ,� ,z�→ �t ,� ,� , p� �p denotes pressure� and some

echnical treatment, Eq. �2.8� being replaced by the hydrostatic equation

�p

�r
= − �g ,

nd the specific viscosity terms being introduced, Eqs. �2.6�–�2.12� can be written as the following
ondimensional form �for details, we refer the readers to Refs. 4 and 7 and references therein�,

�v
�t

+ �vv + �
�v
�	

+
f

R0
k � v + grad 
 −

1

Re1
�v −

1

Re2

�

�	
� pT0

PT̄
	2�v

�	� = f1, �2.13�

div v +
��

�	
= 0, �2.14�

�


�	
+

bP

p
�1 + cq�T = 0, �2.15�

a1� �T

�t
+ �vT + �

�T

�	
	 −

bP

p
�1 + cq�� −

1

Rt1
�T −

1

Rt2

�

�	
� pT0

PT̄
	2�T

�	� = f2, �2.16�

�q

�t
+ �vq + �

�q

�	
−

1

Rt3
�q −

1

Rt4

�

�	
� pT0

PT̄
	2�q

�	� = f3, �2.17�

here the unknown functions are v, �, 
, q, T. v= �v� ,v�� the horizontal velocity, 
=gz the
eopotential, �=dp /dt vertical velocity in the p− coordinate system, f =2 cos � Coriolis param-
ter, k vertical unit vector, P an approximate value of pressure at the surface of the earth, Re1, Re2,

t1, Rt2, Rt3, Rt4 Reynolds numbers, T̄ a given vertical distribution of the standard temperature on
he interval �p0 , P�, T0 reference value of the temperature T, p0 pressure of the upper atmosphere,
nd p0�0, the variable 	 satisfying p= �P− p0�	+ p0, f1, f2, f3 given functions on S2� �0,1�, a1 ,b
ositive constants. The definitions of operators �vv, �v, �T, �q, �vq, �vT, div v, grad 
 will be
iven in the Sec. III A. Equations �2.13�–�2.17� are called the primitive equations of the large-
cale moist atmosphere.

Remark 2.2: In the real physical situation, f1, f2, f3 are taken as zero. However, from the
athematical point of view, we can consider the general case that f1, f2, f3 are not always equal

o zero.
The space domain of the equations is

M = S2 � �0,1� ,

2
here S is two-dimensional unit sphere. The boundary value conditions are given by
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	 = 1�p = P�:�v,�� = 0,
�T

�	
= s�Ts − T�,

�q

�	
= �s�qs − q� , �2.18�

	 = 0�p = p0�:�v,�� = 0,
�T

�	
= 0,

�q

�	
= 0, �2.19�

here s, �s are constants, Ts the given temperature on the surface of the earth, qs the given
ixing ratio of water vapor on the surface of the earth.

Integrating �2.14� and using the boundary conditions �2.18�, �2.19�, we have

��t;�,�,	� = W�v��t;�,�,	� = �
	

1

div v�t;�,�,	��d	�, �2.20�

�
0

1

div v d	 = 0. �2.21�

uppose that 
s is a certain unknown function at the isobaric surface p= P. Integrating �2.15�, we
btain


�t;�,�,	� = 
s�t;�,�,	� + �
	

1 bP

p
�1 + cq�T d	�. �2.21��

hen Eqs. �2.13�–�2.17� can be written as

�v
�t

+ �vv + W�v�
�v
�	

+
f

R0
k � v + grad 
s + �

	

1 bP

p
grad�1 + cq�T d	� −

1

Re1
�v

−
1

Re2

�

�	
� pT0

PT̄
	2�v

�	� = f1, �2.22�

a1� �T

�t
+ �vT + W�v�

�T

�	
	 −

bP

p
�1 + cq�W�v� −

1

Rt1
�T −

1

Rt2

�

�	
� pT0

PT̄
	2�T

�	� = f2,

�2.23�

�q

�t
+ �vq + W�v�

�q

�	
−

1

Rt3
�q −

1

Rt4

�

�	
� pT0

PT̄
	2�q

�	� = f3, �2.24�

�
0

1

div v d	 = 0, �2.25�

here the definitions of grad T, grad 
s will be given in the Sec. III A. The boundary value
onditions of Eqs. �2.22�–�2.25� are given by

	 = 1�p = P�:v = 0,
�T

�	
= s�Ts − T�,

�q

�	
= �s�qs − q� , �2.26�

	 = 0�p = p0�:v = 0,
�T

�	
= 0,

�q

�	
= 0; �2.27�
he initial value conditions can be given as
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U0 = �v0,T0,q0� . �2.28�

e call �2.22�–�2.28� as the initial boundary problem of the new formulation of the primitive
quations of large-scale moist atmosphere, denoted by �IBVP�.

Remark 2.3: In this paper, we only study the primitive equations of large-scale moist atmo-
phere with viscosity terms given for horizontal velocity. In the future work, we can consider the
quations with viscosity terms for the three-dimensional velocity.

II. EXISTENCE OF GLOBAL WEAK SOLUTIONS FOR THE PROBLEM „IBVP…

The section is divided into four subsections. In Sec. III A, some function spaces for the
roblem �IBVP� will be given. In Sec. III B, we shall give properties of some functionals corre-
ponding to Eqs. �2.22�–�2.25�. In Sec. III C, we shall introduce weak formulation for the problem
IBVP�. The proof of the existence of global weak solutions to the problem �IBVP� will be given
n Sec. III D.

. Some function spaces

Let e�, e�, e	 be the unit vectors in �, �, and 	 directions of the space domain M, respectively,

e� =
�

��
, e� =

1

sin �

�

��
, e	 =

�

�	
.

he inner product and norm on T��,�,	�M �the tangent space of M at the point �� ,� ,	�� are given
y

�X,Y�T = X · Y = X1Y1 + X2Y2 + X3Y3, XT = �X,X�1/2

or

X = X1e� + X2e� + X3e	, Y = Y1e� + Y2e� + Y3e	 � T��,�,	�M .

L2�M� : = �h ;h :M→R ,�M h2 dM � + � � with the norm h2= ��M h2 dM�1/2.  · p is the usual
orm in Lp�M�. L2�TM TS2�= �v ;v :M→TS2� is the first two components of L2 vector fields on M
ith the norm v2= ��M�v�2+ v�2�dM�1/2, where TM, TS2 are the tangent space of M and S2,

espectively, v= �v� ,v��. C��S2� is the function space for all smooth functions from S2 to R.
��M� is the function space for all smooth functions from M to R. C��TM TS2� is the first two
omponents of smooth vector fields on M. C0

��M� : = �u ;u�C��M� , supp u is a
ompact subset in M�. C0

��TM TS2� : = �u ;u�C��TM TS2� , supp u is a compact subset in M�.
m�M� is the Sobolev space of functions that are in L2,together with all their covariant derivatives
ith respect to e�, e�, e	 of order �m, with the norm

�h�m = ��
M
� �

1�k�m
�

ij=1,2,3;j=1,. . .,k
�i1

¯ �ik
h + h2	dM	1/2

,

here �1=�e�
, �2=�e�

, �3=�e	
=� /�	 �the definitions of �e�

,�e�
will be given later�.

m�TM TS2�= �v ;v= �v� ,v�� :M→TS2 ,v� ,v��Hm�M��, the norm of which is similar to that of
m�M�, that is, in the above formula of norm, we can let h= �v� ,v��=v�e�+v�e�.

The horizontal divergence div, the horizontal gradient �=grad, the horizontal covariant de-
ivative �v and horizontal Laplace-Beltrami operator � for scalar and vector functions are defined
y

div v = div�v�e� + v�e�� =
1 � �v� sin �

+
�v�	 , �3.1�
sin � �� ��
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�T = grad T =
�T

��
e� +

1

sin �

�T

��
e�, �3.2�

grad 
s =
�
s

��
e� +

1

sin �

�
s

��
e�, �3.3�

�vṽ = �v�

�v�
˜

��
+

v�

sin �

�v�
˜

��
− v�v�

˜ cot �	e� + �v�

�v�
˜

��
+

v�

sin �

�v�
˜

��
+ v�v�

˜ cot �	e�, �3.4�

�vT = v�

�T

��
+

v�

sin �

�T

��
, �3.5�

�vq = v�

�q

��
+

v�

sin �

�q

��
, �3.6�

�T =
1

sin �

 �

��
�sin �

�T

��
	 +

1

sin �

�2T

��2� , �3.7�

�q =
1

sin �

 �

��
�sin �

�q

��
	 +

1

sin �

�2q

��2� , �3.8�

�v = ��v� −
2 cos �

sin2 �

�v�

��
−

v�

sin2 �
	e� + ��v� +

2 cos �

sin2 �

�v�

��
−

v�

sin2 �
	e�, �3.9�

here v=v�e�+v�e�, ṽ=v�
˜e�+v�

˜e��C��TM TS2�, T, q�C��M�, 
s�C��S2�.
Now we can define our working spaces for the problem �IBVP�. Let

V˜: = �v;v � C0
��TMTS2�, �

0

1

div v d	 = 0� ,

V1 = the closure of V˜ with respect to the norm � · �1,

V2 = H1�M� ,

H1 = the closure of V˜ with respect to the norm  · 2,

H2 = L2�M� ,

V = V1 � V2 � V2,

H = H1 � H2 � H2,

V1
�3� = the closure of V˜ with respect to the norm � · �3,

V�3� = H3�M� ,
2
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V�3� = V1
�3� � V2

�3� � V2
�3�,

V�−3� = �V�3���,

here �V�3��� is the dual space of V�3�. In order to study the nonlinear terms of the equations
2.22�–�2.24�, we have to introduce the spaces V�3� and V�−3�. The inner product and norm on V,

1, V2 are given by

�v,v1�V1
= �

M
��e�

v · �e�
v1 + �e�

v · �e�
v1 +

�v
�	

�v1

�	
+ v · v1	dM ,

�v�V1
= �v,v�V1

1/2, " v,v1 � V1,

�T,T1�V2
= �

M
�grad T · grad T1 +

�T

�	

�T1

�	
+ TT1	dM ,

�T�V2
= �T,T�V2

1/2, " T, T1 � V2,

�q,q1�V2
= �

M
�grad q · grad q1 +

�q

�	

�q1

�	
+ qq1	dM ,

�q�V2
= �q,q�V2

1/2, " q, q1 � V2,

�U,U1�H = �v,v1� + �a1T,T1� + �q,q1� ,

�U,U1�V = �v,v1�V1
+ �T,T1�V2

+ �q,q1�V2
,

�U� = �U,U�V
1/2, U2 = �U,U�H

1/2, " U = �v,T,q�, U1 = �v1,T1,q1� � V ,

�U��3� = ��v�3
3 + �T�3

3 + �q�3
3�1/3, " U � V �3�,

�T,T1�H2
= �a1T,T1�, T2 = �T,T�H2

1/2, v2 = �v,v�1/2,

here �· , · � denotes the L2 inner products in H1, H2. By the definitions of V, H, we can obtain

V � H = H� � V� � V �−3�,

here V� is the dual space of V.

. Properties of some functionals and their associated operators

In this section, we shall define some functionals and their corresponding operators that are
elated to the equations �2.22�–�2.25� and give some estimates about those functionals.

Now, we define the functionals ã :V�V→R, ã1 :V1�V1→R, ã2 :V2�V2→R, ã3 :V2�V2

R, and their corresponding linear operators A :V→V�, A1 :V1→V1�, A2 :V2→V2�, A3 :V2→V2� by

ã�U,U1� = �AU,U1� = ã1�v,v1� + ã2�T,T1� + ã3�q,q1� ,
here
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ã1�v,v1� = �A1v,v1� = �
M

 1

Re1
��e�

v · �e�
v1 + �e�

v · �e�
v1 + v · v1� +

1

Re2
� pT0

PT̄
	2�v

�	

�v1

�	 �dM ,

ã2�T,T1� = �A2T,T1� = �
M

 1

Rt1
grad T · grad T1 +

1

Rt2
� pT0

PT̄
	2�T

�	

�T1

�	 �dM

+ �
�1

s

Rt2
� pT0

PT̄
	2

TT1 dS2,

a3�q,q1� = �A3q,q1� = �
M

 1

Rt3
grad q · grad q1 +

1

Rt4
� pq0

Pq̄
	2�q

�	

�q1

�	
�dM + �

�1

�s

Rt4
� pq0

Pq̄
	2

qq1 dS2,

�1 = S2 � 1.

Lemma 3.1:
�1� a is coercive and continuous. A :V→V� is an isomorphism. Moreover,

a�U,U1� � c1 max� 1

Re1
,

1

Re2
��v�V1

�v1�V1
+ c2 max� 1

Rt1
,

1

Rt2
,

s

Rt2
��T�V2

�T1�V2

+ c3 max� 1

Rt3
,

1

Rt4
,

�s

Rt4
��q�V2

�q1�V2
�

1

Rmin
�U��U1� , �3.10�

a�U,U� � c4 min� 1

Re1
,

1

Re2
��v�V1

2 + c5 min� 1

Rt1
,

1

Rt2
,

s

Rt2
��T�V2

2 + c6 min� 1

Rt3
,

1

Rt4
,

�s

Rt4
��q�V2

2

�
1

Rmax
�U�2, �3.11�

here

Rmin =
1

min�c1,c2,c3�
min�Re1,Re2,Rt1,Rt2,Rt3,Rt4,

Rt2
s

,
Rt4
�s
� ,

Rmax =
1

max�c4,c5,c6�
min�Re1,Re2,Rt1,Rt2,Rt3,Rt4,

Rt2
s

,
Rt4
�s
� .

In this paper, ci will denote positive constants and can be determined in concrete conditions.
�2� The isomorphism A :V→V� can be extended to a self-adjoint unbounded linear operator

n H with a compact inverse A−1 :H→H and with the domain of definition of the operator
�A�=V� (H2�TM TS2��H2�M��H2�M�).

Proof: The operator A is similar to the usual positive symmetric operator −� on H0
1. Therefore

e omit the details of the proof. For details, the readers can refer to �Ref. 4 Lemma 2.3�.
Concerning the nonlinear terms of the equations �2.22�–�2.24�, we can define the functional

:V�V�V→R and its corresponding operator B :H�H→H by

b̃�U,U1,U2� = „B�U,U1�,U2…H = b1�v,v1,v2� + b2�v,T1,T2� + b3�v,q1,q2� ,
here
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b1�v,v1,v2� = �
M

�vv1 + ��

	

1

div v d	�	 �v1

�	 � · v2 dM ,

b2�v,T1,T2� = �
M

�vT1 + ��

	

1

div v d	�	 �T1

�	 �T2 dM ,

b3�v,q1,q2� = �
M

�vq1 + ��

	

1

div v d	�	 �q1

�	 �q2 dM .

Let

b4�U,U,U2� = �
M

��

	

1 bP

p
grad�Tcq�d	�	 · v2 −

bP

p
cqW�v�T2�dM

nd

b�U,U1,U2� = b̃�U,U1,U2� + b4�U,U,U2� .

Lemma 3.2:
�1� For any U, U1�D�A�,

b1�v,v1,v1� = b2�v,T1,T1� = b3�v,q1,q1� = 0, b4�U,U,U� = 0.

�2� For any U�D�A�, U2�D�A��V�3�,

b�U,U,U2� � c7�U�U2�U2��3�. �3.12�

Proof: �1� By �3.4�, for any U= �v ,T ,q�, U1= �v1 ,T1 ,q1��D�A�, we can obtain

�vv12 = �vv1 · v1 + v1 · �vv1 = 2�vv1 · v1.

hen

b1�v,v1,v1� = �
M

�vv1 · v1 +

1

2��	

1

div vd	�	 � v12

�	 �dM

= �
M

1

2
�vv12 +

1

2��	

1

div vd	�	 � v12

�	 �dM

=
1

2
�

M

div�vv12� − v12div v + ��

	

1

div v d	�	 � v12

�	 �dM

=
1

2
�

M

− v12 div v + ��

	

1

div v d	�	 � v12

�	 �dM

= −
1

2
�

M

v12�div v +

�W�v�
�	

	�dM + �
M

v12���
	

1

div vd	�	�
	=0,1

dM = 0.
imilarly, we prove b2�v ,T1 ,T1�=b3�v ,q1 ,q1�=0,
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b4�U,U,U� = �
M

��

	

1 bP

p
grad�Tcq�d	�	 · v −

bP

p
cqW�v�T�dM ,

=�
M

�− �

	

1 bP

p
�Tcq�d	�	 · div v −

bP

p
cqW�v�T�dM ,

=�
M
��− �

	

1 bP

p
�Tcq�d	�	 ·

���
	

1

div vd	�	
�	

−
bP

p
cqW�v�T�dM ,

=�
M
�bP

p
TcqW�v� −

bP

p
cqW�v�T	dM = 0.

�2� For any U= �v ,T ,q� ,U1= �v1 ,T1 ,q1��D�A�, U2= �v2 ,T2 ,q2��D�A��V�3�,

��
M

��

	

1

div vd	�	 �v1

�	 � · v2 dM� � �
M
�v1 · � �v2

�	
�

	

1

div vd	� + v2 div v	�dM

� �v�V1
v12� �v2

�	
�

L�

� �U�U12� �U2

�	
�

L�

� C�U�U12�U2��3�,

here C is a positive constant. Similarly, we derive

b�U,U,U2� � c7�U�U2�U2��3�.

Related to the linear terms, we can define a bilinear functional e :V�V→R and its corre-

ponding operator Ẽ :H→H by

e�U,U1� = �ẼU,U1�H

=�
M

 f

R0
�k � v� · v1 + ��

	

1 bP

p
grad T d	�	 · v1 −

bP

p
W�v�T1�dM .

Lemma 3.3:
�1� For any U, U1�V,

e�U,U1� � C�U��U1� , �3.13�

here C is a positive constant.
�2� For any U, U�V,

e�U,U� = 0.

Proof: The first part of the Lemma is obvious, so we omit the details of the proof. The proof
f the second part is similar to the proof of b4�U ,U ,U�=0.

. Weak formulation for the problem „IBVP…

In this section, we will introduce a weak formulation for the problem �IBVP� by eliminating
he geopotential 
s in the equation �2.22�. The method is similar to eliminating the pressure in

btaining the existence of global weak solutions for the Navier-Stokes system.
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First, we shall homogenize the boundary value condition �2.26� for T, q. By

�T�

�	
= s�Ts − T��,

�q�

�	
= �s�qs − q�� ,

e obtain

T� = Ts„1 − exp�− s	�…, q� = qs„1 − exp�− �s	�… .

Let

T�� = T����	�, q�� = q����	� ,

here 0���
1
2 ,

���	� ª �1, 1 − � � 	 � 1,

increasing, 1 − 2� � 	 � 1 − � ,

0, 0 � 	 � 1 − 2� .

Then, by letting Ũ= �v , T̃ , q̃�=U−U��= �v ,T ,q�− �0,T�� ,q���, the problem �IBVP� can be rewrit-
en as the following equations:

�v
�t

+ �vv + W�v�
�v
�	

+
f

R0
k � v + grad 
s + �

	

1 bP

p
grad�1 + cq̃�T̃ d	� + �

	

1 bP

p
grad�cq��T̃

+ cT��q̃�d	� −
1

Re1
�v −

1

Re2

�

�	
� pT0

PT̄
	2�v

�	� = f1
˜ = f1 − �

	

1 bP

p
grad�1 + cq���T�� d	�,

�3.14�

a1� �T̃

�t
+ �vT̃ + W�v�

�T̃

�	
	 + a1��vT�� + W�v�

�T��

�	
	 −

bP

p
�1 + cq̃�W�v� −

bP

p
�cq���W�v� −

1

Rt1
�T̃

−
1

Rt2

�

�	
� pT0

PT̄
	2�T̃

�	� = f2
˜ = f2 +

1

Rt1
�T�� +

1

Rt2

�

�	
� pT0

PT̄
	2�T��

�	 � , �3.15�

� q̃

�t
+ �vq̃ + W�v�

� q̃

�	
+ �vq�� + W�v�

�q��

�	
−

1

Rt3
�q̃ −

1

Rt4

�

�	
� pT0

PT̄
	2� q̃

�	�
= f3

˜ = f3 +
1

Rt3
�q�� +

1

Rt4

�

�	
� pT0

PT̄
	2�q��

�	 � , �3.16�

�
0

1

div v d	 = 0, �3.17�

ith the initial and boundary value conditions

	 = 1�p = P�:v = 0,
�T̃

�	
+ sT̃ = 0,

� q̃

�	
+ �sq̃ = 0, �3.18�

	 = 0�p = p0�:v = 0,
�T̃

= 0,
� q̃

= 0. �3.19�

�	 �	
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Ũ0 = �v0,T0
˜,q0

˜� . �3.20�

Now we can introduce the weak formulation for the problem �IBVP�.
Problem 3.1: For f̃ = �f1

˜ , f2
˜ , f3

˜�, Ũ0= �v0 ,T0
˜ ,q0

˜��H given, find Ũ= �v , T̃ , q̃� such that

Ũ � L2�0,T;V� � L��0,T;H�, " T � 0, �3.21�

d

dt
�Ũ,U1�H + �AŨ,U1�H + „�BŨ,Ũ�,U1…H + „�BŨ,U���,U1…H + „�FŨ,U���,U1…H + �ẼŨ,U1�H

= � f̃ ,U1�H, in „C0
��0,T�…�, " U1 � D�A� �3.22�

Ũt=0 = Ũ0, in V�−3�, �3.23�

here

„�FŨ,U���,U1…H = �
M

��

	

1 bP

p
grad�cq��T̃ + cT��q̃�d	�	 · v1 −

bP

p
�cq���W�v�T1�dM .

. Proof of the existence of global weak solutions

In this section, we shall prove the existence of global weak solutions for the problem �IBVP�
y proving the existence of global weak solutions for Problem 3.1. In order to do this, we need
ome lemmas.

Lemma 3.4: �cf. Ref. 4 Lemma 2.1�:
�1� If v�H1, �Mvv1 dM =0, "v1�C0

��TM TS2�, then

v = grad 
s, 
s � „C0
��S2�…�.

�2� Let H1
� be the orthogonal complement of H1 in L2�TM TS2�. Then

H1
� = �v;v � L2�TMTS2�, v = grad l, l � H1�S2�� , �3.24�

H1 = �v;v � L2�TMTS2�, �
0

1

div v d	 = 0� , �3.25�

V1 = �v;v � H0
1�TMTS2�, �

0

1

div v d	 = 0� . �3.26�

By this lemma, we know that if there is a solution Ũ= �v , T̃ , q̃� for Problem 3.1, then there is
unique 
s� (C0

��S2�)� �up to a constant� such that �v ,T ,q ,
s� is a solution for the problem
IBVP�. On other hand, if �v ,T ,q ,
s� is a solution for the problem �IBVP� ��v ,T ,q ,
s� is

ufficiently smooth�, then Ũ= �v , T̃ , q̃� is a solution to Problem 3.1.
In order to solve Problem 3.1 by the Faedo-Galerkin method, we need the following three

emmas.
Lemma 3.5: The eigenvalue problem,

AU = �U, U � V ,

xists a sequence of eigenvalues, 0��1��2��3� ¯ ��n� ¯ , of finite multiplicity and going
o infinity, with the first eigenvalue being simple, having a positive eigenfunction. Moreover, the

igenfunction sequence ��n� is an orthonormal basis of V.
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Proof: This lemma is a corollary of Lemma 3.1.
Lemma 3.6: For any ��0, there is 0��� 1 � 2 such that

„�FŨ,U���,Ũ…H � � �Ũ�2, �3.27�

„�BŨ,U���,Ũ…H � � �Ũ�2, " Ũ � V . �3.28�

Proof: By the definition, for any U1�V,

„�FŨ,U���,U1…H = ��
M

��

	

1 bP

p
grad�cq��T̃ + cT��q̃�d	�	 · v1 −

bP

p
�cq���W�v�T1�dM�

� ��
M
��

	

1 bP

p
cq�� grad T̃ d	�	 · v1 dM�

+ ��
M
��

	

1 bP

p
cT̃ grad q�� d	�	 · v1 dM�

+ ��
M
��

	

1 bP

p
cT�� grad q̃ d	�	 · v1 dM�

+ ��
M
��

	

1 bP

p
cq̃ grad T�� d	�	 · v1dM�

+ ��
M

bP

p
cq����

	

1

div v d	�	T1 dM� � I1 + I2 + I3 + I4 + I5.

y the definition of q��,

I1 = ��
M
��

	

1 bP

p
cq�� grad T̃ d	�	 · v1 dM� � ��

S2��1−2��
��

1−2�

1 bP

p
cq�� grad T̃ d	�	 · v1 dM�

� c8q��L��S2���
S2��1−2��

��
1−2�

1

grad T̃ d	�	 · v1 dM� � 4c8�2q��L��S2�

���
S2
��

1−2�

1

grad T̃2 d	�	1/2��
1−2�

1

v12 d	�	1/2

dS2� � 4c8�2q��L��S2��T�V2
�v1�V1

� c9��U��U1� .

imilarly, we can prove

Ii � c8+i��U��U1�, i = 2,3,4,5.

o

„�FŨ,U���,Ũ…H � � �Ũ�2.

ince the proof of �3.28� is similar to the proof of I1�c9� �U � �U1�, we omit the details of the
roof.

Lemma 3.7 (Lions-Magenes) �Ref. 19�: Suppose that g�L��0,T ;E� and the function g�t� is
eakly continuous in E0 :g�C��0,T ;E0�, that is, for any function �� �E0�� the function �g�t� ,��
elongs to C�0,T�, where E, E0�E�E0� are Banach spaces. Then g�t��E for all 0� t�T and g�t�
s weakly continuous in E.
Now we can state one of our main results.
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Theorem 3.8: Under the assumptions of Problem 3.1 and for any T�0, there is at least one

olution Ũ= �v , T̃ , q̃� on the time interval �0,T � to Problem 3.1, and Ũ= �v , T̃ , q̃� satisfies

Ut
˜ � L2�0,T;V �−3�� , �3.29�

Ũ � C��0,T;H� . �3.30�

Moreover, Ũ satisfies the energy inequality

− �
0

�

Ũ�t�2
2���s�ds +

1

Rmax
�

0

�

�Ũ�s��2��s�ds � 2�
0

�

„ f̃ ,Ũ�s�…H��s�ds , �3.31�

here ��s��C0
���0,T �� ,��s��0.

Proof: We shall prove Theorem 3.8 by the Faedo-Galerkin method. Since the procedure is
imilar to the proof of the existence of Leray-Hopf weak solutions to the Navier-Stokes system in
ef. 5, Theorem 6.1, we only give the outline of the proof. First, we can look for an approximate

olution Ũm�x , t� for Problem 3.1, where Ũm�x , t�=�i=1
m i,m�t��i�x� and �i�x� is defined in Lemma

.5. The function Ũm satisfies

d

dt
„Ũm,�i�x�…H + „AŨm,�i�x�…H + „�BŨm,Ũm�,�i�x�…H + „�BŨm,U���,�i�x�…H + „�FŨm,U���,�i�x�…H

+ „ẼŨm,�i�x�…H = „ f̃ ,�i�x�…H, i = 1,2, . . . ,m , �3.32�

Ũmt=0 = Ũ0,m, �3.33�

here Ũ0,m→ Ũ0 in H. As usually, it is straightforward �see Ref. 5� from �3.32� and Lemma 3.6
hat

1

2

d

dt
Ũm�s�2

2 +
1

Rmax
�Ũm�s��2 �

1

2Rmax
�Ũm�s��2 + „ f̃ ,Ũm�s�…H. �3.34�

ntegrating �3.34� from 0 to t, t� �0,T�, we can obtain

Ũm�t�2
2 +

1

Rmax
�

0

t

�Ũm�s��2 ds � Ũ0,m2
2 + 2�

0

t

„ f̃ ,Ũm�s�…H ds, t � 0,T . �3.35�

y the Gronwall inequality and �3.34�, we have

Ũm�t�2
2 + c14�

0

t

�Ũm�t��2 ds � Ũ0,m2
2 + c15�

0

t

� f̃�s��V� ds, t � 0,T . �3.36�

So �Ũm� is bounded in the space L2�0,T ;V��L��0,T ;H�. Going if necessary to a subse-

uence �Ũm� �that we label the same�, Ũm→ Ũ �m→ � � weakly in L2�0,T ;V� and * weakly in
��0,T ;H�. Due to a compactness theorem �see Ref. 5�, we can extract a subsequence �Ũm�
enoted by the same such that Ũm→ Ũ �m→ � �strongly in L2�0,T ;H�. By passing to the limit in

3.32�, we conclude that Ũ is a weak solution to Problem 3.1. By Lemmas 3.1, 3.2, 3.3, we know

hat
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��Ũm�t� is bounded set of L2�0,T;V�−3�� .

herefore, Ũt�L2�0,T ;V�−3��. Finally, by Lemma 3.7 and Ũ�C�0,T ;V�−3��, we have Ũ
C��0,T ;H�.

Now let us prove the energy inequality. From Ũm→ Ũ �m→ � � strongly in L2�0,T ;H�, it

ollows that Ũm2→ Ũ2 �m→ � � strongly in L2�0,T�. Going if necessary to a subsequence,

Ũm2→ Ũ2 �m→ � �, a.e. in �0,T�. Let ��s��C0
���0,T�� , ��s��0. By �3.31� and the Lebesgue

ominated Theorem, we have

�
0

�

Ũm�t�2
2���s�ds → �

0

�

Ũ�t�2
2���s�ds, m → � . �3.37�

˜
m→ Ũ �m→ � � weakly in L2�0,T ;V� implies that Ũm�1/2�s�→ Ũ�1/2�s� �m→ � � weakly in
2�0,T ;V�. By the lower weak semicontinuity of the norm, we get

�
0

�

�Ũ�s��2��s�ds � lim inf
m→�

�
0

�

�Ũm�s��2��s�ds . �3.38�

sing �3.32� and �3.33�, we have

− �
0

�

Ũm�t�2
2���s�ds +

1

Rmax
�

0

�

�Ũm�s��2��s�ds � 2�
0

�

„ f̃ ,Ũm�s�…H��s�ds . �3.39�

ombining �3.37� with �3.38�, we pass to the limit in �3.39� and obtain the energy inequality. The
roof is complete.

V. TRAJECTORY AND GLOBAL ATTRACTORS FOR THE MOIST ATMOSPHERIC
QUATIONS

This section is divided into two subsections. In Sec. IV A, we give some preliminaries about
rajectory and global attractors. In Sec. IV B, we shall prove the existence of trajectory and global
ttractors for the system �2.22�–�2.27�.

. Preliminaries

We recall the Trajectory Attractors Theory of Vishik and Chepyzhov; cf. Refs. 15 and 16.
Let E, E0 be two Banach spaces such that E�E0. An autonomous evolution equation,

�u

�t
= G�u� , �4.1�

here G is a differential operator. Denote a specific family of solutions to the equation �4.1� by
+, K+�C�R+ ; E0��L��R+ ; E�. K+ will be called the trajectory space of the equation �4.1� and

ts elements are trajectories of �4.1�. K+ is translation invariant in the following sense: if
u�s��K+, h�R+, then u�s+h��K+.

The action of translation operators T�t��t�0� on the space C�R+ ;E0��L��R+ ;E� is defined
y

T�t�u�s� = u�t + s�, " t � 0, u � C�R+;E0� � L��R+;E� .

y the definition, we have T�t1+ t2�=T�t1�T�t2� for t1 , t2�0, and T�0� is the identity operator on
he space C�R+ ;E0��L��R+ ;E�. The semigroup �T�t��= �T�t� ; t�0� is known as the time trans-
ation group on C�R+ ; E0��L��R+ ;E�.

We shall introduce a topology in the trajectory space K+. We call that the sequence �fn�s��

�fn�s���C�R+ ;E0�) converges to f�s�(f�s��C�R+ ;E0�) in the topology space Cloc�R+ ;E0� if
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max
s��0,T�

�fn�s� − f�s��E0
→ 0, as n → � , " T � 0. �4.2�

he topology in K+ is induced by the topological space Cloc�R+ ;E0�. It is clear that the translation
emigroup �T�t�� is continuous in the space Cloc�R+ ;E0�, in particular, it is continuous in K+. A set

is said to be bounded in K+ if

�u�L��R+;E� = ess sup
s�0

�u�s��E � c16, " u � � . �4.3�

Definition 4.1: A set ��C�R+ ;E0��L��R+ ; E� is said to be attracting for the trajectory space
+ of the equation �4.1� in the topology of Cloc�R+ ;E0�, if for any bounded �in L��R+ ;E�� set
�K+ and any number T�0, the following relation holds:

distC�0,T;E0�„�TT�t��,�T�… → 0, as t → � , �4.4�

here �T is the restriction operator to the interval �0,T �: if u�C�R+ ;E0��L��R+ ;E�, then

�Tu � C�0,T;E0� � L��0,T;E�, �Tu�s� = u�s�, for s � �0,T�;

nd

distC�0,T;E0�„�TT�t��,�T�… = sup
a��

inf
b��

max
s��0,T�

�a�s + t� − b�s��E0
.

Definition 4.2: A set H�K+ is called the trajectory attractor in the trajectory space K+ with
espect to the topology Cloc�R+ ;E0� if we have the following.

�1� H is a compact set in Cloc�R+ ; E0� and bounded in L��R+ ; E�;
�2� H is strictly invariant with respect to �T�t��, i.e.,

T�t�H = H, " t � 0;

�3� H is an attracting set in K+ in the topology of Cloc�R+ ;E0�.
Theorem 4.3: �cf. Ref. 16�: Suppose that the trajectory space K+ is translation invariant.

ssume also that for K+ there exists an attracting set � such that ��K+, � is compact set in

loc�R+ ;E0� and bounded in L��R+ ;E�. Then in K+ there exists a trajectory attractor H�� and H
s unique in K+, moreover,

H = �
T�0

�
t�T

T�t�� , �4.5�

here �t�TT�t�� is the closure of the set �t�TT�t�� in the space Cloc�R+ ;E0�.
Now we shall recall the definition of global attractors. First, we introduce some notations. For

set ��E, we define ��t��E for t�0 as follows:

��t� = �u�t�; u � �� � E .

In a similar way, for the trajectory attractor H we define the set

H�t� = �u�t�; u � H� � E, for t � 0.

We note that H�t� is independent of time t.
Definition 4.4: A set A�E is called the global attractor in E0 of the equation �4.1� if we have

he following:
�1� A is a compact set in E0 and bounded in E;
�2� any bounded �in L��R+ ;E�� set of trajectories ��K+ satisfies the property that the section

�t� are attracted to A as t→� with respect to the norm of E0:

distE „��t�,A… → 0, as t → � ; �4.6�

0
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�3� A is the minimal set satisfying �1� and �2�, that is, A belongs to any attracting set compact
n E0 and bounded in E.

Theorem 4.5: �cf. Ref. 16�: If the assumptions of Theorem 4.3 are satisfied, then the global
ttractor �in E0� A of the equation �4.1� exists and A=H�0�.

Remark 4.6: Definition 4.4 generalizes the well-known notion of global �E ,E0�—the attractor
f the semigroup corresponding to the Cauchy problem for the equation �4.1� under the assump-
ion that the solution for the problem is unique �see Refs. 20–22�. Assume that for any u0, there
xists a unique trajectory u�K+ such that u�0�=u0. Then the global attractor �in E0� is identical
o the usual global �E ,E0�—attractor of the semigroup. We shall explain the point in Theorem 4.8.

Under the assumption that there is a unique solution for the Cauchy problem,

�u

�t
= G�u�, u�0� = u0, �4.7�

ollowing the standard approach, we can introduce an operator semigroup �S�t� ; t�0� in the space
corresponding to the problem �4.7� by the formula

S�t�u0 = u�t�, t � 0. �4.8�

Definition 4.7: A set A1�E is called the global �E ,E0� attractor of the semigroup �S�t�� acting
n E if we have the following:

�1� A1 is a compact set in E0 and bounded in E;
�2� S�t�A1=A1 , " t�0;
�3� any bounded �in E� set �0�E satisfies

distE0
„S�t��0,A1… → 0, as t → � . �4.9�

Theorem 4.8. �cf. Ref. 16�: Suppose that the assumptions of Theorem 4.5 are satisfied and the
emigroup �S�t�� is bounded �for any bounded �in E� set �0�E, the set �t�0S�t��0 is bounded in
�. Then the global �E0 ,E� attractor A1 of the equation �4.1� exists and A1=A=H�0�, where A is

he global attractor �in E0� of the equation �4.1�.

. Existence of trajectory and global attractors

At first, we shall construct the trajectory space K+ of the system �2.22�–�2.27�. By Theorem

.8, if Ũ is a weak solution to Problem 3.1, then Ũ�L2�0,T ;V��L��0,T ;H� and Ũ satisfies the
nergy inequality

− �
0

�

Ũ�t�2
2���s�ds +

1

Rmax
�

0

�

�Ũ�s��2��s�ds � 2�
0

�

„ f̃ ,Ũ�s�…H��s�ds , �4.10�

here ��s��C0
���0,T �� ,��s��0. The inequality can be interpreted as follows:

1

2

d

dt
Ũ�s�2

2 +
1

Rmax
�Ũ�s��2 �

1

2Rmax
�Ũ�s��2 + „ f̃ ,Ũ�s�…H, ��s � �0,T � . �4.11�

Definition 4.9: The trajectory space K+ of the system �2.22�–�2.27� consists of all functions,

Ũ � Lloc
2 �R+;V� � L��R+;H� ,

here Ũ satisfies the condition: for any T�0; the function �T Ũ is a weak solution for Problem
.1 on the time interval �0,T � satisfying the energy inequality �4.10�.

Lemma 4.10 �cf. Ref. 23�: If Y is a Banach space and E� �E0�Y, where �� denotes

ompact embedding, then we have the following embedding:
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W�,p�0,T;E,Y� � � C�0,T;E0� ,

here W�,p�0,T ;E ,Y�= �u�s� ; s� �0,T � ,u�L��0,T ;E� , ut�Lp�0,T ;Y��, p�1, with the norm

�u�W�,p = ess sup
T�s�0

�u�E + ��
0

T

�ut�s��Y
pds	1/p

.

Proposition 4.11: If K+ is a trajectory space in Definition 4.9, then we have the following.

�1� For any Ũ0�H, there exists a trajectory Ũ�t��K+ such that Ũ�0�= Ũ0;
�2� K+�C�R+ ;V�−3���L��R+ ;H�;
�3� K+ is trajectory invariant, i.e., T�t�K+�K+.
Proof: By Definition 4.9, we can know that �1�, �2� are corollaries of Theorem 3.8 and Lemma

.10. Since the equations �3.14�–�3.16� are autonomous, K+ is trajectory invariant for the time
ranslation semigroup �T�t��.

Proposition 4.12: For any Ũ�K+, the following inequality holds:

�T�t�Ũ�L��R+;H� + �T�t�Ũ�L2�0,1;V� + �T�t�Ũt�L2�0,1;V�−3�� = ess sup
s�t

Ũ�s� + ��
t

t+1

�Ũ�s��2ds	1/2

+ ��
t

t+1

�Ũt�s��V�−3�
2 ds	1/2

� c22�Ũ�L��0,1;H�
2 exp�− c23t� + c24�Ũ�L��0,1;H� exp�− c23t�

+ c25, " t � 0. �4.12�

In order to prove Proposition 4.12, we need the following general Gronwall Lemma.
Lemma 4.13. �cf. Ref. 15�: Let y�s�, ��s��Lloc

1 �0, � �, and

− �
0

�

y�s����s�ds + �
0

�

y�s���s�ds � �
0

�

��s���s�ds , �4.13�

or any ��s��C0
��R+�, ��s��0, where �R; then

y�t�et − y���eT � �
T

t

��s�es ds ,

or any t, T�R+ \ Q̃ , t�T, where ��Q̃�=0, and the Lebesgue measure of Q̃ is equal to zero.
Proof of Proposition 4.12: �1� By the definitions of the spaces V, H, K+, we have

c17Ũ�s�2
2 � �Ũ�s��2, " Ũ � K+, s � 0. �4.14�

y �4.10�, we obtain

− �
0

�

Ũ�s�2
2���s�ds +

c17

2Rmax
�

0

�

Ũ�s�2
2��s�ds � �

0

� �2Rmax� f̃ �V�
2 −

1

2Rmax
„�Ũ�s��2

− c17Ũ�s�2
2
…	��s�ds . �4.15�
pplying Lemma 4.13, we get the following inequality:
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Ũ�t�2
2ec18t − Ũ�T �2

2ec18T � �
T

t �2Rmax� f̃�V�
2 −

1

2Rmax
„�Ũ�s��2 − c17Ũ�s�2

2
…	ec18s ds ,

�4.16�

or any t, T�R+ \ Q̃, t�T, c18=c17/2Rmax, where ��Q̃�=0. Combining �4.14� with �4.16�, we
btain

Ũ�t�2
2ec18t − Ũ�T�2

2ec18T � �
T

t

2Rmax� f̃�V�e
c18s ds . �4.17�

y �4.17�, we get

�T�t�Ũ�L��R+;H� � �Ũ�L��0,1;H� exp�− c18t� + c19, " t � 0. �4.18�

�2� Combining �4.16� with �4.18�, we get

1

2Rmax
�

t

t+1

„�Ũ�s��2 − c17Ũ�s�2
2
…ec18s ds � c19�ec18�t+1� − ec18t� + Ũ�t�2

2ec18t � c19�ec18�t+1� − ec18t�

+ �Ũ�L��0,1;H�
2 + c19e

c18t � �Ũ�L��0,1;H�
2 + c19e

c18�t+1�,

.e.,

1

2Rmax
�

t

t+1

�Ũ�s��2ec18s ds � c18�
t

t+1

Ũ�s�2
2ec18s ds + �Ũ�L��0,1;H�

2 + c19e
c18�t+1�. �4.19�

y �4.18�, we have

c18�
t

t+1

Ũ�s�2
2ec18s ds � c18�Ũ�L��0,1;H�

2 + c19�ec18�t+1� − ec18t� . �4.20�

ombining �4.19� with �4.20�, we obtain

1

2Rmax
�

t

t+1

�Ũ�s��2ec18s ds � �c18 + 1��Ũ�L��0,1;H�
2 + c19�2ec18�t+1� − ec18t� .

herefore

1

2Rmax
�

t

t+1

�Ũ�s��2 ds � �c18 + 1��Ũ�L��0,1;H�
2 e−c18t + c19�2ec18 − 1� . �4.21�

�3� By Lemma 3.2, Lemma 3.3, Lemma 3.6, assumptions of Problem 3.1 and �3.22�, we
btain

�Ũt�s��V�−3� � �Ũ�s��Ũ�s�2 + c20�Ũ�s�� + � f̃�V�.
o
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��
t

t+1

�Ũt�s��V�−3�
2 ds	1/2

� ��
t

t+1

�Ũ�s��2Ũ�s�2
2 ds	1/2

+ c21 + c21��
t

t+1

�Ũ�s��2 ds	1/2

� c21�Ũ�L��t,t+1;H���
t

t+1

�Ũ�s��2 ds	1/2

+ c21

+ c21��
t

t+1

�Ũ�s��2 ds	1/2

, " t � 0. �4.22�

herefore, by �4.18�, �4.21�, �4.22�, there exist two positive constants c20,c21, such that

�T�t�Ũ�L��R+;H� + �T�t�Ũ�L2�0,1;V� + �T�t�Ũt�L2�0,1;V�−3�� � c22�Ũ�L��0,1;H�
2 exp�− c23t�

+ c24�Ũ�L��0,1;H� exp�− c23t� + c25, " t � 0.

he proof is complete.

Proposition 4.14: If �Ũn��K+ is a bounded sequence in L��R+ ;H�, and for some Ũ
C�R+ ;V�−3�� the following relation holds:

Ũn → Ũ in Cloc�R+;V�−3��, as n → � .

hen Ũ�K+.

Proof: We only give the outline of the proof. Since �Ũn��K+ is bounded in L��R+ ;H�, by

roposition 4.12, we know, if necessary going to the subsequence of �Ũn�,

�Ũn�t + AŨn + �BŨn,Ũn� + �BŨn,U�� + �FŨn,U�� + ẼŨn − f̃ ⇀ �Ũ�t + AŨ + �BŨ,Ũ� + �BŨ,U��

+ �FŨ,U�� + ẼŨ − f̃ ,

eakly in L2�0,T ;V �−3��, for any T�0. Hence Ũ is a weak solution for Problem 3.1.

In order to prove that Ũ�K+, we should check that Ũ satisfies the energy inequality �4.10�.
y �Ũn��K+, for every n, Ũn satisfies

− �
0

�

Ũn�t�2
2���s�ds +

1

Rmax
�

0

�

�Ũn�s��2� �s�ds � 2�
0

�

„ f̃ ,Ũn�s�…H� �s�ds ,

here � �s��C0
���0,T ��, ��s��0. Since �Ũn��K+ is bounded in L��R+ ;H�, by Proposition 4.12,

oing if necessary to a subsequence, we obtain that Ũm→ Ũ �m→ � � weakly in L2�0,T ;V� and *
eakly in L��0,T ;H�. Similarly to prove �3.39�, we can take a limit in the above inequality and
et the energy inequality

− �
0

�

Ũ�t�2
2���s�ds +

1

Rmax
�

0

�

�Ũ�s��2��s�ds � 2�
0

�

„ f̃ ,Ũ�s�…H��s�ds .

Now we can state the main result of this section.
Theorem 4.15: Under the assumptions of Problem 3.1, there is a trajectory attractor H�K+

or the system �2.22�–�2.27� and H is unique in K+. Moreover A=H�0� is the global attractor for
he system �2.22�–�2.27� in the space V�−3�.

Proof: In order to apply Theorem 4.3 and Theorem 4.5, we have to construct an attracting set
for the time translation semigroup �T�t��, where ��K+ and � is a compact set in

�−3� �

loc�R+ ; V � and bounded in L �R+ ; H�. Let
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� = �Ũ � K+; ess sup
t�0

��Ũ�L��t,t+1;H� + �Ũt�L2�t,t+1;V�−3��� � 3c25� . �4.23�

e claim that � is an attracting set that satisfies the conditions in Theorem 4.3. Indeed, assume
�K+ and � is a bounded in L��R+ ; H�, i.e.,

�Ũ�L��R+; H� = ess sup
s�0

�Ũ�E � c26, " u � � .

y Proposition 4.12, there exists t1�0 such that T�t���� for t� t1. By the definition of �, we
an know that � is bounded in L��R+ ; H�. By �4.23�, for any T�0, �T� is bounded in

�,2�0,T ;H ,V�−3��. Applying Lemma 4.10, we can obtain that the closure of �T� is compact in
�0,T ; V�−3��, that is, the closure of � is compact in Cloc�R+ ;V�−3��. Now, we shall prove that �

s closed in Cloc�R+ ;V�−3��. Suppose that there is a sequence �Ũn��� that satisfies

Ũn → Ũ in Cloc�R+;V�−3��, as n → � .

n the other hand, by �4.23�, �Ũn� is bounded in L��R+ ;H�. Applying Proposition 4.14, we get

hat Ũ�K+. By the lower weak continuity of the norm and

�Ũn�L��t,t+1;H� + ��Ũn�t�L2�t,t+1;V�−3�� � 3c25,

e can have

�Ũ�L��t,t+1;H� + �Ũt�L2�t,t+1;V�−3�� � 3c25.

herefore, Ũ��, that is, � is compact in Cloc�R+ ; V�−3��. Applying Theorem 4.3 and Theorem
.5, we obtain Theorem 4.15 and the trajectory attractor

H = �T�0�t�TT�t�� ,

here �t�TT�t�� is the closure of the set �t�TT�t�� in the space Cloc�R+ ; V�−3��. The proof is
omplete.

Remark 4.16: In Lemma 4.10, we can let E0=V�−�� , 0���3, E=H , Y =V�−3�, where E0 is in
heorem 4.8, V�−��= �V����� and the definition of V��� is similar to V�3�. Thus, we can replace V�−3�

n Propositions 4.11, 4.14 by V�−��. Therefore, we obtain the trajectory attractor
�K+�C�R+ ;V�−����L��R+ ;H� and the global attractor of the system �2.22�–�2.27� in the

pace V�−��.
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The idea of associating particle trajectories with wave propagation rays is examined
in the context of general relativity. The additional assumption that also Hamilton-
Jacobi particle equation and wave front equation of motion can be identified in an
n�3 coordinate space leads to a Kaluza-Klein type theory involving Klein-Gordon
and Dirac equations. Moreover de Broglie and Einstein-Planck quantum relations
can be deduced in a natural way. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2229419�

. INTRODUCTION

In the present paper we attempt to suggest a new point of view on the intriguing problems of
ave-particle duality and the relationship between general relativity and quantum mechanics.1

. Historical context

In 1970, Boillat2 proposed the idea that the trajectories of motion of �stable� particles could be
dentified with the rays of propagation of �exceptional� waves across the physical space. Such an
dea somehow reminds one of the concept of pilot wave earlier introduced by de Broglie3 and also
he so-called “realistic” interpretation of Schrödinger equation given by Bohm.4 Boillat’s approach
s significantly different with respect to previous ones since he operates in the context of a quite
eneral nonlinear wave propagation theory5 obtaining the well-known Born-Infeld electro-
ynamics6 and some other relevant results �for interesting physical applications see, e.g., Refs. 7
nd 8�.

. Our contribution

Here we will come back to the idea of identifying wave rays and particle trajectories but we
dd a further assumption by also requiring that the evolution equation, along wave rays �provided
y wave kinematics�, and the Hamilton-Jacobi equation �governing the particles dynamics� must
e identified. As we shall see, we will be able to tune wave and particle motions provided that the
ormal speeds of waves are equal to the speed of light c across an n-dimensional coordinate space.
his condition leads to the dynamics of a zero rest mass particle across the same n-dimensional
pace, the projection of which onto the physical three-dimensional subspace embedded into it can
e interpreted as the motion of a massive relativistic particle.9 �For models treating mass as related
o higher dimensional space-time see, e.g., Refs. 10–18�. We look also for the Lagrangian gov-
rning the field candidate to fit the conditions arising from the previous assumptions and we obtain
lein-Gordon and Dirac equations arising in the embedded physical space from a D’Alembert

quation holding in the embedding space.

�
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I. WAVES AND PARTICLE DYNAMICS

Let us consider an n+1 dimensional real differentiable manifold Vn+1, representing a space-
ime endowed with a symmetric metric g of signature �+,−, ¯ ,−� and a torsionless connection �.
n Vn+1 we represent any system of curvilinear coordinates with x� ,�=0, I, with I=1,2 , . . . ,n.
he phyisically observable space-time is then described by a four-dimensional sub-manifold V4 on
hich the observable coordinates are labeled by the indices 0 , i, where i=1,2 ,3, while we will

abel the remaining coordinates x4 ,x5 , . . . ,xn by underlined Latin indices i=4,5 , . . . ,n. �We point
ut that the signature relative to the extra dimensions seems to be relevant for our purposes and
annot be taken otherwise.� For our purposes it proves convenient to adopt the synchronous gauge
hich requires the following n+1 conditions on the metric tensor:

g00 = 1, g0I = gI0 = 0, �1�

mplying the synchronization of time:

x0 = ct . �2�

Let us now consider any differentiable real valued function ��t ,xI�, which we can always
ssume to be dimensionless, such that

g�� ��

�x�

��

�x� � 0, �3�

�� being the contravariant components of the metric tensor defined as usual by the relation

g��g�� = ��
�. �4�

Then

��t,xI� = 0 �5�

ay be interpreted as the world sheet of a wave front traveling across the n-space. We point out
hat � is determined by �5� except for an arbitrary nonvanishing factor. The trajectory �ray� of each
oint of the wave front can be described by its parametric equations:

xI � xI�t� . �6�

Substituting �6� into �5� and differentiating with respect to t we obtain the differential equation
overning the wave kinematics:

��

�t
+ VI ��

�xI = 0, �7�

here

VI =
d

dt
xI�t� �8�

s the ray velocity of the point of the wave front. Assuming �,I�0, Eq. �7� can be written also in
he equivalent form:

��

�t
+ V���� = 0, ���� = �− gIK�,I�,K, �9�

here the contravariant components of the metric tensor, in the gauge �1�, result to be

g00 = 1, g0I = gI0 = 0, gIJgJK = �K
I . �10�
Then the normal wave speed is given by
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V = VInI, nI =
�,I

����
, gIKnInK = − 1, �11�

he comma denoting partial derivative, as usual. The first step of our work consists in asking
hether and at which conditions the first equation in Eq. �9�—the wave front equation—can be

nterpreted also as a Hamilton-Jacobi equation:

�S

�t
+ H = 0, �12�

overning the motion of some particle. In order to make possible such interpretation we may think
f the function � as proportional to the Hamilton generating function of the particle dynamics
ccording to

S = 	� , �13�

here 	 is a suitable dimensional �positive� constant which will be specified later coherently with
physical interpretation of the theory. Then we can write the first equation in �9� in the form �12�
rovided that the Hamiltonian of the particle is given by

H = V��S�, ��S� = �− gIKS,IS,K. �14�

Since, according to Hamilton-Jacobi’s theory,

pI = S,I, E = H �15�

where pI is the canonical momentum of the particle, and the Hamiltonian H is the generalized
nergy� from �14� it results:

E = V�− gIKp,Ip,K. �16�

It is immediate to see that �16� is compatible with relativity if and only if

V = c , �17�

nd the particle has zero rest mass. In fact at those conditions it results:

E = cp, p = �− gIKpIpK. �18�

The Hamilton equations,

dpI

dt
= −

�H

�xI ,
dxI

dt
=

�H

�pI
, �19�

esult:

dpI

dt
= gJK

,I
cpJpK

2p
, �20�

dxI

dt
= − c

pI

p
. �21�

One realizes that �20� is also equivalent to the geodesic condition:

dpI

dt
− �IJ

K pK
dxJ

dt
= 0, �22�
hich, thanks to �21�, becomes
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dpI

dt
+ �IJ

K cpJpK

p
= 0. �23�

In fact,

1
2gJK

,IpJpK � − �JI
K pKpJ,

eing

gJK
;I � gJK

,I + �IM
J gMK + �IM

K gJM = 0, �24�

ecause of the metricity of gJK, where

�JI
K = 1

2gKM�gJM,I + gIM,J − gJI,M� . �25�

Therefore we may conclude that the differential equation governing wave kinematics may be
dentified with the Hamilton-Jacobi equation governing the motion of a massless particle traveling
t the speed of light across the n-dimensional space, provided that the wave itself travels at the
peed of light. Now we can split the n-vectors �pI� , �xI� into their components onto the physical
pace and pi ,x

i and the extra components pi ,x
i and write

dpi

dt
= gjk

,i
cpjpk

2p
+ gjk

,i

cpjpk

2p
+ gjk

,i

cpjpk

p
,

dxi

dt
= − c

pi

p
, �26�

dpi

dt
= gjk

,i
cpjpk

2p
+ gjk

,i

cpjpk

2p
+ gjk

,i

cpjpk

p
,

dxi

dt
= − c

pi

p
. �27�

Moreover we can interpret

m =
1

c
�− �2gikpk + gikpk�pi, �28�

s a constant rest mass of some particle provided that we assume

�2gikpk + gikpk�pi = const. �29�

Such a choice is always possible since pI=	�,I and � is defined except for a nonvanishing
actor according to �5�. Then we gain the Hamiltonian of a massive particle:

H = c�m2c2 + p�2, p�2 = − gikpipk. �30�

We point out that when

1
2gjk

,ipjpk + gjk
,ipjpk = 0, �31�

nd gjk depends only on the observable variables t ,xi, the first equation in �26� becomes the
quation of the geodesic trajectory of a particle of rest mass m crossing the physical 3D space in
he presence of a gravitational field. More �nongravitational fields� described by gjk ,gjk, can be
ntroduced in a Kaluza-Klein type theory �see Sec. VII�.

II. dE BROGLIE AND EINSTIEN-PLANCK RELATIONS

The Hamilton generating function S, proportional to the function �, can easily be evaluated by
ntegration of Eq. �7�, in which the ray velocity VI has the direction of the normal vector nI,
esulting in

I I
V = − cn . �32�
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Then the equation to be integrated becomes

�S

�t
− cnI �S

�xI = 0, �33�

r

�S

�t
+ c

�S

�xn
= 0, �34�

ince

nIS,I = −
�S

�xn
, xn = xInI.

The solution is

S = f�xn − ct� � f�xInI − ct� � f�xini + xini − ct� , �35�

here f may be any differentiable function of its argument xn−ct. Such kind of solution is what in
ave propagation theory is called a simple wave.19–21 Since S=	�, it results also that

� =
1

	
f�xini + xini − ct� . �36�

Then the canonical momenta, evaluated during the wave-particle motion, become

pI = 	��nI, Û pi = 	��ni, pi = 	��ni, �37�

nd the Hamiltonian:

H � E = 	c��. �38�

It proves convenient to introduce the following quantities related to wave propagation:

kI = ��nI, Û ki = ��ni, ki = ��ni, �39�


 = c��. �40�

On identifying the constant 	 with Planck’s constant the following well-known relations arise
aturally:

pI = � kI Û pi = � ki, pi = � ki �de Broglie� , �41�

E = � 
 �Einstien-Planck� . �42�

In the special case of a periodic wave it is immediate to recognize in the quantities 
 , �kI�
�ki ,ki�, the frequency and the wave number vectors.

V. WAVE DYNAMICS AND FIELD EQUATIONS

The problem of wave dynamics consists in determining a class of field equation candidates to
xplain the wave kinematics equivalent to Hamilton-Jacobi particle mechanics, as examined in the
revious sections. Of course the main condition required by the system of field equations is that it
ust provide waves traveling with the speed of light across an n-dimensional space, but that

ondition alone is too wide to characterize a physically meaningful class of field equations. So we

eed some other reasonable assumptions. Therefore we will require the following ones:
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�i� The system of field equations must be Lagrangian. This condition is usual for physical
fields and needs no special explanation.

�ii� The production term of the system must be zero �at least in correspondence to the simple
wave solutions�. This second assumption is required in order to provide regular solutions
to the system as simple waves,19–21 ensuring that the particles travel along the rays at
characteristic speeds. In principle also discontinuity waves22 could be considered, but if
we want to be able to compare the results with quantum mechanical ones we need
regular solutions which can be expanded into Fourier series.

�iii� The normal speed of all simple waves must be equal to the speed of light c. This is the
true kinematic condition we have previously examined.

The Lagrangian system. Let us consider a candidate field �, which in general may be a
omplex column vector belonging to an N-dimensional Euclidean complex space, and is assumed
o be a set of regular functions of xI , t, invariant with respect to any regular coordinate transfor-
ation; and let

L � ��g�L�v,v+,wI,wI
+�, v =

��

�t
, wI =

��

�xI �43�

e a Lagrangian density governing the field dynamics �where � denotes the transposed complex
onjugation�. Such Lagrangian is supposed to depend only on v ,wI, in order to fulfill assumption
ii�. Then the system of first-order field equations is

�

�t
���g�

�L
�v+	 +

�

�xI���g�
�L
�wI

+	 = 0, �44�

�wI

�t
−

�v
�xI = 0 �45�

together with its complex conjugate�. On applying the correspondence rules,19

�

�t
�·� → − 

�

��
�·� � − �·��,

�

�xI �·� → nI
�

��
�·� � nI�·��, �46�

rime denoting differentiation respect to �, we obtain, according to wave propagation theory, the
lgebraic system for the simple waves:

− ���g�
�L
�v+	�

+ nI���g�
�L
�wI

+	�
= 0, �47�

− wI� − nIv� = 0, �48�

n which  is the characteristic normal speed of the simple waves and the unknown field variables
,wI are functions of �. We point out that even if the wave propagation theory we are applying
ere was originally carried out in the context of real valued fields, its extension to complex fields
s straightforward �see, e.g., Ref. 23�. Simple manipulations on �47� and �48�, after eliminating wI

y direct substitution, lead to

nI
2
�2L

�v+ � v
gIJ − �nI

�2L
�v+ � wJ

+
�2L

�wI
+ � v

nJ	 −
�2L

�wI
+ � wJ

�nJv� = 0. �49�

Since the Lagrangian density cannot depend on the wave front geometry, i.e., on nI, the

ollowing conditions must hold:
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2
�2L

�v+ � v
gIJ −

�2L
�wI

+ � wJ

= 0, �50�

�2L
�v+ � wJ

= 0 Û
�2L

�wI
+ � v

= 0. �51�

The latter condition implies that

L = L1�v,v+� + L2�wI,wI
+� , �52�

hich introduced into the former yields

2
�2L1

�v+ � v
gIJ −

�2L2

�wI
+ � wJ

= 0. �53�

Thanks to our assumption �iii�, the normal speeds of simple wave propagation must equal the
peed of light, and therefore �53� becomes

c2
�2L1

�v+ � v
gIJ =

�2L2

�wI
+ � wJ

. �54�

The Hessian matrices of L1 ,L2 are manifestly independent of the fields v ,wI, so we may write
hem as

�2L1

�v+ � v
=

1

c2a , �55�

�2L2

�wI
+ � wJ

= gIJa , �56�

here a is a nonsingular Hermitian matrix, independent of the fields. From those conditions the
orm of Lagrangian density is determined as

L = 1
2
��g��gIJwI

+awJ +
1

c2v+av	 . �57�

The Euler-Lagrange equations are given by

�

�t
���g�av� +

�

�xI �c
2��g�gIJawJ� = 0, �58�

r

�av�;0 + �cgIJawJ�;I = 0. �59�

We observe that a, beside being independent of the fields v ,wI, must be independent also of
I , t, otherwise a nonvanishing production term will arise into the field equations. Then, since a is
nonsingular matrix, taking account of the metricity condition �gIJ

;K=0�, the field equations result
imply:

v;0 + cgIJwJ;I = 0, cwI;0 − v;I = 0. �60�

The coefficient matrix a disappears from the equations and its role becomes irrelevant in the

agrangian; so it is not a restriction to choose:
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a = kI , �61�

ith k the dimensional constant and I the identity matrix in the field space. Then the scalar
agrangian density becomes

L =
1

2
k�gIJwI

+wJ +
1

c2v+v	 . �62�

We point out that the algebraic system which determines the simple waves, arising from �60�,
hich is given by

1

c
v� − cnIwI� = 0, wI� + nIv� = 0, �63�

ields, through direct substitution,

�2 − c2�v� = 0, �64�

rom which the characteristic speeds become

 = ± c . �65�

Such values imply, significantly, that the energy of the particle associated to wave propaga-
ion, thanks to �16�, taking into account that V=, results to be

E = ± �m2c4 + c2p�2. �66�

The latter result states that, corresponding to any simple wave front traveling at normal speed
c, there exists an identical wave front traveling in the opposite sense at speed −c; that is usual in
ave propagation. And, corresponding to a particle of energy +�E�, associated with the former
ave, there exists another particle of negative energy −�E�, associated to the latter wave. Such

ircumstance, as it is well known, was noticed for the first time by Dirac, examining the solutions
f his famous equation. According to our present approach the result arises naturally as a conse-
uence of wave particle correlation expressed by �16�, being V=, and the assumption that the
ystem of field equations is Lagrangian.

. THE KLEIN-GORDON EQUATION

Let us now study in more detail the system of field equations �60�.

. Second-order formulation

First of all we point out that we can always replace the fields v ,wI, with their original
efinitions in terms of derivatives of the field �, according to �43�, obtaining a system of N
econd-order equations, instead of the original system of 2N first-order equations:

�;0;0 + gIJ�;I;J = 0. �67�

This generalized D’Alembert equation governing the propagation of the field � across the
-dimensional space is equivalent to a generalized Klein-Gordon equation for the propagation of
he same field across the physical three-dimensional space. In fact the solutions of the field, being
imple waves, depend on the argument xn−ct being composite functions through � of the same
rgument. Now:

xn − ct �
1

p
�pIx

I − cpt� �
c

E
�pIx

I − Et� . �68�
Therefore we can consider the field � as a function of the form:
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� � ��pix
i + pix

i − Et� . �69�

Without affecting time we may choose the space coordinates xi in such a way that

xn = xiNi, gnn � gjkNjNk = − 1, gij = gji = 0, �70�

ith

pi = − mcNi, Ni =
pi

�− gjkpjpk

. �71�

Then the simple wave will travel across a five-dimensional sub-space-time, resulting in �69�

� � ��pix
i + mcxn − Et� . �72�

If we require the additional assumption that � belongs to the Hilbert space L2, so that it can
e expanded into Fourier series, we can write

� = �
r=−�

+�

cre
�i/���prix

i+mcxn−Ert� � e�i/��mcxn �
r=−�

+�

cre
�i/���prix

i−Ert�, �73�

here the energies result to be

Er = c�p� r
2 + m2c2. �74�

Then we are able to evaluate the Laplacian:

gij�;i;j =
m2c2

�2 � .

Then the field equation �67� leads to the Klein-Gordon equation in generalized coordinates:

�;0;0 + gij�;i;j +
m2c2

�2 � = 0. �75�

. First-order formulation

A further relevant consideration arises on evaluating the divergence of wI in terms of the field
ariables wi ,wi. Taking account of the previous results we have

w j = wn� jn, w j;i =
imc

�
wn� jn. �76�

It follows into the system �60�:

v;0 + cgijw j;i + i
mc2

�
w = 0, �77�

cwi;0 − v;i = 0, cwn;0 − v;n = 0. �78�

That result is equivalent to saying that we need only one extra space dimension to introduce
he rest mass. Then the space-time needs to have five dimensions if the particle travels across a
ravitational field or six if the electromagnetic field is added or more if other fundamental fields

re present �Kaluza-Klein type theories�.
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I. THE DIRAC EQUATION

In the N-dimensional linear space of the field variables v ,wI it is always possible to find a set
f n nonsingular matrices 	I relating the n vectors �wI� with the vector v in such a way that

v = c	IwI. �79�

Thanks to �79�, the field equations �60� may be written only in terms of wI as

	;0
I wI + 	IwI;0 + gIJwJ;I = 0, �80�

wI;0 − 	;I
J wJ − 	JwJ;I = 0. �81�

On taking the scalar product of �81� by 	I we have

	IwI;0 − 	I	;I
J wJ − 	I	JwJ;I = 0. �82�

Now we need to remember that wJ is a gradient of a field which is scalar with respect to any
egular coordinate transformation, being by its definition given by the third equation in �43�:

wJ = �;J � �,J.

Then,

wJ;I � �,J;I � �,J,I − �IJ
K�K

s symmetric with respect to I ,J. Therefore �82� becomes

	IwI;0 − 	I	;I
J wJ − 1

2 �	I	J + 	J	I�wJ;I = 0. �83�

Subtraction of �83� from �80�, after few manipulations, leads to

�	;0
J + 	I	;I

J �wJ + 1
2 �	I	J + 	J	I − 2gIJI�wJ;I = 0. �84�

The last condition �84� holds for any value of the field wJ and its derivatives wJ;I, iff

	;0
J + 	I	;I

J = 0, �85�

	I	J + 	J	I = − 2gIJI . �86�

It is easy to recognize in the last relation a general relativistic extension of the same anticom-
utation rule holding for the Dirac matrices.24 The matrices 	I must also fulfill condition �85�.
quations �60� are now dependent and lead to a field equation of the form:

v;0 − 	Iv;I + c	I	;I
J wJ = 0, �87�

hich represents a generalized form of the Dirac equation.
We point out that each matrix 	I, when multiplied by itself, becomes equal to the identity

atrix. Then its eigenvalues are ±1. With a suitable choice of a locally flat coordinate system we
an always diagonalize one of such matrices. When N=4 the last choice, together with the anti-
ommutation rule �86� and the assumption that the matrices are constant, yields to the known
irac matrices. Moreover the field equation �87� becomes the usual Dirac equation:

�v
+ c	� · �� v + i

mc2

�v = 0. �88�

�t �
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II. KALUZA-KLEIN TYPE THEORIES

Starting from the previous results, having arisen in the context of wave propagation theory

ersus Hamiltonian mechanics, we are naturally led to include the field �����h̄�� , h̄=1,2 , . . . ,N
mong the components of the metric tensor of the manifold Vn+1 following a Kaluza-Klein type
cheme.25 Some authors proposed different methods to deduce the Klein-Gordon equation, for a
calar field, from a Kaluza-Klein theory, dealing with the physical space-time �V4� filled by matter,
s embedded into a higher dimensional empty space-time: see, e.g., Refs. 10–18. Here we propose

way to involve even more fields ��h̄�.

. Particle traveling across a gravitational field

In the absence of electromagnetic and Yang-Mills fields we suppose to work in a V5+N space-
ime manifold on which we represent the metric tensor and its inverse as,

�gAB� � 
1 0 0 0

0 gij 0 0

0 0 − ���h̄��2�h̄k̄ 0

0 0 0 − 1
� , �89�

�gAB� �
1 0 0 0

0 gij 0 0

0 0 −
1

���h̄��2
�h̄k̄ 0

0 0 0 − 1
� , �90�

here no summation is intended under the repeated couples �h̄�-h̄ or �k̄�-k̄.

If we assume that gjk�t ,xi� ,��h̄��t ,xi ,xn�, according to the coordinate choice �70�, the non-null
eld equations become

R̃00 − 1
2 R̃ = �T00, �91�

R̃jk − 1
2 R̃gjk = �Tjk, �92�

�;0;0
�h̄� + gjk�;j;k

�h̄� = �;n;n
�h̄� , �93�

here R̃00, R̃jk denote the non-null components of the Ricci tensor related to the V4 physical
pace-time, and

�T00 = − �
h̄=1

N
�;0;0

�h̄�

��h̄�
, �Tjk = − �

h̄=1

N
�;j;k

�h̄�

��h̄�
, �94�

re the nonvanishing energy-momentum tensor components arising on V4.
Moreover it results that

pj � � �,j = � � jn�,n � � jnpn. �95�
Then the particle equation of motion �the first equation in �26�� becomes
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dpi

dt
= gjk

,i
cpjpk

2p
+ gnn

,i
cpn

2

2p
, �96�

ince gnn=−1, the previous equation becomes the geodesic condition on the physical space:

dpi

dt
= gjk

,i
cpjpk

2p
. �97�

. Adding the electromagnetic field

The electromagnetic field can be added according to a Kaluza-Klein scheme, by the metric
ensor:

�gAB� �
1 0 0 0 0

0 ḡij ��2Ak 0 0

0 ��2Aj − �2 0 0

0 0 0 − ���h̄��2�h̄k̄ 0

0 0 0 0 − 1
� , �98�

ith

ḡij = gij − �2�2AjAk, �99�

being the Kaluza-Klein dilaton scalar field and Aj the electromagnetic vector potential.
We emphasize that we need to choose the radiation gauge g40�A0=0 in order to preserve the

ynchronization assumption �1�.

. Adding the Yang-Mills fields

In a similar way one can introduce also Yang-Mills fields into the metric tensor:26–28

�gAB� �
1 0 0 0 0

0 ĝij ��2Ak ����a��2Ak
b 0

0 ��2Aj − �2 0 0

0 ��2Aj ����a��2Aj
a − ���a��2�ab 0

0 0 0 0 − ���h̄��2�h̄k̄

0 0 0 0 − 1

� ,

ĝij = gij − �2��2AjAk + ���a��2�abAj
aAk

b� , �100�

ith the gauge choices A0=0 ,A0
a=0.

III. CONCLUSION

We have examined in some detail, in the context of general relativity, in a synchronous gauge,
he idea that particle trajectories of motion can be the same as the rays of suitable waves propa-
ating across the space. Moreover we have suggested that the wave front propagation equation and
he Hamilton-Jacobi equation of some particle motion could represent two ways of interpreting the
ame differential equation. Such assumption has led us to the condition that the wave normal
peed must be equal to the speed of light in empty space and the consequence that massive free
articles can exist only if the space has more than three dimensions. In order to establish a
agrangian complex field theory capable of generating the waves we need, we found that the field

quation needs to be linear with respect to the new field variables and assume the form of a
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’Alembert equation in general coordinates. We have also shown that the field equations we
btained can be written either in the form of Klein-Gordon equation �second-order formulation� or
s Dirac equation �first-order formulation� when N=4. Moreover we have shown how to include
he new additional field � into the frame of Kaluza-Klein type theories.
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The aim of the paper is to provide a constructive method for recovering a unitary
matrix from experimental data. Since there is a natural immersion of unitary ma-
trices within the set of double stochastic ones, the problem to solve is to find
necessary and sufficient criteria that separate the two sets. A complete solution is
provided for the three-dimensional case, accompanied by a �2 test necessary for the
reconstruction of a unitary matrix from error affected data. © 2006 American In-
stitute of Physics. �DOI: 10.1063/1.2229424�

. INTRODUCTION

An n�n matrix M is said to be double stochastic if its elements satisfy the relations

mij � 0, �
i=1

n

mij = 1, �
j=1

n

mij = 1. �1�

ll such matrices form a convex set called the Birkhoff’s polytope.1 The unistochastic matrices
re a subset of the double stochastic ones defined by

mij = �Uij�2, �2�

here U is a unitary matrix, i.e., satisfies the relation

UU† = U†U = In, �3�

here † denotes the adjoint, and In is the n-dimensional unit matrix.
It is well known that for n�3 there are double stochastic matrices that are not unistochastic,2

nd from a mathematical point of view there are a few interesting problems that deserve to be
olved:

�i� Given a double stochastic matrix, M = �mij�, i , j=1, . . . ,n, what are the necessary and
sufficient conditions for M to be unistochastic?

�ii� Supposing M unistochastic, to what extent the matrix U is determined by M, i.e., how
many solutions one could get.

�iii� If M is unistochastic, how one can reconstruct the unitary U from the given data.

The problem �i� was completely solved only for the three-dimensional case.3 A characteriza-
ion of the subset of double stochastic matrices that come from unistochastic ones, Eq. �2�, for
=3, was given in Refs. 3 and 4. For n�4 only partial results are known, see, e.g., Refs. 5–12. In
eneral the theoretical physicists working on this problem were not aware of the embedding of the
nitary matrices into the double stochastic ones, Eq. �2�, hence there was not an intrinsic pressure
or solving problem �i�. In this respect see Ref. 9, Introduction, where it is said: “We are not

�
Electronic mail: dita@zeus.theory.nipne.ro
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oncerned here with the consistency problem, which amounts to obtaining necessary and suffi-
ient conditions on the set of numbers �Ujk� for this set to represent the moduli of a unitary
atrix.”

In this paper we will provide necessary and sufficient conditions for the separation of the two
ets, conditions expressed in terms of the entries of a double stochastic matrix on the independent
arameters entering the unitary matrix. We mention also that the Theorem 1 in Ref. 3, which
rovides necessary and sufficient conditions in the n=3 case, is only an existence theorem, and it
oes not provide a constructive method for recovering a unitary matrix from a double stochastic
ne.

Concerning problem �ii� it was shown that the generic situation, for n�4 is the existence of
continuum of solutions, see Refs. 6–9 and 11 and 12. In particular complex Hadamard matrices,

.e., unitary matrices with equal moduli, �Uij � =1/�n, have been found that depend on arbitrary
hases, see Refs. 13–17.

The solution of the mathematical problem �iii� for n=3 can be easily obtained, as we show in
he following, but its applications in high energy physics presented some challenges since the

easured numbers are affected by errors. Usually one starts with a theoretical model formalized
y a unitary matrix, and the problem is to recover the unitary matrix from measurements of its
oduli, or of some “angular looking objects,” UijUlkUik

* Ulj
* , where * means complex conjugation.

hen �Uij�2 are measured one gets a numerical matrix as

V = �Vij
2 � , �4�

here every Vij is affected by errors, so we do not know how far from �Uij� are the measured
alues Vij, and by consequence the double stochasticity relations �1� are only approximately
atisfied, if any. More generally, that means that we have to test the full compatibility between the
ata and the unistochastic property. Second, by supposing the data are compatible with the exis-
ence of a unitary matrix we need a reliable algorithm for an explicit recovery of a unitary matrix
rom data, because some parameters entering the unitary matrix may have a physical significance,
nd we want to know them, an example being the CP-violating phase from the Cabibbo-
obayashi-Maskawa �CKM� matrix.

Indeed the recovery of a unitary matrix from experimental data is a central problem in the
lectro-weak interactions18 where the �assumed� unitary CKM matrix19 plays a fundamental role.
ence the recovery problem of a unitary matrix from experimental data is not an academic
roblem, it has many practical consequences. Let us recall that there are two big collaborations,
aBar in the United States, and Belle in Japan whose efforts are to measure as exact as possible

he b-quark related entries of the CKM matrix. In Europe, at CERN, there is under construction
he LHC machine, one of its main aims being a better understanding of the so called B-physics.
hus a reliable algorithm for recovery of unitary matrices, able to obtain the independent param-
ters of the CKM matrix, could have consequences on both the design of future experiments, as
ell as on the design of future high energy machines, including neutrino factories.

The main goal of the paper is to provide a reliable algorithm for the reconstruction of a unitary
atrix from experimental data, when these ones are compatible with the theoretical model. We
ention that nowadays the algorithm for reconstruction of a 3�3 unitary matrix from experimen-

al data does not make use of the double stochasticity relations �1�, and the phenomenological
odel used to describe the data and to reconstruct a unitary matrix from them is mainly based on

he use of a single orthogonality relation, expressed as a triangle in the complex plane,20–29

lthough the proof of Theorem 1 from Ref. 3 explicitly stresses the necessity of using at least two
rthogonality relations.

The paper is organized as follows. In Sec. II starting from the properties of double stochastic
atrices and the embedding relation �2� of unitary matrices within that set, we describe the gauge

roup of unitary matrices, i.e., the group of the most elementary transformations whose action on
he unitary matrices does not change the unitarity property, or the physical content. In Sec. III we
rovide a parametrization of unitary matrices that is essential in devising a reconstruction algo-

ithm in terms of physically relevant quantities. In Sec. IV we define two phenomenological
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odels, unitarity condition method, and unitarity triangles method, by using the embedding �2�
nd the double stochasticity properties �1�. We find the necessary and sufficient conditions the data
ave to satisfy in each model in order to be consistent with the unitarity properties, and give the
econstruction algorithm of unitary matrices from double stochastic matrices. In Sec. V we show
hat both approaches are completely equivalent, then and only then, when they are formulated in
erms of four independent moduli; a consequence will be that the second model has to use at least
wo orthogonality relations. In Sec. VI we describe the reconstruction algorithm of unitary matri-
es from experimental data that are compatible with the double stochasticity property. With this
im in view we define �2-tests that allow the recovery of unitary matrices from error affected data,
ncluding a method for doing statistics on moduli of unitary matrices. The paper ends with
onclusions.

I. UNITARY MATRICES AND THEIR GAUGE SUBGROUP

It is well known that an n�n unitary matrix depends on n2 parameters,30,31 that are usually
aken as n�n−1� /2 angles and n�n+1� /2 phases, each set taking values within �0,� /2�, and,
espectively, �0,2��. Equation �2� tells us that, given a definite unitary matrix, all the unitary
atrices obtained by multiplying it at left and/or at right by diagonal phase matrices, D
diag�ei�1 , . . . ,ei�n�, with arbitrary real �i, i=1, . . . ,n, generate a single double stochastic matrix.
hat means that we can simplify a little bit the form of a unitary matrix since the values of 2n
1 phases are at our disposal, and a common choice for them is 0 and/or �. In high energy physics

his property is known as phase invariance.32–36 Thus we can take the entries from the first row and
he first column as non-negative quantities, such that the number of independent parameters
ntering a unitary matrix gets n2− �2n−1�= �n−1�2, and it is equal to the number of independent
arameters entering a double stochastic matrix. Hence we could say that the embedding �2�
uggests that the “natural” coordinates to parametrize a unitary matrix could be the moduli of its
ntries. Unfortunately that can be done only for 3�3 matrices, but even in this case there are
upplementary relations that have to be fulfilled by the moduli in order to get from them a unitary
atrix.

Besides these transformations there are other transformations: multiplication at left and/or
ight by permutation matrices. Permutation matrices are matrices whose elements on each row and
ach column are zero, but that equal unity. They interchange rows, and, respectively, columns
etween themselves. Both diagonal phase matrices and permutation matrices are subgroups of
nitary matrices. If D denotes a diagonal phase matrix and P a permutation matrix then

DD† = PP† = In.

ther equivalent unitary matrices can be obtained by taking the complex conjugate matrix, and/or
he transpose of the original one. If we denote the transpose operator by T, and by C the complex
onjugation, both these transforms form a subgroup because

T2 = C2 = Identity.

hus the product group

K = D � P � T � C

s the gauge invariance subgroup of unitary matrices, and, in the following, we work only with the
oset defined by

X � U�n�/K , �5�

where U�n� denotes the n-dimensional unitary group. The C invariance has an important conse-
quence: the range of all independent phases entering U�n� is �0,��. The multiplicity of solutions
ppearing in the recovery problem of a unitary matrix from a double stochastic one will be given

odulo the above-noted simplest transformations of unitary matrices.
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II. PARAMETRIZATION OF UNITARY MATRICES

For devising a recovery algorithm of unitary matrices from double stochastic ones, or from
xperimental data, we need an explicit parametrization of them. That will lead us easily to the
ecessary and sufficient conditions a double stochastic matrix has to satisfy for also being unis-
ochastic, even if a complete explicit solution is found only for n=3. These conditions will lead to
eparation criteria between the double stochastic and unistochastic matrices.

There are essentially two types of parametrizations: first the classical result by Murnagham,30

hich states that the matrices from the unitary group U�n� are products of a diagonal phase matrix
ontaining n phases, and n�n−1� /2 matrices whose main building block has the form

U = 	 cos � − sin �e−i�

sin �ei� cos �

 , �6�

.e., a parametrization in terms of n�n−1� /2 angles �i, and n�n+1� /2 phases �i. The usual param-
trization of the CKM matrix37 used in high energy physics is of this type. A second parametri-
ation, also through factorization, is that given in Ref. 38. The idea behind such a parametrization
omes from the following sequence:

U�n� �
U�n�

U�n − 1�
�

U�n − 1�
U�n − 2�

� ¯ �
U�2�
U�1�

� U�1� � S2n−1 � S2n−3 � ¯ � S3 � S1. �7�

his sequence shows that each factor can be parametrized by an arbitrary point on the correspond-
ng complex sphere, i.e., by a single complex �n−k�-dimensional unit vector. Such a parametri-
ation could be appealing for high energy physicists since it shows that the information brought by
ach generation of quarks, or leptons is contained in a single complex unit vector. The first
arametrization of CKM matrix, Ref. 19, is of this form. The explicit realization of this param-
trization, which is the main result in Ref. 38, is given by

Theorem 1: Any element Un�U�n� can be factored into an ordered product of n matrices of
he following form

Un = Bn
0
¯ Bn−1

1 . . . B1
n−1, �8�

here

Bn−k
k = 	Ik 0

0 Bn−k



nd Bn−k�U�n−k� are special unitary matrices, each one generated by a single complex
n−k�-dimensional unit vector, bn−k�S2�n−k�−1. For example, B1=ei�, where � is an arbitrary
hase.

If ym�S2m−1, m=1, . . . ,n, is parametrized by

ym = �ei�1 cos �1,ei�2 sin �1 cos �2, . . . ,ei�m sin �1 ¯ sin �m−1�t,

here t means transpose, then the m columns of Bm are given by

v1 = ym =�
ei�1 cos �1

ei�2 sin �1 cos �2

�
ei�m sin �1 ¯ sin �m−1


nd

vk+1 =
d

v1��1 = ¯ = �k−1 = �/2�, k = 1, . . . ,m − 1,

d�k
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here in the above-mentioned formula one calculates first the derivative and afterwards the
estriction to � /2.

In what follows we need an explicit parametrization of Bn−k, k=0, . . . ,n−1, and by taking into
ccount that we work with representatives from the X coset, Eq. �5�, we choose the corresponding
generating vectors as follows:

yn = �cos a1,sin a1 cos a2, . . . ,sin a1 . . . sin an−1�t,

yn−1 = �− cos b1,ei�1 sin b1 cos b2, . . . ,ei�n−2 sin b1 . . . sin bn−2�t,

� �9�

y2 = �− cos z1,ei	1 sin z1�t,

y1 = − 1.

ith this choice the first row of Un has the form

U11 = cos a1, U12 = cos b1 sin a1, ¯ U1n = sin a1 . . . sin z1 �10�

nd the first column is given by yn. In the following we will assume that Un, Eq. �8�, has its first
olumn given by yn, and its first row given by �10�, and this is our standard form in the rest of the
aper for a unitary matrix. A similar parametrization was obtained recently, see Ref. 39; for the
ase n=3 see also Refs. 40 and 41.

V. PHENOMENOLOGICAL MODELS

By “phenomenological model” we will understand in the following a relationship between the
ntries of a double stochastic matrix and the entries of a unitary matrix, the main goal being the
nding of the necessary and sufficient conditions that separate the two sets. Depending on the
ontext the “experimental data” will denote either the entries of a double stochastic matrix, or the
umbers, affected by errors, measured in an experiment. Usually the experimental data on the 3
3 CKM matrix entries from the quark sector are given in terms of moduli of the unitary matrix

hat define the theoretical model, �Uij�, or angular looking objects U
jU�kU
k
* U�j

* , which are
quivalent to the angles of the triangles generated by the orthogonality relations. For the beginning
e assume that the data have no errors, which is the current mathematical setting, i.e., the moduli

re the entries of a double stochastic matrix, and we want to solve problems �i�–�iii� from Sec. I.
or doing that we have at our disposal an explicit parametrization of unitary matrices, �8� and �9�,
nd the unitarity property

UU† = U†U = In.

his concise form is equivalent to 2n relations

�
i=1

i=n

�Uji�2 − 1 = 0, j = 1, . . . ,n ,

�11�

�
i=1

i=n

�Uij�2 − 1 = 0, j = 1, . . . ,n

howing that the numbers mij = �Uij�2 define a double stochastic matrix, which implies that only

n−1 relations from the set �11� are independent, and by n�n−1� orthogonality relations
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�
i=1

i=n

UjiUki
* = 0, j � k, i = 1, . . . ,n ,

�12�

�
i=1

i=n

UijUik
* = 0, j � k, i = 1, . . . ,n ,

hich can be visualized as polygons in the complex plane. The last relations are the supplemen-
ary relations the numbers Uij have to satisfy in order that the corresponding matrix should be
nitary. The number of relations �11� and �12� is greater than n2, but we have written all of them
ince they could be useful in over-constraining the experimental data, which usually are affected
y errors.

The relations �11� and, respectively, �12� can be used to define two different phenomenologi-
al models. The first model is given by the relations �11� together with

mij = �Uij�2, i, j = 1, . . . ,n − 1, �13�

here mij are the entries of a double stochastic matrix, and Uij are the entries of a unitary matrix
arametrized as in Theorem 1. The last relation is equivalent to the following:

m11 = cos2 a1, m12 = sin2 a1 cos2 b1, . . . ,m1n = sin2 a1 ¯ sin2 z1,

�14�
m21 = cos2 a2 sin2 a1, . . . ,mnn−1 = sin2 a1 ¯ sin2 an−1,

m22 = cos2 a1 cos2 a2 cos2 b1 + cos2 b2 sin2 a2 sin2 b1

+ 2 cos a1 cos a2 cos b1 cos b2 sin a2 sin b1 cos �1, �15�

m32 = cos2 a1 cos2 a3 cos2 b1 sin2 a2 + cos2 a2 cos2 a3 cos2 b2 sin2 b1 + sin2 a3 sin2 b1 sin2 b2

− 2 cos a1 cos a2 cos2 a3 cos b1 cos b2 sin a2 sin b1 cos �1

+ 2 cos a1 cos a3 cos b1 sin a2 sin a3 sin b1 sin b2 cos �2

− 2 cos a2 cos a3 cos b2 sin a3 sin2 b1 sin b2 cos��1 − �2�, etc . , �16�

here we have written only the simplest equations. It is easily seen from the above-noted equa-
ions that, since m1i and mi1, i=1, . . . ,n−1, are entries of a double stochastic matrix, there is a
nique solution for cos ai� �0,1�, i=1, . . . ,n−1, of the form

cos2 a1 = m11, cos2 ak =
mk1

1 − �i=1

k−1
mi1

, k = 2, . . . ,n − 1 �17�

nd similarly for cos b1, cos c1 , . . . , cos z1. Hence the number of angles that have to be found is
n−1��n−2� /2− �2n−3�= �n−2��n−3� /2. In that way the number of equations of the form �15�

and �16� we have to solve is only �n−2�2. We substitute the forms for cos ai, sin ai, and similar
nes, from the first column and the first row, in Eqs. �15� and �16�, such that we get �n−2�2

quations that depend on �n−1�2 moduli mij, i , j=1, . . . ,n−1. We now do a relabeling of the
ngles, bi→bi−1, i=2, . . . ,n−2, c2→bn−1 , . . ., etc., and similarly for the phases. With this notation
he necessary and sufficient conditions for a double stochastic matrix to be also unistochastic are
iven by the relations

0 � cos bi � 1, i = 1, . . . ,
�n − 2��n − 3�

, �18�

2
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− 1 � cos �i � 1, i = 1, . . . ,
�n − 1��n − 2�

2
, �19�

here cos bi and cos �i are the solutions in terms of mij of the �n−2�2 equations of the form �15�
nd �16�. The above-noted relations are at the same time the separation criteria between the double
tochastic and unistochastic matrices, and their fulfillment is equivalent to the existence of at least
ne unitary matrix compatible with the mij. To check them we have to solve analytically or
umerically the �n−2�2 equations �15� and �16�. Numerically this can be done when mij are the
lements of a double stochastic matrix, but for the real case of experimental data with errors we
eed an analytic solution to be used in a �2-test, and until now this was found only for the case
=3. In conclusion for 3�3 data coming from an exact double stochastic matrix we have only
ne constraint, namely, −1�cos �1�1. If the data come from an experiment we have to check
lso the compatibility of the entries from the first row and first column with the relations �17�, i.e.,
o see if the conditions 0�cos2 ai�1 are satisfied.

Taking into account the relation �13�, mij = �Uij�2, which shows how the unitary matrices are
mbedded into the double stochastic ones, the parametrization of unitary matrices by their moduli
eems to be very appealing in this case, although it is not a natural one in the general case. A
atural parametrization would be one whose parameters are free, i.e., there are no supplementary
onstraints upon them, as Eqs. �18� and �19�, to enforce unitarity.

The problem we addressed in Ref. 11 was to what extent the knowledge of the moduli, mij

�Uij�, of an n�n unitary matrix U determines U. If we identify the parameters to the moduli,
hey will be lying within the simple domain

D = �0,1� � ¯ � �0,1� � �0,1��n − 1�2
,

here the above-presented notation means that the number of factors entering the topological
roduct is �n−1�2. We excluded only the extremities of each interval, i.e., the points 0 and 1 that
s a zero measure set within U�n� and has no relevance to the problem of recovery of a unitary

atrix from a double stochastic one.
Nothing remains but to check if the new parametrization is one-to-one. A solution to the last

roblem is the following: start with a one-to-one parametrization of U�n�, such as that given in the
receding section, and then change the coordinates taking as new coordinates the moduli of the
n−2�2 entries; these ones are obtained by deleting the first and the last row, respectively, the first
nd the last column. The moduli of the first row and the first column are in one-to-one correspon-
ence with the parameters entering the unitary matrix, see, e.g., Eq. �17�, and the moduli entering
he last row and the last column are uniquely determined by the double stochasticity property.
fterwords use the implicit function theorem to find the points where the new parametrization

ails to be one-to-one. The corresponding variety upon which the application is not a bijective one
s given by setting to zero the Jacobian of the transformation, i.e.,

J =
��m22, . . . ,m2n−1, . . . ,mn−1n−1�

��b1, . . . ,b�n−2��n−3�/2,�1, . . . ,��n−1��n−2�/2�
= 0. �20�

ne gets that, generically, for n�4 the unitary group U�n� cannot be fully parametrized by the
oduli of its entries,6–17 i.e., for a given set of moduli there exists a continuum of solutions, the

implest example being the case of complex Hadamard matrices.13–17 The maximum dimension of
he above-mentioned variety is �n−2�2−1= �n−3��n−1�. For n=3, J�0, and only in this case the
arametrization of a unitary matrix through the moduli could be one-to-one. If the moduli are
utside of the above-mentioned variety an upper bound for the multiplicity is 2�n�n−3��/2, bound that
s saturated for n=3, when there is essentially only one complex matrix, if we take into account
he gauge invariance of unitary matrices.

2
In the case of exact double stochastic matrices, as we showed before, only �n−2� moduli
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nter the game since the angles entering the first column and the first row are uniquely determined.
o have a flavor of the problem we consider more in detail the case n=4, when there are four
quations, two of them being Eqs. �15� and �16�, and the last two are

m23 = cos2 b1 cos2 b2 cos2 c1 sin2 a2 + cos2 a1 cos2 a2 cos2 c1 sin2 b1+ sin2 a2 sin2 b2 sin2 c1

− 2 cos a1 cos a2 cos b1 cos b2 cos2 c1 sin a2 sin b1 cos �1

+ 2 cos b1 cos b2 cos c1 sin2 a2 sin b2 sin c1 cos 1

− 2 cos a1 cos a2 cos c1 sin a2 sin b1 sin b2 sin c1 cos��1 + 1� , �21�

m33 = cos2 a2 cos2 a3 cos2 b1 cos2 b2 cos2 c1 + cos2 a1 cos2 a3 cos2 c1 sin2 a2 sin2 b1

+ cos2 b1 cos2 c1 sin2 a3 sin2 b2 + cos2 b2 sin2 a3 sin2 c1 + cos2 a2 cos2 a3 sin2 b2 sin2 c1

+ 2 cos a1 cos a2 cos2 a3 cos b1 cos b2 cos2 c1sin a2 sin b1 cos �1

− 2 cos a2 cos a3 cos2 b1 cos b2 cos2 c1 sin a3 sin b2 cos��1 − �2�

− 2 cos a1 cos a3 cos b1 cos2 c1 sin a2 sin a3 sin b1 sin b2 cos �2

+ 2 cos a2 cos a3 cos b1 cos2 b2 cos c1 sin a3 sin c1 cos��1 − �2 − 1�

+ 2 cos a1 cos a3 cos b2 cos c1sin a2 sin a3 sin b1 sin c1 cos��2 + 1�

+ 2 cos2 a2 cos2 a3 cos b1 cos b2 cos c1 sin b2 sin c1 cos 1

− 2 cos b1 cos b2 cos c1 sin2 a3 sin b2 sin c1 cos 1

+ 2 cos a1 cos a2 cos2 a3 cos c1 sin a2 sin b1 sin b2 sin c1 cos��1 + 1�

− 2 cos a2 cos a3 cos b1 cos c1 sin a3 sin2 b2 sin c1 cos��1 − �2 + 1�

+ 2 cos a2 cos a3 cos b2 sin a3 sin b2 sin2 c1 cos��1 − �2� . �22�

From Eq. �14� we get

cos a1 = �m11, sin a1 = �1 − m11,

cos a2 =� m21

1 − m11
, sin a2 =�1 − m11 − m21

1 − m11
,

cos a3 =� m31

1 − m11 − m21
, sin a3 =�1 − m11 − m21 − m31

1 − m11 − m21
, �23�

cos b1 =� m12

1 − m11
, sin b1 =�1 − m11 − m12

1 − m11
,

cos c1 =� m13

1 − m11 − m12
, sin c1 =�1 − m11 − m12 − m13

1 − m11 − m12
.

By substituting relations �23� into Eqs. �15� and �16� and �21� and �22� we obtain four
quations that depend on nine moduli mij, i , j=1,2 ,3, and on the nonrelabeled parameters b2, �1,
2, 1,
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f22 − m22 = 0, f23 − m23 = 0,

�24�
f32 − m32 = 0, f33 − m33 = 0.

n general the rank of the Jacobian matrix

J =
��f22, f23, f32, f33�
��b2,�1,�2,1�

�25�

ill be less than �n−2�2 since we know that there are particular solutions that depend on an
rbitrary phase. If we look at the Jacobian �25� as a function on the Birkoff’s polytope, i.e.,
epending on �n−1�2=9 independent moduli mij, it could be possible to find a domain where rank
J�=4, i.e., in this case we have only one solution. Then the compatibility relations between the
ouble stochastic matrix entries �mij�i,j=1

3 , and the unitarity property, or in other words, the sepa-
ation criteria between the two sets, are four, and they have the form

0 � cos b2 � 1, − 1 � cos �1 � 1, − 1 � cos �2 � 1, − 1 � cos 1 � 1. �26�

The above-presented relations are the necessary and sufficient conditions the moduli of a 4
4 double stochastic matrix have to satisfy in order for there to be a unitary matrix whose moduli

oincide with mij, and their intersection gives the maximal domain within the mij simplex that is
ompatible to the existence of unitary matrices.

In the case when for a given numerical matrix, rank �J��4, there is no one-to-one correspon-
ence between the entries mij of a double stochastic matrix and the independents parameters
ntering a unitary matrix, i.e., there is at least one solution that depends on an arbitrary parameter,
hase, or, angle.

The checking of criteria �26� requires explicit analytic solutions for

cos b2, cos �1, cos �2, cos 1

n terms of mij, and when these ones are not numbers, solving Eq. �24�, is not a simple problem
ven with the symbolic calculation software packages nowadays available. The only results in this
irection are those obtained in Ref. 9 however they have to be used with caution since the authors
ssumed that no matter how the numbers entering a double stochastic matrix are, Eq. �24� has a
hysical solution.

By taking into account the above-noted considerations the following result holds.
Theorem 2: Suppose we have a generalized spherical coordinate system on the unitary group

�n�, and let U�U�n� be a given matrix parametrized as in Theorem 1, through n�n− l� /2 angles,
ach one taking values in �0,� /2�, and �n−1��n−2� /2 phases taking values in �0,��, and let

M = �mij� be an n�n double stochastic matrix, whose entries are supposed to come from a
nistochastic matrix U by the embedding

mij = �Uij�2, i, j = 1, . . . ,n − 1. �27�

rom Eq. �14� we get a unique solution for the angles entering the first column and the first row
f U as follows:

cos2 a1 = m11, cos2 a2 =
m21

1 − m11
, . . . ,cos2 an−1 =

mn−11

1 − m11 − �i=2
n−1mi1

,

�28�

cos2 b1 =
m12

1 − m11
, . . . ,cos2 z1 =

m1n−1

1 − m11 − �i=2
n−1m1i

.

e substitute them in Eq. �27� obtaining a set of �n−2�2 equations that, after relabeling of the

ngles and phases, is of the form
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f ij�b1, . . . ,b �n−2��n−3�
2

,�1, . . . ,� �n−1��n−2�
2

� = mij, i, j = 2, . . . ,n − 1. �29�

he solutions of the above equations are compatible with the existence of a unitary matrix, if and
nly if, all the angles and phases satisfy the unitarity constraints �18� and �19�. For n�4 the
olutions of Eq. �29� could depend on arbitrary angles and/or phases on the variety obtained by
etting to zero the determinant of Jacobian matrix of the transformation �29�

J =
��f22, . . . , f2n−1, fn−12 . . . , fn−1n−1�

��b1, . . . ,b��n−2��n−3��/2,�1, . . . ,���n−1��n−2��/2�
. �30�

If p is the rank of the Jacobian matrix �30� the solution of �29� depends upon �n−2�2− p
rbitrary parameters, angles and/or phases. Outside this variety the number of discrete solutions

s satisfies 1�Ns�2�n�n−3��/2.
Proof: Since we use a spherical coordinate system, �29� are trigonometric equations in our

arametrization, as the example of case n=4 shows, and consequently the multiplicity of the
olutions may arise from the two possible phase solutions for all values of sine or cosine functions
hat satisfy Eq. �29� and the constraints �18� and �19�. The number of independent phases is �n
1��n−2� /2 and, since we do not make any distinction between U and its complex conjugate U*,
ondition that halves the number of solutions, the above bound for Ns follows.

For n=3 the Jacobian does not vanish and one gets 1�Ns�1, and this bound implies the
xistence of a complex unitary matrix, if and only if, when the values mij, coming from a double
tochastic matrix satisfy the relation −1�cos �1�1. �

An example of a unitary matrix that cannot be recovered from its moduli is the following. If
P and Qi , i=1, . . . ,m, are m�m and, respectively, n�n unitary matrices whose first rows and first
olumns are positive numbers and depend on p and, respectively, qi arbitrary phases, then the
ollowing m�n array

M =�
p11Q1 · · p1mQm

· · · ·

· · · ·

p1mQ1 · · pmmQm

 �31�

efines a unitary matrix that could depend on

p + q1 + �m − 1��
i=2

n

qi �32�

rbitrary phases.
Indeed it is easily seen that we can multiply at left all the matrices Q2 , . . . ,Qm by diagonal

hase matrices Dj =diag�1,eı�1,j , . . . , ,eı�n−1,j� , j=2, . . . ,m, by preserving the entries from the first
ow and column of M positive numbers, obtaining a set of unitary matrices that are all applied in
he same double stochastic matrix. Thus their recovery from the moduli cannot be done because all
he arbitrary phases �ij disappear when one computes their moduli, and as a consequence they do
ot appear in equations such as �15� and �16�.

A second phenomenological model can be defined by starting from the orthogonality relations
12�, but since in this case the polygons angles enter the game its formulation for arbitrary n is
ore difficult. Thus in the following we will discuss the case n=3 for both the models, which has

pplications in high energy physics.

. Unitarity condition method

In the n=3 case the unitary �CKM� matrix is parametrized by four independent parameters
iven by the so-called mixing angles, �12, �13, �23, and the CP-violating phase �. Hence in the

ollowing we will change the notation from Sec. III to another notation that is more familiar to
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xperimenters and phenomenologists. That means that in Eq. �9� defining the generating vectors
e make the substitution: �a1→�12,a2→�23,b1→�13,�1→��; after that we make the notation

cos �ij = cij, sin �ij = sij, ij = 12,13,23

nd by using Theorem 1 we get the following form

U = � c12 c13s12 s12s13

c23s12 − c12c13c23 − ei�s13s23 − c12c23s13 + ei�c13s23

s13s23 c23s13e
i� − c12c13s23 − c13c23e

i� − c12s13s23
 . �33�

he theoretical model �33� is supplemented by the experimental data supplied by experimenters.
n the quark sector one measures two kinds of parameters: the moduli of the unitary matrix �33�,
ee Ref. 18, under the form of a positive entries matrix, written with the physicists notation

V = �Vud
2 Vus

2 Vub
2

Vcd
2 Vcs

2 Vcb
2

Vtd
2 Vts

2 Vtb
2  , �34�

here u, s, b, etc., are names for quarks, and the angles of the so-called standard unitarity
riangle,20 denoted by 
 /�1, � /�2,  /�3.42 In this paper V denotes either a double stochastic
atrix, or a set of numbers affected by errors, when Vij are measured in experiments. More

enerally the experimental data are given in terms of some functions fk�Vij�, k=1, . . . ,N, that
epend on the V entries, or the theoretical parameters sij and �.

Similar to the general case treated in the previous section, we define our phenomenological
odel as a relationship between the theoretical object �33� and the experimental data �34�. It is

iven by the double stochasticity relations �11�, which now take the form

�
i=d,s,b

Vji
2 − 1 = 0, j = u,c,t ,

�35�
�

i=u,c,t
Vij

2 − 1 = 0, j = d,s,b

nd by the embedding relation of a unitary matrix into the double stochastic set

V = �U�2,

hich leads to the following relations:

Vud
2 = c12

2 ,Vus
2 = s12

2 c13
2 ,Vub

2 = s12
2 s13

2 ,

Vcd
2 = s12

2 c23
2 ,Vtd

2 = s12
2 s23

2 ,

Vcs
2 = c12

2 c13
2 c23

2 + s13
2 s23

2 + 2c12c13c23s13s23 cos � ,

�36�
Vcb

2 = c12
2 c23

2 s13
2 + c13

2 s23
2 − 2c12c13c23s13s23 cos � ,

Vts
2 = c23

2 s13
2 + c12

2 c13
2 s23

2 − 2c12c13c23s13s23 cos � ,

Vtb
2 = c13

2 s23
2 + c12

2 c13
2 s23

2 + 2c12c13c23s13s23 cos � .

he above-noted phenomenological model was introduced in Ref. 43. The relations �36� depend

nly on cos �, which has the consequence that we can restrict � to the interval �0,��, this property
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eing equivalent to the CKM matrix invariance under the complex conjugation, as was shown in
ec. II.

Especially for physicists we want to make a few remarks. First we stress that in any phenom-
nological analysis one works with two distinct objects: the first is the theoretical one, that in our
ase coincides with the matrix U, Eq. �33�, which is assumed and built as a unitary matrix; the
econd object is provided by the experimental data, V= �Vij

2 �, Eq. �34�. The aim of any phenom-
nological analysis is twofold: �a� checking the consistency of data with the theoretical model, and
b� determination of parameters entering the theoretical model from the experimental data, if these
nes are consistent with it. That is the reason for making a clear distinction between the theoretical
uantities and the experimental ones, by using different symbols for denoting them. The second
emark concerns the double stochasticity relations, Eq. �35�, which are considered by �many� high
nergy physicists as testing the unitarity, statement which is wrong, since it is well known that for
�3 there exist double stochastic matrices which are not unistochastic.2 Checking the consis-

ency, of the data with the theoretical model means checking the consistency of relations �36�, i.e.,
e have to see if the solutions of Eq. �36� lead to physical values for the mixing parameters �ij and
; and only in this case Eq. �35� together with Eq. �36� prove the unitarity property of the data.

Let us assume for a moment that relations �35� are exactly satisfied. Then it is an easy matter
o find from the first five relations �36� three independent ones which give a unique solution for the

ij, ij=12,13,23. In other words, if the experimental numbers satisfy the relations

Vud
2 + Vus

2 + Vub
2 = 1,

Vud
2 + Vcd

2 + Vtd
2 = 1,

e always get a solution for cij that is unique and depends on the three chosen independent
arameters. Substituting this solution in the last equations one gets four equations for cos �, which
ead to a unique solution for it. But nobody guarantees us that the solution will satisfy the physical
onstraint

− 1 � cos � � 1. �37�

he last relation gives the necessary and sufficient condition the data have to satisfy in order that
he 3�3 matrix �34� comes from a unitary matrix, i.e., it is the consistency condition between the
ata and the theoretical model.

To better understand the above-noted considerations and see the power of the found criterion
37� and how it works, we will give a few numerical examples, and for that we will use moduli
ntering the first two rows. We make the following notation:

Vud = a, Vus = b, Vub = c, Vcd = d, Vcs = e, and Vcb = f .

irst we choose as independent moduli a, b, d, and e and with them form the square root of a
ouble stochastic matrix

S1 = � a b �1 − a2 − b2

d e �1 − d2 − e2

�1 − a2 − d2 �1 − b2 − e2 �− 1 + a2 + b2 + d2 + e2 , �38�

.e., S1
2 is an exact doubly stochastic matrix, where the square is taken entry-wise, by using the

adamard product from linear algebra. From the relations �36� we get the solution

c12 = Vud = a, c13 =
Vus

2
=

b
� 2

, c23 =
Vcd

2
=

d
� 2

. �39�
�1 − Vud 1 − a �1 − Vud 1 − a
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cos �1 =
− �1 − a2�2�1 − e2� + �1 − a2��b2 + d2� − b2d2�1 + a2�

2abd�1 − a2 − b2�1 − a2 − d2
. �40�

In the second case we take b, c, d, and, f as independent moduli, and get

S2 = �
�1 − b2 − c2 b c

d �1 − d2 − f2 f

�b2 + c2 − d2 �d2 + f2 − b2 �1 − c2 − f2 , �41�

c12 = �1 − b2 − c2, c13 =
b

�b2 + c2
, c23 =

d
�b2 + c2

, �42�

cos �2 =
b2�b2 + c2� − d2�b2 − c2 + c2�b2 + c2�� − f2�b2 + c2�2

2bcd�1 − b2 − c2�b2 + c2 − d2
. �43�

If the data are the entries of the following double stochastic matrix

V =�
1

3

1

2

1

6

1

4

2

5

7

20

5

12

1

10

29

60

 �44�

e get from Eqs. �39� and �40� and �42� and �43�,

c12 =
1
�3

, c13 =
�3

2
, c23 =

�6

4
, cos �1 = cos �2 =

4�15

25
�45�

nd the results show that the data are compatible to the existence of a unitary matrix. We remark
hat no matter how the independent moduli are chosen, cij and cos � take the same value, and this
s a consequence of the fact that the properties of a double stochastic matrix do not change by

ultiplying it at left and/or right by permutation matrices. From a mathematical point of view the
tory ends here, because we can easily reconstruct the unitary matrix whose moduli are given in
44�, by using the results �45� in the unitary matrix �33�. We get

U =�
1
�3

1
�2

1
�6

1

2
−

9

20
�3

2
−

1

20
�77

2
i

7

20�2
+

1

20
�231

2
i

1

2
�5

3
−

13

20�10
+

1

20
�231

10
i −

61

20�30
−

3

20
�77

10
i
 . �46�

Hence the reconstruction algorithm of unitary matrices from the double stochastic ones is the
ollowing: Start with a double stochastic matrix such as �44� and solve the system of equations
36�. If the numerical value for cos � satisfies the inequalities �37�, then with the values for cij and
os � go to �33� and find the corresponding unitary matrix.

When the matrices S1 and S2, Eqs. �38� and �41�, do not lead to the same double stochastic
atrix, as for experimental data recommended in Ref. 18, the situation changes. For example, by

sing the numbers: a=0.9738±0.0005, b=0.22±0.0026, c=0.00367±0.00047, d=0.224±0.012,
2 2
=0.996±0.013, f =0.0423±0.0015, to define two doubly stochastic matrices S1 and S2 one gets
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cos �1
+ = − 0.03i, cos �1

c = 1.59, cos �1
− = 1.08, �47�

cos �2
+ = 8.95i, cos �2

c = 5.985i, cos �2
− = 7.699, �48�

here the indexes +, c, − denote the cos � values obtained from central values +1�, the central
alues, and, respectively, central values −1�. The above results show that our criterion �37� is very
ensitive to small variations of the parameters of the order of errors, and, on the other hand, one
ees that the fulfillment of unitarity for experimental data is not an easy problem. We remark that
os �1�cos �2, although by construction both the matrices S1

2 and S2
2 are double stochastic. But

hese ones are different because numerically, e.g., e��1−d2− f2. Hence in the case of experimen-
al data we have to take care and try to find how the necessary and sufficient conditions for the
xistence of a unitary matrix could be implemented. In this case also the relations �35� are not
xactly fulfilled. Consequently the numbers cij obtained from relations �39� and �42� could be
ifferent, depending on the independent parameters we use for their determination. On the other
and the last four relations �36� provide us formulas for cos � and these formulas have to give the
ame number when comparing theory with experiment, by supposing the data come from a unitary
atrix. Their explicit form depends on the independent four parameters we choose to parametrize

he data. In fact there are 58 independent groups of four independent moduli that lead to 165
ifferent expressions for cos �. Depending on the explicit choice of the four independent param-
ters we get one, two, three, or four different expressions for cos �.

Looking at Eqs. �39� and �40� and �42� and �43� we see that the expressions defining the
ixing angles and phase � are quite different. Thus if the data are compatible to the existence of
unitary matrix these angles cij and phases ��i� have to be equal, and these are the most general

ecessary conditions for unitarity; they can be written as

0 � cij
�m� � 1, cij

�m� = cij
�n�, m,n = 1, . . . ,58, cos ��i� = cos ��j�, i, j = 1, . . . ,165.

he above-presented relations are also satisfied by the double stochastic matrices, and the condi-
ion that separates the unitary matrices from the double stochastic ones is given by relation �37�,
.e., −1� cos ��i��1.

The formulas such as �40� and �43�, together with the condition −1�cos ��1, give the
escription of the physical region in terms of the four independent moduli we have chosen. Indeed
he physical region is given by

1 − cos2 �1 = sin2 �1 � 0

o we get

− �1 − a2 − b2 − d2 + b2d2 − 2abde − e2 + a2e2��1 − a2 − b2 − d2 + b2d2 + 2abde − e2 + a2e2�

��a2 + b2�2/�4a2b2�− 1 + a2 + b2��− 1 + d2 + e2��− 1 + a2 + b2 + d2 + e2�� � 0, �49�

here on the last row we separated a positive factor. Thus the physical region is given by

− �1 − a2 − b2 − d2 + b2d2 − 2abde − e2 + a2e2��1 − a2 − b2 − d2 + b2d2 + 2abde − e2 + a2e2� � 0.

�50�

f we denote by

l1 = ab, l2 = de, l3 = �1 − a2 − d2�1 − b2 − e2

he lengths of the unitarity triangle generated by the first and the second columns of the S1 matrix,

rom Heron’s formula
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A = �p�p − l1��p − l2��p − l3�, where p = �l1 + l2 + l3�/2

s the semiperimeter, we get the area, A, of the unitarity triangle, which according to Ref. 33 is the
ame for all the six unitarity triangles. We write it as

16A2 = − �1 − a2 − b2 − d2 + b2d2 − 2abde − e2 + a2e2�

��1 − a2 − b2 − d2 + b2d2 − 2abde − e2 + a2e2� � 0 �51�

nd see that formulas �50� and �51� are the same up to a multiplicative factor, i.e., they are
erfectly equivalent. This area is the geometric invariant of the 3�3 CKM matrix describing the
P-violation.33 We remark that the positivity of A2 is the key ingredient used to characterize the

et of orthostochastic matrices and its boundary, within the double stochastic set, see Proposition
.2 in Ref. 4.

. Unitarity triangle method

The second phenomenological model is defined by the orthogonality relations of rows, and,
espectively, columns of a unitary matrix, and by the double stochastic relations �35�. Although
here are six such relations, see Eq. �12�, usually one considers only the orthogonality of the first
nd the third columns of U, a relation that is written as

UudUub
* + UcdUcb

* + UtdUtb
* = 0. �52�

he above-presented equation can be visualized as a triangle in the complex plane. Usually �52� is
caled by dividing it through the middle term such that the length of one side is 1. Taking into
ccount that our parametrization, Eq. �33�, of a unitary matrix has the entries of the first column
nd the first row positive quantities, we divide by the first term, UudUub

* , which is positive. In fact,
hat matters are the angles of the triangle, and our choice has the advantage that the triangle
enerated by Eq. �52� has two angles which numerically coincide, modulo �, with the phases of

23 and U33; together with the phases of U22 and U32 they can be used for the determination of the
nitary matrix U, since all these angles are measurable quantities in experiments, see, e.g., Ref. 20,
r 44.

The other sides have the lengths

Rdb,c
�1� = � UcdUcb

*

UudUub*
� =

d�1 − d2 − e2

a�1 − a2 − b2
,

�53�

Rdb,t
�1� = � UtdUtb

*

UudUub
* � =

�1 − a2 − d2�a2 + b2 + d2 + e2 − 1

a�1 − a2 − b2
,

here we have written on the right-hand side the R-values in our choice of the four independent
arameters by using the matrix �38�. The physical condition takes the form

�Rdb,c
�1� − Rdb,t

�1� � � 1 � Rdb,c
�1� + Rdb,t

�1� , �54�

hich says that with the lengths 1, Rdb,c and Rdb,t one can construct a triangle. The above noted
ondition is equivalent to the positivity of the squared area A2 given by relation �51�, see Ref. 4.
f we use the matrix �41� we find

Rdb,c
�2� = �UcdUcb

*

UudUub
* � =

df

c�1 − b2 − c2
,

�55�

Rdb,t
�2� = � UtdUtb

*

* � =
�1 − c2 − f2�b2 + c2 − d2

2 2
.

UudUub c�1 − b − c
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We remark that in Eqs. �53�–�55� the left side is the same, and only the right side differs,
ecause the four independent moduli we use are different. Since there are 58 different groups of
ndependent moduli there will be 58 different expressions Rdb,j

�i� , j=c , t, and i=1, . . . ,58.
If now we use the orthogonality between the first and the second columns, i.e.,

UudUus
* + UcdUcs

* + UtdUts
* = 0 �56�

ne gets similarly

Rds,c
�1� = �UcdUcs

*

UudUus
* � =

de

ab
,

�57�

Rds,t
�1� = � UtdUts

*

UudUus
* � =

�1 − a2 − d2�1 − b2 − e2

ab
,

nd, respectively,

Rds,c
�2� = �UcdUcs

*

UudUus
* � =

d�1 − d2 − f2

b�1 − b2 − c2
,

�58�

Rds,t
�2� = � UtdUts

*

UudUus
* � =

�b2 + c2 − d2�d2 + f2 − b2

b�1 − b2 − c2
.

f as in the preceding case we compute the expressions on the right-hand side using the data �44�
e find

Rdb,c
�1� = Rdb,c

�2� =
3

2
� 7

10
, Rdb,t

�1� = Rdb,t
�2� =

1

2
�29

2
�59�

nd, respectively,

Rds,c
�1� = Rds,c

�2� =�3

5
, Rds,t

�1� = Rds,t
�2� =

1

2
, �60�

hich both satisfy the inequalities of the form �54�.
With the central values from Ref. 18 one gets

Rdb,c
�1� = 0.8i, Rdb,t

�1� = 0.71, Rds,c
�1� = 1.04, Rds,t

�1� = 0.037i ,

�61�
Rdb,c

�2� = 2.58, Rdb,t
�2� = 11.72i, Rds,c

�2� = 1.016, Rds,t
�2� = 0.012i ,

result that sends the same signal of incompatibility as in Sec. IV, see Eq. �48�.
From the above-presented equations we can obtain the angles of the triangles generated by

elations �52� and, respectively, �56�. For each triangle we denote by �3 the angle of the triangle
ssociated to the vertex �0,0�, the other two, �1 and �2, being associated, respectively, to the
ertexes �� ,�� and �1,0�, where �� ,�� are the coordinates of the triangle apex. For the second
riangle we make the substitution �i→	i, i=1,2 ,3, and find

cos �1 = 4� 7

145
� 0.8, cos �2 =

61

10�58
� 0.88, cos �3 = −

1

2
� 7

10
� − 0.42 �62�
nd, respectively,
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cos 	1 = −
1

4
�3

5
� − 0.19, cos 	2 =

13

20
� 0.65, cos 	3 =

9

8
�3

5
� 0.87. �63�

Similar to the preceding case the necessary and sufficient conditions for unitarity are the
onstraints: all R�j��0, and

Rdb,c
�i� = Rdb,c

�j� , Rdb,t
�i� = Rdb,t

�j� , i, j = 1, . . . ,58, �64�

Rds,c
�i� = Rds,c

�j� , Rds,t
�i� = Rds,t

�j� , i, j = 1, . . . ,58, �65�

�Rdb,c
�i� − Rdb,c

�j� � � 1 � Rdb,c
�i� + Rdb,c

�j� , j = 1, . . . ,58, �66�

�Rds,t
�i� − Rds,t

�j� � � 1 � Rds,t
�i� + Rds,t

�j� , j = 1, . . . ,58, �67�

here in the last equations we have written only the conditions implied by two orthogonality
elations, although for applications we must calculate the constraints for all six orthogonality
elations.

The first remark is that this approach, in the variant used by physicists, does not make use of
he double stochasticity relations, Eq. �35�, the physicists implicitly assuming that these relations
re satisfied by the numbers obtained from experiments. With the above notation, �� ,��, for the
pex of the triangle, Eq. �53� is written under the form, see, e.g., Refs. 20–29

Rdb,c
�1� = �UcdUcb

*

UudUub
� = ��2 + �2,

�68�

Rdb,t
�1� = � UtdUtb

*

UudUub
� = ��1 − ��2 + �2.

The second remark is that in contradistinction to what physicists believe, � and � have no
pecial relationship with a parametrization of the CKM matrix, in particular that provided by
olfenstein.45 Indeed on the right-hand side, Eq. �68�, are the lengths of two sides of the above-

efined triangle, those �1. Physical meaning have only the angles of that triangle which can be
easured.20,44 The third remark is that in this approach there is no relationship between the
P-violating phase � and the angles of the unitarity triangles. Because the phase is interesting

rom a physical point of view, the phenomenologists make the identification

� = �3 or � � �3 �69�

ee, e.g., Refs. 21–29. Looking at the numerical values obtained for cos �= �4/25��15, relation
45�, and for the angles of the unitarity triangles, �62� and �63�, computed by using an exact
nitary matrix, we obtained a numerical proof that the claim �69� is wrong. A simpler contra
xample is the following: take all Vij

2 =1/3. Then all six triangles are equilateral and by conse-
uence we have �1=�2=�3=60°, and from the first phenomenological model we get �=90°.

Although this model in the form �68� is currently used in many phenomenological analyses,
ee, e.g., Refs. 25 and 26, it cannot directly provide numbers for the parameters cij and � such that
here is no �reliable� recovery algorithm for unitary matrices from double stochastic matrices. The
ositive thing is that, if properly used, this phenomenological model allows the determination of
ll the angles of all six unitarity triangles, which are measurable quantities. Hence the real problem
s to find a recovery algorithm for unitary matrices starting with measured values for all these

44
ngles. This problem was first raised by Aleksan et al. and in the next section we will solve it.

                                                                                                            



V

s
s
m
a
w
p
f
m
p

f
n

b
p
p
�

T

T
l
f
m

s

I
o
�

083510-18 Petre Diţă J. Math. Phys. 47, 083510 �2006�

                        
. EQUIVALENCE OF THE TWO APPROACHES

Relations �48� and �61�, as well as �45� and �62�, have shown that the unitarity sends the same
ignal of �in�consistency between the data and the theoretical model, although each one in a
pecific way. This is natural since both models are based on the unitarity property of matrices
odeling the CP-violation. In the following we will prove that from a theoretical point of view the

bove-presented phenomenological models are only partially equivalent in the following sense: if
e start with four independent angles we can reconstruct more than a unitary matrix, the multi-
licity being equal to five, and the solutions given by the two models are the same if and only if
our moduli take the same values. This opens the possibility to define new phenomenological

odels, in terms of moduli and phases, by taking into account all the experimental data. In
articular we provide an expression for the phase � in the second phenomenological model.

The starting point is the relation �53� that we write in a complex form. For that we define the
our independent angles that enter the CKM matrix �33�, namely Uij = �Uij �e��ij, i , j=2,3. With this
otation we write the complex form of �53� as

Rdb,c�cos �23 + i sin �23� =
Ucd

* Ucb

Uud
* Uub

, �70�

Rdb,t�cos �33 + i sin �33� = −
Utd

* Utb

Uud
* Uub

�71�

y using the fact that in our parametrization the elements of the first row and first column are
ositive. In the above second relation we put a minus sign since U33, as well as U22, has an overall
hase equal to �. In fact the angles of the triangle are defined up to an integer multiple of �. From
70� we get

sin �23 =
c13c23s23 sin �

c12s13Rdb,c
, �72�

cos �23 = −
c23�c12c23s13 − c13s23 cos ��

c12s13Rdb,c
. �73�

he above-noted relations are equivalent to

tan �23 =
c13s23 sin �

− c12c23s13 + c13s23 cos �
. �74�

he last formula depends only on theoretical parameters entering �33�, and does not depend on the
engths of the unitarity triangle. If in �74� we substitute values for cij and cos � taken for example
rom the phenomenological model, Eqs. �39� and �40�, we get a formula for tan �23 in terms of
oduli that are measurable quantities.

Conversely, from relations �72� and �73� we get a formula for cos �. Indeed, from the identity
in2 �23+cos2 �23=1 we find

cos � =
c12

2 c23
4 s13

2 + c13
2 c23

2 s23
2 − c12

2 s13
2 Rdb,c

2

2c12c13c23
3 s13s23

. �75�

f in it we substitute the formulas �39� and Rdb,c from Eq. �53� we find Eq. �40� for cos �. If instead
f �53� we use the corresponding form for Rdb,c, which comes from the relation �55�, one gets Eq.
43�, and so on.
In the same way from relation �71� one gets
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tan �33 =
c13c23 sin �

c12s13s23 + c13c23 cos �
�76�

nd

cos � =
c12

2 s13
2 Rdb,t

2 − c13
2 c23

2 s23
2 − c12

2 s13
2 s23

4

2c12c13c23s13s23
3 . �77�

rom relations �70� and �71� we find

Rdb,t

Rdb,c
�cos��33 − �23� + i sin��33 − �23�� = −

Utd
* Utb

Ucd
* Ucb

�78�

nd from it we can obtain a similar formula for tan��33−�23�.
Similarly the complex form of the second triangle, Eq. �57�, is

Rds,c�cos �22 + i sin �22� = −
Ucd

* Ucs

Uud
* Uus

, �79�

Rds,t�cos �32 + i sin �32� =
Utd

* Uts

Uud
* Uus

, �80�

herefrom we get

tan �22 =
s13s23 sin �

c12c13c23 + s13s23 cos �
, �81�

tan �32 =
c23s13 sin �

− c12c13s23 + c23s13 cos �
. �82�

From the above-noted calculations one sees that one orthogonality relation determines only
wo independent angles, and from them one cannot reconstruct the unitary matrix because each
ngle depends on the four independent parameters entering the generic form �33� of a 3�3 unitary
atrix.

Similar to relations �75� and �77� one can find two other independent formulas for cos �. Since
ll four expressions are independent and depend on four parameters, they can be inversed to find

ij and cos � as functions of the ratios Rij,k, obtaining the correct formula for cos � in this ap-
roach. However the formulas for some cij contains more than a hundred terms, and we will not
ive them here.

From a mathematical point of view the angles �ij, i, j=2, 3 are not very interesting, although
heir existence was the essential ingredient for obtaining the necessary and sufficient conditions
or the existence of a unitary matrix from the entries of a double stochastic matrix, see Ref. 3.
rom a physical point of view they are very interesting because they are measurable quantities.
imilar to the preceding cases we have to use all six orthogonality relations, although for a double
tochastic matrix all the angles �ij, i, j=2, 3 have the same numerical values, irrespective of the
rthogonality property we use. However irrespective of what triangles we use we get the same
unctions tan �22, tan �23, tan �32, and tan �33. If we use the orthogonality of the second and the
hird columns, respectively, of the second and the third rows, we get the angles of the correspond-
ng triangles as linear functions of �22, �23, �32, �33, modulo �, see Ref. 44. For example, the
ngles of the unitarity triangle generated by relation �52�, or �53�, are given by �33, �−�23, and

23−�33, etc.
In the following we give the necessary and sufficient conditions for recovery of a unitary

atrix when we know the angles �ij, i, j=2,3, solving the problem first raised by Aleksan et al.44
n the following we make the notation
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tan �22 = t22, tan �23 = t23, tan �32 = t32, tan �33 = t33 �83�

nd from Eqs. �74� and �76�, and �81� and �82� we get

c13
2 =

t23t33�t22 − t32�
t22t23�t33 − t32� + t32t33�t22 − t23�

,

c23
2 =

t32t33�t22 − t23�
t22t23�t33 − t32� + t32t33�t22 − t23�

, �84�

c12
2 =

N1

N2
,

here

N1 = �t22 − t23��t22 − t32��t23 − t33��t32 − t33� ,

�85�
N2 = t23

2 t32
2 + t22

2 t33
2 + t23

2 t32
2 �t22

2 + t33
2 � + t22

2 t33
2 �t23

2 + t32
2 �

− 2t22t23t32t33�1 + �t23 + t32��t22 + t33� − t23t32 − t22t33� .

Substituting the values for cij from relations �84� and �85� in any equation �74�, �76�, �81�,
82�, or a combination of them, we get a formula for cos �, that is too long to be written down
ere. Hence the necessary and sufficient conditions for the existence of a unitary matrix coming
rom the angles �ij are

0 � c12
2 � 1, 0 � c13

2 � 1, 0 � c23
2 � 1, − 1 � cos � � 1. �86�

By using the numerical values

t22 =
1

9
�77

3
, t23 =�33

7
, t32 = −

�231

13
, t33 =

3�231

61
�87�

btained from the matrix �46� we get by using relations �84� and �85�

c12 =
1
�3

, c13 =
�3

2
, c23 =

�6

4
�88�

howing that Eqs. �84� and �85� uniquely define the parameters cij, in perfect accord with �45�.
If in Eqs. �74� and �76�, and �81� and �82� we substitute the mixing angles as given by �84�

nd �85� we get equations for cos � that lead to the solutions

cos � =
4

5
�3

5
, cos � = −

139

116
�3

5
, cos � =

9

8
�3

5
, �89�

cos � = −
1

4
�3

5
, cos � = −

41

32
�3

5
. �90�

n fact from each equation �74�–�76� and �81� and �82� one gets two solutions for cos �, and only
ne of them coincides with that found in the first phenomenological model, see �45�. Hence the
roblem of recovering a unitary matrix when we know four independent angles �ij is not unique,
nd the finite multiplicity is at least five. However this result does not contradict the general result
tated in Theorem 2, a theorem which gives uniqueness if and only if we use four independent
oduli. To see what happens in the above-noted case, we recover the unitary matrix by using cij
aken from relations �88�, and the second value for cos �,
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cos � = −
139

116
�3

5
.

he moduli matrix has the form

V1 =�
1

3

1

2

1

6

1

4

47

1856

1345

1856

5

12

881

1856

605

5568

 . �91�

y comparing the matrix V1 with the original one, Eq. �44�, we see that the elements of the first
ow and column coincide, the others are different. In order to obtain a unique solution we can use
elation �77�, or any other equivalent to, which make use of one of the lengths of unitarity triangle
ides, which depends on the fourth independent moduli. Hence by using information coming only
rom triangles angles we have a finite multiplicity solution. The uniqueness is obtained if and only
f the information is supplemented by an independent modulus, e.g., in the above-mentioned case
�2,2�, or a length of a unitarity triangle. The phenomenological implications of the above-noted

esults on the global fit methods for recovering a unitary matrix from moduli and angles will be
reated elsewhere.

I. RECOVERY OF UNITARY MATRICES FROM EXPERIMENTAL DATA

If the data come from an exact numerical matrix the problem to solve is quite simple: we have
o test the stochasticity property, and, afterwards, the unitarity constraints, i.e., the condition, −1

cos ��1, in the unitarity condition method, or the inequalities, �R
�,−R
�, � �1�R
�,

R
�,, coming from two orthogonality relations in the case of the standard unitarity triangles
pproach. If the data pass any one of the tests, one can easily reconstruct the unitary matrix Eq.
33� from the data �34�, as the numerical examples from the previous sections have shown. If the
hysical conditions are violated, there is no compatibility and the discussion ends here. The real
roblem, from a physical point of view, is when the data come from experiment, i.e., are numbers
ffected by errors, and the problem is how we proceed in this situation, because neither the double
tochasticity relations, nor the unitarity constraints are exactly satisfied.

There is the place where the gauge invariance subgroup K of unitary matrices enters the game,
nd its implications are the following. We have to find all four independent moduli groups and find
ll the possible forms for cos �, and, respectively, the lengths of the unitarity triangles. And we
ave to impose that the numerical values for them should be approximately equal. The usual case
ith the present data is that the numerical values obtained for moduli are such that cos ��i�

cos ��j�, and/or R
�,
�i� �R
�,

�j� , i� j. Even more cos ��i� could be outside the physical region, or
he lengths of unitarity triangles are imaginary, or if they are real are not compatible with the
xistence of a triangle, as the numerical examples provided in the paper show. Hence, in contra-
istinction with the usage nowadays, see Ref. 20, we have to devise a fitting model that should
mplement the fulfillment of the above-noted theoretical constraints, and which should take into
ccount the experimental data.

The method we expose here is discussed in more detail in Ref. 46. It is a least-squares method
or checking the compatibility of the data with the theoretical models in both approaches, and if
he data pass the physical conditions imposed by unitarity, from the fits one gets values for the
arameters entering the theoretical model that by assumption gives a reliable description of the
hysical reality that is investigated by experiment.

It follows that in both approaches the �2-function must contain two separate terms, the first

ave to impose the fulfillment of the unitarity constraints by the free parameters entering the
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hysical model, and their best determination from the data, and the second one should depend on
hysical quantities that are measured in �different� experiments. Thus our proposal for the first
erms is

�1
2 = �

i�j

�cos ��i� − cos ��j��2 + �
j=u,c,t

	 �
i=d,s,b

Vji
2 − 1
2

+ �
j=d,s,b

	 �
i=u,c,t

Vij
2 − 1
2

, − 1 � cos ��i� � 1

�92�

or the unitarity condition method, and, respectively,

�2
2 = �


�,
i�j

�R
�,
�i� − R
�,

�j� �2 + �
j=u,c,t

	 �
i=d,s,b

Vji
2 − 1
2

+ �
j=d,s,b

	 �
i=u,c,t

Vij
2 − 1
2

,

�93�
R
�,

�i� � 0, �R
�,
�i� − R
�,

�i� � � 1 � R
�,
�i� + R
�,

�i�

or the unitarity triangles method. Both the �1,2
2 formulas test the double stochasticity property and

he unitarity; from the point of view of numerical computation the unitarity property is the most
ifficult to satisfy.

Concerning the second component of �2-test it is of the form

�3
2 = �

i=1

	di − d̃i

�i

2

, �94�

here di are theoretical functions depending on the theoretical parameters sij and �, or on Vkl,

nd/or the angles �i, 	i which are given by the phenomenological model one works with, while d̃i

re the measured experimental data for di, and � is the vector of errors associated to d̃i. The
ormulas

�u
2 = �1

2 + �3
2

nd, respectively,

�t
2 = �2

2 + �3
2

re our proposals for �2-tools necessary in analyzing the experimental data.
A remark is the following: as we have seen the second phenomenological model does not yet

rovide an explicit formula for cos �, although our results have shown that it is possible to obtain
t. In any case a global fit done by using either �u

2 or �t
2 will give values for all the moduli. Hence

or the reconstruction of a unitary matrix in the second phenomenological model we have to use
ormulas such as �77�. A true global fit will be that which will use all the experimental data by
erging the above-mentioned two phenomenological models. The fulfillment of constraints �92�

nd �93� can be enforced by penalty functions that are equivalent to defining at least two Lagrange
ultipliers, etc.; but these are technical details depending on the concrete problem.

The convexity property of the double stochastic matrices allows us to devise a method for
oing statistics on unitary matrices that is still an open problem in the physical literature, see, e.g.,
ef. 47. Let us suppose that by doing a fit with the above-noted methods we got n moduli matrices

hat are consistent with n �approximate� unitary matrices, U1 ,U2 , . . . ,Un. The convexity property
ogether with the embedding �2� tell us that the matrix

M2 = �
i=1

n

xi�Ui�2, �
i=1

n

xi = 1, 0 � xi � 1, i = 1, . . . ,n

s double stochastic, where as usual in this paper we use the Hadamard product to define the above

elation. Then the correct formulas for the mean value �M�, and the error matrix �M are given by
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�M� =�	�
i=1

n

�Ui�2
� n ,

�95�

�M =�	�
i=1

n

�Ui�4
� n − �M�4.

f the entries of the mean value matrix, �M�, obtained in this way are not too far from the entries
oming from a unitary matrix, one can reconstruct from �M� an �approximate� unitary matrix by
sing the technique developed in the paper.

II. CONCLUSIONS

Our main reason for studying the separation criteria between the double stochastic matrices
nd the unistochastic ones was their importance in high energy physics, where the present algo-
ithms for reconstruction of unitary matrices from experimental data are not yet reliable in our
pinion. Fortunately for the 3�3 matrices, which seem to be the physical choice in the elec-
roweak interaction, there are explicit formulas for the independent parameters entering a unitary

atrix in terms of four independent elements of a double stochastic one. That allows us to check
he unitarity properties of exact double stochastic matrices, and an easy reconstruction of the
nitary one from the entries of the double stochastic matrix when the compatibility conditions are
ulfilled. These formulas can be used to define �2-functions for checking the compatibility be-
ween the experimental data and the unitarity property of the CKM matrix, and to recover a
nitary matrix from error affected data. More important, starting from the convexity of the
irkhoff’s polytope, we found a method for doing statistics on the �moduli of� unitary matrices.

We have also shown that, because the unitarity triangles method20 and the unitarity condition
ethod,43 both being consequences of the unitarity property, are completely equivalent if and only

f they are formulated in terms of four independent moduli. In the same time we have shown that
he unitarity triangles method has to make effective use of the double stochasticity relations in
rder to obtain reliable results. Writing the unitarity triangles method in complex form we have
btained formulas for the four independent phases entering a unitary matrix, these phases being
he angles of the unitarity triangles, modulo �. This opens the possibility to treat coherently all the
xperimental data available on moduli and angles by merging the above-mentioned phenomeno-
ogical models into a true global one, the aim in view being a precise determination of the phase

that is the key parameter in understanding the CP-violation.
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In this work we study the diamagnetic properties of a perfect quantum gas in the
presence of a constant magnetic field of intensity B. We investigate the Gibbs
semigroup associated with the one particle operator at finite volume, and study its
Taylor series with respect to the field parameter �ªeB /c in different topologies.
This allows us to prove the existence of the thermodynamic limit for the pressure
and for all its derivatives with respect to � �the so-called generalized
susceptibilities�. © 2006 American Institute of Physics. �DOI: 10.1063/1.2259582�

. INTRODUCTION

This paper is motivated by the study of the diamagnetic properties of a perfect quantum gas
nteracting with a constant magnetic field, BªBe3, B�0, e3ª �0,0 ,1�. The system obeys either
he Bose or the Fermi statistics. Since we are only studying orbital diamagnetic effects, we
onsider a gas of spinless and charged particles.

We are mainly interested in the bulk response, i.e., the thermodynamic limit of the pressure
nd its derivatives w.r.t. cyclotron frequency �ªeB /c. As in Briet et al. �2005� we use the term
eneralized susceptibilities to designate such quantities.

This question has been already addressed by several authors. Thus, one finds results concern-
ng the existence of the large volume limit of pressure for both Fermi and Bose gases �Angelescu
nd Corciovei, 1975; Angelescu et al., 1975b�, the magnetization for a Bose gas �Cornean, 2000;
acris et al., 1997� and the magnetic susceptibility for a Fermi gas �Angelescu et al., 1975b�. In

Briet et al., 2005�, extensions of these results to the case of generalized susceptibilities were
nnounced.

This paper is the first in a series of two devoted to the rigorous proof of the results announced
n �Briet et al., 2005�. Here we consider the regime in which the inverse temperature �

1/ �kT� is positive and finite and the fugacity z=e�� belongs to the unit complex disk. Such
onditions were also used in �Angelescu and Corciovei, 1975; Angelescu et al., 1975b; Macris et
l., 1997�. But here we also allow any positive value of the cyclotron frequency �ªe /cB. In a
orthcoming, paper, we will extend these results to some larger z-complex domains �in fact, to D�

efined below�. One can also find different aspects of this problem in �Macris et al., 1997;
ombescure and Robert, 1990; Helffer and Sjöstrand, 1990�.

The main part of this work is concerned with a new approach to the magnetic perturbation
heory for a semigroup generated by a magnetic Schrödinger operator. It extends the results given

�Electronic mail: briet@univtln.fr
�Electronic mail: cornean@math.aau.dk
�
Electronic mail: louis@cpt.univ-mrs.fr
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n �Angelescu et al., 1975a; Cornean, 2000� and heavily relies on the use of the magnetic phase
actor. This allows us to have good control on the magnetic perturbation wrt the size of the volume
Briet and Cornean, 2002; Cornean and Nenciu, 1998; Nenciu, 2002� in which the gas is confined.

Let us now describe our results. Let � be an open, bounded, and connected subset of R3

ontaining the origin of R3 and with smooth boundary ��. Set

�L ª �x � R3,x/L � ��; L � 1. �1.1�

ere we use the transverse gauge, i.e., the magnetic potential is defined as Baª �B /2�e3Ùx. The
ne particle Hamiltonian,

HL��� =
1

2
�− i� − �a�2, �1.2�

s first defined in the form sense on H0
1��L�, and then one considers its Friedrichs extension �Reed

nd Simon, 2003�. Thus we work with Dirichlet boundary conditions �DBC�.
It is well-known that HL���, ��R, generates a Gibbs semigroup,

�WL��,�� = e−�HL���:� � 0� , �1.3�

.e., for all ��0, WL�� ,���B1�L2�R3�, the set of trace class operators on HL �Angelescu and
orciovei, 1975; Zagrebnov, 1978�

Then for ��0, ��R, the grand canonical pressure of a quantum gas at finite volume is
efined as �Huang, 1987; Angelescu and Corciovei, 1975; Angelescu et al., 1975b�

PL��,�,z,�� =
�

���L�
· Tr�ln�1 + �zWL��,��� , �1.4�

here �=−1��=1� for Bose �Fermi� statistics. Since � /2=inf ��H	����, then the pressure is an
nalytic function wrt z on the complex domain D� with

D+1 ª C \ �− 	 ,− e��/2�, D−1 ª C \ �e��/2, 	 � .

Let n�1 and define the susceptibility of order n at finite volume by


L
�n���,�,z,�� ª

�nPL

��n ��,�,z,�� . �1.5�

f n=0 we set 
L
�0� �� ,� ,z ,��ªPL�� ,� ,z ,��.

. Results

Our first result describes the properties of the above defined quantities at finite volume, and it
s given by the following theorem.

Theorem 1.1: Let ��0. Then the map R��→WL�� ,���B1�L2(R3�) is real analytic and

dmits an entire extension. For each open and bounded set K that obeys K̄�D�, �=−1, +1, there
xists an open neighborhood N of the real axis such that the pressure at finite volume

PL�� ,� ,z ,�� is analytic wrt �� ,z� on N�K. Let ��R, and �z � �1. Then for n�0 we have �see
1.3��:


L
�n���,�,z,�� =

�

���L� �k�1

�− �z�k

k
Tr	 �nWL�k�,��

��n 
 . �1.6�

We now discuss the limit L=	. First, we define the candidates, 
	
�n�, for these limits. Recall

hat the one particle operator H	���= 1
2 �−i�−�a�2 on L2�R3�, ��R, is positive and essentially

elf-adjoint on C0
	�R3�. Denote by W	�� ,��, ��0 the semigroup generated by H	���. Then
	�� ,�� has an explicit integral kernel satisfying �see Sec. III�:
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G	�x,x;�,�� =
1

�2��3/2

��/2

sinh���/2�
, " x � R3. �1.7�

ote that the right hand side is independent of x. Let ��0, ��0 and �z � �1.
In view of �1.6�, define

P	��,�,z,�� ª
�

�
�
k�1

�− �z�k

k
G	�0,0;k�,�� , �1.8�

hich is well defined because of the estimate sinh�t�� t if t�0. Then by the results of �Angelescu
nd Corciovei, 1975; Angelescu et al., 1975b�, we know that

lim
L→	

PL��,�,z,�� = P	��,�,z,�� .

It is quite natural to choose 
	
�n�
ª�nP	 /��n provided that this last quantity exists. Note that it

s not very easy to see this just from �1.8� and �1.7�.
We then prove the following.
Theorem 1.2: Let ��0, ��0 and �z � �1. Fix n�1 and define


	
�n���,�,z,�� ª

�nP	

��n ��,�,z,�� . �1.9�

hen we have the equality:


	
�n���,�,z,�� =

�

�
�
k�0

�− �z�k

k

�nG	

��n �0,0;k�,�� . �1.10�

oreover,

lim
L→	


L
�n���,�,z,�� = 
	

�n���,�,z,�� �1.11�

niformly on ��0 ,�1�� ��0 ,�1�, 0��0��1�	, and 0��0��1�	.

. Relation with the de Haas-van Alphen „dHvA… effect

Our results can be easily extended to the case of more general Bloch electrons, that is, when
ne has a background smooth and periodic electric potential V. More precisely, let us assume that
�C	�R3�, V�0, and if � is a periodic lattice in R3, then V�·�=V�·+�� for all ���. Denote by
the elementary cell of �. In this case, the grand canonical pressure at the thermodynamic limit

ill be given by �we work with fermions; thus �=1�

P	��,�,z� =
1

�
�
k�1

�− z�k

k

1

�����

G	�x,x;k�,��dx , �1.12�

here G	�x ,x� ;k� ,�� is the smooth integral kernel of the semigroup generated by 1
2 �−i�

�a�2+V. This formula only holds for �z � �1, but it can be analytically continued to C \ �−	 ,
1�; see Angelescu and Corciovei �1975� or Helffer and Sjöstrand �1990�.

Now one can start looking at the behavior of P	�� ,� ,z� as a function of �, in particular,
round the point �0=0. Working in canonical conditions, that is when z is a function of �, � and
he fixed particle density �, then one is interesting in the object

p	��,�,�� ª P	„�,�,z��,�,��… .

thorough analysis of the � behavior near 0, involving derivatives with respect to � of the above

uantity, has been already given by Helffer and Sjöstrand in 1990.
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Alternatively, one can start from the finite volume quantities, and define a zL�� ,� ,�� as the
nique solution of the equation �Lª�z �zPL�� ,� ,zL�=� and pL�� ,� ,��ªP	(� ,� ,zL�� ,� ,��).
s it still true that at large volumes we have, for example, that

��
n pL��,�,�� � ��

n p	��,�,��, n � 1?

he main achievement of our paper is that at least for small densities �which fix �z � �1� the
nswer is yes. In a companion paper we will prove that this is true for all z�C \ �−	 ,−1�.

We end the introduction by giving the plan of this paper. In Sec. II we discuss the analyticity
f the Gibbs semigroup with respect to � in the trace class sense. The trace norm estimates we
btain depend on the size of the domain, due to the linear growth of the magnetic potential. Using
agnetic perturbation theory we manage to regularize the trace expansions and to extend these

esults to the infinite volume case in Secs. III and IV. Finally, we prove the existence of thermo-
ynamic limits in Sec. V.

I. ANALYTICITY OF GIBBS SEMIGROUPS

. B1 analyticity

Let �L, L�1 be domains of R3 as defined in �1.1�. In the following we will denote, respec-
ively, by T1, T2, and T, the trace norm in B1(L

2��L�), the Hilbert-Schmidt norm in

2(L
2��L�) and the operator norm in B(L2��L�) of T.
In this section we study, the � expansion of WL�� ,��. This question has been already con-

idered �Hille and Phillips, 1957; Angelescu et al., 1975b; Zagrebnov, 1978� in connection with
he B1 analyticity of WL�� ,��. Combining their result with our analysis below, this gives the
ollowing. Define the operators

R̂1,L��,�� ª a · �i�x + �a�WL��,�� , �2.1�

R̂2,L��,�� ª
1

2
a2WL��,�� . �2.2�

oth operators R̂1,L�� ,�� and R̂2,L�� ,�� belong to B��L� and we have the following estimate on
heir norm.

Lemma 2.1: For all ��0, ��0, and L�1, there exists a positive constant C such that

R̂1,L �
CL
��

and R̂2,L � CL2. �2.3�

Proof: Let ��L2��L�. Since WL�� ,��L2��L��Dom(HL���) �Kato, 1966� after a standard
rgument �note that the absolute value of the components of a are bounded from above by
iam��1� ·L�:

a · �i�x + �a�WL��,���2 � CL2�HL���WL��,���,WL��,���� �
C · L2

�
�2, �2.4�

here the last estimate is given by the spectral theorem. The second bound of �2.3� is obvious.�
Remark 2.2: Due to the diamagnetic inequality �see �2.30��, we have for all ��0 and �

R,

WL��,��1 = Tr„WL��,��… �
L3

�2��3/2 . �2.5�

hen both operators R̂1,L , R̂2,L are trace class, since we can factorize the operator R̂1,L�� ,��
R̂1,L�� /2 ,��WL�� /2 ,��.
For n�1, define
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Dn��� ª �0 � �n � �n−1 � . . . �1 � �� � Rn. �2.6�

et �i1 , . . . , in�� �1,2�n. Lemma 2.1 allows us to define the following family of bounded operators:

În,L�i1, . . . ,in���,�� ª �
Dn���

WL�� − �1,��R̂i1,L��1 − �2,��

�R̂i2,L��2 − �3,�� . . . R̂in−1,L��n−1 − �n,��R̂in,L��n,��d� , �2.7�

here dr is the n-dimensional Lebesgue measure. These operators are in fact trace class, and we
ill estimate their trace norm later. Let n�1, �i1 , . . . , in�� �1,2�n and 
k

n be the characteristic
unction,


k
n�i1, . . . ,ik� ª 	1, if i1 + . . . + ik = n ,

0, otherwise.
�2.8�

hen we have the following.
Theorem 2.3: Fix ��0. Then the operator-valued function R���WL�� ,���B1 admits an

ntire extension to the whole complex plane. Fix �0�0. For all ��C we have

WL��,�� = �
n=0

	
�� − �0�n

n!

�nWL

��n ��,�0� , �2.9�

1

n!

�nWL

��n ��,�0� = �
k=1

n

�− 1�k �
ij��1,2�


k
n�i1, . . . ,ik�Îk,L�i1, . . . ,ik���,�0� . �2.10�

oreover, there exists a positive constant C independent of n�1, ��0, and L such that

� 1

n!

�nWL

��n ��,�0��
1

� Cn �1 + ��n

�3/2 Ln+3 1

��n − 1�/4�!
. �2.11�

or all ��C, �WL�� ,�� ,��0� is a Gibbs semigroup with its generator given by the closed
perator HL���.

Remark 2.4: This theorem implies that the trace of the semigroup WL is an entire function of
, and by �2.9�,

Tr„WL��,��… = �
n=0

	
�� − �0�n

n!
Tr� �nWL

��n ��,�0�� . �2.12�

Proof of Theorem 2.3: We will use here some results from Hille and Phillips �1957� and
ngelescu et al. �1975b�, which we briefly recall. Let �0�0. For ��C set ��ª�−�0. Then the
perator

HL��� − HL��0� = ����a · �i�x + �0a� +
����2

2
a2 �2.13�

s relatively bounded to HL�� ,�0� with relative bound zero. Note that for ��0 from �2.13� we
ave, in the operator sense on HL,

R̂L��,�� ª „HL��� − HL��0�…WL��,�0� = ��R̂1,L��,�0� + ����2R̂2,L��,�0� . �2.14�
or every compact subset K�C, and due to the estimates �2.3�, this operator satisfies
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�
0

1

d� sup
��K

R̂L��,�� � 	 .

et 0��1��0�	. Then the series

WL��,�,�0� = �
n=0

	

�− 1�nWL
�n���,�,�0� , �2.15�

here WL
�0��� ,� ,�0�=WL�� ,�0�, and for n�1,

WL
�n���,�,�0� = �

0

�

d� WL�� − �,�0�„HL��� − HL��0�…WL
�n−1���,�0� �2.16�

s uniformly B1 convergent on K� ��1 ,�0�. This result was obtained in Angelescu et al. �1975b�.
ince WL�� ,� ,�0� is the uniform limit of a sequence of entire B1-valued functions, it follows via

he Cauchy integral formula that WL�� ,� ,�0� is also B1 entire in �. Moreover, for real � it
oincides with the operator e−�HL��� ,��0.

What we do here is to identify its nth order derivative with respect to �. From �2.16� and
2.14�, a simple induction argument yields the following finite rearranging:

�
n=0

N

�− 1�nWL
�n���,�,�0� = WL��,�0� + �

n=1

N

����n�
k=1

n

�− 1�k �
ij��1,2�


k
n�i1, . . . ,ik�Îk,L�i1, . . . ,ik���,�0�

+ RN+1,L��,�,�0� , �2.17�

here

RN+1,L��,�,�0� = �
n=N+1

2N

����n�
k=1

N

�− 1�k �
ij��1,2�


k
n�i1, . . . ,ik�Îk,L�i1, . . . ,ik���,�0� . �2.18�

ow differentiation with respect to � commutes with the limit N→	, again due to the uniform
onvergence and the Cauchy integral formula. Hence �2.9� is proved, since the nth order derivative
f � j=0

N �−1� jWL
�j��� ,� ,�0� at �=�0 equals the right hand side of �2.10� if N�n.

In the second part of the proof, we use the methods of Angelescu et al. �1975b� in order to
stimate the B1 norm of the operators Ik,L�i1 , . . . , ik� as claimed in �2.11�. We first have

Îk,L�i1, . . . ,ik���,�0�1 � �
Dk���

d�WL�� − �1,�0�R̂i1,L��1 − �2,�0� . . . R̂ik,L��k,�0�1.

�2.19�

ecall that the Ginibre-Gruber inequality reads as Angelescu et al. �1975b�,

��
l=0

k

AlT�tl��
1

� ��
l=0

k

Al�Tr T�t0 + t1 + ¯ + tk� , �2.20�

here �Al ,0� l�k� are bounded operators and T�t� , t�0 is a Gibbs semigroup. Then taking A0

WL(��−�1� /2 ,�0), Alª R̂il,L
(��l−�l+1� /2 ,�0) if l�1 �we put �k+1�0� and T�t�=WL�t /2 ,�0�.

n Dk���, we have the estimate A0  �1���1+�� / ��−�1� and by the Lemma 2.1 for l�1,

Al = �R̂il,L� �l − �l+1

2
,�0�� � const · Lil

�1 + �

��l − �l+1

. �2.21�
et fk :Dk���→R be defined as
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fk��� ª
1

��� − �1���1 − �2� ¯ ��k−1 − �k��k

, �2.22�

nd it satisfies

�
Dk���

fk���d� =
��k−1�/2�k+1�/2

�� k + 1

2
� . �2.23�

et i1+ ¯ + ik=n. Then from �2.5�, �2.20�, �2.21�, and �2.23�, we obtain the existence of a nu-
erical constant C, such that for every ��0:

Îk,L�i1, . . . ,ik���,�0�1 �
Ln+3Ck�1 + ��k

�3/2�� k + 1

2
� . �2.24�

hus, we have the estimate �see �2.10��:

1

n!
���

n WL���,�0�1 � CnLn+3 �1 + ��n

�3/2 �
k=1

n

�
ij��1,2�


k
n�i1, . . . ,ik�

�� k + 1

2
� . �2.25�

ut a lot of terms in the above sum are zero, since 
k
n�i1 , . . . , ik�=0 if k� ��n+1� /2�. Since � is

ncreasing, we can give a rough estimate of the form

�
k=1

n

�
ij��1,2�


k
n�i1, . . . ,ik�

�� k + 1

2
� � n2n 1

�� ��n + 1�/2� + 1

2
� � n2n 1

��n − 1�/4�!
. �2.26�

�

. Proof of Theorem 1.1

The analyticity properties of the pressure are now easy to prove once we have the B1 analy-
icity of the Gibbs semigroup. See Angelescu et al. �1975a� for details.

Now let ��0,��0 and �z � �1. Since zWL�� ,��  �1, the logarithm in the pressure at finite
olume can be expanded, and then

PL��,�,z,�� = �/����L���
k�1

�− �z�k/k Tr WL�k�,�� . �2.27�

tarting from Definition �1.5�, and using Theorem 2.3, we obtain


L
�n���,�,z,�� = �/����L���

k�0
�− �z�k/k Tr� �nWL�k�,��

��n � . �2.28�

ote that �2.11� ensures that the growth in k that comes from the trace of the nth derivative of

L�k� ,�� is not faster than some polynomial, but since �z � �1, the series in k is convergent. This
nishes the proof of the theorem. �

. Analyticity of the semigroup’s integral kernel

In the rest of this paper we will only consider �L= �−L /2 ,L /2�3 ,L�1. For ��R, HL��� is

ssentially self-adjoint on
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�� � C1��L
¯ � � C2��L�,����L

= 0,�� � L2��L�� .

Let GL�x ,x� ;� ,�� be the integral kernel of WL�� ,�� �see, e.g., Angelescu and Corciovei
1975��. Standard elliptic estimates for the eigenfunctions of HL���, together with the fact that
−�HL��� is trace class, imply that GL�x ,x� ;� ,�� is smooth in �x ,x����L��L. Moreover,

L�x ,x� ;� ,��=0 if either x or x� are on the boundary.
To prove the next theorem, we need the following result from Cornean �2000�, concerning the

1 regularity up to the boundary of the integral kernel. Let ��0 and let G	�x ,x� ,��
G	�x ,x� ,� ,�=0� be the heat kernel on the whole space, i.e.,

G	�x,x�;�� =
1

�2��3/2e−�x − x��2/2�. �2.29�

ecall that the diamagnetic estimate reads as Angelescu and Corciovei �1975�:

�GL�x,x�;�,��� � G	�x,x�;��, �x,x�� � �L � �L, � � 0. �2.30�

hen we have the following.
Lemma 2.5: Let ��0 and ��0. Then on �L��L, we have

„i�x + �a�x�…GL�x,x�;�,��� �
C

��
G	�x,x�,8�� , �2.31�

here C=C�� ,��=c · �1+��5�1+��3 and c�1 is a numerical constant.
This estimate allows us to define the integral kernels of the operators defined in �2.2�; more

recisely, for �x ,x����L��L, we have

R̂1,L�x,x�;�,�� ª a�x� · „i�x + �a�x�…GL�x,x�;�,�� ,

R̂2,L�x,x�;�,�� ª
1

2
a2�x�GL�x,x�;�,�� . �2.32�

Consider the operator WL�� ,�� for complex �, defined by a B1-convergent complex power
eries in Theorem 2.3. We will now prove that it has an integral kernel analytic in �.

Theorem 2.6: Let ��0 and fix �0�0.
�i� The operator ���

n WL��� ,�0� defined in �2.10� has an integral kernel denoted by ���
n WL�

�x ,x� ;� ,�0�, which is jointly continuous on �x ,x��� �̄L��̄L, and obeys the estimate

1

n!
� �nWL

��n �x,x�;�,�0�� � cn �1 + �0�3n�1 + ��6nLn

�3/2�n − 1

4
�!

, n � 1, �2.33�

or some numerical constant c�1.
�ii� For ��C, the operator WL�� ,�� has an integral kernel GL�x ,x� ;� ,�� given by

GL�x,x�;�,�� = �
n=0

	
�� − �0�n

n!
� �nWL

��n ��x,x�;�,�0� , �2.34�

here the above series is uniformly convergent on �̄L��̄L. Thus GL is jointly continuous on
¯

L��̄L and is an entire function of �.

Proof of Theorem 2.6: Lemma 2.5 obviously implies for ��0 and ��0 the estimate
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�R̂1,L�x,x�;�,��� � L
C

��
G	�x,x�;8�� . �2.35�

e also have

�R̂2,L�x,x�;�,��� �
L2

4
G	�x,x�;�� . �2.36�

n the following, we will often use the uniform estimate with respect to the index i=1,2:

�R̂i,L�x,x�;t,��� � LiC1��1 + ��
t

G	�x,x�;8t�, 0 � t � � , �2.37�

here C1ªC1�� ,��=2�2C�� ,��.
Let us start by proving �i�. Fix ��0,�0�0,L�1, and consider the operator Îk,L�i1 , . . . , ik�

�� ,�0�, k�1 defined in �2.7�. It admits a continuous integral kernel, Îk,L�x ,x� ;� ,�0�
Îk,L�i1 , . . . , ik��x ,x� ;� ,�0� on �L��L given by

Îk,L�x,x�;�,�0� = �
Dk���

d��
�L

k
dy GL�x,y1;� − �1,�0�R̂i1,L�y1,y2;�1

− �2,�0� ····· R̂ik−1,L�yk−1,yn;�k−1 − �k,�0�R̂ik,L�yk,x�;�k,�0� , �2.38�

here dy denotes the Lebesgue measure on R3k and Dk��� is defined in �2.6�. Let i1+ i2+ ¯ + ik

n. Then by using the Lemma 2.5, the estimate

�GL�x,y1;� − �1,�0�� � 83/2� �

� − �1
G	„x,y1;8�� − �1�…, 0 � �1 � � ,

nd �2.37�, the following estimate holds on �L��L:

�Îk,L�x,x�;�,�0�� � 83/2�1 + ���k+1�/2C1
kLn

��
Dk���

fk���d��
�L

k
dyG	„x,y1;8�� − �1�… . . . G	�yk,x�;8�k� , �2.39�

here the function fk is defined in �2.22�. Notice that by using the semigroup property,

�
�L

k
dy G	�x,y1;t1� . . . G	�yk,x�;tk� � �

Rk
dy G	�x,y1;t1� . . . G	�yk,x�;tk�

= G	�x,x�;t1 + ¯ + tk� . �2.40�

herefore from �2.39� we get

�Îk,L�x,x�;�,�0�� � 83/2�1 + ���k+1�/2C1
kLnG	�x,x�;8���

Dk���
fk���d� . �2.41�

hen Theorem 2.3 together with �2.23� and �2.41� show that the operator ��nWL /��n��� ,�0�, n

1 given by �2.9�, admits a continuous integral kernel satisfying
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� �nWL

��n �x,x�;�,�0�� � �83�1/2C2
nn ! LnG	�x,x�;8���

k=1

n

�
ij��1,2�


k
n�i1, . . . ,ik�

�� k + 1

2
� ,

or a new constant C2=C2�� ,�0�ª1/2�1+��C1�� ,�0�. Then by mimicking the proof of �2.26� we
et from the last inequality

1

n!
� �nWL

��n �x,x�;�,�0�� �
cn�1 + ��6n�1 + �0�3nLn

��n − 1�/4�!
G	�x,x�;8�� , �2.42�

here c is a numerical constant. Since G	�x ,x� ;8��� �16��−3/2, �2.42� implies the estimate
2.33� and proves �i�. Then �ii� follows easily from the previous estimate since 1/ ��n−1� /4�! has
superexponential decay in n. �

II. REGULARIZED EXPANSION

The bounds obtained in the previous section are not convenient for the proof of the existence
f the thermodynamic limit of the magnetic susceptibilities. In particular, the bound on
�nWL /��n��x ,x� ,� ,�0� given by �2.42� is of order Ln. Then this gives a bound on its trace of
rder L3+n, while in view of �1.6� we need a bound that goes like L3.

In this section, we give an improvement of these estimates. In order to do that, we need to
ntroduce the magnetic phase � and the magnetic flux fl defined as �here x ,y ,z��L and e
�0,0 ,1��:

��x,y� ª
1

2
e · �y Ù x� = − ��y,x� , �3.1�

fl�x,y,z� ª ��x,y� + ��y,z� + ��z,x� =
1

2
e · ��x − y� Ù �z − y�� . �3.2�

ote that fl is really the magnetic flux through the triangle defined by the three vectors, and we
ave

�fl�x,y,z�� � �x − y��y − z� . �3.3�

For n�1 and x=y0 ,y1 , . . . ,yn, some arbitrary vectors in �L, define

Fln�x,y1, . . . ,yn� ª ��yn,x� + �
k=0

n−1

��yk,yk+1� = �
k=1

n−1

fl�x,yk,yk+1�, if n � 2 �3.4�

nd

Fl1�x,y1� = 0.

otice that due to �3.3�, we have

�Fln�x,y1, . . . ,yn�� � �
k=1

n−1

�
l=1

k

�yl−1 − yl��yk − yk+1� . �3.5�
Let ��0. Consider now the bounded operators given by their integral kernels on �L��L,
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R1,L�x,x�;�,�� ª a�x − x�� · „i�x + �a�x�…GL�x,x�;�,�� .

R2,L�x,x�;�,�� ª
1

2
a2�x − x��GL�x,x�;�,�� . �3.6�

hen by the Lemma 2.5, a straightforward estimate yields to

�R1,L�x,x�;�,��� �
C�x − x��

2��
G	�x,x�,8�� � 4C1G	�x,x�,16�� , �3.7�

or all �x ,x����L��L. Similarly, by �2.30� we have

�R2,L�x,x�;�,��� �
�x − x��2

8
G	�x,x�,�� �

�

�2
G	�x,x�,2�� . �3.8�

n the sequel for i=1,2, we will use the estimate on �L��L,

�Ri,L�x,x�;�,��� � C3G	�x,x�,16�� , �3.9�

here C3=C3�� ,��ª16C1�� ,�� and C1 is given in �2.37�.
Notice that �3.9� provides a uniform bound wrt. L and � near �=0 on the operator kernels.

his in contrast with the bound on the norm operator of R̂i,L ; i=1,2 �see Sec. II B, �2.35� and
2.36��. Using the Schur-Holmgren estimate for the operator norm of an integral operator, �3.9�
ventually implies

Ri,L � C3, i = 1,2. �3.10�

et x��L. For k�1, m�0, ��0, and ��0, define the continuous function,

Wk,L
m �x;�,�� ª �

j=1

k

�− 1� j �
�i1,. . .,ij���1,2�j


 j
k�i1, . . . ,ij��

Dj���
d��

�j
dy

�i„Flj�x,y1, . . . ,y j�…�m

m!

�GL�x,y1;� − �1,��Ri1,L�y1,y2;�1 − �2,�� . . . Rij−1,L�y j−1,y j;� j−1 − � j,��

�Rij,L
�y j,x;� j,�� , �3.11�

here in the case of m=0 we set 00�1.
The main result of this section gives a new expression for the diagonal of kernel’s nth

erivative with respect to � at finite volume.
Theorem 3.1: Let ��0 and ��0. Then for all x��L, and for all n�1, one has

1

n!

�nGL

��n �x,x,�,�� = �
k=1

n

Wk,L
n−k�x;�,�� , �3.12�

nd, moreover, uniformly in L�1:

�Wk,L
m �x;�,��� � c�m,k�

�1 + ��7�m+k�+3

�3/2 �1 + ��3�m+k�+2, �3.13�

here c�m ,k�=cm+k�mm /m ! �� j=1
k j2m

j! and c is again a numerical factor.
Proof: We first need to introduce some new notation. Fix �0�0. Let ��C, ��=�−�0 and

i,L�� ,� ,�0�, i=1,2, W̃L�� ,� ,�0� be the operators on HL defined via their respective integral

ernel given on �L��L, by
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R̃i,L�x,x�;�,�,�0� = ei �� ��x,x��Ri,L�x,x�;�,�0�, i = 1,2,

W̃L�x,x�;�,�,�0� = ei����x,x��GL�x,x�;�,�0� , �3.14�

here � is defined in �3.1�. We also set

R̃L�x,x�;�,�,�0� ª �� R̃1,L�x,x�;�,�,�0� + ����2R̃2,L�x,x�;�,�,�0� .

xcept for a phase factor, the kernel of W̃L and R̃i,L, i=1,2 is the same as the one of WL, Ri,L, i
1,2, respectively. Then they satisfy �2.30� and �3.9�, respectively. Hence, by the same arguments
s above, they are bounded operators and

W̃L � 1,R̃i,L � C3 �3.15�

see �3.10��. Notice also that since W̃LI2
= WLI2

�L3/2 / �2��3/4, then by �3.9�, Ri,L, i=1,2 as

ell as R̃i,L, i=1,2 are in the Hilbert-Schmidt class and for ��0, �0�0 and ��C,

Ri,L��,��I2
,R̃i,LI2

��,�,�0� � C3WL�16�,��I2
� C3

L3/2

�2��3/4 , �3.16�

here C3=C3�� ,�0� was first introduced in �3.9�. We now define the following family of bounded
perators on HL. Let k�1, �i1 , . . . , ik�� �1,2�k, ��0, �0�0. For all ��C, set

Ĩk,L�i1, . . . ,ik���,�,�0� ª �
Dk���

d� W̃L�� − �1,�,�0�R̃i1,L��1 − �2,�,�0� . . . R̃ik−1,L��k−1

− �k,�,�0�R̃ik,L��k,�,�0� , �3.17�

nd for n�1,

Wn,L��,�,�0� ª �
k=1

n

�− 1�k �
ij��1,2�


k
n�i1, . . . ,ik�Ĩk,L�i1, . . . ,ik���,�,�0� , �3.18�

here 
k
n is defined in �2.8�.

Lemma 3.2: Let N�1, ��0, �0�0. For all ��C, set ��=�−�0. Then as bounded opera-
ors we can write

WL��,�� = W̃L��,�,�0� + �
n=1

n

����nWn,L��,�,�0� + R̃N+1,L
�1� ��,�,�0� + R̃N+1,L

�2� ��,�,�0� ,

�3.19�

here R̃N+1,L
�1� �� ,� ,�0� and R̃N+1,L

�2� �� ,� ,�0� are the following bounded operators on HL:

R̃N+1,L
�1� ��,�,�0� ª �− 1�N+1 �

n=N+1

2N+2

����n �
ij��1,2�


N+1
n �i1, . . . ,in�

��
DN+1���

d� WL�� − �1,��R̃i1,L��1 − �2,�,�0� . . . R̃iN+1,L��N+1,�,�0� ,

�3.20�
here DN+1��� is given in �2.6� and
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R̃N+1,L
�2� ��,�,�0� = �

n=N+1

2N

����n�
k=1

N

�− 1�k �
ij��1,2�


k
n�i1, . . . ,ik� · Ĩk,L�i1, . . . ,ik���,�,�0� .

�3.21�

Proof of lemma: In this proof we fix �0�0 and omit everywhere the �0 dependence. We first

ote that W̃L�� ,�� is strongly differentiable with respect to ��0 �see Cornean �2000�� and
atisfies

�W̃L��,��
��

+ HL���W̃L��,�� = R̃L��,�� .

y using Proposition 3 from Cornean �2000�, we can write the following Dyson-type integral
quation:

WL��,�� = W̃L��,�� − �
0

�

d� WL�� − �,��R̃L��,�� . �3.22�

he above integral is a Riemann integral and converges in the operator norm sense. By iterating
3.22�, we obtain

WL��,�� = W̃L��,�� + �
n=1

N

�− 1�n�
0

�

d�1�
0

�−�1

d�2 . . . �
0

�−�1−. . .−�n−1

d�n

�W̃L�� − �1 − . . . − �n,��R̃L��n,�� . . . R̃L��1,�� + R̃N+1,L
�1� ��,�� , �3.23�

here

R̃N+1,L
�1� ��,�� = �− 1�N+1�

0

�

d�1�
0

�−�1

d�2 ¯ �
0

�−�1−. . .−�N

d�N+1

�WL�� − �1 − . . . − �N+1,�� · R̃L��N+1,�� . . . R̃L��1,�� . �3.24�

hen a straightforward change of variables in the integrals of the rhs of the last two formulas
ields

WL��,�� = W̃L��,�� + �
n=1

N

�− 1�n�
Dn���

d� W̃L�� − �1,��R̃L��1 − �2,�� ¯ R̃L��n−1 − �n,��R̃L��n,��

+ R̃N+1,L
�1� ��,�� ,

ith

R̃N+1,L
�1� ��,�� = �− 1�N+1�

DN+1���
d� WL�� − �1,�� · R̃L��1,�� . . . R̃L��N+1,�� , �3.25�

here Dn��� is defined in �2.6�. Recall that R̃L=��R̃1,L+ ����2R̃2,L. So �3.25� gives �3.20� and a
imple induction argument finishes the proof of the lemma. �

Continuing the proof of Theorem 3.1: From Theorem 2.6, we know that for x��L, and �
0, C��→GL�x ,x ;� ,�� is an entire function.
In order to prove �3.12�, we will show that for all x��L, we have

                                                                                                            



w

d

B
d
a

�

w

t
�

T
�
e
t
s
i
p

t
W
w

d

k
s

083511-14 P. Briet and H. Cornean J. Math. Phys. 47, 083511 �2006�

                        
GL�x,x;�,�� = GL�x,x;�,�0� + �
n=1

N

����n�
k=1

n

Wk,L
n−k�x;�,�0� + R̃N+1,L�x;�,�,�0� , �3.26�

here the remainder term satisfies the property that its first N derivatives at �0 are zero.
By rewriting Lemma 3.2 in terms of the corresponding integral kernels, and looking at the

iagonal of these kernels, we have �remember that ��x ,x�=0�

GL�x,x;�,�� = GL�x,x;�,�0� + �
n=1

N

����nWn,L�x,x;�,�,�0� + R̃N+1,L
�1� �x,x;�,�,�0�

+ R̃N+1,L
�2� �x,x;�,�,�0� . �3.27�

y construction, the two remainders are smooth functions that remain smooth, even if they are
ivided by ����N+1; see formulas �3.20� and �3.21�. This means that their first N derivatives at �0

re all zero. Thus the Nth derivative of GL�x ,x ;� , · � at �0 can only come from the W’s.
What we still have to do is to remove the � dependence from W’s. Let us show that for 1

n�N, x��L and ��� � �1,

Wn,L�x,x;�,�,�0� = �
m=0

N

����mWn,L
m �x;�,�0� + R̃n,N+1

�3� �x;�,�,�0� , �3.28�

here Wn,L
m were introduced in �3.11�, and R̃n,N+1

�3� �x ;� ,� ,�0� has its first N derivatives at �0 equal

o 0. Indeed, if we replace the integral kernel of Ĩk,L from �3.17� in the expression of WN,L from
3.18�, we see that we can add up all the magnetic phases, and obtain a factor of the type

exp���x,y1� + ��y1,y2� + ¯ + ��yk−1,yk� + ��yk,x�� .

hen this exponent will equal the magnetic flux defined in �3.4�, plus an additional contribution
�x ,x� that is zero due to the antisymmetry of the magnetic phase. Now if we expand

i����Flj�x,. . .,yj� in Taylor series up to the Nth order we obtain �3.28�, where the remainder has again
he property that its first N derivatives at �0 are zero. Now introduce �3.28� in �3.27�, and after
ome algebra involving the multiplication of two series, we eventually get �3.26�. Then we can
dentify the Nth derivative at �0 of the kernel’s diagonal as the coefficient multiplying the Nth
ower of ��. The identity �3.12� is proved.

Now let us prove the second part of the theorem, i.e., the estimate �3.13�, which is also linked
o the natural question “why is formula �3.12� better than the one from �2.34�?” The answer is that

k,L
m �x ;� ,�0� does not grow with L, and we will see in the next section that it even converges
hen L tends to infinity. Let us show here its uniform boundedness in L.

Looking at its definition given �3.11� and using the estimates from �3.9� together with the
iamagnetic inequality, we see that we need to estimate

�Wk,L
m �x;�,��� � C3

k�
j=1

k

�− 1� j �
�i1,. . .,ij���1,2�j


 j
k�i1, . . . ,ij��

Dj���
d��

�j
dy

�Flj�x,y1, . . . ,y j��m

m!

�G	„x,y1;16�� − �1�…G	„y1,y2;16��1 − �2�… . . . G	„y j−1,y j;16�� j−1 − � j�…

�G	„y j,x;16� j… . �3.29�

Let �=16m, and identify x=y0. In view of �3.5� and the explicit form �2.29� of the heat
ernel, for 1� l� j−1,1� l�� l; y0 ,y1 , . . . ,y j ��L

j+1 and ��1 ,�2 , . . .� j��Dj���, we need the

traightforward estimate
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�yl�−1 − yl���yl − yl+1�exp�−
�x − y1�2

2��� − �1�
� . . . exp� �yk − x�2

2��k
�

� 2�� exp�−
�x − y1�2

4��� − �1�
� . . . exp�−

�yk − x�2

4��k
� . �3.30�

hus �3.5� and �3.30� imply

�Flj�x,y1, . . . ,y j��mG	„x,y1;16�� − �1�… . . . G	�y j,x;16� j�

� ��
l=1

j−1

l���m23�j+1�/2

G	„x,y1;32�� − �1�… . . . G	�y j,x;32� j�

� �8j2m��m23�j+1�/2G	„x,y1;32�� − �1�… . . . G	�y j,x;32� j� . �3.31�

ntegrating over the spatial coordinates, using the semigroup property �2.40�, and then integrating
ver � variables, one eventually obtains the uniform upper bound in L given in �3.13�. �

Remark 3.3: Theorem 3.1 gives us what we need for the purpose of this paper. One can show
hat our analysis can be applied in order to get the off-diagonal terms of the integral kernel, i.e.,
nGL /��n�x ,x� ;� ,���x ,x����L��L, and ��0,��0. In that case we get

1

n!

�nGL

��n �x,x�;�,�� =
in�n�x,x��

n!
GL�x,x�;�,��

+ �
k=1

n

�
j=1

k

�− 1� j�
Dj���

d� �
�i1,. . .,ij���1,2�j


 j
k�i1, . . . ,ij�

��
�j

dy
�i„�l=1

j−1
fl�x,yl,yl+1� + fl�x,y j,x�� + ��x,x��…�n−k

�n − k�!

�GL�x,y1,� − �1,��Ri1,L�y1,y2,�1 − �2,�� . . . Rij,L�y j,x�,� j,�� .

�3.32�

Remark 3.4: Let ��0 and �0�0 and ��C. From �3.16� we have WL��
� ,� ,�0�R̃L�� ,� ,�0�1� WL��−� ,� ,�0�2  R̃L�� ,� ,�0�2

�
C��,�,�0�L3

�� − ��3/4�3/4 ,

here C�� ,� ,�0�=C3�� ,�0����� � + ������2� and C3�� ,�0� is given in �3.9� Then the B1-operator

alued function �� �0,��→WL��−� ,��R̃L�� ,� ,�0� is B1 integrable. Denote by UL�� ,� ,�0�
�0

�WL��−� ,��R̃L�� ,� ,�0�,

UL��,�,�0�1 � CL3�
0

� 1

�� − ��3/4�3/4 �
16CL3

��
. �3.33�

he Duhamel-type formula �3.22� then implies that W˜L�� ,�� is of trace class as a sum of the two

race class operators, WL and UL. Consequently, the operators I˜k,L�i1 , . . . , ik��� ,� ,�0� defined in

3.17� are of trace class because the integrals only involve B1-integrable functions.
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V. LARGE VOLUME BEHAVIOR

For further applications in Sec. IV, we need to have a similar result as in Theorem 3.1, but
ith L=	. The results of Sec. II cannot be applied to this situation. On the contrary, we will show

n this section that Theorem 3.1 remains true even if we take L=	, and the quantities at finite
olume converge pointwise to the ones defined on the whole space.

Recall first that the explicit form of the integral kernel of e−�H	��� ;��0,��0 is given by

G	�x,x�;�,�� =
1

�2��3/2

��/2

sinh���/2�
ei���x,x��

�exp	−
1

2�
� ��/2

tanh���/2�
��x1 − x1��

2 + �x2 − x2��
2� + �x3 − x3��

2�
 , �4.1�

here the phase � is defined in �3.1�.
We start with a technical result. For any x��L, we denote with d�x�ªdist�x ,��L�. Let M

��x ,x����L��L :d�x��1 or d�x���1�, and denote with 
M the characteristic function of M.
Theorem 4.1: Let ��0 and ��0. Then for any �x ,x����L��L, we have

�GL�x,x�;�,�� − G	�x,x�;�,��� � 2
M�x,x��G	�x,x�;�� + C4�1 − 
M�

��x,x��G	�x,x�;16��e−„d2�x�/64�+d2�x��/64�…, �4.2�

nd

�„− i�x − �a�x�…�GL�x,x�;�,�� − G	�x,x�;�,����

�
C5

��

M�x,x��G	�x,x�;8�� + C6�1 − 
M�G	�x,x�;16��e−�d2�x�/64�+d2�x��/64��, �4.3�

here C4=C4�� ,��=c�1+��6�1+��4, C5=C5�� ,��=c�1+��5�1+��3, C6=C6�� ,��=c�1+��8�1
��5, and c�1 is a numerical constant.

To prove the theorem, we need the following lemma.
Lemma 4.2: Let ��0, ��0 and �� �0,1�. Then for every �x ,x����L��L we have

�xi

�GL�x,x�;�,�� − �xi

�G	�x,x�;�,��

1

2
�

0

�

d��
��L

d��y��xi

�G	�x,y;�,���ny · �yGL�y,x�;� − �,��� , �4.4�

here d��y� is the measure on ��L and ny is the outer normal to ��L at y.
Proof: Let ��0, ��0. Recall that both Green’s functions G	�x ,x� ;� ,�� and GL�x ,x� ;� ,��

atisfy in �L��L in a distributional sense, the equation

�i� ��G�x,x�;�� = −
1

2
�− i�x − �a�x��2G�x,x�;��; � � 0, �4.5�

�ii� G�x,x�;� = 0+� = ��x − x�� . �4.6�

or 0���� and on �L��L, define the following quantity:

Q�x,x�;�,�� ª �
�L

dy GL�y,x;� − �,��G	�y,x�;�,�� . �4.7�
hen by �4.5�, it is easy to see that
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��Q�x,x�;�,�� =
1

2
�

�L

dy �„− i�y − �a�y�…2GL�y,x;� − �,��G	�y,x�;�,��

− GL�y,x;� − �,��„− i�y − �a�y�…2G	�y,x�;�,��� . �4.8�

ince GL�x ,x� ;� ,��=0 if x���L or x����L, integration by parts gives

��Q�x,x�;�,�� =
1

2
�

��L

d��y�ny · �yGL�y,x;� − �,��G	�y,x�;�,�� . �4.9�

ow, by integrating with respect to � from 0+ to �−, and using �4.6�, we obtain

GL�x,x�;�,�� − G	�x,x�;�,�� =
1

2
�

0

�

d��
��L

d��y�ny · �yGL�y,x;� − �,��G	�y,x�;�,�� .

�4.10�

ow, using the self-adjointness property of the semigroup, we obtain G�x ,y ;��=G�y ,x ;��; thus,
e can rewrite �4.10� as

GL�x,x�;�,�� − G	�x,x�;�,�� =
1

2
�

0

�

d��
��L

d��y�G	�x,y;�,���ny · �yGL�y,x�;� − �,��� .

�4.11�

he lemma now follows from �4.11�. �

Proof of Theorem 4.1: Let ��0, ��0, and suppose first that �x ,x���M. Then �4.2� follows
rom the diamagnetic inequality �2.30�. Let us show �4.3� in the same case. We know from �2.31�
hat

�„− i�x − �a�x�…GL�x,x�;�,��� �
C

��
G	�x,x�;8�� . �4.12�

n the other hand, using the observation that −i�x−�a�x� is transformed into −i�x−�a�x−x��
fter commutation with ei��x,x��; then, by direct computation from �4.1�, we get that for all �
0,

��− i�x − �a�x��G	�x,x�;��,��� �
C1�

���
G	�x,x�;2��� , �4.13�

here C1�=C1��� ,��=2�1+���1+���1+��. Then �4.12� and �4.13� for �=1 imply �4.3�.
Now suppose that �x ,x���M. This means that neither points are near the boundary. For y

�� then by �2.31�, we have

��yGL�y,x;� − �,��� �
C1

�� − �
G	„y,x,8�� − ��… . �4.14�

By applying the estimates �4.14�, �2.30�, and the Lemma 4.2, we get

�GL�x,x�;�,�� − G	�x,x�;�,����27/2C1�
0

�

d��
��L

d��y�
G	„y,x;8�� − ��…

�� − �
G	�y,x�;8�� .

�4.15�

ut if y���L, �x−y � �d�x�, then a straightforward estimate shows that for 0� t��, we have
−d2�x�/32�
	�y ,x ;8t��e G	�y ,x ;16t�. Thus, we get the rhs of �4.15�,
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�25C1�
0

�

d�
e−„d2�x�/32��−��+d2�x��/32�…

�� − �
�

��L

d��y�G	„y,x;16�� − ��…G	�y,x�;16�� .

�4.16�

or any t, t��0, let us look at the integral

�
��L

d��y�G	�y,x;t�G	�y,x�;t�� . �4.17�

sing the convexity of �L, replacing the integrals on the sides of ��L by integrals on R2 �thus
etting an upper bound�, and using the semigroup property in two dimensions, we can show that
here exists a numerical constant C�0, such that

�
��L

d��y�G	�y,x;t�G	�y,x�;t�� � C
�t + t�
�t�t�

G	�x,x�;t + t�� . �4.18�

o be more precise, let us look at the integral on the hyperplane defined by HªR2+ �L /2 ,0 ,0�:

�
H

d��y�G	�y,x;t�G	�y,x�;t�� , �4.19�

here x and x� are on the same side of R3 with respect to H. Decompose x=x1+x2 and x�=x1�
x2�, where x1 and x1� are the parallel components with H, while x2 and x2� are the orthogonal
omponents on H. Note that here �x2�2+ �x2��

2� �x2−x2��
2. Since �x−y�2= �x1−y�2+ �x2�2if y�H, we

an explicitly integrate with respect to y and eventually get �4.18�.
Then we can write

�
��L

d��y�G	„y,x;16�� − ��…G	�y,x�;16�� � C1�
��

��� − ���
G	�x,x�;16�� .

herefore, since x ,x� satisfy d�x�, d�x���1, we get

�GL�x,x�;�,�� − G	�x,x�;�,��� � 24C1C1�G	�x,x�;16��e−�d2�x�/64�+d2�x��/64��

��
0

�

d�
e−�1/64��−��+1/64��

�� − �

��

��� − ���
. �4.20�

ue the exponential decay, there are no singularities in this integral, and a straightforward estimate
ives �4.2�.

We now use the same method as above to prove �4.3� in the case when �x ,x���M. We know
rom Lemma 4.2 that

„− i�x − �a�x�…„GL�x,x�;�,�� − G	�x,x�;�,��…

=
1

2
�

0

�

d��
��L

d��y� · „− i�x − �a�x�…G	�x,y;�,���ny · �yGL�y,x�;� − �,��� .

�4.21�
hen by �4.12� and �4.13�,
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�„− i�x − �a�x�…„GL�x,x�;�,�� − G	�x,x�;���…�

� 4C1C1��
0

�

d��
��L

d��y�
G	„y,x;8�� − ��…

�� − �

G	�y,x�;8��
��

. �4.22�

hen, by using the same arguments leading to �4.20�, we get

�„− i�x − �a�x�…„GL�x,x�;�,�� − G	�x,x�;���…�

� 16��C1C1�
2G	�x,x�;16��e−„d2�x�/64�+d2�x��/64�…�

0

�

d�
e−�1/64��−��+1/64��

��� − ��
, �4.23�

rom which �4.3� follows. Theorem 4.1 is proved.
We now want to prove that the equality �3.12� stated in Theorem 3.1 remains true, even if L

ends to infinity. It is well known �see, e.g., Angelescu and Corciovei �1975�� that for ��0,�
0 and �x ,x���R3�R3,

G	�x,x�;�,�� = lim
L→	

GL�x,x�;�,�� . �4.24�

ur main goal now is to show that this pointwise convergence holds true for all the derivatives
nGL /��n ,n�1.

We need to introduce some notation. Let ��0 and ��0. For �x ,x���R3�R3, define

R1,	�x,x�;�,�� ª a�x − x�� · „i�x + �a�x�…G	�x,x�;�,�� ,

R2,	�x,x�;�,�� ª
1

2
a2�x − x��G	�x,x�;�,�� . �4.25�

et us note that we again have the same type of estimates as in �3.7�, �3.8�, and �3.9�, i.e.,
aussian localization in the difference of the spatial arguments. The linear growth of the magnetic
otential disappears when one commutes −i�x with the magnetic phase, as we have already seen
n �4.13�.

Now define for x�R3, k�1,m�0:

Wk,	
m �x;�,�� ª �

j=1

k

�− 1� j �
�i1,. . .,ij���1,2�j


 j
k�i1, . . . ,ij��

Dj���
d��

R3j
dy

�
�i„Flj�x,y1, . . . ,y j�…�m

m!
G	�x,y1;� − �1,��Ri1,	�y1,y2;�1 − �2,��. . .Rij−1,	

��y j−1,yk;� j−1 − � j,��Rij,	
�y j,x;� j,�� . �4.26�

ince every integrand is bounded by a free heat kernel and because the flux Flj can be bound by
ifferences of its arguments �see �3.5��, then the above multiple integrals are absolutely conver-
ent. Also note the important thing that multiplication by �y−y��m of the free heat kernel only
mproves the singularity in the time variable due to the estimate

�y − y��me−�y − y��2/t � const · tm/2e−�y − y��2/�2t�. �4.27�

he last important remark about Wk,	
m �x ;� ,�� is that it does not depend on x. This can be seen by

actorizing all the magnetic phases that enter in the various factors of the integrand, and see that
hey add up to give another Flj, which only depends on differences of variables. The remaining
actors are also just functions of differences of variables. Therefore by changing x we get the same
alue for Wk;	

m after a change of variables �a translation� in all integrals, since Wk,	
m only involves
ntegrals defined on the whole space.
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Then we have the following.
Theorem 4.3: Let ��0 and ��0. Fix x�R3 and n�1. Then we have

1

n!

�nG	

��n �x,x;�,�� = lim
L→	

1

n!

�nGL

��n �x,x;�,�� = �
k=1

n

Wk,	
n−k�x;�,�� . �4.28�

Proof: Fix ��0 and ��0. Let n�1 and �x ,x���R3. Choose L large enough such that x
�L. Then from �4.2� and �4.3�, we have

�GL�x,x�;�,�� − G	�x,x�;�,��� � C4�−3/2e−„d2�x�/64�+d2�x��/64�…,

�R1,L�x,x�;�,�� − R1,	�x,x�;�,��� � C6�−1e−„d2�x�/64�+d2�x��/64�…,

�R2,L�x,x�;�,�� − R2,	�x,x�;�,��� � C4�−1/2e−„d2�x�/64�+d2�x��/64�…, �4.29�

hen, for all �x ,x���R3�R3, estimates �4.29� show, respectively, that

lim
L→	

GL�x,x�,�,�� = G	�x,x�,�,�� ,

lim
L→	

Ri,L�x,x�,�,�� = Ri,	�x,x�,�,�� ,

or i=1,2. Then

lim
L→	

GL�x,y1;� − �1,��Ri1,L�y1,y2;�1 − �2,�� . . . Rij,L
�y j,x;� j,��

= G	�x,y1;� − �1,��Ri1,	�y1,y2;�1 − �2,�� . . . Rij,L
�y j,x;� j,�� .

urthermore, by �3.9� and �2.30�, we have

�GL�x,y1;� − �1,��Ri1,L�y1,y2;�1 − �2,�� . . . Rij,L
�y j,x;� j,���

�43C3
j G	„x,y1;16�� − �1�…G	„y1,y2;16��1 − �2�… . . . G	�y j,x;16� j� ,

his last quantity is L independent and R3 integrable by the semigroup property since

�
R3j

dy G	„x,y1;16�� − �1�… . . . G	�y j,x;16� j� = G	�x,y1;16�� .

Note that the flux Flj does not influence anything, since it can be bound by powers of
ifferences between spatial variables, which will meet the Gaussian decay of the free heat kernels.
hus, they will only affect the time integrals �by making them even less singular�.

Then, by applying Lebesgue’s dominated convergence theorem, we get from �3.11� and
3.12�,

lim
L→	

1

n!

�nGL

��n �x,x,�,�� = �
k=1

n

Wk,	
n−k�x;�,�� . �4.30�

Now the remaining thing is to show that this also equals �1/n ! � ��nG	 /��n� �x ,x ,� ,��. Fix

0�0 and choose ��R such that ��� � = ��−�0 � �1. From the usual Taylor formula, we can

rite
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GL�x,x,�,�� = �
n=0

N

����n 1

n!

�nGL

��n �x,x,�,�0� + ����N+1 1

�N + 1�!
�N+1GL

��N+1 �x,x,�,�1� ,

�4.31�

here �1 is between �0 and �. Then by taking L to infinity, we easily get the estimate �note that

k=1
N+1Wk,L

N+1−k�x ;� ,�1� is bounded by a constant independent of L; see the estimate from �3.13��:

�G	�x,x,�,�� − G	�x,x,�,�0� − �
n=1

N

����n�
k=1

n

Wk,	
n−k�x;�,�0�� � C�N,������N+1. �4.32�

ince G	�x ,x ;� ,�� is smooth in � �see �1.7��, it follows that the coefficient of ����n must equal
1 /n ! � ��nG	 /��n��x ,x ,� ,�0� and we are done. �

. THERMODYNAMIC LIMIT FOR MAGNETIC SUSCEPTIBILITIES

As a consequence of the analysis of the previous section we are now able to prove the main
echnical result of this paper.

Theorem 5.1: Let n�1, ��0, and w�0,

�
�L

dx� �nG	

��n �x,x;�,�� −
�nGL

��n �x,x;�,��� � L2C�n,�,�� , �5.1�

here C�n ,� ,��ªc�n���1+��7n+8 /����1+��3n+5, where c�n� only depends on n.
Proof: Let 1� j�k, 1�k�n, 1�m�n−k, and denote the integrand in �4.26� with:

Fj,	
m = Fj,	

m �x,y1, . . . ,y j,�1, . . . ,� j,�,��

=
„iFlj�x,y1, . . . ,y j�…m

m!
G	�x,y1,� − �1,�� . . . Rij,	

�y j,x,� j,�� . �5.2�

enote also by

Fj,L
m = Fj,L

m �x,y1, . . . ,y j,�1, . . . ,� j,�,�� =
„i Flj�x,y1, . . . ,y j�…m

m!
GL�x,y1,� − �1,�� . . . Rij,L

�y j,x,� j,�� .

�5.3�

Let n�1, ��0, ��0, and fix x�R3. Then by applying the Theorem 4.3, we can split the
ntegrals from W’s in “inner” and “outer” regions:

�nG	

��n �x,x,�,�� = fL
n�x,�,�� + gL

n�x,�,�� , �5.4�

here

fL
n�x,�,�� ª n ! �

k=1

n

�
j=1

k

�− 1� j �
�i1,. . .,ij���1,2�j


 j
k�i1, . . . ,ij��

Dj���
d��

�L
j

dy

Fn−k�x,y1, . . . ,y j,�1, . . . ,� j,�,�� , �5.5�
j,	

                                                                                                            



w

v

w
4

O
t

w
l

T

B

a

083511-22 P. Briet and H. Cornean J. Math. Phys. 47, 083511 �2006�

                        
gL
n�x,�,�� ª n ! �

k=1

n

�
j=1

k

�− 1� j �
�i1,. . .,ij���1,2�j


 j
k�i1, . . . ,ij��

l=1

j �
Dj���

d��
R3

dy1 ¯ �
R3\�L

�dyl�
R3

dy1+1 ¯ �
R3

dy jFj,	
n−k�x,y1, . . . ,y j,�1, . . . ,� j,�,�� . �5.6�

Let us now show that

�
�

dx� fL
n�x,�,�� −

�nGL

��n �x,x;�,��� � L2f�n,�,�� , �5.7�

here f�n ,� ,��ªc�n���1+��7n+3 /����1+��3n+2, c�n� depending only on n.
From now, for the sake of simplicity we often omit the explicit dependence of all variables. In

iew of �3.11�, �3.12�, �4.26�, and �4.28�, we need to estimate

Fj,	
m − Fj,L

m =
�iFlj�m

m! 	�G	 − GL�Ri1,	 . . . Rij,	
+ �

l=1

j

GLRi1,L . . . Ril−1,L�Ril,	
− Ril,L

�Ril+1,	 . . . Rij,	
 .

�5.8�

Denote by 
�x� the characteristic of �x�� ,d�x��1�. Thanks to the Theorem 4.1, we have

��R1,	 − R1,L��x,x�;�,��� � �a�x − x���i�x + �a��G	 − GL��x,x�;�,���

� C7G	�x,x�;32���
�x� + 
�x�� + e−�d2�x�/64�+d2�x��/64��� , �5.9�

here C7=C7�� ,��=c�1+��9�1+��5 for some numerical constant c�1. But again by Theorem
.1, we may use the bound

��G	 − GL��x,x�;�,���, ��R2,	 − R2,L��x,x�;�,��� � C7G	�x,x�;32���
�x� + 
�x��

+ e−„d2�x�/64�+d2�x��/64�…� . �5.10�

n the other hand, by �3.9�, �4.13�, and �4.25�, the kernel of Ri,	, i=1,2 and of Ri,L, i=1,2 satisfy
he inequality

max���Ri,	�x,x�;�,���, �Ri,L�x,x�;�,���� � C3�G	�x,x�;16�� , �5.11�

here C3�=C3�� ,��=c ·C1, C1 is defined in �2.37�, and c�1 is a numerical constant that is chosen
arge enough such that we have G	�x ,x� ;���C3�G	�x ,x� ;16��.

Set y0ªx. Then �2.30�, �5.11�, together with �5.9� and �5.10�, give

�Fj,	
m − Fj,L

m � � C7C3�
j−1 �Flj�m

m!
G	„y0,y1;32�� − �1�… ¯ G	�y j,y0;32� j��

l=0

j

„2
�xl� + e−d2�xl�/64�
… .

�5.12�

hus, from this inequality and �3.5�, we need to estimate the quantity

Q ª ��
l=1

j−1

�
l�=1

l

�yl�−1 − yl���yl − yl+1��m

G	„y0,y1;32�� − �1�… . . . G	�y j,y0;32� j� .

y using �4.27�, we have

Q � �8�j2�mmm23�j+1�/2G	„y0;y1;64�� − �1�… ¯ ,G	�y j,y0;64� j� ,
nd then for j�n,
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�Fj,	
m − Fj,L

m � � 23�n+1�/2C7C3�
n−1 �8�j2�mmm

m!
G	„y0,y1;64�� − �1�… ¯ G	�y j,y0;64� j�

��
l=0

j

„2
�xl� + e−d2�xl�/64�
… . �5.13�

y extending the integration with respect to y0 , . . .yl−1 ,yl+1 . . .y j on the whole R3 space, and using
he semigroup property �2.40� and the fact that G	�x ,x ; t�=1/ �2t�3/2, we get

��
�L

j+1
dy�Fj,	

n−k − Fj,L
n−k�� � cnC7C3�

n−1�j + 1�
�� j

2��n−k��n − k�n−k

�3/2�n − k�! �
�L

dx„2
�x� + e−d2�x�/64�
… ,

�5.14�

or some positive constant c. Moreover, simple estimates show that

�
�L

dx„2
�x� + e−d2�x�/64�
… � cL2�1 + ��� ,

here c is also some positive numerical constant. From �5.5� and Theorem 3.1,

�
�L

dy0	 �nGL

��n �y0,y0;�,�� − fL
n�y0,�,��
 = n ! �

k=1

n

�
j=1

k

�− 1� j �
�i1,. . .,ij���1,2�j


 j
k�i1, . . . ,ij��

Dj���
d�

��
�j+1

dy�Fj,	
n−k − Fj,L

n−k��y0,y1, . . . ,y j,�1, . . . ,� j,�,�� .

�5.15�

hen �5.14�, together with �5.15�, lead to

��
�L

dy0� �nGL

��n �y0,x;�,�� − fL
n�y0,�,���� � L2c�n�

�1 + ��7n+3

��
�1 + ��3n+2,

here c�n�= �n+1� !cn�k=1
n ��n−k�n−k / �n−k� ! � � j=1

k �j2�n−k� / j ! � and c is again a numerical factor.
his last estimate clearly implies �5.7�.

Let us now prove that for all ��0 and ��0, gL
n�y0 ,� ,�� given in �5.6� satisfies

��
�L

dy0 gL
n�y0,�,��� � L2g�n,�,�� , �5.16�

here g�n ,� ,��ªc�n��1+��7n+2�1+��3n+2 and c�n� is a positive constant depending only on n.
he same arguments as above leading to the estimate �5.13� imply

�Fj,	
m �y0, . . . ,y j,�1, . . . ,� j,�,��� � C7C3�

j−1 �Flj�m

m!
G	„y0,y1;32�� − �1�… ¯ G	�y j,y0;32� j�

� C7C3�
j−1 �8�j2�mmm23�j+1�/2

m!

�G	„y0,y1;64�� − �1�… ¯ G	�y j,y0;64� j� . �5.17�
c 3
n the other hand, by the semigroup property �put �LªR \�L�,
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�
R3

dy1 . . . �
�L

c
dyl�

R3
dyl+1. . .�

R3
dy j G	„y0,y1;64�� − �1�… ¯ G	�y j,y0;64� j�

= �
�L

c
dyl G	„y0,yl;64�� − �1�…G	�yl,y0;64�l� . �5.18�

hen �5.6�, �5.17�, and �5.18� imply

��
�L

dy0 gL
n�y0,�,��� � n ! �

k=1

n

�
j=1

k

C7C3�
j−12�5j+3�/2 �8�j2��n−k��n − k�n−k

�n − k�!

��
Dj���

d��
l=1

j �
�L

dy0�
�L

c
dyl G	„y0,yl;64�� − �l�…G	�yl,y0;64�l� .

�5.19�

y using the explicit form of the heat kernel given in �2.29�, a straightforward computation shows
hat

�
�L

dy0�
�L

c
dyl G	„y0,yl;64�� − �l�…G	�yl,y0;64�l� � c

L2

�
,

or some positive constant c. Hence, we get

��
�

dy0 gL
n�y0,�,��� � L2c�n��1 + ��7n+2�1 + ��3n+2,

here c�n�=n !cn�k=1
n � j=1

k �j2�n−k��n−k�n−k / �n−k� ! �j−1� ! � and c is a positive numerical factor.
his shows �5.16�. Then �5.16� and �5.7� imply the theorem. �

he proof of Theorem 1.2

We are now ready to prove the thermodynamic limit of generalized susceptibilities in the
rand-canonical ensemble, when the chemical potential is negative �fugacity z less than one�.

Let L�1, ��0, ��0 and �z � �1. We know from �1.8� and �2.27� that

PL��,�,z,�� − P	��,�,z,�� =
�

���L� �k�1

�− �z�k

k
�

�L

dx�GL�x,x;k�,�� − G	�x,x;k�,��� .

�5.20�

hen by applying the Theorem 5.1 we get

�n�PL − P	�
��n =

�

���L� �k�1

�− �z�k

k
�

�L

dx� �nGL

��n −
�nG	

��n ��x,x;k�,�� .

n particular, this also shows that the series from �1.10� must converge. Moreover, by using again
he bound �5.1� in the last formula, we have

�
L
�n� − 
	

�n�� � c�n��1 + ��3n+5 1

�L
�
k�1

�z�k

k

�1 + k��7n+8

�k�
.

ince the series on the rhs of this last inequality is finite and L independent, this proves �1.11�.�
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A scheme for solving Whitham hierarchies satisfying a special class of string equa-
tions is presented. The �-function of the corresponding solutions is obtained and the
differential expressions of the underlying Virasoro constraints are characterized.
Illustrative examples of exact solutions of Whitham hierarchies are derived and
applications to conformal maps dynamics are indicated. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2218982�

. INTRODUCTION

Nonlinear integrable models of dispersionless type1–4 arise in several branches of physics and
pplied mathematics. They have gained prominence after the discovery of their relevance in the
ormalism of quantum topological fields,5,6 and of their role in the theory of deformations of
onformal and quasiconformal maps on the complex plane.7–9 Recently, new applications have
een found10–16 which include dynamics of conformal maps, growth processes of Laplacian type
nd large N limits of random matrix partition functions.

From the point of view of the theory of integrable systems, these models turn to be furnished
y members of the so called universal Whitham hierarchies introduced by Krichever in Refs. 4
nd 5. A particularly important example of these hierarchies is the dispersionless Toda �dToda�
ierarchy.10–13,17,18 The solutions of dispersionless integrable models underlying many of their
pplications satisfy special systems of constraints called string equations, which posses attractive
athematical properties and interesting physical meaning. Takasaki and Takebe19–22 showed the

elevance of string equations for studying the dispersionless Kadomtsev-Petviashvilii �KP� and
oda hierarchies and, in particular, for characterizing their associated symmetry groups. Never-

heless, although some schemes for solving string equations in the dispersionless KP and Toda
ierarchies were provided in Refs. 23–25, general efficient methods of solution for string equa-
ions are still lacking.

In a recent work26 a general formalism of Whitham hierarchies based on a factorization
roblem on a Lie group of canonical transformations has been proposed. It leads to a natural
ormulation of string equations in terms of dressing transformations. The present article is con-
erned with the analysis of these string equations and, in particular, their applications for charac-
erizing exact solutions of Whitham hierarchies. Thus, we provide a solution scheme for a special
lass of string equations which determines not only the solutions of the algebraic orbits of the
hitham hierarchy,5 but also the solutions arising in the above-mentioned applications of disper-

ionless integrable models.24,25 We characterize the �-function corresponding to these solutions
nd, by taking advantage of the string equations, we also derive the differential expressions of the

nderlying Virasoro constraints.

47, 083512-1022-2488/2006/47�8�/083512/22/$23.00 © 2006 American Institute of Physics

                                                                                                            

http://dx.doi.org/10.1063/1.2218982
http://dx.doi.org/10.1063/1.2218982
http://dx.doi.org/10.1063/1.2218982


fi

o
o

T
q

w

a

H
�
p
t
n
v
K

a
f

s

a

c
t
t
s

083512-2 Alonso, Medina, and Mañas J. Math. Phys. 47, 083512 �2006�

                        
The elements of the phase space for a zero genus Whitham hierarchy are characterized by a
nite set

�q�,z�
−1�p��, � = 0, . . . ,M ,

f punctures q�, where q0ª�, of the complex p-plane and an associated set of local coordinates
f the form

z� = �p + �
n=1

�
d0n

pn , � = 0,

di

p − qi
+ �

n=0

�

din�p − qi�n, � = i = 1, . . . ,M .� �1�

he set of flows of the Whitham hierarchy can be formulated as the following infinite system of
uasiclassical Lax equations:

�z�

�t�n
= ���n,z�	 , �2�

here the Poisson bracket is defined as

�F,G	 ª
�F

�p

�G

�x
−

�F

�x

�G

�p

nd the Hamiltonian functions are

��n ª 
�z�
n ���,+�, n � 1,

− logi�p − qi� , n = 0, � = i = 1, . . . ,M .
� �3�

ere �·��i,+� and �·��0,+� stand for the projectors on the subspaces generated by ��p−qi�−n	n=1
� and

pn	n=0
� in the corresponding spaces of Laurent series. Henceforth, it will be assumed that appro-

riate nonintersecting cuts connecting p=� with the points qi are made which allow us to define
he logarithmic branches associated with �i0. As several of these branches will appear simulta-
eously in certain equations, to avoid possible misunderstanding we introduce the notation con-
ention logi�p−qi�. For M =0 and M =1 these systems represent the dispersionless versions of the
P and Toda hierarchies, respectively.

In what follows Greek and Latin suffixes will be used to label indices of the sets �0, . . . ,M	
nd �1, . . . ,M	, respectively. In our analysis we use an extended Lax formalism with Orlov
unctions

m��z,t� = �
n=1

�

nt�nz�
n−1 +

t�0

z�

+ �
n�2

v�n

z�
n , t00 ª − �

i=1

M

ti0, �4�

uch that

�z�,m�	 = 1, " � ,

nd verifying the same Lax equations �2� as the variables z�.
The basic notions about the Whitham hierarchy which are necessary for the subsequent dis-

ussion are introduced in Sec. II. String equations and symmetries are discussed in Sec. III, where
he main results concerning the construction of solutions from meromorphic string equations and
heir Virasoro invariance are proved. Section IV presents a scheme for solving an special class of

tring equations, which is illustrated with several explicit examples. A formula for the correspond-
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ng �-function is given which generalizes the expression of the �-function of analytic curves found
n Ref. 10. Finally, we analyze the Virasoro symmetries associated to the string equations and
btain the corresponding Virasoro constraints in differential form.

I. THE WHITHAM HIERARCHY

In order to display the main features of the Whitham hierarchy it is convenient to use the
ollowing concise formulation in terms of the system of equations:

dz� Ù dm� = d�, " � , �5�

here � is the one-form defined by

� ª �
�,n

��ndt�n. �6�

o see how to get from system �5� to the Whitham hierarchy, note that by identifying the coeffi-
ients of dpÙdt�n and dxÙdt�n in �5� we obtain

�z�

�p

�m�

�t�n
−

�m�

�p

�z�

�t�n
=

���n

�p
,

�7�
�z�

�x

�m�

�t�n
−

�m�

�x

�z�

�t�n
=

���n

�x
.

nd, in particular, a �01= p, for �� ,n�= �0,1�, system �7� implies

�z�,m�	 = 1.

hus, using this fact and solving �7� for �z� /�t�n and �m� /�t�n, we deduce

�z�

�t�n
= ���n,z�	,

�m�

�t�n
= ���n,m�	 .

It is now natural to introduce the S-functions of the Whitham hierarchy. Indeed as a conse-
uence of �5� we find

d�m�dz� + �
�,n

��ndt�n = 0, " � ,

o that there exist functions S��z� , t� such that

dS� = m�dz� + �
�,n

��ndt�n, " � , �8�

nd from �4� we see that they admit expansions of the form

S� = �
n�1

z�
nt�n + log z�t�0 − v��t� − �

n�1

v�n+1

n

1

z�
n , z� → � . �9�

t is important to notice that from �1�–�4� and �8� it follows that

dS0 = �
n�1

�nz0
n−1t0ndz0 + �z0

n��0,+�dt0n� +
t00

z0
dz0 + O� 1

z0
2dz0, z0 → � ,

nd consequently we may take
v0�t� � 0.
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To proceed further some analytic properties of the dynamical variables of the Whitham hier-
rchy are required. Thus we will henceforth suppose that there exist positively oriented closed
urves �� in the complex planes of the variables z� such that each function z��p� determines a
onformal map of the right exterior of a circle 	�ªz�

−1���� on the exterior of ��. We will assume
hat the circle 	0 encircles all the 	i , �i=1, . . .M� �see Fig. 1�. Moreover, for each � the functions

� and m� will be assumed to be analytic in the exterior of ��.
Under the previous conditions one can prove that

�
,mv�,n+1 = ��,nv
,m+1, " �,
, n,m � 0. �10�

ere the functions vi1 are defined by

vi1 ª vi − �
j�i

logji�− 1�tj0, �11�

nd we are denoting

logji�− 1� ª logj�qi − qj� − logi�qj − qi� = − logij�− 1� .

n other words, it is ensured the existence of a free-energy function F=F�t�, the logarithm F
log � of the dispersionless �-function, verifying

dF = �
��,n���0,0�

v�n+1dt�n. �12�

Let us first prove �10� for the case �� ,n�= �i ,0� , �
 ,m�= �j ,0�. From the equations

�l0Sk = − logl�p − ql� ,

t follows that

�i0v j = logi�qj − qi�, � j0vi = logj�qi − qj� ,

o that the functions defined in �11� satisfy

�i0v j1 = � j0vi1.

e indicate the strategy for proving the remaining cases of �10� by considering the choice �

FIG. 1. �Color online� Right exteriors of 	� and ��.
i ,
= j�1,n ,m�1 of �10�. From �4� and �8� it follows that
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vi,n+1 =
1

2�i
�

�i

zi
nmidzi, � j,mSi = �zj

m��j,+�,

o that

� j,mvi,n+1 =
1

2�i
�

	i

zi
nd�zj

m��j,+� =
1

2�i
�

	i

�zi
n��i,+�d�zj

m��j,+� =
1

2�i
�

	j

�zj
m��j,+�d�zi

n��i,+� = �i,nv j,m+1,

�13�

here we have taken into account that �zi
n��i,+��p�zj

m��j,+� is a rational function of p which has finite
oles at qi and qj only and a zero residue at �.

II. STRING EQUATIONS AND SYMMETRIES

As it was shown in Ref. 26, the analysis of the factorization problem for the Whitham
ierarchy shows that this hierarchy admits a natural formulation in terms of systems of string
quations of the form

Pi�zi,mi� = P0�z0,m0� ,

Qi�zi,mi� = Q0�z0,m0� ,
i = 1,2, . . . ,M , �14�

here �P� ,Q�	�=0
M are pairs of canonically conjugate variables

�P��p,x�,Q��p,x�	 = 1, " � . �15�

n what follows we consider the problem of finding systems of form �14� which are appropriate to
enerate exact solutions of the Whitham hierarchy.

Given a solution �z��p , t� ,m��p , t�� of system �14�, if we denote

P��p,t� ª P��z��p,t�,m��p,t��, Q��p,t� ª Q��z��p,t�,m��p,t�� ,

hen �14� and �15� imply

dP� Ù dQ� = dP
 Ù dQ
, " �,
 �16�

nd

dP� Ù dQ� = dz� Ù dm�, " � , �17�

espectively. Hence solutions of the system of string equations verify

dP� Ù dQ� = dz
 Ù dm
, " �,
 . �18�

he next result provides a convenient framework for our subsequent discussion of solutions of
14�.

Theorem 1: Let �z��p , t� ,m��p , t�� be a solution of �14� which admits expansions of forms
1�–�4� and such that the coefficients of the two-forms �18� are meromorphic functions of the
omplex variable p with finite poles at �q1 , . . . ,qM	 only. Then �z��p , t� ,m��p , t�� is a solution of
he Whitham hierarchy.

Proof: In view of the hypothesis of the theorem the coefficients of the two-forms �18� with
espect to the basis

�dp Ù dt�n, dt�n Ù dt
m	

re determined by their principal parts at q� , ��=0, . . . ,M�, so that by taking �18� into account we

ay write
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dz� Ù dm� = �
�=0

M

�dz� Ù dm����,+�, " � .

oreover the terms in these decompositions can be found by using expansions �4� of the functions

� as follows:

dz� Ù dm� = dz� Ù ��
n=1

�

nz�
n−1dt�n +

dt�0

z�

+ �
n�2

dv�n

z�
n 

= d��
n=1

�

z�
n dt�n + log z�dt�0 − �

n�2

1

n − 1

dv�n

z�
n−1  ,

o that

�dz� Ù dm����,+� = d��
n=1

�

�z�
n ���,+�dt�n − �1 − �0�log�p − q��dt�0 = d��

n

��ndt�n .

hus we find

dz� Ù dm� = d� = d��
�,n

��ndt�n, " � ,

nd, consequently, this proves that the functions �z��p , t� ,m��p , t�� determine a solution of the
hitham hierarchy. �

Following the dressing scheme of Refs. 19–22 it can be shown26 that each solution of the
hitham hierarchy is determined by an associated system of string equations.

As it was shown in Ref. 26 a complete formulation of the symmetry group of the Whitham
ierarchy is obtained by considering deformations of the associated factorization problem. On the
ther hand, a natural representation of this group is provided by the following symmetries of string
quations implemented by Hamiltonian vector fields.

Theorem 2. Given a vector function

F ª �F0�z0,m0�, . . . ,FM�zM,mM�� , �19�

he infinitesimal deformation

FP� ª �F�,P�	, FQ� ª �F�,Q�	 ,

�20�
Fz� ª �z�,�F��−	, Fm� ª �m�,�F��−	 ,

here

�F��− ª F� − �



�F
��
,+�,

etermines a symmetry of the system of string equations �14�.
Proof: We have to prove that given a solution �z� ,m�� of �14�, then at first order in �

�Pi + �FPi��zi + �Fzi,mi + �Fmi� = �P0 + �FP0��z0 + �Fz0,m0 + �Fm0� ,

�21�
�Qi + �FQi��zi + �Fzi,mi + �Fmi� = �Q0 + FQ0��z0 + �Fz0,m0 + �Fm0� ,
or all i=1, . . . ,M. Let us consider the first group of equations of �21�, they can be rewritten as

                                                                                                            



o

B

s

u

o

I
fi
T
i

a

w

I

I

r
c

o

083512-7 String equations in Whitham hierarchies J. Math. Phys. 47, 083512 �2006�

                        
�Pi

�zi
Fzi +

�Pi

�mi
Fmi + �Fi,Pi	 =

�P0

�z0
Fz0 +

�P0

�m0
Fm0 + �F0,P0	 ,

r, equivalently, by taking �20� into account, as

�Fi − �Fi�−,Pi	 = �F0 − �F0�−,P0	, " i . �22�

y hypothesis Pi�zi ,mi�= P0�z0 ,m0�. On the other hand

Fi − �Fi�− = F0 − �F0�− = �



�F
��
,+�,

o that �22� is satisfied. The proof for the second group of equations of �21� is identical. �

We note that the condition for a solution �z� ,m�� of the string equations �14� to be invariant
nder a symmetry �20� is

�F��z�,m���− = 0, " � , �23�

r equivalently

F� = �
�

�F����,+�, " � . �24�

n other words, the functions F��z� ,m�� must reduce to a unique meromorphic function of p with
nite poles at the punctures qi only. As a consequence it follows that, under the hypothesis of
heorem 1, solutions of the Whitham hierarchy satisfying a system of string equations �14� are

nvariant under the symmetries generated by

P = �P0�z0,m0�, . . . ,PM�zM,mM��, Q = �Q0�z0,m0�, . . . ,QM�zM,mM�� ,

nd, more generally, they are invariant under the symmetries generated by

Vrs = �P0
r+1Q0

s+1, . . . ,PM
r+1QM

s+1�, r � − 1, s � 0, �25�

hich determine a Poisson Lie algebra W of symmetries

�Vrs,Vr�s�	 = ��r + 1��s� + 1� − �r� + 1��s + 1��Vr+r�s+s�.

n particular the functions VrªVr0 and Ṽsª−V0s generate two Virasoro algebras.

�Vr,Vr�	 = �r − r��Vr+r�, �Ṽs,Ṽs�	 = �s − s��Ṽs+s�.

V. A SOLVABLE CLASS OF STRING EQUATIONS

In Ref. 26 a class of string equations was introduced which manifests special properties with
espect to the group of dressing transformations. We next provide a scheme of solution for this
lass.

Let us consider systems of string equations associated to splittings

�1, . . . ,M	 = I � J, I � J = �
f the form
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i � I�zi
ni = z0

n0

1

ni

mi

zi
ni−1 =

1

n0

m0

z0
n0−1 , � j � J�−

n0

nj

mj

zj
nj−1 = z0

n0

1

n0
zj

nj =
1

n0

m0

z0
n0−1 ,� �26�

here n� are arbitrary positive integers. For J=� these systems furnish the solutions describing
he algebraic orbits of the Whitham hierarchy,5 while the case I=� includes the systems of string
quations considered by Takasaki18 and Wiegmann-Zabrodin10–14 in their applications of the
Toda hierarchy. The discussion of our scheme for solving �26� requires the consideration of the
wo cases J=� and J�� separately. In what follows we consider solutions with only a finite
umber of times t�n different from zero.

. The case J=�

The corresponding system is given by

zi
ni = z0

n0,

1

ni

mi

zi
ni−1 =

1

n0

m0

z0
n0−1 ,

i = 1, . . . ,M . �27�

he first group of equations �27� is satisfied by setting

zi
ni = z0

n0 = E�p� ª pn0 + un0−2pn0−2 + ¯ + u0 + �
i=1

M

�
s=1

ni vis

�p − qi�s , �28�

nd, obviously, appropriate branches of z� can be defined which are compatible with the required
symptotic expansions �1�. On the other hand, notice that the remaining string equations in �27�
an be rewritten as

mi = m0
dz0

dzi
, �29�

o that they are verified by taking

m� =
�S

�z�

, " � , �30�

or a given function S�p , t�, which means that all the S� are equal to S. Moreover, it is straight-
orward to prove that the expansions �4� are satisfied if we set

S = �
n=1

N0

t0n�z0
n��0,+� + �

j=1

M ��
n=1

Nj

tjn�zj
n��j,+� − tj0lnj�p − qj� . �31�

n order to satisfy the hypothesis of Theorem 1, the functions z0
n0 and m0 /z0

n0−1 must be rational
unctions of p with possible finite poles at the points qi only. In view of �28� this condition is
erified by z0

n. On the other hand, �27� and �30� imply that

1

n0

m0

z0
n0−1 =

�pS

�pE
.

herefore, the requirements of Theorem 1 are satisfied provided that

�pS�pr� = 0, �32�
here pr are the zeros of
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�pE�pr� = 0.

e observe that the number of zeros pr is

M + n0 − 1 + �
i=1

M

ni,

hich equals the number of unknowns �qi ,u0 , . . . ,un0−2 ,vis	. Equation �32� coincides with those
ormulated by Krichever in Ref. 5 for determining the algebraic orbits of the Whitham hierarchy.

Example: M =2, n0=n1=n2=1, N0=2, N1=N2=1.
In this case �28� reads

z� = E�p� = p +
v1

p − q1
+

v2

p − q2
, 0 � � � 2,

nd �32� leads to

− t10 − t20 + 2t02v1 + 2t02v2 = 0,

q1t10 + 2q2t10 + 2q1t20 + q2t20 + t01v1 − 4q2t02v1 − t11v1 + t01v2 − 4q1t02v2 − t21v2 = 0,

− 2q1q2t10 − q2
2t10 − q1

2t20 − 2q1q2t20 − 2q2t01v1 + 2q2
2t02v1 + 2q2t11v1 − 2q1t01v2 + 2q1

2t02v2

+ 2q1t21v2 = 0,

q1q2
2t10 + q1

2q2t20 + q2
2t01v1 − q2

2t11v1 + q1
2t01v2 − q1

2t21v2 = 0.

y solving this system we obtain

z� = E�p� = p +
2t10 + t20

4t02�p +
2t01t10 − 2t10t11 + 2t01t20 − t11t20 − t20t21

4t02�t10 + t20�


+
t20

4t02�p −
− 2t01�t10 + t20� + 2t20t21 + t10�t11 + t21�

4t02�t10 + t20�
 , 0 � � � 2.

. The case JÅ�

Now we consider system �26� for the generic case J��. We look for functions m� of the
orm

m��z,t� = �
n=1

N�

nt�nz�
n−1 +

t�0

z�

+ �
n�2

v�n

z�
n , t00 = − �

i=1

M

ti0, �33�

or arbitrary positive integers N�. In order to verify the hypothesis of Theorem 1 and expansions
1�, we set

z0
n0 = zi

ni = E1�p� ª pn0 + un0−2pn0−2 + ¯ + u0 + �
l�I

�
n=1

nl aln

�p − ql�n + �
k�J

�
n=1

n0k bkn

�p − qk�n , " i � I ,
�34�
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zj
nj = E2�p� ª �

n=0

n00

cnpn + �
l�I

�
n=1

n0l ãln

�p − ql�n + �
k�J

�
n=1

nk b̃kn

�p − qk�n , " j � J , �35�

here n00, n0l, n0k �l� I ,k�J�, the poles qi and the coefficients of E1 and E2 are to be determined.
By introducing the functions

M� ª m�z�, �36�

nd taking �34� and �35� into account it follows that the system of string equations �26� reduces to

M0 =
n0

ni
Mi = −

n0

nj
M j = E1�p�E2�p�, " i � I, j � J . �37�

n the other hand, due to their rational character, the functions M� can be written in terms of
heir principal parts at the poles q


M� = �

=0

M

�M���
,+�,

nd by taking �4� into account we get

�M0��0,+� = �
n=1

N0

nt0n�z0
n��0,+� + t00, t00 = − �

i=1

M

ti0,

�Mi��i,+� = �
n=1

Ni

ntin�zi
n��i,+�.

herefore �37� is satisfied by

M0 = �
n=1

N0

nt0n�z0
n��0,+� + t00 + �

i�I

n0

ni
�
n=1

Ni

ntin�zi
n��i,+� − �

j�J

n0

nj
�
n=1

Nj

ntjn�zj
n��j,+�, t00 = − �

j=1

M

tj0

�38�

Mi =
ni

n
M0, M j = −

nj

n
M0, " i � I, j � J ,

rovided M0 verifies the equation

M0 = E1�p�E2�p� . �39�

At this point notice that from �34�, �35�, and �37� it follows that �39� is the only equation to
e satisfied in order to solve the system of string equations �26�. Both sides of �39� are rational
unctions of p with finite poles at �q1 , . . . ,qM	 only, so that �39� holds if and only if the principal
arts of both members at �q0 ,q1 , . . . ,qM	 coincide. Now we have that:

i� At q0=�, the function M0 has a pole of order N0, while E1�p�E2�p� has a pole of order
n00+n0, consequently �39� requires that n00=N0−n0, so that identifying the principal parts
at q0 represents N0+1 equations.

ii� At qi, �i� I�, the function M0 has a pole of order Ni and E1�p�E2�p� has a pole of order
ni+n0i. Hence n0i=Ni−ni and identifying the corresponding principal parts leads to Ni
equations.

iii� At qj, �j�J�, the function M0 has a pole of order Nj and E1�p�E2�p� has a pole of order
n0j +nj. Hence n0j =Nj −nj and identifying the corresponding principal parts leads to Nj

equations.
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Thus, Eq. �39� leads to N0+�i=1
M Ni+1 equations. On the other hand we have N0+�i=1

M Ni+M
nknown coefficients given by

qi, i = 1,2, . . . ,M ,

ai1, . . . ,aini
, ãi1, . . . , ãiNi−ni

, i � I ,

bj1, . . . ,bjNj−nj
, b̃j1, . . . , b̃jnj

, j � J , �40�

u0, . . . ,un0−2,

c0, . . . ,cN0−n0
.

he additional M −1 equations required for determining these coefficients arise by imposing the
symptotic behavior �1�–�4� to �z� ,m��. Note that �34� and �35� imply that the functions z� have
he asymptotic form �1�. In what concerns the functions m�, from the expression �38� for M0 it
ollows that

M0 = �
n=1

N0

nt0nz0
n + t00 + O� 1

z0
, z0 → � ,

o that m0 satisfies an expansion of form �4�. But in order for mi �i=1,2 , . . . ,M� to satisfy �4� we
ust impose that

Res�mi,zi = �� = ti0, i = 1,2, . . . ,M . �41�

owever, let us see that as a consequence of the string equations �26� it follows that

�
�=0

M

Res�m�,z� = �� = 0, �42�

nd, consequently, only M −1 of Eq. �41� need to be imposed. Indeed, we have

2�i�
�=0

M

Res�m�,z� = �� = �
�=0

M �
��

m�dz� = �
�=0

M �
	�

m��pz�dp .

n the other hand �34�, �35�, and �37� imply

mi�pzi = m0�pz0, i � I ,

mj�pzj = m0�pz0 −
1

n0
�p�E1�p�E2�p��, j � J ,

o that

2�i�
�=0

M

Res�m�,z� = �� = �
	

m0�pz0dp = 0, 	 ª �
�=0

M

	�,
here we have taken into account that
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m0�pz0 =
1

n0
E2�p��pE1�p� ,

s a rational function of p with finite poles at qi only, and the fact that

	 � 0 in C \ �q1, . . . ,qM	 .

In this way we have a system of

N0 + �
i=1

M

Ni + M ,

quations to determine the same number of unknown coefficients. Therefore, according to Theo-
em 1, this method furnishes solutions of the Whitham hierarchy.

. Examples

�1� M =1, I=�, n0=2, n1=1, N0=N1=3. Note that in this case all the equations come from
39�. We set

z0
2 = p2 + u0 +

a1

p − q
+

a2

�p − q�2 , z1 =
b1

p − q
+ c0 + c1p .

rom �39� one obtains the system

p3: 3t03 = c1,

p2: 2t02 = c0,

p1: t01 +
9t03u0

2
= b1 + c1u0,

p0:
9a1t03

2
− t10 + 2t02u0 = a1c1 + b1q + c0u0,

�p − q�−3: − 6b1
2t13 = a2,

�p − q�−2: − 2b1
2�2t12 + 9�c0 + c1q�t13� = a1b1 + a2�c0 + c1q� ,

�p − q�−1: − 2b1�t11 + 4�c0 + c1q�t12 + 9�c0
2 + 2c0c1q + c1b1 + c1

2q2�t13�

= a2c1 + a1�c0 + c1q� + b1�q2 + u0� ,

nd by solving these equations we find

z0
2 = p2 −

2�qt01 + t10 + 6t01t03t12 + 36t01t02t03t13 + 54qt01t03
2t13�

3t03�q + 6t03t12 + 36t02t03t13 + 54qt03
2t13�

+
4t10�t12 + 6t02t13 + 9qt03t13�

�p − q��q + 54qt 2t13 + 6t03�t12 + 6t02t13��
−

6t10
2t13

�p − q�2�q + 54qt 2t13 + 6t03�t12 + 6t02t13��2 ,

03 03
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z1 = −
t10

�p − q��q + 6t03t12 + 36t02t03t13 + 54qt03
2t13�

+ 2t02 + 3pt03,

here q is determined by the implicit equation

− 2qt01 + 3q3t03 − 2t10 + 6qt03t11 − 12t01t03t12 + 24qt02t03t12 + 54q2t03
2t12 + 36t03

2t11t12

+ 144t02t03
2t12

2 + 216qt03
3t12

2 − 72t01t02t03t13 + 72qt02
2t03t13 − 108qt01t03

2t13 + 324q2t02t03
2t13

+ 324q3t03
3t13 − 108t03

2t10t13 + 216t02t03
2t11t13 + 324qt03

3t11t13 + 1296t02
2t03

2t12t13

+ 3888qt02t03
3t12t13 + 2916q2t03

4t12t13 + 2592t02
3t03

2t13
2 + 11664qt02

2t03
3t13

2

+ 17496q2t02t03
4t13

2 + 8748q3t03
5t13

2 = 0.

�2� M =2, I=�, n0=n1=n2=1, N0=N1=2, N2=1. In this case there are three punctures �q0

� ,q1 ,q2	 and we have to impose Eq. �41� for i=1. We take

z0 = p +
a1

p − q1
, z1 = z2 =

b1

p − q1
+

b2

p − q2
+ c0 + c1p .

hen, by identifying powers of p, �p−q1�−1 and �p−q2�−1 in �39� the following system of equa-
ions arises

p2: 2t02 = c1,

p1: t01 = c0,

p0: 4a1t02 − t10 − t20 = b1 + b2 + a1c1,

�p − q1�−2: − 2b1t12 = a1,

�p − q1�−1: − b1t11 − 4b1�c0 + c1q1 +
b2

q1 − q2
t12 = b1q1 + a1�c0 + c1q1 +

b2

q1 − q2
 ,

�p − q2�−1: − t21 = q2 −
a1

q1 − q2
.

oreover, by taking �38� into account, from �41� we get

− q1t01 − 2�2a1 + q1
2�t02 − �c0 + c1q1 +

b2

q1 − q2
t11

− 2�2b1�c1 −
b2

�q1 − q2�2 + �c0 + c1q1 +
b2

q1 − q2
2t12 + t20 +

b2t21

q1 − q2
= 0.

hese equations lead to

z0 = p −
1

�r2�1 + 4t02t12� − 2t12�t10 + t20� + r�t11 + 2t01t12 − t21 − 4t02t12t21�� ,

2�1 + 4t02t12��p − q1�
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z1 =
1

4t12�1 + 4t02t12��p − q1�
�r2�1 + 4t02t12� − 2t12�t10 + t20� + r�t11 + 2t01t12 − t21 − 4t02t12t21��

+
1

4t12�p − q2�
�− r2�1 + 4t02t12� − 2t12�t10 + t20� + r�− t11 − 2t01t12 + t21 + 4t02t12t21��

+ t01 + 2pt02,

here

q1 =
1

2r�1 + 4t02t12�
�r2�1 + 4t02t12� + 2t12�t10 + t20� − r�t11 + 2t01t12 + t21 + 4t02t12t21�� ,

q2 = −
1

2r�1 + 4t02t12�
�r2�1 + 4t02t12� − 2t12�t10 + t20� + r�t11 + 2t01t12 + t21 + 4t02t12t21�� ,

nd r is determined by

3r4�1 + 4t02t12�2 − 4t12
2�t10 + t20�2 + 4r3�1 + 4t02t12��t11 + 2t01t12 − �1 + 4t02t12�t21� + r2�t11

2

+ 4t01
2t12

2 + 4t10t12�1 + 4t02t12� − 4t12t20 − 16t02t12
2t20 − 4t01t12t21 − 16t01t02t12

2t21 + t21
2

+ 8t02t12t21
2 + 16t02

2t12
2t21

2 + 2t11�2t01t12 − �1 + 4t02t12�t21�� = 0.

�3� M =2, I= �1	, J= �2	, n0=n1=n2=N0=1, N1=N2=2. In this case we take

z0 = z1 = E1�p� = p +
v11

p − q1
+

v21

p − q2
, z2 = E2�p� =

w21

p − q2
+

w11

p − q1
+ c0.

y equating the coefficients of p1, p0, �p−qi�−j, i , j=1,2 in �39� one finds

p1: t01 = c0,

p0: − t10 − t20 = w11 + w21,

�p − q1�−2: 2t12v11
2 = v11w11,

�p − q1�−1: v11�t11 + 4t12�q1 +
v21

q1 − q2
 = �q1 +

v21

q1 − q2
w11 + v11�c0 +

w21

q1 − q2
 ,

�p − q2�−2: − 2t22w21
2 = v21w21,

�p − q2�−1: − �t21w21� − 4t22�c0 +
w11

− q1 + q2
w21 = c0v21 +

v21w11 + �− �q1q2� + q2
2 + v11�w21

− q1 + q2
,

nd �41� leads to

− q2t01 + t10 −
t11v11

− q1 + q2
− 2t12� v11

2

�− q1 + q2�2 +

2v11�q1 +
v21

q1 − q2


− q1 + q2
� − t21�c0 +

w11

− q1 + q2


− 2t22��c0 +
w11

− q1 + q2
2

−
2w11w21

�q1 − q2�2 = 0.
y solving these equations one obtains
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E1�p� = p −
2r1

2t12 + �t10 + t20��1 + 4t12t22� − r1�t01 − t11 + 2t12t21 + 4t01t12t22�
4�p − q1�t12�1 + 4t12t22�

−
t22�2r1

2t12 − �t10 + t20��1 + 4t12t22� − r1�t01 − t11 + 2t12t21 + 4t01t12t22��
�p − q2��1 + 4t12t22�

,

E2�p� = t01 −
2r1

2t12 + �t10 + t20��1 + 4t12t22� − r1�t01 − t11 + 2t12t21 + 4t01t12t22�
2�p − q1��1 + 4t12t22�

+
2r1

2t12 − �t10 + t20��1 + 4t12t22� − r1�t01 − t11 + 2t12t21 + 4t01t12t22�
2�p − q2��1 + 4t12t22�

,

here

q1 =
r1

2
−

�t10 + t20��1 + 4t12t22� + r1�t11 + 2t12t21 + t01�− 1 + 4t12t22��
4r1t12

,

q2 = −
r1

2
−

�t10 + t20��1 + 4t12t22� + r1�t11 + 2t12t21 + t01�− 1 + 4t12t22��
4r1t12

,

nd r1 satisfies

− 12r1
4t12

2 + �t10 + t20�2�1 + 4t12t22�2 + 8r1
3t12�t01 − t11 + 2t12t21 + 4t01t12t22� − r1

2�t11
2 − 4t11t12t21

− 2t01�t11 − 2t12t21��1 + 4t12t22� + �t01 + 4t01t12t22�2 + 4t12�− t10 + t20 + t12t21
2 − 4t10t12t22

+ 4t12t20t22�� = 0.

. S-functions

According to the identities

�pS� = M��p log z�, M� = m�z�,

t follows at once from �34�, �35�, and �37� that the functions �pS� are rational functions of p with
nite poles at the points qi �i=1, . . . ,M� only. Thus we may decompose the functions �pS� into

heir principal parts

�pS� = �



��pS���
,+�, �43�

nd, in view of asymptotic behavior �9�, we may write

��pS����,+� = �pR�, �44�

here

R� ª �
n�1

�z�
n���,+�t�n − �1 − �0�t�0 log��p − q�� . �45�

urther, from �34�, �35�, and �37� we obtain
�pSi = �pS0, " i � I ,
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�pSj = �pS0 −
1

n0
�p�E1E2�, " j � J , �46�

hich leads to

S� = ��



R
 +
1

n0
�
j�J

�E1E2��j,+�, � � �0	 � I

�



R
 −
1

n0
�E1E2��0,+� −

1

n0
�
i�I

�E1E2��i,+�, � � J . � �47�

n principle, �46� implies the expressions �47� plus additional p-independent terms w��t�. However
hese terms can be removed by using �8� and �9�. Indeed, assymptotic behavior �9� for S0 requires

0=0. On the other hand, �8� says that

dSi − dS0 = midzi − m0dz0,

o that by using the string equations �26� we deduce

dwi = �dSi − dS0 = 0, i � I

dSi − dS0 +
1

n0
d�E1E2� = 0, i � J . �

. �-functions

Theorem 3: The �-function for the solutions of the Whitham hierarchy associated with the
lass of string equations �26� is given by

2 log � = �
�

1

2�i
�

��
��

n�1
z�

nt�nm�dz� − �
j�J

1

4�inj
�

�j

zjmj
2dzj + �

i

ti0vi1

= �
�

�
n�0

t�nv�n+1 − �
j�J

1

nj
�
n�1

ntjnv jn+1 − �
j�J

tj0
2

2nj
�48�

Proof: Our strategy to prove �48� is to start from the free-energy function for the algebraic
rbits of the Whitham hierarchy5

F0 ª �
�

1

4�i
�

��
��

n�1
z�

nt�nm�dz� +
1

2�
i

ti0vi1, �49�

nd determine the appropriate modifications to get the free-energy function for the solutions of the
lass of string equations �26�.

By differentiating F0 with respect to tln, n�1 we get

�l,nF0 =
1

4�i
�

�l

zl
nmldzl + �

�

1

4�i
�

	�
� �

m�1
z�

mt�m�p��zl
n��l,+��dp +

1

2�
i

ti0�l,nvi1, �50�

nd arguing as in the derivation of �13�, we find that

�
	�

� �
m�1

z�
mt�m�p��zl

n��l,+��dp = �
	l

zl
n�p� �

m�1
�z�

m���,+�t�mdp .
n the other hand, for i� l we have

                                                                                                            



s

a

F

s

w

w

N

083512-17 String equations in Whitham hierarchies J. Math. Phys. 47, 083512 �2006�

                        
�l,nSi = �zl
n��l,+� = − �l,nvi1 + O� 1

zi
, p → qi,

o that

�l,nvi1 = − �zl
n��l,+��qi�

=
1

2�i
�

	i

�zl
n��l,+�

p − qi
dp = −

1

2�i
�

	l

�zl
n��l,+��p log�p − qi�dp

= −
1

2�i
�

	l

zl
n�p log�p − qi�dp, i � l ,

nd the same expression turns out to hold for i= l. Hence, �50� can be rewritten as

�l,nF0 =
1

2
vln+1 +

1

4�i
�

	l

zl
n�

�

�p� �
m�1

�z�
m���,+�t�m − �1 − �0�t�0 log�p − q��dp

= vln+1 +
1

4�i
�

	l

zl
n��

�

�pR� − �pSldp

= vln+1 + �
�

1

4�i
�

	l

�zl
n��l,+���pR� − ��pSl���,+��dp . �51�

urther, we have that

1

4�i
�

	l

�zl
n��l,+���pR� − ��pSl���,+��dp = −

1

4�i
�

	�

�zl
n��l,+���pR� − ��pSl���,+��dp

= −
1

4�i
�

	�

�zl
n��l,+���pS� − �pSl�dp ,

o that from �46� and by taking into account

�
	0

�zl
n��l,+��p�E1E2�dp = − �

i=1

M �
	i

�zl
n��l,+��p�E1E2�dp ,

e get

�l,nF0 = vln+1 +
1

n0
�
j�J

1

4�i
�

	j

�zl
n��l,+��p�E1E2�dp = vln+1 + �

j�J

1

4�inj
�

�j

zjmj�l,nmjdzj

= vln+1 + �l,n��
j�J

1

8�inj
�

�j

zjmj
2dzj , �52�

hich shows that

�l,n log � = vln+1.

By a similar procedure one finds

�0,n log � = v0n+1, n � 1.
evertheless, proving that
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�l,0 log � = vl1, l = 1, . . . ,M �53�

equires a more involved analysis. First we differentiate F0 with respect to tl0

�l,0F0 = �
�

1

4�i
�

	�
� �

m�1
z�

mt�m�p�− log�p − ql��dp +
1

2�
i

ti0�l,0vi1 +
1

2
vl1, �54�

nd use the following relations:

�
	�

� �
m�1

z�
mt�m 1

p − ql
dp = − �

	l
� �

m�1
�z�

m���,+�t�m 1

p − ql
dp, � � l ,

�
	l
� �

m�1
zl

mtlm 1

p − ql
dp = − 2�i lim

p→ql
� �

m�1
�zl

m − �zl
m��l,+��tlm ,

�
i�l

ti0�l0vi1 = �
i�l

ti0 logl�qi − ql� − �
i�l

ti0 logli�− 1� = �
i�l

ti0 logi�ql − qi� − �
i�l

ti0 logil�− 1� ,

�l,0vl1 = lim
p→ql

log�zl�p − ql�� .

hen �54� becomes

�l,0F0 =
1

2
vl1 +

1

4�i
�

	l

dp

p − ql
�
��l

� �
m�1

�z�
m���,+�t�m − �1 − �0�t�0 log��p − q��

+
1

2
lim
p→ql

� �
m�1

�zl
m − �zl

m��l,+��tlm + tl0 log zl + �tl0 logl�p − ql�� −
1

2�
i�l

ti0 logil�− 1� .

�55�

urther, from asymptotic expansion �9� of Sl we have that

vl = lim
p→ql

� �
m�1

zl
mtlm + tl0 log zl − Sl ,

hich allows us to rewrite �55� in the form

�l,0F0 = vl1 +
1

4�i
�

	l

dp

p − ql
�
��l

R� +
1

2
lim
p→ql

�Sl − Rl� = vl1 +
1

4�i
�

	l

dp

p − ql
��

�

R� − Sl .

�56�

ow by using �47� it is straightforward to see that

1

4�i
�

	l

dp

p − ql
��

�

R� − Sl =
1

n0
�
j�J

1

4�i
�

	j

dp

p − ql
E1E2 = �

j�J

1

4�inj
�

�j

zjmj�l,0mjdzj , �57�

hich shows that �56� is equivalent to �53�. �

. Conformal maps dynamics

We will outline how our scheme applies for characterizing dToda dynamics of conformal
aps, and, in particular, how �48� gives rise to the expression of the �-function of analytic curves
ound in Ref. 10.
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Given a simply connected domain D bounded by a closed path � in the z-plane, there exists27

unique circle 	 in the p-plane and a unique conformal map z=z�p� satisfying

z�p� = p + �
n=1

�
dn

pn , z → � , �58�

uch that z=z�p� transforms the exterior of 	 into the exterior of � �see Fig. 2�. Note that the
onformal map used by Wiegmann-Zabrodin10 is given by z�rp+q�, where q and r are the center
nd the radius of 	, respectively.

Let us define the function

z̄�p� = z�I	�p�� , �59�

here I	 denotes the inversion with respect to the circle 	

I	�p� ª q +
r2

p̄ − q̄
.

t is clear that

z̄�p� = z�p�, " p � 	 .

f � is asssumed to be an analytic curve, then it can be described by an equation of the form

z̄ = S�z� , �60�

here S�z�ª z̄�p�z�� �the Schwarz function� is analytic in a neigborhood of 	. Thus, if � encircles
he origin, S�z� can be expanded as

S�z� = �
n�1

ntnzn−1 +
t0

z
+ �

n�1

vn�t�
zn+1 , �61�

here the coefficients tn �n�0�, the exterior harmonic moments of �, determine the curve � and
onformal map �58�. Note, in particular, that the coefficient t0,

t0 =
1

2�i
�

�

z̄dz =
1

�
�

D

dxdy ,

FIG. 2. Conformal map z=z�p�.
epresents the area of D.
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In this way, by considering the harmonic moments as independent complex parameters, if we
efine

q1 = q, z0�p� = z�p�, z1�p� = z̄�p� ,

t0n ª tn, t1n = − t̄n, n � 0,

m0 = S�z0�, m1 = − z�p�z1�� ,

e obtain a solution of the system of string equations

− m1 = z0, z1 = m0. �62�

urther, by taking into account that

v1n+1 = − v̄0n+1 = − v̄n, n � 1,

nd the identity

t0
2 + 2�

n�1
ntnvn =

1

2�i
�

�

zS�z�2dz =
1

2�i
�

�

zz̄2dz =
1

�
�

D

�z�2dxdy = t̄0
2 + 2�

n�1
nt̄nv̄n,

e see that �48� reduces to

2 log � =
1

2 �
n�1

�2 − n��tnvn + t̄nv̄n� + t0v0 −
t0
2

2
, �63�

here v0ª−v11, which is the expression for the �-function associated to analytic curves obtained
n Ref. 10. Notice that �62� is the simplest nontrivial case �I=�, J= �1	, n0=n1=1� of the class of
tring equations �26�.

. Symmetry constraints

As we proved earlier, solutions �z� ,m�� of systems of string equations �14� are invariant under
he symmetries

Vrs = �P0
r+1Q0

s+1, . . . ,PM
r+1QM

s+1�, r � − 1,s � 0.

oreover, as a consequence of �14� we have that the following identities hold:

P0
r+1Q0

s+1 = Pi
r+1Qi

s+1 = Pj
r+1Qj

s+1 = P0
r+1Qj

s+1, " i � I, j � J , �64�

or the values of the functions P� and Q� at a solution �z� ,m��. In particular these identities lead
o the following expressions for the constraints arising from the invariance of �26� under the action
f Vrs.

Theorem 4: If �z� ,m�� is a solution of the string equations �26� then it satisfies the identities

�
���0	�I

�
��

� z�

n�
s

z�
�r−s�n�m�

s+1dz� + �− 1�r s + 1

r + 1
n0

r−s�
j�J
�

�j

� zj

nj
r

zj
�s−r�njmj

r+1dzj = 0, �65�

or all r ,s�0.

Proof: From �34�–�37� we find that �64� takes the form
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z0
n0�r+1�� 1

n0

m0

z0
n0−1s+1

= zi
ni�r+1�� 1

ni

mi

zi
ni−1s+1

= � zj
nj

n0
s+1�−

n0

nj

mj

zj
nj−1r+1

=
1

n0
s+1E1

r+1E2
s+1, " i � I, j � J , �66�

nd we have that

z0
n0�r+1�� 1

n0

m0

z0
n0−1s+1

�p log E1 = zi
ni�r+1�� 1

ni

mi

zi
ni−1s+1

�p log E1 =
��pE1

r+1�E2
s+1

�r + 1�n0
s+1 , �67�

� zj
nj

n0
s+1�−

n0

nj

mj

zj
nj−1r+1

�p log E2 = −
r + 1

s + 1
z0

n0�r+1�� 1

n0

m0

z0
n0−1s+1

�p log E1 + �p� E1
r+1E2

s+1

�s + 1�n0
s+1 ,

or all r ,s�0 and i� I, j�J. Hence if we proceed as in the proof of �42� and take into account
hat

�p log E1 = n0�p log z0 = ni�p log zi, " i � I ,

�p log E2 = nj�p log zj, " j � J ,

t is straightforward to prove that

�
���0	�I

�
��

z�
n��r+1�� 1

n�

m�

z�
n�−1s+1

n�

dz�

z�

− �
j�J

s + 1

r + 1
�

�j

� zj
nj

n0
s+1�−

n0

nj

mj

zj
nj−1r+1

nj
dzj

zj

= �
	

z0
n0�r+1�� 1

n0

m0

z0
n0−1s+1

�p log E1dp = �
	

��pE1
r+1�E2

s+1

�r + 1�n0
s+1 dp = 0, �68�

here 	ª��=0
M 	�. This proves that the identities �65� hold. �

By evaluating the integrals of the left-hand side we obtain the symmetry constraints in terms
f differential equations for the free-energy function F=log �.

Examples: For r=s=0, Eq. �68� reduces to �42�, so that it implies

�
�

t�0 = 0.

he cases �r ,s�= �1,0� and �r ,s�= �2,0� correspond to the Virasoro constraints induced by V1 and

2, respectively, and lead to the identities

�
���0	�I

��,n�
F − �

j�J

n0

nj
� �

n−n�=nj−1

ntjn� j,n�−1F + njtjnj
tj0 +

1

2 �
n+n�=nj

nn�tjntjn� = 0,

�
���0	�I

��,2n�
F + �

j�J
�n0

nj
2� �

n−n�−n�=2nj−2

ntjn�� j,n�−1F��� j,n�−1F� + 2 �
n−n�=2nj−1

ntjntj0� j,n�−1F

+ �
n+n�−n�=2nj−1

nn�tjntjn�� j,n�−1F + 2njtj2nj
tj0
2 + �

n+n�=2nj

nn�tjntjn�tj0

+
1

3 �
n+n�+n�=2nj

nn�n�tjntjn�tjn� = 0.
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Following the approach of �Chen et al.Lett. Math. Phys. 75, 1–15 �2006��, we
continue the study of the two-component Camassa-Holm system by using its rela-
tion with the first negative flow of the AKNS hierarchy. We obtain a more general
class of particular solutions including the multisoliton ones. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2234729�

. INTRODUCTION

The Camassa-Holm equation

ut − uxxt + �ux + 3uux − 2uxuxx − uuxxx = 0 �1.1�

s an integrable system that was derived in Refs. 5 and 6 as a shallow water wave equation. Here
is a constant, u=u�x , t� and ux ,ut, etc., denote the partial derivatives of the function u with

espect to the variables of the subscripts. Equation �1.1� first appeared in the work of Fuchssteiner
nd Fokas10 when they studied the hereditary symmetries of soliton PDEs. Due to its physical
ackground and its special features such as the existence of peakon solutions, the Camassa-Holm
quation has drawn much attention among experts in soliton theory during the last ten years. See
efs. 1, 2, 9, 11, 12, and 14–17, and references therein.

Recently a two-component generalization of the Camassa-Holm equation, called the two-
omponent Camassa-Holm �2-CH� system, was proposed by Liu and Zhang in Ref. 15 �see also
ef. 8�. It takes the form

mt + umx + 2mux − ��x = 0, �1.2�

�t + ��u�x = 0, �1.3�

here m=u−uxx+ 1
2�. This system is reduced to the Camassa-Holm equation when we set �=0. In

ef. 7, Chen et al. proved that the 2-CH system is related to the first negative flow of the AKNS
ierarchy through an appropriate reciprocal transformation. By using this relation, they obtained
ultikink solutions and traveling peakon solutions of the 2-CH system. Some recent works on the

roperties of the 2-CH system can be found in Refs. 3, 4, 8, and 18.
In this note, we consider the special solutions of the 2-CH system. We obtain a more general

lass of peakon and multikink solutions and, in particular, its multisoliton solutions by using a
elation between the 2-CH system and the first negative flow of the AKNS hierarchy. This relation
as first found by Li13 following the idea of Ref. 7 and is simpler than the one given there. In Sec.

I, we explain the relations between the 2-CH system and the first negative flow of the AKNS
ierarchy; in Sec. III, we derive the traveling wave solutions of the 2-CH system; in Sec. IV we
onstruct its multikink and multisoliton solutions.

�
Electronic mail: wucz05@mails.tsinghua.edu.cn
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I. RELATIONS TO THE FIRST NEGATIVE FLOW OF THE AKNS HIERARCHY

Let us first recall some results of Ref. 7. Since the parameter � in �1.2� can be canceled
hrough a Galilean transformation, we assume henceforth that � vanishes unless otherwise stated.
hen the 2-CH system �1.2�, �1.3� is equivalent to the compatibility condition of the spectral
roblem

�xx + �− 1
4 + m� − �2�2�� = 0, �2.1�

�t + � 1

2�
+ u��x −

ux

2
� = 0 �2.2�

ith the spectral parameter �. Assume ��0 and denote �=���. Through the reciprocal transfor-
ation

dy = �dx − �udt, ds = dt , �2.3�

he linear system �2.1�, �2.2� is converted to

�yy + �Q + P� − �2�� = 0, �2.4�

�s +
�

2�
�y −

�y

4�
� = 0 �2.5�

ith

P =
m

�2 , Q = −
1

4�2 −
�yy

2�
+

�y
2

4�2 . �2.6�

he linear system �2.4�, �2.5� is compatible iff there exists a function f = f�y ,s� satisfying the
ollowing:

P = fy, � = fs, �2.7�

�y�fyfs� + �s� fy
2

2
+

fys
2 − 1

2fs
2 −

fyys

fs
� = 0. �2.8�

Any function f�y ,s� satisfying Eq. �2.8� is called a primary solution7 of the 2-CH system
1.2�, �1.3�. It plays a crucial role in constructing parametric solutions of the 2-CH system.

Theorem 2.1 �Ref. 7�: Let f�y ,s� be a solution of Eq. �2.8�, then the functions x�t ,s�, u�t ,s�,
�t ,s� defined by

x = f�t,s�, u =
�x

�t
,

1

�
=

�x

�s
�2.9�

ive a parametric solution of the 2-CH system �1.2�, �1.3�.
The first negative flow of the AKNS hierarchy is equivalent to the compatibility condition of

he spectral problem

��1 � = �� − q ���1 � , �2.10�

�2 y r − � �2
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��1

�2
�

s
=

1

4�
�a b

c − a
���1

�2
� , �2.11�

here � is the spectral parameter. This flow is expressed as

qs = 1
2b, rs = 1

2c, by = 2aq, cy = 2ar, ay + br + cq = 0. �2.12�

he 2-CH system is related to it under the constraint

a2 + bc = 1. �2.13�

Theorem 2.2 �Ref. 7�: Suppose the functions q ,r ,a ,b ,c satisfy the system �2.12�, �2.13�. Then
ny solution f�y ,s� of

2a = be−f − cef �2.14�

s a primary solution of the 2-CH system.
Theorem 2.3 �Ref. 7�: If f�y ,s� is a primary solution of the 2-CH system, then a solution

q ,r ,a ,b ,c� of the system �2.12�, �2.13� is given by

q =
ef

2
� fy +

� − fys

fs
�, r =

e−f

2
� fy −

� − fys

fs
� ,

b = 2qs, c = 2rs, a = 1
2 �be−f − cef� , �2.15�

here �=1 or �=−1.
The above-presented theorems establish an explicit relation between the 2-CH system and the

rst negative flow of the AKNS hierarchy satisfying �2.13�. The following theorem, obtained by
i,13 gives another relation between these two systems.

Theorem 2.4: Let the functions q�y ,s�, r�y ,s�, a�y ,s�, b�y ,s�, c�y ,s� give a solution of the
ystem �2.12�, �2.13�. If neither of q, qs �respectively, r ,rs� vanishes at any point, then the function

f�y ,s� defined by

f = ln q �respectively, f = ln r� �2.16�

s a primary solution of the 2-CH system.
Proof: The functions q ,r ,a ,b ,c satisfying the conditions of the theorem determine a compat-

ble linear system �2.10�, �2.11�. Since the system �2.12�, �2.13� is invariant under the transforma-
ion �q ,r ,a ,b ,c�� �r ,q ,a ,c ,b�, we only need to prove the case f =ln q. For this, let

� = e−f/2�1, P = fy =
qy

q
, � = fs =

qs

q
, Q =

1

�2�1

4
�y

2 −
1

2
��yy −

1

4
� . �2.17�

ith the help of �2.12�, �2.13� we can simplify the expression of Q to the form

Q =
1

2

qyy

q
−

3

4

qy
2

q2 + qr . �2.18�

o prove the theorem, we need to check that �2.17� transforms the linear system �2.10�, �2.11� to
2.4�, �2.5�. From �2.10�, �2.11� it follows that

�s = −
fse−f/2�1 + e−f/2� a

�1 +
b

�2� = ��−
qs +

a ��1 +
b

�2�e−f/2, �2.19�

2 4� 4� 2q 4� 4�
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�y = −
fy

2
e−f/2�1 + e−f/2���1 − q�2� = ��−

qy

2q
+ ���1 − q�2�e−f/2. �2.20�

hey yield the needed result

4���s +
�

2�
�y −

�y

4�
��=�− 2�

qs

q
+ a + 2

qs

q
�−

qy

2q
+ �� −

qys

q
+

qyqs

q2 ��1e−f/2 + �b − 2qs��2e−f/2=0,

�yy = �−
fy

2
�−

qy

2q
+ �� −

1

2
�qyy

q
−

qy
2

q2���1e−f/2 + � fy

2
q − qy��2e−f/2

+ �−
qy

2q
+ �����1 − q�2�e−f/2 − q�r�1 − ��2�e−f/2

=� qy
2

4q2 −
qyy

2q
+

qy
2

2q2 − qr −
qy

q
� + �2��1e−f/2=− �Q + �P − �2�� .

he theorem is proved. �

Note that the transformation �q ,r ,a ,b ,c�� �−q ,−r ,a ,−b ,−c� keeps �2.12�, �2.13� invariant,
hence without loss of generality we can take q to be always positive. Then by using Theorem 2.3
nd Theorem 2.4, the following two corollaries are easily obtained.

Corollary 2.5: Equation �2.8� is invariant under the following Bäcklund transformations:

Q�:f � f + ln� fyfs − fys + �

2fs
�, � = 1 or � = − 1. �2.21�

Corollary 2.6: For �=1 or �=−1, the system �2.12�, �2.13� is invariant under the transfor-
ation

q � q̃ = qy +
q��q − qys�

2qs
, r � r̃ =

1

2qs
�− � +

qys

q
� ,

b � b̃ = 2q̃s, c � c̃ = 2r̃s, a � ã =
q̃s

q
− qr̃s. �2.22�

Remark 2.7: The Bäcklund transformations �2.21� of Eq. �2.8� correspond to the relation f
ln q in Theorem 2.4. The Bäcklund transformations of �2.8� corresponding to f =ln r also take the

orm �2.21� modulo the trivial Bäcklund transformations: f �−f and f � f +c0 �c0 is any constant�.
Proposition 2.8: If f�y ,s� is a primary solution of the 2-CH system, then the functions

,r ,a ,b ,c defined by

q = ef, r =
1

2
� fy

2

2
− fyy −

fyys

fs
+

fys
2 − 1

2fs
2 �e−f ,

a = fys + fyfs, b = 2fse
f, c =

1 − �fys + fyfs�2

2fs
e−f �2.23�

atisfy �2.12�, �2.13�.
Proof: We only need to check rs= 1

2c. It holds true because

2rs = �s� fy
2

2
−

fyys

fs
+

fys
2 − 1

2f2 �e−f − fyyse
−f − fs� fy

2

2
− fyy −

fyys

fs
+

fys
2 − 1

2f2 �e−f
s s
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=��y�fyfs� + �s� fy
2

2
+

fys
2 − 1

2fs
2 −

fyys

fs
��e−f + �− fyfys −

fy
2fs

2
−

fys
2 − 1

2fs
�e−f=c .

ere the last equality follows from Eq. �2.8�. The proposition is proved. �

Theorem 2.4 together with Theorem 2.1 provides a simple method to construct parametric
olutions of the 2-CH system. For example, the multikink solutions like those given in Ref. 7 can
e found immediately. This method will be used in Sec. IV to get a more general class of solutions
ncluding multisoliton ones.

II. TRAVELING WAVE SOLUTIONS

In this section we keep the parameter � in the 2-CH system �1.2�, �1.3� to be an arbitrary
onstant. Suppose the 2-CH system has a solution of the form

u�x,t� = h�z�, ��x,t� = g�z�

here z=x+vt with v being a constant. Then the 2-CH system �1.2�, �1.3� is reduced to

v�h� − h�� + 3hh� − 2h�h� − hh� + �h� − gg� = 0, �3.1�

vg� + gh� + hg� = 0. �3.2�

ssume that there exists a constant � such that as z→ ±	,

h → � − v,
dih

dzi → 0 for i = 1,2, . . . . �3.3�

hen by integrating Eqs. �3.1�, �3.2� we obtain

g =
A

h + v
, h�2 =

A2

�h + v�2 −
C

h + v
+ B − �2v − ���h + v� + �h + v�2. �3.4�

ere A ,B ,C are constants and because of �3.3� we have

B =
A2

�2 + 2�2v − ��� − 3�2, C =
2A2

�
+ �2v − ���2 − 2�3. �3.5�

enote h̃=h+v−� ,
=v− 1
2�−2� and assume

�2 =
A2

�2 − �2v − ��� + 3�2 � 0. �3.6�

hen we rewrite the second equation in �3.4� to

h̃�2 =
h̃2�h̃2 − 2
h̃ + �2�

�h̃ + ��2
�3.7�

ith


2 − �2 = �v − � −
1

2
��2

−
A2

�2 . �3.8�
rom �3.7� we get
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�z + c� =�sinh−1� h̃ − 


��2 − 
2� −
�

�
sinh−1� �2/h̃ − 


��2 − 
2� , 
2 − �2  0

ln��1�h̃ − 
�� −
�

�
ln��2�1

h̃
−




�2�� , 
2 − �2 = 0

cosh−1��3
h̃ − 


�
2 − �2� −
�

�
cosh−1��4

�2/h̃ − 


�
2 − �2� , 
2 − �2 � 0.

�3.9�

ere � ,�1 , . . . ,�4=1 or −1; c−1 ,c1 are constants.

Since h̃ tends to zero when z→ ±	, formula �3.9� shows that

	h − �� − v�	 
 e−�z

or certain ��0 as z→ +	. Thus any traveling wave solution of the 2-CH system satisfying the

onditions �3.3�, �3.6� decades exponentially at infinity. Whether h̃ in �3.9� can be expressed as an
xplicit function with respect to z depends on the value of � /�. For example, the peakon solutions
iven in Ref. 7 correspond to the special cases �=� and �=2�, respectively.

Example 3.1: We construct a continuous traveling wave solution of the 2-CH system as

x + vt − x0 = �F�u� − F�u0� , x + vt − x0  0

− F�u� + F�u0� , x + vt − x0 � 0,
� =

A

u + v
. �3.10�

ere F�h� is the right-hand side of �3.9� with h̃ replaced by h+v−�. Formulas �3.10� yield peakon

olutions of the 2-CH system whenever 
2−�2�0. In the case 
2−�2�0, let h̃ take its value on
ither interval

�max�
 + �
2 − �2,
�2


 + �
2 − �2,0�
or 
0,�3=1 ,�4=−1, or

�0,min�
 + �
2 − �2,
�2


 + �
2 − �2�

FIG. 1. Traveling wave solution �3.10� at t=0.
or 
�0,�3=−1,�4=1, then �3.10� gives a smooth solitary wave solution. See Fig. 1.
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V. MULTIKINK AND MULTISOLITON SOLUTIONS

In this section, we employ the results of Sec. II to look for particular solutions of the 2-CH
ystem. To this end, let us first consider the particular solutions of the system �2.12�, �2.13� by
sing the Darboux transformation of the associated linear system �2.10�, �2.11�.

In the notations

� = ��1

�2
�, J = �1 0

0 − 1
�, M = �J + �0 − q

r 0
�, N = �a b

c − a
� �4.1�

e can rewrite �2.10�, �2.11� in matrix form. It is straightforward to verify the following.
Proposition 4.1: Suppose �=diag��1 ,�2� with �1 ,�2 being nonzero constants, and there is

iven a nondegenerate matrix H= �hij�2�2 satisfying

Hy = JH� + �0 − q

r 0
�H ,

Hs =
1

4
NH�−1. �4.2�

et S=H�H−1 and I be the unit matrix of order two, then the linear system �2.10�, �2.11� has the
ollowing Darboux transformation:

� � �̃ = ��I − S��, M � M̃ = M + �J,S�, N � Ñ = SNS−1, �4.3�

here �J ,S�=JS−SJ. Particularly, q ,r are transformed to

q̃ = q +
2��1 − �2�h11h12

det H
, r̃ = r −

2��1 − �2�h21h22

det H
. �4.4�

The two columns of H in the proposition are solutions of the linear systems �2.10�, �2.11� with
=�1 and �=�2, respectively. Note that �I−S is nondegenerate for general �. Given a fundamen-

al solution matrix � of the system �2.10�, �2.11�, then �̃= ��I−S�� is a fundamental solution

atrix of this system with M ,N replaced by M̃ , Ñ. And from �̃ we can find a solution H̃ of �4.2�
orresponding to �̃=diag��̃1 , �̃2�. In this way the Darboux transformation can be continued to
enerate a sequence of solutions of the system �2.12�, �2.13� starting from an initial solution of it.

Let us take an initial solution of the system �2.12�, �2.13� as

q�0� = r�0� = b�0� = c�0� = 0, a�0� = 1. �4.5�

t gives a diagonal system �2.10�, �2.11�, which has a fundamental solution matrix

��0���� = �e���� 0

0 e−���� � �4.6�

ith ����=�y+s /4�.
The Darboux transformation in Proposition 4.1 yields

��i� = diag�− �i,�i�, �i � 0, �4.7�

H�i� = ���i−1��− �i��1

0
�,��i−1���i��
i

1
�� , �4.8�

�i� �i� �i� �i� −1
S = H � �H � , �4.9�
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��i���� = ��I − S�i����i−1���� , �4.10�

here 
i’s are nonzero constants for i=1,2 ,3 , . . . . The first formula in �4.4� takes the form

q�i� = q�i−1� − 4�i

h12
�i�

h22
�i� . �4.11�

y a direct calculation, we get the results of the first three steps as

q�1� = − 4
1�1e2���1�, �4.12�

q�2� = 4
�1 + �2

�2 − �1
�
1�1e2���1� − 
2�2e2���2�� , �4.13�

q�3� = 4
�1 + �3

�3 − �1
��1 + �2

�2 − �1
�− 
1�1e2���1� + 
2�2e2���2�� −

�1 + �3

�3 − �1

3�3e2���3�� . �4.14�

ere we can always choose � j’s pairwise distinct and 
 j’s with the right signs to make both
�i� ,qs

�i� identically positive. Due to Theorem 2.4 and Theorem 2.1 q�i� yield multikink solutions of
he 2-CH system when i�2. Multikink solutions of this kind were deduced in another way in Ref.
.

Now let us look for particular solutions of the system �2.12�, �2.13� that correspond to mul-
isoliton solutions of the 2-CH system. For this, we denote

� =
s

�
+ �y ,

here � ,� are constants and ��0. It is easy to check that

q = e�, r =
1

4
��2 − �2�e−�, a =

�

�
, b =

2

�
e�, c =

�2 − �2

2�
e−� �4.15�

atisfy �2.12�, �2.13�. The linear system �2.10�, �2.11� determined by �4.15� has a fundamental
olution matrix

���� = � e
�+����

2 e
�−����

2

2� − � − �����
2

e
−�+����

2
2� − � + �����

2
e−

�+����
2 � �4.16�

ith

���� = 4�2 − 4�� + �2, ���� = ������y −
1

2��
s� .

We carry out the Darboux transformation in Proposition 4.1 as

� = diag��1,�2� , �4.17�

H = ����1�� 1

�1
�,���2�� 1

�2
�� , �4.18�

−1
S = H�H , �4.19�
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�̃��� = ��I − S����� , �4.20�

�̃ = diag��3,�4� , �4.21�

H̃ = ��̃��3�� 1

�3
�,�̃��4�� 1

�4
�� . �4.22�

ere �i’s are pairwise distinct and �i’s are constants. For the convenience of the straightforward
omputations, we introduce the following notation:

� j = ��� j�, � j = ��� j� ,

g1j = e�j/2 + � je
−�j/2, g2j =

2� j − � − �� j

2
e�j/2 + � j

2� j − � + �� j

2
e−�j/2,

Kj =
g2j

g1j
= �� j −

� + �� j

2
� +

� j
�� j

e�j + � j
,

here j=1,2 ,3 ,4. By using the first formula in �4.4� we get

q̃ = q +
2��1 − �2�
h22

h12
−

h21

h11

= e��1 +
2��2 − �1�

K1 − K2
� , �4.23�

q̃̃ = q̃ +
2��3 − �4�

h̃22

h̃12

−
h̃21

h̃11

= e��1 +
2��2 − �1�

K1 − K2
+

2��4 − �3�
R3 − R4

� , �4.24�

here

Rj =
��2 − �1�g21g22g1j + �� j − �2�g11g22g2j − �� j − �1�g12g21g2j

�� j − �1�g11g22g1j − �� j − �2�g12g21g1j + ��1 − �2�g11g12g2j

=
��2 − �1�K1K2 + �� j − �2�K2Kj + ��1 − � j�KjK1

�� j − �1�K2 + ��2 − � j�K1 + ��1 − �2�Kj
, j = 3,4.

Due to Theorem 2.4 and Theorem 2.1, formulas �4.23�, �4.24� yield solutions of the 2-CH
ystem. When the parameters involved are chosen appropriately we can get multisoliton solutions.

Example 4.2: Formula �4.23� is written as

q̃ = e��1 +
2��2 − �1�

�1 − �2 −
1

2
���1 − ��2� +

�1
��1

e�1 + �1
−

�2
��2

e�2 + �2
� . �4.25�

y a careful analysis of the parameters, we know that

� � � � 0, �1 � �2 �
1

2
�� + ��2 − �2�, �1  0, �2 � 0 �4.26�

s a sufficient condition for both q̃ and q̃s being identically positive. Under this condition formula

4.25� gives a 2-soliton solution of the 2-CH system. If we change �4.26� by setting �2=0, then
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q̃	�2=0 = e��1 +
4��2 − �1��e�1 + �1�

�2��1 − �2� − ���1 − ��2��e�1 + �1�2��1 − �2� + ��1 + ��2�
� �4.27�

ives a solitary wave solution of the 2-CH system. With a little further argument, we know that
ormula �4.27� yields a traveling wave solution of the 2-CH system. It corresponds to the case
2−�2�0 of �3.9�. This also implies that the solitary wave solutions given by �3.10� are smooth.

From formula �4.24� we can obtain 3-soliton or 4-soliton solutions of the 2-CH system
henever the parameters are appropriately chosen. See Fig. 2.

. CONCLUSION

Theorem 2.1 and Theorem 2.4 provide a simple method to find parametric solutions of the
-CH system �1.2�, �1.3� from solutions of the first negative flow �2.12�, �2.13� of the AKNS
ierarchy. We have shown that apart from the peakon and multikink solutions, the 2-CH system

FIG. 2. 3-soliton solution of 2-CH by �4.24� with �=1/2 ,�=1,�1=2 ,�2=1 ,�3=5 ,�4=3 ,�1=−1,�2=1 ,�3=0 ,�4=1.
lso possesses n-soliton solutions for n�4. We expect that for any positive integer n, the n-soliton
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olution of the 2-CH system can also be obtained by using the Darboux transformation given in
roposition 4.1, with the seed solution �4.15�, �4.16� and appropriately chosen parameters in-
olved in the Darboux transformation.
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The purpose of this paper is to compute the Drinfel’d polynomials for two types of
evaluation representations of quantum affine algebras at roots of unity and con-
struct those representations as the submodules of evaluation Schnizer modules.
Moreover, we obtain the necessary and sufficient condition for that the two types of
evaluation representations are isomorphic to each other. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2235047�

. INTRODUCTION

For a generic q, let Uq�g� be the quantum algebra associated with a simple Lie algebra g and

q�g̃� be the nontwisted quantum loop algebra of g. It is known that every finite-dimensional
rreducible Uq�g� �respectively, Uq�g̃�� modules are highest-weight module and classified by high-
st weights. Moreover, there exists one to one correspondence from the set of their highest weights
o Z+

n �respectively, polynomials C0�t�n�, where Z+ª �0,1 ,2 , . . . � �respectively, C0�t�ª �P
C�t� � P is monic and P�0��0��. The theory of finite-dimensional Uq�g̃�-modules is introduced

n Ref. 10. We denote the Uq�g� �respectively, Uq�g̃�� module corresponding to ��Z+
n �respec-

ively, P�C0�t�n� by Vq��� �respectively, Vq�P��, where the polynomial P of Ṽq�P� is called
Drinfel’d polynomial.”

In the case g=sln+1, there exist C-algebra homomorphisms eva
+, eva

−: Uq�sl˜

n+1�→Uq�sln+1�
or a�C� �see Refs. 17 and 8�. By using these homomorphisms, we can regard Vq��� as a

q�sl˜

n+1�-module, which are called “evaluation representations” and denoted by Vq���a
±. By the

lassification theorem of finite-dimensional Uq�sl˜

n+1�-modules, �Ref. 10� there exists a unique

olynomial Pa
±�C0�t�n such that Vq���a

± is isomorphic to Ṽq�Pa
±� as a Uq�sl˜

n+1�-module. The
rinfel’d polynomials Pa

± are computed by Chari and Pressley in Ref. 8. In this paper we shall
onsider evaluation representations at roots of unity.

Let � be a primitive lth root of unity. The representation theory of quantum algebras at roots
f unity is divided into two types. One is for U��g�, U��g̃� defined by De Concini-Kac
=nonrestricted type� in Ref. 13 and the other is for U�

res�g�, U�
res�g̃� defined by Lusztig �=restricted

ype� in Ref. 18.
U�

res�g� �respectively, U�
res�g̃� has the C-subalgebra U�

fin�g� �respectively, U�
fin�g̃�� which is

alled “small quantum algebra.” By the tensor product theorem �see Refs. 18 and 11�, in order to
nderstand the representation theory of U�

res�g� �respectively, U�
res�g̃��, we may consider the one of

�
fin�g� �respectively, U�

fin�g̃��. Indeed, every finite-dimensional irreducible U�
fin�g� �respectively,

�
fin�g̃�� module is a highest-weight module and classified by highest weight. Moreover, there

xists one to one correspondence from the set of their highest weights to Zl
n �respectively, poly-

omials Cl�t�n�, where Zlª �0,1 , ¯ , l−1� �respectively, Cl�t�ª �P
C0�t� � P is not divisible by �1−ctl� for any c�C���. We denote the U�

fin�g� �respectively,

�
fin�g̃�� module corresponding to ��Zl

n �respectively, P�Cl�t�n� by V�
fin��� �respectively, Ṽ�

fin�P��.

�Electronic mail: yu-abe@sophia.ac.jp
�
Electronic mail: toshiki@mm.sophia.ac.jp
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We also obtain the evaluation representations of V�
fin��� in the case of U�

fin�sl˜

n+1�. We denote
hem by V�

fin���a
±. We can compute the Drinfel’d polynomials of V�

fin���a
± by a similar method to

ef. 8 �see Theorem 4.13 in this paper�. Moreover, for a±�C�, we shall show that V�
fin���a+

+ is
somorphic to V�

fin���a−

− if and only if

a+ = a−�2��k=1
i−1

�k−�k=i+1
n �k+i� for all i � supp��� , �1.1�

here supp���ª �1� i�n ��i�0�. If q is generic, condition �1.1� never occurs for #�supp����
1. But, in this case, there exists ��Zl

n which satisfies �1.1� for #�supp�����1 �see Propositions
.14, 4.15�.

On the other hand, many finite-dimensional irreducible U��g� �respectively, U��g̃�� modules
re no longer highest- or lowest-weight modules and they are characterized by several continuous
arameters �see Refs. 13 and 6�. For g=sln+1, such U��sln+1�-modules are constructed explicitly
n Ref. 12, which are called “maximal cyclic representation.” For an arbitrary simple Lie algebra
, Schnizer introduced an alternative construction of such U��g�-modules in Refs. 23 and 24,
hich we call “Schnizer modules.”

By using the theory of the quantum algebra of restricted type, we obtain that every finite-
imensional irreducible “nilpotent” U��sln+1�-modules are highest-weight module and classified
y highest weight �see Secs. III D and V B�. Moreover, there exists one to one correspondence
rom the set of their highest weights to Zl

n �respectively, Cl�t�n�. We denote the U��sln+1� �respec-

ively, U��sl˜

n+1�� module corresponding to ��Zl
n �respectively, P�Cl�t�n� by V�

nil��� �respec-

ively, Ṽ�
nil�P��. We also obtain the evaluation representations of V�

nil���, which are denoted by

�
nil���a

±. The module V�
nil���a

± is regraded as a U�
fin�sl˜

n+1�-module and V�
nil���a

± is isomorphic to

�
fin���a

± as a U�
fin�sl˜

n+1�-module �see Sec. V B�. Therefore, for a±�C�, we obtain

V�
nil���a+

+ is isomorphic to V�
nil���a−

− if and only if �1.1� holds. �1.2�

We can also prove �1.2� without using the theory of the quantum algebra of restricted type. In
ef. 22, T.N. showed that one can construct V�

nil��� as the subrepresentation of a maximal cyclic
epresentation by specializing their parameters properly for type A. Similarly, in Ref. 2, we found
hat we can construct V�

nil��� as a submodule of a Schnizer module if g=A, B, C, or D, and then
e can construct V�

nil���a
± as the submodule of evaluation of a Schnizer module. By using this fact,

e can prove �1.2� �see Sec. V alternative proof of Proposition 5.11�b��.
The organization of this paper is as follows. In Sec. II, we introduce basic properties of

uantum algebras for generic q. In Sec. III, we introduce quantum algebras at roots of unity of
onrestricted type and restricted type. Moreover, we prove the isomorphisn theorem of these
lgebras. In Sec. IV �respectively, Sec. V�, we discuss the evaluation representations of restricted
respectively, nonrestricted� type.

I. QUANTUM ALGEBRAS „GENERIC CASE…

. Notations

We fix the following notations �see Refs. 3 and 6�. Let sln+1 be the finite-dimensional simple

ie algebra over C of type An and sl˜

n+1=sln+1 � C�t , t−1� be the loop algebra of sln+1. We set I

�1,2 , . . . ,n� and Ĩª I� �0�. Let �ai,j�i,j�Ĩ be the generalized Cartan matrix of sl˜

n+1, that is,

i,i=2, ai,j =−1 if �i− j�=1 or n, and ai,j =0 otherwise. Then �ai,j�i,j�I is the Cartan matrix of sln+1.

et �ª ��i�i�I �respectively, �̃ª ��i�i�Ĩ� be the set of the simple roots of sln+1 �respectively,

ln+1� and �Ú
ª ��i

Ú�i�I �respectively, �̃Ú
ª ��i

Ú�i�Ĩ� be the set of the simple coroots of sln+1

respectively, sl˜

n+1�. Let h be the Cartan subalgebra of sln+1 and h* be the C-dual space of h.
hen �Ú �respectively, �� is a C-basis of h �respectively, h*�. We have a C-bilinear map 	,
: h*

Ú

h→C such that 	� j ,�i 
=ai,j for any i , j� I. Define the root lattice Qª� i�IZ�i �respectively,
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he coroot lattice QÚ
ª� i�IZ�i

Ú� and the affine root lattice Q̃ªZ�0 � Q �respectively, the affine

oroot lattice Q̃Ú
ªZ�0

Ú
� QÚ�. For i� I, we define the fundamental weights ��i�i�I�h* by

�i ª
1

n + 1��n − i + 1��
k=1

i

k�k + i �
k=i+1

n

�n − k + 1��k� . �2.1�

imilarly, we define the fundamental coweights ��i
Ú�i�I�h by replacing � in �i with �Ú. Then we

ave 	�i ,� j
Ú
=	i,j �respectively, 	� j ,�i

Ú
=	i,j� for any i , j� I. Define the weight lattice
Pª� i�IZ�i �respectively, the coweight lattice PÚ

ª� i�IZ�i
Ú� and define a symmetric bilinear

orm �,�: h*�h*→C determined by ��i ,� j�=ai,j for any i , j� I.
Let 
 �respectively, 
+� be the set of roots �respectively, positive roots� of sln+1 and �

�i�I�i be the highest root in 
. We set 	ª�0+�. Let 
̃ be the affine root system of sl˜

n+1. Then

e have 
̃= 
̃re� 
̃im, where


̃re
ª �� + n	�� � 
,n � Z�, 
im

ª �n	�n � Z�
ª �Z \ �0��� ,

nd 
̃= 
̃+� �−
̃+�, where


̃+ ª 
̃+
re � 
̃+

im, 
̃+
re
ª �� + n	�� � 
,n � N ª �1,2, . . . �� � 
+, 
̃+

im
ª �n	�n � N� .

oreover, we set


̃+
im�I� ª I � 
̃�

im = ��i,n	��i � I,n � N�, 
̃+�I� ª 
̃+
re � 
̃+

im�I� ,


̃im�I� ª ��i,n	��i � I,n � Z��, 
̃�I� ª 
̃re � 
̃im�I� .

For i� Ĩ, let si be the simple reflection on h*, that is, si���=�− 	� ,�i
Ú
�i for any ��h*. The

ffine Weyl group W̃ of sl˜

n+1 �respectively, Weyl group W of sln+1� is generated by �si�i�Ĩ

respectively, �si�i�I�. For x�h, we define tx :h*→h* by tx���=�− 	� ,x
	 and set TPÚª �tx �x
PÚ�, TQÚª �tx �x�QÚ�. Consider the extended affine Weyl group ŴªW�̃TPÚ, where the struc-

ure of the semi-direct product is given by �s , tx��s� , ty�= �ss� , ts�−1xty� for any s ,s��W, and x ,y

PÚ. We set Tª �� : Ĩ→ Ĩ ;permutation �a��i�,��j�=ai,j for any i , j� Ĩ� and define the semi-direct

roduct T�̃W̃ by �si�
−1=s��i� for ��T, i� Ĩ. It is known that ŴT�̃W̃ and W̃W�̃TQÚ. In

articular, the latter isomorphism is given by si� �si , idh*� for i� I and s0� �s� , t�Ú�, where �Ú

�i�I�i
Ú. The length of an element �w�Ŵ���T ,w�W̃� is given by lW̃��w�ª lW̃�w�, where lW̃

s the length function of W̃.
Let q be an indeterminate. For r�Z, m�N, we define q-integers and Gaussian binomial

oefficients in the rational function field C�q� by

�r� ª
qr − q−r

q − q−1 , �m�! ª �m��m − 1� ¯ �1�, � r

m
�ª

�r��r − 1� ¯ �r − m + 1�
�1��2� ¯ �m�

.

imilarly, for c�C �c�0, ±1�, we define

�r�c ª
cr − c−r

c − c−1 , �m�c! ª �m�c�m − 1�c ¯ �1�c, � r

m
�

c
ª

�r�c�r − 1�c ¯ �r − m + 1�c

�1�c�2�c ¯ �m�c
.

e set �0�!ª �0�c!ª1.
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. Definitions

Definition 2.1: The quantum loop algebra ŨqªUq�sl˜

n+1� �respectively, the quantum algebra

qªUq�sln+1�, the extended quantum algebra Uq�ªUq��sln+1�� is an associative C�q�-algebra gen-

rated by �Ei, Fi, K � i� Ĩ �respectively, i� I, i� I�, � Q̃ �respectively, �Q, � P�� with the
elations

KK� = K+�, K0 = 1, K�0
= K�

−1,

KEjK
−1 = q�,�j�Ej, KFjK

−1 = q−�,�j�Fj ,

EiFj − FjEi = 	i,j

K�i
− K�i

−1

q − q−1 ,

�
r=0

1−aij

�− 1�rEi
�r�EjEi

�1−ai,j−r� = �
r=0

1−aij

�− 1�rFi
�r�FjFi

�1−ai,j−r� = 0, i � j ,

here

Ei
�r�
ª

1

�r�!
Ei

r, Fi
�r�
ª

1

�r�!
Fi

r �r � Z+ ª �0,1,2, . . . �� .

Let Ũq
+ �respectively, Ũq

−, Ũq
0� be the C�q�-subalgebra of Ũq generated by �Ei�i�Ĩ �respectively,

Fi�i�Ĩ, �K��Q�. Similarly, let Uq
+ �respectively, Uq

−, Uq
0� be the C�q�-subalgebra of Uq generated

y �Ei�i�I �respectively, �Fi�i�I, �K��Q�.
It is well known that Ũq �respectively, Uq� have a Hopf algebra structure and its comultipli-

ation is given by


�Ei� = Ei � 1 + K�i
� Ei, 
�Fi� = Fi � K�i

−1 + 1 � Fi, 
�K� = K � K,

here i� Ĩ �respectively, I�, �Q.

We have a C-algebra anti-automorphism � : Ũq→ Ũq and a C�q�-algebra anti-automorphism

: Ũq→ Ũq such that

��q� = q−1, ��Ei� = Fi, ��Fi� = Ei, ��K� = K
−1, �2.2�

��Ei� = Ei, ��Fi� = Fi, ��K� = K
−1, �2.3�

or i� Ĩ, �Q. Let Ti be the C�q�-algebra automorphism of Ũq introduced by Lusztig �Ref. 21,
hap. 37�:

Ti�Ei
�m�� = �− 1�mq−m�m−1�Fi

�m�K�i

m , Ti�Fi
�m�� = �− 1�mqm�m−1�K�i

−1Ei
�m�,

Ti�Ej
�m�� = �

r=0

−mai,j

�− 1�r−mai,jq−rEi
�−mai,j−r�Ej

�m�Ei
�r� �i � j� ,

Ti�Fj
�m�� = �

−mai,j

�− 1�r−mai,jqrFi
�r�Fj

�m�Fi
�−mai,j−r� �i � j� ,
r=0
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Ti�K� = Ksi��, �2.4�

here i� Ĩ, m�N, �Q. For ��T, we define Ũq-automorphism T� by

T��Ei� ª E��i�, T��Fi� ª F��i�, T��K�i

±1� ª K���i�

±1 �i � Ĩ� . �2.5�

e obtain that

Ti
−1 = �Ti�

−1, Ti� = �Ti, T�� = �T�. �2.6�

et w�Ŵ and w=�si1
¯sim

���T , i1 , . . . , im� Ĩ ,m�N� be a reduced expression of w. Then Tw

T�Ti1
¯Tim

is a well-defined Ũq-automorphism, that is, Tw does not depend on the choice of
educed expression of w.

. Drinfel’d realization

It is known that Ũq has another realization which is called Drinfel’d realization.
Definition 2.2 (Ref. 14): Let Dq be an associative C�q�-algebra generated by �Xi,r

± ,Hi,s ,K � i
I ,r ,s�Z ,s�0,�Q� with the relations

KK� = K+�, K0 = 1, �K,Hj,s� = �Hi,r,Hj,s� = 0,

KXi,r
± K

−1 = q±�,�i�Xi,r
± , �Hj,s,Xi,r

± � = ±
�rai,j�

r
Xi,r+s,

Xi,r+1
± Xj,s

± − q±ai,jXj,s
± Xi,r+1

± = q±ai,jXi,r
± Xj,s+1

± − Xj,s+1
± Xi,r

± ,

�Xi,r
+ ,Xj,s

− � = 	i,j
�i,r+s

+ − �i,r+s
−

q − q−1 ,

�
��Sm

�
k=0

m

�− 1�k�m

k
�Xi,r��1�

±
¯ Xi,r��1�

± Xj,s
± Xi,r��k+1�

±
¯ Xi,r��m�

± = 0 �i � j� ,

or r1 , . . . ,rm�Z, where mª1−ai,j, Sm is the symmetric group on m letters, and �i,r
± are deter-

ined by

�
r=0

�

�i,±r
± u±r

ª K�i

±1 exp�±�q − q−1��
s=1

�

Hi,±su
±s� ,

nd �i,±r
±

ª0 if r�0.

For i� I, let t�i
Ú =�sj1

¯sjr
���T , j1 , ¯ jr� Ĩ� be a reduced expression of t�i

Ú �see Sec. II A�.
hen we set T�i

ÚªT�Tj1
¯Tjr

.

Theorem 2.3 (Ref. 3): There exists a C�q�-algebra isomorphism T :Dq→ Ũq such that

T�Xi,r
+ � = �− 1�irT

�i
Ú

−r �Ei�, T�Xi,r
− � = �− 1�irT

�i
Ú

r �Fi� �i � I,r � Z� . �2.7�

In particular, by Ref. 3, Sec. 4 Remark and Ref. 8, Sec. 2.5, we obtain the inverse map of T:

T−1�Ei� = Xi,0
+ , T−1�Fi� = Xi,0

− , T−1�K� = K,

T−1�E � = �− 1�m+1qn+1�X− , ¯ �X− ,�X− , ¯ �X− X− � −1 ¯ � −1��K−1,
0 n,0 m+1,0 i,0 m−1,0 m,1 q q �
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T−1�F0� = �− 1�m+n�Xn,0
+ , ¯ �Xm+1,0

+ ,�X1,0
+ , ¯ �Xm−1,0

+ ,Xm,−1
+ �q−1 ¯ �q−1��K�, �2.8�

or m , i� I, where �u ,v�q±1ªuv−q±1vu for u ,v� Ũq �T is independent of the choice of m�. We

dentify Dq with Ũq by this isomorphism T.

. PBW basis

Let w0 be the longest element in W and w0=si1
¯siN

be a reduced expression of w0. We set

1ª�i1
, �2ªsi1

��i2
� , . . . ,�Nªsi1

¯siN−1
��iN

�. By the theory of the classical Lie algebra, we have

+= ��1 , . . . ,�N�. Define the root vectors in Uq by

Ē�k
ª Ti1

, ¯ Tik−1
�E�ik

�, F̄�k
ª ��E�k

� , �2.9�

or 1�k�N, where E�i
ªEi, F�i

ªFi�i� I�. We set

Z+

+

ª �c:
+ → Z+;map�, Bq
0
ª �K� � Q� ,

Bq
+
ª � �

��
+

�

Ē�
c����c � Z+


+�, Bq
−
ª ��Bq

+�, Bq ª Bq
−Bq

0Bq
+, �2.10�

here � means that the product is ordered by �1� ¯ ��N.
Theorem 2.4 (Ref. 19, Sec. 1): Bq

� �respectively, Bq� is a C�q�-basis of Uq
� �respectively, Uq�

or �� �−,0 , + �.
The following notations and facts are given in Ref. 5. Let �Ú

ª

1
2���
+

�Ú��PÚ� and t2�Ú

sj1
¯sjÑ

be a reduced expression of t2�Ú�2�Ú�QÚ�. Define the doubly infinite sequence

. . . , i−1 , i0 , i1 , . . . � by ikª jk� if k�k� �mod Ñ� for all k�Z, 1�k�� Ñ. We set

�k ª si0
si−1

¯ sik+1
��ik

� �k � 0� �k ª si1
si2

¯ sik−1
��ik

� �k � 0� .

hen we have 
̃+
re= ��k�k�Z. Define a total order on 
̃+�I� by

�0 � �−1 � �−2 � ¯ � �1,	� � ¯ � �n,	� � �1,2	� � ¯ � �n,2	� � ¯ � �2 � �1.

�2.11�

e set E�i
ªEi, F�i

ªFi �i� Ĩ�. Define the positive real root vectors in Ũq by

E�k
ª Ti0

−1Ti−1

−1
¯ Tik+1

−1 �E�ik
� �k � 0� E�k

ª Ti1
Ti2

¯ Tik−1
�E�ik

� �k � 0� , �2.12�

nd the positive imaginary root vectors E�i,r	� by

exp��q − q−1��
s=1

�

E�i,s	�u
k�ª 1 + �

s=1

�

�q − q−1�Ê�i,s	�u
k, �2.13�

here Ê�i,s	�ªE−�i+s	Ei−q−2EiE−�i+s	 for i� I, s�N. Define the negative root vectors by F�

��E�� for �� 
̃+�I�. We set

Z+

̃+�I�

ª �c:
̃+�I� → Z+;map� # �c��� � 0� � ��, B̃q
0
ª �K� � Q� ,

B̃q
+
ª� �

��
̃+�I�

�

E�
c����c � Z+


̃+�I��, B̃q
−
ª ��B̃q

+�, B̃q ª B̃q
−B̃q

0B̃q
+, �2.14�
here � is the total order as in �2.11�.
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Theorem 2.5 (Ref. 4): B̃q
� �respectively, B̃q� is a C�q�-basis of Ũq

� �respectively, Ũq� for
� �−,0 , + �.

By Ref. 5 Lemma 1.5, we obtain

Xi,r
+ = �− 1�irE�i+r	 �r � 0�, Xi,r

+ = �− 1�ir−1F−�i−r	Ki
−1 �r � 0� ,

Xi,r
− = �− 1�ir−1KiE−�i+r	 �r � 0�, Xi,r

− = �− 1�irF�i−r	 �r � 0� ,

Hi,s = �− 1�isE�i,s	�, �i,s
+ = �− 1�is�q − q−1�KiÊ�i,s	�, �2.15�

or i� I, r�Z, s�N.

. Evaluation homomorphisms

There exists a C�q�-algebra homomorphism Uq�sln+1�→Uq�sl˜

n+1� such that

Ei � Xi,0
+ , Fi � Xi,0

− , K � K, �2.16�

or i� I, �Q. Moreover, for m� I, 0�k�n−m, there exists a C�q�-algebra homomorphism

q�sl˜

m+1�→Uq�sl˜

n+1� such that

Xi,r
± � Xi+k,r

± , Hi,s � Hi+k,s, K�i
� K�i+k

, �2.17�

or 1� i�m, r, s�Z�s�0�. Hence we can regard any Uq�sl˜

n+1�-module as a Uq�sln+1�-module

nd Uq�sl˜

m+1�-module. Let Uq��sln+1� be the extended quantum algebra in Definition 2.1. By the

ollowing proposition, we can regard any Uq��sln+1�-module as a Uq�sl˜

n+1�- module.
Proposition 2.6: (Ref. 17, Sec. 2, Ref. 8, Proposition 3.4): For any a�C�, there exist

�q�- algebra homomorphisms eva
±: Uq�sl˜

n+1�→Uq��sln+1� such that

eva
±�Ei� = Ei, eva

±�Fi� = Fi, eva
±�K� = K,

eva
+�E0� = q−1aK�1

K�n

−1�Fn,�Fn−1, . . . ,�F2,F1�q−1 ¯ ��q−1,

eva
−�E0� = q−1aK�1

−1K�n
�F1,�F2, . . . ,�Fn−1,Fn�q−1 ¯ ��q−1,

eva
+�F0� = �− 1�n−1qna−1K�1

−1K�n
�En,�En−1, . . . ,�E2,E1�q−1 ¯ ��q−1,

eva
−�F0� = �− 1�n−1qna−1K�1

K�n

−1�E1,�E2, . . . ,�En−1,En�q−1 ¯ ��q−1,

or i� I and � P. By �2.4� and �2.6�, we obtain

eva
+�E0� = q−naK�1

K�n

−1T1
−1
¯ Tn−1

−1 �Fn�, eva
−�E0� = q−naK�1

−1K�n
Tn

−1
¯ T2

−1�F1� ,

eva
+�F0� = qna−1K�1

−1K�n
T1

−1
¯ Tn−1

−1 �En�, eva
−�F0� = qna−1K�1

K�n

−1Tn
−1
¯ T2

−1�E1� . �2.18�

II. QUANTUM ALGEBRAS AT ROOTS OF UNITY

In the rest of this paper, we fix the following notations. Let l be an odd integer greater than 2
nd � be a primitive lth root of unity. Moreover, we assume gcd�l ,n+1�=1. By Ref. 6 Lemma 2.1
nd Corollary 2.1, we obtain that gcd�l ,n+1�=1 if and only if det��kai,j��i,j�I�0 for any k�Z

uch that k�0 mod l.
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. Quantum algebras of nonrestricted type

Let AªC�q ,q−1� be the Laurent polynomial ring and ŨA �respectively, UA� be the

-subalgebra of Ũq �respectively, Uq� generated by �Ei ,Fi ,K�j
, �K�j

;0� � i� Ĩ �respectively,

i� I� , j� I�, where �K�j
;0�ª �K�j

−K�j

−1� / �q−q−1� for j� I. Let ŨA
+ �respectively, ŨA

− , ŨA
0 � be the

-subalgebra of ŨA generated by �Ei�i�Ĩ �respectively, �Fi�i�Ĩ, �K�i
, �K�i

;0��i�I� and UA
+ �respec-

ively, UA
− , UA

0 � be the A-subalgebra of UA generated by �Ei�i�I �respectively, �Fi�i�I,

K�i
, �K�i

;0��i�I�. We have triangular decompositions ŨA= ŨA
− ŨA

0 ŨA
+ and UA=UA

− UA
0 UA

+ . We set

B̃A
+
ª B̃q

+, B̃A
−
ª B̃q

−, B̃A
0
ª ��

i�I

K�i

	i�K�i
;0�mi�mi � Z+,	i = 0 or 1�, B̃A ª B̃A

− B̃A
0 B̃A

+ ,

BA
+
ª Bq

+, BA
− = Bq

−, BA
0
ª ��

i�I

K�i

	i�K�i
;0�mi�mi � Z+,	i = 0 or 1�, BA ª BA

− BA
0 BA

+ .

We have Ti�ŨA�� ŨA by �2.4� and Ti
−1�ŨA�� ŨA by �2.6� for i� I. Hence, by �2.12� and

2.15�, we have E�, F�, Xi,r
± , Hi,s� ŨA for all �� 
̃+�I�, i� I, r, s�Z�s�0�. Similarly, we obtain

i
±1�UA��UA and Ē�, F̄��UA for all ��
+ by �2.9�. Thus we obtain B̃A

� , B̃A� ŨA and BA
� ,

A�UA ��� �−,0 , + ��.
Proposition 3.1: BA

� �respectively, BA� is an A-basis of UA
� �respectively, UA� for �� �−,0 ,

�.
Proof: By Theorem 2.4, Bq

� �respectively, Bq� is C-linearly independent in Uq
� �respectively,

q� for �� �−,0 , + �. Thus BA
� �respectively, BA� is A-linearly independent in UA

� �respectively,

A�. Let VA
� �respectively, VA� be the A-subalgebra of UA

� �respectively, UA� generated by BA
�

respectively, BA�. It is enough to prove that UA
� VA

� �VA
� for all �� �−,0 , + �. Indeed, if we can

rove this claim, then we obtain UA
� =VA

� and UA=UA
− UA

0 UA
+ =VA

− VA
0 VA

+ =VA. So UA
� �respectively,

A� is generated by BA
� �respectively, BA� as A-module.

By the following formula, we have K�i

±1��i�IK�i

	i�K�i
;0�mi��VA

0 for all i� I, mi�Z+:

K�i

2 = K�i
�K�i

− K�i

−1� + 1 = �q − q−1�K�i
�K�i

;0� + 1 � VA
0 ,

K�i

−1 = K�i
− �K�i

− K�i

−1� = K�i
− �q − q−1��K�i

;0� � VA
0 .

hus we obtain UA
0 VA

0 �VA
0 . By Ref. 13 Lemma 1.7, we get the following formula: for �, �


+ such that ���,

E�E� = �
c�Z+


+

ac �
��
+

�

E�
c���,

here ac�A. So we obtain the case of �=+. Similarly, by using the automorphism � �see �2.2��,
e obtain the case of �=−. �

By Ref. 6 Proposition 1.7�c�, we obtain the following formula: for � ,�� 
̃+�I� such that �
�,

E�E� = q��,��E�E� + �
���1�¯��m��

c�E�1

a1
¯ E�m

am ,

here c��A for �= ��1 , . . . ,�m�� 
̃+�I�m. So, in a similar way to the proof of Proposition 3.1, we
btain the following proposition.

Proposition 3.2: B̃A
� �respectively, B̃A� is an A-basis of ŨA

� �respectively, ŨA� for �� �−,0 ,

�.
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Now we define the quantum algebras of nonrestricted type. We regard C as A-module by
�q� .cªg���c for g�q��A, c�C and denote it by C�. We define

Ũ� ª ŨA�AC� �respectively, U� ª UA�AC�� .

hen we call Ũ� �respectively, U�� “quantum loop algebra �respectively, quantum algebra� of

onrestricted type �or De Concini-Kac type�” �see Refs. 6 and 13�. For �� �−,0 , + �, we set Ũ�
�

ŨA
�

�A1 �respectively, U�
�
ªUA

�
�A1�. We simply denote u � 1 by u for u� ŨA �respectively,

A�.
Remark 3.3: �a� In Ref. 6 �respectively, Ref. 13�, Ũ� �respectively, U�� is defined by Ũ�

ŨA� / �q−��ŨA� �respectively, U�ªUA / �q−��UA�, where A�
ª �g�q�

C�q� �g�q� has no poles at q=����A� and �q−��ŨA� �respectively, �q−��UA� is the two-sided

deal of C-algebra ŨA� �respectively, UA� generated by �q−��. But, by the universality of tensor
roduct, we obtain

ŨA�AC�  ŨA/�q − ��ŨA  ŨA�/�q − ��ŨA� �as C-algebra� ,

UA�AC�  UA/�q − ��UA  UA�/�q − ��UA� �as C-algebra� .

�b� Ũ� �respectively, U�� is the associative algebra over C on generators �Ei ,Fi ,K � i� Ĩ

respectively, I�, � Q̃ �respectively, Q�� and defining relations in Definition 2.1 replaced q by �
see Ref. 6, Sec. 1.9 and Ref. 13, Sec. 1.5�.

We set B̃�
�
ª B̃A�A1 ��� �−,0 , + ��. Similarly, we define B̃�, B�

� and B�.

Lemma 3.4: Let �v j� j be an A-basis in ŨA �respectively, UA�. Then �v j + �q−��ŨA� j �respec-

ively, �v j + �q−��UA� j� is a C-basis of ŨA / �q−��ŨA �respectively, UA / �q−��UA�.
Proof: ŨA / �q−��ŨA is spanned by �v j + �q−��ŨA� j as C-vector space. So we shall prove that

v j + �q−��ŨA� j is linearly independent over C in ŨA / �q−��ŨA. We assume that � jcj�v j + �q
��ŨA�=0 �cj �C ,#�j �cj�0����. Then � jcjv j � �q−��ŨA. Since ŨA is generated by �v j� j as an
-module, there exist cj,m�C�m�Z ,#��j ,m� �cj,m�0���� such that � jcjv j = �q−��� j,mcj,mqmv j

n ŨA. Since �v j� j is linearly independent over A in ŨA, we obtain cj = �q−���m�Zcj,mqm for all j.
herefore we obtain cj =cj,m=0 for any j and m. Similarly, we obtain the case of UA. �

By this lemma, Proposition 3.2, and Remark 3.3�a�, we obtain the following proposition.

Proposition 3.5: B̃�
� �respectively, B̃�� is a C-basis of Ũ�

� �respectively, Ũ�� for �� �−,0 , + �.
The classical case of this proposition is given in Ref. 13, Sec. 1.7.
Proposition 3.6: B�

� �respectively, B�� is a C-basis of U�
� �respectively, U�� for �� �−,0 , + �.

Let Z�Ũ�� �respectively Z�U��� be the center of Ũ� �respectively, U�� and Z̃0 �respectively, Z0�
e the C-subalgebra of Ũ� �respectively, U�� generated by �E�

l ,F�
l ,E�i,sl	� ,F�i,sl	� ,K

l ��� 
̃+
re , i

I ,s�N ,�Q� �respectively, �Ē�
l , F̄�

l ,K
l ���
+ ,�Q��.

Proposition 3.7 (Ref. 6, Lemma 2.2, Proposition 2.3): Z̃0=Z�Ũ�.
Proposition 3.8 (Ref. 13, Corollary 3.1): Z0�Z�U��.
For m�N, we set Zmª �0,1 , . . . ,m−1��Z+ and Qmª� i�IZm�i. Let I� be the two-sided ideal

f U� generated by �Ē�
l , F̄�

l ,K
2l−1 ���
+ ,�Q� and set �U� / I���

ª �u+ I� �u�U�
���U� / I� for

� �−,0 , + �. We set

Zl

+

ª �c:
+ → Zl;map�, Bl
+
ª �� �

��
+

�

Ē�� + I��� � Zl

+� ,

− + 0 − 0 +
Bl ª ��Bl �, Bl ª �K + I�� � Q2l�, Bl ª Bl Bl Bl . �3.1�
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Proposition 3.9: Bl
� �respectively, Bl� is a C-basis of �U� / I��� �respectively, U� / I�� for

� �−,0 , + �.
Proof: We shall prove that Bl

+ is a C-basis of �U� / I��+. We can also prove the other cases
imilarly. Let Vl

+ be the C-subspace of �U� / I��+ spanned by Bl
+ and u+ I�� �U� / I��+. By Theorem

.4, there exist ac�C�c�Z+

+� such that u+ I�=�c�Z

+

+ac���
+

� Ē�
c���+ I�. If c is an element in

+

+ \Zl


+, then there exists �0�
+ such that c��0�� l. Then we have ���
+

� Ē�
c���� I�. Hence u

I�=�c�Z
l

+ac���
+

� Ē�
c���+ I��Vl

+. So �U� / I��+ is spanned by Bl
+.

Let u=�c�Z
l

+ac���
+

� Ē�
c����U�

+�ac�C ,c�Zl

+�. We assume u+ I�=0 in �U� / I��+. Then we

ave u� I��U�
+. By Theorem 2.4, we obtain

I� � U�
+ = � �

��
+

U�Ē�
l + �

�Q

U��K
2l − 1� + �

��
+

U�F̄�
l � � U�

+ = �
��
+

U�
+Ē�

l .

ence there exists u�=�c��Z
+

+bc����
+

� Ē�
c�����U�

+�bc��C ,c��Zl

+� such that u=���
+

u�Ē�
l .

ince Ē�
l is a central element in U� �see Proposition 3.8�, we have

�
��
+

u�Ē�
l � �

c�Z+

+\Zl


+

C� �
��
+

�

Ē�
c���� .

hus, by Proposition 3.6, we get ac=0 for any c�Zl

+. Therefore Bl

+ is linearly independent in
U� / I��+.

Let Ĩ� be the two-sided ideal of Ũ� generated by �E�
l ,F�

l ,E�i,sl	� ,F�i,sl	� ,K
2l−1 ��� 
̃+

re , i

I ,s�N ,�Q� and set �Ũ� / Ĩ���
ª �u+ Ĩ� �u� Ũ�

�� for �� �−,0 , + �. We define

Zl

̃+�I�

ª �c � Z+

̃+�I��c��� � Zl,c��i,sl	�� = 0�� � 
̃+

re,i � I,s � N�� ,

B̃l
+
ª� �

��
̃+�I�

�

E�
c��� + Ĩ��c � Zl


̃+�I��, B̃l
−
ª ��B̃l

+� ,

B̃l
0
ª �K + Ĩ�� � Q2l�, B̃l ª B̃l

−B̃l
0B̃l

+. �3.2�

hen, by Theorem 2.5 and Proposition 3.7, we obtain the following proposition.

Proposition 3.10: B̃l
� �respectively, B̃l� is a C-basis of �Ũ� / Ĩ��� �respectively, �Ũ� / Ĩ��� for �

�−,0 , + �.
The proof of this proposition is similar to the one of Proposition 3.9.

. Quantum algebras of restricted type

Let ŨA
res �respectively, UA

res� be the A-subalgebra of Ũq �respectively, Uq� generated by

Ei
�m� ,Fi

�m� ,K � i� Ĩ �respectively, I�, m�N ,�Q�. We set

�K�i
;r

m
�ª �

s=1

m K�i
qr−s+1 − K�i

−1q−r+s−1

qs − q−s ,

or m�N, r�Z, i� I. It is known that �K�i
;r

m
��UA

res �see Ref. 9, Sec. 9.3A�. By �2.4� and �2.6�, we

ave Ti
±1�ŨA

res�� ŨA
res �respectively, Ti

±1�UA
res��UA

res� for any i� Ĩ �respectively, I�. Hence we obtain

�, F�, Xi,r
± , Hi,s� ŨA

res for �� 
̃+�I�, i� I, r, s�Z�s�0� by �2.12� and �2.15�. Similarly, we obtain
¯ res
�, F��UA for any ��
+ by �2.9�. We define
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Ũ�
res

ª ŨA
res

�AC� �respectively, U�
res

ª UA
res

�AC�� .

hen we call Ũ�
res �respectively, U�

res� “quantum loop algebra �respectively, quantum algebra� of

estricted type �or Lusztig type�” �see Refs. 18 and 11�. We denote E� � 1 by e� for �� 
̃+�I�.
imilarly, we set f�ªF� � 1, kªK � 1, xi,rªXi,r � 1, . . . . Moreover, we set

ė� ª e�, ḟ� ª ��ė��, ė�i,m	� ª � 1

�m�
E�i,m	�� � 1, ḟ �i,m	� ª ��ė�i,m	�� ,

ḣi,s ª � 1

�s�
Hi,s� � 1, �k�i

;r

m
�ª �K�i

;r

m
� � 1,

or �� 
̃+
re, i� I, m�N, r, s�Z�s�0�. Let �Ũ�

res�± �respectively, �Ũ�
res�0� be the C-subalgebra of

˜
�
res generated by ��xi,r

± ��m� � i� I ,r�Z ,m�N� �respectively, �k ,� k�i
;r

m
� , ḣi,s ��Q , i� I ,r�Z ,m

N ,s�Z��� and �U�
res�+ �respectively, �U�

res�− , �U�
res�0� be the C-subalgebra of U�

res generated by

ei
�m� � i� I ,m�N� �respectively, �f i

�m� � i� I ,m�N�, �k ,� k�i
;r

m
���Q , i� I ,r�Z ,m�N��. We

btain that � k�i
;r

m
� is generated by �k�i

,� k�i
;0

l
�� for i� I, r�Z, m�N. It is known that U�

res has the
riangular decomposition, that is, the multiplication map defines an isomorphism of C-vector
paces:

�U�
res�−

� �U�
res�0

� �U�
res�+ ——→˜ U�

res �u−
� u0

� u+ � u−u0u+� . �3.3�

oreover, by Ref. 11, Proposition 6.1, we have

�Ũ�
res�−

� �Ũ�
res�0

� �Ũ�
res�+ ——→˜ Ũ�

res �ũ −
� ũ0

� ũ + � ũ −ũ0ũ −� . �3.4�

We set

�B̃�
res� ª� �

��
̃+�I�

�

ė�
�c�����c � Zl


̃+�I��, �B̃�
res�−

ª ���B̃�
res�+� ,

�B̃�
res�0

ª ��
i�I

k�i

	i�k�i
;0

mi
��mi � N,	i = 0 or 1�, B̃�

res
ª �B̃�

res�−�B̃�
res�0�B̃�

res�+,

see �2.14��. By Ref. 16, we obtain the following theorem.

Theorem 3.11: B̃�
res is a C-basis of Ũ�

res.

Proof: By Ref. 16, we obtain a PBW basis of ŨA
res. Since any A-basis of ŨA

res becomes C-basis

f ŨA
res

�AC� canonically �see Lemma 3.4�, we obtain this theorem. �

. Small quantum algebras

Let Ũ�
fin �respectively, U�

fin� be the C-subalgebra of Ũ�
res �respectively, U�

res� generated by

ei , f i ,k � i� Ĩ �respectively, I�, �Q��. Then we call Ũ�
fin �respectively, U�

fin� “small quantum loop

lgebra �respectively, small quantum algebra�.” Let D�
fin be the C-subalgebra of Ũ�

res generated by

xi,r
± ,hi,s ,k � i� I ,r ,s�Z�s�0� ,�Q�. By �2.8�, we obtain e0, f0�D�

fin. So we have D�
fin= Ũ�

fin.

et �Ũ�
fin�± �respectively, �Ũ�

fin�0� be the C-subalgebra of Ũ�
fin generated by �xi,r

± � i� I ,r�Z� �re-
pectively, �hi,s ,k � i� I ,s�Z� ,�Q�� and �U�

fin�+ �respectively, �U�
fin�− , �U�

fin�0� be the
-subalgebra of U�

fin generated by �ei�i�I �respectively, �f i�i�I, �k��Q�. Let Zl

+ be as in �3.1�. We
et
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�B�
fin�+

ª � �
��
+

�

ē�
c����c � Zl


+�, �B�
fin�−

ª ���B�
fin�+� ,

�B�
fin�0

ª �k� � Q2l�, B�
fin
ª �B�

fin�−�B�
fin�0�B�

fin�+. �3.5�

Theorem 3.12 (Ref. 19, Sec. 5, Ref. 20, Sec. 8): �B�
fin�� �respectively, B�

fin� is a C-basis of
U�

fin�� �respectively, U�
fin� for �� �−,0 , + �.

Since e�, f� are generated by �ei�i�Ĩ , �f i�i�Ĩ, respectively, we get e�, f�� Ũ�
fin for any �


̃+�I�. For �� 
̃+
re, i� I, m�N, we have

e�
l = �l��!ė�

�l�, f�
l = �l��! ḟ�

�l�, e�i,ml	� = �l��ė�i,ml	�, f �i,ml	� = �l�� ḟ �i,ml	�,

�
r=1

l

�k�i
�1−r − k�i

�r−1� = �
r=1

l

��r − �−r��k�i
;0

l
� ,

see Ref. 18, Lemma 4.4�. So we obtain

e�
l = f�

l = e�i,sl	� = f �i,sl	� = k�i

2l − 1 = 0, �3.6�

or any �� 
̃+
re, s�N, i� I. Let Zl


̃+�I� be as in �3.2�. Define

�B̃�
fin�+

ª� �
��
̃+�I�

�

e�
c����c � Zl


̃+�I��, �B̃�
fin�−

ª ���B̃�
fin�+� ,

�B̃�
fin�0

ª �k� � Q2l�, B̃�
fin
ª �B̃�

fin�−�B̃�
fin�0�B̃�

fin�+.

ince e�, f�� Ũ�
fin for any �� 
̃+�I�, we have B̃�

fin� Ũ�
fin. Therefore, by Theorem 3.11, we obtain

he following lemma.

Proposition 3.13: B̃�
fin is linearly independent in Ũ�

fin.

. Isomorphism theorem

Proposition 3.14 (Ref. 2, Lemma 4.8): There exists a C-algebra isomorphism �̄ :U� / I�

U�
fin such that �̄�Ei+ I��=ei, �̄�Fi+ I��= f i and �̄�K+ I��=k for i� I, �Q.
We obtain an affine version of the above-noted result:

Theorem 3.15: There exists a C-algebra isomorphism �̃ : Ũ� / Ĩ�→ Ũ�
fin such that �̃�Ei+ Ĩ��

ei, �̃�Fi+ Ĩ��= f i and �̃�K+ Ĩ��=k for i� Ĩ, �Q. In particular, B̃�
fin is a C-basis of Ũ�

fin.

Proof: Elements in �ei , f i ,k � i� Ĩ ,�Q���Ũ�
fin� satisfy the relations of Definition 2.1. So, by

he universality of Ũ� �see Remark 3.3 �b��, there exists a surjective C-algebra homomorphism

: Ũ�→ Ũ�
fin such that Ei�ei, Fi� f i, K�k for i� Ĩ, �Q. Since e�=E� � 1 and f�=F� � 1

�� 
̃+�I��, we obtain ��E��=e� and ��F��= f�. Then, by �3.6�, we have ��Ĩ��=0. Hence there

xists a surjective C-algebra homomorphism �̃ : Ũ� / Ĩ�→ Ũ�
fin such that �̃�E�+ Ĩ��=e�, �̃�F�+ Ĩ��

f� and �̃�K+ Ĩ��=k for �� 
̃+�I�, �Q.
Let u�Ker��̃�. By Proposition 3.10, we have

u = �
�Q2l

�
c,c��Zl


̃+�I�

a�c,,c��� �
��
̃+�I�

�

E�
c��� + Ĩ���K + Ĩ��� �

��
̃+�I�

�

F�
c���� + Ĩ�� ,
here a�c , ,c���C. Then we get

                                                                                                            



H

T

I

A

g
2

→
e
U

W

a

f
v

i

V

w

p

o

h

t

−
r

083514-13 Quantum affine algebras at roots of unity J. Math. Phys. 47, 083514 �2006�

                        
0 = �̃�u� = �
�Q2l

�
c,c��Zl


̃+�I�

a�c,,c��� �
��
̃+�I�

�

e�
c����k� �

��
̃+�I�

�

f�
c����� .

ence, by Lemma 3.13, we obtain a�c , ,c��=0 for any c ,c��Zl

̃+�I�, �Q2l. Thus �̃ is injective.

herefore �̃ is an isomorphism and B̃�
fin is a C-basis of Ũ�

fin. �

V. EVALUATION REPRESENTATIONS OF RESTRICTED TYPE

. Representation theory of restricted type

We call a Ũ�
res-module �respectively, U�

res-module� V “type 1” if k
l =1 on V for any �Q. In

eneral, finite-dimensional irreducible Ũ�
res-modules �respectively, U�

res-modules� are classified into
n types according to �� :Q→ �±1�; group homomorphism�. It is known that for any � :Q

�±1�, the category of finite-dimensional Ũ�
res-modules �respectively, U�

res-modules� of type � is

ssentially equivalent to the category of the finite-dimensional Ũ�
res-modules �respectively,

�
res-modules� of type 1.

Let U=U�
res, U�

fin, Ũ�
res, or Ũ�

fin.
Definition 4.1: Let V be a U-module and v be a nonzero vector in V. Suppose that v satisfies

ei
�m�v = 0 for any i � I, m � N if U = U�

res, eiv = 0 for any i � I if U = U�
fin,

�xi,r
+ ��m�v = 0 for any i � I, m � N, r � Z if U = Ũ�

res,

xi,r
+ v = 0 for any i � I, r � Z if U = Ũ�

fin.

e call v a “primitive vector” in V.
Definition 4.2: Let V be a U-module and � :U0→C be a C-algebra homomorphism. We

ssume that V is generated as a U-module by a primitive vector v��V such that

u0v� = ��u0�v�,

or any u0�U0. Then we call V a “highest-weight U-module” generated by a “highest-weight
ector” v� with “highest weight �.”

Proposition 4.3: For any C-algebra homomorphism � :U0→C, there exists a unique (up to
somorphism) irreducible highest-weight U-module V with highest weight �.

Proof: For any U�
res-module �respectively, Ũ�

res-module� V, we can define the weight spaces on
by

V ª �v � V�k�,v = �	,�i
Ú
v, �k�i

;0

l
�v = �	,�i

Ú

l

�
�

v for any i � I� , �4.1�

here � P �see Refs. 18 and 11�. Then, by the theory of highest-weight modules, we obtain this

roposition in the case of U=U�
res or Ũ�

res �see Ref. 11, Proposition 7.3�. So we shall prove the case

f Ũ�
fin. We can prove the case of U�

fin similarly.

Let Û�
fin be the C-subalgebra of Ũ�

res generated by Ũ�
fin��� k�i

;0

l
� � i� I�. For any C-algebra

omomorphism � : �Ũ�
fin�0→C, let Î�

fin��� �respectively, Ĩ�
fin���� be the left ideal of Û�

fin �respec-

ively, Ũ�
fin� generated by �xi,r

+ ,u0−��u0� ,� k�i
;0

l
�� i� I ,r�Z ,u0� �Ũ�

fin�0� �respectively, �xi,r
+ ,u0

��u0� � i� I ,r�Z ,u0� �Ũ�
fin�0��. We define a Û�

fin-module M̂�
fin��� and a Ũ�

fin-module M̃�
fin���,
espectively, by
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Ṽ

w

g

W
1

�

d

083514-14 Y. Abe and T. Nakashima J. Math. Phys. 47, 083514 �2006�

                        
M̂�
fin��� ª Û�

fin/Î�
fin���, M̃�

fin��� ª Ũ�
fin/Ĩ�

fin��� .

e set v̂�ª1+ Î�
fin����M̂�

fin��� and ṽ�ª1+ Ĩ�
fin����M̃�

fin���. Let N̂�
fin��� be the Ũ�

fin-submodule

f M̂�
fin��� generated by v̂�. Then, by the universality of the Ũ�

fin-module M̃�
fin���, there exists a

urjective Ũ�
fin-module homomorphism � :M̃�

fin���→ N̂�
fin��� such that ��ṽ��= v̂�. Let B be a

-basis of �Ũ�
fin�−. Then, by �3.4�, we obtain that �uv̂� �u�B� �respectively, �uṽ� �u�B�� is a

-basis of M̂�
fin��� �respectively, M̃�

fin����. Hence � is an isomorphism of Ũ�
fin-module. So we can

egard M̃�
fin��� as Û�

fin-module. In a similar way to �4.1�, we can define the weight spaces on this

odule. Then, by the theory of the highest-weight module, M̃�
fin��� has a unique simple quotient

f Ũ�
fin-module and it is the unique irreducible highest-weight Ũ�

fin-module with highest weight
. �

For any C-algebra homomorphism �: U0→C, we denote the unique irreducible highest

eight U-module with highest weight � by V�
res��� if U=U�

res, V�
fin��� if U=U�

fin, Ṽ�
res��� if U

Ũ�
res, and Ṽ�

fin��� if U= Ũ�
fin. Then, by Proposition 4.3 and the uniqueness of the primitive vectors,

e obtain the following proposition.
Proposition 4.4: Let � and �� :U0→C be C-algebra homomorphisms. Then V�

res��� �respec-

ively, V�
fin���, Ṽ�

res���, Ṽ�
fin���� is isomorphic to V�

res���� �respectively, V�
fin����, Ṽ�

res����,

�
fin����� if and only if �=��.

Now, we define Pi,m� Ũq inductively by

Pi,0 ª 1, Pi,m ª −
K�i

−1

1 − q−2m�
s=1

m

�i,s
+ Pi,m−s, Pi,−m ª ��Pi,m� ,

here � as in �2.2�. We have ���i,s
+ �=�i,−s

− .

Proposition 4.5 (Ref. 11, Sec. 3): For any i� I, r�Z, we have Pi,r� ŨA
res. Moreover, �Ũ�

res�0 is

enerated by �k�i
,� k�i

;0

l
� ,Pi,r � 1 � i� I ,r�Z� as a C-algebra.

We simply denote Pi,r � 1� Ũ�
res by Pi,r. We set

C0�t� ª �P � C0�t��P is monic, P�0� � 0� .

e call a polynomial P�C�t� “l-acyclic” if it is not divisible by �1−ctl� for any c�C� �see Ref.
5� and set

Cl�t� ª �P � C0�t��P is l-acyclic� .

Definition 4.6: �a� For �= ��i�i�I�Z+
n, let �i

�0��Zl and �i
�1��Z+ such that �i=�i

�0�+ l�i
�1� �i

I�. We define a C-algebra homomorphism ��
res : �U�

res�0→C by

��
res�k�i

� ª ��i
�0�

, ��
res��k�i

;0

l
��ª �i

�1� �i � I� .

�b� For �= ��i�i�I�Zl
n, we define a C-algebra homomorphism ��

fin : �U�
fin�0→C by

��
fin�k�i

� ª ��i �i � I� .

�c� For P= �Pi�i�I�C0�t�n, let pi
�0��Zl and pi

�1��Z+ such that deg�Pi�= pi
�0�+ lpi

�1� �i� I�. We

efine a C-algebra homomorphism �̃P
res: �Ũ�

res�0→C by

�̃P
res�k�i

� ª �pi
�0�

, �̃P
res��k�i

;0��ª pi
�1� �i � I� ,
l
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�
m=0

�

�̃P
res�Pi,m�tm

ª

Pi�t�
Pi�0�

, �
m=0

�

�̃P
res�Pi,−m�tm

ª tdeg�Pi�Pi�t−1� ,

see Ref. 11, Sec. 8�.
�d� For P= �Pi�i�I�Cl�t�n, we define a C-algebra homomorphism �̃P

fin : �Ũ�
fin�0→C by

�
m=0

�

�̃P
fin��i,m

+ �tm
ª �deg�Pi�

Pi��−2t�
Pi�t�

ª �
m=0

�

�̃P
fin��i,−m

− �t−m,

n the sense that the left- and right-hand sides are the Laurent expansions of the middle term about
=0 and t=�, respectively �see Ref. 11, Sec. 8�.

By Ref. 11, Sec. 8, we obtain ��̃P
fin= �̃P

res��Ũ
�
fin�0 �P�Cl�t�n�. For ��Z+

n �respectively, Zl
n�, we

et V�
res���ªV�

res���
res� �respectively, V�

fin���ªV�
fin���

fin��. Similarly, for P�C0�t�n �respectively,

l�t�n�, we set Ṽ�
res�P�ª Ṽ�

res��̃P
res� �respectively, Ṽ�

fin�P�ª Ṽ�
fin��̃P

fin�� and call P “Drinfel’d polyno-

ial” of Ṽ�
res�P� �respectively, Ṽ�

fin�P��.
Theorem 4.7 (Refs. 18 and 9, Proposition 11.2.10): For any ��Z+

n �respectively, Zl
n�, V�

res���
respectively, V�

fin���� is a finite-dimensional irreducible U�
res-module �respectively, U�

fin-module� of
f type 1. Conversely, for any finite-dimensional irreducible U�

res-module �respectively,

�
fin-module� V of type 1, there exists a unique ��Z+

n �respectively, Zl
n� such that V is isomorphic

o V�
res��� �respectively, V�

fin���� as a U�
res-module �respectively, U�

fin-module�. In particular, for any
�Zl

n, V�
fin��� is isomorphic to V�

res��� as a U�
fin-module.

Theorem 4.8 (Ref. 11, Theorem 8.2, 9.2, Ref. 15, Theorem 2.6�: For any P�C0�t�n �re-

pectively, Cl�t�n�, Ṽ�
res�P� �respectively, Ṽ�

fin�P�� is a finite-dimensional irreducible Ũ�
res-module

respectively, Ũ�
fin-module� of type 1. Conversely, for any finite-dimensional irreducible

˜
�
res-module �respectively, Ũ�

fin-module� V of type 1, there exists a unique P�C0�t�n �respectively,

l�t�n� such that V is isomorphic to Ṽ�
res�P� �respectively, Ṽ�

fin�P�� as a Ũ�
res-module �respectively,

˜
�
fin-module�. In particular, for any P�Cl�t�n, Ṽ�

fin�P� is isomorphic to Ṽ�
res�P� as a Ũ�

fin-module.

By the tensor product theorem, in order to understand the representation theory of Ũ�
res �re-

pectively, U�
res�, it is sufficient to consider Ũ�

fin �respectively U�
fin� �see Refs. 11 and 18�.

. Drinfel’d polynomials of evaluation representations

For m�Z+, let V�
fin�m� be the �m+1�-dimensional irreducible U�

fin�sl2�-module. By �2.16�, we

an regard Ṽ�
fin�P� as a U�

fin�sln+1�-module �P�Cl�t�n�. Then, by Ref. 11, Secs. 7–9 �in particular,
. 321�, we obtain the following theorem.

Theorem 4.9 (Ref. 11): For any P�Cl�t��P�1�, there exist r, ms�N and cs�C��1�s
r� such that

Ṽ�
fin�P�  Ṽ�

fin�P1� � ¯ � Ṽ�
fin�Pr� �as a U�

fin�sl˜

2� − module� ,

here P=�s=1
r Ps, Ps�t�=�p=1

ms �t−cs�
ms+1−2p��Cl�t� �1�s�r�. In particular, Ṽ�

fin�Ps� is isomor-
hic to V�

fin�ms� as a U�
fin�sl2�-module.

By this theorem, we obtain the following lemma.

Lemma 4.10: Let P�Cl�t�, m�N. If Ṽ�
fin�P� is isomorphic to V�

fin�m� as a U�
fin�sl2�-module,

hen there exists c�C� such that P�t�=�p=1
m �t−c�m+1−2p�.

By using this lemma, we can prove the following lemma.

Lemma 4.11: Let P= �Pi�i�I�Cl�t�n, �= ��i�i�I�Zl
n. We assume Ṽ�

fin�P� is isomorphic to

�
fin��� as a U�

fin-module. Then, for any i� I�Pi�1�, there exists ci�C� such that Pi�t�=�p=1
�i �t

ci�
�i+1−2p�.
Proof: Let vP be a highest-weight vector in Ṽ�

fin�P�. Then vP is also a highest-weight vector in
fin ˜ fin fin ˜ fin fin

� ���. For i� I, let �U� �i �respectively, �U� �i� be the C-subalgebra of U� �respectively, U� �
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enerated by �xi,r
± ,hi,s ,k�i

�r ,s�Z ,s�0� �respectively, �ei , f i ,k�i
�� and W̃i �respectively, Wi� be the

Ũ�
fin�i-submodule �respectively, �U�

fin�i-submodule� of Ṽ�
fin�P� generated by vP. By �2.17� �respec-

ively, �2.16��, we can regard W̃i �respectively Wi� as a U�
fin�sl̃2�-module �respectively,

�
fin�sl̃2�-module�. Then, by Lemma 7.6 in Ref. 11, we obtain W̃i Ṽ�

fin�Pi� as a U�
fin�sl̃2�-module.

imilarly �more easily�, we obtain WiV�
fin��i� as a U�

fin�sl2�-module. So, by Lemma 4.10, it is

nough to prove W̃i=Wi for i� I such that Pi�1.

By �3.4�, W̃i is spanned by �xi,r1

−
¯xi,rm

− vP �r1 , ¯rm�Z ,m�Z+� as a C-vector space. By Theo-

em 4.8, we can regard Ṽ�
fin�P� as a Ũ�

res-module and define the weight spaces on Ṽ�
fin�P� in a

imilar way to �4.1�. Then, by the relations of Drinfel’d realization, we have xi,r1

−
¯xi,rm

− vP

�Ṽ�
fin�P���−m�i

for any m�N ,r1 , ¯rm�Z. So we obtain W̃i� �m�0�Ṽ�
fin�P���−m�i

. On the other

and, by the assumption of this lemma, Ṽ�
fin�P� is isomorphic to V�

fin��� as a U�
fin-module. Hence,

y �3.3�, Ṽ�
fin�P� is spanned by ����
+

� f̄�
c���vP �c�Zl


+�. Since ���
+

� f̄�
c���vP� �Ṽ�

fin�P�����
+
c����, we

ave

�
m�0

�Ṽ�
fin�P���−m�i

= �
m�Zl

Cf i
mvP � Wi.

hen we have W̃i=Wi. �

Let �UA
res�� �respectively, �U�

fin��� be the extended algebra of UA
res �respectively, U�

fin� defined by
eplacing �K ��Q� with �K �� P� �see Definition 2.1�. By �2.18�, we obtain

va
±�ŨA

res�� �UA
res�� �a�C��. Hence, by Proposition 2.6, we obtain the evaluation

˜
�
fin-homomorphisms �eva

fin�±: Ũ�
fin→ �U�

fin�� defined by

�eva
fin�±�ei� ª ei, �eva

fin�±�f i� ª f i �eva
fin�±�k� ª k,

�eva
fin�+�e0� ª a�−1k�1

k�n

−1�fn,�fn−1, . . . ,�f2f1��−1 ¯ ���−1,

�eva
fin�+�f0� ª a−1�− 1�n−1�nk�1

−1k�n
�en,�en−1, . . . ,�e2,e1��−1 ¯ ���−1,

�eva
fin�−�e0� ª a�−1k�1

−1k�n
�f1,�f2, . . . ,�fn−1, fn��−1 ¯ ���−1,

�eva
fin�−�f0� ª a−1�− 1�n−1�nk�1

k�n

−1�e1,�e2, . . . ,�en−1,en��−1 ¯ ���−1, �4.2�

or i� I, �Q. For any ��Zl
n, we regard V�

fin��� as a �U�
fin��-module through these homomor-

hisms. Then the evaluation Ũ�
fin-representations are defined by the following method.

Definition 4.12: Let a�C�, �= ��i�i�I�Zl
n. We set

��i
ª �

j�I

� j��i,� j� �i � I� , �4.3�

a+
�
ª a�−��1

+��n
+n, a−

�
ª a�− 1�n+1���1

−��n
+2n+1. �4.4�

e regard V�
fin��� as a Ũ�

fin-module by using �eva±
�

fin�± and denote it by V�
fin���a

±.

Since V�
fin��� is irreducible as a U�

fin-module, V�
fin���a

± is a finite-dimensional irreducible
˜

�
fin-module of type 1. Thus, by Theorem 4.8, there exists a unique Pa

±= �Pi,a
± �i�I�Cl�t�n such that

�
fin���a

± Ṽ�
fin�Pa

±� as a Ũ�
fin-module. Let i� I such that Pi,a

± �1. Then, by Lemma 4.11, there exist
� �±� �i �i+1−2p
�±,i��C such that Pi,a �t�=�p=1�t−a�±,i�� �. Around t=0, we have
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��i + ���i − �−�i��
m=1

�

�a�±,i�
−1 ��i−1t�m =

��i − a�±,i�
−1 �−1t

1 − a�±,i�
−1 ��i−1t

= ��i
�−2�i�t − a�±,i��

�i+1�

t − a�±,i��
−�i+1 = �deg�Pi,a

± � Pi,a
± ��−2t�
Pi,a

± �t�

see Ref. 7, Corollary 4.2�. Thus, by Definition 4.6�d�, we obtain

�
m=0

�

�̃Pa
±

fin��i,m
+ �tm = �deg�Pi,a

± �
Pi,a

± ��−2t�
Pi,a

± �t�
= ��i + ���i − �−�i��

m=1

�

�a�±,i�
−1 ��i−1t�m. �4.5�

ence we can calculate a�±,i� explicitly by the computation of �̃Pa
±

fin��i,1
+ �. Therefore, in a similar

ay to the proof of Ref. 8, Theorem 3.5, we obtain the following theorem.

Theorem 4.13: For �= ��i�i�I�Zl
n, a�C�, let Pa

±= �Pi,a
± �i�I�Cl�t�n such that Ṽ�

fin�Pa
±�

V�
fin���a

±. Then, for any i� I such that Pi,a
± �1, we obtain

Pi,a
± = �

p=1

�i

�t − ��i−2p+1a�±,i�� , �4.6�

here

a�±,i� ª a−1�±���i�+i�, �4.7�

��i�
ª �

k=1

i−1

�k − �
k=i+1

n

�k. �4.8�

Proof: We shall prove the case of Pi,a
+ . We can also prove the case of Pi,a

− similarly. Let v+ be

he highest-weight vector in Ṽ�
fin�Pa

+�. By �2.8�, for any i� I, we have

e0v+ = �− 1�i+1�n+1�fn, ¯ �f i+1,�f1, ¯ �f i−1,xi,1
− ��−1 ¯ ����−1k�

−1v+.

hen we get

ene0v+ = �− 1�i+1�−�k�I�k+n+1�enfn�fn−1,�¯�f i−1,xi,1
− ��−1 ¯ ���−1

− �−1�fn−1,�¯�f i−1,xi,1
− ��−1 ¯ ���−1enfn�v+

= �− 1�i+1�−�k�I�k+n+1�� k�n
− k�n

−1

� − �−1 ��fn−1,�¯�f i−1,xi,1
− ��−1 ¯ ���−1

− �−1�fn−1,�¯�f i−1,xi,1
− ��−1 ¯ ���−1� k�n

− k�n

−1

� − �−1 ��v+

= �− 1�i+1�−�k�I�k+n+1���n + 1�� − �−1��n����fn−1,�¯�f i−1,xi,1
− ��−1 ¯ ���−1v+

= �− 1�i+1��n−�k�I�k+n+1�fn−1,�¯�f i−1,xi,1
− ��−1 ¯ ���−1v+.

y repeating this, we obtain

ei ¯ e1ei+1 ¯ ene0v+ = ei��− 1�i+1�−�i+n+1xi,1
− v+� = �− 1�i+1�−�i+n+1xi,0

+ xi,1
− v+. �4.9�

n the other hand, by �4.2�, we have

e0v+ = �eva+
�

fin�+�e0�v+ = a+
��−1k�1

k�n

−1�fn,�¯�f2, f1��−1 ¯ ���−1v+.
ince ��1−�n ,��=0, we have
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k�1
k�n

−1�fn,�¯�f2, f1��−1 ¯ ���−1 = �fn,�¯�f2, f1��−1 ¯ ���−1k�1
k�n

−1 .

oreover, we have k�1
v+=���1v+, k�n

v+=���nv+. So, by �4.4�, we obtain

e0v+ = a�n−1�fn,�¯�f2, f1��−1 ¯ ���−1v+.

n a similar way to the above-noted proof, we have

ei+1 ¯ ene0v+ = a��k=i+1�k+n−1�f i,�¯�f2, f1��−1 ¯ ���−1v+.

ere, we obtain

e1�f i,�¯�f2, f1��−1 ¯ ���−1v+ = �f i,�¯�f2,e1f1��−1 ¯ ���−1v+ =��f i,�¯�f2, f1e1��−1 ¯ ���−1

+ � f i,�¯� f2,
k�1

− k�1

−1

� − �−1 �
�−1

¯ �
�−1
��v+

= ��f i,�¯�f2, f1��−1 ¯ ���−1e1 + �f i,�¯�f3, f2��−1 ¯ ���−1�− �−1k�1

−1��v+

= �−�1−1�f i,�¯�f3, f2��−1 ¯ ���−1v+.

y repeating this, we get

ei ¯ e1ei+1 ¯ ene0v+ = �− 1�i−1a�−�k=1
i−1

�k−�i−1�+�k=i+1
n �k+n−1eif iv+ = �− 1�i−1a�−��i�−i+n��i��v+.

�4.10�

hus, by �4.9� and �4.10�, we obtain

�i,1v+ = �� − �−1�xi,0
+ xi,1

− v+ = a��i−��i�−i−1���i − �−�i�v+.

n the other hand, by �4.5�, we have �i,1
+ v+= �̃Pa

+
fin��i,1

+ �v+=a�+,i�
−1 ��i−1���i −�−�i�. Therefore we ob-

ain a�+,i�=a−1���i�+i.
For �= ��i�i�I�Zl

n, we set supp���ª �i� I ��i�0�.
Proposition 4.14: Let �= ��i�i�I�Zl

n, a±�C�.

�a� If �=0, then V�
fin���a+

+ is isomorphic to V�
fin���a−

− as a Ũ�
fin-module.

�b� In the case of ��0, V�
fin���a+

+ is isomorphic to V�
fin���a−

− as a Ũ�
fin-module if and only if

+=a−�2���i�+i� for any i�supp���.
Proof: �a� is obvious. So we shall prove �b�. By Theorem �4.8�, V�

fin���a+

+ is isomorphic to

�
fin���a−

− if and only if Pa+

+ =Pa−

− . By �4.5� and Theorem 4.13, we obtain Pa+

+ =Pa−

− if and only if

+=a−�2���i�+i� for any i�supp���.
Proposition 4.15: Let �= ��i�i�I�Zl

n���0�, a±�C�. Let i1 , . . . , im� I such that supp���
�i1 , . . . , im� and i1� . . . � im. Then a+=a−�2���i�+i� for any i�supp��� if and only if the following
onditions �a� and �b� hold.

a� For any 2�r�m,

�ir
� �− 1�r−1�i1

+ �− 1�ri1 − ir + 2�
k=2

r−1

�− 1�r−1+kik � 0 �mod l� .

b�

a+ =�a−�2�k=1
m �− 1�k−1ik if m is odd

2��i +�k=2
m �− 1�kik� if m is even.

�

a−� 1
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Proof: We assume a+=a−�2���i�+i� for any i�supp���. Then �2���i�+i�=�2���j�+j� for any i , j
supp���. Hence, for 2�r�m, we have ��ir�−��ir−1�+ ir− ir−1�0�mod l�. By �4.8�, for 1�r
m, we obtain

��ir� = �
k=1

ir−1

�k − �
k=ir+1

n

�k = �
k=1

r−1

�ik
− �

k=r+1

m

�ik
.

hus, for 2�r�m, we get

��ir� − ��ir−1� + ir − ir−1 = �ir
+ �ir−1

+ ir − ir−1 � 0 �mod l� .

ence �−1�r�ir
− �−1�r−1�ir−1

��−1�r−2ir−1+ �−1�r−1ir. Therefore, we obtain

�− 1�r�ir
� − �i1

+ �
k=2

r

��− 1�k�ik
− �− 1�k−1�ik−1

�

� − �i1
+ �

k=2

r

��− 1�k−1ik + �− 1�k−2ik−1�

� − �i1
+ i1 + �− 1�r−1ir + 2�

k=2

r−1

�− 1�k−1ik �2 � r � m� .

hus we have �a�. In particular, if �ir
is as in �a�, then �ir−1

+�ir
� ir−1− ir for any 2�r�m and

�i�+ i���j�+ j for any i , j�supp���. Hence, for 1�r�m, we have ��ir�+ ir���1�+ i1�−�k=2
m �ik

i1. If m is odd, then we get

− �
k=2

m

�ik
+ i1 � − ��i2

+ �i3
� − ¯ − ��im−1

+ �im
� + i1

� �− i2 + i3� + ¯ + �− im−1 + im� + i1

� �
k=1

m

�− 1�k−1ik.

imilarly, we have the case that m is even. Therefore we obtain �b�. So we can prove “only if part”
f this proposition. The proof of “if part” follows the proof of “only if part.” �

Remark 4.16: For �= ��i�i�I�Z+
n, let Vq��� be the finite-dimensional irreducible Uq-module

ith highest weight � of type 1. For a�C�, let Vq���a
± be the evaluation representation of Vq���

rising from eva
± �see Ref. 8�. In the case that q is not a root of unity, for any a±�C�, Vq���a+

+ is
ot isomorphic to Vq���a−

− if #�supp�����1. But, in the case that q is a root of unity, there exist
�Zl

n and a±�C� such that V�
fin���a+

+ is isomorphic to V�
fin���a−

− even if #�supp�����1 by Propo-
itions 4.14, 4.15.

. EVALUATION REPRESENTATIONS OF NONRESTRICTED TYPE

. Schnizer modules and evaluation representations

We fix the following notations. Let Nª

1
2n�n+1� be the number of the positive roots of sln+1.

et VN be an lN-dimensional C-vector space and �v�m��VN �m= �mi,j�1�i�j�n�Zl
N� be a C-basis of

N N N

N. For m�Zl , m��Z , we set v�m+ lm��ªv�m�. For i , j� I, we define �i,j, �i,j �Zl by
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�i,j ª �	i,r	 j,s�1�r�s�n �i � j�, �i,j ª �
k=j+1

i

�k−1,n−i+k − �
k=j

i

�k,n−i+k �j � i� , �5.1�

here 	i,j is Kronecker’s symbol. For i , j� I, a= �ai,j�1�i�j�n� �C��N, c= �ci,j�1�i�j�n�CN, we
efine

Mi,j�c� ª �
k=i−1

j−1

�ci,k − ci−1,k� + �
k=i

j

�ci,k − ci+1,k� �i � j� , �5.2�

Ni,j�c� ª cj−1,n−i+j − cj,n−i+j �j � i� , �5.3�

i�c� ª �
k=i−1

n

ci−1,k − 2�
k=i

n

ci,k + �
k=i+1

n

ci+1,k, �5.4�

a�c� ª �
1�i�j�n

ai,j
ci,j , �5.5�

here ci,j =0 if the index �i , j� is out of the range.
Theorem 5.1 (Ref. 24, Theorem 3.2, Ref. 23). Let a= �ai,j�1�i�j�n� �C��N, b= �bi,j�1�i�j�n

Cn, and �= ��i�i�I�Cn. Then there exists a C algebra homomorphism � : =��a ,b ,��: U�

End�VN�such that for i� I and m�Zl
N,

��Ei��v�m�� = �
j=1

i

a��i,j��Ni,j�m + b���v�m + �i,j� , �5.6�

��Fi��v�m�� = �
j=i

n

ai,j�Mi,j�m + b� − �i��v�m + �i,j� , �5.7�

��K�i
��v�m�� = �i�m+b�+�iv�m� . �5.8�

We denote the lN-dimensional U�-module associated with ���a ,b ,�� ,VN� by V��a ,b ,��. We
all V��a ,b ,�� a “Schnizer module.”

Now, for i� I and r= �r1 , . . . ,ri�� Ii, we set

F�i
ª �Fi,�¯�F2,F1��−1 ¯ ���−1, E�i

ª �Ei,�¯�E2,E1��−1 ¯ ���−1, �5.9�

�r ª �
k=1

i

�k,rk
, �r ª �

k=1

i

�k,rk
. �5.10�

or 1�s� i, we set

Rs,i ª �ri
s = �r1,i

s , . . . ,ri,i
s � � Ii�r1,i

s � ¯ � rs−1,i
s � rs,i

s � rs+1,i
s � ¯ � ri,i

s � ,

Rs,i
F
ª �ri

s = �r1,i
s , . . . ,ri,i

s � � Rs,i�k � rk,i
s for 1 � k � i� ,

E s s s s
Rs,i ª �ri = �r1,i, . . . ,ri,i� � Rs,i�rk,i � k for 1 � k � i� ,
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Ri
F
ª �

s=1

i

Rs,i
F , Ri

E
ª �

s=1

i

Rs,i
E . �5.11�

oreover, for c�CN, set

Ci�c,ri
s� ª �

k=1

s−1

Mk,rk,i
s �c� − �

k=s+1

i

Mk,rk,i
s �c� �ri

s � Ri,s
F � .

Di�c,ri
s� ª �

k=1

s−1

Nk,rk,i
s �c� − �

k=s+1

i

Nk,rk,i
s �c� �ri

s � Ri,s
E � . �5.12�

Lemma 5.2: Let a= �ai,j�1�i�j�n� �C��N, b= �bi,j�1�i�j�n�CN, �= ��i�i�I�Cn, i� I, and m
�mi,j�1�i�j�n�Zl

N. We have

F�i
v�m� = �

ri
s�Ri

F

�− 1�i+sa��ri
s��Ci�m+b,ri

s�−��s,i�+1−s�Ms,rs,i
s �m + b� − �s��v�m + �ri

s� ,

E�i
v�m� = �

ri
s�Ri

E

�− 1�i+sa��ri
s��Di�m+b,ri

s�+1−s�Ns,1�m + b� − �s��v�m + �ri
s� ,

n V��a ,b ,��, where ��s,i�
ª�k=1

s−1�k−�k=s+1
i �k.

Proof: We shall prove the F�i
-case by the induction on i. We can prove the E�i

-case similarly.
f i=1, then we have

F�1
v�m� = �

r1
1�R1

F

a��1,r1,1
1 ��M1,r1,1

1 �m + b� − �1��v�m + �1,r1,1
1 � .

e replace r1,1
1 with j. Then we obtain

F�1
v�m� = �

j=1

n

a��1,j��M1,j�m + b� − �1��v�m + �1,j� = F1v�m� .

Now we assume that i�1 and the case of �i−1� holds. For i� j�n, ri−1
s �Ri−1

F , we set

M�ri−1
s , j� ª �Ms,rs,i−1

s �m + b� − �s���Mi,j�m + b� − �i + Mi,j��ri−1
s ��� − �Ci−1��i,j,ri−1

s �−1�Ms,rs,i−1
s �m + b�

− �s + Ms,rs,i−1
s ��i,j����Mi,j�m + b� − �i��.

hen, by the assumption of the induction, we have

F�i
v�m� = �Fi,F�i−1

��−1v�m�

= �
j=i

n

�
ri−1
s �Ri−1

F

�− 1�i+s−1ai,ja��ri−1
s ��Ci−1�m+b,ri−1

s �−��s,i−1�+1−sM�ri−1
s , j�v�m + �ri−1

s + �i,j� .

Now we set

��j � j�� ª �1 if j � j�

0 if j � j�,
� ��j � j�� ª �1 if j � j�

0 if j � j�.
�

hen, for any 1� i� j�n, 1� i�� j��n, we get
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Mi,j��i�,j�� = − 	i−1,i���j � j�� + 	i,i���j � j�� + 	i,i���j � j�� − 	i+1,i���j � j�� ,

ence, for any i� j�n, 1�s� i−1, ri−1
s �Ri−1

F , we have

Mi,j��ri−1
s � = − ��j � ri−1,i−1

s �, Ms,rs,i−1
s ��i,j� = − 	s,i−1��ri−1,i−1

i−1 � j� ,

Ci−1��i,j,ri−1
s � = ��i − 1 � s���ri−1,i−1

s � j� .

hus, we have

M�ri−1
s , j� = �Ms,rs,i−1

s �m + b� − �s���Mi,j�m + b� − �i − ��j � ri−1,i−1
s ���

− ���i−1�s���ri−1,i−1
s �j�−1�Ms,rs,i−1

s �m + b� − �s − 	s,i−1��ri−1,i−1
i−1 � j����Mi,j�m + b� − �i��.

ince �c��−�−1�c−1��=�c−1 and �c−1��−�−1�c��=−�−c for any c�C, we have

M�ri−1
s , j� = − �Mi,j�m+b�+�i�Ms,rs,i−1

s �m + b� − �s�� �s � i − 1,ri−1,i−1
s � j� ,

M�ri−1
s , j� = 0 �s � i − 1, j � ri−1,i−1

s � ,

M�ri−1
i−1, j� = �M̃�ri−1.,j

i−1 ��Mi,j�m + b� − �i�� �j � ri−1,i−1
i−1 � ,

here M̃�ri−1
i−1 , j�ªMi−1,ri−1,i−1

i−1 �m+b�−�i−1−1. Therefore we obtain

F�i
v�m� = �

j�ri−1,i−1
s

�
ri−1
s �Ri−1

F

�− 1�i+sa��ri−1
s + �i,j��Ci−1�m+b,ri−1

s �−Mi,j�m+b�−��s,i�+1−s�Ms,rs,i−1
s �m + b�

− �s��v�m + �ri−1
s + �i,j� + �

j�ri−1,i−1
s

�
ri−1
i−1�Ri−1,i−1

F

�− 1�i+ia��ri−1
i−1

+ �i,j��Ci−1�m+b,ri−1
i−1�−Mi,j�m+b�−��i,i�+1−i�Mi,j�m + b� − �i��v�m + �ri−1

i−1 + �i,j� .

ere, if we set

ri
s = �r1,i

s , . . . ,ri,i
s � ª ��r1,i−1

s , . . . ,ri−1,i−1
s , j� if s � i − 1 and j � ri−1,i−1

s

�r1,i−1
i−1 , . . . ,ri−1,i−1

i−1 , j� if s = i and j � ri−1,i−1
i−1 ,

�
hen we have F�i

-case. �

For s� I, we set

Rs ª �rs = �rk
s�k�I � In�r1

s � ¯ � rs−1
s � rs

s � rs+1
s � ¯ � rn

s� ,

Rs
F
ª �rs = �ri

s�i�I � Rs�k � rk
s for any k � I� ,

Rs
E
ª �rs = �ri

s�i�I � Rs�rk
s � k for any k � I� ,

RF
ª �

s=1

n

Rs
F, RE

ª �
s=1

n

Rs
E. �5.13�

ote if rs= �rk
s�k�I�Rs

F �respectively, Rs
E�, then rk

s =k for any s�k�n �respectively, rk
s =1 for any

N
�k�s�. Moreover, for c�C , we set
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C�c,rs� ª cs−1,s−1 − cn,n + �
k=1

n

c1,k + �
k=1

s−1

�
p=rk+1

s

rk
s−1

ck,p − �
k=1

s

�
p=rk

s+1

rk−1
s

ck,p �rs � Rs
F� ,

D�c,rs� ª − �
k=n−s+2

n

c1,k − �
k=s+1

n

�crk
s−1,n−k+rk

s − crk
s,n−k+rk

s� �rs � Rs
E� , �5.14�

here r0
s
ªn. Then, by Lemma 5.2, we obtain the following lemma.

Lemma 5.3: Let a= �ai,j�1�i�j�n� �C��N, b= �bi,j�1�i�j�n�CN, �= ��i�i�I�Cn, and m
�mi,j�1�i�j�n�Zl

N. We have

F�n
v�m� = �

rs�RF

�− 1�s+na��rs��C�m+b,rs�−��s�+1−s�− ms−1,s−1 + ms,s − bs−1,s−1 + bs,s − �s��v�m + �rs� ,

E�n
v�m� = �

rs�RE

�− 1�s+na��rs��D�m+b,rs�+1−s�− m1,n−s+1 − b1,n−s+1��v�m + �rs� ,

n V��a ,b ,��, where ��s� as in (4.8).
Let UA� �respectively, U��� be the extended algebra of UA �respectively, U�� defined by replac-

ng �K ��Q� with �K �� P� �see Definition 2.1�. By �2.18�, we have eva
±�ŨA��UA� �a

C��. So we obtain the evaluation homomorphisms eva
± : Ũ�→U�� as in Proposition 2.6. On the

ther hand, by �2.1�, we can regard an arbitrary Schnizer module V��a ,b ,�� as a U��-module if we
efine

K�i
v�m� ª �−�

k=i

n
�mi,k+bi,k�+��iv�m� , �5.15�

or any i� I, m�Zl
N, where ��i

as in �4.3�.
Definition 5.4: Let a= �ai,j�1�i�j�n� �C��N, b= �bi,j�1�i�j�n�CN, �= ��i�i�I�Cn, and a�C�.

hen we define eṽa
±
ªeṽa

±�a ,b ,��ª��a ,b ,�� �eva±
�

± : Ũ�→End�VN�, where �=��a ,b ,�� is as in

heorem 5.1 and a±
� are as in �4.4�. We denote the lN-dimensional Ũ�-module associated with

eṽa
± ,VN� by V��a ,b ,��a

±.
For c�CN, we set

CE�c,rs� ª cs−1,s−1 + �
k=1

s−1

�
p=rk+1

s

rk
s−1

ck,p − �
k=1

s

�
p=rk

s+1

rk−1
s

ck,p �rs � Rs
F� ,

DF�c,rs� ª − cn,n + �
k=1

n−s+1

c1,k − �
k=s+1

n

�crk
s−1,n−k+rk

s − crk
s,n−k+rk

s� �rs � Rs
E� . �5.16�

Proposition 5.5: Let a= �ai,j�1�i�j�n� �C��N, b= �bi,j�1�i�j�n�CN, �= ��i�i�I�Cn, and a
C�. Then, for any i� I and m�Zl

N, we obtain

eṽa
±�Ei��v�m�� = ��Ei��v�m��, eṽa

±�Fi��v�m�� = ��Fi��v�m�� ,

eṽa
±�K� ��v�m�� = ��K� ��v�m�� ,
i i
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eṽa
±�E0��v�m�� = a �

rs�RF

�− 1�s+na��rs��±�CE�m+b,rs�−��s�−s�+n�− ms−1,s−1 + ms,s − bs−1,s−1 + bs,s − �s��

�v�m + �rs� ,

eṽa
±�F0��v�m�� = a−1 �

rs�RE

�− 1�s−1a��rs��±�DF�m+b,rs�−s+n+1�−n�− m1,n−s+1 − b1,n−s��v�m + �rs� ,

here �rs, �rs are as in (5.10), RF, RE are as in (5.13), and CE�m+b ,rs�, DF�m+b ,rs� are as in
5.16).

Proof: By Proposition 2.6, Theorem 5.1, Lemma 5.3, and �5.15�, we obtain the eṽa
+-case.

imilarly, we obtain the eṽa
−-case. �

. Nilpotent modules

Definition 5.6: Let V be a Ũ�-module �respectively, U�-module�. We assume E�
l =F�

l =E�i,sl	�

F�i,sl	�=0 on V for any �� 
̃+
re, i� I, s�N �respectively, Ē�

l = F̄�
l =0 on V for any ��
+�. Then

e call V a “nilpotent” Ũ�-module �respectively, U�-module�. In particular, if K
l =1 on V for any

�Q, then we call V a nilpotent Ũ�-module �respectively U�-module� of “type 1.”
For ��Zl

n, let V�
fin��� be the U�

fin-module in Sec. IV A. By Proposition 3.14, we can regard

�
fin��� as a nilpotent U�-module. We denote U�-module V�

fin��� by V�
nil���. By Proposition 3.14

nd Theorem 4.7, we obtain the following proposition.
Proposition 5.7: For any ��Zl

n, V�
nil��� is a finite-dimensional irreducible nilpotent

�-module of type 1. Conversely, for any finite-dimensional irreducible nilpotent U�-module V of
ype 1, there exists a unique ��Zl

n such that V is isomorphic to V�
nil���.

We can construct V�
nil��� as a U�-submodule of Schnizer module V��a ,b ,�� as follows �Refs.

, 2, and 22�. For i , j� I�i� j�, ��Zl
n, we set

ai,j
�0�

ª 1, bi,j
�0�

ª 0, a�0�
ª �ai,j

�0��1�i�j�n, b�0�
ª �bi,j

�0��1�i�j�n, �5.17�

��
0
ª ��a�0�,b�0�,��, V�

0��� ª V��a�0�,b�0�,�� . �5.18�

e denote v�0� in V�
0��� by v��0�. For �= ��i�i�I�Zl

n, we define m�= �mi,j
� �1�i�j�n�Zl

n by

mi,j
� � �

k=1

i

� j−k+1 �mod l� 1 � i � j � n . �5.19�

Proposition 5.8: Let ��Zl
n and v�V�

0���.
�a� Eiv=0 for any i� I if and only if v�Cv��0�.
�b� Fiv=0 for any i� I if and only if v�Cv�m��.
Proof: By Ref. 2, we obtain �a�. So we shall prove �b�. “If part.” By �5.19�, we have

mi,i
� − mi−1,i−1

� = �i, mi,j
� − mi−1,j

� = � j−i+1, mi,j
� − mi+1,j

� = − � j−i, �5.20�

or any 1� i� j�n. Hence, by �5.2�, we get

Mi,j�m�� = mi,i
� − mi−1,i−1

� + �
k=i

j−1

�mi,k
� − mi−1,k

� � + �
k=i+1

j

�mi,k
� − mi+1,k

� �

= �i + ��
k=i

j−1

�k−i+1 − �
k=i+1

j

�k−i� = �i,
or any 1� i� j�n. Therefore, by �5.7�, we obtain
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Fiv�m�� = �
j=i

n

�Mi,j�m�� − �i��v�m� + �i,j� = �
j=i

n

��i − �i��v�m� + �i,j� = 0 �i � I� .

“Only if part.” Let v=�m�Zl
ncmv�m��V����cm�C�. We assume that Fiv=0 for any i� I. Set

Zl
n�r� ª �m = �mi,j�1�i�j�n � Zl

n�mi,j = mi,j
� if j − i � r� �r = 1, . . . ,n�, Zl

n�0� ª Zl
n.

hen we have

Zl
n = Zl

n�0� � Zl
n�1� � ¯ � Zl

n�n� = �m�� .

e shall prove that v=�m�Zl
n�r�cmv�m� for all 0�r�n by the induction on r. Indeed, if we can

rove this claim, then we obtain v=cm�v�m���Cv�m��. If r=0, then there is nothing to prove. So
e assume that r�0 and the case of �r−1� holds.

In a similar way to the proof of “if part,” for any m�Zl
n�r−1�, we have Mi,j�m�=�i if j− i

r−1. Moreover, for any m�Zl
n�r−1� and i� I such that i+r−1�n, we get

Mi,i+r−1�m� = �
k=i

i+r−2

mi,k − �
k=i−1

i+r−2

mi−1,k + �
k=i

i+r−1

mi,k − �
k=i+1

i+r−1

mi+1,k = Mi,i+r−1�m�� − mi−1,i+r−2 + mi,i+r−1

+ mi−1,i+r−2
� − mi,i+r−1

� = �i − mi−1,i+r−2 + mi,i+r−1 − �i+r−1.

herefore, by �5.7�, we get

Fiv = �
m�Zl

n�r−1�

cm�mi,i+r−1 − mi−1,i+r−2 − �i+r−1��v�m + �i,i+r−1�

+ �
j=i+r

n

�
m�Zl

n�r−1�

cm�Mi,j�m� − �i��v�m + �i,j� = 0 �i � n − r + 1� . �5.21�

Now, for 1�s�n−r+1, we set

Zl
n�r − 1,s� ª �m = �mi,j�1�i�j�n � Zl

n�r − 1��mi,i+r−1 − mi−1,i+r−2 � �i+r−1 �mod l� if s � i � n − r

+ 1� .

e have mi,i+r−1−mi−1,i+r−2��i+r−1 for any 1� i�n−r+1 if and only if mi,i+r−1=mi,i+r−1
� for any

� i�n−r+1. Hence we get

Zl
n�r − 1� � Zl

n�r − 1,n − r + 1� � ¯ � Zl
n�r − 1,1� = Zl

n�r� .

o it is enough to prove that v=�m�Zl
n�r−1,s�cmv�m� for all 1�s�n−r+1. We shall prove this

laim by the induction on s. By �5.21�, we obtain

Fn−r+1v = �
m�Zl

n�r−1�

cm�mn−r+1,n − mn−r,n−1 − �n��v�m + �n−r+1,n� = 0.

hus, cm�mn−r+1,n−mn−r,n−1−�n��=0 for any m�Zl
n�r−1�. So if cm�0 for any m�Zl

n�r−1�, then

n−r+1,n−mn−r,n−1��n. Hence v=�m�Zl
n�r−1,n−r+1�cmv�m�.

Now we assume that s�n−r+1 and the case of �s+1� holds. By �5.21�, we get

Fsv = �
m�Zl

n�r−1,s+1�

cm�ms,s+r−1 − ms−1,s+r−2 − �s+r−1��v�m + �s,s+r−1� + �
j=s+r

n

�
m�Zl

n�r−1,s+1�

cm�Ms,j�m�

− �s��v�m + �s,j� = 0.

n
ere, for m= �mi,j�1�i�j�n�Zl �r−1,s+1�, we obtain
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�m + �s,s+r−1�s+1,s+r − �m + �s,s+r−1�s,s+r−1 � �ms+1,s+r − ms,s+r−1� − 1 � �s+r − 1,

�m + �s,j�s+1,s+r − �m + �s,j�s,s+r−1 � ms+1,s+r − ms,s+r−1 � �s+r �s + r � j � n� .

ence, by the linear independence, we obtain cm�ms,s+r−1−ms−1,s+r−2−�s+r−1��=0 for any m
Zl

n�r−1,s+1�. So if cm�0, then ms,s+r−1−ms−1,s+r−2��s+r−1 for any m�Zl
n�r−1,s+1�. Then we

ave v=�m�Zl
n�r−1,s�cmv�m�. �

For ��Zl
n, let V�

0��� be as in �5.18� and L�
nil��� be the U�-submodule of V�

0��� generated by

��0�.
Proposition 5.9 (Refs. 2 and 22): For any ��Zl

n, L�
nil��� is isomorphic to V�

nil��� as a

�-module.
For a�C�, ��Zl

n, let V�
0���a

± �respectively, L�
nil���a

±� be the evaluation representation of V�
0���

respectively, L�
nil���� �see Definition 5.4�. Then L�

nil���a
± is the Ũ�-submodule of V�

0���a
± generated

y v��0�, respectively.

Now, let �̃ : Ũ� / Ĩ�→ Ũ�
fin �respectively, �̄ :U� / I�→U�

fin� be the isomorphism in Theorem 3.15

respectively, Proposition 3.14�. Let I�� be the two-sided ideal of U�� generated by �Ẽ�
l , F̄�

l ,K
2l

1 ���
+ ,� P�. Then we can regard �̄ as an isomorphism from U�� / I�� to �U�
fin��. Let �̃ : Ũ�

Ũ� / Ĩ� �respectively, � :U��→U�� / I��� be the projection and eva
± : Ũ�→U�� �respectively,

eva
fin�± : Ũ�

fin→ �U�
fin��� be the evaluation homomorphism in Proposition 2.6 �respectively, �4.2���.

hen, by the definition of these maps, the following diagram commutes:

Ũ� ——→
eva

±

U��

�̃↓ ↓�

Ũ�/Ĩ�
U��/I��

�̃↓ ↑�̃−1

Ũ�
fin

——→
�eva

fin�±

�U�
fin��

�5.22�

Proposition 5.10: For any a�C� and ��Zl
n, L�

nil���a
± is a finite-dimensional irreducible

ilpotent Ũ�-module of type 1.
Proof: We shall prove the case of L�

nil���a
+. Since we can prove the case of L�

nil���a
− similarly.

y Theorem 5.9, L�
nil���a

+ is a finite-dimensional irreducible Ũ�-module of type 1. So we shall

rove, that L�
nil���a

+ is a nilpotent Ũ�-module.
For ��Zl

n, let ��
0 as in �5.18�. We define �̄�

0 :U�� / I��→End�L�
nil���� by �̄�

0�u+ I��ª��
0�u� for any

�U��. Since L�
nil��� is a nilpotent U�-module, �̄�

0 is well-defined. Then, for any u�U��, v
L�

nil���, we have u .v= �̄�
0 ���u��v� on L�

nil���. Hence, for any u� Ũ� and v�L�
nil���a

+, we get

u . v = �̄�
0 � � � eva

+�u��v� = �̄�
0 � ��̄��−1 � �eva

fin�+ � �̃ � �̃�u��v� on L�
nil���a

+,

y �5.22�. Since �̃�Ĩ��=0, we obtain Ĩ�=0 on L�
nil���a

+. Therefore L�
nil���a

+ is a nilpotent
˜

�-module. �

By Theorem 3.15 and Proposition 5.10, we can regard L�
nil���a

± as a Ũ�
fin-module. We denote

˜
�
fin-module L�

nil���a
± by L�

fin���a
±. Let Pa

± be as in �4.6� and Ṽ�
fin�Pa

±� be the evaluation representation

f Ũ�
fin in Sec. IV. Then, by Theorem 4.13, 5.9, L�

fin���a
± is isomorphic to Ṽ�

fin�Pa
±� as a Ũ�

fin-module.
ence, by Proposition 4.14, we obtain the following proposition.

Proposition 5.11: Let �= ��i�i�l�Zl
n, a±�C�.

�a� If �=0, then L�
nil���a+

+ is isomorphic to L�
nil���a−

− as a Ũ�-module.
nil + nil − ˜
�b� In the case of ��0, L� ���a+

is isomorphic to L� ���a−
as a U�-module if and only if a+
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a−�2���i�+i� for any i�supp���.

. Alternative proof of Proposition 5.11„b…

We can also prove Proposition 5.11�b� without using the theory of restricted type. We give
ere the alternative proof.

“Proof of only if part:” We assume that L�
nil���a+

+ L�
nil���a−

− . Then there exists a Ũ�-module
somorphism � :L�

nil���a+

+ →L�
nil���a−

− . By Proposition 5.8�a�, there exists d�C� such that

�v��0��=dv��0�. Since L�
nil���a+

+ is generated by v��0� as a Ũ�-module, we obtain ��v�=dv for
ny v�L�

nil���a+
. Hence we have

eṽa+

+ �E0�v��0� = d−1��eṽa+

+ �E0�v��0�� = d−1eṽa−

− �E0���v��0�� = eṽa−

− �E0�v��0� . �5.23�

For c= �ci,j�1�i�j�n�CN, rs�RF, let CE�c ,rs� be as in �5.16�. Then CE�0,rs�=0 for rs�RF.
y Theorem 5.5, we obtain

eṽa±

± �E0�v��0� = a± �
rs�RF

�− 1�s+n�����s�+s�+n�− �s��v��rs� . �5.24�

ince �v��rs� �rs�RF� is linearly independent, by �5.23� and �5.24�, we have a+�−��s�−s��s��

a−���s�+s��s�� for any s� I. Hence a+=a−�2���i�+i� for any i�supp���.
“Proof of if part:” We assume that a+=a−�2���i�+i� for any i�supp���. By the definition of eṽa±

± ,
e have eṽa+

+ �Ei�=eṽa−

− �Ei�, eṽa+

+ �Fi�=eṽa−

− �Fi�, and eṽa+

+ �K�i
�=eṽa−

− �K�i
� on V�

nil��� for any i� I. So
t is enough to prove that eṽa+

+ �E0�=eṽa−

− �E0� and eṽa+

+ �F0�=eṽa−

− �F0� on V�
nil���. By �5.24�, we

btain eṽa+

+ �E0�v��0�=eṽa−

− �E0�v��0�. On the other hand, for any j1 , ¯ jr� I�r�N�, we get

eṽa+

+ �E0��Fj1
¯ Fjr

v��0�� = eṽa+

+ �Fj1
¯ Fjr

��eṽa+

+ �E0�v��0�� = eṽa−

− �Fj1
¯ Fjr

��eṽa−

− �E0�v��0��

= eṽa−

− �E0��Fj1
¯ Fjr

v��0�� .

ince L�
nil��� is spanned by U�

−v��0� as a C-vector space, we obtain eṽa+

+ �E0�=eṽa−

− �E0� on V�
nil���.

Now, for c= �ci,j�1�i�j�n�CN, rs�RE, let DF�c ,rs� be as in Proposition 5.5 and m� be as in
5.19�. Then, for any rs�RE, we have

DF�m�,rs� = − mn,n
� + �

k=1

n−s+1

m1,k
� − �

k=s+1

n

�mrk
s−1,n−k+rk

s
� − mrk

s,n−k+rk
s

� �

= − �
k=1

n

�n−k+1 + �
k=1

n−s+1

�k + �
k=s+1

n

�n−k+1 = ��n−s+1�,

see �5.20��. Hence, by Theorem 5.5, we get

eṽa±

± �F0�v�m�� = a±
−1 �

rs�RE

�− 1�s−1�±���n−s+1�−s+n+1�−n�− �n−s+1��v�m� + �rs� .

y the assumption, if �n−s+1�0, then we have a+=a−�2���n−s+1�+�n−s+1��. So we obtain

a+
−1���n−s+1�−s+n+1 = a−

−1�−2��n−s+1�−2�n−s+1�+��n−s+1�−s+n+1 = a−
−1�−���n−s+1�−s+n+1�.

e have that eṽa+
+ �F0�v�m��=eṽa−

− �F0�v�m��.
On the other hand, in a similar way to the proof of Proposition 5.6 in Ref. 22, we obtain that

here exists a nonzero vector vL�L�
nil��� such that FivL=0 for any i� I. Hence, by Proposition

.8�b�, we obtain v�m���L�
nil���. Then L�

nil��� is spanned by U�
+v�m�� as a C-vector space. There-

˜

+
˜

− nil
ore, in a similar way to the proof of E0-case, we obtain eva+
�F0�=eva−

�F0� on L� ���.
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In this paper, we study Miura transformations u�v from partial differential equa-
tions uxxx=F�u ,ux ,ut� to nonlinear partial differential equations
G�v ,vx ,vt , . . . ,�x

l v , . . . ,�t
1v�=0 defined using integrable systems on v. We classify

all such Miura transformations under some restrictions, and hence generalize the
classical Miura transformation to a large class of nonlinear partial differential equa-
tions. For some examples, by applying Miura transformations found in this paper,
we derive exact solutions v from known solutions u. In particular, kink and soliton-
kink solutions of vt=

3
2vx sin2 v+ 1

2vx
3+vxxx are obtained from constant solutions and

soliton solutions of the MKdV equation. As another application of Miura transfor-
mations of this paper, we deduce a new Bäcklund transformation for each of vt

= 3
2vx sin2 v+ 1

2vx
3+vxxx and vt=− 3

2vx sinh2 v− 1
2vx

3+vxxx from the known Bäcklund
transformations for the MKdV equations. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2234727�

. INTRODUCTION

It is now well known that if v is a solution of the negative MKdV equation

vt = vxxx − 6v2vx, �1.1�

hen u=vx−v2 is a solution of the KdV equation

ut = uxxx + 6uux. �1.2�

he transformation v�u=vx−v2 from solutions of the negative MKdV equation to solutions of
he KdV equation is the classical Miura transformation.6

On the other hand, if u is a solution of the KdV equation, then the system

vx = v2 + u ,

�1.3�
vt = 2v2u + 2u2 + 2vux + uxx

n v is integrable and yields a solution v �with a constant of integration� of the negative MKdV
quation.

Dedicated to the memory of our great mentor, Professor Shiing-Shen Chern.

�
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So, the classical Miura transformation v�u=vx−v2 and this second transformation u�v
efined using �1.3� together give a local equivalence between the negative MKdV equation and the
dV equation.

Motivated by this example, we give the following general definition of Miura transformations
f the type u�v above.

Let n�0 and k�0 be integers. Consider a system

�x = ���1, . . . ,�n,u,ux,ut, . . . ,�x
ku, . . . ,�t

ku� ,

�1.4�
�t = ���1, . . . ,�n,u,ux,ut, . . . ,�x

ku, . . . ,�t
ku�

n the �row� vector � of n functions �1 , . . . ,�n. Following Ref. 6, we say that �1.4� is an
ntegrable system associated with a partial differential equation �PDE�

F�u,ux,ut, . . . ,�x
l u, . . . ,�t

lu� = 0 �1.5�

f it is integrable on a nonempty open subset of the � space when and only when u is a solution
o a fixed set of PDEs implied by �1.5�.

The functions defined by integrable systems associated with a PDE were called pseudopoten-
ials of the equation by Wahlquist and Estabrook in Ref. 13, and they have been studied exten-
ively in the literature.

Let �1.4� be an integrable system associated with �1.5�. A map

u � v = F��1, . . . ,�n,u,ux,ut, . . . ,�x
ku, . . . ,�t

ku� �1.6�

s called a Miura-transformation �MT� from �1.5� to a nonlinear PDE

G�v,vx,vt, . . . ,�x
l v, . . . ,�t

lv� = 0 �1.7�

efined using �1.4� if it is nonconstant with respect to at least one of �1 , . . . ,�n, and v is always
solution of �1.7� for each solution u of �1.5� and every solution �= ��1 , . . . ,�n� of the corre-

ponding system �1.4�.
In general, given a solution u of �1.5�, investigating �1.4� is much easier than solving �1.7�.

his is the reason for why MTs are useful. When �1.5� and �1.7� are the same equation, a MT is
hen called a Bäcklund transformation �BT� for the equation. There is a huge literature on such
ransformations �see, e.g., Refs. 8, 5, 14, 10, and 7�.

In this paper, we explicitly determine all MTs u�v from PDEs of the form

uxxx = F�u,ux,ut� �1.8�

o nonlinear PDEs of the form

G�v,vx,vt, . . . ,�x
l v, . . . ,�t

lv� = 0 �1.9�

efined using integrable systems of the form

vx = ��v� + u ,

�1.10�
vt = ��v,u,ux,uxx�

ssociated with �1.8�. For the main classification results of this paper, see Theorems 2.4 and 2.6.
In each of such situations, the map v�u=vx−��v� is a MT from �1.9� to �1.8�, and the

ransformations u�v and v�u=vx−��v� together give a local equivalence between �1.8� and
1.9�. This motivates our choice of the special format of the associated integrable system �1.10�.

This work is a continuation of Ref. 14. Our method originated from the work2 of Chern and
enenblat and relies on the requirement that the source PDE uxxx=F�u ,ux ,ut� in question has

nough solutions so that at each point in a nonempty open subset of the xt space, the values of u,
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x, ut, and uxx are independent from each other; hence, we can treat them as independent variables
n the functions F, G, �, and � when we want to determine these functions. We will always omit
his requirement from the statements of our results.

Most papers in this area are about constructions of BTs, MTs, and solutions, and there are
everal results on classifications of such transformations. However, all these classification results
see, e.g., Ref. 9� assume that the PDEs considered satisfy certain integrability conditions, such as
ax pairs, symmetries, or high order conservation laws; moreover, some authors allow transfor-
ations that are more general than those which we use. As a feature of this paper, we do not

ssume that the PDEs studied have any structures.
The organization of this paper is as follows. In Sec. II, we prove this paper’s classification of

Ts. Section III is devoted to exact solutions obtained using MTs of this paper, with soliton-kink
olutions presented in Examples 3.7 and 3.8; while Sec. IV deals with BTs deduced in terms of
uch MTs, with two new BTs given in Examples 4.6 and 4.7.

I. MIURA TRANSFORMATIONS

First, we have the following complete classification of all the integrable systems of the form
1.10� associated with PDEs of the form �1.8�. Recall that a linear coordinate change of the xt
pace has the form x̃=a1x+b1t+c1 and t̃=a2x+b2t+c2 with a1b2�a2b1, while a linear coordinate
hange of the u axis can be written as u�au+b with a�0.

Theorem 2.1: Up to linear coordinate changes of the xt, u, and v spaces, �1.10� is an
ntegrable system associated with �1.8� if and only if: when � is linear,

F�u,ux,ut� = p�u� + q�u�ux +
3�Q��u�
2Q�u�

ux
2 + s�u�ux

3 + Q�u�ut, �2.1�

��v� = �v , �2.2�

��v,u,ux,uxx� = �̃�v,u� +
�

Q�u�
ux +

Q��u�
2Q�u�2ux

2 +
1

Q�u�
uxx �2.3�

or some smooth functions q and Q such that Q�0, where �=0 or 1,

p�u� = Q�u���	0 − 	1u + �� � − q�u�
Q�u�

du� , �2.4�

s�u� =
Q��u�2

Q�u�2 −
Q��u�
2Q�u�

, �2.5�

�̃�v,u� = 	0 + 	1v +� � − q�u�
Q�u�

du �2.6�

or some constants 	0 and 	1; when � is nonlinear,

F�u,ux,ut� = − 6uux + ut, �2.7�

��v� = v2, �2.8�

��v,u,ux,uxx� = 2v2u + 2u2 + 2vux + uxx, �2.9�

r

3 2
F�u,ux,ut� = − 2u ux + ut, �2.10�
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��v� = sin v , �2.11�

��v,u,ux,uxx� = sin v + u + 1
2u2sin v + 1

2u3 + uxcos v + uxx, �2.12�

r

F�u,ux,ut� = 3
2u2ux + ut, �2.13�

��v� = sinh v , �2.14�

��v,u,ux,uxx� = sinh v + u − 1
2u2 sinh v − 1

2u3 + ux cosh v + uxx. �2.15�

Proof: If �1.10� is an integrable system associated with �1.8�, then by Lemma 2.11 of Ref. 14,

��v,u,ux,uxx� = �̌�v,u,ux� + �̂�v,u�uxx, �2.16�

F�u,ux,ut� = P�u,ux� + Q�u�ut �2.17�

or some smooth functions �̌, �̂, P, and Q satisfying �̂�v ,u�Q�u��1. Hence, �̂ does not depend

n v, Q�0, and �̂=1/Q. Applying Lemma 2.11 of Ref. 14 again, �1.10� is an integrable system
ssociated with �1.8� if and only if

F�u,ux,ut� = p�u� + q�u�ux + r�u�ux
2 + s�u�ux

3 + Q�u�ut, �2.18�

��v,u,ux,uxx� = �̃�v,u� +
���v�
Q�u�

ux +
Q��u�

2Q�u�2ux
2 +

1

Q�u�
uxx �2.19�

or some smooth functions p, q, r, s, and �̃ satisfying

− Q��u�Q�u� + 2Q��u�2 = 2s�u�Q�u�2, �2.20�

3���v�Q��u� = 2r�u�Q�u� , �2.21�

��2�v� = ���v� + u����v� + Q�u�
��̃�v,u�

�u
+ q�u� , �2.22�

���v��̃�v,u� = ���v� + u�
��̃�v,u�

�v
+ p�u�/Q�u� . �2.23�

rom �2.21� we see that either � is linear, or Q is �nonzero and� constant.
Case 1: � is linear. Then, ��v�=�0+�1v for some constants �0 and �1. Replacing u by u

�0 if necessary, we can assume that �0=0. When �1�0, after replacing x by x /�1 and u by �1u,
e have that �1=1. So, up to a shift in the u direction and a rescaling of the x and u directions,
e can always assume that ��v�=�v, where �=0 or 1. Then, from �2.20�–�2.22� we deduce �2.5�

nd that r=3�Q� / �2Q�,

�̃�v,u� = 	�v� +� � − q�u�
Q�u�

du �2.24�

or some smooth function 	. Differentiating �2.23� with respect to v yields that ��+u�	 �=0, and
ence 	�v�=	0+	1v for some constants 	0 and 	1. Then, �2.23� and �2.24� imply �2.4� and �2.6�,

espectively.
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Case 2: Q is constant. Replacing t by Qt, we can assume that Q=1. Then �̂=1. Now, �2.20�
nd �2.21� are equivalent to s=0 and r=0, respectively. So, �2.18�, �2.19�, �2.22�, and �2.23� can
e rewritten as

F�u,ux,ut� = p�u� + q�u�ux + ut, �2.25�

��v,u,ux,uxx� = �̃�v,u� + ���v�ux + uxx, �2.26�

��̃�v,u�
�u

= ���v�2 − ��v����v� − ���v�u − q�u� , �2.27�

p�u� = ���v��̃�v,u� − ���v� + u�
��̃�v,u�

�v
, �2.28�

espectively. From �2.27� we have that

�̃�v,u� = 	�v� + ����v�2 − ��v����v��u − 1
2���v�u2 −� q�u�du �2.29�

or some smooth function 	. In particular, ��̃�v ,u� /�v is polynomial in u of degree 
2. Taking
he v derivative of �2.28� yields that

���v� + u�
�2�̃�v,u�

�v2 = ���v��̃�v,u� . �2.30�

ince � is not linear, from �2.30� and �2.29� one then deduces that q is a polynomial of degree 
2,
.e., q�u�=q0+q1u+q2u2 for some constants q0, q1, and q2. When q2�0, using a shift in the u
irection, we can always have that q1=0. By applying the coordinate change x̃=x−q0t and t̃= t if
ecessary, we can assume that q0=0. Thus,

q�u� = q1u + q2u2, �2.31�

nd hence �2.27� is equivalent to that

�̃�v,u� = 	�v� + ����v�2 − ��v����v��u − 1
2 ����v� + q1�u2 −

q2

3
u3 �2.32�

or some smooth function 	. By �2.28�, p is a polynomial of degree 
3, i.e., p�u�= p0+ p1u
p2u2+ p3u3 for some constants p0, p1, p2, and p3. So, �2.28� can be rewritten as

p3 = −
q2

3
���v� +

1

2
���v� , �2.33�

p2 = −
q1

2
���v� −

3

2
���v����v� +

3

2
��v����v� , �2.34�

p1 = ���v�3 − 2��v����v����v� + ��v�2���v� − 	��v� , �2.35�

p0 = ���v�	�v� − ��v�	��v� . �2.36�
y taking the v derivative of �2.33� we obtain that
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����v� =
2q2

3
���v� . �2.37�

If q2�0 �and hence one can assume that q1=0�, by a rescaling in the u direction, one has that

2=−3/2. So, q�u�=−3u2 /2. Thus, �2.37� implies that up to a shift in the v direction, ���v�
=−c sin v for some constant c�0, and hence ��v�=a+bv+c sin v for some constants a and b.

fter replacing x by x /c, t by t /c3 and u by cu, the PDE on u stays invariant, while in the new
ystem on �, ��v�=a /c+bv /c+sin v. So, we can assume that c=1. Then, �2.33�–�2.36� together
re equivalent to a=b=0 and p=	=0. Therefore, in this subcase, up to linear coordinate changes
f the xt, u, and v spaces, �2.25�–�2.28� can be rewritten as �2.7�–�2.9�.

If q2=0, then �2.33� implies that ��v�=a+bv+cv2+ p3v3 /3 for some constants a, b, and c. By
omparing the v3 coefficients in �2.34� one gets that p3=0. Hence, c�0. By rescaling the x and u
ariables, we can assume that c=1; then after a shift in the v direction, one can reach the situation
here b=0; and finally a shift in the u direction can make ��v�=v2. Then, �2.33�–�2.36� together

re equivalent to q1=−6, i.e., q�u�=−6u, and p=	=0. Therefore, in this subcase, up to linear
oordinate changes of the xt, u, and v spaces, �2.25�–�2.28� can be rewritten as �2.10�–�2.12�.

If q2�0, one can show similarly that up to linear coordinate changes of the xt, u, and v
paces, �2.25�–�2.28� can be rewritten as �2.13�–�2.15�. This finishes the proof. �

The case of a linear � in Theorem 2.1 includes the following class of examples.
Example 2.2: Let �=0 or 1, and n�N. For any real constants 	0, 	1, q1 , . . . ,qn satisfying

n�0, the nonlinear PDE

uxxx = �	0 + �� − 	1�u −
�q1

2
u2 − ¯ −

�qn

n + 1
un+1 + �q1u + ¯ + qnun�ux + ut �2.38�

as the associated integrable system

vx = �v + u ,

�2.39�

vt = 	0 + 	1v + �u −
q1

2
u2 − ¯ −

qn

n + 1
un+1 + �ux + uxx.

The following principle gives a general way for obtaining Miura transformations among PDEs
rom associated integrable systems of forms similar to that of �1.10�.

Principle 2.3: If

vx = ��v� + u ,

�2.40�
vt = ��v,u,ux,ut, . . . ,�x

ku, . . . ,�t
ku�

s an integrable system associated with a partial differential equation

F�u,ux,ut, . . . ,�x
l u, . . . ,�t

lu� = 0, �2.41�

hen u�v is a Miura transformation from �2.41� to the partial differential equation

vt = ��v,vx − ��v�, . . . ,�x
l �vx − ��v��, . . . ,�t

l�vx − ��v��� �2.42�

efined using �2.40�.
In this case, the Miura transformations u�v and v�u=vx−��v� together give a local

quivalence between �2.41� and �2.42�.
Applying Principle 2.3 to the case in Theorem 2.1 with a linear � immediately yields the

ollowing classification.
Theorem 2.4: Assume that � in �1.10� is linear. Then, u�v is a Miura transformation from

partial differential equation �1.8� to a nonlinear partial differential equation �1.9� defined using

n integral system �1.10� associated with �1.8� if and only if up to linear coordinate changes of the
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t, u, and v spaces, �1.8�–�1.10� can be written as

uxxx = p�u� + q�u�ux +
3�Q��u�
2Q�u�

ux
2 + s�u�ux

3 + Q�u�ut, �2.43�

vt = �̃�v,vx − �v� +
�

Q�vx − �v�
�vxx − �vx� +

Q��vx − �v�
2Q�vx − �v�2 �vxx − �vx�2 +

1

Q�vx − �v�
�vxxx − �vxx�

�2.44�

nd

vx = �v + u ,

�2.45�

vt = �̃�v,u� +
�

Q�u�
ux +

Q��u�
2Q�u�2ux

2 +
1

Q�u�
uxx

or some smooth functions q and Q such that Q�0 and one of them is nonconstant, where �=0 or

, and p, s, and �̃ are given by �2.4�–�2.6�.
Example 2.5: When �2.43� is �2.38�, �2.44� becomes

vt = 	0 + �	1 − ��v −
q1

2
�vx − �v�2 − ¯ −

qn

n + 1
�vx − �v�n+1 + vxxx, �2.46�

hich also does not involve the second-order x derivative.
From Principle 2.3 and the case of Theorem 2.1 with a nonlinear �, we immediately obtain

he following classification.
Theorem 2.6: Assume that � in �1.10� is nonlinear. Then, u�v is a Miura transformation

rom a partial differential equation �1.8� to a nonlinear partial differential equation �1.9� defined
sing an integrable system �1.10� associated with �1.8� if and only if up to linear coordinate
hanges of the xt, u, and v spaces, either �1.8�–�1.10� are the KdV equation �1.2�, the negative
KdV equation �1.1�, and the integrable system �1.3�, respectively, or they form one of the

ollowing two cases:
Case 1.

ut = 3
2u2ux + uxxx, �2.47�

vt = 3
2vxsin2 v + 1

2vx
3 + vxxx, �2.48�

nd

vx = sin v + u ,

�2.49�
vt = sin v + u + 1

2u2 sin v + 1
2u3 + ux cos v + uxx.

Case 2.

ut = − 3
2u2ux + uxxx, �2.50�

vt = − 3
2vx sinh2 v − 1

2vx
3 + vxxx, �2.51�

nd

vx = sinh v + u ,

�2.52�
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vt = sinh v + u − 1
2u2 sinh v − 1

2u3 + ux cosh v + uxx.

Remark 2.7: Note that �2.48� is a real form of

ut + uxxx − 1
8ux

3 + ux�aeu + be−u� + c = 0, �2.53�

hich was found by Fokas in Ref. 3, and by Calogero and Degasperis in Ref. 1. In Ref. 14, a BT
or �2.48� was found.

II. EXACT SOLUTIONS

If u�v is a MT from a PDE �1.8� to a nonlinear PDE �1.9� defined using an integrable system
1.10�, then from a solution u of �1.8�, by solving the integrable system �1.10�, one gets a
ne-parameter family of solutions v of �1.9�. In the following, we give eight examples, the first
wo of which correspond to the case of a linear �, and the others the case of a nonlinear �.

In general, it is not easy �if possible� to get explicit formulas for the solutions v of �1.10� when
solution u of �1.8� is given, even though u can be explicit and simple. In such a situation, using

n ordinary differential equation �ODE� solver, one can usually obtain numerical approximations
f these solutions of �1.10�, and hence of exact solutions of �1.9�. Sometimes, even u can be given
ia an ODE. We will use this method whenever needed.

Example 3.1: In Example 2.2, let �=1 and n=1. Using a linear coordinate change of the u axis
nd one of the xt plane we can bring �2.38� into the form

uxxx = 	0 − u2 + 2uux + ut. �3.1�

hen, the associated integrable system �2.39� becomes

vx = v + u ,

�3.2�
vt = 	0 + v + u − u2 + ux + uxx,

hile the corresponding PDE �2.46� on v takes the form

vt = 	0 − �vx − v�2 + vxxx. �3.3�

The x-independent solution of �3.1� are

u�x,t� = c1 tan�c1t + �� �3.4�

f 	0�0,

u�x,t� = −
1

t + �
, u = 0 �3.5�

f 	0=0, and

u�x,t� = − c2 tanh�c2t + ��, u�x,t� = − c2 coth�c2t + ��, u = ± c2 �3.6�

f 	0�0, where c1=	−	0, c2=		0, and � is an arbitrary real constant. Note that the tanh solutions
re x-steady solutions antikink in the t variable, starting from �the constant solution� c2 at t=−
nd strictly decreasing to �the constant solution� −c2 at t= +. Moreover, the tanh solutions have
xactly one inflection point.

For such a u, the solutions of �3.2�, i.e., the corresponding solutions of �3.3�, are

v�x,t� = cex+t − u�x,t� , �3.7�

here c is also an arbitrary real constant. We mention that when u is one of the tanh-solutions
bove, the corresponding v with c=0 is an x-steady solution kink in the t variable. Figure 1 shows

he u with 	0=1 and �=0 together with the corresponding v with c=0.
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The following example generalizes the main parts of Example 3.1 to the case with an n�2.
Example 3.2: Let �=1 and n�N such that n�2. Then, �2.38�, �2.39�, and �2.46� become

uxxx = 	0 + �1 − 	1�u −
q1

2
u2 − ¯ −

qn

n + 1
un+1 + �q1u + ¯ + qnun�ux + ut, �3.8�

vx = v + u ,

�3.9�

vt = 	0 + 	1v + u −
q1

2
u2 − ¯ −

qn

n + 1
un+1 + ux + uxx,

vt = 	0 + �	1 − 1�v −
q1

2
�vx − v�2 − ¯ −

qn

n + 1
�vx − v�n+1 + vxxx, �3.10�

espectively. The x-steady solutions u�x , t�= f�t� of �3.8� are given by the ODE

f��t� =
qn

n + 1
f�t�n+1 + ¯ +

q1

2
f�t�2 + �	1 − 1�f�t� − 	0. �3.11�

or each such u, the solutions of �3.9�, i.e., the corresponding solutions of �3.10�, are

v�x,t� = cex+	1t − f�t� , �3.12�

here c is an arbitrary real constant.
Assume that the polynomial on the right-hand side of �3.11� has k�2 distinct real roots. Then,

3.8� has k−1 one-parameter families of x-steady solutions between these roots and kink or
ntikink in the t variable. For each such u, the corresponding v with c=0 is also an x-steady
olution kink or antikink in the t variable; and when 	1=0, the corresponding v’s with c�0 are
olutions kink or antikink in the t variable and moving down in the x direction, and those v’s with
�0 are solutions kink or antikink in the t variable and moving up in the x direction.

As a particular example, if we let n=3, 	0= �1.422−1�2−1, 	1=1, q1=−4, q2=0 and q3=4,
hen �3.8�–�3.10� take the form

uxxx = 	0 + 2u2 − u4 + �− 4u + 4u3�ux + ut, �3.13�

vx = v + u ,

�3.14�
vt = 	0 + v + u + 2u2 − u4 + ux + uxx,

vt = 	0 + 2�vx − v�2 − �vx − v�4 + vxxx, �3.15�

FIG. 1. Solutions antikink and kink in the t variable.
espectively. In this case, the real constant solutions of �3.13� are u= ±1.42, the x-steady solution
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satisfying u�0,0�=0 is a 2-antikink, i.e., an antikink having exactly 2�2�−1=3 infection points,
nd the corresponding v with c=0 is a 2-kink. Figure 2 indicates them.

Multikink and multi-antikink solutions with more than two “steps” can be obtained similarly.
e omit the details.

Next, we discuss the solution of the nonlinear PDE �2.48� obtained from known solutions of
he MKdV equation �2.47� and in terms of the MT from �2.47� to �2.48� defined using �2.49�. We
ivide our discussion into several parts according to the complexity of the known solutions of the
KdV equation used. Note that v is a solution of �2.49� if and only if v+2� is.

Example 3.3: The MKdV equation �2.47� has the trivial solution u=0. Substituting this solu-
ion into �2.49� gives that

vx = sin v ,

�3.16�
vt = sin v .

olving this system yields the solutions v=n� and

v�x,t� = 2n� + 2 arctan��ex+t� = �2n + 1�� ± arccos tanh�x + t + �� �3.17�

f �2.48�, where n�Z, � is a nonzero real constant, and � is an arbitrary real constant. The
bove-mentioned nonconstant solutions are kink or antikink solutions, whose profiles are illus-
rated in Fig. 3.

Example 3.4: Let c� �−1,1� be nonzero. Substituting the constant solution u=c of �2.47� into
2.49� gives that

vx = sin v + c ,

�3.18�
vt = �1 + c2/2��sin v + c� .

olving this system yields the solutions

v = 2n� + arcsin�− c�, v = �2n + 1�� − arcsin�− c� , �3.19�

FIG. 2. A 2-antikink and a 2-kink.

3 2 1 3
FIG. 3. Profiles of kink and antikink solutions of vt= 2vx sin v+ 2vx +vxxx.
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v�x,t� = 2n� + 2 arctan
c1 + c2� exp ��sgn c�	1 − c2�x + c3t��

1 + � exp��sgn c�	1 − c2�x + c3t��
�3.20�

f 2.48, where n�Z, � is a nonzero real constant, and

c1 = − 1/c + 	1/c2 − 1, c2 = − 1/c − 	1/c2 − 1, c3 = 1 + c2/2. �3.21�

he above-noted nonconstant solutions are also kink or antikink solutions.
Example 3.5: Substituting the constant solution u= ±1 of �2.47� into �2.49� gives the system

3.18� with c= ±1. Solving this system yields the solutions

v = �2n � 1/2��, v�x,t� = �2n � 1/2�� − 2 arccot�� ± x ± 3t/2� �3.22�

f �2.48�, where n�Z, and � is a real constant. The above-noted nonconstant solutions are also
ink or antikink solutions.

Therefore, from constant solutions of the MKdV equation �2.47�, one gets three classes of
ink and antikink solutions of �2.48�.

Example 3.6: From the constant solution u=c of the MKdV equation �2.47� satisfying 
c 

1, we get the solution

v�x,t� = 2n� + 2 arctan�	c2 − 1

c
tan�	c2 − 1

2
�x + �1 +

c2

2
�t + ��� −

1

c
� �3.23�

f �2.48�, where n�Z, and � is a real constant. Note that v is smooth on R2, and the formula
3.23� should be understood as its continuous extension to R2. When c�1 �respectively, c�−1�,
he profiles of these solutions look like stairs going up �respectively, down� in the x increasing
irection, and hence we call these solutions up-stair solutions �respectively, down-stair solutions�,
ee Fig. 4 for illustrations with c= ±1.05.

Example 3.7: The MKdV equation �2.47� has one-soliton solutions

u�x,t� = ± 2k sech�kx + k3t + �� , �3.24�

here k and � are arbitrary real constants satisfying k�0. Figure 5 shows a profile of the positive
ne-soliton solution with k=1 and �=0.

From this one-soliton solution, we obtain two types of solutions of �2.49�, i.e., solutions of
2.48�: the majority of these solutions are kink-like solutions carrying a one-soliton and hence are
alled one-soliton-kink solutions, and the remaining ones are countably many kink solutions be-
ween the one-soliton-kink solutions and given by

v�x,t� = 2n� − arccos tanh�x + t� , �3.25�

here n�Z. Figure 6 illustrates these solutions at t=0, while Fig. 7 consists of the wave forms of
he one-soliton-kink solution v with v�0,0�=� /2 at t=−4, −2, −1 �first row� and at t=0, 1, 3

FIG. 4. Profiles of up- and down-stair solutions of vt=
3
2vx sin2 v+ 1

2vx
3+vxxx.
second row�.
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The solutions v satisfying v�0,0�= �2n+1�� with n�Z are x-attractors, i.e., all nearby solu-
ions approach these solutions as x→ ±; while the kink solutions are unstable in the x direction.
ote that when t is sufficiently negative, the effect of the one-soliton u is a solitary valley in v; and
hen t is sufficiently large, the effect is a solitary peak. Moreover, if a negative soliton solution is
sed, then the solutions v so obtained are one-soliton-antikink solutions and antikink solutions.

Example 3.8: The MKdV equation �2.47� has two-soliton solutions

u�x,t� =
2�k1

2 − k2
2��k1 cosh g�x,t� + k2 cosh f�x,t��

�k1
2 + k2

2�cosh f�x,t�cosh g�x,t� − 2k1k2�sinh f�x,t�sinh g�x,t� − 1�
, �3.26�

here

f�x,t� = k1x + k1
3t + �, g�x,t� = k2x + k2

3t + � , �3.27�

nd k1, k2, �, and � are arbitrary real constants such that k1�0�k2 and 
k1 
 � 
k2
 �either k1=0 or

2=0 for one-soliton solutions�. Figure 8 shows the profiles of the two-soliton solution with k1

2, k2=1, �=−10, and �=0 at t=−2, 0, 1 �first row� and at t=2, 3, 5 �second row�.
From this two-soliton solution, we obtain two types of solutions of �2.49�, i.e., solutions of

2.48�: the majority of these solutions are two-kink-like solutions carrying a one-soliton and hence
re called one-soliton-two-kink solutions, and the remaining ones are countably many two-kink
olutions between the one-soliton-two-kink solutions �no formula for them�. Figure 9 illustrates
hese solutions at t=0; while Fig. 10 consists of the wave forms of the one-soliton-two-kink
olution v with v�0,0�=� /2 at t=−3, −1, 0 �first row�, at t=1, 2, 3 �second row�, and at t=4, 5,
�third row�.

FIG. 5. Profile of a one-soliton solution of ut=
3
2u2ux+uxxx.

3 2 1 3
FIG. 6. Profiles of one-soliton-kink and kink solutions of vt= 2vx sin v+ 2vx +vxxx.
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When k1=k2 and �=�, the countably many two-kink solutions look almost like kink solu-
ions. Figure 11 shows such a solution together with nearby one-soliton-two-kink solutions at t
0 for the situation of k1=k2=1 and �=�=0.

Again, the solutions v satisfying v�0,0�= �2n+1�� with n�Z are x-attractors; while the
wo-kink solutions are unstable in the x direction. Note that when t is sufficiently negative, the
ffects of the wider soliton and the narrower one in u are a solitary valley in v and a step in v,
espectively; and when t is sufficiently large, the effects are a solitary peak and a step, respectively.

oreover, if a negative two-soliton solution is used, then the solutions v so obtained are one-
oliton-two-antikink solutions and two-antikink solutions.

In general, an n-soliton solution u of the MKdV equation �2.47� gives countably many one-
arameter families of one-soliton-n-kink or one-soliton-n-antikink solutions and countably many
-kink or n-antikink solutions of �2.48�.

The exact solutions of �2.51� obtained from known solutions of the negative MKdV equation
2.50� and via the integrable system �2.52� can be discussed similarly. However, all the solutions

so defined seem to blow up, even for the ones deduced from u=0. So, we omit the details.

FIG. 7. Profiles of a one-soliton-kink solution of vt=
3
2vx sin2 v+ 1

2vx
3+vxxx.

FIG. 8. Profiles of a two-soliton solution of ut=
3
2u2ux+uxxx.
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V. BÄCKLUND TRANSFORMATIONS

In this section, we present a general method for obtaining new BTs from known ones using
Ts, and apply the method to deduce BTs for PDEs in Theorems 2.4 and 2.6.

Theorem 4.1: Assume that there is a local equivalence between a partial differential equation

F�u,ux,ut, . . . ,�x
l u, . . . ,�t

lu� = 0 �4.1�

nd another partial differential equation

G�v,vx,vt, . . . ,�x
l v, . . . ,�t

lv� = 0 �4.2�

iven by Miura transformations u�v, defined using an integrable system

FIG. 9. Profiles of one-soliton-two-kinks and a two-kink of vt=
3
2vx sin2 v+ 1

2vx
3+vxxx.

FIG. 10. Profiles of a one-soliton-two-kink solution of vt=
3
2vx sin2 v+ 1

2vx
3+vxxx.
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vx = ��v� + u ,

�4.3�
vt = ��v,u,ux,ut, . . . ,�x

ku, . . . ,�t
ku�

ssociated with �4.1�, and v�u=vx−��v�.
�i� If �4.1� has a Bäcklund transformation

u � ũ = F��1, . . . ,�n,u,ux,ut, . . . ,�x
ku, . . . ,�t

ku� �4.4�

efined using its associated integrable system

�x = ���1, . . . ,�n,u,ux,ut, . . . ,�x
ku, . . . ,�t

ku� ,

�4.5�
�t = ���1, . . . ,�n,u,ux,ut, . . . ,�x

ku, . . . ,�t
ku� ,

hen �4.2� also has a Bäcklund transformation, i.e.,

v � u = vx − ��v� � ũ = F��1, . . . ,�t
k�vx − ��v��� � ṽ �4.6�

efined using its associated integrable system

�x = ���1, . . . ,�n,vx − ��v�, . . . ,�t
k�vx − ��v��� ,

ṽx = w�ṽ� + F��1, . . . ,�t
k�vx − ��v��� ,

�4.7�
�t = ���1, . . . ,�n,vx − ��v�, . . . ,�t

k�vx − ��v��� ,

ṽt = ��ṽ, . . . ,�t
kF��1, . . . ,�t

k�vx − ��v���� .

�ii� If �4.2� has a Bäcklund transformation

v � ṽ = F��1, . . . ,�n,v,vx,vt, . . . ,�x
kv, . . . ,�t

kv� �4.8�

efined using its associated integrable system

�x = ���1, . . . ,�n,v,vx,vt, . . . ,�x
kv, . . . ,�t

kv� ,

�4.9�
�t = ���1, . . . ,�n,v,vx,vt, . . . ,�x

kv, . . . ,�t
kv� ,

FIG. 11. Profiles of one-soliton-two-kinks and an almost kink of vt=
3
2vx sin2 v+ 1

2vx
3+vxxx.
hen �4.1� also has a Bäcklund transformation, i.e.,
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u � v � ṽ = F��1, . . . ,�t
kv� � ũ = ṽx − ��ṽ� �4.10�

efined using its associated integrable system

vx = ��v� + u ,

�x = ���1, . . . ,�n,v,vx,vt, . . . ,�x
kv, . . . ,�t

kv� ,

�4.11�
vt = ��v,u,ux,ut, . . . ,�x

ku, . . . ,�t
ku� ,

�t = ���1, . . . ,�n,v,vx,vt, . . . ,�x
kv, . . . ,�t

kv� .

Note that the new BT is defined using n+1 pseudopotentials, i.e., �1 , . . . ,�n, ṽ in �i� and v,

1 , . . . ,�n in �ii�. Sometimes, the new BT can be equivalently defined using an associated inte-
rable system of a lower degree �i.e., with less pseudopotentials, see Sec. I in Ref. 14 for the
efinition of degree�.

Combining Theorems 4.1 and �2.4� we immediately get the following fact.
Corollary 4.2: If one of the nonlinear partial differential equations �2.43� and �2.44� has a

äcklund transformation, then the other one also has a Bäcklund transformation.
A special case of Corollary 4.2 is the following classical example.
Example 4.3: In Ref. 12, Wahlquist and Estabrook found a BT v� ṽ for the potential KdV

quation

vt = 3vx
2 + vxxx �4.12�

efined by

ṽx = � − vx − 1
2 �v − ṽ�2,

�4.13�
ṽt = − vt + �v − ṽ��vxx − ṽxx� − 2�vx

2 + vxṽx + ṽx
2� ,

here � is an arbitrary constant. From this BT, they deduced the now well-known BT u� ũ for
he KdV equation �1.2� defined by

u � v =� u dx � ṽ � ũ ª ṽx. �4.14�

o, the BT u� ũ= ṽx for the KdV equation is defined using the integrable system

vx = u ,

ṽx = � − u − 1
2 �v − ṽ�2,

�4.15�
vt = 2v2u + 2u2 + 2vux + uxx,

ṽt = − 3u2 − uxx + �v − ṽ��ux − ṽxx� − 2�u2 + uṽx + ṽx
2�

ssociated with the KdV equation.
Note that the transformation u�v from the KdV equation �1.2� to the potential KdV equation

4.12� defined using vx=u and vt=3u2+uxx is an easy example of the MT given by Theorem 2.4

ith �=0, Q=1 and �̃�v ,u�=3u2.
In Ref. 11, it is shown that the above BT u� ũ for the KdV equation can also be defined as
ollows. Let � be the solution of the associated integrable system

                                                                                                            



w

i

a

h

i

a

M
e

f
t

U
v

d

083515-17 Miura transformations J. Math. Phys. 47, 083515 �2006�

                        
�x = − � + �2 + u ,

�4.16�
�t = 4��− � + �2� + 2�� + �2�u + 2u2 + 2�ux + uxx,

here � is an arbitrary constant, then

u � ũ = 2� − 2�2 − u �4.17�

s the BT.
Generalizing the above-presented example, we have the following fact.
Corollary 4.4: If one of a partial differential equation

ut = �xf�u,ux,ut, . . . ,�x
l u, . . . ,�t

lu� �4.18�

nd its potential equation

vt = f�vx,vxx,vxt, . . . ,�x
l vx, . . . ,�t

lvx� �4.19�

as a Bäcklund transformation, then the other one also has a Bäcklund transformation.
Proof: This is because that there is a MT u�v from �4.18� to �4.19� defined using the

ntegrable system

vx = u ,

vt = f�u,ux,ut, . . . ,�x
l u, . . . ,�t

lu� �4.20�

ssociated with �4.18�. �

Example 4.5: Using Theorem 4.1 and the local equivalence between the KdV equation and the
KdV equation mentioned at the beginning of this paper, one can get the known BT for the KdV

quation from that for the MKdV equation, and vis versa. We omit the details.
Example 4.6: In Ref. 4, Lamb obtained the following BT

u � ũ =
4��

1 + �2 + u �4.21�

or the MKdV equation �2.47�, where � is an arbitrary nonzero constant, and � is the solution of
he associated integrable system

�x = �� + 1
2 �1 + �2�u ,

�4.22�
�t = �3 + 1

2�2�1 + �2�u + 1
2��u2 + 1

4 �1 + �2�u3 + 1
2��1 − �2�ux + 1

2 �1 + �2�uxx.

sing this BT together with the MTs u�v from �2.47� to �2.48�, defined using �2.49�, and
�u=vx−sin v from �2.48� to �2.47�, we deduce a BT v� ṽ for the nonlinear PDE �2.48�:

v � u = vx − sin v � ũ =
4��

1 + �2 + �vx − sin v� � ṽ �4.23�

efined using the integrable system

�x = �� + 1
2 �1 + �2�u ,

ṽx = sin ṽ + ũ ,

�t = �3 + 1
�2�1 + �2�u + 1

��u2 + 1 �1 + �2�u3 + 1
��1 − �2�ux + 1 �1 + �2�uxx,
2 2 4 2 2
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ṽt = sin ṽ + ũ + 1
2 ũ2 sin ṽ + 1

2 ũ3 + ũx cos ṽ + ũxx �4.24�

ssociated with �2.48�. Note that u and ũ in �4.24� are expressions in � and v and are given by
4.23�.

In Ref. 14, a BT for �2.48� using one pseudopotential was found. Now, �4.23� is another BT
or �2.48�, using two pseudopotentials. Moreover, a new BT for the MKdV equation can be
educed similarly, see Ref. 15.

Example 4.7: In Ref. 14, the BT

u � ũ = 2 sinh � + u �4.25�

or the negative MKdV equation �2.50� defined using its associated integrable system

�x = sinh � + u ,

�4.26�
�t = sinh � + u − 1

2u2 sinh � − 1
2u3 + ux cosh � + uxx

as been deduced. From this BT for �2.50� and the local equivalence between �2.50� and �2.51�
iven in Theorem 2.6, we obtain the BT

v � u = vx − sinh v � ũ = 2 sinh � − sinh v + vx � ṽ �4.27�

or �2.51� defined using the integrable system

�x = sinh � + u ,

ṽx = sinh ṽ + ũ ,

�4.28�
�t = sinh � + u − 1

2u2 sinh � − 1
2u3 + ux cosh � + uxx,

ṽt = sinh ṽ + ũ − 1
2 ũ2 sinh ṽ − 1

2 ũ3 + ũx cosh ṽ + ũxx

ssociated with �2.51�.
We believe that this is the first time that a BT for �2.51� is found. By Theorem 2.43 in Ref. 14

his BT cannot be defined using an associated integrable system of the form

�x = ���,u,ux,uxx� ,

�4.29�
�t = ���,u,ux,uxx� .
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Heat-kernel expansion and zeta function regularization are discussed for Laplace-
type operators with discrete spectrum in noncompact domains. Since a general
theory is lacking, the heat-kernel expansion is investigated by means of several
examples. It is pointed out that for a class of exponential �analytic� interactions,
generically the noncompactness of the domain gives rise to logarithmic terms in the
heat-kernel expansion. Then, a meromorphic continuation of the associated zeta
function is investigated. A simple model is considered, for which the analytic con-
tinuation of the zeta function is not regular at the origin, displaying a pole of higher
order. For a physically meaningful evaluation of the related functional determinant,
a generalized zeta function regularization procedure is proposed. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2259580�

. INTRODUCTION

Within the so-called one-loop approximation in quantum field theory, the Euclidean one-loop
ffective action can be expressed in terms of the sum of the classical action and a contribution
epending on a functional determinant of an elliptic differential operator, the so-called fluctuation
perator. The ultraviolet one-loop divergences which are present need to be regularized by means
f a suitable technique �for recent reviews, see Refs. 1–5�.

In general, one works in Euclidean spacetime and deals with a self-adjoint, non-negative,
econd-order differential operator of the form

L = − � + V , �1.1�

here � is the Laplace-Beltrami operator and V a potential depending on the classical background
olution and containing, in general, a mass term. It is well known that the one-loop effective action

�W���, is related to the functional determinant of the field operator L by
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W = − ln Z = S +
1

2
ln det

L

�2 , �1.2�

being the classical action and �2 a renormalization parameter, which appears for dimensional
easons.

The one-loop divergences may be dealt with by using a variant of the zeta-function regular-
zation method.6–8 One namely introduces the regularization parameter � and considers

W��� = S −
1

2
�

0

�

dt
t�−1

��1 + ��
Tr e−tL/�2

= S −
1

2�
����L/�2� , �1.3�

here, as usual, for the elliptic operator L the zeta function is defined by means of the Mellin-type
ransform

��s�L� =
1

��s��0

�

dt ts−1Tr e−tL, ��s�L/�2� = �2s��s�L� . �1.4�

ere the heat trace Tr e−tL plays a preeminent role. Recall that, for a second-order elliptic non-
egative operator L in a compact d-dimensional manifold without boundary, one has the small-t
symptotic expansion

Tr e−tL � 	
j=0

�

Aj�L�tj−d/2, �1.5�

here Aj�L� are the Seeley-DeWitt coefficients.9,10 As a result, for a second-order differential
perator in d-dimensions, the integral �1.4� is convergent in the domain Re s�d /2.

In the compact case, ��s �L� is regular at the origin and one has the well-known result
�0 �L�=Ad/2�L�. The latter quantity is computable �see, for example, the recent reviews �Refs. 11
nd 12� and depends on the potential and on geometric invariants. In particular, for odd dimen-
ional manifolds without boundaries, ��0 �L�=0. Performing a Taylor expansion of the zeta func-
ion we obtain

W��� = S −
1

2�
��0�L� +

��0�L�
2

ln �2 +
���0�L�

2
+ O��� . �1.6�

hus, the one-loop divergences as well as finite contributions to the one-loop effective action are
xpressed in terms of the zeta function and its derivative evaluated at the origin.

In this paper, we would like to discuss a more general situation where logarithmic terms in the
eat-trace asymptotics are present. First, we recall a well-known but crucial fact concerning the
ocal heat-kernel expansion associated with a Laplace type operator in Rd of the kind

H = − � + V�x� . �1.7�

f the potential is real and non-negative, with an additional, rather mild hypothesis, the operator H
s essentially self-adjoint in C0

��Rd�. We will be interested in confining potentials which, with the
dditional hypothesis of being also smooth functions, give rise to a discrete spectrum. As has been
hown in Refs. 13 and 14, the local heat-kernel expansion can be partially summed over and
ewritten under the form

Kt�x,x� =
1

�4	t�d/2e−tV�x�	
n=0

�

bn�x�tn, �1.8�

here the new coefficients bn�x� can easily be computed and depend only on the derivatives of the

otential V�x�. The first few read
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b0�x� = 1, b1�x� = 0,

b2�x� = −
1

6
�V, b3�x� = −

�2V

60
+

�kV�kV

12
, �1.9�

b4�x� = −
�3V

840
+

��V�2

72
+

�i� jV�i� jV

90
+

�kV�k�V

30
. �1.10�

e will make use of such a resummation for obtaining the heat-kernel trace asymptotics in Sec. II.
If one is dealing with smooth compact manifolds, the passage to the heat-kernel trace is

ccomplished by integrating term by term over the coordinates, and no logarithmic contribution in
he heat-trace expansion appears. However, in the case of nonsmooth manifolds one may get
ogarithmic terms in the heat-kernel trace, e.g., when one considers the Laplace operator on
igher-dimensional cones,15,16 but also in four-dimensional spacetimes with a three-dimensional,
oncompact, hyperbolic spatial section of finite volume,17 and in the case of general pseudo-
ifferential operators.18 More recently, the presence of logarithmic terms in self-interacting scalar
eld theory defined on manifolds with noncommutative coordinates has also been pointed out.19–21

his goes together with a nontypical behavior of the corresponding zeta function: possibly a
imple pole at the origin and higher-order poles at other places.

Here we would like to investigate the case of Laplace-type self-adjoint operators defined on
oncompact manifolds. To our knowledge, for the general case of a confining potential and
iscrete spectrum, a systematic theory has yet to be formulated. A pioneering investigation along
his line can be found in Ref. 22. Other studies involve one-dimensional problems on the real
alf-line23 and the Barnes zeta functions.24 With regard to the presence of logarithmic terms in
eat-trace asymptotics, one should note that they have been considered in the abstract context of
egularized products in many places.

Recall that, under certain conditions, the regularized product associated with an infinite se-
uence of nonzero complex numbers 

n� has a related Dirichlet series 	n
n

−s �the zeta-function�.
n this paper, we are only interested in the case when the 
n are eigenvalues of non-negative
ifferential operators and the zeta function converges absolutely for Re s sufficiently large. When
his zeta-function is holomorphic at the origin, the regularized product is defined as exp�−���0��.

general theory is presented in Refs. 27 and 28 and other relevant papers are Refs. 29–31 and
eferences quoted therein. It is worth mentioning that the case of noncompact domains but with
cattering potentials, namely the ones for which a continuous spectrum exists, is well understood
nd the S-matrix or the phase shift function then enter the game �see, for instance, Ref. 32�. In this
ontext, delta-like potentials have also been considered �see, e.g., Refs. 33–35, and references
herein�. If the potential is singular, for instance, proportional to 1 /x2, the presence of logarithmic
erms in the local heat-kernel expansion is also possible, their coefficients becoming
istributions25 �see also the recent paper �Ref. 26� and references therein�. Here, we will not deal
ith situations of this kind. Moreover, for the sake of simplicity, we will limit ourselves to the Rd

at case.
The content of the paper is as follows. In Sec. II, local heat-kernel asymptotics are reviewed

or the simple case we are going to deal with. In Sec. III, the heat-trace asymptotics are investi-
ated and the possibility for the presence of logarithmic terms is pointed out explicitly. The
onsequences of such unusual terms are discussed in Sec. IV in some detail. Finally, in Sec. V, a
imple model of confinement is proposed and a generalization of the zeta-function regularization
ethod is constructed to deal with this case. The paper ends with some conclusions and an
ppendix.

I. HEAT-KERNEL TRACE ASYMPTOTICS IN NONCOMPACT DOMAINS

In this section we will show that, for suitable classes of potentials in noncompact domains,

ogarithmic terms can actually be present in the heat-trace expansion. Under the usual hypothesis
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oncerning the potential V�x�—namely V�x� smooth enough, non-negative, and going to infinity
or �x�→�—the heat trace can be shown to exist and the heat kernel asymptotics is given by

Tr e−tH = �
Rd

dx Kt�x,x� =
1

�4	t�d/2�
Rd

dx e−tV�x��1 + t2b2�x� + t3b3�x� + ¯ � . �2.1�

n particular we shall focus our attention on the class of spherical potentials, V�x�=V�r�, r
�0,��, and thus

Tr e−tH =
�d

�4	t�d/2�
0

�

dr rd−1e−tV�r��1 + O�t2�� , �2.2�

here �d=2	d/2 /��d /2�. The latter expression will be our starting point for further discussions.
As a first family of potentials, let us consider V�r� to be a positive polynomial of degree Q. In

his case, we will show that logarithmic terms are absent, but the leading term goes as O�t−d/2−d/Q�,
n contrast to the leading behavior O�t−d/2� associated with the compact case. To prove this, since
e are interested in the short-t leading term, it is sufficient to consider the leading term of the
otential, namely V�r�=rQ+¯. Thus, the leading term in the heat trace reads

Tr e−tH �
�d

�4	t�d/2�
0

�

dr rd−1e−trQ
=

21−d��d/Q�
Q��d/2�td/2+d/Q . �2.3�

ne can check that this result holds true for the case Q=2, for which the heat trace is well known,
ince it corresponds to the partition function of a harmonic oscillator in d-dimensions. In fact one
as eigenvalues 2n+1 for each dimension and then

Tr e−tH = �	
0

�

e−t�2n+1�d

=
1

�2 sinh t�d �
1

�2t�d + ¯ , �2.4�

n agreement with Eq. �2.3� �note that here m=1/2 and �=2�. Our results also agree with those for
he one-dimensional case investigated in Ref. 23.

The situation drastically changes if one considers exponential confining potentials which, for
arge r, go asymptotically as V�r��erQ

. We will show that in these cases logarithmic terms are
resent. In fact, we have

Tr e−tH �
�d

�4	�d/2td/2�
0

�

dr rd−1e−terQ

=
�d

�4	�d/2td/2Q
�

1

�

dy y−1e−ty�ln y�d/Q−1. �2.5�

or simplicity, let us now assume d /Q to be an integer. In such case we can use �A4� and �A6�,
hus obtaining the leading term in the form

Tr e−tH �
�− 1�d/Q

2dQ��d/2 + 1�td/2 �ln t�d/Q. �2.6�

t has to be noted that with respect to the compact case, for such class of potentials on noncompact
anifolds, the leading term in the trace is modified by the presence of the logarithmic factor

ln t�d/Q. We also note that, for Q=1, �2.6� yields the same result obtained by Nash in Ref. 22 using
different method. Let us emphasize that those comparisons are essential both for consistency

easons and in view of its application to real situations in physics.
Equations �2.3� and �2.5� give only the leading term in the trace of the heat kernel, but in

rinciple it is possible to go on in the expansion by integrating other terms of the local asymp-
otics. However it should be stressed that more terms in the local expansion can give contributions
f the same order to the trace asymptotics. This can be easily seen by considering, for instance, the

ne-dimensional harmonic oscillator described by the Hamiltonian
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H = −
d2

dx2 +
�2x2

4
,  = 1, m =

1

2
. �2.7�

or this model, one has

Tr e−tH =
1

2 sinh��t/2�
=

1

�t
−

�t

24
+ O�t3� , �2.8�

Kt�x,x� =� �

4	 sinh �t
e−�x2�cosh �t−1�/2 sinh �t =

e−tV

�4	t
�1 + b2t2 + b3t3 + ¯ � ,

b2 = −
�2

12
, b3 =

�4x2

48
. �2.9�

n order to get the expansion �2.8� up to order t, one needs to integrate the local expansion up to
rder t5/2. This means that both b2 and b3 give a contribution of order t in the trace asymptotics.
o obtain the subsequent term t3, one has to consider all bn coefficients up to b6.

II. MEROMORPHIC EXTENSION OF THE ZETA-FUNCTION

With respect to the compact case, the meromorphic structure of the zeta-function associated
ith the operator H is generically quite complicated and it is strictly related to the form of the
otential. In order to show this, we first consider the polynomial case V�r�=rQ and assume Q
2P to be an even number. Under such assumption all bn coefficients are polynomials in r and the
eat-trace asymptotics are of the form

Tr e−tH = 	
n

Cnt�n−�d/2+d/Q�, C0 =
��d/Q�

2d−1Q��d/2�
, �0 = 1 � �1 � �2 � ¯ , �3.1�

here the Cn are numerical coefficients obtained by integrating the local expansion, and the �n are
ational numbers. Making use of �1.4� and splitting the integration over t into �0, 1� and �1,��, we
et

��s�H� =
1

��s�	n

Cn

s + �n − �d

2
+

d

Q
 +

J�s�
��s�

, �3.2�

here J�s� is an analytic function. It follows that for such class of potentials the zeta function
dmits only simple poles—as it happens in the compact case—but whose location strictly depends
n the form of the potential, since the �n are not universal powers. Moreover, we see that ��0 �H�
s not vanishing if and only if �n=d /2+d /Q for some n and the corresponding coefficient Cn is
ifferent from zero �note that if this coefficient Cn=0, then the corresponding term is absent from
he sum, for any s�.

The situation becomes more complicated for the class of exponential potentials we have
onsidered in Sec. II. In fact, in such case one obtains in general an asymptotic expansion with
erms of the kind t��ln t��, � and � being rational numbers which depend on the potential, and this
eans that the meromorphic extension of the zeta function will have poles or branch points of

rder � at s=−� �see �A8��.
In order to compute the nonholomorphic structure of the zeta function for this class of poten-

ials it is convenient to proceed as follows. We use the general expression �1.8� in �1.4� and thus,

or Re s sufficiently large and V�x�=V�r��0, we can write
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��s�H� �
1

�4	�d/2��s�	n
�

0

�

dt ts+n−d/2−1�
Rd

dx bn�x�e−tV�x� = 	
n

��s + n − d/2�
�4	�d/2��s� �Rd

dx bn�x�

��V�x��−�s+n−d/2�, �3.3�

hich is well defined for even Q, since in such case all coefficients bn�x� are regular everywhere.
ince V�r� is exponential like and spherically symmetric, we may assume that

bn = 	
pq

Cpq
n rpVq, 0 � p � 2�n − 1��Q − 1�, 1 � q � n, n � 2. �3.4�

ow, the integration can be performed and we obtain for the nonholomorphic part

��s�H� �
�d

�4	�d/2��s����s − d/2��
0

�

dr rd−1e−�s−d/2�rQ
+ 	

n�2;pq

Cpq
n ��s + n

− d/2��
0

�

dr rd+p−1e−�s+n−q−d/2�rQ� =
�d

�4	�d/2Q��s����s − d/2���d/Q�
�s − d/2�d/Q

+ 	
n�2;pq

Cpq
n ��s + n − d/2����d + p�/Q�

�s + n − q − d/2��d+p�/Q � . �3.5�

s a consequence, it follows that generically the zeta function may have poles and branch points
f any order. It should also be noted that in the case of even dimension it is not holomorphic at the
rigin.

For example, in the simplest case d=Q=2, V�r�=er2
, by straightforward dimensional analysis

ne can see that only the term proportional to C21
2 contributes to the singularity at the origin and

e get �see Sec. IV�

��s�H� =
C21

2

4s
+ ¯ , C21

2 = −
2

3
. �3.6�

We conclude this section by studying the asymptotics of the spectral density associated with
he operator H. We can define the spectral density via the spectral representation of the heat trace,
amely

Tr e−tH = �
0

�

e−t
dN�
� = �
0

�

d
e−t
��
� . �3.7�

or the polynomial interaction, the Tauberian theorems �see the Appendix� and the short-t leading
erms of the heat-trace expansion give

N�
� � 
�dQ+2d�/2Q, ��
� � 
�dQ+2d�/2Q−1, 
 → � , �3.8�

hile for the exponential interaction, with d /Q an integer,

N�
� � 
d/Q�ln 
�d/Q, ��
� � 
d/Q−1�ln 
�d/Q, 
 → � . �3.9�

n particular, when Q=d, one has

N�
� � 
�ln 
�, ��
� � ln 
, 
 → � . �3.10�

n this last case the distribution of the eigenvalues of the operator H resembles the asymptotic
ehavior which one meets in number theory, namely the asymptotic distribution of the nontrivial
eroes of the Riemann zeta function.22 With regard to this important issue we refer the reader to
he literature, mentioning the relevance of the method based on Cramer’s V-function �Ref. 36 and

eferences therein�. Other related papers are Refs. 37 and 38.
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V. A SIMPLE MODEL OF CONFINEMENT

In this section we investigate an explicit model, namely a massive scalar field defined on a flat
pacetime R�R3 in an external static field described by a confining potential which is asymptoti-
ally exponential in two dimensions. In the Euclidean version, we may compactify the “time”
oordinate and the zeta spatial coordinate, assuming periodic boundary conditions with periods �
nd l, respectively. As a result, the relevant operator reads

L = −
d2

d2�
−

d2

dz2 + H2 + M2, H2 = − �2 + V�r�, V�r� = g2e�2r2
, �4.1�

and � being dimensional parameters. Making use of Poisson’s resummation formula, the heat
race can be written as

Tr e−tL =
Se−tM2

4	t
Tr e−tH2 + . . . , �4.2�

here S=�l and the dots stand for exponentially small terms in the parameter t.
In this model, the zeta function can be computed by using the method described in Sec. III,

ut one now obtains an expression which is different from �3.3�, since the potential is defined only
n R2 and one needs to take the factor e−tM2/t into account. As a result, we get

��s�L� �
S

�4	�2��s�	n
�

0

�

dt ts+n−3�
R2

dx b̃n�x�e−tV�r� = 	
n

��s + n − 2�
�4	�2��s� �R2

dx b̃n�x��V�r��−�s+n−2�,

�4.3�

here the b̃n are related to the bn in �3.4� by

b̃n = 	
j+k=n

�− 1�kbjM
2k

k!
, n � 2, b̃0 = 1, b̃1 = − M2. �4.4�

he b̃n have again the same structure as in Eq. �3.4�, but now q can vanish, namely

b̃n = 	
pq

C̃pq
n rpaqeqbr2

, 0 � p � 2�n − 1�, 0 � q � n, n � 0, �4.5�

C̃00
n =

�− 1�nM2n

n!
. �4.6�

he bn coefficients which appear in Eq. �4.5� can be evaluated by making use of �1.9� and �1.10�;
he first nontrivial ones read

b2 = −
2g�e�r2

3
�1 + �r2� ,

b3 = −
4g�2e�r2

15
�2 + 4�r2 + �2r4� +

g2�2e2�r2

3
,

b4 = −
8g�3e�r2

105
�6 + 18�r2 + 9�2r4 + �3r6� +

2g2�2e2�r2

45
�7 + 38�r2 + 21�2r4� , �4.7�

rom which we can read off the Cpq
n coefficients up to n=4.
By integrating �4.3�, the nonholomorphic contribution to the zeta function reads

                                                                                                            



S
i

W
i
f
r

t
o
f

a

w
r
i
c

g

W

I
�
h
t
r

R
l
g

c
R

083516-8 Cognola, Elizalde, and Zerbini J. Math. Phys. 47, 083516 �2006�

                        
��s�L� =
S

16	��s� 	
n�0;pq

C̃pq
n ��s + n − 2���1 + p/2�a−�s+n−q−2�

b1+p/2�s + n − q − 2�1+p/2 . �4.8�

ince in our specific example p is even, the zeta function has only poles of oder p /2. In particular,
n a neighborhood of s=0 the pole structure is

��s�L� =
S

16	�
�M4

2s
+ 	

n=3

6
C̃2,n−2

n ��n − 2�
�s

+ 2	
n=3

6
C̃4,n−2

n ��n − 2�
�2s2 � + ¯ . �4.9�

Thus, the zeta function ��s �L� is not regular at the origin: a pole of second-order appears.
ithin a physical context �restricted most of the time to the realm of pseudodifferential operators

n compact domains�, this is a very unusual behavior for the zeta function.19–21 In these cases, as
ar as the one-loop effective action is concerned, the otherwise well-established zeta function
egularization procedure needs to be modified.5,39

Our proposal, which extends in a natural way the one formulated in Refs. 19–21, consists in
he introduction of an additional spectral function which depends on the order of the pole at the
rigin of the initial zeta function. Thus, in the case of a pole of order N, the auxiliary spectral
unction reads

��s� = sN��s�L� , �4.10�

nd the definition of the regularized determinant is generalized as

ln det
L

�2 = −
1

�N + 1�!
lim
s→0

dN+1

dsN+1 ��2s��s�� , �4.11�

ith the normalization chosen in such a way that when ��s �L� is regular at the origin, one does
ecover the ordinary definition of regularized functional determinant. This is an essential condition
n order to preserve the well-established properties defining the zeta function regularization pro-
edure.

Recalling our example before, we have seen that in this model a second-order pole will
enerically appear. Then, the new spectral function, which is regular at the origin, will be given by

��s� = s2��s�L� . �4.12�

e correspondingly define

ln det
L

�2 = −
1

3!
lim
s→0

d3

ds3 ��2s��s�� . �4.13�

t has to be mentioned here that, within the context of a general theory of regularized products
see, e.g., Ref. 27�, in the case when the related zeta function is not holomorphic at the origin but
as a first-order pole—and we have stressed this to happen when logarithmic terms are present in
he heat-trace asymptotics—a new definition of regularized product was proposed recently.40 It
eads

�
k=1

�


k � exp�− Res� ��s�
s2 

s=0
�, ��s� = 	

k=1

�


k
−s. �4.14�

ecalling the definition of residue, it is straightforward to conclude that this prescription is equiva-
ent to ours, Eq. �4.11�. This is a further consistency check and inscribes our result in a very
eneral context.

We conclude with the following remark. The one-loop renormalization group equations asso-
iated with the presence of the renormalization scale � can be treated along the same lines as in

ef. 39. This shows both the power and flexibility of the zeta-function method to easily cope with
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onstandard and unexpected situations, without ever losing contact with the fundamental issue of
ts applicability to actual physical problems. This means, in particular, that the results obtained
ith the method must be checked to be physically meaningful and to reproduce measured experi-
ental values.

. CONCLUSION

In this paper we have considered several examples of the determination of heat-kernel traces
ssociated with operators of Laplace type defined on noncompact domains. For the sake of sim-
licity, we have restricted our analysis to Rd and to analytic but confining potentials, thus dealing
ith discrete spectra only. However, the adequacy of the procedure to treat more general settings
as been exhibited. In particular, although for the sake of simplicity we have postponed the
reatment of the case when d /Q is noninteger, with some extra effort this can be dealt with along
he same lines. New branching points appear there.

We have shown that for confining potentials of exponential behavior at infinity, the asymp-
otics of the heat-kernel trace contain generically logarithmic terms. As a consequence, the mero-

orphic structure of the associated zeta function develops higher-order poles as well as branching
oints. In particular, we have exhibited some cases where the zeta function is not regular at the
rigin.

In these situations, one is confronted with the nontrivial task of having to define the corre-
ponding regularized functional determinant or the one-loop effective potential. In fact, in the
xample of an apparently reasonable model of confinement, constructed by means of an asymp-
otically exponential potential, we have proven that the meromorphic continuation of the zeta
unction already develops a higher-order pole at the origin. This, as far as we know, is an abso-
utely novel finding in the field, even more since it comes from such an apparently harmless

odel.
In order to deal with these special cases, we have proposed a generalization of the zeta

unction regularization procedure, consisting in the introduction of a new, auxiliary zeta function
hich is still regular at the origin, together with a correspondingly new definition for the zeta-

egularized determinant �thus extending Ray and Singer’s definition�. This general prescription—
hich naturally extends particular cases already considered by some of us before19–21—turns out

o be equivalent to the one recently proposed by Hirano et al.40 in a more generic context of a
heory of regularized products. In accordance with our fundamental aim never to abandon the
lready established connections with the physical world �e.g., the many uses of zeta regularization
n experimental physics�, all the new quantities have been defined in such a way as to recover the
elebrated results of zeta-function regularization in the absence of poles at the origin.

Still pending is the task to construct an explicit general theory to deal with the whole class of
aplacian-type operators in noncompact domains, which we leave for further work.
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PPENDIX: SOME USEFUL FORMULAS

Here we list some expressions that have been employed in the text. We start with the incom-
lete gamma function, useful in order to reveal the presence of logarithmic terms in the heat-

ernel trace expansion. Its definition reads
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��s,t� = �
t

�

dy ys−1e−y = ��s� −
ts

s
− ts	

r=1

�
tn

n!�s + n�
, �A1�

nd thus

��0,t� = − ln t − � − t −
t2

4
+ O�t3� , �A2�

being Euler’s constant. Taking the derivative of order n of ��s , t� with respect to s, one gets

dn

dsn��s,t� = �
t

�

dy�ln y�nys−1e−y , �A3�

rom which it follows that

�
1

�

dy�ln y�nys−1e−ty =
dn

dsn

��s,t�
ts = 	

k=0

n

fk�s���s�
�ln t�k

ts −
�− 1�nn!

sn+1 + O�t� , �A4�

here the fk�s� are computable functions. In particular,

fn�s� = �− 1�n, fn−1�s� = �− 1�n+1��s� , �A5�

�s� being the digamma function. In the limit s→0 we finally have

�
1

�

dy�ln y�ny−1e−ty = 	
k=0

n+1

ck�ln t�k + O�t� , �A6�

here

cn+1 =
�− 1�n+1

n + 1
, cn = �− 1�n+1� . �A7�

With a view to the analytic continuation of zeta functions, the following formulas are useful
oo. If � is a complex number with positive real part, and � such that Re ��−1, one has

�
0

1

dt t�−1�ln t�� =
�− 1����� + 1�

��+1 . �A8�

o prove this, it is sufficient to perform the change of variable u=−ln t and recall the definition of
he Euler gamma function.

Furthermore, for the asymptotics of the spectral density for large 
, one has

t−s = �
0

�

e−t
 
s−1

��s�
. �A9�

aking the derivative with respect to s,

ln tt−s = �
0

�

e−t

s−1�−
ln 


��s�
+

���s�
��s� � , �A10�
nd
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ln2 tt−s = �
0

�

e−t

s−1� ln2 


��s�
+ 2

���s�
�2�s�

ln 
 −
���s�
��s�

−
���s�
�2�s�� . �A11�

he above-noted identities are compatible with the Karamata Tauberian theorems, which can be
tated as follows. Suppose we deal with

�
0

�

e−t
dN�
� = K�t� . �A12�

i� If

K�t� � At−r, t → 0, �A13�

hen

N�
� � A

r

��r + 1�
, 
 → � . �A14�

ii� If

K�t� � At−r lnN t, t → 0, �A15�

hen

N�
� � A

r lnN 


��r + 1�
, 
 → � . �A16�
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For a weakly pseudo-Hermitian linear operator, we give a spectral condition that
ensures its pseudo-Hermiticity. This condition is always satisfied whenever the
operator acts in a finite-dimensional Hilbert space. Hence weak pseudo-Hermiticity
and pseudo-Hermiticity are equivalent in finite-dimensions. This equivalence ex-
tends to a much larger class of operators. Quantum systems whose Hamiltonian is
selected from among these operators correspond to pseudo-Hermitian quantum sys-
tems possessing certain symmetries. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2338144�

. INTRODUCTION

References 1 and 2 discuss a notion of a pseudo-Hermitian operator that has proven to be a
onvenient tool in the study of PT-symmetric Hamiltonians.3–7 It also plays a central role in
olving some of the basic problems of relativistic quantum mechanics and quantum cosmology8

nd revealing some interesting analogies between quantum mechanics and general relativity.9 The
ollowing is a mathematically precise description of this notion.1

Definition 1: A densely defined linear operator H :H→H acting in a separable Hilbert space
is said to be pseudo-Hermitian if there exists a Hermitian automorphism � :H→H satisfying

H† = �H�−1, �1�

here H† denotes the adjoint of H. �Throughout this paper, “Hermitian” means “self-adjoint,” e.g.,
†=�.�

For a discussion of the earlier uses of the term pseudo-Hermitian in the context of indefinite-
etric theories see Ref. 10.

Note that an automorphism is by definition an everywhere-defined, one-to-one, and onto linear
perator. Moreover, an everywhere-defined Hermitian linear operator is necessarily bounded �this
s known as the Hellinger-Toeplitz theorem11�, and a bounded one-to-one onto linear map has a
ounded inverse �this is known as the inverse mapping theorem11 or Banach’s theorem12�. As a
esult, if one adopts the definition of an invertible operator that identifies the latter with a one-to-
ne, onto linear map with a bounded inverse,13–15 then a linear operator is everywhere-defined,
ermitian, and invertible if and only if it is a Hermitian automorphism. Usually in physics

iterature one ignores the technical issues associated with the domain of the operators and uses
Hermitian automorphism” and “Hermitian invertible linear map” synonymously. Another more
amiliar term used for such an operator particularly in the context of pseudo-Hermitian operators
s “pseudo-metric.”

The operator equation �1� in particular implies that the domain of its both sides must coincide.
n light of the fact that � is everywhere-defined, this means

�
Electronic mail: amostafazadeh@ku.edu.tr
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��D�H�� = D�H†� , �2�

here D�L� denotes the domain of a linear operator L :H→H, and L�S� stands for the image of
subset S�H under L.

Definition 1 is a direct generalization of the notion of a self-adjoint operator, for the latter
orresponds to a pseudo-Hermitian operator admitting the identity operator I :H→H as a pseudo-
etric. �We may similarly generalize the notion of a symmetric operator11 by replacing �2� with
�D�H���D�H†� and requiring that �1� holds in ��D�H��.�

In Ref. 4, Solombrino has slightly weakened the defining condition of a pseudo-Hermitian
perator by relaxing the requirement of the Hermiticity of �. This leads to the following notion of
eak pseudo-Hermiticity.

Definition 2: A linear operator H :H→H acting in a separable Hilbert space H is said to be
eakly pseudo-Hermitian if there exists an everywhere-defined, bounded, invertible, linear map

i.e., a bounded automorphism� �w :H→H satisfying

H† = �wH�w
−1. �3�

gain �3� implies

�w�D�H�� = D�H†� . �4�

The basic motivation for introducing weak pseudo-Hermiticity is that the Hermiticity of � in
1� does not play any significant role in establishing the spectral characterization theorem�s� for
iagonalizable pseudo-Hermitian operators with a discrete spectrum.1,2,4 This suggests, at least for
iagonalizable operators with a discrete spectrum, that pseudo-Hermiticity and weak pseudo-
ermiticity are equivalent conditions.4 In Ref. 5 Bagchi and Quesne explore the relationship
etween these two concepts and use the term “complementary” to describe it. Though it is not
ade explicit in their analysis, their approach can be consistently applied only to a restricted class

f bounded automorphisms �, namely to those for which �+�† is also an automorphism. More
ecently, Znojil7 has suggested that considering weak-pseudo-Hermitian Hamiltonians may pro-
ide further insight into the current search for potential applications of non-Hermitian Hamilto-
ians in quantum mechanics.

The purpose of this paper is to conduct a careful reexamination of the relationship between
eak pseudo-Hermiticity and pseudo-Hermiticity for a general not necessarily diagonalizable

inear operator. We will establish the equivalence of these concepts for a large class of linear
perators including all linear operators that act in a finite-dimensional Hilbert space, i.e., matrix
amiltonians.

Before starting our analysis we introduce our conventions and notation.

• H denotes a separable Hilbert space.
• For any linear operator H :H→H, UH stands for the set of all bounded automorphisms

�w :H→H satisfying �3�. Therefore, H is weakly pseudo-Hermitian if UH��. It is pseudo-
Hermitian if UH contains a Hermitian element.

• For any bounded operator B :H→H, �B� denotes the norm of B.

I. A CAREFUL LOOK AT WEAK PSEUDO-HERMITICITY

First we present some useful facts.
Proposition 1: Let H :H→H be a weakly pseudo-Hermitian linear operator. Then for all �w,

w� �UH, �w
−1�w� is a bounded automorphism commuting with H.

Proof: Let �w, �w� �UH. Because both �w and �w� are bounded, one-to-one, and onto, so are

w
−1 and �w

−1�w� . Furthermore, as shown in Ref. 1, in view of �3� and its analog satisfied by �w� , we
ave ��w

−1�w� ,H�=0. �

Proposition 2: Let H :H→H be a closed weakly pseudo-Hermitian linear operator and �w
† † †
UH. Then �w�UH provided that �wD�H�=D�H �. In this case
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A ª �w
−1�w

† �5�

s a bounded automorphisms commuting with H. �Although Definitions 1 and 2 do not require H
o be a closed operator, this requirement is necessary to derive many of the useful properties of
seudo-Hermitian and weakly pseudo-symmetric operators. Here we need it to assure that H††

H.16�
Proof: Let �w�UH be such that �w

† D�H�=D�H†�. �w satisfies �3� or equivalently

�wH = H†�w. �6�

his in particular implies

�w
−1D�H†� = D�H†�w� = D��wH� = D�H� . �7�

ow, take the adjoint of both sides of this equation. �Note that for a pair of �densely defined� linear
perators A ,B :H→H that are not bounded and everywhere-defined, the relation �AB�†=B†A†

oes not hold in general �Ref. 14, Sec. 7.7�.� Because D��wH�=D�H� is dense and �w is bounded
nd everywhere-defined, we have �Ref. 14, Sec. 7.7�

��wH�† = H†�w
† , �8�

r alternatively

H† = ��wH�†�w
† −1. �9�

urthermore, as explained in Ref. 14, Sec. 7.7, because D�H†�w�=�w
−1D�H†�=D�H� is dense,

��w
† H��D��H†�w�†� and

�H†�w�†� = �w
† H� for all � � D��w

† H� = D�H� . �10�

his in turn means that

�H†�w�†�w
† −1� = �w

† H�w
† −1� for all � � �w

† D�H� . �11�

herefore, in view of the hypothesis: �w
† D�H�=D�H†� and Eqs. �6�, �9�, and �10� �as envisaged in

ef. 5�

H† = �w
† H�w

† −1. �12�

his together with the fact that the adjoint ��w
† � of a bounded automorphism ��w� is a bounded

utomorphism establish �w
† �UH. The fact that �A ,H�=0 follows from Proposition 1. �

Proposition 3: Let H and A be as in Proposition 2 and rAª limn→��An�1/n be the spectral
adius17 of A. Then the spectrum �A of A lies in the annulus centered at 0�C and having as its
nner and outer radii rA

−1 and rA, respectively, i.e.,

�A � �z � C�rA
−1 � �z� � rA� . �13�

n particular, �A��rA�1.
Proof: According to Proposition 2, A is a bounded invertible linear map. This implies that A†

nd A−1 are bounded operators, and the following identities are satisfied:17,14

�A† = �� � C��* � �A�, �A−1 = �� � C��−1 � �A� . �14�

urthermore, because A−1=�w
†−1�w, A†=�w�w

−1†=�wA−1�w
−1, and �w is invertible, we have �A†

�A−1.15 Combining this result with �14�, we find that for all ���A, 1 /�*��A. Next, we recall
hat for all 	��A, �	��rA. Applying this inequality for 	=� and 1/�*, we then find rA

−1� ���
rA for all ���A. �Because there is always 
��A such that �
�=rA and 1/
*��A, �A intersects

oth the circles �z�=rA and �z�=rA
−1.� This establishes �13�. Finally, because the spectrum of every

−1
ounded operator is nonempty, we must have rA �rA, which in turn implies rA�1. The fact that
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A� �A� is well-known.17
�

The following is our main result. It links the equivalence of weak pseudo-Hermiticity and
seudo-Hermiticity of a large class of linear operators H with the existence of an �w�UH such
hat the unit circle S1

ª �ei��C ��� �0,2��� is not a subset of �A. Note that Proposition 3 does not
ule out this possibility.

Theorem 1: Let H :H→H be a closed weakly pseudo-Hermitian linear operator acting in a
eparable Hilbert space H. Then H is pseudo-Hermitian, if there is �w�UH such that �w

† D�H�
D�H†� and the unit circle S1 is not a subset of the spectrum �A of Aª�w

−1�w
† .

Proof: Let �w�UH be such that �w
† D�H�=D�H†�, and � �0,2�� be arbitrary. Then accord-

ng to Proposition 2, �w
† �UH, and both �3� and �12� hold. Expressing these equations in the form

�wH = H†�w, �15�

�w
† H = H†�w

† , �16�

ultiplying both sides of �15� and �16�, respectively, by iei and −ie−i, and adding the resulting
quations side by side, we find

���H = H†��� , �17�

here

��� ª i�ei�w − e−i�w
† � for all  � �0,2�� . �18�

he operator ��� is manifestly Hermitian. It is also everywhere-defined and bounded, because
oth �w and �w

† share these properties. But it need not be invertible. We can express ��� in the
orm

��� = − ie−i�w�A − e2iI� , �19�

here I stands for the identity operator acting on H. Clearly because �w is invertible, ��� is
nvertible if and only if A−e2iI is invertible. By the definition of the spectrum of a linear
perator,11–17 the latter condition is equivalent to e2i��A. If S1��A, there is �� �0,�� such
hat e2i� ��A. Therefore, ��ª���� is invertible; UH includes a Hermitian operator ��; and H is
seudo-Hermitian. �

Corollary: A linear operator acting in a finite-dimensional Hilbert space is weakly pseudo-
ermitian if and only if it is pseudo-Hermitian. �As pointed out by the referee, this is a known

esult.18�
Proof: According to Definitions 1 and 2, every pseudo-Hermitian operator is weakly pseudo-

ermitian. The converse holds for an operator acting in a finite-dimensional Hilbert space, be-
ause in this case all the operators are everywhere-defined �bounded and hence closed� and �A of
heorem 1 is a finite set. Hence, it cannot include S1 as a subset. �

In summary, a weakly pseudo-Hermitian linear operator may fail to be pseudo-Hermitian, if it
cts in an infinite-dimensional space and for every �w�UH either �w

† D�H��D�H†� or S1��A

here Aª�w
−1�w

† . The latter condition seems to be very difficult to satisfy.

II. EXAMPLES

Consider the following bounded automorphism that is employed in Ref. 7:

�w = 	 0 0 P
P 0 0

0 P 0

 , �20�

here P is the usual parity operator acting in L2�R�, the Hilbert space is L2�R� � L2�R� � L2�R�, a

hree-component representation of the state vectors is used, and H= �Hij� is a 3�3 matrix of
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ifferential operators Hij such that PD�H�=D�H�=D�H†�. It is not difficult to see that �

3� /2 fulfills the conditions of Theorem 1, and

�� ª ��3�

2
� = �w + �w

† = 	 0 P P
P 0 P
P P 0


 �21�

s a genuine pseudo-metric belonging to UH. Indeed, it is not only everywhere-defined, bounded,
ermitian, and one-to-one, but it is also onto and its inverse is bounded. This can be directly

hecked. Alternatively, we may apply Theorem 1 and show that S1��A. It is very easy to compute
he symmetry generator �5�:

A = 	0 0 1

1 0 0

0 1 0

 , �22�

here 1 is viewed as the identity operator acting in L2�R�. Clearly, �A= �1,e2i�/3 ,e4i�/3�. Hence
1��A and �� is invertible.

This calculation shows that the systems considered in Ref. 7 can be identified with

�-pseudo-Hermitian Hamiltonians acting in L2�R� � L2�R� � L2�R� and commuting with A, where

� and A are, respectively, given by �21� and �22�. These systems can be studied without any
eference to weak pseudo-Hermiticity.

Another probably more interesting example is �w :C2→C2 that is defined by its standard
atrix representation according to

�w = � 1 1

− 1 i
� . �23�

he symmetry generator �5� and the most general Hamiltonian H :C→C satisfying �6� have the
ollowing standard matrix representations:

A = � i 0

1 − i − 1
� = − iM1 − M2, �24�

H = � a 0

ib a + b
� = aI + bM1, �25�

here

M1 ª �0 0

i 1
�, M2 ª � 1 0

− i 0
� ,

is the identity matrix, and a ,b�R are arbitrary. Clearly, A and H commute for all a ,b�R.
We can also easily compute A−e2iI. It turns out to be noninvertible only for 

� /4 ,� /2 ,5� /4 ,3� /2. This in turn means that ��� is noninvertible for these four values of .
n particular, ��3� /2�=�w+�w

† that is considered in Ref. 5 is not invertible. �The possibility that
iven an invertible operator �w the operators �w±�w

† may fail to be invertible seems to be
verlooked in Ref. 5.�
In general, ��� has the following explicit form:
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��� = 2c�− t i

− i − 1
� , �26�

here cªcos  and tª tan . In terms of c and t the invertibility condition:
� �� /4 ,� /2 ,5� /4 ,3� /2�, takes the simple form: c�0 and t�1.

Having obtained an infinite class of pseudo-metric operators ��� that render the Hamilto-
ians of the form �25� pseudo-Hermitian, we can construct the following family of symmetry
enerators:1,6

A�r,t1,t2� ª ��2�−1��1� = r� 1 − t1 0

i�t1 − t2� 1 − t2
� = r�I − t2M1 − t1M2� , �27�

here rªcos 1 / �cos 2−sin 2��0 and tiª tan i�1 for i=1,2. Comparing �25� and �27�, we
ee that the only nontrivial symmetry generator for the system is M2. We could reach the same
onclusion using �24�.

Finally, we note that ���� is positive-definite whenever c�0 and t�1 which corresponds to
� /4��3� /2. In particular, H is pseudo-Hermitian with respect to a set of positive-definite
etric operators. According to Ref. 2, this implies that it is quasi-Hermitian19 and has real eigen-

alues. The latter is easily seen from �25� where the eigenvalues appear as diagonal entries.

V. CONCLUDING REMARKS

In this paper, we have examined the relation between the notions of pseudo-Hermiticity and
eak pseudo-Hermiticity. We have found a sufficient spectral condition that ensures whether a
iven weakly pseudo-Hermitian operator is pseudo-Hermitian. This condition which is not sensi-
ive to the diagonalizability of the operator in question is trivially satisfied in finite-dimensional
ilbert spaces. Hence weak pseudo-Hermiticity and pseudo-Hermiticity are equivalent in finite
imensions. This equivalence extends to a large class of operators acting in infinite-dimensional
ilbert spaces. Our general results seem to indicate that further investigation of weak pseudo-
ermiticity is not likely to produce any substantial insight into the current study of the possible

pplications of non-Hermitian Hamiltonians in quantum mechanics.

CKNOWLEDGMENTS

During the course of this work I have benefitted from helpful discussions with Varga Kalan-
arov. I would also like to thank the anonymous referee for bringing Ref. 18 to my attention and
or correcting an error in a previous version of the paper.

1 A. Mostafazadeh, J. Math. Phys. 43, 205 �2002�.
2 A. Mostafazadeh, J. Math. Phys. 43, 2814 �2002�; 43, 3944 �2002�.
3 Z. Ahmed, Phys. Lett. A 290, 19 �2001�; A. Mostafazadeh, J. Phys. A 36, 7081 �2003�; quant-ph/0310164; A. Blasi,
G. Scolarici, and L. Solombrino, 37, 4335 �2004�; A. Mostafazadeh and A. Batal, J. Phys. A 37, 11645 �2004�; S.
Albeverio and S. Kuzhel, Lett. Math. Phys. 67, 223 �2004�; A. Mostafazadeh, J. Phys. A 38, 3213 �2005�; 38, 6557
�2005�; 38, 8185 �2005�; H. F. Jones, ibid. 38, 1741 �2005�; H. F. Jones and J. Mateo, Phys. Rev. D 73, 085002 �2006�;
Y. Ben-Aryeh and R. Barak, Phys. Lett. A 351, 388 �2006�; A. Mostafazadeh, J. Phys. A 39, 10171 �2006�; D. Krejcirik,
H. Bila, and M. Znojil, J. Phys. A 39, 10143 �2006�.

4 L. Solombrino, J. Math. Phys. 43, 5439 �2002�.
5 B. Bagchi and C. Quesne, Phys. Lett. A 301, 173 �2002�.
6 A. Mostafazadeh, J. Math. Phys. 44, 974 �2003�.
7 M. Znojil, Phys. Lett. A 353, 463 �2006�.
8 A. Mostafazadeh, Class. Quantum Grav. 20, 155 �2003�; Ann. Phys. �N.Y.� 309, 1 �2004�; A. Mostafazadeh and F.
Zamani, Ann. Phys. �N.Y.� 321, 2183 �2006�; 321, 2210 �2006�.

9 A. Mostafazadeh, Phys. Lett. A 320, 375 �2004�; A. Mostafazadeh, J. Math. Phys. 47, 072103 �2006�.
0 A. Mostafazadeh, Czech. J. Phys. 53, 1079 �2003�.
1 M. Reed and B. Simon, Functional Analysis �Academic, San Diego, 1980�, Vol. 1.
2 A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis �Dover, New York, 1975�.
3 P. D. Hislop and I. M. Sigal, Introduction to Spectral Theory �Springer, New York, 1996�.
4 M. Schechter, Principles of Functional Analysis �American Mathematical Society, Providence, 2002�.
5
 P. R. Halmos, A Hilbert Space Problem Book �Springer, New York, 1982�.

                                                                                                            



1

1

1

1

092101-7 Weak pseudo-Hermiticity versus pseudo-Hermiticity J. Math. Phys. 47, 092101 �2006�

                        
6 K. Yosida, Functional Analysis �Springer, Berlin, 1995�.
7 T. Kato, Perturbation Theory for Linear Operators �Springer, Berlin, 1995�.
8 R. A. Horn and C. R. Johnson, Matrix Analysis �Cambridge University Press, Cambridge, 1999�.
9 F. G. Scholtz, H. B. Geyer, and F. J. W. Hahne, Ann. Phys. �N.Y.� 213, 74 �1992�.
                                                                                                            



O

I

m
i
c
n
X
k
c

a
e
q

I
c
e

f
a
�

a

b

JOURNAL OF MATHEMATICAL PHYSICS 47, 092102 �2006�

0

                        
n the optimality of quantum encryption schemes
Daniel Nagaja�

Center for Theoretical Physics, MIT, Cambridge, Massachusetts 02139

Iordanis Kerenidisb�

Department of Mathematics, MIT, Cambridge, Massachusetts 02139

�Received 24 March 2006; accepted 31 July 2006; published online 14 September 2006�

It is well known that n bits of entropy are necessary and sufficient to perfectly
encrypt n bits �one-time pad�. Even if we allow the encryption to be approximate,
the amount of entropy needed does not asymptotically change. However, this is not
the case when we are encrypting quantum bits. For the perfect encryption of n
quantum bits, 2n bits of entropy are necessary and sufficient �quantum one-time
pad�, but for approximate encryption one asymptotically needs only n bits of en-
tropy. In this paper, we provide the optimal trade-off between the approximation
measure � and the amount of classical entropy used in the encryption of single
quantum bits. Then, we consider n-qubit encryption schemes which are a compo-
sition of independent single-qubit ones and provide the optimal schemes both in the
2- and the �-norm. Moreover, we provide a counterexample to show that the
encryption scheme of Ambainis-Smith �Proceedings of RANDOM ’04, pp. 249–
260� based on small-bias sets does not work in the �-norm. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2339014�

. INTRODUCTION

Secure transmission of information is a subject that has been studied extensively. In this
odel, Alice wants to securely transmit a message to Bob using a secret key that they both share,

n such a way that any eavesdropper gets absolutely no information about the message sent. In the
lassical world, Shannon11,12 has shown that for the perfect encryption of n classical bits, it is
ecessary and sufficient to use n bits of classical entropy �one-time pad�. By performing a bitwise
OR between the n-bit message and the n-bit secret key, the view of any eavesdropper that has no
nowledge of the key is just a uniformly random n-bit string. Ambainis et al.2 showed that 2n
lassical bits of entropy are necessary and sufficient for the transmission of n quantum bits.

Let us briefly sketch how one can perfectly encrypt a quantum bit. Let � be the state of an
rbitrary qubit and let I ,X ,Y ,Z be the four Pauli matrices. Then, by using two bits of classical
ntropy we can uniformly pick one of the four matrices and apply it to our qubit. The state of the
ubit after the encryption is

E��� = 1
4 �� + X�X + Y�Y + Z�Z� .

t is easy to verify that for all states � ,E���= 1
2 I and hence the view of the eavesdropper is the

ompletely mixed state, i.e., she gets no information about the encrypted state �. The scheme
asily generalizes to n-qubit states by using 2n classical bits of entropy.

The entropy needed for the perfect encryption of quantum states is two times what is needed
or the perfect encryption of classical bits. Interestingly, this is no longer true, when we look at
pproximate encryption. Let ��Cd�d be the state of a �log d�-qubit message, �Uk�Cd�d �k
�N�� be a set of N unitary operations acting on log d qubits and D= �w1 , . . . ,wN� be a distribu-

�Electronic mail: nagaj@mit.edu
�
Electronic mail: jkeren@math.mit.edu

47, 092102-1022-2488/2006/47�9�/092102/14/$23.00 © 2006 American Institute of Physics
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ion on �N�. Imagine the encryption scheme, where Alice picks a unitary Uk with probability wk

nd applies it to the message. The ciphertext can be written as

E��� = �
k��N�

wk�Uk
†

nd the entropy of the scheme is defined as the Shannon entropy H�D�.
Definition 1: The map E is an �� ,H�-approximate encryption scheme for the �-norm, if the

ntropy of the scheme is H and for all states �

	E��� −
I

d
	

�

�
�

d
.

imilarly, the map E is an �� ,H�-approximate encryption scheme for the 2-norm, if the entropy of
he scheme is H and for all states �

	E��� −
I

d
	

2
�

�


d
.

Hayden, et al.5 found an �� ,n+o�n��-approximate encryption scheme for n qubits. Specifi-
ally, they showed that an encryption scheme that applies a unitary on � picked uniformly from a
andom set of unitaries of size 2n+o�n� achieves �-approximation. Ambainis and Smith3 derandom-
zed this construction using small-bias sets and constructed deterministically a set of 2n+o�n� uni-
aries that achieves an �� ,n+o�n��-approximation for the 2-norm.

On the other hand, it is not hard to see that for the classical case, one needs at least n
log�1−� /2� bits of entropy for an �-approximation scheme. Hence, the entropy needed for the
pproximate encryption of classical and quantum states is asymptotically equal.

In this paper, we start by investigating the approximate encryption of single qubits and find the
ptimal trade-off between the approximation measure � and the amount of classical entropy H,
.e., we calculate the least amount of classical entropy which is necessary and sufficient to achieve
n �-approximation. Our proof is constructive in the sense that for any given � we describe the
ncryption scheme that achieves the optimal H and vice versa. The following theorem holds both
or the �- and 2-norm. Note the weights in the distributions are in decreasing order.

Theorem 1: Let E��� be the optimal �� ,H�-approximate encryption scheme for a qubit. Then,

1. The encryption is of the form E���=w�+xX�X+yY�Y +zZ�Z.
2. For any fixed �, the optimal distribution D �and hence the minimum entropy H� is:

(i) ��1/6 :D=� 1
4 + �

2 , 1
4 + �

2 , 1
4 + �

2 , 1
4 − 3�

2
�,

(ii) 1/6���0.287:D= �2� , 1
2 −� , 1

2 −� ,0�,

(iii) ��0.287:D= � 1
4 + 3�

2 , 1
4 − �

2 , 1
4 − �

2 , 1
4 − �

2
�.

In Sec. II we find the optimal Pauli encryption scheme for a qubit and in Sec. III we show that
auli encryption schemes are no worse than general encryption schemes.

Next, in Sec. IV we consider n-qubit encryption schemes which are a composition of inde-
endent single-qubit schemes that each use entropy H. In general, such questions are not easy to
ackle, since they hinge on notoriously hard questions on the additivity of quantum channels.
owever, in this case we only consider unitary operations and hence we can use a result of King6

n order to find the optimal schemes.
Theorem 2: Let P be the single-qubit Pauli encryption scheme, which achieves the optimal

pproximation � for the given entropy H. Then, the optimal n-qubit independent encryption

cheme R��� is the same for both the 2- and the �-norm and has the following properties:
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1. R���= P�n���.

2. �R���− I
2n �2�
n �

2n/2 +
o��
n�

2n/2 .

3. �R���− I
2n ���n �

2n +
o�n��

2n .

The above-mentioned bounds are tight and hence for any encryption scheme that acts inde-
endently on each qubit, 2n−o�n� bits of entropy are necessary for approximate encryption.

Finally, in Sec. V we discuss nonindependent n-qubit encryption schemes. In particular, we
re interested in the Ambainis-Smith small-bias set based scheme. In Ref. 3, they found an �� ,n
o�n��-approximate encryption scheme for the 2-norm. Their scheme uses a deterministically
onstructed small-bias set of 2n-bit strings of size 2n+o�n�, where each string corresponds to a
nitary which is a tensor product of n Pauli matrices. The message is encrypted by picking
niformly a unitary from this set. One of the open questions in their paper is whether this scheme
s also an �� ,n+o�n��-approximate encryption scheme for the �-norm. We resolve this by finding
n example of an asymptotically optimal small-bias set, for which the encryption scheme of
mbainis-Smith fails in the �-norm. However, it is possible that an �� ,n+o�n��-approximate

ncryption scheme for the �-norm can be constructed in a different way, for example by using a
mall-bias set with some extra properties.

I. THE OPTIMAL PAULI ENCRYPTION SCHEME

The input state to our encryption scheme is a quantum bit which can be described by a density
atrix �, i.e., a Hermitian matrix with unit trace

� = 1
2 �I + rxX + ryY + rzZ� , �1�

here �r�=rx ,ry ,rz� is a unit vector, and the four Pauli matrices are

I = �1 0

0 1
, X = �0 1

1 0
, Y = �0 − i

i 0
, Z = �1 0

0 − 1
 .

et us denote +1 eigenvectors of the matrices X ,Y and Z by �x+ � , �y+ �, and z+ �.
A Pauli encryption scheme for single qubits is described by a probability distribution on the

our Pauli matrices, i.e., by a probability vector D= �w ,x ,y ,z�, such that the encryption of a qubit
is given by

EIXYZ��� = w� + xX�X + yY�Y + zZ�Z . �2�

ithout loss of generality, we can assume the weights �w ,x ,y ,z� obey w�z�x�y�0. The
eason for this is that these four unitaries are freely interchangeable by picking a suitable �
U��U†. If the original qubit � was encoded by E���, with weights �w ,x ,y ,z�, we can achieve the

ame encoding E����� on the transformed qubit ��, just with �w ,x ,y ,z� permuted.
The classical entropy used by the encryption scheme is the entropy of the probability distri-

ution, i.e., H��pi��=−�ipilog2pi=−w log w−x log x−y log y−z log z.
To test how good the encryption scheme is, we want to know how much the encrypted state

iffers from the completely mixed state in the 2- and the operator norm. For any d-dimensional
atrix A, the 2- and operator norm are related to the eigenvalues of the matrix, namely

�A�2
2 = �

k=1

d

�k
2, �A�� = max

k
��k� .

hus, for the operator norm we need to examine the maximum of the absolute value of the

igenvalues of
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I��� = EIXYZ��� − 1
2 I .

ote, that since the matrix I��� has trace equal to 0, the two eigenvalues are of the form ±� and
ence, the 2-norm is maximized simultaneously with the operator norm.

. The maximum eigenvalue of I„�…

After applying the channel �2� to the density matrix described by �1�, we obtain

EIXYZ��� = 1
2 �I + rx�X + ry�Y + rz�Z� ,

here the new parameters can be easily determined from �2� using the anticommutation relations
or Pauli matrices,

rx� = �w + x − z − y�rx = �2�w + x� − 1�rx,

ry� = �w + y − z − x�ry = �2�w + y� − 1�ry ,

rz� = �w + z − x − y�rz = �2�w + z� − 1�rz.

his shows that the parameters rx ,ry, and rz shrink according to the above-presented relations. The
actors can be negative, but because have w�z�x�y and w+z+x+y=1, with a little work one
an verify that the magnitude of the shrinking factor �2�w+z�−1� in front of rz is the largest of the
hree.

Using the geometric description �1� of �, we can express the matrix I��� as

I��� = E��� − 1
2 I = 1

2 �rx�X + ry�Y + rz�Z� .

ts eigenvalues are then simply

�I��� = ± 1
2 �r��� .

ur goal is to find the maximum eigenvalue ��I���� over all states � as a function of the probability
istribution D= �w ,z ,x ,y� and then pick the distribution that minimizes it. Already knowing that
he shrinking factor in front of rz is the largest, we can maximize ��I��� � = 1

2 �1+ �r�� � � by picking �

ith r�= �0,0 ,1�. This gives us r��= �0,0 ,2�w+z�−1�, and

max���I���� = �w + z − 1
2 � . �3�

ote that w and z are the two largest weights and therefore we always have w+z�
1
2 .

. The optimal trade-off between approximation and entropy

In Sec. II A, we found an upper bound on the maximum eigenvalue of I��� as a function of the
robability distribution used by the Pauli encryption scheme. Note also that Eq. �3� shows that for
perfect encryption the only possible scheme is the one that uses a uniform distribution over the

our Pauli matrices.
The natural question is to find the optimal Pauli encryption scheme when we can only use a

xed amount H of classical entropy. Turning the question around, we fix the approximation
arameter � and calculate the necessary entropy to achieve it.

Let us fix �=max� �� � =w+z−1/2. In addition, the condition w�z implies that 1 /4+� /2
z. Our goal is to minimize the classical entropy needed to achieve approximation �:

H��� = minD�− w log w − z log z − x log x − y log y� .

eeping x ,y, and � fixed, the entropy as a function of z is concave, with a maximum at z=w.

ecause z�w, the entropy decreases with decreasing z. Specifically, if z�x+y, one can decrease
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he entropy by setting z=x+y �and increasing w accordingly, to keep � fixed�. Without loss of
enerality, one can then assume that z�x+y for the optimal D. Now, let us minimize the entropy
s a function of x. It is concave in x, with a maximum at x=y= �1−w−z� /2 and possible minima
t the end points. Because x�y, we want to pick x as large as possible. Because x�z and z�x

+y, this results in x=z. The weights that minimize the entropy for a fixed � thus are �as a function
f z�

w = 1/2 + � − z, x = z, y = 1/2 − � − z .

o find the optimal H���, one thus needs to minimize

H��,z� = − � 1
2 + � − z�log� 1

2 + � − z� − 2z log z − � 1
2 − � − z�log� 1

2 − � − z�
ith respect to z, remembering the constraints collected so far �w�z�x�y�0,x+y�z�:

1

4
+

�

2
� z �

1

4
−

�

2
, �4�

1
2 − � � z . �5�

e perform this minimization in the first section of the Appendix and conclude that for ��1/6,
icking the three larger weights to be equal is the entropy-minimizing strategy. For 1 /6����0,
icking only three unitaries, with two of the lower weights equal is the best choice. For �0��
1/2, it is optimal to pick the three smaller weights to be equal.

Turning the argument around—given entropy H, what is the optimal Pauli encryption scheme?
here is a unique way to pick the probability distribution with the given entropy that minimizes

he parameter �,

�i�H � log23:D = �z,z,z,1 − 3z� ,

�ii�log23 � H � H0:D = �1 − 2z,z,z,0� ,

�iii�H0 � H:D = �1 − 3z,z,z,z� . �6�

ote that the weights are in descending order and that the approximation � is given by the sum of
he largest two weights minus 1

2 . Also, one should not expect the optimal distribution parameters
o be continuous at H0. These two ways of picking the weights come from different regions in the
arameter space �w ,z ,x ,y�, and the choice of the optimal distribution is simply a numerical
inimum of these two functions. The point H0 �or equivalently �0� does not have an obvious

pecial meaning.

II. THE OPTIMALITY OF PAULI ENCRYPTION SCHEMES

In this section we give an elementary constructive proof that the Pauli encryption schemes are
o worse than any general encryption scheme. For any encryption scheme E���=�kpkUk�Uk

† with
rbitrary unitaries and weights, we give a Pauli encryption scheme with weights �w ,z ,x ,y� that
as lower entropy, and is no worse than E���. We show this by finding a density matrix �0, for
hich the maximum eigenvalue of I��0� is the same as in �3�, which is the worst case for the
ewly found Pauli scheme. Hence, the Pauli encryption scheme of Sec. II is optimal amongst all
ossible encryption schemes.

After completion of this work, we learned of an alternative proof of optimality of Pauli
ncryption for a single qubit by Bouda and Ziman.4 They investigated perfect encryption of a
ubspace of the Bloch sphere, while we are interested in approximate encryption of the whole
loch sphere. Their proof uses the Kraus representation of the quantum channel, showing that the
epresentation of a channel using orthogonal matrices requires the least amount of entropy.
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Using the fact that every channel can be expressed also as a Pauli channel,10 we can utilize a
lever trick by Nielsen8 to prove that the weights of this Pauli channel majorize the weights of the
riginal channel. Knowing that the entropy is concave, we can conclude that the Pauli realization
f the channel requires the least amount of entropy. The details of this proof are given in the
econd section of Appendix. Let us now continue with our proof.

Let T be an encryption scheme with distribution �w1 ,w2 , . . . ,wN� over N unitaries Uk, where
he weights are in decreasing order. We parametrize the unitaries as Uk=ei	kei
k�n�k·�� �, where �n�k

xk ,yk ,zk� and �� = �X ,Y ,Z�. The phases 	k are not important in our analysis and hence, we denote
he parametrization of Uk only as U�
k ,n�k�.

We have the following three cases:
Case 1: w1+w2−1/2�0. We show that the entropy H of the encryption scheme T is greater

r equal to 2, and for H=2, we already know a perfect encoding with four unitaries and wk

1/4. It is clear that if w1�1/4 then the entropy is larger than 2. Let us assume that w1�1/4.
rom the concavity of the Shannon entropy, we know that the entropy of a distribution that
ontains two weights �wk ,wl� with wk�wl decreases if we change them into �wk+ ,wl−�.

Hence we can decrease the entropy of the initial distribution �w1 ,w2 , . . . ,wN� by increasing the
eight w2 to make it equal to w2�=1/2−w1 and decreasing some of the smaller weights. We can

urther decrease the entropy by making the middle weights all equal, i.e. �w1 ,w2� ,w2� , . . . ,w2� ,wN�.
icking w1=x fully determines the distribution, giving w2�=1/2−x and wN= �4−N� /2+ �N−3�x.
he constraints 1 /2�w1�w2�wN�0 give us

N − 3

2�N − 2�
� x �

N − 4

2�N − 3�
. �7�

The entropy as a function of x is concave �the second derivative is negative� and therefore, we
ook for the minimum entropy at the end points, given in �7�. These end points correspond to
hoosing the distribution as �w1 ,w2 , . . . ,w2� with w2= �1−w1� / �N−1�. The entropy of such distri-
utions as a function of N is

H�N� = − w1 log w1 − �N − 1�w2 log w2 = −
N − 3

2�N − 2�
log�N − 3� + 1 + log�N − 2� .

t is easy to see that this function is a monotone, growing function of N with a minimum for
�4�=2. We conclude that any encryption scheme with n�5 unitaries and w1+w2−1/2�0 uses

ntropy H�2 and hence is worse than the perfect encryption scheme with four unitaries.
Case 2: w1+w2−1/2�0 and �k=3

n wk�2w2. We show that there exists a Pauli encryption
cheme that is no worse than T and uses less entropy. Let P be the Pauli scheme that uses the
istribution �w1 ,w2 ,w2 ,w3��. This is possible by the constraint �k=3

n wk�2w2 and from the concav-
ty of the entropy, P uses less entropy. We also know from Eq. �3� that for the encryption scheme

P,

max���I���� = �w1 + w2 − 1
2 � .

ithout loss of generality, when encoding an input density matrix � with the set of unitaries

U�
1,n�1�,U�
2,n�2�,U�
3,n�3�, . . . ,U�
n,n�n�

ne can equivalently analyze the encoding of the density matrix ��=U1
†�U1 with a related set of

nitaries:

I,U�
2�,n�2��,U�
3�,n�3��, . . . ,U�
n�,n�n�� .

he approximation parameter � of the encoding scheme is basis independent, it is now convenient

o pick a basis in which the unitaries are of the form
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I,Z	2
,�z3Z + x3X + y3Y�	3

, . . . ,�znZ + xnX + ynY�	n
,

here xk
2+yk

2+zk
2=1, and Z	2

denotes a rotation about the z-axis, namely Z	2
=e−i	2Z= �cos 	2�I

i�sin 	2�Z.
Let us now check how well the �z+ � state is encoded,

� = �z + ��z + � = �1 0

0 0
 .

ote that since � is an eigenstate of Z, it commutes with Z	2
. After some algebraic manipulations,

e have

I��� = E��� −
1

2
I = ��w1 + w2 −

1

2
� + ��k=3

n
wkAk� ��k=3

n
wkBk�*

��k=3

n
wkBk� − �w1 + w2 −

1

2
� − ��k=3

n
wkAk� � ,

here

Ak = cos2 	k + zk
2 sin2 	k,

Bk = �cos 	k + izk sin 	k��xk − iyk�i sin 	k.

he eigenvalues of I��� are now

�I���
2 = ��w1 + w2 −

1

2
� + ��

k=3

n

wkAi�2

+ ��
k=3

n

wkBk�2

.

e know that w1+w2−1/2�0 and Ak�0. Thus we can bound the eigenvalues as

�I���
2 � �w1 + w2 − 1

2�2,

ith w1 and w2 the two largest weights. The equality is achieved if we pick our unitaries with zk=0
nd cos 	k=0, which imply Ak=Bk=0.

This is the same result as in Eq. �3� and hence no matter how we pick the unitaries, the
ncryption cannot be better than in the Pauli encryption scheme.

Case 3: w1+w2−1/2�0 and �k=3
n wk�2w2. Since w1+w2�1/2, we conclude that w1�1/4

1
3 �w2+�k=3

n wk� and so, it is possible to consider the Pauli scheme P that uses the distribution
w1 , 1

3 �w2+�k=3
n wk� , 1

3 �w2+�k=3
n wk� , 1

3 �w2+�k=3
n wk��. Moreover, the constraint �k=3

n wk�2w2 im-
lies that 1

3 �w2+�k=3
n wk��w2 and hence from the concavity of the entropy, P uses less entropy

han T. From Eq. �3�, we know that for the encryption scheme P,

max���I���� = �w1 +
1

3
�w2 + �

k=3

n

wk� −
1

2
� . �8�

n what follows, we calculate how well the states �z+ � , �x+ � and �y+ � are encrypted by T and
rove that at least one of them is encoded worse than in the Pauli scheme P.

We pick the unitaries of T to be

I,Z	2
,�z3Z + x3X + y3Y�	3

, . . . ,�znZ + xnX + ynY�	n
.

imilar to Case 2, the �z+ � state is encoded no better than with
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�z
2 � �w1 + w2 + �

k=3

n

wk�cos2 	k + sin2 	k cos2 �k� −
1

2
�2

,

here we named zk=cos �k, xk=sin �k cos �k, and yk=sin �k sin �k. Let us now check how well
he �x+ � state is encoded,

�x =
1

2
�1 1

1 1
 ,

Z	2
�xZ	2

† =
1

2
� 1 e−2i	2

e2i	2 1
 ,

Uk�xUk
† =

1

2
� 1 + Ck Dk − iEk

Dk + iEk 1 − Ck
 ,

here Dk= �−1+2 cos2 	k+2 sin2 	k sin2 �k cos2 �k� and Ck ,Ek are functions of 	k ,�k ,�k which
o not affect the bounds. The encoding of �x becomes

I��x� = E��x� −
I

2
= w1I�xI + w2Z	2

�xZ	2
+ �

k�3
wkUk�xUi

† −
I

2

=
1

2��k�3
wkCk F − iG

F + iG − �k�3
wkCk

 ,

here F=w1−w2+2w2 cos2 	2+�k�3wkDk and G=w1 sin 2	+�k�3wkEk. We are ready to bound
he eigenvalue:

�x
2 =

1

4��k�3
wkCk�2

+
1

4
G2 +

1

4
F2 �

1

4
F2 =

1

4�w1 − w2 + 2w2 cos2 	2 + �
k�3

wk�− 1 + 2 cos2 	k

+ 2 sin2 	k sin2 �k cos2 �k��2
= �w1 + w2 cos2 	2 + �

k�3
wk cos2 	k

+ �
k=3

n

wk sin2 	k sin2 �k cos2 �k −
1

2
�2

.

sing the same type of computation as above, we encode the �y+ � state and obtain a bound for the
igenvalues of I��y�=E��y�− I /2:

�y
2 � �w1 + w2 cos2 	2 + �

k�3
wk cos2 	k + �

k=3

n

wk sin2 	k sin2 �k sin2 �k −
1

2
�2

.

umming the three inequalities of the eigenvalues, we obtain that

��x� + ��y� + ��z� � �3w1 + w2 + �k=3

n
wk + �2�

k�2
wk cos2 	k� −

3

2� � �3w1 + w2 + �
k=3

n

wk −
3

2
� ,

hich implies that at least one of the three � is greater or equal to �8�. This means the Pauli
ncryption scheme P is no worse than T, while using less entropy.

This concludes the proof that Pauli encryption schemes are no worse than general encryption

chemes. This also concludes the proof of Theorem 1.
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V. N-QUBIT INDEPENDENT ENCRYPTION SCHEMES

In this section we consider n-qubit encryption schemes which are composed of independent
ingle-qubit schemes, each using H amount of classical entropy. For clarity of exposition, we
ssume that for each qubit we use the same amount of classical entropy. All the results go through
n the more general case where for each qubit k we use entropy Hk. By independent we mean that
he encryption has the form R���= �R1 � ¯ � Rn����.

Theorem 2: Let P be the single-qubit Pauli encryption scheme, which achieves the optimal
pproximation � for the given entropy H. Then, the optimal n-qubit independent encryption
cheme R��� is the same for both the 2- and the �-norm and has the following properties:

1. R���= P�n���.

2. �R���− I
2n �2�
n �

2n/2 +
o��
n�

2n/2
.

3. �R���− I
2n ���n �

2n +
o�n��

2n .

Proof: We first employ a result by King6 to show that product states are the worst encoded
tates for independent encryption schemes. King proved that the p-norm of a product of unital
hannels is multiplicative, i.e., for p�1,

max
�

�R����p = �
i=1

n

�max
�i

�Ri��i��p� . �9�

quantum channel � is unital if it preserves unity, i.e., ��I�= I. The encryption schemes we
onsider here are unital. The p-norm of a channel R is the maximum of �R����p over all input
tates �. Note that the multiplicativity of the p-norms, and hence the additivity of the capacities of
onunital channels is a main open question.13 This shows that the norm �R����p is maximized by
product state �=�1 � ¯ � �n, where �i is the state of the ith qubit. In our encryption schemes we
easure the quality of the approximation by the maximum of the norm �R���− I /2n�p, for p=2 and

p=�. Let �k be the eigenvalues of R���; then, the eigenvalues of R���− I /2n are ��k−1/2n� and we
ave

	R��� −
I

2n	
2

2

= �
k=1

2n ��k −
1

2n�2

= �
k=1

2n ��k
2 − 2

�k

2n +
1

22n� = �R����2
2 −

1

2n , �10�

	R��� −
I

2n	
�

= max
k
��k −

1

2n� = �R����� −
1

2n . �11�

t is clear that the norm of R���− I /2n is maximized when the norm of R��� is maximized and,
herefore, for any independent encryption scheme the worst encoded state is a product state.

Hence, in order to find the optimal independent encryption scheme, one needs to find the
cheme that encrypts product states optimally. The encryption of a product state R��1 � ¯ � �n�
R1��1� � ¯ � Rn��n� is also a product state and the eigenvalues of R��1 � ¯ � �n� are simply
roducts of the eigenvalues of Rk��k�. Without loss of generality, let us now encrypt a state �1

� �2. . .n using R=R1 � R2. . .n. The eigenvalues of the single-qubit encryption R1��1� can be ex-
ressed as �1,2= �1±�1� /2 and the eigenvalues of R2. . .n��2. . .n� as �k=1,. . .,2n−1 = �1+�k� /2n−1. Hence,
he eigenvalues and 2-norm of R��1 � �2. . .n�− I /2n are

�i,k = �i�k −
1
n =

�k ± �1�1 + �k�
n ,
2 2
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	R��1 � �2. . .n� −
I

2n	
2

2

= �
k=1

2n−1

�
i=1

2

�i,k
2 = �

k=1

2n−1

�k
2 + �1

2�1 + �k�2

22n . �12�

he last expression is a growing function of �1 and, therefore, the optimal n-qubit encryption
cheme has to be optimal �i.e., Pauli� on the first qubit, giving the smallest possible upper bound

1. After going through this procedure for all qubits, we see that the optimal encryption scheme for
roduct states in the 2-norm is the Pauli scheme P�n. It is straightforward to obtain the same
tatement for the �-norm using �12�. This concludes the proof that the optimal n-qubit indepen-
ent encryption scheme for both the 2- and the operator norm is the Pauli scheme P�n���.

We now prove tight upper bounds for the quality of the approximation of the Pauli encryption
cheme. For the 2-norm, Eq. �9� and induction imply

max
�

�P�n����2 = �max
�

�P����2�n.

et us pick � to be the worst encoded single-qubit state for P. The eigenvalues of P��� are
1±�� /2 and therefore:

�P�n����2 � max
�

�P�n����2 = ��1 + �

2
�2

+ �1 − �

2
�2�n/2

= �1 + �2

2
�n/2

.

rom Eq. �10�, we bound the 2-norm of P�n���− I /2n as

	P�n��� −
I

2n	
2

= ��P�n����2
2 −

1

2n1/2

� ��1 + �2

2
�n

−
1

2n1/2

=
�
n

2n/2 +
o��
n�

2n/2 .

or the �-norm, multiplicativity of norms �9� implies

�P�n����� � max
�

�P�n����� = max
�

�P�����
n = �1 + �

2
�n

,

nd therefore Eq. �11� gives us

	P�n��� −
I

2n	
�

= �P�n����� −
1

2n � �1 + �

2
�n

−
1

2n =
n�

2n +
o�n��

2n .

ote that both bounds are tight and achieved for product states. �

Since the bounds in Theorem 2 are tight, any good independent encryption scheme requires
hat the approximation parameter for each single qubit is �=O�1/
n� for the 2-norm and �
O�1/n� for the �-norm. Hence, from Eq. �15� we conclude that the amount of entropy needed for

he encryption of n-qubit states is 2n−o�n�.

. GENERAL N-QUBIT ENCRYPTION SCHEMES

In Sec. IV, we found the optimal way to independently compose single-qubit encryption
chemes in order to encrypt n-qubit states. However, one can do better with encryption schemes
hat do not act independently on each qubit. For example, the encryption scheme in Ref. 5
niformly picks an n-qubit unitary from a set of O�n2n� random ones and hence it is not an
ndependent encoding. Note also that it only uses n+log n+O�1� bits of entropy.

Ambainis and Smith3 managed to derandomize the encryption scheme of Ref. 5 by explicitly
escribing the set of unitaries. In particular, they use a set of 2n-bit strings, where each string
orresponds to a product of n Pauli matrices �the bits �2j−1,2j� define the Pauli matrix for the jth
ubit�. They prove that if the set of strings is a small-bias set of size O�n2n�, then picking a

andom unitary from this set gives an �� ,n+2 log n+2 log�1/��� encryption scheme in the 2-norm.
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A �-biased set is a set of k-bit strings such that for all possible subsets of bits, the probability
ver the set that the parity of the subset is 0, is � 1

2 −� , 1
2 +��. Naor and Naor7 gave the first such

onstruction with size polynomial in k and 1/�. Alon et al.1 showed a lower bound on the size of
�-biased set

N�k,�� � ��min� k

�2log�1/��
,2k�� .

ince we are interested in encryption schemes which use less than 2n bits of entropy, we only
onsider �-biased sets of size o�22n� and hence �=��1/2n�. Ambainis and Smith showed the
ollowing:

There exists a function ��n�=��1/2n� such that any O���n��-biased set gives rise to a good
ncryption scheme in the 2-norm and moreover it has size N=o�22n�.

In fact, their result holds for any ��n�=1/	�n�2n/2, where 	�n� is any slowly growing function
f n �e.g., log n�. Note that there are explicit constructions of such small-bias sets of size N
poly�	�n� ,n�2n. However, it was an open question whether the same holds for the case of
-norm. Here, we resolve this question by providing a counterexample. We show that

For any ��n�=��1/2n� there exists a O���n��-biased set of size N=o�22n� which is not good in
he �-norm.

Let us, first, compute the norm �R���− I /2n��, where R is a Pauli encryption scheme and �
�z+ ��n�z+ ��n. The density matrix of this state in the z-basis is

� = � I + Z

2
��n

= �1 0 . . .

0 0 . . .

� � �

� .

he unitaries in the encryption scheme can be written as Uk=U1
k

� ¯ � Un
k with Ui

k

�I ,X ,Y ,Z�. For each unitary Uk we define a string �k� �0,1�n with �i
k=0 if Ui

k� �I ,Z�, and

i
k=1 if Ui

k� �X ,Y�. Note that XZX=YZY =−Z and ZZZ= IZI=Z, and hence

R��� =
1

N
�
k=1

N � I + �− 1��1
k
Z

2
� � ¯ � � I + �− 1��n

k
Z

2
� .

he density matrix of the encrypted state is again diagonal in the z-basis and therefore its eigen-
alues are simply its diagonal elements. The size of each eigenvalue �� is exactly the number of
nitaries Uk with the same corresponding string � divided by N. Thus,

	R��� −
I

2n	
�

= max
�
��� −

1

2n� = max
�
� 1

N
�#of unitaries with the same �� −

1

2n� .

It is easy to see that starting from any small-bias set we can create a set which is asymptoti-
ally as good as the initial one and it has the extra property that it contains at least a ��n� fraction
f the unitaries with �=0. We start with a O���n��-biased set of size N and add ��n�N unitaries
ith �=0 to the initial set. The new set has size N�=O�N� and bias O���n��, and therefore, it is

symptotically as good as the original set. Hence

	R��� −
I

2n	
�

= max
�
� 1

N�
�#of unitaries with the same �� −

1

2n� � O���n�� −
1

2n = w� 1

2n� ,

hich means that the encryption scheme R is not good in the �-norm. In other words, we show
hat although a �-biased set encryption scheme is always good for the 2-norm, this is not the case
or the �-norm. However, it is still conceivable that one might be able to use �-biased sets with

ome extra properties in order to achieve good encryption for the �-norm.
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PPENDIX

. Minimization of the entropy H„� ,z…

Here, we provide details for the minimization of the function H�� ,z� with respect to z that
oncludes the proof of the optimal trade-off between approximation and entropy. Recall that

H��,z� = − � 1
2 + � − z�log� 1

2 + � − z� − 2z log z − � 1
2 − � − z�log� 1

2 − � − z�
nd the constraints are

1

4
+

�

2
� z �

1

4
−

�

2
, �A1�

1

2
− � � z . �A2�

he entropy as a function of z is again a concave function and hence, in order to find the minimum
e investigate the end points of the allowed interval for z. There are two cases:

Case 1: for ��1/6, the constraint �4� is tighter. The left end point is � 1
4 +� /2 , 1

4 +� /2 , 1
4

� /2 , 1
4 −3� /2�, giving

H1��� = − 3�1

4
+

�

2
�log�1

4
+

�

2
� − �1

4
−

3�

2
�log�1

4
−

3�

2
� = 2 −

6

ln 2
�2 + O��3� .

he right end point is � 1
4 +3� /2 , 1

4 −� /2 , 1
4 −� /2 , 1

4 −� /2�, giving

H2��� = − �1

4
+

3�

2
�log�1

4
+

3�

2
� − 3�1

4
−

�

2
�log�1

4
−

�

2
� .

t �=0, H1=H2=2. At �=1/6, H1�H2. The derivative of H2−H1 is always negative,

d�H2 − H1�
d�

=
3

2
log

�1 − 2���1 − 6��
�1 + 2���1 + 6��

� 0,

o we conclude that H1 is the best choice for ��1/6. At �=1/6, H1 achieves the value of log2 3,
hich means only three equally weighed unitaries are used.

Case 2: for ��1/6, the constraint �5� is tighter, changing the left end point of z to z=1/2
�. This sets y=0, which is the regime of using only three unitaries, i.e., the distribution is

2� , 1
2 −� , 1

2 −� ,0� and the entropy

H3��� = − 2� log 2� − 2� 1
2 − ��log� 1

2 − �� .
he second derivative of H3−H2 is always negative,
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d2

d�2 �H3 − H2� = − 2���1 − 2���1 + 6��ln 2�−1,

o the function H3−H2 is concave. That allows for only two points where H3=H2. One of them is
t �=1/2, the other is found numerically to be �0�0.287 with H0�1.41. We conclude that for
/6����0, the choice of H3 is optimal, whereas for �0���1/2, the best choice is H2.

. Another proof of optimality of Pauli encryption schemes

It is known10 that every unital channel E with weights �wk� and unitaries Uk is equivalent to a
auli channel with some other weights �xm�, that is

E��� = �
k

wkUk�Uk
†, �A3�

E��� = x1� + x2X�X + x3Y�Y + x4Z�Z . �A4�

his channel is an �-randomizing map. We will prove that the Pauli realization of it has smaller
ntropy.

Suppose we act with this channel on one half of the Bell state ��+�= �1/
2���00�+ �11��. The
rst definition of E will give us

�� = E��� = �
k

wk�Uk � I���+���+��Uk � I�† = �
k

wk��k���k� , �A5�

here ��k�= �Uk � I� ��+� are pure states. On the other hand, the second realization of E �with Pauli
perations� acting on one half of the state ��+� will transform it into a state with density matrix
iagonal in the Bell basis, ��=diag�x1 ,x2 ,x3 ,x4�.

In Ref. 8, Nielsen showed that when a density matrix can be expressed as ��=�kwk ��k���k�,
here ��k� are normalized states, the �ordered� vector of probabilities wk is majorized by the vector
f eigenvalues of ��, that is �wk�������.

In our case, the vector of eigenvalues of �� is �xm�, and the majorization �wk�� �xm� means

m=1
n wm��m=1

n xm for any n�1. Note that if the length of �wk� is greater than four, we pad the
ector �xm� by zero entries to make the lengths of the vectors equal.

The entropy function is concave. Because the vector of weights for the Pauli realization �xk�
ajorizes the vector of weights for the original realization �wk�, the Pauli realization of the

hannel has smaller entropy, S��xk���S��wk��. This means the Pauli channel is the optimal
entropy-wise� realization of any unital channel.
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We construct a sheaf-theoretic representation of quantum probabilistic structures, in
terms of covering systems of Boolean measure algebras. These systems coordina-
tize quantum states by means of Boolean coefficients, interpreted as Boolean local-
ization measures. The representation is based on the existence of a pair of adjoint
functors between the category of presheaves of Boolean measure algebras and the
category of quantum measure algebras. The sheaf-theoretic semantic transition of
quantum structures shifts their physical significance from the orthoposet axiomati-
zation at the level of events, to the sheaf-theoretic gluing conditions at the level of
Boolean localization systems. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2337848�

. INTRODUCTION

The groundbreaking 1936 paper by von Neumann and Birkhoff entitled “The Logic of Quan-
um Mechanics” introduced for the first time the notion of logic of a physical theory. For classical
heories the appropriate logic is a Boolean algebra; but for quantum theories a non-Boolean logical
tructure is necessary, which can be an orthocomplemented lattice, or a partial Boolean algebra, or
ome other structure of a related form. The logic of a physical theory reflects the structure of the
ropositions describing the behavior of a physical system in the domain of the corresponding
heory.

Naturally, the typical mathematical structure associated with logic is an ordered structure. The
riginal quantum logical formulation of quantum theory1,2 depends in an essential way on the
dentification of propositions with projection operators on a complex Hilbert space. A nonclassical,
on-Boolean logical structure is effectively induced which has its origins in quantum theory. More
ccurately, the Hilbert space quantum logic has been initially axiomatized as a complete, atomic,
rthomodular lattice. Equivalently, it could be cast isomorphic to the partial Boolean algebra of
losed subspaces of the Hilbert space associated with the quantum system, or alternatively the
artial Boolean algebra of projection operators of the system. On the contrary, the propositional
ogic of classical mechanics is Boolean logic, meaning that the class of models over which validity
nd associated semantic notions are defined for the propositions of classical mechanics is the class
f Boolean logic structures.

The notion of logic of a physical theory essentially reflects the structure of events being
bserved in the context of that theory. Associated with such an events structure, there always
xists a corresponding probabilistic structure, defined by means of convex sets of measures on that
ogic. In this sense, the probabilistic structure of a classical system is described by convex sets of
robability measures on the Boolean algebra of events of the system, whereas the probabilistic
tructure of a quantum system is described by convex sets of probability measures on the quantum
ogic structure of that system. More accurately, in the case of quantum systems, if the quantum
vents logic is denoted by L, each quantum probability measure, called quantum state, is defined
y a mapping;

�
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p:L → �0,1�

uch that the following conditions are satisfied: p�1�=1 and p�xÚy�=p�x�+p�y�, if x�y, where,
x, y�L. In the Hilbert space formulation of quantum theory, L denotes the Hilbert space quantum
logic, whereas a quantum state is defined by the Hilbert space inner product,

��,Px�� ,

here x�L, � is a normalized vector in the Hilbert space, and Px is the orthogonal projection
perator corresponding to x � L. We remind that there exists a bijective correspondence between
lements of L, or equivalently closed subspaces of the Hilbert space, and orthogonal projection
perators.

In this work we will develop the idea that in quantum theory, Boolean localization measures
an be understood as providing a coordinatization of a quantum probabilistic structure by estab-
ishing a principle of contextuality. More concretely, we shall argue that the covering coordinati-
ation process induced by Boolean localization systems, being formed from families of collated
ompatible local Boolean measures, leads naturally to a contextual description of quantum events,
nd their associated quantum probabilities of a corresponding global quantum structure, with
espect to local Boolean reference frames of measurement.

An intuitive flavor of this insight is provided by Kochen-Specker theorem,3 according to
hich the complete comprehension of a quantum mechanical system is impossible, in case that a

ingle system of Boolean devices is only used globally. On the other side, in every concrete
easurement context, the set of events that have been actualized in this context form a Boolean

lgebra. This fact motivates the assertion that a Boolean algebra in the lattice of quantum events
erves as a local reference frame, conceived in a precise category-theoretical sense, relative to
hich a measurement result is being coordinatized. The conceptual meaning of the proposed

cheme implies that a quantum logical or quantum probabilistic structure is being construed by
eans of covering Boolean reference frames, regulated by our measurement localization proce-

ures, which interlock to form a global coherent picture in a nontrivial way. Hence Boolean
escriptive contexts are not abandoned once and for all, but instead are used locally, accomplish-
ng the task of providing partial congruent relations with globally non-Boolean objects, the inter-
al structure and functioning of which are being hopefully recovered by the interconnecting
achinery governing the local objects. In this work we propose a mathematical scheme for the

mplementation of the above-mentioned assertion, in relation to quantum measure algebras, based
n categorical and sheaf-theoretic methods.4–8 Contextual category theoretical approaches to
uantum structures have also been considered, from a different viewpoint in Refs. 9 and 10, and
iscussed in Refs. 11 and 12. A remarkable conceptual affinity to the viewpoint of the present
aper, although not based on categorical methods, can be found in Refs. 13 and 14. For a general
athematical and philosophical discussion of sheaves, variable sets, and related structures, the

nterested reader should consult Ref. 15. Recently, there has also appeared in the literature a
omplete treatment of the dynamical aspects of physical theories, and in particular gauge theories,
long topological sheaf-theoretic lines,16,17 as an application of the framework of Mallios’s ab-
tract differential geometry.18 Finally, it is worth mentioning that a sheaf-theoretic approach to
uantum structures has been initiated independently by de Groote in a series of preprints.19–22 In
general setting, de Groote constructs a theory of presheaves on the quantum lattice of closed

ubspaces of a complex Hilbert space, by transposing literally and generalizing the corresponding
onstructions from the lattice of open sets of a topological space to the quantum lattice. In
omparison, our approach emphasizes the crucial role of Boolean localization systems in the
lobal formation of quantum structures, and, thus, shifts the focus of relevant constructions to
heaves over suitable Grothendieck topologies on a base category of Boolean subalgebras of
lobal quantum algebras.

The development of the conceptual and technical machinery of localization systems for gen-
rating a nontrivial global event and observable structures, as has been recently demonstrated in

efs. 23 and 24, effectuates a transition in the semantics of events and observables from a
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et-theoretic to a sheaf-theoretic one. This is a crucial semantic difference that characterizes the
resent approach in comparison to the vast literature on quantum measurement and quantum logic.
n Sec. II we will attempt to motivate physically the necessity of this transition on the basis of
ppropriate requirements that generalized procedures of physical measurement should respect,
eferring to the apprehension of physical information in terms of observables.

I. PHYSICAL MOTIVATION AND GENERAL CONCEPTUAL FRAMEWORK

Procedures of physical measurement presuppose, at the fundamental level, the existence of a
ocalization process for extracting information related with the local behavior of a physical system,
nd, thus, discerning observable events. In a general setting, a localization process is usually being
mplemented physically by the preparation of suitable local reference domains for measurement of
bservable attributes. Subsequently, these reference domains instantiate local physical contexts for
bservation of events, which takes place by means of events-registering measurement devices,
perating locally within these contexts. In a broad perspective, it is important to notice that
egistering an event, which has been observed in the context of a prepared reference domain, is not
lways equivalent to conferring a numerical identity to it, expressed in terms of some real value
orresponding to a physical attribute. On the contrary, the latter is only a limited case of the
ocalization process, when, in particular, it is assumed that all local reference contexts can be
ontracted to points, meaning that points are considered as unique measures of localization in the
hysical “continuum.”

This is exactly the crucial assumption underlying the employment of the set-theoretic structure
f the real line as a model of the physical continuum. The semantics of the physical continuum in
he standard interpretation of physical theories is associated with the codomain of valuation of
hysical attributes. Usually the notion of continuum is tied to the attribute of position, serving as
he range of values characterizing this particular attribution. In this sense, the model adopted to
epresent these values is the real line, specified as a set-theoretic structure of points that are
ndependent and possess the property of infinite distinguishability with absolute precision. The
doption of the set theoretical real line model is usually justified on the basis of arguments,
tipulating that quantities admissible as measured results must be real numbers, since the resort to
eal numbers has the advantage of securing our empirical access to the external world. Essentially,
he basic semantic assumption underlying the employment of the set theoretic structure of the real
ine for the modeling of the localization structure of the physical continuum is that real number
epresentability constitutes our global form of observation.

The success of this localizing philosophy for classical theories is due to the association of the
otion of physical continuum with the attribute of position and the theoretical fact that all classical
bservables can be determined precisely and simultaneously at the unique measure of localization
f that attribute, viz., at a spatial point, parametrized by the field of real numbers. Nevertheless, the
ajor foundational difference between classical and quantum physical systems from the perspec-

ive of the modeling scheme by observables is a consequence of a single principle that can be
ermed principle of simultaneous observability. According to this, in the classical description of
hysical systems all their observables are theoretically compatible, or else they can be simulta-
eously specified in a single local measurement context. On the other side, the quantum descrip-
ion of physical systems is based on the assertion of incompatibility of all theoretical observables
n a single local measurement context, and as a consequence quantum-theoretically the simulta-
eous specification of all observables is not possible. The conceptual roots of the violation of the
rinciple of simultaneous observability in the quantum regime is tied with Heisenberg’s uncer-
ainty principle and Bohr’s principle of complementarity of physical descriptions.

In this train of thought, a fruitful fundamental strategy implied by quantum theory would
deally fulfill the following objectives: First, it should disassociate the physical meaning of the
otion of localization from its restricted spatial connotation reference context. Second, it should
llow the functional dependence of observables on generalized localization measures induced by
he preparation of suitably structured domains of measurement, not necessarily based on the

xistence of an underlying set-theoretic structure of points on the real line. Regarding the imple-
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entation of this strategy, it should be essential to interpret any local observable as a relational
nformation algebraic number-like object with respect to the corresponding local context of mea-
urement. At a further stage, it should be necessary to establish appropriate compatibility condi-
ions for gluing the information content of local observables globally. Mathematically, the imple-
entation of this strategy is being precisely captured by the concept of a sheaf-theoretic fibered

tructure, explained in the sequel. The primary physical motivation of this paper concerns the
ossibility of constructing explicitly an appropriate localization process suited to quantum physi-
al observation, along the objectives of the above-stated strategy, and study in particular its
onsequences referring to the interpretation of quantum probabilistic structures. For this purpose,
he focus is shifted from point-set to topological localization models of partially ordered global
uantum event structures.

Before embarking on a qualitative discussion of the relevance of the concept of sheaf for this
ndeavor, it is initially instructive to clarify that the functioning of a localization process amounts
o filtering the information content of a global structure of partially ordered physical events,
hrough a concretely specified structure of observation domains determined by a homologous
perational physical procedure. The latter is defined by the requirement that the reference contexts
f measurement, together with their structural transformations, should form a mathematical cat-
gory. Thus, the localization process should be implemented in terms of an action of the category
f reference contexts on a set-theoretic global structure of physical events. The latter is then
artitioned into sorts parametrized by the objects of the category of contexts. In this sense, the
unctioning of a localization process can be represented by means of a fibered construct, under-
tood geometrically as a presheaf, or equivalently, as a variable set over the base category of
ontexts. The fibers of this construct may be thought of, in analogy to the case of the action of a
roup on a set of points, as the “generalized orbits” of the action of the category of contexts. The
otion of functional dependence incorporated in this action, forces the ordered structure of physi-
al events to fiber over the base category of reference contexts. Most important, the presheaf
bered construct incorporates the physical requirement of uniformity of observed events. More
oncretely, for any two events observed over the same domain of measurement, the structure of all
eference contexts that relate to the first cannot be distinguished in any possible way from the
tructure of contexts relating to the second. Consequently, all the events observed within any
articular reference context, implementing a localization process, are uniformly equivalent to each
ther. Equivalently stated, the compatibility of the localization process with the physical require-
ent of uniformity, demands that the relation of �partial� order in a global set-theoretic universe of

vents is induced by lifting appropriately a structured family of arrows from the base category of
eference contexts to the fibers. It is precisely that condition of compatibility being formalized by
he construction of the category of elements of the corresponding presheaf.

The disassociation of the physical meaning of a localization process from its restricted spatial
onnotation reference context requires, first of all, the abstraction of the constitutive properties of
ocalization in appropriate categorical terms, and then, the effectuation of these properties for the
efinition of localization systems of global event structures. Regarding these objectives, the sought
bstraction is being implemented by means of covering devices on the base category of reference
ontexts, called in categorical terminology covering sieves. The constitutive properties of local-
zation being abstracted categorically in terms of sieves, being qualified as covering ones, satisfy
he following basic requirements:

�i� The covering sieves are covariant under pullback operations, viz. they are stable under
change of a base reference context. Most important, the stability conditions are functorial.
This requirement means, in particular, that the intersection of covering sieves is also a
covering sieve, for each reference context in the base category.

�ii� The covering sieves are transitive, such that, intuitively stated, covering sieves of figures
of a context in covering sieves of this context are also covering sieves of the context
themselves.
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From a physical perspective, the consideration of covering sieves as generalized measures of
ocalization of events in a global partially ordered structure of events gives rise to localization
ystems of the latter. More specifically, the operation which assigns to each reference context of
he base category a collection of covering sieves satisfying the closure conditions stated previously
ives rise to the notion of a Grothendieck topology on the category of contexts. The construction
f a suitable Grothendieck topology on the base category of contexts is significant for the follow-
ng reasons: First, it elucidates precisely and unquestionably the conception of local in a categori-
al measurement environment, such that this conception becomes detached from its restricted
patial connotation, and thus, expressed exclusively in relational information terms. Second, it
ermits the collation of local observable information into global ones by utilization of the notion
f sheaf for that Grothendieck topology. The definition of sheaf essentially expresses gluing
onditions, providing the means for studying the global consequences of locally defined proper-
ies. The transition from locally defined observable information into global ones is being effectu-
ted via a compatible family of elements over a localization system of a global event structure. A
heaf assigns a set of elements to each reference context of a localization system, representing
ocal observable data colected within that context. A choice of elements from these sets, one for
ach context, forms a compatible family if the choice respects the mappings induced by the
estriction functions among contexts, and moreover, if the elements chosen agree whenever two
ontexts of the localization system overlap. If such a locally compatible choice induces a unique
hoice for a global event structure being localized, viz. a global choice, then the condition for
eing a sheaf is satisfied. We note that, in general, there will be more locally defined or partial
hoices than globally defined ones, since not all partial choices need be extendible to global ones,
ut a compatible family of partial choices uniquely extends to a global one, or in other words, any
resheaf uniquely defines a sheaf.

Having explained in detail the physical motivation, as well as the key conceptual prerequisites
nd ideas underlying the modeling of localization processes for acquisition and efficient handling
f observable information related with the behavior of physical systems in a broad perspective, in
he sequel, we focus our attention on the implementation of a concrete localization process of
uantum probabilistic structures effectuated by Boolean localization systems of quantum measure-
ent.

II. CATEGORICAL PROBABILISTIC STRUCTURES

According to the category-theoretic approach to each kind of mathematical structure, there
orresponds a category whose objects have that structure, and whose morphisms preserve it.
oreover to any natural construction on structures of one kind, yielding structures of another kind,

here corresponds a functor from the category of the first kind to the category of the second.
A classical event structure is a small category, denoted by B, which is called the category of

oolean event algebras. Its objects are Boolean algebras of events, and its arrows are Boolean
lgebraic morphisms.

A quantum event structure is a small category, denoted by L, which is called the category of
uantum event algebras.

Its objects, denoted by L, are quantum algebras of events, that is orthomodular �-orthoposets.
ore concretely, each object L in L is considered as a partially ordered set of quantum events,

ndowed with a maximal element 1, and with an operation of orthocomplementation �−�* :L→L,
hich satisfy, for all l�L, the following conditions: �a� l�1, �b� l**= l, �c� lÚ l*=1, �d� l

ĺÞ ĺ*� l*, �e� l� ĺÞ lÚ ĺ�L, �f� for l , ĺ�L, l� ĺ implies that l and ĺ are compatible, where 0

1*, l� ĺª l� ĺ*, and the operations of meet Ù and join Ú are defined as usually. We also recall

hat l , ĺ�L are compatible if the sublattice generated by �l , l* , ĺ , ĺ*� is a Boolean algebra, namely if
t is a Boolean sublattice. The �-completeness condition, namely that the join of countable fami-
ies of pairwise orthogonal events must exist, is also required in order to have a well-defined

heory of observables over L.
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Its arrows are quantum algebraic morphisms, that is maps L→
H

K, which satisfy, for all k�K,

he following conditions: �a� H�1�=1, �b� H�k*�= �H�k��*, �c� k� ḱÞH�k��H�ḱ�, �d�
� ḱÞH�kÚ ḱ��H�k�ÚH�ḱ�.

Next we introduce the categories associated with probabilistic structures.
A quantum convex measure structure is a small category, denoted by �, which is called the

ategory of convex sets of quantum probability measures.
Its objects are the convex sets � of quantum states or quantum probability measures on a

uantum event algebra L. Each quantum probability measure, or quantum state, is defined by a
apping;

p:L → �0,1�

uch that the following conditions are satisfied: p�1�=1 and p�xÚy�=p�x�+p�y�, if x�y, where x,
y � L. On each set �, there is defined the operation of convex mixing by means of the mappings,

�n:En � �n → �

or each natural number n, such that

�n�e,p� ª 	
i

eipi,

here e= �e1 , . . . ,en�, is a vector of real numbers, with ei�0 and 	iei=1, and also, p= �p1 . . .pn� is
vector of quantum states. The unique quantum state 	ieipi is called the convex mixture of p. The

onvex mixture of p, evaluated at x�L, is the superposition of probabilities 	ieipi�x�. For a
uantum state pi and an event x�L, pi�x� denotes the probability of occurrence of x in state pi.

The arrows in the category 	 are morphisms of convex sets of probability measures, that is
orphisms of sets ��h :�→	 which commute with the operation of convex mixing, that is,

��n�e,p��h = �n�e,ph� .

e note that � and 	 are regarded as defined over the same quantum event algebra L, otherwise
e have to take into account the quantum algebraic morphisms as well.

Using the information encoded in the categories of quantum event algebras L, and quantum
robabilistic structures 	, it is possible to construct a new category, called the category of quan-
um probabilities, constructed as a category fibered in groupoids over the category of quantum
vent algebras L, as follows:

A quantum probabilistic structure is a small category, denoted by Q, which is called the
ategory of quantum states or quantum probabilities.

Its objects are the quantum measure algebras �M ,p�ª pM, where M is a quantum event
lgebra and p is a quantum probability measure on M, defined by the measurable mapping

p :M→ �0,1�. The arrows in Q, denoted by pM→ qL, are commutative triangles, or equivalently,

re those quantum logic morphisms M→
l

L in L, such that p=q � l in the diagram to follow is again
quantum probability measure.

Correspondingly, a Boolean probabilistic structure is a small category, denoted by C, which is

alled the category of Boolean probability measures, or classical states.
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Its objects are the Boolean measure algebras �A , P�ª PA, where A is a Boolean event algebra
nd P is a Boolean probability measure on M, defined by the measurable mapping P :A→ �0,1�.
he arrows in C, denoted by PA→ QB, are commutative triangles, or equivalently, are those

oolean logic morphisms A→
b

B in B, such that P=Q �b in the diagram to follow is again a
lassical state.

V. PRESHEAF AND COEFFICIENTS BOOLEAN FUNCTORS

. Presheaves of Boolean probability measures

If Cop is the opposite category of C, then SetsCop
denotes the functor category of presheaves on

oolean measure algebras. Its objects are all functors X :Cop→Sets, and its morphisms are all
atural transformations between such functors. Each object X in this category is a contravariant
et-valued functor on C, called a presheaf of Boolean probability measures on C.

A functor X is a structure-preserving morphism of these categories, that it preserves compo-
ition and identities. A functor in the category SetsCop

can be understood as a contravariant trans-
ation of the language of C into that of Sets. Given another such translation �contravariant functor�
´ of C into Sets we need to compare them. This can be done by giving, for each object PA in C

transformation 
PA :X�PA�→ X́�PA� which compares the two images of the object PA. Not any
orphism will do, however, as it would be necessary for the construction to be parametric in PA,

ather than ad hoc. Since PA is an object in C while X�PA� is in Sets we cannot link them by a
orphism. Rather the goal is that the transformation should respect the morphisms of C, or in

ther words the interpretations of v : PA→ QB by X and X́ should be compatible with the trans-
ormation under 
. Then 
 is a natural transformation in the category of presheaves SetsCop

.
For each Boolean measure algebra PA of C, X�PA� is a set, and for each arrow f : QB→ PA,

�f� :X�PA�→X�QB� is a set function. If X is a presheaf on C and x�X�O�, the value X�f��x� for
n arrow f : QB→ PA in C is called the restriction of x along f and is denoted by X�f��x�=x · f .

Each object PA of C gives rise to a contravariant Hom-functor y�PA�ªHomC�−, PA�. This
unctor defines a presheaf on C. Its action on an object QB of C is given by

y�PA��QB� ª HomC�QB, PA�

hereas its action on a morphism RC→
w

QB, for v : QB→ PA is given by

y�PA��w�: HomC�QB, PA� → HomC�RC, PA� ,

y�PA��w��v� = v � w .

urthermore y can be made into a functor from C to the contravariant functors on C,

y: C → SetsCop
,

uch that PA�HomC�−, PA�. This is an embedding, called the Yoneda embedding,5 and it is a full

nd faithful functor.
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The functor category of presheaves on Boolean measure algebras SetsCop
, provides an instan-

iation of a structure known as topos.6–8 A topos exemplifies a well-defined notion of a categorical
niverse of variable sets. It can be conceived as a local mathematical framework corresponding to
generalized model of set theory or as a generalized space. Moreover it provides a natural

xample of a many-valued truth structure, which remarkably is not ad hoc, but reflects genuine
onstraints of the surrounding universe.

. Boolean measure algebras fibrations

Since C is a small category, there is a set consisting of all the elements of all the sets X�PA�,
nd similarly there is a set consisting of all the functions X�f�. This observation regarding
:Cop→Sets permits us to take the disjoint union of all the sets of the form X�PA� for all objects

PA of C. The elements of this disjoint union can be represented as pairs �PA ,�� for all objects PA
f C and elements ��X�PA�. Thus the disjoint union of sets is made by labeling the elements.
ow we can construct a category whose set of objects is the disjoint union just mentioned. This

tructure is called the category of elements of the presheaf X, denoted by 
�X ,C�. Its objects are
ll pairs �PA ,��, and its morphisms �RC , �́�→ �PA ,�� are those morphisms u : RC→ PA of C for
hich � ·u= �́. Projection on the second coordinate of 
�X ,C�, defines a functor 
X :
�X ,C�→C.
�X ,C� together with the projection functor 
X is equivalent to the discrete fibration induced by X,
nd C is the base category of the fibration. We note that the fibration is discrete because the fibers
re categories in which the only arrows are identity arrows. If PA is a Boolean measure algebra of
, the inverse image under 
X of PA is simply the set X�PA�, although its elements are written as
airs so as to form a disjoint union. The instantiation of the fibration induced by X is an applica-
ion of the general Grothendieck construction.8

The split discrete fibration induced by X, where C is the base category of the fibration,
rovides a well-defined notion of a uniform homologous fibered structure in the following sense:
irst, by the arrows specification defined in the category of elements of X, any element �,
etermined over the measure algebra PA, is homologously related with any other element �́ over
he measure algebra RC, and so on, by variation over all the contexts of the base category. Second,
ll the elements � of X, of the same sort PA, viz. determined over the same measure algebra PA,
re uniformly equivalent to each other, since all the arrows in 
�X ,C� are induced by lifting arrows
rom the base category C.

. Functor of Boolean measure coefficients

We define a modeling Boolean coefficients functor, M :C→Q, which assigns to Boolean
easure algebras in C, that instantiates a model category, the underlying quantum measure alge-

ras from Q, and to Boolean measurable morphisms the underlying quantum measurable mor-
hisms. Hence M acts as a forgetful functor, forgetting the extra Boolean structure of C.

Equivalently the Boolean coefficients functor can be characterized as M :B→L, which as-
igns to Boolean event algebras in B the underlying quantum event algebras from L, and to
oolean morphisms the underlying quantum algebraic morphisms, such that the following dia-

ram commutes:
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. ADJOINT FUNCTORIAL RELATION

We consider the category of quantum measure algebras Q and the modeling functor M, and
e define the functor R from Q to the topos of presheaves on Boolean measure algebras SetsCop

,
iven by

R�pL�:PA � HomQ�M�PA�, pL� .

A natural transformation 
 in the topos of presheaves on Boolean measure algebras SetsCop

etween X and R�pL�, 
 :X→R�pL� is a family 
PA indexed by Boolean measure algebras PA of
for which each 
PA is a map


PA:X�PA� → HomQ�M�PA�, pL�

f sets, such that the diagram of sets to follow, commutes for each Boolean morphism u : RC
PA of C,

If we make use of the category of elements of the Boolean measure algebras-variable set X,
eing an object in the topos of presheaves SetsCop

, then the map 
PA, defined earlier, can be
haracterized as


PA:�PA,�� → HomQ�M � �
X

�PA,��,pL .

quivalently such a 
 can be seen as a family of arrows of Q which is being indexed by objects
PA ,�� of the category of elements of the presheaf of Boolean measure algebras X, namely

�
PA���:M�PA� → pL��PA,��.

rom the perspective of the category of elements of X, the condition of the commutativity of the
bove-presented diagram is equivalent to the condition that for each Boolean morphism u : RC

P
A of C, the following diagram commutes.
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From the diagram above-presented, we conclude that the arrows 
PA��� form a cocone from
he functor M �
X to the quantum measure algebra pL. Making use of the definition of the colimit,
e conclude that each such cocone emerges by the composition of the colimiting cocone with a
nique arrow from the colimit LX to the quantum measure algebra object pL. In other words, there
s a bijection which is natural in X and pL,

Nat�X,R�pL�� � HomQ�LX, pL� .

From the above-noted bijection we are driven to the conclusion that the functor R from Q to
he topos of presheaves SetsCop

, given by

R�pL�:PA � HomQ�M�PA�, pL� ,

as a left adjoint L :SetsCop→Q, which is defined for each presheaf of Boolean measure algebras
in SetsCop

as the colimit

L�X� = Colim�� �X,C�→

X

C→
M

Q� .

Consequently there is a pair of adjoint functors L�R as follows:

L:SetsCop � Q:R .

Thus we have constructed an adjunction which consists of the functors L and R, called left
nd right adjoints with respect to each other, respectively, as well as the natural bijection:

Nat�X,R�pL�� � HomQ�LX, pL� .

In the above-described adjunction, between the topos of presheaves of Boolean measure
lgebras and the category of quantum measure algebras, the map r is called the right adjoint
perator and the map l the left adjoint operator.

If in the bijection defining the adjunction we use as X the representable presheaf of the topos
P
f Boolean measure algebras y� A�, it takes the form:
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Nat�y�PA�,R�pL�� � HomQ�Ly�PA�, pL� .

e note that when X=y�PA� is representable, then the corresponding category of elements
�y�PA� ,C� has a terminal object, namely the element 1 : PA→ PA of y�PA��PA�. Therefore the
olimit of the composite M �
y�PA� is going to be just the value of M �
y�PA� on the terminal object.
hus we have

Ly�PA��PA� � M � �
y�PA�

�PA,1� = M�PA� .

hus we can characterize M�PA� as the colimit of the representable presheaf on the category of
oolean measure algebras,

I. TENSOR PRODUCT REPRESENTATION OF THE COLIMIT

The content of the adjunction between the topos of presheaves of Boolean measure algebras
nd the category of quantum measure algebras can be analyzed if we make use of the categorical
onstruction of the above-defined colimit, as a coequalizer of a coproduct. We consider the colimit
f any functor F :I→Q from some index category I to Q. Let �i :F�i�→�iF�i�, i� I, be the
njections into the coproduct. A morphism from this coproduct,  :�iF�i�→ pL, is determined
niquely by the set of its components i=�i. These components i are going to form a cocone
ver F to the quantum measure algebra vertex pL only when for all arrows v : i→ j of the index
ategory I the following conditions are satisfied:

�� j�F�v� = �i

So we consider all F�dom v� for all arrows v with its injections �v and obtain their coproduct

v:i→jF�dom v�. Next we construct two arrows � and �, defined in terms of the injections �v and

i, for each v : i→ j by the conditions
��v = �i,
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��v = � jF�v�

s well as their coequalizer ;

The coequalizer condition �=� tells us that the arrows �i form a cocone over F to the
uantum measure algebra vertex pL. We further note that since  is the coequalizer of the arrows
and � this cocone is the colimiting cocone for the functor F : I→Q from some index category I

o Q. Hence the colimit of the functor F can be constructed as a coequalizer of coproduct
ccording to the following diagram:

In the case considered the index category is the category of elements of the presheaf of
oolean measure algebras X and the functor M �GX plays the role of the functor F :I→Q. In the
bove-presented diagram the second coproduct is over all the objects �PA ,�� with ��X�PA� of
he category of elements, while the first coproduct is over all the maps v : �RC , �́�→ �PA ,�� of that
ategory, so that v : RC→ PA and the condition �v= �́ is satisfied. We conclude that the colimit

M�X� can be equivalently presented as the following coequalizer:

The coequalizer presentation of the colimit shows that the Hom-functor R has a left adjoint
hich can be characterized categorically as the tensor product −�CM.

In order to clarify the above-presented observation, we forget for the moment that the discus-
ion concerns the category of quantum measure algebras Q, and we consider instead the category
ets. Then the coproduct �pM�PA� is a coproduct of sets, which is equivalent to the product
�PA��M�PA� for PA�C. The coequalizer is thus the definition of the tensor product X�CM of

he set valued functors:

X:Cop → Sets, M:C → Sets

According to the above-presented diagram for elements ��X�PA�, v : RC→ PA and ý
M�RC� the following equations hold:

���,v, ý� = ��v, ý�, ���,v, ý� = ��,vý�

ymmetric in X and M. Hence the elements of the set X�CM are all of the form �� ,y�. This
lement can be written as

��,y� = � � y, � � X�PA�,y � M�PA� .
hus if we take into account the above-presented definitions of � and �, we obtain
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�v � ý = � � vý .

Furthermore if we define the arrows

kPA:X�CM → pL, lPA:X�PA� → HomQ�M�PA�, pL�

hey are related under the fundamental adjunction by

kPA��,y� = lPA����y�, PA � C,� � X�PA�,y � M�PA� .

ere we consider k as a function on �PAX�PA��M�PA� with components kPA :X�PA��M�PA�
pL satisfying

kRC��v,y� = kPA��,vy�

n agreement with the above-defined equivalence relation.
Now we replace the category Sets by the category of quantum measure algebras Q under

tudy. The element y in the set M�PA� is replaced by a generalized element y :M�RC�→M�PA�
rom some modeling object M�RC� of Q. Then we consider k as a function ��PA,��M�PA�→ pL
ith components k�PA,�� :M�PA�→ pL for each ��X�PA�, that for all arrows v : RC→ PA satisfy

k�RC,�v� = k�PA,�� � M�v� .

hen the condition defining the bijection holding by virtue of the fundamental adjunction is given
y

k�PA,�� � y = lPA��� � y:M�RC� → pL .

his argument, being natural in the object M�RC�, is determined by setting M�RC�=A�PA� with y
eing the identity map. Hence the bijection takes the form k�PA,��= lPA���, where
:��PA,��M�PA�→ pL, and lPA :X�PA�→HomQ�M�PA� , pL�.

II. SYSTEM OF LOCALIZATIONS FOR QUANTUM MEASURE ALGEBRAS

The notion of a system of localizations for a quantum measure algebra, which will be defined
n the sequel, is conceptually based on the expectation that a quantum measure algebra pL in Q is
ossible to be comprehended by means of certain structure preserving maps M�PA�→ pL with
ocal or modeling objects Boolean measure algebras PA in C as their domains. It is obvious that
ny single map from any modeling Boolean measure algebra to a quantum measure algebra is not
dequate to determine it entirely, and hence, it contains only a fraction of the total information
ontent included in it. This problem may be tackled, only if we employ many appropriate structure
reserving maps from the modeling Boolean measure algebras to a quantum measure algebra
imultaneously, so as to cover it completely. In turn the information available about each map of
he specified kind may be used to determine the quantum measure algebra itself. In this case we
onceive the family of such maps as the generator of a system of localizations for a quantum
easure algebra. The notion of local is characterized using a notion of topology on C, the axioms

f which express closure conditions on the collection of modeling algebras of Boolean coefficient
robability measures.

. The notion of Grothendieck topology on C

We start our discussion by explicating the notion of a topology on the category of Boolean
easure algebras C. A topology on C is a system of arrows �, where for each object PA there is

P
set �� A� that contains indexed families of C-morphisms,
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��PA� = ��i:
RCi → PA,i � I�

hat is, Boolean homomorphisms to PA, such that certain appropriate conditions are satisfied.
The notion of a topology on the category of Boolean measure algebras C is a categorical

eneralization of a system of set-theoretical covers on a topology T, where a cover for U�T is a
et �Ui :Ui�T , i�I� such that �Ui=U. The generalization is achieved by noting that the topology
rdered by inclusion is a poset category and that any cover corresponds to a collection of inclusion
rrows Ui→U. Given this fact, any family of arrows contained in ��PA� of a topology is a cover
s well.

The specification of a categorial or Grothendieck topology on the category of Boolean mea-
ure algebras takes place through the introduction of appropriate covering devices, called covering
ieves. For an object PA in C, a PA-sieve is a family � of C-morphisms with codomain PA, such
hat if RC→ PA belongs to � and QD→ RC is any C-morphism, then the composite QD→ RC

PA belongs to �.
A Grothendieck topology on the category of Boolean measure algebras C is a system J of sets,

�PA� for each PA in C, where each J�PA� consists of a set of PA-sieves �called the covering
ieves�, which satisfy the following conditions:

1. For any PA in C the maximal sieve �g : cod�g�= PA� belongs to J�PA� �maximality condi-
tion�.

2. If � belongs to J�PA� and f : RC→ PA is a C-morphism, then f*���= �h : RC→ PA , f ·h
��� belongs to J�RC� �stability condition�.

3. If � belongs to J�PA� and S is a sieve on RC, where for each f : RC→ PA belonging to �,
we have f*�S� in J�RC�, then S belongs to J�PA� �transitivity condition�.

The small category C together with a Grothendieck topology J is called a Boolean measure
lgebras site.

. The Grothendieck topology of epimorphic families

We consider C as a model category, whose set of objects �PiAi : i� I�, I: index set, generate Q,
n the sense that

he identity v �wi=u �wi, for every arrow wi :M�PiAi�→ pL, and every PiAi, implies that v=u.
quivalently we can say that the set of all arrows wi :M�PiAi�→ pL, constitute an epimorphic

amily.
The consideration that C is a generating model category of Q points exactly to the depiction

f the appropriate Grothendieck topology on C.
We assert that a sieve S on a Boolean measure algebra PA in C is to be a covering sieve of PA,

hen the arrows s : RC→ PA belonging to the sieve S together form an epimorphic family in Q.
his requirement may be equivalently expressed in terms of a map

	S:��s:RC→PA��S
RC → PA

eing an epi in Q.
We will show that the choice of covering sieves on Boolean measure algebras PA in C, as

eing epimorphic families in Q, does indeed define a Grothendieck topology on C.
First of all we notice that the maximal sieve on each Boolean measure algebra PA includes the

dentity PA→ PA, thus it is a covering sieve. Next, the transitivity property of the depicted cov-
ring sieves is obvious. It remains to demonstrate that the covering sieves remain stable under
ullback. For this purpose we consider the pullback of such a covering sieve S on PA along any

Q P
rrow h : D→ A in C
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The Boolean measure algebras PA in C generate the category of quantum measure algebras Q,
ence, there exists for each arrow s : RC→ PA in S, an epimorphic family of arrows ��TE�s

RC�PA
QD, or equivalently ��TE� j

s→ RC�PA
QD� j, with each domain �TE�s a Boolean measure

lgebra.
Consequently the collection of all the composites:

�TE� j
s → RC�PA

QD → QD

or all s : RC→ PA in S, and all indices j together form an epimorphic family in Q, that is contained
n the sieve h*�S�, being the pullback of S along h : QD→ PA. Therefore the sieve h*�S� is a
overing sieve.

. Covering sieves as localization systems

If we consider a quantum measure algebra pL, and all quantum algebraic morphisms of the
orm �PA :M�PA�→ pL, with domains PA, in the generating model category of Boolean measure
lgebras C, then the family of all these maps �PA, constitute an epimorphism:

S:��PA�C,�PA:M�PA�→pL�M�PA� → pL .

We say that a sieve on a quantum measure algebra defines a covering sieve by objects of its
enerating model category C, when the quantum algebraic morphisms belonging to the sieve
efine the preceding epimorphism.

From a physical perspective covering sieves by Boolean measure algebras are equivalent to
oolean localization systems of quantum measure algebras. These localization systems filter the

nformation of a quantum measure algebra through Boolean domains, associated with procedures
f localization in measurement environments. We will discuss localizations systems in detail, in
rder to unravel the physical meaning of the requirements underlying the notion of Grothendieck
opology, and subsequently, the notion of covering sieves defined previously. It is instructive to
egin with the notion of a system of prelocalizations for a quantum measure algebra.

A system of prelocalizations for a quantum measure algebra pL in Q is a subfunctor of the
om-functor R�pL� of the form S :Cop→Sets, namely for all PA in C it satisfies
�PA�� �R�pL���PA�. Hence a system of prelocalizations for quantum measure algebra pL in Q is
n ideal S�PA� of quantum algebraic morphisms of the form

�PA:M�PA� → pL, PA � C ,

uch that ��PA :M�PA�→ pL in S�PA�, and A�v� :M�RC�→M�PA� in Q for v : RC→ PA in C, im-
lies �PA �M�v� :M�RC�→Q in S�PA��.

The introduction of the notion of a system of prelocalizations is forced on the basis of
perational physical arguments. According to Kochen-Specker theorem it not possible to under-
tand completely a quantum mechanical system with the use of a single system of Boolean
evices. On the other side, in every concrete experimental context, the set of events that have been
ctualized in this context forms a Boolean algebra. In light of this we can say that any Boolean
omain object �B , ��B� :M�B�→L� in a system of prelocalizations for a quantum event algebra L,

aking the diagram below commutative, corresponds to a set of Boolean classical events that
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ecome actualized in the experimental context of B. These Boolean domains play the role of
ocalizing devices in a quantum event structure, which are induced by measurement situations.
he above-noted observation is equivalent to the statement that a measurement-induced Boolean
lgebra serves as a reference frame, in a topos-theoretical environment, relative to which a mea-
urement result is being coordinatized. Correspondingly, by commutativity of the diagram to
ollow, we obtain naturally the notion of coordinatizing Boolean measure algebras in a system of
relocalizations for a quantum measure algebra over a quantum event algebra L. The same notion
uggests an effective way of comprehending quantum theory in a contextual perspective, pointing
o a relativity principle of a topos-theoretical origin. Concretely it supports the assertion that the
uantum world is the universe of varying Boolean reference frames, which interconnect to form a
oherent picture in a nontrivial way.

dopting the aforementioned perspective on quantum measure algebraic structures, the operation
f the Hom-functor R�pL� is equivalent to depicting an ideal of morphisms which are to play the
ole of local coverings of a quantum measure algebra by modeling objects. The notion of a system
f prelocalizations formalizes an intuitive idea, according to which, if we sent many coordinatiz-
ng Boolean measure algebras into the quantum measure algebra homomorphically, then we would
xpect that these modeling objects would prove to be enough for the complete determination of
he quantum measure algebra. If we consider a geometrical viewpoint, we may legitimately char-
cterize metaphorically the maps �PA :M�PA�→ pL, where PA in C, in a system of prelocalizations
or quantum measure algebra pL as Boolean measure algebra charts. Correspondingly the model-
ng Boolean domain objects �A , ��A� :M�A�→L� in a system of prelocalizations for a quantum
vent algebra, making the above-presented diagram commutative, may be characterized as mea-
urement charts. Subsequently, their domains A may be called Boolean coefficient domains in-
uced by measurement, the elements of A measured local Boolean coefficients, and the elements
f L quantum events �or quantum propositions in a logical interpretation�, coordinatized by Bool-
an coefficients. Finally, the Boolean morphisms v :D→A in B play the equivalent role of tran-
ition maps.

Under these intuitive identifications, we say that a family of Boolean measure algebra charts
PA :M�PA�→ pL, PA in C �or correspondingly a family of Boolean measurement charts

�A� :M�A�→L making the above-presented diagram commutative�, is the generator of the system
f prelocalization S iff this system is the smallest among all that contains that family. It is evident
hat a quantum measure algebra, and correspondingly the quantum event algebra over which it is
efined, can have many systems of measurement prelocalizations, that, remarkably, form an or-
ered structure. More specifically, systems of prelocalization constitute a partially ordered set
nder inclusion. Furthermore, the intersection of any number of systems of prelocalization is again
system of prelocalizations. We emphasize that the minimal system is the empty one, namely

�PA�=�, for all PA in C, whereas the maximal system is the Hom-functor R�pL� itself, or
quivalently, all quantum algebraic morphisms �PA :M�PA�→ pL, for all PA in C.

The transition from a system of prelocalizations to a system of localizations for a quantum
easure algebra can be effected under the restriction that certain compatibility conditions have to

e satisfied on the overlap of the modeling Boolean coefficient domains covering the quantum
easure algebra under investigation. In order to accomplish this we use a pullback diagram in Q
s follows:
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The pullback of the Boolean charts �PA :M�PA�→ pL, PA in C, and �RC :M�RC�→ pL, RC
C with common codomain the quantum measure algebra pL consists of the object M�PA�
pLM�RC� and two arrows �PARC and �RCPA, called projections, as shown in the above-presented

iagram. The square commutes and for any object T and arrows h and g that make the outer square
ommute, there is a unique u :T→M�PA��pLM�RC� that makes the whole diagram commutative.
ence we obtain the condition:

�RC � g = �PA � h .

he pullback of the Boolean measure algebra charts �PA :A�PA�→ pL, PA in C, and �RC :M�RC�
pL, RC in C, is equivalently characterized as their fiber product, because M�PA��pLM�RC� is

ot the whole product A�PA��M�RC� but the product taken fiber by fiber. We notice that if �PA

nd �RC are injective, then their pullback is isomorphic with the intersection M�PA��M�P�A�.
hen we can define the pasting map, which is an isomorphism, as follows:

�PA,RC:�RCPA�M�PA��pLM�RC�� → �PARC�M�PA��pLM�RC��

y putting

�PA,RC = �PARC � �RCPA−1.

Then we have the following cocycle conditions:

�PA,PA = 1PA, 1PA ª idPA

�PA,RC � �RC,TE = �PA,TE if M�PA� � M�RC� � M�TE� � 0,

�PA,RC = �RC,PA
−1 if M�PA� � M�RC� � 0.

he pasting map assures that the mapping �RCPA�M�PA��pLM�RC�� and also �PARC�M�PA�
pLM�RC�� are going to cover the same part of the quantum measure algebra in a compatible way.

t is obvious that the above-mentioned compatibility conditions are translated immediately to
orresponding compatibility conditions concerning Boolean measurement charts on the quantum
vent structure.

Given a system of prelocalizations for a quantum measure algebra pL in Q, and correspond-
ngly for the quantum event algebra over which it is defined, we call it a system of localizations iff
he above-noted compatibility conditions are satisfied and moreover the quantum algebraic struc-

ure is preserved.
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We assert that the above-noted compatibility conditions provide the necessary relations for
nderstanding a system of localizations for a quantum measure algebra as a structure sheaf or
heaf of Boolean coefficients, consisting of local Boolean measure algebras. This is related to the
bservation that systems of localizations are actually subfunctors of the representable Hom-
unctor R�pL� of the form S :Cop→Sets, namely for all PA in C satisfy S�PA�� �R�pL���PA�. In
his sense the pullback compatibility conditions express gluing relations on overlaps of Boolean

easure algebra charts and convert a presheaf subfunctor of the Hom-functor into a sheaf for the
rothendieck topology specified. The concept of sheaf expresses exactly the pasting conditions

hat local Boolean coefficients algebras have to satisfy, namely, the way by which local data can
e collated together into global ones. We stress the point that the transition from locally defined
roperties to global consequences happens via a compatible family of elements over a cover of the
lobal object. A cover, or equivalently a localization system of the global, object, being a quantum
easure algebra structure in the present scheme, can be viewed as providing a decomposition of

hat object into simpler modeling objects.
The comprehension of a localization system as a sheaf of Boolean coefficients permits the

onception of a quantum measure algebra �or of its associated quantum event algebra� as a
eneralized Boolean manifold, obtained by pasting the �RCPA�M�PA��pLM�RC�� and
PAP�A�M�PA��pLM�RC�� covers together by the transition functions �PA,RC.

More specifically, the equivalence relations in the category of elements of such a structure
heaf, represented by a Boolean system of Boolean probabilities coefficients, have to be taken into
ccount according to the analysis of the adjoint relation presented in Sec. VI. Equivalence rela-
ions of this form give rise to congruences in the structure sheaf of Boolean coefficients, which are
xpressed categorically as a colimit in the category of elements of such a structure sheaf. In this
erspective the generalized manifold, which represents categorically a quantum measure algebra,
s understood as a colimit in a sheaf of Boolean coefficients, which contains compatible families
f modeling Boolean measure algebras. It is instructive to emphasize that the organization of
oolean coordinatizing objects in localization systems takes the form of interconnection of these
odeling objects through the categorical construction of colimit, the latter being the means to

omprehend an object of complex structure �quantum measure algebra� from simpler coefficient
bjects �Boolean measure algebras�.

The above-noted ideas provide the basis for the formulation of a sheaf-theoretic representation
heorem concerning quantum measure algebras as we shall present in the following section.

III. REPRESENTATION OF QUANTUM MEASURE ALGEBRAS

. Unit and counit of the adjoint relation

We again focus our attention on the fundamental adjoint relation established, and investigate
he unit and the counit of it. For any presheaf X in the topos SetsCop

, the unit �X :X
HomQ�M�_� ,X�CM� has components:

�X�PA�:X�PA� → HomQ�M�PA�,X�CM�

or each Boolean measure algebra PA in C.
If we make use of the representable presheaf y�PA� we obtain

�y�PA�:y�PA� → HomQ�M�_�,y�PA��CM� .

ence for each object PA of C the unit, in the case considered, corresponds to a map

M�PA� → y�PA��CM .
ut since
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y�PA��CM � M�PA�

he unit for the representable presheaf of Boolean measure algebras is clearly an isomorphism. By
he preceding discussion we conclude that the following diagram commutes:

Thus the unit of the fundamental adjunction referring to the representable presheaf of the
ategory of Boolean measure algebras provides a quantum algebraic morphism, M�PA�→y�PA�

�CM, which is an isomorphism.
On the other side, for each quantum measure algebra pL in Q the counit is defined as follows:

�pL:HomQ�M�_�, pL��CM → pL .

he counit corresponds to the vertical map in the following diagram:

. Boolean representation

The sheaf-theoretic representation of a quantum measure algebra in terms of Boolean measure
ocalization systems is formulated in terms of the following proposition, effectuated by means of
he vertical counit map in the preceding diagram.

The representation of a quantum measure algebra pL in Q, in terms of a coordinatization
ystem of Boolean measure algebra localizations S, consisting of Boolean probability coefficients,
s full and faithful, if and only if the counit of the established adjoint relation, restricted to that
ystem, is an isomorphism, that is, structure-preserving, 1-1 and onto.

It is easy to see that the counit of the adjunction, restricted to a system of Boolean measure
lgebra localizations is a quantum algebraic isomorphism, iff the right adjoint functor is full and
aithful, or equivalently, iff the cocone from the functor M �
R�pL� to the quantum measure algebra

pL is universal for each pL in Q. In the latter case we characterize the Boolean measure coeffi-
ients functor M :C→Q, a proper modeling functor. As a consequence if we consider as B the
ategory of Boolean subalgebras of a quantum event algebra L of ordinary quantum mechanics,
hat is an orthomodular �-orthoposet of orthogonal projections of a Hilbert space, together with a
roper modeling inclusion functor M :B→L, such that the diagram to follow commutes, the
ounit of the established adjunction restricted to a system of Boolean localizations is an isomor-

hism
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�L:R�L��BM→�L

uch that

��B� = �L � ���B� � _ �

r in the notation of elements equivalently:

�L���B� � a� = ��B��a�, a � M�B� ,

here p���B��a��= �P�a��, for all ��B� :M�B�→L according to the above-presented commutative
iagram.

X. CONCLUSIONS

The primary physical motivation of this paper has been the implementation and explicit
onstruction of an appropriate localization process suited to quantum physical observation, and in
articular, the study of its consequences referring to the interpretation of quantum probabilistic
tructures. The crucial ideas and techniques related to the objective of interpreting quantum mea-
ure algebras sheaf-theoretically in the topos-theoretic environment of Grothendieck sites are
ased on extension and elaboration of previous works of the author, communicated, both concep-
ually and technically, in the literature.23–27 The defining characteristic of the topos-theoretic per-
pective enunciated by the author in this endeavor has been the change of resolution focus form
oint-set to variable topological localization models of quantum algebraic structures, which effec-
ively induce a transition in the semantics of global quantum event observable and probability
lgebras from a set-theoretic to a sheaf-theoretic one. The significance and semantic differentiation
f this work in relation to the foundations of quantum theory can be cast in the form of the
ollowing statements:

1. Conceptually, the physical meaning of the notion of localization is being disassociated
from its restricted spatial connotation reference context. We have argued that this is an
essential and necessary reconceptualization of the meaning of locality in relational infor-
mation terms forced by the quantum description of physical systems.

2. A suitable localization process of global quantum event and probabilistic structures that
respects the premises of the quantum theory of measurement is being formulated in terms
of Boolean localization systems, described categorically in terms of an appropriate Groth-
endieck topology, which incorporate the constitutive requirements of the notion of Bool-

ean localization in functorial relational terms.
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3. Global quantum event and probabilistic structures are being functionally and functorially
dependent on generalized topological localization measures induced by the preparation of
Boolean structured domains of measurement, not necessarily based on the existence of an
underlying set-theoretic structure of points on the real line.

4. The sheaf-theoretic semantic transition of quantum measure algebras has been forced by
means of gluing cocycle conditions over an explicitly constructed uniform and homolo-
gous fibered representation of quantum states with respect to local Boolean reference
frames for the Grothendieck topology of epimorphic families. According to this represen-
tation, quantum states have been conceptualized as equivalence classes of local Boolean
coordinates with respect to those reference frames. Subsequently, an isomorphic repre-
sentation of quantum measure algebras with colimits taken in the categories of elements
of sheaves of Boolean reference frames has been constructed.

5. The physical significance of the sheaf-theoretic representation of quantum measure alge-
bras is encapsulated in the realization that the whole information content of a quantum
measure algebra is preserved by the action of some covering system, if and only if that
system forms a Boolean localization system. Hence, the significance of a quantum mea-
sure algebra is shifted from the orthoposet axiomatization at the level of events, to the
sheaf-theoretic gluing conditions at the level of Boolean localization systems.

6. The preservation of quantum information property according to the above is being for-
mally established by the counit of the related adjunction isomorphism. More specifically,
the surjective property of the counit guarantees that the Boolean localization measures,
representing objects in the category of elements of the sheaf 
�R�pL� ,C�, cover entirely a
quantum measure algebra pL, whereas its injective property guarantees that any two
covers are compatible in a system of localizations. Moreover, since the counit is also a
homomorphism, it preserves the algebraic structure.

7. The physical content of the sheaf-theoretic representation of quantum events algebras can
be formulated in terms of a functoriality property. According to this, the information
content of a quantum measure algebra is covariant under the groupoid of gluing isomor-
phisms between overlapping local Boolean reference frames, along their intersections, in
a Boolean localization system.

8. In the physical state of affairs, each cover corresponds to a Boolean measure algebra of
events realized locally �with respect to the Grothendieck topology of epimorphic families�
in a measurement situation. The equivalence classes of local Boolean measure coefficients
represent quantum states in pL, via the sheaf-theoretic pullback compatibility conditions.
In this sense, the notion of quantum probability is basically classical when interpreted
locally à la Grothendieck. Moreover, the probabilities of actualization of events in equiva-
lent local measurement environments are equal.

9. Conclusively, the structure of a quantum measure algebra is being generated by the
information that its structure preserving morphims, encoded as Boolean covers in local-
ization systems carry, as well as their compatibility relations. Most significantly, the same
compatibility conditions provide the necessary relations for understanding a system of
localizations for a quantum probabilistic structure, as a structure sheaf of Boolean mea-
sure coefficients associated with local contexts of measurement.

Finally, it would be instructive to comment briefly on the possible implications of the pro-
osed topos-theoretic interpretation schema of quantum structures, based on a reconceptualization
f the notion of physical localization, in relation to the ongoing research on quantum relativity and
uantum gravity. A preliminary account of the attempt to establish a connective link with the
onception of a categorical theory of covariant quantum gravitational dynamics based on the
tilization of topological localization systems in the physical “continuum” is in the phase of
ntense development, while some basic ideas and results related with this program have already
een communicated.28 In the context of that work we initiate a sheaf-theoretic dynamical analysis
f quantum observable structures by synthesizing the flexible categorical machinery of Grothend-
eck topoi, together with the powerful sheaf-theoretic methodology of Mallios’s abstract differen-

18
ial geometry.
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The crucial physical issue incorporated in the idea of generalized topological localization
rocesses, conceived in the sense of Grothendieck topologies on a base category of structured
eference contexts, is related to a novel topos-theoretic conception of the physical “continuum.”
ccording to this conception the quantum regime of observable dynamical phenomena should be
nderstood in functorial terms of categorically localized information, and not in the restricted
lassical localization terms conceived by means of metrical properties on a pre-existing smooth
et-theoretic spacetime manifold. Subsequently, that semantic transition can be implemented con-
eptually and technically by the replacement of the classical variable metrical ruler of localization
n a smooth background spacetime manifold, with a variable sheaf-cohomological ruler of cat-
gorical localization in a Grothendieck topos, that captures the relational information of observ-
bles in the quantum regime, filtered through local reference frames in that topos. Then, the
ynamical properties of quantum structures can be addressed to the global topos-theoretic dynam-
cs generated by interlocking diagrams of local frames in that topos, giving rise to generalized De
ham complexes of sheaves encapsulating cohomologically the corresponding dynamical behav-

or.
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Finite quantum systems in which the position and momentum take values in the
Galois field GF�p��, are studied. Ideas from the subject of field extension are
transferred in the context of quantum mechanics. The Frobenius automorphisms in
Galois fields lead naturally to the “Frobenius formalism” in a quantum context. The
Hilbert space splits into “Frobenius subspaces” which are labeled with the irreduc-
ible polynomials associated with the yp�

−y. The Frobenius maps transform uni-
tarily the states of a Galois quantum system and leave fixed all states in some of its
Galois subsystems �where the position and momentum take values in subfields of
GF�p���. An analytic representation of these systems in the �-sheeted complex
plane shows deeper links between Galois theory and Riemann surfaces. © 2006
American Institute of Physics. �DOI: 10.1063/1.2345111�

. INTRODUCTION

Quantum systems with finite-dimensional Hilbert spaces were studied originally by Weyl1 and
chwinger,2 and later by many authors �for a review with an extensive list of references see Ref.
�. In this case the position and momentum take values in the ring Zd �the integers modulo d� and
he phase space of the system is the toroidal lattice Zd�Zd. We can try to develop a phase space
ormalism which is similar to the one for the harmonic oscillator. For example, we can define
isplacements and show that they form a Heisenberg-Weyl group.

An important class of transformations in the harmonic oscillator R�R phase space are the
ymplectic Sp�2,R� transformations. Apart from their theoretical importance, they are intimately
elated to more practical areas like squeezing and quantum tomography in quantum optics. In
nite quantum systems, the Zd�Zd phase space is in general a collection of points with no
eometrical structure and we cannot define symplectic transformations. The root of these difficul-
ies is that Zd is a ring. However when d is the power of a prime number p �i.e., d=p�� the Zd

with appropriate multiplication rule� becomes the Galois field GF�p��. We call them Galois
uantum systems. In this case the phase space is a finite geometry4 and we can define the group of
ymplectic transformations Sp�2,GF�p���.5–7

There are some other remarkable properties of the Galois quantum systems. Mutually unbi-
sed bases are important in quantum information processing and have been studied extensively in
he last few years.8–18 It is known that the number of such bases cannot exceed d+1; and it is also
nown that for systems where d is the power of a prime, the number of such bases is indeed d
1. Similar ideas appear in the so-called “mean king’s problem.”19–21 Applications of these ideas

o quantum coding have been discussed in Refs. 22 and 23.
A central concept in a Galois field is the Frobenius automorphisms which leave fixed all

lements in some of its subfields. Galois quantum systems inherit the properties of Galois fields
nd in this paper we develop a “Frobenius formalism” in a quantum context. Preliminary work in
his direction has been presented in Ref. 7 for the case where � is a prime number. In this simple
ase there is only one proper subfield of GF�p�� which is the Zp and we get a two layer structure.

�
Electronic mail: a.vourdas@bradford.ac.uk
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ere we consider the more complicated case of general � and get a multilayer structure. In order
o do this we first construct a labeling method for the irreducible polynomials associated with the
yp�

−y. To each irreducible polynomial corresponds a Frobenius subspace comprised of position
tates labeled with the Galois conjugates corresponding to this polynomial. We then introduce the
robenius transformations G which leave these subspaces invariant. The powers of G form a cyclic
roup of order �. We explain how the Frobenius transformations leave fixed all states in Galois
ubsystems �where the position and momentum take values in subfields of GF�p���.

There are deep connections between Riemann surfaces and Galois theory. Roughly speaking,
he multivaluedness in coverings of Riemann surfaces can be related to the Galois conjugates. An
xample of this relationship has been discussed in Ref. 24, in a very different context from ours.
ere we introduce an analytic representation of Galois quantum systems in the �-sheeted complex
lane. We show how various aspects of the Frobenius transformations are elegantly expressed in
he language of analytic functions.

I. GALOIS FIELDS

We consider the Galois field GF�p��. The elements of the Galois field GF�p�� can be written
s polynomials

� = �0 + �1� + ¯ + ��−1��−1, �0,�1, . . . ,��−1 � Zp. �1�

hese polynomials are defined modulo an irreducible polynomial of degree �:

P��� � c0 + c1� + ¯ + c�−1��−1 + ��, c0,c1, . . . ,c�−1 � Zp. �2�

ifferent irreducible polynomials of the same degree � lead to isomorphic finite fields.
The �, �p , . . . ,�p�−1

are Galois conjugates. The trace of � is defined as

Tr��� = � + �p + ¯ + �p�−1
, Tr��� � Zp. �3�

ll conjugates have the same trace. Elements of the base field Zp are Galois self-conjugates.
As in Ref. 7, for practical calculations we introduce the ��� matrices

g�� � Tr���+��, G � g−1, g��,G�� � Zp. �4�

e also introduce a dual basis E0 ,E1 , . . . ,E�−1, as follows:

E� = �
�

G����, Tr���E�� = ���. �5�

number ��GF�p�� can be expressed in the two bases as

� = �
�=0

�−1

���� = �
�=0

�−1

�̄�E�,

�6�
�� = Tr��E��; �̄� = Tr����� .

e refer to �� and �̄� as the components and dual components of �, correspondingly. They are
elated as follows:

�� = �
�

G���̄�, �̄� = �
�

g����. �7�

he trace of the product �� is given in terms of the components of these numbers as

Tr���� = � g������ = � G���̄��̄� = � ���̄� = � �̄���. �8�

�,� �,� � �
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We also introduce the ��� matrix C with elements in Zp, through the relations:

��p = �
�=0

�−1

��C��. �9�

,� take values from 0 to �−1. We can show that

C� = 1, C�0 = ���,0� , �10�

here � is the Kronecker delta. The conjugates of an arbitrary number � can now be written in
erms of its components as

�p�
= �

�,�
���C������. �11�

. Characters

We consider the following complex-valued function which is an additive character in GF�p��:

	��� = 
�Tr����, 	���	��� = 	�� + �� , �12�

here


 = exp�i
2�

p
�, 
�m� � 
m, m � Zp. �13�

e can easily show that for n ,m ,r�GF�p��:

1

p��
n


�Tr�nm − nr�� = ��m,r� . �14�

more general relation is

1

p��
n


�Tr�nm − np�
r�� = ��m,rp�−�

� = ��mp�
,r� . �15�

e can also rewrite this in terms of the components of the mp�
,r:

��mp�
,r� = 	

�=0

�−1

���
�

�C����m�,r�� . �16�

. Labeling of the irreducible polynomials

The Frobenius map

�:� → �p, �� = 1 �17�

efines an automorphism in GF�p��. It maps the Galois conjugates to each other and leave all
lements of the base field Zp fixed. The Frobenius map can be written in terms of the components
f � and �p as

�:�� → �
�

C����. �18�
he
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1 = 
1,�, . . . ,��−1� �19�

orm the Galois group which is a cyclic group of order �. It comprises all automorphisms of
F�p�� which leaves the elements of the subfield Zp fixed.

The product

f�y� � �y − ���y − �p� ¯ �y − �pd−1
� �20�

nvolves all the Galois conjugates and is an irreducible polynomial of degree d in Zp�y� �the
olynomials with coefficients in Zp�. It is known that the number of such irreducible polynomials
f degree d is given in terms of the Möbius �-function as

n�d,p� =
1

d
�
e�d

��e�pd/e, �21�

here the summation is over all e which are divisors of d �we denote this as e �d�. It is easily seen
hat

n�1,p� = p . �22�

We label the various irreducible polynomials of degree d as fd��y� where � takes values from
to n�d ,p�. The product of all distinct irreducible polynomials in Zp�y� of degree d, where d is a

ivisor of �, is

	
d��

	
�=1

n�d,p�

fd��y� = yp�
− y . �23�

rom the degrees of these polynomials we easily show that

�
d��

dn�d,p� = p�. �24�

e call q� the number of divisors of � and we write them in ascending order as

d1 = 1 � d2 � ¯ � dq�−1
� dq�

= � . �25�

e introduce the

w�� ,d,p� = �
di�d

n�di,p� . �26�

ere the summation is over all divisors di of � �given in Eq. �25��, which are smaller than d.
The total number of irreducible polynomials entering in the factorization of yp�

−y in Eq. �29�
s

M�� ,p� = �
d��

n�d,p� . �27�

herefore an alternative labeling system for these polynomials is to use a single index N:

fN�y� � fd��y�, N = 1, . . . ,M�� ,p� . �28�

here is one-to-one map between the �d ,�� and N. When �d ,�� are given we calculate the
orresponding N as

N = w�� ,d,p� + � . �29�

hen the N is given we can calculate the corresponding �d ,�� by finding the largest di among the

ivisors of � �in Eq. �25��, such that the w�� ,di ,p� is smaller than N and then
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d = di+1, � = N − w�� ,di,p� . �30�

We introduce a notation which indicates for each number m in the Galois field GF�p�� the
orresponding irreducible polynomial fd��y�. We stress that this depends on the choice of the
rreducible polynomial P��� in Eq. �2�; but different choices lead to isomorphic results. We first
ake any of the d Galois conjugates corresponding to fd��y�, and denote it as m�d ,� ,1�. We then
enote the rest of them as

m�d,�,�� = �m�d,�,1��p�−1
, � = 1, . . . ,n�d,p�, � = 1, . . . ,d . �31�

he index � labels the various Galois conjugates corresponding to a given irreducible polynomial
fd��y�. In the special case d=1 it is easily seen that m�1,� ,1�=� where ��Zp.

It is clear from our above-presented discussion that an alternative labeling system for these
umbers is

m�d,�,�� = m�N,�� , �32�

here the relation between �d ,�� and N has been given in Eqs. �29� and �30�.

. Subfields

When d is a divisor of � the GF�pd� is a subfield of GF�p��. The GF�pd� contains the Galois
onjugates corresponding to all irreducible polynomials fe��y� where e is a divisor of d. Then:

	
e�d

	
�=1

n�e,p�

fe��y� = ypd
− y . �33�

he ypd
−y is a divisor of yp�

−y.
Using the other labeling method of the irreducible polynomials we rewrite Eq. �33� as

	
N=1

M�d,p�

fN�y� = ypd
− y . �34�

hen the label N takes all values from 1 to M�d ,p�, we get all the irreducible polynomials fN�y�
ontained in ypd

−y.
The

d = 
1,�d, . . . ,��−d� �35�

orm a cyclic group of order � /d. It is a subgroup of 1 and comprises all automorphisms of
F�p�� which leave the elements of the subfield GF�pd� fixed.

. Example

We consider the field GF�16�. Practical calculations depend on the choice of the irreducible
olynomial and we choose P���=�4+�+1. The matrices g, G, and C are in this example:

g =
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 1
�, G =

1 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0
�, C =

1 0 1 0

0 0 1 0

0 1 0 1

0 0 0 1
� .

�36�
The irreducible polynomials are
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f11�y� = y ,

f12�y� = y − 1,

f21�y� = y2 + y + 1 = �y − � − �2��y − 1 − � − �2� ,

�37�
f41�y� = y4 + y + 1 = �y − ���y − �2��y − 1 − ���y − 1 − �2� ,

f42�y� = y4 + y3 + y2 + y + 1 = �y − �3��y − �2 − �3��y − 1 − � − �2 − �3��y − � − �3� ,

f43�y� = y4 + y3 + 1 = �y − 1 − �3��y − 1 − �2 − �3��y − � − �2 − �3��y − 1 − � − �3� .

n this case the labeling of the elements of this field introduced in Eq. �31� is as follows:

m�1,1,1� = 0, m�1,2,1� = 1,

m�2,1,1� = � + �2, m�2,1,2� = 1 + � + �2,

m�4,1,1� = �, m�4,1,2� = �2, m�4,1,3� = 1 + �, m�4,1,4� = 1 + �2, �38�

m�4,2,1� = �3, m�4,2,2� = �2 + �3, m�4,2,3� = 1 + � + �2 + �3, m�4,2,4� = � + �3,

m�4,3,1� = 1 + �3, m�4,3,2� = 1 + �2 + �3, m�4,3,3� = � + �2 + �3, m�4,3,4� = 1 + � + �3.

t is easy to check that the four elements m�1,1 ,1�, m�1,2 ,1�, m�2,1 ,1�, m�2,1 ,2� associated to
he irreducible polynomials f11�y�, f12�y�, f21�y�, form a subfield which is the GF�4�.

II. GALOIS QUANTUM SYSTEMS

. Finite quantum systems with phase space ZdÃZd

We consider a quantum system with a d-dimensional Hilbert space H and an orthonormal
asis of “position states” �X ;m� where m takes values in the ring Zd. The Fourier operator is
efined as

F = d−1/2�
m=0

d−1

�
n=0

d−1

�d�mn��X;m��X;n�, F4 = 1 , �39�

here we use the notation

�d = exp�i
2�

d
�, �d�m� � �d

m, m � Zd. �40�

cting with the Fourier operators on the position states we get the momentum states

�P;m� = F�X;m� = d−1/2�
n

�d�mn��X;n� . �41�

ˆ ˆ
osition and momentum operators x and p are defined as
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x = �
n=0

d−1

n�X;n��X;n�, p = Fx̂F† = �
n=0

d−1

n�P;n��P;n� . �42�

ll numbers in Zp obey the relation mp=m and the Cayley-Hamilton theorem can be used to prove
hat::

xp = x; pp = p . �43�

The position-momentum phase space is the toroidal lattice Zd�Zd and in it we define dis-
lacement operators which form the Heisenberg-Weyl group:

Z = �d
x = �

n=0

d−1

�d�n��X;n��X;n� ,

X = �d
−p = �

n=0

d−1

�d�− n��P;n��P;n� , �44�

Xd = Zd = 1, X�Z� = Z�X��d�− ���, �,� � Zd.

eneral displacement operators are defined as

D��,�� = Z�X��d�− 2−1��� . �45�

. Galois quantum systems with phase space GF„p�
…ÃGF„p�

…

We next consider the case that d is a prime p in which case Zp is a Galois field and the phase
pace Zp�Zp is a finite geometry. This is an example of a Galois quantum system. Following Ref.

we construct bigger Galois quantum systems with dimension p� by considering the tensor
roduct

H = H � ¯ � H �46�

f � such spaces. We use calligraphic letters for operators and states on the various p-dimensional
ilbert spaces H; and ordinary letters for operators and states on the p�-dimensional Hilbert space
.

The position states in H are labeled with m�GF�p��:

�X;m� � �X;m0� � ¯ � �X;m�−1� . �47�

he system is in the position state m=m0+m1�+ ¯ +m�−1��−1 when its first component is in the
osition state m0, its second component in the position state m1, etc.

The Fourier transform is given by

F = �p��−1/2�
m,n


�Tr�mn���X;m��X;n�, F4 = 1 , �48�

here 
=�p �see also Eq. �13��. We note that F is different from the operator F � ¯ � F which
erforms independent Fourier transforms on each of the component systems. A Galois quantum
ystem with Hilbert space H, Fourier transform F, and positions �and momenta� in GF�p�� has
uch more structure than a “simple” tensor product system which has the same Hilbert space H,
ourier transform F � ¯ � F and positions �and momenta� in Zp� ¯ �Zp. An element m of the
alois field GF�p�� is not just an �-dimensional vector �m0 , . . . ,m�−1�; there is a lot of extra
tructure related to the Galois multiplication. And this enters in the Fourier transform Fwhich uses
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he trace of the Galois product mn and which according to Eq. �8� is �g��m�n�. In contrast, the
ourier transform F � ¯ � F uses the �m�n�:

F = �p��−1/2�
m,n


�� g��m�n���X;m0��X;n0� � ¯ � �X;m�−1��X;n�−1� ,

�49�
F � ¯ � F = �p��−1/2�

m,n

�� m�n���X;m0��X;n0� � ¯ � �X;m�−1��X;n�−1�

Momentum states are defined as

�P;m� = F�X;m� = �p��−1/2�
n


�Tr�mn���X;n� = �P;m̄0� � ¯ � �P;m̄�−1� . �50�

he dual components m̄i of m enter in the momentum states, while the components mi enter in the
osition states.

The position and momentum operators are given by

x̂ = �
m

m�X;m��X;m�, p̂ = Fx̂F† = �
m

m�P;m��P;m� . �51�

All numbers in GF�p�� obey the relation mp�
=m and the Cayley–Hamilton theorem can be

sed to prove that

x̂p�
= x̂, p̂p�

= p̂ . �52�

. Displacements in Galois quantum systems

Displacement operators in Galois quantum systems have been discussed in Ref. 7. They are
iven by

Z� = �
n


�Tr��n���X;n��X;n� ,

�53�
X� = �

n


�− Tr��n���P;n��P;n� ,

here � ,��GF�p��. We can show that

Z��P;m� = �P;m + ��, Z��X;m� = 
�Tr��m���X;m� , �54�

X��P;m� = 
�− Tr�m����P;m�, X��X;m� = �X;m + �� , �55�

nd also that

X�Z� = Z�X�
�− Tr����� . �56�

he displacement operators form a Heisenberg-Weyl group.
General displacement in the GF�p���GF�p�� phase space is defined as

D��,�� = Z�X�
�− 1
2 Tr����� . �57�

he displacement operators acting on H are expressed in terms of the displacement operators D
cting on the various components of the system as

D��,�� = D��̄0,�0� � ¯ � D��̄�−1,��−1� . �58�

¯
ere �i are the dual components of � and �i are the components of � as in Eq. �6�.
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V. FROBENIUS FORMALISM

. Frobenius subspaces

We split the Hilbert space H into subspaces, each of which is spanned by conjugate position
tates, i.e., position states labeled with Galois conjugate numbers. All Galois conjugates corre-
pond to a particular irreducible polynomial and we label each of these subspaces with the indices
f the corresponding irreducible polynomial. For the irreducible polynomial fd��y� we consider the
-dimensional space

Hd� = span
�X;m�d,�,1��, �X;m�d,�,2��, . . . , �X;m�d,�,d��� . �59�

e have explained earlier that d is a divisor of � and takes q� values; and that � takes n�d ,p�
alues. An alternative to the indices �d ,�� is the index N as explained in Eqs. �29� and �30�.
herefore Eq. �59� can be rewritten as

HN = span
�X;m�N,1��, �X;m�N,2��, . . . , �X;m�N,d��� . �60�

We call �d� �or �N� the projection operators to the spaces Hd�. In the special case d=1 we
ave p one-dimensional spaces H1� and

�1� = �X;���X;��, � � Zp. �61�

he spaces Hd� have been defined with respect to position states. If we use the states U �X ;m�
here U is any unitary operator we will get different Frobenius subspaces which we denote as
Hd�. For example, the Frobenius subspaces with respect to momentum states are FHd� and they

re different from Hd�. Only in the special case the U commutes with �d�, the spaces UHd� and

d� are the same:

�U,�d�� = 0 → UHd� = Hd�. �62�

We call H̄d the Hilbert space which is the direct sum of all Hd�:

H̄d = �
�=1

n�d,p�

Hd� = �
N=w��,d,p�+1

w��,d,p�+n�d,p�

HN, �63�

here w�� ,d ,p� has been defined in Eq. �26�. The dimension of H̄d is dn�d ,p�. We call �̄d the

rojection operators to the spaces H̄d.
The Frobenius subspace Hd� is the null space of the corresponding irreducible polynomial

perator fd��x̂�,

fd��x̂��d� = 0. �64�

. Galois subsystems

Let d be a divisor of �. We call Hd the Hilbert space which is the direct sum of all H̄e where
is any of the qd divisors of d:

Hd = �
e�d

H̄e. �65�

his space is spanned by position states labeled with numbers in the subfield GF�pd�. Indeed we
ave included here position states labeled with Galois numbers corresponding to all irreducible
olynomials fe��y� where e is a divisor of d; and we have seen in Eq. �33� that they form the
ubfield GF�pd�. Therefore the space Hd describes a Galois subsystem. In the special case d=1 the
pace H1 is p-dimensional and is spanned by position states labeled with integers in Zp. In the

ther extreme special case d=� it is easily seen that H�=H.
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We note that the spaces Hd� and H̄d describe subsystems which are not Galois subsystems
ecause the position does not take all values in a Galois subfield.

We call �d the projection operator to the space Hd. Then:

�d = �
e�d

�
�=1

n�e,p�

�e� = �
e�d

�̄e. �66�

n the special cases d=1 and d=� we get

�1 = �
��Zp

�X;���X;��, �� = 1 . �67�

. Frobenius transformations

Frobenius transformations in Hd� are the following unitary transformations:

Gd� = �
��Zd

�X;m�d,�,� + 1���X;m�d,�,��� ,

�68�
Gd�

d = �d�.

he summation is over all the Galois conjugates corresponding to the irreducible polynomial fd�.
n the special case d=1 we get

G1� = �1� = �X;���X;��, � � Zp. �69�

he 
1 ,Gd� ,Gd�
2 , . . . ,Gd�

d−1� form a cyclic group of order d.
We sum all the transforms Gd� and we get the following unitary transformations in H:

G = �
d,�

Gd�, G� = 1, �G,�d�� = 0, G�d� = Gd�. �70�

s above, d are the divisors of �; and � takes values from 1 to n�d ,p�. These transformations are
he analogue in the present context of the transformations � in Eq. �17� for Galois fields, and we
all them Frobenius transformations. More general relations than G�=1 are the following:

Gd�̄d = �̄d, Gd�d = �d. �71�

We have explained earlier that the spaces Hd� have been defined with respect to position
tates; and that if we use more general states U �X ;m� we get different Frobenius subspaces UHd�.
he corresponding Frobenius transformations in these spaces, are UGU†. Only in the special case

�G,U� = 0 �72�

he Frobenius transformations are the same in both sets of Frobenius subspaces Hd� and UHd�. An
xample of this is the Frobenius subspaces FHd�, with respect to momentum states. Using Eq. �16�
e prove that in this case

�G,F� = 0. �73�

herefore the Frobenius transformations are the same in both FHd� and Hd�. Acting with G� on
osition and momentum states we get

G��X;m� = �X;mp�
�, G��P;m� = �P;mp�

� , �74�
here ��Z�. We can also show that
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G�X��G†�� = X�p�

, G�Z��G†�� = Z�p�

�75�

nd more generally that

G�D��,���G†�� = D��p�
,�p�

� . �76�

hen m ,� ,��Zp we get

m � Zp → G��X;m� = �X;m�, G��P;m� = �P;m� ,

�77�
�,� � Zp → G�D��,���G†�� = D��,�� .

rom Eqs. �74�–�76� it is tempting to interpret Frobenius transformations as magnifying the “area”
f the phase space by a power �from A to Ap�

�. We note that the phase space here is not a
ontinuum; that magnification is simply one-to-one relabeling; and that G�=1.

The

G1 = 
1,G,G2, . . . ,G�−1� �78�

orm a cyclic group of order � whose elements leave fixed all the states in the Galois subsystem
escribed with the space H1. This is the analogue of the Galois group of Eq. �19� in the present
ontext. If d is a divisor of � the

Gd = 
1,Gd,G2d, . . . ,G�−d� �79�

orm a cyclic subgroup of G1 of order � /d. Its elements leave fixed all states in the Galois
ubsystem described with the space Hd. This is the analogue of the group d in Eq. �35�. We
onsider the subfield GF�pd� of GF�p��. For m ,� ,� in the subfield GF�pd� of GF�p��, we get

m � GF�pd� → G�d�X;m� = �X;m�, G�d�P;m� = �P;m� ,

�80�
�,� � GF�pd� → G�dD��,���G†��d = D��,�� .

. ANALYTIC REPRESENTATION OF GALOIS QUANTUM SYSTEMS IN RIEMANN
URFACES

Various analytic representations have been used in quantum mechanics �for a review see Ref.
5�. Here we show that an analytic representation of quantum states in the space H can be defined
n the �-sheeted complex plane. This analytic representation is related to the one discussed in Ref.
6, which was introduced from a Riemann surfaces point of view and did not involve Galois
heory. The aim here is to show the conceptual link between the multivaluedness in coverings of
iemann surfaces and the multivaluedness related to the conjugates in Galois theory.

. Bargmann representation of a harmonic oscillator in the �-sheeted complex plane

We consider a harmonic oscillator described with the infinite-dimensional Hilbert space h. In
he number state basis 
�N��, a general state �f� can be written as

�s� = �
N=0

�

s�N��N�, �
N=0

�

�s�N��2 = 1. �81�
n the Bargmann representation this state is represented with the function
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S1�z� = �
N=0

�

s�N�zN�N ! �−1/2, �82�

hich is analytic in the complex plane C. The scalar product of two states �s� and �q� represented
ith the functions S1�z� and Q1�z� is given by

�q�s� =�
C

d�1�z�exp�− �z�2��Q1�z��*S1�z�, d�1�z� =
dzRdzI

�
, �83�

here zR ,zI are the real and imaginary parts of z, correspondingly.
Following Ref. 26 we consider the Riemann surface C* /Z� associated with the map z1/�. Here

*=C− 
0� is the punctured complex plane and Z� the discrete group of transformations

z → ��z , �84�

hich is isomorphic to the integers modulo �. The covering surface of this Riemann surface is the
-sheeted complex plane with the following cuts Tm and sheets �m:

Tm = 
z = r��
m;r � 0�, m = 0, . . . , � − 1,

�85�

�m = �z = r exp�i��;r � 0;
2�m

�
� � �

2��m + 1�
�

� .

he sheet number of a complex number z is defined as

��z� = IP�� arg�z�
2�

�, ��z� � Z�, �86�

here IP stands for the integer part of the number. We split the Hilbert space h into � subspaces
s follows:

h = �
m=0

�−1

hm, hm = span
�m�, �m + � �, �m + 2 � �, . . . � . �87�

e call �m the projection operator to the space hm. We introduce an analytic representation in the
-sheeted complex plane where the general state �s� of Eq. �81� is represented with the function

S��z� = �
N=0

�

s���z� + N � �zN��N ! �−1/2. �88�

e note that in the m-sheet �m, this function represents only the projection �m �s� of the state �s�
n the subspace hm. But when we consider the function S��z� in all the � sheets we get all the
rojections �m �s� and therefore the full state �s�.

The function S��z� is analytic in the interior of all sheets �m and has discontinuities across the
uts Tm given by

�m�z� = �
N=0

�

�s�m + N � � − s�m + N � − 1��z�N�N ! �−1/2. �89�

he scalar product of two states �s� and �q� represented with the functions S��z� and Q��z� is given

y
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�q�s� = �
C

d���z�exp�− �z�2���Q��z��*S��z�, d���z� = �2�z�2��−1�dzRdzI

�
. �90�

ore details about this formalism are given in Ref. 26.

. Analytic representation of Galois quantum systems in the �-sheeted complex plane

We now apply the general formalism of the previous section in our context. We consider a
alois quantum system described with the Hilbert space H. Using the orthonormal basis

X ;m�N ,��� which we introduced earlier, we express the general state of this system as

�s� = �
N=1

M��,p�

�
�=1

d

s�N,���X;m�N,��� . �91�

n the summation � takes values from 1 to d �which is given in terms of N in Eq. �30��. We will
escribe how this state is represented by an analytic function, in three steps.

In the first step we consider the projection of this state to the d-dimensional space HN,

�N�s� = �
�=1

d

s�N,���X;m�N,��� . �92�

his is represented in the �-sheeted complex plane with the function

SN�z� = s�N,� = ��z��mod d��z�N�N ! �−1/2. �93�

n the first d sheets we have d functions which represent the d components of this state �for � equal
to d�. The fact that �=��z� modulo d, implies that there is periodicity in the next d sheets, which

ontinues up to the last d sheets �the d is a divisor of ��. Therefore

SN�z��
d� = SN�z� . �94�

In the second step we consider the projection of the state �s� to the dn�d ,p�-dimensional space
¯

d:

�̄d�s� = �
N=w��,d,p�+1

w��,d,p�+n�d,p�

�
�

s�N,���X;m�N,��� , �95�

here w�� ,d ,p� has been defined in Eq. �26�. This is represented in the �-sheeted complex plane
ith the function

S̄d�z� = �
N=w��,d,p�+1

w��,d,p�+n�d,p�

SN�z� = �
N=w��,d,p�+1

w��,d,p�+n�d,p�

s�N,� = ��z��mod d��z�N�N ! �−1/2. �96�

s above, d different functions in the first d sheets represent this state and there is periodicity in
he rest of the sheets:

S̄d�z��
d� = S̄d�z� . �97�

e note that Frobenius transformations on the state �̄d �s� are easily implemented in this repre-
entation as

G��̄d�s� → S̄d�z��
�� . �98�

hen Eq. �97� expresses in this representation the relation Gd�̄d= �̄d given in Eq. �71�.

In the third step we consider the full state �s�. It is represented with the function
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S�z� = �
d

S̄d�z� = �
N=1

M��,,p�

s�N,� = ��z��mod d��z�N�N ! �−1/2. �99�

he function S�z� is analytic in the interior of all sheets �m and has discontinuities across the cuts

m given by

�m�z� = �
N=1

M��,,p�


s�N,� = m�mod d�� − s�N,� = m − 1�mod d���z�N�N ! �−1/2. �100�

he scalar product of two states is given by Eq. �90�.
Frobenius transformations on the state �s� are easily implemented in this representation as

G��s� → S�z��
�� . �101�

he relation G�=1 of Eq. �70�, is seen in this representation through the fact that ��
�=1.

The projection �d �s� of the state �s� in the space Hd is represented with the function

Sd�z� = �
e�d

S̄e�z� . �102�

he summation is over all divisors e of d. Using Eq. �97� we easily show that

Sd�z��
d� = Sd�z� . �103�

his expresses in this representation the relation Gd�d=�d given in Eq. �71� which expresses the
act that the transformations of Eq. �79� leave fixed all the states in the Galois subsystem described
ith the space Hd.

I. DISCUSSION

In this paper we brought ideas from the subject of field extension in the context of finite
uantum systems. Field extension constructs large fields from smaller ones. We have constructed
he Hilbert space H as the tensor product of � Hilbert spaces H and used the Fourier transform of
q. �48� which contains the trace of the Galois product, and this provides the system with Galois
tructure.

One important aspect of a Galois theory is the Frobenius automorphisms � of GF�p�� which
re given in Eq. �17�. Powers of these automorphisms leave fixed the elements of the subfield Zp

nd form the cyclic group 1 of Eq. �19� of order �. More generally the powers of � in Eq. �35�
eave fixed the elements of the subfield GF�pd� and form the cyclic group d of order � /d. We
ave studied in detail the implications of this in our context. We have introduced the Frobenius
ransformations G of Eq. �70� and shown that its powers in Eq. �78� leave fixed all the states in the
alois subsystem described with the space H1 and form the cyclic group G1 of order �. More
enerally the powers of G in Eq. �79� leave fixed all the states in the Galois subsystem described
ith the space Hd and form the cyclic group Gd of order � /d.

We have also studied an analytic representation of Galois quantum systems in the �-sheeted
omplex plane. The purpose is to show connections between Riemann surfaces and Galois theory.
he basic idea is that multivaluedness in Riemann surfaces can be related to the Galois conjugates.
e have seen in Eq. �101� how the Frobenius transformations are implemented in this language;

nd how the fact that the transformations of Eq. �79� leave fixed all the states in the Galois
ubsystem described with the space Hd is easily proved using Eq. �103�.

Galois fields have previously been used in quantum mechanics with a physical motivation: in
rder to have well-defined symplectic transformations; or in the context of mutually unbiased

ases; or in the context of quantum coding. The present paper studied more mathematical aspects
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f this structure and in particular the Frobenius formalism and its links to Riemann surfaces.
otential applications include quantum coding, quantum information processing, the magnetic

ranslation group in condensed matter, quantum chaos, etc.
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agnetic monopoles in quantum adiabatic dynamics
nd the immersion property of the control manifold

David Viennota�

Observatoire de Besançon (CNRS UMR 6091), 41 bis Avenue de l’Observatoire, BP1615,
25010 Besançon Cedex, France
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It is well known that the Berry phase of a cyclic adiabatic dynamical system
appears formally as the flux of a magnetic field in the control parameter manifold.
In this electromagnetic picture a level crossing appears as a Dirac magnetic mono-
pole in this manifold. We make an extensive study of the magnetic monopole
model of eigenvalue crossings. We show that the properties of the monopole mag-
netic field in the control manifold are determined by the immersion of the control
manifold in a space given by the universal classifying theorem of fiber bundles. We
give a detailed illustrative study of the simple but instructive case of a two level
crossing of a system controlled by a two-dimensional manifold. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2345473�

. INTRODUCTION

In 1984, Berry Ref. 1 proved, in the context of the standard adiabatic approximation, that the
ave function of a quantum dynamical system takes the form

��t� = exp�− i�−1�
0

t

Ea�R� �t���dt� − �
0

t

�a,R� �t����t��a,R� �t��	dt�
�a,R� �t�	 , �1�

here Ea is a nondegenerate instantaneous eigenvalue which is isolated from the rest of the

amiltonian spectrum and has the instantaneous eigenvector �a ,R� �t�	. R� is a set of classical
ontrol parameters used to model the time-dependent environment of the system. The set of all

onfigurations of R� is assumed to form a C�-manifold M. The important result is the presence of

n extra phase term exp�−�0
t �a ,R� �t����t��a ,R� �t��	dt�� called the Berry phase. Simon2 later found

hat the mathematical structure which models the Berry phase phenomenon is a principal bundle
ith base space M and with structure group U�1�. If we eliminate the dynamical phase by a gauge

ransformation, which involves redefining the eigenvector at each time, then the expression �Eq.

1�� is the horizontal lift of the curve C described by t�R� �t� with gauge potential A

�a ,R� �dM�a ,R� 	. If C is closed then the Berry phase exp�−�CA��U�1� is the holonomy of the
orizontal lift.

In 1984, Wilczek and Zee3 introduced the concept of a non-Abelian Berry phase in the context

f the adiabatic approximation. Let Ea�R� �t�� be an M-fold degenerate instantaneous eigenvalue

solated from the rest of the spectrum and �a , i ,R� �t�	�i=1,. . .,M be an orthonormal basis for the

ssociated eigensubspace. If the initial state is ��0�= �a , i ,R� �0�	, then the wave function is

�
Electronic mail: viennot@obs-besancon.fr

47, 092105-1022-2488/2006/47�9�/092105/24/$23.00 © 2006 American Institute of Physics
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��t� = �
j=1

M

exp�− i�−1�
0

t

Ea�R� �t���dt�
�Te−�0
t A�R� �t���� ji�a, j,R� �t�	 , �2�

here the matricial one-form A has the elements Aij = �a , i ,R� �dM�a , j ,R� 	, and T is the time-
rdering operator. By elimination of the dynamical phase this expression becomes a horizontal lift

f the curve C described by t�R� �t� into a principal bundle with base space M and structure group

�M�. If C is closed then P exp�−�CA�R� ���U�M� is the holonomy of the horizontal lift, P being
he path-ordering operator.

More generally for a quantum dynamical system, let Ea�R� �t���a�I be a set of eigenvalues

ndexed by I, and isolated from the rest of the spectrum. Suppose that ��0�= �a ,R� �0�	; the wave
unction is then

��t� = �
b�I

�Te−i�−1�0
t E�R� �t���dt�−�0

t A�R� �t����ba�b,R� �t�	 , �3�

here we have the matrices E�R� �t��ab=Ea�R� �t���ab and A�R� �ab= �a ,R� �dM�b ,R� 	. When the matrices
and A do not commute then the mathematical structure which models the non-Abelian phase

henomenon is a principal composite bundle with base space M�R, where R models the time
see Ref. 4�.

For each of the three preceding cases, an appropriate gauge potential A��1�M ,u�M�� has
een defined, to be associated with the principal bundle P with base space M and with structure
roup U�M� �where M =1 for the Berry’s orginal case; M is the degenerate order for Wilczek’s
ase, and M =cardI for the general case�. In the one-dimensional case, the bundle curvature is
efined by B=dMA and it satisfies the equation dMB=0. It is easy to prove that this equation is the
nalog in M to half of the Maxwell equations. We can then identify B with a magnetic field
xisting in M and A with its magnetic potential. In this picture, for any closed curve C for which
here exists a surface S�M such that �MS=C, the holonomy term can be written �using the
tokes theorem� as the flux of the magnetic field B through S�CA=�SB. By using the expression
or A, it is easy to show that

B = dMA = 2iI
��a,R� �
�R�

��a,R� 	
�R� dR� Ù dR�. �4�

y using the closure relation one can write

B = iI�
b�a

�a,R� ���H�R� ��b,R� 	�b,R� ���H�R� ��a,R� 	

�Eb�R� � − Ea�R� ��2
dR� Ù dR�, �5�

here H�R� � is the system Hamiltonian. We cannot strictly apply the one-dimensional adiabatic
pproximation if the eigenvalue Ea is not isolated from the rest of the spectrum. Nevertheless, the

ormal use of this approximation in the case where two eigenvalues Ea and Ec cross at R� ac�M,

roduces the result B�R� ac�= +�. This magnetic field divergence must be interpreted as a magnetic

onopole at R� ac in M. In the M-dimensional case the field defined by the Cartan structure
quation F=dMA+ 1

2 �A ,A� satisfies the Bianchi identity dMF+ �A ,F�=0. The Bianchi identity is
nalogous in M to half of the Yang-Mills equations. The eigenvalue crossings then appear as
on-Abelian monopoles �so-called colored monopoles in the case where the structure group is
U�3�, see Refs. 5 and 6�, as has already been pointed by Wilczek and Zee.3

This paper studies the properties of the adiabatic magnetic monopoles, with special attention
o the monopole magnetic field distribution in M and on the apparent charge of the monopole. We
how that these properties are determined by the immersion of M in a universal space associated

ith the topology of the adiabatic bundle.
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The concept of the virtual magnetic monopole is today very important for nonrelativistic
uantum physics. In 1986, Moody et al.7 showed the possibility of realizing a magnetic monopole
ia the precession of a diatomic molecule. Fang et al.8 showed that a trapped 	-type atom induced
magnetic monopole. Recently Zhong et al.9,10 observed experimentally a magnetic monopole in

he crystal momentum space related to the anomalous Hall effect in the SrRuO3 crystal. These
xamples show the importance of understanding the properties of the adiabatic magnetic mono-
oles.

Section II recalls the definition and the properties of the universal classifying space for the
eneral case. Section III is devoted to the Dirac magnetic monopole theory, in particular its link
ith Berry’s original example of a geometric phase. A more complete discussion of the results

eviewed in these sections can be found in Ref. 11. Originally M is a soft manifold �i.e., one
ithout a natural metric�, because it is a set of classical control parameters of the environment
hich do not necessarily have the same physical nature. Section IV shows that M can be rigidi-
ed �endowed with a metric� by an appropriate immersion. This rigidification is needed to de-
cribe the monopole magnetic field distribution in M. Section V is devoted to the analysis of the
pparent monopole charge in M. Section VI generalizes the discussion to the case of the non-
belian monopoles. In most of this paper we suppose that dim M=2 and restrict our attention to

he monopole �level crossing� neighborhood. We discuss the effect of these assumptions in the last
ection.

I. THE UNIVERSAL SPACE OF QUANTUM ADIABATIC DYNAMICS

Bohm and Mostafazadeh showed in Refs. 12 and 13 that the Berry phase phenomena are
elated to the nonadiabatic geometric phases of cyclic dynamical quantum systems discovered by
haronov and Anandan.14 This relationship is given by the universal classifying theorem of
rincipal bundles �see Refs. 15 and 16�. Here we recall this theorem, and the associated induced
eometric structure of quantum mechanics.

. The universal classifying theorem

Let B= �B ,X ,G ,
B� be a principal bundle with base space X, total space B, structure group G,
nd projection 
B. We say that B is n-universal if for every cell n-complex K �see Refs. 15 and
6�, for every cell subcomplex L�K, for every principal bundle B�= �B� ,K ,G ,
B�� and for every
ap h : �
B�

−1�L� ,L ,G ,
B��→ �B ,X ,G ,
B�, there exists an extension of h to �B� ,K ,G ,
B��
�B ,X ,G ,
B�.

If B= �B ,X ,G ,
B� is �n+1�-universal and if K is a cell n-complex then there exists a map
f :K→X such that the following diagram commutes

f*B ←
f*

B


 f*B↓ ↓
B

K →
f

X

,

here f*B is the bundle induced by f . X is called the universal manifold of K and f is called the
niversal map. In the case of the adiabatic bundle P, the situation is as follows. Suppose that the
ilbert space is n-dimensional. In the case of the one-dimensional adiabatic approximation, the
niversal manifold of P is the projective space CPn−1, and the universal map can be written:

f:
M → CPn−1

R� � �a,R� 	�a,R� �
.

In the m-dimensional adiabatic approximation, the universal manifold is the Grassmanian
n
anifold Gm�C �=U�n� / �U�m��U�m−n�� and the universal map is
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f:

M → Gm�Cn�

R� � �
a�I

�a,R� 	�a,R� �

see Ref. 13�. In the following we will restrict our attention to CPn−1 and will analyze its structure.

. The Kählerian structure of quantum dynamics

The physical reason which explains why CPn−1 is the universal space of quantum mechanics
s the following. We know that the mathematical structure of quantum mechanics is a separable
-Hilbert space H which models the state space. The probabilistic interpretation of quatum me-
hanics states that a physical state � is a probability amplitude, and so we must have ���=1. In
his way two proportional vectors represent the same physical state. Moreover, the phase of a
ector does not give physical information; only the phase difference between two vectors has a
hysical meaning �quantum interference theory�. We then see that the Hilbert space H contains a
ot of “nonphysical” information, so that it is not the most efficient structure to describe quantum

echanics. To define the “true” space of quantum mechanics we first consider H. If �=�� with
�R+ and ��0 then the two vectors � and � define the same physical state �they have only a
ifferent norm�. This previous relation is an equivalence relation �, which signifies that a physical
tate is an equivalence class. So the physical space is

N = �H \ 0��/ � , �6�

hich is called the space of normed rays. Suppose that the question of interference is ignored; then
wo vectors which are only different by a phase factor represent the same physical state. We define
he group action of U�1� on N by

"ei � U�1�, " ��� � N, ei��� = �ei�� . �7�

ince two vectors represent the same state if they belong to the same orbit, then the physical space
s the homogeneous space of the orbits

R = N/U�1� , �8�

hich is called the complex projective space. If H is finite dimensional, dim H=n, we have R
CPn−1 �it is a �n−1�-dimensional C�-differential complex manifold�. In the case n=2 there exists
n exceptional diffeomorphism

CP1 � S3/S1 � S2. �9�

hus the space of a quantum two-level system �a spin for example� is the sphere.
Let ��H, with �= ��0 ,�1 , . . . ,�n−1�. We set wi=�i /�0 for all i=1, . . . ,n−1. The complex

umbers wi�i are called the homogeneous coordinates of � in CPn−1. We can write the gauge
otential by using these coordinates:

A =
�†d�

�†�
=

i

2

�†d� − �d�†

�†�
�10�

=
i

2

�̄�d�� − ��d�̄�

¯ �
�11�
���
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=
i

2

w̄idwi − widw̄i

1 + w̄jw
j . �12�

instein’s notation has been adopted for the sum, with the convention that the Greek indices take
he values 0 , . . . ,n−1 and that the Latin indices take the values 1 , . . . ,n−1. The magnetic field
the curvature of the universal bundle� can be written

F = dA = i
w̄iw

j − �1 + w̄kw
k��i

j

�1 + w̄lw
l�2 dwi Ù dw̄j . �13�

e introduce the function

K = 1
2Ln�1 + w̄kw

k� , �14�

here Ln is the multivalued complex logarithm. We also introduce the Dolbeault operators of the
omplex manifold � and �̄ ��̄+�=d� �a presentation of complex differential geometry can be found
n Ref. 17�. It is easy to see that

�̄�K =
1

2

w̄iw
j − �1 + w̄kw

k��i
j

�1 + w̄lw
l�2 dwi Ù dw̄j �15�

nd we then have F=2i�̄�K. We recognize here the structure of a Kählerian geometry �see Ref.
7�; K is the Kähler potential and F is the Kähler form of CPn−1. We know that a Kählerian
anifold is endowed with a natural metric, which in this case is the Fubini-Study metric

� = dl2 =
�1 + w̄kw

k��i
j − w̄iw

j

�1 + w̄lw
l�2 dwidw̄j . �16�

his Kählerian structure of quantum mechanics was indicated by Anandan and Aharonov in Ref.
8.

II. MAGNETIC MONOPOLE

We have seen that the divergence of the magnetic field of M relates a level crossing to the
resence of a magnetic monopole in the electromagnetic picture. We recall here the theory of the
irac magnetic monopole19 and also the direct relationship between this theory and the Berry
hase phenomenon.

. The Dirac magnetic monopole theory

We consider a magnetic monopole with magnetic charge g, at the position �0, 0, 0� in a
hree-dimensional space. The first aspect of the Dirac model is that we do not consider R3 as being
he fundamental manifold, but as a foliation �S2 ,R+�, where S2 is a sphere centered on the mono-
ole and R+ is the foliation parameter space which describes the radius of the sphere. We consider
he U�1�-principal bundle with base space S2. We know that an atlas of S2 must have at least two
ocal charts. We choose the following charts:

UN = ��,�,� � �0,
/2 + ��, � �0,2
�� ,

US = ��,�,� � �
/2 − �,
�, � �0,2
�� .

n these charts of the north and south hemispheres �the choice of the equator S1 being arbitrary� �
s a small parameter which is used to ensure the nonvanishing intersection of the charts. On S2 we
ntroduce the local potential

N
A = ig�1 − cos ��d , �17�
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AS = − ig�1 + cos ��d . �18�

y using the vector formalism of R3 we have

A� N =
g�1 − cos ��

r sin �
e�, �19�

A� S = −
g�1 + cos ��

r sin �
e�. �20�

We should note that AN is singular if we extend it at �=
 and AS is singular if we extend it at
=0.�

The magnetic field �the curvature� is then F=dA. We compute the magnetic flux through S2;
y using Stokes theorem we find

� = �
S2

F �21�

=lim
�→0

��
UN

dAN + �
US

dAS
 �22�

=lim
�→0

��
�UN

AN + �
�US

AS
 �23�

=�
S1

AN − AS �24�

=�
S1

2gd �25�

=4
g . �26�

his is, effectively, the flux of a central field with charge g. We introduce the transition function
NS=e2ig, and we then have

AN = AS + �gNS�−1dgNS. �27�

o have a single transition one should require that gNS�=0�=gNS�=
�Û2g�Z. This is the
irac quantization condition.

By the foliation we extend this result to all of R3 and we have

AN = − ig
ydx − xdy

r�r + z�
, �28�

AS = ig
ydx − xdy

, �29�

r�r − z�
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F = ig
xdy Ù dz + ydz Ù dx + zdx Ù dy

r3 �30�

ith r=�x2+y2+z2. By using the Hodge duality we find the correct expression in the vector

ormalism for the magnetic field: F� =gr� /r3.
On the z axis AN is singular at z�0 and AS is singular at z�0. We call these two semilines the

irac strings. We note that by a gauge transformation �with another choice of equator� the Dirac
trings rotate in the space.

. The magnetic monopole of a simple two-level system

We consider the system originally considered by Berry a spin 1
2 particle interacting with a

agnetic field, described by the Hamiltonian

H�x�� = xi�i = � x3 x1 − ix2

x1 + ix2 − x3 
 . �31�

The eigenvalues of H�x�� are E±�x��= ±r= ±��x1�2+ �x2�2+ �x3�2. We thus have a level crossing

t x� =0� . The eigenvector associated with E+ is

� + ,x�	N =
1

�2r�r + x3�
� r + x3

x1 + ix2 
 =� cos
�

2

ei sin
�

2
� , �32�

here �=arctan ��x1�2+ �x2�2 /x3 and =arctan x2 /x1 are, together with r, the spherical coordi-
ates of R3. With another convention for the matrix representation, the eigenstate is

� + ,x�	S =
1

�2r�r − x3�
�x1 − ix2

r − x3 
 =�e−i cos
�

2

sin
�

2
� . �33�

We compute the adiabatic gauge potential

AN = N�+ ,x��d� + ,x�	N = −
i

2

x2dx1 − x1dx2

r�r + x3�
=

i

2
�1 − cos ��d , �34�

AS = S�+ ,x��d� + ,x�	S =
i

2

x2dx1 − x1dx2

r�r − x3�
= −

i

2
�1 + cos ��d . �35�

We recognize here the magnetic potential associated with a magnetic monopole of charge 1
2 at

� =0� �R3. We see that a level crossing leads to the equations appropriate to a Dirac magnetic
onopole. Let us consider that r is constant; the manifold describing the system is the sphere

2=CP1 with coordinate system �� ,�. We see that the present representation is in fact the uni-
ersal model of quantum mechanics. We designate S2 by the term “universal manifold,” and R3

2
oliated by S by the term “generalized universal space.”
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V. THE ADIABATIC MAGNETIC MONOPOLE FIELD ASSOCIATED WITH A TWO LEVEL
ROSSING

. Immersion of the control manifold, level crossings, and avoided level crossings

We consider an adiabatic quantum dynamical system described by the Hamiltonian H�R� �, with
� �M. The control manifold M is supposed to be two dimensional. We consider a crossing

etween two nondegenerate eigenvalues E1 and E2 of H�R� �. In the neighborhood U of this crossing
e consider the effective Hamiltonian associated with this crossing:

"R� � U, Heff�R� � = � f3�R� � f1�R� � − if2�R� �

f1�R� � + if2�R� � − f3�R� �

 . �36�

Heff is obtained by a partitioning technique,20 arising from a quantum KAM method,21 an
diabatic elemination method,21 or a Bloch wave operator method.20,22 Comparing the Hamil-
onian �Eq. �36�� with the Hamiltonian Eq. �31� of the universal model, we see that we have a map

f from the control manifold M to the generalized universal space R3, with f�R� �
�f1�R� � , f2�R� � , f3�R� ���R3. In order to respect the geometric framework we suppose that f is a
�-map. Let f* :TR�M→Tf�R� �R3 be the push-forward map �which is a linear map between two

ector spaces for a fixed R� �. We suppose that ker f*= 0� �f* is an injective map�, and f is then an
mmersion of M in R3 �we will discuss this assumption later�. There is no reason to suppose that
f is an embedding; several points of M can be associated with the same point in the universal
pace and we will use this possibility in the later discussion.

We have a level crossing at R� 0�M if and only if f�R� 0�=0. Although only one magnetic
onopole is present in the generalized universal space R3, it is possible that several monopoles

crossings between E1 and E2� exist at several points R� i�i=1,. . .,n if f�R� 1�= f�R� 2�= ¯ = f�R� n�=0.
An avoided crossing manifests itself in this geometric analysis by virtue of the fact that the

mmersed manifold f�M� does not include 0 but passes through a neighborhood of 0, i.e., "R�

U, f�R� ��0, but $R� 0 and $� a small positive constant such that �f�R� 0��
��f1�R� 0��2+ �f2�R� 0��2+ �f3�R� 0��2=� and "R� �U, R� �R� 0, �f�R� 0���� �R� 0 is a local minimum of

he vector norm�. Note that 2� is the energy gap of the avoided crossing �Fig. 1�.

. The Riemannian structure of the control manifold

The control manifold M is not endowed with a natural metric. The Euclidian metric defined

y the scalar product R� ·Q� =R�Q���� does not have a physical meaning, because the control
arameters can have different physical natures. However, we know that the universal manifold is
ndowed with a metric which is natural for the quantum mechanics, the Fubini-Study metric. We

IG. 1. �Color online� Representations of two levels with respect to the control manifold M, the immersions being defined

y, left: f1�R� �=R1, f2�R� �=R2, f3�R� �=0, right: f1�R� �=R1, f2�R� �=R2, f3�R� �=1. For the left panel, the monopole is in f�M�,
nd we have a crossing for f�R� �=0. In the right panel, the monopole is not in f�M�, but f�M� passes by the neighborhood

f the monopole for R� =0; at this position we see an avoided crossing.
ill use this metric and the immersion f to rigidify the manifold M.
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The universal manifold is a sphere S2�CP1 considered as a sheaf of the foliation of R3. Let
= ��0 ,�1�=�0�1,w1� be a vector of the space spanned by the eigenvectors of the Hamiltonian

Eq. �36��. w1�C is the coordinate on CP1. The Fubini-Study metric of CP �to be closer to the
sual electromagnetic formalism, we have removed the factor i in order to have real fields in place
f purely imaginary fields� is

� =
�1 + w̄1w1� − w̄1w1

�1 + w̄1w1�2 dw̄1dw1 =
dw̄1dw1

�1 + w̄1w1�2 . �37�

This expression is precisely the conformal representation of the Riemannian metric of the
phere �see Ref. 23�. The Kählerian structure of CP1 is equivalent to the Riemannian structure of
2. We can then write, with the standard coordinate system of S2,

� = r2 sin2 d�2 + r2d2. �38�

We know that the Riemannian metric of S2 centered on 0 in R3 is obtained as being the metric
nduced by the Euclidian metric of R3. We write � for this metric ��ij =0 if i� j or =1 if i= j�. We
ee that the rigidification of M is obtained by the metric induced by the immersion of M in R3

ndowed with �. The natural metric of M is then

g = g��dR�dR� = �ij
�f i

�R�

�f j

�R�dR�dR�. �39�

Moreover, we can write Heff�R� �= f i�R� ��i where �1 ,�2 ,�2� are the Pauli matrices. Since
1
2 tr��i� j�=�ij we obtain

g�� =
1

2
tr� �Heff

�R�

�Heff

�R� 
 . �40�

We have supposed that f is an immersion, i.e., that f* is injective. If this is not the case, then
he bilinear form g defined by Eq. �39� is not a metric in a rigorous mathematical sense. g is then
ot positively defined �if f* is not injective, then there exists an isotropic tangent vector of M, i.e.,
X����TM such that g��X�X�=0�. In this case, by an abuse of language, we will continue to
all g a metric, and we will continue to consider that

�
C
�g��

d��

ds

d��

ds
ds

s the length of C parametrized by s���s� in M. This abuse of language is standard in physics;
or example, in the context of special relativity we call a metric the bilinear form defined by

��=0 if ���, �ii=1 if i=1,2 ,3 and �00=−1. The Minkwoski metric � is also not positively
efined and is not a metric in the mathematical sense.

. Magnetic field of the control manifold

In the universal space R3 we have the gauge potential �we choose one of the two conventions�
to be closer to the usual electromagnetic formalism, we have removed the factor i in order to have
eal fields in place of purely imaginary fields�

A =
1

2

x2dx1 − x1dx2

r�r − x3�
� �1R3 �41�

nd the magnetic monopole field is

B = dA =
1 x1dx2 Ù dx3 + x2dx3 Ù dx1 + x3dx1 Ù dx2

3 � �2R3 �42�

2 r
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By using the identity

dxi ↔ ��1i

�2i

�3i
� ,

e can write A��1R3 as being a vector field of R3 :A� . We recall the definition of the Hodge star
perator associated with a metric q in a n-dimensional manifold X:

*q:�rX → �n−rX

*q�dxi1 Ù ¯ Ù dxir� =
��det q�
�n − r�!

qi1j1
¯ qirjr� j1,. . .,jn

dxjr+1 Ù ¯ Ù dxjn,

here � is the Levi-Civita symbol, qijqjk=�k
i and det q=q1i1

q2i2
. . .qnin

�i1i2. . .in.
In R3 we have simply *� :�2R3→�1R3, with *��dx1Ùdx2�=dx3. Then *�B��1R3 and we

an consider it as being a magnetic vector field B� . The relation B=dA is then B� =curl� A� .
Consider the pullback f* :�*R3→�*M. The gauge potential in M is

f*A = Ai
�f i

�R�dR�. �43�

ote that we can compute f*A directly with the eigenvector of �Eq. �36��:

f*A = �1,R� �dM�1,R� 	 = f*��+ ,x��d� + x�	�x�=f�R� �. �44�

As f* is a chain map for the exterior differential, then the magnetic field is

f*B = f*dA = dMf*A = Bij
�f i

�R�

�f j

�R�dR� Ù dR� = 2Bij
�f i

�R1

�f j

�R2dR1 Ù dR2. �45�

In the same way that in R3 the field associated with the usual electromagnetic formalism is not
f*B��2M but *gf*B��0M, we see that

*g�dR1 Ù dR2� = ��det g�g1�g2���� �46�

=��det g��g11g22 − g12g21� �47�

=��det g�det g−1 �48�

=
��det g�

det g
�49�

=
sgn�det g�
��det g�

. �50�

As g is a Riemannian metric �because it is induced by the Euclidian metric� det g�0, and then

*gf*B = 2Bij
�f i

�R1

�f j

�R2

1
�det g

. �51�
Consider the two-coform
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N =
�f i

�R1

�f j

�R2

�

�xi Ù
�

�xj . �52�

t is clear that N� =*�N is a vector normal to the immersed manifold f�M�. We compute the norm

f N� :

�N� �2 = �kl�*�N�k�*�N�l �53�

=�kl
�f i

�R1

�f j

�R2�ij
k �fn

�R1

�fm

�R2�nm
l �54�

=��in� jm − �im� jn�
�f i

�R1

�f j

�R2

�fn

�R1

�fm

�R2 , �55�

here we have used the following property of the Levi-Civita symbol: �ij
k�nm

l�kl=�in� jm−�im� jn

see Ref. 24�. We also have the result:

det g = g1�g2���� �56�

=�in
�f i

�R1

�fn

�R�� jm
�f j

�R2

�fm

�R���� �57�

=�in� jm
�f i

�R1

�f j

�R2� �fn

�R1

�fm

�R2 −
�fm

�R1

�fn

�R2
 �58�

=��in� jm − �im� jn�
�f i

�R1

�f j

�R2

�fn

�R1

�fm

�R2 . �59�

We see that �N� �=�det g. Let u�N= �1/�det g�N� be the unit normal vector to f�M�. The density

f the flux of B� through f�M� is then

B� · u�N =
1

�det g
�B,N	 = 2Bij

�f i

�R1

�f j

�R2

1
�det g

. �60�

ere �.,.	 is the duality product between tangent and cotangent spaces �i.e. �dxi ,� /�xj	=� j
i�. To

ummarize, we have the results

*gf*dA = *gf*B = *gdMf*A = B� · u�N. �61�

he magnetic field in M�*gf*B� is equal to the density of the flux of the magnetic field of R3

hrough the immersed manifold f�M�.

. Examples

The charts of the magnetic field dMf*A can be used to analyze the adiabatic properties of a
uantum dynamical system, since this field makes monopoles appear at the eigenvalue crossings
nd since it is proportional to the nonadiabatic transitions. It is sometimes difficult to interpret
hese charts; the immersion property of the control manifold can help us with that interpretation.

In order to illustrate the effects of the control manifold immersion we consider three simple
xamples of three level systems. To simplify the analysis our chosen method of producing an
ffective Hamiltonian is the partioning method by adiabatic elimination.21 Let H be the total

amiltonian matrix with the form
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H = �H00 H10

H01 H11

 , �62�

here Hij are matrix blocs, H00 being the bloc corresponding to the considered crossing. The
ffective Hamiltonian after the adiabatic elimination process is

Heff = H00 − H01H11
−1H10. �63�

Moreover we can redefine Heff→Heff− �trHeff / trI�I �I is the identity matrix� in order to have a
raceless effective Hamiltonian.

The first example we study is the Hamiltonian

H1�u,�� = � 0 0 uei�

0 1 1

ue−i� 1 1
� . �64�

his Hamiltonian corresponds to the RWA description of a three level atom interacting with two
asers such that the first laser is quasiresonant with the transition �1	 to �3	 and the second laser is
uasiresonant with the transition �2	 to �3	 ��i	 is the bare atom basis, the basis in which the matrix
Eq. �64� is written�. u and � are the amplitude and the phase of the first laser and constitute the
ontrol parameters; its polarization is constant. The second laser is constant with an amplitude
qual to 1 in reduced units. For u=0,

H1�0,�� = �0 0 0

0 1 1

0 1 1
�

as the eigenvalues 0,0,2�. In the neighborhood of the crossing the effective Hamiltonian �with
diabatic elimination of the state 3� is

H1
eff =�−

u2

2
uei�

ue−i� u2

2
� . �65�

The immersion of the control manifold is then

f1�u,�� =�
u cos �

u sin �

−
u2

2
� . �66�

The first immersed manifold is then diffeomorphic to an elliptic paraboloid.
The second example is the Hamiltonian

H2��,�� = � 0 2�ei� − 1� cos �

2�e−i� − 1� 1 e−i�

cos � ei� 1
� . �67�

his Hamiltonian corresponds to the RWA description of a three level atom interacting with four
asers such that the first and the second laser are quasiresonant with the transition �1	 to �2	, the
hird laser is quasiresonant with the transition �1	 to �3	 and the fourth laser is quasiresonant with
he transition �2	 to �3	. The second laser is constant with an amplitude equal to 2 in reduced units,

he first laser presents a phase modulation with a constant amplitude equal to 2, the third laser
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resents a polarization modulation with a constant amplitude equal to 1, and the fourth laser
resents a phase modulation synchronized with the phase modulation of the second laser. The
ontrol parameters are � �the phase of the second and of the fourth lasers� and � �the angle
etween the polarization of the third laser and the atom electric dipole moment�. For �� ,��
�
 /2 ,0�,

H2�


2
,0
 = �0 0 0

0 1 1

0 1 1
�

nd in the neighborhood of the crossing, the effective Hamiltonian �with adiabatic elimination of
he state 3� is

H2
eff��,�� =� −

sin2 �

2
2�ei� − 1� − cos �ei�

2�e−i� − 1� − cos �e−i� sin2 �

2
� . �68�

The immersion of the control manifold is then

f2��,�� =�
�2 − cos ��cos � − 2

�2 − cos ��sin �

−
sin2 �

2
� . �69�

The second immersed manifold is then diffeormorphic to a half torus.
The third example is the Hamiltonian

H3�u,�� =� 0 2�ei� − 1� u cos
�

2

2�e−i� − 1� 0 ue−i�

u cos
�

2
uei� 1 � . �70�

This Hamiltonian corresponds to the RWA description of a three level atom interacting with
our lasers such that the first and the second laser are quasiresonant with the transition �1	 to �2	,
he third laser is quasiresonant with the transition �1	 to �3	, and the fourth laser is quasiresonant
ith the transition �2	 to �3	. The second laser is constant with an amplitude equal to 2 in reduced
nits, the first laser presents a phase modulation with a constant amplitude equal to 2, the third
aser presents a polarization modulation synchronized with the phase modulation of the first laser
nd it presents an amplitude modulation; finally, the fourth laser presents a phase modulation
ynchronized with the phase modulation of the second laser. The control parameters are u �the
mplitude of the third laser� and � �the phase of the second and of the fourth lasers, � /2 being the
ngle between the synchronized polarization of the third laser and the atom electric dipole mo-
ent�. For �u ,��= �0,0�,

H3�0,0� = �0 0 0

0 0 0

0 0 1
� ,

nd in the neighborhood of the crossing, the effective Hamiltonian �with adiabatic elimination of

he state 3� is
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H3
eff�u,�� =�

u2 sin2 �

2

2

2�ei� − 1� − u2 cos
�

2
ei�

2�e−i� − 1� − u2 cos
�

2
e−i�

−

u2 sin2 �

2

2

� . �71�

The immersion of the control manifold is then

f3�u,�� =�
�2 − u2 cos

�

2

cos � − 2

�2 − u2 cos
�

2

sin �

u2 sin2 �

2

2

� . �72�

The third immersed manifold is then diffeomorphic to a half Moebius strip.

For these three examples we have computed �1,R� �dM�1,R� 	, which is equal to f*A, and we
ave drawn the magnetic field of the control manifold dMf*A. We have moreover drawn the flux
ensity of a monopole magnetic field through the immersed surfaces. The results are represented
n Fig. 2.

We see with these figures that the immersion can be used to interpret the magnetic field chart,
articularly for the third example, where the sign inversion of the field is explained by the
onorientability �the twist� of the Moebius strip, and for the second example, where the existence
f the two lobes of the field is explained.

. THE APPARENT CHARGE OF A TWO LEVEL CROSSING MAGNETIC MONOPOLE
N THE CONTROL MANIFOLD

In the universal model the monopole has a charge equal to 1
2 . Experimentally, it is the mag-

etic field on M that we see, and the apparent charge of the monopole in M can be different from
1
2 . Leboeuf and Mouchet25 proposed a physical realization of nonelementary magnetic monopoles
n quantum adiabatic dynamics by introducing constraint parameters. They explored the properties
f their nonelementary monopoles by an analysis of Dirac strings. In this paper we want to exhibit
onelementary monopoles in a different way, using the immersion of the control manifold in the
eneralized universal space. Although our analysis is similar to the method followed by Leboeuf
nd Mouchet, we present it briefly, without repeating the discussion about Dirac strings. The
nterested reader can see Ref. 25

. The geometry of a level crossing

In the universal model the single monopole has a magnetic charge equal to 1
2 . For the Hamil-

onian �Eq. �31�� that corresponds to the conical crossing of the eigenvalues ±��x1�2+ �x2�2+ �x3�2,
conical crossing being a zero-order contact between the energy surfaces. We recall that a contact

t R� 0 between two surfaces defined by the equations z=E+�R1 ,R2� and z=E−�R1 ,R2� in the space

R1 ,R2 ,z� is said to be of order r if and only if the function E+�R� �−E−�R� � and each of its

erivatives of order �r vanish at R� 0. We know that the concept of contact order is invariant under
iffeomorphism, so this notion is well defined even without endowing M with a metric �Fig. 2�.

o have a complete exposition of contact manifold theory, the reader can see Ref. 26.
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For the generic Hamiltonian �Eq. �36��, the contact order between the energy surfaces �the

rder of the intersection� depends of the immersion f . Let E±= ±�f i�R� �f j�R� ��ij be the eigenvalues

f the effective Hamiltonian. Let ��R� �= �E+�R� �−E−�R� �� /2. By definition if R� 0 is the position of a

evel crossing then ��R� 0�=0 �i.e., "i, f i�R� 0�=0�. We have:

��

�R� =

�f i

�R� f j�ij

�f if j�ij

�73�

=

�f1

�R� f1

��f1�2 + �f2�2 + �f3�2
+

�f2

�R� f2

��f1�2 + �f2�2 + �f3�2
+

�f3

�R� f3

��f1�2 + �f2�2 + �f3�2
. �74�

IG. 2. Left: the magnetic field of the control manifold dM�1,R� �dM�1,R� 	, Right: the immersed manifold and the flux
ensity of a central field centered on �0, 0, 0�, from top to bottom: the first example �Eq. �64��, the second example �Eq.
67��, and the third example �Eq. �70��. The colors of the fields density are such that a strong positive field �or a strong
ositive flux� is black, a strong negative field �or a strong negative flux� is white, a vanishing field is gray. For the first
xample: q=u cos � and r=u sin �.
It is then clear that
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"i, � �f i

�R��
R� =R� 0

= 0 Þ � ��

�R��
R� =R� 0

= 0. �75�

The contact order between the energy surfaces is �1 if "i, "���f i /�R��R� =R� 0
=0. More gen-

rally, we can prove that

�n�

�R�1 . . . �R�n
=

1

2�
�
p=0

n−1

�
��Sn

1

�n − p�!p!

�n−pf i

�R���1� . . . �R���n−p�

�pf j

�R���n−p+1� . . . �R���n�
�ij

−
1

2�
�
p=1

n−1

�
��Sn

1

�n − p�!p!

�n−p�

�R���1� . . . �R���n−p�

�p�

�R���n−p+1� . . . �R���n�
, �76�

here Sn is the nth group of permutations. Then, the order of the crossing is greater than or equal
o r if "n�r, "i, "�1 , . . . ,�n��nf i /�R�1 . . .�R�n�R� =R� 0

=0.

. Perturbative analysis

We will see that the apparent charge of the magnetic monopole in M is related to the order of

he eigenvalue crossing and thereby is related to the number of zero derivatives of f at R� 0. We

onsider a neighborhood U of R� 0. We suppose that f�U� is tangent to the plane x3=0 in R3, i.e., that
he Dirac strings are orthogonal to f�U�. If this is not the case, we can always use a gauge
ransformation such that the Dirac strings rotate to be orthogonal to f�U�; in other words we
hange the coordinates system such that the x3 axis coincides with the Dirac strings. In agreement

ith this hypothesis, and with U sufficiently small, we can consider that "R� �Uf3�R� ��0. In the
lane x3=0 we have the gauge potential

A =
i

2

x2dx1 − x1dx2

�x1�2 + �x2�2 =
i

2

xidxj�ij

xixj�ij
. �77�

ote that in this expression the Kronecker symbol �ij plays the role of the metric tensor of the
uclidian plane and the Levi-Civita symbol �ij plays the role of the vector cross product in the
uclidian space. They are then metric dependent tensors �contrary to the previous parts of this
aper where the Levi-Civita symbol has been used to represent the sum over the permutations�.

The gauge potential in M in the neighborhood of R� 0 is

f*A =
i

2

f i�R� �
�f j

�R��ijdR�

f i�R� �f j�R� ��ij

. �78�

ut in the neighborhood of R� 0 we can use a Taylor expansion:

f i�R� � = f i�R� 0� + �R� − R0
��� �f i

�R��
R� =R� 0

+ � �R� − R0
���R� − R0

��
2

�2f i

�R��R��
R� 0

+ ¯ +
�R�1 − R0

�1� . . . �R�n − R0
�n�

n!
� �nf i

�R�1 . . . �R�n
�

R� 0

+ O���R� − R0
���R� − R0

������n/2� .

�79�

Now we suppose that "r�n−1, "i, "�1 , . . . ,�r��rf i /�R�1 . . .�R�r�R� =R� 0
=0; the contact order

f the level crossing is then equal to n−1. It is clear that any Taylor expansion must be of an order
� �
qual to n. "R in the neighborhood of R0 we have
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f i�R� � �
�R�1 − R0

�1� . . . �R�n − R0
�n�

n!
� �nf i

�R�1 . . . �R�n
�

R� 0

, �80�

�f i

�R� �
�R�1 − R0

�1� . . . �R�n−1 − R0
�n−1�

�n − 1�! � �nf i

�R�1 . . . �R�n−1�R��
R� 0

, �81�

���R� � =
�f i

�R�

�f j

�R��ij �82�

�� �R�1 − R0
�1� . . . �R�n−1 − R0

�n−1�
�n − 1�!

�nf i

�R�1 . . . �R�n−1�R��
R� 0

�
�R�1 − R0

�1� . . . �R�n−1 − R0
�n−1�

�n − 1�! � �nf i

�R�1 . . . �R�n−1�R��
R� 0

�ij , �83�

f if j�ij �
�R�1 − R0

�1� . . . �R�n − R0
�n��R�1 − R0

�1� . . . �R�n − R0
�n�

�n!�2 � �nf i

�R�1 . . . �R�n
�

R� 0

�
�

�nf j

�R�1 . . . �R�n
�

R� 0

�ij �84�

�
�R�n − R0

�n��R�n − R0
�n�

n2 g�n�n
�85�

�
N
n2 . �86�

e then have

f*A �
in2

2N�� �R�1 − R0
�1� . . . �R�n − R0

�n�
n!

�nf i

�R�1 . . . �R�n
�

R� 0

�
�

�R�1 − R0
�1� . . . �R�n−1 − R0

�n−1�
�n − 1�!

�nf j

�R�1 . . . �R�n
�

R� 0

�ij
 . �87�

owever, the cross product in M induced by the Euclidian cross product is defined by

R� − R0
��dR����

g = �R� − R0
��dR� �f i

�R�

�f j

�R��ij �88�

��R� − R0
��dR�

�R�1 − R0
�1� . . . �R�n−1 − R0

�n−1�
�n − 1�! � �nf i

�R�1 . . . �R�n−1�R��
R� 0

�
�R�1 − R0

�1� . . . �R�n−1 − R0
�n−1�

�n − 1�! � �nf j

�R�1 . . . �R�n−1�R��
R� 0

�ij . �89�
n summary, we have the result
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f*A �
ni

2

�R� − R0
��dR����

g

�R� − R0
���R� − R0

��g��

. �90�

By comparing this expression with Eq. �77�, we see that f*A is the gauge potential of a
onopole with magnetic charge equal to n /2 in the curved space M with metric g. We conclude

hat if the magnetic monopole in M has a charge equal to n then the contact order of the energy
urface crossing is equal to n−1 �Fig. 3�.

. Topological analysis

The previous analysis has the advantage that it exhibits the monopole gauge potential in M,
ut a shorter analysis is possible using a topological result. Let S1 be a circle in the plane x3=0
entered over 0. We have �see Ref. 27, p. 152�

− i

2

�

S1
A =

1

4

�

S1

x2dx1 − x1dx2

�x1�2 + �x2�2 =
1

2
�91�

ore generally for any loop C in the plane M �a loop is a closed path� we have

1

2

�

C

x2dx1 − x1dx2

�x1�2 + �x2�2 = n , �92�

here n is the number of oriented turns of C around 0. This number is a topological character of
he loop in R2 \ 0�: it is invariant by homotopy and is called the winding number. We can use this

nvariant to characterize the monopole charge. Let S1 be a circle on M centered on R� 0. f�M� is
ot a plane, but if the radius of S1 is sufficiently small we can consider that f�M� is approximately
at in the neighborhood of f�S1�. We use the complex coordinate of M, z=R1+ iR2,

f�z� = ��f1�z��2 + �f2�z��2 exp�i arctan
f2�z�
f1�z�


 �93�

=��z�exp�i arctan
f2�z�
f1�z�


 . �94�

If the contact order is equal to n−1, then � has a zero of order n at z0. We can then write
f�z�= �z−z0�nh�z�, where h�z� is a holomorphic function and where �z−z0�n=rnein�. We have:

n

IG. 3. �Color online� The energy surfaces drown with respect to the coordinates of M for �from left to right�: the

mmersion f�R� �= �R1 ,R2 ,0� �a monopole with charge 1
2 �, the immersion f�R� �= ��R1�2 , �R2�2 ,0� �a monopole with charge 1�,

nd the immersion f�R� �= ��R1�3 , �R2�3 ,0� �a monopole with charge 3
2 �.
arg f�z� = arg �z − z0� + arg h�z� = n� + arg h�z� , �95�
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1

2

�

S1
d arg f =

1

2

�

S1
nd� +

1

2

d arg h�z� �96�

�97�

=n . �98�

e also have

d arg f = d arctan
f2

f1 =
f1df2 − f2df1

�f1�1 + �f2�2 = − i2f*A �99�

nd so conclude that

− i

2

�

S1
f*A =

− i

2

�

f�S1�
A =

n

2
. �100�

he monopole in M thus has an apparent charge equal to n /2.

I. NON-ABELIAN MONOPOLE ASSOCIATED WITH A MULTILEVEL CROSSING

In the previous parts we have considered only two-level crossings between nondegenerate
tates. Now we consider multilevel crossings, for example the crossing of three nondegenerate
tates or the crossing of a doubly degenerate state with a nondegenerate state.

. Immersion of the control manifold

By elimination of the other states, we suppose that the Hamiltonian can be written in the
eighborhood of the multilevel crossing as

Heff�R� � = f i�R� �Ji, �101�

here Ji� is a set of generators of a real Lie algebra g associated with a Lie group G �the
amiltonian symmetry group�. Usually we have G=U�m�, where m is the number of levels

nvolved in the crossing �or the sum of the degeneracy degrees of the levels involved in the
rossing�. But we know that the physics of an m-level system can be described simply by G
SU�m� �see Refs. 28 and 29�. Let d be the number of generators of G �d=dim g�. The immersion

f defined by f�R� �= �f1�R� � , . . . , fd�R� �� is then a map from M to Rd. Rd plays the role of the
eneralized universal space in place of R3. Let Hi ,E��i,� be the Cartan basis of g. The Cartan
ubalgebra �the algebra generated by Hi�i� is the Lie algebra of the maximal torus T of G. Let

�R� � be the diagonal matrix of the eigenvalues of H�R� � �the matrix of levels involved in the

rossing�. As the diagonal matrix group is Abelian, we have E�R� �=bi�R� �Hi. Then the diagonal-
eff
zation of H can be written
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Heff�R� � = ei���R� �E�E�R� �e−i���R� �E� �102�

=exp�i �
��0

�z��R� �E� + z̄��R� �E−��
E�R� �

�exp�− i �
��0

�z̄��R� �E� + z��R� �E−��
 , �103�

here T�R� �=ei���R� �E� is the diagonalizing matrix for Heff�R� �. The Berry phase depends only on
��R� � or equivalently on ���R� �. Moreover it is clear that ���� and z��� are, respectively, real and
omplex coordinates systems for the manifold G /T. This manifold is called a flag manifold,
ostafazadeh30 has shown that it is also the universal manifold for the system with symmetry

roup G, and � :M→G /T defined by ��R� �= ����R� ��� is the universal map. Clearly the flag
anifold G /T is a complex manifold which has a Riemannian structure induced by the embedding
/T�CPn−1 �see Ref. 30�, where n is the dimension of the original Hilbert space. The Kählerian

tructure of CPn−1 induces the Riemannian structure of G /T considered as a real manifold. Let r
e the rank of g �the dimension of the Cartan subalgebra�. Rd is foliated with leafs which are

iffeomorphic to G /T and with the foliation parameters bi�R� ��i=1,. . .,r, �G /T ,Rr��Rd. Considering
particular leaf G /T, we have the following commutative diagram:

M →
��

G/T

fi↓ ��↙ ↓�

Rd →
�

CPn−1

here � is defined by

Heff�R� � = Ad�ei���R� �E��bi�R� �Hi = ei���R� �ad�E��bi�R� �Hi = �i�R� �Hi + �����R� ��E�. , �104�

Here Ad is the adjoint action of the Lie group on its Lie algebra, and ad is the adjoint action
f the Lie algebra on itself. We suppose that G is compact and semisimple; then the Killing form
f its complex Lie algebra gC is positively defined. Following the commutativity structure of the
revious diagram, the Riemannian structure of G /T is also induced by the Killing form of gC
onsidered as a scalar product on Rd. If G=SU�N� then 2NK is the Euclidian metric of Rd �where

is the Killing form of SU�N��.
In the case of a two-level crossing, G=SU�2�, d=3 and the maximal torus is U�1�; the flag

anifold is then SU�2� /U�1��S2 in agreement with the discussion in previous sections. In the
ase of a three-level crossing, G=SU�3�, the universal space is R8, the maximal torus is T2

U�1��U�1� and the flag manifold is SU�3� / �U�1��U�1��. For the generic case of an N-level
rossing, the symmetry group is SU�N�, its dimension is d=N2−1, and the standard monopole
xists in the universal space RN2−1. The flag manifold �the universal manifold� is SU�N� /TN−1

CPN−1
›CPN−2

› . . . ›CP1 where TN−1 is the �N−1�-torus:

nd where › denotes a possible nontrivial topological product. The induced metric on M is

g�� = �ij
�f i

�R�

�f j

�R� �105�

2
ith i=1, . . . ,N −1 and �=1,2.
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. An analogy with the field theory

The monopole gauge potential is A��1�RN2−1 ,su�N��. The monopole field is obtained by the
artan structure equation F=dA+ 1

2 �A ,A���2�RN2−1 ,su�N�� and satisfies half of the Yang-Mills
quations, i.e., the Bianchi identity dF+ �A ,F�=0. In M, f*A��1�M ,su�N�� and f*F
�2�M ,su�N�� satisfy similar equations. Consider the Abelian case of a pure adiabatic transport.
e suppose that the evolution of the system is a path C on M which passes in the neighborhood

f a two-level crossing but is sufficiently far away or is traversed at such a speed that no popu-

ation transfer occurs. The path C is parametrized by a function t�R� �t�. Let �+ ,R� 	N , �−,R� 	N� be

he two eigenvectors. If we suppose that ��0�= �+ ,R� �0�	N then we have

��t� = exp�− i�−1�
0

t

E+�R� �t���dt� − �
R� �0�

R� �t�
A+

N�R� �
� + ,R� �t�	N, �106�

here A+
N= N�+,R� �dM�+ ,R� 	N. The gauge group associated with this situation is U�1�. We have a

omplete analogy with electrodynamics, where � is the matter field of a charged particle which is
oving on the path C in M and which is subject to the monopole magnetic field. Indeed, Ezawa31

otes that a single matter field ��x� cannot be used in the whole space-time in the presence of a
agnetic monopole. He uses a path-dependent formalism with ��x ,P�=exp���

x A���x� where P is
path from infinity to x. This new field is gauge invariant. In the same way, in the generalized

niversal space R3 we cannot use a single field �+ ,x�	 as a matter field because

� + ,x�	N =
1

�2r�r + x3�
� r + x3

x1 + ix2 

s not defined for x3�0 and

� + ,x�	S =
1

�2r�r − x3�
�x1 − ix2

r − x3 

s not defined for x3�0. Following Ezawa, by elimination of the dynamical phase, we set

�x� ,C�=exp�−�x�0

x� A+��+ ,x�	 where C is a path from an arbitrary point x�0 to x�. Let US and UN be the
harts for which A+

S and A+
N, respectively, are well defined. Suppose that x�0�US. Then

�̃�x�,C� = �exp�− �
x�0

x�

A+
S
� + ,x�	Sif x� � US

exp�− �
x�0

x�1

A+
S
exp�− �

x�1

x�

AN
� + ,x�	N if x� � UN, with x�1 � UN � US.�
�107�

e see that the formalism used by Ezawa to define a matter field in the presence of a magnetic
onopole is similar to the adiabatic transport formula. Then we can say that the quantum system

riven along a path C in the control parameter manifold M is similar to, for example, an electron
hich is forced to follow C in presence of a monopole magnetic field.

Now consider the case of a crossing of three nondegenerate states. The wave function is

��t� = �
b=1

3 �T exp�− i�−1�
0

t

E�R� �t���dt� − �
R� �0�

R� �t�
A�R� �
�

ba

�b,R� �t�	 �108�

nd the gauge group is SU�3�. SU�3� is represented on the space spanned by �1,R� 	 , �2,R� 	 , �3,R� 	�
y the irreducible representation D1,0 �see Refs. 32�. The situation is completely analogous to that

f a quark field � in the presence of a colored monopole, see Ref. 5, 6, and 31,
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�1,R� 	 , �2,R� 	 , �3,R� 	� being a color triplet. As is the case in chromodynamics, “since SU�3� is
nbroken symmetry, (¼) the specification of the colour of a quark field depends on an arbitray
hoice of basis for the three-dimensional space of colours at each point in space-time” �see Ref.

3�, the basis �1,R� 	 , �2,R� 	 , �3,R� 	� defined the colors at each point R� of M, the color operators
eing

J3 = �1 0 0

0 − 1 0

0 0 0
�, �3J8 = �1 0 0

0 1 0

0 0 − 2
� �109�

he matrices being written in the R� -dependent basis �1,R� 	 , �2,R� 	 , �3,R� 	�. The initial point of the

ynamics R� �0� can be considered as being a privileged point and consitutes a symmetry breaking.
or example, in the case of an atom or a molecule driven by a pulse chirped laser, the initial point

s the position in M for which the laser is off. In this case the basis �1,R� �0�	 , �2,R� �0�	 , �3,R� �0�	�
s privileged as the basis for the bare atom or molecule unperturbed by the field. The two possible

escriptions of the color using “the symmetry breaking basis” and using “the R� -dependent basis,”
re associated with the choice of the molecular time-dependent description of population transfers,
sing “the unperturbed basis” or using “the instantaneous dressed basis.”

II. FINAL REMARKS AND CONCLUSION

. Global description versus local description

All of the previous discussion has concerned the neighborhood of a crossing, and has thus
iven a local analysis. If we consider M globally these might be several crossings �monopoles� on

. Let n be the dimension of the original Hilbert space and m be the dimension of the adiabatic
ubspace. We know that the universal manifold of the gobal description is the Grassmanian
anifold Gm�Cn�. The relation between global and local description is the following. Let f be the

lobal universal map from M to Gm�Cn�. Let R� 0 be a point where there exists a level crossing. Let
/T be the flag manifold of this level crossing �the local universal manifold� and � be the local

niversal map from M to G /T. Gm�Cn�=U�n� / �U�n−m��U�m�� where U�n� is the group of
nitary tranformations of the original space, U�m� is the group of unitary transformations of the
diabatic space and U�n−m� characterizes the adiabatic independence of the quantum system from
he exterior of the adiabatic space. It is clear that G is a subgroup of U�n� and T is a subgroup of

�m�, and then G /T is a submanifold of Gm�Cn� which is localized with the point f�R� 0�=��R� 0�.
The local description depends on the choice of the effective Hamiltonian technique. Indeed,

eff does not have the same expression in the different partitioning methods.20–22 The geometric

ocal description will be relevant if and only if Heff�R� � is good approximation of H�R� � for the

rossing, i.e., if the behaviors of the eigenvalues and of the overlaps of the eigenvectors of Heff�R� �
and their first derivatives� are close to the behaviors of the associated quantities of H�R� �. In
eneral the problem of finding an efficient effective Hamiltonian associated with a crossing is not
simple one.

. The control manifold

All of the discussion can be generalized to a control manifold with dimension greater than
wo, exept for the links between �gf*B and the monopole magnetic flux, which is the most
nteresting aspect of the monopole magnetic field in the two-dimensional case. Note that for a
wo-level crossing, the map f :M→R3 cannot be an immersion if dim M�2.

We can remark that in a theoretical study, the choice of the control manifold can be arbitrary;

n order to have a physical meaning for M and its virtual magnetic monopoles, we can choose M
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o be closely appropriate to the experimental situation. The two parameters of M must be two
control levers” of the experimentalist, in order that the monopole effects can appear naturally in
he experimental results

. The charge of non-Abelian monopoles

The definition of the charge of a non-Abelian monopole, for example, for a three level
rossing, is not clear. In the Abelian case the generalized universal space is R3 and we can apply
he method followed in field theory. In the non-Abelian cases the generalized universal space is Rd

ith d�3, which cannot be identified with the usual physical space. The topological methods
sually followed must be adapted and more subtle studies are needed to find a relevant definition
f the charge of the non-Abelian adiabatic monopoles.

. About nonadiabatic evolutions

The adiabatic assumption states that the quantum dynamical system can be described at each
ime by a little set of instantaneous eigenvectors. In the nonadiabatic cases, there exist some
echniques to describe the quantum system with a time-dependent non-eigenbasis �see, for ex-
mple, the time-dependent wave operator theory�.34 In this case, the dynamics can be represented
y a finite dimensional effective Hamiltonian. We can suppose that these time-dependent vectors
an be expressed as control parameter-dependent vectors �in fact this is a strong assumption
ecause in general these vectors depend not only on the instantaneous time but also on the past

volution�. In this case the wave function takes the form of Eq. �3� but where �a ,R� �t�	 is not an

igenvector and where E�R� �t��ab= �a ,R� �t��Heff�R� �t���b ,R� �t�	 is not a diagonal matrix. Following
he works of Mostafazadeh and Bohm35,36 we can suppose that there exists a smooth map

:M→M such that �a ,R� �t�	�a are the eigenvectors of H̃eff�R� �=Heff�F�R� ��. Let f be the immer-

ion map associated with H̃eff, we can consider f �F as the immersion map of Heff, this map is well

ssociated with the properties of magnetic monopoles since �a ,R� 	�a are the eigenvectors of H̃eff.
evertheless the physical significance of these monopoles is not clear because they are not asso-

iated with an eigenlevel crossing. Moreover the assumption of the existence of F and above all
he assumption of the control parameters dependence of the basis are important limitations on the
lass of nonadiabatic quantum systems for which we can apply the theory presented in this paper.

. Conclusion

The knowledge of the magnetic field in the control manifold can be very important for the
umerical simulations of quantum adiabatic dynamics. By computing this field, which is equal to
he monopole field density of f�M�, we can localize the level crossings. It is well known that the
ariations of the wave function are more important in the neighborhood of the level crossings. If
e model the control manifold by using a discrete numerical lattice X, then we need more vertices

n the neighborhood of the level crossings in order to have a minimal data storage requirement,
ogether with a good description of the wave function. We must then employ a nonhomogeneous
attice with small cells in the neighborhood of the crossing and with larger cells elsewhere. We can
se the field �gf*B to obtain a criterion about the local choice of cell sizes.
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Conventional approach to quantum mechanics in phase space, �q , p�, is to take the
operator based quantum mechanics of Schrödinger, or an equivalent, and assign a
c-number function in phase space to it. We propose to begin with a higher level of
abstraction, in which the independence and the symmetric role of q and p is main-
tained throughout, and at once arrive at phase space state functions. Upon reduction
to the q- or p-space the proposed formalism gives the conventional quantum me-
chanics, however, with a definite rule for ordering of factors of noncommuting
observables. Further conceptual and practical merits of the formalism are demon-
strated throughout the text. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2345109�

. INTRODUCTION

Wigner’s 1932 initiative1 is a reformulation of the operator based quantum theory of
chrödinger in the language of c-number distribution functions in a phase space. His prescription,
owever, turns out to have a feature extra to what one finds in Schrödinger’s theory. There is
othing in the founding principles of the operator based theory to prescribe a rule for ordering of
he factors of noncommuting operators in a product. In contrast, Wigner’s formalism, upon reduc-
ion from phase space to the configuration space, acquires Weyl’s ordering,2,3 How and at what
tage, in going from Schrödinger’s state functions in configuration space to those of Wigner in
hase space and again coming back to the configuration space, acquires Weyl’s ordering creep in?
his feature is not unique to Wigner’s functions. Other distributions exist in the literature, e.g.,
irkwood,4 Husimi,5 Margenau and Hill,6 Torres-Vega and Frederick,7–9 Li et al.,10 de Gosson,11,12

tc. Each of them carries its own ordering rule, with no precedence in the configuration space
ormalism. Can one conjecture that the phase space formulations of quantum mechanics are more
omplete than their configuration space counterpart, because of their built-in ordering rules? If so,
here should be a way to arrive at phase space formulations without reference to the conventional
perator based theory. Here we argue that in the classical dynamics and classical statistical dy-
amics �Liouville’s equation� the generalized coordinates and momenta, q and p, respectively,
lay symmetric and more importantly, independent roles. In the operator based quantum theory
ne or the other loses its identity at the expense of the other and the formalism reduces to one in
ither q or p space. One could avoid this by carrying the q and p formalisms concomitantly and at
nce arrive at state functions in qp spaces. The so-obtained state functions are the qp representa-
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ion of the mixed states of quantum statistical mechanics. The operator based theory emerges as a
pecial case of this general one, but this time with a definite ordering rule for noncommutative
perators. The rule depends on the nature of the q and p variables, adopted initially.

I. EXTENSION OF THE CLASSICAL DYNAMICS

Let q= �qi�t� , i=1, . . . ,N� be the collection of the generalized coordinates describing the state
f motion of a dynamical system. It is customary to assign a Lagrangian, Lq�q , q̇�, to the system,
efine the conjugate momenta, p=�Lq /�q̇, and construct the H�q , p�= q̇p−Lq. One may do this the
ther way around. Begin with a given H�q , p� and find Lq�q , q̇� as a solution of the following
ifferential equation;

H�q,
�Lq

� q̇
� − q̇

�Lq

� q̇
+ Lq = 0. �1�

ne may, however, carry out the same procedure with q replaced by p and arrive at a Lp�p , ṗ�
atisfying the differential equation

H� �Lp

� ṗ
,p� + ṗ

�Lp

� ṗ
− Lp = 0. �2�

he use of Lp to study the evolution of a dynamical system is not a common practice. But it is a
ossibility and has precedence.13 There is no bar to employing the two alternatives simultaneously.
e follow Sobouti and Nasiri14 �hereafter, paper I� and define the “extended Lagrangian”

L�q, q̇;p, ṗ� = − q̇p − qṗ + Lq�q, q̇� + Lp�p, ṗ� . �3�

he first two terms on the right-hand side constitute a total time derivative and are introduced for
ater convenience. One may now write down the Euler-Lagrange equations for q and p,

d

dt

�L
� q̇

−
�L
�q

=
d

dt

�Lq

� q̇
−

�Lq

�q
= 0, �4a�

d

dt

�L
� ṗ

−
�L
�p

=
d

dt

�Lp

� ṗ
−

�Lp

�p
= 0. �4b�

quation �4a� is the conventional equation of motion in q space. With preassigned initial values
�t0� and q̇�t0� at t0 it can be solved for the orbits q�t� in q space. Similarly, with given initial
alues p�t0� and ṗ�t0�, Eq. �4b� can be solved for the orbits p�t� in the p space. The conditions for
and p orbits to represent the same state of motion of the system are p�t0�=�Lq /�q̇	t0 and q�t0�
�Lp /�ṗ	t0. Such a state of motion will be referred to as a “pure state.” Otherwise it will be called
“mixed state” of motion. The nomenclature is from the statistical quantum mechanics and it will
e seen later that they imply the same notions as therein. On a pure state p and q are initially
anonically conjugate pairs and it is shown in paper I that once they are canonically conjugate at
ne time they remain so for all times. On the other hand there are no restrictions on the initial
alues of q and p on mixed states. Therefore, q�t� and p�t� remain unrelated and evolve indepen-
ently. The existence of the extended Lagrangian L�q , q̇ ; p , ṗ�, however, permits the following
extended momenta” to be defined:

�q =
�L

˙
=

�Lq

˙
− p , �5a�
�q �q

                                                                                                            



T
t

T
�

w

h
t
a
�
�
t
t
v

I

m

�

T
D
m

s

o

b
f
c

092106-3 Phase space quantum mechanics - Direct J. Math. Phys. 47, 092106 �2006�

                        
�p =
�L
� ṗ

=
�Lp

� ṗ
− q . �5b�

hese in turn allow an “extended Hamiltonian” to be defined through the following Legendre
ransformation;

H�q,�q;p,�p� = q̇�q + ṗ�p − L�q, q̇;p, ṗ� . �6�

o eliminate q̇ and ṗ from H one substitutes �a� for L from Eq. �3�, �b� for Lq and Lp from Eqs.
1� and �2�, and �c� for �Lq /�q̇ and �Lp /�ṗ from Eqs. �5a� and �5b�. One arrives at

H�q,�q;p,�p� = H�q,p + �q� − H�q + �p,p� = 

n=0

1

n!
� �nH

�pn �q
n −

�nH

�qn �p
n� , �7�

here the derivatives are to be evaluated at �q , p�. We leave it to the reader to familiarize him/

erself with H by writing down four Hamilton’s equations for q̇ ,�q
˙ , ṗ, and �p

˙ . Here, the condi-
ion for pure state motions is �q�t0�=�p�t0�=0, and once they are initially zero they remain so for
ll times. Then by Eqs. �5a� and �5b� q and p turn into canonically conjugate pairs for all times
paper I�. To summarize, for any dynamical system we introduce an extended phase space,
q ,�q ; p ,�P�, extended momenta, Lagrangians, and Hamiltonians. All concepts and procedures of
he conventional dynamics are extendible to this extended dynamics. Of particular relevance to
his paper, which will be referred to shortly, are: �1� canonical transformations from one set of
ariables �q ,�q ; p ,�p� to another, and �2� Poisson’s brackets extended as

�F,G� =
�F

�q

�G

��q
−

�F

��q

�G

�q
+

�F

�p

�G

��p
−

�F

��p

�G

�p
. �8�

II. QUANTUM DYNAMICS IN qp SPACE

Now that we have the extended the Hamiltonian of Eq. �7� we may construct a quantum
echanics in qp space. We do this on the following premises.

�1� Let X be the function space of all integrable complex functions ��q , p�. Let q ,�q , p, and,

p be operators on X, satisfying the commutation rules

�q,�q� = �p,�p� = i � , �q,p� = ��q,�p� = �q,�p� = �p,�q� = 0. �9�

hese are the fundamental Poisson brackets of Eq. �8�, promoted to commutation brackets by
irac’s prescription. Note the manifest independence of q and p in the vanishing of their com-
utation brackets.

�2� By virtue of Eq. �9�, H is now an operator on X. Let ��q , p , t��X be a state function
atisfying the Schrödinger-type equation

i �
��

�t
= H� = �H�q,p − i �

�

�q
� − H�q − i �

�

�p
,p��� . �10�

�3� Let the rule to evaluate the expectation values of an observable O�q , p�, a real c-number
perator on X, be

O�q,p�� =� O�q,p�Re �dqdp =
1

2
� O�q,p��� + �*�dqdp . �11�

We will return to this averaging rule shortly, and revise it. The logic behind it, however, is to
e noted, the averages of observables should be real. In what follows we demonstrate that �1� the
ormalism so designed is a theory of quantum ensembles in phase space. Its pure state case is the

onventional quantum mechanics, however, with a definite ordering rule accompanying it. �2� It
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an be transformed to other phase space formalisms, including to that of Wigner, by suitable
nitary or similarity transformations on X. The latter in turn originates from suitable canonical
ransformations from one extended phase space coordinate to another.

. Solutions of Eq. „10…

To begin with, � is of the form

��q,p� = F�q,p�e−ipq/�. �12�

he exponential factor is a consequence of the total time derivative, −d�qp� /dt in Eq. �3�. It is
asily verified that

�p − i �
�

�q
�� = i �

�F

�q
e−ipq/�, �13a�

�q − i �
�

�p
�� = i �

�F

�p
e−ipq/�. �13b�

ubstitution of Eqs. �13� and �12� in Eq. �10� gives

i �
�F

�t
= �H�q,− i �

�

�q
� − H�− i �

�

�p
,p��F . �14�

he operators on the right-hand side of Eq. �14� are recognized as the Hamiltonians of the
onventional quantum mechanics, the first in q and the second in p representation. Thus, one
btains the superposition of the separable solutions

��q,p,t� = 

�,�

A�����q,t���
*�p,t�e−ipq/�, �15�

here

i �
���

�t
= H�q,− i �

�

�q
���, �16a�

i �
���

�t
= H�i �

�

�p
,p���. �16b�

o each ���q� there corresponds a ���p� that are Fourier transforms of each other,

���q� =
1

�2� � �N/2 � ���p�eipq/�dp , �17�
here N is the number of degrees of freedom of the system.
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. The averaging rule revisited: Acceptable state functions

Let Q�q� be an observable represented by a real polynomial or series in q. Its matrix repre-

entation, Q̂, in either �− ,�−, or �-basis is Hermitian. Thus

Q�� =� ���q�Q�q���
*�p�e−ipq/�dpdq

=� ��
*�q�Q�q����q�dq =� ��

*�p�Q�i �
�

�p
����p�dp = Q��

* , �18�

here we have used the fact that � and � bases are the Fourier transforms of each other. The
oefficient �2�� �−N/2 is suppressed for brevity. The expectation value of Q, by Eq. �11�, now
ecomes

Q� =
1

2
� Q�� + �*�dpdd =

1

2
tr�Q̂�Â + A†ˆ �� , �19�

here Â is the matrix of A�� of Eq. �15�. This gives the freedom of choosing Â=A†ˆ and of

implifying Eq. �11� to read Q�=�Q�dpdq=tr�Q̂Â�. Choosing Q�q�=1, imposes the further re-

triction tr Â=1. Requiring the averages of all positive definite functions of q to be positive still

estricts Â to be a positive definite matrix. Had one chosen a differentiable function P�p� instead

f Q�q�, one still would have arrived at the same requirements for Â.To summarize, � of Eq. �15�
s a physically acceptable solution if

Â = A†ˆ , positive definite, and trÂ = 1. �20�

ith this provision the averaging rule of Eq. �11� for Q�q�+ P�p� reduces to

Q�q� + P�p�� =� �Q + P��dpdq . �21�

or a product Q�q�P�p�, by the prescription of Eq. �11� and with the restrictions of Eq. �20� on Â,
ne has

QP� = Re tr�Q̂P̂Â� =
1

2
tr�Q̂P̂Â + ÂP̂Q̂� = tr�1

2
�Q̂P̂ + P̂Q̂�Â� , �22�

here Q̂ and P̂ are the matrix representations of Q�q� and P�p� as in Eq. �18�. Translation of this
o the q space language, say, is

QP� =
1

2
A��� ��

*�q��Q�q�P�− i �
�

�q
� + P�− i �

�

�q
�Q�q����dp . �23�

hus, upon reduction of the formalism of the present paper to that of the q-space, the ordering rule
ssociated with a product Q�q�P�p� is the symmetric ordering. It has emerged from the formalism
tself, unlike the ad hoc ordering rules of the conventional quantum mechanics.

V. MORE ABOUT EQ. „10…

It was stated earlier that the proposed dynamics is essentially that of the ensembles. Here we
laborate on this, and show that �1� the classical limit of the theory is Liouville’s equation that
overns the dynamics of classical ensembles. �2� Its pure state case is Schrödinger’s operator
ased theory. �3� In its full generality the theory gives von Neumann’s density matrix and the

volution equation associated with it.
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. Classical correspondence

In Eq. �10� expanding the Hamiltonian operators about �q , p�, and retaining only the first
erms in the expansion, gives

��

�t
+

�H

�p

��

�q
−

�H

�p

��

�p
=

d�

dt
= 0. �24�

his is the Liouville equation for the distribution function of classical ensembles. Its most general
olutions are ��q�t� , p�t��, where q�t� and p�t� are the classical trajectories in q and p spaces. The
wo trajectories may represent the same state of motion if they satisfy the conditions of initial
anonical conjugacy narrated below Eq. �4�. Otherwise, they remain independent and evolve
ndependently. It is this classical notion of independence that we have carried through to the
uantum formalism. Let us also note that the reduction of the phase space evolution equation to
he classical Liouville’s equation is a common feature of all such formalisms.

. Schrödinger’s case

Allowance for only one term in Eq. �15� reproduces the conventional quantum mechanics in
ll its details. Thus

� = ��q��*�p�e−ipq/�, �25a�

i �
��

�t
= H�q,− i �

�

�q
�� , �25b�

� and � Fourier transforms of each other, �25c�

� �dpdq =� �*�dq =� �*�dp = 1, �25d�

Q�q�P�p�� =
1

2
� �*�p�− i �

�

�q
�Q�q� + Q�q�P�− i �

�

�q
���dq . �25e�

eisenberg’s uncertainty principle follows immediately from Eq. �25� that one may find in stan-
ard texts in quantum mechanics. The ordering rule of Eq. �25e� is, however, the added feature of
he theory.

. Density matrix and von Neumann’s equation

The state function of Eq. �15�, as it stands represents the state of an ensemble in a mixed state.

f the matrix Â is diagonalized to A��=A���� ,� reduces to �=
A�����
*e−ipq/�. Upon integration

ver q or p one immediately recognizes A� as the probability of the system to be in the state

��q , t� or ���p , t�. One may, however, do better. Let ��n�q�� be a complete orthonormal time
ndependent basis set, and ��n�p�� be its Fourier replica. These basis sets are not required to be the
igenstates of H�q , p�, though this is a possibility. Hereafter, to avoid the ambiguity, we use the
atin subscripts to denote the members of the basis set and reserve Greek subscripts to denote the
olutions of Eqs. �16a� and �16b�. Expansion of� in these bases assumes the form ��q , p , t�
Amn�t��n�q��m

* �p�e−ipq/�. Substituting this form in Eq. �10�, multiplying the resulting equation by
* ipq/�

n�q��m�p�e , and integrating over q and p gives
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i �
dÂ

dt
= �Â,Ĥ�, Â = Â† positive definite and tr Â = 1, �26�

here Â is the matrix of the expansion coefficients and Ĥ that of the H�q , p� in either �− ,�−, or
− basis. Equation �26� is von Neumann’s equation for the evolution of the density matrix. As is

nown the case tr�Â2�=tr Â=1 represents an ensemble in a pure state. If tr�Â2�	1, the ensemble
s in a mixed state.

. CANONICAL TRANSFORMATIONS

All machinery of the canonical transformations from one extended coordinate system to
nother and their associated unitary or similarity transformations in the function space are avail-
ble for a forage of deliberations. Except for a passing remark on the prospects of fuller uses of
his approach at the end of this section, here we confine ourselves to one one-parameter family of
ransformations of which Wigner’s state function emerges as a special case. Husimi’s all positive
istribution functions are also briefly mentioned.

Consider the infinitesimal transformations

q = Q − ��
P, �q = 
Q; p = P − ��
Q, �p = 
P, �27�

he generator of the transformation is G=�p�q. To this �and for a finite �� there corresponds the
nitary operator

U� = e−i�G/� = ei���2/�q�p, U�
†U� = 1, �28�

n the function space. Operating by U� on a pure state function ��q , p , t�=��q��*�p�
exp�−ipq / � � generates another state function �let us call it �-representation�

��q,p,t� = U�� = � 1

2��
�N� ��q − ����*�q + �1 − ����eip�/�d� . �29�

ee the Appendix for proof of Eq. �29�. For �=1/2, Eq. �29� gives Wigner’s standard
unction,15,16 �1/2=W�q , p , t�. The cases �=0 and 1 simply give back � and �* of this paper,
espectively. Similarly, operation by U� on Eq. �10� gives the evolution equation for ��,

i �
����q,p,t�

�t
= i �

�

�t
�U��� = �U�HU�

†�U�� ,

�30�

i �
����q,p,t�

�t
= H��� = −

�2�1 − 2��
2m

�2

�q2�� − i �
p

m

�

�q
��

+ 

n=0

�− ��n − �1 − ��n

n!
�− i � �n�nV

�qn

�n

�pn��.

ee the Appendix for proof of Eq. �30�. For �=1/2, even n terms in Eq. �30� cancel out and one
gain recovers Wigner’s evolution equation.3 See Eq. �A7�.

. Assigning q-space operators to phase space functions: Ordering rule

The phase space state functions are devised to evaluate the expectation values of a c-number
bservable, F�q , p�, by integrations over the phase space. Upon reduction to the q space, say,

f�q , p� turns into a differential operator in terms of q and �q. The questions are: �l� how are
ifferent factors of noncommuting q and �q ordered in a given �-representation? �2� Averaging a

iven F�q , p� with different ��’s gives different values, how do such averages change from one
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-representation to another? Let F̂��q ,�q� be the q space operator corresponding to the c-number

onomial qnpm in phase space when averaged by ��. The defining equation forF̂��q ,�q� is

qnpm�� =� qnpm��dpdq =� �*�q�F̂��q,�q���q�dq . �31�

or the combination of �=0 and 1 corresponding to ��+�*� of Eq. �11� this is already worked out
n Eq. �25e� and is the symmetric ordering

qnpm → 1
2 �qn�q

m + �q
mqn� . �32�

or a general �, it is given in Eq. �A10�,

qnpm → 

r=0

m �m

r
���1 − ���q�rqn���q�m−r. �33�

or �=1/2 this reduces to Weyl’s ordering,2,3 which is known to go with Wigner’s functions. To
nswer the second question we note the following:

qnpm��=0 =� qnpm�dqdp =� qnpmU�
†��dqdp =� U��qnpm���dqdp = U��qnpm���,

�34�

here by Eq. �29� we have used �=U†��. The conclusion is that qnpm averaged by � is the same
s U��qnpm� averaged by ��. Upon adoption of

U� = 
 �− i� � �k

k!

�k

�qk

�k

�pk

nd operation by it on qnpm one finds

U��qnpm� = 

k=0

smaller of n or m

�− i � ��kk ! �n

k
��m

k
�qqn−k

pm−k

= qnpm + �− i � ��mnqn−1pm−1 +
1

2
�− i � ��2n�n − 1�m�m − 1�qn−2pm−2 + ¯ .

�35�

. Assigning phase space functions to q space operators

To a given operator F̂�q ,�q�, a Taylor-expanded series in whatever order of powers of q and

q, we associate the following c-number function:

F�q,p� = 

n,m

Fmn�nm = q	F̂	p�e−ipq/�, �36�

here Fmn= n 	 F̂ 	m� is the matrix element of F̂ in the basis of the eigenstates of Ĥ�q ,�g�. This is
ctually the inverse of the procedure that we used in Eq. �31� to associate an operator with a
-number function �let �=0 and replace qnpm by F�q , p� in Eq. �33� to see the analogy�. The
econd equality in Eq. �36� expresses the same in the ket- and bra- notation of Dirac.
The corresponding function in �-representation is simply
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F��q,p� = U�F�q,p� = 

n,m

FmnU��nm =� q − ��	F̂	q + 1�1 − ����eip�/�d� . �37�

his is actually the generalization of Eq. �29� for a general operator F̂�q ,�q�. The rule for the

roduct F̂= ÂB̂ is worked out in Eq. �A13�:

F�q,p = �q	Â�q,�q�B̂�q,�q�	p�e−ipq/� = 

n=0


�− i � �n

n!

�nA�q,p�
�pn

�nB�q,p�
�qn . �38�

ne may also work out the �-representation of Eq. �38�:

F��q,p� = U�F�q,p� = A��q + i � �
�

�p
,p − i � ��1 − ��

�

�q
�B��q,p�

= 

n=0


�i � �n

n!
��

�

�qA

�

�pB
− �1 − ��

�

�pA

�

�qB
�n

A��q,p�B��q,p� . �39�

ee Eq. �A17� for details of the derivation. In Sec. VII, we analyze Bloch’s problem as an
llustration of the use of the developments of the last two subsections.

. A remark on general transformations

An economical way of treating canonical transformations is the symplectic formalism. Let �
e the column vector �q, �q; p, �p�. The equations of the classical dynamics assume the following
orm

�̇ = J
�H
��

, �40�

here H��� is the extended Hamiltonian of Eq. �7� and J is the symplectic metric

J = � j 0

0 j
�, j = � 0 1

− 1 0
� . �41�

n infinitesimal canonical transformation from � to �+�� is of the form

� + �� = � − �
�G���

��
, �42�

here G is the generator of the transformation and � indicates its infinitesimal character. The
atrix of the transformation is

Mij = �ij − �
�2G

��i� j
. �43�

he condition for canonicity is

MJM† = J + O��2� . �44�

his imposes the condition on G to be either linear in � j or quadratic and symmetric in �i ,� j or
oth. For clarity, hereafter we confine our discussion to a system of one degree of freedom, N
1. The most general form of G with the restriction just mentioned is

G��� = ai�i + �ij�i� j, i, j = 1,2,3,4 correspond to q, �q; p, �p, �45�

here the four parameters ai initiate translations and the ten symmetric �ij cause rotations, boosts,

queezes, scale changes, etc. The ten transformations �ij constitute a symplectic group SP�4�, and
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s locally isomorphic to the �3+2�-dimensional Lorentz group. This is the group that Kim and
oz17 encounter in their study of four-dimensional phase space consisting of two oscillators

epresentation of O�3+2�, and proves to be a useful mathematical tool in quantum optics. To each
f the fourteen transformations of Eq. �45� there corresponds a unitary or similarity transformation
n the function space. That of Eq. �27� it is unitary. An example of nonunitary operators is the
ollowing. To the canonical coordinate transformation

q = Q +
i�

2�

Q +

1

2

P, �q = 
Q,

�46�

p = P +
i�

2�

P +

1

2

Q, �p = 
P,

here corresponds the complex similarity operator

S� = exp���

4

�2

�q2 +
�2

4�

�2

�p2� +
i�

2

�2

�q � p
� , �47�

here � is a finite parameter of the transformation. Husimi’s5 all positive distribution in terms of
is

�Hus�q,p,�� = S���q,p� . �48�

I. BLOCK’S EQUATION IN PHASE SPACE

In this section we intend to illustrate some usage of the formalism developed so far. In any

iscussion of statistical mechanics, the partition function, Z���=tr �̂, �̂�q ,�q�=exp�−�Ĥ�, plays

pivotal role. Its calculation, however, is often cumbersome. One practice is to translate �̂ and the
orresponding Bloch’s differential equation18 into a phase space language,3,16 solve the equation
or a c-number ��q , p ,�� and calculate Z���=���p ,q ,��dqdp. The ease of doing the job depends

n the choice of the c-number assigned to �̂. Our suggestion is that of Eq. �36� Bloch’s equation

or �̂ is

��̂

��
= − Ĥ�̂ = − �̂Ĥ . �49�

e apply the rule of Eq. �36� to Eq. �49�. Noting that Ĥ�q ,�q�→H�q , p�= p2 /2m+V�q� and using
he product rule of Eq. �38� gives

−
���q,p;��

��
= �H�q,p� −

ip�

m

�

�q
−

�2

2m

�2

�q2���p,q� . �50�

his same result is obtained in Ref. 19, however, by a totally different approach and through much
engthier calculations using Moyal’s characteristic technique. Equation �49� in Wigner’s represen-

ation is obtained by replacing �̂ with �W�q , p ;��, Ĥ with p2 /2m+V�q� and using Eq. �A17� with

=1/2 to find the expression corresponding to Ĥ�̂. In agreement with Refs. 3 and 16 one finds

−
��W�q,p;��

��
= � p2

2m
−

�2

8m

�2

�q2 + 

n=0

n=
�i � /2�n

n!

�n

�qnV�q�
�n

�pn��W�q,p;�� . �51�

he contrast between the two, Eqs. �50� and �51�, is striking. The former is a second-order
ifferential equation in q and the exact quantum effects in it appear as � and �2 only, while the

2 2
atter in addition to � /�q is an nth-order differential equation in p and has all powers of � in it.
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n the following we solve Eq. �50� and give the partition functions for the simple harmonic and
inear potentials.

. Simple harmonic potential

For H�q , p�= l /2�p2 /m+m�2q2� the solution is of the form

� = exp�− A���H�q,p� − iB���
pq

�
− C���� . �52�

ubstituting this in Eq. �50� and letting the coefficients of different powers of q and p vanish,
ives

dA

d�
= 1 − �2�2A2, �53a�

dB

d�
= �2�2A�1 − B� , �53b�

dC

d�
=

1

2
�2�2A . �53c�

he condition ��q , p ,0�=1 imposes the boundary conditions A�0�=B�0�=C�0�=0. With these
rovisions one finds

A��� =
1

��
tanh � � � , �54a�

B��� = tanh � � � tanh
� � �

2
, �54b�

C��� = −
1

2
ln cosh � � � . �54c�

he partition function is

Z��� =
1

2��
�

−

+

��q,p,��dqdp = �2 sinh
� � �

2
�−1

. �55�

he normalized density function is ��q , p ,��=��q , p ,�� /2��Z���, with low and high tempera-
ure limits

� =
�2

��
exp�− H�q,p� −

ipq

�
�, � � � � 1,

� =
��

2�
exp�− �H�q,p��, � � � � 1, �56�

n agreement with the quantum and classical limits, respectively.

. Linear potential

The case is of interest for quark model,20 where a sea of semi-infinite matter creates a linear

otential V�q�=kq, 0�q	, and k�0. By the same procedure above one obtains
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��q,p,�� = exp�− �H −
i�2p � k

2m
+

�3�2k2

6m
� , �57�

Z��� =�2�m

�3k2 exp��3�2k2

24m
� . �58�

��q,p;�� =��3k2

2�m
exp�− �H −

i�2p � k

2m
+

�3�2k2

8m
� . �59�

he corresponding Wigner’s function21 can be obtained by letting U1/2 operate on Eq. �59�.

II. CONCLUSION

We have developed a quantum mechanics in phase space by carrying the independent and
ymmetric roles of q and p, so eminent in the Hamiltonian formulation of the classical mechanics,
o quantum domain. This is done through the extension of the phase space by introducing the
omenta �q and �p conjugate to q and p, respectively, and the subsequent extensions of the
agrangians, Hamiltonians, Poisson’s brackets, etc. In its full generality, the theory describes the
ynamics of the quantum ensembles. Its pure state case is reducible to the conventional quantum
echanics in q- or p-spaces, however, with a definite rule for ordering of the factors of noncom-
uting operators. The latter feature is a direct consequence of the independence of q and p that is

aintained at all stages of the formalism. Simple rules for assigning an operator F̂�q ,�q� in
-space to a function F�q , p� in phase space and vice versa are prescribed. Extended canonical
ransformations enable one to go from one extended phase space to another. Correspondingly the
ssociated unitary or similarity transformations in the function space enable one to generate
urther state functions from a given one. This unifying feature of the theory makes the comparison
f the various functions existing in the literature possible and transparent.

To demonstrate the simplicity and the power of the formalism certain examples are worked
ut. Treatment of Bloch’s equation, partition functions for simple harmonic and linear potentials,
nd the mathematical lemmas of the Appendix serve this end. Nasiri and Safari22 and Razavi23

ave found the presented formalism of considerable assistance in their study of dissipative quan-
um systems.
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PPENDIX

Evaluation of ��=U��: By three Fourier and inverse Fourier transformations we convert �
��q��*�p�exp�−ipq / � � into the following forms;

� =� ��p���*�p��exp
iq�p� − p��

�
exp

ip�

�
exp

− ip�

�
dp�dp�d� . �A1�

y this provision we have moved both q and p variables to the exponent. Next we expand U� of
q. �28� in power series, operate by it on the q and p exponents, and arrive at



k=0

k=
�i� � �k

k!

�k

�pk

�k

�qk exp
iq�p� − p��

�
exp

ip�

�
= exp

− i���p� − p��
�

exp
iq�p� − p��

�
exp

ip�

�
.

�A2�
sing Eqs. �A1� and �A2� in the expression ��=U��, and inverting �’s back to �’s gives Eq. �29�,

                                                                                                            



A

H
=

W
t

E

T

W
t

N
o

T
�

T
E

p

092106-13 Phase space quantum mechanics - Direct J. Math. Phys. 47, 092106 �2006�

                        
���p,q,t� = U�� = � 1

2��
�N� ��q − ����*�q + �1 − ����eip�/�d� . �A3�

s mentioned earlier, for �=1/2 one recovers Wigner’s standard state functions.
Evolution equation for ��: To prove Eq. �30�, it is sufficient to evaluate H�=U�HU�

† , where
is the extended Hamiltonian of Eq. �10�. It is easy to show that Q=U�qU�

† =q−��P and P
U�pU�

† = p−��q, which is the essence of the transformations of Eq. �27�. We also note that

U�qnpmU�
† = �q − ��p�n�p − ��q�m = �p − ��q�m�q − ��p�n. �A4�

e leave it to the reader to verify Eq. �A4� for him/herself for some small n and m. It is needless
o say that �Q , P�=0, because the transformation is unitary. With these provisions one finds

H� = H�q − ��p,p + �1 − ���q� − H�q − �1 − ���p,p − ��q� . �A5�

xpansion of the Hamiltonian about �q , p� gives

H� = −
�2�1 − 2��

2m

�2

�q2 − i �
p

m

�

�q
+ 


n=0

�− ��n − �1 − ��n

n!
�− i � �n�nV

�qn

�n

�pn . �A6�

he Wigner case is for �=1/2,

HW = − i �
p

m

�

�q
+ 


n=0

1

�2n + 1�!� �

2i
�2n+1�2n+1V

�q2n+1

�2n+1

�p2n+1 . �A7�

Ordering rule in �-representation, proof of Eq. �33�: With Eqs. �31� and �A3� we have

qnpm�� = �
−

+

qn��q − ����*�q + �1 − ����pmeip�/�dqdpd� . �A8�

riting pm as �i� �m�m /��m, integrating by parts m times with respect to � frees the integrand from
he pm factor. Then integration with respect to p gives ����. Thus

qnpm�� = �
−

+

qn�− i � �m �m

��m ���q − ����*�q + �1 − ���������dqd� . �A9�

ext we substitute � /�� by � /�q with appropriate adjustments and carry out integrations by parts
ver q whereever necessary to free �* and arrive at

qnpm�� = �
−

+

�*�q��

r=0

m �m

r
���1 − ���q�rqn���q�m−r���q�dq . �A10�

he expression in the integrand is the desired ordering of Eq. �33�, corresponding to qnpm in
-representation. For �=1/2 one recovers Weyl’s ordering

qnpm → �1

2
�m



r=0

m �m

r
��q

rqn�q
m−r. �A11�

he combination of �=0 and 1, corresponding to averaging by x+�*, is the symmetric ordering of
q. �32�. �

The product rule, proof of Eqs. �38� and �39�: The phase space function corresponding to the
ˆ ˆ ˆ
roduct of two operators F=AB, by the definition of Eq. �36�, is
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F�q,p� = q	ÂB̂	p�e−ipq/� =� q	Â	p��p�	B̂	p�e−ipq/�dqdp

=� A�q,p��B�q�,p�exp
− i�q� − q��p� − p�

�
dqdq , �A12�

here by Eq. �36�, we have substituted q 	 Â 	 p��=A�q , p��exp�ip�q / � � and similarly for q� 	 B̂ 	 p�.
ith further change of variables q�−q=q� and p�− p= p�, we obtain

F�q,p� =� A�q,p� + p�B�q� + q,p�e−iq�p�/�dq�dp� = 

n=0


�− i � �n

n!

�nA�q,p�
�pn

�nB�q,p�
�qn ,

�A13�

here we have Taylor-expanded A�q , p+ p�� and B�q+q� , p� about �q , p� and carried out the
equired integration by parts.

To deduce Eq. �39�, we first Fourier-transform A�q , p� to a�p� ,q�� and B�q , p� to b�p� ,q�� in
q. �A13� and carry out the necessary differentiations:

F�q,p� = 

n=0


�− i � �n

n!

�n

�pn � a�p�,q��exp
− ip�q + iq�p

�
dp�dq�

�n

�qn

�� b�p�,q��exp
− ip�q + iq�p

�
dq�dp�

=� a�p�,q��exp
− ip�q + iq�p

�
b�p�,q��exp

− ip�,q�p

�
e−iq�p�/�dq�dp�dq�dp�.

�A14�

ext we operate on Eq. �A14� by a Taylor-expanded form of U� as in Eq. �A2� and perform the
equired differentiations:

F��q,p� = U�F�q,p� =� ei�q�p�/�exp
− ip�q + iq�p − �1 − ��q�p� + �q�p�

�
a�q�,p��

� ei�q�p�/�exp
− ip�q + iq�p

�
b�p�,q��dq�dp�dq�dp�. �A15�

he exponentials preceding a�p� ,q�� can be written as

ei���2/�p�qexp
− ip��q + �q�� + iq��p − �1 − ��p��

�
,

here the first factor is simply U��q , p� independent of the integration variables �q� , p� ,q� , p��.
ith this provision integrations over q� and p� can now be carried out and a�p� ,q�� inverse-

ourier transformed. One finds

F��q,p� =� �U�A�q + �q�,p − �1 − ��p���ei�q�p�/�e�−ip�q+iq�p�/�b�p�,q��dq�dp�. �A16�

e again apply the same trick. To the left of the rightmost exponential we replace, everywhere, q�

y �−i�� /�p� and p� by �i�� /�q�, perform the inverse Fourier transform of b�p� ,q�� and find
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F��q,p� = U�F�q,p� = A��q + i � �
�

�p
,p − i � ��1 − ��

�

�q
�B��q,p�

= 

n=0


�i � �n

n!
��

�

�qA

�

�pB
− �1 − ��

�

�pA

�

�qB
�n

A��q,p�B��q,p� . �A17�

here � /�pA indicates a differentiation on A�q , p� only, similarly the other differential operators.�

1 E. Wigner, Phys. Rev. 40, 749 �1932�.
2 H. Weyl, Z. Phys. 46, 1 �1927�.
3 M. Hillery, R. F. O’Connell, M. O. Scully, and E. Wigner, Phys. Rep. 106, 121 �1984�.
4 J. G. Kirkwood, Phys. Rev. 44, 31 �1933�.
5 K. Husimi, Proc. Phys. Math. Soc. Jpn. 22, 264 �1940�.
6 H. Margenau and R. N. Hill, Prog. Theor. Phys. 26, 722 �1961�.
7 G. Torres-Vega and J. H. Frederick, J. Chem. Phys. 93, 8862 �1990�.
8 G. Torres-Vega and J. H. Frederick II, J. Chem. Phys. 98, 3103 �1993�.
9 X-G. Hu and Q-S. Li, J. Phys. A 32, 139 �1999�.
0 Q. S. Li, G. M. Wei, and L. Q. Lu, J. Phys. A 70, 022105 �2004�.
1 M. A. de Gosson, J. Phys. A 38, 329 �2005�.
2 M. A. de Gosson II, J. Phys. A 38, 9263 �2005�.
3 H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics, 3rd ed. �Addison- Wesley, New York, 2002�.
4 Y. Sobouti and S. Nasiri, Int. J. Mod. Phys. B 7, 3255 �1993�.
5 J. E. Moyal, Proc. Cambridge Philos. Soc. 45, 99 �1949�.
6 R. F. O’Connell and L. Wang, Phys. Rev. A 31, 1707 �1984�.
7 Y. S. Kim and M. E. Noz, Phase Space Picture of Quantum Mechanics �World Scientific, New York, 1991�.
8 F. Bloch, Z. Phys. 74, 295 �1932�.
9 N. L. Balazs and B. K. Jennings, Phys. Rep. 104, 218 �1984�.
0 J. Lin. Xu, arXiv:hep-ph/0401018v2 �2004�.
1 M. Durand, P. Schuck, and X. Vinas, Phys. Rev. A 36, 1824 �1987�.
2 S. Nasiri and H. Safari, Proc. Inst. Math. NAS, Ukraine 43, 654 �2002�.
3 M. Razavy, Classical and Quantum Dissipative Systems �Imperial College Press, London, 2005�.
                                                                                                            



E

I

p
i
o
r
m
g
f
i
�
a
i
m
f
e

i
s
l
t

a
a
c
a
t
i

a

b

JOURNAL OF MATHEMATICAL PHYSICS 47, 092107 �2006�

0

                        
xtremal covariant measurements
Giulio Chiribellaa� and Giacomo Mauro D’Arianob�

Istituto Nazionale di Fisica della Materia, Unità di Pavia, Dipartimento di Fisica “A.
Volta,” via Bassi 6, I-27100 Pavia, Italy and Department of Electrical and Computer
Engineering, Northwestern University, Evanston, Illinois 60208

�Received 20 March 2006; accepted 15 August 2006; published online 28 September 2006�

We characterize the extremal points of the convex set of quantum measurements
that are covariant under a finite-dimensional projective representation of a compact
group, with action of the group on the measurement probability space which is
generally nontransitive. In this case the POVM density is made of multiple orbits of
positive operators, and, in the case of extremal measurements, we provide a bound
for the number of orbits and for the rank of POVM elements. Two relevant appli-
cations are considered, concerning state discrimination with mutually unbiased
bases and the maximization of the mutual information. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2349481�

. INTRODUCTION

A fundamental issue in the theory of quantum information1 is the investigation of the ultimate
recision limits for extracting classical information from a quantum system. Indeed, when the
nformation is encoded on quantum states, its read-out suffers the intrinsically quantum limitation
f discriminating among nonorthogonal states. One then needs to optimize the discrimination with
espect to a given optimality criterion, which is dictated by the particular task for which the
easurement is designed, or by the particular way the information is encoded over states. The

ood news is that, although the position of the problem has a limited generality due to the specific
orm of the optimality criterion, nevertheless for a large class of criteria the optimization method
s given by a standard procedure. In such approach all possible measurements form a convex set
the convex combination of two measurements corresponding to the random choice between their
pparatuses�, and the optimization consists in maximizing a convex functional, e.g., the mutual
nformation,2,3 or to minimizing a concave functional, e.g., a Bayes cost,4,5 over the convex set of

easurements. Since the global maximum of a convex functional �or the minimum of a concave
unctional� is achieved over extremal points, the optimization can be restricted to the extremal
lements of the set only.

In most situations of interest, the set of signal states on which the information is encoded is
nvariant under the unitary action of some group of physical transformations. The symmetry of the
et of signal states is then reflected in a symmetry of the optimal measurements, which without
oss of generality can be assumed to be covariant5 with respect to the same group of transforma-
ions.

The problem of charactering extremal covariant measurements has been addressed in Refs. 6
nd 7, however restricting the analysis to the case of group-action that is transitive on the prob-
bility space of measurement outcomes, namely any two points in the probability space are
onnected by some group element. The present paper completes the investigation by generalizing
ll results to the case of nontransitive group actions. Indeed the discrimination of states belonging
o disjoint group orbits occurs in actual applications, and this situation has received little attention
n the literature. Moreover, when classical information is encoded on quantum states it can be
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�
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onvenient to decode it with a measurement having outcomes that are not in one-to-one corre-
pondence with the encoding states. This typically happens when the optimality criterion is non-
inear in the probabilities of measurement outcomes, as in the case of the mutual information.8 In
he presence of group symmetry, as recently noted by Decker,9 even if the encoding states form a
ingle group orbit, the maximization of the mutual information often selects covariant measure-
ents with probability space that splits into disjoint orbits. It is then interesting to quantify the

umber of orbits needed for the maximization of the mutual information, or at least to give an
pper bound for it. Indeed, as we will see in the present paper, the characterization of extremal
ovariant measurements also provides as a by-product an alternative and simpler derivation of the
ound given in Ref. 9.

I. STATEMENT OF THE PROBLEM

In the general framework of quantum mechanics the state of a system is represented by a
ensity operator � on a given Hilbert space H, whereas the statistics of a measurement is de-
cribed by a positive operator valued measure �POVM�, which associates a positive semidefinite
perator P�B��B�H� to any subset B���X� of the �-algebra of events in the probability space
. The defining properties for a POVM are

0 � P�B� � 1, ∀ B � ��X� , �1�

P��k=1
� Bk� = �

k=1

�

P�Bk�, ∀ �Bk� disjoint �2�

P�X� = 1 . �3�

he probability of the event B���X� is then given by the Born rule

p�B� = Tr��P�B�� . �4�

In this paper we will consider the case where the probability space X supports the action of a
ompact group G, namely any group element g�G acts as a measurable automorphism of the
robability space X, which maps x�X to gx�X. If any two points x1 ,x2�X are connected by
ome group element, i.e., x2=gx1 for some g�G, the group action is called transitive. In this case,
hich is the most studied in the literature,4,5 the whole probability space is the group orbit of an

rbitrary point x0�X, namely X= �gx0 �g�G�. In this paper we will study the more general case
here the group action is not transitive, and, accordingly, the probability space is not a single
roup orbit, but the union of a set of disjoint orbits, each one being labeled by an index i�I for
ome set I. For simplicity, we will assume the index set I to be finite.

The simplest case of the nontransitive group action then arises when the probability space is
he Cartesian product of the index set I with the compact group G, i.e., X=I�G. In this case, the
ction of a group element h�G on a point x= �i ,g��I�G is given by hx= �i ,hg�. Measurements

with outcomes in I�G naturally arise in the discrimination of a set of signal states which is the
union of a certain number of disjoint group orbits, each orbit Oi being generated by the action of
he group on a given initial state �i, namely Oi= �Ug�iUg

† �g�G� for some unitary representation
�G�= �Ug �g�G�. Precisely, if the stability group Gi= �h�G �Uh�iUh

†=�i� associated to any state

i consists only of the identity element e, then there is a one-to-one correspondence between signal
tates and points of the probability space X=I�G. In Sec. IV we will study in detail the case of
OVMs with probability space X=I�G.

If the stability groups associated to the initial states ��i � i�I� are nontrivial, namely Gi

�e� for some i�I, in order to have a one-to-one correspondence between signal states and
easurement outcomes, one must consider the probability space X=�i�IG /Gi, where G /Gi

enotes the quotient of G with respect to the equivalence relation “g	g� if g�=g ·h for some h

Gi.” This more general case will be treated in Sec. V.
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Definition 1 �covariant POVMs�: Let X be a probability space supporting the group action
:x�X�gx�X. A POVM is covariant5 if it satisfies the property

P�B� = Ug
†P�gB�Ug, ∀ B � ��X�, ∀ g � G , �5�

here gB� �gx �x�B�.
In the case X=I�G, it is simple to prove10 that any covariant POVM admits an operator

ensity M�i ,g� with respect to the �normalized� Haar measure dg on the group G, namely, if B
�i ,A�, where A�G is a measurable subset, then P�B�=
AdgM�i ,g�. Moreover, such an operator
ensity has necessarily the form10

M�i,g� = UgAiUg
†, �6�

here Ai�B�H� are Hermitian operators satisfying the constraints

Ai � 0, ∀ i � I , �7�

�
i�I
�

G

dgUgAiUg
† = 1 . �8�

ere and throughout the paper we adopt for the Haar measure the normalization

�
G

dg = 1. �9�

According to the above discussion, any covariant POVM with probability space X=I�G is
ompletely specified by a set of operators �Ai � i�I�, such that both constraints in Eqs. �7� and �8�
re satisfied. Moreover, it turns out that it is very useful to represent such a vector of operators as
single block operator A= � i�IAi, acting on an auxiliary Hilbert space Haux� � i�IWi, where

i�H∀ i�I. In terms of the block operator A� � i�IB(Wi) the two constraints Eq. �7� and Eq.
8� become

A � 0, �10�

nd

L�A� = 1 , �11�

here L : � i�IB(Wi)→B(H) is the linear map

L�A� � �
i�I
�

G

dgUgAiUg
†. �12�

he two constraints �10� and �11� define such a convex subset of the space of block operators
� i�IB(Wi), which is in one-to-one affine correspondence with the convex set of covariant
OVMs. In the following, the convex set of block operators will be denoted by C.

Proposition 1: The convex set C, defined by the constraints �10� and �11� is compact in the
perator norm.

Proof: Since C is a subset of a finite dimensional vector space, it enough to show that C is
ounded and closed. C is bounded, since for any A�C, one has ��A � ��Tr�A�=�i�ITr�Ai�
Tr�L�A��=d �using Eqs. �10� and �11��. Moreover, C is closed. In fact, if �An� is a Cauchy

equence of points in C, then An converges to some block operator A� � i�IB(Wi). We claim that
belongs to C. Of course, A satisfies condition �10�. As regards condition �11�, just notice that the
is continuous, being linear. Therefore, we have ��L�A�−1 � �= ��L�A−An� � �→0, namely A satisfies
ondition �11�. �

                                                                                                            



e
T

g
c
a
s

A

I

s
u
c
n

w
i
S
a
S
t

U
c
�
w

�

s
d

W

w

092107-4 G. Chiribella and G. M. D’Ariano J. Math. Phys. 47, 092107 �2006�

                        
Observation 1: Since the convex set C is compact, it coincides with the convex hull of its
xtreme points, i.e., any element A�C can be written as convex combination of extreme points.
he classification of the extreme points of C will be given in Sec. IV.

Observation 2: In this section and all throughout the paper, G is assumed to be a compact Lie
roup. Nevertheless, all results clearly hold also if G is a finite group, with cardinality �G�. In this
ase, one only has to make the substitution 
Gdg→ �1/ �G � ��g�G. Moreover, since now the prob-
bility space X=I�G is discrete, there is no need of introducing any operator density, and we
imply have

P�i,g� =
1

�G�
UgAiUg

†. �13�

n example of covariant POVM with a finite symmetry group will be given in Sec. VI.

II. SOME RESULTS OF ELEMENTARY GROUP THEORY

Let G be a compact Lie group and let dg be the invariant Haar measure on G, normalized
uch that 
Gdg=1. Consider a finite dimensional Hilbert space H and represent G on H by a
nitary �generally projective� representation R�G�= �Ug �g�G�. The collection of equivalence
lasses of irreducible representations which show up in the decomposition of R�G� will be de-
oted by S. Then H can be decomposed into the direct sum of orthogonal irreducible subspaces:

H = �
��S

�
k=1

m�

Hk
�, �14�

here the index � labels equivalence classes of irreducible representations �irreps�, while the
ndex i is a degeneracy index labeling m� different equivalent representations in the class �.
ubspaces carrying equivalent irreps have all the same dimension d� and are connected by invari-
nt isomorphisms, namely for any k , l=1, . . . ,m� there is an operator Tkl

� �B�H� such that
upp�Tkl

��=Hl
�, Rng�Tkl

��=Hk
�, and �Tkl

� ,Ug�=0 ∀g�G. Due to Schur lemmas, any operator O in
he commutant of the representation R�G� has the form:

O = �
�

�
k,l=1

m� Tr�Tlk
�O�

d�

Tkl
� . �15�

sing the above-presented formula, the normalization of a covariant POVM, given by Eq. �11�,
an be rewritten in a simple form. In fact, due to the invariance of the Haar measure dg, we have
L�A� ,Ug�=0 ∀g�G, i.e., L�A� belongs to the commutant of R�G�. Then, by exploiting Eq. �15�,
e rewrite the normalization constraint �11� as

�
i�I

Tr�Tkl
�Ai� = d��kl, ∀ � � S, ∀ k,l = 1, . . . ,m�, �16�

kl denoting the Kronecker delta.
Again, this condition can be recast into a compact form by introducing the auxiliary Hilbert

pace Haux= � i�IWi, with Wi�H ∀i�I, and constructing a block operator with a repeated
irect sum of the same operator Tkl

�, i.e.,

Skl
� = �

i�I
Skli

� , Skli
� = T�

kl, ∀ i � I . �17�

ith this definition, Eq. �16� becomes

Tr�Skl
�A� = d��kl, ∀ � � S, ∀ k,l = 1, . . . ,m�, �18�
here A is the block operator A= � i�IAi.
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V. EXTREMAL COVARIANT POVMs

This section contains the main result of the paper, namely the characterization of the extremal
ovariant POVMs with probability space I � G. Such a characterization will be given by exploit-
ng the one-to-one affine correspondence between the convex set of covariant POVMs and the
onvex set C of block operators defined by the constraints �10� and �11�, or, equivalently, by �10�
nd �18�.

Definition 2: An Hermitian block operator P= � i�IPi is a perturbation of A�C if there
xists an 	
0 such that A+ tP�C for any t� �−	 ,	�.

Clearly, a point A�C is extreme if and only if it admits only the trivial perturbation P=0.
Lemma 1: A block operator P= � i�IPi is a perturbation of A�C if and only if

Supp�P� � Supp�A� , �19�

Tr�Skl
�P� = 0, ∀ � � S, ∀ k,l = 1, . . . ,m�. �20�

Proof: Condition �19� is equivalent to the existence of an 	
0 such that A+ tP�0 for all t
�−	 ,	� �see Lemma 1 of Ref. 7�. On the other hand, condition �20� is equivalent to require that
+ tP satisfies the normalization constraint �16� for all t� �−	 ,	�. �

Observation: Note that, due to the block form of both P and A, condition �19� is equivalent to

Supp�Pi� � Supp�Ai�, ∀ i � I . �21�

Using the previous lemma, we can obtain a first characterization of extremality:
Theorem 1 (Minimal support condition): A point A�C is extremal if and only if for any

�C,

Supp�B� � Supp�A� = ⇒ A = B . �22�

roof: Suppose A extremal. Then, if Supp�B��Supp�A�, according to Lemma 1, P=A−B is a
perturbation of A�C. Hence, P must be zero. Conversely, if P is a perturbation of A, then B
=A+ tP is an element of C for some t�0. Due to Lemma 1, we have Supp�B��Supp�A�. Then,
condition �22� implies B=A+ tP=A, i.e., P=0. Therefore, A is extremal. �

Corollary 1: If A�C and rank�A�=1, then A is extremal.
Proof: Since rank�A�=1, then, for any B�C, the condition Supp�B��Supp�A� implies B

�A for some �
0. Moreover, since both A and B are in C, from Eq. �18� we have d�

Tr�Skk
� B�=� Tr�Skk

� A�=�d�, whence necessarily �=1. Condition �22� then ensures that A is ex-
remal. �

A deeper characterization of extremal covariant POVMs can be obtained by using the follow-
ng lemma.

Lemma 2: Let A be a point of C, represented as

A = �
i�I

Xi
†Xi, �23�

nd define Hi=Rng�Xi� the range of Xi. A block operator P= � i�IPi is a perturbation of A if and
nly if

Pi = Xi
†QiXi, ∀ i � I , �24�

or some Hermitian Qi�B�Hi�, and

�
i�I

Tr�Skli
� Xi

†QiXi� = 0. �25�

Proof: First of all, the form �24� is equivalent to condition �19�. In fact, if P has the form �24�,

hen clearly Supp�P��Supp�A�. Conversely, if we assume condition �19� and write
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P= � i�IPi, we have necessarily Supp�Pi��Supp�Xi
†Xi�=Supp�Xi�. Exploiting the singular

alue decomposition Xi=�n=1
ri �n

�i� �wn
i �vn

i �, where ��vn
i � and ��wn

i � are orthonormal bases for
upp�Xi� and Rng�Xi� respectively, we have that any Hermitian operator Pi satisfying
upp�Pi��Supp�Xi� has the form Pi=�m,npmn

�i� �vm�vn�, whence it can be written as Pi=Xi
†QiXi,

or some suitable Hermitian operator Qi�B�Rng�X��. Once the equivalence between the form
24� and condition �19� is established, relation �25� follows directly from Eq. �20�. �

Observation: According to the previous lemma, a perturbation of A is completely specified by
set of Hermitian operators �Qi�B�Hi� � i�I�, where Hi=Rng�Xi�. Such operators can be cast

nto a single block operator Q� � i�IB(Hi) by defining

Q = �
i�I

Qi. �26�

n terms of the block operator Q we have the following:
Lemma 3: Let A= � i�IXi

†Xi be a point of C. Define the block operators

Fkl
� = �

i�I
XiSkli

� Xi
†. �27�

hen A admits a perturbation if and only if there exists an Hermitian block operator Q
� i�IB(Hi) such that

Tr�Fkl
�Q� = 0, ∀ � � S, ∀ k,l = 1, . . . ,m�. �28�

Proof: Using the definition of Fkl
� and the cyclic property of the trace, it is immediate to see

hat Eq. �28� is equivalent to Eq. �25�. �

The previous lemma enables us to characterize the extremal points of C.
Theorem 2 (Spanning set condition): Let A= � i�IXi

†Xi be a point of C, and F= �Fkl
� ��

S ,k , l=1, . . . ,m�� be the set of block operators defined in Lemma 3. Then, A is extremal if and
nly if

Span�F� = �
i�I

B�Hi� , �29�

here Hi=Rng�Xi�.
Proof: A is extremal iff it admits only the trivial perturbation P=0. Equivalently, due to

emma 3, A is extremal iff the only Hermitian operator Q� � i�IB(Hi) that satisfies Eq. �28� is

he null operator Q=0. Let us decompose the Hilbert space K= � i�IB(Hi), as K=Span�F�
� Span�F��, where � denotes the orthogonal complement with respect to the Hilbert-Schmidt
roduct �A ,B�=Tr�A†B�. Then, A is extremal iff the only Hermitian operator in Span�F�� is the
ull operator. This is equivalent to the condition Span�F��= �0�, i.e., K=Span�F�. �

Corollary 2: Let A= � i�IXi
†Xi be a point of C, and let define ri=rank�Xi�. If A is extremal,

hen the following relation holds

�
i�I

ri
2 � �

��S
m�

2 . �30�

Proof: For an extreme point of C, relation �29� implies that the cardinality of the set F is
reater than the dimension of K= � i�IB(Hi). Then, the upper bound �30� follows from dim K
�i�Iri

2 and from the fact that �F � =���Sm�
2 . �

Observation: If the group-representation R�G� is irreducible, then its Clebsch-Gordan decom-
osition contains only one term �̄ with multiplicity m�̄=1. Then, bound �30� becomes �i�Iri

2

1, namely for an extremal A= � i�IAi, one has necessarily rank�Ai0
�=1 for some i0�I, and

i=0 for any i� i0 �this is also a sufficient condition, due to Corollary 1�. In terms of the
orresponding covariant POVM M�i ,g�=UgAiUg

†, one has M�i ,g�=0 for any i� i0, i.e., corre-

ponding to events in the probability space that never occur.
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. EXTREMAL COVARIANT POVMs IN THE PRESENCE OF NONTRIVIAL STABILITY
ROUPS

In Sec. IV, we obtained a characterization of extremal covariant POVMs whose probability
pace is X=I�G for some finite index set I. The framework we outlined is suitable for a
traightforward generalization to the case X=�i�IG /Gi, where Gi are compact subgroups of G.

In this case, it is possible to show that a covariant POVM P admits a density M�xi� such that
or any measurable subset B�G /Gi one has P�B�� Pi�B��
Bi

dxiM�xi�, where dxi is the group
nvariant measure on G /Gi. The form of the operator density is now

M�xi� = Ugi�xi�
AiUgi�xi�

† , �31�

here Ai�0, and gi�xi��G is any representative element of the equivalence class xi�G /Gi. The
ormalization of the POVM is still given by Eq. �16�. In addition, in order to remove the depen-
ence of M�xi� from the choice of the representative gi�xi�, each operator Ai must satisfy the
elation

�Ai,Uh� = 0, ∀ h � Gi. �32�

he commutation constraint �32� can be simplified by decomposing each representation R�Gi�
�Uh �h�Gi� into irreps

Uh = �
��Si

Uh
�i � 1m�i

, �33�

here m�i
denotes the multiplicity of the irrep �i, and Si denotes the collection of all irreps

ontained in the decomposition of R�Gi�. This corresponds to the decomposition of the Hilbert
pace H as

H = �
�i�Si

H�i
� Cm�i, �34�

here H�i
is a representation space, supporting the irrep �i, and Cm�i is a multiplicity space. In this

ecomposition, the commutation relation �32� is equivalent to the block form

Ai = �
�i�Si

1�i
� Ai,�i

, �35�

here Ai,�i
�0 are operators acting on the multiplicity space Cm�i.

By defining = �i ,�i� and �=�i�ISi, we can introduce an auxiliary Hilbert space, and asso-
iate to a covariant POVM the block operator

A = �
��

A, �36�

here A�Ai,�i
. Furthermore, we define the block operators

Skl
� = �

��
Skl

� , �37�

here now Skl=TrH�i
���i

Tkl
��. Here ��i

denotes the projector onto H�i
� Cm�i, and TrH�i

denotes

he partial trace over H�i
. With these definitions, the normalization of the POVM, given by Eq.

16�, becomes equivalent to

Tr�Skl
�A� = �kld�. �38�

Now we call D the convex set of block operators A= ���A, defined by the two conditions
�0 and Eq. �38�. Such a convex set is in one-to-one affine correspondence with the convex set
f covariant POVMs with probability space X=�i�IG /Gi. Since the constraints defining D are
ormally the same defining the convex set C, we can exploit the characterization of extremal

oints of the previous section. In particular, Corollary 2 becomes
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Corollary 3: Let A= ���X
† X be a point of D, and define ri,�i

�r=rank�X�. If A is
xtremal, then the following relation holds:

�
i�I

�
�i�Si

ri,�i

2 � �
��S

m�
2 . �39�

Observation: As in the case of Corollary 2, if the representation R�G� is irreducible, as a
onsequence of the bound about ranks, one obtains rank�A0

�=1 for some 0��, and A=0 for
ny �0.

I. APPLICATIONS

Here we give two examples of the use of the characterization of extremal POVMs in the
olution of concrete optimization problems.

. State discrimination with mutually unbiased bases

. Two Fourier transformed bases

Here we consider a case of state discrimination where the set of signal states is the union of
wo mutually unbiased bases �MUBs�,11 related by Fourier transform. Precisely, let H be a
-dimensional Hilbert space, and consider the orthornormal bases B1= ��n �n=0, . . . ,d−1� and

2= ��en �n=0, . . . ,d−1�, where �en= �1/�d��m=0
d−1 mn �m, =exp�2�i /d�. B1 and B2 are mutu-

lly unbiased, namely ��m �en�2=1/d for any m ,n. Consider the two sets of states defined by S1

��1n= �n�n � �n=0, . . . ,d−1� and S2= ��2n= �en�en � �n=0, . . . ,d−1�. Now the problem is to deter-
ine with minimum error probability the state of the system, which is randomly prepared either in
state of S1 with probability p /d, or in a state of S2 with probability �1− p� /d.

Exploiting the results of the present paper it is immediate to find the measurement that
inimizes the error probability. In fact, let us consider the irreducible representation of the group
=Zd�Zd given by

R�G� = �Upq = �
n=0

d−1

qn�n � p�n�,�p,q� � Zd � Zd� , �40�

here � denotes addition modulo d. Then, the sets S1 and S2 are the group orbits of the initial
tates �10 and �20, respectively. Moreover, the states �10 and �20 have nontrivial stability groups G1

nd G2, defined by the unitaries R�G1�= �U0q �q�Zd� and R�G2�= �Up0 � p�Zd�. Therefore, signal
tates are in one-to-one correspondence with points of the probability space X=G /G1�G /G2,
uch points being denoted by couples �i ,n� where i� �1,2� and n�Zd. For the discrimination we
an consider without loss of generality a covariant POVM, of the form of Eq. �31�, where now the
roup element g is the couple �p ,q��Zd�Zd. Moreover, since the probabilities are linear in the
OVM, in the minimization of the error probability we can restrict the attention to extremal
ovariant POVMs. Now, the representation R�G� is irreducible, whence Corollary 3 requires
ither A1=0 or A2=0 in Eq. �31�. This means that either the states in S1 or the states in S2 are
ever detected. Moreover, since the states within a given set, either S1 or S2, are orthogonal, they
an be perfectly distinguished among themselves. Therefore, the optimal POVM is P�1��i ,n�
�i1 �n�n� if p�1/2, and P�2��i ,n�=�i2 �en�en� otherwise. In particular, if p=1/2, an experimenter
ho tries to discriminate states of two Fourier transformed bases cannot do anything better than

andomly choosing one of the orthogonal measurements P�1� and P�2�. This is the working prin-
iple of the BB84 crypthographic protocol.13

. Mutually unbiased bases in prime dimension

If the dimension of the Hilbert space H is a prime number, then there are d+1 MUBs that are

enerated by the irreducible representation
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R�G� = �Upq = �
n=0

d−1

qn�n � p�n�,�p,q� � Zd � Zd�
ia the construction by Wootters and Fields11 �see also Ref. 12�.

In this case, the result of the previous paragraph can be immediately generalized to a case of
tate discrimination with more than two MUBs. Again, due to the irreducibility of the represen-
ation R�G�, an extremal POVM is the group orbit of a single operator. Therefore, denoting by Si

he set of states associated to the basis Bi, and by pi /d the probability of extracting a state from Si

�i�Ipi=1�, we have that the covariant POVM which discriminates the signal states with mini-
um error probability is the orthogonal measurement onto the basis Bl̄ such that pl̄=maxl�I�pl�.

. Mutually unbiased bases in dimension pr

In the case of Hilbert space dimension d= pr, where p is prime number, d+1 MUBs can be

onstructed by introducing a projective representation of the Abelian group G̃=Fd�Fd, where Fd

s the finite field of cardinality d, considered here as an additive group. In order to apply the results
f the paper to this case, we first outline the method for constructing MUBs presented in Ref. 12,
o which we refer for details and for the explicit proofs.

Consider an orthonormal basis for H, denoted as ��n �n�Fd�, in which basis elements are
abeled by elements of the field. Then, introduce the projective representation

R�G̃� = �UpVq��p,q� � Fd � Fd� , �41�

here Up ,Vq are the unitary operators uniquely defined by the relations

Up�n = �n + p ,

Vq�n = �q,n�n . �42�

ere, �a ,b���a ·b�, where ��x� is any nontrivial character of the additive group Fd, and a+b
a ·b� denote the addition �product� in the finite field Fd. With the above definition �a ,b is a
ymmetric bicharacter for the additive group Fd, namely ��a ,b � =1, �a ,b= �b ,a, and �a ,b+c
�a ,b�a ,c, for any a ,b ,c�Fd. By definition �42�, the operators Up ,Vq commute up to a phase,
amely

VqUp = �p,qUpVq. �43�

o construct d+1 MUBs, it is useful to introduce d+1 sets of the unitary operators, each set being
abeled by an index i�Fd� ��� �� is just a label which denotes an additional value, not in Fd, of
he index i�. The d+1 sets of unitary operators are defined by

W�i, j� � ���i, j�UjVi·j , i � Fd

Vj , i = � ,
�44�

here ��i , j� are suitable phase factors �see Ref. 12�, chosen in such a way that, for any fixed i, the
perators W�i , j� form a unitary representation of the additive group Fd, namely

W�i, j�W�i,l� = W�i, j + l�, ∀ j,l � Fd. �45�

ince the group Fd is Abelian, for fixed i the operators W�i , j� can be diagonalized on the same
asis, denoted by Bi. The above construction guarantees that the bases �Bi � i�Fd� ��� � are all
utually unbiased. Moreover, the one-dimensional projector P�i ,k� onto the kth element of the

asis Bi can be written as12

P�i,k� = d−1 � �j,kW�i, j� . �46�

j�Fd
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Now we exploit the above-noted construction to show that, for any i�Fd� ���, the set of
tates Si= ��ik= Pik �k�Fd� is the orbit of the initial state �i0= Pi0 under the action of the represen-

ation R�G̃�.
For i�Fd, we have indeed

UpVqP�i,k�Vq
†Up

† = d−1 �
j�Fd

�j,k��i, j�UpVqUjVk·jV−qU−p

= d−1 �
j�Fd

�j,k�j,q�i · j,− p��i, j�UjVi·j

= d−1 �
j�Fd

�j,k − q + i · pW�i, j� = P�i,k − q + i · p� , �47�

here we used Eqs. �46�, �44�, �43�, and the properties �a ,−b= �a ,b , �a ,b+c= �a ,b�a ,c, and
a ,b ·c= �a ·b ,c. Similarly, for i=� we obtain

UpVqP�� ,k�Vq
†Up

† = P�� ,k + p� . �48�

otice that from Eqs. �47�, �48� it also follows that for any i�Fd� ���, the stability group of

i0= Pi0 is the additive group Fd, which is projectively represented by the unitaries �UpVi·p � p
Fd� for i�Fd, and by the unitaries �Vq �q�Fd� for i=�.

In the problem of state discrimination where the state �ik is randomly drawn from the set Si

ith probability pi /d, we can then use the results about extremal covariant POVMs with nontrivial

tability group to find the minimum error POVM. Again, since the representation R�G̃� is
rreducible,14 an extremal POVM must be the group orbit of a single operator. The optimal POVM
or state discrimination is then the orthogonal measurement onto the basis Bl̄ which occurs with
ighest probability pl̄=maxi�pi�.

. Maximization of the mutual information

A frequent problem in quantum communication is to find the POVM Pi , i�I, that maximizes
he mutual information with a given set of signal states S= �� j � j�J�. Denoting by pj the prob-
bility of the signal state � j, by qi=� j�J pjTr�Mi� j� the overall probability of the outcome i, and
y pij = pjTr�Mi� j� the joint probability of the outcome j with the state �i, the mutual information
s defined as

I = H��pij�� − H��pi�� − H��qj�� , �49�

here H��pi����i− pilog�pi� is the Shannon entropy. As in the minimization of a Bayes cost,4,5

hen the set of signal states is invariant under the action of some finite group G and all states in
he same group orbit have the same probability, one can without loss of generality restrict the
earch for the optimal POVM among covariant POVMs with probability space X=I � G, for
ome finite index set I.15,9 However, differently from the case of state discrimination, the points of
he probability space do not need to be in one-to-one correspondence with the signal states.
herefore, the set I is not specified a priori.

Combining our characterization of extremal covariant POVMs with the following basic prop-
rties of the mutual information �for the proofs, see Ref. 15�, we can readily obtain a bound about
he cardinality of the index set I.

Property 1: The mutual information is a convex functional of the POVM.
Property 2: In the maximization of the mutual information, one can consider without loss of

enerality POVMs made of rank-one operators.
Consider a covariant POVM P�i ,g�= �1/ ��G � �UgAiUg

†. Due to Property 1, in the maximization

f the mutual information we can consider extremal covariant POVMs. Then, from Corollary 2,
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e have the bound �i�Irank�Ai�2����Sm�
2 . Due to Property 2, this also implies that the number

f �rank-one� operators Ai must be smaller than ���Sm�
2 . Therefore, we can assume without loss

f generality

�I� � �
��S

m�
2 . �50�

his provides an alternative derivation of the bound given in Ref. 9. Finally, if the representation
�G� is irreducible, the bound gives �I � =1, namely the probability space is X�G, according to

he classic result of Ref. 15.
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A new nonstandard-analytical approach to quantum fields is presented, which gives
a mathematical foundation for manipulating pointwise-defined quantum fields. In
our approach, a field operator ��x� is not a standard operator-valued distribution,
but a nonstandard operator-valued function. Then formal expressions containing,
e.g., ��x�2 can be understood literally, and shown to be well defined. In the free
field cases, we show that the Wightman functions are explicitly calculated with the
pointwise field, without any regularization, e.g., Wick product. Our notion of point-
wise fields is applied also to the path integral formalisms of scalar fields. We show
that some of physicists’ naive expressions of Lagrangian path integral formulas can
be rigorously justified. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2339017�

. INTRODUCTION

The main object of nonstandard mathematics,1–3 originated by A. Robinson, is to give a
igorous foundation for the notions of infinities and infinitesimals, e.g., infinite real numbers and
nfinitesimal real numbers. Nonstandard approaches to quantum physics4–12 are those which use
onstandard mathematics as a fundamental tool of quantum physics.

In this paper, we give a new nonstandard approach which gives a rigorous foundation for
anipulating pointwise-defined quantum fields. For example, consider the physicist’s naive ex-

ression of the Hamiltonian of a free scalar field with mass m:

Hm =
1

2
� ��̂�x�2 + �

k=1

d

��k�̂�x��2 + m2�̂�x�2�dx .

n the standard approach, the field operators �̂ and �̂ are considered as operator-valued distribu-
ions, which are not pointwise-defined functions. So expressions like �̂�x�2 are mathematically
eaningless, and hence the right-hand side must be regarded as nothing more than a formal

xpression. On the other hand, in our approach, the above-noted right-hand side can be understood
iterally, and shown to be well defined.

Our notion of pointwise fields is applicable also to the path integral formalisms. Standard
ustifications of path integrals for scalar fields are based on the theorems of Feynman–Kac–Nelson
nd Minlos, where the path space is taken to be the space S� of tempered distributions. Thus �2

nd ��k��2 are not always meaningful for a path ��S�. However, physicists use the path integral
xpression like

�
Electronic mail: yamasita@dpc.aichi-gakuin.ac.jp
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� e�	L��,�k��dxd� ,

here L is the Lagrangian, and ��C is a constant. Usually L contains �2 and ��k��2. Thus in the
tandard approach, the above-presented expression must be regarded as merely a formal one. On
he other hand, our approach enables one to justify the expression literally.

Our approach is based on the notion of hyperfinite-dimensional Schrödinger representations of
elds. A Schrödinger representation of a quantum field is a representation where the state space is
function space H, typically H=L2�M ,�� with a measure space �M ,��, and the field operators at

=0, called time zero field operators, are represented as the multiplication operators on H. A
yperfinite-dimensional (or �finite-dimensional) Schrödinger representation is a Schrödinger rep-
esentation where M is taken to be a hyperfinite-dimensional linear space, i.e., M 
 �R� for a
nfinite �natural number �� �N.

I. NONSTANDARD ANALYSIS

There are several different formulations of nonstandard analysis. This paper adopts the set-
heoretical approach based on superstructures instituted by Robinson and Zakon13 and follows the
p-to-date description by Chang and Keisler.14 For the introductory purpose, see Hurd and Loeb.2

In this paper, we always work with a nonstandard universe �V�X� ,V�Y� , � � which is
-saturated with card�V�X����; such a nonstandard universe is said to be polysaturated. We also
ssume that the base X includes the complex numbers C and any other structures under consid-
ration such as given groups and Hilbert spaces.

For a set S, let �S= �s �s�S�. We identify �z with z for all z�C. Hence, �S=S if S is a subset
f C, e.g., �C=C, �R=R �the real numbers�, �Z=Z �the integers�, and �N=N. Let R+,�R0, �R0

+,
�R	

+, and �N	 denote the sets of positive real numbers, infinitesimal hyper-real numbers, positive
nfinitesimal hyper-real numbers, positive infinite hyper-real numbers, and infinite hypernatural
umbers, respectively. It is shown that �N	= �N \N. We write x�	 if x� �R	

+, and 0�x�	 if
� fin �R+= �R+ \ �R	

+. If r� �R and �r � �	, the standard part of r is denoted by �r. If r�	, we
rite �r=	. Let x ,y� �R+. We say that x is of the order of y, in symbols x�y, iff 0�x /y�	 and
�y /x�	. We write x
y if x /y�0. For a hyperfinite ��-finite� set F, let �F� denote the internal
ardinal number of F.

Let �X ,O� be a topological space. Let Ox denote the system of open neighborhoods of x
X. The monad of x�X is the subset of �X defined by monO�x�= � �O � O�Ox�. The set of

ear standard points is the subset of �X defined by ns��X�= � monO�x� �x�X�. It is shown that
X ,O� is Hausdorff if and only if x�y implies monO�x��monO�y�=�. Thus for any Hausdorff
pace �X ,O�, we can define the equivalence relation �O on ns�X so that a�Ob iff a�monO�x�
nd b�monO�x� for some x�X.

Let f and g be functions from �Rn to �C. When we consider the approximation f �g, we must
ake clear what topology is considered. For example,

1. pointwise topology: f �gÛ �"x�R�f�x��g�x�.
2. Lp topology: f �gÛ �f −g�p�0.
3. topology of Schwartz distributions:

f � g Û �"h � D�Rn���f ,h� � �g,h� .

n this paper we frequently use the approximations with respect to L2 topology and that of
chwartz distributions.

For further information on nonstandard real analysis, we refer to Stroyan and Luxemburg3 and
2
urd and Loeb.
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II. NONSTANDARD DISTRIBUTIONS

There are several approaches to nonstandard distribution theory. In this paper, we use the
ollowing framework.

Let d�N. Let M be a d-dimensional possibly noncompact Riemannian manifold. Let D
D�M� be the space of smooth functions from M to R whose support is compact. D is furnished
ith the inner product

�f ,g� =�
M

f�x�g�x�dx .

he nonstandard extension �D has the transferred �R-valued inner product

��f ,g� = ��
�M

f�x�g�x�dx .

e abbreviate ��f ,g� simply as �f ,g�.
Let F be a �finite-dimensional subspace of �D such that

�D � F � �D .

he existence of such F is shown by the saturation principle in nonstandard analysis. Note that
here is �� �N satisfying F
 �R� �isomorphism of �linear spaces�.

Since F is �finite-dimensional, its internal algebraic dual

F1
* = f �f:F → �R, �linear�

s equal to its internal topological dual

F2
* = f �f:F → �R, �continuous� .

et F* denote the internal dual space of F, that is, F*=F1
*=F2

*. Note that the inner product �· , · �
aturally determines an isomorphism e :F*
F. Since R is a subfield of �R, the internal linear
paces F and F* over �R can also be regarded as external linear spaces over R, i.e., as real linear
paces in the usual �standard-mathematical� sense. Thus such a phrase as “linear map from D to
” makes sense.

Let D* denote the algebraic dual of D in the usual sense.
Lemma 3.1: There is an injective linear map � :D*→F such that

�" f � F����F�, f� = ��F��f� �1�

or all F�D*.
Proof: Let F�D*. The map �F :F→ �R defined by �F�f�= ��F��f� is a �linear functional on

, that is, �F�F*. Define � by ��F�=e��F�, where e denotes the natural isomorphism e :F*

F. Then we can check that �1� holds. We will show that � is injective. Since � is linear, it
uffices to show that

��F� = 0 Þ F = 0 for any F � D*.

uppose ��F�=0. Then by �1�, we have

�" f � F���F��f� = 0.

ince �D�F, we have

�" f � D���F���f� = 0.
y the transfer principle, this is equivalent to
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�" f � D�F�f� = 0.

his means F=0. QED
By the above Lemma, we have the relation

D�

a

D� � D*
�

�

F � �D � �L2�M� ,

here D�

a

D� denotes the natural embedding a : f � �· , f�. The embedding D��D*
�

�

F permits us
o consider a Schwartz distribution as an element of F, a space of pointwise-defined functions on

�M.
For x� �M, define �x�F by

�" f � F���x, f� = f�x� .

he nth derivatives of �x are already defined because �x� �D. In the case where M =Rn, clearly
e have

���/�xk��x, f� = − ��x,��/�xk�f� .

ut note that a derivative of �x may not be in F. In the case where M =Rn, ��l /�xk
l ��x�1�k

n� is well-defined for any l� �N, but ��l /�xk
l ��x�F can occur even if l� 	 . However we can

efine a “derivative” �x
k�F such that

��x
k, f� = − ��/�xk�f�x�, f � F .

learly we see the relation �x
k=EF�� /�xk��x where EF is the orthogonal projection from �L2�Rn� to

. So �x
k is called a projected derivative.

Also note that the following relations do not hold:

x � y Þ �x�y� = 0,

�x�y� = �0�y − x��M = Rn� .

n the other hand, since our nonstandard delta functions are pointwise-defined, the product of
elta functions such as f�x�=�a�x�2 are well defined. An inner product of delta functions such as
�x ,�y� is also well defined. Thus we can directly justify the physicists’ trace formula as follows.

Proposition 3.2: The following properties hold.
�i� �x�y�=�y�x�.
�ii� 	�Mf�x��xdx= f for any f �F.
�iii� �Trace formula� Let A :F→F be an internal linear operator. Then

Tr A =�
�M

��x,A�x�dx . �2�

�iv� Let e1 , . . . ,e��F be an orthonormal basis of F. Then

�x�y� = �
k=1

�

ek�x�ek�y� . �3�

Proof: �i� holds because �x�y�= ��x ,�y�=�y�x�.

�ii� For any g�F,
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��
�M

f�x��xdx,g� =� �
�M

f�x��x�y�dxg�y�dy =� �
�M

�x�y�g�y�dyf�x�dx =�
�M

��x,g�f�x�dx

= �
�M

g�x�f�x�dx = �f ,g� .

hus �ii� holds.
�iii� Since �ii� and

��x,A�y� =� �x�s��A�y��s�ds = �A�y��x� ,

e have

Tr A = �
i

�ei,Aei� = ���
�M

ei�x��xdx,A�
�M

ei�x��xdx� = �� �
�M

ei�x�ei�y���x,A�y�dxdy

=� �
�M

�x�y���x,A�y�dxdy =� �
�M

�y�x���x,A�y�dxdy =� �
�M

�y�x��A�y��x�dxdy

= �
�M

��y,A�y�dy .

iv� For any g�F, we have

��
k=1

�

ek�x�ek�·�,g� = �
k=1

�

ek�x��ek,g� = g�x� .

hus Eq. �3� holds. QED

V. HAMILTONIAN FORMALISM

Let d�N, and M be a d-dimensional Riemannian manifold. We work in �d+1�-dimensional
pace-time �M  �R.

Since F
 �R�, F is equipped with the natural �Lebesgue measure. Let L2�F� denote the
Hilbert space of functions on F square integrable with respect to the �Lebesgue measure:

L2�F� = �F�F:F → �C,internal,�
F

�F�f��2df � �	� .

he L2 inner product is denoted by �·� · �:

�F�G� � �
F

F�f�G�f�df .

n the other hand, the real inner product on D�M� is denoted by

�f ,g� =�
M

f�x�g�x�dx .

or x� �M, define the �unbounded self-adjoint operator �̂�x� on L2�F� by

��̂�x�F��f� = f�x�F�f� .

ˆ 2
or f �F, define the �unbounded self-adjoint operator ��f� on L �F� by
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�̂�f� = �
�M

f�x��̂�x�dx .

vidently �̂�f� operates as follows:

��̂�f�F��g� = �f ,g�F�g� .

ote that the relation �̂�x�= �̂��x� holds.
For f �F, define the �unbounded self-adjoint operator �̂�f� on L2�F� by

�eit�̂�f�F��g� = F�tf + g�, t � �R .

n other words, i�̂�f� is the internal differential operator in the direction of f . For x� �M, define
he �unbounded self-adjoint operator �̂�x� on L2�F� by �̂�x�= �̂��x�.

We can check the canonical commutation relations:

��̂�f�,�̂�g�� = ��̂�f�,�̂�g�� = 0, ��̂�f�,�̂�g�� = i�f ,g� .

n other words,

��̂�x�,�̂�y�� = ��̂�x�,�̂�y�� = 0, ��̂�x�,�̂�y�� = i�x�y� .

ut note that the following does not hold:

x � y Þ ��̂�x�,�̂�y�� = 0.

Let the Hamiltonian H be an internal positive operator on L2�F� with a nondegenerate ground
tate ��L2�F�, called the vacuum. For x� �R �M, the field operator �̂�x� is determined by H:

�̂�x� = �̂�x0,x� � e−ix0H�̂�x�eix0H, x � �M .

or f � �D�RM�, define �̂�f� by

�̂�f� = �
�R�M

f�x��̂�x�dx .

or f1 , . . . , fn�D�RM�, define wn�f1 , . . . , fn��C� 	� by

wn�f1, . . . , fn� = �����̂��f1� ¯ �̂��fn��� .

f wn�n�N are Schwartz distributions, the Hamiltonian H is called Schwartz. If M =Rd and if
wn�n�N satisfy the Wightman axioms for scalar fields, H is called Wightman.

If the vacuum expectations wn�n�N characterize a �standard� quantum field theory A, the
riple �L2�F� , �̂ ,H� is called a hyperfinite(-dimensional) Schrödinger representation of A.

The following problem is still open:
Question: Does every scalar field theory satisfying the Wightman axioms have a hyperfinite

chrödinger representation?
Let e1 , . . . ,e� be an orthonormal basis of F. Define the �unbounded self-adjoint operator �F

n L2�F� to be the �-dimensional Laplacian, that is,

�F = − �
k=1

�

�̂�ek�2,

hich is determined independent from the basis ek�.
2
Let �F be the positive operator on L �F� defined by
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��FF��f� = �f , f�F�f�, f � F .

e see the following relation:

�F = �
k=1

�

�̂�ek�2.

Proposition 4.1: The following equations hold:

�F = − �
�Rd

�̂�x�2dx , �4�

�F = �
�Rd

�̂�x�2dx . �5�

Proof: The first equation is shown as follows:

�F = − �
k=1

�

�̂�ek�2 = − �
k=1

� ��
�Rd

ek�x��̂�x�dx�2

= − �
k=1

� �
�Rd
�

�Rd
ek�x��̂�x�ek�y��̂�y�dxdy

= − �
�Rd
�

�Rd
�
k=1

�

ek�x�ek�y��̂�x��̂�y�dxdy

= − �
�Rd
�

�Rd
�x�y��̂�x��̂�y�dxdy = − �

�Rd
�̂�x�2dx .

he second is shown similarly. QED
Let A :F→F be invertible internal linear operators. Define the operator TA on L2�F� by

�TAF��f� = F�A−1f� .

learly, TA is unitary if A�SL�F�.
The most general form of the free Hamiltonian will be

H = − �TA�FTA
−1 + �TB�FTB

−1,

here A and B are invertible internal linear operators on F.
We assume that A and B are positive without loss of generality. Let F�L2�F�. Then we have

�TA
−1HTAF��f� = − ���FF��f� + ��f ,B−1A2B−1f�F�f� .

ince B−1A2B−1 is a �-dimensional positive matrix, it has positive eigenvalues �1 , . . . ,��� �R and
orresponding eigenvectors v1 , . . . ,v��F:

B−1A2B−1vk = �kvk, �vk,vl� = �kl, k,l = 1, . . . ,� .

hus we have

TA
−1HTA = �

k=1

�

��̂�vk�2 + ��k�̂�vk�2,
nd hence
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H = �
k=1

�

��TA�̂�vk�2TA
−1 + ��kTA�̂�vk�2TA

−1� = �
k=1

�

���̂�Avk�2 + ��k�̂�A−1vk�2� .

his is the decomposition of H into independent harmonic oscillators, because the following
anonical commutation relations hold:

��̂�A−1vk�,�̂�Avl�� = i�A−1vk,Avl� = i�kl.

. FREE MASSIVE SCALAR FIELDS

The Hamiltonian of a free scalar field �Klein-Gordon field� with mass m is given by

Hm =
1

2
�

�Rd
��̂�x�2 + �

k=1

d

��k�̂�x��2 + m2�̂�x�2�dx .

n this section, we show that the right-hand side can be interpreted literally, and is well-defined,
nd that it has the following property.

Theorem 5.1: Hm is Wightman. The vacuum expectation values wn� characterize the free
calar field of mass m.

Let EF denote the internal orthogonal projection from �L2�M� to F. For an internal operator X
n �L2�M�, define the operator �X�F :F→F by

�X�F = EFX � F .

et

Hm = − �TA�FTA
−1 + �TB�FTB

−1,

nd we find

� = � = 1
2 , A = I .

o give the explicit form of the positive operator B, we must solve

TB�FTB
−1 = �

�Rd
��

k=1

d

��k�̂�x��2 + m2�̂�x�2�dx .

Let F�L2�F�. Then for any f �F,

��
�Rd
��

k=1

d

��k�̂�x��2 + m2�̂�x�2�dxF��f�

= �
�Rd
��

k=1

d

��kf�x��2 + m2f�x�2�dxF�f�

= �f ,�− � + m2�f�F�f� = �f ,�− � + m2�Ff�F�f� ,

here � is the Laplacian on �Rd.
On the other hand,

�TB�FTB
−1F��f� = ��FTB

−1F��B−1f� = �B−1f ,B−1f�F�f� = �f ,B−2f�F�f� .

hus we have

−2 2
B = �− � + m �F,
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H = �− 1/2��F + �1/2�TB�FTB
−1.

et ek�F be an orthonormal basis of F such that

B−2ek = �kek, �k � �C .

hen

Hk = �1/2���̂�ek�2 + �k�̂�ek�2� = �k
1/2�a+�ek�a�ek� + �1/2��

here

a�ek� � 2−1/2�k
1/4��̂�ek� + �k

−1/2i�̂�ek�� ,

a+�ek� � 2−1/2�k
1/4��̂�ek� − �k

−1/2i�̂�ek�� .

hus their time evolutions are given by

at�ek� � eitHa�ek�e−itH = eitHka�ek�e−itHk = a�ek�e−i�k
1/2t,

at
+�ek� � eitHa+�ek�e−itH = eitHka+�ek�e−itHk = a+�ek�ei�k

1/2t.

ince we have

�̂�ek� = 2−1/2�k
−1/4�a�ek� + a+�ek��, �̂�ek� = − i2−1/2�k

1/4�a�ek� − a+�ek�� ,

he time evolutions of field operators are given by

�̂t�ek� � eitHk�̂�ek�e−itHk = 2−1/2�k
−1/4�e−i�k

1/2ta�ek� + ei�k
1/2ta+�ek�� ,

�̂t�ek� � eitHk�̂�ek�e−itHk = − i2−1/2�k
1/4�e−i�k

1/2ta�ek� − ei�k
1/2ta+�ek�� .

or x= �x0 ,x�� �Rd+1, let �̂�x��eix0Hk�̂�x�e−ix0Hk. Then we have the following representation of
ˆ �x�:

�̂�x� = �
k

ek�x��̂�x0,ek� = 2−1/2�
k

ek�x��k
−1/4�e−i�k

1/2x0a�ek� + ei�k
1/2x0a+�ek�� .

hus the two-point Wightman function is calculated as follows:

����̂�x��̂�y��� = ���2−1�
jk

�ek�x�ej�y��k
−1/2e−i�k

1/2x0a�ek�ei�j
1/2y0a+�ej����

= ���2−1�
jk

�ek�x�ej�y��k
−1/2e−i�k

1/2�x0−y0�a�ek�a+�ej����

= ���2−1�
k

�ek�x�ek�y��k
−1/2e−i�k

1/2�x0−y0�a�ek�a+�ek����

= 2−1�
k

�ek�x�ek�y��k
−1/2e−i�k

1/2�x0−y0�� .

et �=−�+m2 and �F= ���F. Then by the relation

�x = �
k

ek�x�ek,
e find
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����̂�x��̂�y��� = �1/2���x,�F
−1/2e−i�F

1/2�x0−y0��y� .

o show that H is Wightman, we evaluate the smeared two-point function �� � �̂�x0 , f��̂�y0 ,g���
or f ,g�D�Rd�.

Notice that the following relations hold for � and �F:

�"r � R��r��D�Rd�� = �D�Rd� , �6�

�"n � Z���F�n��D�Rd�� = �D�Rd� , �7�

�"n � Z��" f � �D�Rd���nf = ��F�nf . �8�

hese imply that

�"r � R��" f � �D�Rd��eir�f � eir�Ff , �9�

�"r � R��" f � �D�Rd���rf � ��F�rf . �10�

Therefore we conclude that for f ,g�D�Rd�,

����̂�x0, f��̂�y0,g��� = �f ,�F
−1/2e−i�F

1/2�x0−y0�g� � �f ,�−1/2e−i�1/2�x0−y0�g�

= � f̂ ,�� pi
2 + m2�−1/2

e−i�� pi
2 + m2�1/2�x0−y0�ĝ� = � f̂ ,�p

−1e−i�p�x0−y0�ĝ�

= �
�Rd

f̃�p�
e−i�p�x0−y0�

�p
g̃�p�dp , �11�

here f̃ is the Fourier transform of f , and

�p = ��
k=1

d

pk
2 + m2�1/2

.

he last formula �11� is the same as the standard two-point function of a free scalar field. This
eans that all the vacuum expectations of our nonstandard field operators �̂�f1�¯ �̂�fn� are

nfinitesimally near to the standard ones, and hence H is Wightman.

I. LAGRANGIAN PATH INTEGRAL

Consider the Hamiltonian

H = − �F + V ,

here the potential V :F→ �R is such that H is self-adjoint. We examine a nonstandard path
ntegral representation of the time evolution with respect to H.

Let 0���� /2, t�0 and �=ei�t. For f0 , . . . , fn�F, define Rn�f0 , . . . , fn ,��� �C by

Rn�f0, . . . , fn,�� = �
j=1

n
�

n
�1

2
� �f j − f j−1�

�/n
�2

+ V�f j�� .

or f ini , f fin�F, define Kn�f ini , f fin ;��� �C by

Kn�f ini, f fin;�� � �2��/n�−�n/2�
F
¯ �

F
e−Rn�f0,. . .,fn,��dfn−1 ¯ df1,

2 ˆ 2
here f0= f ini, fn= f fin. For F�L �F�, define Kn���F�L �F� by
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�K̂n���F��f� � �
F

Kn�g, f ;��F�g�dg .

By transferring the standard Trotter formula, we find

e−��−�F+V�F = lim
n→�	

K̂n���F .

he exact expression of this equation is the following:

�"� � �R+��$k � �N��"n � �N��n � k Þ �K̂n���F − e−��−�F+V�F� � �� ,

here � · � denotes the �R-valued norm on L2�F�.
By the saturation principle, we find the following.
Theorem 6.1: Let S�L2�F� satisfy card�S���. Then there exists n�	 such that for any F

S,

e−��−�F+V�F � K̂n���F .

Let �= t /n �=�� � /n�. For �= �f0 , . . . , fn��Fn+1, define the F-valued path �̃ : �0, t�→F by

�̃�t� = ���k + 1�� − t�fk + �t − k��fk+1�/�

f k�� t� �k+1�� �k=0, . . . ,n�. That is, �̃ is the piecewise linear path such that �̃�k��= fk for k
0, . . . ,n.

Define the set of paths Ln by

Ln = �̃�� � Fn+1� .

or f ,g�F, define Ln�f ,g��Ln by

Ln�f ,g� = � � Ln���0� = f ,��t� = g� .

he �Lebesgue measures on Ln and Ln�f ,g� are naturally defined by those of Fn+1 and Fn−1,
espectively, i.e., for any function h :Ln→ �C,

�
Ln

F���d� � �
Fn+1

h��̃�d� = �
F
¯ �

F
h��̃�d�0 ¯ d�n.

�
Ln�f ,g�

h���d� � �
F
¯ �

F
h��f ,�1, . . . ,�n−1,g�˜�d�1 ¯ d�n−1.

For a path � : �0, t�→F, define the generalized action integral S�� ,�� by

S��,�� � �
0

t � e−i�

2
��̇�s��2 + ei�V���s���ds .

f course, if ��0 �equivalently �=0� then S�� ,�� is the Euclidean action of the path �, and if �
s pure imaginary �equivalently �=� /2� then −iS�� ,�� is the Minkowskian action of the path �.

For f ini , f fin�F, let

Kn���; f ini, f fin� � �2��/n�−�n/2�
Ln�f ini,ffin�

e−S��,t,��d� .

2 N ˆ 2
or F�L �R �, define Kn����F�L �F� by
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�K̂n����F��f� � �
F

Kn���;g, f�F�g�dg .

Note that

�exp�−
�

2n
�
j=1

n � �� j − � j−1�
�/n

�2�� = �exp�−
e−i�t

2n
�
j=1

n � �� j − � j−1�
t/n

�2��
= exp�−

n cos �

2t
�
j=1

n

�� j − � j−1�2� .

his implies that the paths which effectively contribute to the path integral satisfy

��k+1 − �k�2 � O� t

n cos �
� = O� t

n��/2 − ���
s n→ �	 when 0���� /2. Therefore it follows that

Rn��,�� − S��̃� → 0 as n → �	

nd

�K̂n��� − K̂n�����F → 0 as n → �	

hen 0���� /2. Thus

e−��−�F+V�F = lim
n→�	

K̂n����F .

y the saturation principle, we have
Theorem 6.2 (Lagrangian path integral): Let S�L2�F� and cardS��. Suppose 0��

� /2. Then there exists n� �N such that for any F�S,

�e−��−�F+V�F��f� � �K̂n����F��f� = �2��/n�−�n/2�
F
�

Ln�g,f�
e−S��,��F�g�d�dg .

here �=ei�t, t� �R. The above approximation “�” is with respect to the � norm of L2�F�.
Next we consider the case of free scalar field Hamiltonian:

Hm =
1

2
�

�Rd
��̂�x�2 + �

k=1

d

��k�̂�x��2 + m2�̂�x�2�dx .

he infinite energy of vacuum is not regularized on Hm:

Hm� = E0�, E0 = �/2 � 	 .

et Hm� be the vacuum-energy regularization of Hm, i.e.,

Hm� = Hm − E0.

et

Hm� = 1
2�F + V ,
hen as shown in Sec. V, we have for f �F,
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V�f� = �1/2��f ,�− � + m2�f� − E0 =
1

2
�

�Rd
��

k=1

d

��kf�x��2 + m2f�x�2�dx − E0.

ence we have

S��,�� � �
0

t � e−i�

2
��̇�s��2 + �

�Rd

ei�

2 ��
k=1

d

��k��s��x��2 + m2��s��x�2�dx − E0�ds

= �
0

t ��
�Rd

e−i�

2
�̇�s��x�2 +

ei�

2 ��
k=1

d

��k��s��x��2 + m2��s��x�2�dx − E0�ds

= �
0

t �
�Rd

e−i�

2
�̇�s��x�2 +

ei�

2 �
k=1

d

��k��s��x��2 +
ei�

2
m2��s��x�2dxds − tE0

=
ei�

2
�

�0,t��Rd
�E��

k��k� + m2�2�dx − tE0,

here E� denotes the �-parametrized Einstein convention:

E�AkBk = e−2i�A0B0 + �
k=1

d

AkBk,

hich is the Euclidean inner product if �=0, and is the Minkowskian inner product if �=� /2.
vidently

L = 1
2 �E��

k��k� + m2�2�

s the �-parametrized Lagrangian for a free scalar field. Thus we can write

S��,�� = ei��
�0,t��Rd

Ldx − tE0.

hen we have the following theorem:
Theorem 6.3 (Lagrangian path integral for free scalar fields): Let S�L2�F� and cardS

�. Suppose 0���� /2. Then there exists n� �N such that for any F�S,

�e−�Hm� F��f� � �2��/n�−�n/2etE0�
F
�

Ln�g,f�
e−ei�	�0,t��RdLdxF�g�d�dg ,

here �=ei�t, t� �R. The above approximation “�” is with respect to the �norm of L2�F�.

II. GENERATING FUNCTIONAL

In the physical literature, the generating functional of a scalar field �̂ is “defined” by

Z�J� = ���T exp�i� J�x��̂�x�dx��� , �12�

here T denotes the time-ordered product �T-product�.
However, if �̂ is regarded as a standard operator-valued distribution, the T-product is not

ell-defined. On the other hand, if �̂ is regarded as a nonstandard pointwise field operator instead
f a standard operator-valued distribution, the T-product can be defined rigorously. Let us call it a
onstandard T-product. However the problem of uniqueness of the nonstandard T-product still

emains unsolved; we supposed F to be an arbitrary hyperfinite-dimensional subspace such that
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�F� �D. The definition of the T-product can be sensitive to the selection of F. This problem
s open:

Question: Does a nonstandard T-product depend on F? If so, what selection of F defines
hysically meaningful T-products?

In this paper, we do not examine this problem further. Instead we consider the path integral
epresentation of a generating functional. In the physical literature, the following formula is given:

Z�J� =

� exp i�
Rd+1

�L��,��� + J�x���x��dxd�

� exp i�
Rd+1

�L��,����dxd�

. �13�

n our approach, to examine the right-hand side of this formula seems easier than to examine
-products.

In Sec. VI, the path space L was defined to be a set of paths � : �0, t�→F. Let T� �R	
+. In this

ection, we consider the path space LT is a set of the paths � : �R→F, where ��t�=0 if �t � �T. For

1 ,�2�LT, the inner product ��1 ,�2� is given by

��1,�2� = �
�R

��1�x0�,�2�x0��dx0 = �
�Rd+1

�1�x��2�x�dx ,

here � j�x��� j�x0��x1 , . . . ,xd�. Thus LT is naturally embedded into �L�Rd+1�. We can suppose
�D�Rd+1��LT by the saturation principle.

Equation �13� is rewritten in our notations parallel to Theorem 6.3 as

Z�J� =

�
LT

exp − �
�Rd+1

�ei�L��,��� + J�x���x��dxd�

�
LT

exp − �
�Rd+1

ei�L��,���dxd�

. �14�

ere we confine ourselves to the case of free massive scalar fields:

L = 1
2 �E��

k��k� + m2�2� .

hus for any ��LT we have

�
Rd+1

�L��,��� + J�x���x��dxd� = �
Rd+1

�1

2
�− E���k�k� + m2�2� + J�x���x��dxd�

=
1

2
��,�− E��

k�k + m2��� + �J,�� .

ote that

Re�ei��
�Rd+1

L��,���dxd�� = Re�ei�1

2
��,�− E��

k�k + m2����
= Re�ei�1

2
��,�− e−2i��0

2 − �
k=1

d

�k
2 + m2����

= cos �
1

2
��,�− �

k=0

d

�k
2 + m2��� � 0.
herefore if 0���� /2 then the real part of the exponent is strictly negative, and hence the
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bove-mentioned path integral is well-defined. �In the purely Minkowskian case �=� /2, it is
nclear whether it can be well-defined.� Since L is hyperfinite-dimensional, the integral can be
alculated by transferring the finite-dimensional standard Gaussian integral formula:

Proposition 7.1: Let L̃T=LT+ iLT be the internal complexification of LT. Let A : L̃T→L̃T be an
nternal linear operator such that

1. A is symmetric in the sense of

�"�,� � LT� ��,A�� = ��,A�� , �15�

2. �"��LT� ��0ÞRe�� ,A���0.

hen the following holds:

�
LT

exp�−
1

2
��,A�� + ��,���d� = �det

A

2�
�−1/2

exp
1

2
��,A−1�� . �16�

Let ��=ei��−E��
k�k+m2� be an ��unbounded� operator on L2�Rd+1�, and E be the orthogonal

rojection from L2�Rd+1� to L̃T. Let ��
E=E��� L̃T. We can check that ��

E is symmetric in the sense
f �15�.

Applying the above-mentioned formula, we find for any J� �L2�Rd+1�,

Z�J� =

�
LT

exp − �ei�1

2
��,�− E��

k�k + m2��� + �J,���d�

�
LT

exp − ei�1

2
��,�− E��

k�k + m2���d�

=

�
LT

exp�− 1
2 ��,��

E�� − �J,���d�

�
LT

exp − 1
2 ��,��

E��d�

= exp
1

2
�J,���

E�−1J� .

n the case where 0���� /2, and ��R �and hence ��” � /2�, the properties parallel to Eqs.
6�–�10� hold for ��; especially we see

�"n � Z��" f � �D�Rd�� ��
nf = ���

E�nf . �17�

hus we have for any f � �D�Rd�,

Z�J� = exp 1
2 �J,���

E�−1J� = exp 1
2 �J,��

−1J� . �18�

y the principle of eternity in nonstandard analysis, there exists ��0, ��0 such that

Z�J� = exp 1
2 �J,���/2�−�

−1 J� . �19�

his means that our nonstandard method permits us to consider some “almost Minkowskian”
ases in manipulating path integrals. Purely Minkowskian path integrals seem difficult to be
ustified even if we use nonstandard methods, but the “almost Minkowskian” path integrals can be
sed as a substitute for them.

By the Fourier transformation, ��
−1 is represented as the multiplication operator

�̃�
−1�p� =

ei�

p0
2 + e2i��k

pk
2 + e2i�m2

.

In the “almost Minkowskian” case �= �� /2�−�, we find
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�̃�
−1�p� �

i

p0
2 − �k

pk
2 − m2 + i�

,

here the approximation is in the sense of Schwartz distribution. Since the right-hand side is the
ourier transform of the Feynman Green function �F�x�, we have

Z�J� � exp 1
2 �J,�FJ� ,

or any J�D�Rd+1�. Thus a rigorous justification of physicists’ path-integral calculation of the
enerating functional has been given.
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nalyticity of the scattering amplitude, causality,
nd high-energy bounds in quantum field theory
n noncommutative space–time

Anca Tureanu
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In the framework of quantum field theory on noncommutative space–time with the
symmetry group O�1,1��SO�2�, we prove that the Jost-Lehmann-Dyson represen-
tation, based on the causality condition taken in connection with this symmetry,
leads to the mere impossibility of drawing any conclusion on the analyticity of the
2→2-scattering amplitude in cos �, � being the scattering angle. Discussions on
the possible ways of obtaining high-energy bounds analogous to the Froissart-
Martin bound on the total cross section are also presented. © 2006 American In-
stitute of Physics. �DOI: 10.1063/1.2338761�

. INTRODUCTION

The development of quantum field theory �QFT� on noncommutative �NC� space–time, espe-
ially after the seminal work of Seiberg and Witten,1 which showed that the NC QFT arises from
tring theory, has lately triggered interest also towards the formulation of an axiomatic approach to
he subject. The power of the axiomatic approach is that that the results are rigorously derived,
ith no reference to the specific form of interaction or to perturbation theory. Consequently, in the

ramework of noncommutative spaces, the analytical properties of scattering amplitude in energy
and forward dispersion relations have been considered,2,3 Wightman functions have been intro-

uced and the CPT theorem has been proven,4,5 and as well attempts towards a proof of the
pin-statistics theorem have been made.5 �In the context of the Lagrangian approach to NC QFT,
he CPT and spin-statistics theorems have been proven in general in Ref. 6; for CPT invariance in
C QED, see Refs. 7 and 8, and in NC standard model.9�

In the axiomatic approach to commutative QFT, one of the fundamental results consisted of
he rigorous proof of the Froissart bound on the high-energy behavior of the scattering amplitude,
ased on its analyticity properties.10,11 In this paper we aim at obtaining the analog of this bound
hen the space–time is noncommutative. Such an undertaking, besides being topical in itself,
ould also prove fruitful in the conceptual understanding of subtle issues, such as causality, in
onlocal theories to which the NC QFTs belong.

In the following, we shall consider NC QFT on a space–time with the commutation relation

�x�,x�� = i���, �1.1�

here ��� is an antisymmetric constant matrix �for a review, see, e.g., Refs. 12 and 13�. Such NC
heories violate Lorentz invariance, while translational invariance still holds. We can always
hoose the system of coordinates such that �13=�23=0 and �12=−�21��. Then, for the particular
ase of space–space noncommutativity, i.e., �0i=0, the theory is invariant under the subgroup
�1,1��SO�2� of the Lorentz group. The requirement that time be commutative ��0i=0� discards

he well-known problems with the unitarity14 of the NC theories and with causality15,16 �see also
3
ef. 6�. As well, the �0i=0 case allows a proper definition of the S-matrix.

47, 092302-1022-2488/2006/47�9�/092302/12/$23.00 © 2006 American Institute of Physics
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In the conventional �commutative� QFT, the Froissart bound was first obtained10 using the
onjectured Mandelstam representation �double dispersion relation�,17 which assumes analyticity
n the entire E and cos � complex planes. The Froissart bound,

�tot�E� � c ln2 E

E0
, �1.2�

xpresses the upper limit of the total cross section �tot as a function of the center-of-mass system
CMS� energy E, when E→�. However, such an analyticity or equivalently the double dispersion
elation has not been proven, while smaller domains of analyticity in cos � were already known.18

One of the main ingredients in rigorously obtaining the Froissart bound is the Jost-Lehmann-
yson representation19,20 of the Fourier transform of the matrix element of the commutator of

urrents, which is based on the causality as well as the spectral conditions �for an overall review,
ee Ref. 21�. Based on this integral representation, one obtains the domain of analyticity of the
cattering amplitude in cos �. This domain proves to be an ellipse—the so-called Lehmann’s
llipse.18

However, this domain of analyticity in cos � can be enlarged to the so-called Martin’s ellipse
y using the dispersion relations satisfied by the scattering amplitude and the unitarity constraint
n the partial-wave amplitudes. Using this larger domain of analyticity, the Froissart bound �1.2�
as rigorously proven in QFT �Ref. 11� �for a review, see Ref. 22�.

Further on, the analog of the Froissart-Martin bound was rigorously obtained for the
→2-particle scattering in a space–time of arbitrary dimension D.23,24

In NC QFT with �0i=0, we shall follow the same path for the derivation of the high-energy
ound on the scattering amplitude, starting from the Jost-Lehmann-Dyson representation and
dapting the derivation to the new symmetry O�1,1��SO�2� and to the nonlocality of the NC
heory. �A preliminary work along this line with stronger claims, based on a conjecture, has been
reviously reported in Ref. 25.� In Sec. II we derive the Jost-Lehmann-Dyson representation
atisfying the light-wedge �instead of light-cone� causality condition, inspired by the above sym-
etry. We show that no analyticity of the scattering amplitude in cos � can be obtained in such a

ase. Since the causality condition is the key ingredient for the analyticity of the scattering
mplitude, in Sec. III we discuss possible causality postulates in the noncommutative case, in
elation both with the maximal symmetry of the theory �twisted Poincaré26� and with the scale of
onlocality as obtained so far in perturbative calculations. It turns out that by postulating a finite
ange of nonlocality, compatible with the twisted Poincaré symmetry, and by using the global
ature of local commutativity, we can obtain from the Jost-Lehmann-Dyson representation a
omain of analyticity in cos �, which coincides with the Lehmann ellipse. Further, the extension
f this analyticity domain to Martin’s ellipse is possible in the case of the incoming particles’
omenta orthogonal to the NC plane �x1 ,x2�, which eventually enables us to derive the analog of

he Froissart-Martin bound �1.2� for the total cross section. The general configuration of incoming
articles’ momenta is also discussed, together with the problems which arise in such a case.
owever, the perturbative calculations performed so far seem to indicate an infinite range of
onlocality, in which case the initial causality condition involving the light wedge should be
ostulated, leading to the lack of analyticity of the scattering amplitude. The situation is discussed
n connection with the perturbative problem of UV/IR mixing in NC QFT. Section 6 is devoted to
onclusion and discussions.

I. JOST-LEHMANN-DYSON REPRESENTATION

The Jost-Lehmann-Dyson representation19,20 is the integral representation for the Fourier
ransform of the matrix elements of causal commutators, satisfying the causality and spectral
onditions. For definiteness and simplicity, we shall obtain it below for a particular matrix element

f the commutator of currents

                                                                                                            



w

T
s
a
o

p
a
r
s

i

T

b
c

i

w

C

�
a
t
n

092302-3 Analyticity of the scattering amplitude, causality J. Math. Phys. 47, 092302 �2006�

                        
f�q� =� d4xeiqxf�x� , �2.1�

here

f�x� = �p��	 j
 x

2
�, j�
−

x

2
���p . �2.2�

he process considered is the 2→2 scalar particles scattering, k+ p→k�+ p�, and j and j� are the
calar currents corresponding to the incoming and outgoing particles with momenta k and k� �see
lso Refs. 21 and 27�. We emphasize that the �form of the� integral representation eventually
btained is, however, valid for any other matrix element of any commutator of currents.

For NC QFT with O�1,1��SO�2� symmetry, in Ref. 28 a new causality condition was
roposed, involving �instead of the light cone� the light wedge corresponding to the coordinates x0

nd x3, which form a two-dimensional space with the O�1,1� symmetry. Accordingly, we shall
equire the vanishing of the commutator of two currents �in general, observables� at spacelike
eparations in the sense of O�1,1� as

	 j
 x

2
�, j�
−

x

2
�� = 0, for x̃2 � x0

2 − x3
2 	 0. �2.3�

The spectral condition compatible with �2.3� would require now that the physical momenta be
n the forward light wedge,

p̃2 � p0
2 − p3

2 
 0 and p0 
 0. �2.4�

he standard spectral condition

p0
2 − p1

2 − p2
2 − p3

2 � 0, p0 
 0,

ased on Poincaré symmetry or twisted Poincaré symmetry,26 implies the forward light-wedge
ondition �2.4� as well.

The spectral condition �2.4� will impose restrictions on f�q�. Using the translational invariance
n �2.2�, one can express the matrix element of the commutator of currents, f�x�, in the form

f�x� =� dqe−iqx+i�p+p���x/2�G1�q� −� dqeiqx−i�p+p���x/2�G2�q�

=� dqe−iqx	G1
q +
1

2
�p + p��� − G2
− q +

1

2
�p + p���� , �2.5�

here

G1�q� = �p��j�0��q��q�j��0��p� ,

�2.6�
G2�q� = �p��j��0��q��q�j�0��p� .

omparing �2.5� with the inverse Fourier transformation, f�x�=�dqe−iqxf�q�, it follows that

f�q� = f1�q� − f2�q� = G1
q +
1

2
�p + p��� − G2
− q +

1

2
�p + p��� . �2.7�

Throughout the paper we omit all the inessential factors of �2��n, which are irrelevant for the
nalyticity considerations.� Given the way the functions G1 and G2 are defined in �2.6�, one finds
hat f�q�=0 in the region where the momenta q+ 1  2 �p+ p�� and −q+ 1  2 �p+ p�� are simulta-

eously nonphysical, i.e., when they are out of the future light wedge �2.4�.
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In order to express the condition for f�q�=0, we shall define the O�1,1�-invariant m̃2=k0
2

k3
2= f�m2 ,k1

2+k2
2�, where k is the momentum of an arbitrary state and m is its mass. However, we

ave to point out that m̃ is only a kinematical variable, invariant with respect to O�1,1� �but not
he mass�.

For the physical states with momentum q+ 1  2 �p+ p��, we take m̃1 to be the minimal value
f the O�1,1�-invariant quantity above. Then, in the Breit frame, where 1  2 �p+ p��
�p0 ,0 ,0 ,0�, one finds that f1�q��0 for all the q values, satisfying the spectral condition q0

p0�0 and �q0− p0�2−q3
2�0. In other words, f1�q�=0 for q0	−p0+�q3

2+ m̃1
2. Similarly, one finds

hat f2�q�=0 for p0−�q3
2+ m̃2

2	q0 �where m̃2 has a meaning analogous to that of m̃1, but for the
tates with the momentum −q+ 1  2 �p+ p���.

As a result, due to the spectral condition �2.4�, f�q�=0 in the region outside the hyperbola

p0 − �q3
2 + m̃2

2 	 q0 	 − p0 + �q3
2 + m̃1

2. �2.8�

To derive the Jost-Lehmann-Dyson representation, further we consider the six-dimensional
pace–time with the Minkowskian metric �+,−,− ,− ,− ,−�. On this space, we define the vector z
�x0 ,x1 ,x2 ,x3 ,y1 ,y2�. For practical purposes we introduce also the notations for the two-
imensional vector x̃= �x0 ,x3� and the four-dimensional vector z̃= �z0 ,z3 ,z4 ,z5���x0 ,x3 ,y1 ,y2�.
n the six-dimensional space we define the function

F�z� = f�x���x̃2 − y2� = f�x���z̃2� , �2.9�

epending on all six coordinates.
When the causality condition �2.3� is fulfilled, i.e., for the physical region, f�x� and F�z�

etermine each other, since

� dy1dy2F�z� = f�x���x̃2� = � f�x� for x̃2 
 0,

0 for x̃2 	 0.
�2.10�

The Fourier transform of F�z�,

F�r� =� d6zeizrF�z� , �2.11�

an be expressed, using �2.9� and �2.10�, as

F�r� =� d4qD1�r − q̂�f�q� . �2.12�

enoting the remaining four-dimensional vector r̃= �r0 ,r3 ,r4 ,r5�, we have

D1�r� =� d6zeizr��z̃2� =
��r1���r2�

r̃2 = ��r1���r2�D1�r̃� , �2.13�

ith D1�r̃�=1/ r̃2.
We define now the “subvector” of a six-dimensional vector as q̂= �q0 ,q1 ,q2 ,q3 ,0 ,0� and we

nd the relation between F�q̂� and f�q� in view of the causality condition �2.3�,

F�q̂� =� d4xf�x���x̃2�eiqx = f�q� . �2.14�

1�r̃� satisfies the four-dimensional wave equation,

�4D1�r̃� = 0, �2.15�

here the d’Alembertian is defined with respect to the coordinates r0 ,r3 ,r4 ,r5. Then, due to

2.12�, it follows that F�r� satisfies the same equation,
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�4F�r� = 0. �2.16�

t is crucial to note that F�r� depends on all six variables r0 , . . . ,r5

F�r� =� d4qf�q�D1�r̃ − q̃���r1 − q1���r2 − q2� ,

here q̃= �q0 ,q3 ,0 ,0�.
The solution of �2.16� can be written in the form:31

F�r�� =� d3��� � dr1dr2	F�r�
�D�r̃ − r̃��

� r̃�

− D�r̃ − r̃��
�F�r�
� r̃�

���r1���r2� ,

here D�r̃� satisfies the homogeneous differential equation �4D�r̃�=0, with the initial conditions

D�r̃��r0=0 = 0 and
�D

�r0
�r̃��r0=0 = �

i=1

3

��ri� .

he first condition implies that D�r̃� is an odd function, with the result that

D�r̃� =� d4ze−iz̃r̃��z0���z̃2� = ��r0���r̃2� . �2.17�

e note here that the surface � is three-dimensional and not five-dimensional as it is in the
ommutative case with light-cone causality condition. Now we can express f�q� using �2.14� as

f�q� = F�q̂� =� dr1dr2��r1 − q1���r2 − q2� � d3��	F�r�
�D�r̃ − q̃�

� r̃�

− D�r̃ − q̃�
�F�r�
� r̃�

� .

�2.18�

ue to the arbitrariness of the surface �, one can reduce the integration over r4 and r5, using the
ylindrical symmetry, to the integral over �2=r4

2+r5
2. Subsequently, we change the notation of

ariables ri to ui and use the explicit form of D�r̃� from �2.17� to obtain

f�q� =� du1du2��u1 − q1���u2 − q2� � d1� jd�2

� �F�u,�2�
�

� ũj

���u0 − q0����ũ − q̃�2 − �2�� − ��u0 − q0����ũ − q̃�2 − �2�
�F�u,�2�

� ũj
� .

�2.19�

Using the standard mathematical procedure31 for performing the integration in �2.19�, we
btain the Jost-Lehmann-Dyson representation in NC QFT, satisfying the light-wedge causality
ondition �2.3�,

f�q� =� d4ud�2��q0 − u0����q0 − u0�2 − �q3 − u3�2 − �2� � ��q1 − u1���q2 − u2���u,�2� ,

�2.20�

here ��u ,�2�=−��F�u ,�2�� /�ũ0.
Equivalently, denoting ũ= �u0 ,u3�, �2.20� can be written as

f�q� = d2ũd�2��q − u ����q̃ − ũ�2 − �2���ũ,q ,q ,�2� . �2.21�
� 0 0 1 2
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The function ��ũ ,q1 ,q2 ,�2� is an arbitrary function, except that the requirement of spectral
ondition determines a domain in which ��ũ ,q1 ,q2 ,�2�=0. This domain is outside the region
here the � function in �2.21� vanishes, i.e.,

�q̃ − ũ�2 − �2 = 0, �2.22�

ut with q̃ in the region given by �2.8�, where f�q�=0. Putting together �2.22� and �2.8�, we obtain
he domain out of which ��ũ ,q1 ,q2 ,�2�=0,

�a� 1
2 �p̃ + p̃�� ± ũ are in the forward lightwedge �cf . �2.4��;

�2.23�

�b� � � max�0,m̃1 −�
 p̃ + p̃�

2
+ ũ�2

,m̃2 −�
 p̃ + p̃�

2
− ũ�2� .

For the purpose of expressing the scattering amplitude, we actually need the Fourier transform
fR�q� of the retarded commutator,

fR�x� = ��x0�f�x� = �p����x0�	 j
 x

2
�, j�
−

x

2
���p . �2.24�

sing �2.24� and the Fourier transformation f�x�=�dq�e−iq�xf�q��, we can express fR�q� as fol-
ows:

fR�q� =� dxeiqxfR�x� =� dxeiqx��x0�f�x� =� dq�f�q�� � dxei�q−q��x��x0� . �2.25�

aking into account that

� dx0ei�q−q��x��x0� = − i
ei�q�−q���x�

q0 − q0�
,

q. �2.25� becomes

fR�q� = i� dq0�
f�q0�,q��
q0� − q0

.

Now, in the above formula we introduce the Jost-Lehmann-Dyson representation �2.21�, with
he result

fR�q� = i� dq0�

q0� − q0
� d2ũd�2��q0� − u0����q0� − u0�2 − �q3 − u3� − �2���ũ,q1,q2,�2� .

�2.26�

n �2.26� one can integrate over q0�, using the known formula of integration with a �-function,
G�x���g�x��dx=�iG�x0i� /�g /�x�x=x0i

, where x0i are the simple roots of the function g�x�. We
dentify in �2.26� G�q0��= ���q�0−u0�� / �q0�−q0� and g�q0��= �q0�−u0�2− �q3−u3�−�2 �with the roots

0�=u0± ��q3−u3�2+�2�1/2�.
With these considerations, from �2.26� we obtain the NC version of the Jost-Lehmann-Dyson

epresentation for the retarded commutator,

fR�q� =� d2ũd�2 ��ũ,q1,q2,�2�
�q0 − u0�2 − �q3 − u3�2 − �2 . �2.27�
ompared to the usual Jost-Lehmann-Dyson representation,
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fR
comm�q� =� d4ud�2 ��u,�2�

�q0 − u0�2 − �q� − u��2 − �2 , �2.28�

he expression �2.27� is essentially different in the sense that the arbitrary function � now depends
n q1 and q2. This feature will have further crucial implications in the discussion of analyticity of
he scattering amplitude in cos �.

. „Non-…Analyticity of the scattering amplitude in cos �

In the center-of-mass system �CMS� and in a set in which the incoming particles are along the

ector �� = �0,0 ,��, the scattering amplitude in NC QFT depends still on only two variables, the
M energy E and the cosine of the scattering angle, cos � �for a discussion about the number of
ariables in the scattering amplitude for a general type of noncommutativity, see Ref. 29�. �The

magnetic’ vector �� is defined as �i= 1  2�ijk� jk. The terminology stems from the antisymmetric
ackground field B�� �analogous to F�� in QED�, which gives rise to noncommutativity in string
heory, with ��� essentially proportional to B�� �see, e.g., Ref. 1�.�

Depending on the variable in which the analyticity is considered, one chooses an appropriate
eduction formula for the scattering amplitude, such that in a given frame all the dependence on
he considered variable is contained only in the exponent. Since we are interested in the analyticity
n cos �, it is natural to take the reduction

M�E,cos �� = i� d4xei�k�−p��·�x/2���x��0�	 j1
 x

2
�, j2
−

x

2
���p,k ,

here −1  2 �k�− p��=q, such that in the center-of-mass frame the whole dependence on cos � is
ontained in q �j1 and j2 are the appropriate currents, corresponding to the outgoing particles of
omenta p� and k��. The previous expression of the scattering amplitude M�E , cos �� considered

s a function of the complex vector q=−1/2�k�− p�� can be treated along the same lines as the
etarded matrix element fR�q� between one-particle states introduced above in Eq. �2.25�. This
reatment results in a Jost-Lehmann-Dyson representation similar to �2.27�, which therefore allows
ne to write the scattering amplitude as follows �compare with the expression given in Ref. 21 for
he commutative case�:

M�E,cos �� = i� d2ũd�2��ũ,�2,k + p,�k� − p��1,2�

	1

2
�k̃� − p̃�� + ũ�2

− �2

, �2.29�

here ��ũ ,�2 , . . . � is a function of its O�1,1�- and SO�2�-invariant variables: u0
2−u3

2, �k0+ p0�2

�k3− p3�2, �k1+ p1�2+ �k2+ p2�2, �k1�− p1��
2+ �k2�− p2��

2 , . . . . The function � is zero in a certain do-
ain, determined by the causal and spectral conditions, but otherwise arbitrary.

For the discussion of analyticity of M�E , cos �� in cos �, it is of crucial importance that all
ependence on cos � be contained in the denominator of �2.29�. But, since the arbitrary function
depends now on �k�− p��1,2, it also depends on cos �. This makes impossible the mere consid-

ration of any analyticity property of the scattering amplitude in cos �.
Since the Jost-Lehmann-Dyson representation reflects the effect of the causal and spectral

xioms, we notice that the hypotheses �2.3� and �2.4� used for the present derivation allow for a
uch larger physical region, by not taking into account at all the effect of the NC coordinates x1

nd x2. One might wonder now whether in the above derivation there is any condition which could
e subject to challenge. In that case there might also appear the possibility that an analyticity

omain can be obtained, leading to some high-energy upper bound on the scattering amplitude.
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II. CAUSALITY IN NC QFT

. Causality and symmetry in NC QFT

In the following, we shall challenge the causality condition �2.3�:

f�x� = 0, for x̃2 � x0
2 − x3

2 	 0, �3.1�

hich takes into account only the variables connected with the O�1,1� symmetry.
This causality condition is suitable in the case when the nonlocality in the NC variables x1 and

2 is infinite. The fact that in the causality condition �3.1� the coordinates x1 and x2 do not enter
eans that the propagation of a signal in this plane is instantaneous: no matter how far apart in the

oncommutative coordinates two events are, the allowed region for correlation is given by only
he condition x0

2−x3
2
0, which involves the propagation of a signal only in the x3-direction, while

he time for the propagation along x1- and x2-directions is totally ignored.
Recall that we are using an axiomatic approach, in whose commutative counterpart the as-

umption of locality was a postulate. In our noncommutative case, the postulate of locality has to
e replaced by a postulate prescribing the scale of nonlocality. Postulating that the scale of
onlocality in x1 and x2 is l���, then the propagation of the interaction in the noncommutative
oordinates is instantaneous only within this distance l. It follows then that two events are corre-
ated, i.e., f�x��0, when x1

2+x2
2� l2 �where x1

2+x2
2 is the distance in the NC plane with SO�2�

ymmetry�, provided also that x0
2−x3

2�0 �the events are timelike separated in the sense of
�1,1��. Adding the two conditions, we obtain that

f�x� � 0, for x0
2 − x3

2 − �x1
2 + x2

2 − l2� � 0. �3.2�

he negation of condition �3.2� leads to the conclusion that the locality condition should indeed be
iven by

f�x� = 0, for x̃2 − �x1
2 + x2

2 − l2� � x0
2 − x3

2 − �x1
2 + x2

2 − l2� 	 0,

r, equivalently,

f�x� = 0, for x0
2 − x3

2 − �x1
2 + x2

2� 	 − l2, �3.3�

here l2 is a constant proportional to the NC parameter �. When l2→0 �3.3� becomes the usual
ocality condition.

When x1
2+x2

2
 l2, for the propagation of a signal only the difference x1
2+x2

2− l2 is time-
onsuming and thus in the locality condition it is the quantity x0

2−x3
2− �x1

2+x2
2− l2� which will

ccur. Therefore, we shall have again the locality condition of the form �3.3�.
Since there is no noncommutativity in the momentum space, the spectral condition will read

ow as

p0
2 − p1

2 − p2
2 − p3

2 � 0, p0 
 0. �3.4�

At this point we recall that the maximal symmetry of a NC QFT with ��� a constant matrix is
ot the classical O�1,1��SO�2� symmetry, but a quantum symmetry, namely the twisted Poincaré
ymmetry,26 whose representation content is identical to the usual Poincaré symmetry. Moreover,
he usual space–time interval x2=x0

2−x1
2−x2

2−x3
2 is invariant under the twisted Poincaré algebra, as

ell as the scale of nonlocality l, since the latter is expressed in terms of the twisted Poincaré-
nvariant �. Consequently �3.3� and �3.4� are compatible with the twisted Poincaré algebra.

In fact, the consideration of nonlocal theories of the type �3.3� and �3.4� was initiated by
ightman.30 It was proven later31–33 �see also Ref. 34� that, indeed, in a quantum field theory
hich satisfies the translational invariance and the spectral axiom �3.4�, the nonlocal commuta-
ivity

                                                                                                            



i

r
c
e
r

t
t
c

T
e
s

1
e

M
c

i
b
�
g

g
m
t
t

b

w

2
t

092302-9 Analyticity of the scattering amplitude, causality J. Math. Phys. 47, 092302 �2006�

                        
	 j1
 x

2
�, j2
−

x

2
�� = 0, for x0

2 − x1
2 − x2

2 − x3
2 	 − l2

mplies the local commutativity

	 j1
 x

2
�, j2
−

x

2
�� = 0, for x0

2 − x1
2 − x2

2 − x3
2 	 0. �3.5�

This powerful theorem �stating the “global nature of local commutativity”�, which does not
equire standard Lorentz invariance, but only translational invariance, can be applied in the non-
ommutative case with postulated finite nonlocality, with the conclusion that the causality prop-
rties of a QFT with space–space noncommutativity are physically identical to those of the cor-
esponding commutative QFT.

It is then obvious that the Jost-Lehmann-Dyson representation �2.28� obtained in the commu-

ative case holds also on the NC space for any orientation of the vector �� . Consequently, the NC
wo-particle→two-particle scattering amplitude will have the same form as in the commutative
ase,

M�E,cos �� = i� d4ud�2 ��u,�2,k + p�

	1

2
�k� − p�� + u�2

− �2

. �3.6�

his leads to the analyticity of the NC scattering amplitude in cos � in the analog of the Lehmann
llipse, which behaves at high energies E the same way as in the commutative case, i.e., with the
emimajor axis as

yL = �cos ��max = 1 +
const

E4 . �3.7�

. Enlargement of the domain of analyticity in cos � and use of unitarity. Martin’s
llipse

Two more ingredients are needed in order to enlarge the domain of analyticity in cos � to the
artin’s ellipse and to obtain the Froissart-Martin bound: the dispersion relations and the unitarity

onstraint on the partial-wave amplitudes.22

When using the causality condition �2.3�, the forward dispersion relation cannot be obtained

n NC theory with general direction of the �� -vector.2 However, the conclusion at which we arrived
y imposing the nonlocal commutativity condition �3.3� and reducing it to the local commutativity
3.5� leads straightforwardly to the usual forward dispersion relation also in the NC case with a

eneral �� direction.
As for the unitarity constraint on the partial wave amplitudes, the problem has been investi-

ated in Ref. 29, for a general case of noncommutativity ���, �0i�0. For space–space noncom-
utativity ��0i=0�, the scattering amplitude depends, besides the center-of-mass energy, E, on

hree angular variables. In a system where we take the incoming momentum p� in the z-direction,
hese variables are the polar angles of the outgoing particle momentum, � and �, and the angle �

etween the vector �� and the incoming momentum. The partial-wave expansion in this case reads

A�E,�,�,�� = �
l,l�,m

�2l� + 1�all�m�E�Ylm��,��Pl��cos �� , �3.8�

here Ylm are the spherical harmonics and Pl� are the Legendre polynomials.
Imposing the unitarity condition directly on �3.8� or using the general formulas given in Ref.

9, it can be shown that a simple unitarity constraint which involves single partial-wave ampli-

udes one at a time can be obtained only in a setting where the incoming momentum is orthogonal
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o the NC plane �equivalently, it is parallel to the vector �� �. In this case the amplitude depends
nly on one angle, �, and the unitarity constraint is reduced to the well-known one of the
ommutative case, i.e.,

Im al�E� � �al�E��2. �3.9�

For this particular setting, p� ��� , it is then straightforward, following the prescription developed
or commutative QFT, to enlarge the analyticity domain of scattering amplitude to Martin’s ellipse
ith the semimajor axis at high energies as

yM = 1 +
const

E2 , �3.10�

nd subsequently obtain the NC analog of the Froissart-Martin bound on the total cross section, in

he CMS and for p� ��� ,

�tot�E� � c ln2 E

E0
. �3.11�

Thus, the unitarity constraint on the partial-wave amplitudes distinguishes a particular setting

p� ��� � in which the Lehmann’s ellipse can be enlarged to the Martin’s ellipse and the Froissart-
artin bound can be obtained, with the assumption of finite nonlocality. Nevertheless, this does

ot necessarily exclude the possibility of obtaining a rigorous high-energy bound on the cross

ection for p� not parallel to �� , and the issue deserves further investigation.

. Causality and nonlocality in NC QFT

It was shown in the previous subsection that the violation of Lorentz invariance in itself does
ot forbid the existence of an analyticity domain of the scattering amplitude in cos � and the
erivation of a high-energy bound, compatible with the twisted Poincaré symmetry.

However, for the derivation of the analog of the Froissart-Martin bound the key ingredient
as the assumption of finite nonlocality. This issue deserves a more thorough investigation, in the

ight of the Lagrangian models studied so far. We have to point out from the very beginning that
he Lagrangian models have been studied up to at most two loops, and that no definite statement
bout the renormalizability of NC quantum field theories in general has been made so far.

It is well known that in NC QFT treated with the Weyl-Moyal correspondence �i.e., with the
sual product of fields replaced by Moyal �-product in the Lagrangian� the short distance �UV�
ffects are related to the long-distance �topological� features of the space–time. This fact was first
oticed in Ref. 35, where it was shown that noncommutativity leads to UV-regular theories when
t most one dimension of the space–time is noncompact. For the NC flat space–time UV-regularity
s not achieved, but instead the exotic phenomenon of UV/IR mixing appears.36 The physical

eaning of this mixing is that at quantum level, even very low-energy processes receive contri-
utions from high-energy virtual particles. The nonlocality is energy dependent, and for virtual
articles of arbitrarily high energy, the nonlocality is arbitrarily large.

Another investigation leading to the same conclusion was performed in the first paper dealing
ith the causality in NC QFT in the Lagrangian approach.15 There it was shown, through the study
f a scattering process, that space–space NC �4 in 2�1 dimensions is causal at macroscopical
evel. However the incident particles should be viewed as extended rigid rods, of the size �p,
erpendicular to their momentum. In other words, the noncommutativity introduces an energy-
ependent scale of spatial nonlocality �p.

Judging by the above-mentioned results obtained in specific NC models up to one-loop level,
he previous analysis of analyticity and high-energy bounds in axiomatic NC QFT becomes in-
onclusive. It appears that the finite nonlocality condition �3.3� is solely a conjecture, but only

ased on this conjecture one can derive rigorously the analyticity properties and high-energy
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ounds on the scattering amplitude �see Sec. III�. We should recall, however, that the infinite
onlocality in NC QFT has been found up to one-loop level and there is no indication that the
nfinite nonlocality is not an artifact of perturbation theory.

Nevertheless, in the case of a compact noncommutative space–time, the NC QFT is finite, i.e.,
here are no UV divergences,35 consequently no UV/IR mixing, and the range of nonlocality is
nite. For such NC QFT the finite nonlocality is no longer a conjecture and one may reconsider

he rigorous axiomatic derivation of the analyticity and high-energy bounds along the lines of Sec.
II A.

V. CONCLUSION AND DISCUSSIONS

In this paper we have tackled the problem of high-energy bounds on the two-particle
two-particle scattering amplitude in NC QFT. The key issue in the analysis proved to be the

cale of nonlocality of the quantum field theory on NC space–time.
We have found that, assuming infinite nonlocality and using the causal and spectral conditions

2.3� and �2.4� proposed in Ref. 28 for NC theories with O�1,1��SO�2� symmetry, a new form of
he Jost-Lehmann-Dyson representation �2.27� is obtained, which does not permit us to draw any
onclusion about the analyticity of the scattering amplitude �2.29� in cos �. Therefore, the deri-
ation of high-energy bounds on the scattering amplitude is impossible.

However, by postulating that the nonlocality in the noncommuting coordinates is finite, we
ere led to impose a new causality condition �3.3�, which accounts for the finitness of the range
f nonlocality and prevents the instantaneous propagation of signals in the entire noncommutative
lane �x1 ,x2�. We proved that the new causality condition, compatible also with the twisted
oincaré symmetry, is formally identical to the one corresponding to the commutative case �3.5�,
sing the Wightman-Vladimirov-Petrina theorem.

Thus, with the assumption of finite nonlocality, the scattering amplitude in NC QFT is proved
o be analytical in cos � in the Lehmann ellipse, just as in the commutative case; moreover,
ispersion relations can be written on the same basis as in commutative QFT. Finally, based on the
nitarity constraint on the partial-wave amplitudes in NC QFT, we can conclude that, for theories
ith space–space noncommutativity ��0i=0�, the total cross section is subject to an upper bound

3.11� identical to the Froissart-Martin bound in its high-energy behavior, when the incoming
article momentum p� is orthogonal to the NC plane.

Though the perturbative studies performed so far �up to one loop� indicate an infinite range of
onlocality as more plausible, it is not yet clear whether this is a mere artifact of the perturbation
heory or not. Therefore, a clear-cut conclusion about the existence of high-energy bounds in NC
FT cannot be drawn, unless the question of the scale of nonlocality is elucidated. In perturbative

erms, this is equivalent to the standing problem of UV/IR mixing. However, for compact non-
ommutative spaces, where the range of nonlocality is finite and the NC QFT models do not
xhibit UV divergences, we trust that an analog of the Froissart-Martin bound holds.

Note added: Recently, the validity of the Froissart-Martin bound in NC QFT has been studied
ased on the AdS/CFT correspondence.37 The original idea appeared in Ref. 38, where the AdS/
FT correspondence was used to infer the Froissart-Martin bound in high-energy QCD scattering.
ccording to Ref. 37, the Froissart-Martin bound holds as well in NC QFT. This might appear to

ontradict the results of the present paper. However, in Ref. 37 the Froissart-Martin bound was
erived in a specific scalar field model, perturbatively and essentially by using an IR cutoff brane.
t turns out that in the considered toy model the Froissart-Martin bound is saturated in both the
ommutative and noncommutative directions; however, the size of the cross section is smaller in
he commutative directions than in the noncommutative ones, with a ratio which depends only on
he noncommutative parameter and the IR cutoff. This strongly suggests that the IR cutoff actually

cts as a restriction on the range of nonlocality to a finite region in the noncommutative plane.
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We present the novel topological tensor currents to describe the infinitesimal thin
higher-dimensional topological defects in the local SO�n� gauge theory. The topo-
logical quantization of defects and the inner structure of the currents are obtained.
As the generalization of Nielsen-Olesen local U�1� field theory for Nambu string,
the local SO�n� gauge-invariant Lagrangian and the motion equation of the higher-
dimensional topological defects are derived. Moreover, for closed defects, we study
their important topological configuration, i.e., the higher-dimensional knotlike
structures. Using the topological tensor currents and their preimages, we construct
a series of metric independent integrals and prove their gauge independence. Simi-
lar to the helicity integral characterizing one-dimensional knotlike vortex filament,
these topological invariants are evaluated to the generalized linking numbers of
higher-dimensional knotlike defects. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2338762�

. INTRODUCTION

Topological defects play an important role in many areas of physics. Generally speaking, in
ondensed matter systems they determine such phenomena as response to external stresses,1,2 the
ature of phase transitions,3,4 or the approach to equilibrium after a quench into an ordered phase.5

n particle physics, defects, sometimes called as solitons, act as either stable or long-lived elemen-
ary particles.6,7 In quantum field theory, their existence means that the full nonperturbative theory
ay have a much richer structure than is apparent in perturbation theory.8,9 As evidence of

osmological phase transitions in the early universe, topological defects remain somewhere in our
niverse, and can help to resolve the origin of large-scale structure formation and the anisotropies
f the cosmic microwave background, as well as in various high-energy phenomena.10–13 Various
efects can be classified by their topological property and independent of concrete physical mod-
ls. A systematic topological theory of defects has been extensively summarized by Mermin,14

nderson,15 and Vilenkin.11 Roughly speaking, topological defects represent regions in space–time
here the order parameter �order parameter in condensed matter physics or Higgs field in particle
hysics� is frustrated. It cannot relax into the vacuum state by topological obstructions. The order
arameter space may be identical with coset space G /H if the system has undergone a symmetry
reaking G→H. Correspondingly, the homotopy groups of coset space detect and classify the
opological defects that can arise in this theory. A more detailed inner structure of defects and their
volution and correlation, which play a special role in certain cosmological13 and phase ordering

�
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roblems,5 needs to study the topological density of defects. This has been carried out by
alperin16 and exploited by Liu and Mazenko17 in the case of point defects. Duan et al. have
btained the complete expression of the topological current of point defects �its time component is
he density�18 and generalized the case to line defects,19 then to arbitrary dimensional defects.20

he corresponding generalized topological tensor currents are defined in terms of direction field of
he n-component order parameter na=�a / �� � �a=1, . . . ,n�

J0 = * �c0�a1a2¯an
dna1 Ù dna2 Ù ¯ Ù dnan� , �1�

here * denote the Hodge star on D+1-dimensional �dim� Euclidean space–time RD+1 and c0 is
he normalized coefficient. These currents J0 are natural conversed *d*J0=0, whose Hodge star
arry integer topological charges

�
RD+1

* J0 = winding number W ,

here the coefficient c0 is normalized as 1/ �A�Sn−1��n−1� ! � up to the sign **. Using �-mapping
heory,21 the inner structure of topological currents can be demonstrated

J0
�1¯�D+1−n�x� = �

i=1

l

�i�i�
Ni

�D+1�x − zi�u��dx�1 Ù ¯ Ù dx�D+1−n,W = �
i=1

l

�i�i, �2�

here the Hopf index �i and Brower degree �i of zero points of order parameter �a characterize
he topological charges of l D−n-dim defects which localized on their D+1−n-dim world volume

i. The topological evolution of defects involving generating, annihilating, colliding, splitting, and
erging can be described explicitly.20 Obviously, these topological currents provide a unified

ramework for various defects in 3+1-dim space–time and the higher-dim extended objects, e.g.,
p–branes22,23 which originate from M–theory24,25 and the brane worlds26–28 which have been the
ocus of a lot of attention recently, which may actually just represent topological defects in a
igher-dimensional space.29–34

However, the topological currents made of order parameter � have not obvious local gauge
ymmetry. This is a deficiency in this framework which seems to exclude the extensive local
efects. Moreover, for the closed defects with dimension �1, their nontrivial geometric configu-
ation, namely, the �one-dim� knot and higher-dim knotlike structures should be demonstrated in a
ound framework. Especially, the knotlike structure recently has attracted intense interest in dis-
arate fields35–38 since Faddev and Niemi39 in a realistic 3+1-dim model found the knotlike
tructure appears as stable, finite energy solitons.

In this paper, we will present novel topological tensor currents with local SO�n� gauge sym-
etry in arbitrary D+1 dimensional Euclidean space–time. The desired local defects in these

urrents are explored as the higher-dim generalization of classical Abrikosov–Nielsen-Olesen
ANO� vortex40,41 or instantons42 for even-n case and of the ’t Hooft–Polyakov magnetic
onopole43 for odd-n case. The quantized topological charges of these currents can be obtained

nder corresponding lower energy boundary conditions. For the topological defects with infini-
esimal core size, these boundary conditions are naively extended to whole space except the
ocations of the defects. We hence obtain an essential result that the local topological currents act
s above global topological currents. In other words, the local topological currents may actually
escribe the infinitesimal thin higher-dimensional local defects in terms of the inner structure of
he global topological currents. As the generalization of Nielson-Olesien local U�1� field theory44

or Nambu string,45 the local SO�n� fields theory for higher-dimensional infinitesimal thin defects
re also obtained. Moreover, using the local topological currents and their preimages, we construct
series of metric independent integrals and prove their gauge independence. Similar to the helicity

46
ntegral characterizing one-dimensional knotlike vortex filament, these topological invariants are
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valuated to the generalized linking numbers of higher-dimensional knotlike, infinitesimal thin
efects. Thus, we perfect the unified framework for higher-dim topological defects in the context
f topological currents.

I. TOPOLOGICAL TENSOR CURRENTS OF LOCAL HIGHER-DIM DEFECTS

In this paper, the desired local defects are restricted in SO�n� gauge theory. We select this
roup because it is enough to accommodate various defects and it makes the framework compact
nd simple. Also, due to the latter reason, we express the SO�n� group and Higgs fields configu-
ation in the notation of Clifford algebra valued differential form.47 Consider an SO�n� group, and
efine connection �= 1

2��
abIabdx�, where Iab= 1

4 �	a ,	b� is the generator of SO�n� group, 	a �a
1, . . . ,n� and 	=	1	2¯	n are the bases of Clifford algebra satisfied 	a	b+	b	a=2�abI.

48 The
urvature F=d�−�Ù�. The n vector multiplet Higgs field �=�a	a with covariant derivative
�=d�− �� ,��.

On D+1-dim Euclidean space–time RD+1 we present two kinds of topological tensor currents
ith local SO�n� gauge symmetry for even-n=2r and odd-n=2r+1 cases, respectively,

J = �*a Tr�	Fr� = * a Tr�	F Ù F ¯ Ù F� for n = 2r

*b Tr�	D�Fr� = * b Tr�	D�F Ù F ¯ Ù F� for n = 2r + 1,

here a ,b are the normalized coefficients which will be given later. These currents J are natural
onversed *d*J=0, i.e., *J are the closed differential forms due to their invariant symmetries and
he Bianchi identity DF=0. The topological charges of currents are defined as the integrals of the
odge star of currents on a subspace Rn of total space–time RD+1,

Q = �
Rn

* J . �3�

n 3+1-dim space-time, they are proportional to the topological charges of ANO vortex for n
2 and ’t Hooft–Polyakov magnetic monopole for n=3, respectively. The similar topological
harge of general n cases has been discussed by Tchrakian49 for generalized monopole on
+1-dim space-time �D−n=0� and instantons on n-dim space-time �D−n=−1�. But we focus on

mbedding the topological charge, exactly, the *J to higher-dim D+1-dim space-time �D−n
0�.
n other words, we explore the desired local defects as the higher-dim generalization �i.e., the
xtended objects, string, membrane, 3-brane,. . .� of classical ANO vortex for even-n case and of
he ’t Hooft–Polyakov magnetic monopole for odd-n case. It is well known that the finite energy
onditions for these two classical defects need a converged field configuration at space infinity,41,43

hich may be generalized to higher-dim space RD �Ref. 50�

F → 0, i . e . , � → pure gauge; �4�

D� → 0, and ��� → vacuum value. �5�

nder these finite energy conditions, we can quantize topological charges of the topological tensor
urrents.
For even-n=2r case we have
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Q = a�
Rn

Tr�	Fr� = ar�
Rn

d�
0

1

dt Tr�	�Ft
r−1�

= ar�
�Rn=Sn−1

�
0

1

dt Tr�	�Ft
r−1�

= �
k=0

r−1 	�− 1�r−k
r − 1

k
� ar

r + k
��

Sn−1
Tr�	n�dn�n−1�

= �
Sn−1

1

A�Sn−1��n − 1�!
�a1a2,. . .,an

na1 Ù dna2 Ù ¯ Ù dnan = W . �6�

n the above first equation, sign ** has been absorbed in normalized coefficient a; in the second
quation, the Chern-Weil homomorphism51 is used as �t= t� ,Ft= td�− t2�2; in the third equation,
he Stokes theorem is used and the boundary of Rn at infinity is compact as n−1-dim sphere; in the
ourth equation, we use the boundary condition �4� and set the pure gauge as dnn without losing
he generalization, where unit vector n is well defined as the direction of Higgs field � at infinity
f the singularity of n, i.e., zero of � has been localized inside the sphere. Noticing the trace
ormula about even-dim Clifford base Tr�		a1

	a2,. . .,
	an

�=�a1a2¯an
�−1�n/22n/2, the normalized coef-

cient can be obtained in the fifth equation a=1/ �A�Sn−1��n−1� ! � /�k=0
r−1��−1�k� r−1

k ���r2r� / �r
k���; the last equation is just the definition of winding number W.

For odd-n=2r+1 case we have

Q = b�
Rn

Tr�	D�Fr� = b�
Rn

d Tr�	�Fr�

= b�
�Rn=Sn−1

Tr�	�Fr�

= b�− 4�−r���vacuum�
Sn−1

Tr�	n�dn�n−1�

= �
Sn−1

1

A�Sn−1��n − 1�!
�a1a2,. . .,an

na1 Ù dna2 Ù ¯ Ù dnan = W . �7�

he first, third, and last equations have similar derivation of the even-dim case. In the second
quation, the invariant symmetries Tr�	�� ,n�Fr�+r Tr�	n�� ,F�Fr−1�=051 and Bianchi identity
F=0 have been used; in the fourth equation, we use the boundary condition �5�, which may

olve the connection as 1
2dnn without losing the generalization and replace the Higgs field as �

���vacuumn at infinity. The unit vector n is well defined as even-dim cases. By another trace
ormula about odd-dim Clifford base Tr�		a1

	a2
, . . . ,	an

�=�a1a2,. . .,an
�−1��n−1�/22�n−1�/2, the normal-

zed coefficient can be obtained b=1/ �A�Sn−1��n−1� ! � /2−r ���vacuum.
Hereto, the topological charges of tensor currents have been topologically quantized as Q

W. In n=2 and 3, the topological charges degenerate as quantized magnetic flux of ANO vortex
nd quantized magnetic charge of ’t Hooft–Polyakov magnetic monopole, respectively.

In the following, we progress to explore the inner structure of topological tensor currents and
xpect that they indeed describe the desired higher-dim defects. It is known that the framework for
igher-dim defects in terms of topological tensor currents must be independent of concrete dy-
amic models, so we need to find the defects only involving topological information. It sounds
ifficult but in fact Nielsen and Olesen have pointed out41 that the Ginzburg-Landau Lagrangian
ay only leave the � -function-like vortex contribution if the vortex core is infinitesimally thin.
nd, this kind of vortex may be described by a Nielsen-Olesen Lagrangian44 as the Nambu string

45
hich only carries the topological information of the world sheet of free string. This argument

                                                                                                            



d
i
m
f
c
n
a
t
�

a

w
*

w

c
u
a

T

F
g
+
e
t
c

S

w
f
t
h

092303-5 Higher-dimensional knotlike defects J. Math. Phys. 47, 092303 �2006�

                        
oes not even rely on the detail of the Ginzburg-Landau Lagrangian. Here, we will generalize this
dea to higher-dim defects. We notice an important result that the infinitesimal thin defects indeed
ean that the boundary conditions �4� and �5� should be naively extended to whole space except

or the location of defects.52 Thus, without solving the concrete dynamic soliton solution, we still
an discuss the behavior of topological currents. One can find F, D�, then both currents J are
onzero only on the location of infinitesimal thin defects. Since the extended boundary conditions
re well defined except on the singularity of n, the infinitesimal thin defects should be localized on
he zero points of Higgs fields � for consistency. Moreover, observing the formulas �3�, �6�, and
7�

Q = �
Rn

* J = �
Sn−1

1

A�Sn−1��n − 1�!
�a1a2,. . .,an

na1 Ù dna2 Ù ¯ Ù dnan,

nd using the Stokes theorem, we have

�
Rn

* J = �
Rn

1

A�Sn−1��n − 1�!
�a1a2,. . .,an

dna1 Ù dna2 Ù ¯ Ù dnan = �
Rn

* J0,

here J0 are just the global currents �1�. Using the known �-mapping theory,21 we can prove the
J0 have the following structure:

1

A�Sn−1��n − 1�!
�a1a2,. . .,an

dna1 Ù dna2 Ù ¯ Ù dnan = ���� �J
�

x
� , �8�

here J�� /x� is the Jacobian determinant J�� /x�=1/n !�a1,. . .,an
��1�2,. . .,�n��1

�a1
¯��n

�an. One

an find that J0 is nonzero only when �� =0, which is identical to the behavior of local currents J
nder extended boundary conditions. Hereto, we obtain an important result under extended bound-
ry conditions

J = J0.

his means the local currents J have the identical inner structure �2�

J�1¯�D+1−n�x� = �
i=1

l

�i�i�
Ni

�D+1�x − zi�u��dx�1 Ù ¯ Ù dx�D+1−n. �9�

rom this expression, we conclude that the constructed topological tensor currents J with local
auge symmetry may actually describe the l infinitesimal thin D−n-dim defects spanning the D
1−n-dim world volume Ni, which carry the quantized topological charges �i�i. It is one of the
ssential results of this paper. Moreover, as the generalization of Nielsen-Olesen U�1� local field
heory for Nambu string, we construct local SO�n� gauge-invariant Lagrangian in D+1-dim Eu-
lidean space–time,

L =
1

�D + 1 − n�!
J�1¯�D+1−nJ�1¯�D+1−n

.

ubstituting the inner structure of J �9� into the action of L, we obtain

S = �
RD+1

LdD+1x = �
i=1

l

�i�i�
Ni

gud
�D+1−n�u = �

i=1

l

�i�iSi,

here Si is the area of singular world volume Ni. This action is just the generalized Nambu action
or multi D−n-dim local defects, which is the straightforward generalization of Nambu action for
he string of D−n=1. From the principle of least action, we obtain the evolution equation of these

igher-dim topological defects,
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1
gu

�

�uA
gug
AB�x�

�uB� = 0,

here A ,B=1, . . . ,D+1−n, �=1, . . . ,D+1 and gu is the determinant of induced metric gAB of
orld volume Ni. As a matter of fact, this is just the equation of harmonic map.53

II. HIGHER-DIM KNOTLIKE LOCAL DEFECTS

The knotlike structures should be characterized by knot or link invariants. At the classical
evel, a knot is characterized by helicity46 or Hopf invariants.54,55 The generalization of helicity
ased on the so-called Novikov invariants56 recently have been proposed.57 But they maintain
belian gauge symmetry and describe the linking of the higher-dim knots with only codimension

wo. There are no non-Abelian higher-dim link invariants, at least to our knowledge. At the
uantum level, the knot invariants include the linking number and its generalization have been
igorously considered in the known topological quantum field theory58 as the vacuum expectation
alues of constructed Wilson line or surface operators. There are various methods59–61 to evaluate
he quantum operators. The simplest59 is to compute their Gaussian integral directly, where an
ntegral expression of the generalized linking number of p-dim knot Np and D−p−1-dim knot

D−p−1 in D-dim spacelike manifold X is obtained,

Lk�Np,ND−p−1� = �
X

d−1jp+1 Ù jD−p, �10�

here jn=p+1,D−p are the n-rank closed differential-form deRham currents satisfying

�
X

fD−n�x� Ù jn�x� = �
ND−n

fD−n�y�

or any D−n-form f on the D−n-dim closed submanifold ND−n of X.
Based on this expression of the generalized linking number, in this section we will construct

he classical-level non-Abelian higher-dim link invariants to describe the infinitesimal thin local
igher-dim knotlike defects in the topological tensor currents.

Observing the time component of topological currents in RD+1 space–time, one can easily find
heir Hodge star in D-dim space RD

*J = * J0 = 	�
i=1

l

�i�i�
Ni

�D�x − zi�u��dDx� ,

here Ni represent infinitesimal thin D−n-dim defects �not world volume hereafter�. If these
efects Ni are closed, this Hodge star is just proportional to the deRham current, which can be
ormulated as

*J = �
i=1

l

�i�i jD−n,i, �11�

here jD−n,i represents the ith D−n-rank deRham current in RD. We have known that *J have
D
ell-defined preimages on flat space R up to coefficients
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�d−1 * Jn� = ��0

1

dt Tr�	�Ft
r−1� for n = 2r

Tr�	�Fr� for n = 2r + 1,

�12�

here the subscript n on J denotes the rank of differential form *J. Using two kinds of *J and
heir two kinds of preimages, we may construct the following four kinds of metric-independent
ntegrals in a D-dim space RD:

H = c�
RD

�d−1 * Jp+1� Ù * JD−p, �13�

here c are the normalized coefficients. Obviously, when p+1 is odd, these integrals H have local
on-Abelian product gauge symmetry SO�p+1��SO�D−p�. Below, we will discuss the cases of
ven p+1. Consider the infinitesimal gauge transformation �v�=Dv ,�vF= �v ,F�. We know that
Jp+1 is gauge invariant and use its preimage �12�

�v�*Jp+1� = �v	d�
0

1

dt Tr�	�Ft
�p+1�/2−1�� = d�v	�

0

1

dt Tr�	�Ft
�p+1�/2−1�� = 0.

ccording to Poincare’s lemma,51 the last equation implies �v��0
1dt Tr�	�Ft

�p+1�/2−1�� can be writ-
en as an exact form on flat RD

�v	�
0

1

dt Tr�	�Ft
�p+1�/2−1�� = dA .

e do not need to know the explicit expression of A, which can be determined similar to the
ell-known work of Zumino et al. for generalized chiral anomaly.62 Now, we consider the infini-

esimal gauge transformation of the integral for the even p+1 cases �13�

�vH = c�
RD

�v	�
0

1

dt Tr�	�Ft
�p+1�/2−1�� Ù * JD−p = c�

RD
dA Ù * JD−p = c�

�RD=SD−1
A Ù * JD−p = 0,

here the third equation has used Stokes theorem and the last equation has used the boundary
onditions �4� and �5�. Hereto we have proved the gauge independence of the metric independent
ntegrals, namely, which also have local non-Abelian product gauge symmetry SO�p+1�

SO�D−p�. Thus, we indeed obtain four kinds of classical local non-Abelian topological invari-
nts. Furthermore, substitute the relation between the topological currents and deRham currents
11� into the topological invariants �13� with respect to the integral expression of the generalized
inking number �10�, then we have

H = c�
RD

�d−1 * Jp+1� Ù * JD−p = �
i=1

l

�i�i�
j=1

k

� j� j�
RD

�d−1jp+1,i� Ù jD−p,j

= �
i=1

l

�i�i�
j=1

k

� j� jLk�Ni
p,Nj

D−p−1� .

he topological invariants are evaluated as generalized linking numbers of l p-dim knots Ni
p and

D−p−1-dim knots Nj
D−p−1 with quantized topological charges �i�i and � j� j. In a given D-dim

pace, one can find that four kinds of topological invariants exactly describe the four types of
eneralized linking numbers of two odd-dim knots; two even-dim knots; one odd p-dim knot and
ne even D−p−1-dim knot; and one even p-dim knot and one odd D−p−1-dim knot. Corre-
pondingly, the normalized coefficients are −1,1 ,1 ,−1, respectively. Especially, when D=3, the
opological invariant degenerates as the helicity integral H=�R3AÙF, which normally character-

46
zes the linking number of one-dim knotlike vortex filament.
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V. CONCLUSION

This paper describes a unified framework for higher-dim knotlike and local topological de-
ects in terms of topological currents. We propose the novel topological tensor currents with local
O�n� gauge symmetry in arbitrary-dim Euclidean space–time. These topological currents have
uantized topological charges and may actually describe the infinitesimal thin multi-higher-dim
efects. As the generalization of Nielsen-Olesen local U�1� field theory for Nambu string, the local
O�n� gauge-invariant Lagrangian and the motion equation of the higher-dim topological defects
re derived. In the theory of extra dimensions,63 it is best to think of the brane world as the
opological defect of almost-zero width, so we suggest that our theory for D−N=4 case can be
pplied to describe its topological structure. Moreover, we construct the classical-level non-
belian higher-dim link invariants to characterize the higher-dim knotlike infinitesimal thin de-

ects in the topological currents. This theory can be treated as the higher-dim generalization of
ell-known helicity theory.
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We construct Gepner models in terms of coset conformal field theories and com-
pute their twisted equivariant K-theories. These classify the D-brane charges on the
associated geometric backgrounds and therefore agree with the topological
K-theories. We show this agreement for various cases, in particular, the Fermat
quintic.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2245211�

. INTRODUCTION

It is by now firmly established1,2 that the K-theory groups of space-time are the D-brane
harge groups. More precisely, the claim is that the isomorphism classes of D-brane boundary
tates modulo boundary renormalization group �RG� flow are in one to one correspondence3 with
uitable K-theory classes of the string theory background in question. For geometrical back-
rounds such as Calabi-Yau manifolds, one can construct a variety of D-branes by applying
ethods from boundary CFT, matrix factorizations, and geometry.4–11 However, determining the

ndpoint of the RG flow12 is unfortunately not easy.
Most well understood in this context are purely geometrical backgrounds of string theory,

uch as tori, orbifolds, and Calabi-Yau manifolds. In these instances, the K-theories were either
lready available in the mathematics literature or are easily computed by standard techniques and
he complementary string theory computation of D-brane charges is relatively straightforward.

Less trivial is the situation of string theory backgrounds with nontrivial NSNS three-form flux
, where it is believed that twisted K-theory is the correct structure to classify D-brane

harges.2,13,14 Explicit checks of this claim have so far been restricted to backgrounds with large
ymmetries, namely supersymmetric WZW and coset conformal field theories �CFT�s.15–26 The
omputation of twisted K-theories for compact Lie groups and coset models thereof were greatly
implified by the theorem of Freed, Hopkins, and Teleman.27–29

Our objective in this paper is to test the twisted K-theory proposal beyond standard CFT
ackgrounds by extending it to Gepner models. These are essentially orbifolds of tensor products
f N=2 minimal models, realized for our purposes in terms of SU�2� /U�1� supersymmetric coset
odels. They are known to describe certain tori and Calabi-Yau spaces at particular points in their
oduli space. Because the K-groups are a topological quantity, the D-brane charge group should

e independent of the moduli. Therefore the twisted equivariant K-theory of the Gepner models
as to agree with the topological K-theory of the corresponding Calabi-Yau manifold. This pro-
ides a non-trivial check of the brane charge classification.

�Electronic mail: vbraun@physics.upenn.edu
�
Electronic mail: sakura.schafer-nameki@desy.de
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Technically, we are going to make use of the twisted equivariant Chern character. Conse-
uently, we are going to compute the complexified K-groups,

K*�X;C� := K*�X��ZC �1�

nly. The downside is that one looses interesting torsion30–32 information, since

K*�X� = Zr
� Zn1

� ¯ � Znk
⇒ K*�X;C� = Cr. �2�

owever, since none of the Calabi-Yau threefolds with Gepner points actually have torsion in their
group, we do not expect to find any in the Gepner models either.

During the final stage of this work, we received a preprint11 that constructs a basis of D-branes
or the D-brane charge group. We will discuss a few details of their approach in Sec. VI.

I. THE QUINTIC

As an hors d’œuvre to our work, let us discuss4,33 the �k=3�5 Gepner model. It is known to
orrespond to the Fermat quintic

Q = ��x0:x1:x2:x3:x4���
i=0

4

xi
5 = 0�	 � P4
 . �3�

he Hodge diamond of the quintic is by now quite familiar to all string theorists, and reads

�4�

e also know that there is no torsion in its cohomology, which then determines its K-theory to be

K0�Q� = Heven�Q;C� = Z4 ⇒ K0�Q;C� = C4,

K1�Q� = Hodd�Q;Z� = Z204 ⇒ K1�Q;C� = C204. �5�

e are going to arrive at the same answer for the complexified K-groups directly from the Gepner
odel, without making any reference to the quintic hypersurface.

The Gepner model corresponding to the quintic is a Z5 orbifold of 5 copies of the level k
3 minimal model; see Secs. III B and III F for more details. Moreover, the minimal model can be

ealized as an su�2�k /u�1� coset CFT. The coset CFT has a nice sigma model interpretation; it is
n SU�2� WZW model with a gauged U�1� action. More precisely, the U�1� acts as

U�1� � SU�2� → SU�2�, �ei�,�a b

c d
� ��cos

�

2
sin

�

2

− sin
�

2
cos

�

2
��a b

c d
�cos

�

2
sin

�

2

− sin
�

2
cos

�

2
�

−1

.

�6�

The cognoscente of course realize that our choice of maximal torus U�1��SU�2� is random.
ince all maximal tori are conjugate, we just picked this one for explicitness.� Also see Fig. 1 for
picture of the orbits. The fixed point set of the U�1� action is a circle inside SU�2��S3, which

e denote by

                                                                                                            



�
w
b
a
u
T
p

M
s
i
K
a
I
m
K

092304-3 D-Brane Charges in Gepner Models J. Math. Phys. 47, 092304 �2006�

                        
SA
1 =

def

�SU�2��U�1� = ��cos � sin �

− sin � cos �
�� � �0, . . . ,2��
 . �7�

For any space X with action of a group G, we write XG for the G-fixed points. If g�G, then we
rite Xg for the points fixed by the subgroup �g��G.� The space of orbits SU�2� /U�1� is a disk,
ounded by the fixed points SA

1 . Rotating this disk is another symmetry of the geometry, but
rbitrary rotations are not a symmetry of the theory. The reason is that the H field is not symmetric
nder arbitrary rotations of the disk. Rather, the rotation group is broken to rotations by 2� /5.
his Z5 group action lifts to an action on the SU�2� with fixed point set SB

1; see Fig. 2. The fixed
oint sets SA

1 and SB
1 form a Hopf link inside SU�2��S3.

By now it is firmly established that the charge group is given by the K-theory of space-time.
ore precisely, one has to pick the right “flavor” of K-theory depending on which N=1 super-

ymmetric theory one formulates on the background.19,22,26,34 For the coset model, the background
s SU�2� with an H flux. The latter implies that the correct K-theory is the so-called twisted
-theory, which we denote by tK. Moreover, we want to gauge a U�1� symmetry. As is familiar to

ll string theorists, this does not mean that we work on the set theoretic quotient SU�2� /U�1�.
nstead, we have to correctly incorporate the twisted sectors, which on the level of cohomology
eans that we have to compute the U�1� equivariant cohomology groups. Therefore, the correct
-theory for the minimal model is

FIG. 1. U�1� action on SU�2�.
FIG. 2. Z5 action on SU�2�.
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D-brane charges in su�2�k/u�1� coset = tKU�1�„SU�2�… , �8�

ith the twist class

t = k + 2 � Z = HU�1�
3

„SU�2�;Z… . �9�

ence, the D-brane charges in the tensor product of five minimal models are

tKU�1��U�1��U�1��U�1��U�1�„SU�2� � SU�2� � SU�2� � SU�2� � SU�2�… , �10�

here each U�1� acts on just one of the SU�2� factors. Finally, the Gepner model is the Z5 orbifold
y the diagonal Z5 action. Therefore

D-brane charges in the �k = 3�5 Gepner model = tKU�1�5�Z5
„SU�2�5

… �11�

o compute these K-groups, we are using a twisted version of the equivariant Chern isomorphism,

ch:KG
0,1�X;C�→

�

�
g�G

HG
even,odd�Xg;C� . �12�

In this paper, we are only concerned with Abelian groups G. In general the sum is over conjugacy
lasses.� Adding an additional twist to the equivariant Chern character has two consequences.
irst, one is lead to twisted cohomology, which is roughly the cohomology of d+ �H� instead of d
n differential forms. Second, the cohomology is with local coefficients, that is, with coefficients
n a flat line bundle tL instead of the trivial flat line bundle C. The ensuing twisted equivariant
hern character �see Sec. III C�

ch:tKG
* �X;C� → �

g�G

tHG
*
„Xg; tL�g�… �13�

s an isomorphism, provided that only finitely many summands on the right are nonvanishing. This
urns out to be the case here, and

tKU�1�5�Z5

*
„SU�2�5;C… � �

g�U�1�5�Z5

tHU�1�5�Z5

*
„�SU�2�5�g; tL�g�…

= �

g�U�1�5�Z5

�tHU�1�5
*

„�SU�2�5�g; tL�g�…�Z5 �14�

s indeed an isomorphism. More specifically, as we are going to show in Sec. III C the only
ontributions are from the 45+4 group elements

g = ��m1,�m2,�m3,�m4,�m5,1�, mi � �1, . . . ,4	 , �15a�

g = �1,1,1,1,1,n�, n � �1, . . . ,4	 , �15b�

n U�1�5�Z5, where we write � =
def

exp�2�i /5�. The corresponding fixed point sets are of the form

g = ��m1,�m2,�m3,�m4,�m5,1� ⇒ �SU�2�5�g = �SA
1�5, �16a�

g = �1,1,1,1,1,n� ⇒ �SU�2�5�g = �SB
1�5. �16b�

s we are going to discuss in more detail in the next section, the twisted equivariant cohomology
or a single factor tHU�1�(SU�2�g ; tL�g�) for g�U�1��Z5 is

g = ��m,1� ⇒ tH0
„S1 ; tL�g�… = 0, tH1

„S1 ; tL�g�… = �m, �17a�
U�1� A U�1� A
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g = �1,n� ⇒ tHU�1�
0

„SB
1 ; tL�g�… = 1, tHU�1�

1
„SB

1 ; tL�g�… = 0, �17b�

here we write the cohomology groups as Z5 characters. �By abuse of notation, we denote the
enerator for the character ring again �. In other words, m�Z5= �0, . . . ,4	 acts by multiplication
ith �m=exp�2�im /5�.� The cohomology groups for the tensor product of 5 such factors is

eadily determined from the Künneth formula, and one obtains

�

g=��m1,. . .,�m5,1�

tHU�1�5
*

„�SA
1�5; tL�g�… = � 0, * = 0;

�� + �2 + �3 + �4�5, * = 5 � 1 mod 2;
�18a�

�

g=�1,. . .,1,�n�

tHU�1�5
*

„�SB
1�5; tL�g�… = �4, * = 0;

0, * = 1.
�18b�

t is now easy to determine the Z5-invariant part. Using the twisted equivariant Chern character,
q. �14�, we obtain

tKU�1�5�Z5

*
„SU�2�5;C… = � C4, * = 0;

��� + �2 + �3 + �4�5�Z5 = C204, * = 1
�19�

hich precisely equals the K-theory of the quintic hypersurface. �Perhaps not surprisingly, for-
ally the same computation arises when one tries35 to construct Gepner models using matrix

actorizations. However, the authors of Ref. 35 fail to address the twisted sector branes that arise
hen the Gepner model contains minimal models of different levels.�

II. K-theory OF GEPNER MODELS

. Group theory

As we saw in the quintic example discussed in Sec. II, one has to determine cohomology
roups that form representations under a discrete group GGSO ��Z5 for the quintic� that imple-
ents the GSO �After Gliozzi, Scherk, and Olive36� projection. Now we could always work with

olynomials of characters as in Eq. �19�, but this becomes cumbersome if one has to deal with
ensor products of different minimal models.

For cyclic groups Z�, the following representations will appear again and again. �In this paper,
e are only going to consider complex representations.�

• The trivial representation C.
• The regular representation RZ�, which is defined as follows: Take the vector space C�. The

group acts by cyclically permuting the � basis vectors. The regular representation can be
diagonalized to the sum of all one-dimensional representations. Explicitly, if � :Z�→C,
��1�=exp�2�i /�� is the generating character, then

RZ� = �
i=0

�−1

�i. �20�

• The representation RZ˜

�, which is the regular representation without its trivial subrepre-
sentation,

RZ˜

� = �
i=1

�−1

�i. �21�
More formally, it is the cokernel
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0 → C → RZ� → RZ˜

� → 0. �22�

oreover, since we are actually computing cohomology groups, everything has a cohomological
2 grade. By definition, we assign

deg�C� = 0, �23a�

deg�RZ�� = deg�RZ˜

�� = 1. �23b�

Of course, we have the usual operations of restriction and induction �transfer� to relate GGSO

epresentations and representations of subgroups of GGSO. However, GGSO is always a cyclic group
nd we have yet another operation that will occur frequently. This works as follows. Given any
ubgroup Z��GGSO, we have in addition to the inclusion i also a projection �,

�24�

y modding out by �. Given a representation 	 :Z�→Cn, we can then define a representation
pZ�

GGSO�	� of GGSO on the same vector space Cn by composing

pZ�

GGSO�	� =
def

	 � �:GGSO → Cn,�n,v� � 	�n mod �,v� . �25�

ow, in general, the projection � depends on which generators you chose for GGSO, a random
hoice. However, for the identity, the regular, and the reduced regular representation of Z� the
esulting GGSO representation does not depend on that choice. We are only going to use the pZ�

GGSO

peration in these cases.
For example, consider the group Z12= �0,1 , . . . ,11	 with the character ��1�=e2�i/12. Then the

epresentation

pZ3

Z12�RZ˜

3��CpZ4

Z12�RZ˜

4� = ��4 + �8���3 + �6 + �9� = � + �2 + �5 + �7 + �10 + �11, �26�

s the six-dimensional representation of Z12 of cohomology degree 2�0 mod 2 generated by

diag�e2�i/12,e4�i/12,e10�i/12,e14�i/12,e20�i/12,e22�i/12� . �27�

n the future, we are just going to write � , and it will be understood that we are tensoring over C.

. Minimal model as coset

The minimal models for the N=2 superconformal algebra have equivalent realizations in
erms of super-GKO coset models,

su�2�k � u�1�2

u�1�k+2
, �28�

s well as Landau-Ginzburg models. The modular invariant partition functions fall into an ADE
lassification.37–39 From the coset CFT point of view these are obtained from the ADE modular
nvariants of the su�2�k WZW model. We shall focus on the A series minimal models. There are
arious subtleties concerning that modular invariant corresponds to the A-type superpotential, and
t will turn out that there are essentially four distinct models that will be of interest. The fields of
he coset CFT are labeled by �j ,n ,s�, where j=0, . . . ,k /2 is the su�2�k highest weight, n
Z2�k+2� labels the representations of the denominator u�1�k+2 and s�Z4 labels the free fermion

epresentations in u�1�2. There is a Zk+2�Z2 discrete group acting on the fields in the following

ashion:
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:��j,n,s� � �− 1�2n/k+2��j,n,s�,

�:��j,n,s� � �− 1�s��j,n,s�. �29�

he Zk+2 action is realized geometrically in the gauged WZW model by the rotation of the disk
arget space. Orbifolding the A-type theory with respect to these symmetries yields new modular
nvariants, as was first observed in Ref. 15. Note that a related issue arose in the context of WZW
odels for nonsimply laced groups in Ref. 22, where nontrivial automorphisms acting on the

ermions gave rise to new modular invariants for the supersymmetric WZW models.
Since s=1,3 corresponds to the Ramond sector, the orbifold by Z2= ��� is from a space-time

oint of view the same as modding out �−1�F. The state space of the �charge conjugate� diagonal
odular invariant is

HMMk
= �

�j,n,s�
H�j,n,s� � H�j,n,s�, �30�

here the direct sum is over the standard range of super-parafermion representations, including
he selection and identification rules

�j,n,s� � �k/2 − j,n + k + 2,s + 2�, 2j + n + s � 2Z . �31�

he state space of the Z2 orbifold is then obtained as

HMMk/Z2
= �

�j,n,s�
H�j,n,s� � H�j,n,−s�. �32�

rbifolding MMk by Zk+2�Z2, it was observed in Ref. 15 that the partition function is the same
s in MMk, and that this model is, in fact, dual to MMk. Likewise, MMk /Zk+2 is T-dual to

MMk /Z2.
Gepner models are orbifolds of tensor products of minimal models with not necessarily equal

evel, which give rise to consistent GSO-projected string theory backgrounds. Consider a tensor
roduct of r minimal models, of level �k1 , . . . ,kr�, and define

 = �j1, ... , jr�, � = �n1, . . . ,nr;s1 . . . ,sr� , �33�

nd � j= �0, . . . ,0 ,2 ,0 , . . . ,0�, with the nonzero entry at slot sj and �0= �1, . . . ,1�. Further define
= lcm�2,kj+2�. Then the partition function for the Gepner model is given by

Z�k1,. . .,kr�
= �

,�
�
b0=0

2K−1

�
bj=0,1

���− 1�b0�,��̄,�+b0�0+�bj�j
. �34�

he characters of the tensor product of the minimal models are denoted by �. In principle, one can
efine the conserved D-brane charges using RG flow,3,40 but in practice this is not feasible.

. Chern character of the minimal model

Now that we have defined all the ingredients, we can start to compute the relevant K-groups.
ur main tool is going to be the twisted equivariant Chern character.28,41 For explicitness, let us

onsider a single minimal model whose complexified D-brane charge group is

�KU�1��SU�2���ZC=
def

�KU�1�„SU�2�;C… , �35�

here �=k+2 is going to be the twist class for the remainder of this section. �That is, the twist
lass is � times the generator of HU�1�

3 (SU�2� ;Z).� Now, given a twisted equivariant vector bundle,
e can tensor it with any group representation, and get another equivariant vector bundle with the

ame twist. In other words, there is an action of KU�1���pt. 	 ;C�=RU�1�=C�z ,z−1� on the twisted

quivariant K-theory.
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In geometrical terms, C�z ,z−1� is the ring of functions on C� =
def

C \ �0	. And the twisted equi-
ariant K-theory �KU�1��SU�2� ;C� is a module over this function algebra, that is a sheaf over the
ase space C�. The twisted equivariant Chern character identifies the stalks �fibers� of this sheaf
ver a point in C� with a certain cohomology group. More precisely, Freed-Hopkins-Teleman28

dentify the stalk over ��C� with

��KU�1�
*

„SU�2�;C…�� � �HU�1�
*

„SU�2��; �L���… , �36�

here �L��� is a certain flat line bundle. Note that when we say that � acts on SU�2�, we really
ean that � / �� � �U�1� acts on SU�2�.

In general, the knowledge of the stalks is not enough to reconstruct the sheaf, for example,
very fiber of a line bundle is just isomorphic to C. However, in the case of a single minimal
odel, the sheaf turns out to be a skyscraper sheaf, and can indeed be reconstructed.

. Twisted equivariant cohomology of the minimal model

In this section, we are going to determine the twisted equivariant cohomology groups that
ppear in the Chern character formula, Eq. �36�. We advise the reader who is not interested in all
he details to note the result, Eqs. �45a� and �45b�, and then proceed with the next section.

In fact, the problem is very similar to �KSU�2��SU�2� ;C� that is explicitly worked out as an
xample in Ref. 28. Depending on �, there are two different fixed point sets. One possibility is
�R�0, which acts trivially on the whole SU�2�. It turns out28 that the line bundle �L��� is trivial

n that case. Therefore, the untwisted equivariant cohomology is

HU�1�
*

„SU�2��; �L���… = HU�1�
*

„SU�2�;C… = C�u,t�/u2, �37�

here we used the Leray spectral sequence

Hp�BU�1�;Hq
„SU�2�;C…� ⇒ HU�1�

p+q
„SU�2�;C… �38�

ith t�H2�BU�1� ;C� of degree 2 and u�H3�SU�2� ;C� of degree 3. To determine the twisted
quivariant cohomology �HU�1�

* �SU�2� ;C� from the untwisted one, we have to mode out by the
dditional differential d3=�u. �More formally, we are using the untwisted to twisted cohomology
pectral sequence. Note that �d3�2�u2=0 in C�u , t� /u2.� An easy computation shows that

�HU�1�
*

„SU�2��; �L���… = �HU�1�
*

„SU�2�;C… =
ker�d3�
img�d3�

= 0. �39�

his settles the case where the whole SU�2� is fixed under the � action. The other possibility is the
eneric case where SU�2��=SA

1 . In that case, the flat line bundle �L��� over SA
1 has28 holonomy ��,

o all cohomology groups vanish unless ��=1. In that case, that is over the �−1 points,

�m =
def

e2�im/�, m = 1, . . . ,� − 1, �40�

he untwisted cohomology is

HU�1�
*

„SA
1 ; �L��m�… = H*

„BU�1�;C… � H*
„SA

1 ; �L��m�… = C�t� � C�v�/v2 = C�v,t�/v2, �41�

here deg�v�=1 and deg�t�=2. The twist class is in HU�1�
3 (SA

1 ; �L��m�)=C · tv. Hence, if one nor-

alizes the tv properly, then d3=�tv. The d3 cohomology is
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�HU�1�
*

„SA
1 ; �L��m�… =

ker�d3�
img�d3�

= Cv = �C , * = 1;

0, otherwise.
�42�

In addition to the U�1� action on SU�2�, we can also act with Z�. We find two more cases: the
xed point set can be either SB

1 or empty. The cohomology of the empty set, of course, vanishes.
n the former case, note that U�1� acts simply transitive on SB

1 , so the equivariant cohomology is
ust the cohomology of a point. To summarize, there are four different cases corresponding to
ifferent g�U�1��Z�. The twisted cohomology groups are �ignoring the Z� action on the coho-
ology and the precise degrees for now�

g = �1,0� ⇒ �HU�1�
*

„SU�2�g; �L�g�… = �HU�1�
*

„SU�2�;C… = 0, �43a�

g = ��,0� ⇒ �HU�1�
*

„SU�2�g; �L�g�… = �HU�1�
*

„SA
1 ; �L�g�… = ���,1C , �43b�

g = �1,n� ⇒ �HU�1�
*

„SU�2�g; �L�g�… = HU�1�
* �SB

1 ;C� = H*��pt . 	� = C , �43c�

g = ��,n� ⇒ �HU�1�
*

„SU�2�g; �L�g�… = HU�1�
* �� ;C� = 0, �43d�

here we took n�Z� \ �0	 and ��C� \ �1	.
All that remains is to determine the precise action of Z� on the cohomology group, Eq. �43b�.

or that, note that even though the line bundle �L��m� in Eq. �41� is trivial, the trivializing section
inds m times around the SA

1 relative to the trivial line bundle. Therefore rotating SA
1 by 2� /�

ultiplies v with the phase exp�2�im /��. In terms of the character � :Z�→U�1�,
�exp�2�im /��, this means that

�

��C�

�HU�1�
*

„SU�2��; �L���… = � 0, * = 0

� + �2 + ¯ + ��−1, * = 1

 = RZ˜

�, �44�

s the Z� representation. In other words, we can write the twisted equivariant cohomology groups
s

n = 0 � Z� ⇒ �

��C�

�HU�1�
*

„SU�2���,n�; �L��,n�… = RZ˜

�, �45a�

n � 0 � Z� ⇒ �

��C�

�HU�1�
*

„SU�2���,n�; �L��,n�… = C , �45b�

sing the conventions for cohomology degrees in Eqs. �23a�, �23b�.

. Mirror symmetry for minimal models

As a quick application, let us compute the K-groups of the minimal model and its Z� orbifold.
ccording to the twisted equivariant Chern character, the K-groups of the minimal model are

�KU�1�
*

„SU�2�;C… = �
�

�HU�1�
*

„SU�2��; �L���… = RZ˜

� ��0, * = 0;

C�−1, * = 1,
�46�
��C
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sing the cohomology groups computed in Eq. �45a�. We recover the known19 D-brane charge
roups for the coset minimal model.

Similarly, we can compute the D-brane charge group in the Z� orbifold, which is known to be
he mirror of the minimal model. One obtains

�47�

ote that the Z� equivariant cohomology is simply the Z� invariant subspace of the cohomology
roup. For that, it is important to work with complex coefficients, because it would generate
orsion contributions over the integers. Also note that the Z� equivariant K-theory is in general not
he same as the Z� invariant K-groups.

To summarize, we observe that the Z� orbifold indeed exchanges K0↔K1, as we expect from
he mirror involution. Furthermore, recall the distinction between A- and B-type branes.15 The
-branes carry the charges in Eq. �45a�, contributing to K1 of the minimal model. On the other
and, the B-branes Eq. �45b�, are only stable in the Z� orbifold of the minimal model where they
ontribute to K0.

. K-groups for Gepner models

Having tackled a single minimal model, we now proceed to Gepner models.4,37–39 For that we
ake d copies of the SU�2� with the action of d copies of U�1� factor by factor. That is,

U�1�d � SU�2�d → SU�2�d, �48�

ith a choice of twist

�̄ = ��1,�2, . . . ,�d� , �49�

here ki=�i−2 is the level in the CFT of the ith factor. The overall central charge is

c = �
i=1

d
3ki

ki + 2
= �

i=1

d
3��i − 2�

�i
. �50�

henever c /3 is integer, this could be the central charge of a geometric compactification of that
imension. However, a mere tensor product of minimal models is never geometric because of
oninteger charges. In other words, it does not have space-times supersymmetry. The solution to
his problem37 is to orbifold by a certain discrete symmetry group GGSO.

As we have seen, each of the minimal models has a discrete symmetry group Z�i
�0,1 , . . . ,�i−1	. The GSO projection is the group generated by

�1,1, . . . ,1� � �
i=1

d

Z�i
. �51�
t follows that
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GGSO = Zlcm��1,�2,. . .,�d�. �52�

ccording to the general dictionary between D-brane charge groups and K-theory group, the
-brane charges in the Gepner model are

�̄KU�1�d�GGSO
„SU�2�d

… . �53�

e can again compute �the complexification� through the twisted equivariant Chern character.
nce we translate the K-groups into cohomology, we can use the following:

• the GGSO equivariant cohomology is the GGSO invariant cohomology and
• the Künneth theorem for cohomology,

either of which hold in general for twisted equivariant K-theory. Again, we have to complexify

U�1�d � GGSO � �C��d � GGSO �54�

nd think of the cohomology and K-groups as sheaves over this space. According to Sec. III D, the
nly potentially nonvanishing cohomology groups for the ith minimal model sit over the �ith roots
f unity,

Zi =
def

�e2�im/�i�m � Z�i
= �0, . . . ,�i − 1		 � C�, �55�

herefore the only nonvanishing cohomology groups of the product are over the points

Z=
def

�
i=1

d

Zi = ��e2�im1/�1, . . . ,e2�imd/�d�mi � Z�i
	 � �C��d. �56�

sing all that, we obtain

�̄KU�1�d
*

„SU�2�d;C… = �
g�GGSO

� �

z̄��C��d

�̄HU�1�d
* ��

i=1

d

SU�2��zi,g�; �
i=1

d
�iL�zi,g��GGSO

= �
g�GGSO

� �
z̄�Z

�̄HU�1�d
* ��

i=1

d

SU�2��zi,g�; �
i=1

d
�iL�zi,g��GGSO

= �
g�GGSO

��
i=1

d � �
zi�Zi

�iHU�1�
*

„SU�2��zi,g�; �iL�zi,g�…
�GGSO

. �57�

ote that according to Eqs. �45a� and �45b�,

�
zi�Zi

�iHU�1�
*

„SU�2��zi,g�; �iL�zi,g�… =�RZ˜

�i
, g � 0 mod �i ⇔ �i�g;

C , �i ��g .
�58�

oreover, GGSO obviously acts on RZ˜

�i
as pZ�i

GGSO�RZ˜

�i
�, see Eq. �25�. Therefore, we can simplify
q. �57� to
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�̄KU�1�d
*

„SU�2�d;C… = �
g�GGSO

� �
�i�g

pZ�i

GGSO�RZ˜

�i
��GGSO, �59�

here we would like to remind the reader that n �0� for all n, that � i��=C, and that we defined

Z�i
to have cohomological degree 1.

V. EXAMPLES

. Toroidal theories

There are three Gepner models42 that describe an elliptic curve. Two of them, k= �1,1 ,1� and
= �0,1 ,4�, turn out to be the same CFT �for example, have identical partition functions�. Hence,
e obtain two different CFTs corresponding to the two orbifold singularities in the complex

tructure moduli space of the torus; see Table I. Recall that each elliptic curve C / �Z � �Z� has a Z2

ymmetry, but at �= i and �=exp�2�i /3� the symmetry is enhanced to Z4 and Z6, respectively. We
asily compute using Eq. �59� that in all three cases,

�̄KU�1�3�GGSO

*
„SU�2�3;C… = �C2, * = 0

C2, * = 1

 = K*�T2;C� , �60�

s expected, since we are dealing with a topological invariant of the torus. Note that the toroidal
epner models always have three factors, even if that forces one of the levels to be zero. It is

mportant to realize43,44 that adding one factor with c=0 in the Gepner model does indeed have a
hysical effect. For example, we can easily compute the D-brane charges in the k= �2,2�⇔�
�4,4� model and obtain

�4,4�KU�1�2�GGSO

*
„SU�2�2;C… = �C6, * = 0;

0, * = 1.
�61�

his is not the D-brane charge group of any geometric c=3 CFT. Note that the usual argument
hy k=0 factors do not matter is wrong: in the corresponding Landau-Ginzburg model, the k
0 factor corresponds to a field � that appears in the superpotential as

WLG = ¯ + �2. �62�

olklore says that one can integrate out � at no cost. But that is only true if one restricts to the
losed string sector, if one considers D-branes and open strings,43 then one must include a bound-
ry action that will contain � as well.

. Twisted sectors

Let us have a closer look at the formula for the K-groups of a Gepner model, Eq. �59�. First,
et us rewrite it as

�̄KU�1�d
*

„SU�2�d;C… = �
g�GGSO

�Kg�GGSO, �63�

TABLE I. Elliptic curves with enhanced automorphism groups.

Complex structure Symmetry Gepner model Hypersurface

�= i Z4 k= �0,2 ,2� �x0
2+x1

4+x2
4=0	�WP2,1,1

�=e2�i/3 Z6 k= �1,1 ,1� �x0
3+x1

3+x2
3=0	�WP1,1,1

�=e2�i/3 Z6 k= �0,1 ,4� �x0
2+x1

3+x2
6=0	�WP3,2,1
ith
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Kg =
def

�
�i�g

pZ�i

GGSO�RZ˜

�i
� . �64�

bviously, this has an interpretation of Kg
GGSO being the contribution of the g-twisted sector in the

GSO orbifold. Note that a single tensor factor pZ�i

GGSO�RZ˜

�i
� does not have any GGSO-invariant

ubspace, so the only way to obtain something invariant is to either have zero factors �which
ields a B-type brane�, or �2 factors. This is very familiar from the geometric interpretation as
ypersurfaces in weighted projective spaces. If two or more weights �GGSO � /�i have a common
actor, then the Calabi-Yau hypersurface inherits an orbifold singularity from the ambient space.
he exceptional divisor from the resolution of the singularity increases the rank of the K-groups.

Specifically, in complex dimension �2 one can have genuine singularities that require reso-
utions and contribute twisted sector D-brane charges. To see that explicitly within the Gepner

odel context, let us consider the following two K3 Gepner models. First consider the �k=2�4

epner model, corresponding to the Fermat quartic,

�x0
4 + x1

4 + x2
4 + x3

4 = 0	 � P3. �65�

n this case, the ambient space and the hypersurface are nonsingular. The contribution of the
ntwisted and the three g-twisted sectors is

�66�

e can do the same for the k= �1,2 ,2 ,4�⇔�= �3,4 ,4 ,6� Gepner model. It corresponds to the
ingular K3 hypersurface,

X =
def

�x0
3 + x1

4 + x2
4 + x3

6 = 0	 � WP4,3,3,2. �67�

he weighted projective space has a rational curve C2 of C2 /Z2 singularities and another rational
urve C3 of C2 /Z3 singularities embedded as

C2 � WP4,3,3,2, �s0,s1� � �s0,0,0,s1� ,

C3 � WP4,3,3,2, �s0,s1� � �0,s0,s1,0� . �68�

he surface inherits 4A1 and 6A2 orbifold singularities from

C2 � X = 4, C3 � X = 6. �69�

he resolution X˜ is then a smooth K3 surface. This concludes the geometric point of view, now let
s analyze the K-theory computation from the Gepner model side. Using Eq. �63�, we find

�70�
here we abbreviated
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RZ˜

�1,�2,... =
def

�
i=1,2,...

pZ�i

GGSO�RZ˜

�i
� . �71�

f course, in the end we obtain again the K-groups of the K3 manifold. However, this times some
f the charge groups involve mixtures of even- and odd-dimensional branes. In the same way one
an analyze all K3 Gepner models; see Appendix A.

. KNÖRRER PERIODICITY

If one adds two variables with a quadratic superpotential to the Landau-Ginzburg theory45–47

ith fields �= ��1 , . . . �,

WLG��� → ŴLG = WLG��� + x2 + y2, �72�

hen one obtains the same theory again. This is quite nontrivial, because adding a single variable
ith a quadratic superpotential certainly does yield an inequivalent theory as discussed in Sec.

V A.
The evidence for periodicity is that the topological B-branes, that is the category of matrix

actorizations, are equivalent. This fact is known as Knörrer periodicity,48

MF�C���/WLG���� � MF„C��,x,y�/ŴLG��,x,y�… . �73�

his periodicity manifests itself in our formula Eq. �59�, as follows. Adding two factors with k
0⇔�=2 amounts to inserting

pZ2

GGSO�RZ˜

2� � pZ2

GGSO�RZ˜

2� = C �74�

henever 2 �g�. But

�¯� � C = �¯� �75�

s the identity, so we obtain again the same K-groups.
Note that the above argument is flawed since adding the �=2 factors might change the GGSO

roup Eq. �52�. If the initial order �GGSO� was odd, that is,

lcm��1, . . . ,�d� � 2Z + 1, �76�

hen

lcm��1, . . . ,�d,2,2� = 2lcm��1, . . . ,�d� . �77�

herefore, periodicity only holds if one had already an even �i. In general, Knörrer periodicity
eed not hold for the first time one adds two k=0 factors, but it always holds from the second time
nward,

��1,. . .,�d,2�KU�1�d+1�GGSO
„SU�2�d+1;C… = ��1,. . .,�d,2,2,2�KU�1�d+3�GGSO

„SU�2�d+3;C… . �78�

his is somewhat reminiscent of stabilization in K-theory.

I. GENERALIZED PERMUTATION BRANES

In this section, we are going to focus on the Calabi-Yau �c=9� Gepner models. It is clear from
ec. III E that all D-brane charges can be found as suitable combinations of the D-branes in the

oset or its mirror �Z� orbifold�. In particular, the usual tensor product and permutation branes give
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ll the D-brane charges in the untwisted sector, corresponding to g=0 in Eq. �59�. Similarly, one
btains zero or one brane in the twisted �g=1, . . . , �GGSO � � sectors. But the latter is not enough to
ll out the D-brane charge lattice, in general, since sometimes there are two or more independent
harges coming from a twisted sector. Of course, all that means is that the boundary state con-
truction is incomplete. Using Landau-Ginzburg models and matrix factorizations one obtains11,49

ll brane charges.
Inspection of the formula for the K-groups, Eq. �59�, shows that two or more brane charges

an only come from a g�GGSO sector where some �i divides g. Moreover, if only a single �i

ivides g, then there is no contribution because

�pZ�i

GGSO�RZ˜

�i
��GGSO = 0 �79�

as no invariant subspace. Hence, the interesting case is if two or more �i have a common factor.
ollowing Ref. 11, let us consider the case where r of the shifted levels �̄= ��1 , . . . � have the same
ivisor d�2. �If the common divisor d=2, then there is again only a one-dimensional contribution
o the K group in the g�dZ twisted sectors, which is not so interesting. Of course, our arguments
old in that case as well�.

First, note that r odd contributes to K1 only, as is evident from our degree convention, Eqs.
23a� and �23b�. Not so surprisingly, if one11 restricts oneself to K0 then there are no D-brane
harges for r=1,3 ,5. This leaves the cases r=2 and r=4. Looking at the list of Gepner models,
=4 can only occur if the Gepner model has more than five minimal model factors. There is
othing wrong with that, and our formula, Eq. �59�, gives the correct answer for the K-groups.
owever, if one11 were to restrict oneself to 5 minimal model factors, then r=4 cannot occur

ither.

II. CONCLUSIONS

There is a very simple formula, Eq. �59�, for the rank of the K-groups of Gepner models. The
ummands in the formula have a natural interpretation as the contributions from twisted sectors.
e checked the computation in c=3,6 ,9 Gepner models and find agreement with the topology of

he associated Calabi-Yau manifolds.
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PPENDIX A: K3 GEPNER MODELS

There are 16 Gepner models that are associated to K3 surfaces50–52 listed in Table II. We

TABLE II. Gepner models associated to K3.

k̄= �1,1 ,1 ,1 ,1 ,1�, k̄= �0,1 ,1 ,1 ,1 ,4�, k̄= �2,2 ,2 ,2�, k̄= �1,2 ,2 ,4�
k̄= �1,1 ,4 ,4�, k̄= �1,1 ,2 ,10�, k̄= �0,4 ,4 ,4�, k̄= �0,3 ,3 ,8�
k̄= �0,2 ,6 ,6�, k̄= �0,2 ,4 ,10�, k̄= �0,2 ,3 ,18�, k̄= �0,1 ,10,10�
k̄= �0,1 ,8 ,13�, k̄= �0,1 ,7 ,16�, k̄= �0,1 ,6 ,22�, k̄= �0,1 ,5 ,40�
hecked that we obtain

                                                                                                            



i
m

a
m

k̄

C
s

A

l

W
=
T
t
t

s
w

S
h

T
�

092304-16 V. Braun and S. Schafer-Nameki J. Math. Phys. 47, 092304 �2006�

                        
�̄KU�1�d�GGSO

*
„SU�2�d;C… = �C24, * = 0

0, * = 1

 = K*�K3;C� �A1�

n all 16 cases. It is important that the right number of k=0 factors appears so that there are four
inimal models altogether �exceptionally, six in the first two Gepner models�.

In addition to the 16 known K3 Gepner models, we found that

�2,3,3,3,3,3,3�KU�1�7�GGSO

*
„SU�2�7;C… = K*�K3;C� , �A2�

s well. Although it has not the conventional number of factors, this k̄= �0,1 ,1 ,1 ,1 ,1 ,1� Gepner
odel seems to yield yet another K3 CFT.

There is yet another combination of levels such that the total central charge c=6, which is

= �0,1 ,1 ,1 ,2 ,2�. One can easily compute that

�2,3,3,3,4,4�KU�1�6�GGSO

*
„SU�2�6;C… = �C8, * = 0

C8, * = 1

 = K*�T4;C� .

learly, this Gepner model describes a T4 compactification with �accidentally� enhanced N=8
pace-time supersymmetry.

PPENDIX B: CALABI-YAU THREEFOLD GEPNER MODELS

First, note that a proper Calabi-Yau threefold X, that is a compact Kähler manifold of ho-
onomy SU�3� satisfies

rank K0�X� = 2h11�X� + 2, rank K1�X� = 2h21�X� + 2. �B1�

e can check this formula against the known list53 of 168 Gepner models with central charge c
9, which are associated to Calabi-Yau threefolds. The list of all Gepner models is reproduced in
able III. If one uses these N= �2,2� SCFTs as the compactification of the E8�E8 heterotic string,

hen their low-energy spectrum consists of a number n27=h11�X� of matter fields transforming in
he 27 and n27=h21�X� of field in the 27 representation of E6.

One can check that the formula, Eq. �B1�, is obeyed for each Gepner model except for the
even cases with n27=n27=21. The obvious explanation is that this misfit is associated K3�T2,
hich has Hodge numbers

�B2�

ince K3�T2 has only SU�2� holonomy, that is, it is not a proper Calabi-Yau manifold, it does not
ave to obey Eq. �B1�. Adding up the even and odd cohomology groups, we find that

K0�K3 � T2� = Z48, K1�K3 � T2� = Z48. �B3�

hese topological K-groups are in precise agreement with what we computed using the coset, Eq.

59�.
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TABLE III. c=9 Gepner models.

k̄= �k1 ,k2 , . . . � n27̄ n27 rkK1 rkK0

�1, 1, 1, 1, 1, 1, 1, 1, 1� 0 84 2 170
�1, 1, 1, 1, 1, 1, 1, 4, 0� 0 84 2 170
�1, 1, 1, 1, 1, 1, 2, 2, 0� 21 21 48 48
�1, 1, 1, 1, 1, 2, 10�, 2 62 6 126
�1, 1, 1, 1, 1, 4, 4� 1 73 4 148
�1, 1, 1, 1, 2, 2, 4� 11 35 24 72
�1, 1, 1, 2, 2, 2, 2� 21 21 48 48
�1, 1, 1, 1, 5, 40, 0� 23 47 48 96
�1, 1, 1, 1, 6, 22, 0� 16 52 34 106
�1, 1, 1, 1, 7, 16, 0� 8 68 18 138
�1, 1, 1, 1, 8, 13, 0� 17 41 36 84
�1, 1, 1, 1, 10, 10, 0� 7 79 16 160
�1, 1, 1, 2, 3, 18, 0� 21 21 48 48
�1, 1, 1, 2, 4, 10, 0� 2 62 6 126
�1, 1, 1, 2, 6, 6, 0� 21 21 48 48
�1, 1, 1, 3, 3, 8, 0� 21 21 48 48
�1, 1, 1, 4, 4, 4, 0� 0 84 2 170
�1, 1, 2, 2, 2, 10, 0� 10 46 22 94
�1, 1, 2, 2, 4, 4, 0� 3 51 8 104
�1, 2, 2, 2, 2, 4, 0� 1 61 4 124
�2, 2, 2, 2, 2, 2, 0� 0 90 2 182
�1, 1, 2, 11, 154� 71 71 144 144
�1, 1, 2, 12, 82� 40 76 82 154
�1, 1, 2, 13, 58� 26 86 54 174
�1, 1, 2, 14, 46� 26 86 54 174
�1, 1, 2, 16, 34� 16 100 34 202
�1, 1, 2, 18, 28� 31 55 64 112
�1, 1, 2, 19, 26� 41 41 84 84
�1, 1, 2, 22, 22� 11 131 24 264
�1, 1, 3, 6, 118� 55 55 112 112
�1, 1, 3, 7, 43� 19 67 40 136
�1, 1, 3, 8, 28� 19 69 40 140
�1, 1, 3, 10, 18� 31 31 64 64
�1, 1, 3, 13, 13� 7 103 16 208
�1, 1, 4, 5, 40� 17 65 36 132
�1, 1, 4, 6, 22� 10 70 22 142
�1, 1, 4, 7, 16� 7 79 16 160
�1, 1, 4, 8, 13� 12 48 26 98
�1, 1, 4, 10, 10� 5 101 12 204
�1, 1, 5, 5, 19� 17 65 36 132
�1, 1, 6, 6, 10� 19 43 40 88
�1, 1, 7, 7, 7� 4 112 10 226
�1, 2, 2, 5, 40� 35 35 72 72
�1, 2, 2, 6, 22� 8 68 18 138
�1, 2, 2, 7, 16� 19 43 40 88
�1, 2, 2, 8, 13� 27 27 56 56
�1, 2, 2, 10, 10� 5 89 12 180
�1, 2, 3, 3, 58� 23 47 48 96
�1, 2, 3, 4, 18� 15 39 32 80
�1, 2, 4, 4, 10� 2 74 6 150
�1, 2, 4, 6, 6� 7 55 16 112
�1, 3, 3, 3, 13� 3 75 8 152
�1, 3, 3, 4, 8� 15 39 32 80
�1, 4, 4, 4, 4� 1 103 4 208
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TABLE III. �Continued.�

k̄= �k1 ,k2 , . . . � n27̄ n27 rkK1 rkK0

�2, 2, 2, 3, 18� 5 65 12 132
�2, 2, 2, 4, 10� 3 69 8 140
�2, 2, 2, 6, 6� 2 86 6 174
�2, 2, 3, 3, 8� 15 39 32 80
�2, 2, 4, 4, 4� 6 60 14 122
�3, 3, 3, 3, 3� 1 101 4 204
�0, 1, 5, 41, 1804� 251 251 504 504
�0, 1, 5, 42, 922� 137 257 276 516
�0, 1, 5, 43, 628� 95 263 192 528
�0, 1, 5, 44, 481� 143 143 288 288
�0, 1, 5, 46, 334� 47 287 96 576
�0, 1, 5, 47, 292� 47 287 96 576
�0, 1, 5, 49, 236� 107 107 216 216
�0, 1, 5, 52, 187� 53 173 108 348
�0, 1, 5, 54, 166� 23 335 48 672
�0, 1, 5, 58, 138� 59 131 120 264
�0, 1, 5, 61, 124� 17 377 36 756
�0, 1, 5, 68, 103� 29 221 60 444
�0, 1, 5, 76, 89� 83 83 168 168
�0, 1, 5, 82, 82� 11 491 24 984
�0, 1, 6, 23, 598� 119 167 240 336
�0, 1, 6, 24, 310� 66 174 134 350
�0, 1, 6, 25, 214� 48 180 98 362
�0, 1, 6, 26, 166� 34 190 70 382
�0, 1, 6, 28, 118� 24 204 50 410
�0, 1, 6, 30, 94� 18 222 38 446
�0, 1, 6, 31, 86� 57 81 116 164
�0, 1, 6, 34, 70� 14 242 30 486
�0, 1, 6, 38, 58� 23 143 48 288
�0, 1, 6, 40, 54� 33 105 68 212
�0, 1, 6, 46, 46� 9 321 20 644
�0, 1, 7, 17, 340� 71 143 144 288
�0, 1, 7, 18, 178� 42 150 86 302
�0, 1, 7, 19, 124� 28 160 58 322
�0, 1, 7, 20, 97� 45 93 92 188
�0, 1, 7, 22, 70� 15 183 32 368
�0, 1, 7, 25, 52� 10 214 22 430
�0, 1, 7, 28, 43� 18 126 38 254
�0, 1, 7, 34, 34� 7 271 16 544
�0, 1, 8, 14, 238� 50 134 102 270
�0, 1, 8, 16, 88� 17 155 36 312
�0, 1, 8, 18, 58� 10 178 22 358
�0, 1, 8, 22, 38� 22 82 46 166
�0, 1, 8, 28, 28� 5 251 12 504
�0, 1, 9, 12, 229� 79 79 160 160
�0, 1, 9, 13, 108� 59 59 120 120
�0, 1, 9, 20, 31� 9 129 20 260
�0, 1, 10, 11, 154� 23 143 48 288
�0, 1, 10, 12, 82� 15 147 32 296
�0, 1, 10, 13, 58� 11 155 24 312
�0, 1, 10, 14, 46� 8 164 18 330
�0, 1, 10, 16, 34� 5 185 12 372
�0, 1, 10, 18, 28� 10 106 22 214
�0, 1, 10, 19, 26� 16 76 34 154
                                                                                                            



092304-19 D-Brane Charges in Gepner Models J. Math. Phys. 47, 092304 �2006�

                        
TABLE III. �Continued.�

k̄= �k1 ,k2 , . . . � n27̄ n27 rkK1 rkK0

�0, 1, 10, 22, 22� 3 243 8 488
�0, 1, 11, 11, 76� 23 143 48 288
�0, 1, 12, 12, 40� 6 180 14 362
�0, 1, 12, 13, 33� 43 43 88 88
�0, 1, 12, 19, 19� 7 151 16 304
�0, 1, 13, 13, 28� 4 208 10 418
�0, 1, 13, 18, 18� 11 107 24 216
�0, 1, 14, 14, 22� 7 127 16 256
�0, 1, 16, 16, 16� 2 272 6 546
�0, 2, 3, 19, 418� 119 119 240 240
�0, 2, 3, 20, 218� 65 125 132 252
�0, 2, 3, 22, 118� 33 141 68 284
�0, 2, 3, 23, 98� 33 141 68 284
�0, 2, 3, 26, 68� 39 87 80 176
�0, 2, 3, 28, 58� 17 173 36 348
�0, 2, 3, 34, 43� 55 55 112 112
�0, 2, 3, 38, 38� 11 227 24 456
�0, 2, 4, 11, 154� 53 89 108 180
�0, 2, 4, 12, 82� 30 96 62 194
�0, 2, 4, 13, 58� 20 104 42 210
�0, 2, 4, 14, 46� 16 112 34 226
�0, 2, 4, 16, 34� 12 126 26 254
�0, 2, 4, 18, 28� 20 74 42 150
�0, 2, 4, 19, 26� 28 52 58 106
�0, 2, 4, 22, 22� 8 164 18 330
�0, 2, 5, 8, 138� 44 80 90 162
�0, 2, 5, 10, 40� 23 59 48 120
�0, 2, 5, 12, 26� 8 116 18 234
�0, 2, 6, 7, 70� 19 91 40 184
�0, 2, 6, 8, 38� 12 96 26 194
�0, 2, 6, 10, 22� 6 114 14 230
�0, 2, 6, 14, 14� 4 148 10 298
�0, 2, 7, 7, 34� 19 91 40 184
�0, 2, 7, 10, 16� 10 70 22 142
�0, 2, 8, 8, 18� 6 120 14 242
�0, 2, 8, 10, 13� 18 42 38 86
�0, 2, 10, 10, 10� 3 165 8 332
�0, 3, 3, 9, 108� 39 79 80 160
�0, 3, 3, 10, 58� 25 85 52 172
�0, 3, 3, 12, 33� 27 59 56 120
�0, 3, 3, 13, 28� 9 117 20 236
�0, 3, 3, 18, 18� 7 143 16 288
�0, 3, 4, 6, 118� 33 69 68 140
�0, 3, 4, 7, 43� 19 67 40 136
�0, 3, 4, 8, 28� 7 91 16 184
�0, 3, 4, 10, 18� 13 49 28 100
�0, 3, 4, 13, 13� 7 103 16 208
�0, 3, 5, 5, 68� 23 71 48 144
�0, 3, 6, 6, 18� 7 63 16 128
�0, 3, 8, 8, 8� 1 145 4 292
�0, 4, 4, 5, 40� 8 86 18 174
�0, 4, 4, 6, 22� 6 90 14 182
�0, 4, 4, 7, 16� 3 99 8 200
�0, 4, 4, 8, 13� 7 61 16 124
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We consider the invariance of the spinning free particle Lagrangian under the
global coordinate transformations for the classical model of the electron with in-
ternal degrees of freedom and obtain the conservation of the energy-momentum,
total angular momentum, and electric charge. The local gauge transformations give
the electromagnetic and gravitational interactions of the spinning particle in the
Riemann-Cartan space from the generalized spin connections. We show that the
covariant constancy of the Dirac matrices gives; �i� the form invariance of the
classical equations of motion, except the gravitational force terms in nongeodesic
equation, �ii� the conservation of the electromagnetic current, �iii� the quantum
Hamiltonian and equations of motion from the classical ones without the quantum
ordering corrections, and �iv� the minimal coupling of the gravitation with the
spinning particle in the Hamiltonian and in wave equations in the Riemann-Cartan
space–time. © 2006 American Institute of Physics. �DOI: 10.1063/1.2337847�

. INTRODUCTION

Soon after Einstein proposed his gravitational theory, Weyl extended it to include electromag-
etism and later revitalized his gauge idea, U�1� gauge invariance. In 1954, Yang and Mills
eneralized U�1� into SU�2�. In 1956, Utiyama gauged the Lorentz group, SO�1,3�,1 and later
ibble extended it into Poincare group, P.2

In the field theory, the matter fields are the definite eigenstates of the mass, the electric
intrinsic� charge and the spin. In this connection, the minimal couplings of the matter field with
he gravitation and the electromagnetism are discussed separately. The space–time symmetries are
uilt by the requirement that the Lagrangian density for the free matter fields be invariant under
he action of the corresponding symmetry group. Here, P, consisting of translations and the
orentz rotations, is an important example. On the other hand, the inner symmetries require the

nvariance of the Lagrangian density for the matter fields under the action of some Lie group
hich is only represented in the space of fields and does not act on space–time. Here the example

s the invariance under U�1� for electromagnetism.
In most of the gauge theories of gravitation, P is considered partly as a space–time symmetry

roup and partly as an inner symmetry group. They generate the translations and Lorentz rotations,
nd SO�1, 3� frame rotations of matter fields, respectively.3–9 The global covariance of the matter
eld under the translation and rotation subgroups of P yields the conservation of the energy-
omentum and the total angular momentum, respectively. In the local extension of the gauge

roup P, its space–time part becomes the diffeomorphism group, the gauged theory is invariant
nder the general coordinate transformations and the local SO�1, 3� frame rotations. In another
pproach, P is considered as the internal symmetry group of matter fields in Minkowski space–
ime to obtain a complementary gauge formulation of gravitation and to discuss the renormaliza-
ion procedure.10

�
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From the matter fields, the Klein-Gordon equation is generalized into a curved space–time
ithout SO�1, 3� frame rotations. However, the Dirac equation is generalized into the curved

pace–time by introducing the Fock-Ivananko two-vector or the spin connection as the contribu-
ion of SO�1, 3� frame rotations.11 The Dirac algebra relates the metric tensor of the space–time to
he anti-commutator of the space–time dependent Dirac matrices. In this generalization, the elec-
romagnetic potential and spin connection appear together. In their pioneering investigations,
chrödinger12 and Bargmann13 discussed the generalization of the spin connection and showed

hat it gives the space–time curvature, the spin-2 gravitational field, and an Abelian spin-1 curva-
ure. Since the spin-1 part of the connection is coupled to all spinors with the identical charge, this
art is not identified with the electromagnetism. Recently, Crawford also discussed the generali-
ation of the spin connection.14 He investigated the coupling of the torsion with the spinning
article by evaluating the commutators of the covariant derivatives for the Dirac matrices,
�� ,�����, and showed that it is possible only by relaxing the constraint about the covariant
onstancy of the Dirac matrices. He obtained the same conclusion for the spin-1 curvature as in
ef. 12.

Kibble and later Barducci et al. investigated the coupling of the spinning particle directly to
he torsion2,15 and obtained that there is no coupling between the spinning particle and the torsion.
owever, Hehl derived the equations of motion for a spinning object with independent velocity

nd momentum, and obtained the coupling of the spinning particle directly to the torsion.16

In the classical and quantum field theories, the scalar product is defined by the local P
nvariant determinant of the tetrads, det e−1, for the Riemann-Cartan space–time, but there is an
mbiguity about the covariant constancy of det e−1 and the minimal coupling of the fields to the
ravitation in the Riemann-Cartan space–time.17 If det e−1 is not covariantly constant then, there is
ot the minimal coupling of the gravitation in the Lagrangian density.

The aim of this study is to derive the minimal coupling of the electromagnetism and the
ravitation for the spinning particle in the Riemann-Cartan space–time by deriving a unified spin
onnection in a complementary approach. For this aim, our motivation is the spinning particle
odel presented as the classical model of the zitterbewegung.18 In this model, the spinning

article does not correspond to definite mass, charge, and the spin eigenstates contrary to the field
heories. The quantities, the mass and spin, are identified by using the conserved dynamical
ariables of the particle without discussing the corresponding global gauge transformations, but
he electric charge is introduced manually into the interaction Lagrangian,19 where the coupling of
he gravitation and electromagnetism are discussed separately in the Riemann space–time without
ny discussion on the generalization of the spin connection.

In the spinning particle model, the phase space of the particle consists of two sets of coordi-
ates and momenta: The space–time coordinates and the complex, four internal coordinates and
onjugate external and internal momenta, respectively. In usual approaches, the gauge transfor-
ations are performed in fields, which have infinite degrees of freedom. In this approach, the

pace–time and internal Lorentz transformations of the fields are considered together and the
lectromagnetic phase transformations are considered separately. Thus the spin connection and
lectromagnetic field are considered as separate gauge fields. In this study, we perform the space–
ime and internal gauge transformations in a unified way in the particle system with finite degrees
f freedom. Since the phase space of the particle is divided into two separate parts, we perform the
pace–time transformations as the gauge transformations of the P and the internal coordinate
ransformations as the gauge transformations of the group U�2,2�, which leaves the bilinear of the
omplex four internal coordinates and momenta. It includes the gauge transformations correspond-
ng to the internal Lorentz transformations and the electromagnetic phase transformations. Due to
he gauge group U�2,2�, we realize the non-Abelian phase transformations represented by the
eneralized spin connection which corresponds to the gauge fields of U�1��SU�2,C� subgroup of
�2,2�.

First, we formulate the global Poincare transformations for the external space–time coordi-

ates, and the rotations and phase transformations between the holomorphic, internal coordinates
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f the spinning particle. The gauge groups of these transformations are P and U�2,2�, respectively.
he invariance of the free particle Lagrangian under the following subgroups of P and U�2,2�
ives the conservation of the following physical quantities:

1� The translation subgroup of P gives the conservation of the energy-momentum one-vector.
2� The space–time rotation subgroup of P with the internal rotation group SU�2, C� together

gives the conservation of the angular momentum two-vector.
3� The internal U�1� phase transformation subgroup of U�2,2� gives the conservation of a scalar

and real quantity, which will be identified as the electric charge of the particle.
The free particle Lagrangian is also invariant under the global proper time translations and
another real, non-negative scalar quantity is conserved, and this quantity will be identified as
the mass of the particle.

Second, we derive the gravitational and electromagnetic interactions of the spinning particle
s the local gauge transformations for the gauge groups, P, and SU�2,C��U�1� subgroup of
�2,2�.

In Sec. I, we review the classical model of the zitterbewegung, in Sec. II, we discuss the
nvariance of the free particle Lagrangian under the global gauge transformations and derive the
nteraction Lagrangian by applying the local gauge transformations to the free particle Lagrangian.
n Sec. III, we derive the classical equations of motion and compare them with the flat space–time
quations except for the electromagnetic and gravitational force terms in nongeodesic equations.
n Sec. IV we show that covariant constancy of the Dirac matrices gives the conservation of the
lectromagnetic current. Section V presents conclusions.

Classical spinning particle model. We use the classical spinning particle model developed to
epresent the classical analogue of the zitterbewegung motion of the electron. In this model, the
article has both usual space–time degrees of freedom and four additional internal degrees of
reedom. These additional degrees of freedom correspond to the zitterbewegung oscillations and
he spin of the particle. They are represented by the four complex internal holomorphic coordi-
ates. In this model, the conjugate momenta of the space–time coordinates and velocity are
inearly independent. Then, the Lagrangian of the free particle is defined by a constraint between
he space–time four velocity and one-vector part of the Dirac algebra denoted by the bilinear of the
omplex four internal coordinates and momenta. Since external and internal coordinates are dy-
amically independent, the gauge transformations are Poincare transformations of the space–time
oordinates of the particle with gauge group P and the internal coordinate transformations between
he holomorphic coordinates of the four harmonic oscillators with the gauge group U�2,2�. The
enerators of U�2,2� are the elements of the Dirac algebra. The gauge group U�1��SU�2,C�
ncludes the electromagnetism and gravitational interactions of the particle with the gauge poten-
ial represented by the generalized spin connection in Refs. 12–14.

To discuss the classical analogous of the zitterbewegung it is assumed that the internal con-
guration space of the particle consists from the four complex coordinates, zi with i=1, . . ,4. We
enote zi by the complex four component spinor, z. In the Minkowski space–time, M4 the Her-
itian conjugate of z is z̄= �z1

* ,z2
* ,−z3

* ,−z4
*� and we denote internal momenta of the particle as the

omplex spinors z̄. Then, the Lagrangian for the free spinning particle, L is

L =
1

2i
�dz̄

ds
z − z̄

dz

ds
� + pa�dxa

ds
− z̄�az� , �1�

here xa and pa are the space–time coordinates and the momenta of the particle in the Minkowski
pace–time, M4, with the metric �ab= �1,−1,−1,−1�, s is the proper time of the particle and �a are
onstant Dirac matrices. The dynamical variables zi are four complex coordinates and configura-
ion space is C4. The signatures of the bilinear in the quadratic form z̄z are ��,�,�,�� and the
ransformations between the holomorphic coordinates conserve these signatures. We use the Latin
ndices for local Lorentz frames and the Greek indices for noncoordinate frames..

The classical spinning particle, represented by Eq. �1�, has continuous values for spin. The

uantization of this system corresponds to the coherent eigenstates of the internal, four complex

                                                                                                            



o
c

i
s

e
d
c
s
c
t

w
i
H

I

A

t

w
i

a

w

g
f

w

092501-4 Nuri Ünal J. Math. Phys. 47, 092501 �2006�

                        
perators ẑ. In general, the harmonic oscillator coherent states are the continuous eigenstates with
omplex eigenvalues of the lowering operator â. In this model the lowering operators of the

nternal oscillators are ẑi. The expectation values of the spin operators, Ŝab between these coherent
tates also have continuous values. In quantum mechanics the physical particles correspond to the

igenstates of the spin operator, Ŝab, with discrete eigenvalues and they correspond to definite and
iscrete energy or internal angular momentum eigenstates of the four harmonic oscillators. The
oherent spinning particle states represent the unphysical particle states, which are the coherent
uperposition of the physical spinning particle states. Thus, the dynamical variables of the classi-
al zitterbewegung system correspond to the expectation of the corresponding operators between
he minimum uncertain quantum spinning particle system.

In Eq. �1�, pa may be considered as the four Lagrange multipliers with the constraints

ẋa − z̄�az = 0, �2�

here the overdot means the derivative with respect to s. This constraint relates the external and
nternal dynamics of the particle. Since the Lagrangian in Eq. �1� is defined in the phase space, the
amiltonian structure of the system is known or chosen at the beginning.

I. GAUGE TRANSFORMATIONS

. Global coordinate and phase transformations

In M4, there are two kinds of coordinate transformations. These are the space–time transla-
ions and external Lorentz rotations:

xa → x�a = xa − i	cPcx
a −

i

2

cdLcdxa, �3�

here Pc and Lcd are the generators of the translations and rotations, respectively. The Lagrangian
n Eq. �1� is invariant under the translations. The Noether current is the energy momentum current

Tab�u� =� dsz̄�azpb�4�u − x�s��

nd the conserved charge of the translations is

pa =� Tab�u�d�b = pa� dsd�b
dub

ds
�4�u − x�s�� , �4�

here �b is the three-dimensional hypersurface along the direction nb.
In C4, there are two kinds of internal transformations. These are the phase transformations

enerated by the SU�2, C� and U�1� subgroups of U�2,2� and they conserve the signatures of the
requencies of the zitterbewegung oscillations ��,�,�,��:

zi → zi� = exp �− i1 −
i

2

cd�cd�

i

j

zj , �5�

z̄i → z̄�i = z̄ j exp�+ i1 +
i

2

cd�cd�

j

i

, �6�
here �cd is
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�cd =
1

2i
��c,�d� .

n Eqs. �5� and �6�, there are two kinds of phase transformations: The first part, U�1� transforma-
ions, corresponds to the multiplication of all the complex spinor, zi with exp�−i1i

j� and the
econd part, SU�2, C� transformations, corresponds to the multiplication of the complex spinors, zi

ith exp��−�i /2�
cd��cd�i
j�� term. The second part corresponds to the internal Lorentz rotations

etween the complex spinor, zi.
The Lagrangian �1� is invariant under the external and internal Lorentz rotations and phase

ransformations and the Noether currents are

Ja�u� =� z̄�azz̄z�4�u − x�s��ds , �7�

nd

Mabc�u� =� ds�xapb − xbpa +
1

2
z̄�abz�z̄�cz�4�u − x�s�� .

he corresponding conserved charges are defined as

Q =� d�bJb�u� = z̄z� dsd�b
dub

ds
�4�u − x�s�� = z̄z , �8�

nd

Jab =� Mabc�u�d�c = �xapb − xbpa + Sab� , �9�

here the spin tensor, Sab is

Sab =
1

2
z̄�abz . �10�

here are no translation terms like exp�−i�c�c� in U�2,2� because they do not conserve the con-
traint in the Lagrangian. The generators of the U�1��SU�2,C� are 1 and �cd and correspond to
he zero-vector and two-vectors of the four-dimensional Clifford or Dirac algebra.

The Lagrangian �1� is also invariant under the translation of the proper time s:

s → s� = s − i�Hs ,

here H is the generator of the proper time translations, the Hamiltonian and the conserved
uantity is the energy of the particle in proper time:

H = paz̄�az . �11�

. Local coordinate and phase transformations

Here, we consider the local coordinate and phase transformations as gauge transformations.
he external translations and Lorentz rotations are expressed by the nonholonomic transforma-

ions

dxa → dx� = ���
b + ��

,b + 
�
c,bxc�dxb. �12�

he internal transformations are

zi → z� = U jzj , �13�
i i
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z̄i → z̄�i = z̄ j�U−1� j
i, �14�

here U is

U�x�s�� = exp�− i�x�1 −
i

4

cd�x��cd	 . �15�

nder these transformations

ẋa → ẋ� = ���
b + ��

,b + 
�
c,bxc�ẋb, �16�

nd

z̄�az → �z̄�az�� = z̄�az . �17�

hen the Lagrange multiplier term in the Lagrangian becomes

pa�ẋa − z̄�az� → paea
��ẋ� − z̄e�

b�bz� ,

here the tetrads e�
b are defined as

e�
b�x� = ���

b�
+ ��

,b�
+ 
�

c,b�
xc� ,

nd ea
� are the inverse of the tetrads, e�

a. In the same way, space dependent Dirac matrices ���x�
re defined as

���x� = e�
a�x��a. �18�

hese coordinates define the metric, g��:

g���x� = ea
��x�eb

��x��ab.

he momentum, p�, is defined in global coordinates as

p� = ea
��x�pa.

hen the Lagrange multiplier term is rewritten as

p��ẋ� − z̄��z� , �19�

nd it is form invariant under the transformations �12�.
The kinetic part of the Lagrangian is transformed as

1

2i
�ż̄z − z̄ż� →

1

2i
�ż̄z − z̄ż�� =

1

2i
�ż̄z − z̄ż� +

1

2i
�z̄

dU−1

ds
Uz − z̄U−1dU

ds
z� . �20�

y evaluating the derivatives and considering the Lagrange multiplier, Eq. �20� gives

1

2i
�z̄

dU−1

ds
Uz − z̄U−1dU

ds
z� = z̄B��x�zz̄��z .

he z̄B��x�zz̄��z is the additional gauge interaction term and B� is

B��x� = ea
��x��,a�x� + 1

4
cd
,a�x��cd� , �21�

here 1
4ea

��x�
cd
,a�x� is the nonholonomic connection, ��

cd�x�. To compensate for the effects of
he local transformations, we introduce B��x� as the gauge potentials that ea

��x�,a�x� and
1
4��

cd�x��cd are introduced as the gauge potential of the U�1� and SU�2, C� phase transformations,
espectively. They are the electromagnetic potential, A��x�, and the Fock-Ivanenko two-vectors,
�:
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A��x� = ea
��x�,a�x� ,

���x� = 1
4��

cd�x��cd.

e rewrite the additional interaction terms as

z̄B��x�z = z̄�A��x� + ���x��z . �22�

hen, Lagrangian of the spinning particle, interacting with electromagnetic and gravitational
elds, is

L =
1

2i
�ż̄z − z̄ż� + p�ẋ� − H , �23�

here H is the Hamiltonian:

H = �p� − z̄B�z�z̄��z = ��z̄��z . �24�

he H in Eq. �24� looks like the Dirac or spin-1 /2 particle Hamiltonian, but it, in fact, corresponds
o the classical Hamiltonian of the zitterbewegung system with internal degrees of freedom and so
he dynamical variables of the system have continuous values.

II. EQUATIONS OF MOTION

In this section, we derive the classical equations of motion. They are

d

ds
x� = ẋ� = e�

bz̄�bz , �25�

d

ds
z̄ = − iz̄B�ẋ� + iz̄����, �26�

d

ds
z = iB�zẋ� − i��z��. �27�

e define the covariant time derivatives of the spinors z̄ and z and rewrite Eqs. �26� and �27� as

Dz̄

Ds
=

d

ds
z̄ + iz̄��ẋ� = iz̄���� − iz̄A�ẋ�, �28�

Dz

Ds
=

d

ds
z − i��zẋ� = − i��z�� + iz̄��ẋ�. �29�

To define the covariant derivatives we evaluate the derivatives of ẋ�:

Dẋ�

Ds
= z̄

D��

Ds
z +

Dz̄

Ds
��z + z̄��Dz

Ds
= z̄��

;�zẋ� + iz̄���,���z��.

he covariant derivative of �� is

��
;� = ���� + �����

�.
ince
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���� = − �����
�,

he covariant derivative of �� vanishes. Then

Dẋ�

Ds
= 4S����. �30�

n a similar way, the covariant derivative of S�� is

DS��

Ds
=

1

4i

Dz̄

Ds
���,���z +

1

4i
z̄���,���

Dz

Ds
+

1

4i
z̄���

;�,���zẋ� +
1

4i
z̄���,��

;�,�zẋ�,

r

DS��

Ds
= ẋ��� − ẋ���. �31�

ere the equations of motion for ẋ� and S�� are derived for completeness and they are equivalent
o Eqs. �28� and �29�.

To derive D�� /Ds we first evaluate dp� /ds:

dp�

ds
=

d�e�
a pa�

ds
= pa

de�
a

ds
+ e�

a dpa

ds
= pa

de�
a

ds
+ e�

a �L

�xa = pc

de�
c

ds
− e�

c �H

�xc .

hen

d��

ds
=

dp�

ds
−

d�z̄B�z�
ds

= ẋ�e�
c �e�

b

�xc pb − e�
c �H

�xc −
d�z̄B�z�

ds
.

e evaluate the second and third terms by using Eqs. �24�–�26�:

e�
c �H

�xc = z̄��z� �p�

�x� −
��z̄B�z�

�x� 	 + z̄
���

�x� z�� = ẋ��pbe�,�
b − z̄B�,�z� + z̄��

,�z��,

d�z̄B�z�
ds

= ẋ�z̄
�B�

�x� z +
dz̄

ds
B�z + z̄B�

dz

ds
= ẋ�z̄B�,�z − iz̄�B�,B��zẋ� + iz̄���,B��z��.

hen d�� /ds becomes

d��

ds
= ẋ�c��

cpc − z̄e�
c ���

,c + i���,Bc��z�� + ẋbe�
c z̄�Bb,c − Bc,b + i�Bb,Bc��z , �32�

here the commutator coefficients, c��
c are

�p�

�x� −
�p�

�x� = �e�
c �e�

b

�xc − e�
c �e�

b

�xc�pb = c��
cpc = ����

c − ���
c − T��

c�pc.

e define the covariant derivative of �� by considering its covariant vector character:

D��

Ds
=

d��

ds
− ���

cẋ�ec
��� = − ẋ������

c − ���
c − c��

c�ec
��� − z̄�B�,� − B�,� + i�B�,B��

− c��
cec

�B��z� .

he first term in square brackets is proportional to the energy-momentum tensor, ẋ���, and the
c
roportionality factor is the gauge field of the translations, the torsion tensor, T�� :

                                                                                                            



W

T
i

w
R
t
s
a

g

T

I

w

I

E
i
fi

092501-9 Basic interactions of the spinning particle J. Math. Phys. 47, 092501 �2006�

                        
T��
c = ����

c − ���
c − c��

c� .

e define the curvature two-form for the generalized spin connection B�� as

B�� = z̄�B�,� − B�,� + i�B�,B�� − c��
cBc�z .

he second term is the product of the velocity of the particle and the curvature two-form, B��, and
t can be decomposed as

B�� = e�
me�

n�z̄zFmn +
1

2
Rmnab

1

2
z̄�abz	 ,

here Fmn is the field strength tensor of the electromagnetic interactions, Rmnab is the generalized
iemann tensor for the noncoordinate frames. These are the gauge fields of the U�1� phase

ransformations and SO�3,1� Lorentz rotations and SU�2, C� subgroup of U�2,2�. Then the expres-
ion of the Lorentz force for the spinning particle in the electromagnetic and gravitational inter-
ctions becomes

D��

Ds
= − ẋ���T��� + z̄zF��ẋ� +

1

2
R����

1

2
z̄���zẋ�. �33�

The equations of motion can also be derived by using the Hamiltonion, H and the following
eneralized Poisson parentheses:


f ,g� = � �f

�x�

�g

�p�

−
�g

�x�

�f

�p�
� +

1

i
� �f

�z

�g

�z̄
−

�g

�z

�f

�z̄
� .

hen the equations of motion become

d

ds
xa = 
xa,H�,

dpa

ds
= 
pa,H� ,

d

ds
z̄ = 
z̄,H�,

d

ds
z = 
z,H� .

V. CONSERVATION OF THE CURRENTS

To derive the form of the energy-momentum current, T��, we rewrite the Hamiltonian as

H = g��T��,

here T�� is

T�� = ��z̄��z .

n Eq. �33�, the Lorentz force can be written as the covariant derivative of T��:

T��
;� = z̄��z��

;� =
D

Ds
��. �34�

quation �34� shows that the energy-momentum current is not conserved for the spinning particle
n the presence of the electromagnetic gauge field, F��, the torsion gauge field T��

�, and the gauge
eld of the Lorentz rotations R����.

�
The electromagnetic current, j is defined as
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j� = z̄zz̄��z . �35�

he covariant derivative of j� is

j�
;� = z̄zz̄��

;�z = 0. �36�

. CONCLUSION

In Sec. III we show that Eqs. �30� and �31� are in the same form with the corresponding
quations of motion in flat space–time. Equation �33� is the nongeodesic generalization of the
orresponding flat space–time equation of motion. In Sec. IV we show that the covariant con-
tancy of the Dirac matrices gives the conservation of the electric current.

To derive the quantum equations of motion we choose xa and z̄i as the variables in the
onfiguration space of the particle and represent them by c-number variables. Then we represent
he canonical conjugate variables pa, and z̄i as derivatives with �=1:

p̂a = i
�

�xa ,

ẑ = −
�

�z̄
.

ince �� is covariant constant then the quantum Hamiltonian is obtained from the classical one in
q. �24� by replacing the classical dynamical variables with the corresponding quantum operators

or x̂a, ẑi, p̂a, and ẑ̄i without any ordering corrections:

Ĥ = �p̂� − ẑ̄B̂�ẑ�ẑ̄��ẑ .

he quantum equations of motion are derived by evaluating the following commutators:

d

ds
xa = i�xa,Ĥ�,

dpa

ds
= i�pa,Ĥ� ,

d

ds
z̄ = i�z̄,Ĥ�,

d

ds
z = i�z,Ĥ� .

ince there is no ordering corrections in the quantum Hamiltonian, the quantum equations of
otion will be in the same form with the classical equations of motion in the Riemann-Cartan

pace–time.
The Hamiltonian in Eq. �24� corresponds to the classical Hamiltonian of the zitterbewegung

ystem with the continuous, complex internal degrees of freedom and the continuous spin values.

he corresponding quantum Hamiltonian, Ĥ, gives the evolution of the continuous coherent eigen-
tates of ẑ, in proper time. To derive the Hamiltonians for the discrete spin eigenstates we evaluate
he evolution operators for each spin eigenstate separately and this gives the Dirac Hamiltonian
ˆ

D=�̂��� for spin 1/2 eigenstates.23

In this space–time the scalar product is defined as

��,�� =� d4x det e−1�̄� ,
nd the minimal coupling of the Dirac field with gravitation is described by
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��,ĤD�� = i� d4x det e−1�̄����� .

ince �� is covariant constant, then �det e−1� is also covariant constant and the scalar product and
he interaction Hamiltonian is Hermitian:

��,ĤD�� =
1

2
� d4x det e−1��̄��i��� + �i�������� .

hus we see that the ambiguity about the minimal coupling of matter with gravitation is solved by
he covariant constancy of the Dirac matrices.

We see from Eqs. �26� and �27� that z̄z term is a constant of motion. Since it may be negative,
ero, or positive we identify it as the charge of the particle, e.

In Eq. �33� the electromagnetic field is coupled with the electric current, z̄zẋ� and it is the
ource of the electromagnetic interactions. In a similar way, the Riemann tensor and the torsion
ensor are coupled with the spin angular momentum current and the energy-momentum �current�
ensor of the spinning particle, respectively, and they are the sources of the internal and the
pace–time rotations and space–time translations.

In Eq. �31�, DS�� /Ds is proportional to the normal components of �� with respect to velocity,
˙�. To derive the other form of the equation of motions for ��, we decompose it into the parallel
nd normal components with respect to the velocity, ẋ�:

�� =
1

�ẋ�2�Hg��ẋ� + ẋ�DS��

Ds
� . �37�

n Eq. �37�, the first term of �� is proportional to ẋ� and the proportionality constant is the
amiltonian, H and we identify it as the mass of the particle, m. Then Eqs. �31�, �30�, and �33�
ecome

DS��

Ds
=

1

�ẋ�2�ẋ�ẋ�

DS��

Ds
− ẋ�ẋ�

DS��

Ds
	 , �38�

Dẋ�

Ds
= 4S�� 1

��ẋ�2�Hg��

ẋ�

��ẋ�2
+

ẋ�

��ẋ�2

DS��

Ds � , �39�

D

Ds
��mg��ẋ� + ẋ�DS��

Ds
�	 = − ẋ�T��

��mg��ẋ� + ẋ�DS��

Ds
� + eF��ẋ� +

1

2
R����

1

2
z̄���zẋ�.

�40�

ince the existence of the zitterbewegung oscillations, Eq. �39� shows that �ẋ�2 is not constant:

ẋ�

Dẋ�

Ds
=

4ẋ�S��

��ẋ�2

ẋ�

��ẋ�2

DS��

Ds
� 0.

n the phenomenological spin models, �ẋ�2 is taken as a constant and then p�S�� /��ẋ�2=0.
Audretsch showed the vanishing of the covariant derivative of the spin polarization

seudovector, S5�, by using only the positive energy solutions of the Dirac equation.20 In our case
he corresponding spin polarization pseudovector is

S5� =
1

4i
z̄�i�5,���z , �41�
nd the covariant proper time dependence is given as
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DS5�

Ds
= ẋ5��, �42�

here ẋ5 is z̄i�5z. In a separate study we will show that the correct spin polarization pseudovector
s defined as

S�
5� =

1

4i
z̄�i�5,�� − � · ���/�2�z .

n the Minkowski space–time, S�
5� is a constant of motion. In the presence of the electromagnetic

nteractions it satisfies the Bargmann-Michel-Teledgi equation with zitterbewegung corrections.21

n the Riemann-Cartan space–time, the covariant derivative of spin polarization pseudovector is
lso proportional to the generalized Lorentz force in Eq. �33�.

The right-hand side of Eq. �33� is the generalization of the electromagnetic Lorentz force to
he Riemann-Cartan space, U4. Except for the electromagnetic force the other terms are derived
lso by Hehl16 in the nongeodesic equation for p�. For the Riemann space, V4, the torsion tensor
s zero and we obtain the classical Papapetrou equation.19 For the Weitzenbock space, W4, the
urvature is zero and we obtain the nongeodesic equation for spinning particle with the Cartan
onnection.

For the spinless particle S�� vanishes, �ẋ�2 becomes 1, and ��=mg��ẋ�. Then the Lorentz
orce becomes

D

Ds
�g��ẋ�� = − T���ẋ�ẋ� +

e

m
F��ẋ�

or the Riemann-Cartan space, U4. For the Riemann space, V4, the torsion tensor is zero and we
btain the geodesic equation with the electromagnetic force. For the Weitzenbock space, W4, the
urvature is zero and we obtain the nongeodesic equation with Cartan connection and it coincides
ith the previous expression,22 and is also equivalent to the geodesic equation.

We show in Eq. �33� that the spin-1 part of the generalized spin connection can be identified
s the electromagnetism and the torsion is coupled with the spinning particle in the presence of the
ondition about the covariant constancy of the Dirac matrices.12–14

The other interactions can be formulated in a similar way by considering the groups larger
han U�2,2�. The invariant properties of the spinning particles under the conformal transformations
an be discussed also by using the group U�2,2�. The quantization of the spinning particle in the
iemann-Cartan Maxwell space will be studied later. The Lagrangian in Eq. �4� gives the Dirac
quation for spin-1 /2 case, spin-1 �symmetric� part of the DKP equation, and the higher spin wave
quations.23,24
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In the present work the problem of distinguishing between essential and spurious
�i.e., absorbable� constants contained in a metric tensor field in a Riemannian
geometry is considered. The contribution of the study is the presentation of a
sufficient and necessary criterion, in terms of a covariant statement, which enables
one to determine whether a constant is essential or not. It turns out that the problem
of characterization is reduced to that of solving a system of partial differential
equations of the first order. In any case, the metric tensor field is assumed to be
smooth with respect to the constant to be tested. It should be stressed that the entire
analysis is purely of local character. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2338760�

. INTRODUCTION

When dealing with Riemannian spaces, especially in a local description and in a coordinate
pproach, one frequently encounters the problem of attributing a character to a constant �or a
arameter� which may appear in the metric tensor field. Generally, there are two possibilities: this
onstant is either essential �i.e., a true degree of freedom� or spurious �i.e., absorbable with the
elp of a change in the coordinates�.

The issue is of great interest in the context of general relativity, where the metric tensor field
s the solution to the Einstein equations, and the constants emerge from the integration procedure.
ut, this observation will not limit the spirit of the present work.

There is a variety of ways to attack the problem under discussion. In the relevant literature,
ne can find two main approaches:

1 The first main approach consists simply of trying to find that particular change in the coor-
dinates which can serve to eliminate the “suspect” constant. When this is possible, the
constant is incorporated in the very definition of the new coordinate system, being thus
absorbed. The difficulty here is that, in general, there is no systematic way to find the desired
transformation. Obviously, failure to find such a transformation does not necessarily imply
the essentiality of the constant.

1 The second main approach, which is more elaborate and sophisticated, can be divided into
two subcategories: one can either use the invariant classification methods for a single Rie-
mannian space, or implement the methods of the equivalence problem �Ref. 1�. The second
way �which may be more laborious than the first� consists of the following steps: one
considers twice the metric tensor field, once for a given value of the constant and once for
another value of it. The final step is to compare these two metrics and to check whether they
are equivalent or not. A positive answer dictates that the constant is spurious �and a negative,
that it is essential� �see also Ref. 2 for a connection between limits of space–time and the
problem of essentiality�.

The nonequivalence between two given Riemannian spaces can easily be checked using the

�Electronic mail: gopapado@phys.uoa.gr
�
Dedication: The author dedicates this work to Elena and Katerina.
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otion of curvature invariant relations, functionally independent relations among scalars. These
calars are constructed either from the Riemann tensor and its covariant derivatives up to a given
rder by contracting all the indices, or as “ratios” between two tensors �obtained from the Rie-
ann tensor� which differ only by a factor. The first case gives scalars entering syzygies, polyno-
ial invariants, mixed invariants, and the Cartan invariants—see Ref. 1 and the references therein

or details. The second case is described in Ref. 3 �especially the last two references therein�. It is
ufficient for the two given spaces to differ in only one such relation in order to be inequivalent.

Curvature-invariant relations have one very important property: they do not depend on points
f the Riemannian space; thus, their functional forms are invariant statements �i.e., they retain the
ame functional form in all coordinate systems�. Consequently, if these functional forms depend
n some constants, that means these constants, which clearly are some from those in the metric
ensor field, are not affected by a change in the coordinates. If a constant of the metric tensor field
ould be eliminated by such a change, then the metric tensor field in the new coordinate system as
ell as all the curvature invariant relations based on it, would lack this particular constant, an

nvariant statement, since the curvature invariant relations are invariant in form. Therefore, only
ssential constants will appear in the curvature-invariant relations.

An example will elucidate the above arguments: consider the well-known Schwarzschild
etric in the usual local coordinate system �t ,r ,� ,�� and e.g., the two curvature scalars,

S1 � R����R���� = 48M2/r6, �1.1�

S2 � S1;�
;� = − 3456M3/r9 + 1440M2/r8, �1.2�

hich are, of course, r-dependent. However, if r is eliminated between them, one arrives at the
elation

R�S1,S2,M� � S2 + 6�3S1
3/2 − 5M−2/3�3 9/2S1

4/3 = 0. �1.3�

his relation is not only independent of the space–time points, i.e., it can be evaluated everywhere
n the Schwarzschild space–time �except, of course, the true singularity at r=0�, but also invariant
nder any change in the local coordinate system; although the functional form �in terms of the
oordinates� of the two curvature scalars S1, S2 will change, the relation R�S1 ,S2 ,M� will retain its
orm �as a function of its arguments S1, S2, and M� and thus constitutes a curvature invariant
elation. Indeed, consider for example the change r→ r̃ :r=M1/3r̃, which eliminates the parameter

M from S1 and alters the form of S2, yet keeps the relation R�S1 ,S2 ,M� unchanged. To use the
bove considerations in order to deduce equivalence between two Riemannian spaces is problem-
tic, since it would require the existence of a countable basis for an arbitrary functional space.

The following section presents a sufficient and necessary criterion, in a covariant language
hich offers one the ability to check whether a constant, appearing in a metric tensor field, is

ssential or not. In the second case, the criterion also provides a way to find the desired local finite
ransformation of the change in the coordinates.

I. CRITERION

Before presenting the criterion, a word must be said for the existence of yet another kind of
onstant, namely the global �topological� constants: indeed, there are cases where a constant can
e removed from local coordinate patches but it does appear in the transforms between them �e.g.,
n the appropriate range of the coordinates�.

From the previous section, it is clear that essential and spurious are mutually complementary
otions. It will turn out more practical, though equivalent, to deal with spurious. Indeed, if the
onstant is spurious one can, in the coordinates in which the constant is removed, take a product
etric tensor field on S� I �where S is the initial n-dimensional manifold and I the domain of

efinition of the spurious constant�, and then deduce that the only nonzero components of curva-
ure in n+1 dimensions are those which correspond to the curvature tensor of the n-dimensional
etric tensor field. In these coordinates the normals to S form a symmetry. Alternatively, one can
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lso consider the �n+1�-dimensional manifold using the original coordinates, with the spurious
onstant as the extra coordinate, and use the constant to label the n-dimensional slices.

The above arguments can be made more precise as follows: Let S be a Riemannian space
hich is described by the pair �M ,g� �this definition is influenced by the definition of space–time,
ut C�-instead of simply Cr, connectedness as well as the Hausdorff condition seem to be minimal
xtensions�, where M is an n-dimensional, connected, Hausdorff, and �C�� manifold and g is a
Cr� metric tensor field on it; �the value of r depends on the applications. In the context e.g., of
eneral relativity, it is assumed that r	2—see Ref. 4, pp. 55–59 for a relevant discussion� a
ondegenerate, covariant tensor field of order 2, with the property that at each point of M one can
hoose a frame of n vectors �z0 , . . . ,zn−1�, such that: g�z� ,z��=
��, where 
 is a diagonal matrix
ith entries ��0 , . . . ,�n−1�, and ��= ±1. �Small Greek indices take the values �0,¼,n−1�.�

Let also this metric tensor field depend on a constant �; so, in a local coordinate system �x��,
t is

g�� = g���x;�� . �2.1�

t is also supposed that the metric tensor field g is a �C�� function �i.e., smooth� with respect to
—a basic assumption which is also encountered in Ref. 2, where limits of space–time are
onsidered �which of course have to be defined in terms of essential constant�s��.

Let I�R be the domain of definition �i.e., the range of possible values� of the constant �.

nother Riemannian space S˜ can, naturally, emerge; the product: S˜ =S� I. By this it is meant that

he initial Riemannian space is nothing but the hypersurface ��const. in S˜; a local isometric

mbedding. If p�S˜, then the tangent space TpS of S is a subspace of TpS˜. Since S is a regular

ubmanifold of S˜, there exists a basis �e0 ,e���eN of TpS˜ such that its “spatial” part �e�� is the
asis of TpS. �Capital Latin indices take the values �0, . . . ,n�.� Since the difference of dimensions
s 1, the subspace has no torsion. Consequently there is only one normal to it, vector n. Without
oss of generality it is taken to be of unit length. Then, one assigns

n = nAeA =
1

N
e0 −

N�

N
e� Þ nA =

1

N
�1,− N�� , �2.2�

ith

g̃�n,n� = � = ± 1 �2.3�

the sign is rather irrelevant�, so

e0 = Nn + N�e�. �2.4�

he quantity N is the lapse function and the object N� is the shift vector. By definition,

g̃00 = g̃�e0,e0� = N2g̃�n,n� + N�N�g̃�e�,e�� , �2.5�

g̃0� = g̃�e0,e�� = N� � N�g��, �2.6�

g̃�� = g̃�e�,e�� = g��. �2.7�

hus, the Greek indices change position with the initial metric g��, while the capital Latin indices
hange position with the new metric g̃AB. Finally,

g̃AB = 	N�N� + �N2 N�

N� g��

 . �2.8�
straightforward calculation results in
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�˜00
0 =

Ṅ

N
+ �

N�N�

N
K�� +

N�

N
N��, �2.9a�

�˜0�
0 = �

N�

N
K�� +

N��

N
, �2.9b�

�˜��
0 = �

K��

N
, �2.9c�

�˜00
� = −

Ṅ

N
N� − �

N�N�N�

N
K�� −

N�N��

N
N� + Ṅ� − �NN�� + N��

� N� − 2NK�
�N�, �2.9d�

�˜0�
� = −

N�

N
N�� − �

N�N�

N
K�� + N��

� − NK�
�, �2.9e�

�˜��
� = ���

� − �
N�

N
K��, �2.9f�

here

K�� =
1

2N
�N��� + N��� − ġ��� �2.10�

s the extrinsic curvature �in the literature of the theory of surfaces, it is also known as second
undamental form, of shape tensor� and describes the embedding curvature.

The bar ��� denotes covariant derivative with respect to the initial metric g of the subspace,
hile the dot �·� denotes differentiation with respect to the extra coordinate, i.e., �.

The general theory of embedding can be found in any book on differential geometry, e.g., Ref.
are some classical references. There, one can see that the present case, where the difference in

he dimensions is 1 �resulting in zero torsion for the subspace� is very simple. In fact, the
ainardi-Codazzi conditions are identically satisfied, while the Weingarten-Gauss conditions as-

ume the form

R˜���� = R���� − ��K��K�� − K��K��� , �2.11a�

R˜���� = K���� − K����, �2.11b�

f course, after the use of the projections

TB. . .
A. . .nB � T�. . .

A. . . , TB. . .
A. . .nA � TB. . .

�. . ., TB. . .
A. . .y,�

B � T�. . .
A. . . , �2.12�

y,�
B being the Jacobian �yA /�x� between a set of local coordinates in S˜, say �yA�, and the set of the
orresponding local coordinates in S, say �x��.

For the chosen embedding it is �yA�= �� ,x��
If one defines the tensor on S˜

CAB � −
1

2
Lng̃AB � −

1

2
�nA;B + nB;A� , �2.13�

here the semicolon �;� denotes covariant differentiation with respect to the new metric g̃, one will

ave
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CAB =�N�N�K�� + �N�N�� �
1

2
N�� + K��N�

�
1

2
N�� + K��N� K��

 . �2.14�

n order for the two spaces, i.e., the embedding and the embedded, to have exactly the same
eometrical information �in other words, exactly the same curvature properties�, something which
appens when and only when the constant �i.e., the extra coordinate� � is absorbable, the
eingarten-Gauss conditions �2.11� suggest that the extrinsic curvature must vanish—for any

mbedding

K�� = 0. �2.15�

ondition �2.15� as well as the demand for its validity for any embedding, and thus for the
articular embedding in a Gaussian system of coordinates N=1 or N=N��� and N�=0, result in
he vanishing of the tensor CAB; an invariant statement. Hence, follows the:

Criterion. The constant � contained in the metric tensor field g of the Riemannian space S is

purious, if and only if the Lie derivative of the metric tensor field g̃ of the embedding space S˜
ith respect to the normal �to the subspace� vector n, L� ng̃, vanishes.

Proof. First, one observes that the vanishing of the tensor field CAB results in the following set
f partial differential equations �PDEs�:

C00 = 0 Þ N�N�� = 0, �2.16a�

C0� = 0 Þ N�� = 0, �2.16b�

C�� = 0 Þ K�� = 0, �2.16c�

r

N = N��� �though an arbitrary function� , �2.17a�

N��� + N��� = ġ��. �2.17b�

he lines preceding the criterion prove its necessity. In order to prove its sufficiency, let nA

1/ �N�����1,−N��� ,x��� a normal vector whose components satisfy �2.17b�. The set of its inte-
ral curves, parametrized by a parameter s, has the form

dyA

ds
= nA�yB�s�� , �2.18�

nd, from the theory of ordinary differential equations, it is known that this problem is well posed
nd it always has a solution. Written out in detail,

dy0

ds
=

1

N�y0�
, �2.19a�

dy�

ds
= −

N��y0,y��
N�y0�

, �2.19b�

s usual, this set defines a one-parametric �s being the parameter� family of transformations from
he set �yA� to the set �yA�, the latter being the constants of integration of the flow lines of the

ector n. It is very easy to see that the emerging transformation has the general functional form
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y0 → y0:y0 = f�y0� , �2.20a�

y� → y�:y� = f��y0,y� , �2.20b�

hile the vector n undergoes a change,

n → n:nA =
�yA

�yBnB, �2.21�

ith the help of the transformation �2.20�,

nA =
1

N�y0�� � f�y0�
�y0 ,

� f��y0,y�
�y0 −

� f��y0,y�
�y� N��yE�� . �2.22�

ut,

dy�

ds
= 0 Þ

� f��y0,y�
�y0 −

� f��y0,y�
�y� N��yE� = 0 �2.23�

y virtue of the flow lines equations �2.19�. Thus,

n → n:nA =
1

N�y0�� � f�y0�
�y0 ,0� , �2.24�

.e., a Gaussian system of coordinates. Hence, in the new coordinate system, the vanishing of the
ensor CAB, obviously, is tantamount to

�g��

�y0 = 0, �2.25�

.e., the transformed metric tensor field of the subspace does not contain the corresponding extra
oordinate y0, which is a function of the constant under discussion. Q.E.D.

II. AN APPLICATION AND A PEDAGOGICAL EXAMPLE

One immediate and simple application of the criterion is achieved when the latter is applied to
he case where the “suspect” constant is an overall factor; i.e., in a local system of coordinates
x��,

g�� = g���x;�� � �G���x� . �3.1�

hen, the criterion, in its “solved form” �2.17b�, results in

N��� + N��� = ġ�� = G�� Þ N��� + N��� =
1

�
g��, �3.2�

hich is nothing but the homothety equations for the subspace—a well-known result.
For the sake of simplicity and brevity, the paper concludes with a pedagogical example.
Let a two-dimensional metric tensor field, which in a local coordinate system �x����u ,v�, has

he form

g���u,v;�� = �1 + �2�	 0 1 + u2 + �1 + �2�2v2

1 + u2 + �1 + �2�2v2 0

 . �3.3�
olution to
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N��� + N��� = ġ�� �3.4�

esults in

N� = �0,
2�v

1 + �2� � �0,
2y0y2

1 + �y0�2� , �3.5�

nd hence

nA =
1

N�y0��1,0,−
2y0y2

1 + �y0�2� . �3.6�

he corresponding flow lines are described by

dy0

ds
=

1

N�y0�
, �3.7a�

dy1

ds
= 0, �3.7b�

dy2

ds
= −

1

N�y0�
2y0y2

�1 + �y0�2�
, �3.7c�

nd the integral curves

� N�y0�dy0 = s + y0, �3.8a�

y1 = y1, �3.8b�

y2 = y2�1 + �y0�2�−1. �3.8c�

hen, as expected, it is

nA = �1,0,0� , �3.9�

eading to the transformed embedding metric,

g̃AB = 	� 0

0 g��

 , �3.10�

ith

g�� = 	 0 1 + u2 + v2

1 + u2 + v2 0

 . �3.11�

hough the example may seem simple and trivial, its purpose is to exhibit not only the imple-
entation of the criterion but also all the details connected to it.
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Colliding and intersecting hypersurfaces filled with matter �membranes� are studied
in the Lovelock higher order curvature theory of gravity. Lovelock terms couple
hypersurfaces of different dimensionalities, extending the range of possible inter-
section configurations. We restrict the study to constant curvature membranes in
constant curvature anti-de Sitter �AdS� and dS background and consider their gen-
eral intersections. This illustrates some key features which make the theory differ-
ent from the Einstein gravity. Higher co-dimension membranes may lie at the
intersection of co-dimension one hypersurfaces in Lovelock gravity; the hypersur-
faces are located at the discontinuities of the first derivative of the metric, and they
need not carry matter. The example of colliding membranes shows that general
solutions can only be supported by �spacelike� matter at the collision surface, thus
naturally conflicting with the dominant energy condition �DEC�. The imposition of
the DEC gives selection rules on the types of collision allowed. When the hyper-
surfaces do not carry matter, one gets a solitonlike configuration. Then, at the
intersection one has a co-dimension two or higher membrane standing alone in
AdS-vacuum space–time without conical singularities. Another result is that if the
number of intersecting hypersurfaces goes to infinity the limiting space–time is free
of curvature singularities if the intersection is put at the boundary of each AdS
bulk. © 2006 American Institute of Physics. �DOI: 10.1063/1.2338143�

. INTRODUCTION

Lately, a strange idea has become popular in cosmology. It has been suggested1 that we live on
�3+1�-dimensional membrane, called a brane world, living in a higher dimensional space–time.
any general relativity models have been invented to describe the gravitational behavior of such
brane world. Although there is a clear conceptual link with string theory, i.e., the extra dimen-

ions and the existence of membranes with matter and gauge fields confined to their world-sheets,
t is also clear that this is a highly speculative idea.

This idea motivates a general study of hypersurfaces in d-dimensional curved space–time.
o-dimension one hypersurfaces are understood as co-dimension one submanifolds which are the

ocus of the discontinuities of the first derivative of the metric. To draw specific conclusions we
eed a theory of gravity, determining the metric of the d-dimensional space–time locally. Lovelock
ravity is a natural choice in d dimensions in place of Einstein gravity in four dimensions; it is the
nly theory �action functional� for the metric which gives second-order field equations when
orsion is zero, that is, when the covariant derivative is given by the usual formula.2,3 One can get

�Electronic mail: eliasgravanis@netscape.net
�
Electronic mail: steve-at-cecs.cl
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relation between the discontinuity of the first derivative of the metric to the energy tensor of
atter on the hypersurface. Hypersurfaces of any co-dimensionality which �potentially� carry
atter will be called membranes.

The more complicated, compared to Einstein’s theory, structure of derivatives in Lovelock
ravity makes it possible to have membranes of co-dimensionality higher than one, via intersec-
ions of co-dimension one hypersurfaces, without any space–time singularities. Put slightly differ-
ntly, high co-dimension membranes can be embedded in space–time without causing conical or
ore pathological curvature singularities if they are embedded at the intersection of co-dimension

ne hypersurfaces. In fact, in d dimensions there exist membranes of co-dimensionality up to the
nteger part of �d−1� /2, such that the metric is everywhere continuous, its first derivative has
bounded� discontinuities at the hypersurfaces and space–time is everywhere, and especially at the
embranes, a manifold.4,5

The higher dimensional gravity theory of Lovelock3 is an interesting generalization of general
elativity. In d�5 the Einstein–Hilbert is not the most general Lagrangian that produces second-
rder field equations and it was extended by Lovelock to a more general theory with this property.
he latter gives the theory familiar features, in accordance with our experience from classical
echanics and field theory. It allows for a Hamiltonian formulation6 and the possibility of a
ell-posed initial value problem.7 The Lagrangian which possesses this property was found by
ovelock3 and it is a linear combination of terms corresponding to the Euler densities in all lower
ven dimensions,2

L = �
n=0

��d−1�/2�
1

2n�n��1. . .�2n

�1. . .�2nR�1�2

�1�2 · · · R�2n−1�2n

�2n−1�2n �gddx , �1�

here �x� is the integer part x. The generalization of the Einstein tensor is the Lovelock tensor:

H�
� = − �

n=0

��d−1�/2�
1

2n+1�n���1. . .�2n

��1. . .�2nR�1�2

�1�2 · · · R�2n−1�2n

�2n−1�2n . �2�

The delta is the generalized totally antisymmetrized Kronecker delta. It is the determinant of
matrix with elements �N

M,

��1. . .�p

�1. . .�p = det�
��1

�1 ��1

�2 . . . ��1

�p

��2

�1 ��2

�2 . . . ��2

�p

] ] � ]

��p

�1 ��p

�2 . . . ��p

�p
� = p!���1

�1
¯ ���p�

�p . �3�

The Lovelock theories have been studied extensively. Higher dimensional black hole solutions
ave been found.8–10 This has shed some interesting light on questions of black hole entropy.
ome cosmological metrics have been studied.11

The nmax=2 Lovelock theory, which we call the Gauss–Bonnet theory, has a special physical
ignificance. This is because the n=2 term is the only quadratic term which has a ghost free
erturbation theory about flat space–time. It has been conjectured that the Gauss–Bonnet term is
he leading order, purely geometric, correction to the effective action of an underlying unitary
undamental theory.12 In particular, the Lovelock contributions, motivated by string theory, have
layed a role in brane-world cosmology.13,14

It was Zumino2 who formulated the theory in the way we prefer, as an elegant way to prove
uggestions by Zwiebach related to low energy string theory.12 We use the vielbein formulation: Ea

s the vielbein frame, �ab the spin connection, and �ab is the curvature two-form,

�ab = 1 Rcd
abEc Ù Ed,
2
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Rcd
ab = E�

a E�
bR�	

��Ec
�Ed

	.

n this language, the Lovelock Lagrangian is

L = �
n=0

��d−1�/2�

�n�a1a2 Ù ¯ �a2n−1a2n Ù ea1¯a2n
, �4�

here

ea1¯ap
=

1

�d − p�!

a1. . .ad

Eap+1 Ù ¯ Ù Ead �5�

nd we have defined the totally antisymmetric tensor such that 
�1�. . .�d�=1. The Latin letters from
he beginning of the alphabet are used for the local Lorentz indices �d-dimensional�. Greek letters
rom the middle of the alphabet are used for space–time coordinate indices �d-dimensional�.

In the Lovelock theory, singular hypersurfaces of co-dimension one can be meaningfully
efined in terms of distributions,14,15 due to the property of quasilinearity in second derivatives.16

rane worlds of co-dimension one have thus been the most well studied and understood. They can
lso be formulated by means of boundary terms in the action. The correct boundary term is most
legantly derived by a dimensional continuation of the Gauss–Bonnet theorem for a manifold with
oundary.17 The latter approach is the one we have adopted.

The possibility of colliding shells or branes of matter has been studied in the context of GR.18

n Lovelock gravity, there has been some study of intersecting brane worlds, see, e.g., Ref. 19 and
ore recently, Refs. 20 and 21, but so far there has been no study of collisions in this context

xcept for our comments in our recent work.4,5 In that work, we restricted the smoothness of the
etric so that there were well-defined orthonormal vectors at the intersection/collision. The most

triking fact, physically, about intersections or collisions is that they could carry their own singular
tress-energy tensor. This is a phenomenon that does not occur in the Einstein theory. That differ-
nce and related properties of the Gauss–Bonnet term were used in Ref. 19 to address the cos-
ological constant problem and formulate higher co-dimension brane worlds via intersections,

ontinuing on previous work in GR context, see, e.g., Ref. 22. Our aim here will be to discuss
eneral properties of the intersections and collisions of hypersurfaces in Lovelock gravity, mostly
ia the example of anti-de Sitter �AdS� and dS background, which may be useful also outside the
rane-world context.

In the Einstein theory, singular matter can only be accommodated at an intersection of co-
imension two if there is a conical singularity, with a deficit angle. Then, it is impossible to define
wo orthonormal vectors normal to the intersection. Although Lovelock gravity with a conical
ingularity can be described in terms of distributions,23–25 there is a certain ambiguity about the
olutions—in general, we would not expect the thin brane to be the unique limit of a thick brane
olution.26,27 We shall not consider this kind of singularity in the present work.

There is, however, an interesting possibility. We consider intersections of hypersurfaces, non-
ull as well as null, which carry zero energy tensor. At their intersections there appear higher
o-dimension membranes. For non-null co-dimension one hypersurfaces we have an intersection
f solitonlike configurations, pure �cosmological constant-� vacuum gravitational field self-
upported and with a nonzero jump in the extrinsic curvature; for null hypersurfaces we have
ntersection/collision of gravitational shock waves. In both cases one has at their intersections

embranes of co-dimension �2 surrounded by pure AdS background on a nonsingular space–
ime. This is a phenomenon not possible in Einstein gravity.26

Previous works on related problems in the brane world were in the context of: Einstein
ravity, e.g., Ref. 22; in supergravity, where intersection rules for branes carrying form field
harges were derived in Refs. 28–30; and in various formulations when Gauss–Bonnet or higher
uler densities are included, e.g., Refs. 31 and 19, 20, 21, and 24. An important difference in this

4,5
ork and our previous ones is that one may have a high co-dimension membrane without the
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ost of making space–time singular.31,24,21 Our primary intention really is to point out properties of
ovelock gravity which are interesting on their own, but our results may be useful to other
ndeavors.

In Secs. II–IV we present the example of intersecting hypersurfaces in an AdS background. In
ec. V we discuss colliding hypersurfaces in dS background and point out the spontaneous domi-
ant energy condition violation in collisions. In Sec. VI, we discuss the dimensionalities of the
ntersection in relation to a four-dimensional universe. In Sec. VII we discuss higher co-dimension

embranes using intersections of solitonic configurations and shock waves.
The intersection junction conditions. For our purposes, hypersurfaces are �d−1�-dimensional

urfaces which divide the space–time up into d-dimensional bulk regions. We shall assume that
hey are space–time like �i.e., with space-like normal vector�. If there is a nonzero singular
omponent to the stress-energy tensor with its support on the hypersurface, we shall also call it a
rane.

The mathematics of the intersections becomes simple if we consider a kind of minimal
ntersection, which involves the minimum number of hypersurfaces needed to build the intersec-
ion of a given co-dimensionality �dimensionality of its normal space�. Put differently, in such an
ntersection any bulk region has �a co-dimension one� common boundary with any other bulk
egion. Not without a reason we call them simplicial intersections: if abstractly we assign a point
o every bulk region in which the connection is continuous, then a co-dimension p intersection
orresponds to a p-dimensional simplex, that is, the p-dimensional polyhedron with the minimum
umber of vertices. This abstraction turns into a practical method of calculating the Lagrangian
ensities integrated over the intersections.4,5

One of the simplifications related to the simplicial intersection is that if we label the bulk
egions with i �and designate 	i
� then the co-dimension p intersection can be labeled by an
ntisymmetric symbol involving the labels of the p+1 bulk regions meeting there; the simplest
xample are the co-dimension one hypersurfaces designated in general as 	i0i1
=−	i1i0
. So we
ntroduce the following.4,5

Definition 1.1: �simplicial intersection� Let 	i
 be a bulk region. 	i0 . . . ip
 is a simplicial
ntersection where bulk regions i0 , . . . , ip meet, if it is a �d− p�-dimensional submanifold. The
onnections in the bulk regions are �0 , . . . ,�p, respectively. 	i0 . . . ip
 is a part of the boundary of
he �p−1�-intersection 	i0 . . . ip−1
. The orientation is �	i0 . . . ip−1
= + 	i0 . . . ip
+¯. Swapping any
air of indices reverses the orientation.

Note that intersections may be spacelike, timelike, or null �or vary between them�.
There are junction conditions relating the singular stress-energy to the geometry.4,5 Let �i be

he connection in region 	i
. At a hypersurface 	ij
 there can be a discontinuity �i�� j. The
unction conditions at a p-intersection are obtained from the intersection Lagrangian:

�
n=1

��d−1�/2�

�nL�p�
n ,

L�p�
n �E,�0, . . . ,�p� = Ap�

s0. . .p

dpt��1 − �0�a1b1
¯ ��p − �0�apbp��t�ap+1bp+1. . .anbnea1. . .bn

, �6�

Ap = �− 1�p�p−1�/2 n!

�n − p�!
.

�t� is the curvature of the interpolating connection ��t�:
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ẽ
t
i
i
c
t
a
b
h
L

f
I
e
F

I

B

A

r
c

�
�
�

i
L

092503-5 Intersecting hypersurfaces in AdS and Love-lock J. Math. Phys. 47, 092503 �2006�

                        
��t� ª �
i=0

p

ti�i, ��t� = d��t� + ��t� Ù ��t� . �7�

he ��t�ap+1. . .bn is short for the �n− p�-fold product: ��t�Ù ¯ Ù��t�. The integral is over the
p-dimensional simplex

s0. . .p = �t � Rp+1�
i=0

p

ti = 1, all ti � 0�� . �8�

The junction conditions come from explicit Euler variation with respect to the vielbein:

EcL�p�=−2�T�d,d−p��c
bẽb, where T�d,d−p� is the part of the singular stress-energy tensor with support

n the intersection. The factor of −2 is explained in the Appendix. So the junction conditions can
e written as

�T�d,d−p��c
bẽb =

1

2
�− 1��p−1��p−2�/2 �

n=p

��d−1�/2�
n!

�n − p�!
�E�p�

n �c, �9�

�E�p�
n �c � �

s1. . .p+1

dpt��2 − �1�a1b1
¯ ��p+1 − �1�apbp��t�ap+1bp+1. . .anbnea1. . .bnc. �10�

is the natural volume element on the intersection. We note that E�p�
n is zero if p�n. �In Einstein

heory the only junction condition is that of the hypersurface, where if the energy tensor carried by
t vanishes then so does the discontinuity of the connection, in the non-null case. For a general
ntersection in Lovelock gravity the energy tensor may vanish without implying vanishing of the
onnection discontinuities. Even for the single hypersurface case, E�1�=�n�nE�1�

n =0 does not imply
hat the connection becomes continuous. Simple solutions where this happens can easily be found
nd such space–times have been called solitons.31 If such a hypersurface is spacelike, there is a
reakdown of causality. Another important case of vanishing energy tensor is that of the null
ypersurface, that is, of the shock wave. Shock waves exist in GR32 as well as in higher order
ovelock theory.�

Also there is another implicit junction condition: there is a well-defined �pseudo-� orthonormal
rame everywhere. If this condition is not obeyed, then the above-presented formula is not valid.
n the case of a hypersurface junction condition, it is equivalent to a well-defined induced geom-
try on the hypersurface. For higher co-dimension intersections it is a quite stringent condition.
or example, for a co-dimension two intersection, there can be no deficit angle.

I. INTERSECTIONS IN AdS AND GAUSS-BONNET TERM

We have seen that there is a possibility to localize matter on an intersection in the Gauss–
onnet theory. We now proceed to a specific example.

. The bulk vacuum solution

We shall take the simplest kind of bulk solution. Each bulk region is a constant curvature
egion of space–time. Such a space–time satisfies R���=1/ �d�d−1��R�g��g�−g�g���, R being a
onstant.33 There are three possibilities:

i� de Sitter space �R�0�,
ii� anti-de Sitter space �R�0�,
iii� flat space �R=0�.

In the Einstein theory, constant curvature empty space will be one of the above three, depend-
ng on whether the cosmological constant is positive, negative, or zero. In the higher order

ovelock theory, it is possible that more than one type of constant curvature space–time will
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atisfy the vacuum field equations. The different possibilities arise because the field equations are
olynomial in the curvature. For a constant curvature, this just reduces to a polynomial equation in
he curvature scalar.

A more general space–time would be made up of regions of less symmetric vacuum space–
ime. We will not attempt this here, but leave it as a project for the future.

We take the example of AdS bulk space–time, motivated by: �1� the Randall–Sundrum idea of
he nonfactorizable metric1 which allows gravitons to be approximately localized in a large extra
imension; �2� the special role of AdS space in recent advances;35 �3� the simplicity of the problem
rom a mathematical point of view. AdS space has constant negative curvature:

�ab = −
1

l2Ea Ù Eb. �11�

he constant l has dimensions of length. It is easy to check that if we write

�ab =
1

l
�uaEb − ubEa� , �12�

here ua is a constant vector, we have, assuming zero torsion dEa=−�a
bÙEb,

�ab = −
u2

l2 Ea Ù Eb. �13�

bove u2=�abuaub. For an AdS solution, we take u to be space-like u2= +1. The opposite sign
hoice gives dS space–time. AdS, dS, or flat space is a vacuum solution of the general Lovelock
heory �4� provided that the following relation is satisfied:

�
n=0

��d−1�/2�
�− u2�n�d − 1�!
�d − 1 − 2n�!

�n

l2n = 0. �14�

Now let us write the solution in terms of coordinates. We will write the AdS metric in
onformally flat form. Define u ·x����u���x�,

ds2 =
1

��u · x�/l + C�2���dx�dx�, �u · x�/l + C � 0, �15�

ith C an arbitrary constant. Contact between �15� and �12� is made by the choice for the vielbein:

Ea =
1

�u · x�/l + C
����

a dx�.

We will only be interested in the vicinity of the intersection and will not worry here about the
lobal details of joining together regions of AdS.

. Three-way intersection

We will consider the simplest three-way vertex. There is a plane covered by coordinates
x ,y���xd−2 ,xd−1�. It will also be convenient to use cylindrical coordinates: x=� cos �, y
� sin �. There are three bulk regions, i=1,2 ,3, broken up by three hypersurfaces, 	ij
, at �
const. The hypersurfaces meet at the intersection, 	123
, at �=0. The space–time is divided into

egions:
region 1: 0����1,

region 2: �1����2,
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region 3: �2����3, with the identification �3�0. One can have a conical singularity at the
ntersection with deficit angle 2�−�3 but we will not do so for reasons we will mention. So we
ake �3=2� �Fig. 1�. In each region i let ui= �0, . . . ,0 ,cos �i , sin �i� such that ui ·x=� cos��
�i�. The metric in each region takes the following form:

dsi
2 =

1

�� cos�� − �i�/l + 1�2���dx�dx�. �16�

e have chosen C=1 here for convenience. We insist that the metric is continuous, so the factor
u ·x� / l+1 should be continuous across the walls:

cos��1 − �1� = cos��1 − �2� , �17�

cos��2 − �2� = cos��2 − �3� , �18�

cos��3� = cos��1� . �19�

here is the trivial solution �i=�i+1, which is smooth across the hypersurface. If we are to have
ny matter on the hypersurfaces �a brane� we must choose the nonsmooth solutions:

�1 = − �3 = �1 − �2,

�20�
�2 = �1 + �2.

his allows for u to be different in each region. The spin-connection �12� is not single-valued at
he walls.

At the intersection, we need more than just continuity of the metric. We must have a well-
efined orthonormal basis

E�
a E�

bg�� = �ab

verywhere, including at �=0. Now, since the metric is conformally flat, the angle between two

IG. 1. The intersection of three hypersurfaces. Each bulk region, denoted by 	i
, is a piece of constant curvature
pace–time. If there is no deficit angle we have �3=2�. The three angles shown are �1, �2−�1, and �3−�2.
ectors is
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v � w =
v�w�g��

�v�v�g���1/2�w�w�g���1/2 =
v�w����

�v�v�����1/2�w�w�����1/2 .

his is well known—a conformal transformation preserves angle. So theta is indeed a measure of
he angle between vectors. At �=0, we have Ea= �. . . , cos �a , sin �a�, but with the identification
��+�3. Since �ab=Ea�Eb=cos��b−�a�, for a well-defined orthonormal frame we require
os��b−�a+r�3�=1 or 0 for arbitrary integer r, so we should set �3=2�. Thus we insist upon
aving no deficit angle at the intersection.

. The junction conditions

Recall that the junction condition at each p-intersection is �9�. In the next section we shall
valuate the general form of En for the intersections in AdS. Here we shall stick to the co-
imension two intersection in the Einstein–Gauss–Bonnet theory. Furthermore, we shall not cal-
ulate the energy-momentum tensor on the branes but proceed to find what is at the intersection.

There is no contribution from the Einstein term: E�2�
1 =0. Only the Gauss–Bonnet contributes.

�2�
2 is

�E�2�
2 � f = ��2 − �1�ab Ù ��3 − �1�cd Ù eabcdf�

s123

d2t .

he volume of the two-simplex is 1 /2,

�E�2�
2 � f = 1

2 ��2 − �1�ab Ù ��3 − �1�cd Ù efabcd

= − 2�u2 − u1�a�u3 − u1�bEc Ù Ed Ù efabcd

= − 2�d − 4��d − 3���u2 − u1��1��u3 − u1��2� − �u2 − u1��2��u3 − u1��1��ef�1��2�.

he factor in square brackets is

�cos �2 − cos �1��sin �3 − sin �1� − �cos �3 − cos �1��sin �2 − sin �1�

= sin��3 − �2� + sin��2 − �1� + sin��1 − �3�

= sin�2�2� + sin�2�1 − 2�2� − sin�2�1� .

ote e�1��2�= ẽ is the natural volume element on the intersection. Putting this into �9�, we get the
ollowing result:

Proposition 2.1: The junction condition for the intersection is

�T123�b
a = − 2�d − 4��d − 3��2�sin�2�2� + sin�2�1 − 2�2� − sin�2�1���b

a. �21�

he singular matter on the intersection is a �d−2�-dimensional cosmological constant or tension.
If the energy tensor Tb

a on a hypersurface takes the form −V�b
a, we will call the constant V the

osmological constant or tension of the membrane, which in some cases might be negative where
t amounts to pressure. In this paper we are mainly interested in whether the value of the energy
ensor is zero or not and we will be writing the tensor as Tb

a=��b
a so one should bear in mind that

=−�.�
Using the double angle formulas, we can prove that this tension vanishes in d�5 if and only

f: either cos�2�1�=1, cos�2�2�=1, or cos�2�1�=cos�2�2� and sin�2�1�=sin�2�2�. These solutions
re not really intersections at all:

i� �1=�2Þ�1=�3=0, region 2 is shrunk to zero; �1=0Þ�2=�3, region 1 is shrunk to zero;
or �2=2�Þ�2=�1, region 3 is shrunk to zero. In these cases there is just a smooth AdS
bulk.

ii� �1=�Þ�2=�3, �2=�Þ�2=�1 or �1−�2=�Þ�3=�1=� In these cases there is just a

single hypersurface.

                                                                                                            



I

h
s
m

T
a

p
v

a

w

w

b

T

w

w
i

092503-9 Intersecting hypersurfaces in AdS and Love-lock J. Math. Phys. 47, 092503 �2006�

                        
II. HIGHER CO-DIMENSION INTERSECTIONS IN AdS

So far we have dealt with co-dimension two intersections. We now proceed to look at the
igher co-dimension simplicial intersection in AdS background. There are p+1 bulk regions, 	i
,
eparated by p+1 hypersurfaces, 	ij
, intersecting at the simplicial intersection 	i0 . . . ip
. The
etric in each bulk region is, cf. �15�:

ds2 =
1

�ui · x + 1�2 ����dx�dx� + dx�d−p�
2 � . �22�

he branes intersect at x�= �0, . . . ,0�. Each brane is paramterized generally by f�x��=0, and is
ssumed to be maximally symmetric in the other d− p dimensions.

The continuity of the metric at each hypersurface 	ij
: �ui−uj� ·x=0, implies that �ui−uj� is
roportional to the normal vector to 	ij
. Each AdS region is characterized by a unit spacelike
ector ui

a , i=0, . . . , p and the same AdS scale l which we set to 1. Define

uij = ui − uj �23�

nd

u�t� = �
i=0

p

tiui �24�

ith �i=0
p ti=1, and

R�t�b
a = u�t�2�b

a + Nb
a, Nab = �

i=0

p

�
j=0

p

titjuij
a uij

b . �25�

Proposition 3.1: The curvature of the interpolating connection is

�ab�t� = − R�t�c�a�Ec Ù E�b�, �26�

here the symmetric matrix R�t� is defined in �25�.
Note: We will not need to take the ui all of the same causal nature in this proof; each ui may

e time- or spacelike, or null.
Proof: By �12� the connection on each region i is assumed to be given by

�i
ab = ui

aEi
b − ui

bEi
a. �27�

he curvature of the interpolating connection ��t�=�i=0
p ti�i then is

��t�ab = d��t�ab + ��t�c
a Ù ��t�cb = − u�t�2Ea Ù Eb + �

i=0

p

tiui
auicE

b Ù Ec + �
ij

ui
aujcE

c Ù Eb − �a ↔ b�

�28�

here we have used zero torsion and metric continuity to calculate

d��t�ab = �
i

tid�i
ab = �

i

ti�ui
adEi

b − ui
bdEi

a� = �
i

ti�− ui
a�ic

b Ù Ec + ui
b�ic

a Ù Ec� , �29�

here we drop the region index from the frame E after the derivative is taken as the metric itself
s continuous, all Ei agree at the hypersurface, only its derivative jumps.

p i
Now, by using �i=0t =1, we have
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�
ij

titj�ui − uj�a�ui − uj�c = 2�
i

tiui
auic − 2�

ij

titjui
aujc �30�

o by �25� and �23� we get �26�. �

The intersection junction conditions are �9� with

E�p�
n = 2p�− 1�n−p�

s01. . .p

dptu10
a1 . . . up0

apEb1. . .bpR�t�cp+1

ap+1 . . . R�t�cn

anEcp+1bp+1. . .cnbnea1. . .bnc. �31�

ote first that by uij =ui0−uj0 all terms involving Nb
a defined by �25� and �23� drop out in the

revious equation by the presence of the factors u10. . .up0 �involving all vectors which span the
ormal space� and the antisymmetry of the volume form ea1. . .bnc. Note that this also true if some

i0’s are null. Now applying the identity

Ec1. . .cn Ù ed1. . .dm
=

m!

�m − n�!
��dm−n+1�

c1 . . . �dm

cn e�d1. . .dm−n�, �32�

e can then write

E�p�
n = �− 1�n−p�− 1�p�p−1�/22p�

s01. . .p

dptu10
a1 . . . up0

ap�u�t�2�n−p

�
�2n + 1�!
�p + 1�!

��b1�
b1 . . . �bp

bp�ap+1

ap+1�bp+1

bp+1 . . . �an

an�bn

bne�ca1. . .ap�. �33�

he factor of �−1�p�p−1�/2 comes from the rearrangement of the indices. The quantity after the
ymbol�equals

�d − p − 1�!
�d − 2n − 1�!

eca1. . .ap
�34�

nd is calculated in the Appendix.
Let n1 , . . . ,np be orthonormal vectors that span the normal space. The one free index inter-

ection volume form is defined by

ẽc = �
i=1

p

�ni · ni��n1�a1 . . . �np�apea1. . .apc. �35�

ote the difference in the position of the free index c from the previous formula.
If we define the matrix of components

ui
j
ª ui0

a na
j , �36�

xpanding the vectors ui0 in �33� in the orthonormal basis we have

u10
a1 . . . up0

apea1. . .apc = det�ui
j�ẽc, �37�

o finally

�E�p�
n �c =

n!

�n − p�!
�d − p − 1�!

�d − 2n − 1�!
�− 1�n−p�− 1�p�p−1�/22p det�ui

j��
s01. . .p

dpt�u�t�2�n−pẽc. �38�

ubstituting this in �9� and reinstating l, we get:

Proposition3.2: The junction condition for the simplicial p-intersection is

                                                                                                            



w

s
t

w
t

w
t

w
	
i
t
p
p
h
t
f
s
t

v

c

a
o

d

092503-11 Intersecting hypersurfaces in AdS and Love-lock J. Math. Phys. 47, 092503 �2006�

                        
�Td,01. . .p�b
a = �d,01. . .p�b

a,

�39�

�d,01. . .p = �
n=p

��d−1�/2�
�n

l2n−p �− 1�n−p+1 n!

�n − p�!
�d − p − 1�!

�d − 2n − 1�!
2p−1 det�ui

j��
s01. . .p

dpt�u�t�2�n−p,

here Td,01. . .p is the energy-momentum tensor on the intersection.
Before proceeding let us first look at the Einstein case where only �1 is nonzero. AdS and dS

pace–times correspond to the vector u being spacelike and timelike, respectively, so we find that
he bulk cosmological constant is

Vd = − �d = � �1
�d − 1��d − 2�

2l2 , �40�

hich is the standard formula with beta related to the Newton’s constant G by �1= �8�G�−1. The
ension of a hypersurface in Einstein gravity reads

Vd,10 = − �d,10 = �d − 2�
�1

l
�u1 − u0�ana, �41�

here na is the normal vector on the hypersurface 	10
. Applying this to the geometry of the
hree-way intersection discussed in Sec. II B we find

Vd,10 = �d − 2�
�1

l
�sin��1 − �0� − sin��0 − �0�� = �d − 2�

�1

l
2 sin��1 − �0� , �42�

here ui= �cos �i , sin �i� and ni= �−sin �i , cos �i�, and the positions of the hypersurfaces
10
,	21
,	02
 are �0 ,�1 ,�2, respectively. We have labeled the regions by 0,1,2 instead of 1,2,3 as
n Sec. II B. We have applied the continuity conditions �17� to get the left-hand side of �42�. Then
he tension is positive if �1−�0 is greater than zero and smaller than �. In a similar fashion it is
ossible for all three to have positive tensions. In particular, the tensions become equal �and
ositive� in the symmetric case where the vectors u are symmetrically arranged and so are the
ypersurfaces, with the directions of the u’s lying in between the hypersurfaces at � /3 angle from
hem.37 This setup on AdS background has been studied in the past, see, e.g., Ref. 39. In the
ollowing we will use the symmetrically arranged vectors u in the case of general co-dimension to
how that det�ui

j� in �39� is always positive. For special Lovelock gravities we will see that the
ensions of the intersections are all positive.

Something interesting about the contributions of the individual Euler terms, that is, about the
alue of �d,01. . .p when a single such term is considered or contributes, is that it never vanishes.

Proposition 3.3: Each term in �39� cannot vanish unless �n is zero. �The terms can possibly
ancel among themselves�.

Proof: First recall:

ui
j = �u10

�1�
¯ u10

�p�

] � ]

up0
�p�

¯ up0
�p� �

nd each vector ui0 is proportional to the normal vector of the hypersurface 	0i
. If the determinant
f ui

j is zero then the vectors ui0 are not linearly independent. That is, they cannot span the
p-dimensional normal space of the codimension p simplicial intersection so the configuration
egenerates to a lower co-dimension intersection.
Also since

                                                                                                            



a
w
w

w

W

x
g
a
o
r

g
w
e

w
�
c
c
W
−
r

=
	
t

i

092503-12 E. Gravanis and S. Willison J. Math. Phys. 47, 092503 �2006�

                        
u�t� = �
i=0

p

tiui = u0 + �
i=1

p

tiui0

nd ui’s are spacelike vectors then u�t�2�0. But ui0 are linearly independent space-like vectors
hich span the normal space and u0 a spacelike vector on it, that is, u�t� cannot be zero every-
here on the p-simplex. So the integral in �39� does not vanish. �

Now define

Pd,p�x� ª 2p−1 �
n=p

��d−1�/2�
�n

l2n−p �− 1�n−p+1 n!

�n − p�!
�d − p − 1�!

�d − 2n − 1�!
xn−p, �43�

here the dependence of Pd,p on �’s and l is suppressed. �d,01. . .p then reads

�d,01. . .p = det�ui
j��

s01. . .p

dptPd,p�u�t�2� . �44�

e have the following
Proposition 3.4: A sufficient condition for �d,01. . .p�0 is Pd,p�x��0 �or �0� for 0�x�1.
Proof: Since, �u�t� � ��i=0

p ti �ui � =�i=0
p ti=1, by �ui � =1 with �u � =�u2, the proposition is clear for

=u�t�2 and 0�x�1. Also if u�t�2=0 then 0=u�t�=�i=0
p tiui, so by linear independence of the ti we

et that all ui=0; this happens only at one point on the simplex. On a similar basis, if u�t�2=1 then
ll vectors ui must be equal; u�t�2=1 happens only at the p+1 points, the zero-dimensional faces
f the simplex. So for the integral �44� one may take 0�x�1 and if Pd,p�0 �or �0� in this
egion the integral does not vanish. �

An interesting case we can study is Chamseddine’s Chern–Simons theory with AdS gauge
roup, in d=odd.40,9 It is a Chern-Simons theory from an Euler density in d+1=even dimensions
ith tangent space being AdS instead of Minkowski. This Chern-Simons theory is classically

quivalent to a Lovelock gravity, existing in d=odd, with coefficients

�n
C = ��d − 2n�!

�±1�n+1	2n−d

d − 2n
�k

n
� = ��±1�n+1	2n−d�d − 2n − 1�!�k

n
� , �45�

here n=0, . . . ,k with k= �d−1� /2= ��d−1� /2� and the minus �plus� sign corresponds to the dS
AdS� group case and 	 is the dS �AdS� gauge group length parameter and � a dimensionless
onstant. �By considering intersections in Chamseddine’s theory we go through a curious kind of
ycle- Chern–Simons �gauge theory� → Lovelock Gravity → Chern–Simons �intersection terms�.
hether there is anything deep behind this or just coincidence, we do not know.� The factor �d

2n�! comes from our definition of the Euler terms in �4� compared to the definition in the
eferences.

It is easy to see that the bulk equations of motion for our AdS background �11� implies l2

	2. This is the vacuum solution of the theory. As both variables are assumed positive we have
= l. Using the formula for �n

C above in �43� and redefining the summed index as n− p=m we see
hat

Pd,p�x� = − �2p−1lp−dk!�2k − p�!
�k − p�! �

m=0

k−p

�±x�m �k − p�!
m!�k − p − m�!

= − �2p−1lp−dk!�2k − p�!
�k − p�!

�1 − x�k−p, k ª
d − 1

2
. �46�

So we obtain the following formula for the co-dimension p membrane embedded at the

ntersection of the regions labeled by 0,1 , . . . , p in Chamseddine’s theory
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�d,01. . .p = − �2p−1lp−dk!�2k − p�!
�k − p�!

det�ui
j��

s01. . .p

dpt�1 − u�t�2�k−p. �47�

All these �’s are nonzero: as the polynomial does not change sign for 0�x�1 so we see
rom Proposition 3.4 that �for Chamseddine’s theory with AdS group� �d,01. . .p�0.

Let the vectors u0 , . . . ,up be symmetrically arranged in the normal space forming a symmetric
edgehog. This is discussed in Appendix D where formulas for det�ui

j� and u�t�2 are obtained. One
nds

�d,p = − �lp−d�2�2�6�p−1k!�2k − p�!
�k − p�!

�1 +
1

k
�k−p/2�

sp

dpt�1 − �
i=0

p

ti
2�k−p

, �48�

here sp is any p-simplex, as by symmetry the tensions of all �d− p�-dimensional membranes in
he configuration are the same. One could say that Vd,p=−�d,p is the tension of the �maximally
ymmetric� co-dimension p membrane in the vacuum of Chamseddine’s gravity; it has been
mphasized at the introduction that these membranes are embedded in space–time without causing
ingularities or changing its topology, for p=1, . . . ,k. The tensions in this formula depend only on
he dimensionless �, the length l, and the dimensions d and p and they are all positive.

Let us now turn to d=even. Consider the following Lagrangian in d=2k+2 dimensions
efined as

�f��� ±
1

	2E Ù E�k+1� = ��
n=0

k
�k + 1�!

n!�k + 1 − n�!
�±1�k+1−n	2n−2k−2f��nE2k+2−2n� + �f��k+1� .

�49�

or the � ��� sign choice the constant curvature vacuum solution is an AdS �dS� space–time with
urvature proportional to 	−2 where 	 is a length parameter; we will call �49� the AdS and dS
orn–Infeld theories, respectively.41,9 � is again a dimensionless parameter.

The last term is topological �exact form locally� and drops out of the equations of motion. So
sing �5� and the general definition of the Lovelock Lagrangian �4� we find

�n
BI = ��±1�k+1−n	2n−dd�d − 2n − 1�!�k

n
� , �50�

here again k=d /2−1= ��d−1� /2�, n=0, . . . ,k. These coefficients are similar to �n
C’s so one may

ay that Born–Infeld theory is the analogue to Chamseddine theory in d=even.
Again the bulk equations of motion for our AdS background �11� give that 	2= l2 for the AdS

orn–Infeld theory. Putting the AdS �n
BI’s into �43� we have

Pd,p�x� = − �2p−1d
k!�d − p − 1�!

�k − p�!
lp−d�1 − x�k−p. �51�

rom this we obtain formulas similar to �47� and �48�, and from Proposition 4 we have that for
AdS Born–Infeld theory� all �d,01. . .p are nonzero.

Note that the results for nonvanishing simplicial intersection’s energy tensors are due to the
igh symmetry of the system: the bulk regions are portions of the same, highly symmetric space–
ime, AdS, and the gravity theories have an AdS with a given radius as the single vacuum solution.
n general, vanishing �simplicial� intersection’s tensor does not imply degeneration of the inter-
ection, that is, the connection can be discontinuous at the hypersurfaces. On the other hand, it is
n interesting fact that the high symmetry of the background and of the theory makes all these
ntersection energy tensors �tensions of the embedded membranes� strictly nonzero.

In d=even it is easy to see why the polynomials get these summed expressions �49� and in

urn by the similarity of the coefficients, to see why in Chamseddine’s Lagrangian expressions get

                                                                                                            



s
t
e

T

f
r
t
s
b
a
s

I

f
g

w
s
t
=

i
i

w

w
�
=
m
h
b
s

092503-14 E. Gravanis and S. Willison J. Math. Phys. 47, 092503 �2006�

                        
implified too. In fact the simplicity has nothing to do with the AdS background we mainly use in
his work: according to our discussion in Ref. 5 the simplicial intersection Lagrangians are gen-
rated by expanding the polynomial

�BI = �f���F ± 	−2E�t� Ù E�t��k+1� = �f��dt� + ��t� ± 	−2E�t� Ù E�t��k+1� . �52�

he intersection Lagrangians read5

�
s01. . .p

�BI = ��− 1�p�p−1�/2 �k + 1�!
�k + 1 − p�!�s01. . .p

dptf���1 − �0� . . . ��p − �0����t� ± 	−2E Ù E�k+1−p�

�53�

rom which the equations of motion �junction conditions� are obtained by merely varying with
espect to the frame E, as the variation with respect to the connection vanishes under the zero
orsion condition for the frame on each bulk region.5 For AdS backgrounds and going through the
teps that lead to �39� we can show that �53� leads to �51�. �53� can be applied to more general
ackgrounds such as the asymptotically AdS black holes of these theories, see, e.g., Refs. 41, 9,
nd 10 which will support less trivial energy tensors and time evolution at the intersection hyper-
urfaces.

V. NONSIMPLICIAL INTERSECTIONS AND AdS BOUNDARY

We now return to a co-dimension two intersection. Let us now see what happens if there are
our or more hypersurfaces intersecting. We have bulk regions i=1, . . . ,m with hypersurfaces
iven by the configuration of angles: �1 , . . . ,�m. We label the intersection as I.

The metric continuity condition �ui−ui+1� ·xi=0 for the ith hypersurface gives

cos��i − �i� = cos��i − �i+1� �54�

riting xi=�i�cos �i , sin �i� where ��i ,�i� is the position of the ith hypersurface on plane. One
olution of this equation says that �i−�i+1 is integer multiple of 2� which is rejected as implying
hat ui=ui+1 which would make the connection continuous there by �12�. The other is �i−�i+1

−��i−�i�+2��i or

�i = 1
2 ��i + �i+1� + �i� . �55�

=1, . . . ,m with the convention �m+1=�1. �i’s are integers. There is a discontinuity ui�ui+1 which
mplies also the discontinuity �i��i+1 of the connection, from the formula �12�.

Now one finds

�
j=1

i−1

�− 1� j� j + �
j=i

m

�− 1�m−j� j = �− 1�i �− 1�m − 1

2
�i + �̄i� , �56�

here �̄i=� j=1
i−1�−1� j� j +� j=i

m �−1�m−j� j.
For m=even one finds for all i the single expression

�1 − �2 + �3 − �4 + ¯ + �m−1 − �m = − �̄� , �57�

here all �̄i’s are equal and denoted �̄. The angles �i drop out. We have chosen 0��1��2

. . . ��m�2�. It is not hard to see that the above-presented equation makes sense only for �̄
1. So in this case we cannot put the discontinuity hypersurfaces anywhere we like, without
aking the metric discontinuous. So �i’s cannot be expressed in terms of the positions of the

ypersurfaces. The tension in I is only a function of the bulk regions data �i. The intersection
ehaves rather as part of the background. The same happens to the analogous situation when we
tudy collisions.
For an m=odd number of hypersurfaces we have from the above-presented formula
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�
j=1

i−1

�− 1� j� j − �
j=i

m

�− 1� j� j = �− 1�i−1�i + �̄i� . �58�

e then derive:

�− 1�i��i+1 − �i� = 2�
j=1

i−1

�− 1� j� j − 2 �
j=i+1

m

�− 1� j� j − ��̄i+1 + �̄i�� . �59�

We need the junction conditions for a nonsimplicial intersection. It is worthwhile digressing to
xplain a bit the abstract approach of Ref. 5, which allows us at once to write down the answer. In
he following we give only a sketch of the method. For a full account the reader should consult
ef. 5.

The intersection Lagrangians are obtained by expanding a polynomial

� = �dt��t� + ��t��a1. . .a2n Ù ea1. . .a2n
. �60�

he structure of the Lagrangian at the intersection 	123
 of the hypersurfaces 	12
, 	23
, 	31
,
eparating three bulk regions, given by

L123 = �
s123

� �61�

s a result of the simplex boundary rule

�s123 = s23 − s13 + s12. �62�

ee Appendix C for the general definition of the simplex and the associated boundary operator.
he form � is a generalized Lagrangian, an example of which we used in �52�. � generates the

ntersection Lagrangians according to a rule like �61� by integrating over t. Here t is the coordinate
n the simplex. More generally t is the coordinate on a chain which is dual to the intersection in
he following sense.

Consider a nonsimplicial intersection, for example of four hypersurfaces 	12
, 	23
, 	34
, 	41
,
eparating four bulk regions. We consider a three-dimensional simplex with vertices labeled by
,¼,4. The Lagrangian at the intersection is constructed by finding a chain �a chain or p-chain is,
or our purposes, a linear combination of p-dimensional simplices with integer or rational coeffi-
ients.� c on that simplex such that

�c = s12 + s23 + s34 + s41, �63�

here the right-hand side reflects the arrangement of the hypersurfaces on the normal plane of
heir intersection.

By �62� it is easy to see that such a chain is

c = s123 + s134, �64�

here the boundary operator acts linearly; c is not unique, different c’s obeying �63� differ by a
hain which is itself a boundary. Then the Lagrangian, given by

�
c

� �65�

s

L123 + L134. �66�

s c is not unique, this Lagrangian is not unique either. If c� is another chain satisfying �63� then

�=c+� for some chain , so by Stokes theorem the Lagrangians corresponding to them are
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elated by �c��=�c�+�dt�. It is a special property of the polynomials �60� that the pull back of

t�+dx� onto the d+1 dimensional space � �intersection� vanishes. So Lagrangians constructed
y different chains c differ only by exact forms

�
c

� = �
c�

� + d�


� .

It easy to construct now the Lagrangian for the nonsimplicial intersection of m hypersurfaces
hich reads LI=L123+L134+ ¯ +L1,m−1,m. This gives

�TI�b
a = − 2�d − 4��d − 3��2��b

a,

�67�

� = �
i=1

m

sin��i+1 − �i�

ith �m+1��1. Using �59�, we can express � purely in terms of the configuration:

� = �
i

sin�2�
j=1

i−1

�− 1�i−j� j − 2 �
j=i+1

m

�− 1�i−j� j − �− 1�i��̄i+1 + �̄i��� . �68�

he solution �i=�i+1 is trivial so the terms in brackets cannot vanish individually. However, there
re more degrees of freedom than for the three-way intersection. There should be nontrivial zeroes
f �. The simplest three-way planar intersection �Sec. II� in AdS background will have singular
atter at the intersection. The intersection of a higher odd number of branes may or may not,

epending on the geometry.
We now point out an interesting relation between the limit m→� of the number of intersect-

ng hypersurfaces and the boundary of AdS. In the example of a nonsimplicial co-dimension two
ntersection of m hypersurfaces let the vectors ui be arranged symmetrically by

�i = �i − 1�
2�

m
, i = 1,2, . . . ,m . �69�

rom �55� and taking �1= . . .�m−1=0 and �m=1, which is also consistent with the constraint �̄
1 in �57� for m=even, we find

�i�i�m = �i −
1

2
�2�

m
,

�70�

�m =
�m − 1�

m
� + � = �m −

1

2
�2�

m
.

o the direction of the u vector of every bulk region is in between the directions of the hypersur-
aces bounding that region.

From the �i’s and �i’s we find that the metric is given by g��=����C+ �1/ l��gm����−2 where
is the radial variable on the normal plane, C�0 is a constant we usually set to 1, and

gm��� = �cos�� − i
2�

m
��, −

�

m
+ i

2�

m
� � �

�

m
+ i

2�

m
, i = 0,1, . . . ,m − 1. �71�

t is continuous and 2�-periodic in the 2�-periodic variable �. In fact the function repeats the
ame values in every region: at all hypersurfaces it has the value cos�� /m� and approaches the

alue 1 in the middle of the interval; it is a copy of

                                                                                                            



f
r

I
m

w
i

w
j

F

b
t
w

w
A
a
f
e

c

t
w
b

l
e

w
a
o

092503-17 Intersecting hypersurfaces in AdS and Love-lock J. Math. Phys. 47, 092503 �2006�

                        
cos �, � � �−
�

m
,
�

m
� �72�

or m times. So the interior of the bulk regions is a copy of that piece of the AdS space–time with
adius l, a 1 /m of the whole. In particular we have that

cos��

m
� � gm��� � 1, " � � �0,2�� . �73�

f we take the limit m→� the function gm��� approaches the constant value 1. In this limit the
etric of the space–time becomes

dsm→�
2 = �C +

1

l
��−2

�d�2 + �2d�2 + ���dx�dx�� , �74�

here x� are the coordinates parallel to the co-dimension two intersection. The curvature two-form
s calculated to be

�ab = �i
a 1

l2�1 + C
l

�
�Qj

iEj Ù Eb − �i
b 1

l2�1 + C
l

�
�Qj

iEj Ù Ea −
1

l2Ea Ù Eb, �75�

here i , j=1,2 are indices of the Cartesian coordinates on �� ,�� plane and Qj
i =�ij −xixj /�2 pro-

ection operator on it, and the Ricci scalar is

R = 2�d − 1�
1

l2�1 + C
l

�
� − d�d − 1�

1

l2 . �76�

or C�0 the space develops a curvature singularity.
The curvature singularity can actually be removed if the intersection is located within the

oundary of each AdS bulk region. The constant C, taken to be the same for all regions, restricts
he coordinates via C+ui ·x / l�0 for the ith region. Call Ai the space defined by this inequality. If
e set �C=0� we have that the metric in Ai is

dsi
2 =

l2

�ui · x�2���dx�dx� �77�

ith ui ·x�0. We want to include the space ui ·x=0 in Ai i.e., to consider the closure Āi of the open

i. The metric �77� does not extend over the boundary of this space and it is given a meaning
long the lines of Penrose’s conformal compactification. One may multiply this metric with a
unction f with a first-order zero at the points x with ui ·x=0, to get a metric ds̃i

2= f2dsi
2 which

xtends to the boundary ui ·x=0 of Ai and defines a metric ds̃ib
2 in it; the function f is arbitrarily

hosen in Āi, as long as it has a first-order zero at the boundary. As there is no natural choice of
f , the coefficient of the zero is arbitrary and the metric ds̃ib

2 is only well-defined up to conformal
ransformations. Ai is a part of the AdS space–time, the patch covered in Poincare coordinates
hich we have used to write the AdS metric in �77� and ui ·x=0 is a part of the AdS boundary. The
oundary has the topology of sphere times the real line: Sd−1�R.33,34

So let C=0 in the bulk regions so that the ith region is a subspace of Ai. The intersection is
ocated at a common co-dimension two subset of the boundary of all Ai’s; it is given by �=0 in
ach one of them. When this is the case the infinite m metric reads

dsm→�
2 =

l2

�2 �d�2 + �2d�2 + ���dx�dx�� =
l2

�2 �d�2 + ���dx�dx�� + l2d�2, �78�

hich is nothing but a �d−1�-dimensional AdS times a circle with radius l: AdSd−1�S1. That is,
dimension gets compactified and �=0 becomes the boundary of an AdS �a single Poincare patch

f an AdSd−1�. The AdSd−1 metric is conformal �with a constant factor� to that of the AdSd��=const.
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nd it is the AdS living at each hypersurface, ending at �=0. The boundary of the limiting
pace–time has topology Sd−2�S1�R.

We have mentioned that because the metric at the boundary of the AdS is defined up to
onformal transformations the energy tensor there has to be traceless. In our case it is diagonal so
t should vanish identically. Now for finite m the tension at the intersection �67� via �69� reads

2�d − 3��d − 4��2l−2 · m sin
2�

m
. �79�

bsence of a curvature singularity in the limit m→� is consistent only with �2=0 �or d�4� i.e.,
nly Einstein gravity. This is for the symmetric configuration �69�. On the other hand take m
even and consider the configuration

�i = �i − 1�
2�

m
+ �− 1�i
, i = 1, . . . ,m = even, �80�

here 
 is a constant so that by the metric continuity condition �55� the positions �70� remain
nchanged, employing the fact that for m=even the positions �i do not fix completely the �i’s. The
imiting metric in this case is

dsm→�
2 =

l2

cos2 


1

�2 �d�2 + ���dx�dx�� +
l2

cos2 

d�2, �81�

amely just the radii l of �78� are rescaled. From �67� and finite m one finds for the tension on the
ntersection

2�d − 3��d − 4��2l−2 · m sin
2�

m
· cos�2
� . �82�

or conformal matter on the intersection this should vanish, which happens in Einstein–Gauss–
onnet theory if and only if

cos2 
 = 1
2 �83�

etermining completely the limiting metric �81�.
Conversely, note that in d�5 Einstein gravity alone could not completely fix the metric �81�.

t is the higher Lovelock term which can reach the co-dimension two submanifold �=0 and fix the
etric. In fact one can prove the following

Proposition 4.1: Any configuration converges in the limit m→� to the family of metrics �81�.
n Einstein gravity the whole family is allowed and the limit is ambiguous. When the Gauss–
onnet term is included a single element is picked by �83�.

Proof: From �55� we have

�i+1 − �i = 1
2 ��i+2 − �i� + ��i+1 − �i�� . �84�

n the i+1th region the argument of the cosine in the intersections metric �77� ranges according to

1
2 ��i − �i+1� + �i� � � − �i+1 �

1
2 ��i+2 − �i+1� + �i+1� . �85�

n the limit m→�, ��i+1−�i�→0 �or to 2� when i=m with �m+1��1+2�.� From the first formula
e see that the argument of the cosine goes to the fixed value

1
2 ��i − �i+1� + �i� = 1

2 ��i+2 − �i+1� + �i+1� �86�
p to a possible 2�. From this equality we see that in the limit m→�,
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1
2 ��i+1 − �i� = �− 1�i
 + �� �87�

or some constant 
 for an integer �. �Comparing with �55�, this implies �i→�i+ �−1�i−1
 plus
nteger multiples of � /2.� That is, the limiting metric is given by the one-parameter family of
etrics �81�.

Now the quantity � in �67� reads for large m,

� =
1

2�
i=1

m

cos��i+1 − �i�sin 2��i − �i−1� , �88�

eglecting terms of order ��i−�i+1�2�1/m2 in the sum. As the sines in �88� are of order 1 /m only
he order one part of the cosine’s argument matters for large m. This has been identified as
−1�i2
. � converges to 2� cos�2
� and the tension on the intersection vanishes under �83�. Put
ifferently, one sets this tension to zero for any m obtaining relations among � whose limit
onstrained by �84� is given by �83� with �87�. �

Summarizing, if the number m of intersecting hypersurfaces separated by AdS backgrounds
oes to infinity, the limiting space–time does not have 1/� curvature singularities if the intersec-
ion is put at the boundary of each AdS region. The constraint for a traceless energy tensor at the
ntersection can be satisfied, as described in Proposition �4.1�.

. COLLIDING SHELLS AND DOMINANT ENERGY CONDITION

A collision is described by an intersection with the timelike coordinate being on the plane of
ntersection. We take the vectors u to be timelike, that is, we consider dS space–time. The three
ormal vectors ui−uj are spacelike; let ui= �cosh �i , sinh �i� so �ui−uj�2=2�cosh��i−� j�−1��0, so
he hypersurfaces are actually timelike. Let the positions of the hypersurfaces be given by the
onfiguration of rapidities: �1, �2 �3. A general point on a hypersurface is labeled
�cosh �i , sinh �i�, suppressing the other dimensions. �It is clear that the description of collisions
n dS is an analytic continuation of that of intersections in AdS, so some aspects of intersections
an be translated to the collisions. Consider then a nonsimplicial collision, of m hypersurfaces.

hen m=even�4 without much thought we get the constraint

�1 − �2 + ¯ + �m−1 − �m = 0 �89�

ith the right-hand side being zero as there is no 2� periodicity here. An explicit calculation
onfirms this. In this case the pressure p at the intersection is not completely determined by the
apidities �i. One of the �i must also be specified.�

From the calculation of Sec. IV we have that the pressure p in the spacelike collision surface
s

p = 2�
n=2

�− 1�n �n

l2n−2n�n − 1�
�d − 3�!

�d − 2n − 1�!
det�uj

i��
s012

d2t�u�t�2�n−2. �90�

Calculating the energy tensor on a spacelike hypersurface one should keep in mind that we define
he volume element �35� to be negative for such hypersurfaces so the energy tensor is minus the
alue given at �39�.� One can prove an analogous situation to Proposition 3.3. The reasoning is
imilar, only now u�t�2�0, or more specifically u�t�2�−1. None of the terms in the sum vanishes
lone. So in general, and in particular for the special Lovelock gravities described by the above-
iscussed Chamseddine and Born-Infeld Lagrangians, the pressure p does not vanish. That is in
eneral intersecting inflationary space–times with different timelike coordinate lead to matter with
ressure at their spacelike intersection in Lovelock gravity.

This explicit example gives us the chance to point out the following, already clear from the
eneral formulas: in a collision, i.e., intersection of timelike hypersurfaces, there is in general
atter appearing at the spacelike collision surface. Viewed on the normal space, this looks like a
ollision of particles such that an instanton may appear at the collision event. Now, the dominant
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nergy condition33 is that for all timelike �a, Tab�a�b�0 and Tab�a is a nonspacelike vector, where
ab is the energy tensor. This is clearly violated by the above-noted energy tensor. Thus the
ominant energy condition �DEC� can be violated at collisions in Lovelock gravity.

In Einstein’s theory, the gravitational field equations themselves cannot impose the dominant
nergy condition. One must also specify the matter equations of motion or, equivalently, the
tress-energy tensor. For example, the junction conditions allow a spacelike hypersurface with
pacelike matter.

However as we discussed in Ref. 4, for colliding shells, the dominant energy condition at the
ollision is obeyed if and only if there is no conical defect. So the dominant energy condition
rises naturally at the collision from a condition on the regularity of the metric. Suppose that we
ave some matter action to describe the free shells which respects the dominant energy condition.
hen the shells collide, perhaps there could also be some contact interaction at the collision

urface, so in principle, we could add an interaction term to the matter action. The regularity of the
etric imposes that this interaction term must vanish.

For the higher order Lovelock theories, this condition does not arise naturally. The junction
onditions for the collision surface are nontrivial. They allow for pressure and momentum local-
zed at the collision. This pressure and momentum is purely tangential to the surface. So the
ollision process will involve something flowing along the space-like collision surface in violation
f the dominant energy condition. So the higher order Lovelock theories impose no energy con-
ition on the type of interaction allowed. In general, we could have a collision where all of the
hells are ingoing and annihilate each other, with the energy flowing away to spatial infinity along
he collision surface. These novelties arise from the peculiar fact that in the energy exchange
elations4 for the collision of shells the purely stress tensor at the spacelike collision surface
ontributes with components normal on the surface.

On the other hand, when we consider the matter component of the theory it is very natural to
mpose the DEC, which is interpreted as that the energy cannot flow faster than the speed of light.
f the matter part of the theory is such that the DEC is respected, then this places a strong
estriction on the kinds of geometry which are allowed. For example, if two maximally symmetric
hells collide in dS, it is impossible to have a single outgoing maximally symmetric brane in dS
ulk. There must be more than one outgoing brane and/or some disturbance of the bulk. So we
ave a constraint which is a kind of selection rule for the allowed collisions due to the higher order
ovelock terms.

As a last comment, we should note that the other energy conditions are also violated in
eneral. The dominant condition for a perfect fluid with energy density � and pressure p reads
� �p�. As discussed this is not satisfied in an arbitrary collision of shells in Lovelock gravity
ecause �=0 and p is in general nonzero. The weak energy condition reads ��0 and �+p�0.
his is satisfied in the above-discussed examples if p�0. �Note that �regarding the bulk cosmo-

ogical constant as matter� the dS background itself satisfies the dominant and weak energy
onditions, and also the null energy condition which simply reads �+p�0. It does not satisfy the
trong energy condition: �+p�0 and �+3p�0 as p=−��0. The AdS background satisfies the

null and strong energy condition but it does not agree with the weak and the dominant energy
conditions.� This is certainly not the case in general: for example if we calculate �90� for the case
of Chamseddine gravity we get

p = �− 1�k+1 ·
1

2
�l2−d�d − 1��d − 3��d − 3�!det�uj

i��
s012

d2t�− 1 − u�t�2�k−2, �91�

here k= �d−1� /2. This is positive if d=4m−1, for some integer m, and violates the weak energy

ondition by being negative in d=4m+1 dimensions.
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I. DIMENSIONALITIES OF INTERSECTIONS AND FOUR-DIMENSIONAL
RANE UNIVERSE

In d bulk dimensions Lovelock Lagrangian contains terms of nth power of the curvature, with
�2n, or nmax= ��d−1� /2�, �� the integer part. The lowest dimensional intersection is d−nmax or

d − �d − 1

2
� . �92�

hat is, one cannot have an intersection of dimension lower than roughly half the bulk dimen-
ionality, or, for a given intersection dimensionality the maximum possible bulk dimensions are
oughly twice that. In particular if we are interested in four-dimensional submanifolds it is easy to
ee that the available bulk dimensionalities are d=5,6 ,7.

Consider a space–time without boundary or with boundary that is smooth, i.e., the normal
irection changes continuously along it. Let us also insist that space–time is a �differentiable�
anifold. The metric is assumed nonsingular in the sense of being C1−,33 which in particular
eans that the first derivative of the metric may have only finite discontinuities and remains

ounded in general. This excludes conical singularities. Also, it excludes the general case of
rbifolds.

We want to restrict matter in submanifolds under these conditions. Consider a manifold and let
nite discontinuities of the first derivative of the metric occur at hypersurfaces, which in general

ntersect. This respects the above-presented conditions. Also, in Lovelock gravity matter does get
ocalized at �restricted on� the discontinuities and their intersections. One may say that this is the
nly way to get matter restricted in submanifolds under the conditions set in the previous para-
raph as an alternative is not known.

So intersections provide the means to restrict matter in submanifolds of co-dimension two or
igher in a nonsingular space–time. Lovelock gravity is in a certain sense a natural generalization
f Einstein theory in d�5 dimensions: �1� it is the most general action for the metric field which
roduces at most second-order field equations under the condition of zero torsion.3,2 Under these
onditions and the above-discussed conditions, one may say that the four-dimensional intersec-
ions in d�7 dimensions exhaust the list of possibilities in the spirit of the idea to think of our
niverse as a subspace of higher dimensional space–time; one of course may consider theories of
ourth or higher order field equations, hypersurfaces of arbitrary thickness, conical or other sin-
ularities in the bulk geometry, etc., but all these add a very large number of model-dependent
ossibilities in the already not entirely economical RS-scenario. Another possibility is to assume
hat subspaces have their own intrinsic gravity terms, apart from the ones induced by the bulk.
hen one has to invent mechanisms of how they arise.

Let now the boundary of the space–time be not smooth, the direction of its normal vector
hanges discontinuously crossing hypersurfaces embedded in the boundary. Then new surface
erms should be added in action involving various angles. In Einstein gravity this has been
nalyzed in the past,42 and has also been used in the intersecting brane world literature.43 This kind
f action could also be constructed for the general Lovelock gravity.

II. VACUUM SOLUTIONS AND HIGHER CO-DIMENSION MEMBRANES

The higher order derivative structure of Lovelock gravity allows for vacuum solutions when
he connection is discontinuous at non-null as well as null hypersurfaces. As in general there are
ontrivial junction conditions at the intersections, higher co-dimension membranes are allowed to
xist in vacuum without deficit angle or more pathological curvature singularities.

. Solitonic configurations
Consider a single hypersurface between the regions labeled by 0 and 1 and a case where
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�d,01 = 0. �93�

his is to be satisfied for �n’s, l, and the u’s, along with the bulk equation of motion �14�. Solving
93� for l, when it is possible, we obtain an l= l��n�1 ,ui�. This put in �14� gives the bulk cosmo-
ogical constant �bulk=− 1

2�0=− 1
2�0��n�1 ,ui�.

This is a solitonic configuration in the sense that via a discontinuity in the connection at a
ypersurface there exists in space–time a self-supported vacuum gravitational field �modulo the
ulk cosmological constant�. For Einstein–Gauss–Bonnet theory such a space–time was consid-
red, in relation to brane-world problems, in Ref. 31.

These kinds of solutions �stable or not� existing for some Lovelock gravities are not related to
opological numbers and one obvious statement is that they are due to the appearance of more than
ne delta function �or, to delta function�zero� in the field equations in Lovelock gravity in the
resence of a hypersurface. A different way to put it is that they are possible because Lovelock
ravity is on the verge of not having a well-defined initial value problem:7 as a spacelike hyper-
urface evolves it is possible to pass through a stage where its extrinsic curvature jumps without
atter being responsible for that. This is of course not a problem in the solitonic configurations, as

hey are solutions over the whole of time.
Now, when hypersurfaces intersect, in general matter will be localized at the intersection and

o the same can happen when solitons intersect. Consider first a co-dimension two intersection.
hen the energy tensor at the co-dimension two hypersurface does not vanish we have a case
here a co-dimension two matter is standing alone in space–time without the appearance of a

onical singularity. By �39�, define coefficients c01. . .p
n via

�d,01. . .p = �
n=p

k

c01. . .p
n �n �94�

ith k= ��d−1� /2�. The dependence of the c’s on d is understood. Let d�5 and consider Einstein–
auss–Bonnet theory. Three intersecting solitonic configurations of the above-discussed kind
eans that �d,01=�d,12=�d,20=0 so

c01
1 �1 + c01

2 �2 = 0,

c12
1 �1 + c12

2 �2 = 0, �95�

c20
1 �1 + c20

2 �2 = 0.

or �’s not to be zero the relations have to be linearly dependent. This is possible: it is adequate
o take all three angles between u0, u1, u2 equal, as then u�t�2 will give the same integral over
ll one-simplices. One then obtains a relation for the couplings constants, that is, is specified a
lass of the Lovelock gravities that accommodates such a configuration. Let u0= �1,0�,
1= �−1/2 ,�3/2�, u2= �−1/2 ,−�3/2�. We find

− l−1�d − 2�det�u��1 + l−3�d − 2��d − 3��d − 4�det�u��2 = 0. �96�

o for d�5 solving for �2 we have by �94�

�d,012 = c012
2 �2 = − 3�3�1, �97�

here we used also the volume of the two-simplex �s012
d2t= 1

2 . As the geometry does not contain
deficit angle �which is not hard to see employing the metric continuity conditions� we have a

o-dimension two surface filled with matter in space–time without conical singularities. Moreover
he energy density is positive, the tension on the co-dimension two intersection is Vd,012

−�d,012=3�3�1�0. We discuss higher than two co-dimension membranes in AdS and the asso-

iated Lovelock gravities in Appendix D. In general backgrounds, solitonic solutions are possible
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ith no relations among the beta couplings. This interesting implication of Lovelock gravity is
iscussed in future work.

. Shock waves

We turn now to the case of shock waves.32 Let a hypersurface separating a dS region with
ector u0, u0

2=−1, and an AdS region with vector u1, u1
2=1. The hypersurface is given by the

ontinuity condition �u0−u1� ·x=0. Let the vector u0−u1 be null. Then also u0 ·u1=0.
Proposition 7.1: Consider pure Gauss–Bonnet gravity with cosmological constant. Then a null

ypersurface separating a dS and an AdS with the same length scale l is a shock wave.
Proof: First, by the bulk equations �14� we see that if �n is not zero for n=0,2=even, the

ame l can be a solution for both dS and AdS. Now, let us repeat Eq. �33�,

E�p�
n = �− 1�n−p�− 1�p�p−1�/22p�

s01. . .p

dptu10
a1 . . . up0

ap�u�t�2�n−p �d − p − 1�!
�d − 2n − 1�!

eca1. . .ap
. �98�

his is still valid even if one �or more� of the ui0’s is null. It is important that we nowhere refer to
he intrinsic geometry of the null hypersurface. If this quantity vanishes there cannot be a nonzero
nergy tensor in the null hypersurface.

For Gauss–Bonnet gravity and a null hypersurface discontinuity the single contribution is �2

imes �putting the common length l back�

− 2l−3�d − 3��d − 4��
0

1

dtu�t�2u10
a eca. �99�

ut

u�t�2 = − t0
2 + t1

2 = − �1 − t�2 + t2 �100�

aking t1= t, that is

�
0

1

dtu�t�2 = 0 �101�

o the energy tensor at the null discontinuity vanishes identically. �

Also we have
Proposition 7.2: Let Lovelock gravity be given by a sum of even order Euler terms. Then a

ull hypersurface separating a dS and an AdS with the same length scale l is a shock wave.
Proof: By the bulk equations �14� we see that if �n is not zero for n=even, the same l can be

solution for both dS and AdS. For the null hypersurface between dS and AdS with the same scale
e have from before that u�t�2=−�1− t�2+ t2=2t−1 so

�
0

1

dt�u�t�2�n−1 = �
0

1

dt�2t − 1�n−1 =
�− 1�n−1 + 1

2

1

n
�102�

o from �98� for p=1 we have that the energy tensor at the null hypersurface vanishes for all n
even. �

Consider now the nonsimplicial intersection such that four dS and AdS regions are put alter-
atively: u0= �1,0�, u1= �0,1�, u2= �−1,0�, u3= �0,−1�. Let the gravity be pure Gauss–Bonnet.
hen all four hypersurfaces are null and shocks.

The co-dimension two hypersurface is spacelike. Its Lagrangian is

L012 + L023. �103�
he intersection is non-null so by �39� we get the energy tensor on it is pure pressure equal to
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8�2l−2�d − 3��d − 4� . �104�

his is calculated via the determinants of � u10

u20
� and � u20

u30
� which both equal to 2.

In general, consider the same configuration for a Lovelock gravity involving all possible even
rder Euler terms. The Lagrangian is still given by �103�. Over the simplex s012 we have

u�t�2 = − t0
2 + t1

2 − t2
2 + 2t0t2 = t1

2 − �t0 − t2�2 = �1 − 2t0��1 − 2t2� �105�

sing the u’s above and that t0+ t1+ t2=1 over this simplex. There is a similar expression over s023.
o we have

�
s012

d2t�u�t�2�n−2 = �
0

1

dt0�
0

1−t0

dt2��1 − 2t0��1 − 2t2��n−2 =
1

2�n − 1�2 , �106�

here we used formula �102� and that n=even. The same quantity is obtained from the simplex

023. Having calculated the above-noted determinants �equal to 2� we use these results in formula
39� to get for the pressure at the intersection

�
n=even�2

4n

n − 1

�n

l2n−2

�d − 3�!
�d − 2n − 1�!

. �107�

e see then that in a collision of shocks a co-dimension two matter is required to exist at the
ollision event surface. As noted earlier this spacelike matter violates the dominant energy con-
ition, as a general feature of collisions in Lovelock gravity, here seen in the case of shock waves.
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PPENDIX A: SOME MANIPULATIONS WITH KRONECKER DELTA

In this appendix, we derive the quantity given in Eq. �34�. We would like to determine the
onstants A�d�mn in

�m + n + 1�!
�n + 1�!

��a1�
a1 . . . �am

ame�cb1. . .bm� = A�d�mnecb1. . .bm
. �A1�

n components this means

�m + n + 1�!
�n + 1�!

��a1�
a1 . . . �am

am
�cb1. . .bm�cn+2. . .cd
= A�d�mn
cb1. . .bmcn+2. . .cd

. �A2�

ontracting with the same epsilon symbol with indices upstairs we have, using standard formulas
see, e.g., the Appendix of Ref. 36�,

− d!A�d�mn = − �d − n − 1�!�m + n + 1�!��a1�
a1 . . . �am

am�c
c�b1

b1 . . . ��bn�
bn . �A3�

t is easy to show that the contracted delta’s times �m+n+1�! give

d!

�d − m − n − 1�!
�A4�
o
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A�d�mn =
�d − n − 1�!

�d − m − n − 1�!
. �A5�

PPENDIX B: VARIATIONAL PRINCIPLE FOR METRIC AND VIELBEIN

The action for Lovelock theory with matter is

S = �
M

LLovelock + �
M

Lmat.

he Euler variation with respect to g�� �neglecting boundary terms� leads to

�S = �
M

�H�� − T����g��e ,

here H�� is the Lovelock tensor, T�� the stress-energy tensor. The volume element e is

e = �− gdx1 Ù ¯ Ù dxd.

These more familiar expressions for the gravitational action principle are in terms of variation
ith respect to the metric. Since we have used the vielbein language,37 it is useful to be able to

ranslate between the two. The volume element is, in terms of vielbeins:

e =
1

d!

a1. . .ad

Ea1 Ù ¯ Ù Ead = E�1� Ù ¯ Ù E�d�. �B1�

e also define

ea1. . .ap
ª

1

�d − p�!

a1. . .ad

Eap+1 Ù ¯ Ù Ead �B2�

We shall need these identities:

Ec1. . .cn Ù ed1. . .dm
=

m!

�m − n�!
��dm−n+1

c1 . . . �dm

cn e�d1. . .dm−n�, �B3�

�Eb = �E�
b Ec

�Ec, �B4�

�E�
b Ea

� = − E�
b �Ea

�, �B5�

�g�� = 2�ab�Ea
�Eb

�. �B6�

he point is that because the � equation of motion vanishes identically, we can use �B6� to replace
etric variations directly for vielbein variations, �gL=�g�E�L. First, we define

Tab ª Ea
�T��Eb

�, �B7�

Using �B3�–�B6� and noting that

�Eb Ù Ea = − E�
b �Ea

�e ,

e find that

T���g��e = − 2Tb
c�Eb Ù ec.
he field equations in terms of the vielbeins are
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�EcLLovelock = − 2Tc
beb. �B8�

If there is singular matter with support on some intersection I, we have a term in the action:

�
I

L̃mat. �B9�

he variation gives the stress-energy tensor on I:

�L̃mat � − T̃���h��ẽ �B10�

s the energy-momentum tensor on I. On the intersection we have an induced metric h and the
orresponding volume element

ẽ = ��h�dd−px . �B11�

The stress-energy tensor will be related to the variation of the appropriate boundary term in
he Lovelock action:

�
n

�n�
I

L�p�
n .

Let n1 , . . . ,np be an ordered set of orthonormal vectors which spans the space of vectors
ormal to I. In terms of the vielbeins, the volume element is

ẽ = �
i=1

p

�ni · ni��n1�a1
¯ �np�apea1. . .ap

. �B12�

he order of the normal vectors gives the orientation on I. The factor ��ni ·ni� is ±1 depending on
hether I is timelike or spacelike.

If we vary the frames tangential to I such that they remain tangent to I, there is a simple
elation:

�Ea Ù ẽb = Eb
��E�

a ẽ ��Ea tangential� . �B13�

This is sufficient if we vary L̄mat only with respect to the induced metric h and not the position of
he intersection. In this paper, we consider only dS/AdS bulk solutions, where the terms involving
E0 not tangential always vanish anyway.� Following the same procedure as above, we then derive

�
n

�n�EcL�p�
n = − 2T̃c

beb. �B14�

t is important to remember this factor of −1/2 when relating the stress-energy tensor to the Euler
ariation with respect to the vielbein. This has been used in Eq. �9�.

PPENDIX C: A WORD ON THE SIMPLEX

A �Euclidean� p-dimensional simplex or p-simplex sp is defined as 	t�Rp+1 ��i=0
p ti=1, all ti

0
. A bit more generally is defined as the set of points �i=0
p tiai with the same conditions for the

i’s as above, for a0 , . . . ,ap points in the Euclidean space Rp+1 such that a1−a0 , . . . ,ap−a0 are
inearly independent.38 This reflects nicely the properties of the vector u�t� encountered in this
aper.

A zero-simplex is a point, a one-simplex is an interval, a two-simplex is a triangle, a three-
implex is a tetrahedron, etc. A k-dimensional face of the simplex, designated si0

. . . ik, is the subset

f sp such that
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si0. . .ik
= 	t � sp�tj = 0, " j � i0, . . . ,ik
 . �C1�

f course by definition a k-dimensional face is itself a k-simplex. It is easy to see that there are
p+1
k+1

� k-dimensional faces on the p-simplex.
Clearly �k−1�-simplices are parts of the boundary of the k-simplices. The rule which takes

nto account orientations is

�si0. . .ik
= �

r=0

k

�− 1�rsi0. . .ir
ˆ . . .ik

, �C2�

here the caret means that this is index is absent. The symbols si0
. . . ik are completely antisym-

etric.

PPENDIX D: MEMBRANES OF CO-DIMENSION HIGHER THAN TWO IN AdS BULK

. The symmetric hedgehog

Let the vectors u be symmetrically arranged in the k-dimensional normal space, forming a
ymmetric hedgehog. In particular the average position defined by their ends �the barycenter�
oincides with the origin

u0 + ¯ + uk = 0. �D1�

lso by symmetry all inner products are equal. Call this cosine cos �k. Taking the square of the
bove we have

�1 + k cos �k��k + 1� = 0. �D2�

o

cos �k = −
1

k
. �D3�

hen

u�t�2 = ��
i=0

p

uiti�2

= �
i=0

p

ti
2 + cos �k�

i�j

titj = �1 +
1

k
��

i=0

p

ti
2 −

1

k
, �D4�

here in the last equality we used �D3� and that ��iti�2=1.
The other bit we need is the determinants made out of the vectors ui0. It equals the volume of

p dimensional parallelepiped made out of vectors with length

�ui − u0� = �2 − 2 cos �k =�2 +
2

k
�D5�

nd angle between any two vectors ui0 and uj0 given by the cosine

�ui − u0� · �uj − u0�
�ui − u0��uj − u0�

=
1 − cos �k

2�1 − cos �k�
=

1

2
= cos 60 ° . �D6�

o all “heights” of the parallelepiped are given by the length in �D5� times sin 60° =�3/2. The
eterminant related to a p-simplex face of the k-simplex is

det�ui
j� = ��3�p−1�2 +

2�p/2

. �D7�

2 k
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. Gravity

In the case of Chamseddine and Born-Infeld type of Lovelock gravity we considered �AdS�
acuum and intersections such that the u vectors are symmetrically arranged. Here we find the
ovelock gravity such that the tension of all membranes with co-dimension p�k= ��d−1� /2� is
ero.

So �d,01. . .p=�d,p here and for each p we consider one expression and call the coefficients in
94� simply cp

n. If all except the co-dimension k intersection �’s vanish, we have

c1
1�1 + c1

2�2 + ¯ + c1
k−1�k−1 = − c1

k�k,

c2
2�2 + ¯ + c2

k−1�k−1 = − c2
k�k,

�D8�
]

ck−1
k−1�k−1 = − ck−1

k �k,

here we put the last term in the sums on the right-hand side to give it the form of an upper
riangular �k−1�� �k−1� linear system.

The inverse of the matrix �= �cp
n� of the coefficients is rather easily calculated by the method

f forming a �k−1��2�k−1� matrix by putting a unit matrix on the side of � and adding appro-
riate multiples of lines to other lines of this big matrix until in the place of � the unit matrix
ppears; then in place the unit matrix �−1 appears. Then we find that the inverse �−1 is an upper
riangular matrix. The diagonal terms are 1/cp

p and the upper triangular part is

��−1�p
n = −

cp
n

cn
ncp

p �D9�

= p+1, . . . ,k−1. So

�p = −
cp

k

cp
p�k + �

n=p+1

k−1
cp

n

cn
ncp

pcn
k�k = �− c̃p

k + �
n=p+1

k−1

c̃p
nc̃n

k��k, �D10�

p=1, . . . ,k−1, where

c̃p
n
ª

cp
n

cp
p = l2p−2n�− 1�n−p n!

�n − p�!
�d − 2p − 1�!
�d − 2n − 1�!�sp

dpt�u�t�2�n−p �D11�

hese coefficients depend on d and the AdS radius l but also on a coupling beta which is left
rbitrary. In detail, �0 is fixed in terms of a given bulk cosmological constant �bulk=− 1

2�0, and by
he bulk equations of motion �14� the coupling �k is fixed in terms of l and �bulk. Einstein gravity
ith arbitrary cosmological constant is the trivial case of these.
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Rational Lax hierarchies introduced by Krichever are generalized. A systematic
construction of infinite multi-Hamiltonian hierarchies and related conserved quan-
tities is presented. The method is based on the classical R-matrix approach applied
to Poisson algebras. A proof that Poisson operators constructed near different points
of Laurent expansion of Lax functions are equal is given. All results are illustrated
by several examples. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2344853�

. INTRODUCTION

In Refs. 1 and 2 I. M. Krichever introduced the so-called universal Whitham hierarchies by
eans of moduli spaces of Riemann surfaces of all genera. There is an important class of finite-
eld reductions of the zero-genus case, being the so-called algebraic orbits, given by rational Lax
unctions on CP1 of the form

L = pN + �
k=0

N−1

akp
k + �

l=1

�

�
i=1

il al,i

�p − pl�i , n � 0, il � 0, �1.1�

here a’s and the poles pl are smooth dynamical fields. These reductions permit the construction
f integrable �1+1�-dimensional dispersionless system. Around all poles of �1.1�, i.e., � and pl,
he powers of Laurent expansions of L generate infinite Lax hierarchies of commuting vector
elds with Lie bracket being the canonical Poisson bracket �3.1� with r=0. Moreover, near these
oles one can construct infinite hierarchies of constants of motion. Rational Lax functions �1.1�
ith related Lax hierarchies have been introduced in Ref. 2 in the context of topological field

heories. From this point of view they have been considered also in Refs. 3 and 4. The bi-
amiltonian structures of Benney and Toda like Lax hierarchies, but with Poisson bracket �3.1�
ith r=1, and rational Lax functions was developed in Ref. 5. Their various reductions were also

tudied. They also have been investigated in the context of degenerate Frobenius manifolds.6 In
ef. 7, it was shown how to construct recursion operators for some classes of such rational Lax

epresentations.
�1+1�-dimensional dispersionless �or hydrodynamic� systems are first-order PDEs of the form

�ui�t = �
j

Ai
j�u��uj�x, i, j = 1, . . . ,n .

n important subclass of such systems are these which have multi-Hamiltonian structure, infinite
ierarchy of symmetries, and conservation laws. Differential Poisson structures for hydrodynamic
ystems were introduced for the first time by Dubrovin and Novikov8 in the form �1.2� with c
0, where gij is a contravariant nondegenerate flat metric and �k

ij are related coefficients of the

�Electronic mail: bszablik@amu.edu.pl
�
Electronic mail: blaszakm@amu.edu.pl
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ontravariant Levi-Civita connection. Then, they were generalized by Mokhov and Ferapontov9 to
he nonlocal form

�ij = gij�u��x − �
k

�k
ij�u��uk�x + c �ui�x�x

−1�uj�x �1.2�

n the case when gij is of constant curvature c. The natural geometric setting of related bi-
amiltonian structures �Poisson pencils� is the theory of Frobenious manifolds based on the
eometry of pencils of contravariant metrics.10 Nevertheless, the condition of nondegeneracy of gij

or the above-mentioned Poisson tensors is not necessary. The degenerate hydrodynamic Poisson
ensors were considered by Grinberg11 and Dorfmann.12

In the theory of nonlinear evolutionary PDEs �dynamical systems� one of the most important
roblems is a systematic construction of integrable systems. By integrable systems we understand
hose which have infinite hierarchy of commuting symmetries. It is well known that a very
owerful tool, called the classical R-matrix formalism, can be used for systematic construction of
1+1�-dimensional field and lattice integrable dispersive systems �soliton systems�13–17 as well as
ispersionless integrable field systems.18–20 Moreover, the R-matrix approach allows a construc-
ion of Hamiltonian structures and conserved quantities.

In this paper the systematic approach of classical R-matrices to �1+1�-integrable dispersion-
ess multi-Hamiltonian systems with meromorphic Lax hierarchies is presented. In the frames of
hat formalism we generalize the rational Lax functions defined by Krichever onto a wider class of
ax hierarchies considered in Refs. 19 and 20. However, these articles only presented theory of
olynomial Lax functions with Lax hierarchies generated only by powers constructed at �. In the
ollowing article it is shown that, in applicable cases, for a given appropriate meromorphic Lax
unction one can construct Lax hierarchies not only related to poles of Lax function, as in the case
onsidered by Krichever, but also to its roots. These Lax hierarchies mutually commute. As well,
t is shown how to construct Poisson tensors and infinite hierarchies of constants of motion. It is
roved that Poisson tensors, from the original function space, reconstructed for different poles and
oots are equal. Also, we have examined systematically the forms of appropriate meromorphic Lax
unctions, with finite number of dynamical fields, allowing construction of consistent dispersion-
ess systems. We illustrate results by a large number of examples. Let us notice that symmetries
enerated by logarithmic functions are not considered in this article, see the related comment in
ec. V.

I. CLASSICAL R-MATRIX THEORY ON POISSON ALGEBRAS

Let A be a commutative associative algebra with unit. If there is a Lie bracket on A such that
or each element a�A, the operator ada :b� �a ,b� is a derivation of the multiplication, i.e.,
a ,bc�= �a ,b�c+b�a ,c�, then �A , �· , · �� is called a Poisson algebra and bracket �· , · � is a Poisson

bracket. Thus, the Poisson algebras are Lie algebras with an additional structure. We assume the
existence of a nondegenerate ad-invariant scalar product �· , · � on A with respect to which the
operation of multiplication is symmetric, i.e., �ab ,c�= �a ,bc�, "a ,b ,c�A.

A linear map R :A→A being an R-matrix defines a second Lie product on A given by

�a,b�R ª �Ra,b� + �a,Rb� . �2.1�

e will additionally assume that R commutes with derivatives with respect to evolution param-
ters, i.e.,

�RL�t = RLt. �2.2�

his property is equivalent to the assumption that R commutes with differentials of smooth maps
rom A to A. This property is used in the proof of Theorem 4.2 in Ref. 18, although not explicitly
tressed there. The equality �2.2� will be used in Sec. III E to show a commutation between

articular Lax hierarchies. Then, for each integer n�0, the formula
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�H,F�n = �L,�R�LndF�,dH� + �dF,R�LndH��� �2.3�

efines a Poisson structure on algebra of smooth functions C�A, where differentials dF ,dH�A.18

oreover, all �· , · �n are compatible. The related Poisson bivectors �n, such that �H ,F�n

�dF ,�ndH�, are given by the following Poisson maps:

�n:dH � �R�LndH�,L� + LnR*��dH,L��, n � 0, �2.4�

here the adjoint of R is defined by the relation �R*a ,b�= �a ,Rb�. Notice that the bracket �2.3�
ith n=0 is just a Lie-Poisson bracket with respect to the Lie bracket �2.1�. Referring to the
ependence on L, Poisson maps �2.4� are called linear for n=0, quadratic for n=1, and cubic for
=2, respectively.

We will look for a natural set of functions in involution with respect to the Poisson brackets
2.3�. Such functions are Casimirs of the natural Lie-Poisson bracket �H ,F�= �L , �dF ,dH��. A

sufficient condition for smooth function C�L� to be a Casimir function is that its differential dC
�ker adL, i.e. �dC ,L�=0. Let us assume that an appropriate scalar product on Poisson algebra A
s given by the trace form Tr:A→R or C, such that �a ,b�=Tr�ab�. Then, the most natural
asimirs are functionals given by the trace of powers of L, i.e.,

dCq�L� = Lq Û �Cq�L� =
1

q + 1
Tr�Lq+1� for q � − 1

C−1�L� = Tr�ln L� for q = − 1.

�2.5�

ence, taking these Cq�L� as Hamiltonian functionals, one finds a Lax hierarchy of evolution
quations which are multi-Hamiltonian dynamical systems

Ltq
= �R�dCq�,L� = �0�dCq� = �1�dCq−1� = . . . = �l�dCq−l� = . . . . �2.6�

or any R-matrix each two evolution equations in the hierarchy �2.6� commute due to the invo-
utivity of the Casimirs Cq. Each equation admits all the Casimir functionals as a set of conserved
uantities in involution. In this sense we will regard �2.6� as a hierarchy of integrable evolution
quations.

One can construct the simplest R-structures decomposing the Poisson algebra A into a direct
um of Lie subalgebras A+ and A−, i.e., A=A+ � A−, �A± ,A±��A±. Denoting the projections
nto these subalgebras by P±, the classical R-matrix is well defined as

R = 1
2 �P+ − P−� = P+ − 1

2 = 1
2 − P−. �2.7�

Following the above-mentioned scheme, we are able to construct in a systematic way inte-
rable multi-Hamiltonian dispersionless systems, with infinite hierarchy of involutive constants of
otion and infinite hierarchy of related commuting symmetries, on appropriate Poisson algebras.
inally, in the last step, we reconstruct our multi-Hamiltonian hierarchies in the original function
pace of related dispersionless systems.

II. LAX HIERARCHIES FOR DISPERSIONLESS SYSTEMS

. Poisson algebras of meromorphic functions

Let F be the algebra of meromorphic functions with a finite number of poles, i.e., these
nalytic functions which have no essential singularities, on a Riemann sphere CP1 �i.e., complex
lane with point at ��. Let p be a point in CP1. Assume now that this algebra depends effectively
n an additional spatial variable x��. Denote by A the algebra of all smooth functions: f :�
F, i.e., A=C��� ,F�. Let �=S1 if we assume these functions to be periodic in x or �=R if

hese functions are supposed to belong to the Schwartz space for a fixed parameter p. The Poisson

racket on A can be introduced in infinitely many ways as
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�f ,g�r ª pr��pf�xg − �xf�pg�, r � Z, f ,g � A . �3.1�

hen, fixing r, A is the Poisson algebra with an appropriate bracket �3.1�. Poisson brackets �3.1�
re generalizations of canonical Poisson bracket �r=0� through the addition of pr factor.

To construct classical R-matrices we have to decompose A into a direct sum of Lie subalge-
ras. It can be done by expanding functions belonging to A in an appropriate annulus near a given
oint �. Three kinds of points on CP1, parameterized by p, will be important. Two fixed points: �
nd 0, as well as points being smooth fields v�x� from � to CP1.

. Classical R-matrices

Once we fixed Poisson algebra we are able to construct R-matrices and related Lax vector
elds for which the algebra A constitutes the phase space.

Expanding meromorphic functions from A into Laurent series at � we decompose the algebra
in the following way:

A = A�k−r
�

� A�k−r
�

ª 	 �
i=k−r

N

ai�x�pi
 � 	 �
i�k−r

ai�x�pi
, � = � , �3.2�

A = A�k−r
�

� A�k−r
�

ª 	 �
i�k−r

ai�p − ��i
 � 	 �
i=−m�

k−r−1

ai�p − ��i
, � = 0 or v�x� , �3.3�

here ai�x� and v�x� are dynamical fields. Let apm and bpn be elements from �3.2� or �3.3� for
=0 of order m and n, respectively. Poisson bracket �3.1� between these elements has the order
+n+r−1 as

�apm,bpn�r = �mabx − naxb�pm+n+r−1.

or �=v�x� the situation is a bit more complicated as one has to expand pr in �3.1� at v�x�, i.e.,

pr = �
s=0

� �r

s
�v�x�r−s�p − v�x��s,

here �rs �= �−1�s�−r+s−1

s � for r�0. Hence, pr as the element of A has the lowest order equal

ero, the highest order equal r for r�0, and infinity for r�0. Therefore

�a�p − v�m,b�p − v�n�r = ��p − v�� + ¯ + vr� 	 �mabx − naxb��p − v�m+n−1,

here �=r for r�0 and � goes to � for r�0. Now, simple inspection shows that A�k−r
� ,A�k−r

�

re Lie subalgebras of A in the following cases:

for � = � ,0 if � r = 0, k = 0

r � Z, k = 1,2

r = 2, k = 3

for � = v�x� if �r = 0, k = 0,1,2

r = 1, k = 1,2

r = 2, k = 2,3.

o, fixing r we fix the Lie algebra structure with k numbering the R-matrices given in the

ollowing form:
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R = P�k−r
� − 1

2 = 1
2 − P�k−r

� , �3.4�

here P·
� are appropriate projections onto respective Lie subalgebras. All R-matrices for �

� ,0 commute with derivatives with respect to evolution parameters. Let L=�iai�p−v�i, then

�RL�t − RLt = P�k−r
v Lt − �P�k−r

v L�t = �k − r�ak−r−1vt�p − v�k−r−1

nd equality �2.2� holds for �=v�x� when k−r=0. Hence, in the case �=v�x� further on we will
onsider only R-matrices �3.4� for k=r=0,1 ,2. Henceforth, calling for appropriate r and k we will
efer to these for which R-matrices �3.4�, with respect to �, are well defined and satisfy �2.2�.

Let L�A be a meromorphic function with pole or root at �. Then, the Lax hierarchy assigned
y �3.4� has the form

�L

�t�,q
= ��q

�,L�r, q � Z+, �3.5�

or appropriate r and k. The functions ��,q coupled with evolution parameters t�,q are defined by

�q
�
ª �Lq/N�

�k−r
�

for � = � , �q
�
ª − �Lq/m��

�k−r
� for � = 0 or v�x� , �3.6�

here �A��k−r
�  P�k−r

� �A�. If L has pole at � the powers in �3.6� are positive as N ,m�
0 for �
� or �=0,v�x�, respectively. In this case N ,m� are orders of respective poles. If L has root at �

he powers in �3.6� are negative as N ,m��0 and −N ,−m� are orders of respective roots.
Now, we will show that schemes for Lax hierarchies defined for � and 0 are interrelated.
Proposition 3.1: Under the transformation: x�=x, p�= p−1, t�= t; the Lax hierarchy �3.5� for

=� and appropriate r ,k with Lax function L transforms into �3.5� for �=0 and k�=3−k ,r�
2−r where Lax function is given by L��p��=L�p�.

Proof: It follows from the observation that �· , · �r= pr�pÙ�x=−p�2−r�p�Ù�x�=−�· , · �r�
� and

Ln��k−r
� = �L�n��r−k

0 = �L�n��k�−r�
0 . �

. Scalar products

To construct Poisson structures one has to define an appropriate scalar product on A. We will
efine it near a given point � by means of the trace form in the algebra A with the Poisson
tructure �3.1� for fixed r by

Tr�f ª − �
�

res��p−rf�dx for � = � , Tr�f ª �
�

res��p−rf�dx for � = 0,v�x� ,

here f �A and res is the standard residue. In further considerations the residue theorem will be
ery useful. Let � be a set of all finite poles of f . Then, according to the residue theorem

�
���, ���

res�f =
1

2�i
�

��

f dp  − res�f , �3.7�

here �� is a closed curve encircling all finite poles of f . So, residue at � may be different than
ero even if f does not have singularity at this point.

Lemma 3.2: For two arbitrary functions f ,g�A the scalar product:

�f ,g�� ª Tr��fg�, � = � ,0,v�x� �3.8�

s symmetric, nondegenerate, and ad-invariant.
Proof: The nondegeneracy and symmetry of �3.8� are obvious. Let �� be a closed curve
ircling once a finite pole �, then
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Tr��f ,g�r = �
�

res���pf�xg� dx − �
�

res���xf�pg� dx =
1

2�i
�

�
�

��

��pf�xg� dp dx

−
1

2�i
�

�
�

��

��xf�pg� dp dx = 0,

here the last equality follows by integrating by parts with respect to p and x. Similar proof is for
=�. Therefore

��f ,g�r,h�� − ��g,h�r, f�� = Tr���f ,g�rh� − Tr���g,h�rf� = Tr���fh,g�r − f�h,g�r� + Tr��f�h,g�r�

= Tr��fh,g�r = 0,

.e., ad-invariance is proved. �

For functional H=��h�ui� dx, where ui are dynamical coefficients of L�A, we have to show
ow to construct its differential near a given point � denoted by d�H�A. Coefficients of d�H
epend on dynamical fields and usual variational derivatives H /ui in such a way that the trace
uality assumes the usual Euclidean form, i.e.,

�d�H,Lt�� = Tr��d�HLt� = �
i
�

�

H

ui
�ui�t dx . �3.9�

otice that from �3.9� it follows that at different points � and � the following equality holds:

�d�H,K�� = �d�H,K��, �3.10�

here K is vector field on A such that it spans exactly the same subspace of A as Lt.
To find R* needed in �2.4�, i.e., the adjoints of R-matrices �3.4�, one has to determine the

djoint projections related to given point � from the following relation ��P��*f ,g��= �f , P�g��,
here f ,g�A. So, for 0 and � we have that

�P�k−r
0 �* = 1 − P�2r−k

0 , �P�k−r
� �* = 1 − P�2r−k

� .

he case of �=v�x� is more delicate. Let A=�mam�p−v�m and B=�nbn�p−v�n, then for r�0:

�A,P�0
v B�v = �

�

resv��
s�0

�
m

�
n�0

�− r

s
�v−r−sambn�p − v�m+n+s�dx

=�
�

�
s�0

�
n�0

�− r

s
�v−r−sa−n−s−1bn dx = �

�
�
s�0

�
m�−s

� −r
s �v−r−samb−m−s−1 dx

=�
�

resv��
s�0

�
m�−s

�
n
�− r

s
�v−r−sambn�p − v�m+n+s� dx

=�pr�
s�0

� −r
s �v−r−s�p − v�sP�−s

v A,B�
v

,

here we used an appropriate expansion of p−r at v. Hence

�P�0
v �* = 1 − pr�

s=0

� �− r

s
�v−r−s�p − v�sP�−s

v , r � 0,

v * v
hen r=0 it reduces to �P�0� =1− P�0. We will use simplified notation
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Pv� = �
s=0

� �− r

s
�v−r−s�p − v�sP�−s

v

s then �P�0
v �*=1− prPv�.

. Poisson structures

The Poisson structures �2.3� at respective points, related to respective R-matrices, are

�H,F��
n = �d�F,�n

�d�H��, � = � ,0,v�x�, n � 0 �3.11�

or which Poisson operators �2.4� are given by the following forms:

�n
�d�H = ��Lnd�H��k−r

� ,L�r − Ln��d�H,L�r��2r−k
� ,

�n
0d0H = �L,�Lnd0H��k−r

0 �r − Ln��L,d0H�r��2r−k
0 , �3.12�

�n
vdvH = �L,�LndvH��0

v �r − LnprPv���L,dvH�r� .

t is important here to mention that for a given Lax operator L it may happen that Lt does not span
proper subspace of the full Poisson algebra A, i.e., the image of the Poisson operator �ndH does
ot coincide with this subspace. Then, in general, the Dirac reduction can be invoked for restric-
ion of a given Poisson tensor to a suitable subspace.

Lemma 3.3: The following relations will be needed to prove the forthcoming theorem:

�d�F,�L,�Lnd0H��k−r
0 �r�� = �d0H,Ln��d�F,L�r��2r−k

� �0,

�d�F,Ln��L,d0H�r��2r−k
0 �� = �d0H,��Lnd�F��k−r

� ,L�r�0,

or arbitrary k and r, and

�d�F,�L,�LndvH��0
v �r�� = �dvH,Ln��d�F,L�r��r

� �v, �3.13�

�d�F,LnprPv���L,dvH�r��� = �dvH,��Lnd�F��0
� ,L�r�v, �3.14�

here r�0.
Proof: We will prove only the first and last relations as for the two remaining ones the proof

s similar. We use property of ad-invariance and we omit �or add� these elements which do not
ontribute in calculations of residues:

�d�F,�L,�Lnd0H��k−r
0 �r�� = ��Lnd0H��k−r

0 ,�d�F,L�r��

=�
�

res��p−r�Lnd0H��k−r
0 �L,d�F�r� dx = �

�

res��p−r�Lnd0H��k−r
0 ��L,d�F�r��2r−k

� � dx

=
by �3.7��

�

res0�p−r�Lnd0H��k−r
0 ��d�F,L�r��2r−k

� � dx

=�
�

res0�p−rLnd0H��d�F,L�r��2r−k
� � dx = �d0H,Ln��d�F,L�r��2r−k

� �0.

−r
et r�0. Using proper expansion of p at v we have
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�d�F,LnprPv���L,dvH�r��� = − �
�

res��d�FLnPv���L,dvH�r�� dx

=�
�

res���Lnd�F��0
� Pv���dvH,L�r�� dx =

by �3.7��
�

resv��Lnd�F��0
� Pv���L,dvH�r�� dx

=�
�

resv��Lnd�F��0
� �L,dvH�r� dx = ��Lnd�F��0

� ,�L,dvH�r�v

=�dvH,��Lnd�F��0
� ,L�r�v.

hus all relations are valid. �

Theorem 3.4: Let H�L� and F�L� be smooth functions of L�A. Then for all appropriate k
nd r

"��H,F��
n = �H,F��

n and �n
�d�H = �n

�d�H .

herefore, Poisson structures, from the original function space of related dispersionless systems,
alculated for appropriate fixed r and k at different points are equal.

Proof: We will prove only the case for �=v�x� as for other cases the proof is similar. Thus,

�H,F�v
n = �dvF,�n

vdvH�v =
by �3.10�

�d�F,�n
vdvH��

=�d�F,�L,�LndvH��0
v �r − LnprPv���L,dvH�r���

=
by �3.13-3.14�

�dvH,Ln��d�F,L�r��r
� − ��Lnd�F��0

� ,L�r�v

=− �dvH,�n
�d�F�v,r =

by �3.10�

− �d�H,�n
�d�F�� = �H,F��

n .

ow, from the equality of the above-noted Poisson brackets it follows that

�d�F,�n
�d�H�� = �d�F,�n

�d�H�� =
by �3.10�

�d�F,�n
�d�H�� Û �n

�d�H = �n
�d�H .

ence the theorem is proved. �

. Commuting multi-Hamiltonian Lax hierarchies

Let L�A be a Lax function and � be a set of all poles and roots of L. Then, one can construct
he following multi-Hamiltonian Lax hierarchies �2.6� for appropriate r and k,

�L

�t�,q
= ��q

�,L�r = �0
�d�Hq/n

� = �1
�d�Hq/n−1

� = ¯ � � �, q 
 0, �3.15�

here n=N for �=� and n=m� for ���. The Hamiltonians are then defined through trace forms
ear these poles and are given by �2.5� for q�0 as

Hq/n
� �L� =

�

q

n
+ 1
�

�

res��p−rLq/n+1� dx for q � − n

�3.16�
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H−1
� �L� = ��

�

res��p−rln L� dx for q = − n ,

here �=−1 for �=� and �=1 for ���. Calculations of H−n
� from �3.16� for � being the root of

may cause difficulties as then ln L has at � logarithmic singularity. However, due to Poincare
emma, as A is convex, all one-forms d�H−1

� are exact and we are able to find H−1
� in an alternative

pproach. For example, we first look for coefficients of dH−1
� which can be simply obtained from

Tr��L−1Lt� = �i �
�

H−1
�

ui
�ui�t dx ,

ince d�H−1
� =L−1. Then, we calculate the functional H−1

� integrating a respective system of equa-
ions.

Let us show that Lax hierarchies �3.15� related to different ��� for fixed r and k mutually
ommute. Hamiltonians �3.16�, as Casimirs of the natural Lie-Poisson bracket, are in involution
ith respect to Poisson brackets �3.11� related to all applicable ���. From Theorem 3.4 it

ollows that �n
�d�=�n

�d� for � ,���. Now, hence �d is the Lie algebra homomorphism, from the
lgebra of smooth functions to the Lie algebra of vector fields, the commutation between Lax
ierarchies �3.15� is immediate. Hence, the following corollary is valid.

Corollary 3.5: Let L be a Lax function from algebra A with fixed Poisson bracket given by r
nd let us fix an appropriate k. Then, around each applicable point being pole or root of L one
nds infinite hierarchy of commuting multi-Hamiltonian symmetries and infinite hierarchy of con-
tants of motion. Moreover, vector fields from these different hierarchies mutually commute.

In further considerations we are interested in extracting closed systems with finite number of
ynamical functions. Therefore, we will look for meromorphic Lax functions, with finite number
f dynamical coefficients, which allow a construction of consistent evolution Lax hierarchies. So,
n the following section we will select appropriate meromorphic Lax functions.

V. MEROMORPHIC LAX FUNCTIONS

We would like to investigate the general form of meromorphic Lax functions being appropri-
te ones, i.e., such which allow a construction of integrable dispersionless equations. The mero-
orphic Lax function L is an appropriate one if the right-hand sides of Lax hierarchies �3.15� can

e written in the form of evolutions Lt, i.e., left-hand sides. We will distinguish among three cases:
he first one when L is a finite formal Laurent series at 0, the second one when L is a finite formal
aurent series at pole v�x�, and finally more general case of meromorphic functions.

. Polynomial Lax functions in p and p−1

Let us consider Lax functions of the form

L = uNpN + uN−1pN−1 + ¯ + u1−mp1−m + u−mp−m, �4.1�

.e., formal finite Laurent series at 0. The coefficients ui are dynamical fields. For Lax functions
4.1�, in general, we can construct powers near � and 0 which will generate related Lax hierar-
hies �3.15�. If k=r negative powers calculated around roots of L generate additional Lax hierar-
hies.

From now on, without loss of generality, we will choose all appearing constants in the form
hat will simplify all formulas.

Proposition 4.1: Lax function of the form �4.1� is an appropriate one in the following cases:

1. k=0, r=0: N�2, uN=1, uN−1=0, m=0;
2. k=1, r�Z: N�0, uN=1, m�0 for r=1;

3. k=2, r�Z: N�0 for r=1, m�0, u−m=1;
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4. k=3, r=2: N=0, m�2, u1−m=0, u−m=1.

e will not prove this proposition as it is the standard case considered in Ref. 20.
Proposition 4.2: Under the transformation p�= p−1 Lax hierarchies, from Proposition 4.1,

enerated by powers calculated at � and 0 for appropriate r and k transforms into Lax hierar-
hies for 0 and � with r�=2−r and k�=3−k, respectively.

The proof immediately follows from Proposition 3.1. Notice that by transformation p�= p−1

or r=k=0,1 ,2 Lax hierarchies �3.15� defined at roots of L being dynamical fields fall out from
he scheme presented in this article. On the other hand, for: k=1,r=0; k=2,r=1; k=3,r=2;
ccording to Proposition 4.1 one can construct Lax hierarchies only at � and 0. However, by

p�= p−1 they transform into cases: k=2,r=2; k=1,r=1; k=0,r=0; respectively, for which one is
ble to construct Lax hierarchies related to all poles �including poles being dynamical fields� of L�
nd L�−1. Hence, the relevant cases from Proposition 4.1 are:

• k=0, r=0;
• k=1, r�Z \ �0�;
• k=2, r=2.

he remaining cases can be obtained by transformation p�= p−1 according to Proposition 4.2.
To construct Poisson operators we have to choose a point near which we will perform the

alculations. Nevertheless, as follows from Theorem 3.4, the explicit form of Poisson operators in
he original function space is the same for all points. Thus, we choose the � as it is the standard
ase. Then, as we assumed the usual Euclidean form �3.9�, differentials of functional H are given
y

dH  d�H = �
i=−m

N+k−2
H

ui
pr−1−i,

here m=0 for k=0. Still we have to check whether the above-mentioned Lax functions span
roper subspaces, with respect to Poisson operators �3.12�, of the full Poisson algebras. We will
imit ourselves to linear �n=0� and quadratic �n=1� Poisson tensors, as obviously it is enough to
efine bi-Hamiltonian structures. Besides, in the all nontrivial cases Lax functions do not span
roper subspaces with respect to Poisson tensors for n�2.

Poisson tensors restricted to finite number of fields are properly defined if the highest and
owest orders of �n

�dH and Lt will coincide. Simple inspection shows that the highest order of

n
�dH is equal to max�N+k−2,nN+2r−k−1� and the lowest is 0 for k=0 and min�k−1−m ,
nm+2r−k� for k=1,2. Hence, in the case k=0 the Lax function always span the proper subspace
ith respect to the linear Poisson tensor, but for k=1,2 only in case when N�2r−2k+1�−m,

otherwise the Dirac reduction is required. The linear Poisson tensor is of the form

�0
�dH = ��dH��k−r

� ,L�r − ��dH,L�r��2r−k
� . �4.2�

he reduced linear tensor for N=−1 and k=r=1,2 is given by �4.12�. For the quadratic Poisson
ensors the Dirac reduction is always necessary. The calculation procedure of Dirac reduction is
xplained in Ref. 20 �in a bit different notation�. The reduced quadratic Poisson tensor for k=r
0,1 ,2 is given by

��1
��reddH = ��LdH��0

� ,L�r − L��dH,L�r��r
� +

1

N
�L,�x

−1res��dH,L�0�r, �4.3�

nd for k=1,r=0 and k=2,r=1 takes the form

��1
��reddH = ��LdH��1

� ,L�r − L��dH,L�r��r−1
� +

1

m
�L,�x

−1res��dH,L�0�r. �4.4�
oth reduced Poisson tensors are always local as res��· , · �0= �¯�x.
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In the article, in general, we present examples for the simplest Lax functions, where calcula-
ions are not very complicated. From the Lax hierarchies considered we exhibit only the first
ontrivial systems.

Example 4.3: Two field system: k=1, r�Z.
Let us consider the Lax function of the form

L = p + u + vp−1. �4.5�

t has poles at � and 0. Then, for � we have

Lt2−r
= ��2−r

� ,L�r Û �u

v
�

t2−r

= �2 − r�� �1 − r�uux − vx

− uxv − �1 − r�uvx
� = �0dH2−r

� = �1
reddH1−r

� , �4.6�

here �2−r
� = �L2−r��1−r

� = p2−r+ �2−r�up1−r. When r=2 the next equation from the hierarchy is the
rst nontrivial one. For r=1 this is the well-known dispersionless Toda system. The hierarchy for
is the same as L has only two poles of the same order and �Lq��1−r

� =L− �Lq��1−r
0 . The roots of L

re �±= 1
2 �−u±�u2−4v�. Thus, for r=1,

�1
�± = − �L−1��0

�± = −
1

1 −
4v
�±

�p − �±�−1

nd one finds the following:

L�1
± = ��−1

�±,L�1 Û �u

v
�

�1
±

=
±1

�u2 − 4v�
3
2

� 2uxv − uvx

v�2vx − uux�
� = �0dH−1

�± = �1
reddH−2

�± .

f course, for k=r=1 all equations mutually commute.
The Lax function �4.5� defines proper subspace with respect to the linear Poisson tensor �4.2�

nly for r=0,1. In the cases, the reduced quadratic Poisson tensors are given by �4.4� and �4.3�,
espectively. Hence, for r=0,

�0 = �0 �

� 0
�, �1

red = �2� �u

u� �v + v�
� , �4.7�

nd related Hamiltonians are H1
�=��uv dx, H2

�=���u2v+v2� dx. For r=1,

�0 = � 0 �v

v� 0
�, �1

red = ��v + v� u � v

v � u 2v � v
�

nd

H0
� = �

�

uv dx, H1
� = �

�

�u2v + v2� dx ,

H−2
�± = �

�

�1
�u2 − 4v

dx, H−1
�± = ± �

�

ln
u + �u2 − 4v

v
dx .

Example 4.4: Two field system: k=2, r=2.
We will consider Lax function of the form

L = vp + u + p−1

.e., function �4.5� transformed by p� p−1. By Proposition 4.2 the hierarchy for � is given by

ierarchy �4.6� for k=1, r=0 from the above-presented example. The roots of L are �±
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�−u±�u2−4v� /2v. Thus, for

�1
�± = − �L−1��0

�± = −
1

v −
4v2

�±
2

�p − �±�−1

ne finds

L�1
± = ��−1

�±,L�2 Û �u

v
�

�1
±

=
±1

�u2 − 4v�3/2�− uux + 2vx

2uxv − uvx
� = �0dH−1

�± = �1
reddH−2

�±.

his system by Proposition 4.2 commutes with �4.6� for r=0. Thus, the Poisson tensors are given
y �4.7� with Hamiltonians

H−2
�± = �

�

±u

2�u2 − 4v
dx, H−1

�± = � �
�

1

2
�u + �u2 − 4v�dx .

. Polynomial Lax functions in „p−v… and „p−v…−1

Let us consider Lax functions which are formal Laurent series around v, with a finite number
f dynamical coefficients, of the form

L = uN�p − v�N + uN−1�p − v�N−1 + ¯ + u1−m�p − v�1−m + u−m�p − v�−m, m � 0. �4.8�

ax functions �4.8� have poles at � and v, near which calculated powers generate, if allowed by
and r, respective Lax hierarchies. Additional powers with related hierarchies can be constructed

round the roots of L.
Proposition 4.5: Lax function of the form �4.8� is an appropriate one in the following cases:

1. k=r=0: uN=1, uN−1=Nv;
2. k=1, r�Z: N�0, uN=1, �L�p=0=0 for r=1;
3. k=2, r�Z: N�0 when r=1, �L�p=0=0, � d

dpL�p=0=1;
4. k=3, r=2: N=0, �L�p=0=0, � d

dpL�p=0=1, � d2

dp2 L�p=0=0.

oreover, for fixed r and k, the respective Lax hierarchies commute.
Proof: It is enough to consider the Lax hierarchy related to �. Function �4.8� will be appro-

riate Lax function if the left- and right-hand sides of Lax hierarchy �3.15� for �=� will coincide
nd the number of independent equations will be the same as the number of dynamical coefficients
n L. This Lax hierarchy can be written in two equivalent representations

Lt = �A�k−r
� ,L�r = − �A�k−r

� ,L�r.

o, we have to examine expansions of this hierarchy near � and v as well as at 0, since the factor
pr occurs in Poisson bracket. It turns out that the first representation yields direct access to terms

ith lowest orders, whereas the second representation yields information about terms with highest
rders. Near � we have

Lt = �uN�tp
N + �uN−1 − Nv�tp

N−1 + lower terms ,

Lt = − �A�k−r
� ,L�r = − ��pk−r−1 + l . t . ,uNpN + l . t . �r = �. . .�p� + l . t . ,

here �=N+k−2 for N�0 or r�k−1; and �=0 for N=0 and r=k−1. This imposes the con-
traints on fields uN and uN−1 given in the Proposition. The expansion of A�k−r

� near v is of the
orm A�k−r

� =higher terms+�1�p−v�+�0 as A�k−r
� does not have singularity at v. So, near v we
ave

                                                                                                            



a
n

F
a
�
F
c
a
c
t

t
k

�
b

L
a
=
�

T

w

S

r
s

c

092701-13 Meromorphic Lax representations of dispersionless systems J. Math. Phys. 47, 092701 �2006�

                        
Lt = higher terms + �u−m + �m − 1�v�t�p − v�−m + mvt�p − v�−m−1,

Lt = �A�k−r
� ,L�r = �h . t . + �0,h . t . + u−m�p − v�−m�r = h . t . + �. . .��p − v�−m−1

nd the lowest order of the left- and right-hand side are always the same. The expansion of A�k−r
�

ear 0 is of the form A�k−r
� =higher terms+�pk−r. So we have

Lt = higher terms + 1
2�� d2

dp2 L�p=0�t
p2 + �� d

dpL�p=0�tp + ��L�p=0�t,

Lt = �A�k−r
� ,L�r = �h . t . + �pk−r,h . t . + � d

dpL�p=0p + �L�p=0�r = h . t . + �. . .�p�.

or k=r=0 we have �=0 and there is no need for additional constraints. For k=1 if r�1: �=0
nd both sides have the same order in expansion at 0. But for k=r=1 we have �=1. Hence,
L�p=0�t=0 and we have to impose the constraint L�p=0=0. Then, both sides have the same form.
or k=2 and arbitrary r: �
0 and the first constraint of the form L�p=0=0 is needed. Taking into
onsideration this constraint: �=2 and it follows that ��d /dp�L�p=0�t=0. Hence, both sides will
gree if we impose an additional constraint �d /dp�L�p=0=1. For k=3 the reasoning is similar to the
ase k=2, but there will be one more constraint of the form �d2 /dp2�L�p=0=0 needed. Commuta-
ion of Lax hierarchies follows from Corollary 3.5. �

Proposition 4.6: Lax hierarchies defined at � and v for the case k=r=0 of Proposition 4.5 by
he transformation p� p−v turns to Lax hierarchies related to � and 0, respectively, for the case
=1, r=0 of Proposition 4.1.

Proof: Consider the transformation p�= p−v, x�=x, t�= t. Then, �p=�p�, �x=�x�−vx�p� and

t=�t�−vt�p�. The points at � and v transform into points at � and 0, respectively, and the Poisson
racket �3.1� for r=0 is preserved:

�· , · �0 = �p Ù �x = �p� Ù ��x� + vx��p�� = �p� Ù �x� = �· , · �0�.

et L be the Lax function of the form �4.8� from Proposition 4.5 for r=k=0. Then, by the
bove-noted transformation L�=L is a Lax function of the form �4.1� from Proposition 4.5 for r
0, k=1. For meromorphic function A�A, let �A�� mean the zero-order term of Laurent series at
. From �3.15� for �=� and v it follows that vt�,q

= ��Lq/N���x and vtv,q
= ��Lq/m�v�x, respectively.

hus the left- and right-hand sides of �3.15� for �=v are equal

L� = L��
� − v�Lp�

� = L��
� − ��L

q
m �v�xLp�

� = L��
� + ��L�

q
m �0,L��0�,

L� = − ��L
q
m ��0

v ,L�0 = − ��L�
q
m ��0

0 ,L��0�,

here �= tv,q and ��= tv,q� . Hence,

L��
� = − ��L�

q
m ��1

0 ,L��0�.

imilar calculations are valid at �. �

A similar observation as in the above-noted Proposition has been made earlier in Ref. 4.
Notice that for the case k=r=0 of Proposition 4.5 one is able to construct Lax hierarchies

elated to the roots of L, which is not possible for the case k=1,r=0 of Proposition 4.1. In this
ense, the first case is more general.

Proposition 4.7: Under the transformation p�= p−1, the following equalities between some
ases from Proposition 4.5 hold:

• the Lax hierarchy related to 0 for k=3,r=2 is equivalent to the Lax hierarchy related to
� for k=r=0 with N=−1;

• the Lax hierarchy related to 0 for k=2,r�1 with N=0 is equivalent to the Lax hierarchy

related to � for k=1,r�1 with N=−1;
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• Lax hierarchies related to � and 0 for k=2,r=1 with N=−1 are equivalent to Lax hier-
archies related to 0 and � for k=1,r=1 with N=−1, L�p=0=0, respectively.

Proof: The appropriate Lax function from Proposition 4.5 for k=3, r=2 has the form

L = u0 + u−1�p − v�−1 + ¯ + u−m�p − v�−m,

here L�p=0=0, �d /dp�L�p=0=1 and �d2 /dp2�L�p=0=0. Taking into consideration the above-noted
onstraints, expansion of L around 0 is L= ¯ + �¯�p2+ p. By transformation p�= p−1 we have that

�p − v�−1 = �p�−1 − v�−1 = − v� − v�2�p� − v��−1

here v�=v−1. Thus L transforms into

L� = u0� + u−1� �p� − v��−1 + ¯ + u−m� �p� − v��−m.

rom the expansion around 0 of L it follows that expansion of L� near � is L�= p�−1+ �¯�p�−2

¯ . Hence, u0�=0, u−1� =1 and the Lax function L� is an appropriate one for k=r=0. An ana-
ogues approach must be taken for the next two relations. The rest holds by Proposition 3.1. �

Now, let us pass to the Hamiltonian formulation of Lax hierarchies related to the appropriate
ax functions from Proposition 4.5. In general, the relevant cases are for k=0,1 ,2. Further we
ill consider only them. The differential at � of functional H for the Lax function of the general

orm �4.8� is given by

dH  d�H = pr� 1

mu−m
�H

v
+ �

i=1−m

N

iui
H

ui−1
��p − v�m + �

i=1−m

N+1
H

ui−1
�p − v�−i� �4.9�

s

Tr��LtdH� = − �
�

res��p−rLtdH� dx =
by �3.7��

�

resv�p−rLtdH� dx = �
�
� �

i=−m

N

�ui�t
H

ui
+ vt

H

v
� dx .

or the Lax functions with constraints from Proposition 4.5 one has to modify differentials �4.9�
n an appropriate way or construct them by �4.11�, i.e., in the same way as in the next section. One
as to examine when a given Lax function from Proposition spans the proper subspace with
espect to Poisson tensors. The procedure is rather technical and similar to the proof of this
roposition. Thus, we omit it and we will present only the final results. The Lax functions from
roposition 4.5 for k=0,1 ,2 span proper subspace with respect to linear Poisson tensor n=0 if
�2r−2k+1, m�−1 and r�k. Then, it is given by �4.2�. If it is not the case, Dirac reduction is

equired. The reduced linear Poisson tensor for N=−1, m�1 and k=r=0,1 ,2 is given by �4.12�.
hese Lax functions do not form a proper subspace with respect to quadratic Poisson tensor n
1 and always the Dirac reduction procedure is needed. For k=r=0,1 ,2 reduced quadratic Pois-

on tensors have the form �4.3�.
Example 4.8: Two-field system: k=r=1.
The Lax function, taking into consideration appropriate constraints, is given by the form

L = �p − v� + u + v�u − v��p − v�−1 =
p�p + u − 2v�

p − v
.

or � one finds �1
�= �L��0

� = p+u−v and

Lt1
= ��1

�,L�1 Û �u

v
�

t1

= �2uxv + uvx − 2vvx

uxv
� = �0dH1

� = �1
reddH0

�.

he Lax hierarchy related to v is the same as L= �L��0
� + �L��0

v . The Lax function has two roots 0
0 −1 0 −1
nd 2v−u. Then, for �1=−�L ��0=−�v / �2v−u��p we have
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L�1
= ��1

0,L�1 Û �u

v
�

�1

=�
vx

2v − u

2vvx − uxv
�u − 2v�2

� = �0dH−1
0 = �1

reddH−2
0 .

he Lax hierarchy related to the root 2v−u is up to the sign the same as above since L−1

�L−1��0
0 + �L−1��0

2v−u.
The general form for a differential of a given functional H according to �4.9� is

dH =

�2 − u�
H

u
+ v

H

v
�u − v�v2 p�p − v� +

1

v

H

v
p .

he Lax function defines the proper subspace with respect to the linear Poisson tensor �4.2�. The
educed quadratic Poisson tensors are given by �4.4�. Then,

�0 = ��v + v� �v

v� 0
� �1

red = �2 � uv + 2uv� u � v + 2v � v

v � u + 2v � v 2v � v
� .

he respective Hamiltonians are

H0
� = �

�

�u − v� dx, H1
� =

1

2
�

�

�u2 − v2� dx ,

H−2
0 = �

�

v − u

�u − 2v�2 dx, H−1
0 = �

�

ln�u

v
− 2�dx .

. Rational Lax functions

Let us consider the general form of meromorphic Lax function given by

L = �
k=−m0

N

ukp
k + �

i=1

�

�
ki=1

mi

ai,ki
�p − vi�−ki, �4.10�

here uk, ai,ki
, and vi are dynamical fields. From this class of functions considered in the following

ection we exclude those which have been examined earlier, i.e., �4.1� and �4.8�. Any function
4.10� in general has a pole at � of order N, at 0 of order m0 and � evolution poles at v j of order

j. Then, one can construct positive powers of Laurent series at poles of L. Additional Lax
ierarchies are generated by negative powers constructed near to the roots of L.

Proposition 4.9: Function of the form �4.10� is an appropriate one in the following cases:

1. k=r=0:

• N�1, uN=1, uN−1=0, m0=0,
• "k uk=0, �i=1

� ai,1=1, �i=1
� �ai,1vi+ai,2�=0;

. k=1, r�Z:

• N�1, uN=1, m0�1,
• N=−1, u−1+�i=1

� ai,1=1, m0�1,
• N�1, uN=1, m0=0, L�p=0=0 for r=1,
• "k uk=0, �i=1

� ai,1=1, L�p=0=0 for r=1;
. k=2, r�Z:
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• N�1, m0�1, u−m0
=1,

• N�1, m0=0, L�p=0=0, d
dpL�p=0=1,

• N=0, u0=0 for r=1, m0�1, u−m0
=1,

• "k�0 uk=0, u0=0 for r=1, L�p=0=0, d
dpL�p=0=1;

. k=3 and r=2

• N=0, m0�1, u1−m0
=0, u−m0

=1,

• "k�0 uk=0, �L�p=0=0, � d
dpL�p=0=1, � d2

dp2 L�p=0=0.

oreover Lax hierarchies calculated at different points for fixed r and k mutually commute. We
xcluded here the Lax functions of the form �4.1� and �4.8�.

he proof is similar to the one of Proposition 4.5. So, the meromorphic function of the form �4.10�
ill be an appropriate Lax function with respect to Lax hierarchies �3.15� defined at poles and

oots of L if:

• the right-hand sides of the Lax hierarchy considered and the time derivatives Lt will have
the same order at all above poles,

• the number of independent equations, resulting from Lax hierarchies, will be the same as
that of dynamical coefficients included in L.

he first condition implies all constraints considered in Proposition 4.9. To see that, an analysis
ike that in the proof of Proposition 4.5 is needed. So, by the first condition the right-hand sides of
onsidered Lax hierarchies for appropriate r and k can be uniquely presented in the form of Lt, i.e.,
he left-hand sides. So, the second condition immediately follows from the first one.

The simplest way of deriving dispersionless systems related to given meromorphic Lax func-
ions is to transform Lax hierarchies into purely polynomial form in p through removal of finite
ingularities. It can be done by multiplication of both sides of Lax hierarchies by a proper factor.

Proposition 4.10: Under transformation p�= p−1 Lax hierarchies, from Proposition 4.9, de-
ned at � and 0 for appropriate r and k transforms into Lax hierarchies defined at 0 and � for
�=2−r and k�=3−k, respectively.

See proof of Proposition 4.7 and the comment after Proposition 4.2. Hence, the relevant cases
rom Proposition 4.9 are exactly the same as in Sec. IV A for Proposition 4.1.

Once again we will consider Poisson tensors defined at �. This time we are not going to
resent the explicit form of differentials d�H for the general meromorphic Lax function, but we
ill explain how to construct them. We postulate that

dH  d�H = �
i=N�−�+1

N�

�ip
r−i−1, �4.11�

here � is a number of dynamical coefficients in L and N� is the highest order of Laurent series
f Lt at �. The form �4.11� allows us to solve �3.9� ��= � � to obtain functions �i in terms of
ynamical coefficients of L and its variational derivatives such that we obtain the required Eu-
lidean form. We will consider only relevant cases of meromorphic Lax functions from Proposi-
ion 4.9. Verification that they span the proper subspace with respect to Poisson tensors is similar
o the proof of this proposition. These Lax functions span the proper subspace with respect to the
inear Poisson tensor �4.2� for k=0 if N�1 and for k=1,2 if N�2r−2k+1�−m0. If not the case,
he Dirac reduction is required. The reduced linear tensors for k=r=0,1 ,2 and N=−1 �N is the
ighest order of Laurent series ofL at �� are given by

�0
�dH = ��dH��0

� ,L�r − ��dH,L�r��r
� + ��1p + �0,L�r,

�1 = �−1res��dH,L�0, �4.12�
x
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�0 = �x
−1res��dH,L�1 − �x

−1��1��L�−2
� �x + 2��1�x�L�−2

� � ,

here �L�−2
� is the coefficient staying at the term of order −2 in Laurent series at �. For k=r=0 we

ave �L�−2
� =0 and �4.12� simplified. Notice that for k=r=0 the reduced Poisson tensor �4.12� is

lways local, but for the remaining cases it is in general not. In the case of quadratic Poisson
ensors, considered Lax functions do not span proper subspaces and the Dirac reduction is needed.
he reduced quadratic Poisson tensor for k=r=0,1 ,2 are given by �4.3�, and for k=1,r=0 and
=2,r=1 by �4.4� where m=m0.

Example 4.11: The two-field system: k=r=0.
The Lax function has the form

L = u�p − v�−1 + �1 − u��p −
uv

u − 1
�−1

,

here constraints from Proposition 4.9 are properly taken into consideration. The roots of L are �
nd �= �2uv−v� / �u−1�. Then, for � we have

Lt2
= ��2

�,L�0 Û �u

v
�

t2

= � 2uv

�3u − 1�v2

u − 1
�

x

= �0
reddH−2

� = �1
reddH−3

� ,

here �2
�= �L−2��0

� = p2+2uv2 / �u−1�. The hierarchy for � is the same as �Lq��0
� =L− �Lq��0

� . The
unction L has poles at v and �=uv / �u−1�. At the point v one finds the following system:

L�1
= ��1

v,L�0 Û �u

v
�

�1

=�
u�u − 1�3

v2

�u − 1�2

v
�

x

= �0
reddH1

v = �1
reddH0

v,

here �1
v=−�L��0

v =−u�p−v�−1. The Lax function is invariant with respect to the transformation
�1−u, v�uv / �u−1�. Therefore, the Lax hierarchy related to � can be obtained through this

ransformation.
In this case the differential of a given functional calculated by �4.11� is

dH = �2�u − 1�3

v3

H

u
+

�u − 1�2

uv2

H

v
�p3 + �3�u − 1�2�2u − 1�

v2

H

u
+

�u − 1��3u − 1�
uv

H

v
�p2.

hen, from �4.12� and �4.3� we find the following Poisson tensors:

�0
red = � 0 ��1 − u�

�1 − u�� − �v − v�
�, �1

red =��
u

v2 �u − 1�3 +
u

v2 �u − 1�3�
�u − 1�2

v
�

�
�u − 1�2

v
0 � ,

espectively. The Hamiltonians are

H−3
� = �

�

uv
1 − u

dx, H−2
� = �

�

uv2

1 − u
dx, H0

v = �
�

vdx, H1
v = �

�

u�u − 1�2

v
dx .

Example 4.12: The four-field dispersionless system: k=r=0.
For the Lax function of the form

L = p + a�p − v�−1 + b�p − w�−1 �4.13�
ear � one finds
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Lt2
= ��2

�,L�0 Û�
a

b

v

w
�

t2

=�
2av

2bw

2a + 2b + v2

2a + 2b + w2
�

x

= �0dH2
� = �1

reddH1
�,

here �2
�= �L2��0

� = p2+2a+2b. Near the v we have

L�1
= ��1

v,L�0 Û�
a

b

v

w
�

�1

=�
a −

ab

�v − w�2

ab

�v − w�2

v +
b

v − w

a

v − w

�
x

= �0dH1
v = �1

reddH0
v,

here �1
v=−�L��0

v =−a�p−v�−1. There are three, very complicated, roots of L. Thus, we are not
oing to calculate the respective equations.

The differential of a functional H is

dH = � 2

v − w

H

b
+

1

b

H

w
� �p − v�2�p − w�

�v − w�2 + � 2

w − v

H

a
+

1

a

H

v
� �p − v��p − w�2

�w − v�2

+
1

�v − w�2

H

b
�p − v�2 +

1

�w − v�2

H

a
�p − w�2.

hen, from �4.2� and �4.3� one finds the linear

�0 =�
0 0 � 0

0 0 0 �

� 0 0 0

0 � 0 0
�

nd quadratic Poisson tensors

�1
red =�

�a + a � − �
ab

�v − w�2 −
ab

�v − w�2 � �
ab

�v − w�2 +
ab

�v − w�2 � �v +
b

v − w
��

a

v − w
�

�
ab

�v − w�2 +
ab

�v − w�2 � �b + b � − �
ab

�v − w�2 −
ab

�v − w�2 � −
b

v − w
� �w −

a

v − w
��

��v +
b

v − w
� − �

b

v − w
2� �

�
a

v − w
��w −

a

v − w
� � 2�

� ,

espectively. The Hamiltonians are

H1
� = �

�

�av + bw� dx, H2
� = �

�

��a + b�2 + av2 + bw2� dx ,

H0
v = �

�

a dx, H1
v = �

�

�av +
ab

v − w
�dx .
Example 4.13: Four-field system: k=1, r�Z.
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Let us consider a Lax function of the form

L = p + u + vp−1 + w�p − s�−1. �4.14�

t has poles at �, 0, and w. Related equations to � for �2−r
� = �L2−r��1−r

� = p2−r+ �2−r�up1−r are

Lt2−r
= ��2−r

� ,L�r Û�
u

v

w

s
�

t2−r

= �2 − r��
�1 − r�uux + vx + wx

uxv + �1 − r�uvx

uxw + �1 − r�uwx + �ws�x

uxs + �1 − r�usx + ssx

� = �0dH2−r
� = �1

reddH1−r
� .

he first equations from Lax hierarchies related to 0 for r�0 are

L�r
= ��r

0,L�r Û�
u

v

w

s
�

�r

= rvr�
ln v

u −
w

s

w

s

ln
s

v

�
x

= �0dHr
0 = �1

reddHr−1
0 ,

here �r
0=−�Lr��1−r

0 =−vrp−r. But for r=0 we have

L�1�
= ��1

0,L�0 Û�
u

v

w

s
�

�1�

=�
u −

w

s

v −
vw

s2

vw

s2

w − v
s

− u

�
x

= �0dH1
0 = �1

reddH0
0,

here �1
0=−�L��1

0 =w /s−u−vp−1. For r=1 and �1
s =−�L��0

s =−w�p−s�−1 one finds

L�1
= ��1

s ,L�1 Û�
u

v

w

s
�

�1

=�
wx

v�w

s
�

x

uxw + �ws�x − v�w

s
�

x

uxs + ssx + s�v
s
�

x

� = �0dH1
s = �1

reddH0
s .

nce again we are not going to consider Lax hierarchies related to roots of L.
The differential of a functional H is

dH = �H

s
+

1

s2�H

v
−

H

w
��pr+2 − �2

s
�H

v
−

H

w
� +

1

w

H

s
�pr+1 +

H

v
pr +

H

u
pr−1.

he Lax function �4.14� span the proper subspace with respect to linear Poisson tensor �4.2� only
or r=0,1. The reduced quadratic tensors are for r=0,1 given by �4.4� and �4.3�, respectively.

hus, for r=0:
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�0 =�
0 � 0 0

� 0 0 − �

0 0 0 �

0 − � � 0
� �4.15�

nd

�1
red =�

2� ��u −
w

s
� �

w

s
− �

�u −
w

s
�� �v�1 −

w

s2� − v�1 −
w

s2�� �
vw

s2 +
vw

s2 � �w − v
s

− u��

w

s
� �

vw

s2 +
vw

s2 � �w�1 −
v
s2� − w�1 −

v
s2�� �u + s +

v − w

s
��

− � ��w − v
s

− u� ��u + s +
v − w

s
� 2�

� .

�4.16�

he related Hamiltonians are

H1
� = �

�

�uv + uw + ws� dx, H2
� = �

�

�u2v + v2 + ws2 + 2uws + u2w + 2vw + w2� dx ,

H0
0 = �

�

vdx, H1
0 = �

�

v�u −
w

s
� dx .

or r=1 we have

�0 =�
0 �v �w �s

v� 0 0 0

w� 0 s � w + w � s s � s

s� 0 s � s 0
�

nd

�1
red =�

��v + w� + �v + w�� u � v 2 � ws + ws � + u � w �u + s� � s

v � u 2v � v 2v � w v � s

�ws + 2ws � + w � u 2w � v �ww �s2 + us + v + 2w� � s

s � �u + s� s � v s � �s2 + us + v + 2w� 2s � s
� ,

here �ww=�uws+uws� +w� �2s2+w�+ �2s2+w��w. The related Hamiltonians are

H0
� = �

�

udx, H1
� = �

�

�1

2
u2 + v + w�dx ,

H0
0 = �

�

�u −
w

s
�dx, H1

0 = �
�

�1

2
u2 + v −

uw

s
−

vw

s2 +
w2

2s2�dx ,

H0
s = � w

s
dx, H1

s = � �w +
uw

s
+

vw

s2 −
w2

2s2�dx .

� �
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Example 4.14: Four-field system: k=r=2.
Lax function �4.14� transformed by p� p−1 has the form

L = vp + u −
w

s
+ p−1 −

w

s2 �p − s−1�−1.

or �1
s−1

=−�L��0
s−1

=−�w /s2��p−s−1�−1 one finds the system

L�1�
= ��1

s−1
,L�1 Û�

u

v

w

s
�

�1�

=�
−

w

s

−
vw

s2

w� v
s2 − 1�

− u − s +
v − w

s

�
x

= �0dH1
s−1

= �1
reddH0

s−1

ommuting, by Proposition �4.10�, with equations from Example 4.13 for r=0. The linear and
uadratic Poisson tensors are given by �4.15� and �4.16�, respectively. Hamiltonian functionals
re given by

H0
s−1

= − �
�

w dx, H1
s−1

= �
�

w�u +
v − 1

s
�dx .

. COMMENTS

The case r=k=0 of meromorphic Lax hierarchies considered in this article are finite-field
eductions to zero-genus Whitham hierarchy.2. Originally in Ref. 2 each Lax hierarchy defined at
ole v of Lax function, being dynamical field, is extended over additional symmetry related to the
enerating function �0

v=ln�p−v�. For example, for Lax function �4.13� the additional symmetry at
is

Ls = ��0
v,L�0 Û�

a

b

v

w
�

s

=�
v +

b

v − w

−
b

v − w

ln a

ln�v − w�
�

x

.

he calculus including ln-terms is discussed in Ref. 4. In Ref. 22 it is shown how the Toda
ierarchy from Example 4.3 can be extended over a whole family of symmetries generated by
unctions containing beside powers logarithms of Lax function ln L. However, ln L at poles and
oots of L has singularities of logarithmic type. So, such additional symmetries fall out from the
cheme of meromorphic functions considered in this article. In Ref. 22 they manage with this
roblem representing ln L as a sum of two infinite series convergent near � and 0, respectively.
ollowing this idea, one is able to directly generalize this result from Ref. 22 only onto Lax
unctions from Secs. IV A and IV B. However, the general theory of such symmetries seems to be
roblematic. This problem is under investigation.

All the Poisson tensors constructed in the following article are nondegenerate. References 5
nd 6 deal with rational Lax functions from the algebra with fixed Poisson bracket for r=1.
owever, only the Lax hierarchies generated by powers constructed near � have been considered
here. For the class of rational Lax functions used in these papers the bi-Hamiltonian structures are
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egenerate, i.e., the determinants of the related metrics vanish. The reason is that the constraint of
he form L�p=0=0 is not taken into consideration. So, one dynamical field always can be repre-
ented as a function of all others. This fact entails the degeneracy of Poisson tensors.

There is a different approach to meromorphic Lax functions. From the complex analysis it is
ell known that meromorphic function can be uniquely presented in the factorized form. Because
f such a factorization there is no problem in finding poles and roots of L near which one
onstructs powers and related Lax hierarchies. Another advantage is that the dispersionless sys-
ems obtained have very symmetrical form. However, the disadvantage is that Poisson tensors are
ignificantly more complicated. Such factorized form of Lax functions as well allows for finding
ew reductions which are not obvious when we have Lax function in the standard form, see Refs.
and 6.

In this paper we have considered dispersionless systems with a finite number of dynamical
elds. However, Lax function being infinite formal Laurent series leads to the construction of
ispersionless infinite-field Benney moment like equations. Such systems for Laurent series at �
ave been considered earlier in Ref. 19. The original Benney moment equation can be obtained for
=r=0. If we consider formal Laurent series at a pole being a dynamical field v�x� we will
onstruct new classes of infinite-field dispersionless systems. They, together with bi-Hamiltonian
tructures, will be studied in a forthcoming article. Furthermore, all finite-field dispersionless
ystems, with meromorphic Lax functions, considered in this paper may be considered as reduc-
ions of these infinite-field systems.

All Lax functions used in the article belong to the algebras of meromorphic functions. How-
ver, there are known the so-called waterbag hydrodynamic type systems with Lax functions,
ontaining logarithmic terms, that are not meromorphic functions.23,24 Similar systems are also
onsidered in Ref. 25, but by means of the Riemann surfaces rather than Lax functions.

Another issue is the extension of the theory of meromorphic Lax representations presented for
ispersionless systems in order to construct integrable dispersive soliton systems for rational Lax
perators. The first approach toward this was made in Ref. 21. However, the authors constructed
oliton systems related only to the case k=r=0 from our article. A more general theory of disper-
ive deformations of formal Lax functions being polynomials in p and p−1 is presented in Ref. 17.
his approach is based on the Weyl-Moyal-like quantization procedure. The idea relies on the
eformation of the usual multiplication in the algebra A to the new associative but noncommu-
ative �-product. However, this theory works only for r=0,1 ,2. Deformations of Poisson algebras
or r=0,2 are equivalent and lead to the construction of field soliton systems, but for r=1 they
ead to the construction of lattice soliton systems. So, in a forthcoming article we are going to
tudy the field and lattice soliton systems for rational Lax operators.
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Continuous limits of discrete systems with long-range interactions are considered.
The map of discrete models into continuous medium models is defined. A wide
class of long-range interactions that give the fractional equations in the continuous
limit is discussed. The one-dimensional systems of coupled oscillators for this type
of long-range interactions are considered. The discrete equations of motion are
mapped into the continuum equation with the Riesz fractional derivative. © 2006
American Institute of Physics. �DOI: 10.1063/1.2337852�

. INTRODUCTION

Equations which involve derivatives or integrals of noninteger order1–5 have found many
pplications in recent studies in mechanics and physics.6–11 Usually the fractional equations for
ynamics or kinetics appear as some phenomenological models. Recently, the method to obtain
ractional analogues of equations of motion was considered for sets of coupled particles with a
ong-range interaction.12–14 Examples of systems with interacting oscillators, spins, or waves are
sed for numerous applications in physics, chemistry, biology.15–26 Transfer from the equations of
otion for discrete systems to the continuous media equation with fractional derivatives is an

pproximate procedure. Different applications of the procedure have already been used to derive
ractional sine-Gordon and fractional wave Hilbert equation,12,14 to study synchronization of
oupled oscillators,13 and for fractional Ginzburg-Landau equation.13

Long-range interaction has been the subject of great interest for a long time. Thermodynamics
f the model of classical spins with long-range interactions has been studied in Refs. 15–17 and
9. An infinite one-dimensional Ising model with long-range interactions was considered by
yson.15 The d-dimensional classical Heisenberg model with long-range interaction is described

n Refs. 16 and 19, and their quantum generalization can be found in Ref. 17. The long-range
nteractions have been widely studied in discrete systems on lattices as well as in their continuous
nalogues. Solitons in a one-dimensional lattice with the long-range Lennard-Jones-type interac-
ion were considered in Ref 27. Kinks in the Frenkel-Kontorova model with long-range interpar-
icle interactions were studied in Ref. 28. The properties of time periodic spatially localized
olutions �breathers� on discrete chains in the presence of algebraically decaying interactions were
onsidered in Refs. 24 and 25. Energy and decay properties of discrete breathers in systems with
ong-range interactions have also been studied in the framework of the Klein-Gordon,22 and
iscrete nonlinear Schrödinger equations.29 A remarkable property of the dynamics described by
he equation with fractional space derivatives is that the solutions have power-like tails. Similar
eatures were observed in the lattice models with power-like long-range interactions.23–25,30–32,14

s it was shown in Refs. 13 and 14, analysis of the equations with fractional derivatives can
rovide results for the space asymptotics of their solutions.

The goal of this paper is to study a connection between the dynamics of system of particles
ith long-range interactions and the fractional continuous medium equations by using the trans-

orm operation. Here, we consider the one-dimensional lattice of coupled nonlinear oscillators. We
ake the transform to the continuous limit and derive the fractional equation which describes the

�
Electronic mail: tarasov@theory.sinp.msu.ru
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ynamics of the oscillatory medium. We show how the continuous limit for the systems of
scillators with long-range interaction can be described by the corresponding fractional equation.

In Sec. II, the equations of motion for the system of oscillators with long-range interaction are
onsidered. In Sec. III, the transform operation that maps the discrete equations into continuous
edium equation is defined. In Sec. IV, the Fourier series transform of the equations of a system
ith long-range interaction is realized. In Sec. V, we consider a wide class of long-range interac-

ions that can give the fractional equations in the continuous limit. In Sec. VI, the simple example
f nearest-neighbor interaction is considered to demonstrate the application of the transform op-
ration to the well-known case. In Sec. VII, the power-law long-range interactions with positive
nteger powers are considered. In Sec. VIII, the power-law long-range interactions with noninteger
owers and the correspondent continuous medium equations are discussed. In Sec. IX, the non-
inear long-range interactions for the discrete systems are used to derive the Burgers, Korteweg-de
ries, and Boussinesq equations and their fractional generalizations in the continuous limit. In
ec. X, the fractional equations are obtained from the dispersion law for three-dimensional dis-
rete system. The conclusion is given in Sec. XI.

I. EQUATIONS OF MOTION FOR INTERACTING OSCILLATORS

Consider a one-dimensional system of interacting oscillators that are described by the equa-
ions of motion,

�2un

�t2 = gÎn�u� + F�un� , �1�

here un are displacements from the equilibrium. The terms F�un� characterize an interaction of

he oscillators with the external on-site force. The term În�u� is defined by

În�u� � �
m=−�

m�n

+�

J�n,m�E�un,um� , �2�

nd it takes into account the interaction of the oscillators in the system.
Examples:

1� If J�n ,m�=�n+1,m−�n,m, and E�un ,um�=um, then În�u�=un+1−un=�un.
2� For J�n ,m�=�n+1,m−2�n,m+�n−1,m, and E�un ,um�=um, we get

În�u� = un+1 − 2un + un−1 = �2un.

3� We can consider the long-range interaction that is given by J�n�= �n�−�1+��, where � is a
ositive real number. In this case, we have nonlocal coupling given by the power-law function.
onstant � is a physical relevant parameter. Some integer values of � correspond to the well-
nown physical situations: Coulomb potential corresponds to �=0, dipole-dipole interaction cor-
esponds to �=2, and the limit �→� is for the case of nearest-neighbor interaction.

For the term �2� with E�un ,um�=um, the translation invariance condition is

�
m=−�

m�n

+�

J�n,m� = 0 �3�

or all n. If �3� cannot be satisfied, we must define E�un ,um�=un−um, and the interaction term �2�

s
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În�u� � �
m=−�

m�n

+�

J�n,m��un − um� . �4�

his interaction term is translation invariant. Note that the noninvariant terms lead to the diver-
ences in the continuous limit �see the Appendix�.

In this paper, we consider the wide class of interactions �4� that create a possibility to present
he continuous medium equations with fractional derivatives. We also discuss the term �2� with
�un ,um�= f�un�− f�um� as nonlinear long-range interaction. As the examples, we consider f�u�
u2 and f�u�=u−gu2 that gives the Burgers, Korteweg-de Vries, and Boussinesq equations and

heir fractional generalizations in the continuous limit.

II. TRANSFORM OPERATION

In this section, we define the operation that transforms the system of equations for un�t� into
ontinuous medium equation for u�x , t�.

To derive a continuous medium equation, we suppose that un�t� are Fourier coefficients of
ome function û�k , t�. We define the field û�k , t� on �−K /2 ,K /2� as

û�k,t� = �
n=−�

+�

un�t�e−ikxn = F��un�t�	 , �5�

here xn=n�x, �x=2� /K is distance between oscillators, and

un�t� =
1

K



−K/2

+K/2

dkû�k,t�eikxn = F�
−1�û�k,t�	 . �6�

hese equations are the basis for the Fourier transform, which is obtained by transforming un�t�
rom discrete variable to a continuous one in the limit �x→0 �K→��. The Fourier transform can
e derived from �5�, �6� in the limit as �x→0. Replace the discrete un�t� with continuous u�x , t�
hile letting xn=n�x=2�n /K→x. Then change the sum to an integral, and Eqs. �5� and �6�
ecome

ũ�k,t� = 

−�

+�

dxe−ikxu�x,t� = F�u�x,t�	 , �7�

u�x,t� =
1

2�



−�

+�

dkeikxũ�k,t� = F−1�ũ�k,t�	 , �8�

here

ũ�k,t� = Lû�k,t� , �9�

nd L denotes the passage to the limit �x→0 �K→��. Note that ũ�k , t� is a Fourier transform of
he field u�x , t�, and û�k , t� is a Fourier series transform of un�t�. The function ũ�k , t� can be
erived from û�k , t� in the limit �x→0.

The procedure of the replacement of a discrete model by the continuous one is defined by the
ransform operation.

Definition 1: Transform operation T̂ is a combination T̂=F−1LF� of the operations:
1) The Fourier series transform:

F�: un�t� → F��un�t�	 = û�k,t� . �10�
2) The passage to the limit �x→0:
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L: û�k,t� → L�û�k,t�	 = ũ�k,t� . �11�

3) The inverse Fourier transform:

F−1: ũ�k,t� → F−1�ũ�k,t�	 = u�x,t� . �12�

The operation T̂=F−1LF� is called a transform operation, since it performs a transform of a
iscrete model of coupled oscillators into the continuous medium model.

Proposition 1: The transform operation T̂ maps the function F�un� into the function F�u�x , t��,
.e.,

T̂F�un�t�� = F�u�x,t�� , �13�

here u�x , t�= T̂un�t�, if the function F satisfies LF�un�=F�Lun�.
Proof: The Fourier series transform leads to

F�: F�un� → F�F�un� . �14�

ote that F�F�un��F�F�un�=F�û�k , t��. The passage to the limit �x→0 gives

L: F�F�un� → LF�F�un� . �15�

hen

LF��F�un�	 = F�LF�un�	 = F�F�Lun�	 = F�F�u�x,t��	 , �16�

here we use LF�=FL. The inverse Fourier transform get

F−1: F�F�u�x,t��	 → F−1�F�F�u�x,t��		 = F�u�x,t�� . �17�

s the result, we prove �13�.

V. EQUATIONS FOR MOMENTUM SPACE

Let us consider a system of infinite numbers of oscillators with interparticle interaction that is
escribed by �4�. We suppose that J�n ,m� satisfies the condition

J�n,m� = J�n − m�, �
n=1

�

�J�n��2 � � , �18�

here J�−n�=J�n�.
Proposition 2: The Fourier series transform F� maps the equations of motion

�2un�t�
�t2 = g �

m=−�

m�n

+�

J�n,m��un − um� + F�un� , �19�

here un is the position of the nth oscillator, and F is an external on-site force, into

�2û�k,t�
�t2 = g�Ĵ��0� − Ĵ��k�x��û�k,t� + F��F�un�	 , �20�

here

û�k,t� = F��un�t�	, Ĵ��k�x� = F��J�n�	 ,
nd F��F�un�	 is an operator notation for the Fourier series transform of F�un�.
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Proof: To derive the equation for the field û�k , t�, we multiply Eq. �19� by exp�−ikn�x�, and
umming over n from −� to +�. Then

�
n=−�

+�

e−ikn�x �2

�t2un�t� = g �
n=−�

+�

�
m=−�

m�n

+�

e−ikn�xJ�n,m��un − um� + �
n=−�

+�

e−ikn�xF�un� . �21�

From

û�k,t� = �
n=−�

+�

e−ikn�xun�t� , �22�

he left-hand side of �21� gives

�
n=−�

+�

e−ikn�x�2un�t�
�t2 =

�2

�t2 �
n=−�

+�

e−ikn�xun�t� =
�2û�k,t�

�t2 . �23�

The second term of the right-hand side of �21� is

�
n=−�

+�

e−ikn�xF�un� = F��F�un�	 . �24�

The first term of the right-hand side �r.h.s� of �21� is defined by the function J�n ,m�. Let us
ntroduce the notation

Ĵ��k�x� = �
n=−�

n�0

+�

e−ikn�xJ�n� . �25�

sing J�−n�=J�n�, the function �25� can be presented by

Ĵ��k�x� = �
n=1

+�

J�n��e−ikn�x + eikn�x� = 2�
n=1

+�

J�n�cos�k�x� . �26�

rom �26� it follows that

Ĵ��k�x + 2�m� = Ĵ��k�x� , �27�

here m is an integer.
The interaction term in �21� is

�
n=−�

+�

�
m=−�

m�n

+�

e−ikn�xJ�n,m��un − um� = �
n=−�

+�

�
m=−�

m�n

+�

e−ikn�xJ�n,m�un − �
n=−�

+�

�
m=−�

m�n

+�

e−ikn�xJ�n,m�um.

�28�

sing �22� and �25�, the first term on the r.h.s. of �28� gives

�
n=−�

+�

�
m=−�

m�n

+�

e−ikn�xJ�n,m�un = �
n=−�

+�

e−ikn�xun �
m�=−�

m��0

+�

J�m�� = û�k,t�Ĵ��0� , �29�
here we use �18� and J�m�+n ,n�=J�m��, and
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Ĵ��0� = �
n=−�

n�0

+�

J�n� = 2�
n=1

�

J�n� . �30�

or the second term on the r.h.s. of �28�:

�
n=−�

+�

�
m=−�

m�n

+�

e−ikn�xJ�n,m�um = �
m=−�

+�

um �
n=−�

n�m

+�

e−ikn�xJ�n,m�

= �
m=−�

+�

ume−ikm�x �
n�=−�

n��0

+�

e−ikn��xJ�n�� = û�k,t�Ĵ��k�x� , �31�

here we use J�m ,n�+m�=J�n��.
As a result, Eq. �21� has the form

�2û�k,t�
�t2 = g�Ĵ��0� − Ĵ��k�x��û�k,t� + F��F�un�	 , �32�

here F��F�un�	 is an operator notation for the Fourier series transform of F�un�.

. ALPHA-INTERACTION

Let us consider the interaction term

În�u� � �
m=−�

m�n

+�

J�n,m��un − um� , �33�

here

J�n,m� = J�n − m� = J�m − n�, �
n=1

�

�J�n��2 � � . �34�

n Sec. IV, we prove that the Fourier series transform F� of �33� gives

F��În�u�	 = g�Ĵ��0� − Ĵ��k�x��û�k,t� , �35�

here û�k , t�=F��un�t�	, and

Ĵ��k� = �
n=−�

n�0

+�

e−iknJ�n� = 2�
n=1

�

J�n�cos�kn� . �36�

Definition 2: The interaction term (33) in the equation of motion (1) is called �-interaction if
he function (36) satisfies the condition

lim
k→0

�Ĵ��k� − Ĵ��0��
�k��

= A�, �37�

here ��0 and 0� �A����.
ˆ
If the function J��k� is given, then J�n� can be defined by
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J�n� =
1

�



0

�

Ĵ��k�cos�nk�dk . �38�

he condition �37� means that Ĵ��k�− Ĵ��0�=O��k���, i.e.,

Ĵ��k� − Ĵ��0� = A��k�� + R��k� , �39�

or k→0, where

lim
k→0

R��k�/�k�� = 0. �40�

Examples:
1� The first example of the �-interaction is

Ĵ��k� = A��k��.

sing �38�, we obtain

J�n� = A�� �− 1�n��+1

� + 1
−

�− 1�n�1/2

�� + 1��n��+1/2L1�� + 3/2,1/2,�n�� , �41�

here L1�� ,	 ,z� is the Lommel function.33

2� The second example of the �-interaction is

J�n� =
�− 1�n

n2 . �42�

sing �Ref. 34, Sec. 5.4.2.12�

�
n=1

�
�− 1�n

n2 cos�nk� =
1

4
�k2 −

�2

3
�, �k� 
 � ,

e get

Ĵ��k� = 2�
n=1

+�
�− 1�n

n2 cos�kn� =
1

2
k2 −

�2

6
, �k� 
 � . �43�

hen we have �=2, and

Ĵ��k� − Ĵ��0� = �1/2�k2. �44�

he inverse Fourier transform of this expression gives the coordinate derivatives of second order

F−1�Ĵ��k� − Ĵ��0�	 = −
1

2

�2

�x2 .

3� For the interaction �42�, we have �=2 and the inverse Fourier transform of �44� gives the
econd-order derivative. At the same time, the interaction

J�n� =
1

n2

ives �=1 and then the first-order coordinate derivative. It can be proved by using �Ref. 34, Sec.

.4.2.12�
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Ĵ��k� = 2�
n=1

+�
cos�kn�

n2 =
1

6
�3k2 − 6�k + 2�2�, �0 
 k 
 2�� , �45�

nd Ĵ��k�− Ĵ��0�−�k for k→0. Therefore, the inverse Fourier transform leads to the derivative
f first order.

4� For noninteger and odd numbers s,

J�n� = �n�−�s+1�, s � 0 �46�

s an �-interaction.
For 0�s�2�s�1�, we get

Ĵ��k� − Ĵ��0� = 2��− s�cos��s/2��k�s. �47�

or s=1,

Ĵ��k� − Ĵ��0� = − ��/2�k . �48�

or noninteger s�2,

Ĵ��k� − Ĵ��0� = − ��� − 1�k2, �49�

here ��z� is the Riemann zeta-function, The interaction �46� is considered in Sec. VII.
5� The other example is

J�n� =
�− 1�n

��1 + �/2 + n���1 + �/2 − n�
. �50�

sing the series �Ref. 34, Sec. 5.4.8.12�

�
n=1

�
�− 1�n

�� + 1 + n��� + 1 − n�
cos�nk� =

22−1

��2 + 1�
sin2� k

2
� −

1

2�2� + 1�
, �51�

here �−1/2 and 0�k�2�, we get

Ĵ��k� − Ĵ��0� =
2�

��� + 1�
sin�� k

2
� . �52�

n the limit k→0, we obtain

Ĵ��k� − Ĵ��0� 
1

��� + 1�
�k��. �53�

or noninteger �, the inverse Fourier transform of �53� gives the fractional Riesz derivative1 of
rder �.

6� The �-interaction

J�n� =
�− 1�n

a2 − n2 ,

ives

Ĵ�k� =
�

a sin��a�
cos�ak� −

1

a2 . �54�
or k→0, we obtain

                                                                                                            



T

T

T

w

w

i

�

w

N

T
g

w

092901-9 Map of discrete system into continuous J. Math. Phys. 47, 092901 �2006�

                        
Ĵ��k� − Ĵ��0� 
a�

2 sin�a��
k2. �55�

he inverse Fourier transform of �55� leads to the coordinate derivative of second order.
7� For J�n�=1/n!, we use

�
n=1

�
cos�kn�

n!
= ecos k cos�sin k�, �k� � � . �56�

he passage to the limit k→0 gives

Ĵ��k� − Ĵ��0�  − 4ek . �57�

hen �=1, and we get the derivative of first order.

Proposition 3: The transform operation T̂ maps the discrete equations of motion

�2un

�t2 = g �
m=−�

m�n

+�

J�n,m��un − um� + F�un� �58�

ith noninteger �-interaction into the fractional continuous medium equations:

�2

�t2u�x,t� − G�A�

��

��x��
u�x,t� − F�u�x,t�� = 0, �59�

here �� /��x�� is the Riesz fractional derivative, and

G� = g��x�� �60�

s a finite parameter.
Proof: The Fourier series transform F� of �58� gives �20�. We will be interested in the limit

x→0. Then Eq. �20� can be written as

�2

�t2 û�k,t� − G�T̂�,��k�û�k,t� − F��F�un�t��	 = 0, �61�

here we use finite parameter �60�, and

T̂�,��k� = − A��k�� − R��k�x���x�−�. �62�

ote that R� satisfies the condition

lim
�x→0

R��k�x�
��x��

= 0.

he expression for T̂�,��k� can be considered as a Fourier transform of the operator �4�. Note that
→� for the limit �x→0, if G� is a finite parameter.

In the limit �x→0, Eq. �61� gets

�2

�t2 ũ�k,t� − G�T̂��k�ũ�k,t� − F−1�F�u�x,t��	 = 0, �63�

here

ũ�k,t� = Lû�k,t�, T̂��k� = LT̂�,��k� = − A��k��.
The inverse Fourier transform of �63� gives
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�2

�t2u�x,t� − G�T��x�u�x,t� − F�u�x,t�� = 0, �64�

here T��x� is an operator

T��x� = F−1�T̂��k�	 = A�

��

��x��
. �65�

ere, we have used the connection between the Riesz fractional derivative and its Fourier
ransform:1

�k�� ↔ −
��

��x��
. �66�

he properties of the Riesz derivative can be found in Refs. 1–4. Note that the Riesz derivative
ould be represented as

��

��x��
u�x,t� = −

1

2 cos���/2�
�D+

�u�x,t� + D−
�u�x,t�� , �67�

here ��0,1 ,3 ,5 , . . ., and D±
� are Riemann-Liouville left and right fractional derivatives defined

y1–4

D+
�u�x,t� =

1

��m − ��
�m

�xm

−�

x u��,t�d�

�x − ���−m+1 ,

�68�

D−
�u�x,t� =

�− 1�m

��m − ��
�m

�xm

x

� u��,t�d�

�� − x��−m+1 ,

here m−1���m.
As the result, we obtain continuous medium equations �59� from �64� and �65�.

I. SIMPLE EXAMPLE OF NEAREST-NEIGHBOR INTERACTION

In this section, we demonstrate the application of transform operation to the well-known case:

J�n,m� = �n+1,m − 2�n,m + �n−1,m, �69�

here �n,m is the Kronecker symbol. Then the interaction term �2� has the form

În�u� = �un+1 − un� − �un − un−1� , �70�

nd describes the nearest-neighbor interaction. As the result, equations of motion �19� have the
orm

�2un

�t2 = g�un+1 − 2un + un−1� + F�un� . �71�

he well-known result is the following.

Proposition 4: The transform operation T̂ maps the equation of motion (71) into the continu-
us medium equation

�2u�x,t�
�t2 = G2

�2

�x2u�x,t� + F�u� , �72�
here
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G2 = g��x�2 �73�

s a finite parameter.
Proof: To derive the equation for the field û�k , t�, we multiply Eq. �71� by exp�−ikn�x�, and

umming over n from −� to +�. Then

�
n=−�

+�

e−ikn�x �2

�t2un�t� = g �
n=−�

+�

e−ikn�x�un+1 − 2un + un−1� + �
n=−�

+�

e−ikn�xF�un� . �74�

he first term on the r.h.s. of �74� is

�
n=−�

+�

e−ikn�xJ�n,m�um = �
n=−�

+�

e−ikn�x�un+1 − 2un + un−1�

= �
n=−�

+�

e−ikn�xun+1 − 2 �
n=−�

+�

e−ikn�xun + �
n=−�

+�

e−ikn�xun−1

= �
m�=−�

+�

e−ik�m−1��xum − 2û�k,t� + �
s=−�

+�

e−ik�s+1��xus

= eik�x �
m�=−�

+�

e−ikm�xum − 2û�k,t� + e−ik�x �
s=−�

+�

e−iks�xus

= eik�xû�k,t� − 2û�k,t� + e−ik�xû�k,t� = �eik�x + e−ik�x − 2�û�k,t�

= 2�cos�k�x� − 1�û�k,t� = − 4 sin2�k�x�û�k,t� . �75�

s the result, we obtain

�2û�k,t�
�t2 = gĴ��k�x�û�k,t� + F��F�un�t��	 , �76�

here

Ĵ��k�x� = − 4 sin2�k�x� . �77�

or �x→0, the asymptotics of the sine is

sin�z� = �
m=0

�
�− 1�m+1

�2m + 1�!
z2m+1  z −

1

6
z3,

nd �77� can be presented by

Ĵ��k�x�  − �k�x�2 + 1
12�k�x�4. �78�

sing the finite parameter �73�, the transition to the limit �x→0 in Eq. �76� gives

�2ũ�k,t�
�t2 = − G2k2ũ�k,t� + F−1�F�u�	 , �79�

here we use 0� �G2���. As the result, the inverse Fourier transform of �79� leads to the

ontinuous medium equation �72�.
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II. INTEGER POWER-LAW INTERACTION

Let us consider the power-law interaction �4� with

J�n� = �n�−�s+1� �80�

ith positive integer number s.
Proposition 5: The power-law interaction (80) for the odd number s is �-interaction with �

1 for s=1, and �=2 for s=3,5 ,7 , . . .. For even numbers s, �80� is not �-interaction. For odd

umber s, the transform operation T̂ maps the equations of motion with the interaction (80) into
he continuous medium equation with derivatives of first order for s=1, and the second order for
ther odd s.

Proof: From �20�, we get the equation for û�k , t� in the form

�2û�k,t�
�t2 + g�Ĵ��k�x� − Ĵ��0��û�k,t� − F��F�un�t��	 = 0, �81�

here

Ĵ��k�x� = �
n=−�

n�0

+�

e−ikn�x�n�−�1+s�. �82�

he function �82� can be presented by

Ĵ��k�x� = �
n=1

+�
1

n1+s �e−ikn�x + eikn�x� = 2�
n=1

+�
1

n1+s cos�kn�x� . �83�

hen we can use �Ref. 46, Sec. 5.4.2.12 and 5.4.2.7� the relations

�
n=1

�
cos�nk�

n2 =
1

12
�3k2 − 6�k + 2�2�, �0 
 k 
 2�� , �84�

�
n=1

�
cos�nk�

n2m =
�− 1�m−1�2��2m

2�2m�!
B2m� k

2�
�, �0 
 k 
 2�� , �85�

here m=1,2 ,3 , . . ., and B2m�z� are the Bernulli polynomials.35 These polynomials are defined by

Bn�k� = �
s=0

n

Cn
sBsk

n−s, �86�

here Bs are the Bernoulli numbers from

z

ez − 1
= �

s=0

�

Bs
zs

s!
, ��z� � 2�� . �87�

or example,

B2�k� = k2 − k + 1/6, B4�k� = k4 − 2k3 + k2 − 1/30. �88�

ote B2m−1=0 for m=2,3 ,4 , . . ..35
For s=1, we have
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Ĵ��k�x� − Ĵ��0� = 1
2 �k�x�2 − �k�x  − �k�x . �89�

or s=2m−1 �m=2,3 , . . . �, we have

Ĵ��k� =
�− 1�m−1

�2m�!
�2��2mB2m� k

2�
� �0 
 k 
 2�� . �90�

hen

Ĵ��k�x� − Ĵ��0� 
�− 1�m−1�2��2m−2

4�2m − 2�!
B2m−2�k�x�2. �91�

or example, the interaction �80� with s=3 gives

Ĵ��k� − Ĵ��0� = −
1

48
�k4 − 4�k3 + 4�2k2�  −

�2

12
k2. �92�

For s=0, we have �Ref. 34, Sec. 5.4.2.9� the relation

�
n=1

�
cos�nk�

n
= − ln�2 sin�k/2�� . �93�

hen, the limit �x→0 gives

Ĵ��k�x�  − ln�k�x� → � . �94�

or even numbers s,

�Ĵ��k�x� − Ĵ��0��/�k�x�s → � �95�

ince the expression has the logarithmic poles.
The transition to the limit �x→0 in Eq. �81� with s=1 gives

�2ũ�k,t�
�t2 − G1kũ�k,t� − F−1�F�u�x,t��	 = 0, �96�

here G1=�g�x is a finite parameter. The inverse Fourier transform of �96� leads to the continu-
us medium equation with coordinate derivative of first order:

�2

�t2u�x,t� − iG1
�

�x
u�x,t� − F�u�x,t�� = 0. �97�

his equation can be considered as the nonlinear Schrödinger equation.
The limit �x→0 in Eq. �81� with s=2m−1 �m=2,3 , . . . � gives

�2ũ�k,t�
�t2 + G2k2ũ�k,t� − F−1�F�u�x,t��	 = 0, �98�

here

G2 =
�− 1�m−1�2��2m−2

4�2m − 2�!
B2m−2g��x�2

s a finite parameter. The inverse Fourier transform of �98� leads to the partial differential equation

f second order:
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�2

�t2u�x,t� − G2
�2

�x2u�x,t� − F�u�x,t�� = 0. �99�

his equation can be considered as a nonlinear wave equation.

III. NONINTEGER POWER-LAW INTERACTION

Let us consider the power-law interaction with

J�n� = �n�−�s+1�, �100�

here s is a positive noninteger number.
Proposition 6: The power-law interaction (100) with noninteger s is �-interaction with �=s

or 0�s�2, and �=2 for s�2. For 0�s�2 �s�1�, the transform operation T̂ maps the discrete
quations with the interaction (100) into the continuous medium equation with fractional Riesz
erivatives of order �. For ��2 ���3,4 ,5 , . . . �, the continuous medium equation has the coor-
inate derivatives of second order.

Proof: From �20�, we obtain the equation for û�k , t� in the form

�2û�k,t�
�t2 + g�Ĵ��k�x� − Ĵ��0��û�k,t� − F��F�un�t��	 = 0, �101�

here

Ĵ��k�x� = �
n=−�

n�0

+�

e−ikn�x 1

�n�1+� . �102�

For fractional positive �, the function �102� can be presented by

Ĵ��k�x� = �
n=1

+�
1

n1+� �e−ikn�x + eikn�x� = Li1+��eik�x� + Li1+��e−ik�x� , �103�

here Li�z� is a polylogarithm function. Using the series representation of the polylogarithm:36

Li�ez� = ��1 − ��− z�−1 + �
n=0

�
�� − n�

n!
zn, �z� � 2�,  � 1,2,3, . . . , �104�

e obtain

Ĵ��k�x� = A���x���k�� + 2�
n=0

�
��1 + � − 2n�

�2n�!
��x�2n�− k2�n, � � 0,1,2,3, . . . , �105�

here ��z� is the Riemann zeta-function, �k�x��2�, and

A� = 2��− ��cos���

2
� . �106�

rom �105�, we have

J��0� = 2��1 + �� .
hen
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Ĵ��k�x� − Ĵ��0� = A���x���k�� + 2�
n=1

�
��1 + � − 2n�

�2n�!
��x�2n�− k2�n, �107�

here ��0,1 ,2 ,3 , . . ., and �k�x��2�.
Substitution of �107� into Eq. �101� gives

�2û�k,t�
�t2 + gA���x���k��û�k,t� + 2g�

n=1

�
��� + 1 − 2n�

�2n�!
��x�2n�− k2�nû�k,t� − F��F�un�t��	 = 0.

�108�

We will be interested in the limit �x→0. Then Eq. �108� can be written in a simple form

�2

�t2 û�k,t� + G�T̂�,��k�û�k,t� − F��F�un�t��	 = 0, � � 0,1,2, . . . , �109�

here we use the finite parameter

G� = g��x�min��;2	, �110�

nd

T̂�,��k� = �A��k�� − ��x�2−���� − 1�k2, 0 � � � 2 �� � 1�
��x��−2A��k�� − ��� − 1�k2, � � 2 �� � 3,4, . . . � .

� �111�

he expression for T̂�,��k� can be considered as a Fourier transform of the interaction operator �2�.
rom �110�, we see that g→� for the limit �x→0, and finite value of G�.

Note that �111� has a scale k0:

k0 = �A�/��� − 1��1/�2−����x�−1 �112�

uch that the nontrivial expression T̂�,��k���k�� appears only for 0���2, ���1�, k�k0.
The transition to the limit �x→0 in Eq. �109� gives

�2

�t2 ũ�k,t� + G�T̂��k�ũ�k,t� − F−1�F�u�x,t��	 = 0 �� � 0,1,2, . . . � , �113�

here

T̂��k� = �A��k��, 0 � � � 2, � � 1

− ��� − 1�k2, 2 � � , � � 3,4,¼ .
� �114�

The inverse Fourier transform to �113� is

�2

�t2u�x,t� + G�T��x�u�x,t� − F�u�x,t�� = 0 � � 0,1,2, . . . , �115�

here

T��x� = F−1�T̂��k�	 = �− A���/��x�� �0 � � � 2, � � 1�
��� − 1��2/��x�2 �� � 2, � � 3,4, . . . � .

�
ere, we have used the connection between the Riesz fractional derivative and its Fourier

1
ransform:
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�k�� ↔ −
��

��x��
, k2 ↔ −

�2

��x�2
. �116�

he properties of the Riesz derivative can be found in Refs. 1–4.
As the result, we obtain the continuous medium equations

�2

�t2u�x,t� − G�A�

��

��x��
u�x,t� = F�u�x,t��, 0 � � � 2 �� � 1� , �117�

nd

�2

�t2u�x,t� + G���� − 1�
�2

��x�2
u�x,t� = F�u�x,t��, � � 2 �� � 3,4, . . . � . �118�

Analogously, the continuous limit for the system

�un

�t
= g �

m=−�

m�n

+�

�n − m�−�−1�un − um� + F�un� �119�

ives the partial differential equations

�

�t
u�x,t� − G�A�

��

��x��
u�x,t� = F�u�x,t��, 0 � � � 2 �� � 1� , �120�

nd

�

�t
u�x,t� + G���� − 1�

�2

��x�2
u�x,t� = F�u�x,t��, � � 2 �� � 3,4, . . . � . �121�

or F�u�=0, Eq. �120� is the fractional kinetic equation that describes the fractional
uperdiffusion.37–39 If F�u� is a sum of linear and cubic terms, then Eq. �120� has the form of the
ractional Ginzburg-Landau equation.40–44 A remarkable property of the dynamics described by the
quation with fractional space derivatives is that the solutions have power-like tails.

X. NONLINEAR LONG-RANGE INTERACTION

In this section, we consider the discrete equations with nonlinear long-range interaction:

În�u� = �
m=−�

m�n

+�

J��n,m��f�un� − f�um�� , �122�

here f�u� is a nonlinear function of un�t�, and J��n ,m� defines the �-interaction. As the example
f J��n ,m�=J��n−m�, we can use the functions

J��n� =
�− 1�n

��1 + �/2 + n���1 + �/2 − n�
. �123�

e consider the interaction with f�u�=u2 and f�u�=u−gu2 that gives the Burgers, Korteweg-de
ries, and Boussinesq equations in the continuous limit for �=1,2 ,3 ,4. If we use the fractional �

n Eq. �123�, we can obtain the fractional generalization of these equations.

Proposition 7: The Fourier series transform F� maps the equations of motion
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�2un�t�
�t2 = g �

m=−�

m�n

+�

J��n − m��f�un� − f�um�� + F�un� , �124�

here F is an external on-site force, into

�2û�k,t�
�t2 = g�Ĵ��0� − Ĵ��k�x��F��f�un�	 + F��F�un�	 , �125�

here û�k , t�=F��un�t�	, and Ĵ��k�x�=F��J�n�	.
If J��n� defines the �-interaction, then the continuous limit �x→0 and the inverse Fourier

ransform give

�2u�x,t�
�t2 = G�A�

��

��x��
f�u�x,t�� + F�u�x,t�� , �126�

here G�=g��x�� is a finite parameter.
Proof: The Fourier series transform of the interaction term �122� can be presented as

�
n=−�

+�

e−ikn�xÎn�u� = �
n=−�

+�

�
m=−�

m�n

+�

e−ikn�xJ�n,m��f�un� − f�um��

= �
n=−�

+�

�
m=−�

m�n

+�

e−ikn�xJ�n,m�f�un� − �
n=−�

+�

�
m=−�

m�n

+�

e−ikn�xJ�n,m�f�um� . �127�

or the first term on the r.h.s. of �127�:

�
n=−�

+�

�
m=−�

m�n

+�

e−ikn�xJ�n,m�f�un� = �
n=−�

+�

e−ikn�xf�un� �
m�=−�

m��0

+�

J�m�� = F��f�un�	Ĵ��0� , �128�

here we use J�m�+n ,n�=J�m��. For the second term on the r.h.s. of �127�:

�
n=−�

+�

�
m=−�

m�n

+�

e−ikn�xJ�n,m�f�um� = �
m=−�

+�

f�um� �
n=−�

n�m

+�

e−ikn�xJ�n,m�

= �
m=−�

+�

f�um�e−ikm�x �
n�=−�

n��0

+�

e−ikn��xJ�n�� = F��f�un�	Ĵ��k�x� ,

�129�

here we use J�m ,n�+m�=J�n��.
As the result, we obtain Eq. �125�.
For the limit �x→0, Eq. �125� can be written as

�2

�t2 û�k,t� − G�T̂�,��k�û�k,t� − F��F�un�t��	 = 0, �130�

�
here we use finite parameter G�=g��x� , and
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T̂�,��k� = − A��k�� − R��k�x���x�−�. �131�

ere, the function R� satisfies the condition

lim
�x→0

R��k�x�
��x��

= 0.

n the limit �x→0, we get

�2

�t2 ũ�k,t� − G�T̂��k�F−1�f�u�x,t��	 − F−1�F�u�x,t��	 = 0, �132�

here

ũ�k,t� = Lû�k,t�, T̂��k� = LT̂�,��k� = − A��k��.

he inverse Fourier transform of �132� gives

�2

�t2u�x,t� − G�T��x�f�u�x,t�� − F�u�x,t�� = 0, �133�

here T��x� is an operator

T��x� = F−1�T̂��k�	 = A�

��

��x��
. �134�

As the result, we obtain the continuous medium equation �126�.
Let us consider examples of quadratic-nonlinear long-range interactions.
1� The continuous limit of the lattice equations

�un�t�
�t

= g1 �
m=−�

m�n

+�

J1�n,m��un
2 − um

2 � + g2 �
m=−�

m�n

+�

J2�n,m��un − um� , �135�

here Ji�n� �i=1,2� define the �i-interactions with �1=1 and �2=2, gives the Burgers equation45

hat is a nonlinear partial differential equation of second order:

�

�t
u�x,t� + G1u�x,t�

�

�x
u�x,t� − G2

�2

�x2u�x,t� = 0. �136�

t is used in fluid dynamics as a simplified model for turbulence, boundary layer behavior, shock
ave formation, and mass transport. If we consider J2�n ,m� with fractional �2=�, then we get the

ractional Burgers equation that is suggested in Ref. 46.
2� The continuous limit of the system of equations

�un�t�
�t

= g1 �
m=−�

m�n

+�

J1�n,m��un
2 − um

2 � + g3 �
m=−�

m�n

+�

J3�n,m��un − um� , �137�

here Ji�n� �i=1,3� define the �i-interactions with �1=1 and �3=3, gives Korteweg-de Vries
KdV� equation

�

�t
u�x,t� − G1u�x,t�

�

�x
u�x,t� + G3

�3

�x3u�x,t� = 0. �138�

irst formulated as part of an analysis of shallow-water waves in canals, it has subsequently been

ound to be involved in a wide range of physics phenomena, especially those exhibiting shock
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aves, traveling waves, and solitons. Certain theoretical physics phenomena in the quantum
echanics domain are explained by means of a KdV model. It is used in fluid dynamics, aerody-

amics, and continuum mechanics as a model for shock wave formation, solitons, turbulence,
oundary layer behavior, and mass transport.

If we use noninteger �i-interactions for Ji�n�, then we get the fractional generalization of the
dV equation.47,48

3� The continuous limit of

�2un�t�
�t2 = g2 �

m=−�

m�n

+�

J2�n,m��f�un� − f�um�� + g4 �
m=−�

m�n

+�

J4�n,m��un − um� , �139�

here

f�u� = u − gu2,

nd Ji�n� define the �i-interactions with �2=2 and �4=4, gives the Boussinesq equation that is a
onlinear partial differential equation of fourth order

�2

�t2u�x,t� − G2
�2

�x2u�x,t� + gG2
�2

�x2u2�x,t� + G4
�4

�x4u�x,t� = 0. �140�

his equation was formulated as part of an analysis of long waves in shallow water. It was
ubsequently applied to problems in the percolation of water in porous subsurface strata. It also
rops up in the analysis of many other physical processes.

. FRACTIONAL DERIVATIVES FROM DISPERSION LAW

Let us consider the three-dimensional lattice that is described by the equations of motion

�un

�t
= g �

m=−�

m�n

+�

J�n,m��un − um� + F�un� , �141�

here n= �n1 ,n2 ,n3�, and J�n ,m�=J�n−m�=J�m−n�. We suppose that un�t� are Fourier coeffi-
ients of the function û�k , t�:

û�k,t� = �
n=−�

+�

un�t�e−ikrn = F��un�t�	 , �142�

here k= �k1 ,k2 ,k3�, and

rn = �
i=1

3

niai.

ere, ai are translational vectors of the lattice. The continuous medium model can be derived in
he limit �ai�→0.

To derive the equation for û�k , t�, we multiply �141� by exp�−ikrn�, and summing over n.
hen, we obtain

�û�k,t�
�t

= g�Ĵ��0� − Ĵ��ka��û�k,t� + F��F�un�	 , �143�
here F��F�un�	 is an operator notation for the Fourier series transform of F�un�, and
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Ĵ��ka� = �
n=−�

+�

e−ikrnJ�n� . �144�

For the three-dimensional lattice, we define the �-interaction with �= ��1 ,�2 ,�3�, as an in-
eraction that satisfies the conditions:

lim
k→0

�Ĵ��k� − Ĵ��0��
�ki��i

= A�i
�i = 1,2,3� , �145�

here 0� �A�i
���. The conditions �145� mean that

Ĵ��0� − Ĵ��k� = �
i=1

3

A�1
�ki��i + �

i=1

3

R�i
�k� , �146�

here

lim
ki→0

R�i
�k�/�ki��i = 0. �147�

n the continuous limit ��ai�→0�, the �-interaction in the three-dimensional lattice gives the
ontinuous medium equations with the derivatives ��1 /�x�1, ��2 /�y�2, and ��3 /�z�3.

Let us recall the appearance of the nonlinear parabolic equation.49–52 Consider wave propa-
ation in some media and present the wave vector k in the form

k = k0 + � = k0 + �� + ��, �148�

here k0 is the unperturbed wave vector and subscripts ��, �� are taken, respectively, to the
irection of k0. A symmetric dispersion law

��k� = ��k� = Ĵ��ka� − Ĵ��0� �149�

or �= �k−k0��k0= �k0� can be written as

��k� = ���k�� = ��k0 + ��k� − k0��  ��k0� + vg��k� − k0� + 1
2vg���k� − k0�2, �150�

here

vg = � ��

�k
�

k=k0

, vg� = � �2�

�k2 �
k=k0

, �151�

nd

�k� = �k0 + �� = ��k0 + ���2 + ��
2  k0 + �� +

1

2k0
��

2 . �152�

ubstitution of �152� into �150� gives

��k�  �0 + vg�� +
vg

2k0
��

2 +
vg�

2
��

2, �153�

here �0=��k0�. Expressions �143� and �153� in the dual space �“momentum representation”�

orrespond to the following equation for u=u�r , t� in the coordinate space:
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i
�u

�t
= �0u − ivg

�u

�x
−

vg

2k0
��u −

vg�

2
��u + F�u� �154�

ith respect to the field u=u�t ,x ,y ,z�, where x is along k0, and we use the operator correspon-
ence between the dual space and usual space-time:

��k� ↔ i
�

�t
, �� ↔ − i

�

�x
,

�155�

����2 ↔ − �� = −
�2

�y2 −
�2

�z2 , ����2 ↔ − �� = −
�2

�x2 .

quation �154� is known as the nonlinear parabolic equation.49–52 The change of variables from
t ,x ,y ,z� to �t ,x−vgt ,y ,z� gives

− i
�u

�t
=

vg

2k0
��u +

vg�

2
��u − �0u − F�u� , �156�

hich is also known as the nonlinear Schrödinger equation.
Wave propagation in oscillatory medium with long-range interaction of oscillators can be

asily generalized by rewriting the dispersion law �153�, in the following way:

��k� = �0 + vg�� + G����
2 ��/2 + G���

2�/2 �1 � �, � 2� �157�

ith new finite constants G� and G.
Using the connection between Riesz fractional derivative and its Fourier transform1

�− ����/2 ↔ ���
2 ��/2 �− ���/2 ↔ ���

2�/2, �158�

e obtain from �157�

i
�u

�t
= − ivg

�u

�x
+ G��− ����/2u + G�− ���/2u + �0u + F�u� , �159�

here u=u�t ,x ,y ,z�. By changing the variables from �t ,x ,y ,z� to �t ,� ,y ,z�, �=x−vgt, and using

�− ���/2 =
�

��x�
=

�

����
, �160�

e obtain from �159�

i
�u

�t
= G��− ����/2u + G�− ���/2u + �0u + F�u� , �161�

hich can be called the fractional nonlinear parabolic equation. For G=0 and F�u�=b�u�2u, we
et the fractional Ginzburg-Landau equation.40–44

We may consider one-dimensional simplifications of Eq. �161�, i.e.,

i
�u

�t
= G

�u

����
+ �0u + F�u� , �162�

here u=u�t ,��, �=x−vgt, or

i
�u

�t
= G�

��u

��z��
+ �0u + F�u� , �163�
here u=u�t ,z�.
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Let us comment on the physical structure of �161�. The first and second terms on the right-
and side are related to wave propagation in oscillatory medium with long-range interaction of
scillators. The term with F�u� on the right-hand side of Eqs. �159� and �161� correspond to wave
nteraction due to the nonlinear properties of the media. Thus, Eq. �161� can describe fractal
rocesses of self-focusing and related issues.

I. CONCLUSION

One-dimensional system of long-range interacting oscillators serves as a model for numerous
pplications in physics, chemistry, biology, etc. Long-range interactions are important types of
nteractions for complex media. An interesting situation arises when we consider the wide class of
-interactions, where � is noninteger. A remarkable feature of these interactions is the existence of
transform operation that replaces the set of coupled individual oscillator equations by the con-

inuous medium equation with the space derivative of noninteger order �. Such transform opera-
ion is an approximation that appears in the continuous limit. This limit allows us to consider
ifferent models in a unified way by applying tools of fractional calculus.53,54

Periodic space-localized oscillations, which arise in discrete systems, have been widely stud-
ed for short-range interactions. In the paper, the systems with long-range interactions were con-
idered. The method to map the discrete equations of motion into the continuous fractional order
ifferential equation is developed by the transform operation. It is known that the properties of a
ystem with long-range interaction are very different from short-range one. The method of frac-
ional calculus can be a new tool for the analysis of different lattice systems.

PPENDIX: DIVERGENCE OF NONINVARIANT INTERACTION TERM

Noninvariant interaction term leads to the infinity in the continuous medium equation. To
emonstrate this property, we prove the following proposition.

Proposition 8. The �-interaction term

g �
m=−�

m�n

+�

J�n,m�um, �A1�

here J�n ,m�= �n−m�−��+1� is not translation-invariant. The transform operation T̂ of the term
A1) leads to the divergence of order ��x�−� in the continuous medium equations.

Let us prove this proposition for 0���2 ���1�, and the following equations of motion

�2un

�t2 + g �
m=−�

m�n

+�

J�n,m�um − F�un� = 0. �A2�

ince

�
m=−�

m�n

+�

J�n,m� = �
m=−�

m�n

+�

�n − m�−��+1� � 0,

hen the interparticle interaction term in �A2� is noninvariant with respect to translations. To derive
he equation for û�k , t�, we multiply Eq. �A2� by exp�−ikn�x�, and summing over n. Then, we
btain

�2û�k,t�
�t2 + gĴ��k�x�û�k,t� − F��F�un�t��	 = 0, �A3�

ˆ
here J��k� is defined by �102�. Using �105�, we present Eq. �A3� in the form
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�2û�k,t�
�t2 + gA���x���k��û�k,t� + 2g��� + 1�û�k,t� + 2g�

n=1

�
��� + 1 − 2n�

�2n�!
��x�2n�− k2�nû�k,t�

− F��F�un�t��	 = 0, �A4�

here � is the Riemann zeta-function and A� is defined by �106�. For the limit �x→0 and 0
��2 ���1�, Eq. �A4� can be written as

�2

�t2 û�k,t� + G�A��k��û�k,t� + 2g��� + 1�û�k,t� − F��F�un�t��	 = 0, �A5�

here 0���2, ��1, and G�=g��x�� is a finite parameter. Note that g→� for �x→0, if G� is
finite. Therefore, the transition to the limit �x→0 in Eq. �A5� gives the divergence term

lim
�x→0

g��� + 1�û�k,t� = ��� + 1�G�ũ�k,t� lim
�x→0

��x�−� → � . �A6�

o have the continuous model equations without divergences, we must consider �um�t�−un�t��
nstead of um�t� in the interaction terms �A1�.
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Coupled double well ��4� one-dimensional potentials abound in both condensed
matter physics and field theory. Here we provide an exhaustive set of exact periodic
solutions of a coupled �4 model in an external field in terms of elliptic functions
�domain wall arrays� and obtain single domain wall solutions in specific limits. We
also calculate the energy and interaction between solitons for various solutions.
Both topological and nontopological �e.g., some pulse-like solutions in the presence
of a conjugate field� domain walls are obtained. We relate some of these solutions
to the recently observed magnetic domain walls in certain multiferroic materials
and also in the field theory context wherever possible. Discrete analogs of these
coupled models, relevant for structural transitions on a lattice, are also
considered. © 2006 American Institute of Physics. �DOI: 10.1063/1.2345110�

. INTRODUCTION

There are many physical situations, both in condensed matter and field theory, where two
ouble well potentials model the phenomena of interest with a specific coupling between the two
elds. One such phenomenon of current intense interest is the coexistence of magnetism and
erroelectricity �i.e., magnetoelectricity� in a given material. This is a highly desired functionality
n technological applications involving cross-field response, switching, and actuation. In general,
his phenomenon is referred to as multiferroic behavior.1 Recently, two different classes of �single
hase� multiferroics, namely the orthorhombically distorted perovskites2 and rare earth hexagonal
tructures,3 have emerged. The latter show magnetic domain walls in the basal planes which can
e modeled by a coupled �4 model4 in the presence of a magnetic field. Coupled �4 models5–7 also
rise in the context of many ferroelectric and other second-order phase transitions. The coupled �4

odel for multiferroics4 has a biquadratic coupling whereas the coupled �4 model for a surface
hase transition with hydration forces,7 relevant in biophysics context, has a bilinear coupling.
ther types of couplings are also known for structural phase transitions with strain.8

Similarly, there are analogous coupled models in field theory.9,10 Several related models have
een discussed in the literature and their soliton solutions have been found11–18 including periodic
nes.19–21 Here our motivation is to obtain various possible domain wall solutions of these models
ith either a bilinear or a biquadratic coupling and then connect to experimental observations
herever possible.

The paper is organized as follows. In Sec. II we provide the solutions for the coupled �4

odel with an explicit biquadratic coupling in the presence of an external field �with an additional
inear-quadratic coupling� and calculate their energy as well as interaction between the solitons.

e also obtain solutions in the limit of no field. In Sec. III we consider a coupled �4 model with

�Electronic mail: khare@iopb.res.in
�
Electronic mail: avadh@lanl.gov
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bilinear coupling. In Sec. IV we obtain several solutions of a coupled discrete �4 model with
iquadratic coupling �but without an external field�. In Sec. V we obtain a solution of the coupled
iscrete �4 model with bilinear coupling. To the best of our knowledge, no solution of the coupled
4 model in an external field is known. Similarly, no solutions of either the coupled continuum �4

odel with a bilinear coupling or the discrete case are known. Even for the continuum coupled
ase with a biquadratic coupling and zero external field, out of the six possible solutions only three
ere known previously20 but the other three are new. Finally, we conclude in Sec. VI with remarks
n related models.

I. COUPLED �4 SOLUTIONS IN AN EXTERNAL FIELD

We consider several exact solutions of the coupled �4 system in a magnetic field �Hz� as given
n Ref. 4 for hexagonal multiferroics. In particular, there are nine periodic solutions �valid for
rbitrary m, the modulus of elliptic functions�, which at m=1 reduce to just four solutions. In
articular, there is one “bright-bright,” one “dark-dark,” and one each of bright-dark and dark-
right solutions. Notice that the equations of motion are asymmetric in the two scalar fields �� and
� due to different coupling of the scalar fields to the magnetic field. Thus, the dark-bright and the
right-dark solutions are distinct.

The potential, with a biquadratic coupling between the two fields and in an external magnetic
eld �Hz�, is given by

V = �1�2 + �1�4 + �2�2 + �2�4 + ��2�2 − Hz��1� + �2�3 + �3��2� , �1�

here �i, �i, �, and �i are material �or system� dependent parameters. Hence the �static� equations
f motion are

d2�

dx2 = 2�1� + 4�1�3 + 2���2 − Hz��1 + 3�2�2 + �3�2� , �2�

d2�

dx2 = 2�2� + 4�2�3 + 2��2� − 2Hz�3�� . �3�

hese coupled set of equations admit several periodic solutions which we now discuss one by one
ystematically.

For static solutions the energy is given by

E =� �1

2
�d�

dx
�2

+
1

2
�d�

dx
�2

+ V��,��	dx , �4�

here the limits of integration are from −� to � in the case of hyperbolic solutions �i.e., single
olitons� on the full line. On the other hand, in the case of periodic solutions �i.e., soliton lattices�,
he limits are from −K�m� to +K�m�. Here K�m� �and E�m� below� denote the complete elliptic
ntegral of the first �and second� kind.22 Using equations of motion, one can show that for all of
ur solutions

V��,�� = �1

2
�d�

dx
�2

+
1

2
�d�

dx
�2	 + C , �5�

here the constant C in general varies from solution to solution. Hence the energy Ê=E−
Cdx is

iven by
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Ê � E −� Cdx =� ��d�

dx
�2

+ �d�

dx
�2	dx . �6�

n the following we will give explicit expressions for energy in the case of all nine periodic
olutions �and hence the corresponding four hyperbolic solutions�. In each case we also provide an
xpression for the constant C.

. Solution I

We look for the most general periodic solutions in terms of the Jacobi elliptic functions
n�x ,m�, cn�x ,m�, and dn�x ,m�.22 It is not difficult to show that

� = F + Asn�D�x + x0�,m�, � = G + B sn�D�x + x0�,m� , �7�

s an exact solution provided the following eight coupled equations are satisfied:

2�1F + 4�1F
3 + 2�FG2 − Hz�1 − 3Hz�2F

2 − Hz�3G
2 = 0, �8�

2�1A + 12�1F
2A + 4�BFG + 2�AG2 − 6Hz�2AF − 2Hz�3BG = − �1 + m�AD2, �9�

12�1FA2 + 2�FB2 + 4�ABG − 3Hz�2A
2 − Hz�3B

2 = 0, �10�

2�1A
2 + �B2 = mD2, �11�

2�2G + 4�2G
3 + 2�GF2 − 2Hz�3GF = 0, �12�

2�2B + 12�2G
2B + 4�AFG + 2�BF2 − 2Hz�3�BF + AG� = − �1 + m�BD2, �13�

12�2GB2 + 2�GA2 + 4�ABF − 2Hz�3AB = 0, �14�

2�2B
2 + �A2 = mD2. �15�

ere A and B denote the amplitudes of the “kink lattice,” F and G are constants, D is an inverse
haracteristic length, and x0 is the �arbitrary� location of the kink. Five of these equations deter-
ine the five unknowns A ,B ,D ,F ,G while the other three equations give three constraints be-

ween the nine parameters �1,2 ,�1,2 ,� ,Hz ,�1 ,�2 ,�3. In particular, A and B are given by

A2 =
mD2�2�2 − ��
�4�1�2 − �2�

, B2 =
mD2�2�1 − ��
�4�1�2 − �2�

. �16�

hus this solution exists provided 2�1�� and 2�2��.
It may be noted here that in case both F ,G=0 then no solution exists so long as Hz�0. In fact

his is true for all nine solutions that we discuss in the following. There are two special cases �i.e.,
hen either F=0 or G=0� when the analysis becomes somewhat simpler.

G=0, F�0: In this case A ,B are again given by Eq. �16� while

�1 + m�D2 =
�2�3Hz

2

2�
−

2�1�

�3
, F =

�3Hz

2�
. �17�

he three �and not four, since one of the equations is identically satisfied� constraints are

�1 =
�2�

, �1 =
�2�3Hz

2

+
�1�

, �2 =
�3

2Hz
2

−
�2�3Hz

2

+
�1�

. �18�

2�3 2� �3 4� 4� �3
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m=1: In this limiting case we have a bright-bright soliton solution given by

� = F + A tanh�D�x + x0��, � = B tanh�D�x + x0�� , �19�

ith A, B, and D determined by

A2 =
D2�2�2 − ��
�4�1�2 − �2�

, B2 =
D2�2�1 − ��
�4�1�2 − �2�

, 2D2 =
�2�3Hz

2

2�
−

2�1�

�3
, �20�

hile the other relations remain unchanged and are again given by Eqs. �17� and �18�.
F=0, G�0: In this case A ,B are again given by Eq. �16� with

�1 + m�D2 = 4�2 +
2�3HzAG

B
, G2 = −

�2

2�2
, �21�

nd the corresponding four constraints are

�2 =
�3�2

2�1
, �1 + m�D2 = − 2�1 − 2�G2 +

2�3HzBG

A
,

�22�
4�ABG = 3Hz�2A

2 + Hz�3B
2, �3HzAB = �GA2 + 6�2GB2.

he solution at m=1 can be easily written down as above.
Special case of Hz=0: In this case the field equations are completely symmetric in the two

elds � ,� and solution exists even if both F ,G=0. In particular, with Hz=0, the solution is as
iven by Eq. �7� but with F=0=G20 where A ,B are again as given by Eq. �16� and further both

1 ,�2 turn out to be negative, i.e.,

�1 = �2 = −
�1 + m�D2

2
. �23�

Special case of �2=4�1�2: One can show that the solution �7� exists even in case �2

4�1�2. It turns out such a solution exists only if

2�1 = 2�2 = � , �24�

nd that in this case one cannot determine A ,B. However, they must satisfy the constraint

A2 + B2 =
mD2

�
. �25�

ther relations can be easily worked out depending on if F or G �or neither� is zero. For example,
n case G=0, F�0, one has

�2 = �3, �2 =
�1�

�3
, �1 − �2 =

�3
2Hz

2

2�
. �26�

Energy: Corresponding to the periodic solution �Eq. �7� with G=0� the energy Ê and the
onstant C are given by

Ê =
2�A2 + B2�D

3m
��1 + m�E�m� − �1 − m�K�m�� ,

�27�
C = − 1 �A2 + B2�D2 − F2��1 + 3�1F

2 − 2Hz�2F� .
2
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It is worth pointing out that even in the case of the solution �7� with either F=0, G�0 or both

,G nonzero, the energy Ê is the same. Only the value of C is different. For example, in the case
f F=0, G�0, C is given by

C = −
1

2
�A2 + B2�D2 −

�2
2

4�2
, �28�

hile in the case of both F, G being nonzero, C is

C = − 1
2 �A2 + B2�D2 − F2��1 + 3�1F

2 − 2Hz�2F� − G2��2 + 3�2G
2 + 3�F2 − 2Hz�3F� . �29�

On using the expansion formulas for E�m� and K�m� around m=1 as given in22

K�m� = ln� 4
�1 − m

� +
�1 − m�

4 �ln� 4
�1 − m

� − 1	 + ¯ , �30�

E�m� = 1 +
�1 − m�

2 �ln� 4
�1 − m

� −
1

2	 + ¯ , �31�

or m near one, the energy of the periodic solution can be rewritten as the energy of the corre-
ponding hyperbolic �bright-bright� soliton solution �Eq. �19�� plus the interaction energy. We find

Ê = Ekink + Eint = �A2 + B2�D�4

3
+

�1 − m�
3

	 . �32�

ote that this solution exists only when 2�1	�, 2�2	� and 4�1�2	�2. The interaction energy
anishes at exactly m=1, as it should.

. Solution II

A different type of solution �“pulse lattice”� is given by

� = F + A cn�D�x + x0�,m�, � = G + B cn�D�x + x0�,m� , �33�

rovided the following eight coupled equations are satisfied:

2�1F + 4�1F
3 + 2�FG2 − Hz�1 − 3Hz�2F

2 − Hz�3G
2 = 0, �34�

2�1A + 12�1F
2A + 4�BFG + 2�AG2 − 6Hz�2AF − 2Hz�3BG = �2m − 1�AD2, �35�

12�1FA2 + 2�FB2 + 4�ABG − 3Hz�2A
2 − Hz�3B

2 = 0, �36�

2�1A
2 + �B2 = − mD2, �37�

2�2G + 4�2G
3 + 2�GF2 − 2Hz�3GF = 0, �38�

2�2B + 12�2G
2B + 4�AFG + 2�BF2 − 2Hz�3�BF + AG� = �2m − 1�BD2, �39�

12�2GB2 + 2�GA2 + 4�ABF − 2Hz�3AB = 0, �40�

2�2B
2 + �A2 = − mD2. �41�

otice that two of these equations are meaningful only if �
0 since �1 ,�2�0 from stability

onsiderations. Thus, we write �=−�. Five of these equations determine the five unknowns
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,B ,D ,F ,G while the other three equations give three constraints between the nine parameters

1,2 ,�1,2 ,� ,Hz ,�1 ,�2 ,�3. In particular, A and B are given by

A2 =
mD2�2�2 + ��
��2 − 4�1�2�

, B2 =
mD2�2�1 + ��
��2 − 4�1�2�

. �42�

hus this solution exists provided �2�4�1�2.
There are two special cases when the analysis becomes somewhat simpler and we consider

oth cases one by one.
G=0, F�0: In this case A ,B are again given by Eq. �42� while

�2m − 1�D2 =
�2�3Hz

2

2�
−

2�1�
�3

, F = −
�3Hz

2�
, �43�

nd the corresponding three constraints are

�1 = −
�2�
2�3

, �1 = −
�2�3Hz

2

2�
−

�1�
�3

, �2 = −
�3

2Hz
2

4�
+

�2�3Hz
2

4�
−

�1�
�3

. �44�

=0, G�0: In this case A ,B are again given by Eq. �42� with

�2m − 1�D2 = 2�1 −
2�3HzBG

A
− 2�G2, G2 = −

�2

2�2
, �45�

nd the corresponding four constraints are

�2 =
�3�2

2�1
, �2m − 1�D2 = − 4�2 −

2�3HzAG

B
,

�46�
− 4�ABG = 3Hz�2A

2 + Hz�3B
2, �3HzAB = − �GA2 + 6�2GB2.

Special case of Hz=0: In this case the field equations are completely symmetric in the two
elds � ,� and a solution exists even when both F ,G=0. In particular, with Hz=0, the solution is
s given by Eq. �33� but with F=0=G20 where A ,B are again as given by Eq. �42� and further-
ore, �1 ,�2 are positive �negative� so long as m� �
�1/2, i.e.,

�1 = �2 =
�2m − 1�D2

2
. �47�

Energy: Corresponding to the “pulse lattice” solution �Eq. �33� with G=0� the energy is given
y

Ê =
2�A2 + B2�D

3m
��2m − 1�E�m� + �1 − m�K�m�� ,

�48�
C = − 1

2 �1 − m��A2 + B2�D2 − F2��1 + 3�1F
2 − 2Hz�2F� .

It is worth pointing out that even in the case of the solution �33� with either F=0, G�0 or

oth F, G nonzero, the energy Ê is the same. Only the value of C is different. For example, in the
ase of F=0, G�0, C is given by

C = −
1

2
�1 − m��A2 + B2�D2 −

�2
2

4�2
, �49�
hile in the case of both F, G being nonzero, C is
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C = − 1
2 �1 − m��A2 + B2�D2 − F2��1 + 3�1F

2 − 2Hz�2F� − G2��2 + 3�2G
2 + 3�F2 − 2Hz�3F� .

�50�

For m near one, the energy of this periodic solution can be rewritten as the energy of the
orresponding hyperbolic �dark-dark� soliton solution

� = F + A sech�D�x + x0��, � = B sech�D�x + x0�� , �51�

lus the interaction energy. We find

Ê = Epulse + Eint = �A2 + B2�D�2

3
−

5�1 − m�
6

+ �1 − m�ln� 4
�1 − m

�	 . �52�

ote that this solution exists only when �
0, 4�1�2
�2. Again, the interaction energy vanishes
t m=1.

. Solution III

In this case, there is another “pulse lattice” solution which is given by

� = F + A dn�D�x + x0�,m�, � = G + B dn�D�x + x0�,m� , �53�

rovided the following eight coupled equations are satisfied

2�1F + 4�1F
3 + 2�FG2 − Hz�1 − 3Hz�2F

2 − Hz�3G
2 = 0, �54�

2�1A + 12�1F
2A + 4�BFG + 2�AG2 − 6Hz�2AF − 2Hz�3BG = �2 − m�AD2, �55�

12�1FA2 + 2�FB2 + 4�ABG − 3Hz�2A
2 − Hz�3B

2 = 0, �56�

2�1A
2 + �B2 = − D2, �57�

2�2G + 4�2G
3 + 2�GF2 − 2Hz�3GF = 0, �58�

2�2B + 12�2G
2B + 4�AFG + 2�BF2 − 2Hz�3�BF + AG� = �2 − m�BD2, �59�

12�2GB2 + 2�GA2 + 4�ABF − 2Hz�3AB = 0, �60�

2�2B
2 + �A2 = − D2. �61�

otice that �as in the cn–cn case� two of these equations are meaningful only if �
0 since

1 ,�2�0 from stability considerations. We therefore write �=−�. Five of these equations de-
ermine the five unknowns A ,B ,D ,F ,G while the other three equations give three constraints
etween the nine parameters �1,2 ,�1,2 , � ,Hz ,�1 ,�2 ,�3. In particular, A and B are given by

A2 =
D2�2�2 + ��
��2 − 4�1�2�

, B2 =
D2�2�1 + ��
��2 − 4�1�2�

. �62�

There are two special cases when the analysis becomes somewhat simpler and we consider
oth the cases one by one.
G=0, F�0: In this case A ,B are again given by Eq. �62� while
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�2 − m�D2 =
�2�3Hz

2

2�
−

2�1�
�3

, F = −
�3Hz

2�
, �63�

nd the three constraints are

�1 = −
�2�
2�3

, �1 = −
�2�3Hz

2

2�
−

�1�
�3

, �2 = −
�3

2Hz
2

4�
+

�2�3Hz
2

4�
−

�1�
�3

. �64�

F=0, G�0: In this case A ,B are again given by Eq. �62� with

�2 − m�D2 = 2�1 −
2�3HzBG

A
− 2�G2, G2 = −

�2

2�2
, �65�

nd the corresponding four constraints are

�2 =
�3�2

2�1
, �2 − m�D2 = − 4�2 −

2�3HzAG

B
,

�66�
− 4�ABG = 3Hz�2A

2 + Hz�3B
2, �3HzAB = − �GA2 + 6�2GB2.

Special case of Hz=0: With Hz=0, the solution is as given by Eq. �53� but with F=0=G20

here A ,B are again as given by Eq. �62� and furthermore, both �1 ,�2 are positive definite:

�1 = �2 =
�2 − m�D2

2
. �67�

Energy: Corresponding to the “pulse lattice” solution �Eq. �53� with G=0� the energy is given
y

Ê =
2�A2 + B2�D

3
��2 − m�E�m� − �1 − m�K�m�� ,

�68�
C = 1

2 �1 − m��A2 + B2�D2 − F2��1 + 3�1F
2 − 2Hz�2F� .

It is worth pointing out that even in the case of the solution �53� with either F=0, G�0 or

oth F, G nonzero, the energy Ê is the same. Only the value of C is different. For example, in the
ase of F=0, G�0, C is given by

C =
1

2
�1 − m��A2 + B2�D2 −

�2
2

4�2
, �69�

hile in the case of both F ,G being nonzero, C is

C = 1
2 �1 − m��A2 + B2�D2 − F2��1 + 3�1F

2 − 2Hz�2F� − G2��2 + 3�2G
2 + 3�F2 − 2Hz�3F� .

�70�

For m near one, the energy of this periodic solution can be rewritten as the energy of the
orresponding hyperbolic �dark-dark� soliton solution as given by Eq. �51� plus the interaction
nergy. We find

Ê = Epulse + Eint = �A2 + B2�D�2

3
−

�1 − m�
2

− �1 − m�ln� 4
�1 − m

�	 . �71�

ote that this solution also exists only when �
0, 4�1�2
�2. Again, the interaction energy

anishes at m=1.

                                                                                                            



D

s
t
n
e

i

A

w

a

w

C

092902-9 Domain wall solutions of coupled �4 models J. Math. Phys. 47, 092902 �2006�

                        
. Solution IV

In addition to the cn–cn and dn–dn solutions discussed earlier, there are two novel �mixed�
oliton solutions of dn–cn and cn–dn type. Let us discuss them one by one. We shall see that for
hese two solutions �in fact it is true for all six solutions that we discuss in the following� G is
ecessarily zero while F is necessarily nonzero �unless Hz=0�, otherwise the solution does not
xist. In particular, it is easily shown that

� = F + A dn�D�x + x0�,m�, � = G + B cn�D�x + x0�,m� , �72�

s a solution provided G=0 and further, the following seven coupled equations are satisfied:

2�1F + 4�1F
3 + �2/m���m − 1�FB2 − Hz�1 − 3Hz�2F

2 + �1/m��1 − m�Hz�3B
2 = 0, �73�

2�1A + 12�1F
2A + �2/m��m − 1��AB2 − 6Hz�2AF = �2 − m�AD2, �74�

12�1FA2 + �2/m��FB2 − 3Hz�2A
2 − �1/m�Hz�3B

2 = 0, �75�

�B2 + 2m�1A
2 = − mD2, �76�

2�2B + 2�1 − m��A2B + 2�BF2 − 2Hz�3BF = �2m − 1�BD2, �77�

2�2B
2 + m�A2 = − mD2, �78�

4�FAB − 2Hz�3AB = 0. �79�

gain a solution exists only if �
0 and thus we write �=−�. The solution �72� exists provided

A2 =
D2�� + 2�2�
��2 − 4�1�2�

, B2 =
mD2�2�1 + ��
��2 − 4�1�2�

, �80�

here

�2 − m�D2 =
2

m
�1 − m��B2 −

2�1�
�3

+
�2�3Hz

2

2�
, F = −

�3Hz

2�
, �81�

nd the three constraints are

�1 = −
�2�
2�3

, �2 = −
�2�3Hz

2

2�
−

�1�
�3

,

�82�

�2m − 1�D2 = 2�2 − 2�1 − m��A2 +
Hz

2�3
2

2�
.

Special case of Hz=0: With Hz=0, the solution is as given by Eq. �72� but with F=0=G
here A and B are again as given by Eq. �80� and furthermore, �2 is positive, i.e.,

�1 =
mD2

2
− 2�1 − m��1A

2, m�2 = m
D2

2
+ 2�1 − m��2B

2 � 0. �83�

Energy: Corresponding to the “pulse lattice” solution �Eq. �72� with G=0� the energy Ê and

are given by
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Ê =
2D

3m
���2 − m�mA2 + �2m − 1�B2�E�m� + �1 − m��B2 − 2mA2�K�m�� ,

�84�

C =
1

2
A2D2�1 − m� − F2��1 + 3�1F

2 − 2Hz�2F� +
�1 − m�

m2 �m�F2 − �2m + �2�1 − m�B2�B2.

or m near one, the energy of this periodic solution can be rewritten as the energy of the corre-
ponding hyperbolic �dark-dark� soliton solution �51� plus the interaction energy. We find

Ê = Epulse + Eint = D�2

3
�A2 + B2� +

�1 − m�
6

�3A2 − 5B2� + �1 − m��B2 − A2�ln� 4
�1 − m

�	 .

�85�

ote that this solution also exists only when �
0, 4�1�2
�2. The interaction energy vanishes
or m=1, as it should.

. Solution V

It is easily shown that there is also a cn–dn solution which is distinct from the above-noted
n–cn solution. This solution is given by

� = F + A cn�D�x + x0�,m�, � = G + B dn�D�x + x0�,m� , �86�

rovided G=0 and the following seven coupled equations are satisfied:

2�1F + 4�1F
3 + 2��1 − m�FB2 − Hz�1 − 3Hz�2F

2 − �1 − m�Hz�3B
2 = 0, �87�

2�1A + 12�1F
2A + 2�1 − m��AB2 − 6Hz�2AF = − �1 − 2m�AD2, �88�

12�1FA2 + 2m�FB2 − 3Hz�2A
2 − mHz�3B

2 = 0, �89�

m�B2 + 2�1A
2 = − mD2, �90�

2�2B − �2/m��1 − m��A2B + 2�BF2 − 2Hz�3BF = �2 − m�BD2, �91�

2m�2B
2 + �A2 = − mD2, �92�

4�FAB − 2Hz�3AB = 0. �93�

Again a solution exists only if �
0 and hence we put �=−�. The solution turns out to be

A2 =
mD2�� + 2�2�
��2 − 4�1�2�

, B2 =
D2�2�1 + ��
��2 − 4�1�2�

, �94�

here

�2m − 1�D2 = − 2�1 − m��B2 −
2�1�

�3
+

�2�3Hz
2

2�
, F = −

�3Hz

2�
, �95�
nd the three constraints are
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�1 = −
�2�
2�3

, �1 = −
�2�3Hz

2

2�
−

�1�
�3

,

�96�

�2 − m�D2 = 2�2 + �2/m��1 − m��A2 +
Hz

2�3
2

2�
.

Special case of Hz=0: With Hz=0, the solution is as given by Eq. �86� but with F=0=G
here A and B are again as given by Eq. �94� and furthermore, �1 is positive, i.e.,

m�1 = m
D2

2
+ 2�1 − m��1A

2 � 0, �2 =
mD2

2
− 2�1 − m��2B

2. �97�

t is worth pointing out that with Hz=0, the field equations are completely symmetric between the
wo fields � and � and hence solutions IV and V are identical in the limit Hz=0.

m=1: In the special case of m=1 and G=0, F�0, all four solutions II to V reduce to a
ark-dark type soliton solution �51�, i.e.,

� = F + A sech�D�x + x0��, � = B sech�D�x + x0�� , �98�

ith A, B, and D given by

A2 =
D2�� + 2�2�
��2 − 4�1�2�

, B2 =
D2�2�1 + ��
��2 − 4�1�2�

, D2 = −
2�1�

�3
+

�2�3Hz
2

2�
, �99�

hile the other relations remain unchanged and are again given by Eqs. �43� and �44�.
Similarly, in the special case of m=1 and F=0, G�0, both solutions II and III reduce to a

ark-dark type soliton solution

� = A sech�D�x + x0��, � = G + B sech�D�x + x0�� , �100�

ith A and B again given by Eq. �99� while

D2 = 2�1 −
2�3HzBG

A
− 2�G2, D2 = − 4�2 −

2�3HzAG

B
. �101�

ther relations remain unchanged and are again given by Eqs. �45� and �46�.
Energy: Corresponding to the “pulse lattice” solution �Eq. �86� with G=0� the energy is given

y

Ê =
2D

3m
���2 − m�mB2 + �2m − 1�A2�E�m� + �1 − m��A2 − 2mB2�K�m�� ,

�102�
C = − 1

2A2D2�1 − m� − F2��1 + 3�1F
2 − 2Hz�2F� + �− �F2 + �2 + �2�1 − m�B2�B2.

or m near one, the energy of this periodic solution can be rewritten as the energy of the corre-
ponding hyperbolic �dark-dark� soliton solution �Eq. �51�� plus the interaction energy. We find

Ê = Epulse + Eint = D�2

3
�A2 + B2� +

�1 − m�
6

�3B2 − 5A2� + �1 − m��A2 − B2�ln� 4
�1 − m

�	 .

�103�

ote that this solution also exists only when �
0, 4�1�2
�2. Again, the interaction energy
anishes at m=1. It is amusing to note that the energy of solution V is easily obtained from that

f solution IV by simply interchanging A and B.
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. Solution VI

Apart from the solutions which at m=1 reduce to the bright-bright and dark-dark solutions,
here are four solutions which at m=1 go over to either bright-dark or dark-bright solutions, which
e now discuss one by one.

One such solution, kink-like in � and pulse-like in �, is

� = F + A sn�D�x + x0�,m�, � = G + B cn�D�x + x0�,m� , �104�

rovided G=0 and the following seven coupled equations are satisfied:

2�1F + 4�1F
3 + 2�FB2 − Hz�1 − 3Hz�2F

2 − Hz�3B
2 = 0, �105�

2�1A + 12�1F
2A + 2�AB2 − 6Hz�2AF = − �1 + m�AD2, �106�

12�1FA2 − 2�FB2 − 3Hz�2A
2 + Hz�3B

2 = 0, �107�

2�1A
2 − �B2 = mD2, �108�

2�2B + 2�A2B + 2�BF2 − 2Hz�3BF = �2m − 1�BD2, �109�

2�2B
2 − �A2 = − mD2, �110�

�4�F − 2Hz�3�AB = 0. �111�

In this case it turns out that the solution exists only if either 2�1���2�2, �2�4�1�2 or
�2���2�1, �2
4�1�2. We find that

A2 =
mD2�� − 2�2�
��2 − 4�1�2�

, B2 =
mD2�2�1 − ��
��2 − 4�1�2�

, �112�

here

− �1 + m�D2 = 2�B2 +
2�1�

�3
−

�2�3Hz
2

2�
, F =

�3Hz

2�
, �113�

nd the three constraints are

�1 =
�2�

2�3
, �1 =

�2�3Hz
2

2�
+

�1�

�3
,

�114�

�2m − 1�D2 = 2�2 + 2�A2 −
Hz

2�3
2

2�
.

Special case of Hz=0: With Hz=0, the solution is again given by Eq. �104� but with F=0
G where A and B are again as given by Eq. �112� and furthermore, �1, �2 turn out to be negative,

.e.,

�1 = −
�1 + m�D2

2
− �B2, �2 = −

D2

2
− 2�2B

2. �115�

Special case of �2=4�1�2: One can show that the solution �104� exists even in case �2
4�1�2. It turns out such a solution exists only if

                                                                                                            



a

F

g

F
s

p

N
	

G

p

092902-13 Domain wall solutions of coupled �4 models J. Math. Phys. 47, 092902 �2006�

                        
2�1 = 2�2 = � , �116�

nd that in this case one cannot determine A, B. However, they must satisfy the constraint

A2 − B2 =
mD2

�
. �117�

urther, one has

�2 = �3, �1 =
�3

2Hz
2

2�
+

�1�

�3
, �2 − �1 =

mD2

2
−

�3
2Hz

2

2�
. �118�

Energy: Corresponding to the mixed “kink-pulse lattice” solution �Eq. �104�� the energy is
iven by

Ê =
2D

3m
���2 − m�mB2 + �1 + m�A2�E�m� − �1 − m��A2 + 2B2�K�m�� ,

�119�
C = − 1

2A2D2 − F2��1 + 3�1F
2 − 2Hz�2F� + �− �F2 + �2 + �2B

2�B2.

or m near one, the energy of this periodic solution can be rewritten as the energy of the corre-
ponding hyperbolic �bright-dark� soliton solution

� = F + A tanh�D�x + x0��, � = B sech�D�x + x0�� , �120�

lus the interaction energy. We find

Ê = Esoliton + Eint = D�2

3
�2A2 + B2� +

�1 − m�
6

�2A2 + 3B2� − �1 − m�B2 ln� 4
�1 − m

�	 .

�121�

ote that this solution also exists only when either 2�1	�	2�2 and �2	4�1�2 or 2�2	�
2�1 and �2�4�1�2. The interaction energy vanishes at m=1.

. Solution VII

It is easy to show that another such �kink- and pulse-like� solution is

� = F + A sn�D�x + x0�,m�, � = G + B dn�D�x + x0�,m� , �122�

rovided G=0 and the following seven coupled equations are satisfied:

2�1F + 4�1F
3 + 2�FB2 − Hz�1 − 3Hz�2F

2 − Hz�3B
2 = 0, �123�

2�1A + 12�1F
2A + 2�AB2 − 6Hz�2AF = − �1 + m�AD2, �124�

12�1FA2 − 2m�FB2 − 3Hz�2A
2 + mHz�3B

2 = 0, �125�

2�1A
2 − m�B2 = mD2, �126�

2�2B + �2/m��A2B + 2�BF2 − 2Hz�3BF = �2 − m�BD2, �127�

2m�2B
2 − �A2 = − mD2, �128�
4�FAB − 2Hz�3AB = 0. �129�
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In this case also it turns out that the solution exists only if either 2�1���2�2 and �2

4�1�2 or 2�2���2�1 and �2
4�1�2. We find that

A2 =
mD2�� − 2�2�
��2 − 4�1�2�

, B2 =
D2�2�1 − ��
��2 − 4�1�2�

, �130�

here

− �1 + m�D2 = 2�B2 +
2�1�

�3
−

�2�3Hz
2

2�
, F =

�3Hz

2�
, �131�

nd the three constraints are

�1 =
�2�

2�3
, �1 =

�2�3Hz
2

2�
+

�1�

�3
,

�132�

�2 − m�D2 = 2�2 + �2/m��A2 −
Hz

2�3
2

2�
.

Special case of Hz=0: With Hz=0, the solution is again given by Eq. �122� but with F=0
G where A and B are again as given by Eq. �130� and furthermore, �1, �2 turn out to be negative,

.e.,

�1 = −
�1 + m�D2

2
− �B2, �2 = −

mD2

2
− 2�2B

2. �133�

m=1: In the special case of m=1 and G=0, F�0, both solutions VI and VII reduce to a
right-dark type of solution as given by Eq. �120�, i.e.,

� = F + A tanh�D�x + x0��, � = B sech�D�x + x0�� , �134�

ith A, B, and D given by

A2 =
D2�� − 2�2�
��2 − 4�1�2�

, B2 =
D2�2�1 − ��
��2 − 4�1�2�

, D2 = − �B2 −
�1�

�3
+

�2�3Hz
2

4�
, �135�

hile the other relations remain unchanged and are again given by Eqs. �131� and �132�.
Special case of �2=4�1�2: One can show that the solution �122� exists even in case �2

4�1�2. It turns out such a solution exists only if

2�1 = 2�2 = � , �136�

nd that in this case one cannot determine A, B. However, they must satisfy the constraint

A2 − mB2 =
mD2

�
. �137�

urther, one has

�2 = �3, �1 =
�3

2Hz
2

2�
+

�1�

�3
, �2 − �1 =

D2

2
−

�3
2Hz

2

2�
. �138�

Energy: Corresponding to the mixed “kink-pulse lattice” solution �Eq. �122�� the energy and
he constant C are given by

Ê =
2D���2m − 1�B2 + �1 + m�A2�E�m� − �1 − m��A2 − B2�K�m�� , �139�

3m
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C = − 1
2A2D2 − F2��1 + 3�1F

2 − 2Hz�2F� + �− �F2 + �2 + �2B
2�B2. �140�

or m near one, the energy of this periodic solution can be rewritten as the energy of the corre-
ponding hyperbolic �bright-dark� soliton solution �Eq. �120�� plus the interaction energy. We find

Ê = Esoliton + Eint = D�2

3
�2A2 + B2� +

�1 − m�
6

�2A2 − 5B2� + �1 − m�B2 ln� 4
�1 − m

�	 .

�141�

ote that this solution also exists only when either 2�1	�	2�2 and �2	4�1�2 or 2�2	�
2�1 and �2�4�1�2. The interaction energy vanishes for m=1.

. Solution VIII

Finally, we discuss two periodic solutions both of which at m=1 reduce to a dark-bright type
f solution. The first such �pulse-like in � and kink-like in �� solution is given by

� = F + A cn�D�x + x0�,m�, � = G + B sn�D�x + x0�,m� , �142�

rovided G=0 and the following seven coupled equations are satisfied:

2�1F + 4�1F
3 + 2�FB2 − Hz�1 − 3Hz�2F

2 − Hz�3B
2 = 0, �143�

2�1A + 12�1F
2A + 2�AB2 − 6Hz�2AF = �2m − 1�AD2, �144�

12�1FA2 − 2�FB2 − 3Hz�2A
2 + Hz�3B

2 = 0, �145�

2�1A
2 − �B2 = − mD2, �146�

2�2B + 2�A2B + 2�BF2 − 2Hz�3BF = − �1 + m�BD2, �147�

2�2B
2 − �A2 = mD2, �148�

4�FAB − 2Hz�3AB = 0. �149�

In this case it turns out that the solution exists only if either 2�1���2�2 and �2
4�1�2 or
�2���2�1 and �2�4�1�2. We find that

A2 =
mD2�� − 2�2�
�4�1�2 − �2�

, B2 =
mD2�2�1 − ��
�4�1�2 − �2�

, �150�

here

�2m − 1�D2 = 2�B2 +
2�1�

�3
−

�2�3Hz
2

2�
, F =

�3Hz

2�
, �151�

nd the three constraints are

�1 =
�2�

2�3
, �1 =

�2�3Hz
2

2�
+

�1�

�3
,

�152�

− �1 + m�D2 = 2�2 + 2�A2 −
Hz

2�3
2

.

2�
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Special case of Hz=0: When Hz=0, the solution is again given by Eq. �142� but with F=0
G where A and B are again as given by Eq. �150� and furthermore, �1, �2 turn out to be negative,

.e.,

�1 = −
D2

2
− 2�1A

2, �2 = −
�1 + m�D2

2
− �A2. �153�

t is worth pointing out that with Hz=0, the field equations are completely symmetric between the
wo fields � and � and hence the solutions VI and VIII are identical in the limit Hz=0.

Special case of �2=4�1�2: One can show that the solution �142� exists even in case �2

4�1�2. It turns out such a solution exists only if

2�1 = 2�2 = � , �154�

nd that in this case one cannot determine A, B. However, they must satisfy the constraint

B2 − A2 =
mD2

�
. �155�

urther, one has

�2 = �3, �1 =
�3

2Hz
2

2�
+

�1�

�3
, �1 − �2 =

mD2

2
+

�3
2Hz

2

2�
. �156�

Energy: Corresponding to the mixed “kink-pulse lattice” solution �Eq. �142�� the energy and
he constant C are given by

Ê =
2D

3m
���2m − 1�A2 + �1 + m�B2�E�m� − �1 − m��B2 − A2�K�m�� , �157�

C = − 1
2 �1 − m�A2D2 − F2��1 + 3�1F

2 − 2Hz�2F� + �− �F2 + �2 + �2B
2�B2. �158�

or m near one, the energy of this periodic solution can be rewritten as the energy of the corre-
ponding hyperbolic �dark-bright� soliton solution

� = F + A sech�D�x + x0��, � = B tanh�D�x + x0�� , �159�

lus the interaction energy. We find

Ê = Esoliton + Eint = D�2

3
�2B2 + A2� +

�1 − m�
6

�2B2 − 5A2� + �1 − m�A2 ln� 4
�1 − m

�	 .

�160�

ote that this solution also exists only when either 2�1	�	2�2 and �2�4�1�2 or 2�2	�
2�1 and �2	4�1�2. Again, the interaction energy vanishes at m=1. It is amusing to note that

he energy of the solution VIII is easily obtained from that of solution VI by simply interchanging
and B.

. Solution IX

Another solution which at m=1 reduces to a dark-bright type of soliton solution is given by

� = F + A dn�D�x + x0�,m�, � = G + B sn�D�x + x0�,m� , �161�
rovided G=0 and the following seven coupled equations are satisfied:
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2�1F + 4�1F
3 + �2/m��FB2 − Hz�1 − 3Hz�2F

2 −
Hz�3B

2

m
= 0, �162�

2�1A + 12�1F
2A + �2/m��AB2 − 6Hz�2AF = �2 − m�AD2, �163�

12�1FA2 − �2/m��FB2 − 3Hz�2A
2 +

Hz�3B
2

m
= 0, �164�

2m�1A
2 − �B2 = − mD2, �165�

2�2B + 2�A2B + 2�BF2 − 2Hz�3BF = − �1 + m�BD2, �166�

2�2B
2 − m�A2 = mD2, �167�

4�FAB − 2Hz�3AB = 0. �168�

In this case it turns out that the solution exists only if either 2�1���2�2 and �2
4�1�2 or
�2���2�1 and �2�4�1�2. We find that

A2 =
D2�� − 2�2�
�4�1�2 − �2�

, B2 =
mD2�2�1 − ��
�4�1�2 − �2�

, �169�

here

�2 − m�D2 = �2/m��B2 +
2�1�

�3
−

�2�3Hz
2

2�
, F =

�3Hz

2�
, �170�

nd the three constraints are

�1 =
�2�

2�3
, �1 =

�2�3Hz
2

2�
+

�1�

�3
,

�171�

− �1 + m�D2 = 2�2 + 2�A2 −
Hz

2�3
2

2�
.

Special case of Hz=0: When Hz=0, the solution is again given by Eq. �161� but with F=0
G where A and B are again as given by Eq. �169� and furthermore, �1 ,�2 turn out to be negative,

.e.,

�1 = −
mD2

2
− 2�1A

2, �2 = −
�1 + m�D2

2
− �A2. �172�

t is worth pointing out that with Hz=0, the field equations are completely symmetric between the
wo fields � and � and hence the solutions VII and IX are identical in the limit Hz=0.

m=1: In the special case of m=1 and G=0, F�0, both solutions VIII and IX reduce to a
ark-bright type of solution �159�, i.e.,

� = F + A sech�D�x + x0��, � = B tanh�D�x + x0�� , �173�
ith A, B, and D given by
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A2 =
D2�� − 2�2�
�4�1�2 − �2�

, B2 =
D2�2�1 − ��
�4�1�2 − �2�

, D2 = 2�B2 +
2�1�

�3
−

�2�3Hz
2

2�
, �174�

hile the other relations remain unchanged and are given by Eqs. �151� and �152�.
Special case of �2=4�1�2: One can show that the solution �161� exists even in case �2

4�1�2. It turns out such a solution exists only if

2�1 = 2�2 = � , �175�

nd that in this case one cannot determine A ,B. However, they must satisfy the constraint

B2 − mA2 =
mD2

�
. �176�

urther, one has

�2 = �3, �1 =
�3

2Hz
2

2�
+

�1�

�3
, �1 − �2 =

D2

2
+

�3
2Hz

2

2�
. �177�

Energy: Corresponding to the mixed “pulse-kink lattice” solution �Eq. �161�� the energy and
he constant C are given by

Ê =
2D

3m
���2 − m�mA2 + �1 + m�B2�E�m� − �1 − m��B2 + 2A2�K�m�� , �178�

C = 1
2 �1 − m�A2D2 − F2��1 + 3�1F

2 − 2Hz�2F� + �− m�F2 + m�2 + �2B
2�

B2

m2 . �179�

or m near one, the energy of this periodic solution can be rewritten as the energy of the corre-
ponding hyperbolic �dark-bright� soliton solution �Eq. �159�� plus the interaction energy. We find

Ê = Esoliton + Eint = D�2

3
�2B2 + A2� +

�1 − m�
6

�2B2 + 3A2� − �1 − m�A2 ln� 4
�1 − m

�	 .

�180�

Note that this solution also exists only when either 2�1	�	2�2 and �2�4�1�2 or 2�2

�	2�1 and �2	4�1�2. The interaction energy vanishes at m=1. It is amusing to note that the
nergy of solution IX is easily obtained from that of solution VII by simply interchanging A and
.

Summarizing, we have obtained nine periodic solutions in terms of Jacobi elliptic functions,
n the case of a coupled �4 field theory with biquadratic coupling and an external magnetic field.
his was possible because the magnetic field interaction is not symmetric between the two fields
and �. In the special case when the modulus parameter m of the Jacobi elliptic function is one,

hese nine solutions reduce to four different soliton solutions valid on the full line and expressed
n terms of hyperbolic functions. Note, however, that in case the external field Hz=0, instead of
ine, we only obtain six distinct periodic solutions �of which three are previously known20�, which
n the limit m=1 give three distinct soliton solutions.

It is worth emphasizing the restrictions on the various parameters in the case of the nine
olutions. For example, in the case of sn–sn solution �with G=0�, 2�1	�, 2�2	�. Further, in the
pecial case of Hz=0=F=G, one can show that �1
0, �2
0. On the other hand, in the case of
n–cn, dn–dn, cn–dn, and dn–cn solutions �with G=0�, �
0 and further �2�4�1�2. In the
pecial case of Hz=0=F=G, in addition one finds that �i� for the cn–cn case �1, �2� �
�0
rovided m� �
�1/2, �ii� �1�0, �2�0 for the dn–dn solution, �iii� for the dn–cn solution, �2

0, �iv� �1
0 for the cn–dn solution. Instead, for the sn–cn as well as sn–dn solutions, either
2 2
�1	�	2�2 and � 	4�1�2 or 2�2	�	2�1 and � �4�2�4. Finally, in the cn–sn and dn–sn
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ases, either 2�1	�	2�2 and �2�4�1�2 or 2�2	�	2�1 and �2	4�1�2. If in addition Hz

0=F=G, then for all four solutions �i.e., sn–cn, cn–sn, sn–dn, dn–sn�, �1
0 and �2
0.

II. SOLUTIONS WITH BILINEAR COUPLING

Several years ago, a coupled �4 model was considered in the context of a surface phase
ransition with hydration forces7 which is similar to the one considered in the last section except
hat there was no external magnetic field Hz and instead of a biquadratic coupling there was a
ilinear coupling between the two fields. The purpose of this section is to obtain a bright-bright
oliton solution of that model.

The potential �i.e., free energy� is given by

V = �1�2 + �1�4 + �2�2 + �2�4 + �1�� − ��2 + �2�� + ��2, �181�

ith �1, �2 being the coupling parameters between the two fields. The �static� equations of motion
hich follow from here are

d2�

dx2 = 2�1� + 4�1�3 + 2�1�� − �� + 2�2�� + �� , �182�

d2�

dx2 = 2�2� + 4�2�3 − 2�1�� − �� + 2�2�� + �� . �183�

It is not difficult to show that this pair of coupled field equations admits the “kink-kink” type
eriodic solution

� = A sn�D�x + x0�,m�, � = B sn�D�x + x0�,m� , �184�

rovided

mD2 = 2�1A
2 = 2�2B

2,

�185�

A2 =
− m

�1 + m��1
��1 + �1 + �2 + ��2 − �1���1

�2
	 ,

nd furthermore the parameters �1 ,�2 ,�1 ,�2 ,�1 ,�2 satisfy the constraint

�2 − �1 = ��1 − �2����2

�1
−��1

�2
	 . �186�

ince A2�0, the relation �185� gives us a strong constraint on some of the parameters. The energy
ˆ and the constant C corresponding to the periodic solution �Eq. �184�� are

Ê =
2�A2 + B2�D

3m
��1 + m�E�m� − �1 − m�K�m�� ,

�187�
C = − 1

2 �A2 + B2�D2.

In the limit m=1, this solution reduces to the bright-bright soliton solution

� = A tanh�D�x + x0��, � = B tanh�D�x + x0�� , �188�
rovided
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D2 = 2�1A
2 = 2�2B

2,

�189�

A2 =
− 1

2�1
��1 + �1 + �2 + ��2 − �1���1

�2
	 ,

hile relation �186� remains unchanged. For m near one, the energy of the periodic solution can be
ewritten as the energy of the corresponding hyperbolic �bright-bright� soliton solution �Eq. �188��
lus the interaction energy. We find

Ê = Ekink + Eint = �A2 + B2�D�4

3
+

�1 − m�
3

	 . �190�

The interaction energy vanishes at m=1. In view of the requirement �1 ,�2�0 arising from
tability, we are unable to find any other solution to this coupled set of equations with a bilinear
oupling.

V. SOLUTIONS OF DISCRETE COUPLED �4-TYPE EQUATIONS WITH BIQUADRATIC
OUPLING

Discrete coupled �4 models arise in the context of structural transitions on a lattice, collective
roton dynamics in ice,23 etc. The purpose of this section is to give an exhaustive list of solutions
o the discrete coupled �4-type equations with biquadratic coupling �but in the absence of an
xternal magnetic field Hz�. In the next section, we shall obtain a solution of the discrete coupled
4-type equations with bilinear coupling.

We start from the coupled static field equations �2� and �3�. The discrete analog of these field
quations, for Hz=0, has the form

1

h2 ��n+1 + �n−1 − 2�n� − 2�1�n − 2�2�1�n
2 + ��n

2��n = 0, �191�

1

h2 ��n+1 + �n−1 − 2�n� − 2�2�n − 2�2�2�n
2 + ��n

2��n = 0, �192�

here h is the lattice spacing. We are unable to find any solution to this coupled set of field
quations. However, as in the Ablowitz-Ladik discretization of the discrete nonlinear Schrödinger
quation,24 if we replace �n and �n in the last term in Eqs. �191� and �192� by their average, then
e can find exact solutions to this coupled system. In particular, instead of Eqs. �191� and �192�,
e consider the discretized equations

1

h2 ��n+1 + �n−1 − 2�n� − 2�1�n − �2�1�n
2 + ��n

2���n+1 + �n−1� = 0, �193�

1

h2 ��n+1 + �n−1 − 2�n� − 2�2�n − �2�2�n
2 + ��n

2���n+1 + �n−1� = 0. �194�

ote that single solitons and their stability in coupled Ablowitz-Ladik chains have been studied
reviously.25 We now show that this modified set of coupled discrete equations has six different
eriodic solutions which in the limit m=1 reduce to the bright-bright, bright-dark, and dark-dark
oliton solutions. In all the solutions, we shall see that the static kink can be placed anywhere with
espect to the lattice. Hence we suspect that in all these cases, there may be an absence of the
eierls-Nabarro barrier,26–28 which is the energy cost associated with moving a localized solution
uch as a soliton by a half lattice constant on a discrete lattice. It would be nice if one can

emonstrate this explicitly.
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. Solution I

It is easy to show that the field Eqs. �193� and �194� admit the kink-kink type solution

�n = A sn�hD�n + x0�,m�, �n = B sn�hD�n + x0�,m� , �195�

rovided

A2 =
m�2�2 − ��sn2�hD,m�

h2�4�1�2 − �2�
, B2 =

m�2�1 − ��sn2�hD,m�
h2�4�1�2 − �2�

,

�196�

�1 = �2 = −
1

h2 �1 − cn�hD,m�dn�hD,m�� ,

here h is the lattice spacing. Thus, note that as in the continuum case, this solution exists
rovided 2�1��, 2�2��, �1
0, �2
0. It is interesting to note that the solutions to both the
iscrete and the continuum model exist under the same set of conditions.

Continuum limit: It is instructive to consider the continuum limit h→0 and show that the
bove-noted solution smoothly goes over to the corresponding continuum solution. In particular,
n using the fact that as h→0,

sn�hD,m� → hD, cn2�hD,m� → 1 − h2D2, dn2�hD,m� → 1 − mh2D2, �197�

t readily follows that the above-noted solution indeed reduces to the corresponding continuum
olution �Eq. �7�� obtained in Sec. II �when Hz=F=G=0�, i.e.,

A2 =
m�2�2 − ��D2

�4�1�2 − �2�
, B2 =

m�2�1 − ��D2

�4�1�2 − �2�
, �1 = �2 = −

�1 + m�D2

2
. �198�

n fact we shall see that all six solutions of this coupled discrete model smoothly go over to the
orresponding continuum solutions obtained in Sec. II in the limit h→0.

In the limit m=1, the periodic solution �195� reduces to the bright-bright soliton solution

�n = A tanh�hD�n + x0��, �n = B tanh�hD�n + x0�� . �199�

Special case of �2=4�1�2: One can show that the solution �195� exists even in case �2

4�1�2. It turns out that such a solution exists only if

2�1 = 2�2 = � , �200�

nd that in this case one cannot determine A ,B. However, they must satisfy the constraint

A2 + B2 =
m sn2�hD,m�

h2�
. �201�

n the continuum limit h→0, as expected, this reduces to the constraint equation �25� obtained in
ec. II.

. Solution II

It is easily shown that a kink-pulse type solution

�n = A sn�hD�n + x0�,m�, �n = B cn�hD�n + x0�,m� , �202�
s an exact solution to the field Eqs. �193� and �194� provided

                                                                                                            



F

A
4
m

c
d

=

a

I
S

C

p

F

=

a

092902-22 A. Khare and A. Saxena J. Math. Phys. 47, 092902 �2006�

                        
A2 =
m�� − 2�2�sn2�hD,m�

h2��2 − 4�1�2�
, B2 =

m�2�1 − ��sn2�hD,m�
h2��2 − 4�1�2�

. �203�

urthermore,

− �1 =
1

h2 +
cn�hD,m��2m�1�� − 2�2�sn2�hD,m� − ��2 − 4�1�2��

h2��2 − 4�1�2�dn�hD,m�
, �204�

− �2 =
1

h2 +
cn�hD,m��m��� − 2�2�sn2�hD,m� − ��2 − 4�1�2��

h2��2 − 4�1�2�dn2�hD,m�
. �205�

gain, as in the continuum case either 2�1���2�2 and �2�4�1�2 or 2�2���2�1 and
�1�2��2. It is, however, not clear here if �1 and �2 have a definite sign. However, in the limit
=1, as in the continuum case, one finds that �1
0, �2
0.

It is readily checked that in the continuum limit this solution smoothly goes over to the
orresponding continuum solution, Eqs. �104� and �112�. Furthermore, the corresponding bright-
ark solution is easily obtained in the limit m=1.

Special case of �2=4�1�2: One can show that the solution �202� exists even in case �2

4�1�2. It turns out such a solution exists only if

2�1 = 2�2 = � , �206�

nd that in this case one cannot determine A, B. However, they must satisfy the constraint

A2 − B2dn2�hD,m� =
m sn2�hD,m�

h2�
. �207�

n the continuum limit h→0, as expected, this reduces to the constraint equation �117� obtained in
ec. II.

. Solution III

Yet another kink-pulse type solution is given by

�n = A sn�hD�n + x0�,m�, �n = B dn�hD�n + x0�,m� , �208�

rovided

A2 =
m�� − 2�2�sn2�hD,m�

h2��2 − 4�1�2�
, B2 =

�2�1 − ��sn2�hD,m�
h2��2 − 4�1�2�

. �209�

urthermore,

− �1 =
1

h2 +
dn�hD,m��2�1�� − 2�2�sn2�hD,m� − ��2 − 4�1�2��

h2��2 − 4�1�2�cn�hD,m�
, �210�

− �2 =
1

h2 +
dn�hD,m����� − 2�2�sn2�hD,m� − ��2 − 4�1�2��

h2��2 − 4�1�2�cn2�hD,m�
. �211�

Special case of �2=4�1�2: One can show that the solution �208� exists even in case �2

4�1�2. It turns out such a solution exists only if

2�1 = 2�2 = � , �212�
nd that in this case one cannot determine A, B. However, they must satisfy the constraint
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A2 − mB2 cn2�hD,m� =
m sn2�hD,m�

h2�
. �213�

n the continuum limit h→0, as expected, this reduces to the constraint equation �137� obtained in
ec. II.

Note that in the m=1 limit the solutions II and III reduce to the same bright-dark soliton
olution. In addition, as in the continuum case, this solution exists if either 2�1	�	2�2 and
2	4�1�2 or 2�2	�	2�1 and 4�1�2	�2. It is, however, not clear here if �1 and �2 have a
efinite sign. However, in the limit m=1, as in the continuum case, one finds that �1
0 and

2
0.

. Solution IV

Finally, we present three periodic solutions, all of which in the limit m=1 reduce to the
ark-dark soliton solution. One of the pulse-pulse type periodic solutions is given by

�n = A cn�hD�n + x0�,m�, �n = B cn�hD�n + x0�,m� , �214�

rovided as in the continuum case, �
0 and �2�4�1�2. We find

A2 =
2m��2 + ��sn2�hD,m�

h2��2 − 4�14�2�dn2�hD,m�
, B2 =

2m��1 + ��sn2�hD,m�
h2��2 − 4�14�2�dn2�hD,m�

,

�215�

�1 = �2 = −
1

h2�1 −
cn�hD,m�
dn2�hD,m�	 .

sing Eq. �197� it is easily shown that as in the continuum case, �1, �2� �
� 0 provided
� �
� 1/2. This solution is equivalent to the continuum solution, Eqs. �33� and �42�.

. Solution V

Another pulse-pulse type solution is given by

�n = A dn�hD�n + x0�,m�, �n = B dn�hD�n + x0�,m� , �216�

rovided as in the continuum case, �
0 and �2�4�1�2. We find

A2 =
2��2 + ��sn2�hD,m�

h2��2 − 4�1�2�cn2�hD,m�
, B2 =

2��1 + ��sn2�hD,m�
h2��2 − �14�2�cn2�hD,m�

,

�217�

�1 = �2 = −
1

h2�1 −
dn�hD,m�
cn2�hD,m�	 .

sing Eq. �197� it is easily shown that as in the continuum case, �1, �2�0. This solution is
quivalent to the continuum solution, Eqs. �53� and �62�.

. Solution VI

Yet another pulse-pulse type solution is

�n = A dn�hD�n + x0�,m�, �n = B cn�hD�n + x0�,m� , �218�

rovided as in the continuum case, �
0 and �2�4�1�2. We find

A2 =
�2�2 + ��sn2�hD,m�

h2��2 − 4�1�2�cn2�hD,m�
, B2 =

m�2�1 + ��sn2�hD,m�
h2��2 − 4�1�2�dn2�hD,m�

. �219�
urthermore,
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− �1 =
1

h2 +
�2�1�2�2 + ��dn2�hD,m� − ��2�1 + ���cn2�hD,m���

h2��2 − 4�1�2�dn�hD,m�cn2�hD,m�
, �220�

− �2 =
1

h2 +
�2�2�2�1 + ��cn2�hD,m� − ��� + 2�2�dn2�hD,m��

h2��2 − 4�1�2�dn2�hD,m�cn�hD,m�
. �221�

t is not clear if in general �1 and �2 have a definite sign. However, it is easily checked that at
=1, �1, �2�0. This solution is equivalent to the continuum solution, Eqs. �72� and �80�.

Note that the last three �i.e., IV, V, VI� solutions reduce to the �same� dark-dark soliton
olution in the limit m=1. Since we do not know the Hamiltonian corresponding to Eqs. �193� and
194�, we are unable to find the energy and soliton interaction explicitly for any of the above-noted
iscrete solutions. Similarly, for Hz�0 we have not succeeded in finding exact solutions.

. SOLUTIONS OF DISCRETE COUPLED �4-TYPE EQUATIONS WITH BILINEAR
OUPLING

Coupled lattice chains, with a bilinear coupling, undergoing a second-order structural phase
ransition can represent this case. We start from the coupled static field Eqs. �182� and �183�. The
iscrete analog of these field equations has the form

1

h2 ��n+1 + �n−1 − 2�n� − 2��1 + �1 + �2��n + 2��1 − �2��n − 4�1�n
3 = 0, �222�

1

h2 ��n+1 + �n−1 − 2�n� − 2��2 + �1 + �2��n + 2��1 − �2��n − 4�2�n
3 = 0. �223�

e are unable to find any solution to this coupled set of field equations. However, as in the
blowitz-Ladik discretization of the discrete nonlinear Schrödinger equation,24 if we replace �n

nd �n in the last term in Eqs. �222� and �223� by their average, then we can find exact solutions
o this coupled system. In particular, instead of Eqs. �222� and �223� we consider the discretized
quations

1

h2 ��n+1 + �n−1 − 2�n� − 2��1 + �1 + �2��n + 2��1 − �2��n − 2�1�n
2��n+1 + �n−1� = 0,

�224�

1

h2 ��n+1 + �n−1 − 2�n� − 2��2 + �1 + �2��n + 2��1 − �2��n − 2�2�n
2��n+1 + �n−1� = 0.

�225�

t is easy to show that the field Eqs. �224� and �225� admit the kink-kink type solution

�n = A sn�hD�n + x0�,m�, �n = B sn�hD�n + x0�,m� , �226�

rovided

m sn2�hD,m�
h2 = 2�1A

2 = 2�2B
2,

�227�

A2 =
− m sn2�hD,m�

2�1�1 − cn�hD,m�dn�hD,m��
��1 + �1 + �2 + ��2 − �1���1

�2
	 ,
nd furthermore the parameters �1, �2, �1, �2, �1, �2 satisfy the constraint
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�2 − �1 = ��1 − �2����2

�1
−��1

�2
	 . �228�

s expected, in the continuum limit of h→0, this solution smoothly goes over to the correspond-
ng continuum solution, Eqs. �184�–�186�, obtained in Sec. III. Since we do not know the Hamil-
onian corresponding to Eqs. �224� and �225�, we are unable to find the energy and soliton
nteraction explicitly for this discrete solution. Similarly, for Hz�0 we have not succeeded in
nding an exact solution.

I. CONCLUSION

We have systematically provided an exhaustive set of exact periodic domain wall solutions for
coupled �4 model with and without an external field, and for both bilinear and biquadratic

ouplings. Only a bright-bright solution could be obtained for the bilinear case. For both the
iquadratic and bilinear couplings the corresponding discrete case was also considered—with an
blowitz-Ladik like modification of the coupled discrete equations—and we obtained several

xact solutions. For the solutions of the discrete model, the calculation of the Peierls-Nabarro
arrier26–28 and soliton scattering29,30 remain topics of further study. Similarly, scattering of soli-
ons in the coupled �4 continuum and discrete models with either the biquadratic or bilinear
oupling is an interesting open issue. To this end, the static solutions presented here need to be
oosted with a certain velocity.

It would be instructive to explore whether the nine different solutions reported in Sec. II �or
he six solutions in Sec. IV� are completely disjoint or if there are any possible bifurcations linking
hem via, for instance, analytical continuation. We have not tried to carry out an explicit stability
nalysis of various periodic solutions. However, the energy calculations and interaction energy
etween solitons �for m�1� in the case of both the biquadratic and bilinear couplings could
rovide useful insight in this direction.

Our results are relevant for spin configurations, domain walls, and magnetic phase transitions
n multiferroic materials;3,4 periodic domain walls are yet to be observed in the hexagonal
ultiferroics.3 Similarly, our solutions are important for understanding structural phase transitions

n ferroelectrics5,6 and elastic materials,8 biophysics problems such as multilamellar lipid systems,7

s well as field theoretic contexts.9,10 These ideas and exact solutions can be generalized to other
oupled models such as �6 �for first-order phase transitions� and are discussed elsewhere.31
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n two dimensions
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In this paper we develop a simple model for the steady state of two-dimensional
self-gravitating incompressible gas which is based on the hydrodynamic equations
for stratified fluid. These equations are then reduced to a system of two equations
for the mass density and the gravitational field. Analytical analysis and numerical
solutions of these equations under different modeling assumptions �with special
attention to the isothermal case� are then used to study the structure of the resulting
steady state of the fluid. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2344852�

. INTRODUCTION

The steady states of self-gravitating fluid in three dimensions have been studied by a long list
f illustrious mathematical physicists. �For an extensive list of references see Refs. 1–3�. The
otivation for this research was due to the interest in the shape and stability of celestial bodies.
e now know however that many celestial objects such as galaxies exhibit �effectively� “two

imensional structure.”4–7 Similarly, recent discoveries are leading us to believe that systems
imilar to our solar system are “abundant” in the galaxy and their existence might be due to the
ollapse of a two-dimensional primordial gas cloud under gravitation.8–11 This background moti-
ates us to investigate in this paper the steady states of self-gravitating fluid in two dimensions.
his problem has been explored by a large number of investigators using analytic methods and
omputer simulations �see Refs. 8–10 for a complete list of references�. What is missing however
s a simple analytic model that is able to capture the basic physics of this process and leads to
ome insights about the “parameters” that govern its outcome.

In this paper we attempt to develop such a model using the basic hydrodynamic equations that
overn the steady state flow of an incompressible, stratified �i.e., nonconstant density� fluid in two
imensions under gravity but with no magnetic field.1–3 Under these assumptions we show that the
umber of basic equations can be reduced to a system of two coupled equations. One for the mass
ensity and the second for the gravitational field. The only “parameter” in this these equations is
function that encodes the information about the momentum distribution in the interstellar cloud.
e then consider radial solutions to these equations with special attention to the steady state of a

as cloud with isothermal equation of state.10 We find that under proper choices of the parameter
unction there will exist out-of-core regions where the mass density peaks out locally. These
egions might therefore represent the formation of out-of-core structures in the primordial gas
loud. �The region close to the “center” of the cloud where the density and velocities are expected
o be large is usually referred to as the core region. Other regions in the cloud are referred to as
ut-of-core regions.�

We emphasize, however, that the model we develop here is a steady state one. Accordingly, it
annot address questions about the stability of the mass distribution pattern that is predicted by the
odel equations. It might be argued also that the assumptions of steady state and incompressibility

�
Electronic mail: mhumi@wpi.edu
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re not realistic from an astrophysical point of view. However, our main goal in this paper is to
apture analytically �as far as possible� the nonlinear aspects of the processes under consideration.
ccordingly, our results might be useful to provide some analytic insights for more realistic work
n this topic. Moreover, they provide a natural extension to the results on the equilibrium states of
hree-dimensional bodies under gravity.

The plan of the paper is as follows: In Sec. II we present the basic hydrodynamic equations
nd show how one can reduce them to a coupled system of two equations. We also discuss the
onditions under which the two-dimensional approximation is justified. In Sec. III we derive the
ressure equation for the fluid under consideration with particular emphasis on isothermal condi-
ions. In Sec. IV we discuss radial solutions to these equations and present the results of some
imulations under these assumptions. We end up in Sec. V with a summary and conclusions.

I. DERIVATION OF THE MODEL EQUATIONS

Following the standard convention,1,12–14 we model the steady state flow of an incompressible
uid in two dimensions �x ,y� by the hydrodynamic equations of inviscid and incompressible
tratified fluid

ux + vy = 0, �2.1�

u�x + v�y = 0, �2.2�

��uux + vuy� = − px − ��x, �2.3�

��uvx + vvy� = − py − ��y , �2.4�

�2� = 4�G� , �2.5�

here subscripts indicate differentiation with respect to the indicated variable, u= �u ,v� is the fluid
elocity, � is its density, p is the pressure, � is the gravitational field, and G is the gravitational
onstant.

We can nondimensionalize these equations by introducing the following scalings:

x = Lx̃, y = Lỹ, u = U0ũ, v = U0ũ, � = �0�̃, p = �0U0
2p̃, � = U0

2�̃ , �2.6�

here L ,U0 ,�0 are some characteristic length, velocity, and mass density, respectively, that char-
cterize the problem at hand. Substituting these scalings in Eqs. �2.1�–�2.5� and dropping the
ildes, these equations remain unchanged �but the quantities that appear in these equations become

ondimensional� while G is replaced by G̃=G�0L2 /U0
2. �Once again we drop the tilde.�

At this point, we observe that in relativistic physics there is a natural velocity �viz. c-the speed
f light� by which one scales the velocities. In the nonrelativistic approach �which we are adopting
ere� there is no such speed and accordingly U0 is a “charateristic speed” which one chooses to
ondimensionalize the velocities. From a practical �astrophysical� point of view 1�U0

100 m/s in most typical cases.3,8 In any case, all quantities �including velocities� in this paper
re nondimensional.

Equations �2.1�–�2.5� form a two-dimensional approximation to the three-dimensional analog
f these equations �which requires an additional equation for the flow in the z-direction which is
imilar to Eq. �2.3��. To justify this approximation in our context we assume in the following that
e are considering matter distribution whose spatial extension �with characteristic length L� in the
,y directions is much larger than that in z direction �with characteristic “height” H�. That is

/L=O��� where 0���1. Furthermore we assume that
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��

�x
= O�1�,

��

�y
= O�1�,

��

�z
= O��� . �2.7�

nder these assumptions, the three-dimensional analog of Eq. �2.5� can be approximated by

�2�

�x2 +
�2�

�y2 +
�2�

�z2 = 4�G���x,y,0� + z
���x,y,0�

�z
� . �2.8�

nder the scaling introduced by Eq. �2.6� �with z=Lz̄� we then have

z̄
���x,y,0�

�z̄
= O��2� �2.9�

hile the other terms in Eq. �2.8� are of order O�1�. It follows then that we can approximate this
quation by its two-dimensional analog

�2�

�x2 +
�2�

�y2 = 4�G��x,y,0� . �2.10�

he justification for the two-dimensional approximation to the other equations follows along
imilar lines and has been discussed by many authors. �A lucid treatment is given in Ref. 12,
p. 1–12�.

In view of Eq. �2.1�, we can introduce a stream function � so that

u = �y, v = − �x. �2.11�

Using this stream function we can rewrite Eq. �2.2� as13,15

J��,�� = 0, �2.12�

here for any two �smooth� functions f ,g,

J�f ,g� =
�f

�x

�g

�y
−

�f

�y

�g

�x
. �2.13�

quation �2.12� implies that the functions � ,� are dependent on each other and we can express
ach of them in terms of the other. Thus we can write � as ���� or � as ����.

Using � the momentum equations �2.3� and �2.4� become

���y�yx − �x�yy� = − px − ��x, �2.14�

��− �y�xx + �x�xy� = − py − ��y . �2.15�

o eliminate p from these equations we differentiate Eqs. �2.14� and �2.15� with respect to y ,x,
espectively, and subtract. This leads to

�y��y�yx − �x�yy� + ���y�yx − �x�yy�y − �x�− �y�xx + �x�xy� − ��− �y�xx + �x�xy�x = − J��,�� .

�2.16�

sing Eq. �2.12�, we can rewrite this equation �after some algebra� as

�J��2�,�� + J� 1
2 ��x

2 + �y
2�,�� = − J��,�� . �2.17�

owever, in view of Eq. �2.12� �=���� and this fact can be used to eliminate � from Eq. �2.17�.

o this end we observe that
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�x = ���x, �y = ���y, �2� = �����x
2 + �y

2� + ���
2� �2.18�

nd note that for any function of F��� we have J�F��� ,��=0. This leads after long algebra to the
ollowing relation:

J�����
2��2� + 1

2 ����
2����x

2 + �y
2� + �,�� = 0. �2.19�

ence, we infer that

h����2� +
1

2
h������x

2 + �y
2� + � = S���, h� =

dh���
d�

, �2.20�

here

h��� = ���
2 �2.21�

nd S��� is some function of �.
The function h��� can be considered as a parameter function which is determined by the

omentum �and angular momentum� distribution in the fluid. From a practical point of view the
hoice of this function determines the structure of the steady state density distribution. The cor-
esponding flow field can be computed then a posteriori �that is after solving for �� from the
ollowing relations:

u =	h���
�

��

�y
, v = −	h���

�

��

�x
. �2.22�

The function S��� that appears in Eq. �2.20� can be determined from the asymptotic values of
and � on the boundaries of the domain on which Eqs. �2.5� and �2.20� are solved. When these

symptotic values are imposed or known one can evaluate the left-hand side of Eq. �2.20� on the
omain boundaries and re-express it in terms of � only to determine S��� �on the boundary of the
omain�. However, the resulting functional relationship of S on � must then hold also within the
omain itself since S does not depend on x ,y directly. For example assume that on an infinite
omain we let h���=1 and

lim
r→�

��x,y� = e−r, lim
r→�

��x,y� = 1/r �2.23�

where r2=x2+y2�. Under these assumptions, the left-hand side of Eq. �2.20� evaluates asymptoti-
ally to e−r�1−1/r�+1/r. Rewriting this expression in terms of �, we obtain

S��� = � +
�� − 1�

ln �
. �2.24�

hen such asymptotic relations are not given, S��� can be viewed as a “gauge.” In the following,
e let S���=0 under these circumstances.

We observe that Eq. �2.20� can be rewritten in the form

h���1/2 � · �h���1/2 � �� + � = S��� . �2.25�

Using this equation, we can eliminate � from Eqs. �2.25� and �2.5� to obtain one fourth-order
quation for �,

�2�h���1/2 � · �h���1/2 � ��� + 4�G� = �2S��� . �2.26�
Equation �2.20� can be simplified considerably by introducing a new dependent variable
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	��� = 
�

h1/2�s�ds . �2.27�

ith this new variable, Eq. �2.20� transforms into

�2	 + h−1/2����� − S���� = 0, �2.28�

here h��� and S��� have to be expressed in terms of 	. �We assume implicitly that the transfor-
ation given by Eq. �2.27� is invertible�.

Thus, we reduced the original nonlinear system of partial differential equations �2.1�–�2.5� to
coupled system of two equations consisting of Eqs. �2.5� and �2.28�.

II. EQUATION FOR THE PRESSURE

In order to derive Eq. �2.20� we eliminated the pressure from Eqs. �2.14� and �2.15�. However,
n some practical astrophysical applications it is important to know the equation of state of the
uid under consideration. For this reason, we derive here an equation analogous to Eq. �2.20� for

he pressure. To this end, we divide Eqs. �2.14� and �2.15� by �, differentiate the first with respect
o y, the second with respect to x, and subtract. This leads to

�2J��2�,�� = J�p,�� . �3.1�

Eliminating � from this equation �using Eq. �2.18�� yields

J��2��
2�2� + �2�������x

2 + �y
2� − p,�� = 0. �3.2�

Hence,

���
2�2� + ��������x

2 + �y
2� −

p

�
= R��� , �3.3�

here R��� is some function of �. Re-expressing this equation using h��� we have

h����2� +
1

2
�h���� − ��

2���x
2 + �y

2� −
p

�
= R��� . �3.4�

ubtracting this equation from Eq. �2.20� we then have

p

�
= S��� − R��� −

1

2
��

2��x
2 + �y

2� − � . �3.5�

herefore, the solution of Eqs. �2.20� and �2.5� determines the pressure distribution in the fluid
assuming that the functions R ,S have been determined from the boundary conditions�.

Conversely, if the pressure distribution is known a priori, e.g., if we assume that the fluid is
n isothermal gas where p=c2� �c is the isothermal sound speed which is a constant for this
edium� then Eq. �3.5� can be used to eliminate � from Eq. �2.5�,

�2�R� = �2�S − 1
2��

2��x
2 + �y

2�� − 4�G� . �3.6�

t follows then that for an isothermal gas Eqs. �3.3� and �3.6� form a closed system of coupled
quations for � and R with a parameter function ��

2. However, if we eliminate R from these two
quations we recover Eq. �2.26�.

V. SOLUTIONS OF Eq. „2.26…

Equation �2.26� is, in general, a nonlinear equation which �to our best knowledge� cannot be
olved analytically. The only exception is the case where h=1 under which the resulting equation

	
s linear. �In the following we let S���=0.� For this choice of h, ��= �1/ ����. That is with the
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ame gradient of � the gradient of � will increase as � decreases. We conclude then that, in
eneral, matter in regions with low density might have higher momentum than in regions of higher
ensity.

Under the constraint h=1 the general solution of Eq. �2.26� can be written in the form

� = f0�r� + �
m=1

�

fm�r��Em cos m
 + Fm sin m
� , �4.1�

here the real form of the solution for fm�r� is given by

fm�r� = Am�Im��R� + Im��̄R�� + iBm�Im��R� − Im��̄R�� + Cm�Km��R� + Km��̄R��

+ iDm�Km��R� − Km��̄R�� ,

m = 0,1,2, . . . . �4.2�

ere �= �	2/2��−1+ i�, Im ,Km are the modified Bessel functions of the first and second kinds,
verbars denote complex conjugation and R= �4�G�1/4r. �Am ,Bm ,Cm ,Dm are arbitrary real con-
tants�. However, since Km have a singularity at the origin we must let Cm=Dm=0 if the origin is
ncluded in the domain. The remaining arbitary constants that appear in the solution must be
djusted to the boundary conditions one wishes to impose on � ,� �and subject to the physical
equirement that ��0 in the domain under consideration�. Obviously various patterns can be
btained for � by a proper combination of these functions.

Figure 1 represents the solution given by Eq. �4.2� for �=��r�, with h���=1 for r��0.1,1�
ubject to the conditions

��0.1� = 2.8, ��0.5� = 2.6, ��0.9� = 2.5, ��1� = 0.1. �4.3�

his solution exhibits clearly out-of-core region where the density is larger than its surroundings.
t demonstrates also the existence of a region in which matter density is almost zero. This is in line
ith recent findings from simulations about planet formation in rings.11 We observe that the
arameters for this solution were chosen to accentuate the existence of a region in which the
ensity is almost zero thus creating a “gap” between the core and the out-of-core region.

FIG. 1. Radial �analytic� solution of Eq. �2.26� with h���=1 subject to the conditions given by Eq. �4.3�.
In polar coordinates the flow field is related to the stream function by the relations
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ur =
1

r

��

�

, u
 = −

��

�r
. �4.4�

ince �=��r� it follows that ur=0 and

u
 = −	h���
�

��

�r
. �4.5�

bserve that u
 is a nondimensional number. To obtain the actual “dimensional” velocities one has
o multiply u
 by U0.

Figure 2 presents a plot of u
 vs r for this case. From this figure we see that matter in the 2-d
isk can be divided into three “rings.” In the first ring where 0.1�r�0.24 matter circulates
ounterclockwise. This is followed by a very narrow region where the u
 is changing rapidly.
Observe that the density in this region is almost zero.� In the second ring where 0.24�r�0.72
he circulation is clockwise. Finally for 0.72�r�1 the circulation is counterclockwise again.
However, we have here a “smooth” transition between the second and third rings.�

For other choices of the function h��� one has to resort to numerical integration of Eq. �2.26�.
his was carried out in two cases for which �=��r�. In the first case we let h���=� with 
−1,−0.5,0 ,0.5,1. In the second case, we choose h���=��1+A sin�n���� with n=2 and A
±0.5,0.

The solutions to Eq. �2.26� for these two cases on the interval r��0.1,1� with the boundary
onditions

��0.1� = 1, ���0� = 0, ��1� = 0.1�0.2�, ���1� = 0 �4.6�

re presented in Figs. 3 and 4, respectively. The corresponding flow fields for these density profiles
re presented in Figs. 5 and 6. These profiles and flow fields are physically “reasonable” in the
ense that they contain no singularities and the circulation is unidirectional.

. SUMMARY AND CONCLUSIONS

As a first task in this paper, we showed how to reduce the governing equations for the steady
tate of an incompressible stratified �two-dimensional� fluid under gravity �which comprise a set of
ve coupled nonlinear partial differential equations� to two equations. The resulting equations
ontain only one parameter function h���. We also derived a separate equation for the pressure in
rder to investigate the equation of state of the fluid under consideration. We then explored both

FIG. 2. u
 as a function of r for solution presented in Fig. 1.
nalytically and numerically radial solutions to these equations with different choices of h���.
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IG. 3. Numerical solution of Eq. �2.26� with h���=� and =−1,−0.5,0 ,0.5,1. The lowest curve corresponds to
=−1. The other curves correspond in progression to the other values of .
IG. 4. u
 as a function of r for the solutions presented in Fig. 3. The dashed, dash-dot and the dot-dot curves represent
espectively u
 for =−0.5,0,0.5. The solid line with a peak near the origin corresponds to =−1 while the other solid line

orresponds to =1.
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These solutions show that different choices of the parameter function h��� can lead to density
rofiles which contain out-of-core bands of matter whose density is higher than that of their
urroundings. This is suggestive of the early stages of structure formation in these gas clouds.
owever this result might be sensitive to the choice of the function h���.

IG. 5. Numerical solution of Eq. �2.26� with h���=��1+A sin�n���� with n=2. The dashed curve corresponds to
=0.5. The dash-dot curve corresponds to A=−0.5 and the solid one to A=0.
FIG. 6. u
 as a function of r for the solutions presented in Fig. 5. The lines legend is the same as in Fig. 5.
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A problem that our results raise but leave open is the determination of the general conditions
n h��� which lead to a solution for � which is non-negative and oscillatory.
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Particle-in-cell models for Stokes flow through a relatively homogeneous swarm of
particles are of substantial practical interest, because they provide a relatively
simple platform for the analytical or semianalytical solution of heat and mass
transport problems. Despite the fact that many practical applications involve rela-
tively small particles �inorganic, organic, biological� with axisymmetric shapes, the
general consideration consists of rigid particles of arbitrary shape. The present
work is concerned with some interesting aspects of the theoretical analysis of
creeping flow in ellipsoidal, hence nonaxisymmetric domains. More specifically,
the low Reynolds number flow of a swarm of ellipsoidal particles in an otherwise
quiescent Newtonian fluid, that move with constant uniform velocity in an arbitrary
direction and rotate with an arbitrary constant angular velocity, is analyzed with an
ellipsoid-in-cell model. The solid internal ellipsoid represents a particle of the
swarm. The external ellipsoid contains the ellipsoidal particle and the amount of
fluid required to match the fluid volume fraction of the swarm. The nonslip flow
condition on the surface of the solid ellipsoid is supplemented by the boundary
conditions on the external ellipsoidal surface which are similar to those of the
sphere-in-cell model of Happel �self-sufficient in mechanical energy�. This model
requires zero normal velocity component and shear stress. The boundary value
problem is solved with the aim of the potential representation theory. In particular,
the Papkovich–Neuber complete differential representation of Stokes flow, valid for
nonaxisymmetric geometries, is considered here, which provides the velocity and
total pressure fields in terms of harmonic ellipsoidal eigenfunctions. The flexibility
of the particular representation is demonstrated by imposing some conditions,
which made the calculations possible. It turns out that the velocity of first degree,
which represents the leading term of the series, is sufficient for most engineering
applications, so long as the aspect ratios of the ellipsoids remains within moderate
bounds. Analytical expressions for the leading terms of the velocity, the total pres-
sure, the angular velocity, and the stress tensor fields are obtained. Corresponding
results for the prolate and the oblate spheroid, the needle and the disk, as well as for
the sphere are recovered as degenerate cases. Novel relations concerning the ellip-
soidal harmonics are included in the Appendix. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2345474�

. INTRODUCTION

The behavior of systems involving the motion of aggregates of small particles relative to
iscous fluids, in which they are immersed, covers a wide range of heat and mass transfer phe-
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omena of great importance in practical applications. In order to construct tractable mathematical
odels of the flow systems involving particles, it is necessary to resort to a number of simplifi-

ations. A dimensionless criterion, which determines the relative importance of inertial and vis-
ous effects, is the Reynolds number.1 The steady and creeping flow �low Reynolds number� of an
ncompressible, viscous fluid is described by the well-known Stokes equations which have been
nown for over one and a half centuries �1851� and connect the biharmonic vector velocity with
he harmonic scalar pressure field.1 For many interior and exterior flow problems involving small
articles, spherical and spheroidal �either prolate or oblate� geometry2 provides a very good
pproximation for many important applications where the flow is considered to be axisymmetric.
evertheless, more realistic models include particles of arbitrary shape where it is impossible to

ake advantage of the symmetry and the orientation of the particle must be taken into account.
llipsoidal geometry2 provides the most widely used framework for representing small particles of
rbitrary shape embedded within a fluid that flows according to Stokes law. This nonaxisymmetric
ow is governed by the genuine three-dimensional �3D� ellipsoidal geometry.

The introduction of a stream function1 serves to unify the method on all two-dimensional
ncompressible fluid motions, as we shall see in the historical comments that follow. For these
ituations, the solutions of the equations of motion are reduced to the search for a single scalar
unction. Unfortunately, in the general case of three-dimensional motions this unified method of
pproach is not possible. Of course, it should be noted here that fully 3D flow could also be
epresented by a pair of stream functions, in which case the streamlines are the intersections of the
wo families that correspond to the two stream functions. However, this causes a number of
ifficulties and the appearance of certain indeterminacies in the solution of physical problems
orces us to look for more general approaches. In order to avoid such problems the introduction of
hree-dimensional representations3 of the flow fields is necessary. This is probably due to the fact
hat these representations use more than one potential to represent the physical fields, allowing for

ore flexibility. Papkovich �1932� and Neuber �1934� proposed a differential representation of the
ow fields in terms of harmonic functions.3,4 Their representation holds true also for nonaxisym-
etric problems and is derivable from the well-known Naghdi–Hsu solution.5 Since the last one is

roved to be complete,3 the Papkovich–Neuber differential representation also forms a complete
olution of Stokes equations.

One of the important areas of applications concern the construction of particle-in-cell models
hich are useful in the development of simple but reliable analytical expressions for heat and
ass transfer in swarms of particles in the case of concentrated suspensions. In applied type

nalysis it is not usually necessary to have detailed solution of the flow field over the entire swarm
f particles taking into account the exact positions of the particles, since such solutions are
umbersome to use. Thus, the technique of cell models is adopted where the mathematical treat-
ent of each problem is based on the assumption that a three-dimensional assemblage may be

onsidered to consist of a number of identical unit cells. Each of these cells contains a particle
urrounded by a fluid envelope, containing a volume of fluid sufficient to make the fractional void
olume in the cell identical to that in the entire assemblage.

Of course, a good approximation of the solution of flow through a swarm of particles is also
ossible with the help of powerful numerical methods, notably Stokesian dynamics6 or lattice—
oltzmann simulation.7 In addition, Refs. 8 and 9 provide an excellent exposure of numerical
pproaches for the solution of physical problems concerning ellipsoidal particles. However, these
ethods involve the use of elaborate computer codes for each case. There is always room and

eed for analytical methods, which capture the essential features of the transport process under
onsideration in an analytic formula. It is to this end that particle-in-cell flow models serve as
latforms both for theoretical investigation and for checking the reliability of complicated numeri-
al codes.

Uchida10 proposed a cell model where a spherical particle is surrounded by a fluid envelope
ith cubic outer boundary. The cubic shape offers the advantage that it is space filling but the
ature of the boundaries leads to a three-dimensional flow problem.

11 12
Happel and Kuwabara proposed cell models in which both the particle and the outer
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nvelope are spherical, having the significant advantage of preserving the axial symmetry of the
ow and of providing a simple analytical solution in closed form. On the other hand, their models
ave the disadvantage that the outer envelope is not space filling, a difficulty that must be dealt
ith, when one tries to pass from the single unit cell to the assemblage of particles. The Happel

nd the Kuwabara formulations are slightly different in the sense that the Happel model assumes
hat the inner sphere moves with a constant velocity along the axis within a quiescent fluid, while
he Kuwabara model assumes that the inner sphere is stationary and that the fluid passes through
he unit cell with a constant velocity. Under the assumption of pseudosteady state, this difference
ffects the boundary conditions of each formulation. Hence, for the Happel model a nonslip flow
ondition in the inner sphere is imposed, and zero radial velocity and shear stress on the outer
nvelope. On the other hand, for the Kuwabara formulation the radial and the tangential velocity
re assumed to be equal to zero on the inner sphere, while there exists a velocity with axial
omponent equal to a constant approach velocity on the outer envelope. In addition, zero vorticity
n the outer envelope is assumed. Despite the fact that both formulations give essentially the same
elocity fields, with the appropriate change of frame of reference, it is the Happel model that is
lightly superior. This is due to the fact that it does not require an exchange of mechanical energy
etween the cell and the environment. On the contrary, the Kuwabara model permits a small but
ignificant exchange of mechanical energy with the environment.

Neale and Nader13 improved the formulation of Happel and Kuwabara by considering that the
nit cell under consideration is embedded in an unbounded, continuous, homogeneous, and iso-
ropic permeable medium, which has the same permeability with that of the swarm of spheres. The
appel and the Kuwabara models also provide good agreement, but somewhat inferior to the
eale and Nader model.

Epstein and Masliyah14 proposed a useful generalization by considering a spheroid-in-cell,
nstead of a sphere-in-cell, model for swarms of spheroidal particles. However, they had to solve
he creeping flow problem numerically since the well-known equation of motion E4�=0 ��:
tokes stream function� in spheroidal coordinates is not separable. This difficulty of nonseparation
as resolved recently by Dassios et al.15 with the use of semiseparation of solutions, which is
ased on an appropriate finite dimensional spectral decomposition of the operator E4. This way an
nalytical solution for the Kuwabara model was obtained. Using this method, Dassios et al.16

olved the Happel model in spheroidal coordinates analytically and the results were compared
ith those obtained by using the Kuwabara-type boundary conditions. Moreover, the problem of

pace filling, when we refer to the assemblage of particles as well as to the relation between the
pproach velocity and the mean interstitial velocity through the swarm, was discussed in detail in
ef. 16.

An indeterminacy appears when the Happel-type or the Kuwabara-type spheroidal models are
olved in terms of the Stokes stream function. This indeterminacy does not appear in the case of
perfect sphere. The indeterminacy can be overcome through the imposition of an additional

eometrical condition that secures the correct reduction to the perturbed-sphere case.15,16 How-
ver, the introduction of the Papkovich–Neuber differential representation,3,4 as we already men-
ioned, seems to offer certain advantages in solving such problems. More specific, despite the fact
hat a similar indeterminacy appears when the Papkovich–Neuber differential representation is
sed and it is handled in the same way, the degrees of freedom, which this representation offers,17

ake the Papkovich–Neuber solution a powerful tool. This representation was demonstrated re-
ently by Dassios and Vafeas,18 where the Kuwabara model is solved analytically in spheroidal
omains and a comparison with the already solved flow problem with Kuwabara-type boundary
onditions was made. The major advantage of the utilization of the Papkovich–Neuber differential
epresentation is that it can be used to obtain solutions of creeping flow in cell models where the
hape of the particles is genuine three-dimensional. Dassios and Vafeas19 have demonstrated the
ractical efficiency of the above 3D representation by solving the three-dimensional Stokes flow
roblem in an assemblage of spherical particles, which translate and rotate, using Happel-type
oundary conditions. The loss of symmetry is caused by the imposed rotation of the particles. The

ull solution is obtained in a closed form. The present work concerns the next step of our inves-
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igation where the sphere, that represents the isotropy, is replaced by a triaxial ellipsoid, which
arries the complete anisotropy of the three-dimensional space.

The solution to the Stokes flow problem in an ellipsoid-in-cell with Happel-type boundary
onditions is obtained here with the aim of the Papkovich–Neuber representation. The incentive
or this is that the Happel-type boundary conditions are more compatible with the physics of the
ow in a swarm, since they ensure that each unit cell is self-sufficient in mechanical energy. Under

he assumption of very small Reynolds number and pseudosteady state, a three-dimensional
tokes flow in an ellipsoidal envelope of appropriate shape and dimensions is adopted as a fair
pproximation to the flow around a typical particle of the swarm, in accordance with the concept
ntroduced by Happel.11 The inner ellipsoid, which represents a particle in the assemblage, is solid,
oves with a constant arbitrary velocity, and rotates arbitrarily with a constant angular velocity,
hereas the outer ellipsoid represents a fictitious fluid envelope identifying the surface of a unit

ell �ellipsoid-in-cell�. The volume of the fluid cell is chosen so that the solid volume fraction in
he cell coincides with the volume fraction of the swarm. The appropriate boundary conditions,
esulting from these assumptions, are: nonslip flow on the inner ellipsoid, no normal flow, and zero
angential stresses on the outer ellipsoidal envelope.

In order to produce ready-to-use basic functions for Stokes flow in ellispoidal coordinates,2 we
alculate the Papkovich–Neuber eigensolutions, generated by the appropriate ellipsoidal
igenfunctions.20,21 This way, we determine the flow fields as a full series expansion via the
apkovich–Neuber representation, which represents the velocity and the total pressure fields in

erms of harmonic functions. The velocity, to the first degree, which represents the leading term of
he series, is sufficient for most engineering applications and provides us, also, with the corre-
ponding full 3D solution for the sphere given in Ref. 19 after a proper reduction. Besides, the
rst-order velocity field suits properly with the first-order nonslip flow condition on the surface of

he ellipsoidal particle. Thus, this program offers us the opportunity to restrict to this appropriate
egree of approximation. The application of the boundary conditions is accompanied by a set of
xtra conditions, which form the key to our work. They are based on the flexibility of the
apkovich–Neuber differential representation.17 The imposition of these conditions is necessary in
rder to overcome certain difficulties caused by the geometry. Specifically, since we have two
oundary surfaces to satisfy our conditions, we use twice the convenience that our representation
ffers17 on each boundary. Hence, we adopt the so-called techniques mentioned during our analy-
is, as the result of the above-noted flexibility.

The whole analysis is based on the Lamé functions and the theory of ellipsoidal
armonics.20,21 In fact, only harmonics of degree less than or equal to two are needed to obtain the
elocity field of the first degree. Besides the velocity field, analytical expressions for the leading
erms of the total pressure, the angular velocity, and the stress tensor fields are provided. Since the
urely ellipsoidal expressions are not easy to handle, the results are given in the more tractable
orm where Cartesian coordinates are used for the interior harmonics plus the standard elliptic
ntegrals that appear in the exterior Lamé products. Many relations involving the constants of the
llipsoidal harmonics as well as relations among the elliptic integrals had to be worked out in
rder to bring the result into its final form. The particular way the elliptic integrals are intercon-
ected is provided in the Appendix, where one can also find useful relations that are used exten-
ively and are necessary in order to transform from the Cartesian to the ellipsoidal system and vice
ersa. We must point out that our analytical method has been followed by the introduction of a
ew set of elliptic integrals, which do not differ from the aforementioned ones and which helped
s to derive certain coefficients in a simple way as well as to overcome the difficulty of the
orresponding boundary condition. Finally, the laborious task of reducing the results to the sphe-
oidal and spherical geometry is included. The reduction of general results from the ellipsoidal to
he spheroidal or spherical geometry is not a straightforward task because of the complicated
ndeterminacies that occur as the three semifocal distances of the ellipsoidal system approach zero.
he only way to deal with these indeterminacies is to group appropriately the terms of the solution
nd to perform the algebraic manipulations, which eliminate the indeterminacies before the lim-

ting process is applied.
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Section II provides the mathematical formulation of the problem and Sec. III discusses the
undamentals of the ellipsoidal system and the eigenfunctions for the Papkovich–Neuber poten-
ials in ellipsoidal coordinates. The Stokes flow fields are also provided as full series expansions
nd the boundary conditions are presented in the appropriate ellipsoidal shape. The Happel-type
roblem for an ellipsoid-in-cell model is solved explicitly in Sec. IV where the results are pre-
ented in a manageable Cartesian-ellipsoidal form. Section V is dedicated to the reduction of our
xpressions to the corresponding prolate–oblate spheroidal �including their limiting cases� and
pherical ones. Section VI is devoted to a discussion of the obtained results. The necessary
aterial from the theory of ellipsoidal harmonics as well as some useful formulas associated with

llipsoidal functions is collected in the Appendix. These formulas are the key identities of the
resent work.

I. MATHEMATICAL DEVELOPMENT

Under the assumption of pseudosteady, nonaxisymmetric, creeping flow �Reynolds number
e�1� which characterizes Stokes flow,1 the governing equations of motion for an incompress-

ble, viscous fluid in smooth, bounded domain ��R3�, with dynamic viscosity �0 and mass density

0, are a pair of partial differential equations connecting the biharmonic velocity field v with the
armonic total pressure field P,

�0�v�r� = �P�r�, r � ��R3� , �1�

� · v�r� = 0, r � ��R3� . �2�

quation �1� states that, in creeping flow, the viscous force compensates for the force caused by
he pressure gradient on any material point of the fluid, while Eq. �2� secures the incompressibility
f the fluid. Once the velocity field is obtained, the harmonic vorticity field � is defined as

��r� = 1
2 � � v�r�, r � ��R3� . �3�

apkovich–Neuber3,4 proposed the following differential representation of the solution for Stokes
ow, in terms of the harmonic potentials � and �0,

v�r� = ��r� − 1
2 � �r · ��r� + �0�r��, r � ��R3� �4�

nd

P�r� = P0 − �0 � · ��r�, r � ��R3� , �5�

hereas P0 is a constant pressure of reference usually assigned at a convenient point. The potential
unctions � and �0 solve the equations

���r� = 0, ��0 = 0, r � ��R3� . �6�

f we define the thermodynamic pressure p, then the following relation gives the total pressure as
function of the thermodynamic pressure

P�r� = p�r� + �0gh, r � ��R3� , �7�

here the contribution of the term �0gh �g is the acceleration of the gravity� refers to the gravi-
ational pressure force, corresponding to a height of reference h.

The stress dyadic �̃ is defined as follows:

�̃�r� = − p�r�Ĩ + �0�� � v�r� + �� � v�r��T�, r � ��R3� , �8�

here Ĩ stands for the unit dyadic and the symbol “T” denotes transposition.

The Happel-type boundary conditions for a general 3D particle-in-cell model. By means of
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ef. 1, we consider a fluid–particle system consisting of any finite number of rigid particles of
rbitrary shape. Introducing the particle-in-cell model, we examine the Stokes flow of one of the
ssemblage of particles neglecting the interaction with other particles or with the bounded walls of
container. Let Si denote the surface of the particle of the swarm, which is solid, is moving with
constant translational velocity U in an arbitrary direction �the relation between the velocity U

nd the mean interstitial velocity through a swarm of spheroidal particles was discussed in Ref. 16
nd is rotating, also arbitrarily, with a constant angular velocity �. It lives within an otherwise
uiescent fluid layer, which is confined by the outer surface denoted by So. Following the formu-
ation of Happel,11 the velocity component normal to So and the tangential stresses are assumed to
anish on So. These boundary conditions are supplemented by the necessary nonslip flow condi-
ions on the surface of the particle. Thus, the general BCs for a three-dimensional consideration of
he Happel-type boundary value problem are:

BC�1�: v�r� = U + � � r for r � Si, �9�

BC�2�: n̂ · v�r� = 0 for r � So, �10�

BC�3�: n̂ · �̃�r� · �Ĩ − n̂ � n̂� = 0 for r � So, �11�

here n̂ is the outer unit normal vector. Equations �1�–�11� define a well-posed Happel-type
oundary value problem for 3D domains, r���R3�, bounded by two arbitrary surfaces Si and So.

Our goal is to solve the above-noted Happel problem with the appropriate boundary condi-
ions given by Eqs. �9�–�11�, with the aim of the Papkovich–Neuber differential representation
sing the ellipsoidal system, which represents the most general geometrical system, which is
rthogonal and embodies the complete anisotropy of the three-dimensional space.

II. ELLIPSOIDAL GEOMETRY: FLOW FIELDS AND BOUNDARY CONDITIONS

The basic triaxial ellipsoid is defined by

x1
2

	1
2 +

x2
2

	2
2 +

x3
2

	3
2 = 1, �12�

here 0
	3
	2
	1
 +� are its semiaxes. The three positive numbers h1, h2, and h3, which
enote the semifocal distances of the system, are given by

h1
2 = 	2

2 − 	3
2, h2

2 = 	1
2 − 	3

2, h3
2 = 	1

2 − 	2
2 = h2

2 − h1
2. �13�

efine the system of ellipsoidal coordinates �� ,� ,��,2,20 which are connected to the Cartesian
nes �x1 ,x2 ,x3�, via

x1 =
���

h2h3
, �14�

x2 =
��2 − h3

2��2 − h3
2�h3

2 − �2

h1h3
, �15�

x3 =
��2 − h2

2�h2
2 − �2�h2

2 − �2

h1h2
. �16�

he three families of second-degree surfaces, which are shown in Fig. 1, share the same set of foci
t the points ±h1, ±h2, and ±h3.

In terms of the position vector r=x1x̂1+x2x̂2+x3x̂3 expressed via the Cartesian basis x̂,

=1,2 ,3, the variable �, h2��
 +� specifies the ellipsoid
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x1
2

�2 +
x2

2

�2 − h3
2 +

x3
2

�2 − h2
2 = �

i=1

3
xi

2

�2 − 	1
2 + 	i

2 = r · �
i=1

3
x̂i � x̂i

�2 − 	1
2 + 	i

2 · r = 1, �17�

he variable �, h3���h2 specifies the hyperboloid of one sheet

x1
2

�2 +
x2

2

�2 − h3
2 −

x3
2

h2
2 − �2 = �

i=1

3
xi

2

�2 − 	1
2 + 	i

2 = 1 �18�

nd the variable �, −h3���h3 specifies the hyperboloid of two sheets

x1
2

�2 −
x2

2

h3
2 − �2 −

x3
2

h2
2 − �2 = �

i=1

3
xi

2

�2 − 	1
2 + 	i

2 = 1. �19�

n the limit as the semifocal distances tend to zero �h1=h2=h3→0�, our system degenerates to the
orresponding spherical one with radial component r given by

�r� = ��2 + �2 + �2 − �h2
2 + h3

2� → r, 0 � r 
 + � . �20�

n terms of the metric coefficients of the system

h� =
��2 − �2��2 − �2

��2 − h3
2��2 − h2

2
, h� =

��2 − �2��2 − �2

��2 − h3
2�h2

2 − �2
, h� =

��2 − �2��2 − �2

�h3
2 − �2�h2

2 − �2
, �21�

he Jacobian determinant is J=h�h�h� and the differential operators �, �, assume the forms

� = �
i=1

3

x̂i
�

�xi
=

�̂

h�

�

��
+

�̂

h�

�

��
+

�̂

h�

�

��
�22�

nd

� = �
i=1

3
�2

�xi
2 =

1

J� �

��
	 J

h�
2

�

��

 +

�

��
	 J

h�
2

�

��

 +

�

��
	 J

h�
2

�

��

� , �23�

here �̂ , �̂ , �̂ denote the orthonormal coordinate vectors of the system, i.e.,

�̂ =
�

h�
�
i=1

3
xix̂i

�2 − 	1
2 + 	i

2 , �̂ =
�

h�
�
i=1

3
xix̂i

�2 − 	1
2 + 	i

2 , �̂ =
�

h�
�
i=1

3
xix̂i

�2 − 	1
2 + 	i

2 . �24�

he outward unit normal vector on the surface of the ellipsoid �=const coincides with the unit
ˆ

FIG. 1. Ellipsoidal geometry and coordinate surfaces.
ormal vector �, thus
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n̂�r� =
�

h�
	 x1x̂1

�2 +
x2x̂2

�2 − h3
2 +

x3x̂3

�2 − h2
2
 =

�

h�
�
i=1

3
x̂i � x̂i

�2 − 	1
2 + 	i

2 · r � �̂ , �25�

hile the unit dyadic assumes the ellipsoidal form

Ĩ = �
i=1

3

x̂i � x̂i = �̂ � �̂ + �̂ � �̂ + �̂ � �̂ . �26�

rom now on we shall refer to ellipsoidal domains, in terms of which

��R3� � R3 = ��,�,��:� � �h2, + ��,� � �h3,h2�,� � �− h3,h3�� . �27�

In order to construct the flow fields �3�–�5� and �8� in an appropriate form for the application
f the boundary conditions �9�–�11�, we need to represent the harmonic potentials � and �0 in
his system by solving the corresponding Laplace’s equations �6� in spectral form. This procedure
eads to the Lamé equation20

�x2 − h3
2��x2 − h2

2�E��x� + x�2x2 − h3
2 − h2

2�E��x� + �Ax2 + B�E�x� = 0, �28�

or each one of the factors E���, E���, and E��� within the corresponding intervals �� �h2 , +��,
� �h3 ,h2�, and �� �−h3 ,h3�, where A ,B�R are constants. For each n=0,1 , . . ., which corre-

ponds to the degree of the Lamé equation, and for each m=1,2 , . . . ,2n+1, which stands for its
rder, Eq. �28� has two linearly independent solutions. The first one, En

m, is regular at the origin
nd it is known as the Lamé function of the first kind �interior solution�, while the second one, Fn

m,
s regular at infinity and gives the Lamé function of the second kind �exterior solution�. In
articular, the interior solution En

m��� is related to the exterior solution Fn
m��� via

Fn
m��� = �2n + 1�En

m���In
m���, � � �h2, + �� , �29�

here the elliptic integrals In
m are given by

In
m��� = �

�

+� du

�En
m�u��2�u2 − h2

2�u2 − h3
2
, � � �h2, + �� �30�

or every value of n=0,1 , . . . and m=1,2 , . . . ,2n+1. In terms of the Lamé functions of the first
nd of the second kind, the Lamé products

En
m�r� = En

m���En
m���En

m���, n = 0,1, . . . , m = 1,2, . . . ,2n + 1, r � ��R3� �31�

efine the interior solid ellipsoidal harmonics, while the products

Fn
m�r� = Fn

m���En
m���En

m���, n = 0,1, . . . , m = 1,2, . . . ,2n + 1, r � ��R3� �32�

efine the exterior solid ellipsoidal harmonics. On the other hand, the complete orthogonal set

n
m���En

m��� form the surface ellipsoidal harmonics on the surface of any ellipsoid �=�s, which,
ith respect to the weighting function

l�s
��,�� =

1

���s
2 − �2���s

2 − �2�
, � � �h3,h2�, � � �− h3,h3� , �33�

atisfy the orthogonality relation

� �
�=�s

En
m���En

m���En�
m����En�

m����l�s
��,��dS = �n

m�nn��mm�, �34�

or every n ,n�=0,1 , . . . and m ,m�=1,2 , . . . ,2n+1. Here, �nn� denotes the Kronecker delta func-
m
ion, whilst �n are the ellipsoidal normalization constants given by
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�n
m =� �

�=�s

�En
m���En

m����2l�s
��,��dS, n = 0,1, . . . , m = 1,2, . . . ,2n + 1. �35�

According to the aforementioned analysis of ellipsoidal harmonic functions, the complete
epresentation of the Papkovich–Neuber potentials � and �0, which belong to the kernel space of
, assume the expressions

��r� = �
n=0

�

�
m=1

2n+1

�en
�i�mEn

m�r� + en
�e�mFn

m�r��, r � ��R3� �36�

nd

�0�r� = �
n=0

�

�
m=1

2n+1

�dn
�i�mEn

m�r� + dn
�e�mFn

m�r��, r � ��R3� . �37�

ote that, for n�0, the coefficients

en
�i/e�m = an

�i/e�mx̂1 + bn
�i/e�mx̂2 + cn

�i/e�mx̂3, dn
�i/e�m, m = 1,2, . . . ,2n + 1 �38�

enote the vector and the scalar coefficients of the harmonic potentials � and �0, respectively.
Let u, v and f, g denote two scalar and two vector fields, respectively. Then, if we define by

a dyadic, the basic identities that we are using in the sequel concern the action of the gradient
perator on the following expressions, i.e.,

� � �uf� = u � � f + �u � f , �39�

� · �uf� = u � · f + �u · f , �40�

� Ã �uf� = u � Ã f + �u Ã f , �41�

��f · g� = �� � f� · g + �� � g� · f , �42�

��uv� = u � v + v � u , �43�

� � �S̃ · f� = �� � S̃� · f + �� � f� · S̃T, �44�

� � �f � g� = �� � f� � g + �f � �� � g��213, �45�

hereas S̃T is the inverted dyadic and the symbol � �213 denotes left transposition for a triadic.
nserting the potentials �36� and �37� in the flow fields �4�, �5�, �3�, �8� and making use of the
bove identities �39�–�45�, we derive the relation

v�r� =
1

2�
n=0

�

�
m=1

2n+1

en
�i�mEn

m�r�

− ��en
�i�m · r� + dn

�i�m� � En
m�r� + en

�e�mFn
m�r� − ��en

�e�m · r� + dn
�e�m� � Fn

m�r��, r � ��R3�

�46�
or the velocity field, while for the total pressure field, taking into account relation �7�, we obtain
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P�r� = P0 − �0�
n=0

�

�
m=1

2n+1

en
�i�m · �En

m�r� + en
�e�m · �Fn

m�r�� = p�r� + �0gh , �47�

or every r���R3�. The vorticity field is then written as

��r� =
1

2�
n=0

�

�
m=1

2n+1

�En
m�r� Ã en

�i�m + �Fn
m�r� Ã en

�e�m�, r � ��R3� �48�

nd the stress tensor field is expressed as

�̃�r� = − p�r�Ĩ − �0�
n=0

�

�
m=1

2n+1

��en
�i�m · r� + dn

�i�m� � � �En
m�r� + ��en

�e�m · r� + dn
�e�m� � � �Fn

m�r��,

r � ��R3� . �49�

he coefficients en
�i�m, en

�e�m, dn
�i�m, and dn

�e�m for n=0,1 , . . . and m=1,2 , . . . ,2n+1 are to be deter-
ined from the boundary conditions �9�–�11�, which also have to be expressed in ellipsoidal form.

n accordance with the Happel formulation,11 two confocal ellipsoids are considered. The inner
ne, indicated by Sa, at �=�a with semiaxes �a, ��a

2−h3
2 and ��a

2−h2
2 is solid, it is moving with a

onstant translational velocity U in an arbitrary direction and is rotating arbitrarily with a constant
ngular velocity �, given by

U = �
i=1

3

Uix̂i, � = �
i=1

3

�ix̂i, �50�

here Ui and �i, i=1,2 ,3 are the components at the Cartesian orthogonal basis. The outer
llipsoid indicated by Sb at �=�b with semiaxes �b, ��b

2−h3
2 and ��b

2−h2
2 defines the quiescent

uid layer. Thus, the boundary conditions �9�–�11� are rewritten as follows:

BC�1�: v�r� = U + � Ã r for r � Sa, �51�

BC�2�: �̂ · v�r� = 0 for r � Sb, �52�

BC�3�: �̂ · �̃�r� · �Ĩ − �̂ � �̂� = 0 for r � Sb, �53�

here �̂ is the unit curvilinear vector relative to the variable �. These BCs must be applied to Eqs.
46� and �49� in order to calculate the coefficients and obtain the flow fields �46�–�49�. Note that
he domain ��R3� �27� is specified by the variable � that varies in the interval ��a ,�b�.

V. SOLUTION OF THE 3D HAPPEL-TYPE ELLIPSOID-IN-CELL MODEL

The purpose of this section is to solve the 3D Stokes ellipsoid-in-cell model with the Happel-
ype BCs �51�–�53�. In our related work, for the corresponding complete isotropic Stokes flow,19

he solution was obtained by using the full series representation for the velocity, the total pressure,
he vorticity, and the stress tensor. Unfortunately, this is not possible when the present complex
llipsoidal geometry is used. The reason is that, although the form of ellipsoidal harmonics is
nown, the analytical expressions of those harmonics in terms of the semiaxes 	1 ,	2 ,	3 are
anageable only for degree n�3. This difficulty restricts the analytical solutions of related physi-

al problems to the 16th-dimensional harmonic subspace spanned by the harmonics of degree less
han or equal to three for m=1,2 , . . . ,2n+1.20 The interior Lamé functions of degree less than or
qual to 3 are given by

E1�x� = 1, �54�
0
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E1
�x� = ��x2 − 	1

2 + 	
2�,  = 1,2,3, �55�

E2
1�x� = x2 − 	1

2 + � , �56�

E2
2�x� = x2 − 	1

2 + ��, �57�

E2
6−�x� =

x��x2 − h3
2���x2 − h2

2�
��x2 − 	1

2 + 	
2�

,  = 1,2,3 �58�

r in terms of the semiaxes,

E2
+l�x� = ��x2 − 	1

2 + 	
2���x2 − 	1

2 + 	l
2�, ,l = 1,2,3,  � l �59�

nd

E3
2−1�x� = ��x2 − 	1

2 + 	
2��x2 − 	1

2 + ��,  = 1,2,3, �60�

E3
2�x� = ��x2 − 	1

2 + 	
2��x2 − 	1

2 + ���,  = 1,2,3, �61�

E3
7�x� = x��x2 − h3

2���x2 − h2
2� , �62�

here the variable x represents the values of �� �h2 , +��, �� �h3 ,h2�, �� �−h3 ,h3�, the constants

� �

��
� =

1

3�
i=1

3

	i
2 ±

1

3	�
i=1

3 �	i
4 −

	1
2	2

2	3
2

	i
2 �
1/2

�63�

atisfy the quadratic equation

�
i=1

3
1

� − 	i
2 = 0, �64�

nd the constants

��

��
� =

2

5�
i=1

3

	i
2 −

1

5
	

2 ±
1

5�4�
i=1

3

	i
4 − 3	

4 − 	1
2	2

2	3
2��

i=1

3
1

	i
2 +

6

	
2��1/2

�65�

or =1,2 ,3 satisfy the relations

�
i=1

3
1 + 2�i

�� − 	i
2�

= 0,  = 1,2,3. �66�

he Cartesian representation of the ellipsoidal harmonics are given by

E0
1�r� = 1, �67�

E1
�r� =

h1h2h3

h

x,  = 1,2,3, �68�

E2
1�r� = �� − 	1

2��� − 	2
2��� − 	3

2�	�
3

xi
2

� − 	2 + 1
 � E2
1��� , �69�
i=1 i
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E2
2�r� = E2

1���� , �70�

E2
6−�r� = h1h2h3h

x1x2x3

x

,  = 1,2,3 �71�

r equivalently,

E2
+l�r� =

h1
2h2

2h3
2

hhl
xxl, ,l = 1,2,3,  � l �72�

nd

E3
2−1�r� = h1h2h3�� − 	1

2��� − 	2
2��� − 	3

2�
x

h
	�

i=1

3
xi

2

� − 	i
2 + 1
 � E3

2−1���,  = 1,2,3,

�73�

E3
2�r� = E3

2−1����,  = 1,2,3, �74�

E3
7�r� = h1

2h2
2h3

2x1x2x3, �75�

here r���R3�. On the other hand, the Cartesian monomials of degree less than or equal to three
re expressed via the ellipsoidal harmonic functions as

1 = E0
1�r� = E0

1���E0
1���E0

1��� , �76�

x =
h

h1h2h3
E1

�r� =
h

h1h2h3
E1

���E1
���E1

���,  = 1,2,3, �77�

x
2 =

�2 − 	1
2 + 	

2

3
	1 −

E2
1���E2

1���
�� − ����� − 	

2�
+

E2
2���E2

2���
�� − ������ − 	

2�
 , �78�

x1x2x3

x

=
1

h1h2h3h

E2
6−�r� =

1

h1h2h3h

E2
6−���E2

6−���E2
6−���,  = 1,2,3 �79�

r

xxl =
hhl

h1
2h2

2h3
2E2

+l�r� =
hhl

h1
2h2

2h3
2E2

+l���E2
+l���E2

+l���, ,l = 1,2,3,  � l , �80�

xxl
2 =

��2 − 	1
2 + 	

2��2 − 	1
2 + 	l

2�h

5h1h2h3
�1 + 2�l�E1

���E1
���� �81�

� +
5�− 1�lhl

2

h1
2h2

2h3
2�� − ���

���� − 	l
2�E3

2−1���E3
2−1��� − �� − 	l

2�E3
2���E3

2�����, ,l = 1,2,3,

�82�

x1x2x3 =
1

h2h2h2E3
7�r� =

1

h2h2h2E3
7���E3

7���E3
7��� . �83�
1 2 3 1 2 3

                                                                                                            



d
r

w

f

t
e
n

o

a

093102-13 Stokes flow in ellipsoidal geometry J. Math. Phys. 47, 093102 �2006�

                        
Relations �67�–�83� form the basis for moving from the Cartesian coordinates to the ellipsoi-
al ones and vice versa. Relations �76�–�83� are necessary for the application of the orthogonality
elation �34�. Note that

Fn
m�r� = �2n + 1�In

m���En
m�r�, n = 0,1,2,3, m = 1,2, . . . ,2n + 1, r � ��R3� , �84�

hile the set of

xl
2 − x

2 =
	l

2 − 	
2

3
−

E2
1�r�

3�� − ���	 1

� − 	l
2 −

1

� − 	
2
 +

E2
2�r�

3�� − ���	 1

�� − 	l
2 −

1

�� − 	
2
,

r � ��R3� �85�

or every  , l=1,2 ,3, are harmonic functions.
Before we proceed to the full solution of our physical problem, it is necessary to write down

he Cartesian-ellipsoidal representations for the single and the double action of the gradient op-
rator �22� on the interior and on the exterior ellipsoidal harmonic eigenfunctions of degree
�3. Consequently, some long but straightforward calculations lead to

�E0
1�r� = 0 , �86�

�E1
�r� =

h1h2h3

h

x̂ =
h1h2h3

h

E0
1�r�x̂,  = 1,2,3, �87�

�E2
1�r� = 2�� − 	1

2��� − 	2
2��� − 	3

2��
i=1

3
xix̂i

� − 	i
2

= 2
�� − 	1

2��� − 	2
2��� − 	3

2�
h1h2h3

�
i=1

3
hi

� − 	i
2E1

i �r�x̂i � �E2
1��� , �88�

�E2
2�r� = �E2

1���� , �89�

�E2
6−�r� = h1h2h3h�

i=1

3

�1 − �i�
x1x2x3

xxi
x̂i = h1h2h3�

i=1

3
�1 − �i�

hi
E1

6−�+i��r�x̂i,  = 1,2,3

�90�

r with equivalent notation,

�E2
+l�r� =

h1
2h2

2h3
2

hhl
�xx̂l + xlx̂� = h1h2h3� 1

hl
E1

�r�x̂l +
1

h

E1
l �r�x̂�, ,l = 1,2,3,  � l ,

�91�

nd

�E3
2−1�r� =

h1h2h3

h

�� − 	1
2��� − 	2

2��� − 	3
2�	x̂��

i=1

3
xi

2

� − 	i
2 + 1� + 2x�

i=1

3
xix̂i

� − 	i
2


� �E3
2−1���,  = 1,2,3, �92�

2 2−1
�E3 �r� = �E3 ����,  = 1,2,3, �93�
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�E3
7�r� = h1

2h2
2h3

2�
i=1

3
x1x2x3

xi
x̂i = h1h2h3�

i=1

3
1

hi
E2

6−i�r�x̂i. �94�

The form of the stress tensor �49� requires the double action of the gradient operator on the
ollowing ellipsoidal harmonics:

� � �E0
1�r� = 0̃ , �95�

� � �E1
�r� = 0̃,  = 1,2,3, �96�

� � �E2
1�r� = 2�� − 	1

2��� − 	2
2��� − 	3

2��
i=1

3
x̂i � x̂i

� − 	i
2

= 2�� − 	1
2��� − 	2

2��� − 	3
2�E0

1�r��
i=1

3
x̂i � x̂i

� − 	i
2 � � � �E2

1��� , �97�

� � �E2
2�r� = � � �E2

1���� , �98�

� � �E2
6−�r� = h1h2h3h�

i=1

3

�1 − �i��x̂6−�+i� � x̂i�

= h1h2h3hE0
1�r��

i=1

3

�1 − �i��x̂6−�+i� � x̂i�,  = 1,2,3 �99�

nd with equivalent notation for every  , l=1,2 ,3 and � l,

� � �E2
+l�r� =

h1
2h2

2h3
2

hhl
�x̂ � x̂l + x̂l � x̂� =

h1
2h2

2h3
2

hhl
E0

1�r��x̂ � x̂l + x̂l � x̂� �100�

nd

� � �E3
2−1�r� =

2h1h2h3

h

�� − 	1
2��� − 	2

2��� − 	3
2�

�	�
i=1

3
x

� − 	i
2 �x̂i � x̂i� + �

i=1

3
xi

� − 	i
2 �x̂ � x̂i + x̂i � x̂�


=
2

h

�� − 	1
2��� − 	2

2��� − 	3
2�

�	hE1
�r��

i=1

3
x̂i � x̂i

� − 	i
2 + �

i=1

3
hiE1

i �r�
� − 	i

2 �x̂ � x̂i + x̂i � x̂�

� � � �E3

2−1���,  = 1,2,3, �101�

� � �E3
2�r� = � � �E3

2−1����,  = 1,2,3, �102�

� � �E3
7�r� = h1

2h2
2h3

2 �
i,j=1

3

�1 − �ij�
x1x2x3

xixj
�x̂ j � x̂i� = h1

2h2
2h3

2 �
i,j=1

3

�1 − �ij�
x̂ j � x̂i

hihj
E1

6−�i+j��r� .
�103�
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Unfortunately, it is not possible to write similar Cartesian expressions for the gradient of the
xternal harmonic eigenmodes, because of the existence of the elliptic integrals �30� in relation
84�. As we shall see later, this is the reason for the appearance of a number of difficulties in the
pplication of the boundary conditions. Thus, we keep a mixed ellipsoidal-Cartesian formula of
he above-mentioned expressions. In view of Eq. �30�, we obtain

In
m���� = −

1

�En
m����2��2 − h3

2��2 − h2
2
, � � �h2, + �� �104�

nd according to relations �21� and �22�

�Fn
m�r� = �2n + 1�	In

m�����En
m�r�� −

�̂

��2 − �2��2 − �2

En
m�r�

�En
m����2
 . �105�

Although expression �105� is the simplest one possible it is still problematic because of the
ppearance of the vectorial factor

Rel�r� =
�̂

��2 − �2��2 − �2
, � � �h2, + ��, � � �h3,h2�, � � �− h3,h3� . �106�

This problem becomes even more complicated in the case of the double action of the gradient
perator on the external harmonics, where

� � �Fn
m�r� = �2n + 1��In

m����� � �En
m�r�� + �In

m��� � �En
m�r� + �En

m�r� � �In
m���

+ En
m�r��� � �In

m����� �107�

or n=0,1 ,2 , . . . and m=1,2 , . . . ,2n+1. The dyadic � � �En
m has been introduced earlier, and we

an easily obtain the following relation:

�In
m��� = −

�̂

�En
m����2��2 − �2��2 − �2

= −
1

�En
m����2Rel�r�, r � ��R3� . �108�

s far as the factor � � �In
m is concerned that appears in �107�, we actually need the formula

� � �̂ =
�

h�
	 �̂ � �̂

�2 − �2 +
�̂ � �̂

�2 − �2
 +
�

h�

�̂ � �̂

�2 − �2 +
�

h�

�̂ � �̂

�2 − �2 �109�

ith the metric coefficients given by Eq. �21� and

�

��
Rel�r� =

�

��
� �̂

��2 − �2��2 − �2�, r � ��R3� , �110�

hich is also written as

�

��
Rel�r� =

1

��2 − �2���2 − �2��−
2��2�2 − �2 − �2�
��2 − �2��2 − �2

�̂ +
1

��2 − h3
2��2 − h2

2
��2�2 − h3

2 − h2
2�x1x̂1

+ �2�2 − h2
2�x2x̂2 + �2�2 − h3

2�x3x̂3�� �111�
r in ellipsoidal coordinates alone
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�

��
Rel�r� =

1

��2 − h3
2��2 − h2

2��2 − �2���2 − �2�

�	− 2��2�2 − �2 − �2�
�

h�

�̂ + ��2 − �2�
�

h�

�̂ + ��2 − �2�
�

h�

�̂
, r � ��R3� .

�112�

hese formulas seem to be complicated, but they are given in the appropriate form for the
pplication of the boundary condition �53�.

The nature of condition �51�, restricts the degree of the velocity field �46� to one. Hence, we
se ellipsoidal harmonics of degree n�2, which provide the appropriate flow fields that are
dequate for most applications. Besides, these terms are enough to calculate the most important
erm of the velocity. Consequently, we observe that the potential � in �36� must be of degree one
nd the potential �0 in �37� must be of degree two in the surface variables � and �. This implies
hat all the coefficients en

�i�m, en
�e�m for n�2 and dn

�i�m, dn
�e�m for n�3, vanish, i.e.,

en
�i�m = en

�e�m = 0, n = 2,3, . . . , m = 1,2, . . . ,2n + 1 �113�

nd

dn
�i�m = dn

�e�m = 0, n = 3,4, . . . , m = 1,2, . . . ,2n + 1. �114�

Hence, the expansions �46�–�49� degenerate to the following finite sums, where for particles
f a particular size, the first term of the series is enough for most real applications. Our aim is to
alculate the terms of the flow fields, which correspond to ellipsoidal harmonics of degree less or
qual than two. Inserting the restrictions �113� and �114� into the flow fields, we conclude the finite
imensional projections that correspond to the first term of the velocity field, denoted by v�0�, P�0�,
�0�, and �̃�0�. Thus,

v�0��r� =
1

2��
n=0

1

�
m=1

2n+1

�en
�i�m · �ĨEn

m�r� − r � �En
m�r�� + en

�e�m · �ĨFn
m�r� − r � �Fn

m�r���

− �
n=0

2

�
m=1

2n+1

�dn
�i�m � En

m�r� + dn
�e�m � Fn

m�r���, r � ��R3� �115�

efines the first term of the velocity field,

P�0��r� = P0 − �0�
n=0

1

�
m=1

2n+1

en
�i�m · �En

m�r� + en
�e�m · �Fn

m�r�� = p�0��r� + �0gh, r � ��R3�

�116�

efines the first term of the total pressure field,

��0��r� =
1

2�
n=0

1

�
m=1

2n+1

�En
m�r� Ã en

�i�m + �Fn
m�r� Ã en

�e�m�, r � ��R3� �117�

efines the first term of the vorticity field, and

�̃�0��r� = − p�0��r�Ĩ − �0��
n=0

1

�
m=1

2n+1

��en
�i�m · r� � � �En

m�r� + �en
�e�m · r� � � �Fn

m�r��

+ �
2

�
2n+1

�dn
�i�m � � �En

m�r� + dn
�e�m � � �Fn

m�r���, r � ��R3� �118�

n=0 m=1
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efines the first term of the stress tensor field. Of course, the remaining coefficients e0
�i�1, e0

�e�1 for
=0 and e1

�i�, e1
�e�, =1,2 ,3 for n=1, as well as the coefficients d0

�i�1, d0
�e�1 for n=0, d1

�i�, d1
�e�,

=1 ,2 ,3 for n=1 and d2
�i�1, d2

�e�1, d2
�i�2, d2

�e�2, d2
�i�6−, d2

�e�6−, =1,2 ,3 or d2
�i�+l, d2

�e�+l,
, l=1,2 ,3, � l for n=2 have to be determined from the boundary conditions �51�–�53�.

Application of the BCs (51)–(53) to the velocity (115) and to the stress tensor (118). By virtue
f the initial definitions �50�, we insert the velocity field �115� to the boundary condition �51� on
he surface Sa of the solid ellipsoid and we conclude that

2�U + � � r� =��
n=0

1

�
m=1

2n+1

��en
�i�m + �2n + 1�In

m���en
�e�m� · �ĨEn

m�r� − r � �En
m�r��� − �

n=0

2

�
m=1

2n+1

��dn
�i�m

+ �2n + 1�In
m���dn

�e�m� � En
m�r��� + Rel�r���

n=0

1

�
m=1

2n+1

��2n + 1��en
�e�m · r�

��En
m����−2En

m�r�� + �
n=0

2

�
m=1

2n+1

��2n + 1�dn
�e�m�En

m����−2En
m�r���, � = �a, �119�

here we have used Eqs. �84� and �105� as well as the complicated ellipsoidal factor �106� for
very �� �h3 ,h2� and �� �−h3 ,h3�. The three sums in the first curly brace on the right-hand side
f �119� are of the first degree in the variables �, �. The two sums inside the second curly brace
re of the second degree. We observe that due to the factor Rel it is not possible to express the
econd curly brace in terms of a finite expression of surface ellipsoidal harmonics. Therefore, in
ractice, it is impossible to evaluate the coefficients from BC �119� explicitly. Nevertheless, since
he harmonic potentials � and �0 of the general solution �4� and �5� are not independent,17 the
orresponding d’s and e’s coefficients are also not independent as well. Thus, based on the
exibility of the Papkovich–Neuber differential representation, we choose to express the dn

�e�m in
erms of the en

�e�m in such a way that the two sums on the right-hand side of �119�, which are
ultiplied by Rel, vanish for r�Sa. When this is done the “bad term” of the BC �119� will

isappear and we can apply orthogonality to obtain relations between the rest unknown coeffi-
ients dn

�i�m, en
�i�m, and en

�e�m. In that sense, the use of the aforementioned technique on �=�a forms
he key to our method. For �=�a the vanishing of the ellipsoidal part of the boundary condition
119� implies that

��
n=0

1

�
m=1

2n+1

��2n + 1��en
�e�m · r��En

m����−2En
m�r�� + �

n=0

2

�
m=1

2n+1

��2n + 1�dn
�e�m�En

m����−2En
m�r��� = 0,

r � Sa. �120�

Representing now the factor rEn
m via surface ellipsoidal harmonics at �=�a with the aim of the

ormulas �67�, �68�, and �76�–�80�, as well as relations �A20�, �A32�, and �A33� from the Appen-
ix and using orthogonality arguments, the assumption �120� provides the following relations
etween the coefficients, i.e.,

d0
�e�1 = − h1h2h3�

i=1

3
�e1

�e�i · x̂i�
hi

, �121�

d1
�e� = −

h�E1
��a��2

3h1h2h3
�e0

�e�1 · x̂�,  = 1,2,3, �122�

d2
�e�1 =

h1h2h3

5�� − ���
E2

1��a��
3

�e1
�e�i · x̂i�

h �� − 	2�
, �123�
i=1 i i
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d2
�e�2 = −

h1h2h3

5�� − ���
E2

2��a��
i=1

3
�e1

�e�i · x̂i�
hi��� − 	i

2�
, �124�

d2
�e�+l = −

3

5h1h2h3
�h�E1

��a��2�e1
�e�l · x̂� + hl�E1

l ��a��2�e1
�e� · x̂l�� �125�

or  , l=1,2 ,3, � l. Having expressed the external d-coefficients as a function of the external
-coefficients and according to the technique �120�, the ellipsoidal part of the boundary condition
119� is not present any more and eventually it becomes

2�U + � � r� =��
n=0

1

�
m=1

2n+1

��en
�i�m + �2n + 1�In

m���en
�e�m� · �ĨEn

m�r� − r � �En
m�r���

− �
n=0

2

�
m=1

2n+1

��dn
�i�m + �2n + 1�In

m���dn
�e�m� � En

m�r���, r � Sa. �126�

In order to handle the condition �126� properly, we perform the following actions. First we use
he Cartesian form of the solid ellipsoidal harmonics En

m and of the gradient acting on it �En
m from

67�, �68�, and �86�–�91�, respectively. Next we calculate the factor r � �En
m in Cartesian form and

nally, by virtue of the definitions �38�, of Eqs. �76� and �77�, of the connection formulas
121�–�124� and of the orthogonality relation �34�, the condition �126�, after long and tedious
alculations, results

h1h2h3

h

d1
�i� = − 2�U · x̂� + �e0

�i�1 · x̂� + �I0
1��a� + �E1

��a��2I1
��a���e0

�e�1 · x̂�,  = 1,2,3,

�127�

s well as

− 	 �� − 	1
2��� − 	2

2��� − 	3
2�

�� − 	
2�

d2
�i�1

h1h2h3
+

��� − 	1
2���� − 	2

2���� − 	3
2�

��� − 	
2�

d2
�i�2

h1h2h3



=
�� − 	1

2��� − 	2
2��� − 	3

2�
�� − 	

2�
E2

1��a�I2
1��a�

�� − ��� �
i=1

3
�e1

�e�i · x̂i�
hi�� − 	i

2�

−
��� − 	1

2���� − 	2
2���� − 	3

2�
��� − 	

2�
E2

2��a�I2
2��a�

�� − ��� �
i=1

3
�e1

�e�i · x̂i�
hi��� − 	i

2�
�128�

nd

h��e1
�i�l · x̂� + 3I1

l ��a��e1
�e�l · x̂�� − hl��e1

�i� · x̂l� + 3I1
��a��e1

�e� · x̂l�� − h1h2h3

��d2
�i�+l + 5I2

+l��a�d2
�e�+l� =

2�l

h6−�+l�
�� · x̂6−�+l��, ,l = 1,2,3,  � l , �129�

here

�l = �+ 1, �,l� = �1,3�,�2,1�,�3,2�
− 1, �,l� = �1,2�,�2,3�,�3,1� �, ,l = 1,2,3,  � l . �130�

The next step now will be the investigation of the second condition on the boundary �=�b of

he fictitious ellipsoidal surface Sb. In view of the boundary condition �52� we obtain
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��
n=0

1

�
m=1

2n+1

���̂ · en
�i�m�En

m�r� − �en
�i�m · r���̂ · �En

m�r�� + ��̂ · en
�e�m�Fn

m�r� − �en
�e�m · r���̂ · �Fn

m�r���

− �
n=0

2

�
m=1

2n+1

�dn
�i�m��̂ · �En

m�r�� + dn
�e�m��̂ · �Fn

m�r���� = 0, r � Sb, �131�

here we utilized the assumption for the velocity field �115�. It is obvious that the appearance of
he unit normal vector �̂, provided by expression �25�, increases the degree of the harmonic
igenmodes in Eq. �131� up to n=2. More specifically using the Cartesian-ellipsoidal formulas
67�–�72�, �76�–�80�, and �86�–�91�, as well as

�̂ · �Fn
m�r� = �2n + 1�	In

m�����̂ · �En
m�r�� −

1
��2 − �2��2 − �2

En
m�r�

�En
m����2
 �132�

or �=�b and n=0,1 ,2, m=1,2 , . . . ,2n+1, we convert, after long calculations, condition �131� to
suitable form, which is appropriate for applying orthogonality via �34�. Thus, after having

roduced the ellipsoidal form of the factors ��̂ ·�En
m� for n=0,1 ,2, m=1,2 , . . . ,2n+1 and

�̂ · en
�i/e�m�, �r ·en

�i/e�m� for n=0,1, m=1,2 , . . . ,2n+1, we apply orthogonality and obtain nine more
elations involving the still unknown coefficients. The number of equations we obtain is a result of
he scalar character of the boundary condition �131� and, of course, of the number of the surface
llipsoidal harmonics for n�2. We mention that no indeterminacy appeared in our program and
ll the calculations were easily performed. Actually, orthogonality of the surface ellipsoidal har-
onic E0

1���E0
1��� provides the already known relation �121�, which is independent of the bound-

ry. On the other hand, by orthogonality arguments of E1
���E1

���, =1,2 ,3 and relation �127� we
valuate the coefficient e0

�e�1 in the form

�e0
�e�1 · x̂� = −

2E3
7��b�
N

�U · x̂�,  = 1,2,3, �133�

here

N = E3
7��b���I0

1��b� − I0
1��a�� + �E1

��a��2�I1
��b� − I1

��a��� + �E1
��b��2 − �E1

��a��2,  = 1,2,3.

�134�

Until now, four of the nine equations, which came up from boundary condition �131�, have
een used. The five remaining equations correspond to orthogonality on the surface ellipsoidal
armonics of degree n=2 for every m=1,2 , . . . ,5. Hence, the surface ellipsoidal harmonics

2
1���E2

1��� and E2
2���E2

2��� lead to

− 5d2
�e�1 + 2E2

1��b�E3
7��b��d2

�i�1 + 5I2
1��b�d2

�e�1� +
h1h2h3E2

1��b�
�� − ��� �

i=1

3
�e1

�e�i · x̂i�
hi�� − 	i

2�
= 0 �135�

nd

− 5d2
�e�2 + 2E2

2��b�E3
7��b��d2

�i�2 + 5I2
2��b�d2

�e�2� −
h1h2h3E2

2��b�
�� − ��� �

i=1

3
�e1

�e�i · x̂i�
hi��� − 	i

2�
= 0, �136�

espectively, where the identity �A20� has been used. Inserting Eqs. �123� and �124� to relation
128�, we obtain the following 2�2 homogeneous system of linear equations, in the variables
d2

�i�1+5I2
1��a�d2

�e�1� and �d2
�i�2+5I2

2��a�d2
�e�2�. For example, for =1,2 we have

�� − 	2
2��� − 	3

2��d2
�i�1 + 5I2

1��a�d2
�e�1� + ��� − 	2

2���� − 	3
2��d2

�i�2 + 5I2
2��a�d2

�e�2� = 0 �137�
nd
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�� − 	1
2��� − 	3

2��d2
�i�1 + 5I2

1��a�d2
�e�1� + ��� − 	1

2���� − 	3
2��d2

�i�2 + 5I2
2��a�d2

�e�2� = 0. �138�

ince the determinant is not zero, it follows that

d2
�i�1 + 5I2

1��a�d2
�e�1 = d2

�i�2 + 5I2
2��a�d2

�e�2 = 0 �139�

r

d2
�i�1 = − 5I2

1��a�d2
�e�1, d2

�i�2 = − 5I2
2��a�d2

�e�2. �140�

e could come up with the same result if we had used expression �128� for =1,3 or for
=2,3.

Our next step involves the substitution of the results �140� to �135� and �136�, to obtain

h1h2h3E2
1��b�

�� − ��� �
i=1

3
�e1

�e�i · x̂i�
hi�� − 	i

2�	1 −
E2

1��a�
E2

1��b�
+ 2E3

7��b�E2
1��a��I2

1��b� − I2
1��a��
 = 0 �141�

nd

h1h2h3E2
2��b�

�� − ��� �
i=1

3
�e1

�e�i · x̂i�
hi��� − 	i

2�	1 −
E2

2��a�
E2

2��b�
+ 2E3

7��b�E2
2��a��I2

2��b� − I2
2��a��
 = 0, �142�

here the nonvanishing of the two square brackets implies

�
i=1

3
�e1

�e�i · x̂i�
hi�� − 	i

2�
= �

i=1

3
�e1

�e�i · x̂i�
hi��� − 	i

2�
= 0. �143�

As a consequence relations �123� and �124� force the coefficients d2
�e�1 and d2

�e�2 to vanish and
hen from �140� we obtain

d2
�i�1 = d2

�e�1 = 0 �144�

nd

d2
�i�2 = d2

�e�2 = 0. �145�

n addition, working on the two summations �143� and with proper use of identities �A22� and
A23� we conclude that

�e1
�e�3 · x̂3� =

h3

h1
�e1

�e�1 · x̂1� =
h3

h2
�e1

�e�2 · x̂2� , �146�

here two of the three diagonal scalar coefficients of e1
�e�, =1,2 ,3 have been evaluated via the

hird one. Finally, by means of orthogonality on the BC �131� of E2
6−���E2

6−���, =1,2 ,3, we
erive the following elaborate relation, valid on the ellipsoidal surface Sb:

E3
7��b�h6−�+l�

2 h��e1
�i�l · x̂� + 3I1

l ��b��e1
�e�l · x̂�� − hl��e1

�i� · x̂l� + 3I1
��b��e1

�e� · x̂l���

+ h1h2h3�5d2
�e�+l − E3

7��b���E1
��b��2 + �E1

l ��b��2��d2
�i�+l + 5I2

+l��b�d2
�e�+l��

+ 3�h�E1
��b��2�e1

�e�l · x̂� + hl�E1
l ��b��2�e1

�e� · x̂l�� = 0, ,l = 1,2,3,  � l , �147�

here by � l we mean all the possible combinations such as � , l�= �2,1� , �3,1� , �3,2�. At this
oint, we take advantage of the particular form of the three pairs of equations in relation �129� by
ubstracting one relation from the other of each pair that contains the same components of the
pplied vorticity �, to obtain the three equations

d�i�+l + 5I+l��a�d�e�+l = 0 ⇒ d�i�+l = − 5I+l��a�d�e�+l, ,l = 1,2,3,  � l . �148�
2 2 2 2 2 2
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If we return to condition �147�, we observe that we have to deal with three different relations
or every value of � , l�= �2,1� , �3,1� , �3,2�. Therefore, by virtue of �148� and inserting �125� and
129� to �147�, we conclude the symmetric expression

P
l h�e1

�e�l · x̂� + Pl
hl�e1

�e� · x̂l� = R+l, ,l = 1,2,3,  � l �149�

ith

P
l =

�b
2 − �a

2

�E2
+l��b��2 + E3

7��b�
	l

2 − 	
2

�E2
+l��b��2 �I1

l ��b� − I1
l ��a�� + E3

7��b��E1
��a��2� 1

�E1
��b��2 +

1

�E1
l ��b��2�

��I2
+l��b� − I2

+l��a�� �150�

or every  , l=1,2 ,3 and � l, and

R+l =
2h6−�+l��6−�+l�

3
�− 1�+lE1

6−�+l���b�
E2

+l��b�

=
2h1h2h3�6−�+l�

3
�− 1�+l E3

7��b�
�E2

+l��b��2 , ,l = 1,2,3,  � l . �151�

Recapitulating, we see that the effect of the two first boundary conditions �51� and �52� to the
valuation of the unknown coefficients, in the flow fields �115�–�118�, is to obtain nine unknown
oefficients e1

�e�, =1,2 ,3 from five relations, two from �146� and three from �149�. Thus, there
emain four coefficients that must be calculated explicitly from the final condition �53� on the
llipsoid �=�b. However, the diagonal components of e1

�e�, =1,2 ,3, appearing in Eq. �146�, will
ot enter the flow fields, as we shall see later on. This means that in practice we need to calculate
hree instead of four coefficients.

The application of the boundary condition �53�, where in view of the stress tensor field �118�,
nd according to the form of the unit dyadic �26� gives

�̂ · Ĩ · �Ĩ − �̂ � �̂� = �̂ · Ĩ · ��̂ � �̂ + �̂ � �̂� = 0 , �152�

rovides the following expression in terms of the unit normal vector �̂,

�Ĩ − �̂ � �̂� · ��
n=0

1

�
m=1

2n+1

��en
�i�m · r���̂ · � � �En

m�r�� + �en
�e�m · r���̂ · � � �Fn

m�r���

+ �
n=0

2

�
m=1

2n+1

�dn
�i�m��̂ · � � �En

m�r�� + dn
�e�m��̂ · � � �Fn

m�r���� = 0, r � Sb. �153�

In order to deal with condition �153� we perform the following operations. First, we use the
ouble action of the gradient operator on the interior solid ellipsoidal harmonics provided by
elations �95�–�100� for the evaluation of the �̂ ·� � �En

m, n=0,1 ,2, m=1,2 , . . . ,2n+1. Then,
sing the expression

�̂ =
E3

7���
��2 − �2��2 − �2�

i=1

3
xix̂i

�E1
i ����2 , � = �b �154�

or the unit outward normal on Sb, we obtain

�̂ · �In
m��� = −

1

�En
m����2��2 − �2��2 − �2

, � = �b, �155�
ecause
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Rel�r� =
�̂

��2 − �2��2 − �2
, � = �b. �156�

Also, according to the definition �22�, and with the help of relation �108�, we reach at

�̂ · ��In
m��� =

��2 − h3
2��2 − h2

2

��2 − �2��2 − �2

�

��
� In

m���

= −
��2 − h3

2��2 − h2
2

��2 − �2��2 − �2	 �

��
�En

m����−2Rel�r� + �En
m����−2 �

��
Rel�r�
 �157�

or �=�b. Some easy algebra on Eq. �157� furnishes

�̂ · ��In
m��� =

��2 − h3
2��2 − h2

2

�En
m����3��2 − �2��2 − �2	2En

m����Rel�r� − En
m���

�Rel�r�
��


 , �158�

here �=�b, whilst the �-derivative of the factor Rel has been calculated through its Cartesian
111� and its ellipsoidal �112� representation. Substituting expressions �155� and �158� into the
ouble gradient of the exterior solid ellipsoidal harmonics �107�, inserting relations �86�–�91� and
95�–�100� at �107� and using

�̂ � �̂ = E3
7����

i=1

3
xi

�E1
i ����2 x̂i � Rel�r� = E3

7����
i=1

3
xi

�E1
i ����2Rel�r� � x̂i, � = �b, �159�

he boundary condition �153�, on �=�b, is written as

�− Ĩ + �̂ � �̂� · ���2 − h3
2��2 − h2

2�Rel�r�
��

	�
n=0

1

�
m=1

2n+1
�2n + 1�
�En

m����2En
m�r��en

�e�m · r�

+ �
n=0

2

�
m=1

2n+1
�2n + 1�
�En

m����2En
m�r�dn

�e�m
 − �
m=1

5

��d2
�i�m + 5I2

m���d2
�e�m���2 − �2��2 − �2��̂ · � � �En

m�r���

+ 	�
n=0

1

�
m=1

2n+1
�2n + 1�
�En

m����2 � En
m�r��en

�e�m · r� + �
n=0

2

�
m=1

2n+1
�2n + 1�
�En

m����2 � En
m�r�dn

�e�m
� = 0, � = �b.

�160�

careful observation of condition �160� reveals the difficulty to manipulate it in Cartesian coor-
inates and the impossibility of direct application of orthogonality arguments. Nevertheless, the
se of purely ellipsoidal terms simplifies Eq. �160�. In particular, we perform all the necessary
alculations, use �67�–�72�, �76�–�80�, and �86�–�91�, insert the already known coefficients, and
se the fact that

��̂ � �̂ + �̂ � �̂� · �
i=1

3

xix̂i
3h1h2h3

hi�E1
i ��b��2 �e1

�e�i · x̂i� = 3h1h2�e1
�e�3 · x̂3���̂ � �̂ + �̂ � �̂� · �

i=1

3
xix̂i

�E1
i ��b��2

= 3h1h2�e1
�e�3 · x̂3���̂ � �̂ + �̂ � �̂� · �h�

�b
�̂� = 0,

� = �b, �161�
o rewrite the boundary condition �160� in the simple form
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A��b,�,���̂ + B��b,�,���̂ = 0 , �162�

here the quantities A and B contain surface ellipsoidal harmonics, the coefficients under evalu-
tion, and some known constants. The orthogonality of the unit normal vectors �̂ and �̂ implies
hat A and B are equal to zero, i.e.,

�
i=1

3

Bi� �E1
i ��a��2

x2 − 	1
2 + 	i

2 − 1�E1
i ���E1

i ��� + �
i,j=1

i�j

3 �Ai
j + �E1

i ��b��2Ci
j

x2 − 	1
2 + 	i

2 − Ci
j�E2

i+j���E2
i+j��� = 0,

�163�

here x assumes the values � and �, and

A
l =

3�E1
��b��2��b

2 − �a
2�hl

E2
+l��b�

�e1
�e� · x̂l�, ,l = 1,2,3,  � l , �164�

B =
2E3

7��b�E1
��b�hU

N

,  = 1,2,3, �165�

ith N, =1,2 ,3 given in �134�, while

C
l =

3

E2
+l��b�

�− h�E1
��a��2�e1

�e�l · x̂� + E3
7��b��E1

��b��2�I2
+l��b� − I2

+l��a���h�E1
��a��2�e1

�e�l · x̂�

+ hl�E1
l ��a��2�e1

�e� · x̂l���, ,l = 1,2,3,  � l . �166�

n the other hand, �e1
�e� · x̂l� for  , l=1,2 ,3 and � l provide the six unknown coefficients, which

ust be evaluated with the aid of �149�.
At this stage we have to deal with two major problems. The first one reflects the difficulty of

pplying orthogonality of the surface ellipsoidal harmonics En
m���En

m��� in �163�, and the second
oncerns the number of the equations that we have to satisfy. In fact, we are left with five relations
three from �149� and two from �163�� to evaluate the six coefficients mentioned earlier. As far as
he first difficulty is concerned, we introduce the new set of elliptic integrals on the surface of the
llipsoid �=�s,

Jn,
m ��s� =� �

�=�s

En
m���En

m���

�x2 − 	1
2 + 	

2���s
2 − �2��s

2 − �2
dS,  = 1,2,3 �167�

or �� �h3 ,h2�, �� �−h3 ,h3�, where we define the following values of x:

for x = � ⇒ Jn,
m � Mn,

m and for x = � ⇒ Jn,
m � Nn,

m . �168�

herefore, we multiply �163� by the weighting function �33� and use the orthogonality relation
34� and the zeroth degree eigenfunction E0

1���E0
1����1 to obtain

�
i,j=1

i�j

3

Xi
jhi�e1

�e�j · x̂i� = Qx, x = �,�, � � �h3,h2�, � � �− h3,h3� , �169�
ith
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X
l =

3

E2
+l��b�

�E1
l ��b��4J2,l

+l��b� − �E1
��a��2�J2,l

+l��b��E1
l ��b��2�1 − E3

7��b��E1
l ��b��2�I2

+l��b�

− I2
+l��a��� + J2,

+l��b��E1
��b��2�1 − E3

7��b��E1
��b��2�I2

+l��b� − I2
+l��a����� �170�

or every  , l=1,2 ,3 and � l, and

Qx = − �
i=1

3
2E3

7��b�E1
i ��b��E1

i ��a��2hiUi

Ni
J1,i

i ��b� �171�

or x=� ,�. The constants N, =1,2 ,3 are given in �134�. Relation �169� refers to two different
quations for the values of x=� ,� containing the two different types of elliptic integrals appearing
n �168�. Despite the simplification of the final boundary condition by the introduction of a new set
f elliptic integrals, our already reduced potential problem remains undetermined as far as one
oefficient is concerned. Indeed, combining �149� with relation �169� we see that we are missing
ne more condition. Hence, we adopt, once more, our previous analysis, which springs from the
exibility of the Papkovich–Neuber differential representation.17 In fact, since we have two
oundary surfaces to satisfy our conditions, we use our technique twice, one for each boundary.
herefore, in terms of the elliptic integrals

Ln,
m ��s� = Nn,

m ��s� − Mn,
m ��s� =� �

�=�s

��2 − �2�En
m���En

m���
��2 − 	1

2 + 	
2���2 − 	1

2 + 	
2�

dS

��s
2 − �2��s

2 − �2
,

 = 1,2,3, �172�

e substract by parts Eq. �169� for the different values of x=� ,� and we choose the following
ondition for the unknown coefficients, i.e.,

Q
l h�e1

�e�l · x̂� + Ql
hl�e1

�e� · x̂l� � 1
3 �Q� − Q�� = Q, ,l = 1,2,3,  � l , �173�

here

Q
l =

3

E2
+l��b�

�E1
l ��b��4L2,l

+l��b� − �E1
��a��2�L2,l

+l��b��E1
l ��b��2�1 − E3

7��b��E1
l ��b��2�I2

+l��b�

− I2
+l��a��� + L2,

+l��b��E1
��b��2�1 − E3

7��b��E1
��b��2�I2

+l��b� − I2
+l��a����� �174�

nd

Q = −
2E3

7��b�
3 �

i=1

3
E1

i ��b��E1
i ��a��2hiUi

Ni
L1,i

i ��b� , �175�

ith the constants N, =1,2 ,3 given by �134�. This way we generate an additional relation for
he evaluation of the coefficients through condition �173�. This is the second and final restriction
o our problem, which provided the three explicit equations �173�.

We solve a system of six equations for the last six unknown coefficients �e1
�e�l · x̂�,  , l

1,2 ,3, � l, taking into account relations �149� and �173�. Defining �e1
�e�l · x̂��e

l , we rewrite
he solution as

�e1
�e�l · x̂� � e

l =
Pl

Q − Ql
R+l

h�Pl
Q

l − P
l Ql

�
, ,l = 1,2,3,  � l , �176�

here the constants P
l , Q

l , R+l for  , l=1,2 ,3, � l, and Q are given by �150�, �174�, �151�, and
175�, respectively. It is easily proved that Pl

Q
l − P

l Ql
�0. Hence, having used all the boundary

onditions �51�–�53� we evaluated all the coefficients.

The final step contains the presentation of a mixed Cartesian-ellipsoidal form of the first terms
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f the flow fields formulated by expressions �115�–�118�, using the information �67�–�112�. Intro-
ucing all the evaluated coefficients from the previous steps and using the Cartesian-ellipsoidal
ormulation of the interior and exterior ellipsoidal harmonics, as well as their gradients, some
xtended algebra on the velocity field �115� leads to

v�0��r� = U + � Ã r + Z��� + �
j=1

3

H j���E1
j �r� +

�̂

2��2 − �2��2 − �2

���j=1

3

� j���E1
j �r� + �

i,j=1

i�j

3

�i
j���E2

i+j�r��, r � ��R3� , �177�

here for every �a����b we define the vector quantities

Z��� = − E3
7��b�U · �

i=1

3

��I0
1��� − I0

1��a�� + �E1
i ��a��2�I1

i ��� − I1
i ��a���

x̂i � x̂i

Ni
�178�

nd

H��� =
3

2 �
i=1

i�

3

hiei
�I1

��� − I1
��a�� − he

i �I1
i ��� − I1

i ��a�� + �hiei
�E1

i ��a��2 + he
i �E1

��a��2��I2
i+���

− I2
i+��a���

x̂i

hi
,  = 1,2,3. �179�

urthermore, the scalar products for the same interval �a����b are

���� = −
2hE3

7��b�
h1h2h3

�U · x̂�
N

	1 − �E1
��a�

E1
���

�2
,  = 1,2,3 �180�

nd

�
l ��� =

3h

h1h2h3
e

l 	1 − �E1
��a�

E1
���

�2
 1

�E1
l ����2 , ,l = 1,2,3,  � l . �181�

Once the constants N for =1,2 ,3 in �134� and e
l for  , l=1,2 ,3, � l in �176� are calcu-

ated, the velocity field is obtained in terms of the applied fields U and � via Eq. �50�. The total
ressure field �116� assumes the expression

P�0��r� = P0 + �0
E3

7���
��2 − �2���2 − �2���j=1

3
� j���
�2 − �a

2E1
j �r� +

3

h1h2h3
�

i,j=1

i�j

3
hiei

j

�E2
i+j����2E2

i+j�r��
= p�0��r� + �0gh, r � ��R3� , �182�

here the coefficients e
l for  , l=1,2 ,3, � l are given by �176�, where the identity �A4� and

ormula

�
i=1

3
xi

2

�E1
i ����2 =

h�
2

�2 , �a � � � �b �183�

ave been used. The reference constant h is appropriately chosen depending upon the physical

equirements. Here, we must mention that the constant pressure of reference P0 is written as
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P0 = − �0h1h2h3�
j=1

3
1

hj
�e1

�i�j · x̂ j� , �184�

hich actually contains the coefficients �e1
�i� · x̂�, =1,2 ,3 that were not evaluated by the bound-

ry conditions. Nevertheless, P0 enter Stokes equations �1� and �2� under the action of the gradient
perator, providing that way �P0=0. Thus, we can use the very same physical arguments to
pecify this constant pressure. As far as the vorticity field is concerned we can expand relation
117� in view of �67�–�112�, and substitute the obtained coefficients. Nevertheless, an easier root
s followed with respect to the definition �3�, by taking the rotation of the velocity field �177�.
fter the application of certain identities we obtain

� Ã U = 0, � Ã �� Ã r� = 2� �185�

nd some extensive algebra leads to

� �
�̂

��2 − �2��2 − �2
= 0, r � ��R3� . �186�

atching �185� and �186� and utilizing definitions �178�–�181�, we arrive at

��0��r� = � +
h1h2h3

2 �
j=1

3
1

hj
�x̂ j Ã H j���� +

��2 − h3
2��2 − h2

2�̂

2��2 − �2��2 − �2
Ã 	Z���� + �

j=1

3

H j����E1
j �r�


−
h1h2h3�̂

4��2 − �2��2 − �2
� ��j=1

3
� j���

hj
x̂ j + �

i,j=1

i�j

3

�i
j����E1

i �r�
hj

x̂ j +
E1

j �r�
hi

x̂i�� �187�

or every r���R3�, where � stands for the constant vorticity �50�, with

Z���� =
E3

7��b�U
��2 − h3

2��2 − h2
2

· �
i=1

3
x̂i � x̂i

Ni
	1 + �E1

i ��a�
E1

i ���
�2
, �a � � � �b �188�

nd

H���� =
3

2��2 − h3
2��2 − h2

2 �
i=1

i�

3
x̂i

hi
�−

hiei


�E1
����2	1 + �E1

i ��a�
E1

i ���
�2


+
he

i

�E1
i ����2	1 − �E1

��a�
E1

���
�2
�,  = 1,2,3 �189�

or �a����b. The constants N for =1,2 ,3 are given by �134� and the coefficients e
l for

, l=1,2 ,3, � l are provided by �176�. Next, in order to obtain the expression for the stress
ensor field, we use identities �39�–�45� so that

� � U = �� � U�T = 0̃, � � �� Ã r� = � Ã Ĩ �190�

˜
nd we use relations �22� and �109� to obtain the dyadic S in the form
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S̃�r� � � � � �̂

��2 − �2��2 − �2� + 	� � � �̂

��2 − �2��2 − �2�
T

=
2

��2 − �2��2 − �2� �

h�
	− � 1

�2 − �2 +
1

�2 − �2��̂ � �̂ +
�̂ � �̂

�2 − �2 +
�̂ � �̂

�2 − �2

+

�

h���2 − �2�
��̂ � �̂ + �̂ � �̂� +

�

h���2 − �2�
��̂ � �̂ + �̂ � �̂�� . �191�

urther calculations lead to

�̃�0��r� = ��0gh − P�0��r��Ĩ − �0� 1

h�

��̂ � Z���� + Z���� � �̂� + �
j=1

3 	E1
j �r�
h�

��̂ � H j���� + H j����

� �̂� +
h1h2h3

hj
�x̂ j � H j��� + H j��� � x̂ j�
� −

�0

2
S̃�r���j=1

3

� j���E1
j �r�

+ �
i,j=1

i�j

3

�i
j���E2

i+j�r�� −
�0

��2 − �2��2 − �2� �̂ � �̂

h� ��j=1

3

� j����E1
j �r� + �

i,j=1

i�j

3

�i
j����E2

i+j�r��
+

h1h2h3

2 ��j=1

3
� j���

hj
��̂ � x̂ j + x̂ j � �̂� + �

i,j=1

i�j

3

�i
j����E1

i �r�
hj

��̂ � x̂ j + x̂ j � �̂�

+
E1

j �r�
hi

��̂ � x̂i + x̂i � �̂���� �192�

or r���R3�, where P�0� is the total pressure �182�, while in view of the applied field U �50�

����� = −
4hE3

7��b�
h1h2h3

�U · x̂�
N

�E1
��a��2

�E1
����4 �,  = 1,2,3 �193�

nd

�
l���� = −

6h

h1h2h3

�e
l

�E1
l ����4�1 − �E1

��a�
E1

���
�2	1 + �E1

l ���
E1

���
�2
�, ,l = 1,2,3,  � l

�194�

or every �a����b. We remind that the coefficients e
l for  , l=1,2 ,3, � l are satisfied by

176�, the metric coefficient h� is given by Eq. �21�, N for =1,2 ,3 are provided by �134� and
xpressions �178�–�181�, �188�, and �189� have been used. Recapitulating, the first terms, of the
elocity field �177�, of the total pressure field �182�, of the vorticity field �187�, and of the stress
ensor field �192� have been analytically calculated on the basis of the Happel-type boundary

onditions.
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. GEOMETRICALLY DEGENERATE CASES

The strict inequalities

0 
 	3 
 	2 
 	1 
 + � �195�

orm the basic reason why the triaxial ellipsoid reflects the general anisotropy of the three-
imensional space. As it is well known,20 the reduction of general results from the ellipsoidal to
he spheroidal, or to the spherical geometry is not straightforward, since certain indeterminacies
ppear during the limiting process. This is due to the fact that the spherical system springs from a
ero-dimensional manifold �i.e., the center�, while the ellipsoidal system springs from a two-
imensional manifold �i.e., the focal ellipse�. Nevertheless, formulas �A42�–�A51� ensure the
ppropriate reductions. In particular, we consider every case separately.

The geometrically degenerate cases of spheroids: The equality of the two of the axis �195� of
n ellipsoid degenerates it to a spheroid, whose axial symmetry coincides with the third axis. More
pecific, a prolate spheroid is obtained whenever

0 
 	3 = 	2 
 	1 
 + � , �196�

hile the case of an oblate spheroid corresponds to

0 
 	3 
 	2 = 	1 
 + � . �197�

he axis of symmetry is the x1 axis for the prolate spheroid and the x3 axis for the oblate spheroid.
he asymptotic case of the needle can be reached by a prolate spheroid where

0 
 	3 = 	2 � 	1 
 + � , �198�

hile in the case where

0 
 	3 � 	2 = 	1 
 + � , �199�

he oblate spheroid takes the shape of a circular disk. As far as the semifocal distances are
oncerned, we have that

h1 = 0, h2 = h3 = c, c � 0 �200�

or the case of a prolate spheroid with semifocal distance c, and

h3 = 0, h1 = h2 = c̄, c̄ � 0 �201�

or the case of an oblate spheroid with semifocal distance c̄. The simple transformation

c → − ic̄, c, c̄ � 0 �202�

llows the transition from the prolate to the oblate spheroid, while the replacement

c̄ → ic, c, c̄ � 0 �203�

ecures the converse. In terms of the notation ��cosh �, ��cos �, and � for 1��
 +�,
1���1 and �� �0,2��, respectively, for the prolate spheroid, the corresponding results for the
blate spheroid can be obtained through the transformation

� → i�, 1 � � 
 + � , �204�

here 0���sinh �
 +� is the characteristic variable of the oblate system �, �, and �. Obvi-

usly the inverse transformation
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� → − i�, 0 � � 
 + � �205�

eads to the converse. Consequently, from this point on we shall refer to the prolate spheroidal
eometry, since the oblate spheroidal geometry is recovered via

� → i�, c → − ic̄ . �206�

In terms of the unit normal vector �̂ for the prolate spheroidal coordinates, the ellipsoidal
ariables are connected with the �, �, and � by

� = c�, �̂ → �̂, � � �h2, + ��, 1 � � 
 + � �207�

nd

��

h2h3
= � , �208�

��2 − h3
2�h3

2 − �2

h1h3
= �1 − �2 cos � , �209�

�h2
2 − �2�h2

2 − �2

h1h2
= �1 − �2 sin � , �210�

hereas �� �h3 ,h2�, �� �−h3 ,h3� and 1��
 +�, �� �0,2��. For 	2=	3 �prolate spheroid� the
onstants �63� provide

lim
	2→	3

� =
2	1

2 + 	2
2

3
, lim

	2→	3

�� = 	2
2, �211�

hile as a consequence of the limits �211� for 	2=	3,

lim
	2→	3

�� − ��� = lim
	2→	3

�� − 	2
2� = lim

	2→	3

�� − 	3
2� =

2c2

3
, �212�

lim
	2→	3

�� − 	1
2� = −

c2

3
, �213�

lim
	2→	3

��� − 	1
2� = − c2, �214�

lim
	2→	3

��� − 	2
2� = lim

	2→	3

��� − 	3
2� = 0. �215�

oreover, the constants �65� for 	2=	3 ��2=�3, �2�=�3�, prolate spheroid� become

lim
	2→	3

��

��
� =

2

5
�	1

2 + 2	2
2� −

1

5
	

2 ±
1

5�4�	1
4 + 2	2

4� − 3	
4 − 	1

2	2
4	� 1

	1
2 +

2

	2
2� +

6

	
2
�1/2

,

 = 1,2, �216�

here one can calculate the ��−	l
2� and ���−	l

2� for  , l=1,2 ,3. On the other hand, the inte-
m
rals In in prolate spheroidal geometry �	2=	3�

                                                                                                            



f
m
i

e
t

f
t
t
g

093102-30 P. Vafeas and G. Dassios J. Math. Phys. 47, 093102 �2006�

                        
lim
	2→	3

In
m��� = �

�

+� du

� lim
	2→	3

En
m�u��2�u2 − 	1

2 + 	2
2�

, � � �h2, + �� �217�

or n=0,1 , . . . and m=1,2 , . . . ,2n+1 are no more elliptic and they can be evaluated with analytic
anipulations. Specifically, the determination of I0

1 demands the calculation of the corresponding
ntegral �217� for n=0 and m=1 in terms of the variable �, that is

lim
	2→	3

I0
1��� =

1

2c
ln

� + 1

� − 1
, � � �h2, + ��, 1 � � 
 + � . �218�

The other elliptic integrals, which concern the already known exterior ellipsoidal harmonic
igenfunctions for degree n=1,2 ,3 and order m=1,2 , . . . ,2n+1, are given explicitly in terms of
he lim

	2→	3

I0
1 and their prolate spheroidal expressions �	2=	3� give

lim
	2→	3

I1
1��� =

1

c2� lim
	2→	3

I0
1��� −

1

c�
�, c � 0, �219�

lim
	2→	3

I1
2��� = lim

	2→	3

I1
3��� = −

1

2c2� lim
	2→	3

I0
1��� −

�

c��2 − 1��, c � 0, �220�

lim
	2→	3

I2
1��� =

9

4c4� lim
	2→	3

I0
1��� −

�

c�3�2 − 1��, c � 0, �221�

lim
	2→	3

I2
2��� = lim

	2→	3

I2
5��� =

3

8c4� lim
	2→	3

I0
1��� −

��3�2 − 5�
3c��2 − 1�2�, c � 0, �222�

lim
	2→	3

I2
3��� = lim

	2→	3

I2
4��� = −

3

2c4� lim
	2→	3

I0
1��� −

3�2 − 2

3c���2 − 1��, c � 0. �223�

Much more complicated calculations leads us to

lim
	2→	3

I3
1��� =

25

c6 �1

4
lim

	2→	3

I0
1��� −

25�

36c�5�2 − 3�
−

1

9c�
� , �224�

lim
	2→	3

I3
2��� = lim

	2→	3

I3
7��� =

1

c6�15

8
lim

	2→	3

I0
1��� +

�

4c��2 − 1�2 −
7�

8c��2 − 1�
−

1

c�
� , �225�

lim
	2→	3

I3
3��� = lim

	2→	3

I3
5��� = −

25

c6 � 3

16
lim

	2→	3

I0
1��� −

�

32c��2 − 1�
−

25�

32c�5�2 − 1�� , �226�

lim
	2→	3

I3
4��� = lim

	2→	3

I3
6��� = −

1

c6� 5

16
lim

	2→	3

I0
1��� −

�

6c��2 − 1�3 +
5�

24c��2 − 1�2 −
5�

16c��2 − 1��
�227�

or c�0. As far as the interior solid ellipsoidal harmonics as well as their gradients are concerned,
heir Cartesian representation easily implies the relative reductions. Finally, the limiting cases of
he needle and of the disk are asymptotic reductions of the prolate and the oblate spheroidal

eometry, respectively. For the needle we obtain
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	1/	2 = �/��2 − 1 → + �, 1 � � 
 + � , �228�

nd for the disk we obtain

	3/	2 = �/��2 + 1 → 0+, 0 � � 
 + � . �229�

The geometrically degenerate case of sphere: The sphere corresponds to

	1 = 	2 = 	3 = 	 , �230�

here 	 is the radius. In this case,

h = 0,  = 1,2,3, �231�

hich means that all the semifocal distances of the ellipsoid coincide at the origin. Defining the
imit from the ellipsoid to the sphere as “lim

e→s
”, the constants �63� give

lim
e→s

� = lim
e→s

�� = 	2, �232�

hile from Eq. �65� we derive

lim
e→s

� = lim
e→s

�� = 	2,  = 1,2,3 �233�

o that

lim
e→s

�� − ��� = lim
e→s

�� − ��� = 0,  = 1,2,3, �234�

lim
e→s

�� − 	
2� = lim

e→s
��� − 	

2� = 0,  = 1,2,3, �235�

lim
e→s

�� − 	l
2� = lim

e→s
��� − 	l

2� = 0, ,l = 1,2,3. �236�

he intervals of variation of the variables � and � imply that

lim
e→s

� = lim
e→s

� = 0,  = 1,2,3. �237�

In terms of the unit normal vector r̂ of the spherical system, the connection between the
llipsoidal variables and the corresponding spherical variables r, ��cos �, and � for 0�r
 +�,
1���1 and �� �0,2�� is

lim
e→s

� = lim
e→s

���2 − h2
2� = lim

e→s
���2 − h3

2� = r, �̂ → r̂, � � �h2, + ��, r � 0 �238�

or the radial component and

��

h2h3
= � , �239�

��2 − h3
2�h3

2 − �2

= �1 − �2 cos � , �240�

h1h3
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�h2
2 − �2�h2

2 − �2

h1h2
= �1 − �2 sin � �241�

or the angular dependence. The integrals In
m assume the values,

lim
e→s

In
m��� =

1

�2n + 1�r2n+1 , n � 0, m = 1,2, . . . ,2n + 1,  = 1,2,3 �242�

or every �� �h2 , +�� and r�0.
We mention that a proper reduction of our results for the velocity field �177� gives the first

erm of the series. The full solution of the above-mentioned Happel-type boundary value problem
n spherical coordinates is given in Ref. 19, where the three-dimensional complete solution is
btained. For the sake of completeness, we provide the solution from Ref. 19 in the following.

If we define the sphere

Br = r � R3�x1
2 + x2

2 + x3
2 � r2� , �243�

here

r = �
i=1

3

xix̂i = r�x̂1 + r�1 − �2 cos �x̂2 + r�1 − �2 sin �x̂3, �244�

hen the total velocity assumes the form

v�sphere��r� = U + � Ã r + Z�r� + f�r��x1r�, r � ��R3� . �245�

e introduce the expression

Z�r� =
U · �x̂1 � x̂1�

K
	− 2�3�5 + 2� + 4�5� r

a
�2

+ �a

r
�3

+ �2�5 + 3��a

r
�
 �246�

nd

f�r� =
1

a2	�2�5 + 3��a

r
�3

− 3�a

r
�5

− 2�5
 , �247�

hereas

� =
a

b

 1, K = 2 − 3� + 3�5 − 2�6, U = U1x̂1. �248�

ote that, a ,b are the radii of the concentric spheres of the corresponding Happel boundary value
roblem for Stokes flow around spherical particles.

I. DISCUSSION

The physical interpretation of the mathematical problem analyzed in this work involves a
ethod for solving three-dimensional Stokes flow problems with Happel-type boundary condi-

ions. Based on this method we examine the flow in an ellipsoidal cell as a means of modeling
ow through a swarm of ellipsoidal particles with the aim of the Papkovich–Neuber differential
epresentation, which offers solutions for such problems in several orthogonal curvilinear geom-
tries. The terms of major significance of the important physical flow fields such as the velocity,
he total pressure, the vorticity, and the stress tensor are evaluated in closed form. The difficulty of
his problem is focused on the determination of the coefficients, which characterize the nature of
he corresponding potentials. This is caused by the appearance of certain indeterminacies, which
eflect the complexity of the ellipsoidal geometry. The present work invoked a useful tool for

ealing with nonaxisymmetric problems, which is the differential representation theory. The free-
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om that 3D representations offer, makes the solution of creeping flow problems within such
omains feasible, a fact which is justified by the freedom, which this kind of representation offers.
onsequently, a convenient handling of those extra conditions in order to cancel the singular
ehavior of the calculated expressions makes the calculations possible and leads to the explicit
valuation of the coefficients. It turns out that the velocity, to the first degree, which represents the
eading term of the series, is sufficient for most real life applications, so long as the aspect ratios
f the ellipsoids remains within moderate bounds. This is feasible, since the Stokes flow approxi-
ation requires a strict consideration of small particles and, then, our method stays valid. We

onclude by showing the means for obtaining the corresponding results for the prolate and the
blate spheroid, the needle and the disk, and the sphere as degenerate ellipsoids.
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PPENDIX: RELATIONS ON ELLIPSOIDAL HARMONICS

For a detailed analysis of the ellipsoidal harmonics and related useful properties, one can refer
o Ref. 20. However, in the interest of making this work complete and independent, we provide
ome useful material on ellipsoids and ellipsoidal harmonics, which were used in this work and
ost of them cannot be found in literature. They appear here for the first time.

We begin with the following connection formulas:

�2 + �2 + �2 = �
i=1

3

xi
2 + h2

2 + h3
2, �A1�

�2�2 + �2�2 + �2�2 = �
i=1

3

hi
2xi

2 + 2x1
2h3

2 + h2
2h3

2, �A2�

�2�2�2 = x1
2h2

2h3
2 �A3�

or every �� �h2 , +��, �� �h3 ,h2�, and �� �−h3 ,h3�.
The elliptic integrals that enter the exterior ellipsoidal harmonics Fn

m are interconnected via the
ollowing relations:

�
i=1

3

I1
i ��� =

1

���2 − h3
2��2 − h2

2
=

1

E3
7���

, �A4�

�
i=1

3

	i
2I1

i ��� = I0
1��� −

�2 − 	1
2

���2 − h3
2��2 − h2

2
, �A5�

I2
1��� =

1

2�� − 	1
2 + �2����2 − h3

2��2 − h2
2

−
1

2�
i=1

3
I1

i ���
� − 	i

2 , �A6�

I2
2��� =

1

2��� − 	2 + �2����2 − h2��2 − h2
−

1

2�
3

I1
i ���

�� − 	2 , �A7�

1 3 2 i=1 i
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I2
+l��� =

I1
l ��� − I1

���
	

2 − 	l
2 , ,l = 1,2,3,  � l , �A8�

I3
7��� =

1

h1
2h2

2h3
2�

i=1

3

�− 1�i+1hi
2I1

i ��� =
1

h1
2h2

2h3
2�

i=1

3

�− 1�i+1	i
2hi

2I2
6−i��� , �A9�

�
i=1

3
I1

i ���
�� − 	i

2���� − 	i
2�

= 3I3
7��� , �A10�

�
i=1

3
	i

2I1
i ���

�� − 	i
2���� − 	i

2�
=

3

h1
2 �I1

2��� − I1
3���� + 3	1

2I3
7��� = − 3I2

5��� + 3	1
2I3

7��� , �A11�

�	l
2I1

��� + 	
2I1

l ���� = �	l
2I1

l ��� + 	
2I1

���� + �	l
2 − 	

2�2I2
+l���, ,l = 1,2,3,  � l ,

�A12�

�
i=1

3

�− 1�ihi
2I2

6−i��� = 0. �A13�

The essence of relations �A4�–�A13� is that between the ten integrals In
m, n�2, and I3

7 only
wo are linearly independent. For example, if I0

1 and I3
7 are known, then the other eight integrals

an be written via these two.
The constants � and ��, from Eq. �63�, the semifocal distances h, =1,2 ,3 and the semiaxes

, =1,2 ,3 satisfy the following useful expressions:

� + �� =
2

3�
i=1

3

	i
2, �A14�

� − �� =
2

3
�h1

4 + h2
2h3

2, �A15�

��� =
	1

2	2
2	3

2

3 �
i=1

3
1

	i
2 �A16�

nd

�
i=1

3

�− 1�i�� − 	i
2�hi

2 = �
i=1

3

�− 1�i��� − 	i
2�hi

2 = 0, �A17�

�
i=1

3

�− 1�i�� − 	i
2�hi

2	i
2 = �

i=1

3

�− 1�i��� − 	i
2�hi

2	i
2 = h1

2h2
2h3

2, �A18�

�
i=1

3
	i

2

� − 	i
2 = �

i=1

3
	i

2

�� − 	i
2 = − 3. �A19�
Furthermore,
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�� − 	
2���� − 	

2� =
�− 1�+1h1

2h2
2h3

2

3h
2 ,  = 1,2,3, �A20�

hich implies that

3
2 �� − ��� − 3�� − 	1

2� = − 3
2 �� − ��� − 3��� − 	1

2� = h2
2 + h3

2, �A21�

�� − 	1
2��� − 	2

2� + �� − 	1
2��� − 	3

2� + �� − 	2
2��� − 	3

2� = 0, �A22�

��� − 	1
2���� − 	2

2� + ��� − 	1
2���� − 	3

2� + ��� − 	2
2���� − 	3

2� = 0 �A23�

nd

�� − 	1
2��� − 	2

2��� − 	3
2�

�� − 	
2�

= �− 1�+1h1
2h2

2h3
2

3h
2 −

�� − 	
2��� − ���

2
, �A24�

��� − 	1
2���� − 	2

2���� − 	3
2�

��� − 	
2�

= �− 1�+1h1
2h2

2h3
2

3h
2 +

��� − 	
2��� − ���
2

�A25�

or every =1,2 ,3. It is also easy to show that

�� − 	1
2��� − 	2

2��� − 	3
2�

�� − 	
2��� − 	l

2�
= 	

2 + 	l
2 −

� + 3��

2
+ 3��� − 	l

2��l, �A26�

��� − 	1
2���� − 	2

2���� − 	3
2�

��� − 	
2���� − 	l

2�
= 	

2 + 	l
2 −

3� + ��

2
+ 3�� − 	l

2��l. �A27�

An important group of relations is given by

�
i=1

3
	i

4

� − 	i
2 = −

3

2
�3� + ��� , �A28�

�
i=1

3
	i

4

�� − 	i
2 = −

3

2
�3�� + �� , �A29�

�
i=1

3
	i

4

�� − 	i
2�2 = 3 − 3

�2�� − ���
�� − 	1

2��� − 	2
2��� − 	3

2�
, �A30�

�
i=1

3
	i

4

��� − 	i
2�2 = 3 + 3

��2�� − ���
��� − 	1

2���� − 	2
2���� − 	3

2�
, �A31�

�
i=1

3
	i

2

�� − 	i
2�2 = ��

i=1

3
1

�� − 	i
2�2 = −

3��� − ���
�� − 	1

2��� − 	2
2��� − 	3

2�
, �A32�

�
i=1

3
	i

2

��� − 	i
2�2 = ���

i=1

3
1

��� − 	i
2�2 =

3���� − ���
��� − 	1

2���� − 	2
2���� − 	3

2�
�A33�
nd
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�
i=1

3
�− 1�i+1hi

2

� − 	i
2 =

h1
2h2

2h3
2

�� − 	1
2��� − 	2

2��� − 	3
2�

, �A34�

�
i=1

3
�− 1�i+1hi

2

�� − 	i
2 =

h1
2h2

2h3
2

��� − 	1
2���� − 	2

2���� − 	3
2�

. �A35�

The following relations connect the semifocal distances and the semiaxes of an ellipsoid:

	1
2h1

2 − 	2
2h2

2 + 	3
2h3

2 = 0, �A36�

	1
2h1

2�h2
2 + h3

2� − 	2
2h2

4 + 	3
2h3

4 = h1
2h2

2h3
2, �A37�

	1
4h1

2 − 	2
4h2

2 + 	3
4h3

2 = h1
2h2

2h3
2, �A38�

h1
2	2

2	3
2 − 	1

2h2
2	3

2 + 	1
2	2

2h3
2 = h1

2h2
2h3

2, �A39�

�	1
4	2

2 − 	1
2	2

4� + �	2
4	3

2 − 	2
2	3

4� + �	3
4	1

2 − 	3
2	1

4� = h1
2h2

2h3
2, �A40�

hlhh6−�+l� = h1h2h3, ,l = 1,2,3,  � l . �A41�

The tricky task of reducing the results from the ellipsoidal to the spheroidal and to the
pherical geometry requires gathering terms containing ellipsoidal and Cartesian factors so as to
liminate the generated indeterminacies. We shall give some formulas, where these indetermina-
ies are suitably grouped. These are

�	
2 − 	l

2��� − 	s
2��

i=1

3
xi

2

� − 	i
2 = 3��� − 	

2�x
2 − 3��� − 	l

2�xl
2 + �	

2 − 	l
2��r�2, �A42�

�	
2 − 	l

2���� − 	s
2��

i=1

3
xi

2

�� − 	i
2 = 3�� − 	

2�x
2 − 3�� − 	l

2�xl
2 + �	

2 − 	l
2��r�2, �A43�

here  , l ,s=1,2 ,3 and � l, �s, l�s, while

E2
1�r�

�� − ����� − 	
2�

−
E2

2�r�
�� − ������ − 	

2�
= �r�2 − 3x

2 + 	
2 −

1

3�
i=1

3

	i
2 �A44�

or every =1,2 ,3. This is a useful relation, which with the aim of the identity

I2
1��� − I2

2���
� − ��

=
3

2
I3

7��� −
1

2���2 − h3
2��2 − h2

2�� − 	1
2 + �2���� − 	1

2 + �2�
�A45�
mplies that
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E2
1�r�I2

1���
�� − ����� − 	

2�
−

E2
2�r�I2

2���
�� − ������ − 	

2�
= ��r�2 − 3x

2 + 	
2 −

1

3�
i=1

3

	i
2�

�I2
1��� +

E2
2�r�

�� − 	
2	3

2
I3

7���

−
1

2���2 − h3
2��2 − h2

2�� − 	1
2 + �2���� − 	1

2 + �2�



�A46�

or =1,2 ,3. The factor that multiplies the square brackets on the second part of the right-hand
ide of Eq. �A46� has no indeterminacy, since

E2
1�r�

� − 	
2 = �� − 	1

2��� − 	2
2��� − 	3

2�	�
i=1

3
xi

2 − x
2

� − 	i
2 + 1
 1

� − 	
2 �A47�

nd

E2
2�r�

�� − 	
2 = ��� − 	1

2���� − 	2
2���� − 	3

2�	�
i=1

3
xi

2 − x
2

�� − 	i
2 + 1
 1

�� − 	
2 , �A48�

here =1,2 ,3. Two important expressions are

��E2
1�r�

�� − ����� − 	
2�

−
�E2

2�r�
�� − ������ − 	

2�
= �

i=1

3

xi
2	3

2
�� + ��� − 	i

2 − 	
2 + 3�i�	i

2 − � − ���

+ ��� −

	1
2	2

2	3
2

	
2 ,  = 1,2,3 �A49�

nd

�	
2 − 	l

2��E2
1�r�I2

1���
�� − ����� − 	

2��� − 	l
2�

−
�	

2 − 	l
2���E2

2�r�I2
2���

�� − ������ − 	
2���� − 	l

2�

= 	
2��r�2 − 3x

2 + 	
2 −

1

3�
i=1

3

	i
2�I2

1��� − 	l
2��r�2 − 3xl

2 + 	l
2 −

1

3�
i=1

3

	i
2�I2

1��� + �	
2E2

2�r�
�� − 	

2

−
	l

2E2
2�r�

�� − 	l
2�	3

2
I3

7��� −
1

2���2 − h3
2��2 − h2

2�� − 	1
2 + �2���� − 	1

2 + �2�

 �A50�

or every  , l=1,2 ,3, � l. Finally, we provide the relation

�I2
1��� − ��I2

2���
� − ��

=
3

2
�	1

2I3
7��� − I2

5���� +
��2 − 	1

2�

2���2 − h3
2��2 − h2

2�� − 	1
2 + �2���� − 	1

2 + �2�
,

� � �h2, + �� , �A51�

hich also eliminates the indeterminacies in an appropriate way. We observe that relations
A42�–�A51� contain ellipsoidal functions of the second degree �n=2� and of order m=1,2. This
s due to the fact that these ellipsoidal harmonics carry the indeterminacies, which enter the
xpressions, via the factors �−��, �−	

2 and ��−	
2, =1,2 ,3 in the dominators. Similar ex-

ressions containing the factors �−��, �−	l
2 and ��−	l

2 for  , l=1,2 ,3 are much more

omplicated but they do not concern the present work.
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This paper is the conclusion of a series that lays the groundwork for a structure and
classification theory of second-order superintegrable systems, both classical and
quantum, in conformally flat spaces. For two-dimensional and for conformally flat
three-dimensional spaces with nondegenerate potentials we have worked out the
structure of the classical systems and shown that the quadratic algebra always
closes at order 6. Here we describe the quantum analogs of these results. We show
that, for nondegenerate potentials, each classical system has a unique quantum
extension. We also correct an error in an earlier paper in the series �that does not
alter the structure results� and we elucidate the distinction between superintegrable
systems with bases of functionally linearly independent and functionally linearly
dependent symmetries. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2337849�

. INTRODUCTION

This is the conclusion of a series1–4 whose purpose is to lay the groundwork for a structure
nd classification theory of second-order superintegrable systems, both classical and quantum, in
omplex conformally flat spaces. Real spaces are considered as restrictions of these to the various
eal forms. In Refs. 1 and 3 we have given examples in two and three dimensions �2D and 3D�,
escribed the background as well as the interest and importance of these systems in mathematical
hysics, and given dozens of relevant references. Observed features of the systems are multisepa-
ability, closure of the quadratic algebra of second-order symmetries at order 6, use of represen-
ation theory of the quadratic algebra to derive spectral properties of the quantum Schrödinger
perator, and a close relationship with exactly solvable and quasi-exactly solvable problems.5 Our
pproach is, rather than focus on particular spaces and systems, to use a general theoretical method
ased on integrability conditions to derive structure common to all systems.

We recall some basic facts and results about conformally flat superintegrable systems. An
-dimensional complex Riemannian space is conformally flat if and only if it admits a set of local
oordinates x1 , . . . ,xn such that the contravariant metric tensor takes the form gij =�ij /��x�. A
lassical superintegrable system H=�ijg

ijpipj +V�x� on the phase space of this manifold is one
hat admits 2n−1 functionally independent generalized symmetries �or constants of the motion�
k, k=1, . . . ,2n−1 with S1=H where the Sk are polynomials in the momenta pj.

6–11 It is easy to

�Electronic mail: j.kress@unsw.edu.au
�
Electronic mail: miller@ima.umn.edu
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ee that 2n−1 is the maximum possible number of functionally independent symmetries and,
ocally, such �in general nonpolynomial� symmetries always exist. The system is second-order
uperintegrable if the 2n−1 functionally independent symmetries can be chosen to be quadratic in
he momenta. Second-order superintegrable systems, though complicated, are tractable because
tandard orthogonal separation of variables techniques are associated with second-order symme-
ries, e.g., Refs. 12–17, and these techniques can be brought to bear. Thus we concentrate on
econd-order superintegrable systems in which the symmetries take the form S=�aij�x�pipj

W�x�, quadratic in the momenta.
There is an analogous definition for second-order quantum superintegrable systems with

chrödinger operator

H = � + V�x�, � =
1
�g

�
ij

�xi
��ggij��xj

,

he Laplace-Beltrami operator plus a potential function.12 Here there are 2n−1 second-order
ymmetry operators

Sk =
1
�g

�
ij

�xi
��ga�k�

ij ��xj
+ W�k��x�, k = 1, . . . ,2n − 1

ith S1=H and �H ,Sk��HSk−SkH=0. Again multiseparable systems yield many examples of
uperintegrability.

The structure theory for classical second-order superintegrable systems with nondegenerate
otential for 2D spaces and for 3D conformally flat spaces has been worked out recently.1–4,18

This paper depends heavily on the results and methods of those papers and we shall refer to them
epeatedly.� Each such system has quadratic algebra structure. Let �S j	 be a basis for the second-
rder constants of the motion for the Hamiltonian H. By the superintegrability assumption, the
oisson brackets �Si ,S j	 must be functionally dependent on the basis symmetries Sk, as are
�Si ,S j	 ,Sh	 and ��Si ,S j	 , �Sh ,Ss		. For these systems it is always true that the squares �Si ,S j	2

nd products �Si ,S j	�Sk ,S�	 as well as ��Si ,S j	 ,Sh	 and ��Si ,S j	 , �Sh ,Ss		 are always uniquely
xpressible as polynomials in the �Sk	. This remarkable closure of the algebra generated by the
econd-order symmetries leads to the very special properties enjoyed by the classical superinte-
rable systems.

Observed common features of the quantum analogs of these systems are that they are usually
ultiseparable and that the eigenfunctions of one separable system can be expanded in terms of

he eigenfunctions of another. This is the source of nontrivial special function expansion theorems
n the quantum case.19 The quantum symmetry operators are in formal self-adjoint form and
uitable for spectral analysis. Also, the quadratic algebra identities allow us to relate eigenbases
nd eigenvalues of one symmetry operator to those of another. The representation theory of the
bstract quadratic algebra can be used to derive spectral properties of the second-order generators
n a manner analogous to the use of Lie algebra representation theory to derive spectral properties
f quantum systems that admit Lie symmetry algebras.19–22

The structure theory of classical superintegrable systems is simpler than for the quantum case,
nd we studied it first. However, we now show that each of the classical superintegrable systems
ith nondegenerate potential has a unique extension to a quantum superintegrable system.

We review, briefly, some basic definitions and notation in the classical 3D case; the corre-
ponding 2D definitions can be obtained by obvious restriction. For a classical 3D system on a
onformally flat space �note that all 2D spaces are conformally flat� we can always choose local
oordinates x ,y ,z, not unique, such that the Hamiltonian takes the form H= �p1

2+ p2
2

p3
2� /��x ,y ,z�+V�x ,y ,z�. This system is second-order superintegrable with nondegenerate po-

ential V=V�x ,y ,z ,� ,� ,� ,�� if it admits five functionally independent quadratic constants of the

otion �i.e., generalized symmetries�
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Sk = �
ij

a�k�
ij pipj + W�k��x,y,�,�,�� . �1�

s described in Ref. 3, the potential V is nondegenerate if it satisfies a system of coupled PDEs
f the form

V22 = V11 + A22�x,y,z�V1 + B22�x,y,z�V2 + C22�x,y,z�V3,

V33 = V11 + A33�x,y,z�V1 + B33�x,y,z�V2 + C33�x,y,z�V3,

V12 = A12�x,y,z�V1 + B12�x,y,z�V2 + C12�x,y,z�V3,

V13 = A13�x,y,z�V1 + B13�x,y,z�V2 + C13�x,y,z�V3,

V23 = A23�x,y,z�V1 + B23�x,y,z�V2 + C23�x,y,z�V3, �2�

hose integrability conditions are satisfied identically. Here, V1=�V /�x, V2=�V /�y, etc. The
nalytic functions Aij ,Bij ,Cij are determined uniquely from the Bertrand-Darboux equations for
he five constants of the motion �under the assumption that the quadratic constants of the motion
re functionally linearly independent� and are analytic except for a finite number of poles. At any
egular point x0= �x0 ,y0 ,z0�, i.e., a point where the Aij ,Bij ,Cij are defined and analytic and the
onstants of the motion are functionally independent, we can prescribe the values of V�x0�, V1�x0�,
2�x0�, V3�x0�, V11�x0� arbitrarily and obtain a unique solution of �2�. The significance of the four
arameters for a nondegenerate potential �in addition to the usual additive constant� is that it is the
aximum dimension of the space of solutions to the Bertrand-Darboux equations that can appear

n a superintegrable system with functionally linearly independent symmetries. If the number of
arameters is fewer than four, we say that the superintegrable potential is degenerate.

We clarify our definition of nondegenerate potential and our parameter count by considering
he generalized Calogero potential

V�1� =
a

�x − y�2 +
b

�y − z�2 +
c

�z − x�2 , �3�

nd its further generalization

V�2� =
a

�m1x − m2y�2 +
b

�m2y − m3z�2 +
c

�m3z − m1x�2 , �4�

here mi�0, see Refs. 11 and 23–25. These potentials are superintegrable on Euclidean space and
he second contains six parameters, which exceeds the count of four for nondegenerate superin-
egrable systems. How can this be?

Our definition of the number of parameters in a superintegrable system is that it is the
imension of the space of solutions of the set of Bertrand-Darboux equations for this system
ignoring the trivial added constant�. Let us consider the system of symmetries defining the system
ith potential V�1�. A basis for the space of symmetries is �using Px= p1 , Py = p2 , Pz= p3 ,J1=yp3

zp2 ,J2=zp1−xp3 ,J3=xp2−yp1�,

S1 = H = Px
2 + Py

2 + Pz
2 + V1, S2 = �Px + Py + Pz�2, S3 = J1

2 + J2
2 + J3

2 + W3,

S4 = Px�J2 − J3� + Py�J3 − J1� + Pz�J1 − J2� + W4, S5 = J3J2 + J1J3 + J2J1 + W5,

here the potential terms Wi contain the parameters.
We can write the Bertrand-Darboux equations for each symmetry S=�ajkpjpk+W of H
2 2 3
�p1+ p2+ p3� /��x�+V in the matrix form
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0 = 
 0 a12 a11 − a22 a31 − a32

a13 0 − a23 a21 a11 − a33

a32 − a32 − a13 a22 − a33 a12 �

V33 − V11

V22 − V11

V12

V32

V31

� −
1

�
��a12�1 − ��a11�2

��a31�1 − ��a11�3

��a31�2 − ��a21�3
�V1

−
1

�
��a22�1 − ��a21�2

��a32�1 − ��a12�3

��a32�2 − ��a22�3
�V2 −

1

�
��a32�1 − ��a31�2

��a33�1 − ��a13�3

��a33�2 − ��a23�3
�V3. �5�

n the Euclidean case, �=1. Evaluating these equations for potential V�1� we find that they are

V1 + V2 + V3 = 0, �x − y�V12 + �z − y�V23 − V1 + 2V2 − V3 = 0,

�x − z�V13 + �y − z�V23 − V1 − V2 + 2V3 = 0, �6�

nd their differential consequences. The complete system of equations is in involution and a
articular solution is determined unquely by choosing V2 ,V3 ,V23 at a regular point. Thus we have
three parameter potential. The apparent six parameter potential V�2� is actually three parameter

y our count, because the mi are parametrizing a family of defining symmetries S�m1 ,m2 ,m3�, i.e.,
he Bertrand-Darboux equations themselves are functions of the m1. For example, the symmetry

2 is replaced by S2�m1 ,m2 ,m3�= �Px /m1+ Py /m2+ Pz /m3�2. Another way to see this is to note that
he potentials V�2� do not form a vector space. For each fixed value of the mi, i.e., for each fixed
hoice of the space of defining quadratic symmetries, we have a three parameter potential.

What is important to notice here is the occurrence of the first-order condition V1+V2+V3=0
or the potential as a consequence of the Bertrand-Darboux equations. Thus the potential is a
unction of only two variables, impossible for nondegenerate potentials. To understand this, ob-
erve the relation

�x + y + z�2Ŝ1 − �x2 + y2 + x2�Ŝ2 + 2Ŝ3 − 2�x + y + z�Ŝ4 − 2Ŝ5 = 0

beyed by the purely quadratic terms in the symmetries, i.e., where we have set Si= Ŝi+Wi. This
eans that the five functionally independent symmetries Si are functionally linearly dependent.
his dependence reduces the rank of second derivative terms in the system of 12 Bertrand-
arboux equations so that we do not obtain the canonical form �2� which is required for nonde-
eneracy. As shown in Ref. 3, if we have a 3D superintegrable system with a basis of functionally
inear independent symmetries, then we always obtain the canonical system �2� and its differential
onsequences.

Functional linear dependence of a functionally independent maximal set of symmetries is hard
o achieve. In 2D it is well known that essentially, there is only one example, corresponding to Lie
orm. In 3D Theorem 1 of Ref. 3 stated, incorrectly, that all functionally independent superinte-
rable systems were functionally linearly independent. The Calogero potential is a counterexam-
le. Thus the results of papers Refs. 3 and 4 hold under the explicit assumption that the function-
lly independent basis of symmetries is also functionally linearly independent. This is exactly the
ame situation as in the 2D case.1

For the following result the system need not be superintegrable.
Theorem 1: Let the functionally independent set �H=S1 ,S2 , . . . ,St	, �t�2� be a functionally

inearly dependent basis of second-order symmetries for the system H= �p1
2+ p2

2+ p3
3� /��x�+V with

ontrivial potential V, i.e., there is a relation �hc�h��x�Ŝh�0 in an open set, where not all c�h�

�x� are constants, and no such relation holds for the c�h� all constant, except if the constants are

ll zero. (Here Si= Ŝ+Wi where the Wi are the potential terms.) Then the potential must satisfy a
rst-order relation AV1+BV2+CV3=0 where not all of the functions A ,B ,C are zero.
Proof: By relabeling, we can express one of the quadratic parts of the constants of the motion
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ˆ
0 as a linear combination of a functionally independent subset �Ŝ1 , . . . , Ŝr ,1	r	4	: Ŝ0

��=1
r c����x�Ŝ�. Taking the Poisson bracket of both sides of this equation with �p1

2+ p2
2+ p3

3� /� and
sing the fact that each of the Sh is a constant of the motion, we obtain the identity

�
�=1

r

�
i,j=1

3

��xk
c����a���

ij pipjpk = 0, �7�

here �x ,y ,z���x1 ,x2 ,x3�. It is straightforward to check that this identity can be satisfied if and
nly if the functions

ck
ij = �

�=1

r

��xk
c����a���

ij , 1 	 i, j,k 	 3

atisfy

ci
ii = 0, cj

ii + 2ci
ij = 0, �i � j�, c3

12 + c1
23 + c2

31 = 0. �8�

ote that ck
ij =ck

ji. Corresponding to each of the basis symmetries Sh there is a linear set Ch=0 of
ertrand-Darboux equations �5�. A straightforward substitution into the identity C0−��=1

r c���

�x�C�=0 yields the relation


c1
12 − c2

11

c1
31 − c3

11

c2
31 − c3

21�V1 + 
c1
22 − c2

21

c1
32 − c3

12

c2
32 − c3

22�V2 + 
c1
32 − c2

31

c1
33 − c3

13

c2
33 − c3

23�V3 = 0.

hese first-order differential equations for the potential cannot all vanish identically. Indeed if they
id all vanish then we would have the conditions

c1
12 = c2

11, c1
31 = c3

11, c2
31 = c3

21, c1
22 = c2

21, c1
32 = c3

12,

c2
32 = c3

22, c1
32 = c2

31, c1
33 = c3

13, c2
33 = c3

23.

hese conditions, together with conditions �8�, show that ci
jk=0 for all i , j ,k. Thus we have

�=1
r ��xk

c����a���
ij =0, 1	 i , j ,k	3. Since the set �Ŝ1 , . . . , Ŝr	, is functionally linearly independent,

e have �xk
c����0 for 1	k	3,1	�	r. Hence the c��� are constants, which means that Ŝ0

��=1
r c���Ŝ�=0. Thus the set �S0 , . . . ,S4	 is functionally dependent. This is a contradiction.

Q.E.D.
This shows that the potential function for any system, superintegrable or not, with a basis of

ymmetries that is functionally linearly dependent must satisfy at least one nontrivial first-order
artial differential equation AV1+BV2+CV3=0 where the functions A ,B ,C are parameter free.
he method of proof of the Theorem shows how to find such equations. This means that all such
otentials depend on either one or two coordinates. The 3D nondegenerate potentials that are the
rimary subject of this series depend essentially on all three coordinates.

I. NONDEGENERATE 2D QUANTUM SYSTEMS

Here we discuss how the analysis of classical 2D superintegrable systems with nondegenerate
otentials carries over to the quantum case. The quantization is much simpler in the 2D case than
or dimensions greater than two. For a manifold with metric ds2=��x ,y��dx2+dy2� the Hamil-
onian system H= �p1

2+ p2
2� /��x ,y�+V�x ,y� is replaced by the Hamiltonian �Schrödinger� operator
ith potential
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H =
1

��x,y�
��11 + �22� + V�x,y� �9�

n local orthogonal coordinates. A second-order symmetry of the Hamiltonian system S
�k,j=1

2 akj�x ,y�pkpj +W�x ,y�, with akj =ajk, corresponds to the operator

S =
1

��x,y� �
k,j=1

2

�k�akj�x,y���x,y�� j� + W�x,y�, akj = ajk.

hese operators are formally self-adjoint with respect to the bilinear product

�f ,g =� f�x,y�g�x,y���x,y�dxdy

n the manifold, i.e.,

�f ,Hg = �Hf ,g, �f ,Sg = �Sf ,g

for all local C
 functions f ,g with compact support on the manifold, where we set all boundary
erms equal to 0.

A first-order symmetry of the Hamiltonian system L=�k=1
2 ak�x ,y�pk corresponds to the op-

rator

L = �
k=1

2

ak�x,y��k.

t is easy to show that L1 is formally skew-adjoint, i.e.,

�f ,Lg = − �Lf ,g .

The following results that relate the operator commutator �A ,B�=AB−BA and the Poisson
racket are straightforward to verify.

Lemma 1:

�H,S	 = 0 Û �H,S� = 0.

his result is not generally true for higher dimensional manifolds.
Lemma 2:

�H,L	 = 0 Û �H,L� = 0.

The definition of a nondegenerate potential V�x ,y� is identical with that for the classical case,
.e., it obeys

V22 = V11 + A22V1 + B22V2,

V12 = A12V1 + B12V2 �10�

gain, V1 ,V2 ,V11 can be prescribed arbitrarily at a fixed regular point. Note that if V is a nonde-
enerate potential then there will be no first-order symmetries.

It follows from Lemma 1 that the classical results for the space of second-order symmetries
orresponding to a nondegenerate potential can be taken over without change. The space is three
imensional and at any regular point x0 there exists exactly one symmetry, up to an additive
onstant, such that ajk�x0�=� jk for any constant symmetric matrix �.

Now we investigate the space of third-order symmetries, i.e., third-order differential operators
that commute with the Hamiltonian: �H ,K�=0. In general, determination of the possible opera-
ors K is very difficult, but in this case, simplifications make the problem tractable:
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1. We are interested, principally, in the space of third-order symmetries that is spanned by the
ommutators of second-order symmetries S. Since the second-order symmetries are formally self-
djoint, the commutators will be skew-adjoint. Thus we can limit ourselves to K that are skew
djoint.

2. A second reason for considering only skew adjoint K follows from the well-known unique
ecomposition of a symmetry into a formally skew-adjoint part and a formally self-adjoint part,
ach of which must itself be a symmetry. Clearly the self-adjoint part of a third-order symmetry
ust be at most a second-order symmetry, i.e., the third-order terms vanish. For a nondegenerate

uperintegrable system we already know the three-dimensional space of these second-order sym-
etries.

3. Since H encodes a three-parameter family of potentials, the symmetry K must also be a
unction of the parameters. The highest order terms akji�kji in K �symmetric in k , j , i� will be
ndependent of the parameters but lower order terms may have linear parameter dependence.

4. The skew-adjoint requirement uniquely determines the coefficients of the second-order
erms in K. They are

3

2�
�akji��i�kj .

5. Further, the skew-adjoint requirement means that there exist functions akji , b̃i such that K
as the unique representation

K = �
k,j,i=1

2 �akji�kji +
3

2�
�akji��i�kj +

1

2�
�akji��kj�i� + �

i=1

2 �b̃i�i +
1

2�
�b̃i��i� , �11�

here the functions b̃i�x ,y ,z� contain the parameter dependence.
6. Equating coefficients of the fourth-order terms in the operator condition �H ,K�=0 where K

s given by �11� we obtain the relations

2
�aiii

�xi
= − 3� � ln �

�xi

aiii +
� ln �

�xj
ajii�, i � j ,

3
�ajii

�xi
+

�aiii

�xj
= 3�−

� ln �

�xi

aiij −
� ln �

�xj

aijj�, i � j ,

2� �a122

�x1
+

�a112

�x2
� = −

� ln �

�x1

a122 −
� ln �

�x1

a111 −
� ln �

�x2

a222 −
� ln �

�x2

a112, �12�

hich are just the requirements that the akji be the components of a third-order Killing tensor.
7. Equating coefficients of the third-order terms in the condition �H ,K�=0 we obtain relations

hat are consequences of the Killing tensor relations �12�.
8. The remaining conditions on K intertwine �, akji, b̃i, and V, and are complicated. Rather

han solve them directly, we note that we can make the unique decomposition

b̃i�x1,x2,Vx1
,Vx2

� = ci�x1,x2� + bi�x1,x2,Vx1
,Vx2

� ,
here
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bi = �
j=1

2

f�,j�x1,x2�
�V

�xj
�x1,x2� , �13�

.e., we can split off the parameter-dependent terms of b̃i from the rest. Then, equating the linear
arameter-dependent coefficients of the second-order terms in the symmetry operator condition,
e obtain the requirements

�b1

�x2
+

�b2

�x1
= 3�

s=1

2

�as21 �V

�xs
,

�bj

�xj
=

3

2�
s=1

2

asjj �V

�xs
−

1

2�
s=1

2
� ln �

�xs
bs, j = 1,2, �14�

dentical to the corresponding classical equations in Ref. 1. Equating the quadratic parameter-
ependent coefficients of the zeroth-order terms in the symmetry operator condition, we obtain the
equirement

�
s=1

2

bs �V

�xs
= 0, �15�

gain identical to the corresponding classical equation in Ref. 1.
9. Conditions �14� and �15�, and third-order Killing tensor conditions are clearly necessary for

to be a skew-adjoint symmetry. To see that they are sufficient will take several steps.
10. Uniqueness: Suppose K ,K� are two third-order skew-adjoint symmetries with the same

unctions akji ,bi �but possibly different ci�. Note that K−K� is a skew-adjoint, parameter-
ndependent symmetry that is first order �since the third- and second-order terms in K and K� are
he same�. However, there can be no nonzero parameter-independent symmetry for a nondegen-
rate superintegrable system. Therefore K=K�. Though we have not given an explicit expression
or the ci we see that they are uniquely determined by the functions akji ,bi.

11. Existence: This also involves several steps. We first employ the results of our construction
f third-order symmetries for the classical case. There we used �13� to show

f�,j + f j,� = 0, 1 	 �, j 	 2,

nd �14� to show that

b1
1 = f1

1,2V2 + f1,2V12, b2
1 = f2

1,2V2 + f1,2V22,

b1
2 = f1

2,1V1 + f2,1V11, b2
2 = f2

2,1V1 + f2,1V12,

nd

�a111 = 1
3 f1,2�2A12 − �ln ��2�, �a222 = 1

3 f1,2�− 2B12 + �ln ��1� ,

�a112 = 1
9 f1,2�2A22 + 2B12 + �ln ��1� ,

�a122 = 1
9 f1,2�− 2A12 + 2B22 − �ln ��2� ,

f1
1,2 = 1

3 f1,2�A22 − 2B12 − �ln ��1�, f2
1,2 = 1

3 f1,2�− 2A12 − B22 + �ln ��2� .

hus the aijk can be expressed in terms of f1,2 and the Ak� ,Bk� functions, and we have an
1,2
nvolutive system for f . Thus any third symmetry is uniquely determined by the constant
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f1,2�x0 ,y0� at some regular point �x0 ,y0�. This means that the space of third-order skew-adjoint
ymmetries is at most one dimensional.

12. Consider the case where all aijk�0. Then 2A12=B22= �ln ��2, 2B12=−A22= �ln ��1. The
ntegrability conditions require �ln ��11+ �ln ��22=0, which is the condition for flat space, Thus by
n appropriate orthogonal change of coordinates we can assume that ��1. In these new coordi-
ates we see that Aij =Bij �0 for all i , j. The general solution is

f1,2 = c1,

here c1, is a constant. This is the homogeneous isotropic oscillator:

V�x,y� = �x + �y + ��x2 + y2� .

ne can easily check that for this very special case a nonzero commutator of two second-order
ymmetries is first order, parameter-dependent.

13. The second case is that not all aijk vanish. We show that the space of symmetries is exactly
ne dimensional. Let

S1 =
1

�
� �k��a�1�

kj ��� j� + W�1�, S2 = � �k�a�2�
kj �� j� + W�2�

e second-order symmetries and let A�i��x1 ,x2�= �a�i�
kj �x1 ,x2�	, i=1,2 be 2�2 matrix functions.

hen the commutator �S1 ,S2� of these symmetries is a third-order symmetry K with akji and fk,�

uch that

fk,� = 2��
j

�a�2�
kj a�1�

j� − a�1�
kj a�2�

j� � .

hus K= �S1 ,S2� is uniquely determined by the skew-symmetric matrix

�A�2�,A�1�� � A�2�A�1� − A�1�A�2�,

ence by the constant matrix �A�2��x0 ,y0� ,A�1��x0 ,y0�� evaluated at a regular point.
Theorem 2: Let K be a third-order skew-adjoint symmetry (11) for a superintegrable system

ith nondegenerate potential V and b̃i=ci�x ,y�+bi�x ,y ,V1 ,V2� where

bi = �
j=1

2

f i,j�x,y�
�V

�xj
�x,y� .

hen

f�,j + f j,� = 0, 1 	 �, j 	 2

nd K is uniquely determined by the number

f1,2�x0,y0�

t some regular point �x0 ,y0� of V.
Corollary 1: Let V be a superintegrable nondegenerate potential, Then the space of third-

rder skew-adjoint symmetries is one dimensional and is spanned by commutators of the second-
rder self-adjoint symmetries.

Corollary 2: Let V be a superintegrable nondegenerate potential and S1 ,S2 be second-order
ormally self-adjoint symmetries with matrices A�1� ,A�2�, respectively. Then

�S1,S2� � 0 Û �A�1�,A�2�� � 0 Û �A�1��x0�,A�2��x0�� = 0
t a regular point x0.
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II. A STANDARD FORM FOR 2D QUANTUM SYSTEMS

In analogy with the classical case, there is a standard structure for 2D quantum nondegenerate
uperintegrable systems allowing the identification of the space of second-order symmetry opera-
ors with the space of 2�2 symmetric matrices, and identification of the space of third-order
ymmetry operators with the space of 2�2 skew-symmetric matrices. Indeed, if x0 is a regular
oint then there is a 1-1 linear correspondence between second-order operators S and their asso-
iated symmetric matrices A�x0�. Let �S1 ,L2��= �S2 ,S1� be the reversed operator commutator.
hen the map

�S1,S2�� ↔ �A�1��x0�,A�2��x0��

s an algebraic isomorphism. Here, S1 ,S2 are in involution if and only if matrices A�1��x0� ,A�2�
�x0� commute. If �S1 ,S2��0 then it is a truly third-order symmetry operator �except in the

sotropic oscillator case� and can be uniquely associated with the skew-symmetric matrix �A�1�
�x0� ,A�2��x0��. Since commutators of second-order symmetries span the space of third-order

ymmetries, we can identify these 1-1 with 2�2 skew-symmetric matrices. Let Eij be the 2�2
atrix with a 1 in row i, column j and 0 for every other matrix element. Then the symmetric
atrices

A�ij� = 1
2 �Eij + E ji� = A�ji�, i, j = 1,2 �16�

orm a basis for the three-dimensional space of symmetric matrices. Moreover,

�A�ij�,A�k��� = 1
2 �� jkB�i�� + � j�B�ik� + �ikB�j�� + �i�B�jk�� , �17�

here

B�ij� = 1
2 �Eij − E ji� = − B�ji�, i, j = 1,2.

ere B�ii�=0 and B�12� forms a basis for the space of skew-symmetric matrices. Thus �17� gives the
ommutation relations for the second-order symmetry operators. If V is the isotropic oscillator
hen there is no truly third-order symmetry. For any other nondegenerate potential, the space of
ymmetries is exactly one dimensional.

We reformulate the problem of determining the second-order symmetry operators of �9� by
etting

W�x� = f1V1 + f2V2 + f11V11

nd substituting this expression into Wi=�� j=1
2 aijVj. Additionally we must impose the Killing

ensor conditions. We obtain the equations for the aij:

�a11 = f1
1 + f2A12 + f11A13,

�a12 = f2
1 + f1A12 + f2A22,

�a22 = f2
2 + f1B12 + f2B22, �18�

nd the condition on the first derivatives of the f i:

f2
1 − f1

2 = − f1A12 + f2�A22 − B12� − f11B13. �19�

ote the expressions for f1
11 and f2

11 in terms of f1 , f2 , f11:

f1
11 + f1 + f11�B12 − A22� = 0, f2

11 + f2 + f11A12 = 0.

t follows that we can express each of the second derivatives of f1 , f2 in terms of lower order
1 2 11
erivatives of f , f , f . Thus the system is in involution at the second derivative level, but not at
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he first derivative level because we have only one condition for the four derivatives f1
1 , f2

1 , f1
2 , f2

2.
e can uniquely determine a symmetry operator at a regular point by choosing the six parameters

f1 , f2 , f11, f1
1 , f2

1 , f2
2�. The values of f1 , f2 , f11 at the regular point are analogous to the three param-

ters that we can add to the potentials in the three parameter family. For our standard basis, we fix
f1 , f2 , f11�x0

= �0,0 ,0�. Then from �18� and �19�, we have

� f1
1 f2

1

f1
2 f2

2 � = ��a11 a12

a21 a22� .

hus we can define a standard set of basis symmetry operators S�jk�=�−1�x����i�aij�x���x�� j�
W�ij��x� corresponding to a regular point x0 by

� f1
1 f2

1

f1
2 f2

2 �
x0

= ��x0��a11 a12

a21 a22�
x0

= ��x0�A�jk�, W�jk��x0� = 0.

he condition on W�jk� is actually three conditions since W�jk� depends on three parameters. Note
hat the derivative terms ai

ij in the expression for the basis symmetries can be computed explicitly
rom the conditions for classical second order symmetries in Ref. 1.

In exact analogy with the classical case, we can use the standard form to prove multisepara-
ilty for quantum systems.

Theorem 3. Let V be a quantum superintegrable nondegenerate potential and S be a second-
rder symmetry operator with matrix function A�x�. If at some regular point x0 the matrix A�x0�
as two distinct eigenvalues, then H ,S characterize an orthogonal separable coordinate system.

Since a generic 2�2 symmetric matrix has distinct roots, it follows that any such superinte-
rable nondegenerate potential is multiseparable.

V. THE QUANTUM QUADRATIC ALGEBRA

We investigate the space of fourth-order differential operators F that commute with the Hamil-
onian: �H ,F�=0. Determination of all possible operators F is very difficult but, again, there are
implifications that make the problem tractable:

1. We are interested, principally, in the space of fourth-order symmetries that is spanned by the
ouble commutators ��S�1� ,S�2�� ,S�3�� of second-order formally self-adjoint symmetries S�j� of the
uperintegrable system. The double commutators will be formally self-adjoint, so we can limit
urselves to F that are self-adjoint.

2. Since H encodes a three-parameter family of potentials, the symmetry F must also be a
unction of the parameters. The highest order terms a�kji�kji in F �symmetric in � ,k , j , i� will be
ndependent of the parameters but lower order terms may have linear or quadratic parameter
ependence.

3. The self-adjoint requirement uniquely determines the third-order terms in F. They are

�
�,k,j,i

2

�
�a�kji��i��kj .

4. Further, the self-adjoint requirement means that there exist functions a�kji , b̃ij ,W̃ such that
has the unique representation

F = �
�,k,j,i=1

2
1

�
�ij�a�kji��k�� + �

i,j=1

2
1

�
�i�b̃ij�� j� + W̃ , �20�

here the functions b̃ij�x1 ,x2� ,W̃�x1 ,x2� contain the parameter dependence.
5. Equating coefficients of the fifth-order terms in the operator condition �H ,F�=0 where F is
iven by �20� we obtain the relations
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�aiiii

�xi
= − 2�

s=1

2

asiii� ln �

�xs
,

4
�ajiii

�xi
+

�aiiii

�xj
= − 6�

s=1

2

asiij� ln �

�xs
, i � j ,

3
�ajjii

�xi
+ 2

�aiiij

�xj
= − �

s=1

2

asiii� ln �

�xs
− 3�

s=1

2

asijj� ln �

�xs
, i � j , �21�

hich are the conditions for a�kji to be a fourth-order Killing tensor.

6. The remaining conditions on F intertwine �, a�kji, b̃ji, W̃, and V, and are complicated.
ather than solve them directly, we make the unique decomposition

b̃ji�x1,x2,Vx1
,Vx2

,Vx1x1
� = cji�x1,x2� + bji�x1,x2,Vx1

,Vx2
,Vx1x1

� ,

here

bji = �
�=1

3

f ji,�W���, f ji,� = f ij,�,

nd W��� is defined by


W�1�

W�2�

W�3� � = 
 Vx1

Vx2

Vx1x1

� .

hen, equating the linear parameter-dependent terms of third order in the derivatives we obtain the
onditions

�

�xh
f jk,� +

�

�xk
fhj,� +

�

�xj
fkh,� − 2�a�hjk = − �

�=1

3

�f jk,�A��
�h� + fhj,�A��

�k� + fkh,�A��
�j� �

− �
s=1

2

�fsk,��hk + fsj,��kh + fsh,�� jk�
�

�xs
ln � , �22�

here 1	 j ,k ,h	2 and we set a3hjk�0. These conditions are identical to the corresponding
lassical conditions in Ref. 1. Similarly, we set

W̃ = U�0��x1,x2� + U�1��x1,x2,W���� + W�x1,x2,W���� ,

here U�1� depends linearly and W depends quadratically on the W��� and equate the quadratic
arameter-dependent terms of first order in the derivatives. We obtain the conditions

��
s=1

3

bsi �V

�xs
=

�W

�xi
. �23�

Equating the quadratic parameter-dependent coefficients of the zeroth-order terms in the sym-

etry operator condition, we obtain the requirement
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�
s=1

2

bs �V

�xs
= 0, �24�

dentical to �13�. From the integrabilty conditions �� /�xj���W /�xi�= �� /�xi���W /�xj� , i� j for Eq.
23� we obtain the conditions

�xj
f�k,� + �xj

f�k,� − �xk
f�j,� − �xk

f�j,� = �
s=1

2

�A�s
�k�fsj,� + A�s

�k�fsj,� − A�s
�j�fsk,� − A�s

�j�fsk,�� + �
�=1

3

�f�j,�A��
�k�

+ f�j,�A��
�k� − f�k,�A��

�j� − f�k,�A��
�j� � − �f�k,� + f�k,��

�

�xj
ln �

+ �f�j,� + f�j,��
�

�xk
ln � , �25�

here j�k ,1	� ,�	3, and we set f3j,��0.
7. There are eight independent equations �22� with ��3 and we use five of these to define the

ve components aihjk as linear combinations of �� /�xh�f jk,� and f jk,�. We can then eliminate the
ihjk from the remaining three equations to obtain three conditions relating �� /�xh�f jk,� and f jk,�.
here are six terms of the form �� /�xh�f jk,3. Equation �25� with �=�=3 is satisfied identically.
here are two equations �25� with �=3, 1	�	2 and four equations �22� with �=3. Thus all six

erms of the form �� /�xh�f jk,3 can be expressed as linear combinations of f jk,�. There are a total of
welve distinct terms of the form �� /�xh�f jk,m ,1	h , j ,k ,m	2. We have seen that there are three
onditions on these terms remaining from �22�; there are an additional three such conditions from
25� with � ,��3. Thus there is a shortfall of six conditions on the first derivatives �� /�xh�f jk,m.

8. There are a total of eighteen distinct terms of the form ��2 /�xh�x��f jk,m with 1
h , j ,k ,� ,m	2. Differentiating with respect to x1 ,x2 the three first-order conditions of �22�,

rom which the aihjk have been eliminated, we obtain six independent conditions on these second
erivatives. Differentiating each of our expressions for the aihjk and substituting into Eq. �21� we
nd six additional conditions on the second derivatives. Also, we can differentiate the three
quations from �23� with � ,��3 to obtain six additional conditions on the second derivatives.
his allows us to express each second-order derivative as a linear combination of lower order
erivatives. Thus the system is in involution.

9. Conditions �22� and �23�, and the fourth-order Killing tensor conditions are clearly neces-
ary for F to be a skew-adjoint symmetry. To see that they are sufficient will take several steps.

10. Suppose F ,F� are two fourth-order self-adjoint symmetries with the same functions
�kji ,bij ,W �but possibly different cij ,U�j��. Then F−F� is a self-adjoint, symmetry that is second
rder and at most linear in the parameters in the zeroth-order term. Thus the only ambiguity is a
econd-order symmetry operator and we already know these.

11. We conclude that any �truly� fourth-order symmetry operator is uniquely determined, up to
n additive second-order symmetry operator, by the values f jk,��x0� and a subset of six of the
alues �� /�xh

�f jk,m�x0� at a regular point x0. Note that by adding an appropriate linear combination
f purely second-order symmetry operators to the fourth-order symmetry we can achieve

f jk,��x0�=0 for all j ,k ,�, so the maximum possible dimension of the space of purely fourth-order
ymmetries is six.

Now any symmetric second-order polynomial in the second-order symmetry operators is a
ourth-order symmetry operator, and the subspace of polynomial symmetries is at least five and at
ost six. We show that it is exactly six. If A ,B are linear operators, we define their symmetrized

roduct by

�A,B	 � 1
2 �AB + BA� .
Theorem 4: The six distinct monomials
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�S�11�,S�11�	, �S�22�,S�22�	, �S�12�,S�12�	, �S�11�,S�22�	, �S�11�,S�12�	, �S�12�,S�22�	 ,

orm a basis for the space of fourth-order symmetry operators.
Proof: Since the second-order parts of the three symmetry operators S�11� ,S�22� ,S�12� are func-

ionally independent, the six monomials listed above are linearly independent. Hence they form a
asis. Q.E.D.

We can use this result to expand explicitly a general fourth-order self-adjoint symmetry

F = �
�,k,j,i=1

2
1

�
�ij�a�kji��k�� + �

i,j=1

2
1

�
�i�b̃ij�� j� + W̃

n terms of the standard basis. Without loss of generality we can assume that �0,0�=0 is a regular
oint. Then F is uniquely determined �up to an additive second-order self-adjoint symmetry� by
he data a�kji�0� ,�ma�kji�0� ,bmq�0� ,W�0�. We can uniquely match the data a�kji�0� by taking a
inear combination of the basis symmetries

�S�11�,S�11�	, �S�22�,S�22�	, �S�12�,S�12�	, �S�11�,S�12�	, �S�12�,S�22�	 , �S�11�,S�11�	 .

This leaves the symmetry �S�11� ,S�22�	− �S�12� ,S�12�	 whose leading order terms vanish at the
egular point. The expansion coefficient for this term is obtained uniquely from the derivative data

ma�kji�0�. Now we have matched all of the fourth-order terms in F with an expansion of the
elf-adjoint form F�=��ijk��S�ij� ,S�k��	. The difference F−F� is a second-order self-adjoint sym-
etry. The second derivative terms are uniquely determined by the data bmq�0�, W�0�, which has

ot changed since W�ij��0�=0 for all terms in the standard basis, by the data �ma�kji�0�, �msa
�kji�0�,

nd by the coefficients �ijk� which have changed. Thus we can expand the original symmetry in
erms of second-order polynomials in the standard basis, and finally add any constant parameter-
ependent terms. In contrast to the classical case, however, this expansion is more complicated
ecause the expansion coefficients at the fourth-order level effect the expansion coefficients at the
econd-order level

Using an approach very similar to the above we can easily show that the space of truly
ixth-order formally self-adjoint operator symmetries of H cannot exceed the classical maximal
imension of ten. The difference between any two such sixth-order symmetries with the same
lassical data will be a formally self-adjoint fourth-order symmetry. It remains to show that the
aximum possible dimension is actually achieved. If A, B, C are linear operators, we define their

ymmetrized product by

�A,B,C	 � 1
6 �ABC + BAC + CAB + ACB + BCA + CBA� .

Theorem 5: The ten distinct monomials

�S�ii�,S�ii�, S�ii�	, �S�ij�,S�ij�,S�ij�	, �S�ii�,S�ii�,S�ij�	 ,

�S�ij�,S�ij�,S�ii�	, �S�11�,S�12�,S�22�	 ,

or i , j=1,2, i� j form a basis for the space of sixth-order symmetries.
Proof: Since the three symmetries S�11�, S�22�, S�12� have functionally independent second-order

erms, the ten monomials listed above are linearly independent. Hence they form a basis. Q.E.D.
These theorems establish the closure of the quadratic algebra for 2D quantum superintegrable

otentials: All fourth-order and sixth-order symmetry operators can be expressed as symmetric
olynomials in the second-order symmetry operators.

Again, we can use these results to expand explicitly a general sixth-order formally self-adjoint

ymmetry operator
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G = �
n,m,�,k,j,i=1

2
1

�
�nm��anm�kji��kji� + �

�,k,j,i=1

2
1

�
�ij�b̃�kji��k�� + �

i,j=1

2
1

�
�i�c̃ij�� j� + W̃

n terms of the standard symmetrized basis. Here b̃�kji , c̃ij ,W̃ are at most linear, quadratic, and
ubic in the parameters of the potential, respectively. Without loss of generality we can assume
hat �0,0�=0 is a regular point. We can uniquely match the data aijklmn�0� by taking a linear
ombination of the seven symmetries

�S�ii�,S�ii�,S�ii�	, �S�ij�,S�ij�,S�ij�	, �S�ii�,S�ii�,S�j j�	, �S�ii�,S�ii�,S�ij�	 ,

or i , j=1,2, i� j. This leaves the three symmetries

�S�11�,S�11�,S�22�	 − �S�11�,S�12�,S�12�	, �S�12�,S�11�,S�22�	 − �S�12�,S�12�,S�12�	 ,

�S�22�,S�22�,S�11�	 − �S�22�,S�12�,S�12�	 ,

hose leading order terms vanish at the regular point. The expansion coefficients for these three
erms are obtained uniquely from the derivative data �qaijklmn. Now we have matched all of the
ixth-order terms in G with a self-adjoint expansion of the form G�=��ijklmn�S�ij� ,S�kl� ,S�mn�	. The
ifference G−G� is a fourth-order self-adjoint symmetry. It is uniquely determined by the data for
he even order terms of G and by the new data for the even order terms of G�. Now we can use
he above-presented argument to expand this fourth-order symmetry in terms of polynomials in the
tandard basis. The expansion coefficients �ijklmn will be the same as for the classical case, but the
ower order expansion coefficients will differ.

. THE STÄCKEL TRANSFORM FOR 2D QUANTUM SYSTEMS

The quantum analog of the Stäckel transform26 or coupling constant metamorphosis27 for
lassical systems is straightforward in the 2D case. Suppose we have a superintegrable system

H =
1

��x,y�
��11 + �22� + V�x,y� = H0 + V �26�

n local orthogonal coordinates, with nondegenerate potential V�x ,y�:

V22 = V11 + A22V1 + B22V2,

V12 = A12V1 + B12V2 �27�

nd suppose U�x ,y� is a particular solution of Eq. �27�, nonzero in an open set. Then the trans-
ormed system

H̃ =
1

�̃�x,y�
��11 + �22� + Ṽ�x,y� �28�

ith nondegenerate potential Ṽ�x ,y�:

Ṽ22 = Ṽ11 + Ã22Ṽ1 + B̃22Ṽ2,

Ṽ12 = Ã12Ṽ1 + B̃12Ṽ2 �29�

s also superintegrable, where

�̃ = �U, Ṽ =
V

,

U
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Ã12 = A12 −
U2

U
, Ã22 = A22 + 2

U1

U
, B̃12 = B12 −

U1

U
, B̃22 = B22 − 2

U2

U
.

ndeed, let S=�1/��i�aij�� j�+W=S0+W be a second-order formally self-adjoint symmetry op-
rator of H and SU=�1/��i�aij�� j�+WU=S0+WU be the special case of this that is in involution
ith �1/����11+�22�+U. Then

S̃ = S0 −
WU

U
H +

1

U
H

s the corresponding formally self-adjoint symmetry operator of H̃, with respect to the metric
s̃2=�U�dx2+dy2�.

Theorem 6:
1.

�H̃, S̃� = 0 Û �H,S� = 0.

2.

S̃ = �
ij

1

�U
�i��aij + �ij 1 − WU

�U
��U�� j + �W −

WUV

U
+

V

U
� .

Proof:

. This is a straightforward verification, using the identities

�H0,S0� = 0, �H0 + V,S0 + W� = 0, �H0 + U,S0 + WU� = 0

and

�A,BC� = B�A,C� + �A,B�C, �A,
1

U
� = −

1

U
�A,U�

1

U

for linear operators A, B, C and nonzero function U.
. This follows from the fact that �iWU=�� ja

ijUj.

Q.E.D.
Corollary 3: If S�1� ,S�2� are second-order symmetry operators for H, then

�S̃�1�, S̃�2�� = 0 Û �S�1�,S�2�� = 0.

Since one can always add a constant to a nondegenerate potential, it follows that 1 /U defines

n inverse Stäckel transform of H̃ to H. We say that two quantum superintegrable systems are
täckel equivalent if one can be obtained from the other by a Stäckel transform. We can now use
heorem 6 to carry over immediately the basic result for 2D Stäckel transforms of classical
uperintegrable systems to 2D quantum superintegrable systems.2

Theorem 7: Every nondegenerate second-order quantum superintegrable system in two vari-
bles is Stäckel equivalent to a superintegrable system on a constant curvature space.

I. NONDEGENERATE 3D QUANTUM SYSTEMS

Here we extend our analysis of classical 3D superintegrable systems with nondegenerate
otentials to the quantum case. �This is less straightforward than in the 2D case.� As mentioned
arlier, these systems arise only for functionally linearly independent bases of symmetries. For a
anifold with metric ds2=��x ,y ,z��dx2+dy2+dz2� we replace the Hamiltonian H= �p1

2+ p2
2

2
p3� /��x ,y ,z�+V�x ,y ,z� by a formally self-adjoint operator
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Ĥ =
1

��x,y,z� �
k,j=1

3

�k� �kj

��x,y,z�
��x,y,z�� j� + V�x,y,z� �30�

n local orthogonal coordinates. Here �kj is the Kronecker delta and the weight function � is to be
etermined. Similarly, we replace a second-order symmetry of the Hamiltonian system S
�k,j=1

3 akj�x ,y ,z�pkpj +W�x ,y ,z�, with akj =ajk, by the formally self-adjoint operator

Ŝ =
1

�
�

k,j=1

3

�k�akj�� j� + W + Ŵ, akj = ajk, �31�

here the function Ŵ�x ,y ,z� is to be determined. These operators are formally self-adjoint with
espect to the bilinear product

�f ,g =� f�x,y,z�g�x,y,z���x,y,z�dx dy dz �32�

n the manifold, i.e.,

�f ,Ĥg = �Ĥf ,g, �f , Ŝg = �Ŝf ,g

or all local C
 functions f ,g with compact support on the manifold, where we set all boundary
erms equal to 0.

Now we assume that �H ,S	=0 and require �Ĥ , Ŝ�=0. Since Ĥ , Ŝ are formally self-adjoint,

Ĥ , Ŝ� must be formally skew-adjoint. From our assumption �H ,S	=0 it is clear that the coeffi-
ients of the third-derivative terms �ijk in the commutator must vanish, hence also the coefficients
f the second-order terms vanish. Thus there are functions bi such that

�Ĥ, Ŝ� =
1

�
�
i=1

3

�i�bi�� = �
i=1

3 �bi�i +
�bi��i

�
� .

sing �H ,S	=0, we see that

bj = �
i=1

3 � 1

�
�ii +

1

�
��

�
�

i
�i�� 1

�
�
k=1

3

�akj��k� − �
i,�=1

3 �ai��i� +
1

�
�ai���i���� 1

�
��

�
�

j
� +

2

�
Ŵj .

his formula simplifies greatly if we choose �=�. Indeed, we find

bj = −
1

�
� jika

ik +
2

�
Ŵj .

ere i , j, and k are pairwise distinct. We can choose Ŵj =
1
2� jika

ik, so that bj �0 provided the
ntegrability conditions

�iijka
ik = �ij jka

jk

old for i , j ,k pairwise distinct. These conditions are satisfied, as we can verify from the explicit
xpressions for second-order conformal Killing tensors contained in Ref. 3

Theorem 8:

�H,S	 = 0 Û �Ĥ, Ŝ� = 0,

ˆ ˆ ˆ 1 ik
here H ,S are given by (30) and (31) with �=� and Wj = 2� jika (for i , j ,k pairwise distinct).
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We can follow a similar approach to find the quantum analogies of first-order symmetries
=� j=1

2 aj�x ,y ,z�pj, by the formally skew-adjoint first-order operator �with respect to the bilinear
roduct �32��

L̂ =
1

�
�
j=1

3

� j�akj�� . �33�

t is straightforward to prove the following result.
Theorem 9:

�H,L	 = 0 Û �Ĥ,L̂� = 0,

here Ĥ , L̂ are given by �30� and �33� with �=�.

II. THE SPACE OF THIRD-ORDER SYMMETRIES

Now we investigate the third-order differential operators K that commute with the Hamil-
onian: �H ,K�=0. The treatment for the conformally flat 3D case proceeds in almost exact analogy
o the 2D case, so we just sketch the results.

1. Since the second-order symmetries are formally self-adjoint, the commutators will be
kew-adjoint. Thus we can limit ourselves to K that are skew adjoint.

2. Since H encodes a four-parameter family of potentials, the symmetry K must also be a
unction of the parameters. The highest order terms akji�kji in K �symmetric in k , j , i� will be
ndependent of the parameters but lower order terms may have linear parameter dependence.

3. The skew-adjoint requirement uniquely determines the coefficients of the second-order
erms in K. They are

3

2�
�akji��i�kj .

4. The skew-adjoint requirement means that there exist functions akji , b̃i such that K has the
nique representation

K = �
k,j,i=1

3 �akji�kji +
3

2�
�akji��i�kj +

1

2�
�akji��kj�i� + �

i=1

3 �b̃i�i +
1

2�
�b̃i��i� , �34�

here the functions b̃i�x ,y ,z� contain the parameter dependence.
5. Equating coefficients of the fourth-order terms in the operator condition �H ,K�=0 where K

s given by �34� we obtain the classical requirements that the akji be the components of a third-
rder Killing tensor.

6. Equating coefficients of the third-order terms in the condition �H ,K�=0 we obtain relations
hat are consequences of the Killing tensor requirements.

7. The remaining conditions on K intertwine � ,akji , b̃i, and V, and are complicated. Rather
han solve them directly, we make the unique decomposition

b̃i�x1,x2,x3,Vx1
,Vx2

,Vx3
� = ci�x1,x2,x3� + bi�x1,x2,x3,Vx1

,Vx2
,Vx3

� ,
here
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bi = �
j=1

3

f�,j�x1,x2,x3�
�V

�xj
�x1,x2,x3� ,

.e., we can split off the parameter-dependent terms of b̃i from the rest. Then, equating the linear
arameter-dependent coefficients of the second-order terms in the symmetry operator condition,
e obtain the conditions

bk
j + bj

k = 3��
s

askjVs, j � k, j,k = 1,2,3,

bj
j =

3

2
��

s

asjjVs −
1

2�
s

bs�ln ��s, j = 1,2,3, �35�

dentical to the classical requirement.
8. Equating the quadratic parameter-dependent coefficients of the zeroth-order terms in the

ymmetry operator condition, we obtain the requirement

�
s

bsVs = 0, �36�

dentical to the classical equation. There can be at most one skew adjoint K with given aijk ,b�.
Theorem 10: Let K be a third-order skew-adjoint symmetry �11� for a superintegrable system

ith nondegenerate potential V and b̃i=ci�x ,y ,z�+bi�x ,y ,z ,V1 ,V2 ,V3� where

bi = �
j=1

3

f i,j�x,y�
�V

�xj
�x,y,z� .

hen

f�,j + f j,� = 0, 1 	 �, j 	 3

nd K is uniquely determined by the four numbers

f1,2�x0,y0,z0�, f1,3�x0,y0,z0�, f2,3�x0,y0,z0�, f3
1,2�x0,y0,z0�

t any regular point �x0 ,y0 ,z0� of V.
Corollary 4: Let V be a superintegrable nondegenerate potential. Then the space of third-

rder skew-adjoint symmetries is four-dimensional and is spanned by commutators of the second-
rder self-adjoint symmetries.

In exact analogy with the classical case, we can use the standard form to prove multisepara-
ilty for conformally flat 3D quantum systems.4

Theorem 11: Let V be a quantum superintegrable nondegenerate potential. Then the associ-
ted system is multiseparable.

III. THE QUANTUM 3D QUADRATIC ALGEBRA

We investigate the space of fourth-order differential operators F that commute with the Hamil-
onian: �H ,F�=0. The treatment for the conformally flat 3D case proceeds in almost exact analogy
o the 2D case, so we sketch the results.

1. We are interested in the space of fourth-order symmetries that is spanned by the double
ommutators ��S�1� ,S�2�� ,S�3�� of second-order formally self-adjoint symmetries S�j� of the super-
ntegrable system. The double commutators will be formally self-adjoint, so we can limit our-

elves to F that are self-adjoint.
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2. Since H encodes a three-parameter family of potentials, the symmetry F must also be a
unction of the parameters. The highest order terms a�kji�kji in F �symmetric in � ,k , j , i� will be
ndependent of the parameters but lower order terms may have linear or quadratic parameter
ependence.

3. The self-adjoint requirement uniquely determines the third-order terms in F. They are

�
�,k,j,i

2

�
�a�kji��i��kj .

4. The self-adjoint requirement means that there exist functions a�kji , b̃ij ,W̃ such that F has the
nique representation

F = �
�,k,j,i=1

3
1

�
�ij�a�kji��k�� + �

i,j=1

3
1

�
�i�b̃ij�� j� + W̃ , �37�

here the functions b̃ij�x1 ,x2 ,x3� ,W̃�x1 ,x2 ,x3� contain the parameter dependence.
5. Equating coefficients of the fifth-order terms in the operator condition �H ,F�=0 we obtain

he conditions for a�kji to be a fourth-order Killing tensor.

6. The remaining conditions on F intertwine � ,a�kji , b̃ji, W̃, and V, and are complicated.
owever, we can make the unique decomposition

b̃ji�x1,x2,x3,Vx1
,Vx2

,Vx3
� = cji�x1,x2,x3� + bji�x1,x2,x3,Vx1

,Vx2
,Vx3

�

here

bji = �
�=1

4

f ji,�W���, f ji,� = f ij,�,

nd W�j�=Vxj
, W�4�=Vx1x1

.
Then, equating the linear parameter-dependent terms of third order in the derivatives, and the

uadratic parameter-dependent terms of first order in the derivatives, we obtain exactly the clas-
ical conditions on the f ji,�.

Since at most one self-adjoint F can have data a�kji ,bkj, we find3

Theorem 12: The subspace of truly fourth-order self-adjoint symmetry operators is of dimen-
ion at most twenty-one.

If A ,B are linear operators, we define their symmetrized product by

�A,B	 � 1
2 �AB + BA� .

Theorem 13: The twenty-one distinct monomials �S�ij� ,S�jk�	 form a basis for the space of
ourth-order self-adjoint symmetry operators.

Using an approach very similar to the above we can easily show that the space of truly
ixth-order formally self-adjoint operator symmetries of H cannot exceed the classical maximal
imension of fifty-six. If A ,B ,C are linear operators, we define their symmetrized product by

�A,B,C	 � 1
6 �ABC + BAC + CAB + ACB + BCA + CBA� .

Theorem 14: The fifty-six distinct standard monomials �S�hi� ,S�jk� ,S��m�	 form a basis for the
pace of sixth-order self-adjoint symmetry operators.

These theorems establish the closure of the quadratic algebra for 3D quantum superintegrable
otentials: All fourth-order and sixth-order symmetry operators can be expressed as symmetric

olynomials in the second-order symmetry operators.
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X. COVARIANT FORMULATION FOR THE 3D QUANTUM CASE

Theorem 8 yields an operator realization of the classical commutator brackets for second-

rder symmetries but the differential operator part of Ĥ, though formally self-adjoint with respect
o the weight function �, is not the Laplace-Beltrami operator on the manifold. We can obtain the
aplace-Beltrami operator, at the expense of altering the potential V, by means of an appropriate
auge transformation. We now turn to this construction.

Set

H = e−RĤeR, S = e−RŜeR,

here R�x ,y ,z� is a function to be determined. Then �H ,S�=0 if and only if �Ĥ , Ŝ�=0. We will
hoose R such that the differential operator part of H is the Laplace-Beltrami operator on the
anifold with metric ds2=��dx2+dy2+dz2�.

It is straightforward to show that

H = e−RĤeR =
1

�
�
i=1

3

��ii + 2Ri�i + Rii + Ri
2� + V

o, if we set R= 1  4 ln �, we have

H = �
i=1

3 � 1

�3/2�i��1/2�i� +
Rii + Ri

2

�
� + V .

imilarly

S = �
i,j=1

3 � 1

�3/2�i�aij�3/2� j� + aij�Rij + 5RiR j� + ai
ijR j� + W + Ŵ .

The eigenvalue equation for Ĥ on the space with weight function �=� is Ĥ�=E�. Setting
=eR�=�1/4� we see that the eigenvalue equation for � is H�=E� and the eigenfunctions �

ie in the space with weight function �3/2. Note that

�
i=1

3

�Rii + Ri
2�/� = −

1

8
R ,

here R is the Riemannian scalar curvature. The quantum potential is

Ṽ = − 1
8R + V . �38�

If we supplement the classical symmetries with quantum adjustments the corresponding op-
rators are

H =
1
�g

�i�gij�g� j� +
1

8
R ,

S =
1
�g

�i�aij�g� j� +
1

16
ai

iR −
5

16
aijRij −

1

16
�i� ja

ij .

ere � j is the usual covariant derivative on the Riemannian space. This formula always works,
hough aij must be a Killing tensor for a conformally flat space, Indeed for a Hamiltonian H
��x ,y ,z��px

2+ py
2+ pz

2� with symmetry S=aijpipj the following conditions must be satisfied. If aij
s a Killing tensor for a conformally flat space with infinitesimal distance
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ds2 = e−J�x,y,z��dx2 + dy2 + dz2�

hen it must satisfy the equations

��iajk� = g�ijak�, �39�

here

a1 = e2J�x,y,z��a11Jx − a12Jy − a13Jz�, a2 = e2J�x,y,z��− a12Jx + a22Jy − a23Jz� ,

a3 = e2J�x,y,z��− a13Jx − a23Jy + a33Jz� .

ere �39� are the necessary and sufficient conditions that aij is a conformal Killing tensor in flat
pace. We know all solutions for this set of equations. The only constraint is that there exist a
unction J�x ,y ,z� such that the al have the form indicated. Indeed, if we found the al from the
onsiderations of flat space it is clear that

ak =
1

5�
j

�� jajk + �kajj� .

These results carry over in a very satisfactory manner for superintegrable systems with non-
egenerate potential. In this case the parameters occurring in the potential appear only in the V and

terms, exactly as before. The quantum corrections are independent of these parameters.

Theorem 15: Let H, Ĥ, and H be defined as above where H defines a classical superinte-
rable system with nondegenerate potential V. Let S�1� ,S�2� be second-order symmetries of H,

ith corresponding symmetry operators Ŝ�j� ,S�j�. Then

�S�1�,S�2�	 = 0 Û �Ŝ�1�, Ŝ�2�� = 0 Û �S�1�,S�2�� = 0.

Corollary 5: Every conformally flat 3D classical superintegrable system with nondegenerate
otential extends to a unique covariant quantum superintergrable system. The symmetries of the
uantum system admit a quadratic algebra structure.

. THE STÄCKEL TRANSFORM FOR 3D QUANTUM SYSTEMS

We work out the quantum analog of the Stäckel transform26,27 for classical systems. Suppose
e have a superintegrable system with Schrödinger operator

H =
1

�3/2�x,y,z��i=1

3

�i��1/2�x,y,z��i� −
1

8
R��x,y,z� + V�x,y,z� �40�

n local orthogonal coordinates, with scalar curvature R� and nondegenerate potential V�x ,y ,z�:

V33 = V11 + A33V1 + B33V2 + C33V3,

V22 = V11 + A22V1 + B22V2 + C22V3,

V23 = A23V1 + B23V2 + C23V3,

V13 = A13V1 + B13V2 + C13V3,

V12 = A12V1 + B12V2 + C12V3 �41�

nd suppose U�x ,y ,z� is a particular solution of Eq. �41�, nonzero in an open set. Then the

ransformed system
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H̃ = H =
1

�̃3/2�x,y,z�
�
i=1

3

�i��̃1/2�x,y,z��i� −
1

8
R�̃�x,y,z� + Ṽ�x,y,z� �42�

ith nondegenerate potential Ṽ�x ,y ,z�:

Ṽ33 = Ṽ11 + Ã33Ṽ1 + B̃33Ṽ2 + C̃33Ṽ3,

Ṽ22 = Ṽ11 + Ã22Ṽ1 + B̃22Ṽ2 + C̃22Ṽ3,

Ṽ23 = Ã23Ṽ1 + B̃23Ṽ2 + C̃23Ṽ3,

Ṽ13 = Ã13Ṽ1 + B̃13Ṽ2 + C̃13Ṽ3,

Ṽ12 = Ã12Ṽ1 + B̃12Ṽ2 + C̃12Ṽ3, �43�

s also superintegrable, where

�̃ = �U, Ṽ =
V

U
,

Ã33 = A33 + 2
U1

U
, B̃33 = B33, C̃33 = C33 − 2

U3

U
,

Ã22 = A22 + 2
U1

U
, B̃22 = B22 − 2

U2

U
, C̃22 = C22,

Ã23 = A23, B̃23 = B23 −
U3

U
, C̃23 = C23 −

U2

U
,

Ã13 = A13 −
U3

U
, B̃13 = B13, C̃13 = C13 −

U1

U
,

Ã12 = A12 −
U2

U
, B̃12 = B12 −

U1

U
, C̃12 = C12.

Indeed, let S=��1/�3/2��i�aij�3/2� j�+WR+W=S0+WR+W be a second-order formally self-
djoint symmetry operator of H, where WR is the potential term that depends on the curvature R
nd W is the part that depends on V. Let SU=��1/�3/2��i�aij�3/2� j�+WR+WU=S0+WR+WU be the
pecial case of this that is in involution with

1

�3/2�
i=1

3

�i��1/2�i� −
1

8
R� + U .
Then
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S̃ = S0 −
WU

U
H +

1

U
H

s the corresponding formally self-adjoint symmetry operator of H̃, with respect to the metric
s̃2=�U�dx2+dy2+dz2�.

Theorem 16:
1.

�H̃, S̃� = 0 Û �H,S� = 0.

2.

S̃ = �
ij

1

��U�3/2�i��aij + �ij 1 − WU

�U
���U�3/2�� j + �WR + �WU

U
−

1

U
��R�

8
+ �W −

WUV

U
+

V

U
� .

Proof:

1. We perform an inverse gauge transformation on H ,S to return them to the forms Ĥ , Ŝ, �30�
nd �31�, with �=� and Ŵj =

1
2� jika

ik �for i , j ,k pairwise distinct�. Similarly we perform an inverse

auge transformation on H̃ , S̃ to return them to the forms H̃
ˆ

, S̃
ˆ
, �30� and �31�, with �=U�. These

ommuting operators are formally self-adjoint with respect to the weight function U�. Then it is

straightforward computation to verify that �H̃ˆ , S̃
ˆ �=0Û �Ĥ , Ŝ�=0. Indeed, just as in the 2D case,

ne needs only the identities

�Ĥ0, Ŝ0� = 0, �Ĥ0 + V, Ŝ0 + W� = 0, �Ĥ0 + U, Ŝ0 + WU� = 0

nd

�A,BC� = B�A,C� + �A,B�C, �A,
1

U
� = −

1

U
�A,U�

1

U

or linear operators A ,B ,C and nonzero function U. Then the first part of the theorem follows

rom applying the original gauge transformations to take Ĥ , Ŝ to H ,S and H̃
ˆ

, S̃
ˆ

to H̃ , S̃.
2. This follows from the fact that �iWU=�� ja

ijUj.
Q.E.D.

Corollary 6: If S�1� ,S�2� are second-order symmetry operators for H, then

�S̃�1�, S̃�2�� = 0 Û �S�1�,S�2�� = 0.

At this point it is clear that the basic classical result for 3D Stäckel transforms of conformally
at classical superintegrable systems contained in Ref. 4 can be carried over to 3D quantum
uperintegrable systems.

Theorem 17: Every nondegenerate second-order quantum superintegrable system on a 3D
onformally flat space is Stäckel equivalent to a superintegrable system on a constant curvature
pace.

I. CONCLUSIONS AND OUTLOOK

We showed that 2D classical second-order superintegrable systems with nondegenerate po-
ential and the corresponding 3D conformally flat systems each have a unique quantum superin-
egrable extension, and that the closure of the quadratic algebra and basic structure theory is
nchanged at the quantum level. A critical feature of the proofs is use of the formal self-adjoint
nd skew-adjoint properties of the higher order symmetry operators. For the 2D case the extension
s completely straightforward and the quantum extension has the same nondegenerate potential as

he classical system. For the 3D systems a two-step procedure is required. First the classical
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ystem is extended to a quantum system with appropriate formal self and skew adjoint symmetries
nd such that the potential remains unchanged. This quantum system, however, is not covariant,
.e., the Schrödinger operator does not correspond to a Laplace-Beltrami operator on a curved
anifold. The second step in the procedure is to perform a gauge transformation to obtain cova-

iantly correct Schrödinger operators. This alters the potential by adding a term that depends on
he scalar curvature. We also showed that the Stäckel transform has a unique quantum extension
nd it remains true that all of our quantum superintegrable systems are Stäckel transforms of
onstant curvature superintegrable systems.

All 2D systems have been classified and we are making considerable progress on the 3D
lassification theory for systems with functionally linearly independent bases of symmetries,4

hough the problem is complicated. The next steps in our program are �1� to study 3D superinte-
rable systems with degenerate potentials and �2� to study nondegenerate superintegrable systems
n higher dimensions.
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Models of the quantum oscillator, based on the discrete series representations of the
quantum algebra suq�1,1�, are constructed. The position and momentum operators
in these models are twisted generators J2 and J1 for such suq�1,1�-representations,
respectively. As in the case of the standard harmonic oscillator in quantum mechan-
ics, the position and momentum operators here have continuous simple spectra.
These spectra cover a finite interval on the real line, which depends on a value of
q. Eigenfunctions of these operators are explicitly found. It is shown that the
Macfarlane–Biedenharn q-oscillator is a limit case of the oscillators under discus-
sion. The q=1 limit case, in which spectra of the position and momentum operators
cover the whole real line, is also considered in detail. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2338141�

. INTRODUCTION

A suq�1,1�-model of the quantum oscillator is a model that obeys the dynamics of the har-
onic oscillator, with the position and momentum operators and Hamiltonian being functions of

lements of the quantum algebra suq�1,1�. The aim of this paper is to develop the theory of such
scillators by using the discrete series representations of the quantum algebra suq�1,1�.

There exist many algebraic constructions which can be used for building up different models
f quantum oscillators. For most of them it is difficult to construct a complete theory of such an
scillator: spectra of observables, explicit form of eigenfunctions of observables, the description of
ime evolution, etc. Only for some such models is it possible to develop a corresponding theory. In
efs. 1 and 2 the so-called q-oscillator was constructed, which is a q-deformed analogue of the

tandard linear harmonic oscillator in quantum mechanics. A theory of this oscillator was elabo-
ated in detail. There are physical problems for which the q-oscillator is more adequate than the
uantum harmonic oscillator �see, for example, Refs. 3 and 4�. Unlike the quantum field theory,
onstructed on the base of the standard quantum harmonic oscillator, the quantum field theory,
uilt on the base of the q-oscillator, is free of some divergences. The q-oscillator has many useful
roperties, which are absent in the common quantum harmonic oscillator �see, for example, Refs.
and 6�.

However, in the case of the q-oscillator the basic commutator relations

�H,Q� = − iP, �H,P� = iQ , �1�

re broken. That is why the q-oscillator is not so attractive for many physicists.
For this reason, many efforts have been made to construct those models of the quantum

scillator that preserve the relations �1�. Postulates, which have to be satisfied for constructing
uch models of the quantum oscillator, were formulated in Ref. 7. These postulates are:

1. There exists an essentially self-adjoint �Hermitian� position operator, denoted as Q, whose
pectrum Spec Q is the set of positions of the system.

�
Electronic mail: aklimyk@bitp.kiev.ua

47, 093502-1022-2488/2006/47�9�/093502/21/$23.00 © 2006 American Institute of Physics
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2. There exists a self-adjoint Hamiltonian operator, H, which generates time evolution through
he Newton–Lie, or equivalent Hamilton–Lie, equations:

�H,�H,Q�� = Q Û ��H,Q� ¬ − iP

�H,P� = iQ ,
� �2�

here �·,·� is the commutator. The first Hamilton equation in �2� defines the momentum operator P,
hile the second one contains the harmonic oscillator dynamics. The set of momentum values of

he system is the spectrum Spec P of P.
3. The three operators, Q, P, and H, closed into an associative algebra, satisfy the Jacobi

dentity,

�P,�H,Q�� + �Q,�P,H�� + �H,�Q,P�� = 0. �3�

The second and third postulates determine that �Q , P� must commute with H, which implies
hat it can only be of the form �Q , P�=if�H�, where f is some function of H �including constants�
nd the i is placed to make f�H� self-adjoint, but do not otherwise specify this basic commutator

urther. For a constant f�H�=�1̂, one recovers the standard oscillator algebra H4

span�H ,Q , P , 1̂�, which contains the basic Heisenberg-Weyl subalgebra W1=span�Q , P , 1̂� of
uantum mechanics. In Ref. 8 the authors examined the cases which, in the unitary irreducible
epresentations of spin j= 1

2N �N� �0,1 , . . . � is fixed�, correspond to the linear function f�H�=H
�j+ 1

2
�1̂¬J3, and so the operators close into the Lie algebra so�3�	su�2�=span�Q , P ,J3�. In Ref.

the above-noted postulates are used to construct the so-called finite q-oscillator, for which
contrary to the Macfarlane–Biedenharn q-oscillator, mentioned earlier� the relations �H ,Q�
−iP and �H , P�=iQ take place.

The quantum oscillators, constructed in Refs. 8 and 9, are characterized by the property that
he position and momentum operators have finite discrete spectra. In the present paper we use the
uantum algebra suq�1,1� in order to construct, by means of the above-presented postulates,
odels of the quantum oscillator, which have continuous bounded spectra of the position and
omentum operators.

For deriving properties of oscillators under discussion, we essentially employ the theory of
pecial functions and orthogonal polynomials. Namely, using the interrelation between self-adjoint
perators �in our case they are the position and momentum operators� and orthogonal polynomials,
e find spectra of the position and momentum operators and derive an explicit form of their

igenfunctions. We define an explicit form of the evolution operator in the coordinate space. An
nalogue of the Fourier integral transform, which connects the coordinate and momentum spaces,
s also constructed.

We show that oscillators under study, parametrized by a positive number l, in the limit as l
� coincide with the Macfarlane–Biedenharn q-oscillator.

At the end of the paper we study the limit case when q=1. In this case we obtain models of
he quantum oscillator, also parametrized by a positive number l. In the limit l→� these models
ive the standard quantum harmonic oscillator, that is, these models give us new deformations of
he standard model, for which �contrary to the case of the Macfarlane–Biedenharn q-oscillator� the
elations �1� are fulfilled.

We employ the standard notations of the theory of basic hypergeometric functions and
-orthogonal polynomials �see, for example, Ref. 10�. We shall use q-numbers, defined as

�a�q ª
qa/2 − q−a/2

q1/2 − q−1/2
or any complex number a. Everywhere in the following it is assumed that 0�q�1.
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I. DISCRETE SERIES REPRESENTATIONS OF suq„1,1…

The quantum algebra suq�1,1� is defined as the associative algebra, generated by the elements

+, J−, J3, satisfying the commutation relations

�J3,J±� = ± J±, �J−,J+� =
qJ3 − q−J3

q1/2 − q−1/2 	 �2J3�q, �4�

nd the conjugation relations

J3
* = J3, J+

* = J−. �5�

Observe that here we have replaced J− by −J− in the usual definition of the algebra slq�2�.�
Introducing the elements J1= 1

2 �J++J−� and J2= �1/2i��J+−J−�, we characterize the algebra
uq�1,1� by the relations

�J3,J1� = iJ2, �J2,J3� = iJ1, �J1,J2� = −
i

2
�2J3�q. �6�

The Casimir element of the algebra suq�1,1� is given by the formula

Cq ª �J3 − 1/2�q
2 + 1

2 �2J3�q − J1
2 − J2

2 − 1/4 = �J3 − 1/2�q
2 − J+J− − 1/4.

We are interested in the discrete series representations of suq�1,1� with lowest weights. These
rreducible representations will be denoted by Tl, where l is a lowest weight, which may be any
ositive number �see, for example, Ref. 11�.

In order to realize these representations, we consider the space P of all polynomials in one
ariable y. We fix l and introduce the monomials

en
l 	 en

l �y� ª cn
l yn, n = 0,1,2,3, . . . , �7�

here

c0
l = 1, cn

l = 

k=1

n �2l + k − 1�q
1/2

�k�q
1/2 = q�1−2l�n/4 �q2l;q�n

1/2

�q;q�n
1/2 , n = 1,2,3, . . . ,

nd �a ;q�nª �1−a��1−aq� . . . �1−aqn−1�. They form a basis in P. The representation Tl is then
ealized by the operators �see Ref. 12�

J3 = y
d

dy
+ l, J± = y±1�J3 ± l�q.

n this explicit realization one has

J+en
l = ��2l + n�q�n + 1�qen+1

l , J−en
l = ��2l + n − 1�q�n�qen−1

l ,

J3en
l = �l + n�en

l .

bviously, these operators satisfy the commutation relations �4�. The basis functions en
l �y� are

igenfunctions of the operators J3 and Cq: Cqen
l = ��l−1/2�q

2− 1
4

�en
l .

It is known that the discrete series representations Tl can be realized on a Hilbert space, on
hich the conjugation relations �5� hold. In order to obtain such a Hilbert space, we assume that

he monomials en
l �y�, n=0,1 ,2 , . . ., constitute an orthonormal basis in this Hilbert space. This

ntroduces a scalar product into the space P. Then one closes this space with respect to this scalar
roduct and obtains the Hilbert space, which will be denoted by Hl. The Hilbert space Hl consists

f functions �series�
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f�y� = �
n=0

�

bnen
l �y� = �

n=0

�

bncn
l yn = �

n=0

�

anyn,

here an=bncn
l . Since en

l ,em
l �=�nm by definition, for f�y�=�n=0

� anyn and f��y�=�n=0
� an�y

n we have

f , f�� = �
n=0

�

anan�/�cn
l �2.

his means that the Hilbert space Hl consists of functions f�y�=�n=0
� anyn, such that

�f�2 	 �
n=0

�

�an/cn
l �2 � � .

II. DESCRIPTION OF suq„1,1…-MODELS

In order to describe models of the quantum oscillator, which are based on irreducible repre-
entations of the algebra suq�1,1�, we fix a positive number l and consider the discrete series
epresentation Tl from Sec. II. We define Hamiltonian H and position and momentum operators Q
nd P in terms of the generators J3, J2, J1 of this representation as

H = J3 − l + 1/2, Q = qJ3/4J2qJ3/4, P = qJ3/4J1qJ3/4. �8�

hen, due to �6�, for Q, P, and H we have the commutation relations

�H,Q� = − iP, �H,P� = iQ , �9�

�Q,P� =
i

2
q�1/2�J3�q−�1/2�J+J− − q�1/2�J−J+�q�1/2�J3

¬ iFq�Cq,J3�

= i�e−�J3��Cq +
1

4
�sinh

�

2
+

1

2
csch

�

2
� −

1

2
e−2�J3 coth

�

2
� , �10�

here qªe−�. The operator Fq�Cq ,J3�, defined in �10�, commutes with J3 and therefore is also
iagonal in the standard basis �en

l �; in the irreducible representation Tl we have

Fqem
j =

e−2m� cosh
�

2
− e−m� cosh� j +

1

2
��

2 sinh
�

2

em
j ,

ut its spectrum is not a good candidate for an oscillator Hamiltonian, because it is not equally
paced, and so the corresponding time evolution would be dispersive rather than harmonic.

The basis en
l , n=0,1 ,2 , . . ., in the Hilbert space Hl consists of eigenfunctions of the Hamil-

onian H:

Hen
l = �n + 1/2�en

l , n = 0,1,2, . . . , �11�

hat is, the spectrum of H coincides with the spectrum of the Hamiltonian of the standard quantum
armonic oscillator.

The operators �8� satisfy the postulates 1–3 of Sec. I. The time evolution of our system is the

armonic motion with
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ei�H�Q

P
�e−i�H

¬ �Q���
P���

� = � cos � sin �

− sin � cos �
��Q

P
� .

his is a group U�1� of inner automorphisms of the algebra suq�1,1� and of rotations of the
hase-space surface. We have

exp�i�H� = exp�i��J3 − l + 1/2�� = e−i�l−1/2�� exp�i�J3� . �12�

xplicit form of the time evolution in the coordinate space will be derived in the following.
Thus, to each positive number l there corresponds a model of the quantum oscillator: distinct

alues of l give rise to mutually nonequivalent models.

V. SPECTRUM AND EIGENFUNCTIONS OF THE MOMENTUM OPERATOR

Since P=qJ3/4J1qJ3/4, the momentum operator P in the basis of the Hamiltonian eigenfunctions

n
l , n=0,1 ,2 , . . ., has the form

Pen
l =

q�l+n�/2

2
�q1/4��2l + n�q�n + 1�qen+1

l + q−1/4��2l + n − 1�q�n�qen−1
l �

=
1

2�q−1/2 − q1/2�
���1 − qn+1��1 − q2l+n�en+1

l + ��1 − qn��1 − q2l+n−1�en−1
l � .

e wish to find the spectrum and eigenfunctions of this operator. Let �p�y� be an eigenfunction of
P, corresponding to the eigenvalue p, P�p�y�= p�p�y�. Then

�p�y� = �
n=0

�

hn�p�en
l �y� , �13�

here hn�p� are coefficients, which may depend on the eigenvalues p.
In order to find an explicit form of eigenfunctions �p�y�, we substitute expression �13� for

p�y� into equation P�p�y�= p�p�y�:

1

2�
n=0

�

hn�p����1 − qn+1��1 − q2l+n�
q−1/2 − q1/2 en+1

l +
��1 − qn��1 − q2l+n−1�

q−1/2 − q1/2 en−1
l � = p�

n=0

�

hn�p�en
l .

quating coefficients of a fixed basis element en
l , we obtain a three-term recurrence relation for the

oefficients hn�p�:

2phn�p� =
��1 − qn+1��1 − q2l+n�

q−1/2 − q1/2 hn+1�p� +
��1 − qn��1 − q2l+n−1�

q−1/2 − q1/2 hn−1�p� . �14�

t is clear from �14� that the coefficients hn�p� are uniquely determined up to a common constant
actor. We have h−1�p�=0 and setting h0�p�=1, we see that hn�p�, n=1,2 , . . ., are evaluated
niquely. Moreover, relation �14� shows that the hn�p� are polynomials in p of degree n.

To solve the recurrence relation �14�, make the substitution

hn�p� = � �q;q�n

�q2l;q�n
�1/2

hn��p� .

hen �14� turns into the equality

2�q−1/2 − q1/2�phn��p� = �1 − qn+1�hn+1� �p� + �1 − q2l+n−1�hn−1� �p� . �15�
omparing this relation with the recurrence relation
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�1 − qn+1�Pn+1�z;a�q� − 2�z − 2aqn cos ��Pn�z;a�q� + �1 − a2qn−1�Pn−1�z;a�q� = 0

see formula �3.9.3� in Ref. 13� for the q-Meixner–Pollaczek polynomials

Pn�z;a�q� =
�a2;q�n

�q;q�n
a−ne−in�

3	2�q−n,aei�
+2��,ae−i
;a2,0;q,q� ,

z = cos�
 + �� ,

ith a=ql and �=� /2, one finds that

hn��p� = Pn��q−1/2 − q1/2�p;ql�q� = i−nq−ln �q2l;q�n

�q;q�n
3	2�q−n,− qlei
,qle−i
;q2l,0;q,q� ,

here sin 
= �q−1/2−q1/2�p and 3	2 �q−n , . . . � is the basic hypergeometric polynomial. Conse-
uently, for the coefficients in �13� one obtains that

hn�p� = � �q;q�n

�q2l;q�n
�1/2

Pn��q−1/2 − q1/2�p;ql�q� . �16�

Thus, the eigenfunctions of the momentum operator P are of the form

�p�y� = �
n=0

� � �q;q�n

�q2l;q�n
�1/2

Pn�sin 
;ql�q�en
l �y� = �

n=0

�

q�1−2l�n/4Pn�p�q−1/2 − q1/2�;ql�q�yn, �17�

here expression �7� for the basis elements has been taken into account. This result agrees with
hose derived in Refs. 12 and 14.

Expression �17� for the eigenfunctions �p�y� can be summed up by employing generating
unction �3.9.11� in Ref. 13 and we finally conclude that the eigenfunctions of the momentum
perator are of the form

�p�y� =
�ciy ;q���− ciy ;q��

�− c�iei
y ;q���c�ie−i
y ;q��

, �18�

here c=q�2l+1�n/4, c�=q�1−2l�n/4 and, as before, p= �sin 
� / �q−1/2−q1/2�.
The spectrum of the momentum operator P can be found with the aid of formula �17�. Indeed,

t is easy to verify that the operator P, coinciding with the operator qJ3/4J1qJ3/4 of the discrete
eries representation Tl, is bounded and self-adjoint. Moreover, P is representable in the basis �en

l �
y a Jacobi matrix, that is, by a tridiagonal matrix of the form

M =�
b0 a0 0 0 0 ¯

a0 b1 a1 0 0 ¯

0 a1 b2 a2 0 ¯

0 0 a2 b3 a3 ¯

¯ ¯ ¯ ¯ ¯ ¯

� , ai � 0.

here exists a theory �see Ref. 15, Chap. VII; a short description of this theory can be found in
ef. 6�, which allows one to connect spectra of operators of such type with orthogonality measures

or appropriate orthogonal polynomials. To employ this theory, we note that the eigenfunctions

p�y� are expressed in terms of the basis elements en
l by formula �13� with the polynomial

oefficients �16�. According to the results of Chap. VII in Ref. 15, these polynomials are orthogo-
al with respect to some measure d��p�. �This measure is unique, up to a constant factor, since the
perator P is self-adjoint; see Ref. 6.� A set �a subset of R�, on which the polynomials are
rthogonal, coincides with the spectrum of the operator P and d��p� determines the spectral

easure of this operator. Moreover, the spectrum of P is simple.
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Thus, to find the spectrum of the momentum operator P, we recall that the
-Meixner–Pollaczek polynomials Pn�z�	 Pn�z ;a �q� are orthogonal and the orthogonality relation
s of the form

1

2�
�

−�

�

Pm�sin 
�Pn�sin 
�w�sin 
�d
 =
�q2l;q�n

�q;q�n
�mn,

here �see formula �3.9.2� in Ref. 13�

w�sin 
� = �q;q���q2l;q��� �− e2i
;q��

�− qlei
;q���qlei
;q��

�2

.

his orthogonality relation can be written as

�q;q�n

�q2l;q�n
�

−b

b

Pm�p/b�Pn�p/b�w̃�p�dp = �mn, �19�

here bª �q−1/2−q1/2�−1 and w̃�p�=w�p /b� /b cos 
. This means that the spectrum of P coincides
ith the finite interval,

Spec P = �− b,b�, b = �q−1/2 − q1/2�−1.

hus, the spectrum is continuous and simple. Continuity of the spectrum means that the eigen-
unctions �p�y� are not elements of the Hilbert space Hl. These functions of y for p� �−b ,b� form
continuous basis in Hl �similar to the basis �eipx� in the Hilbert space L2�R� of square-integrable

unctions on R�.
We see that the spectrum of P covers the infinite interval �−� ,�� in the limit as q→1. When

→0, the spectrum accumulates into the zero point.
Eigenfunctions of P are determined up to constant factors. In order to normalize the eigen-

unctions �p�y�, we take into account the orthogonality relation �19� for q-Meixner–Pollaczek
olynomials. Since these polynomials are associated with the determinate moment problem �see,
or example, Ref. 6 for the description of this correspondence�, the set Pn�p /b�, n=0,1 ,2 , . . ., is
omplete in the Hilbert space L2��−b ,b� , w̃� with the scalar product

f1, f2� = �
−b

b

f1�p�f2�p�w̃�p�dp , �20�

here b and w̃�p� are the same as in �19�. This means that

�
n=0

�
�q;q�n

�q2l;q�n
w̃�p�Pn�p/b;q2l�q�Pn�p�/b;q2l�q� = ��p − p�� .

hen, on account of �17�, one gets

�p�y�,�p��y�� = �
n=0

�
�q;q�n

�q2l;q�n
Pn�p/b;q2l�q�Pn�p�/b;q2l�q� =

��p − p��
w̃�p�

.

herefore, the normalized functions are

�̃p�y� = w̃�p�1/2�p�y�, p � �− b,b� ,

hat is, �̃p�y� , �̃p��y��=��p− p��.

. SPECTRUM AND EIGENFUNCTIONS OF THE POSITION OPERATOR
l
The position operator Q in the basis en, n=0,1 ,2 , . . ., has the form
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Qen
l =

q�l+n�/2

2i
�q1/4��2l + n�q�n + 1�qen+1

l − q−1/4��2l + n − 1�q�n�qen−1
l � .

y changing the basis �en
l � to the basis �ẽn

l �, where ẽn
l =i−nen

l , we see that the position operator Q
s given in the latter basis by the same formula as the momentum operator is given in the former
asis �en

l � �see Sec. IV�. This means that the spectrum of the operator Q coincides with the
pectrum of P, that is,

Spec Q = �− b,b�, b = �q−1/2 − q1/2�−1.

igenfunctions of the position operator can be found �by using the basis �ẽn
l �� in the same way as

n the case of the momentum operator. For this reason, we exhibit here only the result.
Let 	x�y� be an eigenfunction of Q, corresponding to the eigenvalue x, Q	x�y�=x	x�y�. Then

	x�y� = �
n=0

�

h̃n�x�en
l �y� , �21�

here, as before, the en
l �y� are given by �7� and the h̃n�x� are coefficients, which may depend on

he eigenvalues x.
Repeating the reasoning of Sec. IV, one derives a three-term recurrence relation for the

olynomials h̃n�x� and concludes that

h̃n�x� = i−nhn�x� = i−n� �q;q�n

�q2l;q�n
�1/2

Pn�x/b;ql�q�, b ª �q−1/2 − q1/2�−1, �22�

here Pn�z ;ql �q� is the q-Meixner–Pollaczek polynomial as in Sec. IV. One thus deduces that
igenfunctions of the position operator Q are of the form

	x�y� = �
n=0

�

i−n� �q;q�n

�q2l;q�n
�1/2

Pn�x/b;ql�q�en
l �y� = �

n=0

�

i−nq�1−2l�n/4Pn�x/b;ql�q�yn. �23�

One can sum up expression �23� for the eigenfunctions 	x�y� by employing formula �3.9.11�
n Ref. 13. Thus the eigenfunctions of the position operator Q are of the form

	x�y� =
�− cy ;q���cy ;q��

�c�ei
y ;q���− c�e−i
y ;q��

,

here c=q�2l+1�n/4, c�=q�1−2l�n/4, and x=b sin 
 with b= �q−1/2−q1/2�−1.
Eigenfunctions of Q are determined up to constant factors. To normalize the eigenfunctions

x�y�, we employ the orthogonality relation �19� for q-Meixner–Pollaczek polynomials. The set
Pn�x /b�, n=0,1 ,2 , . . ., is complete in the Hilbert space L2��−b ,b� , w̃�x��, b= �q−1/2−q1/2�−1, with
he scalar product

f1, f2� = �
−b

b

f1�x�f2�x�w̃�x�dx ,

here w̃ is the same as in �19�. Consequently, the normalized functions are

	̃x�y� = w̃�x�1/2	x�y�, x � �− b,b� ,

˜ ˜
hat is, 	x�y� ,	x��y��=��x−x��.
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I. MOMENTUM REALIZATION OF THE OSCILLATOR

We have constructed in Sec. III a realization of the oscillator �depending on a value of l� on
he space of functions in the supplementary variable y. It is natural to look for its realization on the
pace of functions in the coordinate x and on the space of functions in the momentum p.

Let L2��−b ,b� , w̃�, b= �q−1/2−q1/2�−1, be the space of square-integrable functions f�p� �where p
s the momentum of the oscillator� with respect to the scalar product �20�. From �19� it is clear that
he polynomials �16� constitute an orthonormal basis in L2��−b ,b� , w̃�.

We construct first a one-to-one linear isometry  from the Hilbert space Hl, considered in
ec. II, onto the Hilbert space L2��−b ,b� , w̃�, given by the formula

: Hl � e�y� → f�p� ª e�y�,�p�y��Hl
� L2��− b,b�,w̃� , �24�

here �p�y� are the eigenfunctions �18� of P. It follows from �17� that

Hl � en
l �y� → en

l �y�,�p�y��Hl
= hn�p� , �25�

hat is,  maps the orthonormal basis �en
l �y�� of Hl onto the orthonormal basis �hn�p�� in

2��−b ,b� , w̃�. This means that  indeed is a one-to-one isometry.
The operator P acts on L2��−b ,b� , w̃� as the multiplication operator,

Pf�p� = pf�p� .

ndeed, according to �25� if e�y�= f�p�= e�y� ,�p�y��Hl
, then

Pe�y� → Pf�p� = Pe�y�,�p�y��Hl
= e�y�,P�p�y��Hl

= e�y�,p�p�y��Hl
= pf�p� .

We can find how P acts upon the basis elements hn�p�, n=0,1 ,2 , . . ., of the Hilbert space
2��−b ,b� , w̃�. According to the recurrence relation for the polynomials �16� �which follows from

he recurrence relation for the polynomials Pn�z ;ql �q��, we have

Phn�p� = phn�p� =
1

2�q−1/2 − q1/2�
���1 − qn+1��1 − q2l+n�hn+1�p� + ��1 − qn��1 − q2l+n−1�hn−1�p�� .

The Hamiltonian H acts upon the polynomials hn�p� in the Hilbert space L2��−b ,b� , w̃� as

Hhn�p� = �n + 1/2�hn�p� .

ndeed, since Hen
l �y�= �n+1/2�en

l �y�, then according to �25� one has

Hhn�p� = Hen
l �y�,�p�y��Hl

= �n + 1/2�en
l �y�,�p�y��Hl

= �n + 1/2�hn�p� .

Let us find how the operator Q acts on the Hilbert space L2��−b ,b� , w̃�. To achieve this we use
he results of Ref. 16.

The polynomials hn�p� from �16� can be expressed in terms of the Askey–Wilson polynomials,
efined as

pn�1

2
�z + z−1�;a,b,c,d�q� 	 pn�z� =

�ab,ac,ad;q�n

an 4	3�q−n,qn−1abcd,az,az−1

ab,ac,ad
�q,q� ,

here �� ,� ,� ;q�nª �� ;q�n�� ;q�n�� ;q�n. We have

hn�p� = ��q2l;q�n�q;q�n�−1/2pn�1

2
�z + z−1�;iql,− iql,0,0�q� , �26�

here z=ei�
+�/2�. For convenience we denote the polynomials hn�p� by hn�z�, where z is the same
s in �26�. It follows from �26� and from formula �4.5� in Ref. 16 that the polynomials hn�z� satisfy

he difference equation
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Dhn�z� =
2�q−n − 1�

1 − q−1 hn�z� ,

here the difference operator D acts as

Df�z� =
1 − q2lz

�1 − z2��1 − qz2�
f�qz� − � 1 − q2lz

�1 − z2��1 − qz2�
+

1 − q2lz−1

�1 − z−2��1 − qz−2�� f�z�

+
1 − q2lz−1

�1 − z−2��1 − qz−2�
f�q−1z� .

e shall also need an operator of the form

D� ª 1
2 �1 − q−1�D + 1,

hose action on the polynomials hn�z� is

D�hn�z� = q−nhn�z� .

his means that the operator D� acts on the polynomials hn�z� as q−N, where N is the number
perator,

Nhn�z� = nhn�z� .

In order to find a difference form for the momentum operator, we need the operator L, which
s defined as

Lf�z� = �z − z−1�−1��1 − q2lz2�z−2f�qz� − �1 − q2lz−2�z2f�q−1z�� .

his is the operator �4.7� in Ref. 16 for our case. Then from formulas �4.11� and �4.12� from Ref.
6 one derives that

�L − q1−n�z + z−1��hn�z� = −
1 + q

qn
��1 − qn+1��1 − q2l+n�hn+1�z�

= − �1 + q�q�n+l+1/2�/2��2l + n�q�n + 1�qhn+1�z� ,

nd

�L + q−n�z + z−1��hn�z� =
1 + q

qn
��1 − qn��1 − q2l+n−1�hn−1�z�

= �1 + q�q�n+l−1/2�/2��2l + n − 1�q�n�qhn−1�z� .

Note that the operators

J+ ª −
q−�l+1/2�/2

�1 + q�
�L − q�z + z−1�q−N�q−N/2, �27�

J− ª
q−�l−1/2�/2

�1 + q�
�L + �z + z−1�q−N�q−N/2, �28�

ct upon the polynomials hn�z� as

J+hn�z� = ��2l + n�q�n + 1�qhn+1�z�, J−hn�z� = ��2l + n − 1�q�n�qhn−1�z� .

One may express the position operator Q=qJ3/4J2qJ3/4 in terms of the difference operators �27�

nd �28� as
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Q = i
q1/2

2�1 − q2�
�L − q�z + z−1�q−N + L + �z + z−1�q−N�qN = i

q1/2

2�1 − q2�
�2L + �1 − q��z + z−1�q−N�qN,

hich can be represented in the form

Q = i
q1/2

2�1 − q2�
�2LqN + �1 − q��z + z−1�� . �29�

t is easy to find that Q acts upon the polynomials hn�z� as

Qhn�p� =
1

2i�q−1/2 − q1/2�
���1 − qn+1��1 − q2l+n�hn+1�p� − ��1 − qn��1 − q2l+n−1�hn−1�p�� ,

hat is, this is the position operator. Thus, formula �29� gives us the difference form of the position
perator.

II. COORDINATE REALIZATION OF THE OSCILLATOR

Let L̃2��−b ,b� , w̃�, b= �q−1/2−q1/2�−1, be the space of square-integrable functions f�x� �where x
s the coordinate of the oscillator� with respect to the same scalar product as in �20�. It follows

rom �19� that the polynomials h̃n�x� from �22� constitute an orthonormal basis in L̃2��−b ,b� , w̃�.
We construct a one-to-one linear isometry ̃ from the Hilbert space Hl, considered in Sec. II,

nto the Hilbert space L̃2��−b ,b� , w̃� given by the formula

̃: Hl � e�y� → f�x� ª e�y�,	x�y��Hl
� L̃2��− b,b�,w̃� , �30�

here 	x�y� are the eigenfunctions �23� of Q. From �23� it is then evident that

Hl � en
l �y� → en

l �y�,	x�y��Hl
= h̃n�x� ,

hat is, ̃ maps the orthonormal basis �en
l �y�� from Hl onto the orthonormal basis �h̃n�x�� in

2��−b ,b� , w̃�. This means that ̃ indeed is a one-to-one isometry.

The operator Q acts on L̃2��−b ,b� , w̃� as the multiplication operator,

Qf�x� = xf�x� .

We can find how Q acts upon the basis elements h̃n�x�, n=0,1 ,2 , . . ., in the Hilbert space
2��−b ,b� , w̃�. According to the recurrence relation for the polynomials �22�, one has

Qh̃n�x� = xh̃n�x� =
i

2�q−1/2 − q1/2�
���1 − qn+1��1 − q2l+n�h̃n+1�x� − ��1 − qn��1 − q2l+n−1�h̃n−1�x�� .

learly, Hh̃n�x�= �n+1/2�h̃n�x�.
One can also find a difference form for the momentum operator P in the coordinate space. To

his end, one has to repeat the reasoning of Sec. VI.

III. THE EVOLUTION OPERATOR IN THE COORDINATE SPACE

According to �12�, the time evolution operator exp�i�H� acts upon the basis elements en
l , n

0,1 ,2 ,¯, of the Hilbert space Hl as

exp�i�H�en
l = e−i�l−1/2��ei�l+n��en

l = ei�n+1/2��en
l .

e wish to find how this operator acts in the coordinate space, that is, on the Hilbert space
2 ˜ ˜
��−b ,b� ,w� from Sec. VII. If the isometry  maps a function e�y��Hl to a function f�x�
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L̃2��−b ,b� , w̃�, then to exp�i�H�e�y��Hl there corresponds the function

exp�i�H�f�x� = exp�i�H�e�y�,	x�y��Hl
= e�y�,exp�− i�H�	x�y��Hl

= �
n=0

�

e�y�,en
l �Hl

en
l ,exp�− i�H�	x�y��Hl

= �
n=0

�

e�y�,en
l �Hl

exp�i�H�en
l ,	x�y��Hl

= �
n=0

� �
−b

b

e�y�,	̃x��y��Hl
	̃x��y�,en

l �Hl
dx� · exp�i��n + 1/2��en

l ,	x�y��Hl

= �
−b

b

f�x��K��x,x��w̃�x��dx�,

here the kernel K��x ,x�� is given by

K��x,x�� = �
n=0

�

	x��y�,en
l �Hl

en
l ,	x�y��Hl

exp�i��n + 1/2�� .

aking into account the expression for h̃n�x�= en
l ,	x�y��Hl

with x=b sin 
, one finds that

K��x,x�� = �
n=0

�

exp�i��n + 1/2��h̃n�x�h̃n�x��

= ei�/2�
n=0

�

ein�q−2ln �q2l;q�n

�q;q�n
3	2�q−n,− qlei
,qle−i
;q2l,0;q,q�

�3	2�q−n,− qlei
�,qle−i
�;q2l,0;q,q� ,

pon employing the explicit expression for the q-Meixner-Pollaczek–polynomials from Sec. IV.
ue to formula �8.15� in Ref. 17, one finally obtains that

K��x,x�� = ei�/2 �qlei
�ei�,− qle−i
�ei�,qlei
ei�,− qle−i
ei�,ei�;q��

�ei�
+
��ei�,− ei�
�−
�ei�,− ei�
−
��ei�,e−i�
+
��ei�,q2lei�;q��

�8W7�q2l−1ei�;− qlei
,qle−i
,− qlei
�,qle−i
�,ei�;q,ei�� , �31�

here �a1 ,a2 , . . . ,ar ;q��	�a1 ;q���a2 ,q��¯ �ar ;q�� and 8W7 is the basic hypergeometric func-
ion �2.1.11� from Ref. 10. Expressing the function 8W7 in �31� in terms of the basic hypergeo-
etric function 8	7 �see Ref. 10, Sec. 2.1� and using relation �III.17� from Appendix III in Ref. 10,

ne can reduce the 8W7 in �31� to the basic hypergeometric function 4	3:

8W7�q2l−1ei�;− qlei
,qle−i
,− qlei
�,qlei
�,ei�;q,ei��

=
�q2lei�,− ei�,− qle−i
�,qlei
�;q��

�− qle−i
�ei�,qlei
�ei�,q2l,− 1;q��

4	3�− ei�,ei�,− qlei
�,qle−i
�

− qle−i
ei�,qlei
ei�,− q
�q,q� .

�
s a result, one arrives at the following expression for the kernel K �x ,x��:
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K��x,x�� =
�qlei
ei�,− qle−i
ei�,ei�,− ei�,− qle−i
�,qlei
�;q��

�ei�
+
��ei�,− ei�
�−
�ei�,− ei�
−
��ei�,e−i�
+
��ei�,q2lei�,q2l,− 1;q��

� ei�/2
4	3��− ei�,ei�,− qlei
�,qle−i
�

− qle−i
ei�,qlei
ei�,− q
�q,q� . �32�

hus, the evolution operator exp�i�H� is given by the formula

exp�i�H�f�x� = �
−b

b

K��x,x��f�x��w̃�x��dx�,

here the kernel K��x ,x�� is given by �32�. Since ei�Hei��H=ei��+���H, this kernel satisfies the
elation

�
−b

b

K��x,x��K��x�,x��w̃�x��dx� = K�+���x,x�� .

bserve that the above-presented relation leads to the corresponding integral relation for the basic
ypergeometric function 4	3 in �32�.

X. AN ANALOGUE OF THE FOURIER TRANSFORM

Let us first recall the case of the standard linear harmonic oscillator in quantum mechanics,
etermined by the commutator

aa+ − a+a = 1.

or the position and momentum operators Q and P we have

Q =
1
�2

�a+ + a�, P =
i

�2
�a+ − a� .

he Hilbert space of states H is spanned by the orthonormal vectors �n�, n=0,1 ,2 , . . .. For
igenvectors of Q and P, we have

Q�x� = x�x�, P�p� = p�p� ,

nd Spec Q=Spec P=R.
For h�H, one gets

h,x�H = h�x�, h,p�H = h̃�p� . �33�

n this way one obtains a realization of H as a space of functions either in the coordinate or in the

omentum. Then the functions h�x� and h̃�p� from �33� are related with each other by the
ell-known integral Fourier transform:

h�x� =
1

�2�
�

−�

�

h̃�p�eipxdp .

Our aim in this section is to find an analogue of the Fourier transform for the model of the
scillator under discussion. Let e�y� be a function on the Hilbert space Hl. Then

: e�y� → f�p� � L2��− b,b�,w̃�, ̃:e�y� → f̃�x� � L̃2��− b,b�,w̃� .

˜
e need to find out how the functions f�p� and f�x� are connected with each other. One has
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f̃�x� = e�y�,	x�y��Hl
= �

−b

b

e�y�,�̃p�y��Hl
�̃p�y�,	x�y��Hl

dp = �
−b

b

f�p��p�y�,	x�y��Hl
w̃�p�dp

= �
−b

b

f�p�F�x,p�w̃�p�dp ,

here the kernel F�x , p� is given as

F�x,p� = �p�y�,	x�y��Hl
= �

n=0

�

�p�y�,en
l �Hl

en
l ,	x�y��Hl

= �
n=0

�

i−nhn�x�hn�p�

= �
n=0

�

i−nq−2ln �q2l;q�n

�q;q�n
3	2�q−n,− qlei
,qle−i
;q2l,0;q,q�3	2�q−n,− qlei
�,qle−i
�;q2l,0;q,q� ,

ith x=b sin 
 and p=b sin 
�. Taking into account formula �8.15� in Ref. 17 and repeating the
easoning of Sec. VIII, one obtains that

F�x,p� =
�iqle−i
,− iqlei
, i,− i,− qle−i
�,qlei
�;q��

�iei�
−
��,− iei�
+
��, iei�
�−
�,− ie−i�
+
��,− iq2l,q2l,− 1;q��

� 4	3��i,− i,− qlei
�,qle−i
�

iqle−i
,− iqlei
,− q
�q,q� . �34�

hus, an analogue of the Fourier transform F : f�p�→ f̃�x� for our oscillator is given by the
ormula

Ff�p� = f̃�x� = �
−b

b

f�p�F�x,p�w̃�p�dp ,

here the kernel F�x , p� is defined by formula �34�. The integral transform F is linear and iso-
etric, that is, it preserves the scalar product. Therefore, the inverse transform F−1 is given by

F−1 f̃�x� = f�p� =�
−b

b

f̃�x�F�x,p�w̃�x�dx , �35�

here F�x , p� means the complex conjugate of F�x , p�. Obviously, the Plancherel formula

�
−b

b

�f�p��2�w̃�p�dp = �
−b

b

� f̃�x��2w̃�x�dx

olds.

. A LIMIT TO THE MACFARLANE–BIEDENHARN q-OSCILLATOR

We have constructed an infinite number of models of quantum oscillator, characterized by the
umber l. The corresponding models will be denoted by oscl. We prove in the following that

lim
l→�

�2�q−1/2 − q1/2�oscl = oscq,
here oscq denotes the Macfarlane–Biedenharn q-oscillator. This formula means that
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lim
l→�

�2�q−1/2 − q1/2�Ql = Q, lim
l→�

�2�q−1/2 − q1/2�Pl = P , �36�

here Q	Ql, P	 Pl are the position and momentum operators for oscl, and Q, P are the position
nd momentum operators for oscq. The validity of the relations �36� follows from the fact that in
his limit the operators Ql and Pl turn into

Qẽn =
1
�2
��1 − qn+1

1 − q
�1/2

en+1 + �1 − qn

1 − q
�1/2

en−1� ,

Pẽn =
i

�2
��1 − qn+1

1 − q
�1/2

en+1 − �1 − qn

1 − q
�1/2

en−1� .

onsidering that

Q =
1
�2

�a+ + a�, P =
i

�2
�a+ − a� ,

ne readily derives that

a+en = �1 − qn+1

1 − q
�1/2

en+1, aen = �1 − qn

1 − q
�1/2

en−1.

hese operators together with the operator qN, given as qNen=qnen, satisfy the relations

aa+ − qa+a = 1, qNa+ = qa+qN, qNa = q−1aqN,

hat is, they generate the q-oscillator algebra of Macfarlane–Biedenharn.

I. THE CASE q=1: DESCRIPTION OF THE MODELS

The models, which correspond to the case q=1, can be considered either by setting q=1 into
he previous results or by repeating the foregoing reasoning, based now on the Lie algebra su�1,1�
nstead of the quantum algebra suq�1,1�. The latter case is simpler and we prefer to adopt it.

The Lie algebra su�1,1� has the generators I0 , I1 , I2, which satisfy the commutation relations

�I0,I1� = iI2, �I1,I2� = − iI0, �I2,I0� = iI1.

he generators I± and I0 are also used, where I±= I1±iI2; they obey the commutation relations
I0 , I±�= ± I± and �I− , I+�=2I0.

For constructing the su�1,1�-models of the quantum oscillator the positive discrete series of
rreducible representations of su�1,1� are employed. They are given by a positive number l and are

enoted by Rl. The representation Rl acts on the Hilbert space H̃1 of functions in the variable y,
uch that the monomials

ẽn
l �y� = ãn

l yn, ãn
l = ���2l + n�

n!
�1/2

, n = 0,1,2,3, . . . , �37�

re orthonormal, that is, ẽm
l , ẽn

l �=�mn �see Ref. 18, Chap. 7�. An explicit realization of the gen-
rators Ii, i=0,1 ,2, in the representation Rl is given in terms of the first-order differential opera-
ors as

I0 = y
d

dy
+ l, I1 =

1

2
�1 + y2�

d

dy
+ ly, I2 =

i

2
�1 − y2�

d

dy
− ily .

˜l ˜l
cting by these operators upon the basis elements en	en�y�, n=0,1 ,2. . ., one readily verifies that
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I0ẽn
l = �l + n�ẽn

l , I+ẽn
l = ��2l + n��n + 1�ẽn+1

l , I−ẽn
l = ��2l + n − 1�nẽn−1

l .

If one defines the Hamiltonian H and position and momentum operators Q and P as

H = I0 − l + 1/2, Q = I2, P = I1,

hen Q, P, and H obey the commutation relations

�H,Q� = − iP, �H,P� = iQ, �Q,P� = i�H + l − 1/2� . �38�

hese operators satisfy the postulates 1–3 of Sec. I. The time evolution of this system is the
armonic motion with

ei�H�Q

P
�e−i�H = �Q���

P���
� = � cos � sin �

− sin � cos �
��Q

P
� .

his is a group U�1� of inner automorphisms of the Lie algebra su�1,1� and of rotations of the
hase-space surface. Explicit form of the time evolution in the coordinate space will be given in
he following.

The basis ẽn
l , n=0,1 ,2 , . . ., in the Hilbert space H̃l consists of eigenfunctions of the Hamil-

onian H:

Hẽn
l = �n + 1/2�ẽn

l , n = 0,1,2, . . . ,

hat is, the spectrum of H coincides with the spectrum of the Hamiltonian for the standard
armonic oscillator in quantum mechanics.

Let us show that in the limit as l→� the oscillators �38� reduce to the standard linear
armonic oscillator in quantum mechanics. We denote the model �38�, which corresponds to l, by
scl. Then we state that

lim
l→�

�2l�−1/2oscl = osc,

here osc denotes the standard quantum harmonic oscillator, that is,

lim
l→�

�2l�−1/2Ql = Q, lim
l→�

�2l�−1/2Pl = P ,

	Ql and P	 Pl are the position and momentum operators for oscl, whereas Q, P are the
osition and momentum operators for osc. The validity of these limit relations follows from the
act that the relations �38� in this limit turn into

�H,Q� = − iP, �H,P� = iQ, �Q, P� = i.

hese are the standard formulas for Q= �1/�2��a++a� and P= �i /�2��a+−a�. Thus, the oscillators
38� can be considered as deformations of the standard quantum harmonic oscillator. Contrary to
he q-oscillators of Macfarlane and Biedenharn, for these deformations the relations �1� remain
alid.

II. COORDINATE AND MOMENTUM SPACES FOR q=1

Using the explicit differential form of the operators P= I1, one finds that the eigenfunctions of
he momentum operators P are of the form

�p�y� = �1 + iy�−l−ip�1 − iy�−l+ip. �39�

xpanding the expressions �1+iy�−l−ip and �1−iy�−l+ip into power series in y and multiplying then
hese two series, one can obtain an expansion for the eigenfunctions �p�y� in terms of the basis

˜l ˜
unctions en�y� of the Hilbert space Hl,
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�p�y� = �
n=0

� � n!

��2l + n��
1/2

Pn
�l��p;�/2�ẽn

l �y� = �
n=0

�

Pn
�l��p;�/2�yn �40�

ith the coefficients Pn
�l��p ,� /2�, which are the Meixner–Pollaczek polynomials

Pn
����z;�� =

�2��n

n!
ein�

2F1�− n,� + iz;2�;1 − e−2i��

see Ref. 13, formula �1.7.3�� with �=� /2 and �= l.
To find the spectrum of the momentum operator P, we recall that the Meixner–Pollaczek

olynomials Pn
�l��p ;� /2� are orthogonal and this orthogonality relation is of the form

1

2�
�

−�

�

���l + ip��2Pm
�l��p;�/2�Pn

�l��p;�/2�dp =
��n + 2l�

22ln!
�mn

see formula �1.7.2� in Ref. 13�. Repeating the same reasoning as in Sec. IV, one concludes that
he spectrum of P coincides with the whole real line:

Spec P = R .

he spectrum is continuous and simple. The continuity of the spectrum means that the eigenfunc-
ions �p�y� are not elements of the Hilbert space Hl. They form a continuous basis in Hl �similar
o the basis �eipx� in the Hilbert space L2�R��.

Eigenfunctions of P are determined up to constants. One may normalize the eigenfunctions

p�y� with the aid of the orthogonality relation for Meixner–Pollaczek polynomials. Since these
olynomials correspond to determinate moment problem, the set Pn

�l��p ,� /2�, n=0,1 ,2 , . . ., is
omplete in the Hilbert space L2�R ,��p�� with respect to the orthogonality measure ��p�ª ���l
ip��2 for these polynomials. This means that

�
n=0

�
22ln!

2���n + 2l�
���l + ip��2Pn

�l��p,�/2�Pn
�l��p�,�/2� = ��p − p�� .

hen, by �40�,

�p�y�,�p��y�� = �
n=0

�
n!

��2l + n�
Pn

�l��p,�/2�Pn
�l��p�,�/2� =

2���p − p��
22l���l + ip��2

.

herefore, the normalized functions are

�̃p�y� = �2��−1/22l���l + ip���p�y�, p � R ,

hat is, �̃p�y� , �̃p��y��=��p− p��.
Similarly, the eigenfunctions of the position operator Q are of the form

	x�y� = �1 + y�−l−ix�1 − y�−l+ix. �41�

e have

	x�y� = �
n=0

�

i−n� n!

��2l + n��
1/2

Pn
�l��x;�/2�ẽn

l �y� = �
n=0

�

i−nPn
�l��x;�/2�yn. �42�
onsequently, the normalized functions are
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	̃x�y� =
2l���l + ix��

�2�
	x�y� ,

hat is, they satisfy the normalization condition 	̃x�y� , 	̃x��y��Hl
=��x−x��.

The spectrum of the position operator coincides with the whole real line:

Spec Q = R .

his spectrum is simple.
Let us consider now the coordinate realization of the oscillator. Let L2�R ;��x�� be the space

f square-integrable functions f�x� �where x is the coordinate of the oscillator and ��x�ª ���l
ix��2� with the scalar product

f�x�,g�x�� =
22l

2�
�

−�

�

f�x�g�x����l + ix��2dx .

rom the orthogonality relation for the Meixner–Pollaczek polynomials it follows that the poly-
omials

h̃n�x� = i−n� n!

��2l + n��
1/2

Pn
�l��x;�/2� ,

hich are coefficients in the expansion �42� with respect to ẽn
l , constitute an orthonormal basis in

2�R ;��x��.
The next step is to construct a one-to-one linear isometry  from the Hilbert space Hl onto the

ilbert space L2�R ;��x�� given by the formula

:Hl � g�y� → f�x� = g�y�,	x�y��Hl
� L2�R;��x�� ,

here 	x�y� are the eigenfunctions �42� of Q. Then

Hl � ẽn
l �y� → ẽn

l �y�,	x�y��Hl
= h̃n�x� ,

hat is,  maps the orthonormal basis �ẽn
l �y�� in Hl onto the orthonormal basis �h̃n�x�� in

2�R ;��x��.
The operator Q acts on L2�R ;��x�� as the multiplication operator,

Qf�x� = xf�x� .

ndeed, if g�y�= f�x�= g�y� ,	x�y��Hl
, then one has

Qg�y� → Qf�x� = Qg�y�,	x�y��Hl
= g�y�,Q	x�y��Hl

= g�y�,x	x�y��Hl
= xf�x� .

learly, Hh̃n�x�= �n+1/2�h̃n�x�.
We note that in Ref. 19 it was shown that one can construct a relativistic model of the linear

armonic oscillator in the configuration x-representation, which is governed by a difference
amiltonian with the square-integrable eigenfunctions of the form

�n�x� ª
in2l

�2�
�l�l − 1��−ix/2h̃n�x���l + ix� .

Let L̃2�R ;��p�� be the Hilbert space of square-integrable functions f�p� �where p is the

omentum of the oscillator� with respect to the scalar product
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f�p�,g�p�� =
22l

2�
�

−�

�

f�p�g�p����l + ip��2dp .

he polynomials

hn�x� = � n!

��2l + n��
1/2

Pn
�l��x;�/2� ,

hich are coefficients of ẽn
l in expansion �40�, constitute an orthonormal basis in L̃2�R ;��x��.

One can construct a one-to-one isometry ̃ from the Hilbert space Hl onto the Hilbert space
2�R ;��p��, given by the formula

̃: Hl � g�y� → f̃�p� ª g�y�,�p�y��Hl
� L̃2�R;��p�� ,

here �p�y� are the eigenfunctions of the momentum operator P. Then

Hl � ẽn
l �y� → ẽn

l �y�,�p�y��Hl
= hn�p� ,

hat is, ̃ maps the orthonormal basis �ẽn
l �y�� in Hl onto the orthonormal basis �hn�p�� in

2�R ;��p��.
The operator P acts on L̃2�R ;��p�� as the multiplication operator, Pf�p�= pf�p�.
It is noteworthy that in the limit as the representation label l tends to infinity, one returns to the

tandard linear harmonic oscillator wave functions on account of the limit relation

lim
l→�

l−n/2Pn
�l���lx;�/2� =

Hn�x�
n!

etween the Meixner–Pollaczek and Hermite polynomials �see Ref. 13, formula �2.7.2��.

III. THE EVOLUTION OPERATOR FOR THE CASE q=1

We wish to find how the evolution operator exp�i�H� acts on the coordinate space, that is, on
he Hilbert space L2�R ;��x��. If the isometry  maps a function g�y��Hl to a function f�x�

L2�R ;��x��, then to the function exp�i�H�g�y��Hl there corresponds the function

exp�i�H�f�x� = exp�i�H�g�y�,	x�y��Hl
= g�y�,exp�− i�H�	x�y��Hl

= �
n=0

�

g�y�, ẽn
l �Hl

ẽn
l ,exp�− i�H�	x�y��Hl

= �
n=0

�

g�y�, ẽn
l �Hl

exp�i�H�ẽn
l ,	x�y��Hl

= �
n=0

� �
−�

�

g�y�,	̃x��y��Hl
	̃x��y�, ẽn

l �Hl
dx� exp�i��n + 1/2��ẽn

l ,	x�y��Hl

=
22l

2�
�

−�

�

f�x��K��x,x�����l + ix���2dx�,

�
here the kernel K �x ,x�� is defined as
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K��x,x�� = �
n=0

�

	x��y�, ẽn
l �Hl

ẽn
l ,	x�y��Hl

exp�i��n + 1/2�� .

aking into account the explicit expression for ẽn
l ,	x�y��Hl

, one finds that

K��x,x�� = �
n=0

�

exp�i��n + 1/2��h̃n�x�h̃n�x��

=
ei�/2

��2l��n=0

�

ein� �2l�n

n! 2F1�− n,l + ix;2l;2�2F1�− n,l − ix�;2l;2� ,

pon taking into account the fact that h̃n�x�= �1/��2l�����2l+n� /n!2F1�−n , l+ix ;2l ;2�. Due to
ormula �12� from Sec. 2.5.2 in Ref. 20, one finally concludes that

K��x,x�� =
ei�/2

��2l�
�1 + ei��−2l�1 − ei�

1 + ei��i�x+x��

2F1�l + ix,l − ix�;2l;
1

cos2 �/2
� . �43�

hus, the evolution operator exp�i�H� acts by the formula

exp�i�H�f�x� =
22l

2�
�

−�

�

K��x,x��f�x�����l + ix���2dx�,

here the kernel K��x ,x�� is given by �43�.

IV. AN ANALOGUE OF THE FOURIER TRANSFORM AT q=1

Let us briefly discuss here an analogue of the Fourier integral transform for our oscillators. If
�y� is a function on the Hilbert space Hl from Sec. XI, then

:g�y� → f�x� � L2�R,��x��, ̃:g�y� → f̃�p� � L̃2�R,��p�� .

e have to find how the functions f�x� and f̃�p� are connected with each other. One has

f̃�p� = g�y�,�p�y��Hl
= �

−�

�

g�y�,	̃x�y��Hl
	̃x�y�,�p�y��Hl

dx

=
22l

2�
�

−�

�

���l + ix��2f�x�	x�y�,�p�y��Hl
dx

=
22l

2�
�

−�

�

f�x�K�x,p����l + ix��2dx ,

here the kernel K�x , p� is given by

K�x,p� = 	x�y�,�p�y��Hl
= �

n=0

�
i−nn!

��2l + n�
Pn

�l��x,�/2�Pn
�l��p,�/2�

=
1

��2l��n=0

�

i−n �2l�n

n! 2F1�− n,l + ix;2l;2�2F1�− n,l − ip;2l;2� .

aking into account formula �12� of Sec. 2.5.2 in Ref. 20, one finally obtains that

K�x,p� =
1

2l�1 + i�i�x+p�

2F1�l + ix,l − ip;2l;2� . �44�

��2l��1 − i� 1 − i
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hus, an analogue F : f�x�→ f̃�p� of the Fourier transform for our oscillator is given by the
ormula

Ff�x� = f̃�p� =
22l

2�
�

−�

�

f�x�K�x,p����l + ix��2dx ,

here the kernel K�x , p� is defined by formula �44�. The integral transform F is linear and iso-
etric, that is, it preserves the scalar product. Therefore, the inverse transform F−1 is given by

F−1 f̃�p� = f�x� =
22l

2�
�

−�

�

f̃�p�K�x,p����l + ip��2dp ,

here K�x , p� means the complex conjugate of K�x , p�. The Plancherel formula

�
−�

�

�f�x��2���l + ix��2dx = �
−�

�

� f̃�p��2���l + ip��2dp

olds.
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In the first part of this paper we consider the transformation of the cubic identities
for general Korteweg–de Vries �KdV� tau functions from �Mishev, J. Math. Phys.
40, 2419–2428 �1999�� to the specific identities for trigonometric KdV tau func-
tions. Afterwards, we consider the Fay identity as a functional equation and provide
a wide set of solutions of this equation. The main result of this paper is Theorem
3.4, where we generalize the identities from Mishev. An open problem is the trans-
formation of the cubic identities from Mishev to the specific identities for elliptic
KdV tau functions. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2338146�

. INTRODUCTION

We consider the relation �functional Fay identity�

f�z0 − z1�f�z2 − z3�g�t + �z0� + �z1��g�t + �z2� + �z3�� + f�z0 − z2�f�z3 − z1�g�t + �z0� + �z2��g�t + �z3�

+ �z1�� + f�z0 − z3�f�z1 − z2�g�t + �z0� + �z3��g�t + �z1� + �z2�� = 0

s an equation for the functions f�z� and g�t�, t��t1 , t2 , t3 , . . . ��C�, z�C. We know that f�z�
z and g�t�=��t� �KP tau function� are solutions of this equation �i.e., we have the Fay identity for
adomtzev–Petviashvili �KP� tau functions.� Studying the relation as a functional equation will
ive us unification of the results from Ref. 3.

In our previous publication �Ref. 3� we have obtained some cubic �and more generally �2n

1� – order, n=2,3 , . . .� identities, specific for Korteweg–de Vries �KdV� tau functions only.
hese tau functions are related to the KdV hierarchy of completely integrable equations; the first
f them is the famous KdV equation ul=6uux−uxxx, u=u�x , t�. The KdV tau functions satisfy the
onditions �t2n

��t�=0, n=1,2 , . . . , and these conditions are equivalent to ��t− �z��=��t+ �−z�� �for
he notations see Sec. I�.

It is well known that examples of KdV tau functions are some polynomials, and some modi-
cations of trigonometric and hyperelliptic theta functions. In Ref. 3 it was pointed out that we
annot easily translate the Fay identity for KdV tau functions to the trigonometric and hyperel-
iptic cases. The problem in the hyperelliptic case is that in the original Fay identity for theta
unctions2 the prime form is used �e.g., in the g=1 case �11�z0−z1��11�

−1�0�� instead of the differ-
nce �z0−z1�. Shiota showed that after suitable change of the variables it is possible to obtain the
rigonometric form of the Fay identity starting from the Fay identity for KdV tau functions.7

In Sec. II we give some preliminary results and the transition from the cubic identity for KdV
au functions to its trigonometric form. In Sec. III we introduce the functional Fay identity and
rove the main result in this article—Theorem 3.4. In Sec. IV we relate the functional Fay identity
o the Fay identity for tau functions.

�
The major part of this paper was completed at RIMS, Kyoto University under JSPS Postdoctoral Fellowship for Foreign
Researchers. The paper was finished at SUNY Suffolk CC College.
�
Electronic mail: michevi@sunysuffolk.edu
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I. PRELIMINARY RESULTS

Let ��t�, t��t1 , t2 , t3 , . . . ��C�, t1�x is an arbitrary tau function, related to the KP hierarchy.1

et us denote �z�C�:

�z� ª �z,z2/2,z3/3, . . . � � C�,

��t + �z�� ª ��t1 + z,t2 + z2/2,t3 + z3/3, . . . � .

The following identity �z0 ,z1 ,z2 ,z3�C�:

�z0 − z1��z2 − z3���t + �z0� + �z1����t + �z2� + �z3�� + �z0 − z2��z3 − z1���t + �z0� + �z2��

���t + �z3� + �z1�� + �z0 − z3��z1 − z2���t + �z0� + �z3����t + �z1� + �z2�� = 0 �2.1�

s called Fay identity6 for the KP tau function ��t�. It was first obtained2 for theta functions related
o Jacobians. In genus g=1 case its form is

�11�z0 − z1��11�z2 − z3��11�x + z0 + z1��11�x + z2 + z3� + �11�z0 − z2��11�z3 − z1��11�x + z0 + z2�

��11�x + z3 + z1� + �11�z0 − z3��11�z1 − z2��11�x + z0 + z3��11�x + z1 + z2� = 0 �2.2�

we use the notations for thetas from Ref. 4�. It was used4 in geometric treatment of soliton
quations. Later it was generalized for tau functions.6

Let ��t� be a KdV tau function, i.e., ��t− �z��=��t+ �−z��. In Ref. 3 the following cubic identity
as obtained:

�z2 − z1����t + �z1� + �z2����t − �z1����t − �z2�� − ��t − �z1� − �z2����t + �z1����t + �z2���

= �z2 + z1����t + �z1� − �z2����t − �z1����t + �z2�� − ��t − �z1� + �z2����t + �z1����t − �z2���

�2.3�

nd its trigonometric and elliptic versions were considered:

sin�z2 − z1��sin�x + z1 + z2�sin�x − z1�sin�x − z2� − sin�x − z1 − z2�sin�x + z1�sin�x + z2��

= sin�z1 + z2��sin�x + z1 − z2�sin�x − z1�sin�x + z2� − sin�x − z1 + z2�sin�x + z1�sin�x − z2�� ,

�2.4�

�11�z2 − z1���11�x + z1 + z2��11�x − z1��11�x − z2� − �11�x − z1 − z2��11�x + z1��11�x + z2��

= �11�z1 + z2���11�x + z1 − z2��11�x − z1��11�x + z2� − �11�x − z1 + z2��11�x + z1��11�x − z2�� .

�2.5�

In this section we will explain how starting from �2.3� we can obtain �2.4�. The possibility for
his is based on the correct choice of trigonometric KdV tau function.

Lemma 2.1: (T. Shiota) The function:

��t� = sin��
k=0

�

�− 1�kt2k+1� �2.6�

s a trigonometric KdV tau function. The Fay identity �2.1� for it has the form:

sin�z0 − z1�sin�z2 − z3�sin�x + z0 + z1�sin�x + z2 + z3� + sin�z0 − z2�sin�z3 − z1�sin�x + z0 + z2�

�sin�x + z3 + z1� + sin�z0 − z3�sin�z1 − z2�sin�x + z0 + z3�sin�x + z1 + z2� = 0, �2.7�

here x��k=0
� �−1�kt2k+1.
Proof: If we find a trigonometric Baker–Akhiezer function in the form: w�t ,z�
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exp��k=0
� t2k+1z2k+1��z+c�t�� with restriction w�t , i�=w�t ,−i�, i=	−1, and compare the result with

he well-known expression:

w�t,z� = exp��
k=0

�

t2k+1z2k+1� ��t − �z−1��
��t�

e obtain �2.6�.
For given shifts: sj , j=0,1 ,2 ,3 let us introduce the new shifts: zj , j=0,1 ,2 ,3 by the relations:

j =tan�sj�. Then for the tau function �2.6� we have

��t + �zj�� = sin��
k=0

�

�− 1�kt2k+1 + �
k=0

�
�− 1�k

2k + 1
zj

2k+1� = sin��
k=0

�

�− 1�kt2k+1 + sj� ,

here we have used: �k=0
� ��−1�k /2k+1�zj

2k+1=arctan�zj�=sj. So, we have

��t + �z0� + �z1�� = sin��
k=0

�

�− 1�kt2k+1 + s0 + s1�, etc.

e have also

�z0 − z1� = �tan�s0� − tan�s1�� =
sin�s0 − s1�

cos�s0�cos�s1�
, etc.

o, from the Fay identity �2.1� we obtain the form �2.7� �x��k=0
� �−1�kt2k+1� for the tau function

iven by �2.6�. �

Theorem 2.2: From the cubic identity for KdV tau functions �2.3� follows its trigonometric
ersion �2.4�.

Proof: Let us substitute in the identity �2.1� the form �2.6� of trigonometric KdV tau function,
ith the new shifts: zj =tan�sj� , j=0,1 ,2 ,3. The same way as in the proof of Lemma 1.1 we obtain

2.4� �with x��k=0
� �−1�kt2k+1�. �

II. FUNCTIONAL FAY IDENTITY

Let us consider the Fay identity as our starting point. Let f�z� and g�t� be arbitrary functions
we use the notations from Sec. II: t��t1 , t2 , t3 , . . . ��C�, z�C�.

Definition 3.1: The following relation we will call the functional Fay identity:

f�z0 − z1�f�z2 − z3�g�t + �z0� + �z1��g�t + �z2� + �z3�� + f�z0 − z2�f�z3 − z1�g�t + �z0� + �z2��g�t + �z3�

+ �z1�� + f�z0 − z3�f�z1 − z2�g�t + �z0� + �z3��g�t + �z1� + �z2�� = 0 �3.1�

Lemma 3.2: Let functions f�z� and g�t� be once differentiable and f�z� is odd. Let them satisfy
he functional Fay identity. Then f�z� and g�t� satisfy the differential functional Fay identity:

W�g�t + �z1��,g�t + �z2��� = � f��0�f�z2 − z1�
f�z1�f�z2�

�g�t�g�t + �z1� + �z2�� + � f�z1�f��z2� − f��z1�f�z2�
f�z1�f�z2�

�
�g�t + �z1��g�t + �z2�� ,

here the Wronskian is: W�g1�t� ,g2�t��ªg1�t��t1
g2�t�−g2�t��t1

g1�t�, and� ��z.
Proof: The proof is the same as for obtaining the differential Fay identity for KP taus, starting

rom the Fay identity for them:1 differentiate �3.1� with respect to z0, put z0=z3=0, and divide by
f�z1�f�z2�. �

Shifting the argument t to �t− �z1�− �z2�� we could obtain an expression for the Wronskian:
�g�t− �z1�� ,g�t− �z2���. But, shifting t we cannot obtain an expression, e.g., for the Wronskian:

�g�t+ �z1�� ,g�t− �z2���. This is possible only if we pose an additional condition on g�t�, namely
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hat g�t� is of KdV type, i.e.,

�t2n
g�t� = 0,n = 1,2, . . . , or equivalently g�t − �z�� = g�t + �− z�� .

s a corollary of Lemma 3.2 we obtain:
Lemma 3.3: Let functions f�z� and g�t� satisfy the functional Fay identity �3.2�, as well as the

ollowing conditions:

�i� f�z� and g�t� are once differentiable;
�ii� f�−z�=−f�z�;
�iii� g�t� is of KdV type.

Then we have the following forms of the differential functional Fay identity:

W�g�t ± �z1��,g�t ± �z2��� = � f��0�f�z2 − z1�
f�z1�f�z2�

�g�t�g�t ± �z1� ± �z2�� ± � f�z1�f��z2� − f��z1�f�z2�
f�z1�f�z2�

�
�g�t ± �z1��g�t ± �z2�� ,

W�g�t ± �z1��,g�t � �z2��� = ± � f��0�f�z1 + z2�
f�z1�f�z2�

�g�t�g�t ± �z1� � �z2�� � � f�z1�f��z2� + f��z1�f�z2�
f�z1�f�z2�

�
�g�t ± �z1��g�t � �z2�� .

ow it is easy to obtain the analog of the cubic identity for KdV taus �2.3�.
Theorem 3.4: Let functions f�z� and g�t� satisfy the functional Fay identity and conditions �i�,

ii�, �iii� from Lemma 3.3. Then f�z� and g�t� satisfy the cubic functional identity:

f�z2 − z1��g�t + �z1� + �z2��g�t − �z1��g�t − �z2�� − g�t − �z1� − �z2��g�t + �z1��g�t + �z2���

= f�z2 + z1��g�t + �z1� − �z2��g�t − �z1��g�t + �z2�� − g�t − �z1� + �z2��g�t + �z1��g�t − �z2��� ,

�3.2�

s well as

f��0��g�t + 2�z��g2�t − �z�� − g�t − 2�z��g2�t + �z���

= f�2z��
k=0

�

z2k�g�t − �z��W2k+1�g�t�,g�t + �z��� + g�t + �z��W2k+1�g�t�,g�t − �z���� , �3.3�

here W2k+1�f ,g�ª f��t2k+1
g�− ��t2k+1

f�g ,k=0,1 ,2 , . . . .
Proof: The proof is the same as for obtaining the cubic identity for KdV tau functions:3 we

valuate the Wronskian:

W�g�t + �z1��g�t − �z1��,g�t + �z2��g�t − �z2��� ,

sing the results from Lemma 3.3 and the obvious identity for Wronskians:

W�f1f2,g1g2� = f1g1W�f2,g2� + f2g2W�f1,g1� = f1g2W�f2,g1� + f2g1W�f1,g2� .

he identity �3.3� follows from �3.2� after letting z2→z1 �cf. Ref. 3�. �

Corollary 3.5: If, the same way, we evaluate the Wronskian:

W�

k=1

2n

g�t + �z2k−1��g�t − �z2k−1��,

k=1

2n

g�t + �z2k��g�t − �z2k���
n
e will obtain �2 −1�-order in g identity �cf. Ref. 3�.
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Corollary 3.6: We know some solutions of the functional equation �3.1�, which satisfy the
onditions from Lemma 3.3:

�i� f�z�=z and g�t�=��t�, where ��t� is an arbitrary KdV tau function;
�ii� f�z�=sin�z� and g�t�=sin�t1�, t1�x;
�iii� f�z�=�11�z� and g�t�=�11�t1�, t1�x.

hey correspond, respectively, to the (known) identities �2.1�, �2.7�, and �2.2�. This way the rela-
ions �2.3�–�2.5� are particular cases of the cubic functional identity �3.2�.

In order to clarify the range of the cubic identity �3.2�, it is necessary to solve the functional
quation �3.1� in the class of functions f and g satisfying conditions �i�, �ii�, �iii� from Lemma 3.3.
s a first step in this direction, let us find a class of solutions of Eq. �3.1�, for which the
ifferential functional Fay identity has the form of the differential Fay identity for KP taus. Let us
ose an additional condition on the function f�z�:

Condition F: For every z1 ,z2�C, f�z� satisfies the relation:

f�z1 + z2� = f�z1�f��z2� + f��z1�f�z2� . �3.4�

Then, the differential functional Fay identity has the form:

W�g�t + �z1��,g�t + �z2��� =
f�z2 − z1�
f�z1�f�z2�

�f��0�g�t�g�t + �z1� + �z2�� − g�t + �z1��g�t + �z2���

moreover, we will see that f��0�=1�.
First, let us show that condition F gives us a solution of �3.1�.
Lemma 3.7: Let f�z� be a twice differentiable, odd function that satisfies the condition F. Then

he functions f�z� and g�t�= f�t1� satisfy the identity �3.1�.
Proof: From

f�z1 + z2� = f�z1�f��z2� + f��z1�f�z2� ,

f�z1 − z2� = f�z1�f��z2� − f��z1�f�z2�

t follows that for every z0 we have

f��z� =
f�z + z0� − f�z − z0�

2f�z0�
.

etting z0→0 we obtain f��0�=1. Moreover, expanding f��z1+z2� in two ways:

f��z1 + z0� + z2� − f��z1 − z0� + z2�
2f�z0�

,

f��z2 + z0� + z1� − f��z2 − z0� + z1�
2f�z0�

nd letting z0→0, we obtain: f ��z1�f�z2�= f�z1�f ��z2�, i.e., f ��z1� / f�z1�= f ��z2� / f�z2�=c=const.
o, we have

f��z1 + z2� = f��z1�f��z2� + cf�z1�f�z2� .

rom here and from �3.4� it follows that

f�z1 + z2 + z3� = f�z1�f��z2�f��z3� + f��z1�f�z2�f��z3� + f��z1�f��z2�f�z3� + cf�z1�f�z2�f�z3� .

rom here and from �3.4� it follows that the identity �3.1� for the functions f�z� and g�t�= f�t1� is

quivalent to a trivial identity, which can be checked directly. �
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Now we can generalize the construction from Lemma 2.1 to all functions f�z�, which satisfy
he condition F. We will explain such a change of variables that f�z� will be replaced by z. Let us
efine the function s=h�z� by its inverse function:

z = h−1�s� ª
f�s�
f��s�

. �3.5�

hen, as a corollary of �3.4� we have �sjªh�zj�, j=1,2�:

�z1 − z2� =
f�s1 − s2�

f��s1�f��s2�
. �3.6�

rom �3.5� it follows that the function h−1�s� is odd, and so h�z� is also odd function. Let us write
ts power series expansion: h�z�=�k=0

� �h�2k+1��0� / �2k+1� ! �z2k+1, where h�n� is the nth derivative of
. Following the idea of the proof of Lemma 2.1, let us pose additional restriction on the function
�t�:

Condition G: Function g�t� has the form:

g�t� ª f��
k=0

�
h�2k+1��0�

�2k�!
t2k+1� , �3.7�

here h�z� is given by �3.5�.
Then we have

g�t + �z�� = f��
k=0

�
h�2k+1��0�

�2k�! �t2k+1 +
z2k+1

2k + 1
�� = f��

k=0

�
h�2k+1��0�

�2k�!
t2k+1 + �

k=0

�
h�2k+1��0�
�2k + 1�!

z2k+1�
= f��

k=0

�
h�2k+1��0�

�2k�!
t2k+1 + h�z�� . �3.8�

In this way we are in a position to prove the following
Lemma 3.8: Let f�z� be an odd function and f�z�, g�t� satisfy the conditions F and G. Than

f�z� and g�t� satisfy the functional Fay identity �3.1�.
Proof: Let the shifts zj, j=0,1 ,2 ,3 be given and let us define new shifts by: sj =h�zj�, j

0,1 ,2 ,3, where h�z� is given by �3.5�. Then from �3.8� and the condition G it follows that:

g�t + �z0� + �z1�� = f�x + s0 + s1�, etc.

x=�k=0
� �h�2k+1��0� / �2k� ! �t2k+1�. From here and relation �3.6� it is clear that the statement of this

emma follows from Lemma 3.7. �

This construction does not give us some new solutions of �3.1�, because Eq. �3.4� and the
ondition that f�z� is odd function are too strong restrictions.

Lemma 3.9: The odd solutions of Eq. �3.4� are the functions: f�z�=z, sin�z�, sinh�z�, up to the
bvious symmetry: if f�z� is a solution of �3.4�, than for every 0�a�C the functions fa�z�

�1/a�f�az� are also solutions of �3.4�.
Proof: In the proof of Lemma 3.7 we came to the equality: f ��z1� / f�z1�= f ��z2� / f�z2�=c

const. It is equivalent to the differential equation: f �=cf . Now using the conditions that f�z� is
n odd function and f��0�=1 we obtain the statement of this Lemma. �

Corollary 3.10: The functions: f�z�=sinh�z� and g�t�=sinh�t1� give a solution of Eq. �3.1�. For
hem the cubic identity �3.2� is fulfilled.

Remark 2.11: The condition G is too restrictive. If we take the solution f�z�=z of �3.4�, we
now solutions of �3.1� for which the functions g�t� do not satisfy the condition G. These are all
P tau functions.
Remark 3.12: The condition F is also too restrictive. The Fay identity �2.2� for the elliptic
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heta function �11 shows that f�z�=�11�z� is a possible choice for the function f�z�, but for it the
ondition F is not fulfilled.

V. THE RANGE OF THE FUNCTIONAL FAY IDENTITY

Let us mention that from the result of Ref. 8 �Proposition B.3� follows that under some
onditions on f�z�, for general functions g�t� �i.e., non KdV type�, the functional Fay identity �3.1�
s equivalent to the Fay identity for KP tau functions. We have the following

Lemma 4.1: Let f�z� be an odd function, for which: f��0��0, and the following expansion
olds: ln�f�z� /z�=�n=0

� anzn. Then for every KP tau function ��t�, there exists set of numbers bij,
, j=1,2 , . . . �depending on f�z��, such that the pair:

f�z�, g�t� ª ��t�exp�−
1

2 �
i,j=1

�

bijtitj�
s a solution of the functional Fay identity �3.1�. Every solution of �3.1� �with the posed restrictions
n f�z�, and g�t� - of general type� can be obtained this way.

Proof: Let us take:

ln� f�z1 − z2�
z1 − z2

� = �
n=0

�

an�z1 − z2�n = �
i,j=0

�

cijz1
i z2

j, where cij = cji.

ut �i=0
� ci0z1

i =ln�f�z1� /z1� and �i=0
� c0jz2

j =ln�f�z2� /z2�. So, we can rewrite:

ln� f�z1 − z2�
z1 − z2

� = ln� f�z2�
z2

� + ln� f�z1�
z1

� + �
i,j=1

�

cijz1
i z2

j = ln� f�z2�
z2

� + ln� f�z1�
z1

�
+ �

i,j=1

�

bij

z1
i

i

z2
j

j
, where bij = bji.

We state that the numbers bij, i , j=1,2 , . . . are suitable for our aim. We have:

g�t + �z0� + �z1�� = ��t + �z0� + �z1��exp�−
1

2 �
i,j=1

�

bij�ti +
z0

i

i
+

z1
i

i
��tj +

z0
j

j
+

z1
j

j
��

= ��t + �z0� + �z1��exp�−
1

2 �
i,j=1

�

bij�titj + 2ti� z0
j + z1

j

j
� + � z0

i+j + z1
i+j

i j
� + 2� z0

i z1
j

i j
��� ,

nd from here:

g�t + �z0� + �z1��g�t + �z2� + �z3�� = ��t + �z0� + �z1����t + �z2� + �z3��

�exp�− �
i,j=1

�

bij� z0
i z1

j + z2
i z3

j

i j
����t,z0,z1,z2,z3� ,

here

��t,z0,z1,z2,z3� = exp�−
1

2 �
i,j=1

�

bij�2titj + 2ti� z0
j + z1

j + z2
j + z3

j

j
� + � z0

i+j + z1
i+j + z2

i+j + z3
i+j

i j
��� .
ut, we have also
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f�z0 − z1�f�z2 − z3� = �z0 − z1��z2 − z3�exp��
i,j=1

�

bij� z0
i z1

j + z2
i z3

j

i j
�� f�z0�

z0

f�z1�
z1

f�z2�
z2

f�z3�
z3

.

o, it is clear that we have

�z0 − z1��z2 − z3���t + �z0� + �z1����t + �z2� + �z3�� = f�z0 − z1�f�z2 − z3�g�t + �z0� + �z1��g�t + �z2�

+ �z3����t,z0,z1,z2,z3� ,

nd analogous expressions for the second and the third terms in �2.1�, where ��t ,z0 ,z1 ,z2 ,z3� is a
ommon factor for the three expressions. So, if ��t� is a KP tau function, then the Fay identity for
�t� is fulfilled, and hence �3.1� is fulfilled. The statement, that all solutions of �3.1� �with the
osed restrictions on f�z� and g�t� - of general type� can be obtained this way, follows from Ref.
. �

Remark 4.2: The construction from Lemma 4.1 is not applicable to the functions g�t� of KdV
ype, because in the expression exp�−1 � 2�i,j=1

� bijtitj
� there are even t-variables t2k. As an ex-

mple, for f�z�=sin�z� we have

ln� sin�z1 − z2�
z1 − z2

� = −
z1

2

6
−

z2
2

6
+

z1z2

3
−

z1
4

180
−

z2
4

180
+

z1
3z2

45
+

z1z2
3

45
−

z1
2z2

2

30
+ ¯

nd hence

exp�−
1

2 �
i,j=1

�

bijtitj� = exp�−
1

6
t1
2 −

1

15
t1t3 +

1

15
t2
2 + ¯ � .

The critical observation here is that it is possible to overcome the dependence from even
ariables of the form: eQ�t�, �Q�t� - quadratic in tn�, by linear change of the variables tn. This kind
f dependence is irrelevant for us, because roughly speaking we have a lot of freedom with tau
unctions. As an example, it is well known that the KP theory is not sensitive to the following
ransformation of tau functions: ��t�→��t�e�cntn, where cn are constants.

It is known that the expressions of the coefficients of the Lax operator L�t� in terms of tau
unctions1 are differential polynomials of �titj

2 log ��t�:5

L�t� = �x + ��t1t1
2 log ��t���x

−1 + � 1
2 �− �t1t1t1

3 + �t2t1
2 �log ��t���x

−2 + � 1
6 ��t1t1t1t1

4 − 3�t2t1t1
3 + 2�t3t1

2 �log ��t�

− ��t1t1
2 log ��t��2��x

−3 + ¯ .

ut we have

�titj

2 log���t�exp�−
1

2 �
i,j=1

�

bijtitj�� = ��titj

2 log ��t�� − bij ,

o the effect of the multiplier exp�−1 � 2�i,j=1
� bijtitj

� is simply additional constants in the coeffi-
ients of L-operator, not some of t-variables which appear in exp�. . .�.

Lemma 4.3: Let �0�t� be an arbitrary kdV tau function. Let for arbitrary bi,j �C, i , j
1,2 , . . . define the function:

��t� ª �0�t�exp�−
1

2 �
i,j=1

�

bijtitj�
nd L�t� is the Lax operator, related to ��t�. Then, there exists a change of variables tn→ tn�,
nother KdV tau function �1�t�� and Lax operator L1�t�� related to �1�t��, such that the KP flows
or ��t� and �1�t�� coincide, i.e., operators L�t� and L1�t�� are equivalent (cf. Ref. 6, p. 339).
Proof: Let L�t� be the Lax operator related to the function ��t�:
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L�t� = �
i,j=0

�
pi�− �̃���t�

��t�
�x

1−i−j pj��̃���t�
��t�

.

ecause of: �titj

2 log���t�exp�−1 � 2�i,j=1
� bijtitj��= ��titj

2 log ��t��−bij, we have �t2n
L�t�=0 and hence

�L2n�+ ,L�=0. In this case we have �ak ,k=1,2 , . . . are some constants�:

�L2�+ = L2 + �
k=1

�

akL
−k.

et us define the operator L� �bk ,k=1,2 , . . . are another constants�:

L� ª 	�L2�+ =	L2 + �
k=1

�

akL
−k = L�

m=0

� � 1

2

m
���

k=1

�

akL
−2−k�m� = L + �

k=2

�

bkL
−k.

hen �L��2 is a differential operator, i.e., �2n�L��2=0.
From L�=L+�k=2

� bkL
−k follows ��L��n�+=�k=1

n cn,k�Lk�+ �cn,k, n=1,2 , . . ., k=1,2 , . . . ,n are con-
tants�. We have �tn

L= ��Ln�+ ,L�, so let us define new tn�-derivatives by the following connection
ith the old tn-derivatives: �tn�

ª�k=1
n cn,k�tn

. Then the new variables tn� could be expressed linearly
y tn and this is the change of variables we were searching for. If we denote L1�t��=L��tn→ tn�� and

1�t��—a tau function related to L1�t��, we obtain the statement of this Lemma. �

Remark 4.4: The proof of Lemma 4.3 is not constructive and hence it is difficult to apply the
esult for translating, for example, the original Fay identity for genus g=1-case 2.2 �where f�z�
�11�z�� to the Fay identity for tau functions �2.1�.

Combining the results of Lemmas 4.1 and 4.3 we obtain the following
Theorem 4.5: Modulo the restrictions on the function f�z� from Lemma 4.1 the functional Fay

dentity �3.1� for functions g�t� of KdV type is equivalent to the Fay identity �2.1� for KdV tau
unctions.

Remark 4.6: An open problem remains to clarify the geometrical interpretation of the cubic
dentity �3.2� from the viewpoint of the theory of theta functions.
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We propose a new framework for constructing geometric and physical models on
nonholonomic manifold provided both with Clifford-Lie algebroid symmetry and
nonlinear connection structure. Explicit parametrizations of generic off-diagonal
metrics and linear and nonlinear connections define different types of Finsler,
Lagrange, and/or Riemann–Cartan spaces. A generalization to spinor fields and
Dirac operators on nonholonomic manifolds motivates the theory of Clifford alge-
broids defined as Clifford bundles, in general, enabled with nonintegrable distribu-
tions defining the nonlinear connection. In this work, we elaborate the algebroid
spinor differential geometry and formulate the �scalar, Proca, graviton, spinor, and
gauge� field equations on Lie algebroids. The paper communicates new develop-
ments in geometrical formulation of physical theories and this approach is
grounded on a number of previous examples when exact solutions with generic
off-diagonal metrics and generalized symmetries in modern gravity define nonholo-
nomic spacetime manifolds with uncompactified extra dimensions. © 2006 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2339016�

. INTRODUCTION

A class of spacetimes possessing noncommutative and/or Lie algebroid symmetries can be
efined as exact solutions in string and Einstein gravity.1,2 This leads to new developments in
ormulation of classical and quantum field theories following the geometry of nonholonomic
anifolds3 possessing Lie algebroid symmetry.4 Lie algebroid structures in gravity are modeled by

eneric off-diagonal metrics and nonholonomic frames �vielbeins� with associated nontrivial non-
inear connection �N-connection�. The spacetimes provided with compatible metric, linear connec-
ion, and N-connection structures and possessing Lie algebroid symmetry are called Einstein–
artan algebroids, or �in a more general context, for various extensions of the Riemann–Cartan
eometry� Lie N-algebroids. Usually, the Lie algebroids can be defined for a vector, or tangent,
undle but, in general, they can be considered for any nonholonomic manifold provided with a
onintegrable �nonholonomic� distribution. �In our works we use distributions defining
-connection structures with the coefficients induced by the metric’s off-diagonal terms and cor-

esponding vielbein’s coefficients. The geometric constructions are performed for nonholonomic
anifolds, i.e., spaces provided with nonintegrable distributions. In a particular case, when such

istributions are related to the exact sequences of subspaces defining an N–connection, the spaces
re called N anholonomic�. In brief, such spaces are called Lie N-algebroids. Similar constructions
laborated for the Einstein–Dirac spaces give rise to the geometry of Clifford algebroids. If the
urved spinor spaces are also enabled with Finsler, or Lagrange, structures, we deal with Clifford–
insler, or Clifford–Lagrange, algebroids.

We note that the methods of Finsler and Lagrange geometry5,6 were recently reconsidered in
new way in order to solve physical problems related to standard theories of gravity and field

�
Electronic mail: svacaru@brocku.ca

47, 093504-1022-2488/2006/47�9�/093504/20/$23.00 © 2006 American Institute of Physics
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nteractions.1,7,6,8,9 If the former physical applications of Finsler geometry were elaborated on
angent/vector bundles, with less straightforward connections to standard physical theories �see
eviews and references in Refs. 1, 7, and 6�, in our approach we tried to define Finsler-type
tructures as exact solutions in Einstein and extra dimension gravity8,9 when certain dimensions
re not compactified. Such constructions are related to the geometry of nonholonomic manifolds
ossessing generalized symmetries �Lie algebroid and/or Clifford symmetries, noncommutative
tructures induced by anholonomic frames, etc.� and a number of ideas and methods from Finsler
eometry seem to be of general interest and significant importance for physical applications. Here
e note that this paper is not just on Clifford–Finsler geometry and related Lie algebroid struc-

ures but rather on �pseudo� Riemann geometry and gravitational and field interactions �and ex-
ensions to nontrivial torsion induced, for instance, from string theory and/or by nonholonomic
rame effects� when the spinor and Lie algebroid structures are defined in nonholonomic form and
ertain methods from Finsler geometry became very important and efficient in order to solve
onlinear physical problems.10

This work develops the geometry of Clifford N-algebroids and generalized Finsler–spinor
paces elaborated in Refs. 11–13 and 7. If the first applications of algebroid methods were in
eometric mechanics,14–17 the recent works suggest a very promising route toward the theory of
auge fields, gravity and strings and noncommutative geometry.7,18,1 We cite Ref. 4 for details on
lgebroid theory and related bibliography.

In the present paper, we address essentially the following two purposes: The first one is to
efine and study the geometry of Clifford algebroids and their N-anholonomic deformations,
lifford N-algebroids, and analysis of their main properties in relation to spinors in gravity theo-

ies and on nonholonomic manifolds. The second aim is the formulation of the field equations on
ie algebroids.

The structure of the paper is the following: The theory of Clifford algebroids is formulated in
ec. II: we remember the main definitions of nonholonomic manifolds provided with
-connection structure, define Clifford N-algebroids, and study the related spinor differential
eometry. Section III is devoted to the field equations on N-anholonomic manifolds and their
edefinition on Clifford N-anholonomic algebroids. We start with a study of the Dirac operator and
pin connections on nonholonomic manifolds. Then the constructions are completed with spinor
ormulations of the basic equations for scalar, Proca, graviton, Dirac, and gauge fields interactions
nd related Lie/Clifford N-algebroid structures. In Sec. IV, we present conclusions and outlook.

I. CLIFFORD ALGEBROIDS AND N-CONNECTIONS

The geometry of spinor spaces enabled with nonlinear connection �N-connection� structure
as elaborated in a series of works11–13 �see also Refs. 19–21 for general references on Clifford

nd spinor differential geometry and applications to physics�. Here we note that the concept of
-connection was originally proposed in the framework of Finsler geometry and geometric me-
hanics but such nonholonomic structures �defined by exact sequences of subspaces of the tangent
pace to the spacetime manifold and related nonintegrable distributions� may be also considered
n �pseudo� Riemannian and Einstein–Cartan–Weyl spaces, see the discussion and historical re-
arks in Ref. 7. A class of nonholonomic spinor configurations can be defined by exact solutions

f the Einstein–Dirac equations parametrized by generic off-diagonal metric ansatz, nonholonomic
ielbeins associated to nontrivial N-connections, and arbitrary linear connections with nontrivial
orsion.

The aim of this section is to formulate the theory of Clifford algebroids provided with non-
inear connection �N-connection� structures, i.e., the theory of Clifford N-algebroids. For holo-
omic configurations, the Clifford algebroids can be defined as usual Lie algebroids4 but associ-

ted to a Clifford bundle instead of a vector or tangent bundle.
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. Nonholonomic manifolds and nonlinear connections

We outline some basic definitions and formulas from the geometry of manifolds provided with
-connection structure, see details in Refs. 6 and 7.

Let us consider a Riemann–Cartan manifold V of dimension n+m and necessary smooth class
nd provided with general metric �of arbitrary signature� and linear connection structures. The
ocal coordinates are denoted u= �x ,y�, or u�= �xi ,ya�, where the abstract, or coordinate, indices
ake, respectively, the values i , j ,k , . . . =1 ,2 , . . . ,n and a ,b ,c , . . . =n+1,n+2, . . . ,n+m. Such a
plitting of dimension and coordinates will be adapted below to the nonlinear connection structure.
e denote by M a subspace of V, dim M =n, provided with local coordinates xi. The metric on V

s parametrized in the form

g = g��e
�

� e� = gij�u�ei
� e j + hab�u�ea

� eb, �1�

here

e� = �ei = dxi,ea = dya + Ni
a�u�dxi� �2�

s the dual frame to

e� = �ei =
�

�xi − Ni
a�u�

�

�ya ,ea =
�

�ya� . �3�

uch vielbeins are called N-adapted frames. �In order to preserve a relation with the previous
enotations,7,11–13 we note that e�= �ei ,ea� and e�= �ei ,ea� are, respectively, the former ��
� /�u�= ��i ,�a� and ��=�u�= �di ,�a� which emphasize that operators �3� and �2� define, corre-

pondingly, certain “N-elongated” partial derivatives and differentials which are more convenient
or calculations on such nonholonomic manifolds�.

We denote by �{ :TV→TM the differential of a map � :TV→hV, where hV is locally iso-
orphic to M, defined by fiber preserving morphisms of the tangent bundles TV and TM. The

ernel of �{ is just the vertical subspace vV , dim�vV�=m, with a related inclusion mapping
:vV→TV and hV is a horizontal subspace. It should be emphasized that such maps and local
ecompositions exist when V→M is a surjective submersion. A particular case is that of a fiber
undle but we can obtain the results in the general case �see the discussions and references in Refs.
and 7 related to almost sympletic manifolds, �pseudo� Riemannian spaces, and vector bundles

nd generalizations�. A nonlinear connection �N-connection� N on a manifold V is defined by the
plitting on the left of an exact sequence

0 → vV → TV → TV/vV → 0,

.e., by a morphism of submanifolds N :TV→vV such that N � i is the unity in vV.
Equivalently, a N-connection is defined by a Whitney sum of horizontal �h� subspace, hV

M �we shall use the symbol “�” in order to emphasize some isomorphisms of spaces� and
ertical �v� subspace, vV,

TV = hV � vV . �4�

he spaces provided with N-connection structure are denoted by boldface symbols. For instance,
e write V for a manifold V provided with a distribution �4� �being, in general, nonintegrable, i.e.,
onholonomic—in the literature an equivalent term it is also used: anholonomic�. Such manifolds
re called N-anholonomic with the nonholonomy defined by a N-connection structure. In a similar
anner, we can define nonholonomic manifolds enabled with certain more general nonintegrable

nonholonomic� distributions of subspaces in TV, or in TTV, and so on, but in this paper we shall
estrict our considerations only to N-anholonomic manifolds with N-connection splitting on TV.

e shall use boldfaced indices for the geometric objects adapted to the N-connection.
a
Locally, a N-connection is defined by its coefficients Ni �u�,
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N = Ni
a�u�dxi

�
�

�ya .

he well-known class of linear connections consists on a particular subclass with the coefficients
eing linear on ya, i.e., Ni

a�u�=�bj
a �x�yb. Any N-connection is characterized by its N-connection

urvature

� =
1

2
�ij

a dxi Ù dxj
�

�

�ya ,

ith N-connection curvature coefficients

�ij
a = ��jN�i�

a = � jNi
a − �iNj

a =
�Ni

a

�xj −
�Nj

a

�xi + Ni
b�Nj

a

�yb − Nj
b�Ni

a

�yb ,

nd states the condition that the vielbeins �2� satisfy the nonholonomy �equivalently, anholonomy�
elations

�e�,e�� = e�e� − e�e� = W��
	 e	

ith �antisymmetric� nontrivial anholonomy coefficients Wia
b =�aNi

b and Wji
a =�ij

a .
All our further geometric constructions will be for spaces with nonholonomic splitting �4� and

erformed in “N-adapted” form with respect to local frames of type �2� and �3�.

. Clifford N-algebroids

Let us state the notations for abstract �coordinate� d-tensor indices of geometrical objects
efined with respect to an arbitrary �coordinate� local basis, i.e., system of reference. For a local
asis on V, we write e�= �ei ,va�. The small Greek indices � ,� ,	 , . . . are considered to be general
nes, running values 1 ,2 , . . . ,n+m and i , j ,k , . . . and a ,b ,c , . . ., respectively, label the geometrical
bjects on the base and typical “fiber” and run, correspondingly, the values 1 ,2 , . . . ,n and
,2 , . . . ,m. The dual base is denoted by e�= �ei ,va�. The local coordinates of a point u�V are
ritten u= �x ,y�, or u�= �xi ,ya�, where ya is the ath coordinate with respect to the basis �va� and

xi� are local coordinates on hV with respect to ei. We shall use “boldface” symbols in order to
mphasize that the objects are defined on spaces provided with N-connection structure.

We suppose that the N-anholonomic manifold V admits a d-spinor structure which allows us
o introduce spinor coordinates and parametrizations of geometrical objects. Let

e�́
�́ = �eí

1́,eí
2́, . . . ,e

í

k̃�n�,eá
1́,eá

2́, . . . ,eá
k̃�m�� ,

ith boldfaced indices running coordinate values on dimensions of d-spinor spaces, k̃�n� and k̃�m�,
eing the coefficients of a d-spinor basis

e�́ = �eí,eá� . �5�

he dual basis �co-basis�

e�́ = �eí,eá� �6�

as the coefficients

e�́
�́ = �e1́

í,e2́
í, . . . ,e

k̃�n�

í,e1́
á,e2́

á, . . . ,ek̃�m�
á� .

imilar formulas hold for the associated d-spinor spaces provided with local bases e�̀
�̀ and e�̀

�̀.
uch spinor bases are stated to be compatible to the N-connection splitting, i.e. to the vielbeins �3�

nd �2�. For a given d-metric structure on V and its spinor decomposition, with associated spinor
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ases e�̀= �eì ,eà�, which allows us to introduce the 	 objects, we can define, for instance, a
-adapted basis

e� = �	���́�̀e�́e�̀ = �ei = �	i�íìeíeì,ea = �	a�áàeáeà� .

s a result, we can alternatively consider spinor coordinates, for instance,

u� = �xi,ya� → u�́�̀ = �xíì,yáà� .

or even dimensions of n, or m, further reductions are possible, when xíì→xII�, or yáà→yAA�. This
ay, the d-tensor indices can be transformed into the d-spinor ones and inversely.

The standard definition of a Lie algebroid A� �E , �· , · � ,
� is associated to a vector bundle
= �E ,� ,M�, with a surjective map � :E→M of the total spaces E to the base manifold M, of

espective dimensions dim E=n+m and dim M =n. The algebroid structure is stated by the anchor
ap 
 :E→TM �TM is the tangent bundle to M� and a Lie bracket on the C��M�-module of

ections of E, denoted Sec�E�, such that

�X, fY� = f�X,Y� + 
�X��f�Y

or any X ,Y �Sec�E� and f �C��M�. The anchor also induces a homomorphism of
��M�-modules 
 :Sec�A�→X1�M� where Ùr�M� and Xr�M� will denote, respectively, the spaces
f differential r-forms and r-multivector fields on M.

In local form, the Lie algebroid structure on the manifold V is defined by its structure
unctions 
a

i �x� and Cab
f �x� defining the relations


�ea� = 
a
i �x�ei = 
a

i �x��i, �7�

�ea,eb� = Cab
c �x�ec �8�

nd subjected to the structure equations


a
j �
b

i

�xj − 
b
j �
a

i

�xj = 
c
jCab

c , �
cyclic�a,b,c�

	
a
j �Cbc

d

�xj + Caf
d Cbc

f 
 = 0; �9�

or simplicity, we shall omit underlying coordinate indices if it will not result in ambiguities. Such
quations are standard ones for the Lie algebroids but defined on N-anholonomic manifolds. In
rief, we call them Lie N-algebroids.

Definition 2.1: A Clifford algebroid C�E�� �Cl�E�, s�· , · �, s
� is associated to a Clifford bundle
l�E��Cl�T*E� defined by the vector bundle E= �E ,� ,M� and provided with “spin” anchor s
 and

Lie type� commutator structure s�· , · � defined on the Clifford module Sec�Cl�M��.
The Clifford algebroid structure on a manifold M is defined C�TM�� �Cl�TM�, s�· , · �, s
�.
In local form, the spinor structure functions are written


�eáà� = 
áà
i �x�ei = 
áà

i �x��i, �10�

�eáà,eb́b̀� = C
áàb́b̀

ćc̀ �x�ećc̀, �11�

here we can consider a spinor decomposition on M with redefinition of indices like i→ í , ì. Such
tructure functions can be induced by pure spinor ones,


̂�eá� = 
á
i �x�ei �12�
nd
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�eá,eb́� = C
áb́

ć �x�eć,

here, for instance, we can consider 
áà
i �x�=
á

i �x�
à
i �x� for any fixed value of i. The structure

quations �9� can be written in spinor form by introducing spinor variables �see examples of
alculus with spinors in the next section�.

We can write down the Lie algebroid and N-connection structures in a compatible form by
ntroducing the “N-adapted” anchor


̂a
j �x,u� � e j

j �x,u�ea
a�x,u�
a

j �x� �13�

nd “N-adapted” �boldfaced� structure functions

Cag
f �x,u� = e f

f �x,u�ea
a�x,u�eg

g�x,u�Cag
f �x� , �14�

espectively, into formulas �7�–�9�. In general, the RC-algebroids are defined by the corresponding
ets of functions 
̂a

j �x ,y� and Cag
f �x ,y� with additional dependencies on v-variables yb for the

-adapted structure functions. For such Lie N-algebroids, the structure relations became


̂�eb� = 
̂b
i �x,y�ei, �15�

�ed,eb� = Cdb
f �x,y�ef �16�

nd the structure equations of the Lie N-algebroid are written


̂a
j ej�
̂b

i � − 
̂b
j ej�
̂a

i � = 
̂e
jCab

e ,

�17�

�
cyclic�a,b,e�

�
̂a
j ej�Cbe

f � + Cag
f Cbe

g − Cb�e�
f� 
̂a

j Q f�bej
fb�e�� = 0,

or Q f�bej
fb�e�=e b

b�e e
e�e f�

fej�eb
bee

ee f
f� with the values e b

b� and e f�
f defined by the N-connection. The Lie

-algebroid structure will be characterized by the data 
̂b
i �x ,y� and Cdb

f �x ,y� stated with respect to
he N-adapted frames �3� and �2�.

A Riemann–Cartan algebroid �in brief, RC–algebroid� is a Lie algebroid A� �V , �· , · � ,
�
ssociated to a N-anholonomic manifold V provided with a N-connection N, symmetric metric
�u� and linear connection ��u� structures resulting in a metric compatible and N-adapted cova-
iant derivative D, when Dg=0, but, in general, with nonvanishing torsion. In spinor variables, the
C-algebroids transform into Clifford N-algebroids associated to corresponding N-anholonomic
anifolds instead of vector bundles. They are characterized by the same set of relations �13�–�17�

ewritten in d-spinor variables.

. N-algebroid spinor differential geometry

The goal of the section is to outline the main results from the differential geometry of
-spinors for the Clifford N-algebroids and related N-anholonomic manifolds. The d-tensor and
-connection formulas and basic equations are investigated in details in Ref. 2. Such Lie
-algebroid relations can be obtained by ”anchoring” the formulas for d-connections, d-torsions
nd d-curvatures stated. In result, one obtains certain differential geometric objects on the set of
ections like Sec�vV� or Sec�E�, when the “fiber” derivatives are changed into horizontal ones,
/�ya→
a

i � /�xa, or in N-adapted form, ea→ 
̂a
j ej. In spinor/ d-spinor variables, such formulas

ransform into certain analogous on Clifford N-algebroids provided with arbitrary but N-adapted
nd compatible d-metric and d-connection structure.
We use denotations
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e� = �ei,ea� � 	� = �	i,	a�, ��́ = ��í,�á� � 	�́ = �	í,	á�

or, respectively, elements of modules of d-vector and irreduced d-spinor fields �see details in Ref.
1�. D-tensors and d-spinor tensors �irreduced or reduced� will be interpreted as elements of
orresponding 	–modules, for instance,

q �. . .
� � 	 �

� ,
�́ . . .

�́ 	́
� 	

�́ . . .

�́ 	́
,� JK�N�

II� � 	 JK�N�
II� , . . . .

We can establish a correspondence between the d-metric g�� �1� and d-spinor metric ��́�́ for
oth h- and v-subspaces of V by using the relation

g�� =
1

k̃�n� + k̃�m�

��	���u���́�̀�	���u���́�̀��́�̀��́�̀, �18�

here ���� denotes symmetrization on such indices and

�	��u���́�̀ = l�
�̂�u��	�̂��́�̀. �19�

n brief, we can write �18� in the form

g�� = ��́�̀��́�̀ �20�

f the 	-objects are considered as a fixed structure, whereas �-objects are treated as caring for the
etric “dynamics”. This variant is used, for instance, in the so-called two-spinor geometry19,20 and

hould be preferred if we have to make explicit the algebraic symmetry properties of d-spinor
bjects. An alternative way is to consider as fixed the algebraic structure of �-objects and to use
ariable components of 	-objects of type �19� for developing a variational d-spinor approach to
ravitational and matter field interactions �the spinor Ashtekar variables26 are introduced in this
anner�. In this paper we shall follow in the bulk the first approach but we note that the second

ype of spinor calculus is more convenient for finding exact solutions with nonholonomic vari-
bles.

We note that a d-spinor metric

��́�̀ = 	�í j̀ 0

0 �áb̀



n the d-spinor space S= �S�h� ,S�v�� may have symmetric or antisymmetric h�v� -components �í j̀

�áb̀�. For simplicity, in this section �in order to avoid cumbersome calculations connected with
ight fold periodicity on dimensions n and m on a N-anholonomic manifold� we shall develop a
eneral d-spinor formalism only by using irreduced spinor spaces S�h� and S�h�� .

. D-covariant derivation

For a d-covariant operator

D� = �Di,Da� = �	���́�̀D�́�̀ = ��	i�íìDíì,�	a�áàDáà� ,

n brief, we shall write

D� = D�́�̀ = �Díì,Dáà� ,

eing constructed by using the coefficients of a d-connection, we define the action on a d-spinor
�́
 as a map
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D�́�̀: 	�́ → 	�
�́ = 	�́�̀

�́

atisfying conditions

D����́ + ��́� = D��
�́ + D��

�́, D��f��́� = fD��
�́ + ��́D�f ,

or every ��́ ,��́�	�́ and f being a scalar field on V. It is also required that one holds the Leibnitz
ule

�D���́���́ = D����́��́� − ��́D��
�́

nd that D� is a real operator, i.e., it commuters with the operation of complex conjugation:

D���	. . . = D����	. . .� .

Let us now analyze the question on uniqueness of action on d-spinors of an operator D�

atisfying some necessary conditions. Denoting by D�
�1� and D� two such d-covariant operators, we

onsider the map

�D�
�1� − D��: 	�́ → 	�́�̀

�́ . �21�

ecause the action on a scalar f of both operators D�
�1� and D� must be identical, i.e.

D�
�1�f = D�f , �22�

he action �21� on f =��́�
�́ must be written as

�D�
�1� − D�����́��́� = 0.

e conclude that there is an element ��́�̀�́
	́�	�́�̀�́

	́ for which

D�́�̀
�1��	́ = D�́�̀�

	́ +��́�̀�́
	́��́ �23�

nd

D�́�̀
�1���́ = D�́�̀��́ −��́�̀�́

	́�	́.

he action of the operator �21� on a d-vector v�=v�́�̀ can be written by using formula �23� for both

ndices �́ and �̀:

�D�
�1� − D��v�́�̀ =��	́

�́v	́�̀ +��	̀
�̀v�́	̀ = ���	́�́e	̀

�̀ +��	̀
�̀e	́
�́�v	́	̀ = Q�	

� v	,

here

Q�
�	 = Q�́�̀

�́�̀	́	̀ =��	́
�́e	̀
�̀ +��	̀

�̀e	́
�́. �24�

he commutator D���D��� defines the d-torsion. Applying operators D���
�1�D���

�1� and D���D��� on f

��́�
�́, we can write

T�1�	
�� − T	�� = Q	

�� − Q	
��

ith Q	
�� from �24�.

The action of operator D�
�1� on d-spinor tensors must be constructed by using formula �23� for
very upper indices and formula �24� for every lower indices.
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. N-adapted Infeld–van der Waerden coefficients

A d-spinor ��́�	�́ has the components ��́=��́e�́
�́= ��í ,�á� defined with respect to the

-adapted spinor basis �5�. Taking into account that

e�́
�́e�̀

�̀D�́�̀ = D�́�̀,

e compute the components D�́�̀�
	,

e�́
�́e�̀

�̀e	́
	́D�́�̀�

	́ = e�́
�́e�́

	́D�́�̀�
�́ + ��́e�́

	́D�́�̀e�́
�́ = D�́�̀�

	́ + ��́�
�́�̀�́

	́
, �25�

here the coordinate components of the d-spinor connection are defined

�	́
�́�̀�́

� e�́
	́D�́�̀e�́

�́. �26�

e call the Infeld–van der Waerden d-symbols a set of objects �
�́�̀�́

	́
parametrized with respect to

coordinate d-spinor basis. Defining D�= �	���́�̀D�́�̀, introducing denotations � ��́
	

�
�́�̀�́

	́ �	���́�̀and using properties �25�, we write the relations

l�
�e
�́

�́
D��

�́ = D��
�́ + ��́�

��́

�́ �27�

nd

l�
�e
�́

�́
D���́ = D���́ − ��́� ��́

�́ �28�

or d-covariant derivations D��
�́ and D���́.

We can consider expressions similar to �27� and �28� for values having both types of d-spinor
nd d-tensor indices, for instance,

l�
�l	
	e
�́

�́
D���́

	
= D���́

	
− ��́

	�
��́

�́
+ �

�́

�
� ��
	

we can prove this by a straightforward calculation of the derivation D���
�́

�
e
�́

�́
l�
	��.

Now we shall consider some possible relations between components of d-connections �
��́

�́

nd ���
	 and derivations of �	���́�̀. We can write

���
� = l�

�D�l�
� = l�

�D��	���́�̀ = l�
�D���	���́�̀e�́

�́e�̀
�̀� = l�

�e�́
�́e�̀

�̀D��	���́�̀ + l�
��	���́�̀�e�̀

�̀D�e�́
�́ + e�́

�́D�e�̀
�̀�

= l�́�̀
� D��	���́�̀ + l�́�̀

� e�́
�́e�̀

�̀�	���́�̀�e�̀
�̀D�e�́

�́ + e�́
�́D�e�̀

�̀� ,

here l�
�= �	�́�̀��, from which one follows

�	���́�̀�	���́�̀� 	�
� = �	���́�̀D	�	���́�̀ + e

�̀

�̀
� 	�́
�́ + e�́

�́�
	�̀

�̀
.

ontracting the last expression on �̀ and �̀ and using an orthonormalized d-spinor basis when

	�́

�́
=0 �a consequence from �26��, we have

� 	�́
�́ =

1

k̃�n� + k̃�m�

��
� �́�̀

�́�̀
− �	���́�̀D	�	���́�̀� , �29�
here

                                                                                                            



T
c
C
c
a
d
S

3

w

b
C
c

a

T
c

W
t

a

a

w

r

093504-10 Sergiu I. Vacaru J. Math. Phys. 47, 093504 �2006�

                        
�
� �́�̀

�́�̀
= �	���́�̀�	���́�̀� 	�

� . �30�

he d-spinor connection �30� can be defined by various type of d-connections, inclusively, by the
anonical one, see Ref. 1. Such formulas can be applied on Clifford algebroid
�E�� �Cl�E� , s� · , · � , s
� or on a Clifford N-algebroid C�vV�� �Cl�vV� , s� · , · � , s
�. We have to
hange the v-derivatives into anchored ones, � /�ya→
a

i � /�xa, or in N-adapted form, ea→ 
̂a
j ej,

nd put the results in formulas �29� and �30�. As a result, one defines a canonical covariant spinor
ifferential calculus, adapted to the N-connection structure, acting on the set of sections Sec�E� or
ec�vV�.

. D-spinors of curvature and torsion on N-anholonomic manifolds

The d-tensor indices of the commutator ��� can be transformed into d-spinor ones:

��́�̀ = �	����́�̀��� = ��íì,�áà� , �31�

ith h- and v-components,

�íì = �	���íì���, and �áà = �	���áà���,

eing symmetric or antisymmetric in dependence of corresponding values of dimensions n and m.
onsidering the actions of operator �31� on d-spinors �	́ and �	́ we introduce the d-spinor
urvature X

�́�́�̀

	́
satisfying

��́�̀�
	́ = X

�́�́�̀

	́
��́ �32�

nd

��́�̀�	́ = X
	́�́�̀

�́
��́.

he gravitational d-spinor ��́	́�́�̀ is defined by a corresponding symmetrization of d-spinor indi-
es:

��́	́�́�̀ = X��́	́�́��̀. �33�

e note that d-spinor tensors X
	́�́�̀

�́
and ��́	́�́�̀ are transformed into similar two-spinor objects if

he N-connection vanishes and the spinor constructions are defined in global form on V.19,20

Putting e	́
�́ instead of �	́ in �32� and using �33�, we can express, respectively, the curvature

nd gravitational d-spinors as

X	́�́�́�̀ = e	́�́��́�̀e�́
�́

nd

��́	́�́�̀ = e�́��́��́��̀�e
	́
��́

here we omit symmetrization on �̀.
The d-spinor torsion T	́	̀

�́�̀
is defined by using the d-spinor commutator �31� and

��́�̀f = T
�́�̀

	́	̀
�	́	̀f .

The d-spinor components R�́�̀
	́	̀�́�̀

of the curvature d-tensor R 	��
� can be computed by using
elations �30�, �31�, and �33� and
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���́�̀ − T	́	̀
�́�̀

�	́	̀�V�́�̀ = R�́�̀
	́	̀�́�̀

V	́	̀, �34�

ere d-vector V	́	̀ is considered as a product of d-spinors, i.e., V	́	̀=�	́�	̀. We find

R�́�̀
	́	̀�́�̀

= �X�́
	́�́�̀

+ T�́�̀
�́�̀
��́

�́�̀	́�e	̀
�̀ + �X

	̀�́�̀

�̀
+ T�́�̀

�́�̀
��̀

�́�̀	̀�e	́
�́.

t is convenient to use this d-spinor expression for the curvature d-tensor in order to get the
-spinor components of the Ricci d-tensor,

R	́	̀�́�̀ = R�́�̀
	́	̀�́�̀�́�̀

= X�́
	́�́�̀�́	̀

+ T�́�̀
�́�̀�́	̀

��́
�́�̀	́ + X�̀

	̀�́�̀	́�̀
+ T�́�̀

�́�̀	́�̀
��̀

�́�̀	̀
�́�̀	̀ �35�

nd this d-spinor decomposition of the scalar curvature R�=R�́�̀
�́�̀

,

R� = R�́�̀�́�̀
�́�̀�́�̀

= X�́�́
�́�̀�́

�̀ + T�́�̀
�́�̀�́

�̀��́�́�̀�́ + X
�́�̀�̀

�̀�̀�́
+ T

�́�̀�̀

�́�̀�́
��́�̀
�̀�̀.

inally, we write down the d-spinor components of the Einstein d-tensor G	�,

G	́	̀�́�̀ = X�́
	́�́�̀�́	̀

+ T�́�̀
�́�̀�́	̀

��́
�́�̀	́ + X�̀

	̀�́�̀	́�̀
+ T�́�̀

�́�̀	́�̀
��̀

�́�̀	̀

−
1

2
�	́�̀��́	̀�X

�́�́
�́�̀�́

�̀ + T�́�̀
�́�̀�́

�̀��́
�́�̀
�́ + X�̀�̀

�́�̀
�́
�̀

+ T�́�̀
�́�̀
�́
�̀
��̀

�́�̀
�̀� . �36�

It should be noted that further reductions of �35� and �36� depend on dimensions n and m of
he, respectively, h- and v-subspaces, and that the symmetry properties are defined by the
-objects. On Clifford N-algebroids, such formulas have to be considered for anchored
-derivatives �15� and �7� �for d-spinor considerations, we have to apply spinor anchors �10� and
12��, for instance, in the case of canonical d-connections and their spinor variants �29�.

II. FIELD EQUATIONS AND LIE ALGEBROIDS

Lie algebroid structures can be modeled as spacetime geometries with generalized symmetries
defined by anchors and Lie algebra commutators and nontrivial N-connection structure�.2 It is
ossible to extend the constructions on Clifford N-algebroids by introducing spinor variables. In
his section we shall analyze the basic field equations for gravitational and matter field interactions

odeled on N-anholonomic manifolds and Clifford N-algebroids.

. The Dirac operator on N-anholonomic spaces

The aim of this section is to elucidate the possibility of definition of Dirac operators for
eneral N-anholonomic manifolds. It should be noted that such geometric constructions depend on
he type of linear connections which are used for the complete definition of the Dirac operator.
hey are metric compatible and N-adapted if the canonical d-connection is used �we can similarly
se any of its deformations resulting in a metric compatible d-connection�.

. Noholonomic vielbeins and spin d-connections

For a local dual coordinate basis ei�dxi on a manifold M ,dim M =n, we may respectively,
ntroduce certain classes of orthonormalized vielbeins and the N-adapted vielbeins �depending
oth on the base coordinates x�xi and some “fiber” coordinates y�ya�

eî � ei
î�x,y�ei, ei � ei

i�x,y�ei, �37�
here
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gij�x,y�ei
î�x,y�ej

�̂�x,y� = �î�̂, gij�x,y�ei
i�x,y�ej

j�x,y� = gij�x,y� .

e define the algebra of Dirac’s gamma matrices �in brief, h-gamma matrices defined by self-
djoint matrices Mk�C� where k=2n/2 is the dimension of the irreducible representation of Cl�M�
or even dimensions, or of Cl�M�+ for odd dimensions� from the relation

	î	�̂ + 	�̂	î = 2�î�̂I . �38�

e can consider the action of dxi�Cl�M� on a spinor �S via representations

−c�dxî� � 	î, −c�dxi�� 	i� e
î

i
	î . �39�

For any type of spaces TxM ,TM or V possessing a local �in any point� or global fibered
tructure and enabled with a N-connection structure, we can introduce similar definitions of the
amma matrices following algebraic relations and metric structures on fiber subspaces,

eâ � ea
â�x,y�ea, ea � ea

a�x,y�ea, �40�

here

gab�x,y�ea
â�x,y�eb

b̂�x,y� = �âb̂, gab�x,y�ea
a�x,y�eb

b�x,y� = hab�x,y� .

imilarly, we define the algebra of Dirac’s matrices related to typical fibers �in brief, v-gamma
atrices described by self-adjoint matrices Mk��C� where k�=2m/2 is the dimension of the irreduc-

ble representation of Cl�F� for even dimensions, or of Cl�F�+ for odd dimensions, of the typical
ber F� from the relation

	â	b̂ + 	b̂	â = 2�âb̂I . �41�

he formulas �38� and �41� are respectively, the h- and v-components of relation �18� �with
edefined coefficients which is more convenient for further constructions�. The action of dya

Cl�F� on a spinor �� �S is considered via representations

�c�dyâ� � 	â, �c�dya��� 	a�� e â
a 	â� . �42�

e note that in additionally to formulas �39� and �42� we may write, respectively,

c�dxi�� 	i� ei
î	

î, c�dya��� 	a�� e
e

â
a â

a
	â�

ut such operators are not adapted to the N-connection structure.
A more general gamma matrix calculus with distinguished gamma matrices �in brief,

-gamma matrices� can be elaborated for any N-anholonomic manifold V provided with d-metric

tructure g= �g , �g� and for d-spinors ̆� � , ���S� �S , �S�. First, we should write in a unified
orm, related to a d-metric �1�, formulas �37� and �40�,

e �̂ � e a
�̂ �u�e�, e� � e �

� �u�e�, �43�

here

g���u�e �
�̂ �u�e �

�̂ �u� = ��̂�̂, g���u�e �
� �u�e �

� �u� = g���u� .
he second step is to consider gamma d-matrix relations �unifying �38� and �41��
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	�̂	�̂ + 	�̂	�̂ = 2��̂�̂I , �44�

ith the action of du��Cl�V� on a d-spinor ̆�S resulting in distinguished irreducible represen-
ations �unifying �39� and �42��

c�du�̂� � 	�̂, c = �du��̆� 	�̆� e �̂
� 	�̂̆ , �45�

hich allows one to write

	��u�	��u� + 	��u�	��u� = 2g���u�I . �46�

n the canonical representation, we can write in irreducible form 	̆�	�
�	 and ̆��

�, for
nstance, by using block type of h- and v-matrices, or, writing alternatively as couples of gamma
nd/or h- and v-spinor objects written in N-adapted form,

	� � �	i,	a�, ̆� �, �� . �47�

he decomposition �46� holds with respect to a N-adapted vielbein �3�. We also note that for a
pinor calculus, the indices of spinor objects should be treated as abstract spinorial ones possess-
ng certain reducible, or irreducible, properties depending on the space dimension. For simplicity,

e shall consider that spinors like ̆ , , � and all types of gamma objects can be enabled with
orresponding spinor indices running certain values which are different from the usual coordinate
pace indices.

The spin connection �S for the Riemannian manifolds is induced by the Levi-Civita connec-
ion ��,

�S � d −
1

4
�� jk

i 	i	
jdxk. �48�

n N-anholonomic spaces, it is possible to define spin connections which are N-adapted by
eplacing the Levi-Civita connection by any d-connection.

The canonical spin d-connection is defined by the canonical d-connection,

�̂S � � −
1

4
�̂ ��
� 	�	

��u�, �49�

here the absolute differential � acts in N-adapted form resulting in one-forms decomposed with
espect to N-elongated differentials �u�= �dxi ,�ya� �2�.

We note that the canonical spin d-connection �̂S is metric compatible and contains nontrivial
-torsion coefficients induced by the N-anholonomy relations. It is possible to introduce more
eneral spin d-connections DS by using the same formula �49� but for arbitrary metric compatible
-connection ���

� . For the spaces provided with generic off-diagonal metric structure �1� on a
-anholonomic manifold, there is a canonical spin d-connection �49� induced by the off-diagonal
etric coefficients with nontrivial Ni

a and associated nonholonomic frames in gravity theories.
In a particular case of N-anholonomic manifolds of even dimensions, we can define, for

nstance, the canonical spin d-connections for a local modeling of a tangent bundle space with the

anonical d-connection �̂��
	 = �L̂jk

i , B̂jk
i �. The N-connection structure Ni

j states a global h- and
-splitting of the spin d-connection operators, for instance,

�̂ � � −
1

4
L̂ jk

i 	i	
jdxk −

1

4
B̂ bc

a 	a	
b�yc. �50�

o, any spin d-connection is a d-operator with conventional splitting of action like ��S�

�−��S� , ���S��, or ���−� , ���. For instance, for �̂��−�̂ , ��̂�, the operators −�̂ and ��̂ act,

espectively, on a h-spinor  as
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−�̂� dxi�

�xi − dxk1

4
L̂jk

i 	i	
j �51�

nd

��̂� �ya �

�ya − �yc1

4
B̂bc

a 	a	
b

eing defined by the canonical d-connection, which �in its turn� is completely defined by Ni
j�x ,y�

nd gij�x ,y�.
The operators �51� can be adapted to the Lie algebroid structure by anchoring the partial

-derivatives. For instance,

�

�xi �x
k,yb�xj�� =

�

�xi − Ni
a �

�ya = 	 �

�xi − Ni
a
a

k�xj�
�

�xk
 = 	 �

�xi − 
Ni
k �

�xk
�xk,yb�xj��

here the anchor 
a
k �7� induces a N-connection 
Ni

k�Ni
a
a

k. We can also perform a N-adapted
lifford algebroid calculus by using the “boldface” algebroid 
̂a

j �15� with explicit dependence on
ariables yb,

�

�xi �x
k,yb� =

�

�xi − Ni
aea = 	 �

�xi − Ni
a
̂a

k �

�xk
 = 	 �

�xi − 
N̂i
k �

�xk

or 
N̂i

k=Ni
a
̂a

k. Such anchoring of partial/N-elongated derivatives has to be considered for the

anonical d-connection L̂jk
i and B̂bc

a .

. Dirac d-operators

We consider a vector bundle E on an N-anholonomic manifold M �with two compatible
-connections defined as h- and v-splittings of TE and TM��. A d-connection

D:Sec��E� → Sec��E� � �1�M�

reserves by parallelism splitting of the tangent total and base spaces and satisfy the Leibniz
ondition

D�f�� = f�D�� + �f � �

or any f �C��M�, and ��Sec��E� and � defining an N-adapted exterior calculus by using
-elongated operators �3� and �2� which emphasize d-forms instead of usual forms on M, with the
oefficients taking values in E.

The metricity and Leibniz conditions for D are written, respectively,

g�DX,Y� + g�X,DY� = ��g�X,Y�� , �52�

or any X ,Y���M�, and

D���� � D���� + �D��� , �53�

or any � ,��Sec��E�.
For local computations, we may define the corresponding coefficients of the geometric

-objects and write

D��̌ � �
�̌�

�̌
��̌ � �u� = �

�̌i

�̌
��̌ � dxi + �

�̌a

�̌
��̌ � �ya,

here fiber “inverse-caret” indices, in their turn, may split �̌� �ǐ , ǎ� if any N-connection structure
* *
s defined on TE. For some constructions of particular interest, we can take E=T V , =T V�g�
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nd/or any Clifford d-algebra E=Cl�V� ,Cl�V�g�� , . . . with a corresponding treating of “acute” in-
ices to d-tensor and/or d-spinor type as well when the d-operator D transforms into respective

-connection D and spin d-connections �̂S �49�, �̂�g� . . . . All such, adapted to the N-connections,
omputations are similar for both N-anholonomic �co� vector and spinor bundles.

The respective actions of the Clifford d-algebra and the Clifford-Lagrange algebra can be
ransformed into maps Sec��S� � Sec�Cl�V�� and Sec��S�g�� � Sec�Cl�V�g��� to Sec��S� and, re-
pectively, Sec��S�g�� by considering maps of type �39� and �45�

ĉ�̆ � a� � c�a�̆, ĉ� � a� � c�a� .

Definition 3.1: The Dirac d-operator �or Dirac N-anholonomic operator� on a spin
-anholonomic manifold �V ,S ,J� �or on a spin manifold �M�g� ,S�g� ,J�� is defined

D � − i�ĉ � �S�

=�−D = − i�−ĉ � −�S�, �D = − i��ĉ � ��S�� �54�

��g�D � − i�ĉ � ��g���

=��g�
−D = − i�−ĉ � −��g��, �g�

� D = − i��ĉ � ���g��� . �55�

uch N-adapted Dirac d-operators are called canonical and denoted D̂= �−D̂ , −�D̂� ��g��g�D̂

��g�
−D̂ , �g�

� D̂�� if they are defined for the canonical d-connection and respective spin d-connection
49�.

Now we can formulate the
Theorem 3.1: Let �V ,S ,J� ��M�g� ,S�g� ,J� be a spin N-anholonomic manifold. There is the

anonical Dirac d-operator �Dirac N-anholonomic operator� defined by the almost Hermitian
pin d-operator

�̂S:Sec��S� → Sec��S� � �1�V�

N-anholonomic spin operator

�̂�g�:Sec��S�g�� → Sec��S�g�� � �1�M�g��

ommuting with J and satisfying the conditions

��̂S̆��̆� + �̆��̂S�̆� = ��̆��̆� �56�

nd

�̂S�c�a�̆� = c�D̂a�̆ + c�a��̂S̆

or a�Cl�V� and ̆�Sec��S�,

���̂�g�̆��̆� + �̆��̂�g��̆� = ��̆��̆� �57�

nd

�̂�g��c�a�̆� = c�D̂a�̆ + c�a��̂�g�̆

or a�Cl�M�g�� and ̆�Sec��S�g�� determined by the metricity �52� and Leibnitz �53�
22,23
onditions.
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Proof: We sketch the main idea of such a proof being similar to that given in Ref. 24, Theorem
.8, for the Levi-Civita connection, see also Ref. 25. In our case, we have to extend the construc-
ions for d-metrics and canonical d-connections by applying N-elongated operators for differen-
ials and partial derivatives and distinguishing the formulas into h- and v-irreducible components.

The canonical Dirac d-operator has very similar properties for spin N-anholonomic manifolds
nd spin Lagrange, or Finsler spaces.11–13,7

. Field equations on N-anholonomic manifolds

The general idea is to formulate such equations with respect to a nonholonomic frame on
pseudo� Riemann–Cartan space. Then the constructions are N-adapted by considering
-elongated frames. For Lie/Clifford N-algebroid structures, we have to anchor the formulas.

. Scalar field on N-anholonomic manifolds

Let ��u�= ��1�u� ,�2�u� ; . . . ,�k�u�� be a complex k-component scalar field of mass � on a
-anholonomic manifold V. The d-covariant generalization of the conformally invariant �in the
assless case� scalar field equation19,20 can be defined by using the d’Alambert operator �

D�D�, where D� is a metric compatible d-connection,

	� +
n + m − 2

4�n + m − 1�
R� + �2
��u� = 0. �58�

e have to elongate the covariant d-operator, D̆�=D�+ ieA�, and take into account the d-vector
urrent

J�
�0��u� = i����u�D���u� − D���u����u��

f there are considered interactions with the electromagnetic field �d-vector potential A��, where e
s the electromagnetic constant, and a charged scalar field �. Equation �58� is just the Euler
quations for the Lagrangian

L�0��u� = �g��g��e���u�e���u� − 	�2 +
n + m − 2

4�n + m − 1�
��u���u�� , �59�

here �g � =det �g��� and e� is defined by �3�, and must be anchored for Lie algebroid structures.
The N-adapted variations of the action with Lagrangian �59� on variables ��u� and ��u� lead

o the energy-momentum d-tensor,

E��
�0,c��u� = e���u�e���u� + e���u�e���u� −

1
�g�

g��L�0��u� , �60�

nd a similar variation on the components of a d-metric �1� leads to a symmetric energy-
omentum d-tensor,

E��
�0��u� = E����

�0,c��u� −
n + m − 2

2�n + m − 1�
�R���� + D��D�� − g�� � ���u���u� . �61�

e also conclude that the N-connection results in a nonequivalence of energy–momentum
-tensors �60� and �61�, nonsymmetry of the Ricci tensor, non-vanishing of the d-covariant deri-

ation of the Einstein d-tensor, D�G�
���0 and, in consequence, a corresponding modification of

27
onservation laws on N-anholonomic manifolds.
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. Proca equations

Let us consider a d-vector field ���u� with mass �2 �Proca field� interacting with exterior
ravitational field. From the Lagrangian

L�1��u� = �g��− 1
2 f���u�f���u� + �2���u����u�� , �62�

here

f�� = D��� − D���,

ne follows the Proca equations on N-anholonomic manifolds

D�f���u� + �2���u� = 0. �63�

quation �63� transforms into a first type constraints for �=0. Acting with D� on �63�, for �
0 we obtain second type constraints

D��
��u� = 0. �64�

Putting �64� into �63� we obtain second-order field equations with respect to ��:

����u� + R���
��u� + �2���u� = 0. �65�

nchoring of derivatives has to be considered for the operators D� and �as a consequence� for �

nd R��. The energy-momentum d-tensor and d-vector current following from the �65� can be
ritten

E��
�1��u� = − g���f��f�� + f��f��� + �2����� + ����� −

g��
�g�

L�1��u� .

nd

J�
�1��u� = i�f���u����u� − ���u�f���u�� .

For �=0 the d-tensor f�� and the Lagrangian �62� are invariant with respect to gauge trans-
orms of type

���u� → ���u� + ����u� ,

here ��u� is a d-differentiable scalar function, and we obtain a variant of Maxwell theory on
-anholonomic manifolds.

. Gravitons N-anholonomic backgrounds

Let us consider a massless d-tensor field q���u� as a small perturbation of the d-metric g���u�.
onsidering, for simplicity, a torsionless background we have the Fierz–Pauli equations

�q���u� + 2R�����u�q���u� = 0 �66�

nd d-gauge conditions

D�q�
��u� = 0, q�u� � q�

��u� = 0, �67�

here R�����u� is curvature d-tensor �these formulas can be obtained by using a perturbation
ormalism with respect to q���u�; in our case we must take into account the distinguishing of
eometrical objects.

We note that we can rewrite d-tensor formulas �58�–�67� into similar d-spinor ones by con-

idering spinor variables.
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. N-anholonomic Dirac equation

Let us denote the Dirac d-spinor field by �u�= ��́�u�� and consider as the generalized
orentz transforms the group of automorphysm of the metric g�̂�̂ �for a N-adapted frame decom-
osition of d-metric�. The d-covariant derivation of field �u� is written as

��� = �e� + 1
4C�̂�̂	̂�u�l�

�̂�u�	�̂		̂� , �68�

here coefficients C�̂�̂	̂= �D	l�̂
��l�̂�l	̂

	 generalize for N-anholonomic spaces the corresponding
icci coefficients on Riemannian spaces. Using 	-objects 	��u� �see �19��, we define the Dirac
quations on N-anholonomic manifolds:

�i	��u���� − �� = 0, �69�

hich are the Euler equations for the Lagrangian

L�1/2��u� = �g���+�u�	��u�����u� − ����
+�u��	��u��u�� − �+�u��u�� , �70�

here +�u� is the complex conjugation and transposition of the column �u�. We have to con-

ider anchoring of the operator ��� on the N-anholonomic manifolds.
From �70�, we obtain the d-metric energy-momentum d-tensor

E��
�1/2��u� =

i

4
�+�u�	��u�����u� + +�u�	��u�����u� − ����

+�u��	��u��u�

− ����
+�u��	��u��u��

nd the d-vector source

J�
�1/2��u� = +�u�	��u��u� .

e emphasize that interactions with exterior gauge fields can be introduced by changing the
ocally anisotropic partial derivation from �68� in this manner:

e� → e� + ie�B�, �71�

here e� and B� are, respectively, the constant and the d-vector potential of gauge fields.

. Yang–Mills equations in d-spinor form

We consider a vector bundle BE ,�B :B→V on V. Additionally to the d-tensor and d-spinor
ndices, we use capital Greek letters, � , ,! ,� , . . . for fiber �of this bundle� indices �see details
n Refs. 19 and 20�. Let �� be, for simplicity, a torsionless, linear connection in BE satisfying
onditions:

��: � →  �
��or!� →!�

�� ,

���"� + ��� = ��"
� + ���

�,

���f"�� = "���f + f��"
�, f �  ��or!�� ,

here by  ��!�� we denote the module of sections of the real �complex� v-bundle BE provided
ith the abstract index �. The curvature of connection �� is defined as

K���
�"� = ����� − �����"�.
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For Yang–Mills fields, as a rule, one considers that BE is enabled with a unitary �complex�
tructure �complex conjugation changes mutually the upper and lower Greek indices�. It is useful
o introduce instead of K���

� a Hermitian matrix F���
�= i K���

� connected with components of
he Yang–Mills d-vector potential B�!

� according the formula:

1

2
F��!

� = � ��B�!
� − iB�����

� B�!
�, �72�

here the spacetime indices commute with capital Greek indices. The gauge transforms are
ritten in the form:

B��
� � B��̂

�̂ = B��
� s�

�̂q
�̂

�
+ is�

�̂��q�̂
�,

F��!
� � F��!̂

�̂ = F��!
�s�
�̂q!̂

!,

here matrices s�
�̂ and q

!̂

!
are mutually inverse �Hermitian conjugated in the unitary case�. The

ang–Mills d-equations are written

��F���
� = J��

�, �73�

� ��F�	�
! = 0. �74�

e must introduce deformations of connection of type, ��
� − →��+ P�, �the deformation d-tensor

P� is induced by the torsion in the vector bundle BE� into the definition of the curvature of gauge
elds �72� and motion equations �73� and �74� if the interactions are considered for nontrivial

orsions.

V. CONCLUSIONS AND OUTLOOK

In this work we formulated a spinor approach to the geometry of nonholonomic spacetimes
nd classical field interactions with constraints possessing Lie algebroid symmetry. Such geomet-
ic constructions are performed for a special case of nonholonomic distributions defining nonlinear
onnection �N-connection� structures resulting in preferred classes of vielbein �frame� systems of
eference. The main goals we have achieved are the following:

�1� We gave an intrinsic formulation of the geometry of Clifford N-anholonomic structures.
In addition, we investigated the N-anholonomic spin structures �i.e., spinor nonholonomic
spaces with associated N-connection�.

�2� We defined and analyzed the main properties of the Dirac operator on N-anholonomic
manifolds. We showed how the formulas may be “anchored” in order to be considered on
spacetimes with Lie/ Clifford algebroid symmetries.

�3� We formulated a geometric approach to field equations on N-anholonomic manifolds.
There were considered the examples of scalar, Proca, graviton, spinor and gauge filed
interactions when the formulas have a straightforward redefinition on Lie/Clifford
N-algebroids �i.e., spacetimes with algebroid symmetries and nonholonomic
distributions�.

Among the subjects we will study in forthcoming papers, we note the following points:

• To construct exact solutions of the gravitational field equations in string gravity with
nontrivial limits to general relativity, parametrized by generic off-diagonal metrics and
nonholonomic frames and possessing Lie algebroid symmetries �the first examples of

“gravitational” algebroids were analyzed in Ref. 2�.
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• Certain extension of the metrics to configurations defining solutions of the Einstein–Dirac
equations will be considered. We shall analyze the symmetries of such spacetimes and
possible physical applications in modern gravity.

• In explicit form, we shall construct nonholonomically deformed metrics, with algebroid
symmetries, describing locally anisotropic cosmological models, black holes, anholo-
nomic wormholes, solitons, and gravitational monopoles and instantons.

• To make a detailed investigation of classical field theories and their quantum deformations
possessing nontrivial noncommutative symmetries and possible Lie/ Clifford algebroid
structure.

Finally, we note that the method of anholonomic frames with associated N-connection struc-
ure elaborated in Finsler geometry and further, in our works, applied to constructing exact solu-
ions in gravity was applied in this paper for a study of Dirac operators on nonholonomic mani-
olds possessing Lie algebroid symmetry. The constructions can be extended for spacetimes with
ncompactified extra dimensions and such investigations are regarded as interesting research in
odern physics and noncommutative geometry.
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We show that the three-body Calogero model with inverse square potentials can be
interpreted as a maximally superintegrable and multiseparable system in Euclidean
three-space. As such it is a special case of a family of systems involving one
arbitrary function of one variable. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2345472�

. INTRODUCTION

The purpose of this article is to investigate the relation between the rational three-body
alogero model in one dimension3 and superintegrable systems in two and three dimensions.5,7,16

The original �quantum� Calogero model was written in the form

�− � �2

�x1
2 +

�2

�x2
2 +

�2

�x3
2� +

1

8
�2��x1 − x2�2 + �x2 − x3�2 + �x3 − x1�2� +

g1

�x2 − x3�2 +
g2

�x1 − x3�2

+
g3

�x1 − x2�2�� = E� . �1�

Upon introducing the center-of-mass coordinate R and the Jacobi relative coordinates � and
,13

R =
1

3
�x1 + x2 + x3�, � =

1
	2

�x1 − x2�, � =
1
	6

�x1 − x2 − 2x3� �2�

q. �1� was rewritten3 as follows:

�− � �2

��2 +
�2

��2� +
3

8
�2��2 + �2� +

1

2

g1

�	3� − ��2
+

1

2

g2

�	3� + ��2
+

1

2

g3

�2�� = E� , �3�

here the motion of the center-of-mass has been factored out.
A superintegrable system is one that admits more integrals of motion than it has degrees of

reedom. Systematic searches for superintegrable systems of the form

H�x,p� = 1
2p2 + V�x� �4�

ave been conducted in Euclidean spaces En for n=2 and 3.5,7,16 The classical or quantum Hamil-
onian �4� is said to be superintegrable if it admits n+k, 1�k�n−1 integrals of motion, n of
hem in involution. It is minimally superintegrable for k=1 and maximally superintegrable for

�Electronic mail: smirnov@mathstat.dal.ca
�
Electronic mail: wintern@CRM.UMontreal.CA
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=n−1. For n=2 the two cases coincide and superintegrability simply means the existence of
hree functionally independent integrals of motion �including the Hamiltonian�. For n=3 a super-
ntegrable system can have either four or five functionally independent integrals of motion.

The N-body Calogero model4 �and, in particular, the three-body one3� is known to be
uperintegrable.1,2,12,20,21,26 An extensive literature exists on superintegrability in classical and
uantum systems of the form �4� �see Refs. 14, 22, and 24, and references therein� devoted mainly,
hough not exclusively9,8 to systems with integrals of motion of at most second order in the
omenta. Superintegrable systems with complete sets of commuting quadratic integrals of motion

re multiseparable. This means that the corresponding Hamilton-Jacobi, or Schrödinger equation
llows the separation of variables in more than one system of �orthogonal� coordinates. Alterna-
ively, multiseparability can be described in terms of the geometric properties of the Killing
wo-tensors determined by the first integrals of motion that are quadratic in the momenta �see Ref.
2 as well as the relevant references therein�.

In what follows, we shall deal with the quantum mechanical problem, but all conclusions are
he same �mutatis mutandis� for the classical ones. For the systems admitting integrals of motion
f order three or higher, this is not necessarily the case.9,8,11

I. THE CALOGERO MODEL IN THE CLASSIFICATION OF SUPERINTEGRABLE
YSTEMS

In a recent article12 the invariant theory of Killing tensors �see also Refs. 17, 18, and 25, and
elevant references therein� was used to classify orthogonally separable Hamiltonian systems in
he Euclidean space E3. In particular, it was shown that the inverse square Calogero model with
he potential

V =
1

�x1 − x2�2 +
1

�x2 − x3�2 +
1

�x3 − x1�2 �5�

llows the �orthogonal� separation of variables in five different coordinate systems, namely spheri-
al, circular cylindrical, rotational parabolic, prolate spheroidal, and oblate spheroidal �see also
efs. 2 and 21�.

In this study12 the potential �5� was viewed as a potential in the Hamiltonian �4�, correspond-
ng to a single particle in a potential field in E3. The potential �5� was shown to allow five
unctionally independent first integrals �including the Hamiltonian�. From them it is possible to
onstruct five inequivalent pairs of integrals in involution �in addition to the Hamiltonian�. Each
uch pair is determined by two Killing tensors that share the same orthogonal eigenvectors, thus
enerating an orthogonal separable system of coordinates. For example, the spherical coordinate
ystem is generated by the following pencil of Killing tensors �including the metric� whose
omponents given in terms of the Cartesian coordinates �x1 ,x2 ,x3� are as follows:12


a1 + c2x3
2 + c3x2

2 − c3x1x2 − c2x1x3

− c3x1x2 a1 + c3x1
2 + c2x3

2 − c2x2x3

− c2x1x3 − c2x2x3 a1 + c2x1
2 + c2x2

2 � . �6�

he formula �6� can be rewritten as

a1g
ij + c2K1

ij + c3K2
ij, i, j = 1,2,3, �7�

here K1
ij and K2

ij are the components of two canonical Killing tensors K1, K2 that share the same
rthogonally integrable �i.e., surface forming� eigenvectors and gij are the components of the
etric g of E3 �see Ref. 12 for more details�.

That notwithstanding, the Calogero potential �5� does not appear �at least explicitly� in the list
f superintegrable systems in E3, established earlier5,16 under the assumption that the first integrals
hat afford maximal or minimal superintegrability were to be quadratic in the momenta. To unravel

his mystery we first observe that the Killing tensors that determine the corresponding integrals of
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otion obtained for the potential �5� in Ref. 12 are not in a canonical form �as in �6�, for
xample�, but are rotated with respect to this form. As an example, let us consider again spherical
oordinates �r ,� ,�� in E3 generated by the hypersurfaces of the orthogonally integrable eigenvec-
ors of the Killing tensor �6� given by the following coordinate transformations to the Cartesian
oordinates �x1 ,x2 ,x3�:

x1 = r sin � cos �, x2 = r sin � sin �, x3 = r cos � . �8�

potential that allows separation in these coordinates must have the form

V�r,�,�� = f�r� +
1

r2g��� +
1

r2 sin2 �
k��� �9�

nd the corresponding additional integrals of motion quadratic in the momenta will be in their
tandard form, namely

F1 = L1
2 + L2

2 + L3
2 + 2�g��� +

1

sin2 �
k��� ,

F2 = L3
2 + 2k��� , �10�

here Li , i=1,2 ,3 are the infinitesimal generators of SO�3�, that can be determined in terms of the
artesian coordinates xi, i=1,2 ,3 as follows: L1=x2p3−x3p2, L2=x3p1−x1p3, L3=x1p2−x2p1.
ote that the first integrals �10� in terms of the Cartesian coordinates can be rewritten as

F1 = K1
ijpipj + U1�x1,x2,x3� ,

�11�
F2 = K2

ijpipj + U2�x1,x2,x3� ,

here i , j=1,2 ,3, K1
ij, K2

ij are the components of the “spherical” Killing tensors �7� and �p1 ,p2 ,p3�
re the operators �� /�x1 ,� /�x2 ,� /�x3�, respectively �quantum mechanics case� or the momenta
omponents corresponding to the Cartesian coordinates �x1 ,x2 ,x3� �classical mechanics case�.

If we rotate the x1, x2, and x3 axes in �8�, the form of the potential �9� changes, so do the
ntegrals �10�, but separation of variables will still occur �in spherical coordinates with different
xes�.

In the case of the potential �5� the rotation taking the Killing tensors into their standard form
s a nontrivial one, given by12 �compare with �2��

�x1

x2

x3
� =

1
	6� 2 0 	2

− 1 	3 	2

− 1 − 	3 	2
��x̃1

x̃2

x̃3
� . �12�

ccordingly, for the Calogero potential �5� we obtain

V = 2� 1

�	3x̃1 − x̃2�2
+

1

�	3x̃1 + x̃2�2
+

1

x̃2
2 �13�

nd we see that the variable x̃3 is absent from �13�. Expressing x̃1 and x̃2 in terms of spherical
oordinates �8�, we get

V =
2

r2 sin2 �
� 1

�	3 cos � − sin ��2
+

1

�	3 cos � + sin ��2
+

1

sin2 �
 , �14�
.e., a potential in the form �9� with f�r�=0, g���=0 and k��� specified.
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In what follows we show that after the rotation �12� it is possible to see that the Calogero
otential �13� is a member of an infinite family of potentials, depending on one arbitrary function
nd sharing a number of important properties, such as superintegrability. Indeed, recall that all
uperintegrable potentials that separate in spherical coordinates plus at least one other system were
erived in Ref. 16. The potential

V =
k���

r2 sin2 �
�15�

ccurs several times. In what follows we list five functionally independent first integrals �including
he Hamiltonian H� that afford multiseparability for the potential �15�:

H =
1

2
�p1

2 + p2
2 + p3

2� +
k���

r2 sin2 �
,

F1 = L1
2 + L2

2 + L3
2 +

2k���
sin2 �

,

�16�
F2 = L3

2 + 2k��� ,

F3 = 1
2 p3

2,

F4 = L1p2 + p2L1 − p1L2 − L2p1 − 4
cos �

r sin2 �
k��� ,

here k��� is an arbitrary function. The functional independence of the first integrals �16� has
een verified with the aid of a computer algebra package �i.e., the Jacobian
�H ,F1 ,F2 ,F3 ,F4� /��x1 ,x2 ,x3 ,p1 ,p2 ,p3� is of rank 5 at a generic point�. It is important to note
hat the functionally independent first integrals �16� are linearly connected, which means that they
re subject to an additional constraint specified by the following expression in terms of the
oordinates x= �x1 ,x2 ,x3�:

f0�x�H + f1�x�F1 + f2�x�F2 + f3�x�F3 + f4�x�F4 = 0, �17�

here f0�x�=2x3
2, f1�x�=1, f2�x�=−1, f3�x�=−2�x1

2+x2
2+x3

2�, f4=x3. This formula is a conse-
uence of the following “rotational” symmetry, that can be defined in a coordinate-free way. We
an write all of the expressions in formula �16� as Fk=Kk

ijpipj+Uk, where i , j=1,2 ,3. Then the
illing tensor Kk with the components Kk

ij �including the metric� is subject to the following
ormula:

LL3
Kk = 0, �18�

here L denotes the Lie derivative. We also note that the vector space spanned by the quadratic
arts of the first integrals �16� are invariant with respect to translations along the x3 axis.

It is easy to show now that the potential �15� is orthogonally separable with respect to other
ystems of coordinates as well. Indeed, the pairs of involutive first integrals leading to the or-
hogonal separation of variables in the Schrödinger equation are �F1 ,F2� �spherical�, �F2 ,F3�
circular cylindrical�, �F2 ,F4� �rotational parabolic�, and �F2 ,F1�a22F3� �oblate, and prolate
pheroidal�. Another way to see this is by looking at the separable potentials derived in Ref. 16. In

erms of Cartesian coordinates the potential �15� is given by
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V =
k�x2/x1�
x1

2 + x2
2 . �19�

ecall16 that the separable potentials corresponding to “rotational” coordinates, namely spherical,
ircular cylindrical, rotational parabolic, oblate and prolate spheroidal in the Cartesian coordinates
x1 ,x2 ,x3� all have the form

V = f + g +
k�x2/x1�
x1

2 + x2
2 , �20�

here k are arbitrary functions, while f and g are specified differently in each case. The common
art of the five separable potentials is exactly the potential �19�.

These observations put in evidence that the potential �19� defines a family of maximally
uperintegrable potentials separable with respect to the five “rotational” orthogonal coordinate
ystems, namely spherical, circular cylindrical, rotational parabolic, oblate, and prolate spheroidal
hose Killing tensors are constrained by the rotational symmetry condition �18�. As for the
alogero potential �13�, in the coordinates �x̃1 , x̃2 , x̃3� determined by the transformation �14�, it
ssumes the form �19� for

k�t� = 2�1 + t2�� 3 + t2

�3 − t2�2 + 1 , �21�

here t= x̃2 / x̃1.
The potential �15� can be imbedded into more general families of potentials in E3 that are

inimally superintegrable. In contrast to maximally superintegrable potentials they admit three
dditional integrals rather than four. They are

V1 = 	�x1
2 + x2

2 + x3
2� +




x3
2 +

1

x1
2 + x2

2h��� ,

V2 =
	

r
+ 


cos �

r2 sin2 �
+

1

r2 sin2 �
h��� , �22�

V3 = k�x1
2 + x2

2� + 4kx3
2 +

1

x1
2 + x2

2h��� .

he potential V1 with �	 ,
�� �0,0� separates in all of the five “rotational” coordinate systems
onsidered above except rotational parabolic ones. V2 separates only in spherical and rotational
arabolic, while V3 in cylindrical and rotational parabolic. We mention that a special case of V2

ith 
=0 and h���=const is the Hartmann potential used in molecular physics to describe ring-
haped molecules.10,15

The rotation �12� in E3 has a simple meaning for three particles on a line with inverse square
otentials. Comparing �3� with �14�, we see that the rotation corresponds to introducing center-
f-mass coordinates �2�. If we factor out the center-of-mass motion �i.e., drop the term 1 � 2p3

2 in
he kinetic energy�, we reobtain the Hamiltonian �3� with �=0.

The system �3� can be viewed as one particle in a potential in the Euclidean plane E2.
nterestingly, it is not multiseparable. For both �=0 and ��0 it separates only in polar coordi-
ates, so it allows only one second-order integral of motion �in addition to the Hamiltonian�,

amely
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F = L3
2 − � g1

�	3 sin � − cos ��2
+

g2

�	3 sin � + cos ��2
+

g3

cos2 �
 . �23�

f the system �3� is superintegrable in E2, the second integral of motion must be of higher order in
he momenta, not commuting with F given by �23�. Multiseparability of a physical system, in
articular the Calogero model, may also be of interest from the point of view of different possible
uantizations. In a recent article Féher et al.6 have used separation of variables in circular cylin-
rical coordinates in the three-body Calogero model to investigate all possible self-adjoint exten-
ions of the corresponding angular and radial Hamiltonians. The question arises whether separa-
ion of variables in other coordinates might not lead to different quantizations.

II. CONCLUSIONS

The beauty of the Calogero model is lost when its potential is written in the form �13�. The
ormula �13� does however show that this system is a member of a family of maximally superin-
egrable systems determined by the general formula �15�, involving an arbitrary function of one
ariable, the azimuthal angle �. All of them allow the orthogonal separation of variables in the
ve different “rotational” coordinate systems. The complete set of commuting operators �first

ntegrals� in each case consists of the Hamiltonian H and F2 of �16� and one more operator
F1 ,F3 ,F4 and F1�a2p3

2, respectively�. The operator F2 that is thus singled out corresponds, in the
ase of the free motion, to a one-dimensional subgroup of the �orientation-preserving� isometry
roup I�E3�, which is the symmetry group of the Schrödinger equation without a potential. This
ubgroup generates the angle �, common to all five “rotational” orthogonally separable coordinate
ystems.

This raises the question whether other maximally superintegrable systems involving arbitrary
unctions exist. All superintegrable systems in E3 separating in spherical coordinates and in one
urther system were found in Ref. 16. All further systems separable in �at least� two coordinate
ystems were found in Ref. 5. In the lists provided by Evans5 five systems are maximally super-
ntegrable and each one depends on artibrary constants. In addition, eight systems are listed as

inimally superintegrable, each depending on one arbitrary function and up to three constants.
ne of the minimally superintegrable systems has the potential

V1 = F�r� +
c1

x1
2 +

c2

x2
2 +

c3

x3
2 , �24�

here c1, c2, and c3 are arbitrary constants. Here and in the following, r, �, and � are spherical
oordinates as specified by �8�. Its superintegrability is due to the fact that the corresponding
amiltonian commutes with the operators

F1 = L1
2 +

2c2 cos2 �

sin2 � sin2 �
+

2c3 sin2 � sin2 �

cos2 �
,

F2 = L2
2 +

2c1 cos2 �

sin2 � cos2 �
+

2c3 sin2 � cos2 �

cos2 �
, �25�

F3 = L3
2 +

2c1

cos2 �
+

2c2

sin2 �
.

his potential becomes maximally superintegrable for F=��x1
2+x2

2+x3
2�. For c1=c2=c3=0 it sim-

ly becomes rotationally invariant �but not maximally superintegrable�. Four of the minimally

uperintegrable potentials have the form
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Vi�x1,x2,x3� = Ṽi�x1,x2� + f�x3�, i = 2,3,4,5, �26�

here Ṽi�x ,y� is one of the four multiseparable potentials in E2.7 In each case the set of integrals
f motion consists of

F1 = 1
2 p3

2 + f�x3� �27�

nd three further operators, the principal parts of which lie in the enveloping algebra of the Lie

lgebra of the isometry group I�E2�. In particular, for Ṽi�x1 ,x2�=0 the Hamiltonian and F1 of �27�
ommutes with the Lie algebra �L3 ,p1 ,p2�, i.e., H and F1 are invariant under the orientation-
reserving isometry group I�E2�. This provides a total of four integrals of motion, never five. Out
f these four functionally independent integrals of motion we can form four inequivalent triplets of
ntegrals of motion in involution, namely �H ,F1 ,Xi�, i=1,2 ,3 ,4 with

X1 = p1
2, X2 = L3

2, X3 = L3p1 + p1L3, X4 = L3
2 + a2�p1

2 − p2
2� ,

here a�0.These triplets correspond to the separation of variables in the Cartesian, polar, para-
olic translational, and elliptic translational, coordinates, respectively. Within the x1x2 plane the
rigin and the orientation of axes can be chosen arbitrarily.

Finally, three of the minimally superintegrable systems depend on an arbitrary function of the
zimuthal angle �. They all have the form

Vi�r,�,�� = Ṽi�r,�� +
k���

r2 sin2 �
, i = 4,7,8. �28�

he integral F2 of �16� is present in each case, together with H and one of F1, F3, or F4. In

articular, for Ṽi�r ,��=0 all of the operators �16� are integrals of motion.
We conclude that in E3 the potential �15� is the only potential that is maximally superinte-

rable and depends on an arbitrary function �of one variable�. The three-body Calogero model
orresponds to one particular choice of this function, namely that given in �15� and �21�.

An important question arises in this context. Namely, what are the physical consequences in
lassical and quantum mechanics, of the existence of a maximally superintegrable system, depend-
ng on an arbitrary function? In classical mechanics maximally superintegrable sysetms have the
roperty that their finite trajectories are closed.19 In quantum mechanics they have degenerate
nergy levels and it has been conjectured23,22 that they are exactly solvable. We cannot expect
hese properties to hold for the potential �15� with k��� arbitrary. We suspect that the reason for
his paradox is that the five integrals �16� are functionally independent, but linearly connected.

One of the messages that we arrive at is that results considered to be “canonical” in one
pproach to a problem may be quite nonobvious in another. Thus, the Killing tensors obtained in
ef. 12 were not in canonical �standard� form for the Calogero model viewed as an E3 problem.
he advantage of the invariant approach used in Refs. 12, 17, 18, and 25 is the following. For a
iven isometry group action in a vector space of Killing tensors one can employ the approach
eveloped in Refs. 12, 17, 18, and 25 to determine which orbit a Killing tensor belongs to and then
nd the corresponding isometry group action mapping the Killing tensor in question to its canoni-
al form �i.e., the corresponding moving frames map�.
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We give a proof of the nonintegrability of an important three-body problem in
atomic physics. We consider the classical model for the helium atom in full dimen-
sion, thus completing our previous proof for the frozen planetary approximation. To
our knowledge there is not any such a proof in the literature. We apply a theorem
due to Morales-Ruiz and Ramis: if a Hamiltonian system, derived from a homoge-
neous potential is integrable, then all integrability factors, related to the Hessian of
the homogeneous potentials, satisfy certain conditions related to the degree of
homogeneity. In the helium atom case, these coefficients should all be discrete. We
exhibit a set of nondiscrete values determined analytically. This implies the nonin-
tegrability of the helium atom without any computer aid. We also extend this
theorem to various two-electron atoms. In the case of strange helium atoms we
provide a computer aided proof of nonintegrability. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2339013�

. INTRODUCTION

The three-body problem, either Coulombian or gravitational, is one the most important prob-
ems in Physics. The two-electron atoms, e.g., the helium atom, is a subclass of that problem. The
elium atom is a model to study the classical, semiclassical, and quantum mechanics of a generic
onintegrable system,1 although so far there has not appeared in the literature an analytical proof
f its nonintegrability, as opposed to studies with the gravitational three-body problem that goes
ack to Euler, Lagrange, and Poincaré. For example, the two fixed center problem, largely used in
any areas of Physics, was integrated by Euler, in two and three dimension. Numerical studies on

he classical helium atom can be found for example in Yamamoto and Kaneko2 and Carati.3

The quest for criteria of integrability in Hamiltonian systems has been a very active field. The
esults of Morales-Ruiz and Ramis4 is on the connection between two different concepts of
ntegrability: the integrability of a Hamiltonian system of equations and the integrability of the
ariational equations along a particular solution of these equations. The main theorems on
ntegrability4 from Poincaré, Kowalevski, Arnold and Krylov, Ziglin to Morales-Ruiz and Ramis,
an all be cast in this context. The version of Ziglin’s theorem, due to Yoshida5 for homogeneous
wo degrees of freedom, has been applied to many important problems, including Calogero-Moser

�
Electronic mail: tstuchi@if.ufrj.br
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ollinear three-body problem for some values of the degree, say k, of the potential. The study of
alogero-Moser integrability problem was completed in Ref. 4, using the more general theorem
ue to Morales-Ruiz and Ramis. This theorem is used in this work.

In Almeida et al.10 we have found that the “frozen planetary approximation” �FPA� is nonin-
egrable, since the algebraic equations to be solved are easily solvable due to the restriction to the
axis. The extension to the full helium problem is not trivial. The main difficulty in applying the

bove-noted theorem to the helium atom stems from the three dimension nature of the model. To
olve the correspondent full coupled algebraic set of equations is not feasible even using software
ike MAPLE and MATHEMATICA. However, we avoid this difficulty by considering a particular
ymmetric configuration; then we evaluate the integrability coefficients using the full 6�6 Hes-
ian matrix, thus extending our previous result on the FPA case.

We consider here classical heliumlike atoms only. Of course, the corresponding microscopic
ystems are governed by quantum mechanics or at least described by semiclassical techniques.
he classical integrability does not guarantee quantum integrability �see Refs. 6–9 and reference

herein�. However, we remark that if a problem is not classically integrable there are no action-
ngle variables that can become the corresponding quantum operators. We hope that our contri-
ution on the classical case may shed some light on the discussion of the quantum counterparts.

I. THEORY AND METHOD

The Hamiltonian for the three-dimensional �3D� heliumlike atom in infinite nuclear mass
pproximation is shown as follows:

H =
1

2
�p1

2 + p2
2� −

Z

�r1�
−

Z

�r2�
+

1

�r12�
, �1�

here ri is the position of the ith electron, r12 the distance between the electrons, and pi are the
orresponding momentum of the electrons. This six degree of freedom system is usually reduced
o four degrees by energy and momentum conservation. In this case, even if the three particles are
onstrained to move in the plane the number of degrees of freedom is three.

In Almeida et al.10 we have found that the “frozen planetary approximation” of this problem
two electrons on the same side of the atom with two degrees of freedom� and its modifications
heliumlike atoms� are not integrable. The motivation was the apparently integrable Poincaré
ection of this approximation in the case of the one-dimensional helium atom �Z=2�. In this paper,
e extend our previous result on nonintegrability to the full 3D problem �as well as for the 2D

ase� since we devised a way of overcoming the difficulty in solving the full set of equations. The
esult is also extended to the case of finite values of the alpha-particle mass. We also consider the
ase where the place of one of the electrons is taken by heavier particles with the same charge:
uon, pion, kaon, and antiproton.

To prove the nonintegrability we use a theorem by Morales and Ramis for homogeneous
otentials,4,10 which is a generalization of Yoshida’s5 theorem for more than two degrees of
reedom, and without its limitations at resonances. Briefly, consider a Hamiltonian system with
-degree of freedom with the Hamiltonian H�p ,q�=p2 /2+V�q�, where q= �q1 , . . . ,qn� and p
�p1 , . . . , pn�. If V�q� is a homogeneous potential of degree k, V�aq�=akV�q�, there exists in
eneral straight-line solutions of the corresponding Hamilton’s equations as follows:

qi = ci f�t�, pi = ci ḟ�t�, i = 1, . . . ,n . �2�

he f ’s are solution of the differential equation

ḟ 2 =
2

k
�1 − f k�, k � 0.
hen, it is possible to show that ci’s are solutions of the n equations given by
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cj =
�V

�qj
�c1, . . . ,cn�, j = 1, . . . ,n . �3�

rbits that are described by this condition are known as homographic solutions in the literature of
elestial Mechanics. The linear variational equations �VE� of the system around the above par-

icular solution are given by ��q=� and �p=��:

�̇ = � and �̇ = − f k−2 �2V

�qi � qj
�c�� ,

r

�̈ = − f k−2 �2V

�qi � qj
�c��, i = 1, . . . ,n .

n terms of the eigenvalues of the Hessian matrix the VE can be expressed as the n second-order
ifferential equations:

�̈ = − f k−2��i��, i = 1, . . . ,n ,

he �i are still called Yoshida’s integrability coefficients, although the theorem of Morales-Ruiz
nd Ramis applies to n degrees of freedom. The equation with i=n, corresponding to the eigen-
alue �n=k−1, is the tangential variational equation which is trivially solvable. The NVE �normal
ariational equation� are the n−1 remaining equations. By the symmetries of this problem the
VE is a system of independent hypergeometric differential equations in the independent variable
= f k,

x�1 − x�
d2�

dx2 + � k − 1

k
−

3k − 2

2k
x�d�

dx
+

�i

2k
� = 0, i = 1,2, . . . ,n − 1.

his system of equations is called the algebraic normal variational equation �ANVE�. The identity
omponent of the Galois Group of the NVE is the same as the identity component of the Galois
roup of the ANVE. The ANVEi for the scalar second-order equation corresponding to the

ntegrability coefficient �i, can be written as

ANVEi = ANVE1 + ANVE2 + ¯ + ANVEn−1.

he ANVE is integrable if, and only if, each ANVEi is integrable, that is, if each one of the
dentities of the Galois Group is solvable. This leads to the following result.4

Morales-Ruiz and Ramis theorem: A Hamiltonian system, with a homogeneous potential of
egree k, to be completely integrable �with the holomorphic or meromorphic first integrals�, is that
ach pair �k ,�i� belongs to one of the following list �with the exception of the trivial case k=0�:

1� �k , p+ p�p−1�k /2� �2� �2, arbitrary complex number�

3� �−2, arbitrary complex number� �4� �−5, 49
40 − 1

40
� 10

3 +10p�2�

5� �−5, 49
40 − 1

40�4+10p�2� �6� �−4, 9
8 − 1

8
� 4

3 +4p�2�

7� �−3, 25
24 − 1

24�2+6p�2�, �8� �−3, 25
24 − 1

24
� 3

2 +6p�2�

9� �−3, 25
24 − 1

24
� 6

5 +6p�2� �10� �−3, 25
24 − 1

24
� 12

5 +6p�2�

11� �3,− 1
24 + 1

24�2+6p�2�, �12� �3,− 1
24 + 1

24
� 3

2 +6p�2�

13� �3,− 1
24 + 1

24
� 6

5 +6p�2� �14� �3,− 1
24 + 1

24
� 12

5 +6p�2�
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15� �4,− 1
8 + 1

8
� 4

3 +4p�2� �16� �5,− 9
40 + 1

40
� 10

3 +10p�2�

17� �5,− 9
40 + 1

40�4+10p�2� �18� �k , 1
2

� k−1
k + p�p+1�k��,

here p is an arbitrary integer.

II. RESULTS

. Helium and heliumlike atoms in infinite mass approximation

The potential of the two-electron atoms is homogeneous of degree k=−1 in Cartesian coor-
inates �xi ,yi ,zi�, i=1,2. In the infinite nuclear mass approximation, it takes the form �Z=2 for
e�:

V = −
Z

�x1
2 + y1

2 + z1
2�1/2 −

Z

�x2
2 + y2

2 + z2
2�1/2 +

1

��x2 − x1�2 + �y2 − y1�2 + �z1 − z2�2�1/2 .

ote that in order to apply the above-mentioned theorem we have considered six degrees of
reedom without reduction to four, a price we pay to have the homogeneity of the potential.
herefore, system �3� corresponds to six scalar coupled equations in the variables

x1 ,y1 ,z1 ,x2 ,y2 ,z2�, whose whole set of solutions is very hard to find. However, if we consider a
ubset of particular solutions of the type �c1 ,0 ,0 ,c2 ,0 ,0� in �3� of the six scalar equations there
emain only two:

Zx1

�x1�3
+

x2 − x1

�x2 − x1�3
− x1 = 0,

�4�
Zx2

�x2�3
−

x2 − x1

�x2 − x1�3
− x2 = 0.

This simple idea allows us to solve what looked to be at first sight an unsurmountable
ifficulty. With this particular set of solutions of Eq. �4� �or full Eq. �3�� we proceed to the next
tep, the calculation of the eigenvalues of the �full� Hessian matrix of the potential at these
olutions. Our strategy makes the problem easier to handle and the Hess�V�c1 ,0 ,0 ,c2 ,0 ,0�� ma-
rix is still a 6�6 blocked matrix.

We first have to discuss the allowed values of � according to the Morales-Ruiz and Ramis
heorem. As the degree of homogeneity is k=−1, the eigenvalue in the tangential direction is �
k−1=−2, and only cases �1� and �18� of the above-mentioned theorem apply:

�i� p − p�p − 1�/2 = � ,

�5�
�ii� 1 − p�p + 1�/2 = � .

e note that in the case of k=−1 the above two expressions are equivalent by making p=q±2.
herefore the solution given by one of these equations for integer p is the presumed values of the
’s for which the system could be integrable. If we look at the set generated in Almeida et al.,10

or −8� p�8:

�. . .− 44,− 35,− 27,− 20,− 14,− 9,− 5,− 2,0,1	 . �6�

hese values of � form open sets in which we can be sure that the system is nonintegrable. If just
ne value of � is sufficiently far from these presumed integer values or complex, then the nonin-
egrability for the helium atom can be guaranteed. We note that the converse is not true since the

orales-Ruiz and Ramis theorem is a necessary condition only.

Therefore, in order to prove nonintegrability the first step is to find any solution of Eq. �3�,
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ike Eq. �4�, substitute them in the Hessian matrix and find the corresponding eigenvalues �i. If
ust one of these eigenvalues does not satisfy Eq. �5� for any integer p �one obvious case being
omplex �� then we can assure that the system is not integrable. Therefore, our strategy has been
o exhaust the possibilities starting with a subset of particular solutions of Eq. �3� with higher
ymmetry to facilitate the calculation. We stress that our strategy permits us to find feasible
olution in contrast with the near nonsolvable full Eq. �3�.

We observed that if Eq. �4� were to have two real solutions then it should have the symmetry

1= �r ,−r� and R2= �−r ,r�. Thus, substituting R1 or R2 in Eq. �4� �or R1= �r ,0 ,0 ,−r ,0 ,0� or R2

�−r ,0 ,0 ,r ,0 ,0� in Eq. �3�� we obtain analytically that

r = �Z − 1/4�1/3

nd the analytical eigenvalues of the Hessian matrix for these real roots are

�− 2,1,1,− 2 � �1 − 1/4Z�,1 � �1 − 1/4Z�,1 � �1 − 1/4Z�	 . �7�

or Z=2 the value of �4=−2/ �1−1/4Z�=−16/7
−2.285 714 3. Note that it does not coincide
ith any of the presumed integer values in �6�. Therefore, the system He atom cannot be inte-
rable since the theorem requires that all values of � should satisfy �5�. Note that the eigenvalue
n the tangential direction, which is known to be k−1=−2, has been obtained independently of this
ssumption. Therefore, the helium atom is not integrable in the approximation of infinite nuclear
ass and the result has been established analytically. We note that according to MAPLE and
ATHEMATICA software there are ten solutions for Eq. �4�: a pair of real solutions and an octet of

omplex values, of course the real values are the same as the ones found analytically. The above-
ound values allow one to examine the integrability of a series of heliumlike atoms, i.e., for any
alue of Z. In fact, taking one of the real eigenvalues of the set above, say

�4 =
− 2

�1 −
1

4Z
�

e find that −5�−2/ �1−1/4Z��−2 for Z�5/12
0.417. Therefore, all the heliumlike atoms
ith Z� �5/12� are not integrable. Note that for Z=1/4 the values of the �i�s, i=4,5 ,6 diverge

nd for Z→	, e.g., �4=−2 �independent particle approximation�.

. Helium, heliumlike, and strange helium atoms

The helium atom �Z=2� can be modified by substituting one of its electrons by a heavier
article. In this case we need a Hamiltonian which takes into account the relative masses of the
articles:11

H�r1,r2,p1,p2� =
p1

2

2
12
+

p2
2

2
3
−

Z

�r1�
−

Z

�r2 +
m2

m1 + m2
r1� +

1

�r2 −
m1

m1 + m2
r1� , �8�

here the reduced masses are: 
12=m1m2 / �m1+m2� and 
3=m3�m1+m2� / �m1+m2+m3�, being

1=m� and mi, i=2,3 are either the electron or a heavier particle. Before proceeding to calcula-
ions we make a canonical change of variables in the Hamiltonian �8�. We take ri�=ri /ui and pi�
piui, where u1=1/�
12 and u2=1/�
3. Now the problem is isotropic in the masses and we use
q. �3� obtaining for the particular solution �c1 ,0 ,0 ,c2 ,0 ,0� the following system:

Z�
12�1

��1�3
+

Z�
12� �2

�
3

+
�
12�1

m1
�

�2 +
�
12�1

3

m

−

�
12� �2

�
3

−
�
12�1

m2
�

�2 −
�
12�1

3

m

− �1 = 0,
��
3 m1
� 1 ��
3 m2

� 2
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Z� �2

�
3

+
�
12�1

m1
�

� �2

�
3

+
�
12�1

m1
�3

�
3

+

� �2

�
3

−
�
12�1

m2
�

� �2

�
3

−
�
12�1

m2
�3

�
3

− �2 = 0. �9�

n particular, we have been able to find an analytic solution for the case of the helium atom �Z
2� and all heliumlike atoms �any Z�, that is, when m2=m3=me. We find that the potential of �8�

s reduced to that of the infinite �-particle mass by means of the linear transformation:

�1 = �
12x1, �2 = �
3�x2 −
m2

m1 + m2
x1� , �10�

here �i and xi denote the coordinates for finite and infinite mass systems, respectively.
Then using the symmetry discussed in the previous section we find the solutions R1= �−r ,r�

nd R2= �r ,−r� for the Jacobi variables; recall that r= �Z−1/4�1/3. Using this guess �10� with x1

−x2 in �9� we find that

R1,2 = ±�
12�Z − 1/4

me
�1/3

,  �
3�Z − 1/4

me
�1/3�1 +

me

m� + me
�� �11�

olves the system of equations if m2=m3=me.
The corresponding eigenvalues for the Hessian matrix are

� = �− 2,1,1,

− 2�2me

m�

+ 1�
1 −

1

4Z

,
�2me

m�

+ 1�
1 −

1

4Z

,
�2me

m�

+ 1�
1 −

1

4Z
� ,

here me is the electron mass. Taking Z=2 we find

� = �− 2,1,1,− 2.286 340,1.143 170,1.143 170	
o be compared with the first value evaluated numerically in the table to follow. Note that it is not
n the end of the intervals generated by the set �6� required for integrability. This completes the
tudy of the nonintegrability for the helium atom.

Solving Eq. �3� numerically �MAPLE or MATHEMATICA� using the strategy used so far, we find
he following set of eigenvalues for Hess�V�c��:

article �

lectron �−2,1 ,1 ,−2.286 340,1.143 170,1.143 170	
uon �−2,1 ,1 ,−2.212 536,1.106 268,1.106 268	,

ion �−2,1 ,1 ,−2.207 143,1.103 571,1.103 571	,
aon �−2,1 ,1 ,−2.190 079,1.095 040,1.095 040	,
ntiproton �−2,1 ,1 ,−2.188 614,1.094 307,1.094 307	,

or the masses 5.485 799�10−4
, 0.113 428 92
, 0.149 837 65
, 0.529 994 32
, and
.007 295 93
, respectively. For the mass of the � particle �He nucleus� we have used
.002 602
, 
=931.494 32 MeV/c2. We have not been able to find an analytical solution for the
trange helium case.

It is easy to see that there are eigenvalues which are not the end of the intervals shown in set

6�, as required for possible integrability. So none of these heliumlike problems are integrable.
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. CONCLUSION

We apply the theorem of Morales-Ramis, one of the latest theorems on integrability of Hamil-
onian systems, and prove mainly that the helium atom as well as several heliumlike atoms are not
ntegrable in any physical dimension. We thus have extended our previous result on the frozen
lanetary approximation to the full helium system. We remark that in this paper the proof is
ompletely analytic. The proof is also extended to several strange helium atoms. In the case of the
trange helium atoms we have not been able to solve the equations by radicals but our proof is a
igorous computer aided proof because the integrability coefficients are a set of integers, and the
ctual numerical values are sufficiently far from these integers.
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With the consideration of spherical symmetry for the potential and mass function,
one-dimensional solutions of nonrelativistic Schrödinger equations with spatially
varying effective mass are successfully extended to arbitrary dimensions within the
frame of recently developed elegant nonperturbative technique, where the
BenDaniel-Duke effective Hamiltonian in one dimension is assumed like the un-
perturbed piece, leading to well-known solutions, whereas the modification term
due to possible use of other effective Hamiltonians in one dimension and, together
with the corrections coming from the treatments in higher dimensions, are consid-
ered as an additional term like the perturbation. Application of the model and its
generalization for the completeness are discussed. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2354333�

I. INTRODUCTION

Gaining confidence from the successful applications1 of the recently developed simple model2

in different fields of physics, we have investigated3 the relation between the solutions of physically
acceptable effective mass Hamiltonians proposed in the literature for the treatment of one-
dimensional problems. Using the spirit of the prescription suggested in Ref. 3, we aim here to
tackle the more difficult problem of generating exact solutions for position-dependent mass
Schrödinger equations �PDMSE� in N dimension, as most of the related works in the literature
have been devoted to one-dimensional systems except the ones in Ref. 4.

The concept of PDMSE is known to play an important role in different branch of physics. This
formalism has been extensively used in nuclei, quantum liquids, 3He, and metal clusters. Another
area wherein such concepts provide a very useful tool is the study of electronic properties of many
condensed-matter systems, such as semiconductors and quantum dots. In particular, recent
progress in crystal-growth techniques for producing nonuniform semiconductor specimens,
wherein the carrier effective mass depends on position, has considerably enhanced the interest in
the theoretical description of semiconductor heterostructures. It has also recently been signaled in
the rapidly growing field of PT-symmetric or more generally pseudo-Hermitian quantum mechan-
ics. For an excellent recent review, leading to the related references, the reader is referred to
Ref. 4.

In Sec. II, the systematic treatment of N-dimensional PDMSE is presented and closed expres-
sions corresponding to the full wave function and energy spectrum for exactly solvable potentials
are given. Section III contains the application of the model while the generalization of the for-
malism is discussed in Sec. IV. Concluding remarks are given in the last section.

a�Electronic mail: gonul@gantep.edu.tr
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II. THEORETICAL CONSIDERATION

Tracking down solvable potentials in PDMSE has always aroused interest. Apart from being
useful in understanding of many physical phenomena, the importance of searching for them also
stems from the fact that they very often provide a good starting point for undertaking perturbative
calculations of more complex systems.

As is well known �see, e.g., Refs. 3 and 5�, the general form of radial PDMSE with Hermitian
Hamiltonians in one dimension gives rise to

−
d

dz
� 1

M�z�
d��z�

dz
� + Veff�z���z� = ���z� , �1�

where the effective potential

Veff�z� = V0�z� + U���z� = V0�z� −
�� + ��

2

M�

M2 + ��� + � + ��
M�2

M3 , �2�

depends on the mass term and ambiguity parameters. Here a prime denotes derivative with respect
to the variable, M�z� is the dimensionless form of the mass function m�z�=m0M�z� and we have
set �=2m0=1. The effective potential is the sum of the real potential profile V0�z� and the
modification U���z� emerged from the location dependence of the effective mass. A different
Hamiltonian leads to a different modification term. Some of them are the ones proposed by6

BenDaniel-Duke ��=�=0�, Bastard ��=−1�, Zhu-Kroemer ��=�=−1/2�, and Li-Kuhn ��
=−1/2 ,�=0�.

Considering the works in Refs. 3 and 7, the radial piece of PDMSE in arbitrary dimensions for
spherically symmetric potentials and mass functions reads

� d2

dr2 +
M�

M
�N − 1

2r
−

d

dr
	 −

L�L + N + 2� + �N − 1��N − 3�/4
r2 + M�E − Veff�r��
��r� = 0,

�3�

where we assume that ��r�=F�r�G�r�, which leads to

1

M
�F�

F
+

G�

G
+ 2

F�

F

G�

G
	 −

M�

M2�F�

F
+

G�

G
	 = Ueff − E . �4�

The effective potential in higher dimensions �N�1� now is transformed to the form

Ueff�r� = V0�r� + U���r� −
M�

M2

�N − 1�
2r

+
L�L + N − 2� + �N − 1��N − 3�/4

Mr2 , �5�

in which L is the angular momentum. As the one-dimensional calculations require N=1 and L
=0, Eq. �5� reduces in this case to Ueff=Veff=V0+U�� as in Ref. 3, which provides a safe testing
ground.

Keeping in mind the spirit of the technique used simply in Ref. 3, we split Eq. �4� in two parts
deviating from the treatments in4

W2�r� − �W�r�
�M

��
= V0�r� − �, W = −

F�
�MF

, �6�

where � is the corresponding energy of the required quantum state Fn �n=0,1 ,2 , . . . � for V0 which
is assumed in this model as an exactly solvable mass-dependent potential, and
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�W2�r� − ��W�r�
�M

��
+ 2W�r��W�r� = �V�r� − �E, �W = −

G�
�MG

, �7�

where

�V�r� = U���r� −
M�

M2

�N − 1�
2r

+
L�L + N − 2� + �N − 1��N − 3�/4

Mr2 . �8�

Note that the total energy appearing in �4� is E=�+�E and, in one dimension the modification
term �V becomes U�� as in Ref. 3. This clarifies that the corrections due to the higher dimensions
arise because of the second and third terms on the right-hand side of Eq. �8�.

From the present theoretical consideration, Eq. �6� has an algebraic solution leading to closed
analytical expressions for the wave functions and energy eigenvalues, hence one needs to solve
Eq. �7� exactly. To proceed further, with the consideration of relativistic Dirac equations having no
ambiquity parameters, we confidently choose

�W�r� =
�� + ��

2

M�

M3/2 −
�N + 2L − 1�

2�Mr
, �9�

in which the second term disappears for N=1 as in Ref. 3. Within the frame of Eq. �7�, this choice
leads us to

W�r��W�r� =
M�

2rM2� �� + ���N − 1�
2

+ �� + � + 1�L� −
�E

2
, �10�

which is the main result of the present work.
From the definition of the effective potential in Eq. �2�, we also note that the use of Eqs. �7�

and �8� naturally restricts the choice of some ambiguity parameters yielding different physically
acceptable effective mass Hamiltonians, allowing only �=�=0 �Ben-Daniel Duke Hamiltonian�
and �=�=−1/2 �Zhu-Kroemer Hamiltonian� cases. This observation clarifies that the unperturbed
part �V0� of the effective potential in �6� should correspond to the case �=�=0, having well-
known solutions in one dimension, while �=�=−1/2 is used to calculate U�� in �8�. Obviously,
all the corrections coming from the higher dimensions to the energy and well-behaved wave
function terms can be systematically calculated for a given M with the consideration of Eqs.
�7�–�10� in light of the corresponding W in �6�.

III. APPLICATION

Recently, some research has been devoted to the analysis of the classification of quantum
systems with position-dependent mass regarding their exact solvability �Refs. 3–5, and references
therein�. On a similar basis, Plastino and his co-workers8 applied an approach within the super-
symmetric quantum mechanical framework, for the case �=�=0, to such systems and succeed to
show that some one-dimensional systems with nonconstant mass have a supersymmetric partner
with the same effective mass. They were also able to solve exactly some particular cases by
constructing the superpotential �W�r�� from the form of the effective mass �M�r�� and generalize
the concept of the shape invariance for these systems.

For illustration, the superpotential expressions given by Ref. 8 for the systems having har-
monic oscillator and Morse-like spectra can be easily used in Eq. �6� to serve explicit expressions
for the corrections to the one-dimensional solutions obtained by considering the Ben-Daniel-Duke
effective Hamiltonian in their8 calculations. This simple investigation enables us to test our results,
because all the corrections should disappear in case N=1 and �=�=0 leading to the expressions
in Ref. 8. For clarity, this section involves only the application on the harmonic oscillator system.
However, the generalization of the present model yielding self-consistent calculations, reproduc-
ing W�r� term within the model for any system of interest, will be discussed in the next section.

According to Ref. 8, W�r� term in Eqs. �6� and �10� is
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W�r� =
	

2
�r

�M�z�dz +
1

2� 1
�M

	�
, 	 = 2�n=0, �11�

for the systems having harmonic oscillator spectra. Hence, use of Eqs. �7�–�10� gives

�E =
M�

rM2� �� + ���N − 1�
2

+ L�� + � + 1�� +
�N + 2L − 1�	

2r�M
�r

�M�z�dz

+ � 1
�M

	���� + ���	�r

�M�z�dz + � 1
�M

	�� +
�N + 2L − 1�

2r�M

 , �12�

which is the explicit form of the energy corrections for a given smooth mass. Clearly, it can be
seen that for a constant mass M→1, Eq. �12� reduces to �N+2L−1�w /2 for arbitrary dimensions7

while in one dimension it goes to zero for a nonconstant mass in case �=�=0.8 Furthermore, from
Eqs. �7� and �9�, the modification term for the corresponding wave function is

G�r� = exp�− �r
�M�z��W�z�dz	 = r�N+2L−1�/2M−��+��/2. �13�

As Eq. �6� is analytically solvable having a closed expression for W�r� given by �11� reproducing
explicit expressions for � and F, the corresponding total energy and wave function can easily be
calculated through E=�+�E and �=FG for the system of interest with a location dependent
mass. At this stage it is also noted that the formalism suggested here seems superior to the usual
treatment in supersymmetric quantum theory that in principle starts with the ground state and
builds up excited state wave functions by the use of some linear operators �A±� whereas there is no
such restriction in the present theory providing flexible investigations.

IV. DISCUSSION

Although the procedure used in the formalism seems reasonable, the use of other works as in
the previous section for an appropriate W�r�term to solve Eq. �6� may be seen as a drawback of the
model. To remove this seeming deficiency, we propose here a unified treatment within the model
considering the recent work in Ref. 9.

Many of the special functions H�g� of mathematics represent solutions to differential equa-
tions of the form

d2H�g�
dg2 + Q�g�

dH�g�
dg

+ R�g�H�g� = 0, �14�

where the functions Q�g�and R�g� are well defined for any particular function.10 Since in this
article we are interested in bound state wave functions, we should restrict ourselves to polynomial
solutions of Eq. �14�. Bearing in mind Eq. �14�, the substitution of ��z�=H�g�z��f�z� in Eq. �1�
leads to the second-order differential equation

1

M
� f�

f
+

H�g�2

H
+

g�H�

H
+ 2

H�g�f�

Hf
	 −

M�

M2� f�

f
+

H�g�

H
	 = Veff − � , �15�

in which primes denote derivatives with respect to g and z for the functions H�g�, g�z�, and f�z�,
respectively. With the confidence gained by the similarity between Eqs. �15� and �4�, one can
safely use the present treatment splitting Eq. �15� in two pieces

W2�z� − �W�z�
�M

��
= V0�z� − �, W = −

f�
�Mf

, �16�

and

102101-4 B. Gönül and M. Koçak J. Math. Phys. 47, 102101 �2006�

                                                                                                                                    



�W2�z� − ��W�z�
�M

��
+ 2W�z��W�z� = �V�z� − �E, �W = −

H�g�
�MH

, �17�

which are similar to Eqs. �6� and �7�, where �=�+�E and Veff=V0+�V.
After all, it can be clearly seen that Eq. �16� is the one required for obtaining an explicit

expression for W term used in Eq. �6� corresponding to an exactly solvable system considered in
one dimension ��=�=0�. However, to proceed further, the functions f and g should be solved as
H, Q, and R are known in principle. Now, equating like terms between the resulting expression in
�15� and �14� gives

Q�g�z�� =
1

g�
�g�

g�
+

2f�

f
−

M�

M
	, R�g�z�� =

1

g�2� f�

f
−

M�

M

f�

f
+ M�E − V�� , �18�

where, from the definition of Q,

f�z�  �M

g�
	1/2

exp�1

2
�g�z�

Q�g�dg� . �19�

Consideration of Eqs. �15�–�18� suggests a novel prescription

�V�z� − �E = −
g�2

M
R�g�z�� , �20�

which, for plausible M and R functions, provides a reliable expression for g�z�. It is remarked that
in the constant mass case M→1 this procedure reduces to the well-known formalism which has
been thoroughly investigated11 that, together with Ref. 9, justify our new proposal in solving
PDMSE. The more detailed investigation of this treatment will be discussed elsewhere.

V. CONCLUDING REMARKS

In this article, a general method has been presented to address the question of corrections to
the solution in one dimension for a large class of N-dimensional and exactly solvable PDMSE. We
have also described how to extend the method to the case where the necessary function W�r� in �6�
generating algebraically solvable potentials in one dimension are present, which initiates calcula-
tions in the model leading to explicit expressions for the modifications due to both the use of
physically plausible Zho-Kroemer effective Hamiltonian ��=�=−1/2� and higher dimensional
treatments. The main results are consistent with the other related works in the literature, which
allow a nonperturbative treatment of these issues.

Although, for clarity, we have illustrated an application of the method for an easily accessible
case of interest, it can be readily employed in various typical situations. In view of the importance
in calculating such corrections in physics, we believe that the present model would serve as a
useful toolbox to treat even more realistic situations which now occur in experimental observa-
tions with the advent of the quantum technology.
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The annihilation-creation operators a�±� are defined as the positive/negative fre-
quency parts of the exact Heisenberg operator solution for the “sinusoidal coordi-
nate”. Thus a�±� are hermitian conjugate to each other and the relative weights of
various terms in them are solely determined by the energy spectrum. This unified
method applies to most of the solvable quantum mechanics of single degree of
freedom including those belonging to the “discrete” quantum mechanics. © 2006
American Institute of Physics. �DOI: 10.1063/1.2349485�

I. INTRODUCTION

The annihilation and creation operators are probably the most basic and important tools in
quantum mechanics. Modern quantum physics is almost unthinkable without them. Approximately
80 years after its birth, the list of exactly solvable systems in quantum mechanics1 is quite long
now, including those of the so-called “discrete” quantum mechanics.2,3 One natural question is that
if these exactly solvable quantum mechanical systems also possess the algebraic solution method
embodied in the annihilation-creation operators. We will answer the question in the affirmative
and give a unified dynamical derivation of the annihilation-creation operators for most of the
solvable quantum mechanics of single degree of freedom including those belonging to the discrete
quantum mechanics.

The method is quite simple and elementary. One identifies a special function ��x� of the
space-coordinate x, which undergoes “sinusoidal motion” at the classical and quantum levels
�2.10� and �2.14�. The latter is simply the exact Heisenberg operator solution for ��x�. The
function � is the argument of the orthogonal polynomial �2.3� constituting the eigenfunctions of
the system. The positive/negative frequency parts of the exact Heisenberg operator solution of the
“sinusoidal coordinate” ��x� ��2.28� and �2.29�� give the annihilation-creation operators. This is
essentially the same recipe as used by Heisenberg for solving the harmonic oscillator in matrix
mechanics. To the best of our knowledge, the sinusoidal coordinate was first introduced in a rather
broad sense for general �not necessarily solvable� potentials as a useful means for coherent state
research by Nieto and Simmons.4

By similarity transformation in terms of the ground state wave function, the results of the
present article will be translated to those of the corresponding orthogonal polynomials. In particu-
lar, the exact Heisenberg operator solution of the sinusoidal coordinate corresponds to the so-
called structure relation5 for the orthogonal polynomials. Our method provides the unified deri-
vation of the structure relations for the Askey-Wilson, Wilson, continuous dual Hahn, continuous
Hahn and Meixner-Pollaczek polynomials6 based on the Hamiltonian principle. These polynomi-
als are the eigenfunctions of the various discrete quantum mechanical systems2,3 and they are the
deformations of the Jacobi, Laguerre, and Hermite polynomials.7

This article is organized as follows. The general theory of the annihilation-creation operators
is explained with typical examples; one from the ordinary quantum mechanics and two from the
discrete version in Sec. II. Further explicit results are presented in Sec. III. They include the
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�symmetric� Pöshl-Teller, symmetric Rosen-Morse, Morse and x2+1/x2 potentials on top of the
five examples belonging to the discrete quantum mechanics mentioned previously. Section IV is
for a summary and comments. In Appendix A, the necessary and sufficient condition for the
existence of the sinusoidal coordinate is analyzed within the context of ordinary quantum mechan-
ics. It turns out that those potentials having the sinusoidal coordinate are all shape invariant.8 In
Appendix B, interpretation of the annihilation-creation operators within the framework of shape
invariance is given. It is the mechanism underlying the solvability of all systems considered in this
article. Appendix C gives various definitions of the orthogonal polynomials, hypergeometric func-
tions and their q analog.7,6

II. GENERAL THEORY WITH TYPICAL EXAMPLES

The purpose of the present paper is to present a unified dynamical theory of annihilation-
creation operators. It is applicable to most of the exactly solvable quantum mechanical systems of
one degree of freedom, including the so-called discrete quantum mechanics which are certain
deformation of the solvable quantum mechanics.2,3 They satisfy certain difference equations in-
stead of the second order differential equations. Generalization to the systems of many degrees of
freedom will be discussed elsewhere. The restriction to the solvable quantum systems is rather
trivial and inevitable, since a system is obviously solvable if it possesses explicitly defined anni-
hilation and creation operators and any one single eigenstate to work on. Then the entire set of
exact eigenstates are easily and concretely generated.

Except for the simple harmonic oscillator, which gives probably the only so far universally
accepted example of the annihilation-creation operators, there are quite a wide variety of proposed
annihilation and creation operators in the literature.9 Historically most of these annihilation-
creation operators are connected to the so-called algebraic theory of coherent states, which are
usually defined as eigenstates of annihilation operators. Therefore, for a given potential or a
quantum Hamiltonian, there could be as many coherent states as the definitions of the annihilation
operators.

Our new unified definition of the annihilation-creation operators is, on the contrary, based on
the dynamical properties of a special coordinate, the sinusoidal coordinate shared by a class of
solvable dynamical systems discussed in this article. A quantum mechanical system with a self-
adjoint Hamiltonian H is solvable �or solved� if the entire set of its energy eigenvalues �En� and
the corresponding eigenvectors ��n�, n=0,1 , . . . are known:

H�n = En�n, n = 0,1, . . . . �2.1�

As is well-known a quantum Hamiltonian �together with its discrete analog� has in general discrete
as well as continuous spectrum. In this article we will concentrate on the discrete energy levels
only, either finite or infinite in number. Then, because of the one dimensionality, the eigenvalues
are not degenerate

E0 � E1 � ¯ , �2.2�

and the eigenvectors have finite norms ��n�2=Nn
2��. �When normalized vectors are needed we

denote them by adding a hat, ��̂n =
def

�n /Nn�, ��̂n � =1.� This is the solution in the Schrödinger
picture and the eigenvectors ��n� are usually expressed as functions ��n�x�� of the space-
coordinate x. For the majority of the solvable quantum systems, the nth eigenfunction has the
following general structure1:

�n�x� = �0�x�Pn���x�� �2.3�

in which �0�x� is the ground state wave function. It has no nodes and we may choose it to be
always real and positive. The second factor Pn���x�� is a polynomial of degree n in a real variable
�. We also take Pn��� as real and use a convention P−1���=0. Reflecting the orthogonality
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theorem of the eigenvectors of a self-adjoint Hamiltonian, �Pn���� form orthogonal polynomials
with respect to a weight function �measure�

�0�x�2dx � w���d� . �2.4�

Throughout this article we follow the definition and notation of Szegö’s book7 for the classical
orthogonal polynomials and the review by Koekoek and Swarttouw6 for the Askey scheme of
hypergeometric orthogonal polynomials and its q analog, which are deformations of the classical
orthogonal polynomials.

There are certain exactly solvable quantum systems, for example, the one-dimensional Kepler
problem, etc., for which the general form of eigenfunction �2.3� does not hold. For them, the
present unified theory does not apply. See Appendix A.

Our main claim is that this ��x� undergoes a sinusoidal motion under the given Hamiltonian
H, at the classical as well as quantum level, by mimicking the simple harmonic oscillator. This
fact is the basis of our dynamical and unified definition of the annihilation-creation operators. To
be more specific, at the classical level we have

�H,�H,��� = − �R0�H� − R−1�H� �2.5�

in which the canonical Poisson bracket relations are defined for the canonical coordinate x, its
conjugate momentum p and for any functions A�x , p� and B�x , p� as

�x,p� = 1, �x,x� = �p,p� = 0, �A,B� =
�A

�x

�B

�p
−

�A

�p

�B

�x
. �2.6�

The two coefficients R0 and R−1 are, in general, polynomials in the Hamiltonian H. The effect of
R−1 is to shift the origin of ��x� by a quantity �possibly� depending on H. It is convenient to
introduce a shifted sinusoidal coordinate �̃�x�

�̃�x� =
def

��x� + R−1�H�/R0�H� �⇒�H,�H,�̃�� = − �̃R0�H�� . �2.7�

Relation �2.5� would allow to evaluate the multiple Poisson brackets of � with H easily:

ad H� =
def

�H,��, �ad H�2� = �H,�H,���, �ad H�n� = �H,�ad H�n−1�� , �2.8�

which leads to a simple sinusoidal time evolution:

�̃�x;t� = �
n=0

�
�− t�n

n!
�ad H�n�̃, = − �H,�̃�0

sin�t	R0�H0��
	R0�H0�

+ �̃�x�0 cos�t	R0�H0�� . �2.9�

In the original variable it reads

��x;t� = − �H,��0

sin�t	R0�H0��
	R0�H0�

− R−1�H0�/R0�H0� + ���x�0 + R−1�H0�/R0�H0��cos�t	R0�H0�� ,

�2.10�

in which ��x�0 ��̃�x�0�, and �H ,��0 are the initial values �at t=0� of these variables and H0

denotes the value of the Hamiltonian �the energy� for these initial data. In general, the frequency
of the simple oscillation 	R0�H0� can depend on the initial data. This is the reason why we call
��x� the sinusoidal coordinate avoiding the more appealing but misleading “harmonic coordinate.”

At the quantum level with the canonical commutation relations

�x,p� = i, �x,x� = �p,p� = 0, � 
 1, �2.11�

the formula corresponding to �2.5� reads
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�H,�H,��� = �R0�H� + �H,��R1�H� + R−1�H� . �2.12�

In other words, the multiple commutators of H with � form a closed algebra at level two. Here,
the quantum coefficients R0 and R−1 could differ from the classical ones by quantum corrections.
But we use the same symbols as there is no risk of confusion. Obviously R1�H� is the quantum
effect. As in the classical case, the multiple commutators of � with H

ad H� =
def

�H,��, �ad H�2� = �H,�H,���, �ad H�n� = �H,�ad H�n−1�� , �2.13�

can be easily evaluated from �2.12�. This leads to the exact operator solution in the Heisenberg
picture:

eitH��x�e−itH = �
n=0

�
�it�n

n!
�ad H�n�, = �H,��x��

ei�+�H�t − ei�−�H�t

�+�H� − �−�H�
− R−1�H�/R0�H�

+ ���x� + R−1�H�/R0�H��
− �−�H�ei�+�H�t + �+�H�ei�−�H�t

�+�H� − �−�H�
, �2.14�

in which the two “frequencies” �±�H� are

�±�H� = �R1�H� ± 	R1�H�2 + 4R0�H��/2, �2.15�

�+�H� + �−�H� = R1�H�, �+�H��−�H� = − R0�H� . �2.16�

If the quantum effects are neglected, i.e., R1
0 and H→H0 �on the right-hand side �r.h.s.��, we
have �+=−�−=	R0�H0�, the previous Heisenberg operator solution reduces to the classical one
�2.10� in terms of the quantum-classical correspondence:

�A,B�/i � → �A,B�, �� → 0� . �2.17�

The above-mentioned exact operator solution looks slightly simpler if the shifted sinusoidal co-
ordinate is used

eitH�̃�x�e−itH = �H,�̃�x��
ei�+�H�t − ei�−�H�t

�+�H� − �−�H�
+ �̃�x�

− �−�H�ei�+�H�t + �+�H�ei�−�H�t

�+�H� − �−�H�
. �2.18�

Like the exact classical solution �2.10�, the exact quantum solution �2.14� contains all the
dynamical information of the quantum system. One can, for example, determine the entire discrete
spectrum �En� by following Heisenberg and Pauli’s arguments for the harmonic oscillator and the
hydrogen atom. Let us first note that the ground state energy E0=0 is known explicitly, because of
our choice of the factorised form of the exactly solvable Hamiltonian �see the following ex-
amples�:

H = A†A/2, A�0 = 0 ⇒ H�0 = 0, E0 = 0. �2.19�

Let us apply �2.14� to the nth eigenvector �n:

eit�H−En���x��n = ��H,��x���n + �− ��x��−�En� + R−1�En�/�+�En���n�ei�+�En�t/��+�En� − �−�En��

+ �− �H,��x���n + ���x��+�En� − R−1�En�/�−�En���n�ei�−�En�t/��+�En� − �−�En��

− �R−1�En�/R0�En���n. �2.20�

As the r.h.s. has only two different time dependences except for the constant term, the left-hand-
side �l.h.s.� can only have two nonvanishing matrix elements when sandwiched by �m, except for
the obvious �n corresponding to the constant term. In accordance with the general structure of the
eigenfunctions �2.3�, they are �n±1:

102102-4 S. Odake and R. Sasaki J. Math. Phys. 47, 102102 �2006�

                                                                                                                                    



��m���x���n = 0 for m � n ± 1,n . �2.21�

This imposes the following conditions on the energy eigenvalues:

En+1 − En = �+�En�, En−1 − En = �−�En� . �2.22�

Likewise we obtain the “hermitian conjugate” conditions

En − En−1 = �+�En−1�, En − En+1 = �−�En+1� �2.23�

relating these three neighboring eigenvalues. These overdetermined conditions �2.22�, �2.23�, and
E0=0 determine the entire energy spectrum �En� completely for each Hamiltonian. The consistency
of the procedure requires that the second term on r.h.s. of �2.20� should vanish when applied to the
ground state �0:

− �H,��x���0 + ���x��+�0� − R−1�0�/�−�0���0 = 0, �2.24�

which could be interpreted as the equation determining the ground state eigenvector �0 in the
Heisenberg picture. If the number of the discrete levels is finite �M +1� a corresponding condition
must be met that the first term on r.h.s. of �2.20� should not belong to the Hilbert space of
normalizable vectors when applied to the highest discrete level eigenvector �M:

��H,��x���M + �− ��x��−�EM� + R−1�EM�/�+�EM���M� = � . �2.25�

As is clear by now, �2.14� and �2.21� are the physical embodiment of the three term recur-
sion relations satisfied by any orthogonal polynomial of single variable:

�Pn��� = AnPn+1��� + BnPn��� + CnPn−1��� . �2.26�

The coefficients An, Bn, and Cn are also real for a real polynomial Pn���. For the systems treated
in this article, that is those having the general structure of the eigenvectors �2.3�, this implies the
three term recurrence relations of the eigenfunctions

��x��n�x� = An�n+1�x� + Bn�n�x� + Cn�n−1�x� . �2.27�

At the same time the above-mentioned arguments and the treatment of the harmonic oscillator by
Heisenberg clearly show that the operator coefficient of eit�−�H� on the r.h.s. of the Heisenberg
operator solution �2.14� is the annihilation operator, that is, acting on �n it produces a state �n−1.
Likewise, the operator coefficient of eit�+�H� of the Heisenberg operator solution �2.14� is the
creation operator. Thus we arrive at a dynamical and unified definition of the annihilation-
creation operators:

eitH��x�e−itH = a�+��H,��ei�+�H�t + a�−��H,��ei�−�H�t − R−1�H�/R0�H� , �2.28�

a�±� = a�±��H,�� =
def

�±�H,��x�� � ���x� + R−1�H�/R0�H�����H��/��+�H� − �−�H�� .

�2.29�

When acting on the eigenvector �n, they read

a�±��n�x� =
±1

En+1 − En−1
��H,��x�� + �En − En�1���x� +

R−1�En�
En±1 − En

��n�x� . �2.30�

Before going to the detailed discussion of the annihilation-creation operators for various
Hamiltonians in Secs. II A and III, let us analyze annihilation-creation operators in a more general
context. A minimal requirement for annihilation-creation operators is the following: �0�
Annihilation-creation operators map �n to �n−1 and �n+1 �up to an overall constant�, respectively.
It should be stressed that there is no a priori principle for fixing the normalization of the operators.
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Sometimes it is convenient to introduce the annihilation-creation operators with a different nor-
malization

a��±� =
def

a�±���+�H� − �−�H�� = ± �H,��x�� � ���x� + R−1�H�/R0�H�����H� , �2.31�

which gives

a��±��n�x� = ± ��H,��x�� + �En − En�1���x� +
R−1�En�
En±1 − En

��n�x� . �2.32�

On the r.h.s. the coefficients of the operator ��x� and the identity operator depend on n in general.
The annihilation-creation operators of the harmonic oscillator have several remarkable prop-

erties:

�i� Annihilation/creation operator is the positive/negative frequency part of the Heisenberg
operator of the sinusoidal coordinate;

�ii� �annihilation operator�†= �creation operator�;
�iii� H=const. �creation operator��annihilation operator�.

The first property �i� is the principle leading to our unified definition of the annihilation-creation
operators as in �2.28� and �2.29�. Next we show that they are hermitian conjugate to each other.
That is, they satisfy the property �ii�, too. By using the three-term recursion relation, we obtain

eitH�e−itH�n = eit�En+1−En�An�n+1 + Bn�n + eit�En−1−En�Cn�n−1. �2.33�

Comparing this with �2.28� and �2.29�, we arrive at

a�+��n = An�n+1, a�−��n = Cn�n−1, R−1�En�/R0�En� = − Bn. �2.34�

Here use is made of the facts

�+�En� = En+1 − En, �−�En� = En−1 − En,

R1�En� = En+1 + En−1 − 2En, R0�En� = − �En+1 − En��En−1 − En� , �2.35�

and that �±�H� and Ri�H� �i=1,0 ,−1� are hermitian. Hermitian conjugate of a�−� is

a�−�† = ��+�H� − �−�H��−1��H,��x�� + �+�H����x� + R−1�H�/R0�H��� , �2.36�

and its action on �n is

a�−�†�n = ��+�H� − �−�H��−1�H��n − �En�n + �+�H����n + R−1�En�/R0�En��n��

= ��+�H� − �−�H��−1��En+1 − En�An�n+1 + �En−1 − En�Cn�n−1 + �+�H��An�n+1 + Cn�n−1��

= ��+�H� − �−�H��−1�En+2 − En�An�n+1 = An�n+1 = a�+��n. �2.37�

Therefore a�±� are hermitian conjugate to each other, a�−�†=a�+�. This also means that

e−it�−�H�a�+� = a�+�eit�+�H�, e−it�+�H�a�−� = a�−�eit�−�H�, �2.38�

reflecting the obvious hermiticity of the l.h.s. of �2.28�. Note that a��±� are not hermitian conjugate
to each other, a��−�†�a��+�, in general.

In the special case of the equi-spaced spectrum En=an �a: constant�, to which many interest-
ing examples belong including the harmonic oscillator and its deformation, we have �±�H�= ±a,
R1�H�=0, R0�H�=a2 and
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2aa�±� = a��±� = ± �H,��x�� + a��x� + R−1�H�/a . �2.39�

For the simplest harmonic oscillator H= �p+ ix��p− ix� /2, we have ��x�=x, R0=1, R1=R−1=0 and
�H ,x�=−ip and 2a�+�=x− ip, 2a�−�=x+ ip, which differ from the conventional ones by a factor 	2.

In contrast to the above two properties, the third the property �iii� of the annihilation-creation
operators is achieved by a very specific modification of the definition as follows:

a��−� =
def

a�−�f�H�, a��+� =
def

a��−�† = f�H�a�+�, �2.40�

where f�H�= f�H�† is an as yet unspecified function of H. Then we have

a��+�a��−��n = f�En�2An−1Cn�n. �2.41�

If f�H� is chosen to satisfy

f�En�2 = En/�An−1Cn�� =
def

g�n�� , �2.42�

then we obtain

H = a��+�a��−�. �2.43�

Such an operator f�H� function can be constructed as f�H�=	g�N�, where the number �or level�
operator N is defined by

N�n = n�n. �2.44�

This operator N can be expressed in terms of the Hamiltonian, for example,

En = an ⇒ N = H/a , �2.45�

En = an2 + bn ⇒ N = �	4aH + b2 − b�/�2a� , �2.46�

En = a�q−n − 1��1 − bqn� ⇒ qN = �H/a + b + 1 − 	�H/a + b + 1�2 − 4b�/�2b� , �2.47�

where a, b, and q are constant �b	0 in the second equation, b�1 in the third equation�. This a��±�

satisfies the property �ii� by definition, but the property �i� becomes ugly or unnatural in general.
Let us close the general theory by a brief discussion of the coherent states. One definition of

the coherent state 
 is the eigenvector of the annihilation operator �annihilation operator coherent
state �AOCS��:

a�−�
 = �
, � � C . �2.48�

In terms of the simple parametrization 
=�n=0
� cn�n�x� �with c0=1 as normalization� and the

formula �2.34�, we arrive at


 = 
��,x� = �0�x��
n=0

�
�n

�k=1

n
Cn

· Pn���x�� . �2.49�

For the equispaced spectrum En=an �a: constant�, the coherent state has the property of temporal
stability

eitH
��,x� = 
�eiat�,x� . �2.50�

It should be remarked that the concrete form of the AOCS depends on the specific normalization
of the annihilation operator. For the annihilation operators a��−�, a��−� and others, we denote the

102102-7 Unified theory of annihilation-creation operators J. Math. Phys. 47, 102102 �2006�

                                                                                                                                    



corresponding coherent states as 
�, 
�, etc. Which coherent state is useful depends on the physics
of the system.

A. Some typical examples

Now let us look at typical examples1–3 to show the actual content of our new unified theory of
annihilation-creation operators. In their pioneering work, Nieto and Simmons4 treated four solv-
able cases, those discussed in Secs. II A 1, III A 1, III A 3, and III A 4. Some of our results were
reported in Ref. 4. Here and throughout this article we put the dimensionfull quantities as unity,
including the Planck’s constant.

1. 1/sin2 x potential, or symmetric Pöschl-Teller potential

The first example has the 1/sin2 x potential, which is the one-body case of the well-known
Sutherland model.10,11 This provides the simplest example of the annihilation-creation operators
depending on n. The corresponding coherent state �2.72� or �2.75� had not yet been known, to the
best of our knowledge. The system is confined in a finite interval, say �0,�� and it has an infinite
number of discrete eigenstates. Although this potential is a special �g=h� case of the Pöschl-Teller
potential discussed in Sec. III A 2, it merits separate analysis. The Hamiltonian, the eigenvalues
and the eigenfunctions are as follows:

H=
def

�p − ig cot x��p + ig cot x�/2, � ⇒
Q.M.

2H + g2 = p2 + g�g − 1�/sin2 x� , �2.51�

En = n�n/2 + g�, n = 0,1,2, . . . , g 	 0, 0 � x � �, ��x� = cos x , �2.52�

�n�x� = �sin x�gPn
�,��cos x�,  =

def

g − 1/2, �2.53�

in which Pn
��,���� is the Jacobi polynomial �C8� and Pn

�,���� is proportional to the Gegenbauer
polynomial Cn

�+1/2���� �C9�

Pn
�,����

� + 1�n
=

Cn
�+1/2����

�2 + 1�n
. �2.54�

Hereafter we often use the Pochhammer symbol �a�n, see �C1�.
It is straightforward to evaluate the Poisson brackets

�H,cos x� = p sin x, �H,�H,cos x�� = − cos x 2H�, H� =
def

H + g2/2, �2.55�

leading to the solution of the initial value problem:

cos x�t� = cos x�0�cos�t	2H0�� − p�0�sin x�0�
sin�t	2H0��

	2H0�
. �2.56�

It is straightforward to verify �cos x�t� � �1. The corresponding quantum expressions are

�H,cos x� = i sin x p + cos x/2, �2.57�

�H,�H,cos x�� = cos x�2H� − 1/4� + �H,cos x� , �2.58�

�±�H� = 1/2 ± 	2H�. �2.59�

The exact operator solution reads
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eitHcos x e−itH = �i sin x p + cos x/2�
ei�+�H�t − ei�−�H�t

2	2H�
+ cos x

− �−�H�ei�+�H�t + �+�H�ei�−�H�t

2	2H�
.

�2.60�

The annihilation and creation operators are

a��±� = a�±�2	2H� = ± i sin x p + cos x 	2H� = ± sin x
d

dx
+ cos x 	2H�. �2.61�

It is now obvious that they �a��±�� are not hermitian conjugate to each other. The square root sign
is neatly removed when applied to the eigenvector �n as 2En+g2= �n+g�2:

a��−��n = − sin x
d�n

dx
+ �n + g�cos x �n = �n + ��n−1, �2.62�

a��+��n = sin x
d�n

dx
+ �n + g�cos x �n =

2�n + 1��n + 2g�
2n + 2g + 1

�n+1. �2.63�

This is a rule rather than exception as expected from the relations between the neighboring energy
levels, �2.22� and �2.23�. The right-hand sides are the results of the application. In particular, when
acting on the ground state �0, the annihilation �a��−�� and creation �a��+�� operators are propor-
tional to the factorization operators A and A† of the Hamiltonian H=A†A /2, respectively:

a��−��0 = �− sin x
d

dx
+ g cos x��0 = − sin x� d

dx
− g cot x��0 = ���x�A�0 = 0,

a��+��0 = �sin x
d

dx
+ g cos x��0 = − sin x�−

d

dx
− g cot x��0 = ���x�A†�0. �2.64�

In a rough sense, the factor ���x�=−sin x, in the creation operator, compensates the downward
shift of the parameter �g� caused by A†. Similar situations are encountered in all the other
quantum systems. In particular, for the systems with equispaced spectrum En=an �a: constant�, the
factorization of a��−� and a��+� into A and A† is n independent, �2.94�, �3.14�, �3.15�, and �3.92�.
Their significance will be discussed in some detail for the “discrete” quantum mechanics cases in
Appendix B.

The following interesting commutation relations ensue from �2.62� and �2.63�:

�H,a��±�� = ± �	2H�a��±� + a��±�	2H��/2, �2.65�

�a��−�,a��+�� = 2	2H�, �2.66�

a��−�a��+� + a��+�a��−� = 4H + 2g . �2.67�

The relation �2.67� could be accepted as a substitute of the property �iii� of the annihilation-
creation operators discussed previously.

By the similarity transformation in terms of the ground state wave function �0�x�= �sin x�g, we
obtain the so-called shift down and up operators for the Jacobi �Gegenbauer� polynomial �=g
−1/2�:

down: �1 − �2�
d

d�
Pn

�,���� + n�Pn
�,���� = �n + �Pn−1

�,���� , �2.68�
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up: − �1 − �2�
d

d�
Pn

�,���� + �n + 2g��Pn
�,���� =

2�n + 1��n + 2g�
2n + 2g + 1

Pn+1
�,���� . �2.69�

As expected they are the same Jacobi polynomials of degree n−1 and n+1. It should be stressed
that these shift down-up operators are naturally derived from our annihilation-creation operators
without assuming the explicit form of the three term recursion relation.

The coherent state 
 �2.48� is


�x� = �0�x��
n=0

�

�2��n � + 3/2�n

� + 1�n
Pn

�,��cos x� = �0�x��
n=0

�

�2��n �g + 1�n

�2g�n
Cn

�g��cos x� , �2.70�

where we have used a�−��n=a��−��n / �2�n+g��, �2.62� and �2.54�. A generating function of the
Gegenbauer polynomials ��: arbitrary�,6

�
n=0

�

tn ���n

�2g�n
Cn

�g���� = �1 − �t�−�
2F1���/2,�� + 1�/2

g + 1/2
� ��2 − 1�t

�1 − �t�2� , �2.71�

gives a concise expression of the coherent state 
:


�x� = �1 − 2� cos x�−g−1
2F1���g + 1�/2,g/2 + 1

g + 1/2
� − 2� sin2 x

�1 − 2� cos x�2� . �2.72�

Here 2F1 is the hypergeometric function �C3�. For the annihilation operator a��−�, the correspond-
ing coherent state 
� is


��x� = �0�x��
n=0

�
�n

� + 1�n
Pn

�,��cos x� = �0�x��
n=0

�
�n

�2g�n
Cn

�g��cos x� . �2.73�

A generating function of the Gegenbauer polynomials,6

�
n=0

�
tn

�2g�n
Cn

�g���� = e�t
0F1�� −

g + 1/2
� ��2 − 1�t2

4
� , �2.74�

gives a concise expression of the coherent state 
�:


��x� = ��g + 1/2�e� cos x��/2�1/2−g	sin xJg−1/2�� sin x� , �2.75�

in which Ja�x� is the Bessel function �C5�.

2. Deformed harmonic oscillator × Meixner-Pollaczek polynomial

The deformed harmonic oscillator is a simplest example of shape invariant discrete quantum
mechanics. The Hamiltonian of discrete quantum mechanics studied in this article has the follow-
ing form2 �with some modification for the Askey-Wilson case in Sec. II A 3�:

H=
def

�	V�x�ep	V�x�* + 	V�x�*e−p	V�x� − V�x� − V�x�*�/2. �2.76�

The eigenvalue problem for H, H�=E� is a difference equation, instead of a second order
differential equation. Let us define S±, T±, and A by

S+ =
def

ep/2	V�x�*, S− =
def

e−p/2	V�x�, S+
† = 	V�x�ep/2, S−

† = 	V�x�*e−p/2, �2.77�

T+ =
def

S+
†S+ = 	V�x�ep	V�x�*, T− =

def

S−
†S− = 	V�x�*e−p	V�x� , �2.78�
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A=
def

i�S+ − S−�, A† = − i�S+
† − S−

†� . �2.79�

Then the Hamiltonian is factorized

H = �T+ + T− − V�x� − V�x�*�/2 = �S+
† − S−

†��S+ − S−�/2 = A†A/2. �2.80�

The potential function V�x� of the deformed harmonic oscillator is

V�x� = a + ix, − � � x � � , a 	 0. �2.81�

As shown in some detail in our previous paper,2 it has an equispaced spectrum and the corre-
sponding eigenfunctions are a special case of the Meixner-Pollaczek polynomial Pn

�a��x ;� /2�
�C10�,

En = n, n = 0,1,2, . . . , �2.82�

�0�x� = 	��a + ix���a − ix�, ��x� = x , �2.83�

�n�x� = �0�x�Pn�x�, Pn�x� =
def

Pn
�a��x; �

2 � , �2.84�

which could be considered as a deformation of the Hermite polynomial.
The Poisson bracket relations are

�H,x� = − 	a2 + x2 sinh p, �H,�H,x�� = − x , �2.85�

leading to the harmonic oscillation,

x�t� = x�0�cos t + 	a2 + x2�0� sinh p�0� sin t , �2.86�

which endorses the naming of the deformed harmonic oscillator. The corresponding quantum
expressions are also simple:

�H,x� = − i�T+ − T−�/2, �H,�H,x�� = x , �2.87�

eitHxe−itH = x cos t + i�H,x�sin t = x cos t + �T+ − T−�/2 sin t . �2.88�

The annihilation and creation operators are

a��±� = 2a�±� = x ± �H,x� = x � i�T+ − T−�/2, �2.89�

which are hermitian conjugate to each other. These operators were also introduced by Degasperis
and Ruijsenaars12 by a different reasoning from ours. By similarity transformation in terms of the
ground state wave function �0�x�=	��a+ ix���a− ix�, we obtain

�0�x�−1a��±��0�x� = x � i�V�x�ep − V�x�*e−p�/2. �2.90�

The action of the annihilation creation operators on the eigenvectors

a��−��n = �n + 2a − 1��n−1, a��+��n = �n + 1��n+1 �2.91�

is consistent with the three term recurrence relation of the Meixner-Pollaczek polynomial:

�n + 1�Pn+1
�a� �x; �

2 � − 2xPn
�a��x; �

2 � + �n + 2a − 1�Pn−1
�a� �x; �

2 � = 0. �2.92�

From these it is easy to verify the su�1,1� commutation relations including the Hamiltonian H:
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�H,a��±�� = ± a��±�, �a��−�,a��+�� = 2�H + a� . �2.93�

It is interesting to note that a�±� are factorized by the factors of the Hamiltonian H=A†A /2,

4a�−� = X†A, 4a�+� = A†X , �2.94�

X =
def

S+ + S−, X† = S+
† + S−

† . �2.95�

These X and X† compensate the shift of the parameter a caused by A† and A. See Appendix B for
more details.

The coherent state �2.48�, �2.49�, is simply obtained from formula �2.91� and a��−�=2a�−�:


�x� = �0�x��
n=0

�
�2��n

�2a�n
Pn

�a��x; �
2 � . �2.96�

A generating function of the Meixner-Pollaczek polynomial,6

�
n=0

�
tn

�2a�n
Pn

�a��x; �
2 � = eit

1F1��a + ix

2a
� − 2it� , �2.97�

gives a concise expression of the coherent state 
:


�x� = �0�x�e2i�
1F1��a + ix

2a
� − 4i�� , �2.98�

in which 1F1 is the hypergeometric function �C3�.

3. Askey-Wilson polynomial

The Askey-Wilson polynomial belongs to the so-called q-scheme of hypergeometric
polynomials.6 It has four parameters a1 ,a2 ,a3, and a4 on top of q �0�q�1�, and is considered as
a three-parameter deformation of the Jacobi polynomial. As shown in previous articles,3,2 it also
describes the equilibrium positions of the trigonometric Ruijsenaars-Schneider systems based on
the BC root system.13 Thus, as a dynamical system, it could be called a deformed Pöschl-Teller
potential or one body case of the trigonometric BC Ruijsenaars-Schneider systems. The quantum-
classical correspondence has some more subtlety than the other discrete quantum mechanical
systems treated in Sec. III B because of another “classical” limit q→1.

The factorized Hamiltonian of the Askey-Wilson polynomial has a bit different form from that
of the Meixner-Pollaczek polynomial �2.76�:

H=
def

�	V�z�qD	V�z�* + 	V�z�*q−D	V�z� − V�z� − V�z�*�/2, �2.99�

with a potential function V�z�:

V�z� =
� j=1

4
�1 − ajz�

�1 − z2��1 − qz2�
, z = eix, 0 � x � �, D =

def

z
d

dz
= − i

d

dx
= p . �2.100�

We assume −1�a1 ,a2 ,a3 ,a4�1 and a1a2a3a4�q. This Hamiltonian is also factorized H
=A†A /2, where A and A† are given in �2.77�–�2.79� with the replacement V�x�⇒V�z�,
e±p/2⇒q±D/2, etc. The eigenvalues and eigenfunctions are:2,3

En = �q−n − 1��1 − a1a2a3a4qn−1�/2, n = 0,1,2, . . . , �2.101�
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�0�x� =	 �z2;q��

� j=1

4
�ajz;q��

�z−2;q��

� j=1

4
�ajz

−1;q��

, ��x� =
z + z−1

2
= cos x , �2.102�

�n�x� = �0�x�Pn�cos x�, Pn��� =
def

pn��;a1,a2,a3,a4�q� , �2.103�

in which pn�� ;a1 ,a2 ,a3 ,a4 �q� is the Askey-Wilson polynomial �C14�.
The presence of the q factor has only superficial effects at the classical level with the Hamil-

tonian ��=log q�:

Hc = 	Vc�z�Vc�z�* cosh �p − �Vc�z� + Vc�z�*�/2, Vc�z� =
� j=1

4
�1 − ajz�

�1 − z2�2 , �2.104�

�Hc,cos x� = �	� j=1

4
�1 − ajz�� j=1

4
�1 − aj/z�/�4 sin x�sinh �p , �2.105�

�Hc,�Hc,cos x�� = − cos x R0�Hc� − R−1�Hc� , �2.106�

R0�Hc� = �2�Hc
2 + c1Hc + c2�, R−1�Hc� = − �2�c3Hc + c4� , �2.107�

with coefficients c1 , . . . ,c4:

c1 = 1 + b4, c2 = �1 − b4�2/4, c3 = �b1 + b3�/4, c4 = �1 − b4��b1 − b3�/8. �2.108�

Here we use the abbreviation

b1 =
def

�
1�j�4

aj, b3 =
def

�
1�j�k�l�4

ajakal, b4 =
def

�
j=1

4

aj . �2.109�

The corresponding quantum expressions are

�H,cos x� = �q−1 − 1��z−1�1 − qz2�T+ + z�1 − qz−2�T−�/4, �2.110�

�H,�H,cos x�� = cos xR0�H� + �H,cos x�R1�H� + R−1�H� , �2.111�

R0�H� = q�q−1 − 1�2��H��2 − �1 + q−1�2b4/4� , �2.112�

R1�H� = q�q−1 − 1�2H�, H� =
def

H + �1 + q−1b4�/2, �2.113�

R−1�H� = − q�q−1 − 1�2��b1 + q−1b3�H/4 + �1 − q−2b4��b1 − b3�/8� . �2.114�

The two frequencies are:

�±�H� = �q−1 − 1���1 − q�H� ± �1 + q�	�H��2 − q−1b4�/2, �2.115�

in which

H��n = �q−n + b4qn−1�/2�n, ��H��2 − q−1b4��n = �q−n − b4qn−1�2/4�n. �2.116�

The annihilation-creation operators are
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a�±� = �±�q−1 − 1��z−1�1 − qz2�T+ + z�1 − qz−2�T−�/4 � cos x ���H�

± R−1�H��±�H�−1�/��+�H� − �−�H�� . �2.117�

Their effects on the eigenvectors are

a�−��n =
�1 − qn��1�j�k�4

�1 − ajakq
n−1�

2�1 − b4q2n−2��1 − b4q2n−1�
�n−1, �2.118�

a�+��n =
1 − b4qn−1

2�1 − b4q2n−1��1 − b4q2n�
�n+1, �2.119�

which are consistent with the three-term recurrence relation of the Askey-Wilson polynomial. The
“annihilation-creation” operators on the polynomial Pn�cos x� read

�0�x�−1a�±��0�x� · Pn�cos x� =
1

En+1 − En−1
�±�q−1 − 1��z−1�1 − qz2�V�z�qD

+ z�1 − qz−2�V�z�*q−D�/4 ± �En − En�1�cos x ±
R−1�En�
En±1 − En

�Pn�cos x� .

�2.120�

The coherent state is


�x� = �0�x��
n=0

�
�2��n

�q;q�n

�a1a2a3a4;q�2n

�1�j�k�4
�ajak;q�n

Pn�cos x� . �2.121�

We are not aware if a concise summation formula exists or not.

III. VARIOUS RESULTS

In this section we will briefly present many interesting results on the annihilation-creation
operators, their algebraic properties and coherent states, etc., for various exactly solvable quantum
mechanical systems, including the discrete quantum mechanical systems. All these solvable sys-
tems share shape invariance8,1,2 which is a purely quantum mechanical notion that guarantees
quantum solvability. But that property plays no active role in the present theory. On the other
hand, the sinusoidal motion exists at the classical and quantum levels. In Appendix A we will
show that a system realizing the exact sinusoidal motion is quite limited and that all of them
belong to the known shape invariant systems. In other words there are shape invariant systems that
do not have sinusoidal motion.

A. Ordinary quantum mechanical systems

1. x2+1/x2 potential

When a centrifugal barrier �a 1/x2 potential� is added, the harmonic oscillator keeps its exact
solvability, but the particle is restricted to a half line, either x	0 or x�0. This is the one-body
case of the well-known Calogero model.10,11 The eigenfunctions are described by the Laguerre
polynomial and the annihilation-creation operators within the su�1,1� scheme are well-known.4,14

Our unified theory predicts these operators naturally. The coherent and squeezed states in the
su�1,1� were already known.14 Its Hamiltonian, the eigenvalues and the eigenfunctions are:

H=
def

�p + ix − ig/x��p − ix + ig/x�/2, 0 � x � � , g 	 0, �3.1�
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En = 2n, n = 0,1,2, . . . , ��x� = x2, �3.2�

�n�x� = �n�x;g� = e−x2/2xgLn
���x2�,  =

def

g − 1/2, �3.3�

in which Ln
����� is the Laguerre polynomial �C7�.

The Poisson bracket relations are simple

�H,x2� = − 2px, �H,�H,x2�� = − 4�x2 − H − g� , �3.4�

leading to the simple sinusoidal motion

x2�t� = x2�0�cos 2t + �1 − cos 2t��H0 + g� + p�0�x�0�sin 2t . �3.5�

It is straightforward to verify x2�t�	0. The quantum theory is almost the same as the classical one:

�H,x2� = − i�xp + px�, �H,�H,x2�� = 4�x2 − H��, H� =
def

H + g + 1/2, �3.6�

eitHx2e−itH = x2 cos 2t + �1 − cos 2t�H� + �xp + px�/2 sin 2t , �3.7�

which leads to the following annihilation and creation operators:

a�±� = �x2 − H��/2 � i�xp + px�/4 = �� d

dx
� x�2

−
g�g − 1�

x2 �� 4. �3.8�

The action of these operators are �=g−1/2�

a�−��n = − �n + ��n−1, a�+��n = − �n + 1��n+1, �3.9�

which are consistent with the three term recurrence relation of the Laguerre polynomial

�n + 1�Ln+1
�� ��� + �� − 2n −  − 1�Ln

����� + �n + �Ln−1
�� ��� = 0. �3.10�

From these follow the su�1,1� relations

�H,a�±�� = ± 2a�±�, �a�−�,a�+�� = H� = H + g + 1/2. �3.11�

The coherent state �AOCS� �2.49� is obtained simply as


�x� = �
n=0

�
�− ��n

� + 1�n
�n�x� = �0�x�

e−��� + 1�
�− x2��/2 J�2x	− �� , �3.12�

in which a generating function of the Laguerre polynomial.6

�
n=0

�
tn

�� + 1�n
Ln

����x� = et
0F1�� −

� + 1
� − xt� �3.13�

and �C5� are used.
The annihilation and creation operators �3.8� are factorised by the factors of the Hamiltonian

H=A†A /2:

4a�−� = � d

dx
+ x +

g

x
� · A, A = i�p − ix + ig/x� , �3.14�
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4a�+� = A† · �−
d

dx
+ x +

g

x
�, A† = − i�p + ix − ig/x� . �3.15�

This is a degenerate case of �3.92� and the action of the other factors is to compensate the
parameter shifts caused by the operators A† and A:

�−
d

dx
+ x +

g

x
��n�x;g� = 2�n�x;g + 1� , �3.16�

� d

dx
+ x +

g

x
��n�x;g + 1� = �2n + 2g + 1��n�x;g� . �3.17�

2. Pöschl-Teller potential

The Pöschl-Teller potential has two parameters g and h and its eigenfunctions are related to
the Jacobi polynomial. It is the one body case of the BC type Sutherland systems.10,11 Its Hamil-
tonian, the eigenvalues and the eigenfunctions are:

H=
def

�p − ig cot x + ih tan x��p + ig cot x − ih tan x�/2, 0 � x � �/2, �3.18�

En = 2n�n + g + h�, n = 0,1,2, . . . , g,h 	 0, ��x� = cos 2x , �3.19�

�n�x� = �sin x�g�cos x�hPn
��,��cos 2x�, � =

def

g − 1/2,  =
def

h − 1/2, �3.20�

in which Pn
��,���� is the Jacobi polynomial �C8�. It is straightforward to evaluate the Poisson

brackets

�H,cos 2x� = 2p sin 2x , �3.21�

�H,�H,cos 2x�� = − cos 2x 8H� − 4�g2 − h2�, H� =
def

H + �g + h�2/2, �3.22�

leading to the solution of the initial value problem:

cos 2x�t� = �cos 2x�0� +
g2 − h2

2H0�
�cos�2t	2H0�� − p�0�sin 2x�0�

sin�2t	2H0��
	2H0�

−
g2 − h2

2H0�
.

�3.23�

Note that �cos 2x�t� � �1 is satisfied. The corresponding quantum expressions are

�H,cos 2x� = 2�i sin 2xp + cos 2x� , �3.24�

�H,�H,cos 2x�� = cos 2x�8H� − 4� + 4�H,cos 2x� + 4��2 − 2� , �3.25�

�±�H� = 2 ± 2	2H�. �3.26�

The exact operator solution reads
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eitH cos 2x e−itH = �i sin 2x p + cos 2x�
ei�+�H�t − ei�−�H�t

2	2H�
−

�2 − 2

2H� − 1

+ �cos 2x�2H� − 1� + �2 − 2�
1

	2H�
� ei�+�H�t

�+�H�
−

ei�−�H�t

�−�H� � . �3.27�

The annihilation and creation operators are

a��±�/2 = a�±�2	2H� = ± sin 2x
d

dx
+ cos 2x	2H� +

�2 − 2

	2H� ± 1
. �3.28�

It is now obvious that they �a��±�� are not hermitian conjugate to each other. When applied to the
eigenvector �n as 2En+ �g+h�2= �2n+g+h�2, we obtain:

a��−�/2�n = − sin 2x
d�n

dx
+ �2n + g + h�cos 2x�n +

�2 − 2

2n + � + 
�n =

4�n + ���n + �
2n + � + 

�n−1,

�3.29�

a��+�/2�n = sin 2x
d�n

dx
+ �2n + g + h�cos 2x �n +

�2 − 2

2n + � +  + 2
�n =

4�n + 1��n + � +  + 1�
2n + � +  + 2

�n+1.

�3.30�

The right-hand sides are the results of the application. From �3.29� and a��−��n=4�2n+g
+h�a�−��n, the coherent state 
 and 
� are


�x� = �0�x��
n=0

�

��/2�n �� +  + 2�2n

�� + 1�n� + 1�n
Pn

��,��cos 2x� , �3.31�


��x� = �0�x��
n=0

�

��/4�n

�� + 

2
+ 1�

n

�� + 1�n� + 1�n
Pn

��,��cos 2x� . �3.32�

We are not aware if concise summation formulas exist or not.

3. Soliton potential, or the symmetric Rosen-Morse potential

As is well-known −g�g+1� / cosh2 x potential is reflectionless for integer coupling constant g,
corresponding to the Korteweg de Vries �KdV� soliton. It has a finite number 1+ �g�� �the greatest
integer not equal or exceeding g� of bound states:

H=
def

�p + ig tanh x��p − ig tanh x�/2, − � � x � � , g 	 0, �3.33�

En = n�− n/2 + g�, n = 0,1, . . . ,�g��, ��x� = sinh x , �3.34�

�n�x� = i−n�cosh x�−gPn
�,��i sinh x�,  =

def

− g − 1/2. �3.35�

These eigenfunctions are real due to the parity Pn
��,��−x�= �−1�nPn

�,���x�. The Poisson brackets are

�H,sinh x� = − p cosh x, �H,�H,sinh x�� = sinh x 2H�, H� =
def

H − g2/2, �3.36�

leading to the solution of the initial value problem:
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sinh x�t� = sinh x�0�cos�t	− 2H0�� + p�0�cosh x�0�
sin�t	− 2H0��

	− 2H0�
. �3.37�

It describes sinusoidal motion for bound states H0��0 only. But the previous expression is valid
for the unbound motion H0�	0, too.

The corresponding quantum expressions are

�H,sinh x� = − i cosh x p − sinh x/2, �3.38�

�H,�H,sinh x�� = − sinh x�2H� + 1/4� − �H,sinh x� , �3.39�

�±�H� = − 1/2 ± 	− 2H�. �3.40�

The exact operator solution reads

eitHsinh x e−itH = �− i cosh xp − sinh x/2�
ei�+�H�t − ei�−�H�t

2	− 2H�
− sinh x

2H� + 1/4

2	− 2H�
� ei�+�H�t

�+�H�
−

ei�−�H�t

�−�H� � .

�3.41�

The annihilation and creation operators are

a��±� = a�±�2	− 2H� = � cosh x
d

dx
+ sinh x	− 2H�. �3.42�

When applied to the eigenvector �n, we obtain as 2En−g2=−�g−n�2:

a��−��n = cosh x
d�n

dx
+ �g − n�sinh x �n = �n + ��n−1, �3.43�

a��+��n = − cosh x
d�n

dx
+ �g − n�sinh x �n = −

�n + 1��n + 2 + 1�
n +  + 1

�n+1. �3.44�

We obtain the following interesting commutation relations:

�H,a��±�� = ± �	− 2H�a��±� + a��±�	− 2H��/2, �3.45�

�a��−�,a��+�� = 2	− 2H�, a��−�a��+� + a��+�a��−� = 4H + 2g , �3.46�

which look very similar to those for the 1/sin2 x potential �2.65�–�2.67�. In contrast to the 1/sin2 x
case, the present case has only finite dimensional representation, n=0,1 , . . . , �g��, that is from the
ground state to the highest level. There is no coherent state as the eigenvector of the annihilation
operator �3.42�.

4. Morse potential

This is another well-known example of exactly solvable potential with a finite number of
bound states:1

H=
def

�p + i�ex − ig��p − i�ex + ig�/2, − � � x � � , �,g 	 0, �3.47�

En = n�− n/2 + g�, n = 0,1, . . . ,�g��, ��x� = e−x, �3.48�
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�n�x� = e−�ex+gxe−nxLn
�2g−2n��2�ex� . �3.49�

The Poisson brackets are

�H,e−x� = pe−x, �H,�H,e−x�� = e−x2H� + �g, H� =
def

H − g2/2, �3.50�

leading to the solution of the initial value problem:

e−x�t� = �e−x�0� +
�g

2H0�
�cos�t	− 2H0�� − p�0�e−x�0�sin�t	− 2H0��

	− 2H0�
−

�g

2H0�
. �3.51�

It describes sinusoidal motion for bound states H0��0 only. But the previous expression is valid
for the unbound motion H0�	0, too. It is easy to verify e−x�t�	0.

The corresponding quantum expressions are

�H,e−x� = ie−xp − e−x/2, �3.52�

�H,�H,e−x�� = − e−x�2H� + 1/4� − �H,e−x� − ��g + 1/2� , �3.53�

�±�H� = − 1/2 ± 	− 2H�. �3.54�

The exact operator solution reads

eitHe−xe−itH = �ie−xp − e−x/2�
ei�+�H�t − ei�−�H�t

2	− 2H�
−

��g + 1/2�
2H� + 1/4

− �e−x�2H� + 1/4�

+ ��g + 1/2��
1

2	− 2H�
� ei�+�H�t

�+�H�
−

ei�−�H�t

�−�H� � . �3.55�

The annihilation and creation operators are

a��±� = a�±�2	− 2H� = ± e−x d

dx
+ e−x	− 2H� −

��2g + 1�
2	− 2H� � 1

. �3.56�

When applied to the eigenvector �n, we obtain as 2En−g2=−�g−n�2:

a��−��n = − e−xd�n

dx
+ �g − n�e−x�n −

��2g + 1�
2�g − n� + 1

�n =
4�2

2�g − n� + 1
�n−1, �3.57�

a��+��n = e−xd�n

dx
+ �g − n�e−x�n −

��2g + 1�
2�g − n� − 1

�n =
�n + 1��2g − n�

2�g − n� − 1
�n+1. �3.58�

B. Discrete quantum mechanical systems

For specifying the dynamical systems belonging to the discrete quantum mechanics,2,3 we use
the name of the polynomial eigenfunctions for want of universally accepted naming. The factor-
ized Hamiltonian is given by �2.76�.

1. Continuous Hahn polynomial „special case…

The factorized Hamiltonian of the continuous Hahn polynomial �special case� has a potential
function V depending on two parameters:

102102-19 Unified theory of annihilation-creation operators J. Math. Phys. 47, 102102 �2006�

                                                                                                                                    



V�x� = �a1 + ix��a2 + ix�, − � � x � � , a1,a2 	 0. �3.59�

The eigenvalues and eigenfunctions are

En = n�n + 2a1 + 2a2 − 1�/2, n = 0,1,2, . . . , �3.60�

�0�x� = 	� j=1

2
��aj + ix���aj − ix�, ��x� = x , �3.61�

�n�x� = �0�x�Pn�x�, Pn�x� =
def

pn�x;a1,a2,a1,a2� , �3.62�

in which pn�x ;a1 ,a2 ,a1 ,a2� is a special case of the continuous Hahn polynomial �C11�. This is a
two parameter deformation of the Hermite polynomial. Thus this dynamical system is a deformed
oscillator. The classical solution shows this fact clearly:

�H,x� = − 	�a1
2 + x2��a2

2 + x2�sinh p, �H,�H,x�� = − x�2H + �a1 + a2�2� , �3.63�

x�t� = x�0�cos�t	2H0 + �a1 + a2�2� + 	�a1
2 + x�0�2��a2

2 + x�0�2�sinh p�0�
sin�t	2H0 + �a1 + a2�2�

	2H0 + �a1 + a2�2
.

�3.64�

The corresponding quantum solution is also simple:

�H,x� = − i�T+ − T−�/2, �3.65�

�H,�H,x�� = x�2H� − 1/4� + �H,x�, 2H� =
def

2H + �a1 + a2 − 1/2�2, �3.66�

eitHxe−itH = �H,x�
ei�+�H�t − ei�−�H�t

2	2H�
+ x

− �−�H�ei�+�H�t + �+�H�ei�−�H�t

2	2H�
, �3.67�

�±�H� = 1/2 ± 	2H�. �3.68�

The annihilation and creation operators are:

a��±� = a�±�2	2H� = ± �H,x� � x���H� = � i�T+ − T−�/2 + x�	2H� � 1/2� . �3.69�

When applied to the eigenvector �n, we obtain as 2En+ �a1+a2−1/2�2= �n+a1+a2−1/2�2:

2a��−��n = i�T+ − T−��n + 2x�n + a1 + a2��n = �n + a1 + a2 − 1��n + 2a1 − 1��n + 2a2 − 1��n−1,

�3.70�

2a��+��n = − i�T+ − T−��n + 2x�n + a1 + a2 − 1��n =
�n + 1��n + 2a1 + 2a2 − 1�

n + a1 + a2
�n+1.

�3.71�

The similarity transformed operators act as

�0�x�−1a��±��0�x� · Pn�x� = �x�n + a1 + a2 − 1
2 �

1
2� �

i
2 �V�x�ep − V�x�*e−p��Pn�x� .

�3.72�

The coherent state 
 and 
� are
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�x� = �0�x��
n=0

�
�n�2a1 + 2a2�2n

�2a1�n�2a2�n�a1 + a2�n
2 Pn�x� , �3.73�


��x� = �0�x��
n=0

�
�2��n

�2a1�n�2a2�n�a1 + a2�n
Pn�x� . �3.74�

We do not know if these sums have concise expressions or not.

2. Continuous dual Hahn polynomial

The continuous dual Hahn polynomial has three parameters �a1 ,a2 ,a3� and is considered as a
two parameter deformation of the Laguerre polynomial Ln

���. The factorized Hamiltonian of the
continuous dual Hahn polynomial has a potential function V:

V�x� =
� j=1

3
�aj + ix�

2ix�2ix + 1�
, 0 � x � � , a1,a2,a3 	 0. �3.75�

As a dynamical system this is a deformed Calogero model, or a deformed x2+1/x2 potential. Like
the Calogero model it has a linear spectrum and the eigenfunctions are:

En = n/2, n = 0,1,2, . . . , �3.76�

�0�x� =	� j=1

3
��aj + ix�

��2ix�

� j=1

3
��aj − ix�

��− 2ix�
, ��x� = x2, �3.77�

�n�x� = �0�x�Pn�x2�, Pn��� =
def

Sn��;a1,a2,a3� , �3.78�

in which Sn�� ;a1 ,a2 ,a3� is the continuous dual Hahn polynomial �C12�. For deriving the classical
solution, let us note that the quantum potential �3.75� has acquired quantum corrections from the
classical one:

Vc�x� =
� j=1

3
�aj + ix�

�2ix�2 . �3.79�

The classical motion is simple:

�Hc,x
2� = −

	� j=1

3
�aj

2 + x2�

2x
sinh p , �3.80�

�Hc,�Hc,x
2�� = − x2/4 + 2Hc

2 + b1Hc + b2/4, b1 =
def

�
1�j�3

aj, b2 =
def

�
1�j�k�3

ajak, �3.81�

x2�t� = �x2�0� − 8Hc0
2 − 4b1Hc0 − b2�cos�t/2� + 8Hc0

2 + 4b1Hc0 + b2

+
	� j=1

3
�aj

2 + x2�0��

x�0�
sinh p�0�sin�t/2� . �3.82�

The quantum version is almost the same:

�H,x2� = − ix�T+ − T−� − �T+ + T−�/2, �3.83�
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�H,�H,x2�� = x2/4 + R−1�H�, R−1�H� = − �2H2 + �b1 − 1/2�H + b2/4� , �3.84�

eitHx2e−itH = 2i�H,x2�sin�t/2� + �x2 + 4R−1�H��cos�t/2� − 4R−1�H� . �3.85�

The annihilation and creation operators are:

a�±� = ± �H,x2� + x2/2 + 2R−1�H� = � ix�T+ − T−� � �T+ + T−�/2 + x2/2 + 2R−1�H� .

�3.86�

When applied to the eigenvector �n, we obtain:

a�−��n = − n �
1�j�k�3

�n + aj + ak − 1� · �n−1, �3.87�

a�+��n = − �n+1. �3.88�

The similarity transformed operators are:

�0�x�−1a�±��0�x� = x2/2 − 4H̃2 − 2�b1 − 1/2�H̃ − b2/2 � ��1/2 + ix�V�x�ep + �1/2 − ix�V�x�*e−p� ,

�3.89�

in which H̃=�0�x�−1H�0�x�= �V�x�ep+V�x�*e−p−V�x�−V�x�*� /2 is the Hamiltonian counterpart

at the polynomial level satisfying H̃Pn�x2�=n /2Pn�x2�, see Appendix C. The coherent state is


�x� = �0�x��
n=0

�
�− ��n

n ! �1�j�k�3
�aj + ak�n

Pn�x2� . �3.90�

We do not know if this sum has a concise expression or not. The commutation relations among H,
and a�±� are more complicated than su�1,1�:

�H,a�±�� = ± a�±�/2,

�a�−�,a�+�� = 32H3 + 24�b1 − 1/2�H2 + �4�b1 − 1/2�2 + 4b2 + 1�H + b1b2 − a1a2a3. �3.91�

As in the Meixner-Pollaczek case �2.94�, the annihilation and creation operators for the con-
tinuous dual Hahn polynomial factorise into the operators A and A† appearing in the Hamiltonian
H=A†A /2:

a�−� = X†A, a�+� = A†X . �3.92�

The operator X in this case reads

X = − iS+T+ + �x − iV�x − i
2�* − i

� j=1

3
�2aj − 1�

8�1 + x2�
�S+ + iS−T−

+ �x + iV�x − i
2� + i

� j=1

3
�2aj − 1�

8�1 + x2�
�S−. �3.93�

These X and X† compensate the shift of the parameters �a1 ,a2 ,a3� caused by A† and A, respec-
tively. See Appendix B for more details.
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3. Wilson polynomial

The Wilson polynomial has four parameters �a1 ,a2 ,a3 ,a4� and is considered as a three pa-
rameter deformation of the Laguerre polynomial Ln

���. The factorized Hamiltonian �2.76� of the
Wilson polynomial has a potential function V:

V�x� =
� j=1

4
�aj + ix�

2ix�2ix + 1�
, 0 � x � � , a1,a2,a3,a4 	 0. �3.94�

As a dynamical system this is another deformation of the Calogero model, or a deformed x2

+1/x2 potential. The spectrum is now quadratic in n and the eigenfunctions are:

En = n�n + �
j=1

4

aj − 1�/2, n = 0,1,2, . . . , �3.95�

�0�x� =	� j=1

4
��aj + ix�

��2ix�

� j=1

4
��aj − ix�

��− 2ix�
, ��x� = x2, �3.96�

�n�x� = �0�x�Pn�x2�, Pn��� =
def

Wn��;a1,a2,a3,a4� , �3.97�

in which Wn�� ;a1 ,a2 ,a3 ,a4� is the Wilson polynomial �C13�. The classical motion looks like a
cross between those of the continuous Hahn and the continuous dual Hahn potentials with the
classical potential Vc:

�Hc,x
2� = −

	� j=1

4
�aj

2 + x2�

2x
sinh p, Vc�x� =

� j=1

4
�aj + ix�

�2ix�2 �3.98�

�Hc,�Hc,x
2�� = − 2x2�Hc + c1� − R−1�Hc� , �3.99�

R−1�Hc� = − 2�Hc
2 + c2Hc + c3�, c1 = b1

2/8, c2 = b2, c3 = b1b3/4, �3.100�

x2�t� = �x2�0� +
R−1�Hc0�

2�Hc0 + c1��cos�t	2�Hc0 + c1�� −
R−1�Hc0�

2�Hc0 + c1�

+
	� j=1

4
�aj

2 + x2�0��

2x�0�
sinh p�0�

sin�t	2�Hc0 + c1��
	2�Hc0 + c1�

, �3.101�

where we use the abbreviation

b1 =
def

�
1�j�4

aj, b2 =
def

�
1�j�k�4

ajak, b3 =
def

�
1�j�k�l�4

ajakal. �3.102�

The quantum version has almost the same form with quantum corrections in the coefficients
c1, c2, and c3:

�H,x2� = − ix�T+ − T−� − �T+ + T−�/2, �3.103�

�H,�H,x2�� = �H,x2� + 2x2�H + c1� + R−1�H� , �3.104�
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R−1�H� = − 2�H2 + c2H + c3� , �3.105�

c1 = b1�b1 − 2�/8, c2 = b2 − b1/2, c3 = �b1 − 2�b3/4, �3.106�

eitHx2e−itH = �H,x2�
ei�+�H�t − ei�−�H�t

2	2H�
−

R−1�H�
2�H + c1�

+ �x2 +
R−1�H�

2�H + c1��− �−�H�ei�+�H�t + �+�H�ei�−�H�t

2	2H�
. �3.107�

�±�H� = 1/2 ± 	2H�, 2H� =
def

2H + 2c1 + 1/4. �3.108�

The annihilation and creation operators are

a��±� = a�±�2	2H� = ± �H,x2� � x2���H� +
R−1�H�

	2H� ± 1/2

= � ix�T+ − T−� � �T+ + T−�/2 � x2���H� +
R−1�H�

	2H� ± 1/2
. �3.109�

When applied to the eigenvector �n, we obtain as 2En+2c1+1/4= �2n+b1−1�2 /4:

a��−��n = −
n�1�j�k�4

�n + aj + ak − 1�

�2n + b1 − 2��2n + b1 − 1�
�n−1, �3.110�

a��+��n = −
n + b1 − 1

�2n + b1 − 1��2n + b1�
�n+1. �3.111�

The similarity transformed operators act as

�0�x�−1a��±��0�x� · Pn�x2� = �±�En − En�1�x2 ±
R−1�En�
En±1 − En

� ��1/2 + ix�V�x�ep

+ �1/2 − ix�V�x�*e−p��Pn�x2� . �3.112�

The coherent state 
 and 
� are


�x� = �0�x��
n=0

�
�− ��n

n!

�a1 + a2 + a3 + a4�2n

�1�j�k�4
�aj + ak�n

Pn�x2� , �3.113�


��x� = �0�x��
n=0

�
�− 2��n

n!

��a1 + a2 + a3 + a4�/2�n

�1�j�k�4
�aj + ak�n

Pn�x2� . �3.114�

IV. SUMMARY AND COMMENTS

Unified theory of annihilation-creation operators a�±� is developed for various exactly solvable
quantum mechanical systems possessing the sinusoidal coordinate. It applies to most of the degree
one solvable quantum mechanical systems as well as the solvable discrete quantum mechanical
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systems, which are also shape invariant.2 The eigenfunctions of the latter are described by the
Askey-scheme of hypergeometric orthogonal polynomials.6 The method provides an independent
algebraic solution of these quantum systems. The energy spectrum is obtained à la Heisenberg and
Pauli from the Heisenberg operator solution for the ‘sinusoidal coordinate’ �, eitH�e−itH and the
entire eigenfunctions are explicitly obtained as ��a�+��n�0�, n=0,1 , . . ., in which �0 is determined
by a�−��0=0. Various examples are worked out in Secs. II and III. It also applies to theories with
a finite number of bound states. It should be stressed that these annihilation-creation operators are
natural ones containing the differential �difference� operators, in contradistinction to those
annihilation-creation operators introduced in the algebraic theory of coherent states.9 By a simi-
larity transformation in terms of the ground state wavefunction �0, the Heisenberg operator solu-
tion gives the structure relation for the corresponding orthogonal polynomials5 and the
annihilation-creation operators provide their shift down-up operators. Another characteristic fea-
ture is the uniqueness. Except for the overall factor, which is intrinsically undetermined, the action
a�±��n is completely determined by the Hamiltonian of the system. This means that the relative
weights of the terms in a�±��n are governed by the energy spectrum. We have shown in some detail
that this type of algebraic exact solvability is valid at both classical and quantum levels. This is in
good contrast with shape-invariance, which is a strictly quantum notion. The necessary and suf-
ficient condition for the existence of the sinusoidal coordinate is worked out for the ordinary
quantum mechanical systems in Appendix A. It is a good challenge to derive a corresponding
result for the ‘discrete’ quantum mechanical systems.

Generalization of the present formalism to multiparticle systems is highly desirable. Simplest
multiparticle systems possessing the sinusoidal coordinate and the corresponding Heisenberg op-
erator solution is the Calogero systems based on any root system.11 In fact a more general Hamil-
tonian

H =
1

2�
j=1

n

�pj
2 + xj

2� + V�x�, �
j=1

n

xj
�

�xj
V�x� = − 2V�x� , �4.1�

�H,�H,��� = 4�� − H�, � = �
j=1

n

xj
2, �4.2�

of harmonic oscillators modified by a generic homogeneous degree minus two potential has the
same property. The corresponding eigenfunctions are the Laguerre polynomials again.15,11 As is
well known the annihilation-creation operators of the harmonic oscillator have a quite wide ap-
plicability in many branches of physics. We wonder if the newly found annihilation-creation
operators for the other solvable quantum mechanical systems might find an equally wide range of
applications.
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APPENDIX A: DETERMINATION OF THE POTENTIALS HAVING THE SINUSOIDAL
COORDINATE

We have seen that the existence of the sinusoidal coordinate or the exact Heisenberg operator
solution �2.14� leads to the unified definition of the annihilation-creation operators. All the ex-
amples discussed in the text share the common property of “shape-invariance,” thanks to which
the corresponding quantum systems are exactly solvable. Here in Appendix A we analyse, within
the context of ordinary quantum mechanics, the necessary and sufficient condition for the exis-
tence of the sinusoidal coordinate and show that such systems constitute a sub-group of known
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shape-invariant quantum mechanics. For the discrete quantum mechanical systems, writing down
corresponding conditions is easy. It would be a good challenge to provide a complete list of
discrete quantum mechanical systems admitting the sinusoidal coordinate or the exact Heisenberg
operator solution.

For a given pair ���x� ,H� of a coordinate function ��x� and a Hamiltonian H to satisfy the
exact Heisenberg operator solution �2.14� is equivalent to the condition �2.12� that the multiple
commutators of H with � form a closed algebra at level two

�adH�2��x� 
 �H,�H,��x��� = �R0�H� + �H,��x��R1�H� + R−1�H� . �A1�

Here the coefficients R0�H�, R1�H�, and R−1�H� are polynomials in the Hamiltonian H. It should
be stressed that this condition is purely algebraic and the knowledge that the eigenfunctions have
the general structure �2.3� is irrelevant. The latter �2.3� is a consequence of the condition �A1�. For
the ordinary quantum mechanical system with potential V�x�

H = −
1

2

d2

dx2 + V�x� , �A2�

the commutator between H and � reads

�H,�� = − ��
d

dx
−

1

2
��, �A3�

�ad H�2� = ��
d2

dx2 + ��
d

dx
+

1

4
��� + ��V�, �A4�

in which primes denote differentiation with respect to x. From �A4� we see that the l.h.s. of �A1�
contains the derivative operator �the momentum operator� at most quadratic degree. So must be
the r.h.s. since the momentum operator can come in as a part of H �as p2 /2� or as �H ,��, see �A3�.
Then we can parametrize

R0�H� = r0
�1�H + r0

�0�, R1�H� = r1, R−1�H� = r−1
�1�H + r−1

�0�, �A5�

in which rj
�k� are all constants. Then the coefficients of the operators d2 /dx2, d /dx, and the function

part of �A1� give the conditions:

d2�

dx2 = −
1

2
�r0

�1�� + r−1
�1�� , �A6�

d3�

dx3 = − r1
d�

dx
, �A7�

1

4

d4�

dx4 +
d�

dx

dV

dx
= −

1

2
r1

d2�

dx2 + �r0
�1�� + r−1

�1��V + r0
�0�� + r−1

�0�. �A8�

The first condition �A6� simply means that ��x� is either a trigonometric or a hyperbolic function
of x which gives an exponential function or a quadratic and linear polynomial in x in the degen-
erate limits. By comparing �A6� and �A7� we obtain

r0
�1� = 2r1. �A9�

Then �A8� reduces to
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d�

dx

dV

dx
+

d2�

dx2 �2V +
1

4
r1� = r0

�0�� + r−1
�0�,

which integrates easily when multiplied by d� /dx:

�d�

dx
�2�V +

r1

8
� =

r0
�0�

2
�2 + r−1

�0�� + c . �A10�

Here c is the constant of integration. Thus we have determined the possible form of the potential
V in terms of the ‘sinusoidal coordinate’ ��x� and its first derivative d� /dx, with five parameters
r1, r0

�0�, r−1
�1�, r−1

�0� and c in �A10� and two more possible constants of integration of �A6�:

V�x� =
1

�d�

dx
�2� r0

�0�

2
�2 + r−1

�0�� + c� −
r1

8
. �A11�

The actual number of essentially free parameters is much less, as the origin of the quadratic
potential, or the location of the singularity, etc, could be freely adjusted by introducing new
variable xnew=�x+ �Hnew=H /�2�. The condition that the Hamiltonian must be bounded from
below imposes some constraints on the parameters. The overall additive constant is fixed uniquely
when the ground state energy is required to be vanishing E0=0.

It is rather straightforward to determine all the potentials possessing the ‘sinusoidal coordi-
nate’ and thus algebraically exactly solvable. They all belong to the known group of shape-
invariant potentials. Except for the trivial case V=0, we have

1. Rational case, r1=0. The generic solution of �A6� is

��x� = −
1

4
r−1

�1�x2 + c1x + c2, �A12�

with c1 and c2 being the constant of integration. Two special cases are of interest: ��x�=x
gives the harmonic oscillator and ��x�=x2 leads to the x2+1/x2 potential discussed in Sec.
III A 1.

2. Trigonometric case, r1	0. The generic solution of �A6� is

��x� = −
r−1

�1�

2r1
+ c1 cos	r1x + c2 sin	r1x , �A13�

with c1 and c2 being real constants of integration due to the reality �hermiticity� of �. By
rescaling and shift of the coordinate x, it reduces to the Pöschl-Teller potential discussed in
Sec. III A 2. The 1/sin2 x potential in Sec. II A 1 and the symmetric top are obtained as
degenerate cases.

3. Hyperbolic and exponential cases, r1�0. The generic solution of �A6� is

��x� = −
r−1

�1�

2r1
+ c1 cosh	− r1x + c2 sinh	− r1x , �A14�

in which the constants of integration c1 and c2 could be vanishing or equal c1= ±c2. The
generic case leads to the hyperbolic Pöschl-Teller potential and the degenerate cases contain
the soliton potential in Sec. III A 3 and hyperbolic symmetric tops and the Morse potential in
Sec. III A 4, etc. We could not discuss all due to space limitation.

In all these examples, the prepotential W has also a simple expression in terms of � and
d� /dx:
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dW

dx
=

a� + b

d�

dx

, a = − 	r0
�0� + r1

2/4, b =
2r−1

�0�

2a + r1
+

r−1
�1�

4
. �A15�

Here the prepotential W is related to the ground state wave function �0 and thus to the potential
V as

�0�x� = eW�x�, V =
1

2
��dW

dx
�2

+
d2W

dx2 � ,

and it plays an important role in supersymmetric �shape-invariant� quantum mechanics.1,16

It should be stressed that not all shape-invariant and exactly solvable potentials admit the
sinusoidal coordinate. Such examples are the Kepler problems in rational, spherical and hyperbolic
coordinates and the Rosen-Morse potential, respectively:

V�x� =
1

2
�−

2

x
+

g�g − 1�
x2 +

1

g2� , �A16�

V�x� =
1

2
�− 2� cot x +

g�g − 1�
sin2 x

+
�2

g2 − g2� , �A17�

V�x� =
1

2
�− 2� coth x +

g�g − 1�
sinh2 x

+
�2

g2 + g2� , �A18�

V�x� =
1

2
�2� tanh x −

g�g + 1�
cosh2 x

+
�2

g2 + g2� . �A19�

Their wave functions do not have the general structure �2.3�, either.

APPENDIX B: INTERPRETATION IN TERMS OF SHAPE INVARIANCE

As shown in Sec. II, the annihilation-creation operators are completely determined once the
closed relationship �2.12� among �, �H ,�� and �H , �H ,��� is obtained. Although it plays no
active role in the determination of the annihilation-creation operators, shape invariance is the
common property underlying all these exactly solvable Hamiltonians discussed in this paper.
Therefore it is interesting as well as illuminating to understand the mechanism of the annihilation-
creation operators within the framework of shape invariance. For this purpose we concentrate on
the annihilation-creation operators of the Meixner-Pollaczek polynomials �2.94� and of the con-
tinuous dual Hahn polynomials �3.92�, which factorize into the operators A and A† constituting
the shape invariant Hamiltonian H=A†A /2. Another motivation of this appendix is to provide a
bridge between the physics of discrete quantum mechanics2 and the analysis of Askey-scheme of
hypergeometric polynomials.6 The latter focuses on the polynomial part of the eigenfunctions,
whose orthogonal measure is provided by the ground state wave function �2.4�.

Let us start with recapitulating the rudimentary facts of the shape-invariant discrete quantum
mechanics as developed in Ref. 2. Knowledgeable readers may jump to the main results
�B26�–�B29�, but some intermediate results �B7� and �B13�–�B17� would also be interesting in
connection with the sinusoidal coordinate ��x�.

A shape invariant quantum mechanical system consists of a series of isospectral Hamiltonians
�H���� parametrised by �a set of� parameters �= ��1 ,�2 , . . . �:

H��� = A���†A���/2, �n�x;�� = �0�x;��Pn���x�;��, En���, etc.

Shape invariance is tersely expressed as
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A���A���† = A�� + ��†A�� + �� + 2E1��� , �B1�

where � is a shift of the parameter. �In the case of the Askey-Wilson polynomials, this is modified
to A���A���†=q2��A��*q��†A��*q��+2E1���, where �� is a constant and �*q�

= ��1q�1 ,�2q�2 , ¯ ��. The operator A��� maps the eigenvectors of H��� to those of H��+�� and
the other operator A���† acts in the opposite direction. In each case studied in this article, the
parameter � and the shift � are

Meixner-Pollaczek: � = a, � = 1/2, �B2�

continuous Hahn: � = �a1,a2�, � = �1/2,1/2� , �B3�

continuous dual Hahn: � = �a1,a2,a3�, � = �1/2,1/2,1/2� , �B4�

Wilson: � = �a1,a2,a3,a4�, � = �1/2,1/2,1/2,1/2� , �B5�

Askey − Wilson: � = �a1,a2,a3,a4�, � = �1/2,1/2,1/2,1/2�, �� = − 1/2. �B6�

The ground state �0�x� and the orthogonal polynomial Pn���x�� are given in �2.83� and �2.84�,
�3.61� and �3.62�, �3.77� and �3.78�, �3.96� and �3.97�, and �2.102� and �2.103�. These ground
states satisfy �for the Askey-Wilson polynomials, this relation reads �0�x− i� /2 ;�*q��
=	V�z ;����x− i� /2��0�x ;��, where �=log q�

�0�x − i/2;� + �� = 	V�x;����x − i/2��0�x;�� , �B7�

where ��x�����x� is given by

Meixner-Pollaczek: ��x� = 1, �B8�

continuous Hahn: ��x� = 1, �B9�

continuous dual Hahn: ��x� = 2x , �B10�

Wilson: ��x� = 2x , �B11�

Askey-Wilson: ��x� = − 2 sin x = i�z − z−1� . �B12�

Let us consider S±���, T±���, A��� given in �2.77�–�2.79�. By using the property �B7�, we
have

�0�x;� + ��−1 S±����0�x;�� = ��x�−1e±p/2, �B13�

�0�x;��−1 S±���†�0�x;� + �� = �V�x;��ep/2��x�
V�x;��*e−p/2��x� .

�B14�

�In the case of the Askey-Wilson polynomials, the following replacement is needed: �
+�⇒�*q�, e±p/2⇒q±D/2, V�x ;��⇒V�z ;��. Hereafter we will omit similar remarks.� From this,
we obtain

F��� =
def

�0�x;� + ��−1A����0�x;�� = i��x�−1�ep/2 − e−p/2� , �B15�
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B��� =
def

�0�x;��−1A���†�0�x;� + �� = − i�V�x;��ep/2 − V�x;��*e−p/2���x� , �B16�

T˜±��� =
def

�0�x;��−1T±����0�x;�� = �V�x;��ep

V�x;��*e−p.
�B17�

Therefore the similarity transformed Hamiltonian is

H˜��� =
def

�0�x;��−1H����0�x;�� = B���F���/2 = �T˜+��� + T˜−��� − V�x;�� − V�x;��*�/2.

�B18�

which acts on Pn���x� ;�� as H̃���Pn���x� ;��=En���Pn���x� ;��.
The forward shift operator F��� and backward shift operator B��� act on Pn�� ;�� as

F���Pn��;�� = fn���Pn−1��;� + �� , �B19�

B���Pn��;� + �� = bn���Pn+1��;�� , �B20�

where fn��� and bn��� are constants satisfying the relation fn���bn−1��� /2=En���:

Meixner-Pollaczek: fn��� = 2, bn��� = n + 1, �B21�

continuous Hahn: fn��� = n + 2a1 + 2a2 − 1, bn��� = n + 1, �B22�

continuous dual Hahn: fn��� = − n, bn��� = − 1, �B23�

Wilson: fn��� = − n�n + � j=1

4
aj − 1�, bn��� = − 1, �B24�

Askey-Wilson: fn��� = − qn/2�q−n − 1��1 − a1a2a3a4qn−1�, bn��� = − q−�n+1�/2. �B25�

For the Meixner-Pollaczek and the continuous dual Hahn cases, we have seen that the
annihilation-creation operators are factorized a�−��X†A and a�+��A†X, �2.94�, �3.92�. By using
�B13�, �B14�, and �B17�, �0�x ;�+��−1X����0�x ;�� and �0�x ;��−1 X���†�0�x ;�+�� can be writ-
ten down explicitly. They act on Pn�� ;�� as for the Meixner-Pollaczek case:

�0�x;� + ��−1X����0�x;�� · Pn��;�� = 2Pn��;� + �� , �B26�

�0�x;��−1X���†�0�x;� + �� · Pn��;� + �� = �n + 2a�Pn��;�� , �B27�

and for the continuous dual Hahn case:

�0�x;� + ��−1X����0�x;�� · Pn��;�� = Pn��;� + �� , �B28�

�0�x;��−1X���†�0�x;� + �� · Pn��;� + �� = �
1�j�k�3

�n + aj + ak� · Pn��;�� . �B29�

Therefore X† �X� compensates the parameter shift caused by A �A†�, so that the effect of a�−� �a�+��
is to give the polynomial with the same parameter � of degree one lower �higher�. This result is
new.

Let us close this appendix with a remark on the formal definition of the annihilation-creation
operators used within the framework of shape-invariant quantum mechanics.9,2 A unitary operator
U �U†� is defined as a map between two orthonormal bases with neighbouring parameters,
��̂n�x ;��� and ��̂n�x ;�+���:
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U�̂n�x;�� =
def

�̂n�x;� + ��, U†�̂n�x;� + �� = �̂n�x;�� . �B30�

This allows to introduce new annihilation-creation operators in a factorized form

â =
def

U†A���, â† = A���†U , �B31�

which satisfy H= â†â /2=A���†A��� /2. The operator U is rather formal and it cannot be ex-
pressed as a differential or a difference operator. This operator U can be considered as unitarisation
of the natural factorization operator X discussed above.

APPENDIX C: SOME DEFINITIONS RELATED TO THE HYPERGEOMETRIC AND
q-HYPERGEOMETRIC FUNCTIONS

For reader’s convenience we collect several definitions related to the �q-�hypergeometric
functions.6

• Pochhammer symbol �a�n:

�a�n =
def

�
k=1

n

�a + k − 1� = a�a + 1� ¯ �a + n − 1� = ��a + n�/��a� . �C1�

• q-Pochhammer symbol �a ;q�n:

�a;q�n =
def

�
k=1

n

�1 − aqk−1� = �1 − a��1 − aq� ¯ �1 − aqn−1� . �C2�

• hypergeometric series rFs:

rFs��a1, . . . ,ar

b1, . . . ,bs
�z� =

def

�
n=0

�
�a1, . . . ,ar�n

�b1, . . . ,bs�n

zn

n!
, �C3�

where �a1 , . . . ,ar�n =
def

� j=1
r �aj�n= �a1�n¯ �ar�n.

• q-hypergeometric series �the basic hypergeometric series� r�s:

r�s��a1, . . . ,ar

b1, . . . ,bs
�q;z� =

def

�
n=0

�
�a1, . . . ,ar;q�n

�b1, . . . ,bs;q�n
�− 1��1+s−r�nq�1+s−r�n�n−1�/2 zn

�q;q�n
, �C4�

where �a1 , . . . ,ar ;q�n =
def

� j=1
r �aj ;q�n= �a1 ;q�n¯ �ar ;q�n.

• Bessel function Ja�z�:

Ja�z� =
def �z/2�a

��a + 1� 0F1�� −

a + 1
� −

z2

4
� . �C5�

• Hermite polynomial Hn�x�:

Hn�x� =
def

�2x�n
2F0��− n/2,− �n − 1�/2

−
� −

1

x2� . �C6�

• Laguerre polynomial Ln
����x�:

Ln
����x� =

def�� + 1�n

n! 1F1�� − n

� + 1
�x� . �C7�

• Jacobi polynomial Pn
��,��x�:

102102-31 Unified theory of annihilation-creation operators J. Math. Phys. 47, 102102 �2006�

                                                                                                                                    



Pn
��,��x� =

def�� + 1�n

n! 2F1��− n,n + � +  + 1

� + 1
�1 − x

2
� , �C8�

which satisfies Pn
�,���x�= �−1�nPn

��,��−x�.
• Gegenbauer polynomial Cn

����x�:

Cn
����x� =

def �2��n

�� + 1/2�n
Pn

��−1/2,�−1/2��x� . �C9�

• Meixner-Pollaczek polynomial Pn
�a��x ;��:

Pn
�a��x;�� =

def�2a�n

n!
ein�

2F1��− n, ,a + ix

2a
�1 − e−2i�� . �C10�

• Continuous Hahn polynomial pn�x ;a1 ,a2 ,a1� ,a2��:

pn�x;a1,a2,a1�,a2�� =
def

in �a1 + a1��n�a1 + a2��n

n! 3F2��− n,n + a1 + a2 + a1� + a2� − 1,a1 + ix

a1 + a1�,a1 + a2�
�1� ,

�C11�

which is symmetric under a1↔a2 and a1�↔a2� separately.
• Continuous dual Hahn polynomial Sn�x2 ;a1 ,a2 ,a3�:

Sn�x2;a1,a2,a3� =
def

�a1 + a2�n�a1 + a3�n3F2��− n,a1 + ix,a1 − ix

a1 + a2,a1 + a3
�1� , �C12�

which is symmetric under the permutations of �a1 ,a2 ,a3�.
• Wilson polynomial Wn�x2 ;a1 ,a2 ,a3 ,a4�:

Wn�x2;a1,a2,a3,a4� =
def

�a1 + a2�n�a1 + a3�n�a1 + a4�n

� 4F3��− n,n + � j=1

4
aj − 1,a1 + ix,a1 − ix

a1 + a2,a1 + a3,a1 + a4

�1� , �C13�

which is symmetric under the permutations of �a1 ,a2 ,a3 ,a4�.
• Askey-Wilson Hahn polynomial pn�cos x ;a1 ,a2 ,a3 ,a4 �q�:

pn�cos x;a1,a2,a3,a4�q� =
def

a1
−n�a1a2,a1a3,a1a4;q�n

� 4�3��q−n,a1a2a3a4qn−1,a1eix,a1e−ix

a1a2,a1a3,a1a4
�q;q� , �C14�

which is symmetric under the permutations of �a1 ,a2 ,a3 ,a4�.
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The quantum effects for a physical system can be described by the set E�H� of
positive operators on a complex Hilbert space H that are bounded above by the
identity operator I. The infimum problem of Hilbert space effects is to find under
what condition the infimum A∧B exists for two quantum effects A and B�E�H�.
The problem has been studied in different contexts by Kadison, Gudder, Moreland,
and Ando. In this Note, using the method of the spectral theory of operators, we
give a affirmative answer of a conjecture of �S. Gudder, J. Math. Phys. 37, 2637–
2642 �1996��. In addition, some properties of generalized infimum A�B were
considered. © 2006 American Institute of Physics. �DOI: 10.1063/1.2358392�

I. INTRODUCTION

Let H be a Hilbert space and B�H� the set of all bounded linear operators on H. We use the
notation

B�H�+ = �A � B�H�:0 � A�, E�H� = �A � B�H�:0 � A � I� ,

that is, E�H� is the set of quantum effects.1–7,11 For operators A ,B�B�H�+ we denote by A∧B, the
infimum, equivalently, the greatest lower bound, of A and B over the partially ordered set
�B�H�+ , � �, if it exists. To be more precise, A∧B is an operator in B�H�+ uniquely determined by
the following properties: A∧B�A, A∧B�B, and an operator D�B+�H� satisfies both D�A and
D�B if and only if D�A∧B. As it is well known, in general, the infimum of two effects A and
B may not exist. However, the infimum A∧B always exists if A and B are comparable. Two
positive operator A and B are said to be comparable if A�B or A�B. The Hilbert space infimum
question refers to the characterization of pairs of positive bounded operators that admit infimum
over the cone of positive operators in a Hilbert space. The problem was earlier studied in different
contexts by Kadison,9 Ando,1 Gudder6,7 Moreland,12 and Gheondea.4 For example, Moreland and
Gudder in Ref. 11 have proved that if A and B�E�Cn� are injective positive definite matrices, then
the infimum A∧B exists if and only if A and B are comparable. If A�E�H� and P is an orthogonal
projection, then P∧A exists. In Ref. 6, Gudder proposes the following conjecture: If A ,B
�E�H� are invertible operators, then A∧B exists if and only if A and B are comparable.

Before proving the main results in this paper, let us introduce some notations and terminology
which are used later. For an operator A�B�H�, we shall denote by N�A�, R�A�, and ��A� the null
space, the range, and the spectrum of A, respectively. An operator A�B�H� is said to be injective
if N�A�= �0�. The identity onto a Hilbert space K is denoted by IK or I if there does not exist
confusion. An operator A�B�H� is said to be positive if �Ax ,x��0 for all x�H. An operator
D�B�H� is said to be a contraction if �D � �1. For self-adjoint operators Aand B, A�B means
that �Ax ,x�� �Bx ,x� for all x�H. For a self-adjoint operator A�B�H�, we define �A � = �A2�1/2,
where �A2�1/2 is the unique positive square root of A2. For self-adjoint operators A, B�B�H�, the
generalized infimum A�B is defined by

a�Electronic mail: liyuan0401@yahoo.com.cn
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A � B =
1

2
�A + B − �A − B�� .

The generalized infimum has been studied in many works. It is easy to see that A�B always
exists. However, for A, B�E�H�, it is not necessarily true that A�B�E�H�, because A�B may
not be positive. Nevertheless, if A and B are comparable or if A and B commute, then A�B
�E�H�.

In this Note, we first obtained that if B�B�H�+, then I∧B exists if and only if
��B�� �0�� �1, �B � � or ��B�� �0,1�. As a corollary, we give a affirmative answer of Conjecture
4.2 of Ref. 6. In addition, we consider some properties of generalized infimum A�B.

II. A†B

We begin with some lemmas.
First, we recall Douglas factorization theorem:
Lemma 2.1: Let B, C�B�H�. Then the following conditions are equivalent:

�1� R�B��R�C�.
�2� There exists a positive number � such that BB*��CC*.
�3� There exists D�B�H� such that B=CD.

Lemma 2.2: Let A�B�H� have the following operator matrix form:

A = 	A11 A12

A21 A22

 �1�

according to the space decomposition H=H1 � H2. Then, A�0 if and only if

�1� Aii�B�Hi� and Aii�0, i=1,2;
�2� A21=A12

* ;
�3� There exists a contraction D from H2 into H1 such that A12=A11

1/2DA22
1/2, where Aii

1/2 is the
positive square root of Aii, i=1,2.

Lemma 2.3: If A�B�H� has the form

A = 	 A11 BA22
1/2

A22
1/2B* A22



with respect to the space decomposition H=H1 � H2, where A22�0 is a positive invertible op-
erator on H2 and B is an operator from H2 into H1, then A�0 if and only if A11−BB*�0.

Proof: Since A22�0 is a positive invertible operator, then A22
−1/2�B�H�. Let

C = 	 I − BA22
−1/2

0 I

 .

Since CAC*�0 if and only if A�0, but

CAC* = 	 I − BA22
−1/2

0 I

	 A11 BA22

1/2

A22
1/2B* A22


	 I 0

− A22
−1/2B* I


 = 	A11 − BB* 0

0 A22



and A22�0, these imply that A�0 if and only if A11−BB*�0.
Using Lemma 2.2, we can easily get the following result.
Lemma 2.4: Let A�B�H� be a positive operator. If A has the operator matrix representation

A= �Aij�n�n with respect to the space decomposition H= � i=1
n Hi, then the following statements

hold:

�1� Aii as an operator on Hi is positive, 1� i�n.
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�2� Aij =Aii
1/2DijAjj

1/2 for some contraction Dij �B�H j ,Hi�, 1� i , j�n.

Lemma 2.5: Let B�B�H�+ be injective. Then, C= I∧B exists if and only if I and B are
comparable.

Proof: Suppose that I∧B exists. We show that I and B are comparable. It is clear that we need
only to show that ��B�� �0,1� or ��B�� �1, � �.

On the contrary, if ��B�� �0,1��0” and ��B�� �1, � ��0” , we will prove that I∧B does not
exist.

Since B is injective, 0 is an accumulation of ��B� or B is invertible. Thus, there exist 0��
�1 and 1�	�� such that � 1

2� ,�����B��0” and �	 ,2	����B��0” . Let B=�0
�B��dE� be the

spectral representation of B, we denote �1= �0,1 /2�����B�, �2=� 1
2� ,�����B�, �3

= �� ,1����B�,�4= �1,	����B�, �5= �	 ,2	����B�, and �6= �2	 , �B � ����B�. Thus, B has the
operator matrix form

B = diag�B1,B2,B3,B4,B5,B6�

with respect to the space decomposition H= � i=1
6 Hi, where H1=E��0, 1

2���H, H2=E�� 1
2� ,���H,

H3=E��� ,1��H, H4=E��1,	��H, H5=E��	 ,2	��H, and H6=E��2	 , �B � ��H. It is clear that
B2��IH2

� and B5��IH3
� are invertible positive operators onto H2 and H5, respectively, and

�B2 � �� and �B5
−1�−1�	.

If C= I∧B exists, then C� I and C has the operator matrix form

C = �Cij�1�i,j�6,

with respect to the space decomposition H= � i=1
6 Hi. Note that

I � diag�B1,B2,B3,I,I,I�

and

B = diag�B1,B2,B3,B4,B5,B6� � diag�B1,B2,B3,I,I,I�;

then

diag�B1,B2,B3,I,I,I� � �Cij�1�i,j�6 � I

and

diag�B1,B2,B3,I,I,I� � �Cij�1�i,j�6 � diag�B1,B2,B3,B4,B5,B6� .

Hence, by Lemma 2.4, C11=B1, C22=B2, C33=B3, C44= IH4
, C55= IH5

, C66= IH6
, Cij =0, 1� i , j

�6, and i� j. This shows that

C = diag�B1,B2,B3,I,I,I� .

Now take 
= 3
4 , �= 3

4 . Then, there exists a small positive number 1��0 such that min��1
−
��	−�� , ��−1−
��1−���� �1+� /16� �1−
��1−��. Set �2= �1+� /16.

Define an operator C
�� by
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C
�� =�
0 0 0 0 0 0

0 
B2 0 0 �B2

1
2D 0

0 0 0 0 0 0

0 0 0 0 0 0

0 �D*B2

1
2 0 0 �IH5

0

0 0 0 0 0 0

 ,

where D is a partial isometry from H5 into H2 with D�0 and IH2
−DD*�0.

Note that 
�=9/16� �1+� /16=�2. Since 
���2 implies that 
�IH2
−�2DD*�0, then


�B2−�2B2
1/2DD*B2

1/2=B2
1/2�
�IH2

−�2DD*�B2
1/2�0, by Lemma 2.3, C
���0.

It follows from B5�	IH5
that B5−�IH5

� �	−��IH5
, then �B5−�IH5

�−1� �1/ �	−���IH5
. Thus,

�1 − 
�B2 − �2B2
1/2D�B5 − �IH5

�−1D*B2
1/2 � B2

1/2��1 − 
�IH2
− �2D

1

	 − �
IH5

D*�B2
1/2 � B2

1/2��1 − 
�

��IH2
− DD*� +

DD*

	 − �
��1 − 
��	 − �� − �2�IH2�B2

1/2

� 0,

since �1−
��	−��−�2�0. By Lemma 2.3, B−C
���0.
Similarly, B2��IH2

implies that

�1 − ���IH2
− 
B2� − �2B2

1/2DD*B2
1/2 = �1 − ��IH2

− B2
1/2��1 − ��
IH2

+ �2DD*�B2
1/2

= B2
1/2��1 − ��B2

−1 − �1 − ��
IH2
− �2DD*�B2

1/2

� B2
1/2��1 − ����−1 − 
�IH2

− �2DD*�B2
12

= B2
1/2��1 − ����−1 − 
��IH2

− DD*��B2
1/2

+ B2
1/2��1 − ����−1 − 
� − �2�DD*B2

1/2 � 0,

since �1−����−1−
�−�2�0. By Lemma 2.3, I−C
���0.
In a similar way, we obtain that �2= �1+� /16�1/16= �1−
��1−�� implies C−C
���0. It

is a contradiction.
This shows that I∧B does not exist when ��B�� �0,1��0” and ��B�� �1, �B � ��0” .
Conversely, it is clear that I∧B exists if I and B are comparable.
Theorem 2.6: Let B�B�H�+. Then, I∧B exists if and only if ��B�� �0�� �1, �B � � or

��B�� �0,1�.
Proof: Necessity. Case 1: B is injective, then by Lemma 2.5, I and B are comparable. Thus,

B� I or B� I, so ��B�� �1, �B � � or ��B�� �0,1�.
Case 2: B is not injective, then

B = 	B1 0

0 0

:N�B��

� N�B� → N�B��
� N�B� ,

where B1 is injective from N�B�� into N�B��. It is clear that ��B�=��B1�� �0�. It follows from
Case 1 that ��B�� �0�� �1, �B � � or ��B�� �0,1�.

Sufficiency: If ��B�� �0,1�, then B�B�H�+ implies B� I, so I∧B exists. Similarly, If
��B�� �1, �B � �, then B�B�H�+ implies B� I, so I∧B exists. If 0���B�� �0�� �1, �B � �, then 0
is an isolated point of ��B�, so we have the Riesz idempotent

102103-4 L. Yuan and D. Hong-Ke J. Math. Phys. 47, 102103 �2006�

                                                                                                                                    



E0: =
1

2�i
�

�D

�z − B�−1dz ,

where �0��D is an open disk which is far from the rest of ��B�. Since B�B�H�+, then it follows
from Ref. 8, Theorem 2.5 that E0 is a projection and E0H=N�B�. Thus, B can be decomposed as
the form of

B = 	B1 0

0 0

:E0

�
� E0 → E0

�
� E0,

where ��B1�� �1, �B � � is an invertible operator. Similarly,

I = 	I1 0

0 I2

:E0

�
� E0 → E0

�
� E0,

where I1 and I2 are identity operators on E0
� and E0, respectively. Thus, I1∧B1= I1, so

	I1 0

0 0

 � 	B1 0

0 0

, 	I1 0

0 I2

 .

If

0 � C = 	C1 C2

C3 C4

 � 	B1 0

0 0

, 	I1 0

0 I2

 ,

then it follows from Lemma 2.2 that C4=0, so C2=0 and C3=0. Thus, C� �I1 0

0 0 �, we get I∧B

= �I1 0

0 0 �.
Lemma 2.7: Suppose A, B, C�B�H�+. If A is injective, then B∧C exists if and only if

A1/2BA1/2∧A1/2CA1/2 exists. In this case, A1/2�B∧C�A1/2=A1/2BA1/2∧A1/2CA1/2.
Proof: If B∧C exists then it is clear that A1/2�B∧C�A1/2�A1/2BA1/2, A1/2CA1/2. Let 0�E

�A1/2CA1/2, A1/2BA1/2. By Lemma 2.1, R�E1/2��R�A1/2C1/2�, that is E1/2=A1/2C1/2D, for some
D�B�H�. Thus, A1/2C1/2DD*C1/2A1/2�A1/2CA1/2. It follows from R�A1/2�=H that C1/2DD*C1/2

�C. Similarly, A1/2C1/2DD*C1/2A1/2�A1/2BA1/2implies C1/2DD*C1/2�B, so C1/2DD*C1/2�B∧C.
Then, it easy to see that E=A1/2C1/2DD*C1/2A1/2�A1/2�B∧C�A1/2, so A1/2�B∧C�A1/2

=A1/2BA1/2∧A1/2CA1/2.
Conversely, assume that F=A1/2BA1/2∧A1/2CA1/2. By Lemma 2.1, F�A1/2BA1/2 implies

F1/2=A1/2F1, for some F1�B�H�. Hence, F=A1/2F1F1
*A1/2. It follows from R�A1/2�=H that

F1F1
*�C ,B. Let 0�G�B ,C. Then, A1/2GA1/2�A1/2BA1/2 ,A1/2CA1/2, so A1/2GA1/2�F

=A1/2F1F1
*A1/2. Hence, G�F1F1

*, since R�A1/2�=H. It follows F1F1
*=B∧C, so A1/2�B∧C�A1/2

=A1/2BA1/2∧A1/2CA1/2.
The following is a extension of Conjecture 4.2 in Ref. 6.
Theorem 2.8: Let A�B�H�+ be an injective operator and B�B�H�+ be an invertible opera-

tor. Then, there exists A∧B if and only if A and B are comparable.
Proof: Since B�B�H�+ is an invertible operator, then B−1/2�B�H�+. It follows from Lemma

2.7 that A∧B exists if and only if B−1/2AB−1/2∧B−1/2BB−1/2 exists if and only if B−1/2AB−1/2∧ I
exists. Since B−1/2AB−1/2�B�H�+ is an injective operator, by Lemma 2.5, A∧B exists if and only
if I and B−1/2AB−1/2 are comparable. Hence, I�B−1/2AB−1/2 or I�B−1/2AB−1/2, so A�B or A�B.

Corollary 2.9: �see Theorem 3.6 in Ref. 10� If A, B�E�Cn� are incomparable and A, B�0,
then A∧B does not exist.

In general, for A, B, C�E�H�, the assertion that if A∧B exists, then �A+C�∧ �B+C� exists is
not true. we give a example as follows.

Example 2.10: Let A, B, C�E�C3�,
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A =�
1

2
0 0

0
1

2

1

4

0
1

4

1

2

 , B = �1 0 0

0 1 0

0 0 0
, C =�

0 0 0

0 0 0

0 0
1

8
 .

Then

A + C =�
1

2
0 0

0
1

2

1

4

0
1

4

5

8

 , B + C =�
1 0 0

0 1 0

0 0
1

8
 .

It is clear that A+C and B+C are invertible and that A+C�B+C and A+C�B+C. By Corollary
2.9, �A+C�∧ �B+C� does not exist. But A∧B exists, since B is a projection.

Proposition 2.11: Let A�E�H�. �1� If 2A∧ I exists, then A∧ �I−A� exists.
�2� If A∧ �I−A� exists and I−A is invertible, then 2A∧ I exists.
Proof: �1� If 2A∧ I=B, then A�B, so B−A�0. Clearly, B−A�A and B−A� I−A. Let 0

�C�A and C� I−A. Then it is clear that C+A�B, so C�B−A. Thus, A∧ �I−A�=B−A.
�2� Case 1: N�A�= �0�. Since A∧ �I−A� exists and I−A is invertible, by Theorem 2.8, A� �I

−A� or A� �I−A�, so 2A∧ I exists.
Case 2: N�A�� �0�. It is clear that

A = 	A1 0

0 0

:N�A��

� N�A� → N�A��
� N�A� ,

where A1 is injective from N�A�� into N�A��. Then,

I = 	I1 0

0 I2

:N�A��

� N�A� → N�A��
� N�A�, I − A = 	I1 − A1 0

0 I2

 .

It is easy to show that A∧ �I−A� exists if and only if A1∧ �I1−A1� exists and also that 2A∧ I exists
if and only if 2A1∧ I1 exists. It follows from Case 1 that A1∧ �I1−A1� exists implies that 2A1∧ I1

exists.
Consequently, we obtain
Corollary 2.12: �see Ref. 4� Let A�E�H�. Then, the following assertions are equivalent:

�1� A∧ �I−A� exists;
�2� ��A� is contained either in �0��� 1

2 ,1� or in �0, 1
2
�� �1�;

�3� A∧ PA,I−A and �I−A�∧ PA,I−A are comparable, where PA,B is the orthogonal projection on the
closure of R�A1/2��R�B1/2�.

Proof: �1�⇒�2�. Suppose that A∧ �I−A� exists. We assume that I−A is invertible. By Propo-
sition 2.11 �2�, 2A∧ I exists. It follows from Theorem 2.6 that ��2A�� �0�� �1,2� or
��2A�� �0,1�. Thus, ��A� \ �1�� �0��� 1

2 ,1� or ��A� \ �1���0, 1
2
�. This shows that �2� holds.

�2�⇒�3�. Denote H0= �N�A� � N�I−A���. According to the space decomposition H=H0

� N�A� � N�I−A�, A and I−A have the following operator matrix representations:

102103-6 L. Yuan and D. Hong-Ke J. Math. Phys. 47, 102103 �2006�

                                                                                                                                    



A = �A0 0 0

0 0 0

0 0 I
 and I − A = �I − A0 0 0

0 I 0

0 0 0
 ,

respectively, where A0 and I−A0 are injective on H0. It is clear that

PA,I−A = � I 0 0

0 0 0

0 0 0
, A ∧ PA,I−A = �A0 0 0

0 0 0

0 0 0


and

�I − A� ∧ PA,I−A = �I − A0 0 0

0 0 0

0 0 0
 .

If �2� holds, then ��A0����A�� �0��� 1
2 ,1� or ��A0���0, 1

2
�� �1�. Thus, ��A0��� 1

2 ,1� or ��I
−A0��� 1

2 ,1�, since A0 and I−A0 are injective. Thus, A0 and I−A0 are comparable, that is,
A∧ PA,I−A and �I−A�∧ PA,I−A are comparable.

�3�⇒�1�. If A has the operator matrix representation as above, then A∧ PA,I−A and �I
−A�∧ PA,I−A are comparable, which implies that A0 and I−A0 are comparable. Thus, A0∧ �I−A0�
exists. It is easily seen that

A ∧ �I − A� = �A0 ∧ �I − A0� 0 0

0 0 0

0 0 0
 .

Corollary 2.13: Let A�B�H�+ and B�B�H�+ be an invertible operator. Then, A∧B=0 if and
only if A=0.

Proof: By Lemma 2.7, A∧B=0 if and only if B−1/2AB−1/2∧ I=0. By the proof of Theorem 2.6,
we have B−1/2AB−1/2=0, so A=0. See Refs. 11 and 12.

III. A[B

Gudder7 has obtained the following result: For A, B�E�H�, If A�B�E�H�, then

�a� A�B is a maximal lower bound for A and B in E�H�.
�b� If A∧B exists, then A∧B=A�B.

In Theorem 4.4 of Ref. 12, it is proved that the infimum A∧ P exists for any A�E�H� and any
projection P�E�H�. As a consequence, we may conjecture that A�P�E�H�. However this is not
true.

Example 3.1: Let A, P�E�C3�,

A =�
1

2
0 0

0
1

2

1

4

0
1

4

1

2

 , P = �1 0 0

0 1 0

0 0 0
 .

Then
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�A − P� =�
1

2
0 0

0
�5

4
0

0 0
�5

4

 , A + P =�
3

2
0 0

0
3

2

1

4

0
1

4

1

2

 .

It follows from 1/2−�5/4�0 that A+ P� �A− P�. Thus, A�P�E�H�.
In Lemma 3.7 of Ref. 12, authors have obtained that A∧B exists if and only if

�A∧ PA,B�∧ �B∧ PA,B� exists. For the generalized infimum A�B, we also get a similar result. we
need following lemmas.

Lemma 3.2: �Ref. 7, Theorem 2.3 and Lemma 2.5� �a� If A ,B�E�H�, then �A−A�B��B
−A�B�=0.

�b� For A, B�E�H�, A�B=0 if and only if AB=0.
Lemma 3.3: If 0�A�B, 0�C�D and BD=0, then AC=0.
Proof: Since BD=0=DB, then BD1/2=D1/2B, so D1/2BD1/2=DB=0. It follows from 0

�D1/2AD1/2�D1/2BD1/2=0 that D1/2AD1/2=0. Hence, A1/2D1/2=0. Similarly, 0�A1/2CA1/2

�A1/2DA1/2=0, then A1/2C1/2=0. Thus AC=0.
Theorem 3.4: Let A ,B�E�H�. If A�B�E�H� then �A∧ PA,B�� �B∧ PA,B��E�H�. In this

case, �A∧ PA,B�� �B∧ PA,B�=A�B.
Proof. Since A�B�A and A�B�B, then R�A�B��R�A�B�1/2�R�A1/2� and

R�A�B��R�B1/2�, by Lemma 2.1. Thus, R�A�B��R�A1/2��R�B1/2�, so A�B� PA,B. It follows
that A�B�A∧ PA,B and A�B�B∧ PA,B. By Lemma 3.2, �A−A�B��B−A�B�=0. Since
A∧ PA,B�A and B∧ PA,B�B, by Lemma 3.3, we have �A∧ PA,B−A�B��B∧ PA,B−A�B�=0. It
follows from Lemma 3.2 again that

�A ∧ PA,B − A � B� � �B ∧ PA,B − A � B� = 0,

so

�A ∧ PA,B − A � B� + �B ∧ PA,B − A � B� − ��A ∧ PA,B − A � B� − �B ∧ PA,B − A � B�� = 0.

Thus

1
2 �A ∧ PA,B + B ∧ PA,B − �A ∧ PA,B − B ∧ PA,B�� = A � B � 0.

Remark: The converse assertion of Theorem 3.4 does not hold, that is, there is A ,B�E�H�
such that A�B�E�H� and �A∧ PA,B�� �B∧ PA,B��E�H�.

Example 3.4: Let A, B�E�C3� and let B= 1
2 P, with A and P as above in Example 3.1. It is

clear that

B ∧ PA,B =�
1

2
0 0

0
1

2
0

0 0 0
 .

From a direct calculation, we have
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�A − B� =�
0 0 0

0
1

4�2

1

4�2

0
1

4�2

3

4�2
 , A + B =�

1 0 0

0 1
1

4

0
1

4

1

2
 .

It follows from �3/4�2�−1/2�0 that A+B� �A−B�, then A�B�E�H�. It is easy to calculate that

A ∧ PA,B =�
1

2
0 0

0
3

8
0

0 0 0
 .

In fact, diag� 1
2 , 3

8 ,0��A, PA,B is clear. Then, A∧ PA,B�diag� 1
2 , 3

8 ,0�. Therefore, by Lemma 2.3,
A∧ PA,B=diag� 1

2 , 3
8 ,0�. Clearly, �A∧ PA,B�� �B∧ PA,B��E�H�.
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In looking for qualitative differences between quaternionic and complex formula-
tions of quantum physical theories, we provide a detailed discussion of the behavior
of a wave packet in the presence of a quaternionic time-independent potential step.
In this paper, we restrict our attention to diffusion phenomena. For the group
velocity of the wave packet moving in the potential region and for the reflection
and transmission times, the study shows a striking difference between the complex
and quaternionic formulations which could be matter of further theoretical discus-
sions and could represent the starting point for a possible experimental
investigation. © 2006 American Institute of Physics. �DOI: 10.1063/1.2359577�

I. INTRODUCTION

Despite much research on quaternionic quantum mechanics, reviewed in its mathematical and
physical aspects in the excellent book of Adler,1 there have been few breakthroughs on the most
natural question about the effect that quaternionic potentials play in the dynamics of elementary
particles2–5 and, as a consequence of it, about the possibility to look for an experimental
proposal.6–9 In this paper, by using the new mathematical tools developed in the analytic resolu-
tion of eigenvalue problems10,11 and differential equations,6,12–14 we analyze in detail the diffusion
of a wave packet by a quaternionic potential step.

For the convenience of the reader and to facilitate access to the individual topics, this work is
rendered as self-contained as possible. In Sec. II, we set up notation and terminology and proceed
with the study of diffusion by quaternionic potentials. This section contains the �analytic� plane
wave solution of the quaternionic Schrödinger equation in the presence of a potential step. This
represents a fundamental mathematical tool in the discussion of the quaternionic stationary phase
method �see Sec. III�. We will touch only a few aspects of the theory of quaternionic integral
transforms and restrict our attention to the diffusion of quaternionic wave packets with a peaked
convolution function. The advantage of using the stationary phase method lies in the fact that, in
the presence of a potential step, the motion of the wave packet can be correctly estimated by
analyzing the phase derivative calculated at the maximum of the convolution function.15–17 For a
different shape of potentials, see, for example, the barrier, the stationary phase method, depending
on the width of the potential and on the group velocity of the incoming particle, could break down.
There is a rich number of articles leading with this problem in standard quantum mechanics.18–23

The results of this paper �a conclusion and outlooks are drawn in Sec. IV� shed some new
light on the properties of quaternionic potentials. In particular, it is explicitly shown how the
presence of a quaternionic perturbation modifies the momentum of the nonrelativistic incoming
particle and its reflection �transmission� time. The study presented in this paper represents a
starting point in view of a complete understanding of the behavior of wave packets impinging on
quaternionic potentials. A detailed analysis of this topic could be fundamental in looking for
experiments in which deviations from the complex quantum theory could be really seen. It is
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worth pointing out that the question of finding the best experimental proposal to prove the exis-
tence of quaternionic potentials is, at present, far from being solved and in this paper we aim to
contribute to this debate.

II. REFLECTION AND TRANSMISSION COEFFICIENTS

The quaternionic Schrödinger equation in the presence of a constant potential is given by

i
�

2m
�xx�x,t� −

iV1 + jV2 + kV3

�
��x,t� = �t�x,t� , �1�

where iV1+ jV2+kV3 represents the quaternionic generalization of the anti-Hermitian complex
potential iV1. For a complete discussion, see Ref. 1. This partial differential equation, by the
substitution

��x,t� = ��x�exp�− iEt/ � � , �2�

can be reduced to the following ordinary second order differential equation with constant quater-
nionic coefficients,

i
�2

2m
���x� − �iV1 + jV2 + kV3���x� = − ��x�Ei . �3�

The solution of the Schrödinger equation in the presence of constant quaternionic potential has
been matter of study in recent years.4–6 New mathematical techniques, essentially based on the
right eigenvalue problem for quaternionic operators,10,12 allow us to obtain the solution without
the need to translate the quaternionic problem in its complex counterpart.2,3 In particular, in the
presence of a potential step and for the diffusion case,

E � �V1
2 + V2

2 + V3
2,

the quaternionic plane wave solutions �for a detailed derivation, see Ref. 6� are as follows:

�I� Free region �x � 0�: �I�x� = exp�i�x� + r exp�− i�x� + jr̃ exp��x�;

�II� Potential region �x � 0�: �II�x� = �1 + jw�t exp�i�−x� + �w̄ + j�t̃ exp�− �+x� , �4�

where

� =�2m

�2 E, �± =�2m

�2 ��E2 − V2
2 − V3

2 ± V1�, w = − i
V2 − iV3

E + �E2 − V2
2 − V3

2
,

and

t =
2�

� + �−
�1 − �w�2

� − i�−

� + �−

� + i�+

� + �+
�−1

, t̃ =
i�− − �

� + �+
wt ,

r =
� − �−

2�
�1 − �w�2

� − i�−

� − �−

� − i�+

� + �+
�t , r̃ =

i�− + �+

� + �+
wt .

From the current conservation,

��̄�x,t���x,t��t =
�

2m
��̄�x,t�i�xx�x,t� + h.c.� , �5�

by recalling that we are considering stationary solutions of the Schrödinger equation, we obtain
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�̄�x�i���x� + h.c. = 0.

This implies that the current density,

J�x� = ��x�i���x� + h.c., �6�

is a quantity independent of x. Due to the continuity of the wave function and its derivative, the
current density has to satisfy the following constraint:

JI�0� = JII�0� . �7�

By using the explicit form of the plane wave solutions given in Eqs. �4�, and the condition �7�, a
straightforward calculation conduces to

R + T = 1, �8�

where

R = �r�2 and T =
�−

�
�1 − �w�2��t�2.

Similar to the predictions of complex quantum mechanics, the incident particle has a nonzero
probability of turning back. Nevertheless, we know that in standard quantum mechanics no phase
is created by such reflection.17 The situation drastically changes in the presence of a quaternionic
perturbation. We shall come back to this point in Sec. III.

A. Reflection and transmission phases

From the stationary wave functions given in Eqs. �4�, we shall construct, by linear superpo-
sition, wave packets and we shall study their time evolution �see Sec. III�. In this spirit, it is
convenient to rewrite the reflection and transmission coefficients in terms of their modulus and
phases. By simple algebraic manipulations, we find

r =���� − �−��� + �+� − �w�2��2 − �−�+��2 + �w�4�2��− + �+�2

��� + �−��� + �+� − �w�2��2 + �−�+��2 + �w�4�2��− − �+�2 exp�i�r� ,

t =
2��� + �+�

���� + �−��� + �+� − �w�2��2 + �−�+��2 + �w�4�2��− − �+�2
exp�i�t� , �9�

where

�r = arctan	 ���+ + �−��w�2

�� − �−��� + �+� − �w�2��2 − �−�+�
 + �t,

�t = arctan	 ���+ − �−��w�2

�� + �−��� + �+� − �w�2��2 + �−�+�
 . �10�

The important point to be noted here is the dependence on the energy, E, and the complex
imaginary part of the potential, V1, as expected from the standard quantum case, and the new
dependence on the modulus of the pure quaternionic part of the potential, �V2+ iV3�. This last result
means that once fixed the modulus of the quaternionic perturbation any rotation in the plane
�V2 ,V3� does not modify the reflection and transmission coefficients. The quaternionic rotation
invariance is due to the choice of i as the imaginary unit in the anti-Hermitian momentum
operator, i��xx /2m, which appears in the quaternionic Scrhödinger equation �1�.
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B. The complex limit

The standard �complex� quantum results can be obtained by taking a simple limit case, i.e.,
V2,3→0. In fact, by observing that

V2,3 → 0 ⇒ �w → 0,

�− → 	 =�2m

�2 �E − V1� ,

we find

R = �r�2 and T =
	

�
�t�2,

where

r =
� − 	

� + 	
and t =

2�

� + 	
. �11�

As expected, the reflection and transmission coefficients �r and t� are real ��r=�t=0�, and this
implies that there is no phase created by reflection or transmission.17

C. The pure quaternionic limit

It is interesting to consider a second limit, i.e., V1→0. This represents the case of a pure
quaternionic potential. Noting that

V1 → 0 ⇒ ��± → � =�2m

�2
�E2 − V2

2 − V3
2,

�w�2 →
�2 − �2

�2 + �2 ,

we obtain

R = �r�2 and T =
2�3

���2 + �2�
�t�2,

where

r =
� − �

��2 + �2
exp�i arctan	 �

�

� and t =

�

�
. �12�

In this limit, the symmetry between reflection and transmission times is broken down. For a pure
quaternionic potential step, we find an instantaneous transmission but not an instantaneous reflec-
tion �we shall discuss in detail this point in Sec. III�.

III. STATIONARY PHASE METHOD

Until now, we have been concerned only with plane waves. In this Section, we are going to
study the time evolution of quaternionic wave packets and deducing from them several important
properties. The principle of superposition guarantees that every real linear combination of the
plane waves �I�x�exp�−iEt / � � and �II�x�exp�−iEt / � � will satisfy the Schrödinger equation in
the presence of a quaternionic potential step.

Let g��� be a real convolution function with a maximum in �0. In the free region �x�0�, the
superposition can be written as follows:
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I�x,t� = �
�min

�

d� g���exp�i�x� + r exp�− i�x� + jr̃ exp��x��exp�− i�2 � t/2m� , �13�

where

�min =�2m

�2
�V1

2 + V2
2 + V3

2.

The first term in Eq. �13� represents the incident wave, the second term the reflected wave and the
third term an evanescent wave. The phases for the incoming and reflected waves are

�inc��;x,t� = �x − �2 �t

2m
,

�ref��;x,t� = − �x − �2 �t

2m
+ �r. �14�

The stationary phase condition �the derivative with respect to � of the argument calculated in �0

equal to zero� enables us to calculate the position of the maximum of the incident and reflected
wave packets:

xinc
max�t� =

��0

m
t ,

xref
max�t� = −

��0

m
t + �d�r

d�
�

0
. �15�

The maximum of the incident wave packet arrives at the step discontinuity at time t=0 �as it
occurs in the complex case�. During a certain interval of time, the wave packet is localized in the
region x�0. For large times the incident wave packet has practically disappeared and we only find
the reflected wave packet. It is important to observe that contrary to the predictions of complex
quantum mechanics ��r=0�, the maximum of the reflected wave packets is found at x=0 at time
t= �m / ��0��d�r /d��0. This means that in the presence of a quaternionic perturbation we do not
have an instantaneous reflection: for large times the maximum of the reflected wave packet is not
at −��0t /m but is shifted with respect to this value by a quantity equal to �d�r /d��0.

An analogous discussion for the transmitted wave packet �x�0�,


II�x,t� =� d� g���t exp�i�−x� + w̄t̃ exp�− �+x��exp�− i�2 � t/2m� + j� d� g���wt exp�i�−x�

+ t̃ exp�− �+x��exp�− i�2 � t/2m� , �16�

where the phases to be considered are

�tra
�1,i���;x,t� = �−x − �2 �t

2m
+ �t

�tra
�j,k���;x,t� = �−x − �2 �t

2m
+ �t + arctan�V2

V3
� , �17�

leads to a similar conclusion for the transmitted time. Contrary to what happens in the standard
�complex� quantum mechanics, where there is an instantaneous transmission, in the presence of a
quaternionic potential step, the maximum of the transmitted wave packet,
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xtra
max�t� = ���0

m
t − �d�t

d�
�

0
���d�−

d�
�

0
, �18�

is found at x=0 at time t= �m / ��0��d�t /d��0. At first glance, it could appear a logical consequence
of the result obtained for the reflection time. Nevertheless, it is important to note that �r��t and,
consequently, the symmetry between reflection and transmission times is always broken down. For
example, as it was explicitly shown in the previous section, instantaneous transmission does not
necessarily imply instantaneous reflection.

In order to simplify the discussion about the results obtained in our study, let us introduce the
following notation:

V0 = �V1
2 + V2

2 + V3
2,

and rewrite the maximum of the incident, reflected and transmitted wave packets in terms of E0

�the maximum value of the energy spectrum of the incoming particles�

xinc
max�t� =�2E0

m
t ,

xref
max�t� = −�2E0

m
t +

�

�2mV0� d�r

d� E

V0
�

0

,

xtra
max�t� = ��2E0

m
t −

�

�2mV0� d�t

d� E

V0
�

0
���d�−

d�
�

0
. �19�

The incident and reflected wave packets propagate, respectively, with velocities of v0 and −v0,

v0 = �2E0/m . �20�

This is the standard result obtained in complex quantum mechanics. For the transmitted wave
packet, the velocity is given by

vtra = v0��d�−

d�
�

0
. �21�

Due to the fact that the quantity �− has an additional dependence on �V2+ iV3� with respect to the
standard dependence on V1, the complex and quaternionic formulations give different predictions.
For example, of particular interest, it is the comparison between the group velocity of the trans-
mitted wave packet for the complex case, V0=V1,

vtra
�i� = v0�	��2 −

2m

�2 V0

�

= v0�1 −
V0

E0
, �22�

and that one for the pure quaternionic case, V0= �V2+ iV3�,

vtra
�j,k� = v0����4 − 	2m

�2 V0
2�1/4�
�

= v0�1 − 	V0

E0

2�3/4

. �23�

A first important observation is that whereas vtra
�i� is greater or smaller than v0 depending on the

sign of V1, vtra
�j,k� is always smaller than the group velocity in the fre region. For incident particles

with an energy spectrum peaked in E0, with E0�V0, the group velocities of the wave packet
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traveling in the potential region, �22� and �23�, can be approximated by taking the first terms in
their Taylor expansions,

vtra
�i� = v0�1 −

1

2

V0

E0
−

1

8
	V0

E0

2� + O�	V0

E0

3� ,

vtra
�j,k� = v0�1 −

3

4
	V0

E0

2� + O�	V0

E0

4� .

This means that a clear difference between the complex and the �pure� quaternionic case is
expected for the group velocity of a wave packet traveling in a region in which a small perturba-
tion is turned on. In this spirit, it is also interesting to compare the reflection and transmission
times,

�2mV0

�
xref

max�0� = � d�r

d� E

V0
�

0

,

�2mV0

�
xtra

max�0� = − � d�t

d� E

V0
�

0
��d�−

d�
�

0
. �24�

Standard quantum mechanics predicts instantaneous reflection and transmission, i.e.,

xref
�i�max�0� = xtra

�i�max�0� = 0.

For a pure quaternionic potential, the transmission, in analogy to the complex case, is instanta-
neous,

xtra
�j,k�max�0� = 0,

but the reflection time is different from zero �breaking down the instantaneity�,

�2mV0

�
xref

�j,k�max�0� = − �2�E0

V0
�E0

V0
+�	E0

V0

2

− 1��	E0

V0

2

− 1�3/4�−1

.

This predicts, for large times, that the maximum of the reflected wave packet should be found at
the left of the position predicted by standard quantum mechanics, i.e., −��0t /m. For E0�V0, the
difference between the complex and �pure� quaternionic case is only manifest at the third order in
V0 /E0,

�2mV0

�
xref

max�0� = −
1

4
	V0

E0

3

+ O�	V0

E0

4� ,

and, consequently, for small perturbations, we practically find an instantaneous reflection. It is
important to note that the shift in the position of the maximum of the reflected wave packet
becomes important when E0 approaches V0, this implies xref

�j,k�max�0�→�. Nevertheless, for incident
wave packets peaked in E0�V0, a more careful analysis is needed. In fact, in this limit new effects
have to be considered and these effects cannot be obtained by simply using the stationary phase
method.19–21

IV. CONCLUSIONS AND OUTLOOKS

The study presented in this paper, and based on the use of wave packets, represents, from our
point of view, a first important attempt to discuss deviations from the standard �complex� quantum
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mechanics in the presence of quaternionic potentials. The wave packet formalism, with respect to
the previous analysis, essentially based on the plane wave solutions, surely gives a more ”physi-
cal” focus. For example, this formalism allows us to explicitly show the effect that quaternionic
perturbations play in the momentum distribution of elementary particles and, in the particular case
of a potential step, to calculate the new reflection and transmission times due to quaternionic
interference phenomena. To emphasize the main differences between the complex and the quater-
nionic formulation of quantum mechanics for diffusion phenomena by a potential step, we have
given, in the previous section, a detailed discussion based on the analytic study of the group
velocities in the potential region and of the reflection time for complex and �pure� quaternionic
potentials.

Now, let us return to the discussion for the general case, i.e., a complex potential in the
presence of a quaternionic perturbation. In Fig. 1�a�, fixing the value of V0 and varying its
complex component V1, we draw

vtra − vtra
�i�

vtra
�i� , �25�

as a function of E0 /V0. The continuous line represents the case of a small complex component in
the quaternionic potential, consequently such a curve approximates the case of a pure quaternionic
potential,

FIG. 1. Fixing the value of V0= �iV1+ jV2+kV3� and varying its complex component V1, the group velocity of the trans-
mitted wave packet �a� and the transmission/reflection times, �b� and �c� are plotted as a function of E0 /V0, where E0 is the
maximum of the energy spectrum of the incident wave packet. The analysis is done for diffusion phenomena �E0�V0�.
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vtra
�j,k� − vtra

�i�

vtra
�i� = 	1 −

V0

E0

1/4	1 +

V0

E0

3/4

− 1
→

E0 � V0

1

2

V0

E0
−

3

8
	V0

E0

2

+ O�	V0

E0

3� .

It is also interesting to observe that the maximum of �vtra
�j,k�−vtra

�i�� /vtra
�i� is found at E0=2V0.

The plots in Fig. 1�b� and Fig. 1�c�, respectively, show the behavior of the transmission and
reflection times as a function of E0 /V0. Let us list some results coming out from our analysis. The
quaternionic interefernce phenomena at the step discontinuity produce an new interesting effect in
the reflected and transmitted wave packets: the maxima of such packets are found at x=0 before
that the incident wave packet reaches the potential step discontinuity. The symmetry between
reflection and transmission time is broken down �see the amplification if Fig. 1�b� and Fig. 1�c��.

Evidently, all the physical consequences of our analysis, regardless of whether we use a
complex or a quaternionic potential in the Schrödinger equation deserve further investigation.
Nevertheless, we think that the discussion presented in this paper and based on the use of the wave
packet formalism represents the starting point for further theoretical studies and a fundamental
tool in looking for possible experimental deviations from standard �complex� quantum mechanics.
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Sjostrand and Zworski �J. Am. Math. Soc. 4, 729–769 �1991�� proved a universal
upper bound for the resonance counting function in black box scattering. Examples
are presented which show that there is no corresponding general lower bound.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2356910�

I. INTRODUCTION

Consider the Schrödinger operator −�+V defined on Rn, where n is odd. We assume that V is
bounded and compactly supported. The resolvent �−�+V−�2�−1 continues from Im ��0 to a
meromorphic function on the complex � plane. Its poles are known as resonances. Let N�r� denote
the number of resonances in a ball of radius r, i.e., �� � �r. Zworski showed that N�r��c�r+1�n.
In fact, Sjöstrand and Zworski showed that the same type of upper bound occurs much more
generally as formalized in their theory of black box scattering.1 The formalism of black box
scattering allows a simultaneous treatment of potential, metric, and obstacle scattering, without
entering into their particular features. It also allows completely abstract perturbations, some of
which have geometric meaning, for instance scattering on manifolds with cusps. The situation for
lower bounds is less well understood. For potential scattering, Sá Barreto2 proved that
lim sup N�r� /r�c, as r→�. The lecture notes of Melrose3 and the survey article of Zworski4

contain more extensive references and foundational material. The lectures on resonances, available
on the home page of Sjostrand, provide another source for background material. Christiansen and
Hilsop5 showed that for generic compactly supported potentials one has lim sup log N�r� / log r
=n. Stefanov6 discusses the optimality of constants appearing in the upper bounds for N�r�.

The purpose of this note is to provided some examples of compactly supported perturbations
of −� where N�r��cr�, for any 1���n. These examples satisfy the axioms of black box
scattering. They are obtained by amalgamating collections of rotationally symmetric potentials.
One applies estimates of Zworski7 to verify that our examples satisfy the upper bound. Study of
Zworski’s paper about rotationally symmetric potentials lead to some ideas for simplifying his
work. These ideas are outlined in the final section of this paper. The author thanks the referee for
providing additional references and for suggestions concerning the exposition.

II. EXAMPLES OF BLACK BOX SCATTERING

Suppose that V�L��Rn� is compactly supported and rotationally symmetric. By separation of
variables and renormalization of measures −�+V decomposes into a sum of one dimensional
operators

D�� = − �� +
��� + 1�

s2 � + V�s��, s � R+.

The parameter � represents the order of the spherical harmonic using separation of variables �Ref.
7, p. 372�.
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The study of rotationally symmetric potentials suggests the definition of more general pertur-
bations of −�. In particular, for a real and non-negative, we set

D�,	� = − �� +
��� + 1�

s2 � + �2	V��	s�� .

The direct sum D̄	=��D�,	 satisfies the axioms of black box scattering, as formulated in Ref. 1.
If N	�r� denotes the number of resonances, for the meromorphic continuation of the resolvent

�D̄	−�2�−1, in a ball of radius r, then the general result1 for black box scattering yields N	�r�
�crn.

To obtain a more precise upper bound, observe that by change of variables x=�	s, one has
N	,��r�=N0,��r /�	�. Extending the argument of �Ref. 7, p. 385� gives, for large r,

N	�r� � c1�
�

�n−2N	,��r� = c1�
�

�n−2N0,�� r

�	� .

If ��c2r, then N0,��r�=0, so that

N	�r� � c1 �
��c2r�−	

�n−2N0,�� r

�	� � c3r �
��c2r�−	

�n−2−	.

When 	�n−1, this gives N	�r��c4r. If 0�	
n−1,N	�r��c5r
n/�1+	�. In particular, by suitable

choice of 	, we obtain N	�r��c6r
�, for any given 1���n. These examples show that lower

bounds in black box scattering do not have the same universality as upper bounds. To some extent
this is already clear from consideration of the trivial case when V is identically zero.

For V satisfying a jump condition, i.e., V�C2�0,a� ,V�a��0, the method of �Ref. 7, p. 400�
extends to give N	�r�	cr�, for 1���n. Note that the linear case N�r�	cr is easily obtained by

taking the direct sum of D̃� where D̃�=−��+ ����+1� /s2��, except for finitely many values of �,

where D̃�=−��+ ����+1� /s2��+V�s��.

Any axiomatic approach to lower bounds must exclude the D̄	, if one desires the conclusion

N�r��crn, i.e., the lower bound comparable to the upper bound. However, the D̄	 seem quite
similar to potentials from the mathematical point of view. The author does not know whether or
not they are physically reasonable.

III. ROTATIONALLY SYMMETRIC POTENTIALS

The purpose of this section is to outline some simplifications of Zworski’s work7 concerning
the resonance counting function for rotationally symmetric potentials. The proofs presented in Ref.
7 are long and require intricate calculations. It is possible to handle some of the technical problems
in a more elementary way.

Let V�r� be bounded and compactly supported. The letter � denotes the separation parameter
corresponding to the order of the spherical harmonic on Sn−1 and the letter � corresponds to the
resonance. After separation of variables the resolvent −�+V decomposes into a direct sum of one
dimensional operators RV

����= 
�−d2 /dr2�+ ����+1� /r2�+V�r�−�2�−1. For each fixed choice of �,
the resonance counting function N���� � �	c ��� by standard results �Ref. 8, pp. 328–329�, provided
that V�r� satisfies a jump condition. The problem is to obtain upper bounds and asymptotics for
N��� � �=��N���� � �.

Clearly, for fixed ��� and � sufficiently large, we have N���� � �=0. It is crucial to establish the
more precise statement that N���� � �=0 for ��c ���. To see this observe that RV

���� has no pole at
� if I+R0

����V is invertible, by the resolvent equation. Fredholm theory guarantees that I
+R0

����V is invertible if R0
����V has no eigenvalue −1. If ��c ���, then �R0

���� � �d�−2on the
support of V. So if � is sufficiently large, then ��V�1/2sgn�V�R0

���� �V�1/2 � 
�, and consequently
neither this operator nor R0

����V has eigenvalue −1. Suppose that V is supported on �0,b�. Then
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RV
���� is holomorphic for ��c ���, where c can be made arbitrarily small by choosing a suffi-

ciently small b. Scaling in the space variables reduces one to sufficiently small b.
Having quantified the existence of pole free regions, we need only consider N��r� for �
cr.

Let f̃0
��x ,�� be the Bessel function satisfying the unperturbed equation �−d2� /dx2�+ ����

+1� / �x2���=�2� and having the asymptotics f̃0
��x ,��	eix� as x→�. Set ��x�=���x�=��y�, so

that �−d2� /dy2�+ ����+1� / �y2���=�. If �y � �c�, elementary asymptotic formulas for Bessel

functions9 give f̃0
��x ,��	eix� uniformly for x�b /2 and �� � �c�, where c is sufficiently large.

Consequently, the Bessel transform stabilizes uniformly to the Fourier transform when �� � �c�.
This means that the asymptotics of N��r�, for V satisfying a jump condition on its derivatives,8 are
uniformly N��r�	cr, for r�c�. Summing over �
cr gives the asymptotics N�r�
=��
cr�

n−2N��r�=cr��
cr�
n−2+o�rn�. In the absence of the jump condition, the uniform stabili-

zation of the Bessel transform suffices to give the upper bound N��r�
cr and thus N�r�
crn. In
particular, the entire function M������ defined by Zworski7 is uniformly of order one, i.e.,
log �M���� � �c1 �� � +c2. The upper bound for N�r� then follows from Jensen’s formula.
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We study the SU�2� Witten-Reshetikhin-Turaev �WRT� invariant for the Seifert
fibered homology spheres with M-exceptional fibers. We show that the WRT in-
variant can be written in terms of �differential of� the Eichler integrals of modular
forms with weight 1 /2 and 3/2. By use of nearly modular property of the Eichler
integrals we shall obtain asymptotic expansions of the WRT invariant in the large-
N limit. We further reveal that the number of the gauge equivalent classes of flat
connections, which dominate the asymptotics of the WRT invariant in N→�, is
related to the number of integral lattice points inside the M-dimensional
tetrahedron. © 2006 American Institute of Physics. �DOI: 10.1063/1.2349484�

I. INTRODUCTION

The Witten invariant for the three-manifold M is defined by the Chern-Simons path integral
as1 �see also Ref. 2�

Zk�M� =� exp�2�ikCS�A��DA , �1.1�

where k�Z, and CS�A� is the Chern-Simons functional

CS�A� =
1

8�2�
M

Tr�A ∧ dA +
2

3
A ∧ A ∧ A� . �1.2�

In a limit k→� of the Witten invariant Zk�M�, we may apply the saddle point method. As the
saddle point of the Chern-Simons functional �1.2� denotes the flat connection

dA + A ∧ A = 0 �1.3�

the asymptotics of the partition function becomes a sum of the Chern-Simons invariants, and it is
expected to be1–3

Zk�M� �
1

2
e−�3/4��i�1+b1�	

�

�k + 2��dim H1−dim H0�/2 � 
T�e−2�i�I�/4+dim H0/8�e2�i�k+2�CS�A��.

�1.4�

Here the sum of � denotes a gauge equivalent class of flat connections, and T� and I�, respec-
tively, denote the Reidemeister torsion and the spectral flow. The first Betti number is b1, and Hi

is the cohomology space.
To study the asymptotic behavior of the Witten invariant rigorously, we need explicit expres-

sion of the invariant. Alternative and combinatorial definition of this quantum invariant was given
by Reshetikhin and Turaev4 �see also Ref. 5�. We denote �N�M� as the Witten-Reshetikhin-Turaev
�WRT� invariant, which is related to the Witten invariant Zk�M� by
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Zk�M� =
�k+2�M�

�k+2�S2 � S1�
�1.5�

and we have

�N�S3� = 1,

�N�S2 � S1� =
N

2

1

sin��/N�
.

Using this definition of the WRT invariant, asymptotic behavior of the WRT invariants for certain
three-manifolds has been extensively studied.6–13

Several years ago, Lawrence and Zagier found a connection between the WRT invariant and
modular form.14 They showed that the WRT invariant �N�M� for the Poincaré homology sphere
M=��2,3 ,5� can be regarded as a limiting value of the Eichler integral of vector modular form
with weight 3 /2. Thanks to this correspondence, the exact asymptotic expansion of the WRT
invariant in the large-N limit can be computed, and topological invariants such as the Chern-
Simons invariant and the Reidemeister torsion can be interpreted from the viewpoint of modular
forms. Meanwhile it has been established that this remarkable structure of the quantum invariants
holds for the WRT invariants for three-manifolds such as the Brieskorn homology spheres,15 four
exceptional fibered Seifert homology spheres,16 and the spherical Seifert manifolds.17 Also estab-
lished is a connection between the Eichler integrals of vector modular forms with weight 1 /2 and
the special values of the colored Jones polynomial for the torus knot Ts,t �Ref. 18 and see also
Refs. 19–22� and the torus link T2,2m.23

One of the benefits of the quantum invariant/modular form correspondence is an observation
that a limiting value of the Ramanujan mock theta functions24 in q→e2�i/N from outside a unit
circle coincides with the WRT invariants for the spherical Seifert manifolds.25 This fact opens up
a new insight to modular forms and the Ramanujan mock theta functions, and we can expect that
further studies on the quantum invariant/modular form correspondence should be fruitful.

In this article, as a continuation of Refs. 15 and 16, we study an exact asymptotic expansion
of the WRT invariant �N�M� for the M-exceptional fibered Seifert integral homology sphere
M=��p1 , p2 , . . . , pM�, where pj are pairwise coprime positive integers. By use of modular forms
with half-integral weight, we derive an asymptotic expansion in N→� number theoretically.

This article is organized as follows. In Sec. II we review the construction of the WRT invari-
ant for the Seifert fibered homology spheres following Ref. 8. An explicit form of the WRT
invariant is given. Also discussed is an integral expression of the invariant. In Sec. III we intro-
duce a family of vector modular forms with half-integral weight. We define the Eichler integrals
thereof, and study the nearly modular property of a limiting value of the Eichler integrals. By use
of this quasimodular transformation property, we compute the asymptotic expansion of the WRT
invariant in the large-N limit in Sec. IV. We shall see that the invariant is a limiting value of the
holomorphic function.26 We study a contribution of dominating terms in the large-N limit in detail,
and reveal a relationship with the number of the integral lattice points inside the higher dimen-
sional tetrahedron. Also given is an explicit relationship between the Casson invariant and the first
nontrivial coefficient of the Ehrhart polynomial. In Sec. V we give some results based on numeri-
cal computations. We compare the exact value of the WRT invariant with our asymptotic formula.
The last section is devoted to conclusion and discussions.

II. WRT INVARIANT FOR SEIFERT INTEGRAL HOMOLOGY SPHERE

Following Ref. 8, we compute the WRT invariant �N�M� for the Seifert fibered integral
homology sphere with M-exceptional fibers M=��p��=��p1 , p2 , . . . , pM� where pj are pairwise
coprime positive integers. Hereafter we use p� as M-tuple
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p� = �p1,p2, . . . ,pM� .

The Seifert fibered integral homology sphere ��p�� has a rational surgery description as Fig. 1 �see,
e.g., Refs. 27–29�, and the fundamental group has a presentation

�1���p��� = �x1,x2, . . . ,xM,h� h is center

xj
pj = h−qj for 1 � j � M

x1x2 ¯ xM = 1
 . �2.1�

Here qj �Z is coprime to pj, and we have a constraint so that the fundamental group �2.1� gives
the homology sphere;

P	
j=1

M
qj

pj
= 1. �2.2�

Here and hereafter we use

P = P�p�� = �
j=1

M

pj . �2.3�

When the three-manifold M is constructed by the rational surgeries pj /qj on the jth compo-
nent of n-component link L, it was shown4,30 that the SU�2� WRT invariant �N�M� is given by

�N�M� = e��i/4���N−2�/N��	j=1
n ��U�pj,qj��−3 sign�L�� 	

k1,. . .,kn=1

N−1

Jk1,. . .,kn
�L��

j=1

n

	�U�pj,qj��kj,1
. �2.4�

Here the surgery data pj /qj is encoded by an SL�2;Z� matrix

U�pj,qj� = �pj rj

qj sj
� .

The Rademacher � function ��U� is defined by31

FIG. 1. Surgery description of the Seifert homology sphere ��p1 , . . . , pM�
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���p r

q s
�� = �

p + s

q
− 12s�p,q� for q � 0

r

s
for q = 0 � �2.5�

where s�b ,a� denotes the Dedekind sum �A1�. An n�n matrix L is a linking matrix

L j,k = lk�j,k� +
pj

qj
· 
 j,k �2.6�

where 1k�j ,k� denotes the linking number of the j- and kth components of link L, and sign�L�
denotes a signature of L, i.e., the difference between the number of positive and negative eigen-
values of L. The polynomial Jk1,. . .,kn

�L� denotes the colored Jone polynomial for link L with color
kj for the jth component link, and 	�U�p,q�� is a representation 	 of PSL�2;Z� defined by

	�U�p,q��a,b = − i
sign�q�

2N�q�

e−��i/4���U�p,q��e��i/2Nq�sb2 	
� mod 2Nq

�=a mod 2N

e��i/2Nq�p�2
�e��i/Nq��b − e−��i/Nq��b�

�2.7�

for 1�a ,b�N−1.30 This representation is constructed from

	�S�a,b =
 2

N
sin�ab

N
�� ,

�2.8�
	�T�a,b = e��i/2N�a2−��i/4�
a,b

with

S = �0 − 1

1 0
�, T = �1 1

0 1
� �2.9�

satisfying

S2 = �ST�3 = 1.

Based on the fact that the Seifert fibered manifold ��p�� has a surgery description as in Fig. 1,
we have the following result.

Proposition 1 (Ref. 8): For the Seifert fibered integral homology sphere with M-exceptional
fibers M=��p��, the WRT invariant is given by

e�2�i/N����p��/4−1/2��e2�i/N − 1��N�M� =
e�i/4

2
2PN
	
n=0

N �� n

2PN−1

e−�1/2PN�n2�i
� j=1

M
�e�n/Npj��i − e−�n/Npj��i�

�e�n/N��i − e−�n/N��i�M−2 .

�2.10�

Here ��p�� is defined by

��p�� = 3 −
1

P
+ 12	

j=1

M

s� P

pj
,pj� , �2.11�

where s�b ,a� denotes the Dedekind sum �A1�.
Outline of Proof: We use the surgery formula �2.4�, in which the colored Jones polynomial for

a variant of Hopf link L depicted in Fig. 1 is given by

102301-4 Kazuhiro Hikami J. Math. Phys. 47, 102301 �2006�

                                                                                                                                    



Jk0,k1,. . .,kM
�L� =

1

sin��/N�

� j=1

M
sin� k0kj

N
��

�sin� k0

N
���M−1 .

Here k0 is a color of component which has a linking number 1 with any other components of L.
After some computations using the Gauss sum reciprocity formula �A7�, we get

e�2�i/N����p��/4−1/2��e2�i/N − 1��N�M� =
e�i/4

2
2PN
	
k0=1

N−1

	
nj mod pj

1

�e�k0/N��i − e−�k0/N��i�M−2

� �
j=1

M

e−�qj/pj��k0 + 2Nnj�
2/2N�e��k0+2Nnj�/Npj��i − e−��k0+2Nnj�/Npj��i� .

�2.12�

We see that the summand in �2.12� is invariant under

• k0→k0+2N and nj→nj −1 for all j,
• nj→nj + pj.

Using that pj are pairwise coprime, we can then rewrite the multisum of �2.12� into a single sum
of �2.10�. �

The WRT invariant can be rewritten in the integral form as follows.
Proposition 2 �Ref. 8�:

e�2�i/N����p��/4−1/2��e2�i/N − 1��N�M� =
e�i/4

2
2PN
�− 2�i 	

m=0

2P−1

Res
z=mN

g�z�
1 − e−2�iz + �

C
g�z�dz� ,

�2.13�

where

g�z� = e−�z2/2PN��i
� j=1

M
�e�z/Npj��i − e−�z/Npj��i�

�e�z/N��i − e−�z/N��i�M−2 �2.14�

and the integration path C passes the origin from �−1+i�� to �1−i��.
Outline of proof: Key identity is

M�x� = M�x − N�e4�iPx + 2�i 	
m=0

2P−1

Res
z=mN

hM�z,x� + 	
n=0

N �� n

2PN−1

fM�n,x� . �2.15�

Here the function M�x� is defined by

M�x� = �
C

hM�z,x�dz ,

where

hM�z,x� = e−�z2/2PN��i+2x�z/N��i 1

�e�z/N��i − e−�z/N��i�M−2 ·
1

1 − e−2�iz �
fM�z,x�

1 − e−2�iz .

As the function g�z� is a linear combination of fM�x ,z�, we obtain the expression �2.13�. �

In view of �2.13�, we can decompose the invariant as
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�N�M� = �N
res�M� + �N

int�M� �2.16�

where �N
res�M� and �N

int�M� respectively denote contributions from the residue terms and the
integral term in �2.13�. It was identified in Ref. 8 that the residue part �N

res�M� is the contribution
from irreducible flat connections while the integral term �N

int�M� is the trivial connection contri-
bution. The trivial connection contribution is related to the Ohtsuki series,32 and we have as
follows.

Proposition 3: In the limit N→�, the trivial connection contribution has the asymptotic
expansion as

e�2�i/N����p��/4−1/2��e�2�i/N� − 1��N
int�M� � 	

k=0

� Tp��k�

k!
� �i

2PN
�k

, �2.17�

where the T series is given by

� j=1

M
sinh� P

pj
x�

�sinh�Px��M−2 =
1

2	
k=0

� Tp��k�

�2k�!
x2k. �2.18�

We will discuss later the relationship with the Ohtsuki series.
Similar integral with �N

int�M� in the case of the three exceptional fibers M =3 appeared in
studies33,34 of the Ramanujan mock theta functions, which still remain to be mysterious and
fascinating topics. This suggests the remarkable fact that the Ramanujan mock theta functions24

are related to the WRT invariant for the Seifert fibered manifolds. See Refs. 17, 25, and 35 for
detail.

The dominating term of the WRT invariant in a limit N→� follows from the irreducible flat
connection contributions �N

res�M� as was expected from the saddle point approximation �1.4�. In
terms of the Witten partition function Zk�M�, the asymptotic expansion of the invariant is given
by

Zk−2�M� � 	
a=0

M−3

NM−3−aZN−2
�a� �M� + trivial connection contribution

and the dominating term ZN−2
�0� �M� in N→� can be computed as follows when we use an identity

sin��z� = �z�
n=1

� �1 −
z2

n2�
Proposition 4: In the large N limit, the Witten partition function ZN�M� for the M-exceptional

fibered Seifert homology sphere M=��p�� is dominated by

ZN−2�M� � NM−3 2M−2

�M − 2�!
P
e−���p��/2N��ie−��2M−3�/4��i

� 	
m=0

2P−1

�− 1�mMBM−2� m

2P
�e−�m2/2P��iN��

j=1

M

sin�m

pj
��� , �2.19�

where Bk�x� is the kth Bernoulli polynomial �A8�.
Among a sum of 2P terms on the right-hand side �r.h.s.� of �2.19�, we can classify the

summation by the Chern-Simons invariant, which corresponds to an exponential factor −�m2 /4P�
mod 1 as will be discussed later.
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III. MODULAR FORMS AND EICHLER INTEGRAL

We introduce the vector modular forms with half-integral weight which play a crucial role in
analysis of the WRT invariants for the Seifert fibered homology spheres.

A. Vector modular forms with half-integral weight

We set M-tuple

�� = ��1, . . . ,�M� , �3.1�

where � j are integers satisfying 0�� j � pj. As before we assume that pj are pairwise coprime

positive integers. For M-tuple �� , we define the periodic function �2P
�� �n� with modulus 2P by

�2P
�� �n� = �− �

j=1

M

� j if n = P�1 + 	
j=1

M

� j
� j

pj
�mod 2P ,

0 otherwise
� �3.2�

where � j = ±1 for ∀j. We see that �2P
�� �n� is even �respectively odd� when M is even �respectively

odd�,

�2P
�� �− n� = �− 1�M�2P

�� �n� �3.3�

and that it has a mean value zero,

	
n=0

2P−1

�2P
�� �n� = 0. �3.4�

We define an involution � j on M-tuple �� by

� j���� = ��1, . . . ,� j−1,pj − � j,� j+1, . . . ,�M� �3.5�

for 1� j�M. As we have

�2P
�i�j��

���n� = �2P
�� �n� �3.6�

for 1� i, j�M, the number of the independent periodic functions �2P
�� �n� for given p� is

D = D�p�� =
1

2M−1�
j=1

M

�pj − 1� . �3.7�

We note that

�2P
�� �n + P� = − �2P

�j��
���n� �3.8�

for 1� j�M.
We set

q = exp�2�i�� , �3.9�

where � is in the upper half plane, ��H. By use of the periodic functions �3.2� we define the q
series by
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�p�
����� =

1

2 	
n�Z

nm2�M��2P
�� �n�qn2/4P, �3.10�

where we mean

m2�M� =
1 − �− 1�M

2
= M mod 2 = �0 when M is even

1 when M is odd.
� �3.11�

The q-series �p�
����� is proved to be a vector modular form with half-integral weight. The T

transformation is trivial, and by use of the Poisson summation formula,

	
n�Z

f�n� = 	
n�Z

�
−�

�

e−2�itnf�t�dt �3.12�

we obtain the transformation formula under the S transformation as follows.

Proposition 5: The q-series �p�
����� is a vector modular form with weight 3/2 �respectively 1/2�

when M is even (respectively odd). Under the S and T transformations �2.9� we have

�p�
����� = � i

�
�3/2−m2�M�

	
���

S
���
��

�p�
��� �− 1/�� , �3.13�

�p�
���� + 1� = T���p�

����� . �3.14�

Here a sum of ��� runs over D-dimensional space �3.7�, and matrix elements of D�D matrices S
and T are respectively given by

S
���
��

=
2MiM−m2�M�


2P
�− 1�P�1+	j=1

M ��j+�j��/pj�+P	j	k�j�j�k�/pjpk�
j=1

M

sin�P
� j� j�

pj
2 �� , �3.15�

T�� = exp�P

2
�1 + 	

j=1

M
� j

pj
�2

�i� . �3.16�

Our vector modular form �p�
����� may be a generalization of modular forms which appear as the

character of the affine Lie algebra su�2�̂ �a case of M =1, and �P
�a���� defined below� and as the

minimal Virasoro model �a case of M =2� up to the power of the Dedekind � function.
For our later use, we introduce other families of vector modular forms. We define the even

periodic functions by

�2P
�a��n� = �1 for n = ± a mod 2P

0 otherwise
� �3.17�

for 0�a� P, and the odd periodic function by

�2P
�a��n� = �±1 for n � ± a mod 2P

0 otherwise
� �3.18�

for 0�a� P. We then define two families of q-series by

P
�a���� =

1

2 	
n�Z

�2P
�a��n�qn2/4P, �3.19�
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�P
�a���� =

1

2 	
n�Z

n�2P
�a��n�qn2/4P. �3.20�

These families are also vector modular forms with half-integral weight. Namely we see that
P

�a���� is a vector modular form with weight 1 /2 satisfying

P
�a���� =
 i

�
	
b=0

P

Nb
aP

�b��− 1/�� , �3.21�

P
�a��� + 1� = exp� a2

2P
�i�P

�a���� , �3.22�

where N is �P+1�� �P+1� matrix defined by

Nb
a =�

1

2P

for a = 0


 2

P
cos�ab

P
�� for a � 0,P

1

2P

cos�b�� for a = P .
� �3.23�

The vector modular form �P
�a���� with weight 3 /2 fulfills the following transformation formulae;

�P
�a���� = � i

�
�3/2

	
b=1

P−1

Mb
a�P

�b��− 1/�� , �3.24�

�P
�a��� + 1� = exp� a2

2P
�i��P

�a���� , �3.25�

where M is a �P−1�� �P−1� matrix defined by

Mb
a =
 2

P
sin�ab

P
�� . �3.26�

B. Eichler integrals

The Eichler integral is originally defined for modular forms with integral weight�2 �see, e.g.,

Ref. 36�. In our cases, the vector modular forms �p�
����� have a half-integral weight, so we follow

a method of Refs. 14 and 22 to define a variant of the Eichler integrals.

We define the Eichler integrals �̃p�
����� of the vector modular form �p�

����� by

�̃p�
����� = 	

n=0

�

n1−m2�M��2P
�� �n�qn2/4P. �3.27�

This can be regarded as a “half-derivative” �respectively “half-integral”� of the modular form

�p�
����� with respect to � when M is even �respectively odd�. When M is odd, the q-series �̃p�

�����
might be called the false theta function à la Rogers.37

Proposition 6: We assume N1 and N2 are coprime integers, and N1�0. Limiting values of the

Eichler integrals �̃p�
����� in �→N2 /N1 are given as follows;
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�̃p�
���N2/N1� = − �PN1�1−m2�M� 	

k=0

2PN1

�2P
�� �k�e�N2/N1��k2/2P��iB2−m2�M�� k

2PN1
� , �3.28�

where Bk�x� is the kth Bernoulli polynomial.
We note that

�̃p�
���� + 1� = T���̃p�

�����

from which we have for N�Z

�̃p�
���N� = �T���N�̃p�

���0� = − �T���NP1−m2�M�	
k=0

2P

�2P
�� �k�B2−m2�M�� k

2P
� .

A proof follows straightforwardly when we use the following lemma14 �see also Ref. 38�.
Lemma 7: Let Cf�n� is a periodic function with modulus f and mean value zero. Then we have

as t↘0

	
n=1

�

Cf�n�e−n2t � 	
n=0

�

L�− 2n,Cf�
�− t�n

n!
, �3.29�

	
n=1

�

nCf�n�e−n2t � 	
n=0

�

L�− 2n − 1,Cf�
�− t�n

n!
, �3.30�

where the L function is

L�s,Cf� = 	
n=1

�
Cf�n�

ns = f−s	
k=1

f

Cf�k���s,
k

f
� . �3.31�

Note that the Hurwitz zeta function ��s ,z�, defined by

��s,z� = 	
n=0

�
1

�n + z�s , �3.32�

has an analytic continuation for k�Z�0 as

��1 − k,s� = −
Bk�z�

k
. �3.33�

Proposition 8: The limiting values �̃p�
����� of the Eichler integrals with ��Q satisfy a nearly

modular property. In a limit N→�, we have the transformation formula as an asymptotic expan-
sion as follows;

�̃p�
���1/N� + �N

i
�3/2−m2�M�

	
���

S
���
��

�̃p�
��� �− N� � 	

k=0

�
L�− 2k − 1 + m2�M�,�2P

�� �
k!

� �i

2PN
�k

.

�3.34�

Here N�Z, and a sum of M-tuples ��� runs over D-dimensional space.
Proof: We introduce another variant of the Eichler integral by
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�̂p�
���z� =�−
 Pi

2�2�
z̄

� �p�
�����

�� − z�3/2d� when M is even

1

2Pi

�
z̄

� �p�
�����


� − z
d� when M is odd,� �3.35�

where we assume that z is in the lower half-plane, z�H−, and z̄ denotes a complex conjugate of
z. By use of the S-transformation �3.13�, we have

�̂p�
���z� + � 1

iz
�3/2−m2�M�

	
���

S
���
��

�̂p�
��� �− 1/z� = r�

p�
���z;0� . �3.36�

Here r�
p�
���z ;�� is an analogue of the period function defined by

r�
p�
���z;�� =�−
 Pi

2�2�
�

� �p�
�����

�� − z�3/2d� when M is even

1

2Pi

�
�

� �p�
�����


� − z
d� when M is odd,� �3.37�

where ��Q. We find that �̂p�
���z� takes the same limiting value with that of �̃p�

����� in a limit z, �
→��Q;

��̃p�
�������→� = ��̂p�

���z��z→�. �3.38�

The r.h.s. of �3.34� arises from an asymptotic expansion of r�
p�
���z ;0�, and we obtain �3.34�. �

For our later use, we study differentials of the Eichler integral �̃p�
�����, i.e., “fractional deriva-

tives” of the vector modular form �p�
�����. From the definition �3.27� of the Eichler integral, we

have for b�Z�0

�2P

�i

d

d�
�b

�̃p�
����� = 	

n=0

�

n2b+1−m2�M��2P
�� �n�qn2/4P. �3.39�

By the same computation with �3.28�, we have the following.

Proposition 9: The limiting values of fractional derivative of the vector modular forms �p�
�����

are given by

��2P

�i

d

d�
�b

�̃p�
������

�→N2/N1

= −
�2PN1�2b+1−m2�M�

2b + 2 − m2�M� 	
n=1

2PN1

�2P
�� �n�e�N2/N1��n2/2P��iB2b+2−m2�M�� n

2PN1
� ,

�3.40�

where N1�0 and N2 are coprime integers.
The nearly modular property �3.34� of the Eichler integral gives the following asymptotic

expansion of �3.40�.
Proposition 10: In the limit N→�, we have the following asymptotic expansion;
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N2b+1−m2�M� 	
n=1

2PN

�2P
�� �n�e�n2/2PN��iB2b+2−m2�M�� n

2PN
�

�
− 1

i3/2−m2�M�	
j=0

b

Nb+j+3/2−m2�M�� i

2P�
�b−j

Kb,m2�M�
�j�

�
2b + 2 − m2�M�
2j + 2 − m2�M� 	

���

S
���
�� �	

n=1

2P

�2P
��� �n�B2j+2−m2�M�� n

2P
��e−�P/2��1 + 	 j

��j�/pj��
2�iN

−
2b + 2 − m2�M�
�2P�2b+1−m2�M� 	

k=0

�
L�− 2k − 2b − 1 + m2�M�,�2P

�� �
k!

� �i

2PN
�k

, �3.41�

where the sum of M-tuples ��� runs over D-dimensional space, and we have

Kb,x
�j� = �b

j
� �

k=0

b−j−1 �1

2
+ b − x − k� . �3.42�

Proof: We differentiate �3.36� with respect to z, and then take a limit z→1/N. We get

� db

dzb�̂p�
���z��

z→1/N
+

1

i1/2+m2�M�	
���

S
���
�� ��w2 d

dw
�b

w3/2−m2�M��̂p�
��� �w��

w→−N

� � �i

2P
�b

	
k=0

�
L�− 2k − 2b − 1 + m2�M�,�2P

�� �
k!

� �i

2PN
�k

. �3.43�

On the left-hand side, we use

�w2 d

dw
�n

= 	
m=1

n

An
�m�wn+m dm

dwm ,

where An
�m� is the Lah number defined by

An
�m� =

n!

m!
� n − 1

m − 1
� .

This denotes the number of partitions of �1,2 , . . . ,n� into m lists �a “list” denotes an ordered
subset�,39,40 and satisfies the recursion relation

An+1
�m� = An

�m−1� + �n + m�An
�m�.

Thus we have

�w2 d

dw
�b

w3/2−m2�M��̂p�
���w� = 	

j=0

b

w3/2−m2�M�+b+jKb,m2�M�
�j�

d j�̂p�
���w�

dwj .

Here the K number is computed as

Kb,x
�j� = 	

k=j

b

Ab
�k��k

j
� ��5

2
− x�

��5

2
− x − k + j�

which reduces to �3.42� applying �A14� and �A17�.
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As we have �3.38�, we get �3.41� with a help of �3.40�.
In the same method, we have formulas of the asymptotic expansions concerning to the peri-

odic functions with mean value zero.
Corollary 11: We assume that C2P�n� is an odd or even periodic function with modulus 2P,

and that it satisfies

• a mean value zero condition,

	
n=0

2P−1

C2P�n� = 0,

• C2P�0�=0.
In the limit N→�, we have the following asymptotic expansions;

• C2P�n� is odd;

N2b 	
n=1

2PN

C2P�n�e�n2/2PN��iB2b+1� n

2PN
� �

− 2

i1/2 	
j=0

b

Nb+j+1/2� i

2P�
�b−j

Kb,1
�j� 2b + 1

2j + 1

�	
a=1

P−1

C2P�a�	
c=1

P−1

Mc
aB2j+1� c

2P
�e−N�c2/2P��i

−
2b + 1

�2P�2b	
k=0

�
L�− 2k − 2b,C2P�

k!
� �i

2PN
�k

,

�3.44�

• C2P�n� is even;

N2b+1 	
n=1

2PN

C2P�n�e�n2/2PN��iB2b+2� n

2PN
� �

− 1

i3/2 	
j=0

b

Nb+j+3/2� i

2P�
�b−j

Kb,0
�j� b + 1

j + 1 	
a=1

P

C2P�a�

� 	
c=0

P

Nc
a�2 − 
c,0 − 
c,P�B2j+2� c

2P
�e−N�c2/2P��i

−
2b + 2

�2P�2b+1	
k=0

�
L�− 2k − 2b − 1,C2P�

k!
� �i

2PN
�k

.

�3.45�

Proof: We use that

C2P�n� = �	
a=1

P−1

C2P�a��2P
�a��n� when C2P�n� is odd

	
a=1

P

C2P�a��2P
�a��n� when C2P�n� is even.�

In both cases, due to a condition C2P�0�=0, we see that periodic functions which appear in the
modular transformation formula such as �3.43� have a mean value zero. Applying Lemma 7, we
obtain asymptotic expansions. �
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IV. EXACT ASYMPTOTIC EXPANSION OF THE WRT INVARIANTS

A. Exact asymptotic expansion

As a preparation to obtain the exact asymptotic expansion of the WRT invariant �N�M� for
the M-exceptional fibered Seifert homology sphere M=��p�� by use of the vector modular form

�p�
����� defined in previous section, we give q-series identities at the root of unity related to the

Bernoulli polynomials.
Lemma 12: We set �N as the Nth primitive root of unity;

�N = exp�2�i

N
�

and assume that a and k are positive integers satisfying 0�a�N−1. We have

	
c=1

N−1
�N

�a+1�c

�1 − �N
c �k =

�− 1�k

�k − 1�!	j=1

k
Sk

�j�

j
�Bj�1� − NjBj�a + 1

N
�� , �4.1�

where Sk
�j� is the Stirling number of the first kind �A14�.

Proof: We follow a method in Ref. 41.
We define the function P�t ;k ,a� by

P�t;k,a� = 	
c=1

N−1
�N

�a+1�c

�1 − �N
c et�k , �4.2�

where a and k are positive integers. The function P�t ;k=1,a� is computed as follows;

P�t;k = 1,a� = 	
n=0

�

	
c=1

N−1

�N
�a+1�c+ncent = −

1

1 − et + Ne−�a+1�t eNt

1 − eNt

= 	
m=0

�
1

�m + 1�!�Bm+1�0� − Nm+1Bm+1�1 −
a + 1

N
��tm. �4.3�

Here we have used

	
c=1

N−1

�N
nc = �N − 1 if N�n

− 1 otherwise.
�

We further introduce the function Q�t ;k ,c� by

Q�t;k,c� =
1

�1 − �N
c et�k , �4.4�

where k and c are positive integers. By definitions we have

P�t;k,a� = 	
c=1

N−1

�N
�a+1�cQ�t;k,c� . �4.5�

Definition �4.4� indicates that the function Q�t ;k ,c� satisfies a differential-difference equation,

d

dt
Q�t;k,c� = k�Q�t;k + 1,c� − Q�t;k,c�� .

We can check by induction that the function Q�t ;k ,c� can be written in terms of Q�t ;k=1,c� as

102301-14 Kazuhiro Hikami J. Math. Phys. 47, 102301 �2006�

                                                                                                                                    



Q�t;k,c� =
�− 1�k+1

�k − 1�! 	
m=0

k−1

�− 1�mSk
�m+1� dm

dtmQ�t;1,c� �4.6�

From �4.5� we find that P�t ;k ,a� is solved as

P�t;k,a� =
�− 1�k+1

�k − 1�! 	
m=0

k−1

�− 1�mSk
�m+1� dm

dtm P�t;1,a� �4.7�

Substituting �4.3� for the previous solution, we complete the proof. �

Using the arithmetic identity �4.1�, we can rewrite the WRT invariant �2.10� in terms of the
Bernoulli polynomials.

Proposition 13: The WRT invariant for the M-exceptional fibered Seifert integral homology
sphere M=��p��, which was computed as in �2.10�, is written in terms of the Bernoulli polyno-
mials as

e�2�i/N����p��/4−1/2��e�2�i/N� − 1��N�M�

= −
1

2

1

�M − 3�! 	
j=0

M−3

�− N� j SM−2
�j+1�

j + 1
� 	

n=0

2PN−1

�2P
E� �n�e�1/2PN��n + P�M − 3��2�iBj+1� 1

N � n

2P ��
+

�− 1�M

�M − 4�!	a=1

�

	
b=0

a−1

	
�� �a�

�	
n=0

N−1

	
j=1

M−3
SM−3

�j�

j
e�i�2P/N��n − b − �M − 4�/2 + �1/2�	

i=1

M

�i/pi�
2

� �Nj−1Bj�n + 1

N
� −

1

N
Bj�1�� , �4.8�

where for our brevity we have used M-tuple

�4.9�

and 	�� �a�� is a signed sum

	
�� �a�

� ¯ = 	
�� ��±1�Ms.t.

2a−1�	j=1
M �j/pj�2a+1

��
j=1

M

� j�¯ .

We remark that the second term including a sum of a in �4.8� vanishes when

	
j=1

M
1

pj
� 1

Even when 	 j=1
M 1/ pj �1, the second term is a finite sum. It is well known that the sum of inverse

of prime numbers, 	p:prime1 / p diverges, although the sum up to the 10 000th prime numbers is still
2.709 258 ….

Proof of Prop. 13: We first study a case of 	 j1/ pj �1. In this case, we have

− zP�
j=1

M

�zP/pj − z−P/pj� = 	
m=0

2P−1

�2P
E� �m�zm, �4.10�

where the periodic function �2P
E� �m� is defined in �3.2�. Using this identity in �2.10�, we have
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e�2�i/N����p��/4−1/2��e2�i/N − 1��N�M�

= −
e�i/4

2
2PN
	
m=0

2P−1

	
k=1

N−1

�2P
E� �m�

e��i/2PN��m + �M − 3�P�2

�e�2�i/N�k − 1�M−2 	
j=0

2P−1

e−�i�N/2P��j + �k − m − �M − 3�P�/N�2

=
− 1

2N
	
m=0

2P−1

	
n=0

N−1

�2P
E� �m�e��i/2PN��2Pn − m − �M − 3�P�2	

k=1

N−1
e�2�i/N�kn

�e2�ik/N − 1�M−2

=
− 1

2

1

�M − 3�! 	
m=0

2P−1

	
n=0

N−1

�2P
E� �m�e��i/2PN��2Pn + m + �M − 3�P�2

� 	
j=0

M−3
SM−2

�j+1�

j + 1
� 1

N
Bj+1�1� − NjBj+1�1 −

n

N
� .

Here in the first equality we have used �4.10�, and decomposed a sum of n by setting n=Nj+k. We
have then applied the Gauss sum reciprocity formula �A7� in the second equality, and then used
our formula �4.1� in the last equality. As we have

	
n=0

2PN−1

�2P
�� �n�e��i/2PN�n2

= 0 �4.11�

due to �3.4�, we obtain the first term of �4.8�.
For other cases 	 j1/ pj �1, the generating function �4.10� of the periodic function �2P

E� �n� is
replaced with

− zP�
j=1

M

�zP/pj − z−P/pj� + 	
a=1

�

	
�� �a�

�zP�zaP − z−aP� � �zP�	jnj/pj−a� + �− 1�M+1z−P�	j�j/pj−a��

= 	
n=0

2P−1

�2P
E� �n�zn. �4.12�

Thus comparing with a case of 	 j1/ pj �1, we need additional term �add defined by

�add = 	
a=1

�

	
b=0

a−1

	
�� �a�

� 	
n=0

N �� n

2PN−1
e�i/4

2
2PN

e−�n2/2PN��i

�e�n/N��i − e−�n/N��i�M−3

� �e�i�n/N��	j�j/pj−2b−1� + �− 1�M+1e−�i�n/N��	j�j/pj−2b−1�� . �4.13�

We decompose a sum of n by setting n=Nj+k, and apply the Gauss sum reciprocity formula �A7�.
After some computations, we obtain

�add =
1

2N
	
a=1

�

	
b=0

a−1

	
�� �a�

�	
k=1

N−1

	
n=0

N−1 e�i�2P/N��n − �M − 2�/2 + �1/2�	 j
�j/pj�

2

�e�k/N��i − e−�k/N��i�M−3

� �e�i�k/N��M−3−2b−2n� + �− 1�M+1e�i�k/N��2b+2n−M+3��

=
1

N
	
a=1

�

	
b=0

a−1

	
�� �a�

�	
n=0

N−1

e�i�2P/N��n − �M − 2�/2 + �1/2�	 j
�j/pj�

2	
k=1

N−1
e2�i�k/N��b+n�

�1 − e2�i�k/N��M−3 ,

where we have used the fact that the sum �4.1� is real. Substituting �4.1� for the previous equation,
we find that �add gives the second term of r.h.s. of �4.8�, and thus we complete the proof. �

102301-16 Kazuhiro Hikami J. Math. Phys. 47, 102301 �2006�

                                                                                                                                    



We now aim to relate this expression with limiting values of the Eichler integrals �3.28� and
differentials �3.40� thereof. For our convention, we introduce an analog of the Bernoulli polyno-
mial defined by

fm
M�x� = 	

k=m

M
1

k
SM

�k�� k

m
��x +

M

2
�k−m

, �4.14�

where M, m�Z satisfying M �m�0. For a case of m=0, we set

f0
M�x� = 	

k=1

M
SM

�k�

k
�x +

M

2
�k

. �4.15�

Some of explicit forms of the polynomials fm
M�x� are given as follows:

fM
M�x� =

1

M
,

fM−1
M �x� = x ,

fM−2
M �x� =

1

M
�M

2
��x2 −

M

12
� ,

fM−3
M �x� =

1

M
�M

3
��x3 −

M

4
x� ,

fM−4
M �x� =

1

M
�M

4
��x4 −

M

2
x2 +

1

240
M�5M + 2�� .

Lemma 14: Let the polynomial fm
M�x� be defined by (4.14). Then the polynomial fM−k�0

M �x� is
even (respectively odd) when k is even (respectively odd).

Proof: We introduce the generating function of the polynomials fM
m �x� by

FM�x,y� = 	
m=0

M

mfm
M�x�ym−1. �4.16�

Recalling the generating function �A14� of the Stirling number of the first kind, we get

FM�x,y� = �
j=1

M−1 �y + x +
M

2
− j� �4.17�

which shows that FM�x ,y� is a polynomial of x+y. Further FM�x ,y� becomes an odd �respectively
even� polynomial of x+y when M is even �respectively odd�. Then we can conclude that the
polynomial fM−k

M �x� is even �respectively odd� if k is even �respectively odd�. �

By use of the generating function �4.17�, we obtain the following differential equation and
recursion relation of fm

M�x�:

d

dx
fm

M�x� = �m + 1�fm+1
M �x� , �4.18�
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f j
M+1�x −

1

2
� = �x −

M

2
� f j

M�x� +
j − 1

j
f j−1

M �x� . �4.19�

We can rewrite the WRT invariant in Proposition 13 in terms of these polynomials as follows.
Proposition 15: The WRT invariant �N�M� for the M-exceptional fibered Seifert homology

sphere M=��p�� is written as

e�2�i/N����p��/4−1/2��e2�i/N − 1��N�M� = −
1

2

1

�M − 3�! 	
k=1

M−2

�− N�k−1 	
n=0

2PN−1

�2P
E� �n�fk

M−2� n

2P
− � n

2P � −
1

2
�

� e�1/2PN��n + P�M − 3��2�iBk�n + P�M − 3�
2PN

�
+

�− 1�M

�M − 4�!	a=1

�

	
b=0

a−1

	
�� �a�

�	
n=0

N−1

e�i�2P/N��n − b − �M − 4�/2 + �1/2�	
j

�j/pj�
2

� 	
k=0

M−3 �Nk−1fk
M−3�b +

1

2
−

1

2	
j

� j

pj
�

�Bk�2n − 2b − M + 4 + 	 j

� j

pj

2N
� −

1

N
fk

M−3�5 − M

2
�Bk�0�� .

�4.20�

Proof: To prove for a case of 	 j1/ pj �1, in which the second term in �4.20� vanishes, we only
need to apply �A13� to Bj+1��1/N��n /2P�� in the first term of �4.8�. As we have an identity

	
j=1

M
SM

�j�

j
Bj�x + y�zj = 	

k=0

M

fk
M�yz −

M

2
�Bk�x�zk �4.21�

we obtain the required expression.
In the case of 	 j1/ pj �1, we need to evaluate the second term in �4.8�, which we have set �add

in the proof of Proposition 13. This term �add can be transformed into expression �4.20� when we
apply �4.21�. �

Theorem 16: The exact asymptotic expansion of the WRT invariant �N�M� for the Seifert
homology sphere M=��p�� withM-singular fibers in N→� is given as follows;

e�2�i/N����p��/4−1/2��e2�i/N − 1��N�M�

�
1

2

1

�M − 3�!
1

i3/2−m2�M� 	
j=0

��M−3�/2�
Nj+�M/2�−1/2� i

2P�
���M−3�/2�−j

K��M−3�/2�,m2�M�
�j�

�
1

2j + 2 − m2�M�	
���

S
���
�1

M−1�E� ��	
n=1

2P

�2P
��� �n�B2j+2−m2�M�� n

2P
��e−N�P/2��1 + 	j�j�/pj�

2�i

+
1

�M − 3�!
�− 1�M

i3/2 	
m=1

��M−3�/2�

	
a=0

P

�2P
�1

M−1�E� ��a�f2m
M−2� a

2P
−

m2�M�
2

�
� 	

j=1

m

Nm+j−1/2� i

2P�
�m−j

Km−1,0
�j−1� m

j
	
c=0

P

Nc
a2 − 
c,0 − 
c,P

2
B2j� c

2P
�e−N�c2/2P��i
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+
1

�M − 3�!
�− 1�M−1

i1/2 	
m=0

��M−4�/2�

	
a=1

P

�2P
�1

M−1�E� ��a�f2m+1
M−2 � a

2P
−

m2�M�
2

�
� 	

j=0

m

Nm+j+1/2� i

2P�
�m−j

Km,1
�j� 2m + 1

2j + 1 	
c=1

P−1

Mc
aB2j+1� c

2P
�e−N�c2/2P��i

+
�− 1�M

�M − 4�!	a=1

�

	
b=0

a−1

	
�� �a�

�� 	
m=1

��M−3�/2�
f2m

M−3�b +
1

2
−

1

2	
i

�i

pi
�− 1

i3/2 	
j=1

m

Nm+j−1/2� i

2P�
�m−j

� Km−1,0
�j−1� m

j
	
c=0

P

Nc
�M−1�P	i�i/pi−P�2a−1��2 − 
c,0 − 
c,P

2
B2j� c

2P
�e−N�c2/2P��i

+ �− 1�M−1 	
m=0

��M−4�/2�
f2m+1

M−3 �b +
1

2
−

1

2	
i

�i

pi
�− 1

i1/2 	
j=0

m

Nm+j+1/2� i

2P�
�m−j

� Km,1
�j� 2m + 1

2j + 1 	
c=1

P−1

Mc
�M−1�P	i�i/pi−P�2a−1��B2j+1� c

2P
�e−N�c2/2P��i� + 	

k=0

� Tp��k�

k!
� �i

2PN
�k

,

�4.22�

where we have used an involution � on x�Z2P defined by

��x� = P − x mod 2P . �4.23�

The coefficients Tp��k� in a tail part are defined by

Tp��k� =
�− 1�M+1

2

�2P�2k

�M − 3�!	n=1

2P

�2P
�1

M−1�E� ��n� 	
j=1

M−2

�− 1� j j

2k + j
B2k+j� n

2P
�

� f j
M−2�n + �M − 1�P

2P
− �n + �M − 1�P

2P � −
1

2
� −

�2P�2k

�M − 4�!	a=1

�

	
b=0

a−1

	
�� �a�

� 	
j=1

M−3

�− 1��M+1��j+1�

�
j

2k + j
f j

M−3�b +
1

2
−

1

2	
i

�i

pi
�B2k+j� 1

2P
�M−1�P	

i

�i

pi
− �2a − 1�P�� . �4.24�

Proof. We first study the case 	 j1/ pj �1, in which we only have the first term in �4.20�. We
shift the parameter n by P�3−M�, and we have

�2P
E� �n − P�M − 3�� = �− 1�1−m2�M��2P

�1
M−1�E� ��n�

As we see that

�2P
�� �n�fk

M−2�n + �M − 1�P

2P
− �n + �M − 1�P

2P � −
1

2
�

is an even �respectively odd� periodic function when k is even �respectively odd�, we can write by
use of fM

M�x�=1/M that
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e�2�i/N����p��/4−1/2��e2�i/N − 1��N�M�

= −
1

2

NM−3

�M − 2�! 	
n=0

2PN−1

�2P
�1

M−1�E� ��n�e�n2/2PN��iBM−2� n

2PN
� −

�− 1�M

2

1

�M − 3�! 	
c=1

��M−3�/2�
N2c−1

�� 	
n=0

2PN−1

�2P
�1

M−1�E� ��n�f2c
M−2� n

2P
−

m2�M�
2

�e�n2/2PN��iB2c� n

2PN
��

+
�− 1�M

2

1

�M − 3�! 	
c=0

��M−4�/2�
N2c

�� 	
n=0

2PN−1

�2P
�1

M−1�E� ��n�f2c+1
M−2� n

2P
−

m2�M�
2

�e�n2/2PN��iB2c+1� n

2PN
�� .

Generating function �4.10� proves

	
n=0

2P−1

�2P
E� �n�g�n� = 0,

where g�n� is an arbitrary polynomial of n of order at most M −1. So we find that

�2P
E� �n�fk

M−2�n /2P− �n /2P�−1/2� is a periodic function of n with mean value zero, and that the
expression �4.20� can be identified with a limiting value of the Eichler integrals and their deriva-
tives studied in the previous section. This proves that the WRT invariant is a limiting value of the
holomorphic function of q in q→e2�i/N.26 Substituting both �3.44� and �3.45� for the previous
expression, we get �4.22�.

For the second term �add in �4.20�, recalling the periodic functions �2P
�a��n� and �2P

�a��n� we can
rewrite it into

�add =
1

2

�− 1�M

�M − 4�!	a=1

�

	
b=0

a−1

	
�� �a�

�� 	
m=0

��M−3�/2�
N2m−1f2m

M−3�b +
1

2
−

1

2	
i

�i

pi
�

� 	
n=0

2PN−1

�
2P

��M−1�P	i
�i/pi−�2a−1�P��

�n�e�i�n2/2PN�B2m� n

2PN
�

+ �− 1�M−1 	
m=0

��M−4�/2�
N2mf2m+1

M−3 �b +
1

2
−

1

2	
i

�i

pi
�

� 	
n=0

2PN−1

�
2P

��M−1�P	i
�i/pi−�2a−1�P��

�n�e�i�n2/2PN�B2m+1� n

2PN
� � .

With this term, the mean value zero condition is satisfied even in this case, and we can apply the
result of Corollary 11 to obtain the exact asymptotic expansion as required. �

We have thus obtained that the WRT invariant ZN−2�M� for the M-exceptional fibered Seifert
homology sphere M=��p�� is written in a limit N→� as a sum of exponentially divergent terms
and a tail part;

ZN−2�M� � 	
k=0

M−3

NM−3−kZN−2
�k� �M� + a tail part �4.25�

Here a tail part means an infinite power series of 1 /N, and it corresponds to a contribution from
the trivial connection. Among the divergent terms in �4.25�, the dominating term in the limit N
→� is ZN−2

�0� �M�, which is read as follows.
Corollary 17: In a limit N→�, the asymptotics of the WRT invariant �N�M� for the
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M-exceptional fibered Seifert homology sphere M=��p�� is dominated by NM−3. ZN−2
�0� �M�, namely

ZN−2�M� � NM−3 · e−���p��/2N��i i
m2�M�−1e−�3/4��i

2
2�M − 2�!
� 	

��
S

��
�1

M−1�E� �
Cp�����e−�P/2��1 + 	 j=1

M
�j/pj�2

�iN,

�4.26�

i.e.,

ZN−2�M� � NM−3 2M−2

�M − 2�!
P
e−���p��/2N��ie−��2M+1�/4��i	

��
Cp�����e−�P/2��1 + 	 j=1

M
�j/pj�2

�iN

� �− 1�MP�1+	j�j/pj�+P	j1/pj+P	j	k�j�k/pjpk��
j=1

M

sin�P
� j

pj
2��� , �4.27�

where the sum of M-tuples �� runs over D-dimensional space �3.7�, and the function Cp����� is
defined by

Cp����� = 	
n=1

2P

�2P
�� �n�BM−2� n

2P
� . �4.28�

We note that the invariance �3.6� of the periodic function �2P
�� �n� indicates that

Cp���i� j����� = Cp����� . �4.29�

By construction, the asymptotics �4.26� should coincide with �2.19� which follows from
residue part of �2.16�. We do not have a direct proof, and we have checked the equivalence

numerically for several p�’s. Recalling the path integral approach, the sum of M-tuple �� can be
regarded as a label of the gauge equivalent class of flat connections � in �1.4�, and we can identify
the Chern-Simons invariant with

CS�A������ = −
P

4
�1 + 	

j=1

M
� j

pj
�2

mod 1. �4.30�

See Refs. 42 and 43 for computations of the Chern-Simons invariant for the Seifert homology
spheres. Note that this value originates from the T matrix �3.16� of the vector modular form.
Correspondingly, the Reidemeister torsion is given by


T���� = ��
j=1

M

sin�P
� j

pj
2��� · Cp����� . �4.31�

Here the product of sin functions originates from the S matrix of the vector modular form.

B. Ohtsuki series

A tail part in the asymptotic formula �4.22� has a simple generating function as was studied in
�2.17�.

Theorem 18: Let the T series be defined by �4.24�. Then the generating function of the T
series is

� j=1

M
sinh� P

pj
x�

�sinh�Px��M−2 =
1

2	
k=0

� Tp��k�

�2k�!
x2k. �4.32�
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Proof: We first study a case of 	 j1/ pj �1. Using �4.10�, we have

� j=1

M
sinh� P

pj
x�

�sinh�Px��M−2 =
�− 1�M−1

2 	
k=0

�

	
n=0

2P−1 �k + M − 3

k
��2P

E� �n�e−�n+2P�k+�M−3�/2��x.

We equate this expression with 	k=0
� �Tk / �2k�!�x2k. Applying the Mellin transformation, we get

Tk =
�− 1�M

2

�2P�2k

�M − 3�! 	
n=0

2P−1

�2P
E� �n� 	

j=0

M−3
1

1 + j + 2k
B1+j+2k�n + P�M − 3�

2P
�

� 	
k=j

M−3

SM−3
�k� �k

j
��P�M − 3� − n

2P
�k−j

.

Here we have used �3.33�. Identities �4.14� and �4.19� give

	
k=j

M−3

SM−3
�k� �k

j
��P�M − 3� − n

2P
�k−j

= �− 1�M+1+j�j + 1�f j+1
M−2� n

2P
−

1

2
� ,

then we have

Tk =
1

2

�2P�2k

�M − 3�! 	
n=0

2P−1

�2P
E� �n� � 	

j=1

M−2

�− 1� j j

j + 2k
f j

M−2� n

2P
−

1

2
�B2k+j�n + P�M − 3�

2P
� .

�4.33�

For this expression, we substitute an identity

B2k+j�n + P�M − 3�
2P

� = B2k+j� n

2P
+

m2�M� − 1

2
� + �2k + j� 	

m=0

��M−4�/2� � n

2P
+ m +

m2�M� − 1

2
�2k+j−1

which follows from �A10�. As we have

	
j=1

M−2

j f j
M−2� n

2P
−

1

2
��−

n

2P
− m −

m2�M� − 1

2
� j−1

= FM−2� n

2P
−

1

2
,−

n

2P
− m −

m2�M� − 1

2
� = 0

from �4.17�, we obtain �4.32�.
When 	 j�1/ pj��1, we have another term coming from the second term in �4.12�. This gives

an additional term to �4.33�;

Tk
add =

�− 1�M

2

�2P�2k

�M − 4�!	a=1

�

	
b=0

a−1

	
�� �a�

� 	
j=1

M−3

�− 1� j j

2k + j
f j

M−3�1

2	
i

�i

pi
− b −

1

2�
� �B2k+j�M − 4

2
+

1

2	
i

�i

pi
− b� + �− 1� jB2k+j�M − 2

2
−

1

2	
i

�i

pi
+ b�� .

Recalling Lemma 14 and applying the same method with the previous, we recover �4.24�. �

We give explicit forms of some T series as follows;

Tp��0� = 0, �4.34�

Tp��1� = 4P , �4.35�
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Tp��2� = 8P3�2 − M + 	
j=1

M
1

pj
2� , �4.36�

Tp��3� = 4P5�5�	
j=1

M
1

pj
2 + 2 − M�2

− 2�	
j=1

M
1

pj
4 + 2 − M�� , �4.37�

Based on the exact asymptotic expansion �4.22� of the WRT invariant, we extract the tail part
and define the formal q-series ���M� as a quantum invariant of the Seifert homology sphere
M=��p�� by identifying exp�2�i /N� with q;

q��p��/4−1/2�q − 1� · ���M� = 	
k=0

� Tp��k�

k!
� log q

4P
�k

. �4.38�

This invariant ���M� of the formal q series coincides with the invariant �N
int�M� defined in �2.16�.

Namely we have an integral expression for ���M�.
The Ohtsuki series32 �n�M� is defined from the formal q series ���M� by

���M� = 	
n=0

�

�n�M��q − 1�n �4.39�

Then the Ohtsuki series �n�M� for M=��p�� is computed as follows.
Theorem 19: The Ohtsuki series �n�M� for the Seifert homology sphere M=��p�� is written

in terms of p� and ��p�� defined in �2.11� as

�n�M� =
2

�n + 1�!���
j=0

n �P

4

d2

dx2 +
1

2
−

��p��
4

− j��G�x��
x=0

, �4.40�

where the function G�x� is

G�x� =
� j=1

M
sinh� x

pj
�

�sinh�x��M−2 . �4.41�

Proof: From �4.38� and �A15�, we have

�q − 1����M� = 	
m=0

� �1

2
−

��p��
4

m
��q − 1�m	

j=0

�

	
k=0

j
Sj

�k�

j!

Tp��k�

�4P�k �q − 1� j .

We then have

�n�M� = 	
j=0

n
1

�j + 1�!�1

2
−

��p��
4

n − j
�	k=1

j+1

Sj+1
�k� Tp��k�

�4P�k

=
1

�n + 1�! 	
m=0

n

	
k=1

n+1−m �m + k

m
�Sn+1

�m+k��1

2
−

��p��
4

�m Tp��k�

�4P�k ,

where in the second equality we have expanded the binomial coefficient in terms of the Stirling
number of the first kind using �A14�, then we have applied �A17�. Theorem 18 shows that the
function G�x� �4.41� gives
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��P
d

dx
�2k

G�x��
x=0

=
1

2
Tp��k� .

Substituting this expression and recalling �A14�, we obtain the required formula. �

Explicit forms of the lowest three Ohtsuki series �n�M� for M=��p�� are

�0�M� = 1, �4.42�

�1�M� = 6�C�M� , �4.43�

�2�M� =
3���p���2 + 12��p�� − 4

96
−

P

16
�2 − M + 	

j=1

M
1

pj
2����p�� + 2� +

P2

96
�5�2 − M + 	

j=1

M
1

pj
2�2

− 2�2 − M + 	
j=1

M
1

pj
4�� , �4.44�

where �C�M� is the Casson invariant of the Seifert homology sphere M=��p��44,45

�C�M� = −
1

8
+

1

24P
�1 + 	

k=1

M � P

pk
�2

− �M − 2�P2� −
1

2	
k=1

M

s� P

pk
,pk� . �4.45�

The relationship between the Casson invariant �C�M� and the Ohtsuki series �1�M� was first
proved in Ref. 46. See Ref. 47 for a computation of �2�M�.

C. Lattice points

We have seen that the asymptotics of the WRT invariant is dominated by the term �4.26�,
which shows that the number of terms in the sum of �� are at most D defined in �3.7�. Though, as

was studied in Refs. 15 and 16 for cases of M =3 and M =4, the function Cp����� may vanish for

some ��’s.
Theorem 20: We fix M-tuple p� with pairwise coprime positive integers pj, and let the function

Cp����� be defined by (4.28) for �� �ZM satisfying 1�� j � pj −1. Due to (4.29), we have D indepen-

dent functions. We set ��p�� as the number of M-tuples �� satisfying

Cp����� � 0,

and L�p�� as the integral lattice points �� �Z�0
M inside the M-dimensional tetrahedron,

0 � 	
j=1

M
� j

pj
� 1.

Then we have

D − ��p�� � L�p�� . �4.46�

Proof: As a generalization of the function Cp����� defined in �4.28�, we define Cp�
k���� for k�0 by

Cp�
k���� = 	

n=1

2P

�2P
�� �n�Bk� n

2P
� �4.47�

in terms of the Bernoulli polynomials. We have Cp�����=Cp�
M−2����. As a generating function Zp�

���t� of
these polynomials, we define
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Zp�
���t� = 	

k=0

�
tk

k!
Cp�

k���� . �4.48�

Using �A8�, we have

Zp�
���t� =

t

et − 1	
n=1

2P

�2P
�� �n�e�t/2P�n. �4.49�

In the case of 0�	 j�� j / pj��1, we have

	
n=0

2P

�2P
�� �n�zn = − zP�

j=1

M

�zP�j/pj − z−P�j/pj� �4.50�

which gives

Zp�
���t� = −

t

et/2 − e−t/2�
j=1

M

�e��j/2pj�t − e−��j/2pj�t� .

This shows that

Zp�
���t� = − ��

j=1

M
� j

pj
�tM + O�tM+2�

and that Cp�
k����=0 for 0�k�M −1. So we have Cp�����=0 when 0�	 j� j / pj �1.

The invariance �3.6� of the periodic functions �2P
�� �n� proves the statement of the theorem.�

In the case of 	 j� j / pj �1, the generating function �4.50� should be replaced with a formula

like �4.12�, and we do not know whether the function Cp����� vanishes. We conjecture that, when

	 j� j / pj �1, we have Cp����=0 iff �2P
�� �n� coincides with �2P

��� �n� such that 	 j� j� / pj �1.
Conjecture 1: Under the conditions of Theorem 20, we have

D − ��p�� = L�p�� . �4.51�

This conjecture was proved for M �4 in Refs. 15 and 16. It states that the number of the flat
connections which contribute as �4.26� coincides with the number of integral lattice points inside
the M-dimensional tetrahedron.

D. Ehrhart polynomial

Explicit form of the number L�p�� of the lattice points inside the M-dimensional tetrahedron
was first computed by Mordell48 for cases of M =3 and M =4;

• M =3;

L�p1,p2,p3� =
1

4
�p1 − 1��p2 − 1��p3 − 1� +

1

12P
−

1

4
−

P

12
�1 −

1

p1
2 −

1

p2
2 −

1

p3
2� − s�p1p2,p3�

− s�p2p3,p1� − s�p1p3,p2� , �4.52�

• M =4,
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L�p1,p2,p3,p4� =
1

8�
j=1

4

�pj − 1� +
3

8
−

P

12
+

P

24	
j=1

4
1 + pj

pj
2 +

1

24P
�1 − 	

j=1

4

pj� −
P

24	
j�k

4
1

pj
2pk

−
1

2	
j=1

4

s� P

pj
,pj� +

1

2 	
j�k

4

s� P

pjpk
,pj� . �4.53�

Here s�b ,a� is the Dedekind sum �A1�. For higher dimension M, the lattice points L�p�� might be
written in terms of Zagier’s higher-dimensional Dedekind sum,60 but there seems to exist no
applicable expressions.

Although, there is a useful tool to count the lattice points �see, e.g., Ref. 49�. Let P be the
M-dimensional open tetrahedron with integer vertices, �p1 ,0 , . . . ,0�,
�0, p2 ,0 , . . . ,0� , . . . , �0, . . . ,0 , pM�, and �0,…,0�;

P = ���1, . . . ,�M� � ZM�	
j=1

M �� j

pj
� 1,�k � 0� . �4.54�

Let EP�t� denote the number of lattice points in the dilated tetrahedron tP. So we have

L�p�� = EP�t = 1� .

In the same manner, we suppose that EP̄�t� denotes the number of lattice points of the closure of
tP,

EP̄�t� = # ��m1, . . . ,mM� � ZM�	
j=1

M �mj

pj
� t,mk � 0� .

These functions, EP�t� and EP̄�t�, become polynomials of t,50 which are called the Ehrhart poly-
nomial. Moreover we have the Ehrhart-Macdonald reciprocity formula,50,51

EP�− t� = �− 1�MEP̄�t� . �4.55�

In general, the number of lattice points EP̄�t� becomes polynomial of t for arbitrary polytope

P̄.50 We set the coefficients of the Ehrhart polynomial as

EP̄�t� = cM�P�tM + cM−1�P�tM−1 + ¯ + c0�P� . �4.56�

It is well known that cM�P� is the volume of P, cM�P�=Vol�P�, cM−1�P� is a half of the boundary
surface area, cM−1�P�= 1

2 Vol��P�. The coefficient c0�P� is the Euler characteristic ��P�, and
c0�P�=1 when P is the convex polytope.

The first nontrivial coefficient of the Ehrhart polynomial for the M-dimensional tetrahedron is
thus cM−2�P�. In our case of the M-dimensional tetrahedron with pairwise coprime integers pj, we
have52,53

�M − 2�! · cM−2�P� =
M

4
+

1

24P
�2 − 	

k=1

M � P

pk
�2

+ 3�	
k=1

M
P

pk
�2� − 	

k=1

M

s� P

pk
,pk� . �4.57�

Recalling the Casson invariant �C�M� �4.45� for the Seifert homology sphere M=��p��, which is
proportional to the first Ohtsuki series �4.43�, we have the following.

Proposition 21: The Casson invariant �C�M� for M=��p�� is related to the first nontrivial
coefficient of the Ehrhart polynomial for the M-dimensional tetrahedron P �4.54�;

�C�M� −
�M − 2�!

2
cM−2�P� = −

M + 1

8
+

M − 2

24
P −

P

8 	
1�j�k�M

1

pjpk
. �4.58�
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It is remarked that the residue formula for cM−2�P� given in Ref. 52 looks like an expression
�2.10� of the WRT invariant �N�M� for M=��p��.

V. SOME EXAMPLES OF NUMERICAL EXPERIMENTS

We give some numerical experiments on the asymptotic behavior of the WRT invariants for
the Seifert homology spheres.

A. �„2,3,5,7,11…

For p� = �2,3 ,5 ,7 ,11�, we have P=2310, D=30, and ��p��=34 189/2310. The bases for 30-

dimensional space is given by �� = �1,1 ,�3 ,�4 ,�5� with 1��3�2, 1��4�3, 1��5�5. For all

these 5-tuples �� , we can check that Cp������0, which supports Conjecture 1 as we have 	 j1/ pj

=2927/2310�1.
In Table I we give numerical results on the Witten invariant ZN�M� for M

=��2,3 ,5 ,7 ,11�, which is performed with a help of PARI/GP. We give both the exact value
ZN�M� and asymptotic value ZN

�0��M� for several N’s. They vary much with N, and comparing
these data we see an agreement.

B. �„3,7,8,11,13,17…

For p� = �3,7 ,8 ,11,13,17�, we have ��p��=338 099/408 408 and D=5040. This

D=5040-dimensional vector space is spanned by �� = �1,1��2�3,1��3�7,1��4�5,1��5

�6,1��6�8�. Among these D=5040 bases, we check that Cp�����=0 when �� = �1,1 ,1 ,1 ,1 ,1�, �1,
1, 1, 1, 1, 2�, �1, 1, 1, 1, 1, 3� �1, 1, 1, 1, 2, 1�, �1, 1, 1, 1, 2, 2�, �1, 1, 1, 1, 3, 1�, �1, 1, 1, 2, 1, 1�,
�1, 1, 1, 2, 1, 2�, �1, 1, 1, 2, 2, 1�, �1, 1, 2, 1, 1, 1�, �1, 2, 1, 1, 1, 1�, which supports Conjecture 1.

Numerical results on the exact value and the asymptotics of the Witten invariant for ��p�� are
summarized in Table II. We see an agreement.

VI. CONCLUSION AND DISCUSSION

We have studied the asymptotic expansion of the SU�2� WRT invariant �N�M� for the
M-exceptional fibered Seifert homology spheres M=��p�� in N→� number theoretically. We
have found that the invariant can be written in terms of a limiting value of fractional derivative,
i.e., derivative of the Eichler integral, of the vector modular forms with weight 3 /2 and 1/2. This
supports a result26 that the WRT invariant is a limiting value of the holomorphic function in a limit
that q tends to the Nth root of unity. By use of the nearly modular property of the Eichler integral,

TABLE I. The WRT invariant ZN�M� for M=��2,3 ,5 ,7 ,11�. Asymptotic
formula for ZN

�0��M� is from �4.26�.

N Exact result for ZN Asymptotics ZN
�0�

22 −13.346 013+17.397 906i −12.2403+16.7013i
23 −0.576 825 56−0.511 081 47i 0.020 572+0.004 140i
98 0.932 635 90−0.496 554 57i 0.323 366+0.005 702 3i
99 22.826 764−367.893 60i 22.8460−365.870i

100 464.334 37−287.595 56i 475.688−287.973i
998 9.229 211 0−9.332 412 9i 10.7013−1.605 81i
999 −52 995.123−87 204.076i −53 072.7−87 187.8i

1000 694.743 44+9 181.2935i 683.369+9 183.49i
2398 −64.891 808+46.620 794i −62.4971+47.927 5i
2399 320 910.08+27 551.395i 321 128+27 510.1i
2400 142 206.21−1871.8080i 142 145−1869.06i
2401 214 250.48−80 025.187i 214 270−79 907.4i
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we have obtained an asymptotic expansion of �N�M� in the large N limit.
Although an asymptotic behavior of the WRT invariant was previously studied in, e.g., Ref. 8,

the correspondence between modular forms and the quantum invariants enables us to relate topo-
logical invariants such as the Chern-Simons invariants, the Reidemeister torsion, and the Casson
invariant, with geometries of modular forms. For example, we have found that the number of the
gauge equivalent classes of flat connections, which dominate the WRT invariant in the large-N
limit, is related to the number of integral lattice points inside the M-dimensional tetrahedron. From
this view, we have established that the Casson invariant for the Seifert homology sphere has a
relationship with the first non-trivial coefficient of the Ehrhart polynomial.

In our previous papers17,25 we have shown that the WRT invariants for the Seifert manifolds
with three-exceptional fibers coincides with a limiting value of the Ramanujan mock theta func-
tions. Investigated35 is a modular transformation formula of the newly proposed mock theta
functions based on explicit form of the WRT invariants. This intriguing correspondence seems to
originate from a result that the integral expression �2.16� of the WRT invariant has a connection
with the Mordell integral.34 Our results presented here will shed a new light on geometric and
topological aspects of modular forms.

Though we have studied only the SU�2� invariant, the Witten partition function �1.1� can be
defined for arbitrary gauge group, and an explicit form of the invariant for the Seifert manifold is
given.54 Extending the method of Lawrence and Rozansky, it is shown55 that the partition function
can be written in the integral form which can be interpreted as the matrix model, and that it
becomes a sum of local contributions from the flat connections. This fact is recently reinterpreted
from the viewpoint of the path integral by use of non-abelian localization.56 As it is well known
that the Chern-Simons perturbation theory of the SU�N� Witten invariant as a 1/N expansion can
be interpreted from the string theory �see, e.g., Ref. 57�, it will be interesting to investigate the
quantum invariants/modular forms correspondence for the WRT invariant associated with SU�N�
gauge group as a generalization of the present work.
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TABLE II. The WRT invariant ZN�M� for M=��3,7 ,8 ,11,13,17�.
Asymptotic formula for ZN

�0��M� is from �4.26�.

N Exact value ZN�M� Asymptotics ZN
�0��M�

58 365.328 95+679.070 06i 351.149+691.982i
59 1331.846 0−433.950 47i 1 358.51−437.953i
60 −944.994 93+765.344 51i −915.949+742.606i
61 130.910 99+2 814.574 4i 62.848 9+2 763.93i

118 −0.820 601 7+61.590 246i 0.782 372+60.124 8i
119 8.185 778 1+13.369 868i 0.019 566 2+0.006 267 5i
120 5 259.285 3+4 064.402 9i 5 232.38+4 043.94i
121 8733.014 0+5 274.827 3i 8 659.21+5 338.15i
238 −219.367 38−1.608 943i −216.499+1.534 62i
239 −6 151.056 2−5617.755 86i −6 220.64−5 620.95i
240 −11.492 746+6.119 235 8i 1.674 54+2.349 20i
241 −26 057.019−52 201.108i −25 950.5−52 634.8i
242 49 736.853−46 390.033i 49 818.0−46 337.0i
243 189 895.62+265 408.04i 189 029. +265 225. i
244 3 782.8814−12 474.142i 3 814.35−12 433.5i
998 21 039.448+18 091.568i 21 107.1+18 191.2i
999 −12.505 553+49.861 847i −0.033 154 9+0.033 885 2i

1000 78 229.306−164 203.36i 7 8333.1−164 618. i
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APPENDIX: SPECIAL FUNCTIONS AND IDENTITIES

1. Dedekind sum

The Dedekind sum is defined by �see, e.g., Ref. 58�

s�b,a� = 	
k=1

a−1 �� k

a
���� kb

a
�� , �A1�

where ��x�� is the sawtooth function

��x�� = �x − �x� −
1

2
when x � Z

0 when x � Z .
�

The Dedekind sum can also be written as

s�b,a� =
1

4a
	
k=1

a−1

cot� k

a
��cot� kb

a
�� . �A2�

The Dedekind sum is known to satisfy the reciprocity formula

s�b,a� + s�a,b� = −
1

4
+

1

12
�a

b
+

b

a
+

1

ab
� . �A3�

We note

s�− b,a� = − s�b,a� , �A4�

s�b,a� = s�c,a� for bc = 1 mod a . �A5�

2. Gauss sum

As a discrete analogue of the Gaussian integral, we have a formula of the Gauss sum as

	
n=0

2N−1

e−�1/2N�n2�i = 
2Ne−�1/4��i . �A6�

The reciprocity formula of the Gauss sum follows from the Gauss integral as �see, e.g., Refs. 30
and 59�

	
n mod N

e�i�M/N�n2+2�ikn =
� N

M
�e��i/4�sign�NM� 	

n mod M

e−�i�N/M��n + k�2
, �A7�

where N, M �Z and N k�Z, and N M is even.

3. Bernoulli polynomial

The nth Bernoulli polynomial Bn�x� is defined from the generating function as

text

et − 1
= 	

k=0

�

Bk�x�
tk

k!
. �A8�

Some of them are written as follows;

B0�x� = 1,
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B1�x� = x −
1

2
,

B2�x� = x2 − x +
1

6
,

B3�x� = x3 −
3

2
x2 +

1

2
x .

These polynomials satisfy the following relations;

Bk�1 − x� = �− 1�kBk�x� , �A9�

Bk�x + 1� − Bk�x� = kxk−1, �A10�

d

dx
Bn�x� = nBn−1�x� . �A11�

Note that the Bernoulli function has the Fourier expansion as

Bk�x − �x�� = k! 	
n�Z

n�0

e2�inx

�2�in�k �A12�

and that

Bn�x + y� = 	
k=0

n �n

k
�Bk�x�yn−k. �A13�

4. Stirling number

The Stirling number of the first kind Sn
�m� denotes the �signed� number of permutations of n

elements which contain m permutation cycles �see, e.g., Ref. 40�. The generating function of Sn
�m�

is written as

�
j=0

n−1

�x − j� = 	
m=0

n

Sn
�m�xm �A14�

and Sn
�m��0 when n�m�0. Another form of the generating function is given by41

�log q�m

m!
= 	

n=m

�

Sn
�m� �q − 1�n

n!
�A15�

Based on these generating functions, we have the recursion relations of Sn
�m� as follows;

Sn+1
�m� = Sn

�m−1� − nSn
�m�, �A16�

�m

r
�Sn

�m� = 	
k=m−r

n−r �n

k
�Sn−k

�r� Sk
�m−r�. �A17�
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Canonical quantization of lattice Higgs-Maxwell-Chern-
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It is shown how techniques from constructive quantum field theory may be applied
to indefinite metric gauge theories in Hilbert space for the case of a Higgs-
Maxwell-Chern-Simons theory on a lattice. The Hamiltonian operator is shown to
be Krein essentially self-adjoint by means of unbounded but Krein unitary trans-
formations relating the Hamiltonian to an essentially maximal accretive operator.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2358393�

I. INTRODUCTION

The mathematical study of Higgs gauge theories has been focused mainly on gauge-invariant
quantities undertaken using Euclidean functional integrals.1–3 However, in the theoretical physics
literature, it is mostly the Higgs and gauge fields that are used directly.4–7 In this direction we
consider a �2+1� dimensional space-time Maxwell-Chern-Simons field minimally coupled to a
charged scalar field in the indefinite metric framework proposed by Wightman and Gårding.8 By
using a representation of the canonically quantized Chern-Simons field in a Hilbert space with a
Krein indefinite metric, we show the Chern-Simons field to be a Hilbert normal and Krein self-
adjoint operator. Regularizing field operators with a finite periodic lattice allows construction of
the Hamiltonian operator. Initially this operator is densely defined and closable but exhibits no
immediate spectral properties which would suggest direct implementation of techniques from
constructive quantum field theory in obtaining a Euclidean path-space representation for a semi-
group generated by this Hamiltonian. In this paper, we show the underlying structure of the
Hamiltonian to be that of an accretive operator masked by unbounded Krein unitary “gauge”
transformations. This leads to an unbounded semigroup which, unlike Fröhlich’s theory of un-
bounded symmetric semigroups, is not Hilbert self-adjoint.9 In a second paper,10 we will obtain the
corresponding Euclidean theory and examine the relation between the physical states in the
Wightman-Gårding framework and Osterwalder-Schrader positivity provided by this unbounded
semigroup.

In Sec. II, we describe our representation for the Maxwell-Chern-Simons field which differs
from those in Refs. 11 and 12 and establish regularity of the field that we use. It is convenient to
represent these fields in terms of harmonic oscillator variables in Sec. III and the Appendix since
the Krein gauge transformations then become transparent as well as their properties as unbounded
operators. In Sec. IV, it is shown that the real part of the transformed Hamiltonian defines an
essentially self-adjoint operator which is bounded below. The gauge-transformed Hamiltonian is
then shown to be an accretive operator in Sec. V. The bounds from Sec. IV allow us to prove a
quadratic estimate for the transformed Hamiltonian by which it becomes a maximal accretive
operator after closure, and thus Krein essentially self-adjoint.
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II. MAXWELL-CHERN-SIMONS FIELDS

We work in d=s+1 dimensional space-time, where the number of spatial dimensions is s
=2. The metric is given by g00= +1 and gij =−�ij, with the remaining components vanishing. As
usual, Latin indices are spatial, ranging from 1 to s, while Greek indices include the time com-
ponent, 0. We write the inner product of d-vectors k and x alternately as

kx = k�x� = k�x� = k0x0 − k · x = k0x0 − kixi,

where indices are raised or lowered by contraction with g and repeated indices are summed over
their range. It should always be clear from context whether k and x refer to d-vectors or s-vectors.
We use analogous notation for d-divergences, e.g., �A���A�. Our units are such that �=c=1.
Finally, we make use of the notation �=��k�=�k ·k and �=��k�=�k ·k+m2=��2+m2. Hope-
fully, our conventions are now clear.

The Maxwell-Chern-Simons �MCS� Lagrangian density is given by

L = −
1

2
��A��

�A� +
�

2
��A�2 +

m

2
������A�A�. �1�

The term ��A�2 fixes the gauge with the parameter �

� =
2	

2	 − 1
= −




1 − 

�2�

interpolating between the various covariant gauges. Here, 
=�=	=0 corresponds to the Feynman
gauge while 
=1, �→�, 	=1/2 all correspond to Landau gauge. The parameters 	 and 
 are
more convenient than � for our representation below. The parameter 
 is introduced for compari-
son with other works that start with a different Lagrangian such as Ref. 11, while 	 is introduced
for comparison with works such as Refs. 12 and 13.

The Euler-Lagrange equations corresponding to Eq. �1� are

�A� − �����A� + m�����A = 0. �3�

The homogeneous Green’s function for �3� can be written

�A��x�A��y�� =
1

�2��2 	 d�m�k�e−ik�x−y�
 k�k�

m2 − g�� −
i

m
����k�� +

1

�2��2 	 d�0�k�e−ik�x−y�

�
−
k�k�

m2 +
i

m
����k�� −

1 − 2	

�2��2 	 d�0�k�e−ik�x−y�

�
1

2�

��0k� + ��0k� − i�x0 − y0�k�k� −

k�k�

�
� , �4�

which has support both on the light cone and the mass m hyperboloid. The canonical momenta
associated with �1� are

�0 �
�L

���0A0�
= − �0A0 + � � A �5�

� j �
�L

���0Aj�
= − �0Aj +

m

2
�0jnAn. �6�

It is convenient to express �3� in terms of differential forms. For this, we define a 1-form A
�A�dx�. We let � denote the Hodge duality operator associated with our metric g and the
orientation given by the volume form dx0∧dx1∧dx2, so that �� = +1. Furthermore, we define the
codifferential � in the usual way on k-forms by
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� = − det�g��− 1�d�k+1� � d � = − �− 1�3�k+1� � d � = �− 1�k � d� �7�

so that, for a k-form , we have

� = �� 1

k!
�1¯�k

dx�1 ∧ ¯ ∧ dx�k = −
1

�k − 1�!
��1�1¯�k

dx�2 ∧ ¯ ∧ dx�k.

Then, we find that ������ is given by

� = − ��d + d�� , �8�

in analogy with the Laplace-Beltrami operator in the Riemannian case. With this notation, we may
write �3� as

�dA − m � dA = �� − 1�d�A . �9�

From this standpoint, it becomes easy to prove the following decomposition theorems, which
we shall utilize in the process of canonical quantization.

Theorem II.1 (MCS Decomposition). Let A be a 1-form satisfying �9�. Then, there exist
1-forms V and S satisfying the equations

dV = m � V, � dS = −
�� − 1�

m
d�S �10�

such that A=V+S.
Conversely, given 1-forms V and S satisfying �10�, the 1-form A=V+S satisfies �9�.
Proof:
For the first statement, define

V �
1

m
� dA +

1

m2 �� − 1�d�A

so that

�dV =
1

m
� d � dA =

1

m
�dA =

1

m
�m � dA + �� − 1�d�A� = mV ,

where we have used �9�. Now, define the 1-form S�A−V. This satisfies

�dS = � dA − � dV = � dA − mV = � dA − ��dA +
� − 1

m
d�A = −

� − 1

m
d�A .

Then, the result �10� follows by noting that

�A = �S + �V = �S + ���dV

m
 = �S .

For the converse, we note that Eqs. �10� imply

�dV = �− 1�2 � d � dV = + � d�mV� = m2V ,

�V = �− 1�1 � d � V = − � d � ��dV

m
 = 0,
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�dS = �− 1�2 � d � dS = + � d�−
� − 1

m
d�S = 0.

Then, we simply substitute A=V+S into Eq. �9� to find

LHS = �d�V + S� − m � d�V + S� = m2V − m � dV − m � dS = − m�−
� − 1

m
d�S = �� − 1�d�S ,

RHS = �� − 1�d��V + S� = �� − 1�d�S ,

and note that RHS=LHS. Q.E.D.
Notice that the gauge dependence, as parametrized by �, has been separated into the field S in

Eqs. �10�. For this reason, we often refer to V as the physical MCS field. We can say more about
V and S. It has long been known that there are certain necessary conditions that a valid decom-
position of a solution of �3� into the sum of a massive and a massless vector field must satisfy
Refs. 14 and 15. These conditions follow easily from our theorem, so we state them as a corollary.

Corollary II.2: The vector field V� corresponding to the 1-form V satisfies

�� + m2�V� = 0

�V = 0,

which are the Proca field equations. The vector field S� corresponding to the 1-form S satisfies

�S� = ����S�

���S� = 0,

provided ��1.
One should note that, although V� satisfies the Proca field equations, it is not a true Proca field

since it also satisfies the additional constraint �10�. Thus, one expects the quantized version of V�

to propagate one less physical mode than a 2+1- dimensional Proca field. We shall see that this is
indeed the case. In fact, even at the classical level, we have the following result.

Proposition II.3 �Proca Decomposition�: Let U be a 1-form satisfying the Klein-Gordon equa-
tion

�� + m2�U = 0

for m�0. Then, it is both necessary and sufficient that U satisfy the decomposition

U = V+ + V− + d� , �11�

where V± satisfy �dV±= ±mV± and � is a scalar solution to the Klein-Gordon equation. If U is
additionally a Proca field �i.e., �U=0�, then we may choose ��0.

Proof:
For necessity, define

V± � −
1

2
� 1

m2d�U �
1

m
� dU − U and � �

1

m2�U �12�

The remainder then follows by straightforward calculations. Q.E.D.
The well-known bosonization of the MCS field exhibiting its single, massive, physical degree

of freedom �see, e.g., Ref. 4� also follows easily from Theorem II.1. Thus, we state it as a corollary
as well.

Corollary II.4: A vector field satisfying
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�����
�V� = mV� �13�

�i.e., �dV=mV as per �10�� must necessarily be of the form

V0 =
�− �

m
�

Vj = − 
 �0� j

m�− �
−

� jn�n

�− �
��

for some scalar field �.
Proof:
Taking the time derivative of �13� for �= j, we find

m�0Vj = − � jn�n�0V0 + � jn�0�0Vn = − � jn�n�0V0 + � jn��− m2�Vn,

and noting that

m2Vn = m�nk��0Vk − �kV0�

we obtain the necessary condition

�Vj = m� jn�nV0 − �0� jV0,

from which the result follows by defining

� �
m

�− �
V0.

Q.E.D.
We proceed now to the quantization. Using the intuition gained from Theorem II.1, we seek a

massive vector field V��x� satisfying

��R,V��x�V��y��R�R =
1

�2��2 	 d�m�k�
 k�k�

m2 − g�� − i
����k�

m
�e−ik�x−y�, �14�

and a commuting massless vector field S��x� satisfying

��R,S��x�S��y��R�R =
1

�2��2 	 d�0�k�e−ik�x−y�
−
k�k�

m2 +
i

m
����k��

−
1 − 2	

�2��2 	 d�0�k�e−ik�x−y� 1

2�

��0k� + ��0k� − i�x0 − y0�k�k� −

k�k�

�
�
�15�

so that

��R,V��x�V��y��R�R + ��R,S��x�S��y��R�R = �A��x�A��y�� �16�

given in Eq. �4�. First, we consider the massive field V��x�.
Guided by Proposition II.3, we define

V��x� =
1
�2

�−
����

m2 − g�� +
1

m
����U��x� �17�
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=
1

2��2
	 d�m�k�
b��k�� k�k�

m2 − g�� −
i

m
���ke−ikx

+ b†��k�� k�k�

m2 − g�� +
i

m
���keikx� , �18�

where U is a massive vector field given by

U��x� =
1

2�
	 d�m�k��e−ikxb��k� + eikxb�

† �k�� , �19�

with d�m�k� denoting the invariant measure on the positive mass m hyperboloid and b , b† satis-
fying the commutation relations

�b��k�,b�
†�k��� = − g��2��k���k − k�� . �20�

This is clearly a covariant field that, by construction, satisfies the field equations �����
�V��x�

=mV��x�. Furthermore, one checks that �14� is satisfied under the usual assumption b��k��R=0.
In fact, all is made rigorous by realizing the expressions as bilinear forms on the Proca Fock

space HR
P given by

HR
P � �sym�L2�Rd,d�m�k�� � Cd� ,

i.e., the symmetric Fock space over HR
P�1��L2�Rd ,d�m�k�� � Cd. Given ��HR

P, we denote its
projection onto the n-particle subspace HR

P�n� by ��n�. With this notation, the inner product on HR
P

is given by

��,��R = �
n=0

�

���n�,��n��R
�n�,

with

�f ,g�R
�n� = �

j=1

n 
	 d�m�kj�� f�1¯�n
�k1, . . . ,kn�g�1¯�n

�k1, . . . ,kn� �21�

for f ,g�HR
P�n� with n�0 and �f ,g�R

�0�= fg for f ,g�HR
P�0�. We denote adjoints with respect to

�· , · �R by a superscript � and refer to them as Hilbert adjoints.
We introduce the usual Fock creation and annihilation bilinear forms on HR

P by

�c�
� �k����1¯�n

�n� �k1, . . . ,kn� =
1
�n

� j=1

n
���j

��k − kj�2��kj���1¯�j
ˆ

¯�n

�n−1� �k1, . . . ,kĵ, . . . ,kn�

�22�

�c��k����1¯�n

�n� �k1, . . . ,kn� = �n + 1���1¯�n

�n+1� �k,k1, . . . ,kn� , �23�

where a hat over a variable or an index means to omit it. These are well-defined �as bilinear forms�
on vectors ��D�N1/2��HR, where N is the self-adjoint number operator. In fact, c��k� defines an
operator on this domain.16 These formally satisfy the canonical commutation relations

�c��k�,c�
��k��� = ���2��k���k − k�� . �24�

We also need to introduce the indefinite metric on HR
P which is given by �� ,��R

= �� ,���R. The action of � on the n-particle subspace is given by
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�f ,�g�R
�n� = �

j=1

n 
	 d�m�kj��− g��j�j
� f�1¯�n

�k1, . . . ,kn�g�1¯�n
�k1, . . . ,kn� , �25�

which in turn determines its action on HR
P. In short, � is the second quantization of the operator

f��k� � �− g��f���k�

on HR
P�1�.16,17 With respect to the indefinite inner product �· , · �R, HR

P is a Krein space.18 This
follows from the observations that �=�* and �2=1. We denote adjoints with respect to the Krein
metric by a superscript †. Clearly, it is also true that �=�†.

Finally, we can define b , b† as Krein creation and annihilation forms,

b�
† �k� = g��c�

*�k�, b��k� = − c��k� . �26�

These, then, formally satisfy Eq. �20�. Furthermore, as bilinear forms, we have the relations

N =	 d�m�k�c�
* �k�c��k� =	 d�m�k�b�

† �k��− g���b��k� .

Calculating the commutator, we obtain

�V��x�,V��y�� = − i����� + g�� −
������

m
�m�x − y� . �27�

Note that this is not a local expression, despite the facts that the Pauli-Jordan function �m�x� given
by

�m�x� =
− i

�2��s 	 ddk sgn�k0���k2 − m2�e−ikx. �28�

vanishes for spacelike separations and differential operators are, in general, local. This subtlety
arises from the fact that a time derivative of �m�x� evaluated at time zero yields a delta function
�see, e.g., Appendix I of Ref. 19�. Thus, we have the following nonvanishing equal-time commu-
tators:

�V0�t,x�,Vn�t,y�� =
i�n

m2 ��x − y� �29�

�Vj�t,x�,Vn�t,y�� = − i� jn��x − y� . �30�

This is analogous to the situation that arises in canonical quantization of the Proca field without
use of an indefinite metric.19

In order to exhibit the bosonization �and, hence, the single physical mode of Refs. 4 and 12�
within this framework, we note that �18� can be written

V��x� =
1

2��2
	 d�m�k���Lgb���k�e−ikx + �L̄gb†���k�eikx� , �31�

where

L�� �
k�k�

m2 − g�� −
i

m
����k� �32�
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=���2 + �2

m
ŵ3 − ŵ2 � ���2 + �2

m
ŵ3 − ŵ2*

�33�

using the basis

ŵ1 =
1

��2 + �2� �

− k1

− k2
�

ŵ2 =
i

�� 0

k2

− k1
� �34�

ŵ3 =
1

���2 + �2� �2

�k1

�k2
� ,

which is orthonormal in the C3 Euclidean inner product.
Then, we can define

a�k� =
1
�2
���2 + �2

m
ŵ3 − ŵ2

�

*

g�b�k� �35�

a†�k� =
1
�2
���2 + �2

m
ŵ3 + ŵ2

�

*

g�b
†�k� , �36�

where we’ve used ŵ2
¯ =−ŵ2. Hence,

�a�k�,a†�k��� = 2���k − k�� , �37�

and suppressing the vector index we have the representation

V�x� =
1

2�
	 d�m�k�
���2 + �2

m
ŵ3 − ŵ2a�k�e−ikx + ���2 + �2

m
ŵ3 + ŵ2a†�k�eikx� , �38�

for which the time evolution is implemented by

H0
V =	 d�m�k���k�a†�k�a�k� . �39�

From this expression for V�, it is clear that the physical field is both Krein and Hilbert symmetric.
It also has a dense set of analytic vectors, thereby making its closure self-adjoint.

Next, we turn to the ghost field S�. We wish to realize S� on the Maxwell Fock space HR
M

given as the symmetric Fock space over the single particle space

HR
M�1� � L2�Rd,d�0� � Cd, �40�

where d�0 is the invariant measure on the forward light cone. As before, we equip HR
M with an

indefinite metric �· , · �R��· ,� · �R, where �=−g on HR
M�1�. Then, we will have a realization of the

Maxwell-Chern-Simons field A��V� � 1+1 � S��V�+S� on HR=HR
P

� HR
M. For this, we first

choose the following C3-orthonormal vectors:
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v̂1 =
1

��2��

k1

k2
� , �41�

v̂2 =
i

�� 0

k2

− k1
� , �42�

v̂3 =
1

��2� �

− k1

− k2
� . �43�

Next, we define bilinear forms

aR�k� = �v̂3��g�a�k� , �44�

aQ�k� = �v̂1��g�a�k� , �45�

aQ
† �k� = �v̂1��g�a

†�k� , �46�

aR
†�k� = �v̂3��g�a

†�k� , �47�

in terms of the Maxwell Krein forms a , a† satisfying

�a��k�,a�
†�k��� = − g��2��k���k − k�� . �48�

These differ slightly from analogous forms given in Refs. 11 and 12, but are more convenient for
our purposes. They satisfy the algebra

�aQ�k�,aR
†�k��� = − 2���k − k�� = �aR�k�,aQ

† �k��� �49�

with the remaining commutators vanishing.
Then, we can define the field

S�x;
� =
1

2�
	 d�0�k��e−ikx
�

m
v̂1aR�k� + ��

m
v̂1 − �2v̂2 + �1 − 
�� m

2�
v̂3 − ix0mv̂1aQ�k��

+ eikx
�

m
v̂1

*aR
†�k� + ��

m
v̂1

* − �2v̂2
* + �1 − 
�� m

2�
v̂3

* + ix0mv̂1
*aQ

† �k��� , �50�

where we have again suppressed the vector index. Clearly, this expression simplifies considerably
in Landau gauge 
=1. One can check that �50� yields the correct two-point expression �15� on
HR

M.
The time evolution of S� is implemented by the Hamiltonian

H0
S�
� =	 d�0�k��
− aQ

† �k�aR�k� − aQ
† �k�aR�k� − �1 − 
�

m2

�2 aQ
† �k�aQ�k��

=	 d�0�k��a�
† �k��− g�� − �1 − 
�

m2k�k�

2�4 a��k�

=	 d�0�k��c�
* �k����

� + �1 − 
�
m2k�k�

2�4 c��k� . �51�
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It is Krein symmetric, but not Hilbert symmetric unless one chooses Landau gauge 
=1. How-
ever, standard arguments show its closure to be Hilbert normal and Krein self-adjoint. By tech-
niques similar to the Maxwell case,13 we find

Theorem II.5:
1. �0, � ����H0

S�
2. H0

S is accretive
We note that the field S� is also nonlocal. We have, in fact, the nonvanishing equal-time

commutation relations

�S0�t,x�,Sn�t,y�� =
− i

m2�n��x − y� �52�

�Sj�t,x�,Sn�t,y�� =
i

m
� jn��x − y� . �53�

However, the full MCS field A�=V�+S� is local since

�A0�t,x�,An�t,y�� = �V0�t,x�,Vn�t,y�� + �S0�t,x�,Sn�t,y�� = 0 �54�

�Aj�t,x�,An�t,y�� = �Vj�t,x�,Vn�t,y�� + �Sj�t,x�,Sn�t,y�� = 0, �55�

where we have used Eqs. �29� and �30�.
We regularize the above fields by restricting them to a finite spatial volume V� ��Z�s with

periodic boundary conditions �thus, V is a product of finite cyclic groups�. We denote the volume
of V by �V�. We denote the dual group of V by �. The measure on V is taken to be

1
��V�

�
x�V

�s, �56�

while that on � is

1
��V�

�
k��

, �57�

with Fourier transform

f̃�k� =
1

��V�
�
x�V

�se−ik·xf�x� . �58�

We choose to use midpoint derivatives on the lattice so that

kn =
2

�
sin� kn�

2
 �59�

and

�2 = knkn = �
n=1

s
4

�2 sin2� kn�

2
 . �60�

With these conventions, the regularized MCS field becomes

102302-10 D. A. Bowman and J. L. Challifour J. Math. Phys. 47, 102302 �2006�

                                                                                                                                    



A�x� =
1

��V�
�

k��0

1

2�

���2 + �2

m
ŵ3 − ŵ2a�k�e−ikx + ���2 + �2

m
ŵ3 + ŵ2a†�k�eikx�

k0=�

+
1

��V�
�

k��0

1

2��e−ikx
�

m
v̂1aR�k� + ��

m
v̂1 − �2v̂2 + �1 − 
�� m

2�
v̂3 − ix0mv̂1aQ�k��

+ eikx
�

m
v̂1

*aR
†�k� + ��

m
v̂1

* − �2v̂2
* + �1 − 
�� m

2�
v̂3

* + ix0mv̂1
*aQ

† �k��
k0=�

� , �61�

in which our infrared regularization is to sum over �0�� \ �0�. This field is defined as a
distribution-valued unbounded operator on the lattice Fock space HR=HR

P
� HR

M. Here, HR
P is the

symmetric Fock space over L2��0� � Cd with measure

1
��V�

�
k��0

1

2�
, �62�

while HR
M is the symmetric Fock space over L2��0� � Cd with measure

1
��V�

�
k��0

1

2�
. �63�

In the following sections, we shall loosely use � to indicate whichever momentum sums are
appropriate.

III. KREIN GAUGE TRANSFORMATIONS

The formal Lagrangian density for the MCS-Higgs model will be

L = Lcs + Lboson, �64�

where Lcs is given by Eq. �1� and the boson term is

Lboson = �
j=1

2

�D��� j�D��� j� − m0
2�� j�2� − V��1�x�,�2�x�� �65�

for two neutral scalar fields � j , j=1,2 with a potential V��1�x� ,�2�x��=�4��1
2�x�+�2

2�x��2

+�2��1
2�x�+�2

2�x�� with m0�0,�4�0 and covariant derivative D����= ���+ ieA�����. The usual
canonical construction produces a Hamiltonian operator on the lattice of the form

H�V,�� = H0
cs + H0

boson + Hint + V��1,�2� , �66�

with the free MCS-Hamiltonian in Eqs. �39� and �51� and a free boson-Hamiltonian with mass m0.
The interaction terms contain the MCS field as

Hint = Hel + Hmag,

Hel = �
x�V

� s�e��1�x��2�x� − �2�x��1�x��A0�x�� ,

Hmag = �
x�V

� s�e����2�x��1�x� − ���1�x��2�x��A��x� +
e2

2
���1

2�x� + �2
2�x��A�

2�x�� ,
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V��1,�2� = �
x�V

� sV��1�x�,�2�x�� . �67�

Since in our representation the MCS-field is a normal operator, the “magnetic” part of the Hamil-
tonian has lost the positivity which would normally arise from the spatial covariant derivatives,
while the “electric” part has both real and imaginary terms in its numerical range. Usually, to
maintain positivity of the Hamiltonian operator for a gauge theory of this type, quantization would
be carried out in either the Coulomb or axial gauges. However, such gauges are not particularly
amenable for renormalization issues arising when taking the continuum limit of the lattice theory.
In order to understand the structure of H�V ,�� above and make transparent the Krein transforma-
tions that we use below, we resort to transforming the annihilation and creation operators into
harmonic oscillator coordinates and momenta. Our particular conventions are standard for the
boson terms and which we shall say little about them, while those for the MCS-field are given in
more detail. Both are described in the Appendix.

From Eq. �A13� in the Appendix, the Fourier components of A0�x� contain both skew-
symmetric and symmetric terms. The first Krein transformation removes the symmetric terms in
A0�x� by means of

T1 = �
p���

�− i���

�
q�,2

cs �p�p�,0
cs �p� , �68�

while the second Krein transformation

T2 = �
p���

�− i�q�,0
cs �p�p�,1

cs �p� �69�

removes the skew-symmetric terms from A���x� after a Krein unitary transformation using T1. Each
of the expressions above is realized as a sum of commuting essentially self-adjoint operators for
which the finite particle vectors DF are analytic vectors. Each is also skew-symmetric with respect
to the Krein metric and so will be the infinitesimal generator of a Krein unitary but unbounded
operator. The number of particle estimate for each Tj on a k-particle vector increases as O��n
+k+1�n� in the analytic vector calculation, which leads to geometric convergence in t as below.

Lemma III.1: The operators Tj
˜ , j=1,2 are self-adjoint and †-skew-symmetric. Further, each

exp�tTj
˜� is self-adjoint and †-unitary for real t and satisfies

etT2
˜

etT1
˜

A0�x�˜e−tT1
˜

e−tT2
˜

� = �A0�x� + t�T1,A0�x��� = A0��x;t�� �70�

etT2
˜

etT1
˜

A��x�˜e−tT1
˜

e−tT2
˜

� = �A��x� + t�T1,A��x�� + t�T2,A��x���� = A���x;t�� �71�

for all ��DF and complex t with �t � � t0.
To begin the proof, notice that �Tj�=Tj on vectors in DF so by closure this relation is valid

for Tj
˜. Nelson’s theorem on analytic vectors shows �etTj�=etTj, proving the first statement.

For their Krein unitary property, consider � ,��D�ezTj
˜

� for suitable complex z and sequences

of vectors �n ,�n which have compact support with respect to the spectrum of Tj
˜ and converge

strongly to � ,�. Then, notice Tj
†=−Tj =�Tj

*�=�Tj� as bounded operators on �n ,�n, so

�ezTj
˜

�,ez�Tj
˜

�� = lim
n→�

�ezTj
˜

�n,ez�Tj
˜

�n� = lim
n→�

��n,ezTj
˜

�ez�Tj
˜

�n�

= lim
n→�

��n,�e�z�−z�Tj
˜

�n� = lim
n→�

��n,e�z�−z�Tj
˜

�n� = ��,e�z�−z�Tj
˜

�� .

For the commutator identities, set �N=�n=0
N �znT1

n /n ! ��, which converges strongly to ezT1
˜

� for
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��DF and �z � �z0. Each �N is a finite particle vector belonging to the domain of A��x�k for any
positive integer k and �=0,1 ,2, so we may calculate the expression

A0�x��N = �
n=0

N
znA0�x�T1

n

n!
� = �

n=0

N
znT1

n

n!
A0�x�� + z�

n=0

N−1
znT1

n

n!
�T1,A0�x��� .

Taking the limit in N shows the right-hand side converges for �z � �z0 with ezT1
˜

� in the domain of

the closure of A0�x� and A0�x�˜ezT1
˜

� in the range of ezT1
˜

leading to Eq. �70� since T2 commutes
with A0��x�. A similar calculation results in Eq. �71��. A short calculation produces expressions for
the gauge-transformed fields which for t=1 are

A0��x� =
1

��V�
�
k��

�2�

m
�q1,0

cs �k�cos�k · x� + q2,0
cs �k�sin�k · x�� �72�

A���x� =
1

��V�
�
k��

��2��nkn

��2�
q2,1

cs �k� −
2�k�

m��2�
p2,2

cs �k�cos�k · x�

+ �−
2��nkn

��2�
q1,1

cs �k� +
2�k�

m��2�
p1,2

cs �k�sin�k · x�� , �73�

which are, respectively, skew-symmetric and symmetric.
Turning our attention to the Hamiltonian, we find a completely analogous result in
Lemma III.2: For all ��DF and complex t with �t � � t0

etT2
˜

etT1
˜

H̃e−tT1
˜

e−tT2
˜

� = H��V,�;t��

H��V,�;t� = H0
boson + H0

cs��t� + Hint� �t� , �74�

where Hint� �t� is Hint�t� with A��x� replaced by A�� �x ; t� and the gauge-transformed Chern-Simons
part of the free Hamiltonian given by

H0
cs��t� = �

k��

� ��2 − t2�2�
2

q�,2
cs �k�2 − � +

�

2
�q�,1

cs �k�2 − 4� +
���p�,2

cs �k� − t��p�,1
cs �k��

2
2

+ t�q�,0
cs �k��q�,1

cs �k� + ��/�q�,2
cs �k�� − t���p�,2

cs �k�p�,0
cs �k� + ��1 − t�p�,0

cs �k�p�,1
cs �k�

+ �1 − t2�
�

2
�p�,0

cs �k�2 − q�,0
cs �k�2� +

�

2
�1 − t2�p�,1

cs �k�2� �75�

The statements for the domains of the unbounded operators are the same as for Lemma III.1

while calculations use the relation etT2
˜

etT1
˜

S2e−tT1
˜

e−tT2
˜

�= �etT2
˜

etT1
˜

Se−tT1
˜

e−tT2
˜

�2� for �t � � t0, which
is valid on DF after taking closures. In each of Lemmas III.1 and III.2 the left-hand side is analytic
in a disk �t � � t0 while the right-hand side is an entire function of t and provides a unique analytic
continuation of the operator on the left-hand side to the entire complex plane. However, it is
straightforward to find a dense domain D0 which is a common core for all these operators and their
powers on which both sides of Eqs. �70�, �71�, and �74� are valid as entire functions in t. Consider
a k-finite particle vector �k realized as a normalized Hermite function �k��q�,2

cs � , �q�,1
cs � ,q�� in the

q-harmonic oscillator variables with the coordinates appearing in �Tj � j=1,2� denoted explicitly.
Let ��C0

��R+� be positive, 1 for 0� t�1/2, and 0 for t�1 say. Form the cutoff functions
� j,N�q�=���k��,jq�,j

cs �k�2 /N2� for N=1,2 , . . . which have support inside a ball of radius N. Then,
by taking products and convolutions in different variables, we find

Lemma III.3: Let D0 denote the linear span of vectors formed by
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�k,N�q� = �2,N�q���1,N � �k��q� �76�

as k and N vary over the positive integers. For each of the operators and their powers appearing
in Lemmas III.1 and III.2, D0 forms a common dense core. Moreover, each of the relations in Eqs.
�70�, �71�, and �74� is valid as entire analytic functions of t. In particular, the corresponding
operator relations are densely defined on D0 for t=1.

That D0 is dense and a common core is clear as is also the analyticity. Upon re-examining
convergence of the exponential series in Eqs. �70�, �71�, and �74�, the q�,2

cs �k� and p�,1
cs �k� operators

are bounded by N when acting on vectors in D0 while the N-particle estimates applied to the
operators q�,0

cs �k� and p�,0
cs �k� acting on �k provide a bound O��n+k+1�n/2�. Vectors in D0 are now

entire vectors for each of the Krein gauge transformations.
The gauge transformations in Lemma III.2 are “natural” for the Hamiltonian H�V ,��, as may

be seen from

H̃eitTj�k,N = eitTj�H + it�H,Tj� + �it�2/2��H,Tj�,Tj���k,N, �77�

with �k,N�D0 and −� � t��. By using a Riemann approximation and then taking strong limits,
the right-hand side converges and defines convergence of the left-hand side to the relation

H̃	
−�

�

F���dEj����k,N = 	
−�

�

F�t�˜H̃eitTj�k,Ndt

= 	
−�

�

F���dEj���H�k,N + 	
−�

�

F����dEj����H,Tj��k,N

+ 	
−�

�

F����/2dEj�����H,Tj�,Tj��k,N, �78�

where �Ej���� is the spectral measure associated with the essentially self-adjoint operator Tj.

Choosing F�C0
2�R� shows that a large class of the bounded functions of Tj

˜ belongs to the domain

of H̃. As we shall show in Sec. V, the Hamiltonians H�V ,�� and H��V ,� ;1� give Krein equivalent
dynamics.

IV. REAL PART OF THE HAMILTONIAN

Following the Krein gauge transformations in the previous section, all operators in the re-
mainder of this article will take their physical values at t=1. The transformed Hamiltonian is
thereby split into two parts. One part defines a symmetric operator while the other part defines a
skew-symmetric operator. We now show that the symmetric part is bounded below and in fact is
essentially self-adjoint; hence the transformed Hamiltonian is accretive. The transformed lattice
Hamiltonian operator may be recast as

H��V,�� = H0
cs� + H0

boson + V��1,�2� + Hint� . �79�

To exploit positivity in the real part of the Hamiltonian, it is convenient to remove the gradient
terms from H0

boson and rewrite this as

H0
boson = H0

boson� + �
x�V

�s

2
��� j�x��2, �80�

in which
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H0
boson� = �

k��

1

2
�pj,�

2 �k� + m0
2qj,�

2 �k� − 4��k�� �81�

is again a free massive harmonic oscillator which on the lattice acts in the same way as a number
operator for determining domains. By reincorporating the gradient terms into the covariant deriva-
tive, the real part of H��V ,�� takes the form

Re H��V,�� + c1I = X + Y , �82�

where c1 is a positive constant to be chosen later and

X = H0
cs� + H0

boson� + c1I, Y = Ydeg + Y+, �83�

with

Ydeg = �
k��

�− ���p�,1
cs �k�p�,2

cs �k�� �84�

and

Y+ = �
x�V

� s

2
�����1�x� − e�2�x�A��x��2 + ����2�x� + e�1�x�A��x��2� + V��1,�2� . �85�

The operator H0
cs� denotes the real part of H0

cs� with the degeneracy producing term Ydeg removed.
As a sum of squares of symmetric operators which have dense analytic vectors, Y+ clearly defines
a symmetric operator which is bounded below since the Higgs potential is taken to be bounded
below. The degenerate quadratic term Ydeg will be treated as a perturbation which is of the same
size as the Chern-Simons number operator. Following the notation used in Reed and Simon �Ref.
16, p. 174–176 and Theorem X.14, p. 164�, it is a straightforward matter to use the Konrady trick
for Y+ with Z=c2X2 to obtain the quadratic estimate

Z2 � �X + Y + Z�2 + c3I �86�

for some positive constant c3. The degenerate quadratic piece changes none of the estimates for
the commutator �X , �X ,Y�� and is easily bounded in the term XYdegX by completing the square as

Ydeg = �
k��

1

2
�− �p�,2

cs 2�k� − �p�,1
cs 2�k� + ���p�,2

cs �k� − ��p�,1
cs �k��2� = − Ydeg,1 + Ydeg,+, �87�

whereupon XYdeg,+X�0 and may be discarded with the other positive terms in obtaining the
quadratic estimate above. The terms in Ydeg,1 are canceled by terms that appear in H0

cs� with the
result H0

cs�−Ydeg,1�0. Now we find

2c2X3 + 2c2XYX � 2c2X�X + Y+ + Ydeg,+ − Ydeg,1�X � 2c2X�H0
boson,� + c1I�X ,

so

2c2X3 + 2c2XYX + c2�X,�X,Y�� � c2�2c1 − c3�X2 � 0 �88�

provided we choose c1�c3 /2. The quadratic estimate and Wüst’s theorem allow us to conclude
that Re H��V ,��+c1I=X+Y is essentially self-adjoint and bounded below. It is important to notice

that the term 2c2XH0
boson,�X is a large positive operator and only its positivity is needed for the

estimate �86�. In fact, we have the sharper estimate

�X + Y + Z�2 � Z2 + c2�2c1 − c3�X2 + 2c2XH0
boson,�X � Z2 �89�

on DF�DF, which is used in the next section.
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V. SKEW-SYMMETRIC PART OF THE HAMILTONIAN

The Krein transformations in Sec. III were chosen to obtain a Hamiltonian of the form

H��V,�� = Re H��V,�� + S , �90�

in which S is a densely defined skew-symmetric operator given by

S = S1 + S2,

where

S1 = �
x�V

� se��1�2 − �2�1��x�A0��x� , �91�

S2 = �
k��


��k�q�,0
cs �k��q�,1

cs �k� +��

�
q�,2

cs �k�� − ���p�,0
cs �k�p�,2

cs �k�� . �92�

As Re H��V ,�� is essentially self-adjoint and bounded below, Chernoff’s extension of Wüst’s
theorem20 will show that H��V ,�� is essentially maximal accretive given the estimate

�Zu� � ��X + Y + Z + S�u� + c5I�u�

for vectors u in the core domain DF, or equivalently

�Z�2 � �X + Y + Z�2 + �X + Y + Z,S� + S*S + c5I �93�

as a quadratic form on DF�DF. Using the estimate of the last section, it will then be sufficient to
verify

c2�2c1 − c3�X2 + 2c2XH0
boson�X + �X + Y + Z,S� + S*S + c5I � 0, �94�

which follows from
Lemma V.1: On the domain DF, the commutator �X+Y +Z ,S� is Kato-tiny relative to

XH0
boson�X.
To prove the lemma we calculate individual terms in the commutator. From �Z ,S�

=c2�X2 ,S�=c2�X�X ,S�+ �X ,S�X� since X acts as a free Hamiltonian, �X ,S� is bounded by
H0

boson�X1/2, while �Z,S� is bounded by H0
boson�X3/2. Both of these are Kato-tiny relative to

2c2XH0
boson�X. In X+Y let us recombine the gradient boson terms in Y with the boson terms in X

to replace H0
boson� by H0

boson leading to X+Y =H0
cs�+H0

boson+c1I+Ydeg+Y0, where the “magnetic
part” of the Chern-Simons interaction now appears with the boson potential in

Y0 = �
x�V

�s

2

− e����1�x��2�x� − ���2�x��1�x��A���x� +

e2

2
��1

2�x� + �2
2�x��A���x�2� + V��1,�2�

= Ymag + V��1,�2� . �95�

Clearly �Ydeg ,S1�=0, with the remaining terms for this part of the commutator given by

�Ydeg,S2� = �
k��

�− i���3/2q�,0
cs �k�p�,2

cs �k� − i�2q�,0
cs �k�p�,1

cs �k�� . �96�

on the core domain, −�Ydeg ,S��c6X for c1 large enough as the commutator is quadratic in Chern-
Simons harmonic oscillators. It is useful to look at the commutators in �Ymag,S� separately. For
�Ymag,S1� the fields A0� and A�� commute so it is only necessary to calculate the boson field
commutators. Lattice quantization preserves enough locality for the boson fields that for terms
quadratic in the individual boson fields, the relation �� j

2�x� ,� j�y��=2i�P,V�x−y�� j�x� with the
periodic lattice �P,V shows their contribution to �Ymag,S1� vanishes. As we use a symmetric k↔
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−k summation range, it is possible to effect an integration by parts of sorts; nevertheless, the
remaining terms in this commutator are not zero and we arrive at

�Ymag,S1� = �
x�V

�sie2����1�x��1�x� + ���2�x��2�x��A���x�A0��x�

+ �
x�V

�2s�− ie2���x,��P,V�x − y��1�x��1�y��A���x�A0��x�

+ �
x�V

�2s�− ie2���x,��P,V�x − y��2�x��2�y��A���x�A0��x� . �97�

Using H0
boson� to bound � j�x�� j�y� and X to bound A���x�A0��x�, the commutator −�Ymag,S1�

�c7H0
boson�X, which is also Kato-tiny compared to H0

boson�X2. Up to multiplicative terms quadratic
in the boson fields, the size of the commutator �Ymag,S2� is determined by �A�� ,S2�. From the
Landau gauge expression for A���x� in Sec. III, it is straightforward to arrive at the expression

�A���x�,S2� =
1

��V�
�
k��


�− i
�2�

m
k�q2,0

cs �k��cos�k · x� + �i
�2�

m
k�q1,0

cs �k��sin�k · x�� , �98�

which is dominated by H0
boson�X1/2. Hence, the quadratic term �A��

2�x� ,S2� requires an additional
factor X1/2 to produce the estimate −�Ymag,S2��c8H0

boson�X, which is also Kato-tiny relative to
H0

boson�X2.
Finally �V��1 ,�2� ,S�=0. This is immediate for �V��1 ,�2� ,S2�=0, while the commutator

identities

�� j�x�4,� j�y�� = 4i�P,V�x − y�� j�x�3

��1
2�x��2

2�x�,�1�y�� = 2i�P,V�x − y��1�x��2
2�x�

readily show that �V��1 ,�2� ,S1�=0 as well. Collecting together these estimates for the various
commutators leads to the inequality

�X + Y + Z�2 + �X + Y + Z,S� � Z2 − c5I �99�

for some constant c5�0 provided c2 is large enough and c1�c3 /2. As �X+Y +Z�* and Z* are
densely defined on the finite particle vectors, Chernoff’s theorem applied to X+Y +S=X+Y +Z
+S−Z produces:

Theorem V.2: After Krein gauge transformations, the transformed Hamiltonian H��V ,��
=Re H��V ,��+S is maximal accretive after closure on the finite particle domain DF and hence
Krein essentially self-adjoint.

Krein self-adjointness follows by a simple argument which can be found in Ref. 21, Lemma
2.2, p. 5.
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APPENDIX: HARMONIC OSCILLATOR COORDINATES

We choose standard harmonic oscillator coordinates for the time-zero boson field and its
conjugate momentum, yielding �see, e.g., Ref. 22, Chap. II, Sec. B��
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� j�x� =
1

��V�
�
k��

1

2�
�eik·xaj�k� + e−ik·xaj

*�k�� =
1

�2�V�
�
k��

1

2�
�q1,j�k�cos�k · x� + q2,j�k�sin�k · x�� ,

�A1�

� j�x� =
1

��V�
�
k��

− i

2
�eik·xaj�k� − e−ik·xaj

*�k�� =
1

�2�V�
�
k��

1

2�
�p1,j�k�cos�k · x� + p2,j�k�sin�k · x�� ,

�A2�

for j=1,2. The free boson Hamiltonian with Wick ordering then becomes

H0
boson = �

k��

1

2
aj

*�k�aj�k� = �
k��

1

2
�p�,j

2 + �2q�,j
2 � . �A3�

In order to define harmonic oscillator coordinates for the MCS field A�=V�+S� in Landau
gauge �
=1�, we first express the MCS field in terms of Fock operators b� defined by

b0�k� =
c0�k�
�2�

, b1�k� =
kncn�k�
��2�

, b2�k� =
a�k�
�2�

, �A4�

so that b0 ,b1 represent the ghost degrees of freedom while b2 corresponds to the single physical
mode. In terms of these, we have for the time-zero MCS field

A� =
1

��V�
�
k��

�M��b��k�eik·x + M̄���− g��b
*�k�e−ik·x� , �A5�

with

M =�
−

�

m�2�
0 −

�

m�2�

−
1

�2�
� k1

m
−

ik2

�
 − ik2

��2�
−

1
�2�

��k1

m�
−

ik2

�


−
1

�2�
� k2

m
+

ik1

�
 ik1

��2�
−

1
�2�

��k2

m�
+

ik1

�
� . �A6�

Note the appearance of the indefinite metric in the second term of �A5�. We define Krein operators
a�=−b� and a�

† =g�b
* . It is in terms of these that we define our harmonic oscillator coordinates

for the MCS field,

q1,�
cs �k� =

1

2
�a��k� + a�

† �k� + a��− k� + a�
† �− k�� , �A7�

q2,�
cs �k� =

i

2
�a��k� − a�

† �k� − a��− k� + a�
† �− k�� , �A8�

p1,�
cs �k� =

i

2
�a��k� − a�

† �k� + a��− k� − a�
† �− k�� , �A9�

p2,�
cs �k� =

1

2
�− a��k� − a�

† �k� + a��− k� + a�
† �− k�� . �A10�

These satisfy the relations
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q�,�
cs �− k� = �− 1��+1q�,�

cs �k� and p�,�
cs �− k� = �− 1��+1p�,�

cs �k� . �A11�

Thus, upon restriction to “allowed” momenta k ,k����, we have the commutation relations

�q�,�
cs �k�,pn,�

cs �k��� = ig����n�k,k�. �A12�

This leads to the following expressions for the time-zero MCS field in Landau gauge:

A0�x� =
1

��V�
�

k���
�cos�k · x�
 2�

m�2�
q1,0

cs �k� +
2�

m�2�
q1,2

cs �k��
+ sin�k · x�
 2�

m�2�
q2,0

cs �k� +
2�

m�2�
q2,2

cs �k��� ,

A��x� =
1

��V�
�

k���
�cos�k · x�
−

2k�

m�2�
p2,0

cs �k� −
2�k�

m��2�
p2,2

cs �k�

−
2��nkn

�
�q2,0

cs �k�
�2�

−
q2,1

cs �k�
�2�

+
q2,2

cs �k�
�2�

�
+ sin�k · x�
 2k�

m�2�
p1,0

cs �k� +
2�k�

m��2�
p1,2

cs �k�

+
2��nkn

�
�q1,0

cs �k�
�2�

−
q1,1

cs �k�
�2�

+
q1,2

cs �k�
�2�

�� . �A13�

For the free MCS Hamiltonian in Landau gauge with Wick ordering, this leads to

H0
cs = �

k���
�−

�

2
�p�,0

cs �k�p�,0
cs �k� + q�,0

cs �k�q�,0
cs �k�� +

�

2
�p�,1

cs �k�p�,1
cs �k� + q�,1

cs �k�q�,1
cs �k��

+
�

2
�p�,2

cs �k�p�,2
cs �k� + q�,2

cs �k�q�,2
cs �k��� . �A14�
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The diffeomorphism action lifted on truncated �chiral� Taylor expansion of a com-
plex scalar field over a Riemann surface is presented in the paper under the name of
large diffeomorphisms. After an heuristic approach, we show how a linear trunca-
tion in the Taylor expansion can generate an algebra of symmetry characterized by
some structure functions. Such a linear truncation is explicitly realized by introduc-
ing the notion of Forsyth frame over the Riemann surface with the help of a
conformally covariant algebraic differential equation. The large chiral diffeomor-
phism action is then implemented through a Becchi-Rouet-Stora �BRS� formulation
�for a given order of truncation� leading to a more algebraic setup. In this context
the ghost fields behave as holomorphically covariant jets. Subsequently, the link
with the so-called W-algebras is made explicit once the ghost parameters are turned
from jets into tensorial ghost ones. We give a general solution with the help of the
structure functions pertaining to all the possible truncations lower or equal to the
given order. This provides another contribution to the relationship between
Korteweg-de Vries �KdV� flows and W-diffeomorphims. © 2006 American Insti-
tute of Physics.
�DOI: 10.1063/1.2354588�

I. INTRODUCTION

The notion of symmetry gives a structure to spacetime �or configuration space� and/or internal
spaces of the model under consideration, in the sense that the former is closely related to a
geometrical setup.

At the infinitesimal level, the concept of algebra turns out to be very useful. It generally gives
rise to a solution when the linearity is fulfilled. In the nonlinear situation, however, we sometimes
have to explore further behind the first infinitesimal transformation step.

The development of nonlinear sciences has supported these needs,1 and many basic physical
systems were described by nonlinear extensions of algebras. This is the case for integrable sys-
tems, two-dimensional conformal models �with application to strings, gravity, or solid state phys-
ics, see e.g., Ref. 2�.

Particular interest has been devoted to the so-called W-algebras,3 which come out from
different principles,4–6 and the question of their geometric origin still remains unclear or unsatis-
factory despite various attempts given in Refs. 5 and 7–11.
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In particular, the relationship between a conformally covariant sth-order differential equation

���s� + a�2�
�s� �z, z̄���s−2� + ¯ + a�s�

�s��z, z̄��f�z, z̄� = 0,

over a generic Riemann surface and some of the so-called W-algebra has been well established for
15 years.6 The differential equations can be thought of as equations of motion for some matter
fields. The former can also be derived as vanishing covariant derivative condition,12 and to some
extent, more general W-algebra such as the Bershadsky one13 can be related to a system of
conformally covariant coupled differential equations.

Focusing here only on one sth-order differential equation, one may either work directly with
the solutions or with uniformizing coordinates considered as ratios of linear independent
solutions.14,8 It turns out to be a matter of taste of working either with homogeneous coordinates
or inhomogeneous ones on CPs−1. However, in his textbook,14 Forsyth uses rather inhomogeneous
coordinates in order to get some differential invariants. The inhomogeneous coordinates have to
satisfy s+1th-order equations. Accordingly, our point of view proposed in Ref. 15 traced back in
the literature, found an unexpected origin in the past14 related to some algebraic type differential
equations, once covariantly formulated over a generic Riemann surface. Indeed the definition of
general well-defined differential operators over a �two-dimensional� Riemann surface requires
some care,16 and puts forward a deep insight into the links between covariance required by
physical considerations and projective geometry. Related studies of projectively invariant differ-
ential operators as well differential invariants can be found in Ref. 17.

In Ref. 15 the notion of Laguerre-Forsyth frames was promoted. In order to avoid possible
confusion with the named Laguerre-Forsyth form of a conformally covariant differential
equation,8 in the present paper, we adopt the name Forsyth frames. We simply have in mind the
ideas of, first, pursuing further the method given by Forsyth in Ref. 14, and second, dealing with
scalar coordinates considered as solutions of generalized Beltrami equations �see, e.g., Ref. 8 or 18
Appendix C2� just about the approach given in Refs. 8 and 10. Our motivation for using the
inhomogeneous coordinates rests on the fact that they seem to be more natural for constructing
projective invariants—projective action of SL�s ,C� on CPs−1. In general,19 the smooth coefficients
in the above-noted sth-order covariant differential equation have been proven to be projectively
invariant. Inhomogeneous coordinates are the local coordinates for projective curves in CPs−1 on
which there is a symplectic structure related to the Gelfand-Dickey brackets.20,19 Moreover, inho-
mogeneous coordinates offer the possibility to work with scalar fields instead of densities.

In Ref. 15, these Forsyth frames were thus made of coordinate scalar fields on some finite
dimensional target space and constructed from solutions of a finite order holomorphically covari-
ant linear differential equation over a Riemann surface of the above-mentioned type. At the
quantum level, these scalar fields surprisingly have already gained at the one-loop level a non-
commutative character. This phenomenon gives a quantum origin to a noncommutative structure
on the target space. The noncommutativity came out by anomaly cancellation as a nonlocal effect.

The basic novelties of these Forsyth frames lie in their nontrivial properties under differen-
tiations, which allow one to expand beyond first order the holomorphic reparametrization process
still maintaining the algebra closure property. Thus investigating this type of extended algebra
appears as a necessity, since this “new” structure encapsulates the �general� covariance laws.

In this paper, the construction of Forsyth frames is proposed in great detail and it strongly
relies on a symmetry principle. The latter will be systematically studied in the algebraic Becchi-
Rouet-Stora �BRS� language more suitable for a possible field theoretical treatment of the model.

The paper is organized as follows. Section II goes over some motivations for this extended
notion of symmetry, beyond linearity. It requires the use of higher order derivatives and the
closure of the algebra obliges one to introduce new fields which will play the role of structure
functions for the �nonlinear� reduced symmetry algebra. Section III is devoted to the definition of
the Forsyth frames and to a deep study of their properties. In Sec. IV, a convenient BRS approach
is presented for the algebra of symmetry. It will be useful for improving in particular the covari-
ance laws which come out from these properties. Section V treats the covariance under holomor-
phic change charts of the algebra elements. Nontensorial structures �jet� come out, in particular
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under the form of jet-BRS ghosts which are harmful for physical considerations since covariant
quantities are required. A rather tricky link with tensorial ghosts is presented as a change of basis
of generators. Section VI gives a way �using all the differential properties of the Forsyth frames,
including the ones of the subframes encapsulated into the maximal one� to decompose into tensors
the jet-BRS ghosts. The process is obviously defined up to a tensorial rescaling. Some detailed
examples are given and illustrate the striking property of canceling out the effects of all the
subframes, in favor of a standard presentation of the W-algebra structure. Exploiting some known
results in the literature10 allows one to clarify the algorithm. We conclude in Sec. VII.

II. MOTIVATIONS

The issue of finding the most general expression of a spacetime symmetry can find an answer
in the concept of generalized frames, perhaps rather than that of prolongated frames whose local
expression is obtained by successive derivations.21 In order to consider such objects, let us first
think of the Fock space of some smooth complex scalar field Z defined over a given Riemann
surface �, endowed with a complex analytic �holomorphic� structure; this requires the use of local
complex coordinates �z , z̄�. Smoothness of the complex scalar field Z=Z�z , z̄� is understood with
respect to the differential structure on � with which the complex structure is subordinated to. From
the locality principle, recall that the Fock space for Z is generated by all the z and z̄ derivatives of
any order considered as independent monomials.

Consider now the infinitesimal action of smooth diffeomorphisms on � which is usually

expressed by means of the Lie derivative L�Z= ���z , z̄�� + �̄�z , z̄��̄�Z.
With respect to the complex structure we shall be concerned with the so-called “chiral”

diffeomorphisms acting on the complex scalar field Z which consist in separating the Lie deriva-
tive according to z-derivative, so that Z→Z+��Z; there is the complex conjugate expression as
well. Denoting in the Fock space the various z-derivatives of order � by ����Z, �=1,2 , . . . one
wants to consider a fully chiral local variation for the complex scalar field Z �going thus beyond
the first order� of the following type:

��Z��z, z̄� = �
��1

�����z, z̄�����Z�z, z̄� , �2.1�

together with the complex conjugate expression, and into which all the z-derivatives appear.
Hence, constructing a local field theory over C amounts to working a priori on local func-

tionals in the various z-derivatives of Z. So to speak, the physical model is built over the infinite
z-frames which is locally represented by �Z�z , z̄� ,�Z�z , z̄� ,��2�Z�z , z̄� , . . . �, which reproduces the
“chiral” Taylor expansion of the field Z �i.e., only with respect to the z-coordinate� at the point
�z , z̄� of �, in other words, the infinite jet of Z.

What is called large chiral diffeomorphisms in the paper is the lifted action of usual local
chiral diffeomorphisms on C to the infinite jet space J��C ,C�, i.e., on the z-Taylor expansion. The
former are viewed as transformations acting on the complex scalar field Z itself and they require,
on the one hand, infinitely many local parameters ���� of conformal type �−� ,0� which generalize
vector fields of type �−1,0�, and, on the other hand, any higher order derivatives of Z.

Accordingly, it is called a large chiral diffeomorphism symmetry the invariance of some
observables or functional on J��C ,C� under the transformation �2.1�. Translating this problem of
symmetry on the space of local functionals in the infinite jet of the scalar field Z,

�Z�z, z̄� = ��
��1

�
C

dw̄ ∧ dw�����w,w̄�W����w,w̄��Z�z, z̄� , �2.2�

amounts to introducing local Ward operators associated to the local parameters ����,
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W����z, z̄� = ����Z�z, z̄�
�

�Z�z, z̄�
for � � 1, �2.3�

which generate an infinite dimensional Lie algebra. But note that the only Lie subalgebra is for
�=1 of which the bracket �as tensorial product of distributions� writes

�W�1��z, z̄�,W�1��w,w̄�� = W�1��z, z̄��w��w − z� − W�1��w,w̄��z��z − w�

= W�1��w,w̄��w��w − z� − W�1��z, z̄��z��z − w� �2.4�

and translates by duality the Lie algebra structure of vector fields to the functional level, namely,
if W1���= 	W1 
�� then

�W1���,W1���� = 	�W�1��z, z̄�,W�1��w,w̄��
��z, z̄���w,w̄��

= 	W1
� � � − � � �� = 	W1
��,��� = W1���,��� �2.5�

and thus reproduces the bracket between the parameters of usual conformal transformations. �The
pairing 	
� stands for the functional evaluation of distributions.� In full generality, the brackets for
k , � �1 read

�W�k��z, z̄�,W����w,w̄�� = �
m=1

� ��

m
��w

m��w − z�W�k+�−m��w,w̄� − �
m=1

k � k

m
��z

m��z − w�W�k+�−m��z, z̄�

�2.6�

and close onto subspaces generated by �W�u�u=min�k,��
k+�−1 and leads to introducing higher order gen-

erators at each step. Note that the bracket �2.6� fulfills the Jacobi identity. Moreover for arbitrary
k and �=1 one obtains by duality

	�W�k��z, z̄�,W�1��w,w̄��
��k��z, z̄���1��w,w̄�� = 	W�k�
��1� � ��k� − k � ��1���k�� − �
m=2

k�2 � k

m
�

�	W�k−m+1�
��k��m��1�� , �2.7�

where the first smearing bracket on the right-hand side shows that the conformal transformations
W�1� preserve the W�k� transformations up to lower orders. It also defines a covariant bracket
���1� ,��k���k�=��1����k�−k���1���k� showing that the parameter ��k� carries a conformal weight
�−k ,0�.

The closure onto a finite dimensional Lie sub-algebra for �	1 can be obtained by a truncation
in the z-derivatives of Z�z , z̄� at the some finite order, say s−1, �s�2�. Setting for z-derivatives of
order greater than s−1, namely for m�s, the following linear combinations

��m�Z�z, z̄� = �
�=1

s−1

R�m�
��� �z, z̄�����Z�z, z̄� = ⇒ W�m��z, z̄� = �

�=1

s−1

R�m�
��� �z, z̄�W����z, z̄� �2.8�

where the finite summation runs over �=1, . . . ,s−1, thus the immediate consequence is that the
bracket �2.6� reduces to

�W�k��z, z̄�,W����w,w̄�� = �
u=1

s−1 ��
m=1

� ��

m
��w

m��w − z�R�k+�−m�
�u� �w,w̄�W�u��w,w̄�

− �
m=1

k � k

m
��z

m��z − w�R�k+�−m�
�u� �z, z̄�W�u��z, z̄�� , �2.9�

and closes onto the generators �W�u�u=1
s−1. However, the truncation spoils the Jacobi identity due to
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the restriction of the order to the range �=1, . . . ,s−1. The Jacobi identity �which guarantees the
associativity of the Lie algebra� will be restored by modifying the generators �W�u�u=1

s−1 in such a
way to take into account the reduction coefficients R�v�

�u��z , z̄� introduced in �2.8�. These coefficients

will play the role of “structure functions” for the finite dimensional Lie algebra generated by the

modified generators �W̃�u�u=1
s−1. Owing to �2.8�, this is achieved by computing, for k�s and for

�=1, . . . ,s−1, the difference

�W�k��z, z̄�,W����w,w̄�� − �
p=1

s−1

R�k�
�p��z, z̄��W�p��z, z̄�,W����w,w̄��

¬ �
u=1

s−1 �R�k�
�u��z, z̄�,F����R�w,w̄�,

�

�R�w,w̄���W�u��z, z̄� , �2.10�

where F����R�w , w̄� ,� /�R�w , w̄�� is a functional differential polynomial in the R’s and ensures
the modification of the generator, for each �=1, . . . ,s−1, according to

W����w,w̄� → W̃����w,w̄� = ����Z�w,w̄�
�

�Z�w,w̄�
+ F����R�w,w̄�,

�

�R�w,w̄�� �2.11�

in view to fulfill the Jacobi identity. Furthermore, of course one has for �=1, . . . ,s−1,

R�k�
����z, z̄� = ��k

� if 1 
 k 
 s − 1

R�k�
����z, z̄� if k � s ,

�2.12�

and therefore the functional operator F��� must contain functional derivatives with respect to the
structure functions R�k�

�p� for k�s only. Thus inserting twice the brackets �2.9� into the right-hand

side of �2.10�, a direct comparison with the left-hand side of �2.10� amounts, on the one hand, to
the vanishing of the coefficient terms of the W�u��w , w̄�’s. This gives rise to some compatibility
conditions that must be fulfilled by the structure functions, namely,

R�k+n�
�u� �w,w̄� = �

p=1

s−1

�
j=0

n �n

j
���j�R�k�

�p��w,w̄�R�p+n−j�
�u� �w,w̄� for n = 0, . . . , � and k � s .

�2.13�

If k is taken to be lower or equal to s−1 then �2.13� restricts to R�k+n�
�u� =R�k+n�

�u� , since R�k�
�p�=�k

p.

On the other hand, the coefficient term of W�u��z , z̄� provides the functional differential op-
erator

F����R�w,w̄�,
�

�R�w,w̄�� = �
i�s

�
j=1

s−1 ��
m=0

i � i

m
��− 1�m��m��R�i+�−m�

�j� �w,w̄�
�

�R�i�
�j��w,w̄��− �

p=1

s−1

�
q=0

p �p

q
�

��− 1�q��q��R�i�
�p��w,w̄�R�p+�−q�

�j� �w,w̄�
�

�R�i�
�j��w,w̄��� . �2.14�

Therefore, in addition to the scalar field Z, the structure functions R’s come as new fields to be
taken into account in the theory. Their variation is obtained to be
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�R�n�
�p��z, z̄� = ��

C
dw̄ ∧ dw��

�=1

s−1

�����w,w̄� + �
u�s

��u��w,w̄�R�u�
����w,w̄��W̃����w,w̄��R�n�

�p��z, z̄�

= �
�=1

s−1 ��
m=0

n � n

m
���m������ + �

u�s

��u�R�u�
����R�n+�−m�

�p�

− �
j=1

s−1

R�n�
�j� �

q=0

j � j

q
���q������ + �

u�s

��u�R�u�
����R�j+�−q�

�p� ��z, z̄� , �2.15�

while the variation �2.2� for Z rewrites

�Z�z, z̄� = ��
C

dw̄ ∧ dw��
�=1

s−1

�����w,w̄� + �
u�s

��u��w,w̄�R�u�
����w,w̄��W̃����w,w̄��Z�z, z̄� .

�2.16�

To this change W���→W̃��� �for �=1, . . . ,s−1� of generators there corresponds a reduction from
an infinite number to a finite number of local parameters

��m� → ���� = �
m�1

��m�R�m�
��� , � = 1, . . . ,s − 1 �2.17�

as suggested by both the variations �2.15� and �2.16�. The s−1 local parameters ���� secure the fact

that the s−1 generators W̃��� fulfill indeed the algebra �2.9�. In short, this leads to a reduction of
the symmetry algebra, and �2.1� reduces to the variation

��Z��z, z̄� = �
�=1

s−1

�����z, z̄�����Z�z, z̄� . �2.18�

By duality the following brackets �,��u� corresponding to the generators W̃�u� are found to be

�����,��k���u� = �
m=0

�−1 ��

m
�R�k+m�

�u� �������−m��
�k� − �

m=0

k−1 � k

m
�R��+m�

�u� ��k���k−m��
���. �2.19�

These brackets are involved in the defining Poisson brackets for W-algebras.3,22,23 This leads to
the

Conclusion 2.1: The realization of large diffeomorphism algebra �2.6� requires the definition
of frames which verify the truncation property �2.8� which realizes a derivative order reduction
(D.O.R). So the structure functions R�v�

�u��z , z̄� uniquely define the properties of the algebra.

The problem we are after is twofold. First, due to the presence of higher order derivatives
which carry a nontensorial nature �jets�, one wants to perform the construction in a well-defined
way, in the sense that this local symmetry has indeed a global meaning over the Riemann surface
�. That is, constructing a field theory over the coframes J��� ,C�. Second, find the appropriate
generators for the symmetry algebra, �jets or tensors�, which give rise to covariant quantities over
the Riemann surface, these quantities being constructed from covariant differential operators,
covariant in the sense to be holomorphically well defined on �. This would correspond to a change

of generators �W̃�u�u=1
s−1 in order to get a presentation of the Poisson W-algebras which are no

longer Lie algebras. This means in particular that the lower orders in the brackets �2.7� should not
be present any more.23

This second goal requires one in fact to work with a finite number of s−1 complex scalar
fields Z instead of one only. Therefore, one is led to consider the jet space J��� ,Cs−1� on which
local diffeomorphisms of Cs−1 stabilizing the target point �Z�1� , . . . ,Z�s−1�� are lifted by jet compo-
sition and act linearly. Presently, a truncation in the order of the jet can be implemented by means
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of relations given by some PDEs. The simplest ones are given by a linear PDE which yields an
algebraic relation between jet coordinates. This is what will be developed in the next section.

III. THE FORSYTH FRAMES

Over a Riemann surface �, let us introduce the algebraic PDE of fixed order s with smooth
coefficients and defined by

Lsf�z, z̄� = 0 with Ls = �
j=0

s

a�s−j�
�s� �z, z̄���j�, where a�0�

�s� �z, z̄� = 1, and a�1�
�s� �z, z̄� = 0. �3.1�

When z̄ is viewed to play the role of a parameter the PDE is considered as an ODE in the
independent variable z and the function f is the unknown. It thus introduces a chiral splitting
between the complex coordinates. Around any point of � this ODE admits s linearly independent
local solutions f �R�, R=1, . . . ,s on a small enough neighborhood of any point. Actually, any

solution turns out to be a scalar density under holomorphic changes of charts �U ,z�→ �Û ,w�z��
with conformal weight �1−s� /2 in order to have a well-defined covariance on the Riemann surface
� which yields

Ls�w,w̄� = �w��−�1+s�/2Ls�z, z̄��w���1−s�/2 on U � Û � � . �3.2�

Recall that Lsf has conformal weight �1+s� /2. For an overview see, e.g., Ref. 24, and references
therein. Equation �3.1� can be recast as a first-order differential operator if the jet of order s−1 of
any solution f is considered as the variable. One has

�� + A�s��z, z̄���
f�z, z̄�

� f�z, z̄�
�

��r−1�f�z, z̄�
� =�

0

�
0

Lsf�z, z̄�
� = 0 �3.3�

where the s�s matrix

A�s��z, z̄� =�
0 − 1 0 . . . 0

0 0 − 1 � �
� � � � 0

0 0 . . . 0 − 1

a�s�
�s��z, z̄� a�s−1�

�s� �z, z̄� . . . a�2�
�s� �z, z̄� a�1�

�s� �z, z̄�
� �3.4�

has entries

�A�s��z, z̄��lm = �− 1 for m = l + 1

a�s−m+1�
�s� �z, z̄� for l = s, with a�1�

�s� �z, z̄� � 0

0 otherwise.

�3.5�

Moreover, each of them in the last row carries a z lower index content of covariant order s−m
+1. But on account of �3.3�, A�s� is expected to carry a covariant index z as the derivative �z.

This allows one to associate to the ODE a system of s identical equations by introducing s
unknowns f �R�, R=1, . . . ,s. So it is a system of the same ODE over ��Cs. Note that any linear

change in the local linearly independent solutions f̃ �R��z , z̄�=A�S�
�R�f �S��z , z̄� over U�� preserves

�3.1�, A�GL�s ,C�. For the time being, the matrix A does not depend on the local complex
coordinates �z , z̄� on �, but this issue should be tackled as the gauging of the largest symmetry
group of the ODE �3.1�.
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However, adapting Gunning25 for a well-defined ODE over � according to �3.2� if one selects
s linearly independent local solutions of �3.1�, on the one hand, f �R��z , z̄� on the coordinate neigh-

borhood U��, and on the other hand, f̂ �R��w , w̄� on the coordinate neighborhood Û��, then on
the overlapping of these coordinate neighborhoods one has, in full generality, the following gluing
rule for solutions:

on U � Û � � , f̂ �R��w,w̄� = �w��−�1−s�/2T�S�
�R�f �S��z, z̄� , �3.6�

where the unique constant matrix T turns out to be a one-cocycle of the chosen coordinate
covering on � with values in GL�s ,C�. To prove �3.6�, for the given linearly independent s

solutions f̂ �R��w , w̄� in the open set Û��, let us introduce the functions g�R��z , z̄� on U� Û�U
defined by

g�R��z, z̄� = �w���1−s�/2 f̂ �R��w,w̄� on U � Û � � . �3.7�

Upon using the covariance law �3.2� it is readily seen that the s functions g�R��z , z̄� are linearly

independent solutions of �3.1� over U� Û�U. Accordingly, for any other s linearly independent
f �R��z , z̄� of �3.1� in the open set U, the functions g�R��z , z̄� are unique linear combinations of the
functions f �R��z , z̄�, that is g�R��z , z̄�=T�S�

�R� f �S��z , z̄� a fact which demonstrates �3.6�.
According to Ref. 14, �see also Ref. 8� one may define locally s−1 smooth scalar fields over

a neighborhood of any point of � as quotients of s−1 local solutions by a preferred one which
does not vanish on a neighborhood of a given point, say on U,

Z�R��z, z̄� =
f �R+1��z, z̄�
f �1��z, z̄�

, R = 1, . . . ,s − 1, �3.8�

where the functions f �R+1� and f �1� belong to the same set of linearly independent solutions over U.
By virtue of �3.6� one checks that

on U � Û � � , Ẑ�R��w,w̄� =
T�S+1�

�R+1�Z�S��z, z̄� + T�1�
�R+1�

T�S+1�
�1� Z�S��z, z̄� + T�1�

�1� , �3.9�

a transformation law which shows that the local scalar fields Z have to be transformed in a
homographic way in accordance with the Zucchini’s point of view7 on W-algebras.

Moreover, note that any linear change in the linearly independent solutions f �R� on U induces
a homographic transformation in the Z�R� on U as

Z̃�R��z, z̄� =
A�S+1�

�R+1�Z�S��z, z̄� + A�1�
�R+1�

A�S+1�
�1� Z�S��z, z̄� + A�1�

�1� . �3.10�

The question of gauging whether or not the matrix A�GL�s ,C� into A�z , z̄�, in other words, render
local the above-presented transformation law should also be tackled in the sequel.

This is the point where now one has to decide if Z�R� is a genuine scalar field on � or not,
namely keeping T as general as possible or reduce it to the identity. If one chooses the latter what
would be the meaning of T= I for the space of solutions of the ODE �3.1�? A possible answer
would be that there exists basis of solutions which is globally defined on � according to �3.6� with
T= I. But there is a more precise statement which is the following. Consider

on Û, Ẑ�R��w,w̄� =
f̂ �R+1��w,w̄�

f̂ �1��w,w̄�
, R = 1, . . . ,s − 1 �3.11�

and thus with �3.7� one can define on the overlapping the scalar functions
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on U � Û � � , ��R��z, z̄� =
g�R+1��z, z̄�
g�1��z, z̄�

= Ẑ�R��w,w̄�, R = 1, . . . ,s − 1, �3.12�

which thus coincide with the scalar functions Ẑ�R� on the intersection U� Û��. Since in the
glueing rule given by �3.6� the matrix T only depends on the two coordinate neighborhoods U and

Û, let us perform the following linear change f̃ =aTf of linearly independent solutions on the open
set U, with given a :U→C*. This yields a gauge transformation over U of the type �3.10� with
A=T so that

on U � Û � � , ��R��z, z̄� = Ẑ�R��w,w̄� = Z̃�R��z, z̄�, R = 1, . . . ,s − 1. �3.13�

Hence by these redefinitions through gauge transformations, one can construct s−1 scalar fields on
�, still denoted by Z�R�, each of those being a collection of scalar maps defined on the various
coordinate neighborhoods satisfying �3.13� as matching rule.

Suppose now that a family of linear differential equations of the type �3.1� is indexed by the
order r�2. Accordingly, solutions must be labeled by the order r, and the above-presented con-
struction holds for each of the orders r. One may state the

Conjecture 3.1: Around each point of the Riemann surface � and for each integer r�2, there
is a map, �→CPr−1 which defines local inhomogeneous coordinates on CPr−1, collectively de-
noted by the vector valued in Cr−1 smooth function on �,

Z� �z, z̄
r� = �Z�1��z, z̄
r�, . . . ,Z�r−1��z, z̄
r�� , �3.14�

where the r−1 components are given by

Z�R��z, z̄
r� =
f �R+1��z, z̄
r�
f �1��z, z̄
r�

, R = 1, . . . ,r − 1. �3.15�

Z� �z , z̄ 
r� will be called a Forsyth frame. For a given a point on �, all the frames must be
equivalent for all the physical points of view.

Returning to the general discussion with a given equation �3.1� of order s which introduces the
truncation in the jet order, the following theorem comes as a by-product.

Theorem 3.1: For any m�1, given an order s of truncation dictated by a differential equa-
tion of the type �3.1�, one has

��m�Z� �z, z̄� = �
l=1

s−1

R�m�
�l� �z, z̄���l�Z� �z, z̄� and R�m�

�l� �z, z̄� = ��m�
�l� if 1 
 m 
 s − 1. �3.16�

The decomposition is universal for all the inhomogeneous coordinates, Z�R��z , z̄� in the sense that
each R�m�

�l� does not depend on the index �R� of the former. The R’s correspond exactly to those

heuristically introduced in �2.8� and are specific to the order s of truncation imposed by �3.1�.
However the vectorial character of Z� gives rise to some additional compatibility conditions be-
tween themselves.

Proof 1: The proof of Theorem 3.1 is trivial by direct computation. Indeed we can compute
�sf

�P+1��z , z̄� for all P=1, . . . ,s−1 in two different ways. The first one comes from the very defi-
nition Eq. �3.8� and the Leibniz rule

��s�f
�P+1� = ��s��Z�P�f �1�� = ��s�Z

�P�f �1� + Z�P���s�f
�1� + �

j=1

s−1 �s

j
���j�Z

�P���s−j�f
�1�. �3.17�

The second one comes from the very definition Eq. �3.8� and the fact that both f �P+1� and f �1� are
solutions of Eq. �3.1�:
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��s�f
�P+1� = − �

j=0

s−1

a�s−j�
�s� ��j��Z�P�f �1�� = − �

j=0

s−1

a�s−j�
�s� �

m=0

j � j

m
���m�Z

�P���j−m�f
�1� = − Z�P��

j=0

s−1

a�s−j�
�s� ��j�f

�1��z, z̄�

− �
j=1

s−1

a�s−j�
�s� �

m=1

j � j

m
���m�Z

�P���j−m�f
�1� = Z�P���s�f

�1� − �
m=1

s−1

��m�Z
�P��

j=m

s−1

a�s−j�
�s� � j

m
���j−m�f

�1�.

�3.18�

A direct comparison between Eqs. �3.17� and �3.18� entails

��s�Z
�P� =

− 1

f �1� �
m=1

s−1 �� s

m
���s−m�f

�1� + �
j=m

s−1

a�s−j�
�s� � j

m
���j−m�f

�1����m�Z
�P�. �3.19�

The decomposition �3.16� combined with the nonvanishing of the Wronskian determinant �3.21�
yields

R�s�
�m��z, z̄� �

− 1

f �1��z, z̄��� s

m
���s−m�f

�1��z, z̄� + �
j=m

s−2

a�s−j�
�s� �z, z̄�� j

m
���j−m�f

�1��z, z̄�� , �3.20�

where R�s�
�m� for m=1, . . . ,s−1 depend on the coefficients a�s−j�

�s� and f �1� and its z derivatives up to

order s−2 since a�1�
�s� =0. It is readily seen that the decomposition does not depend on the index of

the solution f �P+1�. One can extend �3.20� to the case m=0 since f �1� is solution of �3.1� by setting
R�s�

�0��0.

Let us introduce the Wronskian as a �s−1�� �s−1�-matrix

�z, z̄� = ����
�R��z, z̄�� = � �Z�1��z, z̄� ¯ �Z�s−1��z, z̄�

� � �
��s−1�Z

�1��z, z̄� ¯ ��s−1�Z
�s−1��z, z̄� � . �3.21�

Hence in the algebra of squared matrices of order s−1 the relationships �3.16� state that any
z-derivative of the Wronskian  can be decomposed as a product of a rectangular matrix with the
functions R as entries by , in detail,

��m����
�R� = �

k=1

s−1

R�m+��
�k� �k�

�R�. �3.22�

In order to be the most general as possible, the Wronskian may be extended to an m� �s−1�
rectangular matrix when higher derivatives m�s of the Z�R�’s are considered. In account of �3.16�,
the rectangular matrix of derivatives of Z up to order m can always be expressed in terms of the
Wronskian matrix �3.21�. We shall call this mechanism connected to the truncation heuristically
introduced in �2.9� as a derivative order reduction, or in shorthand DOR. Note also that thanks to
�3.16� a straightforward computation gives

R�s�
�s−1��z, z̄� = � ln det �z, z̄� . �3.23�

The preferred solution f �1� which crucially takes place in the computation of the R’s plays a
distinguished role in the construction as it has already been seen. In particular it infers a linear
relationship for f �1� with j=s−1 in Eq. �3.20�

R�s�
�s−1��z, z̄� = − s � ln f �1��z, z̄� , �3.24�

which yields, on the one hand, together with �3.23�
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f �1��z, z̄� = �det �z, z̄��−1/s, �3.25�

and on the other hand,

= ⇒ � f �1� = Q�1�f
�1�, where Q�1� = − 1

s R�s�
�s−1� �3.26�

and by successive z derivatives one gets a recursive formula

��n�f
�1��z, z̄� = Q�n��z, z̄�f �1��z, z̄� with Q�n� = �Q�n−1� + Q�n−1�Q�1� and Q�0� = 1, �3.27�

so that Q�n� turns to be a differential polynomial in Q�1� �i.e., in R�s�
�s−1��, namely Q�n�= ��

+Q�1��n−1Q�1�. Using �3.27� into �3.20� and eliminating f �1� allows one to write a linear system in
a Gauss form with respect to the a’s coefficients

R�s�
�j� + �s

j
�Q�s−j� + �

l=j

s−1 ��

j
�a�s−��

�s� Q��−j� = 0 for j = 0, . . . ,s − 1, �3.28�

which expresses the relationship between the a�s�’s and the R�s�’s. This step is independent of f �1�

provided that the R�s�’s are given �together with some compatibility conditions� and we will
consider from now on and throughout all the paper that the degrees of freedom will be the R�s�’s.
Hence, solving iteratively the system �3.28� with respect to the a�s�’s one gets

a�1�
�s� = 0 for j = s − 1,

a�2�
�s� = − R�s�

�s−2� − � s

s − 2
�Q�2� for j = s − 2,

a�3�
�s� = − R�s�

�s−3� − � s

s − 3
�Q�3� − �s − 2

s − 3
�a�2�

�s�Q�1� for j = s − 3,

� and so on up to j = 0.

�3.29�

This shows that to a given a DOR �3.16� there corresponds a holomorphically covariant differen-
tial equation of the type �3.1� whose smooth coefficients are expressed as differential polynomials
in the structure function R�s�

�s−1� and linearly with respect to the others.

Moreover one has the following property which is exactly the compatibility condition �2.13�.
Properties 1: For p=1, . . . ,s−1 and n�s,

R�m+n�
�p� �z, z̄� = �

j=0

m �m

j
��

�=1

s−1

��j�R�n�
����z, z̄�R�m+�−j�

�p� �z, z̄� , �3.30�

where 1
 l
s−1; so, recursively all the R�s+m�
�l� �z , z̄� m	0 coefficients can be derived from the

basic R�s�
�l� �z , z̄� ones.

In particular, for the case m=1, one has

R�n+1�
�p� �z, z̄� = �R�n�

�p��z, z̄� + �
�=1

s−1

R�n�
����z, z̄�R��+1�

�p� �z, z̄� , �3.31�

an equation which will be useful for future applications.
The basic R�s�

�l�’s, namely the structure functions given in the introductory section, play a

central role and it would be worthwhile to have some hints about their geometric nature. In order
to be closer as possible to a differential geometric setting for our approach, let us proceed as
follows. For the z-jet of a fixed order, one has the following holomorphic gluing rules under the
change z�w=w�z�:
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�z
k+1Z�z, z̄� =�

w��z��wZ�w,w̄� if k = 0

w�k+1��z��wZ�w,w̄� + �
�=1

k

�w
�+1Z�w,w̄��z�

� �
r=�

k
k!

�k − r�!
w�k−r+1��z�� �

a1+¯+rar=r
a1+¯+ar=�

��
n=1

r
1

an!
�w�n��z�

n!
�an�� if k � 1,�

�3.32�

where the last expression comes from the use of the Faà di Bruno formula for higher order chain
rule of derivatives. For further calculations, one has more explicitly and under a more elegant
form, for k�3

���k+1�Z��z, z̄� = �w��k+1���k+1�Z��w,w̄� + �k + 1

2
��w��k�z ln w����k�Z��w,w̄�

+ �k + 1

3
��w��k−1��w,z + 3

4k��z ln w��2����k−1�Z��w,w̄�

+ �k + 1

4
��w��k−2��z�w,z + 2�k − 1��w,z�z ln w�

+ �k

2
���z ln w��3����k−2�Z��w,w̄� + lower order derivatives, �3.33�

where �w ,z=�z
2 ln w�− 1

2 ��z ln w��2=w� /w�− 3
2 �w� /w��2 denotes the Schwarzian derivative.

Now for fixed s, one can obtain the geometric properties of the s−1 structure functions R’s by
solving the linear system �3.16� with respect to the R’s by Cramer method, one gets the following
Lie form associated to the PDEs �3.16� �see, e.g., Ref. 26� for m=1, . . . ,s−1,

��m��Z� s� ª �− 1�s−1−m
det��Z� ,��2�Z� , . . . ,��m�Z�̂ , . . . ,��s−1�Z� ,��s�Z� �

det 
= R�s�

�m��z, z̄� , �3.34�

where the caret �^� means omission. This expression can simply be rewritten as

R�s�
�m� = ��s�Z

�R��−1��R�
�m�. �3.35�

For s=2, one has the obvious relations R�m�
�1� =��m�Z /��1�Z. According to an approach advocated by

Vessiot to the Picard-Vessiot theory �Ref. 26, and references therein� one can construct, regarding
the present case and by a repeated use of �3.33�, a natural holomorphic bundle with a
�s−1�-dimensional fiber with fiber coordinates �u�1� , . . . ,u�s−1��. It is defined by the following
holomorphic transition functions induced by the holomorphic change of chart w=��z� on �

w = ��z� ,

U�s−1� =
1

w�
�u�s−1� − �s

2
� � ln w�� affine bundle ! ,

U�s−2� =
1

w�2�u�s−2� + �s − 1

2
�u�s−1� � ln w� − �s

3
���w,z + 3

4�s − 1

1
��� ln w��2�� ,
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U�s−3� =
1

w�3�u�s−3� + �s − 2

2
�u�s−2� � ln w� + u�s−1��s − 1

3
���w,z + 3

4�s − 2

1
��� ln w��2� − �s

4
�

����w,z + 2�s − 2

1
��w,z � ln w� + �s − 1

2
��� ln w��3�� ,

�

U�1� = a very intricate expression depending on all the u�i��s, �3.36�

where the transition laws become more and more involved. This bundle can be recast into a
holomorphic natural bundle of geometric objects �but however with smooth sections R in accor-
dance with locality� as fibered product over the Riemann surface �,

Faffine�� F ,

where Faffine is the affine bundle and F is the bundle with very intricate remaining but important
patching rules for the sequel. Having at our disposal some of the main gluing rules of the funda-
mental R’s, it is possible to obtain the geometrical nature of some of the coefficients of �3.1�.
Indeed, in terms of the Wronskian R�s�

�s−1�=� ln det , one finds for the coefficient

a�2�
�s� = s−1

2 ��R�s�
�s−1� − 1

s �R�s�
�s−1��2� − R�s�

�s−2�, �3.37�

while both R�s�
�s−1� and R�s�

�s−2� glue as smooth sections of the bundle defined by �3.36�. After a direct

computation

a�2�
�s� �z, z̄� = �w��2a�2�

�s� �w,w̄� +
s�s2−1�

12 ��2 ln w� − 1
2 �� ln w��2� , �3.38�

which shows that a�2�
�s� is proportional to a projective connection as is well known, since the

inhomogeneous term in the gluing rule is nothing but the Schwarzian derivative �w ,z=�2 ln w�

− 1
2 �� ln w��2. The projective connection is constructed over the frame Z� according to �3.37�.

Remark 3.1: For the case s=3, one has R�3�
�2�=� ln det , and R�3�

�1�=det��3Z� ,�2Z� � /det . With

Q�1�=
−1
3 R�3�

�2�, one readily gets

a�2�
�3� = − R�3�

�1� − 3Q�2� = − R�3�
�1� − 3��Q�1� + �Q�1��2� ,

�3.39�
a�3�

�3� = R�3�
�1�Q�1� + 2�Q�1��3 − �2Q�1� = 1

3��a�2�
�3� + �R�3�

�1� + 2
3R�3�

�2�a�2�
�3� − 1

3R�3�
�1�R�3�

�2�� ,

which are exactly those coefficients obtained for the so-called W3-algebra.14,27 The last expression
is given in terms of the projective connection and the structure functions only.

Remark 3.2: The factorization property of the differential operator Ls of order s in terms of
first-order differential operators with nowhere vanishing coefficients can be obtained if and only if
Ls is a nonoscillating operator, see Ref. 20 for some details. For more concreteness, let us
illustrate this factorization property for s=2,3.

1. The s=2 case. Take f �1�= ��Z�−1/2= :�−1/2 as a nowhere vanishing particular solution of
L2f =0. One can write

L2 = �2 + a�2�
�2� = ��− b��� + b� with a�2�

�2� = �b − b2, and b = − � ln f �1�
¬ − Q�1�. �3.40�

One finds the expected factorization

L2 = ��− 1
2 � ln � ���� + 1

2 � ln � ��, and a�2�
�2� = 1

2�2 ln � � − 1
4 �� ln � ��2. �3.41�

2. The s=3 case amounts to writing
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L3 = ��− b1 − b2��� + b2��� + b1� �3.42�

with b1=−� ln f �1�=−Q�1� and a possible choice for b2 is given by b2=b1−� ln �Z�1�—it could be
possible to choose b2=b1−� ln �Z�2� since b1 never vanishes. Then substituting into

a�2�
�3� = ��b1 + b2� − �b1 + b2�2 + �b1 + b1b2,

a�3�
�3� = �2b1 + ��b1b2� − �b1 + b2���b1 + b1b2� ,

one exactly recovers the above-given expressions in �3.39� for the coefficients of L3.
Still with a fixed given order s, it is possible to construct a connection-like object. With the

Dolbeault decomposition of the de Rham differential d=�+ �̄z let us define the flat connection
�pure gauge�

J = d −1 = �−1 + �̄−1 = dzJz + dz̄Jz̄. �3.43�

Obviously its curvature vanishes

F = dJ − J2 = 0 ⇒ �̄ z̄Jz − �zJz̄ + �Jz,Jz̄� = 0. �3.44�

The �1,0�-component of the �s−1�� �s−1�-matrix connection of J is by construction

J�z��m�
�n� �z, z̄� � �

R=1

s−1

� �m�
�R� �z, z̄��−1��R�

�n� �z, z̄� = R�m+1�
�n� �z, z̄�, m,n = 1, . . . ,s − 1 �3.45�

or more explicitly in matrix form

J�z��z, z̄� =�
0 1 0 0 ¯ 0

0 0 1 0 ¯

0 0 0 1 ¯ 0

� � � � � �
0 0 0 0 ¯ 1

R�s�
�1��z, z̄� R�s�

�2��z, z̄� ¯ ¯ ¯ R�s�
�s−1��z, z̄�

� . �3.46�

This matrix turns out to be of Frobenius type �similar to the matrix �3.4�� and therefore Jz is not
a Lie algebra-valued covariant component of an usual connection. Note that the form of the matrix
is close to the Drinfeld-Sokolov one,4 but differs by the nonvanishing term R�s�

�s−1�. Furthermore, it

is useful to notice that

R�s�
�s−1��z, z̄� = TrJ�z��z, z̄� = Tr���z, z̄�−1�z, z̄�� , �3.47�

in accordance with �3.23�.

IV. BRS APPROACH

In this section, the heuristic presentation of the truncation procedure and its consequences on
the formulation of the algebra of Ward operators given in Sec. II is translated into the BRS
language. As is well known, this allows are to reformulate in more algebraic terms the presentation
of a symmetry, and in particular, will give a more universal character of the possible variations on
truncated Taylor expansions of the scalar fields Z.

Having still in mind that we are at a fixed given order s for the truncation �2.8� or �3.16�, and
by recalling Theorem 3.1, we can turn the s−1 local parameters ���� to Faddeev-Popov ����
ghosts K�l�. The variation �2.16� can be recast in a BRS algebraic language as
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�Ws
Z�R��z, z̄
s� = �

�=1

s−1

K����z, z̄
s�����Z
�R��z, z̄
s�, 1 
 R 
 s − 1, �4.1�

where the variation is given by a summand over the independent derivatives up to order s−1 due
to the DOR of order s. The ghost fields K�l�, of which number is restricted to the range �
=1, . . . ,s−1, serve to define the Ws-algebra relative to the truncation at the level s. We emphasize
that the operation �Ws

which is required to be nilpotent, depends on the level s of truncation.
Accordingly, the ghost parameters K�l� depend on the truncation process by their number, see
�4.1�, and generate a W-algebra once the level is fixed. By an argument based on the nilpotency,
for l=1, . . . ,s−1,

�Ws
K�l��z, z̄
s� ¬ �

m=1

s−1

K�m��z, z̄
s�B�m�
�l� �z, z̄
s�

= �
m,n=1

s−1

K�m��z, z̄
s��
j=1

m �m

j
���j�K�n��z, z̄
s�R�n+m−j�

�l� �z, z̄
s� ,

�4.2�

where on the right-hand side the dependence on the level s of truncation has been explicitly
written. Note also that the products of two underived ghosts drop out by �� charge argument.
This variation defines a �s−1�� �s−1�-matrix B carrying ghost number one, and thus depending
on the level s of truncation through the structure functions R pertaining to that level s. In more
detail,

B�m�
�l� �z, z̄
s� ª �

n=1

s−1

�
j=0

m �m

j
���m−j�K�n��z, z̄
s�R�n+j�

�l� �z, z̄
s� , �4.3�

a remarkable combination over the ghosts K���, �=1, . . . ,s−1 which could have been readily read
from the variation �2.15�. For the Wronskian �3.21� the Ws-algebra extended to

�Ws
���

�R��z, z̄
s� = �
n=1

s−1

B���
�n��z, z̄
s��n�

�R��z, z̄
s�, � ,R = 1, . . . ,s − 1 �4.4�

where the matrix product is understood for �s−1�� �s−1�-matrices. One also has

�Ws
−1 = − −1B , �4.5�

and accordingly, using �Wd+d�W=0,

�Ws
J = − dB + �B,J� , �4.6�

where the bracket is graded on forms with �s−1�� �s−1�-matrix values. The nilpotency property
provides first,

�Ws
B�z, z̄
s� = B�z, z̄
s�B�z, z̄
s� = B2�z, z̄
s� �4.7�

and second, by �� argument

�Ws
Tr�B�z, z̄
s��2n+1�� = 0, n = 0,1, . . . , �4.8�

where Tr is the usual trace on matrices. The BRS variation of all the structure functions
R�n�

�p��z , z̄ 
s� �p=1, . . . ,s−1 and even for n�s� can be directly found from the variation �2.15� to

write
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�Ws
R�n�

�p��z, z̄
s� = B�n�
�p��z, z̄
s� − �

q=1

s−1

R�n�
�q��z, z̄
s�B�q�

�p��z, z̄
s� , �4.9�

where B defined earlier, in �4.3� may be extended to a rectangular matrix for lower indices greater
than s−1, while the upper ones are still lower than this value imposed by the level of truncation,
since all the R’s can be gathered into a rectangular matrix. One checks that it is compatible with
the case R���

�k� =��
k, which is kept invariant. We stress that while the first B term of the right-hand

side of the variation �4.9� is a rectangular matrix, the B under the summand is a squared one. As
noted before the matrix �m�

R can be taken to be a rectangular as well, when m�s, and the
variation �4.4� relative to the algebra Ws is accordingly modified by

�Ws
�m�

�R� �z, z̄
s� = �
�=1

s−1

B�m�
��� �z, z̄
s����

�R��z, z̄
s�, R = 1, . . . ,s − 1 and m � 1, �4.10�

where the matrix �B�m�
��� � can be rectangular. Supported by the fact that the ghosts K��� are subor-

dinated to the given level of truncation s, one may now define,28 for �=1, . . . ,s−1, the �th
derivatives ����= �� /�K��� ,�Ws

 as an anticommutator, thus the DOR equation �3.22� is recovered,

�����m�
�R� �z, z̄
s� = �

u=1

s−1

R��+m�
�u� �z, z̄
s��u�

�R��z, z̄
s�, R, � = 1, . . . ,s − 1, and m � 1. �4.11�

This shows that the BRS algebra encapsulates the DOR mechanism just by construction and
provides a consistency of the present approach.

Furthermore, from Eq. �4.4� one has

�Ws
ln det �z, z̄
s� = Tr B�z, z̄
s� , �4.12�

which gives for the variation of R�s�
�s−1�,

�Ws
R�s�

�s−1��z, z̄
s� = � Tr B�z, z̄
s� = Tr � B�z, z̄
s� .

V. COVARIANCE UNDER HOLOMORPHIC REPARAMETRIZATION

The covariance property under holomorphic change of local coordinates on the Riemann
surface is analyzed for the so far obtained quantities. As will be shown, this analysis will amount
to switching to new ghost fields of a tensorial nature in contrast to that of the K’s.

In view of the patching rules �3.32� under finite holomorphic reparametrizations, it possibly
renders more explicit some of the covariance properties of the theory relative to a fixed order s. As
will be shown, the study of covariance will appear as a key step in the construction of W-algebras.

Under finite holomorphic change of charts z→w�z� the covariance property of the s−1 scalar
fields �emerging from the truncation at level s� writes

Z�R��z, z̄
s� = Z�R��w,w̄
s�, R = 1, . . . ,s − 1 �5.1�

and implies that the Wronskian matrix  behaves as a nontensorial covariant quantity

�n�
�R��w,w̄
s� = �

m=1

s−1

��n�
�m��z��m�

�R� �z, z̄
s� , �5.2�

and while for its inverse
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�−1��R�
�n� �w,w̄
s� = �

m=1

s−1

�−1��R�
�m��z, z̄
s���m�

−1 �n��z� , �5.3�

where the patching rules are governed by the �s−1�� �s−1� lower triangular holomorphic matrix
��k�

����z� for k , � =1, . . . ,s−1, depending on the Jacobian w� and its derivatives. Its inverse matrix

is more easily computable and given by �see �3.32��

��−1��k�
����z� =�

w�k��z� if � = 1

�
r=�−1

k−1
�k − 1� ! w�k−r��z�

�k − r − 1�! �
a1+¯+rar=r

a1+¯+ar=�−1

��
n=1

r
1

an!
�w�n��z�

n!
�an� , k � � � 2

0, k � �
�

�5.4�

with nonvanishing determinant, det �−1�z�= �w��z��s�s−1�/2, since the diagonal entries are given by
��−1����

����z�= �w��z���. Note also that the order of the matrix ��k�
����z� �or that of its inverse as well�

is subject to the order s of truncation. Accordingly, since the variation �4.1� relative to the order s
has to behave as a scalar, the s−1 ghosts of the level s of truncation turn out to be contravariant
quantities

K�l��w,w̄
s� = K�m��z, z̄
s���−1��m�
�l� �z� . �5.5�

Taking into account �5.4�, the ghosts K�m��z , z̄� behave as jets, except for the top one of order s
−1 which turns out to be a contravariant tensor of order s−1. For the sake of completeness, the
behaviors of the rectangular matrices B�p�

�l� �z , z̄ 
s� and R�p�
�l� �z , z̄ 
s�, respectively, come from �5.2�,

�4.4�, and �3.16� or �4.9�. They are respectively found to be

B�w,w̄
s� = ��z�B�z, z̄
s��−1�z� , �5.6�

and for �
s−1,

R�k�
����w,w̄
s� = �

m=1

k

�
p=�

s−1

��k�
�m��z�R�m�

�p� �z, z̄
s���−1��p�
����z� . �5.7�

Thanks to the their definition �2.12�, one obtains the following identities for k
s−1:

��−1��k�
�k��z���k�

�k��z� = 1 �no summation�, �
u=�

k

��−1��k�
�u��z���u�

����z� = 0 if � � k 
 s − 1.

�5.8�

VI. JETS VERSUS TENSORS, OR HOW TO RECOVER W-ALGEBRAS

The algebra of transformations �4.1� and �4.2� are written in terms of ghosts which under
holomorphic change of charts �see Eq. �5.5�� behave as jets, and thus do not carry any tensorial
nature.

We want to show that these transformations encode a structure of Ws-algebra if the DOR
mechanism is provided by a truncation at the sth level. The latter may be implemented by means
of a given differential equation �3.1� which serves to generate what it is called in the paper, the
Forsyth frames. Since objects of jet nature are heavy to handle, and that �physical� fields are
usually considered to be of tensorial nature in some representation space of a symmetry, it is first
necessary for the BRS algebra presentation of W-symmetry to switch from the jet-ghosts to tensor
ones. This will make some contact with the results on the subject disseminated through the
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literature.1,6,5,8,10 This kind of problem is often encountered in the treatment of a local field theory,
and even in the BRST quantization scheme, see, e.g., Refs. 29 and 30. The solution to this problem
is obviously not unique since a tensor is defined up to a change of basis among tensors. This is
why it must be solved for the moment with the tools at hand.

Let us consider the hypothesis where the K’s are not universal, except the top one. Given a
level s of truncation, consider the hierarchy of all lower orders of truncation j+1
s which come

into the game with their own structure functions. At the level s, if Z� denotes a vector in CPs−1, one
has, respectively, for the DOR and the variation

��s�Z� �z, z̄
s� = �
�=1

s−1

R�s�
����z, z̄
s�����Z� �z, z̄
s�, �Ws

Z� �z, z̄
s� = �
�=1

s−1

K����z, z̄
s�����Z� �z, z̄
s� . �6.1�

Suppose now that the DOR is rather implemented at the sublevel s−1 on the s−1 scalar fields,
with

��s−1�Z� �z, z̄
s� = �
�=1

s−2

R�s−1�
��� �z, z̄
s − 1�����Z� �z, z̄
s� , �6.2�

then the above-mentioned variation can be projected onto that of the level s−1,

�Ws
Z� �z, z̄
s� = �

�=1

s−2

�K����z, z̄
s� + K�s−1��z, z̄
s�R�s−1�
��� �z, z̄
s − 1������Z� �z, z̄
s�=! �Ws−1

Z� �z, z̄
s�

= �
�=1

s−2

K����z, z̄
s − 1�����Z� �z, z̄
s� . �6.3�

Upon requiring that �Ws
Z� �z , z̄ 
s�=�Ws−1

Z� �z , z̄ 
s�, one can identify the top tensorial ghost of the
level s−1 in terms of those of the upper level s through the structure functions of the level s−1,
by

K�s−2��z, z̄
s − 1� = K�s−2��z, z̄
s� + K�s−1��z, z̄
s�R�s−1�
�s−2��z, z̄
s − 1� . �6.4�

Repeating the DOR from the level s to an arbitrary sublevel j, with 2
 j
s−1, the requirement

that �Ws
Z� �z , z̄ 
s�=�Wj

Z� �z , z̄ 
s� yields for each top tensorial ghost

K�j−1��z, z̄
j� = K�j−1��z, z̄
s� + �
m=j

s−1

K�m��z, z̄
s�R�m�
�j−1��z, z̄
j� = �

m=j−1

s−1

K�m��z, z̄
s�R�m�
�j−1��z, z̄
j� .

�6.5�

Next, taking the ghost of highest conformal weight in each of the subalgebras, one generates a
hierarchy of j-contravariant conformal tensors as

C�j��z, z̄� ª K�j��z, z̄
j + 1� . �6.6�

All the above-noted considerations suggest to take as an ansatz for the j-contravariant ghost
conformal tensors the following pretty tricky linear combination:

C�j��z, z̄� = �
m=j

s−1

K�m��z, z̄
s�R�m�
�j� �z, z̄
j + 1� for 1 
 j 
 s − 1, �6.7�

where the lower orders of truncation �implemented by the DORs−1→j� crucially enter the construc-

tion. Due to the requirement that �Ws
Z� �z , z̄ 
s�=�Wk

Z� �z , z̄ 
s�, for k=2, . . . ,s, it is worthwhile to
emphasize that the tensorial ghosts C�j� carry an universal nature �regarding all the hierarchy of
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W j-algebras�, in the sense that for j=1, . . . ,k−1, k� j+1 one has the identity

C�j��z, z̄� = �
m=j

s−1

K�m��z, z̄
s�R�m�
�j� �z, z̄
j + 1� = �

m=j

k−1

K�m��z, z̄
k�R�m�
�j� �z, z̄
j + 1� . �6.8�

The latter �which generalizes �6.7�� shows that the C�j�’s do not depend on the level k of truncation
for k� j. This strongly suggests that the tensorial ghosts C�j�’s are of universal nature. Moreover,
one gets for the DORs−1→k−1 and with �=1, . . . ,k−1,

K����z, z̄
k� = K����z, z̄
s� + �
m=k

s−1

K�m��z, z̄
s�R�m�
��� �z, z̄
k� = �

m=1

s−1

K�m��z, z̄
s�R�m�
��� �z, z̄
k� . �6.9�

Next, by comparing in order to guarantee the transitivity property, DORs−1→j with DORs−1→k−1

followed by DORk−1→j, the structure functions must verify for any m�k with j+1
k
s−1,

R�m�
�j� �z, z̄
j + 1� = �

�=j

k−1

R�m�
��� �z, z̄
k�R���

�j� �z, z̄
j + 1� , �6.10�

an identity which has to be checked with the help of �3.34� and both the choices of j and of k

−1 coordinates among the s−1 coordinates given by Z� �CPs−1 �identity between determinants�.
These two choices of subcoordinates define submanifolds in CPs−1. This phenomenon is the
signature of the presence of flag manifolds denoted by Fj¯s−2Cs−1 over CPs−1, a geometric concept
already mentioned as related to W-algebras in Ref. 5. In particular the choice j=1 and k=s in
�6.10� corresponds to the whole hierarchy �6.7� of the C ghosts and is associated to the flag
manifold F12¯s−2Cs−1.

Owing to the above considerations, let us define now, for a fixed level s, the following

nilpotent operator �Ws
= �

�=2

s−1

�W�
, with �W�

2 =0 and ��Wk
,�W�

=0, which is in some sense filtrated by

the various sub-DORs relative to the flag submanifold F12¯s−2Cs−1. Then the task is to figure out
the variations �Ws

C�j� for j=1, . . . ,s−1 in terms of the tensorial C’s themselves.
Note that the tensorial ansatz �6.7� gives an universal character to each of the tensorial top

ghosts C��−1��z , z̄�ªK��−1��z , z̄ 
 � � of each sublevels. By virtue of �6.9�, the latter linearly depend
on both the jet ghosts K�z , z̄ 
 � �’s of the top order s of truncation and the structure functions
relative to the various truncations up to order s−1.

In the course of checking that the C�j�’s are indeed j-contravariant conformal tensors, �5.5�,
�5.7� and the identities �5.8� were repeatedly used. The tensor character of C�j� is secured by the
choice of R�n�

�j� �z , z̄ 
 j+1� with maximum upper index j relative to the truncation of level j+1. This

is possible if one picks up these objects from the whole underlying DOR decompositions with a
truncation mechanism at each level lower than s. So the price to pay is the introduction of all the
R�n�

�j� �z , z̄ 
 j+1� coefficients relative to all the �sub-�truncations from j=1 to j=s−1. The latter

could have been implemented by a hierarchy of differential equations of the type �3.1�. The ansatz
�6.7� is a linear system in a Gauss form which is easily inverted as

K����z, z̄
s� = �
m=�

s−1

C�m��z, z̄�U�m�
��� �z, z̄
 � + 1, . . . ,s − 1�, � = 1, . . . ,s − 2,

�6.11�
K�s−1��z, z̄
s� = C�s−1��z, z̄� ,

where U�m�
��� �z , z̄ 
 � +1, . . . ,s−1� is the coefficient of the inverse upper triangular matrix which

depends polynomially on structure functions pertaining to the sublevels from �+1 to s−1. More
explicitly, for k , � =1, . . . ,s−1,
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U�k�
����z, z̄
 � + 1, . . . ,s − 1� =�

1 if k = �

0 if k � �

�
j=1

k−�

�− 1� j��
i=1

j

R�ki�
��i��z, z̄
�i + 1����1=�,kj=k

ki	�i

ki=�i+1 for k−��2




if k 	 � .

�6.12�

The variation of the C�j�’s given by �6.7� is computed upon using the variation �4.2� for the
level s and the variation �4.9� for all the sublevels up to s−1 owing to the DOR filtrations. It writes

�Ws
C�j��z, z̄� = �

�=j

s−1

��Ws
K����z, z̄
s�R���

�j� �z, z̄
j + 1� − K����z, z̄
s��Wj+1
R���

�j� �z, z̄
j + 1�� �6.13�

and after some algebra we get the following variation:

�Ws
C�j��z, z̄� = �

n=1

s−1

�
a=n

s−1

�
b=1

s−1

�
r=0

n

C�a��z, z̄���r�C�b��z, z̄�U�a�
�n��z, z̄
a + 1, . . . ,s − 1��

�=1

b

�
k=r

n �k

r
��n

k
�

���k−r�U�b�
����z, z̄
b + 1, . . . ,s − 1���

p=j

s−1

R�n+�−k�
�p� �z, z̄
s�R�p�

�j� �z, z̄
j + 1��
+ �

n=j

s−1

�
a=n

s−1

�
b=1

j ��
u=1

j

�
r=0

u

C�a��z, z̄���r�C�b��z, z̄�U�a�
�n��z, z̄
a + 1, . . . ,s − 1��

�=1

b

�
k=r

u �k

r
��u

k
�

���k−r�U�b�
����z, z̄
b + 1, . . . , j�R�n�

�u��z, z̄
j + 1�R�u+�−k�
�j� �z, z̄
j + 1�

− �
r=0

n

C�a��z, z̄���r�C�b��z, z̄�U�a�
�n��z, z̄
a + 1, . . . ,s − 1��

�=1

b

�
k=r

n �k

r
�

���k−r�U�b�
����z, z̄
b + 1, . . . , j�R�n+�−k�

�j� �z, z̄
j + 1�� . �6.14�

Equation �6.14� can be disassembled into

�Ws
C�j��z, z̄� � �

n=1

j

nC�n��z, z̄� � C�j−n+1��z, z̄� + ��j��z, z̄
j + 1, . . . ,s� , �6.15�

where the first summand looks like the variation coming from a symplectic approach11 to
W-algebra.

It is clear that the last term � is related to the whole symmetry in the sense that it is a tensorial
differential expression of ghost grading two in the various structure functions R’s of the sublevel.
Due to the nilpotency of the �Ws

BRS operation, the ��j�’s defined in �6.15� do transform according
to

�Ws
��j��z, z̄
j + 1, . . . ,s� = �

n=1

j

n�C�n��z, z̄� � ��j−n+1��z, z̄
j + 1, . . . ,s�

− ��n��z, z̄
j + 1, . . . ,s� � C�j−n+1��z, z̄�� . �6.16�

The full completion of the last equation �6.16� amounts to introducing �together with their
Ws-variations� all sets of primary fields �W-currents� which belong to the tower of all the nested
subalgebras according to the DOR filtration and the respective variations for each sublevels. This
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provides a general solution for any j, and is, according to our opinion, the most general explicit
expression given, up to now, for any W-algebra in a BRS setting. Of course, the generic expres-
sion �6.14� contains the R reduction coefficients of all the Forsyth subframes. However, the
variations given by Eq. �6.14� do not generally coincide with the ones found in the literature: this
fact will be illustrated in the next two examples. In order to recover the familiar expressions12,23

nontrivial redefinitions of the tensorial ghosts involving derivative terms must be performed. The
ansatz �6.11� relating the jet ghosts to the tensorial ones is recast into the form:15

for � = 1, . . . ,s − 2, K����z, z̄
s� = C����z, z̄� + �
p=�+1

s−1

�
r=0

p−�

��r�C�p��z, z̄�T�p�
�r,���z, z̄
s� , �6.17�

where derivatives in the tensorial ghosts explicitly enter and where T�p�
�b,m��z , z̄ 
s� depends only

on the structure functions R�s�
����z , z̄ 
s�, �=1, . . . ,s−1 with T�p�

�r,m��z , z̄ 
s�=0 for p�m and

T�p�
�r,m��z , z̄ 
s�=��0�

�r� for p=m.

In this case, the new ��j�’s will depend only on the structure functions of the level s. So, we
stress, that this is a consequence of the technical difficulties coming from the jets to tensor
reduction, and it is not a problem of the W-symmetry itself.

In fact this is deduced by searching the algebraic conditions �in terms of ghosts and their
derivatives, considered as independent fields�, which put to zero, in all the equations �6.14� all the
terms containing the structure functions of the sublevels R�z , z̄ 
 j�, for j�s. For s of reasonable
order, we find that the number of vanishing conditions allows one to get an unique solution, and
numerically provides the W examples found in the literature.

The present upshot greatly improves some previous work27,31 in the sense that it is now
possible to construct explicitly the �-term which breaks by truncation the W�-symmetry governed
by an underlying symplectomorphism symmetry11,32 to a finite Ws-algebra.

To distinguish in a clear way a realization of such a Ws-structure, the W3 and W4 cases will
be next computed in great detail. Then, despite the lack of well-settled examples in the literature
for �even if some examples exist33,34� Ws �s�5�, remarkable results in Ref. 10 will allow one to
find out a general setting.

A. The W3 example

According to the general construction, one has with s=3 as top level, the two tensorial ghosts

C�1��z, z̄� = K�1��z, z̄
2� = K�1��z, z̄
3� + K�2��z, z̄
3�R�2�
�1��z, z̄
2� ,

�6.18�
C�2��z, z̄� = K�2��z, z̄
3� ,

and their holomorphically covariant variations according to the DOR filtration read

�W3
C�2��z, z̄� = C�1��z, z̄� � C�2��z, z̄� + 2C�2��z, z̄� � C�1��z, z̄� + C�2��z, z̄���2�C�2��z, z̄�

+ C�2��z, z̄� � C�2��z, z̄��2R�3�
�2��z, z̄
3� − 3R�2�

�1��z, z̄
2�� , �6.19�

�W3
C�1��z, z̄� = C�1��z, z̄� � C�1��z, z̄� + 2C�2��z, z̄� � C�2��z, z̄��R�3�

�1��z, z̄
3� − �R�2�
�1��z, z̄
2�

+ R�3�
�2��z, z̄
3�R�2�

�1��z, z̄
2� − �R�2�
�1��z, z̄
2��2� , �6.20�

where in the course of the calculation Eq. �3.31� has been used. Performing the holomorphically
covariant change of generators
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C�1��z, z̄� → C̃�1��z, z̄� ª C�1��z, z̄� + 1
2 � C�2��z, z̄� + C�2��z, z̄�� 2

3R�3�
�2��z, z̄
3� − R�2�

�1��z, z̄
2�� ,

�6.21�

allows one to remove the R�2�
�1��z , z̄ 
2� dependence and �6.11� rewrites

K�1��z, z̄
3� = C̃�1��z, z̄� − 1
2 � C�2��z, z̄� − 2

3C�2��z, z̄�R�3�
�2��z, z̄
3� ,

�6.22�
K�2��z, z̄
3� = C�2��z, z̄� ,

and depends only on the level s=3. Next, we get the well-known transformations12,27 upon rede-

fining C̃�2�= 1
2C�2� by a numerical rescaling

�W3
C̃�1��z, z̄� = C̃�1��z, z̄� � C̃�1��z, z̄� − 4

3T�2��z, z̄
3�C�2��z, z̄� � C�2��z, z̄�

+ 1
4��C�2��z, z̄��2C�2��z, z̄� − 2

3C�2��z, z̄��3C�2��z, z̄���W3

�6.23�
�W3

C�2��z, z̄� = C̃�1��z, z̄� � C�2��z, z̄� + 2C�2��z, z̄� � C̃�1��z, z̄� ,

where the expected combination �3.37� which introduces into the game a projective connection, is
recovered for the case s=3,

T�2��z, z̄
3� = 1
2��R�3�

�2��z, z̄
3� − 1
3 �R�3�

�2��z, z̄
3��2 − R�3�
�1��z, z̄
3�� = 1

2a�2�
�3��z, z̄� , �6.24�

an expression which depends on the level s=3 only. The remarkable fact in the course of the
computation of �6.23� is that all the quantities pertaining to the suborder 2 of truncation have
disappeared thanks to the change of generators �6.21� in the tensorial sector.

Comforted into this approach, one can compute also the variation of T�2��z , z̄ 
3�. After a
straightforward but rather tedious calculation one successively obtains

�W3
T�2��z, z̄
3� = ���3�K�1� + 2T�2� � K�1� + K�1�T�2���z, z̄
3� + �K�2����3�R�3�

�2� + ��2�R�3�
�1� + ��2��R�3�

�2��2

− 2
3R�3�

�2���2�R�3�
�2� − 2

3R�3�
�2� � �R�3�

�2��2 − 2R�3�
�1� � R�3�

�2� − 4
3R�3�

�2� � R�3�
�1�� + �K�2��4��2�R�3�

�2�

+ �R�3�
�1� + ��R�3�

�2��2 − 2
3 �R�3�

�2��3 − 7
3R�3�

�2�R�3�
�1�� + ��2�K�2��5 � R�3�

�2� − R�3�
�1� − 1

3 �R�3�
�2��2�

+ 4
3R�3�

�2���3�K�2� + ��4�K�2���z, z̄
3� , �6.25�

in terms of the two K ghosts and the structure functions relative to the level s=3. According to

�6.22�, this variation can be reexpressed in terms of the two tensorial C̃ ghosts as

�W3
T�2��z, z̄
3� = ��3�C̃�1��z, z̄� + 2T�2��z, z̄
3� � C̃�1��z, z̄� + C̃�1��z, z̄�T�2��z, z̄
3� − 2C̃�2��z, z̄� � � 1

6��2�R�3�
�2�

− 1
6 � �R�3�

�2��2 + 1
3R�3�

�2�R�3�
�1� + 2

27�R�3�
�2��3 − 1

2 � R�3�
�1���z, z̄
3� − 3 � C̃�2��z, z̄�� 1

6��2�R�3�
�2�

− 1
6 � �R�3�

�2��2 + 1
3R�3�

�2�R�3�
�1� + 2

27�R�3�
�2��3 − 1

2 � R�3�
�1���z, z̄
3� . �6.26�

The expression between the brackets corresponds to the associated W3-current as a cubic differ-
ential relative to the level s=3 �up to a factor�,

8W�3��z, z̄
3� = � 1
6��2�R�3�

�2� − 1
6 � �R�3�

�2��2 + 1
3R�3�

�2�R�3�
�1� + 2

27�R�3�
�2��3 − 1

2 � R�3�
�1���z, z̄
3�

= � 1
2 � a�2�

�3� − a�3�
�3���z, z̄� , �6.27�

where the a�3�’s were given in �3.39�.
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To sump up, the general conformally covariant differential operator �3.1� for s=3 can be
recast in terms of the two W-currents

L3�z, z̄� = ��3� + 2T�2��z, z̄
3� � + �T�2��z, z̄
3� − 8W�3��z, z̄
3� , �6.28�

where the last type �3,0�-term indicates the difference with the so-called Bol operator of order 3,
see e.g., Ref. 24.

At the level of the BRS differential algebra, dropping the tilde �̃ � for the tensorial ghosts, one
has an explicit realization of the so-called principal W3-algebra, related to what it is called the
pure W3-gravity.35 The nilpotent BRS algebra for W3 writes in terms of an S-operation acting on
T and W�3� which are of spin 2 and spin 3 W-currents, respectively, and of two conformal ghost
fields C�1� ,C�2�,

SC�1� = C�1� � C�1� + �C�2��2C�2� − 2
3C�2��3C�2� − 16

3 TC�2� � C�2�,

SC�2� = C�1� � C�2� + 2C�2� � C�1�,

�6.29�
ST = �3C�1� + 2T � C�1� + C�1� � T − 8�2C�2� � W�3� + 3W�3� � C�2�� ,

SW�3� = 1
24��5C�2� + 2C�2��3T + 10T�3C�2� + 15 � T�2C�2� + 9�2T � C�2� + 16T � TC�2� + 16T2 � C�2��

+ C�1� � W�3� + 3W�3� � C�1�.

However, at the practical level, the W3 case stands as a particular example in the sense that the
change of generators emerges by itself. But for the instance of W4, it is not evident at first sight,
to figure out which change of generators for C�1� and C�2� must be performed. For the moment,
there is no general criterion at our disposal giving any guidance on that step. Nevertheless, an
explicit realization of the so-called principal W4-algebra can be constructed along both the ideas
of respecting the covariance and the dependence of the top level s=4 only. These two main ideas
are the crux of all the construction and must be explained in a more geometric setup.

B. The W4 case

According to the general construction, this time one has with s=4 as top level the three
tensorial ghosts

C�1��z, z̄� = K�1��z, z̄
2� = K�1��z, z̄
4� + K�2��z, z̄
4�R�2�
�1��z, z̄
2� + K�3��z, z̄
4�R�3�

�1��z, z̄
2� ,

C�2��z, z̄� = K�2��z, z̄
3� = K�2��z, z̄
4� + K�3��z, z̄
4�R�3�
�2��z, z̄
3� , �6.30�

C�3��z, z̄� = K�3��z, z̄
4� .

The holomorphically covariant variation according to the DOR filtration of the top ghost is
found to be

�W4
C�3��z, z̄� = �C�1� � C�3� + 3C�3� � C�1� + 2C�2� � C�2� + C�3���3�C�3� + 3C�3���2�C�2� + C�2���2�C�3���z, z̄�

+ �C�3� � C�3���z, z̄��3 � R�4�
�3��z, z̄
4� + 3R�4�

�2��z, z̄
4� + 3�R�4�
�3��z, z̄
4��2 − 6 � R�3�

�2��z, z̄
3�

− 4 � R�2�
�1��z, z̄
2� − 5R�3�

�2��z, z̄
3�R�4�
�3��z, z̄
4� − 4�R�2�

�1��z, z̄
2��2 + 4R�2�
�1��z, z̄
2�R�3�

�2�

��z, z̄
3� + 2�R�3�
�2��z, z̄
3��2� + �C�3���2�C�3���z, z̄��3R�4�

�3��z, z̄
4� − 4R�3�
�2��z, z̄
3��

+ �C�3�C�2���z, z̄��2 � R�3�
�2��z, z̄
3� − 3 � R�2�

�1��z, z̄
2�� + �C�2� � C�3���z, z̄��2R�4�
�3��z, z̄
4�
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− 2R�3�
�2��z, z̄
3� − R�2�

�1��z, z̄
2�� + �C�3� � C�2���z, z̄��3R�4�
�3��z, z̄
4� − 2R�3�

�2��z, z̄
3�

− 3R�2�
�1��z, z̄
2�� . �6.31�

The general ansatz for the conformally covariant change of ghosts which does lead to the cancel-
lation of the structure functions of the sublevels �s=2,3� in the above variation �6.31� is given by

C�2��z, z̄� = C̃�2��z, z̄� + H�0��z, z̄� � C�3��z, z̄� + H�1��z, z̄�C�3��z, z̄� ,

�6.32�
C�1��z, z̄� = C̃�1��z, z̄� + F�0��z, z̄� � C̃�2��z, z̄� + F�1��z, z̄�C̃�2��z, z̄� + L�0��z, z̄���2�C�3��z, z̄�

+ L�1��z, z̄� � C�3��z, z̄� + L�2��z, z̄�C�3��z, z̄� .

Cancellation of the sublevels in �6.31� gives

H�0��z, z̄� = − 1
2 , F�0��z, z̄� = − 1, H�1��z, z̄� = R�3�

�2��z, z̄
3� − 3
4R�4�

�3��z, z̄
4�

F�1��z, z̄� = R�2�
�1��z, z̄
2� − 1

2R�4�
�3��z, z̄
4�, L�1��z, z̄� = 1

4R�4�
�3��z, z̄
4� − 1

2R�2�
�1��z, z̄
2� − �L�0��z, z̄� ,

and the gluing rules for C�1� infers L�0��z , z̄�= 1
5 . Plugging these results into �6.32� and inverting

�6.30� the three K ghosts of the level s=4 are reexpressed as

K�3��z, z̄
4� = C�3��z, z̄� ,

K�2��z, z̄
4� = C̃�2��z, z̄� − 1
2 � C�3��z, z̄� − 3

4R�4�
�3��z, z̄
4�C�3��z, z̄� ,

�6.33�
K�1��z, z̄
4� = C̃�1��z, z̄� − � C̃�2��z, z̄� − 1

2R�4�
�3��z, z̄
4�C̃�2��z, z̄� + 1

5��2�C�3��z, z̄�

+ 1
4R�4�

�3��z, z̄
4� � C�3��z, z̄� + C�3��z, z̄��L�2��z, z̄� + 3
4R�2�

�1��z, z̄
2�R�4�
�3��z, z̄
4� − R�3�

�1��z, z̄
2�� .

Since there are various possibilities to cancel the sublevels, the remaining function coefficient

L�2��z , z̄� must be determined with the help of �W4
C̃�2� computed from the second equation of

�6.33� and the known variations at the level s=4 for K�3��z , z̄ 
4�, K�2��z , z̄ 
4�, and R�4�
�3��z , z̄ 
4�

according to the general theory. This step will secure the nilpotency �W4

2 =0. After lengthy com-
putations performed with the help of MATHEMATICA, one ends with

L�2��z, z̄� = 12
25 � R�4�

�3��z, z̄
4� − 3
25�R�4�

�3��z, z̄
4��2 − 41
50R�4�

�2��z, z̄
4� − 3
4R�2�

�1��z, z̄
2�R�4�
�3��z, z̄
4� + R�3�

�1��z, z̄
2� ,

which once substituted yields

K�1��z, z̄
4� = C̃�1��z, z̄� − � C̃�2��z, z̄� − 1
2R�4�

�3��z, z̄
4�C̃�2��z, z̄� + 1
5��2�C�3��z, z̄� + 1

4R�4�
�3��z, z̄
4� � C�3��z, z̄�

+ C�3��z, z̄�� 12
25��R�4�

�3��z, z̄
4� − 1
4 �R�4�

�3��z, z̄
4��2� − 41
50R�4�

�2��z, z̄
4�� . �6.34�

This shows that the system �6.11� can be rewritten in terms of the structure functions of the level
s=4 only thanks to the redefinition �6.32� of the tensorial ghosts coming from the sublevels. Recall
that these redefinitions are required for reabsorbing the structure functions of the sublevels. The
change of generators �6.33� also confirms the general ansatz �6.17� given in Ref. 15. The variation
�6.31� then reduces to
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�W4
C�3��z, z̄� = C̃�1��z, z̄� � C�3��z, z̄� + 3C�3��z, z̄� � C̃�1��z, z̄� + 2C̃�2��z, z̄� � C̃�2��z, z̄� + 1

10�C�3��z, z̄���3�C�3�

��z, z̄� − 2 � C�3��z, z̄���2�C�3��z, z̄� + 14T�2��z, z̄
4�C�3��z, z̄� � C�3��z, z̄�� �6.35�

from which emerges the projective connection T�2��z , z̄ 
4� associated to the level s=4,

T�2��z, z̄
4� ª � 3
10 � R�4�

�3� − 3
40�R�4�

�3��2 − 1
5R�4�

�2���z, z̄
4� = 1
5a�2�

�4��z, z̄� , �6.36�

where a�2�
�4� given by �3.37� carries the projective connection property as was already checked by

using the general gluing rules �3.36�. The variation �W4
C̃�2� is then computed to be

�W4
C̃�2��z, z̄� = C̃�1��z, z̄� � C̃�2��z, z̄� + 2C̃�2��z, z̄� � C̃�1��z, z̄� − 3

32C�3��z, z̄� � C�3��z, z̄�W�3��z, z̄
4�

− 1
10�C̃�2��z, z̄���3�C�3��z, z̄� − 3 � C̃�2��z, z̄���2�C�3��z, z̄� + 5��2�C̃�2��z, z̄� � C�3��z, z̄�

− 5��3�C̃�2��z, z̄�C�3��z, z̄� + �18C̃�2��z, z̄� � C�3��z, z̄� − 34 � C̃�2��z, z̄�C�3��z, z̄��T�2��z, z̄
4�

− 7C̃�2��z, z̄�C�3��z, z̄� � T�2��z, z̄
4�� , �6.37�

where one also gets the conformally covariant spin three W-current associated to the top level s
=4,

W�3��z, z̄
4� ª �8 � R�4�
�2� − 4��2�R�4�

�3� + 3 � �R�4�
�3��2 − 4R�4�

�2�R�4�
�3� − 8R�4�

�1���z, z̄
4� . �6.38�

Going on through the computation of the variation with the help of the third equation in �6.33� and

the known variations at the level s=4 for C�3�, C̃�2�, R�4�
�3��z , z̄ 
4� and R�4�

�2��z , z̄ 
4�, and after rede-

fining C�3�
ª−320C̃�3� by a numerical factor for later convenience, one gets

�W4
C̃�1��z, z̄� = �C̃�1� � C̃�1���z, z̄� + 3

5�� C̃�2���2�C̃�2� − 2
3 C̃�2���3�C̃�2� − 16

3 C̃�2� � C̃�2�T�2��z, z̄
4���z, z̄�

+ �20C̃�2� � C̃�3� − 108
5 � C̃�2�C̃�3���z, z̄�W�3��z, z̄
4� + 28

5 C̃�2��z, z̄�C̃�3��z, z̄� � W�3��z, z̄
4�

+ 1024�3C̃�3���5�C̃�3� − 5 � C̃�3���4�C̃�3� + 6��2�C̃�3���3�C̃�3� + 57C̃�3���2�C̃�3� � T�2��z, z̄
4�

+ �78C̃�3���3�C̃�3� − 118 � C̃�3���2�C̃�3��T�2��z, z̄
4� + C̃�3� � C̃�3��57��2�T�2��z, z̄
4�

+ 432�T�2��z, z̄
4��2 − 14W�4��z, z̄
4����z, z̄� , �6.39�

from where emerges a W-current of spin 4 �a �4,0�-type conformally covariant differential�
associated to the level s=4, as can be checked by using �3.36�,

800W�4��z, z̄
4� = �144�R�4�
�2��2 + 400R�4�

�1�R�4�
�3� + 208R�4�

�2��R�4�
�3��2 + 39�R�4�

�3��4 − 800 � R�4�
�1�

− 400R�4�
�3� � R�4�

�2� − 432R�4�
�2� � R�4�

�3� − 104 � �R�4�
�3��3 + 264��R�4�

�3��2 + 320��2�R�4�
�2�

+ 240R�4�
�3���2�R�4�

�3� − 80��3�R�4�
�3���z, z̄
4� . �6.40�

Hence, the general conformally covariant differential operator �3.1� for s=4 expressed in terms of
the three W4-currents is

L4�z, z̄� = ��4� + 5T�2��z, z̄
4���2� + 5 � T�2��z, z̄
4� � + 3
2���2�T�2��z, z̄
4� + 3

2 �T�2��z, z̄
4��2�
+ 1

8W�3��z, z̄
4� � + 1
16 � W�3��z, z̄
4� − 1

2W�4��z, z̄
4� , �6.41�

where the first line is the Bol operator of order 4, see, e.g., Ref. 24, depending only on the
projective connection T�2�.
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All this BRS algebra is an explicit realization of the so-called principal W4-algebra for pure
W4-gravity.23,36 Performing the rescaling

C̃�2� → − 8i�5C̃�2�, W�3��z, z̄
4� → i
8�5

W�3��z, z̄
4� ,

and dropping out both the tilde �̃ � for the tensorial ghosts and the explicit reference to the level
s=4, one gets the presentation as a full nilpotent BRS algebra for W4-algebra,

S C�1� = C�1� � C�1� − 192��C�2���2�C�2� − 2
3C�2���3�C�2� − 16

3 TC�2� � C�2�� + 256�27 � C�2�C�3�W�3�

− 25C�2� � C�3�W�3� − 7C�2�C�3� � W�3�� + 1024�3C�3���5�C�3� − 5 � C�3���4�C�3� + 6��2�C�3���3�C�3�

+ 57��2�TC�3� � C�3� + 57 � TC�3���2�C�3� + �78C�3���3�C�3� − 118 � C�3���2�C�3��T

− 14C�3� � C�3�W�4� + 432C�3� � C�3�T2� ,

SC�2� = C�1� � C�2� + 2C�2� � C�1� + 32�C�2���3�C�3� − 3 � C�2���2�C�3� + 5��2�C�2� � C�3� − 5��3�C�2�C�3�

+ 18C�2� � C�3�T − 34 � C�2�C�3�T − 7C�2�C�3� � T� − 9600C�3� � C�3�W�3�,

SC�3� = C�1� � C�3� + 3C�3� � C�1� + 2C�2� � C�2� − 32�C�3���3�C�3� − 2 � C�3���2�C�3� + 14TC�3� � C�3�� ,

�6.42�
ST = ��3�C�1� + 2T � C�1� + C�1� � T − 8�2C�2� � W�3� + 3W�3� � C�2�� + 32�3C�3� � W�4� + 4W�4� � C�3�� ,

SW�3� = C�1� � W�3� + 3W�3� � C�1� − 8���5�C�2� + 2C�2���3�T + 10T��3�C�2� + 15 � T��2�C�2� + 9��2�T � C�2�

+ 16T � TC�2� + 16T2 � C�2� + C�2� � W�4� + 2W�4� � C�2�� + 32�5C�3���3�W�3� + 10 � C�3���2�W�3�

+ 28��2�C�3� � W�3� + 14��3�C�3�W�3� + 34C�3�T � W�3� + 27C�3�W�3� � T + 52 � C�3�TW�3�� ,

SW�4� = C�1� � W�4� + 4W�4� � C�1� − 8�C�2���3�W�3� + 6 � C�2���2�W�3� + 14��2�C�2� � W�3�

+ 14��3�C�2�W�3� + 18C�2�T � W�3� + 25C�2� � TW�3� + 52 � C�2�TW�3�� + 32���7�C�3�

+ 3C�3���5�T + 20 � C�3���4�T + 56��2�C�3���3�T + 84��3�C�3���2�T + 70��4�C�3� � T + 28��5�C�3�T

+ C�3��177 � T��2�T + 78T��3�T� + �C�3��352T��2�T + 295��T�2� + 588��2�C�3�T � T

+ 196��3�C�3�T2 + 432C�3�T2 � T + 288 � C�3�T3 + 75C�3�W�3� � W�3� + 75 � C�3��W�3��2

− C�3���3�W�4� − 5 � C�3���2�W�4� − 9��2�C�3� � W�4� − 6��3�C�3�W�4� − 14C�3� � �TW�4��

− 28 � C�3�TW�4�� .

Recall once more that there is a breaking term in the top ghost variation SC�3� with respect to the
symplectic variation, so that the mechanisms using the so-called �-trick described in previous
papers11,31 for the W3 case do not work in the W4 case. Let us remark that if one sets C�3�=0 and
W�4�=0 and performs the rescalings of the generators C�2�→ �i�3/24�C�2� and W�3�→−8i�3W�3� in
�6.42� then the W3-algebra �6.29� is recovered. This confirms the universal definition �6.6� of the
tensorial ghosts as C�s−1��z , z̄�=K�s−1��z , z̄ 
s� as the top ghost of each level s and also the inter-
weaving of the algebras dictated by the successive DORs.

C. Comparison with some previous work

The general ansatz �6.17� given in Ref. 15 and exemplified in �6.22�, �6.33�, and �6.34� for
s=3,4, respectively, can be put into relation with some previous pioneer work.6,5,8,10 Indeed, Ref.
10 will be of particular interest. There “Beltrami differentials” emerging from a multi-time ap-
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proach for Korteweg-de Vries �KdV� flows were related to “Bilal-Fock-Kogan” generalized ten-
sorial Beltrami coefficients5 appearing in W-gravity along the ideas of Ref. 6. According to their
contravariant behavior these various type of Beltrami deformation parameters can be used in order
to recover our ansatz �6.17�.

As said in Sec. I, working with either homogeneous or inhomogeneous coordinates seems to
be a matter of taste. In our construction, the latter were preferred because they strengthen the role
of the symmetry algebra.

If one considers the homogeneous solutions f of the sth order conformally covariant linear
equation �3.1�, these solutions as ��1−s� /2�-conformal fields are equivalently subject to a DOR
since the sth order derivative can be expressed in terms of the lower order ones and the smooth
coefficient of the operator Ls. Their variation under large chiral diffeomorphisms were computed
in Ref. 18 to be

�Ws
f�z, z̄� = �

�=0

s−1

M����z, z̄
s�����f�z, z̄� . �6.43�

This variation for homogeneous coordinates must be related to the variation �4.1� for the inhomo-
geneous coordinates. Indeed Eqs. �3.8�, �3.27� allow one to find a complete link between the
ghosts K�m��z , z̄ 
s� and M����z , z̄ 
s�,

K�m��z, z̄
s� = �
�=m

s−1 ��

m
�M����z, z̄
s�Q��−m��z, z̄
s�, m = 1, . . . ,s − 1 �6.44�

and gives a direct answer to a problem raised in Ref. 6 about the W deformations of the f
functions via the KdV “multi-time” approach, providing a direct expression of the KdV hierarchy.

Inspired by Ref. 10, one can mimic the construction used for relating KdV flows and
W-diffeomorphisms according to the following dictionary:

� ↔ �̄ , M��� ↔ ��, and C̃�k� ↔ �k, �6.45�

where the M play the role of the ghost parameters for KdV flows and C̃ �for the sake of consis-

tency with the treated examples one uses the C̃ ghosts� those for the infinitesimal
W-diffeomorphisms.

One can conformally covariantize the variation �6.43� by introducing tensorial ghosts C̃ which
serve to filtrate the variation by their conformal weight according to

�Ws
f = �

k=1

s−1

B�k��C̃�k�,a�2�
�s� �f , �6.46�

where the B�k� are the conformally covariant differential operators constructed in Ref. 10 mapping
��1−s� /2� conformal fields into themselves. The coefficient function a�2�

�s� has a prominent role

since it is related to a projective connection �see �3.37�� and controls the Möbius transformations.
For a�2�

�s� �0 �owing to �3.37� this implies a nontrivial differential constraint on the structure

functions and then a kind of group contraction� one recalls that10

B�k��C̃�k�,a�2�
�s� � 0� = �

j=k

s−1

��k�
�k−j��s����mkj�C̃�k����j� �6.47�

with ��k�
�0��s�=1 fixing the normalization between M and C̃. Comparison between the variations

�6.43� and �6.46� yields
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M�0��z, z̄
s� = �
k=1

s−1

��k�
�k��s���k�C̃�k��z, z̄� ,

�6.48�

M����z, z̄
s� = �
k=�

s−1

��k�
�k−���s���k−��C̃�k��z, z̄�, � = 1, . . . ,s − 1,

where the numerical coefficients were given in10

��k�
�j��s� = �− 1� j

�s + j − k − 1

j
��k

j
�

�2k

j
� with ��k�

�0��s� = 1 �6.49�

as solutions of the recursive equation

�j + 1��2k − j���k�
�j+1��s� + �k − j��s + j − k���k�

�j��s� = 0

coming from the study of the covariance of �6.46� under projective holomorphic transformations.
Inserting �6.48� into �6.44� one gets at a�2�

�s� �0,

K�m��z, z̄
s� = �
�=m

s−1 ��

m
�Q��−m��z, z̄
s��

k=�

s−1

��k�
�k−���s���k−��C̃�k��z, z̄�, m = 1, . . . ,s − 1 �6.50�

The dependence in a�2�
�s� can be restored by studying the conformal covariance of �6.46� under an

arbitrary holomorphic transformation. The change �6.50� corresponds to

�Ws
Z�z, z̄
s� = �

k=1

s−1

D�k��C̃�k�,a�2�
�s� �Z�z, z̄
s� . �6.51�

an equivalent to �6.46�. Thanks to filtration by the tensorial ghosts C�k�, for each k, the operator

D�k��C̃�k� ,a�2�
�s� � acting on scalar fields has no constant term �by �4.1�� and must be a scalar under

holomorphic transformations. They can be obtained by using the B operators computed in Ref. 10
without taking into account their constant terms since the inhomogeneous coordinates Z are used
in the present paper. For the sake of completeness, one rewrites the first few of them

D�1��C̃�1�,a�2�
�s� � = C̃�1� � ,

D�2��C̃�2�,a�2�
�s� � = C̃�2���2� − s−2

2 � C̃�2� � , �6.52�

D�3��C̃�3�,a�2�
�s� � = C̃�3���3� − s−3

2 � C̃�2���2� + � �s−2��s−3�
10 ��2�C̃�3� +

6�3s2−7�
5�s3−s� C̃�3�a�2�

�s�� � .

A direct confrontation of �6.50� �in which the a�2�
�s�-dependence has been made explicit� with �6.22�,

�6.33�, and �6.34� for, respectively, s=3,4 gives a perfect accord upon using the recursion �3.27�
and the definition �3.37�.

The general ansatz �6.17� can thus be recovered with the help of existing results in the
literature. But the linear decomposition �6.11� depending on the structure functions of all the
possible sublevels shows the origin of the tensorial ghosts as the highest conformal weighted
parameter in each of the nested subalgebras governed by the DOR filtration. According to the
treated examples W3 and W4-algebras, the appropriate ghost parameters for the linear

W-diffeomorphisms are those constructed by redefining C���→C̃���, for the intermediate DOR
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decompositions in order to reabsorb all the structure functions of the sublevels. It is worthwhile to
notice that the algorithm is performed in a conformally covariant manner and in the respect of the
nilpotency of the W-algebra.

VII. CONCLUSION AND PERSPECTIVE

Throughout the paper, we have considered conformal differential operators defined on a Rie-
mann surface whose solutions are homogeneous coordinates of some complex projective space.
The latter lead to the notion of Forsyth frames as projective coordinates. In this context, our main
results are as follows

�i� Linear differential order reductions �DOR�, see Theorem 3.1, determine the structure func-
tions of the large chiral symmetry algebra. These structure functions are the central objects
of all our construction;

�ii� Conformal differential operators can be explicitly constructed from the given structure
functions entering the linear DOR.

�iii� The extension to the chiral truncated Taylor expansion of complex scalar fields of the usual
infinitesimal chiral diffeomorphisms induces an algebraic framework, which, embedded
into a BRS setting, leads to another presentation of W-algebras �Eq. �4.2�� written in terms
of jet-ghosts.

�iv� Physical considerations require one to transform these ghosts from jets into tensors. Obvi-
ously, this change of generators is not unique.
In doing so, we have given a general solution �for any order s of the algebra�, which put
into the game all the truncation mechanisms of the Forsyth frames up to order s via a
differential order reduction �DOR�. The price to pay in keeping the entire generality of the
solution is to carry the weight of the whole hierarchy of differential equations �with orders
lower than s� which rule all the linear truncations. However, if one considers, for a given
level, the general solution �6.14� as �physically� uncompleted, removing the role of the
intermediate levels to the benefit of the standard W-algebra presentation comes as a satis-
fying surprise. It has been shown that the cancellation holds in a rather tractable way for the
lowest orders and can be related with some known computation.10 However, the existence

of nontrivial redefinitions of the C→C̃ ghosts leading to the reabsorption of the intermedi-
ate DOR decompositions could be a very interesting problem. This gives a sharper indica-

tion on the nature of the tensorial ghosts C̃ associated to infinitesimal W-diffeomorphisms.
It is a close issue to the one concerning the relationship between the parameters of the KdV
flows and those of infinitesimal W-diffeomorphisms.10 In particular, how the nested varia-
tions pertaining to the various sublevels are finally disentangled to the benefit of the top
level only, deserve to be better studied. All come from both the conformal covariance
�geometry and global meaning� and the nilpotency of the BRS operation �associative alge-
bra of symmetry�. This gives an algorithm similar to one obtained in Ref. 10, in which
conformal covariance governs the calculation as well.

�v� W-currents are differential polynomials in the structure functions R�z , z̄ 
s� only.

Further, a window on the so-called W-gravity is open, once the BRS algebra is given, with the
use of the algebraic trick given in Refs. 28, 11, and 32 in order to incorporate the sources of the
W-currents. The relationship between the W-diffeomorphism symmetry and the Beltrami defor-
mation parameters for the complex geometry is given by

�̄ = ��Ws
,

�

� c̄
�, ���� =

� C̃���

� c̄
,

where c̄ is the true diffeomorphism ghost along the direction �̄ and the ���� are expected to be the
sources for the W-currents. This justifies �6.45� and allows one to get the whole BRS algebra for
W-gravity directly from the BRS algebra for W-algebra �e.g., �6.29� or �6.42��. In particular, this
will be useful for a systematic study of W-anomalies possibly arising at the quantum level.
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As a final conclusion, we emphasize once more that, due to the nonlinearity of this type of
symmetry algebra of large �chiral� diffeomorphisms, the technical intricacy is just a consequence
of the reduction from jets to tensors for which nontrivial explicit solutions have been obtained.
The latter can be considered as a starting point for a more pleasant treatment, and a more suitable
physical formulation for general W-algebras and their relationship not only with linear algebraic
differential equations,14,6 but also with some kind of differential systems. For instance, one ought
to expect that the Bershadsky W3

�2�-algebra be rather related to a conformally covariant system of
coupled differential equations �with as unknowns f and g� of the form12

���2� + a�1��z, z̄� � + a�2��z, z̄��f�z, z̄� + b�z, z̄�g�z, z̄� = 0,

��− 1
2a�1��z, z̄��g�z, z̄� + B�z, z̄�f�z, z̄� = 0,

over a generic Riemann surface.
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It is well known that the quantum double structure plays an important role in
three-dimensional quantum gravity coupled to matter field. In this paper, we show
how this algebraic structure emerges in the context of three-dimensional Riemann-
ian loop quantum gravity �LQG� coupled to a finite number of massive spinless
point particles. In LQG, physical states are usually constructed from the notion of
SU�2� cylindrical functions on a Riemann surfaced � and the Hilbert structure is
defined by the Ashtekar-Lewandowski measure. In the case where � is the sphere
S2, we show that the physical Hilbert space is in fact isomorphic to a tensor product
of simple unitary representations of the Drinfeld double DSU�2�: the masses of
the particles label the simple representations, the physical states are tensor products
of vectors of simple representations, and the physical scalar product is given by
intertwining coefficients between simple representations. This result is generalized
to the case of any Riemann surface �. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2352860�

I. MOTIVATIONS

Most of the articles dealing with any aspect of three-dimensional �3D� gravity are introduced
and motivated by the well-known fact that 3D gravity would provide a nice framework to answer
some questions that are too cumbersome to solve in the four-dimensional �4D� context. It is true
that 3D �pure� gravity is a topological theory which admits only a finite number of degrees of
freedom: this makes the classical theory exactly solvable and different quantization schemes have
been deeply studied in the literature.8 The theory is nevertheless far from being trivial and exhibits
very rich mathematical structures that are still extensively studied: topological invariants, knots
invariants, quantum groups, moduli spaces, teichmuller spaces, and so on. The main objection is
that it is not true that all these techniques will shed light on the problem of quantizing four-
dimensional general relativity. The interest of 3D gravity is widely limited by the fact that there is
no local degrees of freedom in the theory and therefore there are many aspects of 4D gravity that
will never be clarified thanks to this toy-model. In order to make 3D gravity a richer tool, one
should try to introduce local degrees of freedom in the theory.

Coupling 3D gravity to an external �nontrivial� field is a natural extension of the model that
contains local degrees of freedom. Furthermore, it makes the model physically more interesting.
But, the problem of defining a consistent �full� quantization of a self-gravitating field theory is
very difficult and impossible to solve by making use of standard perturbative quantum field theory
techniques, which are so successful for describing the physics of elementary particles. Recently,
Freidel and Livine11 proposed a solution of the problem in the context of 3D spin-foam models:
they have shown that �under certain hypothesis� a quantum self-gravitating field theory is equiva-
lent to a non-self-gravitating but noncommutative quantum field theory. The authors claim that the
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noncommutativity encodes the quantum gravity effects on the field. Even if 3D gravity is physi-
cally irrelevant, it is rather interesting to have a model at hand where one has complete control of
the quantum gravity effects. For these reasons, Ref. 11 certainly deserves attention for it is a first
step in the understanding of a theory of quantum gravity with local degrees of freedom. Since,
then other interesting articles dealing with different aspects of this problem have been
proposed.15,19,26

This paper is a first step in the understanding and the analysis of Ref. 11 in the Hamiltonian
context. The Hamiltonian quantization is a very interesting quantization scheme because the
notions of quantum states and quantum operators are very well understood in that framework.
Therefore, one can compute explicit transition amplitudes whereas spin-foam models give a priori
only the partition function of the theory. The main problems with the Hamiltonian quantization of
gravity is that it breaks the covariance of general relativity: there is an explicit choice of time
slicing. Topology changings are not allowed because the topology of the spacelike surface is a
priori fixed once and for all. On the contrary, spin-foam models propose a covariant, quantization
of general relativity; this makes this approach so attractive. In this article, we reformulate the loop
quantum gravity �LQG� description of 3D gravity coupled to massive point particles where we
make clear the crucial role of quantum groups in the quantization. Therefore, we end up with a
clear description of the n-particle states evolving in a quantum background which is an essential
step toward the Hamiltonian description of a self-gravitating quantum scalar field theory. The last
point is presented in a companion paper.22

The paper is organized as follows. After the introduction, we start by recalling the techniques
used in Refs. 23 and 24 to perform the Hamiltonian quantization a la LQG of three-dimensional
gravity �pure or coupled to particles�. In particular, we clarified the link between the canonical
quantization and the covariant spin-foam quantization. However, in previous works, we have
never underlined the role of the quantum double DSU�2� in our construction whereas it is clear
that it should play a central role.13,18,19 We fill this gap within the present paper. To that aim, we
first define in Sec. II the notions of partial kinematical and physical Hilbert space. These spaces
are constructed from a particular observer: this observer is a given particle which defines a
reference frame where the momenta of the other particles and the energy of the global system are
defined. This description will appear very important above all in the construction of the Fock
space.22 In Sec. III, we show how the quantum double DSU�2� is naturally present in the �partial�
physical Hilbert space: �partial� physical states are defined as vectors of a tensor product of simple
representations of DSU�2� and the �partial� physical scalar product is nothing but an intertwining
coefficient between simple representations of DSU�2�. In this section, we also discuss some
aspects concerning the observables: definition, computation of expectation values etc. We present
the construction first in the case of the sphere then we generalize to the case of any Riemann
surface. We conclude with same perspectives and we postpone the construction of the Fock space
to the companion paper.22

In this paper, we will work with dimensionless quantities, in particular for the masses of the
particles. But, the natural mass unit is the Planck mass mP defined from the Newton constant G by
mP=1/ �4�G�. Then, any mass value has to be understood in terms of the Plank unit.

II. SPACE OF PHYSICAL STATES

Loop quantum gravity is presented as a two step quantization of general relativity: the con-
struction of the kinematical Hilbert space and the construction of the physical Hilbert space. The
first point is completely under control, and gave rise to what is commonly called quantum geom-
etry �for a review see Refs. 2, 28, and 30, or 32�: the kinematical states �or states of quantum
geometry� are described in term of spin-networks and their set is endowed with a Hilbert structure
defined by the Ashtekar-Lewandowski measure. But the construction of the physical Hilbert space
is one of the biggest difficulties and one of the most interesting problems of LQG. Different ways
have been explored to attack the problem: construction of the extractor P by using a regularization
of the Hamiltonian constraint,16,31 the master constraint program,33 spin-foam models,25,27 etc.
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Very recently, Thiemann34 and Han and Ma17 proved the existence of the physical Hilbert space in
the context of the master program using spectral techniques. Nevertheless, no consistent solution
has been found so far!

In a couple of papers23,24 we have successfully studied 3D general relativity �pure gravity and
gravity coupled to particles� as a toy-model for LQG. In particular, we have constructed the
extractor P and have shown that the physical scalar product between states has a spin-foam
representation. Thus, we made the explicit relation between LQG and spin-foam models.

This section is devoted to recalling the construction in the pure gravity case and in the case
where gravity is coupled to massive spinless point particles. Then, we propose an alternative
description for the physical Hilbert space from where the quantum double structure emerges
naturally.

A. Pure gravity: Review and notations

Let M be a three-dimensional manifold. In the first-order formalism, the degrees of freedom
of the gravitational field in M are encoded in a triad e�x�=e�

i �x�Jidx� and in a spin-connection
��x�=��

i �x�Jidx� where J1 ,J2 ,J3 are the generators of the Lie algebra g=su�2� satisfying the
Lie-algebra relation �Ji ,Jk�=�ij

l Jl. Indices are lowered and raised by the Kronecker symbols �ij

=�ij. The dynamics is governed by the BF-action for the group G=SU�2�.
When the manifold has the topology M=�� I, � being a Riemann surface of genus g and I

a compact part of the real line R, then gravity admits a Hamiltonian formulation. The nonreduced
phase space is �schematically� defined by

E � ��A,E��A a G connection on � and E an electric field on �� . �1�

The variables A and E form a canonical variables pair and are, respectively, defined by the
pullbacks of the spin-connection and of the triad on the surface �. The theory admits first class
constraints that generate infinitesimal symmetries in the nonreduced phase space E. An element
X�E is called G-invariant when it Poisson-commutes with the constraints. The symmetry group is
given by G=C��� ; ISU�2�� where ISU�2� is the �universal cover of the� group of Euclidean
transformations. It is a semidirect group:

ISU�2� = SU�2� › R3 where G acts on R3 by the vectorial representation. �2�

Note that the symmetry group G contains �on-shell� the diffeomorphisms group on � but is not the
diffeomorphism group. Important discrepencies between gravity and BF theory appears because of
this fact.20

The physical phase space P is obtained by applying an infinite dimensional version of the
Dirac reduction to the space E and schematically reads:

P � �X � E�X is G-invariant�/G . �3�

The space P is a finite dimensional symplectic manifold and it is isomorphic to the moduli space
of flat ISU�2�-connections on the surface �. Functions on P are called observables and, by
definition, are invariant under the �induced� action of the symmetry group G.

Different strategies have been developed in the last 15 years to quantize the theory �see Ref.
8, and references therein�. Most of them �combinatorial quantization,1,7,6 functional quantization,36

Nelson-Regge quantization,21 etc.� are proper to 3D gravity and cannot be generalized to higher
dimensions. What makes the loop and the spin-foam quantizations very attractive is precisely that
these schemes can, in principle, be applied in 4D, even if neither LQG nor spin-foam models
provide so far a complete and consistent quantization of 4D gravity.

The loop quantization program consists in first quantizing the nonphysical phase space E, then
promoting the first class constraints into quantum operators, and then finding the kernel of these
quantum operators. In 4D gravity, all the constraints but one can be solved in the quantum theory.
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The remaining and problematic constraint is known as the Hamiltonian constraint. In the context
of 3D pure gravity, this program can be completely achieved and one can find solutions of all the
constraints.23 We proceed as follows.

1. Space of cylindrical functions on � :Cyl„� ,G…

We start by choosing the connection A to be the configuration variable �choice of polarization�
and we denote A the space of G-connections on �. We introduce the space of discrete connections
associated to a graph 	 �with E edges and V vertices�, denoted A	 by, roughly speaking, replacing
local connections A with holonomies Ue of the connection along the edges e of the graph. A
cylindrical function on the graph 	 is an element 
�Fun�A	��Fun�A� such that there exists a
function f �Fun�G�E� and 
�A�= f��e=1

E Ue�. The space of cylindrical functions is denoted
Cyl�	 ;G� and is naturally endowed with a measure d�	= �e=1

E d�e where d�e is the normalized G
Haar measure associated to the edge e. Finally, we define the space of cylindrical functions on the
surface � as the following union:

Cyl��;G� = �
	

Cyl�	;G� . �4�

This space inherits a natural measure, known as the Ashtekar-Lewandowski measure, and the
completion of Cyl�� ;G� with respect to this measure is the Hilbert space of non-physical states,
denoted H�� ;G�. The action of the symmetry group G on the connections induces a �co-� action
on Cyl�� ;G� and on H�� ;G� and we will use the same notation G to denote the symmetry group
acting on Cyl�� ;G�. Physical states are those functions which are left invariant under this sym-
metry.

2. Invariance under the symmetry group G

The action of the symmetry subgroup C��� ;G� reduces to an action on the vertices of any
element of A	 for any graph 	. Invariant states under this action are called kinematical states. The
set of kinematical states is a vector subspace of Cyl�� ;G� and, due to left and right invariance of
the G Haar measure, inherits the pre-Hilbert structure of Cyl�� ;G�. After completion, we obtain
the kinematical Hilbert space, denoted Hkin�� ;G�. Spin-network states provide an orthonormal
basis of Hkin�� ;G�.

3. Invariance under the translations R3

Physical states are a priori kinematical states that are invariant under the action of the residual
symmetry subgroup. However, there are no physical states in the kinematical Hilbert space. This
is a well-known fact that is a consequence of the noncompactness of the subgroup R3. Physical
states are in fact “distributional,” in the sense that they are elements of Cyl�� ;G�*, the topological
dual of Cyl�� ;G�. Finding physical states is equivalent to finding a physical extractor �abusively
called a projector�, i.e., an operator:

P:Cyl��;G� → Cyl��;G�*, �5�

which satisfies the property P�
1��
2�= P�
1��� ·
2� for any cylindrical functions 
1 and 
2 and
any element ��G. We have denoted by · the action of G on Cyl�� ;G�. Thus the physical Hilbert
space Hphys�� ;G� is defined as the image of Cyl�� ;G� by P. Given two physical states �1 and �2,
there exists 
1 ,
2�Cyl�� ;G� such that �1= P�
1� and �2= P�
2�, and the physical scalar product
is defined by

	�1,�2
phys � 	
1,
2
phys � P�
1��
2� . �6�

The physical scalar product does not depend on the choice of the functions 1 and 2.
Generally, we omit to mention the elements �1 and �2, and we write the physical scalar product
between cylindrical functions. The operator P “extracts” the physical component of any cylindri-
cal function.
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The explicit construction of P has been done in Ref. 23. In fact, the extractor has been
constructed by imposing locally the flatness condition F�A�=0 after a choice of regularization.
The physical scalar product so obtained is well-defined �i.e., convergent�, is positive, and satisfies
Hermiticity condition. Moreover, the relation to the spin-foam model has been established and is
briefly recalled in the following. Given two spin-network states 
1 and 
2 respectively associated
to the colored graphs 	1 ,	2��, one associates a cellular decomposition � of the three-
dimensional manifold �� I which interpolates the graphs 	1 and 	2 at the boundaries. Moreover,
� is colored in the usual way: faces are associated with irreps of SU�2�, edges with intertwiners
and the colors are compatible with the boundaries’ colors. At this point, one introduces the dual
graph � whose edges are now colored with SU�2� irreps. The spin-foam amplitude associated to
the graph � �or in an equivalent way to the dual graph �� gives the physical scalar product
between the two spin-network states if and only if� is free of bubles, i.e., � has a tree structure.
The last condition makes the amplitude convergent and appears naturally in the Hamiltonian
framework as a consequence of the regularization of the constraint F�A�=0. Therefore, in the case
where � is a triangulation of �� I we have

	
1,
2
phys = �
je

�
e��

We��je���
t��

Wt��je�� , �7�

where the sum runs over SU�2� irreps coloring the edges e of �, the weight We is generically given
by dje

=2je+1 and is dje
� je,j� if the edge e is dual to a face whose boundary contains an edge of 	1

or 	2 colored by j�; Wt= �6j� is the normalized symmetric �6j� symbols defined by the six
representations coloring the edges of the tetrahedron t. This property is illustrated by the following
example:

	0” �
�j1, . . . , j6�
phys = N�j1, j2, j4�N�j2, j3, j6�N�j1, j5, j3� j1 j2 j6

j4 j5 j3
� , �8�

where N�j1 , j2 , j3� is the norm of three-valent intertwiners �evaluation of � spin-network� taken to
be 1. The state 
�j1 , . . . , j6� is the spin-network state defined on the sphere and represented in Fig.
1.

Let us finish with a remark. We consider two cylindrical functions 
1 and 
2 which differ only
by the fact that their associated graphs are different but related by a diffeomorphism. Therefore,
the state P�
1�− P�
2� is a null-vector in the physical Hilbert space and we can identify the spaces
P�Cyl�	 ;G�� and P�Cyl�	� ;G��. This is a consequence of the invariance of the theory under the
diffeomorphisms group. Furthermore, the identification of the spaces still holds when the graphs 	
and 	� are homotopic and not necessarily related by a diffeormorphism. Thus, we identify states
that are not related by a diffeomorphism when we impose the flatness condition. We have to be
aware of this fact, which is a consequence of the fact that we are working with first order gravity
and then we include degenerate metrics in the model. How to avoid degenerate metrics in the
quantum theory is still an open question.

FIG. 1. The picture on the left is a spin-network state whose edges are labeled with irreps of SU�2� and vertices with
normalized SU�2� intertwiners. On the right side, we have drawn the spin-foam picture illustrating the transition amplitude
between the no-state and the state on the left. The amplitude associated to this spin-foam is a �6j� symbol
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B. Coupling to a finite number of particles

In order to couple particles to the gravitational field, we now consider a surface � with
boundary: the genus of � is still denoted g and we assume the boundary is a disjoint union of n
boundaries whose topology is a circle, i.e., ��=�i=0

n−1Bi. Each boundary Bi is associated to one
particle Pi whose degrees of freedom are encoded in an element Xi= ��i ,qi�� ISU�2� :qi�R3 is
the position of the particle and �i�G is related to the momemtum by p� i=mi�in� where n� �S2. The
mass mi of each particlePi is fixed by appropriate boundary conditions of the gravitational field on
Bi.

5,9 The action of the coupled system is obtained via a minimal coupling and takes the form:

S = SBF�e,�� + �
i=0

n−1

SPi
�qi,�i� − SC�e,�;�qi,�i�i� . �9�

The explicit expression of the action is given in Ref. 24: SBF is the usual SU�2� BF-action, SP is
the �first order� action of free relativistic particles and SC represents the minimal coupling term.
Note that SC enforces the appropriate boundary conditions which fixes the masses of the particles.

The loop quantization of the action �9� is conceptually similar to the pure gravity case and has
been performed in Ref. 24 Let us recall the main results.

1. Particles-cylindrical functions

Particles-cylindrical functions are a direct generalization of the usual notion of cylindrical
functions. A particles-cylindrical function 
 is now a function of the connection A and of the
momenta �i. Such a function is defined by a graph 	�� which can admit open ends at the
boundaries and by a function f �Fun�G��E+O�� where E is the number of edges and O the number
of open ends such that


�A,�i� = f��e=1
E Ue�o=1

O �o� . �10�

Recall that Ue is the holonomy of the connection along the edge e and �o=�i if the open end
o�Bi. Therefore, the vector space of particles-cylindrical functions Cyl�� ,P ;G� is given by

Cyl��,P;G� � Cyl��;G� � Fun�SU�2���n. �11�

P labels the set of the particles. This space is naturally endowed with a measure �constructed from
the AL measure and the SU�2� normalized Haar measure� which makes it a pre-Hilbert space. Its
completion is denoted H�� ,P ;G�.

2. Symmetries of the system

The system admits first class constraints that generate infinitesimal symmetries. The symmetry
group of the Hamiltonian theory is a Cartesian product G�C. Any element of G is an element of
C��� , ISU�2�� which is constant at each boundary Bi. As in the pure gravity case, we distinguish
the “compact” subgroup C��� ,SU�2�� from the noncompact one C��� ,R3�. The compact part
generates usual gauge transformations which read on the variables A and �i:

∀g � G s.t. g�Bi
= g�i��A,�i� � �g−1Ag + g−1dg,g�i�−1�i� . �12�

The noncompact part is related to the diffeomorphisms group of the manifold �� I and acts
nortrivially on the momenta canonically conjugated to the connection A.

The group C=Cst��� ,�� is the set of functions on �� which are constant on each component
Bi and takes value in the Cartan torus � of ISU�2� �Note that � is the two-dimensional group
R�S1�. Therefore C���n. It acts trivially on the connection A and by right multiplication on the
momenta as shown in the following:
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∀���i�,��i��i��0,n−1� � C s . t . ��i� � SU�2�, ��i� � R3, �i � �ih�i� . �13�

One can show that R�� is the subgroup of time reparatrizations of the world line of each particle
whereas S1�� is the subgroup of internal frame rotations which preserves the momentum of each
particle. It is then natural that only the SU�2� Cartan subgroup has a nontrivial action on the
momenta.

The action of G induces a co-action on Cyl�� ,P ;G� and particles-physical states are the
elements of Cyl�� ,P ;G� which are co-invariant under G.

3. Imposing the constraints and the particles-physical Hilbert space

Invariance under reparametrization is trivial because we work in the momentum representa-
tion and invariance under internal frame rotations imposes that states are functions on the sphere
S2�SU�2�/U�1� instead of a function on the whole group SU�2� �see Ref. 24 for more details�.
Therefore, the set of particles-cylindrical functions satisfying these invariances reads:

CylC��,P;G� � Cyl��,P;G�/C = Cyl��;G� � Fun�S2��n. �14�

Due to the left and right invariance of the G Haar measure, the space CylC�� ,P ;G� inherits
the measure of Cyl�� ,P ;G�. To find particles-physical states, we have to impose the invariance
under G. As in the pure gravity case, this is a two-step procedure. First, we impose the invariance
under the subgroup of gauge transformations: this is immediate to do and we obtain the particles-
kinematical Hilbert space Hkin�� ,P ;G�. Particles-spin-network states provide an orthonormal
basis of Hkin�� ,P ;G� Note that particles-spin-network states are associated to graphs with �even-
tually� open ends at the location of the particles.

Imposing the remaining constraint �which generates the noncompact symmetry group� is done
in the same way as in the pure gravity case. This means finding an extractor P:

P:CylC��,P;G� → CylC��,P;G�* �15�

such that P�
1��
2�= P�
1��� ·
2� for any particles-cylindrical functions 
1 and 
2 and any �
�G. The image of CylC�� ,P ;G� by the extractor is a vector space. We endow this space with a
�Ashtekar-Lewandowski� measure and after completion we end up with the particles-physical
Hilbert space Hphys�� ,P ;G�.

The explicit construction of P has been done in Ref. 24. The relation to spin-foam models has
been unraveled: the particles-physical scalar product reproduces spin-foam amplitudes of Ref. 13
as shown in the following section. It would be very interesting to ask the question of the unicity
of the extractor P in the context of three-dimensional gravity because it seems that the same
kinematical space is the starting point of the construction of different physical states depending on
whether we are dealing with pure gravity, gravity coupled to particles or in the presence of a
cosmological constant.

C. The physical states

As presented before, any physical state can be viewed as an equivalent class of a particles-
cylindrical function �two states are equivalent if their difference has a nonzero physical norm� or
equivalently as the image of a particles-cylindrical function by the extractor P defined above �15�.
A particles-physical state 
 is said to be explicitly dependent of the particles degrees of freedom
if any of its representative is a particles-cylindrical function defined on a graph which has at least
one open vertex �at a boundary�. Otherwise, the state does not depend explicitly on the particles-
degrees of freedom.

States which do not depend explicitly on the particles degrees of freedom characterize the
three-dimensional space-time geometry with conical singularities but do not contain any informa-
tion �apart from the masses� concerning the particles. The physical scalar product between two
such �spin-network� states 
1 and 
2 has a regularized well-defined spin-foam representation of

the type of Ref. 13. Indeed, one fixes a tridimensional graph �̃��� I with no-buble interpolating
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the flat graphs 	1 and 	2 associated to the cylindrical functions 
1 and 
2 and the dual graph �,
and we still have the identity �7�. In that case, edges e of � are still colored with a representation
je. The weight associated to each tetrahedron is still given by Wt��je��= �6j�t but the weight We

associated to eachedge is slightly modified: We=� je�mi� where � j�m��sin�2j+1�m / sin m if the
boundary associated to the particle of mass mi crosses the dual face f of the edge e; We=2j�+1
where j� is the representation coloring one edge � of the graphs 	 or 	
 if the boundary of the
dual face of e contains the edge � ;We=2je+1 otherwise. Note that, in the construction of Ref. 13
one has to fix a maximal tree T of � and to impose the condition We=� je,0 to each edge eof T in
order to make the sum �7� convergent. In our construction, we do not have such a condition

because the graph �̃ is chosen to be free of bubbles. The two conditions are in fact equivalent.
Relation �7� is illustrated in the example of Fig. 2.
The spin-foam amplitude associated to the spin-foam on the left-hand side is given by

� j4
�m�

dj4

 j1 j2 j6

j4 j5 j3
� . �16�

Reciprocally, the amplitude of any spin-foam of the type of Ref. 13 can be interpreted as the
physical scalar product between two states which do not depend explicitly on the particles degrees
of freedom.

Of particular interest is the physical scalar product between states which depend explicitly on
the particles degrees of freedom. This kind of physical scalar product does not admit a spin-foam
representation of the previous type.13 In that case, the cellular decomposition of the manifold �
� I, defining the eventual spin-foam model, involves faces whose edges belong to, the boundaries
�see Fig. 3 as an example� whereas the faces were crossed by the boundaries in the previous case.

It would be very interesting to generalize the spin-foam model developed in Ref. 13 in order
to include transitions of the type of Fig. 3. We leave this issue for future investigations. In the
sequel, we concentrate on the physical scalar product between particles-physical states and we do
not ask for the moment the question of its spin-foam representation. Then, we want to choose a
basis of physical states and we are going to compute the physical scalar product between the

FIG. 2. Left panel: chunk of spin-foam amplitude between two spin-network states represented in thick lines: the boundary
crosses the face labeled with the irrep j4. Right panel: the dual picture the circle around the edge j4 reminds one of the
presence of the boundary.
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elements of the basis. In other words we are going to compute explicitly the matrix elements of the
extractor P whose definition and properties were briefly recalled above �15�.

For that purpose, we start by choosing a minimal graph 	 on the Riemann surface with
boundaries � :g and n denote, respectively, the genus of � and the number of connected compo-
nents of ��. A minimal graph �Fig. 4� consists in a choice of a base point x��, a choice of n
oriented edges linking x and a point on each boundary Bi �let E be the set of these edges�, and a
choice of 2g oriented noncontractible loops around each handle of the surface �let H=A�B be the
set of these loops that we separate as usual into two sets A and B�.

The space of discrete connections on the minimal graph is denoted A	: any discrete connec-
tion is a family A= �Ua ,Ub ;Ue ,�i�a,b,e,i�G2�g+n� where e� �0,n−1� labels the elements of
E ,a ,b� �1,g� the elements of H=A�B, and i� �1,n� the particles. The infinite dimensional
symmetry group G�C�12,13� acting on the space of connections reduces to a finite dimensional
group when acting on A	. The compact part of this group is trivially isomorphic to G� �G
�S1��n. Its action on A	 is given by

�G � �G � S1��n� �A	 → A	,

�y,�g�i�,��i��i� � �Ua,Ub;Ue,�i� � �y−1Uay,y−1Uby ;y1Ueg�i�,g�i�−1�i��i�� . �17�

The noncompact subgroup acts trivially on the variables A and �i and has a nontrivial action on
the variables canonically conjugated. Imposing invariance under the noncompact subgroup is done
by finding the appropriate extractor P.

FIG. 3. Example of transition between spin-network states explicitly involving boundaries degrees of freedom. New faces
can emerge from the boundaries.

FIG. 4. A minimal graph on a genus 2 surface with two particles. On the right-hand side, the “flat projection” of the
minimal graph with the labelings of each edge or loop.
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The functions on discrete connections form the set Cyl�	 ;G� of cylindrical functions on the
minimal graph 	. Recall that 
�Cyl�	 ;G� if there exists a function f �Fun�G2�g+n�� such that
given A�A	 we have


�A� = f� �
a,b=1

g

Ua � Ub � �
e,i=0

n−1

Ue � �i� . �18�

Due to the compactness of the gauge group G=SU�2�, it is clear that Cyl�	 ;G� is isomorphic to
the space Fun�G�2�g+n�. Then, the space of cylindrical functions is naturally endowed with a
pre-Hilbert structure defined by the Haar measure on the group G and its completion, denoted
H�	 ;G�, is called the space of nonphysical states. This space is essential in the constructions of
the kinematical Hilbert space and the physical Hilbert space. Obviously, these constructions do not
depend on the choice of the base point x on the surface: indeed, the base point has no physical
meaning and it is natural that “physical” quantities do not depend on it. Technically, it is the
adjoint action of the gauge group G which makes the physical Hilbert space independent of the
base point. Even the kinematical Hilbert space does not depend on that choice.

Therefore, one can choose x to be a point of a given boundary, let us say B0. Yet, there now
exist two types of symmetries acting on the variables denned on B0: the action of G and the action
of S1. The former is the usual action of the gauge group SU�2� whereas S1 is the group of internal
frame symmetries �associated to the particle P0�. To construct kinematical states, one has to
consider both symmetries and find invariant functions under these two symmetries. However, it is
interesting to forget the S1 invariance. This is equivalent to choosing in particular internal frame
for the particle P0. Thus, one can capture interesting information concerning the particles: in
particular one can define the momenta of each particle in the internal frame of the particle P0. This
is obviously impossible if we do not choose a particular frame. Thus, one can interpret the particle
P0 as an observer sitting somewhere in the surface �. This observer is measuring the physical
characteristics of each particle and also the properties of the spacelike geometries in its reference
frame. G-invariant states defined in this reference frame are not kinematical states in the sense of
LQG; in the sequel they arecalled partial kinematical states. The set of partial kinematical states is
naturally endowed with a pre-Hilbert structure. Its completion is called the partial kinematical
Hilbert space and is denoted HPkin. Note that one can extend the space HPkin to distributions in the
sense that one can choose the element 
 defining the spin-network to be a distribution rather than
a function. In that case, one can define pure momenta states for instance as “delta” functions. As
the manifold under consideration �G or S2� is compact, we will identify the space of function with
the space of distributions on this manifold. We keep this remark in mind for the following.

Proposition 1 (partial kinematical Hilbert space): The Hilbert space of partial kinematical
states HPkin is isomorphic to the space Fun�G2g � �S2�n−1� endowed with the measure d�G

�2g

� d�
S2
��n−1�. Indeed, a function 
�H�	 ;G� is a partial kinematical state if and only if there exists

a function f �Fun�G2g � �S2�n−1� such that


�A� = f��
a,b
�0

−1Ua�0 � �0
−1Ub�0 �

e=1

n−1

�0
−1Uc�̃e� , �19�

where �̃e= fdh�eh�S2 and dh is the measure on the Carton torus of G. We have used the notation

g�̃= fdhg�h for the action of the group element g�SU�2� on a point �̃�S2.
Proof: First, let us impose the invariance under the action of G on the boundary Be associated

to any particle Pe but the observer P0. The group G acts nontrivially on the degrees of freedom �e

and Ue according to the following maps �12�:

∀g � G�e � g�e, Ue � Ueg
−1. �20�

This action induces a co-action on Cyl�	 ;G� and it is obvious that any function 
�Cyl�	 ;G� is
co-invariant if and only if it is a function of Ue�e. This results holds for any particle e�0. The
action of G at the boundary P0 is more involved because there are many edges ending and starting
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at P0. But the conclusion is similar because any function 
 which is G invariant at P0 can be
written as a sum of functions of the variables �0

−1Ue, �0
−1Ua�0 and �0

−1Ub�0. To prove this point,
we decompose the function 
 into �tensor product of� irreducible unitary finite dimensional rep-
resentations �irreps� of Gusing the Plancherel formula and we obtain


�A� = �
�I�,�j�,�k�

f
�I�

�j�
�k���e��

�

�
I�

k�

j��U�� ��
I0

k0

j0��0� . �21�

�I�� � 1
2N�2g+n are SU�2� irreps labeling the edges � �for the links e and the noncontractible loops

a ,b� and the reference particle P0 ; �j� and �k� are families of magnetic numbers. We have denoted

�
I

k
j = 	e

I
j ��

I

�e
I

k
, the matrix elements of irreps of SU�2�. V
I

is the vector space associated to the spin

I representation and e
I

i, �respectively, ei
I

� the �respectively dual� basis of V
I

�respectively, V
I

*�The
dependence in the variables �e ,e�0, is contained in the definitions of the Fourier components

f
�I�

�j�
�k���e�. The decomposition �21� is nothing else but the spin-network decomposition of the state.

The G invariance at P0 implies that there exists a G intertwiner � defined by

� � Hom�V
I0

� �
�=1

2g+n−1

V
I�

; �
a,b=1

g

V
Ia

� V
Ib� � �V

I0

� �
�=1

n−1

V
Ie

�*

such that

f
�I�

�j�
�k� = � �

a,b=1

g

e
Ia

ka � e
Ib

kb���e
I0

k0 � �
e=1

n−1

e
Ie

ke��e
I0

i0
� �

�=1

2g+n−1

e
I�

j�� . �22�

In the language of LQG, we color the vertex P0 with the intertwiner �. Due to the invariance of the
intertwiner �, we have


�A� = �
�I�,�j�,�k�

f
�I�

�j�
�k���e��k0

j0�
a

�
Ia

ka

ja��0
−1Ua�0��

b

�
Ib

kb

jb��0
−1Ub�0��

e

�
Ie

ke

je��0
−1Ue� . �23�

Then, we impose the G invariance at the location of each particle and we obtain in the same way
that


�A� = �
�I�,�j�,�k�

f
�I�

�j�
�k��1��k0

j0�
a

�
Ia

ka

ja��0
−1Ua�0��

b

�
Ib

kb

jb��0
−1Ub�0��

e

�
Ie

ke

je��0
−1Ue� . �24�

Finally, the invariance under the action of C on each �spinless� particle but the observer implies

directly that ke=0 for all e=1, . . . ,n−1. Yet �
I

0
j are functions on the sphere G / �U��1� �spherical

harmonic functions� and we can write them as follows:

∀g � SU�2�, �
I

�g�0
j =� dh�

I

�gh�0
j where h � U�1� . �25�

The space of such invariant functions will be denoted CylPinv�	 ;G�. It inherits the measure from
Cyl�	 ;G� due to left and right invariance of the Haar measure and then it possesses a natural
pre-Hilbert structure. Its completion is the partial kinematical Hilbert space Hpkin�	 ;G� and it is a
sub-Hilbert space of H�	 ;G�.

Moreover, it is straightforward to show that any element of Fun�G2g � �S2�n−1� is a kinemati-
cal partial Hilbert space. Finally, the proposition �1� follows immediately. �

Let us propose several remarks concerning the partial kinematical Hilbert space.
1. Note that one can precisely state the proposition in the sense that the isomorphism holds

when the partial kinematical Hilbert space is defined with elements 
 which are distributional for
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the observer variable and functional for the others. To clarify this claim, let us illustrate it in the
case of the sphere with particles. Indeed, the fact that the observer is colored with an intertwiner
means that any spin-network states can be written as


�A� =� dgf��0g,�1g, . . . ,�n−1g� . �26�

It is then clear that to make 
�A� a function on �S2�n−1, it is enough to require that f is a
distribution on the first argument and a function for the others. We implicitly made this asumption
in the proof of the proposition.

2. We underline the fact that the proposition �1� is valid whatever the choice of observer
among the different particles. Indeed, each partial kinematical Hilbert space is isomorphic one to
the other. In fact, the previous proposition is still valid when the base point x is not a point of ��.
To understand this point, we recall that Hpkin�	 ,G� is a sub-Hilbert space of H�	 ;G� and there
exists a projector PPkin :H�	 ;G�→HPkin�	 ;G� given by a product PPkin= PC · PC defined by

�PG
��A� =� dy�
j=0

n−1

dyjf� �
a,b=1

g

y−1U−1Uay � y−1Uby � �
i,e=0

n−1

y−1Ueye � yi
−1�i� , �27�

�PC
��A� = f�
j=0

n−1

dhjf� �
a,b−1

g

Ua � Ub � �
i,e=0

n−1

Ue � �ihi� , �28�

for any 
�H�	 ;G� associated to a function f �Fun�G2�g+n��. Note that dy or dyi is the Haar

measure on the group G and dhi the Haar measure on the group S1. Thus, any state 
̃
�H�	 ;G� is a partial kinematical state if there exists a state 
�H�	 ;G� associated to a function
f �Fun�G2�g+n�� such that


̃�A� = �P
��A� = �PG · PC
��A� . �29�

Therefore, after some calculations it is direct to see that there exists j� �0,n−1� such that


̃�A� = f̃� �
a,b=1

g

� j
−1Uj

−1UaUj� j � � j
−1Uj

−1UbUj� j � �
e�j
� j

−1Uj
−1Ue�̃e� �30�

where the function f̃ �Fun�G2g � �S2�n−1� is related to the function f by

f̃� �
a,b=1

g

Ua � Ub � �
e�j

Ue� �� dy�
j=0

n−1

dyjdhj ,

f� �
a,b=1

g

y−1�Uj� j�−1UaUj� jy � y−1�Uj� j�−1UbUj� jy � �
e,i=0

n

y−1�Uj� j�−1Ue�ehe � 1� .

The choice of j corresponds to the choice of the observer. Therefore, the proposition �1� is valid
for any choice of the base point. In the sequel, we will assume that the observer is the particle P0.

3. The final remark is that one can recover the kinematical Hilbert space from the partial
kinematical Hilbert space as follows:

Hkin�	;G� = HPkin�	;G�/S1, �31�

where S1 is the symmetry group which acts by right multiplication on the variable �0 �13�.
The next step is the construction of the partial physical Hilbert space HPphys�	 ;G�. For that

purpose, we start by defining the extractor P :Cyl�	 ;G�→Cyl*�	 ;G� formally defined by
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∀,
 � Cyl�	;G�, P�
��� � � d��A�
�A�K�A��A� . �32�

The measure on the space of discrete connections A	 is constructed from the SU�2� Haar measure
d� via the relation d��A�=d��2�g+n� for A	 is isomorphic to 2�g+n� copies of SU�2�. The Kernel
K is a distribution defined by

K�A� � ���0h�m0��0
−1�

e=1

n−1

Ue�eh�me��e
−1Ue

−1 �
�a,b�

�Ua,Ub�� . �33�

We have introduced the usual notation �Ua ,Ub�=UaUbUa
−1Ub

−1 ; �a ,b� denotes the set of the pairs of
noncontractible loops; and the elements h�me� are in the Cartan �diagonal� torus of SU�2� fixed by
the mass me by h�me�=diag�e+ime ,e−ime� in the SU�2� fundamental representation.

The extractor P defines a bilinear form on the space P�Cyl�	 ;G���Cyl�	 ;G�*; it is denoted
	;
 and is given by

∀
, � Cyl�	;G�, 	P�
�;P��
 � P�
��� . �34�

In fact, this bilinear form defines a scalar product for it satisfies the following properties:
1. It is definite positive: the kernel K is a delta distribution on the group and therefore can be

obtained as a limit of positive functions on G.
2. It is convergent as soon as the stability condition 2g+n−1�0 is satisfied; we have the

following bound:

	P��,P�
�
 � �� · �
�
1

�e=0

n−1
sin�me�

�
k=1

� �e=0

n−1
sin�kme�

k2g+n−2 . �35�

We have introduced the notation � · � for the L2 norm on the group SU�2�. The bound �35� is a
direct consequence of the Plancherel theorem for SU�2� and of the expression of the SU�2�
character in any I� 1

2N irrep, i.e., XI�H�me��=sin��2I+ I�me� / sin�me�.
The vector space of partial physical states is defined by P�CylPinv�	 ;G��. It is clear that the

kernel K is in fact a distribution on the space CylPinv�	 ;G� and therefore
P�CylPinv�	 ;G���CylPinv�	 ;G�*. In particular, the kernel K is co-invariant under the transforma-
tions �e��ehe for any e and he�U�1�� �SU��2�. Thus, K depends only on the equivalent

classes �̃e��dhe�ehe�S2 where dhe is the U�1� Haar measure. For convenience, it will be useful

to introduce the notation d�̃ for the normalized measure on the two-sphere.
The bilinear form �34� defines a pre-Hilbert structure on P�CylPinv�	 ;G�� whose completion

�up to null-vectors� is the partial physical Hilbert space HPphys�	 ;G�. When restricted on
HPphys�	 ;G�, the scalar product �34� is called the partial physical scalar product and is denoted
	;
Pphys.

Proposition 2 (partial physical Hilbert space): Let f �Fun�G2g � �S2�n−1�. One defines a par-
tial physical state P�
� where 
�CylPinv�	 ;G� was introduced in Proposition 1. Therefore, there
is a map

Fun�G2g
� �S2�n−1� → HPphys�	;G� .

When Fun�G2g� �S2�n−1� is endowed with the following Hilbert structure:

∀ f ,g � Fun�G2g
� �S2�n−1� ,

�f ,G� � � dadbdz̃ f�a,b, z̃���h�m0��
e=1

n−1

zeh�me�ze
−1�

i=1

g

�ai,bi��g�a,b, z̃� ,
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the previous map is an isometry. Note that we have introduced the notation a= �ai�i , �bi�i ,z
= �ze�e, and da=�aai ,db=�idbifor the measures.

Proof: The proof of Proposition 1 tells us that any invariant cylindrical function 
 is com-
pletely characterized by a function f �Fun�G2g � �S2�n−1� �to be more precise, the vector space
CylPinv�	 ;G� corresponds to the set of polynomial functions on G2g � �S2�n−1 and after completion
with respect to the kinematical measure one sees CylPinv�	 ;G� as the set of functions on G2g

� �S2�n−1�.
Yet, by definition, the partial physical Hilbert space Hpphys�	 ;G� is the image of Fun�G2g

� �S2�n−1� by the operator P and then any elemental of HPphys�	 ;G� can be written as
K�A�
�A��CylPinv�	 ;G�*. It is then natural to identify HPphys�	 ;G� with the space Fun�G2g

� �S2�n−1�.
The last point of the proposition is a direct consequence of the right/left invariances of the

SU�2� Haar measure. �

Let us finish this section with some remarks.
Remark 1: The isometry given in the previous proposition holds for any choice of minimal

graph 	 and any choice of observer. Partial physical Hilbert spaces HPphys�	 ;G� where 	 is any
minimal graph are isomorphic one to the other and therefore are equivalent. For that reason, we
will use the notation HPphys

g,n ��m� ;G� to denote the partial physical Hilbert space where �m�
= �m0 , . . . ,mn−1�. We have emphasized the explicit characteristics of the partial physical Hilbert
space: the topological structure of �, the colors of the boundaries, i.e., the masses of the particles
and the gauge group G of course.

Remark 2: The order of the particles matters in the definition of HPphys
g,n ��m� ;G�. The space

HPphys
g,n ��m� ;G� is completely and uniquely characterized by a given flat graph of the type of Fig.

4 where there is an order between the links. If one modifies the order between the links, then the
definition of the structure of the partial physical Hilbert space is slightly modified. However, two
different orders define isomorphic partial physical Hilbert space. For instance, if we consider a
sphere �=S2 with three particles associated to the masses �m0 ,m1 ,m2�, then the following map is
an isometry:

HPphys
0.3 �m0,m1,m2;G� → HPphys

0.3 �m0,m1,m2;G� ,

f � g:�z̃1, z̃2� � g�z̃1, z̃2� = f�z̃1,z1h�m1�−1z1
−1z̃2� . �36�

It is indeed easy to verify that �f�Pphys= �g�Pphys. One can establish a more general property that we
will discuss in the next section.

Remark 3: The physical Hilbert space Hphys
g,n ��m� ;G� is easily obtained as the coset:

Hphys
g,n ��m�;G� � HPphys

g,n ��m�;G�/S1.

The action of S1 on HPphys
g,n ��m� ;G� is naturally defined by

S1 �HPphys
g,n ��m�;G� → HPphys

g,n ��m�;G� , �37�

�h, f� � fh:y, z̃ � fh�a,b, z̃� = f�h−1ah,h−1bh,h−1z̃� . �38�

We have used the notations of Proposition 2 with h−1ah− �h−1aih�i and so on. Therefore, the
physical Hilbert space is obviously a sub-Hilbert space HPphys

g,n ��m� ;G� and can be obtained as the
image of the following projector:
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HPphys
g,n ��m�;G� → Hphys

g,n ��m�;G�, f → f̃�a,b, z̃� =� dhf�h−1ah,h−1bh,h−1z̃� . �39�

This is in fact a trivial application of refined algebra techniques in the compact S1 case. The
Hilbert structure of HPphys

g,n ��m� ;G� is defined from this map as the kernel K is invariant by the
action �37�.

Remark 4: From the very definition of the partial physical Hilbert space as a subset of
Cyl�	 ;G�* ,HPphys

g,n �	 ;G� is in fact a subset of C�G�2g � C�S2�n−1 where C�G� is the group algebra
and C�S2�=C�G� /U�1� is called the two-sphere algebra. The group algebra is defined as the
algebra of formal sum of group elements. As G is compact there is a trivial isomorphism which
identifies the spaces C�G�2g � C�S2�n−1 and Fun�G2g � �S2�n−1�.

Remark 5: Let us recall that any particle e� �0,n−1� is classically completely characterized
by its mass me and the direction of its momentum given by �e. The particle P0 plays the role of
the observer and the variable �0 does not appear anymore in the definition of partial physical
states. One can interpret this observation by the fact that we work in the rest-frame of the observer
and then �0 is set to the identity: the momenta of the other particles are defined in that frame.

Besides, one can characterize the particle e by an element ke�G such that ke=�eh�me��e
−1,

i.e., ke is an element of the conjugacy class of the element h�me�, denoted C�me�:

C�me� � �k � SU�2�� ∃ y � SU�2�, such that k = yh�me�y−1� . �40�

Thus, any element of HPphys
g,n ��m� ;G� can be viewed as an element of Fun�G2g � �e=1

n=1C�me��.
Using the Kirillov formula for the Su�2� Haar measure,

dke =
1

�
sin2�me�dmed�̃e, �41�

the partial physical scalar product between two states 
 and  respectively associated to the
functions f and g is then given by

	
;
Pphys = �f ,g� =
�n−1

�e=1

n−1
sin2�me�

� dudkf�a,b,k���h�m0��
i=1

n−1

ke�
i=1

g

�ai,bi��g�a,b,k� .

�42�

We recall that the functions f and g are non-null if ge�C�me�. This reformulation of the partial
physical Hilbert space will be convenient in the next section.

Remark 6: The last remark concerns the normalization of the partial physical scalar product,
defined only up to a constant ��g ,n , �m���0. The constant depends a priori on the genus g of �,
the number of particles n, and the masses of the particles. By a direct calculation, one shows that
the squared norm of the identity function eg,n�m��HPphys

g,n ��m� ;G� is given by the volume of the
space of flat SU�2� connections on the punctured surface �, i.e.,

�eg,n�m��Pphys
2 = ��g,n,�m���

k=1

+�

k2−2g−n�
e=0

n−1
sin�kme�
sin�me�

. �43�

At this point, there is no physical reason to impose the value of �. But, we can show that the value
of ��g ,n , �m�� is completely determined by the coefficients ��0,3 , �m�� and the problem to fix it
reduces to the fixation of the normalization factor in the �minimal� case of the sphere with three
punctures. The method is similar to the one proposed in Ref. 1 and is given in Appendix B: if we
assume that ��0,3 , �m��=� is a constant independent of the masses, then we show that
��g ,n , �m��=�n+2g−2

.
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III. TRANSITION AMPLITUDES AND THE QUANTUM DOUBLE

In the following, we are going to show how the Drinfeld double DSU�2� structure appears in
the context of three-dimensional Riemannian gravity coupled to massive point particles: the partial
physical Hubert space is in fact isomorphic as a Hilbert space to a tensor product of simple
representations of DSU�2�. In that picture, the partial physical scalar product between two states is
an intertwining coefficient between simple representations. Thus, the so-called Barrett-Crane �BC�
intertwiner4 plays a crucial role in three-dimensional quantum gravity whereas it was introduced
as a model of four-dimensional gravity.

The following is organized as follows. First, we recall basic facts concerning the Drinfeld
double DSU�2�: definition, representation theory. We also introduce the notion of simple repre-
sentation and symmetric �or BC� intertwiner. Then, we show the role of DSU�2� in the case of a
sphere with n particles: DSU�2� appears as the symmetry group of the quantum theory and the
nontrivial braiding is interpreted in the language of LQG. Finally, we generalize the previous
results in the case of any Riemann surface �.

A. The quantum double DSU„2…: Definition and properties

The general definition of the quantum double �or the Drinfeld double� of a Hopf algebra A is
briefly recalled in Appendix A. The general definition is then illustrated in the generic case of a
finite group.10 Here, we consider the case of the compact group SU�2�, i.e., the case where A
=C�SU�2��.18

The Drinfeld double DSU�2�=C�SU�2�� � F�SU�2��op is a Hopf algebra whose definition is
precisely given in the appendix. In particular, it is quasitriangular and admits the group algebra
C�SU�2�� and the algebra of functions F�SU�2��op �with opposite co-product� as sub-Hopf algebra.

1. Hopf algebra structure

The Hopf algebra structure of C�SU�2�� is defined by the group law and the following co-
algebra relations:

∀x � SU�2�, ��x� = x � x, S�x� = x−1, ��x� = ��x� . �44�

Note that there exists a right and left invariant Haar measure on C�SU�2�� given by

h:C�SU�2�� − → C, h�x� = ��x� . �45�

The algebra of functions F�SU�2�� is commutative and its coalgebra structure is given by

��f��x,y� = f�xy�, S�f��x� = f�x−1�, ��f� = f�1� , �46�

where f is a function and x ,y�G. We know that F�SU�2�� admits a Haar measure that we have
denoted �dx as usual.

Finally, the Drinfeld double is defined by the previous formulas and the following ones �which
are a direct application of the definition given in the appendix�:

�x � f��y � g� = xy � �f � Ady�g , �47�

��x � f��a,b� = f�ba�x � x , �48�

where f ,g�F�SU�2��, x ,y ,a ,b�SU�2�. The action of the antipode reads

S�x � f��a� = x−1
� f�x−1a−1x� �49�

for any a�G and the co-unit is simply given by ��x � f�= f�1�.
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2. Representation theory

Unitary irreducible representations of DSU�2� have been studied in Ref. 18 and are classified
by a couple �m ,s� :m� �0,2�� labels a conjugacy class of SU�2�, denoted C�m�, whose represen-
tative is still chosen to be h�m� ;s�Z is an integer which labels irreducible representations of the
centralizer Z�m� of the element h�m�. Note that Z�m��U�1� for m�0,2�; otherwise Z�m� is
obviously the group G=SU�2� itself. In the generic case m�0,2�, the vector space of a repre-
sentation �m ,s� consists in the subspace of functions on SU�2� defined by

Vm,s � �:SU�2� → C� ∀ a � SU�2�,�ahm� = eism�a�� . �50�

The representation of any element �x� f��DSU�2� on the above-noted vector space is defined by

��m,s�x � f���a� = f�ahma−1��x−1a� . �51�

The vector space Vm,s inherits a natural Hilbert space structure. The particular case m� �0,2�� has
been considered in Ref. 18. In the sequel, we use the notation m̄=2�−m.

3. Simple representations and symmetric intertwiners

Representations of the form �m ,0� are called simple representations14 and are the building
blocks of the Barrett-Crane model.4 The vector space of a simple representation is isomorphic to
the space of functions on the sphere S2=SU�2� /U�1�. Any simple representation admits a normal-
ized SU�2�-invariant vector denoted �=1. The vector space associated to a simple representation
m will be denoted Vm �we omit the subscript 0 for the spin�. It is obvious that Vm�Fun�S2� and we
will identify in the following the spaces Vm and the conjugacy class C�m� which contains the
information on the mass. We will use the same notation 
�x̃� or 
�xh�m�x−1� for the state 
 when
viewed as an element of Fun�S2� or an element of C�m�.

The notion of symmetric intertwiner �or the Barrett-Crane intertwiner� was introduced a long
time ago4,14 and is defined as an intertwiner between simple representations whose decomposition
into three-valent intertwiners introduces only simple representations in the intermediate channel.
Up to a normalization, the simple intertwiner is unique.29

There exists an integral formulation of the symmetric intertwiner. To present this formulation,
we need to recall the definition ofthe symmetric propagator.14

Given a simple representation labeled by m, the symmetric kernel Km is an element of
F�SU�2��*�DSU�2�* defined by

Km:F�SU�2�� → C, f � Km�f� =� dxf�xh�m�x−1� . �52�

It is convenient and equivalent to view �by duality� the symmetric kernel as an element of
C�SU�2�� as follows:

Km =� dxIm�x�x with Im�x� =� dy��xyh�m̄�y−1� . �53�

Note that Im is the characteristic function of the conjugacy class C�m� and can be decomposed into
Fourier modes as follows:

Im�x� = �
I��1/2�N

�I�m��I�x� with �I�m� � �I�h�m�� . �54�

If Km had been a function on a “classical” group G, we would have defined the “classical”
propagator as the function K�x ,y��K�xy−1��F�G��2. In our case, the propagator, denoted
Km�x ,y�, is an element of C�SU�2���2 defined by
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Km�x,y� � �1 � S���Km� =� dxIm�x�x � x−1. �55�

This propagator is the building block of the symmetric intertwiner whose construction is given
next.14 Let �p�= �p1 , . . . , pa� and �q�= �q1 , . . . ,qb� be two ordered families of simple representa-
tions. One defines the symmetric intertwiner between the representations �p� and �q�,

�s��p�;�q��: �
i=1

a

Vpi
→ �

j=1

b

Vqj
,

by its matrix elements given by

� �
�=1

b

i��s��p�;�q�� �
k=1

a


k� = h��
j=1

b

�̄ j � 1�Kqj�xj,g��
i=a

1

�
i � 1�Kpi�yi,g�� , �56�

where 
i�Vpi
and  j �Vqj

for any i or j. Note that h is the Haar measure on the group algebra
C�SU�2�� and the products in the formula �56� are ordered such that when one develops the
expression, one obtains

� �
�=1

b

���s��p�;�q�� �
k=1

a


k� =� �
i,j

dxjdyiIqj�xj� j�xj����
�=1

b

x�
−1�

k=a

1

yk�Ipi
�yi�
i�yi� . �57�

Let us propose several remarks concerning the symmetric intertwiner.
Remark 1: If one views the states 
i and  j as functions on the two-sphere, the previous

formula reduce to the following one:

� �
�=1

b

���s��p�;�q�� �
k=1

a


k� =� �
j=1

b

 j�x̃j�dx̃j�
i=1

a


i�ỹi�dỹi���
l=1

b

xlh�ql�xl
−1�

k=a

1

ykh�pk�yk
−1� .

In the particular �and singular� case where � and 
k are picked at the values x̃� and ỹk on the
sphere, the symmetric intertwiner is a distribution given by

� �
�=1

b

x̃���s��p�;�q�� �
k=1

a

ỹk� = ���
�=1

b

x�h�ql�x�
−1�

k=a

1

ykh�pk�yk
−1� . �58�

Remark 2: We easily show that the decomposition of the symmetric intertwiner introduces
only simple representations in the intermediate channel. Using the previous notations, we have for
instance:

�s��p�;�q�� =
1

�
� drP�r��s�p1,p2;r� � �s�r̄,p3, . . . ,pa;�q�� , �59�

where � denotes the usual composition between intertwiners and P�r�=sin2 r /� is the Plancherel
measure.

Remark 3: Therefore, we concentrate for the moment on the three valent intertwiner
�s�p ;q1 ,q2� :Vp→Vq1

� Vq2
. We start by saying that it is indeed an intertwiner, i.e., it satisfies the

following identity:

�s�p;q1,q2���p�z � f�� = ��q1 � �q2���z � f��s�p;q1,q2� �60�

for any z � f �DSU�2�. The symmetric intertwiner is not normalized and we define the coefficient
��p ,q1 ,q2� such that the intertwiner ��p ,q1 ,q2�−1/2�s�p ;q1 ,q2� is normalized, i.e.,

102501-18 Karim Noui J. Math. Phys. 47, 102501 �2006�

                                                                                                                                    



1
���p,q1,q2���q1,q2,p��

�s�p;q1,q2� � �s�q1,q2;p�� =
��p − p��

P�p�
idVp

. �61�

A straightforward calculation shows that

��p,q1,q2� = 	1 � 1��s��p�;�q���1
 =
�

4

Y�p,q1,q2�
4 sin p sin q1 sin q2

, �62�

where Y is the characteristic function of the set ��a ,b ,c� �a�b+c ,b�c+a ,c�a+b�.
Remark 4: From the previous remarks, it is easy to show that �s��p� ; �q�� is an intertwiner, i.e.,

it satisfies

�s��p�;�q���� i=1
a �pi���a��z � f� = �� i=1

b �qi���b��z � f��s��p�;�q�� . �63�

We used the notation ��n� defined by ��1�=� and ��n�= �id � ¯ � id �����n−1�.
Remark 5: It is straightforward to extend the action of the symmetric intertwiner �s��p� ; �q�� to

the space Fun��S2��a�.

4. R-matrix and braiding

Another important property of the quantum double is its quasitriangularity. Indeed, the quan-
tum double is, by construction, a quasitriangular Hopf-algebra and therefore admits an R-matrix.
The universal expression of R is given by

R =� dg�g � 1� � �1 � �g� . �64�

Then, we can evaluate the R-matrix on any pair of representations. We are particularly interested
in the case of simple representations. Let �p ,q� be a pair of simple representations, the evaluation
of R in these representations is given by

Rp,q � �p � �q�R�:Vp � Vq − → Vq � Vp �65�

such that, for any 
 ,�Fun�S2�, then:

Rp,q�
 � ��x̃, ỹ� = �xh�p̄�x−1ỹ�
�x̃� , �66�

where gx̃ means the action of g�SU�2� on the point x̃�S2. The evaluation of the inverse
R-matrix on simple representations is given by

Rp,q
−1 �
 � ��x̃, ỹ� = �ỹ�
�yh�q�y−1x̃� . �67�

It is convenient to write the action of the R-matrix and of its inverse on the states viewed as
functions on the conjugacy class. In that context, we do not need to specify the evaluation
representation of the R-matrix �and its inverse R−1� and we have

R�
 � ��x,y� = �x−1yx�
�x�, R−1�
 � ��x,y� = �y�
�yxy−1� . �68�

It is then straightforward to extend the action of the R-matrix �and its inverse� to any function on
SU�2��2.

Note the important property that the symmetric intertwiner is invariant under braidings, i.e.,

�s��p�;�q��Rpi,pi+1

� = Rqj,qj+1

� �s��p�;�q�� = �s��p�;�q�� , �69�

for any i� �1,a−1� , j� �1,b−1� �using the notations of the previous sections� and �� �+1,−1�.
This is known as the pivotal symmetry of the BC intertwiner.
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B. Particles on the sphere S2

We are going to show how the Drinfeld double appears in the context of 3D LQG coupled to
point particles. This is in fact immediate and we have the following theorem:

Theorem 1 (the Drinfeld double in LQG): Let �m�= �m0 , . . . ,mn,. . .,1� be the masses of n
particles; �m� also labels a family of simple representations of DSU�2�. Let us define the trivial
map between the partial physical Hilbert space HPphys

0,n ��m� ;G� and the tensor product � i=0
n−1Vmi

�Fun��S2��n� of simple representations as follows:

F:HPphys
0,n ��m�;G� − → �

i=0

n−1

Vmi
,  � F��:�x̃0, . . . , x̃n−1� � I�x̃0��x̃1, . . . , x̃n−1� . �70�

This map is obviously linear and is trivially extended to the algebra of functions. Moreover, the
partial physical Hilbert space between two states  and 
 is given by

	:

Pphys = �s��m̄�;0��F�̄
�
 . �71�

Proof: This theorem is an immediate consequence of the results of the previous section. �

As a consequence, a �partial� physical state is a tensor product of vectors of simple represen-
tations of the quantum double DSU�2�: each particle is represented by a vector of a simple
representation. Therefore, the quantum double is the symmetry group of the quantum theory:
given an element x � f �DSU�2�, x is a rotation and f is a translation acting on a one-particle state.
It is immediate to understand that the SU�2� part of the double generates rotations; to see that the
F�SU�2�� part generates translations, we take a� �R3 and we consider the element fa� defined by
fa��x�=eip��x�·a� where p��x�=m�n� with x=�h�m��−1 �n�a unitary vector�. It is clear that fa� acts on a
state by translation.

Let us discuss some consequences of this theorem.
First of all, we note that physical processes conserve the momenta of each particle: a pure

momenta state has a nontrivial physical amplitude with the same pure momenta state.
Next, we say some words concerning computation of expectation value of operators. An

operator can be viewed as �a product of� the evaluation �on simple representations� of elements of
DSU�2�: such elements act naturally on HPphys

0,p ��m� ;G�. Particular examples of operators are the
multiplicative mi�f� and the derivative operator di�g�, respectively, associated to a function f and
a group element x acting on a given particle i� �1,n−1� as follows:

mi�f��� = f��i���1, . . . ,�n−1�, di�x��� = ��1, . . . ,x�i, . . . ,�n−1� . �72�

Note that the multiplicative operator can be naturally extended to the case where f is a distribution.
In fact, any operator �in our sense� on the partial physical Hilbert space can be decomposed into
a sum of products of these basic operators. We introduce a star �antilinear involutive� operator in

the algebra of operator generated by mi�f� and di�x� as follows: di�x�*=di�x−1� and mi�f�*=mi� f̄�.
An operator O is unitary in the partial physical Hilbert space if it satisfies the identity

	�O

 = 	O*�

 �73�

for any state  and 
. Note that mi is trivially an unitary operator in the partial physical Hilbert
space whereas di is not in general. Both operators are unitary in the partial kinematical Hilbert
space. To construct �nontrivial� unitary operator in the partial physical Hilbert space, one needs to
consider braiding operators that are a particular combination of multiplicative and derivative
operators. We will see their definition in the sequel.

There is a natural adjoint action DSU�2� on the set of operators defined by
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X � DSU�2�, X � O = S�X�1��OX�2�, �74�

where we have used the Sweedler notation and O is an operator. This action is well-defined.
Among the operators, one distinguishes particularly the so-called observables, i.e., the operators
that are invariant under the action of the quantum double �74�.

Given a physical process involving in and out states denoted in and out, the expectation
value of any operator O during this process is given by

	out�O�in
Pphys = ���m̄�;0��F�outOin�
 . �75�

The mean value of any operator O is trivially given by

	O
 �
Tr�O�
Tr�1�

=
�s��m�;0��F�O�


Tr�1�
. �76�

Mean values of any operator are therefore given by coefficients of simple intertwining coefficients.
Interesting operators are the monodromy around the particles and their trace are quite easy to

compute. Given a finite dimensional representation K of SU�2� and a loop � around p particles
among the n−1 particles �let us denote by �� the set of particles�, a monodromy MK��� is defined
by MK���=�K�H�� where the expression of the holonomy H� depends on the choice of the loop �.
If �i is a loop around the particle i, then MK��i� is obviously a diagonal operator whose mean value
is given by the character 	MK��i�
=�K�mi�. In the case where � is any loop, the computation of the
mean value is more involved but the result does not depend on the homotopy class of the loop
�and is given by

Tr�MK���� = �
I,J

Y�I,J,K�dIdJ �
i���

�I�h�mi��
dI

�
j���

�J�h�mj��
dJ

�77�

where Y�I ,J ,K�=1 if I ,J ,K satisfy triangular inequalities and Y�I ,J ,K�=0 if not.
One can compute the mean value of more general operators if one knows explicitly simple

intertwining coefficients. The expression of a simple intertwining coefficient in the basis of func-

tions �
I

j
i is explicitly given by

	 �
i=1

n−1

�
Ii

0
ai
Pphys = �

J

dJ�
ji,ki

�
i=0

n

Cki

IiJaiji �78�

in term of the following coefficients:

C
IiJ

ki

aijiJ � �
k

�
J

k
k�h�mi�� � d��

Ii

0
a����

J

k
ji����

J

k
ki��� , �79�

which can easily be expressed in term of the coefficients of �3j� symbols of Su�2� �see Fig. 5 for
an illustration�.

FIG. 5. Pictorial illustration of expression �78�. The dot colored with the mass m denotes insertion of the element h�m�; any
trivalent vertex denotes �3j� coefficients of SU�2�; each edge is colored with an irrep of SU�2� and can end up with a
magnetic number like ai or 0.
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Now, let us discuss some aspects concerning the braiding. First of all, we remark that the R
matrix, as introduced in the previous section �66�, defines an isomorphism of �partial physical�
Hilbert spaces. Indeed, if one considers the particle labeled by i� �1,n−2�, we define the follow-
ing map:

Ri,i+1:HPphys
0,n ��m�;G� → HPphys

0,n �Pi�m�;G� , �80�

where Pi�m�= �m0 , . . . ,mi+1 ,mi , . . . ,mn−1� permutes the particles i and i+1. The fact that the pre-
vious map is an isometry is a consequence of the invariance of the simple intertwiner under
braidings. Let us remark that the operator �80� can be written in term of multiplicative and
derivative basic operators as follows:

Ri,i+1 =� dxmi��x�di+1�xh�mi�x−1� .

Then, it is easy to compute the action of the star operator on R and we show that it is an unitary
operator.

Physically, the braiding operator �80� corresponds to a braiding between the two spin-network
edges that link the observer with the particles i and i+1. In fact, there are two ways to braid the
edges: one is associated to the R-matrix and the other to its inverse. This point is illustrated in Fig.
6.

This braiding property means that the partial physical Hilbert space does not depend on the
order on the particles.

One can generalize the braiding operator to any pair of particles �i , j� �let us assume that i
� j�. There are many ways to do so and a simple example of such an operator is given by

Ri,j � �
k=i

j−1

Rk,k+1 �
�=j−2

i

R�,�+1. �81�

One can as well define an operator which involves not only R-matrices but also its inverse. The
operator �81� defines an isometry between the Hilbert spaces HPphys

0,n ��m� ,G� and HPphys
0,n �Pij�m� ;G�

where Pij permutes the particles i and j.

C. Particles on any Riemann surface

The generalization of Theorem 1 to the case where � is any Riemann surface �of genus g� is
quite simple. To do so, we first need the following proposition:

FIG. 6. Illustration of the braiding between two particles i and i+1. On the left, the braiding is associated to the R-matrix
whereas it is associated to its inverse R−1 on the right.
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Proposition 3 (reduction of the genus): Let p be a simple representation. We define the map �p

as follows:

�p:HPphys
g,n ��m�;G� → HPphys

g−1,n+2��m�,p, p̄;G� ,


→ �p�
��Ag−1,n, x̃, ỹ� =� da1db1��b1yh�p�y−1���ayx−1�
�Ag,n� , �82�

where we have used the notations of Proposition 4.
This map satisfies the following property:

	
,
Pphys =� d��p�	�p�
�,�p��
Pphys, �83�

where the partial physical scalar products are, respectively, those of HPphys
g,n ��m� ;G� and

HPphys
g−1,n+2��m� , p , p̄ ;G�.

Proof: Given two states 
 and  in HPphys
g,n ��m� ;G�, we start by computing the partial physical

scalar product in HPphys
g−1,n+2��m� , p , p̄ ;G� and a direct calculation shows that

	�p�
�,�p��
Pphys =� �
i=1

n

dz̄i�
j=2

g

dajdbjdxdy
�Ag−1,n,x,yh�p̄�y−1��Ag−1,n,x,yh�p̄�y−1�

� ��h0�
i=1

n

zih�mi�zi
−1xyh�p�y−1x−1yh�p̄�y−1�

j=2

g

�aj,bj�� . �84�

A straightforward application of the Kirillov formula, �dx=�d��p�d�̃ where x=�h�p��−1, leads
to �83�. �

An immediate consequence of this proposition is that one can reduce the case of a Riemann
surface to the case of the sphere �regarding the computation of the partial physical scalar product�
and we have the following theorem:

Theorem 2 (Reduction to the case of the sphere): Let �p�= �p1 , . . . , pg� be a family of g
simple representations. We define the map ��p�=�pg

� ¯ ��p1 and the partial physical scalar
product between two states  ,
�HPphys

g,n ��m� ;G� is expressed in term of symmetric intertwiner as
follows:

	,

Pphys =� �
i=1

g

d��pi��s��m�,�p, p̄�;0��F � ��p��̄
� , �85�

where �p , p̄�= �p1 , p1̄ , . . . , pg , p̄g� and F has been introduced in Theorem 1.
Proof: Let  ,
�HPphys

g,n ��m� ;G�. By a recursive use of the proposition �83�, we immediately
show that

	,

Pphys =� �
i=1

g

d��pi�	��p���,��p��
�
 , �86�

where the scalar product on the right-hand side is the partial physical scalar product in the case of
the sphere. Then, we conclude immediately thanks to Theorem 1. �

Let us discuss some consequences of this theorem.
1. The quantum group structure still holds when � is any Riemann surface. However, to make

the contact between the Hilbert structure and the simple intertwiner is more involved than the case
of the sphere. Anyway, the quantum double is manisfestly the symmetry group of the quantum
theory.
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2. What about the braiding? We have chosen an order to define the partial physical Hilbert
space: this order is illustrated in Fig. 7 and consists in putting the particles variables first and the
handledodies variables next.

We have shown previously that permuting two particles variables corresponds to acting with
an R-matrix. In fact the same thing happens when one permutes particles with handles or handles
with handles. Indeed, in Theorem 2, we see that one handle is decomposed into a pair of particles
whose masses are m and m̄; therefore permuting one particle with one handle corresponds to
permuting this particle with the two particles associated to the handle, as a consequence this
operation corresponds to acting twice with an R-matrix. To be more concrete, let us consider the
example of Fig. 7. The Hilbert spaces HPphys

g,n ��m� ,	1 ;G� and HPphys
g,n ��m� ,	2 ;G� where 	1 and 	2

are the minimal graphs associated, are related by the following isometry:

R	1,	2
�� d��p1� R

mn−1,p̄1

n,n+1 � R
mn−1,n,p1

n,n−1 � �p1
, �87�

where the R-matrix Ri,i+1 acts on the particles variables i and i+1. We have explicitly shown the
representation for the evaluation of the R-matrices in order to be clear. On can easily show that
this map is an isometry. It is easy to generalize this map to the case where 	2 is any minimal
graph.

3. The next remark concerns some factorization properties of the partial physical scalar prod-
uct. To clarify what we mean by that we use the notation 	;
Pphys

g,n �m� for the partial physical scalar
product within this remark and we have

	;
Pphysc
g,n ��m�� =� d��p�	;
Pphys

g−1,n+1��m�,p� � 	;
Pphysc
1,1 �p̄� . �88�

Therefore, the physical scalar product can be factorized into scalar product on the torus. This
property is well-known and is illustrated in the picture of Fig. 8.

The last remark concerns the evaluation of geometric observables. Indeed, in the case of a
nontrivial topology, there exists nontrivial “geometric” operators which corresponds to monodro-
mies around handles. For instance, the trace of MK�ai� where ai is a loop around one handle is
given by

FIG. 7. Pictorial illustration of the braiding: the partial kinematical Hilbert spaces associated to the minimal graphs on the
left and on the right are isometric and the isometry is defined by a “general” braiding operator. Note that Pi denotes the
particles and hi the handles.

FIG. 8. Illustration of the factorization property of the partial physical scalar product: the physical scalar product on any
Riemann surface can be factorized into partial physical scalar product on the torus.
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Tr�MK�ai�� = �
J

�J,J,K�
�i=0

n−1�J�h�mi��
dJ

2g+n−2 = �
j��K/2�

�i=0
n−1�J�h�mi��

dJ
2g+n−2 . �89�

in the case of a genus g surface with n particles. �x� denotes the entire part of x. There are at least
two different ways to prove this identity: one can use the last Theorem 2 to come back to the case
of the sphere or one can make a direct calculation.

As a consequence, we have now a complete description à la LQG of three-dimensional gravity
coupled to massive particles.

IV. CONCLUSION AND PERSPECTIVES

In this paper, we have performed the Hamiltonian quantization of three-dimensional Riemann-
ian gravity �with no cosmological constant� coupled with a finite number of massive spinless point
particles using loop quantum gravity techniques. The work we have proposed contains: a complete
description of the �partial� physical Hilbert space in the general case of any Riemann surface �i.e.,
states and scalar product� and a discussion concerning the question of the observables �i.e., their
definition and the computation of their expectation values in some examples�.

We have emphasized the crucial role of the Drinfeld double, which is clearly the symmetry
group of the quantum theory, as expected. In the LQG approach, the Drinfeld double appears as a
result of the dynamics in the sense that its role becomes obvious when one imposes the three-
dimensional analog of the “Hamiltonian” constraint. This point of view is quite interesting because
it is a nontrivial example where one sees the emergence of a noncompact quantum group �at the
level of the physical Hibert space� starting from a classical compact group �at the level of the
kinematical Hilbert space�. Our construction is in that sense very different, at the conceptual level,
from the combinatorial quantization, the group field theory quantization or the spin-foam quanti-
zation where the quantum group is put by hand as the basic starting block of these methods. From
the point of view of a particles physicist, our approach might seem more satisfying for we describe
particles as simple representations of the “Poincare” �in Riemannian space� group and we notice
that, using LQG techniques, scattering amplitudes of these particles in a quantum background are
described in terms of intertwiners of a quantum group. In fact, in three dimensions, we see that the
Hamiltonian constraint �in the presence of particles� is in fact simple intertwiners!

Thus, physical states are constructed from simple representations of the Drinfeld double and
the physical scalar product is in fact given by a symmetric �or Barrett-Crane—BC� intertwiner
between the simple representations defining the states. The ressemblance with the usual BC model
is obvious and asks the question whether the BC model is really a model of four-dimensional
quantum gravity or a model of three-dimensional gravity coupled to particles.

This paper opens new insights into LQG techniques. The first one would be to see the
emergence of the quantum group SUq�2� when one imposes the Hamiltonian constraint with a
cosmological constant �the quantum parameter q is related to � in the usual way�. We are cur-
rently working in that direction. It also seems possible to generalize our construction to the
Lorentzian case because we finally do not need to make sense of the whole space of cylindrical
functions but only of the space of cylindrical functions on one graph, the minimal graph. There-
fore, the obstruction raised in Refs. 12 and 35 should not be problematic in our context. Going
from one minimal graph to another reduces to a nontrivial braiding which is still well defined in
the Lorentzian regime. Moreover, one could introduce new types of particles: lightlike, spacelike,
or timelike particles. We could also think of introducing particles that would describe a black hole
in the presence of a negative cosmological constant.

Another issue to be solved is to extend this construction to the case of spinning particles. This
case has been considered briefly in the spin-foam approach in Ref. 11. In the LQG point of view,
the description of the kinematical Hilbert space has been performed completely in Ref. 24 but the
way that the physical scalar product is related to the quantum double remains to be understood. We
expect that this link works in the same way as the nonspinning case with the difference being that
the physical scalar product �or spinning particles scattering amplitudes in a quantum background�
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is no longer given by a simple intertwiner but a more general DSU�2� intertwiner. In our point of
view, the case of spinning particles is not a conceptual issue but only a technical issue.

In fact, the original motivation for this work is the construction of a self-gravitating quantum
field theory in the Hamiltonian framework. This means a precise description of the Fock space
associated to its creation and annihilation operators. We are finishing a work in that direction22 and
we have shown in particular that the quantum field theory so obtained is closely related to the one
constructed in Ref. 11 in the context of spin-foam models.

Finally, the last but not the least is to make use of this construction to describe a coupling of
quantum gravity to matter field in four dimensions. It seems quite obvious how to generalize, at
the level of the kinematical Hilbert space, the coupling of spin-networks to some matter fields. The
more interesting question would be to understand what kind of matter that represents and what is
the dynamics of such a coupling �see Ref. 3 for ideas in that direction�.
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APPENDIX A: THE DRINFELD DOUBLE

We recall the general definition of the quantum double that we illustrate in the case of a finite
group.

Let A be a Hopf algebra, the quantum double of A is denoted D�A� �or DA�, is a quasitrian-
gular Hopf algebra containing A as a sub-Hopf algebra and has different equivalent definitions.

If A is a Hopf algebra, we denote m the multiplication and � the coproduct; it will be useful
to introduce a permutation operator �. From A, we can construct different Hopf algebra: Aop is the
Hopf algebra with multiplication mop=m �� and coproduct �; Aop the Hopf algebra with multipli-
cation m and coproduct � ��; the dual Hopf algebra A* construted from the duality bracket 	,

between A and A*.

The quantum double �or Drinfeld double� D�A� is the Hopf algebra defined by the following:
1. D�A�=A � A*op as a coalgebra.
2. The algebra law is given by

�x � ���y �  � = �
�y�,���

xy�2� � ��2� 	��1�,S
−1y�1�
	��3�,y�3�
 , �A1�

where ��x�=��x�x�1� � x�2� and �A*op���=�xi��1� � ��2� is the usual Sweedler notation. D�A� is qua-
sitriangular and the R-matrix is given by R=�iei � 1 � 1 � ei where �ei�i �respectively, �ei�i� is a
basis of A �respectively, A*�.

Let us illustrate this construction in the case of a finite group to be more concrete. Let G be
a finite group and we assume that A is the group algebra of G, i.e., A=C�G�. As a result A*

=F�G�, the algebra of functions on G, and the quantum double D�C�G��=C�G� � F�G�op is usually
denoted D�G�. A basis of D�G� is �x � �g�x,g�G and the Hopf algebra and coalgebra structures are,
respectively, given by

�x � �g� · �y � �h� = xy � �h�y−1gy��h��x � �g� = �
g1,g2�g1g2=H

�x � g2� � �x � g1� . �A2�

The action of the antipode on the previous basis is given by S�x � �g�=x−1 � �x−1g−1x and the
co-unit is defined by ��x � �g�=��g�. The R-matrix is given by R=�x,g�x � 1� � �1 � �g�. This
construction can be directly generalized to the case where G is locally compact.18

Representation theory of D�G� has been done in Ref. 10 and generalized to the compact group
case �G=Su�2�� in Ref. 18. The main results are recalled in the core of the paper.
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APPENDIX B: NORMALIZATION OF THE PHYSICAL SCALAR PRODUCT

We introduce the group Bg,n�G4g+1−1 which acts on HPphys
g,n ��m� ;G�: it acts by right G-action

of each variable z̃e and by right and left G-action on each variable ai or bi. Given a partial physical
state s and an element y�Bg,n, we will use the notation By�s� for the action of y on s. There exist
many couples �g ,n� such that the state s can be viewed as an element of HPphys

g,n ��m� ;G� and we
denote �gmin,nmin� the minimal couple. Then, we define the invariance group transformations of
sby B�s��Bgmin,nmin. To be more concrete, B�s� transforms only the variables which appear ex-
plicitly in the state s. There is a natural action of B�s� on Hn,g�m� and we define the sub-Hilbert
space Cg,n�s��Hn,g�m� as follows:

Cg,n�s� � �f � Hg,n�m�� ∀ y � B�s�, By�f� = f� . �B1�

Proposition 4 (inclusions): Let v ,u�HPphys
g,n ��m� ;G� defined by u=tr��a1 ,b1�� and v

=tr�zn−2h�mn−2�zn−2
−1 zn−1h�mn−1�zn−1

−1 � where tr denotes the trace in the fundamental representation
of SU�2�. We have the following inclusions of Hilbert spaces:

Cg,n�u� � ��

d��p�HPphys
g−1,n+2��m�,p; p̄;G� , �B2�

Cg,n�v� � ��

d��q�HPphys
g,n−1�m0, . . . ,mn−3, q̄;G� � HPphys

0,3 �q,mn−2,mn−1;G� . �B3�

The measures are given by d��p�= �1/��sin2pdp where dp is the measure on the circle S1 such
that �dp=2�. We have introduced the notation p̄=2�− p.

Proof: We concentrate on the first map �B2� and we show that an explicit map is given as
follows:

f � ��Ag−1,n, x̃1, ỹ1� � � da1db1��a1x1h�p̄�x1
−1���b1a1b1

−1y1h�p�y1
−1�f�Ag,n� , �B4�

where the family Ag,n= �a1 ,b1 ; . . . ;ag ,bg ; z̃1 , . . . , z̃n−1� contains the n+2g arguments of the func-
tion f and Ag−1,n= �a2 ,b2 ; . . . ;ag ,bg ; z̃1 , . . . , z̃n−1� contains n+2g−2 arguments. The norm of the
function � viewed as an element of the space Hn+2,9−1��m� , p , p̄ ;G� is given by

���Pphys
2 =� �

e=1

n−1

dz̃edx̃1dỹ1�
i=2

g

daidbi���Ag−1,n, x̃1, ỹ1��2

� ��h�m0��
e=1

n−1

zeh�me�ze
−1x1h�p�x1

−1y1h�p̄�y1
−1�

i=2

g

�ai,bi�� .

It is then straightforward to verify that

� d��p����Pphys
2 =� �

e=1

n−1

dz̃e�
i=1

g

daidbi��h�m0��
e=1

n−1

zeh�me�ze
−1�

i=1

g

�ai,bi��
�� dx���x,a1��f�a1,b1; . . . �f�a1,b1x; . . . � .

As f �Cg,n�u� and Bx�u�=u if �x ,a1�=1 then we conclude immediately that

� d��p����Pphys
2 = �f�Pphys

2 . �B5�

Therefore, the first inclusion �B2� proven.
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To prove the second one �B3�, we proceed in the same way. We start by claiming that the
following map trivially realizes the injection �B3�:

f � 
��Ag,n−2, x̃� � �z̃n−2, z̃n−1�� = f�Ag,n�eg,n−2�m0, . . . ,mn−3,q� � e0,3�q̄,mn−2,mn−1� �B6�

Note that 
 is viewed as an element of HPphys
g,n−1�m0 , . . . ,mn−3 , q̄ ;G� � HPphys

0,3 �q ,mn−2 ,mn−1 ;G� and
we have introduced the notation �Ag,n−2,x�= �a1 ,b1 ; . . . ,ag ,bg ; z̃1 , . . . , z̃n−3 , x̃�. The norm of 
 is
trivially given by

���Pphys
2 =� �

i=1

n−1

dz̃edx̃�
i=1

g

daidbi�f�Ag,n��2��h�m0��
e=1

n−3

zeh�me�ze
−1xh�q�x−1�

i=1

g

�ai,bi��
� ��h�q̄�zn−2h�mn−2�zn−2

−1 zn−1h�mn−1�zn−1
−1 � .

Therefore, we verify easily that

� d��q����Pphys
2 =� �

i=1

n−1

dz̃edx̃�
i=1

g

daidbi�f�a1,b1; . . . ,ag,bg; z̃1, . . . , z̃n−3,xz̃n−2,xz̃n−1��2

� ��h�m0��
i=1

n−1

zeh�me�ze
−1�

i=1

g

�ai,bi�� .

Finally, as f �Cg,n�v�, then we conclude that

� d��q����Pphys
2 = �f�Pphys

2 ,

and the Hilbert spaces inclusion �B3� is proven. �

It is clear that the unit element eg,n�m��Cn,g�u� for any function u. Therefore, we can de-
compose the unit as a tensor product of unit elements of partial Hilbert spaces associated to the
sphere with three particles. This is a direct consequence of the previous proposition and the
explicit decomposition of eg,n�m� is given by

eg,n�m� =� �
i=0

g−1

d��pi��
j=0

g−1

d��mn+i� �
k=1

n+g−2

d��qk� �
a=0

g−1

e0,3�pa,pa,mn+a� �
b=1

n+g−2

e0,3�rb−1,mb,rb�

�B7�

with the conventions r0=m0 and rn+g−2=mn+g−1. As a consequence, one can compute the norm of
the identity in two ways and therefore one can relate the coefficients ��g ,n , �m�� to the coefficients
��0,3 , �m��. Let us assume that the coefficients ��0,3 , �m��=� do not depend on the values of the
masses, then the relation �B7� implies that

�eg,n�m��Pphys
2 = �n+2g−2� �

i=0

g−1

d��pi��
j=0

g−1

d��mn+i� �
k+1

n+g−2

d��qk�

� �
a=0

g−1

�e0,3�pa,pa,mn+a��Pphys
2 �

b=1

n+g−2

�e0,3�rb−1,mb,rb��Pphys
2 . �B8�

After some direct calculations, we show that
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�eg,n�m��Pphys
2 = �n+2g−2�

k=1

+�

k1−2g−n�
e=0

n−1
sin�kme�
sin�me�

. �B9�

Then, by comparison with expression �43� we conclude that ��g ,n . �m�� is also independent of the
values of the masses and we have

��g,n,�m�� � ��g,n� = �n+2g−2. �B10�

This fixes the normalization of the partial physical scalar product.
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The theory of symmetries of systems of coupled, ordinary differential equations
�ODEs� is used to develop a concise algorithm for cartographing the space of
solutions to vacuum Bianchi Einstein’s Field Equations �EFE�. The symmetries
used are the well known automorphisms of the Lie algebra for the corresponding
isometry group of each Bianchi Type, as well as the scaling and the time reparam-
etrization symmetry. The application of the method to Type III results in �a� the
recovery of all known solutions without a prior assumption of any extra symmetry;
�b� the enclosure of the entire unknown part of the solution space into a single,
second order ODE in terms of one dependent variable; and �c� a partial solution to
this ODE. It is also worth mentioning that the solution space is seen to be naturally
partitioned into three distinct, disconnected pieces: one consisting of the known
Siklos �pp-wave� solution, another occupied by the Type III member of the known
Ellis-MacCallum family and the third described by the aforementioned ODE in
which a one parameter subfamily of the known Kinnersley geometries resides.
Lastly, preliminary results reported show that the unknown part of the solution
space for other Bianchi Types is described by a strikingly similar ODE, pointing to
a natural operational unification as far as the problem of solving the cosmological
EFE’s is concerned. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2359141�

I. INTRODUCTION

Since the early times of cosmology, automorphisms have been identified as possible key
elements for a unified treatment of spatially homogeneous Bianchi Geometries.1 Harvey has found
the automorphisms of all three-dimensional Lie Algebras,2 while the corresponding results for the
four-dimensional Lie Algebras have been reported in Ref. 3. Jantzen’s tangent space approach sees
the automorphic matrices as the means for achieving a convenient parametrization of a full scale-
factor matrix in terms of a desired, diagonal matrix.4 Samuel and Ashtekar were the first to look
upon automorphisms from a space viewpoint.5 The notion of Time-Dependent Automorphism
Inducing Diffeomorphisms �A.I.D.’s�, i.e., coordinate transformations mixing space and time in the
new spatial coordinates and inducing automorphic motions on the scale-factor matrix, the lapse,
and the shift has been developed in Ref. 6.

In this paper we revisit the problem of solving the EFE’s for vacuum Bianchi Geometries. We
begin with a full metric, i.e., we make no assumption for the lapse function N2, the shift vector N�

and the spatial metric ���. Then we use the time-dependent A.I.D.’s to put the shift vector to zero.
At this point the idea is to exploit, in a systematic way, the remaining symmetries of the field
equations—sometimes called “rigid”7—to transform them to the most simple form possible, with-
out loss of generality. These are the well known symmetries following from the constant auto-

a�Electronic mail: tchris@phys.uoa.gr
b�Electronic mail: pterzis@phys.uoa.gr
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morphism group within each Bianchi Type, as well as the scaling of the metric by a constant and
the time reparametrization symmetry �see, e.g., Ref. 8�. Applying this analysis to Bianchi Type III
Vacuum Cosmology, we produce an exhaustive cartography of the entire space of its solutions.

The paper is organized as follows: in Sec. II, we present our method. In Sec. III, after a brief
description of Bianchi Type III Cosmology, we apply the method. We thus recover all known
solutions, describe the unknown part of the solution space with a single, second order ODE in
terms of one dependent variable, and present a new solution. A brief preview of the corresponding
results obtained for other Bianchi Types is also included. Finally, some discussion and concluding
remarks are given in Sec. IV.

II. THE METHOD

As is well known, for spatially homogeneous space-times with a simply transitive action of
the corresponding isometry group,10,8 the line element, assumes the form

ds2 = �N�N� − N2�dt2 + 2N��i
� dxi dt + ����i

�� j
� dxi dxj , �2.1�

where the 1-forms �i
� are defined from

d�� = C��
� �� ∧ �� ⇔ �i,j

� − � j,i
� = 2C��

� �i
�� j

�. �2.2�

Then the field equations are �e.g., Ref. 6�:

Eo � K��K�� − K2 − R = 0, �2.3�

E� � K�
�C��

� − K�
�C��

� = 0, �2.4�

E�� � K̇�� + N�2K�
� K�� − KK��� + 2N��K�	C��

	 + K�	C��
	 � − NR�� = 0, �2.5�

where

K�� = −
1

2N
��̇�� + 2��	C��

	 N� + 2��	C��
	 N�� �2.6�

is the extrinsic curvature and

R�� = C��

 C�	

� ��
�����	��� + 2C��

 C�


� + 2C�

� C��

	 ��	�
� + 2C�

� C�	

� ����
	 + 2C�

� C�	

� ����
	,

�2.7�

the Ricci tensor of the hypersurface.
In Ref. 6, particular spacetime coordinate transformations have been found, which reveal as

symmetries of �2.3�, �2.4�, �2.5� the following transformations of the dependent variables
N ,N� ,���:

Ñ = N, Ñ� = ��
��N� + ���P��, �̃�	 = ��

��	
����, �2.8�

where the matrix � and the triplet P� must satisfy

��
�C��

� = C�	
� ��

���
	 , �2.9�

2P�C�	
� ��

	 = �̇�
�. �2.10�

For all Bianchi Types, this system of equations admits solutions that contain three arbitrary
functions of time plus several constants depending on the automorphism group of each type. The
three functions of time are distributed among � and P �which also contains derivatives of these
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functions�. So one can use this freedom either to simplify the form of the scale factor matrix or to
set the shift vector to zero. The second action can always be taken, since, for every Bianchi type,
all three functions appear in P�.

In this work we adopt the latter point of view. When the shift has been set to zero, there is still
a remaining “gauge” freedom consisting of all constant ��

� �automorphism group matrices�. In-
deed, the system �2.9�, �2.10� accepts the solution ��

�=const, P�=0. The generators of the corre-
sponding motions, induced in the space of dependent variables spanned by ���� s �the lapse is given
in terms of ���, �̇�� by algebraically solving the quadratic constraint equation� �̃�	=��

��	
����

are11

X�I� = ��I��
� ���

�

����

, �2.11�

with � satisfying

��I��
� C��

� = ��I��
� C��

� + ��I��
� C��

� . �2.12�

Now, these generators define a Lie algebra and each one of them induces, through its integral
curves, a transformation on the configuration space spanned by the ���’s. If a generator is brought
to its normal form �e.g., � /�zi�, then the Einstein equations, written in terms of the new dependent
variables, will not explicitly involve zi. They thus become a first order system in the function żi.

12

If the above Lie algebra happens to be Abelian, then all generators can be brought to their normal
form simultaneously. If this is not the case, we can diagonalize in one step the generators corre-
sponding to any eventual Abelian subgroup. The rest of the generators �not brought in their normal
form� continue to define a symmetry of the reduced system of EFE’s if the algebra of the X�I�’s is
solvable.13 One can thus repeat the previous step by choosing one of these remaining generators.
This choice will, of course, depend upon the simplifications brought to the system at the previous
level. Finally, if the algebra does not contain any Abelian subgroup, one can always choose one of
the generators, bring it to its normal form, reduce the system, and search for its symmetries �if
there are any�. Lastly, two further symmetries of �2.3�, �2.4�, �2.5� are also present and can be used
in conjunction with the constant automorphisms: The time reparametrization t→ f�t�+�, owing to
the nonexplicit appearance of time in these equations, and the scaling by a constant ���→����,
as can be straightforwardly verified. Their corresponding generators are

Y1 =
1

ḟ

�

�t
, �2.13�

Y2 = ���

�

����

. �2.14�

These generators commute among themselves, as well as with the X�I�’s, as can be easily
checked.

III. APPLICATION TO BIANCHI TYPE III

We are now going to apply the method, previously discussed, to the case of Bianchi Type III.
For this type the structures constants are14

C13
1 = − C31

1 = 1,

�3.1�
C��

� = 0, for all other values of ��� .

Using these values in the defining relation �2.2� of the 1-forms �i
�, we obtain

102502-3 Solution Space for Vacuum J. Math. Phys. 47, 102502 �2006�

                                                                                                                                    



�i
� =�

0 e−x 0

0 0 1

1

2
0 0� . �3.2�

The corresponding vector fields �
i � satisfying �� ,��=c��

� � � with respect to which the Lie
Derivative of the above 1-forms is zero are

1 = �y, 2 = �z, 3 = �x + y�y . �3.3�

The Time Dependent A.I.D.’s are described by

��
� = �e−2P�t� 0 x�t�

0 c22 c23

0 0 1
� , �3.4�

P� = �x�t�Ṗ�t� +
1

2
ẋ�t�,P2�t�, Ṗ�t�� , �3.5�

where P�t�, x�t�, and P2�t� are arbitrary functions of time. As we have already remarked, the three
arbitrary functions appear in P�, and thus can be used to set the shift vector to zero.

The remaining symmetry of the EFEs is, consequently, described by the constant matrix:

M = �es1 0 s4

0 es2 s3

0 0 1
� , �3.6�

where the parametrization has been chosen so that the matrix becomes identity for the zero value
of all parameters.

Thus, the induced transformation on the scale factor matrix is �̃��=M�
�M�

	��	, which explic-
itly reads as

�̃11 = e2s1�11,

�̃12 = es1+s2�12,

�̃13 = es1�s3�11 + s4�12 + �13� ,

�3.7�
�̃22 = e2s2�22,

�̃23 = es2�s3�12 + s4�22 + �23� ,

�̃33 = s3
2�11 + 2s3�s4�12 + �13� + s4

2�22 + 2s4�23 + �33.

The previous equations define a group of transformations Gr of dimension r=dim(Aut�III�)
=4. The four generators of the group can be evaluated from the relation

XA = � ��̃��

�sA
�

s=0

�

����

, �3.8�

where A= 	1,2 ,3 ,4
. Applying this definition to �3.7�, we have the generators
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X1 = 2�11
�

��11
+ �12

�

��12
+ �13

�

��13
, �3.9�

X2 = �12
�

��12
+ 2�22

�

��22
+ �23

�

��23
, �3.10�

X3 = �12
�

��13
+ �22

�

��23
+ 2�23

�

��33
, �3.11�

X4 = �11
�

��13
+ �12

�

��23
+ 2�13

�

��33
. �3.12�

The algebra gr that corresponds to the group Gr has the following table of commutators:

�X1,X2� = 0, �X1,X3� = 0, �X1,X4� = X4,

�3.13�
�X2,X3� = X3, �X2,X4� = 0, �X3,X4� = 0.

As is evident from the above commutators �3.13�, the group is non-Abelian, so we cannot
diagonalize at the same time all the generators. However, if we calculate the derived algebra of gr,
we have

gr� = 	�XA,XB�:XA,XB � gr
 ⇒ gr� = 	X3,X4
 , �3.14�

and, furthermore, its second derived algebra reads as

gr� = 	�XA,XB�:XA,XB � gr�
 ⇒ gr� = 	0
 . �3.15�

Thus, the group Gr is solvable since the gr� is zero. As is evident, X3 ,X4 ,Y2 generate an
Abelian subgroup, and we can, therefore, bring them to their normal form simultaneously. The
appropriate transformation of the dependent variables is

�11 = eu1+2u6,

�12 = eu1+u2+u4+u6,

�13 = eu1+u6�eu6u3 + eu2+u4u5� ,

�3.16�
�22 = eu1+2u4,

�23 = eu1+u4�eu2+u6u3 + eu4u5� ,

�33 = eu1�1 + e2u6u3
2 + 2eu2+u4+u6u3u5 + e2u4u5

2� .

In these coordinates the generators Y2, XA assume the form
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Y2 =
�

�u1
, X3 =

�

�u3
, X4 =

�

�u5
,

�3.17�

X2 =
�

�u4
− u5

�

�u5
, X1 =

�

�u6
− u3

�

�u3
.

Except for the parametrization �3.16� there is also another one achieving the same result �3.17�,
which simply attributes a - sign to �12, and therefore any solution later described will remain valid
under this change.

Evidently, a first look at �3.16� gives the feeling that it would be hopeless even to write down
the Einstein equation. However, the simple form of the generators �3.17� ensures us that these
equations will be of first order in the functions u̇1, u̇3, and u̇5.

A. Description of the solution space

Before we begin solving Einstein equations, a few comments for the possible values of the
functions ui, i=1, . . . ,6 will prove very useful.

The determinant of ��� is

det����� = e3u1+2�u4+u6��1 − e2u2� , �3.18�

so we must have u2�0.
The transformation from the �’ s to the u’ s becomes singular when �12=0, since the function

u2 equals

u2 = ln���12�� −
ln��11�22�

2
. �3.19�

So two cases are naturally arising, according to whether �12 is different or equal to zero. If �12

�0 the two linear constraint equations, written in the new variables �3.16�, give

E1 = 0 ⇒ − eu6�eu6u̇3 + eu2+u4u̇5� = 0, �3.20�

E2 = 0 ⇒ −
1

2
eu4�eu2+u6u̇3 + eu4u̇5� = 0. �3.21�

This system admits only the trivial solution, since the determinant of the 2�2 matrix formed by
the coefficients of u̇3, u̇5 becomes zero only for the forbidden value u2=0. We thus have

u3 = k3, u5 = k5. �3.22�

Now, these values of u3, u5 make �13,�23 functionally dependent upon �11, �12, �22 �see �3.16��.
It is thus possible to set these two components to zero by means of an appropriate constant
automorphism.

In the case �12=0, we can again bring simultaneously into normal form the corresponding X3,
X4, Y2. The appropriate change of dependent variables is given by

��� = � eu1+2u6 0 eu1+2u6u3

0 eu1+2u5 eu1−u4+u5

eu1+2u6u3 eu1−u4+u5 eu1�1 + e−2u4 + e2u6u3
2�
� . �3.23�

In these variables all three linear constraint equations can be integrated, yielding

E1 = 0 ⇒ − e2u6u̇3 = 0 ⇒ u3 = k3, �3.24�

102502-6 T. Christodoulakis and P. A. Terzis J. Math. Phys. 47, 102502 �2006�

                                                                                                                                    



E2 = 0 ⇒ −
1

2
e−u4+u5�u̇4 + u̇5� = 0 ⇒ u5 = k5 − u4, �3.25�

E3 = 0 ⇒ − 2e2u4+2u6u3u̇3 + u̇4 + u̇5 + 2e2u4u̇6 = 0 ⇒ u6 = k6. �3.26�

Again, these values imply that a constant automorphism suffices to set the �13� and �23�
components of the scale-factor matrix to zero, i.e., to put it into diagonal form. We have thus
reached a first important conclusion, that is the following.

Without loss of generality, we can start our investigation of the solution space for Type III
vacuum Bianchi Cosmology from a block-diagonal form of the scale-factor matrix (and, of course,
zero shift),

��� = ��11 �12 0

�12 �22 0

0 0 �33
� . �3.27�

Note that this conclusion could have not been reached off mass shell, due to the fact that the
time-dependent automorphism �3.4� does not contain the necessary two arbitrary functions of time
in the �13� and �23� components � besides the fact that all the freedom in arbitrary functions of
time has been used to set the shift to zero�. As we have earlier remarked, since the algebra �3.13�
is solvable, the remaining �reduced� generators X1, X2 �corresponding to diagonal constant auto-
morphisms� as well as Y2 continue to define a Lie-Point symmetry of the reduced EFEs and can
thus be used for further integration of this system of equations.

1. Case I: �12=0

The remaining �reduced� automorphism generators are

X1 = 2�11
�

��11
, X2 = 2�22

�

��22
.

The appropriate change of dependent variables that brings these generators—along with Y2 into
normal form, is described by the following scale-factor matrix:

��� = �eu1+u3 0 0

0 eu2+u3 0

0 0 eu3
� . �3.28�

In these variables the first two linear constraint equations are identically satisfied, while the third
reads as E3=0⇒−2u̇1=0⇒u1=k1. Substituting this value of u1 into the quadratic constraint
equation E0, we obtain the lapse function

N2 =
1

16
eu3u̇3�2u̇2 + 3u̇3� . �3.29�

Now, the substitution of u1=k1 and the above value for the lapse N2 into the spatial EFE’s
results in the single, independent equation:

�u̇2 + u̇3��2u̇3ü2 − 2u̇2ü3 + 2u̇2
2u̇3 + 3u̇3

2 + 5u̇2u̇3
2� . �3.30�

This equation is, as expected from the theory, of the first order in u̇2, u̇3. Notice that this result
could have not been reached had we chosen any particular time gauge, such as N2=F�u2 ,u3 , t�:
Not only u2, u3, t would appear in the Spatial EFE’s, but also the number of independent such
equations would have been increased to 2. This remark should not be taken as a negative view for
complete gauge fixing, but rather as pointing to the fact that keeping the gauge freedom into the
game helps manifesting the symmetries of the system and eventually solving the equations.
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Equation �3.30� is readily integrated, leading to two different space-times according to which
the parenthesis is set to zero. If the first is made to vanish, i.e., u2=k2−u3, the ensuing line element
is the known �Type III� cosmological disguise of Minkowski space-time �Ref. 15�:

ds2 = −
1

16
eu3u̇3

2 dt2 +
1

4
eu3 dx2 + ek1+u3−2x dy2 + ek2 dz2 �3.31�

the constants being, of course, absorbable by the constant automorphisms and a shift in u3.
If the second parenthesis of �3.30� is set to zero, i.e., u2=k3−3u3 /2+ln�1+k2eu3/2�, we obtain

an equivalent form of the Type III member of the known Ellis-MacCallum family of solutions
�Refs. 8 and 15�:

ds2 = 
2�−
e3u3/2u̇3

2

4�eu3/2 − 1�
dt2 + eu3 dx2 + eu3−2x dy2 + e−u3/2�eu3/2 − 1�dz2� , �3.32�

where again we have used constant automorphisms and a shift of u3 to take outside of the metric
an overall constant. We can be assured that the constant is essential either by checking that indeed
the metric inside the parenthesis does not admit a homothetic Killing vector field or, more prima-
rily, by finding an invariant relation between curvature and higher derivative curvature scalars that
explicitly involves 
. For metric �3.32�, one such invariant relation is

18Q1
4

�Q2 −
gABQ1;AQ1;B

Q1
�3 = 
2, Q1 = RKLMNRKLMN, Q2 = � RKLMNRKLMN, �3.33�

where capital Latin letters denote space-time indices ranging in the interval �0–3�, the semicolon
stands for covariant differentiation, and the � for the covariant D’Alebertian.

This relation, being a constant scalar constructed out of the intrinsic geometry �the Riemmann
tensor and its covariant derivatives�, characterizes, along with many others that can be found, this
metric: It will be valid for any equivalent, under general coordinate transformations, form of
�3.32�. It is also noteworthy to observe that in both the above line elements, the arbitrary function
of time u3 appears; This is because the number of symmetry generators matches the number of
scale factors �both are 3�, so that the system of spatial EFEs is reduced to first order without any
choice of time. In the case of a block-diagonal scale-factor matrix, one of the four scale factors
will have to play the role of time before the corresponding system can be reduced. Lastly, metric
�3.32� admits, except for �3.3�, a fourth Killing vector field acting on the surfaces of simultaneity,
namely

4 = − 2y�x + �e2x − y2��y . �3.34�

There is thus a G4 symmetry group acting �of course, multiply transitively� on each V3 of this
metric, with an algebra having the following table of �nonvanishing� commutators:

�1,3� = 1, �1,4� = − 23, �3,4�4. �3.35�

However, it is interesting to note that we have not imposed the extra symmetry from the begin-
ning, but rather it emerged as a result of the investigation process.

2. Case II: �12Å0

The remaining �reduced� automorphism generators are

X1 = 2�11
�

��11
+ �12

�

��12
, X2 = �12

�

��12
+ 2�22

�

��22
.

The appropriate change of dependent variables that brings these generators—along with Y2—into
normal form, is now given by
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��� = � eu1+2u4 eu1+u2+u4 0

eu1+u2+u4 eu1+2u2u3 0

0 0 eu1
� . �3.36�

The generators are now reduced to

Y2 =
�

�u1
, X2 =

�

�u2
, X1 =

�

�u4
, �3.37�

indicating that the system will be of first order in the derivatives of these variables. The remaining
variable u3 will enter �along with u̇3, ü3 � explicitly in the system and is therefore advisable �if not
mandatory� to be used as the time parameter, i.e., to effect the change of time coordinate

t → u3�t� = s, u1�t� → u1„t�s�…, u2�t� → u2„t�s�…, u4�t� → u4„t�s�… . �3.38�

This choice of time will, of course, be valid only if u3 is not a constant. We are thus led to consider
two cases according to the constancy or nonconstancy of this variable.

a. The case u3=k3

The determinant of the scale-factor matrix becomes det�����=e3u1+2�u2+u4��−1+k3�. We thus
have k3�1. The two linear constraint equations are identically satisfied, while the third yields

E3 = 0 ⇒
u̇2 + �1 − 2k3�u̇4

2�1 − k3�
= 0 ⇒ u4 = k4 +

u2

2k3 − 1
.

Inserting these values of u3, u4 into the quadratic constraint equation we obtain the following
lapse:

�N�2 =
eu1�− 1 + k3�„3�1 − 2k3�2u̇1

2 + 8k3�− 1 + 2k3�u̇1u̇2 + 4k3u̇2
2
…

4�1 − 2k3�2�− 3 + 4k3�
. �3.39�

The use of these values of u3, u4, �N�2 in the spatial EFE’s results, as expected, in a system that is
of the first order in the unknown variables u̇1, u̇2. The coefficient of ü2 in E33=0 is

2eu1k3u̇1„�− 1 + 2k3�u̇1 + u̇2…

3�1 − 2k3�2u̇1
2 + 8k3�− 1 + 2k3�u̇1u̇2 + 4k3u̇2

2 ,

and can be safely regarded different from zero, since the possibilities u̇1=0, u̇2= �1−2k3� u̇1 easily
lead �through E33=0 itself� to zero and negative lapse, respectively. We can thus solve E33=0 for
ü2 and substitute into E12=0, which becomes

ek4+u1+2k3u2/�−1+2k3�k3�u̇1 + 2u̇2�„�− 3 + 6k3�u̇1 + 2�3 − 2k3�u̇2…

6 − 20k3 + 16k3
2 = 0.

Again, the second parenthesis in the numerator leads to zero lapse, leaving us with the only
alternative u̇1=−2u̇2⇒u1=2k1−2u2, which indeed satisfies all spatial EFEs. Finally, inserting
these values of u3, u4, u1 in the lapse �3.39� and the scale-factor matrix �3.36�, we obtain the
following line element �after using the constant automorphisms and a shift in u2 to purify the
metric from the absorbable constants�:

ds2 = − �2 d2 +
2

4
dx2 + e−2x4� dy2 +

� − 1

2� − 1
dz2 + 2e−x2� dy dz , �3.40�

where the constant � is related to k3 by k3= ��−1� / �2�−1�⇒0���
1
2 , and we have adopted the
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time gauge e−u2 = for simplicity.
This metric is an equivalent form of a solution originally given by Siklos16 and reproduced

in.15 An overall multiplicative constant has been omitted from �3.40� since it admits the following
Homothetic Killing vector field �LHgAB=�gAB�,

HA = 
�

�
+ �1 − 2��y

�

�y
+ z

�

�z
.

It also admits three more Killing vector fields �except �3.3�� acting on space-time, namely

4 = e−x/2�� +
2�


e−x/2��x

5 = e−x/2�y� +
2�y


e−x/2��x +

��� − 1�
4� − 1

e��4�−1�/2�x�−4�+1�y − �e��2�−1�/2��x−2�+1�z

6 = e−x/2�z� +
2�z


e−x/2��x − �e��2�−1�/2��x−2�+1�y − ��2� − 1�e−x/2��z.

The 5 field breaks down for �= 1
4 , in which case the valid expression is

5� = � y

e2x ,
y

2e2x
,
3„− 2x + log��…

16
,
− 

4ex � . �3.41�

The first of these is null 4
A4

BgAB=0 and covariantly constant 4;B
A =0, signaling that the metric

is a pp wave. Consequently, all scalar curvatures, constructed by forming scalar contractions of the
tensor product of the Riemmann tensor and its covariant derivatives of any order �such as Q1 ,Q2

in �3.33��, vanish identically �see, e.g., Ref. 17�. This raises the interesting question of how can we
be certain that the constant � is essential. An answer can be found in terms of equalities between
tensors—constructed out of the Riemmann tensor and its covariant derivatives—that hold true in
these space-times.18,19 For metric �3.40� such a relation is

RA
B

C
DRAECF;G;H =

4�2 − 2� + 3

− 4�2 + 2� + 2
RA

B
C

D;ERAFCG;H. �3.42�

By the quotient law, the expression of � on the right-hand side of this relation is a scalar function,
and being a constant it cannot change value under any coordinate transformation; thus � cannot be
altered by such a transformation and is, therefore, essential.

The algebra of the six killing fields, �3.3�, �3.41� has the following table of nonvanishing
commutators:

�1,3� = 1, �1,5� = 4, �3,4� = −
4

2�
, �3,5� =

2� − 1

2�
5, �3,6� =

− 1

2�
6.

�3.43�

There is an isotropy group G2 of null rotations emanating from this algebra, which is easily seen
by taking a linear combination of these fields:

Y1 = 1 − 2�3, Y2 = 4, Y3 = − 6,

�3.44�
Y4 = 2, Y5 = 3, Y6 = 5,
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e.g., �Y1 ,Y2�=Y2 and �Y1 ,Y3�=Y3.
The space �being a pp wave� does not obviously have curvature singularities; it thus seems to

be geodesically complete and is of Petrov Type N.
b. The case u3�k3

The function u3 is now a valid choice of time and det�����=e3u1+2�u2+u6��−1+s� implies the
range �1, + � � for the new time s. The only nonvanishing linear constraint equation E3=0 yields

u4 =� u̇2

2s − 1
ds + k4 �3.45�

while the quadratic constraint equation E0=0 gives the lapse

�N�2 =
eu1

4�1 − 2s�2�− 3 + 4s�
�2�2s − 1�2u̇1 + 3�2s − 1�2�s − 1�u̇1

2+ �4s − 2�u̇2 + 8s�s − 1��2s − 1�u̇1u̇2

+ 4s�s − 1�u̇2
2� . �3.46�

If we insert these values �N�2, u4 into the spatial EFEs, they become the following polynomial
system of first order in u̇1, u̇2,

ü1 = �1u̇1u̇1
2u̇1

3�A1�
1

u̇2

u̇2
2

u̇2
3
�, ü2 = �1u̇1u̇1

2u̇1
3�A2�

1

u̇2

u̇2
2

u̇2
3
� , �3.47�

A1 =�
0 2

4s2−7s+3

4s

8s2 − 10s + 3
0

1
4s2−7s+3 4

8s�2s−3��s−1�
8s2+10s−3

0

2s−3
4s−3 −

16s2�s−1�
8s2−10s+3

0 0

−
6s�s−1�

4s−3
0 0 0

� , �3.48�

A2 =�
0 −8s+5

8s3−18s2+13s−3
24s2−50s+18
8s2−10s+3

8s�2s−3��s−1�
8s2−10s+3

−4s+2
4s2−7s+3

12s
−2s+3 −

16s2�s−1�
8s2+10s−3

0

−6s+3
4s−3 −

6s�s−1�
4s−3

0 0

0 0 0 0
� . �3.49�

Due to the form of A1, A2 �their components are rational functions of the time s�, system �3.47� can
be partially integrated with the help of the following Lie-Bäklund transformation:

u̇1�s� =
�2s − 3�tan r�s� − 2s�8s2 − 10s + 3�ṙ�s�

4ss − 1�4s − 3�
,

�3.50�

u̇2�s� =
2s − 1

8s�4s − 3��s − 1�3
„2�− 4s + 3�s − 1 + 3�s − 1�tan r�s� + 2s�s − 1��4s − 3�ṙ�s�… ,

resulting in the single, second order ODE for the variable r�s�,
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r̈ = �tan r −
s − 1

2
�ṙ2 +

�− 16s + 6�s − 1 + �5s − 3�tan r

2s�4s − 3�  �s − 1�
ṙ

+
− 9�s − 1�2 tan2 r + 18�s − 1�3/2 tan r + 4s�4s − 3�

8s2�4s − 3�2�s − 1�3/2 . �3.51�

This equation contains all the information concerning the unknown part of the solution space of
the Type III vacuum Cosmology. Unfortunately, it does not posses any Lie-point symmetries that
can be used to reduce its order and ultimately solve it. However, its form can be substantially
simplified through the use of a new dependent and independent variable (� ,u���) according to
r�s�= ±arcsinu��� /�2−1, s=3��−1� /3�−5, ��

5
3 thereby obtaining the equation

ü = ±
1 − u̇2

�6� − 10���2 − u2 − 1�
⇒ ü2 =

�1 − u̇2�2

�6� − 10���2 − u2 − 1�
, �3.52�

with the corresponding lapse

�N�2 =
u̇2 − 1

8�3� − 5���2 − u2 − 1�
eu1 �3.53�

�u̇=du /d�� and the scale-factor matrix is given by �3.36� after insertion of �3.45�, u3=s=3��
−1� /3�−5 and the transformations of u1, u2 that led to u. Independently of the way we have
reached this result, one can check �through an algebraic computing facility such as MATHEMATICA�
that the line element thus described is indeed a solution of all the EFEs, provided, of course, that
�3.52� is satisfied. One can also check that it does not admit any homothetic or null, covariantly
constant vector field. Therefore, the two independent constants of the general solution to �3.52�
along with a multiplicative constant will comprise the expected three essential constants of the
general Type III vacuum Cosmology: The general algorithm for calculating this number when a
space-time gauge has been chosen �usually zero shift and unit lapse�, in which case the constraints
must be viewed as restrictions on the initial data, reads as follows15: 12 �for the six components of
����-1 �for the time reparametrization covariance�-number of independent constraints-dimension
of Automorphism Group.

When a space-time gauge has not been fixed, i.e., when constraints are being viewed as
symmetry generators, the relevant counting is given by20

D = 2 � �number of ���� − 2 � �number of linear constraints� − 2 � �quadratic constraint�

− �number of parameters of outer − aut� − �n� ,

where n� dim�inner-aut�-number of independent linear constraints.
In our case the number of independent linear constraints is 3, and the dimension of the

inner-aut is 2, so n=−1. The constants that appear at the outer-aut are 2, and obviously the number
of ��� is 6. Thus, the expected maximal number of essential constants is indeed 3, by both ways
of counting.

Despite the relatively simple form of �3.52�, its general solution is, to the best of our knowl-
edge, not known. However, we have managed to obtain a partial solution in the parametric form,

u�� =
4�1 + 2e2�3/2

3�1 + e2�2 � = 1
3 �5 + sech2 � ,

which makes the functions u1, u2, u4 read as
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u1�� = k1 +  + ln cosh  ,

u2�� = k2 + ln sech  −
1

2
ln�cosh 2 + 2� ,

u4�� = k4 − ln cosh  +
1

2
ln�cosh 2 + 2� ,

and the lapse �N�2=ek1+2�e2+1� /4�2e2+1�. The ensuing metric, after the usual purification with
the constant automorphisms and a shift in , is given by

ds2 = 
2�−
e2�e2 + 1�
4�2e2 + 1�

d2 +
e

4
cosh  dx2 + e−2x+�cosh 2 + 2�sech  dy2+ e sech  dz2

+ 2e−x+ sech  dy dz� . �3.54�

As we have already remarked, this metric does not admit a homothety and therefore the
constant 
 is essential. It does not satisfy the invariant relation �3.33�, and it is not a pp wave.
Therefore we conclude that it is inequivalent to �3.32� or �3.40�. This mono-parametric family
belongs to the Kinnersley vacuum solutions.9 It is quite interesting that it also admits a fourth
killing vector field,

4 = − 16y�x + �e2x − 8y2��y − 2ex�z, �3.55�

which produces with �3.3� the following table of �nonvanishing� commutators:

�1,3� = 1, �1,4� = − 163, �3,4� = 4. �3.56�

The isotropy group inferred from the above algebra �see the last commutator� is a G1 spatial
rotation.

Curiously enough, this algebra is equivalent to �3.35�, as a simple scaling of 1, 4 by 22
shows. Of course, the multiply transitive character of the action of the underlying group on the
corresponding V3’s allows for these, and thus for the space-times in which they are embedded, to
be inequivalent.

Again, the extra symmetry emerged in the course of the investigation of the solution space. Of
course, it must have something to do with the particular nature of the solution, but it was not set
as a starting point.

B. Preview for other Bianchi Types

The method described in the previous sections can be applied to other Types as well. The
general pattern is s similar to that of Type III: The pp-wave solutions �for types admitting such
geometries� occupy one part of the solution space, the other known solutions reside on another
part, and the unknown part of the solution space is always described by an ODE strikingly similar
to �3.52�, namely,

ü2 =
�− 1 + u̇2�2

�
 + �����2 − u2 − 1�
. �3.57�

Details will be included in a forthcoming work. As indicative examples we give the form of the
ODE for Types IV and VIIh:
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Type IV:

ü2 =
�− 1 + u̇2�2

�
 + �����2 − u2 − 1�
, 
 = − 6, � = 6. �3.58�

Type VIIh:

ü2 =
�− 1 + u̇2�2

�
 + �����2 − u2 − 1�
, 
 = − 6 +

4

h2 , � = − 6, �3.59�

and of course the following.
Type III:

ü2 =
�− 1 + u̇2�2

�
 + �����2 − u2 − 1�
, 
 = − 10, � = 6. �3.60�

IV. DISCUSSION

When one is trying to solve Einstein’s Equations in cosmology, one has to deal with a
nonlinear system of coupled, ordinary differential equations. The strategy that is frequently used is
to simplify the system by choosing, a convincing form for the scale factor matrix, usually obtained
by an a priori assumption of extra symmetry �e.g., ���=diag(a�t� ,b�t� ,c�t�)�, and then try to solve
it, hoping to find some solution. Clearly, this procedure can by no means guarantee access to the
full space of solutions for the problem at hand. In this work we have presented a method for
solving Einstein’s Field Equations in the case of vacuum Bianchi Geometries. The main idea is to
consider the Group of constant automorphisms, which emerges as the residual freedom left after
the time dependent A.I.D.’s �2.8�, �2.9� have been used to set the shift N� to zero, as a Lie point
symmetry of the EFEs. In a step-by-step procedure, one can bring some of the generators of this
group in normal form and simplify the rest, thereby reducing the order of the system of equations.
Which of the generators, and how, can be utilized in each step depends upon the characteristics of
their Lie Algebra �Abelian, solvable etc.�. It is also important that the information gained at a
particular level must be used and, in fact, may be vital for the implementation of the next step. The
method is, by construction, sweeping out all possible solutions, since no ad-hoc assumption has
been made. Therefore, if successfully applied to a given Bianchi Cosmology, it will result in the
cartography of the entire space of solutions.

The successful application of the procedure to Bianchi Type III resulted in the recovery of all
known solutions without the prior assumption of any extra symmetry ��3.32�, �3.40��, the enclo-
sure of the entire unknown part of the solution space into a single, second order ODE in terms of
one dependent variable �3.52�, and a partial solution to this ODE. It is of interest that the solution
space is naturally partitioned into three distinct disconnected pieces. Of great importance may be
considered the fact that a strikingly similar ODE describes the unknown part of the solution space
for other lower Bianchi Types. For Types VIII, IX there remain no rigid automorphisms after the
shift has been set to zero and the constant rotations have been used to diagonalize the scale-factor
matrix. However, there is the scaling symmetry Y2 that can serve as a starting point. This issue,
along with the presentation of the detailed cartography for the lower types is in our immediate
scopes. Finally, the method can be extended toward either the inclusion of matter content, or in
4+1 spatially homogeneous cosmologies.
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We investigate the existence of time-periodic solutions of the Dirac equation in the
Kerr-Newman background metric. To this end, the solutions are expanded in a
Fourier series with respect to the time variable t, and the Chandrasekhar separation
ansatz is applied so that the question of existence of a time-periodic solution is
reduced to the solvability of a certain coupled system of ordinary differential equa-
tions. First, we prove the already known result that there are no time-periodic
solutions in the nonextreme case. Then, it is shown that in the extreme case for
fixed black hole data there is a sequence of particle masses �mN�N�N for which a
time-periodic solution of the Dirac equation does exist. The period of the solution
depends only on the data of the black hole described by the Kerr-Newman
metric. © 2006 American Institute of Physics. �DOI: 10.1063/1.2358394�

I. INTRODUCTION

In this paper we consider the system consisting of a Kerr-Newman black hole and an electron.
The Kerr-Newman metric describing the black hole is the most general electrovac solution of
Einstein’s field equations. It describes a rotating, electrically charged, massive black hole; see,
e.g., Refs. 15 and 9. We are interested in the stability of a system consisting of such a black hole
and an electron. To this end, we have to consider the Dirac equation for the electron in the
Kerr-Newman metric; see Eqs. �1� and �2�–�6�. The Dirac equation is a complicated system of
partial differential equations in all four space-time variables. We call the system consisting of the
black hole and the electron stable if there exists a nontrivial time-periodic solution of the Dirac
equation which can be interpreted as the wave function of the electron.

Since the black hole is rotating, the background metric is only axisymmetric, whereas in the
nonrotating cases �the Schwarzschild and the Reissner-Nordstrøm geometries� the background
metric is spherically symmetric. This loss of symmetry leads to a complicated coupling of the
angular and the radial coordinates in the Dirac equation. Chandrasekhar4 showed that, in spite of
this complicated coupling, the Dirac equation can be separated into a system of ordinary differ-
ential equations, the so-called angular equation �13� and the radial equation �14�. These differential
equations have realizations as eigenvalue equations in appropriate Hilbert spaces. For the radial
equation, �=��0 plays the role of the eigenvalue parameter. The eigenvalue � has the physical
interpretation as the energy of the electron. It should be emphasized that, due to the lack of
spherical symmetry of the space-time, the eigenvalues of the radial and the angular equation are

a�Electronic mail: winklmeier@math.uni-bremen.de
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intertwined in a highly complex way. Hence, to show the stability of the system under consider-
ation, it does not suffice to find eigenvalues of the radial and the angular equation separately; we
need to show that the eigenvalues are compatible with each other.

In Sec. II we present the separation ansatz for time-periodic solutions of the Dirac equation in
the Kerr-Newman background metric due to Chandrasekhar with mathematical rigor, and we
derive the radial and angular equation. In the next section we consider the radial equation. It has
been shown by Belgiorno and Martellini2 that the essential spectrum of the radial operator covers
the real axis. Finster et al.,7,8 show the nonexistence of time-periodic solutions of the Dirac
equation in the nonextreme Kerr-Newman geometry. Schmid12 investigates the Dirac equations in
the extreme Kerr-Newman geometry with the help of special functions, and shows the existence of
bounded states in the extreme Kerr case, which implies the existence theorem of time-periodic
solutions. Our aim is to study the difference between the extreme and nonextreme case from the
viewpoint of spectral analysis of the radial Dirac operators. We give also the existence theorem of
time-periodic solutions in the extreme Kerr-Newman case. In Theorem IV. 5 we show that in the
nonextreme Kerr-Newman metric the Dirac equation has no time-periodic solution that has an
interpretation as a particle wave function. The case of the extreme Kerr-Newman metric is inves-
tigated in Sec. V. It turns out that in this case there may be an eigenvalue of the radial equation.
Schmid12 proved a sufficient condition for the existence of a time-periodic solution of the Dirac
equation. However, it is not easy to verify that for given particle data there are black hole
parameters such that this condition can be satisfied. This problem is discussed in Sec. VI. We show
that for fixed data of an extreme Kerr-Newman black hole there is a sequence of particle masses
such that the system consisting of the quantum particle and the black hole permits time-periodic
solutions.

II. SEPARATION OF THE DIRAC EQUATION IN THE KERR-NEWMAN BACKGROUND
METRIC

We consider the Dirac equation �see, e.g., Page,11 Chandrasekhar4�

�R̂ + Â��̂ = 0 �1�

for a spin-1
2 particle with the mass m�0 and the charge e in the Kerr-Newman geometry, where

R̂ ª�
imr 0 ��D+ 0

0 − imr 0 ��D−

��D− 0 − imr 0

0 ��D+ 0 imr
� , �2�

Â ª �
− am cos � 0 0 L+

0 am cos � − L− 0

0 L+ − am cos � 0

− L− 0 0 am cos �
� , �3�

D± ª
�

�r
�

1

�
��r2 + a2�

�

�t
+ a

�

��
− ieQr	 , �4�

L± ª
�

��
+

cot �

2
� i�a sin �

�

�t
+

1

sin �

�

��
	 , �5�

102503-2 M. Winklmeier and O. Yamada J. Math. Phys. 47, 102503 �2006�

                                                                                                                                    



��r� ª r2 − 2Mr + a2 + Q2 �6�

and �̂ is the wave function of the spin-1
2 particle under consideration. If the so-called black hole

condition

M2 − a2 − Q2 � 0 �7�

holds, then the Kerr-Newman geometry is interpreted as the space-time geometry generated by a
black hole with the mass M �0, the electric charge Q, and the angular moment J; if M �0, then
the so-called Kerr parameter a=J /M is the angular momentum of the black hole per unit mass.
The black hole condition �7� ensures that the function � can be written as the product

��r� = �r − r+��r − r−� , �6��

with

r± = M ± �M2 − a2 − Q2. �8�

The special case M2−a2−Q2=0, that is the case where r+=r−=M, is referred to as the extreme
Kerr-Newman metric.

Let us recall that the Kerr-Newman metric is the most general electrovac solution of Einstein’s
field equations.9 Special cases contained in the Kerr-Newman geometry are the Kerr geometry �if
Q=0�, the Reissner-Nordstrøm geometry �if a=0�, and the Schwarzschild geometry �if Q=0 and
a=0�.

A solution �̂ of �1� for �r ,� ,� , t��	̂ª �r+ , 
 �� �0,��� �−� ,��� �−
 , 
 � such that for

every fixed time t the function �̂�· , · , · , t� lies in a suitable L2-space Hr,�,� �see �9�� can be

interpreted as the wave function of the electron. Hence, the existence of such a �̂ would imply
that the system consisting of the black hole and the spin-1

2 particle in its exterior is stable.
Remark II.1 (Dirac equation in flat space time): In the case of flat space-time, i.e., for a=0,

M =0, Q=0, the Dirac equation given in �1� is unitarily equivalent to the familiar Dirac equation


− i
�

�t
− i� · �� + �m�� = 0

as given, for instance, in Davydov.5 For the proof we refer to Winklmeier.18

A. Time-periodic solutions

In this paper we consider time-periodic solutions �̂, that is, solutions such that

�̂�r,�,�,t� = �̂
r,�,�,t +
2�

�0
� ��r,�,�,t� � 	̂�

for some �0�0. In this case, the solutions can be expanded in a Fourier series

�̂�r,�,�,t� = �
��Z

exp�− i��0t����r,�,�� .

For physical reasons, each wave function �� must be an element of the Hilbert space

Hr,�,� ª L2
�r+, 
 � � �0,�� � �− �,��;
r2 + a2

��r�
sin � dr d� d��4

�9�

with the inner product according to Finster et al.7,8
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��,�� = 
r+


 
0

� 
−�

�

���r,�,��,��r,�,���C4
r2 + a2

��r�
sin � dr d� d� . �10�

Here �· , · �C4 is the usual scalar product on C4. In order to separate also the �-dependence of the
solution �� we use the complete system �exp�i��� :��Z+ 1

2� in L2��−� ,�� ;d�� to employ the
ansatz

���r,�,�� = �
��Z+�1/2�

exp�− i�����,��r,�� .

Thus, if

�̂�r,�,�,t� = �
��Z

�
��Z+�1/2�

exp�− i�0�t�exp�− i�����,��r,��

satisfies �1�, then each ��,� is a solution of

�R�,� + A�,����,� = 0 on �r0, 
 � � �0,�� , �11�

where R�,� and A�,� are obtained from �2� and �3� by replacing D± and L± by

D±,�,� ª
�

�r
±

i

�
��0��r2 + a2� + �a + eQr� ,

L±,�,� ª
�

��
+

cot �

2
� �a�0� sin � +

�

sin �
	 ,

respectively �see the proof of Theorem IV.5�.

B. Separation of the radial and the angular coordinate

To study Eq. �11� we consider the formal differential expression

A�,� ª 
− am cos � L−,�,�

− L+,�,� am cos �
�

for �� �0,��. For any half integer � the differential expression A�,� has a unique self-adjoint
realization A�,� in the Hilbert space L2��0,�� ; sin � d��2 which has purely discrete spectrum
��A�,��= ���,�,n :n�Z \ �0���R, where each eigenvalue is simple �see, e.g., Batic et al.,1

Winklmeier18�. Hence, there is a complete set of orthonormal eigenfunctions of A�,�

g�,�,n
ª 
g1

�,�,n

g2
�,�,n � � L2��0,��;sin � d��2 �n � Z \ �0�� �12�

with eigenvalues ��,�,n. The family �12� allows us to make the ansatz

��,� = �
n�Z\�0�

��,�,n

with
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��,�,n�r,�� =�
X−

�,�,n�r�g2
�,�,n���

X+
�,�,n�r�g1

�,�,n���
X+

�,�,n�r�g2
�,�,n���

X−
�,�,n�r�g1

�,�,n���
� �r � �r+, 
 �,� � �0,��� ,

which leads to a separation of the angular coordinate � and the radial coordinate r �cf.
Chandrasekhar4�: the angular function g�,�,n satisfies the angular equation

A�,ng�,�,n = ��,�,ng�,�,n, �13�

with the integrability condition g�,�,n�L2��0,�� ; sin � d�� and the radial function X�,�,n

=t�X+
�,�,n ,X−

�,�,n� satisfies the radial equation


− imr − ��,�,n
��D−,�,�

��D+,�,� imr − ��,�,n
�
X+

�,�,n�r�
X−

�,�,n�r�
� = 0, �14�

with the integrability condition arising from the inner product on Hr,�,�


r+




��X+
�,�,n�r��2 + �X−

�,�,n�r��2�
r2 + a2

��r�
dr � 
 . �15�

C. The radial equation

Let

W ª

1
�2


− i i

− 1 − 1
�, V ª 
0 − 1/��

1/�� 0
� ,

f̃�,�,n�r� ª 
 f̃1
�,�,n�r�

f̃2
�,�,n�r�

�ª W
X+
�,�,n�r�

X−
�,�,n�r�

� . �16�

Then, we obtain from �14�

0 = VW 
− imr − ��,�,n
��D−,�,�

��D+,�,� imr − ��,�,n
�W−1 f̃�,�,n�r�

=�
mr
��

−
a� + eQr + �0��r2 + a2�

�
−

d

dr
+

��,�,n

��

d

dr
+

��,�,n

��
−

mr
��

−
a� + eQr + �0��r2 + a2�

�
� f̃�,�,n�r� �17�

for r� �r+ , 
 � �see Winklmeier18�.
Remark II.2: If we take into account only terms of first order in 1/r for large r, then the radial

equation becomes

�m −
eQ

r
+ �0� −

d

dr
+

��,n,�

r

d

dr
+

��,n,�

r
− m −

eQ

r
+ �0�� f̃�r� = 0,

which is exactly the radial equation for the relativistic hydrogen atom see; e.g., Bjorken and
Drell.3
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Remark II.3: It is important to note that in the case a�0 the eigenvalue � for the angular
equation does depend on �0�. In the case a=0, the eigenvalues can be calculated explicitly; they
are given by

��A�,�� = ���,�,n = sign�n�
��� −
1

2
+ �n��:n � Z \ �0�� � R . �18�

In particular, the eigenvalues ��,�,n of the radial equation do not depend on the eigenvalues of the
radial equation. Hence, in the case a=0, for a solution of the complete problem �14�–�13� first the
angular problem �A�,�−��,��g=0 is solved for the eigenvalues ��,�,n, and then the radial equation
�14� can be attacked for fixed ��,�,n.

We introduce a new coordinate x such that

dx

dr
=

r2 + a2

��r�
�r � r+� , �19�

that is,

x�r� = �r +
r+

2 + a2

r+ − r−
log�r − r+� −

r+
2 + a2

r+ − r−
log�r − r−� + x0 �r+ � r−� ,

r + 2r+log�r − r+� −
r+

2 + a2

r − r+
+ x0 �r+ = r−� ,

�20�

where x0 is a constant of integration that can be set x0=0. The correspondence between r�r+ and
x� �−
 , 
 � is a bijection. With the new coordinate x Eq. �17� becomes

H�,�,nf�,�,n
ª�

mr��

r2 + a2 −
a� + eQr

r2 + a2 −
d

dx
+

��,�,n
��

r2 + a2

d

dx
+

��,�,n
��

r2 + a2 −
mr��

r2 + a2 −
a� + eQr

r2 + a2
� f�,�,n = �0�f�,�,n, �21�

where r has to be understood as r�x� and f�,�,n�x�= f̃�,�,n�r�x��, f j
�,�,n�x�= f̃ j

�,�,n�r�x�� for all
x� �−
 , 
 � and j� �1,2�. In view of �16� and �19� the integrability condition �15� becomes


−





�f�,�,n�x��C2
2 dx = 

−





��f1
�,�,n�x��2 + �f2

�,�,n�x��2� dx � 
 . �22�

The operator H�,�,n is formally symmetric in the Hilbert space HxªL2��−
 , 
 � ;dx�2, so it is
natural to look for an operator theoretical realization of H�,�,n in the Hilbert space Hx. The purpose
of this article is to investigate the spectral properties of the self-adjoint operator H�,�,n in Hx

=L2��−
 , 
 � ;dx�2 and to study the nonexistence of nontrivial solutions satisfying �11�. In Sec. VI
we will investigate the existence of so-called energy eigenvalues of H�,�,n �cf. Schmid12�.

Definition II. 4: We call ��R an energy eigenvalue of H�,�,n if there are ��,�,n such that � is
an eigenvalue of H�,�,n and ��,�,n is an eigenvalue of A�,�, that is, if Eqs. �13� and �14� can be
solved simultaneously with functions satisfying the corresponding integrability conditions.

III. THE OPERATOR H

In this and the following sections we consider the eigenvalue equation �H�,�,n−��0�f�,�,n=0
from �21� on the Hilbert space Hx=L2��−
 , 
 � ;dx�2.

If there is no ambiguity, we omit the indices �, n, and � in the following for the sake of clarity;
for instance, we write simply H instead of H�,�,n, � instead of ��,�,n, and � instead of �0�. We
decompose the operator H into the sum
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H = H0 + V ,

where

H0 =� 0 −
d

dx

d

dx
0 �, D�H0� = C0


�−
 , 
 �2,

V�x� = 
A�x� B�x�
B�x� C�x�

� ,

A�x� =
mr�x����r�x��

r�x�2 + a2 −
a� + eQr�x�

r�x�2 + a2 ,

B�x� = �
���r�x��
r�x�2 + a2 ,

C�x� = −
mr�x����r�x��

r�x�2 + a2 −
a� + eQr�x�

r�x�2 + a2 ,

��x� = �r�x� − r+��r�x� − r−� .

The operator H0 is symmetric and has a unique self-adjoint extension on the space
L2��−
 , 
 � ;dx�2, see, e.g., Weidmann �Ref. 17, Theorem 6.8�. Since x→−
 is equivalent to
r�x�→r+ and x→
 is equivalent to r�x�→
, we have

lim
x→−


A�x� = −
a� + eQr+

r+
2 + a2 = :A0, lim

x→+

A�x� = m ,

lim
x→−


C�x� = A0, lim
x→+


C�x� = − m ,

lim
x→±


B�x� = 0

which implies that the functions A�·�, B�·�, and C�·� are bounded. Since we assume that the black
hole condition �7� holds, the multiplication operator V is symmetric. Therefore, H=H0+V has a
unique self-adjoint extension which we again denote by H.

In what follows, a prime � always denotes differentiation with respect to x.
Lemma III.1 �Asymptotic behavior of V for x→−
�:

�i� For x→−
 the functions

A�x� − A0, B�x�, C�x� − A0

decay exponentially in the case r+�r−, and they are of order O�x−1� in the case r+=r−.
More precisely, in the latter case we have

A�x� − A0 =
mM − �

− x
+ O
 1

x2� as x → − 
 ,
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A0 − C�x� =
mM + �

− x
+ O
 1

x2� as x → − 
 ,

B�x� =
�

x
+ O
 1

x2� as x → − 
 ,

where

� ª −
2a�M

M2 + a2 − eQ
M2 − a2

M2 + a2 .

�ii� The derivatives A�, B�, and C� are integrable with respect to x on �−
 ,0�.
�iii� A��x�=O�x−2�, B��x�=O�x−2�, and C��x�=O�x−2� hold as x→ +
.

Proof. We prove the assertions for the functions B and A only. The corresponding assertions
for C can be obtained from those for A by substituting m by −m. We remark that �20� shows

r�x� − r+ = O�exp�x�� as x → − 
 �r+ � r−� , �23�

r�x� − r+ = O�x−1� as x → − 
 �r+ = r−� �24�

for a positive constant . To keep notation simple, let us write r instead of r�x� in this proof.

�i� Note that

1

r2 + a2 =
1

r+
2 + a2 −

�r − r+��r + r+�
�r+

2 + a2��r2 + a2�
=

1

r+
2 + a2 + O�r − r+� . �25�

Hence, it follows immediately that

B�x� = �
���r�
r2 + a2 = ����r�
 1

r+
2 + a2 + O�r − r+�� .

If we recall that ��r�x��= �r�x�−r+��r�x�−r−� and use the relations �23� and �24�, we see
that the assertion for B holds.
Now we prove the assertions for A. Simple calculations show

A�x� − A0 =
mr���r�
r2 + a2 +

�r2 + a2��a� + eQr+� − �r+
2 + a2��a� + eQr�

�r2 + a2��r+
2 + a2�

=
mr���r�
r2 + a2 +

�r − r+���r − r+��a� + eQr+� + 2a�r+ + eQ�r+
2 − a2��

�r2 + a2��r+
2 + a2�

=
mr+

���r�
r2 + a2 +

r − r+

r2 + a2�m���r� +
�r − r+��a� + eQr+� + 2a�r+ + eQ�r+

2 − a2�
r+

2 + a2 	 .

Using the relations �25� and �23�, we see that the assertion holds for the case r+�r−. In the
case r+=r− we have ��r�= �r−r+�2= �r−M�2; hence, we can continue the calculation above
as follows:
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A�x� − A0 =
r − r+

r2 + a2�mr+ +
2a�r+ + eQ�r+

2 − a2�
r+

2 + a2 + �r − r+�
m +
a� + eQr+

r+
2 + a2 �	

=
r − r+

r2 + a2�mr+ − � + �r − r+�
m +
a� + eQr+

r+
2 + a2 �	 .

The assertion follows now from �25� and �24�.
�ii� A simple calculation gives

d

dx
A�x� =

dr

dx

d

dr
A�x�r�� =

��r�
r2 + a2

d

dr
A�x�r��

=
���r�
r2 + a2�m
 ��r�

r2 + a2 +
r���r�

2�r2 + a2�
−

2r2��r�
�r2 + a2�2�

+
2�a� + eQr�r���r�

�r2 + a2�2 −
eQ���r�
r2 + a2 �

= �O��r − r+�1/2� = O�exp��1/2�x�� , �r+ � r−� ,

O��r − r + �2� = O�x−2� , �r+ = r−� ,
�26�

as x→−
.

d

dx
B�x� =

dr

dx

d

dr
B�x�r�� =

��r�
r2 + a2

d

dr
B�x�r�� = �

���r�
r2 + a2� ���r�

2�r2 + a2�
−

2r��r�
�r2 + a2�2�

= �O��r − r+�1/2� = O�exp��1/2�x�� , �r+ � r−� ,

O��r − r + �2� = O�x−2� , �r+ = r−� ,
�27�

as x→−
.

�iii� Since

dr

dx
=

��r�
r2 + a2 � 1, x � r as x → + 
 ,

and

2�r2 + a2���r� + r�r2 + a2����r� − 4r2��r� = 2Mr3 + 2r2�a2 − Q2�

− 6a2Mr + 2a2�a2 + Q2� � r3 as r → 
 ,

the assertion follows from �26�. The proof of the assertion concerning B��x� follows di-
rectly from �27�. �

IV. ABSOLUTELY CONTINUOUS SPECTRUM

The following proposition has been shown by Belgiorno and Martellini.2

Proposition IV.1: �ess�H�=R. �

We point out that the proof of the proposition relies on the fact that

lim
x→−


�V�x� − A0I2� = 0, �28�

where I2 is the 2�2 unit matrix. Lemma III.1 yields the following theorem.
Theorem IV.2:

�i� H has purely absolutely continuous spectrum in R \ �A0�.
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�ii� H has purely absolutely continuous spectrum in �−
 ,−m� and �m , + 
 �, that is, H is
absolutely continuous in the complement of �−m ,m�� �A0�.

Proof.

�i� Lemma III.1 gives �28� and any component of V� is integrable at −
. Therefore, we can
prove the theorem in view of Weidmann,16 Schmidt,13 and also Thaller (Ref. 14, Theorem
4.18).

�ii� The proof is the same as in �i� by using Lemma III.1 �iii�. �

Remark IV.3: The above theorem has already been proven by Schmid by different means �see
Schmid �Ref. 12, Corollary 3.4��; in addition, he has shown that neither �=m nor �=−m is an
eigenvalue of H �Ref. 12, Lemma 3.5�.

Theorem IV.4: If r+�r−, then A0 is not an eigenvalue of H.
Proof. Let us assume that U= t�u1 ,u2��Hx satisfies

� A B −
d

dx

B +
d

dx
C �
u1

u2
� = A0
u1

u2
� ,

that is,

U� = 
u1�

u2�
� = 
 − B A0 − C

A − A0 B
�
u1

u2
� . �29�

As seen in Sec. III, A�x�−A0, B�x� and C�x�−A0 decay exponentially as x→−
. Therefore,
the Levinson theorem �e.g., Eastham6� gives that there are two linearly independent solutions U1,
U2 of �29� such that

U1�x� = �
1

0
� + o�1�� as x → − 
 ,

U2�x� = �
0

1
� + o�1�� as x → − 
 .

Hence there are constants c1 and c2 such that U�x�=c1U1�x�+c2U2�x�, which is square integrable
on �−
 ,0� only if c1=c2=0. �

As an important corollary we obtain the following theorem.
Theorem IV.5 (Nonexistence of time-periodic solutions for r+�r−�:

Let �̂�C1��r0 , 
 �� �0,��� �−� ,���R ,C4� be a solution of �1� satisfying the periodicity con-
ditions

�̂�r,�,�,t� = �̂
r,�,�,t +
2�

�0
� ,

�̂�r,�,�,t� = �̂�r,�,− �,t� ,

�r,�,�,t� � 	̂ �30�

for some �0�0. Furthermore, assume that for all �� , t�� �−� ,���R we have �̂�· , · ,� , t�
�C0��r0 , 
 �� �0,�� ;Hr,��, where

Hr,� ª L2
�r+, 
 � � �0,��;
r2 + a2

��r�
sin � drd��4

with the norm denoted by � · �Hr,�
and the inner product denoted by �· , · �Hr,�

.

102503-10 M. Winklmeier and O. Yamada J. Math. Phys. 47, 102503 �2006�

                                                                                                                                    



If r−�r+, then �̂�0.

Proof. Let �̂ be a time-periodic solution satisfying the conditions of the theorem. Then,

�̂�· , · , · , t� is an Hr,�,�-valued strongly continuous function with respect to t since �̂�· , · ,� , t� is
uniformly continuous in Hr,� with respect to �� , t�� �−� ,���R. Therefore, we can expand

�̂�r ,� ,� , t� as the Fourier series with respect to t

�̂�r,�,�,t� = �
��Z

exp�− i�0�t����r,�,��

strongly in L2��0,2� /�0� ;Hr,�,� ;dt�, where

���r,�,�� =
�0

2�


0

2�/�0

exp�i�0�t��̂�r,�,�,t�dt, �
�

����Hr,�,�

2 � 
 .

Moreover, each ���r ,� ,�� can be expanded as

���r,�,�� = �
��Z+�1/2�

exp�− i�����,��r,��

strongly in L2��−� ,�� ;Hr,� ;d�� with

����,�� =
1

2�


−�

�

exp�i������r,�,��d�, �
�

���,��Hr,�

2 � 
 .

For every ��C0

��r0 , 
 �� �0,���4 of the form

��r,�� =�
�−�r��2���
�+�r��1���
�+�r��2���
�−�r��1���

�
with �±�r��C0


��r+ , 
 ��, �1���, �2��� �C0

��0,��� we obtain, by using �30�,

0 = 
0

2�/�0

dt
−�

�

d� ��R̂ + Â��̂,exp�− i�0�t�exp�− i�����Hr,�

= 
0

2�/�0

dt
−�

�

d� ��̂,�R̂ + Â�*exp�− i�0�t�exp�− i�����Hr,�

= 
0

2�/�0

dt
−�

�

d� ��̂,exp�− i�0�t�exp�− i����R�,� + A�,��*��Hr,�

= 
0

2�/�0

��̂,exp�− i�0�t�exp�− i����R�,� + A�,��*��Hr,�,�
dt

=
2�

�0


−�

�

���,exp�− i����R�,�
* + A�,�

* ���Hr,�
d� =

4�2

�0
���,�,�R�,�

* + A�,�
* ���Hr,�

. �31�

In the above calculation, the superscript * denotes the formal adjoint operator. As in �12�, for fixed
� and � let
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g�,�,n��� = 
g1
�,�,n���

g2
�,�,n���

� �n � Z \ �0��

be a complete family of orthonormal eigenfunctions of A�,� with eigenvalues ��,�,n, respectively.
Then, ��,��r ,�� can be expanded in terms of g�,�,n �n�Z \ �0�� as follows:

��,��r,�� = �
n�Z\�0� �

X−
�,�,n�r�g2

�,�,n���
X+

�,�,n�r�g1
�,�,n���

X+
�,�,n�r�g2

�,�,n���
X−

�,�,n�r�g1
�,�,n���

� ,

where the series converges in the strong sense in L2��0,�� ; sin � d��4 and X±
�,�,n�r� satisfies

�
n�Z\�0�


r+




��X+
�,�,n�r��2 + �X−

�,�,n�r��2�
r2 + a2

��r�
dr � 
 .

Since A�,� on C0

��0,���2 is essentially self-adjoint in L2��0,�� ; sin � d��2, for any g�,�,n��� there

exists a convergent sequence ���C0

��0,���2 ��=1,2 , . . . � such that

A�,��� = A�,�
�1
�

�2
� � ——→ A�,�g�,�,n = ��,�,ng�,�,n

in L2��0,�� ; sin � d��2. Substituting � in �31� by

���r,�� =�
�−�r��2

����
�+�r��1

����
�+�r��2

����
�−�r��1

����
�

and taking the limit �→
, we have

� �
m�Z\�0� �

X−
�,�,m�r�g2

�,�,m���
X+

�,�,m�r�g1
�,�,m���

X+
�,�,m�r�g2

�,�,m���
X−

�,�,m�r�g1
�,�,m���

�, �R�,�
* − ��,�,n��

�−�r�g2
�,�,n���

�+�r�g1
�,�,n���

�+�r�g2
�,�,n���

�−�r�g2
�,�,n���

��
Hr,�

= 0,

which gives

0 = 
r+




dr
r2 + a2

��r� �
X+
�,�,n

X−
�,�,n �, 
imr − ��,�,n D+,�,�

* ��

D−,�,�
* �� − imr − ��,�,n

�
�+

�−
��

C2

,

which implies


− imr − ��,�,n
��D−,�,�

�� D+,�,� imr − ��,�,n
�
X+

�,�,n�r�
X−

�,�,n�r�
� = 0.

If we set �cf. �16� and �22��

f�,�,n�x� = 
 f1
�,�,n�r�x��

f2
�,�,n�r�x��

� =
1
�2


− i i

− 1 − 1
�
X+

�,�,n�r�x��
X−

�,�,n�r�x��
� ,

we have
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H�,�,nf�,�,n = �0�f�,�,n

�see �21��. Then, Theorem IV.2 and Theorem IV.4 give f�,�,n=0 for any n�Z \ �0� and
��Z+ �1/2�, which yields ��,��r ,��=0.

The nonexistence of time-periodic solutions is shown by Finster et al.7,8 by different means.

V. THE CASE r+=r−

In the previous section we have seen that there are no eigenvalues of �1� in the case r+�r−. In
this section we discuss whether A0 is an eigenvalue of H in the case r+=r−. Recall that in this case
the function � has only one zero and that r+=r−=M.

Theorem V.1: If

�2 + m2M2 − �2 �
1

4
,

then A0 is not an eigenvalue of H.
Proof. Let us assume that U= t�u1 ,u2��Hx satisfies �29�, that is,

U� = 
u1�

u2�
� = 
 − B A0 − C

A − A0 B
�
u1

u2
� .

Lemma III.1 yields for x→−


U��x� = −
1

x

 � mM + �

mM − � − �
�U�x� + O�x−2�U�x� .

If we introduce s=log�−x�, we have

d

ds
U�x�s�� = 
 � mM + �

mM − � − �
�U�x�s�� + O�exp�− s��U�x�s�� as s → + 
 . �32�

The matrix

S ª 
 � mM + �

mM − � − �
�

can be diagonalized by a nonsingular matrix T as

T−1ST = 
��2 + m2M2 − �2 0

0 − ��2 + m2M2 − �2�
if �2+m2M2−�2�0. If �2+m2M2−�2=0, its Jordan canonical form is

T−1ST = 
0 1

0 0
� .

According to Theorem 1.8.1 and Theorem 1.10.1 in Eastham,6 we have two linearly indepen-
dent solutions U1�s�, U2�s� of �32� such that if �2+m2M2−�2�0,

U1�s� = �v1 + o�1��exp���2 + m2M2 − �2s� = �v1 + o�1���− x���2+m2M2−�2
,

U2�s� = �v2 + o�1��exp�− ��2 + m2M2 − �2s� = �v2 + o�1���− x�−��2+m2M2−�2

as x→−
 and, if �2+m2M2−�2=0,

U1�s� = v1 + o�1� ,
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U2�s� = sv1 + v2 + o�s� = v1 log�− x� + v2 + o�log�− x��

as x→−
, where T= �v1 ,v2�.
Therefore, a necessary condition for the existence of an L2�−
 ,0�-eigenfunction is

��2 + m2M2 − �2 � �1/2, 
 �, i . e . , �2 + m2M2 − �2 � 1/4.

�

Remark V.2: The above discussions show that for � to be an eigenvalue of H the following
conditions are necessary:

r+ = r− = M �Theorem IV.4� , �33�

� = A0 = −
a� + eQr+

r+
2 + a2 �Theorem IV.2�i�� , �34�

�2 � m2 �Theorem IV.2�ii�, Remark IV.3� , �35�

�2 + m2M2 − �2 �
1

4
�Theorem V.1� . �36�

However, the solvability of the above system is not yet sufficient for the existence of an
energy eigenvalue.

Schmid12 showed that if in addition either

� − �� = 0,  + � = 0 �37a�

or

N +  + � = 0 for some positive integer N , �37b�

holds, then the solvability of the system �33�–�36� with �37a� or �37b� is sufficient for the exis-
tence of an eigenvalue � of H.

In the above formulas, we used

� ª sign �, � ª
��2 + M2m2 − �2, � = 2M� + eQ = −

2a�M

M2 + a2 − eQ
M2 − a2

M2 + a2 ,

 ª

Mm2 − ��

�m2 − �2
, � ª

�M��� − ���m
�m2 − �2

.

Note that the variable � is denoted by � in Ref. 12.

VI. ENERGY EIGENVALUES IN THE CASE r+=r−

If � is an energy eigenvalue of �1�, then there must be an N�N0 such that � satisfies the
complicated system of conditions �33�–�36� with �37a� or �37b�. It is not clear that for given data
of the black hole and the particle there are tuples ���0 ,� ,��,�,n� that solve the system �33�–�36�
with �37a� or �37b�. Schmid12 has shown that in the so-called Kerr case �i.e., if Q=0� for fixed data
of the spin-1

2 particle there exist two sequences �aN
±�N�N such that for a=aN

± the value �N=
−� /2aN

± is an energy eigenvalue.
Here, we fix the black hole data M ,Q, and a and vary the mass of the fermion to obtain the

existence of energy eigenvalues in the case r−=r+.
Theorem VI.1: Fix M �0, a ,Q ,e�R, ��Z and ��Z+ 1

2 . Let �ª−��a+eQM� / �a2+M2�.
Take �=��,�,n for any sufficiently large �n � . If ��eQ+M���0 then there are no energy eigenval-
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ues of H�,�,n. If ��eQ+M���0 then there is a sequence �mN�N�N� ��� � , 
 � such that if m
� �mN :N�N�, then � is an energy eigenvalue of H�,�,n. For N0 large enough, the sequence
�mN�N�N0

is monotonously decreasing and converges to ���.
Before we prove the theorem, let us emphasize that �=��,�,n does depend also on m. There-

fore, we denote it by �=��,�,n�m�. In order to check the condition �36� we prepare the following
lemma.

Lemma VI.2. Fix ��Z and ��Z+ 1 � 2. If �n� is sufficiently large, then the inequality �36�
holds for any m�0, M �0 and ��R, that is,

��,�,n
2 + m2M2 − �2 �

1

4
.

Proof. It follows from standard perturbation theory �applied to the angular operator with m as
perturbation parameter, see Winklmeier,18 Kato10� that

� d

dm
��,�,n�m�� � �− a cos � 0

0 a cos �
� = �a� ,

hence, for m� ���,

���,�,n������ − �a��m − ���� � ���,�,n�m�� � ���,�,n������ + �a��m − ���� . �38�

Let m̃=M−1��2+1/4. Since the sequence ���,�,n�n is monotonously increasing and unbounded
from below and from above, there is an integer n0 such that

���,�,n������ � �a��m̃ − ���� + ��2 + 1/4

for all �n � �n0. If m� ��� � , m̃�, we have

���,�,n�m�� � ���,�,n������ − �a��m − ���� � ���,�,n������ − �a��m̃ − ���� � ��2 + 1/4,

which implies

���,�,n�m�2 + M2m2 − �2 � ��2 + 1/4 + m2M2 − �2 � 1/2.

If m� m̃=M−1��2+1/4, then we have

���,�,n�m�2 + M2m2 − �2 � �M2m̃2 − �2 = 1/2.

�

Now we shall prove Theorem VI.1.
Proof of Theorem VI.1: By definition, � satisfies condition �34�. As seen in Lemma VI.2, there

is an n0�N such that condition �36� is satisfied for all �n � �n0. From now on, let us assume that
condition �36� holds. Next we consider the conditions �37a� and �37b�. To this end we compute

 + � =
Mm2 − ��

�m2 − �2
+ ���,n

2 + M2m2 − �2 = −
��eQ + M��

�m2 − �2
+ M�m2 − �2 + ���,n

2 + M2m2 − �2.

If ��eQ+M���0, then +��
1
2 and condition �37a� nor �37b� cannot be satisfied for any N

�N0. Assume now that ��eQ+M���0. Then, the function

A:����, 
 � ——→ R ,
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m � −
��eQ + M��

�m2 − �2
+ M�m2 − �2 + ���,�,n�m�2 + M2m2 − �2

is continuous, satisfies limm↘���A�m�=−
, limm→
A�m�=
 in view of �38�. Hence, for every N
�N there is at least one mN� ��� � , 
 � such that A�mN�=−N and therefore satisfies condition
�37b�. Since the function A is monotonously increasing in an interval ��� � , �� � +�� for a suffi-
ciently small ��0, it follows that for N large enough there is only one mN satisfying
A�mN�=−N and that the sequence �mN�N is decreasing. �

Remark VI.3: The proof shows that for fixed m only a finite number of ��,�,n is allowed in
order to satisfy condition �37b�. The closer m is to ���, the more �and the larger� values for ��,�,n

are allowed.
Remark VI.4: The condition ��eQ+M���0 is satisfied if the ratio eQ /� is sufficiently small

since

��eQ + M�� = −
a

�a2 + M2�2 ��a + eQM��eQa − �M�

=
a

�a2 + M2�2 �aM�2 + eQ�M2 − a2�� − aMe2Q2�

=
a2M

�a2 + M2�2�
� −
eQa

2M
+

eQM

2a
�2

−
e2Q2

4


 a

M
−

M

a
�2

+ 4�	
= −

a2�2M

4�a2 + M2�2�
2eQ

�
+ 
 a

M
−

M

a
��2

− 
4 + 
 a

M
−

M

a
�2�	 .

Remark VI.5: Let � be an energy eigenvalue, m� �mN :N�N� �see Theorem VI.1�, and f�,�,n

the eigenfunctions of H�,�,n. If we set


X+
�,�,n�r�

X−
�,�,n�r�

� =
1
�2


 i − 1

− i − 1
�
 f1

�,�,n�x�
f2

�,�,n�x� ,
� ,

then

�̂�r,�,�,t� = exp�− i�t�exp�− i����
X−

�,�,n�r�g2
�,�,n���

X+
�,�,n�r�g1

�,�,n���
X+

�,�,n�r�g2
�,�,n���

X−
�,�,n�r�g1

�,�,n���
�

is a time-periodic solution of �1�.
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We study point symmetries of the Robinson-Trautman equation. The cases of one-
and two-dimensional algebras of infinitesimal symmetries are discussed in detail.
The corresponding symmetry reductions of the equation are given. Higher dimen-
sional symmetries are shortly discussed. It turns out that all known exact solutions
of the Robinson-Trautman equation are symmetric. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2359139�

I. INTRODUCTION

In 1960, Robinson and Trautman introduced1 a class of space-times admitting a diverging
shear- and twist-free congruence of null geodesics. Such space-times, if asymptotically
Minkowskian, are believed to describe gravitational radiation outgoing from spatially bounded
sources. Recent numerical results suggest that the Robinson-Trautman metrics can be used to
estimate the mass loss during the final phase of the collision of two black holes.2 There are also
suggestions that the subclass of the so called C-metrics3 �and their twisting generalizations4� can
describe space-times containing accelerating black holes.5–8

In terms of standard coordinates u ,r ,� , �̄, where u and r are real and � is complex, the
Robinson-Trautman metrics are given by9

g = 2 du�H du + dr� − 2r2P−2 d� d�̄ . �1�

The function P is independent of r. Vacuum Einstein equations imply

H = − r�u ln P − m�u�/r + P2����̄ ln P �2�

and a fourth order equation for P, referred to as the Robinson-Trautman equation:

P2����̄�P2����̄ ln P� + 3m�u�ln P� − �um = 0. �3�

Using coordinate freedom m can be transformed to the value ±1 or 0. The Gaussian curvature K
of surfaces of constant u and r is given by

K = 2P2����̄ ln P . �4�

The existence of asymptotically flat Robinson-Trautman metrics has been recently
examined.10–12 Also, their large u asymptotic behavior is known.13,14 These results, however, do
not give any hint of how to look for explicit solutions. Only a few of them are known since 1960,
none of them being asymptotically flat except for the cases of the Minkowski and the Schwarzs-
child metrics.

Assuming asymptotic flatness of metrics �1�, the Bondi energy,15,16 the Bondi mass aspect, and
the news function were found in terms of P.11,17–19 The asymptotic flatness of �1� with positive m

follows from the assumption that in the gauge m=1 the function P̂= P�1+1/2��̄�−1 is positive and
regular on R�S2, � being interpreted as a complex stereographic coordinate on S2.

The subclass of metrics with m=0 is characterized by the fact that K is a solution of the
Laplace equation, so K must be either constant or singular. No nontrivial asymptotically flat metric
exists in this subclass.
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In the present paper we consider symmetries of the Robinson-Trautman equation and classify
the conjugacy classes of one- and two-dimensional symmetry algebras. We find symmetry reduc-
tions of Eq. �3� for solutions preserved by these algebras. Some of these solutions might corre-
spond to asymptotically flat metrics with a simple dependence on the time u. This research may
also be of help for studying the numerical solutions of the Robinson-Trautman equation, providing
natural ansatzes with smaller number of variables than in generic situations.

II. SYMMETRY TRANSFORMATIONS FOR mÅ0

Suppose m�0 and consider Eq. �3� in the gauge m=1,

P2����̄�P2����̄ ln P� + 3�u ln P = 0. �5�

It is easy to prove that �5� is invariant with respect to the following point transformations:

u � u� = a4u + b ,

� � �� = f��� , �6�

P � P� = a−1�f ,��P ,

where a�0 and b are real constants and f is a holomorphic function of � and f ,��0. If �6� is
supplemented by

r� = a2r , �7�

the corresponding metric transforms as g�a6g. Thus, �6� together with �7� induces a homothety
of the metric. It is an isometry when a=1.

Infinitesimal transformations corresponding to �6� are given by the vector field

k = �4Au + B��u + F����� + F̄��̄���̄ + �Re F,� − A�P�P, �8�

where A and B are real constants and F is a holomorphic function of �. These fields form the
symmetry algebra g.

Solutions of �3� invariant with respect to �8� have to satisfy the following linear equation:

�4Au + B�P,u + FP,� + F̄P,�̄ + �A − Re F,��P = 0. �9�

We will perform the symmetry reduction of �5�, assuming that its solution is preserved by
vector fields �8� forming a one- or two-dimensional subalgebra of g �higher-dimensional subalge-
bras will also be discussed shortly.� First, we will classify these subalgebras under the action of the
pseudogroup of transformations �6�. This way we will obtain the conjugacy classes �CC� of one-
and two-dimensional subalgebras of g.

III. SOLUTIONS WITH ONE OR TWO SYMMETRIES

Consider a one-dimensional algebra generated by a vector field �8�. Applying an appropriate
transformation �6�, we can simplify the coefficients A and B and the function F, obtaining one
representative of each conjugacy class. For instance, if A=0, B�0, and F�0, we can scale u and
� so that B=1 and F=�. This leads to

k = �u + ��� + �̄��̄ + P�P. �10�

In the same way we can distinguish five conjugacy classes that are listed in Table I, together with
corresponding vector k, the form of the invariant solution P, and the reduced Robinson-Trautman
equation. Whenever it is needed, we explicitly write the definition of the new variable z�u ,��
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appearing in the invariant solution. Throughout the text, we use x and y to denote, respectively, the
real and imaginary parts of �.

Consider now the case of two-dimensional subalgebra g2 of g. We denote the basis vectors of
g2 by k1 and k2. There are two nonisomorphic two-dimensional Lie algebras such that either

�k1,k2� = 0 �11�

or

�k1,k2� = k2. �12�

The Lie bracket of two fields given by �8� reads as

�k1,k2� = 4�B1A2 − B2A1��u + �F1F2,� − F2F1,���� + �F̄1F̄2,�̄ − F̄2F̄1,�̄���̄ + P Re�F1F2,�� − F2F1,����P

�13�

where the indices 1 ,2 refer to vectors k1, k2, respectively.
In the Abelian case, Eq. �11� implies

A1B2 = A2B1, �14a�

F1F2,� = F2F1,�, �14b�

Re�F1F2,�� − F2F1,��� = 0. �14c�

It follows from �14b� that F1 is proportional to F2 and �14c� is satisfied.
Due to �14a� we can assume without loss of generality that A2=B2=0. Then F2�0, and using

the gauge freedom in � we can set F2= i. Then F1=C=const�R follows from �14b� and the
remaining freedom in the choice of k1. Therefore, the symmetry generators are

k1 = �4Au + B��u + C�x − AP�P, k2 = �y . �15�

The invariance of a solution P of �5� with respect to k2 implies

P = p�u,x� . �16�

Invariance with respect to k1 gives

�4Au + B�P,u + CP,x = − AP . �17�

Depending on values of A, B, and C, we can distinguish five conjugacy classes of two-dimensional
Abelian subalgebras of g. They are listed in Table II. �Here, as well as in Tables III and IV, the
symbol p� denotes a derivative of p with respect to its argument.�

In the non-Abelian case, Eq. �12� gives

TABLE I. Invariant solutions with single symmetry.

CC k P RT equation

1 �u p�� , �̄� p2����̄ ln p=Re �

2 4u�u− P�P u−1/4p�� , �̄� p2����̄�p2����̄ ln p�= 3
4

3 �u−���− �̄��̄− P�P
eup�z , z̄� p2�z�z̄�p2�z�z̄ ln p�−3�z�z+ z̄�z̄�ln p+3=0, z=e−u�

4 �y p�u ,x� p2�x
2�p2�x

2 ln p�+3�u ln p=0

5 4Au�u+���+ �̄��̄+ P�1−A��P
u�1−A�/4Ap�z , z̄� 4Ap2�z�z̄�p2�z�z̄ ln p�+3�A−1�+3�z�z+ z̄�z̄� ln p=0,

z=u−�4A�−1
�
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4�A2B1 − A1B2� = 4A2u + B2, �18a�

F1F2,� − F2F1,� = F2, �18b�

P Re�F1F2,�� − F2F1,��� = P�Re F2,� − A2� . �18c�

It follows from �18a� that

A2 = 0, B2�1 + 4A1� = 0. �19�

Differentiating �18b� and its complex conjugate, we conclude that �18c� follows from �18b�.
Proceeding as in the Abelian case, we obtain results summarized in Table III.

IV. SOLUTIONS WITH MORE SYMMETRIES

All Lie algebras of dimension greater than three contain a three-dimensional subalgebra. Let
ki, i=1,2 ,3 be its generators. In the case of Bianchi type VIII or IX, it follows from �13� that
Ai=Bi=0. Then the fields k1, k2, and k3 are tangent to a two-dimensional surface and invariant
solutions are excluded. For all other Bianchi types, the algebra contains a two-dimensional Abe-
lian subalgebra. One can construct invariant solutions as special cases of those described in Table
II. After lengthy calculations one obtains only the trivial solution P=const or P=const·x3/2 given
by Robinson and Trautman.20 These are also solutions of the Robinson-Trautman equation for
m=0. Thus, the assumption of three or more symmetries does not lead to any new interesting
solutions.

V. SYMMETRY TRANSFORMATIONS FOR m=0

Suppose now that m=0. In this case Eq. �3� can be integrated to a second order equation,

P2����̄ ln P = Re ��u,�� , �20�

where � is holomorphic with respect to �. If �,��0, one can transform �20� to the equation9

TABLE III. Invariant solutions with two non-Abelian symmetries.

TABLE II. Invariant solutions with two Abelian symmetries.

CC k1 k2 P RT equation

A.1 �u �y p�x� p2�ln p��=x

A.2 �x �y p�u� p�=0

A.3 �u+�x �y p�u−x� p2(p2�ln p��)�+3�ln p��=0

A.4 4u�u− P�P �y u−1/4p�x� p2(p2�ln p��)�= 3
4

A.5 4Au�u+�x−AP�P �y u−1/4p(�4A�−1 ln u−x) p2(p2�ln p��)�+ 3
4A �ln p��= 3

4
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P2����̄ ln P = − Re � . �21�

Substituting

P = x3/2p��, �̄� �22�

into �21�, we get

p2�� ln p − 3/8� = − 1. �23�

Here �=x2����̄ is the Laplace operator on a pseudosphere with the metric

g =
d� d�̄

x2 , �24�

which can be put into the standard form

g =
4 d� d�̄

�1 − ��̄�2
, �25�

by means of the transformation �= ��+1� / ��−1�. The operator � is preserved by the transforma-
tions

� � �� =
a� + ib

ic� + d
, a,b,c,d � R , �26�

corresponding to an action of SL�2,R� on the pseudosphere.
It follows from �26� that infinitesimal transformations are generated by vector fields of the

form

k = �iA�2 + B� + iC��� + c.c., �27�

where A, B, and C are real constants. Using symmetry transformations, we can distinguish three
conjugacy classes of one-dimensional subalgebras of the symmetry algebra for m=0 �Table IV�.

Given a solution of �21�, we can apply the transformation ��= f�u ,�� to obtain a class of
solutions of �20�.

Note that the only solution of �23� invariant with respect to two independent fields of the form
�27� is p=�8/3, which gives the well known solution P=const·x3/2 found by Robinson and
Trautman.20

VI. DISCUSSION

We have examined point symmetries of the Robinson-Trautman equation �3�. Forms of solu-
tions in the case of one or two symmetries were given, as well as the corresponding reduced
equations. Note that all known9 exact solutions of �3� have two or three symmetries and belong to
one of the cases considered here.

The assumption of symmetry does not seem to exclude regular solutions corresponding to

asymptotically flat metrics. The coordinates � , �̄ used in Tables I–III can differ from the hypotheti-

TABLE IV. Invariant solutions for m=0.

CC k P RT equation

0.1 i��2−1���− i��̄2−1���̄
p�r�, r= � �+1

�−1 � 1
4 �1−r2�2 1

r (r�ln p��)�− 3
8 +p−2=0

0.2 ���+ �̄��̄
p���, �=rei� 1

4 cos2 ��ln p��− 3
8 +p−2=0

0.3 i���−��̄� p�x� 1
4x2�ln p��− 3

8 +p−2=0
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cal Bondi-Sachs coordinates. For instance, in case 4 of Table I, the function P depends on x, which

becomes ln ���� under the transformation ����=exp���. To achieve regularity of P̂, one should
demand that P is everywhere finite, positive, and

lim
����→�

����−1P = a�u�, lim
����→0

����P = b�u� , �28�

for some positive functions a and b. Rewriting �28� in terms of �, we get

lim
x→−�

exP = a�u�, lim
x→�

e−xP = b�u� , �29�

which means that P behaves like e�x�f�u� for large �x�.
In the case A.3 �see Table II�, the Robinson-Trautman equation can be solved analytically.

This way one obtains the so-called C-metrics. A possible physical interpretation of these metrics as
well as their twisting generalizations �the spinning C-metrics� was given recently.5–8
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A recent technique allows one to identify and investigate solvable dynamical sys-
tems naturally interpretable as classical many-body problems, being characterized
by equations of motion of Newtonian type �generally in two-dimensional space�. In
this paper we tersely review results previously obtained in this manner and present
novel findings of this kind: mainly solvable variants of the goldfish many-body
model, including models that feature isochronous classes of completely periodic
solutions. Different formulations of these models are presented. The behavior of
one of these isochronous dynamical systems in the neighborhood of its equilibrium
configuration is investigated, and in this manner some remarkable Diophantine
findings are obtained. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2344850�

I. INTRODUCTION

Over a quarter century ago a class of solvable dynamical systems was introduced, naturally
interpretable as classical many-body problems characterized by Newtonian equations of motion
�“accelerations proportional to forces:” with appropriate velocity-dependent one- and two-body
forces�.2

Terminology: A dynamical system is called solvable whenever the solution of its initial-value
problem can be reduced to purely algebraic operations, typically to finding the zeros of a polyno-
mial the coefficients of which are explicitly known in terms of the initial data and of time, or
equivalently to finding the eigenvalues of a matrix the time evolution of which is explicitly known.

The simplest example of this kind is characterized by the equations of motion

z̈n = i�żn + 2 �
m=1,m�n

N
żnżm

zn − zm
. �1�

Notation: Here and hereafter superimposed dots denote differentiations with respect to the
�real� independent variable t �“time”�, i is the imaginary unit �i2=−1�, the dependent variables
zn�zn�t� are generally complex, N is a positive integer �N�2�, indices such as n, m generally
range from 1 to N �unless otherwise stated�, and � is a real constant �for definiteness, non-
negative� to which �whenever this constant does not vanish� is associated the basic period

T =
2�

�
. �2�

The model with �=0 might be considered the simplest one; but the model with ��0 has the
remarkable property to be isochronous and is in any case related by a simple transformation to the
same model with �=0, see the following

Remark 1.1: The model characterized by the equations of motion �1� with �=0, i.e.,

a�Electronic mail: mario.bruschi@roma1.infn.it
b�Electronic mail: francesco.calogero@roma1.infn.it
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�n� = 2 �
m=1,m�n

N
�n��m�

�n − �m
�3�

�where we conveniently changed notation, denoting the dependent variables as �n��� and differ-
entiations with respect to the independent variable � by appended primes�, is related to the model
characterized by the equations of motion

z̈n = �2� + 1�i�żn + ��� + 1��2zn + 2 �
m=1,m�n

N
�żn − i��zn��żm − i��zm�

zn − zm
�4�

�which reduce to �1� for �=0� via the following change of dependent and independent variables:

zn�t� = exp�i��t��n���, � =
exp�i�t� − 1

i�
. �5�

This transformation, introduced in Ref. 3 and often referred to as “the trick,” has been subse-
quently largely exploited to create “�-modified” dynamical systems that generally feature �pro-
vided � is real and rational� the remarkable property to be isochronous, with the period T, see �2�,
or an integer multiple of it: see for instance Refs. 5, 6, 13, 7, 8, 17, 1, 15, 11, 12, 9, 10, and 21 �and
additional references quoted in these papers�. This can in particular be seen as the cause underly-
ing the isochronous character of the goldfish model �1� with ��0, as indeed shown by its
solution, see the following. �

Terminology: A dynamical system is called isochronous if it features in its phase space an
open region �having therefore full dimensionality� where all its solutions are completely periodic
�i.e., periodic in all degrees of freedom� with the same period �independent of the initial data,
provided they are inside the isochronicity region�. And let us moreover emphasize that dynamical
systems obtained via the trick, see �5�, from completely integrable, or solvable, systems, often
feature the even more remarkable property that all their nonsingular solutions �namely, not only
those in some appropriate subregion of their natural phase space� are completely periodic with
periods that are integer multiples of T, see �2�, besides being independent of the initial data for
sufficiently small variations of these data �why this is so is explained in the literature, see for
instance Ref. 6�. It is therefore justified to consider them as instances of “nonlinear harmonic
oscillators.”16

Remark 1.2: The Newtonian equations of motion �1� are yielded in the standard manner by the
Hamiltonian

H�p� ,z�� = �
n=1

N � i�zn

c
+ exp�cpn� �

m=1,m�n

N
1

zn − zm
	 , �6�

where c is an arbitrary �nonvanishing� constant. Some, but not all, of the Newtonian equations of
motion written in the following are as well Hamiltonian, namely they can be obtained in the
standard manner from an appropriate Hamiltonian. But in this paper we do not elaborate any
further on this aspect of the results presented herein.19

�

Remark 1.3: Clearly �see �1� and �4� with ��− 1
2 � if � does not vanish the time evolutions of

the dependent variables zn�t� necessarily take place in the complex z-plane. Only in the special
case when �=0 �or �=− 1

2 � the motion of the N coordinates zn�t� could be limited to the real axis.
In the following �as already mentioned earlier� we assume that the coordinates zn�t� are complex:
motions taking place in the �complex� plane are in any case more interesting �see also the follow-
ing Remark 1.4� than those limited to the real axis. �

Remark 1.4: By identifying the complex z-plane with the real �“physical”� horizontal plane via
the correspondence z↔r� with the assignment

z = x + iy, r� = �x,y,0� , �7�
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the Newtonian equations of motion �4� take the following rotation-invariant form:

r�̈n = �2� + 1��k̂ ∧ r�̇n + ��� + 1��2r�n + 2 �
m=1,m�n

N

rnm
−2 
�r�̇ − i��r�n���r�̇m − i��r�m� · r�nm� + �r�̇m − i��r�m�

���r�̇n − i��r�n� · r�nm� − r�nm��r�̇n − i��r�n� · �r�̇m − i��r�m��� , �8�

where k̂= �0,0 ,1� is the unit vector orthogonal to the horizontal plane, the symbols ∧ respectively
· sandwiched between two vectors denote the standard vector, respectively, scalar products, and we
use the short-hand notation r�nm�r�n−r�m entailing rnm

2 =rn
2+rm

2 −2r�n ·r�m. The models considered in
the following could be similarly reformulated in terms of motions in the physical horizontal plane;
we will refrain from doing so, leaving this task to the interested reader, who will find guidance to
perform this transition, for instance, in Ref. 4 or in Chapter 4 �“Solvable and/or integrable many-
body problems in the plane, obtained by complexification”� of Ref. 6 or in Ref. 13. But we will
hereafter feel free to refer to the coordinates zn�t� as describing the positions of point particles
moving in the �complex� z-plane, in the context of a many-body dynamics characterized by
Newtonian equations of motion. �

The solvable character of the model �1� is demonstrated by the following result:2,6 the solution
of the initial-value problem for the Newtonian equations of motion (1) is given by the N roots zn�t�
of the following algebraic equation in the variable z:

�
n=1

N
żn�0�

z − zn�0�
=

i�

exp�i�t� − 1
. �9�

Note that, by multiplying this algebraic equation by �n=1
N �z−zn�0��, one transforms it into a

polynomial equation of degree N in the variable z, evidencing thereby that it indeed has generally
N roots. Also note that, provided ��0, the time evolutions of all the coefficients of this polyno-
mial are periodic with period T, see �2�, entailing that the time evolution of each particle coordi-
nate zn�t� is as well periodic with such a period �in an open region of phase space�, or possibly �in
every other region of phase space� with an integer multiple of this period �not exceeding N, indeed
generally much smaller21� due to the possibility that the zeros of the polynomial get exchanged
among each other through the motion.

The neat character of the Newtonian equations of motion �1�, as well as their Hamiltonian
character, see �6�, and their physical version, see �8� with �=0, suggested attributing �in the
context of a conference devoted to the celebration of the 60th birthday of V. E. Zakharov5 � to this
many-body problem the honorary name of “goldfish” �this name was originally attributed to model
�1� with �=0, but is as well used for this model with nonvanishing real �, having the additional
remarkable property to be isochronous; anyway these two models are related by the simple
transformation �5� with �=0�. This terminology originated from the following description of the
search for integrable systems given by V. E. Zakharov: “A mathematician, using the dressing
method to find a new integrable system, could be compared with a fisherman, plunging his net into
the sea. He does not know what a fish he will pull out. He hopes to catch a goldfish, of course. But
too often his catch is something that could not be used for any known to him purpose. He invents
more and more sophisticated nets and equipments and plunges all that deeper and deeper. As a
result he pulls on the shore after a hard work more and more strange creatures. He should not
despair, nevertheless. The strange creatures may be interesting enough if you are not too prag-
matic. And who knows how deep in the sea do goldfishes live?”28 Subsequently the name “gold-
fish” has been, more generally, used to refer to various variants �generally isochronous, but
possibly not integrable� of the original model �1�: see, for instance, Refs. 14, 13, 7, 8, 17, and 1.
The title of the present paper reflects as well this language and refers to a current development—as
detailed in the following—that calls to mind the research pattern poetically described by V. E.
Zakharov, as quoted earlier.

Indeed recently a direct technique to manufacture solvable dynamical systems has been
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used13,7,8,17,1 to identify many-body problems, many of which can be considered variants of the
basic goldfish model �1�. This technique is tersely reviewed in Sec. II, where we also list the main
solvable many-body problems obtained in this manner and we report the additional, novel results
of this kind obtained in the present paper. As explained in the following, a natural first outcome of
this technique is to yield solvable many-body problems characterized by Newtonian equations of
motion with one- and two-body forces, the latter of which however feature generally multiplica-
tive coefficients, playing the role of “coupling constants” but being instead time-dependent, their
time evolution being characterized by a system of coupled ODEs that also contain the independent
variables zn�t� identifying the particle positions in the many-body context. Only in exceptional
cases—each of which seems to require a “miracle” to occur—it is possible to get rid of these
time-dependent coefficients via an appropriate ansatz and to thereby identify a proper solvable
many-body problem involving only the particle coordinates zn�t� and no additional “auxiliary
variables.” Hence this research strategy has so far proceeded via a sequence of con-
tributions13,7,8,17,1 each of which has essentially identified �and investigated� some new solvable
many-body problem obtained in this manner; and the present paper is one more step in this
sequence, its very title echoing this characteristic. And let us mention immediately—for the hasty
browser—that the �in our opinion� most interesting novel finding reported in the following is the
isochronous N-body model problem characterized by the Newtonian equations of motion �52� and
its solution as given by Proposition 2.7, as well as its alternative formulation ��66a�–�66c�� the
solution of which is provided by Proposition 2.11. Likewise, the hasty browser only interested in
the Diophantine findings may go immediately to the end of Sec. II.

The developments that yield the main novel results reported in Sec. II are detailed in Sec. III.
At the end of Sec. II we also exhibit alternative versions—obtained, and more fully presented, in
Sec. IV—of the main solvable models identified in this paper, as well as some Diophantine
findings obtained in Sec. V by investigating the behavior in the neighborhood of its equilibrium
configuration of the �alternative version of the� main new solvable isochronous system identified
in this paper. Hints regarding future developments are proffered in Sec. VI, and a list of useful
relations is provided in the Appendix.

II. RESULTS

The starting point of this approach is a solvable matrix evolution equation, say

Ü = F�U,U̇� . �10�

Here and hereafter U=U�t� is a time-dependent N�N matrix, and the assumed solvability of this
matrix ODE entails the possibility to write in explicit form the solution of the corresponding
initial-value problem.

The function F�U , U̇� is assumed not to depend on any other matrix besides U and U̇ �the
ordering of which in its definition is of course relevant, since these two matrices generally do not
commute�, so that there hold the relation

RF�U,U̇�R−1 = F�RUR−1,RU̇R−1� , �11�

for any �invertible� N�N matrix R.
The main idea is then quite simple: to investigate the time evolution of the eigenvalues zn�t� of

the matrix U�t�. And let us immediately emphasize, before proceeding to exhibit the form taken by
the equations that describe this time evolution, that whenever the time evolution of the N�N
matrix U�t� is periodic with a period T, the corresponding evolution of each of its eigenvalues—
unless it runs into a singularity �this may happen, but only for special, nongeneric, initial data�—is

obviously as well periodic with the same period T or with a period T̃= pT with p a positive integer
�again, due to the possibility that through the time evolution some eigenvalues get exchanged: this
entails that the largest possible value of p is N, although generally it is much less, see for instance
Ref. 21�.
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To investigate the time evolution of the eigenvalues zn�t� of U�t� we set

U�t� = R�t�Z�t��R�t��−1, Z�t� = diag�zn�t�� , �12�

and we take note of the consequential identities

U̇ = R
Ż + �M,Z��R−1, �13a�

Ü = R
Z̈ + �Ṁ,Z� + 2�M,Ż� + �M,�M,Z���R−1, �13b�

where we set

M = R−1Ṙ . �14�

Notation: Here and hereafter �A ,B� denotes the commutator of the two matrices A and B,

�A,B� � AB − BA . �15�

Remark 2.1: The diagonalizing matrix R, see �12�, is clearly defined up to multiplication from
the right by an arbitrary diagonal N�N matrix D, hence the matrix M is defined up to the “gauge
transformation”

M � D−1MD + D−1Ḋ , �16�

which, thanks to the arbitrariness of the diagonal matrix D, entails that the diagonal part of the
matrix M can be assigned arbitrarily �of course modifying correspondingly its off-diagonal
part�. �

Via �12� and �13� the solvable matrix ODE �10� becomes

Z̈ + �Ṁ,Z� + 2�M,Ż� + �M,�M,Z�� = F�Z,Ż + �M,Z�� , �17�

hence by separating the diagonal and off-diagonal parts of this matrix ODE one immediately
arrives at the following systems of �altogether N2 coupled scalar� ODEs:

z̈n = − 2 �
m=1,m�n

N

�zn − zm�MnmMmn + �F�Z,Ż + �M,Z���nn, �18a�

Ṁnm = − 2
żn − żm

zn − zm
Mnm − �	n − 	m�Mnm + �

�=1,��m,n

N
zn + zm − 2z�

zn − zm
Mn�M�m

−
�F�Z,Ż + �M,Z���nm

zn − zm
, n � m . �18b�

Note that we denote the diagonal elements of the N�N matrix M as 	n, Mnn�t��	n�t� �we never
use the convention according to which repeated indices are summed upon�, and recall that, as
explained earlier �see Remark 2.1�, their values can be chosen at our convenience; the rest of the
notation is, we trust, self-evident. Note that �10� �a matrix evolution equation amounting to N2

coupled ODEs�, characterizing the time evolution of the N2 matrix elements of the N�N matrix
U�t�, has now been replaced by the system �18�, amounting again altogether to N+N�N−1�=N2

coupled ODEs, and characterizing the time evolution of the N eigenvalues zn�t� and of the N�N
−1� off-diagonal matrix elements Mnm�t�, n�m.

Because of the way these systems of ODEs have been derived they are, as it were by defini-
tion, solvable. And it is clear that the first system of N coupled ODEs, �18a�, has indeed the
structure of a Newtonian N-body problem characterizing the motion of the N particle coordinates
zn�t�, while the second system of N�N−1� ODEs, �18b�, characterizes the evolution of the N�N
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−1� “auxiliary variables” Mnm�t� �with n�m�. It might be possible to attribute as well to these
auxiliary variables Mnm�t� a physical meaning in terms of internal �“spin”� degrees of freedom:
pioneering steps in this direction were made long ago, simultaneously and independently, by
Gibbons and Hermsen20 and by Stefan Wojciechowski.26,27 As already mentioned, in the series of
papers13,7,8,17,1 of which the present one is a natural continuation a different goal has instead been
sought: to identify cases in which, via an appropriate ansatz �expressing the auxiliary variables in
terms of the particle coordinates, and possibly also of their derivatives: see the following�, thanks
to some “miraculous” identities, it is possible to satisfy identically the second system, �18b�,
namely to get rid altogether of the auxiliary variables, obtaining thereby from �18a� a genuine
N-body problem characterized by Newtonian equations of motion involving only the particle
coordinates zn�t�. The possibility to do so depends on the specific choice of the original solvable
matrix ODE �see �10�; actually in some cases, see the following, it might be preferable to take as
starting point a first-order matrix ODE or two coupled first-order matrix ODEs rather than a
second-order matrix ODE�, and moreover on the identification of an appropriate ansatz: general
rules to identify a suitable combination of these two elements are not known, so the approach
followed so far has been a trial and error one, which has yielded over time a few successes, as
reported in previous papers13,7,8,17,1 and in the present one. We now review tersely these previous
results, and then report the novel ones.

In Ref. 13 the starting point of the treatment is the linear �and obviously solvable� second-
order matrix ODE

Ü + aU̇ + bU = 0, �19�

where a and b are two arbitrary constants, and the solvable many-body problems manufactured
are well-known classical models6 the solvability of which was already known thanks to the
technique invented by M. A. Olshanetsky and A. M. Perelomov, which indeed has a close rela-
tionship to that described herein: see their original papers,22,24,25 as well as Section 2.1.3.2 �“The
technique of solution of Olshanetsky and Perelomov �OP�”� of Ref. 6.

In Ref. 7 the starting point of the treatment is the solvable second-order matrix ODE

Ü = aU̇U−1U̇ , �20�

and the solvable many-body problems manufactured are again well-known classical models the
solvability of which was already known thanks to the technique invented by M. A. Olshanetsky
and A. M. Perelomov, but they include in addition the following generalized goldfish model:

z̈n = i�żn + 2 �
m=1,m�n

N
żnżm

zn − zm
+ a�

n=1

N
żnżm

zm
. �21�

Here and in �20� a is an arbitrary �of course scalar� constant; it is plain that for a=0 the New-
tonian equations of motion �21� coincide with those, �1�, of the basic goldfish model. It has
moreover been shown7 that the solvability of this generalized goldfish model, �21�, could be
directly inferred from the solvability of the goldfish many-body model �1�. The treatment can be
easily extended to a more general �and isochronous if � is rational� model bearing to �21� the
same relation that �4� bears to �1�.

In Ref. 8 the starting point of the treatment is the solvable second-order matrix ODE

Ü = a�U̇U + UU̇� , �22�

and the solvable many-body problem manufactured is characterized by the Newtonian equations
of motion

z̈n = 2ażnzn + 2 �
m=1,m�n

N
żnżm

zn − zm
. �23�
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Here a is again an arbitrary �of course scalar� constant, and these equations of motion constitute
again a generalization of those of the �nonisochronous goldfish� model with �=0, to which they
clearly reduce for a=0. An isochronous variant of these Newtonian equations of motion obtains
via the trick �see �5� with �=1�:

z̈n = 3i�żn + 2�2zn + 2a�żn − i�zn�zn + 2 �
m=1,m�n

N
�żn − i�zn��żm − i�zm�

zn − zm
. �24�

In Ref. 17 the starting point of the treatment is the solvable first-order matrix ODE,

U̇ = aU2 + C , �25�

where a is again an arbitrary scalar constant and C is an arbitrary constant matrix. Note that
time-differentiation of this first-order matrix ODE reproduces the second-order matrix ODE �22�;
indeed the novelty of the results of Ref. 17 relative to those of Ref. 8 is not due to the selection of
a different solvable matrix ODE as starting point of the treatment, but rather to the identification
of a different ansatz to get rid of the auxiliary variables, yielding the solvable many-body problem
characterized by the Newtonian equations of motion

z̈n = 2ażnzn + 2 �
m=1,m�n

N �żn − azn
2��żm − azm

2 �
zn − zm

. �26�

These Newtonian equations of motion differ from �23�, but they provide again a generalization of
those of the �nonisochronous� goldfish model with �=0, to which they clearly reduce for a=0.
And an isochronous variant of these Newtonian equations of motion obtains again via the trick
�see �5� with �=1�:

z̈n = 3i�żn + 2�2zn + 2a�żn − i�zn�zn + 2 �
m=1,m�n

N �żn − i�zn − azn
2��żm − i�zm − azm

2 �
zn − zm

. �27�

In Ref. 1 the starting point of the treatment is the solvable system of two coupled first-order
matrix ODEs,

U̇ = aU2 + V, V̇ = bV , �28�

where a is again an arbitrary scalar constant and the scalar b might be an arbitrarily given
function of time. Note that for b=0 this matrix ODE reduces to �25� �with V=C�. The main
contribution of Ref. 1 is to identify �and investigate� two solvable many-body problems. The first
is characterized by the following �autonomous� Newtonian equations of motion:

z̈n = 2ażnzn + b�żn − azn
2� + 2 �

m=1,m�n

N �żn − azn
2��żm − azm

2 �
zn − zm

. �29�

Here b is an arbitrary constant; clearly for b=0 this model reduces to �26�. The second is
characterized by the following �autonomous� Newtonian equations of motion �which obtains1 via
the trick from an appropriate time-dependent choice of the function b�t� in �28��:

z̈n = �3 + k�i�żn + �2 + k��2zn + a�2żn − �2 + k�i�zn�zn

+ 2 �
m=1,m�n

N �żn − i�zn − azn
2��żm − i�zm − azm

2 �
zn − zm

. �30�

Here k is also an arbitrary constant, but the case with k a �positive or negative� integer is
particularly interesting, since this model is then isochronous �with the single exception of the case
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k=−2, when the solutions are instead multiply periodic�. And note that this model reduces to �27�
for k=0.

Let us now turn to the presentation of the new results that constitute the main contribution of
the present paper.

The starting point is the following solvable system of two coupled first-order matrix ODEs:

U̇ = 
 + �VU , �31a�

V̇ = aV2 + bV + c . �31b�

Here 
, �, a, b, c are five scalar quantities, and it is clear that this system is solvable �at least in
the sense that its solution is achievable by quadratures� if the three parameters a, b, c, are all
constant or if either a or c vanishes, while 
, � can be two �arbitrarily assigned� functions of
time: indeed the solution can then be obtained by first solving the second, �31b�, of these two
matrix ODEs, determining thereby explicitly V�t�, and by then solving the first, �31a�, of these two
matrix ODEs, which is linear in U�t� and hence solvable �at least in the sense of being reducible
to quadratures� once V�t� is known. But in fact we shall need to consider this system of matrix
ODEs only in some special cases, see the following.

Remark 2.2: It is clear that adding linear terms �namely, arbitrary constants times U or V� to
the right-hand side of �31a� entails no significant generalization, since it corresponds to adding a
scalar term to V in �31a� �which merely amounts to redefining the three constants a, b, c, in �31b��
or a scalar term to U in �31a� �which merely shifts all the eigenvalues of U by a constant�.
Likewise, as long as we restrict consideration to a constant � �as we will hereafter do�, it is clear
that no generality is lost by setting this constant to unity, as we will indeed hereafter do,

� = 1, �31c�

since this merely amounts to a redefinition of V that can be compensated by appropriate modifi-
cations of the three constants a ,b ,c in �31b�. And adding a term �VU to the right-hand side of
�31a� entails no significant generalization, since it amounts to a change of the constant � and
moreover to adding the term ��V ,U�, the presence of which on the right-hand side of �31a� has no
effect on the eigenvalues of U�t�. Finally let us note that some of the constants we keep �such as

� or introduce in the following �such as �� could be rescaled away: we prefer not to do so,
because one forsakes in this manner the possibility to make quick dimensional checks of the
equations one writes, and also to consider special cases in which some of these constants vanish.
However at the end of this section, and in some of the following sections—when we obtain results
the interest of which is presumably rather “mathematical” than “physical”—we get rid of all
unessential constants and deal only with dimensionless quantities. �

The system �31� can clearly be reformulated as a single second-order �and of course as well
solvable� ODE for the matrix U�t�:

Ü = cU + �U̇ − 
�
b − U−1�a
 − �a + 1�U̇�� �32�

�to obtain this matrix ODE note first that �31a� with �31c� entails

V = �U̇ − 
�U−1, �33�

then time differentiate �31a�, use �31b� to eliminate V̇, and finally use �33� to eliminate V; note that
to make these steps we assumed 
 to be time-independent, but we made no assumption on the
time-dependence of a, b, c�.

It can then be shown �see Sec. III� that via two �quite different� appropriate ansatzen two
�quite different� solvable many-body problems can be manufactured.

The first �and less interesting� one of these two many-body systems obtains provided
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b = 0, a = − 1
2 , �34�

and is characterized by the following Newtonian equations of motion:

z̈n = czn +
żn

2 − 
2

2zn
−

g2

2 �
m=1,m�n

N
zn�zn + 3zm�
�zn − zm�3 , �35�

where g is an arbitrary constant. Via the following redefinition of the dependent variables,

zn�t� = wn
2�t� , �36�

this system of ODEs gets reformulated as follows:

ẅn =
c

2
wn −


2

4wn
3 −

g2

8 �
m=1,m�n

N � 1

�wn − wm�3 +
1

�wn + wm�3	 , �37�

and it is thereby recognized as a known system the solvability of which was established long
ago.23 Hence this case is not pursued in the following.

The second of these two solvable systems of ODEs obtains when c vanishes,

c = 0, �38�

and it reads as follows:

z̈n = �żn − 
��b +



zn
+ �1 + a��

m=1

N
żm − 


zm
+ 2 �

m=1,m�n

N
żm − 


zn − zm
	 , �39�

where b might also be time-dependent �see the following�. In the autonomous case with constant
b= i�, when this equation reads

z̈n = �żn − 
��i� +



zn
+ �1 + a��

m=1

N
żm − 


zm
+ 2 �

m=1,m�n

N
żm − 


zn − zm
	 , �40�

it can be clearly considered a generalized goldfish model: indeed for 
=0 and a=−1 this system
reduces to �1�. And more generally, whenever 
 vanishes, in which case this system reads

z̈n = �i� + �1 + a�S�żn + 2 �
m=1,m�n

N
żnżm

zn − zm
, �41a�

S = �
n=1

N
żn

zn
, �41b�

it can again be reduced �albeit less trivially so� to the standard goldfish model. Indeed it is easily
seen �by dividing �41a� by zn and summing over n from 1 to N� that the system of ODEs �41�
entails

Ṡ�t� = i�S + aS2, �42a�

hence

S�t� = S�0� exp�i�t��1 − aS�0�
exp�i�t� − 1

i�
	−1

, �42b�

hence �as the diligent reader will readily verify� via the change of dependent variable
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zn�t� = �n���, � =
1

S�0���1 − aS�0�
exp�i�t� − 1

i�
	−1/a

− 1 �43�

the system of ODEs �41� gets transformed into the goldfish system �3�.
But when 
 does not vanish �as we hereafter assume, 
�0, unless otherwise explicitly

indicated�, the many-body problem of goldfish type characterized by the Newtonian equations of
motion �40� cannot be reduced to any previously known system: it is a solvable model the novelty
of which is demonstrated by the fact that its solution involves special functions not featured in the
solution of any previously known solvable model. Indeed, as shown in the following Sec. III, the
solution zn�t� of the initial-value problem for the Newtonian equations of motion �40� is given by
the following Proposition 2.3 that is now formulated for the case with � real �for a more general
formulation see Sec. III�.

Proposition 2.3: The particle coordinates zn�t� that provide the solution to the initial-value
problem for the many-body system characterized by the Newtonian equations of motion (40) with
� real are the N eigenvalues of the N�N matrix U�t� defined in terms of the initial data zn�0�,
żn�0� as follows:

U�t� = �1 − P��U�0� + 
t� + P
1 + a�exp�i�t� − 1��−1/a�U�0� + 
u�t�� , �44a�

where the N�N matrix U�0�, the N�N projection matrix P, and the scalar constant  are defined
as follows:

U�0� = diag�zn�0�� , �44b�

Pnm = −

�żn�0� − 
��żm�0� − 
��1/2

i�zm�0�
, P2 = P , �44c�

 = − �
n=1

N
żn�0� − 


i�zn�0�
, �44d�

and the scalar function u�t� is defined as follows: if

�1 − a� � �a�, i.e., Re�a� �
1
2 , �44e�

then

u�t� = 1/a�
s=0

� �1/a

s
��1 − a

a
�s1 − exp��s −

1

a
�i�t	

�s −
1

a
�i�

, �44f�

if instead

�1 − a� � �a�, i.e., Re�a� �
1
2 , �44g�

then

u�t� = �1 − a�1/a�t + �
s=1

� �1/a

s
�� a

1 − a
�sexp�si�t� − 1

si� 	 . �44h�

These formulas are applicable as written provided a�0 (and note that the sums in (44f) and (44h)
terminate, yielding of course the same result, if a is the inverse of a positive integer); if a=0 the
expression 
1+a�exp�i�t�−1��−1/a in (44a) becomes exp
−�exp�i�t�−1��, and expression (44h)
becomes
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u�t� = exp�− ��t + �
s=1

�
s

s!

exp�si�t� − 1

si� 	 . �44i�

Finally, let us note that the above-written formulas assume that �0 (see in particular (44c)).
For the special case in which  vanishes the expression of U�t� is somewhat simpler:

U�t� = U�0� + 
t + V�0�� exp�i�t� − 1

i�
�U�0� −




i�
	 + 
t exp�i�t� �45a�

with

�V�0��nm =

�żn�0� − 
��żm�0� − 
��1/2

zm�0�
. � �45b�

Notation: Here and throughout the symbol � y
x� denotes the generalized binomial coefficient:

�x

y
� =

��x + 1�
��y + 1���x − y + 1�

. �46�

This of course implies that � y
x� vanishes whenever y or x−y are negative integers, unless x is also

a negative integer.
Remark 2.4: If 
 vanishes and the inequality �44e� holds and a�1/ p with p an arbitrary

positive integer, then the N�N matrix U�t� is periodic with period T, see �2�:

U�t + T� = U�t� . � �47�

Remark 2.5: As entailed by the preceding Remark 2.4 and by Proposition 2.3, the many-body
problem characterized by the Newtonian equations of motion of goldfish type �40� is isochronous
provided 
=0 and a�1/ p with p an arbitrary positive integer: a condition on the initial data
sufficient to guarantee that its solution be completely periodic with a period which is an integer
multiple of T, see �2�, is validity of the inequality �44e� with

 = −
S�0�
i�

�48�

�see �41b� and �44d� with 
=0�. But, as noted earlier, this model with 
=0 is not new, indeed its
time evolution is rather trivial, see �44�, hence the study of this case is not pursued in the
following.

Remark 2.6: If a�1/ p with p an arbitrary positive integer and the inequality �44e� holds, the
N�N matrix PU�t� is periodic with period T, see �2�:

PU�t + T� = PU�t� . � �49�

It is moreover possible to manufacture another isochronous many-body problem of goldfish
type, by starting from the following version of the system of ODEs �39�,

�n� = ��n� − 
��b��� +



�n
+ �1 + a��

m=1

N
�m� − 


�m
+ 2 �

m=1,m�n

N
�m� − 


�n − �m
	 . �50a�

Note that this system coincides with �39�, except for a merely notational change �the dependent
variables are here denoted as �n��n���, appended primes indicating differentiations with respect
to the independent variable ��.

It is now easy to verify that, provided
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b��� =
ki�

1 + i��
, �50b�

via the change of dependent and independent variables �as it were, just the version of the trick �5�
with �=−1�

z̃n�t� = exp�− i�t��n��� , �51a�

� =
exp�i�t� − 1

i�
, exp�i�t� = 1 + i�� , �51b�

the �nonautonomous� system of ODEs ��50a� and �50b�� yields the solvable many-body problem
characterized by the following autonomous Newtonian equations of motion:

z̈̃n = − i�ż̃n + �ż̃n + i�z̃n − 
� · �ki� +



z̃n

+ �1 + a��
m=1

N
ż̃m + i�z̃m − 


z̃m

+ 2 �
m=1,m�n

N
ż̃m + i�z̃m − 


z̃n − z̃m
	 .

�52�

Clearly the “particle coordinates” z̃n�t� are the eigenvalues of the N�N matrix Ũ�t� that is related
to the matrix U by the analog of �51�,

Ũ�t� = exp�− i�t�U��� , �53�

of course with � related to t by �51b�. It is easily seen that this implies that this matrix Ũ�t� evolves
according to

Ũ
¨

= − i�Ũ
˙

+ �Ũ˙ + i�Ũ − 
�
�k + 1 + a�i� − Ũ−1�a
 − �a + 1�Ũ˙ �� , �54�

as clearly implied �via �53�� by the basic matrix evolution equation �32� �with �38� and �50b��
satisfied by the matrix U, namely

U� = �U� − 
�� ki�

1 + i��
− U−1�a
 − �a + 1�U�� , �55�

where clearly U�U��� and appended primes denote differentiations with respect to �. And the
solution of the Newtonian equations of motion �52� is provided, as demonstrated in Sec. III, by the
following

Proposition 2.7: The particle coordinates z̃n�t� that provide the solution to the initial-value
problem for the many-body problem characterized by these Newtonian equations of motion, (52),

are the N eigenvalues of the N�N matrix Ũ�t� defined in terms of the initial data zn�0�, żn�0� as
follows:

Ũ�t� = exp�− i�t�
1 + ��̃�t� − 1�P̃�Ũ�0� + �1 − P̃�

1 − exp�− i�t�

i�
+ 
P̃ũ�t��̃�t� , �56a�

where the N�N matrix Ũ�0�, the N�N projection matrix P̃, the scalar constant ̃, and the scalar
function �̃�t� are defined as follows:

Ũ�0� = diag�zn�0�� , �56b�

P̃nm = −

�ż̃n�0� + i�z̃n�0� − 
��ż̃m�0� + i�z̃m�0� − 
��1/2

̃i�z̃m�0�
, P2 = P , �56c�
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̃ = − �
n=1

N
ż̃n�0� + i�z̃n�0� − 


i�z̃n�0�
, �56d�

�̃�t� = 
1 + ã�exp�k̃i�t� − 1��−1/a, �56e�

and the function ũ�t� is defined as follows: if

�1 − ã� � �ã�, i.e., Re�ã� �
1
2 , �56f�

then

ũ�t� = �ã�1/a�
s=0

� �1/a

s
��1 − ã

ã
�s exp�− i�t� − exp��− k̃�s −

1

a
�	i�t

�k̃�s −
1

a
� − 1	i�

, �56g�

if instead

�1 − ã� � �ã�, i.e., Re�ã� �
1
2 , �56h�

then

ũ�t� = �1 − ã�1/a��
s=0

� �1/a

s
�� ã

1 − ã
�sexp�k̃si�t� − exp�− i�t�

�k̃s + 1�i�
	 . �56i�

Note that we use throughout the short-hand notation

k̃ = k + 1. �56j�

These formulas are applicable as written provided a�0 (and note that the sums in (56g) and
(56i) terminate, yielding of course the same result, if a is the inverse of a positive integer); if a
=0 the definition (56e) must be modified to read

�̃�t� = exp
̃ �1 − exp�k̃i�t��� , �56k�

and the definition (56i) of ũ�t� must be modified to read

ũ�t� = exp�− ̃��
s=0

�
̃s

s!

exp�k̃si�t� − exp�− i�t�

�k̃s + 1�i�
. �56l�

In the special case with k=0, k̃=1, the sums in the definition of the function ũ�t� can be
performed in closed form, and one gets

ũ�t� = �ã�1/aexp�i�t/a� − exp�− i�t�
i�

for a � 0, �56m�

ũ�t� = exp�− i�t�
exp
̃�exp�i�t� − 1�� − 1

i�̃
for a = 0. �56n�

Finally, let us note that the formulas written above assume that ̃�0 (see in particular (56c)).

For the special case in which ̃ vanishes the expression of Ũ�t� is somewhat simpler:

Ũ�t� = exp�− i�t�Ũ�0� + 

1 − exp�− i�t�

i�
Ṽ�0� �57a�
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with

Ṽnm�0� =
�ż̃n�0� + i�z̃n�0� − 
�1/2�ż̃m�0� + i�z̃m�0� − 
�1/2

i�z̃m�0�
. � �57b�

Remark 2.8: The formulas, as written earlier, are valid for arbitrary values of the two con-

stants a and k̃, provided k̃� hence k̃ itself are real �Im�k̃�=0; this condition is required to guarantee
the convergence for all real values of t of the infinite series on the right-hand sides of �56g�, �56i�,
and �56l��. But the most interesting case is when k̃ hence k �see �56j�� are rational numbers,

k̃ =
p̃

q̃
, k =

p̃ − q̃

q̃
, �58�

of course with p̃ and q̃ integers �and q̃�0�. Then whenever the initial data entail, via �56d�, that

there holds the inequality �56h�, and provided moreover k̃s�−1 for every positive integer s hence

p̃�−1 �see �58��, clearly �see �56a�, �56e�, and �56i�� the matrix Ũ�t� is periodic with period T̃, see
�2�,

T̃ = q̃T, Ũ�t + T̃� = Ũ�t� . �59�

If the initial data entail instead that the inequality �56f� prevails �rather than �56h�� and moreover

a is also rational, hence k̃ /a is as well rational,

k̃

a
=

k + 1

a
=

p̌

q̌
, �60�

of course again with p̌ and q̌ integers �and q̌�0�, then provided k̃�s−1/a��1 hence q̃�q̌+ p̌�
�sq̌p̃ for any nonnegative integer s �see �58� and �60��, clearly �see �56a�, �56e�, and �56g�� Ũ�t�
is again periodic, but now with a period Ť �generally� larger than T̃,

Ť = max�q̃, q̌�T, Ũ�t + Ť� = U�t� . � �61�

Remark 2.9: As entailed by the preceding Remark 2.8 and by Proposition 2.7, the novel
many-body problem characterized by the Newtonian equations of motion of goldfish type �52�
with k rational is isochronous: if a is real but otherwise arbitrary, a condition on the initial data
sufficient to guarantee that its solution be completely periodic with a period which is an integer
multiple of T, see �2�, is validity of the inequality �56h� �provided moreover p̃�−1, see �58��; if
a is moreover rational, then all its solutions are completely periodic with a period which is an

integer multiple of T �provided moreover k̃�s−1/a��1 hence q̃�q̌+ p̌��sq̌p̃ for any non-negative
integer s, see �58� and �60��. �

In the rest of this section, and in Secs. IV and V �but not in Sec. III� we get rid of the
unessential constants � and 
. This can be done by appropriate rescaling, or equivalently by
setting �as we hereafter do, except in Sec. III�

� = 1, 
 = i . �62�

Let us emphasize that hereafter �except in Sec. III� whenever we refer to previous formulas we
understand that such assignments have been made in them.

As explained in Sec. IV, an alternative version of the system �40� is characterized by the
following system of N ODEs satisfied by the N dependent variables cm�t�:
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c̈m − �1 + �1 + a���iċm + �2N + 1 − 2m�iċm−1 + ��N − m�� + �N − m + 1��1 + a���cm−1

− �N − m��N − m + 2�cm−2 = 0, m = 1, . . . ,N, c0 = 1, c−1 = 0, �63a�

where

� � ��t� =
cN−1�t� − iċN−1�t�

cN�t�
. �63b�

This system of N coupled ODEs is no less solvable than �40�, indeed, as shown by the develop-
ments reported in Sec. IV, its solution is provided by the following

Proposition 2.10: The dependent variables cm�t� that solve the system ((63a) and (63b)) are
the N coefficients of the (monic) polynomial ��z , t� of degree N in z having the N coordinates zn�t�
solutions of (40) as its zeros,

��z,t� = �
n=1

N

�z − zn�t�� = zN + �
m=1

N

cm�t�zN−m, �64�

so that, as implied by Proposition 2.3, this polynomial is given by the formula

��z,t� = det�z − U�t�� �65�

where U�t� is the N�N matrix the time-dependence of which is given by the explicit formula (44)
[with (62)]. �

Note that this system, ��63a� and �63b��, is identically satisfied also for m=N+1 and for m
=N+2, provided one sets cN+1=cN+2=0 �consistent with �64��. And also note that this new solv-
able system of N ODEs, �63a�, looks superficially linear, but is in fact nonlinear due to the
presence in it of the quantity �, see �63b�. Indeed, the highly nonlinear �and nontrivial� character
of this system will be evident to the diligent reader who will take the trouble to write it out in the
simpler cases with N=2 and with N=1 �in the latter case the single equation of motion ��63a� and
�63b�� can be directly compared with �32�, since for N=1 U�t�=−c1�t�, see �65� and �64��.

Likewise, an alternative formulation of the system �52� is characterized by the following
system of N ODEs satisfied by the N dependent variables c̃m�t�:

c̈̃m − �K − 2m�iċ̃m + �2N + 1 − 2m�iċ̃m−1 + m�K − m�c̃m + ��N + 1 − m��K − 2m� − �̃�c̃m−1

− �N − m��N + 2 − m�c̃m−2 = 0,

m = 1, . . . ,N, c̃0 = 1, c̃−1 = 0, �66a�

where

K � K�t� = k̃ + �a + 1��N + �̃�t�� �66b�

and

�̃ � �̃�t� =
c̃N−1�t� − iċ̃N�t�

c̃N�t�
. �66c�

Here of course superimposed dots denote differentiations with respect to the independent variable
t.

Again, this system of N coupled ODEs is no less solvable than �52�, indeed, as shown by the
developments reported in Sec. IV, its solution is provided by the following.

Proposition 2.11:The dependent variables c̃m�t� that solve the system ((66a)–(66c)) are the N

coefficients c̃m�t� of the (monic) polynomial �̃�z , t� of degree N in z having the N coordinates z̃n�t�
solutions of (52) as its zeros,
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�̃�z,t� = �
n=1

N

�z − z̃n�t�� = zN + �
m=1

N

c̃m�t�zN−m, �67�

so that, as implied by Proposition 2.7, this polynomial is given by the formula

�̃�z,t� = det�z − Ũ�t�� , �68�

where Ũ�t� is the N�N matrix the time-dependence of which is given by (56a)–(56j) [with (62)].�
We do not repeat the remarks proffered above �after Proposition 2.10�, but merely note that

they are as well relevant now �up to obvious modifications�.
Remark 2.12: Provided k̃ is a rational number, k̃= p̃ / q̃ �with p̃ and q̃ integers and q̃�0, see

�58�, and moreover p̃�−1�, the Proposition 2.11 and the Remark 2.9 entail that the solution of the
nonlinear system of ODEs ��66a�–�66c�� is completely periodic with a period which is an integer
multiple Q of 2�,

c̃m�t + 2�Q� = c̃m�t� , �69�

in the following cases. �i� If a is an arbitrary �possibly even complex� number and the initial data
entail the inequality

Re�− a
N + ��0��� �
1
2 �70�

�see �66c��, then �69� holds with Q= q̃. �ii� If a is an arbitrary real and rational number so that the

number k̃ /a is itself rational, k̃ /a= p̌ / q̌ �with p̌ and q̌ integers and q̌�0, see �60� and moreover
q̃�q̌+ p̌��sq̌p̃ for any non-negative integer s�, then all solutions of the nonlinear system of ODEs
��66a�–�66c�� are completely periodic, see �69� with Q=max�q̃ , q̌�.

We end this section by formulating certain conjectures �having a Diophantine connotation,
which becomes particularly evident if one assigns integer values to all the numbers that are left
arbitrary, see the following� arrived at �up to trivial notational changes� from the results of the
preceding Remark 2.12 via the treatment of Sec. V, and by reporting some examples illustrating
them.

Conjecture 5.13: Let the two N�N matrices A and B be defined componentwise as follows:

Anm = �2n − ���n,m + �2N + 1 − 2n��n−1,m + Cn�N,m, �71a�

Bnm = n�n − ���n,m − �N + �N + 1 − n��� − 2n���n−1,m

+ �N − n��N + 2 − n��n−2,m + Cn��N−1,m + N�N,m� , �71b�

where

Cn = − �− �N−n 1

1 + f
�� N

n − 1
� + f

N + �N − n��
�N − ��

� N − �

n − � − 1
� + g�N − � − 1

n − �
�	 , �71c�

with �, f , and g arbitrary numbers; then

det�p2 + pA + B� = �
n=1

N

��p + n��p − � − 1 + n�� . � �71d�

Conjecture 5.14: Let the two N�N matrices A and B be defined componentwise as follows:

Anm = �2n − � − 1��n,m + �2N + 1 − 2n��n−1,m + Cn�N,m, �72a�

Bnm = n�n − � − 1��n,m + ��N − n��2n − � − 3� + N��n−1,m + �N − m��N + 2 − n��n−2,m

+ Cn��N−1,m + �N − � − 1��N,m� , �72b�

102701-16 M. Bruschi and F. Calogero J. Math. Phys. 47, 102701 �2006�

                                                                                                                                    



where

Cn = �− �N−n 1

1 + f
�g�N + 1 − n� − N

N
� N

n − 1
� + f��g − � − 1��N − � − 1

n − � − 1
� − �N − � − 1

n − � − 2
�	 ,

�72c�

with �, f , and g arbitrary numbers; then

det�p2 + pA + B� = �p + g���
n=1

N−1

�p + n�	��
n=1

N

�p − � − 1 + n�	 . � �72d�

Examples: For N=5 the Conjecture 5.13 states that

�
p2 + p�2 − ��1 − � 0 0 C1 �p + 5�C1

7p + 11 − 4� p2 + p�4 − �� + 2�2 − �� 0 C2 �p + 5�C2

8 5p + 13 − 3� p2 + p�6 − �� + 3�3 − �� C3 �p + 5�C3

0 3 3p + 11 − 2� p2 + p�8 − �� + 4�4 − �� + C4 �p + 5�C4

0 0 0 p + 5 − � + C5 p2 + p�10 − � + C5� + 5�5 − � + C5�
�

= �p + 1��p + 2��p + 3��p + 4��p + 5� · �p − ���p − � + 1��p − � + 2��p − � + 3��p − � + 4� �73a�
provided

C1 = −
1

1 + f
�1 +

�4 − ���3 − ���2 − ��
6

� �5 + 4���1 − ��f

20
+ g	 , �73b�

C2 =
1

1 + f
�5 +

�4 − ���3 − ��
2

� �5 + 3���2 − ��f

12
+ g	 , �73c�

C3 = −
1

1 + f
�10 + �4 − ��� �5 + 2���3 − ��f

6
+ g	 , �73d�

C4 =
1

1 + f
�10 +

�5 + ���4 − ��f

2
+ g	 , �73e�

C5 = − 5. �73f�

Likewise, for N=5 the Conjecture 5.14 states that

�
p2p�1 − �� − � 0 0 C1 �p + 4 − ��C1

7p + 8 − 3� p2 + p�3 − �� + 2�1 − �� 0 C2 �p + 4 − ��C2

8 5p + 11 − 2� p2 + p�5 − �� + 3�2 − �� C3 �p + 4 − ��C3

0 3 3p + 10 − � p2 + p�7 − �� + 4�3 − �� + C4 �p + 4 − ��C4

0 0 0 p + 5 + C5 p2 + p�9 − � + C5� + �4 − ���5 + C5�
�

= �p + 1��p + 2��p + 3��p + 4��p + 5� · �p − ���p − � + 1��p − � + 2��p − � + 3��p − � + 4� �74a�
provided

C1 =
1

1 + f
�g − 1 +

�4 − ���3 − ���2 − ���1 − ��f�5g − 4� − 5�
120

	 , �74b�

C2 = −
1

1 + f
�4g − 5 +

�4 − ���3 − ���2 − ��f�4g − 3� − 5�
24

	 , �74c�
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C3 =
1

1 + f
�2�3g − 5� +

�4 − ���3 − ���2 − ��f�3g − 2� − 5�
6

	 , �74d�

C4 = −
1

1 + f
�2�2g − 5� +

�4 − ���3 − ��f�2g − � − 5�
2

	 , �74e�

C5 = g − 5. �74f�

Remark 5.15: These two examples could be verified by hand computation, although only a
masochist would try to do so. They, as well as several others, have been verified by computer
assisted computations, so that we are reasonably certain of the validity of the above-noted con-
jectures; but we have not yet managed to prove them for all values of N. �

III. PROOFS

First, let us obtain the systems of ODEs �35� and �40� from the solvable matrix evolution
equation �32�.

Remark 3.1: Here we take the second-order matrix ODE �32� as a starting point for our
treatment, but one could as well take as a starting point the system of two coupled first-order
matrix ODEs �31a� and �31b�. �

Via �18� we get

z̈n = czn + �żn − 
��b +
żn

zn
+ a

żn − 


zn
� − �

m=1,m�n

N
�zn − zm��zn + zm + a�zn − zm��

zm
MnmMmn,

�75a�

Ṁnm

Mnm
= − 2

żn − żm

zn − zm
+ b + �1 + a�� żn

zn
+

żm

zm
� − 
�1 + a

zn
+

a

zm
� − �	n − 	m�

+ �
�=1,��m,n

N � �zn − z�� + �zm − z��
�zn − zm�

+
�1 + a��zn − z���zm − z��

�zn − zm�z�
Mn�M�m

Mnm
,

n � m . �75b�

As a first educated guess we now make the ansatz

Mnm =
�żnżm�1/2g

�zn − zm�2 , n � m . �76�

Remark 3.2: This ansatz �as well as analogous ones made in the following� is only applicable
provided zn�zm whenever n�m. Indeed the models obtained in this paper, when interpreted as
N-body problems in which the N quantities zn identify the positions of the particles �generally in
the complex z-plane�, feature two-body forces that are singular at zero separation, so that the
equations of motion become singular whenever two particles collide. This constitutes no difficulty,
because the initial data leading to collisions are exceptional, the set of such data having generally
zero measure in the space of initial data zn�0�, żn�0� �assigned in the complex z-plane�. But this
entails that one cannot assign initial data in which the coordinates of two or more particles
coincide, and moreover that the study of the motion in the neighborhood of such data requires
caution to avoid wrong inferences �as will be illustrated in the following in the context of the
investigation of motions in the neighborhood of equilibria for some of the systems discussed
herein�. �

Insertion of the ansatz �76� in �75b� yields
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ġ

g
= b + �1

2
+ a�� żn

zn
+

żm

zm
� − 
�1 + a

zn
+

a

zm
� − �	n − 	m� + g �

�=1,��m,n

N
�zn − zm�

�zn − z���zm − z��

� z�

zn − z�

+
z�

zm − z�

+ �1 + a�, n � m . �77�

Using the identity

�zn − zm�
�zn − z���zm − z��

= − � 1

zn − z�

−
1

zm − z�
� �78�

we now rewrite this equation as follows:

ġ

g
= b + �1

2
+ a�� żn

zn
+

żm

zm
− 
� 1

zn
+

1

zm
�	 − �	̃n − 	̃m� − g �

�=1,��m,n

N � z�

�zn − z��2 −
z�

�zm − z��2

+
1 + a

zn − z�

−
1 + a

zm − z�
	, n � m , �79�

having conveniently set

	n = 	̃n −



2zn
. �80�

Recalling the freedom to assign the diagonal elements 	n we moreover conveniently set

	̃n = − g �
�=1,��n

N � z�

�zn − z��2 −
1 + a

zn − z�
 , �81�

and we thereby see that �79� now reads

ġ

g
= b + �1

2
+ a�� żn

zn
+

żm

zm
− 
� 1

zn
+

1

zm
� −

2g

zn − zm
	, n � m . �82�

This equation is therefore consistent provided the two conditions b=0 and a=− 1
2 hold �see �34��,

and it implies that g is an �arbitrary� constant. It is then easy to verify that the insertion of �76�
and �34� in �75a� yields �35�. The first part of our first task is thus completed.

To prove the second part we use the following, different, ansatz for the off-diagonal elements
of the matrix M�t�:

Mnm =
��żn − 
��żm − 
��1/2g

zn − zm
, n � m . �83�

Its insertion in �75� yields

z̈n

żn − 

=

czn

żn − 

+ b +

�1 + a�żn

zn
−


a

zn
+ g2 �

m=1,m�n

N

�żm − 
�� 2

zn − zm
+

1 + a

zm
� , �84a�

ġ

g
+

1

2
� z̈n

żn − 

+

z̈m

żm − 

� = −

żn − żm

zn − zm
+ b + �1 + a�� żn

zn
+

żm

zm
� − 
�1 + a

zn
+

a

zm
� − �	n − 	m�

− g �
�=1,��m,n

N

�ż� − 
�� 1

zn − z�

+
1

zm − z�

+
1 + a

z�
�, n � m . �84b�

Insertion of the first of these two equations in the second yields �using again the assignment �80��
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ġ

g
+

c

2
� zn

żn − 

+

zm

żm − 

� + �g2 − 1��−

żn − żm

zn − zm
+

1 + a

2
� żn

zn
+

żm

zm
−




zn
−




zm
�	 + 	̃n − 	̃m

= − g�1 + g� �
�=1,��m,n

N

�ż� − 
�� 1

zn − z�

+
1

zm − z�

+
1 + a

z�
�, n � m . �84c�

If we now set �using our privilege to assign this quantity as we wish� 	̃n=0 �or equivalently 	̃n

= 	̃� we see that, provided there holds the condition c=0, see �38�, the assignment

g = − 1 �85�

is consistent with this system of ODEs, and clearly its insertion in �84a� yields �39�.
Remark 3.3: This derivation of �40� does not require that the quantity b be time-

independent. �

Having completed our first task, let us now compute the solution U�t� of the system of two
matrix ODEs ��31a� and �31b�� in the cases of interest to us, with vanishing c �see �38��, constant
a, and b either constant or time-dependent as specified by �50b�.

Consider first the case with a and b= i� both constant. Then from �31b� with c=0 we get

V�t� = V�0�exp�i�t��1 − aV�0�
exp�i�t� − 1

i�
	−1

. �86a�

As we will see in the following, in the case of interest to us the N�N matrix V�0� turns out to be
dyadic, hence this formula can be simplified to read

V�t� = V�0�exp�i�t�
1 + a�exp�i�t� − 1��−1, �86b�

with

 = −
trace�V�0��

i�
. �86c�

�To obtain this simplification, and analogous ones to follow, we take advantage of the following
property: if � is a dyadic matrix,

�nm = �̆n�̂m, �87a�

there holds the identity

f��� = f�0� +
f�trace���� − f�0�

trace���
� �87b�

for any (scalar) function f for which the above-noted formula makes good sense.�
Then from �31a� with �31c� we get

U�t� = �1 + �
1 + a�exp�i�t� − 1��−1/a − 1�P�U�0�

+ 
�
0

t

dt��1 + �� 1 + a�exp�i�t� − 1�
1 + a�exp�i�t�� − 1�−1/a

− 1	P� , �88a�

U�t� = �1 − P��U�0� + 
t� + P
1 + a�exp�i�t� − 1��−1/a�U�0� + 
u�t�� , �88b�

where  is of course defined by �86c� and P is the following “projector” N�N matrix,
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P =
V�0�

trace�V�0��
, P2 = P , �88c�

where �see �33� and the following�

V�0� = �U̇�0� − 
��U�0��−1, �88d�

and

u�t� = �
0

t

dt�
1 + a�exp�i�t�� − 1��1/a. �88e�

The integration on the right-hand side of this formula could be performed in terms of hypergeo-
metric functions, but this is not particularly enlightening. More useful, in view of the results of
interest to us is to consider the case with � real and nonvanishing �for definiteness, ��0�, and to
note that, by appropriately expanding as a �generally infinite� series the power under the integral
on the right-hand side of �88e� and then integrating term by term, u�t� can be rewritten as an
infinite series, see the explicit expressions provided in the formulation of Proposition 2.3. �Of
course if a is the inverse of a positive integer, the integration in �88e� can be performed in terms
of elementary functions; in this case the infinite sums in the explicit expressions provided in
Proposition 2.3 become finite sums�

Likewise, if a is constant but b has the time-dependence �50b�, from the version of �31b� with
c=0 �see �38�� and the variable t formally replaced by �,

V� = aV2 +
ki�V

1 + i��
, �89a�

we get

V��� = V�0��1 + i���k�1 −
aV�0�

�k + 1�i�
��1 + i���k+1 − 1�−1

. �89b�

By taking again advantage of the dyadic character of V�0� �see the following� this formula can be
simplified to read

V��� = V�0��1 + i���k�1 − ã + ã�1 + i���k+1�−1 �89c�

with

̃ = −
trace�V�0��

ik̃�
. �89d�

In the last formula and hereafter we use whenever convenient the short-hand notation k+1= k̃ �see
�56j��. Then from �31a� with �31c� �of course with the variable t replaced by ��

U���� = 
 + V���U��� , �90�

we get

U��� = �1 − P��U�0� + 
�� + P�����U�0� + 
�
0

� d��

�����	 , �91a�

���� = �1 − ã + ã�1 + i���k̃�−1/a, �91b�

where we took again advantage of the dyadic character of V�0� and we use again the definition
�88c� of the projection matrix P.
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We now use the transformation �53�, of course with � related to t by �51b�, and thereby obtain
�from the preceding formulas�:

Ũ�t� = exp�− i�t�
1 + ��̃�t� − 1�P̃�Ũ�0� + �1 − P̃�

1 − exp�− i�t�

i�
+ 
P̃ũ�t��̃�t� , �92a�

�̃�t� = 
1 + ã�exp�k̃i�t� − 1��−1/a, �92b�

ũ�t� = �
0

t

dt� exp�i��t� − t����̃�t���−1 �92c�

=�
0

t

dt� exp�i��t� − t���1 − ã + ã exp�k̃i�t���1/a. �92d�

Note that we use again the short-hand notation k+1= k̃, see �56j�, and we also introduced the

notation P̃, to avoid any confusion with the projection operator P defined previously: both P and

P̃ are related to V�0� by the formula �88c�, and in both cases V��� is related to U��� and U���� by
�90�, but now �53� with �51b� implies

V�0� = �Ũ˙ �0� + i�Ũ�0� − 
��Ũ�0��−1 = �Ũ˙ �0� − 
��Ũ�0��−1 + i� . �93�

The integral on the right-hand side of the formula �92d� could be expressed in terms of hypergeo-
metric functions, but this would not be particularly enlightening. We rather perform it explicitly by

series, under the assumption that the quantity k̃� is real �to guarantee the convergence of the
sums�, and we thereby get the results displayed in the formulation of Proposition 2.7. �Of course
if a is the inverse of a positive integer, the integration in �92d� can be performed in terms of
elementary functions; in this case the infinite sums in the explicit expressions provided in Propo-
sition 2.7 become finite sums�.

The final step to prove the results �reported in the preceding section as Propositions 2.3� is to
observe that one can set R�0�=1, entailing �see �12��

U�0� = diag�zn�0�� , �94�

and �see �13a�, �83�, and �85��

�U̇�0��nm = �nmżn�0� + �1 − �nm�
�żn�0� − 
��żm�0� − 
��1/2, �95�

implying via �88d�

�V�0��nm =

�żn�0� − 
��żm�0� − 
��1/2

zm�0�
, �96a�

which evidences the dyadic character of this N�N matrix and entails

trace�V�0�� = �
n=1

N
żn�0� − 


zn�0�
, �96b�

as well as the definitions �44c� and �44d�. To complete the proof of Proposition 2.3 one must treat
the special case in which the initial data cause the quantity , see �44d�, to vanish. It is easily seen,
via �96a�, that this causes the square of the �dyadic� matrix V�0� to vanish. This property holds as
well for the matrix V�t� �see �97��:
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�V�t��2 = 0, �97�

and it drastically simplifies the remaining calculations, which are analogous to those reported
above and hence need not be reported.

And the analogous completion of the proof of Proposition 2.7 is now sufficiently straightfor-
ward that we can leave it as a task for the diligent reader.

IV. ALTERNATIVE FORMULATIONS OF THE SOLVABLE MODELS

In this section we provide an alternative formulation of the solvable many-body models
obtained in this paper, characterized by equations of motions of Newtonian type. We do not
elaborate on the technique to obtain these results, since it can be considered by now rather
standard �see for instance Sec. 2.3 of Ref. 6�. We merely note that key to such reformulations are
the relations among the zeros of a polynomial and its coefficients, hence the formulas reported in

the Appendix, as applied to the monic polynomial ��z , t� �respectively, �̃�z , t��, of degree N in z,
having the N “particle coordinates” zn�t� �respectively, z̃n�t�� as its zeros and the N coefficients
cm�t� �respectively, c̃m�t�� �see below �99�, respectively, �101�, and recall �62��.

Using those formulas it is indeed seen that, if the coordinates zn�t� evolve according to the
equations of motion �40�, that can be conveniently rewritten as follows �recall �62��,

z̈n − 2 �
m=1,m�n

N
żnżm

zn − zm
= − 2i �

m=1,m�n

N
żn + żm

zn − zm
− 2 �

m=1,m�n

N
1

zn − zm

+ �iżn + 1��1 +
1

zn
− �1 + a��

m=1

N
iżm + 1

zm
	 , �98�

then the polynomial ��z , t� of degree N in z characterized by the N zeros zn�t�,

��z,t� = �
n=1

N

�z − zn�t�� = zN + �
m=1

N

cm�t�zN−m = �
m=0

N

cm�t�zN−m, c0 = 1 �99�

satisfies the evolution equation

�tt + 2i�zt − �zz − i�t + �z −
i

z
��t −

ċN

cN
�	 +

1

z
��z −

cN−1

cN
�	 − �1 + a�� ċN

cN
+

icN−1

cN
���t + i�z� = 0.

�100a�

Notation: Here and hereafter subscripted variables denote partial differentiations.
Clearly this result is a direct consequence of the �relevant� formulas ��A4�� and ��A6��, and it

can be conveniently rewritten in the following two ways:

�tt + 2i�zt − i�t − �zz + �z − i�1

z
+ �1 + a��	��t + i�z� −

1

z
�� = 0, �100b�

�tt + 2i�tz − i�t − �zz + �z − i
�t − ċN

z
+

�z − cN−1

z
−

� − cN

z
+ �1 + a��− i�t + �z� = 0,

�100c�

where �see �63b��

� � ��t� =
cN−1�t� − iċN�t�

cN�t�
=

�z�0,t� − i�t�0,t�
��0,t�

. �100d�
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And now, via the �relevant� formulas �A8�, one easily obtains that the N coefficients cm�t� of
the polynomial ��z , t�, see �A1�, evolve according to the system of ODEs ��63a� and �63b��.

Likewise—as the diligent reader will check—analogous results can be obtained starting from
the system �52� rather than �40�. Then the analog of the evolution equation �100c�, satisfied now

by the monic polynomial �̃�z , t� of degree N in z that has the N zeros z̃n�t�,

�̃�z,t� = �
n=1

N

�z − z̃n�t�� = zN + �
m=1

N

c̃m�t�zN−m = �
m=0

N

c̄m�t�zN−m, c̃0 = 1, �101�

reads

�̃tt + 2�1 − z�i�̃tt − �1

z
− 2N + K�i�̃t − �1 − z�2�̃zz + �1

z
+ 1 − 2N + K	

��1 − z��̃z + � �̃

z
+ N�K − N�	�̃ = 0, �102a�

where �see �66b� and �66c��

K � K�t� = k̃ + �a + 1��N + �̃�t�� , �102b�

�̃ � �̃�t� =
c̃N−1�t� − ic̃N�t�

c̃N�t�
=

�̃z�0,t� − i�̃t�0,t�

�̃�0,t�
. �102c�

And the analog of the system of N ODEs ��63a� and �63b��, satisfied now by the N coefficients

c̃m�t� of the polynomial �̃�z , t�, is then easily seen to be just the system ��66a�–�66c��.
Remark 4.1: The evolution equations �100c� and ��102a�–�102c�� are themselves solvable:

note that in spite of their superficial appearance they are not �linear� PDEs but rather nonlinear
functional equations, see �63b� and �102c�.

V. EQUILIBRIUM CONFIGURATIONS OF THE ISOCHRONOUS SYSTEM, BEHAVIOR IN
THEIR NEIGHBORHOODS, DIOPHANTINE FINDINGS

In this section we investigate the behavior of the system ��66a�–�66c�� in the neighborhood of
its “equilibrium configurations,”

c̃m�t� = c̄m, c̈̃m�t� = ċ̃m�t� = 0. �103�

Analogous results could be investigated for the other solvable models considered in this paper, but
we leave this task to the interested reader. Our motivation for focusing on the system ��66a�–�66c��
comes from its property of isochronicity, see Remark 2.12: indeed by taking advantage of it we
obtain in the following the Diophantine findings reported at the end of Sec. II. Moreover, as we
will see, there exist interesting equilibrium configurations of the system ��66a�–�66c�� that do not
yield �for N�1�genuine equilibrium configurations z̄n of the corresponding N-body problem �52�
�namely, configurations characterized by the condition that z̄n� z̄m whenever n�m; see the de-
nominator in the second sum on the right-hand side of �52��, but nevertheless allow an interesting
treatment.

First of all let us find these equilibrium configurations. The quantities c̄m are clearly the
solutions of the following system of algebraic equations �see ��66a�–�66c���:

m�K̄ − m�c̄m + 
�N + 1 − m��K̄ − 2m� − �̄�c̄m−1 − �N − m��N + 2 − m�c̄m−2 = 0,

m = 1, . . . ,N, c̄0 = 1, c̄−1 = 0, �104a�
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K̄ = k̃ + �1 + a��N + �̄� , �104b�

�̄ =
c̄N−1

c̄N

. �104c�

Note that these equations are also identically satisfied for m=N+1 and for m=N+2, provided of
course one sets c̄N+1= c̄N+2=0. While for m=N via �104c� one finds that the quantity �̄ must satisfy
the second-order equation

a�̄2 + �k̃ + 2aN��̄ + N�k̃ + aN� = 0 �105�

entailing either �“case 1”�

�̄ = − N �106�

or �“case 2”�

�̄ = −
aN + k̃

a
= − N −

k̃

a
. �107�

To obtain the solution of the system of algebraic equations �104� we proceed as follows. Let

�̄�z� be the �monic� polynomial of degree N in z that has the N numbers c̄m as its N coefficients,

�̄�z� = �
m=0

N

c̄mzN−m, �108a�

c̄0 = 1. �108b�

Then clearly �see �101�� �̄�z� is the “equilibrium” �i.e., time-independent� solution of �102a�.
Hence �̄�z� satisfies the ODE

�z − 1�2�̄� + �1

z
+ 1 − 2N + K̄��z − 1��̄� + � �̄

z
+ N�N − K̄�	�̄ = 0, �109�

with K̄ defined by �104b� and �̄ by �104c�. Here of course the appended primes indicate differ-
entiations with respect to the independent variable z.

It is clearly convenient to set

�̄�z� = ��v�, v = z − 1, �110�

so that the ODE satisfied by ��v� then reads

�1 + v�v2�� + �1 + H + Hv�v�� + ��̄ − N�H + N − 1� − N�H + N − 1�v�� = 0, �111a�

where we temporarily introduced the notation

H = 1 − 2N + K̄ = �1 + a��̄ + k̃ + 1 + N�a − 1� �111b�

�see also �104b��. Here of course the appended primes indicate differentiations with respect to the
independent variable v.

We are seeking a solution of this ODE that is a �monic� polynomial of degree N in the
independent variable v. Hence we set
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��v� = �
m=0

N

�mvN−m, �112a�

�0 = 1, �112b�

which via �108a� and �112a� entails

c̄m = �
j=0

m

�− � j�N + j − m

j
��m−j . �113�

It is then easily seen that the polynomial ��v� is a solution of �111a� provided the coefficients �m

satisfy the recursion relation

�m + 1��m + 1 − k̃ − �1 + a��N + �̄���m+1 = − �m�m − 1 − k̃� − �m − 1��N + �̄���m, �114a�

with the “boundary conditions”

�−1 = �N+1 = 0. �114b�

Let us consider first case 1 �see �106��. Then the recursion �114a� takes the neat form

�m + 1��m + 1 − k̃��m+1 = − m�m − 1 − k̃��m. �115�

Remarkably, the constant a has completely dropped out of this formula.

Clearly this recursion relation, for a generic value of the parameter k̃, has the solution �clearly
consistent with the boundary conditions �114b� and with �112b��

�m = �0,m. �116�

But it is moreover easily seen that, if the parameter k̃ is a positive integer less that N,

k̃ = � , �117a�

� = 1,2, . . . ,N − 1, �117b�

then the recursion relations ��114a� and �114b�� admit the more general solution �also clearly
consistent with the boundary conditions �114b� and with �112b��

�m = �0,m + ���,m +
�

� + 1
��+1,m�h , �118�

with h an arbitrary number. Hereafter we treat this more general solution, of course on the

understanding that the constant h must be set to zero if the parameter k̃ does not satisfy the
condition �117�. The corresponding equilibrium solution of the system ��66a�–�66c�� is �see �113��

c̄m = �− �m��N

m
� + �− ��N�� + 1� − ��m + 1�

�� + 1��N − ��
�N − �

m − �
�h	 . �119�

Note the consistency �via �104c�� of this expression of the coefficients c̄m with the condition
�106�.

Hence in this case 1 �see �108��

�̄�z� = �z − 1�N + �z − 1�N−1−��z −
1

� + 1
�h . �120�

Remark 5.1: Clearly the N zeros z̄n of this polynomial �̄�z� can all be distinct �entailing that
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the corresponding equilibrium configuration of the N-body problem �52� is genuine� only if �
=N−1 and h�0, so that

�̄�z� = �z − 1�N + �z −
1

N
�h . � �121�

Next, let us ascertain the equilibrium configuration corresponding to case 2 �see �107��. Then
the recursion �114a� takes the neat form

�m + 1��m − 	��m+1 = − �m − 1��m − 	 − 1��m, �122�

where we now introduce the convenient parameter 	 via the assignment

	 = −
k̃ + a

a
, k̃ = − �	 + 1�a . �123�

Now it is easily seen that, for generic values of this parameter 	, this recursion has the solution
�clearly consistent with the boundary conditions �114b� and with �112b��

�m = �0,m + �1,m
	 + 1

	
, �124�

while if 	 is a positive integer less than N,

	 = 1,2, . . . ,N − 1, �125�

then the more general solution

�m = �0,m + �1,m
	 + 1

	
+ �	+1,mh , �126�

with h an arbitrary number, also solves the recursion relation �122� and is compatible with the
boundary conditions �114b� and with �112b�. Hereafter we treat this more general solution, of

course on the understanding that the constant h must be set to zero if the parameters a and k̃ do not
satisfy via �123� the condition �125�. The corresponding equilibrium solution of the system
��66a�–�66c�� is �see �113��

c̄m = �− �m��N

m
�N	 − m�	 + 1�

N	
+ �− �	+1�N − 	 − 1

m − 	 − 1
�h	 . �127�

Note the consistency �via �104c� and �123�� of this expression of the coefficients c̄m with the
condition �107�.

Hence in this case 2 �see �108��

�̄�z� = �z − 1�N−1�z +
1

	
� + �z − 1�N−	−1h . �128�

Remark 5.2: Clearly for N�2 the N zeros z̄n of this polynomial �̄�z� can all be distinct
�entailing that the corresponding equilibrium configuration of the N-body problem �52� is genuine�
only if 	=N−1 or 	=N−2 and if moreover h�0. �

Next, let us investigate the behavior of the system of ODEs ��66a�–�66c�� in the neighborhood
of these equilibrium configurations, �119� �entailing �106�� and �127� �entailing �107��. To this end
we set
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c̃m�t� = c̃m + ��m�t� + O��2� , �129�

treating in the standard manner � as a small parameter. We thus obtain the linearized system of
ODEs

�̈m + �2m − K̄�i�̇m + �2N + 1 − 2m�i�̇m−1 + m�K̄ − m��m + ��N + 1 − m��K̄ − 2m� − �̄��m−1 − �N − m�

��N + 2 − m��m−2 +
m�1 + a�c̄m + ��N + 1 − m��1 + a� − 1�c̄m−1

c̄N

��N−1 − i�̇N − �̄�N� = 0,

m = 1, . . . ,N, �0 = 0, �−1 = 0, �130�

with K̄ defined by �104b�. To obtain this system of ODEs from ��66a�–�66c�� we used the relation

�̃�t� = �̄ + �
�N−1�t� − i�̇N�t� − �̄�N�t�

c̄N

+ O��2� �131�

implied by �66c� and �129�
The general solution of this linear system of ODEs, �130�, reads

�m�t� = �
n=1

N

�an
�+�rm

�+��n� exp�ipn
�+�t� + an

�−�rm
�−��n� exp�ipn

�−�t�� , �132�

where the 2N numbers an
�±� are arbitrary �to be fixed by the initial data� while the 2N numbers pn

�±�,
respectively, the 2N corresponding �t-independent� N-vectors r��±��n���r1

�±��n� , . . . ,rN
�±��n��, are the

eigenvalues, respectively, the eigenvectors, of the �N-vector� generalized eigenvalue equation

�p2 + Ap + B�r� = 0, �133�

with the two N�N matrices A and B defined �componentwise� as follows:

Anm = �2n − K̄��n,m + �2N + 1 − 2n��n−1,m + Cn�Nm, �134a�

Bnm = n�n − K̄��n,m + ��N + 1 − n��2n − K̄� + �̄��n−1,m + �N − n��N + 2 − n��n−2,m

+ Cn��N−1,m − �̄�N,m� , �134b�

where

Cn = −
n�1 + a�c̄n + ��N + 1 − n��1 + a� − 1�c̄n−1

c̄N

. �134c�

These formulas imply of course that the 2N numbers pn
�±� are the roots of the polynomial

equation �of degree 2N in p�

det�p2 + Ap + B� = 0, �135a�

namely

det�p2 + Ap + B� = �
n=1

N

��p − pn
�+���p − pn

�−��� . �135b�

Let us now consider the two cases, as discussed earlier.

In case 1, via �104b� with �106� �implying K̄= k̃=��, �117� and �119�, and setting for notational
convenience
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�− ���� + 1�h = f , �− ����1 + a�h = g �136�

one finds for the matrices A and B the expression ��71a�–�71d��.
Likewise, in case 2, via �104b� with �107� �implying K̄=−k̃ /a=	+1, �̄=−N+	+1�, �123�,

�125�, and �127�, and setting for notational convenience

�− �		h = f , 	 = �, k̃ = g , �137�

one finds for the matrices A and B the expression ��72a�–�72d��.
Remark 5.3: A shortcut to arrive at the solution �116� entailing

�̄�z� = �z − 1�N �138�

goes as follows. Let the N�N matrix Ū be an “equilibrium,” i.e., time-independent, solution of
the matrix equation �54�, so that it satisfies �recall �62� and �56j��

�Ū − 1��Ū −
a

a + k̃
� = 0, �139�

and notice that

Ū = 1 �140�

is clearly a solution of this equation. Then the determinantal expression �65� �recall �62�� of �̄�z�,
with this assignment of Ū, yields immediately �138�.

But this approach is quite misleading, because one is dealing here with the singular case in
which some eigenvalues of the matrix U coincide—indeed all of them.

A hint of the misleading character of this result is provided by the following observation. The
solution we just mentioned, which is clearly characterized by the “equilibrium configuration”
�recall �62��

z̄n = 1 �141�

�for all values of n�, might be considered to satisfy the equations of motions �52� �recall �62��,
although of course only by assigning an appropriate value to an ambiguous expression �“zero
divided by zero”�. And of course, as entailed by the above-mentioned analysis, and implied by

�̄ = − �
n

N
1

zn
�142�

�see �104c� and the first equation of Eq. �A6��, this equilibrium configuration is consistent with the
value of �̄ corresponding to case 1 �see �119��. One might then guess that the other analogous
solution of �139�,

Ū =
a

a + k̃
1 , �143�

yields an equilibrium configuration corresponding to case 2. But this does not happen. Indeed this
solution entails �by the same argument as given earlier; again, for all values of n�

z̄n =
a + k̃

a
, �144�

and via the same argument as given earlier this yields

102701-29 Goldfishing J. Math. Phys. 47, 102701 �2006�

                                                                                                                                    



�̄ = −
a + k̃

a
N = − N − N

k̃

a
, �145�

which does not agree with �107� �except for N=1, when indeed there is no trouble with coinciding
values of zn�. And it is moreover clear that this “equilibrium configuration,” �144�, is inconsistent
with the equations of motion �52� �recall �62��.

The singular character of the “equilibrium positions” of the N-body problems considered
herein is also manifested by the following phenomenon. In order to try and study the motion of the
system �52� in the neighborhood of the “equilibrium configuration” �141� �a quite legitimate
enterprise�, set

zn�t� = 1 + �wn�t� , �146�

assign some arbitrary �of course, not all vanishing� values wn�0�, ẇn�0� and try to extract the time
evolution of the coordinate wn�t� via Proposition 2.7, treating � as a small parameter. One thereby
discovers that such a procedure is inconsistent: as soon as the evolution starts �namely as soon as
t�0�, the coordinates zn�t� differ from unity by amounts of order unity rather than of order �, in
contrast to what the assignment �146� assumed to begin with.

This situation makes it impossible—or at least quite difficult—to follow such a route in order
to prove the Diophantine findings obtained above and formulated at the end of Sec. II. �

But as we saw earlier, no inconsistency arises when one investigates the behavior of solutions
of the system of evolution equation ��66a�–�66c�� in the neighborhood of their equilibrium
configurations—even when the analogous treatment of the evolution equations �52� in the neigh-
borhood of the corresponding equilibrium configurations causes trouble, as indicated in Remark
5.3. Hence the periodicity properties discussed in Remark 2.12 must hold as well for the solutions
�m�t�, and this implies that the numbers pm

�±� yielded by the generalized eigenvalue problem
discussed earlier must satisfy certain Diophantine restrictions, in all the cases identified in Remark

2.12, and for the appropriate choices of the parameters k̃, �, 	, and h as discussed earlier. For the
sake of brevity we leave to the interested reader the formulation of the corresponding results.
Motivated by these findings we investigated numerically the solutions of the determinantal equa-
tions ��135a� and �135b�� with ��71a�–�71d�� and ��72a�–�72d��, and we were thereby led to
formulate the conjectures reported at the end of Sec. II—the validity of which extends, remark-
ably, beyond the restricted values of the parameters �, f , and g that are implied by the above-
mentioned treatment.

VI. OUTLOOK

As mentioned in Sec. I, there is a simple procedure to manufacture solvable systems of
equations of motion describing �according to the Newtonian paradigm: “the acceleration of each
particle equals a force assigned in terms of the position, and possibly also of the velocities, of all
the N particles”� the evolution of N coordinates zn�t� in the �complex� z-plane: �i� start from a
solvable matrix ODE describing the time evolution �within an appropriate class� of an N�N
matrix U�t�, �ii� identify the coordinates zn�t� as the N eigenvalues of the matrix U�t� and identify
the equations of motion that then describe their evolution, �iii� find a suitable ansatz, compatible
with the time evolution of �all the N2 matrix elements of� U�t�, expressing in terms of the N
eigenvalues zn�t� �and possibly of their time-derivatives� the other N�N−1� variables that are
generally needed, in addition to the N eigenvalues, in order to identify completely the N�N
matrix U�t�, and whose time-evolution is therefore generally entangled with that of the N eigen-
values zn�t�. Thereby the system of evolution ODEs satisfied by the coordinates zn�t� becomes
self-contained, and it is likely to be interpretable as a �possibly interesting—but this is a value
judgment� N-body problem characterized by Newtonian equations of motions. And this N-body
model is then, by construction, solvable: indeed its solution consists now in the �merely algebraic�
task of finding the N eigenvalues of the matrix U�t�, whose time evolution is supposed to be
known inasmuch as we started to begin with from a solvable matrix evolution equation.

102701-30 M. Bruschi and F. Calogero J. Math. Phys. 47, 102701 �2006�

                                                                                                                                    



Of the three steps just outlined, the first one is to some extent �but not quite� amenable to
systematic analysis, the second works according to a well-understood machinery, the third requires
that a miracle occur, and some guess-work to identify it. So far this approach has yielded several
�new� solvable models, but finding each one of them constituted a nontrivial challenge. In this
paper we have tersely surveyed �some of� the results obtained in this manner, and we have
described and analyzed some new N-body models obtained in this manner. Can this approach be
further exploited to manufacture/discover additional solvable models? Presumably yes: indeed one
more integrable/solvable model of goldfish type has just been discovered, as will be reported in a
forthcoming paper.18 Does it make sense to continue this fishing expedition? Presumably yes, as
long as the catch is interesting; but this, let us repeat, entails a value judgment.
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APPENDIX: SOME USEFUL IDENTITIES

In this Appendix we list certain useful relations; several of them reproduce �but in a more
convenient notation� results already reported in Appendix B of Ref. 1, while the derivation of the
new ones is sufficiently straightforward not to required any explicit elaboration here. Note that not
all the formulas reported here are used in this paper, but we thought it useful to collect a rather
complete compilation here as a convenient tool for future utilizations.

Let ��z , t� be a monic polynomial of degree N in z, and let us indicate as zn�zn�t� its N zeros
and as cm�cm�t� its N coefficients �see �99��:

��z,t� = �
n=1

N

�z − zn�t�� = zN + �
m=1

N

cm�t�zN−m = �
m=0

N

cm�t�zN−m, c0 = 1. �A1�

Then clearly

�z�z,t� = ��z,t��
n=1

N

�z − zn�t��−1, �A2a�

�t�z,t� = ��z,t��
n=1

N

�z − zn�t��−1�− żn�t�� . �A2b�

Here �and throughout� subscripted variables denote partial differentiations, �z��� /�z, �t

��� /�t. To conveniently streamline the look of these, and of the following, formulas, we rewrite
these two relations via the self-evident notation

�z ⇔ 1, �A3a�

�t ⇔ − żn, �A3b�

and we write accordingly the following relations:

z�z − N� ⇔ zn, �A3c�
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z2�z + �c1 − Nz�� ⇔ zn
2, �A3d�

z3�z − �Nz2 − c1z + c1
2 − 2c2�� ⇔ zn

3, �A3e�

1

z
��z −

cN−1

cN
�	 ⇔

1

zn
, �A3f�

z�t − ċ1� ⇔ − żnzn, �A3g�

1

z
��t −

ċN

cN
�	 ⇔ −

żn

zn
, �A3h�

�zz ⇔ �
m=1,m�n

N
2

zn − zm
, �A3i�

z�zz − 2�N − 1��z ⇔ �
m=1,m�n

N
2zm

zn − zm
, �A3j�

z�zz ⇔ �
m=1,m�n

N
2zn

zn − zm
, �A3k�

z�zz − �N − 1��z ⇔ �
m=1,m�n

N
zn + zm

zn − zm
, �A4�

z2�zz − N�N − 1�� ⇔ �
m=1,m�n

N
2zn

2

zn − zm
, �A5a�

z2�zz − 2��N − 2�z − c1��z + N�N − 3�� ⇔ �
m=1,m�n

N
2zm

2

zn − zm
, �A5b�

z2�zz − ��N − 2�z − c1��z − N� ⇔ �
m=1,m�n

N
zn

2 + zm
2

zn − zm
, �A5c�

z2�zz − 2�N − 1�z�z + N�N − 1�� ⇔ �
m=1,m�n

N
2znzm

zn − zm
, �A5d�

z3�zz − N�N − 1�z� + 2�N − 1�c1� ⇔ �
m=1,m�n

N
2zn

3

zn − zm
, �A5e�

z�z2�zz − 2�N − 1�z�z + N�N − 1��� ⇔ �
m=1,m�n

N
2zn

2zm

zn − zm
, �A5f�
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z3�zz − 2�N − 2�z2�z + 2c1z�z + �N�N + 1�z − 2�N − 1�c1�� ⇔ �
m=1,m�n

N
2znzm

2

zn − zm
, �A5g�

z3�zz − �2N − 3�z2�z + c1z�z + �N2z − �N − 1�c1�� ⇔ �
m=1,m�n

N
znzm

2 + zn
2zm

zn − zm
, �A5h�

z4�zz − �N�N − 1�z2 − 2�N − 1�c1z + 2�N − 1�c1
2 − 2�2N − 3�c2�� ⇔ �

m=1,m�n

N
2zn

4

zn − zm
,

�A5i�

z4�zz − 2z2��N − 2�z − c1��z + �N�N − 3�z2 − 2�N − 1�c1z + 2c2�� ⇔ �
m=1,m�n

N
2zn

2zm
2

zn − zm
,

�A5j�

�zt ⇔ − �
m=1,m�n

N
żn + żm

zn − zm
, �A5k�

z�zt ⇔ − �
m=1,m�n

N
�żn + żm�zn

zn − zm
, �A5l�

z�zt − �N − 1��t ⇔ − �
m=1,m�n

N
żnzm + żmzn

zn − zm
, �A5m�

z2�zt + �c1 − �N − 2�z��t − ċ1� ⇔ − �
m=1,m�n

N
żnzm

2 + żmzn
2

zn − zm
, �A5n�

�tt ⇔ = − z̈n�t� + �
m=1,m�n

N
2żnżm

zn − zm
. �A5o�

To obtain those of the formulas written above which are not just streamlined versions of equations
already reported in Appendix B of Ref. 1, we used the relations

cN−1

cN
= − �

n=1

N
1

zn
,

ċN

cN
= �

n=1

N
żn

zn
, �A6�

which are obvious consequences of the formulas

cN�t� = �
n=1

N

�− zn�t�� = ��0,t�, cN−1�t� = �
n=1

N

�
m=1,m�n

N

�− zm�t�� = �z�0,t� , �A7�

themselves direct consequences of �A1�.
Likewise, we introduce the following notation whereby in the formulas written in the follow-

ing �which are also straightforward consequences of �A1�� the expression on the right-hand side
identifies the coefficient of zN−m in the polynomial �of degree N or less� appearing on the left-hand
side:
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� ↔ cm, �A8a�

� − cN

z
↔ cm−1, �A8b�

�z ↔ �N − m + 1�cm−1, �A8c�

z�z ↔ �N − m�cm, �A8d�

�z − cN−1

z
↔ �N − m + 2�cm−2, �A8e�

�zz ↔ �N − m + 2��N − m + 1�cm−2, �A8f�

z�zz ↔ �N − m + 1��N − m�cm−1, �A8g�

z2�zz ↔ �N − m��N − m − 1�cm, �A8h�

�t ↔ ċm, �A8i�

z�t ↔ ċm+1, �A8j�

�t − ċN

z
↔ ċm−1, �A8k�

�zt ↔ �N − m + 1�ċm−1, �A8l�

z�zt ↔ �N − m�ċm, �A8m�

�tt ↔ c̈m, �A8n�

N� − z�z ↔ mcm, �A8o�

N2� − �2N − 1�z�z + z2�zz ↔ m2cm, �A8p�

�N + 1�
� − cN

z
− �z ↔ mcm−1, �A8q�

�N + 1�2� − cN

z
− �2N + 1��z + z�zz ↔ m2cm−1, �A8r�

� − cN − cN−1z

z2 ↔ cm−2, �A8s�
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�N + 2�� − z�z − �N + 2�cN − �N + 1�zcN−1

z2 ↔ mcm−2, �A8t�

�N + 2�2�� − cN� − z��2N + 3��z + �N + 1�2cN−1� + z2�zz

z2 ↔ m2cm−2, �A8u�

�N + 1�
�t − ċN

z
− �zt ↔ mċm−1. �A8v�
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We derive dispersionless Hirota equations of the extended dispersionless BKP�Ed-
BKP� hierarchy proposed by Takasaki from the method of kernel formula provided
by Carroll and Kodama. Moreover, we verify associativity equations �WDVV equa-
tions� in the EdBKP hierarchy from dispersionless Hirota equations and give a
realization of associative algebra with structure constants expressed in terms of the
residue formula. © 2006 American Institute of Physics. �DOI: 10.1063/1.2358002�

I. INTRODUCTION

Dispersionless integrable systems �DIS� are integrable hierarchies in dispersionless limit �or
quasiclassical limit�. Among them the dispersionless Kadomtsev-Petviashvili �dKP� and disper-
sionless Toda �dToda� hierarchies are special since they have been recognized as universal DIS in
several fields of theoretical physics and mathematics �see, e.g., Refs. 1, 4, 9, 11, 13–15, 18, 19, 27,
and 29 and references therein�. The solutions of the dKP and dToda hierarchies can be character-
ized by a single function called � functions, the logarithm of them; namely, F=log � describe free
energy of some two-dimensional topological field theories in genus zero and satisfy the Witten-
Dijkgraaf-Verlinde-Verlinde �WDVV� equations.10,11,32 In particular, the finite-dimensional reduc-
tions of dKP and dToda systems are realized as special solutions of topological Landau-Ginzburg
models of A-type and topological CP1 models, respectively.1,10,12,18 In terms of free energy F, the
hierarchy flows of dKP and dToda can be written as a set of second derivatives of F called
dispersionless Hirota �dHirota� equations. There are a lot of works devoted to derive dHirota
equations. In Ref. 29, Takasaki and Takebe derived dHirota equations of the dKP hierarchy from
dispersionless limit of differential Fay identity. Carroll and Kodama5 studied the same dHirota
equation from the method of kernel formula. On the other hand, Wiegmann, Zabrodin et al.17,31

investigated dHirota equations of the dToda hierarchy in the context of conformal mapping. More
recently, Teo30 derived dHirota equations of the dKP and dToda hierarchies from complex analysis
using the notions of Grunsky coefficients and Faber polynomials.

Our main purpose in this work is to demonstrate the applicability of the kernel formula to
other dispersionless integrable hierarchies. In particular, we would like to derive dHirota equations
of a universal integrable hierarchy underlying topological Landau-Ginzburg models of a D-type
proposed by Takasaki.24 Since this integrable hierarchy is an extension of the dispersionless BKP
�dBKP� hierarchy2,8,16,23 with two sets of time variables, we refer it to the extended dispersionless
BKP �EdBKP� hierarchy.6 The EdBKP hierarchy resembles the dToda hierarchy in many formu-
lations such as dressing operators, Orlov functions, the Riemann-Hilbert problem, additional sym-
metries, w algebras, hodograph solutions, etc.6,24 Motivated by the work for dKP,5 we shall show
that the method of a kernel formula can be applied to the EdBKP hierarchy without difficulty. As
a byproduct, associativity equations �WDVV equations� in the EdBKP hierarchy can be verified
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directly from dHirota equations. Therefore our results indeed provide another point of view to
understand the integrability of the dBKP hierarchy in connection with topological field theories.

Let us briefly recall the method of the kernel formula5 for the derivation of dHirota equations
of the dKP hierarchy. The dKP hierarchy is defined by the Lax equations,

�tn
� = �Bn,��, Bn = ��n��0, n = 1,2, . . . ,

where the Lax operator � is a Laurent series of the form

� = p + �
n=1

�

un+1p
−n,

where uj are functions of the time variables t= �x= t1 , t2 , . . . �, (A�p�)�0 denotes the projection on
the polynomial part of A�p�, and �A ,B� stands for the Poisson bracket,

�A,B� =
�A

�p

�B

�x
−

�A

�x

�B

�p
.

It can be shown27,29 that there exists a function F�t� called free energy such that

Bn��� = �n − �
m=1

� Fn,m

m
�−m,

where Fn,m=�tn
�tm

F and thus Fn,m=Fm,n. Particularly, for B1=p we have

p��� = � − �
m=1

� F1,m

m
�−m, �1�

which can be viewed as the inverse map of ��p�. Multiplying �n−1 �p� with n�1 to �1� and taking
the projection ���0, we obtain

�pQn+1��� − p����pQn��� − �
m=1

n−1 F1,m

m
�pQn−m���, n � 1,

where Qn=Bn /n. Multiplying �−n and summing over n�0, we have

1 = �� − p��� − �
m=1

F1,m

m
�−m	�

j=1
�pQj����−j ,

=„p��� − p���…�
j=1

�pQj����−j ,

or

1

p��� − p���
= �

j=1

�

�pQj����−j ,

which is the kernel formula for the generating function of �pQj���. Integrating above with respect
to p��� and fixing the normalization at �=�, then

�

p��� − p���
= e�j=1

� Qj����−j
,

which together with the expressions of the second derivatives of F for B j��� and p��� yields
dHirota equations of the dKP hierarchy:5,29
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D����t1
F − D����t1

F = �� − ���1 − eD���D���F� , �2�

where D�z�=�m=1
� z−m�tm

/m. A convenient way to obtain a set of relations defined by Fm,n is to
consider �2� under the limit �→�. Then one gets

��D����t1
F = 1 − eD���D���F.

By comparing the coefficients of �−n on both sides, one obtains5

F1j = Pj+1�Z1 = 0,Z2, . . . ,Zj+1�, j � 1,

where Pj are elementary Schur polynomials and Zj=�n+m=j�Fnm /nm�. A few equations from such
an expansion have been given in Ref. 5. Here we just mention the simplest nontrivial equation,

1

2
F11

2 −
1

3
F13 +

1

4
F22 = 0,

which, after noticing u=u2=F11 and setting t2=y, t3= t, is just the �2+1�-dimensional dKP
equation,14

ut = 3uux +
3

4
�x

−1uyy .

Therefore, the kernel formula provides an elementary and convenient way to derive dHirota
equations of dKP from the Lax formulation without referring to its dispersive counterparts, such as
the �differential� Fay identity. For the dToda hierarchy,26,28,29 its associated dHirota equations �see,
e.g., Refs. 17, 30, 31, and 33� can also be derived from the method of kernel formula. We omit the
derivation here and refer to our preprint7 for details. The rest of the paper is organized as follows.
In Sec. II we turn to the EdBKP hierarchy to investigate its dHirota equations. In Sec. III we verify
associativity equations �or WDVV equations� in the EdBKP hierarchy from dHirota equations.
The realization of associative algebra and the residue formula for structure constants of the asso-
ciative algebra are also given. Section IV is devoted to the concluding remarks.

II. EXTENDED DISPERSIONLESS BKP HIERARCHY

A. Lax formalism

Having illustrated the derivation of dHirota equations of the dKP hierarchy, now we like to
apply the method of kernel formula to the EdBKP hierarchy, which is the integrable hierarchy
underlying topological Landau-Ginzburg models of a D type proposed by Takasaki24 �see also Ref.
6�. The EdBKP hierarchy is described by

�t2n+1
� = �B2n+1,��, �t̄2n+1

� = �B̄2n+1,�� ,

�3�
�t2n+1

�̄ = �B2n+1,�̄�, �t̄2n+1
�̄ = �B̄2n+1,�̄�, n = 0,1,2, . . . ,

with

� = p + �
n=1

�

u2np
−2n+1, �̄ = �

n=0

�

ū2np
2n+1, ū0 � 0

and

B2n+1 = ��2n+1��0, B̄2n+1 = ��̄−2n−1��−1,

where the coefficient functions u2n and ū2n depend on the time variables t= �t1=x , t3 , . . . � and t̄
= �t̄1 , t̄3 , . . . �, the Poisson bracket �,� here is defined as before and �A��−1=A− �A��0. One can view
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� as a map defined in domain D� containing p=�, while �̄ in D0 containing p=0. Noting that

��−p�=−��p� and �̄�−p�=−�̄�p� and thus �B2n+1��0�= �B̄2n+1��0�=0.
The Lax equations �3� are equivalent to the zero curvature equations,

�t2n+1
B2m+1 − �t2m+1

B2n+1 + �B2m+1,B2n+1� = 0,

�t̄2n+1
B̄2m+1 − �t̄2m+1

B̄2n+1 + �B̄2m+1,B̄2n+1� = 0,

�t̄2n+1
B2m+1 − �t2m+1

B̄2n+1 + �B2m+1,B̄2n+1� = 0,

which guarantees that the Lax equations �3� commute between themselves. Since the first member
involving t2n+1 flows only is just the dBKP hierarchy and that is the reason why we call this
integrable hierarchy the EdBKP hierarchy. It can be shown24 that there exists a single function
F�t , t̄� �free energy� from which one can define the functions

S��� = �
n=0

�

t2n+1�2n+1 − �
n=0

�
1

2n + 1
�t2n+1

F�−2n−1,

S̄��̄� = �
n=0

�

t̄2n+1�̄−2n−1 − �
n=0

�
1

2n + 1
�t̄2n+1

F�̄2n+1,

such that

B2n+1��� = �t2n+1
S
� fixed = �2n+1 − �

m=0

�
1

2m + 1
F2n+1,2m+1�−2m−1, �4�

B2n+1��̄� = �t2n+1
S̄
 �̄ fixed = − �

m=0

�
1

2m + 1
F2n+1,2m + 1�̄2m+1, �5�

B̄2n+1��� = �t̄2n+1
S
� fixed = − �

m=0

�
1

2m + 1
F2n + 1,2m+1�−2m−1, �6�

B̄2n+1��̄� = �t̄2n+1
S̄
 �̄ fixed = �̄−2n−1 − �

m=0

�
1

2m + 1
F2n + 1,2m + 1�̄2m+1, �7�

where Fn,m̄=�tn
�t̄m

F and Fn̄,m̄=�t̄n
�t̄m

F. Noticing that �4� and �6� are defined in D�, while �5� and
�7� are in D0. From �4�–�7�, we have, for n=0,

p��� = �t1
S��� = � − �

m=1

�

f2m�−2m+1, f2m =
1

2m − 1
F1,2m−1, �8�

p��̄� = �t1
S̄��̄� = �

m=0

�

f̄2m�̄2m+1, f̄2m = −
1

2m + 1
F1,2m + 1, �9�

ū0
−1p−1��� = �t̄1

S��� = �
m=0

�

g2m�−2m−1, g2m = −
1

2m + 1
F1,2m+1, �10�
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ū0
−1p−1��̄� = �t̄1

S̄��̄� = �̄−1 − �
m=1

�

ḡ2m�̄2m−1, ḡ2m =
1

2m − 1
F1,2m − 1, �11�

where we use the notations �t1
S�����t1

S�� fixed, etc. for brevity. Therefore the dynamical variables
u2j and ū2j of the system are characterized by the second derivatives of the free energy F. In

particular, from �8� and �9�, we have u2=F11 and ū0
−1=−F1,1̄, respectively. Note that p��̄� is the

inverse map of �̄�p� and cannot be viewed as the same function as p��� with � replaced by �̄.

B. Kernel formulas

In contrast to the dKP hierarchy, where only one Lax operator is defined in D�, the EdBKP

hierarchy contains two Lax operators, � and �̄, that are defined in domains D� and D0, respec-
tively. To derive dHirota equations for the EdBKP hierarchy, we shall generalize the method of
kernel formula to the domains D�, D0, and D��D0.

In D� multiplying �8� by �2n−1 �p� for n�1, we have

�2n �p� = p�2n−1 �p� + �
j=1

�

f2j�
2n−2j �p� ,

which, after taking the polynomial part, leads to the recurrence relation

�pQ2n+1��� = p����pQ2n��� + �
j=1

n

f2j �pQ2n−2j+1��� , �12�

where Q2n+1�B2n+1 / �2n+1� and Q2n���2n��0 / �2n�. Multiplying �12� by �−2n �n�0� and sum-
ming over n we obtain

p����
n=0

�

�pQ2n+1����−2n−1 − p����
n=0

�

�pQ2n+2����−2n−2 = 1. �13�

On the other hand, multiplying both sides on �8� by �2n �p� for n�1, it follows that

�2n+1 �p� = p�2n �p� + �
j=1

�

f2j�
2n−2j+1 �p� .

After taking the polynomial part we get another recurrence relation

�pQ2n+2��� = p����pQ2n+1��� + �
j=1

n

f2j �pQ2n−2j+2��� . �14�

Multiplying �14� by �−2n−1 �n�0� and summing over n, we obtain

p����
n=0

�

�pQ2n+2����−2n−2 = p����
n=0

�

�pQ2n+1����−2n−1. �15�

Plugging �15� into �13� to eliminate �n=0
� �pQ2n+2����−2n−2, we obtain the generating function of

�pQ2n+1��� as

p���
p2��� − p2���

= �
n=0

�

�pQ2n+1����−2n−1. �16�

Now we integrate the kernel �16� with respect to p���, and normalize at �=� to obtain
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p��� − p���
p��� + p���

= exp�− 2�
n=0

�

Q2n+1����−2n−1	 . �17�

If we denote D�z� the differential operator,

D�z� = �
n=0

�
z−2n−1

2n + 1
�t2n+1

,

then �17� can be rewritten as

p��� − p���
p��� + p���

= exp„− 2D���S���… =
� − �

� + �
e2D���D���F, �18�

which is the same result derived by Bogdanov and Konopelchenko,2 where they obtained dHirota
equations of the dBKP hierarchy from that of the dKP hierarchy by taking into account the
symmetry condition S�−��=−S���.

In D0 to obtain the generating function of �pQ̄2n+1��̄� we multiplying �11� by �̄−2n−1 �p�̄ for
n�1; then

�̄−2n−2 �p�̄ = ū0
−1p−1��̄��̄−2n−1 �p�̄ + �

j=1

�

ḡ2j�̄
−2n+2j−2 �p�̄ .

Taking the negative part leads to the recurrence relation

�pQ̄2n+1��̄� = ū0
−1p−1��̄��pQ̄2n��̄� + �

j=1

n

ḡ2j�pQ̄2n−2j+1��̄� , �19�

where Q̄2n+1� B̄2n+1 / �2n+1� and Q̄2n���̄−2n��−1 / �2n�. Multiplying �19� by �̄2n �n�0� and sum-
ming over n, we obtain

p−1��̄��
n=0

�

�pQ̄2n+1��̄��̄2n+1 − p−1��̄��
n=1

�

�pQ̄2n��̄��̄2n = − p−2��̄� . �20�

On the other hand, multiplying �11� by �̄−2n�p�̄ for n�1, it follows that

�̄−2n−1 �p�̄ = ū0
−1p−1��̄��̄−2n �p�̄ + �

j=1

�

ḡ2j�̄
−2n+2j−1 �p�̄ .

After taking the negative part, we get another recurrence relation,

�pQ̄2n��̄� = ū0
−1p−1��̄��pQ̄2n−1��̄� + �

j=1

n−1

ḡ2j �pQ̄2n−2j��̄� . �21�

Multiplying �21� by �̄2n−1 �n�1� and summing over n, we obtain

p−1��̄��
n=1

�

�pQ̄2n��̄��̄2n = p−1��̄��
n=0

�

�pQ̄2n+1��̄��̄2n+1. �22�

Plugging �22� into �20� to eliminate �n=1 �pQ̄2n��̄��̄2n, which yields the generating function of

�pQ̄2n+1��̄� as
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p��̄�

p2��̄� − p2��̄�
= �

n=0

�

�pQ̄2n+1��̄��̄2n+1. �23�

Now we integrate the kernel �23� with respect to p��̄�, and normalize at �̄=0 to obtain

p��̄� − p��̄�

p��̄� + p��̄�
= exp�− 2�

n=0

�

Q̄2n+1��̄��̄2n+1	 , �24�

which can be expressed as

p��̄� − p��̄�

p��̄� + p��̄�
=

�̄ − �̄

�̄ + �̄
e2D̄��̄−1�D̄��̄−1�F, �25�

where

D̄�z� = �
n=0

�
z−2n−1

2n + 1
�t̄2n+1

.

In D��D0 in view of �4� and �5�, the functional Q2n+1��� and p��� can be replaced by

�t2n+1
S̄��̄� / �2n+1� and �t1

S̄��̄�, respectively. Then �17� becomes

p��� − �t1
S̄��̄�

p��� + �t1
S̄��̄�

= e2D���D̄��̄−1�F. �26�

Similarly, in view of �6� and �7�, the functional Q̄2n+1��̄� and ū0
−1p−1��̄� can be replaced by

�t̄2n+1
S��� / �2n+1� and �t̄1

S���, respectively. Then �24� becomes

ū0
−1p−1��̄� − �t̄1

S���

ū0
−1p−1��̄� + �t̄1

S���
= e2D���D̄��̄−1�F. �27�

Note that, after making the replacements �→� and �̄→ �̄, the right-hand side of �27� coincides
with that of �26�. Hence,

p����t̄1
S��� = ū0

−1p−1��̄��t1
S̄��̄� = ū0

−1, �28�

where the last equality is determined by setting �→� and �̄→0:

lim
�→�

p����t̄1
S��� = lim

�̄→0

ū0
−1p−1��̄��t1

S̄��̄� = − F11̄ = ū0
−1.

Equation �28� contains the definitions �9� and �10� and can be regarded as an extra condition,
besides the dHirota equations �18�, �25�, and �26�.

In summary, the EdBKP hierarchy can be characterized by a single function F satisfying �18�
and �25�–�27� �or �18�, �25�, �26�, and �28��.

C. Dispersionless Hirota equations

Let us rewrite �18� and �25�–�27� as a set of equations satisfied by the second derivatives of F.
�1� We first rewrite the equation �18� in the form
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log� p��� − p���
� − �

� + �

p��� + p���	 = 2D���D���F ,

where p��� is defined by �8�, and for �→� we have

log„��� log p���… = 2D2���F ,

=�
j=1

� � �
m+n=j−1
m,n�0

2F2m+1,2n+1

�2m + 1��2n + 1�	�−2j .

Then, using the elementary Schur polynomials and �8�, we obtain

1 + �m=0
� F1,2m+1�−2m−2

1 − �m=0
� 1

2m + 1
F1,2m+1�−2m−2

= �
k=0

�

Pk��1,�2, . . . ,�k��−2k,

where �i, i�1 are defined by

�i = �
m+n=i−1
m,n�0

2F2m+1,2n+1

�2m + 1��2n + 1�
.

By comparing the coefficients of �−2k on both sides, we obtain a set of relations satisfied by
F2i+1,2j+1:

2m + 2

2m + 1
F1,2m+1 − Pm+1��� + �

j+k=m−1
j,k�0

1

2j + 1
F1,2j+1Pk+1��� = 0. �29�

�2� Similarly, we consider �25� by taking the limit �̄→ �̄. Then

log„�̄��̄ log p��̄�… = 2D2��̄�F ,

=�
j=1

� � �
m+n=j−1
m,n�0

2F2m + 1,2n + 1

�2m + 1��2n + 1�	�̄2j .

Also, using the elementary Schur polynomials and �11�, we obtain

1 + �m=0
� F1̄,2m + 1�̄2m+2

1 − �m=0
� 1

2m + 1
F1̄,2m + 1�̄2m+2

= �
k=0

�

Pk��̄1, �̄2, . . . , �̄k��̄2k,

where �̄i, i�1 are defined by

�̄i = �
m+n=i−1
m,n�0

2F2m + 1,2n + 1

�2m + 1��2n + 1�
.

By comparing the coefficients of �̄2k on both sides, we obtain a set of relations satisfied by
F2i + 1,2j + 1:

2m + 2

2m + 1
F1̄,2m + 1 − Pm+1��̄� + �

j+k=m−1
j,k�0

1

2j + 1
F1̄,2j + 1Pk+1��̄� = 0. �30�
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�3� From �26�, by taking �̄→1/� and using �8� and �9�, it is straightforward to obtain

1 − �m=0
� 1

2m + 1
�F1,2m+1 − F1,2m + 1��−2m−2

1 − �m=0
� 1

2m + 1
�F1,2m+1 + F1,2m + 1��−2m−2

= �
k=0

�

Pk��̃1, �̃2, . . . , �̃k��−2k,

where Pk��̃� are elementary Schur polynomials and �̃i, i�1 are defined by

�̃i = �
m+n=i−1
m,n�0

2F2n+1,2m + 1

�2m + 1��2n + 1�
.

By comparing the coefficients of �−2k on both sides, we obtain a set of relations satisfied by
F2i+1,2j + 1:

2

2m + 1
F1,2m + 1 − Pm+1��̃� + �

j+k=m−1
j,k�0

1

2j + 1
�F1,2j+1 + F1,2j + 1�Pk+1��̃� = 0. �31�

�4� From �27�, it is straightforward to taking �̄→1/� and by �11� and �10� we have

1 − �m=0
� 1

2m + 1
�F1̄,2m + 1 − F1̄,2m+1��−2m−2

1 − �m=0
� 1

2m + 1
�F1̄,2m + 1 + F1̄,2m+1��−2m−2

= �
k=0

�

Pk��̃1, �̃2, . . . , �̃k��−2k,

where Pk��̃� is defined as before and the above equation can be simplified as

2

2m + 1
F1̄,2m+1 − Pm+1��̃� + �

j+k=m−1
j,k�0

1

2j + 1
�F1̄,2j + 1 + F1̄,2j+1�Pk+1��̃� = 0. �32�

Note that for u2=F11, the first equation in �29� is nothing but the 2+1-dimensional dBKP
equation,8

3ut + 15u2ux − 5uuy − 5ux �x
−1uy −

5

3
�x

−1uyy = 0,

where t1=x, t3=y, t5= t and u�u2, while the first equation in �31� is the simplest nontrivial 2
+1-dimensional equation of EdBKP hierarchy involving t1=x, t3=y, and t̄1:

uut̄1
+ ux �x

−1ut̄1
−

1

3
�x

−1uyt̄1
= 0.

For convenience, we list other higher flows of �29�–�32� in Appendix .

III. ASSOCIATIVITY EQUATIONS IN EdBKP HIERARCHY

A. WDVV equations and generating functions

Following Ref. 3, let us briefly recall the basic notions of associativity equations. Let F be a
differentiable functions of a set of time variables t= �t1 , t2 , . . . �; namely, F=F�t1 , t2 , t3 , . . . � and
define Fij=�ti

�tj
F, Fijk=�ti

�tj
�tk

F. One can choose one of the time variables, say t1, and assume
the nondegenerate metric �ij=Fij1, which can be regarded as a transform from �ti� to �F j1�. Define
the matrix Cij

l =�Fij /�Fl1; then
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Fijk = �
l

Cij
l �lk = �

l

Cij
l Flk1 �33�

connects Fijk and �ij. It can also be treated as a definition of Cij
l .

If Cij
l is the structure constant of an associativity algebra generated by �	i�; namely, 	i ·	 j

=�lCij
l 	l, then we have the constraints �lCij

l Clk
n =�lCjk

l Cil
n, or, equivalently,

�
l

Cij
l Flkm = �

l

Cjk
l Film,

which is the so-called WDVV equations arising from topological field theories.10,32 Thus

Xijkn � �
l

Cij
l Flkn �34�

is symmetric with respect to permutations of any indices. In general, one may choose any ta to
define the metric ��a�ij=Fija, and the structure constants Cij

l �a�=�Fij /�Fla; then they obey the
same associativity relations,

�
l

Cij
l �a�Flkm = �

l

Cjk
l �a�Film. �35�

Introducing matrices Fa with matrix elements �Fa�ij=Fija, one can rewrite the WDVV equations
as

F jFa
−1Fm = FmFa

−1F j .

In the case of infinitely many variables, it is convenient to define generating functions for Fij, Fijk,
Cij

l , and Xijkl as follows:3

D1D2F = �
i,j=1

�
z1

−i

i

z2
−j

j
Fij ,

D1D2D3F = �
i,j,k=1

�
z1

−i

i

z2
−j

j

z3
−k

k
Fijk,

Cl�z1,z2� = �
i,j=1

�
z1

−i

i

z2
−j

j
Cij

l ,

X�z1,z2,z3,z4� = �
i,j,k,n=1

�
z1

−i

i

z2
−j

j

z3
−k

k

z4
−n

n
Xijkn,

where Di�D�zi�=� j=1
� zi

−j�tj
/ j. From the definition �34�, it is easy to see that Xijkn is symmetric in

�ij� and �kn�, while the associativity equations �35� implies that Xijkn=Xikjn or, in terms of the
generating function,

X�z1,z2,z3,z4� = X�z1,z3,z2,z4� . �36�

In Ref. 3, the associativity equations in the dKP and dToda hierarchies were verified from the
corresponding dHirota equations by investigating the symmetric property �36�.
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B. From dHirota to WDVV

To derive WDVV equations from dHirota equations for EdBKP we set t̄−2k−1= t2k+1 �k�−1�
for convenience and rewrite the operator D̄�z� as

D̄�z� = �
k�−1

− z2k+1

2k + 1
�t2k+1

.

We will use the notation D�zi�=Di and D̄�zi�= D̄i for brevity. The functions

D1D2F = �
k,m�0

z1
−2k−1z2

−2m−1

�2k + 1��2m + 1�
F2k+1,2m+1,

and D1D2D3F generate separately the sets of F2k+1,2m+1 and F2k+1,2m+1,2n+1 for all k ,m ,n�0. On
the other hand, the functions

D1D̄2F = �
k�0,m�−1

− z1
−2k−1z2

2m+1

�2k + 1��2m + 1�
F2k+1,2m+1

generate the set of F2k+1,2m+1 for all k�0, and m�−1, etc. We also introduce generating functions
for the structure constants C2i+1,2j+1

2l+1 :

Cl�z1
+,z2

+� = �
i,j�0

C2i+1,2j+1
2l+1 z1

−2i−1z2
−2j−1

�2i + 1��2j + 1�
,

Cl�z1
−,z2

−� = �
i,j�−1

C2i+1,2j+1
2l+1 z1

2i+1z2
2j+1

�2i + 1��2j + 1�
, �37�

Cl�z1
+,z2

−� = �
i�0,j�−1

C2i+1,2j+1
2l+1 − z1

−2i−1z2
2j+1

�2i + 1��2j + 1�
,

and the Xijkn:

X�z1,z2,z3,z4� � �
i,j,k,n=−�

�
z1

−�i�

�i�
z2

−�j�

�j�
z3

−�k�

�k�
z4

−�n�

�n�
Xijkn, i, j,k,n � Zodd. �38�

Notice that from �37� the property holds: Cl�z1
+ ,z2

−�=Cl�z2
− ,z1

+�. The infinite WDVV equations are
thus equivalent to the symmetry of the X�z1 ,z2 ,z3 ,z4� under permutations of z1, z2, z3, and z4. In
the following, we shall show that the associativity equations in the EdBKP hierarchy can be
verified in a similar way as the dToda case.3

Let us rewrite the dHirota equations �18�, �25�, and �26� as

p1 − p2

p1 + p2
=

z1 − z2

z1 + z2
e2D1D2F, �39�

p̄1 − p̄2

p̄1 + p̄2

=
z1 − z2

z1 + z2
e2D̄1D̄2F, �40�
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p1 + D̄2�t1
F

p1 − D̄2�t1
F

= e2D1D̄2F, �41�

where pi�p�zi�=zi−Di �t1
F and p̄i� ū0

−1p−1�zi
−1�=zi− D̄i �t−1

F. The symmetric form of Eqs. �39�
and �40� are2

f12f23f31 + f12 + f23 + f31 = 0, �42�

f̄12 f̄23 f̄31 + f̄12 + f̄23 + f̄31 = 0, �43�

where

f ij =
pi − pj

pi + pj
=

zi − zj

zi + zj
e2DiDjF, 1 � i, j � 3,

f̄ i j =
p̄i − p̄j

p̄i + p̄j

=
zi − zj

zi + zj
e2D̄iD̄jF, 1 � i, j � 3.

By taking the D4 and D̄4 derivatives of �42�, we get the following useful identities:

p1
2�p3D2 − p2D3�D1D4F + p2

2�p1D3 − p3D1�D2D4F + p3
2�p2D1 − p1D2�D3D4F = 0, �44�

p1
2�p3D2 − p2D3�D1D̄4F + p2

2�p1D3 − p3D1�D2D̄4F + p3
2�p2D1 − p1D2�D3D̄4F = 0. �45�

Similarly, we have another two identities if we apply D4 and D̄4 to �43�. We define a nondegen-
erate metric to be �2i+1,2j+1=F2i+1,2j+1,1, and the structure constants as

F2i+1,2j+1,2k+1 = �
l=−�

�

C2i+1,2j+1
2l+1 F2l+1,2k+1,1,

where the indices take integer values. From the definition of the metric, we have C1,2j+1
2l+1 =
 j

l for all
l , j. To find other structure constants, apply �t2k+1

to the dHirota equations �39�–�41�:

D1D2 �2k+1F =
p1D2 − p2D1

p1
2 − p2

2 F2k+1,1, �46�

D̄1D̄2 �2k+1F =
p̄1D̄2 − p̄2D̄1

p̄1
2 − p̄2

2 F2k+1,−1, �47�

D1D̄2 �2k+1F =
p1D̄2 + �D̄2�t1

F�D1

p1
2 − �D̄2�t1

F�2
F2k+1,1. �48�

Comparing with �33�, the generating functions of structure constants �37� can be read out from the
right-hand side of these equations, except that the rhs of Eq. �47� is related to the partial derivative
of F with respect to t−1 �not t1�, which forbids us to extract structure constants from �47� directly.
Fortunately, this problem can be removed by considering �28� in the form
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D1�t−1
F =

p̄2

p1
D̄2 �t1

F . �49�

Differentiating above with respect to t2k+1 yields

D1F2k+1,−1 =
�2k+1p̄2

p1
D̄2 �t1

F +
p̄2

p1
D̄2F2k+1,1 −

p̄2�2k+1p1

p1
2 D̄2 �t1

F ,

which, together with �2k+1p1=−D1F2k+1,1 and �2k+1p̄2=−D̄2F2k+1,−1, implies that

D1F2k+1,−1 = −
D̄2 �t1

F
p1

D̄2F2k+1,−1 +
p̄2

p1
D̄2F2k+1,1 +

p̄2

p1
2 �D̄2 �t1

F�D1F2k+1,1. �50�

Taking the limit z1→� in �50�, we obtain

D̄2F2k+1,−1 =
p̄2

D̄2F1

D̄2F2k+1,1, �51�

which, after substituting back into �50�, yields

D1F2k+1,−1 =
p̄2

p1
2 �D̄2 �t1

F�D1F2k+1,1.

On the other hand, exchanging the variables z1↔z2, we have

D̄1F2k+1,−1 =
p̄1

D̄1F1

D̄1F2k+1,1, �52�

D2F2k+1,−1 =
p̄1

p2
2 �D̄1F1�D2F2k+1,1.

Substituting �51� and �52� into the numerator of �47� and taking into account �49�, then �47�
becomes

D̄1D̄2�2k+1F =
�D̄2�t1

F�D̄1 − �D̄1�t1
F�D̄2

�D̄1�t1
F�2 − �D̄2�t1

F�2
F2k+1,1. �53�

Now we can find all structure constants by using Eqs. �46�, �48�, and �53�. First, we conclude from
�46� and �53� that C2i+1,2j+1

2l+1 =0 for i , j�0 and l�−1, or i , j�−1 and l�0. Next, if all the indices
are positive, we have

Cl�z1
+,z2

+� =
p1z2

−2l−1 − p2z1
−2l−1

�2l + 1��p1
2 − p2

2�
, l � 0, �54�

while all the indices are negative, it gives

Cl�z1
−,z2

−� =
�D̄1�t1

F�z2
2l+1 − �D̄2�t1

F�z1
2l+1

�2l + 1�„�D̄1 �t1
F�2 − �D̄2 �t1

F�2
…

, l � − 1. �55�

When i and j have different signs, we use �48� to obtain
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Cl�z1
+,z2

−� =
�D̄2 �t1

F�z1
−2l−1

�2l + 1��p1
2 − �D̄2 �t1

F�2�
, l � 0,

− p1z2
2l+1

�2l + 1�„p1
2 − �D̄2 �t1

F�2
…

, l � − 1.

�56�

Making use of the structure constants, we show that any solution F of the EdBKP hierarchy
obeys the WDVV equations:

�
l=−�

�

C2i+1,2j+1
2l+1 F2l+1,2k+1,2n+1 = �

l=−�

�

C2i+1,2k+1
2l+1 F2l+1,2j+1,2n+1, i, j,k,n � Z . �57�

To show that the generating functions �38� is totally symmetric w.r.t. permutations of z1 , . . . ,z4,
however, it is enough to prove the symmetry w.r.t. the permutations of z2 and z3 in �38�, i.e.,
X�z1 ,z2 ,z3 ,z4�=X�z1 ,z3 ,z2 ,z4�.

For all positive indices in �57�, we use �54� to obtain the generating function

X�z1,z2,z3,z4� =
1

p1
2 − p2

2 �p1D2 − p2D1�D3D4F .

Hence we have to prove

�p1
2 − p3

2��p1D2 − p2D1�D3D4F = �p1
2 − p2

2��p1D3 − p3D1�D2D4F . �58�

It is straightforward to bring �58� into the identity �44� by eliminating p1
3D2D3D4F to both sides of

�58�, which concludes the proof for this case. If the index n in �57� is negative, then with the help
of �45� the same arguments go through.

Let all the indices in �57� be negative; then by �55� we have the following equation to be
verified:

0 = �D̄1 �t1
F�2

„�D̄3 �t1
F�D̄2 − �D̄2 �t1

F�D̄3…D̄1D̄4F + �D̄2 �t1
F�2

„�D̄1 �t1
F�D̄3

− �D̄3 �t1
F�D̄1…D̄2D̄4F + �D̄3 �t1

F�2
„�D̄2 �t1

F�D̄1 − �D̄1 �t1
F�D̄2…D̄3D̄4F ,

which, after consulting �53�, is indeed an identity. This completes the proof for this case.
Let j in �57� be negative; and all others be positive. In terms of the generating functions the

WDVV equations now reads as

�p1D̄2 + �D̄2 �t1
F�D1�D3D4F

p1
2 − �D̄2 �t1

F�2
=

�p1D3 − p3D1�D̄2D4F
p1

2 − p3
2 . �59�

We express D3D̄2D4 and D1D̄2D4 from �48� �multiplying it by z4
−2k−1 / �2k+1�, and summing over

k� and substitute them back into �59�. It follows that

D1D3D4F =
�p1D3 − p3D1�D4 �t1

F
p1

2 − p3
2 ,

which is provided by �46�. We conclude the proof of this case.
Finally, let j ,k be negative and i ,n be positive. In this case we have the following WDVV

equations to prove:
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„p1D̄2 + �D̄2 �t1
F�D1…D̄3D4F

p1
2 − �D̄2 �t1

F�2
=
„p1D̄3 + �D̄3 �t1

F�D1…D̄2D4F

p1
2 − �D̄3 �t1

F�2
, �60�

where we have used Cl�z2
− ,z1

+� and Cl�z3
− ,z1

+� defined in �56� to the lhs and rhs of �60�, respectively.

Expressing D1D̄3D4 and D1D̄2D4 from �48� and substituting them back into �60�, then

D̄2D̄3D4F =
„�D̄3 �t1

F�D̄2 − �D̄2 �t1
F�D̄3…D4 �t1

F

�D̄2 �t1
F�2 − �D̄3 �t1

F�2
,

which is provided by �53�. This completes the proof of WDVV equations for the EdBKP hierar-
chy.

C. Associative algebra and residue formula

The realization of the associative algebra with the structure constants �54�–�56� is obtained
with the help of the kernel formulas �16� and �23� by introducing the generators

	2k+1�p� =
dB2k+1�p�

dp
, k � Z ,

where B2k+1� B̄−2k−1 for k�−1. Then the kernel formulas �16� and �23� give us the following
relations:

p�z�
p2 − p2�z�

= − �
k�0

z−2k−1

2k + 1
	2k+1�p� , �61�

D̄�z��t1
F

p2 − „D̄�z��t1
F…

2
= − �

k�−1

z2k+1

2k + 1
	2k+1�p� . �62�

For example, we start by writing the identity

p1p2

�p2 − p1
2��p2 − p2

2�
=

p1p2

p1
2 − p2

2� 1

p2 − p1
2 −

1

p2 − p2
2	 , �63�

and expanding both sides in z1
−1 ,z2

−1. Then, using �61� and �63�, and comparing with �54�, we
obtain the algebra

	2i+1�p�	2j+1�p� = �
l�0

C2i+1,2j+1
2l+1 	2l+1�p�, i, j � 0.

Next, we can expand both sides of the identity,

p1D̄2 �t1
F

�p2 − p1
2�„p2 − �D̄2 �t1

F�2
…

=
p1D̄2 �t1

F

p1
2 − �D̄2 �t1

F�2� 1

p2 − p1
2 −

1

p2 − �D̄2 �t1
F�2	 , �64�

in z1
−1 ,z2. Using �61�, �62�, and �64�, and comparing with �56�, we have the algebra

	2i+1�p�	2j+1�p� = �
l=−�

�

C2i+1,2j+1
2l+1 	2l+1�p�, i � 0, j � − 1.

The other algebra for i , j , l�−1 can be verified in a similar way and the structure constants are
given by �55�.
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Now let us derive the residue formulas for third order derivatives of F �i.e., F2j+1,2k+1,2m+1�
directly from dHirota equations. For the case of all positive indices, using �46� for k=0,

D1D2 �t1
F =

p1D2 − p2D1

p1
2 − p2

2 �t1
2 F ,

we can express D1D2D3F in terms of Di�t1
2 F only:

D1D2D3F = 2�
i=1

3

respi
� p1p2p3D„z�p�…�t1

2 F
�p2 − p1

2��p2 − p2
2��p2 − p3

2�
dp	 . �65�

Expanding both sides of �65� in the series in z1 ,z2 ,z3 and using �61�, we obtain

F2j+1,2k+1,2m+1 =
− 1

�i
�

C�

�t1
z�p�

z��p�
	2j+1�p�	2k+1�p�	2m+1�p�dp, j,k,m � 0,

where, due to the fact that 0=�t1
p�p�=�t1

p�z�+�zp�z��t1
z, we have rewritten D(z�p�)�t1

2 F
=−�t1

p�z�=�t1
z /z��p� in the numerator of �65�.

Similarly, for those cases containing nonpositive indices, we have

D1D2D̄3F = 2�
i=1

3

respi� p1p2�D̄3 �t1
F��t1

p

�p2 − p1
2��p2 − p2

2�„p2 − �D̄3 �t1
F�2

…

dp	 ,

D1D̄2D̄3F = 2�
i=1

3

respi� − p1�D̄2 �t1
F��D̄3 �t1

F��t1
p

�p2 − p1
2�„p2 − �D̄2 �t1

F�2
…„p2 − �D̄3 �t1

F�2
…

dp	 ,

D̄1D̄2D̄3F = 2�
i=1

3

respi� �D̄1�t1
F��D̄2 �t1

F��D̄3 �t1
F��t1

p

„p2 − �D̄1 �t1
F�2

…„p2 − �D̄2 �t1
F�2

…„p2 − �D̄3 �t1
F�2

…

dp	 ,

where �t1
pi=−Di �t1

2 F when we evaluate the residue at p=pi, while �t1
pi= D̄i �t1

2 F at p= D̄i �t1
F.

Using �61� and �62�, similar residue formulas can be written down.

IV. CONCLUDING REMARKS

We have demonstrated the method of kernel formula to derive dHirota equations for disper-
sionless integrable hierarchies. After recalling the original approach to the dKP hierarchy, we
apply the method to the EdBKP hierarchy. The results enables us to investigate the associativity
equations in the EdBKP hierarchy.

Three remarks are in order. First, we like to mention that Takasaki25 recently obtained dHirota
equations of two-component BKP hierarchy by taking the quasi-classical limit of the correspond-
ing�differential� Fay identities. Both approaches �that in Ref. 25 and ours� basically reach the same
dHirota equations, except that the free energy differs by a factor 2. However in Ref. 25 the
dispersionless Lax equations for a two-component BKP hierarchy can be formulated in two dif-
ferent ways, which reveals that the system has two spatial dimensions �t1 and t̄1�. It would be
interesting to investigate this peculiar property from the viewpoint of WDVV equations. Second,
the associativity equations discussed in Sec. III is an infinite-dimensional version of WDVV
equations in which the number of variables tk is infinite. However, in Ref. 6, some finite-
dimensional reductions of the EdBKP hierarchy have been obtained via Riemann-Hilbert construc-
tion. Therefore, it is quite natural to ask whether these solutions satisfy the finite-dimensional
version of WDVV equations. Third, in Refs. 20–22 Pavlov discussed dHirota equations of dBKP
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system from the point of view of Egorov hydrodynamic chains and constructed associated solu-
tions of WDVV equations. His approach in some sense gave a Hamiltonian approach to the dBKP
system. Therefore it is also interesting to investigate the Hamiltonian formulation to the EdBKP
hierarchy, which has the advantage of studying solutions of WDVV equations. Works in these
directions are now in progress.
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APPENDIX: dHirota for EdBKP

Equation �29�:

�−6:
1

5
F15 +

1

3
F11

3 −
1

3
F11F13 −

1

9
F33 = 0,

�−8:
2

7
F17 +

1

3
F11

4 +
1

3
F11

2 F13 −
1

5
F11F15 −

1

9
F11F33 −

2

9
F13

2 −
2

15
F35 = 0,

�−10:
1

3
F19 +

1

5
F11

5 +
2

3
F11

3 F13 +
1

5
F11

2 F15 −
1

7
F11F17 −

2

15
F11F35

−
4

15
F13F15 −

1

9
F13F33 −

2

21
F37 −

1

25
F55 = 0.

Equation �30�:

�̄6:
1

5
F1̄5̄ +

1

3
F

1̄1̄

3
−

1

3
F1̄1̄F1̄3̄ −

1

9
F3̄3̄ = 0,

�̄8:
2

7
F1̄7̄ +

1

3
F

1̄1̄

4
+

1

3
F

1̄1̄

2 F1̄3̄ −
1

5
F1̄1̄F1̄5̄ −

1

9
F1̄1̄F3̄3̄ −

2

9
F

1̄3̄

2
−

2

15
F3̄5̄ = 0,

�̄10:
1

3
F1̄9̄ +

1

5
F

1̄1̄

5
+

2

3
F

1̄1̄

3 F1̄3̄ +
1

5
F

1̄1̄

2 F1̄5̄ −
1

7
F1̄1̄F1̄7̄ −

2

15
F1̄1̄F3̄5̄

−
4

15
F1̄3̄F1̄5̄ −

1

9
F1̄3̄F3̄3̄ −

2

21
F3̄7̄ −

1

25
F5̄5̄ = 0.

Equation �31�:

�−4: F11F11̄ −
1

3
F31̄ = 0,

�−6: F11F11̄

2
+

1

3
F11F13̄ +

1

3
F11F31̄ +

1

3
F

11̄

3
+

1

3
F11̄F13 −

1

3
F11̄F31̄
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−
1

9
F33̄ −

1

5
F51̄ = 0,

�−8:
2

3
F11F11̄F31̄ +

2

3
F11F11̄

3
+

1

5
F11F15̄ +

1

9
F11F33̄ +

1

5
F11F51̄

+
2

3
F11F11̄F13̄ +

1

3
F13F11̄

2
+

1

9
F13F13̄ +

1

9
F13F31̄ +

1

3
F

11̄

4

+
1

3
F

11̄

2 F13̄ −
1

9
F11̄F33̄ −

1

5
F11̄F51̄ +

1

5
F11̄F15 −

1

9
F13̄F31̄

−
1

9
F

31̄

2
−

1

15
F35̄ −

1

15
F53̄ −

1

7
F71̄ = 0.

Equation �32�:

�−4: F1̄1̄F11̄ −
1

3
F13̄ = 0,

�−6: F1̄1̄F1̄1

2
+

1

3
F1̄1̄F1̄3 +

1

3
F1̄1̄F3̄1 +

1

3
F

1̄1

3
+

1

3
F1̄1F1̄3̄ −

1

3
F1̄1F3̄1

−
1

9
F3̄3 −

1

5
F5̄1 = 0,

�−8:
2

3
F1̄1̄F1̄1F3̄1 +

2

3
F1̄1̄F1̄1

3
+

1

5
F1̄1̄F1̄5 +

1

9
F1̄1̄F3̄3 +

1

5
F1̄1̄F5̄1

+
2

3
F1̄1̄F1̄1F1̄3 +

1

3
F1̄3̄F1̄1

2
+

1

9
F1̄3̄F1̄3 +

1

9
F1̄3̄F3̄1 +

1

3
F

1̄1

4

+
1

3
F

1̄1

2 F1̄3 −
1

9
F1̄1F3̄3 −

1

5
F1̄1F5̄1 +

1

5
F1̄1F1̄5̄ −

1

9
F1̄3F3̄1

−
1

9
F

3̄1

2
−

1

15
F3̄5 −

1

15
F5̄3 −

1

7
F7̄1 = 0.
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An explicit solution for the longitudinal and transverse polarizability of the sym-
metric dielectric intersecting double sphere is obtained as a rapidly converging
series of integral operators, which is fast enough for real time calculation in Java
Applet. © 2006 American Institute of Physics. �DOI: 10.1063/1.2359140�

I. INTRODUCTION

The problem of polarizability of an intersecting metallic double sphere was solved in 1949 by
Schiffer and Szego. Fifty years later it was reinvented by Felderhof and Palaniappan in their
article.1 Their solution is given in terms of a one-dimensional integral and applies also to the
asymmetric double spheres. The problem of a symmetric intersecting dielectric double sphere has
not yet been solved in explicit form. In the year 1994, Radchik, Paley, and Smith gave a nice try
in their article,2 but they did not show enough respect to the normal boundary conditions, and
eventually their results were proven to be false by Felderhof and Palaniappan.

Polarizability is a property of an object that measures its ability to interact with an electro-
magnetic force field. It depends on the electric properties of the matter and the shape of the object.
When studying heterogeneous mixtures of dielectric objects, the polarizability of a single object
provides crucial information.3

II. TOROIDAL COORDINATE SYSTEM

We define a coordinate transformation � from toroidal coordinates �u ,v ,�� to Cartesian
coordinates �x ,y ,z� by formulas

x =
sinh u cos �

R2 , y =
sinh u sin �

R2 , z =
sin v
R2 ,

where R=�cosh u−cos v. Coordinates �u ,v ,�� have ranges 0�u��, −��v��, and −���
��. The parametric surface �v ,�����u1 ,v ,�� defines a family of toroidal surfaces parametrized
by the coordinate u1 and �u ,�����u ,v1 ,�� defines a family of surfaces of intersecting double
spheres parametrized by the coordinate v1. In other words, the set

B�v1� = ���u,v,�� � R3�0 � u � � , �v� = v1,− � � � � ��

defines the surface of a symmetric intersecting double sphere. We can see that the surface B�� /2�
is a sphere with unit radius, the surface B��� is a disk with unit radius, and the surface B�0� is
touching spheres having an infinite radius. All the other surfaces are between these extreme cases.

In the following, we shall be considering a domain:

D�v1� = ���u,v,�� � R3�0 � u � � ,v1 � �v� � �,− � � � � �� ,

which describes a symmetric double sphere with permittivity � with a separation parameter v1 that
is connected to the relative distance d between the centers of the spheres by d=2 cos v1. In
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particular, when 0�d�2, we have an intersecting double sphere, and when −2�d�0 we have a
lens. �See Fig. 1�

III. LONGITUDINAL POLARIZABILITY

Let � be the scattered potential when the incident field E�r�=uz, having potential �0=−z, is
applied. We can see that the Laplacian of the incident potential �0 vanishes meaning that for the
scattered potential �, we have ��2���r�=0 when r�B�v1�. Therefore, it is a good idea to split the
solution � into two pieces:

��u,v� = 	�1�u,v� , v � v1,

�2�u,v� , v 	 v1,

because they both satisfy the Laplace’s equation separately and are connected through the conti-
nuity and normal boundary conditions,

�1�u,v1� = �2�u,v1� , �1�

��1�u,v1� − � � �2�u,v1� = �1 − �� � �0�u,v1� , �2�

where we have used the notation �
�u ,v�= �� /�v�
�u ,v�. In addition, the symmetry of the scat-
terer and incident potential require that the potential � is independent of the coordinate �. The
scattered potential must also vanish when z=0; thus we need to demand that �1�u ,0�=0 and
�2�u ,��=0 for all 0�u��.

FIG. 1. A symmetric intersecting double sphere when separation parameter v1=� /3.
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Having now all the necessary integredients to solve the Laplace’s equations, we shall proceed
by introducing our main mathematical tool: the Mehler-Fock transform.

The Mehler-Fock Transform F is a mapping f �F, where f and F are mappings R+→R such
that

F��� = � tanh����

0

�

P−1/2+i��cosh u�sinh uf�u�du .

According to Ref. 4, the inverse transform F−1 is the mapping F� f , where

f�u� = 

0

�

P−1/2+i��cosh u�F���d� .

We shall use a more convenient notation 
̄=F�
� in the following. The Legendre function of the
first kind P� in the core of the Mehler-Fock transform satisfies the well-known Legendre’s differ-
ential equation,

�1 − x2�P���x� − 2xP���x� + ��� + 1�P��x� = 0, �3�

where the degree �=−1/2+ i� is a complex number, making it crucially different from the familiar
Legendre’s polynomials Pn.

It can be shown that Laplace’s equation in the toroidal coordinate system is separable when
we define a new function 
i by �i=R
i, where the index i� �1,2�. Now, we may try to find
solutions of the form


i�u,v� = U�u�Vi�v� ,

and it turns out that we get two ordinary differential equations: the equation for the function U is
the Legendre’s equation �3� and for the functions Vi we have the equations

Vi� = �2Vi,

where � is an arbitrary non-negative number, meaning that we have a continuous spectrum of
solutions. Solutions satisfying the conditions V1�0�=0 and V2���=0 and the antisymmetry of the
potential � are given by

V1�v� = c1���sinh�v�� ,

V2�v� = c2���	 sinh„�� − v��… , 0 � v � � ,

− sinh„�� + v��… , − � � v � 0.

In the following, we may assume that 0�v�� because the boundary conditions �1� and �2�
remain unchanged if we change the sign of the separation parameter v1.

Now, the superposition principle suggests that the solutions could be of the form


1�u,v� = 

0

�

c1���P−1/2+i��cosh u�sinh�v��d� ,


2�u,v� = 

0

�

c2���P−1/2+i��cosh u�sinh„�� − v��…d� ,

which indeed look like an inverse Mehler-Fock transform when the corresponding transforms are
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̄1��,v� = c1���sinh�v�� ,


̄2��,v� = c2���sinh„�� − v��… .

We shall begin our hunt for the unknown amplitude functions c1 and c2 by transforming the
continuity equation �1� to obtain an equation,

c1���sinh�v1�� = c2���sinh„�� − v1��… ,

that we use to choose a new coefficient function c, which gives us the transforms


̄1��,v� = c���
sinh�v��
sinh�v1��

,


̄2��,v� = c���
sinh„�� − v��…
sinh„�� − v1��…

.

Now, the solutions read as

�i�u,v� = R�u,v�

0

�

P−1/2+i��cosh u�
̄i��,v�d� ,

when 0�v��.
There seems to be only one condition left to be fulfilled and one degree of freedom, namely

the function c, to play with. We immediately see that the boundary condition �2� is an integral
equation for the function c. It could be solved by means of the method of moments, however, due
to the oscillatory kernel, it is not a good idea. Instead, we shall use the Mehler-Fock transform to
obtain a much more nicely behaving integral equation.

A. Conducting double sphere

Next, we analyze briefly the case �→�. The boundary condition for a symmetric metallic
double sphere is

��u,v1� = �0�u,v1� =
sin v

R�u,v1�2 ,

which can be written in the form


�u,v1� =
sin v1

R�u,v1�3 .

The Mehler-Fock transform of this equation yields

c� = 
̄��,v1� = sin v1F� 1

R3� . �4�

Fortunately, the transform F�1/R3� has a simple analytical expression, which we shall soon derive
from the solution obtained by Felderhof and Palaniappan.

B. Dielectric double sphere

Using the definition �i=R
i, the normal boundary condition �2� at v=v1 can be written in the
form
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1

2
sin v1


12

R2 + �
12 = �� − 1�� cos v1

R3 −
sin2 v1

R5 � ,

where �
�u ,v�= �� /�v�
�u ,v� and 
12=
1−�
2. Now, we apply the Mehler-Fock transform
with respect to coordinate u and obtain the equation

�
̄12 +
1

2
sin v1F�
12

R2 � = �� − 1��cos v1F� 1

R3� − sin2 v1F� 1

R5�� ,

which, as it turns out, can be transformed to a Fredholm integral equation of the second kind.
In the article of Ref. 1, the case �→� has been solved analytically. From that solution, we can

extract the unknown function,

c� = 2�2�� sinh„�� − v1��…
cosh���� � .

Now, comparing this equation to Eq. �4�, we conclude that

F� 1

R3� =
c�

sin v1
,

and differentiating this with respect to parameter v1 yields the transform

F� 1

R5� = −
2

3 sin v1
� F� 1

R3� =
4

3
�2��� cosh„�� − v1��… + cot v1 sinh„�� − v1��…

sin2 v1 cosh���� � .

A simple differentiation gives us the derivative

�
̄12 = �coth�v1�� + � coth„�� − v1��…��c��� ,

evaluated at v=v1. Finally, we make a substitution p=cosh u and change the order of integration,
giving us the term

So, our normal boundary condition has taken the form of a Fredholm’s integral equation of the
second kind:

c��� − 

0

�

k��,�c��d = f��� , �5�

where the kernel k and the function f are given by expressions

k��,� =
�1 − ��sin v1 tanh����K��,�

2�coth�v1�� + � coth„�� − v1��…�
,

f��� =

�� − 1��cos v1F� 1

R3� − sin2 v1F� 1

R5��
��coth�v1�� + � coth„�� − v1��…�

.
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It turns out that the integral operator K, defined by

�Kg���� = 

0

�

k��,�g��d ,

is small �meaning that K  �1�, so that the solution function c can be written in terms of the
Neumann series,

c = �
n=0

�

Knf ,

which converges for all �	0 and 0�v1��. The convergence is quite fast: For instance, when
�=2 and v1=� /2 only 5 terms was needed to get 4 digit precision. However, it seems that K 
→1 when �→� and v1→0.

A highly recommended way to evaluate the Neumann series is to use a so-called nested form,
which means that cn→c, where cn+1=Kcn+ f and c0= f .

C. Polarizability

The polarizability of the double sphere is obtained by looking the behavior of the potential �
on the z axis, where the coordinate u=0. Using the Taylor expansions sin v�v and cos v�1
−v2 /2 we have v�2/z and R��2/z when z is large. We also need the expansion sinh�v��
�v��2� /z. Now we have the farfield expression for the potential on the z axis,

��z� =
2�2

z2 

0

� �c���
sinh�v1��

d� ,

where we have used the property P−1/2+i��1�=1 for all �	0. Now, we can compare this and the
potential of the uz directed dipole to get the normalized longitudinal polarizability,

�z =
8�2�

V 

0

� �c���
sinh�v1��

d� ,

where V is the volume of the double sphere.
To calculate the volume of the double sphere, we need the Jacobian determinant

J =
sinh u

R3

in the toroidal coordinate system. Now, the volume can be integrated analytically:

V = 2

−�

� 

0

� 

�

v1

J dv du d�

=
�

6� cos�3v1

2
� − 3 cos�v1

2
�

sin3�v1

2
� � .
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IV. IMPLEMENTATION

To solve the integral equation �5�, we approximate the functions cn by vectors cn��i�, where
the numbers �i are the integration points determined by the numerical integration method. The
integrand of the integral operator K is a very smooth function, hence, the Gaussian quadrature is
the best choice for the numerical integration. The iteration proceeds as

cn+1��i� = �
j=1

j

wjk��i,� j� cn�� j� + f��i� .

In each iteration, the kernel k has to be evaluated j2 times. Therefore, we need a fast implemen-
tation for the subkernel K�� ,�, which we shall consider briefly, but first, we need to determine a
proper choice for the integration points �i.

As we can see from Fig. 2, the initial guess function f��� spreads when the separation
parameter v1 gets smaller. In addition, the integrand of the subkernel K becomes very oscillatory
for large values of �. Therefore, we need to exclude those values of v1 that are close to 0, which
correspond the touching case. When we choose 192 Gaussian points on the interval �0,100�, it is
possible to analyze the cases d� �−1.99,1.99�.

A. Calculation of the subkernel

First, it is a good idea to do the integration with respect to variable u �meaning that p
=cosh u�, which leads to integrand that decays as e−u as u→� and oscillates with constant
frequency.

The easiest way to calculate the subkernel K is to use the software package MATHEMATICA 5.2,
which provides an implementation for the Legendre function P� and sophisticated numerical
integration methods. When the Gaussian points �i are chosen, one can pick some separation
parameter v1 of interest and calculate the table K��i ,� j�, which will be used in the iteration
process.

In order to do real-time calculations, for example, in Java Applet, we need to choose another
set of integration points ui. Once again, the Gaussian quadrature outperforms the other methods,
but now, due to the oscillatory behavior of the integrand of the subkernel, we need a lot of
integration points. Using 1024 Gaussian points on the interval �0,20� provides a precision such
that the polarizability can be calculated to precision that is 5 significant digits at worse. �See
Fig. 3�

B. Speeding things up

We have to do about 20 000 evaluations of the subkernel K to calculate the table K��i ,� j�.
Every evaluation of the subkernel requires 2048 Legendre function evaluations. How to calculate
a Legendre function 40 million times in one second?

Evaluating it by definition, as a hypergeometric series, is far too slow. A better idea is to save
the values of the Legendre function P−1/2+i�n

�cosh um� in a table to 16-digit precision using MATH-

EMATICA. Such a high precision is a good idea because there occurs loss of precision in the
integration. Constructing 1024 Gaussian points is not easy, but can be done with MATHEMATICA’s
command Findroot with initial guesses given by the formula cos(��j−1/4� / �n+1/2�). These
Gaussian points �abscissas� should be calculated with 600-digit precision to get the desired

FIG. 2. Function f when �=2 with different separation values.
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16-digit precision for the weights. More details can be found, for example, in the paper of Ref. 5.
Evaluating the Legendre function P−1/2+i�

� �cosh u� as MATHEMATICA’s function LegendreP
is very time consuming for large values of �. A faster way is to use a Formula 8.11.1 of the book6

for small values of u and Formula 8.11.1 with the hypergeometric part replaced by the formula
15.3.6 for large values of u. The condition for which one to use is the number u=0.1371
+0.202e−0.0312�, which we found in Appendix C of the article in Ref. 7.

V. TRANSVERSE POLARIZABILITY

To obtain the transverse polarizability, we need to apply the incident field E0=ux correspond-
ing to the potential �0=cos �, which now depends on the coordinate �. Fortunately, the solution
is quite similar to the solution of the longitudinal case, in fact, the solutions are


1�u,v,�� = cos �

0

�

c���P−1/2+i�
1 �cosh u�� cosh�v��

cosh�v1���d� ,


2�u,v,�� = cos �

0

�

c���P−1/2+i�
1 �cosh u�� cosh„�� − v��…

cosh„�� − v1��…�d� .

The dependence of the coordinate � causes no additional difficulties because it cancels out in the
boundary conditions.

The function c should satisfy the integral equation

c��� − 

0

�

k��,�c��d = f��� , �6�

where the kernel k and the function f are in this case given by expressions

k��,� = −
�1 − ��sin v1 tanh����K��,�

2�tanh�v1�� + � tanh„�� − v1��…�
,

f��� =

�� − 1��sin v1F−1� cosh u

R5 ��
��tanh�v1�� + � tanh„�� − v1���…

,

and the subkernel K is defined by the integral

FIG. 3. The subkernel K�� ,� when v1=� /2.

102901-8 Mikko Pitkonen J. Math. Phys. 47, 102901 �2006�

                                                                                                                                    



K��,� = 

1

� P−1/2+i�
−1 �p�P−1/2+i

1 �p�
p − cos v1

dp .

The required Mehler-Fock transforms of order −1 can be derived from order 0 by differentiating
the expressions with respect to coordinate u. Felderhof and Palaniappan1 provide us with the metal
limit

c� =
1

2�2
� cosh„�� − v1��…

cosh���� � ,

which, by taking the Mehler-Fock transform of order −1 of the incident potential, can be stated
such that

c� = − F−1� cosh u

R3 � .

Now, the differentiate this respect to the coordinate v1 to obtain the missing term for the function
f .

The transverse polarizability of the double sphere is obtained by looking the behavior of the
potential � on the neighborhood of the z axis, where the coordinate u�0 and potential decays as
x /z3 for large z. Using the Taylor expansions sin v�v and cos v�1−v2 /2, we have v�2/z and
R��2/z when z is large. This time we need also the expansion cosh�v���1, which, together with
the identity P−1/2+i�

1 �cosh u�=sinh uP−1/2+i�� �cosh u�, gives a farfield expression for the potential

��z� = − 2�2
x

z3

0

� �1 + 4�2�c���
cosh�v1��

d� ,

where we have used the property P−1/2+i�� �1�=−�1+4�2� /8. Next, we can compare this and the
potential of the uz directed dipole to get the normalized longitudinal polarizability,

FIG. 4. Longitudinal polarizability as a function of d with different permittivities.
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�x = −
8�2�

V 

0

� �1 + 4�2�c���
cosh�v1��

d� ,

where V is the volume of the double sphere.

VI. CONCLUSION

The old electrostatic problem of a symmetric intersecting dielectric double sphere is solved
explicitly for the first time. The solution is given in terms of an integral of a function c, which is
given by a Neumann series. Using the high precision capabilities of the MATHEMATICA software
package and efficient numerical integration techniques, the polarizabilities are implemented to real
time calculations in the Java Applet:

users . tkk . fi/ � mpitkone/Kaksoispallo/Kaksoispallo . html

where five-digit precision is achieved for the longitudinal polarizability and six-digit precision for
the transversal polarizability. The results were verified at the metal limit �→� using the solutions
provided by Felderhof and Palaniappan.

Figure 4 represents the behavior of the longitudinal polarizability as a function of the sepa-
ration d with different permittivity values. For values d�2, the polarizability is calculated from
the difference equation �3.9� of Ymeri’s article8 simply by solving that difference equation as an
ordinary linear system. The same difference equation approach analysis was presented also in the
article in Ref. 9 in 1976. It should be mentioned that Ymeri’s article has a misprint in the formula
�4.8�, which should read as �n= �n−1��e−�0 +�1e

−2n�0�. These results were verified at the metal
limit using very accurate results from article in Ref. 10.
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For the system driven by a stationary Markov process ��t : t�R+�, if it is in non-
equilibrium steady state �i.e., irreversible�, then there exists a function � such that
the fluctuation spectrum �or say: power spectrum density� of ����t�� is nonmono-
tonic in �0, + � � under mild conditions, which means that there exist nonzero
spectrum peaks of the fluctuation spectrum. For the system driven by a Markov
chain with discrete time ��t : t�Z+�, even if it is in equilibrium state �i.e., revers-
ible�, one cannot distinguish the equilibrium and nonequilibrium steady state in
terms of the monotonicity of the fluctuation spectrum any more. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2338763�

. INTRODUCTION

We explain the main terminology used, hoping that this paper can be interested by both the
robability kingdom and the statistical physics kingdom readers. In the present paper, unlike the
lassical probability theory, equilibrium means not just a stationary distribution but a stationary
istribution of the reversible Markov process, and the term “nonequilibrium steady state” means a
tationary distribution of the irreversible Markov process.

It is significant to consider the fluctuation spectrums �or say: power spectrum, power spectrum
ensity, spectrum density of fluctuation� in the study of nonequilibrium steady states and espe-
ially of stochastic resonance since they have immediate intuitive meaning and are readily
easurable.1,2 In Refs. 3–5, the authors proved that when a stationary Markov process ��t : t
R+� is in an equilibrium state, the fluctuation spectrum of any stationary process ����t�� �where
is a complex-valued function� decreases monotonically on �0, + � � as a function of the fre-

uency.
The question naturally arises if there is some nonmonotonic fluctuation spectrum for a sta-

ionary Markov process ��t : t�R+� in nonequilibrium steady state; in other words, whether mono-
onicity of all fluctuation spectrums characterizes equilibrium.

Reference 6 gives a positive answer to the above-presented question in the situation of
ontinuous-time finite states Markov chains. It proves that if the process ��t� is in nonequilibrium
teady state, then one can always find a complex function � such that the fluctuation spectrum of
���t�� is nonmonotonic on �0, + � �.
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In the present paper, we extend the above-presented result to more general stationary Markov
rocesses, including n-dimensional diffusions and denumerable Markov chains with continuous
ime. Under several mild technical conditions, we prove that the conclusion for the fluctuation
pectrum in Ref. 6 remains true �see Theorem 2.1�.

That is to say, for continuous-time Markov processes, equilibrium can be characterized by the
onotonicity of all fluctuation spectrum under some technical conditions. For the nonequilibrium

teady state Markov processes, the nonmonotonic fluctuation spectrums on �0, � � mean that there
xist off-zero peaks in the fluctuation spectrums. Reference 7 gave some criteria to show the
tochastic resonance maximum in terms of the center frequency of the spectrum peak, spectrum
eak height, and quality factor or signal-to-noise ratio. All the criteria are relevant to the off-zero
eak in the fluctuation spectrums. The difference between Ref. 7 and this paper is that various
alues of the noise strength are not considered here.

But for a discrete-time irreducible aperiodic Markov chain ��t : t�Z+� in equilibrium, if there
xist two real eigenvalues �i and � j of the transient matrix P with �i ·� j �0 and ��i � �1, �� j �
1, then there exists a real function � such that the fluctuation spectrum of ����t�� is nonmono-

onic on �0,��, so one cannot distinguish the equilibrium and nonequilibrium steady state in terms
f the monotonicity of the fluctuation spectrum any more. �see Sec. III�. This gives an useful
nsight about continuous time Markov processes and explains why we treat only continuous time

arkov processes on characterization of Markov processes in equilibrium by monotonicity of the
uctuation spectral density.

I. NONMONOTONIC FLUCTUATION SPECTRUM OF GENERAL STATIONARY MARKOV
ROCESSES

In this section �= ��t : t�0� always denotes a stationary Markov process, with its steady
istribution written � and infinitesimal generator written A. The state space of the process is
enoted by E, which is an abstract Polish space. The transition semigroup of the process is written
Pt : t�0�.

We shall need the following notations. Denote the real Hilbert space as L2�E ,��. Denote the
omplex Hilbert space �h1+ih2 :h1 ,h2�L2�E,��� by LC

2�E ,��, where i=�−1. The inner product
n this complex Hilbert space is naturally defined by

	f ,g
 = �
E

f�x�g*�x���dx�, ∀ f ,g � LC
2�E,�� ,

here g*�x� stands for the conjugate complex number of g�x�, and the norm on LC
2�E ,�� as � · �.

or any h�LC
2�E ,��, we write

��h� = �
E

h�x���dx� ,

Pth�x� = �
E

h�y�P�t,x,dy� ,

�Pt − ��h�x� = Pth�x� − ��h� .

ssume that �Pt : t�0� is strongly continuous, i.e.,

lim
t↓0

�Pt f − f� = 0, ∀ f � LC
2�E,�� . �1�

t is LC
2�E ,�� on which we consider the semigroup and the generator in the present paper. So if we
uppose that f �D�A� where D�A� is the domain of the operator A, we mean that f ,Af
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LC
2�E ,�� at the same time. Similarly, if we suppose f �D�A2�, we mean that f ,Af ,A2f

LC
2�E ,�� at the same time.

. Statement of the main results

Theorem 2.1: For a continuous-time Markov process ��t� in nonequilibrium steady state, if
here exist real functions f ,g�D�A2��L2�E ,�� such that

	A2f ,g
 − 	f ,A2g
 � 0, �2�

lim
t→+�

	Pt f ,A2g
 = 0, lim
t→+�

	Ptg,A2f
 = 0,

�3�
lim

t→+�
t	PtAf ,A2g
 = 0, lim

t→+�
t	PtAg,A2f
 = 0,

nd

t	PtA2f ,A2f
, t	PtA2g,A2g
 � L1��0, � �� ,

�4�
t	PtA2f ,A2g
, t	PtA2g,A2f
 � L1��0, � �� ,

hen the fluctuation spectrum of either �A2f��t�+iA2g��t�� or �A2f��t�−iA2g��t�� is nonmonotonic
n �0, + � �.

When we have some information on the point spectrum and the eigenfunctions of the genera-
or A of the irreversible stationary Markov process, we can yield the following

Corollary 2.2: For a continuous-time Markov process ��t� in nonequilibrium steady state, if
ny one of the following conditions is satisfied:

1� There exists a complex eigenvalue −a+i	 of A corresponding to an eigenfunction f�x�
+ig�x� such that a
0,	�0.

2� There exist two distinct real eigenvalues �1�0,�2�0 of A corresponding to eigenfunc-
tions f�x� ,g�x�, respectively, such that 	f ,g
�0.

3� There exists a real eigenvalue ��0 of A and there exist general eigenfunctions f�x� ,g�x�
with the following property

Af�x� = �f�x�, Ag�x� = f�x� + �g�x� ,

then one can find a complex function � such that the fluctuation spectrum of ����t�� is nonmono-
onic on �0, + � �.

. Proof of the main results

In order to prove the main theorem, we need some propositions and lemmas.
Let f1 , f2�L2�E ,�� and �= f1+if2. Denote the autocorrelation function and the fluctuation

pectrum of ����t�� as B��t� ,S��	�, respectively, which are defined as

B��t� = E�����t� − ��������*��0� − ����*��� if t � 0,

B��t� = E�����0� − ��������*��−t� − ����*��� if t � 0,

S��	� =
1

2�
� e−i	tB��t�dt ,
here E is the expectation operator with respect to the process �.

                                                                                                            



t

k

m



s
m

S
c
i

w
e

103301-4 Chen, Qian, and Xie J. Math. Phys. 47, 103301 �2006�

                        
Lemma 2.3: If B��t��L1�R�, S���	� exists and �dS��	�� /d	�	=0
0, then S��	� is nonmono-
onic on �0, + � �.

Proof: Since B��t��L1�R�, lim	→+�S��	�=0 by Riemann-Lebesgue’s lemma. It is well
nown that S��	��0, and since S���0�
0, there exists some �
0 such that S����
0.

Now suppose on the contrary that S��	� is monotonic in �0, + � �, then it must increase
onotonically since S���0�
0. Then S��	��S����
0 for all 	
�. Therefore lim	→+�S��	�
0, a contradiction. �

Remark 1: Lemma 2.3 is the start point of the proof of the main theorem. The following
ketch map gives two fluctuation spectrums with the frequency limited on �−3,3�. One is non-
onotonic on �0, � � with S���0�
0, the other is monotonic on �0, � � with S���0�=0 �Fig. 1�.

It is clear that

B��t� = 	Pt�,�
 − ������2 = 	�Pt − ���,�
 if t � 0,

B��t� = 	�,P−t�
 − ������2 = 	�,�P−t − ���
 if t � 0.

For t�0, let us write

F�t� = 	Pt f1, f1
 − ���f1��2 + 	Pt f2, f2
 − ���f2��2,

G�t� = 	f1,Pt f2
 − 	Pt f1, f2
 .

ince the transition semigroup �Pt : t�0� is strongly continuous, then one can get that F�t� is a
ontinuous function of t on �0, � � by Proposition 4.3.1 of Ref. 5 �p. 112�. And similarly that G�t�
s a continuous function of t on �0, � �.

Lemma 2.4: For the above complex-valued function �, we have

B��t� = F��t�� + i · sgn�t�G��t�� , �5�

here sgn�t�ª1 for t�0 and sgn�t�ª−1 for t�0. And if F�t� ,G�t��L1��0, � ��, then S��	�

FIG. 1. Two fluctuation spectrums with the frequency limited on �−3,3�.
xists and
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S��	� =
1

�
�

0

+�

�F�t�cos�	t� + G�t�sin�	t��dt . �6�

Proof: When t�0, the correlation function of ����t�� is

B��t� = 	Pt�,�
 − ������2

=	Pt f1 + iPt f2, f1 + if2
 − ���f1� + i��f2��2

=	Pt f1, f1
 − ���f1��2 + 	Pt f2, f2
 − ���f2��2

+ i�	f1,Pt f2
 − 	Pt f1, f2
�

=F�t� + iG�t� .

nd when t�0,

B��t� = B�
*�− t� = F�− t� − iG�− t� .

his means

B��t� = F��t�� + i · sgn�t�G��t��, t � R ,

here sgn�·� is the sign function. If F�t� ,G�t��L1��0, � ��, then it is clear that B��t��L1�R�. So
he fluctuation spectrum exists and

S��	� =
1

2�
�

−�

+�

B��t�exp�− i	t�dt=
1

�
�

0

+�

F�t�cos�	t�dt +
1

�
�

0

+�

G�t�sin�	t�dt .

�

Lemma 2.5: If tF�t� , tG�t��L1��0, � ��, then S���	� exists, and

dS��	�
d	

= −
1

�
�

0

+�

t�F�t�sin�	t� − G�t�cos�	t��dt . �7�

specially,

S���0� =
1

�
�

0

+�

tG�t�dt . �8�

nd if

�
0

+�

tG�t�dt 
 0, �9�

hen the fluctuation spectrum of ����t�� is nonmonotonic on �0, + � �.
Proof: Since tF�t� , tG�t��L1��0, � ��, it is clear that tB��t��L1�R�. So S���	� exists and by

emma 2.4, we have

dS��	�
d	

= −
1

�
�+�

t�F�t�sin�	t� − G�t�cos�	t��dt ,

0
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S���0� =
1

�
�

0

+�

tG�t�dt .

f condition �9� is satisfied, then S���0�
0. This ends the proof by Lemma 2.3. �

By Lemma 2.5, now the last key point is to find two real functions f1 , f2�L2�E,�� such that
q. �9� is satisfied. The following lemma is needed.

Lemma 2.6: For any Markov process ��t� in steady state, if f ,g�D�A2��L2�E ,�� and

lim
t→+�

	Pt f ,A2g
 = 0, �10�

lim
t→+�

t	PtAf ,A2g
 = 0, �11�

hen

	f ,A2g
 = �
0

+�

t	PtA2f ,A2g
dt . �12�

Proof: When t�0, by Kolmogorov equations,

dPt f = PtAfdt ,

and d	Pt f ,g
 = 	PtAf ,g
dt .

ence we have

�
0

+�

t	PtA2f ,A2g
dt = �
0

+�

td	PtAf ,A2g


=t	PtAf ,A2g
�t=0
+� − �

0

+�

	PtAf ,A2g
dt

= lim
t→+�

t	PtAf ,A2g
 − �
0

+�

	PtAf ,A2g
dt

=− �
0

+�

	PtAf ,A2g
dt .

nd by Kolmogorov equations again,

�
0

+�

	PtAf ,A2g
dt = �
0

+�

d	Pt f ,A2g
= lim
t→+�

	Pt f ,A2g
 − 	f ,A2g
=− 	f ,A2g
 .

�

Now we start the proof of the main theorem and Corollary.
Proof of Theorem 2.1: Without loss of generality, let us assume 	A2f ,g
− 	f ,A2g

0. Let

f1=A2f , f2=A2g. Since ��A2f�=��A2g�=0,

F�t� = 	PtA2f ,A2f
 + 	PtA2g,A2g
 ,

2 2 2 2
G�t� = 	A f ,PtA g
 − 	PtA f ,A g
 .
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By condition �4�, tF�t� , tG�t��L1��0, � ��. Then S���	� exists by Lemma 2.5.
By condition �3�, the following equations

�
0

+�

t	PtA2f ,A2g
dt = 	f ,A2g
 ,

�
0

+�

t	A2f ,PtA2g
dt = 	A2f ,g


old by Lemma 2.6.
By Eq. �8� of Lemma 2.5

S���0� =
1

�
�

0

+�

tG�t�dt=
1

�
�

0

+�

t�	A2f ,PtA2g
 − 	PtA2f ,A2g
�dt=	A2f ,g
 − 	f ,A2g
 
 0.

Thus the fluctuation spectrum of ����t�� is nonmonotonic by Lemma 2.5. �

Proof of Corollary 2.2: Conditions �2�–�4� of Theorem 2.1 are satisfied when applied with the
unctions f�x� and g�x� appearing in conditions 1�, 2� or 3� of Corollary 2.2. This ends the proof.�

. Applications

Example 1: If ��t : t�R� is a stationary continuous-time finite states Markov chain, if it is in
onequilibrium steady state, then by the Lemma 2.4 of Ref. 6, one of the conditions in Corollary
.2 is satisfied at least. Thus one can always find a nonmonotonic fluctuation spectrum by Corol-
ary 2.2.

Example 2: For Ornstein-Uhlenbeck equation �or Langevin equation�

dX1�t�
dX2�t� � =  − r �

− � − r
�X1�t�

X2�t� �dt + dB1�t�
dB2�t� � , �13�

here r
0,�
0 �Ref. 8, pp. 181–186�, the generator is

A = �− rx + �y�
�

�x
+ �− �x − ry�

�

�y
+

1

2
2 · � , �14�

ith the stationary distribution

��dx,dy� =
r

�2 exp�−
r�x2 + y2�

2 �dxdy . �15�

ince −r+i� is the complex eigenvalue of the generator A corresponding to the eigenfunction
−iy, the generator A is a nonsymmetric operator with respect to �. So the existence of a
onmonotonic fluctuation spectrum is solved by Corollary 2.2.

Example 3: Let ��t : t�R1� be a continuous-time Markov chain, with the state space E

�−2,−1,0 ,1 ,2 , . . . � and the transition rate matrix
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Q = �
− 1 1 0 0 0 0 . . .

0 − 1 1 0 0 0 . . .

1 0 − 2 1 0 0 . . .

0 0 2 − 4 2 0 . . .

0 0 0 4 − 7 3 . . .

0 0 0 0 6 − 10 . . .

� � �

� .

hat is q−2,−1=q−1,0=q0,−2=1, and when n�0, qn,n+1=n+1 and qn,n−1=2n. Clearly the steady
istribution � is defined by ��−2�=��−1�=1/4, and ��n�=1/4�1/2�n for n�0. Let f�x�=�−2,x

nd g�x�=�−1,x, where the Kronecker delta �−2,x is 1 when x is equal to −2, and is 0 otherwise. One
an check that condition �2� is satisfied. By Ref. 9, Theorem 3, Ref. 10, Theorem 6.5 and Example
.57 in Ref. 11, pp. 162, it is clear that this Markov chain is exponentially ergodic. And since
f�x� ,Ag�x� ,A2f�x� ,A2g�x� are all compact supported, conditions �3� and �4� are valid. There-

ore a nonmonotonic fluctuation spectrum is found by Theorem 2.1.

II. FLUCTUATION SPECTRUM FOR DISCRETE-TIME MARKOV CHAINS IN EQUILIBRIUM

Let ��t : t�Z+� be a discrete-time finite states Markov chain, and let P be its k�k irreducible
robability transition matrix, where k is the number of states. If ��t� is in equilibrium state, then all
he eigenfunctions of P can be chosen to be orthonormal with respect to the steady distribution �,
nd denote them by �f1 , f2 , . . . , fk�, and let �i be the eigenvalue of the matrix P corresponding to
he eigenfunction f i. We might as well let �1=1 with the eigenvector f1= �1,1 , . . . ,1�. For any
omplex function ��Ck, let �=� j=1

k ajf j. Denote the autocorrelation function and the fluctuation
pectrum of ����t�� as B��t� ,S��	�, respectively, which are defined as

B��t� = E�����t� − ��������*��0� − ����*��� if t � Z+,

B��t� = E�����0� − ��������*��−t� − ����*��� if t � Z−,

S��	� =
1

2�
�

t=−�

�

B��t�e−it	, − � � 	 � � ,

here E is the expectation operator with respect to the process �.
And similar to Refs. 6 and 12, based on elementary facts of self-adjoint operators in finite

imensional spaces and obvious elementary calculus, one can obtain that
Proposition 3.1: If ��t : t�Z+� is in equilibrium state, and its probability transition matrix P is

rreducible, then

B��t� = �
i=2

k

�ai�2�i
�t�, t � Z . �16�

f P is aperiodic in addition, then the fluctuation spectrum of ����t�� exists and

S��	� =
1

2�
�
i=2

k

�ai�2
1 − �i

2

1 + �i
2 − 2�i cos 	

. �17�

n particular, the fluctuation spectrum is monotonic if and only if all eigenvalues of the irreduc-
ble, aperiodic transient matrix P which are not equal to 1 have same signs.
Example 4:
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P = �
0

1

4

3

4

1

4

1

2

1

4

3

4

1

4
0
� .

The above transition matrix is obviously symmetrical with an equilibrium state �

�1/3 ,1 /3 ,1 /3�. Clearly −3/4 ,1 /4 are two eigenvalues with different signs. This example shows
he existence of the nonmonotonic fluctuation spectrum for the discrete-time Markov chains in
quilibrium.

V. CONCLUSION

For continuous-time Markov processes, equilibriums can be characterized by the monotonic-
ty of all fluctuation spectrum under some good conditions. For discrete-time irreducible aperiodic

arkov chains, one cannot distinguish the equilibrium and nonequilibrium steady state in terms of
he monotonicity of the fluctuation spectrum any more.
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The solutions of the nonlinear diffusion equation �t�=r1−ND�r�rN−1−����r�r−�����
−r1−N�r�rN−1F�� are investigated by considering the presence of an external force
F which exhibits an explicit dependence on the distribution. First, the stationary
case is considered; after that the dynamical case, i.e., the case dependent on time.
The stationary solution is obtained by considering the external force F�r ;��
=F1�r�+F2�r����r���+�−1 and the result found is related to the distributions which
emerge from the Tsallis statistics or the Boltzmann-Gibbs statistics. The dynamical
solution is investigated by considering the external force F�r , t ;��=−k�t�r
+K /r1+�+����r , t���+�−1 and related to the Levy distributions in the asymptotic
limit. In both cases, the solutions are expressed in terms of the q-exponentials and
the q-logarithmics functions which emerge from the Tsallis formalism. © 2006
American Institute of Physics. �DOI: 10.1063/1.2354334�

I. INTRODUCTION

The broadness of the anomalous diffusion processes covering many physical contexts has
motivated the study of several approaches.1–8 One of them is based on the nonlinear diffusion
equations4 which has been used to investigate many situations such as percolation of gases
through porous media,9 thin saturated regions in porous media,10 a standard solid-on-solid model
for surface growth, thin liquid films spreading under gravity,11 the axisymmetric flow of a very
viscous fluid,12 turbulent diffusion,13 and the nonlinear diffusion in hard and soft
superconductors.14 A representative nonlinear diffusion equation is the porous medium equation
��t�=D�2��� which has been intensively investigated. In fact, it has been analyzed by considering
several situations such as the presence of external forces,15 a spatial time dependent diffusion
coefficient,16–18 and reaction diffusion terms.19 In this direction, in Refs. 20 and 21 was obtained
a Langevin equation related to the porous medium equation and in Refs. 22 and 23 the connection
between the solutions and distribution of probability that emerges from the Tsallis formalism was
investigated. The escape time, or mean first passage time, has also been studied leading eventually
to a generalization of the Arrhenius law.24 However, the presence of nonlinear drift in the porous
medium equation and its connection with the Tsallis formalism25 or the usual thermostatistics
�Boltzmann-Gibbs statistics�26 have not been properly investigated. Thus, we dedicate the present
work to establish some classes of solutions of a general nonlinear diffusion equation and investi-

a�Electronic mail: eklenzi@dfi.uem.br
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gate the connections with the Tsallis formalism and the usual thermostatistics. We focus our
attention on the following generalized equation:

�

�t
��r,t� =

D
rN−1

�

�r
�rN−1−����r,t��� �

�r
�r−����r,t����� −

1

rN−1

�

�r
�rN−1F�r,t;����r,t�� , �1�

where D is a �dimensionless� diffusion coefficient, r is non-negative, N represents the dimension
of the system, F�r , t ;�� is a �dimensionless� nonlinear convection or transport term �external
force�. For ��t�=0, it can be verified that 	0

�drrN−1��r , t� is time independent �hence, if � is
normalized at t=0, it will remain so forever�. Indeed, if we write the equation in the �t�
=r1−N�rJ form and assume the boundary condition J�� , t�→0, it can be shown that
	0

�drrN−1��r , t� is a constant of motion. Note that Eq. �1� has as particular case several situations
such as mentioned above and also recovers, for �� ,� ,� ,��= �0,0 ,0 ,1� and F�r , t ;��=0 the stan-
dard Fokker-Planck equation27 in the absence of drift and to �� ,� ,� ,� ,N�= �0,0 ,0 ,1 ,1� with
F�r , t ;��=K���r , t��2 /2 the Burgers equation28 in the one-dimensional case. Thus, our present
discussion involves extensions of these cases taking a wide variety of situations into account by
employing a nonlinear diffusion equation with a nonlinear convection or transport term. In par-
ticular, in Sec. II, we consider several situations for Eq. �1� by starting to the stationary case and
after we analyze the dynamical, i.e., the time dependent solutions. For the stationary case, we
consider the external force F�r ;��=F1�r�+F2�r����r���+�−1 �F1�r� and F2�r� are arbitrary func-
tions� and for the time dependent case we employ F�r , t ;��=−k�t�r+K /r1+�+����r , t���+�−1 �k�t� is
a time dependent function and K is a constant�. In Sec. III, we present our conclusions.

II. NONLINEAR DIFFUSION EQUATION

Let us start our study by investigating the stationary solutions for Eq. �1�. For this case, by
taking into account the external force F�r ;��=F1�r�+F2�r����r���+�−1 and employing the station-
ary condition,27,29 we can reduce Eq. �1� to

Dr−����r��� d

dr
�r−����r���� − F1�r���r� − F2�r����r���+� = 0 �2�

for an arbitrary N. Note that this equation has a nonlinear diffusive term and also a nonlinear
convection or transport term. This nonlinear term incorporated in the external force may produce
in the solution a new behavior to the stationary solution which was not present in the results found
in Refs. 15–17. In fact, the solution which emerges from this equation may present two behaviors,
one of them is a power-law �Tsallis formalism� and the other is an exponential �Boltzmann-Gibbs
statistics�. In order to show this feature and obtain the solution of this equation, we may use the
procedure employed by Plastino and Plastino in Ref. 22 which is based on the Tsallis formalism.25

Following Ref. 22, we consider the solution given by

��r� = r�/�expq�− G�r��/Z , �3�

where G�r� is determined by the equation which emerges by substituting Eq. �3� in Eq. �2�, Z is
obtained from the normalization condition, and expq is the q-exponential present in the Tsallis
formalism. The expq is given by expq�x�= �1+ �1−q�x�1/�1−q� if 1+ �1−q�x�0 and expq�x�=0 if
1+ �1−q�x	0 and it emerges from the Tsallis formalism by maximizing the Tsallis entropy Sq

= �1−	dx���x��q� / �q−1� with suitable constraints. Substituting Eq. �3� in Eq. �2� and taking q
=2−�−� into account, the equation satisfied by G�r� is

d

dr
G�r� − �1 − q�r�+�

F2�r�
D�

G�r� = −
r�+�

D� 
F2�r� + � Z

r
�
�
��+�−1

F1�r� . �4�

The solution for this equation is given by
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G�r� = −
Z�+�−1

D�
�

0

r

dr̄r̄��/���1−��+�F1�r̄�exp�−
1 − q

D� 
�
0

r̄

dr̃F2�r̃�r̃�+� − �
0

r

dr̃F2�r̃�r̃�+��
− lnq
exp� 1

D�
�

0

r

dr̃F2�r̃�r̃�+�� , �5�

where lnq�x�= �x1−q−1� / �1−q� is the q-logarithmic function which is the inverse function of the
above-defined q-exponential. By applying Eq. �5� in Eq. �3� we found the stationary solution

��r� = r�/�expq
Z�+�−1

D�
�

0

r

dr̄r̄��/���1−��+�F1�r̄�exp�−
1 − q

D�
��

0

r̄

dr̃F2�r̃�r̃�+� − �
0

r

dr̃F2�r̃�r̃�+����
+ lnq

exp� 1

D�
�

0

r

dr̃F2�r̃�r̃�+���Z . �6�

From Eq. �6�, we note that the stationary solution may behave, as we mentioned before, as a
Boltzmann-Gibbs distribution or as a Tsallis distribution depending on the choice of F1�r� and
F2�r�. In fact, by taking F1�r�=0 in Eq. �6� we obtain ��r�=r�/�exp��1/D��	0

rdr̃F2�r̃�r̃�+�� /Z
which essentially behaves like a Boltzmann-Gibbs distribution and for F2�r�=0 we obtain the
Tsallis distribution ��r�=r�/�expq�Z�+�−1	0

rdr̄r̄��/���1−��+�F1�r̄� /D�� /Z. The presence of a station-
ary solution with an exponential behavior like the Boltzmann-Gibbs distribution indicates that the
solution may have an anomalous relaxation to a usual stationary solution. A similar effect is
verified in the fractional diffusion equations which employ a time fractional derivative.3 In Fig. 1,
we illustrate by using numerical calculation based on the method of finite difference30 how a
solution of Eq. �1� for a typical choice of F1�r� and F2�r�, for simplicity, in the one-dimensional
case, evolves in time and has Eq. �6� as stationary solution.

Now, we consider the dynamical case by taking into account the external force F�r , t ;��
=−k�t�r+K /r1+�+����r , t���+�−1 which depends on the distribution of the system. For this case,
after substituting this external force in Eq. �1� we obtain

�

�t
��r,t� =

D
rN−1

�

�r
�rN−1−����r,t��� �

�r
�r−����r,t����� +

1

rN−1

�

�r
�rN−1
k�t�r

−
K

r1+�+� ���r,t���+�−1��r,t�� . �7�

In order to obtain the solution for this case, we use, for simplicity, the similarity method to reduce
this partial differential equation to ordinary differential equations. The explicit form for these
ordinary differential equations depends on the boundary conditions or on restrictions in the form
of conservation laws. Thus, we restrict our analysis to the solutions of the type

��r,t� = 
 1


�t�N
P� r


�t�
� , �8�

which need to satisfy the initial, the boundary conditions, and the normalization condition. By
substituting Eq. �8� in Eq. �7� we obtain

−

̇�t�

�
�t��2

d

dz
�zNP�z�� =

D
�
�t���

d

dz
�zN−1−��P�z��� d

dz
�z−��P�z����� +

k�t�

�t�

d

dz
�zNP�z��

−
1

�
�t���

d

dz
�zN−1
 K

z1+�+� �P�z���+�� , �9�

where �=3+�+�+N��+�−1� and z=r /
�t�. From Eq. �9� we can obtain
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̇�t�
�
�t��2 +

k�t�

�t�

=
k�

�
�t��� �10�

and

− k�
d

dz
�zNP�z�� = D d

dz
�zN−1−��P�z��� d

dz
�z−��P�z����� −

d

dz
�zN−1
 K

z1+�+� �P�z���+��
�11�

by introducing the constant of separation k� which can be determined by the normalization con-
dition. After some calculations, we obtain that the solution to Eq. �10� is given by


�t� = 
�
�0���−1 + �� − 1�k��
0

t

dt̃e��−1�	0
t̃ dt�k�t��1/��−1�

e−	0
t dt�k�t��. �12�

Note that similar solutions for the time dependent function have been found for different nonlinear
fractional diffusion equations.31–35 This fact indicates that different diffusion equations have a
similar anomalous spreading for the probability distribution and the difference is on the param-
eters present in the diffusion equation. From this solution it is also possible to obtain the behavior
of spreading of Eq. �7� by using ��0, t�, since for this case �r2��1/ ���0, t��2� �
�t��2. Thus,
depending on the parameters � ,� ,�, and �, we may have an anomalous or usual behavior for the
spreading and consequently to the second moment. In particular, for the case characterized by the

FIG. 1. Behavior of ��r , t� vs r, which illustrates Eq. �1� for typical values of � and t by considering, for simplicity, D
=1, �=0, �=0, �=0, N=1, F1�r�=0, and F2�r�=−kr with k=1. In �a�, we illustrated the case characterized by �=0.9 and
in �b� the case �=1.2. Note that in both cases the solutions for long time have the stationary case given by Eq. �6�.
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absence of external forces the second moment is �r2�� t2/��−1�, where �3,�=3 or �	3 lead us to
a subdiffusive, normal or superdiffusive behavior, respectively. Now let us address our discussion
to the solution of Eq. �11�. Performing an integration in Eq. �11� results in

− k�zNP�z� = DzN−1−��P�z��� d

dz
�z−��P�z���� − KzN−�2+�+���P�z���+� + C . �13�

We take C=0 in order to simplify our analysis about the solutions which satisfy the boundary
condition P�z→ � �→0. By applying the last consideration in Eq. �13�, after some calculation we
obtain that

P�z� = z�/�+K/D�expq
−
k�z�̄

D��̄
 , �14�

where q=2−�−� and �̄=2+�+��1−�� /�−K��+�−1� / �D�� �see Fig. 2�. Note that the behavior
of Eq. �14� can be compact or characterized by long tail depending on the parameters � ,� ,�, and
�. For the last case, we may relate the solution obtained to the Levy distributions in the asymptotic
limit. In fact, by taking the asymptotic limit of the above equation for large z �P�z�
�1/z�2+�+��/�q−1�� and comparing to the asymptotic limit of the Levy distributions �P�z�
�1/z1+��8 we obtain q= �3+�+�+�� / �1+��. Now, in order to show the explicit form of the time
dependent solution for this case, we substitute Eq. �14� in Eq. �8� to obtain

FIG. 2. Behavior of P�z� vs z, which illustrates Eq. �14� for typical values for � ,� ,�, and �, for simplicity, by taking into
account K=1, N=1, and D=1. Notice that depending on the choice of these parameters the distribution may have a
compact or a long tail behavior.
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��r,t� = � 1


�t�
�N� r


�t�
��/�+K/D�

expq
−
k�

D��̄
� r


�t�
��̄ �15�

with 
�t� defined by Eq. �12� �see Fig. 3�.

III. SUMMARY AND CONCLUSION

In summary, we have worked out an N-dimensional nonlinear diffusion equation by consid-
ering a nonlinear convective or transport term. We have analyzed a stationary solution and a time
dependent case which emerge from this equation. For the stationary case it was verified that the
solution obtained may present a power-law or an exponential behavior. Thus for the first case, it
was possible to relate the solution found here with the Tsallis formalism and in the second case
may be established a connection to the Boltzmann-Gibbs formalism. The last behavior is very
interesting since it indicates that the solution may have an anomalous relaxation to the usual
stationary solution. Similar behavior is found in the fractional diffusion equations which employ a
time fractional time derivative. For the time dependent case, we have shown that it admits exact
solutions where space scales with a function of time and lead us to a power-law distribution with
a compact or a long tailed behavior depending on the parameters values � ,� ,� ,� ,K, and D. In
particular, for the case characterized by a long tailed behavior, the distribution was connected to
the Levy distribution in the asymptotic limit. However, it is interesting to note that the time
dependent solution has a power-law behavior due to the choice of the convective term. Other
choices to this term may lead us to obtain different solutions. Finally, we hope that the results
obtained here may be useful to study physical systems exhibiting anomalous diffusion.

FIG. 3. Behavior of ��r , t� vs r, which illustrates how Eq. �15� evolves on the time for �=1, �=1/2, �=−1, and �
=1/3, for simplicity, by taking into account K=1, N=1, 
�0�=0, k�t�=1, and D=1.

103302-6 Assis Jr. et al. J. Math. Phys. 47, 103302 �2006�

                                                                                                                                    



ACKNOWLEDGMENTS

We thank CNPq, PRONEX/CNPq and Fundação Araucária for the financial support.

1 R. Hilfer, Applications of Fractional Calculus in Physics �World Scientific, Singapore, 2000�.
2 A. Pekalski and K. Sznajd-Wero, Anomalous Diffusion: From Basics to Applications, Lecture Notes in Physics �Springer,
Telos, 1999�.

3 R. Metzler and J. Klafter, Phys. Rep. 339, 1 �2000�.
4 S. Abe and Y. Okamoto, Nonextensive Statistical Mechanics and Its Applications, Lecture Notes in Physics �Springer,
Heidelberg, 2001�; N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group �Addison-Wesley,
Reading, MA, 1992�.

5 B. J. West, M. Bologna, and P. Grigolini, Physics of Fractal Operators �Springer, New York, 2002�.
6 G. M. Zaslavsky, Phys. Rep. 371, 461 �2002�.
7 G. H. Weiss, Aspects and Applications of the Random Walk �North-Holland, Amsterdam, 1994�.
8 M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch, Lévy Flights and Related Topics in Physics, Lecture Notes in Physics
�Springer, Berlin, 1994�.

9 M. Muskat, The Flow of Homogeneous Fluid Through Porous Media �McGraw-Hill, New York, 1937�.
10 P. Y. Polubarinova-Kochina, Theory of Ground Water Movement �Princeton University Press, Princeton, 1962�.
11 J. Buckmaster, J. Fluid Mech. 81, 735 �1983�.
12 J. A. Dieza, R. Gratton, and J. Gratton, Phys. Fluids A 4, 1148 �1992�.
13 V. P. Grarilov, N. V. Klepikova, and H. C. Rodean, Atmos. Environ. 29, 2317 �1995�.
14 J. Gilchrist and C. J. Van der Beek, Physica C 231, 147 �1994�; V. M. Vinokur, M. V. Feigel’man, and V. B. Geshken-

bein, Phys. Rev. Lett. 67, 915 �1991�.
15 C. Tsallis and D. J. Bukman, Phys. Rev. E 54, R2197 �1996�; L. Borland, F. Pennini, A. R. Plastino, and A. Plastino, Eur.

Phys. J. B 12, 285 �1999�.
16 L. C. Malacarne, R. S. Mendes, I. T. Pedron, and E. K. Lenzi, Phys. Rev. E 63, 030101 �2001�.
17 L. C. Malacarne, R. S. Mendes, I. T. Pedron, and E. K. Lenzi, Phys. Rev. E 65, 052101 �2002�.
18 C. Giordano, A. R. Plastino, M. Casas, and A. Plastino, Eur. Phys. J. B 22, 361 �2001�.
19 G. Drazer, H. S. Wio, and C. Tsallis, Phys. Rev. E 61, 1417 �2000�; A. Rigo, A. R. Plastino, M. Casas et al., Phys. Lett.

A 276, 97 �2000�; A. R. Plastino, M. Casas, and A. Plastino, Physica A 280, 289 �2000�.
20 L. Borland, Phys. Rev. E 57, 6634 �1998�.
21 T. D. Frank, Physica A 310, 397 �2002�.
22 A. R. Plastino and A. Plastino, Physica A 222, 347 �1995�.
23 T. D. Frank, J. Math. Phys. 43, 344 �2002�; S. Martinez, A. R. Plastino, and A. Plastino, Physica A 259, 183 �1998�.
24 E. K. Lenzi, C. Anteneodo, and L. Borland, Phys. Rev. E 63, 051109 �2001�.
25 S. R. A. Salinas and C. Tsallis, Nonextensive Statistical Mechanics and Thermodynamics, Braz. J. Phys. 29, 1 �1999�; P.

Grigolini, C. Tsallis, and B. J. West, Classical and Quantum Complexity and Nonextensive Thermodynamics, Chaos,
Solitons and Fractals, Vol. 13 �Pergamon-Elsevier, Amsterdam, 2002�.

26 K. Huang, Statistical Mechanics �Wiley, New York, 1987�.
27 H. Risken, The Fokker-Planck Equation �Springer, New York, 1984�.
28 J. M. Burgers, The Non-Linear Diffusion Equation: Asymptotic Solutions and Statistical Problems �Springer, Boston,

1974�.
29 C. W. Gardiner, Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences, Springer Series in

Synergetics �Springer, New York, 1996�.
30 J. Crank, The Mathematics of Diffusion �Oxford University Press, London, 1956�; A. R. Mitchell and D. F. Griffiths, The

Finite Difference Method in Partial Differential Equations �Wiley, New York, 1995�.
31 M. Bologna, C. Tsallis, and P. Grigolini, Phys. Rev. E 62, 2213 �2000�.
32 C. Tsallis and E. K. Lenzi, Chem. Phys. 284, 341 �2002�; 287, 295 �2002�.
33 E. K. Lenzi, G. A. Mendes, R. S. Mendes, L. R. da Silva, and L. S. Lucena, Phys. Rev. E 67, 051109 �2003�.
34 E. K. Lenzi, R. S. Mendes, L. C. Malacarne, and I. T. Pedron, Physica A 319, 245 �2003�.
35 E. K. Lenzi, R. S. Mendes, K. S. Fa, L. S. Moraes, L. R. da Silva, and L. S. Lucena, J. Math. Phys. 46, 083506 �2005�.

103302-7 Nonlinear diffusion equation J. Math. Phys. 47, 103302 �2006�

                                                                                                                                    



Limiting laws of linear eigenvalue statistics
for Hermitian matrix models

L. Pastura�

Department of Mathematics, University of Wales Swansea, Singleton Park,
Swansea, SA2 8PP, United Kingdom

�Received 31 May 2006; accepted 28 August 2006; published online 26 October 2006�

We study the variance and the Laplace transform of the probability law of linear
eigenvalue statistics of unitary invariant Matrix Models of n�n Hermitian matrices
as n→�. Assuming that the test function of statistics is smooth enough and using
the asymptotic formulas by Deift et al. � Commun. Pure Appl. Math. 52, 1325–
1425 �1999�� for orthogonal polynomials with varying weights, we show first that
if the support of the Density of States of the model consists of q�2 intervals, then
in the global regime the variance of statistics is a quasiperiodic function of n as
n→� generically in the potential, determining the model. We show next that the
exponent of the Laplace transform of the probability law is not, in general, 1 /2
� variance, as it should be if the Central Limit Theorem would be valid, and we
find the asymptotic form of the Laplace transform of the probability law in certain
cases. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2356796�

I. INTRODUCTION

Random matrix theory deals mostly with eigenvalue distributions of various ensembles of n
�n random matrices as n→�. Many questions of this branch of the theory can be formulated in
terms of the Eigenvalue Counting Measure Nn, Nn��n� is the number of eigenvalues in a given
part �n of the spectrum of a matrix Mn. In a particular case of n�n Hermitian matrices, eigen-
values are real, and we can write for �n�R,

Nn��n�: = # ��l
�n� � �n,l = 1, . . . ,n� = �

l=1

n

��n
��l

�n�� , �1.1�

where �� is the indicator of �. A more general object is a linear eigenvalue statistic, defined as

Nn��n�: = �
l=1

n

�n��l
�n�� = Tr �n�Mn� = �

R
�n���Nn�d�� , �1.2�

for a certain test function,

�n:R → C . �1.3�

It is known that in many cases there exists a scaling of matrix entries �i.e., a choice of the scale of
the spectral axis�, such that for a sufficiently big class of n-independent intervals in �1.1� �test
functions in �1.2�� the Normalized Counting Measure of eigenvalues,

a�Permanent address: Institute for Low Temperatures, 47 Lenin’s Ave, 61103 Kharkiv, Ukraine; electronic mail:
lpastur@ilt.kharkov.ua
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Nn = Nn/n , �1.4�

converges weakly to a non-random measure N, known as the Integrated Density of States measure
�IDS� of the ensemble,

Nn → N . �1.5�

The corresponding scale �asymptotic regime� is called the global �or macroscopic�. The conver-
gence is either in probability or even with probability 1. We refer the reader to the works in Refs.
19, 9, and 30, where this fact is proved and discussed for two most widely studied classes of
random matrix ensembles: the Wigner Ensembles �independent or weakly dependent entries� and
the Matrix Models �invariant matrix probability laws�. Analogous facts are also known for many
other ensembles.

Besides, in many cases the measure N possesses a bounded and continuous density:16,29

N�d�� = ����d� . �1.6�

We call � the Density of States �DOS� of the ensemble.
These results can be viewed as analogs of the Law of Large Numbers of probability theory.

Hence, a natural next question, important also for applications, concerns the limiting probability
law of fluctuation of the Normalized Counting Measures of eigenvalues or their linear statistics,
i.e., an analog of the Central Limit Theorem of probability theory. The question is not going to be
completely trivial, because eigenvalues of random matrices are strongly dependent, and, as a
result, the variance of the linear statistics �1.2� with a C1 test function does not grow with n �see,
e.g., formulas �2.36� and �2.37� later�. Nevertheless, it was found that in a variety of cases, the
fluctuations of various spectral characteristics of eigenvalues of random matrix ensembles are
asymptotically Gaussian �see, e.g., Refs. 5, 6, 13, 15, 18, 19, 21, 23–25, and 35–39 �. In particular,
for the global scale and a C1 test function in �1.2�, this requires, roughly speaking, the same order
of magnitude of the entries for the Wigner Ensembles �see Refs. 19 and 25 for exact conditions,
similar to the Lindeberg condition of the probability theory�, and for the Matrix Models one needs
to assume that the support of the IDS �1.5� is a connected interval of the spectral axis:23 supp N
= �a ,b�. The last result was obtained by using variational techniques, introduced in the random
matrix theory in the paper in Ref. 9 in order to prove �1.5�.

Being applicable to Matrix Models of all three symmetry classes of the random matrix theory
�real symmetric, Hermitian, and quaternion real matrices�, the variational techniques were efficient
so far in the study of fluctuations of eigenvalue statistics only in the case where supp N= �a ,b�. In
this paper we consider only the Matrix Models of Hermitian matrices, but for a general case of a
multi-interval support of N:

	 ª supp N = �
l=1

q

�al,bl�, q � 1. �1.7�

In this case we can use the recent powerful results by Deift et al.17 on the asymptotics of a special
class of orthogonal polynomials. We find that if � is smooth enough, then the traditional Central
Limit Theorem is not always valid for the case q�2. In particular, the variance and the probability
law oscillate in n as n→�, hence their limiting form depends on a sequence nj→�. Moreover, the
limiting probability laws are not always Gaussian.

The paper is organized as follows. In Sec. II we study the variance of linear eigenvalue
statistics in the global regime, i.e., for n-independent � in �1.2�, confining ourselves mostly to the
case of C1 test functions �. We find that the variance is quasiperiodic in n, in general, and its
frequency module is determined by the charges
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l = N��al+1, � ��, l = 1, . . . ,q − 1, �1.8�

determined by the IDS of �1.5� and its support �1.7�. Hence, the variance has no limit as n→� for
q�2 and its asymptotic forms are indexed by points of the subset Hq−1�Tq−1, which is the
closure of limit points of the vectors,

��
1n�, . . . ,�
q−1n�� � Tq−1, �1.9�

where �
ln� , l=1, . . . ,q−1 are the fractional parts of 
ln , l=1, . . . ,q−1. This phenomenon has
been already found in certain cases,3,8 but we give its general description.

In Sec. III we study the Laplace transform of the probability law of linear eigenvalue statistics
�1.2� in the global regime, passing to the limit along a subsequence,

��
1nj�x��, . . . ,�
q−1nj�x��� → x � Hq−1, �1.10�

and confining ourselves to real analytic test functions. We give first a general formula for the
corresponding limit. Since the formula is rather complex, we consider several particular cases,
where we show that the exponent of the limiting �in the sense �1.10�� Laplace transform is not
quadratic in �, hence the limiting law is not Gaussian �see formulas �3.1�, �3.13�, �3.19�, and
�3.20��. This has to be compared with results of the paper in Ref. 14, according to which the limits
of variance and the probability law are the same for all sequences nj→� �i.e., exist�, and the
limiting probability law is Gaussian.

The random matrix theory deals also with two more asymptotic regimes in addition to the
global one. Namely, if, having fixed the global spectral scale allowing us to prove �1.5�, we set in
�1.2�,

�n��� = �„�� − �0�n�
…, 0 � � � 1, �0 � supp N , �1.11�

where � is n independent, we obtain the intermediate regime, and if

�n��� = �„�� − �0�n…, �0 � supp N , �1.12�

then we have the local �or microscopic� regime. In Sec. IV we discuss the form of variance and the
validity of the CLT in these regimes.

In the Appendix we compute the variational derivative of 
1 in the case q=2, which is used
in Sec. III, and discuss related topics.

We note that a completely rigorous derivation of the results of this paper, especially those of
Sec. III, requires rather technical and tedious arguments. They will not be presented in this paper.
Rather, we confine ourselves to the presentation of results, their discussion, and outline of corre-
sponding proofs.

II. VARIANCE OF LINEAR EIGENVALUE STATISTICS

A. Generalities

Recall that unitary invariant Matrix Models are n�n Hermitian random matrices, defined by
the probability law

Pn�dMn� = Zn
−1 exp�− n Tr V�Mn��dMn, �2.1�

where Mn= �Mjk� j,k=1
n ,Mjk= Mkj,

dMn = 	
j=1

n

dMjj 	
1j�kn

dR Mjk dI,Mjk,

and V :R→R+ is a continuous function, called the potential, and such that
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V:R → R+, V��� � �2 + ��log
�
, 
�
 � L , �2.2�

for some positive � and L.
The limit �1.5� can be described as follows.9,23 Consider the functional:

EV�m� = − �
R
�

R
log
� − �
m�d��m�d�� + �

R
V���m�d�� , �2.3�

where m is a non-negative unit measure.
The variational problem, defined by �2.3�, goes back to Gauss and is called the minimum

energy problem in the external field V. The unit measure N minimizing �2.3� is called the equi-
librium measure in the external field V because of its evident electrostatic interpretation as the
equilibrium distribution of linear charges on the ideal conductor occupying the axis R and con-
fined by the external electric field of potential V. We stress that the respective minimizing proce-
dure determines both the support 	 of the measure and the form of the measure. This should be
compared with the variational problem of the theory of logarithmic potential, where the external
field is absent but the support 	 is given �see �2.50��. The minimum energy problem in the external
field �2.3� arises in various domains of analysis and its applications �see a recent book34 for a
rather complete account of results and references concerning the problem�.

The measure N and its support 	 are uniquely determined by the Euler-Lagrange equation of
the variational problem:9,34

Veff��� = F, � � 	 , �2.4�

Veff��� � F, � � 	 , �2.5�

where

Veff��� = V��� − 2�
	

log
� − �
N�d�� , �2.6�

and F is a constant �the Lagrange multiplier of the normalization condition N�R�=1�.
According to Ref. 9 �see also Ref. 23�, if the potential V in �2.1� and �2.2� satisfies the local

Lipshitz condition,


V��1� − V��2�
  C
�1 − �2
�, 
�1
, 
�2
  L , �2.7�

valid for any L�0 and some positive C and �; then �1.5� holds with probability 1, and N is the
minimizer of �2.3�. Moreover, if V� is continuously differentiable, and the support �1.7� is a finite
union of disjoint finite intervals, then �1.6� is valid16,29 and the Density of States can be written as

���� = P����Rq���, � � 	 , �2.8�

where P��� is a continuous function,

�Rq��� = 
�Rq�z�
z=�+i0, Rq�z� = 	
l=1

q

�z − al��z − bl� , �2.9�

and �Rq�z� is the branch, determined by the condition �Rq�z�=zq+O�zq−1� ,z→�. To obtain these
formulas, provided that the support �1.7� is given, we differentiate �2.4� and �2.6� and obtain the
singular integral equation,

v.p.�
	

����d�

� − �
= −

V����
2

, � � 	 . �2.10�

Then the bounded solution of the equation has the form �2.8� �see, e.g., Ref. 28� in which
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P��� =
1

2�2�
	

V���� − V����
� − �

d�

�Rq���
. �2.11�

The endpoints of the support are rather complex functionals of the potential, in general. Thus, it is
of interest to mention a simple case.11

Let v :R→R be a monic polynomial of degree q with real coefficients. Assume that for some
g�0 all zeros of v2−4g are real and simple and set

V��� =
v2���
2gq

. �2.12�

Then the DOS of the matrix model �2.1� with this potential is

���� =

v����

2�gq


v2��� − 4g
1/2, � � 	 , �2.13�

where

	 = �� � R:v2���  4g� . �2.14�

Besides, in this case we have for the charges �1.8�,


l =
q − l

q
, l = 1, . . . ,q − 1, �2.15�

hence the set Hq−1 is �0,1 /q , . . . , �q−1� /q�.
The case q=1 corresponds to the Gaussian Unitary Ensemble and �2.13� yields the semicircle

law by Wigner:

V =
�2

2g
, 	 = �− 2g,2g�, ���� =

1

2�g
��4g − �2, � � 	 ,

0, � � 	 .
�2.16�

In the case q=2 and

v��� = �2 − m2, m2 � 2�g , �2.17�

we have

	 = �− b,− a� � �a,b�, a = �m2 − 2�g, b = �m2 + 2�g , �2.18�

and

���� =

�


2�g
���b2 − �2���2 − a2�, � � 	 ,

0, � � 	 .
�2.19�

We will use in this paper the expressions for the variance of linear statistics �1.2� and for the
Laplace transform of their probability law via special orthogonal polynomials. The technique dates
back to works by Dyson, Gaudin, Mehta, and Wigner of the 1960s �see, e.g., Ref. 27�. Namely, we
have for the joint probability density of eigenvalues of ensemble �2.1�:

pn��1, . . . ,�n� = �det�� j−1
�n� ��k�� j,k=1

n �2/n ! , �2.20�

where

�l
�n� = e−nV/2Pl

�n�, �2.21�

and
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�Pl
�n��l�0 �2.22�

is the system of orthonormal polynomials with respect to the weight

wn = e−nV, �2.23�

so that

�
R

e−nV���Pl
�n����Pm

�n����d� = �l,m, l,m = 0,1, . . . . �2.24�

The polynomials satisfy the three-term recurrence relation for l=0,1 , . . .:

rl
�n��l+1

�n� ��� + sl
�n��l

�n���� + rl−1
�n� �l−1

�n� ��� = ��l
�n����, r−1

�n� = 0, �2.25�

thereby determining a semi-infinite Jacobi matrix:

Jj,k
�n� = rj

�n�� j+1,k + sk
�n�� j,k + rj−1

�n� � j−1,k, j,k = 0,1, . . . . �2.26�

By using �2.20� it can be shown that28

Var�Nn���� =
1

2
�

R
�

R


���1� − ���2�
2Kn
2��1,�2� d�1d�2, �2.27�

=�
R
�

R
��

��
2

Vn��1,�2�d�1 d�2, �2.28�

where

Kn��1,�2� = �
l=0

n−1

�l
�n���1��l

�n���2� �2.29�

is known as the reproducing kernel of the system �2.21�,

��

��
=

���1� − ���2�
�1 − �2

, �2.30�

and

Vn��1,�2� = �rn−1
�n� ��n

�n���1��n−1
�n� ��2� − �n−1

�n� ��1��n
�n���2���2/2. �2.31�

Note that in passing from �2.27� and �2.28�, we used the Christoffel-Darboux formula,40

Kn��1,�2� = rn−1
�n� �n

�n���1��n−1
�n� ��2� − �n−1

�n� ��1��n
�n���2�

�1 − �2
. �2.32�

It is of interest to have a spectral-theoretic interpretation of the above formulas. Notice that the J�n�

of �2.26� determines a self-adjoint operator, that we denote again as J�n�. It acts in l2�Z+�, and the
matrix

E�n��d�� = e�n����d�, e�n���� = �elm
�n�����l,m=0

� , elm
�n���� = �l

�n�����m
�n���� �2.33�

is its resolution of identity.1 This allows us to write �2.31� in the form
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Vn��1,�2� = �rn−1
�n� �2

„en,n
�n���1�en−1,n−1

�n� ��2� + en,n
�n���2�en−1,n−1

�n� ��1� − 2en−1,n
�n� ��1�en,n−1

�n� ��2�…/2.

�2.34�

Assume now that � satisfies the Hölder condition:


���1� − ���2�
  C
�1 − �2
 , �2.35�

for some positive C. It follows then from �2.24� and �2.28�–�2.31� that

Var�Nn����  C2�rn−1
�n� �2. �2.36�

It can be shown33 that if the potential satisfies the local Lipshitz condition �2.7�, then the coeffi-
cients rn−1

�n� are bounded in n. We conclude that the variance of a linear statistic �1.2� is bounded in
n if the test function satisfies �2.35�:

Var�Nn����  Const. �2.37�

This has to be compared with the well known fact of probability theory, according to which the
variance of a linear statistics of i.i.d. random variables is O�n� for any test function.

B. Asymptotic behavior of �l
„n…
„�…

We present now powerful asymptotic formulas for orthonormal functions �l
�n� of �2.21�–�2.24�

of Deift et al.,17 valid in the case of a real analytic potential V in �2.1�. We give a bit different form
that will be more convenient later. Our form is reminiscent of standard semiclassical formulas and
is similar to that, given in Refs. 7 and 8. Notice that Ref. 8 contains another, although heuristic,
derivation of the asymptotic formulas as well as an interesting heuristic explanation of the quasi-
periodicity of formulas for q�2, based on ideas of statistical mechanics and quantum field theory.

Assume that V is real analytic. Then the support �1.7� of N is a union of q�� finite disjoint
intervals.17 The function P in �2.8�, �2.11� is also real analytic. Following Ref. 17, we say that V
is regular if the inequality �2.5� is strict and P is strictly positive on 	. Hence, the DOS � of �1.6�
is strictly positive inside 	 and vanishes precisely like a square root at the endpoints. Denote

N��� = N���, � �� . �2.38�

According to Ref. 17, in the regular case there exist functions dn���, and �n��� such that if �
belongs to the interior of the support �1.7�, then

�n
�n���� = „2dn���…1/2 cos„�nN��� + �n���… + O�n−1�, n → � . �2.39�

Moreover, dn��� and �n��� depend on n via the vector n
, where 
= �
1 , . . . ,
q−1� is given by
�1.8�. This means that there exist n-independent continuous functions D :	�Tq−1→R+, and
G :	�Tq−1→R, such that

dn��� = D��,n
�, ���� = G��,n
� . �2.40�

If � belongs to the exterior of 	, then �n
�n���� decays exponentially in n as n→�.

Similar asymptotic formulas are valid for coefficients of the Jacobi matrix J�n� of �2.26�, i.e.,
there exist n-independent continuous functions R :Tq−1→R+ and S :Tq−1→R such that

rn−1
�n� = R�n
� + O�n−1�, sn

�n� = S�n
� + O�n−1�, n → � . �2.41�

The functions D ,G ,R, and S can be expressed via the Riemann theta function, associated in the
standard way with a two-sheeted Riemann surface obtained by gluing together two copies of the
complex plane slit along the gaps �b1 ,a2� , . . . , �bq−1 ,aq� , �bq ,a1� of the support of the measure N,
the last gap goes through infinity.

The components of the vector 
= �
l�l=1
q−1 are rationally independent generically in V; thus the

functions D�� ,n
� ,G�� ,n
� ,R�n
�, and S�n
� are quasiperiodic in n, in general.
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We will also need asymptotic formulas for �n+k
�n� as n→� and k=O�1� �in particular, we need

the case k=−1 in �2.31��. They can be extracted from Ref. 17 �see also Ref. 8�, but it will be
convenient to present a different derivation, because the corresponding argument will be used in
our analysis of limiting laws for linear eigenvalue statistics. To this end we replace a regular
potential V in �2.20� by V /g ,g�0, introducing explicitly the amplitude of the potential. Then the
quantities of asymptotic formulas �2.38�–�2.41� will depend on g, and it follows from the results
of Ref. 17 and 26 that these quantities will be differentiable functions of g in a certain neighbor-
hood of g=1, provided that the support �1.7� for g=1 consists of q disjoint intervals. Consider now
rn+k−1

�n� �g�. Taking into account that the origin of the super-index n in the above formulas is the
factor n in front of V in �2.23�, we can write

n
V

g
= �n + k�

V

g�1 + k/n�
. �2.42�

In other words, to obtain rn+k−1
�n� �g� and �n+k

�n� �� ,g�, we have to make the change

g → g +
k

n
g �2.43�

in the inverse amplitude of the potential. We obtain, in view of �2.41�, for k=o�n�:

rn+k−1
�n� �g� = rn+k−1

�n+k�
„�1 + k/n�g… � R„�1 + k/n�g,�n + k�
„�1 + k/n�g…� � R„g,n
�g� + k��g�… ,

�2.44�

where

��g� = „g
�g�…�, �2.45�

and the symbol “�” denotes here and below the leading term�s� of the corresponding lhs as n
→�.

We have an analogous formula for �2.38�:

�n + k�N„�,�1 + k/n�g… � nN��,g� + k���,g� ,

where

���,g� =
�

�g
„gN��,g�… . �2.46�

By using these formulas, we can write for any fixed k �in fact k=o�n��:

�n+k
�n� ��,g� � „2D��,g,n
 + k��…1/2cos„�nN��,g� + �k���,g� + G��,g,n
 + k��… . �2.47�

Applying to �2.44� and its analog for sn+k
�n� the limiting procedure �1.10�, we obtain the coefficients

rk−1�x� = R�x + k��, sk�x� = S�x + k��, x � Tq−1, k � Z . �2.48�

They determine a family of the double infinite Jacobi matrices J�x� ,x�Tq−1:

„J�x��…k = rk�x��k+1 + sk�x��k + rk−1�x��k−1, k � Z , �2.49�

that can be viewed as a quasiperiodic operator, acting in l2�Z�.
Consider now the functional
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E�m� = − �
	

log
� − �
m�d��m�d�� , �2.50�

defined on unit non-negative measures, whose support is contained in 	. This is the standard
variational problem of the potential theory.34 Denote � the unique minimizer of �2.50�. Then,
according to Ref. 12 �see also Refs. 11 and 29�, the nonincreasing function ����=���� , � �� �cf.
�2.38�� coincides with the function, defined in �2.46�. Moreover, according to Ref. 31 the measure
� is the Integrated Density of States �IDS� measure of J�x� �see Ref. 32 for a definition of the IDS
measure in a general setting of ergodic operators�, the support �1.7� is a spectrum of J�x�, and �cf.
�1.8��

�l = ���al, � ��, l = 1, . . . ,q − 1 �2.51�

are the frequencies of quasiperiodic coefficients �2.48� of J�x�. In other words, J�x� is a “finite
band” Jacobi matrix, well known in spectral theory and integrable systems.41

By using these facts and also taking into account that �n
�n���� decays exponentially in n outside

the support,17 we can prove that for any continuous � :R→C of a compact support we have, in the
limit �1.10� of �2.33�,

lim
nj�x�→�

�
R

����enj�x�+l,nj�x�+m
�n� ���d� = �

	

����elm��,x�d� , �2.52�

where we have for ��	:

elm��,x� = �l
+��,x��m

+ ��,x� + �l
−��,x��m

− ��,x� , �2.53�

�l
+��,x� = ei�l����U��,x + l��, U��,x� = „D��,x�/2…1/2eiG��,x�, �2.54�

and �l
−=�l

+. The above formula can also be written as

�l
±��,x� = �0

±��,x + Tl�� , �2.55�

where T :Tq−1→Tq−1 is defined as Tx=x+�. This shows that �±�� ,x�= ��l
±�� ,x��l�Z is a gener-

alized �quasi-Bloch� eigenfunction of J�x�:

J�x��±��,x� = ��±��,x� .

In fact, ��±�� ,x����	 form a complete system in l2�Z�.
We refer the reader to Ref. 31 for more details of this aspect of asymptotic formulas of

Ref. 17.

C. Asymptotic behavior of variance

We assume in this section that the test function � in �1.2� is of the class C1 and does not
depend on n. Hence, function �2.30� is continuous in ��1 ,�2�. As a result, fast oscillating in n
functions, entering �2.47�, do not contribute to the limit, as was already in obtaining �2.52�–�2.54�.
We have then, from �2.28�, �2.34�, and �2.52�–�2.54�,

Var�Nn���� � V�n
� , �2.56�

where

V�x� = �
	
�

	

��

��
2

V��1,�2,x�d�1 d�2, �2.57�
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V��1,�2,x� = R2�x�„e0,0��1,x�e−1,−1��2,x� − e−1,0��1,x�e−1,0��2,x�… , �2.58�

and elm�� ,x� are given by �2.53� and �2.54�, in particular,

�
	

elm��,x�d� = �lm. �2.59�

Since the charges 
l , l=1, . . . ,q−1 of �1.8� are continuous and nonconstant functionals of the
potential �see Refs. 17 and 26�, the leading term of variance is a quasiperiodic function generically
in the potential. In particular, it has no limit as n→�. Its limiting points are indexed by the subset
Hq−1�Tq−1, the closure of limiting points of the q−1 dimensional vectors �1.9�. Hq−1 is Tq−1

generically in V, but it can also be a proper subset of Tq−1 �see, e.g. �2.15��.
The simplest case is q=1 of a single interval support. Here H0 is a point, there exist the

limits2,16

lim
n→�

rn+k−1
�n� = r, lim

n→�
sn+k

�n� = s, ∀ k � Z , �2.60�

and the “limiting” Jacobi matrix J�x� of �2.49� has constant coefficients:

Jjk = r� j+1,k + s� j,k + r� j−1,k.

Placing the origin of the spectral axis at s, we obtain that �=2r cos ��, �± are just the plane
waves,

	 = �− 2r,2r� ,

and

D��� = − ����� =
1

��4r2 − �2
, � � 	 . �2.61�

This and general formula �2.58� yield a version of �2.56� and �2.57�, in which the role of
V�x ,�1 ,�2� plays

V�1���1,�2� =
1

4�2

4r2 − �1�2

�4r2 − �1
2�4r2 − �2

2
, �1,�2 � 	 . �2.62�

This form of the variance was first found in physical papers4,10 and proved rigorously in Ref. 23.
We see that in the single interval case the variance is universal, i.e., its functional form does not
depend explicitly on the potential, the information on the potential being encoded in the unique
parameter r of �2.60�. In particular, we have �2.62� for the Gaussian Unitary Ensemble �2.16�.13

In the case �2.12�–�2.15�, Hq−1 consists of q points �see �2.15��, and the variance is a
q-periodic function of n. Example �2.17�–�2.19� corresponds to the simplest nontrivial case q=2,
where 
1=1/2 ,H1= �0,1 /2�, the matrix J�x� is 2-periodic, its coefficients are

rk =
b − �− 1�ka

2
, sk = 0, �2.63�

and the variance is asymptotically a 2-periodic function in n:8,3

Var�Nn���� � V�2��n/2� ,

where V�2��x� is given by �2.57�, in which V��1 ,�2 ,x� ,x�H1= �0,1 /2� is
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V�2���1,�2,x� =
1

2�2

��1
��2

�
R2��1�
�
R2��2�

„�a2 − �1�2��b2 − �1�2� − �− 1�2xab��1 − �2�2

…,

�1,�2 � 	 , �2.64�

with

R2��� = ��2 − a2���2 − b2� , �2.65�

and ��=1 if �� �−b ,−a� and ��=−1 if �� �a ,b�. In fact, these formulas are valid for any real
analytic and even potential, producing a symmetric two-interval support,

	 = �− b,− a� � �a,b�, 0 � a � b � � , �2.66�

�see Refs. 3 and 8�. The general case of a two-interval and not necessarily symmetric support was
analyzed in Ref. 8, where it was found that the variance can be expressed via the classical elliptic
functions of Jacobi and Weierstrass.

We conclude that a minimum modification of the limiting law of linear eigenvalue statistics in
the case of a multi-interval support of the IDS, comparing with the case of i.i.d. random variables,
could be a family of normal laws, indexed by the points of Hq−1. We shall see below that this
modification is not sufficient in certain cases.

We remark in the conclusion of this section that formulas �2.56�–�2.58� allow us to charac-
terize the universality classes of ensembles �2.1� with respect to the variance in the global regime,
i.e., the sets of ensembles �potentials�, leading to the same asymptotic form of the variance of
linear statistics in the regime. Namely, since the potential is present in �2.56�–�2.58� only via the
endpoints �a1 , . . . ,bq� of support and via the charges �
1 , . . . ,
q−1� of all but one intervals of the
support, these parameters determine a universality class. Notice that the parameters are not nec-
essarily independent.

III. LIMITING LAWS

A. Laplace transform of the probability law of linear eigenvalue statistics

In this section we obtain an expression for the Laplace transform of the probability law of
linear eigenvalue statistics �1.2� via orthogonal polynomials. We consider here real-valued test
functions � :R→R. The Laplace transform is evidently

Zn��� = EV�eN
�

n���� , �3.1�

where EV�¯� denotes the expectation with respect to �2.1� �or �2.20��, determined by a given
potential V, and

N
�

n��� = Nn��� − EV�Nn���� .

It is convenient to introduce the parameter s� �0,1� and to consider the function

Fn�s� = log Zn�s��, s � �0,1� .

It is easy to see that

Fn�0� = 0,Fn��0� = − EV�N
�

n���� = 0,

and

Fn��s� = EV+s�/n�Nn
2���� − EV+s�/n

2 �Nn����: = VarV+s�/n�Nn���� .

This yields the following expression for the logarithm of �3.1�:
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log Zn��� = Fn�1�: = Fn��� = �
0

1

�1 − s�VarV+s�/n�Nn����ds . �3.2�

We mention that there exists another expression for the Laplace transform �3.1�. It dates back to
the Heine formulas in the theory of orthogonal polynomials �see, e.g., Ref. 40, Theorem 2.1.1� and
can be easily obtained from the Gram theorem:

Zn��� = det��
R

e−�
�

���� j
�n�����k

�n����d��
j,k=1

n

= eE�Nn���� det�1 − Kn,�� ,

where

�
�

��� = ���� − EV�Nn����, EV�Nn���� = n�
R

����EV�Nn�d��� ,

and Kn,� is the integral operator, defined as

�Kn,�f���� = �
R

Kn��,���1 − e−�����f���d�, � � R .

These formulas and their analogs for unitary matrices were used to prove various versions of the
Central Limit Theorem �see, e.g., Refs. 6, 23, 24, 37–39, and 42�.

B. Asymptotic behavior of the Laplace transform

We will assume in this section that � is real analytic. According to �3.2�, �2.28�, and �2.31�, we
have to find the asymptotic form of �n

�n� and �n−1
�n� for the potential V+s� /n. We have already seen

in the previous section that adding terms of the order O�n−1� to the potential, we obtain nontrivial
contributions to the asymptotic formulas because of fast oscillating in n functions on the rhs of
�2.39�–�2.41�, etc. The O�n−1� terms appeared there because of the passage n→n+k, leading to
�2.45�–�2.48�. In this case the terms are proportional to the potential, since we just change its
amplitude: V→V�1−k /n� �see �2.42� and �2.43��. This required derivatives �2.45� and �2.46� of
“frequencies” 
l, l=1, . . . ,q−1, and N��� of fast oscillating functions in �2.39�–�2.41� with respect
to the inverse amplitude g of the potential.

On the other hand, to find the asymptotic behavior of the Laplace transform, we have to add
to the potential the term s� /n �see �3.2��. Since ��V, in general, this requires variational deriva-
tives of frequencies with respect to potential, i.e., we have to add the term �� to the potential, and
find the derivative of 
l , l=1, . . . ,q−1, and N��� with respect to � at �=0.

Consider first the case q=1, where the support of the IDS is a single interval. Here the
dependence on x of functions D ,G ,R, and S of �2.39�–�2.41� is absent �see �2.60�–�2.62��. Hence
the term s� /n is negligible in the limit n→�, because there are no fast oscillating in n functions
in the asymptotics of �n+k

�n� , k=0,−1, rn−1
�n� , and sn

�n�, and we obtain from �3.2� and �2.62�,

lim
n→�

Fn��� = lim
n→�

Var�Nn����/2. �3.3�

Notice also that we have here the “genuine” limit as n→�, but not a sublimit �1.10� along a
subsequence. We conclude that the Central Limit Theorem is valid in this case. This was proved
in Ref. 23 by the variational method and for a rather broad class of potentials and test functions
�not necessarily real analytic�.

As it was shown in the previous section, the variance of a linear statistics with a C1 test
function has no limit as n→� if q�2. Its sublimits are indexed by points of the “hull”
Hq−1�Tq−1. Hence we cannot expect the traditional CLT �3.3�, as in the case of q=1. Rather this
should be a collection of the CLT, indexed by Hq−1:
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lim
nj�x�→�

Fnj�x���� = lim
nj�x�→�

Var�Nnj�x�����/2 = V�x�/2, x � Hq−1, �3.4�

where �nj�x�� and V�x� are defined in �1.10�, �2.57�, and �2.58�. We will call this the generalized
CLT.

We will show now that the generalized CLT is not always the case for q�2. Recall that N���
and 
l are functionals of V and denote


̇l��� =  �

��

l

�=0
, l = 1, . . . ,q − 1, N

·

��� =  �

��
N���

�=0
�3.5�

the variational derivatives of 
l and N��� with respect to V. 
̇l��� and N
·

��� are linear functionals
of � and nonlinear functionals of V. It follows from Ref. 26 that they are well defined if V is real
analytic and regular and � is real analytic and such that max��R 
V��� /���� 
 ��.

Arguing as in Sec. II B, we obtain that in this case �n+k
�n� is given by �2.47� and �2.48� with the

replacement

k�l → k�l + s
̇l���, �k� → �k� + �sṄ��� .

Now, assuming �1.10� and taking into account �3.2�, �2.28�, and �2.34�, we obtain from �3.2�,

F���: = lim
nj�x�→�

log Znj�x���� = �
0

1

�1 − s�V�x + s
̇����ds , �3.6�

where V is given by �2.57�. According to �2.57�, V is a quadratic functional of �. Hence, the

functional F��� is not quadratic in general, because of the presence of the term s
̇��� in the
argument of the integrand in �3.6�. In other words, we have here a limiting law in the sense of
�1.10�, but the law is not necessarily Gaussian.

It seems that a general classification of possible cases is rather complex. We thus will give
several examples showing different cases of asymptotic behavior of the Laplace transform of the
probability law of linear eigenvalue statistics.

Consider first the case where the test function is a multiple of the potential:

���� = tV���, t � R . �3.7�

Then �2.45� and the relation 
̇l�V�=−
��g�
g=1 yield


̇l��� = 
̇l�tV� = − t�
l�1� − �l�1��, l = 1, . . . ,q − 1,

where �l , l=1, . . . ,q−1 are defined in �2.51�. Hence, if


l�1� = �l�1�, l = 1, . . . ,q − 1, �3.8�

then the integrand in �3.6� does not depend on s, and we obtain in view of �2.56� and �2.57� the
generalized Central Limit Theorem �3.4�.

The equality �3.8� is valid for any potential of the form �2.12� with g=1 and v2−4 having only
simple and real zeros, because, according to Ref. 26,


l�1� = �l�1� =
q − l

q
, l = 1, . . . ,q − 1.

It is also valid for any even potential, having two equal local minima and one local maximum,
which is high enough to produce a two-interval support �2.66�. In this case �3.8� results from the
symmetry, implying
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1 = �1 = 1/2 �3.9�

�recall that in this case the vectors 
 of �1.8� and � of �2.45� are one-dimensional: 
1=N�a� ,�1

=��a��.
In all these cases the limiting Jacobi matrix J of �2.49� is q periodic �q=2 in the case of �2.66�;

see �2.63��.
It can also be shown that we have the generalized Central Limit Theorem for potentials �2.12�

and �= tv �here the limiting matrix J is also q periodic�.
To demonstrate a possibility to have a non-Gaussian limiting law, we consider a simplest

nontrivial case of even potential with the two-interval support �2.66� and of the test function

���� = t�, t � R , �3.10�

i.e., the case of “linear” linear statistic

t�
l=1

n

�l
�n� = t Tr Mn. �3.11�

Since in this case �� /�� of �2.30� is equal to t, it follows from �2.58� and �2.59� that

V�x� = t2R2�x� , �3.12�

and then �3.6� implies that in the case �3.10� �and for any support� we have for the exponent of the
limiting Laplace transform:

F���
����=t� = lim
nj�x�→�

log Znj�x����
����=t� = t2�
0

1

�1 − s�R2�x + s

·

���
����=t��ds . �3.13�

According to Ref. 8, it is possible to express the coefficient R�x�, corresponding to the two-
interval support, via the Jacobi elliptic function:

R2�x� =
�b − a�2

4
+

ab

2
cn2�x + 1/2� , �3.14�

where cn�x�=cn�2K�k�x 
k� ,k2=4ab / �a+b�2 ,K�k� is the elliptic integral of the first kind. In view
of �3.9�, the coefficient rk of �2.48� is given by �2.63�:

rk−1 = R� k

2
� =

b − �− 1�ka

2
,

and is 2-periodic �see also Ref. 2�. In view of �3.12� this implies that the variance of �3.11� is
asymptotically 2-periodic in n:

R2�n

2
� =

b2 + a2

4
− �− 1�nab

2
. �3.15�

Furthermore, it is shown in the Appendix that


̇1���
����=t� = t�, � =
a

4K�a/b�
, �3.16�

Hence we obtain from �3.14�,
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F���
����=t� = �
0

t

�t − s�R2�x + s��ds . �3.17�

It follows from �3.16� that � is irrational generically in a, and b; hence R2�x+s�� is quasiperiodic
in s in these cases. Since R2 is 1-periodic and real analytic, we can write its Fourier series,

R2�x� = �
m�Z

cme2�imx, �3.18�

with fast decaying coefficients. Plugging �3.16� and �3.18� in �3.13�, we obtain

F���
����=t� =
c0t2

2
− tA��x� − A�x� + A�x + �t� , �3.19�

where

A�x� = �
m�Z\�0�

cm

�2�im��2e2�imx. �3.20�

We see that the logarithm of the limiting Laplace transform of the probability law of statistics
�3.11� contains not only a multiple of t2 /2, that would correspond to the CLT, but also a linear in
t term, a constant in t term, and either quasiperiodic �generically in a ,b, when � is irrational� or
periodic �in special cases, where � is rational� function of t. Besides, while the variance of
statistics �3.11� is �3.15� in the limit �1.10�, the coefficient in front of t2 /2 is

c0 = �
T
R2�x�dx =

b2 + a2

4
,

hence is not the variance �3.15�.
Notice also that in the case q�3 we would have in �3.20� the sum over Zq−1 \ �0�, and the

expression


̇ · m: = 
̇1m1 + . . . 
̇q−1mq−1,

in the denominator, that can be arbitrary small for certain collections of �m1 , . . . ,mq−1�� Zq−1 and


̇ : = �
̇1 , . . . , 
̇q−1��Rq−1 in the case, where the components of 
̇ are irrational. Hence, to make

the series in �3.20� convergent, we have to assume that the components of 
̇ are sufficiently bad
approximated by rationals �e.g., a Diophantine condition�.

According to the Appendix , in a general case of a real analytic � and a two-interval support,

	 = �a1,b1� � �a2,b2�, − � � a1 � b1 � a2 � b2 � � , �3.21�

we have


̇1��� = −
1

2�iI
�

	

����
�R2���

d� , �3.22�

where �R2��� is defined in �2.9�,

I = �
b1

a2 d�

��b2 − ���a2 − ���� − b1��� − a1�
=

2

„�b2 − b1��a2 − a1�…1/2K��� , �3.23�

and
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�2 =
�a2 − b1��b2 − a1�
�b2 − b1��a2 − a1�

�see Ref. 20, formula �3.149.4��. In the symmetric case �2.66�, we have

I =
2

b + a
K�2�ab

b + a
� =

2

a
K�b

a
� ,

where the second equality results from the formula �1+k�−1K�2�k / �1+k��=K�k�,41 formula
�8.126.3�. It follows then that in this case and for �= t�, �3.22� coincides with �3.16�.

Formula �3.22� allows us to characterize the class of potentials and test functions for which
the �generalized� Central Limit Theorem �3.4� is valid in the case of a general two-interval support
�3.21�. Indeed, for any pair �V ,�� for which the rhs of �3.22� is zero, the integrand of �3.6� does
not depend on s and we have the generalized CLT �3.4�. In particular, in the symmetric case �2.66�
it follows from �3.22� that 
̇1��� is zero if and only if

�
a

b ���� − ��− ��
��b2 − �2���2 − a2�

d� = 0.

In particular, for an even potential of support �2.66� and an even test function �, the generalized
CLT is valid.

One can view � as an analog of external field in statistical mechanics. Hence, we can say that
in this case an even external field “does not break the symmetry.” On the other hand, a “generic”
� or an odd �, such that

�
a

b ����d�

��b2 − �2���2 − a2�
� 0,

is a “breaking symmetry field” and leads to a non-Gaussian limiting law. Its simplest case ����
= t� �3.10� is given by �3.19�.

IV. INTERMEDIATE AND LOCAL REGIMES

In this section we consider limiting laws of linear eigenvalue statistics for the test functions,
given by �1.11� and �1.12� with a C1 function � and �0 belonging to the interior of 	.

We begin again by calculating the asymptotic form of the variance in these cases. Changing
variables to

�1,2 = �0 + t1,2/n�, 0 � �  1, �4.1�

we obtain from �2.28�,

Var�Nn���� = �
R
�

R
���

�t
�2

Vn��0 + t1/n�,�0 + t2/n��dt1 dt2. �4.2�

To find the asymptotic form of the rhs we will use again �2.34� and �2.33� in which �n+k
�n� ���, k

=0.−1 is given by �2.47� with �=�0+ t /n�. Taking into account that D ,N, and G are smooth
functions of � in a sufficiently small neighborhood of �0, we can write

�n+k
�n� ��� � „2D��0,n
 + k��…1/2cos„�nN��0� + �k���0� − ����0�n1−� + G��0,n
 + k��… ,

where ����=−N����, and we do not indicate the dependence on g �in fact, it suffices to consider
the case g=1�. Plugging this into �2.33� and �2.34�, and omitting in the resulting integrand of the
rhs of �4.2� the fast oscillating terms, we obtain
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Var�Nn���� � B��0,n
��
R
�

R
„��t1� − ��t2�…2sin2

„����0��t1 − t2�n1−�
…

2�2�t1 − t2�2 dt1 dt2, �4.3�

where

B��,x� = 2�2R2�x�D��,x�D��,x − ��sin2
„����� + G��,x� − G��,x − ��… . �4.4�

This leads to the following result in the local regime �=1, and for the limit �1.10�,

lim
nj�x�→�

Var�Nnj�x���nj�x��� = B��0,x��
R
�

R
„��t1� − ��t2�…2sin2

„����0��t1 − t2�…
2�2�t1 − t2�2 dt1 dt2.

�4.5�

It is known that in the local regime the variance of linear eigenvalue statistics has a universal
limiting form17,33

lim
n→�

Var�Nn��n�� = �
R
�

R
„��t1� − ��t2�…2sin2

„����0��t1 − t2�…
2�2�t1 − t2�2 dt1 dt2, �4.6�

in which all the information on the potential is encoded in ���0�. This and �4.5� imply the identity

B��,x� = 1, �4.7�

valid for all x�Tq−1 and �, belonging to the interior of the 	 �a direct proof of the identity can be
extracted from the proof of Lemma 6.1 of Ref. 20�.

In the intermediate regime 0���1, we still have a fast oscillating factor,

sin2
„n1−�����0��t1 − t2�…

in the integrand of �4.3�. Replacing the factor by its average 1/2, and using �4.7�, we obtain in this
regime

lim
n→�

Var�Nn��n�� = �
R
�

R

„��t1� − ��t2�…2

4�2�t1 − t2�2 dt1 dt2. �4.8�

As in the case of the local regime, the limit here is the same for any subsequence �1.10�; hence we
do not need to assume �1.10�. We conclude that the variance of linear statistics has a well defined
limit in the intermediate regime as well. Moreover, �4.8� is the “smoothed” version of variance
�4.6� in the local regime, since �4.8� is �4.6�, in which the “oscillating” factor sin2(����0��t1

− t2�) is replaced by its average 1/2.
Passing to the Fourier transform,

�̂�k� =
1

2�
�

R
eikt��t�dt ,

we can rewrite the rhs of �4.8� in the form

�
R


k
�̂�k��̂�− k�dk ,

appearing in the continuous analog of the strong Szegö theorem �see Refs. 6, 18, and 37 and
references therein�.

The universality property of unitary invariant Matrix Models17,33 implies that the Laplace
transform of the probability law of linear eigenvalue statistics has the following limiting form in
the local regime:
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 lim
n→�

Zn��n�

�n���=�„��−�0�n…

= e2����0��̂�0� det�1 − S�� , �4.9�

where S� is the integral operator, defined as

�S�f��t� = �
R

sin ����0��t − u�
����0��t − u�

�1 − e−��u��f�u�du , �4.10�

and we assume that � in �1.12� is continuous and integrable on R. It is obvious that the logarithm
of the rhs of �4.9� is not quadratic in �; hence the CLT is not valid in the local regime �see, e.g.,
Ref. 22 for related results�.

If, however, we take in the above formulas,

��t� = �„�t − t0��… ,

where � does not depend on �→0, and t0�R, i.e., we assume that the test function in �4.9� and
�4.10� is “slow varying,” then it can be shown �see, e.g., Refs. 6, 15, and 39� that the limit of the
rhs of �4.9� as �→0 is the rhs of �4.8�, divided by 2.

On the other hand, take as a test function in �3.6�,

���� = �„�� − �0�/�… , �4.11�

where � does not depend on �→0, and �0 belongs to the interior of the support of N, i.e., assume

that � is “fast varying.” Since the variational derivatives �linear functionals of �� 
̇l���, l
=1, . . . ,q−1 of �3.5� can be written as


̇l��� = �
R

bl�������d� ,

we have


̇l��� = ��
R

bl��0 + �t���t�dt → 0, � → 0.

Hence, the term s
̇ in the argument of the integrand of �3.6� vanishes in the limit �→0 and we
obtain from �2.57�, changing variables to �1,2=�0+�t1,2:


 lim
�→�

F���

����=���−�0�/�

=
1

2
V�x� , �4.12�

where

V�x� = V��0,�0,x��
R
�

R

„��t1� − ��t2�…2

2�2�t1 − t2�2 dt1 dt2.

Now it can be shown, by using �2.58�, �2.54�, �2.55�, and �4.4�, that the rhs of the last formula
coincides with �4.8�. Hence, the limit �4.12� coincides again with the rhs of �4.8�, divided by 2.

The above suggests that the CLT is valid in the intermediate regime. This was indeed proved
in several cases �see Ref. 37 and references therein�.

APPENDIX: VARIATIONAL DERIVATIVE OF FREQUENCY IN THE TWO-INTERVAL CASE

Here we derive formula �3.16�. We will use the variational approach, based on the functional
�2.3�.

Write the minimum condition �2.4� and �2.6� for V+��, and compute its derivative at �=0.
This yields
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���� − 2�
	

log
� − �
�̇���d� = const, � � 	 , �A1�

where

�̇ =  �

��
�

�=0
,

and � is the density of the measure N of �1.5�. Notice that the differentiation of the limits of
integration in �2.6� does not contribute to �A1�, because � vanishes at each endpoint of the support
according to �2.8�.

The derivative of �A1� in � is the singular integral equation �cf. �2.10��,

v.p.�
	

�
·

���d�

� − �
= −

�����
2

, � � 	 .

The general solution of the equation in the case �2.66� is25

C1� + C

X2���
+

1

2�2X2���
v.p.�

	

�����X2���d�

� − �
,

where

X2��� = − i�R2���, �R2��� = �R2�z�
z=�+i0,

R2�z�= �z2−a2��z2−b2� �see �2.9� for q=2� and �R2�z� is the branch of the square root, fixed by the
condition �R�z�=z2+O�z� ,z→�. The branch assumes pure imaginary values of opposite sides on
the edges of 	, seen as a cut of C.

Taking into account the equalities

�
	

�̇���d� = 0,

and

�
	

d�

�R2���
= 0,�

	

�d�

�R2���
= − �i ,

we find that

�̇��� =
iC

�R2���
+

1

2�2�R2���
v.p.�

	

������R2���d�

� − �
. �A2�

The constant C can be found as follows. Denote f�z� the Stieltjes transform of �:

f�z� = �
	

����d�

� − z
, z � 	 . �A3�

Recalling that V is real analytic, using �2.8�, �2.11�, and arguing as above, we find that

f�z� = −
V��z�

2
−

�R2�z�
2�i

�
	

V���� − V��z�
� − z

d�

�R2���
�A4�

�the analog of the formula with Rq instead of R2 is valid for any finite number q of intervals in
�1.7��.
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Write now the minimum condition �2.4� as

Veff�b� − Veff�a� = 0,

or, in view of �2.6� and �A3�, as

�
−a

a � f��� +
V����

2
�d� = 0. �A5�

The condition is valid for any potential, in particular, for V+��. According to �A4� for any
sufficiently small �, the integrand here is proportional to �R2���, in which a and b are now
functions of �. Hence, the integrand vanishes at the edges of the support and the derivative of �A5�
with V replaced by V+�� with respect to � at �=0 is

�
−a

a � ḟ��� +
�����

2
�d� = 0. �A6�

This and the formula

ḟ�z� =�
	

�̇���d�

� − z
= −

�C
�R2�z�

−
1

2�i�R2�z�
�

	

������R2���
� − z

d� , �A7�

following from �A2�, yield in the case ����= t�:

�̇��� =
C

��b2 − �2���2 − a2�
+

P2���
2���b2 − �2���2 − a2�

, � � 	 ,

where P2���=�2− �a2+b2� /2,

C =
tI2

2�I1
, �A8�

and

I1 = �
−a

a d�

��b2 − �2��a2 − �2�
, I2 = 2�

−a

a P2���d�

��b2 − �2��a2 − �2�
. �A9�

Now we can find 
̇1��� for ����= t�. We have by �A8� and �A9�,


̇1: = �
a

b

�̇���d� =
t

2�I1
�I2J1 − I1J2� , �A10�

where

J1 = �
a

b d�

��b2 − �2���2 − a2�
, J2 = �

a

b P2���d�

��b2 − �2���2 − a2�
.

By using standard formulas �see, e.g., Ref. 20, formulas �3.159��, we find

I1 = 2K�k�/a, I2 = 2a�1 − k2

2
K�k� − E�k�� , �A11�
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J1 = K�k��/a, J2 = a�E�k�� −
1 + k2

2
K�k��� , �A12�

where K�k� and E�k� are the complete elliptic integrals of the first and second kind, k=b /a ,k�
=�1−k2. These formulas and the identity EK�+E�K−KK�=� /2, where K�=K�k�� ,E�=E�k��
�Ref. 20, formula �8.122�� imply �3.16�.

A more involved version of the above argument leads to �3.22�. We note first that to prove the
formula for a real analytic �, it suffices to consider

�z0
��� =

1

� − z0
, z0 � 	 .

We have in this case �see below�


̇1��z0
� = −

1

2I�R2�z0�
, �A13�

where I is defined in �3.23�.
Assuming that this formula is valid and using the Cauchy theorem to write

���� =
1

2�i
�

C	

��z0�dz0

� − z0
, � � 	 ,

where C	 is the contour encircling 	 in the clockwise direction; we obtain in view of the linearity

of 
̇1��� in �,


̇1��� =
1

2�i
�

C	


̇1��z0
���z0�dz0 = −

1

2I

1

2�i
�

C	

��z0�
�R2�z0�

dz0.

Now the relation �R2��− i0�=−�R2��+ i0� yields �3.22�.
To prove �A13� we use the general formulas �A2�, �A7�, and �A6� with

�z0
� ��� = −

1

�� − z0�2 = −
�

�z0

1

� − z0
.

Arguing as in the case ����= t� above, we obtain an analog of �A10� whose denominator contains
I of �3.23� instead of I1 of �A9�, and whose numerator is a bilinear combination of integrals of

R2���
−1/2 over �a2 ,b2� and of derivatives with respect to z0 of the integrals over �b1 ,a2� and
�a2 ,b2� of ���−z0� 
R2���
1/2�−1 and P2������−z0� 
R2���
1/2�−1, where P2 is defined now by the
relation �R2�z�= P2�z�+O�1/z� ,z→�. These integrals can be expressed via the complete elliptic
integrals of the first, second, and third kinds. Furthermore, the complete elliptic integrals of the
third kind can be expressed via the incomplete elliptic integrals of the first and the second kinds,

whose arguments depend on z0. This allows us to obtain a formula for 
̇1��z0
�, whose numerator

is expressed via the complete elliptic integrals of the first and the second kind and derivatives with
respect to z0 of the incomplete elliptic integrals of the first and the second kind. The derivatives are
proportional to �R2�z0��−1/2 �see Ref. 41, formulas �8.123�� This and a bit tedious algebra lead
eventually to �A13�.

Another derivation of �A13� is given in Ref. 8 �see formula �3.14� of the paper�. The deriva-
tion is based on a two step procedure of the minimization of �2.3�: the first step is the minimization
over all unit measures with a given charge 
1� �0,1� of the “band” �a2 ,b2� of the support, and the
second is the minimization of this minimum over 
1.
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Linearizing the Heisenberg equations of motion around the ground state of an
interacting quantum many-body system, one gets a time-evolution generator in the
positive cone of a real symplectic Lie algebra. The presence of disorder in the
physical system determines a probability measure with support on this cone. The
present paper analyzes a discrete family of such measures of exponential type, and
does so in an attempt to capture, by a simple random matrix model, some generic
statistical features of the characteristic frequencies of disordered bosonic quasipar-
ticle systems. The level correlation functions of the said measures are shown to be
those of a determinantal process, and the kernel of the process is expressed as a
sum of biorthogonal polynomials. While the correlations in the bulk scaling limit
are in accord with sine-kernel or Gaussian Unitary Ensemble universality, at the
low-frequency end of the spectrum an unusual type of scaling behavior is found.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2356798�

I. INTRODUCTION

Perturbing the ground state of an interacting quantum many-body system and linearizing the
Heisenberg equations of motion for the boson Fock operators, one faces the standard problem of
small oscillations. Concrete examples are furnished by the vibrational modes of a solid, the spin
waves in a magnet, the electromagnetic modes in an optical medium, and the oscillations of the
superfluid density of a Bose–Einstein condensate. Common to these excitations is that they
second-quantize as bosons or bosonic quasiparticles.

Adding some amount of disorder to the system, one may ask: what are the statistical features
of the excitation spectrum and, in particular, which of these features �if any� reflect the bosonic
nature of the quasiparticle excitations? Is there some kind of universality akin to the Wigner–
Dyson universality known from other disordered systems? If so, what are the universal laws, and
what is the role of symmetry in determining these laws?

In the parallel case of fermionic quasiparticles the situation is now fairly well understood. If
the system is of metallic type and in the ergodic limit, the statistical behavior at high energies is
in accord with the universal laws of Wigner–Dyson statistics. For low excitation energies, how-
ever, the canonical anticommutation relations obeyed by the fermion operators make themselves
felt: they constrain the form of the Hamiltonian matrix and thus give rise to several new univer-
sality classes beyond Dyson’s threefold way.1 Some of these are realized by chiral Dirac fermions
in a random gauge field,2 others by quasiparticles in disordered gapless superconductors.3,4 A
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complete symmetry classification of quadratic fermion Hamiltonians has been carried out,5 and the
role of Riemannian symmetric spaces and superspaces in providing an effective description has
been emphasized.6,7

Progress has been slower for bosonic systems, and so for good reason, as these are set apart
by several distinctive features from other random problems studied and solved in the past. For one
thing, in the case of bosons it makes little sense to choose—as one often does for fermions—the
matrix elements of the quasiparticle Hamiltonian as independent and identically distributed ran-
dom variables. In fact, most of the boson Hamiltonians produced in such a manner would generate
runaway dynamics rather than oscillatory motion around a stable ground state. In the case of
bosons one therefore has to pay attention to the fact that the matrix elements depend in a com-
plicated way on the ground state of the many-boson system and, hence, on the disorder of the
microscopic parent problem.8,9 As a technical consequence, a direct analog of the so-called Gauss-
ian Ensembles, which were pivotal in initiating the Wigner–Dyson theory and establishing its
universal statistics, is unavailable in the context of bosons.

For another complication, low-frequency bosons are usually insensitive to weak disorder.
Many of the excitations listed above are Goldstone bosons associated with a spontaneously broken
symmetry, and for such excitations low frequency is tantamount to low wave number, or large
wavelength, which causes the scattering by disorder to be suppressed, as the disorder is effectively
seen only on average over regions of size given by the large wavelength. Thus the disorder
averages out and becomes less effective, and hence, the behavior of weakly disordered Goldstone
bosons tends to be system specific. �Of course this still leaves it possible for weakly disordered
bosons of non-Goldstone type to exhibit universal statistics.8,9� In order for any universality to set
in, the disorder strength often has to be so large that standard calculational tools such as the
impurity diagram technique fail to apply.

In the present paper we are going to introduce and completely solve a simple random matrix
model of disordered bosonic quasiparticles, which we believe to be most closely analogous to the
Wigner–Dyson Gaussian Ensembles while retaining the crucial features of bosonic statistics and
stability of the motion. In a follow-up paper we will investigate the question whether this simple
model might be representative of a whole universality class of related problems.

To formulate the model, let qj , pj �j=1, . . . ,N� be a canonical set of position and momentum
operators, and consider their linearized Heisenberg equations of motion in the most general form

q̇j = �
i=1

N

�qiAij + piCij�, − ṗj = �
i=1

N

�qiBij + piAji� ,

where Bij =Bji, Cij =Cji, and Aij are real numbers. If the system was invariant under time reversal
�qj �qj , pj �−pj�, the coefficients Aij would have to be zero, but we here consider the generic
case without symmetries. The criterion for stability of the dynamics is that the stability matrix be
positive

h ª �B A

At C
� � 0.

Assuming ht=h�0, the generator of the Heisenberg time evolution

X ª �A − B

C − At � ,

has eigenvalues that come as imaginary pairs ±i� j where � j �0 �j=1, . . . ,N� are the characteristic
frequencies �or single-boson energies� of the small-amplitude motion. In a classical setting one
would introduce the generator X as the symplectic gradient of the Hamiltonian function linearized
at a stable equilibrium point of the classical flow.

The natural transformation group of the problem at hand is the real symplectic group in 2N
dimensions, Sp2N�R�, acting by linear canonical transformations on the operators qj , pj and by
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conjugation on the generator X. We can now explain one of the distinctive features of the present
problem: when formulating the Gaussian Ensembles of the Wigner–Dyson theory one makes the
postulate that the transformation group of the problem �ON, UN, or USp2N, as the case may be� also
be the symmetry group of the chosen probability measure, whereas in our case no such simplifi-
cation is possible. Indeed, Sp2N�R� is noncompact, and a probability measure d� cannot be
invariant under a noncompact group action and at the same time have total mass � d�=1.

One is therefore looking for some construction principle other than symmetry. Our key here is
the positivity of the real symmetric stability matrix h: a natural way of building positive real
symmetric matrices h is by adding a sufficient number of rank-one projectors with positive
weights. Equivalently, we may put

hij = �
�=1

M

vi�v j� �i, j = 1, . . . ,2N� �1.1�

for some set of real numbers vi�. We now consider the vi� as the fundamental variables, and
choose them to be independent and normal �or Gaussian� distributed random variables with zero
mean and variance �−1. Then we use Eq. �1.1� to push forward the normal distribution for the vi�

to a probability distribution d��h� for h �and, hence, for X�. If M �2N, the result is

d��h� � e−�1/2��TrhDet�h��1/2��l−1�	
i�j

dhij, l = M − 2N � 0, �1.2�

with the domain for h still defined by h�0. The probability distribution �1.2� is the object of study
of this paper.

We now give a summary of the contents and the results of the paper. After collecting some
basic facts from symplectic linear algebra in Sec. II, we reduce d��h� in Sec. III to a probability
distribution on the space of characteristic frequencies �1 , . . . ,�N �the positive eigenvalues of −iX�,
and find this to be

d�N,l��1, . . . ,�N� = cN,l���	
i	j

��i − � j���i
2 − � j

2�	
k=1

N

�k
l e−r�kd�k. �1.3�

Using the method of biorthogonal polynomials we show in Sec. V C that the n-level correlation
functions of this probability distribution are of determinant type and are completely determined in
the usual way—see Eq. �5.19�—by a certain kernel KN�� , �̃� given as a sum over biorthogonal
polynomials. We compute the large-N asymptotics of this kernel in the bulk of the spectrum �in
Sec. V D� and at the “hard” edge �=0 �Sec. V E�, using a contour integral representation of the
biorthogonal polynomials �Sec. V C�. In the former case we establish the scaling limit

� lim
N→


KN�Nx/� + �,Nx/� + �̃� =
sin���
�x��� − �̃��

��� − �̃�
e−r�x���−�̃�, �1.4�

which is independent of l. The function �
�x� of the scaling variable x=�� /N is the large-N limit
of the level density. Viewing ��
�x� as the imaginary part of a Green’s function lim→0+g�x
+ i�, the function r�x� is the real part. We compute �
�x� by two independent methods �from a
variational calculation in Sec. IV, and from biorthogonal polynomials in Sec. V D�, with the result
being

�
�x� =
�

2�
�x/b�−1/3��1 + 
1 − x2/b2�1/3 − �1 − 
1 − x2/b2�1/3� �0 	 x � b = 3
3� . �1.5�

Apart from the last factor, which is irrelevant since it cancels on passing to the level correlation
functions, the right-hand side of Eq. �1.4� is the famous sine kernel known from systems with
unitary symmetry. Thus we recover Wigner–Dyson universality of the class of the Gaussian
Unitary Ensemble �GUE� at bulk frequencies.
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At low frequencies ��N−1/2 we find convergence to an unusual kind of scaling limit

lim
N→


N−1/2KN�N−1/2y1/�,N−1/2y2/�� =
�2

2�2�
iR+

du
U1

dv
v

e−y1/u+y2/v�v/u�l e
u2−v2

− 1

u2 − v2 , �1.6�

where U1 denotes the unit circle in C, and iR+ is any axis in the right half plane parallel to the
imaginary axis. The result �1.6� is reminiscent of formulas obtained by Efetov’s supersymmetry
method, with u and v playing the role of radial polar coordinates of a Riemannian symmetric
superspace. We intend to elucidate this connection in a future publication.

II. THE HAMILTONIANS OF STABLE MOTIONS

Let there be some position variables q1 , . . . ,qN and canonical momenta p1 , . . . , pN, and con-
sider Hamiltonians H of the quadratic form

H =
1

2 �
i,j=1

N

�Cijpipj + Bijqiqj + Aij�qipj + pjqi�� , �2.1�

where A, B, and C are real matrices satisfying B=Bt and C=Ct. Rewriting H as

H =
1

2
�q p��A − B

C − At �� p

− q
� ,

we see that the matrix, X, of H satisfies the linear condition

XtJ + JX = 0, J = � 0 − 1N

1N 0
�, X = �A − B

C − At � . �2.2�

This is saying that X lies in sp2N�R�, the Lie algebra of the real symplectic group defined by

Sp2N�R� = �g � GL2N�R��gtJg = J� .

A matrix X�sp2N�R� need not be diagonalizable �e.g., the generator of free motion, A=B=0 and
C=1N, is not�; and even if it is, the eigenvalues will in general be complex.

We now impose the condition

h ª �B A

At C
� � 0, �2.3�

i.e., we require all eigenvalues of the real symmetric matrix h to be positive. The corresponding
domain in sp2N�R� will be denoted by E0:

E0
ª �X � sp2N�R��X = hJ,h = ht � 0� . �2.4�

Although the eigenvalues of h have no direct relation to the dynamics of the system, positivity of
h ensures that the motion generated by the Hamiltonian H is stable, or “elliptic.” As a consequence
of ellipticity, there exists some linear canonical transformation �q ,p�→ �Q ,P� which takes the
Hamiltonian to a sum of harmonic oscillators

H =
1

2�
i=1

N

�Pi
2 + �i

2Qi
2� ,

with �i
2�0. Put differently, for X�E0 one can always find a symplectic transformation g

�Sp2N�R� that conjugates X to quasidiagonal form
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X = g�g−1, � = �0 − �

� 0
�, � = diag��1,�2, . . . ,�N� , �2.5�

with real and positive �i �i=1, . . . ,N�.
All of the discussion below will be based on the elliptic domain E0. Let us therefore collect

some of its mathematical properties. First of all, if X is in E0, then so is its conjugate gXg−1 by any
element g�Sp2N�R�. Thus E0 is invariant under the action of Sp2N�R� on E0 by conjugation.
Second, let t denote the Abelian algebra of block-diagonal matrices of the form of � in Eq. �2.5�
but with diagonal elements �i that are any real numbers �not necessarily positive�. Let t+� t be the
subset of block-diagonal � with positive �i. Then, as we said earlier, every X�E0 is conjugate to
a unique �� t+ by some g�Sp2N�R�. Third, introducing Tªexp�t�, which is an N-dimensional
compact torus, T��S1�N, let G /T be the quotient of G�Sp2N�R� by the right action of T. Then the
mapping

�G/T� � t+ → E0, �gT,�� � g�g−1 �2.6�

�the reverse of the process of quasidiagonalization�, is a smooth bijection.
We are stating these facts without proof, as they are standard facts of symplectic linear

algebra.

III. PROBABILITY MEASURE

By placing a probability distribution on the elliptic domain E0, one gets a random matrix
model for disordered bosonic quasiparticles. We are then interested in the statistics of the charac-
teristic frequencies or levels �i.

It is well known that in the Wigner–Dyson situation of random Hermitian or random real
symmetric matrices, where the symmetry group is compact, the level correlation functions exhibit
universal behavior in a suitable scaling limit. One may therefore ask whether a similar scenario—
leading to universal laws, possibly of a new kind—might be at work in the case being considered.

To answer this question we need to investigate a class of probability distributions on E0 as
wide as possible. As a first step, the present paper deals with a family of well motivated distribu-
tions which are easy to analyze.

A. Choice of measure

Coming from the standard Wigner–Dyson situation with a compact symmetry group, one
might be inclined to try and consider a Gaussian distribution

P�X�dX�
?

e−TrX2
dX ,

where dX is a Lebesgue measure for E0:

dX ª 	
i,j

dAij	
i�j

dBijdCij . �3.1�

However, such a distribution has infinite mass, since it is invariant under the action X�gXg−1 by
the noncompact group Sp2N�R�, and it therefore cannot be normalized to be a probability measure.

Staying within the class of Gaussian distributions, a better choice of distribution function is

P�X = Jh� � e−�Trh/2−�Trh2
= e−�Tr�J−1X�/2−�Tr�J−1X�2

�3.2�

for some positive parameters � ,�. Because of the presence of J−1 under the trace, this distribution
function is invariant under conjugation X�gXg−1 only if g�Sp2N�R� satisfies the additional
condition g−1Jg=J. Combining the two conditions, gtJg=J=g−1Jg, one sees that the invariance
group of the function P�X� in Eq. �3.2� is the intersection of the real symplectic and orthogonal
groups in 2N dimensions
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K = Sp2N�R� � SO2N�R� . �3.3�

This group K is isomorphic to UN, the group of unitary transformations in N complex dimensions.
Indeed, changing from the symplectic basis �q1 , . . . ,qN , p1 , . . . , pN� to the oscillator basis

�a1, . . . ,aN,a1
†, . . . ,aN

† �, aj =
1

2

�qj + ipj�, aj
† =

1

2

�qj − ipj� ,

one finds that K is the subgroup of canonical transformations that do not mix the lowering
operators �aj� with the raising operators �aj

†�. Moreover, UN�K�Sp2N�R� is known to be a
maximal compact subgroup. It therefore is the biggest symmetry group possible in our problem.

In the sequel we will consider Eq. �3.2� with �=0. Thus we take our probability distribution
to be

P�X�dX ª cN���e−�Tr�J−1X�/2dX , �3.4�

with the normalization constant cN��� chosen in such a way that �E0P�X�dX=1. Further motivation
for this choice of distribution was put forth in the introduction �Sec. I�.

B. Polar decomposition and reduction

Let now F�X�=F�gXg−1� be some function on E0 which is radial, i.e., invariant under con-
jugation by every element g�Sp2N�R�. Given such a function F, which depends only on the
eigenfrequencies �1 , . . . ,�N of X, we wish to take the expectation of F with respect to the
probability measure P�X�dX:

�F� ª�
E

0
F�X�P�X�dX . �3.5�

The problem of computing such expectations is best tackled by using the polar decomposition
E0� t+� �G /T� which is given by quasidiagonalization of X; see Eq. �2.6�. Inserting that decom-
position into Eq. �3.5� one has

�F� = �
t+

��
G/T

P�g�g−1�dgT�F���j���d�, d� = d�1d�2 ¯ d�N, �3.6�

where gT is a G-invariant measure for G /T, and j��� is the Jacobian of the change of variables
X=g�g−1.

Let us calculate this Jacobian. Differentiating the polar coordinate mapping Eq. �2.6� we get

��g�g−1� = g��� + �g−1�g,���g−1.

The Jacobian we are seeking is the product of all nonzero eigenvalues of the linear operator
X� �X ,��. These eigenvalues are called the roots of the pair �sp2N�R� , t�. They are

±��i + � j� �i � j�, ± ��i − � j� �i 	 j� ,

each with multiplicity one. Thus, by taking the product of all nonvanishing roots

j���d� = 	
i	j

��i
2 − � j

2�2	
k=1

N

�2�k�2d�k. �3.7�

To complete the polar integration formula �3.6� we need �G/TP�g�g−1�dgT. In the next sub-
section we are going to show that this integral can be calculated in closed form and depends on
�1 , . . . ,�N as
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�
G/T

P�g�g−1�dgT � 	
i	j

��i + � j�−1	
k=1

N

�k
−1e−��k. �3.8�

Thus, in total, the expectation of a radial observable F�X�=F����F��1 , . . . ,�N� becomes

�F� = c̃N����
R+

N
F��1, . . . ,�N�	

i	j

��i − � j���i
2 − � j

2�	
k=1

N

e−��k�kd�k, �3.9�

where c̃N��� is another normalization constant. This expectation, for the special choices of F that
give the level correlation functions, will be calculated in Sec. V of the paper.

C. Computation of the integral „3.8…

We now establish Eq. �3.8�. Omitting a normalization constant, we denote the integral on the
left-hand side of Eq. �3.8� by

I��� ª �
G/T

e−�Tr�J−1g�g−1�/2dgT. �3.10�

What makes this integral computable in closed form is that J lies in sp2N�R� and ��g�g−1 is the
adjoint action of G=Sp2N�R� on its Lie algebra. These circumstances place the integral in the class
of integrals of Harish–Chandra–Itzykson–Zuber type, which are covered by the Duistermaat–
Heckman theorem and its generalizations. In the present case, the integral can be computed in a
particularly simple manner, as follows.

Let dg and dt be Haar measures for G and T, respectively, with dg=dgTdt and �Tdt=vol�T�.
Our first step is to switch from G /T to integrating over the full symplectic group G:

I��� =
1

vol�T��G

e−�Tr�J−1g�g−1�/2dg .

Next we use that dg is invariant under inversion, g�g−1. After this transformation the inte-
grand is expressed in terms of the combination gJ−1g−1=−gJg−1. Since kJk−1=J for k�K�UN,
we can push down the resulting integral over G to an integral over the quotient space G /K. Let
dgK and dk be invariant resp. Haar measures for G /K and K so that dg=dgKdk. Then

I��� =
vol�K�
vol�T� �G/K

e�Tr��gJg−1�/2dgK, vol�K� = �
K

dk . �3.11�

The homogeneous space G /K�Sp2N�R� /UN has the salient feature of being a noncompact
symmetric space of Hermitian type. Such spaces carry the structure of a Kähler manifold, which
means that G /K comes with a non-degenerate, closed, and G-invariant two-form �the Kähler form
of G /K�. Writing gJg−1

¬Q this is the form

� = Tr�QdQ ∧ dQ� . �3.12�

Notice that dimRG /K=N�2N+1�−N2=N�N+1�. Raising � to its �1/2�N�N+1�th exterior power
one obtains a top-dimensional form, ��1/2�N�N+1�, which is still G-invariant and nonzero. Since G /K
is homogeneous, there can be at most one such form up to multiplication by scalars. Therefore,
there exists some �nonzero� constant such that

dgK = const ��1/2�N�N+1�. �3.13�

By Darboux’s theorem one can find local symplectic coordinates for G /K that bring � into
canonical form. While this fact by itself would not be of much practical help, in the present case
such coordinates exist globally and, moreover, they can be chosen in such a way that Tr��gJg−1�
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depends on them quadratically.
To describe these perfect coordinates, consider the space of complex symmetric N�N matri-

ces, Sym�CN�, which has dimension �1/2�N�N+1� over C and thus shares with G /K the dimension
N�N+1� over R. With every Z�Sym�CN� associate a positive Hermitian 2N�2N matrix g̃ by

g̃ = g̃�Z,Z†� = ��1 + ZZ†�1/2 Z

Z† �1 + Z†Z�1/2 � . �3.14�

Now if S is the matrix of the unitary transformation from the real symplectic basis �pj ,qj� of
R2N to the oscillator basis �aj ,aj

†�:

S ª

1

2

� 1N i1N

− 1N i1N
� ,

then gªS−1g̃S is immediately seen to be a real matrix and, using the relation

SJS−1 = i�3, �3 = �1N 0

0 − 1N
� ,

one finds that g=S−1g̃S satisfies g†Jg=gtJg=J and hence lies in Sp2N�R�. Moreover, the reverse

correspondence k� k̃=SkS−1 is the isomorphism between K and UN discussed in the paragraph
after Eq. �3.3�; it takes k�K to the block-diagonal form

k̃ = �U 0

0 Ū
�, U � UN.

It is now clear that the mapping Sym�CN�→G /K by Z�S−1g̃�Z ,Z†�SK�gK is a bijection. Using
it to express the Kähler form � in terms of the complex symmetric matrix Z, one obtains

� = Tr�QdQ ∧ dQ� = − 4iTr��3dg̃−1 ∧ dg̃� = 8iTr�dZ ∧ dZ†� . �3.15�

Thus, the top-dimensional form ��1/2�N�N+1� is constant in Z:

��1/2�N�N+1�

�1

2
N�N + 1��!

= �8i��1/2�N�N+1�2�1/2�N�N−1�	
i�j

dZij ∧ dZ̄ij , �3.16�

and from Eq. �3.13� the invariant measure dgK is a constant multiple of the Lebesgue measure for
Sym�CN�.

Finally, from g=S−1g̃S, SJS−1=i�3, and Eq. �3.14� one has

− Tr��gJg−1� = Tr��1 + 2ZZ†� + Tr��1 + 2Z†Z�, � = diag��1, . . . ,�N� .

Our integral �3.11� now becomes a Gaussian integral

I��� = const e−��k�k� e−2�TrZ†�Z�+�Z�	
i�j

dZijdZ̄ij .

Doing this integral one immediately obtains the result for I��� stated in Eq. �3.8�.

D. Generalization

A slight generalization of Eq. �3.4� is afforded by the observation that the determinant of X in
Eq. �2.2� is always positive:
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Det�X� = Det��� = 	
k=1

N

�k
2.

Thus, by multiplying the probability measure P�X�dX by some power l−1�−1 of the positive
square root Det�X�1/2 and adjusting the normalization constant, we get another probability measure

Pl�X�dX = const Det�X��1/2��l−1�e−�1/2��Tr�J−1X�dX . �3.17�

This measure is still UN invariant. By the process of quasidiagonalization and drawing on our
results above, we push it forward to a measure for the eigenfrequencies. The result is

d�N,l��1, . . . ,�N� = cN,l���	
i	j

��i − � j�2��i + � j�	
k=1

N

�k
l e−��kd�k. �3.18�

This, for any non-negative power l�Z, is the family of probability distributions to be studied in
the present paper.

IV. LARGE-N LIMIT OF THE ONE-POINT DENSITY IN THE BULK

The one-point density ����d� is defined as the probability density for any one of the eigen-
frequencies �i to have the value of �, irrespective of what the values of the other eigenfrequencies
are; thus ���� is the function

���� ª� �
i=1

N

��� − �i�d�N,l��1, . . . ,�N� , �4.1�

which has the properties �����0 and

�
0




����d� = N . �4.2�

We are now interested in the behavior of the density function ���� in the limit of N→
. From
the expression �3.18� and experience with similar problems �see, e.g., Ref. 11�, we expect that this
limit can be obtained by maximizing the functional

F =
1

2
�

0


 �
0




ln��� − ���2�� + �������������d��d� + �
0




ln��le−�������d� �4.3�

subject to the constraint �4.2� and the condition �����0. More precisely, the limit is expected to
exist in the scaled variable xª�� /N; i.e., there should exist a certain non-negative function �
�x�
with ��
�x�dx=1 such that ���� is asymptotic to ��
��� /N�.

Varying F with respect to ���� we get

�F

�����
= �

0




�2 ln�� − ��� + ln�� + ���������d�� + l ln � − �� .

We now insert the asymptotic equality ��Nx /�����
�x� and pass to the limit N→
 in the scaling
variable x. Let supp��
�= �0,b� be the region of support of �
. Then the condition �F /�����
=N�, where � is a Lagrange multiplier for the constraint �4.2�, yields the equation
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�
0

b

�2 ln�x − x�� + ln�x + x����
�x��dx� − x = � �0 	 x 	 b� , �4.4�

which no longer depends on the parameter l. It can be shown that our functional F is convex; as
a result, the solution �
 of Eq. �4.4� exists and is unique when supplemented by the normalization
condition

�
0

b

�
�x�dx = 1. �4.5�

In the following subsections, we are going to construct the solution to the mathematical
problem posed by Eqs. �4.4� and �4.5�. It will turn out to be

�
�x� =
1

2�
�x/b�−1/3��1 + 
1 − x2/b2�1/3 − �1 − 
1 − x2/b2�1/3� �0 	 x � b = 3
3� . �4.6�

The graph of this function is plotted in Fig. 1. From the expression �4.6� the behavior near the
lower edge x=0 is

�
�x� �
1

2�
�2b/x�1/3 �0 	 x � b� ,

while close to the upper edge x=b one gets

�
�x� �
1

3�
�1 − x2/b2�1/2 �x 	 b, x → b� .

In the vicinity of the upper and lower edges there exists crossover to a fine-scale behavior that
cannot be found by the present method of maximization of the functional F. The crossover at the
upper edge involves Airy functions on a scale N1/3, which is small compared to the bulk scale N.
At the lower edge, the crossover occurs on a very fine scale, N−1/2, which is small even in
comparison with the bulk mean level spacing �which is of order N0�.

A. Method of solution „idea…

We do not know how to solve Eq. �4.4� for the unknown function �
�x� directly. Therefore, to
simplify the problem we differentiate once with respect to x to obtain the equation

FIG. 1. The graph of the function �
.
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2P�
0

b �
�x��dx�

x − x�
+ �

0

b �
�x��dx�

x + x�
= 1, �4.7�

where P means the principal value of the integral. At this stage, the value of b is unknown but
assumed to be finite.

Introducing the Green’s function �or Stieltjes transform�

g�z� ª�
0

b ��x�dx

x − z
, z � C \ �0,b� , �4.8�

and the related functions

g±�x� ª lim
�→0+

g�x ± i��, g0�x� ª − g�− x� , �4.9�

we bring Eq. �4.7� into the form

g+�x� + g−�x� + g0�x� = − 1 �0 	 x 	 b� . �4.10�

To solve this equation, we are led to do an exercise in complex analysis which is motivated as
follows.

Let w� f�w� be some meromorphic function of a complex variable w, and let the equation
z= f�w� have r simple roots w1�z�, w2�z� , . . . ,wr�z�, i.e., z= f�w1�z��= . . . = f�wr�z��. If the function
f is analytic in 1/w at w=
, these roots add up to a constant

�
i=1

r

wi�z� = const ¬ c �independent of z� . �4.11�

Indeed, if � is a closed contour encircling all of the roots in the counterclockwise sense, then

� wi��z� = � 1

f��wi�z��
=

1

2�i


�

dw

f�w� − z
= 0,

where the second equality is by the residue theorem, and the last equality follows by contracting
� to the point at infinity. Thus �wi��z�=0 and, hence, �wi�z�=const.

Equation �4.11� for r=3 looks similar to Eq. �4.10� and can, in fact, be made to look identical
to it by the following observation. Notice that the function z�g�z� defined by Eq. �4.8� is
holomorphic in the interior of the left half of the complex plane. Suppose, therefore, that we have
found a root g�z� of z= f�g�z�� which is holomorphic in the left half plane, and that g±�x�
=lim�→0+g�x± i�� are its two analytic continuations to positive real x� �0,b�. Moreover, suppose
that the function f has a reflection symmetry

f�w� = − f�2a − w� �a � C� . �4.12�

Then z�2a−g�−z� is a root of z= f�w� holomorphic in the right half plane, and from Eq. �4.11�
we infer that

g+�x� + g−�x� + �2a − g�− x�� = c .

Setting g0�x��−g�−x� this becomes the same as Eq. �4.10� if

c − 2a = − 1. �4.13�

Thus we are inspired to interpret g+, g−, and 2a+g0 as the three roots of an equation z
= f�w�. Given this interpretation, solving Eq. �4.10� amounts to finding the function f .
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B. The good function f to consider

We are looking for a certain meromorphic function f on C. By adding a point at infinity we
can view such a function f as a mapping of the Riemann sphere S2=C� �
� to itself. We want this
mapping to have degree r=3; i.e., every regular point z of f is to have three distinct preimages

f−1�z� = �w1�z�,w2�z�,w3�z�� .

Such a mapping can be presented in the general form

f��� = f
 + �
i=1

3
bi

w − ai
�4.14�

with some complex numbers ai, bi, and f
.
Let us narrow down the choice of parameters. From the normalization condition �4.5� and the

definition of g�z� in Eq. �4.8�, we have the limit zg�z�→−1 for z→
. Therefore, since f�g�z��
=z by construction, we need f�w� to have a pole at w=g�
�=0 with residue −1. So we choose
a1=0 and b1=−1. The reflection symmetry �4.12� is then implemented by setting f
=0, b3=b1,
and ai= �i−1� a for i=1,2 ,3 and some a�C. Thus

f�w� = −
1

w
+

b2

w − a
−

1

w − 2a
,

where the parameters a and b2 are still unknown.
Next observe that for a degree-r holomorphic mapping f: S2→S2, the number of singular

points, where f��w�=0, is 2r−2. Indeed, writing f as f�w�= p�w� /q�w� where p and q are poly-
nomials of degree r, one has

f��w� =
p��w�q�w� − p�w�q��w�

q�w�2 ,

the numerator of which is a polynomial of degree 2r−2 and so has 2r−2 zeros.
Thus we should expect our function �4.14� to have 2�3−2=4 singular points. The reflection

symmetry �4.12� makes for their images �f�w��C � f��w�=0� to be arranged symmetrically around
z=0. Now notice that our Green’s function g�z�, being the Stieltjes transform of �
�x� with support
�0,b�, must have singularities at z=0 and z=b. The image of the singular set had better contain
these values, and thus is determined to be �−b ,0 , +b� by reflection symmetry. Actually, since our
situation calls for f to have four singular points, the singularity at z=0 �corresponding to w=
�
must have multiplicity two. This is achieved by choosing b2=−b1−b3= +2, so that

f�w� = −
1

w
+

2

w − a
−

1

w − 2a
=

− 2a2

w�w − a��w − 2a�
,

resulting in the behavior f�w��w−3 for w→
. The singular points of f now are w=a±a /
3, and

. These correspond to z= f�w�= ±3
3/a, and 0, respectively, so we infer

b = 3
3/�a� . �4.15�

It remains to pin down the last unknown parameter a. For that purpose, recall that the sum of
the roots f−1�z�= �w1�z� ,w2�z� ,w3�z�� is a constant, c, independent of z. To determine this constant,
look at �wi�
� and use that the poles of f are at w=0, a, 2a to obtain

c = �wi�z� = �wi�
� = 3a . �4.16�

We then conclude a=−1 from Eq. �4.13�, and b=3
3 from Eq. �4.15�. In summary, the good
meromorphic function f for us to consider is
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w � f�w� =
− 2

w�w + 1��w + 2�
. �4.17�

Let us mention in passing that the idea to consider the equation z= f�w� or, equivalently

w�w + 1��w + 2� + 2/z = 0,

first came to one of us �H.-J.S.� from previous work10 on the Green’s function of the Bures
measure, whose large-N limit leads to a similar equation.

C. Solution of the problem

The situation can now be succinctly described like this: thinking of

W ª C \ �− 1 + 1/
3,− 1 − 1/
3�, Z ª �C \ �b,0,− b�� � �
� �b = 3
3� ,

as two Riemann surfaces W and Z, the function f of Eq. �4.17� gives us a holomorphic cover

f:W → Z, f−1�z� = �w1�z�,w2�z�,w3�z�� .

What is the monodromy of this cover, i.e., what happens when the locally defined functions
z�wi�z� are analytically continued around one of the singular points z=b ,0 ,−b? At the point z
=0 �or w=
� we have a cubic singularity z�w−3. Consequently, the monodromy at z=0 cyclically
permutes the roots wi�z�. Turning to z= ±b, we see that linearization z= ±b+�z and w= f−1�±b�
+�w gives

�z � ��w�2.

In the latter two cases the monodromy must exchange two of the wi�z� while leaving the third one
invariant.

Now focus on the situation near the singular point z=−b and denote by w�z��g�z� the root
which, there, is trivial under monodromy and, hence, exists as a holomorphic function in some
neighborhood of z=−b. With the remaining two singularities being at z=0 and z=b, the function
g�z� actually extends to a holomorphic function on the Riemann sphere C� �
� cut along, say,
�0,b��R. Let us verify that this holomorphic function g : �C \ �0,b��� �
�→W coincides with the
Green’s function �4.8� solving our problem �4.10�.

By the holomorphic nature of g and Cauchy’s theorem, we have that

g�z� =
1

2�i


�

g�z��dz�

z� − z
,

where � is a small loop running around z in the counterclockwise sense. Since g is holomorphic
at infinity, the loop � can be deformed �through infinity� to a loop encircling the cut �0,b�, but now
with the orientation reversed. Collapse the deformed loop to the two line segments connecting 0
with b. Then, setting g±�x�=lim�→0+g�x± i�� and

�
�x� ª
g+�x� − g−�x�

2�i
�0 	 x 	 b� , �4.18�

g�z� is obviously given by the integral in Eq. �4.8�.
Because g+�x� and g−�x� arise by analytic continuation from g�z�� f−1�z�, these are two of the

three elements in the set f−1�x�. How is the third element of f−1�x� related to g�z�? To see that,
recall a=−1 and from Eq. �4.12� the invariance of the equation z= f�w� under �z ,w�� �−z ,2a
−w�. Thus, if g�−z� is a root over −z, then −2−g�−z� is a root over z, and it follows that g0�x�
−2 with g0�x�ª−g�−x� �for 0	x	b� is a root over x. The roots g+�x�, g−�x�, and g0�x�−2 all are
different as functions. In fact, Img+�x��0=Jmg0�x��Img−�x� for 0	x	b. So,
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f−1�x� = �g+�x�,g−�x�,g0�x� − 2� ,

and from Eq. �4.16� we deduce that

g+�x� + g−�x� + g0�x� − 2 = �
w�f−1�x�

w = c = 3a = − 3 �0 	 x 	 b� ,

which agrees with Eq. �4.10�. Recall that in order for our analysis to work out we must choose

b = 3
3. �4.19�

With a full understanding of the situation in hand, it is now an easy exercise to obtain �
�x�
in explicit form. Solving the equation z= f�w� one finds the holomorphic function g�z� in the
interval −b	x	0 to be

g�x� = �− x�−1/3�1 + 
1 − x2/b2�1/3 + �− x�−1/3�1 − 
1 − x2/b2�1/3 − 1,

where all square roots and cubic roots are understood to be positive. This function indeed extends
holomorphically to a neighborhood of x=−b, as the Taylor expansion at x=−b contains only even
powers of 
1−x2 /b2. Analytic continuation around the singularity at z=0 gives

g±�x� = x−1/3e±�i/3�1 + 
1 − x2/b2�1/3 + x−1/3e��i/3�1 − 
1 − x2/b2�1/3 − 1 �0 	 x � b� .

Computing the difference �4.18� we then get the result for �
�x� claimed in Eq. �4.6�, with the
value for b given by Eq. �4.19�.

As a final remark, let us note that the good form of g�z� to use near infinity is

g�z� = − 1 + ei�/6�
 1

b2 −
1

z2 +
i

z
�1/3

+ e−i�/6�
 1

b2 −
1

z2 −
i

z
�1/3

. �4.20�

From this, all moments of �
�x�dx can be found by expanding g�z� in powers of 1 /z.

V. EXACT SOLUTION USING BIORTHOGONAL POLYNOMIALS

We now express the probability measure �3.18� as

d�N,l��1, . . . ,�N� = cN,l���	
i	j

��i − � j���i
2 − � j

2�	
k=1

N

e−��k�k
l d�k, �5.1�

and embark on another approach to handling it.
To get started, recall the formula for the Vandermonde determinant

	
i�j

��i − � j� = Det�� j
i−1�i,j=1,. . .,N = �

1 1 ¯ 1

�1 �2 ¯ �N

] ] � ]

�1
N−1 �2

N−1
¯ �N

N−1
� .

Using it we reorganize the probability measure �5.1� as

d�N,l��1, . . . ,�N� = cN,l���Det�� j
i−1�Det�� j

2i−2�	
k=1

N

e−��k�k
l d�k. �5.2�

We also simplify our notation by setting �=1.
By standard properties of the determinant, Det�� j

i−1� changes only by a multiplicative constant
when the monomials � j

i−1 are replaced by any polynomials in � j of degree i−1. We have two
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Vandermonde determinants, �i	j��i−� j� and �i	j��i
2−� j

2�, so we introduce two sets of polyno-
mials, denoting those of the first set by Pi−1�� j� and those of the second one by Qi−1�� j

2�. Our
measure then becomes

d�N,l��1, . . . ,�N� = c̃N,lDet�Pi−1�� j��Det�Qi−1�� j
2��	

k=1

N

e−�k�k
l d�k. �5.3�

In order for the introduction of the polynomials Pn��� and Qn��2� to be useful we require
them to be orthogonal with respect to the integration measure e−��ld�:

Im,n � �
0




Pm���Qn��2�e−��ld� = hn�m,n, �5.4�

where the numbers hn= In,n depend on the choice of normalization for Pn��� and Qn��2�. Such
polynomials are constructed by a variant of the Gram–Schmidt algorithm, as follows.

A. Biorthogonal polynomials

We review the construction in the general setting of two real vector spaces V, W with a pairing
�or nondegenerate bilinear form�

�:V � W → R .

Given some basis v0 ,v1 ,v2 , . . . of V, and a basis w0 ,w1 ,w2 , . . . of W, let the entries of the corre-
sponding pairing matrix be denoted by

�m,n ª ��vm,wn� �m,n = 0,1,2, . . . � .

The goal now is to construct a new basis e0 ,e1 ,e2 , . . . of V, and a new basis f0 , f1 , f2 , . . . of W such
that

en = vn + �
n�=0

n−1

Ann�vn�, fn = wn + �
n�=0

n−1

Bnn�wn�,

�with real coefficients Ann� and Bnn��, and the transformed basis vectors form a biorthogonal
system

��em, fn� = 0 m � n .

This problem has a unique solution by the process of Gram–Schmidt orthogonalization. A nice
way of presenting the solution is by means of the following determinants �where, by a slight abuse
of notation, the matrix entries in the last column resp. last row are vectors, whereas all of the other
matrix entries are numbers�

en = Dn−1
−1 �

�0,0 ¯ �0,n−1 v0

�1,0 ¯ �1,n−1 v1

] � ] ]

�n,0 ¯ �n,n−1 vn

�, fn = Dn−1
−1 �

�0,0 �0,1 ¯ �0,n

] ] � ]

�n−1,0 �n−1,1 ¯ �n−1,n

w0 w1 ¯ wn

� �n = 1,2, . . . � ,

�5.5�

with normalization factor

Dn = ��0,0 ¯ �0,n

] � ]

�n,0 ¯ �n,n
� .
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These formulas are easily verified. Indeed, pairing em with wn for m�n one gets

��em,wn� = Dm−1
−1 �

�0,0 ¯ �0,m−1 �0,n

�1,0 ¯ �1,m−1 �1,n

] � ] ]

�m,0 ¯ �m,m−1 �m,n

� = 0,

which vanishes because the last column coincides with one of the other columns. Since fn is a
linear combination of the vectors wn� with n��n, it follows that ��em , fn�=0 for m�n. The same
conclusion for m	n follows by reversing the roles of V and W. Notice that en=1vn+. . . and fn

=1wn+. . . by insertion of the factor Dn−1
−1 . The nonvanishing pairing matrix elements for n�1 are

�n,n=��en , fn�=��en ,wn�=Dn /Dn−1.
To apply these general formulas to the case under consideration, we choose the vectors vm and

wn to be the functions ���m resp. ���2n, and take the pairing to be given by integration with
our measure e−��ld�:

�m,n = �
0




�m+2ne−��ld� = ��m + 2n + l + 1� . �5.6�

Making the identification en� Pn���, the general formula for en in Eq. �5.5� then gives P0���
=1 and

Pn��� = Dn−1
−1 �

��l + 1� ¯ ��l + 2n − 1� �0

��l + 2� ¯ ��l + 2n� �1

] � ] ]

��l + n + 1� ¯ ��l + 3n − 1� �n
� �n � 1� . �5.7�

Similarly, identifying fn�Qn��2� we obtain Q0��2�=1 and

Qn��2� = Dn−1
−1 �

��l + 1� ��l + 3� ¯ ��l + 2n + 1�
] ] � ]

��l + n� ��l + n + 2� ¯ ��l + 3n�
�0 �2

¯ �2n
� �n � 1� . �5.8�

Using the relation ��z+1�=z��z� an easy Gauss elimination process gives the normalization
constant as

Dn = � ��l + 1� ¯ ��l + 2n + 1�
] � ]

��l + n + 1� ¯ ��l + 3n + 1�
� = 	

k=0

n

2kk!�2k + 1�!. �5.9�

From this, note the diagonal pairing matrix elements h0= l! and

�
0




Pn���Qn��2�e−��ld� = hn = Dn/Dn−1 = 2nn!�2n + l�! �n � 1� . �5.10�
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B. n-level correlation functions

The n-level correlation function Rn��1 , . . . ,�n� in the present context is defined as

Rn��1,�2, . . . ,�n� = n!�
R+

N
�

i1	i2	¯	in

���1 − �̃i1
����2 − �̃i2

� ¯ ���n − �̃in
�d�N,l��̃1, . . . ,�̃N� .

�5.11�

A closed-form expression for it can be given from the biorthogonal polynomials Pn���� and
Qn���

2� for 0�n��N. The result will take its most succinct form when expressed in terms of the
modified functions

P̃n��� ª �− 2�−nn!−1e−�Pn��� , �5.12�

Q̃n��� ª �− 1�n�2n + l�!−1�lQn��2� , �5.13�

�the motivation for the sign �−1�n will become clear later�, which from Eqs. �5.4� and �5.10� obey
the orthogonality relations

�
0




P̃m���Q̃n���d� = �m,n. �5.14�

The probability measure �5.3� expressed by these functions takes the form

d�N,l��1, . . . ,�N� =
1

N!
Det�P̃i−1�� j��Det�Q̃i−1�� j��	

k

d�k.

Now, by using the multiplicative property of the determinant, we can also write

d�N,l��1, . . . ,�N� =
1

N!
Det�KN��i,� j��i,j=1,. . .,N	

k

d�k, �5.15�

where the kernel K��i ,� j� is defined by

KN��i,� j� = �
n=0

N−1

P̃n��i�Q̃n�� j� . �5.16�

From the orthogonality relations �5.14� this kernel has the reproducing property

�
0




KN��i,��KN��,� j�d� = KN��i,� j� , �5.17�

and the trace

�
0




KN��,��d� = N . �5.18�

To proceed further, take notice of the relation

�
0


 �KN��1,�1� ¯ KN��1,�n�
] � ]

KN��n,�1� ¯ KN��n,�n�
�d�n = �N − n + 1�� KN��1,�1� ¯ KN��1,�n−1�

] � ]

KN��n−1,�1� ¯ KN��n−1,�n−1�
� ,

which is proved by expanding the determinant with respect to the last row or column and exploit-
ing the properties �5.17� and �5.18�. Using it, an inductive procedure starting from
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RN��1 , . . . ,�N�=Det�KN��i ,� j��i,j=1,. . .,N gives the n-level correlation functions as

Rn��1, . . . ,�n� = Det�KN��i,� j��i,j=1,. . .,n. �5.19�

Thus the correlations are those of a determinantal process and are completely determined by the
kernel KN��i ,� j�. The remaining discussion therefore focuses on this kernel, but first we make
another preparatory step.

C. Contour integral representation

We are now going to show that the functions P̃n��� and Q̃n��� have expressions as complex
contour integrals

P̃n��� = 
S�1�

e−�u�1 − u−2�−n−1ul−2du/�i , �5.20�

Q̃n��� = 
S�0�

e�v�1 − v−2�nu−l−1dv/2�i . �5.21�

Both integrals are over circles in the complex plane with radius  and counterclockwise orienta-
tion; the first circle is centered at u=1 and has radius 	2 �to avoid the singularity at u=−1�, the
second one is centered at v=0.

Our proof of these expressions for P̃n��� and Q̃n��� will be indirect and in two steps. First, we

establish some information on power series. In the case of Q̃n��� we insert the power series of the
exponential function e�v, use the binomial expansion of �1−v−2�n, and compute a residue to obtain

Q̃n��� = �
k=0

n �n

k
� �− 1�k�2k+l

�2k + l�!
. �5.22�

In the case of P̃n���, calculating the residue at u=1 we have that

P̃n��� = � 2

n!

dn

dun� e−�uun+l−1

�1 + u−1�n+1��
u=1

. �5.23�

In both cases, defining Pn��� and Qn��2� by the reverse of the relations �5.12� and �5.13�, we see
from Eqs. �5.22� and �5.23� that these are polynomials of degree n in � resp. �2 and that the
highest-degree term ��n resp. �2n� has coefficient one.

Recall now from Sec. V A that, given these properties, the polynomials Pn��� and Qn��2� are
completely determined by the orthogonality relations �5.4� for m�n. Via Eqs. �5.12� and �5.13�
the latter are in one-to-one correspondence with the orthogonality relations �5.14� �still for m
�n�. Therefore, defining

Ĩm,n = �
0




P̃m���Q̃n���d� , �5.24�

the second and final step of our proof is to show that Ĩm,n=0 for m�n.
To that end, we insert the expressions �5.20� and �5.21� into Eq. �5.24�. The � dependence

then is e−��u−v� with u�S�1� and v�S�0�. Taking the radius  to be very small ��1�, we have
that e−��u−v� decreases rapidly as � goes to +
. Therefore, the integral over � exists, and we may
interchange the order of integrations. Doing first the � integral
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�
0




e−��u−v�d� =
1

u − v
,

the remaining contour integrals for Ĩm,n defined by Eq. �5.24� are

Ĩm,n = 
S�1�

ul−2

�1 − u−2�m+1�
S�0�

�1 − v−2�ndv
vl+1�v − u� � du

2�2 .

To simplify the inner integral over v we use the identity

�1 − v−2

1 − u−2�n

= 1 −
v2 − u2

v2�1 − u2��k=0

n−1 �1 − v−2

1 − u−2�k

.

Inserting this into the expression for Ĩm,n we see that the terms in the k sum do not contribute as
the residue at v=0 vanishes for all of those terms. Doing the v integral for the first term on the
right-hand side, we get


S�0�

v−l−1�v − u�−1dv = − 2�iu−l−1,

so the remaining u integral is

Ĩm,n = ��i�−1
S�1�

�1 − u−2�n−m−1u−3du .

This integrand is holomorphic near u=1 for m	n, and the integral therefore vanishes in that case.
For m�n we use the invariance of the integration form under u→−u to write Im,n as an integral
over a sum of two circles

Ĩm,n =
1

2�i


�

u2m−2n−1du

�u2 − 1�m−n+1 , � = S�1� + S�− 1� .

The integrand in this case is holomorphic near u=0. In the punctured plane C \ �1,−1� the chain
S�1�+S�−1� is homologous to the circle at infinity, where the integrand vanishes. Therefore the

integral again is zero. This proves that Ĩm,n=0 for m�n, which in turn completes our proof that the

contour integrals �5.20� and �5.21� are the same as the functions P̃n���, Q̃n��� defined from Eqs.
�5.7� and �5.8� by Eqs. �5.12� and �5.13�. As a final check, note that

Ĩn,n = ��i�−1
S�1�

du

u�u2 − 1�
= 1,

which is what it ought to be in view of Eq. �5.14�.
Now we harvest a major benefit from the contour integral representations �5.20� and �5.21�:

using these, we can carry out the sum in the definition �5.16� of the kernel KN as a geometric sum.
The result is a double contour integral

KN��1,�2� = 
S�1�

du
S�0�

dvFN�u,v;�1,�2� , �5.25�
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FN�u,v;�1,�2� =
1

2�2e−�1u+�2v ulv−l+1

u2 − v2��1 − v−2

1 − u−2�N

− 1� . �5.26�

This exact expression represents the complete solution of our problem. We will now use it to
determine the large-N asymptotics in the bulk and at the hard edge �=0.

D. Asymptotics in the bulk

The kernel on the diagonal �1=�2 is the same as the one-level function, R1���=KN�� ,��; see
Eq. �5.19�. We already know from Sec. IV the asymptotics of R1�������� in the bulk: introduc-
ing the scaling variable x=� /N �formerly x=�� /N�, this is

lim
N→


KN�Nx,Nx� = �
�x� ,

with �
�x� given by Eq. �4.6�. In the present subsection we are going to demonstrate that the
scaling limit of the kernel KN��1 ,�2� off the diagonal leads to sine-kernel universality for all level
correlation functions:

lim
N→


Rn�Nx + �1, . . . ,Nx + �n� = Det� sin���
�x���i − � j��
���i − � j�

�
i,j=1,. . .,n

, �5.27�

as is expected for systems in the universality class of the Gaussian Unitary Ensemble. As a
corollary, we will obtain an independent confirmation of the result �4.6�.

Looking at the integral representation �5.25� one might think that the large-N limit could be
taken by applying the saddle-point method to that integral. However, as we shall see, the dominant
saddle points lie on the line u=v where the integrand has a singularity of type 0/0 which, albeit
removable, complicates the saddle-point evaluation.

Therefore, rather than calculating KN��1 ,�2� directly, we look at the product
��1−�2�KN��1 ,�2�. Using the relation ��2−�1�e�2v−�1u= ��v+�u�e�2v−�1u and partially integrat-
ing, we rewrite Eq. �5.25� as

��1 − �2�KN��1,�2� = 
S�1�

du
S�0�

dvF̃N�u,v;�1,�2� , �5.28�

F̃N�u,v;�1,�2� =
1

2�2e−�1u+�2v� �

�u
+

�

�u
� ulv−l+1

u2 − v2��1 − v−2

1 − u−2�N

− 1� , �5.29�

which constitutes the starting point for the following analysis.
In preparation for taking the limit N→
, we set �1=Nx+� and �2=Nx+ �̃. The deciding

factor in the integrand of ��1−�2�KN��1 ,�2� in the large-N limit will then be

exp�− Nx�u − v� + N log�1 − v−2� − N log�1 − u−2�� ,

leading to the saddle-point equation

��u� = x = ��v�, ��w� = − �w log�1 − w−2� =
− 2

w�w2 − 1�
. �5.30�

Notice that � is related to our function �4.17� by f�w−1�=��w�. A comprehensive study of the
equation f�w�=z and its solutions for w was made in Sec. IV. From there we know that the
saddle-point equation ��w�=x has three solutions in general, and for 0	x�b=3
3 these are
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w��x� = − x−1/3e−2�i�/3�1 + 
1 − x2/b2�1/3 − x−1/3e2�i�/3�1 − 
1 − x2/b2�1/3 �� = 1,− 1,0� .

�5.31�

In the range of interest �0	x	b� the first two solutions, w±1�x�, are complex conjugates of each
other while the third one, w0�x�, is negative. Expanding the logarithm of �1−v−2�N / �1−u−2�N to
second order around a pair of saddle points w�, w� we encounter the Gaussian

exp�1

2
N���w��x����u�2 −

1

2
N���w��x����v�2�, ���x� =

6w2 − 2

w2�w2 − 1�2 .

For the negative saddle point one has ���w0�x���0, so its path of steepest descent would be
perpendicular to the real axis in the case of u and along the real axis in the case of v. The latter is
inconsistent with the original integration contour for v being S�0�. In the former case, w0�x�	
−1 is inaccessible because of the singularity of �1−u−2�−N intervening at u=−1. Thus this saddle
point is irrelevant for present purposes and may be discarded.

We now make another preparation of the saddle-point evaluation of the integral, by investi-
gating the behavior of the integrand near the two remaining saddle points. We set

u = w��x� + N−1/2�u, v = w��x� + N−1/2�v ��,� = ± 1� ,

and first look at the diagonal case, �=�. Using the identity

1

u − v
� �

�u
+

�

�v
��1 − u−2

1 − u−2�N

= 2N
u2 + uv + v2 − 1

u�u2 − 1�v�v2 − 1��1 − v−2

1 − u−2�N

, �5.32�

we find the scaling limit of the integrand F̃N to be

lim
N→


N−1F̃N�w��x� + N−1/2�u,w��x� + N−1/2�v;Nx + �,Nx + �̃�

= �2��−2e−w��x���−�̃����w��x��e�1/2����w��x����u2−�v2�.

The same limit in the off-diagonal case ����� vanishes. Indeed,

w�
2 + w�w� + w�

2 − 1 =
w��w�

2 − 1� − w��w�
2 − 1�

w� − w�

=
− 2

w� − w�

�x−1 − x−1� = 0 �� � �� ,

and therefore the factor in the numerator on the right-hand side of Eq. �5.32� gives zero.
We now deform the contours of integration as indicated in Fig. 2. The deformed contours pass

through the saddle points w±1 but miss the saddle point w0. At w±1 the paths of steepest descent for
u and v cross at right angles, valleys in one case being mountains in the other case and vice versa.

Next we do the Gaussian integrals. Given the counterclockwise orientations of the original
contours S�1� resp. S�0�, and taking into account the directions of the paths of steepest descent,
we get

� e�1/2����w+1��u2
d��u� = 
2�����w+1��−1/2e�1/2��−�i−i arg ���w+1��,

� e−�1/2����w+1��v2
d��v� = 
2�����w+1��−1/2e�1/2��2�i−i arg ���w+1��.

The product of these two integrals is 2�i /���w+1�. The same calculation for the other saddle w−1

gives −2�i /���w−1�. Thus, putting the factors together and summing over the contributions from
diagonal pairs of saddle points ��=�� we obtain
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�� − �̃� lim
N→


KN�Nx + �,Nx + �̃� =
1

2�i
�e−w−1�x���−�̃� − e−w+1�x���−�̃�� .

Since Rew+1=Rew−1 and Imw+1=−Imw−1 this means that, with Imw+1�x�¬��
�x�, we have

lim
N→


KN�Nx + �,Nx + �̃� = e−Rew±1�x���−�̃�sin���
�x��� − �̃��
��� − �̃�

.

The exponential factor e−Rew±1�x���−�̃� drops out when forming the determinant on the right-hand
side of Eq. �5.19�. Thus we arrive at the universal sine-kernel �or GUE� correlation functions
�5.27�.

Setting �= �̃ notice the special result limN→
KN�Nx ,Nx�=�
�x�. Since the kernel on the
diagonal is none other than the one-level function, KN�� ,��=����, this gives another determina-
tion of the large-N level density �
. From Eq. �5.31� one sees that �
�x�=�−1Imw+1�x� agrees
with our earlier result Eq. �4.6�.

E. Asymptotics near �=0

At the lower edge ��=0� of the spectrum, a new type of behavior is expected to emerge. This
behavior, as we shall see presently, occurs on a scale ��N−1/2.

To exhibit the scaling limit near �=0, it is best to send the integration variables u, v to their
reciprocals, u→u−1 and v→v−1. Then du→−u−2du, dv→−v−2dv, and the integration contour for
v has its radius inverted and orientation reversed, S�0�→−S1/�0�. However, since the integrand
is holomorphic in v on C \ �0� we may return to the original radius  �or any other radius, for that
matter�. In the case of u we take the radius  of S�1� to be very small. Then inversion u→u−1

sends S�1� to itself �or, in any case, to the same homology class on C \ �1��, with no change of
orientation. Altogether, then, carrying out the transformation �u ,v�→ �u−1 ,v−1� the integral repre-
sentation �5.25� continues to hold true if we make the replacement

FN�u,v;�1,�2� → − u−2v−2FN�u−1,v−1;�1,�2� =
1

2�2e−�1/u+�2/v u−lvl−1

u2 − v2��1 − v2

1 − u2�N

− 1� .

FIG. 2. Sketch of the saddle points for the case of x=1. By deforming the original contours, which are small circles around
the singular points u=1 and v=0, one arranges for the contours of integration to pass through the saddle points w±1�x� in
the direction of steepest descent. Away from the saddle points the deformed contours are drawn as paths of constant phase,
which interpolate between different zeroes of the integrand: they run between 0 and +
 for u, and between 1 and −
 for
v.
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Next, as another preparation for taking the limit N→
, we deform the u-contour S�1� to
some axis parallel to the imaginary axis. The deformed contour crosses the real axis between u
=0 and u=1 and is directed from u= + i
 to u=−i
. We also reverse the direction of integration
for u and change the overall sign of the integral.

Then we set � j =N−1/2yj and rescale u→N−1/2u and v→N−1/2v accordingly. Again, in view of
the analytic properties of the integrand we can keep the integration contours fixed while rescaling.
Because the u integral converges at infinity we have a good limit

lim
N→


�1 − u2/N�−N = exp�u2� .

In total, we thus obtain the following scaling limit for our kernel KN:

k�y1,y2� ª lim
N→


N−1/2KN�N−1/2y1,N−1/2y2� =
1

2�2�
iR+

du�
U1

dv
v

e−y1/u+y2/v�v/u�l e
u2−v2

− 1

u2 − v2 ,

�5.33�

where U1�S1�0� means the unitary numbers, and iR+ is the imaginary axis translated by 
�0 into the right half of the complex plane. Plots of the scaling function k�y ,y� for l=0,1 are
shown in Fig. 3. Using the method of saddle-point evaluation as in Sec. V C one can show that this
function behaves as k�y ,y��y−1/3 for large y.

Taking the same scaling limit for the functions P̃N��� and Q̃N��� in Eqs. �5.20� and �5.21� one
gets

p�y� = lim
N→


N−�l−1�/2P̃N�N−1/2y� =
1

�i
�

iR+

eu2−y/uu−ldu , �5.34�

q�y� = lim
N→


Nl/2Q̃N�N−1/2y� =
1

2�i
�

U1

e−v2+y/vvl−1dv . �5.35�

Both functions have convergent series expansions

p�y� = �
n=0



�− y�n

n!���l + n + 1�/2�
, q�y� = yl�

n=0



�− y2�n

n!�2n + l�!
. �5.36�

The expansion for q�y� can be obtained either directly from Eq. �5.35�, or by taking the limit N
→
 in Eq. �5.22�. In the case of p�y�, the earlier formula �5.23� is not suitable; rather, in order to
verify Eq.�5.36� for p�y� one expands the integrand of Eq. �5.34� in powers of y, makes use of
Reu=�0 to write

FIG. 3. The graph of the scaling function k�y ,y� for the case of l=0 �left� and l=1 �right�.

103304-23 Disordered bosons J. Math. Phys. 47, 103304 �2006�

                                                                                                                                    



u−n−l = �n + l − 1�!−1�
0




e−tutn+l−1dt �n + l � 0� ,

does the Gaussian u integral by completing the square, and uses the duplication formula for the
Gamma function.

Note added in proof. After submission of this manuscript, P. Forrester pointed out to us that
the joint eigenvalue distribution derived and analyzed here falls in a broad class of models solved
by Borodin.12 Borodin’s expression for the kernel KN�x ,y� is equivalent to ours by old work of
Konhauser.13 The mathematical results of Konhauser were first introduced into random matrix
physics by Muttalib,14 who suggested to use them for an approximate treatment of the statistics of
transmission eigenvalues of disordered conductors.
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We investigate overlap fluctuations of the Sherrington-Kirkpatrick mean field spin
glass model in the framework of the Random Overlap Structure �ROSt�. The con-
cept of ROSt has been introduced recently by Aizenman and co-workers, who
developed a variational approach to the Sherrington-Kirkpatrick model. Here we
propose an iterative procedure to show that, in the so-called Boltzmann ROSt,
Aizenman-Contucci polynomials naturally arise for almost all values of the inverse
temperature �not in average over some interval only�. These polynomials impose
restrictions on the overlap fluctuations in agreement with Parisi theory. © 2006
American Institute of Physics. �DOI: 10.1063/1.2357995�

I. INTRODUCTION

The study of mean field spin glasses has been very challenging from both a physical and a
mathematical point of view. It took several years after the main model �the Sherrington-
Kirkpatrick, or simply SK� was introduced before Giorgio Parisi was able to compute the free
energy so ingeniously �Ref. 12 and references therein�, and it took much longer still until a fully
rigorous proof of Parisi’s formula was found.11,14 Parisi went beyond the solution for the free
energy and gave an Ansatz about the pure states of the model as well, prescribing the so-called
ultrametric or hierarchical organization of the phases �Ref. 12 and references therein�. From a
rigorous point of view, the closest the community could get so far to ultrametricity are identities
constraining the probability distribution of the overlaps, namely, the Aizenman-Contucci �AC� and
the Ghirlanda-Guerra identities �see Refs. 1 and 9, respectively�. For further reading, we refer to
Refs. 6, 7, and 13, but also to the general references.5,15 Most of the few important rigorous results
about mean field spin glasses can be elegantly summarized within a powerful and physically
profound approach introduced recently by Aizenman et al. in Ref. 2. We want to show here that in
this framework the AC identities can be deduced too. This is achieved by studying a stochastic
stability of some kind, similarly to what is discussed in Ref. 6, inside the environment �the
Random Overlap Structure� suggested in Ref. 2, and taking into account also the intensive nature
of the internal energy density. A central point of the treatment is a power series expansion similar
to the one performed in Ref. 3.

The paper is organized as follows. In Sec. II we introduce the concept of Random Overlap
Structure �henceforth ROSt�, and use it to state the related Extended Variational Principle. In Sec.
III we present the main results regarding the ac identities and similar families of relations. Section
IV is left for a few concluding remarks.
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II. MODEL, NOTATIONS, PREVIOUS BASIC RESULTS

The Hamiltonian of the SK model is defined on Ising spin configurations � : i→�i= ±1 of N
spins, labeled by i=1, . . . ,N, as

HN��;J� = −
1

�N
�
i�j

1,N

Jij�i� j

where Jij are i.i.d. centered unit Gaussian random variables. We will assume there is no external
field. Being a centered Gaussian variable, the Hamiltonian is determined by its covariance,

E�HN���HN����� =
1

2
Nq���

2

where

q��� =
1

N
�
i=1

N

�i�i�

is the overlap, and here E denotes the expectation with respect to all the �quenched� Gaussian
variables.

The partition function ZN���, the quenched free energy density fN���, and pressure �N��� are
defined as

ZN��� = �
�

exp„− �HN���… ,

− �fN��� =
1

N
E ln ZN��� = �N��� .

The Boltzmann-Gibbs average of an observable O��� is denoted by � and defined as

��O� = ZN���−1�
�

O���exp„− �HN���… ,

but we will use the same � to indicate, in general �weighted� sums over spins or nonquenched
variables, to be specified when needed, and with � we will mean the product �replica� measure of
the needed number of copies of �.

Let us now introduce an auxiliary system.
Definition 1: A Random Overlap Structure R is a triple �� , q̃ ,��, where

• ��	 is a discrete space �set of abstract spin configurations�;
• q̃ :�2→ �0,1� is a positive definite kernel �overlap kernel�, with �q̃ � 
1 �and q̃=1 on the

diagonal of �2�;
• � :�→R+ is a normalized discrete positive random measure, i.e., a system of random weights

such that there is a probability measure � on �0,1�� so that �	���	�� almost surely in the
� sense.

The randomness in the weights � is independent of the randomness of the quenched variables
from the original system with spins �. We equip a ROSt with two families of independent and

centered Gaussians h̃i and Ĥ with covariances

E�h̃i�	�h̃j�	��� = ijq̃		�, �1�
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E�Ĥ�	�Ĥ�	��� = q̃		�
2 . �2�

Given a ROSt R, we define the trial pressure as

GN�R� =
1

N
E ln

��,	
�	 exp�− ��i=1

N
h̃i�	��i�

�	
�	 exp„− ��N/2Ĥ�	�…

, �3�

where E denotes hereafter the expectation with respect to all the �quenched� random variables
�including the randomness in the random weights �� but spins � and the abstract spins 	, the sum
over which is, in fact, written explicitly.

The following theorem �Ref. 2� can be easily proven by interpolation.
Theorem 1 (Extended Variational Principle): Infimizing for each N separately the trial

function GN�R� defined in �3� over the whole ROSt space, the resulting sequence tends to the
limiting pressure −�f��� of the SK model as N tends to infinity,

���� � lim
N→�

�N��� = lim
N→�

inf
R

GN�R� .

For a given ROSt and a given inverse temperature �, the trial pressures 	GN
 are a well defined
sequence of real numbers indexed by N; a ROSt R is said to be optimal if �� limN→� �N���
=limN→� GN�R� for all �.

An optimal ROSt is the Parisi one �Refs. 12 and 14�, another optimal one is the so-called
Boltzmann ROSt RB, defined as follows. Take �= 	−1,1
M, and denote by � the points of �. We
clearly have in mind an auxiliary spin system �and that is why we use � as opposed to the previous
	 to denote its points�. In fact, we also choose

h̃i = −
1

�M
�
k=1

M

J̃ik�k, Ĥ = −
1

M
�
k,l

1,M

Ĵkl�k�l,

which satisfy �1� and �2� with q̃���= �1/M��k�k�k�, and J̃ and Ĵ are families of i.i.d. random
variables independent of the original couplings J, with whom they share the same distribution �i.e.,

all the J̃ and Ĵ are centered unit Gaussian random variables�. The variables h̃. are called cavity
fields. Let us also choose

�� = exp„− �HM��; Ĵ�… = exp��
1

�M
�
k,l

1,M

Ĵkl�k�l� .

If we call RB�M� the structure defined above, we will formally write RB�M�→RB as M
→�, and we call RB the Boltzmann ROSt. The reason why such a ROSt is optimal is purely
thermodynamic, and equivalent to the existence of the thermodynamic limit of the free energy per
spin. A detailed proof of this fact can be found in Ref. 2; here we just mention the main point:

���� = C lim
M

1

N
E ln

ZN+M

ZM
= lim

N→�
C lim

M
GN„RB�M�… = GN�RB� = G�RB� ,

where C lim is the limit in the Cesàro sense. Notice that the Boltzmann ROSt does not depend on
N, after the M limit.

III. ANALYSIS OF THE BOLTZMANN ROSt

In this section we show that in the optimal Boltzmann ROSt’s the overlap fluctuations obey
some restrictions, namely, those found by Aizenman and Contucci in Ref. 1. In other words, we
exhibit a recipe to generate the ac polynomials within the ROSt approach.
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A. The internal energy term

Let us focus on the denominator of the trial pressure G�RB�, defined in �3�, computed at the
Boltzmann ROSt RB, defined in the previous section. Let us normalize this quantity by dividing

by ZN and weight Ĥ with an independent variable �� as opposed to �, which appears in the
Boltzmannfaktor ��. As in the Boltzmann structure we have actual spins ��� and we do not use the
spins � here; we will still use � �or �� to denote the Boltzmann-Gibbs �replica� measure �at
inverse temperature �� in the space �= 	−1,1
M. Moreover, we will use the notation ·�=E��·�
and, if present, a subscript � recalls that the Boltzmannfaktor in � has inverse temperature �.
More precisely, we are computing the left hand side of the next equality to get this.

Lemma 1:

1

N
E ln � exp�− ���N

2
Ĥ���� =

��2

4
�1 − q̃2��� . �4�

Similar calculations have been performed already, but in this specific context the result has been
only stated without proof in Ref. 10, while a detailed proof is given only in the dilute case in Ref.
8. So let us prove the lemma. Let us take M finite. Thanks to the property of the addition of
independent Gaussian variables, the left hand side of �4� is the same as

1

N
E ln

ZM��*�
ZM���

=
M

N
„�M��*� − �M���…, �* =��2 +

��2N

M
,

which, in turn, thanks to the convexity of �, can be estimated as follows:

M

N
��* − ���M� ��� 


M

N
„�M��*� − �M���… 


M

N
��* − ���M� ��*� .

Now

M

N
��* − �� =

��2

2�
+ o� 1

M
�, ����� =

�

2
�1 − q̃2��� .

Therefore, when M→�, we get �4� for almost all �, i.e., whenever ����*�→�����, or, equiva-
lently, whenever ·��*→ ·��. Notice that the quantity in �4� does not depend on N.8,10

Theorem 2: The following statements hold:

• The left hand side of �4� is intensive (does not depend on N);
• The left hand side of �4� is a monomial of order two in ��;
• The Aizenman-Contucci identities hold.

Proof: Recall that Ĥ is a centered Gaussian, and so is therefore −Ĥ, and the Gibbs measure is

such that the substitution Ĥ→ Ĥ− Ĥ� implies

1

N
E ln � exp�− ���N

2
Ĥ� =

1

2N
E ln � exp�− ���N

2
�Ĥ − Ĥ��� .

Expand now in powers of �� the exponential first and then the logarithm:
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1

N
E ln � exp�− ���N

2
Ĥ� =

��2

4
�1 − q̃2��

=
1

2N
E ln ��1 +

��2

2

N

2
�Ĥ − Ĥ��2 +

��4

4!

N2

4
�Ĥ − Ĥ��4 + ¯ �

=
1

2N
E��N��2

4
�2��Ĥ2� − 2�2�Ĥ����

+
N2

4

��4

4!
�2��Ĥ4� − 8��Ĥ���Ĥ3� + 6�2�Ĥ2��

− �N2

2

��4

4
��2�Ĥ2� + �4�Ĥ� − 2��Ĥ2��2�Ĥ�� + ¯ � .

A straightforward calculation yields

E��Ĥ4� = 3, E���Ĥ3���Ĥ�� = 3q̃12
2 �, E�2�Ĥ2� = 1 + 2q̃12

4 � ,

E���Ĥ2��2�Ĥ�� = q̃12
2 � + 2q̃12

2 q̃13
2 �, E�4�Ĥ� = 3q̃12

2 q̃34
2 � ,

and so on. All quantities of this sort can be computed in the same way. As an example, let us

calculate E���Ĥ2��2�Ĥ��=E���Ĥ1
2���Ĥ2���Ĥ3��. Like, for overlaps, subscripts denote replicas.

In order to evaluate the expectation of products of Gaussian variables, we can use Wick’s theorem:

we just count all the possible ways to contract the four Gaussian terms Ĥ1, Ĥ1, Ĥ2, Ĥ3 and sum
over every nonvanishing contribution,

The sum of all the terms gives the exactly q̃12
2 �+2q̃12

2 q̃23
2 �. Now Eq. �4� is therefore expressed in

terms of an identity for all �� of two polynomials in ��: one is of order two; the other is a whole
power series. We can then equate the coefficient of the same order, or equivalently put to zero all
the terms of order higher than two in ��. The consequent equalities are exactly the Aizenman-
Contucci ones �Ref. 1�; an example of these is

q̃12
4 � − 4q̃12

2 q̃13
2 � + 3q̃12

2 q̃34
2 � = 0,

which arises from the lowest order in the expansion above. �

B. The entropy term

In the same spirit as in the previous section, let us move on to the normalized numerator of the
trial pressure G�RB�, defined in �3�, computed at the Boltzmann ROSt RB, defined in the previous
section. If we define

ci = 2 cosh�− �h̃i� = �
�i

exp�− �h̃i�i�;

then
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1

N
E ln ��

�

exp�− ��
i=1

N

h̃i�i� =
1

N
E ln ��c1 ¯ cN� �5�

does not depend on N,8,10 if we consider the infinite Boltzmann ROSt, where M→�.

Again, assume we replace the � in front of the cavity fields h̃ �but not in the state �� with a
parameter �t, and define, upon rescaling,

��t� = E ln ��
�

exp
�t
�N

�
i=1

N

h̃i�i. �6�

We want to study the flux �in t� of Eq. �6� to obtain an integrable expansion. The t flux of the
cavity function � is given by

�t��t� =
1

2
�1 − q12q̃12�t� , �7�

which is easily seen by means of a standard use of Gaussian integration by parts. The subscript in
·�t=E�t means that such an average includes the t-dependent exponential appearing in �6�, be-
yond the sum over �.

Theorem 3: Let Fs be measurable with respect to the � algebra generated by the overlaps of
s replicas of 	�
 and 	�
. Then the cavity streaming equation is

�tFs�t =�Fs��
	,

1,s

q	, q̃	, − s�
	=1

s

q	,s+1q̃	,s+1 +
s�s + 1�

2
qs+1,s+2q̃s+1,s+2��

t

. �8�

Proof: We consider the Boltzmann ROSt RB�M� with any value of M. The proof relies on the
repeated application of the usual integration by parts formula for Gaussian variables:

�tFs�t = �tE
���

Fs exp„− �HM���…exp�� t

MN
�ij �	

J̃ij�i
	� j

	�
���

exp„− �HM���…exp�� t

MN
�ij �	

J̃ij�i
	� j

	�
=

1

2�tMN
E�

ij

Jij�
	

s

��t�Fs�i
	� j

	� − �t�Fs��t��i
	� j

	��

=
1

2�tMN
�
ij

EJij��
	

�t�Fs�i
	� j

	� − s�t�Fs����i� j��
=

1

2MN
�
ij

E��
	,

�t�Fs� j
	�i

	� j
�i

�− �
	,

�t�Fs�i
	� j

	��t��i
� j

� − s�t��i� j��


„�t�Fs�i
� j

�

− �t�Fs��t��i
� j

� − s�t�Fs��1 − �t
2��i� j��…�

=
1

2
E��

	,
�t�Fsq	,q̃	,� − s�

	

�t�Fsq	,s+1q̃	,s+1��
+ ss�t�Fsqs+1,s+2q̃s+1,s+2�� − s�t�Fs��t�Fsqs+1,s+2q̃s+1,s+2�� ,

where in �t we have included the sum over � and �, the Boltzmannfaktor in �, and the t-dependent
exponential. At this point, remembering that q̃		=1, we can write
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�
	,

�t�Fsq	 q̃	� = 2�
	,

�t�Fsq	 q̃	� + s�t�Fs�

which completes the proof. �

Now the way to proceed is simple: we have to expand the t derivative of ��t� �the right hand
side of �7�� using the cavity streaming equation �8�, and we will stop the iteration at the first
nontrivial order �that is expected to be at least four, being the first ac relation of that order�. Once
a closed-form expression is in our hands, we can write down an order by order expansion of the
�modified� denominator of the Boltzmann ROSt �that is, the function N−1��t� evaluated for t
=N�2�.

We have

�tq12q̃12�t = q12
2 q̃12

2 − 4q12q̃12q23q̃23 + 3q12q̃12q34q̃34�t.

After the first iteration:

�tq12
2 q̃12

2 �t = q12
3 q̃12

3 − 4q12
2 q̃12

2 q̃23p23 + 3q12
2 q̃12

2 q̃34�t,

�tq̃12q12q̃23q23�t = q̃12q12q̃23q23q̃13q13 + 2q̃12
2 q12

2 q̃23q23 − 6q̃12q12q̃23q23q̃34q34 − 3q̃12q12q̃13q13q̃14q14

+ 6q̃12q12q̃34q34q̃45q45�t,

�tq̃12q12q̃34q34�t = 4q̃12q12q̃23q23q̃34q34 + 2q̃12
2 q12

2 q̃34q34 − 16q̃12q12q̃34q34q̃45q45

+ 10q̃12q12q̃34q34q̃56q56�t.

The higher orders can be obtained exactly in the same way, so we can write down right away the
expression for q12q̃12�, referring to Refs. 1 and 3 for a detailed explanation of this iterative
method:

q12q̃12�t = q12
2 q̃12

2 �t − 2q12q̃12q23q̃23q13q̃13�t2 −
1

6
q12

4 q̃12
4 �t3 − 2q12

2 q̃12
2 q23

2 q̃23
2 �t3 +

3

2
q12

2 q̃12
2 q34

2 q̃34
2 �t3

+ 6q12q̃12q23q̃23q34q̃34q14q̃14�t3. �9�

Notice that the averages no longer depend on t. In this expansion we considered both q overlaps
and q̃ overlaps, but as the sum over the spins � can be performed explicitly, we can obtain an
explicit expression at least for the q overlaps, and get

q12
2 � =

1

N2E�
ij

�2��i� j� =
1

N
,

q12q23q31� =
1

N3E�
ijk

���i� j���� j�k����k�i� =
1

N2 ,

q12
2 q34

2 � =
1

N4E�
ijkl

�2��i� j��2��k�l� =
1

N2 ,

q12q23q34q14� =
1

N4E�
ijkl

���i� j���� j�k����k�l����l�i� =
1

N3 ,

q12
4 � =

1

N4E�
ijkl

���i� j�k�l����i� j�k�l� =
3�N − 1�

N3 +
1

N3 ,
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q12
2 q23

2 � =
1

N4E�
ijkl

���i� j����i� j�k�l����i� j� =
1

N2 .

Moreover, as the q overlaps have been calculated explicitly, we can use a graphical formalism.1,3

In such a formalism we use points to identify replicas and lines for the overlaps between them. So,
for example,

and so on. Now we can integrate �7� thanks to the polynomial expansion based on �9� and to the
expressions for the q fluctuations. We obtain

��t� =
1

2
�

0

t

�1 − q12q̃12�t��dt�,

�10�

This expression, though truncated at this low order, already looks pretty much alike the expansion
found using the internal energy part of the Boltzmann pressure.

We stress, however, two important features of expression �10�. The first is that within this
approach we do not have problems concerning the Replica Symmetry Anzatz �RS�,12 and this can
be seen by the proliferating of the overalaps fluctuations, via which we expand the entropy �a RS
theory does not allow such fluctuations�. Second, we note that not all the terms inside the equa-
tions �10� are intensive: the last three graphs are all multiplied by a factor N. Recalling that this
expansion does not depend on N, and physically a density is intensive by definition, we put to zero
all the terms in the squared bracket, so to have

Again we can find the AC identities.

IV. CONCLUSIONS AND OUTLOOK

We have shown how some constraints on the distribution of the overlap naturally arise within
the Random Overlap Structure approach. As our analysis of the Boltzmann ROSt is similar to the
study of stochastic stability, it is not surprising that the constraints coincide with the Aizenman-
Contucci identities. In the ROSt context, such identities are easily connected with the existence of
the thermodynamic limit of the free energy density �which is equivalent to the optimality of the
Boltzmann ROSt� and with the physical fact that the internal energy is intensive. We also showed
that, as expected, the entropy part of the free energy yields the same constraints as the other part
�i.e., the internal energy�.

The hope for the near future is that the ROSt approach will lead eventually to a good under-
standing of the pure states and the phase transitions of the model. A first step has been taken in
Ref. 10, and our present results can be considered as a second step in this direction. �Other more
interesting results regarding the phase transition at �=1 can also be obtained with the same
techniques employed here, including the graphical representation.4� A further step should bring the
Ghirlanda-Guerra identities, and then hopefully a proof of ultrametricity.
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The moduli space of solutions to the vortex equations on a Riemann surface are
well known to have a symplectic �in fact, Kähler� structure. We show this symplec-
tic structure explictly and proceed to show a family of symplectic �in fact, Kähler�
structures ��0

on the moduli space, parametrized by �0, a section of a line bundle
on the Riemann surface. Next, we show that corresponding to these, there is a
family of prequantum line bundles P�0

on the moduli space whose curvature is
proportional to the symplectic forms ��0

. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2352858�

. INTRODUCTION

Geometric prequantization is a construction, if possible, of a prequantum line bundle L on a
ymplectic manifold, �M ,�� whose curvature is proportional to the symplectic form. The Hilbert
pace of the quantization is the space of the square integrable sections of L. To every f

C��M�, we associate an operator acting on the Hilbert space, namely, f̂ =−i� �Xf

�i / � ���Xf��+ f , where Xf is the vector field defined by ��Xf , · �=−df and � is a symplectic
otential corresponding to �. Then if f1, f2�C��M� and f3= �f1 , f2�, the Poisson bracket of the

wo induced by the symplectic form, then � f̂1 , f̂2�=−i� f̂3.1

The motivating example in our context would be the geometric quantization of the moduli
pace of flat connections on a principal G bundle P on a compact Riemann surface �.2,3 Let A be
he space of Lie-algebra valued connections on the principal bundle P. Let N be the moduli space
f flat connections �i.e., the space of flat connections modulo the gauge group�. One can construct
he determinant line bundle of the Cauchy-Riemann operator, namely, L=∧top�Ker �̄A�*

� ∧top�Coker �̄A� on A.4 The curvature induced by the Quillen metric on this bundle coincides with
he natural Kähler form A, namely, −Tr���∧�, where � ,��TAA=�1�M , ad P�. It can be shown,
sing a moment map construction, that this symplectic form descends to the moduli space of flat
onnections N. The determinant line bundle is also well defined on N and is the candidate for the
requantum line bundle of the geometric quantization.

Inspired by this construction, we constructed three prequantum line bundles on the moduli
pace of solutions to the self-duality equations over a Riemann surface5,6 corresponding to the
hree symplectic forms that give rise to the hyper-Kähler structure of the moduli space.

In this paper we geometrically quantize the moduli space of vortex equations. Geometric
uantization of the vortex moduli space has been done before in Refs. 7 and 8. In the first paper
he authors use algebraic geometry and in the second paper the author uses the special form of the

oduli space when the Riemann surface is a sphere. It would be interesting to see what the
elation is of the present quantization to the ones in Refs. 7 and 8. The relation may not be
traightforward, since in the present quantization we find a whole family of �topologically equiva-
ent, but perhaps holomorphically nonequivalent� prequantum line bundles P�0

whose curvatures
orrespond to a family of symplectic forms ��0

parametrized by �0 a section of a line bundle on
he Riemann surface, as explained later. This symplectic form ��0

is a variant of the standard

ymplectic form � on the vortex moduli space.
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The vortex equations are as follows. Let M be a compact Riemann surface and let 	
h2 dz∧dz̄ be the purely imaginary volume form on it �i.e., h is real.� Let A be a unitary connec-

ion on a principal U�1� bundle P, i.e., A is a purely imaginary valued one form, i.e., A=A�1,0�

A�0,1� such that A�1,0�=−A�0,1�. Let L be a complex line bundle associated to P by the defining

epresentation. Let � be a section of L, i.e., ��
�M ,L� and �̄ be a section of its dual, L̄. There

s a Hermitian metric H on L, i.e., the inner product ��1 ,�2	H=�1H�̄2 is a smooth function on
M. �Here H is real�.

The pair �A ,�� will be said to satisfy the vortex equations if

F�A� = �1 − 
�
H
2 �	 , �1�

�̄A� = 0, �2�

here F�A� is the curvature of the connection A and dA=�A+ �̄A is the decomposition of the
ovariant derivative operator into �1,0� and �0,1� pieces. Let S be the space of solutions to �1� and
2�. There is a gauge group G acting on the space of �A ,�� that leaves the equations invariant. We
ake the group G to be Abelian and locally it looks like Maps (M ,U�1�). If g is an U�1� gauge
ransformation, then �A1 ,�1� and �A2 ,�2� are gauge equivalent if A2=g−1 dg+A1 and �2

g−1�1. Taking the quotient by the gauge group of S gives the moduli space of solutions to these
quations and is denoted by M. It is well known that there is a natural metric on the moduli space

and, in fact, the metric is Kähler; see Refs. 9–11, 8, and 12–14, and the references there.
In this paper, we show the metric explicitly and write down the symplectic �in fact, the Kähler

orm� � arising from this metric and the complex structure. This is because some modification of
his symplectic form gives us a whole family of symplectic forms ��0

parametrized by a fixed
ection �0 of the line bundle L that vanishes on a set of measure zero. ��0

coincides with � when
is a trivial bundle with 
�0
H=1. In fact, ��0

is a Kähler form on the moduli space. We show
hat there exists a holomorphic prequantum line bundle, namely, a determinant line bundle, whose
uillen curvature is proportional to the symplectic form ��0

. Thus, as �0 varies, we get a whole
amily of prequantum line bundles that are topologically equivalent, but perhaps not holomorphi-
ally equivalent.

I. METRIC AND SYMPLECTC FORMS

Let A be the space of all unitary connections on P and 
�M ,L� be sections of L. Let C=A

�M ,L� be the configuration space on which Eqs. �1� and �2� are imposed. Let p= �A ,���C,

X= ��1 ,��, Y = ��2 ,���TpC��1�M , iR��
�M ,L�, i.e., �i=�i
�0,1�+�i

�1,0�, such that �i
�0,1�

−�i
�1,0� , i=1,2. On C one can define a metric,

G�X,Y� =�
M

*1�1 ∧ �2 + 2i�
M

Re��,�	H	

nd an almost complex structure

I = *1 0

0 i
�:TpC → TpC ,

here *1 :�1→�1 is the Hodge star operator on M such that *1�� dz�=−i� dz and *1��̄ dz̄�
i�̄ dz̄.

It is easy to check that G is positive definite. In fact, if �1=��1,0�+��0,1�=a dz− ā dz̄ is an
maginary valued 1-form, *1�1=−i�a dz+ ā dz̄� and G�X ,X�=4�M 
a
2 dx∧dy+4�M 
�
H

2 h2 dx∧dy,
here 	=h2 dz∧dz̄=−2ih2 dx∧dy.
The symplectic form �: We define
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��X,Y� = − �
M

�1 ∧ �2 + 2i�
M

Re�i�,�	H	 = − �
M

�1 ∧ �2 − �
M

��H�̄ − �̄H��	 ,

uch that G�IX ,Y�=��X ,Y�. Moreover, we have the following.
Proposition 2.1: The metrics G, the symplectic form �, and the almost complex structure I are

nvariant under the gauge group action on C.
Proof: Let p= �A ,���C and g�G, the gauge group, where g · p= �A+g−1 dg ,g−1��.
Then g* :TpC→Tg·pC is given by the mapping �Id,g−1� and it is now easy to check that g and

are invariant and I commutes with g*. �

Proposition 2.2: The equation �1� can be realized as a moment map =0 with respect to the
ction of the gauge group and the symplectic form �.

Proof: Let ����M , iR� be the Lie algebra of the gauge group �the gauge group element being
=e��; note that � is purely imaginary. It generates a vector field X� on C as follows:

X��A,�� = �d�,− ��� � TpC ,

here p= �A ,���C.
We show next that X� is Hamiltonian. Namely, define H� :C→C as follows:

H��p� = �
M

� · �FA − �1 − 
�
H
2 �	� .

hen, for X= �� ,���TpC,

dH��X� = �
M

� d� + �
M

���H�̄ + �̄H��	 = − �
M

�d�� ∧ � + 2i�
M

Re„i�− ���H�̄…	 = ��X�,X� ,

here we use that �̄=−�.
Thus we can define the moment map  :C→�2�M , iR�=G* �the dual of the Lie algebra of the

auge group� to be

�A,�� = „F�A� − �1 − 
�
H
2 �	… .

hus, Eq. �1� is =0. �

Lemma 2.3: Let S be the solution spaces to Eqs. (1) and (2), X�TpS. Then IX�TpS if and
nly if X is G orthogonal to the gauge orbit Op=G · p.

Proof: Let X��TpOp, where ���0�M , iR�, G�X ,X��=−��IX ,X��=−�M� ·d�IX�, and there-
ore IX satisfies the linearization of Eq. �1� iff d�IX�=0, i.e., iff G�X ,X��=0 for all �. Second, it
s easy to check that IX satisfies the linearization of Eq. �2� whenever X does. �

Theorem 2.4: M has a natural symplectic structure and an almost complex structure com-
atible with the symplectic form � and the metric G.

Proof: First we show that the almost complex structure descends to M. Then using this and
he symplectic quotient construction, we will show that � gives a symplectic structure on M.

�a� To show that I descends as an almost complex structure, we let pr:S→S /G=M be the
rojection map and set �p�= pr�p�. Then we can naturally identify T�p�M with the quotient space

pS /TpOp, where Op=G · p is the gauge orbit. Using the metric G on S we can realize T�p�M as
subspace in TpS, G orthogonal to TpOp. Then by Lemma 2.3, this subspace is invariant under I.
hus I�p�=I
Tp�Op��, gives the desired almost complex structure. This construction does not depend
n the choice of p since I is G invariant.

�b� The symplectic structure � descends to −1�0� /G, �by Proposition 2.2 and by the
arsden-Weinstein symplectic quotient construction,15,16 since the leaves of the characteristic

oliation are the gauge orbits�. Now, as a 2-form � descends to M, due to Proposition 2.1 so does

he metric G. The closure of � is easy. We check that Eq. �2� does not give rise to new degeneracy
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f � �i.e., the only degeneracy of � is due to �1� but along gauge orbits�. Thus, � is symplectic
n M. Since G and I descend to M, the latter is symplectic and almost complex. �

The family of symplectic forms ��0
. Choose a fixed �0�
�M ,L� such that 
�0
H=0 only

n a set of measure zero on M. �This �0 has nothing to do with �.�
Define a symplectic form on C as

��0
�X,Y� = − �

M

�1 ∧ �2 + 2i�
M

Re�i�,�	H
�0
H
2 	 = − �

M

�1 ∧ �2 − �
M

��H�̄ − �̄H��
�0
H
2 	 .


�0
H
2 plays the role of a conformal rescaling of the volume form 	 on M that appears in �,

here we allow the conformal factor to have zeros on sets of measure zero.
Theorem 2.5: ��0

descends to M as a symplectic form.
Proof: Let p= �A ,��.
It is easy to show that ��0

is closed �this follows from the fact that on C it is a constant
orm—does not depend on �A ,���. We have to show it is nondegenerate.

Suppose there exists ��1 ,���T�p��M�, s.t.,

��0
„��2,��,��1,��… = 0,

��2 ,���T�p��M�. Using the metric G, we identify T�p�M with the subspace in TpS ,G orthogo-
al to TpOp �i.e., the tangent space to the moduli space is identified to the tangent space to
olutions that are orthogonal to the gauge orbits, the orthogonality is with respect to the metric G�.
hus ��1 ,�� , ��2 ,�� satisfy the linearization of Eqs. �1� and �2� and G(��1 ,�� ,X�)=0 and
(��2 ,�� ,X�)=0 for all �.

Now, by 2.3, I��2 ,���TpS. Also,

G„I��1,��,X�… = �„��1,��,X�… = − �
M

� d„��1,��… = 0,

ince d(��1 ,��)=0 is precisely one of the equations saying that ��1 ,���TpS. Thus I��1 ,��
T�p�M, �since it is in TpS and G orthogonal to gauge orbits�.

Take ��2 ,��=I��1 ,��= �*1�1 , i��. Then

0 = ��0
„I��1,��,��1,��… = − �

M

�*1�1 ∧ �1� + 2i�
M

Re�i�i��,�	H
�0
H
2 	

= − 4�
M


�
2 dx ∧ dy − 4�
M


�
H
2 
�0
H

2 h2 dx ∧ dy ,

here 	=−2ih2 dx∧dy and �1=a dz− ā dz̄��1�M , iR� and *1�1=−i�a dz+ ā dz̄�. By negativity
f both the terms and the fact that �0 has zero on a set of measure zero on M, ��1 ,��=0, a.e. Thus

�0
is symplectic. �

II. PREQUANTUM LINE BUNDLE

In this section we briefly review the Quillen construction of the determinant line bundle of the
auchy Riemann operator �̄A= �̄+A�0,1�,4 which enables us to construct a prequantum line bundle
n the vortex moduli space.

First let us note that a connection A on a U�1�-principal bundle induces a connection on any
ssociated line bundle L. We will denote this connection also by A since the same “Lie-algebra
alued 1-form” A �modulo representations� gives a covariant derivative operator enabling you to
ake derivatives of sections of L,17 p. 348. A very clear description of the determinant line bundle
an be found in Refs. 4 and 18. Here we mention the formula for the Quillen curvature of the

top ¯ * top ¯ ¯
eterminant line bundle ∧ �Ker �A� � ∧ �Coker �A�=det��A�, given the canonical unitary con-
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ection �Q, induced by the Quillen metric.4 Recall that the affine space A �the notation as in Ref.
� is an infinite-dimensional Kähler manifold. Here each connection is identified with its �0,1� part
hat is the holomorphic part. Since the connection A is unitary �i.e., A=A�1,0�+A�0,1�, s.t., A�1,0�

−A�0,1�� this identification is easy. In fact, for every A�A, TA��A�=�0,1�M , iR� and the corre-
ponding Kähler form is given by

F��1
�0,1�,�2

�0,1�� = Re�
M

��1
�0,1� ∧ *2�2

�0,1��, = −
1

2
�

M

�1 ∧ �2,

here ��0−1�, ��0,1���0,1�M , iR� and *2 is the Hodge-star operator such that *2�� dz�=−�̄ dz̄ and

2��̄ dz̄�=� dz, and we have used �i
�0,1�=−�i

�1,0�, i=1,2. Let �Q be the connection induced from
he Quillen metric. Then the Quillen curvature of det��̄A� is

F��Q� =
i

�
F .

V. PREQUANTUM BUNDLE ON M

First we note that to the connection A we can add any one form and still obtain a derivative
perator.

Let 	=h2 dz∧dz̄ where recall h is real. Let �=h dz, �̄=h dz̄ be 1-forms �Ref. 19, p. 28�, such

hat 	=�∧ �̄=h2 dz∧dz̄. Let �0 be the same fixed section used to define ��0
. Recall that �0 has

ero on a set of measure zero on M. Note, that �H�̄0 is a smooth function on M. Thus B�0,1�

�H�̄0�̄ is a �0,1� form we would like to add to the connection A�0,1� to make another connection
orm. Note that B�0,1� is gauge invariant, since � and �0 gauge transform in the same way. Note
hat A�0,1�±B�0,1� are the �0,1� parts of a connection defined by A±B=A�0,1�±B�0,1�+A�1,0�

±B�1,0�, where B�1,0� is defined to be B�1,0�=−B�0,1�.
Definitions: Let us denote by L±=det��̄+A�0,1�±B�0,1�� a determinant bundle on T±

�A�0,1�±�H�̄0�̄ 
A�A ,��
�M ,L�� that is isomorphic to C=A�
�M ,L�.
Thus P�0

=L+ � L− well-defined line bundle on C.
Lemma 4.1: P�0

is a well-defined line bundle over M�C /G, where G is the gauge group.
Proof: First consider the Cauchy-Riemann operator D= �̄+A�0,1�+B�0,1�. Under the gauge

ransformation, D= �̄+A�0,1�+B�0,1�→Dg=g��̄+A�0,1�+B�0,1��g−1. We can show that the operators D
nd Dg have an isomorphic kernel and cokernel and their corresponding Laplacians have the same
pectrum and the eigenspaces are of the same dimension. Let � denote the Laplacian correspond-

ng to D and �g that correspond to Dg. The Laplacian is �= D̃D, where D̃=�+A�1,0�+B�1,0�, where

e recall that A�1,0�=−A�0,1� and B�1,0�=−B�0,1�. Note that D̃→ D̃g=gD̃g−1 under a gauge transfor-
ation. Then �g=g �g−1. Thus, the isomorphism of eigenspaces is s→gs. We describe here how

o define the line bundle on the moduli space. Let Ka��� be the direct sum of eigenspaces of the
perator � of eigenvalues �a, over the open subset Ua= �A�0,1�+B�0,1� 
a�Spec �� of the affine
pace T+. The determinant line bundle is defined using the exact sequence,

0 → Ker D → Ka��� → D„Ka���… → Coker D → 0.

hus one identifies the following.
∧top�Ker D�* � ∧top�Coker D� with ∧top(Ka���)* � ∧top�D(Ka���)� �see Ref. 18, for more de-

ails� and there is an isomorphism of the fibers as D→Dg. Thus one can identify

∧top
„Ka���…*

� ∧top�D„Ka���…� � ∧top
„Ka��g�…*

� ∧top
„D�Ka��g�…� .

y extending this definition from Ua to Va= ��A ,�� 
a�Spec ��, an open subset of C, we can
efine the fiber over the quotient space Va /G to be the equivalence class of this fiber. Covering C

a
ith open sets of the type V , we can define it on C /G. Then we can restrict it to M�C /G.
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Similarly, one can deal with the other case of �̄+A�0,1�−B�0,1�. Let ��A� , �����C /G where
A� , ��� are gauge equivalence classes of A, �, respectively. Then associated to the equivalence
lass ��A� , ���� in the base space, there is an equivalence class of fibers coming from the identi-
cations of det��̄+A�0,1�−B�0,1�� with det(g��̄+A�0,1�−B�0,1��g−1), as mentioned in the previous
ase.

This way one can prove that P�0
is well defined on C /G. Then we restrict it to M�C /G.

. Curvature and symplectic form

Let p= �A ,���S. Let X, Y �T�p�M. Since T�p�M can be identified with a subspace in TpS
rthogonal to TpOp, if we write X= ��1 ,�� and Y = ��2 ,��, �1 ,�2�TAA=�1�M , iR�, and �, �
T�
�M ,L�=
�M ,L�, then X, Y can be said to satisfy �a� X, Y �TpS and �b� X,Y are G orthogo-

al to TpOp, the tangent space to the gauge orbit.
Let FL±

denote the Quillen curvatures of the determinant line bundles L±, respectively. L± are

eterminants of Cauchy-Riemann operators of the connections A�0,1�±�H�̄0�̄. Thus, in the cur-

ature, we will have �1
�0,1�±�H�̄0�̄ and �2

�0,1�±�H�̄0�̄ �see Quillen’s formula in the section
bove�,

FL±
�X,Y� =

i

�
Re�

M

��1
�0,1� ± �H�̄0�̄� ∧ *2��2

�0,1� ± �H�̄0�̄�

=
i

�
Re�

M

��1
�0,1� ± �H�̄0�̄� ∧ �− �2

�1,0� ± �̄H�0�� .

Note that Re�M�1
�0,1�∧�2

�1,0�= �1/2��M�1∧�2, where we have used the fact that �i=��0,1�

�i
�1,0�, s.t., �i

�0,1�=−�i
�1,0�, i=1,2. We have also used that �̄∧�=−	=2ih2 dx∧dy, is purely imagi-

ary. One can easily compute that

�FL+ + FL−��X,Y� =
i

�− �
M

�1 ∧ �2 − �
M

��H�̄ − �̄H��
�0
H
2 	� =

i

�
��0

�X,Y� .

Now A�0,1� is holomorphic w.r.t. the complex structure *1 and � is holomorphic w.r.t. multi-
lying by i, A�0,1�±B�0,1� is holomorphic w.r.t. the complex structure I. Thus L+, L−, and P�0

are
olomorphic �the same argument as in Ref. 4�.

Thus, we have proven the following theorem.
Theorem 4.2: P�0

=L+ � L− is a well-defined holomorphic line bundle on M whose Quillen
urvature is FL++FL−, which is �i /����0

. Thus P�0
is a prequantum bundle on M.

. Polarization

In passing from prequantization to quantization, one needs a polarization. It can be shown that
he almost complex structure I is integrable on M �see, for example, Ruback’s argument men-
ioned in Ref. 9 or matscinet review of Refs. 11 and 10�. In fact, ��0

is a Kähler form and

�0
�X ,Y�=��0

�X ,IY� is a Kähler metric on the moduli space �since it is positive definite�. P�0
s a holomorphic line bundle on M. Thus we can take holomorphic square integrable sections of

�0
as our Hilbert space. The dimension of the Hilbert space is not easy to compute. �For instance,

he holomorphic sections of the determinant line bundle on the moduli space of flat connections
or SU�2� gauge group is the Verlinde dimension of the space of conformal blocks in a certain

onformal field theory.� This would be a topic for future work.
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. Remark

As �0 varies, the corresponding line bundles are all topologically equivalent since the curva-
ure forms have to be of integral cohomology, and that would be constant. Thus, they have the
ame Chern class. However, they may not be holomorphically equivalent.
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We prove a removable singularity theorem for solutions of coupled Yang-Mills-
Dirac equations on compact four-dimensional manifolds. We show that a field
satisfying the coupled equations with a point singularity is gauge equivalent to a
smooth field if the energy functional is finite. The hypotheses are very natural. Only
conformally invariant conditions are placed on force field and particle field inter-
acting with the force field. It is noticeable that there is no assumption on the
derivative of the particle field. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2354330�

I. INTRODUCTION

We consider the problem of removable isolated singularities of coupled Yang-Mills-Dirac
fields in four dimensions.

In the case of non-coupled fields, i.e., pure Yang-Mills fields, Uhlenbeck’s theorem1 states that
apparent point singularities in finite action solutions may be removed by a continuous gauge
transformation.

Parker2 generalized the result to coupled systems in four dimensions: solutions of coupled
Yang-Mills-Dirac equations cannot have point singularities if the total energy of the coupled field
is finite.

As noted by Uhlenbeck, the coupled equations �2.1� becomes elliptic in A �connection 1-form�
only when d*A=0. This constraint is always satisfied in a specific local trivialization, which is
called the broken Hodge gauge.1 By making a gauge transformation to Hodge gauge, one can
obtain a co-closed connection satisfying a system of equations whose principal part is the Laplac-
ian. However, because of the borderline assumptions made on curvature, i.e. the Yang-Mills field
F is required to be an element of the space L2, the gauge transformation which gives the elliptic
system need not be continuous3 and, hence, the topology in the original bundle with which we
began may be altered. Therefore, the heart of the proof is to show that F�Lp for some p�2. Then
the gauge transformation to Hodge gauge can be continuous. At this point, standard elliptic theory
applies.3

Distinguishing from Parker’s method of estimating the total field, we estimate the curvature F
and the particle field �, respectively. This results in a meticulous analytic proof. First, small
energy regularity is proved, then a broken Hodge gauge could be applied to prove that finite
energy solutions of coupled field equations cannot have isolated singularities. It is noticeable that
we place no condition on the derivative of �.

For convenience, we concentrate on bundles over flat manifolds. For the regularity theory, the
curvature of the base manifold itself is not particularly important. The restriction to a flat base
manifold does not crucially affect our results.

In Sec. I we give a brief description of the problem. The basic geometric framework is well
documented in the literatures.2,1 In Sec. III we prove the small energy regularity, which allows us
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to apply the broken Hodge gauge. In Sec. IV, we make use of the broken Hodge gauge to prove
that the finite energy solutions of the coupled field equations cannot have isolated singularities.

II. YANG-MILLS-DIRAC FIELDS

We assume �M ,g� is a compact oriented four-dimensional Riemannian manifold with usual
Riemannian connection � and Riemannian curvature R.

Fix a principal bundle � : P→M with compact structure group G whose Lie algebra is denoted

by g. If � :G→Aut�Ẽ� is a unitary representation of G, define vector bundle E= P��Ẽ. We define
a connection �E on E, which is required to be compatible with the Riemannian structure. Locally,
we represent �E as a Lie-algebra valued 1-form A���� � ad E� and its curvature F����2

� End E� as the Lie-algebra valued 2-form dA+ 1
2 �A ,A�, where �,� is the Lie bracket on g.

We also need to assume M admits spin structures. Let V be the spin bundle over M. Then we
can form a product V � E of two complex vector bundles that are both four-dimensional, such that
End V=C�E�, where C�E� is the Clifford algebra associated with E. If �ei� is an orthonormal basis
for E, C�E� is the graded algebra generated by the relation eiej +ejei=−2�ij.

Sections ����V � E� are called E-valued spinors.

Define �̃=� � 1+1 � �E to be the total covariant derivative on V � E. Let �ei� be an ortho-
normal local frame around a point x�M. Then the Dirac operator

D” :��V � E� → ��V � E�

is defined for E-valued spinors by

D” = ei�̃i.

As we noted, the essential geometry occurs in the bundle, thus in the sequel we expediently
ignore the curvature of the base manifold.

The following Weitzenböck formula gives an important algebraic decomposition for the square
of Dirac operator into Laplacian and curvature terms,2

D” 2 = �̃*�̃ +
1

2
eiejFij .

The coupled Yang-Mills-Dirac equations are the following nonlinear system of partial differ-
ential equations:2

D*F = J���: = −
1

2
��,ei��	
���ei � 	
,

�2.1�
D” � = m� ,

where D is the exterior covariant derivative, * :�p→�4−p is the Hodge star operator, �	
� is a

local orthogonal basis in ��Ad g�, � :g→End�Ẽ� is the Lie algebra representation induced by the

Lie group representation � :G→Aut�Ẽ�, and �,� is the inner product on V � E. The eigenvalue m of
D” is a real constant since D” is self-adjoint.

Conformal invariance is crucial for our results. Let � be a positive number, if u takes values
in a vector bundle E, by setting ur�x�=r�u�y� under the local scale transformation y=rx�r�0� the
Lp norm of u will satisfy

	u�y�	Lp���y�� = r4/p−�	ur�x�	Lp
„��x�….

If �p=4, we say u has conformal weight � under the Lp norm, i.e.,

	u�y�	Lp���y�� = 	ur�x�	Lp
„��x�….
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The curvature form F, the particle mass m, and the spinor � have conformal weight 2 ,1, and
3/2, respectively.2

III. SMALL ENERGY REGULARITY

Now we consider the local behavior of the coupled equations �2.1�. Since the removable
singularity theorem is a fact about arbitrarily small domains, in the sequel we may assume M to be
a domain on R4 with trivial spin structure. The ball of radius r on M will be denoted by Br.

Definition 3.1: Let U be a domain on M, the energy of �F ,�� on U is defined by

E�F,�,U�: = 

U

�F�2 dVg + �

U

���8/3 dVg3/4

= 	F	L2�U�
2 + 	�	L8/3�U�

2 .

Note that the energy is conformally invariant. It is crucial for our results.
The main result of this section is small energy regularity as the following, which will be

proved at the end of this section.
Theorem 3.2: There exists a constant �0 such that if �F ,�� is a smooth solution of the

coupled Yang-Mills-Dirac equations �2.1� on B2, satisfying E�F ,� ,B2��, then there holds

	F	C0�B1� + 	�	C0�B1� � C�	F	L2�B2� + 	�	L8/3�B2�� ,

where C is a positive constant depending only on .

A. Three subelliptic inequalities

Our starting point is the following three subelliptic inequalities, where �ki� are non-negative
constants. Let � be the ordinary Laplacian on functions.

Proposition 3.3: There holds the following subelliptic inequalities for the solutions �F ,�� of
the coupled Yang-Mills-Dirac equations �2.1�:

���� + k1�F���� � 0, �3.1�

���̃�� + k2��F���̃�� + ���2� � 0, �3.2�

��F� + k3��F�2 + �����̃��� � 0. �3.3�

Proof: �i� Using Kato’s inequality �d �� � �� ��̃��, we have

������� = ��,�̃*�̃�� + ��̃�,�̃�� − �d����2 � ��,�̃*�̃�� .

Applying the Weitzenböck formula and noting D” 2�=m2� gives

������� � ��,m2�� −
1

2
��,eiejFij���� � −

1

2
��,eiejFij���� � − ����eiejFij���� .

Dividing by ��� then gives �3.1�.
�ii� Set �= �̃�. The Weitzenböck formula gives

�̃*�̃� = D” 2� −
1

2
eiejFij� = D” 2��̃�� −

1

2
eiejFij� .

Combining the identity D” 2�̃= �̃D” 2+J+2eiejFij�̃ �Ref. 3� and D” 2�=m2�, we get
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�̃*�̃� = �̃�D” 2�� + J��� + 2eiejFij��̃�� − 1
2eiejFij� = �̃�m2�� + J��� + 3

2eiejFij�

= m2� + J��� + 3
2eiejFij� .

Using Kato’s inequality, we have

������� � ��,�̃*�̃�� = m2���2 + ��,J���� + ��, 3
2eiejFij�� � ��,J���� + ��, 3

2eiejFij��
� − k2�������2 + �F����� .

Dividing by ��� gives �3.2�.
�iii� Differentiating the field equation D*F=J��� and using Bianchi identity DF=0, we have

�D*D + DD*�F = DJ .

The Laplacians D*D+DD* and �̃*�̃ differ by a curvature term:1

�̃*�̃F − �D*D + DD*�F = �F,F� .

Hence

�̃*�̃F = �F,F� + DJ .

By Kato’s inequality again,

�F���F� � �F,�̃*�̃F� = �F,�F,F�� + �F,DJ� � − k3�F���F�2 + �DJ�� .

Hence

��F� + k3��F�2 + �DJ�� � 0.

By the definition of J���, a direct computation shows that

�DJ� � k3������̃�� ,

which gives �3.3�. �

B. Some a priori estimates in PDE

Before proving Theorem 3.2, we state some standard a priori estimates in PDE that will be
used repeatedly.

Theorem 3.4:4 Assume n�3; B1 is the unit ball in Rn. Suppose aij �L��B1� satisfies

����2 � aij�x��i� j � ����2, for any x � B1, � � Rn,

for some positive constants � and �.
Assume c�Ln/2�B1� and f �Lq�B1� for some q� �2n / �n+2� ,n /2�. Suppose that u�H1�B1� is

a subsolution in the following sense:



B1

aij Diu Dj� + cu� � 

B1

f� ,

for any ��H0
1�B1� and ��0 in B1, then u+�Lloc

q*
�B1� for 1/q*=1/q−2/n.

Moreover, there exists a small constant �0 such that if 	c	Ln/2�B1�� there holds

	u+	Lq*
�B1/2� � C�	u+	L2�B1� + 	f	Lq�B1�� ,

where C=C�n ,� ,� ,q ,� is a positive constant. �
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Theorem 3.5:5 Assume b�Lq�U�, q�n /2, u��Wloc
1,2�U� with 1/2���1, u�0 satisfy the

following subelliptic inequality in a weak sense:

�u + bu � 0,

then u is bounded on compact subdomains of U. Moreover, if B�x ,a��B�x0 ,a0��U, there holds
that

�u��x��2 � Ca−n

B�x0,a0�

�u��2,

where constant C depends on n, q, � and a0
2/n−1/q	b	Lq(B�x0,a0�). �

C. Small energy regularity

Now we start to prove Theorem 3.2 by the approach of applying the above a priori estimates
to the coupled equations �2.1� in the case of four dimensions. In the proof, C is a constant varying
from line to line and B1�BR1

�BR2
�B2 are fixed balls with the same center.

Lemma 3.6: For any given p�4, there exists a positive constant p such that if 	F	L2�B2�
2

�p, there holds that

	�	Lp�BR2
� � Cp	�	L8/3�B2�,

where Cp is a positive constant depending on p and p.
Proof: By �3.1�, � satisfies

���� + k1�F���� � 0.

Let u= ���, c=−k1 �F�, f =0 and n=4. Note that f �Lq for any arbitrarily fixed q� �2n / �n
+2� ,n /2�=� 4

3 ,2�. Applying Theorem 3.4, there exists constant ��0 such that if 	c	L2�B2���, i.e.,
	F	L2�B2��� /k1, there holds that

	�	Lq*
�BR2

� � Cq	�	L2�B2�,

where q*� �4, + � �. Noting that 	�	L2�B2��C 	�	L8/3�B2� and q* runs over �4, + � � while q runs
over � 4

3 ,2�, we prove the lemma by choosing = �� /k1�2. �

Next, we estimate the derivative of �. Since F is smooth, Uhlenbeck’s theorem3 ensures that,
by rescaling to get 	F	L2 sufficiently small, there exists a continuous gauge transformation such
that

	A	W1,2�B2� � C�n�	F	L2�B2�,

where n is the dimension of the base manifold.
Then the Sobolev embedding theorem for four dimensions implies

	A	L4�B2� � C	F	L2�B2�.

Lemma 3.7: For any given p�4 there holds that

	�̃�	Lp�BR2
� � Cp�1 + 	F	L2�B2��	�	L4p/�4−p��B2�,

where constant Cp depends on p.
Proof: We write the Dirac operator in the form D” =ei��i+Ai�; then the eigenvalue equation

D” �=m� can be rewritten as
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ei �i� = m� − eiAi� .

Applying the interior estimate for first-order elliptic operator and noting m is locally constant, we
get

	�	W1,p�BR2
� � C	�	Lp�B2� + C	m�	Lp�B2� + C	A�	Lp�B2�

� C	�	Lp�B2� + C	m	L4�B2�	�	L4p/�4−p��B2� + C	A	L4�B2�	�	L4p/�4−p��B2�

� C	�	L4p/�4−p��B2� + C	�	L4p/�4−p��B2� + C	F	L2�B2�	�	L4p/�4−p��B2�

� C�1 + 	F	L2�B2��	�	L4p/�4−p��B2�.

Hence,

	�̃�	Lp�BR2
� � 	��	Lp�BR2

� + 	A�	Lp�BR2
� � 	�	W1,p�BR2

� + 	A�	Lp�BR2
�

� C�1 + 	F	L2�B2��	�	L4p/�4−p��B2� + C	F	L2�B2�	�	L4p/�4−p��B2�

� C�1 + 	F	L2�B2��	�	L4p/�4−p��B2�.

�

Since 4p / �4− p��4⇔2� p�4, the arguments of Lemma 3.6 and Lemma 3.7 can be used to
obtain the following corollary.

Corollary 3.8: Assume 2� p�4. There exists a positive constant p such that if 	F	L2�B2�
2

�p there holds that

	�̃�	Lp�BR2
� � Cp�1 + 	F	L2�B2��	�	L8/3�B2�,

where Cp is a positive constant depending on p and p.
Proof: By an argument similar to the one used in Lemma 3.7, we have

	�̃�	Lp�BR2
� � Cp�1 + 	F	L2�B2��	�	L4p/�4−p��BR3

�

with some ball BR3
satisfying BR2

�BR3
�B2.

Then by an argument similar to the one used in Lemma 3.6, there exists a positive constant p

such that if 	F	L2�B2�
2

�p there holds that

	�	L4p/�4−p��BR3
� � Cp	�	L8/3�B2�.

This proves the corollary. �

Corollary 3.9: There exists a small constant 1�0 such that if 	F	L2�B2�
2

�1 there holds that

	�����̃��	L4/3�BR2
� � C�1 + 	F	L2�B2��	�	L8/3�B2�

2 ,

where Cp is a positive constant depending on p and 1.
Proof: Hölder’s inequality gives

	�����̃��	L4/3�BR2
� � 	�	L4�BR2

�	�̃�	L2�BR2
�,

where 	�	L4�BR2
� and 	�̃�	L2�BR2

� can be estimated by Lemma 3.6 and Corollary 3.8, respectively.�

Now we can get the L4 norm estimates for �̃� and F as the following Lemma 3.10 Lemma
3.11, respectively, which are combinations of Theorem 3.4 with Corollary 3.8 and Corollary 3.9,
respectively.

Lemma 3.10: There exists a small constant 2�0 such that if 	F	L2�B2�
2

�2 there holds that
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	�̃�	L4�BR1
� � C�	�	L8/3�B2� + 	�	L8/3�B2�

2 + 	F	L2�B2�	�	L8/3�B2�� ,

where constant C depends on 2.

Proof: Recall in Proposition 3.3 that �̃� satisfies the subelliptic inequality

���̃�� + k2��F���̃�� + ���2� � 0.

Applying Theorem 3.4 with u= ��̃��, c=−k2 �F�, f =k2 ���2, n=4, and q=2n / �n+2�= 4
3 �con-

sequently q*=4�, there exists small constant ��0 such that if 	c	L2�BR2
���, i.e., 	F	L2�BR2

�
2

� �� /k2�2, there holds that

	�̃�	L4�BR1
� � C��	�̃�	L2�BR2

� + 	���2	L4/3�BR2
�� � C��	�̃�	L2�BR2

� + 	�	L8/3�B2�
2 � .

Applying Corollary 3.8 with p=2, there exists small constant ���0 such that if 	F	L2�B2�
2

��� there holds that

	�̃�	L2�BR2
� � C���1 + 	F	L2�B2��	�	L8/3�B2�.

Choose 2�min��� /k2�2 ,���, then if 	F	L2�B2�
2

�2 there holds that

	�̃�	L4�BR1
� � C2

��1 + 	F	L2�B2��	�	L8/3�B2� + 	�	L8/3�B2�
2 �

� C2
�	�	L8/3�B2� + 	�	L8/3�B2�

2 + 	F	L2�B2�	�	L8/3�B2�� .

�

Lemma 3.11: There exists small constant 3�0 such that if 	F	L2�B2�
2

�3 there holds that

	F	L4�BR1
� � C�	F	L2�B2� + 	�	L8/3�B2�

2 + 	F	L2�B2�	�	L8/3�B2�
2 � ,

where constant C depends on 3.
Proof: Recall in Proposition 3.3 F satisfies the subelliptic inequality:

��F� + k3�F��F� + k3�����̃�� � 0.

Applying Theorem 3.4 with u= �F�, c=−k3 �F�, f =k3 �� � ��̃��, n=4, and q=2n / �n+2�= 4
3 �con-

sequently q*=4�, there exists small constant ��0 such that if 	c	L2�BR2
���, i.e., 	F	L2�BR2

�
2

� �� /k3�2, there holds that

	F	L4�BR1
� � C��	F	L2�BR2

� + 	�����̃��	L4/3�BR2
�� � C��	F	L2�B2� + 	�����̃��	L4/3�BR2

�� .

Choose 3�min�1 , �� /k3�2�; then if 	F	L2�B2�
2

�3 we can substitute the estimate for

	�� � ��̃� � 	L4/3�BR2
� in Corollary 3.9 onto the right-hand side of the inequality above, so we get

	F	L4�BR1
� � C3

�	F	L2�B2� + C3
�1 + 	F	L2�B2��	�	L8/3�B2�

2 �

� C3
�	F	L2�B2� + 	�	L8/3�B2�

2 + 	F	L2�B2�	�	L8/3�B2�
2 � .

�

Now we can prove the main result of this section.

Proof of Theorem 3.2: Set u= �F � + ��� and b=k4��F � + ��̃� � �. Adding �3.1� and �3.3� gives

�u + bu � 0.
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Choose =min�2 ,3�. If 	F	L2�B2�
2

� we can apply Lemma 3.10 and Lemma 3.11 to get a

bound on 	b	L4�BR1
� as the following:

	b	L4�BR1
� � k4	F	L4�BR1

� + k4	�̃�	L4�BR1
�

� C�	F	L2�B2� + 	�	L8/3�B2� + 	�	L8/3�B2�
2 + 	F	L2�B2�	�	L8/3�B2� + 	F	L2�B2�	�	L8/3�B2�

2 � ,

where constant C depends on .

Now Theorem 3.5 applies with u= �F � + ���, b=k4��F � + ��̃� � �, �=1, and q=4. For any x
�B1 there holds that

„�F�x�� + ���x��…2 � C

BR1

��F� + ����2 � C

B2

��F� + ����2.

Hence

	F	C0�B1� + 	�	C0�B1� � C�	F	L2�B2� + 	�	L2�B2�� � C�	F	L2�B2� + 	�	L8/3�B2�� .

Since 	F	L2�B2� and 	�	L8/3�B2� are both invariant under dilation, the size of the ball does not affect
the constant C of Theorem 3.5. �

Theorem 3.2 is immediately applicable to the problem of the behavior of fields around a
singularity.

Corollary 3.12: There exists a constant �0 such that if �F ,�� is a smooth solution of the
coupled Yang-Mills-Dirac equations �2.1� on B2 \ �0� satisfying E�F ,� ,B2��; then for any x
�B1 \ �0� there holds that

�F�x���x�2 + ���x���x�3/2 � C�	F	L2�B2� + 	�	L8/3�B2�� ,

where constant C depends on .
Proof: Choose  as in Theorem 3.2. For any fixed x0�B1 \ �0� we define

F̃�x� ª � �x0�
2
2

F�x0 +
�x0�
2

x, �̃�x� ª � �x0�
2
3/2

��x0 +
�x0�
2

x .

It is clear that �F̃ , �̃� is a smooth solution of the coupled Yang-Mills-Dirac equations on B2 and

E�F̃ , �̃ ,B2�� by conformal invariance. Applying Theorem 3.2, we have

	F̃	C0�B1� + 	�̃	C0�B1� � C�	F̃	L2�B2� + 	�̃	L8/3�B2�� .

Scaling back, we prove the corollary. �

IV. REMOVABLE SINGULARITY THEOREM

Now we state the main result of this paper, which will be proved at the end.
Theorem 4.1 (removable singularity): Let �F ,�� be a smooth solution of the coupled Yang-

Mills-Dirac equations with finite energy on B2 \ �0�. Then �F ,�� is gauge equivalent by a continu-
ous gauge transformation to a smooth solution on B2.

By rescaling, we can assume that the energy E�F ,� ,B2� is sufficiently small, i.e.,
E�F ,� ,B2�� with  is chosen as in Corollary 3.12. Then for any x�B1 \ �0� there holds that

�F�x���x�2 � CE�F,�,B2� � C .

The above inequality guarantees the existence of a specific choice of gauge that is the so
called broken Hodge gauge. The existence of this gauge is crucial for removing singularities, since
in such a gauge the powerful regularity argument of elliptic theory can be applied to the coupled
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equations �2.1�. An important theorem of Uhlenbeck1 provides such a gauge around the singularity
and includes rather specific information about the connection and curvature forms in this gauge.

Theorem 4.2:2,1 Let A be a smooth connection form on B2 \ �0� with curvature F. Then there
is a constant ��0 such that if �F�x� � �x�2��� on B1 \ �0� then there exists a broken Hodge gauge
on B1 \ �0� whose properties we now describe. Set

Ui = �x:2−i � �x� � 2−i+1�, i = 1,2,3, . . . ,

Si = �x:�x� = 2−i�, i = 1,2,3, . . . .

The broken Hodge gauge is smooth on each Ui and the gauges from Ui and Ui+1 agree on Si. Write

Ai = A�Ui
, Fi = F�Ui

.

Then �Ai� and �Fi� satisfy

�a� d*Ai = 0,

�b� A�
i �Si

= A�
i+1�Si

, A� = tangential components of A ,

�c� d*A�
i �Si

= 0 = d*A�
i �Si−1

,

�d� 

Si

Ar
i = 0 = 


Si−1

Ar
i , Ar = radial component of A ,

�e� 

S0

�A1�2 � b

S0

�F1�2, �4.1�

�f� 

Ui

�Ai�4 � c02

Ui

�Fi�2, 

B1

�A�4 � c02

B1

�F�2 � c04, �4.2�

for some positive constants b and c0 whenever  is sufficiently small. �

Since we are assuming that the energy of the fields is small enough, we can apply Corollary
3.12 to obtain a field on B2 \ �0� satisfying the hypotheses of Theorem 4.2. Hence there exists a
broken Hodge gauge. In the sequel the broken Hodge gauge is used as a “reference frame” in
which to observe the particle field and to obtain our gauge dependent estimates.

Proof of Theorem 4.1: The proof consists of three parts. We will give the estimates with
boundary data for F, �, and ��, respectively. In the sequel �ck� are nonnegative constants.

�i� Part 1: estimate for F with boundary data. Integrating by parts on Ui gives



Ui

�Fi�2 = 

Ui

�D*Fi,Ai� −
1

2



Ui

�Fi,�Ai,Ai�� + �

Si−1

− 

Si

A�
i ∧ �*Fi�� ª I1 + I2 + boundary term.

Using the field equation D*F=J��� and the properties of broken Hodge gauge, we get

I1 = 

Ui

�J���,Ai� � c1

Ui

���2�Ai� = c1

Ui

�1/4���2��−1/4�Ai��

� c2�1/3

Ui

���8/3 + −1

Ui

�Ai�4 � c2�1/3

Ui

���8/3 + c0

Ui

�Fi�2 ,
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I2 �
1

2



Ui

�Fi��Ai�2

�
1

2�
Ui

�Fi�21/2�

Ui

�Ai�41/2

�
1

2�
Ui

�Fi�21/2�c02

Ui

�Fi�21/2

� c3

Ui

�Fi�2.

Since the energy bound  appearing in I1 and I2 could be sufficiently small, we have

�1 − ��

Ui

�Fi�2 � c41/3

Ui

���8/3 + �

Si−1

− 

Si

A�
i ∧ �*Fi��.

Summing on i, noting that �A�
1∧ �*F1�� � � �A1 � �F1�, and using Hölder’s inequality gives

�1 − ��

B1

�F�2 � c41/3

B1

���8/3 + �

�B1

�A1�21/2�

�B1

�F1�21/2

.

Noting the property �4.1� of the broken Hodge gauge, we get



B1

�F�2 � C1/3

B1

���8/3 + C

�B1

�F�2.

By a scaling argument, we have, for 0�r�1;



Br

�F�2 � C1/3

Br

���8/3 + Cr

�Br

�F�2. �4.3�

�ii� Part 2: estimate for � with boundary data. In the sequel, we denote 	 	Wk,p�B� by 	 	B,k,p,
where B is the unit ball B1.

Write the eigenvalue equation D” �=m� in the form ei �i�=m�−eiAi�. Choose a cutoff
function ���C0

��B2�� with 2��1 such that ���B�
�1 and ���� � �C /�. Then we have

ei�i„�1 − ����… = �1 − ���ei �i� + ei�i�1 − ���� = �1 − ����m� − eiAi�� + ei�i�1 − ���� .

The estimate with boundary data for a first-order elliptic operator gives

	�1 − ����	B,1,8/5 � C	m� − eiAi�	B,0,8/5 + C	��� �	B,0,8/5 + C	�	�B,1,8/5.

Letting �→0, using

lim
�→0

	����	B,0,8/5 � lim
�→0

C

�
	�	B2�,0,8/5 = 0,

the Sobolev embedding theorem and �4.2�, we get

	�	B,0,8/3 � C	m� − eiAi�	B,0,8/5 + C	�	�B,1,8/5 � C�	m	B,0,4 + 	A	B,0,4�	�	B,0,8/3 + C	�	�B,1,8/5

� C�	m	B,0,4 + �4 c0�	�	B,0,8/3 + C	�	�B,1,8/5.

We can assume 	m	B,0,4 is sufficiently small by a scaling argument. Noting  is also sufficiently
small, we transfer the term that contains 	�	B,0,8/3 on the right-hand side of the above inequality to
the left-hand side. This gives

	�	B,0,8/3 � C	�	�B,1,8/5 � C	�	�B,0,8/3 + C	��	�B,0,8/5.

By rescaling, we have for any 0�r�1,
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�

Br

���8/33/8

� C�r

�Br

���8/33/8

+ C�r

�Br

����8/55/8

� C�r

�Br

���8/33/8

+ C�r

�Br

����8/53/8

.

Thus



Br

���8/3 � Cr

�Br

���8/3 + Cr

�Br

����8/5. �4.4�

�iii� Part 3: estimate for �� with boundary data. Set �̄= �1/ ��B � ���B �, �=�− �̄. Choosing
the same cut-off function �� as in Part 2, we have

ei�i��1 − ����� = �1 − ���ei �i� + ei�i�1 − ���� .

Again, the estimate with boundary data for the first-order elliptic operator gives

	�1 − ����	B,1,8/5 � C	ei �i�	B,0,8/5 + C	����	B,0,8/5 + C	�	�B,1,8/5.

Letting �→0, using

lim
�→0

	����	B,0,8/5 = 0,

we get

	�	B,1,8/5 � C	ei�i�	B,0,8/5 + C	�	�B,1,8/5 ª CI3 + CI4.

Since

ei �i� = ei �i� = m� − eiAi� = �m� − eiAi�� + �m�̄ − eiAi�̄� ,

there holds that

I3 � 	m� − eiAi�	B,0,8/5 + 	m�̄ − eiAi�̄	B,0,8/5

� �	m	B,0,4 + 	A	B,0,4�	�	B,0,8/3 + �	m	B,0,8/5 + 	A	B,0,8/5���̄�

� �	m	B,0,4 + �4 c0�	�	B,1,8/5 + �	m	B,0,8/5 + 	A	B,0,8/5���̄� .

Applying Poincaré’s inequality gives an estimate for I4:

I4 = 	�	�B,1,8/5 � C	��	�B,0,8/5.

Hence

	�	B,1,8/5 � C�	m	B,0,4 + �4 c0�	�	B,1,8/5 + C�	m	B,0,8/5 + 	A	B,0,8/5���̄� + C	��	�B,0,8/5.

Again, by the smallness of 	m	B,0,4 and , we get

	��	B,0,8/5 � C�	m	B,0,8/5 + 	A	B,0,8/5���̄� + C	��	�B,0,8/5

� C�	m	B,0,4 + 	A	B,0,4�	�	�B,0,8/3 + C	��	�B,0,8/5.

Hence,
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B

����8/5 � C�

B

�m�42/5�

�B

���8/33/5

+ C�

B

�A�42/5�

�B

���8/33/5

+ C

�B

����8/5.

Applying Young’s inequality to the first two terms on the right-hand side of the above inequality
with conjugate indices 5

2 and 5
3 , we have



B

����8/5 � C�

B

�m�4 + C�

B

�A�4 +
C

�3 �2

�B

���8/3 + C

�B

����8/5

� C�

B

�m�4 + C �c02

B

�F�2 +
C

�3 �2

�B

���8/3 + C

�B

����8/5,

where ��0 is a sufficiently small constant. Hence, for 0�r�1,



Br

����8/5 � C�

Br

�m�4 + Cc0 �2

Br

�F�2 +
C

�3 �2
r


�Br

���8/3 + Cr

�Br

����8/5. �4.5�

Finally, putting �4.3�–�4.5� together, we have for any 0�r�1 and some constant C�0, that



Br

��F�2 + ���8/3 + ����8/5� � Cr

�Br

��F�2 + ���8/3 + ����8/5� + Cr4, �4.6�

where the last term r4 comes from the term �Br
�m�4 in �4.5� by noting m is a constant locally.

Denote f�r�ª�Br
��F�2+ ���8/3+ ����8/5�; then �4.6� implies that

f�r� � Crf��r� + Cr4. �4.7�

Since f��r��0, we can choose C�
1
3 . Then we write �4.7� in the form

d

dr
� f�r�

r
  + r3−
 � 0,

where 
ª1/C. Integrating this inequality between r and 1 gives

f�r� � C̃r
.

From this it is easy to conclude that there exist some 2���1 and 2� p�
8
5 such that

F � L2��B�, � � W1,p�B� .

Furthermore, since d*A=0 in the broken Hodge gauge,

��A� = �dA� = �F −
1

2
�A,A�� � �F� + �A�2,

and hence A�W1,2��B� �using �4.2��.
Then Sobolev embedding theorem implies

A � L4�/�2−���B�, � � Lp*
�B� ,

where p*=4p / �4− p�.
Choose positive constants p1, p�, and q� as follows:

p1 =
2�p

2� − �� − 1�p
, p� =

4�

�2 − ��p1
, q� =

p*

p1
.

One can check that 1 / p�+1/q�=1 and p� p1� p* �since 1���2�.
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Using the eigenvalue equation D” �=m�, we have



B

����p1 � C

B

��m���� + �A�����p1

� C�

B

�m�p1p�1/p��

B

���p1q�1/q�
+ C�


B

�A�p1p�1/p��

B

���p1q�1/q�

= C�

B

�m�p1p�1/p��

B

���p
*1/q�

+ C�

B

�A�4�/�2−��1/p��

B

���p
*1/q�

� � .

Hence, ���Lp1�B�. Noting ��Lp1�B� since p1� p*, we have

� � W1,p1�B�, with p1 =
2�p

2� − �� − 1�p
� p .

From above, we see that F�L2��B� and ��W1,p�B� imply F�L2��B� and ��W1,p1�B�. By
iteration, F�L2��B� and ��W1,pk�B� imply F�L2��B� and ��W1,pk+1�B� with

p0 = p, pk+1 =
2�pk

2� − �� − 1�pk
, k = 0,1, . . . .

Since

pk+1

pk
=

2�

2� − �� − 1�pk
� 1,

there exists some k such that pk�2. Therefore, we have that F�L�0�B� and ��W1,p�B� for some
�0�2 and p�2. We can then conclude that �F ,�� is smooth on B1 through the standard bootstrap
method. This completes the proof of Theorem 4.1. �
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The fractional Hamiltonian analysis of 1�1 dimensional field theory is investigated
and the fractional Ostrogradski’s formulation is obtained. The fractional path inte-
gral of both simple harmonic oscillator with an acceleration-squares part and a
damped oscillator are analyzed. The classical results are obtained when fractional
derivatives are replaced with the integer order derivatives. © 2006 American Insti-
tute of Physics. �DOI: 10.1063/1.2356797�

I. INTRODUCTION

Fractional calculus deals with the generalization of differentiation and integration to noninte-
ger orders. Fractional calculus has gained importance, especially during the last three decades.1–5

A large body of mathematical knowledge on fractional integrals and derivatives has been con-
structed. Fractional calculus, as a natural generalization of classical calculus, has played a signifi-
cant role in engineering, science, and pure and applied mathematics in recent years. The fractional
derivatives are the infinitesimal generators of a class of translation invariant convolution semi-
groups that appear universally as attractors.

Various applications of fractional calculus are based on replacing the time derivative in an
evolution equation with a derivative of fractional order. The results of several recent researchers
confirm that fractional derivatives seem to arise for important mathematical reasons.5–21

The fractional variational principles represents an important part of fractional calculus and it
is deeply related to the fractional quantization procedure. There are several proposed methods to
obtain the fractional Euler-Lagrange equations and the corresponding fractional Hamiltonians.
However, this issue is not yet complectly clarified and it requires a more further detailed analysis.

The quantization of systems with fractional derivatives is a novel area in the theory of appli-
cation of fractional differential and integral calculus. Schrödinger equation was considered with
the first order time derivative modified to Caputo fractional ones in Ref. 22. In this case the
obtained Hamiltonian was found to be non-Hermitian and nonlocal in time. In addition, the
obtained wave functions are not invariant under the time reversal. The quantization of fractional
Klein-Gordon field and fractional electromagnetic potential in the Coulomb gauge and the tem-
poral gauge were investigated very recently in Ref. 23.

Recently, the fractional variational principles and the fractional Euler-Lagrange were
obtained.24,25

Even more recently, the fractional constrained Lagrangian and Hamiltonian were
analyzed.26,27 The notion of the fractional Hessian27 was introduced and the Euler-Lagrange equa-
tions were obtained for a Lagrangian linear in velocities.26 Besides, the Hamiltonian equations
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have been obtained for systems with linear velocities.28 The classical fields with fractional deriva-
tives were investigated by using the fractional Lagrangian formulation and the fractional Euler-
Lagrange equations were obtained in Ref. 29.

Nonlocal theories have been investigated in several physical problems.30 During the last
decade, the nonlocal theories were subjected to an intense debate.31–35 A Hamilton formalism for
nonlocal Lagrangians was developed in Refs. 34 and 35, an equivalent singular first order La-
grangian was obtained and the corresponding Hamiltonian was pulled back on the phase space by
using the corresponding constraints.34 It was shown the space-time noncommutative field theories
are acausal and the unitarity is lost.36,37 The fractional Lagrangians and Hamiltonians are typical
examples of nonlocal theories.

For these reasons the fractional quantization of field theory is an interesting issue to be
investigated.

In this paper we analyze the fractional Hamiltonian quantization of nonsingular systems
possessing higher order derivatives.

The plan of the paper is as follows.
In Sec. II the 1+1 classical dimensional field theory analysis of nonlocal theories is briefly

reviewed and the fractional generalization of Ostrogradski’s formulation is presented. In Sec. III
the path integral quantization of the simple harmonic oscillator with an acceleration-squares part is
analyzed. Section IV is dedicated to the fractional path integral formulation of the damped oscil-
lator. Finally, Sec. V is dedicated to our conclusions.

II. FRACTIONAL FIELD THEORY

A. Classical nonlocal theory

Let us start with an ordinary local Lagrangian depending on a finite number of derivatives at
a given time, namely,

L„q�t�, q̇�t�, . . . ,q�n��t�… . �1�

The next step is to consider a Lagrangian depending on a piece of the trajectory q�t ,�� for ∀�
belonging to an interval �a ,b�,

Lnon�t� = L„q�t + ��… , �2�

where a ,b are real numbers. Therefore a nonlocal Lagrangian was introduced. In this case the
action function corresponding to �2� is given by

S�q� =� dt Lnon�t� �3�

and the Euler-Lagrange equation corresponding to �3� are given by

� dt
�Lnon�t�
�„q�t�…

= 0. �4�

Equations �4� should be understood as a functional relation to be satisfied by physical trajec-
tories, i.e., a Lagrangian constraint. These functional relations define a subspace JR of physical
trajectories JR�J, in the space of all possible trajectories.32,34 The crucial point is that there is no
dynamics except the displacement inside the trajectory, namely,

q�t� → q�t + �� . �5�

Let us introduce now the dynamical variable Q�t ,�� as follows:

Q�t,�� = q�t + �� . �6�

If we consider a field Q�t ,�� instead of a trajectory q�t�, such that
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Q̇�t,�� = Q��t,�� , �7�

where Q̇=�Q�t ,�� /�t and Q��t ,��=�Q�t ,�� /�� we obtain a field theory in one spatial and one
time dimension, namely a 1+1 dimensional formulation of nonlocal Lagrangians.32,34

The coordinates and momenta are suppose to have the following forms:

Q�t,�� = �
m=0

�

em���q�m��t�, P�t,�� = �
m=0

�

em���p�m��t� , �8�

where

�q�n��t�,p�m��t�� = �m
n �9�

and

em��� =
�m

m!
, em��� = �− ���m���� . �10�

Therefore, the Hamiltonian for the 1+1 dimensional field becomes

H�t,�Q,P�� =� d� P�t,��Q��t,�� − L̃�t,�Q�� , �11�

where P denotes the canonical momentum of Q. The phase space is T*J together with the
fundamental Poisson brackets,

�Q�t,��,P�t,���� = ��� − ��� . �12�

The functional L̃�t , �Q�� is defined as follows:

L̃�t,�Q�� =� d� ����L�t,�� . �13�

By using �13�, the primary constraint arises as given below:

��t,�,�q,P�� = P�t,�� −� d� ���,− ����t;�,�� 	 0. �14�

Here ��t ;� ,�� and ��� ,−�� have the following definition:

��t;�,�� =
�L�t,��
�Q�t,��

, ���,− �� =
���� − ����

2
, �15�

where ���� is the sigma distribution. The Euler-Lagrange equation is guaranteed by itself,

�̇ 
 	 =� d� 
�t;�,�� . �16�

B. Fractional Ostrogradski’s construction

Higher-derivatives theories38,39 appear naturally as corrections to general relativity and cosmic
strings.40 Unconstrained higher order derivatives possess specific features, namely they have more
degrees of freedom than lower-derivative theories and they lack a lower-energy bound. A method
how to remove all these problems was presented in Ref. 41. It was observed that the nonlocal
formulation translates into infinite order Ostrogradski’s formulation.34,35
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In this section, we would like to derive both the Lagrangian and the Hamiltonian formalisms
for nonsingular Lagrangians with fractional order derivatives starting from the Hamiltonian for-
malism of nonlocal theories.32 Let us consider the following Lagrangian to start with:

L�q,t� = L�t,q�m� , �17�

where the generalized coordinates are defined as

q�m = aDt
�mx�t� , �18�

where m is a natural number.
To obtain the reduced phase space quantization, we start with the infinite dimensional phase

space T*J�t�= �Q�t ,�� , P�t ,���.
The key issue is to find an appropriate generalization of �10� for the fractional case. As it was

pointed out in Refs. 32 and 34, the coordinates and the momenta are considered as a Taylor series.
Therefore, the first step is to generalize the classical series to the fractional case. A natural
extension is to use instead of the factorial the Gamma function. In this way we introduce naturally
the generalized functions42 instead of em��� and em��� given by �10�.

As it is already known, several fractional Taylor’s series expansions were developed,3,43

therefore we have to decide which one is appropriate for our generalization. Since we are dealing
with fractional Riemann-Liouville derivatives we choose the generalization proposed in Ref. 44,
namely,

Q�t,�� = �
m=−�

�

e�m
���q��m��t� ,

P�t,�� = �
m=−�

�

e�m���p��m��t� , �19�

where

e�m
��� =

�� − �0��m

���m + 1�
, e�m��� = D�

�m��� − �0� , �20�

and �m=m+�, with 0��1. Here �0 is a constant. The coefficients in �19� are new canonical
variables,

�q��m�,p��m��
� = ��m

�m�. �21�

By using �21�, we obtain that

�
m=−�

�

e�m���e�m
���� = ��� − ��� , �22�

and

�
−�

+�

d� e�m���e�m�
��� = �

�m�
�m. �23�

Therefore, e�m��� and e�m
��� form an orthonormal basis.

We stress the fact that �22� and �23� involve the generalized functions and the relations have
the meaning in the sense of generalized functions approach.42,44

The fractional Hamiltonian is now given by
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H = �
m=−�

�

p�mq�m+1 − L�q0,q�m� . �24�

The momenta constraints become an infinite set of constraints,

�n = p�n
�t� − �

m=n

�

tDb
�m−n

�L

�q��m+1��t�
= 0. �25�

The fractional Euler-Lagrange equations are as follows;

�
l=−�

�

tDb
�l

�L�t�
�q�l�t�

= 0. �26�

An interesting property of the fractional series proposed by Riemann and discussed by Hardy
in Ref. 44 is that when �m become integers, the usual form of Taylor series is obtained. Therefore
one should notice that for integer values of �m, we have

p�m
�t� − �

l=0

n−m−1 �−
d

dt
�l �L�t�

�„�t
l+m+1q�t�…

= 0, �27�

which is the definition of Ostrogradski’s momenta.38

In this case the Euler-Lagrange equation for the original fractional derivative Lagrangian26–30

is given below,

�
l=0

n

tDb
�l

�L�t�
�q�l�t�

= 0. �28�

Now, from this equation, for integer values of �m we obtain the Euler-Lagrange equation for
a higher derivative Lagrangian,32,34,38 namely

�
l=0

n �−
d

dt
�l �L�t�

�„�t
lq�t�…

= 0. �29�

The constraints �27� and �29� lead us to eliminate canonical pairs �q�l , p�l
��l�n�.

In this case the infinite dimensional phase space is reduced to a finite dimensional one. The
reduced space is coordinated by T*Jn= �q�l , p�l

� with l=0,1 , . . . ,n−1. The Hamiltonian in the
reduced space is given by

H = �
m=0

n−1

p�mq�m+1 − L�q0,q�m� . �30�

One should notice that the canonical reduced phase space Hamiltonian �30� is obtained in
terms of the reduce canonical phase space coordinates �q�l , p�l

� with l=0,1 , . . . ,n−1. In this case
the path integral quantization of a field system is given by

K =� 
m=0

n−1

dq�m dp�m ei��dt��m=0
n−1 p�mq�m+1−H��. �31�

We observe that when � are integers, we obtain the path integral for systems with higher order
Lagrangians.32,45,46
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III. FRACTIONAL PATH INTEGRAL QUANTIZATION OF A SIMPLE HARMONIC
OSCILLATOR POSSESSING AN ACCELERATION-SQUARES PART

The classical Lagrangian to start with is given by41

Lc =
1

2
�1 + �2�2�ẋ2 −

1

2
�2x2 −

1

2
�2ẍ2. �32�

The fractional generalization of �32� has the following form:

L =
1

2
�1 + �2�2�„tDa

�x�t�…2 −
1

2
�2x2 −

1

2
�2�tDa

�
„tDa

�x�t�…�2. �33�

The independent coordinates are x�t� and tDa
�x�t�, respectively. Let us denote their correspond-

ing momenta as p1
�= px and p2

�= p(tDa
�x�t�). The fractional canonical momenta are38

p1
� =

�L

� tDa
�x�t�

− tDa
�� �L

� tDa
2�x�t�

�, p2
� =

�L

� tDa
2�x�t�

. �34�

By making use of �33�, we obtain the forms of the fractional canonical momenta, as given below:

p1
� = �1 + �2�2�tDa

�x�t� + �2
tDa

3�x�t� , �35�

p2
� = − �2

tDa
2�x�t� . �36�

The fractional canonical Hamiltonian becomes

H = p1
�

tDa
�x�t� + p2

�
tDa

2�x�t� − L . �37�

Taking into account �33�, �35�, and �36� the form of �37� is given by

H =
1

2
�2p1

�
tDa

�x�t� −
�p2

��2

�2 + �2x2�t� − �1 + �2�2�„tDa
�x�t�…2� . �38�

By making use of �38�, the fractional path integral is written as

K =� dx d„tDa
�x�t�…dp1

� dp2
� ei��dt�p1

�x�t�+p2
�

tDa
�x�t�−H��. �39�

IV. FRACTIONAL PATH INTEGRAL QUANTIZATION OF DAMPED HARMONIC
OSCILLATOR

The Lagrangian for this system in Ostrogradski’s notations38 takes the form9

L =
1

2
mq1

2 + i
�

2
q1/2

2 − V�q0� , �40�

where

q�n = tDb
�nx, n = 0,1,2. �41�

Here �0=0 ,�1= 1 � 2, �2=1, and q0=x, q1= ẋ, q1 � 2 = tDb
1/2x, q2= ẍ.

The expressions for canonical momenta are

p0 = i�x�1/2� + imx�3/2�, �42�

p1/2 = mẋ . �43�
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By using �40� the classical Euler-Lagrange equation of motion read as9

mẍ + �ẋ +
�V

�x
= 0. �44�

The canonical reduced Hamiltonian has the following expression:

H =
p1/2

2

2m
+ q1/2p0 − i

�

2
q1/2

2 + V�q0� . �45�

As a result the corresponding fractional path integral representation is given by

K =� d� exp i�� �q1p1/2 −
p1/2

2

2m
+ i

�

2
q1/2

2 − V�q0��dt� , �46�

where d�=dq0 dp0 dq1/2 dp1/2.
The path integral representation for �46� is an integration over the canonical phase space

coordinates �q0 , p0� and �q1/2 , p1/2�. Integrating over p1/2 and p0, we obtain

K =� dq0 dq1/2 exp i� �1

2
mq1

2 − V�q0� + i
�

2
q1/2

2 �dt . �47�

Equation �47� can be put in a compact form as follows:

K =� dq0 ei���1/2�mq1
2−V�q0��dt dq1/2 ei�„i��/2�q1/2

2
…dt. �48�

After performing an integration over q1/2, �48� becomes

K = C� dq0 ei�„�1/2�mq1
2−V�q0�…dt dt ,

where C represents a constant.

V. CONCLUSIONS

The interest in fractional quantization appears because it describes both conservative systems
and nonconservative systems as well. The fractional quantization of field theory is not an easy
task, especially when the fractional Hamiltonian is involved. The fractional derivatives represent
the generalization of the classical ones, and therefore some of the classical properties are lost, e.g.,
the fractional Leibniz rule or the chain rule that becomes more complicated than the classical
counterparts. The fractional path integral formulation deserves further investigations, mainly be-
cause the fractional generalization of the classical case is not yet complectly understood. Namely,
for a system possessing second class constraints in Dirac’s classification it is difficult to find the
corresponding fractional generalization. In addition, there are no fractional formulations of the
classical secondary or tertiary constraints due to the fact that the fractional Hamiltonian is not a
constant of motion.

In this paper we generalize to the fractional case the nonlocal theories in one space and one
time dimension via the infinite Ostrogradski’s formalism. The classical Taylor series involved in
this problem are convergent because of the properties of the Dirac’s delta function. Namely, the
coordinates and the corresponding momenta are defined as Taylor series and the Ostrogradski’s
canonical pairs fulfill the classical Poisson’s brackets commutation relations. The generalization to
the fractional case of all the above mentioned results is not straightforward because there exist
many formulations for the fractional Taylor series. However, a powerful tool in fractional field
theory is to work to the Riemann-Liouville derivatives because of their important property of
integration by parts. Therefore, in this paper we focus on the fractional Taylor series involving the
Riemann-Liouville derivatives. We assumed that the fractional Lagrangian density has a compact
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support in the x directions. In this work we have obtained the path integral quantization for
fractional generalization of a 1+1 dimensional nonlocal field theory. The path integral formulation
for the simple harmonic oscillator with an acceleration-squares part as well as for the damped
oscillator are obtained. It is worthwhile to mention that the general expression for the path integral
leads to the path integral representation for systems with higher order Lagrangians.
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An uncertainty Fisher information relation in quantum mechanics is derived for
multidimensional single-particle systems with central potentials. It is based on the
concept of Fisher information in the two complementary position and momentum
spaces, which is a gradient functional of the corresponding probability distribu-
tions. The lower bound of the product of position and momentum Fisher informa-
tions is shown to depend on the orbital and magnetic quantum numbers of the
physical state and the space dimensionality. Applications to various elementary
systems is discussed. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2357998�

I. INTRODUCTION

Quantum-mechanical uncertainty relations state that probability distributions of canonically
conjugate variables of a physical system cannot be simultaneously sharply localized. The standard
uncertainty relation is the variance-based Heisenberg principle1,2 given by the expression

V�V� �
1

4
, �1�

where V��V�� denotes the variance of the probability density in the position ��r� �momentum ��p��
space, assumed to be normalized to unity. This inequality is so relevant in quantum mechanics, not
because of its accuracy �generally, very small�, but because it indicates that refined single-particle
position measurements require large indeterminations for the single-particle momenta. This prin-
ciple and its moment-based generalizations3 reflect the essential inadequacy of the classical con-
cepts of one-particle position and momentum to describe real systems.

The use of information-theoretic quantities as uncertainty measures has led to derive uncer-
tainty relations that provide a strict improvement upon the standard uncertainty relation. This is
the case of the celebrated entropic uncertainty relation,4–6

S� + S� � D�1 + ln �� ,

where S�=−�ln ��=−�RD��r�ln ��r�dDr describes the Shannon information entropy of the position
probability density in the D-dimensional space RD,7,8 and S� denotes the corresponding momen-
tum Shannon entropy of the system. This relation was conjectured by Hirschman4 in 1957 and
proved by Beckner5 and Bialynicki-Birula and Mycielski.6 For probabilistic and dimensional
reasons, it is more convenient to reformulate it as

a�Electronic mail: eromera@ugr.es
b�Electronic mail: pablos@ugr.es
c�Electronic mail: dehesa@ugr.es
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N�N� �
1

4
, �2�

where N��N�� denotes the Shannon entropy power9 of the position �momentum� density, defined
by N�= �2�e�−1 exp�2S� /D�.

A most important information-theoretic alternative to the Shannon entropy as uncertainty
measure is the Fisher information,10,11 given by

I� = �
RD

	�D��r�	2

��r�
dDr = 4�

RD
	�D


��r�	2dDr . �3�

Contrary to the Shannon entropy, which is a global measure of the spreading of the density
because it is a logarithmic functional, the Fisher information has a property of locality as it is a
gradient functional of the density. The higher is this quantity, the more localized is the density, the
smaller is the uncertainty, and the higher is the accuracy in predicting the localization of the
particle.12,13

On the other hand, the Fisher information is the basic variable of the principle of extreme
physical information12 in the same manner as the Shannon entropy is the cornerstone of the
maximum entropy method.14–16 The former principle has allowed us to derive various fundamental
equations of quantum physics.12,17 Moreover, it has been used �a� to describe some macroscopic
quantities such as the kinetic18 and the Weiszäcker19,20 energies, �b� to characterize correlation
properties in atomic systems21 and �c� to identify the most distinctive nonlinear phenomena �the
avoided crossings� of the energy spectra of atomic and molecular systems in strong external
fields.22 For other quantum-mechanical uses of the Fisher information, see Refs. 12, 23, and 24.

Moreover, the Fisher information is involved in the so-called Stam uncertainty
relations,13,24–26

�r2�I�
−1 �

1

4
; �p2�I�

−1 �
1

4
.

However, we do not know yet an uncertainty relation based on the position and momentum Fisher
information, of the same type as the variance-based Heisenberg principle �1� and the entropic
uncertainty relation �2�. To find such a relation for multidimensional central potentials is the main
purpose of this paper; that is, to derive a lower bound for the product of the Fisher informations
in position and momentum spaces of arbitrary dimensions. This is done in Sec. II. We have used
a two-step methodology. First, we express the position �momentum� Fisher information in terms of
the radial expectation values �p2� and �r−2� ��r2� and �p−2��; this is proved in Sec. II A. Second, we
obtain some radial uncertainty-like inequalities that involve these expectation values, which is
proved in Sec. II B. Then, the Fisher informations of some elementary D-dimensional systems
�hydrogen atom, isotropic harmonic oscillator� are calculated in a closed form in Sec. III, and
some concluding remarks and open problems are given.

II. THE FISHER UNCERTAINTY RELATION FOR CENTRAL POTENTIALS

Here we prove that the Fisher information of single-particle systems with a central potential
VD�r� in D-dimensional �D�3� position and momentum spaces satisfy the uncertainty relation

I�I� � 4D2�1 −
�2l + D − 2�	m	
2l�l + D − 2�

�2

�l � 0� , �4�

where the hyperangular quantum numbers l and m have the values given below. When l=0 the
inequality reduces to I�I��4D2, and when D=2 it gives the trivial inequality I�I��0.

The position probability density ��r�= 	��r�	2, where the wave function ��r� is the physical
solution of the Schrödinger equation,
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�−
1

2
�D

2 + VD�r����r� = E��r� , �5�

where atomic units are used.
Due to the spherical symmetry of the problem, it is most convenient to work it out by use of

the polar hyperspherical coordinates �r ,�1 ,�2 , . . . ,�D−1��= �r ,	D−1� �0
�k
�, k=1, . . . ,D
−2, and 0
�D−1
2��, instead of Cartesian coordinates �x1 , . . . ,xD�, defined by

x1 = r cos �1,

x2 = r sin �1 cos �2,

�

xk = r sin �1 . . . sin �k−1 cos �k,

�

xD−1 = r sin �1 . . . sin �D−2 cos �D−1,

xD = r sin �1 . . . sin �D−2 sin �D−1,

�
i=1

D

xi
2 = r2,

in which case the D-dimensional gradient is

�D = � �

�r
,
1

r

�

��1
,

1

r sin �1

�

��2
, . . . ,

1

r� j=1

k−1
sin � j

�

��k
, . . . ,

1

r� j=1

D−2
sin � j

�

��D−1
�

= r̂
�

�r
+ �

k=1

D−1

�̂k
1

r� j=1

k−1
sin � j

�

��k
, �6�

so that the Laplacian operator �D
2 has the expression

�D
2 =

1

rD−1

�

�r
rD−1 �

�r
−

�2

r2 . �7�

The operator � is the D-dimensional generalization of the square of the angular momentum
operator,27–29 which only depends on the D−1 angular coordinates 	D−1 of the D-dimensional
sphere in the form

�2 = − �
i=1

D−1
�sin �i�i+1−D

�� j=1

i−1
sin � j�2

�

��i
��sin �i�D−i−1 �

��i
� . �8�

This operator is known to fulfill

�2Yl,����	D−1� = l�l + D − 2�Yl,����	D−1� , �9�

where the Y symbol denotes the hyperspherical harmonics described by the D−1 hyperangular
quantum numbers �l�1 ,�2 , . . . ,�D−1m��l , ����, which are natural numbers with values l
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=0,1 ,2 , . . ., and l�1��2� ¯ ��D−2� 	�D−1 	 	m	. These hyperfunctions are known to have
the form27–31

Yl,����	D−1� = Nl,���e
im�D−1 �

j=1

D−2

C�j−�j+1

j+�j+1�cos � j��sin � j��j+1 =
eim�D−1


2�
�
j=1

D−2

Y�j,�j+1

�j� �� j� , �10�

where the normalization constant is given by

	Nl,���	2 =
1

2�
�
j=1

D−2
� j + � j��� j − � j+1� ! �2� j + � j+1�

�21−2j−2�j+1��2 j + � j + � j+1�
=

1

2�
�
j=1

D−2

N�j,�j+1

�j� , �11�

 j = �D− j−1� /2, and Ck
��t� denotes the Gegenbauer polynomial of degree k and parameter �. In

addition we have used the notation

Y�j,�j+1

�j� �� j� = N�j,�j+1

�j� C�j−�j+1

j+�j+1�cos � j��sin � j��j+1. �12�

�Remark that for D=2 there are no products in Eqs. �10� and �11� so that the corresponding
spherical harmonics for this case is just eim� /
2�.�

The hyperspherical harmonics Y�	D−1� satisfy the orthonormalization conditions

�
SD−1

d	D−1 Yl�,�����	D−1�Yl,����	D−1� = �ll�����,����, �13�

and the harmonics Y�j,�j+1

�j� ��i� have the two following integral properties:23,28

�
0

�

�Y�j,�j+1

j �� j��2�sin � j�D−j−1 d� j = 1 �14�

and

�
0

�

�Y�j,�j+1

j �� j��2�sin � j�D−j−3 d� j =
2� j + D − j − 1

2� j+1 + D − j − 2
. �15�

Notice that, when j=D−2, �0
��Y�D−2,�D−1

j ��D−2��2�sin �D−2�−1 d�D−2= �2�D−2+1� /2 	�D−1	.
Then, the wave functions ��r� of the problem �5�–�7� can be separated out as

�E,l,����r� = RE,l�r�Yl,����	D−1� .

To prove the inequality �4�, we first find that the position and momentum Fisher information
are related to the radial expectation values �rk� and �pk�, k=−2 and 2, by means of the expressions

I� = 4�p2� − 2	m	�2l + D − 2��r−2� , �16�

I� = 4�r2� − 2	m	�2l + D − 2��p−2� , �17�

respectively. This is done in Sec. II A. Then, we use the radial uncertainty-like relations,

�p2� � l�l + D − 2��r−2� , �18�

�r2� � l�l + D − 2��p−2� , �19�

which are proved in Sec. II B.
Combining the expressions �16�–�19�, one has that
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I�I� � 16�1 −
�2l + D − 2�	m	
2l�l + D − 2�

�2

�r2��p2� , �20�

which emphasizes the uncertainty character of the inequality. Now, it remains to use the modified
Heisenberg uncertainty inequality,

�r2��p2� �
D2

4
, �21�

to finally obtain the new uncertainty relation �4�. In the case that l=0, expressions �16�–�19� lead
to I�I��4D2.

The use of the grand orbital quantum number L= l+ �D−3� /2 leads to write 2l+D−2=2L
+1 and l�l+D−2�= 1

4 �2L−D+3��2L+D−1�=L�L+1�− 1
4 �D−1��D−3�, so that the new uncer-

tainty relation can be expressed as

I�I� � 4D2�1 −
�2L + 1�	m	

2L�L + 1� −
1

2
�D − 1��D − 3��

2

,

which reduces to

I�I� � 36�1 −
�2l + 1�	m	
2l�l + 1�

�2

,

for tridimensional systems, as recently found by the authors32 in a semiheuristic way. Moreover,
let us highlight that for states with m=0 the new uncertainty relation gets simplified as

I�I� � 4D2, �22�

which saturates for the isotropic harmonic oscillator case �see Sec. III B�. Finally, it is also
known33 that for arbitrary monodimensional systems with even wave functions the uncertainty
inequality I�I��4 is fulfilled.

Let us finally point out that when D goes to infinity and m=0, expression �4� reaches the
equality for the particular cases of the D-dimensional hydrogen atom and isotropic harmonic
potential �see Eqs. �37�, �38�, �42�, and �43� in Sec. III�.

A. Position and momentum Fisher’s informations for central potentials

Here we derive the expressions �16� and �17�, which gives the position �momentum� Fisher
information of a single-particle system with a D-dimensional central potential in terms of the
radial expectation values �p2� and �r−2� ��r2� and �p−2��. To begin with, we realize that the position
density ��r� is equal to

��r� = 	�El����r�	2 = 	�El����r,�1,�2, . . . ,�D−2,0�	2.

Then, the position Fisher information I��D� I� defined by Eq. �3� gets reduced as

I��D� = 4�
RD

	�D�El����r,�1,�2, . . . ,�D−2,0�	2 dDr , �23�

where the D-dimensional volume element dDr is
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dDr = rD−1 dr d	D−1;

�24�

d	D−1 = ��
j=1

D−2

�sin � j�2j d� j�d�D−1.

On the other hand, we know that the momentum expectation value �p2� given by

�p2� = �
RD

	�D�El����r,�1,�2, . . . ,�D−1�	2 dDr , �25�

can be decomposed, according to polar coordinate form �6� of the gradient, as

�p2� = �
RD

	�D�El����r,�1,�2, . . . ,�D−2,0�	2 dDr + Klm�D� . �26�

The K symbol denotes the integral

Klm�D� = �
RD
� 1

r
�
i=1

D−2

�sin �i�−1 �

��D−1
�El����r��2

dDr

= �r−2��
i=1

D−2 �
0

�

	Y�i,�i+1

�i� ��i�	2�sin �i�D−i−3 d�i
1

2�
�

0

2� � �

��D−1
�eim�D−1��2

d�D−1

= �r−2�m2�
i=1

D−2
2�i + D − i − 1

2�i+1 + D − i − 2

=
1

2
�r−2�	m	�2l + D − 2� , �27�

where we have taken into account the integral properties �14� and �15� for the harmonics Y��i�,
i=1,2 , . . . ,D−2, in the second equality, and the expression

�
i=1

D−2
2�i + D − i − 1

2�i+1 + D − i − 2
=

2l + D − 2

2	m	

in the third equality. Moreover, the radial expectation value,

�r−2� = �
RD

r−2��r�dDr = �
0

�

r−2REl
2 �r�rD−1 dr ,

has been used. The combination of Eqs. �23�, �26�, and �27� leads to the following relation
between the position Fisher information I��D� and the radial expectation values �p2� and �r−2�:

�p2� =
1

4
I��D� +

1

2
	m	�2l + D − 2��r−2� ,

which gives the searched expression �16� for the position Fisher information.
The application of the same procedure in momentum space has allowed us to obtain that
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�r2� =
1

4
I��D� +

1

2
	m	�2l + D − 2��p−2� ,

which provides the searched expression �17� for the momentum Fisher information in terms of the
radial expectation values �r2� and �p−2�. These expressions have been previously found for the
tridimensional case.32

Let us mention that when D=2, having only one angular quantum number l, these expressions
reduce to �p2�= I� /4− l2�r−2� and �r2�= I� /4− l2�p−2�.

B. Radial uncertainty-like relations

Let us here derive the dual uncertainty-like relations �18� and �19� between the radial expec-
tation values �p2� and �r−2�, and �r2� and �p−2�, respectively. To find Eq. �18�, we start from the
expressions �6� and �25�, which provide

�p2� = JR�D� + �r−2�JA�D� , �28�

where the radial integral

JR�D� = �
RD
� �

�r
��r��2

dDr = �
0

� �dREl

dr
�2

rD−1 dr ,

and the angular integral

JA�D� = �
SD−1

�
i=1

D−1 � 1

� j=1

i−1
sin � j

�

��i
Yl,����	D−1��2

d	D−1

= �
i=1

D−1 �
SD−1

1

�� j=1

i−1
sin � j�2

�

��i
Yl,���

* �	D−1�
�

��i
Yl,����	D−1��

j=1

D−2

��sin � j�D−j−1 d� j�d�D−1,

�29�

where we have used the expression �24� of the volume element d	D−1. Remark that, for conven-
tion, the products � j=1

i−1 and � j=1
D−2 are empty when i=1 and D=2, respectively. Then, taken into

account the non-negativity of the radial integral JR�D�, one has that

�p2� � �r−2�JA�D� . �30�

In momentum space, a similar procedure has allowed us to obtain that

�r2� � �p−2�JA�D� . �31�

To calculate JA�D�, we perform an integration by parts in the integral of Eq. �29�. Then, one
obtains that

JA�D� = − �
i=1

D−1 �
SD−1

Yl,���
* �	D−1�

1

�� j=1

i−1
sin � j�2

�

��i
��sin �i�D−i−1 �

��i
Yl,����	D−1��

� �
j=1,j�i

D−2

��sin � j�D−j−1 d� j�d�D−1

= − �
i=1

D−1 �
SD−1

Yl,���
* �	D−1�

�sin �i�1+i−D

�� j=1

i−1
sin � j�2

�

��i
��sin �i�D−i−1 �

��i
Yl,����	D−1��

103504-7 Uncertainty relation for Fisher information J. Math. Phys. 47, 103504 �2006�

                                                                                                                                    



��
j=1

D−2

��sin � j�D−j−1 d� j�d�D−1

= �
SD−1

Yl,���
* �	D−1��2Yl,����	D−1�d	D−1 = l�l + D − 2� , �32�

where we have used the expression �8� in the third equality and the expressions �9� and �13� in the
last equality.

Finally, the substitution of the value �32� for the angular integral JA�D� into the inequalities
�30� and �31� produces the radial uncertainty-like inequalities �18� and �19�,

�p2� � l�l + D − 2��r−2� ,

�r2� � l�l + D − 2��p−2� ,

respectively, which we were looking for.
For the case D=3 the former inequality has been recently and rigorously found by completely

different means, while the latter one was only suggested.32

Finally, let us point out that up until now the only existing inequality of this type, to the best
of our information, has been shown by one of us26 to be

�p2� � �D − 2

2
�2

�r−2� , �33�

for general systems. The comparison of Eqs. �18� and �33� shows that �i� the former one is
stronger than the latter one when l� �
2−1��D−2� /2, indicating its greater accuracy when D

6 for states with l�0; and �ii� the latter one is stronger for l=0 regardless of the value of the
space dimensionality.

III. THE FISHER INFORMATIONS FOR SOME D-DIMENSIONAL ELEMENTARY
SYSTEMS

Here we find the position and momentum Fisher informations for the most prominent proto-
types of D-dimensional systems: the hydrogen atom and the isotropic harmonic oscillator.

A. Hydrogen atom

In this case, V�r�=1/r. The energies of the bound states are given by

E = −
1

2�2 , �34�

where � denotes the grand principal quantum number,

� = n +
D − 3

2
; n = 1,2,3, . . . .

The radial expectation values �r−2� and �r2� are known34 to have the expressions

�r−2� =
2

�3

1

2L + 1
; �r2� =

1

2
�2�5�2 − 3L�L + 1� + 1� , �35�

and the momentum expectation values �p−2� and �p2� are given35 by

�p−2� =
8� − 3�2L + 1�

2L + 1
�2; �p2� =

1

�2 . �36�
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Then, according to Eqs. �16�, �35�, and �36�, the Fisher information of the D-dimensional
hydrogen atom in position space has the value

I� = 4�p2� − 2	m	�2L + 1��r−2� =
4

�3 �� − 	m	� , �37�

which has been recently found by different means.23 Moreover, let us notice that for the real �D
=3� hydrogen atom one has I� �hydrogen�=4�n− 	m 	 � /n3, as recently derived.32,36

On the other hand, according to Eqs. �17�, �35�, and �36�, the Fisher information of the
D-dimensional hydrogen atom in momentum space has the value

I� = 4�r2� − 2	m	�2L + 1��p−2� = 2�2�5�2 − 3L�L + 1� − �8� − 3�2L + 1��	m	 + 1� , �38�

which has also been recently shown.23 It is worthy to point out that for the tridimensional hydro-
gen atom one straightforwardly has the known value32

I��hydrogen� = 2n2�5n2 − 3l�l + 1� − �8n − 3�2l + 1��	m	 + 1� ,

since the grand quantum numbers �, L, and m for D=3 reduces to the familiar tridimensional
quantum numbers �n , l ,m�.

Finally, it is worthy to point out that for l=n−1 the accuracy of inequalities �18� and �19� for
this system improves when n is increasing; moreover, they get saturated when n→�.

B. Isotropic harmonic oscillator

Here, V�r�= 1
2�2r2 �mass�1�. The energies of the physical states are given by

E = �� +
3

2
�� , �39�

with

� = n +
D − 3

2
= 2nr + l +

D − 3

2
 2nr + L; nr = 0,1,2, . . . , l = 0,1,2, . . . .

For this system the radial expectation values �r−2� and �r2� have the form34,37,38

�r−2� =
2�

2L + 1
; �r2� = �� +

3

2
��−1, �40�

and the momentum expectation values �p�=��r�, so that

�p−2� =
2

2L + 1
�−1; �p2� = �� +

3

2
�� . �41�

Then the Fisher information of the D-dimensional isotropic harmonic oscillator in position
space has, according to Eqs. �16�, �40�, and �41�, the value

I� = 4�� − 	m	 +
3

2
�� = 4�2nr + l − 	m	 +

D

2
�� . �42�

Similarly, according to Eqs. �17�, �40�, and �41�, we have found the following value for the
Fisher information of the D-dimensional isotropic harmonic oscillator in momentum space,
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I� = 4�� − 	m	 +
3

2
��−1 = 4�2nr + l − 	m	 +

D

2
��−1. �43�

Let us point out that these expressions for the position and momentum D-dimensional Fisher
informations reduces to the corresponding known three-dimensional quantities for D=3.32

It is most interesting to realize that for the ground state �nr= l=m=0�, one has that I�

=2 D� and I�=2 D�−1, so that the Fisher uncertainty product I�I�=4D2. Therefore, the
D-dimensional Fisher uncertainty relation �22� for m=0 states of arbitrary central potential gets
saturated at the harmonic oscillator ground state.

Furthermore, it is nice to remark from Eqs. �34� and �37�, and Eqs. �39� and �42�, that the
position Fisher information for the two multidimensional central potentials of the r type consid-
ered in this section, has the following behavior:

I� = aE�L + b	m	�−2,

where real parameters a and b are controlled by the strength of the potential, being aware that E�L

goes as �−1.
For completeness, let us also point out that the equality in inequalities �18� and �19� is

obtained for this system when l goes to infinity.

IV. CONCLUSIONS

The spreading of the quantum-mechanical wave functions of physical systems in a
D-dimensional space can be measured by moments of different orders of the corresponding prob-
ability density �particularly, the second moment or variance� and, more recently, by some
information-theoretic measures, the Shannon entropy and the Fisher information. These spreading
measures grasp differently the distribution of the quantum-mechanical probability cloud of the
system. The development of uncertainty relations associated to the probability distributions of
canonically conjugate spreading measures is at the heart of the quantum physics from its early
days. The variance-based Heisenberg-Kennard relation1,2 and its generalizations3 based on mo-
ments with orders bigger than 2, have played a fundamental role in understanding the quantum
behavior of the physical systems in a deeper way. The advent of the entropic uncertainty relation
based on the Shannon information entropy4–6 has strictly improved the standard relation, mainly
because of the true information-theoretic character of the involved spreading measure.

The uncertainty relation based on the Fisher information is not yet known. This is a serious
lack because this quantity has a local character, contrary to both the moments and the Shannon
entropy that are global spreading measures. Here we have derived this Fisher uncertainty relation,
not for general systems but “only” for D-dimensional single-particle systems with central poten-
tials. The lower bound of the Fisher informations in the two complementary spaces has been found
to depend on the orbital and magnetic quantum numbers and the space dimensionality. To do that,
we have first calculated the explicit expressions for the position and momentum Fisher informa-
tions �see Eqs. �16� and �17�� in terms of the radial expectation values ��p2� , �r−2�� and
��r2� , �p−2��, respectively. Second, we have derived uncertainty relations for these two pairs of
radial expectation values as given by Eqs. �18� and �19�. Then, the Fisher product I�I� is bounded
from below in terms of the Heisenberg uncertainty product �p2��r2� �see Eq. �20��. Finally, the
D2 /4 lower bound for the latter product has allowed us to find the new Fisher uncertainty inequal-
ity �4�. The application to some quantum prototypes of physical systems is also shown not only for
checking reasons but also because of their intrinsic and fundamental interests.

Two open problems come naturally. First, to improve the new uncertainty relation given by
Eq. �4� mainly by means of increasing the accuracy of the Heisenberg principle �21�; and second,
to find the Fisher uncertainty relation for general systems; that is, systems with quantum potentials
of any character.
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The Lyapunov stability is established for the N-soliton solutions in the Lax hierar-
chy of the Benjamin-Ono �BO� equation. We characterize the N-soliton profiles as
critical points of certain Lyapunov functional. By using several results derived by
the inverse scattering transform of the BO equation, we demonstrate the convexity
of the Lyapunov functional when evaluated at the N-soliton profiles. From this fact,
we deduce that the N-soliton solutions are energetically stable. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2344854�

I. INTRODUCTION

The Benjamin-Ono �BO� equation describes the unidirectional propagation of long internal
waves in stratified fluids of great depth. It may be written in an appropriate dimensionless form as

ut + 2uux + Huxx = 0. �1.1a�

Here, u=u�x , t� represents the amplitude of wave, H is the Hilbert transform given by

Hu�x,t� =
1

�
P�

−�

� u�y,t�
y − x

dy , �1.1b�

and the subscripts t and x appended to u denote partial differentiation. The BO equation can be
written as an infinite-dimensional completely integrable Hamiltonian dynamical system.1,2 A com-
mon feature of integrable evolution equations is the existence of an infinite sequence of conser-
vation laws. The Lax hierarchy of the BO equation is generated by the conservation laws, which
we shall denote by In�n=2,3 ,4 , . . . �. The first three of In read

I2 =
1

2
�

−�

�

u2dx , �1.2a�

I3 = − �
−�

� �1

3
u3 +

1

2
uHux�dx , �1.2b�

I4 = �
−�

� �1

4
u4 +

3

4
u2Hux +

1

2
ux

2�dx . �1.2c�

In �1.2�, the mass conservation has been excluded since it is irrelevant in the present analysis. The
BO hierarchy is defined by the following nonlinear evolution equations:

a�Electronic mail: matsuno@yamaguchi-u.ac.jp
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�u

�tn
=

�

�x

�In+2

�u
, �n = 0,1,2, . . . � , �1.3�

where � /�u is the variational derivative defined by

�

��
In+2�u + �v���=0 = �

−�

� �In+2

�u�x�
v�x�dx . �1.4�

When n=1, �1.3� becomes the BO equation �1.1� with the identification t1= t while when n=2, it
yields the first higher-order BO equation3

ut2
= �u3 + 3

2uHux + 3
2H�uux� − uxx�x. �1.5�

Note that the first member of �1.3� reduces simply to a linear equation uto
=ux. As will be shown

in the following, all the members of the BO hierarchy exhibit the N-soliton solution characterized
by the 2N parameters aj and xj0�j=1,2 , . . . ,N� where N is an arbitrary positive integer:

u = uN�x − x1,x − x2, . . . ,x − XN� . �1.6a�

Here

xj = 	
s=0

�

�− 1�s+1s + 1

2s aj
sts + xj0, �j = 1,2, . . . ,N� , �1.6b�

aj are amplitude parameters satisfying the conditions aj�0,aj�ak for j�k�j ,k=1,2 , . . . ,N� and
xj0 are arbitrary phase parameters. Explicitly, uN has a simple expression in terms of a tau function
f ,

uN = i
�

�x
ln

f

f* , f = det F , �1.7a�

where F= �f jk�i�j,k�N is an N�N matrix with elements

f jk = �x − xj +
i

aj
�� jk −

2i

aj − ak
�1 − � jk� . �1.7b�

Here, f* is a complex conjugate of f and � jk is Kronecker’s delta. In particular, for N=1, �1.7�
represents the one-soliton solution with a Lorenzian profile

u1 =
2a1

a1
2�x − x1�2 + 1

. �1.8�

A direct proof of �1.7� using an elementary theory of determinants will be presented in Appendix
A.

The definition of the stability of solitons may be classified according to the following three
categories: i� linear �or spectral� stability, ii� energetic stability, iii� nonlinear stability. The ener-
getic stability implies that the second variation of certain Lyapunov functional becomes strictly
positive when evaluated at the soliton solutions. It would also lead to the linear stability since the
second variation is preserved for the linearized equation. In order to extend the energetic stability
to the nonlinear stability which deals with small but finite amplitude perturbations, one must take
into account higher-order nonlinear terms neglected in evaluating the Lyapunov functional and this
makes the analysis more difficult. In accordance with the above classification of the stability, we
shall briefly review some known results associated with the stability characteristics of the BO
solitons. The linear stability of the BO one-soliton solution has been proved by solving the
eigenvalue problem associated with the linearized BO equation.4 A subsequent nonlinear analysis
shows that the soliton is also stable against small but finite perturbations.5 As for the general
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N-soliton solution, its linear stability characteristic has been established by solving explicitly the
initial value problem of the linearlized BO equation and investigating the large-time asymptotic of
the solution.6,7 In the process, the completeness relation for the eigenfunctions of the BO equation
linearized around the N-soliton solution has played a central role. The recent study demonstrates
the orbital stability of the two-soliton solution in which the stability problem has been settled
based on the Lyapunov method combined with the spectral analysis of the operators associated
with the linearized BO equation.8 The approach used in this paper originates from the stability
analysis of the multisoliton solutions of the Korteweg-de Vries �KdV� equation by means of the
constrained variational principle.9 See also an analogous work dealing with the spectral stability of
the multisoliton solutions in the KdV hierarchy.10 All the above-mentioned works are concerned
with the stability of solitons for the BO equation. The stability characteristics of solitons in the BO
hierarchy have not been considered as yet.

The purpose of this paper is to establish the Lyapunov stability of the general N-soliton
solution �1.6�. To be more specific, let us consider the following higher-order BO equation which
consists of the commuting flows of the BO hierarchy

ut =
�

�x

�HN

�u
, �1.9a�

where the Lyapunov functional HN is given by

HN�u� = IN+2 + 	
n=1

N

�nIn+1, �1.9b�

and �n are Lagrange multipliers which will be expressed in terms of the elementary symmetric
functions of a1 ,a2 , . . . ,aN. See Sec. III for details. We define the profile �or shape� of the N-soliton
solution by UN=UN�x�
uN�t0=t1=¯=0. We observe from �1.7� that the N-soliton profile has the
same functional form for all the members of the hierarchy, the only difference being the velocities
of the solitons. We show that UN is a stationary solution of �1.9� decaying at infinity. Namely, UN

is realized as a critical point of the functional HN. Using �1.9b�, this condition can be written as the
Euler-Lagrange equation

�IN+2

�u
+ 	

n=1

N

�n
�In+1

�u
= 0 at u = UN. �1.10�

The Lyapunov stability of UN may characterize UN as a minimal point of the functional IN+2

subjected to N constraints

In+1�u� = dn, �n = 1,2, . . . ,N� , �1.11�

where dn are real constants and consequently the second variation of HN is strictly positive at UN.
This means that HN is convex at UN, so that the following inequality holds:

HN�UN + �v� − HN�UN� � 0, �1.12�

where �v is a perturbation imposed on UN which belongs to certain function space specified by the
2N integral conditions. We assume that the L2 norm of v is finite. The small parameter � has been
introduced to measure the magnitude of the perturbation. The inequality �1.12� shows that the
N-soliton solutions are energetically stable. We give a direct proof of �1.12� with the aid of the
results obtained by the inverse scattering transform �IST� for the BO equation.1,2,11,12 In Sec. II, we
summarize the background results arising from the perturbation theory and the Hamiltonian for-
mulation of the BO equation which provide the necessary machinery in carrying out the stability
analysis. In Sec. III, we prove the inequality and hence establish the Lyapunov stability of the
N-soliton solutions in the Lax hierarchy of the BO equation. In Appendix A, we present a direct
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proof of the N-soliton solution �1.7�. In Appendix B, we evaluate the number of positive eigen-
values of the Hessian matrix associated with HN.

II. BACKGROUND RESULTS OF IST

The IST has been applied successfully to solve the initial value problem of the BO
equation.11,12 Furthermore, for real generic potentials it has been used to prove the complete
integrability of the BO equation.1,2 Here, we summarize some background results of the IST
necessary for the stability analysis.

A. Eigenvalue problem

The eigenvalue problem associated with the IST of the BO equation may take the form

i	x
+ + 
�	+ − 	−� = − u	+, �2.1�

where 	+�	−� is the boundary value of the analytic function in the upper�lower�-half complex x
plane, u is a real potential rapidly decreasing at infinity, and 
 is the eigenvalue �or the spectral
parameter�. We define the two Jost solutions of �2.1� specified by the boundary condition as x
→ +�,

N�x,
� → ei
x, N̄�x,
� → 1, �2.2�

and the analogous ones as x→−�,

M̄�x,
� → 1, M�x,
� → ei
x. �2.3�

These solutions satisfy the linear integral equations

Nx − i
N = iP+�uN� , �2.4a�

N̄x − i
N̄ = iP+�uN̄� − i
 , �2.4b�

Mx − i
M = iP+�uM� − i
 , �2.4c�

M̄x − i
M̄ = iP+�uM̄� , �2.4d�

where P+ is the projection operator defined by P+= 1
2 �1− iH�. The solutions of �2.4� subjected to

the boundary conditions �2.2� and �2.3� exist for 
�0. The Jost functions M ,N, and N̄ are then
related by

M = N̄ + �N , �2.5�

where � is a reflection coefficient. For pure soliton potentials, this reflection coefficient vanishes
identically.

There exists a set of solutions � j�x� for negative 
=
 j�j=1,2 , . . . ,N� which satisfy

� j,x − i
 j� j = iP+�u� j�, �j = 1,2, . . . ,N� , �2.6a�

with the boundary conditions

� j →
1

x
, x → + � , �j = 1,2, . . . ,N� . �2.6b�

103505-4 Y. Matsuno J. Math. Phys. 47, 103505 �2006�

                                                                                                                                    



B. Conservation laws

It follows from �1.1�, �2.4b�, and the time evolution equation for N̄,

N̄t − 2
N̄x − iN̄xx − 2�P+ux�N̄ = 0, �2.7�

that the quantity �−�
� u�x , t�N̄�x , t�dx is conserved in time. Expanding N̄ in inverse powers of 
,

N̄ = 	
n=0

�
�− 1�nN̄n+1


n , N̄1 = 1, �2.8a�

and substituting �2.8a� into �2.4b�, we obtain the following recursion relation that determines N̄n:

N̄n+1 = iN̄n,x + P+�uN̄n�, n  1. �2.8b�

The nth conservation law may be taken as

In = �− 1�n�
−�

�

uN̄n dx , �2.9�

where a factor �−1�n is multiplied for convenience. The first three of In except I1 are already given
by �1.2�. In terms of the scattering data � and 
 j, In can be evaluated as

In = �− 1�n2�	
j=1

N

�− 
 j�n−1 +
�− 1�n

2�
�

0

�


n−2�*�
���
� d
�, �n = 1,2, . . . � . �2.10�

The first term on the right-hand side of �2.10� is the contribution from solitons and the second term
comes from radiations. It is important that both contributions are additive. A remarkable feature of
the conservation laws is that they are in involution, namely In�n=1,2 , . . . � commute each other in
an appropriate Poisson bracket. In particular,

�
−�

� � �In

�u�x�
�

u=UN

�

�x
� �Im

�u�x�
�

u=UN

dx = 0, �n,m = 1,2, . . . � . �2.11�

C. Variational derivatives

The variational derivatives of the scattering date with respect to the potential are calculated
explicitly. In developing the Lyapunov stability, we need the formulas of the variational deriva-
tives evaluated for the N-soliton potential u=UN. In particular, the following formula plays an
important role in our analysis:

� �
 j

�u�x�
�

u=UN

=
1

2�
 j
� j

*�x�� j�x�, �j = 1,2, . . . ,N� . �2.12�

Here, the eigenfunction � j corresponding to the discrete spectrum 
 j satisfies the system of linear
algebraic equations

�x − � j�� j + i 	
k=1

�k�j�

N
1


 j − 
k
�k = 1, �j = 1,2, . . . ,N� , �2.13�

where � j=xj0+ i / �2
 j� and xj0 are real constants. Recall that 
 j are related to the amplitude
parameters aj introduced in �1.7� by the relations 
 j=−aj /2�j=1,2 , . . . ,N�. Taking account of the
fact that the reflection coefficient � becomes zero for u=UN, we can derive from �2.10� and �2.12�
the formula
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� �In

�u�x�
�

u=UN

= �− 1�n�n − 1�	
j=1

N

�− 
 j�n−3� j
*�x�� j�x�, �n = 2,3, . . . ,N� . �2.14�

In terms of � j ,UN has the following two alternative expressions:

UN = i	
j=1

N

�� j − � j
*� , �2.15�

UN = − 	
j=1

N
1


 j
� j

*� j . �2.16�

The positive definiteness of UN is obvious from �2.16� since all 
 j are negative quantities. One can
derive �2.16� by using �2.13� and �2.15�. The formula �2.16� also follows from �1.2a�, �2.10� and
�2.14�. In Appendix A, we show that UN can be rewritten in a compact form in terms of a
determinant.

The following relation concerning the variational derivative of � with respect to u is useful in
evaluating the contribution of the continuous part to the functional HN:

���
�
�u�x�

= iM�x,
�N*�x,
� . �2.17�

For the N-soliton potential u=UN, M reduces to N̄ by �2.5� and �
0. The function MN* satisfies
the orthogonality conditions

�
−�

�

M�x,
�N*�x,
�
�

�x
�� j

*�x�� j�x�� dx = 0, �j = 1,2, . . . ,N� . �2.18�

Finally, we emphasize that all the results presented here are obtained through the analysis of the
spatial part �2.1� of the Lax pair for the BO equation.

III. LYAPUNOV STABILITY

A. Variational characterization of the N-soliton profile

We first show that the stationary solution UN of the higher-order BO equation �1.9� satisfies
�1.10� if one prescribes the Lagrange multipliers �n appropriately. This provides a variational
characterization of UN. Let � j=� j

*� j and bj=−
 j=aj /2. With this notation, �1.10� and �2.14� give
a linear relation among � j,

�N + 1�	
j=1

N

bj
N−1� j + 	

n=1

N

�− 1�N−n+1n�n	
j=1

N

bj
n−2� j = 0. �3.1�

In view of the fact that � j are functionally independent squared eigenfunctions,1,2 �n must satisfy
the following system of linear algebraic equations:

	
n=1

N

�− 1�N−nnbj
n−1�n = �N + 1�bj

N, �j = 1,2, . . . ,N� . �3.2�

To solve �3.2�, we introduce an N�N matrix V

V = �v jk�1�j,k�N, v jk = bj
k−1, �3.3�

and the cofactor of v jk by
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Vjk =
� �V�
�v jk

, �V� = det V , �3.4�

where �V� is the Vandermonde determinant. Notably, since �V � =�1�j�k�N�bk−bj� and bj�bk for
j�k, �V� never vanishes. This fact will be used essentially in the following calculation. It is also
convenient to define the polynomials g�x� and gk�x� by

g�x� = �
j=1

N

�x − bj� = 	
s=1

N

�− 1�s�sx
N−s, �3.5�

gk�x� = �
j=1

�j�k�

N

�x − bj� = 	
s=1

N−1

�− 1�s�k,sx
N−s, �3.6�

where �0=1 and �s�1�s�N� are elementary symmetric functions of b1 ,b2 , . . . ,bN,

�1 = 	
j=1

N

bj, �2 = 	
j,k=1
�j�k�

N

bjbk, . . . ,�N = �
j=1

N

bj , �3.7a�

and �k,s are given by the relation

�k,s = 	
j=0

s

� j�− bk�s−j . �3.7b�

Obviously, all � j are positive quantities since bj�0�j=1,2 , . . . ,N�. Now, applying Cramer’s rule
to �3.2� with use of the fact �V � �0, we find that �n are determined uniquely as

�n = �− 1�N−nN + 1

n

	k=1
N Vknbk

N

�V�
, �n = 1,2, . . . ,N� . �3.8�

Substituting the formulas13

Vkn =
�− 1�N−n�k,N−n�V�

gk�bk�
, �k,n = 1,2, . . . ,N� , �3.9�

	
k=1

N
�k,N−nbk

N

gk�bk�
= �N−n+1, �n = 1,2, . . . ,N� , �3.10�

into �3.8�, we arrive at a simple expression of �n

�n =
N + 1

n
�N−n+1, �n = 1,2, . . . ,N� . �3.11�

If we use the relations bj=aj /2�j=1,2 , . . . ,N�, we can see that �n are expressed in terms of
elementary symmetric functions of a1 ,a2 , . . . ,aN.

B. Stability

Let us now prove the inequality �1.12� which assures that the functional HN is convex at the
N-soliton profile UN. The method used here is based on the ideas developed in a recent work10 on
the spectral stability of the N-soliton solution of the KdV hierarchy as well as an earlier work14 on
the algebraic structure of the BO N-soliton solution. We first rewrite �2.10� as
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In+1�u� = �− 1�n+12�	
j=1

N

bj
n + �− 1�n+1rn� , �3.12a�

where we have put bj=−
 j and

rn =
1

2�
�

�

0


n−1�*�
���
� d
 . �3.12b�

Let �Q be the increment of any functional Q�u� around u=UN, i.e.,

�Q = Q�UN + �v� − Q�UN� . �3.13�

It then follows from the constraints �1.11� that

�In+1 = 0, �n = 1,2, . . . ,N� . �3.14�

We then use �3.12� to rewrite �3.14� in the form

2�n	
j=1

N

bj
n−1�bj + �− 1�n+1�rn = 0, �n = 1,2, . . . ,N� , �3.15�

where we have neglected the higher-order terms ��bj�s�s=2,3 , . . . ,N�. These relations indicate
that the increments of soliton amplitudes are balanced with the increments of radiations. We recall
that �
0 for u=UN and consequently ���*��=��*��. This leads to the estimates �rn�O��2�
and �rn�0 for all n. The case �rn=0 calls a special attention and it will be considered in detail
later. Hence, �3.15� can be solved consistently in �bj only if �bj�O��2�. Since by the definition
�1.4�

�bj = ��
−�

� ��bj

�u
�

u=UN

v�x�dx + O��2� , �3.16�

one must impose the integral conditions on the perturbation v�x�,

�
−�

� ��bj

�u
�

u=UN

v�x�dx = 0, �j = 1,2, . . . ,N� , �3.17�

in accordance with the above-presented estimate for �bj. We can see from �2.12�, �2.14� together
with the relations bj=−
 j�j=1,2 , . . . ,N� and �V � �0 that �3.17� are equivalent to

�
−�

� ��In+1

�u
�

u=UN

v�x�dx = 0, �n = 1,2, . . . ,N� . �3.18�

Owing to �3.14�, however, these conditions are satisfied automatically. The above-noted observa-
tions allow us to solve �3.15�. Indeed, the solutions are written, with use of Cramer’s rule, as

�bj =
1

2�

	n=1
N �− 1�n

n
Vjn�rn

�V�
, �j = 1,2, . . . ,N� . �3.19�

It now follows from �1.9b�, �3.12�, and �3.14� that

�HN = �− 1�N2��N + 1�	
j=1

N

bj
N�bj + �− 1�N+2�rN+1� . �3.20�

If we substitute �3.19� into �3.20� and use the formulas �3.9� and �3.10�, �HN simplifies to
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�HN = �N + 1�	
n=1

N
�N−n+1

n
�rn + �rN+1. �3.21�

Since �N−n+1�0 for n=1,2 , . . . ,N by the definition �3.7�, we find that if at least one of �rn is not
zero, then �HN�0. On the other hand, if all �rn become zero, then �HN=0. In the latter case, we
see from �3.15� that �bj=0 for all j. This situation will happen when the perturbation �v repre-
sents the small variation of UN with respect to the phase parameters xj0. Specifically

�v�x� = 	
j=1

N
�UN

�xj0
�xj0, �3.22�

where �xj0 are small perturbations of order �. If we impose the following N integral conditions on
v�x� in addition to �3.28�

�
−�

� �

�x
��In+1

�u
�

u=UN

v�x�dx = 0, �n = 1,2, . . . ,N� , �3.23�

then the perturbation of the form �3.22� ceases to be admissible, as we shall now demonstrate. We
first notice that the right-hand side of �3.22� can be expressed in terms of the x derivative of
��In+1 /�u�u=UN

. Indeed, we take u=uN in �1.3� and then put t0= t1= ¯ =0 to obtain

�− 1�nn	
j=1

N

bj
n−1�UN

�xj0
=

�

�x
��In+1

�u
�

u=UN

, �n = 1,2, . . . ,N� , �3.24�

where we have used �1.6�, the definition of UN and bj=aj /2. Thanks to the fact �V � �0, the
relations �3.24� can be inverted to give

�UN

�xj0
= 	

n=1

N
�− 1�n

n

Vjn

�V�
�

�x
��In+1

�u
�

u=UN

, �j = 1,2, . . . ,N� . �3.25�

An alternative expression of �3.22� follows immediately upon introducing �3.25� into �3.22�,
which reads

�v�x� = 	
j=1

N

	
n=1

N
�− 1�n

n

Vjn

�V�
�

�x
��In+1

�u
�

u=UN

�xj0. �3.26�

We observe that this perturbation satisfies the conditions �3.18� by virtue of �2.11�. It is important
that the N�N matrix C= �cjk�1�j,k�N with elements

cjk = �
−�

� �

�x
��Ij+1

�u
�

u=UN

�

�x
��Ik+1

�u
�

u=UN

dx �3.27�

is positive definite and hence �C � �0. In view of this fact, we deduce from �3.23� and �3.26� that
�xj0=0�j=1,2 , . . . ,N� and consequently v=0, which implies the above-mentioned assertion. An
additional relation which deserves remark is

�
−�

� ���

�u
�

u=UN

v�x�dx = 0, �3.28�

which follows from �2.14�, �2.17�, �2.18�, and �3.26�. This leads to the estimates ���O��2� and
�rn�O��4�. As a result, the pertubation �3.26� gives rise to higher-order contributions to �3.21�
which also means that the second variation of HN turns out to be zero. In conclusion, the inequality
�HN�0 holds under the simultaneous conditions �3.18� and �3.25� imposed on v�x�, which
completes the proof of �1.12�. The convexity of HN implies that the second variation of HN is
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strictly positive and consequently the N-soliton solutions are energetically stable.

C. Remark

In this paper, the convexity of HN has been proved by invoking some results obtained by the
IST of the BO equation. There exists, however, another method to establish the same convex
property without recourse to the IST. To illustrate this, we put u�x , t�=UN�x�+�v�x�e
t and linear-
ize �1.9� around UN. The resulting eigenvalue equation can be written as

�

�x
LNv = 
v , �3.29�

where LN is a self-adjoint operator. This operator may be defined through the relation

�2HN =
�2

2
�

−�

�

v�x�LNv�x�dx , �3.30�

where �2HN denotes the second variation of HN. Let n�LN� be the number of negative eigenvalues
of LN and p�HN� be the number of positive eigenvalues of the Hessian matrix defined by

HN = �hjk�1�j,k�N, hjk =
�2HN

�� j � �k
. �3.31�

Then, under the conditions �3.18� and �3.23� the positivity of �2HN is satisfied if and only if
n�LN�=p�HN�. The above-noted criterion of the positivity property has been proved in Ref. 15 and
has been applied to the Lyapunov stability of the N-soliton solution of the KdV equation.9 In
particular, the spectral property of the 2Nth-order differential operator associated with the linear-
ized KdV equation has been investigated by extending the classical Sturmian theory. See also a
related work dealing with the stability of the N-soliton solutions in the KdV hierarchy.10 In the
case of the BO equation, however, the eigenvalue equation �3.29� is not purely differential equa-
tion but actually integrodifferential equation since it includes the Hilbert transform. This makes
the spectral analysis more difficult. Quite recently, a new method was developed to characterize
the spectral property of LN for N=2.8 The extension to the general N-soliton solutions of the BO
equation and its hierarchy is still to be resolved. It is noteworthy that P�HN� can be evaluated
explicitly for the N-soliton profile UN. This calculation is presented in Appendix B. The stability
analysis developed in this paper would suggest that n�LN� is equal to P�HN�. This interesting issue
will be pursued in a future study.

APPENDIX A: PROOF OF THE N-SOLITON SOLUTION

In this Appendix, we provide a direct proof of the N-soliton solution �1.7� of the nth higher-
order BO equation �1.3� by means of an elementary theory of determinants. For convenience, we
write down some basic formulas for determinants upon which our proof relies. Let F be an N
�N matrix with elements f jk given by �1.7b� and Fjk be the cofactor of f jk. The expansion of �F�
by elements and their cofactors is given in two ways:

	
k=1

N

f jkFlk = � jl�F� , �A1a�

	
j=1

N

f jkFjl = �kl�F� . �A1b�

The following formula is a consequence of �A1�:
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j,k=1

N

�f j + gk�f jkFjk = 	
j=1

N

�f j + gj��F� . �A2�

The differential rule applied to the determinant �F� gives

�F�x = 	
j=1

N

Fjj , �A3a�

�F�tn = �− 1�n	
j=1

N

cjFjj , �A3b�

where cj= �n+1�aj
n /2n. To carry out the proof, it is necessary to assign the time dependence of the

eigenfunction � j for the discrete spectrum 
 j. This can be accomplished simply by replacing the
phase factor � j introduced in �2.13� by xj which is defined in �1.6�. We first show that �2.15� can
be rewritten in an alternative determinantal form �1.7�. The solution to �2.13� is found by using
Cramer’s rule as

� j = i	
k=1

N
Fkj

�F�
. �A4�

We put f j=aj and gj=−aj in �A2� to derive the relation

	
j,k=1

N

Fjk = 	
j=1

N

Fjj . �A5�

It follows from �A3� to �A5� that

	
j=1

N

� j = i�ln�F��x. �A6�

Substituting �A6� and its complex conjugate expression into �2.15�, we find that �2.15� coincides
with �1.7�.

Let us now proceed to the proof of the N-soliton solution. We substitute �1.7� and �2.14� into
�1.3� and integrate it once with respect to x to recast �1.3� into the form

i��F�*�F�tn − �F��F�tn
* �/�F�*�F� = �− 1�n�n + 1�	

j=1

N �aj

2
�n−1

� j
*� j , �A7�

where we have used the relation 
 j=−aj /2. The following identity has been established by using
Jacobi’s formula for determinants:

i� �F�*Fjk

ak
−

�F�Fkj
*

aj
� = 2

��F�� j�*��F��k�
ajak

, �j,k = 1,2, . . . ,n� . �A8�

Indeed, �A8� coincides with �A20� in Ref. 7 with the identification f = �F�* ,� jk=Fjk
* ,� j=� j

*. If we
multiply �A8� with j=k by cj and sum up with respect to j, we obtain

i

2	
j=1

N

cj��F�*Fjj − �F�Fjj
* � =

n + 1

2n 	
j=1

N

aj
n−1� j

*� j�F�*�F� . �A9�

The left-hand side of �A9� is modified further by introducing the formula �A3b� and its complex
conjugate expression. It leads, after dividing the resultant expression by �F�* �F�, to �A7� and thus
completing the proof.
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APPENDIX B: POSITIVE EIGENVALUES OF THE HESSIAN MATRIX HN

The Hessian matrix HN is defined by �3.31�. It is a real symmetric matrix whose elements are
calculated explicitly for the N-soliton solution. Indeed, by taking �=0 in �2.10�, the nth conser-
vation law corresponding to u=uN reduces to

In = 2��− 1�n	
l=1

N

bl
n−1, �bl = − 
t� . �B1�

If we regard HN as a function of � j�j=1,2 , . . . ,N�, we obtain from �1.9b� and �1.10�

�HN

�� j
= Ij+1, �j = 1,2, . . . ,N� . �B2�

Hence

hjk =
�Ij+1

��k
= 2��− 1� j+1j	

l=1

N

bl
j−1 �bl

��k
. �B3�

Let P= �pjk�1�j,k�N and Q= �qjk�i�j,k�N be N�N matrices with elements

pjk = 2��− 1� j+1jbk
j−1, �B4a�

qjk =
�� j

�bk
=

N + 1

j

��N−j+1

�bk
, �B4b�

respectively. Note that the right-hand side of �B4b� follows from �3.11�. Using the above-
presented definition, we can rewrite �B3� in the form

HN = PQ−1, �B5�

if Q−1 exists. To show the nonsingular nature of Q, we use the definition �3.7a� of �N−j+1 and
�B4b� to evaluate the determinant of Q. A simple calculation immediately leads to

�Q� =
�N + 1�N

N! �
1�j�k�N

�bk − bj� . �B6�

Since bj�bk for j�k, we confirm that �Q � �0, implying that Q is invertible.
It now follows from �B5� that

QTHNQ = QTP . �B7�

In accordance with Sylvester’s law of inertia, one can see from �B7� that the number of positive
eigenvalues of HN coincides.with that of QTP. The latter can be counted easily, as we shall now
demonstrate. Using �B4�, the �j ,k� element of QTP becomes

�QTP� jk = 2��N + 1�	
l=1

N

�− 1�l+1��N−l+1

�bj
bk

l−1. �B8�

We differentiate �3.5� by bj and then put x=bk to derive the relation
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l=1

N

�− 1�l+1��N−l+1

�bj
bk

l−1 = � jk �
l=1

�l�j�

�bl − bk� . �B9�

Introducing �B9� into �B8�, we find that QTP is a diagonal matrix. We can order the magnitude of
bj as b1�b2� ¯ �bN�0 without loss of generality. Then, �B8� and �B9� indicate that the
number of positive eigenvalues of QTP is equal to ��N+1� /2� where �x� denotes the integer part
of x. If we take account of �B7� and Sylvester’s law of inertia, we conclude that p�HN�
= ��N+1� /2�.
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In this paper variational principles for eigenvalues of an abstract model of the
Klein–Gordon equation with electromagnetic potential are established. They are
used to characterize and estimate eigenvalues in cases where the essential spectrum
has a gap around 0, even in the presence of complex eigenvalues. As a conse-
quence, a comparison between eigenvalues of the Klein–Gordon equation in Rd and
eigenvalues of certain Schrödinger operators is obtained. The results are illustrated
on examples including the Klein–Gordon equation with Coulomb and square-well
potential. © 2006 American Institute of Physics. �DOI: 10.1063/1.2345108�

I. INTRODUCTION

The motion of a relativistic spinless particle of mass m and charge e in an electromagnetic

field with scalar potential � and vector potential A� is described by the Klein–Gordon equation

�− �− i�
�

�t
− e��2

+ c2�− i� � −
e

c
A��2

+ m2c4�U = 0; �1.1�

here c is the speed of light and � is the Planck constant. If we set

U�x,t� ¬ e�i�/��tu�x�, x � Rd, t � R ,

denote the multiplication operator by e� in L2�Rd� by V, the positive symmetric operator

c2�−i��−�e /c�A� �2 in L2�Rd� by A0 and set �ªmc2, then �1.1� becomes a quadratic eigenvalue
problem of the form

�− �� − V�2 + A0 + �2�u = 0, � � C . �1.2�

As a consequence, the spectral properties of �1.2� determine the solvability of the time-
dependent Klein–Gordon equation �1.1� subject to certain initial conditions. The abstract spectral
problem �1.2� has been studied by a number of authors under various conditions on V and on A0,
using different techniques �see Ref. 6 for a list of references�.

In recent papers6,7 the abstract Klein–Gordon equation �1.2� was investigated by means of
associated block operator matrices and suitable indefinite inner products, imposing rather general
conditions on the unbounded operator V. These conditions, which will also be used in the present
paper, ensure that the essential spectrum of problem �1.2� has a gap around 0, but they do not
exclude the occurrence of complex eigenvalues.
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It is the aim of this paper to establish variational principles for eigenvalues of the spectral
problem �1.2� in the spectral gap around 0 and to derive eigenvalue estimates and comparisons
with eigenvalues of certain Schrödinger operators. As in the case of Dirac operators, standard
variational principles do not apply to eigenvalues in gaps of the essential spectrum; to overcome
this difficulty, other functionals than the classical Rayleigh functional have been used, see, e.g.,
Refs. 2 and 4, and references therein.

In general the assumptions on V do not guarantee that the sum of operators on the left-hand
side of �1.2� is densely defined, and hence the corresponding operator T��� has to be introduced by
means of quadratic forms. The variational principles are proved for abstract quadratic eigenvalue
problems of the form �1.2� in a Hilbert space H with an arbitrary self-adjoint operator A0�0 in H
and a symmetric operator V in H; the proof uses variational principles for eigenvalues of operator
functions defined on an arbitrary interval, recently proved in Ref. 2. As a result of the possible
presence of complex eigenvalues, an index shift occurs, which is characterized by means of a
linearization of the operator polynomial T.

The paper is organized as follows. In Sec. II we associate an operator polynomial T formally
given by

T��� = A0 + �2 − �� − V�2, � � C ,

with �1.2�. Assuming that D�A0
1/2��D�V� and SªV�A0+�2�−1/2=S0+S1 with �S0��1 and S1

compact �cf. Ref. 6�, we obtain the operators T��� via the forms

t����x,y� = �A0
1/2x,A0

1/2y� + �2�x,y� − ��V − ��x,�V − �̄�y� ,

which are defined for all x ,y�D�A0
1/2�. The spectrum, eigenvalues, etc., of the abstract Klein–

Gordon equation �1.2� are given by the spectrum, eigenvalues, etc., of the operator polynomial T.
In order to investigate the spectral properties of T, we use two different auxiliary objects. First

we employ the operator polynomial L given by

L��� = I − �S* − �H0
−1/2��S − �H0

−1/2�, � � C ,

whose values are bounded operators in H. We show that T���=H0
1/2L���H0

1/2 and that the essential
spectrum of T on the real axis has a gap around 0 and for every point � in this gap the number of
negative eigenvalues of T is finite. Second, we introduce a family

A�0
= � �0 I

T��0� 2V − �0
�, �0 � C ,

of operators in the space H1/2 � H, where H1/2= �D�H0
1/2� , �H0

1/2 · ,H0
1/2 · ��. For every fixed �0

���T�, A�0
can be considered as a linearization of T. We prove that the spectra, eigenvalues, and

essential spectra of T and A�0
, respectively, coincide. Note that the particular operator A0 coin-

cides with the block operator matrix used in Ref. 6 to study the spectral problem �1.2�. We use the
more flexible choice of �0, e.g., to maximize the range of applicability of our variational principle
in the spectral gap. Using an indefinite product on H1/2 � H induced by the form t��0� in the first
component, we show that the essential spectrum of A�0

, and hence of T, is real and has a gap
around 0, and that the nonreal spectrum consists of at most finitely many pairs of complex
conjugate eigenvalues of finite algebraic multiplicity.

In Sec. III we establish variational principles for real eigenvalues of T in the spectral gap
around 0; for the result of Ref. 2 that is applied here it is convenient that the domain of the form
t��� is independent of �. The functionals p± used in this characterization, which replace the
Rayleigh functionals used for linear spectral problems, are defined as the roots p±�x� of the
quadratic equation t����x�=0 �if the latter are real�. In certain circumstances including the pres-
ence of complex eigenvalues an index shift may occur in the variational principle.

In Sec. IV we use the variational principles derived in Sec. III to establish various bounds for
the eigenvalues of the abstract Klein–Gordon equation �1.2�. These bounds are obtained by esti-
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mating the functionals p± in the particular cases that V is semibounded, bounded, or has a definite
sign. Further refined estimates for eigenvalues of the Klein–Gordon equation in the spectral gap
are obtained by comparing them with eigenvalues of Schrödinger operators of the form

H± = ±
1

2�
A0 + V = ±

1

2m
�− i� � −

e

c
A��2

+ e� .

It turns out that for the Klein–Gordon equation in Rd these estimates are sharp in the sense that for
c→� the eigenvalues of the Klein–Gordon equation converge to the respective eigenvalues of the
Schrödinger operators above.

Finally, in Sec. V we illustrate our results by applying them to the Klein–Gordon equation in
Rd with Coulomb and square-well potential. In the Coulomb case we compare our results with the
explicitly known eigenvalues. In the square-well case we choose the depth of the potential so that
complex eigenvalues occur �cf. Ref. 11� and illustrate how our results apply in this situation.

In the following we introduce some notation, which is used throughout the paper.
For a closed linear operator A in a Hilbert space we denote by D�A� the domain of A and, if

applicable, by Q�A� its form domain. We also use D�·� for domains of quadratic forms.
Let T be an operator function on C such that T��� is a closed linear operator in a Hilbert space

for every ��C. The spectrum, the resolvent set, the point spectrum, and the essential spectrum of
T are defined by

	�T� ª �� � C: 0 � 	�T����	, ��T� ª C \ 	�T� ,

	p�T� ª �� � C: 0 � 	p�T����	 ,

	ess�T� ª �� � C: T��� is not Fredholm	 ,

respectively; here a closed operator is called Fredholm if its kernel is finite dimensional and its
range has finite �algebraic� co-dimension �which implies that the range is closed�. Note that �
�	ess�T�⇔0�	ess�T����; thus the above-presented definition of the essential spectrum corre-
sponds to the essential spectrum 	e3�·� of linear operators defined in Ref. 1, Chap IX.

For a self-adjoint operator A in a Hilbert space and an interval I�R let LI�A� denote the
spectral subspace of A corresponding to I. Further, we define


−�A� ª dim L�−�,0��A� .

If 
−�A� is finite, then the negative spectrum of A consists only of finitely many eigenvalues of
finite multiplicity and 
−�A� is equal to the number of these eigenvalues counted with multiplici-
ties.

II. THE QUADRATIC OPERATOR POLYNOMIAL T

Let �H , �· , · �� be a Hilbert space with corresponding norm �·�, A0�0 a self-adjoint operator in
H ,��0 a real constant, and V a symmetric operator in H and set

H0 ª A0 + �2.

Note that H0��2 and D�H0
1/2�=D�A0

1/2�.
The following assumptions play a crucial role throughout the paper:
�A1� D�A0

1/2��D�V�,
�A2� SªVH0

−1/2=S0+S1 such that �S0��1 and S1 is compact.
Note that in order to satisfy assumption �A2� an arbitrary constant may be added to the

operator V, which induces a shift in the spectral parameter in �1.2�.
Assumption �A1� implies that V is both A0

1/2-bounded and H0
1/2-bounded, i.e., there exist a1, b1,

a2, b2�0 such that
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�Vx� � a1�x� + b1�A0
1/2x� , �2.1�

�Vx� � a2�x� + b2�H0
1/2x� �2.2�

for x�D�A0
1/2�=D�H0

1/2�. This shows that the operator S in assumption �A2� is bounded in H;
assumption �A2� then implies that �2.1� and �2.2� hold with b1�1 and b2�1, respectively.

Remark 2.1: Note that �2.1� is equivalent to

�Vx�2 � a3�x�2 + b3�A0
1/2x�2, x � D�A0

1/2� , �2.3�

with constants a3, b3�0; moreover, �2.1� holds with b1�1 if and only if �2.3� holds with b3

�1 �cf. Ref. 3, Sec. V.4.1�.
Under the above-noted assumptions we introduce the family t���, ��C, of sesquilinear forms

by

t����x,y� ª �A0
1/2x,A0

1/2y� + �2�x,y� − ��V − ��x,�V − �̄�y� = �H0
1/2x,H0

1/2y� − ��V − ��x,�V − �̄�y�

�2.4�

for all x ,y�D�t����ªD�A0
1/2�. As usual, the corresponding quadratic form is defined by the

relation t����x�ªt����x ,x� for x�D�t����.
Proposition 2.2: The form t��� is closed and sectorial for all ��C. Moreover, t�·��x� is

holomorphic on C for x�D�A0
1/2�.

Proof: The holomorphy of the function t�·��x� is clear. From �2.1� and Remark 2.1 it follows
that there exist a4, b4�0, b4�1, such that for all x�D�A0

1/2�,

��V − ��x�2 � a4�x�2 + b4�A0
1/2x�2.

This together with


��V − ��x,�V − �̄�x�
 � ��V − ��x� · ��V − �̄�x� = ��V − ��x�2

implies that the quadratic form ��V−�� · , �V− �̄� · � is relatively bounded with respect to the form
�A0

1/2 · ,A0
1/2 · � with relative bound less than 1. Hence, by Ref. 3, Theorem VI.1.33, the quadratic

form t��� is closed and sectorial for ��C. �

Proposition 2.2 and the first representation theorem �see Ref. 3, Theorem VI.2.1 or Ref. 10,
Theorem VIII.16� show that there exist m-sectorial operators T���, ��C, in H such that

t����x,y� = �T���x,y�, x � D�T����, y � D�t���� . �2.5�

Since the domain of t��� is independent of �, the family T is a holomorphic family of operators
of type �B� �cf. Ref. 3, Sec. VII.4�. Formally, T��� is given by

T��� = A0 + �2 − �V − ��2;

this is a correct identity, e.g., if V is bounded, but in general the right-hand side of the latter
equality may have a very small domain.

In the following we show that there exists a real point �0 in the resolvent set of T such that the
negative spectral subspace of T��0� is finite dimensional. For this purpose we consider the opera-
tor polynomial

L��� ª I − �S* − �H0
−1/2��S − �H0

−1/2�, � � C ,

which was introduced in Ref. 6. Assumption �A1� guarantees that the coefficients of L are bounded
operators.

Proposition 2.3: Suppose that assumption �A1� holds.

�i� For every ��C the operator identity
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T��� = H0
1/2L���H0

1/2 �2.6�

holds; hence,

D�T���� = �x � D�H0
1/2�:L���H0

1/2x � D�H0
1/2�	

= �x � D�H0
1/2�:�I − S*S�H0

1/2x � D�H0
1/2�	 = D�T�0�� , �2.7�

which is independent of �.
�ii� 	�T��R=	�L��R, 	p�T�=	p�L�, 	ess�T��R=	ess�L��R.
�iii� For � ,�0�C the following relation holds:

T��� = T��0� + �� − �0��2V − � − �0� . �2.8�

Proof: �i� For x ,y�D�t���� we have

�L���H0
1/2x,H0

1/2y� = ��I − �S* − �H0
−1/2��S − �H0

−1/2��H0
1/2x,H0

1/2y�

= �H0
1/2x,H0

1/2y� − ��S − �H0
1/2�H0

1/2x,�S − �̄H0
−1/2�H0

1/2y�

= �H0
1/2x,H0

1/2y� − ��V − ��x,�V − �̄�y� = t����x,y� . �2.9�

For the inclusion H0
1/2L���H0

1/2�T���, let x�D�H0
1/2L���H0

1/2��D�H0
1/2�=D�t����. Then for all

y�D�H0
1/2� we have

�H0
1/2L���H0

1/2x,y� = �L���H0
1/2x,H0

1/2y� = t����x,y� .

Now Ref. 3 �Theorem VI.2.1.iii� implies that x�D�T���� and H0
1/2L���H0

1/2x=T���x.
For the converse inclusion we observe that �2.9� together with �2.5� implies that

�T���x,y� = �L���H0
1/2x,H0

1/2y�, x � D�T����, y � �t���� = D�H0
1/2� .

Since the left-hand side is continuous in y, this shows that for x�D�T���� we have L���H0
1/2x

�D��H0
1/2�*�=D�H0

1/2�.
The first equality in �2.7� is obvious. For the second equality we note that H0

−1/2V�H0
−1/2V

=S* and hence for y�D�H0
1/2��D�V� we have S*y=H0

−1/2Vy�D�H0
1/2�. Thus

D�T���� = �x � D�H0
1/2�: �I − �S* − �H0

−1/2��S − �H0
−1/2��H0

1/2x � D�H0
1/2�	

= �x � D�H0
1/2�: �I − S*S�H0

1/2x + ��H0
−1/2SH0

1/2 + S*�x − �2H0
−1/2x � D�H0

1/2�	

= �x � D�H0
1/2�: �I − S*S�H0

1/2x � D�H0
1/2�	 = D�T�0�� .

�ii� Since H0
1/2 is bijective, it is clear from �1� that 	p�T�=	p�L�. If L��� is boundedly invert-

ible, then obviously T���−1=H0
−1/2L���−1H0

−1/2 is bounded, which shows that 	�T��	�L�. Con-
versely, let ��R be such that T��� is boundedly invertible. Then T��� is self-adjoint and we can
write

H0
1/2T���−1H0

1/2 = H0
1/2
T���
−1/2 sgn�T����
T���
−1/2H0

1/2.

The operator H0
1/2
T���
−1/2 is closed and everywhere defined since D�H0

1/2�=D�t����
=D�
T���
1/2�. Thus H0

1/2
T���
−1/2 is bounded and so is the operator

T���
−1/2H0

1/2� �H0
1/2
T���
−1/2�*. Altogether this shows that L���−1=H0

1/2T���−1H0
1/2 is bounded

and hence 	�L��R�	�T��R.
Next we prove that 	ess�L��R�	ess�T��R. Let ��R be such that T��� is a Fredholm

operator. Then T��� is self-adjoint, and we can write
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L��� = �
T���
1/2H0
−1/2�* sgn�T����
T���
1/2H0

−1/2.

Since T��� is Fredholm, so are 
T���
1/2 and sgn�T���� by the spectral theorem. As H0
−1/2 is a

bijection from H onto D�H0
1/2�=D�t����=D�
T���
1/2�, the operator 
T���
1/2H0

−1/2 is a bounded
Fredholm operator. Hence also �
T���
1/2H0

−1/2�* is a bounded Fredholm operator �cf. Ref. 1, Theo-
rem IX.1.1�. Altogether this implies that L��� is Fredholm.

Conversely, assume that ��	ess�T��R; then �cf. Ref. 1, Theorem IX.1.3 and Theorem
IX.1.6� there exists a singular sequence �xn� for T���, i.e., xn�D�T���� such that �xn�=1,
limn→�T���xn=0 and �xn� has no convergent subsequence. Set ynªH0

1/2xn / �H0
1/2xn�. We prove that

�yn� is a singular sequence for L���. First it is clear that �yn�=1. Then

L���yn =
1

�H0
1/2xn�

L���H0
1/2xn =

1

�H0
1/2xn�

H0
−1/2T���xn → 0

for n→� since H0
−1/2 is bounded and �H0

1/2xn���. Assume now that �yn� has a convergent sub-
sequence �ynk

� with limit y. Then y�0 as �yn�=1 and

xnk
=

1

�H0
−1/2ynk

�
H0

−1/2ynk
→

1

�H0
−1/2y�

H0
−1/2y ,

a contradiction. So �yn� is a singular sequence for L��� and ��	ess�L�.
�iii� Note that by �i�, D�T����=D�T�0��=D�T��0���D�H0

1/2��D�V�. Hence, the left- and
right-hand sides of �2.8� have the same domain. So it suffices to prove this equality for the
corresponding forms. For x ,y�D�H0

1/2� we have

t����x,y� − t��0��x,y� = − ��V − ��x,�V − �̄�y� + ��V − �0�x,�V − �0�y�

= 2��Vx,y� − 2�0�Vx,y� − ��2 − �0
2��x,y� = �� − �0���2V − �� + �0��x,y� ,

which proves the assertion. �

Lemma 2.4: Suppose that assumptions �A1� and �A2� hold. Let ª��1− �S0�� and set �e
−

ªsup 	ess�T�� �−� ,0�, �e
+
ª inf 	ess�T�� �0, +��. Then

	ess�T� � �− ,� = � ,

that is, �e
−�−�0���e

+, and for all �� ��e
− ,�e

+�,


−�T���� � � .

Proof: According to assumption �A2� we have the decomposition

L��� = L0��� + K���, � � C ,

where K��� is compact and

L0��� ª I − �S0
* − �H0

−1/2��S0 − �H0
−1/2� .

Now let �� �− ,�. Then

c� ª �S0� + 
�
�H0
−1/2� � �S0� + ��1 − �S0��

1

�
= 1

and hence

L0��� � I − �S0 − �H0
−1/2�2 � 1 − c�

2 � 0.

In particular, 	�L0�� �− ,�=� and 
−�L0����=0 for �� �− ,�. Since K��� is compact, we
have
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	ess�L� = 	ess�L0� . �2.10�

Now Proposition 2.3 �ii� shows that

	ess�T� � R = 	ess�L� � R = 	ess�L0� � R , �2.11�

which implies the first assertion.
For the second assertion we first observe that �e

−=max 	ess�L0�� �−� ,0�, and �e
+

=min	ess�L0�� �0, +�� by �2.11�. Using the fact that the operator L0�0�= I−S0
*S0 is strictly posi-

tive and, e.g., Ref. 2, Theorem 2.1 and Lemma 2.9, we obtain that 
−�L0������ for �
� ��e

− ,�e
+�. Since K��� is compact, it follows that 
−�L������ for �� ��e

− ,�e
+�. Finally, �2.6�

implies that 
−�T����=
−�L������ for �� ��e
− ,�e

+�. �

Remark 2.5: If S1=0, then the proof of the previous lemma and Proposition 2.3�ii� show that
	�T�� �− ,�=�.

Next we construct a family of linearizations of T in order to investigate the spectral properties
of T.

To this end we introduce the Hilbert spaces H1/2ª �D�H0
1/2� , �H0

1/2 · ,H0
1/2 · �� and GªH1/2

� H. Then according to assumption �A1�, for �0�C, the operator A�0
in G given by

A�0
ª � �0 I

T��0� 2V − �0
�, D�A�0

� = D�T��0�� � H1/2, �2.12�

is well defined. The operator A0 was investigated in Ref. 6. In certain cases, however, e.g., if 0
�	�T�, the operator A0 is not suitable for our purpose.

Lemma 2.6: Suppose that assumption �A1� holds. If �0���T�, then A�0
−�0 is boundedly

invertible in G and hence closed.
Proof: The equation �A�0

−�0��x y�T= �f g�T is equivalent to the relations y= f and T��0�x
+2�V−�0�y=g. The latter equation can be solved for x, namely x=T��0�−1�−2�V−�0�f +g�. Hence
the inverse of A�0

−�0 is given by

�A�0
− �0�−1 = �− 2T��0�−1�V − �0� T��0�−1

I 0
� . �2.13�

We have to show that this operator is bounded in G. The operator T��0�−1 is closed in H with
D�T��0���H1/2 and hence also closed from H to H1/2; therefore it is bounded from H to H1/2. As
V is bounded from H1/2 to H by assumption �A1�, the left upper entry in �2.13� is bounded in H1/2.
Since the embedding from H1/2 into H is bounded, also the left lower entry is bounded. �

For fixed �0�R an inner product

��x

y
�,�x�

y�
��

�0

ª t��0��x,x�� + �y,y��, �x

y
�,�x�

y�
� � G ,

is defined on G, which may be indefinite. If �0���T��R and 
−�T��0����, then �G , �· , · ��0
�

becomes a Pontryagin space with negative index 
−�T��0��, i.e., G is the direct sum of a Hilbert
space and a 
−�T��0��-dimensional anti-Hilbert space.

Due to Lemma 2.4 the assumptions �A1� and �A2� ensure the existence of a point �0 with the
above-mentioned properties.

Proposition 2.7: Suppose that assumptions �A1� and �A2� hold and let �0���T��R be such
that 
−�T��0����. Then the following assertions are true.

�i� The operator A�0
is self-adjoint in the Pontryagin space �G , �· , · ��0

�.
�ii� The various parts of the spectra of T and A�0

coincide:

	�T� = 	�A�0
�, 	p�T� = 	p�A�0

�, 	ess�T� = 	ess�A�0
� .

Proof: �i� For �x y�T�D�A�0
� we have
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�A�0
�x

y
�,�x

y
��

�0

= t��0���0x + y,x� + �T��0�x + �2V − �0�y,y�

= �0t��0��x,x� + t��0��y,x� + t��0��x,y� + ��2V − �0�y,y� ,

which is real; hence A�0
is symmetric in �G , �· , · ��0

�. Since A�0
−�0 is boundedly invertible by

Lemma 2.6, A�0
is self-adjoint.

�ii� Using relation �2.8� in Proposition 2.3�iii� one can easily show that the following equality
holds:

�T��� 0

0 I
� = �− 2V + � + �0 I

I 0
��A�0

− ��� I 0

� − �0 I
�, � � C . �2.14�

Since the operators T��� and A�0
−� are closed in H and G, respectively, it is sufficient to show

that the dimensions of the kernels and the algebraic co-dimensions of the ranges of T��� and
A�0

−� coincide.
To see this we consider the operator on the left-hand side as an operator from the space

D�T���� � H1/2 into H � H1/2 and A�0
−� as an operator from D�T��0�� � H1/2 into H1/2 � H; note

that according to Eq. �2.7�, D�T��0��=D�T����. Next we observe that the last operator on the
right-hand side of �2.14� is bijective from D�T��0�� � H1/2 onto D�T��0�� � H1/2 since
D�T��0���H1/2, and that the first operator is bijective from H1/2 � H onto H � H1/2 since
H1/2�D�V�.

Therefore the factorization �2.14� implies that

dim ker T��� = dim ker�A�0
− �� , �2.15�

dim�H/ran T���� = dim��H1/2 � H�/ran�A�0
− ��� , �2.16�

where in the latter equation the factor spaces are purely algebraic. Now the claim follows from the
facts that ��	�T� if and only if both numbers on the left-hand sides of �2.15� and �2.16� are 0,
��	p�T� if and only if dim ker�T�����0, and ��	ess�T� if and only if both numbers on the
left-hand sides of �2.15� and �2.16� are finite, and analogously for A�0

−�. �

Theorem 2.8: Suppose that assumptions �A1� and �A2� hold.

�i� The essential spectrum 	ess�T� is real and has a gap around 0; more exactly,

	ess�T� � �− ,� = � ,

where ª �1− �S0���.
�ii� The nonreal spectrum of T is symmetric with respect to the real axis and consists of at most

finitely many complex conjugate pairs of eigenvalues of finite algebraic multiplicity.
�iii� If S1=0, then the spectrum of T is real and

	�T� � �− ,� = � .

If S0=0, then

	ess�T� = �� � R: �2 � 	ess�H0�	 .

Proof: Claim �ii� and the first assertion in �i� follow from Proposition 2.7 and general prop-
erties of self-adjoint operators in Pontryagin spaces �cf. Ref. 5 and also Ref. 6, Sec. II�. The
remaining assertions in �i� are immediate from Lemma 2.4. The first claim in �iii� follows from
Remark 2.5. Since by �i� 	ess�T��R, Proposition 2.3 �ii� shows that 	ess�T�=	ess�L�. According to
�2.10� we have 	ess�L�=	ess�L0�, where L0���= I−�2H0

−1 since S0=0. Now the claim follows from
the spectral mapping theorem. �

103506-8 M. Langer and C. Tretter J. Math. Phys. 47, 103506 �2006�

                                                                                                                                    



III. VARIATIONAL PRINCIPLE

In this section we characterize the eigenvalues of T in certain parts of the gap of the essential
spectrum around 0. To this end we introduce functionals p+ and p− on the set D�H0

1/2� \ �0	 as
follows. For x�D�H0

1/2�, x�0, we define p+�x� and p−�x�, with p−�x�� p+�x�, to be the roots of
the quadratic equation

t����x� = − �2�x�2 + 2�Vx,x�� − �Vx,Vx� + �H0
1/2x,H0

1/2x� = 0

if the latter are real; otherwise we set p+�x�ª−� and p−�x�ª +�. If p±�x� are finite and �x�=1,
then p±�x� are given by the formula

p±�x� = �Vx,x� ± �Vx,x�2 − �Vx,Vx� + �H0
1/2x,H0

1/2x�; �3.1�

for �x��1 we observe that p±�cx�= p±�x� for c�C \ �0	. Moreover, set

�− ª sup�p−�x�: x � D�H0
1/2�,p−�x� � + �	 ,

�+ ª inf�p+�x�: x � D�H0
1/2�,p+�x� � − �	 .

The functionals p± are related to the numerical range of the form polynomial t,

W�t� = �� � C: t����x� = 0 for some x � D�H0
1/2�,x � 0	 .

In fact, W�t��R is equal to the union of all finite values of p+�x� and p−�x� with x�D�H0
1/2�, x

�0. Obviously, 	p�T��W�t�, and for every ��	p�T��R with eigenvector x, we have �
= p+�x� or �= p−�x�.

The following theorem contains a variational characterization of the eigenvalues of T in the
spectral gap around 0 to the right of �− in terms of the functionals p+.

Theorem 3.1: Suppose that assumptions �A1� and �A2� are satisfied and assume that �−

��e
+
ªmin�	ess�T�� �0,���.

�i� ��− ,�e
+��	ess�T�=� and there exists an ��0 with ��− ,�−+�����T�.

�ii� Let �0� ��− ,�e
+����T� and denote by �1

+��2
+� ¯ ��N+

+ , N+�N0� ��	, the finite or in-
finite sequence of the eigenvalues of T in the interval ��0 ,�e

+�, counted with multiplicities.
Then 
+ª
−�T��0���� and

�n
+ = min

L�D�H0
1/2�

dim L=n+
+

max
x�L
x�0

p+�x�, n = 1,2, . . . ,N+. �3.2�

If N+=�, then limn→��n
+=�e

+; otherwise,

inf
L�D�H0

1/2�

dim L=n+
+

max
x�L
x�0

p+�x� = �e
+, n � N+.

Remark 3.2: The condition x�0 in the second variations above can be replaced by �x�=1.
Proof: We want to apply Ref. 2, Theorem 2.1 to t defined on the intervals ��− ,�e

+� and
��0 ,�e

+�, respectively. Assumptions �i� and �ii� of this theorem are satisfied because T is a holo-
morphic family of operators of type �B�. For assumption �iii� of this theorem we have to show that
if t��0��x�=0 for �0��− and x�D�H0

1/2�, x�0, then

t����x� � 0 for � � ��−,�0� ,
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t����x� � 0 for � � �0. �3.3�

In fact, if t��0��x�=0 and �0��−, then t�·��x� has two zeros, �0 is the larger one of these and the
smaller one is ��−. Since t�·��x� is concave, �3.3� follows.

Lemma 2.4 shows that there exists a �0� ��− ,�e
+� such that 
−�T��0����, which is exactly

assumption �iv� of Ref. 2, Theorem 2.1.
Finally, assumption �v� of Ref. 2, Theorem 2.1 requires that for every �0��− and ��0 there

exists a positive number ���0 ,�� such that 0�t��0��x�����0 ,�� for x�D�H0
1/2�, �x�=1, implies

t��0+���x��0. We show that we can choose ���0 ,��=���0−�−�. In fact, it follows from
t��0��x��0 that p±�x�� ��, and hence we can write t��0��x�= ��0− p−�x���p+�x�−�0�. There-
fore if 0�t��0��x�����0 ,��, then

p+�x� =
t��0��x�

�0 − p−�x�
+ �0 �

���0,��
�0 − �−

+ �0 = � + �0,

which implies that t��0+���x��0.
Now all assumptions of Ref. 2, Theorem 2.1 are satisfied on the interval ��− ,�e

+� and hence
also for every subinterval. The second claim in �i� follows directly from Ref. 2, Theorem 2.1
applied on the interval ��− ,�e

+�. The first part of �i� is obvious if �−�0; if �−�0, then
��− ,0��	ess�T�=� follows from Ref. 2, Lemma 2.9 and the fact that 
−�T�0���� by Lemma
2.4.

All assertions in �ii� follow from Ref. 2, Theorem 2.1 applied on the interval ��0 ,�e
+�. Note

that the functional p+ defined here differs slightly from the definition in Ref. 2, where p+�x�
=−� if both zeros of t�·��x� are ��−; however, this modification does not affect the maximum in
�3.2� since in every subspace of dimension greater than 
+ there exists an x such that p+�x���−.�

The following theorem is the analogue of Theorem 3.1 for the eigenvalues in the spectral gap
of T around 0 to the left of �+. In this case the functionals p− are used for the variational principle.

Theorem 3.3: Suppose that assumptions �A1� and �A2� are satisfied and assume that �+

��e
−
ªmax�	ess�T�� �−� ,0��.

�i� ��e
− ,�+��	ess�T�=� and there exists an ��0 with ��+−� ,�+����T�.

�ii� Let �0� ��e
− ,�+����T� and denote by �1

−��2
−� ¯ ��N−

− , N−�N0� ��	, the finite or infi-
nite sequence of the eigenvalues of T in the interval ��e

− ,�0�, counted with multiplicities.
Then 
−ª
−�T��0���� and

�n
− = max

L�D�H0
1/2�

dim L=n+
−

min
x�L
x�0

p−�x�, n = 1,2, . . . ,N−.

If N−=�, then limn→��n
−=�e

−; otherwise,

sup
L�D�H0

1/2�

dim L=n+
−

min
x�L
x�0

p−�x� = �e
−, n � N−.

In the following we characterize the index shift in the variational principles above by means
of the types of eigenvalues of T with respect to the indefinite inner product �· , · ��0

. As a conse-
quence we obtain an estimate of the number of nonreal eigenvalues of T in terms of the index
shift.

Proposition 3.4: Suppose that assumptions �A1� and �A2� hold. Let �0���T��R be such that

−�T��0����. Further, let ��R be an eigenvalue of T and x�D�T��0��, x�0, a corresponding
eigenvector, i.e., T��0�x=0. Then x= � x

��−�0�x � is an eigenvector of A�0
corresponding to �. More-

over, the following equivalences are true:
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�x,x��0
� 0 ⇔ �� � �0 and � � p−�x�

or

� � �0 and � � p+�x�
�

�x,x��0
� 0 ⇔ �� � �0 and � � p+�x�

or

� � �0 and � � p−�x�
�

�x,x��0
= 0 ⇔ � = p+�x� = p−�x� .

Proof: From the definition of A�0
in �2.12� and Proposition 2.3�iii� it follows that

�A�0
− ��� x

�� − �0�x
� = � 0

T��0�x + �� − �0��2V − �0 − ��x
� = � 0

T���x
� = 0.

Without loss of generality we can assume that �x�=1. Using �2.8� we obtain

�� x

�� − �0�x
�,� x

�� − �0�x
��

�0

= t��0��x,x� + ��� − �0�x,�� − �0�x� = �T��0�x,x� + �� − �0�2

= �T���x,x� − �� − �0���2V − � − �0�x,x� + �� − �0�2

= �� − �0��− �2Vx,x� + � + �0 + � − �0� = 2�� − �0��� − �Vx,x�� .

�3.4�

Formula �3.1� shows that �Vx ,x�= 1
2 �p+�x�+ p−�x��. Since �= p+�x� or �= p−�x�, this implies that

� � �Vx,x� ⇔ � � p−�x� ,

� � �Vx,x� ⇔ � � p+�x� ,

� = �Vx,x� ⇔ � = p+�x� = p−�x� .

Now the claim is immediate from �3.4� �

Proposition 3.5: Suppose that the assumptions of Theorem 3.1 hold and choose �0 as in
Theorem 3.1. Then every eigenvalue ���0 of T is of positive type with respect to the inner
product �· , · ��0

, i.e., �x ,x��0
�0 for every eigenvector x and x= � x

��−�0�x �. Moreover, the index shift


+ in Theorem 3.1 satisfies


+ = �
��	�T��C+

dim L��A�0
� + �

��	�T���−�,�0�
dim− L��A�0

� , �3.5�

where L��A�0
� denotes the algebraic eigenspace of A�0

at � and dim− L��A�0
� denotes the

maximal dimension of a nonpositive subspace of L��A�0
�.

Proof: Since �0��−, it is clear that for every eigenvalue ���0 with eigenvector x we have
��p−�x�. Hence by the previous theorem it follows that �x ,x��0

�0. According to Theorem 3.1,
the index shift 
+ is the negative index of the Pontryagin space �G , �· , · ��0

�. By Ref. 5 it is hence
equal to

�
��	�T��C+

dim L��A�0
� + �

��	�T��R
dim− L��A�0

� .

By the first claim we have dim− L��A�0
�=0 for ���0. �
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Since dim L��A�0
�=dim L��A�0

�, the following corollary is an immediate consequence of
�3.5�.

Corollary 3.6: The number of nonreal eigenvalues of T, counted with multiplicities, is at most
2
+.

IV. EIGENVALUE ESTIMATES

If additional information on the operator V is available, we can estimate the functionals p± and
hence the eigenvalues of T as well as the numbers �±. Further we compare the eigenvalues of T
with eigenvalues of a certain abstract Schrödinger operator.

Proposition 4.1: Suppose that assumption �A1� holds. Let x�D�H0
1/2�, x�0, be such that

p±�x�� �� and let a3, b3�0, b3�1, be real constants such that �2.3� is satisfied.

�i� If V is bounded from above, V�vmax, then

p−�x� � vmax − max�0,�2 − a3	 � vmax.

If, in addition, vmax�0, then

p−�x� � vmax − max�0,vmax
2 + �2 − a3	 � vmax � 0.

�ii� If V is bounded from below, V�vmin, then

p+�x� � vmin + max�0,�2 − a3	 � vmin.

�iii� If V is bounded, vmin�V�vmax, then

p−�x� � vmax − max�0,�2 − �V�2	 � vmax,

p+�x� � vmin + max�0,�2 − �V�2	 � vmin.

If, in addition, vmax�0, then

p−�x� � vmax − max�0,vmax
2 + �2 − �V�2	 � vmax � 0,

p+�x� � vmin + max�0,vmax
2 + �2 − �V�2	 � vmin.

Proof: Let x�D�H0
1/2�=D�A0

1/2�, �x�=1, be such that p−�x�� +�. From �3.1� and �2.3� it
follows that

p−�x� = �Vx,x� − �Vx,x�2 − �Vx,Vx� + �A0
1/2x,A0

1/2x� + �2

� �Vx,x� − max�0,− �Vx�2 + �A0
1/2x�2 + �2	

� �Vx,x� − max�0,− a3 + �1 − b3��A0
1/2x�2 + �2	

� �Vx,x� − max�0,− a3 + �2	 ,

where we have used that b3�1 in �2.3�. This proves the first inequality in �i�; for the second
inequality one additionally has to use the estimate �Vx ,x�2�vmax

2 . The proof of �ii� is completely
analogous. The claim in �iii� is an immediate consequence of �i� and �ii� since in this case we can
choose a3= �V�2 in �2.3�. �

The above proposition together with the variational principle in Theorem 3.1 yields the fol-
lowing estimate for eigenvalues of T. We restrict ourselves to the case that V is bounded; the other
cases are similar.

Corollary 4.2: Suppose that V is bounded, vmin�V�vmax and that assumption �A2� is satis-
fied. Then, using the notation of Theorem 3.1, we have

103506-12 M. Langer and C. Tretter J. Math. Phys. 47, 103506 �2006�

                                                                                                                                    



�− � vmax − max�0,�2 − �V�2	 � vmax

and

�k
+ � vmin + max�0,�2 − �V�2	 � vmin, k = 1,2, . . . ,N+.

If the operator V is bounded and has a definite sign, then assumption �A2� in Theorem 3.1 can
be replaced by assuming that �V��2� �or even vmax−vmin�2�, cf. Ref. 9�. In this case, the
spectrum of T is real, the essential spectrum has a gap to the right of −� and there is no index shift
in the variational principle.

Theorem 4.3: Assume that −2��vmin�V�0. Then for x�D�H0
1/2�, x�0,

p−�x� � − �, p+�x� � � + vmin � − � .

If, in addition, vmin�−2�, then 	�T��R, �−� ,�+vmin����T� and the eigenvalues �1
+��2

+

� ¯ ��N+

+ , N+�N0� ��	, of T in ��+vmin,�e
+�, �e

+=min�	ess�T�� �−� , +���, can be character-
ized by

�n
+ = min

L�D�H0
1/2�

dim L=n

max
x�L
x�0

p+�x�, n = 1,2, . . . ,N+. �4.1�

Proof: Let Et be the spectral family of the self-adjoint operator V. Then

�Vx�2 = �
vmin

0

t2d�Etx,x� � vmin�
vmin

0

td�Etx,x� = vmin�Vx,x� .

Using this estimate and the fact that the function f�t�= t+�t+a�2+b, t�R, is increasing if a
�R and b�0 we obtain

p+�x� = �Vx,x� + �Vx,x�2 − �Vx�2 + �A0
1/2x�2 + �2 � �Vx,x� + �Vx,x�2 − vmin�Vx,x� + �2

�4.2�

=�Vx,x� +��Vx,x� −
vmin

2
�2

−
vmin

2

4
+ �2 � vmin +�vmin −

vmin

2
�2

−
vmin

2

4
+ �2 = vmin + � .

�4.3�

Note that b=−vmin
2 /4+�2�0 since 0�vmin�−2�. This also shows that the roots in �4.3� and

hence in �4.2� are real. The proof for the estimate of p−�x� is similar.
Now assume that vmin�−2�. Then for �� �−� ,�+vmin� we have �V−���� and hence the

self-adjoint operator T���=H0− �V−��2 is strictly positive and 
−�T����=0. This implies that
�−� ,�+vmin����T�.

Further, we observe that for every x�D�H0
1/2�, x�0, the equation t����x�=0 has two real

solutions p±�x� and hence

W�t� = �p±�x�: x � D�H0
1/2�,x � 0	 � �− �,− �� � �� + vmin, + �� .

Since ��T���, we have 	�T��W�T�=W�t��R �cf. Ref. 8, Theorem 26.6�.
Finally, it is not difficult to see that the proof of Theorem 3.1 carries over with �0� �−� ,�

+vmin� and 
+=
−�T��0��=0. �

The following theorem provides a comparison between the eigenvalues of the Klein–Gordon
equation and a corresponding Schrödinger operator.

Theorem 4.4: Suppose that assumptions �A1� and �A2� as well as the assumptions of Theo-
rem 3.1 hold. Then the operator
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H+ ª
1

2�
A0 + V

is self-adjoint and bounded from below. If �1
+��2

+� ¯ ��M+

+ , M+�N0� ��	, are the eigenval-
ues of H+ below 	ess�H+� and �n

+
ªmin	ess�H+� for n�M+, then the eigenvalues �n

+ of T satisfy
the estimate

�n
+ � �n+
+

+ + �, n = 1, . . . ,N+.

Proof: It follows from �2.1� and the fact that A0
1/2 is A0-bounded with relative bound 0 that V

is A0-bounded with relative bound 0; hence H+ is self-adjoint and bounded from below. Let h+ be
the quadratic form associated with H+, i.e.,

h+�x� ª
1

2�
�A0

1/2x,A0
1/2x� + �Vx,x�, x � D�A0

1/2� .

An elementary calculation shows that

t����x� = 2��h+ + � − ���x� − ��V − � + ��x�2, x � D�A0
1/2� . �4.4�

Let x�D�A0
1/2�, �x�=1. Then �4.4� implies that t����x��0 for all ��h+�x�+�. Hence p+�x�

�h+�x�+� since t�·��x� is concave. Using Theorem 3.1 and the standard variational principle for
semi-bounded self-adjoint operators, we obtain

�n
+ = min

L�D�H0
1/2�

dim L=n+
+

max
x�L
�x�=1

p+�x� � min
L�D�H0

1/2�

dim L=n+
+

max
x�L
�x�=1

h+�x� + � = �n+
+

+ + � ,

which completes the proof. �

Theorem 4.5: Suppose that assumptions �A1� and �A2� as well as the assumptions of Theo-
rem 3.3 hold. Then the operator

H− ª −
1

2�
A0 + V

is self-adjoint and bounded from above. If �1
−��2

−� ¯ ��M−

− , M−�N0� ��	, are the eigenval-
ues of H− above 	ess�H−� and �n

−
ªmax	ess�H−� for n�M−, then the eigenvalues �n

− of T satisfy
the estimate

�n
− � �n+
−

− − �, n = 1, . . . ,N−.

Proof: The proof is completely analogous to that of Theorem 4.4 if relation �4.4� is replaced
by

t����x� = − 2��h− − � − ���x� − ��V − � − ��x�2, x � D�A0
1/2� ,

where h− is the quadratic form associated with H−. �

Remark 4.6:

�i� For the Klein–Gordon equation in Rd we have A0=c2�−i��−e /cA� �2 and �=mc2, and the
operator

H+ =
1

2m
�− i� � −

e

c
A��2

+ V

is the classical Schrödinger operator in Rd.

�ii� In the particular case that A� =0 the estimate
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�k−
+

+ − mc2 � �k
+ �4.5�

in Theorem 4.4 is sharp in the following sense. The Schrödinger operator H+
=−��2 /2m��+V and hence its eigenvalues on the right-hand side of �4.5� do not depend on
c; one can show that 
+=0 if c is large enough and that limc→��p+�x�−mc2�
= �H+x ,x� / �x�2 uniformly on finite-dimensional spaces and hence

lim
c→�

��k−
+

+ − mc2� = �k
+.

It was already proved in Ref. 12 that �n
+−mc2 converges to some eigenvalue of H+.

V. THE KLEIN–GORDON EQUATION IN Rd

In this section we consider the Klein–Gordon equation in Rd. Here H=L2�Rd�,

A0 = c2�− i� � −
e

c
A��2

,

H0 = c2�− i� � −
e

c
A��2

+ m2c4,

and V is the multiplication operator by a function V :Rd→R. Note that here and in the sequel

�−i��−�e /c�A� �2 denotes the self-adjoint operator �−i��−�e /c�A� �*�−i��−�e /c�A� �.
Lemma 5.1: Assume that �e /c�A� is −i��-bounded with relative bound less than 1 and let

Ĥ0ªc2�−i�� �2+m2c4. Then Ĥ0
1/2H0

−1/2 is bounded and D�H0
1/2�=W1,2�Rd�.

Proof: Obviously, Ĥ0
1/2H0

−1/2 is closed. By the assumption on A� it follows that −i��−�e /c�A� is

closed and D�−i��−�e /c�A� �=D�−i�� �. Hence we have the following chain of equalities of
domains:

D�H0
1/2� = Q�H0� = Q�c2�− i� � −

e

c
A��2

+ m2c4� = Q��− i� � −
e

c
A��2�

= D�− i� � −
e

c
A�� = D�− i� � � = Q��− i� � �2� = Q�c2�− i� � �2 + m2c4� = Q�Ĥ0�

= D�Ĥ0
1/2� = W1,2�Rd� .

Thus Ĥ0
1/2H0

−1/2 is everywhere defined and hence bounded. �

Note that in general D�H0��D�Ĥ0�.
Corollary 5.2: If VĤ0

−1/2 is bounded or compact, then so is VH0
−1/2.

Now the following sufficient conditions for assumptions �A1� and �A2�, proved in Ref. 6,

Theorem 6.1 for the case A� =0 carry over to the case A� �0.

Proposition 5.3: Assume that d�3 and that �e /c�A� is −i��-bounded with relative bound less
than 1. Then the following assertions are true.

�i� If V�Lp�Rd� with d� p��, then VH0
−1/2 is compact.

�ii� There exists a constant �0�0 �depending on A� � such that if 
V�x�
�� / 
x
, ���0, then

assumptions �A1� and �A2� are satisfied with S0=VH0
−1/2, S1=0. If A� =0, then we can

choose �0=c��d−2� /2, and we have �S0��2� /c��d−2�.
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As an illustration of Theorem 4.4 we consider two examples: the Klein–Gordon equation with
Coulomb potential in R3 and with square-well potential in R. In both cases we assume that there

is no vector potential, i.e., A� =0.
Example 1: The Coulomb potential. The eigenvalues �n,l of the Klein–Gordon equation in R3

with Coulomb potential are known explicitly, see, e.g., Ref. 12. In this case

V�x� = −
Ze2


x

,

where Z is the atomic number. If Z�1/2�68.5, where =e2 /�c�1/137 is the fine structure
constant, then V satisfies assumptions �A1� and �A2� according to Proposition 5.3. Since V is
−�-compact �cf. Ref. 3, Lemma V.5.8�, the difference of the resolvents of T��� and H0−�2 is
compact for every ��R and hence 	ess�T�= �−� ,−mc2�� �mc2 , +�� �cf. also Ref. 13�. The ei-
genvalues �n,l all lie in the interval �0,mc2�; they are given by the formula

�n,l = mc2�1 +
�Z�2

�n − l −
1

2
+�l +

1

2
�2

− �Z�2�2�
−1/2

,
n = 1,2, . . . ,

l = 0,1, . . . ,n − 1,

and have multiplicity 2l+1. The eigenvalues �n,l can be expanded as

�n,l = mc2 −
me4Z2

2�2

1

n2 −
me8Z4

2�4

1

n4� n

l +
1

2

−
3

4� 1

c2 + O� 1

c4�, c → �;

here the second term is exactly an eigenvalue of the Schrödinger operator,

�n = −
me4Z2

2�2

1

n2 ,

which has multiplicity n2. In this case the estimate of the Klein–Gordon eigenvalues by the
Schrödinger eigenvalues proved in Theorem 4.4 reads

�n,l − mc2 � �n, l = 0,1, . . . ,n − 1, �5.1�

for n=1,2 , . . .. The values for n=3 and Z=1,

�3,0 − mc2 = − 1.511 79 eV,

�3,1 − mc2 = − 1.511 75 eV, �3 = − 1.511 74 eV

�3,2 − mc2 = − 1.511 75 eV,

show that the estimate �5.1� is rather tight.
Example 2: The square-well. It was noted already in Ref. 11 that the Klein–Gordon equation

in R3 with square-well potential has complex eigenvalues if the potential is sufficiently deep. Here
we consider a square-well potential in R,

V�x� = �− v1, 
x
 � a

0, 
x
 � a ,
� �5.2�

where a�0 and v1�0 are constants. The operator of multiplication by V in L2�R� satisfies
assumption �A1� since it is bounded; it also satisfies assumption �A2�. In fact, V is relatively
compact with respect to A0 and H0 since V has compact support. By Theorem 2.8, this shows that
the essential spectrum of the operator polynomial T is given by
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	ess�T� = �− �,− mc2� � �mc2,�� .

Theorem 4.3 implies that if v1�2mc2, then the spectrum is real, �−�−mc2, the eigenvalues are
confined to the interval �mc2−v1 ,mc2� and all these eigenvalues, �1

+��2
+� ¯ ��N+

+ , can be
characterized by the variational principle �4.1�.

If v1 is increased such that v1�2mc2, then eigenvalues �1
−��2

−�¯ start to emerge at −mc2,
the bottom of the gap in the essential spectrum. If we choose �0 in Theorem 3.1 between �1

− and
�1

+, then we can characterize all eigenvalues �n
+ and �n

− to the right and left of �0, respectively, by
the variational principles in Theorems 3.1 and 3.3 with 
±=0.

If v1 reaches some critical value vcrit, then the two eigenvalues �1
+ and �1

− meet; if v1�vcrit,
they become a pair of nonreal complex conjugate eigenvalues. We can still characterize the real
eigenvalues to the right of �− and the eigenvalues to the left of �+; in both cases the index shifts

± are greater than or equal to the number of pairs of nonreal eigenvalues. Note that the enumera-
tion of the real eigenvalues changes whenever a new pair of complex eigenvalues appears.

The index shift, say 
+, can be determined exactly: it is equal to the number of negative
eigenvalues of T��0�. For example, if m=c=�=a=1 and v1=2.11, then there are no eigenvalues
in the interval �−mc2 ,0�, so we can choose �0=0, and the second sum in �3.5� is 0. Since the
Schrödinger operator T�0� has exactly one negative eigenvalue, it follows that 
+=1. Now formula
�3.5� implies that there is exactly one pair of nonreal complex conjugate eigenvalues, which are
algebraically simple.

Finally, we illustrate the estimate of the Klein–Gordon eigenvalues �n
+ by the eigenvalues �k

+

of the Schrödinger operator H+=− 1
2 �d2/dx2�+V proved in Theorem 4.4, assuming that m=c=�

=a=1. We consider the two special values v1=2.07 and v1=2.11. In the first case, for which the
spectrum is displayed in Fig. 1, there are two eigenvalues �1

+��2
+ in the spectral gap �−1,1� �and

one eigenvalue �1
−�, the index shift 
+ is 0 and hence we obtain the estimates

�1
+ � �1

+ + mc2, �2
+ � �2

+ + mc2;

in fact, the corresponding numerical values are

�1
+ = − 0.887 840, �1

+ + 1 = − 0.532 969, �5.3�

�2
+ = 0.186 578, �2

+ + 1 = 0.764 013. �5.4�

In the second case, for which the spectrum is displayed in Fig. 2, there is one eigenvalue �1
+ in the

spectral gap �−1,1�, the index shift 
+ is 1 and hence

�1
+ � �2

+ + mc2;

here the numerical values are

FIG. 1. Spectrum for 2mc2�v1=2.07�vcrit, m=c=�=a=1.

FIG. 2. Spectrum for v1=2.11�vcrit, m=c=�=a=1.
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�1
+ = 0.148 517, �2

+ + 1 = 0.744 769.

If c is increased to its physical value, then the Klein–Gordon eigenvalues �n
+ come much closer to

the respective shifted Schrödinger eigenvalues.
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Classification of integrable Hamiltonian hydrodynamic
chains associated with Kupershmidt’s brackets
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We characterize a class of integrable Hamiltonian hydrodynamic chains, based on
the necessary condition for the integrability provided by the vanishing of the
Haantjes tensor. We prove that the vanishing of the first few components of the
Haantjes tensor is already sufficiently restrictive, and allows a complete description
of the corresponding Hamiltonian densities. In each of the cases we were able to
explicitly construct a generating function for conservation laws, thus establishing
the integrability. © 2006 American Institute of Physics. �DOI: 10.1063/1.2354590�

I. INTRODUCTION

We consider Hamiltonian systems of the form

ut = �B
d

dx
+

d

dx
Bt� �h

�u
, �1�

where u= �u1 ,u2 ,u3 , . . . �t is an infinite-component column vector of the dependent variables, and
the matrix B of the Hamiltonian operator B�d/dx�+ �d/dx�Bt is defined as Bij = ���i−1�
+��ui+j−1. Explicitly, one has

B =�
�u1 �u2 �u3 . . . .

�� + ��u2 �� + ��u3 �� + ��u4 . . . .

�2� + ��u3 �2� + ��u4 �2� + ��u5 . . . .

. . . . . . . . . . . . . . . .
�;

here � and � are arbitrary constants. Hamiltonian operators of this type first appeared in Ref. 8,
and belong to the general class introduced in Ref. 2. The Hamiltonian density h is assumed to be
a function of the first two independent variables u1 ,u2 only: h=h�u1 ,u2�. In this paper we address
the problem of the classification of all densities h�u1 ,u2� such that the corresponding Hamiltonian
system is integrable �partial results were reported earlier in Ref. 8�. The integrability of Hamil-
tonian chains of the type �1� can be defined by either of two properties:

�1� The existence of infinitely many additional conservation laws which Poisson commute with
the Hamiltonian 	h�u1 ,u2�dx, see Ref. 8.

�2� The existence of infinitely many hydrodynamic reductions, see Refs. 5, 6, and 3.

a�Electronic mail: e.v.ferapontov@lboro.ac.uk
b�Electronic mail: k.r.khusnutdinova@lboro.ac.uk
c�Electronic mail: d.g.marshall@lboro.ac.uk
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To derive the integrability conditions we utilize the second approach, based on the calculation
of the so-called Haantjes tensor.7 Let us first represent the system �1� in a hydrodynamic form,

ut = V�u�ux,

where V=v j
i is an ��� matrix. This matrix has the following properties:

�a� each row of V contains finitely many nonzero elements;
�b� each matrix element of V depends on finitely many variables ui.

Infinite systems of this type are known as “hydrodynamic chains.” The properties �a� and �b�
ensure that both the Nijenhuis tensor,

Njk
i = v j

p�upvk
i − vk

p�upv j
i − vp

i ��ujvk
p − �ukv j

p� �2�

�the standard summation convention over repeated indices is adopted�, and the Haantjes tensor,

Hjk
i = Npr

i v j
pvk

r − Njr
p vp

i vk
r − Nrk

p vp
i v j

r + Njk
p vr

ivp
r , �3�

are well-defined objects, so that the calculation of each particular component Hjk
i requires finitely

many summations only. Moreover, for a fixed upper index i, one has finitely many nonzero
components Hjk

i , see Ref. 3. According to the results of Tsarev,15 the vanishing of the Haantjes
tensor is necessary and sufficient for the integrability of finite-component Hamiltonian systems of
hydrodynamic type by the generalized hodograph method. Thus, we formulate our main

Conjecture: The vanishing of the Haantjes tensor is a necessary and sufficient condition for
the integrability of Hamiltonian hydrodynamic chains. In particular, it implies the existence of
infinitely many Poisson commuting conservation laws, and infinitely many hydrodynamic reduc-
tions.

The necessity part of this conjecture follows from the general result of Ref. 3, according to
which the vanishing of the Haantjes tensor is a necessary condition for the integrability of hydro-
dynamic chains �not necessarily Hamiltonian�. The sufficiency is a far more delicate property and
requires, as a subproblem, the classification of infinite-component Hamiltonian structures. The
conjecture is supported by all examples of integrable Hamiltonian chains known to us. Since
components of the Haantjes tensor can be calculated using computer algebra, this approach pro-
vides an effective classification criterion. The main goal of this paper is to demonstrate that the
conjecture is indeed true for Hamiltonian chains of the type �1�.

Upon setting the first components Hjk
1 equal to zero we obtain the expressions for all third-

order partial derivatives of the Hamiltonian density h�u1 ,u2� in terms of lower order derivatives,
see Eq. �4� in Sec. II. A complete list of integrable Hamiltonian densities is obtained in Sec. III by
solving these equations for h�u1 ,u2�. In the general case ���0, �+2��0� we have three essen-
tially different examples,

h�u1,u2� = �u2 + f�u1���/��+2��,

where f�u1�=a�u1+c���+2��/�+b�u1−c���+2��/�, as well as

h�u1,u2� = �u1 + c�−��+��/�u2 + a�u1 − c�2+�/��u1 + c�−1−�/�

and

h�u1,u2� = u2 + c�u1�2;

here a ,b ,c are arbitrary constants. In the case �=0 we have two extra examples,

h�u1,u2� = ln�u2 + f�u1��, f� = cf ,

and
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h�u1,u2� = ecu1
u2 + e2cu1

.

Finally, the case �+2�=0 gives three extra examples,

h�u1,u2� = eau2+f�u1�,

here

f�u1� =
b

2
b2 + 1
ln


b2 + 1 + cu1


b2 + 1 − cu1
+

1

2
ln�b2 + 1 − c2�u1�2� ,

as well as

h�u1,u2� = �u1 + c�u2 + b�u1 + c�ln
u1 + c

u1 − c

and

h�u1,u2� = u1u2 +
c

u1 .

These examples correct the list presented in Ref. 8.
We prove in Sec. IV that all remaining components of the Haantjes tensor of the correspond-

ing Hamiltonian chains vanish identically by virtue of �4�.
In Sec. V we demonstrate that the requirement of the existence of an additional conservation

law of the form p�u1 ,u2 ,u3�t=q�u1 ,u2 ,u3 ,u4�x leads to the same relations �4�.
As shown in Sec. VI, Eq. �4� implies the existence of a generating function of conservation

laws and, hence, the infinity of conservation laws. This establishes the integrability of all examples
constructed in Sec. III. In the general case the generating function is expressed in terms of a
hypergeometric function of Gauss.

II. DERIVATION OF THE INTEGRABILITY CONDITIONS

There are two “trivial” cases which are to be excluded from the further analysis:

�i� �+�=0. In this case the Haantjes tensor vanishes identically for any Hamiltonian density
h�u1 ,u2�, indeed, the first two equations for u1, u2 form an independent subsystem, while the
remaining equations become strictly lower-triangular.

�ii� �= ��+��h2+ ��+2��u2h22+2�u1h12=0. In this case the first equation of the chain de-
couples from the rest, taking the form ut

1=��u1�ux
1 where ��u1� is a function of u1. The

Haantjes tensor is also identically zero.

Assuming in what follows that neither of the expressions in �i� and �ii� vanishes �they appear
as denominators in the formulas to follow�, calculating the components Hjk

1 of the Haantjes tensor
�one can use computer algebra to perform calculations of this type�, and setting them equal to zero,
we obtain the following expressions for third-order partial derivatives of the Hamiltonian density
h�u1 ,u2�:

h222 =
�2� + 3��h22

2

�� + ��h2
,

h122 =
�2� + 3��h22h12

�� + ��h2
,
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h112 =
�� + 2��h12

2 + �� + ��h22h11

�� + ��h2
,

h111 =
− ��� + 2��u2h12

3 + �� + ����2� + 3��h2 + 3�� + 2��u2h22�h11h12

�� + ��h2�

+
2��� + 3��u1h12

2 h11 + 2��u1h22h11
2

�� + ��h2�
; �4�

here �= ��+��h2+ ��+2��u2h22+2�u1h12, and lower indices indicate differentiation with respect
to u1 and u2. We have verified the involutivity of this system.

Remark 1: Since u1 is the density of the momentum of the Hamiltonian structure �1�, the
addition of terms linear in u1 to the Hamiltonian density h effects neither the integrability of the
chain, nor the vanishing of the Haantjes tensor. Thus, the classification to follow is carried out up
to transformations of the form

h → ah + bu1 + c , �5�

where a, b, c are arbitrary constants.

III. INTEGRABLE HAMILTONIAN DENSITIES

We begin with the general case when both � and �+2� are nonzero. The cases when either of
them vanishes will be considered separately.

A. General case

If h22�0 then, using the first two equations �4�, we obtain

h22 = ch2
�2�+3��/��+��, c = const.

This can be integrated twice to give h= �u2+ f�u1���/��+2��+g�u1�. The substitution into the third
equation implies g�=0. Thus, up to transformations �5�, we have

h�u1,u2� = �u2 + f�u1���/��+2��. �6�

Substituting this into the remaining expression for h111 we obtain an ODE for f�u1�,

f� = �f�
�� + ��f� − 2�u1f�

�� + ����� + 2��f − 2�u1f��
,

with the general solution

f = a�u1 + c���+2��/� + b�u1 − c���+2��/�;

here a ,b ,c are arbitrary constants �we thank Sasha Veselov for this observation�.
If h22=0 then the first two equations �4� are satisfied identically, while the last two equations

imply either

h�u1,u2� = �u1 + c�−��+��/�u2 + ��u1� , �7�

where ��u1� satisfies an ODE

�� =
��

�
� �

u1 − c
−

� + 3�

u1 + c
�

with the general solution
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� = a�u1 − c�2+�/��u1 + c�−1−�/�,

or

h�u1,u2� = u2 + c�u1�2. �8�

We point out that the integrability of the Hamiltonian chain with the density �8� was established in
Ref. 8.

B. Case �=0

The equations for h take the form

h222 =
2h22

2

h2
,

h122 =
2h22h12

h2
,

h112 =
h11h22 + h12

2

h2
,

h111 =
− u2h12

3 + 2h2h11h12 + 3u2h22h12h11

h2�h2 + u2h22�
.

If h22�0 then, up to transformations �5�, the first three equations imply

h�u1,u2� = ln�u2 + f�u1�� , �9�

and the substitution of this ansatz into the fourth equation gives f�f − f�f�=0, which integrates to
f�=cf , c=const. If h22=0 then the first two equations �4� are satisfied identically, while the other
two imply either

h�u1,u2� = ecu1
u2 + e2cu1

, �10�

or

h�u1,u2� = u2 + c�u1�2, �11�

c=const, the latter case coinciding with �8�.

C. Case �+2�=0

The equations for h take the form

h222 =
h22

2

h2
,

h122 =
h22h12

h2
,

h112 =
h11h22

h2
,
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h111 =
h2h11h12 + 2u1h12

2 h11 − 4u1h22h11
2

h2�h2 − 2u1h12�
.

If h22�0 then, up to transformations �5�, the first three equations imply

h�u1,u2� = eau2+f�u1�. �12�

The substitution of this ansatz into the fourth equation gives an ODE for f ,

f� + 2f�f� = 2u1�f�f� − 2�f��2� ,

which can be solved as follows. Setting f�=1/w we obtain w��w−2u1�=2w��w�−1�. Introducing
w=v+2u1 we arrive at an autonomous ODE v�v=2�v�+2��v�+1� which integrates twice leading
to the general solution

f =
b

2
b2 + 1
ln


b2 + 1 + cu1


b2 + 1 − cu1
+

1

2
ln�b2 + 1 − c2�u1�2�, c,b = const,

or its linear degeneration f =cu1. Setting b=sinh a we can rewrite the above expression in the form

f =
1

2 cosh a
�ea ln�cosh a + cu1� + e−a ln�cosh a − cu1�� .

The case h22=0 leads to either

h�u1,u2� = �u1 + c�u2 + b�u1 + c�ln
u1 + c

u1 − c
, �13�

where c ,b are arbitrary constants, or its degeneration,

h�u1,u2� = u1u2 +
c

u1 . �14�

Further degeneration h22=h12=0 results in

h�u1,u2� = u2 + c�u1�2. �15�

IV. THE VANISHING OF THE HAANTJES TENSOR

In this section we demonstrate that the relations �4�, which were obtained from the require-
ment of the vanishing of the first few components Hjk

1 of the Haantjes tensor, are already suffi-
ciently restrictive and imply the vanishing of all other components. The proof utilizes an important
property of Hamiltonian chains �1�, namely, the existence of finite-component reductions for any
�not necessarily integrable� Hamiltonian density h.12 Let us parametrize ui in terms of finitely
many “moments” va, a=1, . . . ,n, as follows:

uk =
1

2 +
�

�
�k − 1�

�
1

n

�va�2+�/��k−1�,

k=1,2 ,3 , . . . . �we consider the generic case when all expressions in the denominators are non-
vanishing, see Ref. 12 for a discussion of the exceptional cases�. Thus,
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u1 =
1

2�
1

n

�va�2, u2 =
1

2 +
�

�

�
1

n

�va�2+�/�, �16�

etc. One can verify that under this substitution the infinite chain �1�,

ut
k = ���k − 1� + ��uk�h1�x + ���k − 1� + ��uk+1�h2�x + ��ukh1�x + �� + ���uk+1h2�x,

reduces to an n-component “symmetric” conservative system for va,

vt
a = ��vah1 + �va�1+�/�h2�x, �17�

a=1, . . . ,n, see Ref. 13. Here h�u1 ,u2� is an arbitrary Hamiltonian density, not necessarily satis-
fying the integrability conditions �4�, and u1 ,u2 are given by �16�. Notice that the system �17� is
manifestly Hamiltonian: vt

a=���h /�va�x. Similar formulas can be obtained if the density h de-
pends on more than two u’s. We have the following

Theorem 1: For a Hamiltonian density h�u1 ,u2� satisfying the integrability conditions �4�, the
Haantjes tensor of any finite-component reduction �17� is identically zero.

The proof follows from the explicit formulas for the Nijenhuis tensor,

N23
1 = �v1v2v3��v2��/� − �v3��/���2�2u1�h11h12

2 − h11
2 h22� + ��2 +

�

�
���u2 − 2��v1��/�u1��h11h22h12

− h12
3 � + �� + ���2�1 +

�

�
�u3 − ��2 +

�

�
�2

�v1��/�u2��h11h22
2 − h12

2 h22� + �� + ��h2��� + 2��

� �h11h12 + �v1v2v3��/�h22
2 � + ��v1v2��/� + �v1v3��/� + �v2v3��/��h12h22 + ��� + ����v1��/�

+ �v2��/� + �v3��/�� − �2� + ����v1��/��h11h22 + ����v1��/� + �v2��/� + �v3��/�� + �2� + ��

��v1��/��h12
2 ��

and

N12
1 = �2�v1�2v2��v1��/� − �v2��/����2 +

�

�
���u2 − 2��v1��/�u1��h11h22h12 − h12

3 � + 2�2u1�h11h12
2

− h11
2 h22� + ��2 +

�

�
��� − 2���v1��/�u2 − 2�� + ���1 +

�

�
�u3��h12

2 h22 − h22
2 h11�

− ��� + ��h2v
2��v1v2��/��2�� + ���1 +

�

�
�u3 + �� + 2����v2��/� − �v1��/���v1�2+�/��h22

2

+ �− ��v1��/��− �2 +
�

�
�u2 − 2�v2��/�u1 + 2��v1��/� − �v2��/���v1�2� + ���2 +

�

�
�

� ��v1��/� + �v2��/��u2 + 2�v1v2��/�u1 + 2�1 +
�

�
�u3 + �v1�2+�/��2�v2��/� − 3�v1��/��

+ �v2��/��v1�2��h12
2 + 2�u1h11

2 + �2��� + ���v1��/� + ��v2��/��u1 + ��2 +
�

�
����v2��/�

− �v1��/���v1�2 + u2��h11h12 + �2�1 +
�

�
���� + ���v1��/� + ��v2��/��u3 + �2 +

�

�
�

��v1��/��2�v2��/��� + ��u3 + ��2�v2�2�/� − �v1�2�/� − �v1v2��/���v1�2��h12h22 − ��
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+ ��2h2v
2���� − ���v1��/� + ��v2��/��h11 + ��� + ���v2��/� − ��v1��/���v1v2��/�h22

+ �2��v1v2��/� + ���v2�2�/� − �v1�2�/���h12� ,

which were obtained using the integrability conditions �4�. Notice that, since �17� is invariant
under permutations of v’s, it is sufficient to specify N23

1 and N12
1 only. We emphasize that these

expressions do not explicitly depend on the size n of the reduction �17�: this dependence is hidden
in the variables u1 ,u2 ,u3. The vanishing of the Haantjes tensor �3� is now a straightforward
algebraic calculation.

Thus, for the Hamiltonian densities h�u1 ,u2� which satisfy the integrability conditions �4�, the
corresponding hydrodynamic chains possess diagonalizable n-component reductions �17� for any
value of n. According to the results of Ref. 3, this implies that the full Haantjes tensor of the
Hamiltonian chain vanishes identically.

V. CONSERVATION LAWS

For any Hamiltonian density h�u1 ,u2� the system �1� necessarily possesses two conservation
laws, namely,

ut
1 = �2�u1h1 + �� + 2��u2h2 − �h�x

and

ht = ��� + ��u3h2
2 + �� + 2��u2h1h2 + �u1h1

2�x,

which correspond to the conservation of the momentum and the Hamiltonian, respectively. Let us
require that there exists an “extra” conservation law of the form

p�u1,u2,u3�t = q�u1,u2,u3,u4�x. �18�

Theorem 2: The integrability conditions �4� are necessary and sufficient for the existence of
an additional conservation law of the form �18�.

The proof is computational: substituting in for ut
1 ,ut

2 ,ut
3 ,ut

4 into the left-hand side of �18�, we
collect coefficients at ux

1 , . . . ,ux
4 and equate them to zero. This results in a system of first-order

partial differential equations for the flux q,

q1 = �3� + 2��u4p3h12 + �� + 2��u2�p1h12 + p2h11� + 2�� + ��u3�p3h11 + p2h12�

+ �h1p1 + 2�u1p1h11,

q2 = �3� + 2��u4h22p3 + �� + ���2u3�h12p3 + h22p2� + h2p1� + ��u2p2 + 2��u1p1 + u2p2��h12

+ u2�� + 2��p1h22 + �h1p2,

q3 = �h1p3 + �� + ��h2p2,

q4 = �� + ��h2p3.

Calculating the consistency conditions for the flux, qij =qji, we obtain all second-order partial
derivatives of the density p,

p11 =
2�2� + ����� + ��u3h12

2 + �u1h11
2 �p3 + �2�2�2 + 5�� + 2�2�u2h12p3 + �� + ��2p2h2�h11

�� + ��2h2
2 ,
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p12 =
�� + ��2h2h12p2 + �2� + ���2�u1h12h11 + �� + ���2u3h22h12 + h2h11��p3

�� + ��2h2
2

+
�2�2 + 5�� + 2�2�u2�h12

2 + h22h11�p3

�� + ��2h2
2 ,

p22 =
�2� + ����� + ���2u3p3h22

2 + 2h12h2p3� + 2��� + 2��u2h22 + �u1h12�p3h12� + �� + ��2h22h2p2

�� + ��2h2
,

p13 =
�2� + ��h12p3

�� + ��h2
,

p23 =
�2� + ��h22p3

�� + ��h2
,

p33 = 0.

These equations imply, in particular, that p is linear in u3, and q is linear in u4. Upon imposing the
consistency condition �pij�k= �pik� j we get a system of third-order partial differential equations for
the density h�u1 ,u2�, which is identical to �4�. This finishes the proof.

We will demonstrate in Sec. VI that Eq. �4� imply the existence of a generating function for
conservation laws. Thus, we can claim that the existence of one additional conservation law is
already very restrictive and implies the existence of an infinity of conservation laws, thus mani-
festing the integrability.

Remark: Taking p�u1 ,u2 ,u3� defined by the above equations as a Hamiltonian density, one
obtains a system �1� which commutes with the Hamiltonian system defined by the density
h�u1 ,u2�, and also has the identically vanishing Haantjes tensor. We emphasize that the densities
p�u1 ,u2 ,u3� arising in this way are necessarily linear in u3. One can formulate a natural question:
describe all Hamiltonian densities of the form p�u1 ,u2 ,u3� such that the associated chain �1� has
the vanishing Haantjes tensor. A detailed analysis of this problem leads to the two possibilities: �i�
the density p is linear in u3. In this case one can show the existence of a lower order commuting
flow with the Hamiltonian density h�u1 ,u2�, which brings us back to the situation discussed earlier.

�ii� The density p is such that the quantity 2�u1p1+ ��+2��u2p2+2��+��u3p3−�p is a func-
tion of the first coordinate u1 only. In this case the first equation of the chain,

ut
1 = �2�u1p1 + �� + 2��u2p2 + 2�� + ��u3p3 − �p�x,

decouples from the rest. The general form of all such densities is

p = 
u1F�u2�u1�−��+2��/2�,u3�u1�−��+��/�� + f�u1� ,

where F and f are arbitrary functions. This result shows that, essentially, there exist no nontrivial
“genuine” integrable densities of the form p�u1 ,u2 ,u3�.

VI. GENERATING FUNCTIONS FOR CONSERVATION LAWS

The structure of reductions �17� suggests that one should seek a generating function for
conservation laws in the form

� = ��p,u1,u2,u3, . . . � �19�

so that the following Gibbons-type relation holds:
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�t − ��h1 + �1 + �/��p�/�h2��x = �p�pt − ��ph1 + p1+�/�h2�x�; �20�

this relation is required to be satisfied identically modulo �1�. We will demonstrate the existence of
a generating function of this form for any Hamiltonian density satisfying the integrability condi-
tions �4�. Suppose the relation �20� is already established. Then, setting �=const, one has �t

=�x=0, so that the relation �20� takes the form

pt − ��ph1 + p1+�/�h2�x = 0.

This provides an infinite sequence of conserved densities after one expands p as a series in �
by virtue of �19�. The method of generating functions is standard, and can be traced back to, Refs.
1, 4, 9, and 10 see also Ref. 12 for recent developments. A detailed analysis of the relation �20�
reveals that the dependence of � on u2 ,u3 ,u4, etc., is fixed uniquely,

� = �
k=2

�

q1−2�/�−kuk + s�u1,q�, q = p�/�, �21�

while the function s�u1 ,q�, which specifies the dependence of � on u1, satisfies

s1 = q−1−2�/�F, sq =
1

�
q−1−2�/�G . �22�

Here F and G are the following rational expressions in q depending on the Hamiltonian density h:

F =
�h11 + qh12���� + ��qh2 − �� + 2��u2h12� + �� + 2��u2h11�h12 + qh22�
�� + ��h2�q2h22 + 2qh12 + h11� + �2�u1q − �� + 2��u2��h12

2 − h11h22�
,

G =
�� + ��2qh2 + 2��� + 2��u1u2�h12

2 − h11h22� + �� + ��h2��� + 2��qu2h22 − 2�u1h11�
�� + ��h2�q2h22 + 2qh12 + h11� + �2�u1q − �� + 2��u2��h12

2 − h11h22�
.

With the ansatz �21�, all terms in �20� containing pt , px ,ux
3 ,ux

4 , . . ., cancel identically, while the
requirement of cancellation of coefficients at ux

1 and ux
2 results in �22�. The functions F and G

satisfy the relations

F2 = 0, G2 = 0, G1 = �Fq − �� + 2��F/q , �23�

which are the consistency conditions of Eq. �22�. These relations are satisfied identically modulo
the integrability conditions �4�. Conversely, relations �23� imply the integrability conditions �4�.
Notice that, although the variable u2 is seemingly present in the expressions for F and G, the
right-hand sides of �22� do not depend on u2. For each of the cases arising in the classification in
Sec. III, Eq. �22� for s�u1 ,q� can be solved explicitly. Thus, the generating function � can be
reconstructed in closed form. This is mainly due to a simple dependence of the derivative sq on q:
integrating it with respect to q we obtain a closed form expression which, in most of the cases,
automatically solves the equation for s1. We consider the canonical forms �6�–�15� case by case in
the following.

A. Generating functions in the general case: Densities „6…–„8…

For the Hamiltonian density �6� the function s�u1 ,q� is given by
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s�u1,q� =
�2q1−2�/���u1�2 − c2�−�/�

4abc2��2 − 4�2� �a�u1 − c�2�u1 + c��/�F��q�u1 − c�−�/�

2bc�� + 2�� �
+ b�u1 − c��/��u1 + c�2F�−

�q�u1 + c�−�/�

2ac�� + 2�� � + q−2�/�u1;

here F�t�= 2F1�1−2� /� ,1 ,2−2� /� , t� is the hypergeometric function of Gauss. In the case �7�
one has

s�u1,q� =
�2q1−2�/��u1 − c�2−�/�

4ac2��2 − 4�2�
F��q�u1 − c�−�/�

2ac�� + 2�� � + q−2�/�u1;

here F is the same hypergeometric function as above. Finally, the case of �8� leads to

s�u1,q� = �u1 +
� + �

2c�� − 2��
q�q−2�/�. �24�

B. Generating functions in the case �=0: Densities „9…–„11…

Here the relation �20� takes the form

�t − eph2�x = �p�pt − �h1 + eph2�x�

where

� = �
k=2

�

q1−kuk + s�u1,q�, q = ep.

The function s�u1 ,q� satisfies

s1 =
h2�h11 + qh12� + u2�h11h22 − h12

2 �
h2h11 + u2�h11h22 − h12

2 � + 2qh2h12 + q2h2h22
,

sq =
h2�u2h22 + h2�

h2h11 + u2�h11h22 − h12
2 � + 2qh2h12 + q2h2h22

,

which are consistent and define s�u1 ,q� explicitly: for the Hamiltonian density �9� one has

s�u1,q� =
1

c

arctanh�q + f�

cf

�;

recall that f�=cf . The density �10� leads to

s�u1,q� =
1

2
u1 +

1

2c
log�2cecu1

+ q� .

The density �11� gives

s�u1,q� = u1 + q/2c;

notice that this expression can be obtained from �24� by setting �=0.

C. Generating functions in the case �+2�=0: Densities „12…–„15…

Here the relation �20� takes the form �set �=1,�=−2�:
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�t − �h1 − p−2h2��x = �p�pt − �h1p + p−1h2�x� ,

where

� = �
k=2

�

q2−kuk + s�u1,q�, q = p−2.

The function s�u1 ,q� satisfies

s1 = − qh2
h11 + qh12

�h11 + qh12��2u1h12 − h2� − �h12 + qh22��2u1h11 + qh2�
,

sq = −
h2

2

2u1h11 + qh2

�h11 + qh12��2u1h12 − h2� − �h12 + qh22��2u1h11 + qh2�
,

which are consistent and define s�u1 ,q� explicitly: for the Hamiltonian density �12� one has

s�u1,q� = −

b arctanh� cu1


1 + b2�
2
1 + b2

+

b arctanh�2q�1 + b2 − c2�u1�2�2 − cb�b − cu1�2 − cb + 2c2u1

c
1 + b2�1 + �b − cu1�2�
�

4
1 + b2

+
1

8
log�− 4cbq�1 + b2� + 4q2�1 + b2�2 − 4c3bq�u1�2 + 4c4q2�u1�4 − c2 + 8c2qu1�1 + b2��1

− qu1�� .

The density �13� leads to

s�u1,q� =
1

4c
q�u1 + c�2 +

b

2
�1 − log�q�u1 − c�2 + 2cb�� .

In the case of �14� one has

s�u1,q� = qu1 +
1

8c
q2�u1�4.

Finally, the case of �15� gives

s�u1,q� = qu1 +
1

8c
q2;

this follows from �24� when �=1,�=−2.
We point out that the case �=0 requires a special treatment: it corresponds to the chains which

possess linearly degenerate hydrodynamic reductions. The approach of generating functions does
not apply to this class, see, e.g., Ref. 11 for a discussion of a particular example of this type.

VII. CONCLUDING REMARKS

There exists a whole variety of approaches to the classification of integrable Hamiltonian
hydrodynamic chains, based on seemingly different requirements, namely:

�1� the vanishing of the Haantjes tensor;
�2� the existence of infinitely many n-component hydrodynamic reductions for any n;
�3� the existence of one “extra” conservation law.
�4� the existence of a generating function for conservation laws.
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All examples known to us support the evidence that these approaches are essentially equiva-
lent, leading to the same integrability conditions and classification results. Among others, the
approach based on the Haantjes tensor seems to be the most universal, leading to the required
integrability conditions in a straightforward way. We emphasize that components of the Haantjes
tensor can be calculated using computer algebra. Moreover, the vanishing of the first few compo-
nents Hjk

1 is already sufficiently restrictive and implies the identical vanishing of the Haantjes
tensor.

It should be pointed out that, at present, there is no hope to prove the equivalence of the above
listed approaches in the full generality: one first needs a classification of infinite-dimensional
Poisson brackets of hydrodynamic type, which is an interesting and nontrivial problem on its
own.14 Some approaches in this direction were outlined recently in Ref. 12.
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The inverse problem in the calculus of variations for a given set of second-order
ordinary differential equations consists of deciding whether their solutions are those
of Euler–Lagrange equations and whether the Lagrangian, if it exists, is unique.
This paper discusses the exterior differential systems approach to this problem. In
particular, it proposes an algorithmic procedure towards the construction of a cer-
tain differential ideal. The emphasis is not so much on obtaining a complete set of
integrability conditions for the problem, but rather on producing a minimal set to
expedite the differential ideal process. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2358000�

I. INTRODUCTION: THE INVERSE PROBLEM IN THE CALCULUS OF VARIATIONS

The inverse problem in the calculus of variations involves deciding whether for a given
system of second-order ordinary differential equations,

ẍa = Fa�t,xbẋb�, a,b = 1, . . . ,n ,

a so-called multiplier matrix gab�t ,xc , ẋc� can be found, such that

gab�ẍb − Fb� �
d

dt
� �L

� ẋa� −
�L

� ẋa ,

for some Lagrangian function L�t ,xb , ẋb�, and to what extent such a multiplier, if it exists, is
unique. Necessary and sufficient conditions for the existence of a Lagrangian are generally re-
ferred to as the Helmholtz conditions, but have been formulated in the literature in a variety of
different ways. When regarded as conditions that a nonsingular multiplier must satisfy, a concise
description of the Helmholtz conditions was derived by Douglas6 and later recast in the following
form by Sarlet:14

gab = gba, ��gab� = gac�b
c + gbc�a

c, gac�b
c = gbc�a

c,
�gab

� ẋc =
�gac

� ẋb , �1�

where
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�b
a
ª −

1

2

�Fa

� ẋb , �b
a
ª −

�Fa

�xb − �b
c�c

a − ���b
a� ,

and where

� ª

�

�t
+ ẋa �

�xa + Fa �

� ẋa .

Douglas solved this problem for n=2 in the sense that he exhaustively classified all second-order
ODEs according to the existence and multiplicity of solutions of the Helmholtz conditions. He did
this essentially via the Jordan normal forms of the matrix �b

a. The corresponding solution for n
=3 remains unavailable although various subcases for arbitrary n have been elaborated.5,15 Our
principal purpose in this paper is to explore one of the key aspects in the analysis of the inverse
problem using Exterior Differential Systems theory �EDS�. The general structure of the EDS
approach was set out in Anderson and Thompson,2 although these authors only examined the case
of arbitrary n when � is a multiple of the identity. As we will demonstrate, progress using EDS
almost certainly relies on explicit use of the Jordan normal forms of �. This is the approach taken
in the thesis.1 The aspect that we will examine in detail is the so-called differential ideal step, in
which there is an algorithmic search for the largest submodule of a certain module of 2-forms
generating a differential ideal. We will explore the relation of this step to the hierarchies of
integrability conditions for the Helmholtz conditions known in the literature. Importantly, we will
expose the details of this step in the case where � is diagonalizable with distinct eigenfunctions.
We give a nontrivial, three-dimensional example of the step and the way in which it leads directly
to a solution of the Helmholtz conditions. A subsequent paper will deal with the remaining steps
in the EDS process, and we will give a complete solution of a whole class of equations in the sense
of Douglas.

We now outline the geometrical framework upon which progress over the last two or three
decades has depended. In geometric terms, � is a second-order vector field �SODE� on the first-jet
extension J1E of a bundle E→R. For all practical purposes, E can be identified �choosing a
“trivialization”� with a product manifold R�M, and then J1E�R�TM. We shall denote adapted
coordinates on R�TM by �t ,xa ,ua� from now on, and use � for the projection R�TM→R
�M.

Every SODE equips R�TM with a �nonlinear� connection, the connection coefficients being
the functions �b

a just introduced. As a result, an adapted local frame for decomposing arbitrary
vector fields on R�TM into their “horizontal” and “vertical” parts is given by �� ,Ha ,Va	, where

Ha ª
�

�xa − �a
b �

�ub , Va ª
�

�ua .

The dual basis of 1-forms is given by �dt ,�a ,�a	, with

�a
ª dxa − ua dt, �a

ª dua − Fa dt + �b
a�b.

For a given regular Lagrangian function L�C��J1E�, we define the Poincaré-Cartan 1-form �L by

�L ª L dt + dL � S = L dt +
�L

�ua�a,

where S=Va � dxa is the vertical endomorphism, and the Euler-Lagrange equations come from the
unique SODE, determined by �see, e.g., Goldschmidt and Sternberg8�

i�d�L = 0 and dt��� = 1.

Inspired by the properties of the Poincaré-Cartan 2-form d�L, the following theorem from Ref. 4
gives a geometric version of the Helmholtz conditions.

Theorem 1.1: Given a SODE �, the necessary and sufficient conditions for there to be a
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Lagrangian for which � is the Euler-Lagrange field is that there should exist a 2-form �, of
maximal rank, which further has the following properties: � vanishes on any two vertical vector
fields, �4�=0 and d�=0.

Observe that the third and fourth conditions imply that L��=0, and the first condition means
that � has a one-dimensional kernel, which, as shown by the third condition, is spanned by �.
Another important observation is that �, which if it exists, will become the Poincaré-Cartan
2-form d�L of the corresponding Lagrangian, then has the following particularly simple represen-
tation in the adapted frame �dt ,�a ,�a	,

d�L = gab�a ∧ �b, with gab =
�2L

�ua � ub .

There are a number of geometrical ways of expressing this feature, one of which requires a brief
discussion of the calculus of vector fields and forms along the projection � �see Ref. 17, or 11 for
a slightly different approach�.

Vector fields along � are sections of the pullback bundle �*TE over J1E, and we let X���
denote the C��J1E� module of such vector fields. Similarly, ∧��� denotes the graded algebra of
forms along �. There is a canonical vector field along �, given by

T ª

�

�t
+ ua �

�xa .

The natural bases for X��� and X*��� are then �T ,� /�xa	 and �dt ,�a	. We further write X̄��� for

the elements of X��� that have no time component, i.e., X̄���=Sp�� /�xa	. Then, if

X ª X0T + Xa �

�xa

is an arbitrary vector field along �, its horizontal and vertical lift give vector fields on J1E,
respectively, given by

XH
ª X0� + XaHa, XV

ª XaVa.

In what follows, we will almost exclusively have to deal with horizontal and vertical lifts of vector

fields along � that belong to the submodule X̄���. So, in referring to vector fields on J1E of the

form XV ,YH , . . ., it will be understood that X ,Y , . . ., belong to X̄���. This is important, because it
means that all the essential formulas are formally those of the time-independent calculus devel-
oped in Refs. 12 and 13, rather than the corresponding ones in Ref. 17. In particular, we will
frequently use the commutator relations:

�XV,YV� = �DX
VY − DY

VX�V,

�XH,YV� = �DX
HY�V − �DY

VX�H,

�XH,YH� = �DX
HY − DY

HX�H + R�X,Y�V.

Here, DX
V and DX

H, the vertical and horizontal covariant derivative operators, are degree zero
derivations on scalar and vector-valued forms along �, determined by DX

HF=XH�F�, DX
VF

=XV�F� for their action on functions F�C��J1E�:
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DX
H �

�xa = Xb�ba
c �

�xc , DX
V �

�xa = 0

�with �ba
c =��a

c /�ub�, gives the action on X̄��� and the standard duality rules give the action on
1-forms along �. The vector-valued 2-form R along � represents the curvature of the SODE
connection with coordinate form,

R = 1
2Rbc

a �b ∧ �c
�

�

�xa , Rbc
a
ª Hc��b

a� − Hb��c
a� .

We do not distinguish notationally the contact forms �a, as forms on J1E from their counterparts
along �. In fact, there is a dual process of lifting 1-forms along � giving �with an obvious slight
abuse of notation�,

�aH = �a, �aV = �a.

The dynamical covariant derivative � and the Jacobi endomorphism � that appear in �1� arise
naturally through the following formulas:

��,XV� = − XH + ��X�V, ��,XH� = ��X�H + ��X�V.

In coordinates,

� = �b
a �

�xa � �b,

with �b
a as defined before, whereas �, defined to vanish on T and dually on dt, acts on X̄��� �with

dual action on contact forms� by

�F = ��F� on functions, �
�

�xa = �a
b �

�xb , ��a = − �b
a�b.

Now we can give the link we wanted between the geometric Helmholtz conditions of Theorem 1.1
with their coordinate form in �1�. The observation we made about the simple structure of d�L in
the adapted coframe means that the 2-form � on J1E of Theorem 1.1 that we seek is completely
determined by a symmetric type �0,2� tensor along �, of the form g=gab�a � �b �i.e., g vanishes on
T�. To be precise, � is the so-called Kähler lift of g, �=gK, which vanishes on � and further is
defined by

gK�XV,YV� = gK�XH,YH� = 0, gK�XV,YH� = g�X,Y� .

The intrinsic formulation of the conditions �1� �see Ref. 17, or 13 for the autonomous case� then
reads as

�g = 0, g��X,Y� = g�X,�Y�, DX
Vg�Y,Z� = DY

Vg�X,Z� . �2�

In the next section we briefly sketch the ideas of the exterior differential systems approach,
specifically in the context of the inverse problem, and we identify our objectives concerning the
construction of a differential ideal containing all possible two forms �.

II. EDS AND THE INVERSE PROBLEM

The inverse problem involves the search for a closed 2-form and so lends itself to analysis by
EDS. For a general reference to EDS, we refer to Ref. 3. A thorough analysis of the inverse
problem by means of such techniques �at least for autonomous differential equations� can be found
in the work of Grifone and Muzsnay,9,10 where the approach, however, starts from the partial
differential equations that the Lagrangian itself has to satisfy, rather than equations such as �1� for
the multiplier.
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Anderson and Thompson in Ref. 2 describe the three components of the EDS process: finding
a differential ideal, setting up a Pfaffian system for finding the closed 2-forms within that ideal,
and finally analyzing this system, following the Cartan-Kähler theory to determine the generality
of the solution �if any�. We limit ourselves to a brief synopsis of the reasoning that underlies the
first two steps here, with particular emphasis on the new elements involving the eigenspectrum of
� that we want to bring to the differential ideal construction.

Given a SODE �, we know that the 2-form � we are looking for is going to be the Kähler lift
of a symmetric �0,2�-tensor field g along the projection, i.e., g=gab�a � �b, gab=gba. So we start
by considering on J1E the module 	0 of such Kähler lifts: intrinsically, 
 belongs to 	0, if and
only if

i�
 = 0, �3�


�XV,YV� = 
�XH,YH� = 0, �4�


�XV,YH� = 
�YV,XH� . �5�

�During the EDS process we will use lower case 
 as the generic name for our 2-forms, reserving
� for the 2-form of Theorem 1.1.� In coordinates, 	0 is spanned by the 2-forms


ab
ª

1

2
��a ∧ �b + �b ∧ �a� . �6�

Note however, that �dt ,�a ,�a	 may as well be any basis comprising of dt, n horizontal forms, and
n vertical forms. In fact later we will use such a basis made up of the eigenforms of �.

The first step in the EDS approach produces from 	0 a sequence of submodules
	0�	1�	2�¯, arriving finally �or not at all� at a nontrivial submodule 	l=Sp�
k	 generating
a differential ideal. Obtaining 	l consists of computing at each stage the exterior derivative of
forms belonging to the submodule under consideration, and verifying whether they belong to the
ideal generated by that submodule. In principle, whenever an obstruction is found, it is translated
into a further restriction on the admissible 2-forms and the process is restarted from there. We shall
be more specific about this in a moment. But, for the time being, assume that we have found
	l=Sp�
1 , . . . ,
d	, so that

d
k = �h
k ∧ 
h, k = 1, . . . ,d ,

for some 1-forms �h
k. In order to construct a closed 2-form in 	l we first identify a basis of d-tuples

of 1-forms �h
A such that �h

A∧
h=0. Then, if rk

k�	l is required to be closed, the functions rk

must solve the Pfaffian system of equations �the notations are taken to conform with those in Ref.
2�,

drk + rh�k
h + pA�k

A = 0, �7�

for some as yet arbitrary functions pA. The freedom in the choice of pA must then be exploited in
the final part of the EDS procedure. This last part is by no means a straightforward matter; in fact,
it is fair to say that it consists of several steps still and may even, if the involutivity test fails, lead
to prolonging the system and starting again �see, e.g., Ref. 2 for a brief survey�. We will argue in
the final section that it may be better, therefore, to address the partial differential equations of the
inverse problem in a more direct way, once the differential ideal procedure is complete. Our
approach to specific examples should be contrasted with that of Anderson and Thompson,2 who
follow the formal EDS process.

Here are the details of the differential ideal process. At each step 	i, say, we will first identify
the requirements for a 3-form � to be in 
	i�, the ideal generated by 	i, because a large part of
such an analysis does not depend on whether or not �=d
� 
	i�. Once we apply these require-
ments to such d
, the general formula,
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d
�U,V,W� = �
U,V,W

�U„
�V,W�… − 
��U,V�,W�� , �8�

�where a notation like ��,,� will always refer to a cyclic sum over the indicated arguments�,
produces algebraic restrictions on admissible 2-forms. If these are different from those already
implemented, they are used to define the next submodule 	i+1 in the sequence. But a couple of
important remarks are in order here. First of all, the issue of algebraic conditions in the inverse
problem is quite delicate. There are several infinite hierarchies of such conditions �see, e.g., Refs.
9 and 10�, but it is impossible to tell in all generality which of these are more important, from
which others possibly might follow, or simply which are more efficient in determining the exis-
tence or nonexistence of a multiplier. We therefore propose to integrate the decision about the
usefulness of algebraic restrictions as much as possible into this differential ideal algorithm. That
is to say, we shall attempt to obtain at each step in restricting to a submodule 	i, conditions for a
3-form � to belong to 
	i� which are both necessary and sufficient. It is, to some extent, the degree
to which fresh conditions tend to be sufficient, which will guide the decision about the selection of
further restrictions for defining the next submodule. It is precisely in this way that we will be able
to push the EDS procedure beyond the level of results obtained in Ref. 2. However, as has always
been the case in the study of the multiplier problem, there is no possibility of a general solution for
an arbitrary dimension. At some point further progress relies on a classification of cases and
subcases. Most notorious in this respect is the paper by Douglas6 �see Ref. 16 for a geometrical
account of Douglas’ analysis�. We should expect this to occur also in our current attempt.

III. THE FIRST STEP IN THE EDS ALGORITHM

Consider the module 	0, defined above, and let � be a 3-form in 
	0�, so that �=�k∧
k for
some 1-forms �k and 
k�	0. Then i��=�k���
k, so that i�� belongs to 	0 if and only if

���,XV,YV� = 0, �9�

���,XH,YH� = 0, �10�

���,XV,YH� = ���,YV,XH� . �11�

Next, starting from the contraction of � with a vertical vector field,

iXV� = �k�XV�
k − �k ∧ iXV
k,

we must have

��XV,YV,ZV� = 0, �12�

but how can we take other restrictions on 	0 into account, when further combinations of horizontal
and vertical vector fields are inserted? For example, we can manipulate the right-hand side by
using the properties of 
k�	0, until every appearance of the �k has been eliminated and a
condition about � emerges. We have

��XV,YV,ZH� = �k�XV�
k�YV,ZH� − �k�YV�
k�XV,ZH� = �k�XV�
k�ZV,YH� − �k�YV�
k�ZV,XH�

= ��XV,ZV,YH� + �k�ZV�
k�XV,YH� − �k�YV�
k�ZV,XH� = ��XV,ZV,YH�

+ �k�ZV�
k�YV,XH� − �k�YV�
k�ZV,XH� = ��XV,ZV,YH� + ��ZV,YV,XH� .

So it follows that � should satisfy

�
X,Y,Z

��XV,YV,ZH� = 0, �13�

and in exactly the same way also
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�
X,Y,Z

��XV,YH,ZH� = 0. �14�

There remains the condition

��XH,YH,ZH� = 0. �15�

Details such as the way the cyclic sum condition �13� is obtained will not be repeated further on.
In total, we have obtained seven necessary conditions and, following the strategy deployed in

the previous section, we now explore their sufficiency. But before we proceed, we remark that a
number of the conditions to be encountered here, and in the subsequent sections, only have an
effect when the number n of degrees of freedom of the system is at least 3. This is the case, for
example, with the conditions �12� to �15�, which are clearly void when n=2. As a result, each time
a question of the sufficiency of conditions arises, we will say a few words about the case n=2.
Besides, the case n=2 has been extensively studied already �see Refs. 6, 10, and 16� and therefore
is not of prime interest for this paper.

Proposition 3.1: For an arbitrary 3-form � to belong to the ideal 
	0�, it is necessary and
sufficient that � satisfies the conditions �9�–�15�, where X ,Y ,Z are arbitrary vector fields along �.

Proof: It is easy to see that conditions �9�–�11� imply that � is of the form

� = dt ∧ � + �̄, with � � 	0 and i��̄ = 0.

For n�3, the remaining conditions then indicate that �̄ is of the form

�̄ = 1
2Aabc�

a ∧ �b ∧ �c + 1
2Babc�

a ∧ �b ∧ �c,

where Aabc and Babc are skew-symmetric in their last two indices and satisfy �in view of �13� and
�14��

�
abc

Aabc = �
abc

Babc = 0.

For n=2, i��̄=0 is already enough to ensure that �̄ is of the above form, but with two of the three
indices the same. The skew symmetry of the coefficients in their last two indices then implies that
they formally can be regarded as having this cyclic sum property as well.

The skew symmetry Aabc=−Aacb and the cyclic sum property �abcAabc=0 imply that

Aabc�
a ∧ �b ∧ �c = 1

3 �Aabc�
a ∧ �b ∧ �c + Abca�b ∧ �c ∧ �a + Acab�c ∧ �a ∧ �b�

= 1
3Aabc��c ∧ �a + �a ∧ �c� ∧ �b − 1

3Abca��c ∧ �b + �b ∧ �c� ∧ �a

= − 4
3Aabc


ab ∧ �c,

where we have used the skew symmetry in the first and the cyclic sum property in the last term for
the transition from the first to the second line. The same is also true for the other term in �̄, so

� = dt ∧ � − 2
3Aabc


ab ∧ �c + 2
3Babc


ab ∧ �c, �16�

or putting

Aabc = Aabc + Abac, Babc = Babc + Bbac,

� = dt ∧ � − 1
3Aabc


ab ∧ �c + 1
3Babc


ab ∧ �c, �17�

where the new coefficients now are symmetric in their first two indices and still have the cyclic
sum property �abcAabc=�abcBabc=0. This manifestly exhibits that � belongs to 
	0�. �

Remark: An expression like Aabc

ab∧�c with Aabc=Abac clearly belongs to 
	0� without any

further requirements. That the above necessary and sufficient conditions are not contradictory,
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however, follows from the fact that one can assume that the coefficients further have the cyclic
sum property without loss of generality. Verifying this is left to the reader.

From now on we will use the representation �17� of �.
To terminate the first step now, we apply the necessary and sufficient conditions �9�–�15� to an

exact 3-form d
, for any 
�	0 and use thereby the familiar identity �8�. In doing that, only the
second part that involves the Lie brackets can contribute; the list of bracket relations that are
frequently used in these calculations has been given in Sec. I. It easily follows then that the
conditions �9� and �11�–�14� are identically satisfied, whereas the remaining conditions �10� and
�15� give rise to the following extra restrictions on admissible 2-forms �which are, in one form or
another, well known in the literature�:


„��X�V,YH
… = 
„��Y�V,XH

… , �18�

�
X,Y,Z


„R�X,Y�V,ZH
… = 0. �19�

We could implement both of these new requirements to define the next submodule 	1, but it will
be more convenient to continue in stages and start by implementing the � condition �18� only.

The first step has identified the structure of 3-forms in 
	0�. When we apply the differential
ideal algorithm to 	0 now, conditions on � that have � as one of the arguments will be easy to
handle and merely impose that the 2-form � in �17� belongs to the submodule under consideration.
Other conditions must clearly come in pairs: for each condition that has two vertical and one
horizontal argument and thus has an effect on the A part in � only, there will be a corresponding
condition that has the “mirror” effect on the B part. The underlying reason for that is the basic
symmetry property �5� of 2-forms in 	0, which makes that a condition like �18�, for example, can
equivalently be written in the form


„��X�H,YV
… = 
„��Y�H,XV

… . �20�

Bearing this in mind avoids unnecessary duplications of conditions later on.
Finally, we examine the necessary and sufficient conditions that 
	0� is itself a differential

ideal.
Theorem 3.2: The module 	0 generates a differential ideal if and only � is a multiple of the

identity.
Proof: From the immediately preceding discussion, it follows that 
	0� is a differential ideal

if and only if �18� and �19� are satisfied by all 
�	0. If � is a multiple of the identity, the first
of these is satisfied because of �5�, and the second is true by virtue of the identity Va��b

c�
−Vb��a

c�=3Rab
c . Conversely, if �18� is true for all 
�	0, then it is true for all 
ab given by �6�:

using X=� /�xc, Y =� /�xd yields

�c
a�d

b + �c
b�d

a = �d
a�c

b + �d
b�c

a.

Hence, �=�I and �19� follows automatically, again because of the stated identity. �

This is a stronger result than that obtained by Anderson and Thompson in Ref. 2, where it was
shown that if � is a multiple of the identity then 
	0� is a differential ideal. Anderson and
Thompson demonstrated that in this case the system is variational. However, in general there
remain obstructions to variationality after a differential ideal has been obtained.

IV. A SECOND STEP IN THE PROCESS

We define 	1 to be the submodule of 	0 whose elements satisfy condition �18�.
Let �=�k∧
k be a 3-form in 
	1�. Then, a contraction with � leads to the further restriction
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�„�,��X�V,YH
… = �„�,��Y�V,XH

… , �21�

which, as indicated before, says that � in �17� must be in 	1 and plays further no role. When we
take XV as the first argument and follow the procedure that led to �13�, but this time with
��Y�V ,ZH as a further argument, we obtain

�
X,Y,Z

„��XV,��Y�V,ZH� − ��XV,��Z�V,YH�… = 0.

But the left-hand side is �X,Y,Z(��XV , ��Y�V ,ZH�+����Y�V ,ZV ,XH�) and then �13� gives the more
transparent version

�
X,Y,Z

�„XV,YV,��Z�H
… = 0. �22�

Immediately we conclude that the “mirror” condition, which can, of course, independently be
derived, will read as

�
X,Y,Z

�„XH,YH,��Z�V
… = 0. �23�

Unfortunately, this is not the end of the line, as there are other possible combinations of terms. For
example, with ��X�V as a first argument, rather than XV,

i��X�V� = �k„��X�V
…
k − �k ∧ i��X�V
k,

we can choose ��Y�V ,ZH as second and third arguments. The by now familiar procedure of
eliminating all terms involving the 1-forms �k then leads to the new requirement

�
X,Y,Z

�„��X�V,��Y�V,ZH
… = 0, �24�

and its counterpart

�
X,Y,Z

�„��X�H,��Y�H,ZV
… = 0. �25�

We already reach a point here where it is difficult to say whether all such necessary conditions will
generically be independent or whether perhaps there are still other ways of producing more
conditions; hence our strategy to approximate, as best as possible, conditions that are also suffi-
cient and demonstrate their utility in this way. So let us address the sufficiency question here.

Let � be of the form �17�, where the A and B coefficients are symmetric in their first two
indices and can, as argued before, without loss of generality be assumed to have the cyclic sum
property �abcAabc=�abcBabc=0. The two conditions �22� and �24� affect only the A-term �23� and
�25� will have the same sort of effect on the B term. Using a basis of horizontal and vertical vector
fields, �Hi ,Vj� say, we can compute the A-term of � acting on the triple �Vr ,Vt ,�s

uHu� and then
take a cyclic sum over the indices �r ,s , t�. What remains �leaving out a numerical factor� is the
following condition:

�
rst

�Arut − Atur��s
u = 0, �26�

which, by recombining terms, can equivalently be written in the perhaps more appealing form

�
rst

�Arut�s
u − Asut�r

u� = 0. �27�

Similarly, evaluating �(��X�V , ��Y�V ,ZH) on ��s
uVu ,�t

vVv ,Hr� and then taking the cyclic sum, the
condition �24� is found to mean:
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�
rst

�Aruv − Arvu��s
u�t

v = 0. �28�

Now, the 2-forms in 	1 we are talking about are of the form


 = hab
ab, with hsu�r
u − hru�s

u = 0 �29�

�we purposely avoid using gab, which we reserve for candidate multipliers satisfying �1��. So the
idea would be to prove that the requirements �26� �or �27�� and �28� force the functions Aabc to be
of the form

Aabc = hab
k bkc, �30�

where, for each k, the hab
k have the property �29� and the bkc are arbitrary functions, representing

the components of the 1-forms �k in an expression like �=�k∧
k. Unfortunately, we were unable
to prove that this is true in all generality, but we shall show now that it is a valid statement in an
interesting �reasonably generic� special case.

As we know already from Douglas,6 a classification into different cases where a multiplier gab

for a given dynamics � does or does not exist, will largely be governed by properties of the Jacobi
endomorphism � associated with �. A specific assumption about � that comes up in several
situations �see, e.g., Ref. 5� is that of �algebraic� diagonalizability. So let us assume this, and that
the �real� eigenvalues ��a� are distinct, and let ��a	 denote a complete set of eigenforms of �, so
that

���a� = ��a��
a �no sum� .

These �a can be taken to be combinations of contact forms and are of course still semi-basic
forms. We now have a new basis for X�J1E�, namely �dt ,�aH ,�aV	 and new spanning 2-forms for
	0, namely,

�ab
ª

1
2 ��aV ∧ �bH + �bV ∧ �aH� .

It is important to realize that with this change of basis, nothing changes in our considerations of

the first differential ideal step. For example, the 2-forms in 	0 are now of the form h̄ab�ab and
3-forms in the ideal 
	0� are of the form �17�, with the �aH replacing the �a, and so on. Explicitly,

� = dt ∧ � − 1
3 Āabc�

ab ∧ �cV + 1
3 B̄abc�

ab ∧ �cH.

We will freely use the original basis formulas in the eigenform basis �and refer to their equation
numbers� just by adding overbars and switching �a for �aH etc.

The additional restriction �18� that defines 	1, or equivalently �29�, reduces to

���b� − ��a��h̄ab = 0, �31�

and hence implies that the elements of 	1 must be diagonal in the eigenform basis, i.e., h̄ab=0 for
a�b.

Proportion 4.1: Suppose that � is diagonalizable with distinct (real) eigenvalues. Then, the
necessary and sufficient conditions for a 3-form � to be in the ideal 
	1� are the conditions to be
in 
	0�, supplemented by �21�, �22�, and �24�, together with their counterparts �23� and �25�.

Proof: What has to be proved is the sufficiency of the conditions. Using the eigenform basis
of �, we already know that �� 
	0� implies that it is of the form �17�. The first extra condition
�21� requires � to belong to the smaller module 	1 now. As explained before, it suffices to study
the effect of �22� and �24�, or explicitly �26� and �28�, on the A term in �. Under the present
circumstances, this leads to the conditions
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�
abc

Āabc���a� − ��b�� = 0, �32�

�
abc

Āabc��c����a� − ��b�� = 0. �33�

These conditions are identically satisfied whenever two of the indices are the same, so we begin by
considering n�3. For each set of three distinct indices, they produce, together with the given
cyclic sum property, a homogeneous system of algebraic equations with coefficient matrix

 1 1 1

��a� − ��b� ��b� − ��c� ��c� − ��a�

��c����a� − ��b�� ��a����b� − ��c�� ��b����c� − ��a��
� .

The determinant of this matrix is proportional to ���a�−��b�����b�−��c�����c�−��a�� and hence is

nonzero. Therefore, all Āabc with distinct indices must be zero. It further follows from the cyclic

sum property that Āaab=−2Ābaa. With these data, the A term of � becomes

− 1
3 Āabc�

ab ∧ �cV = − 1
3��

a�b

Āaab�aa ∧ �bV + 2�
a�b

Ābaa�ab ∧ �aV�
= − 1

3��
a�b

Āaab�aa ∧ �bV − �
a�b

Āaab�ab ∧ �aV� = − 1
2 �

a�b

Āaab�aa ∧ �bV,

where we have used the fact that �ab∧�aV=− 1
2�aa∧�bV. But we know from �31� that the 2-forms

in 	1 are diagonal in the basis of eigenforms, i.e., of the form h̄aa�aa, and the above computation
then shows that the A term of � is manifestly in 
	1�. The effect of �23� and �25� on the B term is
similar.

When n=2, only the condition �21� survives and implies as before that � must belong to 	1.
Moreover, it is easy to verify explicitly that for n=2, the �̄ part of our 3-form in 
	0� automatically
belongs to 
	1� as well, so the general claim is still valid. �

We now return once more to the general case with no assumptions about �. The final stage in
our step 2 procedure is to apply the conditions on 3-forms again to the special case of exact
3-forms. This will determine possibly new restrictions on admissible 2-forms, which can then be
used to identify further submodules. The computation related to condition �21� is straightforward
and produces the new requirement,


�„���X�…V,YH� = 
�„���Y�…V,XH� , �34�

When �22� is imposed on a 3-form d
, it merely reproduces the condition �19� we already have,
in view of the general identity �see Ref. 13, remembering always that we are restricting to vector

fields in X̄����

3R�X,Y� = DX
V��Y� − DY

V��X� . �35�

But its counterpart �23� gives rise to the new condition,

�
X,Y,Z


„�R�X,Y�V,ZH
… = 0, �36�

because we also have the identity

�R�X,Y� = DX
H��Y� − DY

H��X� . �37�

The computations for �24� and �25� run parallel and produce the following new requirements
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�
X,Y,Z


�„D�X
V ��Y� − D�Y

V ��X�…V,ZH� = 0, �38�

�
X,Y,Z


�„D�X
H ��Y� − D�Y

H ��X�…H,ZV� = 0. �39�

Conditions such as �34� and �36� are well known in the literature. It was pointed out in Ref. 14 that
such conditions must hold for arbitrary � derivatives of � and R and it is not difficult to see how
this double hierarchy will emerge in the EDS process also, simply from the restrictions on � which
have � in their arguments and will be produced step by step.

The conditions �38� and �39�, however, have only been reported in the thesis1 �though they
must be related in some sense to requirements involving the Nijenhuis tensor of � in the approach
adopted in Ref. 10�. It is impossible to say in all generality which of the many algebraic restric-
tions are somehow the “more independent ones,” but the message from our current algorithmic
analysis is that it is likely to be more efficient in applications to impose the last mentioned
requirements on admissible 2-forms first, before extracting all information, for example, from the
double infinite hierarchy of �k� and �kR conditions, which were the only conditions taken into
consideration in Ref. 15.

But we must not yet embark on using any of these conditions to define a further submodule,
as we have only dealt with half of the information that came out of the first step so far. We shall
study the curvature condition �19� in the next section, but for the sake of applications it is
worthwhile summing up what we now know about the termination of the differential ideal process
at this level.

Proportion 4.2: Assume that � is diagonalizable with distinct (real) eigenvalues. Then the
necessary and sufficient conditions for 	1 to generate a differential ideal are that all 2-forms of
the form �29� satisfy the algebraic conditions �19�, �34�, �36�, �38�, and �39�.

Proof: 2-forms in 	1 are characterized by �29�. If � is diagonalizable, the necessary and
sufficient conditions for their exterior derivative to belong to 
	1� �as identified by Proposition 4.1
and the subsequent analysis� are that they satisfy the supplementary restrictions �19�, �34�, �36�,
�38�, and �39�. But saying that 	1 generates a differential ideal already is the same as saying that
no further restrictions beyond those defining 	1 should be found and thus that the five conditions
just mentioned must hold for all 2-forms in 	1. �

Remark: as we observed in the proof of Proposition 4.1, only one of the five extra conditions
survives when n=2 and this condition translates to the �� condition �34� when applied to the
exterior derivative of a 2-form in 	1. This is, therefore, the only condition to take into account
when applying the above proposition to the case n=2.

V. A FURTHER STEP FOR DIAGONALIZABLE �

We return again to the general situation without assuming that � is diagonalizable. Define 	2

to be the module of 2-forms in 	1, which further satisfy the condition �19�.
As before, if �=�k∧
k is a 3-form in 
	2�, a contraction with �, in view of �19�, leads to the

further restriction

�
X,Y,Z

�„�,R�X,Y�V,ZH
… = 0. �40�

Likewise, when we contract first with an arbitrary vertical element and then proceed to eliminate
all terms involving the �k, a procedure that is more involved here �but we leave the details to the
reader�, the condition we obtain reads as
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�
X,Y,Z,U

e

�„XV,R�Y,Z�V,UH
… = 0, �41�

where the upper index in the summation sign is meant to indicate that the sum extends over all
even permutations of the indicated vector fields. Needless to say, there will be a mirror condition
that can independently be derived, and reads as

�
X,Y,Z,U

e

�„XH,R�Y,Z�H,UV
… = 0. �42�

Obviously there are more possibilities as in the preceding section. For example, repeating the
above computation, but with ��X�V as first argument, rather than XV, gives

�
X,Y,Z,U

e

�„��X�V,R�Y,Z�V,UH
… = 0, �43�

and its analog with two horizontal and one vertical elements.
Once again, we have to try and find necessary conditions that are also sufficient for 3-forms to

belong to 
	2�. Should we, for example, search for a condition also with two R-arguments in it?
To begin with, here is a further infinite number of necessary conditions for � to be in 
	2�.

Lemma 5.1: Necessary conditions for a 3-form � to belong to 
	2� are that

�
X,Y,Z,U

e

�„��mX�V,R�Y,Z�V,UH
… = 0, �44�

for all m.
Proof: Observe first that 2-forms that have the symmetry property �5� and satisfy �18�, auto-

matically also satisfy


„��mX�V,YH
… = 
„��mY�V,XH

… , �45�

for all m. Indeed, using successively the properties �18�, �20�, and �5�, we have


„��2X�V,YH
… = 
„��Y�V,��X�H

… = 
„XV,��2Y�H
… = 
„��2Y�V,XH

… .

The statement for general m follows by induction.
Replacing now �X by �mX in the considerations that lead to �43�, it is fairly straightforward

to verify that we will arrive at �44� in view of �45�. �

When a 2-form 
 is in 	1 and so has the symmetry property �18� with respect to �, it makes
no sense to impose symmetry with respect to powers �m as further restrictions, because 
 will
automatically have these properties. Likewise, if we already knew that a 3-form � satisfying �41�
and �43� belongs to the ideal 
	2�, there would be no sense in looking further at �44�. But it is just
because we do not have yet sufficiency, that extra requirements like �44� can have practical value.

Let us now first look at the impact of the curvature conditions we obtained so far, on the A
part of �. Referring to the coordinate expression of R that was given in Sec. I, the condition �19�
that further defines the module 	2, reads as

�
abc

hraRbc
r = 0. �46�

One easily verifies that �41� and �43� imply that the A part of � must have the properties

�
abcd

e

Rbc
s �Adas − Adsa� = 0, �47�
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�
abcd

e

�a
rRbc

s �Adrs − Adsr� = 0. �48�

And �44�, for m=2 for example, will require that

�
abcd

e

�a
r�r

tRbc
s �Adts − Adst� = 0. �49�

It is of some interest to write out explicitly what such conditions mean. The first one, for example,
making use of the skew-symmetry of the Rbc

a and the symmetry of the Aabc to recombine terms,
can be written in the form

Rbc
s �Aasd − Adsa� + Rcd

s �Aasb − Absa� + Rdb
s �Aasc − Acsa� + Rad

s �Absc − Acsb� + Rca
s �Absd − Adsb�

+ Rab
s �Acsd − Adsc� = 0. �50�

Notice that the left-hand side of this expression is skew-symmetric in any pair of indices �the same
can be verified for �48� and �49��. Hence, these conditions are identically satisfied when the free
indices are not distinct. In other words, for them to have any effect, the dimension must be at least
4.

We now return to the interesting case of diagonalizable � with distinct eigenvalues, as intro-
duced in the previous section. Any further such assumption on � has an effect on curvature-type
conditions, since � determines R according to �35�. Let Xa denote a basis of eigenvectors of �,

dual to the basis of eigenforms considered before; so we have ��Xa�=��a�Xa. With R̄bc
a now

denoting the components of R with respect to this adapted frame, we find from �35� and introduc-
ing the structure functions �ab

c , defined by

DXa

V Xb = �ab
c Xc, �51�

that

3R̄ab
a = − „DXb

V ��a� + ���a� − ��b���ab
a
… , �52�

3R̄ab
b = DXa

V ��b� + ���b� − ��a���ba
b , �53�

3R̄ab
s = ���b� − ��s���ab

s − ���a� − ��s���ba
s , s � a,b . �54�

Now, when � is diagonalizable with distinct eigenvalues, we already know from the 	1-analysis

that Āabc=0 when all indices are distinct. Taking the condition �50� with a, b, c, d different, the
summation in each of the terms gives rise to only two terms. Further simplifications arise from

taking into account that �abcĀabc=0 implies Ābba=−2Āabb. Finally, using the R information, we
find that only components of the type �54� enter. The condition is then

�
abcd

e

���b� − ��c���Āabb�dc
b + Āacc�db

c � = 0. �55�

The corresponding condition �46� for the 2-forms defining 	2 �knowing that h̄ab is diagonal�
likewise reduces to
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�
abc

���a� − ��b���h̄aa�cb
a + h̄bb�ca

b � = 0. �56�

The similarity in structure between �55� and �56� becomes even clearer if we proceed as follows:
for dealing with an expression such as �41�, we write, for arbitrary X1 , . . . ,X4,

�
ijkl

e

�„Xi
V,R�Xj,Xk�V,Xl

H
… = �

i=1

4

�− 1�i�
jkl

�„Xi
V,R�Xj,Xk�V,Xl

H
… . �57�

The notation that is being used here on the right-hand side should be read as follows: for each i
=1, . . . ,4, �i , j ,k , l� is a cyclic permutation of �1�, �2�, �3�, �4� and then with i being kept fixed, we
perform a cyclic sum over the three other indices. Applying this idea to the explicit form of the
condition �41� we are considering, �55� can be recast in the form:

�
abcd

e

���b� − ��c���Āabb�dc
b + Āacc�db

c � � �
bcd

���b� − ��c���Āabb�dc
b + Āacc�db

c �

− �
cda

���c� − ��d���Ābcc�ad
c + Ābdd�ac

d �

+ �
dab

���d� − ��a���Ācdd�ba
d + Ācaa�bd

a �

− �
abc

���a� − ��b���Ādaa�cb
a + Ādbb�ca

b � = 0. �58�

We can now be precise about what it is we should be able to prove to reach sufficiency of
conditions for � to be in 
	2�. From the 	1 analysis we already know that the A part of � will be
of the form:

�A = �
a�d

Ādaa�aa ∧ �dV. �59�

To conclude that such a term “manifestly belongs” to the ideal generated by 	2 �or, in fact, to any
further submodule of 	1� we must be able to show that for each fixed d, there exists a function �d

such that �a�dĀdaa�aa+�d�dd belongs to 	2 �or to the submodule under consideration�. For the
case at hand, assuming the dimension is at least 4, this 2-form should, in particular, have the
property �see �56�� that for each set of three distinct indices a ,b ,c that are different from d:

�abc���a�−��b���Ādaa�cb
a + Ādbb�ca

b �=0. But the available data on � so far only tell us that a sum of
four such terms is zero. So again, maybe, by throwing in more conditions, we might be able to
ensure that all four parts in the expression �58� vanish separately.

Now consider the hierarchy �44� of further necessary conditions we have obtained. Following
the different steps of the calculation that led from �47� to �55�, one can show that �48� and �49� for
diagonalizable � become

�
abcd

e

��a����b� − ��c���Āabb�dc
b + Āacc�db

c � = 0, �60�

�
abcd

e

��a�
2 ���b� − ��c���Āabb�dc

b + Āacc�db
c � = 0. �61�

Lemma 5.2: If � is diagonalizable with distinct eigenvalues, then for � to satisfy the hierarchy
of conditions �44�, it is sufficient that these properties hold for m=0,1 ,2 ,3.

Proof: The assumption is that we have for each set of four distinct indices a ,b ,c ,d:
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�
abcd

e

��a�
n ���b� − ��c���Āabb�dc

b + Āacc�db
c � = 0,

and this for m=0,1 ,2 ,3. Splitting the sum of 12 even permutations into four cyclic sum parts, as
was done in �58�, we get a homogeneous linear system of four equations for these sums, with the
coefficient matrix


1 − 1 1 − 1

��a� − ��b� ��c� − ��d�

��a�
2 − ��b�

2 ��c�
2 − ��d�

2

��a�
3 − ��b�

3 ��c�
3 − ��d�

3
� .

Its determinant, a Vandermonde-type determinant, is equal to the product

���a� − ��b�����a� − ��c�����a� − ��d�����b� − ��c�����b� − ��d�����c� − ��d�� ,

and hence is nonzero. It follows that for each set of four distinct indices a ,b ,c ,d, we have

�
abc

���a� − ��b���Ādaa�cb
a + Ādbb�ca

b � = 0. �62�

This in turn implies that all further conditions in the hierarchy �44� are automatically satisfied.�
With this result, we are getting as close as we possibly can to concluding that we have

sufficiency in this step of the differential ideal process. Indeed, we have now obtained with �62� all

the properties that the 2-forms �a�dĀdaa�aa+�d�dd must have for belonging to 	2, except for
those conditions of type �56� for which the cyclic sum over three indices will involve the unde-
termined function �d �and this for each fixed d�. These missing conditions may cause true ob-
structions to the existence of a solution for the inverse problem, as for each fixed d, there may, in
principle, be three requirements to be satisfied, for only one unknown �d. But there is no chance
of getting more information about such possible obstructions at this level of generality, i.e.,
without breaking the discussion up into more subcases, because the 2-forms that interest us in an
expression like �59� always appear in a wedge product with some �dV, so the functions we called
�d remain completely undetermined.

Let us summarize the situation now. For a 3-form � to be in the ideal 
	2�, it must satisfy the
requirement �40� and the curvature condition �41�, but, in fact, also the infinite set of conditions
�44� �plus corresponding analogs� that contain the one just mentioned for m=0. The special case
of diagonalizable � has shown that imposing these conditions for m=0,1 ,2 ,3 is probably the
closest we can get to having conditions that are also sufficient. So it is worthwhile exploring what
comes out of such conditions when we apply them to exact forms, in terms of possibly new
algebraic restrictions on admissible 2-forms.

Applying �40� to d
 is an easy computation: as already indicated, it reproduces the require-
ment �36� we obtained before. The other computations are a lot more involved, so we give a brief
indication about the way to proceed. Starting with �44� for m=0, the bracket terms of the expan-
sion of �X,Y,Z,U

e d
(XV ,R�Y ,Z�V ,UH) include, as terms in which X is fixed,

− �
Y,Z,U

�
„�XV,R�Z,U�V�,YH
… + 
„�R�Z,U�V,YH�,XV

… + 
„�YH,XV�,R�Z,U�V
…	

= − �
Y,Z,U

�
�DX
V�R�Z,U��V − �DR�Z,U�

V X�V,YH� + 
��DR�Z,U�
V Y�H,XV� − 
��DX

VY�H,R�Z,U�V�	 ,

and there are similar terms in which one of the other vector fields is kept fixed each time. If, in the
last term on the right, we make use of the property �19�, it is easy to see that all terms that arise
this way will directly cancel out the terms coming from the expansion of the first term on the right,
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except those in which the tensor R itself is being derived. The second and third terms on the right
will all disappear if the totality of all even sum permutations is taken into account. The only terms
that remain then are those involving vertical derivatives of R. But they can be seen to cancel out
as well in view of the Bianchi identity,

�
X,Y,Z

DVR�X,Y,Z� = 0. �63�

For the horizontal counterpart �42�, something entirely similar happens in view of

�
X,Y,Z

DHR�X,Y,Z� = 0. �64�

We can now more or less see what will happen for the conditions �44� with m�0. When, in the
terms that have been made explicit above, X is replaced by �X, for example, most of the cancel-
lations remain the same, but there will be extra terms in which derivatives of � appear; moreover,
derivatives of R will now be taken with respect to arguments such as �X instead of X and that
makes that the Bianchi identity does not directly help. In conclusion, we get the following new
requirements:

�
X,Y,Z,U

e


„D�mX
V R�Z,U�V − �DR�Z,U�

V �m��X�V,YH
… = 0, �65�

which in the context of the last lemma would be imposed only for m=1,2 ,3, plus analogous
conditions with horizontal and vertical lifts or derivatives interchanged.

We have now obtained extra requirements more closely defining the module 	2, namely not
only the ones just mentioned, but also those that came out of the analysis of the preceding section:
�34�, �36�, and �38�, �39�. However, continuing further at this level of generality is not profitable.

VI. BEYOND THE DIFFERENTIAL IDEAL: EXAMPLES

In all practical situations, the algebraic conditions discussed so far will establish either that no
nondegenerate multiplier exists, or that we have reached the stage of a differential ideal. In the
latter case we then construct a Kähler lift gK in the ideal that is closed. In principle, this means
addressing the Pfaffian system of Eqs. �7�, which is, of course, a particular way of representing a
system of partial differential equations for the unknown functions rk. While it is certainly true that
the Cartan-Kähler theory is a powerful vehicle to decide about the integrability of such equations
and the generality of their solutions, a drawback of �7� is that it is setup in such a general way as
to lose contact with the specific geometrical structure of the inverse problem. For example, the
symmetry relating to horizontal and vertical parts suggest splitting �7� into its horizontal and
vertical components. But that inevitably must be equivalent to considering the partial differential
equations of the inverse problem the way they were encoded geometrically in their most compact
form in �2�.

In other words, what we are advocating here is that, once we have reached a differential ideal,
we go back to the partial differential equations in the original Helmholtz conditions, for example,
in the representation

DX
Vg�Y,Z� = DY

Vg�X,Z�, �g = 0, �66�

and specifically in that order. Indeed, by splitting the equations for the rk in that way, we expect
that they will become quite tractable: the first set of equations will determine the allowed velocity
dependence of the unknown rk, and �g=0 will subsequently further restrict the arbitrary functions
that may turn up in solving the first part. It may look rather disappointing that, after all the efforts
of the differential ideal process, we now still have to address two of the three Helmholtz condi-
tions �2�. But we knew from the beginning that the differential ideal process was not going to
solve these equations. The point is that, specifically by the way we have pursued obtaining
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“efficient” algebraic conditions in that process, the algebraic freedom in the module of admissible
2-forms will likely be restricted in such a way that addressing the equations �66� directly will now
become possible.

We will finish with two illustrations: one in which the differential ideal process leads to a
negative result and one where we reach the final stage and subsequently solve the partial differ-
ential equations for the rk. For these examples, we consider cases where � is diagonalizable with
distinct eigenvalues and go back to the situation described at the end of Sec. IV. So, if the hope is
that we will reach a decisive state at that point, it means that we are in the situation described by
Proposition 4.2, so that 	1 generates a differential ideal, or that the conditions in that statement
lead to the conclusion that no nondegenerate multiplier can exist.

The following is an important preliminary observation. Conditions that involve ��, �R, or
other covariant derivatives of these tensors are likely to produce restrictions that contain the
functions ���a� and even ��bc

a �or other derivatives of structure functions� and will prompt for
further assumptions about ��, for example. The curvature condition �19� is more interesting to
look at first, therefore, because it is purely algebraic in the structure functions �bc

a , as we have seen
with �56�. It turns out that also �38� is of such a nature in the case of diagonalizable � we are
considering. Indeed, we have

�D�Xa

V ���Xb� = ��a�Xa
V���b��Xb + ��a����b� − ��c���ab

c Xc,

from which it follows that for a 2-form of type 
= h̄aa�aa,


�„D�Xa

V ��Xb� − D�Xb

V ��Xa�…V,Xc
H� = h̄bb��a�Xa

V���b���bc − h̄aa��b�Xb
V���a���ac

+ h̄cc„��a����b� − ��c���ab
c − ��b����a� − ��c���ba

c
… .

But for taking the cyclic sum �38�, we need to take a ,b ,c distinct, so that derivatives of the
eigenvalues will disappear. The condition in the end reduces to

�
abc

��c����a� − ��b���h̄aa�cb
a + h̄bb�ca

b � = 0, �67�

which has a remarkable resemblance to �56�. In fact, it is interesting to work out some conclusions
from the combination of the conditions �56� and �67�. To fix the idea, take �a ,b ,c	= �1,2 ,3	 and

put, for example, H12= ���1�−��2��G12, with G12= �h̄11�32
1 + h̄22�31

2 �. Then, it is easy to see that the
combination of both conditions is equivalent to requiring that G12=G23=G31. So, for example, in
dimension 3, we get the following two conditions of curvature type:

h̄11�32
1 + h̄22��31

2 − �13
2 � − h̄33�12

3 = 0, �68�

h̄11�23
1 − h̄22�13

2 + h̄33��21
3 − �12

3 � = 0, �69�

which actually only involve �bc
a with a ,b ,c distinct. In dimension 4, there will already be eight of

such conditions, coming from the four combinations of three distinct indices: if these are not
identically satisfied, chances are small that there will still be a nondegenerate 
.

Our first example is taken from Ref. 7 and is shown there to have no Lagrangian. We wish to
confirm that we come to the same conclusion. Consider the four-dimensional system �b constant�,

ẍ = bẋẇ ,

ÿ = ẏẇ ,

z̈ = �1 − b�ẋẏ + byẋẇ − bxẏẇ + �b + 1�żẇ ,
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ẅ = 0.

With u ,v ,s , t as the notation for the derivatives, we have

4� =
− b2t2 0 0 b2ut

0 − t2 0 vt

a1 a2 a3 a4

0 0 0 0
� ,

where

a1 = �2b + 1��b + 1�tv − �2b + 1�byt2,

a2 = − �b + 1��b + 2�ut + b�b + 2�xt2,

a3 = − �b + 1�2t2,

a4 = b�2b + 1�yut + �1 − b2�uv − b�b + 2�xvt + �b + 1�2st .

The eigenvalues and corresponding eigenvectors are

− b2t2 and „t,0,�b + 1�v − byt,0… ,

t2 and �0,bt,bxt − �b + 1�u,0� ,

− �b + 1�2t2 and �0,0,1,0� ,

0 and �u,v,s,t� .

It is easy to compute structure functions, as defined by �51�; of the ones with distinct indices, only
the following two appear to be nonzero:

�21
3 = �b + 1�bt, �12

3 = − �b + 1�t .

For having distinct eigenvalues, we have to require that b�0 and b�−1. The eight conditions
coming from �56� and �67�, applied to the multiplier gab we are now constructing, then reduce to
2, and they both require that g33=0, so that there is indeed no nonsingular multiplier. Of course,
it is a fact that, as shown in Ref. 7, the curvature condition by itself already leads to this conclu-
sion, so that there is no real contribution from the extra condition �67�.

To get beyond the differential ideal step we choose, as our second example, a three-
dimensional system inspired by one of the favorable two-dimensional cases in Ref. 6. Consider the
system

ẍ = − x ,

ÿ = y−1�1 + ẏ2 + ż2� ,

z̈ = 0,

on an appropriate domain. Denoting the derivatives by u ,v ,w, � this time is given by
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� =
1

y2y2 0 0

0 2�1 + w2� − 2vw

0 0 0
� .

Eigenvalues and corresponding eigenvectors are

0 and �0,vw,1 + w2� ,

1 and �1,0,0� ,

2y−2�1 + w2� and �0,y,0� .

The eigenvectors Xa are chosen in such a way that �Xa=0, which is possible because ��
commutes with � in this case. The corresponding dual basis of eigenforms is given by

�1 =
1

1 + w2�3, �2 = �1, �3 =
1

y
�2 −

vw

y�1 + w2�
�3.

Again, the structure functions �bc
a are easy to compute and they are zero, except the following:

�11
3 =

v
y

, �11
1 = 2w, �31

3 = w .

It is immediately clear that this implies that the conditions �68� and �69� are identically satisfied
because all the �’s involved are zero. Going back to the result expressed in Proposition 4.2, we
have just dealt with �19� and �38�. Let us introduce also horizontal structure functions by DXa

H Xb

=�ab
c Xc, and observe now that in view of the similarity in structure between �35� and �37�, and also

between �38� and �39�, the explicit form of the conditions �36� and �39�, for example for n=3, will
be the same as �68� and �69�, with �ab

c replacing �ab
c . But in view of the commutator identity

�� ,DX
V�=D�X

V −DX
H, and the fact that we chose the Xa to be � invariant, we simply have �bc

a =
−���bc

a � here and thus these two other conditions will be identically satisfied as well. It remains to
look at �34�, but this will hold trivially because �� commutes with �. We conclude from
Proposition 4.2 that 	1 generates a differential ideal.

The admissible g’s are of the form g=�krk�
k � �k and following the scheme explained at the

beginning of this section, we now start looking at the equations to be satisfied by the rk. For the
vertical closure conditions in �66�, it is convenient to re-express g in the standard basis of �i, from
which we learn that

g11 = r2, g22 =
r3

y2 , g33 =
1

�1 + w2�2�r1 + r3
v2w2

y2 � ,

g12 = g13 = 0, g23 = − r3
vw

y2�1 + w2�
.

The vertical closure conditions then are

�g11

�v
=

�g11

�w
= 0,

�g22

�u
=

�g33

�u
= 0,

�g22

�w
=

�g23

�v
,

�g33

�v
=

�g23

�w
,

or translated into equations for the rk,
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�r2

�v
=

�r2

�w
= 0,

�r3

�u
=

�r1

�u
= 0,

�1 + w2�
�r3

�w
+ vw

�r3

�v
= − r3w ,

and

y2�r1

�v
= − v2w2�r3

�v
− vw�1 + w2�

�r3

�w
− r3v�1 + w2� .

The solution of these equations is quite straightforward. We have that r2 can depend on u only and,
of course, also arbitrarily on x ,y ,z , t for the moment. r3, on the other hand, cannot depend on u
and using the method of characteristics on the other equation that involves r3 only gives

r3 =
1

v
����, with � =

v
�1 + w2

,

where � is an arbitrary function of the indicated argument, which again can further depend on
x ,y ,z , t. The last equation and the fact that r1 cannot depend on u either, then produces

r1 = −
�1 + w2

y2 ���� + ��w� ,

where ��=� and, like �, the arbitrary � can further depend on x ,y ,z , t.
It remains to impose that �g must be zero. Since ��a=0 by construction, this simply means

that the rk must be first integrals. The conclusion for r2 is immediately that it cannot depend on y
and z and simply must be a first integral of the equation ẍ=−x. Equating ��r3�=0, we see that �
can no longer depend on x and further must satisfy

�� +
1

�
� ��

��
+ y

��

�y
+

y

v
�w

��

�z
+

��

�t
� − �1 +

1

�2�� = 0.

Now every function that depends on v and w through the variable � only, gives zero when acted
upon by the vector field �1+w2�� /�w+vw� /�v. Applying this operator to the left-hand side of the
above equation, it follows that we must have

��

�z
− w

��

�t
= 0,

and repeating the same process subsequently implies that � cannot depend on z and t at all. The
reduced equation for � then can easily be solved by the method of characteristics again and yields

���,y� = ��0��1 + �2

y
� ,

where �0 is an arbitrary function of the indicated single argument. With this further restriction, one
can verify that the first term in the expression for r1 is a first integral, and if the same must hold
for �, this function cannot depend on x and y and simply has to be a first integral of the equation
z̈=0. In summary, the general solution for the rk is given by

r1 = −
�1 + w2

y2 ���,y� + ��w,z,t� ,

r2 = ��u,x,t� ,
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r3 =
1

v
���,y� =

�

v
�0��1 + �2

y
�, � =

v
�1 + w2

,

where �0 is further arbitrary, �� /��=�, � is a first integral of the equation z̈=0, and � a first
integral of the equation ẍ=−x.

In a forthcoming paper, we plan to apply these techniques more systematically to the identi-
fication of a number of classes of three dimensional �and possibly higher dimensional� systems for
which a multiplier exists. The last example here, for example, belongs to a class that is charac-
terized by the fact that two of the eigenform codistributions of a diagonalizable � are integrable,
and the third one is not, and this is one of the cases we shall be able to treat in all generality, even
in any dimension.
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A system of two particles with spin s=0 and s= 1
2 , respectively, moving in a plane

is considered. It is shown that such a system with a nontrivial spin-orbit interaction
can allow an eight dimensional Lie algebra of first-order integrals of motion. The
Pauli equation is solved in this superintegrable case and reduced to a system of
ordinary differential equations when only one first-order integral exists. © 2006
American Institute of Physics. �DOI: 10.1063/1.2360042�

I. INTRODUCTION

A Hamiltonian system with n degrees of freedom in classical mechanics is called integrable if
it allows n functionally independent integrals of motion �X1 , . . . ,Xn�. These integrals must be
well-defined functions on phase space and be in involution. The Hamiltonian H belongs to this set
of n integrals. A “superintegrable system” is one that allows some additional integrals of motion,
�Y1 , . . . ,Yk� such that the set �X1 , . . . ,Xn ,Y1 , . . . ,Yk� is functionally independent. The integrals
�Y1 , . . . ,Yk� are not necessarily in involution among each other, nor with the Xi. A system is
maximally superintegrable if we have k=n−1, minimally superintegrable for k=1.

The concepts of integrability and superintegrability are also introduced in quantum mechanics.
The only difference is that the integrals of motion are now well-defined linear quantum mechani-
cal operators, assumed to be algebraically independent.1,6–9,12,13,15,16,18,19,21

The best known superintegrable systems are the Kepler, or Coulomb, system1,8 and the har-
monic oscillator.12,16 They are characterized by the fact that all finite classical trajectories in these
systems are periodic. In quantum mechanics these systems are exactly solvable, i.e., their bound
state energy levels can be calculated algebraically and their wave function expressed in terms of
polynomials.

The above properties are shared by all other known maximally superintegrable systems �see,
for example, Ref. 19�.

A systematic search for superintegrable systems and their properties was started quite some
time ago.6,7,9,15,21 Originally the approach concentrated on Hamiltonians of the type

H = −
1

2
� + V�r�� , �1�

in two- and three- dimensional Euclidean spaces with the restriction that all integrals of motion
should be first- or second-order polynomials in the momenta. More recently, the study of super-
integrable systems with second-order integrals of motion was extended to curved spaces and also
higher-dimensional ones �see Ref. 13 for some recent results and an extensive list of references�.

For Hamiltonians of the type �1� with second-order integrals of motion there is a close relation
between integrability and the separation of variables in the Schrödinger and Hamilton-Jacobi
equations. Typically, superintegrable systems of this type are multiseparable: they allow the sepa-
ration of variables in more than one system of coordinates.
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b�Electronic mail: yurdusen@crm.umontreal.ca
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This relationship between integrability and separability breaks down in other cases. Thus for
natural Hamiltonians of the type �1�, the existence of third-order integrals of motion does not lead
to the separation of variables.4,5,10,11 Furthermore, if we consider velocity dependent potentials
�e.g., related to a magnetic field�,

H = −
1

2
� + V�r�� + �A� ,p�� , �2�

then quadratic integrability no longer implies the separation of variables.2,3,17,20

In this paper we initiate the study of integrability and superintegrability in a different type of
system, namely, one involving particles with spin. More specifically, we consider two nonrelativ-
istic quantum particles, moving in a plane: one with spin 1 � 2, the other with spin 0. In this case
the Hamiltonian will be a matrix operator, acting on two component spinors, and we can decom-
pose it in terms of the identity matrix I and the Pauli matrices �i �i=1,2 ,3�.

From the physical point of view, the most interesting Hamiltonian to consider would be

H = −
�2

2m
� + V0�r�� +

1

2
�V1�r��,��� ,L� �� , �3�

in the three-dimensional Euclidean space E3 �we drop the matrix I whenever this does not cause
confusion�. The curly bracket represents an anticommutator and Va�r��, a=0,1 are real functions.
The Hamiltonian is Hermitian and satisfies the requirements of parity and time reversal invariance.

The spin-orbital interaction term V1�r����� ,L� � is the standard one in quantum mechanics.14

In this paper, the first one on integrability and superintegrability for particles with nonzero

spin, we restrict to the two-dimensional space E2. The orbital angular momentum L� then only has

one component, L3, perpendicular to the xy plane E2. The scalar product ��� ,L� � reduces to �3L3

�since L1 and L2 are zero�. We shall set the reduced mass m of the two particle system equal to
m=1 and use units in which the Planck constant is �=1 �we do not need to consider a classical
limit here�. Finally, the Hamiltonian to be considered in this paper is

H =
1

2
�p1

2 + p2
2� + V0�x,y� + V1�x,y��3L3 +

1

2
�3„L3V1�x,y�… , �4�

with

p1 = − i�x, p2 = − i�y, L3 = i� y�x − x�y�, �3 = �1 0

0 − 1
� . �5�

A priori, the functions V0�x ,y� and V1�x ,y� are arbitrary. In specific physical applications they
may be related or they may both be specified. Our aim is to determine the conditions on these two
functions under which one or more integrals of motion exist.

We request that at least one first-order integral of motion should exist, namely,

X = �A0p1 + B0p2 + �0�I + �A1p1 + B1p2 + �1��3, �6�

where A�, B�, and �� ��=0,1� are real functions of x and y. These functions as well as the
potentials V0 and V1 are to be determined from the commutativity condition

�H,X� = 0. �7�

The general formulation is set up in Sec. II, where we determine A� and B� and obtain the
partial differential equations �PDE� that �0 ,�1 ,V0, and V1 must satisfy. In Sec. III we consider a
special case when the Hamiltonian �4� allows six independent nontrivial integrals of the type �6�.
They generate an eight-dimensional symmetry group of the system. Section IV is devoted to more
general integrable Hamiltonians, allowing just one first-order integral. The system of equations,
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H� = E�, X� = �� , �8�

is studied in Sec. V. We shall call the system �8� the Pauli system. Some conclusions and future
directions are outlined in Sec. VI.

II. FORMULATION OF THE PROBLEM

In order to obtain determining equations for the coefficients A�, B�, and �� ��=0,1� in the
integral �6�, we impose the commutation relation �7�. The commutator will involve terms of the
type p1

2, p1
2�3, p2

2, p2
2�3, p1p2, p1p2�3, p1, p1�3, p2, p2�3, I, and �3.We have �3

2= I, so no higher
powers of �3 appear. We set the coefficients of each of the above terms equal to zero. This gives
us 12 linear partial differential equations for A�, B�, and ��. Those coming from the coefficients
of second-order terms in the momentum imply that A� and B� are linear functions and we obtain,
for any potentials V0 and V1,

A� = 	�y + a�, B� = − 	�x + b�, �9�

where 	�, a�, and b� are real constants. The coefficients of p� , p��3, I, and �3 in the commutator
provide an overdetermined system of six first-order PDEs for the four functions V0, V1, �0, and
�1. They are

��,x = 
�,1−��− b�V1 − �	�y + a��yV1,x + �	�x − b��yV1,y� ,

��,y = 
�,1−��a�V1 + �	�y + a��xV1,x − �	�x − b��xV1,y� , �10�

�	�y + a��V0,x + �− 	�x + b��V0,y = 
�,1−��x��,y − y��,x�V1 ��,� = 0,1� . �11�

The coefficients of I and �3 a priori involve second-order derivatives of V1�x ,y�. These
second-order terms cancel, once Eqs. �9� and �10� are taken into account. This leads to the two
first-order equations �11�.

Before solving this system, let us introduce “allowed transformations” that leave the Hamil-
tonian �4� form invariant, i.e., change only the functions V0�x ,y� and V1�x ,y�. Such transforma-
tions will be used to simplify Hamiltonians, integrals of motion, and also the equations to be
solved.

Allowed transformations for any potentials V0 and V1 are as follows.

�1� Rotations in the xy plane.
�2� Gauge transformations of the form

H̃ = U−1HU, U = �ei� 0

0 e−i� �, � = ���,  =
y

x
. �12�

The transformation of the potentials is

V1
˜ = V1 +

�̇

x2 , V0
˜ = V0 + �1 +

y2

x2��1

2

�̇2

x2 + �̇V1� . �13�

For certain specific potentials V1, further allowed transformations exist �for any V0�, namely,
simultaneous translations and gauge transformations.

�1� V1=�= const. The allowed transformations are given by

x̃ = x + x0, ỹ = y + y0, � = ��y0x − x0y� , �14�

and the transformation of the potentials is
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V1
˜ = V1 = �, V0

˜ �x,y� = V0�x + x0,y + y0� −
1

2
�2
„x0

2 + y0
2 + 2�xx0 + yy0�… . �15�

�2� V1=V1�x�. The allowed transformation is

x̃ = x, ỹ = y + y0, ��x� = y0	 V1�x�dx, V1
˜ = V1, V0

˜ �x,y� = V0�x,y + y0� −
1

2
V1

2y0�y0 + 2y� .

�16�

Let us now return to Eq. �10�. The compatibility conditions ��,xy =��,yx imply

�	�y + a���xV1,xx + yV1,xy + 3V1,x� + �− 	�x + b���yV1,yy + xV1,xy + 3V1,y� = 0 �� = 0,1� .

�17�

In general, �17� represents an overdetermined system of two different equations for the po-
tentials V1�x ,y� and this system can be written as

xV1,xx + yV1,xy + 3V1,x = 0,

yV1,yy + xV1,xy + 3V1,y = 0. �18�

An exception occurs if the two equations �17� coincide. This occurs if the constants figuring
in Eq. �17� satisfy the three following equations:

	0a1 − 	1a0 = 0, 	0b1 − 	1b0 = 0, a1b0 − a0b1 = 0. �19�

We shall treat the case �18� in Sec. III. The case when �19� is satisfied and V1�x ,y� satisfies
only one equation �17� will be considered in Sec. IV.

III. SPIN ORBITAL INTERACTION WITH KINEMATICAL INVARIANCE GROUP

Let us now solve Eqs. �18�. We transform the first equation to characteristic variables, solve
and substitute into the second equation. The result is

V1�x,y� = � +
G��

x2 ,  =
y

x
, � = const. �20�

Comparing with Eq. �13� we see that we can annul the function G�� by a gauge transformation.
Thus we have

V1 = � . �21�

Substituting �21� into Eqs. �10� and �11�, we obtain

V0 =
1

2
�2�x2 + y2�, �0 = − ��b1x − a1y�, �1 = − ��b0x − a0y� . �22�

The Hamiltonian thus has the form

H = −
1

2
� +

1

2
�2�x2 + y2� + ��3L3, � � R . �23�

Since H does not depend on the constants 	�, a�, and b� we obtain six independent integrals of
motion, generating the symmetry group of this Hamiltonian.

A basis for the symmetry algebra is given by the eight operators:

L± = i�y�x − x�y��I ± �3� ,
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X± = �i�x � �y��I ± �3� ,

Y± = �i�y ± �x��I ± �3� ,

I± = I ± �3. �24�

The nonzero commutation relations are

�L±,X±� = 2iY±, �L±,Y±� = − 2iX±, �X±,Y±� = ± 4i�I±. �25�

The symmetry algebra is thus isomorphic to the direct sum of two central extensions of the
Euclidean Lie algebra,

L 
 ẽ+�2� � ẽ−�2� = �L+,X+,Y+,I+� � �L−,X−,Y−,I−� . �26�

The Casimir operators of L are

C± = X±
2 + Y±

2 ± 4�L±I±, I± = I ± �3, �27�

and we have

H =
1

8
�C+ + C−� . �28�

The integral of motion X is a linear combination of the eight operators �24� with arbitrary real
constant coefficients. Such operators X can be classified into conjugacy classes under the action of
the group generated by the algebra �24�. The conjugacy classes that lead to different types of
solutions of the Pauli system �8� can be represented by

X1 = L+ + �L−, X2 = L+ + �X−, X3 = X+ + �X−, � � R . �29�

The Hamiltonian �23� is not only integrable, but actually “first-order superintegrable.” For
particles of spin 0 first-order superintegrability occurs only for free motion. Notice that if we set
the spin-orbit interaction equal to zero in Eq. �23� �i.e., �=0�, we obtain free motion.

IV. HAMILTONIANS ALLOWING ONE FIRST-ORDER INTEGRAL

Let us now consider the case when Eqs. �19� are satisfied. The two equations �17� then
coincide and the potential V1�x ,y� satisfies just one second-order PDE. The equation �17� is of
hyperbolic type. Its characteristic variables are

 =
y

x
, � =

1

2
	1�x2 + y2� − b1x + a1y . �30�

Here we shall just consider two interesting special cases.
�a� 	1�0, a0=b0=0, a1=b1=0
We transform Eq. �17� to polar coordinates and obtain

�V1,�� + 2V1,� = 0, x = � cos�, y = � sin� . �31�

The potential V1 hence is

V1 = f��� +
1

�2g��� , �32�

where f��� and g��� are arbitrary. Comparing with Eq. �13�, we see that the function g��� can be
set equal to g=0 by a gauge transformation. Solving �10� and �11�, we obtain
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V0 = V0���, V1 = V1���, �0 = �1 = 0, �33�

X = �	0 + 	1�3�L3. �34�

�b� 	0=	1=0, a1
2+b1

2�0
Equation �17� in characteristic variables �30� is

V1,� +
2

�
V1, = 0, �35�

and we obtain

V1 = F1�a1y − b1x� +

F2� y

x
�

�a1y − b1x�2 . �36�

By a gauge transformation we set F2=0 and rotate in the xy plane to obtain

V1 = V1�x� . �37�

From Eqs. �10� and �11� we obtain

V0 =
y2

2
V1

2�x� + F�x� , �38�

�0 = − b1	 V1�x�dx, �1 = − b0	 V1�x�dx . �39�

Let us put b1=1, b0�0. We then have

�1 = b0�0, V1�x� = − �0��x� ,

V0�x,y� =
1

2
y2��0��x��2 + F�x� , �40�

and

X = − ib0�y + �0�x� + „− i�y + b0�0�x�…�3. �41�

We shall call the case �33� the “polar” case, �37� and �38� the “Cartesian” one, because of the
form of the operator X in �34� and �41�, respectively.

V. SOLUTIONS OF THE PAULI EQUATION

In this section we shall analyze and solve the pair of equations �8� for the different superin-
tegrable, or first-order integrable cases, found above.

A. The superintegrable Hamiltonian

Let us consider the Hamiltonian �23� with ��0, i.e., a constant spin-orbital potential and a
harmonic oscillator spin-independent one. The Hamiltonian commutes with the entire kinematical
algebra �24�. We shall choose the operator X of Eq. �8� in the form of one of the different
one-dimensional subalgebras shown in Eq. �29� and consider each of the three cases separately.
The potentials V0�x ,y� and V1�x ,y� in this case have the form �33� and �40� simultaneously.
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Hence, we can separate variables in polar coordinates, as well as in Cartesian ones. Moreover, we
can consider a mixed case: separation in different coordinate systems for the upper and lower
components of �.

1. Polar case

We introduce polar coordinates �� ,�� and choose the operator X in the form

X = − i�a1 0

0 a2
���, ai � 0. �42�

The condition X�=�� provides a wave function in the form

���,�� = �F1���ei��/a1��

F2���ei��/a2�� � . �43�

Substituting into the Pauli equation with Hamiltonian �23� we find that the function Fi��� satisfies

�−
1

2
� �2

��2 +
1

�

�

��
−

1

�2

�2

ai
2� +

1

2
�2�2�Fi = �E � �

�

ai
�Fi, �44�

so both components satisfy radial harmonic oscillator type equations.
The solution of Eq. �44� is

Fi��� = Nnimi
e−��/2��2

�miLni

mi���2� , �45�

where Lni

mi�z� are Laguerre polynomials. The quantum number � satisfies

�

a1
= m1,

�

a2
= m2; �46�

hence we must choose

a2

a1
=

m1

m2
�47�

rational. The energy satisfies

E − �m1 = ��2n1 + m1 + 1� ,

E + �m2 = ��2n2 + m2 + 1� , �48�

so the two radial quantum numbers are constrained by

2�n2 − n1� = m1�a1

a2
+ 1� − m1��a1

a2
� − 1� . �49�

If we normalize to have

	
0

� 	
0

2�

��12 + �22�� d� d� = 1, �50�

we must put the normalization constants in �45� equal to

Nnimi
=��mi+1

2�
� ni!

�ni + mi�!
. �51�

103509-7 Superintegrable systems with spin J. Math. Phys. 47, 103509 �2006�

                                                                                                                                    



2. Cartesian case

We choose the operator to be diagonalized in the form

X = �a1�i�y + �x� 0

0 a2�i�y − �x�
�, ai � 0. �52�

The equation X�=�� implies

� = �F1�x�e−�i/a1���−a1�x�y

F2�x�e−�i/a2���+a2�x�y � . �53�

Substituting into the Pauli equation H�=E� with H as in Eq. �23�, we obtain

F̈i − 4�2�x �
�

2ai�
�2

Fi + 2EFi = 0, i = 1,2, �54�

and hence

Fi = Nni
e−�x̃ i

2
Hni

��2�x̃i� ,

E = 2��n1 +
1

2
� = 2��n2 +

1

2
�, n1 = n2 = n ,

Nni
=� �2�

��n ! 2n
, x̃1,2 = x �

�

2ai�
, �55�

where Hn�z� is a Hermite polynomial.

3. Mixed case

Let us take the operator X in the form

X = �− ia1�� 0

0 a2�i�y − �x�
�, ai � 0. �56�

The wave function will then be

� = � F1���ei��/a1��

F2�x�e−�i/a2���+a2�x�y � , �57�

where �� ,�� are polar coordinates; �x ,y� Cartesian ones. The function F1��� will satisfy Eq. �44�
with i=1; F2�x� Eq. �54� with i=2. We hence obtain

F1��� = Nn1m1
e−��/2��2

�m1Ln1

m1���2� ,

F2�x� = Nn2
e−�x̃ 2

2
Hn2

��2�x̃2� , �58�

with

E = ��m1 + 2n1 + m1 + 1� = 2��n2 +
1

2
� . �59�
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B. Hamiltonians with one first order integral

1. Polar case

We consider the potential V0=V0���, V1=V1��� as in Eq. �33�. We write the integral �34� in the
form

X = − i�a1 0

0 a2
���, ai � 0, �60�

and the equation X�=�� implies

���,�� = �F1���ei��/a1��

F2���ei��/a2�� � . �61�

Substituting into the Pauli equation, we find that the radial functions F1, F2 satisfy

�−
1

2
� �2

��2 +
1

�

�

��
−

1

�2

�2

ai
2� + V0 ± V1

�

ai
�Fi = EFi, i = 1,2. �62�

For instance, choosing

V0 =
�

�
, V1 =

�

�2 , �63�

we can solve Eq. �62� in terms of Coulomb wave functions.

2. Cartesian case

Let us now consider V0, V1 and the integral X as in �40� and �41�. The equation X�=�� with
X as in �41� implies

� = ��1�x�ei���−�1+b0��0�x��/�1+b0��y

�2�x�ei���−�1−b0��0�x��/�b0−1��y � . �64�

The Pauli equation then reduces to the following two ODEs:

�̈i − � �� � �b0 ± 1��0�2

�b0 ± 1�2 � 2x�0�
� � �b0 ± 1��0

�b0 ± 1�
+ 2F�x� − 2E��i = 0, i = 1,2. �65�

To solve these equations, or analyze further, we would have to specify the two functions F�x�,
�0�x�.

VI. CONCLUSIONS

Let us first of all compare the problem of integrability and superintegrability for particles with
spin s=0 and spin s�0; in this case s= 1

2 . The spin zero case with a scalar potential in the
two-dimensional Euclidean space E2 corresponds to the Hamiltonian �1�. First-order superintegra-
bility is trivial: it requires V�x�= const and corresponds to free motion. Superintegrability with one
first-order and one second-order integral occurs for the potentials V=�r2, �r−1, �x, and �x−2.18

Quadratic superintegrability leads to four families of potentials,9,21 each depending on three sig-
nificant constants and allowing the separation of variables in at least two coordinate systems.

By contrast, for s= 1
2 first-order superintegrability leads to a nontrivial system, namely the

Hamiltonian �23� with the symmetry algebra �24�. The Hamiltonian allows the separation of
variables in polar coordinates �see �43�� and “R separation” in Cartesian ones �see �53��. Indeed,
in Eq. �53� there is a term involving the product xy that does not depend on the separation constant
�. The same is true for Hamiltonians, allowing just one first-order integral. In the polar case we
have separation �see �61��, in the Cartesian one R separation �64�.
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The next step in this research program will be to look for integrable and superintegrable
systems with spin in Euclidean 3-space. This would provide a realistic and solvable model for
pion-nucleon and possibly nucleon-nucleon interactions.
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When is negativity not a problem for the ultradiscrete
limit?
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The “ultradiscrete limit” has provided a link between integrable difference equa-
tions and cellular automata displaying soliton-like solutions. In particular, this pro-
cedure generally turns strictly positive solutions of algebraic difference equations
with positive coefficients into corresponding solutions to equations involving the
“Max” operator. Although it certainly is the case that dropping these positivity
conditions creates potential difficulties, it is still possible for solutions to persist
under the ultradiscrete limit, even in their absence. To recognize when this will
occur, one must consider whether a certain expression, involving a measure of the
rates of convergence of different terms in the difference equation and their coeffi-
cients, is equal to zero. Applications discussed include the solution of elementary
ordinary difference equations, a discretization of the Hirota Bilinear Difference
Equation and the identification of integrals of motion for ultradiscrete equations.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2360394�

I. INTRODUCTION

Integrable nonlinear partial differential equations are of special interest in part because of their
“soliton solutions” that exhibit particle-like behavior.1,3,7,23 The link between these equations and
the cellular automata that exhibit superficially similar solutions2,11,13,18 was the observation in Ref.
20 that solutions to the discretizations of the soliton equations become solutions to these cellular
automata under the “ultradiscrete limit.” Loosely speaking, this works because of the fact that, for
a ,b�R

lim
�→0+

� ln�ea/� + eb/�� = Max�a,b� . �1�

This formula can be understood intuitively by noting that the term corresponding to the smaller of
the two exponents will be relatively insignificant when � is very small and that with it eliminated
the entire expression is simply equal to the numerator of the other exponent. It can also be easily
verified using L’Hôpital’s rule.

In applying �1� to difference equations, previous authors have been very cautious, allowing
negative coefficients in front of the exponentials, and have not been concerned at all about the
question of how allowing a and b in the formula above to depend on � might affect the outcome.
In fact, they are correct that letting those coefficients be negative may invalidate the prediction that
the resulting limit will merely be given by the “Max.” In this paper, we will be especially
interested in the case in which the linear combination of exponential functions does involve
negative coefficients. Our viewpoint is that it is worthwhile to investigate this situation to under-
stand what can go wrong.

Theorem 2.1 demonstrates two surprising facts: �a� Even if negative coefficients are involved,
a formula analogous to �1� continues to work “most of the time.” �b� In determining when it might

a�Electronic mail: kasmana@cofc.edu
b�Electronic mail: lafortunes@cofc.edu
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fail, it is necessary to explicitly consider the rate of convergence of the exponents under the limit
in �. This theorem is illustrated by an application to two simple, ordinary difference equations in
Sec. III. In a more sophisticated application, the theorem is used to guarantee the production of a
solution to an ultradiscrete limit of the Hirota Bilinear Difference Equation in Sec. IV. Finally,
these results are applied to the question of when integrals of motion for difference equations
survive the ultradiscrete limit in Sec. V.

Both to refer readers to other work that may be of interest and to emphasize the differences
with this paper, we would like to conclude this Introduction with a discussion of three other
papers. Equation �1� has been previously generalized in Ref. 21 to the case in which a and b are
complex constants. This is of great interest, but clearly quite different from what we do below by
allowing the argument of the logarithm to be an arbitrary linear combination of exponentials and
letting the exponents be real functions of �. Also, Ref. 8 presents work related to the goals of the
present paper by addressing the question of how one can take an ultradiscrete limit of a solution
to a difference equation that takes on negative values. Their approach involves an alternative
method of introducing dependence on � into the solution so that the new variable can be real, even
in the case that the original variable was negative. However, in doing so, they are careful to be
certain that they always apply �1� only in the case that the coefficients of the exponentials are
equal to one and make no explicit mention of the possibility that the results may be affected by the
dependence of the exponents on �. So, that paper takes what might be viewed as an “orthogonal”
approach to the question to the one that will be pursued later. It might be of interest to attempt to
combine the two, by applying Theorem 2.1 to the s-ultradiscrete limit as defined in that paper.
Finally, perhaps most closely related to this paper in spirit, Ref. 12 generalizes the procedure of
ultradiscretization by formally extending the Max-Plus algebra through the introduction of an
extra Z2 component. This extension of the Max-Plus semiring to a full ring, as is normally done in
the Max-Plus community by moving to the symmetrized ring Smax,

4 means that the resulting
equations are not ordinary ultradiscrete equations �the Max operator and even equality have
slightly different meanings�. In contrast, in this paper we address the question of when negativity
fails to create any problems under the original definition of the ultradiscrete limit and integrable
ultra-discrete equations.

A. Notation

In the following, a superscript of � will indicate that the parameter depends differentiably on
the real variable � in some open interval �0,��. Thus un

� would be an � dependent bi-infinite
sequence and could be a solution to a difference equation in which the coefficients also depend on
�, and we would only call it a solution if the equation were true, not only for all n but also for all
�� �0,��. �For example, un

� =�n satisfies un+1
� un−1

� = �un
��2−�2�.

B. An enlightening example

As we will see in Theorem 2.1, it is possible to generalize �1� to the case in which the
argument of the logarithm is a more general linear combination of exponentials whose exponents
depend on �. As one might guess, the value of the limit turns out to be equal to the maximum of
the limits of the numerators of the exponents. However, the theorem can only be applied subject
to the condition that a certain expression involving the coefficients and the rates of convergence is
not equal to zero. Following is a cautionary example whose purpose is to illustrate the fact that
failing to consider this condition is liable to produce incorrect results.

If we consider the expression

� = eu1
�/� + �eu2

�/�

then using the previously stated argument that the term with the lower power can simply be
ignored, we may naively think that
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lim
�→0+

� ln � = Max�u1,u2�, where ui = lim
�→0+

ui
�. �2�

However, �2� may be false for some choices of ui
� and �.

For instance, if we let

u1
� = a + 2� ln�e−k/� + �8 + e−2k/��, u2

� = a + � ln 2 and � = − 4

where k�0 and a is arbitrary, then

u1 = u2 = a .

However, despite the predictions of Eq. �2�, one can check that, in fact,

lim
�→0+

� ln � = a − k .

The total avoidance of negativity in the literature on “ultradiscrete limits” might suggest that
it is the fact that ��0 that is causing a problem here, but that would be a drastic oversimplifica-
tion. The fact is that for any choice of ��−4 the prediction of �2� would have been correct and the
limit would have the value a, as expected. So, an explanation of this phenomenon would have to
shed light on the question of why this occurs only at �=−4. �Such an explanation is provided in
the following section.�

This example is not as artificial as it may at first seem since it will arise in a more general
form as part of an investigation of a simple ordinary difference equation in Sec. III. It demon-
strates that the coefficients in the linear combination of exponentials can have unexpected effects
on the “ultradiscrete limit.” It also demonstrates that the natural generalization of �1� provided by
�2� is correct generically in the sense that it is only for rather specific choices of coefficient that it
fails.

II. A MORE GENERAL LIMIT

In this section we state and prove a generalization of �1� that will later be applied to questions
involving difference equations. We wish to consider instead the case in which the argument of the
logarithm, �, may be an arbitrary linear combination of exponentials and in which the numerator
of the exponents can also depend upon �. The following theorem gives conditions that are suffi-
cient �but not necessary, as we will see in Sec. III A� to conclude that the limit of � ln � is still
equal to the largest limit of the numerators of the exponents.

Theorem 2.1: Let

� = �
i=1

n

�ie
wi

�/�, �3�

where �i�C are arbitrary, nonzero constants and wi
� are real valued functions such that the limits

Mi = lim
�→0+

wi
�, i = 1, . . . ,n ,

are finite. Let

M = Max�M1, . . . ,Mn� and I = �i�Mi = M	

denote the largest value of these limits and the set of indices for which this maximum is achieved,
respectively.

Then

lim
�→0+

� ln � = M ,
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if either

�i� �I � =1 �the maximum is achieved only once� or
�ii� the limits

�i = lim
�→0+

�wi
� − M�/�, for i � I

are finite and D�0, where

D = �
i�I

�ie
�i.

Proof: In the case �I � =1 let I= �i0	 so that Mi0
=M�Mi for i� i0. Then

lim
�→0+

� ln � = lim
�→0+

� ln�eM/� � �ie
�wi

�−M�/��

= � ln eM/� + � ln � �ie
�wi

�−M�/�

�then since wi
� − M � 0 for i � i0 and � sufficiently small�

= M + lim
�→0+

� ln �i0
= M .

The situation is more complicated in the case that �I � �1. We now assume that D�0 and
show that again the limit is simply equal to the maximum of the exponents.

First, we wish to show that D�0 implies that � is nonzero on a small open interval �0,�� and
so it makes sense to consider the function � ln �. �There is no need to require ��0, however, since
the proof to follow continues to be valid in the case that this function takes on complex values or
even if it becomes multivalued as a consequence of analytic continuation.�

D = �
i�I

�ie
�i = lim

�→0+
�
i�I

�ie
�wi

�−M�/�

�then since wi
� − M � 0 for i � I and � sufficiently small�

= lim
�→0+

�
i=1

n

�ie
�wi

�−M�/� = lim
�→0+

e−M/�� .

Suppose �i�0 is a sequence that converges to 0 and with the property that �=0 for �=�i. Then,
since the limit above converges to D, it must be the case that D=0. Since D�0, no such sequence
of ��i	 can exist.

Now, we simply compute that

lim
�→0+

� ln � = lim
�→0+

� ln�eM/� � �ie
�wi

�−M�/��

= lim
�→0+

� ln eM/� + lim
�→0+

� ln�
i=1

n

e�wi
�−M�/�

= M + lim
�→0+

� ln
�
i�I

e�wi
�−M�/� + �

i�I

e�wi
�−M�/��

= M + lim
�→0+

� ln�D + 0� = M .

�

Note that, apart from the restriction that D�0, the value of the limit is independent of the
choice of coefficients �i. We will take advantage of this feature in Secs. III–V to effectively apply
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the procedure of ultradiscrete limits to integrable difference equations, even in the absence of any
positivity restrictions. Furthermore, note that as a consequence of this lack of dependence on the
value of the coefficients, the limit will be unaffected by an extra common factor of −1. In
particular, we have the following corollary.

Corollary 2.2: If the conditions of Theorem 2.1 are met, then

lim
�→0+

� ln��� = lim
�→0+

� ln � .

Again, this ability for us to take the absolute value prior to taking the ultra-discrete limit will
be useful in our attempt to apply this result in the case of difference equations.

A. Continuation of earlier example

It is important to note that if neither conditions �i� or �ii� are met, then the value of the limit
cannot necessarily be determined through knowledge of the limits Mi of the functions in the
exponents. This is demonstrated by the example from Sec. I B in which the value of the limit of
the entire expression, a−k, depends on the parameter k not appearing in the limits of the functions
in the exponents when �=−4.

We can now apply Theorem 2.1 to explain the significance of �=−4 in that example. Again let

� = eu1
�/� + �eu2

�/�, u1
� = a + 2� ln�e−k/� + �8 + e−2k/�� and u2

� = a + � ln 2,

but consider � arbitrary. The paramters �i measuring convergence are then

�1 = lim
�→0+

�u1
� − a�/� = ln 8 and �2 = lim

�→0+
�u2

� − a�/� = ln 2.

Hence, we find that

D = eln 8 + �eln 2 = 2�4 + �� .

Since this is only equal to zero at �=−4, the “mystery” is resolved.

B. An example where D does not exist

To illustrate the role of condition �i� in Theorem 2.1, we briefly point out that for

� = eu1
�/� − eu2

�/� u1
� = � sin�1/�� u2

� = − 2 + 3� ,

one has M=lim�→0+ u1
� =0� lim�→0+u2

� =−2. Since �I � =1, we know that lim�→0+� ln �=0, even
though the limit defining �1 has no value.

III. APPLICATION: ORDINARY DIFFERENCE EQUATIONS

Consider the difference equation

�
i=1

N 
�i
� �

j=−d

d

�xn+j
� �mij� = �

i=1

N̂ 
�̂i
� �

j=−d

d

�xn+j
� �m̂ij� . �4�

We will generally be interested in the case mij , m̂ij �Z for the sake of preserving the integrality of
solutions under the ultradiscrete limit.

Definition 3.1: We say that a solution xn
� to �4� is a candidate for the ultradiscrete limit if the

following conditions are met:

• xn−d
� , . . . ,xn+d

� , �i
�, and �̂i

� take non-zero real values for �� �0,�� for some small, positive
number �.
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• The limits un=lim�→0+ � ln �xn
��, Ai=lim�→0+ � ln ��i

��, and Âi=lim�→0+ � ln � �̂i
�� exist and are

finite.
• The limits

�i = lim
�→0+

�� ln��i
�� + �� j=−d

d
mij ln�xn+j

� �� − M

�
, for i � I

and

�̂i = lim
�→0+

�� ln��̂i
�� + �� j=−d

d
m̂ij ln�xn+j

� �� − M̂

�
, for i � Î

exist and are finite where

M = Max
i=1

N 
Ai + �
j=−d

d

mijun+j�
and

I = i�Ai + �
j=−d

d

mijun+j = M�
is the set of indices for which this maximum is attained, and, similarly,

M̂ = Max
i=1

N̂ 
Âi + �
j=−d

d

m̂ijun+j� and Î = i�Âi + �
j=−d

d

m̂ijun+j = M̂� .

Theorem 3.2: Suppose xn
� is a solution to the algebraic difference equation �4�, which is a

candidate for the ultradiscrete limit �see Definition 3.1 for terminology and notation�. The ultra-
discrete limit of xn

�,

un = lim
�→0+

� ln�xn
��

is a solution to the equation

Max
i=1

N 
Ai + �
j=−d

d

mijun+j� = Max
i=1

N̂ 
Âi + �
j=−d

d

m̂ijun+j� �5�

if the maximum value on each side is never attained simultaneously for more than one value of the
index, or as long as both

�
i�I

	ie
�i � 0 and �

i�Î

	̂ie
�̂i � 0, �6�

where

	i =
��i

�� j=−d

d
�xn+j

� �mij�

�i
�� j=−d

d
�xn+j

� �mij
, 	̂i =

���ˆ
i� j=−d

d
�xn+j

� �m̂ij�

��ˆ
i� j=−d

d
�xn+j

� �m̂ij

,

are the signs of the corresponding term in the equation.
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Proof: Letting

wi
� = � ln��i

� �
j=−d

d

�xn+j
� �mij� ,

we can write the left side of �4� in the form

� = �
i=1

N

	ie
wi

�/�.

If �I � =1 or D�0, then Theorem 2.1 tells us that the limit of � ln � will be

Max
i=1

N

� lim
�→0+

wi
�� .

But that D is nonzero is exactly the first of the two requirements in �6� and so

lim
�→0+

wi
� = lim

�→0+
� ln �i
� + � �

j=−dd

mij ln xn+j
� � = Ai + �

j=−d

d

mijun+j ,

and that �I � =1 is equivalent requiring that the maximum on the left hand side of �5� is achieved
for a unique value of the index.

Similarly, we conclude that the limit of � times the log of the right hand side of the equation

is Maxi�Âi+� j=−d
d m̂ijun+j�. If xn

� is a solution, then these two sides are always equal and hence their
limits are equal as well. �

A. Basic example

Consider the difference equation

xn+1
� + e2b/�xn−1

� − e2c/�xn−1
� = 2eb/�xn

� . �7�

Let N=3 because there are three terms on the left, N̂=1 because there is one monomial on the
right, and d=1 because we only see n shifted up and down by this much. The monomials on the
left are given by letting

�1
� = 	1 = 1, m1,−1 = m1,0 = 0, m1,1 = 1,

�2
� = e2b/�, 	2 = 1, m2,−1 = 1, m2,0 = m2,1 = 0,

and

�3
� = e2c/�, 	3 = − 1, m3,−1 = 1, m3,0 = m3,1 = 0.

The monomial on the right is given by letting

	̂1 = 1, ��ˆ = 2eb/�, m̂1,−1 = m̂1,1 = 0 and m̂1,0 = 1.

A solution to this equation is given by

xn
� = �eb/� + ec/��n,

since expanding the left hand side of �7� with this definition for xn
� gives an expression equal to the

right hand side for any n or �.
Trivially, this same solution xn

� also solves the difference equation
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e2b/�xn−1
� − e2c/�xn−1

� = 2eb/�xn
� − xn+1

� . �8�

In fact, in most circumstances one would want to consider this equation to be completely equiva-
lent to �7� since one can simply add xn+1

� to both sides of one to make it into the other. However,
for the purposes of this paper they are quite different.

Regardless of whether we are working with the difference equation in the form �7� or �8�, the
solution xn

� = �eb/�+ec/��n is the same. Then our solution un to the ultradiscrete equation should take
the form

un = lim
�→0+

� ln�eb/� + ec/��n = n lim
�→0+

� ln�eb/� + ec/�� = n Max�b,c� .

Ignoring condition �6� of Theorem 3.2, we get from �7� that un should satisfy

Max�un+1,2b + un−1,2c + un−1� = b + un, �9�

and from �8� we get that it should satisfy

Max�2b + un−1,2c + un−1� = Max�b + un,un+1� . �10�

However, it is not the case that un satisfies each of these equations, regardless of the choice of
b and c. In particular, condition �6� may not be met and, as we will see, this causes un not to solve
�9� when b�c.

Look at the arguments of Max on the left hand side of �9� and consider the question of which
of them are equal to the maximum value. If b�c then the terms have the values �n+1�b, �n
+1�b and �n−1�b+2c, respectively, so that the first two terms are equal to the maximum value.
�Using the notation of the theorem, M= �n+1�b and I=1,2.� All of the �i are zero �which means
that these solutions converge quickly to their limits�, and so all of the exponential terms are just
equal to one. Now, we must look at the sum of 	1 and 	2 to make certain that it is not equal to
zero. Since 	1+	2=2�0, the condition is met. And, in fact, one can easily verify that if b�c,
then un=nb is indeed a solution to �9�. However, when b�c, then things are quite different. In that
case, M= �n+1�c andI= �1,3	, but 	1+	3=0, and so Theorem 3.2 does not predict that un will
solve the equation. In fact, it does not, because then the left hand side has the value �n+1�c while
the right side has the value nc+b.

In contrast, the theorem predicts that un will solve �10� when b�c and when b�c. In
particular, if b�c, then M=Max�2b+un−1 ,2c+un−1�= �n+1�b and I= �1	, while if c�b then
M= �n+1�c and I= �2	. Thus, we conclude from the theorem that un should satisfy �10� as long as
b�c. In fact, it can be checked explicitly that un is a solution to �10� in the case b=c as well. This
is true even though the conditions of the theorem fail to be satisfied in that case. This shows that
the conditions of the theorem, while sufficient, are not necessary.

B. Another example: Demonstrating the role of rate of convergence

Consider the difference equation

xn+1
� − 2xn−1

� = e
/�xn
� .

Considering the survival of solutions of this equation under the ultradiscrete limit illustrates the
importance of the parameters �i, which measure the rate of convergence of the terms.

This has a solution of the form

xn
� = 
�8 + e2
/� + e
/�

2
�n

.

Consequently, we would expect
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un = lim
�→0+

� ln xn
� = n
 , 
 � 0,

0, 
 � 0,

to solve

Max�un+1,un−1� = 
 + un.

And, indeed, if 
�0 this is true. However, it fails when 
�0. This could be predicted by the
Theorem. Condition �6� is trivially met when 
�0 because the exponents on the left do not have
the same limit. However, when 
�0 then both exponents go to 0 and �1=ln 2, and hence the sum
is D=eln 2−eln 2=0.

IV. APPLICATION: HIROTA BILINEAR DIFFERENCE EQUATION

The Hirota Bilinear Difference Equation �HBDE�10,17,22 for a function x��a ,b ,c ,d� of four
variables is

�
4
� − 
3

���
2
� − 
1

��x��a,b,c + 1,d + 1�x��a + 1,b + 1,c,d�

+ �
4
� − 
1

���
3
� − 
2

��x��a + 1,b,c,d + 1�x��a,b + 1,c + 1,d�

= �
4
� − 
2

���
3
� − 
1

��x��a + 1,b,c + 1,d�x��a,b + 1,c,d + 1� .

As a consequence of the main result in Ref. 5, a solution to this equation can be constructed as

x��a,b,c,d� = det„P · �I − 
1
�S�a · �I − 
2

�S�b · �I − 
3
�S�c · �I − 
4

�S�d · �… ,

where � is any nk matrix �k�n�, S is any nn matrix such that the lower-left k �n−k� block
has rank one, I is the nn identity matrix, and P= �0Ik� is the kn matrix that has the kk
identity matrix as a block and all zeroes to the left of it.

It is interesting to note that even though x��a ,b ,c ,d� has dependence upon � inherited from
the presence of 
i

� in the formula, one is also free to choose S and � to depend upon � and
x��a ,b ,c ,d� would still solve the difference equation.

For example, let us consider


1
� = e−2/� − e2/� + e3/�, 
2

� = e3/� − e2/�, 
3
� = e3/� + e−2/�, 
4

� = e3/�,

so that

�
4
� − 
3

���
2
� − 
1

�� = e−4/�, �
4
� − 
2

���
3
� − 
1

�� = e4/�.

�It is necessarily the case that �
4
� −
1

���
3
� −
2

�� is the difference of the other two.�
Now, just for the sake of example, let us consider the solution that comes from using k=2,

n=4,

S =�
1 0 0 0

1 e1/� 0 0

0 0 e5/� 0

0 e5/� 0 e12/�
� and � =�

0 0

1 0

1 1

0 1
� .

This solution has the form �up to a common multiple independent of a, b, c, and d that does not
matter due to the bilinear nature of the equation�

x��a,b,c,d� = x1
��a,b,c,d� − x2

��a,b,c,d� + x3
��a,b,c,d�

where

x1
��a,b,c,d� = e4/��1 − e4/��d�1 − e−1/� − e4/��c�1 + e3/� − e4/��b�1 − e−1/� + e3/� − e4/��a
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�1 − e8/��d�1 − e3/� − e8/��c�1 + e7/� − e8/��b�1 − e3/� + e7/� − e8/��a,

x2
��a,b,c,d� = �1 − e8/��d�1 − e3/� − e8/��c�1 + e7/� − e8/��b�1 − e3/� + e7/� − e8/��a

�1 − e15/��d�1 − e10/� − e15/��c�1 + e14/� − e15/��b�1 − e10/� + e14/� − e15/��a,

and

x3
��a,b,c,d� = e11/��1 − e8/��d�1 − e3/� − e8/��c�1 + e7/� − e8/��b�1 − e3/� + e7/� − e8/��a

�1 − e15/��d�1 − e10/� − e15/��c�1 + e14/� − e15/��b�1 − e10/� + e14/� − e15/��a.

Before even worrying about the structure of the equation, one must worry that this solution
itself will not have a well defined or simple ultradiscrete limit. In particular, if we define

u�a,b,c,d� = lim
�→0+

� ln x��a,b,c,d� ,

and we do not worry about the requirement that D�0 in Theorem 2.1, then we would conclude
that

u�a,b,c,d� = Max�4 + 12a + 12b + 12c + 12d,23a + 23b + 23c + 23d,11 + 23a + 23b + 23c + 23d� .

�11�

�This is found by adding up for each factor in the expression of xi
� with i=1,2 ,3 the highest

numerator of the exponent when viewed as a fraction having � as the denominator. For instance,
the first expression is found from x1

� as 4+4d+4c+4+4a+8d+8c+8b+8a.� Yet, as the examples
of the previous section demonstrate, we ought to be worried that this formula is not accurate in the
case that D=0 when Theorem 2.1 is applied to this example.

In fact, it turns out that there is no need to worry about this since it is always the case here that
�I � =1. Note first that the third is always 11 more than the second, and so there is no possibility
that these would be equal. By the same argument, there would be no problem if the first two were
equal since they could not be the maximum �with the third being 11 more all the time�. Finally, we
need only worry about the possibility that the first and third are equal. Certainly, it is possible for
these two expressions to have the same value, but never for integer values of a ,b ,c, and d. In
particular, they are only equal when

a = − 
b + c + d +
7

11
� .

A similar argument applies when we wish to compute the limit of the Hirota Bilinear Differ-
ence Equation to find the equation that this u�a ,b ,c ,d� satisfies. Rewriting the HBDE as

	1e„u
��a+1,b+1,c,d�+u��a,b,c+1,d+1�−4…/� + 	2e„u

��a+1,b,c,d+1�+u��a,b+1,c+1,d�+� ln �e4/�−e−4/��…/�

=	3e„u
��a+1,b,c+1,d�+u��a,b+1,c,d+1�+4…/�,

where u��a ,b ,c ,d�=� ln �u�a ,b ,c ,d�� and 	1= ±1 as needed when u is negative, leads to its
ultradiscretization as

Max„u�a + 1,b + 1,c,d� + u�a,b,c + 1,d + 1� − 4, u�a + 1,b,c,d + 1� + u�a,b + 1,c + 1,d� + 4…,

= u�a + 1,b,c + 1,d� + u�a,b + 1,c,d + 1� + 4. �12�

Then to show that �11� gives a solution, we apply Theorem 3.2 and note that since
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u�a + 1,b + 1,c,d� = u�a,b,c + 1,d + 1� = u�a + 1,b,c,d + 1� = u�a,b + 1,c + 1,d� ,

the first argument of the Max operator is always 8 less than the second argument.

V. APPLICATION: FIRST INTEGRALS

In this section, we consider difference equations that admit first integrals and ask the follow-
ing question: When does the ultradiscretization of the equation leave the ultradiscretization of the
first integral invariant? The study performed in this section will be more algebraic than analytic:
the results about first integrals will apply to the complete set of solutions as opposed to a particular
solution, as considered before.

A. Preliminary examples

A well-known class of second order difference equations is given by the QRT mappings
discovered by Quispel, Roberts, and Thompson.14 The ultradiscrete limit of members of that class
of mappings together with their first integrals was first performed in Ref. 19, but, each time this is
done, one has to check explicitly that the resulting ultradiscretization of the first integral is indeed
invariant.

Let us start with the following simple example of a difference equation,

xn+1 =
��xn + 1

xnxn−1
, �13�

where �� is constant in n. Equation �13� is a member of the class of QRT mappings. As such, �13�
admits the following first integral,

���xn−1,xn� = xn + xn−1 +
��

xn
+

��

xn−1
+

1

xnxn−1
. �14�

We say that �� is a first integral for �13� because ���xn−1 ,xn�= ���xn ,xn+1� if xn is a solution to �13�.
To obtain the ultradiscrete version of these two expressions, one writes ��=eA/� and xn=eun/�. Then
we take the limit as �→0+ of the equation using the identity �1� �note that in this particular
example, we do not need the more general relation given by Theorem 2.1�. We obtain

un+1 = Max�un + A,0� − un − un−1 �15�

and

I = Max�un,un−1,A − un−1,A − un,− un − un−1� . �16�

The quantity I defined in �16� is conserved by the equation �15�. Following Ref. 9, this can be
shown directly by substituting the expression for un−1 in terms of un and un+1 coming from �15�
into the definition of I as follows:

In = Max„un,− un+1 − un + �un + A�+,A − un,A + un+1 + un − �un + A�+,un+1 − �un + A�+…

= Max�un,A − un+1,− un − un+1,A − un,Max„A + un+1 + un − �un + A�+,un+1 − �un + A�+…�

= Max�un,A − un+1,− un − un+1,A − un, ,un+1� = In+1,

where we have introduced the notation �k�+�Max�k ,0�.
Another more complex example is given by a difference equation that is related �through the

process of deautonomization� to a discrete version of the third Painlevé equation,6,15,16

xn+1 =
��1

��2
� + xn���1

�/�2
� + xn�

xn−1��1
��3

�xn + 1���1
�/�3

�xn + 1�
. �17�

Again, as a member of the QRT family of mapping, �17� has a first integral given by
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�� = �1
��3

��1 + �2
�2�
 1

xn−1
+

1

xn
� + �1

��2
��1 + �3

�2��xn + xn−1� + �1
�2�2

��3
�
xnxn−1 +

1

xnxn−1
�

+ �2
��3

�
 xn

xn−1
+

xn−1

xn
� . �18�

The ultradiscretization of these two expressions is performed the same way as before by setting
�i

�=eAi/� and xn=eun/�. In the limit as �→0+, one gets

un+1 = 2un + �A1 + A2 − un�+ + �A1 − A2 − un�+ − �A1 + A3 + un�+ − �A1 − A3 + un�+ − un−1,

�19�

with first integral

I = Max�A1 + A3 − un−1,A1 + A3 − un,A1 + A3 + 2A2 − un−1,A1 + A3 + 2A2 − un,A1 + A2 + un,A1 + A2

+ un−1,A1 + A2 + 2A3 + un,A1 + A2 + 2A3 + un−1,2A1 + A2 + A3 + un + un−1,2A1 + A2 + A3 − un

− un−1,A2 + A3 + un − un−1,A2 + A3 + un−1 − un� . �20�

Checking that I defined above is a first integral is quite a cumbersome task. Instead, we will rely
on a general theorem that we prove later.

B. Main result about first integrals

Consider the difference equation

xn+d
� = f�xn

�,xn+1
� , . . . ,xn+d−1

� � �21�

where f is a rational function on Rd of the form

f�a0,a1, . . . ,ad−1� �
�i=1

N ��i
�� j=0

d−1
�aj�mij�

�i=1
N̂ ��̂i

�� j=0

d−1
�aj�m̂ij�

.

A first integral for �21� is defined to be a rational function �� on Rd of the form

���a0,a1, . . . ,ad−1� =
�i=1

M ��i
�� j=0

d−1
�aj�lij�

�i=1
M̂ ��̂i

�� j=0

d−1
�aj�l̂i j�

, �22�

where lij , l̂i j �N, which remains invariant when restricted to any solution to �21�, that is,
��(a1 ,a2 , . . . ,ad−1 , f�a0 ,a1 , . . . ,ad−1�)= ���a0 ,a1 , . . . ,ad−1�. Here, we assume the coefficients �i

� and

�̂i
� to be nonzero for � in a certain interval �0,��. In all our examples, these coefficients will be

exponentials and thus never zero.
The following question arises: is the ultradiscretization of �22� a first integral for the ultradis-

cretization of �21�? Precisely, does the function

I�b0,b1, . . . ,bd−1� = Max
i=1

M 
Bi + �
j=0

d−1

lijbj� − Max
i=1

M̂ 
B̂i + �
j=0

d−1

l̂i jbj� ,

where Bi , B̂i are defined as Bi=lim�→0+ � ln ��i
�� and B̂i=lim�→0+ � ln � �̂i

��, define a first integral for
the equation

un+d = g�un,un+1, . . . ,un+d−1� �23�

where g a function on Rd defined by

103510-12 A. Kasman and S. Lafortune J. Math. Phys. 47, 103510 �2006�

                                                                                                                                    



g�b0,b1, . . . ,bd−1� � Max
i=1

N 
Ai + �
j=0

d−1

mijbj� − Max
i=1

N̂

�Âi + � j=0

d−1
m̂ijbj� ,

where Ai are defined in Definition �3.1�.
Before stating the theorem, let us define the function D on Rd by

D�b0,b1, . . . ,bd−1� � �
i�I

	ie
�i,

where

	i =
��i

�
„f�eb0/�,eb1/�, . . . ,ebd−1/��…lid−1�

�i
�
„f�eb0/�,eb1/�, . . . ,ebd−1/��…lid−1

�	i is the sign of �i
��f�eb0/� ,eb1/� , . . . ,ebd−1/���lid−1 for � close to zero� and

M = Max
i=1

M 
Bi + �
j=0

d−2

lijbj+1 + lid−1g�b0,b1, . . . ,bd−1��
and

I = i�Bi + �
j=0

d−2

lijbj+1 + lid−1g�b0,b1, . . . ,bd−1� = M� ,

and

�i = lim
�→0+

� ln��i
�� + � j=0

d−2
lijbj+1 + lid−1h��b0,b1, . . . ,bd−1� − M

�
, for i � I ,

where

h��b0,b1, . . . ,bd−1� = � ln��f�eb0/�,eb1/�, . . . ,ebd−1/���� .

Note that

lim
�→0+

h��b0,b1, . . . ,bd−1� = g�b0,b1, . . . ,bd−1� .

Furthermore, the function D̂ is defined the same way by replacing 	i ,�i ,�i
� ,Bi , lij ,M above by

	̂i , �̂i , �̂i
� , B̂i , l̂i j ,M̂.

Theorem 5.1: If D and D̂ are nonzero almost everywhere in Rd, then I is a first integral for
�23�.

Proof: By definition of I, we have the equality

lim
�→0+

� ln„���eb0/�,eb1/�, . . . ,ebd−1/��… = I�b0,b1, . . . ,bd−1� .

Furthermore, as a direct consequence of Theorem 2.1, since both D and D̂ are nonzero almost
everywhere in Rd, the following equality must hold everywhere, except in a subset of measure
zero,

lim
�→0+

� ln„���eb1/�,eb2/�, . . . ,ebd−1/�,eh��b0,b1,...,bd−1��… = I„b1,b2, . . . ,bd−1,g�b0,b1, . . . ,bd−1�… .

Because both the argument of the limit and the right hand side of the equation are continuous in
Rd, the equality holds in all Rd.
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Since �� is a first integral for �21�, the arguments of the two limits above are equal. Hence,
since both limits exist, the right sides are equal, which shows that I is a first integral for �23�. �

C. Examples

Consider the difference equation

xn+2 = − xn − xn+1 +
��

xn+1
, �24�

which admits the first integral given by

�� = xn+1
2 xn + xn+1xn

2 − ���xn+1 + xn� �25�

�note that �24� was intentionally written so that xn+2 is a function of xn and xn+1 in order to apply
Theorem 5.1 directly with d=2�. Equation �24� is related to a discrete version of the first Painlevé
equation.6,15,16 For the ultradiscrete limit, we choose ��=eA/� and find

un+2 = Max�un,un+1,A − un+1� � g�un,un+1� , �26�

I�un,un+1� = Max�2un+1 + un,un+1 + 2un,A + un+1,A + un� . �27�

The quantity defined in �27� is not a first integral for �26�. To see this, we consider the specific
example with A�8, in which we have that I�3,5�=13 and I(5,g�5,3�)= I�5,5�=15� I�3,5�.

We now show that the conditions of Theorem 5.1 are not met. Specifically, it is not true that
the function D is nonzero almost everywhere in R2. We first set

�1
� = 1, l1,0 = 2, l1,1 = 1,

�2
� = 1, l2,0 = 1, l2,1 = 2,

�3
� = − eA/�, l3,0 = 1, l3,1 = 0,

�4
� = − eA/�, l4,0 = 0, l4,1 = 1.

and

M = Max„2g�b1,b2� + b2,g�b1,b2� + 2b2,A + g�b1,b2�,A + b2… .

Furthermore, to apply Theorem 5.1, it is useful to write the following quantity explicitly:

f�eb1/�,eb2/�� = − eb1/� − eb2/� + e�A−b2�/�.

Consider the case where b2 is greater than both b1 and A−b1. We obtain g�b1 ,b2�=b2 and I

= �1,2	. The sign of f�eb1/� ,eb2/�� for small positive � is negative, which means that 	1=−	2=1.
Since �1=�2=0, we finally get that D=e�1 −e�2 =0. Thus, the function D is zero in the semi-
infinite triangular region of the plane b2�b1 and b2�A−b1. The conditions of the Theorem 5.1
are thus not met.

Let us now consider the two examples of Sec. V A. In both cases, all the 	i’s are equal to one.

Thus, this automatically implies that both D and D̂ are nonzero. In particular, this shows that �20�
is indeed a first integral for �19�.

We now consider a last example,
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xn+2 =
xn+1

1 − xn+1
2 − xn � f�xn,xn+1� , �28�

with first integral

� = xn+1
2 + xn

2 − xn+1
2 xn

2 − xn+1xn. �29�

The ultradiscretization reads as

un+2 = Max�un + 2un+1,un+1,un� − Max�2un+1,0� � g�un,un+1� , �30�

I = Max�2un+1,2un,2un+1 + 2un,un+1 + un� . �31�

To apply Theorem 5.1, we set

�1
� = 1, l1,0 = 0, l1,1 = 2,

�2
� = 1, l2,0 = 2, l2,1 = 0,

�3
� = − 1, l3,0 = l3,1 = 2,

�4
� = − 1, l4,0 = l4,1 = 1,

and

M = Max„2g�b1,b2�,2b2,2g�b1,b2� + 2b2,g�b1,b2� + b2… .

Furthermore, it is useful to write the following explicitly:

f�eb1/�,eb2/�� =
eb2/�

1 − e2b2/� − eb1/�.

To prove that the function D is nonzero almost everywhere in R2, we consider four cases.
First, in the case b1 ,b2�0, we have that g�b1 ,b2�=b1 and I= �3	 and, thus, because there is only
one term in D, it cannot be zero. In the case b2�0,b1�0, g�b1 ,b2�=Max�b1 , −b2� and I= �2	.
Again, D cannot be zero. In the case b2�0,b1�b2, we have that g�b1 ,b2�=b1 and I= �1	. Finally,
in the case b1�b2�0, g�b1 ,b2�=b2 and I= �1,2 ,4	. Here, D is not trivially nonzero and a little
more work is required. The sign of f�eb1/� ,eb2/�� for small � is positive, �i=0, i=1,2 ,4 and 	1

=	2=−	4=1. Thus, D=1+1−1=1�0. We thus have proven that D is nonzero almost everywhere
in R2, which means, by Theorem 5.1, that �31� is a first integral for �30�. Note, however, that D is
not nonzero everywhere in R2. For example, in the case b1=0 and b2�0, we have that
g�b1 ,b2�=0, I= �2,3	, the sign of f�eb1/� ,eb2/�� is negative, 	2=−	3=1, and thus D=0.

VI. CONCLUSIONS

Although it is the case that problems can arise in computing a limit of the form

lim
�→0+

� ln�

with � of the form �3� when some terms are negative, it is not true that these problems arise “most
of the time.” Consequently, it is often still possible to use the procedure of ultradiscrete limits
developed in Ref. 20 to produce integer solutions to equations involving the “Max” operator, even
in the absence of positivity, as illustrated in Secs. III and IV. Furthermore, it is especially useful to
apply the results of Theorem 2.1 to the question of which integrals of motion are preserved by an
ultradiscrete limit since in that case one does not need to consider individual solutions �cf. Sec. V�.
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It should be noted that there are various different possibilities for the value of the limit in the
case that D=0 and �I � �1, which we do not presently have the ability to differentiate, in general.
For instance, in the example presented in Sec. III A the value of the limit is not the maximum of
the exponents as usual, but rather the next largest of the exponents. �This happens here because the
sum that forms D does not only vanish in the limit but actually is equal to zero for all �, as briefly
mentioned in Ref. 8.� On the other hand, in the case of the limit

lim
�→0+

� ln�eu1
�/� − eu2

�/� + eu3
�/�� ,

with u1
� =sin�2�� /�, u2

� =2 sin��� /�, and u3
� =1, the limit yields the maximum value of 2, despite the

fact that D=0. Most interestingly, in the example shown in Sec. I B it is evident that the value of
the limit is not determined by the values of the limits of the functions in the exponents, since the
ultradiscrete limit, a−k, could be varied arbitrarily by selecting k without affecting the limits of
the individual exponents, all equal to a. It would be interesting to extend Theorem 2.1 to be able
to predict the value of the limit in the case that neither conditions �i� nor �ii� are met.
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Quantum doubles of finite group algebras form a class of quasitriangular Hopf
algebras that algebraically solve the Yang–Baxter equation. Each representation of
the quantum double then gives a matrix solution of the Yang–Baxter equation. Such
solutions do not depend on a spectral parameter, and to date there has been little
investigation into extending these solutions such that they do depend on a spectral
parameter. Here we first explicitly construct the matrix elements of the generators
for all irreducible representations of quantum doubles of the dihedral groups Dn.
These results may be used to determine constant solutions of the Yang–Baxter
equation. We then discuss Baxterization ansätze to obtain solutions of the Yang–
Baxter equation with a spectral parameter and give several examples, including a
new 21-vertex model. We also describe this approach in terms of minimal-
dimensional representations of the quantum doubles of the alternating group A4 and
the symmetric group S4. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2359575�

I. INTRODUCTION

Solutions of the Yang–Baxter equation �see �1�� provide a systematic way to construct exactly
solvable models of two-dimensional statistical mechanics,1 integrable quantum systems,2–5 as well
as having applications in other areas such as knot theory.6 A great impetus to this field was given
by Drinfeld,7 who proposed the quantum double construction. This allows for any Hopf algebra A
to be embedded in a larger Hopf algebra D�A� in such a way that D�A� is quasitriangular. A
consequence of the quasitriangular property is that there exists a canonical element R�D�A�
� D�A�, called the universal R-matrix, which solves the Yang–Baxter equation algebraically. Thus,
for any representation of D�A� a matrix solution of the Yang–Baxter equation is obtained. �Below
we will abuse the notation and use R to denote both the universal R-matrix and its matrix repre-
sentatives.� The seminal examples of quasitriangular Hopf algebras were given by both Drinfeld7

and Jimbo,8,9 who independently introduced the notion of quantum algebras, which are deforma-
tions of universal enveloping algebras of Lie algebras.

For applications to the areas mentioned above one is generally interested in solutions of the
Yang–Baxter equation with a spectral parameter; i.e., for a vector space V one looks for R�u ,v�
� End�V � V� where u,v are complex variables such that
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R12�u,v�R13�u,w�R23�v,w� = R23�v,w�R13�u,w�R12�u,v� , �1�

holds on the threefold tensor product space V � V � V. The subscripts above refer to the way in
which the action of R�u ,v� is embedded into the space of endomorphisms on V � V � V.

In the context of quantum algebras, the spectral parameter arises naturally when one considers
the loop representations of affine algebras.8,9 In such instances the solutions always satisfy the
difference property R�u ,v�=R�u−v�. However, it is worth mentioning that there are solutions that
do not have the difference property, including the well-known cases of the solutions giving rise to
the Hubbard model,10 the Bariev model,11 and the chiral Potts model.12 Moreover, the spectral
parameter need not necessarily be a scalar, but can be a complex vector variable.13–17 Later we will
only concern ourselves with cases of scalar spectral parameters where the difference property does
hold.

For later use, we introduce the permutation operator P such that P�x � y�=y � x and set

Ř�u�= PR�u�. Then �1� can equivalently be expressed as

Ř12�u�Ř23�u + v�Ř12�v� = Ř23�v�Ř12�u + v�Ř23�u� , �2�

which we will refer to as the braiding Yang–Baxter equation. It is in this form that the Yang–
Baxter equation is relevant to knot theory.6 Indeed, setting

Ř = lim
u→−�

Ř�u�

gives us

Ř12Ř23Ř12 = Ř23Ř12Ř23, �3�

which can be recognized as a defining relation in the braid group.6 In terms of

R = lim
u→−�

R�u� ,

we have

R12R13R23 = R23R13R12, �4�

which we will refer to as the constant Yang–Baxter equation. Finally, we mention that if

Ř�u�Ř�− u� � I � I ,

then the R-matrix is said to satisfy the unitarity condition, while if

Ř�0� � I � I , �5�

then it is said to satisfy the regularity condition. When the regularity condition holds, there is a
standard procedure1–4 for constructing an integrable quantum system on a one-dimensional lattice
with periodic boundary conditions. The Hamiltonian is given by

H = �
j=1

L−1

hj,j+1 + hL,1, �6�

where the two-site Hamiltonians are given by

h = � d

du
Ř�u��

u=0
.

Models constructed in this manner, and other approaches, can be solved exactly using Bethe
ansatz methods.1–6
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One class of quasitriangular Hopf algebras is the set of quantum doubles of the group algebras
of finite groups.18,19 �Throughout we will refer to these as finite group doubles�. Applications of
finite group double representations to knot theory have been addressed in Ref. 20. These algebraic
structures also underlie systems of anyons in two spatial dimensions. In cases where the global
symmetry of the system is spontaneously broken to a discrete gauge group, the finite group double
is the appropriate structure to describe the fusion properties and statistics. The fusion properties
are essentially determined by the Clebsch-Gordan decomposition of tensor products into irreduc-
ible representations. The statistics associated with the interchange of two anyons is described by
braiding. The consistency condition for the two ways in which three anyons may be interchanged

by a sequence of three two-anyon exchanges is precisely �3�, where Řjk is the operation that
interchanges the jth and kth anyons. For a comprehensive review of the salient features we refer
to Refs. 21 and 22.

Such systems may exhibit topological order,23 where quantum numbers are conserved for
topological reasons, as opposed to the manifest symmetry. Due to the topological nature, excita-
tions are resistant to decoherence. This property forms the basis of topological quantum compu-
tation that was first put forth by Kitaev24 �see also, e.g., Refs. 25–28�. When the symmetry is

described by a finite group double, the braiding Řjk is a unitary operator that can be employed as
a quantum gate.

In view of the previous literature, it is surprising that there has been very little study on the
role of finite group doubles in obtaining solutions for the spectral parameter dependent Yang–
Baxter equation �1�. Integrable systems constructed from such solutions via �6� realize models for
interacting anyons with internal symmetries described by the finite group double. Even though the
models are one-dimensional, there is a precedent, the Hubbard model, which leads us to believe
that such models may have applications for understanding two-dimensional systems. One property
that is evident from the analysis of the Bethe ansatz solution of the one-dimensional Hubbard
model is spin-charge separation. The Hubbard model has an so�4��so�3� � so�3� symmetry,
where the two quantum numbers associated with the two copies of so�3� can be assigned to spin
and charge degrees of freedom. From this symmetry and the Bethe ansatz solution, it can be
concluded that in one-dimension there exist excitations that carry spin but not charge, and vice
versa, so spin-charge separation occurs.29 It has been proposed that spin-charge separation is the
mechanism responsible for high temperature superconductivity in two-dimensions.30 Likewise,
there may be insights gained into the properties of interacting anyons by studying one-dimensional
models that can be solved exactly.

Our aim is to investigate the extent to which solutions of the spectral parameter dependent
Yang–Baxter equation can be obtained using the Hopf algebra structure of finite group doubles.
This is not straightforward, as there appears to be no obvious manner in which to consider the
affine extension of a finite group double that affords loop representations. Using a different
approach, some preliminary results in this regard have been obtained by Yang et al.31 We believe
these represent the tip of an iceberg, and there is ample scope for further work. Our aim here is to
continue the advances in this direction.

Our starting point is to consider the quantum doubles of the dihedral groups Dn. Of all
non-Abelian finite groups, the series of dihedral groups has the simplest representation theory. We
will show that the representation theory for the quantum doubles is also readily tractable. Using
the general results on the representation theory of finite group doubles given in Refs. 18 and 19,
we begin by explicitly constructing all irreducible representations for the doubles D�Dn�1 From
these results it is straightforward to explicitly construct solutions R for the constant Yang–Baxter
equation �4� that do not depend on the spectral parameter.

Our next goal is to determine if these constant solutions of the Yang–Baxter equation can be
extended to spectral parameter dependent solutions. This is a procedure colloquially known as

1After completing this work, we learned that for odd n these representations have been constructed in the thesis by de Wild
Propitius.22 Results for even n have independently been obtained by Slingerland.32
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Baxterization, as coined by Jones,33 and there is sizable literature on this topic.34–41 We begin by
studying the case of the two-dimensional irreducible representations of D�Dn� and find that Bax-
terization can be performed successfully. Our approach is based on an ansatz taken from Ref. 35,
which is chosen by symmetry considerations. In all these cases we find that the resulting solution
of the Yang–Baxter equation is a particular case of the well-known trigonometric six-vertex model
in the symmetric gauge at a specific root of unity. We mention that this result is not obvious in the
sense that the Baxterization is not underpinned by a Hecke algebra representation.

We then turn our attention to the three-dimensional irreducible representations of D�Dn�. We
find that the only cases for which an irreducible three-dimensional representation exists are D�D3�
and D�D6�. All instances give unitarily equivalent constant solutions of the Yang–Baxter equation.
Our Baxterization ansatz leads to a 21-vertex solution of the spectral parameter dependent Yang–
Baxter equation, which as far as we can ascertain is new.

Rather than continuing on to investigate higher dimensional representations of the D�Dn�
series, we finish by considering minimal-dimensional representations of the double of the alter-
nating group A4 and the symmetric group S4. Neither of these cases admit irreducible two-
dimensional representations, but they both admit three-dimensional ones. Our ansatz for Baxter-
izing the constant solutions does lead us to spectral parameter dependent solutions. Remarkably
though, we find in these latter examples that the infinite spectral parameter limit of the Baxterized
solutions do not necessarily reproduce the original solutions of the constant Yang–Baxter equation.

II. THE DIHEDRAL GROUP Dn

Consider the dihedral group Dn. This has two generators � ,� satisfying

�n = e, �2 = e, �� = �n−1� .

The properties of Dn vary according to whether n is odd or even, with the odd case being slightly
simpler.

A. Dn where n is odd

When n is odd, there are �n+3� /2 conjugacy classes divided into three families, given by

�e	 ,

��k,�−k	, for 1 � k �
n − 1

2
,

��i�,0 � i � n − 1	 .

There are �n+3� /2 irreducible representations �irreps�, two of which are one-dimensional and the
remaining �n−1� /2 which are two-dimensional. They are given by

�±��� = 1, �±��� = ± 1

and

�k��� = 
�k 0

0 �−k�, �k��� = 
0 1

1 0
�, � = exp�2�i

n
, 1 � k �

n − 1

2
.

As required, the sum of the squares of the dimensions of the irreps is 2�12+ �n−1� /2�22=2n
= �Dn�.42
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B. Dn where n is even

When n is even, there are �n+6� /2 conjugacy classes divided into five families, given by

�e	 ,

��n/2	 ,

��k,�−k	, for 1 � k � �n − 2�/2,

��2j�,0 � j � �n − 2�/2	 ,

���2j+1��,0 � j � �n − 2�/2	 .

The �n+6� /2 irreps consist of 4 one-dimensional irreps and �n−2� /2 two-dimensional irreps.
They are given by

���� = �− 1�a, ���� = �− 1�b, for a,b � �0,1	

and

�k��� = 
�k 0

0 �−k�, �k��� = 
0 1

1 0
�, � = exp�2�i

n
, 1 � k �

n − 2

2
.

Again, the sum of the squares of the dimensions of the irreps is 2n.

III. THE QUANTUM DOUBLE ALGEBRA D„G…

Here we give a brief survey of finite group doubles D�G�. Throughout, our approach follows
that of Ref. 19. Let A be the group algebra of a finite group G over the complex field C. Then A
becomes a co-commutative Hopf algebra with coproduct, antipode, and counit, respectively, de-
fined by

	�g� = g � g, S�g� = g−1, 
�g� = e, ∀ g � G .

Let A* be the dual space of A, so A*= �f � f :A→C	. Then A* becomes an algebra on the dual
elements g* defined by

g*�h� = ��g,h�, ∀ g,h � G ,

which have the property

g*h* = ��g,h�h*.

The resultant dual algebra is commutative and does not have an interesting representation theory.
Now we follow the quantum double construction to obtain D�G�, which is a �G�2-dimensional
algebra spanned by the free products,

gh*, g,h � G .

The elements h*g are calculated using

h*g = g�g−1hg�*.

Then D�G� becomes a quasitriangular Hopf algebra with coproduct 	̄, antipode S̄, and counit 
̄
given by
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	̄�gh*� = �
k�G

g�k−1h�*
� gk* = �

k�G

gk*
� g�kh−1�*,

S̄�gh*� = g−1�gh−1g−1�*,


̄�gh*� = ��h,e� .

Note that we identify g
 with g and eg* with g* for all g�G. The universal R-matrix is given by

R = �
g�G

g � g*,

which can easily be shown to satisfy the defining relations for a quasitriangular Hopf algebra:

R	̄�a� = 	̄T�a�R, ∀ a � D�G� , �7�

�	̄ � id�R = R13R23, �8�

�id � 	̄�R = R13R12, �9�

where 	̄T is the opposite coproduct,

	̄T�gh*� = �
k�G

gk*
� g�k−1h�* = �

k�G

g�kh−1�*
� gk*.

It follows from the relations �7�–�9� that R is a solution of the constant Yang–Baxter equation. We

note that in any tensor product representation � � � we have that Ř= PR commutes with the action
of the finite group double; i.e.,

�Ř,�� � ��	̄�a�� = 0, ∀ a � D�G� .

IV. REPRESENTATION THEORY OF D„G…

Several properties of group algebras extend to the quantum double. For example, the set

Q = �gh*�g,h � G with gh = hg	 ,

is stable under the adjoint action of G, i.e., gQg−1=Q. Hence, Q can be partitioned into
G-conjugacy classes, which implies19 the following.

Theorem 4.1: The number of nonisomorphic D�G�-modules equals the number of
G-equivalence classes of Q.

Moreover, a construction for these modules is known.19 The general form is included in this
section, with the explicit results for the odd and even dihedral groups given in the following two
sections, respectively.

First, partition G into conjugacy classes,

G = �
k

Ck.

Recall that the centralizer subgroup of an element h is defined by
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Z�h� = �g � G�gh = hg	 .

Then, for each conjugacy class Ck choose a representative gk�Ck and set Zk=Z�gk� to be the
centralizer subgroup of gk, noting that �Zk � �Ck � = �G�. Denote the group algebra of Zk by Ak. Also,
for each s�Ck choose a fixed element �s�G satisfying

s = �sgk�s
−1.

For simplicity, choose �gk
=e , ∀gk.

Lemma 4.1: We have the following properties of �s:

1. G=�s�Ck
�sZk

2. Given g�G ,s�Ck , ∃ t�Ck unique with the property �t
−1g�s�Zk; explicitly t=gsg−1.

Again, a proof can be found in Ref. 19.
The irreducible modules of D�G� can be constructed from modules of the group algebras Ak.

Let V
k denote an irreducible Ak-module. Then there is a corresponding induced A-module,42

Vk, � A�Ak
V

k ,

spanned by vectors

v�s� = �s � v, v � V
k , s � Ck,

where the action of G is given by

g��s � v� = �gsg−1 � ��gsg−1
−1 g�s�v ,

or, equivalently,

gv�s� = ��gsg−1
−1 g�sv��gsg−1� .

Note dim Vk,= �Ck �dim V
k . It follows from Lemma 4.1 that Vk, is an A-module under this defi-

nition.
The module Vk, can be decomposed according to

Vk, = �
s�Ck

Vk,�s� ,

where

Vk,�s� = �v�s��v � V
k 	 .

The latter becomes an irreducible module over the group algebra of Z�s�=�sZk�s
−1. When s=gk,

the module is isomorphic to V�
k . Then Vk, becomes an irreducible D�G�-module with the action

h*v�s� = ��h,s�v�s�, ∀ h � G .

Moreover, two D�G�-modules of this form, Vk, ,Vl,�, are isomorphic iff k= l and V
k ,V�

k are
isomorphic. Then using counting arguments the following can be shown.

Theorem 4.2: Every irreducible D�G�-module is isomorphic to one of the Vk,.

V. REPRESENTATIONS OF D„G…, WHERE G=Dn, n EVEN

The conjugacy classes Ck of G=Dn, chosen representatives gk, corresponding centralizer
subgroups and the elements �s , ∀s�Ck, are given in Table I.

Throughout the remainder of this paper, Ej
i denotes an elementary matrix with a 1 in the �i , j�

position and zeros elsewhere. We also abuse notation by using g to denote both an element of the
algebra D�G� and its matrix representative in a given irrep, which should be clear from the
context.
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Representations induced by Ck= �e	. The module elements are of the form e � v where v
�V, V a Dn-module. In representation terms, there are 4 one-dimensional irreps and �n /2−1�
two-dimensional irreps. They are

� = �− 1�a, � = �− 1�b, g* = ��g,e�

where a ,b� �0,1	, and

� = 
�k 0

0 �−k�, � = 
0 1

1 0
�, g* = ��g,e�I2,

where 1�k�n /2.
Representations induced by Ck= ��n/2	. The module elements are of the form e � v, where v

�V, V a Dn-module. Again, there are 4 one-dimensional irreps and �n−2� /2 two-dimensional
irreps. They are

� = �− 1�a, � = �− 1�b, g* = ��g,�n/2� ,

where a ,b� �0,1	, and

� = 
�k 0

0 �−k�, � = 
0 1

1 0
�, g* = ��g,�n/2�I2,

where 1�k�n /2.
Representations induced by Ck= ��k ,�−k	, 1�k�n /2. The module elements are of the form

e � v ,� � v, where v�V, V a module of the group algebra of Zk= �� j �0� j�n	. There are n such
Ak-modules, with the corresponding representations given by ����=� j, 0� j�n, where �
=exp�2�i /n�. Thus, we have n�n−2� /2 different irreducible representations of D�Dn� induced by
these conjugacy classes, given by

� = 
� j 0

0 �−j �, � = 
0 1

1 0
�, ��k�* = 
1 0

0 0
�, ��−k�* = 
0 0

0 1
�, g* = 0, otherwise,

where 0� j�n, 1�k�n /2.
Representations induced by Ck= ��2j� �0� j�n /2	. The module elements are of the form � j

� v, 0� j�n /2, where v�V, V a module of the group algebra of Zk= �e ,� ,�n/2 ,�n/2�	. Hence,
there are 4 �n /2�-dimensional irreps of this form. They are

� = A � Mn/2�n/2, where �A�ij = �− 1�a��i,1���i, j + 1�, addition mod n/2,

� = �− 1�a+bB � Mn/2�n/2, where �B�ij = �− 1�a��i,1���i + j,2�, addition mod n/2,

��i�* = 0, ��2j��* = Ej+1
j+1, ���2j+1���* = 0, 0 � i � n, 0 � j � n/2,

where a ,b� �0,1	.
Example 5.1: In D�D6�, � and � are as follows:

TABLE I. Ck ,gk, Zk, and �s for G=Dn, n even.

Ck gk Zk=Z�gk� �s , ∀s�Ck

�e	 e Dn �e=e
��n � 2	 �n � 2 Dn ��n/2 =e
��k ,�−k	 ,1�k� n � 2 �k ��i �0� i�n	 ��k =e ,��−k =�

��2i� �0� i� n � 2	 � �e ,� ,�n � 2 ,�n � 2�	 ���2i��=�i

��2i+1� �0� i� n � 2	 �� �e ,�� ,�n � 2 ,�n � 2 +1�	 ���2i+1��=�i
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� = �0 0 �− 1�a

1 0 0

0 1 0
�, � = �− 1�b�1 0 0

0 0 �− 1�a

0 �− 1�a 0
� ,

where a ,b� �0,1	, giving 4 three-dimensional irreps.
Representations induced by Ck= ��2j+1� �0� j�n /2	. The module elements are of the form

� j � v, 0� j�n /2, where v�V, V a module of the group algebra of Zk= �e ,�� ,�n/2 ,��n+2�/2�	.
Hence, there are 4 �n /2�-dimensional irreps of this form. They are as follows:

� = A � Mn/2�n/2 where �A�ij = �− 1�a��i,1���i, j + 1�, addition mod n/2,

� = �− 1�a+bB � Mn/2�n/2 where �B�ij = ��i + j,n/2 + 1�, addition mod n/2,

��i�* = 0, ��2j��* = 0, ���2j+1���* = Ej+1
j+1, 0 � i � n, 0 � j � n/2,

where a ,b� �0,1	.
Example 5.2: In D�D6�, � and � are as follows:

� = �0 0 �− 1�a

1 0 0

0 1 0
�, � = �− 1�a+b�0 0 1

0 1 0

1 0 0
� ,

where a ,b� �0,1	, giving 4 three-dimensional irreps.
Thus when n is even D�Dn� has 8 one-dimensional irreps, 8 �n /2�-dimensional irreps, and

�n+2��n /2−1� two-dimensional irreps. The sum of the squares of the dimension of the irreps is
�Dn�2= �D�Dn��, as required.19

Analogous results for odd n are given in the Appendix .

VI. SOLUTIONS OF THE YANG–BAXTER EQUATION ASSOCIATED WITH THE
TWO-DIMENSIONAL IRREPS OF D„Dn…

As stated earlier, a solution to the constant Yang–Baxter equation in D�G� is given by

R = �
g�G

g � g*.

In this section we will only consider the two-dimensional irreps of D�G�. Then, by inspection, the
R-matrix will always be of the form

R = diag�� j,�−j,�−j,� j� ,

where �=exp�2�i /n� and 0� j�n, with the cases j=0 and j=n /2 being trivial. Thus Ř= PR is
given by

Ř = �
� j 0 0 0

0 0 �−j 0

0 �−j 0 0

0 0 0 � j
� . �10�

As remarked earlier, Ř commutes with the action of D�Dn�. We seek a solution Ř�x� of the
braiding Yang–Baxter equation that has this symmetry. Now the matrix �10� has 3 different

eigenvalues, namely wj , ±w−j. Hence, for any k, Řk can be written as a linear combination of I

� I , Ř and Ř−1. Making a change of variables x=exp�u�, z=exp�v� in Eq. �2�, we look for Ř�x� in
the following form:
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Ř�x� = f�x�I � I + g�x�Ř + h�x�Ř−1.

Then

Ř�x� = �
A�x� 0 0 0

0 f�x� B�x� 0

0 B�x� f�x� 0

0 0 0 A�x�
� ,

where

A�x� = f�x� + � jg�x� + �−jh�x� ,

B�x� = �−jg�x� + � jh�x� .

We directly apply the braiding Yang–Baxter equation in the form

Ř12�x�Ř23�xz�Ř12�z� = Ř23�z�Ř12�xz�Ř23�x� . �11�

Although there are 20 nonzero entries on each side of the equation, there are only two independent
nontrivial relations that must be satisfied. These are

A�z�f�xz�A�x� = f�x�A�xz�f�z� + B�x�f�xz�B�z� , �12�

A�z�B�xz�f�x� = f�x�A�xz�B�z� + B�x�f�xz�f�z� . �13�

Note that f�x�=0, ∀x trivially satisfies the Yang–Baxter equation.

A proposal for constructing Ř�x� when Ř has three distinct eigenvalues �1 ,�2, and �3 has been
discussed in Refs. 31 and 35, but it has not been proven to always be true. The conjecture is

Ř�x� = ��1 + �2 + �3 + �1�3�2
−1�xI � I − �x − 1�Ř + �1�3x�x − 1�Ř−1.

Three distinct solutions are obtained by changing the ordering of the eigenvalues. We note that
when the ansatz holds we have

Ř = lim
x→0

R�x� = R .

Applying this ansatz to �10�, we find that if �2= ±�−j, then f�x�=0, which we have already shown
gives a trivial result. Hence we consider the case when �2=� j. This gives

f�x� = �� j − �−3j�x, g�x� = − �x − 1�, h�x� = − w−2jx�x − 1� ,

⇒A�x� = � j − �−3jx2, B�x� = − �−j�x2 − 1� .

It can be easily shown that f�x� , A�x�, and B�x� satisfy relations �12� and �13�. Hence, we
have solutions to the braiding Yang–Baxter equation, which are

Ř�x� = �
� j − �−3jx2 0 0 0

0 �� j − �−3j�x − �−j�x2 − 1� 0

0 − �−j�x2 − 1� �� j − �−3j�x 0

0 0 0 � j − �−3jx2
� ,

where �=exp�2�i /n� and 0� j�n. Rescaling by a factor of � jx−1, we can write
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Ř�x� = �
�2jx−1 − �−2jx 0 0 0

0 �2j − �−2j x−1 − x 0

0 x−1 − x �2j − �−2j 0

0 0 0 �2jx−1 − �−2jx
� . �14�

Note that the unitarity condition Ř�x�Ř�x−1�= ��4j +�−4j − �x2+x−2��I � I is satisfied. We can rec-
ognize �14� as specific cases of the six-vertex solution in the symmetric gauge, where the param-
eter q in the general solution is constrained to be a root of unity. We remark that the choice of
gauge is related to the gradation chosen for the affine algebra �e.g., see Ref. 43�. It is interesting

to note that in the nonsymmetric gauge the constant solution Ř=limx→0 R�x� can be used to give
rise to a representation of the Temperley-Lieb algebra. In this case there is a well known procedure

for Baxterizing Ř to recover Ř�x�.33,34 This is not the case for the symmetric gauge case described
previously.

VII. SOLUTIONS OF THE YANG–BAXTER EQUATION ASSOCIATED WITH THE
THREE-DIMENSIONAL IRREPS OF D„D3… AND D„D6…

From the construction of the irreps of D�Dn� given explicitly in Sec. V and the Appendix, we
find that three-dimensional irreps only occur for D�D3� and D�D6�. Moreover, the 2 three-
dimensional irreps of D�D3� are also representations for the D�D3� subalgebra of D�D6�, so these

cases give identical R matrices. For any three-dimensional irrep of D�D6�, we find Ř= PR
= P�gg � g* is of the following form:

Ř = �− 1�b�
1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 �− 1�a 0

0 0 �− 1�a 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 �− 1�a 0 0

0 �− 1�a 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1

� ,

where a ,b� �0,1	. Without loss of generality we take b=0, and find the eigenvalues of Ř are
1 , �, and �2 with multiplicities 5 , 2, and 2, respectively, where �=exp�2�i /3�. As the two
values of a give unitarily equivalent R matrices, we choose to take a=0. We can then write

Ř�x� = f�x�I � I + g�x�Ř + h�x�Ř−1.

Again we follow the procedure outlined in Refs. 31 and 35 to find possible solutions, which gives
the following:

Using MATHEMATICA, we find only the first of these possible solutions satisfies the braiding
Yang–Baxter equation �11� �see Table II�:

TABLE II. Possible solutions for f�x� , g�x�, and h�x�.

f�x� g�x� h�x�

x 1−x x�x−1�
�x 1−x �2x�x−1�
�2x 1−x �x�x−1�
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Ř�x� = �
x2 − x + 1 0 0 0 0 0 0 0 0

0 x 0 0 0 1 − x x�x − 1� 0 0

0 0 x x�x − 1� 0 0 0 1 − x 0

0 0 1 − x x 0 0 0 x�x − 1� 0

0 0 0 0 x2 − x + 1 0 0 0 0

0 x�x − 1� 0 0 0 x 1 − x 0 0

0 1 − x 0 0 0 x�x − 1� x 0 0

0 0 x�x − 1� 1 − x 0 0 0 x 0

0 0 0 0 0 0 0 0 x2 − x + 1

� .

The corresponding R-matrix R�x�= PŘ�x� is given by

R�x� = �
x2 − x + 1 0 0 0 0 0 0 0 0

0 0 1 − x x 0 0 0 x�x − 1� 0

0 1 − x 0 0 0 x�x − 1� x 0 0

0 x 0 0 0 1 − x x�x − 1� 0 0

0 0 0 0 x2 − x + 1 0 0 0 0

0 0 x�x − 1� 1 − x 0 0 0 x 0

0 0 x x�x − 1� 0 0 0 1 − x 0

0 x�x − 1� 0 0 0 x 1 − x 0 0

0 0 0 0 0 0 0 0 x2 − x + 1

� . �15�

Note Ř�x�Ř�x−1�= �x−1+1/x�2I � I, so the unitarity property holds.
The previous solution gives rise to a 21-vertex model, which appears to be new. It does not

belong to the class of 21-vertex models discussed in Ref. 44. Viewed as a two-dimensional lattice
statistical mechanics model though, it does not have real, non-negative Boltzmann weights. Since
the regularity property �5� holds, we can, however, construct an integrable one-dimensional model.

Even though Ř�x� is not Hermitian, we obtain a Hermitian Hamiltonian in the following manner.

We rescale Ř�x� by a factor of i /x and define the two-site Hamiltonian h as

h =
d

dx
� iŘ�x�

x
�

x=1
= i�

0 0 0 0 0 0 0 0 0

0 0 0 0 0 − 1 1 0 0

0 0 0 1 0 0 0 − 1 0

0 0 − 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 − 1 0 0

0 − 1 0 0 0 1 0 0 0

0 0 1 − 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

� ,

which can also be written as

h = �
��D3

i�E��2�
��1�

� E��3�
��2� − E��3�

��2�
� E��2�

��1�� , �16�

where the elements � of D3 are written as permutations of �1,2 ,3	. The above integrable system
describes a one-dimensional lattice of anyons with D�D3� or D�D6� symmetry and local interac-
tions given by �16�. The two-site Hamiltonian may also be expressed in terms of spin-1 operators:

− ih = − S+
2

� �SzS− + S−Sz� + �SzS− + S−Sz� � S+
2

+ S−
2

� �SzS+ + S+Sz� − �SzS+ + S+Sz� � S−
2
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+ S+Sz � SzS+ − SzS+ � S+Sz

+ S−Sz � SzS− − SzS− � S−Sz,

where S±= 1 � 2 �Sx± iSy�. This Hamiltonian is not the same as other known integrable spin-1
Hamiltonians.45–49

In principle, the integrability of the previous model implies that algebraic Bethe ansatz meth-
ods may be used to obtain the exact solution. In the present case, however, there is no simple
choice of reference state needed for the Bethe ansatz calculation, and a generalized algebraic
Bethe ansatz similar to that employed for the XYZ model50 is required. Because of the technical
nature of such a calculation we defer it to a future publication.

VIII. SOLUTIONS OF THE YANG–BAXTER EQUATION ASSOCIATED WITH D„A4…

The same procedure can be applied to the symmetric and alternating groups. The symmetic
group Sn is the group of permutations of �1,2 , . . . ,n	 where the operation is composition. The
subgroup of Sn consisting of permutations that can be written as the product of an even number of
transpositions is known as the alternating group and denoted An. Now S3�D3 and A3�Z3, so we
only consider n�4. In An the only conjugacy class with only one element is �e	, which always
gives rise to the trivial R-matrix R= I � I. Moreover, there are no conjugacy classes with two
elements and only A4 has a conjugacy class with three elements. Therefore only A4 can give rise
to a three-dimensional irrep, and we can never obtain a two-dimensional irrep.

Consider A4, using the convention �12� � �13�= �132�. The relevent conjugacy class Ck and the
details required to construct the representations are

Ck = ��12��34�,�13��24�,�14��23�	, gk = �12��34� ,

Zk = �e,�12��34�,�13��24�,�14��23�	 ,

��12��34� = e, ��13��24� = �132�, ��14��23� = �123� .

This time Zk�Z2�Z2, with the 4 one-dimensional irreps given by �12��34�= �−1�a,
�13��24�= �−1�b, a ,b� �0,1	. We obtain

R = diag„�− 1�a,�− 1�a+b,�− 1�b,�− 1�b,�− 1�a,�− 1�a+b,�− 1�a+b,�− 1�b,�− 1�a
… .

Applying the permutation operator, we find

Ř = �
�− 1�a 0 0 0 0 0 0 0 0

0 0 0 �− 1�b 0 0 0 0 0

0 0 0 0 0 0 �− 1�a+b 0 0

0 �− 1�a+b 0 0 0 0 0 0 0

0 0 0 0 �− 1�a 0 0 0 0

0 0 0 0 0 0 0 �− 1�b 0

0 0 �− 1�b 0 0 0 0 0 0

0 0 0 0 0 �− 1�a+b 0 0 0

0 0 0 0 0 0 0 0 �− 1�a

� ,

which has eigenvalues 1 ,−1 with multiplicities 6 ,3, respectively, when a=0, and eigenvalues
−1, i ,−i, each with multiplicity 3 when a=1. When a=b=0 this is the permutation matrix and
gives rise to a representation of the Hecke algebra. Baxterization then leads to the known su�3�
invariant solution. In the case a=0,b=1, Ř is again a Hecke algebra representation, which can be

Baxterized as Ř�u�= I � I+uŘ. This solution corresponds to the rational 15-vertex solution with a
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Reshetikhin twist.51 The last case is when b=1, in which case we can write without loss of
generality:

Ř = �
1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 − 1 0 0

0 − 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 − 1 0 0 0

0 0 0 0 0 0 0 0 1

� .

We recognize this solution as belonging to the class of nonstandard solutions of the Yang–Baxter
equation. However, it is curious that the origin of the nonstandard structure cannot be explained in
terms of an underlying Lie superalgebra or colour Lie algebra structure,52,53 nor is it due to a
Reshetikhin twist.51

As Ř has three eigenvalues, we try the ansatz Ř�x�= f�x�I � I+g�x�Ř+h�x�Ř−1. Applying the
conjecture given in Refs. 31 and 35, we obtain three possible solutions. Two of these, however,
have f�x�=0, which is undesirable if we want the regularity property to hold. The third possible
case can be shown to not satisfy the braiding Yang–Baxter equation �11�. Hence, we attempt to
find another way to introduce a spectral parameter.

First we return to the original variables u ,v instead of x ,z. Writing a�u�= f�u�+g�u�+h�u� and

b�u�=g�u�−h�u�, we note Ř�u� is

Ř�u� = �
a�u� 0 0 0 0 0 0 0 0

0 f�u� 0 b�u� 0 0 0 0 0

0 0 f�u� 0 0 0 − b�u� 0 0

0 − b�u� 0 f�u� 0 0 0 0 0

0 0 0 0 a�u� 0 0 0 0

0 0 0 0 0 f�u� 0 b�u� 0

0 0 b�u� 0 0 0 f�u� 0 0

0 0 0 0 0 − b�u� 0 f�u� 0

0 0 0 0 0 0 0 0 a�u�

� .

Substituting Ř�u� into the braiding Yang–Baxter equation �2�, we find Ř�u� satisfies the Yang–
Baxter equation if and only if the following conditions are met:

b�u + v�f�u�f�v� = f�u + v��b�u�f�v� + b�v�f�u�� , �17�

a�u�b�u + v�f�v� = b�v�f�u�f�u + v� + a�u + v�b�u�f�v� , �18�

a�u + v�f�u�f�v� = f�u + v��a�u�a�v� + b�u�b�v�� . �19�

First, consider the case when b�u�=0. Then equations �17�, �18� are automatically satisfied,

and we need only consider Eq. �19�. The solution Ř�u�� I � I is uninteresting, so we instead
choose f�u�=1 and a�u�=eu, giving
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Ř�u� = diag�eu,1,1,1,eu,1,1,1,eu� .

Observe that this solution has the following peculiar property:

Ř � lim
u→−�

Ř�u� . �20�

Next consider b�u��0. We begin by choosing f�u�=1. Then we see that b�u�=b0u is the only
solution to �17�. We substitute these into Eq. �18� to obtain

�u + v�a�u� = v + ua�u + v� ,

�u + v�a�v� = u + va�u + v� .

Eliminating a�u+v�, we find

�u + v��a�u�
u

−
a�v�

v
 =

v
u

−
u

v
=

v2 − u2

uv

⇒�a�u�
u

−
a�v�

v
 =

v − u

uv
=

1

u
−

1

v

⇒
a�u� − 1

u
=

a�v� − 1

v
= c

⇒a�u� = 1 + cu .

We find that this satisfies �19�, provided c= ± ib0, so we have found a solution to the braiding
Yang–Baxter equation �2�. Note that b0 is just a scaling factor on u, so we can choose any nonzero
complex number. Choosing b0= i and c=1, we have

Ř�u� = �
1 + u 0 0 0 0 0 0 0 0

0 1 0 iu 0 0 0 0 0

0 0 1 0 0 0 − iu 0 0

0 − iu 0 1 0 0 0 0 0

0 0 0 0 1 + u 0 0 0 0

0 0 0 0 0 1 0 iu 0

0 0 iu 0 0 0 1 0 0

0 0 0 0 0 − iu 0 1 0

0 0 0 0 0 0 0 0 1 + u

� .

The previous solution again corresponds to the rational 15-vertex solution with a Reshetikhin
twist.51 We also note that the property �20� also holds for this solution.

IX. SOLUTIONS OF THE YANG–BAXTER EQUATION ASSOCIATED WITH D„S4…

As with D�An�, the algebra D�Sn� has no nontrivial two-dimensional irreps, and the only
nontrivial three-dimensional irrep occurs when n=4. Then Ck, gk, Zk, and �s, s�Ck are given by

Ck = ��12��34�,�13��24�,�14��23�	, gk = �12��34� ,

Zk = �e,�12�,�34�,�12��34�,�13��24�,�14��23�,�1324�,�1423�	 ,
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��12��34� = e, ��13��24� = �14�, ��14��23� = �13� .

Note that Zk�D4 with generators ��12� , �1324�	, so we know it has exactly 4 one-dimensional
reps given by �12�= �−1�a, �1324�= �−1�b, a ,b� �0,1	. Following the same procedure as earlier,
we obtain

R = �
g�S4

g � g* = diag„1,�− 1�a+b,�− 1�a+b,�− 1�a+b,1,�− 1�a+b,�− 1�a+b,�− 1�a+b,1… .

Both these solutions arose in D�A4� and were discussed in the previous section.

X. CONCLUSION

Our results show that for certain constant solutions of the Yang–Baxter equation obtained by
using representations of finite group doubles, it is possible to Baxterize them to yield solutions of
the spectral parameter Yang–Baxter equation. We have considered several examples where this is
true and, in particular, we have found a new 21-vertex solution �15� from which we obtained an
integrable model for a system of anyons with D�D3� or D�D6� symmetry. It is clearly of interest to
determine if all constant solutions may be Baxterized. In contrast to the case of affine quantum
algebras, where the spectral parameter has its origins in the loop representation, the origin of the
spectral parameter for the above instances is unknown.

In all our examples we have only looked for cases where the spectral parameter has the
difference property. For the case of the generalized chiral Potts model in Ref. 15, which does not
have the difference property, an underlying finite group structure appears. This suggests that a
Baxterization ansatz without the assumption of the difference property may also be fruitful. Cer-
tainly more work is needed to fully realize the potential of finite group doubles in solving the
Yang–Baxter equation with spectral parameter.
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APPENDIX: REPRESENTATIONS OF D„G…, WHERE G=Dn, n ODD

The conjugacy classes Ck of G=Dn, chosen representatives gk, corresponding centralizer
subgroups Zk and the elements �s, ∀s�Ck, are given in Table III.

1. Representations induced by Ck= ˆe‰

The module elements are of the form e � v, where v�V, V a Dn-module. In representation
terms, there are 2 one-dimensional irreps and �n−1� /2 two-dimensional irreps. They are as fol-
lows:

� = 1, � = ± 1, g* = ��g,e�

and

TABLE III. Ck , gk, Zk and �s for G=Dn, n odd.

Ck gk Zk=Z�gk� �s , ∀s�Ck

�e	 e Dn �e=e
��k ,�−k	 ,1�k� n−1 � 2 �k ��i � ,0� i�n	 ��k =e ,��−k =�

��i� �0� i�n	 � �e ,�	 ��i�=�� n+1 � 2 �i
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� = 
�k 0

0 �−k�, � = 
0 1

1 0
�, g* = ��g,e�I2,

where 1�k� �n−1� /2.

2. Representations induced by Ck= ˆ�k ,�−k
‰, 1�k� „n−1… /2

The module elements are of the form e � v ,� � v, where v�V, V a module of the group
algebra of Zk= ��i �0� i�n	. There are n such Ak-modules, with the corresponding representations
� j given by � j���=� j, 0� j�n, where �=exp�2�i /n�. Thus, there are n�n−1� /2 different irreps
of D�Dn� induced by these conjugacy classes, given by

� = 
� j 0

0 �−j �, � = 
0 1

1 0
�, ��k�* = 
1 0

0 0
�, ��−k�* = 
0 0

0 1
�, g* = 0 otherwise,

where 0� j�n, 1�k� �n−1/2�.

3. Representations induced by Ck= ˆ�i� �0� i<n‰

The module elements are of the form � j�n+1�/2 � v, 0� j�n, where v�V, V a module of the
group algebra of Zk= �e ,�	. Hence, there are two n-dimensional irreps of this form. They are as
follows:

� = A � Mn�n, where �A�ij = ��i, j + 2�, addition mod n ,

� = ± B � Mn�n, where �B�ij = ��i + j,2�, addition mod n ,

��i�* = 0, ��i��* = Ei+1
i+1, 0 � i � n .

Example 10.1: In D�D3�, � and � are as follows:

� = �0 1 0

0 0 1

1 0 0
�, � = ± �1 0 0

0 0 1

0 1 0
� .

Hence, when n is odd D�Dn� has 2 one-dimensional irreps, 2 n-dimensional irreps and
�n2−1� /2 two-dimensional irreps, all of which are given above. Note that the sum of the squares
of the dimensions is 4n2= �Dn�2= �D�Dn��, as we expect.19
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In this paper, we prove the Hyers-Ulam-Rassias stability of homomorphisms in
C*-ternary algebras and of derivations on C*-ternary algebras for the following
generalized Cauchy–Jensen additive mapping:

2f�� j=1

p
xj

2
+ �

j=1

d

yj� = �
j=1

p

f�xj� + 2�
j=1

d

f�yj� .

This is applied to investigate isomorphisms between C*-ternary algebras. The con-
cept of Hyers-Ulam-Rassias stability originated from the Rassias stability theorem
that appeared in his paper: On the stability of the linear mapping in Banach spaces,
see Proc. Amr. Math. Soc. 72, 297–300 �1978�. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2359576�

I. INTRODUCTION AND PRELIMINARIES

Ternary algebraic operations were considered in the 19th century by several mathematicians
and physicists such as Cayley,5 who introduced the notion of a cubic matrix, which in turn was
generalized by Kapranov et al.15 The simplest example of such nontrivial ternary operation is
given by the following composition rule:

�a,b,c	ijk = �
l,m,n

anilbljmcmkn �i, j,k, . . . = 1,2, . . . ,N� .

Ternary structures and their generalization, the so-called n-ary structures, raise certain hopes
in view of their applications in physics. Some significant physical applications are as follows �see
Refs. 16 and 17�:

�1� The algebra of “nonions” generated by two matrices,


0 1 0

0 0 1

1 0 0
� and 
 0 1 0

0 0 �

�2 0 0
� �� = e2�i/3� ,

was introduced by Sylvester as a ternary analog of Hamilton’s quaternions �cf. Ref. 1�.
�2� A natural ternary composition of four-vectors in the four-dimensional Minkowskian space-

time M4 can be defined as an example of a ternary operation:

�X,Y,Z� → U�X,Y,Z� � M4,

with the resulting four-vector U� defined via its components in a given coordinate system as
follows:

a�Electronic address: baak@hanyang.ac.kr
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U��X,Y,Z� = g�������X�Y�Z�, �,�, . . . = 0,1,2,3,

where g�� is the metric tensor and ����� is the canonical volume element of M4 �see Ref. 17�.
�3� The quark model inspired a particular brand of ternary algebraic systems. The so-called

“Nambu mechnics” is based on such structures �see Ref. 7�.
There are also some applications, although still hypothetical, in the fractional quantum Hall

effect, the nonstandard statistics, supersymmetric theory, and Yang-Baxter equation �cf. Refs. 1,
17, and 35�.

Following the terminology of Ref. 2 a non-empty set G with a ternary operation �· , · , · � :G
	G	G→G is called a ternary groupoid and is denoted by �G , �· , · , · ��. The ternary groupoid
�G , �· , · , · �� is called commutative if �x1 ,x2 ,x3�= �x��1� ,x��2� ,x��3�� for all x1 ,x2 ,x3�G and all
permutations � of �1,2 ,3	.

If a binary operation � is defined on G such that �x ,y ,z�= �x �y� �z for all x ,y ,z�G, then we
say that �· , · , · � is derived from �. We say that �G , �· , · , · �� is a ternary semigroup if the operation
�· , · , · � is associative, i.e., if [�x ,y ,z� ,u ,v]= [x , �y ,z ,u� ,v]= [x ,y , �z ,u ,v�] holds for all
x ,y ,z ,u ,v�G �see Ref. 4�.

A C*-ternary algebra is a complex Banach space A, equipped with a ternary product
�x ,y ,z�� �x ,y ,z� of A3 into A, which is C linear in the outer variables, conjugate C-linear in the
middle variable, and associative in the sense that [x ,y , �z ,w ,v�]= �x , �w ,z ,y� ,v�= [�x ,y ,z� ,w ,v],
and satisfies ��x ,y ,z� � 
 �x � · �y � · �z� and ��x ,x ,x� � = �x�3 �see Refs. 2 and 36�. Every left Hilbert
C* module is a C*-ternary algebra via the ternary product �x ,y ,z�ª x ,y�z.

If a C*-ternary algebra �A , �· , · , · �� has an identity, i.e., an element e�A such that x
= �x ,e ,e�= �e ,e ,x� for all x�A, then it is routine to verify that A, endowed with x �yª �x ,e ,y� and
x*
ª �e ,x ,e�, is a unital C* algebra. Conversely, if �A , � � is a unital C* algebra, then �x ,y ,z�ªx

�y* �z makes A into a C*-ternary algebra.
A C-linear mapping H :A→B is called a C*-ternary algebra homomorphism if

H��x,y,z�� = �H�x�,H�y�,H�z�� ,

for all x ,y ,z�A. If, in addition, the mapping H is bijective, then the mapping H :A→B is called
a C*-ternary algebra isomorphism. A C-linear mapping � :A→A is called a C*-ternary derivation
if

���x,y,z�� = ���x�,y,z� + �x,��y�,z� + �x,y,��z�� ,

for all x ,y ,z�A �see Refs. 2 and 18�.
In 1940, Ulam34 gave a talk before the Mathematics Club of the University of Wisconsin in

which he discussed a number of unsolved problems. Among these was the following question
concerning the stability of homomorphisms.

We are given a group G and a metric group G� with metric ��· , · �. Given �0, does there
exist a �0 such that if f :G→G� satisfies �(f�xy� , f�x�f�y�)�� for all x ,y�G, then a homo-
morphism h :G→G� exists with �(f�x� ,h�x�)�� for all x�G?

In 1941, Hyers10 considered the case of approximately additive mappings f :E→E�, where E
and E� are Banach spaces and f satisfies Hyers inequality,

�f�x + y� − f�x� − f�y�� 
 � ,

for all x ,y�E. It was shown that the limit

L�x� = lim
n→�

f�2nx�
2n

exists for all x�E and that L :E→E� is the unique additive mapping satisfying

�f�x� − L�x�� 
 � .
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In 1978, Rassias26 provided a generalization of Hyers’ Theorem that allows the Cauchy dif-
ference to be unbounded.

Theorem 1.1: �Rassias26� Let f :E→E� be a mapping from a normed vector space E into a
Banach space E�, subject to the inequality

�f�x + y� − f�x� − f�y�� 
 ���x�p + �y�p� , �1.1�

for all x ,y�E, where � and p are constants with �0 and p�1. Then the limit

L�x� = lim
n→�

f�2nx�
2n ,

exists for all x�E and L :E→E� is the unique additive mapping that satisfies

�f�x� − L�x�� 

2�

2 − 2p �x�p, �1.2�

for all x�E. If p�0, then inequality �1.1� holds for x ,y�0 and �1.2� for x�0.
In 1990, Rassias,27 during the 27th International Symposium on Functional Equations, asked

the question of whether such a theorem can also be proved for p�1. In 1991, Gajda8 following
the same approach as in Rassias,26 gave an affirmative solution to this question for p1. It was
shown by Gajda,8 as well as by Rassias and Šemrl32 that one cannot prove a Rassias’ type theorem
when p=1. The counterexamples of Gajda,8 as well as of Rassias and Šemrl,32 have stimulated
several mathematicians to invent new definitions of approximately additive or approximately
linear mappings; cf. Găvruta,9 Jung,14 who, among others, studied the Hyers-Ulam-Rassias sta-
bility of functional equations. The inequality �1.1� that was introduced for the first time by
Rassias26 provided a lot of influence in the development of a generalization of the Hyers-Ulam
stability concept. This new concept is known as the Hyers-Ulam-Rassias stability of functional
equations �cf. the books of Czerwik,6 Hyers, Isac, and Rassias.11�

Rassias,24 following the spirit of the innovative approach of Rassias26 for the unbounded
Cauchy difference, proved a similar stability theorem in which he replaced the factor �x�p+ �y�p by
�x�p · �y�q for p ,q�R with p+q�1 �see also Ref. 25 for a number of other new results�.

Găvruta9 provided a further generalization of Rassias’ Theorem. In 1996, Isac and Rassias13

applied the Hyers-Ulam-Rassias stability theory to prove fixed point theorems and study some
new applications in Nonlinear Analysis. In Ref. 12, Hyers, Isac, and Rassias studied the asymp-
toticity aspect of Hyers-Ulam stability of mappings. During the past few years several mathema-
ticians have published on various generalizations and applications of Hyers-Ulam stability and
Hyers-Ulam-Rassias stability to a number of functional equations and mappings, for example,
quadratic functional equation, invariant means, multiplicative mappings—superstability, bounded
nth differences, convex functions, generalized orthogonality functional equation, Euler-Lagrange
functional equation, and Navier-Stokes equations. Several mathematicians have contributed works
on these subjects; we mention a few: Baak and Moslehian,3 Park,19–23 Rassias,28–31 and Skof.33

Throughout this paper, assume that p, d are non-negative integers with p+d�3.
In Sec. II, we prove the Hyers-Ulam-Rassias stability of homomorphisms in C*-ternary alge-

bras for the generalized Cauchy-Jensen additive mapping.
In Sec. III, we investigate isomorphisms between unital C*-ternary algebras associated with

the generalized Cauchy-Jensen additive mapping.
In Sec. IV, we prove the Hyers-Ulam-Rassias stability of derivations on C*-ternary algebras

for the generalized Cauchy-Jensen additive mapping.

II. STABILITY OF HOMOMORPHISMS IN C*-TERNARY ALGEBRAS

Throughout this section, assume that A is a C*-ternary algebra with norm � · �A and that B is a
C*-ternary algebra with norm � · �B.

For a given mapping f :A→B, we define
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C�f�x1, . . . ,xp,y1, . . . ,yd� ª 2f
�
j=1

p

�xj

2
+ �

j=1

d

�yj� − �
j=1

p

�f�xj� − 2�
j=1

d

�f�yj� ,

for all ��T1
ª ���C� �� � =1	 and all x1 , . . . ,xp ,y1 , . . . ,yd�A.

One can easily show that a mapping f :A→B satisfies C1f�x1 , . . . ,xp ,y1 , . . . ,yd�=0 if and only
if f is Cauchy additive, and that if a mapping f :A→B satisfies C1f�x1 , . . . ,xp ,y1 , . . . ,yd�=0 then
f�0�=0.

We prove the Hyers-Ulam-Rassias stability of homomorphisms in C*-ternary algebras for the
functional equation C�f�x1 , . . . ,xp ,y1 , . . . ,yd�=0.

Theorem 2.1: Let r3 and � be non-negative real numbers, and let f :A→B be a mapping
such that

�C�f�x1, . . . ,xp,y1, . . . ,yd��B 
 ���
j=1

p

�xj�A
r + �

j=1

d

�yj�A
r� , �2.1�

�f��x,y,z�� − �f�x�, f�y�, f�z���B 
 ���x�A
r + �y�A

r + �z�A
r � , �2.2�

for all ��T1 and all x ,y ,z ,x1 , . . . ,xp ,y1 , . . . ,yd�A. Then there exists a unique C*-ternary alge-
bra homomorphism H :A→B, such that

�f�x� − H�x��B 

p + d

2�p + 2d�r − �p + 2d�2r��x�A
r , �2.3�

for all x�A.
Proof: Let us assume �=1 and x1= ¯ =xp=y1= ¯ =yd=x in �2.1�. Then we get

�2f� p + 2d

2
x� − �p + 2d�f�x��

B


 �p + d���x�A
r , �2.4�

for all x�A. So

� f�x� −
p + 2d

2
f� 2

p + 2d
x��

B



p + d

2�p + 2d�r��x�A
r ,

for all x�A. Hence

� �p + 2d�l

2l f� 2l

�p + 2d�l x� −
�p + 2d�m

2m f� 2m

�p + 2d�mx��
B


 �
j=l

m−1 � �p + 2d� j

2 j f� 2 j

�p + 2d� j x� −
�p + 2d� j+1

2 j+1 f� 2 j+1

�p + 2d� j+1x��
B



�p + d�

2�p + 2d�r �
j=l

m−1
2rj�p + 2d� j

2 j�p + 2d�rj ��x�A
r , �2.5�

for all non-negative integers m and l with m l and all x�A. From this it follows that the
sequence ���p+2d�n /2n�f��2n / �p+2d�n�x�	 is a Cauchy sequence for all x�A. Since B is com-
plete, the sequence ���p+2d�n /2n�f(�2n / �p+2d�n�x)	 converges. Thus one can define the mapping
H :A→B by
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H�x� ª lim
n→�

�p + 2d�n

2n f� 2n

�p + 2d�nx� ,

for all x�A. Moreover, letting l=0 and passing the limit m→� in �2.5�, we get �2.3�.
It follows from �2.1� that

�2H�� j=1

p
xj

2
+ �

j=1

d

yj� − �
j=1

p

H�xj� − 2�
j=1

d

H�yj��
B

= lim
n→�

�p + 2d�n

2n �2f� 2n

�p + 2d�n

� j=1

p
xj

2
+

2n

�p + 2d�n�
j=1

d

yj�
− �

j=1

p

f� 2n

�p + 2d�nxj� − 2�
j=1

d

f� 2n

�p + 2d�n yj��
B


 lim
n→�

2nr�p + 2d�n

2n�p + 2d�nr���
j=1

p

�xj�A
r + �

j=1

d

�yj�A
r� = 0,

for all x1 , . . . ,xp ,y1 , . . . ,yd�A. Hence

2H�� j=1

p
xj

2
+ �

j=1

d

yj� = �
j=1

p

H�xj� + 2�
j=1

d

H�yj� ,

for all x1 , . . . ,xp ,y1 , . . . ,yd�A. So the mapping H :A→B is Cauchy additive.
By the same reasoning as in the proof of Theorem 2.1 of Ref. 21, the mapping H :A→B is

C-linear.
It follows from �2.2� that

�H��x,y,z�� − �H�x�,H�y�,H�z���B = lim
n→�

�p + 2d�3n

8n � f� 8n�x,y,z�
�p + 2d�3n�

− � f� 2nx

�p + 2d�n�, f� 2ny

�p + 2d�n�, f� 2nz

�p + 2d�n���
B


 lim
n→�

2nr�p + 2d�3n

8n�p + 2d�nr ���x�A
r + �y�A

r + �z�A
r � = 0,

for all x ,y ,z�A. Thus

H��x,y,z�� = �H�x�,H�y�,H�z�� ,

for all x ,y ,z�A.
Now, let T :A→B be another generalized Cauchy-Jensen additive mapping satisfying �2.3�.

Then we have
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�H�x� − T�x��B =
�p + 2d�n

2n �H� 2nx

�p + 2d�n� − T� 2nx

�p + 2d�n��
B



�p + 2d�n

2n ��H� 2nx

�p + 2d�n� − f� 2nx

�p + 2d�n��
B

+ �T� 2nx

�p + 2d�n� − f� 2nx

�p + 2d�n��
B
�



p + d

2�p + 2d�r − �p + 2d�2r ·
2nr+1�p + 2d�n

2n�p + 2d�nr ��x�A
r ,

which tends to zero as n→� for all x�A. So we can conclude that H�x�=T�x� for all x�A. This
proves the uniqueness of H. Thus, the mapping H :A→B is a unique C*-ternary algebra homo-
morphism satisfying �2.3�.

Theorem 2.2: Let r�1 and � be non-negative real numbers, and let f :A→B be a mapping
satisfying �2.1� and �2.2�. Then there exists a unique C*-ternary algebra homomorphism H :A
→B such that

�f�x� − H�x��B 

2r�p + d�

2r�p + 2d� − 2�p + 2d�r��x�A
r , �2.6�

for all x�A.
Proof: It follows from �2.4� that

� f�x� −
2

p + 2d
f� p + 2d

2
x��

B



p + d

p + 2d
��x�A

r ,

for all x�A. So

� 2l

�p + 2d�l f� �p + 2d�l

2l x� −
2m

�p + 2d�m f� �p + 2d�m

2m x��
B


 �
j=l

m−1 � 2 j

�p + 2d� j f� �p + 2d� j

2 j x� −
2 j+1

�p + 2d� j+1 f� �p + 2d� j+1

2 j+1 x��
B



p + d

p + 2d
�
j=l

m−1
2 j�p + 2d� jr

2 jr�p + 2d� j ��x�A
r , �2.7�

for all non-negative integers m and l with m l and all x�A. From this it follows that the
sequence ��2n / �p+2d�n�f(��p+2d�n /2n�x)	 is a Cauchy sequence for all x�A. Since B is com-
plete, the sequence ��2n / �p+2d�n�f(��p+2d�n /2n�x)	 converges. So one can define the mapping
H :A→B by

H�x� ª lim
n→�

2n

�p + 2d�n f� �p + 2d�n

2n x� ,

for all x�A. Moreover, letting l=0 and passing the limit m→� in �2.7�, we get �2.6�.
The rest of the proof is similar to the proof of Theorem 2.1. �

Theorem 2.3: Let r1 and � be non-negative real numbers, and let f :A→B be a mapping
such that

�C�f�x1, . . . ,xp,y1, . . . ,yd��B 
 ��
j=1

p

�xj�A
r · �

j=1

d

�yj�A
r , �2.8�
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�f��x,y,z�� − �f�x�, f�y�, f�z���B 
 � · �x�A
r · �y�A

r · �z�A
r , �2.9�

for all ��T1 and all x ,y ,z ,x1 , . . . ,xp ,y1 , . . . ,yd�A. Then there exists a unique C*-ternary alge-
bra homomorphism H :A→B such that

�f�x� − H�x��B 

2�p+d�r

2�p + 2d��p+d�r − 2�p+d�r�p + 2d�
��x�A

�p+d�r, �2.10�

for all x�A.
Proof: Let us assume �=1 and x1= ¯ =xp=y1= ¯ =yd=x in �2.8�. Then we get

�2f� p + 2d

2
x� − �p + 2d�f�x��

B


 ��x�A
�p+d�r, �2.11�

for all x�A.So

� f�x� −
p + 2d

2
f� 2

p + 2d
x��

B



2�p+d�r

2�p + 2d��p+d�r��x�A
�p+d�r,

for all x�A. Hence

� �p + 2d�l

2l f� 2l

�p + 2d�l x� −
�p + 2d�m

2m f� 2m

�p + 2d�mx��
B


 �
j=l

m−1 � �p + 2d� j

2 j f� 2 j

�p + 2d� j x� −
�p + 2d� j+1

2 j+1 f� 2 j+1

�p + 2d� j+1x��
B



2�p+d�r

2�p + 2d��p+d�r �
j=l

m−1
2�p+d�rj�p + 2d� j

2 j�p + 2d��p+d�rj ��x�A
�p+d�r, �2.12�

for all non-negative integers m and l with m l and all x�A. From this it follows that the
sequence ���p+2d�n /2n�f(�2n / �p+2d�n�x)	 is a Cauchy sequence for all x�A. Since B is com-
plete, the sequence ���p+2d�n /2n�f(�2n / �p+2d�n�x)	 converges. Thus one can define the mapping
H :A→B by

H�x� ª lim
n→�

�p + 2d�n

2n f� 2n

�p + 2d�nx� ,

for all x�A. Moreover, letting l=0 and passing the limit m→� in �2.12�, we get �2.10�.
The rest of the proof is similar to the proof of Theorem 2.1. �

Theorem 2.4: Let r�1/ �p+d� and � be non-negative real numbers, and let f :A→B be a
mapping satisfying �2.8� and �2.9�. Then there exists a unique C*-ternary algebra homomorphism
H :A→B such that

�f�x� − H�x��B 

2�p+d�r

2�p+d�r�p + 2d� − 2�p + 2d��p+d�r��x�A
�p+d�r, �2.13�

for all x�A.
Proof: It follows from �2.11� that

� f�x� −
2

p + 2d
f� p + 2d

2
x��

B



�

p + 2d
�x�A

�p+d�r,

for all x�A. So
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� 2l

�p + 2d�l f� �p + 2d�l

2l x� −
2m

�p + 2d�m f� �p + 2d�m

2m x��
B


 �
j=l

m−1 � 2 j

�p + 2d� j f� �p + 2d� j

2 j x� −
2 j+1

�p + 2d� j+1 f� �p + 2d� j+1

2 j+1 x��
B



�

p + 2d
�
j=l

m−1
2 j�p + 2d� j�p+d�r

2 j�p+d�r�p + 2d� j �x�A
�p+d�r, �2.14�

for all non-negative integers m and l with m l and all x�A. From this it follows that the
sequence ��2n / �p+2d�n�f(��p+2d�n /2n�x)	 is a Cauchy sequence for all x�A. Since B is com-
plete, the sequence ��2n / �p+2d�n�f(��p+2d�n /2n�x)	 converges. So one can define the mapping
H :A→B by

H�x� ª lim
n→�

2n

�p + 2d�n f� �p + 2d�n

2n x� ,

for all x�A. Moreover, letting l=0 and passing the limit m→� in �2.14�, we get �2.13�.
The rest of the proof is similar to the proof of Theorem 2.1. �

III. ISOMORPHISMS BETWEEN C*-TERNARY ALGEBRAS

Throughout this section, assume that A is a unital C*-ternary algebra with norm � · �A and unit
e, and that B is a unital C*-ternary algebra with norm � · �B and unit e�.

We investigate isomorphisms between C*-ternary algebras associated with the functional
equation C�f�x1 , . . . ,xp ,y1 , . . . ,yd�=0.

Theorem 3.1: Let r1 and � be non-negative real numbers, and let f :A→B be a bijective
mapping satisfying �2.1�, such that

f��x,y,z�� = �f�x�, f�y�, f�z�� , �3.1�

for all x ,y ,z�A. If limn→���p+2d�n /2n�f(2ne / �p+2d�n)=e�, then the mapping f :A→B is a
C*-ternary algebra isomorphism.

Proof: By the same reasoning as in the proof of Theorem 2.1, there exists a unique C-linear
mapping H :A→B such that

�f�x� − H�x��B 

p + d

2�p + 2d�r − �p + 2d�2r��x�A
r ,

for all x�A. The mapping H :A→B is defined by

H�x� ª lim
n→�

�p + 2d�n

2n f� 2n

�p + 2d�nx� ,

for all x�A.
Since f��x ,y ,z��= �f�x� , f�y� , f�z�� for all x ,y ,z�A,

H��x,y,z�� = lim
n→�

�p + 2d�3n

8n f�� 2nx

�p + 2d�n ,
2ny

�p + 2d�n ,
2nz

�p + 2d�n��
= lim

n→�
� �p + 2d�n

2n f� 2nx

�p + 2d�n�,
�p + 2d�n

2n f� 2ny

�p + 2d�n�,
�p + 2d�n

2n f� 2nz

�p + 2d�n��
=�H�x�,H�y�,H�z�� ,

for all x ,y ,z�A. So the mapping H :A→B is a C*-ternary algebra homomorphism.
It follows from �3.1� that
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H�x� = H��e,e,x�� = lim
n→�

�p + 2d�2n

4n f� 4n

�p + 2d�2n �e,e,x��
= lim

n→�

�p + 2d�2n

4n f�� 2ne

�p + 2d�n ,
2ne

�p + 2d�n ,x��
= lim

n→�
� �p + 2d�n

2n f� 2ne

�p + 2d�n�,
�p + 2d�n

2n f� 2ne

�p + 2d�n�, f�x�� = �e�,e�, f�x�� = f�x�,

for all x�A. Hence the bijective mapping f :A→B is a C*-ternary algebra isomorphism. �

Theorem 3.2: Let r�1 and � be non-negative real numbers, and let f :A→B be a bijective
mapping satisfying �2.1� and �3.1�. If limn→��2n / �p+2d�n�f(��p+2d�n /2n�e)=e�, then the mapping
f :A→B is a C*-ternary algebra isomorphism.

Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.2, there exists a unique
C-linear mapping H :A→B such that

�f�x� − H�x��B 

2r�p + d�

2r�p + 2d� − 2�p + 2d�r��x�A
r ,

for all x�A. The mapping H :A→B is defined by

H�x� ª lim
n→�

2n

�p + 2d�n f� �p + 2d�n

2n x� ,

for all x�A.
The rest of the proof is similar to the proof of Theorem 3.1. �

Theorem 3.3: Let r1/ �p+d� and � be non-negative real numbers, and let f :A→B be a
bijective mapping satisfying �2.8� and �3.1�. If limn→���p+2d�n /2n�f(2ne / �p+2d�n)=e�, then the
mapping f :A→B is a C*-ternary algebra isomorphism.

Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.3, there exists a unique
C-linear mapping H :A→B such that

�f�x� − H�x��B 

2�p+d�r

2�p + 2d��p+d�r − 2�p+d�r�p + 2d�
��x�A

�p+d�r,

for all x�A. The mapping H :A→B is defined by

H�x� ª lim
n→�

�p + 2d�n

2n f� 2n

�p + 2d�nx� ,

for all x�A.
The rest of the proof is similar to the proofs of Theorems 2.3 and 3.1. �

Theorem 3.4: Let r�1/ �p+d� and � be non-negative real numbers, and let f :A→B be a
bijective mapping satisfying �2.8� and �3.1�. If limn→��2n / �p+2d�n�f(��p+2d�n /2n�e)=e�, then the
mapping f :A→B is a C*-ternary algebra isomorphism.

Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.4, there exists a unique
C-linear mapping H :A→B such that

�f�x� − H�x��B 

2�p+d�r

2�p+d�r�p + 2d� − 2�p + 2d��p+d�r��x�A
�p+d�r,

for all x�A. The mapping H :A→B is defined by
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H�x� ª lim
n→�

2n

�p + 2d�n f� �p + 2d�n

2n x� ,

for all x�A.
The rest of the proof is similar to the proofs of Theorems 2.4 and 3.1. �

IV. STABILITY OF DERIVATIONS ON C*-TERNARY ALGEBRAS

Throughout this section, assume that A is a C*-ternary algebra with norm � · �A.
We prove the Hyers-Ulam-Rassias stability of derivations on C*-ternary algebras for the

functional equation C�f�x1 , . . . ,xp ,y1 , . . . ,yd�=0.
Theorem 4.1: Let r3 and � be non-negative real numbers, and let f :A→A be a mapping

satisfying �2.1� such that

�f��x,y,z�� − �f�x�,y,z� − �x, f�y�,z� − �x,y, f�z���A 
 ���x�A
r + �y�A

r + �z�A
r � , �4.1�

for all x ,y ,z�A. Then there exists a unique C*-ternary derivation � :A→A such that

�f�x� − ��x��A 

p + d

2�p + 2d�r − �p + 2d�2r��x�A
r , �4.2�

for all x�A.
Proof: By the same reasoning as in the proof of Theorem 2.1, there exists a unique C-linear

mapping � :A→A satisfying �4.2�. The mapping � :A→A is defined by

��x� ª lim
n→�

�p + 2d�n

2n f� 2n

�p + 2d�nx� ,

for all x�A.
It follows from �4.1� that

����x,y,z�� − ���x�,y,z� − �x,��y�,z� − �x,y,��z���A

= � lim
n→�

�p + 2d�3n

8n � f� 8n

�p + 2d�3n �x,y,z�� − � f� 2nx

�p + 2d�n�,
2ny

�p + 2d�n ,
2nz

�p + 2d�n�
− �� 2nx

�p + 2d�n , f� 2ny

�p + 2d�n�,
2nz

�p + 2d�n� − � 2nx

�p + 2d�n ,
2ny

�p + 2d�n , f� 2nz

�p + 2d�n���
A


 lim
n→�

2nr�p + 2d�3n

8n�p + 2d�nr ���x�A
r + �y�A

r + �z�A
r � = 0,

for all x ,y ,z�A. Hence

���x,y,z�� = ���x�,y,z� + �x,��y�,z� + �x,y,��z�� ,

for all x ,y ,z�A. Thus the mapping � :A→A is a unique C*-ternary derivation satisfying �4.2�.�
Theorem 4.2: Let r�1 and � be nonnegative real numbers, and let f :A→A be a mapping

satisfying �2.1� and �4.1�. Then there exists a unique C*-ternary derivation � :A→A such that

�f�x� − ��x��A 

2r�p + d�

2r�p + 2d� − 2�p + 2d�r��x�A
r , �4.3�

for all x�A.
Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.2, there exists a unique

C-linear mapping � :A→A satisfying �4.3�. The mapping � :A→A is defined by
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��x� ª lim
n→�

2n

�p + 2d�n f� �p + 2d�n

2n x� ,

for all x�A.
The rest of the proof is similar to the proof of Theorem 4.1. �

Theorem 4.3: Let r1 and � be non-negative real numbers, and let f :A→A be a mapping
satisfying �2.8� such that

�f��x,y,z�� − �f�x�,y,z� − �x, f�y�,z� − �x,y, f�z���A 
 � · �x�A
r · �y�A

r · �z�A
r , �4.4�

for all x ,y ,z�A. Then there exists a unique C*-ternary derivation � :A→A such that

�f�x� − ��x��A 

2�p+d�r

2�p + 2d��p+d�r − 2�p+d�r�p + 2d�
��x�A

�p+d�r, �4.5�

for all x�A.
Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.3, there exists a unique

C-linear mapping � :A→A satisfying �4.5�. The mapping � :A→A is defined by

��x� ª lim
n→�

�p + 2d�n

2n f� 2n

�p + 2d�nx� ,

for all x�A.
The rest of the proof is similar to the proof of Theorem 4.1. �

Theorem 4.4: Let r�1/ �p+d� and � be non-negative real numbers, and let f :A→A be a
mapping satisfying �2.8� and �4.4�. Then there exists a unique C*-ternary derivation � :A→A such
that

�f�x� − ��x��A 

2�p+d�r

2�p+d�r�p + 2d� − 2�p + 2d��p+d�r��x�A
�p+d�r, �4.6�

for all x�A.
Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.4, there exists a unique

C-linear mapping � :A→A satisfying �4.6�. The mapping � :A→A is defined by

��x� ª lim
n→�

2n

�p + 2d�n f� �p + 2d�n

2n x� ,

for all x�A.
The rest of the proof is similar to the proof of Theorem 4.1. �
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We present bipartite Bell-type inequalities which allow the two partners to use
some nonlocal resource. Such inequalities can only be violated if the parties use a
resource which is more nonlocal than the one permitted by the inequality. We
introduce a family of N-input nonlocal machines, which are generalizations of the
well-known PR �Popescu-Rohrlich� box. Then we construct Bell-type inequalities
that cannot be violated by strategies that use one of these new machines. Finally we
discuss implications for the simulation of quantum states. © 2006 American Insti-
tute of Physics. �DOI: 10.1063/1.2352857�

I. INTRODUCTION

One of the most striking properties of quantum mechanics is nonlocality. It is well known that
two separated observers, each holding half of an entangled quantum state and performing appro-
priate measurements, share correlations which are nonlocal, in the sense that they violate a Bell
inequality.1 Indeed, this has been demonstrated in many laboratory experiments.2 A key feature of
entanglement is that it does not allow the two distant observers to send information to each other
faster than light, i.e., correlation from measurements on quantum states is no-signaling.

It is an interesting problem to quantify how powerful the nonlocal correlations of quantum
mechanics are. In order to do that, one has to use some nonlocal resource. A quite natural choice
is indeed classical communication. In 2003, Toner and Bacon showed that a single bit of commu-
nication is enough to reproduce the correlations of the singlet state.3 In the last years another
nonlocal resource, the PR �Popescu-Rohrlich� box, has also been proposed to study this problem.
Introduced in 1994 by Popescu and Rohrlich,4,5 the PR box was then proven to be a powerful
resource for information theoretic tasks, such as communication complexity6,7 and cryptography.8

It was also recently suggested that the PR box is a unit of nonlocality.9 The PR box has the
appealing feature that it is intrinsically nonsignaling, which is of course not the case of classical
communication.10 Note that a PR box is a strictly weaker resource than a bit of communication.11

Recently, Cerf et al. presented a model using a single PR box which simulates correlations from
any projective measurement on the singlet.12 It appears very natural to extend this study to other
quantum states, but this turns out to be quite difficult, even for nonmaximally entangled pure states
of two qubits. In a recent paper we showed a family of nonmaximally entangled states, whose
correlations cannot be reproduced by a single PR box.11 In other words, some nonmaximally
entangled states require a strictly larger amount of nonlocal resources than the maximally en-
tangled state to be simulated. This suggests that entanglement and nonlocality are different re-
sources. To demonstrate this result we found a Bell-type inequality allowing some nonlocal re-
source; in this case a single use of a PR box. Then, it was proven that this inequality is violated by
some nonmaximally entangled state.

In the present paper, we introduce N-input bipartite nonlocal machines �NLM�, which appear
as a natural extension of the two-input PR box. These machines, denoted PRN, have a nice
connection to a family of N-setting Bell inequalities known as INN22,

13 similar to the one that
relates the PR box to the Clauser-Horne-Shimony-Holt �CHSH� inequality,14

CHSH ⇒ PR box, �1�
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INN22 ⇒ PRN.

In fact, the structure of the N-input NLM can be directly deduced from the corresponding
INN22 inequality. Then, we present a family of N-setting inequalities, MNN22, which allows one use
of the PRN−1 machine. Again, the structure of these new inequalities is easily deduced from the
structure of the INN22 inequalities, i.e.,

INN22 ⇒ MNN22. �2�

Thus, a nice construction appears: for any number of settings N, we have a Bell inequality
INN22 and the related NLM, PRN, which reaches the upper �no-signaling� bound of the inequality.
Adding one setting we find another inequality, M�N+1��N+1�22, which cannot be violated by strate-
gies which require a single use of PRN.

The organization of the paper is as follows. In Sec. II we present the mathematical tools and
introduce the notations by reviewing the simplest case of two settings on each side. The link
between the PR box and the CHSH inequality is pointed out. Section III is devoted to the case of
three settings: we introduce a three-setting NLM and study an inequality for a single use of a PR
box. In Sec. IV, the construction of Sec. III is extended to the case N settings. Section V concludes
the paper by reviewing the main results about Bell inequalities with and without resources. Our
present work is then clearly situated in this context.

II. TOOLS

Let us consider a typical Bell test scenario. Two distant observers, Alice and Bob, share some
quantum state. Each of them chooses between a set of measurements �settings� �Ai�i=1...NA

,
�Bj� j=1...NB

. The result of the measurement is noted rA, rB. Here we will focus on dichotomic
observables and we will restrict Alice and Bob to use the same number of settings, i.e.,
rA,B� �0,1� and NA=NB�N. An “experiment” is fully characterized by the family of 4N2 prob-
abilities P�rA ,rB �Ai ,Bj�� Pij�rA ,rB� and can be seen as a point in a 4N2-dimensional probability
space. As probabilities must satisfy

�i� Positivity: Pij�rA,rB� � 0 ∀ i, j,rA,rB

�ii� Normalization: 	rA,rB=0,1
Pij�rA,rB� = 1 ∀ i, j ,

all relevant experiments are contained in a bounded region of this probability space. Since we
want to restrict ourselves to no-signaling probability distributions, we impose also the no-signaling
conditions

	
rA=0,1

Pij�rA,rB� = Pj�rB� ∀ i ,

�3�
	

rB=0,1
Pij�rA,rB� = Pi�rA� ∀ j .

Conditions �3� mean that Alice’s output cannot depend on Bob’s setting, and vice versa. This
shrinks further the region of possible experiments, and the dimension of the probability space is
now reduced to d=N�N+2�. So, each no-signaling experiment is represented by a point in a
d-dimensional probability space. In fact, the region containing all relevant probability distributions
�strategies�, i.e., satisfying positivity, normalization, and no-signaling, forms a polytope, i.e., a
convex set with a finite number of vertices. It is the no-signaling polytope.

One can restrict the probability distributions even further by requiring that these are built only
by local means, such as shared randomness. We then obtain a smaller polytope: the local polytope.
The facets of this polytope are Bell inequalities, in the sense that a probability distribution lying
inside �outside� the local polytope satisfies �violates� a Bell inequality. The vertices �extremal
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points� of this polytope are deterministic strategies obtained by setting the outputs rA and rB

always to 0 or always to 1. Finding the facets of a polytope knowing its vertices is a computa-
tionally difficult task. In fact, Pitowsky has shown this problem to be NP-complete.15 That is why
all Bell inequalities have been listed for the case of two or three settings, whereas not much is
known for a larger number of settings.

Let us start with a brief review of the simplest situation: two settings on each side.
This case has been largely studied, and both the local and the no-signaling polytope have been

completely characterized.16 The probability space has eight dimensions. We choose the eight
probabilities Pi�rA=0�, Pj�rB=0�, and Pij�rA=rB=0� to characterize the space.

The local polytope. The local polytope has 16 vertices. Fine17 showed that all nontrivial facets
are equivalent to the CHSH inequality

CHSH �
− 1 0

− 1 1 1

0 1 − 1

� 0. �4�

Here, the notation represents the coefficients that are put in front of the probabilities, according to

Pi�rA = 0�
Pj�rB = 0� Pij�rA = rB = 0� .

�5�

The extremal points �vertices� of the local polytope are deterministic strategies, i.e., for each
setting Alice and Bob always output 0 or always output 1. Let us do an example: Alice outputs bit
0 for the first setting A0 and outputs 1 for the second setting A1; Bob always outputs 0, for both
settings. This strategy corresponds to the point in probability space

�6�

All probability distributions lying outside this polytope are nonlocal.
The quantum set is the set of correlations that can be obtained by local measurements on

quantum states. Inequality �4� can indeed be violated by quantum mechanics, and the maximal
violation is 1 /
2−1/2�0.2071, obtained by suitable measurements on the singlet state. Of course
the quantum set is included in the no-signaling polytope, but the converse is not true. There are
no-signaling correlations that are more nonlocal than those of quantum mechanics. The PR box is
indeed among these correlations.

The no-signaling polytope. The no-signaling polytope has 24 vertices: 16 of them are the local
vertices seen before and the eight others are the nonlocal vertices. Each one of these points
corresponds to a PR box. Let us make this clear. The PR box is a two-input, two-output NLM.
Alice inputs x into the machine and gets outcome a, while Bob inputs y and gets output b. The
outcomes are correlated such that a � b=xy. The local marginals are however completely random,
i.e., P�a=0�= P�b=0�= 1 � 2 , which ensures no-signaling. In probability space, the PR box corre-
sponds to the point

PR =
1

2
�

1 1

1 1 1

1 1 0

. �7�

According to the symmetries x→x+1, y→y+1, a→a+1, there are eight ”equivalent” PR
boxes. As pointed out in Ref. 16 there is a strong correspondence between the eight CHSH facets
of the local polytope and the eight PR boxes. Above each CHSH inequality lies one of the PR
boxes. Each PR box violates its corresponding inequality up to 0.5, which is the maximal value for
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a no-signaling strategy. Formally, this correspondence is also pretty obvious by looking at Eqs. �4�
and �7�. To get the PR box from the CHSH inequality, proceed as follows:

Recipe. When the coefficient of a joint probability is +1 or 0 in the inequality, replace it with
0.5; when a coefficient is equal to −1, replace it with 0 in the machine.

In other words, when a joint probability appears with a coefficient +1 or 0, the outputs of the
machine are correlated, and when the coefficient is −1, the outputs are anticorrelated. This simple
recipe can be straightforwardly extended to Bell inequalities with more settings. For a Bell in-
equality with N settings, we then get a new NLM, denoted PRN. This machine has N inputs and
binary outcomes �see Fig. 1�.

III. MAIN RESULT—THREE SETTINGS

In this paper we present Bell-type inequalities allowing the use of some nonlocal resource.
This means that all strategies satisfying such inequalities can be simulated by local means �i.e.,
shared randomness, etc.� together with some nonlocal resource—for example, one NLM. In other
words, any strategy violating such inequalities would require a strictly larger amount of nonlocal
resource than is allowed by the inequality. In the case of two settings, described in the previous
section, such inequalities cannot exist. This is because the most elementary nonlocal resource, the
PR box, suffices already to generate all the nonlocal vertices of the no-signaling polytope.

Therefore we switch to the next case, i.e., three settings �with two outputs� on each side. Here,
the situation becomes much more complicated but remains tractable. All facets of the local poly-
tope have been listed.13 No-signaling strategies are now living in a 15-dimensional space.

The local polytope. The local polytope has 64 vertices. Surprisingly, it turns out that each of
the 648 nontrivial facets is equivalent to one of the two following Bell inequalities:

CHSH �

− 1 0 0

0 0 0 0

− 1 1 1 0

0 1 − 1 0

� 0, �8�

I3322 �

− 1 0 0

− 2 1 1 1

− 1 1 1 − 1

0 1 − 1 0

� 0. �9�

The CHSH inequality is still a facet of the local polytope. This is a general property of Bell
inequalities, known as “lifting”18: a facet Bell inequality, defined in a given configuration, remains
a facet when the number of settings, outcomes, or parties is augmented.

Quantum mechanics indeed violates the three-setting CHSH inequality. The second inequality,
I3322, is also violated by quantum mechanics. Furthermore, this inequality is relevant, since it is
violated by some quantum states which do not violate the CHSH inequality.13

The no-signaling polytope. The local polytope has 72 CHSH-type facets. Above each of these
facets lies a PR box. This is clear since the CHSH inequality, while still being a facet of any local
polytope with more settings, is a true two-input Bell inequality. Now, it is interesting to see that

FIG. 1. An N-input NLM: generalization of the two-input PR box.
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above each I3322 inequality �which is a true three-input Bell inequality� we find a no-signaling
strategy which is more nonlocal than a PR box. This strategy is represented by a three-input NLM,
defined by the relation �xy /2�=a+b�mod2�, where x ,y� �0,1 ,2� and a ,b� �0,1�. This machine
will be referred to as PR3. In probability space this new machine corresponds to the point

PR3 =
1

2
�

1 1 1

1 1 1 1

1 1 1 0

1 1 0 1

. �10�

Note that �I3322�PR3=1, while �I3322�PR=0.5 �see Fig. 2�. Here, we have used a scalar product-
type notation �I�S=z, which means that testing inequality I with strategy S gives a value z. The
machine PR3 can be simply obtained from the inequality I3322 using the Recipe mentioned at the
end of Sec. II. One needs two PR boxes to simulate PR3, as shown in Appendix A. PR3 can also
be rewritten in the elegant manner x=y ⇔a=b, which corresponds to the probability point

1

2
�

1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

. �11�

The distribution �11� is indeed equivalent to �10� up to local symmetries: here, both Alice and Bob
flip their outputs for their first setting.

In a recent paper Jones and Masanes19 gave a complete characterization of all the vertices of
the no-signaling polytope for any number of settings and two outcomes—note that Barrett et
al.studied the reversed case: two settings and any number of outcomes.16 From their result it is
clear that all vertices of the no-signaling polytope for three settings and two outputs can be
constructed with a PR3.

Numerically we find all the vertices of the no-signaling polytope. We proceed as follows. First
we generate all strategies that use at most one PR3. These are all the strategies where Alice and
Bob can choose each of their three inputs in the set �0d ,1d ,0m ,1m ,2m ,0mf ,1mf ,2mf�. Here
0d ,1d means that they deterministically output the value 0 or 1; 0m ,1m ,2m means that they input
0 ,1 ,2 in the machine PR3; 0mf ,1mf ,2mf means that they input 0 ,1 ,2 in PR3 and flip the output
of the machine. Second, we remove those strategies which are inside the local polytope by testing
all the 648 Bell inequalities. Finally there are 1344 strategies left which are the nonlocal vertices

FIG. 2. A facet I3322 viewed in a simplified representation of the probability space. Above the facet, on the hyperplane
I3322=0.5, lie 28 strategies with a single PR. Above this hyperplane �I3322=1� lie two strategies with a single PR3. The local
polytope is in black and the no-signaling in green. In blue is the polytope of all strategies using at most one PR; M3322 is
a facet of this polytope. The quantum set is in red. Note that some quantum states violate M3322 �shaded area�.

112101-5 Bell-type inequalities for nonlocal resources J. Math. Phys. 47, 112101 �2006�

                                                                                                                                    



of the �three-input, two-outcome� no-signaling polytope. We find four different classes of those
vertices—given in Appendix B. A curious feature of those points is that each of them violates
several inequalities of the local polytope. For example, the strategy

PR =
1

2
�

1 1 0

0 0 0 0

1 1 1 0

1 1 0 0

�12�

violates the CHSH inequality �8�. But, it clearly also violates eight I3322-type inequalities, among
which

− 1 0 0

− 2 1 1 1

− 1 1 1 − 1

0 1 − 1 0

� 0,

− 1 0 − 1

0 − 1 − 1 1

− 1 1 1 0

0 1 − 1 0

� 0. �13�

Formally this is clear, since each of these eight I3322 inequalities �for example, �13�� reduces to the
CHSH inequality �8� once Alice’s third setting and Bob’s first setting are discarded. Figure 3 gives
some geometrical intuition of the situation.

Inequality with a PR box. We have just seen that, in the case of three settings on each side,
there are two types of NLM, the PR box and the PR3, generating different types of nonlocal
vertices of the no-signaling polytope. As mentioned, the PR3 is a stronger nonlocal resource than
the PR box—it needs two PR boxes to be simulated. Thus there is a new polytope, sandwiched
between the local and the no-signaling polytopes. It is formed by all strategies that can be simu-
lated using at most one PR box �see Fig. 2�. A facet of this polytope was recently found.11 It
corresponds to the inequality

M3322 �

− 2 0 0

− 2 1 1 1

− 1 1 1 − 1

0 1 − 1 0

� 0. �14�

Although M3322 is not violated by the maximally entangled state, it is violated by a family of
nonmaximally entangled states of two qubits.11 Indeed, the maximally entangled state does not

FIG. 3. Simplified three-dimensional view of a facet of the no-signaling polytope �green shaded surface�. Among the
extremal points of this facet are a PR-box strategy �38�, a PR3 �28� strategy, and a deterministic strategy, L0

= �0d ,0d ,0d ;0d ,0d ,0d�. Behind this facet is another no-signaling facet which has a vertex L1= �1d ,1d ,1d ;1d ,1d ,1d�. Indeed,
L0 ,L1 are extremal points of the local polytope. Note that PR and PR3 are both above the CHSH and the I3322 facets.
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violate this inequality, since its correlations can be simulated using a single PR box.12 Note that
the structure of M3322 is similar to I3322, the only difference being the coefficient of Alice’s first
marginal.

We prove now that M3322 is a facet of the polytope of all strategies using at most one PR box.
This result will be extended to the case of N settings in the next section.

The proof consists of two parts: first we show that no strategy with a single use of a PR box
violates M3322; then we show that there are �at least� N�N+2�=15 linearly independent strategies
using at most one PR box which saturate M3322. Here, we just sketch the idea of the proof; see
Appendix C for details.

To prove the first part, we state a Lemma. Any no-signaling strategy S violating M3322, also
violates the two following inequalities:

C1 �

− 1 0 0

0 0 0 0

− 1 1 1 0

0 1 − 1 0

� 0, C2 �

− 1 0 0

− 1 1 0 1

0 1 0 − 1

0 0 0 0

� 0.

The proof is straightforward. One needs only to note that, for no-signaling strategies, joint prob-
abilities are smaller �or equal� than their respective marginals. Then by inverting the Lemma, we
get the following proposition: if S does not violate both inequalities C1 and C2, then S does not
violate M3322. Finally, it is obvious that with a single PR box one can violate either C1 or C2, but
not both at the same time.

For the second part of the proof, we find numerically eight local deterministic distributions
which saturate M3322. Then we find 57 other strategies with one PR box saturating M3322. Alto-
gether these strategies form a hyperplane of dimension 14. This completes the proof that M3322 is
a facet of the polytope.

IV. N SETTINGS

In this section, the results of Sec. III are extended to the case of an arbitrary number of
settings N. We use a family of Bell inequalities, known as INN22, which were proven to be facets
of the local polytope.13 These inequalities are generalization of the I3322 seen before. For N
settings, the inequality reads

INN22 �

− 1 0 0 ¯ 0 0

− �N − 1� 1 1 1 ¯ 1 1

− �N − 2� 1 1 1 ¯ 1 − 1

− �N − 3� 1 1 1 ¯ − 1 0

� � �
− 1 1 1 − 1 ¯ 0 0

0 1 − 1 0 ¯ 0 0

� 0.

Using the Recipe of Sec. II, we construct a family of N-settings NLM

PRN �
1

2

1 1 1 ¯ 1 1

1 1 1 1 ¯ 1 1

1 1 1 1 ¯ 1 0

1 1 1 1 ¯ 0 1

� � �
1 1 1 0 ¯ 1 1

1 1 0 1 ¯ 1 1

. �15�
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One can simulate PRN with N−1 PR-boxes. This is easily shown using a straightforward
generalization of Appendix A. We think that PRN cannot be simulated with fewer than �N−1�
PR-boxes, but we do not have a proof. The inequality

M�N+1�22 �

− N 0 ¯ 0 0

− N 1 1 ¯ 1 1

− �N − 1� 1 1 ¯ 1 − 1

− �N − 2� 1 1 ¯ − 1 0

� � � �
− 1 1 1 ¯ 0 0

0 1 − 1 ¯ 0 0

� 0 �16�

is an �N+1�-setting Bell inequality that cannot be violated by strategies which require a single use
of PRN, as proven in Appendix C. In �16� we have omitted a factor �N+1� in the name of the
inequality for practical reasons. Again the structure of MNN22 is similar to INN22, up to Alice’s first
marginal: in order to get MNN22 from INN22, one simply changes Alice’s first marginal to −�N
−1�.

So, finally we get the following nice construction. For any number of settings N we have a
Bell inequality INN22 and an N-input NLM �PRN� which reaches the upper no-signaling bound of
INN22. From there, we construct an �N+1�-setting inequality �M�N+1��N+1�22�, which cannot be
violated with one use of PRN, i.e.,

�INN22,PRN� → �M�N+1��N+1�22,PRN+1� . �17�

V. CONCLUSION

To conclude, we review briefly the main results concerning polytopes and Bell inequalities
with and without nonlocal resources. We focus on two-outcome settings. Table I summarizes the
situation. The oldest result is due to Fine, who showed that all �nontrivial� facets of the two-input,
two-outcome local polytope are equivalent to the CHSH inequality.17 Then Collins and Gisin
completely characterized the case of three settings.13 In particular, they showed that there is a
single new inequality �I3322� which is inequivalent to CHSH. They also found a family of facet
inequalities INN22 of the N setting local polytope, but for N�3 it is not known if there are other
inequalities. The vertices of the no-signaling polytope for two settings and any number of out-
comes have been characterized by Barrett et al.,16 while Jones and Masanes studied the reversed
case: an arbitrary number of settings with two outcomes.19

Not much is known about inequalities allowing nonlocal resources. In 2003 Toner and Bacon
found inequalities allowing one bit of communication for the case of two and three settings.20

They showed that the correlations from measurements on any quantum state satisfy those inequali-

TABLE I. Main results about Bell inequalities with and without nonlocal resources. We consider only the case of binary
outcomes. N is the number of settings. The last line represents the vertices of the no-signaling polytope. The first column
is almost empty since, for two settings, any no-signaling correlation can be generated with a PR box. The question marks
mean that it is not known if there are more of these inequalities. For N=3, we are quite confident that M3322 is the only
inequality for one use of a PR box, though we could not prove it rigorously.

Resource N=2 N=3 N�4

lhv CHSH �Ref. 17� CHSH+I3322 �Ref. 13� CHSH+ �INN22�N�3+ ?? �Ref. 13�
PR-box … M3322 �Ref. 11� M3322+ ??

1 bit … �Ref. 3� ??

PRN−1 … �Ref. 11� MNN22 �this paper� + ??

No-signaling PR �Ref. 16� PR+ PR3 �Ref. 19� PR+ �PRN�N�4 �Ref. 19�
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ties. In the present paper we introduced a family of N-input NLMs ��PRN�N�3�, which are a
generalization of the well-known PR box. These NLMs can be derived from Bell inequalities in
the same way than the PR box is derived from the CHSH inequality. Then, we presented a new
family of inequalities ��MNN22�N�3� allowing one use of PRN.

For N=3, we get an inequality which cannot be violated with a single PR box. This inequality,
presented in a previous work,11 is however violated by some nonmaximally entangled state of two
qubits. Here, we checked numerically that no states of two qubits violates M4422 and M5522, which
suggests that these states could be simulated with two PR boxes, or even a PR3 box. However
such model has still not been found.
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APPENDIX A

Since �M3322�PR3=0.5, PR3 cannot be simulated with a single PR box. In this Appendix, we
show how to construct a PR3 with 2 PR boxes.

Alice and Bob each receive a trit. For each value of the trit they input one bit in each PR box.
The strategy is the following:

x x1 x2

0 0 0

1 0 1

2 1 0

y y1 y2

0 0 0

1 1 0

2 0 1

, �A1�

where x ,y denote the settings, and xi ,yi are the binary inputs into PR-box number i. Finally, Alice
and Bob output the sum �modulo 2� of both outputs of the PR boxes. See Fig. 4. Intuitively the
strategy works as follows. The first machine introduces an anticorrelation of the outputs for the
pair of settings x=1,y=2. The second PR box does the same for x=2,y=1. A nice way to show
that this strategy works is by computing the parity of the outputs for each pair of settings. So, we
compute a parity matrix P by multiplying Alice strategy by the transpose of Bob’s strategy

P = SASB
† = �0 0

0 1

1 0
��0 1 0

0 0 1
� = �0 0 0

0 0 1

0 1 0
� . �A2�

Note that matrix P has the same structure as the correlation terms of I3322. So, Alice and Bob’s
outputs are identical when a 1 appears in the inequality and different when �1 is in the inequality.

FIG. 4. A PR3 with two PR’s. The inputs of each PR, x1,2 and y1,2, are bits. For each ternary input x�y�, there is a
combination of x1,2�y1,2�. Finally, the output on each side is the sum �modulo 2� of the two binary outputs of the PR boxes.
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This construction is easily generalized to N settings. Since INN22 has N−1 correlation terms
equal to �1, one simply uses a PR box to anticorrelate the outcomes for each of those terms. Thus
it can be shown that a PRN NLM is constructed with N−1 PR-boxes.

APPENDIX B

We find four classes of nonlocal vertices of the three-setting, two-outcome no-signaling poly-
tope

S1 =

x x x

x x x x

x x x 0

x x 0 x

, S2 =

x x 0

0 0 0 0

x x x 0

x x 0 0

, �B1�

S3 =

x x 0

x x x 0

x x x 0

x x 0 0

, S4 =

x x x

x x x x

x x x x

x x 0 x

, �B2�

where x= 1 � 2 . Class S1 corresponds to strategies with a PR3. They violate maximally I3322, i.e., up
to 1. Classes S2−S4 are strategies which can be obtained with a PR box. In S2, Alice and Bob have
a deterministic output for one of their setting; in S3, only Alice �or Bob� has a deterministic setting;
in S4, no one outputs deterministic values.

There are 192 vertices in class 1, 288 in class 2, 576 in class 3, and 288 in class 4. All
strategies in the same class violate the same number of CHSH inequalities and the same number
of I3322 inequalities. These numbers are summarized in the table below. For each class of vertices,
the number of CHSH and I3322 inequalities violated is given:

Class CHSH I3322

S1 6 18

S2 1 8

S3 2 12

S4 4 24

.

APPENDIX C

This Appendix is divided in two parts. In the first part, it is shown that inequality

MNN22 �

− �N − 1� 0 0 ¯ 0 0

− �N − 1� 1 1 1 ¯ 1 1

− �N − 2� 1 1 1 ¯ 1 − 1

− �N − 3� 1 1 1 ¯ − 1 0

� � �
− 1 1 1 − 1 ¯ 0 0

0 1 − 1 0 ¯ 0 0

� 0

cannot be violated by strategies using �at most� one PRN−1. In the second part, we show that,
for N�5, inequality MNN22 is tight, i.e., it is a facet of the polytope containing all strategies
that use �at most� one PRN−1. We conjecture that this is also true for any number of settings N.
To motivate our conjecture we show that there are 2N deterministic strategies lying on the
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�d−1�-dimensional hyperplane, where d=N�N+2� is the dimension of the probability space.
Part 1. We start with a Lemma.
Lemma 1. Let us define the two inequalities

C1
N �

− �N − 2� 0 0 ¯ 0 0

0 0 0 0 ¯ 0 0

− �N − 2� 1 1 1 ¯ 1 0

− �N − 3� 1 1 1 ¯ − 1 0

� � �
− 1 1 1 − 1 ¯ 0 0

0 1 − 1 0 ¯ 0 0

� 0,

C2
N �

− �N − 2� 0 0 ¯ 0 0

− �N − 2� 1 0 1 ¯ 1 1

− �N − 3� 1 0 1 ¯ 1 − 1

− �N − 4� 1 0 1 ¯ − 1 0

� � �
0 1 0 − 1 ¯ 0 0

0 0 0 0 ¯ 0 0

� 0.

Let S be a strategy with N settings for each of the two partners. S is in a probability space of
dimension N�N+2�. If S violates inequality MNN22, then S also violates both inequalities C1

N and
C2

N.
Proof. S violates MNN22, i.e.,

− �N − 1�P�A0� − 	
k=0

N−2

�N − k − 1�P�Bk� + 	
k=0

N−1

P�AkB0� + 	
m=1

N−1 �� 	
k=0

N−m−1

P�AkBm�� − P�AN−mBm��
� 0. �C1�

According to the no-signaling condition, we have

P�A0� � P�A0B0� , �C2�

�N − 1�P�B0� � 	
k=1

N−1

P�AkB0� , �C3�

P�AN−1B1� � 0. �C4�

Inserting these relations into �C1� we get

− �N − 2�P�A0� − 	
k=1

N−2

�N − k − 1�P�Bk� + 	
k=0

N−2

P�AkB1� + 	
m=2

N−1 �� 	
k=0

N−m−1

P�AkBm�� − P�AN−mBm��
� 0,

which means S violates inequality C1
N.

Again from to the no-signaling condition, we have

P�A0� � P�A0BN−1� , �C5�
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P�Bj� � P�A1Bj� ∀ j � �0,N − 1� , �C6�

P�A1BN−1� � 0, �C7�

which inserted into �C1� gives

− �N − 2�P�A0� − 	
k=0

N−3

�N − k − 2�P�Bk� + 	
k=0

N−2

P�A0Bk� + 	
k=2

N−1

P�AkB0�

+ 	
m=1

N−3 �� 	
k=2

N−m−1

P�AkBm�� − P�AN−mBm�� − P�A2BN−2� � 0,

which means S violates inequality C2
N.

This completes the proof.
Part 2. For N�5, we checked numerically that all strategies using at most one PRN−1 form a

subspace of dimension d−1, where d=N�N+2� is the dimension of the probability space. This
shows that inequality MNN22 is tight. We conjecture that this is also the case for any number of
settings N. Below we show that there are 2N deterministic strategies on the hyperplane MNN22

=0, which strongly supports our conjecture.
First we note that there are eight local strategies on the M3322 facet.

0 1 1

1 0 1 1

0 0 0 0

0 0 0 0

0 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

.

�C8�

Obviously the marginals fix entirely a deterministic strategy. Then it is clear that if a three-setting
strategy

S =

A0 A1 A2

B0

B1 ¯

B2

. �C9�

is on the facet M3322, then both �four settings� strategies

S� =

A0 A1 A2 0

0 0 0 0 0

B0 0

B1 ¯ 0

B2 0

, �C10�
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S� =

A0 A1 A2 1

B0 �0

B1 ¯ �1

B2 �2

0 0 0 0 0

, �C11�

are on the facet M4422. The notation � j for some correlation coefficients means that their value
depends on Bob’s marginal. Indeed, all these strategies are extremal since they are deterministic.

Then the argument is extended to the next case: for each of the 16 strategies �constructed
above� which lie on M4422, there are two strategies on M5522. Thus there are 2N deterministic
strategies on MNN22. Note that 2N�N�N+2� for N�6. In this case the number of local strategies
on the hyperplane MNN22=0 is larger than the dimension of the probability space. This suggests
that MNN22 is a facet of the polytope of all strategies using at most one PRN−1.
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We define the Weyl algebra suitable to represent the quantization postulate for
one-dimensional systems whose configuration space is semibounded. It consists of
a group �V���=exp�−i�q� ,��R� of unitary operators and a semigroup �U��� ,�
�0� of nonunitary isometries. We show that the spectrum ��q� is a half-line
�x0 , � �, with an arbitrary x0�−�, and that the irreducible representations of the
Weyl algebra with the same x0 are equivalent. We also consider the case when the
semigroup of translations is substituted with a semigroup of partial isometries of
index 1 �particle confined to a segment of unit length�. The uniqueness of the
irreducible representations of the related Weyl algebra is proved also for this case
by exploiting the result for the half-line. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2363256�

I. INTRODUCTION

In quantum mechanics the momentum �p� and position �q� operators obey the Heisenberg
commutation relation

�p,q� = − i �1�

which holds for a dense domain D of vectors where both pq and qp are defined. Since the
spectrum of q is the range of positions accessible to the system, for unconstrained systems p and
q can be represented in L2�−� , � � as the operators

qf = xf Dq = �f: xf � L2� , �2�

pf = − if� Dp = �f: f absolutely continuous, f� � L2� . �3�

This representation is not unique: for example also p̃= p+h�q� and q̃=q obey Eq. �1�.
The self-adjoint operators p, q in Eqs. �2� and �3� generate two strongly continuous groups of

unitary operators U���=exp�−i�p� and V���=exp�−i�q���i ,� j �R�,

U��1�U��2� = U��1 + �2� U�0� = I, lim
�→0

��U��� − I�f � = 0, �4�

V��1�V��2� = V��1 + �2� V�0� = I, lim
�→0

��V��� − I�f � = 0, �5�

such that
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U���f = f�x − ��, V���f = exp�− i�x�f�x� , �6�

which obey the following multiplication law:

U���V��� = exp�i���V���U��� . �7�

Equation �7� is referred to as the Weyl form of the commutation relations. A set of operators U���,
V��� which form two strongly continuous groups and obey Eq. �7� generate the Weyl algebra W�.
von Neumann proved1 that the irreducible representations of W� are unitarily equivalent. Hence,
they are equivalent to the representation given in Eqs. �2� and �3� �Schrödinger representation�
which is easily seen to be irreducible.

In this paper we prove a similar result when the spectrum ��q� of q is bounded from below:
��q�� �x :x�x0�. This occurs, for example, when the Hilbert space H of the system is L2�0, � �.
While the self-adjoint operator q generates a group V��� of unitary operators, the momentum
operator p=−i� /�x does not possess self-adjoint extensions.2,3 Only the right translations U��� are
isometric operators and constitute a continuous semigroup: Eq. �4� only holds for �1 ,�2�0, while
Eqs. �5� and �7� still hold. Left translations are represented by the operators U†��� ,��0, which
do not conserve the norm of vectors. The �U†���� operators are properly a semigroup of contrac-
tions ��U†���x � � �x � �.

The relation of U��� with its adjoint U†��� is

U†���U��� = I, U���U†��� = E�, �8�

where E� is the projection onto H�=U���H. The algebra W� is replaced by the algebra W+

generated by the positive translations, their adjoints and the unitary operators V���. The multipli-
cation law between U†��� and V��� is found by taking the adjoint of Eq. �7�,

U†���V��� = exp�− i���V���U†��� . �9�

We will prove that, given an irreducible representation of the algebra W+, either all the
operators U��� are unitary, H�=H and E�= I for any � and W+ can be extended to the Weyl
algebra W� by defining U���=U†�−�� for ��0, or the spectrum of the generator q of the group
�V���� is a half line �x :x�x0�. In this latter case the irreducible representations of W+ with the
same lower bound for the spectrum ��q� are proved to be unitarily equivalent. As a consequence
the Schrödinger representation of W+ in L2�x0 , � �,

U���f = f�x − ����x − ��, V���f = exp�− i�x�f�x� , �10�

which is irreducible �see below� is essentially unique.
Our approach is based on the construction, in Sec. IV, of a Hilbert space K where a Weyl

algebra W�= �UK��� ,VK��� ,� ,��R� is defined starting from the algebra W+ defined in H.
K can be seen as a direct sum H � H, and the algebra W+ is recovered from W� by projecting
onto H. For example, if H=L2�0, � �, then K=L2�−� , � �.

The representation of W� in K is proved to be irreducible if the representation of W+ in H is
irreducible, and equivalent representations of W� give rise to equivalent representations of W+.
We will rely on the property of irreducible representations of *algebras that the only bounded
operators commuting with the operators of the *algebra are multiples of the identity operator.3

In this framework, whereas the definition of the group VK��� is immediate by a simple
doubling of the group V���, the passage from a semigroup U��� to a unitary group UK���, such
that the Weyl condition, Eq. �7�, is satisfied depends on the existence of a family �R��� ,��0� of
operators which fulfill conditions, given in detail in Sec. V, implying that the UK���’s are a group
and that with the VK���’s they obey Eq. �7�.

The passage from a semigroup of isometries to a group of unitary operators in a larger space
is not new. Cooper4 first showed that a Hilbert space H where a semigroup of isometries is defined
can be imbedded in a space K where a group of unitary operators exists whose components in the
original space are the semigroup of isometries. His work relies on the use of the generator of the
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semigroup and the definition of a homeomorphic and isometric mapping from L2�0, � � to H.
Instead, our approach is global in that we use the operators U���, V��� directly, and show that the
construction of W� is reduced to the proof that a single operator R��0� exists, subject to appro-
priate conditions. This operator is shown to exist in Sec. VI, where we also give an explicit
expression for it.

Later, building on an inspiring work by Sz.-Nagy,5,6 who proved that any continuous one-
parameter semigroup of contractions �T��� ,��0� in H can be dilated into a continuous unitary
group in a space K�H, Foiaş and Gehér7 showed that two continuous semigroups of contractions
�U��� ,V��� ,� ,��0� obeying Eq. �7� can be simultaneously dilated into two continuous groups
of unitary operators satisfying the Weyl condition for any � ,��R �see also Ref. 8, where the
proof is somewhat simplified�. The construction of Sz.-Nagy relies on a theorem on positive
definite operator valued functions on a group, and Foiaş and Gehér show that the procedure of
Sz.-Nagy can be iterated for any two semigroups of contractions �U��� ,V��� ,� ,��0� satisfying
the Weyl form of the commutation relations in such a way that Eq. �7� still holds. Though
Sz.-Nagy’s technique is very elegant, we believe our construction of K and of the unitary group
�UK���� is more intuitive and nearer to the physicists’ approach to the problem.

Concerning the irreducible representations of W+, Cooper does not address the problem of the
representation of this algebra, while Foiaş and Gehér do not consider the problem of the irreduc-
ible representations of W+. Although a lot of work has been made about the Heisenberg commu-
tation relations �see Ref. 9, for example, and Ref. 10, where representations of the commutation
relations intermediate between Heisenberg’s and Weyl’s are explored�, as far as we know the proof
presented in the paper is the first proof that all the irreducible representations of the algebra W+

with the same lower bound for the spectrum of q are unitarily equivalent. This is the ultimate
reason why the use of the Schrödinger representation for systems with semibounded configuration
space is not arbitrary.14

As a by-product of the aforementioned result, in Secs. VIII and IX we will also consider the
representations of the algebra W1 generated by a semigroup of partial isometries �U����, U�1�
=0, their adjoints and the operators V���, which obey the composition law Eq. �7�. We will
associate to a representation of W1 in a Hilbert space H1 a representation of W+ in a Hilbert space
H� �n=1

� Hn ,Hn=H1, and will derive the uniqueness of the irreducible representations of W1

from that of the irreducible representations of W+.
We aimed at writing a self-contained paper. This is why we did not refrain from giving space

to some preliminary details and from writing expanded versions of the proofs of our statements in
Secs. V and VI.

II. GENERAL PROPERTIES

Let H be a Hilbert space, �V��� ,��R� a strongly continuous group of unitary operators,
�U��� ,��0� a strongly continuous semigroup of isometries which obey the Weyl condition Eq.
�7�. We assume there is no Hilbert subspace invariant under all of them and the adjoints U†���.

The U��� operators obey U†���U���= I. The operators E�=U���U†��� are orthogonal pro-
jections: E�

† =E�=E�
2 . Hence, the operators U†��� are contractions: �U†���x�2� �x�2. The U†���’s

too are a continuous semigroup. Indeed, the composition law is seen to hold by taking the adjoint
of Eq. �4�. Moreover, we have

0 � �U†���x − x�2 � 2�x�2 − �x,U���x� − �U���x,x� ,

which shows that

lim
�→0

�U†���x − x�2 = 0.

The semigroup condition implies strong continuity of U†��� for any �.
The semigroup property fixes the composition law for U†��� and U���. We have

U†���U��� = U†�� − ��, U†���U��� = U�� − �� � � � , �11�
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U���U†��� = U�� − ��E� = E�U�� − �� � � � , �12�

U���U†��� = E�U†�� − �� = U†�� − ��E� � � � . �13�

From the above equations we get

E�U��� = U��� � � � , �14�

E�U��� = U���E�−� � 	 � , �15�

E�U†��� = U†���E�+�. �16�

The projections �E�� are strongly continuous:

�E�x − E�x� = �U����U†��� − U†����x + �U��� − U����U†���x� � ��U†��� − U†����x� + ��U���

− U����U†���x� →
�→�

0.

For the projections �E�� we have

E�E�+� = E�+� = E�+�E� � � 0, �17�

since E�E�+�=U����U†���U����U���U†��+��=E�+�. Taking the adjoint one gets the latter of
Eqs. �17�. Hence, E�−E� ,���, is a projection. Also, since U���E�=E�+�U���, from Eqs. �16�
and �17� we get

U���E�U†��� = E�+�, �18�

U†���E�U��� = E�−� � � � . �19�

The projections E� either are constant, E�= I ∀��0, or are a strictly decreasing family of
operators. Indeed, if E�=E�+
 and 0	��
 we have

E� − E�+� = − �E�+� − E�+
� .

Since both E�−E�+� and E�+�−E�+
 are positive operators, we find E�+�=E� ,��
. Equations
�18� and �19� then imply that E� is periodic with any period ��
, so E�= I∀�. In this case the
operators U��� are unitary, the semigroup can be extended to a group by the obvious definition
U���=U†�−�� for �	0 and we retrieve the Weyl algebra W� which is the object of von Neu-
mann’s theorem. The case of interest to us is when the E�’s are strictly decreasing and the
operators U†��� are genuine contractions.

In this latter case, the decreasing sequence of positive operators E� has a strong limit E�,
which is the projection onto the closed subspace H�=��H�. Indeed

E�E�x = lim
�→+�

E�E�x = lim
�→+�

E�x = E�x .

Because of Eq. �15�, E� commutes with U���, and, being self-adjoint, with U†���. In addition,
Eqs. �7� and �9� imply that V��� and E� commute

�V���,E�� = 0 �20�

and consequently E� commutes with V���. In conclusion, since H� is invariant under the opera-
tors U��� ,U†��� ,V���, in an irreducible representation of W+ for which E�� I for ��0 we must
have H�= �0�. In this case lim�→+�E�x=0 and the projections �P��= �I−E�� are a resolution of the
identity, as can be verified taking into account the properties of the E�’s. In the following we will
only consider the case H�= �0�.
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III. THE SPECTRAL RESOLUTION OF q

In this section we prove that, if H hosts an irreducible representation of the algebra W+, then
the spectrum ��q� of the generator q of the group �V��� ,��R� is �x0 , � �. To this purpose, we
compare the operators V��� with the operators V����=	0

�exp�−i�
�dP
. According to Stone’s
theorem3 these latter operators constitute a group of unitary operators, due to the properties of the
spectral family �P�� .V�−��V���� commutes with the operators V��� �see Eq. �20�� as well as with
the operators U��� and U†���. Indeed, we have

U���V�− ��V���� = exp�− i���V�− ��U���V���� = V�− ��exp�− i���

0

�

exp�− i�
�dP�+
U���

= V�− ��

�

�

exp�− i�
�dP
U��� = V�− ��V����U��� ,

where we used Eqs. �14� and �15�. Similarly, V�−��V���� commutes with U†���. Since the rep-
resentation of W+ is irreducible, we have V����=V���f���. Since both V��� and V���� are groups
of unitary operators we must have f���=exp�ix0��. Hence,

V��� = exp�− ix0��

0

�

exp�− i�
�dP
 = 

x0

�

exp�− i�
�dP
−x0
, �21�

which shows that the generator q has the spectral representation

q = 

0

�

�x0 + 
�dP
 = x0I + 

0

�


dP
 = 

x0

�


dF
 �22�

with F
= P
−x0
.

The above equation shows that for an irreducible representation of W+ �with E�� I for any
positive �� the situation is completely different from the case of the algebra W�. For W+ the
generator of the group �V���� is expressed in terms of the projections E�, and the irreducibility of
the representation depends only on the irreducibility with respect to the translations U��� and
U†���. For an irreducible representation no proper subspace H� may be invariant with respect to
the translations, since this would entail invariance also under the group �V����. Conversely, if H
is irreducible under translations, the group �exp�−i�q��, with q given by Eq. �22�, together with
the translations U��� and U†���, yields an irreducible representation in H of the algebra W+. The
comparison between the representation of W� in H1=L2�−� , � �, Eq. �6�, and that of W+ in
H2=L2�x0 , � � �Eq. �10�� clarifies the situation. In H1 any subspace

HA� = �f: the Fourier transform of f has support in a measurable set A�

is invariant under translations11 �but not under the operators V����. Conversely, H2 has no sub-
space invariant with respect to �right and left� translations. Indeed, should such a subspace H�
exist, given f �H�, for any 
, �, and

g = �E
 − E
+��f = ��
,
+��f ,

also g�H�. For any function h�H2 � H� �also invariant�, any interval  and any positive � we
have �h ,U����f�=0. This implies h=0 a.e., which means H�=H2.

The most useful consequence of Eq. �22� is that we can limit our attention to the case that the
generator q of V��� has spectrum �0, � �. In fact, when ��q�= �x0 , � � we can write q=x0I
+q0 ,q0=	0

�dP
, with ��q0�= �0, � �. The �inequivalent� representations of the algebra W+ with
V���=exp�−i�q� or V����=exp�−iq0�� are either both reducible or both irreducible, since they are
related by the equation V���=exp�−ix0��V����.
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IV. CONSTRUCTION OF K

In this section we start with an irreducible representation of the algebra W+ in a Hilbert space
H, with V���=exp�−i�q� ,q=	0

�
dP
. We show how a Hilbert space K containing H can be
introduced in such a way that the representation of W+ in H induces a representation of W� in K.

Let K be the vector space of pairs �x ,y�, x ,y�H, with scalar product ��x ,y� , �u ,v��= �x ,u�
+ �y ,v�. K is a Hilbert space, and H can be identified with either of the subspaces

K1 = ��x,0�: x � H�, K2 = ��0,y�: y � H� ,

so that K1=K � K2 can be seen as the direct sum H � H.
As hinted in Sec. I, we mimic the obvious procedure by which a representation of W+ in

H=L2�0, � � yields a representation of the Weyl algebra in K=L2�−� , � �=H � H according to
the following equations:

UK����f ,g� = �U���f + R���g,U†���g� � � 0, �23a�

UK����f ,g� = �U†�− ��f ,U�− ��g + R†�− ��f� � � 0, �23b�

VK����f ,g� = �V���f ,V�− ��g� , �23c�

where the operators U���, V��� are defined in Eq. �10� and the “cut plus reflection” operator R���
is defined as

R���f = ��� − x�f�� − x� .

It is obvious that the above defined operators UK and VK realize the Schrödinger representation of
the Weyl algebra in L2�−� , � �.

We want to translate Eqs. �23� into similar equations which yield a representation of the Weyl
algebra in K=H � H starting from a representation of W+ in H. In matrix form the operators
UK��� and VK��� �as in Eqs. �23�� can be written as

UK��� = �U��� R���
0 U†���

� � � 0, UK��� = U†�− �� � � 0, �24�

VK��� = �V��� 0

0 V�− ��
� . �25�

The operators VK��� are obviously a continuous group of unitary operators in K. They can be
represented in terms of the generator qK=	−�

� �dG� as VK���=exp�−iqK��, with

G� = �����P�K1 + K2� + ��− ��E−�K2, G0 = K2, �26�

K1 and K2 being the projections onto K1 and K2, respectively. On the other hand, in order to
ensure the group composition law �Eq. �4�� for the UK��� operators as well as the Weyl compo-
sition law �Eq. �7�� we need to define an appropriate operator R���. Note that we allow for a
nonself-adjoint R���, although the operator R��� presented above for L2�0, � � is self-adjoint.

Actually, R˜���=exp�i��R��� would work as well. As a matter of fact, it can be shown that the
operator R��� such that the UK���’s obey the defining Eqs. �4� and �7� is unique up to a constant
phase factor.

V. TOWARD THE CONSTRUCTION OF THE OPERATORS R„�…

We report the conditions which the operators R��� have to obey in order that Eq. �4� be
satisfied, together with the composition law which forces them. The arguments � ,�i will be meant
to be non-negative, with �1��2,
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UK���UK�− �� = I ⇒ R���R†��� = P� �27a�
R���U��� = 0, �27b�

UK�− ��UK��� = I ⇒ R†���R��� = P� �28a�
U†���R��� = 0, �28b�

UK��1�UK��2� = UK��1 + �2� ⇒ U��1�R��2� + R��1�U†��2� = R��1 + �2� , �29�

UK��2�UK��1� = UK��1 + �2� ⇒ U��2�R��1� + R��2�U†��1� = R��1 + �2� , �30�

UK��2�UK�− �1� = UK��2 − �1� ⇒ �R��2�R†��1� = U��2 − �1�P�1
�31a�

R��2�U��1� = R��2 − �1� �31b�
U†��2�R†��1� = 0, �31c�

UK�− �2�UK��1� = UK��1 − �2� ⇒ �R†��2�R��1� = U��2 − �1�P�1
�32a�

U†��2�R��1� = 0 �32b�
R†��2�U��1� = R†��2 − �1� . �32c�

The relations imposed by the remaining composition laws follow from the above equations.
The equations reported above are not independent. In fact, we have:
Theorem 1: Eqs. (27a) and (28a) and either of Eqs. (29), (30) imply all the other equations

reported above.
Proof: Assume Eq. �29�; nothing changes if Eq. �30� is assumed instead. By multiplying Eq.

�27a� by U†��� and U��� at left and right, respectively, we find R†���U���=0, which implies Eq.
�28b�. Similarly, Eq. �27b� is obtained by multiplying Eq. �28a� by U†��� �left� and U��� �right�.
Equations �31c� and �32b� are a consequence. By right multiplying Eq. �29� by U��2� we find
R��1�=R��1+�2�U��2�, which is equivalent to Eq. �31b�. By left multiplying Eq. �29� by U†��1�
we get R��2�=U†��1�R��1+�2�, which is equivalent to Eq. �32c�. Using this equation in the form
R†��1�=R†��2�U��2−�1� we find Eq. �31a�. Using Eq. �31b� in the form R��1�=R��2�U��2

−�1� we find Eq. �32a�.
To prove Eq. �30� first note that R���=R���P�= P�R��� as a consequence of Eqs. �27b� and

�28b�, respectively. This implies, by Eq. �31a�, R��1+�2�P�1
=U��2�R��1�. Hence, by Eq. �31b�,

U��2�R��1� + R��2�U†��1� = U��2�R��1� + R��1 + �2�U��1�U†��1�

= U��2�R��1� − R��1 + �2�P�1
+ R��1 + �2� = R��1 + �2� . �

For later use we prove the following Lemma.
Lemma 1: If an operator R��0� is such that, if ���0,

R��0�R†��0� = P�0
, �33a�

R†��0�R��0� = P�0
, �33b�

R��0�U��� = U†���R��0� , �33c�

then

R��0�U��0� = 0, �34a�
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R��0�P�0
= R��0� , �34b�

P�0
R��0� = R��0� , �34c�

P�0−�R��0� = R��0�E�, �34d�

R��0�P� = U��0 − ��R��0�U��0 − �� . �34e�

Proof: Eq. �34a� follows from:

U†��0�R†��0�R��0�U��0� = U†��0�P�0
U��0� = 0.

Equations �34b� and �34c� are a consequence. Equation �34d� follows from:

R��0�E� = R��0�P�0
E� = �R��0�U�����U†���R†��0��R��0� = U†���R��0�R†��0�U���R��0�

= U†���P�0
U���R��0� = P�0−�R��0� .

Equation �34e� follows by writing:

R��0�P� = E�0−�R��0� = U��0 − ���U†��0 − ��R��0�� = U��0 − ��R��0�U��0 − �� . �

We are now in the position to show that a family of operators R��� ,��0, exists which satisfy
Eqs. �27a�, �28a�, and �29� �and consequently the rest of the equations required by the group
composition laws� provided an operator R��0� exists which satisfies the hypotheses of Lemma 1.
First we prove this statement, and later we exhibit a suitable �nonunique� operator R��0�.

The proof is achieved through the following steps.
Theorem 2: Let R��� satisfy the hypotheses of Lemma 1. For ��� the operators R���

�R���U��−�� obey Eqs. (27a) and (28a). Given �2��1�0,�1+�2��, Eq. (29) is satisfied.
Theorem 3: If R��0� satisfies the hypotheses of Lemma 1 and R�n�0� is defined recursively as

follows:

R�n�0� � U��n − 1��0�R��0� + R��n − 1��0�U†��0� ,

then also R�n�0� obeys the hypotheses of Lemma 1. Moreover,

R�n�0� = U�k�0�R��n − k��0� + R�k�0�U†��n − k��0� k � �n − 1� . �35�

Theorem 4: For any ��0, choose n such that n�0��. The operators R���
�R�n�0�U�n�0−�� are independent of n and satisfy Eqs. (27a), (28a), and (29).

Proof of Theorem 2:

R†���R��� = U†�� − ��R†���R���U�� − �� = U†�� − ��P�U�� − �� = P�.

Equation �27a� is proved in a similar way. Equation �29� is verified using Eq. �34d�,

U��1�R��2� + R��1�U†��2� = U��1�U†�� − �2�R��� + R���U�� − �1�U†��2�

= E�1
U†�� − �1 − �2�R��� + R���E�−�1

U�� − �1 − �2�

= �E�1
+ P�1

�R��1 + �2� = R��1 + �2� . �

Proof of Theorem 3: The proof is by induction. If Eqs. �33� hold true up to k=n, then by Eq.
�34a� we find
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�U�n�0�R��0� + R�n�0�U†��0��†�U�n�0�R��0� + R�n�0�U†��0�� = R†��0�R��0�

+ U��0�R†�n�0�R�n�0�U†��0� = P�0
+ P�n+1��0

E�0
= P�n+1��0

.

In a similar way Eq. �33a� is proved. In order to prove Eq. �35�, suppose it is true for k�n. Then

R��n + 1��0� � U�n�0�R��0� + R�n�0�U†��0� = U�k�0�U��n − k��0�R��0� + �U�k�0�R��n − k��0�

+ R�k�0�U†��n − k��0��U†��0� = U�k�0��U��n − k��0�R��0� + R��n − k��0�U†��0��

+ R�k�0�U†��n − k + 1��0� = U�k�0�R��n − k + 1��0� + R�k�0�U†��n − k + 1��0� ,

which shows that also R��n+1��0� can be seen as the result of the composition law Eq. �35� if this
is true for k�n.

We now prove Eq. �33c� for R�n�0�. For a ���0 we have

R�n�0�U��� = �U��n − 1��0�R��0� + R��n − 1��0�U†��0��U��� = R��n − 1��0�U�� − �0�

= U†�� − �0�R��n − 1��0� = U†����U��0�R��n − 1��0� + R��0�U†��n − 1��0��

= U†���R�n�0� ,

where we used the just proved independence of R�n�0� on the way it is composed, and the
inductive hypothesis that Eqs. �33� are satisfied up to k=n−1. For �	�0, writing R�n�0�
=U��n−1��0�R��0�+R��n−1��0�U†��0� we find

D � U†���R�n�0� − R�n�0�U��� = U��n − 1��0 − ��R��0� + R��n − 1��0�U���U†��0�

− U��n − 1��0�U†���R��0� − R��n − 1��0�U†��0 − �� = U��n − 1��0 − ��P�R��0�

− R��n − 1��0�P�U†��0 − �� .

Using Eq. �34e� for R��n−1��0�P�, D can be written as

D = U��n − 1��0 − ���P�R��0� − R��0�E�0−�� = 0

since the term in bracket vanishes by Eq. �34d�. �

Proof of Theorem 4: Taking into account Eq. �34a� we have

R��n + 1��0�U��n + 1��0 − �� = �U�n�0�R��0� + R�n�0�U†��0��U��n + 1��0 − ��

= R�n�0�U�n�0 − �� .

Thus the operators R��� are uniquely defined, due to Theorem 3. Due to Lemma 1 and Theorem
2 they obey Eqs. �27a�, �28a�, and �29�. �

We stress the gist of our argument to prove the existence of a family �R��� ,��0� such that
all the Eqs. from �27� to �32� are satisfied: it suffices to exhibit an operator which satisfies the
hypotheses of Lemma 1 for a definite value, say 2�, to conclude that the operators R��� con-
structed according to Theorem 4 are uniquely defined and, by Theorem 2, satisfy Eqs. �27a�, �28a�,
and �29�. By Theorem 1, all the Eqs. from �27� to �32� are then satisfied, and consequently the
group composition laws for the operators UK��� are satisfied.

We note that in the language of Ref. 6 the operators UK��� are a minimal dilation of U���.
Indeed, ∀x�H=K1K, U���x=K1UK���x, and the vectors UK���x, ��R, x�K1K, span the
whole space K. In fact, for any �=−��0, K2UK���x=R†���x. Since P�=R†���R��� we see that
the vectors R†���x are dense in H, hence, �K2UK���x� is dense in K2K. Our construction, how-
ever, is completely different from that of Ref. 6, and much more direct.

Now we consider the conditions imposed to the operators R��� by the requirement that Eq. �7�
holds for UK��� ,VK���. These conditions are

R���V�− ��U��� = 0, �36a�
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R���V�− ��R†��� = exp�i���V���P�. �36b�

They are equivalent to the single equation

V�− ��R���V�− �� = exp�i���R��� . �37�

Indeed, by multiplying Eq. �36b� by V�−�� �left� and by R��� �right� we have Eq. �37�, which can
be transformed back into Eq. �36b� by multiplication by V��� �left� and R†��� �right�. Equation
�36a� is obtained from Eq. �37� by multiplying by V��� �left� and by U��� �right�. It is useful to
note that Eq. �37� holds for any � provided it holds for R��0�. Indeed, we have:

Theorem 5: If an operator R��0� obeys Eq. (37), then ∀��0 the operators R��� constructed
according to Theorem 4 obey Eq. (37).

Proof: By induction, using Eqs. �7� and �9�, we check that R�n�0� defined in Theorem 3 obeys
Eq. �37�. Likewise, the operators R����R�n�0�U�n�0−�� verify Eq. �37�. �

VI. CONSTRUCTION OF THE OPERATOR R„2�…

Here again we mimic the situation which occurs in H=L2�0, � �. There in the basis en

=exp�inx� /�2� of L2�0,2��= P2�H= � Hn, with Hn the subspaces generated by the vectors en,
we have R�2��en=e−n. The subspaces H are connected to H0 by the equation

V�n�Q0 = QnV�n� , �38�

where the Qn’s are the projections onto the subspaces Hn.
In order to introduce a similar definition for R�2��, first note that R�2��=R�2��P2� needs to

be defined only in H2�= P2�H. Next, we resort to a well known lemma to Stone’s theorem12

which states that, given a strongly continuous one-parameter periodic group of unitary operators

U˜���, U˜���=U˜��+2��, U˜�0�= I, then the operators

Qn = 

0

2�

exp�− in��U˜���
d�

2�
�39�

are orthogonal projections such that �−�
� Qn= I. The inverse of Eq. �39� is

U˜��� = �
−�

�

Qnexp�in�� . �40�

The operators

U˜��� = U���P2�−� + P�U†�2� − �� 0 � � � 2� U˜�� + 2n�� = U˜��� �41�

verify the hypotheses of the lemma. By Eq. �7� they satisfy

V�n�U˜��� = exp�− in��U˜���V�n� �42�

and by Eq. �15�,

E���U˜��� = P2�U��� � � 2� . �43�

By integrating Eq. �42� over �0,2�� we get Eq. �38�, which implies that V�n� is an invertible
isometry from H0=Q0H2�=Q0H to Hn=QnH2�=QnH.

We define an operator R�2�� in each Hn in the following way: if xn=V�n�x0 ,x0�H0,

R�2��xn = R�2��V�n�x0 = V�− n�x0. �44�

R�2�� satisfies the hypotheses of Lemma 1 and Eq. �37�.
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Equations �33a� and �33b� are obvious, since R�2�� is self-adjoint and R2�2��= P2�. To verify
Eq. �33c� note that Eq. �44� is equivalent to

R�2��V�n� = V�− n�R�2�� , �45a�

R�2��Q0 = Q0 = Q0R�2�� . �45b�

As a consequence, by Eq. �38� we get

R�2��Qn = Q−nR�2�� �46�

and by Eqs. �40� and �46�,

R�2��U˜��� = U˜†���R�2�� . �47�

Hence, using Eq. �43�, for ��2� we have

R�2��U��� = R�2��P2�U��� = R�2��E�U˜��� = P2�−�R�2��U˜��� = P2�−�U˜†���R�2��

= U†���P2�R�2�� = U†���R�2�� ,

which proves Eq. �33c�. The hypotheses of Lemma 1 are satisfied.
Finally, we prove that R�2�� obeys Eq. �37�. By Eqs. �34b�, �34d� we have

R�2��V�− �� = R�2��

0

�

exp�i���dP� = 

0

2�

exp�i���d�R�2��P�� = 

0

2�

exp�i���dE2�−�R�2��

= 

0

2�

exp�i��2� − ���dP�R�2�� = exp�2�i��

0

�

exp�− i���dP�R�2��

= exp�2�i��V���R�2�� ,

which is equivalent to Eq. �37�.
In conclusion, the operators R��� constructed according to the procedure outlined in the

previous section, starting from the operator R�2�� defined in Eq. �44�, obey equations from Eqs.
�27� to �32� and �37�. In this way we construct a representation of the Weyl algebra in the space
K starting from a representation of W+ in the space H.

We wish to stress that an explicit expression of the operators R��� can be given in terms of P�,
U���, U†���. Let

R˜��� = 

0

�/2

U�� − 2��dP� + 

�/2

�

U†�2� − ��dP�. �48�

The �strong� convergence of the above integrals can be proved along the lines of Ref. 4. The

R˜���’s are self-adjoint and their role as cut plus reflection operators is apparent when viewed in
L2�0, � �. We show that they satisfy Eqs. �27a�, �28a�, �29�, and �37�.

To this purpose, note the following identity:

P�dP� = ��� − ��dP�, �49�

which implies
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R˜���R˜†��� = R˜†���R˜���

= 

0

�/2

U�� − 2��dP�

0

�/2

dP�U†�� − 2�� + 

�/2

�

U†�2� − ��dP�

�/2

�

dP�U�2� − ��

= 

0

�/2

U�� − 2��dP�U†�� − 2�� + 

�/2

�

U†�2� − ��dP�U�2� − �� .

By Eqs. �15� and �16�, noting that P�−2� dP�−�=0 due to Eq. �49�, we find

R˜���R˜†��� = 

0

�/2

E�−2�dP�−� + 

�/2

�

dP�−� = P�.

As for Eq. �29�, by recalling Eqs. �11�–�13� and �16� we have �����:

U���R˜��� + R˜���U†��� = 

0

�/2

U�� + � − 2��dP� + 

�/2

��+��/2

U�� + � − 2��E2�−�dP�

+ 

��+��/2

�

U†�2� − � − ��E2�−�dP� + 

0

�

U†�2� + � − ��dP�+�.

Using Eq. �49� again and passing to a new variable �=�+� in the last integral we conclude

U���R˜��� + R˜���U†��� = 

0

��+��/2

U�� + � − 2��dP� + 

��+��/2

�

U†�2� − � − ��dP� = R˜�� + �� .

We prove Eq. �37� in the form V���R˜���=exp�−i���R˜���V�−��. We note that, as a conse-
quence of Eq. �49�,

V���dP� = 

0

�

exp�− i���dP�dP� = exp�− i���dP�. �50�

By Eqs. �7� and �9�

V���R˜��� = exp�− i���

0

�/2

U�� − 2��exp�2i���dP� + 

�/2

�

U†�2� − ��exp�2i���dP��V��� .

Equation �50� implies

exp�2i���V���dP� = exp�i���dP� = V�− ��dP�,

which proves that Eq. �37� is satisfied.

VII. RELATION BETWEEN THE REPRESENTATIONS IN H AND IN K

In this section we prove that:

�a� if the representation of the algebra W+ in H is irreducible, then the representation UK ,VK in
K is irreducible too; and

�b� if two representations of W+ in H generate equivalent representations of W� in K, then the
representations of W+ are equivalent.

As a consequence, given two irreducible representations of W+, by �a� von Neumann’s Theo-
rem ensures that the representations of the Weyl algebra are equivalent. Hence, by �b� the repre-
sentations of W+ are equivalent. In conclusion, the irreducible representations of W+ are unique,
up to equivalence.

In order to prove �a�, let T be a bounded operator in K=H � H,
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T = �A B

C D
� , �51�

which commutes with the operators UK��� ,VK��� generated by an irreducible representation of
W+ in H. Since these operators are unitary in K, also the adjoint T† commutes with them, so we
may assume T to be self-adjoint

A = A†, D = D†, B = C†. �52�

We will prove T=�I, which implies that the representation in K is irreducible.
Commutation of T with VK��� implies commutation with the projections G� given in Eq. �26�,

in particular with G0. This implies B=C=0 and

AV��� = V���A, DV��� = V���D . �53�

Moreover, for ��0 we find

TUK��� = UK���T ⇒ �AU��� = U���A �54a�
DU†��� = U†���D �54b�
AR��� = R���D . �54c�

Equations �53�, �54a�, and �54b�, together with the irreducibility of the representation of W+,
imply A=�I ,D=�I. Finally, Eq. �54c� implies �=�, and consequently T=�I. The representation
in K is irreducible.

To prove �b�, assume we have two equivalent representations of the Weyl algebra in K,
�VK

�1� ,UK
�1�� and �VK

�2� ,UK
�2��, induced by two representations �U1 ,V1� , �U2 ,V2� in H. Let S be the

unitary operator such that

SUK
�1� = UK

�2�S, SVK
�1� = VK

�2�S . �55�

We represent S as

S = �A B

C D
� . �56�

The latter of Eqs. �55� implies SG�
�1�=G�

�2�S for any �. In particular, for �=0 we find

B = C = 0, �57�

which implies

AV1 = V2A, DV1
† = V2

†D �58�

and, by the unitarity of S,

AA† = A†A = DD† = D†D = IH. �59�

The former of Eqs. �55� for ��0 implies AU1=U2A , DU1
†=U2

†D , AR1=R2D. Recalling Eqs. �58�
and �59� we can conclude

U2 = AU1A†, V2 = AV1A†. �60�

The representations �U1 ,V1� and �U2 ,V2� are equivalent.

VIII. THE PARTICLE ON A SEGMENT: THE WEYL ALGEBRA

In this section we define the Weyl algebra appropriate to describe a particle on a segment and
in the next section we shall prove also in this case the analogous of the von Neumann Theorem.
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The algebra we are looking for differs from the algebra for the half-line W+ since right
translations do not vanish only in an interval, say 0��	1, and therefore they are no longer
isometries: the isometric condition U†���U���= I for the algebra W+ is now replaced by the
assumption that U†���U��� is a projection. The defining equations of the algebra, that we shall
denote by W1, are

U�0� = I; U��� � 0 for 0 � � 	 1; U�1� = 0, �61�

U��1�U��2� = U��1 + �2� , �62�

P1−� � U†���U��� = P1−�
2 , �63�

V��1�V��2� = V��1 + �2�, �1,�2 � R, V�0� = I , �64�

U���V��� = exp�i���V���U��� , �65�

where the U���’s and the unitary operators V��� are assumed strongly continuous.
Equations �61�–�63� define what is called a semigroup of partial isometries of index 1; in

particular Eq. �63� implies

U���U†���U��� = U��� . �66�

In fact, U†U being a projection, for any v�H , v=v1+v2 with U†Uv1=v1 ,U†Uv2=0, we have
Uv2=0, hence, UU†Uv=Uv1=Uv1+Uv2=Uv. As a consequence �UU†�2=UU†, i.e., also UU† is
a projection

E� � U���U†��� = E�
2 . �67�

The projections E� commute among themselves. If �1��2, thanks to Eqs. �62� and �66�,

E�1
E�2

= U��1�U†��1�U��1�U��2 − �1�U†��2� = E�2
= E�2

† = E�2
E�1

and similarly

P�1
P�2

= P�2
P�1

= P�1
��1 � �2� .

Moreover, the E�’s commute with the P�’s: since �E�P��2=E�P� and �E�P� � �1, E�P� is a
projection, hence, E�P�= �E�P��†= P�E�.

The algebra W1 could have been realized as the restriction of the algebra W+ to the interval
0���1 by the substitutions U���→P1U��� ,V���→P1V��� , P1 being the projection defined at
the end of Sec. II. In this case, in addition to Eqs. �61�–�66�, we have also E�+ P��U���U†���
+U†�1−��U�1−��= I. This equation obviously holds for the algebra of truncated shifts in
L2�0,1�. It can be proved13 that, conversely, if the representation of the algebra U1 generated by
U��� ,U†��� is faithful and irreducible, the equation E�+ P�= I follows from the defining Eqs.
�61�–�63�. Thus, with these hypotheses, the algebra U1 is equivalent to the algebra of truncated
shifts in L2�0,1�. For the sake of completeness we outline the proof.

The operator X����E�+ P� is a projection which obeys the following equations:

U���X��� = X�� + ��U��� � + � � 1

U��� � + � � 1,
�68�

X���U��� = U��� for � � � . �69�

As a consequence, the operator Z�	0
1X���d�=Z† commutes with the operators U���, U†���

and in an irreducible representation is a multiple of the identity. Actually, Z= I since, if Z���
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�	0
�X���d�, from Eqs. �68� and �69� we have Z���U���=�U���. Since �U��� � �0 for �	1 we

find �Z��� � ��. On the other hand, �Z��� � �	0
� �X��� �d�=�, hence, �Z��� � =� for �	1. Since

lim�→1 �Z���−Z�1� � =0, we conclude �Z�1� � =1. Thus Z= I, i.e., 	0
1�I−X����d�=0. Since I

−X����0 we conclude X���= I.
In the next section we show that the algebra W1 can always be considered as the restriction of

the algebra W+ to the interval 0���1.

IX. THE PARTICLE ON A SEGMENT: THE VON NEUMANN THEOREM

By the same arguments of Sec. III it can be shown that in an irreducible representation of W1

the spectrum ��q� of the generator q of the group �V��� ,��R� is a segment �x0 ,x0+1� and that,
although representations with different values of x0 are inequivalent, we can always limit our
attention to the case ��q�= �0,1�. Moreover, as for the algebra W+, the irreducibility of W1 entails
the irreducibility of U1.

Suppose now that H1 hosts a representation of W1 and consider the space

H � �
n=1

�

Hn, Hn = H1 x � H = �x1,x2, ¯ ,xn, ¯ �: �
n

�xn�2 	 � �70�

and in H define �0���1,��0,��R�,

UH���x � �U���x1,U†�1 − ��x1 + U���x2, ¯ ,U†�1 − ��xn−1 + U���xn, ¯ � , �71a�

UH�n� � �UH�1��n, UH�� = n + �� � UH�n�UH��� = UH���UH�n� , �71b�

VH���x � �V���x1,e−i�V���x2 ¯ ,e−i�n−1��V���xn, ¯ � . �71c�

Using the properties of the U���’s, and in particular X���= I �which ensures that the UH���’s are
isometries�, it is easy to verify that �UH��� ,VH���� generate the algebra W+.

As for the case of the half-line we show that if the representation of the algebra W1 in H1 is
irreducible, then the representation of �UH��� ,VH�� in H is irreducible too. Let T be a bounded
operator in H commuting with the operators UH��� ,UH

† ��� �hence with VH���� and let Tn,m

� PnTPm, where Pn is the projection on Hn �Pn=UH�n−1�UH
† �n−1�−UH�n�UH

† �n��. Since T
commutes with the projections Pn, only the “diagonal” elements Tn,n are different from zero.
Moreover commutation with UH�1� implies that Tn,n is independent of n,

UH�1�Tx = �0,T1,1x1,T2,2x2, ¯ � = TUH�1�x = �0,T2,2x1,T3,3x2, ¯ � .

Now, by imposing commutation with UH��� ,UH
† ��� �0���1�, we conclude that T=�I.

Finally, we prove that all the irreducible representations of W1 are equivalent. Let
�U1��� ,V1���� , �U2��� ,V2���� be two irreducible representations of W1 in H1 and �UH

�1���� ,VH
�1�

����� , �UH
�2���� ,VH

�2����� the induced irreducible representations of W+ in H, according to Eqs.
�71�. Since we have proved that all the irreducible representations of W+ are equivalent, there
exists a unitary operator S such that

SUH
�1���� = UH

�2����S, SVH
�1���� = VH

�2����S . �72�

Since U1�0�=U2�0�= I, U1�1�=U2�1�=0, S commutes with the projections Pn and, as before, only
the diagonal element Sn� PnSPn are different from zero and independent of n. It is straightforward
to conclude that S1U1���=U2���S1, with S1 unitary in H1.
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We calculate the Green’s functions for the particle-vortex system, for two anyons
on a plane with and without a harmonic regulator and in a uniform magnetic field.
These Green’s functions which describe scattering or bound states �depending on
the specific potential in each case� are obtained exactly using an algebraic method
related to the SO�2,1� Lie group. From these Green’s functions we obtain the
corresponding wave functions and for the bound states we also find the energy
spectra. © 2006 American Institute of Physics. �DOI: 10.1063/1.2363259�

I. INTRODUCTION

In this paper we study exactly solvable problems for one or two particles on a plane bound or
not by external potentials by constructing algebraically their Green’s functions. These Green’s
functions describe scattering or bound states, depending on the kind of interaction in each situa-
tion. The algebraic method used here is based on the Schwinger representation1 for the inverse of
an operator which is an integral representation involving the exponential of the operator. The
operator is identified with the Hamiltonian of the problem which can be written as a linear
combination of the generators of a Lie algebra. In particular, we are interested in the so�2,1� Lie
algebra which describe some well known problems as the harmonic oscillator, the hydrogen atom,
and the Morse potential.2–16 Some other problems with more involved potentials can also be
described by this algebra �see, for instance Refs. 17–32�. Once the Hamiltonian is written in terms
of the SO�2,1� generators one can use Baker–Campbell–Hausdorff �BCH� formulas33–35 to split
the exponential of the Hamiltonian into a convenient product of the so�2,1� generators. BCH
formulas are also used to change the order of the product of the exponentials of generators to
simplify the computation of the Green’s functions. This method was used to describe the Dirac
electron in a Coulomb potential9 and the discussion presented here is a nonrelativistic version
modified to include other potentials.16,27 As we will see, for the simplest cases the Hamiltonian is
identified simply with just one so�2,1� generator. In these particular cases just one BCH formula is
used.

The two-dimensional problems we are going to discuss here have been studied before in Refs.
36–48 with other approaches, although for instance, in Ref. 43 the so�2,1� symmetry was invoked
to construct the wave function for the particle-vortex system. The problem of particles moving on
a plane is relevant to the studies of condensed matter systems as the fractional quantum Hall effect
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and anyonic superconductivity,49–57 supersymmetry,58,59 and fault-tolerant quantum computing.60

Free anyon Green’s functions have been recently used to study correlation functions of anyon
interferometry.61

This paper is organized as follows: In Sec. II we discuss the particle-vortex system and its
so�2,1� dynamical algebra and in Sec. III we use it to obtain its Green’s function algebraically.
From this Green’s function we obtain the wave functions and find a continuous energy spectrum.
In Sec. IV, we discuss the two anyon problem on a plane within a harmonic well and obtain its
Green’s function using the above mentioned algebraic method related to the SO�2,1� Lie group.
From this Green’s function we obtain the corresponding wave functions and the discrete energy
spectrum. Then, in Sec. V, we obtain the Green’s function for the problem of two anyons without
any regulator from the results of the previous section. We also show that this problem is equivalent
to the particle-vortex system, if one identifies the quantized flux of the particle-vortex with the
anyon statistical parameter. Finally, in Sec. VI we obtain exactly the Green’s function for two
anyons in a uniform magnetic field and the corresponding wave functions and the discrete energy
spectrum. In Sec. VII we present our conclusions.

II. THE PARTICLE-VORTEX SYSTEM

Let us start the discussion with the particle-magnetic vortex which is defined to be a two-
dimensional system characterized by the Schrödinger equation

i �
��

�t
= H� . �1�

The Hamiltonian of interest is given by

H =
1

2M
�p� −

e

c
A��2

�2�

with an externally prescribed vector potential

A� =
�

2�r2e3 ∧ r� , �3�

where e3 is a constant unit vector perpendicular to the plane in which r� lies.
The vector potential gives rise to a magnetic field

B = � ∧ A� = ��2�r�� �4�

with flux �=�B�r��d2r.
A simple example is given by the motion of a charged particle around a magnetic flux line

when the force motion parallel to the flux line is ignored. If one solves the two-dimensional
problem one may apply a boost along the direction of the flux line and get the description of the
three-dimensional system. The experimental setup was considered in the Bohm–Aharonov
effect.36

Clearly, the system is invariant under two-dimensional rotations whose generator is given by
the conserved angular momentum

J = r� ∧ p� , �5�

where p� is the canonical momentum and J generates the O�2� group of rotations in a plane. Also,
since H does not have an explicit time dependence it is a constant of motion. In principle we
expect to have two more constants of motion. In an interesting paper Jackiw43 constructed them in
explicit form as
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D = tH −
1

4
�r� · p� + p� · r�� , �6�

K = − t2H + 2tD +
Mr2

2
, �7�

where the fact that r� ·A� =0 in Eq. �6� was used.
It may be noted that D and K are generators of scale and conformal transformations which

change the Lagrangian by a total time derivative. One can verify that

�H,D� = − i � H , �8�

�D,K� = − i � K , �9�

�K,H� = + 2i � D , �10�

which are the commutation relations of the generators of the algebra associated with the group
SO�2,1�.

Since J commutes with H, D, and K the symmetry group of the system is the direct product
SO�2��SO�2,1�. In the following we consider the construction of the Green’s function for the
particle vortex system by making use of the BCH formulas for the exponentials of the generators
of the algebra of SO�2,1� group. Since we separate the time variable we only need the form of the
generators at t=0.

The Green’s function associated with the particle-vortex system satisfies the equation

�i �
�

�t
− H�G�r�,t;r��,t�� = − ��r� − r�����t − t�� . �11�

Since H is time independent one may write

G�r�,t;r��,t�� =
1

2�
� dEGE�r�,r���e−iE�t−t��/� �12�

and get

�− H + E�GE�r�,r��� = ��r� − r��� . �13�

Then, using the Schwinger1 representation for the inverse of an operator one can write the Green’s
function as

GE�r�,r��� =
i

�
�

0

�

dsei�E−H+i��s/���r� − r��� , �14�

where s is usually known as the Schwinger’s proper time and �	0 is included to assure the
convergence of the above integral. Let us now calculate explicitly this Green’s function algebra-
ically.

III. GREEN’S FUNCTION FOR THE PARTICLE-VORTEX SYSTEM

Since H is invariant under rotations we may use the result

��r� − r��� =
1

r
��r − r����
 − 
�� , �15�

where
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��
 − 
�� =
1

2�
	
m

eim�
−
��, �16�

with integer m. Thus if we write

GE�r�,r��� =
1

2�
	
m

eim�
−
��GEm�r,r�� �17�

then the one-dimensional Green’s function is

GEm�r,r�� =
i

�r�
�

0

�

ei�E−Hm�s/���r − r��ds , �18�

where

Hm = −
�2

2M
� �2

�r2 +
1

r

�

�r
−

�m − ��2

r2 � �19�

is the radial Hamiltonian dependent on the integer angular momentum quantum number m and �
is the quantized flux

� =
e�

2� � c
. �20�

In the following we use the set of differential operators given by:

T1 =
�2

�r2 +
1

r

�

�r
−

�m − ��2

r2 , �21�

T2 = −
i

2
�r

�

�r
+ 1� , �22�

T3 = −
1

8
r2, �23�

which can be easily related to the ones defined in the previous section. These operators satisfy the
so�2,1� Lie algebra

�T1,T2� = − iT1, �24�

�T2,T3� = − iT3, �25�

�T3,T1� = + iT2, �26�

as well as the operators H, K, and D. Next we note the following representation for the delta
function:

��r − r�� =
M

4�ir��−1�
−i�

i�

e�1/4�qM�r2−r�2�r�dq , �27�

where r, r��0, and the arbitrary parameter � will be fixed later. Thus the one-dimensional Green’s
function can be written as
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GEm�r,r�� =
M

4� � r���
0

�

eiEs/�ds�
−i�

i�

e−�qM/4�r�2
e�is�/2M�T1e−2MqT3r�dq . �28�

Further, one can show that the following identity holds:

e�is�/2M�T1e−2MqT3 = e−i3T3e−i2T2e−i1T1, �29�

where

e2/2 =
s�

2i
�q +

2i

s�
� �30�

− i3 = − 2M
 2i

s�
+

4

�s � �2�q +
2i

s�
�� . �31�

The proof of the above relations is given, e.g., in Refs. 16 and 27 where 1 is also calculated.
Note however that the value of 1 is not needed here since we will choose � such that

T1r� = 0, �32�

which implies

� = �m − �� . �33�

In fact the condition �32� also allows �=−�m−��, but these negative values lead to unphysical
solutions as will be seen in the following. Next, it is easy to verify that

e−ibT2f�r� = e−b/2f�re−b/2� �34�

so that

GEm�r,r�� =
Mr�

4� � r���
0

�

ds exp iEs

�
�exp iM

2s�
r2��

−i�

i�

dq exp−
qM

4
r�2�

� exp� Mr2

�s � �2�q +
2i

s�
��� s�

2i
�q +

2i

s�
��−�1+��

. �35�

Expanding the exponential as a power series and doing the integrations by repeatedly using
the result

1

2�i
�

−i�

i�

dq

exp−
qM

4
r�2�

�q +
2i

s�
��+1 =

exp iM

2s�
r�2��−

M

4
r�2��

��� + 1�
, �36�

we find that the one-dimensional Green’s function can be written as

GEm�r,r�� = −
M

�
�

0

� ds

s
eiEs/�exp iM

2s�
�r2 + r�2��e−�i�/2��J��Mrr�

s�
� , �37�

where we have used the definition of Bessel functions

J��z� = � z

2
��

	
n

�− z2/4�n

n ! ��n + � + 1�
. �38�
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Next using the result62

�
0

�

dze−�zJ��2��z�J��2��z� =
1

�
e−�1/����2+�2�I��2��

�
� �39�

valid for R���	−1 and identifying I��z�= i−�J��iz� we get

GEm�r,r�� = �
0

�

dE�
UE�

m �r�UE�
m �r��

E − E� + i�
, �40�

where

UE�
m �r� =

�M

�
J���2ME�

r

�
� . �41�

Substituting this result into Eq. �17� we get

GE�r�,r��� = �
0

�

dE�
1

E − E� + i�
	
m

eim�
−
��

2�
UE�

m �r�UE�
m �r�� . �42�

Note that Eq. �40� is the spectral representation of the one-dimensional Green’s function �18�,
UE�

m �r� are the corresponding one dimensional wave functions and the energy spectrum is continu-
ous for energy E	0 and angular momentum m, in agreement with Ref. 43. Note that this should
be the case since the Hamiltonian �19� corresponds to a particle in a nonconfining potential of a
centrifugal barrier 1 /r2.

It is interesting to note that the above calculation leading to the wave functions �41� is rather
different from Jackiw’s43 group theoretical discussion. To trace the main differences first we
mention that he considered the operators

R =
1

2
�1

a
K + aH� , �43�

S =
1

2
�1

a
K − aH� , �44�

where a is a fixed parameter with time dimensionality. The operators R, S, and D also close the
so�2,1� Lie algebra, analogous to Eqs. �8�–�10�. Then, he calculated the eigenstates of R. Note that
for any fixed time, as for instance t=0, the operator

R =
1

2
�1

a

Mr2

2
+ aH� �45�

has a discrete spectrum because of the presence of the bounding potential r2. Next, using further
group theoretical methods he expressed the continuous eigenstates of H in terms of the eigenstates
of R. This procedure can be understood as an infrared cutoff regularization of the continuous
eigenstates of H. Our results are in agreement with those present by Jackiw.43 In the next section
we are going to discuss the problem of anyons in a harmonic well which, as we will discuss, can
be interpreted as the particle-vortex problem with a harmonic regulator.

Before we move to the next section, let us comment that the Green’s function �42� can also be
written in terms of associated Laguerre’s polynomials Ln

��x�. Using the relation
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J��2�xz� = e−z�xz��/2	
n=0

�
znLn

��x�
��n + � + 1�

�46�

valid for �	−1. Identifying x=Mr2 /�, z=E /2� we get

UE�
m �r� =

�M

�
e−E�/2��E�Mr2

2�2 ��/2

	
n=0

� � E�

2�
�n Ln

��Mr2

�
�

��n + � + 1�
, �47�

so that

GE�r�,r��� =
M

2��
�

0

� dE�e−E�/�

E − E� + i�
	
m

eim�
−
���E�Mrr�

2�2 ��

� 	
n=0

� � E�

2�
�n Ln

��Mr2

�
�

��n + � + 1�	�=0

� � E�

2�
�� L�

��Mr�2

�
�

��� + � + 1�
. �48�

Further, one can also perform the integration in E� so that this Green’s function can be
rewritten as

GE�r�,r��� = −
M

2��
e−E/�	

m

eim�
−
���Mrr�

�
��

	
n=0

�

	
�=0

�

Ln
��Mr2

�
�L�

��Mr�2

�
�

� �− E�n+�+� ��n + � + � + 1�
��n + � + 1���� + � + 1�

��− n − � − �,−
E

�
� , �49�

where ��a ,x� is the incomplete gamma function.

IV. TWO ANYONS IN A HARMONIC WELL

Anyons are quasiparticles that obey fractional statistics, i.e., an intermediate statistics between
the Bose–Einstein and Fermi–Dirac cases.37–41 The boson and fermion wave functions differ by
the interchange of two or more identical particles. The bosonic wave function is completely
symmetric while the fermionic is completely antisymmetric. Then, the two-particle wave functions
before and after the interchange of two particles are related by

��r�2,r�1� = ei���r�1,r�2� , �50�

where � determines the statistics of the system. If �=0 �modulo 2�� the system obeys Bose–
Einstein �BE� statistics and if �=� �modulo 2�� the system obeys Fermi–Dirac �FD� statistics. In
three spatial dimensions these are the only allowed possibilities. However, if the particles are
restricted to live in two spatial dimensions � can assume any real value interpolating the BE and
FD statistics.

Considering the path integral formulation of quantum mechanics, the transition amplitude
between two states is proportional to exp�iS / � �, where S is the classical action. Then, to repro-
duce the above behavior we consider that a two anyon system �any �� can be represented by a
conventional Lagrangean L plus a topological term57

L → L� = L +
�

�

̇ , �51�

where 
 is the relative angle between r�1 and r�2. This way, turning around one particle in respect
to the other by an angle 
=� we obtain a phase
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exp i�

�
�

0

�

d
� = exp�i��� , �52�

where

� =
�

�
, �53�

is the statistical parameter of the two anyon system.
Here, in this section we consider a two anyon system characterized by the coordinates r�1 and

r�2 moving on a plane subjected to a harmonic regulator V�r�1 ,r�2�= 1
2m0�2�r1

2+r2
2�, where m0 is the

mass of each anyon. The use of a potential as a regulator is not mandatory but it is usual in the
literature41 since it simplifies the discussion once the spectrum becomes discrete. An alternative
regulator procedure is to use boundary conditions as considered in Arovas et al.40 to calculate the
second virial coefficient of the two anyon system. Nonetheless, it is also possible to avoid the use
of any regulator and consider the case of “free” anyons, as will be discussed in the next section.
This situation is in fact related to the case of the magnetic vortex discussed in the previous section.
The connection of these cases will be discussed in the next section.

Introducing the center of mass and relative coordinates R� =r�1+r�2, and r�=r�1−r�2= �r ,
�, re-
spectively, the Lagrangean for the two anyon system with a harmonic regulator can be written as

L� =
1

2
MṘ2 +

1

2
M�2R2 +

1

2
��ṙ2 + r2
̇2 + �2r2� + � � 
̇ , �54�

where M =2m0, �=m0 /2. The motion of the center of mass is described by the first part of the
Lagrangean corresponding to a two-dimensional harmonic motion that does not contribute to the
statistical behavior. From now on we will only consider the relative motion of the two anyon
system. The canonical momenta are then given by

p
 =
�L

�
̇
= �r2
̇ + � � ; pr = �ṙ , �55�

and the Hamiltonian of the relative motion of the two particles is

H = −
�2

2�
�1

r

�

�r
r

�

�r
+

1

r2� �

�

− i��2� +

1

2
��2r2. �56�

Here we are going to construct the Green’s function for this problem using an algebraic
method associated with the dynamical SO�2,1� Lie group.16,27 The technique used here is a gen-
eralization of the one presented in the previous section, and we will recover that results in the
following sections. The Green’s functions for this problem satisfies the equation

�H − E�GE�r,r�,
,
�� =
��r − r��

r
��
 − 
�� , �57�

where GE�r� ,r����GE�r ,r� ,
 ,
��. Decomposing this Green’s function as we did in the previous
section, Eq. �17�, one can obtain the radial Hamiltonian Hr for this problem and we write the
resolvent operator as

�r = �Hr − E� = g0 + g1T1�r� + g3T3�r� , �58�

where the operators Ti are given by Eqs. �21�–�23� which satisfy the so�2,1� Lie algebra Eqs.
�24�–�26� and the parameters gi are given by

g0 = − E, g1 = −
�2

2�
, g3 = − 4��2. �59�
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Note that Hr=Hm+ 1
2��2r2, with Hm given by Eq. �19�, if we further identify � with �. Using

the Schwinger1 representation as before we find

GE�r,r�� = i�
0

�

ds exp�− is�g0 + g1T1�r� + g3T3�r� − i���
��r − r��

r
. �60�

In addition to Eq. �29�, here we need another BCH formula

exp− i
s

�
�g1T1 + g3T3�� = exp�− iaT3�exp�− ibT2�exp�− icT1� , �61�

where the parameters a, b, c, and k are given by

a = 2
k

g1
tan k

s

�
, b = 2 ln�cosk

s

�
�, c =

g1

k
tan k

s

�
, k =�g1g3

2
. �62�

Following Ref. 16 we find

exp− i
s

�
�g1T1 + g3T3����r − r��

r
= −

ik exp�2i���
2g1sin�ks/ � �

r�exp−
ik

4g1
�r�2 + r2�cot k

s

�
�

�I��−
kr�r

2ig1sin�ks/ � �� �63�

with � given by

� = �m − �� . �64�

As before, �=−�m−�� would imply non-normalizable solutions and we will not consider this case.
Then we obtain the Green’s function as

GE�r,r�� = −
i

�
�

0

�

ds exp− i
s

�
�g0 − i��� ik exp�2i���

2g1sin�ks/ � �
�rr���1/2�

� exp−
ik

4g1
�r2 + r�2�cot�ks/ � ��I�� − krr�

2ig1sin�ks/ � �� , �65�

where I� is the modified Bessel function of order �. This Bessel function is related to the associ-
ated Laguerre’s polynomials Ln

� by

I��2
�y�yz

1 − z
�exp− z

y� + y

1 − z
� = �y�yz��/2�1 − z�	

n=0

+�
n!

��n + � + 1�
Ln

��y�Ln
��y��zn. �66�

Then integrating over the proper time s one finds for the Green’s function of two anyons on a
plane with a harmonic regulator

GE�r,r�,
,
�� = −
1

�
	

m=−�

+�

e2�i�m−�����

�
�1+�m−��

�rr���m−��

� eim�
−
��	
n=0

� n ! Ln
�m−�����

�
r2�Ln

�m−�����

�
�r��2�

��n + �m − �� + 1�

� exp−
��

2�
�r2 + r�2�� 1

E − � ��2n + �m − �� + 1�
. �67�

112103-9 Scattering and bound state Green’s functions J. Math. Phys. 47, 112103 �2006�

                                                                                                                                    



If one writes the spectral representation for the Green’s function as �Note that the obtained
Green’s function is real up to a complex phase i� �m−��. Then we are using a nonstandard
definition for the spectral decomposition to preserve this nontrivial phase which is related to the
statistics of the system.�

G�r,r�,
,
�� = 	
n=0

�

	
m=−�

�
�n,m�r,
��n,m�r�,
��

E − En,m
, �68�

so that the wave functions are given by its residues

�n,m
� �r,
� =

i
��

e�i�m−��eim
���

�
��1/2��1+�m−���

r�m−��

�n!Ln
�m−�����

�
r2�

���n + �m − �� + 1�
exp−

��

2�
r2�

�69�

and the poles correspond to the energy spectrum

Enm
� = � ��2n + �m − �� + 1� , �70�

where n=0,1 ,2 ,3 , . . . is the radial quantum number. This spectrum corresponds to that of a
two-dimensional harmonic oscillator with angular momentum �m−��.

If we had started with particles identified with bosons then the allowed angular momentum
values would be m=0, ±2, ±4, . . .. Had we started with fermions then the values of the angular
momentum should be m= ±1, ±3, ±5, . . .. The quantized energy levels are periodic functions of
the statistical parameter � with period 2, although the energy of a single state with quantum
numbers �n ,m� is not periodic. These conclusions are in agreement with Refs. 40 and 41 where the
second virial coefficient for anyons has been calculated without a harmonic regulator, but consid-
ering boundary conditions on the wave functions.

V. TWO “FREE” ANYONS

In this section we are going to obtain the Green’s function for two anyons as discussed above
but without any regulator. Here, the relative motion Hamiltonian after separating the angular
variable 
 is

H = −
�2

2M
� d2

dr2 +
1

r

d

r
−

1

r2 �m − ��2� , �71�

where m=0,1 ,2 , . . . are again the eigenvalues of the angular momentum and �=� /�. The so�2,1�
Lie algebra here is analogous to the one discussed in the previous section with generators defined
by Eqs. �21�–�23�. Here the resolvent operator is simply

�H − E� = g0 + g1T1�r� , �72�

with g0 and g1 given by Eq. �59� �here g3=0�, so that the radial Green’s function can be written as

G�r,r�� =
i

�
�

0

�

ds exp− i
s

�
�g0 − i���exp− i

s

�
g1T1�1

r
��r − r�� . �73�

It has been shown in Ref. 16 that

exp�icT1�
��r − r��

r
= i�− i��m−�� M

s�
exp iM

2s�
�r2 − r�2��J�m−��� M

s�
rr�� �74�

so that the radial Green’s function is given by
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G�r,r�� = −
M

�
�− i��m−���

0

� ds

s
expi

s

�
�E + i���exp iM

2s�
�r2 − r�2��J�m−��� M

s�
rr�� . �75�

Another way to approach the two anyon system without a regulator potential is to consider the two
anyon system in the harmonic well, Eq. �56�, and take the limit where the regulator vanishes �
→0. This limit corresponds to take k→0 in Eq. �65�, so that the above Green’s function is
reobtained.

This Green’s function can be compared with the one obtained for the particle-vortex system,
Eq. �37�. One can note that they are identical if one identifies the quantized flux �, Eq. �20�, with
the anyon statistical parameter �, Eq. �53�.

VI. TWO ANYONS IN A UNIFORM MAGNETIC FIELD

The Hamiltonian of the relative motion of two anyons in a uniform and constant magnetic
field B is given by42–48

H =
1

2�
�p� +

1

2
��cr
̂ +

��

r

̂�2

, �76�

where �c=eB /mc is the cyclotron frequency, the second term on brackets corresponds to the

physical �external� magnetic vector potential A� =Br
̂ /2 and the third term is the statistical vector
potential. This statistical term can be absorbed in the angular part of the kinetical term that
contributes to the angular momentum of the particles. The radial part of this Hamiltonian can be
written as before as

H = −
�2

2�
�1

r

�

�r
r

�

�r
−

1

r2 �m − ��2� −
m � �c

4
+

1

8
��c

2r2. �77�

The presence of the magnetic field B implies an r-independent term that contributes to the energy
but the form of this Hamiltonian is similar to that of the problem of two anyons in a harmonic
well, discussed in Sec. IV. This fact allows the use of the algebraic method as before to calculate
the Green’s functions. Then the so�2,1� generators that describe the two anyons in a magnetic field
are the ones given by Eqs. �21�–�23�. The resolvent operator is again given by Eq. �58� with the
parameters

g0 = − �E +
1

4
m � �c�, g1 = −

�2

2�
, g3 = − ��c

2. �78�

Following the algebraic method as in Sec. IV with these parameters we find the Green’s function:

GE�r,r�,
,
�� = −
1

�
	

m=−�

+�

e2�i�m−�����c

2�
�1+�m−��

�rr���m−��e−im�
−
��

� 	
n=0

� n ! Ln
�m−�����c

2�
r2�Ln

�m−�����c

2�
�r��2�

��n + �m − �� + 1�

� exp−
��c

4�
�r2 + r�2�� 1

E −
��c

2
�2n + �m − �� + 1 +

m

2
� . �79�

From this Green’s function we obtain the normalized wave functions
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�n,m
� �r,
� =

i
��

ei��m−��e−im
���c

2�
��1/2��1+�m−���

r�m−��

�n!Ln
�m−�����c

2�
r2�

���n + �m − �� + 1�
exp−

��c

4�
r2�

�80�

and the corresponding energy levels

Enm
� =

��c

2
�2n + �m − �� + 1 +

m

2
� . �81�

These energy levels coincide with the Landau levels if the anyon statistical contribution
vanishes �m=�=0�. In particular, the ground state wave function is obtained when one takes m
=n=0,

�0,0
� �r� =

i
��

ei�����c

2�
��1/2��1+�� r�

���1 + ��
exp−

��c

4�
r2� . �82�

VII. CONCLUSIONS

In this paper we have calculated algebraically the Green’s functions for one and two particles
confined on a plane, namely the particle-vortex system and a pair of anyons with and without
external potentials. The external potentials considered were a harmonic well and a uniform mag-
netic field. In these problems we have identified the Hamiltonian operator in each case with the
generators of the SO�2,1� Lie group satisfying the so�2,1� Lie algebra. From these algebraic
properties we obtained all relevant dynamical quantities of each system. This means that these
systems are described by the so�2,1� dynamical algebra.

In particular, we calculated the Green’s function for particle-vortex system and the Green’s
function for a pair of free anyons and found that these Green’s functions are equivalent, once one
identifies the quantized flux � of the particle-vortex system with the anyon statistical parameter �.
These two Green’s functions exhibit respectively the phase factors �−i��m−�� and �−i��m−�� as a
commom signature of fractional statistics for both systems.

We obtained also the Green’s function for the two anyon system in a harmonic well as an
integral representation of Bessel functions, and as a sum of product of Laguerre’s generalized
polynomials. This sum is recognized as the spectral representation of the Green’s function from
which we identify the normalized wave functions and energy spectrum.

It is interesting to note that in the particle-vortex discussion presented by Jackiw,43 he ob-
tained a discrete spectrum of the generator R �our Eq. �45�� of conformal transformations, and
them, by a rotation in operators space he obtain the continuous spectrum calculated by standard
methods to the particle-vortex system. This discrete spectrum is identical to one obtained for
anyons in presence of an harmonic regulator. The eigenfunctions �up to a phase factor� and
eigenvalues of this operator, �48� in Ref. 43 are equivalent to those ones we have obtained for the
two anyon system in a harmonic well.

Regarding the Green’s functions for the two anyon system in a harmonic well and two anyons
in a uniform magnetic field both lead to bound states and we see that they are very similar to each
other, although they differ in the energy spectrum. Charged anyons orbiting in a uniform magnetic
field are equivalent to anyon bound states in the presence of a harmonic well. Note that wave
functions �69� and �80�, obtained from those Green’s functions, are identical if we identify � with
�c /2.

In particular the ground state wave function obtained for two charged particles in a magnetic
field, Eq. �82�, is similar to the two particle wave function used by Laughlin54 to construct his
ansatz for N-particles to describe the quantum Hall effect. In the problem discussed by Laughlin,
there is also a Coulombic interaction which in general could not be disregarded. Then, he sup-
posed that this interaction is infinitely short ranged and that the Landau levels energy is dominant
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so ��c�e2 / l, where l is the magnetic length. Since the particles are separated by some finite
length, this allows one to build an ansatz for the many particle ground state wave function as a
superposition of single particle wave functions

�00
� �rp,q� = ei�� i

����1 + ��
���c

2�
��1/2��1+��

�
p�q

rp,q
� exp�−

��c

4�
	
p�q

rp,q
2 � . �83�

This is essentially the Laughlin’s ansatz for N-particles.54 Note that the interchange of particle
positions adds a phase to the wave function in agreement with Ref. 57.

Let us now consider the excited states for the two anyon system in a uniform magnetic field.
The wave functions �80�, or equivalently �69�, represent the excited states of this system. If we
follow a similar reasoning as the ones that support �83�, as discussed in Refs. 49, 50, and 54, we
can superpose Eq. �80� to obtain an ansatz for the many particle excited state wave function

�n,m
� �r,
� = iei��m−��

�n!
�����n + �m − �� + 1

���c

2�
��1/2��1+�m−���

e−im
�
i�j

rij
�m−��Ln

�m−�����c

2�
rij

2�
�exp−

��c

4�
	
i�j

rij
2� . �84�

This wave function is formally in agreement with the result for many anyons obtained by Dunne
et al.46
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We examine spectra of Dirac operators on compact hyperbolic surfaces. Particular
attention is devoted to symmetry considerations, leading to nontrivial multiplicities
of eigenvalues. The relation to spectra of Maaß-Laplace operators is also exploited.
Our main result is a Selberg trace formula for Dirac operators on hyperbolic
surfaces. © 2006 American Institute of Physics. �DOI: 10.1063/1.2359578�

I. INTRODUCTION

Trace formulae play a prominent role in spectral geometry and in quantum chaos �see, e.g.,
Ref. 2�. In spectral geometry, they relate spectra of certain �pseudo-� differential operators on
manifolds to the geometry of that manifold. The prime example of such a trace formula, the
classical Selberg trace formula,33,19,20 is concerned with the Laplace-Beltrami operator on a hy-
perbolic manifold, i.e., a Riemannian manifold with constant negative sectional curvatures. This
trace formula establishes a connection between the spectrum of the Laplacian and the length
spectrum of closed geodesics on the manifold.

In a semiclassical context spectra of semiclassical operators are related to the periodic orbits
of an associated Hamiltonian flow. In extensions of this procedure to operators acting on sections
in vector bundles over the relevant phase space, it turned out that the Hamiltonian flow does not
provide the entire input on the classical side of the trace formula �see, e.g., Ref. 8�. In particular,
for the Dirac operator on R3, the corresponding classical dynamics are given in terms of skew-
product flows over Hamiltonian flows, with spin precessions as their cocycles. A similar result is
found in the case of a trace formula for the Dirac operator on a graph.7 A microlocal version of a
trace formula for Dirac-type operators on compact manifolds was established in Ref. 31. Very
recently, in the context of quantum ergodicity, Jakobson and Strohmaier23 observed that �the
square of� a Dirac operator on a compact Riemannian manifold is related to the associated frame
flow, which is a geometric analog of the skew-product flows in the semiclassical setting. A
previous approach to quantum ergodicity that uses representation-theoretic lifts for vector bundles
can be found in Ref. 12.

In this paper, our goal is to investigate spectra of Dirac operators on compact hyperbolic
surfaces in a geometric setting. On the way we exploit the well-known relation of the squared
Dirac operator to a Laplacian that contains a coupling to a magnetic field �see, e.g., Ref. 28�. In
particular, we show that spectra of these Maaß-Laplacians, when they correspond to odd weights,
possess multiplicities of at least two. This is a consequence of Kramers’ degeneracy in the spec-
trum of the Dirac operator, which follows from quantum mechanical time reversal invariance. We
further investigate the relation of the Dirac spectrum to a dynamical system that is associated with
the surface in a geometric way. To this end we develop a Selberg trace formula in a classical
approach, i.e., via Green’s functions and point-pair invariants. This complements previous studies
of related questions, which often focus on computations of eta invariants �see, e.g., Ref. 27� and
employ a representation theoretic approach to trace formulae as, e.g., summarized in Ref. 11. The
geometric side of the trace formula for the Dirac operator is primarily determined by the closed
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geodesics on the surface. In addition, we identify traces of the frame flow of the surface and its lift
into the spin structure, which provides suitable phase factors associated with the closed geodesics.
These factors are finally responsible for the differences in the eigenvalue distributions of Dirac and
Laplace-Beltrami operators, respectively.

The paper is organized as follows: In Sec. II we review the definition of a Dirac operator on
a Riemannian manifold and explicitly carry out the constructions in the case of the hyperbolic
plane. Section III then is devoted to an identification of spinor bundles over compact hyperbolic
surfaces via factors of automorphy. We then investigate symmetries of the Dirac operator on a
compact surface and study their influence on the spectrum in Sec. IV. After having introduced
point-pair invariants in Sec. V, we calculate traces of Hilbert-Schmidt operators to arrive at the
desired trace formula in Sec. VI. Finally, in Sec. VII, we discuss some applications.

II. THE DIRAC OPERATOR

A Dirac operator is a first order, elliptic differential operator acting on sections in a spinor
bundle over a Riemannian manifold. For its construction one first needs to supply an orientable,
n-dimensional Riemannian manifold �M ,g� with a spin structure. To this end, let FM be the
SO�n�-principal bundle of oriented orthonormal frames of TM. A Spin�n�-principal bundle Q is
called spin structure on M if there exists a principal-bundle morphism � :Q→FM that is equiva-
riant with respect to the two-fold covering � :Spin�n�→SO�n� �see, e.g., Refs. 15 and 4�. More-
over, in even dimensions n the complexified Clifford algebra Cn

c is isomorphic to M�2n/2 ,C�, i.e.,
the algebra of complex 2n/2�2n/2 matrices. The action of M�2n/2 ,C� on C2n/2

defines the Clifford
module �n. As Spin�n� is contained in Cn

c, �n is also a module for the spin group. This yields the
spin representation � :Spin�n�→Aut��n�, which can be used to associate the spinor bundle S
ªQ���n to a given spin structure.

The definition of the Dirac operator D rests on the canonical connection on Q that is given by
the lift of the Levi-Civita connection on FM. Denoting the space of smooth sections of S by
C��S�, this connection induces a covariant derivative �S :C��S�→C��S � T*M�. One then defines
D=� � � ��S, where � denotes the canonical isomorphism between T*M and TM induced by the
metric g, and � is the Clifford multiplication of a vector field and a smooth section in S.

The space C0
��S� of smooth, compactly supported sections in S can be turned into a pre-Hilbert

space by introducing the inner product,

�	,
�L2 ª �
M

�	�m�,
�m��C2n/2 d��m� ,

where d��m� denotes the volume form on M. The resulting Hilbert space will be denoted by
L2�S�. The Dirac operator D is elliptic and essentially self-adjoint on C0

��S�, thus its spectrum is
real. Moreover, on a compact manifold M the spectrum is discrete.

In the sequel we will focus on compact surfaces of constant negative curvature. Their univer-
sal covering space is the upper half-plane H2

ª ��x ,y��R2 	y�0
 endowed with the Poincaré
metric g=y−2�dx � dx+dy � dy� of constant negative Gaussian curvature K=−1. The group of
orientation-preserving isometries PSL�2,R�=SL�2,R� / �±Id
 acts on H2 via fractional linear trans-
formations,

z � �z =
az + b

cz + d
,

where�= �a b

c d ��SL�2,R�is a representative for an element in PSL�2,R� and z=x+iy is viewed

as a point in H2. Any compact hyperbolic surface can now be represented as  \H2, where
�PSL�2,R� is a discrete, strictly hyperbolic subgroup �a cocompact Fuchsian group of the first
kind�.
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On the simply connected upper half-plane the relevant bundles are trivial, i.e., FH2�H2

�SO�n� and Q�H2�Spin�n�. This allows an immediate construction of the Dirac operator,
which is explicitly given as the matrix-valued operator,

D = i� 0 iy
�

�x
+ y

�

�y
−

1

2

− iy
�

�x
+ y

�

�y
−

1

2
0 ;

see, e.g., also Ref. 28. The operators appearing in the off-diagonals have been introduced by Maaß
and have been further investigated by Roelcke �Refs. 25, 29, and 30�. In fact, they considered the
operators

Kk ª iy
�

�x
+ y

�

�y
+

k

2
,

�k ª iy
�

�x
− y

�

�y
+

k

2
.

It is therefore natural to introduce the weighted Dirac operators,

Dk ª i� 0 Kk−2

− �k 0
� , �2.1�

which reduce to the Dirac operator for k=1. In physical terms the additional parameter k, which
from now on will be called a weight, corresponds to a constant magnetic field on the surface. In
normalized units the field strength is given by

B =
k − 1

2e
. �2.2�

On a compact surface the Dirac quantization condition for the magnetic flux implies that k must be
an integer. Therefore, from now on we will only consider k�Z.

The weighted Dirac operator Dk is closely related to the weighted Maaß-Laplacian,

�k = − Kk−2�k −
k

2
�1 −

k

2
� = y2� �2

�x2 +
�2

�y2� − iky
�

�x
,

since

Dk
2 =�− �k −

k

2
�1 −

k

2
� 0

0 − �k−2 −
k

2
�1 −

k

2
�  . �2.3�

We remark that both the weighted Laplacians and the weighted Dirac operators are elliptic opera-
tors, as their principal symbols do not depend on k.

As yet, we have neither specified spaces of sections in spinor bundles S, nor have we intro-
duced Dirac operators on compact surfaces. It turns out that both purposes can be conveniently
achieved by identifying suitable automorphic forms. We devote the following section to this task.

III. AUTOMORPHIC FORMS

All relevant bundles over a compact surface  \H2 correspond to trivial bundles over H2 �see
Refs. 17 and 18�. More specifically, given the canonical projection p :H2→ \H2 and the vector
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bundle �= �E , \H2 ,� ,V� over the compact surface, its pullback p*��� is trivial, i.e., the total
space is isomorphic to H2�V. Now any covering translation �� extends to a bundle homo-
morphism �̃ on p*���, and this can be written as

�̃�z,v� = „�z,��z,��v… , �3.1�

where � :H2�→GL�V�.
For our purposes it will be useful to consider the subgroup ̄�SL�2,R� that corresponds to

the Fuchsian group �PSL�2,R� via = ̄ / �±Id
. Instead of � one hence considers a function

j :H2�̄→GL�V�, called factor of automorphy. To define the action of �� unambiguously, one

therefore requires a suitable character � of ̄ �multiplier system� depending on the value of j�z ,
−Id�. Based on these observations, sections in � can be obtained from global sections in p*���: any
vector-valued function � :H2→V with ���z�=����j�z ,����z�, called automorphic form, yields a
section in �, and vice versa.

Definition 1: Let �PSL�2,R� be a strictly hyperbolic Fuchsian group, then a multiplier

system of weight k is a unitary character � of ̄ with ��−Id�= �−1�k. A factor of automorphy for the

Maaß-Laplacian of weight k is defined by j��z ,k�ª �cz+d�k/2 / �cz̄+d�k/2 when �= �a b

c d �. Then

� :H2→C is an automorphic form for the Maaß-Laplacian of weight k, if

���z� = ����j��z,k���z�, ∀ � � ̄ .

The space of all such automorphic forms is denoted by L
F� ,k ,��. Similarly, L

C
l� ,k ,�� and

L
L

2� ,k ,�� are the spaces of differentiable and square-integrable automorphic forms, respectively.
In the latter case, integrability is meant with respect to the measure d��z�=dx dy /y2 over a
fundamental domain F�H2 of .

It is well known that �k acting on a �twice differentiable� automorphic form of weight k yields
again an automorphic form of weight k �see Refs. 29, 30, and 19�. We denote the space of all
eigenforms of −�k with eigenvalue � by L

F�� ,k ,��. In case k�2 there exist certain special
eigenvalues that are known explicitly,

� j
�k� =

k − 2j

2
�1 −

k − 2j

2
�, j = 0,1,2, . . . ,� k − 1

2
� , �3.2�

where �x� is the integer part of x�R. For multiplier systems ��1 the eigenvalue �3.2� has a
multiplicity �g−1��k−2j−1�; see Ref. 19; here g�2 is the genus of the closed surface  \H2.

The relations �2.1� and �2.3� now suggest the following definition of automorphic forms for
the weighted Dirac operator.

Definition 2: Let

J��z,k� ª � j��z,k� 0

0 j��z,k − 2�
� .

Then we define the space F� ,k ,�� of automorphic forms for the Dirac operator with weight k to
consist of the functions 	 :H2→�2=C2 that transform as

	��z� = ����J��z,k�	�z�, ∀ � � ̄ . �3.3�

The spaces Cl� ,k ,��, L2� ,k ,�� are defined analogously, and F�� ,k ,�� denotes the eigenspace
of −Dk corresponding to the eigenvalue �.

In order to demonstrate that the weighted Dirac operator Dk maps a differentiable automorphic
form of the type �3.3� to a form of the same type, one has to show that under a covering translation
� the operator Dk behaves as
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Dk � J��z,k�DkJ�
−1�z,k� . �3.4�

This can be done in a straightforward calculation. Hence, the automorphic forms �3.3� represent
sections in spinor bundles over the surface  \H2.

We also note that Dk is essentially self-adjoint on C1� ,k ,��. The proof is practically identical
to the case of the Dirac operator �k=1�, which is well-known �see, e.g., Ref. 15 where also SpinC

connections are considered�. Thus, we conclude that the spectrum of Dk is real and discrete.
We are now able to establish a connection between the eigenforms of the Laplacian and

of the Dirac operator. For this we recall that the spectrum of −�k is bounded from below by
�k /2��1−k /2�.29

Proposition 1: Let 	= ��1

�2
� be an eigenform of −Dk with eigenvalue �, and let �=�2

+ �k /2��1−k /2�. Then �1� L
F�� ,k ,��. On the other hand, if �� L

F�� ,k ,��, then 	= � ��

i�k� �
�F�� ,k ,��. Moreover, if eigenforms of the Dirac operator ���0� are linearly independent, the
same holds for the corresponding eigenforms of the Maaß-Laplacian, and vice versa.

Proof: As both operators are elliptic, all eigenforms are smooth. The relation between � and �
can be obtained by using Eq. �2.3�. To establish the desired transformation properties one has to
write down the conditions on the components. The rest then follows from Ref. 29. The linear
independence can be obtained from some straightforward manipulations using

− i�k�1 + ��2 = 0,

which can be solved for �2 if ��0. �

IV. SYMMETRIES

Apart from the fact that spectra of weighted Dirac operators on compact surfaces are real and
discrete, further spectral properties can be concluded from symmetry considerations.

Lemma 1: The weighted Dirac operator possesses a chiral symmetry, i.e., if 	= ��1

�2
�

�F�� ,k ,��, then � �1

−�2
��F−�� ,k ,��. Hence the spectrum of Dk is symmetric about zero.

Proof: The proof amounts to a simple calculation that can be performed conveniently by using
the relations in Ref. 29 once again. �

The symmetry statement extends to zero modes in that the Atiyah-Singer index theorem �see
Refs. 21 and 1� implies that their number is even. From now on we will denote this number by 2N.

A further symmetry is concerned with quantum mechanical time reversal. For the Dirac
operators considered here, this is implemented through the antilinear operator Tª i�2C acting on

automorphic forms of arbitrary weight, where C denotes complex conjugation and �2= �0 −i

i 0 � is

one of the Pauli matrices. Hence T2=−Id. Moreover, on the Hilbert space L2� ,k ,�� this operator
is anti-unitary.

Lemma 2: Let 	�F�� ,k ,��; then T 	�F�� ,2−k , �̄�. In particular, if k=1 and the multi-
plier system � is real valued, every eigenvalue of D has a multiplicity of (at least) two.

Proof: The first part of this lemma can be checked by straightforward calculations that we
omit here. For the second part one merely has to use the fact that T is anti-unitary with T2=−Id.
This immediately yields that the eigenforms 	 and T 	 with eigenvalue � are linearly indepen-
dent. �

At this point we add a few remarks.
�i� Above we have always assumed that  contains, apart from unity, only hyperbolic ele-

ments; hence there are no elements of finite order. Thus one can construct a real-valued multiplier

system by simply assigning ±1 to the generators of  and extending this to ̄. If one also allows
for elliptic elements this clearly will not work.
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�ii� Lemma 2 says that Dk and D2−k possess identical nonvanishing eigenvalues �including
multiplicities�. According to �2.2�, the weights k and 2−k, up to sign correspond to the same
magnetic field strengths. We will therefore restrict subsequent discussions to the case k�1.

�iii� In general, quantum systems with half-integer spin share the same behavior under time
reversal as in the present case. For the respective quantum Hamiltonians, the multiplicity two of
their eigenvalues due to time-reversal symmetry is known as Kramers’ degeneracy.24 Moreover,
magnetic fields usually break time-reversal invariance. This is the reason for the special role
played by the weight k=1.

�iv� In his tenfold-way scheme Zirnbauer classified quantum systems according to their be-
havior under basic symmetry operations like time-reversal, rotations, and chiral transformations.36

The resulting symmetry classes are unambiguously linked with Cartan’s ten classes of symmetric
spaces. In this context the present case, with time-reversal symmetry, T2=−Id, and chiral symme-
try is identified as the type CII and is related to the symmetric space Sp�p+q� /Sp�p��Sp�q� �of
compact type�.

�v� Following the conjecture of Bohigas, Giannoni, and Schmit,6 one expects that, generically,
correlations among the eigenvalues of geometric operators on manifolds of negative curvature can
be described by random matrix theory. �See, however, exceptions when the Fuchsian group is
arithmetic.5,9� The relevant random matrix ensemble for the present case is the chiral Gaussian
symplectic ensemble �chGSE�.

From supersymmetry considerations �see, e.g., Ref. 35� it is known that eigenvalues of the
square of a Dirac operator have even multiplicities. We stress that this observation is unrelated to
Lemma 2. Rather, this degeneracy stems from chiral symmetry �Lemma 1� combined with the
squaring.

However, the degeneracy due to time reversal somewhat unexpectedly extends to the spec-
trum of Dk for odd weight. To this end we recall that the Maaß operator Kk raises the weight by
two, without changing the eigenvalue of an eigenform of the appropriate Maaß-Laplacian.29,30 It
hence maps L

F�� ,k ,�� to L
F�� ,k+2,��. The operator �k+2 is its formal adjoint from

L
L

2� ,k+2,�� to L
L

2� ,k ,��. As a consequence, up to the special eigenvalues �3.2� the spectrum
of −�k depends only on k mod 2.

Lemma 3: Let  be a strictly hyperbolic group and � a real-valued multiplier system. If the
weight k is odd the eigenvalues of the Maaß-Laplacian �k have a multiplicity of (at least) two.

Proof: For odd k=2m+1, the multiplicities of the special eigenvalues �3.2� are known to be
�g−1�2�m− j�; see Ref. 19 and after Eq. �3.2�. In all other cases the statement follows immediately
from Proposition 1 and Lemma 2. �

Apart from the special eigenvalues, a twofold degeneracy of the eigenvalues can also be
obtained in a constructive way. To this end, one first lowers the weight from k=2m+1, m�N0, to
one by successive applications of operators �l, then applies complex conjugation �i.e., time re-
versal for spin zero�, and finally raises the weight back to k=2m+1. Altogether, one thus applies
the antilinear operator

LS2m+1 ª C�−2m+1�−2m+3 . . . �2m+1. �4.1�

Now some straightforward calculations show that this way an eigenform � is mapped to a linearly
independent eigenform �= LS2m+1� of the same weight and with the same eigenvalue. In particu-
lar, � may only vanish when its eigenvalue is of the special type �3.2�.

We stress that this argument fails if k is even. In the case k=0 it is easy to see that if �
� L

F�� ,0 ,��, then C�� L
F�� ,0 ,��, as long as � is real. But it is well known that for k=0 the

eigenforms can be chosen to be real valued, so � and C� are not linearly independent.
Of course, according to Proposition 1, the degeneracy in the spectra of Maaß-Laplacians

implies a corresponding degeneracy in the spectra of the Dirac operators Dk. Except for the
eigenvalues that derive from the special eigenvalues �3.2� of the associated Maaß-Laplacian, one
can again devise a constructive approach that reveals more clearly that the degeneracy is a con-
sequence of a “generalized time reversal symmetry.” To this end we introduce the operator
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Ak
†
ª ���Kk 0

ik �Kk−2
� .

This maps F�� ,k ,�� into F��� ,k+2,��, where �� is determined by �2+k=��2 and sgn����
=sgn���. From Ref. 29, Satz 5.3 one can deduce that Ak

† indeed is an isomorphism between
F�� ,k ,�� and F��� ,k+2,�� if ��0. Its formal adjoint reads as

Ak+2 ª − ����k+2 ik

0 ��k
� .

The analog to the operator �4.1� now is

S2m+1 ª B2m−1
† . . . B1

†TC3 . . . C2m+1,

where Bk
†
ª �1/��Ak

† and Ck= �1/���Ak. A direct calculation shows that S2m+1 does not depend on
�.

Proposition 2: Let k=2m+1 and assume that the multiplier system � is real valued. Then the
eigenvalues of the weighted Dirac operator D2m+1 occur with multiplicities of at least two. More-
over,

S2m+1 = T��−2m+3�−2m+5 . . . �2m+1 0

0 �−2m+1�−2m+3 . . . �2m−1
�

is identical on all spaces F�� ,2m+1,�� of eigenforms, and can therefore be extended to all of
C�� ,2m+1,��. Then 	�F�� ,2m+1,�� implies 
ªS2m+1	�F�� ,2m+1,�� and �
 ,	�L2

=0. For m�0 the form 
 vanishes identically iff � is related to one of the special eigenvalues
�3.2� via � j

�k�=�2+ �k /2��1−k /2�.
Proof: The statement about the multiplicities of eigenvalues is implied by Proposition 1 and

Lemma 3. The conclusions 
�F�� ,k ,�� and �
 ,	�L2 =0 follow directly from the preceding
considerations. One must only take care of the possibility that 
 may vanish. But evaluating �
�L2

shows that this norm is zero, iff �=�2+ �k /2��1−k /2� is of the form �3.2�. �

V. POINT-PAIR INVARIANTS

From the case of the Laplacian it is well known that setting up a Selberg trace formula
amounts to calculating traces of Hilbert-Schmidt operators L that commute with the
Laplacian.33,19,20 The kernels of such operators can be obtained from suitable Poincaré series over
so-called point-pair invariants, whose construction will be briefly outlined in this section.

We first introduce two matrix-valued functions on the upper half-plane, which help to study
transformation properties under fractional linear transformations,

A�z�,z� ª�
�z − z̄��1/2

�z� − z�1/2 0

0
�z� − z̄�1/2

�z̄ − z̄��1/2
 ,

B�z�,z� ª�
�z� − z�1/2

�z� − z̄�1/2 0

0
�z̄ − z̄��1/2

�z − z̄��1/2
 .

Definition 3: Let 
= �
1 
2


3 
4
� : �1, � �→R2�2 be continuous. Assume, moreover, that 
2

=
3 and that there exists a constant C� such that each component satisfies
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i���	 � C��
−1−�, �5.1�

for some ��0. Then we call

K�z�,z� = − iA�z�,z�
�1

2
�cosh„d�z�,z� + 1…��B�z�,z� ,

where d�z� ,z� denotes the hyperbolic distance of two points z ,z��H2, a point-pair invariant.
Applying any transformation ��SL�2,R� yields

K��z�,�z� = J��z�,1�K�z�,z�J�
−1�z,1� .

The restrictions on the components of 
 assure that K is Hermitian, i.e., K�z� ,z�=K†�z ,z��. In
order to proceed we need a technical lemma, which can be found in Ref. 19.

Lemma 4: Let f : �1, � �→C and ��0. Moreover, assume that

f��� � C��
−1−�

holds for all � and a constant C�. Then the sum

�
��̄

f„
1
2 �cosh„d�z�,�z�… + 1�…

converges absolutely and uniformly for all z� ,z�H2.
Starting from the point-pair invariant, we can now construct automorphic kernels via Poincaré

series. Due to our restrictions on 
,

K�z�,z� =
1

2 �
��̄

K�z�,�z�����J��z,1� �5.2�

is well defined. Some standard manipulations show that the behavior of K under transformations
is given by

K��1z�,�2z� = ���1�J�1
�z�,1�K�z�,z�J�2

−1�z,1��−1��2� . �5.3�

This allows us to define automorphic kernels.
Definition 4: Let F be a fundamental domain for the Fuchsian group . We say that K :H2

�H2→C2�2 is an element of L2� \H2 , \H2 ,��, if �5.3� holds for all �� ̄ and

�K�L2
2
ª �

F
�

F

tr„K
†�z�,z�K�z�,z�…d��z�d��z�� � � .

It is well known that such an automorphic kernel defines a Hilbert-Schmidt operator
L :L2� ,1 ,��→L2� ,1 ,�� via

�L	��z�� ª �
F

K�z�,z�	�z�d��z� .

If K is Hermitian there exists a basis �	n
 of orthonormal eigenforms of L in L2� ,1 ,�� such that
K�z� ,z�=�nan	n�z��	n

†�z�. Furthermore, if K was constructed from a point-pair invariant via
�5.2�, then one can easily check that the operator L has a finite trace that is given by �nan. In the
following section we will construct point-pair invariants from a Green’s function and then calcu-
late such traces.
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VI. THE TRACE FORMULA

Before we can proceed to introduce point-pair invariants, we have to identify Green’s func-
tions for Dirac operators on surfaces  \H2. For this, and the following, we restrict our attention to
the Dirac operator itself, i.e., to the weight k=1. The starting point will be a Green’s function for
D on the hyperbolic plane, from which the corresponding Green’s function on the compact surface
can be obtained in terms of a Poincaré series.

Since the resolvent of D is a bounded operator when Im����0, we can make the ansatz

�D + ��−1	�z�� = �
H2

G�z�,z;��	�z�d��z� ,

with G�· , · ;�� :H2�H2→C2�2. For the matrix entries of G, we use the notation G= �G1 G2

G3 G4
�.

Then G can be uniquely characterized as a solution of the matrix-differential equation

�D + ��G�z�,z;�� = 0, for z � z�, �6.1�

with a specified behavior in a neighborhood of z=z�. That is, for the diagonal matrix entries

lim
d�z�,z�→0

�Gi�z�,z;�� −
�

4�
log„d�z�,z�…� � � , i = 1,4,

is required, whereas the nondiagonal entries are regular in z=z�. In addition, Gi�z� ,z ;�� must
approach zero as d�z� ,z�→�.

Furthermore, the transformation property �3.4� implies the corresponding behavior,

G�z�,z;�� = J�
−1�z�,1�G��z�,�z;��J��z,1� ,

of the Green’s function under an isometry ��PSL�2,R�.
In order to solve for this Green’s function we closely follow Refs. 29 and 30, where the

corresponding problem for the Maaß-Laplacians is treated. We begin with introducing

Ǧ�z�,z;�� ª A−1�z�,z�G�z�,z;��B−1�z�,z� ,

which is invariant under PSL�2,R�, and note that ĎªA−1�z , i�DA�z , i� is invariant under the

stability group PSO�2,R� of z=i. Therefore, the differential equation for Ǧ corresponding to �6.1�
is transformed into polar coordinates �� ,�� for z�H2, where �= 1

2 �cosh(d�z ,z��)+1�. With

H�� ;��= Ǧ�z� ,z ;��, this leads to a system of ordinary linear differential equations for H

= �H1 H2

H3 H4
�,

� � i�„��� − 1�…1/2 �

��
+

1

2
�� − 1

�
�1/2�

i�„��� − 1�…1/2 �

��
+

1

2
�� − 1

�
�1/2� � H��;��

=− i�
1

2
„��� − 1�…−1/2H3��;�� 0

0
1

2
„��� − 1�…−1/2H2��;��  . �6.2�

The solution of �6.2� for �→� is given by
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H1��;�� = −
�

4�
�− 1

2
−i��i���i� + 1�

�2i� + 1�
F�i�,1 + i�;1 + 2i�;

1

�
�

= −
�

4�
�− 1

2�
0

1

ti��1 − t�i�−1�� − t�−i� dt , �6.3�

and

H2��;�� = −
i

4�
�−1−i��� − 1�1/2 2�i� + 1�

�2i� + 1�
F�1 + i�,1 + i�;1 + 2i�;

1

�
�

=
�

4�
�� − 1�1/2�

0

1

ti��1 − t�i�−1�� − t�−i�−1 dt , �6.4�

where F�a ,b ;c ;z� is a hypergeometric function �see, e.g., Ref. 14�. Moreover, H3�� ;��
=H2�� ;�� and H4�� ;��=H1�� ;��. From this representation we infer an upper bound for the
components of the Green’s function,

	Gi�z�,z;��	 � const	�	e−„1/2−Im���…d�z�,z�, if d�z�,z� � d0 � 0. �6.5�

As the singularity of G for d�z� ,z�→0 is integrable, we obtain the following lemma.
Lemma 5: Let f :H2→C2 be bounded and continuous, then

�
H2

G�z�,z;��f�z�d��z�

converges absolutely and uniformly in Re��� as long as Im����− 1
2 .

With Lemma 4 and the estimate �6.5�, the Green’s function for the Dirac operator on a
compact surface can now be obtained in terms of a Poincaré series �5.2�.

Lemma 6: Let Im����− 1
2 ; then

G�z�,z;�� ª
1

2 �
��̄

G�z�,�z;������J��z,1�

converges for z�z�mod , and is the Green’s function for D on  \H2.
We are now in a position to construct point-pair invariants as in Definition 3 through


��� ª
1

�
�

−�

�

H��;��h���d� ,

where h is a function, as specified below.
Definition 5: A function h :C→C that satisfies the following:

• h is even, i.e. h���=h�−��,
• h is complex analytic in the strip 	Im��� 	 �� for some fixed ��

1
2 +�,

• there exists ��0, such that the bound

	h���	 � const„1 + Re���…−2−�

holds uniformly for all � in the above mentioned strip, is called an admissible test function.

We denote the Fourier transform of an admissible test function by
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g�u� ª
1

2�
�

−�

�

h���e−i�u d� .

All that we have to check that this indeed leads to a point-pair invariant is the condition �5.1�.
Lemma 7: Let �−1���0; then the components Ki of K are bounded from above by

	Ki�z�,z�	 � C�e−�1/2+��d�z�,z�, i = 1, . . . ,4, �6.6�

with some C��0. Furthermore, the limit limd�z�,z�→0K�z� ,z� is well defined. More precisely, we
have

tr K�z,z� =
1

2�
�

−�

�

�h���coth����d� .

Proof: To prove the first part one shifts the integral by −i�. Using the estimate �6.5� on Gi and
shifting back, the bound �6.6� follows immediately. For the second part we note that

lim
�→1+

1

4�
�

−�

�

�h���log�� − 1�d� = 0;

thus we can add this term to 
. Then again shifting the integral by −i� and using Ref. 26, p. 44,
one obtains

lim
d�z�,z�→0

Ki�z�,z� =
1

4i�2�
−�−i�

�−i�

�h������i�� + ��i� + 1��d�, i = 1,4,

where ��z�= �d/dz�log �z�. After substituting � by −� and using the fact that h is even, the
statement follows immediately. �

Having shown that K is indeed a point-pair invariant, we can introduce the automorphic
kernel,

K�z�,z� ª
1

2 �
��̄

K�z�,�z�����J��z,1� , �6.7�

which by construction is in L2� \H2 , \H2 ,��. The corresponding Hilbert-Schmidt operator on
L2� ,1 ,�� is called L.

Lemma 8: Any 	�F�� ,1 ,�� is simultaneously an eigenform of the Hilbert-Schmidt opera-
tor L,

�L	��z�� = ����	�z�� ,

where the eigenvalue � satisfies the equation

���� + ��− �� = 2h��� . �6.8�

Proof: With

�L���z�� =
1

2�i
�

F
� �

��̄

�
−�

�

h���G�z�,�z;������J��z,1�d��	�z�d��z� ,

a standard calculation yields

�L���z�� =
1

�i
�

−�−i�

�−i�

h������
F

G�z�,z;���	�z�d��z��d��.

From this we read off the eigenvalue of L as
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���� =
1

2�i
�

−�−i�

�−i� h����
�� − �

d��,

and this implies �6.8�. �

As already noted in Sec. IV, the spectrum of the Dirac operator on a compact surface is real
and discrete. Moreover, according to Lemma 1, the spectrum is symmetric with respect to zero.
We hence denote the non-negative eigenvalues �listed with their respective multiplicities� by 0
��0��1�¯, which include N of the 2N zero modes. The Hilbert space L2� ,1 ,�� therefore has
a basis of orthonormal eigenforms 	n,±,

�D ± �n�	n,± = 0.

Thus the automorphic kernel possesses a spectral expansion of the form

K�z�,z� = �
n=0

�

„���n�	n,+�z��	n,+
† �z� + ��− �n�	n,−�z��	n,−

† �z�… ,

which immediately yields the spectral side of the desired trace formula.
Lemma 9: The Hilbert-Schmidt operator L has a finite trace, given by

tr�L� = 2�
n=0

�

h��n� .

Next, we need to compute the geometric side of the trace formula, i.e.,

tr�L� = �
F

K�z,z�d��z� ,

with the representation �6.7� of the automorphic kernel. Following a standard procedure, this
yields

tr�L� =
1

2�
��


���� �
�g��Z̄�\̄

tr��
gF

K�z,�z�J��z,1�d��z�� , �6.9�

where ��
 denotes the ̄-conjugacy classes of �� ̄ and Z̄� is the centralizer of � in ̄. Next, we
use the natural pairing of the disjoint conjugacy classes ��
 and �−�
, which cancels the factor 1

2 .
Within these pairs we choose the conjugacy classes with tr����0. Moreover, it is well known that

D� ª �
�g��Z�\

g�F�

is a fundamental set for the centralizer Z��. Introducing primitive hyperbolic elements �p and
their conjugacy classes, one can rewrite �6.9� as

tr�L� = tr��
F

K�z,z�d��z�� + �
��p


�
n=1

�

���p
n�tr��

D�p

K�z,�p
nz�J�p

n�z,1�d��z�� .

Upon a conjugation with a matrix in SL�2,R�, any hyperbolic element can be brought into the
Jordan normal form
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� =�e
l�
2 0

0 e−
l�
2

� .

A fundamental domain for the group generated by � is given by �z�H2 	1�y�el�
. Note that
J��z ,1�=1, so all that remains to be done is evaluating integrals of the form

I��n� = tr��
1

el �
−�

�

K�z,�nz�dx
dy

y2 � . �6.10�

In order to calculate this integral, we introduce

� = cosh2 nl

2
+ � x

y
sinh

nl

2
�2

,

which allows us to perform the integration with respect to y. Inserting the explicit expressions
�6.3� and �6.4� for the function H, the integral �6.10� reduces to

I��n� =
il�

2�2 coth
nl�

2
�

−�

�

�h���

� �
cosh2 nl�

2

�

�−1−i��� − cosh2 nl�

2
�−1/2

�
m=0

�
�i� + m��i� + m + 1�

�2i� + m + 1�m!
�−m d� d� .

Interchanging the order of integration and summation and employing the relation

� 1

2 cosh�a

2
�

−2q

�
m=0

�
2q�2q + 2m�

�2q + m + 1�m!� 1

2 cosh�a

2
�

−2m

= e−qa,

which follows from Ref. 16, 1.114 for a�0 and Re�q��0, finally yields

I��n� =
l�

sinh
nl�

2

1

2�
�

−�

�

h���e−i�nl� d� =
l�g�nl��

sinh�nl�

2
� . �6.11�

Putting together Lemma 7, Lemma 9, and Eq. �6.11� then leads to the desired trace formula.
Theorem 1 (Selberg trace formula for the Dirac operator): Let �PSL�2,R� be a strictly

hyperbolic Fuchsian group with fundamental domain F of area A�F� and fix a multiplier system �
of weight one. Moreover, let ��n
n=0

� be the non-negative eigenvalues of the Dirac operator D on
L2� ,1 ,��, including half of the zero modes. Then, for any admissible test function h, see Defi-
nition 5, the following trace formula holds:

�
m=0

�

h��m� =
A�F�
4�

�
−�

�

�h���coth����d� + �
��p


�
n=1

�

���p
n�

l�p
g�nl�p

�

2 sinh�nl�p

2
� . �6.12�

In accordance with Proposition 1, this trace formula is identical to the one for the Maaß-
Laplacian −�1 on the same surface and with the same multiplier system. We stress, however, a
difference in the interpretation of the geometric side. Both expressions can be viewed as sums over
the closed geodesics on  \H2, weighted with the factors ���p

n�. For the Maaß-Laplacian, these
factors stem from the nonvanishing magnetic fluxes that are necessarily present �see, e.g., Ref. 13�,
whereas for the Dirac operator with weight k=1 there is no magnetic field involved. Here the
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factors ���p
n� reflect the fact that the classical dynamical system associated with the quantum

dynamics generated by the Dirac operator is not the geodesic flow, but its associated frame flow;
see also Ref. 23. This is analogous to Dirac operators on R3.8

The frame flow �see, e.g., Ref. 10� is a flow in the frame bundle FM over a Riemannian
manifold M consisting of a parallel transport of oriented orthonormal frames along geodesics. To
be precise, let �e1�p� , . . . ,en�p�
 be an orthonormal basis of TpM. Then this frame is transported
along the geodesic determined by e1 with the Levi-Civita connection. This flow can be lifted into
the spin structure by assigning an element g�p��Spin�n� to every point along the geodesic. This
may also be done in the spin representation yielding �(g�p�). In the present case, where M

= \H2, �(g�z�) must equal �(g��z�) for every �� ̄. However, in the induced �trivial� bundle over
the hyperbolic plane, the transformation property,

�„g��z�… = ����J��z,1��„g�z�… ,

applies; see �3.1� and �3.3�. The factors ���p
n� in Eq. �6.12� therefore reflect the spin structure.

Hence, although on two-dimensional manifolds the frame flow is not much different from the
geodesic flow, only the latter is a natural dynamics that can be lifted into the spin structure. For
n�3 the situation will be different since in such a case a frame flow yields interesting classical
dynamics beyond the geodesic flow.

VII. SOME APPLICATIONS

A first immediate application of the trace formula, which can be proved in the standard way
�see, e.g., Ref. 19�, concerns the asymptotic distribution of the eigenvalues.

Proposition 3 �Weyl’s law�: Let N��� be the number of non-negative eigenvalues of D that are
smaller than �. Then

N��� �
A�F�
4�

�2, � → � .

This result also follows from Ref. 22.
Another application consists of determining properties of the related Selberg zeta function. If

Re�s�, Re����1, the function

h��� ª
1

�2 + �s −
1

2
�2 −

1

�2 + �� −
1

2
�2

satisfies the criteria of Definition 5 to serve as an admissible test function. In the trace formula
�6.12�, it leads to a relation for the trace of a regularized resolvent,

�
m=0

�

� 1

�m
2 + �s −

1

2
�2 −

1

�m
2 + �� −

1

2
�2 = −

A�F�
2�

„��s − 1
2� − ��� − 1

2�… +
A�F�
4� � 1

� −
1

2

−
1

s −
1

2


+
1

2s − 1

Z��s�
Z�s�

−
1

2� − 1

Z����
Z���

.

Here Z�s� is Selberg’s zeta function, which is defined by

Z�s� ª �
��p


�
k=0

�

�1 − ���p�e−l�p
�k+s��, Re�s� � 1.

Now proceeding along the lines of Refs. 34 and 32, we find an analytic continuation of Z�s� into
the entire complex plane.
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Proposition 4: The Selberg zeta function for the Dirac operator is an entire analytic function.
Moreover, it can be represented as

Z�s� =

Z�2N��1

2
�

�2N�!
�s −

1

2
�2N

e�s − 1/2�2�De�s−1/2�
A�F�
2�

� ��2��−�s−1/2�e�s2−1/4�G2�s +
1

2
��A�F�/2�

�
m=N

� ��1 +
�s −

1

2
�2

�m
2 e−�s − 1/2�2/�m

2 � , �7.1�

where G is Barnes’ double  function �see Ref. 3� and 2N denotes the number of zero modes of D.
The trivial zeros of Z�s� are given by s=− 1

2 −n with multiplicities �2n�A�F�/2�, n�N. The nontrivial
zeros are s= 1

2 ±i�m, with the same multiplicities as the eigenvalues �m of D.
In �7.1� the constant �D is a generalized Euler constant as introduced in Ref. 34 and Z�2N�

denotes a derivative of the zeta function of order 2N. Moreover, due to the Gauß-Bonnet theorem,
A�F� /2�=2�g−1� is a positive integer, where g is the genus of the surface  \H2.
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A general technique for the study of magnetic Rashba Hamiltonians in quantum
graphs is presented. We use this technique to show how manipulating the magnetic
and spin parameters can be used to create localized states in a certain periodic
graph �T3 lattice�. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2364184�

I. INTRODUCTION

In this work, we discuss the creation of eigenvalues in periodic quantum graphs by certain
external interactions, namely, by magnetic field and spin-orbit coupling.

The analysis of quantum graphs, i.e., of differential operators on singular one-dimensional
manifolds, becomes one of the central topics in the mathematical physics during the last decades;
see Refs. 28–33 and 35. This has many reasons; in particular, quantum graph Hamiltonians appear
in the de Gennes-Alexander theory of superconductivity.4,15,25 Some other fields of applications
are described, e.g., in Ref. 31.

The spectral theory of compact quantum graphs has many common features, with the usual
theory of differential operators; cf. Refs. 6, 42, and 48. Nevertheless, such an analogy is rather
limited when considering noncompact structures. Some particular features of quantum graph mod-
els become obvious if one studies periodic configurations. For example, for a large class of
periodic Schrödinger operators in Euclidian spaces, the spectrum is known to be absolutely
continuous,9,50 while even the simplest periodic quantum graphs can have eigenvalues.12,33 Some
other examples may include the sensibility of periodic quantum graphs to some arithmetic
characteristics.24

Recently, in the physics literature one discussed the so-called extreme localization in the T3

lattice �dice lattice�.1,54 From the mathematical point of view, it was shown that under certain
magnetic fields the Hamiltonian of a quantum graph with the corresponding shape has no bands of
a continuous spectrum, and the spectrum consists of infinitely degenerate eigenvalues. This effect
was observed also experimentally by transport measuring in superconducting and metallic wire
networks.39–41 �It is worth emphasizing that bound states in the T3 lattice appear without any
external interactions;51 the coexistence of the continuous and the point spectra is implied by the
rich internal symmetry of the lattice and of its dual, Kagomé.2� Various aspects of this localization
mechanism and its stability under disorder and external interactions are studied in a number of
works.8,38,52–54 In particular, it is shown that additional interactions, like the interparticle interac-
tion, destroy the extreme localization mechanism, and a continuous spectrum appears.53

In Ref. 7 it was shown that in some periodic quantum graphs similar localization phenomena
can be induced not only by magnetic fields, but also by the spin-orbit interaction at certain values
of the Rashba constant.14,47 Nevertheless, the numerical analysis of Ref. 8 shows that the Rashba
localization does not appear in the T3 lattice. In the present paper we consider the above situation

a�Present address: L.A.G.A., Institut Galilée, Université Paris 13, 99 J.B. Clément, 93430 Villetaneuse, France.
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with both the spin-orbit and magnetic interactions. We note that the quantum graph models with
spin were studied previously, e.g., in Refs. 10, 11, 13, and 27, but the attention was mostly
concentrated on Dirac- and Pauli-type operators. The theory of Rashba Hamiltonians is not de-
veloped, even in the Euclidian spaces, and the spin-orbit interaction promises to show effects that
are absent in the scalar case, like embedded eigenvalues in short-range potentials or localization in
crystals, hence giving possibilities for constructing new nanodevices.17,34

The aim in this paper is two-fold. First, we are going to describe the Schrödinger operators in
two-dimensional networks with magnetic field and spin-orbit interaction. An essential part here is
the reduction of the quantum graph Hamiltonian to a certain discrete equation. In the scalar case,
an analogous procedure was done in Ref. 23 for the solutions of the stationary Schrödinger
equation and recently in Ref. 44 for the spectra. Note that there is another approach to the
relationship between the quantum graphs and tight-binding Hamiltonians coming from some
asymptotic considerations.36,37 Second, by considering the localization effects in the T3 lattice we
would like to attract the attention of researchers working on quantum graphs to potential applica-
tions in the study of superconducting networks. In Sec. II we give a mathematical formalism of
quantum graphs with external interactions; essentially we describe rigorously the constructions of
Refs.7 and 8. In Sec. III we use this machinery to study the spectrum of the T3 lattice with a
magnetic field and the Rashba interaction. We show that the spectral problem is of a supersym-
metric type and that the study of some energy levels is equivalent to the study of zero modes in a
certain discrete model. As a result, we give a rigorous justification of the extreme localization for
the case of nontrivial scalar potentials on the edges and nonideal couplings at the nodes. We show
that at zero spin-orbit interaction this effect is independent of the edge potential. At the same time,
it appears that the generic Rashba interaction destroys the localization. We also show that at a
certain combination of the magnetic and spin parameters a new localization effect appears, where
one can localize one of the spin projections using the magnetic field.

II. QUANTUM GRAPHS WITH EXTERNAL INTERACTIONS

A. Schrödinger operator on a quantum graph embedded in Euclidian space

In this section we describe the construction of the Hamiltonian in a two-dimensional network
with a magnetic field and Rashba interaction. Recall that the Rashba Hamiltonian of a two-
dimensional system acts on two-component vector functions and takes the form14,47

H = �p − A�2 + 2kR��,�p − A� Ã n� + U , �1�

where A is the magnetic vector potential, kR is the Rashba constant expressing the strength of the
spin-orbit interaction, U is a scalar potential, � is the vector of Pauli matrices, and n is the unit
vector orthogonal to the plane of the system. The second term, which is the formal mixed product
on the right-hand side of �1�, takes into account the spin-orbit coupling. For kR=0 the problem
splits into two identical scalar problems. The corresponding Hamiltonian for a network is obtained
by projecting all the interactions onto each edge and by introducing suitable boundary conditions
at the nodes, which will be described later. �We remark that some effects of the Rashba interaction
and the magnetic field in a wire can be studied in other types of models.19�

Let V be a uniformly discrete subset of the xy plane in R3, the set of nodes �vertices�. The
uniform discreteness means the existence of a constant d�0 such that ��−� � �d for all � ,�
�V with a ���. Denote

l�� ª �� − ��, e�� ª

1

l��

�� − �� .

Some nodes are connected by a directed edge. The set of all edges will be denoted by E, E�V
�V. The edge with initial vertex ��V and terminal vertex ��V will be denoted by ��. For
��V denote indeg �ª # ����E	, outdeg �= # ����E	, deg �ª indeg �+outdeg �. We as-
sume that the degrees satisfy the following conditions: that
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there exists N � Z with1 � deg � � N for all � � V; �2�

in particular, we assume that there are no isolated vertices. The configuration consisting of all
segments �� ,��, ���E will be referred to as a metric graph or as a �wire� network. We assume
that the system has no self-intersections and that

0 � inf�l��	 � sup�l��	 � � . �3�

The quantum state space corresponding to the metric graph is introduced as follows. Each
edge �� will be identified with the segment �0, l��� such that � is identified with 0 and � is
identified with l��. The state space of each edge �� is H��ªL2��0, l��� ,C2�. The state space of
the whole structure is H= ����EH��.

On each edge consider a real-valued scalar potential U���L2�0, l���. To avoid unnecessary
technical difficulties we will assume that the scalar potentials are uniformly L2 bounded,

sup
U��
L2 � � . �4�

Assume that the system is subjected to an external magnetic field given by a vector potential A
�C1�R3 ,R3�. This induces magnetic potentials on each edge, a���t�ª �A��+ te��� ,e���.

Denote by kR the Rashba constant. The spin-orbit interaction can be taken into account by
adding the term 2kR�−i�d/dt�−a���t�����n ,e��� with n= �0,0 ,1�. Therefore, the dynamics
along each edge �� is described by the differential expression

L�� = �− i
d

dt
− a���t��2

+ 2kR�− i
d

dt
− a���t���� � n,e��� + U��

 �i
d

dt
+ a���t� + kR����2

+ U�� − kR
2 ,

where

��� = � 0 e��2+ie��1

e��2−ie��1
0

� .

For a uniform magnetic field with the strength B�R3 it is useful to use the symmetric gauge,
A�r�= 1

2B�r. In this case the magnetic potentials a�� are constant, a��= 1
2 �B�� ,e���.

Denote by L an operator in H, acting as

�f��� � �L�	f��� �5�

on functions f���H2��0, l��� ,C2� satisfying, at each ��V,

f���0� = f���l��� ¬ f���, ��,�� � E , �6a�

�
���E

� d

dt
− i�a�� + kR�����f���0�

− �
���E

� d

dt
− i�a�� + kR�����f���l��� = 
���f��� , �6b�

where 
��� are real-valued parameters. The case 
���=0 may be considered as an ideal coupling,
which is the analog of the Kirchhoff coupling in the scalar case. We are going to consider L as the
Hamiltonian of the system, and our next aim is to show its self-adjointness.

112105-3 Localization in periodic quantum graph J. Math. Phys. 47, 112105 �2006�

                                                                                                                                    



B. Self-adjointness and spectral analysis

Denote by D the set of all functions f= �f���, with components �f���� � H2��0, l���C2�,
���E, which are continuous at all nodes, i.e., such that the condition �6a� is satisfied. Clearly, for
f�D the values f���, ��V, have the direct sense. Furthermore, for f�D and ��V denote

f���� ª �
���E

� d

dt
− i�a�� + kR�����f���0� − �

���E
� d

dt
− i�a�� + kR�����f���l��� .

Consider in H a linear operator � with domain D acting by the rule �5�.
Proposition 1: The operator � is closed. For any f�dom �D the vectors �fª (f���) and

��fª (f����) belong to �2�V ,C2� and the map �� ,��� :dom L→�2�V ,C2� � �2�V ,C2�, is surjective.
For any f ,g�dom � there holds

�f,�g� − ��f,g� = ��f,��g� − ���f,�g� . �7�

Proof: Denote by �� the unitary transformation of H��, given by

��f�t� = exp�i�
0

t

„a���s� + kR���…ds�f�t� . �8�

Denoting �ªd/dt, we see ��−ia��−ikR���������.
By the Sobolev inequality, for any c1�0 there exists c2�0 such that for any l�0 and �

�H2�0, l� there holds that


�
� � c1l3/2
��
L2�0,l� +
c2

l1/2 
�
L2�0,l�,


��
� � c1l1/2
��
L2�0,l� +
c2

l1/2 
�
L2�0,l�.

Note that for any t� �0, l��� one has 
f���t�
C2 = 
��f���t�
C2. Therefore, using the above esti-
mate, for any f���H2��0, l��� ,C2�, one has


f���t�
C2 = 
��
* f���t�
C2 � c1l��

3/2
�2��
* f��
H��

+
c2

l��
1/2


��
* f��
H��

= c1l��
3/2
��

* ��− ia�� − ikR����2f��
H��
+

c2

l��
1/2


��
* f��
H��

= c1l��
3/2
��− ia�� − ikR����2f��
H��

+
c2

l��
1/2


f��
H��
,

and, in the same way,


��− ia�� − ikR����f���t�
C2 � c1l��
1/2
��− ia�� − ikR����2f��
H��

+
c2

l��
1/2


f��
H��
.

Using the assumptions �3� and �4�, we conclude that there exist positive constants C1 and C2 such
that for any ���E, f���H2��0, l��� ,C2� , t� �0, l��� one has


f���t�
 � C1
L��f��
 + C2
 f��
 , �9a�


��− ia�� − ikR����f���t�
 � C1
L��f��
 + C2
 f��
 . �9b�

Here the norms are taken in C2 on the left-hand side and in H�� on the right-hand side.
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Denote by �˜ the operator acting in H by the rule �5� on the domain dom �

= ����EH2��0, l��� ,C2�. Clearly, �˜ is closed. By �9a�, the linear maps

T���:dom �˜ � f � f���0� − f���l��� � C2, ��,�� � E ,

are bounded with respect to the graph norm of �˜. Therefore, the restriction of �˜ to the subspace
where all these functionals vanish is a closed operator. As this restriction is exactly �, the operator
� is closed.

For f�D the inclusions �f ,��f��2�V ,C2� follow immediately from the estimates �9� and the
assumption �2�; and the identity �7� can be verified directly using the partial integration.

To prove the surjectivity condition, we fix first four functions f jk�H2�0,1� with f jk
�i��l�

=�ij�kl , i , j ,k , l� �0,1	. Take arbitrary � ,����2�V ,C2�. Denote

��� ª exp�i�
0

l��

„a���s� + kR���…ds�  exp�i�
0

l��

a���s�ds��cos kRl�� + i ��� sin kRl���

� U�2� . �10�

By direct calculation, the function f�H whose components are of the form f��=��g��, where

g���t� = f00� t

l��
����� + f01� t

l��
����

* ���� +
l��

deg �
f10� t

l��
������ −

l��

deg �
f11� t

l�	
����

* ����� ,

lies in D and satisfies ��f ,��f�= �� ,���. �

Proposition 1 shows that the space Gª�2�V ,C2� and the maps � ,�� :dom �→G form a
boundary triple for � see e.g., �Refs. 21 and 46, for a detailed discussion. The self-adjointness of
� would follow from the following assertion:21 if � has at least one self-adjoint restriction �i.e.,
if �* is symmetric� and A is a self-adjoint operator in G, then the restriction of � to the vectors
��dom � satisfying ���=A�� is self-adjoint in H.

Consider the restriction D of � to the functions f satisfying �f=0. Clearly, this restriction is
nothing but the direct sum ����ED��, where D�� is an operator in H�� acting as f���L��f�� on
functions satisfying f���0�= f���l���=0. As each D�� is self-adjoint, so is D. Note that L itself is
the restriction of � to the functions f satisfying ��f=T�f ,T=diag(
���). This implies

Proposition 2: The spin-orbit Hamiltonian L is self-adjoint.
To carry out the spectral analysis of L, it is useful to relate the resolvents of L and D by

Krein’s resolvent formula,21

�D − E�−1 − �L − E�−1 = ��E��M�E� − T�−1�*�Ē� , �11�

where E�spec L�spec D and the maps ��E� and M�E� are defined as follows. For a given
E� spec D and ���2�V ,C2�, the function ��E��= �f��� is the solution to ��−E�f=0 satisfying
�f=�. The map M�E� :�2�V ,C2�→�2�V ,C2� is given by M�E�=����E�. A direct consequence of
Eq. �11� is the relationship

spec L \ spec D = �E � spec D:0 � spec„M�E� − T…	 . �12�

Moreover, E�spec D is an eigenvalue of L iff 0 is an eigenvalue of M�E�−T, and
��E�ker(M�E�−T) is the corresponding eigensubspace.26

Denote by D̃�� the self-adjoint operator in L2�0, l��� acting as g���−g��� + �U��−kR
2�g�� on

functions g���H2�0, l��� satisfying the Dirichlet boundary condition, g���0�=g���l���=0. Note

that the operators ��
* D���� are of the form D̃�� � D̃��. In particular, the spectra of D��

coincide with those of D̃�� and are discrete sets, and spec D=����E spec D��.
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Equation �12� shows that the spectrum of L outside spec D is completely described in terms of
M�E�. The question whether spec D or some parts of it enter to the spectrum of L must be
analyzed individually, taking into account the magnetic and spin parameters and the topological
properties of the graph.

Therefore, to carry out the spectral analysis for L, it is useful to calculate the map M�E�. This
can be done in terms of special �scalar� solutions to the equation

− y� + U��y = zy, z � C . �13�

Namely, denote by s�� and c�� the uniquely determined solutions of �13� satisfying the boundary
conditions

s���0;z� = c��� �0;z� = 0, s��� �0;z� = c���0;z� = 1.

Now let ���2�V ,C2�. To find ��E��¬ �f���, we need to solve the boundary value problems,

��i
d

dt
+ a�� + kR����2

+ U�� − kR
2�f�� = Ef��,

f���0� = ����, f���l��� = ���� . �14�

Writing f��ª��g��, where �� is the unitary transformation from �8�, we rewrite �14� as a
boundary value problem for g��,

− g��� + U��g�� = �E + kR
2 �g��,

g���0� = ����, g���l��� = ���
* ���� . �15�

The solution to �15� takes the form

g���t� =
s���t;E + kR

2 �
s���l��;E + kR

2 �
· ����

* ���� − c���l��;E + kR
2 ������ + c���t;E + kR

2 ����� .

Now we have

g��� �0� =
1

s���l��;E + kR2�
����

* ���� − c���l��;E + kR
2 ������ , �16�

g��� �l��� =
1

s���l��;E + kR
2 �

�s��� �l��;E + kR
2 ����

* ���� − ����� . �17�

Nothing that

f���� = �
���E

g��� − �
���E

���g��� �l���

we arrive at

M�E����� = �
���E

1

s���l��;E + kR
2�

���
* ���� + �

���E

1

s���l��;E + kR
2�

���
* ����

− � �
���E

c���l��;E + kR
2 �

s���l��;E + kR
2 �

+ �
���E

s��� �l��;E + kR
2 �

s���l��;E + kR
2 ������ . �18�

Using Krein’s resolvent formula �11� we come to the following theorem.
Theorem 3: The set spec L \ spec D consists exactly of the real numbers E such that 0
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�spec�M�E�−T�, where M�E� and T are operators in �2�V ,C2� ,M�E� is given by �18� and T
=diag(
���). Moreover, such E is an eigenvalue of L iff 0 is an eigenvalue of M�E�−T, and
��E�ker (M�E�−T) is the corresponding eigenspace.

We remark that in the above calculations it does not matter whether � is in �2 or not. Actually,
all the construction hold for any set of vectors �����C2 ,��V. This observation can be formu-
lated as follows:

Theorem 4: For E�spec D, any continuous solution f to �L−E�f=0 has the form

f���t� =
s���t;E + kR

2�
s���l��;E + kR

2�
· �������

* f��� − c���l��;E + kR
2 �f���� + ���c���t;E + kR

2 �f��� .

Such a function satisfies the boundary conditions �6b� iff

�
���E

1

s���l��;E + kR
2 �

���
* f��� + �

���E

1

s���l��;E + kR
2 �

���f���

= � �
���E

c���l��;E + kR
2 �

s���l��;E + kR
2 �

+ �
���E

s��� �l��;E + kR
2 �

s���l��;E + kR
2 �

+ 	����f��� .

Such an f is an eigenfunction of L �i.e., belongs to L2� if f(f���)��V��2�V ,C2�.
Note that similar formulas for more simple situations were obtained earlier, e.g., in Refs. 3, 5,

8, 22, 23, and 32.
The expression �18� can be simplified significantly if all the edges are the same, i.e., if l��

 l and U��U, s��=s ,c��=c for all ���E. Note that in this case the spectrum of D coincides

with the Dirichlet spectrum of the operator D˜ª−d2/dt2+U−kR
2 on the segment �0, l� and hence is

a discrete set. We have

M�E����� =
1

s�l;E + kR
2 ��� �

���E
���

* ���� + �
���E

��������� − �outdeg �c�l;E + kR
2 �

+ indeg �s��l;E + kR
2 ������ . �19�

Even this expression admits further simplifications.
Proposition 5: Assume that all edges are identical, l�� l, U��U ,U is even, U�x�U�l

−x�, and the coupling constants 
��� are of the form 
���=deg �
, then spec L \ spec D˜= t

−1

�spec ��, where t
�E�=c�l ;E+kR
2 �+
s�l ;E+kR

2 � and � is the discrete Hamiltonian,

����� =
1

deg �� �
���E

���
* ���� + �

���E
�������� ,

acting on the space �2�V ,C2 ;deg� with the scalar product

��,
�deg = �
��V

deg � · ����
��� .

Proof: If the potential U is even, one has c�l ;E+kR
2 �s��l ;E+kR

2 �ª t�E�, see e.g., Ref. 44;
hence

M�E� − T =
1

s�l;E + kR
2 �

��˜ − t
�E�deg�, deg = diag�deg �� ,

where �˜ is the discrete Hamiltonian in �2�V ,C2�,
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�˜���� = �
���E

��	
* ���� + �

���E
�	����� .

The condition 0� spec �M�E�−T� takes the form 0�spec��˜ − t
�E�deg� in �2�V ,C2�, which is
equivalent to 0� spec ��− t
�E�� in �2�V ,C2 ;deg�. �

Proposition 5 shows that the spectral problem for a class of quantum graphs reduces to the
study of the tight-binding Hamiltonian �. In the case U0 and 
���0 one has t
�E�
=cos �E+kR

2 , and we arrive at spec L=Arccos2 spec �−kR
2 �up to the discrete set spec D˜�, which is

exactly the formula connecting the network and the tight-binding spectra in the de Gennes-
Alexander model of superconductivity.4 For the scalar situation, an analog of this correspondence
was given, e.g., in Ref. 5 for the Laplacian on compact graphs, and in Ref. 16 for the Laplacian on
noncompact graphs, and in Ref. 44 for more general Schrödinger operators. At the same time,
Proposition 5 does not exhaust all possibilities of such a reduction, i.e., the reduction to a discrete
Hamiltonian is possible also for some noneven U. �Such questions will be discussed in greater
detail in Ref. 45.� One of such situations will be discussed in the next section.

III. SPECTRUM OF T3 LATTICE

A. Description of the lattice

In this section, we consider the spectral problem for a quantum graph whose underlying
structure is the so-called T3 lattice �see Fig. 1�. The nodes are the points �m,n ,�m,n ,�m,n, with
�m,n=ma1+na2 ,a1= � 3

2 ,−�3/2 ,0�, a2= � 3
2 ,�3/2 ,0� ,�m,n=�m,n+ �1,0 ,0� ,�m,n=�m,n

+ � 1
2 ,

�3
2 ,0� ,m ,n�Z, i.e.,

�m,n = �3�m + n�
2

,
�3�n − m�

2
,0�, �m,n = �3�m + n� + 2

2
,
�3�n − m�

2
,0� ,

FIG. 1. A finite piece of a T3 lattice.
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�m,n = �3�m + n� + 1

2
,
�3�n − m + 1�

2
,0� .

The edges are

em,n,1 = �m,n�m,n, em,n,2 = �m,n�m−1,n, em,n,3 = �m,n�m,n−1,

em,n,4 = �m,n�m,n−1, em,n,5 = �m,n�m+1,n−1, em,n,6 = �m,n�m,n.

All the edges have the length 1. The direction vectors of em,n,j are e j

= �cos��j /3� , sin��j /3� ,0� , j=1, . . . ,6.

B. Reduction to tight-binding Hamiltonian

We will assume that the system is subjected to the following external interactions. On each
edge there is the same potential U�L2�0,1�. The lattice is subjected to the uniform magnetic field
B= �0,0 ,2��� orthogonal to the plane, and the magnetic vector potential in the symmetric gauge
is A�x�= �−��x2 ,��x1 ,0�. In what follows we use the magnetic parameter �=���3/2 expressing
the magnetic flux through the elementary rhombus �for example, �m,n�m,n�m,n+1�mn�.

The external magnetic field implies nontrivial magnetic potentials on em,n,j ,am,n,j

=1/2�BÃ�m,n ,e j�,

am,n,1 = ��2m + n�, am,n,2 = ��m + 2n�, am,n,3 = ��n − m� ,

am,n,4 = − ��2m + n�, am,n,5 = − ��m + 2n�, am,n,3 = ��m − n� .

The dynamics along em,n,j is described by the differential expression

Lm,n,j = �i
d

dt
+ am,n,j + kR�m,n,j�2

+ U − kR
2 ,

�m,n,j = � 0 ej2 + iej1

ej2 − iej1 0
�  � 0 exp�i��

2
−

�j

3
��

exp�i��j

3
−

�

2
�� 0 � ,

m,n � Z j � �1, . . . ,6	 .

Here ejk are the components of the vectors e j and kR is the Rashba constant. We consider boundary
conditions of the form �6� at all the nodes, assuming that there are only two types of coupling
constants: �ª
��m,n� and �ª
��m,n�=
��m,n�.

The corresponding matrices �m,n,j from Eq. �10�, �m,n,j =exp�i�am,n,j +kR�m,n,j��, are as follows:

�m,n,1 = �m,n,4
* = ei��2m+n��cos kR + i sin kR� 0 ei�/6

e−i�/6 0
�� , �20a�

�m,n,2 = �m,n,5
* = ei��m+2n��cos kR + i sin kR� 0 e−i�/6

ei�/6 0
�� , �20b�

�m,n,3 = �m,n,6
* = ei��n−m��cos kR + i sin kR� 0 e−i�/2

ei�/2 0
�� . �20c�

Clearly, for any m ,n�Z, one has
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outdeg �m,n = 6, indeg �m,n = indeg �m,n = 3,

indeg �m,n = outdeg �m,n = outdeg �m,n = 0.

For the subsequent analysis, we use the fact that the lattice is bipartite. Represent the set of
nodes as the disjoint union V=V0�V1 ,V0= ��m,n	 ,V1= ��m,n	� ��m,n	. Clearly, for the set of
edges one has E�V0�V1. With respect to the decomposition �2�V ,C2�=�2�V0 ,C2� � �2�V1 ,C2�,
the operator T in Theorem 3 takes the block-diagonal form

T = �� 0

0 �
� .

Using the above decomposition and Eq. �19�, we rewrite M�E�−T as

M�E� − T =
1

s�1;E + kR
2 �
�− a�E� A*

A − b�E�
� ,

a�E� = 6c�1;E + kR
2 � + �s�1;E + kR

2 � ,

b�E� = 3s��1;E + kR
2 � + �s�1;E + kR

2 � ,

where

Af��m,n� = �m+1,n,2f��m+1,n� + �m,n+1,4f��m,n+1� + �m,n,6f��m,n� ,

Af��m,n� = �m,n,1f��m,n� + �m,n+1,3f��m,n+1� + �m−1,n+1,5f��m−1,n+1� ,

A*f��m,n� = �m,n,1
* f��m,n� + �m,n,2

* f��m−1,n� + �m,n,3
* f��m,n−1�

+ �m,n,4
* f��m,n−1� + �m,n,5

* f��m+1,n−1� + �m,n,6
* f��m,n� . �21�

The operator A* ,A* :�2�V1 ,C2�→�2�V0 ,C2� is adjoint to A ,A :�2�V0 ,C2�→�2�V1 ,C2�. Using Theo-
rem 3, we write the condition E�spec L or, equivalently, 0� spec (M�E�−T), as

a�E� + b�E�
2

� spec�b�E� − a�E�
2

�1 0

0 − 1
� + �0 A*

A 0
�� . �22�

Note that E�spec D˜ in all the above constructions, where D˜ is the Dirichlet realization of

−d2/dt2+U−kR
2 on �0,1�. The question of whether spec D˜ is a part of spec L or admits a simple

answer in our case.

Lemma 6: For all � and kR one has spec D˜�spec L.
Proof: Using the Schnol-type arguments, cf. Refs. 12 and 13, it is sufficient to show that for

each E� spec D˜ the equation Lf=Ef has a bounded solution f satisfying the boundary conditions

�6�. Let E�D˜ and g be the corresponding eigenfunction of D˜. Choose any infinite path P without
intersection on the graph and any nonzero vector z�C2. For a fixed e�P set feªegz, where e

is given by �8�. Now extend f to the whole graph in such a way that �a� fe=0 for e�P and �b� on
each b�P one has fb=bgzb, where the vectors zb are chosen in such a way that the boundary
conditions �6� are satisfied. By construction, there holds Lf=Ef. At the same time, due to the
unitarity of the matrices �m,n,j the obtained function f is bounded. This finishes the proof. �
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C. Supersymmetric analysis

Equation �22� is a typical supersymmetric spectral problem. Using Proposition 11 and Corol-
lary 12 in the Appendix , one easily sees that the set � of E for which the condition �22� is satisfied
is the union �=�1��2��3,

�1 = �E � spec D˜:a�E�b�E� � 0 and a�E�b�E� � spec A*A	 ,

�2 = ��E � spec D˜:a�E� = 0	 , if 0 � spec A*A ,

� , otherwise;

�3 = ��E � spec D˜:b�E� = 0	 , if 0 � spec AA*,

� , otherwise.

To summarize, we have the following.

Proposition 7: spec L=�1��2��3�spec D˜.

Note that the sets �2 ,�3, and spec D˜ are discrete. Therefore, only the set �1 is responsible for
the continuous spectrum. Writing f��m,n�¬ f�m ,n�, we note that A*A is an operator on �2�Z2 ,C2�
of the form

A*Af�m,n� = 6f�m,n� + ��m,n,1
* �m,n+1,3 + �m,n,6

* �m,n+1,4�f�m,n + 1� + ��m,n,3
* �m,n−1,1

+ �m,n,4
* �m,n−1,6�f�m,n − 1� + ��m,n,5

* �m+1,n,3 + �m,n,6
* �m+1,n,2�f�m + 1,n� + ��m,n,2

* �m−1,n,6

+ �m,n,3
* �m−1,n,5�f�m − 1,n� + ��m,n,1

* �m−1,n+1,5 + �m,n,2
* �m−1,n+1,4�f�m − 1,n + 1�

+ ��m,n,4
* �m+1,n−1,2 + �m,n,5

* �m+1,n−1,1�f�m + 1,n − 1� ,

i.e.,

A*A = 6 + cos � · sin2 kR · �˜ + 2�cos � · cos2 kR − sin2 kR�cos�� −
�

3
� 0

0 cos�� +
�

3
� ��

��� 0

0 �
� , �23�

where � is a spinless operator in �2�Z2�,

�f�m,n� = e−3i�mf�m,n + 1� + e3i�mf�m,n − 1� + e3i�nf�m + 1,n� + e−3i�nf�m − 1,n� + e−3i��m+n�f�m

− 1,n + 1� + e3i��m+n�f�m + 1,n − 1� ,

and

�˜f�m,n� = R1e−3i�mf�m,n + 1� + R1
*e3i�mf�m,n − 1� + R2e3i�nf�m + 1,n� + R2

*e−3i�nf�m − 1,n�

+ R3e−3i��m+n�f�m − 1,n + 1� + R3
*e3i��m+n�f�m + 1,n − 1� ,

with

R1 =� 0
3

2
−

�3

2
i

−
3

2
−

�3

2
i 0 �, R2 =� 0

3

2
+

�3

2
i

−
3

2
+

�3

2
i 0 � ,
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R3 = � 0 − �3i

− �3i 0
� .

The expression for A*A shows explicitly the contribution of the magnetic and spin-orbit param-
eters to the spectrum. Let us discuss the situations where the spectrum shows certain localization
phenomena.

D. Magnetic field induced extreme localization

If the spin-orbit interaction is not taken into account, kR=0, then one has A*A=6
+2 cos ��� � ��. In particular, at �−� /2��Z, one has A*A=6, i.e., the spectrum of A*A degen-
erates to a point. If �−� /2��Z, but the spin-orbit interaction is nontrivial, similar phenomena
occur only at certain values of the Rashba constant, i.e., kR��Z. For generic values of kR,
obviously, there are some bands of continuous spectrum.

Let us analyze the sets �2 and �3 for this case, i.e., for �−� /2��Z and kR��Z. Clearly, the
set �2 is empty, as 0�spec A*A. Let us look at the operator AA*.

Lemma 8: For �−� /2��Z and kR�Z, one has 0�spec AA*.
Proof: In view of periodicity, it is sufficient to show that the equation AA*�=0 has nontrivial

bounded solutions, �����V1 ;C2�.
Let us classify the nodes �m,n and �m,n as shown in Fig. 2. Consider all vector-valued func-

tions on V1 vanishing at the white marked nodes. For such a function �, the condition A*�=0 is
of very simple form, because in the expression �21� only two of the six terms on the right-hand
side are nonzero. Therefore, fixing the value of � at a single black marked node, one uniquely
extends � to a bounded solution of A*�=0. The conditions ��� /2+�Z and kR��Z guarantee
that this solution is well defined, i.e., that the phase factor along each cycle on the hexagonal
lattice of black nodes is 1. �

To summarize the previous considerations, we note that the set spec D˜ consists of the real E
satisfying s�1;E+kR

2 �=0. Proposition 7 reads as follows.
Theorem 9: Let ��� /2+�Z and kR��Z, then the spectrum of L consists of the real

numbers E satisfying at least one of the following conditions:

FIG. 2. Classification of the nodes �m,n and �m,n.
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�c�1;E + kR
2 � +

�

6
�1;E + kR

2 �� · �s��1;E + kR
2 � +

�

3
s�1;E + kR

2 �� =
1

3
, �24a�

s��1;E + kR
2 � +

�

3
s�1;E + kR

2 � = 0, �24b�

s�1;E + kR
2 � = 0. �24c�

Each point of the spectrum is an infinitely degenerate eigenvalue.
Note that the eigenvalues �24a� are the most interesting ones, as they arise as the limit of the

continuous spectrum. The Dirichlet eigenvalues �24c� are usually neglected in the physical works.
In the simplest case, when the scalar potential is zero and the couplings are trivial, i.e., U

=0,�=�=0, one has s�x ;E�= �1/�E�sin�Ex ,c�x ;E�=cos�Ex, and Eq. �24a� takes the form

cos2�E + kR
2 � �0, 1

3 ,1	 ,

which was previously obtained in Ref. 54 for the case kR=0.
We remark that the presence of the extreme localization is periodic with respect to the shifts

kR→kR+�, but not the energy levels themselves, as the functions s�· ;E+kR
2�, etc., are not periodic

with respect to the Rashba constant. It is worthwhile to note that the above results hold for any
potential U and any coupling constants � and �.

E. Magneto-spin induced localization

Another interesting situation appears at cos kR=0, i.e., at kR�� /2+�Z. In this case one has

A*A = 6 − 2�cos�� −
�

3
�� 0

0 cos�� +
�

3
��� .

For the values ��−� /6+�Z the first component of A*A degenerates. In particular, any
function of the form �f ,0� , f ��2�Z2� becomes an eigenfunction of A*A. For ��� /6+�Z the
same holds for the functions �0, f�.

For a further analysis we calculate the spectrum of �.
Lemma 10: For �� ±� /6+�Z the spectrum of � is absolutely continuous and covers the

segments �−2�3,−�3� and ��3,2�3�.
Proof: Consider the unitary transformation

U:�2�Z2� � „f�m,n�… � „e3i�mnf�m,n�… � �2�Z2� .

Clearly, U is unitary, and the operator �̂ªU*�U has the form

�̂f�m,n� = e−6i�mf�m,n + 1� + e6i�mf�m,n − 1� + f�m + 1,n� + f�m − 1,n� + e−3i��2m−1�

�f�m − 1,n + 1� + e3i��2m+1�f�m + 1,n − 1� .

The operator obtained has the same spectrum as �, but is periodic with respect to the shifts
n�n+1 and can be studied using the Bloch analysis. Making the Bloch substitution f�m ,n�
=einq�m, where q� �0,2�� is the quasimomentum, we observe that the spectrum of �̂ is the union
of the spectra of operators H�q� acting in �2�Z� and defined by
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�H�q���m = 2 exp�− 3i��m −
1

2
� + i

q

2
�cos�3��m −

1

2
� −

q

2
��m−1 + 2 cos�6�m − q��m

+ 2 exp�3i��m +
1

2
� − i

q

2
�cos�3��m +

1

2
� −

q

2
��m+1.

The operators H�q� are nothing but the Harper operators for the triangular lattice.18 Note that for
�� ±� /6+�Z, all these operators are invariant under the shift m�m+2. Therefore, substituting
into the equation H�q��=E� a vector � satisfying �m=ei��m−2 for all m, where �� �0,2�� is
another quasimomentum, one arrives at a 2�2 linear system for the components �0 and �1,

ei�3�/2+q/2� cos�3�

2
+

q

2
�e−i��1 + cos q�0 + e−i�3�/2−q/2� cos�3�

2
−

q

2
��1 =

E

2
�0,

e−i�3�/2−q/2� cos�3�

2
−

q

2
��0 − cos q�1 + e−i�3�/2+q/2� cos�3�

2
+

q

2
�ei��0 =

E

2
�1.

The condition for the determinants to vanish takes the form

E2

4
= 1 + cos2 q + cos�q − ��cos q =

3

4
+ �cos q +

1

2
cos�q − ���2

+ sin2�q − �� .

Here, taking all possible values of q and �, we arrive at the conclusion. �

Lemma 10 means that for the values � in question, the spectrum of A*A has a continuous part,
which is the union of the segments �0,3� and �9,12�, and an infinitely degenerate eigenvalue 6.

Therefore, we arrive, as in Sec. III D, to a series of infinitely degenerate eigenvalues E
satisfying the same Eq. �24a� �i.e., the same eigenvalues as in the extreme localization case�,
which are isolated in the spectrum, but we have additionally bands of continuous spectrum given
by

�c�1;E + kR
2 � +

�

6
s�1;E + kR

2 �� · �s��1;E + kR
2 � +

�

3
s�1;E + kR

2 �� � �0,
1

6
� � �1

2
,
2

3
� .

In particular, for the free case with zero coupling constants, one has the following characterization
for E to be in the spectrum of L:

cos2�E + kR
2 � �0,

1

6
� � �1

3
� � �1

2
,
2

3
� � �1	 .

The localization effect described in this section seems to be not covered by the existing works, and
it would be interesting to know whether it can be really observed. As for different values of the
magnetic paramteres we have completely different eigensubspaces of A*A, we conjecture that this
localization mechanism can be used to control the spin polarization by the magnetic field, but this
needs a further analysis.
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Appendix: Supersymmetric spectral analysis

Here we prove the following proposition.
Proposition 11: Let H1 ,H2 are some Hilbert spaces, A be a bounded linear operator from H1

to H2, and m�R. On H1 � H2 consider the operator

L = �m A*

A − m
� .

Then

spec L = − �spec�AA* + m2� � �spec�A*A + m2� . �A1�

This proposition is formulated �without proof� in Ref. 43 and is nothing but an abstract
version of Proposition 2.5 in Ref. 49; we give here a complete proof just for the sake of com-
pleteness.

Proof: First, note that spec AA* \ �0	=spec A*A \ �0	.20 Clearly,

L2 = �A*A + m2 0

0 AA* + m2 � . �A2�

Therefore, spec L2 \ �m2	=spec�AA*+m2� \ �m2	, and for any ��spec AA* \ �0	specAA* \ �0	, at
least one of the numbers −��+m2 ,��+m2 lies in spec L. Let us show that actually they both are
in the spectrum of L.

Let ��0,��spec A*A; then there exists a sequence ��n� ,�n�H1, such that 
�n 
 �1 and
lim�A*A−���n=0. Denote

�n ª �� + ��� + m2 − m��0 A*

A 0
����n

0
� . �A3�

Clearly,

��n

0
� � �0 A*

A 0
���n

0
� ,

which implies that


�n
 � �
�n
 � � . �A4�

By direct calculation,

�L − �� + m2��n = ��� + m2 − m���A*A − ���n

0
� .

Therefore, lim�L−��+m2��n=0. Together with �A4�, this implies that ��+m2�spec L.
To show −��+m2�spec L one has to consider the functions

�n ª �� − ��� + m2 − m��0 A*

A 0
��� 0

�n
� ,

where 
�n 
 �1 and lim�AA*−���n=0, and to repeat the above steps. To finish the proof of Eq.
�A1� it is necessary to study the points ±m.

For m=0, Eq. �A2� reads as spec L2=spec AA*�spec A*A, and the conditions 0�spec L and
0�spec AA*�spec A*A are equivalent.

Assume m�0 and m�spec L, then there exist sequences ��n��H1 , ��n�� H2 with

112105-15 Localization in periodic quantum graph J. Math. Phys. 47, 112105 �2006�

                                                                                                                                    




�n
 + 
�n
 � 1 �A5�

and

lim�L − m���n

�n
�  lim� A*�n

A�n − 2m�n
� = 0. �A6�

Clearly, this implies lim A* A�n=0. Assume that lim �n=0; then �A6� shows lim �n=0, which
contradicts �A5�. Therefore, there exists a subsequence ��n�� of ��n� such that 
�n� 
 �
 for some

�0. Together with lim A*A�n�=0, this implies 0� specA* A.

Assume now 0�spec A*A, then there is a sequence ��n��H1 with 
�n 
 �1 and
lim�A*A�n ,�n� lim
A�n 
 =0. Then

lim�L − m���n

0
� = lim� 0

A�n
� = 0,

from which m�spec L.
The relationship between the conditions −m�L and 0�spec AA* can be proved in a com-

pletely similar way. �

It may be useful to have an alternative formulation of Proposition 11.
Corollary 12: There holds

spec L \ �− m,m	 = − �spec�AA* + m2� � �spec�AA* + m2� \ �− m,m	

 − �spec�A*A + m2� � �spec�A*A + m2� \ �− m,m	 .

Furthermore, for m�0, one has m�spec L iff 0�spec A*A ,−m�spec L iff 0�spec AA*, and for
m=0 there holds 0�spec L iff 0�spec A*A�spec AA*.
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The current-current correlation measure plays a crucial role in the theory of con-
ductivity for disordered systems. We prove a Pastur-Shubin-type formula for the
current-current correlation measure expressing it as a thermodynamic limit for ran-
dom Schrödinger operators on the lattice and the continuum. We prove that the
limit is independent of the self-adjoint boundary conditions and independent of a
large family of expanding regions. We relate this finite-volume definition to the
definition obtained by using the infinite-volume operators and the trace-per-unit
volume. © 2006 American Institute of Physics. �DOI: 10.1063/1.2378618�

I. INTRODUCTION AND BASIC DEFINITIONS

The study of the transport properties of disordered systems requires an analysis of higher-
order correlation measures of the spectral density operator �H�

�E���−1 lim�→0 Im�H�−E− i��−1

���H�−E� of the one-particle random Schrödinger operator H�. The one-point correlation mea-
sure

��E� = E��x��H�
�E��x	
 , �1�

which is independent of x by translational covariance �cf. Eq. �34��, is the density of states �DOS�
measure. This measure has been extensively studied for random Schrödinger operators in recent
years, and we refer the reader to the monographs.1,2 The two-point correlation measure

K2�x1,y1,x2,y2;E1,E2� = E��x1��H�
�E1��y1	�x2��H�

�E2��y2	
 , �2�

is related to, the current-current correlation measure that plays an important role in describing the
conductivity of the system. In this note, we prove some fundamental properties of the current-
current correlation measure such as the Pastur-Shubin formula. This formula expresses the func-
tion as the thermodynamic limit of quantities involving the system restricted to regions of finite
volume.

Although this current-current correlation measure has been described in the literature, we
could not find a complete proof of the Pastur-Shubin formula. Pastur3 mentions the feasibility of
a proof based on a perturbative expansion but this requires stronger conditions on the random
potential than used here. The crucial point for continuum models is an estimate on the derivatives
of the heat kernel. The necessary estimates on heat kernels associated with elliptic operators are
proved by Eidelman and Ivasisen.4 Shubin5,6 considered the density of states and the current-
current correlation measure for Schrödinger operators with uniformly almost periodic potentials,
and more general elliptic operators with almost periodic coefficients. His results are similar to
those we present here for random ergodic Schrödinger operators.

Our results apply to both lattice models with Hilbert space �2�Zd�, and continuum models with
Hilbert space L2�Rd�. For both of these settings, the random Hamiltonian H�, acting on �2�Zd� or
L2�Rd�, is the self-adjoint operator given by
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H� = H0 + V�. �3�

The Schrödinger operator H0=L+V0 is the unperturbed, background operator, and V� is an er-
godic, random, real-valued potential describing the disorder. Precise hypotheses on the determin-
istic potential V0, and the random, ergodic potential V�, are given in Sec. II. We use the symbol L
to denote either the finite-difference Laplacian on �2�Zd�, or the non-negative Laplacian on L2�Rd�.
The finite-difference Laplacian is defined by

�Lf��n� = �
m:�n−m�=1

f�m� , �4�

so that the spectrum is �−2d,2d�. The non-negative Laplacian on L2�Rd� is given by L=−�
=−��=1

d �2 /�x�
2 �0 and has spectrum �0, 	 �.

For one-particle quantum systems, the current operator J�, describing the flow of charge in the
x�-direction, is proportional to the velocity operator �H�. In order to define this observable, we let
X� denote the self-adjoint operator describing multiplication by the coordinate x�, i.e., X�f�x�
=x�f�x�, for f �C0�Rd�. The velocity operator �H� for direction x� is the deterministic operator
defined by

�H� = i�H�,X�� = i�L,X�� , �5�

so that �H�=−2i� /�x� on L2�Rd�. We describe �H� on �2�Zd� in Sec. IV. Note that the velocity
operator is independent of �.

The current-current correlation measure can be described through either the trace-per-unit-
volume formalism, in which one works directly with the infinite-volume operators, that is, with
operators acting on �2�Zd� or on L2�Rd�, or through a limiting procedure of measures described by
finite-volume observables acting on �2�
� or on L2�
�, for bounded regions 
. One of our results
is that these two definitions define the same measure. In order to describe the finite-volume
approach, we denote by H
 the restriction of H� to a finite volume 
�Zd or 
�Rd, with
self-adjoint boundary conditions on the boundary �
. As H
 has discrete spectrum, we let
�i


�x��L2�
� be the normalized eigenfunctions of the local Hamiltonian H
 with corresponding
eigenvalues �i


. We let �Hi,j
��� denote the matrix element of the velocity operator �H� in the

eigenstates � j

 given by

�Hi,j
��� = ��i


,�H�� j

	 . �6�

Note that these matrix-elements are well-defined although �H� is not a self-adjoint operator when
restricted to a finite volume region.

Definition 1.1: The finite-volume current-current correlation measures m

���, for current di-

rection �, with �=1, . . . ,d, and for any bounded open region 
�Zd, or Rd, is the point measure
on R2 defined, up to a constant prefactor, by

m

��dE,dE�� =

1

�
��i,j ��E − �i

���E� − � j


���Hi,j
����2dEdE�, �7�

with �Hi,j
��� is the matrix element of the velocity operator in the direction � given in Eq. �6�, and

��i


i are the eigenvalues of the local Hamiltonian H
 corresponding to the eigenfunctions �i


. We
write m
�dE ,dE��=��=1

d m

��dE ,dE�� for the total finite-volume current-current correlation mea-

sure.
Of course, the point measures m


� depend on the configuration �, the region 
, and the
boundary conditions on �
. One of our results is to prove that for a reasonable family of increas-
ing regions 
n↑Zd or Rd, and self-adjoint boundary conditions, the limit is independent of these,
and almost surely independent of the configuration �.

The physical significance of the limit measures m��dE ,dE�� is discussed thoroughly in Refs.
7–10, for example. These measures are directly related to the diagonal components of the finite-
volume conductivity measures that we define as

112106-2 P. D. Hislop and O. Lenoble J. Math. Phys. 47, 112106 �2006�

                                                                                                                                    



���dE,dE�� =
�e2

�
� �i�j

��E − �i

���E� − � j


� � Hi,j
��� � Hj,i

��dEdE�, �8�

for � ,=1, . . . ,d. The properties of these measures are basically unknown. In general, it is not
known if the measures are absolutely continuous with respect to Lebesgue measure on R2 so that
there exists a density m�E ,E��. There has been some progress in understanding m��dE ,dE�� in the
strong localization regime. Bellissard and Hislop7 proved the existence of a smooth density in the
strong disorder regime outside of the diagonal E=E� for random Schrödinger operators with
probability densities analytic in a strip. In Ref. 10, a density expansion for the correlation func-
tions is developed based on the idea of Lifshitz emphasizing the role tunneling between deep and
sparsely distributed potential wells that effectively trap the quantum particle in the strong local-
ization regime. The authors apply this method to study the zero-temperature ac-conductivity tensor
that is formally given by

����,EF� = lim
�
�→	

�e2

�
� �i�j

��EF + � − �i

���EF − �i


� � Hi,j
��� � Hj,i

��, �9�

where ��0 is the frequency of the external ac-field and EF is the Fermi energy of the system. The
goal is to study the low frequency behavior of the total ac-conductivity ��� ,EF�=������� ,EF� in
the strong localization regime. Mott11 argued that the behavior is given by

���,EF� = C0�2�EF��2�log�1/���d+1, �10�

now known as Mott’s formula. The main result of10 is an application of the density expansion
method to give a heuristic derivation of Eq. �10�. An upper bound on ��� ,EF�, of the form given
on the right in Eq. �10� but with an exponent d+2, has recently been proved in the strong
localization regime by Klein, Lenoble, and Müller.9

II. PRELIMINARIES AND THE MAIN RESULTS

In this section, we first state the necessary hypotheses for the proof of the existence of the
thermodynamic limit. As the techniques used in the continuum and lattice cases are different, the
hypotheses on the potentials are different. For continuum models, we distinguish models that are
Zd-ergodic or Rd-ergodic, while for lattice models, the Hamiltonians are Zd-ergodic. We begin with
the assumptions on the potentials for the continuum models. Let C0 be the unit cube centered at
the origin.

�H1C�. For models that are Zd-ergodic, the background potential V0 is a bounded, real-valued
potential that is Zd-periodic and we assume V0�C1,�C0�, for some 0�, where  is the Hölder
continuity exponent. For models that are Rd-ergodic, we take V0=0.

�H2C�. The potential V� is ergodic with respect to the group of translations Rd or the lattice
translations Zd. It is lower semibounded and we assume that V��C1,�C0�, for some 0�, where
 is the Hölder continuity exponent, and for almost every ���.

For the lattice models, we make the following assumptions.
�H1L�. The background potential V0 is a bounded, real-valued potential that is

�N�NZd-periodic, for some N�1.
�H2L�. The potential V� is ergodic with respect to the group of lattice translations Zd. It is

lower semibounded and has finite local expectation E��V��0� � 
�	.
Note that if V0 is �1=Zd-periodic, it is simply a constant. We will denote by C0�N� a funda-

mental domain for the translation group �N.
By shifting the energy, we may assume that the potentials V0 and V� are non-negative. Under

these assumptions, the Hamiltonians H� is self-adjoint for the lattice and continuum models, cf.
Ref. 1, Chap. V. For a bounded region 
�Rd or Zd, the local Hamiltonian H
 is obtained by
taking the restriction of H� to 
 with some self-adjoint boundary conditions on �
, the boundary
of 
. For continuum models, we may take either Dirichlet, Robin, or Neumann boundary condi-
tions on the boundary �
 of the region 
. For lattice models, we take Dirichlet boundary condi-
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tions. When not explicitly stated to the contrary, any result holds for any of the boundary condi-
tions.

We also need some properties of the families of expanding regions 
n that we take to Zd or
Rd. These conditions guarantee that the surface area of the boundary is vanishing small compared
to the volume. We also need a mild regularity condition in the continuum case.

�vH�. A sequence of bounded regions 
n converges to Zd in the sense of van Hove if the
following holds for any a�N. Consider a covering of Zd by cubes 
a of side a centered at lattice
points. For a bounded subset 
�Zd, let Na

−�
�= # �
a�
� � 
 and let Na
+�
�= # �
a�

. Then,

we require that

lim
n→	

Na
−�
n�

Na
+�
n�

= 1. �11�

�F�. A sequence of bounded regions 
n converges to Rd in the sense of Fisher if

lim
n→	

��
n�
�
n�

= 0. �12�

We assume that the boundary �
n�C2,, for 0� the Hölder exponent as in �H1C�.
Let EH�

�·� be the spectral family of the Hamiltonian H� �3�, and for x ,y�Rd, let
��H�EH�dE��H�EH�dE����x ,y� represent the kernel of the operator defined, for any f ,g
�C0�R� by

�H�f�H�� � H�g�H� = �
R
�

R
f�E�g�E��m��dE,dE�� , �13�

and described in Sec. V. The main results are the following theorems and representations of the
current-current correlation measure. It proves the validity of a Pastur-Shubin formula for the
current-current correlation measure. We begin with the continuum case.

Theorem 2.1: We consider the continuum model (3) and the family of finite-volume current-
current correlation measures m


��dE ,dE��, defined in Eq. �7�, for an increasing family of regions

 satisfying condition �F�, with Dirichlet, Robin, or Neumann boundary conditions. We assume
hypotheses �H1C� and �H2C�. Then, the sequence of finite-volume current-current correlation
measures m


��dE ,dE�� converges vaguely as �
 � →	 almost surely to a nonnegative measure m�.
The limit measure m is independent of the sequence of regions and the boundary conditions.
Furthermore, the measure m� admits the following representation:

�1� For the case with an Rd-ergodic action, the limit measure m� is given by

m��dE,dE�� = lim
�
�↑	

m

��dE,dE��

= E���H�EH�dE� � H�EH�dE����0,0�
 . �14�

�2� For the case with a Zd-ergodic action, the limit measure m� is given by

m��dE,dE�� = lim
�
�↑	

m

��dE,dE��

= E�Tr��C0
� H�EH�dE� � H�EH�dE���C0

�
 . �15�

Consequently, the total current-current correlation measure m=��=1
d m� exists and admits a

representation as in Eqs. �14� or �15�.

The lattice case is different as we can use the Feynman-Kac formula directly. Because of this,
we do not require any regularity on the potential.

Theorem 2.2: We consider the Zd-ergodic lattice model given by Eqs. �3� and �4�, and a
family of finite-volume current-current correlation measures m


��dE ,dE��, defined in Eq. �7�, for
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an increasing family of regions 
 satisfying condition �vH�, with Dirichlet boundary conditions.
We assume hypotheses �H1L� and �H2L�. Then, the sequence of finite-volume current-current
correlation measures m


��dE ,dE�� converges vaguely as �
 � →	 almost surely to a nonnegative
measure m�. The limit measure m is independent of the sequence of regions. For a background
potential V0 that is �N-periodic, for N�1, the measure m� admits the following representation:

m��dE,dE�� = lim
�
�↑	

m

��dE,dE��

=
1

Nd �
m�C0�N�

E���H�EH�dE� � H�EH�dE����m,m�
 . �16�

The total current-current correlation measure m=��=1
d m� exists and admits a representation as in

Eq. �16�.

III. THE CURRENT-CURRENT CORRELATION MEASURE AS A THERMODYNAMIC
LIMIT: CONTINUUM CASE

Introductory material in this section applies to both the lattice and continuum models. Details
specific to the lattice models are given in Sec. IV. We will prove Theorem 2.1 using the two-
variable Laplace transform, in analog with a standard proof of the Pastur-Shubin formula for the
density of states �DOS� measure, cf. Ref. 12, and estimates on the convergence of finite-volume
heat kernels4. We recall that in the study of the DOS measure, the convergence of the Laplace
transform of the finite-volume DOS measure implies the vague convergence of the measures �cf.
Ref. 12�. We state and prove a similar result in Appendix A for a class of probability measures
supported on the positive cone �R+�d. The double Laplace transform of the finite-volume measure
�7��, with t�0 and p�0, is given by

M

��t,p� = �

�0, 	 �2
e−tEe−pE�m


��dE,dE�� �17�

=
1

�
��i,j e−t�i



e−p�j



��Hi,j
����2. �18�

As above, we denote by �i

 the normalized eigenvector of H
 associated with the energy �i


.
When 
 is fixed, we will occasionally omit the superscript 
. We note that the integrals in Eq.
�17� converge since

��Hi,j
����2 � C0�diam 
�2��i


 − � j

�2, �19�

as follows from Eq. �5�. Expanding these matrix elements in terms of the eigenfunctions for H
,
we find that

M

����t,p� =

− 4

�
� �
2
dxdy�

i,j
e−t�i�x�

�i�x��̄i�y�e−p�j�y�� j�y��̄ j�x� . �20�

The sums �20� can be expressed in terms of the local heat kernel and its derivatives. By Mercer’s
theorem, the local heat kernel can be expanded in the eigenfunctions of H
 and we write

K
�t;x,y� = e−tH
�x,y� = �
i�1

e−t�i



�i�x��̄i�y� , �21�

for t�0, and x ,y�
. We then write M

��t , p� in Eq. �20� as

M

����t,p� =

− 4

�
� �
2
dxdy�x�

K
�t;x,y��y�
K
�t;y,x� . �22�
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A. Heat kernels

Estimates on the heat kernels play an important role in evaluating the thermodynamic limit of
Eq. �22�. We will use the local heat kernels associated with H
, and the nonrandom, unperturbed
operator H0


 on 
, with the same self-adjoint boundary conditions. We denote these kernels by
K
�t ;x ,y�, and K


�0��t ;x ,y�, respectively. We denote the heat kernel for the random operator H��3�,
and the unperturbed operator H0, both on L2�Rd�, by K�t ;x ,y� and K�0��t ;x−y�, respectively.
Recall that H0=L, the free operator, in the Rd-ergodic case, and H0=L+V0, the unperturbed
operator, in the Zd-ergodic case. In either case, we denote the free, translation-invariant, heat
kernel associated with the Laplacian L by K�free��t ;x�. These heat kernels are all real, nonnegative
functions, and satisfy the following relationships:

0 � K
�t;x,y� � K

�0��t;x,y� � K�0��t;x,y� � K�free��t;x − y�, x,y � 
 , �23�

where the first inequality follows from the positivity assumptions �H1C� and �H2C�, and the
second follows from the Feynman-Kac representation �31�. The free heat kernel associated with
H0=L on Rd or Zd is translation invariant and so a function of �x−y� only. It is given by

K�free��t;x� =
1

�4�t�d/2e
−x 2

4t , x � Rd, �24�

with derivatives

�x�
K�free��t;x� = −

2�x�

�4�t�d/2+1e
−x 2

4t . �25�

In the case when H0=L+V0, with a Zd-periodic operator, the heat kernel K�0��t ;x ,y� is Zd-periodic.
Finally, we note that the self-adjointness of the Hamiltonians implies that the corresponding heat
kernels are symmetric K�*��t ;x ,y�=K�*��t ;y ,x�.

We now state a version of a general theorem for higher-order operators on smooth domains in
Rd due to Eidelman and Ivasisen.4 The version cited here also appears in the articles of Shubin5,6

on the DOS measure for almost periodic operators.
Theorem 3.1: Let 
�Rd be a domain satisfying the regularity conditions stated in �F�. We

assume the local Hamiltonian H
 satisfies conditions �H1C� and �H2C� with Dirichlet, Robin, or
Neumann boundary conditions on ��. Let K
�t ;x ,y� denote the kernel of the local heat semigroup
e−tH
 on L2�
�, and let K�t ;x ,y� denote the kernel of the heat semigroup e−tH� on L2�Rd�. We then
have

K
�t;x,y� = K�t;x,y� + E
�t;x,y�, for x,y � 
 , �26�

where, the difference E
 satisfies

�E
�t;x,y�� �
Cd

td/2e−�cd/t��x − y  + d�w,�
��2
, �27�

where w can be taken to be x or y, the constants Cd, cd�0 are finite positive constants indepen-
dent of 
 , t ,x ,y. The difference of the first partial derivatives of the heat kernels

�x�
K
�t;x,y� = �x�

K�t;x,y� + F
�t;x,y�, for x,y � 
 , �28�

satisfies

�F
�t;x,y�� �
C˜d

t�d+1�/2e−�c̃d/t��x − y  + d�w,�
��2
, �29�

where w can be taken to be x or y, and the constants C˜d , c̃d�0 are finite positive constants

112106-6 P. D. Hislop and O. Lenoble J. Math. Phys. 47, 112106 �2006�

                                                                                                                                    



independent of 
 , t ,x ,y. The infinite-volume heat kernel and its first partial derivatives satisfy the
following bound:

��x�

j K�t;x,y�� �
C˜d,j

t�d+j�/2e−�c̃d,j/t�x − y 2
, �30�

for j=0,1.
Remark: Estimates on the difference of the Dirichlet heat kernels and the infinite volume heat

kernel, as in Eqs. �26� and �27�, can be obtained from the Feynman-Kac formula. Using this
representation, we have

K
�t;x,y� = K�t;x,y� + E0,x
t,y �e−�0

t �V��r�u��+V0�r�u���du�1 − �
�r�·��� , �31�

where �
�r�u��=1, if r�u��
 for all u� �0, t�, and zero otherwise. The difference term in Eq. �31�
can be estimated as in Ref. 12, for example, and one obtains an upper bound like Eq. �27�. This
suffices for the DOS measure, but the higher-order correlation measures require estimates on the
derivatives of the heat kernels that do not seem to be readily obtained from the Feynman-Kac
formula.

B. The Birkhoff Ergodic theorem for the continuum models

We now turn to the convergence of the sequence of the two-dimensional Laplace transforms
M


����t , p� defined in Eq. �22�. We will use the estimates of Theorem 3.1 and the standard Birkhoff
ergodic theorem in order to control the infinite volume limit. The form of the Birkhoff ergodic
theorem depends upon whether the symmetry group is Zd or Rd. For models on Rd, the random
potential can either be Rd ergodic, such as a Gaussian random potential, or Zd-ergodic, such as the
standard Anderson-type random potential. Suppose that the family X��x��L1�� ,P� is Rd-ergodic.
That is, there is an action �a for Rd on �� ,P� so that the covariance property holds: X��x+a�
=X�a��x�. Then, the form of the Birkhoff ergodic theorem is

E�X��0�� = lim
�
�↑	

1

�
��


X��x�dx . �32�

Let C0�Rd denote the unit cube centered at the origin. In the Zd-ergodic case, we consider
families of random variables X��x��L1�� ,P�, satisfying the covariance property as above, but for
a�Zd, the Birkhoff ergodic theorem has the form

�
C0

E�X��x��dx = lim
�
�↑	

1

�
��


X��x�dx . �33�

We note that under our assumptions �H1C� and �H2C�, the random potential V� is either Zd or Rd

ergodic, and that the Hamiltonian �3� satisfies

UaH�Ua
−1 = H�a�, �34�

for aZd or a�Rd, appropriately. As a consequence, the infinite-volume heat kernel K��t ;x ,y�
satisfies

K��t;x + a,y + a� = K�a��t;x,y� . �35�

Furthermore, since the translations commute with differentiation, we have the following covari-
ance property of the derivatives of the heat kernel:

Ua�x�
K��t;x,y�Ua

−1 = �x�
K��t;x + a,y + a� = �x�

K�a��t;x,y� . �36�
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C. Convergence of the Laplace transform of the finite-volume measure

The main technical result is the convergence of the Laplace transforms of the finite-volume
current-current correlation measure �7� in the continuous case.

Proposition 3.1: Let K��t ;x ,y� denote the heat kernel for the Hamiltonian H� �3� on L2�Rd�.
For every t�0 and p�0, the limit as �
 � →	 of M


����t , p�, with either Dirichlet, Robin, or
Neumann boundary conditions, exists almost surely, for any �=1, . . . ,d, and for any increasing
sequence of domains satisfying condition �F�. For Rd ergodic models on Rd, the limit is equal to

M��t,p� = lim
�
�→	

M

����t,p� �37�

=E�− 4�
Rd

dx�x�
K��t;x,0��x�

K��p;0,x�� . �38�

For Zd-ergodic models on Rd, the limit is equal to

M��t,p� = lim
�
�→	

M

����t,p� �39�

=E�− 4�
Rd

dx�
C0

dy�x�
K��t;x,y��y�

K��p;y,x�� .

�40�

Proof: We fix either Dirichlet, Robin, or Neumann boundary conditions and omit them from
the notation. We always assume the regions satisfy �F�. Recall that M��t , p� is given by

M��t,p� = lim
�
�↑	

1

�
��
2
dxdy�x�

K
�t;x,y��y�
K
�p;y,x� . �41�

We first replace the derivatives of the finite-volume heat kernel K
 by the corresponding deriva-
tives of the infinite-volume heat kernel K� in Eq. �41�. We obtain

M��t,p� = lim
�
�↑	

1

�
��
2
dxdy�x�

K��t;x,y��y�
K��p;y,x�

+ lim
�
�↑	

1

�
��
2
dxdyQ
�t,p;x,y� . �42�

We estimate the remainder term involving Q
 using Theorem 3.1 and prove that this term con-
verges to zero as �
 � →	. The details are given in Appendix B 1.

In order to apply the Birkhoff ergodic theorem, Eqs. �32� or �33�, we replace the domain of
x�
 by Rd and obtain

M��t,p� = lim
�
�↑	

1

�
��Rd
dx�




dy�x�
K��t;x,y��y�

K��p;y,x�

− lim
�
�↑	

1

�
��Rd\

dx�




dy�x�
K��t;x,y��y�

K��p;y,x� . �43�

For the second term on the right of Eq. �43�, we use estimate �30� and we prove that this term
converges to zero in Appendix B 2. Let X��t , p ;y� be the family of random variables defined by
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X��t,p;y� � �
Rd

dx�x�
K��t;x,y��y�

K��p;y,x� . �44�

This family of random variable is Rd or Zd-covariant, as follows from Eq. �36�, since

X�a��t,p;y� = �
Rd

dx�x�
K��t;x + a,y + a��y�

K��p;y + a,x + a� = X��t,p;y + a� . �45�

Furthermore, we observe that X��t , p ;y��L	�� ,P�, uniformly in y�Rd. It follows from the
translational invariance of the upper bound in Eq. �30� that

�X��t,p;y�� �
�Cd,1�2

t�d+1�/2p�d+1�/2�
Rd

dxe−2c̃d,1�t+p�/tpx 2
�

Cd

�tp�1/2�t + p�d/2 . �46�

Consequently, we apply Eq. �32� in the Rd-ergodic case and obtain

M��t,p� = lim
�
�↑	

1

�
��


dyX��t,p;y�

= E��
Rd

dx�x�
K��t;x,0��y�

K��p;0,x�� . �47�

In the Zd-ergodic case, we apply Eq. �33� and obtain

M��t,p� = lim
�
�↑	

1

�
��


dyX��t,p;y�

= E��
Rd

dx�
C0

dy�x�
K��t;x,y��y�

K��p;y,x�� . �48�

This proves the proposition. �

Corollary 3.1: From the definition of the velocity operator �5�, we have

�x�
K��t;x,y� =

− i

2
��H�e−tH��x,y� , �49�

so we can rewrite M��t , p� as given in Eq. �38� as

M��t,p� = E���H�e−tH � H�e−pH��0,0�
 , �50�

and as given in Eq. �40� as

M��t,p� = E�Tr��C0
� H�e−tH � H�e−pH�C0

�
 . �51�

D. Proof of Theorem 2.1

1. Proposition 3.1 shows that the limit of the double Laplace transform of the finite-volume
current-current correlation measure exists almost surely. The limit is clearly independent of the
family of expanding regions provided they satisfy condition �F�. A priori, this limit depends on the
boundary conditions, Dirichlet, Robin, or Neumann, used to define the finite-volume Hamilto-
nians. The independence of the boundary conditions follows from an estimate on the difference
between pairs of heat kernels defined with the various boundary conditions. For example, the
independence of Dirichlet or Neumann boundary conditions follow from estimating:
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�x�
�K


D�t;x,y� − K

N�t;x,y�� = �x�

�K

D�t;x,y� − K�t;x,y�� + �x�

�K�t;x,y� − K

N�t;x,y�� , �52�

restricted to 
. As each of the terms on the right in Eq. �52� are bounded above as in Eq. �27�, we
can show that

M�,

D �t,p� − M�,


N �t,p� → 0, �53�

as 
→Rd and for each �=1, . . . ,d. A similar estimate holds for any other pair of boundary
conditions. Hence, the limit function M��t , p� is independent of the boundary conditions.

2. Given the convergence of the Laplace transforms, we prove in Appendix A, that there exists
a unique measure m��dE ,dE�� such that

m��dE,dE�� = lim
�
�↑	

m

��dE,dE�� , �54�

vaguely, and that

M��t,p� = �
�0, 	 �2

e−tEe−pE�m��dE,dE�� . �55�

This expression of M��t , p� is given in Eq. �50� for the Rd-ergodic case

M��t,p� = E����H�e−tH � H�e−pH��0,0�� , �56�

and in Eq. �51� for the Zd-ergodic case

M��t,p� = E�Tr��C0 � H�e−tH � H�e−pH�C0
�
 . �57�

The spectral theorem allows us to write the semigroup e−mH as ��e−mEEH�dE�, where � is the
almost sure spectrum of the random family H�. In the case of a positive potential and H0=−�, we
have �= �0, 	 �. Using this representation in Eq. �56�, we have

M��t,p� = �
�0, 	 �2

e−tEe−pE�E���H�EH�dE� � H�EH�dE����0,0�
 , �58�

and the corresponding relation for Eq. �57�. Comparing Eqs. �58� and �55�, we obtain the result.�

IV. THE CURRENT-CURRENT CORRELATION MEASURE AS A THERMODYNAMIC
LIMIT: LATTICE CASE

In this section, we prove Theorem 2.2 for the lattice case. The computation of the Pastur-
Shubin formula for lattice models is different from the continuous case in two respects. First, the
free heat kernel has sub-Gaussian, rather than Gaussian, decay. Second, the spatial derivative is a
lattice translation so that estimates on the heat kernels only suffice for proving the existence of the
thermodynamic limit.

A. Heat kernels

The lattice Laplacian defined in Eq. �4� has a Fourier transform given by F�L��k�
=� j=1

d 2 cos�2�kj�, with k�Td= �0,1�d. Using this to compute the Zd -translation-invariant free
heat kernel, one obtains

K�0��t;n� = etL�n� = �
j=1

d

k�0��t;nj�, n = �n1, . . . ,nd� � Zd, �59�

with k�0��t ;nj�, for nj �Z, is the one-dimensional heat kernel given by
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k�0��t;nj� = injJnj
�− 2ti� , �60�

where Jk�z� is the Bessel function of the first kind of order k given by

Jk�z� =
1

2�
�

0

2�

eiz sin �e−ik�d� . �61�

A simple calculation using the power series representation of Jk�z� shows that Jk�−2it�= i−kPk�t�,
where Pk�t� is a positive function for t�0. Consequently, the heat kernel K�0��t ;n� is a positive
function for t�0. The large �n� behavior of this kernel is

K�0��t;n� �
tCdn

�n1� ! . . . �nd�!
edt2 � edt2�

j=1

d

�et��nj�e−�d�nj�log��nj�+1�. �62�

This should be be compared with Eq. �24�. In the case that H0=L+V0, where V0 satisfies �H1L�,
the free heat kernel is Zd-periodic. Inequalities �23� hold for the lattice model under hypotheses
�H1L� and �H2L�.

For the derivative in the x�-direction, let e� be the unit vector in that direction. There are
actually two unitarily equivalent definitions of the derivative, one being

��x�

+ f��n� = f�n + e�� , �63�

and the other being

��x�

− f��n� = f�n − e�� . �64�

We will work with the first definition �x�

+ , and drop the � from the notation. With these definitions,
the Laplacian defined in Eq. �4� is equal to ���x�

± , for either derivative. We compute, via Eq. �5�,
the �th-component of the velocity operator �H� as i-times the partial derivative given in Eq. �63�.
The boundary �
 of the set 
�Zd is defined to be

�
 = �n � 
c; inf
m�


�m − n� = 1
, � 
 � 
c. �65�

We present a version of Proposition 3.1 that holds for the lattice models with Dirichlet
boundary conditions �DBC�. The method of proof uses the Feynman-Kac formula �31�. We refer
the reader to Refs. 12 and 13 for a discussion of the Feynman-Kac formula and notation. Brownian
motion on the lattice Zd is discussed in the book of Carmona and Lacroix.1 The proof given here
in the lattice case is also applicable to the continuous models on Rd as remarked in Sec. III A. One
has to use the Gaussian kernel �24� for K�0� and the Gaussian probability density in the calculation
of the integral in Eq. �72� below. This will give the upper bound �27� for the difference of the heat
kernels �26� in Theorem 3.1.

Proposition 4.1: Let K�t ;m ,n� and K
�t ;m ,n� be the infinite-volume and finite-volume heat
kernels, respectively, for the Hamiltonian H�=L+V0+V�, on �2�Zd�, respectively, on �2�
�, with
DBC and satisfying (H1L) and (H2L). We have

K
�t;m,n� = K�t;m,n� + E
�t;m,n�, for m,n � 
 , �66�

where the difference E
 satisfies

�E
�t;m,n�� � Cde−cdte−�m−nlogm−n+d�p,�
�log d�p,�
��, �67�

where p can be taken to be either m or n, d�· , · � denotes the distance function, and the constants
Cd ,cd�0 are finite positive constants independent of 
 , t ,m ,n.

Proof: The difference between the infinite volume heat kernel of the Hamiltonian H=H0

+V� and the finite volume heat kernel �with Dirichlet boundary conditions� is given by the
Feynman-Kac formula. Let B�s� be d-dimensional Brownian motion on the lattice Zd so that
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B�0�=0. For m ,n�
�Zd and t�0, let b�s� be the Brownian bridge connecting m at s=0 to n at
s= t. We then have

K�t;m,n� − K
�t;m,n� = E0,m
t,n �e−�0

t �V0+V���b�u��du� − E0,m
t,n �e−�0

t �V0+V���b�u��du�
�b�·���

= E0,m
t,n �e−�0

t �V0+V���b�u��du�1 − �
�b�·���� � E0,m
t,n �1 − �
�b�·��� , �68�

since the potential V0+V� is nonnegative �actually, only lower semibounded is necessary�. We
recall that the measure corresponding to the expectation E0,m

t,n in Eq. �68� satisfies

P0,m
t,n �·� = K�0��t;n − m�P̃0,m

t,n �·� , �69�

where P̃0,m
t,n �·� is the normalized probability measure on paths connecting m at s=0 to n at s= t.

Because of the translation invariance and the nature of the integrand in the last term in Eq. �68�,
we have

E0,m
t,n �1 − �
�b�·��� = E0,0

t,n−m�1 − �
�B�·� + m�� = E0,0
t,n−m�B�s� + m � 
, for some 0 � s � t� .

�70�

With reference to Eqs. �69� and �70�, we note that the measure P̃0,0
t,n−m is the conditional probability

measure for Brownian motion satisfying B�0�=0 and conditioned by B�t�=n−m. Bounding this

above by the unconditioned probability measure P̄0,0, we obtain from Eq. �70�

E0,m
t,n �1 − �
�b�·��� � K�0��t;m − n�P̃0,0�B�s� + m � 
, for some 0 � s � t�

� K�0��t;m − n�P̃0,0��B�s�� � dist�m,�
�, for some 0 � s � t� . �71�

The probability on the last line in Eq. �71� is calculated in Ref. 12 for the Gaussian case. The first
line in Eq. �72� below, proven, for example, in Ref. 13, is called Lévy’s inequality. We repeat this
calculation here

P̃0,0��B�s�� � dist�m,�
�, for some 0 � s � t�

� 2P̃0,0��B�t�� � dist�m,�
��

� 2C�d,t� �
�n�Zd:n�dist�m,�
�


K0�t;n� , �72�

where K0 is defined in Eq. �59� and C�d , t��0 is the normalization constant so that

C�d,t� �
n�Zd

K0�t;n� = 1. �73�

Using Eq. �62�, we find that

�
�n�Zd:n�dist�m,�
�


K�0��t;n� � C0e−2te−C1d�m,�
��log d�m,�
�−�log t��, �74�

for some finite constants C0 ,C1�0. This estimate, along with the estimate �62� for the heat kernel
prove bound �67�. �

B. The Birkhoff Ergodic theorem for lattice models

For lattice models on �2�Zd�, the translation group is Zd, or a subgroup �N=NZd, for N�1.
When N=1, we have �1=Zd. The operator L+V� is Zd-covariant, but the background potential V0

may be only �N-periodic. Consequently, the entire operator H� is �N-covariant. In this case, the
Birkhoff ergodic theorem that we will use is as follows. Let X��m��L1�� ,P� be a �N-ergodic,
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uniformly bounded, random variable such that X��m+a�=X�a��m�, for any a��N and m�Zd.
Recall that �k is an ergodic action of �N on the probability space �� ,P�. Let C0�N� denote a
fundamental cell for �N centered at the origin with volume �C0�N� � =Nd. We then have

1

Nd �
k�C0�N�

E�X��k�� = lim
�
�→	

1

�
� �
m�


X��m� , �75�

where the sequence of �N-compatible regions 
 increases to Zd. When N=1, we obtain the usual
expression

E�X��0�� = lim
�
�↑	

1

�
� �j�


X��j� . �76�

C. Convergence of the Laplace transform of the finite-volume measure

We next present the analog of Proposition 3.1 for the lattice case.
Proposition 4.2: Let K��t ;x ,y� denote the heat kernel for the Hamiltonian H�=L+V0

+V� �3� on �2�Zd�, with V0 a �N-periodic background potential. For every t�0 and p�0, the
limit as �
 � →	 of M


����t , p�, with Dirichlet boundary conditions, exists almost surely, for any
�=1, . . . ,d, and for any increasing sequence of domains satisfying, condition ��H�. The limit is
equal to

M��t,p� = lim
�
�→	

M

����t,p� �77�

=
1

Nd �
k�C0�N�

E� �
m�Zd

�m�
K��t;m,k��m�

K��p;k,m�� .

�78�

Proof: 1. In the lattice case, formula �22� reads

M
�t,p� =
1

�
� �
m,n�


�m�
K
�t;m,n��n�

K
�p;n,m� . �79�

From the definition �63�, there are four terms involving the heat kernels K
. We write M
= I
+ II+ III+ IV, where

I =
1

�
� �
m,n�


K
�t;m + e�,n�K
�p;n + e�,m� , �80�

II = −
1

�
� �
m,n�


K
�t;m,n�K
�p;n + e�,m� , �81�

III = −
1

�
� �
m,n�


K
�t;m + e�,n�K
�p;n,m� , �82�

IV =
1

�
� �
m,n�


K
�t;m,n�K
�p;n,m� . �83�
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2. We next replace each finite-volume heat kernel K
 by the infinite-volume heat kernel K�,
restricted to 
. As in the continuous case, the estimate of the difference E
 given in Proposition
4.1 is sufficient to repeat the arguments of Appendix B in the lattice case proving that the
substitution can be performed.

3. We now use the Birkhoff ergodic theorem to control the resulting terms I , II , III , IV. For
example, term I has the form

1

�
� �
n,m�


K��t;m + e�,n�K��p;n + e�,m� . �84�

As in Sec. III, we replace the sum over n�
 by the sum over n�Zd. We now define

F��m� = �
n�Zd

K��t;m + e�,n�K��p;n + e�,m� . �85�

The covariance rule �35� and the translational invariance on the sum over n allow us to verify that

F��m + a� = F�a��m� , �86�

for a��N. As a consequence, the Birkhoff ergodic theorem �76� implies that

lim

→Zd

1

�
� �
m�


F��m� =
1

Nd �
k�C0�N�

E�F��k�
 , �87�

so that term I has a limit

1

Nd �
k�C0�N�

E� �
n�Zd

K��t;n + e�,k�K��p;e�,n�� . �88�

4. In the same way, we see that the limit of terms II–IV can be evaluated using the Birkhoff
ergodic theorem and the invariance of the sum over �N. We then find for these terms

−
1

Nd �
k�C0�N�

E� �
n�Zd

K��t;e�,n�K��p;n,k�� , �89�

−
1

Nd �
k�C0�N�

E� �
n�Zd

K��t;k,n�K��p;n + e�,k�� �90�

and

1

Nd �
k�C0�N�

E� �
n�Zd

K��t;k,n�K��p;n,k�� . �91�

Combining the limits �88�–�91�, we see that

lim

→Zd

M

����t,p� =

1

Nd �
k�C0�N�

E� �
n�Zd

�k�
K��t;k,n��n�

K��p;n,k�� . �92�

The remaining parts of the proof proceed as in the continuum case. �

V. THE TRACE-PER-UNIT VOLUME APPROACH

There is another common, and equivalent, definition of the density of states measure using the
infinite-volume Hamiltonian. We refer to this as the trace-per-unit volume definition. We refer the
reader to Refs. 8 and 14 for further discussion. We extend this definition to the current-current

112106-14 P. D. Hislop and O. Lenoble J. Math. Phys. 47, 112106 �2006�

                                                                                                                                    



correlation measure. A covariant operator A�, for ���, is a family of bounded, measurable
operators satisfying A�j�

=UjA�Uj
−1, for j in a translation group Rd or Zd.

Definition 5.1: Let �
 be the characteristic function on region 
�Zd or Rd. The trace-per-
unit volume of a covariant operator A� is defined as

TP�A� � lim

→X

1

�
�
Tr�
A��
, �93�

where X=Zd or X=Rd.
Provided the limit in Eq. �93� exists, the ergodicity of the group action and the covariance

property of A� imply that the limit is almost surely independent of �. In order to obtain the
integrated density of states N�E�, let P��E� be the spectral projector for H� on the half-line
�−	 ,E�. Then, we have N�E�=TP�P��E��, and the DOS measure � is defined through the relation

� f�E�d��E� = TP�f�H��� . �94�

For the current-current correlation measures, we use standard notation for the velocity observable

�H� � i�H�,X�� = i�H0,X�� , �95�

as in the other sections. The infinite-volume current-current correlation measures m̃�, for �
=1, . . . ,d, are defined directly using the infinite-volume operators H�. For two functions f ,g
�C0�R�, we define the bilinear mapping m̃� by

f ,g � C0�R� → m̃��f ,g� � TP��H�f�H�� � H�g�H��
 . �96�

This is the trace-per-unit volume of the covariant operator �H�f�H���H�g�H�� and corresponds
to the operator defined in Eq. �13�.

Proposition 5.1: The map m̃� defined on pairs of function as in Eq. �96� extends to a unique
nonnegative linear functional on C0�R2� and hence determines a measure m̃� on R2.

As a consequence, we note that for two intervals � j �R, for j=1,2, the current-current
correlation measure m̃� is

m̃���1,�2� � TP��H�EH��1� � H�EH��2�
 . �97�

The next theorem is the analog of a well-known result for the DOS. The DOS can be de-
scribed through the thermodynamic limit as in Sec. II, or it can be described through the trace-
per-unit volume approach as in Eq. �94�. In most cases, these yield the same measure.

Theorem 5.1: We assume the hypotheses of Theorems 2.1 or 2.2 and use the same increasing
families of regions to construct m̃�. Then, the nonnegative measure m̃�, described in Proposition
5.1, is equal to the current-current correlation measure m̃� constructed in Theorem 2.1, for
continuum models, or in Theorem 2.2, for lattice models.

Proof: We use the converse of Lemma 6.1 stating that if a uniformly bounded sequence of
measures �n on Rd is such that the Laplace transforms converge pointwise, then the measures
converge vaguely. We compare the Laplace transform of the local measure defined using H
 given
by

L��
��t,p� =
1

�
�
Tr
 � H�e−tH
 � H�e−pH


=
1

�
�
TrRd�
 � H�e−tH
 � H�e−pH
�
, �98�

with the expression involving the infinite-volume Hamiltonian H� restricted to 
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L��
��t,p� =
1

�
�
TrRd�
 � H�e−tH� � H�e−tH��
. �99�

Note that the semigroups are smoothing operators. The convergence of the Laplace transforms
requires that we prove the vanishing of the following two terms:

I =
1

�
�
Tr�
��H�e−tH
 − �H�e−tH�� � H�e−pH
�
, �100�

II =
1

�
�
Tr�
 � H�e−tH���H�e−pH
 − �H�e−pH���
. �101�

This follows directly from the estimates on the differences of the finite-volume and infinite-
volume heat kernels and their derivatives as used in Secs. III and IV, and the arguments in
Appendix B on the replacement of the finite-volume heat kernel by the infinite-volume one. �

It is, of course, an immediate consequence of the equality of m�, constructed with some
self-adjoint boundary condition, and m̃�, independent of any boundary conditions, that the current-
current correlation measure is independent of the self-adjoint boundary conditions used to con-
struct it.
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APPENDIX A: THE d-DIMENSIONAL LAPLACE TRANSFORM

We state the main results on the d-dimensional Laplace transform of positive measures sup-
ported on the positive cone Cd

+��x�Rd �xj �0, for j=1, . . . ,d
�Rd that we use in this paper. Let
�= ��1 , . . . ,�d� and x= �x1 , . . . ,Xd� denote vectors in Rd. Let � be a d-dimensional positive mea-
sure defined on Cd

+ so that ��Cd
+��1. The d-dimensional Laplace transform of �, denoted by

L������, is given by

L������ = �
Cd

+
e−�·xd��x� , �A1�

and we have �L������ � �1, for ��Cd
+. Of course, the Laplace transform exists for a much more

general class of measures, but we do not deal with them here. We also need the following
analyticity hypothesis on the Laplace transform.

Analyticity Hypothesis: The Laplace transform L������ is analytic for � in the product of
half-planes �+����Cd �R� j �0, j=1, . . . ,d
.

It is clear from the representations �38� and �40�, and the analyticity of the heat kernels in a
half-plane, that this analyticity hypothesis is satisfied for the cases considered here.

We first recall the definition of vague convergence of measures, cf. Ref. 15. A sequence of
measures �n on a measurable space Y converges vaguely to a measure � if for any f �C0�Y�, we
have �n�f�→��f�, where ��f���Y fd�. The main results that we use in this paper is the following
theorem.

Theorem 6.1: Let ��n
 be a sequence of positive measures on Cd
+ such that �n�Cd

+��1 and
each measure �n satisfies the analyticity hypothesis. If the sequence of d-dimensional Laplace
transforms L��n� on Cd

+ converges pointwise to a finite function �, also analytic on the product of
half-planes �+, then there exists a unique positive measure � on Cd

+ satisfying ��Cd
+��1 so that

����=L������, and the measures �n→� vaguely.
We need two auxiliary lemmas.
Lemma 6.1: Suppose a sequence of nonnegative, normalized measures �n on Cd

+ converges
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vaguely to a non-negative, normalized measure �, and the Laplace transforms L��n��t� converge
pointwise for t�Cd

+ to a function ��t�. Then, the Laplace transforms L��n� converge pointwise to
L���, that is, ��t�=L����t�.

Proof: Let fn be a nonnegative function that is one for t�Bn�0��Cd
+, and zero otherwise.

Because of the hypotheses on the measures, we note that for any n

lim
m→	

L��1 − fm��n��t� = 0, t � Cd
+. �A2�

We also have uniformity in the sense that if m�k

0 � L�fm�n��t� − L�fk�m��t� � e−kt, t � Cd
+. �A3�

Using Eq. �A2�, we have the following limits:

lim
n→	

lim
m→	

L�fm�n��t� = ��t� �A4�

and

lim
m→	

lim
n→	

L�fm�n��t� = L����t� , �A5�

for t�Cd
+. Also, it is easy to show that

lim
m→	

L�fm�m��t� = ��t�, t � Cd
+. �A6�

If m�n, we have 0�L�fm�n��t��L�fn�n��t�. Taking n→	, we obtain from Eq. �A6� and vague
convergence that 0�L�fm���t����t�, from which it follows that 0�L����t����t�. On the other
hand, if m�k, we have

0 � L�fm�m��t� = L��fm − fk��m��t� + L�fk�m��t� � e−kt + L�fk�m��t� . �A7�

Taking m→	, it follows from Eq. �A3�, Eq. �A6� and this inequality that 0���t��e−kt

+L�fk���t�. Now, taking k→	, we obtain 0���t��L����t�. Hence, we have ��t�=L����t�, for
all t�Cd

+. �

Lemma 6.2: �Uniqueness� Distinct d-dimensional probability measures, satisfying the analy-
ticity hypothesis, have distinct d-dimensional Laplace transforms.

Proof: We use a multiple contour integral representation of the inverse Laplace transform
�ILT� for contours � j =� j + itj, with tj �R and � j �0. We first consider rectangles R
=� j=1

d �aj ,bj��Cd
+, and compute the following limit:

lim
�tj�→	

� 1

2�i
�d�

�1−it1

�1+it1

ds1 ¯ �
�d−itd

�d+itd

dsd�k=1
d � eskbk − eskak

sk
�L����s1, . . . ,sd� . �A8�

We use the following identity:

lim
tj→	

1

2�i
�

�j−itj

�j+itj esj�bj−xj� − esj�aj−xj�

sj
dsj = − ���xj − bj� − ��xj − aj�� , �A9�

and the representation of the Laplace transform �A1�. As a consequence, we see that the limit in
Eq. �A8� is ��R�, for any rectangle R�Cd

+. Setting aj =0, we recover a distribution function of the
measure supported on Cd

+ and defined by F��x1 , . . . ,xd�����0,x1�� �0,x2�� ¯ � �0,xd��, Since
the distribution function uniquely determines the measure, we see that if two measures � j, satis-
fying the above hypotheses, are such that L��1�=L��2�, their distribution functions, and hence the
measures themselves, are equal. �

Proof of Theorem 6.1: 1. A normalized measure on Cd
+ is a positive measure with ��Cd

+��1.
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Let �n be a sequence of normalized measures on X=C0�Cd
+� with the norm  f  =sup � f�x��. Each

normalized measure defines a bounded linear functional on X since

���f�� � ��
Cd

+
fd�� �  f  , �A10�

for all f �X. If S*�X* denotes the unit ball of the dual X*, then �n�S*. Since S* is compact in
the weak* topology on X*, there exists a weak* convergent subsequence �nj

in S*. Let ��S* be its
limit point. By definition of weak* convergence, this means that �nj

→� vaguely.
2. To prove that the sequence �n converges vaguely to �, we use the Laplace transform �n

�L��n� defined in Eq. �A1�. By hypothesis, the sequence L��n� converges pointwise to a function
� on Cd

+. By Lemma 6.1, the vague convergence of measures implies the convergence of the
Laplace transforms. Consequently, the subsequence L��nj

� converges to L���. But since the limit
is unique, we have L���=�=limjL�� j�. By the uniqueness result Lemma 6.2, the function � is the
Laplace transform of �.

3. Finally, we need to show that �n converges vaguely to �. It follows that any vaguely
convergent subsequence �nj

converges to �. Since for any f �C0�Cd
+�, the sequence �n�f� is

uniformly bounded, this implies �n�f�→��f�. �

In order to apply Theorem 6.1 to the measures m

� , we need a renormalization since these

positive measures are not probability measures. Since these measures grow at most polynomially
in �E ,E��, the Laplace transform exists and is pointwise bounded. Let �t0 , p0��C2

+ be a point at
which the Laplace transform L�m
n

� � exists and is nonzero �such a point exists for all n�. We define
a sequence of renormalized measures by

m̃
n

� �dE,dE�� � e−t0E−p0E�
m
n

� �dE,dE��

L�m
n

� ��t0,p0�
. �A11�

These positive measures satisfy

m̃
n

� �C2
+� = 1, �A12�

and are hence probability measures. We can apply Theorem 6.1 to this sequence since, by Theo-
rem 3.1, the Laplace transforms of m


� , and consequently of m̃

� converge pointwise. The Laplace

transform of m̃

� , dropping the subscript n, is then

L�m̃

���t,p� = �

�0, 	 �2
e−itE−pE�m̃


��dE,dE�� =
L�m


���t + t0,p + p0�
L�m


���t0,p0�
. �A13�

As the Laplace transform is strictly positive, we know that L�m
n

� ��t0 , p0�→L�m���t0 , p0��0, so
that the Laplace transforms L�m̃


���t , p� converge pointwise to

L�m̃

���t,p� =

L�m���t + t0,p + p0�
L�m���t0,p0�

. �A14�

So there exists a unique probability measure m̃��dE ,dE�� whose Laplace transform is L�m̃�� and
m̃


� → m̃� vaguely. In order to remove the renormalization, we define a measure m� by

m��dE,dE�� � et0E+p0E�L�m̃���t0,p0�m̃��dE,dE�� . �A15�

We have then the vague convergence

m��dE,dE�� = lim

→Rd

m

��dE,dE�� , �A16�

completing the proof of Theorems 2.1 and 2.2.
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APPENDIX B: SUBSTITUTION OF INFINITE-VOLUME HEAT KERNELS IN THE PROOF
OF PROPOSITION 3.1

We present the technical details needed in the proof of Proposition 3.1. We work in the
continuous case. Similar arguments work in the lattice case for the proof of Proposition 4.2, and
we omit the details.

1. Replacement of finite-volume heat kernels by infinite-volume heat kernels

We provide the details of the replacement of the finite-volume heat kernels �x�
K
 in Eq. �41�

by the infinite-volume heat kernels �x�
K restricted to the region 
. Since these kernels should

differ only on the boundary of the region, the difference should be of order of ��
�. We let d�x ,�
�
denote the distance from x�
 to the boundary of 
, denoted by �
. In light of Eq. �29�, the
following integral plays a crucial role:

B�
� � �



e−C0�t�d�x,�
�2
dx . �B1�

We analyze this integral for families of increasing regions satisfying conditions �vH� or �F� in
Appendix C and prove that

lim
n→	

B�
n�
�
n�d

= 0, �B2�

for a wide family of increasing regions 
n. We will always assume that we are working with a
sequence 
n satisfying these conditions in this Appendix, and we will omit the index n from the
notation. We consider the term in Eq. �41�

I1 � lim
�
�↑	

1

�
��


dy�



dx�x�
K
�t;x,y��y�

K
��t;y,x�� �B3�

= lim
�
�↑	

� 1

�
��


dy�



dx�x�
K�t;x,y��y�

K�t;y,x�

+
1

�
��


dy�



dxQ
�t,p;x,y�� , �B4�

where we must control three terms

Q
�t,p;x,y� � �x�
K
�t;x,y��y�

K
�p;y,x� − �x�
K�t;x,y��y�

K�p;y,x�

= �x�
K�t;x,y���y�

K
�p;y,x� − �y�
K�p;y,x��

+ ��x�
K
�t;x,y� − �x�

K�t;x,y���y�
K�p;y,x�

+ ��x�
K
�t;x,y� − �x�

K�t;x,y����y�
K
�p;y,x� − �y�

K�p;y,x��

= J1 + J2 + J3. �B5�

By Theorem 3.1, the differences can be written in terms of F
 described in Eqs. �28� and �29�. To
prove that the integral with Q
�t , p ;x ,y� in Eq. �B5� converges to zero, we first foucus on J1, and
note that J2 is similar

J1 = lim
�
�↑	

1

�
��


dy�



dx�x�
K�t;x − y�F
�p;y,x� . �B6�

By using estimates �29� and �30�, Eq. �B1�, we easily obtain the upper bound
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�J1� � C�t,d�
1

�
��Rd
dy�




dxe−�d/t�x − y 2
e−�c̄d/t�d�x,�
�2

�
C�t,d�

�
� ��
Rd

du e−�d/t�u 2���



dxe−�c̄d/t�d�x,�
�2� � C�t,d�
B�
�
�
�d

. �B7�

Because, of condition �F�, this term vanishes as 
 increases to Rd. The term J3 in Eq. �B5� is
treated in the same manner since

J3 =
1

�
��


dy�



dxF
�t;x,y�F
�p;y,x� �
C�t,d�

�
� �
Rd

dy�



dxe−�d/t�x − y 2
e−�c̄d/t�d�x,�
�2

� C�t,d�
B�
�
�
�d

. �B8�

This proves the convergence to zero of the remainder integral in Eq. �42�.

2. Convergence of the remainder integral in Eq. „43…

In this Appendix, we prove that the integral in the proof of the Proposition 3.1, obtained by
replacing 
 by Rd \
, converges to zero as 
→Rd. The term appearing in Eq. �43� is

1

�
��Rd\

dx�




dy�x�
K��t;x,y��y�

K��p;y,x� . �B9�

Since x�Rd \
 and y�
, we have x−y  �d�y ,
�. In view of estimate �30�, we have the upper
bound

Ct,p

�
� �Rd\

dx�




dye−�c̃d/t�x − y 2
e−�c̃d/t�d�y,�
�2

. �B10�

Integrating first over x, the remaining integral over y�
 is expressed in terms, of Eq. �B1�. It then
follows that the infinite-volume limit vanishes due to Eq. �B2�.

APPENDIX C: INTEGRALS OVER BOUNDARY-DISTANCE FUNCTIONS

Let 
�Rd or Zd be a bounded set. As in Appendix B, for x�
, we let d�x ,�
�
�dist�x ,�
� be the distance function to the boundary of 
. In the continuous case, we see from
Proposition 3.1 that there are integrals of the type

B�
� � �



e−c0d�x,�
�2/tddx , �C1�

that we must evaluate. In particular, we must prove that

lim
�
�→	

B�
�
�
�d

= 0, �C2�

for a suitable sequence of increasing regions 
n, where �A�k denotes the k-dimensional Lebesgue
measure of A. In order to verify this limit �C2�, we assume that the sequence 
n satisfies either
condition �vH� �11� in the lattice Zd case, or condition �F� �12� in the continuous case. Further-
more, we assume the following property of the boundary-distance function:

Regularity: Given ��0, there exists a constant 0�R�	 so that

��x � 
�d�x,�
� � �
�d � C���
�d−1, for 0 � � � R �C3�

and
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��x � 
�d�x,�
� � �
�d � �
�d, for � � R . �C4�

Proposition 8.1: Suppose 
n is an increasing sequence of bounded regions satisfying (vH) or
(F), Eqs. �11� or �12�, respectively, and conditions �C3� and �C4� with constants �Cn ,Rn� and the
constant Cn in Eq. �C3� is uniformly bounded 0�Cn�C0�	, and Rn→	 as �
n � →	. Then, we
have

lim
�
n�→	

B�
n�
�
n�d

= 0, �C5�

where B�
n� is defined in �C1�.
Proof: If Eq. �C5� holds true, the value of the parameter t is not important so we set t=1 for

convenience. We estimate the integral �C1� for large n as follows:

B�
n� � ��
�x�
n�d�x,�
n��1


+ �
�x�
n�1�d�x,�n��Rn


�e−c0d�x,�
n�2
ddx

+ �
�x�
n�d�x,�
n��Rn


e−c0d�x,�
n�2
ddx

� Cn��
n�d−1 + �
k=1

�log Rn�+1

e−c0�1 + Kn�k − 1��2
��x � 
n�Ck

� d�x,�
n� � Ck+1
�d + e−c0Rn
2
�
n�d, �C6�

where Kn= ��Rn−1� / �log Rn��, with �x� the greatest integer less than x, and Ck=1+−Kn�k−1�. The
sum in Eq. �C6� is bounded above by

�
k=1

�log Rn�+1

e−c0�1 + Kn�k − 1��2
��x � 
n�Ck � d�x,�
n� � Ck+1
�d

� D0�1 +
1

Kn
��1 − e−c0Kn

2��log Rn� − 1�2
���
n�d−1, �C7�

for some finite constant D0�0 independent of n. Consequently, we have

B�
n�
�
n�d

� D1
��
n�d−1

�
n�d
, �C8�

for some other finite constant D1�0, independent of n, and the result follows. �

For what regions are conditions �C3� and �C4� satisfied? We state the following simple result.
The proof follows from the existence of a boundary collar neighborhood.

Lemma 8.1: Let 
�Rd be a bounded region with a piecewise C1-boundary. Then conditions
�C3� and �C4� are satisfied.

We can consider the family 
n obtained by dilations of a given region satisfying the hypoth-
esis of Lemma 8.1 and easily check the hypotheses of Proposition 8.1.
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We establish eigenfunctions estimates, in the semiclassical regime, for critical en-
ergy levels associated to an isolated singularity. For Schrödinger operators, the
asymptotic repartition of eigenvectors is the same as in the regular case, excepted in
dimension one where a concentration at the critical point occurs. This principle
extends to pseudo-differential operators and the limit measure is the Liouville mea-
sure as long as the singularity remains integrable. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2378619�

I. INTRODUCTION

The problem we consider here concerns the asymptotic behavior of eigenvectors of a self-
adjoint operator and follows the works of Colin de Verdière1 and Zelditch,2 on the basis of a result
stated first by Shnirel’man. We are more precisely interested in a proof of a microlocal concen-
tration phenomena, in the semiclassical regime, as established in Refs. 3 and 4. The adaptation to
semiclassical analysis was done in Ref. 5 following a technique proposed by Voros.6 We also
mention Ref. 7 for a more general approach in the scattering setting.

Consider a quantum operator Ph, realized as a self-adjoint operator acting on a dense subset of
L2�Rn�. A typical example, studied in Sec. II, is the Schrödinger operator Ph=−h2�+V where the
potential V is smooth and bounded from below. If the spectrum of Ph is discrete in �E−� ,E+��,
a sufficient condition for this is given below, we can enumerate the eigenvalues in this interval as
a sequence � j�h� with finite multiplicities. We note � j

h the corresponding normalized eigenvectors,
i.e.,

Ph� j
h = � j�h�� j

h, �� j
h�L2 = 1.

Our objective is to establish eigenfunctions estimates

�� j�a� = �Oph
w�a�� j

h,� j
h� ,

� j�h� → E, h → 0+,

where a�S0�R2n�, so that by the Calderon-Vaillancourt theorem

f � Oph
w�a�f�x� =

1

�2�h�n	
R2n

a
 x + y

2
,��e�i/h��x−y,��f�y�dyd� ,

is bounded on L2�Rn�. Note that the statement of the problem is local w.r.t. E and we are interested
here in the case of E=Ec critical. Let �t=exp�tHp� be the Hamiltonian flow of the principal
symbol p of Ph. Each � j�a� measures the observable Oph

w�a� in the state � j
h. Interpreted as distri-

butions, these measures are �t-invariant which easily follows from:

a�Electronic mail: brice.camus@univ-reims.fr
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�e−�it/h�PhOph
w�a�e�it/h�Ph� j

h,� j
h� = �Oph

w�a�e�it/h��j�h�� j
h,e�it/h��j�h�� j

h� = � j�a� .

By Egorov’s theorem e−�it/h�PhOph
w�a�e�it/h�Ph is an operator of principal symbol �a ��t� and � j is

invariant under �t, up to O�h�.
We recall that E is regular if �p�0 on the energy surface

	E = ��x,�� � T*Rn/p�x,�� = E ,

and critical otherwise. When Ec is critical, 	Ec
is not a smooth manifold. For E regular, 	E inherits

a measure, invariant by �t, given by

dLvol�z� =
dz

��p�z�� �	E
, z � 	E,

where dz is the Riemannian surface element. We note V�E� the associated volume of 	E and we
obtain a probability measure via

d
E�z� =
1

V�E�
dLvol�z� .

Note that if Ec is critical, d
Ec has a sense if and only if 1�L1�	Ec
,dLvol�. Via a wave equation

approach, substituting here the heat equation strategy of Ref. 1 on a compact manifold, the
problem is related at the first order to the geometry of the energy surfaces. Accordingly, the
integrability of dLvol has a strong effect on the asymptotic behavior of the sequence � j.

First, we explain what is known in the presence of singularities. The micro-local concentration
near a singularity was proven in Ref. 4 for one-dimensional Schrödinger operators with a nonde-
generate instable equilibrium attached to a maximum of the potential. At the same time, in Ref. 3
several contributions of nondegenerate critical points are established in a more general setting. The
case of critical energy level is specifically considered in Ref. 8 for several commuting elliptic
operators and, more recently, in Refs. 9 and 10 these results have been generalized to the case of
completely integrable Laplacians on compact Riemannian manifolds. In particular, precise esti-
mates on the unboundedness of L� and Lp norms of eigenfunctions attached to singular leaves are
given. As concerns Schrödinger operators on Rn, we mention Ref. 11 where the tunnel effect
between degenerate minima of the potential is studied.

Next, we explain the contents of this article. Several results concerning the asymptotics of
semiclassical spectral distributions, see Eq. �4�, have been obtained in Refs. 12–15 following the
approach of Ref. 3. For degenerate critical energy levels the existence of particular asymptotics are
established and have been applied to the study of singularities of the distributional trace. The
objective of this contribution is to complete these results by the study of the quantum probability
�� j

h�2, attached to such critical energy levels, and the associated measures � j. As a corollary one
obtains precise estimates for the microlocal counting function of eigenvalues. We are first inter-
ested in the case of Schrödinger operators, but a generalization to pseudo-differential operators is
easy and provides more examples.

Finally, we recall that in Riemannian geometry, e.g., for Laplace operators on compact sur-
faces of negative curvature, the question to ask is if the full sequence � j converges to the invariant
measure �quantum unique ergodicity� is still open and has attracted a lot of attention during the
last years.

Definitions: We define now the objects used in Secs. II and III. If Ec is a critical energy level,
we pick an h-dependant interval

I�h� = �Ec − dh,Ec + dh�, d � 0. �1�

The associated counting function of eigenvalues is
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�h� = �
�j�h��I�h�

�� j
h,� j

h� = # �j/� j�h� � I�h� . �2�

For A=Oph
w�a� a pseudo-differential operator of order zero, whose principal symbol is a

�S0�R2n� we put

a�h� = �
�j�h��I�h�

�A� j
h,� j

h� = �
�j�h��I�h�

� j�a� . �3�

Observe that �h�=1�h� since for every quantization used in this contribution the symbol of the
identity is 1.

II. SCHRÖDINGER OPERATORS

Let p�x ,��=�2+V�x�, where the potential V�C��Rn� is a real value. To obtain a well defined
spectral problem, we use

(H1) There exists C�R such that: lim inf
�

V�C.

By a classical result, Ph=−h2�+V�x� is essentially self-adjoint. Note that �H1� is always
satisfied if V goes to infinity at infinity. Let J= �E1 ,E2�, with E2� lim inf

�
V. Since p−1�J� is com-

pact, the spectrum ��Ph��J is discrete and consists in a sequence �1�h���2�h�� ¯ �� j�h� of
eigenvalues of finite multiplicities, if h is small enough. Next, we impose the singularity:

(H2) On 	Ec
the symbol p has an isolated critical point z0= �x0 ,0�. This critical point can

be degenerate but is associated to a local extremum of V

V�x� = Ec + V2k�x� + O��x − x 0
j �2k+1�, k � N*,

where V2k, homogeneous of degree 2k, is definite positive or negative.

The case k=1, i.e., a nondegenerate singularity in dimension n, is treated in Ref. 3 without any
extremum condition. In Fig. 1 the line in bold is the critical energy level attached to the top of a
one-dimensional symmetric degenerate double well. Observe the instability near the recurrent
critical point.

To simplify notations we write z= �x ,���T*Rn and z0 for a critical point. The first result
concerns the statistical behavior of the sequence � j�a�.

Theorem 1: Assume (H1) and (H2) satisfied. If n�1 we have

lim
h→0+

a�h�
�h�

=	 ad
Ec,

but in dimension 1 we obtain

FIG. 1. Energy surfaces of V�x�=−x4+x6.
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lim
h→0+

a�h�
�h�

= ��z0
,a� = a�x0,0� .

These relations are statistical since when h→0 the number of eigenvalues in I�h� tends to infinity,
see Proposition 4. We define

K�h� = � j � N/� j�h� � I�h� .

Following the results of Refs. 1–3 and 5, for n�1 Theorem 1 implies that if �t is ergodic on 	Ec
there exists a density one subset L�h��K�h� such that for all integer valued function h→ j�h�
�L�h� we have

lim
h→0

�� j�h�
h ,Oph

w�a�� j�h�
h � = 	

	Ec

ad
Ec.

Here, density one simply means that

lim
h→0

#L�h�
#K�h�

= 1.

Since there is nothing new to prove, we refer to Refs. 3 and 5 for a precise study. More interesting,
is the generalization of the result of Ref. 4.

Corollary 2: In dimension one, assume that 	Ec
is connected. Then, for the weak * topology,

we have � j�h�→��z0�, j�h��K�h�, uniformly as h→0.
Hence, we obtain a concentration at z0. Observe that ��z0� is �t-invariant. If a is simply a

function, the quantum probability satisfies

lim
h→0

� j�h� = Ec ⇒ lim
h→0

�� j�h�
h �2�x� = �x0

.

The interpretation is as follows. In dimension one, the invariant measure on 	Ec
has a singularity

dLvol�z� � c
dz

�z − z0�
, near z0 = �x0,0� .

The measure is not integrable and the result has to be different. For n�1, the singularity is
integrable and an isolated critical point has no effect. This reinforces the universality of the
Liouville measure in quantum ergodicity. However, the case n=1 is important since many prob-
lems, with symmetries, can be reduced to the study of such a singular Schrödinger equation. See,
e.g., Ref. 4 for an application in Riemannian-geometry.

Preliminary remarks: The case of a local minimum of V is not really deep. Since �2�0, z0 is
a local extremum of p and is an isolated point of 	Ec

. According to the results of Ref. 13, the
contribution of a minimum is significant only if n=1. We consider now the nontrivial case of a
local maximum of V, corresponding to an unstable equilibrium of the flow. Finally, since we use
the functional calculous below, p has to be a symbol. But with �H1� we can eventually modify the
potential V outside of a compact subset of Rn, without modifying the main results. Hence no extra
assumption is required. Similar comments apply for Sec. III.

Proof of Theorem 1: We use the semiclassical trace formula technique. This approach, analo-
gous to the trace of the heat operator of Ref. 1, uses the propagator e�it/h�Ph and a generalization of
the Poisson summation formula for this operator. Let ��S�R�, a Schwartz function. To approxi-
mate  we define
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��Ec,h,�� = �
��j�h�−Ec���

�
� j�h� − Ec

h
� . �4�

This object can be treated by mean of Fourier integral operators �FIO�, see e.g., Ref. 16, and we
refer to Refs. 3, 12, and 13 for a detailed study of the trace. We recall that the Tauberian approxi-
mation concerns expressions

E,h
� ��� = �

j

� j�h��
� j�h� − E

h
� .

Under our assumptions, the behavior of E,h
� determines the behavior of the weighted counting

functions

NE,d
� �h� = �

��j�h�−E��dh

� j�h� .

Precisely, we will apply the results of Sec. 6 of Ref. 3 for � j�h�=1 or � j�a�. Strictly speaking,
� j�h��0 is required but, by a standard result of pseudodifferential calculus, we can modify the
quantization to have � j�a��0. This does not change the main results, see Eq. �14� below.

To attain our objective, we can suppose that supp��̂�� �−M ,M�, M �0. Let ��C0
���Ec

−� ,Ec+���, such that �=1 in a neighborhood of Ec and 0���1 on R. We localize the problem
near Ec by writing

��Ec,h,�� = �1�Ec,h,�� + �2�Ec,h,�� ,

with

�2�Ec,h,�� = �
��j�h�−Ec���

��� j�h���
� j�h� − Ec

h
� = Tr ��Ph��
Ph − Ec

h
� .

Where the last equality holds by support considerations. By a classical result, see, e.g., Ref. 12
Lemma 1, the term �1=�−�2 satisfies

�1�Ec,h,�� = O�h��, as h → 0. �5�

The Fourier inversion formula for �2 and the previous estimate provide

��Ec,h,�� =
1

2�
Tr	

R
ei�tEc/h��̂�t�exp
−

i

h
tPh���Ph�dt + O�h�� . �6�

Next, with a function ��C0
��T*Rn�, with �=1 near z0, we write

�2�Ec,h,�� = �z0
�Ec,h,�� + �reg�Ec,h,�� ,

where

�z0
�Ec,h,�� =

1

2�
Tr	

R
ei�tEc/h��̂�t��w�x,hDx�exp
−

i

h
tPh���Ph�dt , �7�

and �reg is simply the difference. The micro-local term �z0
contains the contribution of the singu-

larity and the discussion below determines if this term is dominant. For finitely many critical point
on 	Ec

, we could repeat the procedure. For the convenience of the reader, we recall the contribu-
tions of an equilibrium to the trace formula.

Proposition 3: Assume (H1), (H2) and that �̂�C0
���−M ,M��, M �M0. If x0 is a local maxi-

mum of V we have
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�z0
�Ec,h,�� � h−n+n/2+n/2k �

m=0,1
�

j,l�N2

hj/2+l/2k log�h�m� j,l,m��� .

If n�k+1� /2k�N and n is odd then the top-order term is

Cn,k log�h�h−n+n/2+n/2k	
Sn−1

�V2k����−n/2kd�	
R

�t�n��k+1�/2k�−1��t�dt .

Otherwise the first nonzero coefficient are given by

h−n+n/2+n/2k�Tn,k,��	
Sn−1

�V2k����−n/2kd� .

This result is the contribution of an equilibrium since the distributional coefficients have a non-
discrete support, contrary to the Weyl-term supported in t=0 and the contributions of closed orbits
supported by the length spectrum. The distributions Tn,k and the universal constants Cn,k�0
depend only on �n ,k� and are explicitly determined in Ref. 14. Mainly, we need the order w.r.t. h
of these contributions determined by the functions

wc�h� = h−n+n/2+n/2k log�h� j, j = 0 or 1.

First, we give a natural application of Proposition 3.
Proposition 4: The microlocal counting function satisfies

�h� = �2dV�Ec��2�h�1−n + o�h1−n�, if n � 1,

����−d,d��wc�h� + o�wc�h��, if n = 1.

Here � is the first nonzero distribution of Prop. 3 and ��−d,d� the characteristic function of
�−d ,d , �.

Proof: By construction we have

�reg�Ec,h,�� =
1

2�
Tr	

R
ei�tEc/h��̂�t��1 − �w�x,hDx��exp
−

i

h
tPh���Ph�dt .

By the standard calculus on FIO and an easy application of the stationary phase method, as h tends
to 0 we obtain

�reg�Ec,h,�� �
�̂�0�

�2�h�n−1 Lvol�	Ec
� supp�1 − ��� + O�h2−n� .

Hence �reg always contributes at the order h1−n.
Case of n�1: We have wc�h�=o�h1−n� and

Lvol�	Ec
� supp�1 − ��� � V�Ec� � � , ∀ � .

It follows easily by shrinking the support of the cut-off � that

��Ec,�,h� = �2�h�1−n�̂�0�V�Ec� + o�h1−n� . �8�

Since the distributional factor is

�̂�0� =	 ��t�dt = �1,�� ,

replacing � by ��−d,d�, via Theorem 6.3 of Ref. 3, provides

�h� = 2dV�Ec��2�h�1−n + o�h1−n� .
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Case of n=1: Here the contribution of the critical point has a bigger order than the regular
one. We obtain

��Ec,�,h� = wc�h����� + o�wc�h�� . �9�

To apply the Tauberian argument of Ref. 3, we observe that our distribution ��S��R� can be
represented by an element of Lloc

1 �R� and hence can be extended as a linear form on
C0�R��L��R�. We obtain

�h� � ����−d,d��wc�h� . �10�

Which provides the desired result for n=1. �

As a matter of illustration, for n=k=1, we have

log�h��V2k�x0��−1/2	
−d

d

dt =
2d log�h�

�V��x0��
1
2

. �11�

Which is the result established for �h� in Refs. 3 and 4. Observe that for n=1, k=1 is the only
case where a logarithm occurs and �h� is slowly increasing w.r.t. k since for all k�1

�h� � Ch1/2k−1/2�V�2k��x0��−1/2k. �12�

A. Eigenfunctions estimates

We recall how to derive eigenfunction estimates from the trace formula. First, to insert an
observable A changes almost nothing. If � is the spectral projector on �Ec−� ,E+��, computing
the trace in the basis � j

h and by cyclicity

Tr
�A�
Ph − Ec

h
�� = �

��j�h�−Ec���

�A� j
h,� j

h��
� j�h� − Ec

h
� .

Since A is a bounded operator, if ��S�R� we can again smooth the problem via an energy cut-off
��Ph�, with an error of order O�h��. Hence we can insert A=Oph

w�a� in Eq. �7� and the results of
Prop. 3 are the same after multiplication by a�z0�. Similarly, the regular contribution changes via

�̂�0�
�2�h�1−n	

	Ec

a�z��1 − ��z��dLvol�z� .

By evaluation of the trace, we have

�
��j�h�−Ec���

�A� j
h,� j

h��
� j�h� − Ec

h
� � c0���w�h�m�a� + o�w�h�� ,

where w�h� changes only if n=1. By Theorem 6.3 of Ref. 3 we obtain

�
�j�h��I�h�

�A� j
h,� j

h� = m�a�w�h� + o�w�h�� .

In particular this implies that

lim
h→0+

1

�h� �
�j�h��I�h�

�A� j
h,� j

h� = lim
h→0+

a�h�
�h�

=
m�a�
m�1�

. �13�

Substituting the correct expressions for these measures we obtain

�i� for n�1: m is a constant multiple of the Liouville measure;
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�ii� for n=1: m is a multiple of the delta-Dirac distribution in z0.

B. Extraction of a subsequence

We chose a�0 and modify the quantization. Different choices are possible: Friedrichs quan-
tization OpF as in Ref. 3 or the anti-Wick quantization OpAW as in Ref. 5. These quantization are
positive, i.e.,

a � 0 ⇒ �f ,OpAW�a�f� � 0, ∀ f � C0
��Rn� .

Since Oph
w�a�−Oph

AW�a� is of order −1, we obtain

�� j
h,�Oph

w�a� − Oph
AW�a��� j

h� = O�h� , �14�

and we can work with this positive operator. For n�1, under the condition that �t is ergodic on
	Ec

, the extraction of a convergent subsequence of density one is the same as in Refs. 1, 3, and 5
to which we refer for a detailed proof. For n=1, if 	Ec

is connected, there is only one probability
measure invariant by �t and the full sequence converges to �z0

. Once the result is established for

a positive symbol it can be extended by linearity to any a�S0�R2n�.

III. PSEUDO-DIFFERENTIAL OPERATORS

The case of pseudo-differential operators provides more explicit examples. Let Ph

=Oph
w�p�x ,���, obtained by Weyl quantization, where the symbol p is a real-valued smooth func-

tion on T*Rn. In a general position, one can also consider h-dependent symbols �hjpj�x ,��, see
Ref. 5. However, to simplify, we consider only the homogeneous case. As above we impose

(A1) There exists �0�0 such that p−1��Ec−�0 ,Ec+�0�� is compact.

As in Sec. II, ��Ph�� �Ec−� ,Ec+�� is discrete. A fortiori, �A1� ensures that 	Ec
is compact.

Next, we chose a homogeneous singularity

(A2) On 	Ec
, p has a unique critical point z0= �x0 ,�0� and near z0:

p�z� = Ec + pk�z� + O���z − z0��k+1�, k � 2,

where pk is homogeneous of degree k w.r.t. z−z0.

Strictly speaking, one could consider k=2. But this case is precisely treated in Ref. 3. The case
of a critical point which is not an extremum is technical because the singularity is transferred on
the blow up of z0. To obtain a problem that can be explicitly solved, we consider the following
hypothesis inspired by Hörmander’s real principal condition:

(A3) We have �pk�0 on the set C�pk�= ���S2n−1 /pk���=0.

For example, p3�x ,��=x3−�3 is admissible and p�x ,��=x3−�3+x4+�4 satisfies all our hypoth-
esis for Ec=0.

Remark 5: With �A3�, contrary to the case of a local extremum, z0 is not an isolated point of
	Ec

which imposes to study the classical dynamics in a neighborhood of z0. The study of singu-
larities as in �A3� is detailed in Ref. 17, Chap. 4 to which we refer concerning the integrability of
dLvol.

As in Sec. II, it is sufficient to study the local problem �z0
defined in Eq. �7�. The contributions

to the trace formula are
Proposition 6: Under �A1� to �A3�, we have an asymptotic expansion
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�z0
�Ec,�,h� � h

2n
k

−n �
m=0,1

�
j=0

�

hj/k log�h�m� j,m��� ,

where the logarithms only occur when �2n+ j� /k�N* and � j,m�S��R�. For the leading term, we
obtain, respectively:

(1) If k�2n (nonintegrable singularity on 	Ec
) we have

�z0
�Ec,�,h� � h2n/k−n�0,0��� + O�h�2n+1�/k−n log�h��, as h → 0,

where �0,0 is a universal distribution.
(2) If the ratio 2n /k�N we obtain logarithmic contributions

�z0
�Ec,�,h� � h2n/k−n log�h��0,1��� + O�h2n/k−n�, as h → 0,

(3) For 2n�k, 2n /k�N the result is as in Eq. �1� with a different distribution.
These results precisely describe the singularity at z0. But this is not our purpose here and we

refer to Ref. 15 for a detailed formulation of these contributions. For n=1, k=2, the case (2)
agrees with Sec. II and allows us to recover some results established in Refs. 3 and 4.

A. Application to microlocal measures

The proof is exactly the same as in Sec. II. The main difference is that the singularity on 	Ec
can be of arbitrary order. In our setting, according to Prop. 6 the top order coefficient changes if
and only if we have

2n

k
− n � 1 − n ⇔

2n

k
� 1. �15�

If k�2n the singularity is integrable and contributes at a lower order compared to h1−nV�Ec�. But
if k�2n, which corresponds to a nonintegrable singularity for d
Ec, the main term changes. To
summarize, we obtain

lim
h→0

a�h�
�h�

= �	 ad
Ec, for k � 2n ,

a�z0�, for k � 2n .

Contrary to Sec. II, observe that for k�2n and if n�1 we do not obtain the convergence of the
full sequence � j�h�, j�h��K�h�, to the dirac-mass at the equilibrium. The obstruction is that an
invariant probability measure can be supported by the closed orbits of 	Ec

.

B. Comments

From these two examples the conclusion is that the limiting measure changes only if 	Ec
carries a measure such that 1�Lloc

1 �	Ec
,dLvol�. Interpreted as a quantum measurement, one can

obtain a very precise localization: If a=0 around z0 the limit is the Liouville-measure but if
a�z0��0 the limit strongly differs.

An interesting problem would be to study the repartition in the presence of two equilibria z1,
z2 on 	Ec

of the same nature and with a nonintegrable singularity. In this case any convex
combination

� = a��z1� + �1 − a���z2�, a � �0,1� , �16�

provides an invariant probability measure. A natural question is to determine if the limiting
measures are equally distributed between z1 and z2: This problem could be related with the
approach proposed in Ref. 11.
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It is shown how the E8 Yang–Mills theory is a small sector of a Cl�16� algebra
gauge theory and why the 11D Chern–Simons �super� gravity theory can be em-
bedded into a Cl�11� algebra gauge theory. These results may shed some light into
the origins behind the hidden E8 symmetry of 11D supergravity. To finalize, we
explain how the Clifford algebra gauge theory �that contains the Chern–Simons
gravity action in D=11, for example� can itself be embedded into a more funda-
mental polyvector-valued gauge theory in Clifford spaces involving tensorial coor-
dinates x�1�2 ,x�1�2�3 , . . . ,x�1�2. . .�D in addition to antisymmetric tensor gauge fields
A�1�2

,A�1�2�3
, . . . ,A�1�2. . .�D

. The polyvector-valued supersymmetric extension of
this polyvector valued bosonic gauge theory in Clifford spaces may reveal more
important features of a Clifford-algebraic structure underlying M, F theory. © 2006
American Institute of Physics. �DOI: 10.1063/1.2363257�

I. INTRODUCTION: WHY CLIFFORD ALGEBRAS

Ever since the discovery1 that 11-dimensional �D� supergravity, when dimensionally reduced
to an n-dim torus led to maximal supergravity theories with hidden exceptional symmetries En for
n�8, it has prompted intensive research to explain the higher dimensional origins of these hidden
exceptional En symmetries.2,3 More recently, there has been a lot of interest in the infinite-dim
hyperbolic Kac–Moody E10 and non-linearly realized E11 algebras arising in the asymptotic cha-
otic oscillatory solutions of Supergravity fields close to cosmological singularities.1,2

The classification of symmetric spaces associated with the scalars of N extended supergravity
theories �emerging from compactifications of 11D supergravity to lower dimensions�, and the
construction of the U-duality groups as spectrum-generating symmetries for four-dimensional BPS
black-holes6 also involved exceptional symmetries associated with the Jordan algebras
J3�R ,C ,H ,O�. The discovery of the anomaly free 10-dim heterotic string for the algebra E8

�E8 was another hallmark of the importance of exceptional Lie groups in physics.
Exceptional, Jordan, Division, and Clifford algebras are deeply related and essential tools in

many aspects in Physics.4–14 In this work we will focus mainly on the Clifford algebraic structures
and show how the E8 Yang–Mills theory can naturally be embedded into a Cl�16� algebra gauge
theory and why the 11D Chern–Simons �super� gravity15 is a very small sector of a more funda-
mental theory based on the Cl�11� algebra gauge theory. Polyvector-valued supersymmetries16 in
Clifford spaces4 turned out to be more fundamental than the supersymmetries associated with M,
F theory superalgebras.17,18 For this reason we believe that Clifford structures may shed some light
into the origins behind the hidden E8 symmetry of 11D supergravity and reveal more important
features underlying M, F theory.

In the remaining part of this introduction a very brief overview of the basic features of the
extended relativity in Clifford spaces is presented along with the basic formulas involving the
polyvector valued generalized supersymmety algebra in Clifford spaces. In Sec. II we show how

a�Electronic mail: castro@ctsps.cau.edu
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the E8 Yang–Mills theory can be obtained from a gauge theory based on the Clifford �16� algebra.
In Sec. III the Chern–Simons gravity in 11-dim is embedded into a Clifford algebra gauge theory.
This in itself is not much different than constructing a Chern–Simons gravity-theory based on a
gl�N ,R� algebra, for example. However, the fundamental difference is shown in Sec. IV where we
explain how the Clifford algebra gauge theory �that contains the Chern–Simons gravity action in
D=11� is itself embedded into a more fundamental polyvector-valued gauge theory in Clifford
spaces involving tensorial coordinates x�1�2, x�1�2�3 , . . . in addition to antisymmetric tensor gauge
fields. A�1�2

,A�1�2�3,. . .. We leave for future work the explicit construction of the polyvector-
valued generalized supersymmetric extension of our polyvector valued bosonic gauge theory in
Clifford spaces and its implications for the further developments of M, F theory.

A. The extended relativity in Clifford spaces

The extended relativity theory in Clifford paces �C-spaces� is a natural extension of the
ordinary relativity theory. A natural generalization of the notion of a space-time interval in Mink-
woski space to C-space is

dX2 = d�2 + dx�dx� + dx��dx�� + ¯ . �1.1�

The Clifford valued polyvector

X = XMEM = �1 + x��� + x���� ∧ �� + . . . x�1�2. . .�D��1
∧ ��2

. . . ∧ ��D �1.2a�

denotes the position of a polyparticle in a manifold, called Clifford space ro C-space. The series of
terms in Eq. �1.2a� terminates at a finite value depending on the dimension D. A Clifford algebra
Cl�r ,q� with r+q=D has 2D basis elements. For simplicity, the gamma �� correspond to a Clifford
algebra associated with a flat spacetime

1

2
���,��� = ���1 , �1.2b�

but in general one could extend this formulation to curved spacetimes with metric g��. The
multigraded basis elements EM of the Clifford-valued polyvectors are

EM � 1, ��, ��1 ∧ ��2, ��1 ∧ ��2 ∧ ��3, ��1 ∧ ��2 ∧ ��3 ∧ ¯ ∧ ��D. �1.2c�

It is convenient to order the collective M indices as �1��2��3� ¯ ��D.
The connection to strings and p-branes can be seen as follows. In the case of a closed string

�a 1-loop� embedded in a target flat spacetime background of D-dimensions, one represents the
projections of the closed string �1-loop� onto the embedding spacetime coordinate planes by the
variables x��. These variables represent the respective areas enclosed by the projections of the
closed string �1-loop� onto the corresponding embedding spacetime planes. Similary, one can
embed a closed membrane �a 2-loop� onto a D-dim flat spacetime, where the projections given by
the antisymmetric variables x��	 represent the corresponding volumes enclosed by the projections
of the 2-loop along the hyperplanes of the flat target spacetime background.

This procedure can be carried to all closed p-branes �p-loops� where the values of p are p
=0,1 ,2 ,3 , . . . ,D−2. The p=0 value represents the center of mass and the coordinates x�� ,x��	. . .
have been coined in the string-brane literature19 as the holographic areas, volumes, . . . projections
of the nested family of p-loops �closed p-branes� onto the embedding spacetime coordinate planes/
hyperplanes. The classification of Clifford algebras Cl�r ,q� in D=r+q dimensions �modulo 8� for
different values of the spacetime signature r ,q is discussed, for example, in the book of
Porteous.20

All Clifford algebras can be understood in terms of CL�8� and the CL�k� for k less than 8 due
to the modulo 8 periodicity theorem CL�n�=CL�8��Cl�n−8�, where Cl�r ,q� is a matrix algebra
for even n=r+q or the sum of two matrix algebras for odd n=r+q. Depending on the signature,
the matrix algebras may be real, complex, or quaternionic. For further details we refer to Ref. 20.
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If we take the differential dX and compute the scalar product among two polyvectors
�dXTdX	scalar we obtain the C-space extension of the particles proper time in Minkwoski space.
The symbol XT denotes the reversion operation and involves reversing the order of all the basis ��

elements in the expansion of X. The C-space proper time associated with a polyparticle motion is
then

�dXTdX	scalar = d
2 = �d��2 + �2D−2dx�dx� + �2D−4dx��dx�� + . . . . �1.3�

Here we have explicitly introduced the Planck scale � since a length parameter is needed in
order to tie objects of different dimensionality together: 0-loops, 1-loops,. . ., p-loops. Einstein
introduced the speed of light as a universal absolute invariant in order to “unite” space with time
�to match units� in the Minkwoski space interval

ds2 = c2dt2 − dxidxi. �1.4�

A similar unification is needed here to unite objects of different dimensions, such as x�, x��, etc. . ..
The Planck scale then emerges as another universal invariant in constructing an extended scale
relativity theory in C-spaces.4

To continue along the same path, we consider the analog of Lorentz transformations in
C-spaces which transform a polyvector X into another polyvector X� given by X�=RXR−1 with

R = e�AEA = exp���1 + ���� + ��1�2��1
∧ ��2

. . . �� �1.5�

and

R−1 = e−�AEA = exp�− ��1 + ���� + ��1�2��1
∧ ��2

. . . �� , �1.6�

where the � parameters also belong to a Clifford-valued quantity

�;��;���; . . . , �1.7�

they are the C-space version of the Lorentz rotations/boosts parameters.
Since a Clifford algebra admits a matrix representation, one can write the norm of a polyvec-

tors in terms of the trace operation as: 
X
2=TraceX2. Hence, under C-space Lorentz transforma-
tion the norms of polyvectors behave as follows:

TraceX�2 = Trace�RX2R−1� = Trace�RR−1X2� = TraceX2. �1.8�

These norms are invariant under C-space Lorentz transformations due to the cyclic property of the
trace operation and RR−1=1. Another way of rewriting the inner product of polyvectors is by
means of the reversal operation that reverses the order of the Clifford basis generators:
���∧���T=��∧��, etc. . .. Hence, the inner product can be rewritten as the scalar part of the
geometric product �XTX	s. The analog of an orthogonal matrix in Clifford spaces is RT=R−1 such
that

�X�TX�	s = ��R−1�TXTRTRXR−1	s = �RXTXR−1	s = �XTX	s = invariant. �1.9a�

This condition RT=R−1 of course, will restrict �constrain� the type of terms allowed inside the
exponential defining the rotor R in Eq. �1.6� because the reversal of a p-vector obeys

���1
∧ ��2

. . . ∧ ��p
�T = ��p

∧ ��p−1
. . . ∧ ��2

∧ ��1
= �− 1�p�p−1�/2��1

∧ ��2
. . . ∧ ��p

.

�1.9b�

Hence, only those terms that change sign �under the reversal operation� are permitted in the
exponential defining R=exp��AEA�.

Another possibility is to complexify the C-space polyvector valued coordinates =Z=ZAEA

=XAEA+ iYAEA �which is not the same as complexifying the Clifford algebra� as well as the
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boost/rotation parameters �A in order to allow the unitarity condition U†�U−1 to hold. The
generalized Clifford unitary transformations Z�=UZU†=UZU−1 associated with the complexified
polyvector Z=ZAEA must be such so the interval

�dZ†dZ	s = d�̄d� + dz̄�dz� + dz̄��dz�� + dz̄��	dz��	 + . . . �1.9c�

remains invariant under these unitary transformations above �upon setting the Planck scale �=1�.
The unitary condition U†=U−1, under the combined reversal and complex-conjugate opera-

tion, will constrain the form of the complexified boosts/rotation parameters �A appearing in: U
=exp��AEA�. The parameters �A must be either purely real, or purely imaginary, depending if the
reversal EA

T = ±EA, to ensure that an overall change of sign occurs in the terms �AEA inside the
exponential defining U so that U†=U−1 actually holds, and the norm �Z†Z	s remains invariant
under the analog of unitary transformations in complexified C-spaces. These techniques are not
very different from Penrose Twistor spaces. As far as we know a Clifford–Twistor space construc-
tion of C-spaces has not been performed so far.

Another alternative is to define the unitary transformations by U=exp�AB�EA ,EB�� where the
commutator �EA ,EB�=FAB

C EC is the C-space analog of the i��� ,��� commutator which is the
generator of the Lorentz algebra, and the parameters AB are the C-space analogs of the rotation/
boots parameters. The diverse parameters AB are purely real or purely imaginary depending
whether the reversal �EA ,EB�T= ± �EA ,EB� to ensure that U†=U−1 such that the scalar part �Z†Z	s

remains invariant under the transformations Z�=UZU−1. This last alternative seems to be more
physical because a polyrotation should map the EA direction into the EB direction in C-spaces,
hence, the meaning of the generator �EA ,EB� which is the extension of the i��� ,��� Lorentz
generator. We refer to the review4 for further details about the extended relativity theory in
Clifford spaces. In particular, why relativity in curved Clifford spaces is equivalent to a higher
derivative gravity with torsion associated with the underlying spacetime.4

B. Polyvector-valued super Poincare algebras and Clifford-space supersymmetry

Polyvector super-Poincare algebras as extensions of ordinary super-Poincare algebras have
been studied by Ref. 18. The former Lie superalgebras �involving commutators and anticommu-
tators� should not be confused with the Z2-graded extensions of ordinary Lie algebras, in particular
with Z2-graded extensions of Clifford algebras involving only commutators. The polyvector super
Poincare algebras have the form of g=g0+g1, where the even sector is g0=so�V�+W0 and the odd
sector g1=W1 consists of a spinorial representation of so�V�=so�p ,q�; i.e., W1 is an
so�p ,g�-spinorial module, where V is a vector space of signature p ,q.

The algebra of generalized translations W=W0+W1 is the maximal solvable ideal of g. W0 is
generated by W1: �W1 ,W1��W0 and �W0 ,W1�=0; �W0 ,W0�=0. For example, in the ordinary

super-Poincare algebra, the translations are generated by the supersymmetry generators: �Q , Q̄�
� P and �Q , P�= �P , P�=0. Choosing W1 to be a spinorial so�V�-module consisting of a sum of
spinors and semispinors �chiral spinors� the authors18 proved that W0 consists of polyvectors. They
provided the classification of all polyvector Lie superalgebras, for all dimensions and signatures,
after analyzing all the so�V�-invariant polyvector-valued bilinear forms that can be defined on the
spinor modules. N-extended polyvector super Poincare algebras were also classified in Ref. 18.

The anticommutator is

�S�,S�� = �
k

�C��1�2. . .�k���W0�2�2. . .�k

�k� , �1.10�

where �, � denote spinor indices and the summation over k must obey certain crucial restrictions
to match degrees of freedom with the terms on the left-hand side �lhs�. The matrix C is the charge
conjugation matrix. Depending on the given spacetime and its signature there are at most two
charge conjugation matrices CS, CA given by the product of all symmetric and all antisymmetric
gamma matrices, respectively. In special spacetime signatures they collapse into a single matrix.
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These charge conjugation matrix C are essential in order to satisfy the nontrivial graded super
Jacobi identities.

A Chern–Simons supergravity �CS-SUGRA� in D=11 involves the symplectic supergroup
OSp�32 1� and the connection15

A� = e�
a �a + ��

ab�ab + A�
a1a2. . .a5�a1a2. . .a5

+ �̄�
�Q�, �1.11�

whereas the M theory superalgebra involve 32-component spinorial supercharges Q� whose anti-
commutators are17,18

�Q�,Q�� = �A�����P� + �A��1�2
���Z�1�2 + �A��1�2. . .�5

���Z�1�2. . .�5. �1.12�

There are 32�32 symmetric real matrices with at most 1
2 �32�33�=528 independent components

that match the number of degrees of freedom associated with the translations P� and the antisym-
metric rank 2, 5 abelian tensorial central charges Z�1�2, Z�1�2. . .�5 on the right-hand side �rhs� since
11+55+462=528. The matrix A plays the role of the timelike �0 matrix in Minkowski spacetime
and is used to introduce barred-spinors.17,18

The F theory 12D superalgebra involves the Majorana–Weyl spinors with 32 components
whose anticommutators are17

�Q�,Q�� = �A������Z�� + �A��1�2. . .�6
���Z�1�2. . .�6 �1.13�

and the counting of components in D=12 yields also 32�33/2=528=66+462. In 13D it requires
the superalgebra OSp�64 1� which is connected to a membrane, a 3-brane and a 6-brane, respec-
tively, since antisymmetric tensors of ranks 2, 3, 6 in 13D have a total of 64�65/2=78+286
+1716=2080 components.

Therefore, by studying the polyvector super Poincare algebras, the M and F theory superal-
gebras ��1.10�, �1.11�, �1.12�� one concludes that these cannot be incorporated into Clifford super-
spaces because one cannot have a restricted summation in the k rank of the terms appearing in the
�Q� ,Q�� �anti�commutators. Unless one adds further spinorial degrees of freedom by introducing
multispinor valued quantities ��1�2 ,��1�2�3 , . . ., which are the fermionic partners of
x�1�2 ,x�1�2�3 , . . ., or by recurring to N extended supersymmetries, one will not be able to match
the number of degrees of freedom in a satisfactory manner. N extended polyvector Super Lie
Algebras which were also studied by Ref. 18. This means that the odd sector W1 consists of N
copies of the irreducible spinor module S. There are cases where there are two inequivalent copies
�complex-even dimensional, or real with spatial signatures s=0,4� involving N+ chiral generators
and N− antichiral ones. For further details we refer to Ref. 18.

Hence, by introducing a judicious number of extra spinorial degrees of freedom
��1�2 ,��1�2�3 , . . . in “Clifford superspace,” depending on the dimensions and spacetime signatures,
one can accommodate for the larger number of polyvector coordinates associated with C-spaces.
For this reason we believe that polyvector-valued supersymmetries in Clifford superspaces16 de-
serve to be investigated further since they are more fundamental than the supersymmetries asso-
ciated with M, F theory superalgebras.

Nevertheless, there are instances, in particular when D=4=3+1, that the �Q� ,Q�� is a sym-
metric matrix in �, � with ten independent components and which matches exactly the degrees of
freedom of the momentum vector and bi-vector P�, P�� given by 4+6=10. Therefore, in D=4,
one may have the anticommutator written in terms of the charge conjugation matrix C as

�Q�,Q�� =
1

2
C��P� +

1

2
C���P�� �1.14�

and the Jacobi indentities

��M�1�2
,Q��,Q�� + ��M�1�2

,Q��,Q�� = �M�1�2
,�Q�,Q��� . �1.15a�
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��M�1�2�3�4
,Q��,Q�� + ��M�1�2�3�4

,Q��,Q�� = �M�1�2�3�2
,�Q�,Q��� �1.15b�

with the commutators

�M�1�2
,P	1	2

� = − ��1	1
P�2	2

+ ��2	1
P�1	2

± . . . ; �M�1�2
,Q�� = −

1

2
���1�2

��
�Q�,

�1.15c�

where

�Q�,Q�� =
1

2
C��P� +

1

2
C���P��, �1.15d�

the spinorial charges Q� behave under polyrotations as follows:

�M�1�2�3�4
,Q�� = −

1

2
���1�2�3�4

��
�Q�, �1.15e�

and the remaining commutators are

�M�1�2�3�4
,P�1�2

� = ��1�2�1�2
P�3�4

+ ��3�4�1�2
P�1�2

± . . . ; �M�1�2�3�4
,P�1

� = 0,

�1.15f�

�M�1�2
,M�1�2

� = − ��1�1
M�2�2

+ ��2�1
M�1�2

± . . . , �1.15g�

�M�1�2�3�4
,M�1�2�3�4

� = ��1�2�1�2
M�3�4�3�4

± . . . , �1.15h�

�M�1�2
,M�1�2�3�4

� = − ��1�1
M�2�2�3�4

± . . . �1.15i�

In the Appendix we will prove that this algebra Eqs. �1.15� closes and satisfies the Jacobi
identities. GMN is the flat C-space generalized metric ��1�1�2�2. . .�n�n

given by the determinant of
the N�N matrix �mm whose entries are ��m�n

. For instance

��1�1�2�2. . .�n�n
= det �mm =

1

N!
�i1i2. . .in� j1j2. . .jn��i1

�j1
��i2

�j2
. . . ��in

�jn
, �1.16�

so that

��1�1�2�2
= ��1�1

��2�2
− ��1�2

��2�1
, etc. �1.17�

Similar results apply to the definition of �i1j1. . .injn
.

The graded super Jacobi identities �nontrivial matter� in C-space due to the nontrivial alge-
braic relations obtained from the �geometric� product of two polyvector basis elements �M�N that
involves a sum of terms with polyvectors of mixed grade

��M�N	m+n, ��M�N	m+n−2, ��M�N	m+n−4, ¯ ��M�N	m−n. �1.18�

Using the standard notation

��1�2. . .�p � ��1 ∧ ��2 ∧ ¯ ∧ ��p, �1.19�

where the antisymmetrization of indices is performed with unit weight, one has for example

���� =
1

2
���,��� +

1

2
���,��� = ���1 +

1

2
���, �1.20�
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��1�2. . .�p��p+1 = ��1�2. . .�p�p+1 + p���1�2. . .�p−1����p��p+1, �1.21�

����1�2. . .�p − �− 1�p��1�2. . .�p�� = 2p����1����2�3. . .�p�. �1.22�

Having outlined the basic features of the extended relativity theory in Clifford spaces and
polyvector-valued supersymmetries we proceed with the main bulk of this work.

II. THE E8 YANG–MILLS FROM A Cl„16… ALGEBRA GAUGE THEORY

It is well known among the experts that the E8 algebra admits the SO�16� decomposition
248→120 � 128. The E8 admits also a SL�8,R� decomposition.3 Due to the triality property, the
SO�8� admits the vector 8v and spinor representations 8s ,8c. After a triality rotation, the SO�16�
vector and spinor representations decompose as3

16 → 8s � 8c, �2.1a�

128s → 8v � 56v � 1 � 28 � 35v, �2.1b�

128c → 8s � 56s � 8c � 56c. �2.1c�

To connect with �real� Clifford algebras,6 i.e., how to fit E8 into a Clifford structure, start with
the 248-dim fundamental representation E8 that admits a SO�16� decomposition given by the
120-dim bivector representation plus the 128-dim chiral-spinor representations of SO�16�. From
the modulo 8 periodicity of Clifford algebras one has Cl�16�=Cl�2�8�=Cl�8� � Cl�8�, meaning,
roughly, that the 216=256�256 Cl�16�-algebra matrices can be obtained effectively by replacing
each single one of the entries of the 28=256=16�16 Cl�8�-algebra matrices by the 16�16
matrices of the second copy of the Cl�8� algebra. In particular, 120=1�28+8�8+28�1 and
128=8+56+8+56, hence, the 248-dim E8 algebra decomposes into a 120+128 dim structure such
that E8 can be represented indeed within a tensor product of Cl�8� algebras.

At the E8 Lie algebra level, the E8 gauge connection decomposes into the SO�16� vector
I ,J=1,2 , . . . ,16 and �chiral� spinor A=1,2 , . . . ,128 indices as follows:

A� = A�
IJXIJ + A�

AYA, XIJ = − XJI, I,J = 1,2,3, . . . ,16 . A = 1,2, . . . ,128, �2.2�

where XIJ, YA are the E8 generators. The Clifford algebra �Cl�8� � Cl�8�� structure behind the
SO�16� decomposition of the E8 gauge field A�

IJXIJ+A�
AYA can be deduced from the expansion of

the generators XIJ, YA in terms of the Cl�16� algebra generators. The Cl�16� bivector basis admits
the decomposition

XIJ = �ij
IJ��ij � 1� + bij

IJ�1 � �ij� + cij
IJ��i � � j� , �2.3�

where �i, are the Clifford algebra generators of the Cl�8� algebra present in Cl�16�=Cl�8�
� Cl�8�; 1 is the unit Cl�8� algebra element that can be represented by a unit 16�16 diagonal
matrix. The tensor products � of the 16�16Cl�8�-algebra matrices, like �i � 1, �i � � j , . . . furnish
a 256�256 Cl�16�-algebra matrix, as expected. The Cl�8� algebra basis elements are

�M = 1, �i, �i1i2
= �i1

∧ �i2
, �i1i2i3

= �i1
∧ �i2

∧ �i3
, . . . ,�i1i2. . .i8

= �i1
∧ �i2

∧ ¯ ∧ �i8
.

�2.4�

Therefore, the decomposition in Eq. �2.3� yields the 28+28+8�8=56+64=120-dim bivector
representation of SO�16�; i.e., for each fixed values of IJ there are 120 terms on the rhs of Eq.
�2.5�, that match the number of independent components of the E8 generators XIJ=−XJI, given by
1
2 �16�15�=120. The decomposition of YA is more subtle. A spinor � in 16D has 28=256 com-
ponents and can be decomposed into a 128 component left-handed spinor �A and a 128 compo-
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nent right-handed spinor �Ȧ; The 256 spinor indices are �=A, Ȧ; �=B,Ḃ , . . . with A ,B

=1,2 , . . . ,128 and Ȧ , Ḃ=1,2 , . . . ,128, respectively.
Spinors are elements of right �left� ideals of the Cl�16� algebra and admit the expansion �

=���� in a 256-dim spinor basis �� which in turn can be expanded as sums of Clifford polyvec-
tors of mixed grade; i.e., into a sum of scalars, vectors, bivectors, trivectors, . . .. The chiral
�left-handed, right-handed� 128-component spinors �± are obtained via the projection operators

�± =
1

2
�1 + �17��, �17 = �1 ∧ �2 ∧ ¯ ∧ �16, �2.5�

such that �+
���A; �−

���Ȧ, so the left-handed �right-handed� spinor basis �± can be represented by
a column matrix �an element of the left ideal� with 128 nonvanishing upper �lower� components in
the Weyl representation as

�±
� = �1 ± �17

2
���

��1 � 1���A� + ��i � 1���Ai
� + ��i1i2

� 1���Ai1i2
+ . . . ��i1i2. . .i7

� 1���Ai1i2. . .i7
�

+ ��i1i2−2...i8
� 1���Ai1i2. . .i8

� , �2.6�

where the numerical tensor-spinorial coefficients on the rhs of Eq. �2.6� are constrained to satisfy
all the conditions imposed by the definition of an ideal element of the Cl�16� algebra; namely that
any element of the ideal upon a multiplication from the left by any Clifford algebra element yields
another element of the left ideal. Similar definitions apply to the right ideal elements upon mul-
tiplication from the right by any Clifford algebra element. The row matrix �an element of the right
ideal� with 128 nonvanishing components is just given by ��±�†.

The rigorous procedure to construct spinors as elements of right/left ideals of Clifford algebras
using primitive idempotents can be found in Ref. 5, and references therein. The final outcome is
the same as performing the expansion Eq. �2.6� and solving for the coefficients. In this fashion one
can construct the 128-dim left-handed �right-handed� chiral spinor representations of SO�16� that
match the number of 128 generators YA. Hence, the total number of E8 generators is then 120
+128=248. What remains to be done is to enforce the E8 commutation relations that in conjunc-
tion with the defining relations of a primitive ideal element of the Cl�16� algebra will fix the
values of the coefficients appearing in �2.4� and �2.6�. Based on the fact that the Clifford algebra
commutators of even and odd grade satisfy the relations

�Even,Even� = Even, �Odd,Odd� = Even, �Even,Odd� = �Odd,Even� = Odd, �2.7�

which are similar to the E8 commutation relations described below, one can immediately choose to
expand the spinor basis elements in Eq. �2.6� as sums of polyvectors of odd grade only, meaning
that for each fixed value of �, there are only 128 terms on the rhs of Eq. �2.6� given by the number
of odd-grade elements of the Cl�8� algebra 8+56+56+8=128. This is consistent with the fact that
a chiral spinor in 16D has 128 nonvanishing components in a Weyl representation. Therefore, the

generators YA�Y+
�; YȦ=Y−

� must involve odd grade elements of the form

Y±
� = �1 ± �17

2
���

���i � 1���Ai
� + ��i1i2i3

� 1���Ai1i2i3
� + ��i1i2. . .i5

� 1���Ai1i2. . .i5
�

+ ��i1i2. . .i7
� 1���Ai1i2. . .i7

� � . �2.8�

The commutation relations of E8 are3
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�XIJ,XKL� = 4��IKXLJ − �ILXKJ + �JKXIL − �JLXIK�, �XIJ,YA� = −
1

2
�AB

IJ YB; �YA,YB� =
1

4
�AB

IJ XIJ.

�2.9�

The combined E8 indices are denoted by A��IJ�, A �120+128=248 indices in total� that yield the
Killing metric and the structure constants

�AB =
1

60
Tr TATB = −

1

60
fCD
A fBCD, �2.10a�

f IJ,KL,MN = − 8�IK�MN
LJ + permutations; f IJ,A,B = −

1

2
�AB

IJ ; �IJKL = −
1

60
fCD

IJ fKL,CD.

�2.10b�

Therefore, the odd grade expansion in Eq. �2.8� and the bivector grade expansion in Eq. �2.3� is
consistent with the commutation relations of E8. We shall proceed with the construction of a novel
Cl�16� gauge theory that encodes the exceptional Lie algebra E8 symmetry from the start. The E8

gauge theory in D=4 is based on the E8-valued field strengths

F��
IJ XIJ = ���A�

IJ − ��A�
IJ�XIJ + A�

KLA�
MN�XKL,XMN� + A�

AA�
B�YA,YB� , �2.11�

F��
A YA = ���A�

A − ��A�
A�YA + A�

AA�
IJ�YA,XIJ� . �2.12�

The E8 actions are

STopological�E8� =� d4x
1

60
Tr�F��

A F	�
B TATB����	� =� d4xF��

A F	�
B �AB���	�

=� d4x�F��
IJ F	�

KL�IJKL + F��
A F	�

B �AB + 2F��
IJ F	�

B �IJB����	�, �2.13�

where ���	� is the covariantized permutation symbol and

SYM�E8� =� d4x�g
1

60
Tr�F��

A F	�
B TATB�g�	g�� =� d4x�gF��

A F	�
B �ABg�	g��

=� d4x�g�F��
IJ F	�

KL�IJKL + F��
A F	�

B �AB + 2F��
IJ F	�

B �IJB�g�	g��. �2.14�

The above E8 actions �are part of� can be embedded onto more general Cl�16� actions with a much
larger number of terms given by

STopological�Cl�16�� =� d4x�F��
MF	�

N�M�N	���	� =� d4xF��
MF	�

NGMN���	� �2.15�

and

SYM�Cl�16�� =� d4x�g�F��
MF	�

N�M�N	g�	g�� =� d4x�gF��
MF	�

NGMNg�	g��, �2.16�

where ��M�N	=GMN1 denotes the scalar part of the Clifford geometric product, of the gammas.
Notice that there are a total of 65 536 terms in
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F��
MF	�

NGMN = F��F	� + F��
I F	�

I + F��
I1I2F	�

I1I2 + ¯ + F��
I1I2. . .I16F	�

I1I2. . .I16, �2.17�

where the indices run as I=1,2 , . . . ,16. The Clifford algebra Cl�16� has the graded structure
�scalars, bivectors, trivectors,. . ., pseudoscalar� given by

1 16 120 560 1820 4368 8008 11 440 12 870

11 440 8008 4368 1820 560 120 16 1, �2.18�

consistent with the dimension of the Cl�16� algebra 216=256�256=65 536. The possibility that
one can accommodate another copy of the E8 algebra within the Cl�16� algebraic structure war-
rants further investigation by working with the duals of the bivectors XIJ and recurring to the
remaining YȦ generators. The motivation is to understand the full symmetry of the E8�E8 het-
erotic string from this Clifford algebraic perspective. A clear embedding is, of course, the follow-
ing:

E8 � E8 � Cl�8� � Cl�8� � Cl�8� � Cl�8� � Cl�16� � Cl�16� = Cl�32� , �2.19�

where SO�32��Cl�32� and SO�32� is also an anomaly free group of the heterotic string that has
the same dimension and rank as E8�E8.

III. CHERN–SIMONS GRAVITY IN 11D FROM A CLIFFORD ALGEBRA GAUGE THEORY

The 11D Chern–Simons supergravity action is based on the smallest Anti de Sitter OSp�32 1�
superalgebra. The Anti de Sitter group SO�10,2� must be embedded into a larger group Sp�32,R�
to accomodate the fermionic degrees of freedom associated with the superalgebra OSp�32 1�. The
bosonic sector involves the connection5

A� = A�
a �a + A�

ab�ab + A�
a1a2. . .a5�a1a2. . .a5

= e�
a �a + ��

ab�ab + A�
a1a2. . .a5�a1a2. . .a5

�3.1�

with 11+55+462=528 generators. A Hermitian complex 32�32 matrix has a total of 32
+2��32�31� /2�=992+32=1024=322=210 independent real components �parameters�, the same
number as the real parameters of the antisymmetric and symmetric real 32�32 matrices 496
+528=1024. The dimension of Sp�32�= �1/2��32�33�=528. Notice that 210=1024 is also the
number of independent generators of the Cl�11� algebra since out of the 211 generators, only half
of them 210, are truly independent due to the duality conditions valid in odd dimensions only

�a1a2. . .a2n+1�a1
∧ �a2

∧ ¯ ∧ �ap
� �ap+1 ∧ �ap+2 ∧ ¯ ∧ �a2n+1. �3.2�

This counting of components is the underlying reason why the Cl�11� algebra appears in this
section. The generators of the Cl�11� algebra ��a ,�b�=2�ab1 and the unit element 1 generate the
Clifford polyvectors �including a scalar, pseudoscalar� of different grading

�A = 1,�a,�a1 ∧ �a2,�a1 ∧ �a2 ∧ �a3, . . . ,�a1 ∧ �a2 ∧ ¯ ∧ �a11, �3.3�

obeying the conditions �3.2�. The commutation relations �see Eqs. �3.4� below� involving the
generators �a ,�ab ,�a1a2

. . .a5 do in fact close due to the duality conditions �3.2�. The Cl�11�
algebra commutators, up to numerical factors, are

��a,�b� = �ab, ��a,�bc� = 2�ab�c − 2�ac�b, �3.4a�

��a1a2,�b1b2� = − �a1b1�a2b2 + �a1b2�a2b1 − ¯ , �3.4b�

��a1a2a3,�b1b2b3� = �a1a2a3b1b2b3 − ��a1b1a2b2�a3b3 + ¯ � , �3.4c�

��a1a2a3a4,�b1b2b3b4� = − ��a1b1�a1a2a3a4b2b3b4 + ¯ � − ��a1b1a2b2a3b3�a4b4 + ¯ � , �3.4d�
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��a1a2,�b1b2b3b4� = − �a1b1�a2b2b3b4 + ¯ , �3.4e�

��a1,�b1b2b3� = �a1b1b2b3��a1a2,�b1b2b3� = − 2�a1b1�a2b2b3 + ¯ , �3.4f�

��a1,�b1b2b3b4� = − �a1b1�b2b3b4 + ¯ , �3.4g�

��a1a2. . .a5,�b1b2. . .b5� = �a1a2. . .a5b1b2. . .b5 + ��a1b1a2b2�a3a4a5b3b4b5 + ¯ � + ��a1b1a2b2a3b3a4b4�a5b5 + ¯ �

= �a1a2. . .a5b1b2. . .b5c�c + ��a1b1a2b2�a3a4a5b3b4b5c1c2. . .c5�c1c2. . .c5
+ ¯ �

+ ��a1b1a2b2a3b3a4b4�a5b5 + ¯ � , �3.4h�

etc, with

�a1b1a2b2
= �a1b1

�a2b2
− �a2b1

�a1b2
, �3.5a�

�a1b1a2b2a3b3
= �a1b1

�a2b2
�a3b3

− �a1b2
�a2b1

�a3b3
+ ¯ , �3.5b�

�a1b1a2b2. . .anbn
=

1

n!
�i1i2. . .in

� j1j2. . .jn
�ai1

bj1
�ai2

bj2
. . . �ain

bjn
. �3.5c�

The Cl�11� algebra gauge field is

A� = A�
A = A�1 + A�

a �a + A�
a1a2�a1a2

+ A�
a1a2a3�a1a2a3

+ ¯ + A�
a1a2. . .a11�a1a2. . .a11

, �3.6�

and the Cl�11�-algebra-valued field strength

F��
A �A = ����A���1 + �����A���

a + A���
b2 A���

b1a�b1b2
+ ¯ ��a + �����A���

ab + A���
a A���

b − A���
a1aA���

b1b�a1b1

− A���
a1a2aA���

b1b2b�a1b1a2b2
− A���

a1a2a3aA���
a1b2b3b�a1b1a2b2a3b3

+ ¯ ��ab + �����A���
abc

+ A���
a1aA���

b1bc�a1b1
+ ¯ ��abc + �����A���

abcd − A���
a1aA���

b1bcd�a1b1
+ ¯ ��abcd

+ ¯ �����A���
a1a2. . .a5b1b2. . .b5 + A���

a1a2. . .a5A���
b1b2. . .b5 + ¯ ��a1a2. . .a5b1b2. . .b5

+ ¯ . �3.7�

The Chern–Simons actions rely on Stokes theorem

�
M12

��1�2. . .�11�12��12
�A�1�2. . .�11

� = �
�M12=
11

��1�2. . .�11�12A�1�2. . .�11
d
�12

11 , �3.8�

which in our case reads

d�LClifford� = �F ∧ F ∧ ¯ ∧ F	 = �FA1 ∧ FA2 ∧ ¯ ∧ FA6�A1
�A2

. . . �A6
	 , �3.9�

where the bracket �¯	 means taking the scalar part of the Clifford geometric product among the
gammas. It involves products of the dABC, fABC structure constants corresponding to the �anti�
commutators ��A ,�B�=dABC�C and ��A ,�B�= fABC�C.

One of the main results of this work is that the Cl�11� algebra based action �3.9� contains a
vast number of terms among which is the Chern–Simons action of Ref. 15 LCS

11 �e ,� ,A5�,

LClifford�A�
A�A� = LCS

11 ��,e,A5� + EXTRA TERMS, �3.10�

SCS��,e,A5� = �
�M12

LCS
11 = �


11
LCS

11 , �3.11�

112301-11 Gauge theories in Clifford spaces J. Math. Phys. 47, 112301 �2006�

                                                                                                                                    



LCS
11 ��,e,A5� = LLovelock

11 ��,e� + LPontryagin
11 ��,e� + L11�A5,�,e� . �3.12�

In odd dimensions D=2n−1, the Lanczos–Lovelock Lagrangian is

LLovelock
D = �

p=0

n−1

apLp�D�, ap = �
�±1�p+1l2p−D

�D − 2p�
Cp

n−1 p = 1,2, . . . ,n − 1. �3.13�

Cp
n−1 is the binomial coefficient. The constants �, l are related to the Newton’s constant G and to

the cosmological constant � through �−1=2�D−2�D−2G where D−2 is the area of the D−2
-dim unit sphere and �= ± �D−1��D−2� /2l2 for de Sitter �Anti de Sitter� spaces.15 A derivation of
the vacuum energy density of Anti de Sitter space �de Sitter� as the geometric mean between an
upper and lower scale was obtained in Ref. 11 based on a BF–Chern–Simons–Higgs theory. Upon
setting the lower scale to the Planck scale LP and the upper scale to the Hubble radius �today� RH,
it yields the observed value of the cosmological constant 	=LP

−2RH
−2=LP

−4�LP /RH�2�10−120MP
4 .

The terms inside the summand of Eq. �3.13� are

Lp�D� = �a1a2. . .aD
Ra1a2Ra3a4 . . . Ra2p−1a2pea2p+1 . . . eaD, �3.14�

where we have omitted the space-time indices �1 ,�2 , . . .. Despite the higher powers of the cur-
vature �after eliminating the spin connection ��

ab in terms of the e�
a field� the LLovelock

D furnishes
equations of motion for the e�

a field containing at most derivatives of second order, and not higher,
due to the topological property of the Lovelock terms

d�LLovelock
11 � = �a1a2. . .a11

�Ra1a2 +
ea1ea2

l2 � . . . �Ra9a10 +
ea9ea10

l2 �Ta11 = Euler density in 12D .

�3.15�

The exterior derivative of the Lovelock terms can be rewritten compactly as

d�LLovelock
11 � = �A1A2. . .A12

FA1A2 . . . FA11A12, �3.16�

where FA1A2 is the curvature field strength associated with the SO�10,2� connection �
A1A2 in 12D

and which can be decomposed in terms of the fields e�
a , ��

ab, a ,b=1,2 , . . . ,11 by identifying
�

aD= �1/ l�e�
a and �

ab=��
ab so that the Torsion and Lorenz curvature 2-forms are

Ta��,e� = FaD = daD + b
a ∧ bD =

1

l
�dea − �b

a ∧ eb� ,

�3.17�

Fab = �dab + c
a ∧ cd� + �D

a ∧ Db� = Rab��� +
1

l2ea ∧ eb, Rab��� = d�ab + �c
a ∧ �cb,

where a length parameter l must be introduced to match dimensions since the connection has units
of 1 / l. This l parameter is related to the cosmological constant.

LPontryagin
11 �� ,e� is the Chern–Simons 11-form whose exterior derivative

d�LPontryagin� = FA2

A1FA3

A2 . . . FA6

A5FA1

A6 �3.18�

is the �one of the many� Pontryagin 12-form �up to numerical factors� for the SO�10,2� connection
in 12D. As mentioned above, the SO�10,2� connection �

AB can be broken into the e�
a field and the

SO�10,1� spin connection ��
ab such that the number of components is 11+ 1

2 �11�10�=66= 1
2 �12

�11�. Finally, the exterior derivative dL�A5 ,� ,e� is the 12-form �we are omitting space-time
indices �1 ,�2 , . . . ,�12� that is comprised of terms of the form
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�Ra1a2. . .a5Ra1a2. . .a5
��Rb1b2Rb1b2

��TcTc�,�Ra1a2. . .a5Ra1a2. . .a5
�2�Rb1b2Rb1b2

�,�Ra1a2. . .a5Ra1a2. . .a5
�3,

�3.19�

the curvature 2-from associated with the field A�
c1c2. . .c5 is given by

R��
c1c2. . .c5 = ����A���

c1c2. . .c5 + A���
a1a2. . .a5A���

b1b2. . .b5fa1a2. . .a5b1b2. . .b5

c1c2. . .c5 , �3.20�

where the structure constants fABC in Eq. �3.18� are obtained from the Cl�11� algebra commutation
relations in Eq. �3.4h�.

IV. CONCLUSIONS: GENERALIZED CHERN–SIMONS GRAVITY IN CLIFFORD SPACES

The Cl�11� algebra based action ��3.9�, �3.10�� can in turn be embedded into a more general
expression in C-space �Clifford space� which is a generalized tensorial spacetime of coordinates
X=� ,x� ,x�� ,x��	. . .4 involving a scalar ��X� and antisymmetric tensor gauge fields A��X�,
A���X�, A��	�X�. . . of higher rank �higher spin theories�.21 The most general action onto which the
action �3.9�, �3.10� itself can be embedded requires a tensorial gauge field theory21 �generalized
Yang–Mills theories� and an integration with respect to all the Clifford-valued coordinates X
=XM�M corresponding to the 2D-dim C-space associated with the underlying Cl�2n�-algebra in
D=2n dimensions

S =� �d2n
X���F ∧ F ∧ ¯ ∧ F�	, �d2n

X� = �d���dx���dx����dx��	� . . . . �4.1�

A different sort of generalized Yang–Mills theories have been studied by Ref. 22 without the
Clifford algebraic structure.

Given a Lie algebra G with generators Ta for a=1,2 ,3 , . . . ,dim G, it has for commutators
�Ta ,Tb�= fab

c Tc and whose structure constants fabc are fully antisymmetric in their indices. The
Lie-algebra valued one-form is A= �AM

a �X�Ta�dXM and its generalized Lie-algebra valued field
strength

F = �FMN
c �X�Tc�dXM ∧ dXN = ���M�A�N�

c �X�Tc + gAM
a �X�AN

b �X�fab
c Tc�dXM ∧ dXN, �4.2�

has for components

F���1�2. . .�m���1�2. . .�n��
c = ���1�2. . .�m�A��1�2. . .�n�

c − ���1�2. . .�n�A��1�2. . .�m�
c + gA��1�2. . .�m�

a A��1�2. . .�n�
b fab

c .

�4.3�

The remaining components are of the form

F�0,N�
c = F�0��1�2. . .�n��

c = ��A��1�2. . .�n�
c − �x��1�2. . .�n�A0

c + gA0
aA��1�2. . .�n�

b fab
c , �4.4�

where A0
c is the Clifford-scalar part ��X� of the Lie-algebra valued Clifford polyvector and in

general we must consider the m=n and m�n cases resulting from the mixing of different grades
�ranks�. The antisymmetry with respect the collective indices MN is explicit.

In order to raise, lower and contract polyvector indices in C-space it requires a generalized
metric GMN. In flat C-space it is defined by the components

G�� = ���, G�1�2�1�2 = ��1�1��2�2 − ��1�2��2�1, etc . , �4.5�

in addition to the scalar-scalar component G��=1. It can be recast as

G�1�2. . .�m�1�2. . .�m = det G�I�J =
1

m!
�i1i2. . .im

� j1j2. . .jm
��i1

�j1��i2
�j2 . . . ��im

�jm, �4.6�

where G�I�J is an m�m matrix whose entries are ��i�j for i , j=1,2 ,3 , . . . ,m�D and � ,�
=1,2 ,3 , . . . ,D.
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As a result of the expression for the flat C-space metric, given by sums of antisymmetrized
products of ���, the Clifford-space generalized Yang–Mills action is of the form

SYM = −
1

2
� �DX� � trace�F���1�2. . .�m���1�2. . .�m��

a F���1�2. . .�m���1�2. . .�m��bTaTb� +

−
1

2
� �DX� � trace�F�0��1�2. . .�m��

a F��0�1�2. . .�m��bTaTb� , �4.7�

where the C-space 2D-dim measure associated with a Clifford algebra in D-dim is

�DX� = �d����dx����dx�1�2���dx�1�2�3� . . . �dx�1�2. . .�d� �4.8�

and the indices are ordered as �1��2��3 . . . ��m, etc.
The action �4.7� is invariant under the infinitesimal gauge transformations

��AM
c = �M�c + gfab

c AM
a �b, ��A�1�2. . .�n

c = �x�1�2. . .�n
�c + gfab

c A�1�2. . .�n

a �b �4.9�

associated with a Lie-algebra valued Clifford-scalar parameter ��X�=�a�X�Ta.
In Sec. I A it was explained why another alternative to define the transformations in C-space

was by writing the generators of polyrotations as R=exp�AB�EA ,EB�� where the commutator
�EA ,EB�=FAB

C EC is the C-space analog of the i��� ,��� commutator which is the generator of the
Lorentz algebra, and the parameters AB are the C-space analogs of the rotation/boots parameters.
This last alternative seems to be more physical because a polyrotation should map the EA direction
into the EB direction in C-spaces, hence the meaning of the generator �EA ,EB� which is the
generalization of the ordinary i��� ,��� Lorentz generator.

Therefore, when we recast the generators of polyrotations as JAB= ��A ,�B�, an action of the
form

S�Cspace� =� �DX�FM1N1

A1B1 FM2N2

A2B2 . . . FM2d−1N2d−1

A2d−1B2d−1
�A1B1A2B2. . .A2d−1B2d−1�

M1N1M2N2. . .M2d−1N2d−1

�4.10�

is the natural generalization of the Euler density types of the D-dim �D=2n� actions given by Eq.
�3.16� in C-space.

This action S�Cspace� �4.10� is more general than the action SClifford�A�
A�A� of Eq. �3.10�, and

which in turn, is more general than the Chern–Simons gravitational action SCS�� ,e ,A5� given by
Eq. �3.12�. Therefore, we have the inclusions

SCS��,e,A5� � SClifford�A�
A�x���A� � S�Cspace��AM

AB��,x�,x�1�2,x�1�2�3, . . . �JAB� ,

�4.11�

which should be very relevant in future developments of M, F theory upon the introduction of
polyvector-valued supersymmetries in C-spaces.16 These generalized supersymmetries deserve to
be investigated further since they are more fundamental than the supersymmetries associated with
M, F theory superalgebras and also span well beyond the N-extended supersymmetric field theo-
ries involving superalgebras like OSp�32 N� for example, which are related to a SO�N� gauge
theory coupled to matter fermions �besides the gravitinos�. It is these polyvector-valued supersym-
metries in C-spaces16 that will permit the supersymmetrization of the most general action in
C-spaces S�Cspace� given by Eq. �4.10�.

Finally, the results of this work may shed some light into the origins behind the hidden E8

symmetry of 11D supergravity, the hyperbolic Kac–Moody algebra E10 and the nonlinearly real-
ized E11 algebra related to chaos in M theory and oscillatory solutions close to cosmological
singularities.1–3
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APPENDIX: CLOSURE OF THE CLIFFORD SPACE SUPERSYMMERTRY

The classification of the family of symmetric matrices �C��1�1. . .�n��� is what restricts the type
of terms that appear in the �Q� ,Q�� anticommutator and depends on the number of space time
dimensions D, the signatures �s , t� and the rank n. A table of the allowed values of D ,s , t ,n can be
found in Ref. 18. In particular, when D=4=3+1, the �Q� ,Q�� is a symmetric matrix in � ,� with
ten independent components and which matches the degrees of freedom in P�, P�� given by 4
+6=10. Let us study the closure of

��M�1�2�3�4
,O��,Q�� + ��M�1�2�3�4

,Q��,Q�� = �M�1�2�3�2
,�Q�Q��� , �A1�

where

�Q�,Q�� =
1

2
C��P� +

1

2
C���P��. �A2�

In D=4, with signatures −, + , + ,+ one can find a charge conjugation matrix C and its transpose
CT obeying the properties

�C���T = �C���, �C����T = �C���� , �A3�

CT = − C,C��C−1 = − ��
T , C†C = CC† = 1, C−1���C = − ���

T . �A4�

It is convenient to use a Majorana representation where the charge conjugation matrix is given by
C=�0 and �5

T=−�5 is a hermitian matrix that has zero entries along the diagonal and −i�1, i�1 off
the diagonal.

We must verify that Eq. �A1� is obeyed. This requires that the spinorial charges Q� behave
under polyrotations as follows:

�M�1�2�3�4
,Q�� = −

1

2
���1�2�3�4

��
�Q� �A5�

and

�M�1�2�3�4
,P�1�2

� = ��1�2�1�2
P�3�4

+ ��3�4�1�2
P�1�2

± . . . , �A6�

the ± signs on the rhs of Eq. �A6� depend on the permutation of indices with respect to the initial
combination �1�2�3�4, �1�2. There are six terms in Eq. �A6�. The lhs of Eq. �A1� is

−
1

4
�5�C��P� + C���P��� −

1

4
��5�C��P� + C���P����T

= −
1

4
�5�C��P� + C���P��� −

1

4
��C���T�5

TP� + �C�����5
TP���

= −
1

4
�5�C��P� + C���P��� +

1

4
�C��P� + C���P����5, �A7�

where we have used the conditions �A3� and �5
T=−�5.

Multiplying Eq. �A7� from the left by C−1 and using C−1�5C=−�5 yields
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1

4
��5�� + ���5�P� +

1

4
��5��� + ����5�P��

=
1

4
��5��� + ����5�P�� +

1

2
�5���P�� =

1

2
���1

��2
��3

��4
��1�2P�1�2

=
1

2
����1�2���3�4

�1�2 + ¯ �P�1�2

=
1

2
����1�2�P�3�4

+ ���3�4�P�1�2
± ¯ � . �A8�

One may notice that due to the condition ��5 ,���=0 there are no P� terms in Eq. �A8�. The rhs of
Eq. �A1� is

1

2
�M�1�2�3�4

,�C��1P�1
� + �C��1�2�P�1�2

�

=
1

2
�C��1�2����1�2�1�2

P�3�4
+ ��2�4�1�2

P�1�2
+ ¯ � , �A9�

where

�M�1�2�3�4
,�C��1P�1

�� = C��1�M�1�2�3�4,P�1
� = 0. �A10�

Multiplying, Eq. �A9� on the left by C−1 yields

1

2
��1�2���1�2�1�2

P�3�4
+ ��3�4�1�2

P�1�2
+ ¯ � =

1

2
����1�2�P�3�4

+ ���3�4�P�1�2
± ¯ � .

�A11�

We have seen that a left-multiplication of the rhs and lhs of Eq. �A1� by C−1, leads to the equality
of Eq. �A8� with Eq. �A11�, which implies that Eq. �A1� is indeed satisfied.

The Jacobi identity

��M�1�2
,Q��,Q�� + ��M�1�2

,Q��,Q�� = �M�1�2
,�Q�,Q��� , �A12�

when

�M�1�2
,P	1	2

� = − ��1	1
P�2	2

± ¯ ,�M�1�1
,Q��

= −
1

2
���1�2

��
�Q�,�Q�,Q�� =

1

2
C��P� +

1

2
C��1�2P�1�2

�A13�

involves terms containing P� and P��. We know that the Jacobi identity is satisfied for the P�

terms since this is what the ordinary supersymmetry algebra entails.
The P�� terms involve the commutator

− ���1�2
,��1�2

�P�1�2 = ���1�1
��2�2

± ¯ �P�1�2. �A14�

Each one of the four terms in Eq. �A14�, for example, like the term ��1�1
��2�2

P�1�2 can be
rewritten as
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��1�1
��2�2

P�1�2 = ��1�1
�	1	2�	1	2�2�2

��1�2�2	2P�2	2
= − ��1�1

�	1

�1�	1	2P�2	2
= − ��1	1

�	1	2P�2	2

�A15�

and similarly one can rewrite the other three terms of Eq. �A14�, so that the Jacobi identity �A12�
is satisfied due to the equality in �A15�

�	1	2�M�1�2
,P	1	2

� = �	1	2�− ��1	1P�2	2
± ¯ � = − ���1�2

,��1�2
�P�1�2 = P�1�2���1�1

��2�2
± ¯ � ,

�A16�

i.e, the equality among the terms of Eq. �A16� can be seen effectively as exchanging �↔P and
��1 ,�2�↔ �	1 ,	2�.

One must have as well

�Q�,P�� = �Q�,P��� = 0, �P�,P�� = �P�1�2
,P�1�2

� = 0. . . �A17�

This example in D=4 should be valid in other dimensions and signatures provided we have the
appropriate list of symmetric �C��1�2. . .�n��� matrices.

One has the remaining commutators

�M�1�2
,M�1�2

� = − ��1�1
M�2�2

+ ��2�1
M�1�2

± ¯ , �A18�

�M�1�2�3�4
,M�1�2�3�4

� = ��1�2�1�2
M�3�4�3�4

± ¯ , �A19�

�M�1�2
,M�1�2�3�4

� = − ��1�1
M�2�2�3�4

± ¯ , �A20�

which obey the Jacobi identities.
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Quantum field theory is the traditional solution to the problems inherent in melding
quantum mechanics with special relativity. However, it has also long been known
that an alternative first-quantized formulation can be given for relativistic quantum
mechanics, based on the parametrized paths of particles in spacetime. Because time
is treated similarly to the three space coordinates, rather than as an evolution
parameter, such a spacetime approach has proved particularly useful in the study of
quantum gravity and cosmology. This paper shows how a spacetime path formalism
can be considered to arise naturally from the fundamental principles of the Born
probability rule, superposition, and Poincaré invariance. The resulting formalism
can be seen as a foundation for a number of previous parametrized approaches in
the literature, relating, in particular, “off-shell” theories to traditional on-shell quan-
tum field theory. It reproduces the results of perturbative quantum field theory for
free and interacting particles, but provides intriguing possibilities for a natural
program for regularization and renormalization. Further, an important consequence
of the formalism is that a clear probabilistic interpretation can be maintained
throughout, with a natural reduction to nonrelativistic quantum mechanics. © 2006
American Institute of Physics. �DOI: 10.1063/1.2375033�

I. INTRODUCTION

The idea of constructing quantum states as a “sum over histories” is well known in the form
of the Feynman path integral formulation. However, this approach is best known in its application
to nonrelativistic quantum mechanics,1,2 in which particle paths are parametrized by coordinate
time. A natural relativistic generalization is to consider parametrized paths in four-dimensional
spacetime rather than time-parametrized paths in three-dimensional space. Feynman himself de-
veloped such an approach, and this conception seems to have informed much of Feynman’s early
view of relativistic quantum mechanics.3–5

At an even earlier date, Stueckelberg presented a detailed formulation of relativistic quantum
mechanics in terms of parametrized spacetime paths.6,7 A number of other authors �notably Refs.
8–18� have also developed related approaches involving an invariant “fifth parameter” governing
the evolution of a quantum system, though not necessarily identifying this explicitly as a path
parameter.

A key feature of these approaches is that time is treated comparably to the three space
coordinates, rather than as an evolution parameter. This is particularly applicable to the study of
quantum gravity and cosmology, in which the fundamental equations �such as the Wheeler–
DeWitt equation� make no explicit distinction for the time coordinate �see, e.g., Refs. 19–25�.

Also, in the infinite-tension limit, string theory reduces to a worldline formalism for relativ-
istic quantum theory.26–32 One would therefore expect a path formulation of relativistic quantum
mechanics to provide a natural bridge to the typically first-quantized formulation of string theory.
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Despite the promise of the approach, spacetime path formalisms have often been presented in
the literature as simply alternative formulations of results obtained from the more traditional
quantum field theory formalism. The motivation of the present paper, however, is to construct a
first-quantized spacetime path formalism that can be considered foundational in its own right. This
means that many typical tools of field theory, such as Hamiltonian dynamics and the Lagrangian
stationary action principle for fields, cannot be assumed to apply a priori.

Instead, we will begin with the fundamental principles of special-relativistic quantum
theory—the Born probability rule, superposition, and Poincaré invariance—and introduce six ad-
ditional, physically motivated postulates related to spacetime paths. �The perhaps even more
fundamental question of why quantum probabilities are given via superpositions of probability
amplitudes will not be addressed here.� Results deduced from these postulates then provide the
basis for further physical interpretation.

Since this formalism is first quantized, particular care is given to properly handling particles
and antiparticles and to developing a consistent probabilistic interpretation. The result is an ap-
proach that fully deals with the usual issues of negative energies and negative probabilities, but
without necessitating the introduction of fields as fundamental entities. Rather, fields can be
considered to be simply a convenient formalism for handling multiparticle states. The present
work only discusses massive scalar particles, but the approach can be extended to handle nonsca-
lar particles �e.g., Ref. 34�.

Section II first introduces the formalism for free scalar particles, culminating in free multi-
particle fields. Section III then extends the formalism to consider interacting states and scattering.
In order to reduce clutter in the text, certain propositions resulting from purely mathematical, but
somewhat involved, derivation are cited without proof in the main body of the text, with proofs
given in appendices.

Natural units with �=1=c are used throughout the following and the metric has a signature of
�−+ + + �.

II. FREE PARTICLES

For any path based approach, it is obviously critical to be clear on what is meant by the term
path. In the present case, a path for a particle is an arbitrary curve through spacetime, that is, a
continuous �though not necessarily differentiable�, one-dimensional subspace of spacetime. Note
that there is no a priori requirement that such a curve is timelike or lightlike. Indeed, the path may
cross arbitrarily forwards and backwards in time. Since such a path is continuous, there is a
one-to-one mapping between it and some interval of the real numbers. That is, a path may be
given by functions q����, for �=0,1 ,2 ,3, of a path parameter �.

In this formulation, the path parameter � serves a purpose similar to that of time in the
traditional non-relativistic path integral approach.2 For the restricted case of an everywhere-
timelike path, this parameter is analogous to proper time. For the general case of an unrestricted
path, there has been some debate as to the physical nature of the path parameter �see, for example,
Refs. 35 and 36�. In order not to presuppose any specific interpretation, we will consider, for each
path, all possible parametrizations of the path.

To do this, choose a fiducial parametrization s, say over the interval �0,1�, and define any
other parametrization as a monotonically increasing function ��s�. Geometrically, the so called
lapse multiplier

w�s� �
d�

ds
� 0

then gives an effective length metric d�=w�s�ds for the path, and the corresponding parametriza-
tion � is an intrinsic length measure along the path.

Given this basic conception of a particle path, this section will review the fundamental pos-
tulates required for a path integral approach, derive the scalar free particle propagator, and care-
fully consider the corresponding probability interpretation.
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A. The free particle propagator

The fundamental postulate of any spacetime path integral approach is that a particle’s transi-
tion amplitude between two points in spacetime is a superposition of the transition amplitudes for
all possible paths between those points. Let the functional ��q� give the transition amplitude for a
path q����. Then the total transition amplitude ��x ,x0� must be given by a path integral over ��q�,
for all paths q from x0 to x.

Postulate 1: For a free scalar particle, the transition amplitude ��x ,x0� is given by the
superposition of path transition amplitudes ��q�, for all possible four-dimensional path functions
q���� beginning at x0 and ending at x, parametrized by all possible monotonically increasing
functions ��s�. That is,

��x,x0� =� D���d�

ds
�F�����x,x0;���� , �1�

where the real-valued functional F��� allows for the possibility of allowing different weights for
different parametrizations, and

��x,x0;���� � ���� � D4q�4�q���1�� − x��4�q���0�� − x0���q� , �2�

where ���� is a parametrization-dependent normalization factor as required to keep the path
integral finite.

Note that, in Eqs. �1� and �2�, the notation D� indicates a path integral over the parametriza-
tion function ��s� while D4q indicates a path integral over the four path functions q����.

In the traditional Feynman sum-over-paths approach, the form of ��q� is simply assumed to
be an exponential of the classical action.2 This is justified because the resulting transition ampli-
tudes agree with the results of the usual formulation of quantum mechanics. However, if the
path-based formulation is to be considered foundational, one would prefer a more fundamental
justification.

As a transition amplitude, ��q� strictly only applies to a particle on a specific path q from the
starting position q��0� to the ending position q��1� �where the parameter range of q is ��0 ,�1��.
However, by translational invariance in Minkowski spacetime, the particle propagation embodied
in ��q� cannot depend on the absolute positions q���, but only on the relative positions

�q��� � q��� − q��0� .

That is, we can take ��q�=���q�.
Now, consider a family of parallel paths qx0

, indexed by the starting position x0, such that

qx0
��� = x0 + �q��� ,

for a fixed relative position function �q. Since all members of such a family have the same
relative position function �q, the amplitude ��qx0

�=���q� must be the same for all members of
the family.

Suppose that a probability amplitude 	�x0� is given for a particle to be at an initial position x0

and that the transition amplitude is known to be ���q� for a specific relative position function �q.
Then, the probability amplitude for the particle to traverse a specific path qx0

from the family for
relative position �q is just ��qx0

�	�x0�=���q�	�x0�.
However, the very meaning of being on the specific path qx0

is that the particle must propagate
from the starting position at x0 to the ending position at qx0

��1�. Therefore, the probability for
reaching the end position qx0

��1� must be the same as the probability for having started out at the
position x0. That is,
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	���q�	�x0�	2 = 		�x0�	2.

But, since ���q� is independent of x0, we must have 	��q�	2=1 in general.
Of course, this argument is really just a suggestive motivation rather than a proof, so we take

the conclusion as a postulate, rather than a proposition.
Postulate 2: For any path q����, the transition amplitude ��q� preserves the position prob-

ability density for the particle along the path. That is, it satisfies

	��q�	2 = 1. �3�

If the configuration space for a path is expanded to be a representation of the full Poincaré
group—that is, to include a matrix representation of the �homogeneous� Lorentz group as well as
the four spacetime coordinates—then members of a family of “parallel” paths are related by
Poincaré transformations, not just translations. This can be used as the basis for extending the
spacetime path formalism to cover nonscalar particles. If, further, the assumption of flat spacetime
is dropped, then it is not generally possible to construct a family of parallel paths covering all
spacetime. However, one can still consider infinitesimal variations along a path corresponding to
arbitrary coordinate transformations. Such further generalizations of the spacetime path approach
will be explored in future papers.

The requirements of Eq. �3� and translation invariance mean that ��q� must have the form

��q� = eiS��q�, �4�

for some phase functional S. Substituting Eq. �4� into Eq. �2� gives

��x,x0;���� = ���� � D4q�4�q���1�� − x��4�q���0�� − x0�eiS��q�. �5�

So far, we have made no assumption that the particle path functions q���� are differentiable.
Indeed, paths under a path integral will generally not be differentiable. Nevertheless, it is common
practice to use �with some care� path derivatives in the integrand of a path integral. This is because
a path integral is defined as the limit of discretized approximations in which path derivatives are
approximated as the mean value �q /��, for finite differences �q and ��. The limit ��→0 is
then taken over the path integral as a whole, not each derivative individually. Thus, even though
lim��→0�q /�� may not be defined, the path integral has a well-defined value so long as the
overall path integral limit is defined. �For a discussion of some of the issues involved here, see, for
example, Sec. 7.3 of Ref. 2. See also the explicit example of the derivation in Appendix B.�

We are therefore justified in replacing the difference functions �q���� used in the phase
functional under the path integral in Eq. �5� with the path derivatives q̇�����dq� /d�, such that

�q���� = �
�0

�

d��q̇����� ,

letting the q���� be considered as differentiable. This gives

��x,x0;���� = ���� � D4q�4�q���1�� − x��4�q���0�� − x0�eiS�q̇�, �6�

which reflects the typical form of a Feynman sum over paths,2 where each path is weighted by a
phase determined by the action S. Unlike the usual nonrelativistic formulation, however, the path
parameter here is �, rather than time.5,21

Now, by dividing a path q into two paths at some arbitrary parameter value � and propagating
over each segment, we can see that
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S�q̇;�1,�0� = S�q̇;�1,�� + S�q̇;�,�0� , �7�

where S�q̇ ;�� ,�� denotes the value of S�q̇� for the parameter range of q̇ restricted to �� ,���. Using
this property to build the total value of S�q̇� from infinitesimal increments leads to the following
result �proved in Appendix A�.

Proposition A (Form of the Phase Functional): The phase functional S must have the form

S�q̇� =�
�0

�1

d��L�q̇;��� , �8�

where the parametrization domain for q̇ is ��0 ,�1� and L�q̇ ;�� depends only on q̇ and its higher
derivatives evaluated at �.

The question remains as to what form the function L should take. Traditionally, it is taken to
be just the classical Langrangian, but, from a foundational viewpoint, one would like a better
justification.

Of course, the simplest form for L would be a constant, independent of q̇. However, this
would result in a superficially divergent path integral in Eq. �6� which, when normalized, would
leave to just a trivial phase. This would not give any appropriate particle dynamics. The next
simplest form for L would be for it to depend only on q̇ and no higher derivatives. Further, since
L is a scalar quantity, it must then depend only on the Lorentz-invariant scalar function

q̇2��� � q̇����q̇���� .

Taking L to further have the tractable form of a linear function of q̇2 gives

L�q̇;�� = L�q̇2���� = aq̇2��� + b ,

for some a and b. Now, the factor a can be fixed arbitrarily, since any variation is effectively
equivalent to a reparametrization of the path parameter �. For a free particle, it is convenient to
take a=1/4. If we further assume that b is always negative, we can set b=−m2 and identifying m
with the mass of the particle does, indeed, give a classical relativistic Lagrangian function.

As we will see in the following, evaluating the path integral in Eq. �6� with this Lagrangian
function leads to the usual free-particle Feynman propagator. If, on the other hand, we take b to be
positive, then the result is a similar propagator, but with an effective imaginary particle mass. Such
particles are tachyons, which we will not consider further in this paper.

Postulate 3: For a free scalar particle of mass m, the Lagrangian function is given by

L�q̇2� = 1
4 q̇2 − m2. �9�

Substituting Eq. �8� into Eq. �6� gives

��x,x0;���� = ���� � D4q�4�q���1�� − x��4�q���0�� − x0�exp
i�
��0�

��1�

d��L�q̇2������ . �10�

With the Lagrangian given by Eq. �9�, it is well known that this path integral may be evaluated
�see, for example, Ref. 21�. However, in the present context, some care must be taken to math-
ematically evaluate the integral without making any further assumptions based on field equations
or underlying traditional quantum mechanics. In any case, the result �proved in Appendix B� is as
follows.

Proposition B (Evaluation of the Path Integral): The path integral in Eq. �10�, with the
Lagrangian given by Eq. �9�, may be evaluated to get

��x,x0;���� = ��x − x0;��1� − ��0�� � �2
�−4� d4peip�x−x0�e−i���1�−��0���p2+m2�. �11�

Note that the only dependency left of ��x−x0 ;��1�−��0�� on the parametrization ��s� is on
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the total intrinsic path length

T = ��1� − ��0� =�
0

1

dsw�s� � 0.

If we were to take F���=1 in Eq. �1� for all ��s�, there would then be a parametrization gauge
symmetry: all parametrizations that give the same intrinsic path lengths would be equivalent.
Therefore, equivalent reparametrizations would be overcounted in the � path integral of Eq. �1�, so
the integral would diverge.

If, on the other hand, the path integral over � had not been included at all in Eq. �1�, the result
would have been to overspecify a specific path parametrization. The possible particle paths would
then have been undercounted, missing the need to include paths of different intrinsic lengths. It is
thus necessary to reduce the � path integration in Eq. �1� to eliminate the overcounting due to the
path gauge symmetry, without overspecifying the path parametrization.

In the usual fashion for a gauge symmetry, we retain the integration, but fix a specific gauge.
This can be easily done by including a gauge fixing delta functional in F���. The gauge typically
chosen is to require that w�s�=d� /ds be constant,21 which corresponds to setting

F��� = f���1� − ��0����d�

ds
− ���1� − ��0��� ,

for some real function f�T�. Using this in Eq. �1� gives

��x,x0� = �
0

�

dTf�T���x − x0;T� .

In the following, we will generally assume equal weighting of all parametrizations, that is
f�T�=1. However, in Sec. III D, we will see that an alternate choice provides a fruitful path for
regularizing the infinite integrals that appear in the formalism for interacting particles. Neverthe-
less, assuming, for now, that f�T�=1, gives

��x,x0� = �
0

�

dT��x − x0;T� = �2
�−4� d4peip·�x−x0��
0

�

dTe−iT�p2+m2�. �12�

This can be evaluated by introducing a convergence factor exp�−T��, for infinitesimal �, resulting
in just the Feynman propagator

��x,x0� = ��x − x0� � − i�2
�−4� d4p
eip�x−x0�

p2 + m2 − i�
.

The integration of T from 0 to � in Eq. �12� is similar to the integration carried out by
Nambu,9 based on previous work of Fock,8 in order to obtain the Feynman propagator. Note,
though, that this integration arises naturally here as the gauge-fixed reduction of the path param-
etrization integral in Eq. �1�.

The relationship between the propagator ��x−x0� and ��x−x0 ;T� can be viewed in another
way, which will also prove useful in Sec. III D. For T�0,
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��x − x0;T� = e−iTm2� d4peip�x−x0��
0

�

dT�e−iT�p2
��T� − T�

= �2
�−1e−iTm2� d4peip�x−x0��
0

�

dT�e−iT�p2� dm�2e−i�T�−T�m�2

= �2
�−1e−iTm2� dm�2eiTm�2
��x − x0;m�2� , �13�

where

��x − x0;m�2� � �
0

�

dT�� d4peip�x−x0�e−iT��p2+m�2� = − i�2
�−4� d4p
eip�x−x0�

p2 + m�2 − i�
. �14�

This form for ��x−x0 ;T� is essentially that of the parametrized Green’s function derived by
Horwitz et al. for parametrized quantum field theory37,38 as a superposition of propagators for
different mass states �see also Refs. 39 and 40�. Equation �13� differs from those references in the
factor exp�−iTm2�. As a result of this factor, integrating Eq. �13� over T as in Eq. �12� effectively
acts as a Fourier transform, resulting in a propagator with mass sharply defined at m.

B. Free particle position states

The path integral form for ��x−x0 ;�−�0� given in Eq. �2� is essentially the same as that of
the path integral for the nonrelativistic kernel,2 except that � is used as the evolution parameter
instead of t. Therefore, ��x−x0 ;�−�0� has similar properties as a propagation kernel in �:

� d4x1��x − x1;� − �1���x1 − x0;�1 − �0� = ��x − x0;� − �0�

and

��x − x0;� − �0�* = ��x0 − x;�0 − �� .

Given these properties, define a family of probability amplitude functions 	�x ;��, for which

	�x;�� =� d4x0��x − x0;� − �0�	�x0;�0� , �15�

for any � and �0, normalized such that

� d4x		�x;��	2 = 1, �16�

for each �. Formally, these functions are probability amplitudes for the position x, with � serving
as an index identifying individual functions in the family. However, they can be interpreted as just
the parametrized probability amplitude functions defined by Stueckelberg.6 In this sense, the
	�x ;�� represent the probability amplitude for a particle to reach position x at the point along its
path with parameter value �.

Note that

i
�

��
��x − x0;� − �0� = �2
�−4� d4peip�x−x0��p2 + m2�e−i��−�0��p2+m2�.

This means that 	�x ;��, as given by Eq. �15�, satisfies
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− i
�

��
	�x;�� = 
 �2

�x2 − m2�	�x;�� . �17�

Equation �17� is a generalized Schrödinger equation, such as proposed by Stueckelberg.7 However,
Stueckelberg and subsequent authors4,12,15 used a Hamiltonian of the form �2m�−1�2 /�x2, by anal-
ogy with nonrelativistic mechanics, rather than the form of Eq. �17� �though Ref. 41 uses a
Hamiltonian form similar to Eq. �17��. This difference is the origin of the extra factor exp�
−iTm2� in Eq. �13� relative to Refs. 37 and 38.

The properties of the kernel ��x−x0 ;�−�0� also allow for the definition of a consistent family
of position state bases 	x ;��, such that

	�x;�� = x;�		� , �18�

given a single Hilbert space state vector 		�. These position states are normalized such that

x�;�	x;�� = �4�x� − x�

for each value of �. Further, it follows from Eqs. �15� and �18� that

��x − x0;� − �0� = x;�	x0;�0� . �19�

Thus, ��x−x0 ;�−�0� effectively defines a unitary transformation between the various Hilbert
space bases 	x ;��, indexed by the parameter �.

Finally, the overall state for propagation from x0 to x is given by the superposition of the states
for paths of all intrinsic lengths. If we fix q���0�=x0

�, then 	x ;�� already includes all paths of
length �−�0. Therefore, the overall state 	x� for the particle to arrive at x should be given by the
superposition of the states 	x ;�� for all ���0:

	x� � �
�0

�

d�	x;�� . �20�

Then, using Eq. �19�,

x	x0;�0� = �
�0

�

d���x − x0;� − �0� = �
0

�

d���x − x0;�� = ��x − x0� . �21�

Now, the 	x� are not actually proper Hilbert space states, since x 	x0� is infinite �as can be seen
by integrating Eq. �21� over �0�. Nevertheless, via Eq. �12�, the corresponding bras x	 can be
considered to be well-defined functions on proper, normalizable states 		� such that

x		� =� d4x0��x − x0�	�x0;�0�

is the transition amplitude for a particle with known probability amplitude 	�x0 ;�0� at �0 to
eventually reach position x at some ���0. We will thus continue to use 	x� as a formal quantity,
with the understanding that it is really just a shorthand for constructing propagators and transition
amplitudes.

C. On-shell particle and antiparticle states

The states constructed so far have naturally been off-shell states. That is, they represent what
are normally considered to be “virtual” particles. However, rather than simply imposing the
on-shell mass condition to obtain “physical” states, on-shell states will be constructed in this
subsection as the infinite time limit of off-shell states. That is, particles with paths that, in the limit,
are unbounded in time will turn out to be naturally on-shell.
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In order to take a time limit, it is necessary to make some distinction between past and future
that can be used as the basis for taking the limit. For this purpose, divide the set of all possible
paths q� that end at some specific q����=x� into two subsets: those that begin �at q���0�=x0

�� in
the past of x and those that begin in the future of x.

Outside of the light cone of x, the division into future and past is, of course, not Lorentz
covariant and depends on the choice of a specific coordinate system. However, when we take the
time limit, the light cone expands to cover all space, and, in this limit, the division into particle and
antiparticle becomes fully coordinate system independent. The possibility of the particle/
antiparticle distinction being coordinate system dependent in anything other than the infinite time
limit is a subject for future exploration.

Now, particles are normally considered to propagate from the past to the future. On the other
hand, antiparticles may be considered to propagate from the future into the past.3,6,7

Postulate 4: Normal particle states 	x+� are such that

x+	x0;�0� = ��x0 − x0
0���x − x0� .

Antiparticle states 	x−� are such that

x−	x0;�0� = ��x0
0 − x0���x − x0� .

Using the usual decomposition of the Feynman propagator �see, for example, Sec. 6.2 of Ref.
42�

��x − x0� = ��x0 − x0
0��+�x − x0� + ��x0

0 − x0��−�x − x0� , �22�

where

�±�x − x0� � �2
�−3� d3p
ei��p�x0−x0

0�+p·�x−x0��

2�p
, �23�

with �p��p2+m2, it is clear that

x±	x0;�0� = ��±�x0 − x0
0����x − x0� = ��±�x0 − x0

0���±�x − x0� . �24�

We would now like to take the time limits for future and past directed particle and antiparticle
states. In doing this, one cannot expect to hold the three-position of the path end point constant.
However, for a free particle, it is reasonable to take the particle three-momentum as being fixed.
Therefore, consider the state of a particle or antiparticle with a three-momentum p at a certain time
t. �The importance of the specific factor exp�i�pt� in the definition below will become clear in
a moment.�

Postulate 5: The state of a particle �+� or antiparticle �−� with three-momentum p is given by

	t,p±� � �2
�−3/2� d3xei��pt+p·x�	t,x±� = �2
�−1/2ei�pt� dp0eip0t	p±� , �25�

where

	p±� � �2
�−2� d4xeip·x	x±� �26�

is the corresponding four-momentum state.
Let

	t0,p±;�0� � �2
�−3/2� d3xei��pt0+p·x�	t0,x;�0� = �2
�−1/2ei�pt0� dp0eip0t0	p;�0� , �27�

where
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	p;�0� � �2
�−2� d4xeip·x	x;�0� . �28�

Substituting from Eqs. �26�, �28�, and �24�,

p±	p0;�0� = �2
�−4� d4xd4x0e−ip·xeip0·x0��±�x0 − x0
0���±�x − x0� = �4�p − p0��±�p� , �29�

where

�±�p� � � d4xe−ip·x��±x0��±�x� . �30�

Substituting Eq. �23� into Eq. �30� gives

�±�p� =� d4xe−ip·x��±x0��2
�−3� d3p��2�p��
−1ei��p�x

0+p�·x�

=� dteip0t��±t� � d3p��2�p��
−1ei�p�t�2
�−3� d3xei�p�−p�·x

=� dteip0t��±t� � d3p��2�p��
−1ei�p�t�3�p� − p� = �2�p�−1� dt��±t�ei�p0�p�t. �31�

Using Eq. �29� �and the completeness of the 	p ;�0� states� in Eq. �25�, and substituting from
Eq. �31� for �±�p�, then gives

	t,p±� = �2
�−1/2ei�pt� dp0eip0t�±�p�*	p;�0�

= �2
�−1/2�2�p�−1� dt���±t��ei�p�t−t�� � dp0eip0�t−t��	p;�0� .

Change variables t�→ t− t0 to get

	t,p±� = �2
�−1/2�2�p�−1� dt0��±�t − t0�� � dp0ei�p0�p�t0	p;�0� = ��2�p�−1�
−�

t

dt0	t0,p+;�0� ,

�2�p�−1�
t

+�

dt0	t0,p−;�0� .

�32�

It is then straightforward to take the time limit t→ ±�. Note that

�
−�

+�

dt0	t0,p±;�0� = �2
�−1/2� dp0� dt0ei�p0�p�t0	p;�0� = �2
�−1/2� dp0�2
���p0  �p�	p;�0�

= �2
�1/2	 ± �p,p;�0� .

Therefore

	p±� � lim
t→±�

	t,p±� = �2
�1/2�2�p�−1	 ± �p,p;�0� . �33�

Thus, a normal particle �+� or antiparticle �−� that has three-momentum p as t→ ±� is
on-shell, with energy ±�p. Such on-shell particles are unambiguously normal particles or antipar-
ticles, independent of choice of coordinate system. �Note that these states are similar to the “mass
representation” states of Ref. 12.�
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Note also that the factor of exp�i�pt� in the definition of 	t ,p±� �Eq. �25�� is not arbitrary.
Without this, a factor of exp�±i�pt� would remain in Eq. �32�, making it impossible to take the
limit t→ ±�.

D. On-shell probability interpretation

Unfortunately, the states defined in Eq. �33� are not normalizable using the usual inner prod-
uct, since

p±�	p±� = 2
�2�p�−2��0��3�p� − p�

is infinite. In Ref. 12, this is handled by allowing the mass m to vary, even though the energy is
fixed at �p2+m2. Here we will take a different approach, noting that, from Eq. �28�,

p�;�	p;�� = �4�p� − p� .

Using this and Eq. �33�, we clearly have

p±	p0;�0� = �2
�1/2�2�p�−1��±�p − p0
0��3�p − p0� . �34�

Moreover, from this equation and Eq. �27�,

p±	t0,p0±;�0� = �2
�−1/2ei�pt0� dp0
0eip0

0t0�2
�1/2�2�p�−1��±�p − p0
0��3�p − p0�

= �2�p�−1�3�p − p0� , �35�

for any value of t0. This is essentially the basis for an “induced” inner product, in the sense of
Refs. 23 and 43.

Let H be the Hilbert space of the 	x ;�0� and let Ht be the subspaces spanned by the 	t ,x ;�0�,
for each t, forming a foliation of H. Now, from Eq. �27�, it is clear that the particle and antiparticle
3-momentum states 	t ,p± ;�0� also each span Ht. In these representations, states in Ht have the
form

	t,	±;�0� =� d3p	�p�	t,p±;�0� , �36�

for square-integrable functions 	�p�. Conversely, it follows from Eq. �35� that a probability am-
plitude 	�p� is given by

	�p� = �2�p�p±	t,	±;�0� . �37�

Let Ht� be the space of linear functions dual to Ht. Via Eq. �37�, the bra states p±	 can be
considered to be members of Ht�, for all t. Indeed, they span two common subspaces H±� of the Ht�,
the states of which have the form

	±	 =� d3p	�p�*p±	 .

Now, define an inner product on the functions 	�p� such that

�	1,	2� � 	1±	t,	2±;�0� =� d3p

2�p
	1�p�*	2�p� , �38�

where the second equality follows from Eq. �35�. Equipped with this inner product, each Ht is
itself a Hilbert space of the wave functions 	�p�. Note that it is the states of the dual spaces H±�

that naturally satisfy the on-shell constraint 	± 	 Ĥ=0 �as suggested by, for example, Ref. 44�.
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The operators �2�p� 	 t0 ,p± ;�0�p±	 are self-adjoint under the inner product given in Eq. �38�,
in the sense that the conjugate of

�2�p�	±	t0,p±;�0�p±	 = 	�p�*p±	

is

�2�p�	t0,p±;�0�p±	t,	±;�0� = 	t0,p±;�0�	�p�

for that inner product. Further,

� d3p�2�p�	1±	t0,p±;�0�p±	t,	2±;�0� =� d3p

2�p
	1�p�*	2�p� = 	1±	t,	2±;�0� ,

which gives the effective resolution of the identity

� d3p�2�p�	t0,p±;�0�p±	 = 1. �39�

In fact, such a resolution of the identity generally holds for families of conjugate bra and ket states
with a biorthonormality relationship such as Eq. �35� �see Ref. 45 and Appendix A.8.1 of Ref. 46�.
We can, therefore, take the operator �2�p� 	 t0 ,p± ;�0�p±	 to represent the quantum proposition that
an on-shell particle or antiparticle has the three-momentum p. Then, with the normalization

�	,	� =� d3p

2�p
		�p�	2 = 1,

		�p�	2 is the corresponding probability density in three-momentum space.

Finally, consider that 	t ,x ;�0� is an eigenstate of the three-position operator X̂, representing a
particle localized at the three-position x at time t. From Eq. �37�, and using the inverse Fourier
transform of Eq. �28� with Eq. �33�, its three-momentum wave function in Ht is

�2�p�p±	t,x;�0� = �2
�−3/2ei�±�pt−p·x�. �40�

This is just a plane wave, and it is an eigenfunction of the operator

e±i�pti
�

�p
ei�pt,

which is the traditional momentum representation i� /�p of the three-position operator X̂, trans-
lated to time t.

This result contrasts with the well-known result of Newton and Wigner,47 who conclude that
a localized particle wave function satisfying the Klein–Gordon equation is an eigenfunction of

i
 �

�p
−

p

2�p
2� ,

which has an extra term over the expected i� /�p. The key reason for this difference is our use of
the three-momentum basis 	t ,p± ;�0�. With the dual basis �2�p�p±	 from Eq. �35�, this leads to the
relation given in Eq. �37� and used in Eq. �40�.

In contrast, the traditional formalism assumes that both bra and ket states are on-shell. Instead
of the time-dependent spaces Ht, the spaces H± are used, with on-shell ket basis states 	p±� that are
dual to the bra states p±	 under an inner product such that, instead of Eq. �35�, one has
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�2�p��
1/2p±�	p±��2�p�1/2 = �3�p� − p� ,

where the factor of �2�p�1/2 is introduced symmetrically on dual bra and ket states in order provide
an orthonormal basis. If we were to use the traditional dual basis �2�p�1/2p±	, instead of �2�p�
�p±	, the wave function of 	t ,x ;�0� would be

�2�p�1/2p±	t,x;�0� = �2
�−3/2�2�p�−1/2ei�±�pt−p·x�. �41�

At t=0 this is exactly the Newton–Wigner wave function for a localized particle.47

Note that Eq. �40� is effectively related to Eq. �41� by a scalar Foldy–Wouthuysen
transformation.48,49 This makes sense, since the Foldy–Wouthuysen transformation produces a
representation that separates positive and negative energy states �particles and antiparticles� and
gives a reasonable non-relativistic limit.

Indeed, from Eq. �27� we can easily see that the time evolution of the three-momentum states
	t ,p± ;�0� is given by

eiP̂0�t	t,p±;�0� = e±i�p�t	t + �t,p±;�0� = e±iĤFW�t	t + �t,p±;�0� ,

where

ĤFW = �P̂ · P̂ + m2�1/2

is the scalar Foldy–Wouthuysen Hamiltonian and the P̂� are the generators of spacetime transla-
tions. Define the operation of time translation on the time-dependent states 	t ,	 ;�0� so that

	t + �t,	±;�0� = eiP̂0�t	t,	±;�0.

Substituting Eq. �36� then gives

	t + �t,	±;�0� =� d3p	�t,p�eiP̂0�t	t,p±;�0� =� d3p	�t,p�e±i�p�t	t + �t,p±;�0�

=� d3p	�t + �t,p�	t + �t,p±;�0� ,

where the time dependence of the three-momentum wave function has been made explicit, with
time evolution given by

	�t + �t,p� = e±i�p�t	�t,p� .

In the nonrelativistic limit, for positive-energy particles, �p�m+p2 /2m, and this time evolution
reduces to time evolution according to the usual nonrelativistic Hamiltonian �up to the
momentum-independent phase factor exp�im�t��.

E. Free multiparticle states

The formalism introduced in the previous sections can be extended in a straightforward way
to a Fock space of noninteracting multiparticle states. In order to allow for multiparticle states with
different types of particles, extend the position state of each individual particle with a particle type
index n, such that

x�,n�;�	x,n;�� = �n
n��4�x� − x� .

Then, construct a basis for the Fock space of multiparticle states as symmetrized products of N
single particle states:
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	x1,n1,�1; . . . ;xN,nN,�N� � �N ! �−1/2 �
perms P

	xP1,nP1;�P1� ¯ 	xPN,nPN;�PN� , �42�

where the sum is over all permutations P of 1 ,2 , . . . ,N. �Since only scalar particles are being
considered in the present work, only Bose–Einstein statistics need be accounted for.�

Define multiparticle states 	x1 ,n1 ; . . . ;xN ,nN� as similarly symmetrized products of 	x� states.
Then,

x1�,n1�; . . . ;xN� ,nN� 	x1,n1,�0; . . . ;xN,nN,�0� = �
perms P

�
i=1

N

�ni

nPi� ��xPi� − xi;mi
2� , �43�

where mi is the mass of particles of type ni. Note that the use of the same parameter value �0 for
the starting point of each particle path is simply a matter of convenience, using the path param-
etrization gauge freedom to choose this value arbitrarily. The intrinsic lengths of each particle path
are still integrated over separately in 	x1 ,n1 ; . . . ;xN ,nN�, which is important for obtaining the
proper particle propagator factors in Eq. �43�. Nevertheless, by using �0 as a common starting
parameter value, we can make the small notational simplification of not repeating it multiple times
in 	x1 ,n1 ,�0 ; . . . ;xN ,nN ,�0�, defining, instead,

	x1,n1; . . . ;xN,nN;�0� � 	x1,n1,�0; . . . ;xN,nN,�0� .

Following the same procedures as in Sec. II C for each particle in a multiparticle state, it is
straightforward to construct the multiparticle three momentum states 	t1 ,p1± ,n1 ; . . . ; tN ,pN± ,nN�
and 	t1 ,p1± ,n1 ; . . . ; tN ,pN± ,nN ;�0�. Note that each particle may be either a normal particle �+� or
an antiparticle �−�. Then, to obtain on-shell states we need to take ti→ +� in
	t1 ,p1± ,n1 ; . . . ; tN ,pN± ,nN� for particles, but ti→−� for antiparticles. This results in the multipar-
ticle on-shell states 	p1± ,n1 ; . . . ;pN± ,nN�.

Now, it can be seen that the 	p1± ,n1 ; . . . ;pN± ,nN� states may not always be particularly con-
venient, since they describe normal particles at t= +� and antiparticles at t=−�. For describing
the asymptotic state of outgoing particles from a scattering process, for instance, we would like to
take the limit for all particles and antiparticles together as t→ +�.

To do this, we can take the viewpoint of considering antiparticles to be positive energy
particles traveling forwards in time, rather than negative energy particles traveling backwards in
time. Since both particles and their antiparticles will then have positive energy, it becomes nec-
essary to explicitly label antiparticles with separate �though related� types from their correspond-
ing particles. Let n+ denote the type label for a normal particle type and n− denote the correspond-
ing antiparticle type.

For normal particles of type n+, position states are defined as in Eq. �24�,

x,n+	x0,n+;�0� = ��x0 − x0
0��+�x − x0� .

For antiparticles of type n−, however, position states are now defined such that

x,n−	x0,n−;�0� = ��x0 − x0
0��−�x0 − x� . �44�

Note the reversal with respect to Eq. �24� of x0 and x on the righthand side of this equation.
Using Eq. �23�, the Fourier transform of Eq. �44� is

� d4xe−ip·x��x0��−�− x� =� d4xe−ip·x��x0��+�x0,− x� =� d4xei�p0x0+p·x���x0��+�x� = �+�p0,− p� ,

where �+�p� is as given in Eq. �30�. From this we can see that carrying through the derivation for
antiparticle three-momentum states will, indeed, give positive energy states, but with reversed
three momentum

112302-14 Ed Seidewitz J. Math. Phys. 47, 112302 �2006�

                                                                                                                                    



	t,p,n−� = �2�p�−1�
−�

t

dt0	t0,p,n−;�0� ,

where

	t0,p,n−;�0� = 	t0,− p+,n;�0� .

Further, taking the limit t→ +� gives the on-shell states

	p,n−� � lim
t→+�

	t,p,n−� = �2
�1/2�2�p�−1	 + �p,− p;�0� .

We can now reasonably construct Fock spaces Ft with single time, multiparticle basis states

	t;p1,n1±; . . . ;pN,nN±;�0� � 	t,p1,n1±; . . . ;t,pN,nN±;�0� ,

over all combinations of particle and antiparticle types. Similarly defining

	t;p1,n1±; . . . ;pN,nN±� � 	t,p1,n1±; . . . ;t,pN,nN±� ,

we can now take t→ +� for particles and antiparticles alike to get the multiparticle on-shell states
	p1 ,n1± ; . . . ;pN ,nN±�. The corresponding bra states p1 ,n1± ; . . . ;pN ,nN±	 then span a subspace of
the dual space Ft�, for any t. Analogously to the case for single particle states, this can be used to
define a Hilbert space of multiparticle probability amplitudes for each time t.

Finally, since 	p1 ,n1± ; . . . ;pN ,nN±� now uniformly represents particles and antiparticles in the
t→ +� limit, it can be used as the asymptotically free state of outgoing particles from a scattering
process. The corresponding state for incoming particles is 	p1 ,n1± ; . . . ;pN ,nN± ;�0�
� limt→−� 	 t ;p1 ,n1± ; . . . ;pN ,nN± ;�0�.

F. Fields

Even though the theory presented here is essentially first quantized, it is still often convenient
to introduce the formalism of creation and annihilation fields on the Fock space of multiparticle

states. Specifically, define the creation field 	̂†�x ,n ;�� by

	̂†�x,n;��	x1,n1,�1; . . . ;xN,nN,�N� = 	x,n,�;x1,n1,�1; . . . ;xN,nN,�N� ,

with the corresponding annihilation field 	̂�x ,n ;�� having the commutation relation

�	̂�x�,n�;��,	̂†�x,n;�0�� = �n
n���x� − x;� − �0� .

Further define

	̂�x,n� � �
�0

�

d�	̂�x,n;�� , �45�

so that

�	̂�x�,n��,	̂†�x,n;�0�� = �n
n���x� − x� , �46�

which is consistent with the multiparticle inner product as given in Eq. �43�.
Note the asymmetry in Eq. �46�: 	̂†�x ,n ;�0� is at the reference value �0 of the path parameter

�at the start of the path�, while in 	̂�x� ,n�� the path parameter �at the end of the path� is integrated
over. This results from the fact that it is the integrated position bra state x� ,n�	, created by

	̂�x� ,n��, that generates complete particle transition amplitudes �as discussed at the end of Sec.
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II A�. It is thus convenient to consider x ,n	 to be “dual” to 	x ,n ;�0�, in a similar fashion to the
states p±	 and 	t ,p± ;�0� in Sec. II C, even though, by Eq. �21�, the position states are not orthogo-
nal.

In the field operator notation, this duality can be captured by introducing a special adjoint 	̂‡

defined by

	̂‡�x,n� = 	̂†�x,n;�0� and 	̂‡�x,n;�0� = 	̂†�x,n� . �47�

The commutation relation in Eq. �46� then takes on the more symmetric form

�	̂�x�,n��,	̂‡�x,n�� = �n
n���x� − x� .

We can also define field operators for explicit particle and antiparticle types, as considered in

Sec. II E. Define the normal particle field 	̂�x ,n+� by

	̂�x,n+� � � d4x0�+�x − x0�	̂�x0,n+;�0� , �48�

giving the commutation rule

�	̂�x�,n+�,	̂†�x,n+;�0�� = �	̂�x�,n+�,	̂‡�x,n+�� = �+�x� − x� . �49�

Substituting Eq. �23� into Eq. �48� gives the familiar expression

	̂�x,n+� = �2
�−3/2� d3pei�−�px0+p·x�â�p,n+� ,

where

â�p,n+� � �2
�−3/2�2�p�−1� d4x0ei��px0
0−p·x0�	̂�x0,n+;�0�

is the on-shell particle three-momentum field.
For antiparticles, reverse the roles of the antiparticle creation and annihilation operators rela-

tive to increasing-� propagation as defined for the normal particle type. Define the antiparticle
creation field analogously to Eq. �48� for the corresponding normal particle annihilation field

	̂†�x,n−� � � d4x0�−�x − x0�	̂†�x0,n−;�0� .

Now, �−�x−x0�*=�−�x0−x� �see Eq. �23��. Therefore,

	̂�x,n−� =� d4x0�−�x0 − x�	̂�x0,n−;�0� , �50�

giving the commutation rule �note the switching of x� and x on the right, relative to Eq. �49��

�	̂�x�,n−�,	̂†�x,n−;�0�� = �	̂�x�,n−�,	̂‡�x,n−�� = �−�x − x�� .

Substituting Eq. �23� into Eq. �50� and changing variables p→−p then gives

	̂�x,n−� = �2
�−3/2� d3pei�−�px0+p·x�â�p,n−� ,

where
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â�p,n−� � �2
�−3/2�2�p�−1� d4x0ei��px0
0−p·x0�	̂�x0,n−;�0�

is the on-shell antiparticle three-momentum field.

III. INTERACTING PARTICLES

In conventional second-quantized quantum field theory, interactions are introduced via the
Lagrangian density into the Hamiltonian used to propagate the fields. The very conception of
interacting particles and their paths then only arises at all as a result of the perturbative expansion
of the Hamiltonian. Such an approach is thus not very natural for a foundational formalism based
on spacetime paths.

Now, the actual traditional motivation for introducing fields in the first place is largely a
heuristic response to the well known difficulties with negative energies and probabilities in rela-
tivistic quantum mechanics. However, as we have seen in Sec. II, these difficulties can also be
handled in the context of the spacetime path formalism. Further, the spacetime path approach can
very directly accommodate the creation and destruction of particles, as required in a relativistic
theory. One simply considers particle paths with a finite length: a particle is created at the start of
its path and destroyed at the end.

Taking this path viewpoint, an interaction vertex can then simply be considered as an event at
which a set of particle paths all end together and another set of particle paths all begin. An
interaction graph is a set of interaction vertices connected by particle paths. For a collection of
interacting particles, it is essentially such graphs that act as the fundamental building blocks of the
system state, rather than the individual particle paths themselves.

The natural spacetime path approach for interactions is therefore first quantized rather than
second quantized. As we will see in this section, the first-quantized spacetime path formalism can
duplicate the basic results of perturbative quantum field theory for Feynman diagrams and scat-
tering. It is also consistent with the typically first-quantized geometric approach used in string
theory.50

Of course, taking a first-quantized formalism as foundational requires that issues of consis-
tency and convergence that appear in traditional perturbation theory be addressed directly, without
recourse to a posited nonperturbative solution. We will return to this point at the end of Sec. III D,
though a full discussion is beyond the scope of the present paper.

A. Interactions

Since incoming particles are destroyed at an interaction vertex, and outgoing particles are
created, the vertex can be represented by an operator constructed as an appropriate product of the
creation and annihilation operator fields introduced in Sec. II F. Note that “incoming” and “out-
going” are used here in the sense of the path evolution parameter �, not time. That is, we are not
separately considering particles and antiparticles at this point.

Postulate 6: An interaction vertex, possibly occurring at any position in spacetime, with some
number a of incoming particles and some number b of outgoing particles, is represented by the
operator

− iV̂ � h� d4x�
i=1

a

	̂‡�x,ni���
j=1

b

	̂�x,nj� , �51�

where the coefficient h represents the relative probability amplitude of the interaction and 	̂‡ is the
special adjoint defined in Eq. �47�.

The probability amplitude for a transition from an initial state 	x1 ,n1 ; . . . ;xN ,nN ;�0� to a final
state 	x1� ,n1� ; . . . ;xN�

� ,nN�
� �, with a single intermediate interaction, is then

G1�x1�,n1�; . . . ;xN�
� ,nN�

� 	x1,n1; . . . ;xN,nN� = x1�,n1�; . . . ;xN�
� ,nN�

� 	�− i�V̂	x1,n1; . . . ;xN,nN;�0� .
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This is essentially the amplitude for a first-order Wick diagram.51 That is, it is equivalent to the
first-order terms in the Wick expansion of the Dyson series in conventional quantum field theory
�including all permutations that may result from crossing symmetries if any of the incoming or
outgoing particles in the interaction are of the same type�.

The probability amplitude corresponding to multiple intermediate interactions can then be

obtained by repeated applications of V̂. Thus, the amplitude for m interactions is

Gm�x1�,n1�; . . . ;xN�
� ,nN�

� 	x1,n1; . . . ;xN,nN� = x1�,n1�; . . . ;xN�
� ,nN�

� 	
�− i�m

m!
V̂m	x1,n1; . . . ;xN,nN;�0� ,

where the �m ! �−1 factor accounts for all possible permutations of the m identical factors of V̂. The
complete interacting transition amplitude, with any number of intermediate interactions, is then

G�x1�,n1�; . . . ;xN�
� ,nN�

� 	x1,n1; . . . ;xN,nN� = �
m=0

�

Gm�x1�,n1�; . . . ;xN� ,nN� 	x1,n1; . . . ;xN,nN�

= x1�,n1�; . . . ;xN� ,nN� 	Ĝ	x1,n1; . . . ;xN,nN;�0� , �52�

where

Ĝ � �
m=0

�
�− i�m

m!
V̂m = e−iV̂. �53�

Extend the operation of the special adjoint in the natural way to sums and products. Then it is

clear, at least formally, that Ĝ is unitary relative to this adjoint �that is, Ĝ‡Ĝ= ĜĜ‡=1�, so long as

V̂ is self-adjoint relative to it �that is, V̂‡= V̂�.
From Eq. �51�, there are two consequences to V̂ being self-adjoint. First ih=g must be real.

Second, the interaction must involve the same number of incoming and outgoing particles, of the
same types. This second consequence is a result of assuming so far that there is only one possible
type of interaction. The formalism can be easily extended to allow for multiple types of interac-

tions by adding additional terms to the definition of V̂. In this case, only the overall operator V̂
needs to be self-adjoint, not the individual interaction terms.

For example, consider the case of a three-particle interaction of the form

	̂‡�x ,nA�	̂�x ,nB�	̂�x ,nA�. Then, for the overall interaction operator V̂ to be self-adjoint, there must

also be a conjugate interaction term 	̂‡�x ,nA�	̂‡�x ,nB�	̂�x ,nA�. That is,

V̂ = g� d4x�	̂‡�x,nA�	̂�x,nB�	̂�x,nA� + 	̂‡�x,nA�	̂‡�x,nB�	̂�x,nA�� .

This corresponds to the case of the particle of type B being indistinguishable from its antiparticle.
Defining the self-adjoint effective field

	̂��x,nB� � 	̂�x,nB� + 	̂‡�x,nB�

then allows V̂ to be put back into the form of a single type of interaction:

V̂ = g� d4x	̂‡�x,nA�	̂��x,nB�	̂�x,nA� . �54�

An alternate interpretation of a self-adjoint interaction vertex is to pair up incoming and
outgoing particles of the same type and consider them to be the same particle before and after the
interaction. For example, an interaction of the form given in Eq. �54� would be considered to
represent a single particle of type A interacting with a self-adjoint particle of type B.
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This viewpoint can be seen more explicitly by considering a first-order interaction matrix
element and using Eq. �12� to expand the A-particle propagators

xA,nA;xB,nB	V̂	x0,nA;�0�

= g� d4x�A�xA − x��B�xB − x��A�x − x0�

= g� d4x�B�xB − x��
�0

�

d��
�0

�

d���A�xA − x;�� − �0��A�x − x0;� − �0�

= g� d4x�B�xB − x��
�0

�

d��
�

�

d���A�xA − x;�� − ���A�x − x0;� − �0� .

Substituting for the A-particle kernels from Eq. �6�, the path integral for the first kernel ends at the
same point x as the path integral for the second kernel begins. Therefore, the two path integrals
can be combined into a single path integral, with the constraint that the paths always pass through
the intermediate point x:

xA,nA;xB,nB	V̂	x0,nA;�0�

= g� d4x�B�xB − x��
�0

�

d��
�

�

d���� D4q�4�q���� − xA��4�q��� − x��4�q��0� − x0�eiSA�q̇�

= g�
�0

�

d���
�0

��
d��� D4q�4�q���� − xA��4�q��0� − x0�eiSA�q̇��B�xB − q���� .

This form clearly reflects the viewpoint of a single A particle interacting with a B particle at the
point q��� in its path.

Now consider a second-order interaction in which the incoming and outgoing particles are all
A particles

x1�,nA;x2�,nA	
1

2
V̂2	x1,nA;x2,nA;�0�

=
g2

2
� d4y1� d4y2��A�x1� − y2��A�y2 − y1��A�y1 − x1��B�y2 − y1��A�x2� − x2�

+ �A�x1� − y1��A�y1 − x1��B�y2 − y1��A�x2� − y2��A�y2 − x2� + ¯ � , �55�

where the additional terms not shown are the result of position interchanges from the terms given.
The first term shown in Eq. �55� reflects a self-interaction of one A particle via the B particle, with
the second A particle propagating freely. The self-interaction factor can be given the path integral
representation

� d4y1� d4y2�A�x1� − y2��A�y2 − y1��A�y1 − x1��B�y2 − y1�

= �
�0

�

d���
�0

��
d�2�

�0

�2

d�1�� D4q�4�q���� − x1���
4�q��0� − x1�eiSA�q̇��B�q��2� − q��1�� ,

�56�

reflecting an A particle interacting with the B particle at points �1 and �2. The second term shown
in Eq. �55� reflects an interaction of two A particles via a B particle. It can be given the path
integral representation
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� d4y1� d4y2�A�x1� − y1��A�y1 − x1��A�x2� − y2��A�y2 − x2��B�y2 − y1�

= �
�0

�

d�2��
�0

�

d�1��
�0

�2�
d�2�

�0

�1�
d�1�2� D4q2�4�q2��2�� − x2���

4�q2��0� − x2�eiSA�q̇2�

�� D4q1�4�q1��1�� − x1���
4�q1��0� − x1�eiSA�q̇1��B�q2��2� − q1��1�� ,

showing the B particle propagating from the point at �1 on the path of the first A particle to the
point at �2 on the path of the second A particle. If the B particle is taken to be a photon, then Barut
and Duru have shown that expansions of just the form given above can be obtained from a general
path integral formulation of quantum electrodynamics52 �see also the similar result obtained in
Ref. 33 using a parametrized perturbation series approach�.

B. Feynman diagrams

Computing a scattering amplitude requires moving from the Wick diagram formulation of Eq.
�52� to a Feynman diagram formulation. To do this, replace the initial and final states in Eq. �52�
with on-shell multiparticle momentum states 	t1 ,p1± ,n1 ; . . . ; tN ,pN± ,nN ;�0� and
	p1�± ,n1� ; . . . ;pN�

� ± ,nN�
� ;�0� �note that these are the on-shell multiparticle states defined early in Sec.

II E, with antiparticles propagating backwards in time, not the single-time states defined at the end
of that section�:

G�p1�±,n1�; . . . ;pN�
� ±,nN�

� 	p1±,n1; . . . ;pN±,nN�

� ��
i=1

N�

2�pi��
i=1

N

2�pi
�1/2

p1�±,n1�; . . . ;pN�
� ±,nN�

� 	Ĝ	t1,p1±,n1; . . . ;tN,pN±,nN;�0� . �57�

The 2�p factors are required by the resolution of the identity for these multiparticle states, gen-
eralizing the single particle case of Eq. �39�,

�
N=0

�

�
ni±
� d3p1 ¯ d3pN��

i=1

N

2�pi�	t1,p1±,n1; . . . ;tN,pN±,nN;�0�p1±,n1; . . . ;pN±,nN	 = 1,

�58�

where the summation over the ni± is over all particle types and particle/antiparticle states.
Note that use of the on-shell states in Eq. �57� requires specifically identifying external lines

as particles and antiparticles. For each initial and final particle, + is chosen if it is a normal particle
and − if it is an antiparticle. The result is a sum of Feynman diagrams, including all possible
permutations of interaction vertices and crossing symmetries. The inner products of the on-shell
states for individual initial and final particles with the off-shell states for interaction vertices give
the proper factors for the external lines of a Feynman diagram.

For a final particle, the on-shell state p+�	 is obtained in the limit t�→ +�. Such a particle is
thus an outgoing particle from the scattering process. If the external line for this particle starts at
an interaction vertex x, then the line contributes an appropriate factor

�2�p��
1/2p+�	x;�0� = �2
�−3/2�2�p��

−1/2ei�+�p�x
0−p�·x�.

For a final antiparticle, however, the on-shell state p−�	 is obtained in the limit t�→−�. This
means that the antiparticle is incoming to the scattering process, even though it derives from a final
vertex, reflecting the time-reversal of antiparticle paths. If the external line for this antiparticle
starts at an interaction vertex x, then the line contributes the factor
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�2�p��
1/2p−�	x;�0� = �2
�−3/2�2�p��

−1/2ei�−�p�x
0+p�·x�.

Next, consider an initial particle on an external line ending at an interaction vertex x�. The
factor for this line is �assuming x�0� t�,

�2�p�1/2x�	t,p+;�0� = �2
�−3/2�2�p�−1/2ei�−�px�0+p·x��.

Note that this expression is independent of t, so we can take t→−� and treat the particle as
incoming. For an initial antiparticle, the corresponding factor is �assuming x�0� t�,

�2�p�1/2x�	t,p−;�0� = �2
�−3/2�2�p�−1/2ei�+�px�0−p·x��.

Taking t→ +�, this represents the factor for an antiparticle that is outgoing.
If a particle or antiparticle both starts at an initial vertex x and ends at a final vertex x�, then,

by Eq. �35�,

�2�p�2�p�1/2p±�	t,p±;�0� = �3�p� − p� .

Finally, particles that start and end on interaction vertices �i.e., internal edges� are “virtual” par-
ticles propagating between interactions, retaining the full Feynman propagator factor ��x�−x�.

Thus, the effect of Eq. �57� is to remove the propagator factors from the external lines of the
summed Feynman diagrams, retaining them on internal edges. Since, in the position representa-
tion, G is essentially a sum of Green’s functions Gm, this procedure is effectively equivalent to the
usual LSZ reduction of the Green’s functions.42,51,53

C. Scattering

The formulation of Eq. �57� is still not that of the usual scattering matrix, since the initial state
involves incoming particles but outgoing antiparticles, and vice versa for the final state. To con-
struct the usual scattering matrix, it is necessary to have multiparticle states that involve either all
incoming particles and antiparticles �that is, they are composed of individual asymptotic particle
states that are all consistently for t→−�� or all outgoing particles and antiparticles �with indi-
vidual asymptotic states all for t→ +��. These are the states 	p1 ,n1± ; . . . ;pN ,nN± ;�0� and
	p1 ,n1± ; . . . ;pN ,nN±� defined at the end of Sec. II E.

Reorganizing the scattering amplitude of Eq. �57� in terms of these asymptotic states gives the

more usual form using the scattering operator Ŝ. Showing explicitly the asymptotic time limit used
for each particle

+ � ,p+�,n�; . . . ;− � , p̄−�, n̄�; . . . 	Ĝ	− � ,p+,n; . . . ; + � , p̄−, n̄; . . . ;�0�

= p�,n+� ; . . . ; p̄, n̄−; . . . 	Ŝ	p,n+; . . . ; p̄�, n̄−� ; . . . ;�0� . �59�

Using the resolution of the identity

�
N=0

�

�
ni±

� d3p1 ¯ d3pN��
i=1

N

2�pi�	p1,n1±; . . . ;pN,nN±;�0�p1,n1±; . . . ;pN,nN±	 = 1, �60�

expand the state Ŝ 	p1 ,n1± ; . . . ;pN ,nN± ;�0� as

Ŝ	p1,n1±; . . . ;pN,nN±;�0� = �
N�=0

�

�
ni±

� d3p1� ¯ d3pN�
� ��

i=1

N�

2�pi��	p1�,n1�±; . . . ;pN�
� ,nN�

� ±;�0�

� p1�,n1�±; . . . ;pN�
� ,nN�

� ±	Ŝ	p1,n1±; . . . ;pN,nN±;�0� .

This shows how Ŝ 	p1 ,n1± ; . . . ;pN ,nN± ;�0� is a superposition of possible out states, with the square
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of the scattering amplitude, Eq. �59�, giving the probability of a particular out state for a particular
in state.

Next, use Eqs. �49� and �50� in Eq. �22� to write the propagator as

��x − x0� = ��x0 − x0
0��	̂�x,n+�,	̂‡�x0,n+�� + ��x0

0 − x0��	̂�x0,n−�,	̂‡�x,n−�� . �61�

Then, reversing the usual derivation for Feynman diagrams �see, for example, Ref. 42� gives the
Dyson series expansion

Ŝ = 1 + �
n=1

�
�− i�n

n!
�

−�

�

dt1�
−�

t1

dt2 ¯ �
−�

tn−1

dtnV̂�t1�V̂�t2� ¯ V̂�tn� �62�

in terms of the time-dependent interaction operator

V̂�t� � g� d3x�
i=1

a

�̂‡�t,x,ni���
j=1

b

�̂�t,x,nj� ,

where

�̂�x,n� � 	̂�x,n+� + 	̂‡�x,n−� . �63�

Since V̂�t� represents an interaction with the same number of incoming and outgoing particles,

of the same types, as V̂, the self-adjointness of V̂ implies the self-adjointness of V̂�t�, from which

it can be shown that Ŝ is unitary. The case of a self-adjoint effective field 	̂��x ,n� in V̂ �as

discussed at the end of Sec. III A� corresponds to the requirement of self-adjointness for �̂�x ,n�.
As can be seen from Eq. �63�, this requirement implies that particles of type n are indistinguish-
able from their �path-reversed� antiparticles �indeed, a working definition of “indistinguishable” in
this sense might very well be “cannot be distinguished by any interaction”�.

D. Regularization and renormalization

Of course, the development given in the previous subsections is actually only formal, because
of the usual problems with divergence of the series in Eq. �52�. As in conventional field theory, it
is necessary to regularize infinite integrals and renormalize the resulting amplitudes. For a first-
quantized approach, though, these problems seem particularly severe, since Eq. �52� is taken as the
fundamental definition for the interacting amplitude, rather than as a perturbation expansion.

Fortunately, there is a relatively straightforward way to approach regularization within the
context of a spacetime path approach, inspired by the work of Frastai and Horwitz37 �see also
Refs. 54 and 55 for a similar approach in the context of off-shell electrodynamics�. This is to make
the interaction coupling dependent on the intrinsic path length. This can be naturally introduced
into the spacetime path formalism by making a choice for the weight function f�T� introduced in
Sec. II A different than f�T�=1.

To see this, consider that replacing the field operator 	̂�x ,n� defined in Eq. �45� with

	̂ f�x,n� � �
�0

�

d�f�� − �0�	̂�x,n;��

gives the commutation relation
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�	̂ f�x�,n�,	̂†�x,n;�0�� = �
0

�

dTf�T���x� − x;T� ,

resulting in a propagator including the weight factor f�T�. Using this new field operator for, say,
particles of type nA in the interaction vertex operator given in Eq. �54� produces the desired
path-length-dependent coupling

V̂ = g� d4x�
�0

�

d�f�� − �0�	̂†�x,nA;�0�	̂�x,nA;��	̂��x,nB� . �64�

For the purposes of the present section, an appropriate choice for f��−�0� is the Gaussian

f�� − �0� = e−�� − �0�2/2��2
,

where �� is a correlation length. For ��→�, f��−�0�→1, and Eq. �64� reduces to Eq. �54�.
Now, consider again the self-interaction term from Eq. �55�. Using the interaction vertex

operator from Eq. �64�, this becomes

�A�p� � d4p��
�0

�

d�1�
�0

�

d�2f��2 − �0��A�p�;�2 − �0�f��1 − �0��B�p − p���A�p;�1 − �0� .

For simplicity, the momentum representation has been used here, in which

�A�p;� − �0� � e−i��−�0��p2+mA
2 �

and

�A�p� � �
0

�

dT�A�p;T� = − i�p2 + mA
2 − i��

�and similarly for �B�. The propagator from �0 to �1 is not divergent, so we can let f��1−�0�
→1, giving �A�p�T��p��A�p�, where

T��p� � � d4p��
�0

�

d�f�� − �0��A�p�;� − �0��B�p − p�� . �65�

Inserting Eq. �13� into Eq. �65� gives

T��p� =� dm2T�p;m2�F�m2� , �66�

where

T�p;m2� � � d4p���p�;m2��B�p − p��

is the unregulated self-interaction amplitude �without the external legs�, with

��p;m2� � �
0

�

d��e−i���p2+m2� = − i�p2 + m2 − i�� , �67�

and
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F�m2� � �2
�−1�
0

�

d�ei��m2−mA
2 �f��� .

The unregulated quantity T�p ;mA
2� is divergent. However, Eq. �66� is exactly the Pauli-Villars

regularization prescription in continuous form.56 Adjust the Fourier transform of the coefficients
F�m2� so that

F̃��� = � f���e−i�mA
2
, if � � �;

0, if � � � .

This then meets the Pauli–Villars conditions in Fourier space for cancellation of singularities:10

F̃�0�=0 and F̃��0�=0. For ��→� and �→0, T��p� reduces to the unregulated quantity T�p ;mA
2�.

�For further discussion, see Ref. 37. In Refs. 54 and 55, a similar result is obtained for a photon
mass spectrum cutoff for the renormalization of off-shell quantum electrodynamics.�

Once the divergent integrals have been regulated, one can apply the usual techniques of
multiplicative renormalization in the context of the Feynman diagram formalism obtained in Sec.
III B. However, further discussion of renormalization is beyond the scope of the present paper. An
intriguing direction for future exploration is the development of a complete regularization and
renormalization program based on a physically motivated formulation of spacetime interactions.
This would be consistent with the first-quantized approach of considering the series expansion to
be the primary representation of the physical situation of the scattering amplitude, rather than a
perturbative approximation to a nonperturbative Lagrangian formulation.

A potentially more serious issue is whether, even after renormalization, series such as that in
Eq. �52� converge at all. However, Dyson’s classic argument against convergence57 is based on the
conception of traditional quantum electrodynamics, where such series result from perturbation
expansion. In the present first-quantized formalism, Dyson’s argument might simply imply that the
traditional formalism, and arguments from it, are not always applicable.

Actually, it is not the convergence of series for probability amplitudes, such as Eq. �52�, that
is really important. Rather, the real issue is whether there is a well-defined limit as N→� for
physically testable probabilities such as given by

	�out	Ŝ�N�		in�	2

	in	Ŝ�N�‡Ŝ�N�		in�
,

where Ŝ�N� is the result of summing Eq. �62� to Nth order, 		in� is a properly normalized multi-
particle in state and 	�out� is a member of a complete basis for multiparticle out states. Quantities
such as this for, say, QED produce values that agree with experiment for large N. If it turns out
that they do diverge for very large N, this just means that there is some mechanism in the real
universe that suppresses the interference effect of interaction graphs with very large N, producing
a finite cutoff of the series in Eq. �62�.

Indeed, from this perspective, the Lagrangian and Hamiltonian formulations could be viewed
as the approximations, obtained by assuming the summing of series for N→�. In the end, the
problem of divergences might even be seen as an artifact of the conventional second-quantized
Lagrangian formulation itself, rather than of its perturbation expansion. Clearly this is an area that
bears continued exploration.

IV. CONCLUSION

Spacetime approaches to relativistic quantum mechanics have been developed along a number
of different threads in the literature, from the early work on proper time formalisms by Schwinger
and others,8–10 to the equally early work of Stueckelberg6,7 and the parametrized relativistic quan-
tum theory it inspired,12–16,18,36 to the path integral approach introduced by Feynman4,11,17,52 and
its application to quantum gravity,19,21,25 to the worldline formalism obtained as the infinite-
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tension limit of string theory26–32 and its relation to the typically first-quantized approach to
interaction taken in string theory.50 The formalism presented in the previous sections can be seen
as a foundation underlying all these approaches.

A particularly significant additional result is the derivation of on-shell particles and antipar-
ticle states as the infinite time limit of free particle states. This provides a connection between
off-shell parametrized spacetime quantum theories33,37,41,58,59 and traditional on-shell quantum
field theory. It also suggests the intiguing possibility that, while real particles are likely on-shell to
a very high degree of approximation, there may be testable consequences to this approximation
not being exact.

The foundation presented here provides a number of interesting avenues for exploration in
future publications.

The approach can be readily extended to incorporate path integral representations for nonsca-
lar particles.60–64 It can also handle massless particles, though it is not so straightforward to deal
properly with the resulting gauge symmetries58 and non-Abelian interactions.

Further, an important payoff of the spacetime path formalism is the intuitive grounding it
gives to the theory, as opposed to the somewhat arbitrary mathematical justifications for introduc-
ing fields in traditional quantum field theory. Moreover, the formalism for interacting spacetime
paths provides interesting possibilities for addressing the issues of regularization and renormal-
ization �which is all the more important because of the first-quantized nature of the formalism�.

Finally, a natural interpretational framework for the formalism is the consistent histories
approach to quantum theory.65–69 Particle paths can be treated as fine-grained histories in the sense
of this approach, with coarse-grained histories corresponding to the superposition of fine-grained
states, including cosmological histories of the universe as a whole.19,70–72

For example, scattering probabilities can be considered to represent the probabilities of deco-
hering alternative coarse-grained spacetime histories for the scattering process. Probabilities can
even be given to decohering cosmological histories of the universe.73 Such an interpretation also
provides for a natural way to see how the macroscopic classical view of the universe emerges from
the more detailed quantum description, rather than viewing quantum physics as a “quantization” of
a classical description �see, for example, Ref. 74�, just as one would wish from a foundational
quantum theory.
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APPENDIX A: FORM OF THE PHASE FUNCTIONAL

Proposition: The phase functional S must have the form

S�q̇� = �
�0

�1

d��L�q̇;��� , �A1�

where the parametrization domain for q̇ is ��0 ,�1� and L�q̇ ;�� depends only on q̇ and its higher
derivatives evaluated at �.

Proof: In

S�q̇;��,�0� = S�q̇;��,�� + S�q̇;�,�0� ,

consider ��=�+��, for infinitesimal ��:
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S�q̇;� + ��,�0� = S�q̇;� + ��,�� + S�q̇;�,�0� � ��� �S�q̇;��,��
���

�
��=�

+ S�q̇;�,�0� ,

or

S�q̇;� + ��,�0� − S�q̇;�,�0�
��

�� �S�q̇;��,��
���

�
��=�

.

Taking the limit ��→0 then gives

�S�q̇;�,�0�
��

= L�q̇;�� , �A2�

where

L�q̇;�� �� �S�q̇;��,��
���

�
��=�

.

Now, the functional L depends only on q̇ and �, not �0. Therefore, integrate Eq. �A2� over �, with
the initial condition S�q̇ ;�0 ,�0�=0, to get

S�q̇;�,�0� = �
�0

�

d��L�q̇;��� , �A3�

which is just Eq. �A1�.
Further, by definition S�q̇ ;� ,�0� only depends on values of q̇� between �0 and �. Therefore,

S�q̇ ;�+�� ,���L�q̇ ;���� should only depend on q̇ infinitesimally close to �. As ��→0, this
effectively limits L�q̇ ;�� to depend only on q̇ and its derivatives evaluated at �.

APPENDIX B: EVALUATION OF THE PATH INTEGRAL

Proposition: The path integral

��x,x0;���� = ���� � D4q�4�q���1�� − x��4�q���0�� − x0�exp
i�
�0

�

d��� 1
4 q̇2���� − m2��

�B1�

may be evaluated to get

��x,x0;���� = ��x − x0;� − �0� � �2
�−4� d4peip�x−x0�e−i��−�0��p2+m2�. �B2�

Proof: The path integral in Eq. �B1� may be defined as

��x,x0;���� = lim
N→�

�̄�N��x,x0;���� ,

where

�̄�N��x,x0;���� � �̄��̄0, . . . ,�̄N� � d4q̄0 ¯ d4q̄N�4�q̄N − x��4�q̄0 − x0�exp
i�
j=1

N

��̄ j� 1
4 q̄̇ j

2 − m2�� ,

�B3�

�̄��̄0 , . . . , �̄N�→���� as N→� and the N-point discrete approximations to the functions ��s� and
q���s�� are given by
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�̄ j = ��j/N�

and

q̄j = q��̄ j� , �B4�

for j=0, . . . ,N. The � integral is approximated by a summation with

��̄ j � �̄ j − �̄ j−1

and

q̄̇ j � �q̄j − q̄j−1�/��̄ j , �B5�

for j=1, . . . ,N.
To compute the path integral, insert the product of Gaussian integrals

�
j=1

N

i
��̄ j



�2� d4p̄je

−i��̄jp̄j
2

= 1

into the N-point approximation of Eq. �B3� to get

�̄�N��x,x0;���� = �̄��̄0, . . . ,�̄N� � d4q̄0 ¯ d4q̄N� d4p̄1 ¯ d4p̄N�4�q̄N − x��4�q̄0 − x0�

� exp
i�
j=1

N

��̄ j�− p̄j
2 + 1

4 q̄̇ j
2 − m2�� ,

where

�̄��̄0, . . . ,�̄N� � ��
j=1

N

i
��̄ j



�2��̄��̄0, . . . ,�̄N� .

Inside the p̄j integrals, make the change of variables p̄j→ p̄j − �1/2�q̄̇ j, so that

�
j=1

N

��̄ j�− p̄j
2 + 1

4 q̄̇ j
2 − m2� → �

j=1

N

��̄ j�− p̄j
2 + p̄j · q̄̇ j − 1

4 q̄̇ j
2 + 1

4 q̄̇ j
2 − m2� = �

j=1

N

��̄ j�p̄j · q̄̇ j − �p̄j
2 + m2�� .

�B6�

Now, using Eq. �B5�,

�
j=1

N

��̄ jp̄jq̄̇ j = �
j=1

N

p̄j · �q̄j − q̄j−1� = p̄N · q̄N − p̄1 · q̄0 − �
j=1

N−1

�p̄j+1 − p̄j� · q̄j

�this is essentially just integration by parts within the approximation to the path integral�. But, for
each q̄j, j=1, . . . ,N−1,

� d4q̄je
−i�p̄j+1−p̄j�q̄j = �2
�4�4�p̄j+1 − p̄j� ,

so, integrating over the p̄j for j=2,3 , . . . ,N gives p̄j+1= p̄j. Therefore,
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�̄�N��x,x0;���� = �̄��̄0, . . . ,�̄N� � d4q̄0d4q̄N�4�q̄N − x��4�q̄0 − x0� � d4p̄1�2
�4�N−1�eip̄1�q̄N−q̄0�

�exp
− i�
j=1

N

��̄ j�p̄1
2 + m2�� = �2
�−4�̄��̄0, . . . ,�̄N� � d4peip�x−x0�e−i��̄N−�̄0��p2+m2�,

�B7�

where

�̄��̄0, . . . ,�̄N� � �2
�4N�̄��̄0, . . . ,�̄N� = ��
j=1

N

i�4
��̄ j�2��̄��̄0, . . . ,�̄N� .

Now set the normalization factor

�̄��̄0, . . . ,�̄N� = �
j=1

N

�− i��4
��̄ j�−2.

Then �̄��̄0 , . . . , �̄N�=1, so we can take the limit N→� of Eq. �B7� to get Eq. �B2�.
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Choquet-Bruhat was the first to give a proper physical definition of covariant
spinors, taking into account the reference system and treating them as equivalence
classes defined from the transformation laws of the representatives when the refer-
ence system is changed. Recently, Rodriguez et al.� Int. J. Theor. Phys. 35, 1849
�1996�� have adapted this procedure from covariant spinors to the case of algebraic
and operator spinors. These approaches are restrained in the sense that the type of
spinor is chosen from the beginning, and it does not admit a general formulation. In
this paper, we present a unified definition that is valid for any type of the space of
representation, being independent of its particular properties. In our formulation the
three types of spinors appear as particular cases of the general definition. Moreover,
we stick out the importance of the bilinear covariants in the definition of spinors.
From this, we recognize a completely different kind of spinor, characterized by the
different nature of their bilinears. The unnoticed difference between this last one,
which we have called right-operator spinors, and the previous �left-�operator
spinors has been motive of a long time discussion. © 2006 American Institute of
Physics.

To Pertti Lounesto, in memoriam �DOI: 10.1063/1.2355688�

I. INTRODUCTION

Usually, for the same physical concept or for the same �in some sense� mathematical object,
there exist different mathematical formalizations or constructions. Naturally, these different for-
malizations lead to or are based on different interpretations for the meaning of the object involved.
This typically occurs for the concept of vector. Indeed, the word “vector” is especially polyse-
mous. It is used in many different frameworks, where the unique common property is that vectors
are, or can be, represented by ordered sets of numbers. It is not our intention to be so general. We
restrict ourselves to some geometric frameworks, where the notion of vector is referred to a
directional physical magnitude. In this context, the concept of observer or reference system plays
a fundamental role. Most definitions of vectors include the transformation properties of their
representatives when there is a change of reference system. There exist also alternative definitions
where the transformation properties do not form part of the definition, but are a consequence of the
defining properties.1

In order to be more concrete, we can think on some typical vectorial spaces in classical
physics or in relativity. For instance, the space of translations or velocities in a flat Euclidean
space, or the tangent space of a differential manifold at a point. We can mention here three
different definitions of the tangent space of a manifold: the equivalence class of curves that are
tangent at the point, the derivatives of scalar fields and, elements of Rn subject to a contravariant
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transformation under a change of coordinates.2–5 Of these three definitions, only the third includes
the transformation properties. But all three are equivalent in the sense that, after having established
some identifications, each one can be deduced from each other. However, each formalization
suggests a different idea of the object, facilitating or obstructing the intuition or the obtainment of
some properties.

Standard identifications are the assimilation of reference systems with a basis in the vector
space, with coordinates in a manifold, or with fields of tetrads. The description of vectors in a
reference system is fundamental for its numerical manipulation and for its relationship with ex-
perimental measures. Nevertheless, vectors themselves can be thought as independent of the
observer and manipulated conceptually by giving one symbol to it. In the case of a definition
based on the transformation properties, a proper formalization is the following. Each vector is
defined as an equivalence class given by the set of pairs formed by each of its representatives and
its corresponding reference system. The transformation properties define, in fact, the equivalence
relation.

The most usual manner of representing vectors in a reference system is by the collection of its
n components. This means that the representative of the vector is an element of the Cartesian
product of n copies of R, denoted by Rn. However, this is not the unique type of representatives
that can be used. One example of this is the use of complex numbers or quaternions to represent
vectors in a bidimensional or a tridimensional space.6 Typically, the reason for using these other
representations is the possibility of using computational properties of the space of representation,
which has some meaning for the vectors considered. For instance, the multiplication by a phase in
the complex plane generates the rotation of the bidimensional vectors represented. This is espe-
cially the case when the vector representation is aimed to be related with some spinorial repre-
sentation, usually linked to a Clifford algebra.

There are at least two different ways of defining vectors through equivalence classes. One of
them is unavoidably attached to the representation of vectors in a reference system by its compo-
nents, �v1 , . . . ,vn��Rn, and seems to be the most extended formalization and conceptualization
for representing vectors. The other way, although less common, has the merit that it can be
generalized to other types of representations of vectors. Moreover, in our opinion, this alternative
formalization involves a more physical idea of vectors, since it makes explicit the representation
map between the space of vectors represented and the space in which the vectors are represented.
The identification and comparison of these two different, but generally unnoticed, approaches is
one of the goals of this paper.

The concept of spinor is intimately related with the representations of groups of isometries.
From a group theoretical point of view, they are the space of representation of the double covering
group, Spinp,q, of the orthogonal group SO�p ,q�. In this approach, the idea of a reference system
has no place. But, from a physical point of view, spinors are always representatives in a given
reference system. Thus, an important defining property of spinors is their transformation properties
when changing the reference system. In this sense, a physical formalization of spinors has to
follow a construction analogous to the one described for vectors: each spinor will be an equiva-
lence class of pairs formed by each of its representatives and the corresponding spinorial reference
system. Again, different spaces of representation can be considered to represent spinors. From this
point of view, in the literature,7–11,6,12,13 there are essentially three types of spinors: classical
spinors, algebraic spinors, and operator spinors. The most known of them, and the first ones that
were introduced, are what we have called classical spinors. �Classical spinors have been previ-
ously called covariant spinors.10,14,11 But this name is not appropriate since the three of them have
the same properties of covariance.� They are characterized by being represented with a column
matrix, which is an ordered collection of real or complex numbers arranged to be used with the
matrix product. Algebraic spinors are defined by representatives on a minimal left ideal of the
corresponding Clifford algebra, C�p,q. Thus, instead of the matrix product, it is the Clifford product
that is used to act on spinors. Operator spinors use as a space of representation the even Clifford
subalgebra, C�p,q

+ ; thus it also uses the Clifford product. The even subalgebra corresponds to the
linear extension of the spin group inside the Clifford algebra, Spinp,q�C�p,q. There always exists
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a clear correspondence between classical and algebraic spinors in any dimension and signature.
However, operator spinors are clearly defined only for three and four dimensions. For higher
dimensions, their definition is controversial since they are nonequivalent to classical and algebraic
spinors. The use of different spaces of representation allows us to use different algebraic opera-
tions to perform physically meaningful operations, like the obtainment of the bilinear observables.
This also suggests different images of the meaning of spinors. In addition, it leads to different
formulation of the physical equation of motion, as, for instance, the Dirac equation.15,16,12,17,18 This
implies the possibility of using different techniques to solve the equation.19–22,3

Choquet-Bruhat introduced,23,24 to the best of our knowledge, the first clear formalization of
spinors as equivalence classes of pairs containing the reference system. In this treatment only the
classical spinors are considered and the definitions are strongly dependent on the space of repre-
sentation used. The same mechanism has been recently adapted by Rodrigues et al.10,11 to the
definition of the other types of spinors: algebraic and operator spinors. However, in this formal-
ization, the definition of the two types of spinors is also dependent on the space of representation,
forcing us to state an independent definition for each one. One of our main goals in this paper is
to present a unique definition valid for the three types of spinors, since the particular properties of
the space of representation are not involved in the definition itself. �A seed work, developed by the
authors, was presented by D. M. in Ref. 25.� Thus, the different types appear simply by particu-
larizing to the desired space of representation.

The definition of spinors requires the introduction of a spinorial frame. This structure includes
the vectorial reference system, but is more complex than this one. This complicates particularly
the definition of spinors. In previous formalizations of spinors the definition of the spinorial
frames is mixed with the definition of spinors themselves, making the structure more obscure.
Besides, this definition of the spinorial frame is also representation dependent. In our presentation,
the definition of the spinorial frames is independent of the definition of the spinors, and is also
completely independent of any representation. This considerably clarifies the structure.

The physical content of spinors is, if not completely included, a least strongly linked to the
bilinear observables that they define. In fact, except the phase of the spin, the value of the spinor
can be recovered from the value of the bilinears.26–28 The bilinears are scalars, vectors, and
tensors, in general. Thus, the formalism used to define vectors affects the way in which spinors are
treated. In particular, if vectors and spinors are defined as equivalence classes of objects contain-
ing a representative for each reference system, then the two equivalence relations must be com-
patible. The formula for a vectorial bilinear of the representative of a spinor, has as output the
representative of a vector. Then, it is required that the operation is well defined when translated to
the quotient spaces. This is usually expressed by demanding the covariance of the bilinear ob-
servables of a spinor. This fact implies that the equivalence relation defining spinors is not inde-
pendent of the equivalence relation defining vectors.

In contrast, we must remark that this is not the unique framework in which the relationship
between spinors and vectors can be understood. We have observed that in the literature12,17,13,3

there exist two essentially different kinds of operator spinors, which we will call left operator and
right operator spinors. The left operator spinors are the type mentioned above as simply operator
spinors. Thus, their relationship with vectors follows the scheme described in the previous para-
graph. On the contrary, right operator spinors follow a completely different scheme. Their bilin-
ears are not the representatives of the vectors in the corresponding reference system, but the
vectors themselves. For this reason they are not, and cannot be, embraced by the definition
unifying the other three types. This new type of spinor involves a different conceptualization of
the role of the spinors, and has been used before especially by Parra.12 However, it has never been
formalized, especially confronted with the other types of spinors. In our opinion, this unnoticed
different conceptualization has been the origin of many endless discussions. A comparison from
another point of view can be found in Ref. 29. In the last section we introduce and formalize right
operator spinors and discuss the nature of their bilinears.
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II. VECTOR PASSIVE TRANSFORMATIONS

Consider a vector X�A and a basis ���eI� in a vector space A. We can write the vector in
the basis � as X=XIeI. Another basis ����eI�� is related to � by means of a linear transformation:

eI� = M�eI� = MJ
IeJ, where M � GL�A� and MJ

I � R�n� . �1�

This expression can be understood in two different ways:

• If the transformation is M �GL�A�, then two different changes of basis,

eI� = M�eI� and eI� = N�eI�� ,

will be defined by the same transformation if M =N�GL�A�. This can be expressed in
components

eI� = MJ
IeJ and eI� = NJ�

I� eJ�.

The two transformations will be equal if MJ
I=NJ

I, but not if MJ
I=NJ�

I�, where NJ
I is the

transformation N written in the basis �eI� and NJ�
I� is the same transformation N written in the

basis �eI��.
• On the contrary, if we define the transformation by the matrix MJ

I�R�n�, then two different
changes of basis,

eI� = MJ
I�eJ and eI� = NJ�

I�eJ�,

will be related by the same transformation if MJ
I�=NJ�

I�.

These two clearly different ways of conceiving the basis transformation is the origin for
correspondingly different ways of understanding vectors. As we will see, this difference also has
implications in the manner of conceiving spinors. Observe that the different conceptualization
affects also the meaning of the indices and, accordingly, the use of primes.

The two alternatives are explained in detail in Appendix. Our understanding of vectors cor-
responds to the first option, M �GL�A�, and will be the one followed in this paper. A more
objective reason for this preference is that it is this unique one that can be generalized for any kind
of space of representation. The second option is directly valid exclusively for the type of repre-
sentation of vectors and spinors, which we call in this paper Cartesian representation, based on Rn

�or Cn� as a space of representation.
Now, we can relate the expression of X in � with its expression in ��:

X = XI�eI� = XI�MJ
IeJ = XIeI. �2�

The last equality will be fulfilled iff XI=MI
JX

J�. It is important to make clear that the equal sign
refers to the resulting expressions and not to them in a particular form. Thus, writing, for instance,
XIeI=XI�eI� does not mean that the components XI and XI� are equal. Neither, writing X=XIeI

means that the vector X is attached to the reference frame �eI�, or is necessarily expressed in it.

A. Cartesian representation

Let us denote by B�An the set of basis of A. The components of a vector in a particular
basis, �XI�, can be collected together as an element of Rn. In order to make explicit the components
and basis information in vectors, they can be displayed in an ordered pair,

XIeI � ��,�XI��, where � � �eI� � B and �XI� � Rn. �3�

In the set collecting all these pairs, B�Rn, we can define the following equivalence relation:
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Rc:��,�XI�� � ���,�YI�� ⇔ ∃ M � GL�A�	�� = M�, XI = MI
JY

J, �4�

where MIJ are the components of the transformation M in the basis �. �They coincide with the
components in ��: MI

J=MI�
J�.� This implies that two pairs, �� , �XI�� and ��� , �YI��, are equivalent

when they generate the same vector, i.e., XIeI=YIeI�. Let us denote the equivalence class associated
to the vector X by the symbol �X�. Then, the elements of �X� are the Cartesian representatives of
X. If the first element of a Cartesian representative pair is the basis � it is said the representative
in the basis �. A passive transformation of a vector X is indeed a transformation from a repre-
sentative to another, for the same vector X, i.e., a mapping between elements of the equivalence
class �X�. On the contrary an active transformation is a correspondence between vectors �or
between equivalence classes�, where the concept of representative is not involved.

Let us observe that the equivalence relation �4� is based on considering the basis transforma-
tion M �GL�A�, and it involves the obtainment of the components of M in the basis �. Probably
this is not the most popular formalization, which would be based on considering the transforma-
tion given by M �R�n�. The corresponding equivalence relation is

Rc�:��,�XI�� � ���,�YI�� ⇔ ∃ M � R�n�	eI� = MJ
IeJ, XI = MI

JY
J. �5�

Here MI
J are the components of the matrix M �R�n� in the canonical basis of R�n�, which is well

defined and completely independent of the vector space A and the basis � and ��.
As commented above, this latter formalization �5� is fully attached to the representation of

vectors in the space Rn. Therefore, it can hardly be generalized for other representation spaces.

However, the former formalization �4� is generalizable for using any vectorial space Â as the
representation space. This generalization will be called the vectorial representation of vectors.

B. Vectorial representation

Let us consider a generic vector space Â, with the same required properties as A �of the same
dimension over the same field of scalars� but completely independent of it and devoided of any
physical or geometrical meaning. It will play the same role as Rn in the Cartesian representation.
Until now, only linear properties of A have been considered. But later the inclusion of a suitable
geometric algebra for the linear space A will be essential.

Let B be the set of basis of A. We establish the representation function as

f:B � A → Â; ��,X� � f��,X� � f��X� ,

where f� :A→Â is a 1–1 mapping. We will interpret f��X��Â as a linear representation of X
�A, as seen from the reference frame ��B. Then, considering the vectors X ,Y and the linear
frames � ,�� related by the same linear active transformation Y =M�X� and ��=M���, it seems
natural to require that f��X�= f���Y�. By linearity, this is equivalent to the condition

f���� = f������, or using composition f� = f�� � M . �6�

Note that this appoints a privileged basis in the generic space Â,

�êI� � �̂0 � f���� . �7�

Following the same structure as for the Cartesian representation, we define for the pairs �� , X̂�
�B�Â the equivalence relation
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Rv:��,X̂� � ���,Ŷ� ⇔ f�
−1�X̂� = f��

−1�Ŷ�

or equivalently, ⇔ Ŷ = f�� � f�
−1�X̂� � M̂−1�X̂� , �8�

where M̂ :Â→Â is the endomorphism in Â corresponding to M :A→A, as seen by the basis �
or ��:

M̂ = f� � M � f�
−1 = f�� � M � f��

−1 .

This equivalence relation guarantees that two pairs (� , f��X�) and (�� , f���Y�) are equivalent iff
X=Y �A.

It is interesting to note that taking Â=Rn as the generic vector space, we recover the Cartesian
representation. In this case, since Rn has a privileged canonical basis,

ê1 = �1,0, . . . ,0�, ê2 = �0,1,0, . . . ,0�, . . . , ên = �0, . . . ,0,1� ,

there exists a canonical representation function such that f����= �êI�, which implies that the
representative of a vector X�A in a basis �= �eI� is the collection of its components in this basis:

f��X� = f��XIeI� = XIêI = �X1,X2, . . . ,Xn� .

The introduction of the representation function f� has two objectives. First, the generalization
of the type of representatives considered for vectors and especially, as we will see, for spinors.
Second, to make explicit that, even in the Cartesian representation, a concrete representation
function is present, although it is concealed in the standard formalizations. This gives a more clear
understanding of the representation of vectors.

III. CLIFFORD ALGEBRA AND SPIN GROUP

In the previous section we have treated the representation of vectors without considering any
metric. Let us now consider the vectorial space A endowed with a nondegenerate metric g of
signature �p ,q� and the generic vectorial space also endowed with a metric ĝ of the same signa-

ture. We will restrict ourselves to representation functions f� :A→Â that are isometries,

g�a,b� = ĝ„f��a�, f��b�… .

The vector space A generates via the exterior product the exterior or Grassmann algebra
∧�A�. When endowed with the metric g, it also generates the Clifford algebra C�p,q.30 The two
algebras share the same base linear space in such a way that the exterior product and the gradu-
ation of the exterior algebra is many times considered as an ingredient of the Clifford algebra.

Analogously the generic �Â , ĝ� results in the generic Clifford algebra C�̂p,q. The function f� can
be then extended to the full Clifford algebra space17 via the outermorphism, defined by the
property of being a morphism of exterior algebras:

f�:C�p,q → C �̂p,q; f��A ∧ B� = f��A� ∧ f��B� . �9�

The fact that f� :A→Â is an isometry implies that its extension �9� is also an isomorphism of
Clifford algebras: f��AB�= f��A�f��B�. �For the sake of simplicity we will use the same symbol
f�.�

The spin group Spinp,q is a subset of the even Clifford subalgebra C�p,q
+ ,

Spinp,q = �R � C�p,q
+ 	RvR−1 � A, ∀ v � A, RR̃ = ± 1� . �10�

Spinp,q is the double covering group of the group of isometries SO�A�. Let us denote H the
mapping that relates both groups,
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H:Spinp,q → SO�A�; R � H�R� , �11�

where H�R��SO�A� is the endomorphism,

H�R�:A → A; v � H�R��v� � RvR−1. �12�

Analogously to �10�, the generic spin group Spin̂p,q is defined as the corresponding subset of the

generic even Clifford subalgebra C�̂p,q
+ . The restriction of f� :C�p,q→C�̂p,q to the subset

Spinp,q�C�p,q is a group isomorphism that maps it to the generic Spin̂p,q,

f�:Spinp,q → Spin̂p,q; f��R1R2� = f��R1�f��R2�, ∀ R1,R2 � Spinp,q.

We can also define the function Ĥ :Spin̂p,q→SO�Â�, where SO�Â��SÔ, as the generic copy of
�11� and �12�.

IV. SPINORS AND SPINORIAL FRAMES

Using equivalence classes as presented above for vectors, we will introduce spinors following
the well exposed presentation by Choquet-Bruhat found in Ref. 24. However, there, it has only
been considered a type of linear space representation for spinors, which here we call classical.
Recently, in Ref. 10 the Choquet-Bruhat presentation has been extended to other linear spaces of
representation in order to connect with algebraic and operator spinors. Our presentation intends to
be general in the sense that we do not fix a concrete linear space in the definition. Our discussion
will allow us to contrast the three different cases mentioned above and give their relationships in
this geometrical frame.

Let us consider a linear space S over which we have defined a left operation of the group

Spin̂p,q:

�:Spin̂p,q � S → S; �R̂,�� � ��R̂,�� � �R̂��� ,

satisfying the property

�„R̂1,��R̂2,��… = ��R̂1R̂2,�� .

This product constitutes a representation of the group Spin̂p,q:

�̃:Spin̂p,q → End�S�; �̃�R̂� � �R̂.

The space S is called the space of representation. The elements of this space, ��S, are usually
named spinors. However, this naming hides the fact that � is only the representative of the spinor
in some spinorial frame �S. A rigorous definition needs to specify how the representative �
transforms when the spinorial frame is transformed.

Following the presentation of Ref. 24, a first attempt to define spinors is introducing them as
equivalence classes of dyads where orthonormal vectorial frames are used as spinorial frames. If
B0�B is the set of proper1 orthonormal basis of A then the dyads would be of the form

��,��, where � = �eI� � B0 and � � S .

The equivalence class would be defined by

��,�� � ���,��� ⇔ ∃ R � Spin�A�, so that �� = H�R�� and � = ��f��R�,��� .

This definition has as consequence that any two dyads of the form �� ,�� and �� ,−�� are equiva-
lent. This says that for the same observer � there are two possible representatives, � and −�, of

1Future and right-hand oriented.

112303-7 Spinors and the Confusion of Tongues J. Math. Phys. 47, 112303 �2006�

                                                                                                                                    



the same spinor. This possibility is not usually considered. Instead, to avoid this problem the
spinorial frame is introduced.

The spinorial frame will contain a vectorial frame � and a sign to distinguish the two repre-
sentatives � and −�. The equivalence relation should allow us to relate different representatives
continuously, while signs form a discrete set �+,−�. For this reason, the standard definition of the
spinorial frame introduces a more sophisticated structure.

Definition 4.1: Any element �� ,R� of the set B0�Spinp,q will be called a potential spinorial
frame.

They have been called “potential” because this set contains much more elements than needed.
The proper set of spinorial frames will be a restriction of this one.

Definition 4.2: Two potential spinorial frames are said to be compatibles if they satisfy the
equivalence relation:

C:��,R� q ���,R�� ⇔ H�R�−1��� = H�R−1�� � �0,

where each compatibility class is characterized by a fiducial vectorial frame �0, since in every
class there is a unique element of the form ��0 ,1�.

Each compatibility class is an element of the quotient set �B0�Spinp,q� /C, which defines a
foliation. The proper set of spinorial frames is the restriction of B0�Spinp,q to a chosen compat-
ibility class. Observe that in each compatibility class F� �B0�Spinp,q� /C, for every vectorial
frame ��B0, there are two and only two elements and they are different only by a change of sign:
�� ,R�q �� ,−R�, that is,

∀� � B0 ∃ ! R � Spinp,q �up to a sign�, such that ��,R�,��,− R� � F .

Definition 4.3: The set of spinorial frames F is a chosen element F� �B0�Spinp,q� /C.
Let us emphasize that the set of spinorial frames is NOT the quotient space, F� �B0

�Spinp,q� /C, but only one equivalence class, F� �B0�Spinp,q� /C. Thus, a spinorial frame is a
single element of B0�Spinp,q, and not an equivalence class. �Obviously, a construction based on
the quotient space as the set of spinorial frames would be a more elegant mathematical construc-
tion. Unfortunately, such a construction cannot be consistently defined for spinorial frames.�

The set F is usually defined equivalently24 through the fiducial vectorial frame �0. The
election of the compatibility class F is completely arbitrary. The definition of spinors that results
will be equivalent whatever set F is chosen, but they will be well defined only if one F is fixed
from the beginning. This is usually worded by “the fiducial frame is arbitrary but fixed.”

Finally, we can enunciate the general definition for spinors, independently of the space of
representation used.

Definition 4.4: An � spinor is a class of equivalence of the set F�S defined by the equiva-
lence relation

Rs:��S,�� � ��S�,��� ⇔ ��f��R�,�� = �„f���R��,��… , �13�

where �S= �� ,R� and �S�= ��� ,R��.
The original content of our presentation is triple.

• First, we have tried to clarify the structure. Observe that by definition �S ,�S��F, which
implies that they are compatible �see Definition 4.2�:

�� = H�R�R−1�� . �14�

This condition has generally appeared24,10 as part of the definition of spinors, without defin-
ing previously the set of spinorial frames F. Then, the problem of the redundancy of spinorial
frames in B0�Spinp,q, is blended into the definition of spinors. In contrast, segregating
the discussion of spinorial frames from the definition of spinors helps to clarify the two
concepts.

• Second, from properties �14� and �6�, we have
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f�� = f� � H�RR�−1� ,

which applied to Definition 4.4 gives us the expression of the “spinorial transformation:”

�� = �„f��RR�−1�,�… . �15�

In the original definition presented in Ref. 24 and adapted in Ref. 10, the representation
function f� is not present. In the original form24 the transformation of orthonormal basis �or
spinorial frames� is considered as a matrix M �R�n� �in the sense discussed at the beginning
of Sec. II�, so that the representation function is not necessary for the mathematical construc-
tion. However, let us comment that the abstract formalization in Ref. 24 led us to forget some
element, which makes the relation defining the equivalence classes to be not really an equiva-
lence relation, as is proved and discussed in Appendix. This error can be considered almost
a misprint, but it has caused some confusion, since then the formulation seems to be appli-
cable trivially to other representation spaces. In Ref. 10, the authors follow this construction
for defining algebraic and operator spinors, translating the �likely� misprint in a more serious
error, since there the representation function cannot be avoided. This defect in the definition
of spinors has deep implications, because it hides a real conceptual and mathematical neces-
sity of the representation function.

• Third, in contrast with other treatments, we have not fixed any concrete representation � and
f�. This means that, by specializing Definition 4.4 for different representation spaces S, it
includes every type of spinor discussed in the literature: classical, algebraic, and operator.

It must be said that recently Rodrigues in Ref. 11 improved correctly the presentation of Ref.
10 that had motivated our interest about spinorial reference frames. We observe, however, that his
definition of algebraic spinors in Ref. 11 does not correspond to the definition of algebraic spinor
given in the present paper. In fact, they are a kind of right algebraic spinors since the nature of
their bilinear covariants must coincide with the ones of the right operator spinors presented in Sec.
VI. Also, it is worth mentioning here that in Ref. 31 a rigorous presentation of left and right
algebraic spinor fields and also Dirac-Hestenes spinor fields and a thoughtful discussion of the
Dirac-Hestenes equation using the theory of fiber bundles is given for the first time.

A. Classical spinors

The most extended treatment of spinors is based on representations of the group Spinp,q over
the space of representation S=Cn or Rn. This representation is realized by considering a set of p
+q matrices, �����C�n� or R�n�, generators of a matricial Clifford algebra:

C �̂p,q � gen����, ���� + ���� = 2���1 ,

where ���=diag�1, . . .
p

,1 ,−1 , . . .
q

,−1�. These kinds of spinors will be called classical spinors. �The
term classical has been employed because this is the first kind that was defined.32,7 In addition, it
is the only one that is considered by most groups in mathematics and theoretical physics.� The
generic space is the vector space spanned by linear combinations of the generating matrices:

Â � span���� .

Observe that for classical spinors, the generic spin group is a matricial group generated by the

basis of matrices ����, Spin̂p,q=Spin�����R�n� or C�n�.
A typical example is the case of Dirac matrices7 ��0

D ,�1
D ,�2

D ,�3
D� with the representation

function defined by this basis ���
D�= �̂0= f����, that is,

��
D = f �e���e��, ∀ �e�� � B0.

Example 4.1: A classical Pauli spinor is a P spinor, where
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P:Spin�	i� � C2 → C2, P�R̂,�� = R̂� ,

where R̂� denotes the standard matrix product and 	i are the usual Pauli matrices7 for the
algebra C�3,0. Note that Spin�	i�=SU�2�.

Example 4.2: A classical Dirac spinor is a D spinor, where

D:Spin���
D� � C4 → C4, D�R̂,�� = R̂� ,

where ��
D are the usual Dirac matrices7 for the algebra C�1,3.

B. Algebraic spinors

Let us consider the generic Clifford algebra C�̂p,q over the field K=R or C, denoted by

C�̂p,q�K�. In general, the vector space Â is real, thus the natural Clifford algebra would be

C�̂p,q�R�. However, we will consider in some cases its complexification C�̂p,q�C��C � C�̂p,q�R�,
although the vector space Â is still considered real. Let us also consider a minimal left-ideal Î of

C�̂p,q�K�. Then, the restriction of the regular representation into the minimal left-ideal Î is an

irreducible representation of C�̂p,q�K�:

Lp,q
Î�K�:C �̂p,q�K� � Î → Î, �Ĉ,�̂� � Lp,q

Î�K��Ĉ,�̂� = Ĉ�̂ ,

where Ĉ�̂ denotes the Clifford product between Ĉ and �̂.

The concept of algebraic spinors is based on considering a minimal left-ideal Î�C�̂p,q, as the
representation space S of spinors. Notice that using this representation for spinors is possible

because any representation of the algebra C�̂p,q is also a representation of the group Spin̂p,q, since

this group is a subset of C�̂p,q.33 �For Weyl spinors, a representation of only the even subalgebra is

used instead. It sufices since Spin̂p,q�C�̂p,q
+ . However, this restriction is the reason for which the

parity operator cannot be included in the representation.�
If a matrix representation is used as the generic Clifford algebra C�̂p,q�K�, then the most

typical example of representation space is provided by the left ideal Î consisting in the matrices
with all the elements vanishing except the first column,

Î = 
��
m11 0 ¯ 0

m21 0 ¯ 0

  
mn1 0 ¯ 0

��mA1 � K� ,

which is clearly isomorphic to the space of classical spinors, S=Kn.

Example 4.3: An algebraic Pauli spinor is a L3,0
Î�R� spinor. The typical case is obtained by

considering the left ideal Î=C�̂3,0P generated by the idempotent P= 1
2 �1+ ê3�. Note that this

privileges one vector in the generic space, which, in turn, privileges one direction, e3= f�
−1�ê3�, for

each reference frame �.

Example 4.4: An algebraic Dirac spinor is a L1,3
Î�C� spinor. The left ideal usually considered is

generated by the idempotent 1
2 �1+ ê0�

1

2
�1+ iê12�.

A very clear exposition treating deeply these kind of spinors can be found in Ref. 6.

C. Left operator spinors

As we commented on in the Introduction, we have found that, depending on the author the
name of operator spinor is used for two objects of a different nature. And this difference is not
remarked by the authors.
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One of these two kinds of objects is embraced by Definition 4.4 and we will call them left
operator spinors. In fact, this reflects that, beyond the representation space on which they are
based, left operator spinors share with classical and algebraic spinors the same notion for the
covariance of the bilinears, as we will see in the next section.

The other kind of operator spinors, which we will call right operator spinor, cannot be
included in Definition 4.4 since their bilinears are of a totally different nature. These spinors will
be studied in Sec. VI.

The representation space of left operator spinors is the real even subalgebra S=C�̂p,q
+ �R�, on

which the regular representation of itself, as an algebra on its own, is considered:2

Lp,q
+ :C �̂p,q

+ � C �̂p,q
+ → C �̂p,q

+ ; �Ĉ,�̂� � Lp,q
+ �Ĉ,�̂� � Ĉ�̂

where Ĉ�̂ implies the Clifford product between them.
Example 4.5: A left operator Pauli spinor is a L3,0

+ spinor.
Example 4.6: A left operator Dirac spinor is a L1,3

+ spinor. This operator spinor is usually
known as Dirac-Hestenes spinor.13

V. BILINEAR COVARIANTS

Physically, the bilinear covariants �scalars, vectors or tensors� are the observables of a spinor
or spinor field. This fact implies, in particular, that the meaning that we attach to spinors is
intimately tied to their bilinear covariants. In this section we will describe how the bilinear
covariants of the three classes—classical, algebraic, and left-operator spinors—are obtained.

Given their physical relevance, we will concentrate in the case of the Dirac spinors. This case
is sufficiently representative to illustrate the mechanisms involved in, and the differences between
the three classes of spinors. Even more concretely, we will only consider the density current, i.e.,
the bilinear vector J. The consideration of the other bilinears does not involve any qualitative
difference.

Recall that a spinor �Definition 4.4� is an equivalence class of pairs ��S ,��, where

Rs:��S,�� � ��S�,��� ⇔ �„f��R�,�… = �„f���R��,��… .

In the definition of the equivalence relation Rs, it is involved in the representation function f�

corresponding to a previously defined representation of vectors, given by the equivalence relation
�see Sec. II B�:

Rv:��,X̂� � ���,X̂�� ⇔ f�
−1�X̂� = f��

−1�X̂�� .

The key idea for the treatment of the bilinear covariants is that to each representative ��S ,�� of a

spinor it corresponds to a representative of the observable, �� , Ĵ�, where Ĵ is constructed bilinearly
from �. Then, the equivalence relation Rs for spinors induces an equivalence relation Rb between

the representatives �� , Ĵ� of observables. The covariant property of the bilinear Ĵ corresponds to
the fact that the induced relation Rb coincides with the vectorial equivalent relation Rv. Obvi-
ously, as we will see immediately, this requirement implies some condition on the bilinear function

Ĵ���.
Consider a representative of a spinor (�� ,R� ,�). Its bilinear covariant Ĵ is defined as a

quadratic function of �,

2For Weyl and Majorana spinors the complete regular representation is not used but it is used as a regular representation
restricted to a particular left ideal:

Lp,q
+ 	Î:C �̂p,q

+ � Î → Î, where Lp,q
+ 	Î�Ĉ,�̂� � Lp,q

+ �Ĉ,�̂� ∀ �̂ � Î � C �̂p,q
+ .
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Ĵ � 
̂��� , �16�

where 
̂ is independent of � and R. From the definition of an � spinor, two representatives are
equivalent if and only if

Rs:„��,R�,�… � „���,R��,��… ⇔ �� = H�R�R−1�� and �� = �R̂��� ,

where R̂� f��RR�−1�. This induces the equivalence relation

Rb:��, Ĵ� � ���, Ĵ�� ⇔ Ĵ = 
̂���, J�̂ = 
̂���� = 
̂ � �R̂��� . �17�

The equivalence relation used to represent vectors is

Rv:��, Ĵ� � ���, Ĵ�� ⇔ Ĵ� = f�� � f�
−1�Ĵ� .

Since, here, the two vectorial frames are related by

�� = H�R�R−1�� ,

it follows that

f�� = f� � H�RR�−1� = Ĥ�f��RR�−1�� � f� = Ĥ�R̂� � f�.

Hence

Rv:��, Ĵ� � ���, Ĵ��, ⇔ Ĵ� = Ĥ�R̂�Ĵ . �18�

From expressions �17� and �18�, we see that Rb and Rv are the same equivalence relation iff


̂ � �R̂��� = Ĥ�R̂� � 
̂���, ∀ � � S, ∀ R� � Spin1,3.

That is, iff


̂ � �R̂ = Ĥ�R̂� � 
̂, ∀ R̂ � Spin̂1,3. �19�

We have found here the simplest expression for the condition of covariance for the bilinear Ĵ

= 
̂���. Let us check now that the three classes of Dirac spinors satisfy this condition.

Classical spinors: The bilinear covariant Ĵ is usually computed as7

Ĵ� = �̄��
D� = �†�0

D��
D� ,

where Ĵ�R4 and �Ĵ�� are its four components. Here we must make a remark. For the definition of
classical Dirac spinors we considered as generic space the linear space spanned by the four Dirac

generating matrices Â=span���
D�, instead of the space R4. Then, as usually, for classical spinors

we must consider Ĵ as gammarized,


̂��� = Ĵ = Ĵ��D� = ��̄��
D���D� � Â .

Now we can check that �19� is satisfied,


̂�DR̂���� = ��̄�0
DR̂†�0

D��
DR̂���D� = ��̄R̂−1��

DR̂���D�,

where we have used the property �0
DR̂†�0

D= R̂
˜

= R̂−1, where ˜ denotes the reversion.6 Using also

that R̂−1��
DR̂=��

���
D is an isometry and hence , we obtain that

112303-12 D. Miralles and J. M. Pozo J. Math. Phys. 47, 112303 �2006�

                                                                                                                                    




̂�DR̂���� = ��̄��
D��R̂�D�R̂−1 = R̂
̂���R̂−1.

Algebraic spinors: The bilinear covariant Ĵ�Â is computed as6


̂��̂� = Ĵ = ��̂ê0�̂
˜*�1,

where * denotes the complex conjugate. The condition �19� can be easily checked,


̂�L1,3
Î�C��R̂,�̂�� = �R̂�̂ê0�̂

˜*R̂−1�1 = R̂��̂ê0�̂
˜*�1R̂−1 = R̂
̂��̂�R̂−1.

Left operator spinors: In this case the bilinear covariant Ĵ�Â is17


̂��̂� = Ĵ = �̂ê0�̂
˜

. �20�

To check condition �19� is immediate,


̂�L1,3
+ �R̂,�̂�� = R̂�̂ê0�̂

˜

R̂−1 = R̂
̂��̂�R̂−1.

VI. RIGHT OPERATOR SPINORS

Right operator spinors are radically different from the spinors defined in Sec. IV. It is crucial
that this new type does not fit Definition 4.4, and that this fact is intimately related to the different
nature of the bilinear obtained from right operator spinors.

Definition 6.1: A right operator spinor is an equivalence class of the set F�C�p,q
+ defined by

the equivalence relation,

Rr:��S,�� � ��S�,��� ⇔ �R = ��R�, �21�

where �S= �� ,R� and �S�= ��� ,R��.
This definition has two differences with Definition 4.4. The first is merely technical. In �21�

the action of the spin group,

�r:Spinp,q � C�p,q
+ → C�p,q

+ ; �r�R,�� = �R

is not a representation but an antirepresentation:

�r„R1,�r�R2,��… = �r�R2R1,�� .

The second is more subtle and fundamental. Subtle since it is not usually noticed24,10 that the
equivalence relation defining � spinors is basis dependent. This dependence is carried by f��R� in
�13�. In contrast, observe that �r is independent of the basis �. Fundamental because �r is a
representation of the group Spinp,q, which is constructed directly from the vectorial space of

interest A, while � is a representation of Spin̂p,q defined from the generic space Â. This is the fact
that takes relevance in the nature of the bilinear observables obtained.

We can particularize this type of spinors for the cases of Pauli or Dirac spinors simply by
considering, respectively, the algebra of the tridimensional space, C�3,0, or the algebra of the
four-dimensional space-time, C�3,1 or C�1,3.12

Example 6.1: A right operator Pauli spinor is a right operator spinor for a tridimensional
space.

Example 6.2: A right operator Dirac spinor is a right operator spinor for a four-dimensional
space-time.

The bilinear observables of right operator spinors have an expression similar to the one
considered for left operator spinors. Taking, for instance, the density current vector J for Dirac
spinor, the expressions for the left operator �20� and for the right operator are, respectively,
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Ĵ = �̂ê0�̂
˜ �22a�

and

J = �e0�̃ . �22b�

Behind the similarity of these two formulas there is an essential difference. Ĵ belongs to the

generic space Â and, together with the frame �, it forms a representative �Ĵ ,�� of the current
vector. However, J belongs to the space A and is itself the current vector. Coherently, J does not
transform when we change the frame �S of the spinor with representative ��S ,��. �See Fig. 1.�

In Eq. �22b�, the vector e0 is the time-like vector of the frame �. Hence, it changes when �
changes:

e0� = M�e0� = H�R�R−1�e0,

where �� ,R�, ��� ,R���F.
Accordingly to Definition 6.1, ��C�1,3

+ changes as

�� = �RR�−1.

Therefore, a simple computation makes clear that the bilinear observable J is the same for both
representants ��S ,�� and ��S� ,���:

J� = ��e0���˜ = �RR�−1R�R−1e0RR�−1R�R−1�˜ = �e0�˜ = J . �23�

As we announced in the Introduction, the interpretation of spinors that guides the whole of
this paper is based on considering that a spinor does not describe objectively a physical particle
but it describes how a physical particle is linked to the observer. It is for right operator spinors
when this interpretation takes its most transparent expression12. This is clear from Eq. �23� since
the spinor representative � links the observer vector e0 to the particle current field J. Equation
�23� can be then paraphrased as a transformation in the observer induces a transformation in the
link so that the observable does not change.

FIG. 1. Diagram representing the relationships between spinorial frames F, vectors A, vector representatives Â and spinor

representatives S and C�+. Vector representatives are the bilinears of �left� � spinors, Ĵ= 
̂���, while vectors are bilinears

of right operator spinors, J=
r�� ,��. Observe that the bilinear function 
̂ does not depend on the reference frame �, but
the transformation of spinorial representatives ��f��RR�−1� does. In contrast, the bilinear function 
r does depend on �, but
the transformation of spinorial representatives �r�RR�−1� does not.
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VII. CONCLUSIONS

Benn and Tucker in Ref. 34 manifested the confusion of tongues that it exists in the theory of
spinors.

The theory of spinors was developed independently by physicist and mathematicians, and this
historical apartheid has continued. […] Thus there is now a language, with many dialects, for
discussing spinors in physics which makes little contact with the expositions of the theory to be
found in mathematics literature.

Our aim in this paper has been to unify the definitions of spinors independently of their
representations. Moreover, this goal has allowed us to identify and distinguish between two es-
sential kinds of definitions as we showed in Secs. IV and VI. These definitions are intimately
related with the bilinears and therefore with vectors. In fact, to demand covariance of the bilinear
observables of spinors means that the equivalent relation defining spinors depends on the equiva-
lence relation defining vectors, as we have seen in Sec. V.

Nowadays, we are working with a new kind of spinors.35 They share with right operator
spinors the property of generating directly the observables, instead of their representatives. How-
ever, their definition will not be necessarily constructed by means of an equivalent class, but they
can be defined by a unique representative with no mention of observer tetrads or spinorial frames.
This characteristic places those spinors close to being intrinsic spinors, in the sense of being
defined independently of basis.
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APPENDIX: ABOUT THE NECESSITY OF THE REPRESENTATION FUNCTION ON THE
DEFINITION OF VECTORS AND SPINORS

In the literature, there are few formal treatments for defining vectors and spinors as equivalent
relation attending to their transformation properties in changing the reference frame.

A broadly accepted definition is the one found in Ref. 25. In this appendix we will discuss the
correctness of this definition and two possible interpretations of it.

The definition of vectors in Ref. 25, p. 134 is the following.
A vector is a class of equivalence defined by

�u�i�,�i�� � �u�j�,�j�� ⇔ u�i� = Lu�j� and �j� = L�i�, �A1�

where u�i��Rn, �i� is a reference frame in V, and L� GL�n�.
This definition cannot be correct, at least without some explanatory complement. The reason

is that the linear application L is applied to two different spaces: the representative space, u�i�
�Rn, and the space of reference frames �i��B. Moreover, the guessing of an implicit canonical
relation between the two different applications L affecting each of the two spaces, is misleading.
Indeed, we present below two possible amendments of this definition.

A crucial point is that, even if the two spaces could be considered identified in some sense, so
that the same application L could be applied to both, this definition would be incorrect because the
relation � introduced is not an equivalent relation. In concrete this relation does not satisfy
transitivity. For three representatives we have
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�u�1�,�1�� � �u�2��2�� ⇔ u�1� = L12u�2� �2� = L12�1�,

�u�2�,�2�� � �u�3��3�� ⇔ u�2� = L23u�3� �3� = L23�2�, �A2�

�u�1�,�1�� � �u�3��3�� ⇔ u�1� = L13u�3� �3� = L13�1�.

But the two first relations imply that

u�1� = L12L23u�3� and �3� = L23L12�1�.

This is compatible with the third relation only if the two applications commute:

L12L23 = L23L12 = L13,

which is not true, in general.
Obviously, the theory of vectorial and spinorial transformations is not badly grounded. Thus,

since the relation is not transitive, we are led to consider that the formal definition above does not
recover properly or completely the actually utilized transformations. In order to reflect the actual
transformations, we need to add an extra operation. Indeed, there are, at least, two different
possibilities. They appear when we study more carefully the space of reference frames B.

A reference frame  is a collection of n linearly independent vectors in V:

 = �1, . . . ,n�, I � V .

Thus, we can write

B = V � ¯ � V = Vn = Rn
� V .

The last expression suggests two types of transformations for reference frames: acting on Rn or
acting on V. The first possibility seems to be the one implied in definition �A1�. However, in this
case, the definition is misleading since the correct definition involves the operation of transposi-
tion. The second possibility is, in fact, the one considered in this work and it involves the
representation function f�.

�1� Consider that L�GL�n� is a linear application on Rn. Then, it seems natural to make it act
on the Rn structure of B=Rn � V. But then we will not have an equivalence relation. Let us write
the usual operation of applying a linear transformation on components and basis in index notation:

�2�I = LJ
I�1�J and u�1�

I = LI
Ju�2�

J .

Observe that, in fact, the Rn in B=Rn � V is not the same as the Rn space of components, but the
dual space of it, Rn*

. Therefore, while Rn is transformed with the application L :Rn→Rn, the space
Rn*

� V is transformed with the transposed application LT :Rn*→Rn*
,

�u�i�,�i�� � �u�j�,�j�� ⇔ u�i� = Lu�j� and �j� = LT�i�.

It is easy to see that with this transposition the relation is transitive. Taking three representatives
as in �A2�, we would obtain the conditions L12L23=L13 and L23

T L12
T =L13

T , which are compatible.
Hence, we have an equivalent relation.

This interpretation of the vectorial transformations is possibly the most extended one. Never-
theless, it is not the unique and, certainly, it was not the one primarily thought by the authors of
this work. But, what is important to note is that it cannot be generalized for other types of
representatives different from the Cartesian one.

�2� Let us consider L as an application on V, instead of one on Rn. Then, it can be applied to
reference frames �i��B=Rn*

� V by operating on the V structure. However, L�GL�V� cannot be
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applied to u�i��Rn. Thus, we need a way of relating the application L�GL�V� with some appli-

cation L̂�GL�Rn�. Let us express the application L by its components in the basis �i�= �e�i�
I�:

e�2�
I = L�e�1�

I� = LJ
I e�1�

J.

Now, these components can be used to define the application L̂, which should relate the two
representatives u�i�= �u�i�

I ��Rn:

u�1�
I = �L̂�u�2���I � LI

J u�2�
J.

This is formalized by considering the representation function f�i�
:V→Rn, which maps each vector

u�V into its components in the corresponding reference frame f�i�
�u�=u�i�, so that it satisfies

f�i�
��i�� = f�j�

��j��, ∀ i, j .

Then, the application L̂ is defined by

L̂ � f�i�
� L � f�i�

−1 . �A3�

Let us remark that the relationship between L and L̂ is frame dependent.
Now, we have the relation

�u�i�,�i�� � �u�j�,�j�� ⇔ u�i� = L̂iju�j� and �j� = Lij�i�.

Since L̂ is frame dependent, we must check that the relation is symmetric, i.e., L̂ji= L̂ij
−1, provided

that Lji=Lij
−1. The symmetry is obtained by taking into account Eq. �A3�:

�j� = f�j�

−1 � f�i�
��i�� ⇒ Lij = f�j�

−1 � f�i�

which implies the identity

L̂ji = f�j�
Ljif�j�

−1 = f�j�
f�i�

−1f�j�
f�j�

−1 = f�i�
f�i�

−1f�j�
f�i�

−1

= f�i�
Ljif�i�

−1 = �L̂ij�−1.

This result is usually paraphrased as: “The transformation matrix is the same written in both
reference frames, the original and the transformed one.” The transitivity property is satisfied if

L̂12L̂23= �L23L12�̂. This is obtained by

L̂12L̂23 = f�1�L12f�1�
−1f�2�L23f�2�

−1 = f�1�L12L12
−1L23f�2�

−1

= f�1�L23f�2�
−1f�1�f�1�

−1 = f�1�L23L12f�1�
−1

=�L23L12�̂ .
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We investigate the Seiberg-Witten monopole equations on noncommutative �N.C.�
R4 at the large N.C. parameter limit, in terms of the equivariant cohomology. In
other words, N=2 supersymmetric U�1� gauge theories with a hypermultiplet on
N.C.R4 are studied. It is known that after topological twisting partition functions of
N�1 supersymmetric theories on N.C. R2D are invariant under the N.C. parameter
shift; then the partition functions can be calculated by its dimensional reduction. At
the large N.C. parameter limit, the Seiberg-Witten monopole equations are reduced
to ADHM equations with the Dirac equation reduced to the 0 dimension. The
equations are equivalent to the dimensional reduction of non-Abelian U�N�
Seiberg-Witten monopole equations in N→�. The solutions of the equations are
also interpreted as a configuration of a brane antibrane system. The theory has
global symmetries under torus actions originated in space rotations and gauge sym-
metries. We investigate the Seiberg-Witten monopole equations reduced to the 0
dimension and the fixed point equations of the torus actions. We show that the
Dirac equation reduced to the 0 dimension is automatically satisfied when the fixed
point equations and the ADHM equations are satisfied. Then, we find that the
Seiberg-Witten equations reduced to the 0 dimension and fixed point equations of
the torus action are equivalent to just the ADHM equations with the fixed point
equations. For finite N, it is known that the fixed points of the ADHM data are
isolated and are classified by the Young diagrams. We also give a new proof of this
statement by solving the ADHM equations and the fixed point equations concretely
and by giving graphical interpretations of the field components and these
equations. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2365756�

I. INTRODUCTION

The Seiberg-Witten theory causes a revolution of nonperturbative analysis for N=2 super-
symmetric Yang-Mills theories.1,2 In the Seiberg-Witten theory, the instanton effects of N=2
supersymmetric Yang-Mills theories are encoded in the prepotential, which is defined by using the
Seiberg-Witten curve. �See, for example, Ref. 3 and references therein.� The Seiberg-Witten theory
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also provides a powerful tool, the monopole equation, to investigate the topology of four dimen-
sional manifolds.4,5 The monopole equations are more tractable than the instanton equation, and
yield many results in mathematics as well as physics.

Meanwhile, instanton calculus has developed by using ADHM data or D-instanton. �See, for
example, Ref. 6.� Particularly, an important calculation technology for N=2 supersymmetric
Yang-Mills theories is brought by Nekrasov.7 After Ref. 7, many related works have been
made.8–38 In Ref. 7 and so on, the localization theorem plays an essential role.39–42 �See also Refs.
43 and 44.� The localization theorem is valid when the theory has symmetries that correspond to
some group action and the group action has isolated fixed points. It is expected that many kinds of
calculations of N�1 supersymmetric gauge theory are carried out by using this theorem.

It is shown that partition functions of N�1 supersymmetric gauge theories on noncommuta-
tive �N.C.� R2D are invariant under the N.C. parameter change.45 Therefore we can perform the
calculation at the large N.C. parameter limit. As discussed in Refs. 45–48, taking this limit causes
dimensional reduction, and we can calculate the partition functions by using the theory after
dimensional reduction. For this reason, it is important to investigate the dimensional reduction.

In this paper, we will study a 0 dimensional model given by a dimensional reduction of
Seiberg-Witten monopole equations derived from N=2 supersymmetric U�1� theory on N.C. R4.
The equations are equivalent to the ADHM equations and the Dirac equation reduced to the 0
dimension. The equations are also equivalent to the dimensional reduction of non-Abelian U�N�
Seiberg-Witten monopole equations on commutative R4 at the large N limit. In this paper, we
investigate both cases of finite N and infinite N. The finite N case is not only the toy model, but
also the model that is possible to be implanted into the N=� theory and the results are valid for
some special cases of the N=� model. We will find that the solutions of the equations are also
interpreted as a configuration of the brane antibrane system. The theory has global symmetries
under torus actions originated in space rotations and gauge symmetries. The torus actions define
their fixed point equations. We will investigate the fixed point equations and the dimensional
reduction of the Seiberg-Witten monopole equations. We will show that the Dirac equation is
trivial when the fixed point equations and the ADHM equations are satisfied. For the finite N case,
it is known that solutions satisfying the fixed point equations and the ADHM equations are
isolated and classified by the Young diagrams.49 We will give a new proof of this statement by
solving the ADHM equations and the fixed point equations concretely and by giving a graphical
interpretation of the field components and these equations.

Here is the organization of this paper. In Sec. II, we review the N=2 supersymmetric gauge
theory on R4 and N.C. R4 with a hypermultiplet. In Sec. III, a D-brane interpretation is discussed.
In Sec. IV, we deform a BRS transformation defined as a topological twist of supersymmetric
transformation by using the global symmetries of the theory. In Sec. V, we solve the Seiberg-
Witten monopole equations reduced to a 0 dimension and the fixed point equations, and show our
main claims. That is to say we show that the dimensional reduced Seiberg-Witten equations and
fixed point equations of the torus action are equivalent to just the ADHM equations with the fixed
point equations. We also give a new proof of the statement that solutions of the equations are
localized and they are classified by Young diagrams. In Sec. VI, we briefly comment on the
localization theorem. Section VII is a summary of this paper.

II. N=2 SUPERSYMMETRIC U„1… THEORY ON N.C. R4

In this section we review N=2 supersymmetric theory and its topological twist on R4 and
N.C. R4. We consider the case with a hypermultiplet.50–54 For conventions in this paper, see
Appendix A.

At first, we set up the model of the N=2 supersymmetric theory on R4. SO�4� spacetime
rotation of four dimensional Euclidean space is locally equivalent to SU�2�L � SU�2�R. N=2

supersymmetric theories have SU�2�I R symmetry. The supersymmetry generators Q�i, Q̄�̇i have
indices i=1,2 for the R symmetry. N=2 supersymmetric theories on R4 have the following
symmetry:
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H = SU�2�L � SU�2�R � SU�2�I. �1�

The supersymmetric gauge multiplet is given by

A�

�1 �2.

�

�2�

Here �1 and �2 are Weyl spinors. We denote �̄1 and �̄2 as their CPT conjugate. � is a scalar field.
We denote �̄ as its complex conjugate. Their quantum number of H are assigned as

�1 = �1/2,0,1/2�, �2 = �1/2,0,1/2�, � = �0,0,0� ,

�̄1 = �0,1/2,1/2�, �̄2 = �0,1/2,1/2�, �̄ = �0,0,0� . �3�

The action functional is given by

L = −
1

4
F��

a Fa
�� − i�̄�̇i

a �̄��̇� D���a
i − D��̄a D��a �4�

−
i

�2
��ia��̄,��i�a −

i
�2

�̄�̇
ia��,�̄�̇

i�a −
1

2
��̄,��2. �5�

The supersymmetric transformation with parameter 	 and 	̄ are written as


A� = i	�i����̇�̄�̇
i − i��i����̇	̄�̇

i,


��
i = ��

���	�
iF�� + �2i���̇

� D��	̄�̇i + ��,�̄�	�
i,


�̄�̇i = − 	̄�̇i�̄�̇
���̇F�� + �2i	�i���̇

� D��̄ − ��,�̄�	̄�̇i,


� = �2	�i��i,


�̄ = �2	̄i
�̇�̄�̇

i. �6�

To classify the solutions of BPS equations by equivariant cohomology, let us introduce a
topological twist here.55,56 We use a diagonal subgroup SU�2�R� in SU�2�R � SU�2�I of H. We
redefine the space time rotation group by

K� ª SU�2�L � SU�2�R�. �7�

Then combinations of spinors whose quantum number of H are �1/2 ,0 ,1 /2� � �0,1 /2 ,1 /2� have

quantum number �1/2 ,1 /2� � �0,1� � �0,0� of K�. Particularly �0,0� is scalar and Q=��̇iQ̄�̇i is a
BRS operator. Fermionic fields are similarly topological twisted as �i� 1

2 ,0 , 1
2

�→��� 1
2 , 1

2
� and

�̄i�0, 1
2 , 1

2
�→���0,1� � ��0,0�. BRS transformations are given as


̂A� = i��, 
̂�� = − D��, 
̂� = 0,


̂�� = H��, 
̂�̄ = i� ,
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̂H�� = i��,���, 
̂� = ��,�̄� . �8�

Here we introduce auxiliary field H��.
As a next step, let us introduce hypermultiplets. The N=2 hypermultiplet consists of two

Weyl fermions �q and �q̃
† and two complex scalar bosons, q and q̃†,

�q

q q̃†.

�q̃
†

The definition of the symbol † is seen in Appendix A. Their supersymmetric transformations are
given by


qi = − �2	�i�q� + �2	̄�̇
i�̄q̃

�̇,


�q� = − �2i���̇
� D�qi	̄�̇

i − 2Taqi�̄a	�i, �9�


�̄q̃
�̇ = − �2i�̄��̇� D�qi	�i + 2Taqi�a	̄�̇

i,

where Ta is a generator of the gauge group. In the following, we consider the case that represen-
tation of the gauge group of the hypermultiplet is fundamental representation. After topological
twisting, BRS transformations are given by


̂q�̇ = �q
�̇, 
̂q�̇

† = �q�̇
† ,


̂�q
�̇ = − i�aTaq�̇, 
̂�q�̇

† = iq�̇
†�aTa,

�10�

̂q� = Hq�, 
̂q

†� = Hq
†�


̂Hq� = − i�aTaq�, 
̂Hq
†� = iq

†��aTa,

where fields are rescaled, �→ �i /2�2��, �2�̄q
�̇→ �̄q

�̇, �2�̄q�̇→ �̄q�̇, and also auxiliary field Hq� is

introduced. After topological twisting, we rename the fermions as �q→q and �̄q→�q.
Using these field contents, let us construct the action of Seiberg-Witten theory. The action

with fundamental hypermultiplet terms are defined by

S = k − 
̂� �11�

where k is an instanton number,

k =
1

8�2 � Tr�FA ∧ FA� , �12�

and � is a gauge fermion;

� = − +
��a�H+��

a − s+��
a � − q

†��Hq� − s�� − �Hq
†� − s†��q�

+ i��,�̄�a�a + D��̄a��a − �− iq�̇
†�̄��q

�̇ − �q�̇
† �i�̄q�̇� . �13�

Here

s���A,q,q†� = Fa
+�� + q†�̄��Taq ,
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s��A,q� = ��D�q = D” q . �14�

After integration of the auxiliary fields H+�� and Hq, the bosonic action are given as

SB =� d4x�g	1

4

s��
2 +

1

2

s�
2� + ¯ . �15�

Notice that when the gauge group is U�1� and the theory is defined on simple type commutative
manifolds, we get the Seiberg-Witten invariants as the partition function of this model.4,5,50,51

From �15� we get the BPS equations,

s���A,q,q†� = 0, s��A,q� = 0, �16�

which is known as the non-Abelian Seiberg-Witten monopole equations.
In the following, we investigate some properties of N=2 supersymmetric gauge theory on

N.C. R4 whose noncommutativity is defined as

�x�,x�� = i���, �17�

where the ��� is an element of an antisymmetric matrix and called the N.C. parameter. For
simplicity, we take

����� =�
0 �1 0 0

− �1 0 0 0

0 0 0 �2

0 0 − �2 0
 . �18�

In the following, we only use operator formalisms to describe the N.C. field theory; therefore
the fields are operators acting on the Hilbert space H. Then differential operators �� are expressed
by using commutation brackets −i���

−1�x� , * ����̂� , * � and �d2Dx is replaced with det���1/2TrH.
When we consider only the case of N.C. R4, field theories are expressed by the Fock space

formalism. �See the appendix in Ref. 45.� In the Fock space representation, fields are expressed as
A�=�A�m1m2

n1n2 
n1 ,n2��m1 ,m2
, ��=���m1m2

n1n2 
n1 ,n2��m1 ,m2
, etc. Therefore, the above BRS transfor-

mations are expressed as


̂A�m1m2

n1n2 = ��m1m2

n1n2 , 
̂��m1m2

n1n2 = �D���m1m2

n1n2 , . . . , �19�

where the covariant derivative is defined by D�* ª ��̂�+ iA� , * � with �̂�ª−i���
−1x�. The action

functional is given by

S = TrH L�A�, . . . ; �̂zi
, �̂ z̄i

� = TrH tr 
̂� . �20�

Let us change the dynamical variables as
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A� →
1
��

Ã�, �� →
1
��

�̃�, �̄ →
1

�
�̃̄, � →

1

�
�̃, q →

1
��

q̃, q† →
1
��

q̃†

��
+ →

1

�
̃��

+ , H��
+ →

1

�
H̃��

+ , � → �̃ �q →
1
��

�q
˜ , �q

† →
1
��

�̃q
†, �21�

q →
1

�
q̃, q

† →
1

�
q̃

†, Hq →
1

�
H̃q, Hq

† →
1

�
H̃q

†.

Note that this changing does not cause nontrivial Jacobian from the path integral measure because
of the BRS symmetry. Then, the action is rewritten as

S →
1

�2 S̃, L�A�, . . . ; �̂zi
, �̂ z̄i

� →
1

�2L�Ã�, . . . ;− ai
†,ai� . �22�

Here the action on the left hand side �lhs� depends on � because the derivative is given by �zi

=−��−1�ai
† , �, and so on. In contrast, the action S̃ on the rhs does not depend on � because all �

parameters are factorized out. Using the BRS symmetry, it is proved that the partition function is

invariant under the deformation of �, because 
�Z=−2�
���−3�S̃�=0. As discussed in Ref. 45, the
partition function of this theory is possible to be determined by using a lower dimension theory
that is given by dimensional reduction. Therefore, the investigation of the dimensional reduction
of the theories is important.

The dimensional reduction of Seiberg-Witten monopole equations �14� are expressed as

P+
�����A�,A�� + q�̄��q† = 0, �23�

��A�q = 0, �24�

where P+
���� is a self-dual projection operator. These expressions are valid for the dimensional

reduction of the non-Abelian theory on commutative R4. Using q+ª �q1̇+q2̇� /�2 and q−

ª �q1̇−q2̇� /�2, if we start from the U�1� theory on N.C.R4, the equation �23� is rewritten as
ADHM equations:

�Az1
,Az1

† � + �Az2
,Az2

† � + q−q−
*T − q+q+

*T = 0,

�Az1
,Az2

� + q−q+
*T = 0. �25�

Note that these operators in �25� are expressed by infinite dimensional matrices and the
ADHM equations correspond to the instanton of the U�N� gauge group with instanton number N
at the large N limit. We consider the finite N situation in the next section.

III. D-BRANE INTERPRETATION

In this paper, we study the details of the solution of �23� and �24�. On the N.C. R4 the fields
appearing in �23� and �24� are infinite dimensional matrices acting on Hilbert space. But the
equations are important even if the dimension of the matrix is finite, because there is a corre-
sponding physical model. In this section, we consider the correspondence between Seiberg-Witten
monopole equations, the D-brane picture, and �23�, �24�.57

At first, we construct the physical model by using the similar manner of the article.57 �See also
Refs. 58–65.�

The generalized second order effective action of an N D3-brane N D̄3-brane system without
topological terms are given by
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� tr�1

4
F��

�N�F�N��� +
1

4
F��

�N̄�F�N̄��� + 
D��
2 +
1

2
��2 − ��̄�2� . �26�

Here the F��
�N� and F��

�N̄� are the curvature of the A�N� and A�N̄�, respectively, where A�N� and A�N̄�

correspond to open strings attached on the D3 brane and the D̄3 brane. Up to topological terms,
we can rewrite this action as

� tr�1

4
F��

�N̄�F�N̄��� +
1

2

Fz1z̄1

�N� + Fz2z̄2
�N� + ���̄ − �2�
2 + 8
Fz1z2
2 + 2
Dz̄1̄

�
2 + 2
Dz̄2̄
�
2� . �27�

From this action, considering the case of A�
�N̄�=0, stationary points are given by

Fz1z̄1
�N� + Fz2z̄2

�N� + q−q−
*T = � , �28�

Fz1z2
�N� = 0, �29�

Dz̄1q− = 0, �30�

Dz̄2q− = 0, �31�

where we replace � by q− and �2 by �. Then, this is the Seiberg-Witten monopole equations with
q+=0 condition and background constant field �. �See also the next section.� This case corresponds
to the ��0, as we will see in Sec. V. Note that q− can be regarded as a complex scalar field when
we consider the R4 case.

The solution of �23� and �24� of the finite matrix model is realized as some D3-D̄3 configu-
ration.

IV. DEFORMED BRS TRANSFORMATION

In this section, we will investigate the symmetry of the dimension reduction of �20� to 0
dimension, and deform the BRS symmetry as G � TN+2 equivariant derivative, where G is the
gauge transformation group of U�N� and TN+2 is the torus action, in order to derive the fixed point
equations. Note that the U�N� symmetry is caused from the U�1� symmetry if we consider the
N.C. theory. As explained in Sec. II, the action functional is defined by infinite dimensional
matrices when we start from N.C. theories; then N.C.U�1� gauge symmetry is expressed by U���
symmetry. For simplicity, in some discussions of this paper, we restrict our analysis to the finite
dimensional, N�N, matrix case. �Only the proof of Theorem 3 in Sec. V and the calculations of
the partition function of a toy model in Sec. VI are based on discussions of finite N.� All of the
fields contents, A� ,q, etc., are given by N�N matrices. Then the U��� symmetry is also truncated
to U�N�. From the viewpoint of N.C. field theory, there might be another type of solutions that is
not studied in this paper, and the following analysis might not be completed. On the other hand, as

discussed in the previous section, the finite N�N theory has a D3-D̄3 brane interpretation; then it
has physical applications.

The path integral for cohomological field theories reduced to the integral over the moduli
space of vacuum. In our case, the moduli space is defined by solutions of �23� and �24�. As
demonstrated in Ref. 7, the localization theorem is a powerful tool for path integrals of cohomo-
logical field theories. The localization theorem is valid when a theory under consideration has
symmetries under some group actions, and the group actions have isolated fixed points. �For the
localization theorem, also see Sec. VI.� Therefore, to investigate solutions of the fixed point
equation is important. This is our main subject in this paper.

Adding to the U�N� gauge symmetry and the Lorentz symmetry SO�4�=SU�2�L � SU�2�R, the

action reduced to 0 dimension has the next extra unitary symmetry, denoted by Ũ�N�,
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Ũ�N�q�̇ = iq�̇b , �32�

where b is a generator of Ũ�N�. When we consider the case that q�̇ is a N�k matrix in the next

section, then the symmetry becomes Ũ�k�;


Ũ�k�q�̇ = iq�̇b, b � ũ�k� . �33�

Recall that q and q† are fundamental representations of the gauge group. The gauge transformation
of q is defined by left action of the U�N�. Notice that if we define the gauge transformation by
using right action, we can define another gauge symmetry with the corresponding gauge field. We
do not introduce this gauge field; then the symmetry appears only after the dimensional reduction.

This is the origin of Ũ�N�.
Now we use the Abelian subgroup U�1�2 � U�1�N of SO�4� � Ũ�N�. That is, we consider the

following symmetry of the action:


U�1�2
�U�1�N

Azi
= − i�iAzi

, �34�


U�1�2
�U�1�N

q�̇ = + iMR�̇
�̇q�̇ + iq�̇b , �35�

where b=diag. �b1 , ¯ ,bN� is a generator of an Abelian subgroup U�1�N of Ũ�N�, and �i�i=1,2� is
a generator of an Abelian subgroup U�1�2 of SO�4�, defined by


A� = M�
�A�, M�

� =�
0 − �1

+ �1 0

0 − �2

− �2 0
 . �36�

Also, MR�̇
�̇ is the generator of U�1��SU�2�R,

MR�̇
�̇ = � 0 �+

�+ 0
�, �+ =

�1 + �2

2
. �37�

By using U�1�2 � U�1�N, let us deform the BRS symmetry from 
̂ to 
̃. We define the defor-

mation by replacing 
̂2=
�−��
U�N�gauge to


̃2 = 
�−��
U�N�gauge + 
�b�

U�1�N
+ 
��1,�2�

U�1�2
. �38�

Here 
���
G is a gauge transformation operator with the group G and the transformation parameter �.

Then, for �zi
and �q�̇, the BRS transformation rules are given by


̃2Azi
= 
̃�zi

= i�Azi
,�� − i�iAzi

, �39�


̃2q�̇ = 
̃�q�̇ = − i�q�̇ + MR�̇
�̇q�̇ + iq�̇b , �40�


̃2q†�̇ = 
̃�q
†�̇ = q†�̇i� − MR�̇

�̇q†�̇ − ibq†�̇. �41�

Now we list the equations, the solutions of which we will investigate. Some of them are the
equations of motion, often called BPS equations. They are the same as �23� or �25�, �24�. How-
ever, we take some deformation of them, to remove singular solutions. We introduce a nonzero
number �, and take
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i��Az1
,Az̄1

� + �Az2
,Az̄2

�� + q��̄z1z̄1
+ �̄z2z̄2

�q† = i� , �42�

i�Az1
,Az2

� + q�̄z1z2
q† = 0, �43�

�Az1
�z1 + Az̄1

�z̄1 + Az2
�z2 + Az̄2

�z̄2�q = 0. �44�

Here, �42�, �43� are realized by the redefinition of s���A ,q ,q†�,

s���A,q,q†� → F+�� + q�̄��q† − ���
+ ,

�z1z̄1
+ �z2z̄2

= i�, �z1z2
= 0. �45�

This constant � is considered as a background field and we define its BRS transformation by 
̃�
=0. Then, we find that all of the above discussions in previous sections are valid, although we add
this background field. For later use, we rewrite them into

�Az1
,Az̄1

� + �Az2
,Az̄2

� − �q2̇q
1̇

*T
+ q1̇q

2̇

*T� = � , �46�

�Az1
,Az2

� +
1

2
�q1̇q

1̇

*T
− q2̇q

2̇

*T� +
1

2
�q1̇q

2̇

*T
− q2̇q

1̇

*T� = 0, �47�

�Az̄1
− Az2

�q2̇ − �Az̄1
+ Az2

�q1̇ = 0, �48�

�Az̄2
+ Az1

�q2̇ − �Az̄2
− Az1

�q1̇ = 0. �49�

The rest of the equations to be investigated are the fixed point equations of the deformed BRS
transformation �39�–�41�. They are given by

i�Azi
,�� − i�iAzi

= 0, �50�

− i�q�̇ + MR�̇
�̇ q�̇ + iq�̇b = 0. �51�

In the next section, we will investigate solutions of �42�, �43�, �44�, �50�, �51�, and will show
that they have isolated solutions. This fact guarantees that the localization theorem is valid to our
case.

V. SOLUTIONS OF „42…, „43…, „44…, „50…, „51…

In this section, we solve �42�, �43�, �44�, �50�, �51�, and show that these equations have only
isolated solutions, and the solutions are expressed by the Young diagrams. Notice that our analysis
is also valid to a case where q�’s are N�k , �k�N� matrices, though we will treat q� as N�N
matrices in this section. If we take q�̇ to be N�k, q�̇

*T to be k�N and b�u�k�, our proof in this
section includes a new proof for Proposition 5.6. in Ref. 49.

First of all, we diagonalize � by using the U�N� gauge symmetry,

� = diag��1,�2, . . . ,�N� . �52�

Next we tackle �50� and �51�. From �50� we see immediately that if and only if

�J − �I = �i, �53�

AziIJ
could be nonzero,

112304-9 Dimensional reduction of Seiberg-Witten J. Math. Phys. 47, 112304 �2006�

                                                                                                                                    



AziIJ
� 0. �54�

In this section, we use “�0” as not “nonzero” but “not always zero.” Also, from �51� we see
that if and only if

�I = bJ ± �+, �55�

q1̇IJ and q2̇IJ could be nonzero,

q1̇IJ = ± q2̇IJ � 0. �56�

Notice q1̇IJ and q2̇IJ are not independent from one another.
These observations lead us to the following proposition.
Lemma 1: If �42�, �50�, �51� have a solution, then �I takes any of ��xÎ�

�n1,n2�, given by

��xÎ�
�n1,n2� = xÎ + n1�1 + n2�2, n1,n2 � Z �57�

where

xÎ � �bI
�−� � R,I = 1, . . . ,N
bI

�−�
ª bI − �+� , �58�

or

xÎ � �yĪ � R, Ī = 1, . . . ,N̄
 ∀ I,n1,n2,yĪ � bI
�−� + n1�1 + n2�2� . �59�

�proof�
Suppose that �I does not take any of ��xÎ�

�n1,n2� given above. This implies that ∃I , ∀J ,q�̇IJ

=0,AziIJ
=AziJI=0. Consider �42�. It is easy to see that the �I , I� component of the lhs of �42� is 0,

whereas the �I , I� component of the rhs of �42� is i��0. Therefore no solution to �42�, �50�, �51�
is allowed. �

For a set of all ���xÎ�
�n1,n2� 
xÎ is given �, assign a graph P�xÎ�

. See Fig. 1. In Fig. 1, the origin,

denoted by the black square, corresponds to the eigenvalue ��xÎ�
�0,0�=xÎ, and other lattice points

�n1 ,n2�, denoted by black dots, correspond to eigenvalues ��xÎ�
�n1,n2�. For given a set of P�xÎ�

, � is

written as

FIG. 1. P�x̂I�
.
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� = �
I �

��bI
�−��

�n1,n2�
1N

�bI
�−��

�n1,n2�

��bI
�−��

�n1�,n2��
1N

�bI
�−��

�n1�,n2��

��bI
�−��

�n1�,n2��
1N

�bI
�−��

�n1�,n2��

�

 , �60�

�

Ī �
��yĪ�

�n1,n2�1N�yI
¯�

�n1,n2�

��yĪ�
�n1�,n2��1N�yI

¯�
�n1�,n2��

��yĪ�
�n1�,n2��1N�yI

¯�
�n1�,n2��

�

 . �61�

In each Ith or Īth block, we suppose that eigenvalues �
�bI

�−��

�n1,n2�
or ��yĪ�

�n1,n2� are arranged by order,

��bI
�−��

�n1,n2�
� ��bI

�−��
�n1�,n2��

� ��bI
�−��

�n1�,n2��
� ¯ ,

��yĪ�
�n1,n2� � ��yĪ�

�n1�,n2��
� ��yĪ�

�n1�,n2��
� ¯ . �62�

The index I is mapped to the triad of indices (Î , �n1 ,n2�),

I � „Î,�n1,n2�… . �63�

We denote the degeneracy of ��xÎ�
�n1,n2� as N�xÎ�

�n1,n2�,

#��I
�I = ��xÎ�
�n1,n2�� = N�xÎ�

�n1,n2� � 0, �64�

�
Î

�
�n1,n2�

N�xÎ�
�n1,n2� = N . �65�

Azi
takes a similar block structure,

Azi
= �

I � �

¯ Azi�I,�n1,n2��,�I,�m1,m2�� ¯

�
�

Ī �
�

¯ Ezi�Ī,�n1,n2��,�Ī,�m1,m2�� ¯

�
 , �66�

where

Azi�I,�n1,n2��,�I,�m1,m2�� is a N�bI
�−��

�n1,n2�
� N�bI

�−��
�m1,m2�

complex matrix,

and

Ezi�Ī,�n1,n2��,�Ī,�m1,m2�� is a N�yĪ�
�n1,n2� � N�yĪ�

�m1,m2� complex matrix.

A nontrivial component of Az1
appears in �)Î , �n1 ,n2�) , (Î , �n1−1 ,n2�)�th block and, that of Az2

appears in �(Î , �n1 ,n2�) , (Î , �n1 ,n2−1�)�th block,

Az1„I,�n1,n2�…,„I,�n1−1,n2�… � 0, Ez1„Ī,�n1,n2�…,„Ī,�n1−1,n2�… � 0, �67�
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Az2„I,�n1,n2�…,„I,�n1,n2−1�… � 0, Ez2„Ī,�n1,n2�…,„Ī,�n1,n2−1�… � 0. �68�

By adding left arrows connecting �n1 ,n2� and �n1−1 ,n2� and down arrows connecting �n1 ,n2� and
�n1 ,n2−1� to the graph P�xÎ�

, we obtain a graph G�xÎ�
. For example, see Fig. 2. The left arrow

corresponds to Az1
’s nontrivial component, and the down arrow corresponds to Az2

’s nontrivial
component. Also, the nontrivial components of q�̇ are

q1̇�I,�0,0��,J = − q2̇�I,�0,0��,J � 0, for I,J, s . t . �I = bJ + �+, �69�

q1̇�I,�1,1��,J = + q2̇�I,�1,1��,J � 0, for I,J, s . t . �I = bJ − �+. �70�

From �66�, �69�, �70�, we obtain the next proposition.
Lemma 2: If �I takes any of ��yĪ�

�n1,n2�=yĪ+n1�1+n2�2, then �42�, �50�, �51� have no solution.

�proof�
Suppose that some �I are given by

�I = ��yĪ�
�n1,n2�. �71�

Then, the lhs of �46�, equivalent to �42�, is given by the following:

lhs of �46� = �
i=1,2

�Azi
,Az̄i

� − �q2̇q
1̇

*T
+ q1̇q

2̇

*T�

= �� I�i=1,2
�Azi

I ,Az̄i

I � − �q2̇q
1̇

*T
+ q1̇q

2̇

*T� 0

0 � Ī�i=1,2
�Ezi

Ī ,Ez̄i

Ī �  , �72�

because the nontrivial components of q�̇ are given by �69�, �70�. On the other hand, the rhs of �46�
is proportional to a unit matrix,

rhs of �46� = ��� I1
I,I 0

0 � Ī1
Ī,Ī� . �73�

The �Ī , Ī� block of �72� is a traceless matrix, whereas the �Ī , Ī� block of �73� has a nonzero trace.
These are mutually exclusive. �

When we consider the case of N=�, we cannot use the nature that the commutator is trace-
less; then this proof is not correct. But we can prove this statement even if N=�. Because, if

�Ezi

Ī ,Ez̄i

Ī � is not traceless, we can show that the curvature F does not converge to zero at infinity.

FIG. 2. G�x̂I�
.
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This means that if the set of the gauge fields is �A 
 limx→� 
F�x� 
 =0�, then this theorem still holds.
By the same reason, Theorem 1 in this section is valid for the N=� case. That is why, all theorems
in this section without Theorem 3 holds for the N=� case.

Corollary 1: �42�, �50�, �51� can have a solution, if and only if � is given by

� = �
I

�
�n1,n2��G�bI

�−��

��bI
�−��

�n1,n2�
1N

�bI
�−��

�n1,n2�, �74�

��bI
�−��

�n1,n2�
= bI

�−� + n1�1 + n2�2, �75�

and Azi
is given by

Azi
= �

I
Azi

I . �76�

From now on, we suppose that the parameter � is a positive number,

� � 0. �77�

�If we assume ��0, we have to change some statements in the following theorems, but essentially
same theorems hold.� Then we obtain the next theorem.

Theorem 1: Let G�b
I
�−�� be a graph defined from the eigenvalues �

�bI
�−��

�n1,n2�
given by �74�. Also let

� be positive. The following three conditions are necessary for a solution of �42�, �50�, and �51� to
exist.

�1� G�b
I
�−�� consists of one connected part.

�2� G�b
I
�−�� includes the origin �0,0�.

�3� All points �n1 ,n2� in G�b
I
�−�� must be in n1�0,n2�0.

�proof�
First of all, notice that Azi

I is a direct sum of upper triangle �block� matrices and Az̄i

I is of lower
triangle �block� matrices �remember �62��,

Azi

I = �
a

Azi

I�a� = �
a �

0 * ¯ * *

0 0 ¯ * *

� � � � �
0 0 ¯ 0 *

0 0 ¯ 0 0
 , �78�

Az̄i

I = �
a

Az̄i

I�a� = �
a �

0 0 ¯ 0 0

* 0 ¯ 0 0

� � � � �
* * ¯ 0 0

* * ¯ * 0
 , �79�

where the index a labels connected diagrams G
�bI

�−��

�a�
in G�b

I
�−��. See Fig. 3. From �78� and �79�, we

obtain
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�Azi

I�a�,Az̄i

I�a�� = �Mmin * 0

* Mint *

0 * Mmax
 , �80�

where

Mmin = + �
�m1,m2�

A
zi�n1

min,n2
min�,�m1,m2�

I�a�
A

z̄i�m1,m2�,�n1
min,n2

min�
I�a�

, �81�

Mmax = − �
�m1,m2�

A
z̄i�n1

max,n2
max�,�m1,m2�

I�a�
A

zi�m1,m2�,�n1
max,n2

max�
I�a�

, �82�

and

Mint =�
Mint

�n1,n2� * *

* Mint
�n1�,n2�� *

* * Mint
�n1�,n2��

�

 , �83�

Mint
�n1,n2� = + �

�m1,m2�
Azi�n1,n2�,�m1,m2�

I�a� Az̄i�m1,m2�,�n1,n2�
I�a� − �

�m1,m2�
Az̄i�n1,n2�,�m1,m2�

I�a� Azi�m1,m2�,�n1,n2�
I�a� , ¯ .

�84�

�n1
min ,n2

min� in �81� denotes the point corresponding to the lowest eigenvalue in G
�bI

�−��

�a�
, and

�n1
max,n2

max� in �82� denotes the point corresponding to the highest eigenvalue in G
�bI

�−��

�a�
. Also

�n1 ,n2� ,¯ in �83� denote other points corresponding to intermediate eigenvalues in G
�bI

�−��

�a�
. Let us

consider a �(I�a�)(I�a�)� block of �46�,

�
i=1,2

�Azi

I�a�,Az̄i

I�a�� − �q2̇q
1̇

*T
+ q1̇q

2̇

*T��„I�a�…„I�a�…� = �1�„I�a�…„I�a�…�. �85�

If a connected part G
�bI

�−��

�a�
does not include �0,0� or �1,1�, the second term on the lhs of �85�

vanishes, since the nontrivial components of q�̇ are given by �69�, �70�. We have supposed �

�0, so �80�–�84� tell us that such G
�bI

�−��

�a�
does not exist.

Next, consider the �(I , �n1
max,n2

max�)(I , �n1
max,n2

max�)� block of �46�,

FIG. 3. G�b
I
�−�� consists of connected graphs G

�bI
�−�

�

�a�
.
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− �
�m1,m2�

A
z̄i�n1

max,n2
max�,�m1,m2�

I
A

zi�m1,m2�,�n1
max,n2

max�
I

− �q2̇q
1̇

*T
+ q1̇q

2̇

*T��„I,�n1
max,n2

max�…„I,�n1
max,n2

max�…�

= �1N
�bI

�−��
�n1

max,n2
max�. �86�

If

n1
max � 1 or n2

max � 1, �87�

the second term on the lhs of �86� vanishes, since the nontrivial components of q�̇ are given by
�69�, �70�; then

lhs of �86� = − �
�m1,m2�

A
z̄i�n1

max,n2
max�,�m1,m2�

I
A

zi�m1,m2�,�n1
max,n2

max�
I

� 0. �88�

On the other hand,

rhs of �86� = � � 0. �89�

These are inconsistent from each other. Then, we conclude

n1
max � 1 and n2

max � 1. �90�

Consider the maximal case, the �(I , �1,1�)(I , �1,1�)� component of �46�. The first term on the
lhs is

− �
�m1,m2�

Az̄i�1,1�,�m1,m2�
I Azi�m1,m2�,�1,1�

I � 0, �91�

and the second term is

− �q2̇q
1̇

*T
+ q1̇q

2̇

*T� = − 2q1̇q
1̇

*T
� 0. �92�

Again, the rhs is ��0. Then we see that the �I�1,1�� component does not exist. Repeating similar
arguments, we conclude that

�n1
max,n2

max� = �0,0� . �93�

We have finished the proof of Theorem 1. �

Let us introduce such a map I, that

I:�l
l = 1, ¯ ,M� → �I
I = 1, ¯ ,N�, M � N , �94�

N�bI�l��
�0,0� � 0. �95�

For each l, assign a connected graph CI�l�. For example, see Fig. 4. For given CI�l�, nontrivial
components of Azi

are

Az1�l,�n1−1,n2���l,�n1,n2�� � 0, �n1 − 1,n2�,�n1,n2� � CI�l�, �96�

and

Az2�l,�n1,n2−1���l,�n1,n2�� � 0, �n1,n2 − 1�,�n1,n2� � CI�l�. �97�

Also nontrivial components of q�̇ are

q1̇I=�l,�0,0��,J=I�l� = − q2̇I=�l,�0,0��,J=I�l� � 0. �98�

For the nontrivial components �96�–�98�, �42� and �43� are reduced to
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Az1�l,�n1,n2��,�l,�n1+1,n2��Az̄1�l,�n1+1,n2��,�l,�n1,n2�� − Az̄1�l,�n1,n2��,�l,�n1−1,n2��Az1�l,�n1−1,n2��,�l,�n1,n2��

+ Az2�l,�n1,n2��,�l,�n1,n2+1��Az̄2�l,�n1,n2+1��,�l,�n1,n2�� − Az̄2�l,�n1,n2��,�l,�n1,n2−1��Az2�l,�n1,n2−1��,�l,�n1,n2��

+ 2q1̇�l,�n1,n2��,J
q1̇J,�l,�n1,n2��

*T = � , �99�

and

Az1�l,�n1,n2��,�l,�n1+1,n2��Az2�l,�n1+1,n2��,�l,�n1+1,n2+1�� − Az2�l,�n1,n2��,�l,�n1,n2+1��Az1�l,�n1,n2+1��,�l,�n1+1,n2+1�� = 0.

�100�

On the other hand, the Dirac equation reduced to 0 dimension �44� gives no constraint, which
follows from the next theorem.

Theorem 2: If Azi
and q�̇ satisfy Eqs. �42�, �43� and Eqs. �50�, �51�, they satisfy the Dirac

equation reduced to 0 dimension �44� automatically.
�proof�

From �98�, �44� is reduced to

Az̄1
q1̇ = 0, Az̄2

q1̇ = 0. �101�

Since we have taken the ordering �62�, Az̄i(l,�n1,n2�),(l,�m1,m2�) and q1̇ (l,�n1,n2�),J=I�l� have the next
structures,

Az̄i„l,�n1,n2�…,„l,�m1,m2�… =�
0 0 ¯ 0 0

* 0 ¯ 0 0

� � � � �
* * ¯ 0 0

* * ¯ * 0
 , q1̇„l,�n1,n2�…,J=I�l� =�

0

�
0

*
 . �102�

So, �101� always holds. �

The above theorem means that the solutions of the dimensional reduction of the Seiberg-
Witten monopole equations with the constant background under the fixed point conditions of the
torus actions are equivalent to the solutions of the N.C. ADHM equations with the same fixed
point conditions.

The above discussions and theorems are valid for infinite N as well as finite N. In the
following, we consider only a finite N case to study more details. As we saw in Sec. III, the finite
N case itself has a physical picture. Furthermore, solutions and their natures of finite N models are
important, even if we consider the N.C. field theory, because such solutions are possible to be
embedded in infinite N solutions.

From now on, we suppose that �I does not degenerate,

FIG. 4. CI�l�.
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N�bI
�−��

�n1,n2�
� 1. �103�

The reason is as follows. �We tried to prove the nondegeneracy of �I’s by using a graphical
consideration similar to one in the proof of Theorem 3. Although for several simple cases we
succeeded in proving that the nondegeneracy is necessary for �42�–�44�, �50�, �51� to have a
solution, we do not have a complete proof for general cases yet.�

�i� The solution of �42�, �43� �44�, �50�, �51� is clearly included in solutions of �42�, �43�, �50�,
�51�. The nondegeneracy of the solutions of �42�, �43�, �50�, �51� is the very same one considered
in Ref. 49. See the argument at the end of Sec. II and the above discussions. In this case, the
nondegeneracy is certified.

�ii� It is clear that the degenerate solutions do not contribute to the path integral for the
partition function, because the factor �I�J��I−�J� in �113� becomes zero if there are degenerate
solutions of �I.

7

Let us give graphical interpretations of �96�, �97�, �98�.
• Az1 �l,�n1,n2���l,�n1+1,n2�� corresponds to a left arrow connecting �n1 ,n2� and �n1+1 ,n2� in CI�l�.

See Fig. 5. The number of nontrivial real components, #�Az1
�, is given by two times of the number

of left arrows.
• Az2 �l,�n1,n2���l,�n1,n2+1�� corresponds to a down arrow connecting �n1 ,n2� and �n1 ,n2+1� in

CI�l�. See Fig. 6. The number of nontrivial components, #�Az2
�, is given by two times the number

of the down arrows.
• q1̇ I=�l,�0,0��J=I�l� corresponds to the origin �0,0� in CI�l�. See Fig. 7. The number of nontrivial

components, #�q�, is given by 2.
The total number of undetermined real variables is #�Az1

�+ #�Az2
�+ #�q�.

Also graphical meanings of Eqs. �99�, �100�, and the residual gauge symmetry U�1�N are
given as follows.

• Each equation of �99� corresponds to ending points of the left arrow or down arrow or the
origin in CI�l�. In other words, each point CI�l� corresponds to each equation of �99�. See Fig. 8.
The number of nontrivial constraints, #�Eq. �49�� is given by the number of points.

• Each equation of �100� corresponds to a hook connecting �n1 ,n2� and �n1+1 ,n2+1�, which
includes an intermediating point �n1+1 ,n2� or �n1 ,n2+1�, in CI�l�. See Fig. 9. The number of
nontrivial constraints, #�Eq. �100��, is given by two times the number of hooks.

• Each U�1� factor of the residual gauge symmetry U�1�N corresponds to each point �n1 ,n2� in
CI�l�. See Fig. 10. The number of degrees of the residual gauge symmetry U�1�N, denoted by
#�U�1��, is given by the number of points.

The total number of real constraints is #�Eq. �99��+ #�Eq. �100��+ #�U�1��.
Now let us prove the next theorem.
Theorem 3: Let N be a finite natural number. If and only if CI�l� is a Young diagram, �42�,

�43�, �44�, �50�, �51� has a solution, and the solution is an isolated one.
�proof�

From Theorem 1-2, it is enough to show that if and only if CI�l� is a Young diagram, �99� and
�100� has only an isolated solution. Consider a graph CI�l� as a quadrangulation of a two dimen-
sional surface. Here we admit quadrangulations to include some segments that do not make faces,
like the graph in Fig. 11. �If one considers a dual graph, then one finds that the dual graph gives
a quadrangulation of a two dimensional surface in the usual meaning. The dual graph is obtained
from the original graph by replacing original points by dual faces and original segments connect-
ing original points by dual segments gluing dual faces.� We start with cases where two dimen-
sional surfaces have no hole. Recall the well-known formula for the Euler number  of graphs,

FIG. 5. Az1
.
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 = 2 − 2h − b = #�points� − #�segments� + #�faces� , �104�

where h denotes the number of handles of graphs, and b denotes the number of boundaries of
graphs.

In our case, h=0 and b=1. Then we obtain

 = 1 = #�points� − #�segments� + #�faces� . �105�

Notice that

#�points� = #�Eq . �99�� = #�U�1�� , �106�

and

#�segments� =

#�Az1
� + #�Az2

�

2
. �107�

Also, one sees that

#�faces� �
#�Eq . �100��

2
, �108�

and that, in �108�, the equation holds when the graph CI�l� is a Young diagram. See Fig. 12. Then
we obtain

�#�Az1
� + #�Az2

� + #�q�� − �#�Eq . �99�� + #�Eq . �100�� + #�U�1���

=2#�segments� + 2 − 2#�points� − #�Eq . �100��

�− 2�#�points� − #�segments� + #�faces�� + 2

FIG. 6. Az2
.

FIG. 7. q1̇.
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=− 2 + 2

=0. �109�

From this, we find that if and only if CI�l� is a Young diagram, we can have a solution to �99�,
�100�, and that the solution is an isolated one.

Now let us turn to a case, where CI�l� has some holes. A diagram with holes is constructed
from one without holes by adding pieces of diagrams. For example, see Fig. 13. In Fig. 13, some
white dots are added to make a hole. Under this operation, the number of undetermined variables
increases by

�#�undetermined variables� = �#�Az1
� + �#�Az2

� = 2 � 4 + 2 � 2 = 12. �110�

On the other hand, the number of constraints increases by

�#�constraints� = �#�Eq . �99�� + �#�Eq . �100�� + �#�U�1�� = 5 + 2 � 2 + 5 = 14.

�111�

As implied by the above example, one can show that “puncture” operations make the number of
constraints greater than that of undetermined variables in general. We conclude that if CI�l� has
some holes, then �99�, �100� have no solution.

We have finished the proof for Theorem 3. �

As mentioned at the begining of this section, we have shown that �42�, �43�, �44�, �50�, �51�
have only isolated solutions, and the solutions are expressed by the Young diagrams.

At the end of this section, we comment on the case that the q are not square matrices. Let us
compare the above cases with the case of C�n� and the ADHM data for a usual U�N� instanton. We
have investigated the case that q�̇ and q�̇

† are N�N square matrices. It is clear that the above
theorem is valid, even if q�̇ and q�̇

† are N�k and k�N for arbitrary k�Z, respectively. In this
case, our equations �42� and �43� are ADHM equations corresponding to the U�N� instanton of the
k instanton number with the Dirac equation reduced to 0 dimension. The Dirac equation �44�
makes no nontrivial equations when we introduce �. Then, our models are completely equivalent
to the case of ADHM equations with fixed point equations of torus action, that is discussed in
Nakajima’s lecture note49 and others.7,13,15 The proof for the correspondence with ADHM data and
the Young diagrams is given by Ref. 49. In this light, our proof in this section is a new version for
the Nakajima’s theorem. We solved the fixed point equation of the torus action directly. By virtue
of the concrete solution, the correspondence between fields components, ADHM equations, and
Young diagrams are clarified.

FIG. 8. Equation �99�.

FIG. 9. Equation �100�.
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VI. LOCALIZATION THEOREM

Although, in this paper, we do not perform the summation of the solutions nor obtain the
partition function of our model, we make a comment on the localization theorem,39,44 which is a
powerful tool for the calculation of a path integral of cohomological field theories, in order to
explain our motivation. To carry out the calculation of an infinite N case, that is the N.C. R4 case,
is difficult. Therefore we consider the toy model that is given by the same type Lagrangian of Sec.
II but its entire fields are finite N�N matrices.

For our purpose, one of the most suitable expression of the localization theorem is one given
in Refs. 9 and 16. This is expressed as follows.

Let 
̃ be the deformed BRS transformation defined in Sec. IV. As explained in Sec. II, the
action S is given by a BRS exact function. Now we redefine the action as

S = 
̃���,B,F� . �112�

The difference between 
̂� and 
̃� causes no effect to the path integral, because the integral of
equivariant cohomology is equal to that of original cohomology. Here we have used the notation
B ,F to denote the BRS doublet fields collectively. Then the localization theorem tells us that

Z =� D�

U�N�
DB DF e−
̃� =� �

I=1

N

d�I

�I�J
��I − �J�

S det1/2 L
. �113�

�I are the eigenvalues of �, and the superdeterminant S det L is defined by

FIG. 10. U�1� gauge symmetry.

FIG. 11. A quadrangulation may include some segments that do not make faces.
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S det L = S det�
��Q�B

�F
��Q�B

�B
��Q�F

�F
��Q�F

�B
 , �114�

where �Q�B and �Q�F are defined by the representation of the deformed BRS transformation 
̃ on
the fields B ,F,

FIG. 12. Young diagram and variant diagram.

FIG. 13. Graph without a hole and graph with a hole.
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Q = �Q�B
�

�B
+ �Q�F

�

�F
. �115�

Note that this expression is an analog of

d̃ = d + iX, �116�

where X is a vector defining the Lie derivative LX associated with G � TN+2 action. See �39�, �40�,
�41�. In our case, we obtain

Z =� �
I=1

N

d�I�
I�J

��I − �J��
I=1

N
��1 + �2��− ��I − bI�2 + �−

2�
�1�2�− ��I − bI�2 + �+

2�

��
I�J

���I − �J�2 − 4�+
2�

1
2�− ��I − bJ�2 + �−

2�

�− ��I − bJ�2 + �+
2����I − �J�2 − �1

2�
1
2���I − �J�2 − �2

2�1/2

where �−= ��1−�2� /2.
Some comments might be necessary. This formula is derived by using a some version of

localization theorem, which reduces the integral �DB DF, and this is valid only if the BPS
equations of the action �42�, �43�, �44� and the fixed point equations of the deformed BRS
symmetry �50�, �51� have isolated solutions for a given value of �I’s. The integral ��I d�I is
remained, and this should be understood as the contour integral. In order to define an appropriate
contour, we use �i→�i+ i0 prescription. The poles correspond to the isolated solutions.39,42

VII. CONCLUSION

The solutions of the Seiberg-Witten monopole equations reduced to 0 dimension that also
satisfy the fixed point equations of torus actions were classified, where the torus action is induced
from the global symmetries. More concretely speaking, we deformed the BRS transformation of
the topological twisted N=2 gauge theory on R4 with a hypermultiplet to the T-equivariant
derivative by using the global symmetries. The global symmetries contain torus actions. Using
these symmetries, the deformed BRS transformation was defined to satisfy the nilpotency up to the
Lie derivative of the group actions. Then we classified the solutions of the fixed point equations of
these deformed BRS transformations.

We showed that the Seiberg-Witten monopole equations are reduced to the ADHM equations
with the Dirac equation reduced to 0 dimension at the large N.C. parameter limit. These equations
are described by using infinite dimensional matrices. We showed that the Dirac equation reduced
to 0 dimension is trivial when the ADHM equations and the fixed point equations are satisfied. It
is known that the solutions of the ADHM equations with the fixed point equations are isolated
ones, and are classified by the Young diagrams, when the matrix size is finite. We gave a new
proof of this statement, too. Then, we found that we can perform the path integral by using the
localization formula, in order to get the partition functions of the finite dimensional matrix model.
This finite dimensional matrix model is given as reduced theory to 0 dimension from the topo-
logical twisted N=2 non-Abelian gauge theory on R4 with a hypermultiplet, because the size of
matrix is truncated to finite dimension from infinite dimension. We gave the result of the partition
function of this toy model. The complete calculation of the partition function for the N=2 U�1�
gauge theory on N.C. R4 remained. This calculation might reveal the relation between the Seiberg-
Witten monopole and the instanton. We hope to report on this task elsewhere.
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APPENDIX: CONVENTION

1. Complex coordinate

We define the complex coordinate zi , z̄i�i=1,2� as

z1 =
1
�2

�x1 + ix2�, z̄1 =
1
�2

�x1 − ix2� ,

z2 =
1
�2

�x3 + ix4�, z̄2 =
1
�2

�x3 − ix4� . �A1�

Also, �zi ,�z̄i are given by

�z1 =
1
�2

��1 − i�2�, �z̄1 =
1
�2

��1 + i�2� ,

�z2 =
1
�2

��3 − i�4�, �z̄2 =
1
�2

��3 + i�4� . �A2�

Then, we obtain

�zizj = 
i
j, �z̄iz̄ j = 
i

j . �A3�

2. Spinor index

���, ��̇�̇ and ���, ��̇�̇ are defined by

��� = ��̇�̇ = � 0 + 1

− 1 0
�, ��� = ��̇�̇ = � 0 − 1

+ 1 0
� . �A4�

In other words, ���, ��̇�̇ are defined to be the inverses of ���, ��̇�̇,

������ = 
�
���̇�̇, ��̇�̇ = 
�̇

�̇. �A5�

Then a spinor with upper indices and a spinor with lower indices are related as

�� = �����, �� = �����,

��̇ = ��̇�̇��̇, ��̇ = ��̇�̇��̇. �A6�

We use the following definition for the four dimensional Pauli matrix ����=1,2 ,3 ,4�,

������̇ = ��1,�2,�3,�4� = �i1,− ��� ,

��̄���̇� = ��̄1,�̄2,�̄3,�̄4� = �i1, + ��� , �A7�

where

�� = �� 0 + 1

+ 1 0
�,� 0 − i

+ i 0
�,�+ 1 0

0 − 1
�� . �A8�

We define ���, �̄�� as
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������
� =

i

4
����̄� − ���̄���

�,

��̄���
�̇

�̇ =
i

4
��̄��� − �̄����

�̇
�̇. �A9�

From this definition, ��� and �̄�� satisfy the anti self-dual relation and the self-dual relation,
respectively,

��� = − * ���, �̄�� = + * �̄��. �A10�

3. † symbol

For a scalar matrix M and a vector matrix M�, the symbol † denotes the usual hermite
conjugation for them,

M† = M*T, M�
† = M�

*T, �A11�

where the symbol * denotes the complex conjugation and the symbol T denotes the transposition.
On the other hand, for an undotted spinor matrix M� and a dotted spinor matrix M�̇, M�

†, and M�̇
†

are defined by,

M�
† = ���M�

*T, M�̇
† = ��̇�̇M

�̇
*T. �A12�

This definition makes M�
† and M�̇

† transform in the same rules as M� and M�̇ under SU�2�L and
SU�2�R�R��, respectively.
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We show that Petrov type I vacuum solutions admitting a Killing vector whose
Papapetrou field is aligned with a principal bivector of the Weyl tensor are the
Kasner and Taub metrics, their counterpart with timelike orbits and their associated
windmill-like solutions, as well as the Petrov homogeneous vacuum solution. We
recover all these metrics by using an integration method based on an invariant
classification which allows us to characterize every solution. In this way we obtain
an intrinsic and explicit algorithm to identify them. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2363258�

I. INTRODUCTION

If � is a Killing vector, the Killing 2-form �� is closed and, in the vacuum case, it is a solution
of the source-free Maxwell equations. Because this fact was pointed out by Papapetrou,1 the
covariant derivative �� has also been called the Papapetrou field.2 In the Kerr geometry the
principal directions of the Killing 2-form associated with the timelike Killing vector coincide with
the two double principal null �Debever� directions of the Weyl tensor.2 This means that the Killing
2-form is a Weyl principal bivector. This fact has been remarked upon by Mars3 who has also
shown that it characterizes the Kerr solution under an asymptotic flatness behavior.

A question naturally arises: can all the vacuum solutions with this property of the Kerr metric
be determined? In other words, is it possible to integrate Einstein vacuum equations under the
hypothesis that the spacetime admits an isometry whose Killing 2-form is a principal bivector of
the Weyl tensor? Some partial results are known about this question. Thus, we have studied the
case of Petrov type D spacetimes elsewhere4 and we have shown that the Kerr-NUT solutions are
the type D vacuum metrics with a timelike Killing 2-form aligned with the Weyl geometry.

Metrics admitting an isometry were studied by considering the algebraic properties of the
associated Killing 2-form,5,6 and this approach was extended to the spacetimes with an homothetic
motion.7,8 More recently Fayos and Sopuerta2,9 have developed a formalism that improves the use
of the Killing 2-form and its underlined algebraic structure for analyzing the vacuum solutions
with an isometry. They consider two new viewpoints that permit a more accurate classification of
these spacetimes: �i� the differential properties of the principal directions of the Killing 2-form,
and �ii� the degree of alignment of the principal directions of the Killing 2-form with those of the
Weyl tensor. The Fayos and Sopuerta approach uses the Newman–Penrose formalism and several
extensions have been built for homothetic and conformal motions10,11 and for nonvacuum
solutions.12
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Some of the conditions on the Killing 2-form imposed in the literature quoted above could be
very restrictive. Thus, in a previous paper13 we have shown that the Petrov type I vacuum space-
times admitting an isometry whose Killing 2-form is aligned with a Weyl principal bivector belong
to two classes of metrics which admit a three-dimensional group of isometries of Bianchi types I
or II. In the present work we show that a close relation between the Weyl principal directions and
the isometry group exists in these classes. This fact allows us to achieve an integration of the
vacuum equations with the aid of an invariant classification and, in this way, to obtain an intrinsic
and explicit characterization of all the Petrov type I vacuum solutions that admit an aligned
Papapetrou field. It is worth remarking that the integration method used here could be suitable in
order to obtain other type I solutions.

The vacuum homogeneous Petrov solution14 was found to be the only one satisfying: �i�
vacuum, and �ii� existence of a simply transitive group G4 of isometries. Although these two
conditions characterize the Petrov metric, it is quite difficult to know when a metric tensor �given
in an arbitrary coordinate system� satisfies them. Indeed, the first condition is intrinsic because it
imposes a restriction on a metric concomitant, the Ricci tensor. Nevertheless, the second one
imposes equations that mix up, in principle, elements other than the metric tensor �Killing vectors
of the isometry group� and, consequently, it cannot be verified by simply substituting the metric
tensor. In Ref. 13 we have changed this last nonintrinsic condition for an intrinsic one: the Weyl
tensor is Petrov type I with constant eigenvalues. Moreover, as the Ricci and Weyl tensors are
concomitants of the metric tensor, Ric�Ric�g�, W�W�g�, we have finally obtained the following
intrinsic and explicit characterization of the Petrov solution:13 the necessary and sufficient condi-
tions for g to be the Petrov homogeneous vacuum solution are

Ric = 0, 6�TrW 2�3 � �TrW 3�2, dTrW 2 = dTrW 3 = 0. �1�

A whole intrinsic and explicit characterization of a metric or a family of metrics is quite
interesting from a conceptual point of view and from a practical one because it can be tested by
direct substitution of the metric tensor in arbitrary coordinates. Thus, it is an approach to the
metric equivalence problem alternative to the usual one. This and other advantages have been
pointed out elsewhere15 where this kind of identification has been obtained for the Schwarszchild
spacetime as well as for all the other type D static vacuum solutions. A similar study has been
fulfilled for a family of Einstein–Maxwell solutions that include the Reissner–Nordström metric.16

In order to obtain intrinsic and explicit characterizations, as well as having an intrinsic label-
ling of the metrics, we need to express these intrinsic conditions in terms of explicit concomitants
of the metric tensor. When doing this, the role played by the results on the covariant determination
of the eigenvalues and eigenspaces of the Ricci tensor17 and the principal 2-forms and principal
directions of the Weyl tensor18,19 is essential.

In this work we solve vacuum equations under the hypothesis that the spacetime is Petrov type
I and there is a Killing vector whose associated Papapetrou field is a eigenbivector of the Weyl
tensor. In this way, we recover the Petrov homogeneous vacuum solutions as well as the Kasner
and Taub metrics, their counterpart with timelike orbits and their associated windmill-like solu-
tions. Our integration method is based on an invariant classification which allows us to character-
ize the solutions intrinsically and explicitly. For every solution some properties of the isometry
group and the aligned Killing 2-forms are given in terms of the Weyl principal directions.

The article is organized as follows. In Sec. II we present the Cartan formalism adapted to the
Weyl principal frame that a Petrov type I spacetime admits. In Sec. III we summarize some results
needed here about type I vacuum metrics admitting aligned Papapetrou fields. In Sec. IV we write
vacuum Einstein equations for the families of Petrov type I metrics that, having a nonconstant
Weyl eigenvalue, admit aligned Papapetrou fields. Sections V and VI are devoted to integrate
these equations in different invariant subcases, as well as to determine, for every solution, the
Killing vectors with an aligned Killing 2-form. In Sec. VII we present a similar study when all the
Weyl eigenvalues are constant. Finally, in Sec. VIII, we summarize the results in an algorithmic
form in order to make the intrinsic and explicit character of our results evident.
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II. CARTAN FORMALISM IN THE WEYL FRAME OF A TYPE I SPACETIME

The algebraic classification of the Weyl tensor was first tackled by Petrov20 considering the
number of the invariant subespaces of the Weyl tensor regarded as an endomorphism of the
2-forms space. This classification was completed by Géhéniau21 and Bel22 considering also the
eigenvalue multiplicity. In this framework appears the notion of Weyl principal bivector that we
use here and which was widely analyzed by Bel23 for the different algebraic types. In the 1960s
many other authors presented alternative approaches to this classification, and in more recent
studies19,24 a wide bibliography on this subject can be found. For short, we refer the different
classes of the Weyl tensor as the Petrov types. An algebraically general Weyl tensor is Petrov type
I.

In a Petrov type I spacetime the Weyl tensor W determines four orthogonal principal direc-
tions which define the Weyl principal frame �e��.19,23 Then, the bivectors �self-dual 2-forms� Ui

= 1��2 �Ui− i*Ui�, with Ui=e0∧ei, are eigenbivectors of the self-dual Weyl tensor W= 1 � 2 �W
− i*W�, * being the Hodge dual operator. These bivectors satisfy 2Ui�Ui=g, where � denotes the
contraction of adjacent index in the tensorial product. The tern �Ui� constitutes an orthonormal
frame in the bivector space which has the induced orientation given by

Ui � U j = −
i

�2
�ijkUk, i � j . �2�

If �i is the eigenvalue associated with the eigenbivector Ui, the self-dual Weyl tensor takes the
canonical form

W = − 	
i=1

3

�iUi � Ui. �3�

The Cartan formalism can be referred to the Weyl principal frame �e�� or, equivalently, to the
frame of eigenbivectors �Ui�. So, the six connection 1-forms ��

� defined by �e�=��
�

� e� can be
collected into three complex ones �i

j ��i
j =−� j

i�, and the first structure equations take the expres-
sion

�Ui = �i
j

� U j, �i
j = �i

j − �ijk�0
k . �4�

The second structure equations for a vacuum type I spacetime follow by applying the Ricci
identities ��������Ui�	=Ui�


R
	��+Ui



	 R
���, and in terms of the eigenbivectors �Ui� they can be
written as

d�i
k − �i

j ∧ � j
k = i�2�ikm�mUm. �5�

If we make the product of each of these second structure Eq. �5� with Um we can obtain the
following three complex scalar equations:

� · �i = �i
2 − �� j − �k�2 − �i �i, j,k � � , �6�

where �i=−Ui�� ·Ui�, and we have denoted � · �Tr� and �i
2=g��i ,�i�. The three complex

1-forms �i contain the 24 independent connection coefficients as the �i
j do. In fact, by using Eq.

�2� and the first structure Eqs. �4�, both sets ��i
j� and ��i� can be related by

�i � − Ui�� · Ui� = −
i

�2
�ijkUk��i

j� . �7�

And the inverse of these expressions say that for different i , j ,k,
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Uk��i
j� =

i
�2

�ijk��i + � j − �k�, �i, j,k � � . �8�

The Bianchi identities in the vacuum case state that the Weyl tensor is divergence-free � ·W=0,
and from Eq. �3� they can be written as

d�i = �� j − �k��� j − �k� − 3�i�i �i, j,k � � . �9�

Equations �9� show the relation that exists between the gradient of the Weyl eigenvalues and
the 1-forms �i in the vacuum case. This fact has suggested a classification of Petrov type I
spacetimes taking into account the dimension of the space that ��i� generate. More precisely,13

Definition 1: We say that a Petrov type I spacetime is of class Ia �a=1,2 ,3� if the dimension
of the space that ��i� generate is a.

Differential conditions of this kind were imposed by Edgar25 on the type I spacetimes, and he
showed that in the vacuum case his classification also has consequences on the functional depen-
dence of the Weyl eigenvalues. We have slightly modified the Edgar approach in order to obtain a
classification that is symmetric in the principal structures of the Weyl tensor. We remark the
invariant nature of this classification: it is based on the vector Weyl invariants �i.

We have been studied elsewhere the symmetries of the vacuum metrics of class I1 and we
have shown:13

Lemma 1: A vacuum metric of class I1 admits at least a �simply transitive� group G3 of
isometries. It admits a G4 if, and only if, it has constant eigenvalues.

III. ALIGNED KILLING 2-FORMS AND TYPE I VACUUM METRICS

If � is a �real� Killing vector its covariant derivative �� is named Killing 2-form or Papapetrou
field.1,2 The Papapetrou fields have been used to study and classify spacetimes admitting an
isometry or an homothetic or conformal motion �see Refs. 2–12�. In this way, some classes of
vacuum solutions with a principal direction of the Papapetrou field aligned with a �Debever� null
principal direction of the Weyl tensor have been considered.9 Also, the alignment between the
Weyl principal plane and the Papapetrou field associated with the timelike Killing vector has been
shown in the Kerr geometry.3,9

Is it possible to determine all the vacuum solutions having this property of the Kerr metric?
Elsewhere4 we give an affirmative answer to this question for the case of Petrov type D spacetimes
by showing that the type D vacuum solutions with a timelike Killing 2-form aligned with the Weyl
geometry are the Kerr-NUT metrics. In this work we accomplish this study for the Petrov type I
spacetimes by obtaining all the vacuum solutions with this property and by determining the Killing
vectors with an aligned Killing 2-form. Moreover, we show the close relation between the Weyl
tensor geometry and the geometries of � and ��.

In order to clarify what kind of alignment between the Killing 2-form and the Weyl tensor is
analyzed in this work we give the specific definition. If �Ui� is an orthonormal basis of the
self-dual 2-forms space, the Papapetrou field �� associated to a Killing vector � has, generically,
three independent complex components �i:

�� = 	
i=1

3

�i Ui + 	
i=1

3

�̃i Ũi �10�

where ~ means complex conjugate. Then:
Definition 2: We say that a Papapetrou field �� is aligned with a bivector U if both 2-forms

have the same principal 2-planes, that is, ��=�U+�̃Ũ.
We say that a Papapetrou field �� is aligned �with the Weyl tensor� if it is aligned with a Weyl

principal bivector.
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When a Killing 2-form is aligned with a bivector of an orthonormal frame of invariants
bivectors Ui, the Killing vector is strongly restricted by the connection 1-forms. Thus, for type I
metrics we have:13

Lemma 2: In a Petrov type I spacetime with a Killing vector �, the Papapetrou field �� is
aligned with a Weyl principal 2-form Ui if, and only if, � is orthogonal to the two complex
connection 1-forms �i

j (defined by the Weyl principal frame �Ui�).
The alignment between a Killing 2-form and a Weyl principal bivector of a type I vacuum

solution has been partially analyzed13 and the following necessary condition has been obtained:
Lemma 3: A vacuum Petrov type I spacetime which admits a Killing field with an aligned

Papapetrou field belongs to class I1.
As a consequence of Lemmas 1 and 3, we obtain that a vacuum Petrov type I spacetime which

admits a Killing field with an aligned Papapetrou field admits, at least, a three-dimensional group
of isometries. This means that a unique symmetry with an aligned Papapetrou field implies that
other symmetries exist.

These results imply that in order to find all the type I vacuum solutions admitting an aligned
Papapetrou field, we must analyze the vacuum solutions of class I1. We shall start with the case
where a non constant eigenvalue �1 exists. After that we shall finish by dealing with the case of all
the eigenvalues being constant.

IV. VACUUM EQUATIONS FOR THE CLASS I1

As we know that every vacuum solution of class I1 admits a �simply transitive� G3 group of
isometries, a real function  exists such that �i��i��. Moreover, as we are in class I1, it must be
�i∧� j =0 and so, from Bianchi identities �9�, we obtain �i∧d�1=0. So, taking into account Eq. �7�
and that a G3 is admitted, three functions �i�� exist such that

�i
j = i�ijk�kUk�d� . �11�

On the other hand, it has also been shown in Ref. 13 that d�1 cannot be a null vector and so,
�d�2�0. Thus, �d ,ui�, with ui=Ui�d�, is an orthogonal frame such that 2�ui�2=−�d�2. Then, we
can write the bivectors �Ui� as

Ui = −
1

�d�2
d ∧ ui +
i

�2
�ijku

j ∧ uk� . �12�

We can use this expression to eliminate Ui in the second structure Eqs. �4� and then they become
an exterior system for the orthonormal frame �d ,ui�,

dui = 
i��d ∧ ui + �i��uj ∧ uk �13�

for every cyclic permutation i , j ,k, and where the functions 
i and �i are given by


i = − �ln �i�� +
�2�i

�i�d�2 , �i = − i
 2�i

�i�d�2 +
� j�k

�i
� , �14�

where � stands for the derivative with respect to the variable . But d is proportional to the
invariant 1-form d�1 and a G3 exists. Thus, it follows that �d�2 and � depend on . This fact
allows us to choose  such that �=0. Then,  is fixed up to an affine transformation ��
+�. In terms of this harmonic function, the Eqs. �6� become

��� j + �k�� − �2� j�k��d�2 = 2�2�i �15�

for every cyclic permutation of i , j ,k. The Bianchi identities �9� can be stated as

�1� =
1
�2

��3��2 − �1� − �2�2�1 + �2��, �2� =
1
�2

��3��1 − �2� − �1��1 + 2�2�� . �16�
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At this point, it is clear that the integration of the system �13� depends strongly on the number
of the ui=Ui�d� that are integrable 1-forms. Thus, it seems suitable to give a classification of type
I1 spacetimes that takes into account these restrictions. But these conditions lead to an invariant
classification because of ui is proportional to Ui�d�1�:

Definition 3: We will say that a Petrov type I1 vacuum metric with d�1�0 is of class I1A

�A=0,1 ,2 ,3� if there are exactly A integrable 1-forms in the set �Ui�d�1��.
We have studied elsewhere13 the symmetries that the different classes I1A admit, as well as

necessary conditions for the alignment of the associated Killing 2-forms with the Weyl tensor.
Here we will make use of the following result:

Lemma 4: If a vacuum Petrov type I spacetime admits a Killing field with an aligned Papa-
petrou field then either it is the Petrov solution �that has constant eigenvalues� or it is of class I12

or I13. These classes admit an isometry group G3 of Bianchi types II and I, respectively.
Thus, in order to find the vacuum solutions with aligned Papapetrou fields, we must consider

the Petrov solution that admits a G4 or the classes I12 and I13. Now we obtain the vacuum solutions
for these two classes with non constant eigenvalues. To accomplish this goal, we will integrate the
Bianchi identities �16� and the scalar Eqs. �15� taking into account that in class I13 all the functions
�i given in Eq. �14� are zero and two of them vanish in class I12. Finally, the second structure Eqs.
�13� will be integrated to obtain the 1-forms ui in terms of real coordinates. After that, the metric
tensor will be obtained as

g =
1

�d�2�d � d − 2	
i=1

3

ui
� ui �17�

It is worth pointing out that in the spacetimes of type I1 that we are studying here there exist
two outlined coframes, namely, the Weyl principal coframe ���� and that defined by �d ,ui�. We
will see in following sections the close relation between both coframes for the spacetimes in
classes I12 and I13. This fact allows us to give intrinsic conditions that label every type I vacuum
solution admitting an aligned Papapetrou field.

V. VACUUM SOLUTIONS OF CLASS I13

In class I13 all of the 1-forms ui are integrable. Then Eqs. �13� hold with �i=0. Taking into
account Eq. �14�, we can solve the Eqs. �15� and �16� to obtain

�1 = be2a�, �2 = k�1, �d�2 =
be2a�

a2k�k + 1�
, �18�

�3 = �2ka, �2 = − �2a�k + 1�, �1 = − �2k�k + 1�a , �19�

where a, b and �=1+k+k2 are nonzero constants and k is different from 1, −2, and −1 � 2 because
g is not of Petrov type D, and different from −1 and 0 because none of the Weyl eigenvalues
vanishes as a consequence of the Szekeres–Brans theorem.26,27 The second structure Eqs. �13�
constitute an exterior system for the 1-forms ui�Ui�d�. It implies that three complex functions
�xi� exist such that

u1 = eadx1, u2 = eak2dx2, u3 = ea�1 + k�2dx3. �20�

From here and Eq. �17�, we can obtain the metric tensor g in complex coordinates. In order to get
real coordinates, another fact is needed. As  is a real function, it follows that d, �d�2 and �d
must also be real. If we compute �d by using Eqs. �17�–�19� we obtain that, necessarily, either all
of the coefficients are real and d coincides with one of the principal directions ��, or two of the
coefficients are conjugate and d takes the direction of one of the bisectors � i±� j of a spacelike
principal plane. We shall analyze every case, but we must take into account that as d∧d�1=0,
these conditions can also be written in terms of the Weyl eigenvalue.
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A. d�1 Is a Principal Direction

In this case a and k are real constants. We must remark that if d is a principal direction, then
ui�Ui�d� are so. But when d coincides with the timelike principal direction �0, every ui is a real
direction and, if d is a spacelike principal direction, some of them are purely imaginary. Now we
will analyze each case in detail.

(i) Case d�1∧�0=0. We have d=e0���0. Then ui= �1/�2�e0��� i, and so dxi of Eq. �20� are
real. If we take into account that the harmonic coordinate  is defined up to affine transformation,
the metric tensor �17� in real coordinates takes the form of the Kasner metric

g = − e−2d2 + e2�1/�−1��dx1�2 + e2�k2/�−1��dx2�2 + e2���1 + k�2/��−1��dx3�2. �21�

The coordinate transformation e−= t changes the harmonic time to the proper time and gives us
the usual expression for this solution.24,28

We must check whether there is a Killing field with an aligned Papapetrou field. We have
established13 that this condition is equivalent to a Killing field to be orthogonal to two of the
complex connection 1-forms �i

j �see Lemma 2�. The real Killing fields of this metric are �
=k1�x1 +k2�x2 +k3�x3. As the connection 1-forms �i

j are collinear with ui it follows that every
Killing field �i satisfies this condition, and so, we have three Killing fields such that their Papa-
petrou fields are aligned with the three principal 2-forms.

(ii) Case d�1∧�1=0. Now, d=e1���1, and so �d�2�0. In order to get real coordinates we
must take into account that in this case �2u1=−e1���0, �2u2= ie1���3 and �2u3= ie1���2. And
so, the coordinates adapted to u2 and u3 are purely imaginary xa=iya �a=2,3�, ya being real
functions. Then, for the metric tensor g we get a similar expression to the one in the previous case,
the only change being the causal character of the gradient of the Weyl eigenvalue

g = e−2d2 − e2�1/�−1��dx1�2 + e2�k2/�−1��dy2�2 + e2���1 + k�2/��−1��dy3�2. �22�

This is the static Kasner metric.24

This solution admits three Killing fields �x1, �y2, and �y3 such that their Papapetrou fields are
aligned with the three principal bivectors of the Weyl tensor. This finishes the study of the cases
in which the gradient of the invariant �1�� is collinear with a principal direction of the Weyl
tensor. The following proposition summarizes the main results.

Proposition 1: The Kasner metrics �21� and �22� are the only Petrov type I13 vacuum solutions
where the gradient of the Weyl eigenvalue is a principal direction of the Weyl tensor.

The metrics of this family admit three Killing fields �i which are collinear with the three
principal directions Ui�d�1�, such that their Papapetrou fields ��i are aligned with the three
principal bivectors Ui of the Weyl tensor.

B. d�1 Is Not a Principal Direction

As we have commented below, in this case d must take the direction of one of the bisectors
of a spacelike principal plane, say �2+�3, d��2+�3. Then, u1��3−�2, u2��0+i�1 and u3��0

−i�1. Moreover, �d is real if, and only if, a is real and 2k=−1+in, n being a nonzero real
constant because the metric is not of type D and n2�3 because � cannot be zero. Then, the
coordinate x1 of Eq. �20� must be purely imaginary, x1= ix, and x2 and x3 must be conjugated
functions, that is x2=y− iz, x3=y+ iz. Thus we get a real coordinate system � ,x ,y ,z� and, from
Eq. �17�, we find the following expression of the metric tensor:

g =
1

4
�3 − n2�2e�1/2��3−n2�d2 + e−�1/2��1+n2�dx2 + e�cos�n��dz2 − dy2� − 2 sin�n�dydz� .

�23�

This is the so called windmill solution.24,29
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To see if an aligned Killing 2-form can exist in this spacetime, we must look for a Killing field
to be orthogonal to two of the connection 1-forms. The Killing fields of this solution are �
=k1�x+k2�y +k3�z and, as every connection 1-form is parallel to one of the directions ui, the only
Killing field which is orthogonal to a pair of connection 1-forms is �x, that can be characterized as
the Killing field that takes the direction of the bisector �2−�3. Moreover, the Weyl tensor has just
a real eigenvalue �1 and if U1 is the associated eigenbivector, then U1�d�1� is collinear with the
Killing field �x. We can collect these results in the following:

Proposition 2: The windmill solution �23� is the only Petrov type I13 vacuum solution where
the gradient of the Weyl eigenvalue �1 is not a principal direction of the Weyl tensor.

In such spacetime a unique real eigenvalue �1 exists. Then, if U1 is the associated eigenbivec-
tor, the field U1�d�1� is collinear with a Killing field that has a Papapetrou field aligned with U1.

VI. VACUUM SOLUTIONS OF CLASS I12

Let us suppose now that only two directions, let us say u2 and u3, are integrable. So, we can
take �2=�3=0 in the second structure Eqs. �13�. Taking into account the definition of �i from Eq.
�14� we obtain

�3 =
k
�2

− �1, �2 =
a2

�2k
− �1, �1 =

a
�2

be−a + 1

be−a − 1
, �24�

where a, b, and k are complex constants, a2�k2. Then, by also using the Bianchi identities �16�
we obtain

�d�2 =
− 2�2c

a
e−��a2+ak+k2�/k��b2e−2a − 1�−1, �25�

where c is another complex constant.
As in the previous section, the only possibilities for �d to be real are that either d is a

principal direction �� or it is the bisector � i+� j of a spacelike principal plane.

A. d�1 Is a Principal Direction

In this case we have that k, a2 and �3� /�3−�2�3 are real. From Eq. �24� we obtain

�3�

�3
− �2�3 = − a

b2 + e2�2

b2 − e2�2
. �26�

So we can conclude that a and b2 must be real constants. Now we shall go on the integration of
Eq. �13�. As in the previous section it will be useful to distinguish the cases of d to be the
timelike principal direction �0 or a spacelike principal direction � i. We will study these cases
separately.

(i) Case d�1∧�0=0. Here we have d=e0���0, and so ui must be real for every i. Conse-
quently, if we take into account Eq. �13� with �2=�3=0, real coordinates �x ,y ,z� can be found
such that

u2 =
e−�k/2�

�2
dx, u3 =

e−�a2/2k�

�2
dy, u1 = −

i�2abe−a

b2e−2a − 1
e−��a2+k2�/2k��dz + xdy� . �27�

As u1 is real, we find that b is purely imaginary, b=−i�. Then, from Eq. �25� we can calculate
�d�2, and taking into account the freedom of an affine transformation in choosing the harmonic
coordinate , we can take �=1 and we can write the metric in the usual form of the Taub30 metric

g =
cosh�a�

a
�− e��a2+k2�/k�d2 + e�a2/k�dx2 + ekdy2� +

a

cosh�a�
�dz + xdy�2. �28�
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To see if a Killing field with an aligned Papapetrou field exists, we must look for a Killing
field which is orthogonal to two of the connection 1-forms. The Killing fields of the Taub metric
�28� are �=k1�x+k2�y + �k3−k1y��z and, taking into account that the connection 1-forms �i

j are
collinear with uk, from Eq. �27� we find that the only Killing field that is orthogonal to a pair of
connection 1-forms is �=�z, and it is orthogonal to �1

2 and �1
3. So, the principal 2-form aligned

with a Papapetrou field is U1, and it is characterized by the fact that U1�d� is not integrable.
(ii) Case d�1∧�1=0. Now, d=e1���1 and we have �2 u1=−e1���0, �2u2= ie1���3 and

�2 u3= ie1���2. So, we can consider real coordinates �x ,y ,z� such that

u2 =
ie−�k/2�

�2
dx, u3 =

ie−�a2/2k�

�2
dy, u1 =

− �2�ae−a

�2e−2a + 1
e−��a2+k2�/2k��dz − xdy� . �29�

Then, the same analysis of the previous case leads to the counterpart with timelike orbits of the
Taub metric24

g =
cosh�a�

a
�e��a2+k2�/k�d2 + e�a2/k�dx2 + ekdy2� −

a

cosh�a�
�dz − xdy�2. �30�

The same property of the Taub metric concerned with the aligned Papapetrou fields holds in
this case. We can summarize these results for the case that d�1 is collinear with a principal
direction in the following:

Proposition 3: The Taub metric �28� that has spacelike orbits, and its counterpart with timelike
orbits �30� are the only type I12 vacuum solutions where the gradient of the Weyl eigenvalue �1 is
collinear with a principal direction of the Weyl tensor.

Both metrics admit a principal 2-form Ui such that Ui�d�1� is not integrable. Then, the Killing
field collinear with Ui�d�1� is the only one whose Papapetrou field is aligned �with the principal
2-form Ui�.

B. d�1 Is Not a Principal Direction

In this case d must take the direction of one of the bisectors of a spacelike principal plane,
say �2+�3, d��2+�3. Then, a similar analysis to the one in the previous cases, leads to the metric

g = e2m� cosh�a�
a

d2 +
a

cosh�a�
e−2m�dz − udv�2 +

cosh�a�
a

e−m�cos�n��dv2 − du2�

− 2 sin�n�dudv� , �31�

where a2=m2+n2, n�0. This is an equivalent windmill-like metric for the Taub solution.
The real Killing fields of this metric in the previous coordinate system are �=k1�u+k2�v

+ �k1v+k3��z. As the complex connection 1-forms �i
j are collinear with uk�Uk�d�, we conclude

that there is only one Killing field �z which is orthogonal to two connection 1-forms, more
precisely, to �1

2 and �1
3. So, this Killing field has a Papapetrou field which is aligned with the

principal bivector U1. We summarize these results in the following:
Proposition 4: The metric �31� is the only vacuum solution of class I12 where the gradient of

the Weyl eigenvalue �1 is not a Weyl principal direction.
This solution admits a principal 2-form Ui such that Ui�d�1� is not integrable. Then, the

Killing field collinear with Ui�d�1� is the only one whose Papapetrou field is aligned �with the
principal 2-form Ui�.

VII. TYPE I VACUUM SOLUTIONS WITH CONSTANT EIGENVALUES

Elsewhere13 we have shown that the only Petrov type I vacuum solution with constant eigen-
values is the homogeneous Petrov solution.14,24 In real coordinates this metric writes as
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k2g = dx2 + e−2xdy2 + ex�cos�3x�dz2 − dt2� − 2 sin�3xdzdt� . �32�

The eigenvalues of this metric are proportional to the three cubic roots of −1, �i=k2�3 −1. So, a real
eigenvalue, let us say �3, exists. From the metric expression �32� we get that �1

3∧U1��1
2�=0 and

�2
3∧U2��1

2�=0. Moreover, a straightforward calculation shows that dx takes the direction of one of
the bisectors of the plane *U3, dx=e1�x���1+�2�, and that the complex connection 1-forms �i

j are
given by

�1
2 = e−xdy, U3��1

2� = −
i

�2
dx ,

U1��1
2� =

1

2
e�1/2��1+i�3�x�dt − idz�, U2��1

2� =
1

2
e�1/2��1−i�3�x�dt + idz� .

The Killing fields of this solution are ��t ,�z ,�y ,�x+y�y + 1 � 2 ��3t−z��z− 1 � 2 �t+�3z��t� and so, it
easily follows:

Proposition 5: The Petrov homogeneous vacuum solution �32� admits just a Killing field such
that its Papapetrou field is aligned with a principal bivector. If �3 is the real eigenvalue, this
Killing field is proportional to �1

2 and its Papapetrou field is aligned with U3.

VIII. SUMMARY IN ALGORITHMIC FORM

In this article we have found all the Petrov type I vacuum solutions admitting a Killing field
whose Papapetrou field is aligned with a principal bivector of the Weyl tensor. We knew13 that
these solutions admit either a simply transitive group G4 of isometries and then the metric must be
the homogeneous Petrov solution �32�, or a simply transitive G3 group of isometries and then the
spacetime belongs to one of the classes I13 and I12 in definition 3. Here we have shown that these
necessary conditions given in Ref. 13 are also sufficient conditions.

The solutions can be characterized by a condition on the normal direction to the orbits group:
for class I13, �i� if it is a timelike principal direction we reach the Kasner metric �21�, �ii� if it is a
spacelike principal direction we reach the static Kasner metric �22�, and �iii� if it is not a principal
direction we obtain the windmill Kasner metric �23�; for class I12, under similar conditions, we
obtain �i� the Taub metric �28�, �ii� the timelike counterpart of the Taub metric �30�, and �iii� the
windmill-like metric for the Taub solution �31�.

It is worth pointing out that the integration procedure is based on intrinsic conditions imposed
on algebraic and differential concomitants of the Weyl tensor. On the other hand, these Weyl
invariants can be obtained directly from the components of the metric tensor g in arbitrary local
coordinates and without solving any equations.18,19 Consequently, we get an intrinsic and explicit
labeling of every solution �similar to that given for the Petrov metric in Ref. 13�. Table I summa-
rizes these results and enables us to obtain the directions of the Killing fields having aligned
Papapetrou field. In the table we find the Weyl tensor invariants

�i � �i�g�, �� � ���g�, Ui � Ui�g� , �33�

�i � �i�g� = − Ui�� · Ui� , �34�

N � N�g�, number of integrable directions in the set �U j�d�i�� . �35�

The metric concomitants �33� are, respectively, the Weyl eigenvalues �i�g�, the Weyl principal
coframe ���g� and the unitary Weyl principal bivectors Ui�g�. The explicit expressions of these
Weyl invariants in terms of the Weyl tensor can be found elsewhere.18,19
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Finally, to underline the intrinsic nature of our results we present a flow diagram that charac-
terizes, among all the type I vacuum solutions, those having an aligned Papapetrou field. This
operational algorithm can be useful from a computational point of view and also involves the Weyl
invariants �33�–�35�.

TABLE I. Type I vacuum solutions with aligned Papapetrou fields.

SOLUTION
Intrinsic characterization

�i∧� j =0, Ric=0
Killing vectors with

aligned Papapetrou field

Kasner �21� d�1�0, N=3
d�1∧�0=0 �i�Ui�d�1� , i=1,2 ,3

Kasner �22� d�1�0, N=3
d�1∧� j =0 for some j

��i aligned with Ui

Windmill �23� d�1�0, N=3
d�1∧���0 ∀�

∃ ! �i0
real, ��Ui0

�d�1�
�� aligned with Ui0

Taub �28� d�1�0, N=2
d�1∧�0=0

Taub �30� d�1�0, N=2
d�1∧� j =0 for some j

∃ ! i0 /Ui0
�d�1� is not integrable
��Ui0

�d�1�
�� aligned with Ui0

Windmill �31� d�1�0, N=2
d�1∧���0 ∀�

Petrov �32� d�i=0 ∀ i
∃ ! �3 real, ���1

2

�� aligned with U3
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It is expected that matter composed of a perfect fluid cannot be at rest outside of a
black hole if the spacetime is asymptotically flat and static �nonrotating�. However,
there has not been rigorous proof for this expectation without assuming spherical
symmetry. In this paper, we provide a proof of nonexistence of matter composed of
a perfect fluid in static black hole spacetimes under certain conditions, which can
be interpreted as a relation between the stellar mass and the black hole mass.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2383009�

I. INTRODUCTION

The issue of the final state of gravitational collapse is important from various points of view.
Usually we expect the black holes will eventually form after the gravitational collapse of a star and
the spacetime is expected to asymptotically converge to a stationary or static state. The perturba-
tion analysis1 and numerical demonstrations support this picture. As a consequence, the limiting
spacetime will be a stationary or static vacuum spacetime if all the matter is absorbed to the thus
produced black hole. Nowadays we know that the uniqueness theorem for black holes holds in
asymptotically flat, stationary �or static� and vacuum spacetimes and the resulting spacetimes are
described by Kerr or Schwarzschild solutions.2–4 Therefore we can have definite astrophysical
predictions using these exact solutions.

While the uniqueness of the vacuum black hole has been established, it is interesting to ask if
there is a uniqueness theorem for stationary or static spacetimes of a black hole plus matter. In the
stationary case �i.e., time translation symmetry exists but their trajectories are not hypersurface
orthogonal�, clearly this is not the case because many spacetime solutions have been constructed.
The perturbative solution of a slowly rotating black hole surrounded by an infinitesimal ring was
constructed by Will.5 There are numerical solutions of a black hole surrounded by an infinitely thin
disk6 or by an differentially rotating ring.7 Recently, the black hole with a uniformly rotating ring
around it has been calculated with high accuracy.8

On the other hand, we expect that there should be some kind of uniqueness theorem for static
spacetimes �i.e., trajectories of time-translation symmetry are hypersurface orthogonal� of a black
hole with matter. This is because if we try to put the matter at rest outside a black hole, it is
expected to fall into the black hole because of the gravitational attraction. However, we would like
to point out that this intuitive picture does not have a rigorous reasoning. In fact, one can easily
provide a counterexample as follows. If an infinitely thin disk composed of counter-rotating
particles exists on the equatorial plane of the black hole spacetime, there should exist a static
configuration after a fine tuning of system parameters. This example indicates that the uniqueness

a�Electronic mail: shiromizu@phys.titech.ac.jp
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of spacetimes of a black hole with matter depends not only on the energy condition but also the
equation of state matter satisfies. As far as we know, there is Bekenstein’s work9 which proves the
nonexistence of scalar fields outside a black hole in the static spacetime. However, without as-
suming the spherical symmetry, the question of nonexistence of matter composed of an ordinary
perfect fluid outside a black hole in the static spacetime has not been addressed up to now.

As it turns out, proving the uniqueness in the setting above is rather a delicate problem. A
similar situation is found for the proof of the spherical symmetry of a static isolated star composed
of perfect fluid for a certain class of equations of state. This problem was solved relatively recently
by Lindblom and Masood-ul-Alam11 after a long history.12,13 In the work of Ref. 11, the authors
studied the condition that should hold inside of a star without assuming the spherical symmetry
and proved the conformal flatness of the space that directly implies the spherical symmetry in turn.

Fortunately, many of the results in Ref. 11 can be used for our situation because much of their
analysis was done in quite a general setting. In this paper we would like to reformulate the analysis
of Ref. 11 for the goal of showing the uniqueness of the static spacetime of a black hole plus
matter, taking care of the difference between the two setups. We will provide a partial proof for the
nonexistence of matter outside a static black hole. The nonexistence we obtain here is conditional
under an inequality between the black-hole mass and the stellar mass.

This paper is organized as follows. In the next section, we provide our setup concerning the
Einstein equation. In Sec. III, we summarize the results of Lindblom and Masood-ul-Alam,11

paying particular attention to the parts that are directly relevant to our argument. We prove our
theorem in Sec. IV and summarize our paper with some discussion in Sec. V. We adopt the unit of
c=G=1.

II. SETUP

We consider the static spacetime which has the metric

ds2 = − V2�x�dt2 + gij�x�dxidxj , �1�

where i=1,2 ,3 and gij�x� is the induced metric of �t=const. � hypersurfaces �. In a static space-
time, its event horizon H is identified with Killing horizon �V=0� and thus V�x� vanishes on the
horizon. We assume that there is a perfect fluid with energy density � and pressure P. The fluid is
assumed to satisfy an equation of state P= P���. We assume the surface of the star/fluid is a
two-dimensional closed connected equipotential surface �x :V�x�=Vs�0� for some positive con-
stant Vs.

The Einstein equation and equation for fluid are given by

D2V = 4�V�� + 3P� , �2�

Rij =
1

V
DiDjV + 4��� − P�gij , �3�

DiP = −
1

V
�� + P�DiV , �4�

where Di and Rij are the covariant derivative and Ricci tensor of the metric gij�x�.
Equation �4� indicates that the surface ��=const. � is identical to the surface �V=const. � Let us

suppose for the moment the condition DiV�0 at the horizon. Except for the extremal charged
black holes, this condition is satisfied in all the known static black hole solutions. Then Eq. �4�
says that the value of DiP diverges at the horizon if matter exists at the horizon �V=0�, which is
an unphysical situation. Hence, this would make the stellar surface disjoint from the horizon. We
stress that the same conclusion can be obtained from Eq. �2� without any additional hypothesis. As
Eq. �2� is elliptic, a standard boundary elliptic estimate �see, for example, Lemma 6.4 in
Gilbarg–Trudinger10� says that near the horizon, the norm of the gradient of V is bounded by the
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sup norm of the right-hand side of Eq. �2� as well as that of V, both of which are uniformly
bounded in our case. As the horizon is the zero set of V, while the surface of the star is the level
set �V=Vs��0��, the gradient bound for V provides a positive lower bound �dependent on Vs� for
the distance between those two level sets, which in turn implies that the star is disjoint from the
horizon.

At the moment pictures such as Fig. 1 are possible configurations of our setup. Although the
star surface shown in this figure is spherical, note that its topology is arbitrary as long as it is
specified as a connected equipotential surface �V=Vs�. Thus our theorem will hold also for, e.g., a
barotropic perfect fluid ring. Note, however, that our theorem is not applicable to a ring composed
of counter-rotating particles around a black hole, as mentioned in Sec. I. This is because such
matter has anisotropic stress and its equation of state is not barotropic.

Here we stress that we will prove that such configurations as above do not occur under certain
conditions. In doing so, we are also not assuming any symmetry of the spacelike slice.

Asymptotic flatness requires the following asymptotic behavior of V and the metric

V = �1 −
M

r
� + O�r−2� �5�

and

gij = �1 +
2M

r
��ij + O�r−2� , �6�

where r¬ 	�ijx
ixj	1/2 and M is the Arnowitt-Deser-Misner �ADM� mass.

Our strategy for the proof is as follows. We first show that the �t=const. � hypersurface � is
conformally flat. The main part of the proof is finding appropriate conformal transformations for
� so that it becomes a hypersurface with zero ADM mass and non-negative Ricci scalar curvature.
This wonderful idea was first introduced by Bunting and Masood-ul-Alam.14 We then apply the
positive energy theorem15 to this surface to conclude that the surface is flat Euclidean space. In
turn, the original hypersurface � is conformally flat and it will immediately follow that �= P=0.
In order to find the appropriate conformal transformation, we will use the Lindblom and Masood-
ul-Alam’s theorems11 that was used for proving the spherical symmetry of a static star. We review
it in the next section.

III. THEOREMS OF STATIC STELLAR MODELS

In this section, we briefly review Lindblom and Masood-ul-Alam’s results11 where the spheri-
cal symmetry of static stellar models was obtained under a certain condition on the equation of
state. We are able to transcribe their argument mostly because the techniques used in treating the
inside of stars are identical.

FIG. 1. Typical configuration of the system of a black hole �BH� and matter �STAR�.
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Because the �V=const. � surface is identical to ��=const. � surface due to Eq. �4� and the
equation of state P= P���, both � and P are regarded as functions of V. The minimum value of V
in the star is denoted by V=Vc. Then quantities r��V�, m��V� are defined as the solutions to the
equations

dr�

dV
=

r��r� − 2m��
V�m� + 4�r�

3 P�
, �7�

dm�

dV
=

4�r�
3 �r� − 2m���

V�m� + 4�r�
3 P�

, �8�

where the boundary conditions for Eqs. �7� and �8� are

r��Vs� = R� ª 2�/�1 − Vs
2� , �9�

m��Vs� = � . �10�

Here, � is some constant suitably chosen in the proof. As we see from Eqs. �7� and �8�,
dm� /dr�=4�r�

2 � holds and � could be interpreted as the local mass of the star. Now W��V� is
defined by

W� ª 

�1 − V2�4

16�2 outside of the star,

�1 −
2m�

r�
��dr�

dV
�−2

inside of the star. � �11�

Various lemmas on r��V�, m��V�, and W��V� are introduced, such as the existence of the solution
on �V� ,Vs� for some V� �Lemmas 1–3�. In particular, assuming that the pressure is finite P�V�
��, W� can be made positive for somewhat small � over the interval �Vc ,Vs� �Lemma 8�.

We require that the equation of state satisfies at least one of the following constraints:

1

5
	2 + 2	 + �� + P�

d	

dP

 0 �12�

or

5�2

6P�� + 3P�
� 	 �

10Vs
2

e2h�P� − Vs
2 , �13�

where 	ª �d� /dP���+ P� / ��+3P� and h�P�=log�Vs /V�. The upper bound on 	 in the condition
�13� implies that the adiabatic index �ª �dP /d����+ P� / P must be larger than or equal to �6/5�
�1+ P /��2. Under this assumption, the following quantity:

�� ª

dW�

dV
−

8�

3
V�� + 3P� +

4W�

5V

� + P

� + 3P

d�

dP
�14�

is proved to be non-negative �Lemma 10 �Ref. 11��.
The most important technical result is Lemma 6 in Ref. 11: Assuming that W��0 and ��

�0 on �Vc ,Vs�, then W��WªDaVDaV on �Vc ,Vs� holds everywhere. In Lemma 6 of Ref. 11, it
is stated that W��W holds on �Vc ,Vs�. However, we can easily see from the proof that it holds
everywhere outside of the star and �
M. Because this lemma is relevant to our problem, we
briefly review its proof. In, Ref. 11, a differential inequality of elliptic type in the exterior vacuum
region is derived
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Da�V−1Da��
+� � 0, �15�

where

��
+
ª �W − W��

�1 − Vs
2�3�1 + b − Vs

2�
�1 − V2�3�1 + b − V2�

. �16�

b is some positive constant to be chosen later. The appropriate boundary condition at infinity is
W−W�=0. From the maximum principle, ��

+ has the maximum value at the infinity or at the
surface of the star �V=Vs�. The possibility of maximum value of W−W� occurring at �V=Vs� is
then removed by choosing b appropriately. Thus ��

+ 
0 holds everywhere and W��W. �
M is
directly derived from the asymptotic expansion of W��W. Note here that in our case where the
black hole is additionally present, the possibility that ��

+ takes a maximal value at the event
horizon cannot be removed, and we cannot use Lemma 6 in Ref. 11 without modifications. We
will come back to this point in the next section.

They next introduce M− and M+ where M− satisfies M−�M and W�=M− �0 on �Vc ,Vs� while
M+ satisfies M+�M with W�=M+�VM*

+�=0 at a point VM*
+ � �Vc ,Vs�. The existence of M± is guar-

anteed by, e.g., Lemma 6.11 Then, they defined � by �=inf��Sc
� where Sc= ��� �M− ,M+� :W�

�0 on �Vc ,Vs� and W��Vc�=0�.
In their Lemma 14, they proved that d2�� /dV2 is positive, where ���V� is defined as the

solution to the equation

d��

dV
=

��

2r�
�W�

�1 −
2m�

r�
� , �17�

with ���Vs�= �1+Vs� /2 at the surface of the star �V=Vs�. Finally they define a conformal metric
gij

+ =�+
4gij, where

�+ = �1 + V�/2 outside of the star,

���V� inside of the star,
�18�

and found that the Ricci scalar has the expression

R�gij
+� = �W̃ − W�

8

�+
5

d2�+

dV2 , �19�

where W̃=W�. In defining W̃ precisely, we must take care of the differential structure at the center
of stars. As the argument is rather technical, we refer this point to Lemmas 11, 12, 13, 14 and the
main theorem in Ref. 11. By Lemmas 6 and 14, this is positive, while the space has zero ADM
mass. Here the case of equality in the positive energy theorem can be applied and we conclude that
the space is conformally flat, which then implies that an isolated star is spherically symmetric.16

IV. PROOF OF NONEXISTENCE OF MATTER OUTSIDE A STATIC BLACK HOLE

Now we turn our attention to the proof of nonexistence of matter outside a static black hole.
The various functions inside of a star, r�, m�, ��, W�, and ��

+ can be introduced without modi-
fications. We adopt the same condition on the equation of state. However, the modification for
Lemma 6 is required as mentioned in the previous section.

Lemma 6 in Ref. 11 says that W̃−W�0 holds everywhere. In the case of Ref. 11 this
inequality was proved by showing ��

+ �0 at V=Vs and by applying the maximum principle for the
inequality Da�V−1Da��

+��0 which indicates that ��
+ =0 at infinity is the maximum value. How-

ever, presently we have an additional boundary, which is the horizon �V=0�, and a possibility of
��

+ �0 there remains. We thus have to assume ��
+ �0 at the horizon or equivalently
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�W − W��V=0 
 0. �20�

We will discuss the physical meaning of this hypothesis in the last section. Under this assumption,
W�−W�0 is guaranteed everywhere, and the results in Ref. 11 that were proven using Lemma 6
become available. In particular, the existence of � is guaranteed.

Now we show the conformal flatness of this space. Consider the two conformal transforma-
tions defined by

gij
± = �±

4gij , �21�

where �+ is the same as Eq. �18� and

�− = 1
2 �1 − V� . �22�

Now we have two manifolds ��± ,gij
±�. As in Bunting and Masood-ul-Alam,14 we can make a

smooth manifold out of �+��− by gluing along �V=0�.
The asymptotic behavior of each metric is

gij
+ = �ij + O�r−2� �23�

and

gij
−dxidxj = �M/2r�4�dr2 + r2d�2

2� + O�r−5� . �24�

In the manifold ��− ,gij
−�, �r= � � corresponds to a regular point in a three-dimensional surface.

Indeed, introducing a new coordinate R=M2 /4r, the metric near r=� can be written as

gij
−dxidxj = dR2 + R2d�2

2. �25�

If the Ricci scalar of this space is non-negative, positive energy theorem tells us that �+��− is the
flat Euclidean space and thus � is conformally flat, because this manifold has the zero ADM mass
and non-negative Ricci scalar. Hence, we want to show the non-negativity of the Ricci scalars
R�gij

±�.
The three-dimensional Ricci scalar becomes the same as Eq. �19� for �+ and

R�gij
−� = 8��−

−5��1 + V�� + 6VP� � 0, �26�

for �−. Since R�gij
−��0 holds as above, it remains to show the non-negativity of R�gij

+�.
d2�+ /dV2�0 is guaranteed by Lemma 14 in Ref. 11 and �W̃−W��0 is guaranteed by the
hypothesis �20�. Then the conformally transformed space �+��− has non-negative Ricci scalar
�see Eq. �19��� and zero ADM mass, which implies that �+��− is flat.

Now we have proven under the assumption �20� that the original space � is conformally flat.

Going back to Eqs. �19� and �26�, we find that R�gij
+�=R�gij

−�=0 holds and they in turn imply W̃
=W and �= P=0, respectively. The latter implies that the spacetime should be vacuum. Our result
excludes any static configurations of a black hole with a star whose surface is given by �V=Vs� as
was suggested in Fig. 1.

We summarize what we have obtained as the following theorem.
Theorem: In asymptotically flat static black hole spacetimes, the star, which is composed of a

perfect fluid satisfying the dominant energy condition and has the surface of level surface set
�V=Vs��0��, annot exist if (i) the equations of state P= P��� satisfies the condition �12� or �13�,
and (ii) for W� defined by Eq. �11� with Eqs. �7� and �8�, the inequality W−W�
0 holds on the
event horizon �V=0�.

As a result, the ordinary uniqueness theorem2 of vacuum spacetimes can be applied and then
the spacetime in our setup is reduced to the Schwarzschild spacetime.
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V. DISCUSSION

We have proven the nonexistence of matter composed of a perfect fluid under the hypothesis
�W−W��V=0
0. Because the physical meaning of this hypothesis is still unclear, we examine it in
this section. On the event horizon, the value of �W coincides with the surface gravity 	H of the
black hole. We introduce the Komar integral on the event horizon MBH=	HAH /4� that indicates
the local mass of the black hole, where AH is the area of the horizon. Then, �W−W��V=0
0
corresponds to

� 

1

4	H
=

AH

16�MBH
. �27�

The first law of the black hole thermodynamics for the static spacetime �MBH=	H�AH /8� implies
AH�MBH

2 . Hence, AH�16�MBH
2 and the right hand side of the inequality �27� is O�MBH�. In order

to find some upper bound on � in terms of the quantities of the star, recall that �W−W��V=Vs

0 holds on the surface of the star as appeared in the proof of Lemma 6 of Ref. 11. This is
rewritten as �Ws
 �1−Vs

2�2 /4�. Integrating over the surface of the star, we find

� 

�1 − Vs

2�2

16�M�

As, �28�

where M� is the Komar mass of the star and As is the area of the surface of the star. Hence, �W
−W��V=0
0 holds if

�1* − Vs
2�2 As

16�M�



AH

16�MBH
� MBH. �29�

In order to simplify this inequality, let us consider the situation where a ball-shaped star exists
outside a black hole and the distance between them is sufficiently large. In this case Vs

2 is approxi-
mated as Vs

2�1−2M� /rs and As�4�rs
2, where rs is the radius of the star. Then the inequality

becomes

M� � MBH. �30�

Therefore the main theorem states that a star with smaller mass than a black hole mass cannot
exist outside of the black hole in static spacetimes.

Intuitively, heavy stars are also not permitted to exist outside of black holes in static space-
times. We hope to have a different argument for proving the statement because our current ap-
proach of adapting Lindblom and Masood-ul-Alam’s results11 is not expected to produce optimal
statements.

Last, we note that the star surface is assumed to be a surface of one connected component. In
order to exclude the configuration of a star whose surface has two or more components such as a
shell surrounding the black hole, further considerations are needed.
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We study domain wall networks on the surface of q-stars in asymptotically flat or
anti de Sitter spacetime. We provide numerical solutions for the whole phase space
of the stable field configurations and find that the mass, radius, and particle number
of the star is larger but the scalar field, responsible for the formation of the soliton,
acquires smaller values when a domain wall network is entrapped on the star
surface. © 2006 American Institute of Physics. �DOI: 10.1063/1.2363254�

I. INTRODUCTION

Planar domain wall networks in theories with three or more vacua have been investigated in
a series of papers1–4 Domain walls seem to have various applications especially in D-brane
theories.5,6

The idea of three-dimensional networks on spherical surfaces has been established in Ref. 7
and applied to the spherical surface of a “large” soliton star.8 Large soliton stars were investigated
in a series of papers by Friedberg et al.9–12 In Ref. 8 it was found that there exist stable with
respect to fission into free particles field configurations, corresponding to soliton stars, with a
domain wall network on their surface. The pressure of the soliton acts as a stabilizing force to the
domain wall network. The star mass is, in general, slightly larger in the presence of the above
network, when the particle number and the radius show a more complicated behavior, depending
on the surface tension, the particle number, etc. In Ref. 13 the entrapment of the domain wall
network on the surface of a soliton of any kind in the absence of gravity was discused. In the same
article, another kind of “stability” was discussed, namely the stability of the domain walls. It was
found that only two of the five Platonic solids, cube and octahedron, can be realized on a spherical
surface. Networks forming other solids would collapse to a single vacuum. So, from now on, when
discussing domain walls we restrict ourselves to these two solids.

In the present article we investigate the properties of q-stars14–16 which are relativistic gener-
alizations of q-balls17 that seem to play a special role in baryogenesis through flat directions of
supersymmetric extensions of the standard model.18 Our purpose is to find numerical solutions to
the coupled Einstein-scalar fields equations, and to calculate the mass, radius, particle number, and
the value of the scalar field at the center of the soliton in the whole phase space �Figs. 1–4�. We
compare our results with those obtained in the absence of the domain wall network, including in
our figures the relevant results, and to the results of Ref. 8, referring to the other family of
solitonic stars, and Ref. 13. We also investigate the soliton stability with respect to gravitational
collapse and to the decay to free particles.

II. DOMAIN WALL NETWORK ON THE SURFACE OF q-STARS

We consider a complex scalar field, �, with a global U�1� symmetry and a suitable potential
U, coupled to a complex scalar field, �, able to generate a network of domain walls, and to gravity.
In order for the � field to be able to generate a domain wall network, a

a�Electronic mail: aprikas@central.ntua.gr
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�a −
�n

vn �2

term should be included in the action, where a is a constant.1–6 The action of the above configu-
ration is

S =� d4x�− g�R − 2�

16�G
+ ������* +

1

v2������* − U��*�� − �2�c�f0 − �*���*� −
�n

vn �2	 ,

�1�

where � stands for the �negative or zero� cosmological constant and the constants �, c, and f0 will
be determined later, n is an integer, and v is a positive constant that can be absorbed in � and does
not affect the solutions. A Lagrangian with a potential of the form

�1 −
�n

vn �2

admits solutions corresponding to a domain wall network. In our case we choose

���� ,t� = ����e−ı	t. �2�

The field configuration is spherically symmetric, so we can choose a spherically symmetric metric

FIG. 1. The radius of the q-star as a function of the frequency. Solid lines correspond to the case with domain walls and
dashed to the case without domain walls, i.e., �=0, included for comparison. The numbers within the figures denote the
value of the cosmological constant �. The true cosmological constant is �
8�Gm4, according to Eq. �5�.

FIG. 2. The value of the scalar field at the center of the star as a function of its freaquency.
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ds2 = −
1

B���
dt2 +

1

A���
d�2 + �2d�2 + �2sin2 �d�2. �3�

We define

W 
 B� ��

�t
�*� ��

�t
� = B	2�2, V 
 A� ��

��
�*� ��

��
� = A��2 �4�

and make the following rescalings:

�̃ = �m, 	̃ = 	/m, �̃ = �/m, r̃ = �̃ ,

�̃ = �/m2, f 0̃ = f0/m2, c̃ = cm4

Ũ = U/m4, W̃ = W/m4, Ṽ = V/m4, �̃ 

�

8�Gm4 , �5�

with

FIG. 3. The mass of a q-star as a function of its frequency.

FIG. 4. The particle number of a q-star as a function of its frequency.
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 �8�Gm2,

a very small quantity for mGeV. Quantities of the same order of magnitude as  can be
neglected. We also choose a rescaled potential

U = �*��1 − �*� +
1

3
��*��2� = �2�1 − �2 +

1

3
�4� , �6�

where we dropped tildes for simplicity.
We will now determine the proper values of f0 and c regarding at present �=0. Gravity

becomes important when RGM. If we regard that the scalar field � varies very slowly with
respect to the radial coordinate then d� /d� if we set m=1. So, the Euler–Lagrange equation
for the scalar field, dropping the tildes and the O�� quantities gives

�2 = 1 + 	B1/2. �7�

The eigenvalue equation for the frequency can be obtained by integrating the equation of motion
within the surface, where the scalar field varies rapidly from a �0 value at the inner edge of the
surface, to a zero value at the outer edge. The result of integration is

V + W − U = 0, �8�

which, in order to match with the interior solution, for which ��, gives for the eigenfrequency

	 =
Asur

1/2

2
=

Bsur
−1/2

2
, �9�

where Asur, Bsur denote the value of the metrics at the surface of the star. In the absence of gravity
B�r�=1 and, as one can find from Eqs. �7� and �9�, �2=1.5. When gravity is under consideration
the situation is not too different, unless B�r��1. When B�0�→� the star collapses to a black hole.
Excluding this case and regarding only stars in our discussion, we can set f0=1.5, which means
that the quantity c�f0−�*���*� is zero inside and outside the soliton. The only region within
which this quantity differs form zero is the very thin surface. The maximum value is at

�2 =
3

4
.

So we set

c =
16

9

and the above quantity takes its proper maximum value: c�f0−�*���*��max=1. With these set-
tings the field � is exactly zero outside the soliton, approximately zero in the interior and maxi-
mum within the surface.

We will now turn on the interactions between the two scalar fields. Let �2=0.01 so as to treat
the additional interaction as a perturbation, which does not disturb significantly the system. The
equation of motion for the � field, dropping the O�� quantities gives

	2B − ��2 − 1�2�1 +
128

9
�2�2� +

128

81
�2�2 = 0. �10�

The exact solution in the above equation is rather long and ugly, but if we substitute the value
�2=1.5 �holding true when B�r�1 and �2�� in the �2�2 combination, we find for �2,
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�2 = 1 +�	2B + 16�2/3

1 + 64�2/3
, �11�

which has the right limiting value for �→0 according to the Eq. �7�. Integrating again the
equation of motion within the surface, we find that the eigenvalue equation for the frequency, Eq.
�9�, remains valid.

Within the soliton, the � field is approximately zero. So, the total energy-momentum tensor is
approximately the energy-momentum tensor for the � field, which takes the form

T�� = �����*����� + ����������* − g���g�������*������ − g��U . �12�

The Einstein equations are G��=8�GT��−�g��. The independent components, 00 and 11,
take the following form, dropping the tildes and the O�� quantities

A − 1

r2 +
A�

r
= − W − U − � , �13�

A − 1

r2 −
B�

r

A

B
= W − U − � , �14�

where U=�2−�4+1/3�6 and W=B	2�2 and � is given by Eq. �11�. The mass of the field
configuration is given by the relation

M = 4�r�1 − A�r� −
1

3
�r3�, r → � . �15�

The particle number is defined as

N 
� d3xj0, �16�

with

j� = �− gg�� ı ��*��� − ����*� . �17�

For the interior, we take for the particle number

N = 8��
0

R

r2dr	�2�B

A
, �18�

where R is the radius of the q-star.
We will now prove that the energy and particle number contributions from the thin surface are

negligible. At the exterior, the � field is exactly zero, and consequently the � field is zero, and,
thus, no energy or particle number contribution arises from the exterior. The surface is of width of
order m−1. For the moment we ignore our rescalings. Within the surface �� � m and consequently
UWm4. Also, the field � varies from a certain value at the inner edge of the surface to a zero
value at the outer, so V��� �m�2m4. �n /vn is of the same order of magnitude as c ��4�. Because

c̃1, then cm−4. Because �̃210−2, then �2m410−2,which means that within the surface
�n /vn10−2m4. The � field contributes to the total energy through the �2 terms of potential
energy and the kinetic terms. The energy density arising from the �2 terms are of the same order
of magnitude as �2m4. If we repeat the discussion concerning the kinetic terms for the � field, the
kinetic terms for the � field are of the same order of magnitude as �2m4. So, the total energy
density from the surface �potential for both fields, kinetic from the temporal variation from the
field � and kinetic from the spatial variation from both fields� is m4 and the total energy stored
within the surface is 1/ �Gm�. Within the interior the energy density is m4 and the total energy
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is 1/ �G3/2m2�. One can see that EsurfaceEinterior and thus the contribution of the surface to the
total energy is negligible. The same discussion holds true for the particle number contribution of
the surface. These steps reproduce the similar discussion holding true in the case of a “pure” q-star
without any additional fields in the total action.

We numerically solve Eqs. �13� and �14� with boundary conditions A�0�=1, A�r�=1/B�r�
=1− �1/3��r2, r→� and find the parameters of the q-star using relations �15�–�18� and �11�.

III. CONCLUDING REMARKS

In the present work we investigated the formation of q-stars with a domain wall network on
their surface. All the field configurations are stable with respect to fission into free particles
because the energy of the free particles with the same charge is smaller than the star mass. They
are also stable with respect to gravitational collapse, as one can see from Fig. 5.

We find that the radius, mass, and particle number of the q-star are slightly larger when
domain walls are trapped on the star surface. These results agree with the estimation of Ref. 8,
concerning the total energy of the soliton. Radius and particle number of large soliton stars,
investigated in Ref. 8 show a more complicated dependence on �2, which is the new parameter
differentiating the stars with domain walls from usual, large soliton stars. The results of larger
radii and smaller values of the scalar field at the center of the star agree with the similar ones,
obtained in Ref. 13, despite the absence of gravity. The same results hold true in asymptotically
flat, as well as in asymptotically anti de Sitter spacetime.

Unfortunately, one cannot find an analytical relation connecting the mass and the particle
number of the star, due to the highly nonlinear character of the equations of motion. Instead, we
use our numerical results, depicted in Fig. 6, in order to study the behavior of the soliton mass as
a function of its particle number. From Fig. 6 one can see that our solutions are always stable with
respect to fission into free particles, because the soliton energy is always smaller than the total
energy of the free particles. For small values of the particle number, gravity is negligible. In the
absence of gravity and for a large soliton the so called thin-wall approximation holds. It has been
shown that for such solitons M =	N plus some surface terms which are negligible in the above
approximation, with 	
��U /�2�min. As one can see, for the potential 5, 	 equals 0.5. Numerical
results show clearly that, for small values of the particle number, when gravity is negligible, the
ratio mass to particle number equals 	. For larger values of the particle number gravity becomes
more important and the negative potential energy contributed by the attractive gravitational force
decreases the ratio M to N. From Fig. 6 we also see that the above ratio is larger for smaller values
of the �negative� cosmological constant. This reflects the repulsive character of a negative cosmo-
logical constant. The star decreases its mass so as to resist to the environment of the “negative”
gravity induced by a negative cosmological constant.

FIG. 5. The mass of the star as a function of its radius for asymptotically flat spacetime. The last stable field configurations
with respect to gravitational collapse are at the top of the M =M�R� curves.
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The Einstein–Cartan–Saa theory of torsion modifies the spacetime volume element
so that it is compatible with the connection. The condition of connection compat-
ibility gives constraints on torsion, which are also necessary for the consistence of
torsion, minimal coupling, and electromagnetic gauge invariance. To solve the
problem of positivity of energy associated with the torsionic scalar, we reformulate
this theory in the Einstein conformal frame. In the presence of the electromagnetic
field, we obtain the Hojman–Rosenbaum–Ryan–Shepley theory of propagating tor-
sion with a different factor in the torsionic kinetic term. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2365788�

I. INTRODUCTION

In the Einstein–Cartan theory, which extends general relativity to nonsymmetric connection,
spin is the source of torsion.1 The equations relating torsion and spin are algebraic and torsion
does not propagate.2 To allow such a propagation, we need a differential equation for the torsion
tensor S���

� . This is usually achieved by modifying the Einstein–Hilbert action and introducing a
scalar field related to the torsion vector S�=S���

� .3–6 There are also models in which the torsion
vector is proportional to the electromagnetic potential.7–9

The Lagrangian density for a gravitational field can be, in principle, given by any scalar
constructed from the curvature, connection, and metric. The standard Einstein–Hilbert Lagrangian
of general relativity is linear in the curvature scalar R and torsion enters the dynamics through R.
Such a Lagrangian is very natural from a physical point of view since it is linear in the second
derivatives of the metric tensor. These derivatives can be taken out of the action using the Gauß
theorem, making the Lagrangian a function of the metric and its first derivatives only.10 The
corresponding equations of field are thus second order. If the gravitational Lagrangian is a more
general function of R or other curvature invariants, the field equations remain second order if we
adopt the Palatini variational principle according to which the connection and metric are a priori
independent quantities and we vary the action with respect to both of them.11 In this approach, the
connection arises from the field equations and is not metric compatible, g��;��0 �except the case
where the Lagrangian is linear in R and there is no torsion�.

The Palatini variation of connection imposes four algebraic constraints on the matter part of
the action, which are caused by invariance of the curvature scalar under a projective transforma-
tion of the connection.12,13 These constraints lead to inconsistencies that can be eliminated by
replacing the connection with its projective-invariant part.13 This procedure is equivalent to im-
posing the condition S�=0.14 In this case, we cannot associate the gradient of a scalar field with
the torsion vector and induce the propagation of torsion. Therefore, we follow the metric varia-
tional principle and fix the connection by assuming its metricity, g��;�=0.

In the presence of torsion, we must modify the covariant volume element so that it remains
parallel.6,15 Such a modification is possible only if S� is the gradient of a scalar, which gives four
equations of constraint on the torsion tensor.16 This condition is also necessary for the compat-

a�E-mail: nipoplaw@indiana.edu

JOURNAL OF MATHEMATICAL PHYSICS 47, 112504 �2006�

47, 112504-10022-2488/2006/47�11�/112504/7/$23.00 © 2006 American Institute of Physics

                                                                                                                                    

http://dx.doi.org/10.1063/1.2365788
http://dx.doi.org/10.1063/1.2365788


ibility of torsion and gauge invariance of the minimally coupled electromagnetic field �the
Hojman–Rosenbaum–Ryan–Shepley or HRRS theory of propagating torsion�.3 �According to the
Palatini principle of minimal coupling, the electromagnetic field tensor is defined as F��=A�,�

−A�,� and does not generate torsion.14� A generalization of the HRRS theory to non-Abelian gauge
fields has been done in Ref. 17.

In this paper we point out that the equations of field resulting from the action with the
torsion-modified volume element violate positivity of energy for the torsionic scalar. The solution
to this problem is to apply a conformal transformation of the original metric into a new metric in
which the field equations have the form of those in general relativity.18,19 This new metric defines
the Einstein frame while the original one defines the Jordan frame.20 In Sec. II we review the
Einstein–Cartan theory with the torsion-modified volume element. In Sec. III we reformulate this
theory in the Einstein conformal frame and apply it to the gauge invariant electrodynamics in the
presence of torsion. The results are briefly summarized in Sec. IV.

II. COVARIANT VOLUME IN THE PRESENCE OF TORSION

In general relativity, a minimally coupled theory is constructed by replacing the metric of
special relativity ��� with the metric of general relativity g��, and by replacing ordinary deriva-
tives with covariant derivatives �the comma–semicolon rule�.10 The covariant derivative of a
vector V� is defined as

V�:� = V�,� − �� ��
�� �V�. �1�

The coefficients �� ��
�� � are the Christoffel symbols:

�� ��
�� � =

1

2
g���g��,� + g��,� − g��,�� , �2�

determined from the relation g��:�=0. The colon denotes a covariant derivative with respect to the
Christoffel symbols, and the comma denotes a usual derivative. In the presence of torsion S���

�

=������
��� , the covariant derivative is given by

V�;� = V�,� − �� ��
�� V�. �3�

The semicolon denotes a covariant derivative with respect to the nonsymmetric connection, and
the connection coefficients �� ��

�� are now

����
�� = �� ��

�� � + S���
� − 2S����

�����. �4�

This relation results from the metric compatibility of the connection, g��;�=0. �In the presence of
torsion, the relation g��:�=0 remains valid, which means that both covariant derivatives �with
respect to �� ��

�� � and �� ��
�� , respectively� are tensors.� The difference �� ��

�� − �� ��
�� �, which is a

tensor, is called the contortion K���
� :

K���
� = S���

� − 2S����
�����. �5�

In a spacetime without torsion, a covariant volume element is �−gd4x, and the scalar density
�−g is connection compatible �parallel�: ��−g�:�=0. When the spacetime is not torsionless, this
element is not parallel since21

��− g�;� = − 2S�
�− g . �6�

It is possible to find a parallel volume element if the torsion vector is the gradient of a scalar:15,16

S� = �,�. �7�

In this case we have
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�e2��− g�;� = 0, �8�

and the volume element becomes

dV4 = e2��− gd4x . �9�

The contortion tensor �5� can be split into a traceless part and a trace �the torsion vector�:

K��� = C��� −
2

3
�S�g�� − S�g��� . �10�

The Riemann–Cartan curvature tensor is given by

R����
� ��� = ����,�

�� − ����,�
�� + ��	�

�	 ���	
�� − ��	�

�	 ���	
�� , �11�

and its contractions are the Ricci tensor R�����=R����
� ��� and the curvature scalar R�� ,g�

=R�����g��. The curvature scalar R�� ,g� can be split into the Riemannian curvature scalar R�g�
�constructed from �� ��

�� � the same way as R�� ,g� is constructed from �� ��
�� � and the part that

contains torsion:6

R��,g� = R�g� − 4S�;�
� +

16

3
S�S� + C���C

���. �12�

The Lagrangian density for the gravitational field in the Einstein–Cartan–Saa theory with the
torsion-modified volume element is given by6

L =
1

16

R��,g��− ge2�, �13�

where we use the units in which c=G=1. The second term on the right-hand side of Eq. �12� is a
total covariant divergence of a vector �with respect to the nonsymmetric connection �� ��

�� � and

does not contribute to the field equations. �From Eq. �8� we obtain �S�;�
� �−ge2�d4x

=��S��−ge2��,� d4x. The last integral can be transformed into an integral over a three-dimensional
hypersurface, which vanishes when we use the principle of least action.� In the same equation we
use the condition �7�. For the reason explained in the next section, we replace the scalar field � by
another field � such that

� = −
3

2
� . �14�

The action for the gravitational field is thus

Sg =	 d4x�− ge−3�
−
1

16

R�g� −

3

4

�,��,� −

1

16

C���C

���� . �15�

We note that if C���=0, replacing the torsionic scalar by a new field �=e−3� reproduces the
Brans–Dicke action with =− 4

3 .22

III. SCALAR TORSION IN THE EINSTEIN FRAME

In the action �15�, the kinetic term of the torsionic scalar field has the negative sign. By a
sufficiently rapid change of � with time, this term can consequently be made as large as one likes.
The action would then decrease without limit, that is, there could be no minimum. This is a feature
of many scalar–tensor theories of gravity in the metric variational formalism.19,20 To solve this
problem, we need to apply a conformal transformation of the metric from the original Jordan
frame to the Einstein frame. In the Einstein frame, the curvature scalar in the action is multiplied
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by a constant only, and the equations of field have the form of the Einstein equations.18 Let us
make a conformal transformation from the Jordan metric g�� to a new metric h��:

h�� = e�g��, �16�

where � is a function of the coordinates. The Jordan and Einstein curvature scalars are related by23

R�g� = e�
R�h� + 3�:��
:� −

3

2
�,��,�� , �17�

and all the quantities of the right-hand side of this equation are calculated using the new metric
h��.

To eliminate the exponential function multiplying R�g� in Eq. �15�, we put

� = − 3� . �18�

The action for the gravitational field in the Einstein frame becomes

Sg =	 d4x�− h
−
1

16

R�h� +

3

32

�,��,� −

1

16

C���C

���� , �19�

where the traceless part of the contortion in the new action is given by

K��� = C��� −
2

3
�S�h�� − S�h��� . �20�

�To obtain Eq. �19�, we notice that we can rewrite �10� as K���
�� =C���

�� − 2
3 �S���

�−S���
�� that does not

contain the metric, and that C���C
��� scales under the conformal transformation �16� like R.� The

sign of the kinetic term for the scalar field is now positive. The action �19� differs from the
expression obtained without using the parallel volume element �9� by the factor 1

4 in the scalar
kinetic term.24 �The action in Ref. 24 has C���=0.�

Let us apply the obtained results to the case of the electromagnetic field coupled minimally to
torsion. The electromagnetic field tensor is a spacetime without torsion given by

F�� = A�:� − A�:�, �21�

and is invariant under a gauge transformation A�→A�� =A�+�,�. In the presence of torsion, the
principle of minimal coupling requires the following definition:

F�� = A�;� − A�;� = A�,� − A�,� − 2S���
� A�. �22�

Such a tensor is invariant under a generalized gauge transformation,

A� → A�� = A� + e� ��
� �,�, �23�

provided that the torsion tensor is given by3

S���
� =

1

2
���

��,� − ��
� �,�� . �24�

This relation means that the torsion tensor is fully determined in terms of the torsion vector S�

=S���
� , and this vector has a potential, S�=− 3

2�,�. The above constraint on torsion contains the
condition for the existence of a parallel volume element �7�, but is stronger. The tensor �22�
becomes

F�� = A�,� − A�,� − A��,� + A��,�, �25�

which looks more elegant if we use � instead of �.
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The total gauge invariant action for the electromagnetic field and the gravitational field with
torsion is given by

S =	 d4x�− h
−
1

16

R�h� +

3

32

�,��,� −

3

32

m2�2 −

1

16

F��F

��� , �26�

where we introduce a mass of the torsionic field24,25 �see the next paragraph�. The equations of
field are obtained from variation of h��, �, and A�:

G���h� =
3

2

�,��,� −

1

2
�,��,�h��� +

3

4
m2�2h��

+ 2
1

4
F��F��h�� − F��F�

��� , �27�

�:��
:� + m2� +

4

3
�F��A��:� = 0, �28�

F��:�
�� + F���,� = 0, �29�

where G���h� is the Einstein tensor. They differ from the equations derived in the HRRS theory3,24

by the factor 1
4 in the torsionic scalar field terms. The last two equations yield

�:��
:� + m2� = −

2

3
F��F

��. �30�

The reason for the torsionic scalar field to be massive originates from the Eötvös–Dicke–
Braginsky solar tests of the principle of equivalence26 and the idea introduced in Ref. 25. For the
scalar field of the Sun, Eq. �30� becomes

�2� − m2� =
1

3
�B2 − E2� , �31�

where B and E are the magnetic and electric field, respectively. The solution of Eq. �31� outside
the Sun is

� =
2

3

e−mr

r
Ene, �32�

where Ene is the total nuclear electric energy of the Sun and other energies are negligible. The data
from Ref. 26 give

� = 0.67 � 10−4U · e−mr, �33�

where r is the distance from the Sun and U is the Newtonian potential. This expression modifies
the relative acceleration between aluminum and gold/platinum26 by the factor e−mR, where R is the
distance of the Earth from the Sun:

arel = 2 � 10−7 � U · e−mR. �34�

To avoid violations of the principle of equivalence in the solar system and obtain a theory com-
patible with experiment, we need

2 � 10−7 � U · e−mR � 10−12 � U . �35�

This inequality gives the lower limit on the mass of the torsionic scalar field,24
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m � 10−25 GeV, �36�

in agreement with Ref. 25.

IV. SUMMARY

In the presence of torsion, a covariantly conserved volume element can be found if the torsion
vector equals the gradient of a scalar. This condition gives four equations of constraint on the
torsion tensor. Remarkably, the condition for the compatibility of the gauge invariant electromag-
netic field coupled minimally to torsion contains this constraint. Another condition for this com-
patibility is that the traceless part of the contortion tensor must vanish. The last requirement is a
consequence of the equations of field in the Jordan frame, if we use the electromagnetic field that
does not couple to torsion. It is not the case for the minimal coupling between torsion and photons.
A possible solution would be to assume that the electromagnetic field couples to the trace part of
the torsion tensor only. Ultimately, we should obtain this requirement as a result of a variational
principle.

The action integral over the torsion-modified volume element contains the kinetic term of the
torsionic scalar field with the negative sign. By a sufficiently rapid change of this field with time,
this term can consequently be made arbitrarily large, and the action would have no minimum. To
solve this problem, we applied a conformal transformation of the metric from the original Jordan
frame to the Einstein frame in which the left side of the field equations is that of general relativity.
The new action acquired the correct, positive sign in the kinetic term for the torsionic scalar. The
obtained field equations differ from those in the original HRRS theory by the factor 1

4 in the
torsionic scalar field terms. This difference does not affect the order of the minimal value for the
mass m of the torsionic scalar required for the theory to be compatible with experiment.

The minimal value of m is way below the masses of known elementary particles. There is no
upper limit for m, and the Higgs boson could be a good candidate for the particle corresponding
to the torsionic scalar. Since the lower limit on the mass of the Higgs boson is on the order of
100 GeV, the deviations from the principle of equivalence would be unnoticeable �below 10−27 of
present experimental precision�.

We emphasize that the question of whether the electromagnetic field couples to torsion or not
should be ultimately answered by experiment. We assumed that the principle of minimal coupling
holds in the presence of torsion, which leads to the appearance of the EM–torsion coupling and
constraints on the torsion tensor. Otherwise, torsion does not affect the electromagnetic field and
gauge invariance of the latter is compatible with nonsymmetric connection under no additional
constraints.

We mentioned that the HRRS procedure of combining electromagnetic gauge invariance with
minimal coupling between the EM field and torsion has been generalized to non-Abelian gauge
fields such as the Yang–Mills field. A possible coupling between spin, which generates torsion in
the Einstein–Cartan theory, and the non-Abelian chromomagnetic field of QCD would play an
important role in objects composed of fermionic matter at large densities. Neutron stars would be
ideal candidates to study this coupling and determine whether gauge fields interact with torsion.

1 V. de Sabbata and M. Gasperini, Introduction to Gravitation �World Scientific, Singapore, 1986�.
2 F. W. Hehl, P. von der Heyde, G. D. Kerlick, and J. M. Nester, Rev. Mod. Phys. 48, 393 �1976�.
3 S. Hojman, M. Rosenbaum, M. P. Ryan, and L. C. Shepley, Phys. Rev. D 17, 3141 �1978�.
4 S. Hojman, M. Rosenbaum, and M. P. Ryan, Jr., Phys. Rev. D 19, 430 �1979�.
5 V. De Sabbata and M. Gasperini, Phys. Rev. D 23, 2116 �1981�.
6 A. Saa, Gen. Relativ. Gravit. 29, 205 �1997�.
7 R. McKellar, Phys. Rev. D 20, 356 �1979�.
8 R. T. Hammond, Class. Quantum Grav. 6, L195 �1989�.
9 R. T. Hammond, Class. Quantum Grav. 7, 2107 �1990�.

10 L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields �Pergamon, Oxford, 1975�.
11 A. Einstein, The Principle of Relativity �Dover, New York, 1923�.
12 E. Schrödinger, Space-Time Structure �Cambridge University Press, Cambridge, 1950�.
13 V. D. Sandberg, Phys. Rev. D 12, 3013 �1975�.
14 T. P. Sotiriou and S. Liberati, ArXiv: gr-qc/0604006, 2006.

112504-6 Nikodem J. Popławski J. Math. Phys. 47, 112504 �2006�

                                                                                                                                    



15 R. A. Mosna and A. Saa, J. Math. Phys. 46, 112502 �2005�.
16 A. Saa, Mod. Phys. Lett. A 8, 2565 �1993�.
17 C. Mukku and W. A. Sayed, Phys. Lett. B 82, 382 �1979�.
18 G. Magnano and L. M. Sokołowski, Phys. Rev. D 50, 5039 �1994�.
19 G. Magnano, ArXiv: gr-qc/9511027, 1995.
20 V. Faraoni and E. Gunzig, Int. J. Theor. Phys. 38, 217 �1999�.
21 A. Saa, Mod. Phys. Lett. A 9, 971 �1994�.
22 C. Brans and R. H. Dicke, Phys. Rev. 124, 925 �1961�.
23 R. H. Dicke, Phys. Rev. 125, 2163 �1962�.
24 N. J. Popławski, ArXiv: gr-qc/0604125, 2006.
25 M. Gasperini, Gen. Relativ. Gravit. 16, 1031 �1984�.
26 W. T. Ni, Phys. Rev. D 19, 2260 �1979�.

112504-7 Propagating torsion in the Einstein frame J. Math. Phys. 47, 112504 �2006�

                                                                                                                                    



Variational approach to Robertson–Walker spacetimes
with homogeneous scalar fields

Roberto Giambòa� and Fabio Giannonib�

Dipartimento di Matematica e Informatica, Università di Camerino, I-62032,
Camerino, Italy

Giulio Maglic�

Dipartimento di Matematica, Politecnico di Milano, I-20133 Milano, Italy

�Received 28 June 2006; accepted 9 October 2006; published online 30 November 2006�

Existence of solutions between prescribed configurations is proved for spatially flat
Robertson–Walker spacetimes coupled with homogeneous scalar field sources, us-
ing a modified version of the Euler–Maupertuis least action variational principle.
The solutions are obtained as limits of approximating variational problems, solved
using the techniques originally introduced by Rabinowitz. © 2006 American Insti-
tute of Physics. �DOI: 10.1063/1.2383068�

I. INTRODUCTION

Observational cosmology suggests that our universe has entered a stage of accelerated expan-
sion �see Refs. 17 and 18, and references therein�. The reason for that is the so called dark energy,
that constitutes most of the energy density of the whole universe. The existence of a cosmological
constant can be called as responsible for dark energy, but some physical problems arise from this
interpretation. The most important alternative physical interpretation for dark energy origin calls
into play scalar field models of spacetime �see Ref. 14, and references therein�. In the latest years
of theoretical physics, the belief for existence of zero-spin particles—whose description is given in
terms of a wave scalar function—has gained supporters, although there is no observational evi-
dence yet.

We shall concentrate here on the simple model of Robertson–Walker spacetimes with homo-
geneous scalar fields, and in this case the Einstein field equations read

�G0
0 = 8�T0

0�: −
3ȧ2

a2 = − ��̇2 + 2V���� , �1.1a�

�G1
1 = 8�T1

1�:−
ȧ2 + 2aä

a2 = ��̇2 − 2V���� , �1.1b�

where the dot denotes differentiation with respect to t, a�t� is the scale factor and ��t� is the scalar
field.

We will be interested in the problem of determining solutions of Eqs. �1.1a� and �1.1b� with
fixed end points. The metric becomes singular when a�t� vanishes in the past or in the future—
corresponding to big-bang or big-crash singularity, respectively. In this paper we want to avoid
this situation, so we will consider pieces of evolution where a�t� keeps positive. The central result
of the paper is the following theorem:

Theorem 1.1: Let a0, a1�R+, �0 ,�1�R be such that

a�Electronic mail: roberto.giambo@unicam.it
b�Electronic mail: fabio.giannoni@unicam.it
c�Electronic mail: magli@mate.polimi.it
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3 min�a0,a1��a1 − a0�2 � max�a0,a1���1 − �0�2, �1.2�

and let V�C1�R ,R� such that

V��� � 0, ∀ � � R . �1.3�

Then, there exists T�0 and �a�t� ,��t���C2��0,T� ,R2� solutions of Eqs. �1.1a� and �1.1b� with the
boundary conditions

a�0� = a0, a�T� = a1, ��0� = �0, ��T� = �1. �1.4�

Note that the above result cannot be seen as a consequence of the well-known theory on the
existence of solutions for Cauchy problems in general relativity �see pioneering work by Bruhat,2

and the following literature�. Here, indeed, we do not fix both fundamental forms on a Cauchy
surface, and find evolution from it, but we show that, under the above condition, the set of initial
data can be completed in order to reach a certain configuration from a given one. The solutions
under our study stay regular in the interval �0, T�, since a�t��0. Nevertheless, we believe that this
approach may be useful to find the existence results for scalar field solutions evolving to singu-
larity, a topic which is of relevant interest in the problems related to the cosmic censorship
conjecture. In fact, although existence and causal structure of the singularities in matter-filled
spacetimes has been so far widely investigated in the case of fluid-elastic matter �see Ref. 6, and
references therein� for scalar fields the situation is fully understood only in the very special case of
nonself-interacting, massless particles.3,4 The homogeneous collapse with potential has been
treated only in special cases, by Joshi et al. �who have also investigated on loop quantum gravity
effects in Ref. 9� and in Ref. 5, where the collapse features are characterized by the dependence of
the energy density on the scale factor a; an important open question in which models with
potentials have been used is also that of cosmic censorship violation in AdS.10,11

We will cast the above problem into a suitable variational framework. The use of a variational
approach in general relativity study is not a novelty, of course: for instance, some of the most
important results in the relativistic gravitational lensing problem are reviewed in Ref. 15. In the
present paper, actually, the variational approach is used to determine solutions of Einstein field
equations, i.e., spacetimes. Hilbert–Palatini action,13,19 indeed, provides a functional whose critical
points with respect to variation of the metric g yields solutions of Einstein field equations. The
particular case under our study produces the functional Eq. �2.2�, which is an integral made on the
interval �0, T� of definition of the solutions. Of course, since T is let free in principle, it must be
treated as an unknown for the system, but this problem may be circumvented by using the
functional Eq. �2.15� in the space of curves reparameterized on the interval �0, 1�. Although the
functional Eq. �2.15� seems in principle more complicated to deal with than Eq. �2.2�, critical point
existence can be obtained as a limit of a sequence of variational problems, for which Rabinowitz’
saddle point theorem16 techniques apply.

The outline of the paper is as follows. Section II is devoted to an exposition of the variational
formulation for the problem; Section III briefly outlines the general theory that applies to the
approximating variational problems introduced in Sec. IV, and studied in Sec. V. Section VI
contains the proof of the main Theorem 1.1.

II. THE VARIATIONAL PRINCIPLE

In the case under study it can be easily shown that the action functional is the following:

L�a,�� = �
0

T

3�ȧ2�t� + a�t�ä�t��a�t� + a3�t���̇2�t� − 2V���t���dt . �2.1�

We can integrate by parts the term in Eq. �2.1� containing ä�t�. We ignore the contribution of the
boundary term �3a2ȧ�0

T coming from the integration. This exactly amounts19 to modify the func-
tional Eq. �2.1�, adding the contribution �1/16��	�MK of the trace of the extrinsic curvature K
integrated along the boundary �M of the spacetime. All in all, we obtain
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L�a,�� = �
0

T

3a�t�ȧ2�t� − a3�t��̇2�t� + 2a3�t�V���t��dt , �2.2�

and the following proposition holds.
Proposition 2.1. If �a ,���C2�R+ ,R� solves the Euler–Lagrange equation for L, and

3ȧ�0�2 = a0
2��̇�0�2 + 2V��0�� , �2.3�

then it is a solution of Eqs. �1.1a� and �1.1b�.
Proof: This is a standard result, consequence of Nöther’s theorem, but an ad hoc proof can be

easily given. Indeed, the Euler–Lagrange equations for the functional Eq. �2.2� read

ȧ2 + 2aä = − a2��̇2 − 2V���� , �2.4a�

�̈ + V���� = − 3
ȧ

a
�̇ , �2.4b�

where the condition a�0 has also been used. Using these equations, the quantity a�3ȧ2−a2��̇2

+2V�� is easily seen to be constant with respect to t, and then if Eq. �1.1a� holds at the initial
time—which is just condition �2.3�—then it vanishes during the whole evolution. Since a�0, we
therefore obtain Eq. �1.1a�. Equation �1.1b� is equivalent to Eq. �2.4a�. �

Remark 2.2: A partial converse of Proposition above can be of course given, using the
following identity:

T0;�
� = − 2�̇
�̈ + V���� + 3

ȧ

a
�̇� . �2.5�

The left hand side above is the zero-component of the divergence of T,19 and it vanishes if the
Einstein equations hold, due to the conservation of energy �Bianchi identity�. Therefore, if �̇ is
everywhere nonzero, Eq. �2.4b� holds.

Actually, the converse result can be improved further.
Proposition 2.3: If �a ,�� : �0,T�→R+�R are C2 solutions of �1.1a� and �1.1b� with ���0 on

�0, T�, then they solve Eqs. �2.4a� and �2.4b�. In particular Eq. �2.3� holds.
Proof: Only Eq. �2.4b� must be proved. Let G�t� be the �continuous� function G�t�ª �̈�t�

+V����t��+3�ȧ�t� /a�t���̇�t�, and assume by contradiction the existence of t0� �0,T� such that
G�t0��0. Therefore, considered the �closed� set C= �t� �0,T� : �̇�t�=0�� �0,T�, the Bianchi iden-
tity Eq. �2.5� implies the existence of a closed interval �� ,�� such that

t0 � ��,�� � C , �2.6�

and that is maximal with respect to this property Eq. �2.6�. We will show G=0 on �� ,��, getting
a contradiction. Since �� ,�� is strictly contained in �0, T� then ��0 or ��T �or both�. Let us
assume for instance ��0. Since �̇���,��=0, and � is C2, then �̈���,��=0 and ��t�=����, ∀t
� �� ,��. These facts imply

G�t� = V�������, ∀ t � ��,�� . �2.7�

Maximality of �� ,�� with respect to Eq. �2.6� implies the existence of a sequence �n�C, �n

→�−. Then �̇��n��0 and therefore G��n�=0 by Eq. �2.5�, therefore the continuity of G and Eq.
�2.7� finally imply

0 = lim
n→	

G��n� = lim
t→�−

G�t� = V������� ,

obtaining G�t�=0 on �� ,��. �
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Remark 2.4: If � is everywhere constant one can easily find counterexamples where Eqs.
�1.1a� and �1.1b� hold but Eq. �2.4b� does not. This is a well known fact in relativistic elasticity
theory, where equivalence between the Bianchi identity and the Euler–Lagrange equations �i.e.,
Nöther theorem� holds under the assumption that the deformation tensor has maximum rank. We
refer the reader to Ref. 12 for further details on this topic. In the scalar field theory, the gradient
�� plays the role of this deformation tensor. For our purposes here, anyway, we will only use
Proposition 2.1.

The problem of finding the solutions of Eqs. �1.1a� and �1.1b� with fixed end points is brought
to the study of critical points of the functional Eq. �2.2� with fixed end points and under the initial
condition �2.3�. Of course, since the arrival time T is left free so far, one can reparameterize the
functions on the interval �0, 1�, with the obvious drawback to promote T as a new unknown of the
problem. But this problem can be overcome, applying the following �general� variational
principle.1,7

Theorem 2.5: Let �M ,g� be a semi-Riemannian manifold, W a C1 function on M, E�R and
p, q�M.

�1� If y : �0,1�→M is a critical point for the functional

F�y� = 
�
0

1 1

2
g
 d

ds
y�s�,

d

ds
y�s��ds�
�

0

1

E − W�y�s��ds� �2.8�

with positive critical value, in the space of C2 curves defined in �0, 1�, such that y�0�= p, y�1�
=q, called

T0 = �0

1 1

2
g
 d

ds
y,

d

ds
y�ds

�
0

1

E − W�y�s��ds �
1/2

, �2.9�

then the curve x : �0,T0�→M, x�t�=y�T0s� is a critical point for the functional

L�x� = �
0

T 1

2
g
 d

dt
x�t�,

d

dt
x�t�� − W�x�t��dt , �2.10�

with T=T0, in the space of C2 curves satisfying the conditions

x�0� = p, x�T� = q,
1

2
g
 d

dt
x�t�,

d

dt
x�t�� + W�x�t�� = E . �2.11�

�2� Vice versa, let us fix T�0, and let x : �0,T�→M be a critical point for the functional Eq.
(2.10) in the space of C2 curves 
 : �0,T�→R satisfying conditions (2.11). If
	0

T�1/2�g��d/dt�x�t� , �d/dt�x�t��dt�0, then the reparameterization y : �0,1�→M of x on [0, 1],
(i.e., y�s�=x�Ts��, is a critical point for the functional Eq. (2.8), with positive critical value, in the
space of C2 curves defined in [0, 1], such that y�0�= p, y�1�=q.

Proof: Let y�s� : �0,1�→M be a critical point for F �2.8�. The fixed end point first variation of
this functional and an integration by parts gives


�
0

1

E − W�y�s��ds� D2

ds2 y�s� + 
�
0

1 1

2
g
 d

ds
y�s�,

d

ds
y�s��ds� � W�y�s�� = 0 �2.12�

that is, using the value of T0 given by �2.9� �well defined since the critical value is positive�
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1

T0
2

D2

ds2 y�s� + �W�y�s�� = 0, ∀ s � �0,1� . �2.13�

Let x : �0,T0�→M be the reparameterization of y on the interval �0, T0� �i.e., x�t�=y�t /T0��.
Therefore, Eq. �2.13� becomes nothing but the Euler–Lagrange equation for the functional Eq.
�2.10� with T=T0. Moreover, contracting the left hand side of Eq. �2.13� with �d/ds�y�s�, we
obtain the existence of a constant K such that

1

T0
2

1

2
g
 d

ds
y�s�,

d

ds
y�s�� + W�y�s�� = K, ∀ s � �0,1� . �2.14�

Integrating both sides above between 0 and 1, and using Eq. �2.9�, we obtain E=K, and so

1

2
g
 d

dt
x�t�,

d

dt
x�t�� + W�x�t�� = E, ∀ t � �0,T0� .

Conversely, let x�t� : �0,T�→M be a critical point for Eq. �2.10� in the space of C2 curves
defined in �0, T�, satisfying Eq. �2.11�, and y�s� : �0,1�→M be its reparameterization: y�s�
=x�Ts�. Since d/ds=T�d/dt�, Eq. �2.14� holds with T0 and K replaced by T and E, respectively.
Integrating both sides of Eq. �2.14� in �0, 1� implies that T is equal to the value of T0 given by Eq.
�2.9�. Moreover, d /ds=T�d/dt� also implies Eq. �2.13�, and substituting the value of T0 given by
Eq. �2.9� we find that y�s� satisfies Eq. �2.12�, that is the critical point equation for the functional
Eq. �2.8�, and the proof is complete. �

Remark 2.6: The variational principle given above, is actually a sort of modified version of the
classical Euler–Maupertuis least action principle. The above proof is an adaptation of the one
given in Ref. 7 for the Euclidean case, and may not completely stress the link with the classical
principle. For a deeper insight, we refer the reader to the review8 by the same author.

Applying this variational principle to functional Eq. �2.2� �with E=0�, the following problem
provides solutions of homogeneous scalar field equation with fixed end points.

Problem: Let a0, a1�R+, �0, �1�R, and V�C1�R ,R�.
Find the critical points of the functional

F�a,�� = 
�
0

1

3a�t�ȧ2�t� − a3�t��̇2�t�dt�
�
0

1

2a3�t�V���t��dt� , �2.15�

with positive critical value, in the space of C2 curves �a ,�� : �0,1�→R+�R such that

a�0� = a0, a�1� = a1, ��0� = �0, ��1� = �1. �2.16�

III. THE FUNCTIONAL FRAMEWORK AND THE ABSTRACT CRITICAL POINTS
THEORY

We first recall the classical notion of the Palais–Smale condition.
Definition 3.1: Let X a Hilbert manifold of class C1 and f �C1�X ,R�. We say that f satisfies

the Palais–Smale condition at level c ��PS�c� if any sequence �xn�n�,N�X such that

f�xn� → c, and � f�xn� → 0

�where �f represents the gradient of f with respect to the Hilbert structure of X� has a converging
subsequence in X. The sequence �xn� with properties above is called a Palais–Smale sequence for
f .

Definition 3.2: We say that x�X is a critical point of f if �f�x�=0. A value c�R such that
there exists a critical point x with f�x�=c is a critical value for f . A value c�R which is not
critical will be called regular.

Theorem 3.3: Let X=��Y, where � is a Hilbert manifold and Y is a finite dimensional
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affine space. Let �·� denote the norm on Y, and let f �C1�X ,R�. Assume that

�1� there exists �0��, e0�Y, and R�0 such that, called BR�e0�= �e�E : �e−e0�R�, it is

b0 � sup
e��BR�e0�

f��0,e� � b1 � inf
���

f��,e0�;

�2� if b2=supe�Br�e0� f��0 ,e�, the strip �x�X :b1 f�x�b2��X is complete; and
�3� f satisfies �PS�c at any c� �b1 ,b2�.

Then, there exists a critical value c for f in �b1 ,b2�.
The proof can be obtained adapting the scheme developed in Ref. 16. However, the idea

behind is quite simple. If, by contradiction, �b1 ,b2� is made by regular value only, using the
gradient flow of the functional f one obtains the existence of a homotopy sending the sublevel
�x�X : f�x�b2� to the sublevel �x�X : f�x�b1� letting �x�X : f�x�b1� fixed. Therefore, using
the projection on Y and the retraction of Y on BR�e0�, and observing that b0�b1, one can define a
homotopy that sends BR�e0� to its boundary �BR�e0�—recall that b2=supe�BR�e0� f�x0 ,e�—and that
lets �BR�e0� fixed, which is impossible in finite dimension.

IV. AN APPROXIMATION SCHEME

By assumption �1.2� of Theorem 1.1, we know that a0�a1. To fix ideas, without loss of
generality we can assume

a0 � a1, �4.1�

so that Eq. �1.2� becomes

3a1�a1 − a0�2 � a0
3��1 − �0�2.

We can choose constants m ,M such that 0�m�a1�a0�M � +	 and

3m�a1 − a0�2 − M3��1 − �0�2 � 0. �4.2�

Consider the Hilbert manifold

� = �a � H1��0,1�,��m,M���:a�0� = a0,a�1� = a1� , �4.3�

where H1��0,1� , �m ,M�� is the set of absolutely continuous functions defined on �0, 1�, with
values on �m ,M�, such that 	0

1ȧ2dt� +	. Let us observe that � is a not complete Hilbert manifold
with Hilbert structure

�a1,a2� = �
0

1

ȧ1�t�ȧ2�t�dt .

We denote by �a�� the norm induced by the above inner product

�a�� = 
�
0

1

ȧ�t�dt�1/2

. �4.4�

Now set �*�t�= �1− t��0+ t�1. Since V�0, we have

inf
t��0,1�

V��*�t�� � v* � 0. �4.5�

Let us also consider the affine space
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Y = �� = �̂ + �*:�̂ � H0
1��0,1�,R�� , �4.6�

where H0
1��0,1� ,R�= ���H1��0,1� ,R� :��0�=��1�=0�. Y is a closed affine subspace of

H1��0,1� ,R�, with norm

���Y = 
�
0

1

�̇2�t�dt�1/2

. �4.7�

Since dim Y = +	 we cannot apply Theorem 3.3 as is to our setting, and then we approximate Y by
a sequence Yk, defined as follows: for any k�N set

Wk = span�sin���t�:t � �0,1�,� = 1, . . . ,k� , �4.8�

and

Yk = �� = �k
ˆ + �*:�k

ˆ � Wk� .

Remark 1: Since ��2 sin���t����N is a complete orthonormal system of H0
1��0,1� ,R�, if �

= �̂+�*�Y and �k
ˆ denotes the projection of �̂ on Wk, then �k

ˆ → �̂ in H0
1, with tejpect to the norm

defined in Eq. �4.7�.
We shall apply Theorem 3.3 to the space Xk=��Yk. Since � is not complete, and V is not

bounded in general, we modify the functional F �2.5� and look for critical points x�,�, with positive
critical value, of a suitable functional F�,�. Some estimates for the critical points x�,� will show that
they are critical points for F, whenever � is sufficiently small, and � sufficiently large.

Let �: R+→R+ of class C1, such that ��s�=0 if s0 and ��s�=s2 if s�0. Fix �� �0,1�, and
define

U��a� = �
 1

a − m
−

1

�
� + �
 1

M − a
−

1

�
� . �4.9�

Moreover, consider � :R→R of class C1 such that ��s�=s if s0, ��s�=1 if s�1, and � is
strictly increasing on the interval �0,1�. Fix ��0 and define

V���� = ��V��� − �� + � . �4.10�

Observe that V�=V whenever V����. Finally, define

F�,��a,�� = �
0

1

��3a + U��a��ȧ2 − a3�̇2�dt · �
0

1

2a3V����dt . �4.11�

It is a straightforward computation to show that the above functional is C1. In the next section we
shall show how to apply Theorem 3.3 to F�,� on the space ��Yk.

V. CRITICAL POINTS FOR THE FUNCTIONAL F�,�.

The aim of this section is to prove the following result.
Proposition 1: For any k�N there exists xk= �ak ,�k� critical point of F�,� on Xk such that

F�,��xk� � �b1,b2� ,

where b1, b2 are positive, and independent of k.
We must first show that hypotheses �1�–�2� of Theorem 3.3 hold for F�,� on Xk=��Yk. The

key point will be to show �3�, namely the Palais–Smale condition �Definition 3.1�. This will be
done in Lemma 5.3. First, let us prove the validity of hypotheses �2�.

Lemma 5.2: Denoted by Fc the sublevel Fc= �x���E :F�x�c�, then the set Fc�Xk is
complete in Xk.

Proof: Take a Cauchy sequence xn= �an ,�n����Ek. Since the closure of � is complete, and
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so is Ek, then there exists �a ,����̄�Ek such that an→a in H1 and �n→� in H1. Now
	0

1an
3V���n�dt→	0

1a3V����dt which is strictly positive, and 	0
1�3anȧn

2−an
3�̇n

2�dt→	0
13aȧ2−a3�̇2dt.

If a�t�� �m ,M�∀t, then �an ,�n� converges in ��Ek. The proof is complete as one shows that
there is no possibility that some t̄� �0,1� exists such that either a�t̄�=m or a�t̄�=M. By contra-
diction, suppose for instance

∃ t̄:a�t̄� = m, a�t� � m ∀ t � �0, t̄� . �5.1�

Observe that F�,��an ,�n�c, 	0
1a3V����dt�0, and 	0

1�3aȧ2−a3�̇2�dt is finite. We will show that
the hypothesis �5.1� implies

�
0

t̄

U��an�ȧn
2dt → + 	 ,

obtaining a contradiction.
Since an→a uniformly, ∀��0 there exists s̄� t̄ and n0�N such that

�an�t� − m�  �, ∀ t � �s̄, t̄�, ∀ n � n0.

Fix � such that m+��M. Then, recalling the definition of U�, it will suffice to show that

lim
n→	

�
s̄

t̄ ȧn
2

�an − m�2dt = + 	 , �5.2�

which easily follows from the following estimate:


�
s̄

t̄ ȧn
2

�an − m�2dt�1/2

�
1

�t̄ − s̄
�

s̄

t̄ �ȧn�
an − m

dt �
1

�t̄ − s̄
��

s̄

t̄ ȧn

an − m
dt� =

1

�t̄ − s̄
�log
 an�t̄� − m

an�s̄� − m
�� ,

that diverges because an�t̄�→a�t̄�=m whereas an�s̄�→a�s̄��m �.
The lemma below show that the Palais–Smale condition actually holds in every closed inter-

val of R.
Lemma 5.3: Fixed two values c1 ,c2 such that 0�c1�c2� +	, the functional F�,� satisfies

�PS�c, ∀c� �c1 ,c2�.
Proof: Let �an ,�n� be a Palais–Smale sequence for F�,� such that F�,��an ,�n�� �c1 ,c2� for any

n. Since �F�,��an ,�n� is infinitesimal we have, ∀��Wk �recall �4.8��

��F�,��an,�n��0,���  �n���H0
1, with �n → 0.

Therefore,

�
�
0

1

2an
3V���n�dt��

0

1

�− 2an
3�̇n�̇�dt + 
�

0

1

�3an + U��an��ȧn
2 − an

3�̇n
2dt��

0

1

2an
3V����n����dt�

 �n���H0
1.

Multiplying end terms of the inequality chain above by the bounded and strictly positive quantity
	0

12an
3V���n�dt we have

�
�
0

1

2an
3V���n�dt�2�

0

1

�− 2an
3�̇n�̇�dt + F�,��an,�n��

0

1

2an
3V����n��dt�  �n̂���H0

1, �5.3�

where �n̂ : =�n	0
12an

3V���n�dt→0. Since �n−�*�Wk we can choose �=�n−�*, and observe the
following facts:

• 	0
12an

3V���n�dt is bounded away from 0, independently of n,

112505-8 Giambò, Giannoni, and Magli J. Math. Phys. 47, 112505 �2006�

                                                                                                                                    



• F�,��an ,�n� is bounded,
• an

3V���n� is uniformly bounded, and

• ��n−�*�L	 ��̇− ��1−�0��L1 ��̇− ��1−�0��L2.

But 	0
1an

3�̇n�̇dt=	0
1an

3��̇n
2− �̇n��1−�0��dt which behaves like 	0

1�̇n
2dt if 	0

1�̇n
2dt diverges—recall that

���H0
1 = ��̇�L2. Then, by Eq. �5.3� we deduce the existence of a positive constant D0 such that

�
0

1

�̇n
2dt  D0, ∀ n � N . �5.4�

Since manM, F�,��an ,�n�c, and 	0
12an

3V���n�dt is bounded away from zero we deduce, by
Eq. �5.4�, that 	0

1�3an+U��an��ȧn
2dt is bounded; moreover, since 3an+U��an��3a1�0∀n� ,N,

there exists a positive constant D1 such that

�
0

1

ȧn
2dt  D1, ∀ n � N . �5.5�

By Eqs. �5.4� and �5.5�, there exists a and � of class H1 such that, up to subsequences

an ⇀ a, �n ⇀ �

weakly in H1 and uniformly. Since F�an ,�n� is bounded from above, arguing as in Lemma 5.2 one
proves that a�t�� �m ,M�,∀ t� �0,1�. Therefore, it remains to show

ȧn → ȧ in L2��0,1�,R� , �5.6�

and

�̇n → �̇ in L2��0,1�,R� . �5.7�

Observing that �n−��Wk, we can choose �=�n−� in Eq. �5.3�. Since F�,��an ,�n� is bounded by
standard estimates it is not difficult to obtain Eqs. �5.6� and �5.7� �.

Proof of Proposition 5.1: As already outlined, the aim is to apply Theorem 3 to the functional
F�,�. In view of Lemmas 5.2 and 5.3, it still remains to show that hypothesis �3� holds. Take
a*�t�= �1− t�a0+ ta1, and choose �0=a*, e0=�*. Note that, by Eq. �4.5� and the choice of m, we
have

�
0

1

a3V���*�dt � m3v* � 0, ∀ a � �, ∀ � � sup
t��0,1�

V��*� . �5.8�

Moreover by assumption �4.2� we have, for any a��,

�
0

1

��3a + U��a��ȧ2 − a3�̇*
2�dt � �

0

1

3mȧ2 − M3��1 − �0�2dt � 3m�a1 − a0�2 − M3��1 − �0�2 � 0,

therefore, by Eq. �5.8�,

b1 ª inf F�,��a,�*� � 0. �5.9�

Clearly, b1=b1�m ,M� and is independent of k. Actually, b1 is independent of � too, but this
property won’t be used here.

Since V� is bounded,

sup
R

V� � B� � + 	 ,

and
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�
0

1

a*
3V����dt  a0

3B�.

Moreover, if � is sufficiently small, U��a*�t��=0∀ t, so

F�,��a*,�� = �
0

1

�3a*ȧ*
2 − a*

3�̇2�dt�
0

1

2a*
3V����dt ,

but 	0
1�3a*ȧ*

2−a*
3�̇2�dt	0

1�3a*ȧ*
2−m3�̇2�dt, and then there exists R�0 independent of k such that

sup
��̂�Ek

=R

F�,��a*,�̂ + �*� ¬ b0 � b1, �5.10�

�note that b0 depends on �� and then hypothesis �1� of Theorem 3.3 also holds. This implies that
there exists a critical value for the functional F�,� on Xk in the interval �b1 ,b2�, where

b2 ª sup
��̂�Ek

R

F�,��a*,�̂ + �*� �5.11�

and since b2, though depending on �, is independent of k, the proof is complete. �

VI. PROOF OF THE MAIN RESULT

To complete the proof of Theorem 1.1, using Proposition 5.1, we first need the following
lemma. Recall the definitions of b1, b2 given in Eqs. �5.9� and �5.11�.

Lemma 6.1: There exists a critical value of F�,� on X=��E in �b1 ,b2�.
Proof: Let xk= �ak ,�k� the critical point given by Proposition 5.1. Arguing as in the proof of

Lemma 3 we deduce the existence of x= �a ,���X such that, up to subsequence

xk → x in H1.

We will show that x is a critical point of F�,�. Since F�,��xk�� �b1 ,b2� and F�,� is continuous, it
immediately will follow that F�,��x�� �b1 ,b2�.

Take �� ,�� in H0
1, and consider �k, the orthogonal projection of � on Wk. As observed in

Remark 4.1, �k→� in H1. Since �F�,��xk��� ,�k�=0 for any k, we have

�F�,��x���,�� = �F�,��x���,� − �k� + ��F�,��x� − �F�,��xk����,�k� ,

Let us observe that, since �� ,�k� is bounded in H1, and—recalling that F�,� is C1—�F�,��xk�
→�F�,��x�, then ��F�,��x�−�F�,��xk���� ,�k�→0. Moreover,

�F�,��x���,� − �k� → 0,

, since �k→� in H1. Then �F�,��x��� ,��=0, ∀� ,� in H0
1, and the proof is complete. �

Proof of Theorem 1.1: Recall first that, looking for solutions of Eqs. �1.1a� and �1.1b� in the
space of curves �a ,�� defined on �0,T� and with boundary conditions �1.4�, amounts to find
critical points for the functional Eq. �2.15� in the space of curves �a ,�� defined in �0, 1� with
boundary conditions �2.16�.

The above lemma ensures the existence of �a�,� ,��,��, critical point of F�,� in ��E, with
critical value in �b1 ,b2�. First, let us observe that a simple bootstrap argument shows that both a�,�

and ��,� are C2. Then the following conservation law follows from the variational principle:

�3a�,� + U��a�,���ȧ�,�
2 − a�,�

3 �̇�,�
2 − 2a�,�

3 V����,�� = 0. �6.1�

Since a�,�
3 ��̇�,�

2 +2V����,����0, ∀ t, then ȧ�,��t��0, ∀ t, and since we have supposed �see �4.1��
a0�a1 it is
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ȧ�,��t� � 0, ∀ t � �0,1�

and

a1  a�,��t�  a0, ∀ t � �0,1� .

Then a�,��t� is bounded away from m and M. Taking a sufficiently small � we have

m + � � a�,��t� � M − �

so that U��a�,��=0, U���a�,��=0 and therefore the couple �a� ,��� : = �a�,� ,��,�� is a critical point of

F��a,�� ª �
0

1

�3aȧ2 − a3�̇2�dt · �
0

1

2a3V����dt ,

with the critical value in �b1 ,b2�. Moreover, the conservation law �6.1� takes the form

3a�ȧ�
2 − a�

3�̇�
2 − 2a�

3V����� = 0. �6.2�

Recalling that ȧ� is negative, that implies

ȧ�

a�

= −��̇�
2 + 2V�����

3
.

Integrating the above relation in �0, 1� we obtain

a��t� = a0e−�1/�3�	0
t ��̇�

2+2V�����ds,

and in particular

a1 = a0e−�1/�3�	0
1��̇�

2+2V�����ds.

But a1�0 is of course fixed and therefore independent of �, then there exists a positive constant
D independent of � such that

�
0

1

��̇��dt  �
0

1 ��̇�
2 + 2V�����ds  D .

Since �0 is fixed, we see that, for any �, the function �� satisfies

����t��  ��0� + D ,

and therefore choosing ��sup�V��� : ��� ��0+D� we have

V���� = V�����, V����� = V������ .

This means that �a� ,��� is also a critical point of F �2.15� with positive critical value. �
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In this paper, we propose a new completely integrable wave equation: mt+mx�u2

−ux
2�+2m2ux=0, m=u−uxx. The equation is derived from the two dimensional Eu-

ler equation and is proven to have Lax pair and bi-Hamiltonian structures. This
equation possesses new cusp solitons—cuspons, instead of regular peakons ce−�x−ct�

with speed c. Through investigating the equation, we develop a new kind of soliton
solutions—“W/M”-shape-peaks solitons. There exist no smooth solitons for this
integrable water wave equation. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2365758�

I. INTRODUCTION

Solitons and integrable models are very attractive objects in nonlinear sciences. Originally
found in experiments on shallow water wave propagations one and a half centuries ago, they have
since then become an abundant and fascinating area of theoretical and mathematical study. Today,
solitons and integrable systems are playing an increasingly important role in dynamical systems,
harmonic analysis, and string theories.

There are well-known constructions of integrable systems. The idea of compatibility is the
crucial of integrable systems theory. One is already at the very definition of the complete integra-
bility of a Hamiltonian flow in the Liouville-Arnold sense, which means that the flow is able to be
included into a complete family of commuting Hamiltonian flows.2 Analogically, it is a symbolic
feature of soliton �integrable� partial differential equations that they take on not separately but are
always assigned in hierarchies of compatible systems. It is impossible to list all applications or
adoptions of this idea. We mention only some that are relevant for our present purpose. A condi-
tion of the existence of a number of commuting systems may be taken as the basis of the
bi-Hamiltonian structure and symmetry approach.1,7–9,11 However, a key procedure is to figure out
bi-Hamiltonian operators. In general, no universal method is available, and we have to work on
concrete equations.

In the present paper, we use Hamiltonian methods to present a new completely integrable
water wave equation:

ut − uxxt + 3u2ux − ux
3 = �4u − 2uxx�uxuxx + �u2 − ux

2�uxxx, �1�

namely,

mt + mx�u2 − ux
2� + 2m2ux = 0, m = u − uxx, �2�

where u is the fluid velocity and subscripts denote the partial derivatives. Actually, this equation
can be reduced from the two-dimensional Euler equation by using the approximation procedure. In
two dimensional Euler equations, vt+v ·�v=−�p, div v=0 �p is a pressure�, we take the velocity
v= �−�y ,�x�T, where � is a streamfunction. Then, the following equation:
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rt + �xry − �yrx = 0, r ª �xx + �yy ,

is generated from the Euler equations, where r stands for the vorticity. Employing �=��� ,y ,��,
�=��x−c0t�, �=�3t, imposing ��� ,y ,��=��1�� ,y ,��+�2�2�� ,y ,��+�3�3�� ,y ,�� and �1�� ,y ,��
=B1�y�F�� ,��, �2�� ,y ,��=B2�y�F�� ,��+B3�y�F�� ,��2, and picking up the coefficient of �4 term in
the approximation expansion of the equation, we will eventually arrive at

F� − a1F��� + �3a2F2 − a3F�
2�F� − �2a4F − 2a5F���F�F�� − „�a4 − a3�F2 − a5F�

2
…F��� = 0, �3�

where a1 , . . . ,a5 are constants. If we take a1=a2=a3=a5=1 and a4=2, Eq. �3� exactly gives the
new equation �1�. So, Eq. �1� is a new nonlinear water wave equation.

In the paper, Eq. �1� is shown to have the bi-Hamiltonian structure and the Lax pair, which
implies the integrability of the equation so that the initial value problem may be solved by the
Inverse Scattering Transform �IST� method.10,1 Our equation is proven to have new cusp
solitons—cuspons, which are not peakons in the regular type of ce−�x−ct� �c is a wave speed�3 and
whose first order derivative is discontinuous at some point �see more mathematical studies about
the Camassa-Holm equation in Refs. 5, 6, and 12�. Furthermore, we develop a new kind of soliton
solution, named “W-shape-peaks” or “M-shape-peaks” soliton, which is given in an explicit form
for this water wave equation. We will take some graphs to show how these W/M-shape-peaks
solitons look.

II. HAMILTONIAN STRUCTURE AND INTEGRABILITY

By using m=u−uxx, �1−�2���H1 /�m�=�H1 /�u, the wave equation �2� can be rewritten as

mt = − „m�u2 − ux
2�…x = J

�H0

�m
= K

�H1

�m
, �4�

where

J = − �m �−1m � , �5�

K = �3 − � , �6�

H0 = 2�
�

mu dx ,

H1 =
1

4
�

�

�u4 + 2u2ux
2�dx ,

�= �x0 ,x0+T� or �= �−� , + � � is the domain of u that needs to be periodic with T or to approach
a constant, and H0, H1 are two Hamiltonian functions. Apparently, both operator J and operator K
are Hamiltonian. So, our equation is bi-Hamiltonian.

In order to show the integrability of this equation, let us consider the following spectral
problem:

��1

�2
�

x
=	 −

1

2

1

2
	m

−
1

2
	m

1

2

��1

�2
� � U�m,	���1

�2
� , �7�

where 	 is a spectral parameter, m is a scalar potential function periodic or approaching the same
constant at both infinities, and �= ��1 ,�2�T is the spectral function corresponding to the spectral
parameter 	. Then, we have
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K �	 = 	2J �	 , �8�

where �	= �	 /2���1
2+�2

2�.
Remark 1: Equation �8� plays a very important role in the discussions of the periodic solutions

of the wave equation �2�, which we will deal with in a subsequent paper.14 Actually, on the basis
of these two operators, following our earlier method13 we are able to generate a new integrable
hierarchy.

By a careful calculation, we can verify the following statement.
Equation �2� has the following Lax pair:

��1

�2
�

x
= U�m,	���1

�2
� , �9�

��1

�2
�

t
= V�m,u,	���1

�2
� , �10�

where

U�m,	� =	 −
1

2

1

2
	m

−
1

2
	m

1

2

, m = u − uxx,

V�m,u,	� =	 	−2 +
1

2
�u2 − ux

2� − 	−1�u − ux� −
1

2
	m�u2 − ux

2�

	−1�u + ux� +
1

2
	m�u2 − ux

2� − 	−2 −
1

2
�u2 − ux

2� 
 .

In fact, one just checks that the compatibility condition

��1

�2
�

xt
= ��1

�2
�

tx
,

namely,

Ut − Vx + �U,V� = 0

generates Eq. �2�. A direct substitution of U�m ,	� and V�m ,u ,	� is able to guarantee the truth of
the above statement. One can also use maple to verify this procedure.

So the wave equation �2� is accordingly completely integrable by the Inverse Scattering
Transformation.1

III. W/M-SHAPE-PEAKS SOLITONS

A. Traveling wave setting

Let us consider the traveling wave solution of our equation �2� through a generic setting
u�x , t�=U�x−ct�, where c is the wave speed. Let �=x−ct, then u�x , t�=U���. Substituting it into
Eq. �2� yields

�U2 − U�2 − c��U − U��� + 2U��U − U��2 = 0, �11�

where U�=U�, U�=U��, U�=U���.
Remark 2: (1) Our ODE �11�, derived from our new PDE �2� through a traveling wave setting,
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is different from the Camassa-Holm (CH) case. In the CH case (see Ref. 15�, the traveling wave
ODE reads as

�U − c��U − U�� + 2U��U − U�� = 0.

Here our new equation is more high order nonlinear terms than the CH case.
(2) The integrable CH equation has both peakon and smooth soliton solutions.3,15 However,

our new integrable equation �2� has no smooth soliton solution, only cusp solitons and M/W-
shape-peaks solitons solutions (see the following sections). This means that an integrable equation
may have no smooth soliton, which may clue on a good idea to classify the integrable equations
by the mathematical features of solitons.

Generally, we have the following trivial facts.

�1� Any constant function is a solution of Eq. �2� and the ODE �11�.
�2� Any translation U��−�0� of a solution U��� of ODE �11� is still a solution.
�3� If u�x , t� is a solution of Eq. �2�, then any translation u�x−x0 , t− t0� in space x and time t is

a solution, too.

Because of the translation invariance of the differential equation �11�, without any loss of
generality, we choose �0 as vanishing, namely, �0=0. If U−U�=0, then Eq. �11� has general
solutions U���=c1e�+c2e−� with any real constants c1, c2. Of course, they are the solutions of Eq.
�2�. This result is not interesting for us. Actually, there are general weak solutions to Eq. �2�:

u�x,t� = c cosh��x − ct�� ± �c�c − 1�sinh��x − ct�� , �12�

where c �c
1 or c�0� is the wave speed.
Because the solution u�x , t� defined by �12� approaches infinity as x goes to infinity, this

solution is not a soliton, which is not so interesting, either. Let us now assume that U is NEITHER
a constant solution of Eq. �11� NOR satisfies U2−U�2=0. Taking the integration on both sides of
Eq. �11� leads to

�U − U���c − �U2 − U�2�� = C2, �13�

where C2�0�R is an integration constant.
Multiplying both sides of Eq. �13� by −4U� and then taking another integration, we obtain

�c − �U2 − U�2��2 = − 4C2U + C1, �14�

namely,

U�2 = U2 − c ± �C1 − 4C2U , �15�

where C1�R is another integration constant.
Let us now impose the boundary condition

lim�→±� U = A , �16�

to figure out the two constants C1, C2. Substituting the boundary condition �16� into the ODEs �13�
and �14� generates the following two constants:

C1 = �c − A2��c + 3A2� , �17�

C2 = A�c − A2� . �18�

So the ODE �14� becomes

�c − �U2 − U�2��2 = �c − A2��c + 3A2 − 4AU� . �19�

Remark 3: There is no shock wave (or kink) solution for our equation �2� because we cannot
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be allowed to set lim�→+� U� lim�→−� U. In other words, the traveling wave solution of our
equation, satisfying the boundary condition �16�, is definitely a soliton!

Let us solve Eq. �19� in the coming subsection.

B. W/M-shape-peaks solitons

Let us assume that A�0 and c�A2 �if A=0 or c=A2, then C2=0, which corresponds to U
−U�=0. We already discussed it in Sec. III A. Actually, no solitons are found in this case�. The
fact that both sides of Eq. �19� are non-negative implies

�c − A2��c + 3A2 − 4AU� � 0. �20�

Let V=��c−A2��c+3A2−4AU� and s=c−A2, then V�0,V=�s�s+4A2−4AU�, U=A
+ �1/4sA��s2−V2� and Eq. �19� becomes

VdV

�s − �V���s + �V�2 − 8sA2
= 

d�

2
, � = ± 1. �21�

Let us discuss the cases of �=1 and �=−1 separately.

�1� Case �=1. If we chose s�0, then Eq. �21� can be integrated as

„V + s + ��V + s�2 − 8sA2�− V − s + 4A2 + a��V + s�2 − 8sA2

V − s
�1/2a

= e−���/2−ln�−4s�/2a,

�22�

where a=��s−2A2� /s=��3A2−c� / �A2−c�, s−2A2�0, and a�1.
Because Vy ±s as �→� whereas the right hand side of Eq. �22� goes to 0 as �→�, the

solution V determined by Eq. �22� does not exist. So, s�0 is not available for case �=1.
Therefore, s must be positive, namely, s�0, which assures that Eq. �21� can be integrated as

„V + s + ��V + s�2 − 8sA2� V − s

V + s − 4A2 + a��V − s�2 − 8sA2�1/2a

= e���/2+ln�4s�/2a, �23�

where a=��s−2A2� /s=��c−3A2� / �c−A2�, s−2A2�0, and 0�a�1.
In general, we cannot solve the equation �23� for V in an explicit form. But, for some very

special a’s, we do have the explicit solution V. For example, let us take a= 1
2 ; then c= 11

3 A2 and
s= 8

3A2. Substituting it into Eq. �23� generates

V2 − bV + sb = 0, �24�

where

b = 3se−
���
2 +

3s

4
e

���
2 + s = 3s cosh� ���

2
− ln�2�� + s = s�3 cosh� ���

2
− ln�2�� + 1� .

Therefore, solving Eq. �24� for V gives

V =
1

2
�b − �b2 − 4sb� =

3s

2
�2

3
+ z −�z2 −

4

9
� = s +

3s

2
�z −�z2 −

4

9
� ,

where z=cosh(�� � /2−ln�2�)− 1
3 . So, we arrive at explicit solutions U��� of Eq. �2�,

U��� = A�5

3
− �3z + 2��z −�z2 −

4

9
�� ,
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z = cosh� ���
2

− ln�2�� −
1

3
,

� = x −
11

3
A2t . �25�

Apparently, V���→s and U���→A as �→�. Since A�0, there is no peaked soliton for a homo-
geneous boundary condition. Let us select a special A=1, then the solution U��� reads as

U�X� = 2 − 3 cosh2 X + �cosh X +
1

3
��3�3 cosh X + 1��cosh X − 1� .

X =
�x − 11

3 t�
2

− ln 2.

Apparently, this solution has three peaks and looks like a “W” wave. So, we called it a “W-shape
peaks” soliton. Three peaks occur at x= 11

3 t0, x= 11
3 t0−2 ln�2�, x= 11

3 t0+2 ln�2�, for each time t0.
See Fig. 1 for more details.

If we select the boundary constant A=−1, we are able to get the anti-“W-shape-peaks” soliton,
called an “M-shape-peaks” soliton. See a 3D and a 2D graph in Fig. 2 for more details.

For other a’s, in a similar way we can also obtain the corresponding peaked soliton solutions,
which are left for the readers’ practice.

FIG. 1. �a� A three-dimensional �3-D� graph of the explicit solution U��� defined by �25�, when A=1, s=8/3, wave speed
c=11/3, and the range of x , t ,u: −4�x�10, 0�x�2, −1�u�1. �b� A 2D graph of the explicit solution U��� defined by
�25� when A=1, s=8/3, the wave speed c=11/3, and the range of �: −10���10.

FIG. 2. �a� A 3D graph of the “M-shape-peaks” solution U��� defined by �25� with A=−1 and c=11/3. �b� 2D graph of the
“M-shape-peaks” solution U��� defined by �25� with A=−1 and c=11/3.
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New cusp solitons-cuspons. In Eq. �22�, we consider the solution V without the absolute value
of �. Following the above procedure, in case of a= 1

2 we may obtain

U��� = A�5

3
− �3z + 2��z −�z2 −

4

9
�� ,

z = cosh� x

2
−

11

6
A2t� −

1

3
. �26�

A direct verification shows us the following: �26� is indeed another explicit solutions of Eq. �2�.
Let us take A= ±1. Then the corresponding solutions read as

U�X� = ± �2 − 3 cosh2 X + �cosh X +
1

3
��3�3 cosh X + 1��cosh X − 1�� ,

X =
x

2
−

11

6
t ,

which have the following characteristic features:

U�0� =  1, U��0 + � = ± � , U��0 − � =  � .

Apparently, they differ from the regular peakons.3 So, both are new peaked solitons for our
equation �2� �see Figs. 3, 4 for more details�.

FIG. 3. �a� 2D graph of new cuspon solution U��� defined by �26� with amplitude A=1 and wave speed c=11/3. �b� 3D
graph of new cuspon solution U��� defined by �26� with A=1 and c=11/3.

FIG. 4. �a� A 2D graph of new cuspon solution U��� defined by �25� when A=−1 and c=11/3. �b� A 3D graph of a new
cuspon solution U��� defined by �25� when A=−1 and c=11/3.
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�2� Case �=−1. If we chose s�0, then Eq. �21� can be integrated as

„V − s + ��V − s�2 − 8sA2� s − V − 4A2 + a��V − s�2 − 8sA2

V + s
�1/2a

= e−���/2−ln�4s�/2a,

�27�

where a=��s−2A2� /s=��c−3A2� / �c−A2�, s−2A2�0, and 0�a�1.
Because Vy ±s as �→� whereas the right hand side of Eq. �27� goes to 0 as �→�, the

solution V determined by Eq. �27� does not exist. So, s�0 is not available for case �=−1.
Therefore, s must be negative, namely, s�0, which gurantees that Eq. �21� can be integrated as

�V − s + ��V − s�2 − 8sA2� V + s

V − s + 4A2 + a��V − s�2 − 8sA2�1/2a

= e−���/2+ln�−4s�/2a, �28�

where �=x−ct, a=��s−2A2� /s=��3A2−c� / �A2−c�, s−2A2�0, and 1�a.
In general, we cannot solve Eq. �28� for V in an explicit form. But, we can numerically

determine V from Eq. �28�, and then according to the equation, U=A+ �1/4sA��s2−V2� to figure
out the solution U��� for our equation �2�. For instance, in the case of A= ±1, c=1/3, we have
a=2 and s=−2/3, and numerically solve our equation �2� �see Fig. 5 for details�.

For other a’s �for instance, a=3,4�, in a similar way we can also numerically obtain the
corresponding cuspon solutions of Eq. �2�.

IV. CONCLUSIONS AND OPEN PROBLEMS

In the paper, we present a new integrable water wave equation �2�. Through studying the
equation, we develop a new kind of soliton solution—“W-shape-peaks”/“M-shape-peaks” solu-
tions �see Fig. 1, 2�. Our equation is shown to possess not only “W-shape-peaks”/“M-shape-peaks”
solitons, but new cuspon solution as well �see Figs. 3, 4 which are different from regular peakons�.

Our new equation �2� naturally has a physical meaning since it is derived from the two
dimensional Euler equation �see the Introduction�. It can be cast into the following Newton
equation U�2= P�U�− P�A2� of a particle with a new potential P�U�=U2

+sign�s��s�s+4A2−4AU�, s=c−A2, or V�2=Q�V�−Q�A� with U=A+ �1/4sA��s2−V2�, Q�V�
=V2 /4+4s �s �A2 /V+s3�s−8A2� /4V2. In the paper, we successfully solve this Newton equation
with new cuspons and M-shape/W-shape-peaks solitons. Those peaked and cusped solutions may
be applied to neuroscience for providing a mathematical model and explaining electrophysiologi-
cal responses of visceral nociceptive neurons and sensitization of dorsal root reflexes.4

FIG. 5. �a� A 3D numerical graph of the cuspon solution U��� of Eq. �2� based on �28� with amplitude A=1 and wave
speed c=1/3. �b� A 3D numerical graph of the cuspon solution U��� of Eq. �2� based on �28� with amplitude A=−1 and
wave speed c=1/3.
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No smooth solitons are found for our equation, but our equation is completely integrable.
Furthermore, we suggest a more general partial differential equation: mt+mx�u2−ux

2�+km2ux=0,
m=u−uxx with any constant k�R. When k=2, the equation is integrable, which is already dis-
cussed in this paper. Any other integrable cases? We do not know yet.
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Ado’s theorem asserts that every real Lie Algebra g of dimension n has a faithful
representation as a subalgebra of gl�p ,R� for some p. The theorem offers no prac-
tical information about the size of p in relation to n and in principle p may be very
large compared to n. This article is concerned with finding representations for a
certain class of six-dimensional Lie algebras, specifically, real, indecomposable
algebras that have a codimension two nilradical. These algebras were classified by
Turkowski and comprise of 40 cases, some of which contain up to four parameters.
Linear representations are found for each algebra in these classes: More precisely,
a matrix Lie group is given whose Lie algebra corresponds to each algebra in
Turkowski’s list and can be found by differentiating and evaluating at the identity
element of the group. In addition a basis for the right-invariant vector fields that are
dual to the Maurer-Cartan forms are given thereby providing an effective realiza-
tion of Lie’s third theorem. The geodesic spray of the canonical symmetric connec-
tion for each of the 40 linear Lie group G is given. Thereafter the inverse problem
of the calculus of variations for each of the geodesic sprays is investigated. In all
cases it is determined whether the spray is of Euler-Lagrange type and in the
affirmative case at least one concrete Lagrangian is written down. In none of the
cases is there a Lagrangian of metric type. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2378620�

I. INTRODUCTION

In this article we study the inverse problem of Lagrangian dynamics for the canonical linear
connection on a Lie group. More precisely we consider the inverse problem for solvable six-
dimensional groups whose Lie algebras have a codimension two nilradical. A list of such algebras
has been compiled by Turkowski �1990�. In order to make the exposition reasonably self-
contained, Secs. IV and V gives some background on the inverse problem. For more details we
refer the reader to Anderson and Thompson �1992�, Crampin �1981�, Crampin et al. �1996�,
Douglas �1941�, Ghanam et al. �2005�, Grifone and Muzsnay �1999, 2000�; Muzsnay and Thomp-
son �2003�, Sarlet �1982�, Sarlet et al. �1998�. It turns out that in order for the geodesics of the
canonical connection to be variational a linear system of equations must have a nonsingular
solution �Eqs. �12� and �13��. If there is no nonsingular solution the inverse problem is answered
in the negative. To proceed further using our methods, we need a local representation of the Lie
algebra in terms of vector fields or preferably a linear representation for the corresponding Lie
group.

A well-known theorem in the theory of Lie algebras due to Ado asserts that every real Lie
algebra g of dimension n has a faithful representation as a subalgebra of gl�p ,R� for some p. The
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theorem does not give much information about the value of p but leads one to believe that p may
be very large in relation to the size of n and consequently it seems to be of limited practical value.

If the Lie algebra g is semisimple there are well-known representations that are associated to
the standard Ak ,Bk ,Ck ,Dk series that are of the order of �n where n is the dimension of g. On the
other hand it is clear that semisimple algebras are very much the exception rather than the rule. For
example, there are only two semisimples in dimension five or less. More generally if g has a trivial
center the adjoint representation furnishes a faithful representation of g and in the notation used
above p=n. Many of our representations are constructed in this way. We develop some theorems
in Sec. III which explain how to obtain representations in the case where the algebra has a
nontrivial center. In particular we will show that if g has an abelian nilradical and abelian comple-
ment then it has a faithful linear representation. There are a few algebras for which we have
obtained matrix representations by some experimentation. Ultimately we would like to have prac-
tical theorems that give the representations in all cases.

We refer to Patera et al. �1976� for a comprehensive list of the indecomposable algebras of
dimension five or less, which in turn was based on Murozov �1958� and Mubarakzyanov �1963�.
However, in this article we are primarily concerned with the solvable six-dimensional algebras
compiled by Turkowski �1990� and in Sec. VI we list linear representations for each of these
algebras. In fact rather than giving representations for the Lie algebras we give in each case a
matrix group whose Lie algebra coincides with a given algebra. It is straightforward then to
construct the matrix representation of the algebra by differentiating and evaluating at the identity
element of the group. We have also given a representation of the algebra in terms of the right
invariant vector fields and the associated geodesic equations. For standard facts about Lie algebras
and Lie groups we refer to Helgason �1978� and Jacobson �1962�. We use �e1 ,e2 , . . . ,es� to denote
the s dimensional subspace of g generated by e1 ,e2 , . . . ,es.

The existence aspect of the inverse problem is solved in every case by either supplying at least
one concrete Lagrangian or by checking that one cannot exist. It is to be noted that whenever one
Lagrangian exists then so do many. We have not attempted in this article to find all possible
Lagrangians in any of the forty cases nor special kinds of Lagrangians except to say that in none
of the cases is there a metric Lagrangian.

The vast majority of work on the inverse problem is concerned with two degrees of freedom.
There are very few examples or results in higher dimensions, the Kepler system being a rare
example. The Lie group inverse problem is a much simpler version of the general problem but it
already presents major difficulties. We believe that it will serve as a valuable guide to the kind of
theory that one might expect in higher dimensions. We hope also that the results on representations
may prove to be of independent interest.

Most of the calculations involving Maurer-Cartan one forms, vector fields and Euler-Lagrange
equations were carried out using the symbolic manipulation program MAPLE. The fact that certain
geodesic systems are not of Euler-Lagrange type follows from Eqs. �12� and �13� below. A routine
written in MAPLE 9 was used that checks these conditions when a particular Lie algebra is used as
input. In the interests of brevity and because a lot of similar arguments have been given previously
�Ghanam et al. �2004��, we have chosen to suppress most details. However, we have supplied a
short Appendix which should give the reader some insight as to how we construct our Lagrangians
in six diverse cases. We must trust that this method is more efficient than trying to give hundreds
of small routine calculations.

II. SIX-DIMENSIONAL LIE ALGEBRAS AND TURKOWSKI’S CLASSIFICATION

Let us explain how the indecomposable Lie algebras of dimension six are classified. First of
all there is only one indecomposable simple algebra of dimension six, namely, the pseudo-
orthogonal algebra o�3,1� The next class of algebras to consider are the algebras that have a
nontrivial Levi-decomposition. According to Turkowski there are up to isomorphism just four of
them listed as L6,1, L6,2, L6,3, and L6,4 �Turkowski �1988��. All the remaining indecomposable
algebras in dimension six are solvable.
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There is a general inequality that implies that the dimension of the nilradical of a solvable,
indecomposable Lie algebra g is at least 1

2 dim�g� �Morozov �1958��. According to Turkowski if
the dimension of the nilradical of a solvable Lie algebra of dimension six is three, then the algebra
is decomposable and hence there are just three classes to consider: The nilpotents and the algebras
that have five-dimensional and four-dimensional nilradicals, respectively. We are concerned ex-
clusively with this latter class of algebras in this article and they have been classified in Turkowski
�1990�. For a given algebra g in Turkowski’s list we always use a basis �e1 ,e2 ,e3 ,e4 ,e5 ,e6	 in
which e1 and e2 are not in the nilradical of g.

Turkowski distinguishes 40 classes of algebras that have a codimension two nilradical
�Turkowski �1990��. Of course the situation is a good deal more complicated than that because
most of the algebras have up to four parameters that vary in open intervals. Turkowski’s method
consists essentially of putting the two matrices ad�e1� and ad�e2� into simultaneous normal form,
where e1 and e2 are basis vectors that lie outside of the nilradical. Turkowski arranges the 40
algebras into five tables as follows: Table 1 �algebras 1–19�, algebras that have abelian nilradical
and trivial center; Table 2 �algebras 20–27�, algebras that have abelian nilradical and one-
dimensional center; Table 3 �algebra 28�, algebras that have nilradical isomorphic to the indecom-
posable four-dimensional nilpotent; Table 4 �algebras 29–37�, algebras that have nilradical iso-
morphic to the direct sum of the indecomposable three-dimensional nilpotent with R and having
trivial center; Table 5 �algebras 38–40�, algebras that have nilradical isomorphic to the direct sum
of the indecomposable three-dimensional nilpotent with R and having one-dimensional center.

III. REPRESENTATIONS FOR TURKOWSKI’S ALGEBRAS

Let us now consider the problem of constructing representations for the algebras in Turkows-
ki’s list. It is apparent that for algebras in Tables 1, 3, and 4 representations may be obtained from
the adjoint representation. For the convenience of the reader we have given for each of these
algebras the corresponding Lie subgroup of GL�6,R� that we obtain by exponentiation or, Lie
subgroup of GL�5,R�, that we obtain from Theorem 5.1 below. We give also in each case a
collection of vector fields that are right-invariant and that are obtained by dualizing a collection of
right-invariant Maurer-Cartan one-forms.

There are eleven classes of algebra in Table 2 and 5 for which faithful representations cannot
be found by using the adjoint representation. Several of the algebras in Table 2 contain a parameter
� whose value is 0 or 1. The significance of � is that when it is zero the nilradical has an abelian
complement in the algebra g. For such algebras we can find faithful representations by appealing
to the following proposition and theorem.

Proposition 3.1: Suppose that �e1 ,e2 , . . . ,en	 is a basis for a vector space g and there exists a
skew bilinear map �,�: g�g→g and �ei ,ej�=0, �ea ,eb�=0, �ea ,ei�=Cai

j ej, where 1� i , j�r, r
+1�a ,b ,c�n. Then g is Lie algebra if Cai

j Cbj
k =Cbi

j Caj
k .

Proof: If we consider the Jacobi identity we see that it is identically satisfied for each of the
triples �ei ,ej ,ek	, �ei ,ej ,ea	, �ea ,eb ,ec	. It remains to check �ei ,ea ,eb	. Thus

�ei,�ea,eb�� + �eb,�ei,ea�� + �ea,�eb,ei�� = − �eb,Cai
j ej� + �ea,Cbi

j ej� = − Cai
j Cbj

k ek + Cbi
j Caj

k ek.

We deduce that the necessary and sufficient condition for obtaining a Lie algebra is

Cbi
j Caj

k − Cai
j Cbj

k = 0.

�

Theorem 3.1. Suppose that the n-dimensional Lie algebra g has a basis �e1 ,e2 , . . . ,en	 and
only the following nonzero brackets: �ea ,ei�=Cai

j ej, where �1� i , j�r ,r+1�a ,b ,c�n�. Suppose
that g has an abelian nilradical for which a basis is �e1 ,e2 , . . . ,er	 and �er+1 , . . . ,en	 is a basis for
an abelian subalgebra complementary to the nitradical. Then g has a faithful representation as a
subalgebra of gl�r+1,R�.

Proof: The endomorphism ad�ea� for r+1�a�n correspond to n�n matrices in which there
are nonzero entries only in the upper left r�r block: This r�r matrix is in fact �Caj

i �. We denote
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by Ea the �r+1�� �r+1� matrix whose upper left r�r block is �Caj
i � and whose remaining entries

are zero. To obtain the representation, map ea to Ea for r+1�a�n; for each vector ei�1� i�r�
map it to the �r+1�� �r+1� matrix Ei whose only nonzero entry is a one in the �i ,r+1�th position.
Clearly the Ei�s commute. Note that the matrix product EiEa is zero and so

�Ea,Ei� = 

k=1

r

Cai
k Ek. �1�

Finally, consider the Jacobi identity

��ea,eb�,ei� + ��ei,ea�,eb� + ��eb,ei�,ea� = 0.

On expanding we deduce that Cai
k Cbk

j −Cbi
k Cak

j =0. as in Proposition 3.1. It follows that �Ea ,Eb�
=0 and we have the required representation. �

Again we refer to the algebras in Turkowski’s list �Turkowski �1990��. It is possible to obtain
representations, for example, for algebras 6.1–18 using Theorem 3.1 but for those particular
algebras we have chosen to use the adjoint representation. On the other hand we do use Theorem
3.1 for algebras 6.22��=0� and 6.23��=0� in Sec. VI.

The next theorem is an improvement of a result that appears in Ghanam et al. �2005� and
explains how under favorable circumstances the two-dimensional nonabelian Lie algebra can be
used to extend a representation for an algebra of dimension n to a representation for an algebra of
dimension n+1.

Theorem 3.2: (i) Suppose that g is an n-dimensional Lie algebra with structure equations
�ei ,ej�=Cij

k ek with basis �e1 ,e2 , . . . ,en	 and that en is not in the derived algebra �g ,g�. Suppose
that h is a space of dimension n+1 for which g is an n-dimensional subspace and that
�e1 ,e2 , . . . ,en ,en+1	 is a basis for h. Suppose that there is skew-bilinear map from h�h to h

defined on the basis for h that satisfies �ei ,ej�=Cij
k ek, �en+1 ,ei�=0 �1� i�n−1�, �en+1 ,en�=ben+1

for some nonzero b�R. Then h is a Lie algebra, that is, the Jacobi identity holds on h. In fact h

is a one-dimensional split extension of g and the subspace spanned by �e1 ,e2 , . . . ,en−1	 is an ideal
in g as well as in h.

(ii) In particular suppose that g is an n-dimensional solvable Lie algebra that is isomorphic
to a subalgebra of gl�n ,R� and that en is not in the nilradical of g. Then h as defined above is
isomorphic to a subalgebra of gl�n+1,R�.

We can use Theorem 3.2 to find, for example, representations for algebras 6.1, 6.2, 6.12, 6.19,
6.20, and 6.26 assuming that we have representations for the corresponding five-dimensional
algebras.

IV. THE INVERSE PROBLEM FOR SECOND-ORDER ORDINARY DIFFERENTIAL
EQUATION „ODE… SYSTEMS

There has been a great deal of activity in the inverse problem of Lagrangian dynamics during
the past thirty years and we do not need to repeat all the theory here so we shall give a brief
summary that is sufficient for our needs. Consider then a system of second-order ODE of the form

ẍi = f i�xj, ẋj� . �2�

To simplify notation we shall denote ẋi by ui throughout. Douglas formulated an algebro-
differential system which gives necessary and sufficient conditions for Eq. �2� to be the Euler-
Lagrange equations of a regular first-order Lagrangian L.

To state Douglas’ conditions we define the following n�n matrix of functions:

� j
i =

1

2

d

dt
� �f i

�uj� −
�f i

�xj −
1

4

�f i

�uk

�fk

�uj . �3�

Douglas obtained the following conditions known universally as the Helmholtz conditions whose
role is explained in the theorem below
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g� = �g��t, �4�

dgij

dt
+

1

2

�fk

�ui gkj +
1

2

�fk

�uj gki = 0, �5�

�gij

�uk −
�gik

�uj = 0. �6�

Theorem 4.1: �Douglas� Necessary and sufficient conditions for there to exist a Lagrangian
so that (2) are its Euler-Lagrange equations are that there should exist a nonsingular, symmetric
matrix gij depending on �xi ,ui� that satisfies Eqs. (4)–(6). To pass from the Hessian to the La-
grangian requires two integrations and the fact that appropriate linear and zeroth-order terms
may be added is a consequence of the Helmholtz conditions; the only ambiguity in passing from
Hessian to Lagrangian is the trivial one of scaling by a constant and adding a total time deriva-
tive.

Let us consider the Helmholtz conditions as an algebro-differential system. It is always pos-
sible to solve Eq. �4� and it alone will not entail that the Lagrangian function is singular. As
regards Eq. �5�, it is in a sense a system of ODE’s and it is possible, in principle, to solve them.
Upon integration it is not constants that enter but rather arbitrary first integrals of the original ODE
system �2�. In practice this step becomes problematic unless Eq. �2� has sufficiently many explicit
first integrals. Such integrals do exist for the geodesics of the canonical Lie group connection: See
Proposition 5.2 below.

Thus, there is no obstruction to solving Eqs. �4� and �5� in principle and at this stage it is not
possible to say definitively if the Lagrangian L exists or not. The final and most difficult step is to
impose the so-called closure conditions �6�. Even if we are fortunate enough to solve Eqs. �4� and
�5� we are now faced with a daunting task: For n degrees of freedom �6� compromises a system of
2�� n+1

3
�� PDE’s on the components of gij and there are 2n independent variables. In the case at hand

where n=6 we thus have a system of 70 PDE’s. If one wants to construct the most general possible
Lagrangian for Eq. �2� it is necessary to solve this system.

Fortunately, the situation confronting us in terms of solving the Helmholtz conditions is not as
bad as one might imagine for two reasons. First of all, note that Eq. �4� are purely algebraic
conditions on the unknown matrix gij. There are some auxiliary algebraic conditions that can be
stated as follows. Define functions � jk

i by

� jk
i =

1

3
� �� j

i

�uk −
��k

i

�uj � . �7�

The extra conditions on gij are

gmi� jk
m + gmk�ij

m + gmj�ki
m = 0. �8�

In fact each of Eqs. �5� and �8� are the first in an infinite hierarchy of similar algebraic conditions.
However, only Eqs. �5� and �8� are relevant in the present context because, since the curvature of
the canonical Lie group connection is parallel, the higher order conditions in the hierarchy are
identities. Notice that Eq. �8� comprises � n

3
� conditions whereas Eq. �5� comprises � n

2
� conditions.

Thus it may well be the case that collectively Eqs. �5� and �8� entail that the Lagrangian function
is singular. In this paper they are the only conditions that are obstructions to the existence of a
regular Lagrangian although there is as yet no theoretical basis to conclude that a similar result is
true in arbitrary dimensions. In the Appendix we have given a couple of examples for which we
show that the Lagrangian is singular.

Secondly, in many cases it is very useful to know that at least one Lagrangian exists. After all,
the best way to determine whether a particular system is variational is to give a Lagrangian! In fact
even if one can find the general solution to Eq. �6� it will rarely be possible to find all possible
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Lagrangians; it is impossible even for a free particle system. However, if system �2� admits
submersions onto lower dimensional systems, it may be possible to lift Lagrangians to the higher
dimensional systems. In the case of the geodesic equations of the canonical Lie group connection
there are many such submersions: See Proposition �5.1� below.

V. THE INVERSE PROBLEM FOR THE CANONICAL LIE GROUP CONNECTION

Let us explain next how the general theory simplifies for the case of the geodesic equations
associated to a linear connection. In this case the matrix � is of the form

� j
i = Rkjl

i ukul �9�

where Rkjl
i are the components of the curvature R of the connection relative to a coordinate system

�xi�. For the case of a linear connection, one finds also that

� jk
i = Rljk

i ul. �10�

The condition coming from � is

�gmiRpjq
i − gjiRpmq

i �upuq = 0, �11�

while the condition coming from � is

�gmiRpjq
i + gqiRpmj

i + gjiRpqm
i �up = 0. �12�

If we contract uq into Eq. �12� we find from Eq. �11� that

gqiRpmj
i upuq = 0. �13�

Thus, for the special case of a linear connection, we can use Eqs. �12� and �13� instead of Eqs. �11�
and �12�.

Let us now consider the canonical symmetric connection � on a Lie group G. In fact � is
defined on left invariant vector fields X and Y by �see Cartan and Schouten �1926��

�XY = 1
2 �X,Y� , �14�

and then extended to arbitrary vector fields by making � tensorial in the X argument and satisfy
the Leibnitz rule in the Y argument. It can be shown that � is symmetric, bi-invariant and that the
curvature tensor on left invariant vector fields is given by

R�X,Y�Z = 1
4 �Z,�X,Y�� . �15�

Furthermore, G is a symmetric space in the sense that R is a parallel tensor field. The Ricci tensor
Rij of � is symmetric and bi-invariant. In fact, if �Ei	 is a basis of left invariant vector fields then

�Ei,Ej� = Cij
k Ek �16�

where Cij
k are the structure constants and relative to this basis the Ricci tensor Rij is given by

Rij = 1
4Cjm

l Cil
m. �17�

Since Rjkl
i is a parallel tensor field and Rij is symmetric, it follows that Ricci gives rise to a

quadratic Lagrangian which is not regular for solvable algebras because of Cartan’s criterion. We
shall also assume that G is indecomposable in the sense that the Lie algebra g of G is not a direct
sum of lower dimensional algebras. In terms of the Lie group inverse problem, if the algebra is
indecomposable then we can obtain a Lagrangian on the product by adding Lagrangians on each
component.
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Since our starting point is the Lie algebra g of a Lie group it is of interest to ask how the ideals
of g are related to �. To this end we shall quote the following result: see Kossowski and Thomp-
son �1991� and Ghanam et al. �2004�.

Proposition 5.1: Every ideal h of g gives rise to a quotient space Q consisting of the leaf space
of the integrable distribution determined by h and � on G projects to Q. �

A very interesting situation occurs where a solvable algebra g possesses two ideals h1 and h2

in the nilradical of g such that h1�h2 is zero and g splits relative to both h1 and h2 �Ghanam et
al. �2004��. Denote the corresponding distributions on G by D1 and D2, respectively. Since we are
always assuming that g is indecomposable, g cannot be the direct sum of h1 and h2 and hence
D1�D2 is nonzero. In fact D1�D2 is the integrable distribution on G that corresponds to the ideal
h1+h2 of g and similarly D1+D2 corresponds to the ideal h1�h2. This technique is very useful for
constructing a single Lagrangian and many of the Lagrangians given in Sec. VI were obtained in
this way.

We now quote a proposition that will be useful in the next chapter. For more details we refer
the reader to Ghanam et al. �2004�.

Proposition 5.2: Any left or right invariant one-form on G gives rise to a linear first integral
on TG when it is viewed as a linear function on TG. �

The following Theorem is a continuation of Theorem 3.1.
Theorem 5.1: �i� Suppose that the n-dimensional Lie algebra g has a basis �e1 ,e2 , . . . ,en	 and

only the following nonzero brackets: �ea ,ei�=Cai
j ej, where �1� i, j�r, r+1�a, b, c�n�. Suppose

that g has an abelian nilradical for which a basis is �e1 ,e2 , . . . ,er	 and �er+1 , . . . ,en	 is a basis for
an abelian subalgebra complementary to the nilradical. Then there exists a coordinate system
�xi ,wa� on the local Lie group G associated to g such that g is faithfully represented by �Xi ,Wa	
where Xi=� /�x and Wa=� /�wa+Caj

k xj�� /�xk�.
�ii� In the coordinate system �xi ,wa� of (i) the geodesic equations of the canonical connection

are given by

ẍi = Cbj
i ẋjẇb, ẅa = 0. �18�

Proof: �i� It is clear that the coordinate representation for g given above is faithful.
�ii� The one-forms dual to the vector fields of part �i� are given by �dxi−Cbj

i xjdwb ,dwa	 and
hence we find the geodesic equations are given as stated. �

VI. REPRESENTATIONS AND LAGRANGIANS

In this section we give matrix representations corresponding to the algebras in Turkowski’s
list �Turkowski �1990��. In each case we give the nonzero brackets. Besides the representation we
give also a basis for the right invariant vector fields. In those cases where the geodesic equations
are of Euler-Lagrange type we give a specific Lagrangian. Finally we remind the reader that
throughout this section we use �p ,q ,x ,y ,z ,w� as the position coordinates and their dots for the
corresponding velocities, respectively.

6.1 (abcd :ab�0, c2+d2�0): �e1 ,e3�=ae3, �e1 ,e4�=ce4, �e1 ,e6�=e6, �e2 ,e3�=be3, �e2 ,e4�
=de4, �e2 ,e5�=e5

S = 
ew 0 0 0 0 p

0 ez 0 0 q 0

0 0 ecw+dz 0 dx cx

0 0 0 eaw+bz by ay

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right invariant vector fields
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�− �pDp + cxDx + ayDy + Dw�,− �qDq + dxDx + byDy + Dz�,Dy,Dx,Dq,Dp	 .

Geodesics

ẅ = 0, z̈ = 0, ÿ = ẏ�bż + aẇ�, ẍ = ẋ�dż + cẇ�, q̈ = q̇ż, p̈ = ṗẇ .

Lagrangian

L =
e−wṗ2

ẇ
+

e−zq̇2

ż
+

e−�dz+cw�ẋ2

dż + cẇ
+

e−�bz+aw�ẏ2

bż + aẇ
+ ẇ2 + ż2.

6.2 �abc :a2+b2�0�: �e1 ,e3�=ae3, �e1 ,e4�=e4, �e1 ,e5�=e6, �e2 ,e3�=be3, �e2 ,e4�=ce4,
�e2 ,e5�=e5, �e2 ,e6�=e6.

S = 
ez wez 0 0 q p

0 ez 0 0 p 0

0 0 ew+cz 0 cx x

0 0 0 eaw+bz by ay

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right invariant vector fields

�− �pDq + xDx + ayDy + Dw�,− �pDp + qDq + cxDx + byDy + Dz�,Dy,Dx,Dp,Dq	 .

Geodesics

ẅ = 0, z̈ = 0, ÿ = ẏ�bż + aẇ�, ẍ = ẋ�cż + ẇ�, p̈ = ṗż, q̈ = ṗẇ + q̇ż .

Lagrangian

L =
e−�cz+w�ẋ2

cż + ẇ
+

e−�bz+aw�ẏ2

bż + aẇ
+ q̇ ln� ṗ

ż
� −

ṗẇ

ż
+ żẇ + qż + ż2 − wṗ .

6.3 �a�: �e1 ,e3�=e3, �e1 ,e4�=e4, �e1 ,e5�=e6, �e2 ,e3�=ae3+e4, �e2 ,e4�=ae4, �e2 ,e5�=e5,
�e2 ,e6�=e6

S = 
ez wez 0 0 q p

0 ez 0 0 0 q

0 0 ew+za zew+za x y + ax

0 0 0 ew+za y ay

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right invariant vector fields

�− �qDp + xDx + yDy + Dw�,− �pDp + qDq + �ax + y�Dx + ayDy + Dz�,Dy,Dx,Dq,Dp	 .

Geodesics

ẅ = 0, z̈ = 0, ÿ = ẏ�aż + ẇ�, ẍ = ẋ�aż + ẇ� + ẏż, q̈ = q̇ż, p̈ = ṗż + q̇ẇ .

Lagrangian

L = �aż + ẇ�2 + ẋ ln� ẏ

aż + ẇ
� −

ẏż

aż + ẇ
+ �x + ż��aż + ẇ� − zẏ + ṗ ln� q̇

ż
� −

q̇ẇ

ż
− wq̇ + pż .

112901-8 M. S. Rawashdeh and G. Thompson J. Math. Phys. 47, 112901 �2006�

                                                                                                                                    



6.4 �ab :a�0�: �e1 ,e3�=e3, �e1 ,e4�=e4, �e1 ,e5�=e6, �e2 ,e3�=e4, �e2 ,e4�=−e3, �e2 ,e5�=ae5

+be6, �e2 ,e6�=ae6

S = 
eaz �w + bz�eaz 0 0 q p

0 eaz 0 0 0 q

0 0 cos�z�ew sin�z�ew y x

0 0 − sin�z�ew cos�z�ew x − y

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�− �qDp + xDx + yDy + Dw�Dp,− ��ap + bq�Dp + aqDq − yDx + xDy + Dz�,Dx,Dy,Dq,Dp	 .

Geodesics

ẅ = 0, z̈ = 0, ẍ = ẋẇ − ẏż, ÿ = ẋż + ẏẇ, q̈ = aq̇ż, p̈ = ż�aṗ + bq̇� + q̇ẇ .

Lagrangian

L =
e−w��ẏ cos�z� − ẋ sin�z���ẇẏ − ẋż� − �ẋ cos�z� + ẏ sin�z���żẏ + ẋẇ��

ż2 + ẇ2 + ṗ ln� q̇

aż
� −

�ẇ + bż�q̇
aż

+ aż�ẇ + bż + p� − �w + bz�q̇ .

6.5 �ab :ab�0�: �e1 ,e3�=ae3, �e1 ,e5�=e5+e6, �e1 ,e6�=e6, �e2 ,e3�=be3, �e2 ,e4�=e4.

S = 
ew wew 0 0 0 p

0 ew 0 0 0 q

0 0 ez 0 y 0

0 0 0 eaw+bz bx ax

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�− �axDx + qDq + �q + p�Dp + Dw�,− �bxDx + yDy + Dz�,Dx,Dy,Dq,Dp	 .

Geodesics

ẅ = 0, z̈ = 0, ẍ = ẋ�bż + aẇ�, ÿ = ẏż, q̈ = q̇ẇ, p̈ = ẇ�ṗ + q̇� .

Lagrangian

L = qẇ +
e−wq̇2

ẇ
+ ṗ�− w + ln� q̇

ẇ
�� +

e−�aw+bz�ẋ2

aẇ + bż
+

e−zẏ2

ż
+ ż2 + ẇ2.

6.6 �ab :a2+b2�0�: �e1 ,e3�=ae3, �e1 ,e4�=ae4, �e1 ,e5�=e5+e6, �e1 ,e6�=e6, �e2 ,e3�=e3+e4,
�e2 ,e4�=e4, �e2 ,e5�=be6

112901-9 The inverse problem for six-dimensional J. Math. Phys. 47, 112901 �2006�

                                                                                                                                    



S = 
ew �w + bz�ew 0 0 bq p

0 ew 0 0 0 q

0 0 eaw+z zeaw+z x + y ax

0 0 0 eaw+z y ay

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�− ��p + q�Dp + qDq + axDx + ayDy + Dw�,− �bqDp + �x + y�Dx + yDy + Dz�,Dy,Dx,Dq,Dp	 .

Geodesics:

ẅ = 0, z̈ = 0, ÿ = ẏ�ż + aẇ�, ẍ = ẋ�ż + aẇ� + ẏż, q̈ = q̇ẇ, p̈ = ẇ�ṗ + q̇� + bq̇ż .

Lagrangian

L = ṗ ln� q̇

ẇ
� −

�bż + ẇ�q̇
ẇ

− �bz + w�q̇ + pẇ + ẏ ln� ẋ

aẇ + ż
� −

ẋż

aẇ + ż
+ �y + ż��aẇ + ż� − zẋ .

6.7 �abc :a2+b2�0�: �e1 ,e3�=ae3, �e1 ,e4�=ae4, �e1 ,e5�=e5+e6, �e1 ,e6�=e6, �e2 ,e3�=ce3

+e4, �e2 ,e4�=−e3+ce4, �e2 ,e5�=be6.

S = 
cos�z�eaw+cz − sin�z�eaw+cz 0 0 cp − q ap

sin�z�eaw+cz cos�z�eaw+cz 0 0 cq + p aq

0 0 ew �w + bz�ew bx y

0 0 0 ew 0 x

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�− �apDp + aqDq + xDx + Dw�,− ��cp − q�Dp + �cq − p�Dq + bxDx + Dz�,− Dp,Dq,Dx,Dy	 .

Geodesics

ẅ = 0, z̈ = 0, p̈ = ṗ�cż + aẇ� + q̇ż, q̈ = ż�− ṗ + cq̇� + aq̇ẇ, ẍ = ẋẇ, ÿ = ẋ�bż + ẇ� + ẏẇ .

Lagrangian

L =
e−�aw+cz���ṗ cos�z� − q̇ sin�z����aẇ + cż�ṗ − q̇ż� − �q̇ cos�z� + ṗ sin�z���żṗ + q̇�aẇ + cż���

ż2 + �aẇ + cż�2

+ ẏ ln� ẋ

ẇ
� −

�bż + ẇ�ẋ
ẇ

+ �bż + ẇ�ẇ + yẇ − �bz + w�ẋ + ż2 + ẇ2.

6.8: �e1 ,e3�=e3, �e1 ,e4�=e6, �e2 ,e5�=e5+e6, �e2 ,e6�=e6, �e2 ,e4�=e4:
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S = 
ez zez wez 0 q p

0 ez 0 0 0 y

0 0 ez 0 0 q

0 0 0 ew x 0

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�− �qDp + xDx + Dw�,− ��y + p�Dp + qDp + yDy + Dz�,Dx,Dq,Dy,Dp	 .

Geodesics

ẅ = 0, z̈ = 0, ẍ = ẋẇ, q̈ = q̇ż, ÿ = ẏż, p̈ = ż�ṗ + ẏ� + q̇ẇ .

No Lagrangian.
6.9 �a�: �e1 ,e3�=e3, �e1 ,e4�=e6, �e2 ,e4�=e4+e5, �e2 ,e5�=e5+ae6, �e2 ,e6�=e6

S = 
ez azez �az2 + 2w�ez

2
0 q p

0 ez zez 0 0 y

0 0 ez 0 0 q

0 0 0 ew x 0

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�− �qDp + xDx + Dw�,− ��ay + p�Dp + qDq + �q + y�Dy + Dz�,Dx,Dq,Dy,Dp	 .

Geodesics

ẅ = 0, z̈ = 0, ẍ = ẋẇ, q̈ = q̇ż, ÿ = ż�q̇ + ẏ�, p̈ = ż�ṗ + aẏ� + q̇ẇ .

Lagrangian

L =
ae−z�− 2q̇2ẇ − 2wq̇2ż + az2q̇2ż + 4ṗq̇ż − 4azq̇ẏż + 2aẏ2ż�

4ż2 −
ae−wẋ2

ẇ
+ żẇ .

6.10 �ab�: �e1 ,e3�=ae3, �e1 ,e4�=e4+be6, �e1 ,e5�=e5, �e1 ,e6�=e6, �e2 ,e3�=e3, �e2 ,e4�=e5,
�e2 ,e5�=e6

S = 
ew zew �z2 + 2bw�ew

2
0 q p

0 ew zew 0 x q

0 0 ew 0 0 x

0 0 0 ewa+z y ay

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields
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�− ��bx + p�Dp + qDq + x,Dx + ayDy + Dw�,− �qDp + xDq + yDy + Dz�,Dy,Dx,Dq,Dp	 .

Geodesics

ẅ = 0, z̈ = 0, ÿ = ẏ�ż + aẇ�, ẍ = ẋẇ, q̈ = q̇ẇ + ẋż, p̈ = ẇ�ṗ + bẋ� + q̇ż .

Lagrangian

L =
�4ẇ2ṗẋ + 2ẇ2q̇2 − 2bwẇ2ẋ2 − 4ẇ2ẋzq̇ + ẇ2ẋ2z2 − 4ẋżẇq̇ + 2ẋ2żẇz + 2ż2ẋ2�

ewẇ3 +
e−�z+aw�ẏ2

ż + aẇ
+ żẇ .

6.11 �a�: �e1 ,e3�=e4, �e1 ,e5�=e5+e6, �e1 ,e6�=e6, �e2 ,e3�=e3, �e2 ,e4�=e4, �e2 ,e5�=ae5,
�e2 ,e6�=ae6.

S = 
ew+az wew+az 0 0 ap p + q

0 ew+az 0 0 aq q

0 0 ez wez y x

0 0 0 ez x 0

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�− ��p + q�Dp + qDq + xDy + Dw�,− �apDp + aqDq + xDx + yDy + Dz�,Dx,Dy,Dq,Dp	 .

Geodesics

ẅ = 0, z̈ = 0, ẍ = ẋż, ÿ = ẋẇ + ẏż, q̈ = q̇�aż + ẇ�, p̈ = ṗ�aż + ẇ� + q̇ẇ .

Lagrangian

L = �aż + ẇ�2 + ṗ ln� q̇

aż + ẇ
� −

q̇ẇ

aż + ẇ
+ �aż + ẇ��p + ẇ� − wq̇ + ż2 + ẏ ln� ẋ

ż
� −

ẋẇ

ż
+ żẇ + yż − wẋ .

6.12 �ab�: �e1 ,e3�=e3+e4, �e1 ,e4�=e4, �e1 ,e5�=e5+e6, �e1 ,e6�=e6, �e2 ,e3�=ae4+e5−be6,
�e2 ,e4�=e6, �e2 ,e5�=−e3+be4+ae6, �e2 ,e6�=−e4.

S = 
cos�w�ez sin�w�ez ��z + aw�cos�w� + bw sin�w��ez ��z + aw�sin�w� − bw cos�w��ez p q

− sin�w�ez cos�w�ez − ��z + aw�sin�w� − bw cos�w��ez ��z + aw�cos�w� + bw sin�w��ez − q p

0 0 cos�w�ez sin�w�ez x y

0 0 − sin�w�ez cos�w�ez − y x

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�− ��x + p�Dp + �y + q�Dq + xDx + yDy + Dz�,�by − ax − q�Dp + �p − bx − ay�Dq − yDx + xDy

+ Dw,Dy,Dq,Dx,Dp	 .

Geodesics

ẅ = 0, z̈ = 0, ẍ = ẋż − ẏẇ, ÿ = ẏż + ẋẇ, p̈ = ż�ṗ + ẋ� + ẇ�aẋ + bẏ − q̇�, q̈ = ż�q̇ + ẏ� + ẇ�aẏ

− bẋ + ṗ� .

Lagrangian
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L =
ṗ

2
�ln�ẋ2 + ẏ2� − ln�ż2 + ẇ2�� + q̇�arctan� ẇ

ż
� − arctan� ẏ

ẋ
�� +

bẇ�ẋẇ − ẏẇ� − �ż + aẇ��ẏẇ + ẋż�
ż2 + ẇ2

+ rż − qẇ − �aw + z�ẋ − bwẏ + żẇ .

6.13 (abcd :a2+b2�0, c2+d2�0): �e1 ,e3�=ae3, �e1 ,e4�=ce4, �e1 ,e5�=e6, �e1 ,e6�=−e5,
�e2 ,e3�=be3, �e2 ,e4�=de4, �e2 ,e5�=e5, �e2 ,e6�=e6

S = 
cos�z�ew sin�z�ew 0 0 q p

− sin�z�ew cos�z�ew 0 0 p − q

0 0 ecw+dz 0 cx dx

0 0 0 eaw+bz ay by

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�qDp − pDq − cxDx − ayDy − Dw,− �pDp + qDq + dxDx + byDy + Dz�,Dy,Dx,Dp,Dq	 .

Geodesics

ẅ = 0, z̈ = 0, ÿ = ẏ�bż + aẇ�, ẍ = ẋ�dż + cẇ�, p̈ = ṗż − q̇ẇ, q̈ = ṗẇ + q̇ż .

Lagrangian

L =
e−w��q̇ẇ − ṗż��q̇ cos�z� − ṗ sin�z�� − �żq̇ + ẇṗ��ṗ cos�z� + q̇ sin�z���

ẇ2 + ż2 +
e−�cw+dz�ẋ2

cẇ + dż
+

e−�aw+bz�ẏ2

aẇ + bż

+ ẇ2 + ż2.

6.14 �abc :ab�0�: �e1 ,e3�=ae3, �e1 ,e5�=ce5+e6, �e1 ,e6�=−e5+ce6, �e2 ,e3�=be3, �e2 ,e4�
=e4.

S = 
cos�w�ecw sin�w�ecw 0 0 0 p

− sin�w�ecw cos�w�ecw 0 0 0 q

0 0 ez 0 x 0

0 0 0 eaw+bz − y y

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�− ��cp + q�Dp + �cq − p�Dq + ayDy + Dw�,− �xDx + byDy + Dz�,Dy,Dx,Dq,Dp	 .

Geodesics

ẅ = 0, z̈ = 0, ÿ = ẏ�bż + aẇ�, ẍ = ẋż, q̈ = ẇ�− ṗ + cq̇�, p̈ = ẇ�cṗ + q̇� .

Lagrangian

L =
e−cw��ṗ2 − q̇2�cos�w� − 2 sin�w�ṗq̇�

2ẇ
+

e−zẋ2

ż
+

e−aw−bzẏ2

aẇ + bż
+ ż2 + ẇ2.

6.15 �abcd :b�0�: �e1 ,e3�=e3, �e1 ,e4�=e4, �e1 ,e5�=ae5+be6, �e1 ,e6�=−be5+ae6, �e2 ,e3�
=ce3+e4, �e2 ,e4�=−e3+ce4, �e2 ,e5�=de5, �e2 ,e6�=de6.
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S = 
cos�z�ew+cz − sin�z�ew+cz 0 0 p − q p

sin�z�ew+cz cos�z�ew+cz 0 0 p + q q

0 0 cos�bw�eaw+dz − sin�bw�eaw+dz x + y

2
x

0 0 sin�bw�eaw+dz cos�bw�eaw+dz y − x

2
y

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�− �pDp + qDq + �ax − by�Dx + �bx + ay�Dy + Dw�,− ��cp − q�Dp + �p + cq�Dq + dxDx + dyDy

+ Dz�,Dp,Dq,− Dy,Dx	 .

Geodesics:

ẅ = 0, z̈ = 0, p̈ = ṗ�cż + ẇ� − q̇ż, q̈ = ż�ṗ + cq̇� + q̇ẇ, ÿ = bẋẇ + ẏ�dż + qẇ�, ẍ = ẋ�dż

+ aẇ� − bẏẇ .

Lagrangian

L =
e−�dz+aw���ẏ cos�bw� − ẋ sin�bw����dż + aẇ�ẏ − bẋẇ� − �ẋ cos�bw� + ẏ sin�bw���bẇẏ + ẋ�dż + aẇ���

�dż + aẇ�2 + b2ẇ2

+
e−�w+cz���q̇ cos�z� − ṗ sin�z����ẇ + cż�q̇ − ṗż� − �ṗ cos�z� + q̇ sin�z���żq̇ + ṗ�ẇ + cż���

�ẇ + cż�2 + ż2
+ ẇ2 + ż2.

6.16 �ab�: �e1 ,e3�=e4, �e2 ,e4�=e4, �e1 ,e5�=ae5+e6, �e1 ,e6�=−e5+ae6, �e2 ,e3�=e3, �e2 ,e6�
=be6, �e2 ,e5�=be5

S = 
cos�w�eaw+bz sin�w�eaw+bz 0 0 − bp q − ap

− sin�w�eaw+bz cos�w�eaw+bz 0 0 bq p + aq

0 0 ez wez y x

0 0 0 ez x 0

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�− ��ap − q�Dp + �aq − p�Dq + xDy + Dw�,− �bpDp + qbDq + xDx + yDy + Dz�,Dp,Dq,Dy,Dx	 .

Geodesics

ẅ = 0, z̈ = 0, p̈ = ṗ�bż + aẇ� − q̇ẇ, q̈ = ṗẇ + q̇�bż + aẇ�, ÿ = ẏż, ẍ = ẋż .

Lagrangian

L =
e−bz−aw��q̇ cos�w� − ṗ sin�w���q̇�bż + aẇ� − ẇṗ� − �ṗ cos�w� + q̇ sin�w���ṗ�bż + aẇ�ẇq̇��

�bż + aẇ�2 + ẇ2

+
e−z�ẋ2 + ẏ2�

ż
+ żẇ .

6.17 �a�: �e1 ,e3�=ae3+e4, �e1 ,e4�=ae4, �e1 ,e5�=e6, �e1 ,e6�=−e5, �e2 ,e6�=e6, �e2 ,e5�=e5.
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S = 
cos�w�ez sin�w�ez 0 0 q p

− sin�w�ez cos�w�ez 0 0 p − q

0 0 eaw weaw 0 x

0 0 0 eaw 0 y

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�− �pDq − qDp + �ax + y�Dx + ayDy + Dw�,− �pDp + qDq + Dz�,Dy,Dx,Dp,Dq	 .

Geodesics

ẅ = 0, z̈ = 0, ÿ = aẏẇ, ẍ = ẇ�aẋ + ẏ�, p̈ = ṗż − q̇ẇ, q̈ = ṗẇ + q̇ż .

Lagrangian
�a�0�.

L = 2ż2 + a2ẇ2 + ẋ�ln� ẏ

a2ẇ
� − aw� +

e−awẏ2

a3ẇ
+ yẇ + ẇ2

+
e−z��q̇ cos�w� − ṗ sin�w���q̇ż − ẇṗ� − �ṗ cos�w� + q̇ sin�w���ṗż + ẇq̇��

ż2 + ẇ2

�a=0�.

L =
��q̇ cos�w� − ṗ sin�w���q̇ż − ẇṗ� − �ṗ cos�w� + q̇ sin�w���ṗż + ẇq̇��

ez�ż2 + ẇ2�
+ ż2 + ẇ2

+ �ẋ −
yẇ

2
−

wẏ

2
�2

+ ẏ2.

6.18 �abc :b�0�: �e1 ,e3�=e4, �e1 ,e4�=−e3, �e1 ,e5�=ae5+be6, �e1 ,e6�=−be5+ae6, �e2 ,e3�
=e3, �e2 ,e4�=e4, �e2 ,e5�=ce5, �e2 ,e6�=ce6

S = 
cos�w�ez sin�w�ez 0 0 − q p

− sin�w�ez cos�w�ez 0 0 p q

0 0 cos�bw�ecz−aw sin�bw�ecz−aw ax − by cx

0 0 − sin�bw�ecz−aw cos�bw�ecz−aw ay + bx cy

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�qDp − pDq + �by − ax�Dx − �ay + bx�Dy − Dw,− �pDp + qDq + cxDx + cyDy + Dz�,Dq,− Dp,Dx,Dy	 .

Geodesics

ẅ = 0, z̈ = 0, q̈ = − ṗẇ + q̇ż, p̈ = ṗż + q̇ẇ, ẍ = ẋ�cż − aẇ� + bẏẇ, ÿ = − bẋẇ + ẏ�cż − aẇ� .

Lagrangian
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L =
e−z��ṗ cos�w� − q̇ sin�w���ṗż − ẇq̇� − �q̇ cos�w� + ṗ sin�w���q̇ż + ẇṗ��

ż2 + ẇ2
+ �cż − aẇ�2 + ẇ2

+
e−�cz−aw���ẋ cos�bw� − ẏ sin�bw���ẋ�cż − aẇ� − bẇẏ� − �ẏ cos�bw� + ẋ sin�bw���ẏ�cż − aẇ� + bẇẋ��

�cż − aẇ�2 + b2ẇ2
.

6.19: �e1 ,e3�=e4+e5, �e1 ,e4�=−e3+e6, �e1 ,e5�=e6, �e1 ,e6�=−e5, �e2 ,e3�=e3, �e2 ,e4�=e4,
�e2 ,e5�=e5, �e2 ,e6�=e6

S = 
cos�w�ez sin�w�ez w cos�w�ez w sin�w�ez p q

− sin�w�ez cos�w�ez − w sin�w�ez w cos�w�ez − q p

0 0 cos�w�ez sin�w�ez x y

0 0 − sin�w�ez cos�w�ez − y x

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

��x + q�Dp + �y − p�Dq + yDx − xDy + Dw,− �pDq + qDq + xDx + yDy + Dz�,Dx,Dy,− Dp,− Dq	 .

Geodesics

ẅ = 0, z̈ = 0, ẍ = ẋż − ẏẇ, ÿ = ẏż + ẋẇ, p̈ = ṗż + ẇ�ẋ − q̇�, q̈ = ẇ�ẏ − ṗ� + q̇ż .

Lagrangian

L =
ṗ

2
�ln�ẋ2 + ẏ2� − ln�ż2 + ẇ2�� + q̇�arctan� ẇ

z
� − arctan� ẏ

ẋ
�� −

�ẇẏ + ẋż�ẇ
ż2 + ẇ2 + pż − wẋ − qẇ + żẇ .

6.20: �ab :a2+b2�0�: �e1 ,e4�=ae4, �e1 ,e6�=e6, �e2 ,e4�=be4, �e2 ,e5�=e5, �e1 ,e2�=e3

S = 
eaz+bw 0 0 0 0 p

0 ez 0 0 0 q

0 0 ew 0 0 x

0 0 0 1 w y

0 0 0 0 1 z

0 0 0 0 0 1

� .

Right-invariant vector fields

�− �apDp + qDq + Dz�,− �bpDp + xDx + zDy + Dw�,Dy,Dp,Dx,Dq	 .

Geodesics

ẅ = 0, z̈ = 0, ÿ = żẇ, p̈ = ṗ�aż + bẇ�, ẍ = ẋẇ, q̈ = q̇ż .

Lagrangian

L =
e−zq̇2

ż
+

e−wẋ2

ẇ
+

e−�az+bw�ṗ2

aż + bẇ
+ ż2 + ẇ2 + �ẏ −

zẇ

2
−

wż

z
�2

.

6.21: �a�: �e1 ,e4�=e4, �e1 ,e5�=e6, �e2 ,e4�=ae4, �e2 ,e5�=e5, �e2 ,e6�=e6, �e1 ,e2�=e3
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S = 
ez+aw 0 0 0 0 p

0 ew 0 0 x q

0 0 ew 0 0 x

0 0 0 1 w y

0 0 0 0 1 z

0 0 0 0 0 1

� .

Right-invariant vector fields

�− �apDp + qDq + Dz�,− �bpDp + xDx + zDy + Dw�,Dy,Dp,Dx,Dq	 .

Geodesics

ẅ = 0, z̈ = 0, ÿ = żẇ, p̈ = ṗ�ż + aẇ�, ẍ = ẋẇ, q̈ = ẇ�q̇ − xż� + żẋ .

Lagrangian

L = q̇ ln� ẋ

ẇ
� +

ẋż

ẇ
+ qẇ + zẋ + �ẏ −

wż

2
−

zẇ

2
�2

+
e−z−awṗ

ż + aẇ
+ żẇ .

6.22 (a� :a2+�2�0, �=0,1): �e1 ,e3�=e3, �e1 ,e5�=e6, �e2 ,e4�=e4, �e2 ,e3�=ae3, �e1 ,e2�=�e5.
��=0�

S = 
1 0 0 z p

0 ew 0 0 q

0 0 ez+aw 0 x

0 0 0 1 y

0 0 0 0 1
� .

Right-invariant vector fields

�− �yDp + xDx + Dz�,− �qDq + axDx + Dw�,Dx,Dq,Dy,Dp	 .

Geodesics

z̈ = 0, ẅ = 0, ẍ = ẋ�ż + aẇ�, q̈ = q̇ẇ, ÿ = 0, p̈ = ẏż .

Lagrangian

L =
e−�az+w�ẋ2

aż + ẇ
+

e−wq̇2

ẇ
+ �ṗ −

yż

2
−

zẏ

2
�2

+ ż2 + ẇ2 + ẏ2.

��=1�:

S = 
eaz+w 0 0 0 0 p

0 ez 0 0 0 q

0 0 1 w
w2

2
x

0 0 0 1 w y

0 0 0 0 1 z

0 0 0 0 0 1

� .

Right-invariant vector fields
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�− �pDp + yDx + zDy + Dw�,− �apDp + qDq + Dz�,Dp,Dq,Dy,Dx	 .

Geodesics

ẅ = 0, z̈ = 0, p̈ = ṗ�aż + ẇ�, q̈ = q̇ż, ÿ = żẇ, ẍ = ẏẇ .

Lagrangian

L = �2ẋ − wẏ − yẇ�ln� ż

ẇ
� +

w2ż

2
+ ẇ2 + �ẏ −

zẇ

2
−

wż

2
�2

+
e−zq̇2

ż
+

e−�az+w�ṗ2

aż + ẇ
.

6.23 �a��: (a�0, �=0,1): �e1 ,e3�=e3, �e1 ,e4�=e4, �e1 ,e5�=e6, �e2 ,e3�=e4, �e2 ,e4�=−e3,
�e2 ,e5�=ae6, �e1 ,e2�=�e5:

��=0�

S = 
ez cos�w� − ez sin�w� 0 0 p

ez sin�w� ez cos�w� 0 0 q

0 0 1 aw + z x

0 0 0 1 y

0 0 0 0 1
� .

Right-invariant vector fields

�− �pDp + qDq + yDx + Dz�,− �− qDp + pDq + ayDx + Dw�,Dp,− Dq,Dy,Dx	 .

Geodesics

z̈ = 0, ẅ = 0, p̈ = ṗż − q̇ẇ, q̈ = ṗẇ + q̇ż, ÿ = 0, ẍ = ẏ�ż + aẇ� .

Lagrangian

L =
e−z��− tb + sp��q̇ cos�w� − b sin�w�� − �q̇ẇ + ṗż��ṗ cos�w� + q̇ sin�w���

ẇ2 + ż2 + ẇ2 + ż2 + ẏ2

+ �ẋ −
1

2
ẏ�z + aw� −

1

2
�aẇ + ż�y�2

.

�a=0, �=1�

S = 
cos�w�ez sin�w�ez 0 0 0 p

− sin�w�ez cos�w�ez 0 0 0 q

0 0 1 z
z2

2
x

0 0 0 1 z y

0 0 0 0 1 w

0 0 0 0 0 1

� .

Right-invariant vector fields

�− �pDp + qDq + yDx + wDy + Dz�,qDp − pDq + Dw,Dp,− Dq,Dy,Dx	 .

Geodesics

z̈ = 0, ẅ = 0, p̈ = ṗż + q̇ẇ, q̈ = − ṗẇ + q̇ż, ÿ = ẇż, ẍ = ẏż .

Lagrangian
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L =
e−z��ṗ cos�w� − q̇ sin�w���ṗż − ẇq̇� − �q̇ cos�w� + ṗ sin�w���q̇ż + ẇṗ��

ż2 + ẇ2

+ 2ż2 + �2ẋ − zẏ − yż�ln� ẇ

ż
� +

z2ẇ

2
+ �ẏ −

zẇ

2
−

wż

2
�2

+ ẇ2.

�a�0, �=1�:

S = 
cos�w�ez sin�w�ez 0 0 0 p

− sin�w�ez cos�w�ez 0 0 0 q

0 0 1 aw + z
�aw + z�2

2
x

0 0 0 1 aw + z y

0 0 0 0 1 z

0 0 0 0 0 1

� .

Right-invariant vector fields

�− �pDp + qDq + yDx + zDy + Dz�,− �qDp − pDq + ayDx + azDy + Dw�,Dq,Dp,aDy,aDx	 .

Geodesics

z̈ = 0, ẅ = 0, q̈ = − ṗẇ + q̇ż, p̈ = ṗż + q̇ẇ, ÿ = ż�ż + aẇ�, ẍ = ẏ�ż + aẇ� .

A Lagrangian is given by

L =
e−z��ṗ cos�w� − q̇ sin�w���ṗż − ẇq̇� − �q̇ cos�w� + ṗ sin�w���q̇ż + ẇṗ��

ż2 + ẇ2 + ż2 + �aẇ + ż�2

+ �2ẋ − �z + aw�ẏ − y�aẇ + zẋ��ln� ż

aẇ + ż
� +

�z + aw�2ż

2
+ �ẏ −

z�aẇ + ż�
2

−
�aw + z�ż

2
�2

.

6.24: �e1 ,e5�=e5+e6, �e1 ,e6�=e6, �e2 ,e4�=e4, �e1 ,e2�=e3

S = 
ez 0 0 0 0 p

0 ew wew 0 0 q

0 0 ew 0 0 x

0 0 0 1 w y

0 0 0 0 1 z

0 0 0 0 0 1

� .

Right-invariant vector fields

�− ��q + x�Dq + xDx + zDy + Dw�,− �pDp + Dz�,Dy,Dp,Dx,Dq	 .

Geodesics

ẅ = 0, z̈ = 0, ÿ = żẇ, p̈ = ṗż, ẍ = ẋẇ, q̈ = ẇ�q̇ + ẋ� .

Lagrangian

L = q̇�− w + ln� ẋ

ẇ
�� +

e−zṗ2

ż
+

e−wż2

ẇ
+ xẇ + ż2 + ẇ2 + �ẏ −

wż

2
−

zẇ

2
�2

.

6.25: �ab :a2+b2�0�: �e1 ,e4�=ae4, �e1 ,e5�=e6, �e1 ,e6�=−e5, �e2 ,e4�=be4, �e2 ,e5�=e5,
�e2 ,e6�=e6, �e1 ,e2�=e3.
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S = 
eaw+bz 0 0 0 0 p

0 1 x y − z q

0 0 cos�w�ez sin�w�ez 0 0

0 0 − sin�w�ez cos�w�ez 0 0

0 0 0 0 1 w

0 0 0 0 0 1

� .

Right-invariant vector fields

�− �apDp + Dw�,− �bpDp + wDq − Dz�,Dq,Dp,ez cos�w�Dx + ez sin�w�Dy,− ez sin�w�Dx

+ ez cos�w�Dy	 .

Geodesics

ẅ = 0, z̈ = 0, q̈ = − ẇż, p̈ = ṗ�bẇ + aż�, ẍ + ẏẇ − ẋż = 0, ÿ − ẋẇ + ẏż = 0.

Lagrangian

L =
e−z�ẏż − ẋẇ��ẏ cos�w� − ẋ sin�w�� − �ẇẏ − ẋż��ẋ cos�w� + ẏ sin�w��

ż2 + ẇ2

+
e−�az+bw�ṗ2

aż + bẇ
+ ż2 + ẇ2 + �q̇ +

wż

2
+

zẇ

2
�2

.

6.26 �a�: �e1 ,e5�=ae5+e6, �e1 ,e6�=ae6−e5, �e2 ,e4�=e4, �e1 ,e2�=e3

S = 
ez 0 0 0 0 p

0 1 z 0 0 q

0 0 1 0 0 w

0 0 0 cos�w�eaw sin�w�eaw y

0 0 0 − sin�w�eaw cos�w�eaw x

0 0 0 0 0 1

� .

Right-invariant vector fields

�− ��ay + x�Dy + �ax − y�Dx + Dw�,− �pDp + wDq + Dz�,Dq,Dp,− Dy,Dx	

Geodesics

ẅ = 0, z̈ = 0, q̈ = ẇż, p̈ = ṗż, ÿ = ẇ�ẋ + aẏ�, ẍ = ẇ�aẋ − ẏ� .

Lagrangian

L = �q̇ −
zẇ

2
−

wż

2
�2

+ ż2 + ẇ2 +
e−zṗ2

ż
+

ż2

ẇ
+

e−aw��ẋ2 − ẏ2�cos�w� + 2 sin�w�ẋẏ�
2ẇ

6.27 ���: ��=0,1�: �e1 ,e3�=e4, �e1 ,e5�=e6, �e1 ,e6�=−e5, �e2 ,e5�=e5, �e2 ,e6�=e6, �e1 ,e2�
=�e3. �=0
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S = 
cos�z�ew − sin�z�ew 0 0 p

sin�z�ew cos�z�ew 0 0 q

0 0 1 z y

0 0 0 1 x

0 0 0 0 1
� .

Right-invariant vector fields

�− qDp + pDq + xDy + Dz,− �pDp + qDq + Dw�,Dx,Dy,Dp,Dq	 .

Geodesics

z̈ = 0, ẅ = 0, ẍ = 0, ÿ = ẋż, p̈ = ṗẇ − q̇ż, q̈ = ṗż + q̇ẇ .

Lagrangian

L =
e−w��q̇ cos�z� − ṗ sin�z���ẇq̇ − ṗż� − �ṗ cos�z� + q̇ sin�z���żq̇ + ṗẇ��

ż2 + ẇ2

+ ẋ2 + �ẏ −
zẋ

2
−

xż

2
�2

+ ż2 + ẇ2

�=1:

S = 
1 w

w2

2
p x y

0 1 w q 0 0

0 0 1 z 0 0

0 0 0 1 0 0

0 0 0 0 cos�w�ez sin�w�ez

0 0 0 0 − sin�w�ez cos�w�ez

� .

Right-invariant vector fields

�qDp + zDq + Dw,Dz,Dq,Dp,ez cos�w�Dx + ez sin�w�Dy,e
z cos�w�Dy − ez sin�w�Dz	 .

Geodesics

ẅ = 0, z̈ = 0, q̈ = żẇ, p̈ = q̇ẇ, ẍ = żẋ − ẇẏ, ÿ = żẏ + ẇẋ .

Lagrangian

L =
e−z��ẏ cos�w� − ẋ sin�w���żẏ − ẋẇ� − �ẋ cos�w� + ẏ sin�w���ẇẏ + ẋż��

ż2 + ẇ2

+ �2ṗ − wq̇ − qẇ�ln� ż

ẇ
� +

w2ż

2
+ 3ẇ2 + �q̇ −

zẇ

2
−

wż

2
�2

+ ż2.

6.28: �e4 ,e6�=−e3, �e5 ,e6�=−e4, �e1 ,e3�=e3, �e1 ,e5�=−e5, �e1 ,e6�=e6, �e2 ,e4�=e4, �e2 ,e5�
=2e3, �e2 ,e6�=−e6:
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S = 
ew − xez x2e2z−w

2
yew−z − yx p

0 ez − xe2z−w qew−z y − xq xq

0 0 e2z−w 0 2q − q

0 0 0 ew−z − x x

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�− �pDp − qDq + xDx + Dw�,− �2qDq − xDx + yDy + Dz�,− �xDp + Dy�,xqDp − Dx + qDy,Dq,Dx	 .

Geodesics

ẅ = 0, z̈ = 0, ÿ = − q̇�ẋ + xż� + ẋẇ�q + y� + ẏ�ż + xẇ�, p̈ = ṗẇ + ẋ�ẏ − yż − xq̇� + x2�ẏẇ − q̇ż�

+ xẋẇ�y + q�, q̈ = q̇�2ż − ẇ�, ẍ = − ẋ�ż + ẇ� .

Note that there are no Lagrangians for cases 28–39.
6.29 �ab :a2+b2�0�: �e4 ,e5�=−e3, �e1 ,e3�=e3, �e1 ,e4�=e4, �e1 ,e6�=ae6, �e2 ,e3�=e3,

�e2 ,e5�=e5, �e2 ,e6�=be6

S = 
ez+w − qew yez 0 p − yq p

0 ew 0 0 y 0

0 0 ez 0 0 q

0 0 0 eaw+bz ax bx

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�− �pDp + axDx + yDy + Dw�,− �pDp + qDq + bxDx + Dz�,Dp,qDp + Dy,Dq,Dx	 .

Geodesics

ẅ = 0, z̈ = 0, p̈ = �ż + ẇ� + q̇�ẏ − yẇ�, ÿ = ẏẇ, q̈ = q̇ż, ẍ = ẋ�bż + aẇ� .

6.30 �a�: �e4 ,e5�=−e3, �e1 ,e3�=2e3, �e1 ,e4�=e4, �e1 ,e5�=e5, �e1 ,e6�=ae6, �e2 ,e4�=e5,
�e2 ,e6�=e6.

S = 
e2w yew 0 − qew y2

2
p

0 ew 0 zew y zy + q

0 0 eaw+z 0 x ax

0 0 0 ew 0 y

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�− �2pDp + qDq + axDx + yDy + Dw�,− �xDx + Dz�,2Dp,�zy + q�Dp − zDq + Dy,− yDp + Dq,Dx	 .

Geodesics
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ẅ = 0, z̈ = 0, p̈ = ẇ�2ṗ + qẏ + yq̇� + yż�ẏ − yẇ�, ÿ = ẏẇ,

q̈ = − q̇ẇ − ż�ẏ + yẇ�, ẍ = ẋ�ż + aẇ� .

6.31: �e4 ,e5�=−e3, �e1 ,e4�=e4, �e1 ,e5�=−e5, �e2 ,e3�=e3, �e2 ,e5�=e5, �e2 ,e6�=e6+e3

S = 
ez − qew yez−w zez − yq p

0 ew 0 0 y 0

0 0 ez−w 0 − q q

0 0 0 ez 0 x

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�− �yDy − qDq + Dw�,− ��x + p�Dp + qDq + xDx + Dz�,Dp,qDp + Dy,Dq,Dx	 .

Geodesics

ẅ = 0, z̈ = 0, p̈ = ż�ṗ + ẋ� + q̇�ẏ − yẇ�, ÿ = ẏẇ, q̈ = q̇�ż − ẇ�, ẍ = ẋż .

6.32 �a�: �e4 ,e5�=−e3, �e1 ,e4�=e4, �e1 ,e5�=−e5, �e1 ,e6�=e3, �e2 ,e3�=e3, �e2 ,e4�=ae4,
�e2 ,e5�= �1−a�e5, �e2 ,e6�=e6

S = 
ez qew+az ye−w+z−az wez x + yq p

0 ew+az 0 0 y ya

0 0 e−w+z−az 0 q �a − 1�q
0 0 0 ez 0 x

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�− �xDp − qDq + yDy + Dw�,− �pDp + �1 − a�qDq + xDx + ayDy + Dz�,Dp,�a − 1�qDp + Dy,− �ayDp

+ Dq�,Dx	 .

Geodesics

ẅ = 0, z̈ = 0, p̈ = q̇ẏ�1 − 2a� + yq̇ẇ�a − 1� + ẇ�ẋ − qẏ� + q�1 − a2�ẏż,

ÿ = �a + 1�ẏż, q̈ = − q̇ẇ, ẍ = ẋż .

6.33: �e4 ,e5�=e3, �e1 ,e3�=e3, �e1 ,e4�=e4, �e2 ,e3�=e3, �e2 ,e5�=e5+e6, �e2 ,e6�=e6.

S = 
ew+z − qew 0 yez p − yq p

e ew 0 0 y 0

0 0 ez zez 0 x

0 0 0 ez 0 q

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields
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�− �pDp + yDy + Dw�,− �pDp + qDq + �q + x�Dx + Dz�,Dp,− �qDp + Dy�,Dq,Dx	 .

Geodesics

ẅ = 0, z̈ = 0, p̈ = ṗ�ẇ + ż� + q̇�ẏ − yẇ�, ÿ = ẏẇ, q̈ = q̇ż, ẍ = ż�q̇ + ẋ� .

6.34 �a�: �e4 ,e5�=e3, �e1 ,e3�=e3, �e1 ,e4�=e4, �e1 ,e5�=e6, �e2 ,e3�= �1+a�e3, �e2 ,e4�=ae4,
�e2 ,e5�=e5, �e2 ,e6�=e6.

S = 
ew+z+az − qew+az 0 yez p + ap + yq p

0 ew+az 0 0 ay y

0 0 ez wez x q

0 0 0 ez q 0

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�− �pDp + qDx + yDy + Dw�,− ��ap + p�Dp + qDq + xDx + ayDy + Dz�,Dp,Dy,yDp − Dq,− Dx	 .

Geodesics

ẅ = 0, z̈ = 0, p̈ = ṗ�aż + ż + ẇ� + q̇�yż − ẏ� + qẏ��1 − a�ż − ẇ�, ÿ = ẏ�aż + ẇ�,

q̈ = q̇ż, ẍ = q̇ẇ + ẋż .

6.35 �ab :a2+b2�0�: �e4 ,e5�=e3, �e1 ,e4�=e5, �e1 ,e5�=−e4, �e1 ,e6�=ae6, �e2 ,e3�=2e3,
�e2 ,e4�=e4, �e2 ,e5�=e5, �e2 ,e6�=be6

S = 
e2z − �x cos�w� − sin�w�q�ez �cos�w�q + x sin�w��ez 0

�x2 + q2�
2

p

0 cos�w�ez − sin�w�ez 0 − x q

0 sin�w�ez cos�w�ez 0 q x

0 0 0 eaw+bz ay by

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�− �Dw − xDq + qDx + ayDy�,− �2pDp + qDq + xDx + byDy + 2Dz�,− 2Dp,xDp + Dq,− qDp

+ Dx,Dy	 .

Geodesics

ẅ = 0, z̈ = 0, p̈ = 2ṗ�ż + pẇ� + q̇�qẇ + xż� − ẋ�xẇ + qż�, q̈ = q̇ż − ẋẇ,

ẍ = q̇ẇ + ẋż, ÿ = ẏ�bż + aẇ� .
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6.36: �e4 ,e5�=e3, �e1 ,e4�=e5, �e1 ,e5�=−e4, �e2 ,e3�=2e3, �e2 ,e4�=e4, �e2 ,e5�=e5, �e2 ,e6�
=2e6+e3

S = 
e2z �x cos�w� − sin�w�q�ez �cos�w�q + x sin�w��ez ze2z x2 + q2

2
p

0 cos�w�ez sin�w�ez 0 x q

0 − sin�w�ez cos�w�ez 0 q − x

0 0 0 e2z 0 2y

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�− �Dw − xDq + qDx�,− ��2p + 2y�Dp + qDq + xDx + 2yDy + Dz�,2Dp,− xDp + Dq,qDp + Dx,Dy	 .

Geodesics

ẅ = 0, z̈ = 0, p̈ = ż�2ẏ − xq̇ + 2ṗ� − ẇ�qq̇ + xẋ�, q̈ = q̇ż − ẋẇ, ẍ = q̇ẇ + ẋż, ÿ = 2ẏż .

6.37 �a�: �e4 ,e5�=e3, �e1 ,e4�=e5, �e1 ,e5�=−e5, �e2 ,e3�=2e3, �e2 ,e4�=e4+ae5, �e2 ,e5�=−ae4

+e5, �e2 ,e6�=2e5, �e1 ,e6�=e3.

S = 
e2z − qez pez − we2z x +

p2 + q2

2
y

0 ez cos�w − az� ez sin�w − az� 0 p sin�w − az� − q cos�w − az� �p − aq�cos�w − az� + �q + ap�sin�w − az�

0 − ez sin�w − az� ez cos�w − az� 0 p cos�w − az� + q sin�w − az� �q + ap�cos�w − az� + �aq − p�sin�w − az�

0 0 0 e2z 0 2x

0 0 0 0 1 0

0 0 0 0 0 1

� .

Right-invariant vector fields

�− 2xDy + Dw,− pDp − qDq − 2xDx − 2yDy − Dz,2Dy,− sin�w − az�Dp − cos�w − az�Dq − ��p − aq�

�cos�w − az� + �ap + q�sin�w − az��Dy,− cos�w − az�Dp − sin�w − az�Dq − ��ap + q�

�cos�w − az� + �aq − p�sin�w − az��Dy,Dx	 .

Geodesics

ẅ = 0, z̈ = 0, ÿ = �p2 + q2��ẇ − aż�ż + �a2 − 1��pq̇ − qṗ�ż + �aq − p�ẇṗ − �ap + q�ẇq̇, p̈ = ṗż

+ �q̇ − qż��aż − ẇ�, q̈ = q̇ż + �ṗ − pż��ẇ − aż�, ẍ = 2ẋż .

6.38: �e4 ,e5�=e3, �e1 ,e3�=e3, �e1 ,e4�=e4, �e2 ,e3�=e3, �e2 ,e5�=e5, �e1 ,e2�=e6

S = 
ez+w x 0 0 0 p

0 ez 0 0 0 q

0 0 ew 0 0 x

0 0 0 1 w y

0 0 0 0 1 z

0 0 0 0 0 1

� .
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Right-invariant vector fields

�− �pDp + xDx + zDy + Dw�,− �pDp + qDq + xDx + Dz�,Dp,− �qDp + ezDx�,Dq,− Dy	 .

Geodesics

ẅ = 0, z̈ = 0, p̈ = �ż + ẇ��ṗ − xe−zq̇� − e−zq̇ẋ, ẍ = ẋ�2ż + ẇ� − xż�ż + ẇ�, q̈ = q̇ż, ÿ = żẇ .

6.39: �e4 ,e5�=e3, �e1 ,e4�=e5, �e1 ,e5�=−e4, �e2 ,e3�=2e3, �e2 ,e4�=e4, �e2 ,e5�=e5, �e1 ,e2�=e6.

S = 
1 z 0 0 0 p

0 1 0 0 0 w

0 0 e2w xew yew q

0 0 0 cos�z�ew sin�z�ew cos�z�y − sin�z�x
0 0 0 − sin�z�ew cos�z�ew − cos�z�x − sin�z�y
0 0 0 0 0 1

� .

Right-invariant vector fields

�wDp + Dz,− �2qDq + xDx + yDy + Dw�,− 2Dq,− ��y cos�z� − x sin�z��Dq + sin�z�Dy

+ cos�z�Dx�,�x cos�z� + y sin�z��Dq + sin�z�Dx − cos�z�Dy,Dp	 .

Geodesics

ẅ = 0, z̈ = 0, p̈ = ẇż, ẍ = cos�2w�ẋẇ + �y�sin2�w� + 1� − x sin�2w��żẇ − ẏż, ÿ = ẏẇ + ẋż

+ x cos2�w�żẇ + sin�2w�ẋẇ ,

q̈ = 2q̇ẇ + �y2 − x2 cos�2w��żẇ + y cos�2w�ẋẇ − x�ẏẇ + ẋż� − yẏż − x sin�2w�ẇ�yż + ẋ� .

6.40: �e4 ,e5�=e3, �e1 ,e4�=e5, �e1 ,e5�=−e4, �e2 ,e6�=e6, �e1 ,e2�=e3.

S = 
ez 0 0 0 0 p

0 1 − y cos�w� + x sin�w� y sin�w� + x cos�w� 2w q

0 0 cos�w� − sin�w� 0 x

0 0 sin�w� cos�w� 0 y

0 0 0 0 1 z

0 0 0 0 0 1

� .

Right-invariant vector fields

�2zDq − yDx + xDy + Dw,− �pDp + Dz�,2Dq,− xDq + Dy,yDq + Dx,Dp	 .

Geodesics

ẅ = 0, z̈ = 0, q̈ = ẇ�xẋ + yẏ� + 2żẇ, ÿ = ẋẇ, ẍ = − ẏẇ, p̈ = ṗż .

Lagrangian

L = ẇ�q̇ − zẇ − wż� + �yẋ − xẏ�ẇ + ẋ2 + ẏ2 + ż2 + ẇ2 +
e−zṗ2

ż
.
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APPENDIX: CONSTRUCTING LAGRANGIANS

We end with a brief Appendix that touches on six of the forty cases. We believe that this
approach will offer the reader much more insight into our techniques rather than supplying a
plethora of routine details, many of which in any case, have only been accomplished with the help
of MAPLE. These six cases are quite representative and the reader should bear in mind that we have
always considered our primary objective to be to find at least one Lagrangian by hook or crook.

The following sum of matrices constitutes a solution to Eqs. �12�, �13�, and �5�. In fact we
begin by finding a basis of solutions to Eqs. �12� and �13�. These solutions themselves may not
satisfy Eq. �5�. However, we insert our basis of solutions of Eq. �4� with coefficients into Eq. �5�
noting that the time derivative in Eq. �5� is taken with respect to the original ODE system �2�. As
such when Eq. �5� are integrated arbitrary first integrals of Eq. �2� occur instead of arbitrary
constants, in this case represented by the functions A, B, C, D, E, F, and G. We have not given
details of the actual integration in Eq. �5� but we advise the reader that it is elementary, the
difficulties stemming only from the size of the matrices involved. The reader can see such concrete
details in much simpler examples in Thompson �2003�, for example.

The new basis will now satisfy both Eqs. �4� and �5�

A
1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

� + B
0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

� + C
0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

� +
e−wD

ẇ2 
ṗ2

ẇ
0 0 0 0 − ṗ

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

− ṗ 0 0 0 0 ẇ

�
+

e−zE

ż2 
0 0 0 0 0 0

0
q̇2

ż
0 0 − q̇ 0

0 0 0 0 0 0

0 0 0 0 0 0

0 − q̇ 0 0 ż 0

0 0 0 0 0 0

� +
e−�aw+bz�F

�aẇ + bż�2
a2�aẇ + bż� ab�aẇ + bż� − aẏ 0 0 0

ab�aẇ + bż� b2�aẇ + bż� − bẏ 0 0 0

− aẏ − bẏ aẇ + bż 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

�
+

e−�cw+dz�G

�cẇ + dż�2
c2�cẇ + dż� cd�cẇ + dż� 0 − cẋ 0 0

cd�cẇ + dż� d2�cẇ + dż� 0 − dẋ 0 0

0 0 0 0 0 0

− cẋ − dẋ 0 cẇ + dż 0 0

0 0 0 0 0 0

0 0 0 0 0 0

� .

If one requires now to find all possible Lagrangians for Eq. �2� it is necessary to solve the
closure conditions �6�, which as we have said compromises 70 conditions. We shall not write
down Eq. �6�. The system can be integrated explicitly in this case, however; each of A ,B , . . . ,G
are first integrals. As such the general solution of Eq. �6� can be expressed in terms of first
integrals. For example, it turns out that the function D can only depend on w, p, ṗ / ẇ. Thus if D
is a first integral it can only depend on e−w�ṗ / ẇ� and ṗ / ẇ− p. The reader can see more arguments
of this type and in greater detail in Ghanam �2004�.

The following matrix is the general solution of Eq. �6�:
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Nẇẇ Nẇż 0 0 0 0

Nẇż Nżż 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

� +
e−wD

ẇ2 
ṗ2

ẇ
0 0 0 0 − ṗ

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

− ṗ 0 0 0 0 ẇ

� +
e−zE

ż2 
0 0 0 0 0 0

0
q̇2

ż
0 0 − q̇ 0

0 0 0 0 0 0

0 0 0 0 0 0

0 − q̇ 0 0 ż 0

0 0 0 0 0 0

�
+

a2Fe−�aw+bz�ẏ2

�aẇ + bẇ�3
+

c2Ge−��cw+dz��ẋ2

�cẇ + dẇ�3

abFe−�aw+bz�ẏ2

�aẇ + bẇ�3
+

cdGe−�cw+dz�ẋ2

�cẇ + dẇ�3
−

aFe−�aw+bz�ẏ

�aẇ + bẇ�2
−

aGe−�cw+dz�ẋ

�cẇ + dẇ�2
0 0

�
b2Fe−�aw+bz�ẏ2

�aẇ + bẇ�3
+

d2Ge−�cw+dz�ẋ2

�cẇ + dẇ�3

bFe−�aw+bz�ẏ

�aẇ + bẇ�2
−

dGe−�cw+dz�ẋ

�cẇ + dẇ�2
0 0

� �
Fe−�aw+bz�

�aẇ + bẇ�
0 0 0

� � �
Ge−�cw+dz�

�cẇ + dẇ�
0 0

� � � � 0 0

� � � � � 0

� ,

where D=D�e−wṗ / ẇ , ṗ / ẇ− p�, E=E�e−zq̇ / ż , q̇ / ż−q�, F=F�e−�aw+bz�ẏ / �aẇ+bẇ� , ẏ / �aẇ+bż�−y�,
G=G�e−�cw+dz�ẋ / �cẇ+dż� , ẋ /cẇ+dż−x� and N=N�ẇ , ż ,zẇ−wż�.

It is not possible to integrate the Hessian above in complete generality, so to obtain a concrete
Lagrangian it is necessary to choose specific forms for the functions D, E, F, G, and N. The
Lagrangian given in Sec. VI is given by choosing D=E=F=G=1/2 and N= ẇ2+ ż2. We have
found it still to be a major practical problem to construct the Lagrangian from the Hessian and one
that we have to do interactively. It seems likely to us that it will be quite some time before the
symbolic manipulation programs are sufficiently powerful to enable us to automate these steps.

6.5 To construct a Lagrangian in this case we can make use of the remark that follows
Proposition �5.1�. In this case the subspaces spanned by �e3 ,e4	 and �e5 ,e6	, respectively, are
ideals and each of them correspond to split extensions. As such we can combine two four-
dimensional Lagrangians in the variables w, z, x, y and w, z, p, q �and their time derivatives�,
respectively. Similarly in case 6.9 we can extend a five-dimensional Lagrangian by using the
subalgebra spanned by �e1 ,e3	, whereas the same trick would not work using the the subalgebra
spanned by �e2 ,e6	, because the bracket �e2 ,e5	 involves e6 on the left hand side.

6.8 In this example the matrix gij is singular. We use Eq. �15� to compute the nonzero
components of the curvature Rjkl

i : Thus

R113
3 = R224

4 = R225
5 = R214

6 = R124
6 = 1

2R225
6 = R226

6 = 1
4 .

Notice that this calculation is done entirely at the Lie algebra level: We do not need any repre-
sentation here. If we do have a representation, such as is given in Sec. VI, we can also compute the
curvature in coordinates though its components may not be constant. However, we could also do
the calculation if we have a vector field representation of the Lie algebra because then we can
compute the geodesics in coordinates.

Let us define generally, in dimension n, Li to be ujgij where there is a sum over j. Then Eq.
�13� says in this case that L3=L4=L5=L6=0. Turning now to Eq. �12� we choose the following
values for mjq: 126, 136, 145, 146, 245 and deduce that g16=g36=g56=g66=g46=0, respectively.
But now L6=0 and hence it follows that the last column and bottom row of gij is zero.

6.19 A Lagrangian can be constructed in this example by identifying the group as a subgroup
of GL�3,C� and comparing it with the corresponding real subgroup of GL�3,R�. A Lagrangian in
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the latter case was exhibited in Thompson �2003� and by complexifiying and taking the real part
we can obtain the Lagrangian for case 6.19.

6.33 We consider another example where the matrix gij is singular. Again we use Eq. �15� to
compute the nonzero components of the curvature Rjkl

i : Thus

R113
3 = R213

3 = R123
3 = R223

3 = R145
3 = R245

3 = R514
3 = R425

3 = R114
4 = R225

5 = 1
2R225

6 = R226
6 = 1

4 .

Then just as in example 6.8, using the same notation, Eq. �13� says that L3=L4=L5=L6=0. As for
Eq. �12� we choose the following values for mjq: 123, 134, 135, 136, 234 and deduce that g13

−g23=g33=g35=g36=g34=0, respectively. Again since L3=0 it follows that the third column and
row of gij is zero.

One more remark about the cases where the matrix gij is singular is in order. Both of the
algebras 6.8 and 6.33 do not contain parameters. However, there are some algebras that do depend
on parameters and for which the matrix gij is singular. One has to take care, particularly when
using symbolic manipulation programs such as MAPLE, not to exclude certain special values where
the rank of a linear system can change. When running a routine, unless some special loop is
included to track the possible values of the parameters, the routine is always going to assume that
the parameters have generic values. In other words it is possible to exclude special values where,
for example, the matrix gij may not be singular. This problem occurs in all questions that occur in
the low-dimensional Lie algebras and at best they can be answered interactively.
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The reduced Hamiltonian system on T*(SU�3� /SU�2�) is derived from a Riemann-
ian geodesic motion on the SU�3� group manifold parametrized by the generalized
Euler angles and endowed with a bi-invariant metric. Our calculations show that
the metric defined by the derived reduced Hamiltonian flow on the orbit space
SU�3� /SU�2��S5 is not isometric or even geodesically equivalent to the standard
Riemannian metric on the five-sphere S5 embedded into R6. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2358391�

I. INTRODUCTION

Symmetry plays a central role in our pursuit of a better understanding of nature. Through the
preservation or artful breaking of symmetry, powerful models have been developed that describe
the fundamental forces and that have, so far, withstood all tests. Indeed, any endeavor to go
beyond this standard model also has, at its heart, an appropriate symmetry argument.

An immediate consequence of symmetry is that it permits for a reduction in the relevant
degrees of freedom needed to describe a given problem. In a gauge theory this reduction implies
that not all the degrees of freedom present in the formulation of the theory correspond to physical
degrees of freedom. So, for example, in Quantum Electrodynamics, with its U�1� gauge symmetry,
the potential A�, which naively has four degrees of freedom, describes the photon, which has just
two physical degrees of freedom. Understanding how this type of reduction should best take place
and how the process of quantizing a system interacts with the symmetry, has driven many of the
important advances in our understanding of gauge theories.1

In many cases, the reduction to the true physical degrees of freedom in a field theory has been
fruitfully studied through simpler, finite dimensional systems. In particular, coset spaces of the
form G /H, where G and H are finite dimensional Lie groups, have provided much insight2 into
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how global and topological properties of these configuration spaces can be encoded into the
quantization process via generalized notions of reduction to the true degrees of freedom.3

In all investigations to date, specific details on dynamical aspects of the reduction to G /H
have been restricted to groups for which manageable parametrizations of the group elements exist.
Essentially this has restricted attention to groups directly related to the rotation group and its
covering, SU�2�. However, recently there has been much progress in finding suitable parametri-
zations for the higher dimensional unitary groups4–8 and particularly for the group SU�3�.9,10

These advances open the door to detailed investigations of dynamics on spaces such as the
five-sphere, S5, now viewed as the reduction from SU�3� to SU�3�/SU�2�. By exploiting our
concrete description of this reduction we shall see a new phenomenon for this system: different
metric structures emerge depending on whether the five sphere is viewed as the coset space or via
its natural embedding in six dimensional Euclidean space. This is, to the best of our knowledge,
the first explicit example of this metric property of reduction.

The plan of the paper is as follows. We will conclude this introduction with a brief summary
of the classical Hamiltonian reduction procedure. Then, in Sec. II, we will see how this procedure
is applied to the group SU�2�. This section does not contain any new results, but fixes notation and
introduces themes that will prepare us for the reduction on the configuration space SU�3� which
will be presented in detail in Sec. III. Then, in Sec. IV we will investigate the possible Riemannian
structures that arise on the quotient space S5 and discuss the possible metric and geodesic corre-
spondences. In an Appendix, we will collect together the details of our consistent parametrization
of SU�3�.

A. Hamiltonian reduction

Consider the special class of Lagrangian systems whose configuration space is a compact
matrix Lie group G. This means that the state of a system at fixed time t=0 is characterized by an
element of the Lie group g�0��G, and the evolution is described by the curve g�t� on the group
manifold.11,12 The “free evolution” on the semisimple group G is, by definition, the Riemannian
geodesic motion on the group manifold with respect to the so-called Cartan-Killing metric,13,14

dsG
2 = � Tr�g−1 dg � g−1 dg� ,

where � is a normalization factor. The geodesies are given by the extremal curves of the action
functional,

S�g� =
�

2
�

0

T

dt Tr�g−1ġg−1ġ� . �1.1�

This action is invariant under the continuous left translation,

g�t� → g���g�t�, � = ��1,�2, . . . ,�dim G� ,

and therefore the system possesses the integrals of motion I1 ,I2 , . . . ,Idim G. The existence of
these integrals of motion allows us to reduce the number of degrees of freedom of the system
using the well-known method of Hamiltonian reduction.11,12

For a generic Hamiltonian system defined on the cotangent bundle T*M with symmetry
associated to the Lie group G action, the level set of the corresponding integrals of motion,

Mc = I−1�c� . �1.2�

where c is a set of arbitrary real constants c= �c1 , . . . ,cdim G�, determines the reduced Hamiltonian
system on the reduced phase space Fc�Mc. The subset Fc is described by the isotropy group, Gc,
of the integrals level set Mc,
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Fc = Mc/Gc.

Here we are interested in a special case when the manifold M is itself a group manifold and the
symmetry transformations are group translations. Now the level set Mc is a subset of the trivial
cotangent bundle T*G that can be identified with the product of the group G and its algebra, G
�g. The level set given by the integrals I1=c1 ,I2=c2 , . . . ,IN=cN ,N�dim G, defines the isotropy
group Gc�G and the so-called orbit space,

O = G/Gc. �1.3�

The relationship between the orbit space O and the reduced phase space Fc can be summarized as
follows �see, e.g., Refs. 11 and 12�:

• the reduced phase space Fc is symplectic and diffeomorphic to the cotangent bundle T*O;
• the dynamics on the reduced degrees of freedom is Hamiltonian with a reduced Hamiltonian

given by the projection of the original Hamiltonian function to Fc.

These results are the modern generalizations of the classical theorems, proving that the col-
lection of holonomic constraints defines a configuration manifold M as a submanifold of Rn and
that, in the absence of forces, the trajectories of mechanical system are geodesies of the induced
Riemannian metric.

Note that the above results do not claim that the reduced phase space and the dynamics on the
orbit space are isometric. Indeed, we know that on the reduced phase space we can define, at least
locally, an induced metric that arises from the kinetic energy part of the reduced Hamiltonian,

KO =
1

2
gO��a,�b�papb. �1.4�

On the other hand the map � :G→G /Gc induces the metric

ḡO = �*gG. �1.5�

We now pose a question about the relation between these two metrics.
When are the metrics gO and ḡO isometrically or, more weakly, geodesically equivalent?
We do not know the general answer to this question, so in this present paper we will focus our

study on two examples: geodesic motion on the SU�2� and SU�3� group manifolds.
We start with a well-known example of Hamiltonian reduction SU�2�→SU�2� /U�1� and

show that the reduced space is indeed in isometrical correspondence with the cotangent bundle
T*S2 and the standard induced metric on the two-sphere S2. The case of the SU�3�
→SU�3� /SU�2� reduction gives an example of the opposite result: the metric defined by the
Hamiltonian flow on the orbit space SU�3�/SU�2� is not isometrically equivalent to a standard
round metric on the five-sphere S5. Furthermore, in this case, the stronger result is true: the
reduced configuration space and the standard S5 are not even geodesically equivalent.

II. GEODESIC FLOW ON SU„2…

In this section we discuss the example of the reduction of free motion on the SU�2� group
manifold. We start with a presentation of the key geometrical structures found on this group that
are necessary for any further dynamical analysis.

A. The Euler angle parametrization

The special unitary group SU�2�, considered as a subgroup of the general matrix group
GL�2,C�, is topologically the three-sphere S3 embedded into C2. This correspondence SU�2�
�S3 follows immediately from the standard identification of an arbitrary element g�SU�2� as

112902-3 Hamiltonian reduction on SU�3� to SU�3�/SU�2� J. Math. Phys. 47, 112902 �2006�

                                                                                                                                    



g ª �z1 − z̄2

z2 z̄1
	, 
z1
2 + 
z2
2 = 1. �2.1�

The three-sphere S3 is a manifold that requires more than one chart to cover it and therefore there
is no global parametrization of the SU�2� group as a three-dimensional space. The local descrip-
tion usually adopted is given by the conventional symmetric Euler representation15 for a group
element,

g = exp�i
�

2
	3	exp�i




2
	2	exp�i

�

2
	3	 , �2.2�

with the appropriately chosen range for the Euler angles � ,
 ,�.
In this representation the generators of the one-parameter subgroups are the standard Pauli

matrices 	1 ,	2, and 	3,

	1 = �0 1

1 0
	, 	2 = �0 − i

i 0
	, 	3 = �1 0

0 − 1
	 , �2.3�

satisfying the su�2� algebra

	a	b − 	b	a = 2i�abc	c. �2.4�

Writing the complex numbers in �2.1� as z1=x1+ ix2 and z2=x3+ ix4 in polar form,

z1 ª eiu cos , z2 ª eiv sin  , �2.5�

and comparing �2.1� with the explicit form of the Euler matrix �2.2�,

g =� ei
�+�

2 cos�


2
	 ei

�+�
2 sin�


2
	

− e−i
�−�

2 sin�


2
	 e−i

�+�
2 cos�


2
	 � , �2.6�

we have

u =
� + �

2
, v =

� − �

2
,  =




2
. �2.7�

The Euler decomposition �2.2� corresponds to the following parametric representation of the
three-sphere embedded in R4:

x1 = cos�� + �

2
	cos�


2
	, x2 = sin�� + �

2
	cos�


2
	 ,

�2.8�

x3 = − cos�� − �

2
	sin�


2
	, x4 = sin�� − �

2
	sin�


2
	 .

To be more precise, though, this is not a valid parametrization for the entire three-sphere. In
particular, the neighborhood of the identity element of the group in this decomposition turns out to
be degenerate. The identity element of SU�2� corresponds to the whole set: 
=0 and �+�=0. In
order to properly cover the whole group manifold, it is necessary to consider an atlas on the SU�2�
group and used different parametrizations on the different charts. Bearing this in mind, we proceed
by assuming that we are working in a chart �U ,��, where � ,
, and � serve as good local
coordinates on S3 and calculate the Maurer-Cartan forms on SU�2�.

Using the following normalization:
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g−1 dg =
i

2
a=1

3

	a � �L
a , �2.9�

dg g−1 =
i

2
a=1

3

	a � �R
a , �2.10�

and performing the straightforward calculations with the Eulerian representation �2.2� we arrive at
the well-known expressions for left-invariant 1-forms:

�L
1 = cos � sin 
 d� − sin � d
 ,

�L
2 = sin 
 sin � d� + cos � d
 , �2.11�

�L
3 = cos 
 d� + d� .

and the corresponding dual vectors, �L
a�Xb

L�=�b
a, a ,b=1,2 ,3,

X1
L =

cos �

sin 


�

��
− sin �

�

�

− cot 
 cos �

�

��
,

X2
L =

sin �

sin 


�

��
+ cos �

�

�

− cot 
 sin �

�

��
, �2.12�

X3
L =

�

��
.

The right invariant 1-forms and the corresponding dual vectors, �R
a�Xb

R�=�b
a, are

�R
1 = sin � d
 − cos � sin 
 d� ,

�R
2 = cos � d
 + sin � sin 
 d� , �2.13�

�R
3 = d� + cos 
 d� .

X1
R = cos � cot 


�

��
+ sin �

�

�

−

cos �

sin 


�

��
,

X2
R = − sin � cot 


�

��
+ cos �

�

�

+

sin �

sin 


�

��
, �2.14�

X3
R =

�

��
.

The vector fields Xa
L and Xa

R obey the su�2� � su�2� algebra with respect to the Lie brackets
operation,

�Xa
L,Xb

L� = − �abcXc
L, �2.15�

�Xa
R,Xb

R� = + �abcXc
R, �2.16�
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�Xa
L,Xb

R� = 0. �2.17�

Any compact Lie group can be endowed with the bi-invariant Riemannian metric build uniquely
�up to a normalization factor� from the Cartan-Killing form over the algebra. It is convenient to
choose the following normalization for the bi-invariant metric on the SU�2� group:

gSU�2� = −
1

2
Tr�g−1 dg � g−1 dg� . �2.18�

In terms of this left/right-invariant nonholonomic frame, �2.18� reads as

gSU�2� =
1

4
��L

1
� �L

1 + �L
2

� �L
2 + �L

3
� �L

3� , �2.19�

=
1

4
��R

1
� �R

1 + �R
2

� �R
2 + �R

3
� �R

3� . �2.20�

Substitution of the expressions �2.11� and �2.13� for the Maurer-Cartan forms �L and �R yields the
metric in the coordinate frame d� ,d
 ,d� basis,

gSU�2� =
1

4
�d� � d� + d
 � d
 + d� � d� + 2 cos 
 d� � d�� . �2.21�

In order to understand the metrical characteristics of a group manifold viewed as an embedded
space, it is instructive to compare this invariant metric with the metric induced from the ambient
four-dimensional Euclidian space on the unit three-sphere �2.8�,

gs3 = dz̄1 � dz1 + dz̄2 � dz2 =
1

4
�d� � d� + d
 � d
 + d� � d� + 2 cos 
 d� � d�� .

�2.22�

Comparing the metrics, �2.21� and �2.22�, we conclude that the bi-invariant metric on SU�2� is the
same as the standard metric on the unit three-sphere S3 and its bi-invariant volume is

Vol„SU�2�… =� �det gSU�2�d� ∧ d
 ∧ d� = �1

2
	3�

0

2�

d��
0

4�

d��
0

�

d
 sin�
� = 2�2 = Vol�S3� .

�2.23�

As a Riemannian manifold, the SU�2� group endowed with the metric �2.21� is a
3-dimensional space of constant curvature with the Riemann scalar RSU�2�=6 and the Ricci tensor
Rab given by

Rab =
RSU�2�

3
gab = 2gab. �2.24�

The Gaussian curvature K of an n-dimensional manifold and the Riemann scalar are related via

K =
R

n�n − 1�
; �2.25�

therefore KSU�2�=1, in agreement with the volume calculation �2.23�.

B. Quotient SU„2…/U„1…

Here we recall the key ingredients of the construction of a quotient space G /H by considering
the transitive action of the group G on a certain base space M. We have the following28 result.
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If the group G acts transitively on a set M with H�G being an isotropy subgroup leaving a
point x0�M fixed,

H = �g � G
g · x0 = x0� ,

then the set M is in one-to-one correspondence with the left cosets gH of G.
The explicit form of this map for the SU�2� group is as follows. We identify the su�2� algebra

with R3 by the map xa�R3→X�su�2�,

X = 
a=1

3

xa	a. �2.26�

Consider now the adjoint action of SU�2� on an element of its algebra X�su�2�,

Ad�g��X� = gXg−1.

The base point x0= �0,0 ,1� �corresponding to the element 	3� has a one-parameter isotropy sub-
group,

H = exp�i
�

2
	3	 .

The orbit space of 	3,

Ad�g��	3� = g	3g−1

is the coset SU�2�/U�1�. The proper atlas covering the SU�2� group manifold provides the coset
space parametrization. When SU�2��S3 is parametrized in terms of two complex coordinates z1

and z2, and the two-sphere is described by a unit vector n= �n1 ,n2 ,n3�, then the projection S3

→S2 reads explicitly as

�z1,z2� → �n1,n2,n3� = �2R�z̄1z2�, 2I�z̄1z2�, 
z1
2 − 
z2
2� . �2.27�

This is the famous Hopf projection map � :SU�2�→S2, showing that SU�2� is a fiber bundle over
S2 with nonintersecting circles U�1��S1 as fibers,

S1
� SU�2�→

�

S2.

Using the Euler decomposition �2.6�, the coset parametrization reads as

g	3g−1 = na	a, �2.28�

with the unit 3-vector,

n = �− sin 
 cos �, sin 
 sin �, cos 
� . �2.29�

C. Lagrangian in Euler coordinates

The bi-invariant Lagrangian,

LSU�2� = −
1

2
Tr�g−1�t�

d

dt
g�t�g−1�t�

d

dt
g�t�	 , �2.30�

in terms of left/right invariant Maurer-Cartan forms �2.9� reads as
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LSU�2� =
1

4
a=1

3

iU̇�L
aiU̇�L

a =
1

4
a=1

3

iU̇�R
aiU̇�R

a , �2.31�

where iU̇ is the interior contraction of the vector field U̇= �̇�� /���+ 
̇�� /�
�+ �̇�� /���.
Covering the group manifold with an atlas and considering the chart where the parameters

� ,
 ,� in the Euler decomposition �2.2� serve as good coordinates, we arrive at

LSU�2� =
1

4
„�̇2 + 
̇2 + �̇2 + 2 cos�
��̇�̇… . �2.32�

Comparing �2.32� with the expression �2.21� for the bi-invariant metric on SU�2�, we conclude
that

LSU�2� = gSU�2��U̇,U̇� . �2.33�

D. Hamiltonian dynamics on T*SU„2…

The Hamiltonian dynamics on the SU�2� group is defined on the cotangent bundle T*SU�2�
that can be identified with the trivialization T*SU�2��SU�2��su�2�L or with T*SU�2��SU�2�
�su�2�R.

The canonical Hamiltonian describing geodesic motion on SU�2� can be obtained by a Leg-
endre transformation of the Lagrangian function �2.31�. Introducing the Poincare-Cartan symplec-
tic one-form,

� = p� d� + p
 d
 + p� d� ,

with the canonically conjugated pairs,

��,p�� = 1, �
,p
� = 1, ��,p�� = 1,

the Hamiltonian on T*SU�2� is defined as

HSU�2� = 
a=1

3

�a
L�a

L, = 
a=1

3

�a
R�a

R, �2.34�

where �a
L and �a

R are the values of the one-form � on the left/right invariant vector fields Xa
L ,Xa

R

spanning the algebra su�2�L,R,

�a
L
ª ��Xa

L�, �a
R
ª ��Xa

R� .

The set of functions �a
L and �a

R obey the su�2�L�su�2�R relations with respect to the Poisson
brackets,

��a
L,�b

L� = − �abc�c
L, �2.35�

��a
R,�b

R� = �abc�c
R, �2.36�

��a
L,�b

R� = 0. �2.37�

In the coordinate frame �2.32�, the Hamiltonian �2.34� becomes

HSU�2� =
p�

2

sin2�
�
+ p


2 +
p�

2

sin2�
�
−

2 cos�
�
sin2�
�

p�p�. �2.38�

Now noting that the components of the inverse of the bi-invariant metric �2.21� are
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gSU�2�
−1 =

4

sin2�
�� 1 0 − cos�
�
0 sin2�
� 0

− cos�
� 0 1
� , �2.39�

the Hamiltonian can be rewritten as

HSU�2� =
1

4
gSU�2�

−1 ��,�� . �2.40�

E. Hamiltonian reduction to the coset SU„2…/U„1…

The system with Hamiltonian function �2.38� has an obvious first integral,

p� = k, �p�,HSU�2�� = 0, �2.41�

where k can be an arbitrary constant. The Hamiltonian on the level set Mkªp�
−1�k� is, by defini-

tion, the projection of �2.38� onto this subspace:

H�k�
ª 
HSU�2�
p�=k = p


2 +
p�

2

sin2�
�
− k

2 cos�
�
sin2�
�

p� +
k2

sin2�
�
. �2.42�

The inverse Legendre transformation gives

LSU�2�/SU�1� =
1

4
„
̇2 + sin2�
��̇2

… + k cos�
��̇ . �2.43�

The interpretation of the system so obtained is the following:3 the first two terms correspond to a
particle moving on the two-sphere S2 endowed with the standard embedding metric, while the last
term describes the particle interaction with a Dirac monopole whose potential is

A� ª k„1 − cos�
�… .

III. GEODESIC FLOW ON SU„3… USING GENERALIZED EULER COORDINATES

A. Generalized Euler decomposition of SU„3…

Now we pass on to the description of the Euler decomposition of the SU�3� group element.
The Euler angle parametrization of the three-dimensional rotation group has been generalized for
the higher orthogonal SO�n� and special unitary SU�n� groups.6–8,16–18 Special attention has been
paid to the study of the SU�3�19–22 and SU�4�4,5 groups.

The starting point for the derivation29 of the Euler angle representation of the SU�3� group is
the so-called Cartan decomposition, which holds for a real semisimple Lie algebra G. A decom-
position of the algebra G into the direct sum of vector spaces K and P,

G = K � P , �3.1�

is a Cartan decomposition of the algebra G if

�K,K� � K , �3.2�

�K,P� � P , �3.3�

�P,P� � K . �3.4�

The Cartan decomposition for a Lie algebra induces a corresponding Cartan decomposition of
the group G,
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G = KP , �3.5�

where K is a Lie subgroup of G with Lie algebra K and P is given by the exponential map P
=exp�P�.

An explicit realization of the Cartan decomposition for SU�3� can be achieved using the
standard traceless 3�3 Hermitian Gell-Mann matrices �a�a=1, . . . ,8� �the explicit form of the �
matrices is given in the Appendix�. Indeed, from the expressions for the commutation relations,

��a,�b� = 2i
c=1

8

fabc�c, �3.6�

where the structure constants fabc are antisymmetric in all indices and have the nonzero values,

f123 = 1,

f147 = f246 = f257 = f345 = f516 = f637 = 1/2, �3.7�

f458 = f678 = �3/2,

it follows that the set of matrices ��1 ,�2 ,�3 ,�8� can be used as the basis for the vector space K
while the matrices ��4 ,�5 ,�6 ,�7� span the Cartan subspace P. Noting that the set of matrices
��1 ,�2 ,�3 ,�8� comprise the generators ��1 ,�2 ,�3� of the SU�2� group, one can locally represent K
as the product of the SU�2� subgroup and a one-parameter subgroup,

K = SU�2�ei��8. �3.8�

The second factor, P=exp�P�, in the Cartan decomposition �3.5� can be represented as a product
of one-parameter subgroups. Moreover, based on the algebra �3.6�, it can be represented as a
product of a one-parameter subgroup generated by an element23 from �4 , . . . ,�7 “sandwiched”
between two different copies of K. Fixing this generator to be, say �4, we have

P = K�ei��4K�. �3.9�

Now observing that ��8 ,�4�= i�3�5, the product KP can be reduced to

G = SU�2�ei�5SU�2��ei��8. �3.10�

Therefore, finally choosing the Euler representation for the elements of two subgroups U
�SU�2� and V�SU�2�� in terms of two sets of angles �� ,
 ,�� and �a ,b ,c�,

U��,
,�� = exp�i
�

2
�3	exp�i




2
�2	exp�i

�

2
�3	 , �3.11�

V�a,b,c� = exp�i
a

2
�3	exp�i

b

2
�2	exp�i

c

2
�3	 , �3.12�

we arrive at the generalized Euler decomposition of an element of g�SU�3�,

g = U��,
,��Z�,��V�a,b,c� , �3.13�

with

Z�,�� ª ei�5ei��8. �3.14�

Now it is necessary to fix the range of angles in �3.13�. Just as in the case of the SU�2� group
where the Euler parametrization was not a global one, the SU�3� group manifold cannot be
covered by one chart. However, there is a range of parameters such that the parametrization covers
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almost the whole manifold except the set whose measure in the integral quantities, e.g., such as the
invariant volume, is zero.23 The following ranges for the angles in �3.13�:

0 � �, a � 2�, 0 � 
, b � �, 0 � �, c � 4� , �3.15�

0 �  �
�

2
, 0 � � � �3� , �3.16�

lead to the invariant volume for SU�3�,

Vol„SU�3�… = �
SU�3�

* 1 = �3�5. �3.17�

Below this result will be checked by an explicit calculation of the volume of the SU�3� manifold
considered as the Riemannian space endowed with the bi-invariant metric,

gSU�3� = −
1

2
Tr�g−1 dg � g−1 dg� . �3.18�

In terms of the nonholonomic frame built up from the left-/right-invariant forms,

g−1 dg =
i

2 
A=1

8

�A � �L
A, �3.19�

dg g−1 =
i

2 
A=1

8

�A � �R
A, �3.20�

the Cartan-Killing metric �3.18� has the diagonal form

gSU�3� =
1

4
��L

1
� �L

1 + �L
2

� �L
2 + . . . + �L

8
� �L

8� �3.21�

=
1

4
��R

1
� �R

1 + �R
2

� �R
2 + . . . + �R

8
� �R

8� , �3.22�

while in the corresponding coordinate frame, with the Eulerian coordinates �� ,
 ,� ,a ,b ,c , ,��,
presented in the Appendix, it becomes

gSU�3� =
1

4
�d� � d� + d
 � d
 + d� � d� + 2 cos 
 d� � d�� +

1

4
�da � da + db � db + dc � dc

+ 2 cos b da � dc� +
1

2
cos  �sin�a + ���sin 
 d� � db + sin b d
 � dc�

+ cos�a + ���d
 � db − sin 
 sin b d� � dc�� −
�3

2
sin2 �cos 
 d� + d�� � d�

+
1

4
�1 + cos2 ��cos 
 d� + d�� � �da + cos b dc� + d � d + d� � d� . �3.23�

Fixing the range of the Euler angles according to �3.15� and noting that the determinant of the
Cartan- Killing metric �3.23� is
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det gSU�3� = �1

2
	12

sin6��cos2��sin2�
�sin2�b� ,

one can check that the group invariant volume on SU�3� agrees with �3.17�,

Vol„SU�3�… =�
SU�3�

�det gSU�3�d� ∧ d
 ∧ d� ∧ d ∧ da ∧ db ∧ dc ∧ d�

= �1

2
	6�

0

2�

d��
0

4�

d��
0

2�

da�
0

4�

dc�
0

�3�

d�

� �
0

�

d
 sin�
��
0

�/2

d cos��sin3���
0

�

db sin�b� = �3�5. �3.24�

This volume is in accordance with the general formula established by Macdonald in Ref. 24 and
expresses the volume element of a compact Lie group in terms of the product of volume elements
of odd-dimensional unit spheres,

Vol„SU�3�… =
�3

2
� Vol�S5� � Vol�S3� =

�3

2
� �3 � 2�2. �3.25�

In �3.25�, the multiplier �3/2 comes from the volume of the maximal torus in SU�3�, interpreted
sometimes as the “stretching” factor.25,26 This fact explicitly shows that the SU�3� group is not a
trivial product of the two spheres, S3 and S5.

The SU�3� group endowed with the bi-invariant metric �3.23� has a constant positive Riemann
scalar curvature,

RSU�3� = 24,

and the Ricci tensor obeys the relations27

R�� =
RSU�3�

8
g�� = 3g��. �3.26�

B. Geometry of the left coset SU„3…/SU„2…

The group SU�3� can be viewed as a principal bundle over the base S5 with the structure
group SU�2�,

SU�2� � SU�3�→
�

S5,

with the canonical projection � from the SU�3� onto the left coset SU�3�/SU�2��S5. This map can
be realized in the following manner. Consider the general linear group GL�3, C�.

An arbitrary element M3�3 can be written in the block form

�3.27�

for complex 2�2 matrix M2�2 and z1 ,z2 ,z3 ,y1 ,y2�C. The U�3� subgroup of the GL�3, C� group
is defined by the two matrix equations,
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M3�3M3�3
† = I3�3, M3�3

† M3�3 = I3�3. �3.28�

When M3�3 is represented in block form �3.27�, the conditions �3.28� reduce to the quadratic
equations,


z1
2 + 
z2
2 + 
z3
2 = 1, �3.29�


z1
2 + 
y1
2 + 
y2
2 = 1, �3.30�

and to the set of 2�2 matrix equations,

M2�2M2�2
† + aa† = I2�2, �3.31�

M2�2
† M2�2 + b†b = I2�2, �3.32�

z1a + M2�2a = 0 , �3.33�

z̄1b + M2�2
† b = 0 . �3.34�

Now let S5 be the five-sphere characterized by a unit complex vector Zª �z1 ,z2 ,z3�T

Z†Z = 1.

The SU�3� group element g then acts on this through left translations:

Z → Z� = gZ . �3.35�

Let Z0 be the base point on this five-sphere with coordinates Z0= �0,0 ,1�T whose isotropy group
is

�3.36�

Then the coset SU�3�/SU�2� can be identified with the orbit

Z = g · �0,0,1�T. �3.37�

Using the explicit form of the representation �3.13�, the subgroup SU�2� is embedded into SU�3�
as follows:

SU�2� → SU�3�, V =�e−i�a+c�/2 cos�b

2
	 − e−i�a−c�/2 sin�b

2
	 0

ei�a−c�/2 sin�b

2
	 ei�a+c�/2 cos�b

2
	 0

0 0 1
� . �3.38�

So the parametrization of a group element is

g = UZV = WV ,

where the factor W reads as
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W =� cos  cos



2
ei�u+ 1

�3
�	 sin




2
ei„v+�1/�3��… sin  cos




2
ei„u−�2/�3��…

− cos  sin



2
e−i�v− 1

�3
�	 cos




2
e−i„u−�1/�3��… − sin  sin




2
e−i„v+�2/�3��…

− sin e
i

�3
� 0 cos e−i�2/�3��

�
u =

� + �

2
, v =

� − �

2
.

Using these representations in �3.37�, we easily identify the projection onto the left coset as a
five-sphere:

�:g � SU�3� → �z1,z2,z2� � S5,

which explicitly reads as

z1 = cos e−i�2/�3��, �3.39�

z2 = − sin  sin



2
e− i

2
��−�+�4/�3��� , �3.40�

z3 = sin  cos



2
e�i/2�„�+�−�4/�3��…. �3.41�

Under this projection the Euclidean metric tr�dM dM†� on GL�3, C� induces the following metric
on a unit S5:

gS5 = dz̄1 � dz1 + dz̄2 � dz2 + dz̄3 � dz3

= sin2 �1

4
�d� � d� + d
 � d
 + d� � d� + 2 cos 
 d� � d�� −

2
�3

�cos 
 d� + d�� � d�	
+ d � d +

4

3
d� � d� , �3.42�

whose determinant is

det gS5 =
1

48
sin6��cos2��sin2�
� . �3.43�

The metric �3.42� defines a unit five-sphere S5 as a constant curvature Riemann manifold,

RS5 = 20, �3.44�

which is in accordance with its Gaussian curvature,

KS5 =
RS5

5�5 − 1�
= 1,

as well as with its volume,
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Vol�S5� = �
S5

�det gS5d� ∧ d
 ∧ d� ∧ d ∧ d�

=
1

4�3
�

0

2�

d��
0

4�

d��
0

�3�

d��
0

�

d
 sin�
��
0

�/2

d cos��sin3�� = �3.

�3.45�

C. Lagrangian on SU„3… in terms of generalized Euler angles

Consider the Lagrangian describing the geodesic motion on the SU�3� group manifold with
respect to the bi-invariant metric �3.18�,

LSU�3� = −
1

2
Tr�g−1�t�

d

dt
g�t�g−1�t�

d

dt
g�t�	 . �3.46�

Using the generalized Euler angles on SU�3� as the configuration space coordinates and �3.23� for
the bi-invariant metric, one can write the Lagrangian �3.46� as

LSU�3� =
1

4
��̇2 + 
̇2 + �̇2 + 2 cos 
�̇�̇ + ȧ2 + ḃ2 + ċ2 + 2 cos bȧċ�

+
1

2
cos „sin�a + ���sin 
�̇ḃ + sin b
̇ċ� + cos�a + ���
̇ḃ − sin 
 sin b�̇ċ�…

−
�3

2
sin2 �cos 
�̇ + �̇��̇ +

1

4
�1 + cos2 ��cos 
�̇ + �̇��ȧ + cos bċ� + ̇2 + �̇2.

�3.47�

From this expression and �3.23�, it follows that

LSU�3� = gSU�3��Ż,Ż� , �3.48�

where Ż is the vector field on the tangent bundle TSU�3�,

Ż = �̇
�

��
+ 
̇

�

�

+ �̇

�

��
+ ̇

�

�
+ �̇

�

��
+ ȧ

�

�a
+ ḃ

�

�b
+ ċ

�

�c
. �3.49�

It is worth noting that the Euler decomposition �3.13� for elements of SU�3� in terms of the
SU�2� subgroups,

SU�3� = U��,
,��exp�i�5�V�a,b,c�exp�i��8� ,

allows for the expression of the SU�3� Lagrangian �3.47� in terms of the corresponding left and
right invariant elements of the SU�2� Maurer-Cartan 1-forms:

LSU�3� =
1

4
a=1

3

iU̇�L
aiU̇�L

a +
1

4
a=1

3

iV̇�L
aiV̇�L

a +
1

2
cos 

a=1

3

iU̇�L
aiV̇�R

i −
1

4
�1 + cos2 �iU̇�L

3iV̇�R
3

−
�3

2
sin2 iU̇�L

3�̇ + ̇2 + �̇2. �3.50�

Here iU̇ and iV̇ denote the interior contraction of the vector field on each copy of the SU�2� group,
U and V, respectively,
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U̇ = �̇
�

��
+ 
̇

�

�

+ �̇

�

��
, V̇ = ȧ

�

�a
+ ḃ

�

�b
+ ċ

�

�c
. �3.51�

D. Hamiltonian dynamics on SU„3…

Performing the Legendre transformation, we derive the canonical Hamiltonian generating the
dynamics on the SU�3� group manifold:

HSU�3� =
1

sin2 
� p�

2

sin2 

+ p


2 + �tan2  +
1

sin2 

	p�

2 − 2
cos 


sin2 

p�p�

+ sin2 �1 +
1

4
cot2  +

1

sin2 b
	pa

2 + pb
2 +

1

sin2 b
pc

2 − 2
cos b

sin2 b
papc�

+ 2
cos 

sin2  sin 
 sin b
�cos�a + ����p� − cos 
p���pc − cos bpa� − sin bp
pb�

− sin�a + ���sin b�p� − cos 
p��pb + sin 
�pc − cos bpa�p
�� +
1

4
p

2

+
1

16
�1 +

3

cos2 
	p�

2 +
�3

2

p�p�

cos2 
−

�3

4
�1 +

1

cos2 
	pap�. �3.52�

The Hamiltonian �3.52� can be rewritten in a compact form using the left- and right-invariant
vector fields on the two SU�2� group copies, U and V, used in the Euler decomposition �3.13�:

HSU�3� = 
a=1

3

�a
R�a

R +
1

sin2 

a=1

2

��a
L − cos �a

R�2 +
1

sin2 2
�2�3

L − �1 + cos2 ��3
R −

�3

2
sin2 p�	2

+
1

4
p

2 +
1

4
p�

2 . �3.53�

Here �a
b and ��

R are functions defined through the relations

�a
L
ª ��Xa

L�, �a
R
ª ��Ya

R� ,

with the SU�2� left-invariant vector fields Xa
L on the tangent space to the U subgroup, TU, and the

right-invariant fields Ya
R on TV correspondingly.

E. Hamiltonian reduction to SU„3…/SU„2…

The representation �3.53� is very convenient for performing the reduction in degrees of free-
dom associated with the SU�2� symmetry transformation. Due to the algebra of Poisson brackets
�2.35�, the functions �1

L ,�2
L, and �3

L are the first integrals,

��a
L,HSU�3�� = 0.

Let us consider the zero level of these integrals

�1
L = 0, �2

L = 0, �3
L = 0. �3.54�

Noting the relation between the left and right invariant vector fields on a group, one can express
the functions �a

R entering in the Hamiltonian as
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�c
R = Ad�V�cb�b

L,

where Ad�V�cb is an adjoint matrix of an element V�SU�2�. From this one can immediately find
the reduced Hamiltonian on the integral level �3.54�. Indeed, projecting the expression �3.53� on
�a

R=0, we find

HSU�3�/SU�2� =
1

sin2 

a=1

3

�a
L�a

L +
1

sin2 2
�2�3

L −
�3

2
sin2 p�	2

+
1

4
p

2 +
1

4
p�

2 , �3.55�

or, more explicitly in terms of the canonical coordinates,

HSU�3�/SU�2� =
1

sin2 
� p�

2

sin2 

+ p


2 + �tan2  +
1

sin2 

	p�

2 − 2
cos 


sin2 

p�p� +

�3

2
tan2 p�p�	

+
1

4
p

2 +
1

16
�1 +

3

cos2 
	p�

2 . �3.56�

Performing the inverse Legendre transformation, we find the Lagrangian,

LSU�3�/SU�2� =
1

4
sin2 ��1 −

1

4
cos2 
 sin2 	�̇2 + 
̇2 +

1

4
�3 + cos2 ��̇2 +

1

2
cos 
�3 + cos2 ��̇�̇

− 2�3�cos 
�̇ + �̇��̇� + ̇2 + �̇2. �3.57�

Now one can consider the bilinear form �3.57� as the metric gO on the orbit space O
=SU�3� /SU�2�,

gO =
1

4
sin2 ��1 −

1

4
cos2 
 sin2 	d� � d� + d
 � d
 +

1

4
�3 + cos2 �d� � d�

+
1

2
cos 
�3 + cos2 �d� � d� − 2�3�cos 
 d� + d�� � d�� + d � d + d� � d� .

�3.58�

Using our previous calculations �3.45� of Vol�S5� with respect to the metric �3.42� induced by the
canonical projection to the left coset � :SU�3�→SU�3� /SU�2� and noting that the determinant of
the new orbit metric �3.58� induced by the Hamiltonian reduction is

det gO =
1

64
sin6��cos2��sin2�
� , �3.59�

we find

Vol„SU�3�/SU�2�… =
�3

2
Vol�S5� , �3.60�

with the same stretching factor �3/2 as found in �3.25� for the bi-invariant volume of the SU�3�
group.

IV. RIEMANNIAN STRUCTURES ON THE QUOTIENT SPACE

Now we are ready to answer the questions about the relation between metric �3.42� induced on
the left coset SU�3�/SU�2� by canonical projection from the ambient Euclidian space and the
metric �3.58� obtained as a result of performing the Hamiltonian reduction of the geodesic motion
from SU�3� to SU�3�/SU�2�.
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Performing a straightforward calculation of the Riemannian curvature with respect to the
metric �3.58� yields

R�gSU�3�
SU�2�

	 = 21, �4.1�

while, from the embedding argumentation we used before, the Riemann scalar of the unit five-
sphere S5 with standard metric induced from the Euclidean space is

R�gS5� = 20. �4.2�

Furthermore, even though the Riemann scalar is a constant, calculations shows that the metric
�3.57� is not the metric of a space of constant curvature.

So, we have found that the Lagrangian of the reduced system defines local flows on the
configuration space which are not isometric to those on S5 with its standard round metric.

We have shown above that the orbit space SU�3�/SU�2� considered as a Riemannian space
with metric g induced from the Cartan-Killing metric on SU�3� is not isometric to the S5 with the
standard round metric gS5. The next natural question is whether the metrics gO and gS5 are
geodesically/projectively equivalent.

There are several criteria on metrics to be geodesically equivalent. According to Eisenhart,30

two metrics g and ḡ on an n-dimensional Riemann manifold are geodesically equivalent if and
only if

2�n + 1��i�g�ḡ jk = 2ḡ jk �i� + ḡik� j� + ḡ ji �k� , �4.3�

where �i�g� is covariant with respect the metric g and the scalar function � is

� = ln�det�ḡ�
det�g�

	 . �4.4�

According to our calculations,

det�gO� =
3

4
det�gS5�

and

�i�gS5�gOjk
� 0,

and therefore gS5 and gO are not geodesically/projectively equivalent.

V. CONCLUSION

In this paper we have presented, for the first time, the explicit Hamiltonian reduction from free
motion on SU�3� to motion on the coset space SU�3� /SU�2��S5. This has been made possible
through a consistent parametrization of SU�3� that generalizes the Euler angle parametrization of
SU�2�. The full details for this parametrization of SU�3� are, for completeness, collected together
in an Appendix to this paper. The results presented there have been checked independently using
the computer algebra packages MATHEMATICA 5.0 and MAPLE 9.5. �MATHEMATICA files are avail-
able at http://compalg.jinr.ru/CAGroup/Palii/math_prgr.php�.

Through this analysis, we have seen that the resulting dynamics is not equivalent to the
geodesic motion on S5 induced from its standard round metric. This result prompts the following
questions.

• Is it possible to identify, a priori, the induced metric on the coset space in terms of the
properties of SU�3�?

• Is it possible to formulate the dynamics on SU�3� so that the reduced dynamics is the
expected geodesic motion on S5?
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• What happens if we reduce to a nonzero level set of the integrals �3.54�?

Progress in answering these questions will, we feel, throw much light on the dynamical
aspects of the Hamiltonian reduction procedure and hence lead to a deeper understanding of the
quantization of gauge theories.
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APPENDIX: DETAILS OF CALCULATION

1. The su„3… algebra structure

The eight traceless 3�3 Gell-Mann matrices providing a basis for the su�3� algebra listed
below:

�1 = �0 1 0

1 0 0

0 0 0
�, �2 = �0 − i 0

i 0 0

0 0 0
�, �3 = �1 0 0

0 − 1 0

0 0 0
� ,

�4 = �0 0 1

0 0 0

1 0 0
�, �5 = �0 0 − i

0 0 0

i 0 0
�, �6 = �0 0 0

0 0 1

0 1 0
� , �A1�

�7 = �0 0 0

0 0 − i

0 i 0
�, �8 =

1
�3�1 0 0

0 1 0

0 0 − 2
� .

Sometimes it is convenient to use instead of the Gell-Mann matrices the anti-Hermitian basis
taª �1/2i��a, obeying the relations

tatb = −
1

6
�abI +

1

2
c=1

8

�fabc − idabc�tc, �A2�

where the structure constants dabc are symmetric in their indices and nonvanishing values are
given in Table I, the coefficients fabc are skew symmetric in all indices. The constants fabc

determine the commutators between the basis elements �also see Table II�

�ta,tb� = 
c=1

8

fabctc. �A3�

TABLE I. The symmetric coefficients dabc.

�abc� �118��228��338� �146��157��256��344��355� �247��366��377� �448��558��668��778� �888�

dabc
1
�3

1
2 − 1

2 − 1

2�3
− 1

�3
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2. The basis of invariant 1-forms on the SU„3… group

a. The left-invariant 1-forms

Using the generalized Euler decomposition �3.13� for the SU�3� group element, it is straight-
forward to calculate the left and right invariant 1-forms. The results are given below:

�L
1 = �cos�
�sin�b�cos�c��1 −

1

2
sin2��	 + cos��sin�
��cos�b�cos�c�cos�a + ��

− sin�c�sin�a + ����d� − cos���cos�a + ��sin�c� + cos�b�cos�c�sin�a + ���d


+ cos�c�sin�b��1 −
1

2
sin2��	d� + cos�c�sin�b�da − sin�c�db ,

�L
2 = �cos�
�sin�b�sin�c��1 −

1

2
sin2��	 + cos��sin�
��cos�b�cos�a + ��sin�c�

+ cos�c�sin�a + ����d� + cos���cos�c�cos�a + �� − cos�b�sin�c�sin�a + ���d


+ sin�b�sin�c��1 −
1

2
sin2��	d� + sin�b�sin�c�da + cos�c�db ,

�L
3 = �cos�b�cos�
��1 −

1

2
sin2��	 − cos�a + ��cos��sin�b�sin�
��d�

+ cos��sin�b�sin�a + ��d
 + cos�b��1 −
1

2
sin2	d� + cos�b�da + dc ,

�L
4 = sin���cos�
�cos��cos�b

2
�cos�a + c

2
+ �3�� − cos�a − c

2
+ � − �3��sin�b

2
�sin�
�	d�

+ sin�b

2
�sin��sin�a − c

2
+ � − �3��d
 +

1

2
cos�b

2
�cos�a + c

2
+ �3��sin�2�d�

− 2 cos�b

2
�sin�a + c

2
+ �3��d ,

TABLE II. Structure of the su�3� algebra

t1 t2 t3 t4 t5 t6 t7 t8

t1 0 t3 −t2
1
2 t7 − 1

2 t6
1
2 t5 − 1

2 t4 0

t2 −t3 0 t1
1
2 t6

1
2 t7 − 1

2 t4 − 1
2 t5 0

t3 t2 −t1 0 1
2 t5 − 1

2 t4 − 1
2 t7

1
2 t6 0

t4 − 1
2 t7 − 1

2 t6 − 1
2 t5 0 1

2 t3+
�3
t t8

1
2 t2

1
2 t1 −

�3
2 t5

t5
1
2 t6 − 1

2 t7
1
2 t4 − 1

2 t3−
�3
2 t8

0 − 1
2 t1

1
2 t2

�3
2 t4

t6 − 1
2 t5

1
2 t4

1
2 t7 − 1

2 t2
1
2 t1 0 − 1

2 t3+
�3
2 t8 −

�3
2 t7

t7
1
2 t4

1
2 t5 − 1

2 t6 − 1
2 t1 − 1

2 t2
1
2 t3−

�3
2 t8

0
�3
2 t6

t8 0 0 0
�3
2 t5 −

�3
2 t4

�3
2 t7 −

�3
2 t6

0
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�L
5 = sin���sin�b

2
�sin�
�sin�a − c

2
+ � − �3�� + cos�b

2
�cos�
�cos��sin�a + c

2
+ �3��	d�

+ cos�a − c

2
+ � − �3��sin�b

2
�sin��d
 +

1

2
cos�b

2
�sin�2�sin�a + c

2
+ �3��d�

+ 2cos�b

2
�cos�a + c

2
+ �3��d ,

�L
6 = sin���cos�
�cos��cos�a − c

2
+ �3��sin�b

2
� + sin�
�cos�a + c

2
+ � − �3��cos�b

2
�	d�

− cos�b

2
�sin��sin�a + c

2
+ � − �3��d
 +

1

2
cos�a − c

2
+ �3��sin�b

2
�sin�2�d�

− 2 sin�b

2
�sin�a − c

2
+ �3��d ,

�L
7 = sin���cos�
�cos��sin�b

2
�sin�a − c

2
+ �3�� − cos�b

2
�sin�
�sin�a + c

2
+ � − �3��	d�

− cos�b

2
�cos�a + c

2
+ � − �3��sin��d
 +

1

2
sin�b

2
�sin�2�sin�a − c

2
+ �3��d�

+ 2 cos�a − c

2
+ �3��sin�b

2
�d ,

�L
8 = −

�3

2
cos�
�sin2��d� −

�3

2
sin2��d� + 2 d� .

b. The right-invariant 1-forms

�R
1 = sin���d
 − cos���sin�
�d� − cos���sin�
��1 −

1

2
sin2��	da + cos���cos�a + ��sin���

+ cos���cos�
�sin�a + ���db + �cos��sin�b��− cos���cos�
�cos�a + �� + sin���sin�a + ���

− cos���cos�b�sin�
��1 −
1

2
sin2��		dc + �3 cos���sin�
�sin2��d� ,

�R
2 = cos���d
 + sin���sin�
�d� + sin���sin�
��1 −

1

2
sin2��	da + cos���cos���cos�a + ��

− cos�
�sin���sin�a + ���db + �cos��sin�b��cos�
�cos�a + ��sin��� + cos���sin�� + ���

+ cos�b�sin���sin�
��1 −
1

2
sin2��	�dc − �3 sin���sin�
�sin2��d�
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�R
3 = d� + cos�
�d� + cos�
��1 −

1

2
sin2 	da + cos��sin�
�sin�a + ��db

+ �cos�b�cos�
��1 −
1

2
sin2��	 − cos�a + ��cos��sin�b�sin�
��dc − �3 cos�
�sin2��d� ,

�R
4 = 2 cos�


2
�sin�� + �

2
�d −

1

2
cos�


2
�cos�� + �

2
�sin�2�da

− sin�


2
�sin�a −

� − �

2
�sin��db + sin���cos�a −

� − �

2
�sin�b�sin�


2
�

− cos�b�cos�


2
�cos��cos�� + �

2
�	dc − �3 cos�


2
�cos�� + �

2
�sin�2�d� ,

�R
5 = cos�


2
�cos�� + �

2
�d +

1

2
cos�


2
�sin�� + �

2
�sin�2�da + cos�a −

� − �

2
�sin�


2
�sin��db

+ sin���sin�b�sin�


2
�sin�a −

� − �

2
� + cos�b�cos�


2
�cos��sin�� + �

2
�	dc

+ �3 cos�


2
�sin�� + �

2
�sin�2�d� ,

�R
6 = 2 sin�


2
�sin�� − �

2
�d +

1

2
cos�� − �

2
�sin�


2
�sin�2�da

− cos�


2
�sin�a +

� + �

2
�sin��db + sin���cos�


2
�cos�a +

� + �

2
�sin�b�

+ cos�b�cos��cos�� − �

2
�sin�


2
�	dc + �3 cos�� − �

2
�sin�


2
�sin�2�d� ,

�R
7 = − 2 cos�� − �

2
�sin�


2
�d +

1

2
sin�


2
�sin�� − �

2
�sin�2�da

+ cos�


2
�cos�a +

� − �

2
�sin��db + sin���cos�


2
�sin�b�sin�a +

� + �

2
�

+ cos�b�cos��sin�


2
�sin�� − �

2
�	dc + �3 sin�


2
�sin�� − �

2
�sin�2�d� ,

�R
8 = −

�3

2
sin2��da −

�3

2
cos�b�sin2��dc + �2 − 3 sin2���d� .

3. The basis of the invariant vector fields on the SU„3… group

The expressions for the left-invariant vector fields basis in the Euler angles coordinate frame
are given below
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a. The left-invariant vector fields

X1
L =

cos�c�
sin�b�

�

�a
− sin�c�

�

�b
− cot�b�cos�c�

�

�c
,

X2
L =

sin�c�
sin�b�

�

�a
+ cos�c�

�

�b
− cot�b�sin�c�

�

�c
,

X3
L =

�

�c
,

X4
L = −

sin�b

2
�

sin�
� sin��
cos�a − c

2
+ � − �3�� �

��
+

sin�b

2
�

sin��
sin�a − c

2
+ � − �3�� �

�


+ � sin�b

2
�

sin��
cot�
�cos�a − c

2
+ � − �3�� +

2 cos�b

2
�

sin�2�
cos�a + c

2
+ �3��� �

��

−
1

2
cos�b

2
�sin�a + c

2
+ �3�� −

1

2� cot��

cos�b

2
� + cos�b

2
�tan���cos�a + c

2
+ �3�� �

�a

+ cot��sin�b

2
�sin�a + c

2
+ �3�� �

�b
−

cot��

2 cos�b

2
� cos�a + c

2
+ �3�� �

�c

+
�3

4
cos�b

2
�cos�a + c

2
+ �3��tan��

�

��
,

X5
L =

sin�b

2
�

sin�
� sin��
sin�a − c

2
+ � − �3�� �

��
+

sin�b

2
�

sin��
cos�a − c

2
+ � − �3�� �

�


+ � sin�b

2
�

sin��
cot�
�sin�a − c

2
+ � − �3�� −

2 cos�b

2
�

sin�2�
sin�a + c

2
+ �3��� �

��

+
1

2
cos�b

2
�cos�a + c

2
+ �3�� �

�
−

1

2� cot��

cos�b

2
� + cos�b

2
�tan���sin�a + c

2
+ �3�� �

�a

− cos�a + c

2
+ �3��cot��sin�b

2
� �

�b
−

cot��

2 cos�b

2
� sin�a + c

2
+ �3�� �

�c

+
�3

4
cos�b

2
�sin�a + c

2
+ �3��tan��

�

��
,
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X6
L = +

cos�b

2
�

sin�
�sin��
cos�a + c

2
+ � − �3�� �

��
−

cos�b

2
�

sin��
sin�a + c

2
+ � − �3�� �

�


− � cos�b

2
�

sin��
cot�
�cos�a + c

2
+ � − �3�� −

2 sin�b

2
�

sin�2�
cos�a − c

2
+ �3��� �

��

−
1

2
sin�b

2
�sin�a − c

2
+ �3�� �

�
−

1

2� cot��

sin�b

2
� + sin�b

2
�tan���cos�a − c

2
+ �3�� �

�a

− cos�b

2
�cot��sin�a − c

2
+ �3�� �

�b
+

cot��

2 sin�b

2
� cos�a − c

2
+ �3�� �

�c

+
�3

4
cos�a − c

2
+ �3��sin�b

2
�tan��

�

��
,

X7
L = −

cos�b

2
�

sin�
�sin��
sin�a + c

2
+ � − �3�� �

��
−

cos�b

2
�

sin��
cos�a + c

2
+ � − �3�� �

�


+ � cos�b

2
�

sin��
cot�
�sin�a + c

2
+ � − �3�� +

2 sin�b

2
�

sin�2�
sin�a − c

2
+ �3��� �

��

+
1

2
cos�a − c

2
+ �3��sin�b

2
� �

�
−

1

2� cot��

sin�b

2
� + sin�b

2
�tan���sin�a − c

2
+ �3�� �

�a

+ cos�b

2
�cos�a − c

2
+ �3��cot��

�

�b
+

cot��

2 sin�b

2
� sin�a − c

2
+ �3�� �

�c

+
�3

4
sin�b�sin�a − c

2
+ �3��tan��

�

��
,

X8
L =

1

2

�

��
.

b. The right-invariant vector fields

X1
R = cos���cot�
�

�

��
+ sin���

�

�

−

cos���
sin�
�

�

��
,

X2
R = − sin���cot�
�

�

��
+ cos���

�

�

+

sin���
sin�
�

�

��
,

X3
R =

�

��
,
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X4
R =

cot��

2 cos�


2
� cos�� + �

2
� �

��
− cot��sin�


2
�sin�� + �

2
� �

�

+ cos�� + �

2
�� cot��

2 cos�


2
�

− cos�


2
�tan��� �

��
+

1

2
cos�


2
�sin�� + �

2
� �

�
− � cot�b�

sin��
cos�a −

� − �

2
�sin�


2
�

+

cos�


2
�

sin�2�
cos�� + �

2
��2 − 3 sin2���� �

�a
−

sin�


2
�

sin��
sin�a −

� − �

2
� �

�b

+

sin�


2
�

sin�b�sin��
cos�a −

� − �

2
� �

�c
−

�3

4
cos�


2
�cos�� + �

2
�tan��

�

��
,

X5
R = −

cot��

2 cos�


2
� sin�� + �

2
� �

��
− cos�� + �

2
�cot��sin�


2
� �

�

− sin�� + �

2
�� cot��

2 cos�


2
�

− cos�


2
�tan��� �

��
+

1

2
cos�


2
�cos�� + �

2
� �

�
− � cot�b�

sin��
sin�a −

� − �

2
�sin�


2
�

−

cos�


2
�

sin�2�
sin�� + �

2
��2 − 3 sin2���� �

�a
+

sin�


2
�

sin��
cos�a −

� + �

2
� �

�b

+

sin�


2
�

sin�b�sin��
sin�a −

� − �

2
� �

�c
+

�3

4
cos�


2
�sin�� + �

2
�tan��

�

��
,

X6
R =

cot��

2 sin�


2
� cos�� − �

2
� �

��
+ cos�


2
�cot��sin�� − �

2
� �

�

− cos�� − �

2
�

�� cot��

2 sin�


2
� − sin�


2
�tan��� �

��
+

1

2
sin�


2
�sin�� − �

2
� �

�

− � cot�b�
sin��

cos�a +
� + �

2
�cos�


2
� −

sin�


2
�

sin�2�
cos�� − �

2
��2 − 3 sin2���� �

�a

−

cos�


2
�

sin��
sin�a +

� + �

2
� �

�b
+

cos�


2
�

sin�b�sin��
cos�a +

� + �

2
� �

�c

+
�3

4
cos�� − �

2
�sin�


2
�tan��

�

��
,
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X7
R =

cot��

2 sin�


2
� sin�� − �

2
� �

��
− cos�


2
�cos�� − �

2
�cot��

�

�

− sin�� − �

2
�� cot��

2 sin�


2
�

− sin�


2
�tan��� �

��
−

1

2
cos�� − �

2
�sin�


2
� �

�
− � cot�b�

sin��
cos�


2
�sin�a +

� + �

2
�

−

sin�


2
�

sin�2�
sin�� − �

2
��2 − 3 sin2���� �

�a
+

cos�


2
�

sin��
cos�a +

� + �

2
� �

�b

+

cos�


2
�

sin�b�sin��
sin�a +

� + �

2
� �

�c
+

�3

4
sin�


2
�sin�� − �

2
�tan��

�

��
,

X8
R = �3

�

��
− �3

�

�a
+

1

2

�

��
.
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We construct the nonequilibrium Glauber dynamics as a Markov process in con-
figuration space for an infinite particle system in continuum with a general class of
initial distributions. This class we define in terms of correlation functions bounds
and it is preserved during the Markov evolution we constructed. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2354589�

I. INTRODUCTION

The theory of stochastic lattice gases on the cubic lattice Zd, d�N is one of the most impor-
tant and well-developed areas in the theory of interacting particle systems. In the lattice gas model
with spin space S= �0,1�, the configuration space is defined as X= �0,1�Z

d
. For a given �

= ���x� �x�Zd��X we say that a lattice side y�Zd is free or occupied by a particle depending on
��y�=0 or ��y�=1, respectively.

In the Glauber-type stochastic dynamics of the lattice gas particles randomly disappear from
occupied sites or appear at free places of the lattice. Obviously, this dynamics may be interpreted
as a birth-and-death process on Zd. The generator of this dynamics is given by

�Lf���� = �
x�Zd

a�x,����xf���� ,

where

��xf���� = f��x� − f��� ,

�x denoting the configuration � in which the particle at site x has changed its spin value. The rate
function a�x ,�� is taken in such a way that an a priori given measure on X �say, a Gibbs measure
for the Ising model� is a symmetrizing measure for the Glauber generator L, see, e.g., Ref. 17.

Let us consider a continuous particle system, i.e., a system of particles which can take any
position in the Euclidean space Rd. The configuration space � for such system is the set of all
locally finite subsets ��Rd. An analog of the discussed lattice stochastic dynamics should be a
process in which particles randomly appear and disappear in the space, i.e., a spatial birth-and-
death process. The generator of such a process is informally given by the formula

a�Electronic mail: kondrat@math.uni-bielefeld.de
b�Electronic mail: kutoviy@math.uni-bielefeld.de
c�Electronic mail:ejj@iitp.ru
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�LF���� = �
x��

d�x,���Dx
−F���� + 	

Rd
b�x,���Dx

+F����dx , �1�

where

�Dx
−F���� = F�� \ x� − F���, �Dx

+F���� = F�� � x� − F��� .

Here and in the following, for simplicity of notation, we just write x instead of �x�. The coefficient
d�x ,�� describes the rate at which the particle x of the configuration � dies, while b�x ,�� describes
the rate at which, given the configuration �, a new particle is born at x.

Spatial birth-and-death processes were first discussed by Preston in Ref. 19. Under some
conditions on the birth and death rates, Preston proved the existence of such processes in a
bounded domain in Rd. Though the number of particles can be arbitrarily large in this case, the
total number of particles remains finite at any moment of time. The study of the problem of
construction of a spatial birth-and-death process in the infinite volume was initiated by Holley and
Stroock in Ref. 5. In fact, in that paper, birth-and-death processes in bounded domains were
analyzed in detail. Only in a very special case of nearest-neighbor birth-and-death processes on the
real line was the existence of a corresponding process on the whole space proved and its properties
were studied.

Glötzl4 derived conditions on the coefficients d�x ,��, b�x ,��, under which the birth-and-death
generators are symmetric in the space L2���, where � is a given Gibbs measure. Such generators
are natural to call Glauber dynamics generators �corresponding to the equilibrium state ��. How-
ever, the problem of the existence of such dynamics was left open. In Ref. 2, Bertini, Cancrini, and
Cesi studied the problem of the existence of a spectral gap for the Glauber dynamics in a bounded
domain in Rd. Bertini et al. considered the Glauber dynamics with death coefficient d�x ,��=1.

By using the theory of Dirichlet forms, an analog of the Glauber dynamics from Ref. 2, but on
the whole space �thus, involving infinite configurations� and for quite general pair potentials, was
constructed in Ref. 11. A general class of Glauber dynamics in continuum which admits a much
wider family of birth and death rates �again in the framework of the Dirichlet forms theory� was
considered in Ref. 12.

All papers mentioned deal with so-called equilibrium stochastic dynamics, which gives an
existence result for almost all starting configurations with respect to the a priori given stationary
measure. The latter means that we can start our Markov process with any initial measure which is
absolutely continuous with respect to the symmetrizing one. In applications, however, we need to
analyze the time development for different classes of initial states of the system. These states can
be very far from the equilibrium ones and the equilibrium stochastic dynamics �coming from the
Dirichlet forms method� is not enough for the construction of their evolution.

In the present paper we propose a construction of the nonequilibrium Glauber dynamics in
continuum. Namely, we describe a set of initial distributions on � such that for any initial measure
�0 from this class there exists a Markov process with considered Glauber generator Xt

�0 ��
starting with �0. Moreover, the distribution �t of this process at the time t�0 is again in the same
class of measures on �. Our construction is based on a general approach to the study of infinite
particle dynamics using techniques of the harmonic analysis on configuration spaces developed in
Ref. 8. More precisely, we start with the Kolmogorov equation corresponding to our Glauber
dynamics. That is an evolutional equation on functions defined on the configuration space � which
are called observables in the terminology of mathematical physics. An application of the combi-
natorial Fourier transform from Ref. 8 gives instead of this infinite dimensional evolution equation
an infinite family of finite dimensional equations for so-called quasiobservables. This infinite
system of equations admits a natural description in terms of a Fock-type structure. This structure
is nothing but an L1-Fock space with a fixed family of weight functions. Properly taking these
weights we are able to apply perturbation techniques to the considered evolution equation in the
L1-Fock space and to construct a related semigroup. The dual semigroup gives then the time
evolution of the correlation functions of the initial measure and due to a reconstruction theorem
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from Ref.8 we can obtain an evolution of the initial measure. The latter solve the dual Kolmog-
orov equation and it is the main step in the construction of the nonequilibrium Glauber dynamics
we are considering.

Let Mcorr be the class of probability measures on � whose correlation functions exist and
satisfy Ruelle-type bound �the explicit description of this class of measures will be given in Sec.
VI�. Then, the main result of this paper can be formulated as follows

Theorem 1.1: For any ��Mcorr there exists a Markov process Xt
��� with initial distribu-

tion � associated with the generator �1�.
Note that the evolution of the correlation functions in the Glauber dynamics is described by a

system of equations which give a dynamical version of the celebrated Kirkwood-Salsburg system
of equations for an equilibrium state of the model. Solving this system we need to check a
property of a positive definiteness for the solution in the sense of Refs. 1 and 8. This moment is
usually outside of the attention in theoretical physics considerations of time evolutions for corre-
lation functions. But this positive definiteness is a necessary �and together with a growth condition
also sufficient� condition on correlation functions which relates them to a measure on �. Actually,
the verification of this condition is one of the main difficulties in the above described approach.

II. GENERAL FACTS AND NOTATIONS

Let Rd be the d-dimensional Euclidean space. By O�Rd�, B�Rd� we denote the family of all
open and Borel sets, respectively. Ob�Rd�, Bb�Rd� denote the system of all sets in O�Rd�, B�Rd�,
respectively, which are bounded. The space of n-point configuration is

�0
�n� = �0,Rd

�n�
ª �� � Rd���� = n�, n � N0 ª N � �0� ,

where �A� denotes the cardinality of the set A. Analogously the space �0,�
�n� is defined for �

�Bb�Rd�, which we denote for short by ��
�n�.

For every ��Bb�Rd� one can define a mapping N� :�0
�n�→N0; N����ª �����. For short we

write ��ª���. As a set, �0
�n� is equivalent to the symmetrization of

�Rd�ñ = ��x1, . . . ,xn� � �Rd�n�xk � xl if k � l� ,

i.e., �Rd�ñ /Sn, where Sn is the permutation group over �1, . . . ,n�. Hence �0
�n� inherits the structure

of an n ·d-dimensional manifold. Applying this we can introduce a topology O��0
�n�� on �0

�n�. The
corresponding Borel �-algebra B��0

�n�� coincides with ��N� ���Bb�Rd��.
The space of finite configurations

�0 ª �
n�N0

�0
�n�

is equipped with the topology of disjoint union O��0�. A set B�B��0� �the corresponding Borel
�-algebra� is called bounded if there exists a ��Bb�Rd� and an N�N such that B��n=0

N ��
�n�.

The configuration space

� ª �� � Rd��� � �� � 	 , for all � � Bb�Rd��

is equipped with the vague topology. The Borel �-algebra B��� is equal to the smallest �-algebra
for which all the mappings N� :�→N0, N����ª ����� are measurable, i.e.,

B��� = ��N��� � Bb�Rd��

and filtration on � given by

B���� ª ��N����� � Bb�Rd�,�� � �� .

For every ��Bb�Rd� one can define a projection p� :�→��,
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p���� ª ��

and with respect to this projection � is the projective limit of the spaces ������Bb�Rd�.
In the sequel we will use the following classes of function: L0��0� is the set of all measurable

functions on �0 and Lls
0 ��0� is the set of measurable functions which have additionally a local

support, i.e., G�Lls
0 ��0� if there exists ��Bb�Rd� such that G��0\��

=0. Lbs
0 ��0� denotes the class

of measurable functions with bounded support, B��0� the set of bounded measurable functions,
and Bbs��0� the set of bounded functions with bounded support. For any ��Bb�Rd�, the class of
functions G�Bbs��0�, whose support is a subset of �,will be denoted by Bbs

� ��0�. The class of
continuous functions from Bbs

� ��0� will be denoted by CBbs
� ��0�.

On � we consider the set of a cylinder functions FL0���, i.e., the set of all measurable
functions G�L0��� which are measurable with respect to B���� for some ��Bb�Rd�. These
functions are characterized by the following relation: F���=F���

����.
Next we would like to describe some facts from harmonic analysis on configuration space

based on Refs. 8 and 9.
The following mapping between functions on �0, e.g., Lls

0 ��0�, and functions on �, e.g.,
FL0���, plays a key role in our further considerations:

KG��� ª �

��

G�
�, � � � ,

where G�Lls
0 ��0�, see, e.g., Refs. 15 and 16. The summation in the latter expression is extended

over all finite subconfigurations of �, in symbols 
��.
K is linear, positivity preserving, and invertible, with

K−1F��� ª �

��

�− 1���\
�F�
�, � � �0. �2�

It is easy to see that for all ��Bb�Rd�, F�FL0�� ,B�����,

K−1F��� = 1��
���K−1F���, ∀ � � �0. �3�

One can introduce a convolution

�:L0��0� � L0��0� → L0��0�

�G1,G2� � �G1 � G2���� ª �
�
1,
2,
3��P�

3 ���

G1�
1 � 
2�G2�
2 � 
3� , �4�

where P�
3 ��� denotes the set of all partitions �
1 ,
2 ,
3� of � in three parts, i.e., all triples

�
1 ,
2 ,
3� with 
i��, 
i�
 j =� if i� j, and 
1�
2�
3=�. It has the property that for G1 ,G2

�Lls
0 ��0� we have K�G1�G2�=KG1 ·KG2. Due to this convolution we can interpret K transform as

Fourier transform in configuration space analysis, see also Ref. 1.
Let Mfm

1 ��� be the set of all probability measures � which have finite local moments of all
orders, i.e., 
� ����n��d��� +	 for all ��Bb�Rd� and n�N0. A measure � on �0 is called locally
finite iff ��A��	 for all bounded sets A from B��0�, the set of such measures is denoted by
Mlf��0�. One can define a transform K* :Mfm

1 ���→Mlf��0�, which is dual to the K-transform,
i.e., for every ��Mfm

1 ���, G�Bbs��0� we have

	
�

KG�����d�� = 	
�0

G����K*���d�� .

��ªK*� we call the correlation measure corresponding to �.
As shown in Ref. 8 for ��Mfm

1 ��� and any G�L1��0 ,��� the series
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KG��� ª �
���

G��� �5�

is �-a.s. absolutely convergent. Furthermore, KG�L1�� ,�� and

	
�0

G������d�� = 	
�

�KG������d�� . �6�

Fix a nonatomic and locally finite measure � on �Rd ,B�Rd��. For any n�N the product

measure ��n can be considered by restriction as a measure on �Rd�ñ and hence on �0
�n�. The

measure on �0
�n� we denote by ��n�.

The Lebesgue-Poisson measure z� on �0 is defined as

z� ª �
n=0

	
zn

n!
��n�.

Here z�0 is the so-called activity parameter. The restriction of z� to �� will be also denoted by
z�.

The Poisson measure �z� on �� ,B���� is given as the projective limit of the family of
measures ��z�

� ���Bb�Rd�, where �z�
� is the measure on �� defined by �z�

�
ªe−z����z�.

A measure ��Mfm
1 ��� is called locally absolutely continuous with respect to �z� iff ��

ª� � p�
−1 is absolutely continuous to �z�

� =�z� � p�
−1 for all ��B��Rd�. In this case ��ªK*� is

absolutely with respect to z�. We denote by k����ª �d�� /dz�����, ���0. For � - Lebesgue
measure on Rd we will write z instead of z�.

The functions

k�
�n�:�Rd�n → R+,

k�
�n��x1, . . . ,xn� ª �k���x1, . . . ,xn�� if �x1, . . . ,xn� � �Rd�ñ

0 otherwise
�7�

are well-known correlation functions of statistical physics, see, e.g. Refs. 22 and 21.
Let us now recall the so-called Minlos lemma which plays a very important role in our

calculations �c.f. Ref. 13�.
Lemma 2.1: Let n�2, and z�0 be given. Then

	
�0

¯ 	
�0

G��1 � . . . � �n�H��1, . . . ,�n�dz��1� ¯ dz��n�

= 	
�0

G��� �
��1,. . .,�n��Pn���

H��1, . . . ,�n�dz���

for all measurable functions G :�0�R and H :�0� . . . ��0�R with respect to which both sides
of the equality make sense. Here Pn��� denotes the set of all partitions of � in n parts, which may
be empty.

III. POTENTIAL AND GIBBS MEASURES ON CONFIGURATION SPACES

A pair potential is a Borel, even function � :Rd�R� �+	 �. We assume that � satisfies the
following conditions.

�I� �Integrability� For any ��0,
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C��� ª 	
Rd

�1 − exp�− ���x���dx � 	 .

�P� �Positivity� ��x��0 for all x�Rd.
For ��� and x�Rd \�, we define a relative energy of interaction as follows:

E�x,�� ª��y��
��x − y� if �y��

���x − y�� � 	

+ 	 otherwise.

The energy of configuration ���0 or Hamiltonian E� :�0→R� �+	 � which corresponds to
potential � is defined by

E���� = �
�x,y���

��x − y�,� � �0, ��� � 2.

The Hamiltonian E�
� :��→R for ��Bb�Rd� which corresponds to potential � is defined by

E�
���� = �

�x,y���

��x − y�,� � ��, ��� � 2.

For fixed � we will write for short E=E� and E�=E�
�.

For given �̄�� define the interaction energy between ���� and �̄�c = �̄��c, �c=Rd \� as

W�����̄� = �
x��,y��̄�c

��x − y� .

The interaction energy is said to be well-defined if for any ��Bb�Rd�, ���� and �̄�� it is
finite or +	.

For ��0 we define

E�����̄� = E���� + W�����̄�

and

Z���̄� ª 	
��

exp�− �E�����̄��z�d�� ,

the so-called partition function.
Let ��Bb�Rd�, ��0 be arbitrary, and let �̄��. The finite volume Gibbs measure on the

space �� with boundary configuration �̄ is defined by

P�,�̄�d�� =
exp�− �E�����̄��

Z���̄�
z�d�� .

When �̄=�, let P�,��d��= :P��d��.
Let ���� denote the specification associated with z and the Hamiltonian E �see Ref. 18� which

is defined by

��,�̄�A� = 	
A�

P�,�̄�d�� ,

where A�= ����� :�� ��̄�c��A�, A�B��� and �̄��.
A probability measure � on � is called a Gibbs measure for E and z if

����,�̄�A�� = ��A�

for every A�B��� and every ��Bb�Rd�.
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This relation is the well-known �DLR�-equation �Dobrushin-Lanford-Ruelle equation�, see
Ref. 3 for more details.

The set of all Gibbs measures which corresponds to the potential �, activity parameter z
�0, and inverse temperature ��0 will be denoted by G�� ,z ,��. For fixed potential � we will
write G�z ,�� instead of G�� ,z ,��.

Remark 3.1: The set G�� ,z ,�� is nonempty for all z�0, ��0 and any potential � satisfying
�P� and �I�, see Ref. 14.

IV. GENERATORS: THE SYMBOL OF THE GLAUBER GENERATOR ON THE SPACE OF
FINITE CONFIGURATIONS

We consider a Markov pregenerator on the configuration space �, the action of which is given
by

�LF���� ª �Lb,dF���� = �
x��

d�x,� \ x�Dx
−F��� + 	

Rd
b�x,��Dx

+F���dx ,

where Dx
−F���=F�� \x�−F��� and Dx

+F���=F���x�−F���.
It is known that the Gibbs measure ��G�z ,�� is reversible with respect to the Markov

process associated with the generator L �i.e., the operator L is symmetrical in L2�� ,��� iff the
following condition on coefficients b and d �birth and death rates� holds:

b�x,�� = ze−�E�x,��d�x,�� . �8�

In the sequel we will be interested only in particular cases of birth and death rates, which play an
essential role in the study of some problems of mathematical physics:

b�x,�� = ze−�E�x,��, d�x,�� = 1.

Such model was investigated by many authors, see, e.g. Refs. 13 and 11. The corresponding
Markov generator we denote by the same symbol L.

For technical reasons we will also be interested in the birth and death rates localized in some
volume ��B�Rd�. Namely,

b��x,�� = z1��x�e−�E�x,���, d��x,�� = 1��x� .

We denote the corresponding Markov generator by L�.
In a recent paper,13 the authors have shown that in the case of equilibrium Glauber dynamics

with invariant measure ��G�z ,��, corresponding to the pair potential, the image of L under the
K-transform �or symbol of the operator L� has the following form:

�L̂G���� ª �K−1LKG���� = L0G��� + L1G���, G � Bbs��0� ,

where

L0G��� ª − ���G���

and

L1G��� ª z �

��

	
Rd

G�
 � x� �
y��\


�e−���x−y� − 1� �
y��


e−���x−y��dx .

Analogously, one can show that the symbol of L� has form
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�L�̂G���� ª �K−1L�KG���� = − ����G��� + z �

��

	
�

G�
 � x� �
y��\


�e−���x−y�1��y� − 1�

�e−�E�x,
��dx, G � Bbs��0� .

V. CONSTRUCTION OF A SEMIGROUP OF THE SYMBOL

Let  be the Lebesgue-Poisson measure on �0 with activity parameter equal to 1. In the whole
section we suppose that potential � satisfies conditions �P� and �I�.

For arbitrary and fixed C�0 and ��0, we consider operator L̂ as a pregenerator of some
nonequilibrium Markov process in the functional space

LC,� ª L1��0,C���e−�E����d��� . �9�

In this section,  ·  stands for the norm of the space �9� and →
s

denotes strong convergence in LC,�.
For any ��Bb�Rd� we set

LC,�
�

ª �G � LC,�����0\��
= 0� . �10�

It is not difficult to show that LC,�
� is a closed linear subset in �LC,� ,  ·  �. Therefore, �LC,�

� ,  ·  �
is a subspace of �LC,� ,  ·  �.

For any ��0 we introduce a set H�� ,0� of all densely defined closed operators T on LC,�,
the resolvent set ��T� of which contains sector

Sect��

2
+ ��ª �
 � C��arg �� �

�

2
+ ��, � � 0

and for any ��0,

�T − �1�−1 �
M�

���
, �arg �� �

�

2
+ � − � ,

where M� does not depend on �.
Let H�� ,��, ��R denote the set of all operators of the form T=T0+� with T0�H�� ,0�.
Remark 5.1: It is well known (see e.g., Ref. 7�, that any T�H�� ,�� is a generator of a

semigroup U�t� which is holomorphic in the sector �arg t � ��. The function U�t� is not necessary
uniformly bounded, but it is quasibounded, i.e.,

U�t� � const�e�t�

in any sector of the form �arg t � ��−�.
Proposition 5.1: For any C�0 and ��0, the operator

�L0G���� = − ���G���, D�L0� = �G � LC,�����G��� � LC,��

is a generator of contraction semigroup on LC,�. Moreover, L0�H�� ,0�, for all �� �0,� /2�.
Proof: It is not difficult to show that L0 is a densely defined and closed operator in LC,�.
Let 0���� /2 be arbitrary and fixed. It is clear that for all ��Sect�� /2+��,

�� + �� � 0, � � �0.

Therefore, for any ��Sect�� /2+�� the inverse operator �L0−�1�−1, the action of which is given
by
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��L0 − �1�−1G���� = −
1

��� + �
G��� , �11�

is well defined on the whole space LC,�. Moreover, it is bounded operator in this space and

�L0 − �1�−1 � �
1

���
if Re � � 0

M

���
if Re � � 0,

�12�

where constant M does not depend on �.
The case Re ��0 is a direct consequence of �11� and inequality

��� + Re � � Re � � 0.

We prove now bound �12� in the case Re ��0. Using �11�, we have

�L0 − �1�−1G = � 1

�� · � + ��
G�·�� =

1

��� � ���
�� · � + ��

G�·�� .

Since ��Sect�� /2+��,

�Im �� � ����sin��

2
+ ��� = ���cos � .

Hence,

���
���� + ��

�
���

�Im ��
�

1

cos �
¬ M

and �12� is fulfilled.
The rest statement of the lemma now follows directly from the theorem of Hille-Yosida �see

e.g., Ref. 7�.
Let ��0 be the parameter of the considered model.
We now consider the operator

�L1G���� = �L1,�,�G���� = � �

��

	
Rd

G�
 � x� �
y��\


�e−���x−y� − 1�e−�E�x,
�dx, G � D�L1�

with domain D�L1�ªD�L0�. The well-definiteness of this operator will be clear from the following
lemma.

For the symbol of the operator L we will sometimes write L�,�̂ instead of L̂ to stress the
dependence of this operator on ��0 and ��0.

Lemma 5.1: For any ��0 there exists �0ª�0����0 such that for all ���0 the following
estimate holds:

L1,�,�G � aL0G + bG, G � D�L0� = D�L1� , �13�

with a=a����� and b=b�����.
Proof: As 1 belongs to the resolvent set of L0 we have

L1�L0 − 1�−1G = �	
�0

�L1�L0 − 1�−1G����C���e−�E����d�� . �14�

Define
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K�x,�� ª �
y��\x

�e−���x−y� − 1�, x � Rd, � � �0,

then by modulus property �14� can be estimated by

�	
�0

�

��

	
Rd

�G�
 � x��
�
 � x� + 1

K�x,� \ 
�e−�E�x,
�dxC���e−�E����d�� . �15�

By the Minlos lemma, �15� is equal to

�	
�0

	
�0

	
Rd

�G�
 � x��
�
 � x� + 1

K�x,��e−�E�x,
�dxC���
�e−�E���
��d
��d�� .

Using again the Minlos lemma we bound the latter expression by

�	
�0

	
�0

�G�
��
�
� + 1 �

x�


K�x,��e−�E�x,
\x�C����
\x��e−�E����
\x���d
��d�� .

Since

E�x,
 \ x� = E�
� − E�
 \ x�

and since positivity of � implies

E�� � �
 \ x�� − E�
 \ x� � 0

we have

L1�L0 − 1�−1G � �	
�0

�G�
��
�
� + 1

C�
�e−�E�
��
x�

	

�0

K�x,��C����
\x��−�
��d���d
�

� �	
�0

�G�
��
�
� + 1

C�
�e−�E�
��
x�

	

�0

K�x,��C���−1�d���d
� .

Finally,

L1�L0 − 1�−1G � �C−1eC���CG .

Therefore,

L1G � �C−1eC���C�L0 − 1�G � aL0G + bG ,

where

a = b ª �C−1eC���C.

It is clear that taking

�0 = �Ce−C���C

we obtain that a ,b��. �

Theorem 5.1: For any C�0, and for all � ,��0 which satisfy

2� exp�C���C� � C , �16�

the operator L�,�̂ a generator of a holomorphic semigroup in LC,�.
Proof: The statement of theorem follows directly from the theorem about perturbation of

holomorphic semigroup �see, e.g. Ref. 7�. For the reader’s convenience, in the following we give
its formulation:
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for any T�H�� ,�� and for any ��0 there exists positive constants �, � such that if operator
A satisfies

Au � aTu + bu, u � D�T� � D�A� ,

with a�� ,b��, then T+A�H��−� ,��.
In particular, if �=0 and b=0, then T+A�H��−� ,0�. �

Remark 5.2: Due to Proposition 5.1, the operator L0�H�� ,0�, for any �� �0,� /2�. Since we
are not interested yet in the domain of analyticity for the corresponding semigroup �which depends
on �� we consider � close to 0 in order to get the best possible bound for the resolvent of L0. Now,
together with the proof of the theorem on holomorphic semigroups’ perturbation �see, e.g., Ref. 7�,
one can conclude that the largest � in this theorem applying to our case can be chosen to be 1

2 .
For our further purposes we have to show that the holomorphic semigroup constructed in

Theorem 5.1 can be approximated by the semigroups localized in bounded volumes.
Let ��Bb�Rd� be arbitrary and fixed. Then all results proved in this section hold true for the

operator L�̂ acting in the functional space LC,�
� with domain

D�L�̂� ª �G � LC,���·��G�·� � LC,�
� � .

Namely, the main result can be formulated as follows
Theorem 5.2: For any ��Bb�Rd�, and any triple of constants C ,��0, and ��0 which

satisfy

2� exp�C���C� � C ,

the operator L�̂ is a generator of a holomorphic semigroup in LC,�
� .

Remark 5.3: The arguments, analogous to those which were proposed in the proof of Lemma
5.1, imply the fulfilment of �13� for the operators

L0,�̂G��� ª − ����G���

and

L1,�̂G��� ª � �

��

	
�

G�
 � x� �
y��\


�e−���x−y�1��y� − 1� �
y��
�

e−���x−y��dx

with

D�L0,�̂� = D�L1,�̂� ª �G � LC,���·��G�·� � LC,�
� � .

Moreover, bound �13� in this case will be uniform with respect to the ��Bb�Rd�, i.e., coef-
ficients a�0 and b�0 in �13� can be chosen � independent.

Fix any triple of positive constants C, �, and � which satisfies �16� and any ��Bb�Rd�.
Remark 5.4: Let Ut

�̂�C ,� ,�� be holomorphic semigroup generated by operator �L�̂ ,D�L�̂�� on

LC,�
� . Then Ut

�̂�C ,� ,�� � P� , t�0, where

P�G��� ª 1��
���G���, G � LC,�

is a semigroup on LC,� generated by the operator L�̂ � P� with domain

D�L�̂ � P�� ª �G � LC,���·��1��
�·�G�·� � LC,�� .

Remark 5.5: The theorem about perturbation of the generator of a holomorphic semigroup,
mentioned before in this section �see also Ref. 7�, implies that for any ��Bb�Rd� and ��0 there
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exists ��0 and constant M �0 which is not dependent on � such that for any ��� the following
bound holds:

�L�̂ � P� − ��−1 �
M�

�� − ��
, �arg�� − ��� �

�

2
+ � − � .

Let ��n�n�1 be a sequence of Borel sets such that �n��n+1, for all n�N, and �n�1�n=Rd.
Now, we formulate the following approximation theorem.

Theorem 5.3: Let Ût�C ,� ,�� and �Ut
�n̂�C ,� ,�� ,n�1� be holomorphic semigroups generated

by L�,�̂ and �L�n,�,�̂ ,n�1� in the spaces LC,� and LC,�
� , respectively. Then,

Ut
�n̂�C,�,�� � P�n

→
s

Ût�C,�,��, n → 	

uniformly on any finite interval of t�0.
Proof: Using approximation theorem for quasibounded semigroups �see, e.g., Ref. 7�, it is

enough to show that

�L�n,�,�̂ � P�n
− ��−1→

s

�L�,�̂ − ��−1

for some ��C such that Re ���.
Let ��C, Re ��� be arbitrary and fixed. For any G�LC,� it holds

�L�n,�,�̂ � P�n
− ��−1G − �L�,�̂ − ��−1G = �L�n,�,�̂ � P�n

− ��−1�L�,�̂ − L�n,�,�̂ � P�n
��L�,�̂ − ��−1G .

�17�

For any G�D�L�,�̂�=D�L0�,

�L�,�̂ − L�n,�,�̂ � P�n
�G��� = − ����1 − 1��n

����G��� + � �

��

	
�n

c
G�
 � x� �

y��\

�e−���x−y� − 1�

��
y��


e−���x−y��dx + � �

��

	
�n

G�
 � x� �
y��\


�e−���x−y� − 1�e−�E�x,
�

� �1 − 1��n
�
 � x�1��n

�� \ 
�e�E�x,
�n
c��dx ,

where �n
c =Rd \�n.

Using the fact that for any 
��0 and x�Rd,

1��n
�
 � x�e�E�x,
�n

c� = 1��n
�
 � x� ,

the simple inequality

�1 − 1��n
�
�1��n

���� � �1 − 1��n
�
�� + �1 − 1��n

����, 
,� � �0,

and estimates analogous to those which were proposed in Lemma 5.1 we obtain

�L�,�̂ − L�n,�,�̂ � P�n
�G��� � �1 + � max�1,C−1�eC���C��1 − 1��n

�·��� · �G�·�

+ � max�1,C−1�eC���C�·�n
c�G�·� + max�1,C−1��·�n

�G�·�

�	
��n

�1 − 1��n
����K�0,��C����d�� .
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All of the summands on the right-hand side of the last inequality definitely tend to zero, when
n→	.

Using Remark 5.5 and equality �17� we easily conclude that difference in �17� also tends to
zero when n→	. �

VI. CONSTRUCTION OF A NONEQUILIBRIUM MARKOV PROCESS

Fix any triple of positive constants C, �, and � which satisfies �16�. Let Ût�C ,� ,�� be

holomorphic semigroup generated by L�,�̂ and let

KC,� ª �k:�0 → R+� k�·�C−�·�e�E�·� � L	��0,�� �18�

be the set of “so-called correlation functions.” Note that KC,� is a Banach space.
We introduce the following duality between quasiobservables G�LC,� and functions k

�KC,�,

��G,k�� ª �G,k�L2��0,�. �19�

Let us mention that G�LC,� means that G�·�C�·�e−�E�·��L1��0 ,�. Therefore, the duality

�G,k�L2��0,� = 	
�0

G���C���e−�E���k���C−���e�E���d��� � 	

is well-defined.
Note also that k�·�C−�·�e�E�·��L	��0 ,� means that function k satisfies the following bound

k��� � const C���e−�E���, �20�

which is known as generalized Ruelle bound, see, e.g., Ref. 10.

Using duality �19� one can easily show that semigroup Ût�C ,� ,�� determines corresponding

semigroup Ut
�̂�C ,� ,�� on KC,�.

Next, we solve the following problem: suppose that k0�KC,� is a correlation function which
means that there exists a probability measure �0�Mfm

1 ���, locally absolutely continuous with
respect to Poisson measure, whose correlation function is exactly k0. Does evolution of k0 with

respect to the semigroup Ut
�̂�C ,� ,�� preserve the above-described property? Namely, will

Ut
�̂�C ,� ,��k0, for any moment of time t�0, be a correlation function or not?

In order to answer this problem, one can apply, for example, the theorem about characteriza-
tion of correlation functions, proposed in Ref. 8. In the model under consideration, the conditions
of this theorem, which must to be checked are the following:

for any t � 0: ��G � G,Ut
�̂�C,�,��k0�� � 0, ∀ G � Bbs��0� .

Further explanations will be devoted to verifying the latter condition.
Let ��G�� ,z� and ���,����Bb�Rd� denote the specification with empty boundary conditions

corresponding to the Gibbs measure �. We define

E�F,G� ª 	
�
�
x��

Dx
−F���Dx

−G������d�, � �, F,G � KCBbs
� ��0� ,

where KCBbs
� ��0� is K-image of CBbs

� ��0�.
Now we would like to list some facts the proofs of which are completely analogous to those

proposed in Ref. 11.
Lemma 6.1: The set KCBbs

� ��0� is dense in L2�� ,��,�� for any ��Bb�Rd�.
Lemma 6.2: Let ��Bb�Rd� be arbitrary and fixed. Then �E ,KCBbs

� ��0�� is a well-defined
bilinear form on L2�� ,��,��.
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Lemma 6.3: Let ��Bb�Rd� be arbitrary and fixed. Suppose that conditions �I� and �P� are
satisfied. Then �L� ,KCBbs

� ��0�� is an operator associated with bilinear form �E ,KCBbs
� ��0�� in

L2�� ,��,��, i.e.,

E�F,G� =	
�

L�F���G�����,��d��, F,G � KCBbs
� ��0� .

Lemma 6.4: Let ��Bb�Rd� be arbitrary and fixed. Suppose that conditions �I� and �P� are
satisfied and ��G�z ,��. Then there exists a self-adjoint positive Friedrichs’ extension

�L�
˜ ,D�L�

˜�� of the operator �L� ,KCBbs
� ��0�� in L2�� ,��,��. Moreover, �L�

˜ ,D�L�
˜�� is a generator

of a contraction semigroup which preserves 1 in L2�� ,��,��, associated with some Markov
process.

Remark 6.1: It is well known �see, e.g., Ref. 20� that under condition of Lemma 6.4 the

semigroup generated by �L�
˜ ,D�L�

˜�� can be extended to the L1�� ,��,��. For any ��Bb�Rd�, the

extension of this semigroup in L1�� ,��,�� we will denote by �Ut
�̃�t�0. For the generator of this

semigroup we will use notation �L�
˜ ,D1�L�

˜��, where D1�L�
˜��D�L�

˜� is a domain of L�
˜ in

L1�� ,��,��.
Now, we introduce one of the crucial lemmas about the evolution of the “so-called correlation

function.”
Lemma 6.5: Let positive constants C, �, and � which satisfy �16� be arbitrary and fixed. The

semigroup Ut
*̂�C ,� ,�� on KC,� preserves positive semidefiniteness, i.e., for any t�0,

��G � G,Ut
�̂�C,�,��k�� � 0, ∀ G � Brs��0�

iff

��G � G,k�� � 0, �21�

for any G�Bbs��0�.
Remark 6.2: Let MC,� stand for the set of all probability measures on �, locally absolutely

continuous with respect to Poisson measure, with locally finite moments, whose correlation func-
tions satisfy bound �20�. As it was pointed out at the beginning of this section, condition �21� on
function k�KC,�, ensures the existence of a unique measure �k�MC,� whose correlation func-
tion is k, see Ref. 8.

Proof of Lemma 6.5: Under assumptions of the lemma we have to show that for any t�0,

��Ût�C,�,���G � G�,k�� � 0, ∀ G � Bbs��0� . �22�

But G�G�Bbs��0� for any G�Bbs��0�. Therefore, due to Theorem 5.3 it is enough to show that
for any t�0 and any G�Bbs��0� there exists ���Bb�Rd� such that for all ��Bb�Rd�, ����,

��Ut
�̂�C,�,�� � P��G � G�,k�� � 0. �23�

Let ��Bb�Rd� be arbitrary and fixed. We set

Ut
�
ª KUt

�̂�C,�,��K−1, t � 0.

�Ut
��t�0 is a semigroup on

�L1
�
ª KLC,�

� , · 1 ª K−1 · LC,�� ,

which is the Banach space. Moreover, it is not difficult to show that a generator of this semigroup

coincides with �L� ,KD�L�̂��.
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Proposition 6.1: For any F�L1
��L1�� ,��,��,

Ut
�F = Ut

�̃F, t � 0 in L1��,��,�� .

Proof: The fact that �L� ,KD�L�̂� is a generator of �Ut
��t�0 in �L1

� ,  · 1� means the following
�see, e.g., Ref. 6�

�Ut
�F − �1 −

t

n
L��−n

F�
1
→ 0, n → 	 for all F � L1

�.

Because  · 1�  · , the latter fact implies

�Ut
�F − �1 −

t

n
L��−n

F� → 0, n → 	 for all F � L1
�. �24�

Analogously, the fact that �L�
˜ ,D1�L�

˜�� is a generator of �Ut
�̃�t�0 gives us

�Ut
�̃F − �1 −

t

n
L�
˜�−n

F� → 0, n → 	 for all F � L1
�. �25�

As was shown before, there exists ��0 such that for any real ��� and any F�L1
�,

�L�
˜ − �1�−1F − �L� − �1�−1F = �L�

˜ − �1�−1�L� − L�
˜��L� − �1�−1F .

The function F�ª �L�−�1�−1F�KD�L
˜�. Hence, �L�−L�

˜�F�=0. The latter fact means that

�Ut
�̃F − �1 −

t

n
L�
˜�−n

F� = �Ut
�̃F − �1 −

t

n
L��−n

F� → 0, n → 	 for all F � L1
�. �26�

The convergence �24� and �25� imply the assertion of the proposition. �

Corollary 6.1: Lemma 6.4 implies that for any moment of time t�0,

Ut
�F � 0 for all F � 0 in L1��,��,�� . �27�

Let t�0 and G�Bbs��0� be arbitrary and fixed. Suppose that N��N and ���Bb�Rd� are such
that

G � G��0\�n=0
N� �

��
�n� = 0.

Then, K�G�G�= �KG�2�L1
� for all ��Bb�Rd�, ����. Moreover, P� �KG�2= �KG�2.

Hence, the left-hand side of �23� for any ��Bb�Rd�, ���� is equal to the following ex-
pression:

��Ut
�̂�C,�,�� � P��G � G�,k�� = 	

�

KUt
�̂�G � G�����k�d�� = 	

�

Ut
�K�G � G�����k�d��

= 	
��

Ut
��KG�2�����

k �d�� ,

where ��
k is a projection of �k on ��. Let us mention that measure �k is locally absolutely

continuous with respect to Poisson measure �. Therefore,

��Ut
�̂�C,�,�� � P��G � G�,k�� = 	

��

Ut
��KG�2���

d��
k

d��

������d�� .

Corollary 6.1 implies that there exist set S��, ��,��S�=0 such that for all ��� \S:
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Ut
��KG�2��� � 0.

But ��,� is absolutely continuous with respect to ��. Furthermore, the corresponding Radon-
Nikodim derivative is positive almost surely with respect to ��. Hence, ���S��=0, where S� is a
projection of the set S to ��, and

��Ut
�̂�C,�,�� � P��G � G�,k�� = 	

��\ S�

Ut
��KG�2���

d��
k

d��

������d�� � 0.

The latter proof the assertion of Lemma 6.5. �

The result obtained in Lemma 6.5 and the fact about characterization of correlation functions
from Ref. 8 imply the following corollary.

Corollary 6.2: Let positive constants C, �, and � which satisfy �16� be arbitrary and fixed. Let
k�KC,� be such that ��G�G ,k���0, for any G�Bbs��0�. Then for any t�0 there exists unique

measure �t�MC,� whose correlation function is Ut
�̂�C ,� ,��k.

Let us denote in Corollary 6.2 the evolution of the measure � in time by Ut
��C ,� ,���ª�t.

One can easily show that �Ut
��C ,� ,���t�0 is a semigroup on MC,�. This leads us directly to the

construction of the nonequilibrium Markov process �or rather Markov function� on �.
Theorem 6.1 Suppose that conditions �I� and �P� are satisfied. For any triple of positive

constants C, �, and � which satisfy �16� and any ��MC,� there exists Markov process Xt
���

with initial distribution � associated with generator L�,�.
Proof: Let n�N, functions 0�F0 ,F1 , . . . ,Fn�L	��� and moments of time 0� t0� t1

� t1¯ � tn be any and fixed. Then there exists a process, defined on some probability space
�� ,F , P�, the finite-dimensional distribution of which is given by the following formula:

	
�

F0�Xt0
�� . . . Fn�Xtn

��dP ª 	
�

dFn . . . Ut1−t0
* �C,�,���F0�� .

Eventually, we have constructed the nonequilibrium Markov process. �
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We consider a pair of straight adjacent quantum waveguides of constant, and in
general different widths. These waveguides are coupled laterally by a pair of win-
dows in the common boundary, not necessarily of the same length, at a distance 2l.
The Hamiltonian is the respective Dirichlet Laplacian. We analyze the asymptotic
behavior of the discrete spectrum as the window distance tends to infinity for the
generic case, i.e., for eigenvalues of the corresponding one-window problems sepa-
rated from the threshold. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2364179�

I. INTRODUCTION

Quantum mechanics exhibits various effects which defy our intuition based on “classical”
experience. A nice class of examples are bound states in hard-wall tubes induced solely by their
geometric properties such as bends, protrusions, or “windows.” Such systems are interesting not
only per se but also from the practical point of view as models of various nanophysical devices,
and in a reasonable approximation also of flat electromagnetic waveguides.

Among numerous questions such models pose, an important one concerns behavior of the
spectra in the case of two distant perturbations. One can think of it as an analog of the exponential
spectral shift for a pair of distant potential wells, despite the fact that the usual methods of the
Schrödinger operator theory do not work here. The aim of the present paper is to study this
problem in a model example of a pair of laterally coupled waveguides, or adjacent straight
hard-wall strips in the plane, coupled by a pair of windows in the common boundary—we refer to
Refs. 1–3 for a bibliography concerning such models. We concentrate mostly on the investigation
of isolated eigenvalues of the considered system.

In our recent paper2 we dealt with the symmetric situation where the widths d1, d2 of the two
channels were the same and so were the window widths a1 ,a2. The technique used in this paper
substantially employed the fact that the problem can be decomposed into parts with a definite
parity, which allows one to study a single-window problem with a perturbation which consists of
an additional Dirichlet or Neumann boundary condition at a perpendicular section far from the
window.

The approach based on symmetry no longer works if a1�a2. The main aim of the present
work is to demonstrate a different technique, suitable for the general case, which reduces the
question to analysis of a boundary perturbation at the distant window. This technique follows the

a�Electronic mail: borisovdi@yandex.ru
b�Electronic mail: exner@ujf.cas.cz
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main ideas of Ref. 4, where the Dirichlet Laplacian in an n-dimensional tube with a pair of distant
perturbations described by two arbitrary operators was studied. It was assumed in Ref. 4 that the
domains of these operators are preserved under the perturbation, and this assumption was em-
ployed substantially. This is obviously not true in the problem we study here, since the windows
change the domain of the Laplacian �see, for instance, Ref. 5, Remark 1�. At the same time, the
general approach of Ref. 4 works in our case with the appropriate modifications. Moreover, since
we restrict ourselves to the two-dimensional case and specify the nature of the distant perturba-
tions, we are able to obtain a more detailed result in comparison with the general case in Ref. 4.

Let us describe briefly the main idea of our approach. The first key element is the fact that any
eigenfunction of the two-window operator can be represented as the sum of two functions solving
the eigenvalue equation for the Laplace operator in the one-window domains and vanishing at the
boundary �see Lemma 4.1�; one of these functions corresponds to the left window while the other
does to the right one. The main feature of these functions is that their normal derivatives have a
jump at the window. We show that the original eigenvalue problem is equivalent to a certain
operator equation for the mentioned jumps of the normal derivatives. To solve this equation we
employ the modification of the Birman-Schwinger approach suggested in Ref. 6; this is the second
key ingredient of our technique. Finally, this approach reduces the equation to a search for non-
trivial solutions to a finite system of linear equations, and the needed eigenvalues are roots of the
determinant of the corresponding matrix. After such a reduction it is sufficient to study the
behavior of these roots; in this way we obtain the main results presented in this paper.

Of course, the window-coupled waveguides are not the only, and by far, not the first, system
in which distant perturbation asymptotics was studied. We have commented on that in the Intro-
duction of the paper;2 hence, we limit ourselves here to summarizing the three main points. First
of all, our system has no classically closed trajectories, apart from a zero-measure set, so there is
no Agmon metric on it. Despite this fact, however, the spectral behavior exhibits distinctive
features common with one-dimensional Schrödinger operators—see, e.g., Refs. 7–9 and other
papers quoted there and in Ref. 2. And finally, the just-mentioned analogy has to be taken cum
grano salis as first illustrated in Ref. 10; in the two-window context this is clearly seen in the case
of a threshold resonance.2

In order not to make this study too technical we concentrate in this paper on the generic case
when the “unperturbed” energy is an isolated eigenvalue of the one-window problem, leaving the
computationally involved discussion of threshold resonances to a sequel. The problem will be
properly formulated and the results stated in the next section; the rest of the paper is devoted to the
proofs.

II. STATEMENT OF THE PROBLEM AND THE RESULTS

Let x= �x1 ,x2� be Cartesian coordinates in the plane �+
ª �x :0�x2��� and �−

ª �x :−d
�x2�0�. With the natural scaling properties in mind, we may suppose without loss of generality
that d��. By �± we denote two intervals �±ª �x : �x1� l��a± ,x2=0�, from now on referred to as
the windows. The numbers a± are assumed to be fixed throughout the paper, while the distance 2l
between the windows will be changing playing the role of a large parameter.

We set �ª�+��−��+��− �cf. Fig. 1�; the Hilbert space of our problem is L2���. We will
employ the symbol H to denote Friedrichs extension of the negative Laplacian on the set C0

����.
As we have indicated in the Introduction, this work is devoted to the study of the asymptotic
behavior of isolated eigenvalues of H as l→ +�. In order to formulate the main results we first
have to introduce some more notations.

FIG. 1. Window-coupled waveguides.
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We denote �aª �x : �x1��a ,x2=0� so that �aª�+��−��a is the double waveguide with a
single window centered at x1=0, and �aª��a. Furthermore, we introduce the corresponding
cutoff sets �a

b
ª�a� �x : �x1��b� and �a

b
ª�a� �x : �x1��b�. Consider the negative Laplacian in

L2��a� and call H�a� its Friedrichs extension in L2��a� from the set C0
���a� on which it is

symmetric; by 	m�a� , m=1,2 , . . ., we denote the isolated eigenvalues of this operator arranged in
the ascending order with the multiplicity taken into account.

The following results were demonstrated in Refs. 1 and 3.
Proposition 2.1. For any a
0 the essential spectrum of H�a� equals �1, +�� while the

discrete spectrum of H�a� is nonempty consisting of finitely many simple eigenvalues. The eigen-
function associated with an eigenvalue 	m�a� has a definite parity: it is even or odd with respect
to x1 if m is odd or even, respectively. In the particular case d=� the eigenfunctions are even in
the variable x2.

Remark 2.1. The threshold of the essential spectrum of H�a� equals the minimum of the
thresholds corresponding to each of the strips. The latter are 1 and �2 /d2, respectively; together
with the normalization condition d�� it explains the first part. The claims about the discrete
spectrum are obtained by a variational estimate combined with bracketing bounds.

The eigenfunctions associated with the eigenvalues 	n�a� will be denoted as �n�· ,a� and
assumed to be normalized, i.e., to be unit vectors in L2��a�. It is easy to check that �n�· ,a�
�C���a�. We will use the symbols �ess�·� and �disc�·� to indicate the essential and discrete
spectrum, respectively. We set �*ª�discH�a+� ��discH�a−�. Hereafter, the eigenvalues of H are
assumed to be arranged in the nondecreasing order counting multiplicity.

With these preliminaries we can formulate the first main result of this paper.
Theorem 2.1. For any l
0, a±
0 the operator H has the essential spectrum equal to �1,

+�� and finitely many isolated eigenvalues. The number of the latter, counting multiplicity, is
bounded uniformly with respect to the window distance. Each isolated eigenvalue of the operator
H is a continuous function of l if the window distance is large enough, and in the limit l→ +� it
converges to one of the numbers from the set �* or to the threshold of the essential spectrum of H.

The remaining part of the results describes the asymptotic behavior of the isolated eigenvalues
and the associated eigenfunctions of H. In order to formulate these results we need to introduce
auxiliary notations.

In Lemma 3.6 we will show that the eigenfunctions �n of H�a� behave for large values of �x1�
as

�n�x,a� = c�	n,a�e�−�1−	nx� sin x2 + O�e−�4−	n�x1��, x2 � �0,�� ,

where c�	n ,a� are some constants. For any 	� �−� ,1� \�disc�H�a�� we introduce that function U
which is a unique solution of the boundary value problem,

� + 	�U = 0, x � �a \ �a, U = 0, x � ��a,

�2.1�

	 �U

�x2
	

x2=+0
− 	 �U

�x2
	

x2=−0
= e�1−	x1, x � �a,

belonging to W2
1��a�. This function satisfies the relation

U�x,	,a� = c�	,a�e−�1−	x1 sin x2 + O�e−�4−	x1�, x2 � �0,�� ,

where c�	 ,a� is a constant. The unique solvability of �2.1� and the mentioned behavior of U at
infinity will be proved in Lemma 3.7. We will also give formulas for the introduced constants c in
Lemmas 3.6, 3.7 �see �3.15� and �3.18��.

We indicate by � the set of all bounded domains S�� having smooth boundary and sepa-
rated from the endpoints of �± by a positive distance; the case �S����� is not excluded.
For brevity we introduce two-valued symbols, �ª1, �=��	�ªmin����2 /d2�−	 ,�4−	�,
	� �−� ,1�, if d�� and �ª2, �=��	�ª�4−	, 	� �−� ,1�, if d=�. An element 	*��* will be
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called simple if it belongs to one of the sets �disc�H�a±�� only and double otherwise. Furthermore,
we set aª �a+ ,a−�.

Continuing the list of the main results we make the following claims.
Theorem 2.2. Suppose that 	*��* is simple being an eigenvalue 	n�a±� of the operator

H�a±�. Then, there is a unique eigenvalue 	�l ,a� of the operator H converging to 	* as l→ +�.
This eigenvalue is simple and behaves asymptotically as follows:

	�l,a� = 	* + �±�l,a�e−4l�1−	* + O�l2e−8l�1−	* + e−2l��1−	*+��� , �2.2�

�±�l,a� ª ��c�	*,a±�c2�	*,a���1 − 	*. �2.3�

The associated eigenfunction ��x , l ,a� satisfies the relation

��x,l,a� = �n�x1 � l,x2,a±� + O�e−2l�1−	*� �2.4�

in the norms of both the W2
1��� and W2

2�S� for each S��.
This theorem describes the asymptotic behavior of the eigenvalues of H converging to a

simple element of �*. In particular, it states that in this case exactly one eigenvalue of H converges
to 	*, this eigenvalue is simple, and the associated eigenfunction is localized around the left or
right window subject to whether 	* is an eigenvalue of H�a−� or H�a+�.

The other possibility case is that 	* is double. The next theorem describes the asymptotic
behavior of the eigenvalues of H converging to such element of �*.

Theorem 2.3. Suppose that 	*��* is double and 	*=	n�a−�=	m�a+�. Then there exist, with
the multiplicity taken into account, exactly two eigenvalues 	±�l ,a� of H which converge to 	* as
l→ +�. The asymptotic expansions of these eigenvalues read as follows:

	±�l,a� = 	* ± ���l,a��e−2l�1−	* + O�le−4l�1−	* + e−2l��	*�� , �2.5�

��l,a� = �− 1�m+1��c�	*,a−�c�	*,a+��1 − 	*. �2.6�

In accordance with this theorem, in the case that 	* is double the total multiplicity of the eigen-
values of H converging to 	* is 2. In other words, for a fixed large value of l the operator H has
either two simple or one double eigenvalue in the vicinity of 	*. If ��l ,a��0, the asymptotics
�2.5� implies that 	−�l ,a��	+�l ,a�, and in this case we deal with two simple eigenvalues. We also
observe that the leading terms in �2.5� are greater by order than ones in �2.2�.

In the following theorem we describe the asymptotic behavior of the eigenfunctions associated
with the mentioned eigenvalues.

Theorem 2.4 Suppose the hypothesis of Theorem 2.3 holds true. If ��l ,a��0, the eigenvalues
	+�l ,a�, 	−�l ,a� do not coincide and are simple, and the associated eigenfunctions �±�x , l ,a�
satisfy the relations

�±�x,l,a� = �n�x1 + l,x2,a−� � �m�x1 − l,x2,a+�sgn ��l,a� + O�e−2l�1−	*� �2.7�

in the norms of W2
1��� and W2

2�S� for each S��. If 	−�l ,a�=	+�l ,a� is a double eigenvalue, the
associated eigenfunctions �±�x , l ,a� satisfy the relations

�+�x,l,a� = �n�x1 + l,x2,a−� + O�e−2l�1−	*� ,

�2.8�
�−�x,l,a� = �m�x1 − l,x2,a−� + O�e−2l�1−	*� ,

in the norm of W2
1��� and W2

2�S� for each S��. Finally, if ��l ,a�=0 and 	−�l ,a��	+�l ,a�, the
eigenvalues 	±�l ,a� are simple and the associated eigenfunctions satisfy the relations

�±�x,l,a� = c+
±�n�x1 + l,x2,a−� + c−

±�m�x1 − l,x2,a+� + O�e−2l�1−	*� , �2.9�
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where the vectors c±
ª� c+

±

c−
± � are nontrivial solutions to the system �4.20� with 	=	± such that


c±
R2 =1.
The leading terms of the asymptotics �2.2� and �2.5� are nonzero provided the corresponding

coefficients c�	* ,a±� are nonzero. We shall show in Lemmas 3.6 and 3.7 that this is true at least
for c�	 ,a� if 	�	1�a� or 	=	2�a�. For instance, if 	1�a−��	1�a+�, the eigenvalue of the operator
H converging to 	1�a−� has the asymptotic expansion �2.2�, and the coefficient �2.3� of leading
term is nonzero. Moreover, due to Lemma 3.7 this coefficient is negative. If a± are such that
	1�a−�=	2�a+�, the eigenvalues of the operator H converging to 	*=	1�a−�=	2�a+� have the
asymptotic expansions �2.5�, and the coefficients of the leading terms are nonzero. By Theorem
2.4 the “perturbed” eigenvalues are simple and the associated eigenfunctions satisfy the identities
�2.7� in this case. We also stress that in this case the leading terms of the asymptotic expansions
�2.5� have the same modulus but different signs. This phenomenon is known for double-well
problems with symmetric wells. It also occurs in the symmetric case, a−=a+ and d−=d+, as we
have shown in Ref. 2. We also notice that the exponents in the leading terms in �2.5� are the same
as for the symmetric case in Ref. 2 but the coefficients �±�	 ,a� differ.

We conjecture that the coefficient c�	 ,a� is nonzero for all values a and 	�1. If it is true, this
fact would imply that the leading terms in the asymptotics �2.2� and �2.5� are nonzero. In turn, this
fact together with Theorem 2.4 would imply that a double 	*��* splits into two simple “per-
turbed” eigenvalues and the formulas �2.7� are valid for the associated eigenfunctions.

III. ANALYSIS OF THE ONE-WINDOW PROBLEM

In this section we shall study the following boundary value problem:

� + 	�u = 0, x � �a \ �a, u = 0, x � �a,

�3.1�

	 �u

�x2
	

x2=+0
− 	 �u

�x2
	

x2=−0
= f , x � �a.

The function f is assumed to be an element of L2��a�. The parameter 	�C is supposed to belong
to S� for a fixed �
0, where S� is a set of all 	 separated from the halfline �1, +�� by a distance

greater than �. For any open set ��R2 and ���̄ the symbol W2
1�� ,�� will indicate the subset of

the functions from W2
1��� having zero trace on �.

We seek a generalized solution of the problem �3.1� belonging to L2��a�. More specifically,
we are looking for a function belonging to L2��a� and W2

1��a
b ,�a

b� for each b
0 and satisfying the
equation

− ��u,���L2��a� + 	�u,��L2��a� − �f ,��L2��a� = 0 �3.2�

for any ��C0
���a�. Our main aim is to study the dependence of this solution on the spectral

parameter 	. In this section we will collect a series of preliminary results describing the mentioned
dependence, while in the following sections these results will be employed to prove Theorems
2.1–2.4.

We construct the solution of �3.1� as a sum u=u1+u2, where the first function satisfies the
boundary condition in �3.1�, while the other is a value of the resolvent of H�a� on some function.
First we introduce the function u1.

We fix �
a and put Pª �x : �x1��a+� ,0�x2�d0�. The number d0 here is chosen so that
d0�d, and the lowest eigenvalue of the negative Laplacian in P subject to Dirichlet boundary
condition on �P \ �̄a and to the Neumann one on �a exceeds 2. We consider the boundary value
problem
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� + 	�ũ = 0, x � P, ũ = 0, x � �P,
�ũ

�x2
=

1

2
f , x � �a, �3.3�

which is again treated in the weak sense,

− ��ũ,���L2�P� + 	�ũ,��L2�P� −
1

2
�f ,��L2��a� = 0 �3.4�

for each function ��C��P� vanishing in a neighborhood of �P \ �̄a. The problem �3.3� is uniquely

solvable in the space W2
1�P ,�P \�a� and the solution belongs to C��P̄ \ �̄a�—see Ref. 12, Chap. II,

Sec. 5, Remark 5.1 and Ref. 11, Chap. IV, Sec. 2.
Let a function �1=�1�x��C��R2� be infinitely differentiable, even with respect to the variable

x2, equal to 1 if �x1��a+� /6 and �x2��d0 /6, and vanish for �x1�
a+� /3 or �x2�
d0 /3. We
extend the function ũ in an even way for x2�0 setting ũ�x�ª ũ�x1 ,−x2� as x2�0 and denote
u1�x�ª�1�x�ũ�x�.

By �a we indicate the set of all bounded domains S��a having smooth boundary and
separated from the endpoints of �a by a positive distance; we stress that the case �S���a�� is
not excluded.

Lemma 3.1. The function u1 belongs to W2
1��a ,�a� and satisfies the equation

− ��u1,���L2��a� + 	�u1,��L2��a� − �f ,��L2��a� = �F,��L2��a� �3.5�

for any ��C0
���a�, where

F = T1�	,a�f ª 2 � ũ · ��1 + ũ�1.

The operator T1 :L2��a�→L2��x : �x1��a+� /3 , �x2��d0 /3�� is linear, bounded, and holomorphic
in 	. The operator T2�	 ,a�fªu1 is linear, bounded, and holomorphic in 	 as a map from L2��a�
into W2

1��a ,�a�, W2
2�S�, and W2

2��± \�a
��, where S��a is such that S��+ or S��−.

Proof. It is clear that u1�W2
1��± ,��± \�a�. Since this function is even with respect to x2,

using integration by parts we obtain

�u1,
��

�xi
�

L2��a�
= �u1,

��

�xi
�

L2��+�
+ �u1,

��

�xi
�

L2��−�
= − � �u1

�xi
,��

L2��+�
− � �u1

�xi
,��

L2��−�
, i = 1,2,

for each ��C0
���a�. Hence, u�W2

1��a ,�a�. Employing the parity of u1 with respect to x2 once
again, we find that for each ��C0

���a� the left-hand side of �3.5� equals twice the expression

− ��u1,��+�L2�P� + 	�u1,�+�L2�P� − �f ,�+�L2��a�,

where �+�x�ª��x�+��x1 ,−x2�. In view of �3.4� and the definition of �1, we get

− ��u1,���L2��a� + 	�u1,��L2��a� − �f ,��L2��a�

= 2�− ��ũ,���1�+��L2�P� + 	�u1,�1�+�L2�P� −
1

2
�f ,�1�+�L2��a� + ��ũ,�+ � �1�L2�P�

− �ũ � �1,��+�L2�P��
= 2���ũ,�+ � �1�L2�P� − �ũ � �1,��+�L2�P�� = 2���ũ,�+ � �1�L2�P� + �div ũ � �1,�+�L2�P��

= �F,��L2��a�.

The boundedness of the operator T1�	 ,a� follows from the smoothness-improving theorems of
solutions to elliptic boundary value problems �see Ref. 11, Chap. II, Sec. 2�.
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In order to check that T1 is holomorphic in the variable 	, we just need to show that the
mapping f � ũ is bounded and holomorphic as an operator family from L2��a� into W2

1�P� and
W2

2�S� P�, where S��a and S��+. To prove the last claim it is sufficient to reduce the boundary
value problem to an operator equation in W2

1�P ,�P \ �̄a� in the standard way—see Ref. 11, Chap II,
Sec. 2—and to apply then Proposition 4.5 of Ref. 13, Chap. XI, Sec. 4. �

As u1 is compactly supported, the function u2 has to be an element of L2��a� and of
W2

1��a
b ,�a

b� for each b
a. It follows from �3.2� and �3.5� that the function u2 must also obey the
integral relation

− ��u2,���L2��a� + 	�u2,��L2��a� = − �F,��L2��a�

for any ��C0
���a�. Thus u2 has to solve the boundary value problem

− � + 	�u2 = F, x � �a, u = 0, x � �a, �3.6�

belonging to L2��a� and W2
1��a

b ,�a
b� for each b
0. By Theorem 4.6.8 of Ref. 14, Chap. 4, Sec.

4.6 any solution of this problem belonging to L2��a� is an element of the operator domain of H�a�.
In this way the problem �3.6� can be cast into the form �H�a�−	�u2=F, which in turn gives u2

= �H�a�−	�−1F.
We denote the map f �u as T3�	 ,a�. In fact, T3�	 ,a�ªT2�	 ,a�+ �H�a�−	�−1T1�	 ,a�.
Lemma 3.2. The linear operator T3�	 ,a� is bounded and meromorphic in 	�S� as a map

from L2��a� into W2
1��a ,�a� and into W2

2�S� for each S��a. Its poles coincide with the eigenval-
ues of the operator H�a�. For any 	 close to an eigenvalue 	n of H�a�, the representation

T3�	,a� =
�n

	 − 	n
T4�a� + T5�	,a� �3.7�

holds true. Here T4�a�fª �f ,�n�L2��a�, and the linear operator T5 is bounded and holomorphic in
	�S� as a map from L2��a� into W2

1��a ,�a�. The operator T5 is also bounded and holomorphic
as a map into W2

2�S� for each S��a.
Proof. In accordance with Ref. 15, Chap. 5, Sec. 3.5 the operator �H�a�−	�−1 is bounded and

meromorphic in L2��a�, its poles coincide with the eigenvalues of H�a�, and for 	 close to 	n the
representation

�H�a� − 	�−1 = −
�n

	 − 	n
�· ,�n�L2��a� + T6�	,a� �3.8�

is valid, where the operator T6�	 ,a� is bounded and holomorphic in 	 in the vicinity of 	n. The

function ûªT6�	 ,a�F is a solution to the boundary value problem �3.6� with F replaced by F̂
ªF− �F ,�n�L2��a��n; it means that


�û
L2��a�
2 − 	
û
L2��a�

2 = �F̂, û�L2��a�.

This relation, together with �3.8�, implies that the operator T6 is bounded and holomorphic as a
map into W2

1��a� as well. Using again the smoothness-improving theorems mentioned above, we
conclude that the operator T6 is also bounded and holomorphic in 	 as a map into W2

2�S� for each
S��a, S��+ or S��−.

Since the function �n is an element of W2
1��a ,�a�, the relation �3.5� is valid for �=�n. For any

f �L2��a� the function T1�	 ,a�f is compactly supported; hence, we have

�T1�	n,a�f ,�n�L2��a� = − ��u1,��n�L2��a� + 	�u1,�n�L2��a� − �f ,�n�L2��a�,

where u1=T2�	n ,a�f . According to Lemma 3.1, the function u1 belongs to W2
1��a ,�a�, which

allows us to proceed with the calculations,
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− ��u1,��n�L2��a� + 	�u1,�n�L2��a� = 0,

�T1�	n,a�f ,�n�L2��a� = − �f ,�n�L2��a� = − T4�a�f .

Substituting the relation thus obtained together with �3.8� into the definition of the operator T3, and
taking into account Lemma 3.1, we arrive finally at the statement of the lemma. �

For any numbers b1 ,b2 ,b3�R we set �±ª �x : ±x1
b1 ,b2�x2�b3� and �±ª��± \ �x :x1

= ±b1�.
Lemma 3.3. Let v�W2

1��±� be a solution to the problem

� + 	�v = 0, x � �±, v = 0, x � �±,

and 0�b2−b3��, 	�S�. Then the function v can be represented as

v�x,	� = 
j=1

�

� j�	�exp�−� �2j2

�b3 − b2�2 − 	�±x1 − b1��sin
�j

b3 − b2
�x2 − b2� , �3.9�

where

� j�	� ª
2

b3 − b2
�

b2

b3

v�±b1,x2,	�sin
�j

b3 − b2
�x2 − b2�dx2.

The series �3.9� converges in the norms of W2
m��x : ±x1
b4 ,b2�x2�b3��, m�0, for any b4
b1.

The coefficients � j satisfy the condition

�

2 
j=1

�

�� j�2 = 
v�±b1, · ,	�
L2�b2,b3�.

This lemma is a particular case of Lemma 3.3 of Ref. 4 so we skip the proof.
Let us next fix a number ã
0. For any l� �a+ ã� we define operators T7

±�	 , l ,a , ã� which map
an arbitrary v�W2

1��a
a� into the function

�T7
±v��x1,	,l� ª 

j=1

�

j� j
±e��j

+�	��x1�a�e−2�j
+�	�l − 

j=1

�
�j

d
� j

±e��j
−�	��x1�a�e−2�j

−�	�l,

� j
± =

2

�
�

0

�

v�a,x2�sin jx2dx2, � j
± =

2

d
�

−d

0

v�a,x2�sin
�j

d
x2dx2,

� j
+�	� ª �j2 − 	, � j

−�	� ª��2j2

d2 − 	, j � 1.

The branch of the root in the definition of the functions � j is specified by the requirement that the
functions are analytic in S� and �1=1.

Lemma 3.4. The operators T7
± :W2

1��a
a�→L2��ã� are well defined, bounded, and holomorphic

in 	�S�. The estimates

� �iT7
±

�	i � � Clie−�2l−a−ã�Re �1
+�	�, i = 0,1,2,

hold true uniformly with respect to 	�S� and l� �a+ ã�.
Proof. We will prove the lemma for T7

+ only; the argument for T7
− is similar. The function u

belongs to W2
1��a

a�; hence, we have the estimate
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j=1

�

��� j
±�2 + �� j

±�2� � C
u
W2
1��a�

2 ,

where the constant C is independent of 	�S� and l� �a+ ã�. Employing this inequality, we infer
that

�
j=1

�

j� j
+e−�j

+�	��·−a�e−2�j
+�	�l�

L2��ã�

� 
j=1

�

j�� j�e−2l Re �j
+�	�
e−�j

+�	��·−a�
L2�−ã,ã�

� C
j=1

�
j�� j

+�
�Re � j

+�	�
e−�2l−a−ã�Re �j

+�	�

� C�
j=1

�

�� j�2�1/2�
j=1

�
j2e−2�2l−a−ã�Re �j

+�	�

�� j
+�	�� �1/2

� C
v
W2
1��a

a�e
−�2l−a−ã�Re �1

+�	�

��
j=1

�
j2 exp�− 2�2l − a − ã�Re�� j

+�	� − �1
+�	���

��Im	�
�1/2

� Ce−�2l−a−ã�Re �1
+�	�
v
W2

1��a
a�,

where C is independent of 	�S� and 	� �a+ ã�. In the same way, one can prove that

�
j=1

�
�j

d
� j

+e−�j
−�	��·−a�e−2�j

−�	�l�
L2��ã�

� Ce−�2l−a−ã�Re �1
−�	�
v
W2

1��a
a�.

The last two estimates imply that the operator T7
+ :W2

1��a
a�→L2��ã� is well defined and bounded.

One can check easily that

� �T7
+v

�	
��x1,	,l� ª 

j=1

�
j� j

+

2� j
+�	�

�x1 − a + 2l�e−�j
+�	��x1−a�e−2�j

+�	�l

− 
j=1

�
�j� j

+�x1 − a + 2l�
2� j

−�	�d
e−�j

−�	��x1−a�e−2�j
−�	�l.

Repeating the argument which yielded the estimate for T7
+v, we can establish that

� �T7
±v

�	
�

L2��ã�
� Cle−�2l−a−ã�Re �1

+�	�
v
W2
1��a

a�

with the constant C independent of 	�S� and l� �a+ ã�. Consequently, the operator �T7
+ /�	

exists, it is bounded, and the stated estimate for its norm holds true. The norm estimate for
�2T7

+ /�	2 is obtained in a similar way. �

For any l� �a+ ã� we define operators T8
±�	 , l ,a , ã� which map any f �L2��a� to the function

�u

�x2
�x1 ± 2l, + 0,	� −

�u

�x2
�x1 ± 2l,− 0,	�, x1 � �− ã, ã� .

Here u is a solution to the boundary value problem �3.1�. Taking into account Lemma 3.2 together
with the boundedness of the embedding W2

1��a� into L2��x : �x1±2l�� ã ,x2=0��, we conclude that
the operators T8

± :L2��a�→L2��ã� are bounded and holomorphic in 	�S�.
Lemma 3.5. The poles of the operators T8

± coincide with the eigenvalues of the operator H�a�.
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For any compact set K�S� separated from the discrete spectrum of H�a� by a positive distance,
the estimates

� �iT8
±

�	i � � Clie−2l Re �1
+�	�, i = 0,1, �3.10�

hold true with C which is independent of 	�K and l. For any 	 close to an eigenvalue 	n of the
operator H�a� the representation

T8
±�	,l,a, ã� =

�n
±

	 − 	n
T4�a� + T9

±�	,l,a, ã� �3.11�

is valid, where

�n
±�x1,l,a� ª

��n

�x2
�x1 ± 2l, + 0,a� −

��n

�x2
�x1 ± 2l,− 0,a�, x1 � �− ã, ã� . �3.12�

The operators T9
± :L2��a�→L2��ã� are bounded and holomorphic with respect to 	 in the vicinity

of 	n and satisfy the estimates

� �iT9
±

�	i � � Cli+1e−2l Re �1
+�	�, i = 0,1, �3.13�

where the constant C is independent of 	 and l.
Proof. Due to Lemma 3.3 we have

T8
±�	,l,a, ã�f = T7

±�	,l,a, ã�u , �3.14�

where u is a solution to the boundary value problem �3.1�. Using this identity and the represen-
tation �3.7�, we arrive at �3.11�, where T9

± is a bounded operator holomorphic in 	. Moreover,

T9
±�	,l,a, ã� =

T7
±�	,l,a, ã� − T7

±�	n,l,a, ã�
	 − 	n

T4�a� + T7
±�	,l,a, ã�T5

±�	,a�

= � 1

	 − 	n
�

	n

	 �T7
±

�	
�z,l,a, ã�dz�T4�a� + T7

±�	,l,a, ã�T5
±�	,a� ,

T9
±

�	
�	,l,a, ã� = � 1

�	 − 	n�2�
	n

	 �
z1

	 �2T7
±

�	2 �z2,l,a, ã�dz2dz1�T4�a� +
�

�	
�T7

±�	,l,a, ã�T5
±�	,a�� .

Applying now Lemma 3.4 we obtain the estimates �3.13�.
The operators �iT3 /�	i, i=0,1, are bounded uniformly in 	�K, thus in view of the relation

�3.14� and Lemma 3.4 we arrive readily at the estimates �3.10�. �

Concluding this section we shall prove two auxiliary lemmas.
Lemma 3.6. In the limit x1→ ±� the eigenfunction �n of H�a� behaves as

�n�x,a� = �±1�n+1c�	n,a�e−�1
+�	n��x1� sin x2 + O�e−k2

+�	n��x1��, x2 � �0,�� ,

�x�n�x,a� = �±1�n+1c�	n,a��xe
−�1

+�	n��x1� sin x2 + O�e−k2
+�	n��x1��, x2 � �0,�� ,

�n�x,a� = O�e−�1
−�	��x1��, �x�n�x,a� = O�e−�1

−�	��x1��, x2 � �− d,0� ,

if d��, and
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�n�x,a� = �±1�n+1c�	n,a�e−�1
+�	n��x1� sin�x2� + O�e−k2

+�	n��x1��, x2 � �− �,�� ,

�x�n�x,a� = �±1�n+1c�	n,a��xe
−�1

+�	n��x1� sin�x2� + O�e−k2
+�	n��x1��, x2 � �− �,�� ,

in the case of equal-width channels, d=�. In these relations

c�	n,a� =
1

��1
+�	n���a

�n�x,a�e�1
+�	n�x1dx1 =

�− 1�n+1

��1
+�	n���a

�n�x,a�e−�1
+�	n�x1dx1, �3.15�

and c�	i ,a��0, i=1,2.
Proof. Applying Lemma 3.3 to �n with b1= ±a, b2=0, b3=� and b2=−d, b3=0, we obtain the

needed asymptotic behavior of �n. The factor �±1�n+1 in these formulas is due to the definite parity
of �n with respect to x1. The formula �3.15� for c1

�n� follows from the chain of relations obtained
by integration by parts,

0 = �
�+

e±�1
+�	n�x1 sin x2� + 	n��n�x,a�dx = �

�a

e±�1
+�	n�x1�n�x,a�dx − �±1�n+1��1

+�	n�c�	n,a� .

It remains to check the inequalities c�	i ,a��0, i=1,2. Since

	1 =

��1
L2��a�

2


�1
L2��a�
2 =


��̃1
L2��a�
2


�̃1
L2��a�
2

,

where �̃1ª ��1�, we conclude that �̃1 is an eigenfunction associated with 	1. This eigenvalue being

simple, we infer that �̃1=�1. Hence, �1�0. Moreover, �1 is not identically zero at �a, since
otherwise it would be an eigenfunction of the negative Dirichlet Laplacian in �+ and would
correspond to the eigenvalue 	1�1. At the same time, the spectrum of the mentioned operator is
the halfline �1, +��. The described properties of �1 and the formula �3.15� imply that c�	1 ,a�
�0.

According to Proposition 2.1 the eigenfunction �2 is odd with respect to x1. Thus, the eigen-
value 	2 is the ground state of the negative Dirichlet Laplacian in �a� �x :x1
0�. Completely by
analogy with how it was done for �1, one can make sure that �2�0 on �a� �x :x1
0�, and
�2�x1 ,0 ,a��0 for x1� �0,a�. The parity of �2 allows us to modify the formula �3.15�,

c�	2,a� =
1

��1
+�	2���a

�2�x,a�sinh �1
+�	2�x1dx1 =

2

��1
+�	2��0

a

�2�x1,0,a�sinh �1
+�	2�x1dx1.

Together with the non-negativity of �2 on �a� �x :x1
0�, it implies that c2�	 ,a��0. �

Lemma 3.7. For any 	� �−� ,1� \�disc�H�a�� there exists a unique solution of the boundary
value problem �2.1� belonging to W2

1��a�. For large values of �x1� this function is infinitely differ-
entiable and in the limit x1→ +� it behaves as
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U�x,	,a� = c�	,a�e−�1
+�	�x1 sin x2 + O�e−Re �2

+�	�x1�, x2 � �0,�� ,

�xU�x,	,a� = c�	,a��xe
−�1

+�	�x1 sin x2 + O�e−Re �2
+�	�x1�, x2 � �0,�� , �3.16�

U�x,	,a� = O�e−Re �1
−�	�x1�, �xU�x,	,a� = O�e−Re �1

−�	�x1�, x2 � �− d,0� ,

if d��, and

U�x,	,a� = c�	,a�e−�1
+�	n�x1 sin�x2� + O�e−Re �2

+�	�x1�, x2 � �− �,�� ,

�xU�x,	,a� = c�	,a��xe
−�1

+�	n�x1 sin�x2� + O�e−Re k2
+�	�x1�, x2 � �− �,�� , �3.17�

in the case d=� where the coefficient is given by

c�	,a� =
1

��1
+�	���a

U�x,	,a�e�1
+�	�x1dx1. �3.18�

This coefficient is negative for 	�	1�a�.
Proof. The unique solvability of the problem �2.1� is ensured by Lemma 3.2. Moreover, we

have U=T3�	 ,a�e�1
+�	�x1. The relations �3.16� and �3.17� follow from Lemma 3.3, and the formula

�3.18� is proved in the same way as �3.15�.
Integrating by parts and employing the formula �3.18�, we obtain a chain of identities,

0 = �
�

U� + 	�Udx = 	
U
L2���
2 − 
�U
L2���

2 − �
�a

U�	 �U

�x2
	

x2=+0
− 	 �U

�x2
	

x2=−0
�dx1

= 	
U
L2���
2 − 
�U
L2���

2 − ��1
+�	�c�	,a� ,

which implies

c�	,a� =
	
U
L2���

2 − 
�U
L2���
2

��1
+�	�

. �3.19�

Since U�W2
1�� ,���, the minimax principle yields the inequality


U
L2���
2 �

1

	1�a�

�U
L2���

2 .

We substitute this inequality into the formula �3.19� and obtain

c�	,a� �
1

��1
+�	�

� 	

	1�a�
− 1�
�U
L2���

2 � 0,

if 	�	1�a�.

IV. REDUCTION OF THE PERTURBED PROBLEM

In this section we shall transform the eigenvalue equation for H to another operator equation.
The main advantage of such transformation is that the final equation involves only the resolvents
of one-window operators H�a±�. More specifically, the presented approach allows us to decouple
two-window system and to reduce it to a small perturbation of a direct sum of left- and right-
window operators.

We are looking for eigenvalues of the operator H, i.e., nontrivial L2��� solutions to the
boundary value problem
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− � = 	�, x � �, � = 0, x � �� . �4.1�

We denote Qb
ª �x :−b�x1�b ,−d�x2��� and introduce the cutoff regions �b

ª��Qb, �b

ª���Qb. Solutions to the problem �4.1� are functions belonging to W2
1��b ,�b� for any b
0

such that

���,���L2��� = 	��,��L2��� �4.2�

holds for each ��C0
����; it follows from the smoothness-improving theorem mentioned above

that such a � belongs to C����.
We assume that 	�S�, with �
0 is chosen in such a way that �*�S�. Let f±= f±�· , l�

�L2��a±
� be an arbitrary pair of functions. Denote by u± the solutions of the problem �3.1� with

a=a± and f = f±�L2��a±
� and assume that u±�L2��a±

�. We will seek a solution to the problem
�4.1� in the form

��x,	,l� = u+�x1 − l,x2,	,l� + u−�x1 + l,x2,	,l� . �4.3�

Suppose for a moment that the function � defined in this way solves the problem �4.1�. In such a
case the function � is infinitely differentiable at the points of the intervals �a±

, and therefore

��

�x2
�x1, + 0,	,l� −

��

�x2
�x1,− 0,	,l� = 0, x � �±.

Substituting from �4.3� into this identity, we obtain a pair of equations,

f±�x1� +
�u�

�x2
�x1 ± 2l, + 0,	,l� −

�u�

�x2
�x1 ± 2l,− 0,	,l� = 0, x � �a±

. �4.4�

Denote f= �f+ , f−��L2��a+
� � L2��a−

�. The following lemma is the main ingredient of our
technique and it states that the last equation is equivalent to the original problem �4.1�.

Lemma 4.1. For any solution f�L2��a+
� � L2��a−

� of �4.4� and functions u± solving �3.1� for
a=a±, f = f± there exists a unique L2��� solution of �4.1� given by �4.3�. Reversely, for any solution
� of �4.1� there are unique f�L2��a+

� � L2��a−
� solving �4.4� and unique functions u±�L2��a±

�
satisfying �3.1� with a=a±, f = f± such that � is given by �4.3�. This equivalence holds for any 	
�S� and l� max�a− ,a+�+1.

Proof. Suppose that f�L2��a+
� � L2��a−

� is a solution to the equations �4.4�, where the func-
tions u±�L2��a±

� solve the problem �3.1� for a=a± and f = f±. We define � in accordance with
�4.3�. The functions u± are elements of L2���; hence, the same is true for �. Moreover, the
function � belongs obviously to W2

1��b ,�b� for each b
0 and vanishes on �.
Let us check that the function � satisfies Eq. �4.2�. To this purpose, we indicate by �2

=�2�x1� an infinitely differentiable cutoff function being equal to 1 if �x1+ l � �max�a+ ,a−�+1/2
and vanishing if �x1+ l � 
max�a+ ,a−�+1. For any ��C0

���� we have

��u+,���L2��� − 	�u+,��L2��� = ��u+,����2��L2��� − 	�u+,��2�L2��� + ��u+,����1 − �2���L2���

− 	�u+,��1 − �2��L2���, �4.5�

where the arguments of u+ are �x1− l ,x2 ,	 , l�. Since u+�·� is an element of C���a+
\ Q̄a+�, we can

integrate by parts,
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��u+,� � ��2��L2��� − 	�u+,��2�L2��� = − �
�−

� �u+

�x2
�·− l, + 0,	,l� −

�u+

�x2
�·− l,− 0,	,l���dx1

− �
�

��2� + 	�u+dx = �
�−

f−�· + l��dx1,

where u+=u+�x1− l ,x2 ,	 , l�. We have employed here the equation satisfied by u+ as well as Eq.
�4.4� for f+. Since ��x1+ l ,x2��1−�2�x1+ l���C0

���a+
�, we can use the identity �3.2� to infer that

��u+,���1 − �2��L2��� − �u+,��1 − �2��L2��� = − �
�+

f+�·− l��dx1,

where u+=u+�x1− l ,x2 ,	 , l�. We substitute now the last two relations into �4.5� and arrive at the
identity

��u+,���L2��� − 	�u+,��L2��� = �f−�· + l�,��L2��−� − �f+�·− l�,��L2��+�,

where u+=u+�x1− l ,x2 ,	 , l�. In the same way, one can check that

��u−,���L2��� − 	�u−,��L2��� = �f+�·− l�,��L2��+� − �f−�· + l�,��L2��−�,

where u−=u−�x1+ l ,x2 ,	 , l�. Summing the last two relations we arrive at the relation �4.2� for the
function �.

Let � be a solution to the problem �4.1� belonging to L2���. By smoothness-improving
theorems the function � belongs to C���x :−1�x1�1,0�x2���� and to C���x :−1�x11� ,−d
�x2�0��. This allows us to define the numbers

� j
± = � j

±�	,l� ª
2

�
�

0

� ���0,x2,	,l� ±
1

� j
+�	�

��

�x1
�0,x2,	,l��sin jx2dx2,

� j
± = � j

±�	,l� ª
2

d
�

0

� ���0,x2,	,l� ±
1

� j
−�	�

��

�x1
�0,x2,	,l��sin

�j

d
x2dx2.

Using these numbers, we introduce the functions u± in the following way:

u±�x1 � l,x2,	,l� ª 
j=1

�

� j
±�	,l�e±�j

+�	�x1 sin jx2, ± x1 � 0, x2 � �0,�� ,

u±�x1 � l,x2,	,l� ª 
j=1

�

� j
+�	,l�e±�j

−�	�x1 sin
�j

d
x2, ± x1 � 0, x2 � �− d,0� ,

u±�x1 � l,x2,	,l� ª ��x,	,l� − u±�x1 ± l,x2,	�, ± x1 
 0, x2 � �− d,�� .

Proceeding in the same way as in the proof of Lemma 4.1 in Ref. 4, we check that the functions
u± are well defined and

u± � W2
1��a±

,�a±
� � W2

2�S�, S � �a, �4.6�

� + 	�u±�x1 � l,x2,	,l� = 0, x � � \ �x:x1 = 0� . �4.7�

The relation �4.3� follows from the definition of the functions u±. Now, we set
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f±�x1,l� ª −
�u�

�x2
�x1 ± 2l, + 0,	,l� +

�u�

�x2
�x1 ± 2l,− 0,	,l�, x1 � �− a±,a±�; �4.8�

in view of �4.6� we can conclude that f±�· , l��L2��a±
�. We also note that the definition of u± and

the smoothness of � at �± imply

f±�x1,l� =
�u±

�x2
�x1, + 0,	,l� −

�u±

�x2
�x1,− 0,	,l�, x1 � �− a±,a±� . �4.9�

Let us check the integral equation �3.2� for the function u+=u+�x ,	�. Taking into account �4.7�
and �4.9�, and integrating by parts, we get

− ��u+,���L2��a� + 	�u+,��L2��a� = � �u+

�x2
�x1, + 0,	� −

�u+

�x2
�x1,− 0,	�,��

L2��a+
�
= �f+,��L2��a+

�

for any ��C0
���a+

�. In the same way one can check that

− ��u−,���L2��a� + 	�u−,��L2��a� = �f−,��L2��a−
�

for any ��C0
���a−

�; thus, u± are solutions to the problem �3.1� for a=a± and f = f±. Equations
�4.4� follow from �4.8�.

Suppose that 	�S� \�*. In that case the functions u± introduced above can be represented as
u±=T3�	 ,a±�f±; thus, Eq. �4.4� become

f + T8�	,l,a�f = 0, �4.10�

where the operator T8 :L2��a+
� � L2��a−

�→L2��a+
� � L2��a−

� is defined by

T8�	,l,a�f ª �T8
+�	,l,a−,a+�f−,T8

−�	,l,a+,a−�f+� .

Now we are ready to demonstrate the first of our main results.
Proof of Theorem 2.1. If a±=0 the essential spectrum of the operator H is obviously

�1, +��, and an elementary argument using Dirichlet-Neumann bracketing �Ref. 16 Chap. XIII,
Sec. 15� and the minimax principle �Ref. 16 Chap. XIII, Sec. 1� shows that the threshold of the
essential spectrum of H is 1, i.e., �ess�H�� �1, +��. The opposite inclusion can be shown easily;
one needs to employ Weyl’s criterion �see, for instance, proof of Lemma 2.1 in Ref. 4�.

The operator H being self-adjoint, its isolated eigenvalues are real, and in view of the above
observation they are smaller than 1. To prove the uniform bound on their total multiplicity we use
bracketing in a way analogous to Ref. 1; without loss of generality we may suppose that l
� max�a− ,a+�. We add Neumann boundaries at segments corresponding to x1 at the endpoints of
�± and x2� �−d ,��; in this way we get an operator estimating H from below. To be completely
explicit, we get a lower bound H�Hleft � Hlw � Hmiddle � Hrw � Hright, and since only the window
part Hwindows=Hlw � Hrw contributes to the spectrum below 1, being obviously independent of l,
we infer by minimax that H has finitely many eigenvalues for any l
0 and their number counting
multiplicity has a bound independent of l.

The eigenvalue continuity can be established using a simple perturbation argument. The
operator H� with the window distance 2l� can be mapped unitarily into an operator on L2��� with
the same boundary condition as H by means of the longitudinal coordinate change, x1→x1�ªx1

+��0
x��y�dy with an arbitrary ��C0

��R� of nonzero mean such that supp �� �− 1
2 l ,− 1

2 l�; for large
enough l the region where the coordinates are changed is clearly disjoint with the windows. The
variation of the window distance is in this way expressed through the operator coefficients on a
fixed domain, and since l�− l=��−l/2

l/2 ��y�dy, the sought continuity for �→0 follows easily by
analytic perturbation theory.

Let K�S� be any compact set separated from �* by a positive distance. By the estimates
�3.10� the operator T8 has a norm being strictly less than 1 for 	�K and l large enough. For such
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	 and l Eq. �4.10� has thus a trivial solution only, and in view of Lemma 4.1 this implies that the
operator H has no eigenvalues in the set K if l is large enough. This means that each eigenvalue
of the operator H has to converge to one of the numbers from the set �* or to the threshold of the
essential spectrum.

The eigenvalues of H, i.e., those 	 for which the problem �4.1� has a nontrivial L2���
solution, coincide in view of Lemma 4.1 with the values of 	 for which Eq. �4.4� has a nontrivial
solution. In the case considered here we deal only with the eigenvalues of H which converge to a
value 	*��* separated from the threshold, in other words, being smaller than 1.

Our aim is to solve Eq. �4.4� and to obtain in this way an equation for the aforementioned
values of 	. Consider a 	*��*; if 	*=	n is an eigenvalue of the operator H�a+� we set

�*
+�· ,l� ª �0,�n

−�· ,l,a+�� � L2��a+
� � L2��a−

�, T4
+f ª �f+,�n�L2��a+

�,

where �n
− is determined by �n in accordance with �3.12� and �n is an eigenfunction associated with

	n. In the opposite case we set

�*
+�· ,l� ª �0,0� � L2��a+

� � L2��a−
�, T4

+f ª 0.

Analogously, if 	*=	n is an eigenvalue of H�a−�, we set

�*
−�· ,l� ª ��n

+�· ,l,a−�,0� � L2��a+
� � L2��a−

�, T4
−f ª �f−,�n�L2��a−

�,

where �n
+ corresponds to �n in accordance with �3.12� and �n is an eigenfunction associated with

	n; otherwise,

�*
−�· ,l� ª �0,0� � L2��a+

� � L2��a−
�, T4

−f ª 0.

Given a number 	*��*, we consider Eq. �4.4� for 	 in the vicinity of 	*. Assume first that
	�	*, in which case Eq. �4.4� is equivalent to �4.10�. In view of Lemma 3.5 the operator T8 is
bounded and meromorphic as a function of 	�S�, and the numbers 	*��* are poles of T8. For
any 	 close to 	* the operator T8 can be thus represented as

T8�	,l,a� = �*
+�· ,l�

T4
+

	 − 	*
+ �*

−�· ,l�
T4

−

	 − 	*
+ T9�	,l,a� , �4.11�

where the operator T9 acts as

T9�	,l,a�f ª �T8
+�	,l,a−,a+�f−,T9

−�	,l,a+,a−�f+�

if 	*��disc�H�a+�� \�disc�H�a−��,

T9�	,l,a�f ª �T9
+�	,l,a−,a+�f−,T8

−�	,l,a+,a−�f+�

if 	*��disc�H�a−�� \�disc�H�a+��, and finally,

T9�	,l,a�f ª �T9
+�	,l,a−,a+�f−,T9

−�	,l,a+,a−�f+�

if 	*��disc�H�a−����disc�H�a+��. The operator T9 on L2��a+
� � L2��a−

� is bounded and holomor-
phic with respect to 	 in the vicinity of 	*, and the estimate

��iT9

�	i � � Cli+1e−2l Re �1
+�	�, i = 0,1, �4.12�

holds true with a constant C which is independent on 	 and l.
We substitute the representation �4.11� into �4.10� to obtain
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f +
T4

+ f

	 − 	*
�*

+ +
T4

− f

	 − 	*
�*

− + T9 f = 0.

Since the norm of T9 is small for large l due to �4.12�, the operator �I+T9�−1 is well defined being
bounded in L2��a+

� � L2��a−
�. We apply this operator to the last equation, arriving at

f +
T4

+ f

	 − 	*
�*

+ +
T4

− f

	 − 	*
�*

− = 0, �4.13�

where �*
±�· ,	 , l�= �I+T9�	 , l ,a��−1�*

±�· , l�. The last equation implies that

f = c+�*
+ + c−�*

− �4.14�

for some numbers c±. We substitute from here into �4.13�, obtaining

�*
+�c+�1 +

A11

	 − 	*
� + c−

A12

	 − 	*
� + �*

−�c+
A21

	 − 	*
+ c−�1 +

A22

	 − 	*
�� = 0, �4.15�

where the quantities Aij =Aij�	 , l� are defined by

A11�	,l� ª T4
+�*

+�· ,	,l�, A12�	,l� ª T4
+�*

−�· ,	,l� ,

A21�	,l� ª T4
−�*

+�· ,	,l�, A22�	,l� ª T4
−�*

−�· ,	,l� .

The definition of �*
±, together with the estimate �4.12�, implies for l large enough

�*
± = �*

± + O�e−2l Re �1
+�	�
�*

±
� . �4.16�

If �*
+�0, and �*

−=0, in particular, we have

�*
+ � 0, �*

− = 0, A12 = A22 = 0, �4.17�

and in this case Eq. �4.15� holds if and only if

c+�1 +
A11

	 − 	*
� = 0.

If f corresponds to an eigenfunction � of the problem �4.1� by �4.3�, the number c+ is nonzero.
Indeed, in the opposite case the identities �4.14� and �4.17� would imply that f=0, which by
Lemma 4.1 results in �=0. Consequently, Eq. �4.10� has in this case a nontrivial solution if and
only if

	 − 	* + A11�	,l� = 0. �4.18�

If 	 is a root of this equation, the corresponding nontrivial solution of �4.10� can be expressed as
�4.14� with c+�0 and c−=0.

In the case �*
+=0 and �*

−�0, similar arguments lead us to the conclusion that Eq. �4.10� has
a nontrivial solution if and only if

	 − 	* + A22�	,l� = 0, �4.19�

and the corresponding nontrivial solution can be written as �4.14� with the coefficients c+=0 and
c−�0.

Finally, if both the vectors �*
± are nonzero, they are linearly independent by definition and the

same is true for the vectors �*
±. Hence Eq. �4.10� holds if and only if
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��	 − 	*�E + A�	,l��c = 0, �4.20�

where E is the unit matrix, and

A�	,l� ª �A11�	,l� A12�	,l�
A21�	,l� A22�	,l�

�, c ª �c+

c−
� .

The column c is nonzero, since otherwise �4.14� and �4.17� would imply f=0; thus, the system
�4.20� of linear equations has a nontrivial solution if and only if

det��	 − 	*�E + A�	,l�� = 0, �4.21�

which can be rewritten as

�	 − 	*�2 + �	 − 	*�trA�	,l� + det A�	,l� = 0; �4.22�

the corresponding nontrivial solution of Eq. �4.10� is given by �4.14�, where � c+

c−
� is a nontrivial

solution of �4.20�.
Assume now that 	=	*. Let 	* coincide with an eigenvalue 	n of the operator H�a+� being not

at the same time an eigenvalue of H�a−�. In this case we again can claim that u−=T3�	* ,a−�f−, on
the other hand, the boundary value problem for u+ with 	=	* is solvable if and only if

0 = �
�a+

f+�n�x,a+�dx = T4
+f . �4.23�

This follows from Lemma 3.2. The function u+ is given by u+=T5�	* ,a+�f+−c+�+, where c+ is a
constant. We can substitute now the described u± into �4.4� and obtain

f + T9�	,l,a�f = c+�*
+,

�4.24�
f = c+�*

+.

This function will generate a solution to the problem �4.1� if and only if �4.18� holds true.
Substituting �4.24� into �4.23�, we arrive at Eq. �4.18� with 	=	*. If c+�0 holds in �4.24� we see
that the formula �4.23� coincides with �4.14� with c−=0. Consequently, in the case 	*

���H�a−�� \��H�a+�� Eq. �4.18� determines all the values of 	 in the vicinity of 	* for which Eq.
�4.4� has a nontrivial solution; these nontrivial solutions are given by �4.14� with c+�0 and c−

=0.
In the same way one can check that Eq. �4.19� determines the sought values of 	 in the case

when 	* is an eigenvalue of the operator H�a−� and not of H�a+�. The corresponding nontrivial
solutions of �4.4� have c+=0 and c−�0.

Finally, if 	*��* is double and 	=	*, the solvability conditions of the boundary value
problems for u are T4

± f=0. If this holds true, the functions u± are given by u±=T5�	 ,a±�
−c±�±�·�, where c± are constants and �± are the eigenfunctions of H�a±� associated with 	*.
Equation �4.4� becomes

f + T9�	*,l,a�f = c+�*
+ + c−�*

−,

which yields the relation �4.14�. The solvability conditions T4
±f=0 are nothing else than the system

of linear equations �4.20�. In this way �4.14�, �4.20�, and �4.21� describe the sought values of 	 in
the vicinity of 	* and the corresponding nontrivial solutions of �4.4�.

V. PROOFS OF THEOREMS 2.2–2.4

Now we are going to demonstrate the remaining part of our claims. In order to do it, we
employ the results of the previous section. More specifically, we analyze the behavior of the roots
of Eqs. �4.18�, �4.19�, and �4.22�.
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Proof of Theorem 2.2. We will give the proof for the case 	*=	n�a−�; the argument for 	*

=	n�a+� is similar. In accordance with the results of the previous section, if the eigenvalue 	−�a , l�
exists, it must be a root of the Eq. �4.19�. Let us prove first that there is a unique root which
converges to 	* as l→ +�. Lemma 3.6 implies that the relation

�n
+�x1,l,a−� = �c�	*,a−�e−2�1

+�	*�le−�1
+�	*�x1 + O�e−2��	*�l� , �5.1�

holds in the norm of L2��a+
�; hence, by the definition of �*

− we have

�*
−�x1,l� = �c�	*,a−�e−2�1

+�	*�l�e−�1
+�	*�x1,0� + O�e−2��	*�l� . �5.2�

This formula, in combination with the estimate �4.12�, leads to the relation

A22�	,l� = O�e−2�1
+�	*�l� . �5.3�

Since T9 is holomorphic with respect to 	 and has a small norm for large l, we infer that the
left-hand side of the last equation is holomorphic in 	. In view of �5.3� for a small � the function
A22 satisfies the estimate �A22��� if l is large enough and �	−	*�=�; by Rouché theorem it implies
that the function 	�	−	*+A22�	 , l� has the same number of zeros in the disk �	 : �	−	*���� as
the function 	�	−	* does. The number � is arbitrary, so we can conclude that there is a unique
root of Eq. �4.19� converging to 	* as l→ +�. As a consequence, there exists a unique eigenvalue
of the operator H converging to 	* as l→ +�; we will denote this eigenvalue as 	�l ,a�. The
estimate �5.3� implies at the same time that

	�l,a� − 	* = O�e−2�1
+�	*�l� . �5.4�

Let us derive the asymptotic expansion �2.2� for the eigenvalue 	�l ,a�. In order to do it, we
will need to know the asymptotic behavior for A22 in a way more precise than �5.3�. For the sake
of brevity we will write simply 	 instead of 	�l ,a�. The relations �5.2� together with the estimates
�4.12� and �5.4� imply that

A22�	,l� = T4
−�I + T9�	,l,a��−1�*

−�· ,l�

= T4
−�*

−�· ,l� − T4
−T9�	,l,a��*

−�· ,l� + O�
T9
2
�*
−
�

= − T4
−T9�	*,l,a��*

−�· ,l� + O��	 − 	*���T9

�	
�
�*

−
 + 
T9
2
�*
−
�

= − T4
−T8

−�	,l,a��n
+�· ,l,a−� + O��	 − 	*�l2e−4�1

+�	*�l + le−6�1
+�	*�l� . �5.5�

Taking into account the estimate �3.10� for 
T8
−
 and the relation �5.1�, we can proceed with the

calculations, obtaining

A22�	,l� = − �c�	,a−�e−2�1
+�	*�l�T8

−�	*,l,a+,a−�e−�1
+�	*�x1,�*�L2��a−

� + O��	 − 	*�l2e−4�1
+�	*�l

+ e−2l��1
+�	*�+��	*��� , �5.6�

where we have denoted �*�x�=�n�x ,a−�. In view of the relation �3.14� the function

T8
−�	* , l ,a+ ,a−�e�1

+�	*�x1 coincides with T7
−�	 , l ,a+ ,a−�u, where u is the solution to the problem

�3.1� with a=a+, 	=	*, and f =e−�1
+�	*�x1. It is clear that u�x�=U�−x1 ,x2 ,	* ,a+�, and in view of

�3.15�–�3.17� we obtain

�T8
−�	*,l,a+,a−�e−�1

+�	*�x1,�*�L2��a−
� = c�	*,a+�e−2�1

+�	*�l�e�1
+�	*�x1,�*�L2��a−

� + O�e−2��	*�l�

= �c�	*,a+�c�	*,a−��1
+�	*�e−2�1

+�	*�l + O�e−2��	*�l� .

Substituting these identities into �5.6�, we finally arrive at the following formula:
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A22�	,l� = �−�l,a�e−4�1
+�	*�l + O��	 − 	*�l2e−4�1

+�	*�l + e−2l��1
+�	*�+��	*��� ,

where �−�l ,a� is defined by �2.3�. It allows us to rewrite Eq. �4.19� as

�	 − 	*��1 + O�l2e−4�1
+�	*�l�� = �−�l,a�e−4�1

+�	*�l + O�e−2l��1
+�	*�+��	*���;

expressing �	−	*� from here we get the asymptotic expansion �2.2� and the formula �2.3�.
Next, we have to prove the asymptotic expansion for the eigenfunction associated with 	. The

nontrivial solution of Eq. �4.4� is given by �4.14� with c+=0 and c−=1, i.e., as f=�*
−. We substi-

tute it into the relation u+=T3�	�l ,a� ,a+�f+ and take into account �5.2� and �4.16�; this yields

u+ = T3�	�l,a�,a+�f+ = O�
�*
−
� = O�e−2�1

+�	*�l� ,

which holds true in W2
1��a+

� and in W2
2�S� for each S��a+

. If 	�l ,a��	*, we obtain similarly
with the help of Lemma 3.2

u− = T3�	�l,a�,a−�f− =
�*

	�l,a� − 	*
T4

−�*
− + T5

−�	�l,a�,a−�f− =
A22�	�l,a�,l��*

	�l,a� − 	*
+ O�
�*

−
� .

�5.7�

Due to Eq. �4.19� it follows that

u− = − �* + O�e−2�1
+�	*�l�

holds in W2
1��a� and W2

2�S� for each S��a−
. If 	�l ,a�=	*, the last relation holds again; in order

to prove it, it is sufficient to employ the identity

u− = T5�	*,a−�f− − c−�* = T5�	*,a−�f− − �*.

The relations obtained in this way together with �4.3� lead to �2.4�. �

Proof of Theorem 2.3. The general lines of the proof are similar to those of the previous one.
According to the results of the previous section the eigenvalues of H converging to 	* are roots of
Eq. �4.22�. First we will check that the function at the left-hand side of this equation has two zeros,
the order taken into account, which converge to 	* as l→ +�.

To this aim, we need to estimate the functions Aij. Lemma 3.6 implies

�m
− �x1,l,a+� = �− 1�m�c�	*,a+�e−2�1

+�	*�le−�1
+�	*�x1 + O�e−2��	*�l� . �5.8�

This formula, together with �5.1�, allows us to conclude that

Aij�	,l� = O�e−2�1
+�	*�l� , �5.9�

hence for any small � we have the inequality

��	 − 	*�trA�	,l� + det A�	,l�� � �2 as �	 − 	*� = � ,

if l is large enough. Since the functions Aij are holomorphic, by Rouché theorem this inequality
implies that the function 	�D�	 , l�ªdet��	−	*�E+A�	 , l�� has the same number of zeros �with
the order taken into account� as the function 	� �	−	*�2 does. The last function has 	* as a
second-order zero, of course, so it follows that the function D�· , l� has two zeros, with the order
taken into account, which converge to 	* as l→ +�. In what follows we denote these roots as 	±;
the case of the second-order zero corresponds to the equality 	+=	−.

As it was established in the previous section, the nontrivial solutions of Eq. �4.4� associated
with the roots of �4.22� are given by �4.14� with the coefficients c± solving the system of linear
equations �4.20�. If the numbers 	± solve �4.21�, the system �4.20� has at least one nontrivial
solution corresponding to 	+ and 	−.
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Suppose that 	+�	−. Then 	± are simple zeros of the function D�· , l�, and in view of the
above discussion the system �4.20� has exactly one nontrivial solution for 	=	+ and 	=	−. Hence,
in the case 	+�	− the operator H has exactly two simple eigenvalues converging to 	* as l→
+�.

Let us check that if the system �4.20� has two linear independent solutions referring to 	
=	±, it follows that 	± is a second-order zero of the function D�· , l�. Indeed, two linear indepen-
dent solutions exist if and only if

A11�	±,l� = A22�	±,l� = 	* − 	±, A12�	±,l� = A21�	±,l� = 0. �5.10�

The derivative of D�	 , l� with respect to 	 equals

�D

�	
�	,l� = 2�	 − 	*� + �A11�	,l� + A22�	,l�� + �	 − 	*�� �A11

�	
�	,l� +

�A22

�	
�	,l�� + A11�	,l�

�A22

�	
�	,l�

− A12�	,l�
�A21

�	
�	,l� + A22�	,l�

�A11

�	
�	,l� − A21�	,l�

�A12

�	
�	,l� .

Substituting from �5.10� into this expression, we see that

�D

�	
�	,l� = 0 as 	 = 	±,

thus 	± is a second-order zero.
It is more complicated to check existence of a double eigenvalue of the operator H if 	+

=	−= : 	̃. It is equivalent to the fact that for 	= 	̃ the system �4.20� has two linear independent
solutions, and this in turn is equivalent to the relations �5.10�. Let us prove that they hold.
Consider the boundary value problem

� + 	�u = 0, x � �a \ ��+ � �−�, u = 0, x � �� ,

�5.11�

	 �u

�x2
	

x2=+0
− 	 �u

�x2
	

x2=−0
= − g±, x � �±.

Here g±�L2��±� are arbitrary functions, and the parameter 	 is supposed to range in a small

neighborhood of 	* without coinciding with 	* and 	̃. This problem is uniquely solvable provided
we seek a generalized solution to �5.11� belonging to L2���. In a complete analogy with the proof
of Lemma 1 one can check easily that the problem �5.11� is equivalent to the equation

f + T8�	,l,a�f = g , �5.12�

where g= �g+ ,g−��L2��a−
� � L2��a+

�, while the solution u of �5.11� is given by

u�x,	,l� = u+�x1 − l,x2,	,l� + u−�x1 + l,x2,	,l�, u± ª T3�	,a±�f±.

We can solve Eq. �5.12� in the same way as Eq. �4.10�, obtaining as a result that

f +
T4

+ f

	 − 	*
�*

+ +
T4

− f

	 − 	*
�*

− = G, G ª �I + T9�	,l,a��−1g . �5.13�

Hence the function f is of the form

f = C+�*
+ + C−�*

− + G , �5.14�

where C±=C±�	 , l� are constants to be found. Denoting Cª
� C+

C−
� and substituting �5.14� into

�5.13�, we obtain an equation for C,
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��	 − 	*�E + A�	,l��C = h, h ª �− T4
+G

− T4
−G

� . �5.15�

The solution of this system is given by Cramer’s formula,

C+�	,l� =
A12�	,l�T4

−G − �	 − 	* + A22�	,l��T4
+G

D�	,l�
,

C−�	,l� =
A21�	,l�T4

+G − �	 − 	* + A11�	,l��T4
−G

D�	,l�
. �5.16�

Using now �5.15� and Lemma 3.2, we infer that

u+�· ,	,l� = − C+�	,l��m�· ,a+� + C+�	,l�T5�	,a+��*,+
+ + C−�	,l�T5�	,a+��*,+

− + T5�	,a+�G+,

�5.17�
u−�· ,	,l� = − C−�	,l��n�· ,a−� + C−�	,l�T5�	,a−��*,−

+ + C−�	,l�T5�	,a−��*,−
− + T5�	,a−�G−,

where �*,±
± and G± are the components of the vectors �*

± and G,

�*
± = ��*,+

± ,�*,−
± �, G = �G+,G−� .

Since the number 	̃ is a second-order zero of D�· , l�, we conclude from �5.16� that the coefficients

C± have, in general, a second-order pole at 	̃, and the same is true for u±. Taking into account
�5.17�, we conclude that the solution of �5.11� can be represented as

u�x,	,l� = u−1
+ �x,	,l�C+�	,l� + u−1

− �x,	,l�C−�	,l� + O�1�, 	 → 	̃ .

In a complete analogy with the proof of Lemma 3.2, one can check easily that the solution of the

problem �5.11� has a simple pole at 	̃. Hence the function u−1
+ �x ,	 , l�C+�	 , l�

+u−1
− �x ,	 , l�C−�	 , l� has a simple pole at 	̃. For x from a neighborhood of �+ this function satisfies

due to �5.16� and �5.17� the relation

D�	,l��u−1
+ �x,	,l�C+�	,l� + u−1

− �x,	,l�C−�	,l��

= ��	 − 	* + A22�	,l��T4
+G − A12�	,l�T4

−G��m
+ �x1 − l,x2� + O�e−2�1

+�	*�l� .

Since 	̃ is by assumption a second-order zero of D�· , l�, the obtained identity yields

	̃ − 	* + A22�	̃,l� = A12�	̃,l� = 0.

Observing the behavior of the function u for x in the vicinity of �−, one can prove in the same way
that

	̃ − 	* + A11�	̃,l� = A21�	̃,l� = 0.

This completes the check of the relations �5.10� for 	+=	−, showing that in this case the operator
H has a double eigenvalue converging to 	* as l→ +�.

We proceed to calculation of the asymptotic expansions for the root�s� of Eq. �4.22�. Substi-
tuting the estimates �5.9� into �4.22�, we obtain

	 − 	* = o�e−�1
+�	*�l� . �5.18�

This relation, in combination with �5.1� and �5.5� and the estimate �3.10�, implies that
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A22�	,l� = O�le−4�1
+�	*�l� . �5.19�

It is easy to establish an expression for A11 similar to �5.5�, which together with �5.8� and �5.18�
yield

A11�	,l� = O�le−4�1
+�	*�l� . �5.20�

Proceeding in the same way as in �5.5� we obtain a chain of relations,

A12�	,l� = T4
+�I + T9�	,l,a��−1�*

−�· ,l� = T4
+�*

−�· ,l� + O�
T9

�*
−
�

= ��n
+�· ,l,a−�,�m�· ,a+��L2��a+

� + O�le−4�1
+�	*�l� .

Due to �5.1� and �3.15� we have

��n
+�· ,l,a−�,�m�· ,a+��L2��a+

� = c�	*,a−�e−2�1
+�	*�l�e−�1

+�	*�x1,�m�· ,a+��L2��a+
� + O�e−2��	*�l�

= ��l,a�e−2�1
+�	*�l + O�e−2��	*�l� ,

where ��l ,a� is given by �2.6�. Consequently,

A12�	,l� = ��l,a�e−2�1
+�	*�l + O�e−2��	*�l + le−4�1

+�	*�l� , �5.21�

and in the same way one can show that

A21�	,l� = ��l,a�e−2�1
+�	*�l + O�e−2��	*�l + le−4�1

+�	*�l� . �5.22�

Equation �4.22� is equivalent to the following pair of the equations:

	 − 	* =
− trA�	,l� ± ��A11�	,l� − A22�	,l��2 + 4A12�	,l�A21�	,l�

2
. �5.23�

If c�	* ,a−�c�	* ,a+�=0, these equations together with �5.19�–�5.22� imply that

	 − 	* = O�e−2��	*�l + le−4�1
+�	*�l� ,

which proves the asymptotic expansion �2.5� in the case ��l ,a�=0.
Suppose on the contrary that c�	* ,a−�c�	* ,a+��0. In this case the function �A11−A22�2

+4A12A21 is nonzero as 	=	*, and therefore its square root is holomorphic with respect to 	.
Using this fact and the relations �5.19�–�5.22�, one can show easily, in analogy with the similar
argument for Eq. �4.22�, that each of the equations �5.23� has a unique root converging to 	* as
l→ +�. Hence one of the roots of �4.22� satisfies the first of Eqs. �5.23�, while the other satisfies
the other one. Substituting now from �5.19�–�5.22� into �5.23�, we arrive immediately at the
asymptotics �2.5� and �2.6� in the case ��l ,a��0. �

Proof of Theorem 2.4. Let c be a nontrivial solution to the system �4.20�, where 	 is 	+ or 	−.
Without loss of generality we may assume that 
c
R2 =1. Modifying �4.14�, we choose the corre-
sponding nontrivial solution of Eq. �4.4� as f=−c+�*

+−c−�*
−. In analogy with �5.7�, we then obtain

u− =
�n�· ,a−�
	 − 	*

T4
−f + O�e−2�1

+�	*�l� = −
c+A21�	,l� + c−A22�	,l�

	 − 	*
�n�· ,a−� + O�e−2�1

+�	*�l� ,

which holds true in W2
1��a−

� and W2
2�S� for each S��a−

. Employing now the system �4.20� we
can write

c+A21�	,l� + c−A22�	,l� = − c−�	 − 	*� ,

hence
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u− = c−�n�· ,a−� + O�e−2�1
+�	*�l� ,

and in the same way one can prove that

u+ = c+�m�· ,a+� + O�e−2�1
+�	*�l� .

in the norm of W2
1��a−

� and W2
2�S� for each S��a−

. The last two relations prove the sought
formulas �2.9�.

Suppose that 	+=	−, then �4.20� has two nontrivial solutions, which means that �	−	*�E
+A�	 , l�=0; we can choose these solutions as �c+ ,c−�= �−1,0� and �c+ ,c−�= �0,−1�. Substituting
these values into �2.9�, we arrive at �2.8�.

Suppose that ��l ,a��0. In view of �2.5� it implies that 	+�l ,a��	−�l ,a�, i.e., that 	±�l ,a� are
simple eigenvalues. In this case the relations �2.5�, �5.20�, and �5.21� yield

	± − 	* + A11�	±,l� = ± ���l,a��e−2�1
+�	*�l�1 + O�e−2�1

+�	*�l�� � 0,

�5.24�
A12�	±,l� = ��l,a�e−2�1

+�	*�l�1 + O�e−2�1
+�	*�l�� � 0.

Since the matrix �	±−	*�E+A�	± , l� has rank one, we can choose nontrivial solutions of �4.20� as

c+
±
ª ±

�2�	± − 	* + A11�	±,l��
��	± − 	* + A11�	±,l�2 + A12

2 �	±,l��
,

c−
±
ª ±

�2A12�	±,l�
��	± − 	* + A11�	±,l�2 + A12

2 �	±,l��
.

In view of �5.24� we then have

c+
± = 1 + O�e−2�1

+�	*�l�, c−
± = � sgn ��l,a� + O�e−2�1

+�	*�l� .

Substituting from here into �2.9� we arrive immediately at �2.7�. �
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The recently introduced spin-cluster expansion �SCE� is a powerful tool to repre-
sent on the atomic scale the adiabatic magnetic energy for each magnetic configu-
ration of a system with N sites. In the present paper the theory is worked out for the
very important case of rotationally invariant magnets. Appropriate basis functions
for this SCE are rotationally invariant and exhibit time-reversal symmetry, are real,
and constitute a complete orthonormal set for the representation of any rotationally
invariant observable. It is also shown how generalized Heisenberg-type models of
the magnetic energy of an isotropic magnet are represented in this symmetry-
adapted SCE basis. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2364181�

I. INTRODUCTION

The investigation of noncollinear spin systems is very important because of the following
reasons. First, there are many systems which exhibit noncollinear magnetic ground-state configu-
rations, e.g., fcc Fe,1 or amorphous Fe-B alloys.2 Second, there are physically and technologically
important noncollinear topological defects in magnets with collinear ground states, e.g., domain
walls on the atomic scale in quasi-one-dimensional Fe nanostripes3 on W�110� or magnetization
singularities in the interior of magnetic vortex structures.4 Finally, thermal magnetic excitations
are of noncollinear nature, e.g., small-amplitude spin waves5 at low temperatures or strongly
noncollinear excitations in the paramagnetic temperature regime.

For a theoretical modeling of noncollinearities on an atomic scale, the coarse graining inherent
in the continuum approach of micromagnetism6 is not appropriate and has to be replaced by a
microscopic approach. The use of the ab initio density functional electron theory for noncollinear
spin systems5,7–9 thereby yields highly accurate results but is often too costly. An alternative
approach therefore models the spin interactions on the scale of atomic magnetic moments rather
than on the electronic scale, e.g., by means of the classical Heisenberg model for the exchange
interactions between “classical” magnetic moments Mi=Miei at the atomic sites i with orientations
ei and magnitudes Mi,

EH = − �
i�j

JH�Mi · M j� , �1�

where JH is the nearest-neighbor exchange coupling. Unfortunately, Eq. �1� in general fails badly
for the case of atomic-scale noncollinearity because of the following reasons. First, it assumes that
the magnitudes Mi do not depend on the magnetic configurations, whereas in reality this is not at
all the case9 �there are configurations for which in some materials Mi even vanishes�. Finally, the
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Heisenberg model neglects the influence of multispin interactions,10 which may become important
for strong noncollinearities on an atomic scale.

Because of these deficiencies of the Heisenberg model, two other parametrizations of the
magnetic energy on the atomic scale have been introduced recently.11,12 Both parametrizations are
based on the adiabatic approximation where it is assumed that the electronic system is at any
instant in its ground state with respect to the momentary orientational configuration �ei� so that the
magnitudes Mi are “slaved,” i.e., completely determined by �ei�, Mi=Mi��e j��. In the first
parametrization11 the part of the magnetic energy which is invariant with respect to a rotation and
inversion of the coordinate system is modeled by an in principle infinite series in terms of all the
relative angles �ei ·e j�. This method classifies the classical Heisenberg model as a first approxima-
tion. Extensions of the Heisenberg model discussed in the literature are shown to be of second
order in this parametrization, and explicit third-order expressions are derived. The second param-
etrization, the so-called spin-cluster expansion12 �SCE�, may be in general applied to systems with
arbitrary symmetry, i.e., it is not confined to systems which are rotationally invariant. To achieve
this, the SCE for a system with N sites is evaluated in terms of product functions invoking N
one-spin basis functions ���ei� rather than in terms of the two-spin functions �ei ·e j�. Of course,
the SCE in general encompasses also the case of a rotationally invariant system, but due to its
generality it is yet too undetermined for practical calculations. Because in many magnets the
magnetic energy is strongly dominated by the isotropic exchange interactions, it is very often
justified to approximate them by a rotationally and time-reversal invariant system. In the present
paper it will be shown how rotationally and time-reversal invariant basis functions for the SCE of
an isotropic magnetic system can be constructed from product basis functions of the general SCE,
which is very important for practical computations. Furthermore, the above-mentioned general
Heisenberg-type parametrization is also expanded in this symmetry-adapted SCE basis.

II. THE SPIN-CLUSTER EXPANSION

By the SCE,12 the adiabatic magnetic energy surface, including all relevant magnetic interac-
tions in the solid �exchange energy, anisotropy energy, dipolar, and Zeeman energy�, are repre-
sented in principle exactly in terms of one-spin basis functions. The expansion coefficients ap-
pearing in the SCE may be obtained by fitting the SCE to the energies of magnetic reference
configurations, which in turn may be calculated by the highly accurate ab initio density functional
electron theory for noncollinear spin systems,5,7–9 and a carefully constructed SCE therefore will
have near-ab initio accuracy. Having obtained the SCE it is possible to calculate very quickly the
energy of any magnetic configuration �ei�= �e1 , . . . ,eN�. Therefore, the SCE can be used to deter-
mine the ground-state configuration of systems with complex magnetic interactions, it can be
combined, e.g., with a Monte Carlo simulation method to determine the thermodynamic proper-
ties, or it can be combined13 with an adiabatic equation of motion for the variables �ei� in order to
explore the magnetization dynamics.

The construction of the SCE represents a step-by-step generalization of the arguments given in
the conventional cluster expansion of alloy theory.14 Because it is described in more detail in Ref.
12, we confine ourselves to a short summary. The first step is to parametrize the orientation vectors
ei by the angles �i and �i with �i� �0,�� and �i� �0,2�� describing the continuous direction of
the unit vector in a global coordinate system. In a second step a complete set of orthogonal
one-spin basis functions is introduced. For expedience in later developments, we determine these
one-spin basis functions to be the set of spherical harmonics �4�YL�e�	�4�YL���e� ,��e�� with
L= �l ,m�, the integral order l=0,1 ,2 , . . ., and the respective projection m=−l , �−l+1� , . . . , l.
Hence, the one-spin basis of order l spanned by the �4�YL is �2l+1�-dimensional. In a third step
the complete set of orthogonal basis functions for the full N-site system is constructed from a
direct product of one-spin basis functions,
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�̃�m��ei�� = �4��−N/2YL1
�e1�YL2

�e2� ¯ YLN
�eN� , �2�

where �= �l1 , l2 , . . . , lN� labels the orders of the corresponding one-spin basis functions attached to
the single sites and m= �m1 , . . . ,mN� is the tuple of respective projection indices. By the appro-
priate definition of a scalar product,


�̃�m��̃��m�� 	
1

�4��N  de1 ¯ deN�̃�m
* �̃��m�, �3�

where dei denotes the integration over the corresponding unit sphere, the orthogonality of the
N-site basis follows immediately,


�̃�m��̃��m�� = �����mm�. �4�

Since this basis is also complete,

�
�

�
m

�̃�m
* ��ei���̃�m��ei��� = �4��N��e1 − e1�� ¯ ��eN − eN� � , �5�

the configuration dependent magnetic energy E �or any other configuration-dependent quantity�
can be exactly expanded into

E��ei�� = �
�

�
m

J̃�m�̃�m��ei�� . �6�

Recognizing �4�Y00�e�=1, Eq. �6� can be recast11,14 into a sum running over contributions from
all conceivable spin clusters �, which are defined as mere subsets of 1	M 	N sites i1 , . . . , iM,
i.e., �= �i1 , i2 , . . . , iM�. Hence,

E��ei�� = J0 + �
�

�
�

�
m

J��m���m��ei�� , �7�

where the cluster basis functions ���m only depend on the cluster variables �ei1
, . . . ,eiM

�,

���m��ei�� = �4��M/2YLi1
�ei1

� ¯ YLiM
�eiM

� , �8�

and the respective order tuple �= �li1
, . . . , liM

� is restricted to li
0 for all sites i constituting the
cluster �. In this recast notion the orthogonality, Eq. �4�, reads


���m������m�� = ���������mm�, �9�

which means that basis functions of different clusters and different order are orthogonal. In the
same fashion the completeness relation, Eq. �5�, rewrites

1 + �
���

�
�

�
m

���m
* ��ei�����m��ei��� = ��ei1

− ei1
� � ¯ ��eiM

− eiM
� � , �10�

where the sum runs over all subclusters � of K	M sites contained in the cluster �.
In a practical calculation the SCE, Eq. �7�, has to be terminated with respect to the number and

type of clusters � which are taken into account and with respect to the order of the entering
one-spin basis functions. Such a termination is physically justified because in general the contri-
butions to Eq. �7� will decrease with increasing cluster size and with increasing order l of Ylm. The
expansion coefficients J��m then are obtained by fitting Eq. �7� to the energies E��ei,ref�� of
appropriately chosen reference configurations �ei,ref�, which in turn may be calculated by the
highly accurate ab initio density functional electron theory �for details of the fitting see Ref. 12�.
The bare SCE, Eq. �7�, is the starting point for all our further considerations.
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III. TRANSFORMATION TO SYMMETRY ADAPTED BASIS FUNCTIONS

In the following we consider isotropic magnetic systems for which the magnetic energy is
invariant with respect to rotations of the global coordinate system. Because the simple product
functions, Eq. �8�, are not scalar-rotationally invariant, it is essential to construct a new set of basis
functions which exhibit the following properties:

�1� In isotropic systems the magnetic energy is invariant under a global rotation of the coordi-
nate system. Thus, we have to identify the scalar-rotationally invariant part of the full SCE
basis and then restrict the SCE basis accordingly.

�2� The magnetic energy must be invariant with respect to time reversal. To guarantee this, the
basis functions have to be invariant with respect to the simultaneous inversion of all ei.

�3� Because the magnetic energy is a physical observable, the basis functions should be real.
�4� Even under the above restrictions the basis functions should be orthonormal and complete in

the sense that every rotationally invariant magnetic energy function can be uniquely repre-
sented in this basis. As already sketched in Sec. II, orthogonality and completeness are
important for the SCE formalism.

A. Construction of rotationally invariant basis functions

In order to meet the first restriction of scalar-rotational invariance, we have to reduce the
direct product basis functions, Eq. �8�, using concepts of group theory.15We start by noting that the
spherical harmonics form the basis of the irreducible representation D�l� of the group SO�3� of
proper rotations R in three-dimensional space R3. Conseqently, the product functions, Eq. �8�, of
the shape YL1

�e1�¯YLM
�eM� are the natural basis of a direct product representation D�l1� � ¯

� D�lM� of the M-fold direct product group SO�3� � ¯ � SO�3�. This direct product representation
in general is reducible, which means that it can be in turn decomposed into a direct sum of
irreducible representations of the SO�3�. The order l of the irreducible representations D�l� con-
tained in this decomposition is in the range of

lmax = �
i=1

M

li � l � max�2li� − �
i=1

M

li,0� = lmin, �11�

where li� has to be chosen out of the �li� such that the lower bound for l is minimum. In general
an irreducible representation D�l� may occur multiple times in this decomposition, which is re-
ferred to as multiplicity tl.

Concerning the corresponding bases, this decomposition is achieved by the transformation,

BYlm
�k,����ei�� = �

m
C��

K1 C��
K2

¯ C��
L YL1

�e1� ¯ YLM
�eM� , �12�

from the direct product basis to the basis of the irreducible representation which is a straightfor-
ward generalization of the decomposition of the basis of the direct product representation of
D�l1� � D�l2� mediated by the Clebsch-Gordan transformation

YL
�l1l2��e1,e2� = �

m1m2

CL1L2

L YL1
�e1�YL2

�e2� . �13�

As it is well known, the Clebsch-Gordan coefficients CL1L2

L are only nonzero if

�l1 − l2� 	 l 	 l1 + l2 �14�

m = m1 + m2 �15�

holds. For the case of a multiple direct product of irreducible representations D�li� the decompo-
sition transformation is constructed by a successive application of Clebsch-Gordan transforma-
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tions resulting in the general scheme, Eq. �12�. This succession inherently introduces bases Ki

= �ki ,i� of intermediate representations D�ki�, which are denoted by the tuple k= �k1 , . . . ,kM−2�,
whereas the i are summed over implicitly by means of Eq. �15�. Naturally, within this construc-
tion scheme a twofold ambiguity arises:16 the sequence of both the Li and the Ki constituting the
subscripts of the Clebsch-Gordan coefficients in Eq. �12� is widely undetermined. This is indicated
by the boxes � in Eq. �12�. The freedom concerning the intermediate basis indices arises because
each index Ki appears twice in the product of Clebsch-Gordan coefficients. Thus, the relative
arrangement of the Ki actually determines the sequence of Clebsch-Gordan transformations and
with it the virtual transformation. Every sequence of filling the Ki to the boxes � in the product of
Clebsch-Gordan coefficients in Eq. �12� generates a distinct binary bracketing scheme16 and is
symbolically designated by the index B. After the specification of the binary bracketing scheme,
the freedom of distributing the Li in the M remaining boxes in Eq. �12� persists, whereas every
sequence of the Li also generates a distinct transformation. In order to eliminate this indetermi-
nacy, we introduce the convention of identical sequence of entries in the tuple of representation
orders, �, and in the sequence filling the Li in the free subscripts in the product of Clebsch-Gordan
coefficients. Obviously, the complete filling of the boxes � in the right hand side of Eq. �12� is
then uniquely determined by the coupling scheme represented by �B ,��.

Finally, basis sets �BYlm
�k,��� and �B�Ylm

�k,�̃�� obtained by different coupling schemes �B ,�� and

�B� , �̃� with �̃ being a nontrivial permutation of � are equivalent but not necessarily identical.
Thus, for practical calculations one has to agree on a certain coupling scheme �B ,��. A simple
choice for a coupling scheme would be, e.g., the ordered tuple �= �l1 , . . . , lM� with

l1 � l2 � ¯ � lM , �16�

and the linear binary bracketing scheme where every Ki is taken as the lower-left subscript of the
Clebsch-Gordan coefficient succeeding the one with the same Ki as superscript.

The decomposition transformation, Eq. �12�, in general is unitary, because it is constructed
from unitary Clebsch-Gordan transformations. Hence, the dimensionality of the direct product of
spherical harmonics of orders �l1 , . . . , lM� must equal the dimensionality of the irreducible repre-
sentations of order l and multiplicity tl,

�
j=1

M

�2lj + 1� = �
l=lmin

lmax

tl�2l + 1� . �17�

The multiplicity reflects in the different numerical values of the intermediate representation orders
ki governed by Eq. �14�, which lead in total to a set of tl numerically different k-tuples for a given
order tuple �. Therefore, by means of the k-tuple the bases of the inequivalent irreducible repre-
sentations D�l� can be distinguished.

Now coming back to restriction �1� of scalar-rotational invariance, the key advantage of the
transition to the irreducible representation is the well-known transformation behavior under the
action of proper rotations R,

BYlm
�k,����R−1�R�ei�� = �

m�

Dm�m
�l� �R�BYlm�

�k,����ei�� . �18�

Herein D
m�m
�l� is the irreducible representation matrix of order l and R−1 is the corresponding rota-

tion matrix in R3. Because D00
�0�=1 always holds regardless of the coupling scheme, the scalar-rota-

tionally invariant part of the full basis �BYlm
�k,��� is uniquely given by the subset �BY00

�k,���. Introduc-

ing the generalized Wigner coefficients15,17,18

113503-5 Construction of rotationally invariant SCE basis J. Math. Phys. 47, 113503 �2006�

                                                                                                                                    



� l1 ¯ lM

m1 ¯ mM
�

�k�

B

	 CL1L2

K1
¯ CKM−2LM

00 =
�− 1�lM−mM

�2lM + 1
CL1L2

K1
¯ CKM−3LM−1

lM −mM , �19�

and using Eqs. �8� and �12�, we arrive at

Y�
�k,����ei�� 	 �4��M/2 BY00

�k,����ei�� = �
m
� l1 ¯ lM

m1 ¯ mM
�

�k�

B

���m��ei�� , �20�

which directly shows the decomposition transformation from the bare product basis, Eq. �8�, to the
rotationally symmetry adapted basis postulated by constraint �1� of this section. Please note that
because of Eq. �19� there are only �M −3� entries in the k-tuple. For M 	3 the following special
cases emerge from Eq. �19�:

� l1 l2

m1 m2
� = �− 1�l1−m1

�l1l2
�m1−m2

�2l1 + 1
� l1 l2 l3

m1 m2 m3
� =

�− 1�l3−m3

�2l3 + 1
Cl1m1l2m2

l3−m3 , �21�

and the point function naturally turns out to be constant. Finally, we want to remark that the
generalized Wigner coefficients are only nonzero, if the irreducible l=0 representation is contained
in the product representation, i.e., if lmin=0 holds in Eq. �11�. This marks some boundary for the
li which obviously cannot be chosen arbitrarily.

B. Consideration of time-reversal symmetry and basis properties

Next, we have to fulfill the criterion �2� of time-reversal symmetry, i.e., invariance with
respect to simultaneous inversion of all variables, �ei�→ �−ei�. From the well-known property
YL�−e�= �−1�lYL�e� we immediately get the behavior under time reversal,

Y�
�k,����− ei�� = �− 1�l1+l2+. . .+lM Y�

�k,����ei�� . �22�

The postulate for invariance with respect to time reversal consequently translates into the restric-
tion of even total parity, i.e.,

l1 + l2 + . . . + lM = even. �23�

Criterion �3� of real-valuedness can be proven by using the general property15

� l1 ¯ lM

− m1 ¯ − mM
�

�k�

B

= �− 1�l1+l2+¯+lM� l1 ¯ lM

m1 ¯ mM
�

�k�

B

�24�

of the real-valued generalized Wigner coefficients. Together with Ylm
* = �−1�mYl−m, the condition,

Eq. �23�, of even parity and the nonzero criterion15

m1 + m2 + ¯ + mM = 0 �25�

of the generalized Wigner coefficients, it can be seen from Eq. �20� that the imaginary parts of the
terms characterized by any tuple �m1 , . . . ,mM� cancel with those of the conjugated tuple
�−m1 , . . . ,−mM�. Thus, the SCE basis functions turn out to be real by means of criteria �1� and �2�,
and the demand for real-valuedness constitutes no further restriction.

Finally, we have to prove the orthonormality and completeness, demand �4�. With Eq. �9� we
get


Y�
�k,���Y��

�k�,���� = ���������
m
� l1 ¯ lM

m1 ¯ mM
�

�k�

B � l1 ¯ lM

m1 ¯ mM
�

�k��

B

= ���������kk�, �26�

where in the last step we used the orthonormality of the generalized Wigner coefficients.15 Hence,
the SCE basis functions of different clusters �, order �, and component k are orthogonal. Con-
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cerning completeness, we recall the completeness, Eq. �10�, of the product basis ����m�. Because
the transformation, Eq. �12�, to the irreducible representation generated by the basis set �YL

�k,��� is
unitary, the latter one must be also complete if we consider all orders l in the limits of Eq. �11�. By
the restrictions of scalar-rotational and time-reversal invariance the whole set of basis functions is
reduced to the part of the complete basis whose expansion coefficients are not forced to be zero by
symmetry restrictions. Together with the feature of linear independence we conclude that this
subset �Y�

�k,��� is complete in view of the representation of rotationally and time-reversal invariant
functions.

After having implemented all symmetry restrictions, we can expand the magnetic energy of a
rotationally invariant system uniquely,

E��ei�� = J0 + �
�

�
�

��
k

J�
�k,��Y�

�k,����ei�� , �27�

where the prime denotes that only �-tuples with even total parity, Eq. �23�, are taken into account,
and where the cluster summation starts from pairs on. Please note that the extensive m summation
of the bare SCE, Eq. �7�, is now already incorporated in the basis functions, Eq. �20�.

IV. RELATION BETWEEN SCE AND „ei ·ej… BASIS FUNCTIONS

It has been mentioned in Sec. I that there are alternative approaches11 for the parametrization
of the isotropic magnetic energy in terms of two-spin arguments �ei ·e j�, i.e.,

E��ei�� = �
�

�
K

�
�1¯�K

J�,�1¯�K

�M� V�,�1¯�K

�M� ��ei�� . �28�

Thereby the M-point configuration functions,

V�1¯�K

�M� �e1, . . . ,eM� = P�1
�ei1,1

· ei1,2
� ¯ P�K

�eiK,1
· eiK,2

� , �29�

are defined as product of K polynomials, P�, of order ��1 in the pair scalar products �ei�,1
·ei�,2

�
chosen out of the variables �e1 , . . . ,eM� forming the M-point cluster �. Thus, the number of pairs,
K, can be

M/2 	 K 	 M�M − 1�/2. �30�

Obviously, this parametrization is a systematic generalization of the Heisenberg model, Eq. �1�,
and the J�,�1¯�K

�M� are the expansion coefficients of the respective configuration functions. Please
note that for the polynomials P� in Ref. 11 simple power functions are used, whereas in the
present paper we will consider Legendre polynomials instead. Because they are related by one-
to-one mappings these two polynomial sets are equivalent. Furthermore, we skip the permutation
symmetrization performed in Ref. 11, because in atomistic nonquantum modeling there are no
physical reasons for it.

From a closer look at Eq. �29� it can be easily seen that the configuration functions V�,�1¯�K

�M�

are also invariant under proper rotations of the coordinate system and time reversal, as every scalar
product �ei�,1

·ei�,2
� is so. Because for each M-point cluster the basis set �Y�

�k,��� is complete with
respect to these restrictions, the V�,�1¯�K

�M� can be expanded into this SCE basis. In contrast, the

inverse expansion of the SCE basis functions into the V�,�1¯�K

�M� does not necessarily have to exist

because neither the linear independence nor the completeness of the V�,�1¯�K

�M� parametrization has
been investigated so far.

The general route to expand the V�,�1¯�K

�M� in the Y�
�k,�� is the following. First, the expansion18
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P��e1 · e2� =
4�

2� + 1�
�

�− 1��Y�−��e1�Y���e2� �31�

is inserted into Eq. �29�. Because every site variable ei enters in �i different scalar products, with
1	�i	K−1, this leads to a product of �i spherical harmonics of the same argument ei, respec-
tively. Recursive application of the expansion18

Y�1�1
�ei�Y�2�2

�ei� = �
lm

��2�1 + 1��2�2 + 1�
4��2l + 1�

C�10�20
l0 C�1�1�2�2

lm Ylm�ei� �32�

allows one to expand every product of spherical harmonics of the same argument into a linear
combination of single spherical harmonics of the same argument. Applying these expansions for
each cluster variable ei, Eq. �29� becomes an expansion of V�,�1¯�K

�M� into the basis ���m of the
same cluster �, while the expansion coefficients essentially turn out to be sums of products of
Clebsch-Gordan coefficients. Performing all the summations over internal projection indices, with
the help of graphical methods15,18 it is possible to rewrite the expansion of the V�,�1¯�K

�M� in terms

of the SCE basis Y�
�k,��, and it can be shown that the condition of even total parity, Eq. �23�, in

general is fulfilled.
Performing this scheme of calculation explicitly for the V�,�1¯�K

�M	4� functions, using the abbre-
viations Cab

c 	Ca0b0
c0 and ��1¯�i�= �2�1+1�¯ �2�i+1�, and with the 6j �9j resp.� symbols �¯�

common in the recoupling theory of angular momenta, we finally obtain

V�
�2��e1,e2� 	 P��e1 · e2� = �− �����−1/2Y�

�����e1,e2� , �33�

V�1�2

�3� �e1,e2,e3� 	 P�1
�e1 · e2�P�2

�e2 · e3� = ��1�2�−1/2�
l

�− �lC�1�2

l Y�
��1�2l��e1,e3,e2� , �34�

V�1�2�3

�3� �e1,e2,e3� 	 P�1
�e1 · e2�P�2

�e2 · e3�P�3
�e3 · e1�

= �− ��1+�2+�3 �
l1l2l3

C�1�3

l1 C�1�2

l2 C�2�3

l3 � l1 l3 l2

�2 �1 �3
�Y�

�l1l3l2��e1,e3,e2� , �35�

V�1�2

�4� �e1,e2,e3,e4� 	 P�1
�e1 · e2�P�2

�e3 · e4� = ��1�2�−1/2�− ��1+�2Y�
�0,�1�1�2�2��e1,e2,e3,e4� ,

�36�

V�1�2�3

�4� �e1,e2,e3,e4� 	 P�1
�e1 · e2�P�2

�e2 · e3�P�3
�e3 · e4�

= ��1�2�3�−1/2�
l1l2

�− �l1+l2+�2C�1�2

l1 C�2�3

l2 Y�
��2,l1�1�3l2��e2,e1,e4,e3� , �37�

V�1�2�3�4

�4� �e1,e2,e3,e4� 	 P�1
�e1 · e2�P�2

�e2 · e3�P�3
�e3 · e4�P�4

�e4 · e1�

= �
l1l2l3l4

�− ��1+�3−l1−l2C�4�1

l1 C�1�2

l2 C�2�3

l3 C�3�4

l4

��
x

��x��l1 �1 �4

x l2 l4

l3 �2 �3
�Y�

�x,l3l1l2l4��e3,e1,e2,e4� , �38�
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V�1�2�3�4�5

�4� �e1,e2,e3,e4� 	 P�1
�e1 · e2�P�2

�e2 · e3�P�3
�e3 · e4�P�4

�e4 · e1�P�5
�e1 · e3�

= �
l1¯l6

��l1l4��− ��2+�4−l2−l6C�4�1

l1 Cl1�5

l2 C�1�2

l3 C�2�3

l4 Cl4�5

l5 C�3�4

l6

��
x

��x��l2 x l5

l4 �5 l1
�� l6 x l3

�4 l1 �1

�3 l4 �2
�Y�

�x,l3l6l5l2��e2,e4,e3,e1� ,

�39�

V�1�2�3�4�5�6

�4� �e1,e2,e3,e4� 	 P�1
�e1 · e2�P�2

�e2 · e3�P�3
�e3 · e4�P�4

�e4 · e1�P�5
�e1 · e3�P�6

�e2 · e4�

= �
l1¯l8

��l1l3l5l7��− �l3+l4+l5+l6+l7+l8+�1+�3+�6

�C�4�1

l1 Cl1�5

l2 C�1�2

l3 Cl3�6

l4 C�2�3

l5 Cl5�5

l6 C�3�4

l7 Cl7�6

l8

��
x

��x��l5 x l1

l2 �5 l6
��l7 x l3

l4 �6 l8
�� l5 x l1

�2 l3 �1

�3 l7 �4
�

�Y�
�x,l2l6l4l8��e1,e3,e2,e4� �40�

Herein the Y�
�k,�� are defined on basis of the linear binary bracketing scheme mentioned in Sec. II.

In principle, the basis properties of the V�,�1¯�K

�M� also would reflect in an analysis of the regularity
of these expansion coefficients, but this is far beyond the scope of the present paper.

V. CONCLUSIONS

The SCE is a powerful representation of the adiabatic magnetic energy hypersurface of a
magnetic system on the scale of atomistic modeling. In the present paper we have worked out the
theory of the SCE for the very important limit of rotationally and time-reversely invariant systems.
Because the basis of the SCE is complete and orthogonal, the magnetic energy E��ei�� as function
of the orientations of the moments of all atomic sites i in the system can be systematically
expanded into contributions from clusters �= �i1 , . . . , iM� of different size M and shape. Finally, it
is shown both, generally and explicitly, how the widely used Heisenberg-type modeling in terms
of pair contributions �ei ·e j� is covered by the SCE with rotationally and time-reversal invariant
basis functions.
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Harmonic oscillators coupled by springs: Discrete
solutions as a Wigner quantum system
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We consider a quantum system consisting of a one-dimensional chain of M iden-
tical harmonic oscillators with natural frequency �, coupled by means of springs.
Such systems have been studied before, and appear in various models. In this paper,
we approach the system as a Wigner quantum system, not imposing the canonical
commutation relations, but using instead weaker relations following from the com-
patibility of Hamilton’s equations and the Heisenberg equations. In such a setting,
the quantum system allows solutions in a finite-dimensional Hilbert space, with a
discrete spectrum for all physical operators. We show that a class of solutions can
be obtained using generators of the Lie superalgebra gl�1 �M�. Then we study –
from a mathematical point of view – the properties and spectra of the physical
operators in a class of unitary representations of gl�1 �M�. These properties are both
interesting and intriguing. In particular, we can give a complete analysis of the
eigenvalues of the Hamiltonian and of the position and momentum operators �in-
cluding multiplicities�. We also study probability distributions of position operators
when the quantum system is in a stationary state, and the effect of the position of
one oscillator on the positions of the remaining oscillators in the chain. © 2006
American Institute of Physics. �DOI: 10.1063/1.2364183�

I. INTRODUCTION

In recent years quantum information theory has known an enormous expansion. This has
boosted new interest in probabilistic and geometric aspects of state spaces of simple quantum
systems. In this context, the dynamics of entanglement in a chain of coupled harmonic oscillators
has been the subject of many papers.1–5 One of the systems for which entanglement dynamics is
being studied consists of a large chain of harmonic oscillators coupled by some nearest neighbor
interaction.5 In a popular model this coupling is represented by springs obeying Hooke’s law. Then
the Hamiltonian of the system is given by

Ĥ = �
k=1

M � p̂k
2

2m
+

m�2

2
q̂k

2 +
cm

2
�q̂k − q̂k+1�2� . �1.1�

In other words, the quantum system consists of a string or chain of M identical harmonic oscil-
lators, each having the same mass m and natural frequency �. The position and momentum
operator for the kth oscillator are given by q̂k and p̂k; more precisely q̂k measures the displacement
of the kth mass point with respect to its equilibrium position �see Fig. 1�. The last term in Eq. �1.1�

a�Electronic mail: stijn.lievens@ugent.be
b�Permanent address: Institute for Nuclear Research and Nuclear Energy, Boul. Tsarigradsko Chaussee 72, 1784 Sofia,

Bulgaria. Electronic mail: neli.stoilova@ugent.be
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represents the nearest neighbor coupling by means of “springs,” with a coupling strength c �c
�0�. Finally, we shall assume periodic boundary conditions, i.e.,

q̂M+1 	 q̂1. �1.2�

Such quantum systems are also relevant in quantum optics �photonic crystals�, or for describing
phonons in a crystal.5,6

In the standard approach for the quantum system governed by Eq. �1.1�, one assumes the
canonical commutation relations �CCRs�,

�q̂k, q̂l� = 0, �p̂k, p̂l� = 0, �q̂k, p̂l� = i � �kl. �1.3�

Then, reformulating the problem in normal coordinates, the eigenstates of Ĥ can be described in
some infinite-dimensional Fock space.5

The approach of the present paper is more general. Instead of postulating the CCRs, we shall
start from a more general quantization procedure. This procedure is based upon the compatibility
of Hamilton’s equations with the Heisenberg equations. Such systems are called Wigner quantum
systems �WQSs�.7 The idea is based on Wigner’s observation – for the simple example of a
one-dimensional harmonic oscillator – that this quantum system also allows solutions for which
both Hamilton’s equations and the Heisenberg equations are satisfied, but not the CCRs.8 In other
words, the CCRs are sufficient but not necessary conditions for Hamilton’s equations and the
Heisenberg equations to be compatible. Wigner’s work led to the theory of parabosons and para-
fermions in quantum field theory,9–11 and because of this attention its impact for ordinary quantum
systems was somewhat overlooked. Another reason why WQSs did not receive immediate atten-
tion was because no general solutions could be constructed for the compatibility conditions of
simple WQSs �apart from the one-dimensional harmonic oscillator�. It was only much later – after
the theory of Lie superalgebra’s was completed – that Palev12 observed that classes of WQS
solutions for the n-dimensional harmonic oscillator are described by means of representations of
the Lie superalgebras osp�1 �2n� and sl�1 �n� or gl�1 �n�. This algebraic or representation theoretic
approach to quantum systems has revived the interest in WQSs.13–15 The WQS approach has so far
been applied to simple systems of free harmonic oscillators, with some interesting and surprising
results.16–20 Here it is, for the first time, applied to a more realistic quantum system.

In this paper, we shall study the system described by Eq. �1.1� as a WQS. This implies that,
apart from the standard solutions for which the CCRs hold, we shall also discover noncanonical
solutions. In particular, we shall show that the quantum system allows solutions in a finite-

dimensional Hilbert space, thus with a discrete spectrum not only for Ĥ but also for the position
and momentum operators q̂k and p̂k. The class of solutions considered here is related to a gl�1 �M�
solution of the quantization or compatibility conditions, and we consider then a simple class of
gl�1 �M� representations in which the physical properties of the quantum system are analyzed.

It should be emphasized that our work is essentially mathematical. Whether WQS solutions
offer an appropriate extension to those of canonical quantum mechanics is a question of discus-
sion. We do not enter this discussion in this paper. But we hope that our results might be stimu-
lating for further research in the areas of noncanonical commutation relations and, more general,
noncommutative space geometry.

FIG. 1. Illustration of the quantum system: �a� the M masses in equilibrium position and �b� certain displacements qk for
each oscillator.
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In Sec. II we analyze the compatibility conditions for the system Eq. �1.1� as a WQS. This

leads to an expression of the Hamiltonian Ĥ in terms of a set of 2M operators ar
± �r=1, . . . ,M�,

which are themselves certain linear combinations of the q̂k and p̂k. These operators ar
± should

satisfy certain triple relations, see Eq. �2.29�. The task is then to construct operator solutions
�constructions for the ar

± as operators acting in some Hilbert space� satisfying these triple relations.
Although a complete set of solutions cannot be given, we show in Sec. III that certain generators
of the Lie superalgebra gl�1 �M� satisfy the triple relations. In other words, we present algebraic
solutions of the compatibility condition �or quantization condition� in terms of a Lie superalgebra.
In order to have algebraic solutions that also satisfy the required unitarity conditions, the coupling
constant c is bounded by a critical value c0, depending upon M. Since the problem has a gl�1 �M�
solution, the unitary representations of gl�1 �M� serve as Hilbert space representations for the
operators of the quantum system. In principle, all unitary representations of gl�1 �M� are allowed
for this purpose. In this paper, however, we shall concentrate on a particular class of unitary
representations W�p�, mainly for computational purposes. For these representations W�p�, the
actions of the gl�1 �M� generators, and in particular of the operators ar

±, are very simple expres-
sions, see Sec. IV. On the other hand, the class of representations W�p� is already sufficiently rich
to exhibit intriguing physical properties of the quantum system under consideration. These prop-
erties are examined in the remaining sections. In Sec. V we study the energy spectrum of the
quantum system in W�p�. If c=0 �absence of coupling�, the system consist of M independent �or
free� identical one-dimensional oscillators, and it is easy to see that there are M +1 equidistant
energy levels in W�p�, with multiplicities �Mk � according to the level k �k=0,1 , . . . ,M�. For

0�c�c0, these energy levels split: we can give a closed formula for the energy levels themselves,
for their multiplicities, and for the total number of energy levels �which grows like 3M/2�. Section
VI is devoted to the investigation of spatial properties of the chain of coupled oscillators, if the
system is in one of the representations W�p�. Clearly, since the representations considered here are
finite-dimensional, the spectrum of position operators q̂k and momentum operators p̂k is discrete.
We manage to give the spectrum of these operators in closed form, but so far an analytic expres-
sion for a set of orthonormal eigenvectors is missing. Finally, we examine numerically for a
simple example �M =4� some position probability distributions of the oscillator system. The case
of atypical representations W�p� �i.e., p�M −1� is examined in Sec. VII, followed by some
concluding remarks in Sec. VIII.

II. THE QUANTIZATION PROCEDURE

In our approach we shall require that Hamilton’s equations

q̇̂k =
�Ĥ

� p̂k

, ṗ̂k = −
�Ĥ

� q̂k

�k = 1,2, . . . ,M� �2.1�

and the Heisenberg equations

ṗ̂k =
i

�
�Ĥ, p̂k�, q̇̂k =

i

�
�Ĥ, q̂k� �k = 1,2, . . . ,M� �2.2�

should be identical as operator equations. Since Hamilton’s equations for the Hamiltonian �1.1�
take the explicit form

q̇̂k =
1

m
p̂k, �2.3�

ṗ̂k = cmq̂k−1 − m��2 + 2c�q̂k + cmq̂k+1, �2.4�

the compatibility conditions read
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�Ĥ, q̂k� = −
i�

m
p̂k, �2.5�

�Ĥ, p̂k� = − i � cmq̂k−1 + i � m��2 + 2c�q̂k − i � cmq̂k+1, �2.6�

where k=1,2 , . . . ,M, and – extending Eq. �1.2� – q̂0 stands for q̂M, or more generally

q̂k = q̂k mod M, p̂k = p̂k mod M , �2.7�

whenever k is out of the range 
1,2 , . . . ,M�. In other words, the task is to find operator solutions
for q̂k and p̂k such that the compatibility conditions �2.5� and �2.6�, together with Eq. �1.1�, are
satisfied. Furthermore, since q̂k and p̂k correspond to physical observables, the operators should be
self-adjoined

q̂k
† = q̂k, p̂k

† = p̂k �k = 1,2, . . . ,M� . �2.8�

Just as in the canonical treatment of the problem,5,6 it will be useful to introduce “normal
coordinates” and reformulate the problem in terms of these new coordinates. So let us consider the
finite Fourier transforms of q̂k and p̂k,

Q̂r =
1

�M
�
k=1

M

e−�2�irk/M�q̂k, �2.9�

P̂r =
1

�M
�
k=1

M

e�2�irk/M�p̂k. �2.10�

The inverse relations are given by

q̂k =
1

�M
�
r=1

M

e�2�ikr/M�Q̂r, �2.11�

p̂k =
1

�M
�
r=1

M

e−�2�ikr/M�P̂r. �2.12�

As for q̂k and p̂k, see Eq. �2.7�, it will sometimes be useful to extend the indices by

Q̂k = Q̂k mod M, P̂k = P̂k mod M . �2.13�

Note that the conditions �2.8� imply

Q̂r
† = Q̂M−r, P̂r

† = P̂M−r �r = 1,2, . . . ,M� , �2.14�

and in particular, following the convention Eq. �2.13�, Q̂M
† = Q̂M and P̂M

† = P̂M. An essential part is

now to substitute Eqs. �2.11� and �2.12� in the Hamiltonian Ĥ, given by Eq. �1.1�, and simplify this
expression without assuming any commutation relations between the operators. For the term
�kp̂k

2=�kp̂kp̂k
†, one can, after the substitution, use the identity

�
k=1

M

e�2�ik�r−s�/M� = M�rs,

and thus �kp̂k
2=�rP̂rP̂r

†. Similarly, �kq̂k
2=�rQ̂rQ̂r

†. The coupling terms can be written as
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�
k

�q̂k − q̂k+1��q̂k − q̂k+1�† = �
k

q̂kq̂k
† + �

k

q̂k+1q̂k+1
† − �

k

�q̂kq̂k+1
† + q̂k+1q̂k

†� . �2.15�

On the right hand side, the first two sums are of the same form as before; the last sum yields

�
k

�q̂kq̂k+1
† + q̂k+1q̂k

†� = �
r

�e�−2�ir/M�Q̂rQ̂r
† + e�2�ir/M�Q̂rQ̂r

†� = �
r

2 cos�2�r

M
�Q̂rQ̂r

†.

�2.16�

Thus we obtain, just as in the canonical case5,6

Ĥ = �
r=1

M � 1

2m
P̂rP̂r

† +
m�r

2

2
Q̂rQ̂r

†� , �2.17�

where, for r=1,2 , . . . ,M, the quantities �r are positive numbers with

�r
2 = �2 + 2c − 2c cos�2�r

M
� = �2 + 4c sin2��r

M
� , �2.18�

and clearly

�M−r = �r. �2.19�

Substituting Eqs. �2.11� and �2.12� in Eqs. �2.5� and �2.6� yields the set of compatibility conditions
for the new operators

�Ĥ,Q̂r� = −
i�

m
P̂r

†, �Ĥ,Q̂r
†� = −

i�

m
P̂r, �2.20�

�Ĥ, P̂r� = i � m�r
2Q̂r

†, �Ĥ, P̂r
†� = i � m�r

2Q̂r. �2.21�

The task is now reduced to finding operator solutions for Q̂r and P̂r such that the compatibility
conditions �2.20� and �2.21�, together with Eq. �2.17�, are satisfied.

As a final step it is convenient to introduce linear combinations of the unknown operators Q̂r

and P̂r, say ar
+ and ar

− �r=1,2 , . . . ,M�, by

ar
− =�m�r

2�
Q̂r +

i
�2m�r�

P̂r
†, �2.22�

ar
+ =�m�r

2�
Q̂r

† −
i

�2m�r�
P̂r, �2.23�

with

�ar
±�† = ar

�. �2.24�

Observe that the inverse relations take the form

Q̂r =� �

2m�r
�aM−r

+ + ar
−�, r = 1, . . . ,M − 1; Q̂M =� �

2m�M
�aM

+ + aM
− � , �2.25�
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P̂r = i�m�r�

2
�ar

+ − aM−r
− �, r = 1, . . . ,M − 1; P̂M = i�m�M�

2
�aM

+ − aM
− � , �2.26�

with similar expressions for Q̂r
† and P̂r

†. In terms of the new set of unknown operators ar
± �r

=1,2 , . . . ,M�, the Hamiltonian �2.17� becomes

Ĥ = �
r=1

M
��r

2

ar

−,ar
+� = �

r=1

M
��r

2
�ar

−ar
+ + ar

+ar
−� . �2.27�

It is essential – and the reader should verify this – that in going from Eq. �2.17� to Eq. �2.27�, no

commutation relations among the operators Q̂r and P̂r are used, but only identities like Eqs. �2.13�,
�2.14�, and �2.19�. A final and simple calculation, using Eqs. �2.22� and �2.23�, shows that Eqs.
�2.20� and �2.21� is equivalent to

�Ĥ,ar
±� = ± � �rar

±, �r = 1,2 . . . ,M� . �2.28�

Thus
Proposition 1: In the approach of Eq. �1.1� as a Wigner quantum system, the problem is

reduced to finding 2M operators ar
± �r=1, . . . ,M�, acting in some Hilbert space, such that �ar

±�†

=ar
� and

�
j=1

M

� j�aj
−aj

+ + aj
+aj

−�,ar
±� = ± 2�rar

±, �r = 1,2 . . . ,M� . �2.29�

The operators corresponding to physical observables q̂k and p̂k are then known linear combinations

of ar
±, and the Hamiltonian Ĥ is given by Eq. �2.27�.
As we shall see in the following section, this is an algebraic problem that has a class of

solutions in terms of the Lie superalgebra gl�1 �M�.
Before concentrating on an algebraic solution, let us end this section with a few words about

the time dependency of the operators. The time dependency of q̂k and p̂k is determined by Eqs.
�2.3� and �2.4�. From these equations and Eqs. �2.9� and �2.10� it follows that:

Q̂
˙

r =
1

m
P̂r

†, P̂
˙

r = − m�r
2Q̂r

†. �2.30�

Using Eqs. �2.22� and �2.23� yields

ȧr
− = − i�rar

−, ȧr
+ = i�rar

+, �2.31�

with the evident solution

ar
±�t� = e±i�rtar

±�0� . �2.32�

So it is sufficient to have solutions for the operators ar
± at time 0, ar

±	ar
±�0�. The time dependence

for ar
±�t� is given by Eq. �2.32�, and since all operators of the quantum system can be expressed in

terms of ar
±, their time dependence follows. As a consequence, we shall concentrate on solutions

of the system Eqs. �2.27� and �2.28� at time t=0.
For completeness, it should also be mentioned that if the CCRs Eq. �1.3� hold, then the

operators ar
± satisfy the usual boson relations �ar

± ,as
±�=0, �ar

− ,as
+�=�rs. In that case Eq. �2.28�

follows automatically from Eq. �2.27�.

III. ALGEBRAIC SOLUTIONS OF THE COMPATIBILITY CONDITIONS

The set of relations �2.29�, together with the conditions �2.24�, are reminiscent of the algebraic
relations satisfied by a set of gl�1 �M� generators.12 We shall show that our problem has indeed a

113504-6 Lievens, Stoilova, and Van der Jeugt J. Math. Phys. 47, 113504 �2006�

                                                                                                                                    



solution in terms of the Lie superalgebra gl�1 �M� or sl�1 �M�. Let us first recall the definition of
gl�1 �M�: it is a Lie superalgebra with basis elements ejk, with j ,k=0,1 , . . . ,M. The elements ek0

and e0k �k=1, . . . ,M� are odd elements, having degree deg�ek0�=deg�e0k�=1; the remaining basis
elements are even elements, having degree 0. The Lie superalgebra bracket is determined by21–23

�eij,ekl� = � jkeil − �− 1�deg�eij�deg�ekl��ilekj . �3.1�

In a representation, or in the enveloping algebra of gl�1 �M�, the bracket �x ,y� �where x and y are
homogeneous elements of gl�1 �M�� stands for an anti-commutator if x and y are both odd ele-
ments, and for a commutator otherwise. The Lie superalgebra sl�1 �M� is the subalgebra of
gl�1 �M� consisting of elements with supertrace 0, or also sl�1 �M�= �gl�1 �M� ,gl�1 �M��.

For a Lie superalgebra one can also fix a star condition, i.e., an antilinear anti-involution. For
gl�1 �M� or sl�1 �M� such a star condition is fixed by a signature 	, i.e., a sequence of plus or
minus signs 	= �	1 , . . . ,	M� and

�e0k�† = 	kek0, �k = 1, . . . ,M� , �3.2�

thus with each 	k equal to +1 or −1. We are particularly interested in the case where all 	k’s are
+1 since this corresponds to the “compact form” u�1 �M� of gl�1 �M� �Ref. 24�, for which finite-
dimensional unitary representations exist.25

We shall now show that there exist solutions of the form

ak
− =� 2

�k

kek0, ak

+ =� 2

�k

k

*	ke0k, �k = 1, . . . ,M� �3.3�

with 
k certain complex constants to be determined. First of all, note that by Eq. �3.2�, the
Hermiticity condition �2.24� is automatically satisfied. With Eq. �3.3�, the Hamiltonian �2.27�
becomes

Ĥ = � ��
j=1

M

	 j�
 j�2�e00 + � �
k=1

M

	k�
k�2ekk, �3.4�

and the commutator of the above with Eq. �3.3� yields

�Ĥ,ak
±� = ± � ��

j=1

M

	 j�
 j�2 − 	k�
k�2�ak
± �k = 1, . . . ,M� . �3.5�

These should coincide with the compatibility conditions �2.28�. Thus we get a system of M
equations in the unknown coefficients 
k,

�
j=1

M

	 j�
 j�2 − 	k�
k�2 = �k �k = 1,2, . . . ,M� . �3.6�

It is easy to verify that a solution for this set of equations is determined by

	k�
k�2 = − �k +
1

M − 1�
j=1

M

� j . �3.7�

For further use, it will be convenient to introduce the following numbers:

�k = − �k +
1

M − 1�
j=1

M

� j , �3.8�

with � j the values fixed by Eq. �2.18�. Note that

113504-7 Harmonic oscillators coupled by springs J. Math. Phys. 47, 113504 �2006�

                                                                                                                                    



�M−k = �k, � 	 �
j=1

M

� j = �
j=1

M

� j , �3.9�

and thus Ĥ can be rewritten as

Ĥ = � ��e00 + �
k=1

M

�kekk� . �3.10�

Remember that we are primarily interested in the signature with all 	k’s equal to +1. Since
	k �
k�2=�k, the question is whether there exist solutions such that all �k’s are positive. At first
sight, Eq. �3.8� indicates that �k is equal to −�k plus “some average value” of the � j’s, and hence,
one would expect half of the �k’s to be negative and half of them to be positive. We shall show,
however, that under certain conditions �“weak coupling,” i.e., a small value for c�, all �k’s are
indeed positive. First of all, note that for c�0,

�1 � �2 � ¯ � ��M/2�, ��M/2� � ��M/2�+1 � ¯ � �M , �3.11�

since a similar property holds for the values �k. Thus if ��M/2��0, then all �k’s are positive. The
value of ��M/2� depends on the value of c; if c=0 then indeed all �k=� / �M −1� are positive. So by
continuity as a function of c there will be a certain interval �0,c0� where all �k’s are positive. This
critical value c0 is the c-value for which ��M/2�=0. For general M, this is a complicated transcen-
dental equation that can be solved only numerically. Table I gives the numerical solutions for this
equation, for M ranging from 4 to 21 �for M =2 or M =3 the �k’s are always positive�. The
following proposition gives a lower bound for the critical value c0, such that all �k’s are positive.

Proposition 2: An upper bound for c is determined by

0 � c �
�2

2�M − 2�
⇒ �k � 0, for 1 � k � M . �3.12�

Proof: By definition Eq. �3.8� �k�0 if and only if

�k �
1

M − 1�
j=1

M

� j ⇔ �M − 1�2�k
2 � �

j=1

M

� j
2 + 2�

i�j

�i� j . �3.13�

We write the right hand side of Eq. �3.13� as a series with respect to c. For the first sum, we find

�
j=1

M

� j
2 = �

j=1

M ��2 + 4c sin2� j�

M
�� = M�2 + 2c�

j=1

M �1 − cos�2j�

M
�� = M��2 + 2c� .

Here, we used the Lagrange identity

TABLE I. Critical values c0 /�2.

M c0 /�2 M c0 /�2

4 0.9873724357 13 0.10546881460
5 0.7500000000 14 0.09256321610
6 0.3457442295 15 0.08687882025
7 0.2982653656 16 0.07814800074
8 0.2061705212 17 0.07388896853
9 0.1851128402 18 0.06760983697
10 0.1464642846 19 0.06429500840
11 0.1343028683 20 0.05957194222
12 0.1134651313 21 0.05691629341
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1 + cos�x� + cos�2x� + ¯ + cos�nx� =
1

2
+

sin� �2n + 1�x
2

�
2sin� x

2
� .

In order to evaluate the second sum in Eq. �3.13�, let

F�c� 	 �
i�j

�i� j = �
i�j

��2 + 4c sin2� i�

M
���2 + 4c sin2� j�

M
� . �3.14�

It is then clear that

F�0� = �2 M�M − 1�
2

.

One can write the derivate of �k with respect to c as

�k� =
d�k

dc
=

2

�k
sin2� k�

M
� ,

and one finds that

F��c� = �
j�i

��i�� j + �i� j�� � 0,

since �k��0. This implies that F�0��F�c� for c�0. Thus it follows from Eq. �3.13� that

�M − 1�2�k
2 � �

j=1

M

� j
2 + 2F�0� �3.15�

is a sufficient condition for �k�0. Since �k
2���M/2�

2 ��2+4c for 1�k�M, it is sufficient to solve
the following inequality:

�M − 1�2��2 + 4c� � M��2 + 2c� + �2M�M − 1� ⇔ c �
�2

2�M − 2�
,

leading to Eq. �3.12�. �

Note that for M =2 or M =3 there are no conditions: for M =2, �1=�2�0 and �2=�1�0; for
M =3, �1=�2=� /2�0 and �3= ��2+3c�1/2−� /2�0.

We can now summarize the main result of this section in the following.
Proposition 3: For fixed M, let c satisfy

c �
�2

2�M − 2�
��c0�

�no condition if M =2 or M =3�. Then the compatibility conditions �2.27� and �2.28� have a
solution for the operators ak

± in terms of gl�1 �M� generators

ak
− =�2�k

�k
ek0, ak

+ =�2�k

�k
e0k, �k = 1, . . . ,M� �3.16�

with �k given by Eq. �3.8�. The Hermiticity conditions �2.24� are equivalent with the star condition

�e0k�† = ek0. �3.17�
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IV. A CLASS OF gl„1 �M… REPRESENTATIONS

In order to study properties of the given quantum system related to the gl�1 �M� solution of the
previous section, one should consider representations of gl�1 �M� for which Eq. �3.17� holds.
These are known as the unitary representations �or star representations�, and have been classified
by Gould and Zhang.25 For the explicit actions of the gl�1 �M� generators on a Gel’fand-Zetlin
basis for these unitary representations, see Ref. 26. These actions becomes fairly complicated, so
in this paper we will concentrate on a particular class of representations, the so-called Fock type
representations W�p�.

Without going into the details of the construction of such representations, we briefly summa-
rize their main features here. Further details can be found in Refs. 27 and 28.

The representations W�p� are labeled by a number p, with either p� 
0,1 ,2 , . . . ,M −1� or else
p�R with p�M −1. We describe the representation by giving the basis vectors of the represen-
tation space W�p� and the action of the gl�1 �M� generators on these basis vectors.

For p� 
0,1 ,2 , . . . ,M −1�, the basis vectors of W�p� are given by:

w�� 	 w�1,2, . . . ,M�, i � 
0,1�, and �� = 1 + ¯ + M � p . �4.1�

Note that in this case the dimension of W�p� is given by

dimW�p� = �
k=0

p �M

k
� . �4.2�

For p real and p�M −1, the basis vectors of W�p� are all vectors w��	w�1 ,2 , . . . ,M�
with each i� 
0,1�. Clearly, for p�M −1, the dimension of W�p� is given by 2M.

The action of the gl�1 �M� generators on the basis vectors of W�p� is now given by

e00w�� = �p − ���w��; �4.3�

ekkw�� = kw��, �1 � k � M�; �4.4�

ek0w�� = �1 − k��− 1�1+¯+k−1�p − ��w�1, . . . ,k + 1, . . . ,M�, �1 � k � M�; �4.5�

e0kw�� = k�− 1�1+¯+k−1�p − �� + 1w�1, . . . ,k − 1, . . . ,M�, �1 � k � M� . �4.6�

The action of the remaining gl�1 �M� basis elements can be determined from the above formulas,
and one finds �for 1� j�k�M�,

ejkw�� = k�1 −  j��− 1�j+¯+k−1w�1, . . . , j + 1, . . . ,k − 1, . . . ,M� , �4.7�

ekjw�� = −  j�1 − k��− 1�j+¯+k−1w�1, . . . , j − 1, . . . ,k + 1, . . . ,M� . �4.8�

With respect to the inner product

�w���w���� = �,�, �4.9�

the representation W�p� is unitary for the star condition

ejk
† = ekj .

The representations W�p� with p�M −1 are typical irreducible gl�1 �M� representations; those
with p� 
0,1 ,2 , . . . ,M −1� are atypical irreducible gl�1 �M� representations.22,29 In Secs. V and
VI we shall develop results for the typical representations; the atypical case is treated in Sec. VII.

Note, by Eq. �3.16� and Eq. �4.5� and �4.6� the action of the operators ak
± on the basis vectors

w�� of W�p� �k=1, . . . ,M� is given by
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ak
−w�� =�2�k

�k
�1 − k��− 1�1+¯+k−1�p − ��w�1, . . . ,k + 1, . . . ,M� , �4.10�

ak
+w�� =�2�k

�k
k�− 1�1+¯+k−1�p − �� + 1w�1, . . . ,k − 1, . . . ,M� . �4.11�

So the operators ak
± raise or lower k by one unit �if allowed�. This means that, for p�M −1, the

basis vectors w�� of W�p� have a Fock basis construction, by letting �0�=w�1,1 , . . . ,1�. Then
ak

− �0�=0 and

w�� � �a1
+�1−1�a2

+�1−2
¯ �aM

+ �1−M�0� . �4.12�

This is the reason why W�p� is referred to as a Fock representation.

V. ON THE SPECTRUM OF Ĥ IN THE REPRESENTATIONS W„p…

For any p�M −1, the representation W�p� is of dimension 2M. Under the solution �3.16�, the

Hamiltonian Ĥ takes the form �3.10�,

Ĥ = � ��e00 + �
k=1

M

�kekk� ,

with �=�k=1
M �k=�k=1

M �k. Since the actions of ekk �k=0,1 , . . . ,M� are diagonal in the basis w��,
see Eqs. �4.3� and �4.4�, it follows that the vectors w�� are eigenvectors for Ĥ:

Ĥw�� = � Ew�� , �5.1�

with eigenvalues

E = ��p − ��� + �
k=1

M

k�k = ��p −
M − 2

M − 1
��� − �

k=1

M

k�k. �5.2�

In this expression, = �1 , . . . ,M�, with each k� 
0,1�, and � � =�k=1
M k.

In the case without coupling �c=0�, all �k’s are the same: �k=� / �M −1� and �= �M / �M
−1���. The eigenvalues of Ĥ are then

���p
M

M − 1
− ��� .

The multiplicity of this eigenvalue is �M
�� �. In other words, there are M +1 distinct energy levels,

equally spaced with steps of unit ��. The lowest energy level corresponds to E�1,. . .,1�

=�pM / �M −1�−�M, and the highest to E�0,. . .,0�=�pM / �M −1�.
We are mainly interested in the weak coupling case �c�0, but c�c0�. Also in this case, it is

easy to describe the energy levels through Eq. �5.2�, but the analysis of their multiplicity requires
some further attention. For this purpose, observe that by Eq. �3.9�

�
k=1

M

k�k = �
k=1

M

k�M−k = �
k=0

M−1

M−k�k = �
k=1

M

M−k�k, �5.3�

where in the last step we have followed the convention that �0=�M, and we have set 0=M. Let

w�� be an arbitrary eigenvector Ĥ with eigenvalue �E. Obviously, by Eqs. �5.2� and �5.3� all
basis vectors w��� which are obtained by swapping i and M−i for arbitrary indices i yield the
same eigenvalue �E. The multiplicity of this eigenvalue is thus �at least�
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2�k=1
M �k − M−k�2/2. �5.4�

Further inspection of the last expression in Eq. �5.2� shows that this is indeed the multiplicity of
the eigenvalue, for 0�c�c0.

In Fig. 2 we give a plot of the energy levels for M =4 and M =5, as an illustration of the
above. As c increases, the M +1 equidistant energy levels for c=0 split up in different levels, with
smaller degeneracies.

It is worth noting that one can say something extra about the number of energy levels, for
arbitrary M, also when c�0. For M =4, the five levels 1+1+1+1+1 at c=0 become 1+3+4
+3+1 levels for c�0 �just counting the energy levels, disregarding their multiplicities�, see Fig.
2�a�. We list here the number of levels for a few M values, when c�0:

M Number of levels Total number of levels

1 1+1 2
2 1+2+1 4
3 1+2+2+1 6
4 1+3+4+3+1 12
5 1+3+5+5+3+1 18
6 1+4+8+10+8+4+1 36
7 1+4+9+13+13+9+4+1 54
8 1+5+13+22+26+22+13+5+1 108

Let T�M ,k� �k=0,1 , . . . ,M� be the number of levels “per split” �the numbers in the middle
column�, and L�M�=�k=0

M T�M ,k� be the total number of energy levels for c�0. T�M ,k� is also the
number of distinct energy levels for all  with � � =k. Analysing this, using Eq. �5.4�, one finds

FIG. 2. �a� The energy levels of the quantum system for M =4 in W�p�, where we have taken �=�=1, p=M, and c varies
from 0 to c0. The vertical axis gives the energy values. The numbers next to the levels refer to the multiplicity. When c
=0 there are M +1=5 energy levels, with multiplicities �1,4,6,4,1�. When 0�c�c0, the energy levels split up in 12 levels,
with multiplicities 1 or 2. �b� The same illustration for M =5. There are six levels for c=0 with multiplicities
�1,5,10,10,5,1�, and there are 18 levels for 0�c�c0, with multiplicities 1, 2, or 4.
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T�M,k� = T�M − 2,k� + T�M − 2,k − 1� + T�M − 2,k − 2� . �5.5�

Summing now over all k yields a simple recursion for the number of levels L�M�,

L�M� = 3L�M − 2� . �5.6�

So we obtain the following result for the number of energy levels when 0�c�c0, depending on
whether M is even or odd

L�2n + 1� = 2 � 3n, L�2n + 2� = 4 � 3n, �n = 0,1,2, . . . � . �5.7�

Note that the numbers L�M� belong to a known sequence, see entry A068911 in Ref. 30, with a
simple generating function

G�x� = �
M=0

�

L�M�xM =
�1 + x�2

1 − 3x2 . �5.8�

VI. ON THE SPECTRUM OF POSITION OPERATORS IN THE REPRESENTATIONS W„p…
AND SPATIAL PROPERTIES

The purpose of the present section is to consider some geometric aspects of the given quantum
system. In the first instance, we shall analyze the spectrum of the position operators q̂r in the
representations W�p�. By construction, these Hilbert spaces W�p� are finite dimensional, so the
position operators have a discrete spectrum.

The determination of the spectrum for general M and p requires a lot of work. This goes in
two steps: first the operators q̂r

2 will be considered; this is the difficult part. Once the spectrum of
q̂r

2 is analyzed, that of q̂r follows rather easily. The spectrum of the momentum operators p̂r
2 and p̂r

is completely similar. In fact, we shall see that the structure of p̂r
2 and q̂r

2 as operators in gl�1 �M�
is equivalent, and they can be treated simultaneously.

Note that, due to the symmetry of the system �1.1� and �1.2�, the spectrum of q̂r
2 and q̂r will be

independent of r.

A. Eigenvalues and eigenvectors for q̂r
2

We start by writing the operator q̂r
2 in terms of the gl�1 �M� basis elements. Using Eq. �2.11�,

one finds

q̂r
2 =

1

2

q̂r, q̂r

†� =
1

2M
�
k=1

M

�
l=1

M

e�2�ir�k−l�/M�
Q̂k,Q̂l
†� .

Using Eq. �2.25� and the solution �3.16�, this yields

q̂r
2 =

�

mM
��

k=1

M
�k

�k
2e00 + �

k=1

M

�
l=1

M

e�2�ir�l−k�/M�
��l�k

�l�k
elk� . �6.1�

In a similar way, one finds

p̂r
2 =

�m

M
��

k=1

M

�ke00 + �
k=1

M

�
l=1

M

e�2�ir�l−k�/M���l�kelk� . �6.2�

As operators of gl�1 �M�, these two expressions are structurally equivalent: q̂r
2 is obtained from the

expression of p̂r
2 by formally replacing every parameter �k by �k /�k

2, and multiplying by an
overall factor 1 /m2. So their spectral analysis is equivalent. Since the expression of p̂r

2 is some-
what simpler from the point of view of notation �no denominators in the factors�, we shall first
concentrate on the analysis for p̂r

2.
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Following Eq. �6.2�, it will be useful to introduce the even gl�1 �M� operators

ŝr = �
k=1

M

�
j=1

M

e�2�ir�j−k�/M��� j�kejk. �6.3�

The main ingredient of our analysis is the following technical lemma.
Lemma 4: In the representation W�p�, the operator ŝr has only two eigenvalues, namely �

=�k=1
M �k and 0, each with multiplicity 2M−1.
Proof: Consider a vector of the form

vr 	 �
k=1

M

e�2�irk/M���kw�1k� , �6.4�

where w�1k� denotes the basis vector of W�p� with � � =1 and the “1” occurring in position k
�counting from left, and starting from one�. For instance, if M =4 then

w�11� = w�1,0,0,0�, w�12� = w�0,1,0,0�, w�13� = w�0,0,1,0�, w�14� = w�0,0,0,1� .

We extend the notation to w�1k1
¯1kn� which denotes the basis vector with � � =n and with 1’s in

the positions k1 up to kn.
It is easy to verify that vr is an eigenvector of ŝr with eigenvalue �.
In gl�1 �M�, one can see that

�el0, ŝr� = − ��le
−�2�irl/M��

j=1

M

�� je
�2�irj/M�ej0, �6.5�

and thus the action �4.5� implies that

�el0, ŝr�vr = 0. �6.6�

This means that el0vr �provided it does not vanish� is also an eigenvector of ŝr, with the same
eigenvalue �. Our goal is now to show that

eln0eln−10 ¯ el10vr �6.7�

is also an eigenvector of ŝr with the same eigenvalue �, provided all li are different �and different
from M�. If one would apply the same el0 twice, the resulting vector vanishes since 
el0 ,ek0�=0, by
Eq. �3.1�. This means that we can also assume, without loss of generality, that M � ln� ln−1

� ¯ � l1�0.
Using Eq. �4.5�, one can write

eln0eln−10 ¯ el10vr � �
t=0

n

�− 1�t �
k=lt+1

lt+1−1

��ke
�2�irk/M�w�1l1

¯ 1lt1k1lt+1
¯ 1ln� , �6.8�

with l0=0 and ln+1=M +1. Using Eq. �6.5�, this implies that

�el0, ŝr�eln0eln−10 ¯ el10vr � �
j=1

M

�� je
�2�irj/M��

t=0

n

�− 1�t �
k=lt+1

lt+1−1

��ke
�2�irk/M�ej0w�1l1

¯ 1lt1k1lt+1
¯ 1ln� .

�6.9�

Keeping in mind the action of ej0 on a basis vector w��, one sees that this expression is a linear
combination of basis vectors w�� for which � � =n+2, having a 1 in the positions l1, l2 up to ln

and in two extra positions x and y. Consider such a vector
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w�1l1
¯ 1lix1x1lix+1

¯ 1liy1y1liy+1
¯ 1ln� .

In expression �6.9� this vector will appear twice, once with k and j playing the role of x and y
respectively, and one vice versa. In the first case the coefficient of this vector is

�p − �n + 1���x�ye
�2�ir�x+y�/M��− 1�ix�− 1�iy+1,

while in the second case it is

�p − �n + 1���x�ye
�2�ir�x+y�/M��− 1�ix�− 1�iy .

Since these two coefficients cancel, we can conclude that

�el0, ŝr�eln0eln−10 ¯ el10vr = 0. �6.10�

Following Eqs. �6.6� and �6.10�, all vectors of the form �6.7� are eigenvectors of ŝr for the
eigenvalue �. It remains to find the number of linearly independent eigenvectors, i.e., the multi-
plicity of the eigenvalue �.

For n fixed, consider the �M −1

n � vectors �6.7� with 1� l1� l2� ¯ � ln�M −1. Expressing

these in the w�� basis by Eq. �6.8�, in total � M
n+1 � basis vectors are involved. Each basis vector

w�� occurs �n+1
n �=n+1 times, except those vectors that have a 1 in position M. There are �M −1

n � such

vectors. Next, let A be the �M −1
n �� M

n+1 � matrix, consisting of the coefficients of the �M −1
n �vectors �6.7�

written in terms of the � M
n+1 � basis vectors. Select in A those columns that correspond to basis

vector having a 1 in position M. This submatrix is equivalent with a diagonal matrix of which the
diagonal elements are proportional to ��M. So, the vectors �6.7� with 1� l1� ¯ � ln�M −1 are
linearly independent.

Furthermore, it is immediately clear that the vectors

eln0eln−10 ¯ el10vr and elt0
elt−10 ¯ el10vr

are linearly independent if n� t �they are linear combinations of basis vectors with different ���.
The conclusion is that we have found

�
n=0

M−1 �M − 1

n
� = 2M−1

linearly independent eigenvectors of ŝr with eigenvalue �. Note that for some fixed ��, there are

�M −1
� �−1 � linearly independent eigenvectors of ŝr with eigenvalue �.

The eigenvalue 0 of ŝr also has multiplicity 2M−1. This is seen in a completely similar way,
starting with the vector

ṽr 	 �
k=1

M

e−�2�irk/M��− 1�k��kw�0k�

and acting repeatedly with e0l �with 1� l�M −1� on this vector. Herein we have extended the
notation of Eq. �6.4�: w�0k� denotes a basis vector where every  j =1 � j�k� except k=0. For
fixed ��, there are thus �M −1

�� � linearly independent eigenvectors with eigenvalue 0. �

We can now describe the eigenvalues of p̂r
2. Since

e00w�� = �p − ���w�� ,

it follows from Eq. �6.2� that an eigenvector of ŝr which is a linear combination of basis vectors
with fixed �� will also be an eigenvector of p̂r

2. The eigenvalues of p̂r
2 are thus given by
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�m�p−K�� /M, for 0�K�M −1, with multiplicities 2�M −1
K �. More in particular, the eigenvectors

of p̂r
2 with eigenvalue �m�p−K�� /M arise in two ways, one set having � � =K+1 and containing

vectors of the form

elK0elK−10 ¯ el10vr.

The other set has � � =K and contains vectors of the form

e0lM−K−1
¯ e0l1

ṽr.

Unfortunately, the vectors �for a given eigenvalue� constructed here are not orthogonal. For
any fixed M, one can construct a set of orthogonal eigenvectors by Gram–Schmidt orthogonaliza-
tion. But so far we cannot give a closed analytic expression for some set of orthogonal eigenvec-
tors.

Let us also state the result for the squared position operators q̂r
2. Recall from the beginning of

this subsection that every �k should be replaced by �k /�k
2, thus � should be replaced by

� = �
k=1

M
�k

�k
2 . �6.11�

Proposition 5: The operator q̂r
2 has M distinct eigenvalues given by xK

2 = � �p−K�� /mM,

where 0�K�M −1. The multiplicity of each xK
2 is 2�M −1

K �. The eigenvectors of q̂r
2 with eigenvalue

xK
2 arise in two ways: there are �M −1

K � vectors with � � =K+1 of the form

elK0elK−10 ¯ el10ur;

and there are � M −1
M −K−1 �= �M −1

K � vectors with � � =K of the form

e0lM−K−1
¯ e0l1

ũr.

Herein

ur = �
k=1

M

e�2�irk/M�
��k

�k
w�1k�, ũr = �

k=1

M

e−�2�irk/M��− 1�k
��k

�k
w�0k� . �6.12�

B. Eigenvalues for q̂r

We have shown that the eigenvectors of q̂r
2 with eigenvalue xK

2 have either � � =K or � � =K
+1. Let �r,xK

be an eigenvector of q̂r with eigenvalue xK. Such an eigenvector necessarily has the
form

�r,xK
= �

��=K

C,r,xK
w�� + �

��=K+1

C,r,xK
w�� , �6.13�

with C some constants. Thus one can write

�
��=K

C,r,xK
q̂rw�� + �

��=K+1

C,r,xK
q̂rw�� = xK �

��=K

C,r,xK
w�� + xK �

��=K+1

C,r,xK
w�� .

�6.14�

But the action of q̂r on a basis vector w�� is necessarily a linear combination of basis vectors
w��� with �� � = � �−1 and �� � = � � +1: this follows from Eqs. �2.11�, �2.25� and Eqs. �4.10� and
�4.11�. Thus the first sum on the left hand side of Eq. �6.14� is a linear combination of basis
vectors with � � =K−1 and � � =K+1, while the second sum on the left hand side of Eq. �6.14� is
a linear combination of basis vectors with � � =K and � � =K+2. Of these four linear combinations
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the first and the last vanish �since they do no occur on the right hand side�, and it follows that

�
��=K

C,r,xK
q̂rw�� = xK �

��=K+1

C,r,xK
w�� . �6.15�

Combining this with Eq. �6.14� implies

�
��=K+1

C,r,xK
q̂rw�� = xK �

��=K

C,r,xK
w�� . �6.16�

We will now show that, given Eq. �6.13�,

�r,−xK
	 �

��=K

C,r,xK
w�� − �

��=K+1

C,r,xK
w�� �6.17�

is an eigenvector of q̂r with eigenvalue −xK. In fact, the action of q̂r on �r,−xK
follows directly from

Eqs. �6.15� and �6.16� and yields q̂r�r,−xK
=−xK�r,−xK

.
Thus we have shown:
Proposition 6: The operator q̂r has 2M distinct eigenvalues given by ±xK

= ±���p−K�� /mM, where 0�K�M −1. The multiplicity of the eigenvalue ±xK is �M −1
K �. The

eigenvectors of q̂r for the eigenvalue ±xK contain, when expanded in the standard basis w��, only
vectors with � � =K or � � =K+1.

So far, we have no simple analytic expression of the �orthogonal� eigenvectors of q̂r in terms
of the standard basis vectors w��.

C. Position probability distributions for stationary states w„�…

Consider the eigenvectors �r,x,g of the position operator q̂r for the eigenvalue x expanded in
the w�� basis

�r,x,g = �


C,r,x,gw�� , �6.18�

and assume that these vectors are orthonormal, i.e.,

��r,x,g��r,y,h� = �


C,r,x,g
* C,r,y,h = �x,y�g,h. �6.19�

In the above, g �or h� stands for a multiplicity label for vectors with the same eigenvalue x: e.g.,
when x= ±xK then g runs from 1 to �M −1

K �. We know from the previous subsection that for x

= ±xK, only coefficients C,r,x,g with � � =K or � � =K+1 will appear.
Let us now suppose that the quantum system is in a fixed eigenstate w�� of Ĥ �a stationary

state�. The expression

P�,r, ± xK� = �
g=1

�M−1

K
�

�C,r,±xK,g�2 �6.20�

yields the probability of “measuring” the value ±xK for the position of the rth oscillator when the
system is in the state w��. Plotting all these values P� ,r , ±xK� for K=0, . . . ,M −1 yields the
probability distribution of oscillator r in the stationary state w��.

It will be interesting to look at an explicit example of such probability distributions. First of
all, due to the earlier mentioned symmetry of the system, these probability distributions will be
independent of r; so we need to plot it for one r-value only �say r=1�. We have considered the
example M =4, with �=m=�=1 and c=0.5. Then the eight eigenvalues ±xK are given by
±��� /2��p−K, K=0, 1, 2, 3, with p�3 and �= �5�2+4�3−2� /9 follows from Eq. �6.11�. Let us
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also choose a value for the representation label p: p=M =4. In Fig. 3 we give the position
probability distributions for a number of stationary states w��, namely for = �0,0 ,0 ,0�,
�1,0 ,0 ,0�,�0,1 ,0 ,0�, �0,0 ,1 ,0�, �0,0 ,0 ,1�, �1,1 ,0 ,0�, �1,1 ,1 ,0�, and �1,1 ,1 ,1�.

Note in these plots that – in agreement with the previous paragraph – only the probabilities for
±xK with K= �� or K= � �−1 are nonzero. For = �0,0 ,0 ,0�, corresponding to the highest energy

FIG. 3. Position probability distributions P� ,1 , ±xK� for a number of -values, for M =4. The vertical axis gives the
values of P� ,1 , ±xK�. On the horizontal axis one finds the possible eigenvalues ±xK with K=0, 1, 2, 3. The values of the
parameters are described in the text.
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state, the oscillators can be detected only in positions corresponding to the largest eigenvalues x0

or −x0. For = �1,1 ,1 ,1�, corresponding to the lowest energy state, the oscillators can be detected
only in positions corresponding to the smallest eigenvalues x3 or −x3. The four plots with � � =1
give some probability distributions in which ±x0 and ±x1 are involved. Note that for w�1,0 ,0 ,0�
and w�0,0 ,1 ,0�, two stationary states for which the energy level is the same by Eq. �5.2� and Eq.
�5.3�, also the probability distributions coincide. According to Eq. �5.2�, E�0,0,0,1��E�0,0,1,0�
=E�0,1,0,0��E�1,0,0,0�. For the highest of these three energy levels, the probability of detecting the
oscillator in ±x0 is larger than detecting it in ±x1; for the lowest of these three levels, it is vice
versa. As �� increases �thus E decreases�, the probabilities indicate that the oscillator deviation
from its equilibrium position also decreases.

D. Coupling of position probability distributions

In the previous subsection we considered, for a fixed stationary state w��, the position
probabilities of the rth oscillator. Due to the symmetry of the system, these probability distribu-
tions are independent of r. It will be interesting to approach the position probabilities from a
different point of view. For this purpose, let us assume that the system is in a fixed eigenstate of
q̂1 with eigenvalue x, say �1,x,g. Let us also consider another oscillator r�1, and the expansion of
�1,x,g in terms of the eigenvectors of q̂r:

�1,x,g = �
y,h

A1,x,g
r,y,h�r,y,h. �6.21�

Then

�
h

�A1,x,g
r,y,h �2 �6.22�

is the probability of detecting the rth oscillator in the position y �corresponding to the eigenvalue
y of q̂r� when the first oscillator is in the state �1,x,g. Averaging this out over the multiplicities g �if
present�, thus yields the probability of detecting the rth oscillator in position y when the first
oscillator is in position x.

Let us again look at an example of such probability distributions. We shall consider the same
data as before: M =4, �=m=�=1, and c=0.5. First, assume that oscillator 1 is in its highest
possible position +x0, so the system is in the state �1,+x0,1. Then, we can compute the probabilities
�6.22�, for r=2, 3, 4 and for y= ±xK �K=0,1 ,2 ,3�. These probabilities are plotted in Fig. 4�a�.

FIG. 4. Position probability distributions for all oscillators when the system is in the state �a� �1,+x0,1 and �b� �1,−x1,g.
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Note that the extreme position of oscillator 1 has a strong influence on the possible positions
of oscillator 2, a weaker influence on the possible positions of oscillator 3, and again a stronger
one on those of oscillator 4 �this last is due to the periodic boundary conditions �1.2�, oscillator 4
behaves as if it is just to the left of oscillator 1�.

We have also considered a second example, when the first oscillator is in an eigenstate with
eigenvalue −x1, i.e., the system is in a state �1,−x1,g. The position probability distributions for the
other oscillators r=2, 3, 4 are plotted in Fig. 4�b�, where we have averaged out over g �here, g
=1, 2, 3�. Thus in Fig. 4�b� an answer is given to the following question: suppose we make a
measurement of the position of the first oscillator, and detect it in −x1, what are in that case the
probabilities of finding the other oscillators 2, 3, and 4 in one of their positions ±xK?

VII. ON THE SPECTRUM OF Ĥ AND POSITION OPERATORS IN ATYPICAL
REPRESENTATIONS W„p…

In this section, we very briefly discuss what happens when working with atypical representa-

tions W�p�, i.e., when p� 
0,1 , . . . ,M −1�. We concentrate on the spectrum of the Hamiltonian Ĥ
and on that of the operators q̂r

2 and q̂r. Recall that the representation space in the atypical case is
a truncation of that in the typical case, discarding basis vectors w�� for which � � � p. Thus one
expects a close connection between the spectra of the different operators in the typical and atypical
case.

It is clear that each basis vector w�� is still an eigenvector of Ĥ, with eigenvalue �E, with

E given by Eq. �5.2�. So the spectrum of Ĥ in the atypical case is nothing but a truncation of that
in the typical case where the higher eigenvalues are retained �of course, the actual values are
different because of the different value for p�. As an example, for M =4 and p=1 the dimension of
the representation space is

�4

0
� + �4

1
� = 5,

and the only four eigenvalues �E of Ĥ are

E�0,0,0,0� = � = �1 + �2 + �3 + �4, E�0,0,0,1� = �4,

E�1,0,0,0� = �1 = E�0,0,1,0� = �3, and E�0,1,0,0� = �2,

where �4��3=�1��2 for 0�c�c0. These are the four topmost energy levels depicted in Fig.
2�a�.

In the typical case q̂r
2 has eigenvalues xK

2 = � �p−K�� /mM, with 0�K�M −1. From Eqs.
�6.1�, �4.3�, �4.7�, and �4.8� it follows immediately that an eigenvector of q̂r

2 in the typical case is
also an eigenvector of q̂r

2 in the atypical case provided that it is a linear combination of basis
vectors w�� with � � � p. When K� p one has the same set of eigenvectors as in the typical case,

arising from both ur and ũr and the multiplicity of xK
2 is 2�M −1

K �. However, when K= p, xp=0 and

only the vectors arising from ũr remain �the vectors arising from ur would have � � = p+1 which
is impossible in an atypical representation�. The multiplicity of eigenvalue xp=0 is thus �M −1

P �.
Consider the case M =4 and p=1; each operator q̂r

2 has two eigenvalues namely 0, with multiplic-

ity �4−1
1 �=3 and ��1�� /4m with multiplicity 2�3

0 �=2.

For the position operators q̂r finally, it is seen as before that ±xK with 0�K� p−1 are
eigenvalues of q̂r each with multiplicity �M −1

K �. Besides these eigenvalues, there is also the eigen-

value xp=0 with multiplicity �M −1
P �. So in the atypical case it is possible to “detect” an oscillator

in its equilibrium position, in contrast with the typical case.
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It is worth giving some further details for the representation W�1� �so p=1�, for general
M-values. This representation has dimension M +1, with basis vectors w�0� and w�1j� �in the
notation of Eq. �6.4��, with j=1, . . . ,M. Each position operator q̂r has spectrum 
−x0 ,0 , +x0�, with
multiplicities 
1,M −1,1� respectively, where x0=��� /mM. Herein, � is given by Eq. �6.11�; in
fact it will be useful to introduce the notation

�k =
��k

�k
, k = 1, . . . ,M , �7.1�

and thus �=�k=1
M �k

2.
In this case, it is not difficult to construct explicitly a set of orthonormal eigenvectors of q̂r. In

the notation of Sec. VI C, it is given by

�r,+x0,1 =
1
�2

w�0� + �
j=1

M
� j

�2�
e�2�irj/M�w�1 j� , �7.2�

�r,−x0,1 =
1
�2

w�0� − �
j=1

M
� j

�2�
e�2�irj/M�w�1 j� , �7.3�

�r,0,g =
1

� 1

�1
2 + ¯ + �g

2 +
1

�g+1
2

��
j=1

g
� j

�1
2 + ¯ + �g

2e�2�irj/M�w�1 j� −
1

�g+1
e�2�ir�g+1�/M�w�1g+1�� ,

�7.4�

where g=1,2 , . . . ,M −1.
Now it becomes simple to compute some position probabilities. Following Eq. �6.20�, one

finds for the state w�0� with = �0�= �0, . . . ,0�,

P��0�,r, + x0� = P��0�,r,− x0� =
1

2
, P��0�,r,0� = 0.

Hence, in the highest energy state of W�1�, the oscillators can be detected only in the positions ±x0

and not in 0. Similarly

P��1 j�,r, + x0� = P��1 j�,r,− x0� =
� j

2

2�
, P��1 j�,r,0� = 1 −

� j
2

�
.

Also the probabilities �6.22� can be computed. One finds, for example

A1,+x0,1
r,+x0,1 =

1

�
�
j=1

M

� j
2cos2���r − 1�j

M
�, A1,+x0,1

r,−x0,1 =
1

�
�
j=1

M

� j
2sin2���r − 1�j

M
� , �7.5�

and thus

�
g

�A1,+x0,1
r,0,g �2 =

2

�2��
j=1

M

� j
2cos2���r − 1�j

M
����

j=1

M

� j
2sin2���r − 1�j

M
�� .

As before, the quantities �A1,+x0,1
r,+x0,1 �2, �g �A1,+x0,1

r,0,g �2, and �A1,+x0,1
r,−x0,1 �2 describe the probabilities of detect-

ing the rth oscillator in the position +x0, 0, or −x0 respectively, when the first oscillator is in its
highest position +x0.

With the given probabilities, one can consider a final illustration. If the system is in the state
�1,+x0,1, the average position of each oscillator r is given by
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+ x0�A1,+x0,1
r,+x0,1 �2 + 0�

g

�A1,+x0,1
r,0,g �2 − x0�A1,+x0,1

r,−x0,1 �2.

Using Eq. �7.5�, this simplifies to

�q̂r��1,+x0,1
= x0

1

�
�
j=1

M

� j
2cos�2��r − 1�j

M
� .

In Fig. 5 we plot the average position of each oscillator r in this state. So in this figure one can see
the effect of having the first oscillator in its highest position +x0 on the average position of the
other oscillators.

VIII. CONCLUSION AND OUTLOOK

We have examined some properties of noncanonical solutions of the quantum system deter-
mined by the Hamiltonian �1.1�. These solutions arise from a WQSs approach, where the quanti-
zation conditions are weaker than the canonical commutation relations, thus allowing more types
of solutions.

The solutions studied here are found by identifying certain linear combinations of position and
momentum operators with generators of the Lie superalgebra gl�1 �M�. We have shown that this is
always possible, but that the solutions are corresponding to the compact form u�1 �M� of gl�1 �M�
only if the coupling constant c is sufficiently small.

The physical Hilbert spaces in which the states of the system are described then correspond to
unitary representations of gl�1 �M�. In this paper, we have considered only a simple class of such
unitary representations, the so-called Fock spaces W�p�. This class of representations turns out to
be already sufficiently resourceful in order to exhibit some fascinating physical properties of the
solutions. Of special interest is the feature of having only a discrete spectrum for each oscillator
position operator. At first sight, this is somewhat unusual. On the other hand, our analysis of
probability distributions for position operators has shown effects that are reminiscent of canonical
results.

This paper presents only the first results for this quantum system consisting of a one-
dimensional chain of coupled harmonic oscillators in the WQSs approach. There are still many
open problems or new aspects to be studied. For example, it is clear that the system �2.29� has also
solutions outside gl�1 �M�. For instance, if M =2n is even, then one can construct an algebraic
solution by means of the direct sum Lie superalgebra gl�1 �2� � ¯ � gl�1 �2� �n copies�. In this
case, the unitarity conditions following from the form u�1 �2� � ¯ � u�1 �2� imply no conditions

FIG. 5. Average positions of the M oscillators, M =10, when the first oscillator is in the position +x0, in the representation
W�1�. Here, we have taken c=0.12�2. The horizontal axis labels the M oscillators; the vertical axis gives the average
position in units of x0.
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on the coupling constant c, and it would be interesting to study the system from this point of view.
Furthermore, it would be worth investigating whether Eq. �2.29� has also solutions related to
orthosymplectic Lie superalgebras.31

But even if we restrict for the moment our attention to the gl�1 �M� solutions given here in
Sec. III, work remains to be done. In particular, one should also consider other classes of unitary
gl�1 �M� representations26 and investigate the corresponding physical properties.

Finally, and this a more technical question, the explicit construction of orthonormal eigenvec-
tors of the position operators q̂k is lacking. Although this can be done numerically for any given M
and a given set of parameters, we have at the moment no closed form expressions for these
eigenvectors. We hope to find such forms, as they would allow us to draw some general conclu-
sions regarding position probability distributions. At this moment, the last conclusions in Sec. VI
are based upon observations of examples rather than upon analytic formulas. We expect to return
to some of these remaining questions in future publications.
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Any partial differential equation �PDE� system can be effectively analyzed through
consideration of its tree of nonlocally related systems. If a given PDE system has n
local conservation laws, then each conservation law yields potential equations and
a corresponding nonlocally related potential system. Moreover, from these n con-
servation laws, one can directly construct 2n−1 independent nonlocally related
systems by considering these potential systems individually �n singlets�, in pairs
�n�n−1� /2 couplets� , . . ., taken all together �one n-plet�. In turn, any one of these
2n−1 systems could lead to the discovery of new nonlocal symmetries and/or
nonlocal conservation laws of the given PDE system. Moreover, such nonlocal
conservation laws could yield further nonlocally related systems. A theorem is
proved that simplifies this framework to find such extended trees by eliminating
redundant systems. The planar gas dynamics equations and nonlinear telegraph
equations are used as illustrative examples. Many new local and nonlocal conser-
vation laws and nonlocal symmetries are found for these systems. In particular, our
examples illustrate that a local symmetry of a k-plet is not always a local symmetry
of its “completed” n-plet �k�n�. A new analytical solution, arising as an invariant
solution for a potential Lagrange system, is constructed for a generalized polytropic
gas. © 2006 American Institute of Physics. �DOI: 10.1063/1.2349488�

I. INTRODUCTION

For any given system of partial differential equations �PDEs�, one can systematically construct
an extended tree of nonlocally related potential systems and subsystems.1 All systems within a tree
have the same solution set as the given system.

The analysis of a system of PDEs through consideration of nonlocally related systems in an
extended tree can be of great value. In particular, using this approach, through Lie’s algorithm one
can systematically calculate nonlocal symmetries �which in turn are useful for obtaining new exact
solutions from known ones�, construct invariant and nonclassical solutions, as well as obtain
linearizations, etc. �Examples are found in Ref. 1.� Perhaps more importantly, as all such related
systems contain all solutions of the given system, any general method of analysis �qualitative,
numerical, perturbation, conservation laws, etc.� considered for a given PDE system may be tried
again on any nonlocally related potential system or subsystem. In this way, new results may be
obtained for any method of analysis that is not coordinate-dependent as the systems within a tree
are related in a nonlocal manner.

In Ref. 1, a tree construction algorithm is described. First, local conservation laws for the
given system are found �through the direct construction method �DCM� or other method�.2–4 For
each conservation law, one or several potentials are introduced.5 Consequently, a potential system
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is obtained. Next, for each potential system, its conservation laws are computed, and further
potential systems are constructed. This procedure terminates when no more new conservation laws
are found. After potential systems are determined, for each potential system, new subsystems may
be generated when one is able to reduce the number of dependent variables �including a reduction
after a point transformation of dependent and independent variables of a potential system in a
tree�. At any step, all locally related potential systems and subsystems are excluded from the tree.

In this article we further extend the tree construction algorithm presented in Ref. 1. In par-
ticular, if a given system of PDEs has n conservation laws, one can directly construct 2n−1
independent nonlocally related systems by considering their corresponding potential systems in-
dividually �n singlets�, in pairs �n�n− l� /2 couplets�,. . ., taken all together �one n-plet�. In turn, any
one of these 2n−1 systems could lead to the discovery of new nonlocal symmetries and/or non-
local conservation laws of the given PDE system. Moreover, such nonlocal conservation laws
could yield further nonlocally related systems and subsystems as described earlier. Hence, for a
given system of PDEs, the construction of its tree of nonlocally related PDE systems through our
extended tree framework can be complex. Most importantly, we introduce and prove a theorem
that simplifies this construction to find such extended trees by eliminating redundant systems. The
work presented in this paper also simplifies and extends to within an algorithmic framework the
heuristic approaches presented in Refs. 9 and 10.

This article gives a comprehensive analysis of trees of nonlocally related systems for classes
of constitutive functions, including a systematic search of corresponding nonlocal symmetries and
nonlocal conservation laws. In particular, new nonlocal symmetries and new conservation laws are
found for planar gas dynamics �PGD� equations and nonlinear telegraph �NLT� equations, extend-
ing work in Refs. 6–10, respectively, and in references therein. Moreover, we extend and simplify
the tree construction framework presented in Ref. 1 through further elimination of redundant
systems. In a related work,11 for a class of diffusion-convection equations, Popovych and
Ivanova11 completely classified its potential conservation laws and, correspondingly, constructed
�hierarchical� trees of inequivalent potential systems.

This article is organized as follows. In Sec. II, we review the DCM for finding conservation
laws for a given system of PDEs. We show how a related potential system arises from each local
conservation law of the given system and, further, how to construct the corresponding 2n−1
nonlocally related systems for a given system of PDEs with n local conservation laws. As ex-
amples, we consider systems of PGD equations. We find local conservation laws and correspond-
ing nonlocally related systems for the PGD system in Lagrangian coordinates.

In Sec. III, we prove a fundamental theorem on finding conservation laws of PDE systems. In
particular, for any given PDE system F with two independent variables �x and t� with precisely n
local conservation laws, we show that from consideration of all combinations of the n correspond-
ing potential systems of PDEs arising from the given system, no nonlocal conservation laws can be
obtained for F through potential systems arising from multipliers that depend only on x and t. In
particular, for such multipliers, all conservation laws of potential systems must be linear combi-
nations of the n local conservation laws of the given system F. Consequently, for such multipliers,
all further potential systems are equivalent to all possible couplets, triplets,. . . ,n-plets of potential
systems obtained from a given system F—a total of 2n−1 systems for consideration. Hence for a
given PDE system F, in order to find additional inequivalent potential systems as well as nonlocal
conservation laws for F, it is necessary to seek conservation laws through multipliers having an
essential dependence on dependent variables. The fundamental theorem is also shown to hold for
PDE systems with any number of independent variables.

In Sec. IV, as a prototypical example, we consider NLT equations. We give a complete
classification of local conservation laws arising from multipliers that are functions of independent
and dependent variables. As a consequence, we find five new local conservation laws arising from
three distinguished cases. We then use the simplified procedure introduced in Sec. III to construct
corresponding trees of nonlocally related PDE systems. Nonlocal symmetries are found for cor-
responding NLT systems with constitutive functions involving power law nonlinearities, including
all nonlocal symmetries found in Ref. 6 as well as a new one. Moreover, six new nonlocal
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conservation laws are constructed for such power law NLT equations through a search of multi-
pliers �which have an essential dependence on potential variables� for the potential systems arising
from its conservation laws.

In Sec. V, we consider PGD equations, with a generalized polytropic equation of state, in
Lagrangian coordinates. We give the point symmetry classification of the seven potential systems
resulting from its three local conservation laws. Two new nonlocal symmetries are found which
arise as point symmetries for only one of these potential systems �a couplet�. We observe that these
new nonlocal symmetries also arise as point symmetries of a subsystem of the Lagrange system
and give the symmetry classification of this subsystem. This yields one more new nonlocal sym-
metry of the PGD equations. We consider invariant solutions that essentially arise from new
nonlocal symmetries.

In Sec. VI, we summarize the new results presented in this article. In particular, we outline the
procedure to construct a tree of nonlocally related PDE systems for a given PDE system.

In this work, a recently developed package GeM for MAPLE
12 is used for automated symmetry

and conservation law analysis and classifications.

II. CONSTRUCTION OF CONSERVATION LAWS AND NONLOCALLY RELATED PDE
SYSTEMS

A. Direct construction method for finding conservation laws

We first present the DCM to find the conservation laws for a general PDE system.
Let G�x ,u�=0 be a system of m partial differential equations

G�x,u� = 0:�G1�x,u� = 0

�
Gm�x,u� = 0

�2.1�

with M independent variables x= �x1 , . . . ,xM�, and N dependent variables u= �u1 , . . . ,uN�. Let �lu
denote the set of all partial derivatives of u of order l.

A set of multipliers ��k�x ,U ,�U , . . . ,�lU��k=1
m yields a conservation law

�k�x,u,�u, . . . ,�lu�Gk�x,u� = Di�
i�x,u,�u, . . . ,�ru� = 0 �2.2�

of system �2.1� if and only if the linear combination �k�x ,U ,�U . . . ,�lU�Gk�x ,U� is annihilated by
the Euler operators

EUs
�

�Us − Di
�

�Ui
s + ¯ + �− 1� jDi1

¯ Dij

�

�Ui1. . .ij

s + ¯ , �2.3�

i.e., the N determining equations

EUs��k�x,U,�U, . . . ,�lU�Gk�x,U�� = 0, s = 1, . . . ,N , �2.4�

must hold for an arbitrary set of functions U= �U1 , . . . ,UN�. Here and for the rest of this article, we
assume summation over a repeated index.

After solving the determining equations �2.4� and finding a set of multipliers
��k�x ,U ,�U , . . . ,�lU��k=1

m that yield a conservation law, one can obtain the fluxes
�i�x ,u ,�u , . . . ,�ru� by using integral formulas arising from homotopy operators �see Refs. 2 and
3�.

A conservation law Di�
i�x ,u ,�u , . . . ,�ru�=0 is called trivial if its fluxes are of the form

�i=Mi+Hi, where Mi and Hi are smooth functions such that Mi vanishes on the solutions of the
system �2.1�, and DiH

i	0. Two conservation laws Di�
i�u�=0 and Di�

i�u�=0 are equivalent if
Di��i�u�−�i�u��=0 is a trivial conservation law. The more general “triviality” idea is the notion
of linear dependence of conservation laws. A set of conservation laws is linearly dependent if there
exists a linear combination of them which is a trivial conservation law.
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B. Construction of nonlocally related systems from local conservation laws

Case A: Two independent variables. Suppose a PDE system with two independent variables

F�x,t,u� = 0: �F1�x,t,u� = 0,

�
Fm�x,t,u� = 0,

�2.5�

possesses n local conservation laws �Rs�s=1
n of the form

Rs: DxXs�x,t,u,�u, . . . ,�ru� + DtTs�x,t,u,�u, . . . ,�ru� = 0, s = 1, . . . ,n , �2.6�

where Ts and Xs are differentiable functions of their arguments. Each conservation law Rs �2.6� of
the system �2.5� yields a pair of potential equations of the form

Ps: 
�vs�x = Ts�x,t,u,�u, . . . ,�ru� ,

�vs�t = − Xs�x,t,u,�u, . . . ,�ru� .
�2.7�

For each conservation law �2.6�, the corresponding set of potential equations Ps �2.7� can be
appended to the given system F �2.5� to yield a nonlocally related potential system FP

s . �Alterna-
tively, if at least one of the factors of the conservation law does not vanish outside of the solution
space, the potential equations Ps can replace one of the equations of the given system F.�

From the n conservation laws �2.6�, one can obtain further inequivalent nonlocally related
systems, by considering not only potential systems FP

s arising from single conservation laws Rs,
but also couplets �FP

i ,FP
j �i,j=1

n , triplets �FP
i ,FP

j ,FP
k �i,j,k=1

n , . . ., and finally the n-plet of potential
systems �FP

1 , . . .FP
n�. Hence one obtains as many as 2n−1 potential systems of equations nonlo-

cally related to F �2.5� through the n conservation laws �2.6�.
Case B: Several independent variables. Now consider a general PDE system G �2.1� with

M �2 independent variables. Suppose it possesses n local conservation laws �Ks�s=1
n of the form

Ks: Di�s
i�x,u,�u, . . . ,�ru� = 0, s = 1, . . . ,n , �2.8�

with fluxes ��s�i that are differentiable functions of their arguments. Each conservation law �2.8�
yields a set of M potential equations of the form �see Refs. 5 and 14�

Qs: �s
i = �

i�j

�− 1� j �

�xjvij + �
j�i

�− 1�i−1 �

�xjv ji, i = 1, . . . ,M , �2.9�

where the potentials v= �vij�x�� are the 1
2 M�M −1� nonrepeating components of an M �M anti-

symmetric tensor.
For every s, by appending potential equations Qs to the given system G �or replacing an

equation of G by potential equations Qs, whatever is appropriate�, one obtains a potential system
GP

s which is nonlocally related to the given system G �2.1�.
In the same manner as for the case of two independent variables, by considering singlets,

couplets, triplets, . . . ,n-plet of potential systems GP
s , one can obtain as many as 2n−1 independent

PDE systems nonlocally related to the given system G, whose solution sets are equivalent to that
of G.

We now illustrate the use of 2n−1 independent potential systems to study symmetries of a
system of polytropic gas dynamics equations.

C. Conservation laws, nonlocally related PDE systems and nonlocal symmetry
analysis of planar gas dynamics equations

1. Conservation laws and nonlocally related systems

In Lagrangian mass coordinates s= t ,y=�x0

x ����d�, planar one-dimensional gas motion is de-
scribed by the equations
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L�y,s,v,p,q� = 0: �qs − vy = 0

vs + py = 0

ps + B�p,q�vy = 0.

�2.10�

Here x is a Cartesian space coordinate, t is time, v is the gas velocity, q=1/� where � is the gas
density, and p is the gas pressure. In terms of the entropy density S�p ,q�, the constitutive function
B�p ,q� is given by

B�p,q� =
Sq

Sp
.

We note that system �2.10� admits the group of equivalence transformations

s = a1s̃ + a4, y = a2ỹ + a5, v = a3ṽ + a6,

p =
a2a3

a1
p̃ + a7, q =

a1a3

a2
q̃ + a8, B�p,q� =

a2
2

a1
2 B̃�p̃, q̃� �2.11�

for arbitrary constants a1 . . . ,a8 with a1a2a3�0.
We first construct the simplest conservation laws and all corresponding inequivalent potential

systems for the Lagrange system �2.10�. Using the DCM �Sec. II A�, for an arbitrary constitutive
function B�p ,1 /��, we find that for multipliers of the form �i=�i�y ,s�, the Lagrange system
�2.10� has the conservation laws exhibited in Table I.

The potential equations that arise from the conservation law �W1� can be used to replace the
first equation of the Lagrange system �2.10�; potential equations arising from the conservation law
�W2�, can replace the second equation of �2.10�; finally, potential equations arising from the
conservation law �W3�, can equivalently replace either the first or second equation of �2.10�.

The independent set of nonlocally related �potential� systems of the Lagrange system �2.10�
consists of the following:

• Three singlets �potential systems involving a single nonlocal variable wi�

LW1�y,s,v,p,q,w1� = 0: �
w1y = 1,

w1s = v ,

vs + py = 0,

ps + B�p,q�vy = 0;

�2.12�

LW2�y,s,v,p,q,w2� = 0: �
qs − vy = 0,

w2y = v ,

w2s = − p ,

ps + B�p,q�vy = 0;

�2.13�

TABLE I. Local conservation laws of �2.10� with �i=�i�y ,s�.

CL Multipliers ��1 ,�2 ,�3� Conservation law Potential Potential equations

�W1� �1,0 ,0� Ds�q�−Dy�v�=0 w1 w1y =q, w1s=v

�W2� �0,1 ,0� Ds�v�+Dy�p�=0 w2 w2y =v, w2s=−p

�W3� �y ,s ,0� Ds�sv+yq�+Dy�sp−yv�=0 w3 w3y =sv+yq, w3s=−sp+yv
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LW3�y,s,v,p,q,w3� = 0: �
w3y = sv + yq ,

w3s = − sp + yv ,

vs + py = 0,

ps + B�p,q�vy = 0;

�2.14�

• Three couplets

LW1W2�y,s,v,p,q,w1,w2� = 0: �
w1y = q ,

w1s = v ,

w2y = v ,

w2s = − p ,

ps + B�p,q�vy = 0;

�2.15�

LW1W3�y,s,v,p,q,w1,w3� = 0: �
w1y = q ,

w1s = v ,

w3y = sv + yq ,

w3s = − sp + yv ,

ps + B�p,q�vy = 0;

�2.16�

LW2W3�y,s,v,p,q,w2,w3� = 0: �
w2y = v ,

w2s = − p ,

w3y = sv + yq ,

w3s = − sp + yv ,

ps + B�p,q�vy = 0;

�2.17�

• One triplet involving all three conservation laws:

LW1W2W3�y,s,v,p,q,w1,w2,w3� = 0: �
w1y = q ,

w1s = v ,

w2y = v ,

w2s = − p ,

w3y = sv + yq ,

w3s = − sp + yv ,

ps + B�p,q�vy = 0.

�2.18�

The Lagrange system �2.10� has also a nonlocally related subsystem obtained by excluding v
�See Ref. 1�:

L�y,s,p,q� = 0: 
qss + pyy = 0,

ps + B�p,q�qs = 0.
�2.19�

2. Nonlocal symmetry analysis for polytropic gas flows

We consider the polytropic equation of state
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B�p,q� = 	
p

q
.

Applying group analysis to the triplet potential system �2.18�, for arbitrary 	, one finds the basis
of the ten-dimensional point symmetry algebra admitted by the given Lagrange system �2.10�:

X1 =
�

�s
+ w2

�

�w3
, X2 =

�

�y
+ w1

�

�w3
,

X3 = s
�

�s
+ v

�

�v
+ 2q

�

�q
+ 2w1

�

�w1
+ w2

�

�w2
+ 2w3

�

�w3
,

X4 =
�

�v
+ s

�

�w1
+ y

�

�w2
+ ys

�

�w3
, X5 = s

�

�s
+ y

�

�y
+ w1

�

�w1
+ w2

�

�w2
+ 2w3

�

�w3
,

X6 = v
�

�v
+ p

�

�p
+ q

�

�q
+ w1

�

�w1
+ w2

�

�w2
+ w3

�

�w3
,

X7 =
�

�w1
, X8 =

�

�w2
, X9 =

�

�w3
,

X10 = y2 �

�y
+ �w2 − yv�

�

�v
+ yp

�

�p
− 3yq

�

�q
+ �sw2 − w3�

�

�w1
+ yw2

�

�w2
+ ysw2

�

�w3
.

�2.20�

In particular, the operators X1 , . . . ,X9 project onto point symmetries of the given Lagrange
system �2.10�; the operator X10 yields a nonlocal symmetry of the Lagrange system L.1,10

If 	=3, system �2.10� admits one additional symmetry9

X11 = s2 �

�s
+ �w1 − sv�

�

�v
− 3sp

�

�p
+ sq

�

�q
+ sw1

�

�w1
+ �yw1 − w3�

�

�w2
+ ysw1

�

�w3
,

which also yields a nonlocal symmetry of the Lagrange system L.
If 	=−1, system �2.10� corresponds to Chaplygin gas and is linearizable, as will be shown in

Sec. II C 3.
Remark 1: Among all of these constructed potential systems of L, symmetries X1 . . . ,X10 �or

their projections� are obtained simultaneously as point symmetries only for the triplet potential
system LW1W2W3, which in this sense is a grand system for the Lagrange system L. �All other
potential systems admit the corresponding projected proper subalgebras of the Lie algebra arising
from �2.20�.� The practical value of such a grand system is evident—possessing the largest known
symmetry group, it allows the construction of a maximal possible set of invariant solutions of the
given system.

Note that it does not automatically follow that the potential system with the maximum number
of potential variables is a “grand system” for determining symmetries, as is the case in this
example. Counterexamples will be presented in Secs. IV and V.

3. Further conservation laws for a general constitutive function

We now look for conservation law multipliers for the Lagrange system L �2.10� in terms of
the more general form �i=�i�y ,s ,V , P ,Q�, i=1,2 ,3.

The solution of the conservation law determining equations �2.4� yields the following multi-
pliers:
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�1 = 
y − �P + B�P,Q��3 + � ,

�2 = 
s + �V +  ,

�3 = �3�y,P,Q� , �2.21�

where 
, �, , and � are arbitrary real constants, and �3�y , P ,Q� is any solution of the PDE

��3�Q = �B�P,Q��3�P − � . �2.22�

Conservation laws corresponding to �=0, �3=0 and � , ,
�0 are, respectively, the conser-
vation laws �W1�, �W2�, and �W3� listed in Table I. Additional conservation laws arise when �3

�0. It is possible to show that from multipliers �2.21� only two new linearly independent conser-
vation laws follow. The first conservation law corresponds to �=1 and represents conservation of
energy. It is given by

�v2

2
+ K�p,q��

s
+ �pv�y� = 0, �2.23�

where K�p ,q� is a solution of the equation Kq�p ,q�=B�p ,q�Kp�p ,q�− p.
The second conservation law ��=0� defines the adiabatic process in Lagrangian coordinates:

�S�p,q��s = 0, �2.24�

where the entropy S�p ,q� is a solution of the equation Sq�p ,q�=B�p ,q�Sp�p ,q�.
For forms of B�p ,q� for which the functions K�p ,q�, S�p ,q� can be explicitly evaluated, the

conservation laws �2.23� and �2.24�, respectively, yield explicit potential systems with potentials
w4, w5.

For the polytropic case B�p ,q�=	p /q, we find that S�p ,q�=q	p. The conservation law
�S�p ,q��s=0 �2.24� can equivalently replace the last equation of the given system L �2.10�. This
leads to the potential system

LW5�y,s,v,p,q,w5� = 0:�
�w5�y�y,s� = q	p ,

�w5�s�y,s� = 0,

qs − vy = 0,

vs + py = 0

�2.25�

Noting that w5�y ,s�=w5�y� and expressing q=k�y�p−1/	, for an arbitrary k�y�, we find a subsystem

LW5�y,s,v,p,k� = 0:
vy − �k�y�p−1/	�s = 0,

vs + py = 0
�2.26�

nonlocally related to the given system L �2.10�.
Remark 2: For the case of a Chaplygin gas 	=−1, the Lagrange PGD system L �2.10� is

nonlinear as it stands, and cannot be linearized by a point transformation. But the equivalent
system LW5 for 	=−1 becomes linear. Thus in the Chaplygin gas case, the Lagrange PGD system
L is linearized by a nonlocal transformation.

Remark 3: Excluding the variable v from �2.26�, we see that the Lagrange polytropic PGD
system is equivalent to

LW5= �y,s,p� = 0: pyy + �k�y�p−1/	�ss = 0, �2.27�

which is a nonlinear elliptic equation for k�y��0,	�−1,	�0, and a nonlinear hyperbolic equa-
tion for k�y��0,	�−1.

Remark 4: The solutions of �2.26� for a particular form of k�y� correspond to a subset of the
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solutions of the given system L �2.10�. In particular, for k�y�=const, the system LW5= �2.26� can
be mapped into a linear system by a hodograph transformation �e.g., Ref. 18�. Thus it is possible
to obtain a special class of solutions of the given nonlinear system L �2.10� through solving this
linear PDE system.

III. LINEAR DEPENDENCE OF CONSERVATION LAWS AND LOCAL EQUIVALENCE OF
POTENTIAL SYSTEMS

For a given PDE system, its conservation laws can be constructed systematically �through the
Direct Construction Method or other method2–4�. For each conservation law, one or several po-
tentials are introduced, and the corresponding potential system is constructed. Next, for each such
nonlocally related system, its conservation laws are computed, and from these, more potentials are
introduced, which in turn lead to the construction of further potential systems, etc. Together with
subsystems �obtained by a reduction of the number of dependent variables for a potential system,
which includes consideration of reductions after an interchange of dependent and independent
variables�, this systematic procedure yields an extended tree of PDE systems nonlocally related to
the given one �see Ref. 1 and Sec. II B�.

In this section, we present theorems which simplify the tree construction through elimination
of redundant systems.

A. Linear dependence of conservation laws and tree simplification. Two-dimensional
case

Definition 1: Suppose the system of PDEs �2.5� has precisely n local conservation laws. Its
general potential system P is the set of 2n−1 potential systems arising from these n local conser-
vation laws.

We now prove the following fundamental theorem concerned with the construction of further
potential systems arising from P.

Theorem 1: Each conservation law of any potential system in P, arising from multipliers that
depend only on x and t, is linearly dependent on the n local conservation laws of the given system
�2.5�.

Proof: Each conservation law of any system in P, constructed from multipliers depending only
on x and t, must be of the form

Dx�bi�t,x�vi + ��t,x,u�� + Dt�ai�t,x�vi + 
�t,x,u�� = 0, �3.1�

for some functions bi�t ,x� ,ai�t ,x� ,��t ,x ,u� ,
�t ,x ,u�.
From the compatibility conditions for multipliers of conservation laws, we immediately obtain

Dta
i+Dxb

i=0. Hence

� aidx +� bidt = f i�t� + gi�x� , �3.2�

for some functions f i�t� and gi�x�.
Now consider a conservation law �3.1� on the solution manifold of the system in P that it was

constructed from. We have

Dx�bivi + �� + Dt�aivi + 
� = Dxbivi + � + Dt��� aidx −� bidt�vi�� + Dtaivi + 


− Dx��� aidx −� bidt�vi�� = Dx� − �vi�t� bidt� + Dt


− �vi�x� aidx� + DxDt�� bidt +� aidx�vi� = Dx�
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− �vi�t� bidt� + Dt
 − �vi�x� aidx� + DxDt��f i�t� + gi�x��vi�

= Dx� − �vi�t� bidt + gi�x��vi�t� + Dt
 − �vi�x� aidx + f i�t��vi�x� .

�3.3�

As all derivatives of potentials vi can be expressed in terms of local variables x, t and u, it follows
that a conservation law �3.1� is linearly dependent on local ones constructed from the given system
�2.5�. �

Remark 5: From Theorem 1 it follows that a conservation law of any system in P related to the
given system �2.5�, arising from multipliers that depend only on x and t, is trivial on the solution
manifold of P.

The next theorem immediately follows from Theorem 1.
Theorem 2: Suppose one finds the set of n local conservation laws for a given system �2.5�

and then constructs the corresponding general potential system P. It follows that if one starts with
any one of the 2n−1 potential systems in P and seeks conservation laws from multipliers depend-
ing only on x and t, each of the resulting potential systems is locally equivalent to one of the 2n

−1 potential systems in P.

B. Linear dependence of conservation laws and tree simplification. General case: M
�2 independent variables

We now consider the general case for M �2 independent variables. Suppose the system of
PDEs �2.1� has a set of n conservation laws �Ks�s=1

n of the form �2.8�. Each conservation law Ks

yields a set of M potential equations Qs of the form �2.9� �Sec. II B�.
Definition 1: Suppose the system of PDEs �2.1� has precisely n local conservation laws of the

form �2.8�. Its general potential system Q is the set of 2n−1 potential systems arising from
combinations of these n local conservation laws.

The following theorems generalize Theorems 1 and 2 for the case of M �2 independent
variables.

Theorem 3: Each conservation law of any potential system in Q, arising from multipliers that
depend only on independent variables x, is linearly dependent on the n local conservation laws of
the given system �2.1�.

The proof of Theorem 3 is presented in the Appendix. The following theorem holds.
Theorem 4: Suppose one finds the set �Ks�s=1

n of n local conservation laws for the given
system G �2.1�, and then constructs the corresponding general potential system Q. It follows that
if one starts with any one of the potential systems in Q and seeks conservation laws from multi-
pliers depending only on the independent variables x, each of the resulting potential systems is
locally equivalent to one of the potential systems in Q.

Remark 6: From Theorem 4 it follows that no new nonlocally related potential systems of a
given system G �2.1� can arise from conservation laws constructed from known potential systems
of G with multipliers depending only on independent variables x.

Remark 7: Note that for any potential system in Q, one can allow gauge constraints relating
the potentials �vij�x��. In order to find nonlocal symmetries of the given system �2.1� from point
symmetries of a potential system in Q it is necessary to adjoin such gauge constraints.15–17

IV. EXTENDED TREES OF NONLOCALLY RELATED PDE SYSTEMS, NONLOCAL
SYMMETRIES AND NONLOCAL CONSERVATION LAWS FOR NONLINEAR TELEGRAPH
EQUATIONS

As a prototypical example, for classes of NLT equations, we use the simplified procedure
introduced in Sec. III to construct trees of nonlocally related PDE systems and, as a consequence,
find new nonlocal symmetries and new nonlocal conservation laws.
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A. Local conservation laws for the NLT equation

We consider NLT equations of the form

U�x,t,u� = 0: utt − �F�u�ux�x − �G�u��x = 0. �4.1�

Equation �4.1� and its potential versions, including

UV�x,t,u,v� = 0: 
ut − vx = 0,

vt − F�u�ux − G�u� = 0,
�4.2�

are known to possess rich conservation law and symmetry structure for various classes of consti-
tutive functions F�u� ,G�u�.6–8,13 In particular, the point symmetry classification of �4.1� appears in
Ref. 13; the point symmetry and local conservation law classification of �4.2� appear in Refs. 6
and 7, respectively.

Using the DCM, we now construct nontrivial linearly independent local conservation laws for
the NLT equations U �4.1�. First we note that Eq. �4.1� admits the group of equivalence transfor-
mations

x = a1x̃ + a4, t = a2t̃ + a5, u = a3ũ + a6,

F�u� = a1
2a2

−2F̃�ũ�, G�u� = a1a2
−2a3G̃�ũ� + a7, �4.3�

where a1 , . . . ,a7 are arbitrary constants, a1a2a3�0. We classify the local conservation laws and
point symmetries of �4.1� modulo the equivalence transformations �4.3�. A multiplier of the form
A�x , t ,U� yields a local conservation law

Dx�X�x,t,u,ux,ut�� + Dt�T�x,t,u,ux,ut�� = 0

of �4.1� if and only if the equation

EU���x,t,U��Utt − �F�U�Ux�x − �G�U��x�� = 0 �4.4�

holds for an arbitrary function U�x , t�.
Solving determining equation �4.4�, one obtains an overdetermined system of linear PDEs in

terms of the unknown multiplier ��x , t ,U�. It is easy to show that �=��x , t�. Three cases are
distinguished. For arbitrary functions F�u� and G�u�, one has two conservation laws �V1� and
�V2�; for the case G�=F, there are two additional conservation laws �B1� and �B2�; for the case
G=u, there are also two additional conservation laws �C1� and �C2�. The classification is presented
in Table II. �Note that the case where G is linear in u and F=const is the linear case and hence is
not considered. The case G=const �with arbitrary F� is linearizable and hence also is not consid-
ered.�

The local conservation laws �V2�, �B3�, �B4�, �C3�, and �C4� have not previously appeared in
the literature.

The following potential systems result from the conservation laws listed in Table II.
Case (a): Arbitrary F�u� ,G�u�.

UV1�x,t,u,v1� = 0:
v1x − ut = 0,

v1t − F�u�ux − G�u� = 0;
�4.5�

UV2�x,t,u,v2� = 0:
v2x − �tut − u� = 0,

v2t − t�F�u�ux + G�u�� = 0.
�4.6�

Case (b): G��u�=F�u� ,F�u� arbitrary. In addition to potential systems �4.5� and �4.6�, here
we also have
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UB3�x,t,u,b3� = 0:
b3x − exut = 0,

b3t − exF�u�ux = 0;
�4.7�

UB4�x,t,u,b4� = 0:
b4x − ex�tut − u� = 0,

b4t − texF�u�ux = 0.
�4.8�

Case (c): G�u�=u ,F�u� arbitrary. In addition to potential systems �4.5� and �4.6�, here we
also have

UC3�x,t,u,c3� = 0:�c3x − ��x −
t2

2
�ut + tu� = 0,

c3t − ��x −
t2

2
��F�u�ux + u� −� F�u�du� = 0;� �4.9�

UC4�x,t,u,c4� = 0:�c4x − ��tx −
t3

6
�ut − �x −

t2

2
�u� = 0,

c4t − ��tx −
t3

6
��F�u�ux + u� − t� F�u�du� = 0.� �4.10�

We now apply Theorem 2 to find inequivalent nonlocally related potential systems for the
NLT equation �4.1�. The following statements hold.

Corollary 1: In terms of multipliers depending only on x and t, the set of locally inequivalent
potential systems for the NLT equation �4.1� with general nonlinearities F�u� and G�u� is ex-
hausted by the following PDE systems:

• Two potential systems �4.5� and �4.6�, involving single potentials;
• One couplet ��4.5�, �4.6��.

Corollary 2: In terms of multipliers depending only on x and t, the set of locally inequivalent
potential systems for Eq. �4.1� with G��u�=F�u� is exhausted by the following systems:

• Four potential systems �4.5�–�4.8� involving single potentials;
• Six couplets ��4.5�, �4.6��, ��4.5�, �4.7��, ��4.5�, �4.8��, ��4.6�, �4.7��, ��4.6�, �4.8��, and ��4.7�,

�4.8�� involving pairs of potentials;
• Four triplets ��4.5�, �4.6�, �4.7��, ��4.5�, �4.6�, �4.8��, ��4.5�, �4.7�, �4.8��, and ��4.6�, �4.7�,

TABLE II. Local conservation laws of �4.1�.

F�u� G�u� CL Multipliers T −X

Arbitrary Arbitrary �V1� �=1 ut F�u�ux+G�u�
�V2� �= t tut−u t�F�u�ux+G�u��

Arbitrary G��u�=F�u� �B3� �=ex exut exF�u�ux

�B4� �= tex ex�tut−u� texF�u�ux

Arbitrary
�F�u��const� u �C3� � = x −

t2

2
�x −

t2

2
�ut + ut �x −

t2

2
��F�u�ux + u� − � F�u�du

�C4� � = xt −
t3

6
�tx −

t3

6
�ut − �x −

t2

2
�u �tx −

t3

6
��F�u�ux + u� − t � F�u�du

113505-12 Bluman, Cheviakov, and Ivanova J. Math. Phys. 47, 113505 �2006�

                                                                                                                                    



�4.8�� for combinations involving three potentials;
• One quadruplet ��4.5�, �4.6�, �4.7�, �4.8�� involving all four potentials.

Corollary 3: In terms of multipliers depending only on x and t, the set of locally inequivalent
potential systems for Eq. �4.1� with arbitrary F�u� and G�u�=u is exhausted by the following
systems:

• Four potential systems �4.5�, �4.6�, �4.9�, and �4.10� involving single potentials;
• Six couplets ��4.5�, �4.6��, ��4.5�, �4.9��, ��4.5�, �4.10��, ��4.6�, �4.9��, ��4.6�, �4.10��, and

��4.9�, �4.10�� involving pairs of potentials;
• Four triplets ��4.5�, �4.6�, �4.9��, ��4.5�, �4.6�, �4.10��, ��4.5�, �4.9�, �4.10��, and ��4.6�, �4.9�,

�4.10�� for combinations involving three potentials;
• One quadruplet ��4.5�, �4.6�, �4.9�, �4.10�� involving all four potentials.

B. Point and nonlocal symmetry analysis of NLT equations with power nonlinearities

We now apply the results of Sec. III to seek point and nonlocal symmetries of the NLT
equation �4.1� with power nonlinearities F�u�=u
 ,G�u�=u��
 ,��0� by considering its locally
inequivalent potential systems.

Case (a): Arbitrary power nonlinearities F�u� ,G�u�. We first consider general power non-
linearities: F�u�=u
, G�u�=u� �
 ,��0 arbitrary constants.� In this case, the given system �4.1�
has two conservation laws �V1� and �V2� exhibited in Table II. From Corollary 1, the set of
inequivalent nonlocally related potential systems of the PDE U �4.1� is exhausted by the systems
UV1 �4.5�, UV2 �4.6�, and the couplet UV1V2:

UV1V2�x,t,u,v1,v2� = 0:�
v1x − ut = 0,

v1t − F�u�ux − G�u� = 0,

v2x − �tut − u� = 0,

v2t − t�F�u�ux + G�u�� = 0.

�4.11�

Symmetry generators of the given NLT equation �4.1�, its potential systems �4.5� and �4.6� and
the couplet �4.11� are given in Table III.

From the form of the symmetries in Table III it follows that no nonlocal symmetries arise for
systems U and UV1. The generator X3 is a nonlocal symmetry for the system UV2 �i.e., the system
UV2 is not invariant under translations in t� and a point symmetry for the other systems. All other
generators define point symmetries for all systems in Table III.

Case (b): G��u�=F�u�. We now consider power nonlinearities F�u�= �
+1�u
, G�u�=u
+1,

�0,−1. From the equivalence relation �4.3�, this case is equivalent to F�u�=u
, G�u�=u
+1.

TABLE III. Symmetries of the NLT equation �4.1� and its potential systems �4.5�, �4.6�, �4.11� for the general case �a�:
F�u�=u
, G�u�=u��
 ,� , �0�.

System Symmetries

UV1V2, UV1, UV2, U

X1 = �
 − � + 1�x
�

�x
+ �


2
− � + 1�t

�

�t
+ u

�

�u

+

 + 2

2
v1

�

�v1
+ �
 − � + 2�v2

�

�v2
,

X2 =
�

�x
, X3 =

�

�t
+ v1

�

�v2
, X4 =

�

�v1
, X5 =

�

�v2
.
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From Corollary 2, the set of inequivalent nonlocally related potential systems of the PDE U
�4.1� is exhausted by the potential systems UV1 �4.5�, UV2 �4.6�, UB3 �4.7�, UB4 �4.8�, their six
couplets, four triplets and one quadruplet. The corresponding classification of symmetry genera-
tors is presented in Table IV.

A point symmetry of any of these potential systems, where the symmetry generator compo-
nents for u, x or t have an essential dependence on at least one of the potentials v1 ,v2 ,b3 ,b4, is a
nonlocal �potential� symmetry of the given NLT equation �4.1�.

The case 
=−2 is not considered in Table IV as here the system UV1 is linearizable by a point
transformation.18,19

The point symmetries of PDE U �4.1� and system UV1 �4.5� were completely classified in
Refs. 13 and 6, respectively. In Ref. 6, many new nonlocal symmetries of U �4.1� for other than
power nonlinearities were found from the point symmetries of corresponding UV1 systems.

Most importantly, from Table IV, we see that for the case when F�u�=3u2 ,G�u�=u3, through
the potential system UV1V2, we have discovered a new nonlocal symmetry Y9 for the scalar PDE
U.

Note that Y3 is a nonlocal symmetry for the systems UV1V2B4, UV2B3B4, UV1B4, UV2B3,
UV2B4, UV2, and UB4, and a point symmetry for the other nine systems; Y8 is a nonlocal
symmetry for the systems UV1V2B3, UV1B3B4, UV1B3, UV1B4, UV2B3, UV1, UB3 and a point
symmetry for the other nine systems; Y9 is a point symmetry for UV1V2 and a nonlocal symmetry
for the other listed 15 inequivalent systems, which include UV1V2B3, UV1V2B4, and UV1V2B3B4!

Case (c): F�u�=u
 ,G�u�=u. In this case, similarly to case �b�, the set of independent non-
locally related potential systems of �4.1� is exhausted by the potential systems UV1 �4.5�, UV2

�4.6�, UC3 �4.9�, UC4 �4.10�, their six couplets, four triplets and one quadruplet. The correspond-
ing classification of symmetry generators is found in Table V. The linear cases 
=0,1 are not
considered.

As the simplification of overdetermined systems of linear determining equations in classifi-
cation problems involving triplets UV1C3C4, UV2C3C4 and couplets UV1C4, UC3C4 presented a
computational difficulty, the corresponding entries in Table V are not known.

From the form of the symmetries in Table V, it follows that no nonlocal symmetries arise for
systems U and UV1; Z2 is a nonlocal symmetry for the systems UV2C3, UC3, and UC4 and a point
symmetry for the other listed systems; Z3 is a nonlocal symmetry for the systems UV1V2C4,
UV1C3, UV2C3, UV2C4, UV2, UC3, and UC4 and a point symmetry for the other listed systems.
All other generators define point symmetries for the systems listed in Table V.

TABLE IV. Symmetries of the potential NLT systems for case for case �b�: F�u�= �
+1�u
, G�u�=u
+1�
�0,−1�.

System F�u� G�u� Symmetries

UV1V2B3B4, �
+1�u
 u
+1 Y1=− 

2 t �

�t +u �
�u +v2

�
�v2

+ 
+2
2 v1

�
�v1

+ 
+2
2 b3

�
�b3

+b4
�

�b4
,

UV1V2B3, Y2= �
�x +b3

�
�b3

+b4
�

�b4
, Y3= �

�t +b3
�

�b4
+v1

�
�v2

, Y4= �
�v1

,

UV1V2B4, Y5= �
�v2

, Y6= �
�b3

, Y7= �
�b4

UV1B3B4,

UV2B3B4, −3u−4 u−3 Y8= t2 �
�t + tu �

�u −v2
�

�v1
−b4

�
�b3

UV1V2 ,UV1B3,

UV1B4 ,UV2B3,

UV2B4 ,UB3B4,

UV1 ,UV2,

UB3 ,UB4,

U

UV1V2 3u2 u3 Y9=3v1
�
�x + �tv1−v2+3u� �

�t −uv1
�
�u −v1

2 �
�v1

−v1v2
�

�v2
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C. New nonlocal conservation laws for NLT equations with power nonlinearities

In this section, new nonlocal conservation laws are constructed for NLT equations �4.1� with
power nonlinearities. We use the DCM for all singlet potential systems of the NLT equation �4.1�
in each of cases �a�, �b�, and �c�, allowing multipliers to have an essential dependence on depen-
dent variables. We obtain new conservation laws for particular classes of constitutive functions.
The classification is presented in the following.

For power nonlinearities F�u�=u
, G�u�=u�, the set of nonlocal conservation laws is given in
Table VI.

The computations were done for all systems: UV1, UV2, UB3, UB4, UC3, and UC4. No
nonlocal conservation laws were found for the UC4 system.

The nonlocal conservation laws for PDE U �4.1� arising from analysis of the system UV1 were
first found in Ref. 6. All other nonlocal conservation laws for PDE U �4.1� found in Table VI are
new.

The case �b� with 
=−2 is not considered in Table VI as here the system UV1 is linearizable
by a point transformation.18,19

V. NONLOCAL SYMMETRY CLASSIFICATION FOR GENERALIZED POLYTROPIC GAS
FLOWS

We now consider the Lagrange PGD system L �2.10� with a generalized polytropic equation
of state

B�p,q� =
M�p�

q
, M��p� � 0. �5.1�

To construct a corresponding tree of nonlocally related potential systems, first we search for
local conservation laws with multipliers of the form

�i = �i�y,s�, i = 1,2,3.

The classification with respect to the constitutive function M�p� reveals no special case and thus
the conservation laws listed in Table I are exhaustive. According to Theorem 2, from these
conservation laws we obtain the following inequivalent potential systems for the generalized
polytropic Lagrange PGD system L �2.10�:

• Three potential systems �2.12�–�2.14� involving single potentials;
• Three couplets �2.15�–�2.17� involving pairs of potentials;

TABLE V. Symmetries of the potential NLT systems for case �c�: F�u�=u
 ,G�u�=u�
�0,1�.

System Case Symmetries

UV1V2C3C4, 
�−1 Z1= 

2 t �

�t +
x �
�x +u �

�u + 
+2
2 v1

�
�v1

+v2�a+1� �
�v2

+ 3
+2
2 c3

�
�c3

+ �2
+1�c4
�

�c4
,

UV1V2C3, Z2= �
�x +v1

�
�c3

+v2
�

�c4
, Z3= �

�t +v1
�

�v2
−v2

�
�c3

+c3
�

�c4
,

UV1V2C4

UV1V2,
UV1C3,

Z4= �
�v1

, Z5= �
�v2

, Z6= �
�c3

, Z7= �
�c4

.


=−1 Z8=− 1
2 t �

�t −x �
�x +u �

�u + 1
2v1

�
�v1

− �t+ 1
2c3

� �
�c3

− � t2

2 +c4
� �

�c4

Z2 , Z3 , Z4 , Z5 , Z6 , Z7.UV2C3,

UV2C4,

UV1 ,UV2,

UC3 ,UC4

U,

UV1C3C4 ,UV2C3C4 ?

UV1C4,UC3C4
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• One triplet �2.18� involving all three potentials.

TABLE VI. Nonlocal conservation laws of �4.1�.

Case System Subcase Multipliers Fluxes

�a� UV1 �=−1 �1=x+
v1

2

2 + u
+2


+2 ,�2=uv1 X=−� u
+2


+2 +
v1

2

6 +x�v1,

T=� u
+2

�
+2��
+3� +
v1

2

2 +x�u.

F�u�=u
 �1=v1 ,�2=u. X=− u
+2


+2 −
v1

2

2 ,

T=uv1− t.

G�u�=u� 
=−1 �1=
v1

3

3 +2�x+u�v1+ t, X=−
v1

4

12 − �x+u�v1
2− tv1− u2

2 −2xu,

�=−1 �2= �v1
2+u+2x�u. T= �u+

v1
2

3
�uv1+2xuv1+ t�u−2x�.

�1= v1
4 � 12 + �u+x�v1

2+ tv1+2xu+x2+ u2

2 , X=−
v1

5

60 −
�x+u�v1

3

3 −
�tv1+u2�v1

2 −�2u+x�xv1− tu,

�2= � v1
3

3 + t+uv1+2xv1
�u. T=− t2

2 + � u
3 +v1

2+2x� u2

2 +
uv1

4

12 + �xv1+ t�uv1+x2u.

UV2 �=−1 �1=−
v2

t2
,�2= u

t . X=−
v2

2

2t2
− u
+2


+2 ,T=
uv2−t2

t .

�b� UV1 
�−1 �1=exu
+1 ,�2=exv1, X=−exu
+1v1,

F�u�= �
+1�u
 
�−2 T=ex� u
+2


+2 +
v1

2

2
�.

G�u�=u
+1 UV2 
=−4 �1=−ex t

u3 ,�2=exv2. X=ex tv2

u3 ,T=ex� t2

u2 −v2
2�.

UB3 
�−1 �1=−u
+1 ,�2=e−xb3. X=−u
+1b3 ,T=ex u
+2


+2 +e−x b3
2

2 .

UB4 
=−4 �1=− t

u3 ,�2=e−xb4. X=−
tb4

u3 ,T= 1
2e−xb4

2−ex t2

2u2 .

�c� UV1 
=1 �1= t4

12 −xt2+ tv1− u2

2 +x2, X= � v1

2 −xt+ t3−2tu
6

�u2

F�u�=u
 −�tv1+ t4

12 −xt2+x2�v1,

G�u�=u �2=− t3

3 + t�u+2x�−v1. T=− u3

6 + � t4

12 +x2−xt2+ tv1
�u

+�2xt− v
2 − t3

3
�v1.

�1= t3

6 −xt+v1 X= � t2

2 − u
3 −x�u2+ �2xt− t3

3 −
v1

2
�v1,

�2=− t2

2 +u+x. T= � t3

3 −2xt�u+ �u+2x− t2�v1.

UV2 
=1 �1= t2

4 −x+
v2−x2

t2
, X= u3

3 + 2x−t2

2 u2+
v2

2

2t2
+

�t4−4x�t2+x��v2

4t2
,

�2= t− u+2x
t . T=−

uv2

t −
�t4−4x�t2+x��u

4t −
�2x−t2�v2

t .

UC3 
=1 �1=− t2−2x
80 + 2xt2+5u2

40�t2−2x�
+

4x3+5tc3

10�t2−2x�2 , X=−
�t2−2x��tu2+2c3�

64 +
t�u3+3tc3�

48 +
t4�tu2−10c3�+20u2c3

160�t2−2x�
+

t�t5+5c3�c3

40�t2−2x�2 ,

�2=
3t5−20c3

40�t2−2x�2 −
t�2x+u�

4�t2−2x�
. T=

�t4−4x2�u

64 +
u3−3t4u−6tc3

96 +
t�t5+10c3�u

80�t2−2x�
+

�t5+5c3�c3

40�t2−2x�2 .
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A. Classification of point and nonlocal symmetries

The classification of point symmetries of the seven potential systems �2.12�–�2.18� �modulo
the equivalence transformations �2.11�� yields Table VII of point symmetries and nonlocal sym-
metries for the Lagrange PGD system �2.10� with the equation of state �5.1�.

From Table VII, we observe that Z13,Z14 are point symmetries for the system LW2 and
nonlocal symmetries for all other systems, including the given system L; Z9 , . . . ,Z12 are point
symmetries for systems L and LW2 and nonlocal symmetries for all other systems.

Most importantly, we have shown that for cases �ii� and �iii�, when M�p�=−p ln p and
M�p�=	p+�p�	+1�/	, respectively, through the potential system LW2 we have discovered new
nonlocal symmetries Z13 and Z14 for the generalized polytropic Lagrange PGD system L �2.10�,
�5.1�. Note that all other generators in Table VII project onto point symmetries of the Lagrange
PGD system L �2.10� and thus were found from point symmetry analysis of L in Ref. 9.

Note that the newly discovered nonlocal symmetries Z13 and Z14 of the Lagrange system L
�2.10�, �5.1� with M�p�=−p ln p and M�p�=	p+�p�	+1�/	 project onto point symmetries of the
corresponding Lagrange subsystem L �2.19�. In other words, the point symmetries Z13

=y2�� /�y�+ py�� /�p�− �3− �1/ ln p��yq�� /�q�, Z14=y2�� /�y�+yp�� /�p�− �3− �� /	��p1/	 / ��p1/	

+	���yq�� /�q� of L yield nonlocal symmetries of L.1 It can be shown that symmetries Z13 and Z14

also yield nonlocal symmetries of the corresponding system written in terms of Eulerian
coordinates.1 The classification of point symmetries of L �2.19� yields Table VIII with respect to
the equation of state given by �5.1�.

From Table VIII we observe that point symmetries of the Lagrange subsystem L �2.19�
include all corresponding point symmetries of LW2, and additionally for M�p�=3p+�p4/3 one
new symmetry Z15 is obtained. The new symmetry Z15 is a nonlocal symmetry of the Lagrange
system L �2.10� and all its potential systems �2.12�–�2.18�.

TABLE VII. Symmetries of the generalized polytropic PGD system �2.10�, �5.1�.

System M�p� Symmetries

L, �i� Arbitrary Z1= �
�s +w2

�
�w3

, Z2= �
�y +w1

�
�w3

,

LW1,LW2 ,LW3, Z3= �
�v +s �

�w1
+y �

�w2
+sy �

�w3
,

LW1W2 ,LW1W3, Z4=−y �
�y +2q �

�q +v �
�v +w1

�
�w1

,

LW2W3, Z5=s �
�s +y �

�y +w1
�

�w1
+w2

�
�w2

+2w3
�

�w3
,

LW1W2W3 Z6= �
�w1

, Z7= �
�w2

, Z8= �
�w3

,

L ,LW2 �ii� − p ln p Z9=y �
�y +2p �

�p + 2q
ln p

�
�q +v �

�v +2w2
�

�w2
.

�iii� 	p+
p�	+1�/	
Z10=

�	+1�y

2	
�
�y + p �

�p − q

�p1/	+	

�
�q +

�	−1�v

2	
�
�v +w2

�
�w2

.

	�0,−1

�iv� 1+
ep ,

= ±1

Z11= �
�p + 
ep

1+
ep q �
�q −s �

�w2
,

Z12=y �
�p + 
ep

1+
ep yq �
�q −s �

�v −sy �
�w2

.

LW2 �ii� − p ln p Z13=y2 �
�y +yp �

�p − �3− 1
ln p

�yq �
�q − �yv−w2� �

�v +yw2
�

�w2
.

�iii� 	p+�p�	+1�/	 Z14=y2 �
�y +yp �

�p −�3− �
	

p1/	

�p1/	+	
�yq �

�q − �yu−w2� �
�v +yw2

�
�w2

.

	�0,−1

113505-17 Framework for nonlocally related PDE systems J. Math. Phys. 47, 113505 �2006�

                                                                                                                                    



B. Nonlocally related systems and invariant solutions

1. Construction of invariant solutions for generalized polytropic PGD equations

For any given form of the constitutive function M�p�, different combinations of corresponding
point and nonlocal symmetry generators can be used to construct families of invariant solutions of
the Lagrange system L �2.10�. As an example, we consider the case M�p�=−p ln p.

The potential system LW2 has the largest algebra of symmetry generators. Thus it has the
largest set of invariant solutions. The algebra A of symmetry generators for the constitutive
function of interest is spanned by projections of the eight operators Z1 , . . . ,Z5 ,Z7 ,Z9 ,Z13 on the
space of variables �y ,s ,v , p ,q ,w2� of LW2:

A = Span�Z1,Z2,Z3,Z4,Z5,Z7,Z9,Z13� . �5.2�

The simplest way to find all solutions of LW2 invariant with respect to elements of A consists
of two steps20:

1. Finding optimal systems of one-dimensional invariant subalgebras Ai�A and constructing
solutions invariant with respect to each subalgebra Ai;

2. Using the transformation groups corresponding to symmetry generators in A to extend the
set of solutions.

The solutions of the Lagrange system L �2.10� are obtained from solutions of the potential system
LW2 by excluding the potential variable w2.

Following the above procedure, we first find the optimal system of one-dimensional subalge-
bras of A �5.2� �see Ref. 20.� This optimal system consists of the invariant subalgebras given by

A1 = Z2 + �1Z3,

A2 = Z2 + �1Z1 + �2Z3,

A3 = Z4 + �1Z1 + �2Z7,

A4 = Z4 + �1Z1 + �2Z2 + �3Z3,

TABLE VIII. Point symmetries of the subsystem L �2.19� of the generalized polytropic PGD system �2.10�, �5.1�.

M�p� Symmetries

�i� Arbitrary Z1= �
�s , Z2= �

�y ,

Z4=−y �
�y +2q �

�q , Z5=s �
�s +y �

�y .

�ii� − p ln p Z9=y �
�y +2p �

�p + 2q
ln p

�
�q ,

Z13=y2 �
�y +yp �

�p − �3− 1
ln p

�yq �
�q .

�iii� 	p+�p�	+1�/	
Z10=

�	+1�y

2	
�
�y + p �

�p − q

�p1/	+	

�
�q ,

Z14=y2 �
�y +yp �

�p − �3− 

	

p1/	

�p1/	+	
�yq �

�q .

	=3 Z15= 1
3s2 �

�s −sp �
�p + 1

�p4/3+3
spq �

�q .

�iv� 1+
ep Z11= �
�p + 
ep

1+
ep q �
�q ,

Z12=y �
�p + 
ep

1+
ep yq �
�q .
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A5 = Z4 + �1Z1 + 
Z9,

A6 = Z5 + 
Z4,

A7 = Z5 + �1Z3,

A8 = Z13 + �1Z1 + �2Z2 + �3Z7 + 
Z9. �5.3�

Here �i=0, ±1, 
�R.
The set of all resulting invariant solutions of the potential system LW2 �and, consequently,

corresponding solutions of the Lagrange system L �2.10�� is obtained from solutions invariant
with respect to each of the subalgebras A1 , . . . ,A8 by means of the group transformations corre-
sponding to the operators Z1 , . . . ,Z9 ,Z13. These group transformations are as follows:

Z1: y� = y, s� = s + �1, v� = v, p� = p, q� = q, w2 = w2;

Z2: y� = y + �2, s� = s, v� = v, p� = p, q� = q, w2 = w2;

Z3: y� = y, s� = s, v� = v + �3, p� = p, q� = q, w2� = w2 + �3y;

Z4: y� = e−�4y, s� = s, v� = v, p� = p, q� = a2�4q, v� = w2 + �4y;

Z5: y� = e�5y, s� = e�5s, v� = v, p� = p, q� = q, w2� = e�5w2,

Z7: y� = y, s� = s, v� = v, p� = p, q� = q, w2� = w2 + �7;

Z9: y� = e�9y, s� = s, v� = e�9v, p� = e2�9p, q� = �1 + 2�9/ln p�q, w2� = e2�9w2;

Z13: y� =
y

1 − �13y
, s� = s, v� = v + �13�w2 − yv� ,

p� =
p

1 − �13y
, q� =

1 − �13y

ln p
q ln

p

1 − �13y
, w2� =

w2

1 − �13y
.

�5.4�

Particular solutions of the Lagrange system L �2.10� are obtained as solutions invariant with
respect to any linear combination of generators Z1 , . . . ,Z5 ,Z7 ,Z9 ,Z13, possibly transformed further
by using one or more Lie groups �5.4�.

2. An invariant solution from a nonlocal symmetry

For the case M�p�=−p ln p, we construct a solution of the Lagrange system L �2.10� arising
from a solution of the potential system LW2 �2.13� invariant with respect to the subalgebra A8

�5.3� with �1=�2=�3=0 ,
=1, i.e., from operator

X = Z13 + 
Z9 = �y2 + y�
�

�y
+ �y + 2�p

�

�p
− �3y −

y − 2

ln p
�q

�

�q
− �yv − v − w2�

�

�v
+ �y + 2�w2

�

�w2
.

One can show that this solution of L �2.10� does not arise as an invariant solution of an admitted
point symmetry of L. In particular, this solution has the form

p�y,s� =
	�2


2

y2

y + 

�1 − tanh2��s�� ,

q�y,s� = −
	

�y + 
�3 ln	�2


2

y2

y + 

�1 − tanh2��s��� ,

113505-19 Framework for nonlocally related PDE systems J. Math. Phys. 47, 113505 �2006�

                                                                                                                                    



v�y,s� = −
	�


2

y�y + 2
�
�y + 
�2 tanh��s� , �5.5�

where 
, �, and 	 are arbitrary constants.
For 
=1, �=1, 	=−2, after the application of the equivalence transformation �2.11� with

a1=a3=1, a2=a4=a6=0, a5=−1, a7= p0, a8=q0, this yields the solution

p = p̃�y,s� = p0 −
2y2

y + 1

1

cosh2 s
,

q = q̃�y,s� = q0 −
2

�y + 1�3 ln 2y2

y + 1

1

cosh2 s
� ,

v = ṽ�y,s� = 2
y�y + 2�
�y + 1�2 tanh s �5.6�

of the Lagrange system L �2.10� for the constitutive function

B�p,q� = −
�p0 − p̃�ln�p0 − p̃�

q0 − q
.

For p0=9 ,q0=1, the pressure p= p̃�y ,s�, density p=1/ q̃�y ,s� and velocity v= ṽ�y ,s� profiles
at times s=0.1,0.8,1.3 are shown in Figure 1 with thin, medium and thick lines, respectively. The
solution is regular, bounded and satisfies physical conditions p�0,��0 for all times s�0 for the
material space interval 0�y�5.

VI. CONCLUDING REMARKS

In this article, we extended the procedure presented in Ref. 1 to construct a tree of nonlocally
related systems for a given PDE system G �2.1�. In summary, the extended procedure is as
follows.

1. Construction of conservation laws. Using the DCM �Sec. II A� or other method, construct
local conservation laws of the given system G. Note that some conservation laws can be
present in the given system as it stands.

2. Construction of potential systems. For each of the n known conservation laws �Ks�s=1
n of

the given system G, introduce potential�s� and construct a potential system GP
s �s=1, . . . ,n�.

Let T1 denote the set of systems that consists of the given system G, potential systems GP
s

and all possible couplets, triplets,…, n-plets of the potential systems GP
s . The tree T1 includes

a total of 2n inequivalent systems.
3. Construction of subsystems. For each system in the tree T1, exclude where possible, one by

one, dependent variables �including exclusions following interchanges of independent and
dependent variables, i.e., where an independent variable becomes a dependent variable and
vice versa through a point transformation�, to generate all subsystems of the systems in the
tree T1. Eliminate subsystems that are locally related to existing systems. This yields a
possibly larger tree T2.

4. Continuation. In the tree T2, first distinguish the systems that arise from multipliers depend-
ing only on independent variables. For each such system, use the DCM or other method to
construct the conservation laws for multipliers with an essential dependence on dependent
variables. Construct all combinations of further potential systems arising from these conser-
vation laws �i.e., couplets, triplets, etc.�. For the other systems in the tree T2, construct all
possible conservation laws �these can even arise from multipliers that depend only on the
independent variables� and, correspondingly, construct all combinations of further potential
systems. Find all nonlocally related subsystems by reduction of dependent variables. This
yields an extended tree T3.
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Where possible, repeat step 4 to obtain a further tree extension �growth�, etc.
The new theorem presented in Sec. III simplifies the construction of a tree of nonlocally

related inequivalent systems for a given system of PDEs through elimination of redundant sys-
tems. To illustrate this theorem, as a prototypical example, we considered the nonlinear telegraph
equations. Five new local conservation laws were constructed. Specializing to NLT equations with
constitutive functions having power law nonlinearities, we found one nonlocal symmetry not
found in Ref. 6. Further, from nonlocally related potential systems arising from new conservation
laws for such NLT equations, we have found six new nonlocal conservation laws in addition to the
nine nonlocal conservation laws found in Ref. 7.

FIG. 1. Profiles of pressure p, density �, and velocity v at times s=0.1, 0.8, and 1.3.
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For a system of planar gas dynamics equations, with a generalized polytropic equation of
state, we found three new symmetries which are nonlocal for this system written in either La-
grangian or Eulerian coordinates.

It still remains a challenge to solve the overdetermined linear systems of PDEs for the sym-
metry classifying problems corresponding to the two couplet systems UV1C4, UC3C4 and the two
triplet systems UV1C3C4, UV2C3C4 as we have been unable to solve any of these four systems.
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APPENDIX: PROOF OF THEOREM 3

Proof: Each conservation law of any k-plet potential system �GP
i1 , . . . ,GP

ik� in Q, arising from
multipliers that depend only on independent variables x, is a linear combination of terms involving
potential equations in �GP

i1 , . . . ,GP
ik� and, possibly, equations of the given system �2.1�.

For simplicity, we prove the theorem for the case when the new conservation law is obtained
as a linear combination of potential equations of a singlet potential system GP

s in Q arising from
the given system �2.1� and a single conservation law �2.8�, and involving M potential equations Qs

�2.9�. The proof directly carries over to the case when the new conservation law involves a linear
combination of potential and non-potential equations of any k-plet potential system in Q, 1�k
�n.

A new conservation law obtained using the DCM from a set of M potential equations Qs has
the form

DkA
k�x, u,�u, . . . ,�ru,v,�v, . . . ,�sv� = �i�x���

i�j

�− 1� j �

�xjvij�x� + �
j�i

�− 1�i−1 �

�xjiv ji�x�

− �i�x,u,�u, . . . ,�ru�� = 0. �A1�

where Ak�x ,u ,v ,�u , . . . ,�ru� are fluxes of the new conservation law, and �i�x��i=1, . . . ,M� are
multipliers. �Note that for the case of M independent variables, from a given conservation law
�2.8�, one obtains M potential equations �2.9�. Hence, when one seeks a new conservation law, the
number of multipliers is the same as the number of independent variables.�

It is evident that the dependence of fluxes of the new conservation law �A1� on the potentials
v is as follows:

Ak = �
i�k

�− 1�k�ivik + �
k�i

�− 1�i−1�ivki + 
k�x,u� . �A2�

We substitute �A2� in the conservation law �A1�, and deduce the following compatibility
conditions for multipliers:

��q

�xp −
��p

�xq = 0, 1 � p,q � n . �A3�

This means the differential form ��=�idxi is closed. A closed form is locally exact within an open
domain, and hence for some sufficiently smooth ��x� :��=d��x�. Equivalently �i

=���x� /�xi , i=1, . . . ,M.
We now demonstrate that the conservation law �A1� with fluxes Ak is equivalent to a conser-

vation law whose fluxes do not contain the nonlocal variables vik, but only their derivatives.
Indeed,
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DkA
k = Dk��

i�k

�− 1�k�ivik + �
k�i

�− 1�i−1�ivki + 
k�x,u��
= Dk��

i�k

�− 1�k��

�xivik + �
k�i

�− 1�i−1��

�xivki + 
k�x,u��
= Dk��

i�k

�− 1�k���vik�
�xi + �

k�i

�− 1�i−1���vki�
�xi �

− ��
i�k

�− 1�k�vik

�xi + �
k�i

�− 1�i−1�vki

�xi � + 
k�x,u�� .

The divergence of the flux part involving the first rectangular bracket is identically zero �see
�2.8�, �2.9��.

As all derivatives of potentials vik can be expressed in terms of local variables x and u on the
solution manifold of GP

s , it follows that the flux part involving the second rectangular bracket and

k�x ,u� contains only local variables of the given system �2.1�. Hence the conservation law �A1�
is linearly dependent on local ones constructed from the given system �2.5�, and hence is trivial on
the solution manifold of GP

s . This concludes the proof. �
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The Balian-Low Theorem is a strong form of the uncertainty principle for Gabor
systems that form orthonormal or Riesz bases for L2�R�. In this paper we investi-
gate the Balian-Low Theorem in the setting of Schauder bases. We prove that new
weak versions of the Balian-Low Theorem hold for Gabor Schauder bases, but we
constructively demonstrate that several variants of the BLT can fail for Gabor
Schauder bases that are not Riesz bases. We characterize a class of Gabor Schauder
bases in terms of the Zak transform and product A2 weights; the Riesz bases
correspond to the special case of weights that are bounded away from zero and
infinity. © 2006 American Institute of Physics. �DOI: 10.1063/1.2360041�

I. INTRODUCTION

A Gabor or Weyl-Heisenberg system consists of a discrete set of time-frequency shifts of a
fixed window function or atom g�L2�R�. Often, the indexing set is required to possess some
structure. For example, we will consider lattice Gabor systems of the form

G�g,�,�� = �M�nT�kg�k,n�Z = �e2�i�ntg�t − �k��k,n�Z, �1.1�

where Tx is the translation operator Txg�t�=g�t−x�, M� is the modulation operator M�g�t�
=e2�i�tg�t�, and the compositions TxM� or M�Tx are called time-frequency shift operators. Gabor
systems can also be defined in higher dimensions and on general lattices or even completely
irregular sets of time-frequency shifts. One may also consider continuous Gabor transforms. For
background on the theory and applications of Gabor systems, we refer to Refs. 1–3.

Gabor4 proposed using the Gaussian function ��t�=e−t2 as a window, with respect to the unit
time-frequency shift lattice ��=�=1�. However, while this Gaussian Gabor system G�� ,1 ,1� is
complete in L2�R� and remains complete if any single element of G�� ,1 ,1� is removed �cf. Ref.
5, p. 168�, it is not an orthonormal basis, a Riesz basis, a frame, or a Schauder basis for L2�R�
�even if the “extra” element is removed�.

However, completeness alone is too weak a property to be useful in practice. A Schauder basis
allows unique representations of elements of L2�R� in terms of the basis elements, i.e., G�g ,� ,��
is a Schauder basis if for each f �L2�R� there exist unique scalars ckn�f� such that

f = �
k,n�Z

ckn�f�M�nT�kg , �1.2�

with convergence of the series in the norm of L2 with respect to some fixed ordering of the series.
However, for a Schauder basis there need not be any direct relation between the size of the
coefficients ckn�f� and the norm of f . In contrast, if G�g ,� ,�� is a frame �defined precisely in Sec.
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II A�, then it follows not merely that G�g ,� ,�� is complete, but that every f �L2�R� can be written
as in �1.2� for a canonical choice of scalars ckn�f� whose �2 norm forms an equivalent norm for
L2�R�. Moreover, for a frame the series �1.2� converges unconditionally in the L2 norm, i.e.,
regardless of ordering. However, a frame need not provide unique expansions—the scalars ckn�f�
need not be unique in general. The canonical choice of scalars is determined by the canonical dual
frame, which for a lattice Gabor frame G�g ,� ,�� is another lattice Gabor frame G�g̃ ,� ,�� gen-
erated by a dual window g̃�L2�R�. A Riesz basis is both a frame and a Schauder basis, and thus
provides unique unconditionally convergent expansions whose coefficients stably encode the norm
of f .

The Density Theorem for Gabor systems provides necessary �but not sufficient� conditions for
G�g ,� ,�� to be complete, a frame, a Riesz basis, or a Riesz sequence �a sequence that need not be
complete but forms a Riesz basis for its closed span within L2�R��. Moreover, these conditions are
formulated solely in terms of the lattice �Z��Z.

Theorem 1.1 �Density Theorem�: Let g�L2�R� and �, ��0 be given.

�a� If G�g ,� ,�� is complete in L2�R�, then ���1. In particular, if G�g ,� ,�� is a frame, then
���1.

�b� If G�g ,� ,�� is a Riesz basis in L2�R�, then ��=1.
�c� If G�g ,� ,�� is a Riesz sequence in L2�R�, then ��	1.

The Density Theorem has a long and involved history, including extensions to general lattices,
to irregular Gabor frames in higher dimensions, and beyond Gabor frames to the setting of abstract
“localized frames.” Some of the main references include Refs. 6–12. We refer to Ref. 13 for a
detailed survey of the Density Theorem, with extensive references to the original literature.

By the Density Theorem, there is a clear separation between “overcomplete” frames and
“undercomplete” Riesz sequences, with the Riesz bases corresponding to the critical density
lattices that satisfy ��=1. Moreover, there exists a simple exact characterization, in terms of the
Zak transform, of those g such that G�g ,� ,�� is a Riesz basis for L2�R� �see Theorem 2.8�.

Unfortunately, the Balian-Low Theorem �BLT� is a classical result that implies that if
G�g ,� ,�� is a Riesz basis, then the window g must have poor joint localization in the time-
frequency plane. Specifically, the localization integrals

� 	t	2	g�t�	2 dt and � 	�	2	ĝ���	2 d�

cannot both be finite. These same localization integrals appear in the Heisenberg uncertainty
principle and, indeed, the BLT may be viewed as a strong form of the uncertainty principle for
functions that generate a Gabor Riesz basis �we refer to Ref. 14 for a survey of uncertainty
principles�.

As with the Density Theorem the BLT has a long and involved history. Stated independently
by Balian15 and Low16 for the case of orthonormal bases, a complete proof, and an extension to
Riesz bases was given by Coifman, Daubechies, and Semmes.7 Battle17 gave an elegant new proof
for the orthonormal basis case, which shows the intimate connection between the BLT and the
operator theory associated with the Heisenberg uncertainty principle. This proof was further ex-
tended by Daubechies and Janssen in Ref. 18. Related theorems that relate distinct uncertainty
principles to Riesz basis properties have been proved in Refs. 19–22, and extensions of the BLT
to higher dimensions appear in Refs. 23–25. We collectively refer to these results as Balian-Low
Theorems. Surveys of the Balian-Low Theorems appear in Refs. 19 and 26, and we also note the
related results in the papers in Refs. 27–30.

In this paper we determine the extent to which the class of Balian-Low Theorems extend to
Gabor systems G�g ,� ,�� that form Schauder bases but that need not be Riesz bases. Despite the
large literature on Gabor systems, very little has been known to date about Gabor Schauder bases.
The initial work in this direction31 proved the existence of a particular Gabor Schauder basis that
is not a Riesz basis, and also provided partial results suggesting that the Density Theorem applies
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to Gabor Schauder bases; cf. also Ref. 32 for the setting of windowed exponentials in L2�
�.
However, these papers clearly indicate that all results become more delicate and difficult for
Schauder bases, with the consequence that open questions abound.

In this paper, we accomplish several goals, as follows.

�a� We prove that the Density Theorem does hold for lattice Gabor Schauder bases. Specifically,
if G�g ,� ,�� is a Schauder basis, then ��=1. We prove that the dual basis is also a Gabor
system of the form G�g̃ ,� ,�� for a unique dual window g̃.

�b� We give a characterization of a class of Gabor Schauder bases G�g ,� ,�� in terms of the Zak
transform of the window g and product A2 weights.

�c� We prove that several variants of the Balian-Low Theorems fail to hold for Gabor Schauder
bases.

�d� We prove new weak versions of the BLT for Gabor Schauder bases, and show that as a
consequence, if the window g of a Gabor Schauder basis G�g ,� ,�� is well concentrated in
the time-frequency plane, then the dual window g̃ is poorly concentrated.

Thus, counterintuitively, the window of a Gabor Schauder basis can have much better joint
time-frequency localization than the generator of a Riesz basis. At the same time, the weak BLT
for Gabor Schauder bases implies a striking difference from the behavior of Gabor frames. To
discuss this more precisely, let us quantify time-frequency localization by the behavior of the
short-time Fourier transform �STFT� of g:

V�g�x,�� = 
g,M�Tx�� =� g�t���t − x�e−2�i�t dt, �x,�� � R2.

If we normalize as ��t�= �� /2�−1/4e−t2, then we have ���2=1 and �V�g�2= �g�2. We define the
modulation space M1�R� to be the function space consisting of all g�L2�R� whose STFT is
integrable, i.e.,

M1�R� = g � L2�R�:�g�M1 = �V�g�1 =� � 	V�g�x,��	dx d� � �� . �1.3�

Thus, a function g�M1�R� possesses an L1-type of joint localization in the time-frequency plane.
We refer to Ref. 20, Chaps. 11–13 for a detailed background on the class of modulation spaces �of
which M1 is the prototypical example�. In particular, we note that the choice of Gaussian window
� above is only for convenience; any nonzero Schwartz-class window, or indeed any nonzero
window in M1, may be used to define the modulation spaces, with each choice of window defining
the same space under an equivalent norm.

In Gabor analysis, it is essential to jointly understand the behavior of a frame G�g ,� ,�� and
its dual frame G�g̃ ,� ,��. For a Riesz basis, the Balian-Low Theorems imply that both the window
and the dual window must have poor localization:

For a Gabor Riesz basis: g � M1�R� and g̃ � M1�R� .

In contrast, Gröchenig and Leinert63 proved that if the window of a Gabor frame is well localized,
then the dual window is as well, and, conversely:

For a Gabor frame: g � M1�R� ⇔ g̃ � M1�R� .

The Gröchenig and Leinert proof used deep results on symmetric C* algebras. A new proof, based
on a type of noncommutative Wiener’s lemma, that extends to irregular Gabor frames and abstract
localized frames, was given in Refs. 33 and 12.

In this paper, we constructively demonstrate the following:
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For a Gabor Schauder basis: g � M1�R�, g̃ � M1�R� is possible.

Moreover, we show that whenever the window of a Gabor Schauder basis is well localized, then
the dual window must be poorly localized, specifically the following:

For a Gabor Schauder basis: g � M1�R� ⇒ g̃ � M1�R� . �1.4�

We note that many types of weight functions play important roles in many aspects of time-
frequency analysis �see Gröchenig’s recent survey34 for details and references�. However, to date
the Muckenhoupt, or Ap, weights have had no application within time-frequency analysis. Our
results show that the Muckenhoupt weight class is important in time-frequency analysis as a
window class via the Zak transform. This is in contrast to the usual use of weights, which
normally are used in time-frequency analysis in the quantification of time-frequency concentra-
tion.

Overview: Our paper is organized as follows. In Sec. II A we present background information
on Schauder bases, Riesz bases, and the Zak transform. In Sec. III we recall the classical Balian-
Low Theorem and several of its variants. These results, which are all stated in terms of Riesz bases
for L2�R�, form the backdrop for our investigation into the Balian-Low Theorem for Schauder
bases. In Sec. IV we investigate some basic properties of Gabor Schauder bases, including the
structure of the dual basis, and we present a short proof of a weak Balian-Low Theorem for Gabor
Schauder bases. In Sec. V we show how to use product A2 weights to give a characterization of
a class of Gabor Schauder bases for L2�R�. In Sec. VI we show that several versions of the
Balian-Low Theorem do not extend to the setting of Schauder bases. In Sec. VII, we prove that
weak versions of the M1 BLT and Amalgam BLT hold for Gabor Schauder bases and exact
systems.

II. BACKGROUND AND PRELIMINARIES

A. Schauder bases, frames, and Riesz bases

We recall the definition and basic facts regarding Schauder bases, frames, and Riesz bases in
Hilbert spaces. We refer to Refs. 35–38 for additional background.

Definition 2.1: An ordered collection F= �fn�n=0
� in a Hilbert space H is a Schauder basis for

H if for each f �H there exist unique scalars cn�f� such that

f = �
n=0

�

cn�f�fn, �2.1�

where the series converges in the norm of H.
It is important to point out that Schauder basis expansions may converge conditionally, i.e.,

the order of summation in �2.1� matters.

The linear functionals cn in �2.1� can be shown to be continuous. Therefore there exist f̃ n

�H such that cn�f�= 
f , f̃ n�. Further, F̃= � f̃ n�n=0
� is the unique sequence in H that is biorthogonal to

F, i.e.,


fm, f̃ n� = mn.

Every Schauder basis has an associated biorthogonal sequence, but the converse is not true,
i.e., the existence of a biorthogonal system does not imply that the original sequence is a Schauder
basis. The existence of a biorthogonal sequence is equivalent to the statement that F is minimal,
i.e., no element of F lies in the closed linear span of the remaining elements. A system that is both
complete and minimal is said to be exact. There exist complete and minimal systems that are not
Schauder bases.

Given a sequence F= �fn�n=0
� that has a biorthogonal sequence F̃= � f̃ n�n=0

� , we define the
partial sum operators SN :H→H by
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SN�f� = �
n=0

N


f , f̃ n�fn.

There are several equivalent definitions of a Schauder basis, of which we will need the
following.

Theorem 2.2: Given a collection F= �fn�n=0
� in a Hilbert space H, the following statements are

equivalent.

�a� F is a Schauder basis.

�b� There exists a biorthogonal sequence F̃= � f̃ n�n=0
� such that the partial sum operators SN

converge in the strong operator topology to the identity map, i.e.,

∀ f � H, f = �
n=0

�


f , f̃ n�fn. �2.2�

�c� There exists a biorthogonal sequence F̃= � f̃ n�n=0
� such that the partial sum operators are

uniformly bounded in operator norm, i.e.,

sup
N

�SN� � � .

The number C=supN�SN� is called the basis constant for F. The biorthogonal sequence F̃ is itself
a Schauder basis for H, and is called the dual basis to F.

In contrast to Schauder bases, frames are defined in terms of a norm-equivalence criterion.
Definition 2.3: A collection F= �fn�n=0

� in a Hilbert space H is a frame for H if there exist
constants A, B�0, called frame bounds, such that

∀ f � H, A�f�2 � �
i=0

�

	
f , f i�	2 � B�f�2. �2.3�

A sequence for which the upper inequality in �2.3� is satisfied, but not necessarily the lower
inequality, is called a Bessel sequence.

If F is a frame, then the frame operator Sf =�n=0
� 
f , fn�fn is a bounded, positive, and invertible

mapping of H onto itself. The canonical dual frame F̃= � f̃ n�n=0
� defined by f̃ n=S−1�fn� yields frame

expansions exactly of the form in �2.2�. Moreover, those series converge unconditionally for each

f . However, in general, a frame need not be a Schauder basis. In particular, the scalars 
f , f̃ n� in
�2.2� need not be unique.

Definition 2.4: A collection F= �fn�n=0
� in a Hilbert space H is a Riesz basis for H if it is the

image of an orthonormal basis for H under a continuous, invertible map of H onto itself.
Among other characterizations, the following theorem shows that a Riesz basis is precisely a

sequence that is both a frame and a Schauder basis.
Theorem 2.5: Given a collection F= �fn�n=0

� in a Hilbert space H, the following statements are
equivalent.

�a� F is a Riesz basis.
�b� F is a bounded unconditional basis, i.e., F is a Schauder basis, the basis expansions in �2.1�

converge unconditionally for each f �H, and 0� infn�fn��supn�fn���.
�c� F is an exact frame, i.e., it is a frame and is biorthogonal to its canonical dual frame.
�d� F is complete and there exist constants A, B�0, such that

∀c0, . . . ,cN, A�
n=0

N

	cN	2 � ��
n=0

N

cnfn�2

� B�
n=0

N

	cn	2.
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�e� F is a complete Bessel sequence and possesses a biorthogonal sequence that is also a
complete Bessel sequence.

The dual basis of a Riesz basis coincides with its canonical dual frame, and is itself a Riesz
basis for H.

We say that a sequence is a Riesz sequence if it forms a Riesz basis for its closed span within
H.

Example 2.6: Let ��t�=e−t2. von Neumann �Ref. 39, p. 406� claimed �without proof� that
G�� ,1 ,1� is complete in L2�R�. Gabor conjectured in Ref. 4, Eq. 1.29 that every function in L2�R�
can be represented in the form

f = �
k,n�Z

ckn�f�MnTk� , �2.4�

for some scalars ckn�f�. von Neumann’s claim of completeness was proved in Refs. 40 and 41.
Janssen proved in Ref. 42 that Gabor’s conjecture is true, but he showed that the series in �2.4�
converges only in the sense of tempered distributions—not in the norm of L2. Thus the Gabor
system G�� ,1 ,1� fits none of the definitions given previously in this section.

On the other hand, Lyubarskii43 and Seip and Wallstén44,45 proved that G�� ,� ,�� is a frame
for L2�R� whenever 0����1. Moreover, G�� ,� ,�� is an incomplete Riesz sequence in L2�R�
whenever ���1.

B. The Zak transform

The Zak transform was introduced by Gelfand46 and goes by several names. It is often called
the Weil-Brezin map in representation theory and abstract harmonic analysis. Zak rediscovered this
transform, which he called the k-q transform, in his work on quantum mechanics, e.g., Ref. 47.
For more information, we refer to Janssen’s influential paper48 and survey,49 or to Gröchenig’s
text.1

The Zak transform is an extremely useful tool for analyzing Gabor systems at the critical
density ��=1. Because the unitary dilation D�f�t�=�1/2f��t� maps the Gabor system G�g ,� ,1 /��
to the Gabor system G�D�g ,1 ,1�, when working at the critical density we always can, by a change
of variables, reduce to the case �=�=1. This is what we will do throughout, i.e., when we are at
the critical density we will only consider Gabor systems of the form

G�g,1,1� = �MnTkg�k,n�Z.

The Zak transform is the unitary operator Z: L2�R�→L2�Q�, where Q= �0,1�2, formally de-
fined for f �L2�R� by

Zf�t,�� = �
k�Z

f�t − k�e2�ik�, �t,�� � �0,1�2. �2.5�

It can be shown that the series above converges in the norm of L2�Q�, and that Z is a unitary map
of L2�R� onto L2�Q�. The utility of the Zak transform is made apparent by the following theorem,
where we use the notation

En,k�t,�� = e2�inte−2�ik�. �2.6�

Theorem 2.7: Let g�L2�R� be given. Then

Z�MnTkg��t,�� = �En,k · Zg��t,�� = En,k�t,��Zg�t,�� .

In other words, the Zak transform diagonalizes time-frequency shifts.
Since �En,k�k,n�Z forms an orthonormal basis for L2�Q� and since Z is unitary, the following

characterization follows easily; cf. Ref. 50 Theorem 4.3.3.
Theorem 2.8: Let g�L2�R� be given.
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�a� G�g ,1 ,1� is complete if and only if Zg�0 a.e.
�b� G�g ,1 ,1� is minimal if and only if 1/Zg�L2�Q�. In this case G�g ,1 ,1� is also complete, i.e.,

it is exact.
�c� G�g ,1 ,1� is a frame for L2�R� if and only if there exist 0�A�B�� such that A� 	Zg	2

�B a.e. In this case G�g ,1 ,1� is a Riesz basis for L2�R�, and A, B are frame bounds for
G�g ,1 ,1�.

�d� G�g ,1 ,1� is an orthonormal basis for L2�R� if and only if 	Zg	2=1 a.e.

C. Modulation spaces

In addition to the modulation space M1�R� defined in �1.3�, we will need the following
particular modulation spaces. We refer to Ref. 1 for details.

Definition 2.9: Let ��t�= �� /2�−1/4e−t2. For 1� p�� and s	0, the modulation space Ms
p�R�

consists of all tempered distributions g�S��R� for which the norm

�g�Ms
p = �V�g�Ls

p = �� � 	V�g�x,��	p�1 + 	x	 + 	�	�ps dx d��1/p

is finite.
For any �, � with 0����1, the following is an equivalent norm for Ms

p�R�:

�	g	�Ms
p = ��

k�Z
�
n�Z

	
g,M�nT�k��	p�1 + 	�k	 + 	�n	�ps�1/p
. �2.7�

For s	0, we have Ms
2�R�=Ls

2�R��Hs�R�, where

Ls
2�R� =  f � L2�R�:� 	f�t�	2�1 + 	t	�2s dt � ��

and

Hs�R� =  f � L2�R�:� 	 f̂���	2�1 + 	�	�2s d�� .

It follows from the discrete-type norm given in �2.7� that Ms
2�R��M1�R� if s�1. However,

M1
2�R� does not embed into M1�R�, nor conversely.

III. THE BALIAN-LOW THEOREMS

In this section we recall the precise statement of several variants of the Balian-Low Theorem.

We use the Fourier transform normalized by f̂���=�f�t�e−2�i�t dt. Recall that, by the Density
Theorem, if a lattice Gabor system is a Riesz basis, then necessarily we are at the critical density,
and hence it suffices to consider �=�=1. The first part of the following theorem is the classical
wording of the BLT; we also give an equivalent wording in terms of modulation spaces.

Theorem 3.1 �Classical Balian-Low Theorem�: If g�L2�R� and

� 	t	2	g�t�	2 dt � � and � 	�	2	ĝ���	2 d� � � ,

then G�g ,1 ,1� is not a Riesz basis for L2�R�. Equivalently, if g�M1
2�R�, then G�g ,1 ,1� is not a

Riesz basis for L2�R�.
The following theorem summarizes four variations of the Balian-Low Theorem that involve

different quantifications of time-frequency localization. Part �a� is formulated in terms of the
modulation space M1�R� that was defined in �1.3�. Part �b� is formulated in terms of the Wiener
amalgam space,
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W�C,�1� =  f: R → C:f is continuous and �
n�Z

�f · ��n,n+1��� � �� .

For details on the amalgam spaces, with extensive references to the original literature, we refer to
the survey in Ref. 62.

Theorem 3.2: Fix g�L2�R�: If any of the following hypotheses hold:

�a� g�M1�R�;
�b� g�W�C ,�1�;
�c� 1�q�2� p��, 1

p + 1
q =1, 0���2−q,

� 	t	p+�	g�t�	2 dt � �, and � 	�	q+�	ĝ���	2 d� � �;

�d� sup
N�0

� 	t	N	g�t�	2 dt�� and �	�		ĝ���	2 d���,

then G�g ,1 ,1� is not a Riesz basis for L2�R�.
The theorem corresponding to the hypothesis in part �a� of Theorem 3.2 was proved in Ref.

23, and it extends to Gabor systems on arbitrary lattices in higher dimensions. We will refer to this
theorem as the M1 BLT. Since M1 does not embed into M1

2�R� nor conversely, this result is distinct
from Theorem 3.1.

The theorem corresponding to part �b� is known as the Amalgam BLT.51,19 It extends to
rectangular lattices of the form �Zd��Zd in higher dimensions. For rectangular lattices, the
Amalgam BLT implies the M1 BLT. However, it is not known if the Amalgam BLT extends to
arbitrary lattices, so in that setting these two results are distinct. Furthermore, it was shown in Ref.
19 that the Amalgam BLT and the Classical BLT are distinct.

Part �c� follows from part �a� and Ref. 52, Theorem 1; see Ref. 30, Eq. �2.6�.
Part �d� was proved in Ref. 22. It is worth mentioning that part �c� actually holds for all �

�0, but we shall only deal with the case where � is sufficiently small. We refer to parts �c� and �d�
as nonsymmetric �p ,q� BLTs.

IV. SCHAUDER BASES AND A WEAK BALIAN-LOW THEOREM

In this section we will prove some basic facts about Gabor Schauder bases, and establish that
a weak version of the BLT holds for Schauder bases.

Gabor systems are naturally indexed by Z�Z, but do not come equipped with a standard
enumeration. Since Schauder basis expansions may depend critically on ordering any discussion
of Gabor Schauder bases must specify a particular enumeration of Z�Z. Therefore, whenever we
say that G�g ,� ,�� is a Gabor Schauder basis, we shall implicitly mean that there exists an
enumeration of the Gabor system G�g ,� ,��, which is a Schauder basis. When necessary we shall
explicitly define the enumeration.

A. The Density Theorem and the Dual Basis

We first observe that the existing results for Gabor Schauder bases implicitly contain a Den-
sity Theorem. We make this explicit as follows �we refer to Ref. 11 for the definition of Beurling
density�. As a consequence, for lattice Gabor Schauder bases, we will always be able to reduce to
the case �=�=1.

Theorem 4.1 �Density Theorem for Lattice Gabor Schauder Bases�: Let g�L2�R� and � ,�
�0 be given. If G�g ,� ,�� is a Schauder basis for L2�R�, then ��=1.

Proof: First, if G�g ,� ,�� is a Schauder basis, then it is complete, so Theorem 1.1 implies that
���1. On the other hand, see Ref. 31, Corollary 4.6, which gives partial necessary conditions for
an irregular Gabor system to form a Schauder basis, and implies that the lower and upper Beurling
densities of the index set �Z��Z must satisfy D±��Z��Z��1. The Beurling density of the
lattice �Z��Z is D±��Z��Z�=1/ ����, so this implies that ��	1. �
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It was conjectured in Ref. 31 that if G�g ,��= �M�Txg��x,���� is a Gabor Schauder basis with
respect to an arbitrary sequence of time-frequency shifts �, then we must have D±���=1. This
conjecture remains open for non-lattice Gabor Schauder bases.

It is well known that the dual basis to a Gabor Riesz basis G�g ,� ,�� is itself a Gabor Riesz
basis G�g̃ ,� ,��. This follows from the fact that if G�g ,� ,�� is a frame, then the frame operator S
commutes with the time-frequency shifts M�nT�k. For a Gabor Schauder basis, the frame operator
need not be a bounded or even a well-defined map. Nonetheless, we show next that the dual of a
lattice Gabor Schauder basis is also a lattice Gabor Schauder basis. By Theorem 4.1, it suffices to
consider �=�=1.

Theorem 4.2: If g�L2�R� and G�g ,1 ,1� is an exact system in L2�R�, then the biorthogonal
system has the form G�g̃ ,1 ,1�, where the dual window g̃�L2�R� is defined by the condition

Zg̃ = 1/Zg .

In particular, this determines the dual basis for a Gabor Schauder basis.
Proof: By Theorem 2.8 we have that the function G=1/Zg belongs to L2�R�. Therefore, by

the unitarity of the Zak transform we may define g̃=Z−1G�L2�R�.
If �k ,n�, �j ,m��Z2 then by Theorem 2.7, we have that


MnTkg,MmTjg̃� = 
ZMnTkg,ZMmTjg̃� = �
0

1 �
0

1

En,k�t,��Zg�t,��Em,j�t,��Zg̃�t,��dt d�

= �
0

1 �
0

1

En,k�t,��Em,j�t,��dt d� = 
En,k,Em,n� =  jkmn.

Thus, G�g̃ ,1 ,1� is biorthogonal to G�g ,1 ,1�. Since an exact system has a unique biorthogonal
system, it follows that G�g̃ ,1 ,1� is the biorthogonal system. �

The following elementary lemma will be used later.
Lemma 4.3: Let g�L2�R�. Let ��kj ,nj�� j=1

� be an enumeration of Z�Z. If G�g ,1 ,1� is a Gabor
Schauder basis with respect to this enumeration, then it is also a Gabor Schauder basis with
respect to the enumeration ��−kj ,−nj�� j=1

� .
Equivalently, if �Mnj

Tkj
g� j=1

� is a Schauder basis for L2�R� with dual basis �Mnj
Tkj

g̃� j=1
� , then

�M−nj
T−kj

g� j=1
� is a Schauder basis for L2�R� with dual basis �M−nj

T−kj
g̃� j=1

� .

B. A weak classical Balian-Low Theorem for Gabor Schauder bases

Daubechies and Janssen proved in Ref. 18 that a weak version of the BLT holds for Gabor
systems G�g ,1 ,1� that are exact in L2�R�. In particular, all Schauder bases are exact. As the proof
is simpler for Gabor Schauder bases than general exact systems, we include it here. It will be
convenient to state this result in terms of the unbounded operators P and X on L2�R�, defined by

Pf�t� = tf�t� and Xf�t� = �Pf̂�∨�t� ,

where h∨ denotes the inverse Fourier transform.
Theorem 4.4 �Weak BLT�: Let g�L2�R�. If G�g ,1 ,1� is a Schauder basis for L2�R� with dual

basis G�g̃ ,1 ,1�, then at least one of the functions,

Pg, Xg, Pg̃, Xg̃ ,

does not belong to L2�R�. Equivalently, if g, g̃�M1
2�R�, then G�g ,1 ,1� is not a Schauder basis for

L2�R�.
Proof: Although the proof is formally similar to that in Ref. 17, extra care must be taken since

Schauder basis expansions converge only conditionally in general. To this end, suppose that
G�g ,1 ,1� is a Schauder basis for L2�R� with respect to a specific enumeration ��kj ,nj�� j=1

� of
Z�Z.
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We proceed by contradiction. Assume that Pg, Xg, Pg̃, Xg̃ all belong to L2�R�. By direct
calculation, for each k, n�Z we have


Xg,MnTkg̃� = 
M−nT−kg,Xg̃� and 
MnTkg,Pg̃� = 
Pg,M−nT−kg̃� . �4.1�

Next, using �4.1� and Lemma 4.3, we compute that


Xg,Pg̃� =� lim
N→�

�
j=1

N


Xg,Mnj
Tkj

g̃�Mnj
Tkj

g,Pg̃� = lim
N→�

�
j=1

N


M−nj
T−kj

g,Xg̃�
Pg,M−nj
T−kj

g̃�

=�Pg, lim
N→�

�
j=1

N


Xg̃,M−nj
T−kj

g�M−nj
T−kj

g̃� = 
Pg,Xg̃� . �4.2�

Because the commutator �X , P�=XP− PX=−1/ �2�i�I is a multiple of the identity operator I �on
the domain of �X , P��, we have by Ref. 19, Lemma 7.2 that

1

2�i

g, g̃� = 
Pg,Xg̃� − 
Xg,Pg̃� . �4.3�

Therefore, 
g , g̃�=0 by �4.2�. But this is a contradiction, because the definition of biorthogonality
implies that 
g , g̃�=1. �

V. A2 WEIGHTS AND CHARACTERIZATIONS OF GABOR SCHAUDER BASES

Theorem 2.8 shows that the Zak transform can be used to characterize many properties of a
Gabor system. In this section we address this issue of whether Gabor Schauder bases also admit a
simple characterization in the Zak transform domain.

First, let us give a basic equivalent reformulation of the definition of Gabor Schauder bases.
This reformulation, which is an immediate consequence of Theorems 2.2 and 2.7, reveals the
issues that must be addressed in order to find the desired characterization.

Lemma 5.1: Let g�L2�R� be given, and let ��kj ,nj�� j=1
� be an enumeration of Z�Z. Then the

following statements are equivalent.

�a� G�g ,1 ,1� is a Schauder basis for L2�R� with respect to the enumeration ��kj ,nj�� j=1
� .

�b� 1/ 	Zg	�L2�Q�, and the partial sum operators SN :L2�Q�→L2�Q�, defined by

SNF = �
j=1

N


F,Enj,kj
/Zg��Enj,kj

· Zg� , �5.1�

are uniformly bounded in operator norm, i.e., supN�SN���.

The boundedness of partial sum operators in higher dimensions is, in general, a delicate issue,
e.g., Ref. 53. However, for rectangular partial sums the problem is well understood, using A2

weights as a tool.

A. Background on A2 weights

We give here some background and basic results on A2 weights. We let L1�T� denote the
space of 1-periodic functions on R that are integrable on �0,1�. We use the convention that 0 ·�
=0, and the symbol 1S will denote the characteristic function of a set S�R. We use the notation
A�B to mean that there exists an absolute constant C, such that A�CB.

Definition 5.2 �A2 weight�: A non-negative function w�L1�T� is an A2�T� weight, denoted
w�A2�T�, if there exists a constant C�0 such that for every interval I�R we have
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� 1

	I	�I

w�t�dt�� 1

	I	�I

1

w�t�
dt� � C .

We refer to the smallest such C as the A2�T� characteristic of w, denoted �w�A2�T�. Note that every
w�A2�T� satisfies 1� �w�A2�T�.

Now define

en�t� = e2�int.

The following fundamental theorem of Hunt, Muckenhoupt, and Wheeden addresses the uniform
boundedness of the Fourier partial sum operators,

TNf = �
n=−N

N


f ,en�en, �5.2�

in weighted L2 spaces. In particular, the equivalence of statements �a� and �b� in the following
theorem is a special case of Ref. 54, Theorem 8. We let Lw

2 �D� be the space of all complex-valued
functions f on D for which

�f�2,w = ��
D

	f�x�	2w�x�dx�1/2

� � .

Theorem 5.3 �Hunt, Muckenhoupt, Wheeden�: Let w be a non-negative function in L1�T�. For
N	0, let TN :Lw

2 �T�→Lw
2 �T� be the operator formally defined by �5.2�, and let �TN�2,w denote its

operator norm. Then the following statements are equivalent.

�a� supN�TN�2,w��.
�b� w�A2�T�.

Furthermore,

�w�A2�T� � sup
N

�TN�2,w
2 � �w�A2�T�

2 . �5.3�

Along with the explicit equivalence of �a� and �b�, the first inequality in �5.3� is implicit in the
proof of Ref. 54, Theorem 8. For the second inequality in �5.3�, the proof of Ref. 54, Thm. 8,
along with the fact that 1� �w�A2�T�, shows that

sup
N

�TN�2,w
2 � �Cw�2 + �w�A2�T� � �Cw�2 + �w�A2�T�

2 ,

where Cw is the norm bound for the conjugate function on Lw
2 �T� �see Ref. 54, Theorem 1�. It

therefore suffices to know that Cw is controlled from above by �w�A2�T�. This is a consequence of
the corresponding sharp result for the Hilbert transform proved in Ref. 55. For our purposes, the
full strength of �5.3� is not needed, and any reasonable relation between supN�TN�2,w

2 and �w�A2�T�
is enough for our subsequent results. In this regard, the weaker estimates given by Refs. 56 and 57
would also suffice.

Rewriting Theorem 5.3 in terms of the partial sum operators for windowed systems of expo-
nentials gives the following. Here 
·,·� denotes the usual inner product on L2�T�.

Corollary 5.4: Let w�L2�T� be nonzero a.e., and define w̃=1/ w̄. Let �nj� j=1
� be the enumera-

tion �0,1 ,−1 ,2 ,−2 ,3 ,−3 , . . . � of Z. For N	1, let SN :L2�T�→L2�T� be the operator, formally
defined by

SNf = �
j=1

N


f ,enj
· w̃��enj

· w� ,
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and let �SN� denote its operator norm. Then the following statements are equivalent.

�a� supN�SN���.
�b� 	w	2�A2�T�.

Proof: Let TN :L	w	2
2 �T�→L	w	2

2 �T� be defined by �5.2�. By Theorem 5.3, it suffices to show that
supN�TN�2,	w	2 �� if and only if supN�SN���.

Suppose that C=supN�TN�2,	w	2 ��. Then for f �L2�T�, we have

�S2N+1f�2 = �TN�f/w��2,	w	2 � C�f/w�2,	w	2 = C�f�2.

Since 	w	2�A2�T�, we have A= �w̃�2�w�2��. Therefore

�S2Nf�2 � �S2N−1f�2 + 	
f ,eNw̃�	�eNw�2 � C�f�2 + �f�2�w̃�2�w�2 = �C + A��f�2.

Hence supN�SN��C+A��.
For the converse, suppose that supN�SN���. If f �L	w	2

2 �T� then

�TN�f��2,	w	2 = �S2N+1�fw��2 � C�fw�2 = C�f�2,	w	2.

Hence supN�TN�2,	w	2 ��. �

B. Product domains and enumerations of ZÃZ

The results of the preceding section readily extend to product domains. In fact, many related
results are true more generally in the setting of singular integral operators and maximal functions
on product domains, e.g., Refs. 58 and 59.

We let L1�T�T� denote the space of functions on R2 that are 1-periodic in each variable and
integrable on �0,1�2.

Definition 5.5 �product A2 weight�: A non-negative function w�L1�T�T� is an A2�T�T�
weight if there exists C�0 such that for all intervals I, J�R, we have

� 1

	I		J	�J
�

I

w�x,y�dx dy�� 1

	I		J	�I
�

J

1

w�x,y�
dx dy� � C .

The above definition of product A2 weights is equivalent to requiring that w satisfies a
uniform A2 condition in each variable, e.g., see Ref. 59, p. 15. More precisely, w�A2�T�T� if
and only if for almost every x�T and for every interval J�R,

� 1

	J	�J

w�x,y�dy�� 1

	J	�J

1

w�x,y�
dy� � C ,

and likewise for the y variable. For perspective, recall that the product weights in A2�T�T� differ
from classical A2�T2� weights in that they involve averages over rectangles instead of just squares.

For our purposes, formally define

TM,NF = �
m=−M

M

�
n=−N

N


F,En,k�En,k,

where En,k�t ,��=e2�inte−2�ik� is as defined in �2.6�.
Theorem 5.6: Let w�L2�T�T� be non-negative. Then the following statements are equiva-

lent.

�a� supM,N�TM,N�2,w��.
�b� w�A2�T�T�.

Proof �b�⇒ �a�: This direction follows Ref. 58, p. 128. Assume that w�A2�T�T�. Let
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TNf =�n=−N
N 
f ,en�en be as defined in �5.2�. Then since wt=w�t , · � and w�=w�· ,�� satisfy uniform

A2 conditions, we have by Theorem 5.3 that there exists a constant C such that for a.e. t and � we
have

�
0

1

	TNf���	2wt���d� � C�
0

1

	f���	2wt���d�, f � Lwt

2 �T� ,

�
0

1

	TNf�t�	2w��t�dt � C�
0

1

	f�t�	2w��t�dt, f � Lw�
2 �T� .

Choose any F�Lw
2 �T�T�. By Fubini’s Theorem, Ft=F�t , · ��Lwt

2 �T� and F�=F�· ,��
�Lw�

2 �T� for a.e. t and �. Define

TN
1 F�t,�� = TNF��t� = �

−N

N


F�,en�en�t�, TM
2 F�t,�� = TMFt��� = �

−N

N


Ft,en�en��� .

Then TM,NF=TN
1 TM

2 F, so

�TM,NF�2
2 = �

0

1 �
0

1

	TN
1 TM

2 F�t,��	2w�t,��dt d� � C�
0

1 �
0

1

	TM
2 F�t,��	2w�t,��dt d�

� C2�
0

1 �
0

1

	F�t,��	2w�t,��d� dt = C2�F�2,w
2 .

�a�⇒ �b�: This direction is similar to the proof of Theorem 8 in Ref. 54. Suppose that C
=supM,N�TM,N�2,w��. Write

TM,NF�t,�� = �
0

1 �
0

1

F�u,��DN�t − u�DM�� − ��du d� ,

where

DN�t� =

sin 2��N +
1

2
�t

sin �t
.

Choose any rectangle I�J. Without loss of generality, we may assume that 	I	, 	J	 are small,
e.g., 	I	, 	J	� 1

16 . Choose any integer N such that 1 / �32N�� 	I	�1/ �16N�. If t, u� I then t−u
� I− I� �−1/ �8N� ,1 / �8N��, so

DN�t − u� 	 DN�1/�8N�� � N .

Similarly, choose M so that 1 / �32M�� 	J	�1/ �16M�.
Let H	0 be any non-negative 1-periodic function that is supported in the 1-periodic exten-

sion of I�J. Then, for �t ,��� I�J we have

	TM,N�t,��	 =� �
I�J

H�u,��DN�t − u�DM�� − ��du d� � MN� �
I�J

H�u,��du d�

�
1

	I		J	 � �
I�J

H�u,��du d� .

Consequently,
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1

	I	2	J	2�� �
I�J

H�2� �
I�J

w�t,��dt d� �� �
I�J

	TM,N�t,��	w�t,��dt d� = �TM,NH�2,w
2 � �H�2,w

2 .

�5.4�

In particular, if H is the 1-periodic extension of �1/w�1I�J, then �H�2,w
2 =��I�J�1/w�, so

� 1

	I		J	 � �
I�J

1

w�� 1

	I		J	 � �
I�J

w��� �
I�J

1

w� � �� �
I�J

1

w� .

Consequently, if 0���I�J�1/w���, then we conclude that

� 1

	I		J	 � �
I�J

1

w�� 1

	I		J	 � �
I�J

w� � 1. �5.5�

This estimate also follows trivially if ��I�J�1/w�=0. So, it only remains to consider the case
��I�J�1/w�=�. In this case there must be some F�L2�I�J� such that F /w1/2�L1�I�J�. Set
H= 	F	 /w1/2. Then ��I�JH=�, while �H�2,w= �F�2 is finite. Equation �5.4� therefore implies that
��I�Jw=0, and hence �5.5� holds trivially in this case as well. Therefore w�A2�T�T�. �

Corollary 5.7: Let W�L2�T�T� be nonzero a.e., and define W̃=1/W. For M, N	0 let
SM,N :L2�T�T�→L2�T�T� be the operator formally defined by

SM,NF = �
n=−N

N

�
m=−M

M


F,En,k · W̃��En,k · W� , �5.6�

and let �SM,N� denote its operator norm. Then the following statements are equivalent.

�a� supM,N�SM,N���.
�b� 	W	2�A2�T�T�.

Proof: Using Theorem 5.6, the proof is similar to that of Corollary 5.4. �

It will be convenient to work with the following set of enumerations of Z�Z, which are well
suited for dealing with rectangular partial sums.

Definition 5.8: Let � be the set containing all enumerations ��kj ,nj�� j=1
� of Z�Z constructed in

the following recursive manner.

�a� The initial terms �k1 ,n1� , . . . , �kJ1
,nJ1

� are either

�0,0�,�1,0�,�− 1,0�, . . . ,�A1,0�,�− A1,0�

or

�0,0�,�0,1�,�0,− 1�, . . . ,�0,B1�,�0,− B1� ,

for some positive integers A1 or B1.
�b� If ��kj ,nj�� j=1

Jk has been constructed to be of the product form �−Ak , . . . ,Ak�� �−Bk , . . . ,Bk�
for some non-negative integers Ak ,Bk, then terms are added to either the top and bottom or
the left and right sides to obtain either the rectangle

�− Ak, . . . ,Ak� � �− �Bk + 1�, . . . ,Bk + 1�

or

�− �Ak + 1�, . . . ,Ak + 1� � �− Bk, . . . ,Bk� .

For example, terms would first be added to the top ordered as
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�0,Bk + 1�,�1,Bk + 1�,�− 1,Bk + 1�, . . . ,�Ak,Bk + 1�,�− Ak,Bk + 1� ,

and then likewise for the bottom. The left and right sides proceed analogously.

Corollary 5.9: Suppose W�L2�T�T� is such that W̃=1/W�L2�T�T�. For each enumera-
tion �= ��kj ,nj�� j=1

� ��, let SN
� :L2�T�T�→L2�T�T� be the operator formally defined by

SN
�F = �

j=1

N


F,Enj,kj
· W̃��Enj,kj

· W� ,

and let �SN
�� denote its operator norm. Then the following statements are equivalent.

�a� supN,��SN
����.

�b� 	W	2�A2�T�T�.

Proof �a�⇒ �b�: Assume that supN,��SN
����. By the definition of �, it follows that

supM,N�SM,N���, with SM,N as in �5.6�. By Corollary 5.7 we conclude that 	W	2�A2�T�T�.
�b�⇒ �a�: Assume that 	W	2�A2�T�T�. Then, by definition, we have that A= �W�2�W̃�2

��, and by Corollary 5.7 we have that C=supM,N�SM,N���.
Choose any enumeration ��� and any positive integer N. Let MN be the largest integer

MN�N for which SMN

� F=SJ,KF for some integers J, K. Note that

�SN
�F�2 � �SJ,KF�2 + ��SN

� − SMN

� �F�2 � C�F�2 + ��SN
� − SMN

� �F�2.

Thus we must estimate the norm of

�SN
� − SMN

� �F = �
j=MN+1

N


F,Enj,kj
· W̃��Enj,kj

· W� . �5.7�

This series corresponds to terms that have been added to a rectangle according to the algorithm
given in Definition 5.8. For example, if terms have been added to the top of the rectangle, then
�5.7� has one of the following two forms:

�
n=−L

L


F,En,K+1 · W̃��En,K+1 · W� or �
n=−L

L+1


F,En,K+1 · W̃��En,K+1 · W� . �5.8�

The first sum is bounded by

� �
n=−L

L


F,En,K+1 · W̃��En,K+1 · W��
2

= � �
n=−L

L


F · E0,−K−1,En,0 · W̃��En,0 · W��
2

= �SL,0�F · E0,−K−1��2

� C�F · E0,−K−1�2 = C�F�2. �5.9�

The second sum in �5.8� is bounded by

� �
n=−L

L+1


F,En,K+1 · W̃��En,K+1 · W��
2

� � �
n=−L

L


F,En,K+1 · W̃��En,K+1 · W��
2

+ 	
F,EL+1,K+1 · W̃�	

��EL+1,K+1 · W�2 � C�F�2 + A�F�2. �5.10�

Substituting each of �5.9� and �5.10� into �5.7�, we conclude that for this case we have �SN
�F�2

� �2C+A��F�2. The same estimate applies if terms have been added only to the bottom, left, or
right of the rectangle. If terms have been added either to both the top and bottom, or to both the
left and right sides of the rectangle, then we end with the estimate �SN

�F�2� �3C+2A��F�2. In any
case, we conclude that supN,��SN

��� �3C+2A���. �
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C. A Zak transform characterization of Gabor Schauder bases

Using the machinery that we have developed in the previous sections, we can now give a
simple Zak transform characterization of lattice Gabor Schauder bases for L2�R�. We then con-
struct examples of Gabor Schauder bases that have interesting properties.

Note that while Zg has a natural quasiperiodic extension from �0,1�2 to R2, the definition of
A2 weight only depends on the absolute value of the weight, and 	Zg	 is 1-periodic in each
variable.

Theorem 5.10: Let g�L2�R� be given. Then the following statements are equivalent.

�a� The Gabor system G�g ,1 ,1� is a Schauder basis for L2�R� with respect to every enumeration
�= ��kj ,nj�� j=1

� ��. Further, if C� is the basis constant associated to the enumeration �, then
sup��� C���.

�b� 	Zg	2�A2�T�T�.

Proof �a�⇒ �b�: Suppose that statement �a� holds. Then by Lemma 5.1 we have that 1 /Zg
�L2�T�T�. Further, by hypothesis, supN,��SN

���sup��� C���, so Corollary 5.9 implies that
	Zg	2�A2�T�T�.

�b�⇒ �a�: Assume 	Zg	2�A2�T�T�. Then, by definition of A2�T�T�, we have that 1 /Zg
�L2�T�T�. Further, we have by Corollary 5.9 that supN,��SN

����. Lemma 5.1 therefore implies
that G�g ,1 ,1� is a Schauder basis with respect to each ���. �

While Theorem 5.10 implies that if 	Zg	2�A2�T�T� then G�g ,1 ,1� is a Schauder basis with
respect to every enumeration ���, this does not imply that it is a Schauder basis with respect to
every possible enumeration of Z�Z, since that would imply that G�g ,1 ,1� is a Riesz basis. In fact,
by Theorem 2.8, the Riesz bases correspond to the subclass of weights in A2�T�T� that are
essentially bounded, i.e., bounded away from zero and infinity. The following example is inspired
by Babenko’s example from Ref. 60; cf. Ref. 36, Example 11.2, pp. 351–354, and gives examples
of Gabor Schauder bases that are not Riesz bases.

Example 5.11. Fix 0���1/2. Assume that g=g��L2�R� satisfies the following:

�a� g is real-valued;
�b� supp�g�� �0,1�;
�c� g is infinitely differentiable on every subinterval � ,1−�, 0��1/2;
�d� g�t�= t� on �0,1 /4�;
�e� g�t�= �1− t�� on �3/4 ,1�;
�f� g�t−1/2� is even;
�g� g�t�	C�0 for 1 /4� t�3/4.

Since g is supported in �0,1�, a direct calculation shows that 	Zg�t ,��	2= 	g�t�	2�A2�T�T�.
Therefore, Theorem 5.10 implies that G�g ,1 ,1� is a Schauder basis for L2�R� with respect to every
enumeration ���. However, since 	Zg	 is not bounded away from zero, Theorem 2.8 implies that
G�g ,1 ,1� is not a Riesz basis for L2�R�.

We make some additional remarks concerning the windows constructed in Example 5.11.
Note that since Zg is bounded, G�g ,1 ,1� is a Bessel sequence, i.e., it has an upper frame bound.
Since g is supported in �0,1�, the dual window is easily seen to be the function that is g̃=1/ ḡ on
�0,1� and zero elsewhere. The dual basis G�g̃ ,1 ,1� possesses a lower frame bound but not an upper
frame bound �compare Theorem 7.1�.

Theorem 5.10 allows one to generate other interesting examples. Building on Example 5.11,
the following example provides a Gabor Schauder basis that has neither an upper frame bound nor
a lower frame bound. In other words, e.g., Ref. 36, this Gabor Schauder basis is neither Besselian
nor Hilbertian.

Example 5.12: Fix 0���1/2 and let g=g� be the function from Example 5.11. Define
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f�t� = �
g�2t� , if 0 � t � 1/2,

1

g�2t − 1�
, if 1/2 � t � 1,

0, if t � �0,1� .
�

As in Example 5.11, we have that Zf�t ,��= f�t� for �t ,���Q. Further, Zf , 1 /Zf �L2�R�, so we at
least have that G�f ,1 ,1� is complete and minimal. However, one can check that 	Zf 	2�
A2�T�T�, so, in fact, we have that G�f ,1 ,1� is a Schauder basis with respect to every enumera-
tion ���. However, since 	Zg	 is not bounded away from zero or infinity, we conclude that
G�f ,1 ,1� has neither an upper frame nor a lower frame bound.

For perspective, note that f �M1�R� since any Gabor system generated by a window in M1�R�
is a Bessel sequence, Ref. 1, Theorem 12.2.3. By contrast, we shall later prove �see Theorem 6.1�
that the example g from Example 5.11 does belong to M1�R�.

Example 5.13: The two preceding examples were both compactly supported. However, we can
easily create noncompactly supported examples. For example, since the Fourier transform is
unitary, if g is one of the functions constructed in Example 5.11 or 5.12, then G�ĝ ,1 ,1� is a Gabor
Schauder basis with respect to every enumeration in �, but it is not a Riesz basis, and ĝ is not
compactly supported.

We can also work directly in the Zak transform domain. Again, let g be any function con-
structed in Example 5.11 or 5.12, and let h be any function supported in �0,1� such that 	h	2
�A2�T�. Then G�t ,��=g�t�h��� is such that 	G	2�A2�T�T�. Hence f =Z−1G�L2�R�, and, for
every enumeration in �, G�f ,1 ,1� is a Gabor Schauder basis that is not a Riesz basis. By definition
of the Zak transform, if h is not a trigonometric polynomial, then f cannot be compactly sup-
ported.

In general, while every Schauder basis is complete and minimal, the converse need not be
true. If ��t�=e−t2, then we know that a proper subset of G�� ,1 ,1� is complete and minimal but is
not a Schauder basis. The following example shows that it is possible for a lattice Gabor system
G�g ,1 ,1� �not just a subset� to be complete and minimal yet not form a Schauder basis for L2�R�.

Example 5.14: For n=1,2 ,3 , . . ., set An= �3/2�n/2 and Bn= �2/3�n/2. Define disjoint intervals,

Ln = �1 − 2−n+1,1 − 2−n − 2−n−1�, Rn = �1 − 2−n − 2−n−1,1 − 2−n� ,

and set In=Ln�Rn. Then 	In	=2−n=2	Rn	=2	Ln	 and �n=1
� In= �0,1�. For t�R, let g be the follow-

ing non-negative function supported in �0,1�:

g = �
n=1

�

�An1Ln
+ Bn1Rn

� .

We compute that

�
0

1

	g�t�	2 dt =
1

2�
n=1

�

	In	�An
2 + Bn

2� =
1

2�
n=1

�

2−n��3

2
�n

+ �2

3
�n� � � ,

and

�
0

1 1

	g�t�	2
dt =

1

2�
n=1

�

	In	� 1

An
2 +

1

Bn
2� = �

0

1

	g�t�	2 dt � � .

Further, since g is supported in �0,1�, we have that 	Zg�t ,��	=g�t� for �t ,���Q. Therefore Zg,
1 /Zg�L2�Q�, so by Theorem 2.8, G�g ,1 ,1� is complete and minimal in L2�R�.

Next, note that
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� 1

	In	�In

	g�t�	2 dt�� 1

	In	�In

1

	g�t�	2
dt� =

1

4
�An

2 + Bn
2�� 1

An
2 +

1

Bn
2� =

1

4
�2 + �9

4
�n

+ �4

9
�n� .

Letting n→�, we see that 	Zg	2�A2�T�T�. Therefore, by Theorem 5.10 there exists at least one
enumeration ��� with respect to which the Gabor system G�g ,1 ,1� is not a Schauder basis for
L2�R�.

VI. COUNTEREXAMPLES TO THE BALIAN-LOW THEOREMS FOR GABOR SCHAUDER
BASES

In this section we investigate the extent to which the variants of the Balian-Low Theorem hold
in the setting of Schauder bases. It was conjectured in Ref. 31 that if hypothesis �a� of Theorem
3.2 holds, then the conclusion of that theorem remains true if the words “Riesz basis” are replaced
by “Schauder basis.” In other words, it was conjectured that there do not exist any Gabor Schauder
bases whose window function belongs to M1�R�. We will provide counterexamples to that con-
jecture in this section. Moreover, our counterexamples apply to each of the four hypotheses
appearing in Theorem 3.2.

Theorem 6.1: The conclusion of Theorem 3.2 is false if the words “Riesz basis” are replaced
by “Schauder basis.”

Specifically, if g=g� with 0���1/2 is one of the functions constructed in Example 5.11,
then G�g ,1 ,1� is a Schauder basis for L2�R� with respect to any enumeration ���, but it is not
a Riesz basis for L2�R�. Further, the following statements hold.

�a� g�M1�R�.
�b� g, ĝ�W�C ,�1�.
�c� If 1�q�2� p��, 1 / p+1/q=1, 0���2−q, and �q+�−1� /2��, then

� 	t	p+�	g�t�	2 dt � � and � 	�	q+�	ĝ���	2 d� � � .

�d� sup
N�0

� 	t	N	g�t�	2dt�� and �	�		ĝ���	2 d���.

Proof: �c� Assume that p, q, �, and � satisfy the given conditions, and define

Ip+��g� =� 	t	p+�	g�t�	2 dt and Iq+��ĝ� =� 	�	q+�	ĝ���	2 d� . �6.1�

Since g is continuous and compactly supported, we certainly have that Ip+��g���. Therefore, we
just have to show that Iq+��ĝ���.

Let � be a C��R� function that equals 1 on �−2� ,2�� and is supported in �−3� ,3�� for some
sufficiently small fixed ��0. Let � be a C��R� function that equals 1 on �3� ,1−3�� and is
compactly supported in �2� ,1−2��. Finally, suppose that the partition of unity property ��t�
+��t�+��t−1�=1 holds for all t� �0,1�. Since ��t�g�t� is C��R� and is compactly supported, it

suffices to show that Iq+��ĥ1��� and that Iq+��ĥ2���, where h1�t�=��t�g�t� and h2�t�
=��t−1�g�t�. Both estimates are similar, so we only prove the estimate for h=h1.

To estimate Iq�h�, we use Ref. 61, Proposition 4, p. 139, which implies that for any 0�s
�1 there exists 0�Cs such that

� 	�	2s	ĥ���	2 d� = Cs� � 	h�x + t� − h�x�	2

	t	1+2s dx dt .

Begin by noting that
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�
R\�−�,��

� 	h�x + t� − h�x�	2

	t	1+q+� dx dt � �
R\�−�,��

�h�2
2

	t	1+q+�dt � � .

It remains to estimate the analogous two integrals over the domains �0,���R and �−� ,0��R.
Since both proceed similarly, we shall only show the estimates for the first of these, which we, in
turn, break up into the following integrals:

J1 = �
0

� �
−�

−t

, J2 = �
0

� �
−t

t

, J3 = �
0

� �
t

�

, J4 = �
0

� �
�

3�

, J5 = �
0

� �
3�

�

.

Since h is supported on �0,3��, it follows that J1=J5=0.
Note that since q+�−2��1, we have

J2 � �
0

� 1

tq+�+1�
0

2t

	h�x�	2 dx dt = �
0

� �
0

2t x2�

tq+�+1dx dt � �
0

� t2�+1

tq+�+1dt � � .

Next, since 	�x+ t��−x�	��tx�−1 for all 0�x, t, we have that

J3 � �
0

� �
t

� t2x2�−2

tq+�+1 dx dt � �
0

� t2�+1

tq+�+1dt � � .

Finally, the smoothness properties of h on �� ,�� and the Mean Value Theorem imply that if
x+ t and x are both greater than � then 	h�x+ t�−h�x�	� 	t	. Therefore, since q+��2,

J4 � �
0

� �
�

3� t2

	t	q+�+1dx dt = �
0

� 1

tq+�−1dt � � ,

which completes the proof.
�d� The estimates in the proof of part �c� together with the fact that g is compactly supported

in �0,1� yields the result.
�a� This follows from part �c� and the following modulation space embedding of Gröchenig:52

If 1 / p+1/q=1, 1� p ,q , ��, and 0��, then

�g�M1 � �� 	t	p+�	g�t�	2 dt�1/2

+ �� 	�	q+�	ĝ���	2 d��1/2

.

�b� By part �a�, we have g�M1�R��W�C ,�1�. Since M1�R� is invariant under the Fourier
transform, we also have ĝ�M1�R��W�C ,�1�.

Note that the integrals in �6.1� are also finite when �=0.

VII. WEAK BLT’s FOR GABOR SCHAUDER BASES

We close by proving some new Weak BLTs for exact Gabor systems, including Gabor
Schauder bases, in particular. Parts �a� and �b� of the following theorem can be, respectively,
viewed as weak versions of the M1 BLT and Amalgam BLT in the setting of exact Gabor systems.

Theorem 7.1 �weak BLTs for exact Gabor systems�: Let g�L2�R� be such that G�g ,1 ,1� is
exact in L2�R� and let g̃=Z−1�1/Zg� be the dual window.

�a� If g�M1�R� then g̃�M1�R�.
�b� If g�W�C ,�1� then g̃�W�C ,�1�.
�c� If G�g ,1 ,1� is a Bessel sequence, then G�g̃ ,1 ,1� is Bessel if and only if G�g ,1 ,1� is a Riesz

basis.

Proof: �b� If g�W�C ,�1�, then Zg has a continuous extension to all of R2 by Ref. 19,
Theorem 3.2. But the quasiperiodicity of Zg then forces Zg to have a zero.1 Hence Zg̃=1/Zg is not
continuous, so g̃�W�C ,�1�.
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�a� This follows immediately from part �b� and the fact that M1�R��W�C ,�1�.
�c� This follows from Theorem 2.5�e�. �

Remark 7.2: In Ref. 18, Daubechies and Janssen proved that �in equivalent modulation space
terminology� if g�M2

2�R�, then G�g ,1 ,1� is not exact. Hence, if G�g ,1 ,1� is to be a Schauder
basis and g�Ms

2�R�, then we must have 0�s�2. For 1�s�2 we will have g�
Ms

2�R��M1�R�, and hence g̃�M1�R�.
In particular, the function g=g� constructed in Example 5.11 can be shown to lie in Ms

2�R� for
0�s�1. While this does not imply that g�M1�R�, the stronger embeddings of Gröchenig52

imply that g�M1�R�.
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As a ramification of a motivational discussion for previous joint work, in which
equations of motion for the finite spectral action of the standard model were de-
rived, we provide a new analysis of the results of the calculations therein, switching
from the perspective of spectral triple to that of Fredholm module and thus from the
analogy with Riemannian geometry to the premetrical structure of the noncommu-
tative geometry. Using a suggested noncommutative version of Morse theory to-
gether with algebraic K theory to analyze the vacuum solutions, the first two sum-
mands of the algebra for the finite triple of the standard model arise up to Morita
equivalence. We also demonstrate a new vacuum solution whose features are com-
patible with the physical mass matrix. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2374880�

I. INTRODUCTION

This article is a continuation of previous work joint with Barrett and Dawe Martins1 in which
field equations were calculated for the full set of internal space metric fluctuations allowed by the
noncommutative geometry axioms in the spectral triple formulation of the standard model. We
begin with a development of the discussion begun in the previous work and then provide a new
analysis of the results of the calculations therein from the perspective of Fredholm module instead
of spectral triple. Studying these Fredholm modules using algebraic K theory and K homology
leads to a suggested noncommutative version of Morse theory—a well-known tool for studying
the topology of manifolds—which is applied to the finite spectral action.

As this work ramifies from Ref. 1, for this article to make sense it is necessary to give an
explanation of the key concepts of the previous work before the main analysis in this article can
begin. Furthermore, discussion given in the previous work is brief and so one of the purposes of
this article is to explain how it highlights an open question about the noncommutative framework.
This explanation leads into a detailed introduction to the main analysis given at the beginning of
the main section, entitled “Fredholm module solutions.”

II. CONTEXT

More details about the tools and formalisms referred to below are provided in Sec. III.
The context of Ref. 1 and this its “second chapter,” is on the spectral action principle by

Connes and Chamseddine,2 where the standard model is formulated with a product �whose image
is called the total space� of two spectral triples—one that represents the Euclidean space-time
manifold and the other the zero-dimensional internal space of particle charges. The space-time
coordinate functions remain commutative but the internal space is a noncommutative “manifold.”
The spectral action principle is an important step towards the unification of gravity with particle
physics; the Einstein–Hilbert action plus Weinberg–Glashow–Salam theory all result from a cal-

a�Present address: Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
electronic mail: rmartins@math.ist.utl.pt
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culation of the eigenvalues of the Dirac operator on the total space and since the Dirac operator
encodes the metric, the spectral action principle is a purely geometrical theory.

The scope of this study involves irreducible finite real spectral triples over the complex
numbers; irreducible in the sense that there is no proper invariant subspace of the Hilbert space for
which the triple restricted to that space is itself a �nondegenerate� triple.3 For example, the stan-
dard model finite triple of three fermion families is reducible whereas the one family triple is
irreducible. By finite, we mean a finite dimensional Hilbert space over a semisimple algebra. A
caveat is that calculations carried out in this and the previous article apply only in the context of
these zero-dimensional geometries with Euclidean signature. This means that at present, no direct
physical inference can be made.

Currently concerned with the internal space triple by itself and not the full standard model
tensor product triple, we consider a single point of space time: we remove all terms that do not
depend solely on the fluctuations of the internal space Dirac operator DF. The finite spectral action
corresponds to the Higgs potential: Tr�DF

4 −2DF
2�.

The extra Einstein’s equations for internal space were calculated by Schücker et al.3,17 �for
one generation of elementary fermions� by minimizing the Higgs potential with respect to the
“fluctuated Dirac operator.”4 They found that the standard model Dirac operator was a solution.
The construction of the fluctuated Dirac operator is carried out by beginning with a choice of
initial Dirac operator �to correspond to the standard model fermion mass matrix� to satisfy the
noncommutative geometry axioms, and in analogy with the equivalence principle, fluctuating it
with the standard model’s internal space algebra of coordinates. In this way, the Higgs force is
treated as an internal space version of gravity.

III. BACKGROUND

A. Standard model finite spectral triple

A spectral triple �A ,H ,D� provides the analog of a Riemannian �note: Riemannian not
pseudo-Riemannian; applications are to Euclidean not Lorentzian space times� spin manifold to
noncommutative geometry.4,5 It consists of a involutive, not necessarily commutative algebra A, a
Hilbert space H: a finitely generated projective module, on which the algebra is represented, and
a Dirac operator D that gives a notion of distance, and from which is built a differential algebra.

The geometry of any closed �even dimensional� Riemannian spin manifold can be fully
described by a �real and even� spectral triple �according to the reconstruction theorem� and a
noncommutative geometry is essentially the same structure but with the generalization that the
algebra of coordinates are allowed to be noncommuting.6,7

For the standard model the internal Hilbert space is: H=HL � HR � HL
c

� HR
c , where

HL = �C2
� CN

� C3� � �C2
� CN� ,

HR = ��C � C� � CN
� C3� � �C � CN�

and whose basis is labeled by the elementary fermions and their antiparticles.8 The symbol c is
used to indicate the section represented by the antiparticles. The even triple has the Z/two-grading
operator �, the chirality �eigenvalues +1 or −1�. In either case of HL and HR, the first direct
summand is the quarks and the second, the leptons. N stands for the number of generations. For
example, the left-handed up and down quarks form an isospin doublet and their right-handed
counterparts are singlets and there are three colors for quarks and none for leptons. The charges on
the particles are identified by the faithful representation of the algebra on the Hilbert space.

In the definition of H above we see a second Z/two-grading that splits the Hilbert space into
two orthogonal subspaces for particles and antiparticles: H+ � H− or H � Hc.9 This is called So

reality and is not an axiom but applies to the standard model as it excludes Majorana masses. The
So reality grading operator � satisfies: �D ,��=0, �J ,��+=0, �*=�, �2=1. �Compare with reality
operator J explanation below.�

113507-2 R. A. Dawe Martins J. Math. Phys. 47, 113507 �2006�

                                                                                                                                    



Let DF denote the Dirac operator that acts on the finite dimensional internal Hilbert space; it
is the internal space counterpart of the Dirac operator that acts on space time. DF is a matrix whose
parameters are given by the Higgs field, Cabbibo–Kobayashi–Maskawa family mixing matrix and
the Yukawa couplings.2 In other words, it provides the fermion mass matrix.

The choice made for DF in order that the spectral action principle reproduces the standard
model is

DF = �
0 M* 0 0

M 0 0 0

0 0 0 MT

0 0 M̄ 0
� �1�

with basis left, right, then antiparticles left and right. M =MQ � 13 � ML, and

MQ = � ku�1 kd�2

− ku�2
¯ kd�1

¯ � ,

ML = �ke�1 ke�2

0 0
� .

�An extra row is added to ML here so that the matrices are square, this is not normally done and
relative to other literature, the labeling M is swapped with M*.� with

ku = �mu 0 0

0 mc 0

0 0 mt
� kd = VCKM�md 0 0

0 ms 0

0 0 mb
�

ke = �me 0 0

0 m� 0

0 0 m�

� .

T denotes transposition, * denotes hermitian conjugation, the bar denotes complex conjugation, mx

are the Yukawa couplings of the elementary fermions, VCKM is the Cabibbo–Kobayashi–Maskawa
generation mixing matrix. ��1 ,�2�T is the �Higgs� scalar doublet.

The finite spectral action corresponds to the Higgs potential: Tr�DF
4 −2DF

2�. If the Tr�I� term is
included,2 which obviously does not affect the equations of motion, then the action can be written
Tr�MM*− I�2.

The spectral triple algebra A is a subalgebra of the bounded operators on the Hilbert space, it
is a *-algebra not necessarily a C*-algebra but its norm closure in the Hilbert space is a
C*-algebra. The standard model tensor product algebra is “almost commutative”

A = C��M� � �H � C � M3�C�� , �2�

where the first factor is the �commutative� algebra of function on �Euclidean� space time and the
second factor is the internal space �real� algebra of particle charges.

The �faithful� representation � of the finite space algebra has been worked out by Connes to
correspond to the particle charges, see Ref. 2. The first and second summand acts on the particles
while the third summand acts on the antiparticles. The basis is given by the Hilbert space above
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� ª�
�L 0 0 0

0 �R 0 0

0 0 �c 0

0 0 0 �c
� . �3�

B. Real structure and Poincaré duality

Instead of splitting C into two copies of R as its name suggests, J forms two subspaces of the
Hilbert space �not orthogonal as in So reality�, which are interpreted as fermions and antifermions,
in which case J is given by the composition of the charge conjugation operator with complex
conjugation. The mathematical purpose of the J operator entering the axioms is to provide
Connes’ notion of a “noncommutative manifold.” That is, by turning the Hilbert space into a
bimodule, the “real” structure �Ref. 9� allows the generalization of Poincaré duality to the spectral
triple; a�A and the opposite algebra, bo�Ao �or Aop� where a acts on the left of H and bo acts
on the right

�a,bo� = 0, bo = Jb*J−1 ∀ a,b � A .

The opposite algebra provides the “dual” to the algebra. The pairing of the K theories of these two
algebras provides a noncommutative geometric version of Poincaré duality. This structure is also
important in the notion of first order differential operator in noncommutative geometry. The
tangent space over any manifold is real, and the reality structure gives rise to the real-K theory of
the enveloping algebra A � Ao.

The action of J on H as given by the composition of charge conjugation and complex
conjugation

J��1

�2
¯ � = ��2

�1
¯ � ��1,�2

¯ � � H � Hc,

where the bar indicates complex conjugation.

C. K theory

K theory is a generalized cohomology theory. Topological K theory is the topological invariant
that classifies the vector bundles over a given field, over a compact topological space X up to
stable equivalence. It is an Abelian group K0�X� generated by the isomorphism classes of vector
bundles over a given field. Addition is given by �E�+ �F�= �E � F� where �E� and �F� are isomor-
phism classes of vector bundles E and F. Every element of the group is a difference: �E�− �F�. The
Serre–Swan theorem provides the identification of topological with algebraic K theory. That is,
K0�X� is isomorphic to the algebraic K-theory group K0�C0�X��. The group K0�A� for a C*-algebra
A is generated by the projections �self-adjoint idempotents� in A. These projections form an
Abelian semigroup rather than a group, but the Grothendieck construction turns them into an
Abelian group using an equivalence relation, which is very much analogous to the process of
constructing the integers from the natural numbers.10,11

Some rules for K theory include K0�Mn�A��=K0�A� �Morita equivalent algebras have the same
K theory�, K0�A � B�=K0�A� � K0�B�, where A and B are C*-algebras.

D. Fredholm modules and K homology

The Fredholm module is the “premetric” structure that is used to define the noncommutative
calculus.5 A spectral triple can be thought of as an unbounded �unless the Hilbert space is finite
dimensional� Fredholm module with Dirac operator providing a notion of distance.
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1. Definition: Fredholm operator

A Fredholm operator is a bounded operator on a Hilbert space whose kernel and cokernel are
finite dimensional and is invertible modulo compact operators.

2. Definition: Fredholm module

Let A be an involutive algebra �over C�. Then a Fredholm module �H ,F� over A is given by:
�1� an involutive representative � of A in a Hilbert space H and �2� a Fredholm operator F=F*,
F2= I on H such that �F ,��a�� is a compact operator for any a�A. �After some trivial changes that
we do not need to go into details of here, Connes ensures that the Fredholm module makes sense
in finite dimensions.5�

If there is a Z /2 grading �, such that �=�*, �2=1 of the Hilbert space such that �a� �� ,��
=0 ∀a�A and �b� the anticommutator �� ,F�+=0 then the Fredholm is even.

There is a natural assignment of a Fredholm module to a spectral triple. To be precise, an
observation given in Ref. 5 is that there is a canonical assignment of a Fredholm module to a
spectral triple given by F=sign�D� �that is, D=F 	D	� outside the kernel of D. �On the finite
dimensional kernel of D, one takes an arbitrary isometry.12�

Kasparov’s K homology is the Poincaré dual theory to K theory—the K homology �Abelian�
group of a Fredholm module is given by the homotopy classes of its Fredholm operator F. Let F
be an elliptic operator on a compact space X �all such are Fredholm�, then there is an isomorphism,
index: �X ,F�→K0�X� where �,� denotes homotopy equivalence classes. Due to Connes’ construc-
tion of Poincaré duality for noncommutative spaces, in which the dual to A is its opposite algebra
Aop, one can write that �F����Aop� because the Abelian group K0�Aop� is generated by the
minimal rank projections of the opposite algebra Aop.13

E. Index and intersection form

We recall that every finite dimensional real involutive algebra on a finite dimensional Hilbert
space14 over the complex numbers is isomorphic to the direct summand Mn1

�C� � ¯ � Mnk
�C� for

some integers n1 to nk. Consider the Hilbert space to be made up of separate “chunks” where each
is acted upon by a different algebra summand12

Hij = PiHPj, H = �
i,j

Hij �4�

where the Pi or pi are projections in A and the Pj or JpjJ
−1 are projections in Ao. The action on

Hij from the left is ai � 1 � 1 and the action from the right is 1 � 1 � aj
T. Let rij be the number of

particles represented by Hij and �. The intersection form is

�ij = rij� , �5�

which has nonzero determinant.
The matrix �ij=rij� is the same thing as the tensor product pairing of the K-theory groups of

the algebra A with its opposite algebra

�ij = Tr�����pi�J��pj�J−1�� �6�

and we also see that

�ij = rij� = dim Hij
R − dim Hij

L , �7�

and then by summing over all the Hij one arrives at right-hand side of the Fredholm index formula

Index�PD+P� = dim HR − dim HL, �8�

where D+=M* in our conventions for the finite triple.
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F. The axioms

Axioms 1, 3, and 5 are identical with those of commutative geometry. See Ref. 4 for a full
statement and explanation of the axioms.

�1� n	0 ds=D−1 is an infinitesimal of order 1 /n where n is the dimension of the space.
�2� ��D ,a� ,b0�=0 ∀a ,b�A. By axiom 7 we also have: ��D ,b0� ,a�=0 bo�Ao opposite alge-

bra.
�3� �Smoothness� This is the algebraic formulation of smoothness of coordinates.
�4� �Orientability� There is a Hochschild cycle c. For n even, its representation on H is 
�c�

=a0�D ,a1�¯ �D ,an�. This defines the construction of the analog of the differential form that
does not require a previous knowledge of the tangent bundle. If n is odd, require 
�c�=1. If
n is even, 
�c�=� satisfies: �=�*, �2=1, �D=−D�.

�5� �Finiteness and absolute continuity� The Hilbert space is a finite, projective A module pos-
sessing a Hermitian structure.

�6� There is the Poincaré duality isomorphism K*�A�→K*�A� where the intersection form is
nondegenerate.

�7� �Reality� There is an antilinear isometry J :H→H with b0=Jb*J−1 and �a ,b0�=0. The op-
erator J must satisfy a set of further conditions, which for 0-dimensions are the following:
J2= I, JD=DJ, J�=�J.

IV. GRAVITY AND INTERNAL SPACE

In order to motivate the main analysis of this article we give an outline of the previous work
in Ref. 1 and discuss some of its implications. We also prove a new result.

The article �Ref. 1� highlights the following issue. Einstein’s equations involve all fluctuations
of the space-time metric, and so if we believe that noncommutataive spectral triples are analogous
to Riemannian spin manifolds, then we should vary the finite action with respect to the most
general internal space Dirac operator allowed by the noncommutative geometry axioms. In other
words, since Riemannian geometry gives rise to the study of gravity, we should continue to treat
the Higgs force as an internal space version of gravity by calculating the extra Einstein’s equations
for the entire set of metric fluctuations. A feature of this approach is that the element of choice is
removed; the hypothesis was that the standard model fermion mass matrix would arise as a
solution of these equations of motion, just as Newton’s laws of motion are selected through an
action minimization principle, and thus the existence of classical mechanics can be explained
mathematically. The physical mass matrix did not turn out to be a solution, in fact the additional
fluctuations overconstrained the vacuum so that the solutions were completely degenerate. How-
ever, given the logic of this idea �of Barrett’s �Ref. 1��, despite giving an unphysical result, it
deserves further attention.

In response to the result, we may consider:
�a� abandoning the paradigm that noncommutative spectral triples be completely analogous to

Riemannian geometry, and taking the Yukawa couplings to be derived from “finely tuned” con-
stants,

�b� proposing that the extra fluctuations are physical, in which case additional scalar field
terms in the action are needed �in order that the mass matrix vacuum be non-degenerate� �one
replaces the action Tr�MM*− I�2 with Tr�MM*+XX*− I�2 for some matrix X�, together with an
additional internal space discrete version of gravity. Such a new interaction might arise from a
background source term or a twisting of the Dirac operator, and

�c� proposing an eighth axiom for noncommutative geometry to act as a further geometric
constraint on the Dirac operator, which might involve a definition of curvature of internal space.

Even by leaving out the So-reality condition to increase the number of degrees of freedom in
the Dirac operator �connecting antiparticles with particles� and imposing the first order condition
as a geometric constraint upon it, did not lead to a vacuum M for the physical mass matrix because
the extra fields all had zero vacuum expectation values as shown in Ref. 1. There is another side
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of the coin revealed by modifying this calculation such that those new fields are treated as constant
numbers, which means that the Yukawa couplings determine from constants, or are constants as in
the standard model: while the fermion mass ratios are not determined of course, the vacuum
solution is a non-degenerate matrix and the product MM* is diagonal whereas M*M is not diag-
onal. These features are compatible with the physical mass matrix and with consideration �a�
above. After defining some notation we give the proof.

We label the additional degrees of freedom in the standard model Dirac operator on internal
space when So-reality condition is omitted: g ,u ,x ,h ,v ,y. In Ref. 15 these “leptoquarks” are
variable fields and effect spontaneous breaking of color symmetry, whereas we are treating them
as constants, so here color symmetry remains intact. There are also two more fields j , l that arise
and exist when �R is included,1 which was done to allow the neutrino a mass.

We use the notation: M =MQ � 13 � ML with

MQ = �a b

c d
�, ML = �q r

s t
� .

If M is a diagonal matrix then a ,d ,q , t are interpreted as Dirac masses for the up, down,
electron, and neutrino respectively.

The field equations �Ref. 1� for the Dirac operator with leptoquarks held constant are given in
the Appendix. With MQ invertible �substituting ad−bc=0 into the equations for MQ �A1� to �A4�
gives g=u=x=h=v=y=0� and with all of the additional fields held constant and r=s=0 by gauge
freedom the equations1 reduce to

3	a	2 + 3	b	2 + 	g	2 + 	u	2 + 	x	2 + 	h	2 + 	v	2 + 	y	2 − 3 = 0, �9�

	d	2 + 	c	2 − 1 = 0, �10�

ac̄ + b̄d = 0, �11�

	q	2 + 	g	2 + 	u	2 + 	x	2 + 	j	2 − 1 = 0, �12�

	t	2 + 	h	2 + 	v	2 + 	y	2 + 3	l	2 + 	j	2 − 1 = 0, �13�

ḡh + ūv + x̄y = 0, lj = 0. �14�

As claimed above, these equations give M a nondegenerate set of eigenvalues with MM*

diagonal and M*M not diagonal. In the case of the standard model where �R=0, the equations are
the above minus the equation involving t, and with j= l=0. �In the previous work g=u=x=h=v
=y were allowed to vary, thus there were more equations and the solution was a fully degenerate
mass matrix.�

Since 	a	2+ 	b	2 is identified with mu�	�1	2+ 	�2	2�, when g ,u ,x ,h ,v ,y are constants means that
the Yukawa couplings are determined from numbers that are constant. The conclusion is that we
have found equations of motion for which there exists a solution that is not demonstrably incom-
patible with experiment by means of an action principle in which an element of human choice is
removed. The result ironically provides a mathematical reason for the Yukawa couplings to require
fine tuning, however, options �b� and �c� are open and there is the caveat that these results apply
only to the zero-dimensional, Euclidean case. Also, there are the extra particle-antiparticle mixing
action terms.15

There is also a set of equations where j and l are allowed to vary while the leptoquarks remain
constant. These are the first three equations above Eq. �9� together with

j = 0,
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	q	2 + 	g	2 + 	u	2 + 	x	2 − 1 = 0,

	t	 = 	l	 = 1
2 ,

ḡh + ūv + x̄y = 0.

The conclusion is the same as above.

V. FREDHOLM MODULE SOLUTIONS

The final discussion point we would like to make with regard to Ref. 1 will motivate the
calculations that follow. Below we make the observation that the vacuum solutions to the field
equations for the full set of metric fluctuations do not pertain to the spectral triple, but rather to the
premetric structure of the spectral triple, namely the Fredholm module. Rather than the standard
model Dirac operator being a solution, its sign is a solution. We refer to the observation of Connes
that any spectral triple has a Fredholm module associated to it where the Fredholm operator F of
the Fredholm module is identified with the sign of the Dirac operator �outside its kernel� of the
spectral triple.5 In switching the focus from spectral triple to Fredholm module, one zooms out
from the geometry to the topology. Hence, instead of hypothesizing that the equations of motion
single out the correct metric, in this section we ask if the equations of motion can give solutions
which relate to topological invariants, that is, K theory and K homology.

Since the K homology of a Fredholm module is isomorphic to the K theory of the algebra it
is over, we should observe a relationship between a given algebra and the vacuum solution.
Connes’ realization of Poincaré duality in noncommutative geometry is to define the Poincaré dual
to be the opposite algebra. This means that the homotopy classes of the projections in the dual
algebra are identified with the K homology, which we recall is given by the homotopy classes of
the Fredholm module �F�. For a given algebra, one may identify a corresponding Fredholm
module solution, and below we demonstrate this for the standard model and for one other algebra.
This is only an observation, but to use this framework to obtain topological data from the vacua,
we need to make the procedure unique, so that there is a one-to-one relationship between algebra
and vacuum solution. To this end, tools from Morse theory are borrowed from commutative
geometry and a way to generalize them for this noncommutative work is suggested.

A. So-real standard model finite triple vacuum

First we recall that the most general internal space Dirac operator given the appropriate
constraints of self-adjointness, same dynamics for particles and antiparticles, orientability, So

reality and first order condition

D = D*, �D,J� = 0, �D,��+ = 0,

�D,�� = 0, ��D,a�,bo� = 0, ��D,bo�,a� = 0,

�where �,�+ denotes the anticommutator� is

DF = �
0 M* 0 0

M 0 0 0

0 0 0 MT

0 0 M̄ 0
� , �15�

where M =MQ � 13 � ML, and we have allowed for the inclusion of �R. To exclude �R as in the
standard model, we simply delete the final column from M* �or row from M�.

From the first order condition
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�M�c − �cM��L
T� − �R

T��M�c − �cM� = 0, �16�

when �L
T�=0 and �R

T�=1 we find that �M ,�c�=0 �the Higgs has no color charge� and with the
standard model representation this splits M up into the direct sum of quark and lepton masses.
Further than this, the mass matrix M is not constrained by the first order condition. This means
that the action does not know how the algebra is represented, and hence, it is missing some
geometrical information about the manifold. When So reality is omitted some of this information
becomes available to the action and, hence, �when the extra fields are kept constant� the nonde-
generate mass matrix solution of the previous section arises.

As in the previous work, we drop the So-reality condition, and allow degrees of freedom in DF

to vary but we leave the first order condition until after the equations of motion have been derived;
since we are to aim to develop a method to identify the algebra given a vacuum solution, we had
better omit any axioms that involve the algebra. However, we retain the condition that �M ,�c�
=0.

The result is

DF = �Y Z

Z̄ Ȳ
� =�

0 M* 0 G

M 0 GT 0

0 Ḡ 0 MT

G* 0 M̄ 0
� , �17�

�where G having the same dimensionality as M, was not a general matrix in Ref. 1 but was
constrained by the first order condition.� Alternate blocks are zero due to the condition �DF ,��+

=0. Here we are not using the first order condition, so G and M are both general matrices with
complex coefficients and having dimensionality depending on the number of fermions considered.

To calculate the equations of motion we vary the finite spectral action with respect the degrees
of freedom in DF as given above, first for the So-real case and then for the non-So-real triple. The
result of the former is the same as that given in Ref. 1 but we make a new interpretation of it.

1. So-real triple

The action is

S = Tr��DF�4 − 2DF
2� �18�

or, with the Tr�I� term included

S = Tr�MM* − I�2, �19�

�where I denotes the unit matrix.�
Minimizing the �19� with respect to M gave the very definition of partial isometry

M*�MM* − I� = 0 �20�

and Hermitian conjugate.
This result means that the mass matrix that minimizes the action gives each fermion an

identical mass. The new interpretation we give is that the standard model finite triple’s Dirac
operator is a solution only up to its sign, and hence, only up to the conformal structure of the
spectral triple, where sign DF=DF / 	DF	. Specifically, the vacuum solution Mvac

* is the partial
isometry in the polar decomposition of D+. This operator sign DF is the Fredholm operator for the
Fredholm module associated to the standard model finite spectral triple outside the kernel of the
Dirac operator �Ref. 5�.

2. Non-So-real triple

The action is
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S = Tr��DF�4 − 2DF
2� �21�

with DF given by �17�.
Simplifying the action by using cyclicity of trace and the fact that Tr�X�=Tr�XT�:

S = Tr�− 2�G*G + MM*� + �MM*�2 + �G*G�2 + 2�MGG*M* + MM*GTḠ + MGM̄Ḡ�� �22�

or

S = Tr�− 2�GG* + M*M� + �M*M�2 + �GG*�2 + 2�GG*M*M + GM̄MTG* + GM̄ḠM�� .

�23�

We vary the first of the above Eq. �22� with respect to M and the result is

M*�MM* + GTḠ − I� + GM̄Ḡ + GG*M* = 0 �24�

and the second with respect to G and the result is

G*�GG* + M*M − I� + M̄ḠM + M̄MTG* = 0. �25�

The field equations for GT, MT, G*, M*, Ḡ, and M̄ are just the transpose, Hermitian conjugate
or complex conjugate, respectively, of the above equations for M and G.

Although there are zeros in DF due to orientability, the equation below is the same thing as
that above, due to there being no linear terms in M or G:

DF
3 = DF,

which is of course the result of differentiating �18� with respect to DF. In other words, simply by
substituting for DF with �17� into DF

3 =DF, precisely the equations of motion obtained above
together with all their conjugate counterparts, appear.

The conclusion in this non-So-real case is the same as that in the So-real one, namely that the
solutions are partial isometries. Here is the proof:

First we check if the equations of motion do have any Fredholm module solutions. To do this,
we must look for solutions such that DF,vac

2 = I:

DF,vac
2 =�

M*M + GG* 0 M*GT + GM̄ 0

0 MM* + GTḠ 0 MG + GTMT

ḠM + MTG* 0 ḠGT + MTM̄ 0

0 G*M* + M̄Ḡ 0 G*G + M̄MT
� . �26�

Equations �24� and �25� �and conjugates� are equivalent to the equation DF
3 =DF, and therefore

we can state that the eigenvalues of the vacuum solution for DF are all in the set 
−1,0 ,1�. Then
we see that DF,vac

2 has eigenvalues all 1 or 0, which means that assuming it is diagonalizable,
DF,vac

2 =UpU* for some unitary matrix U and where p is a projection, that is, p satisfies p=p2 and
p=p*. Clearly, UpU* is a projection, in other words DF,vac

2 is a projection, and since the Dirac
operator is self-adoint, we may conclude that all the vacuum solutions are that DF,vac is a partial
isometry: �DF,vac

* DF,vac��DF,vac
* DF,vac�=DF,vac

* DF,vac. A simpler way to see this is to multiply on
both sides of the equation DF,vac

3 =DF,vac by DF,vac while recalling that the Dirac operator is
self-adjoint. Notice also that for the eigenvalues of DF,vac that are 1, Eq. �26� shows that the sum
of the two types of masses for each particle add up to 1 and so even if G can lift the degeneracy
of the Dirac mass matrix, the total mass ends up being the same. To summarize, the Fredholm
module interpretation Sec. V A 1 is again valid in this, the non-So-real case.
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B. Orthogonal complements

Although the orthogonal complement relationship between M and G can already be seen from
the result of the last part, below we demonstrate it explicitly and analyze Eqs. �25� and �24�. This
data will be used in the next part.

Since a partial isometry is just a projection multiplied by a unitary matrix, we let M be a
diagonal projection of dimensionality n. �For a partial isometry v, vH=vv*H.� We do not assume
that G is diagonal. In any calculation we assume that the dimensionalities of the matrices M and
G are the same.

From Eqs. �24� and �25� it is immediately clear that when M =0, G is a partial isometry and
vice versa.

With M a diagonal projection inserted, the equation of motion for M simplifies to

M*GTḠ + GM̄Ḡ + GG*M* = 0. �27�

If M = I it simplifies further to

GTḠ + GḠ + GG* = 0, �28�

and whereas if M is a diagonal projection of dimensionality n and rank m then the bottom n−m
rows of Eq. �27� disappear.

We show below that Eq. �28� gives G=0 for n=2 while explaining the procedure in words to
make clear that this method can be applied to the general case of arbitrary n and m—consider the

top left elements of GG* and GTḠ where n=2—all terms are positive and all elements of the top

row of G are present. The equations containing the top left and bottom right elements of GḠ may
be combined as shown below to find that G=0.

For n=2 let

G = �z y

x w
� ,

the top left and bottom right equations are

3	z	2 + 2	x	2 + yx̄ = 0

3	w	2 + 2	y	2 + xȳ = 0,

and their combination is

3	z	2 + 3	w	2 + 	x	2 + 	y	2 + 	x + y	2,

which means that x=y=w=z=0 in other words G=0.
As mentioned, if M =0 then G is a partial isometry. Equivalently, GG* and G*G are Murray–

von-Neumann equivalent projections. And in the same way, we see for general n, m the bottom
n−m rows of Eq. �28� show that the nonzero part of G is a partial isometry.

Notice the simple relationship between M and G; when M*M and G*G are diagonal projec-
tions and when DF,vac

2 = I, they are the orthogonal complement of one another. The simultaneous
matrix equations below simplify the statements: If G=0 then M is a partial isometry and vice
versa, and if M = I then G=0 and vice versa, and if M is a diagonal projection and if DF,vac is
invertible, then G is a partial isometry orthogonal to M,

M�M*M + G*G − I� = 0,

G�G*G + M*M − I� = 0.
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C. Poincaré duality

Given the standard model algebra and using Connes’ realization of Poincaré duality in non-
commutative geometry, we may write down the sign of the standard model Dirac operator. This is
just the matrix �15� with eigenvalue “1” for each particle mass. An aim of the previous work was
to answer the question, “Is the standard model fermion mass matrix �internal space Dirac operator�
a solution to the additional Einstein’s equations?,” whereas here we are considering the similar
question, “Is the sign of the standard model internal space Dirac operator a solution to the
equations?” If the direction of this arrow is reversed, that is if the K-theory group is identified for
a given vacuum solution, then topological information has been retrieved about the manifold from
the minimization procedure, and hence, there would be a mathematical reason for the choice of the
algebra up to Morita equivalence. We begin by exploring the relationship between vacuum solu-
tion and algebra. We only study the first two summands of the algebra, that is, the algebra for the
Electroweak force. The matrix M commutes with �c as the Higgs has no color charge and we do
not involve color charge at all in the remainder of this article.

We study the standard model and one other solution.
Above a set of solutions was found where for a given projection G, the vacuum solution for

M, or Mvac, is determined via the simple relationship found in the equations of motion. Let us
consider one such solution, namely the one in which G=0, that is, the one pertaining to the
standard model. Then the Mvac

* is

Mvac
* =�

1 0 0

0 1 0

0 0 1

0 0 0
� , �29�

which is a rectangular matrix because the two direct summands of the chirality Z/two-graded
Hilbert space have different dimensions. The basis may be labeled �uR ,dR ,eR�T. We can add a final
column of zeros to Mvac

* and the basis becomes �uR ,dR ,eR ,�R�T.
Recall that �F����Aop� where ��A� is given by Eq. �3�. The opposite algebra is represented

by J��a�J−1. The generators of the K-homology group are the homotopy classes of the minimal
rank projections of the opposite algebra Ao, that is, J�L�p1�J−1, which is the 2 by 2 unit matrix
diag�1,1� and J�R�p2�J−1, which is given by the number 1. The former is a projection of the
algebra of the quaternions H and the latter is simply a projection of the complex numbers C. So the
vacuum solution �29� is consistent with the element bo of the opposite algebra being

bo =�
�cT 0 0 0

0 �cT 0 0

0 0 qT 0

0 0 0 �T
� , �30�

where q is a quaternion and �=diag�̄ ,�, �C. Using the reality operator we find that an
element b of A can be given by

b =�
q 0 0 0

0 � 0 0

0 0 �c 0

0 0 0 �c
� �31�

from which we see that the first two summands of the algebra may be: H � C.
Note that this is not a unique answer because the projection diag�1,1� is also in K0�C�.
A Fredholm module to be associated to a spectral triple must have algebra and Fredholm

operator compatibility such that the first order condition is satisfied. In order to check that a
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spectral triple can be assigned to the Fredholm module, we check that the first order condition is
satisfied. It is satisfied because G=0 and �M ,�c�=0 where M is given by the direct sum.

We can generalize this procedure by choosing any other projective solution for G. For ex-
ample let alternate eigenvalues of G be nonzero beginning with the first eigenvalue zero. Then by
the orthogonal complement relationship we have the solution for Mvac

* :

Mvac
* =�

1 0 0

0 0 0

0 0 1

0 0 0
� �32�

and by the same procedure as above, we find that this solution is compatible with the algebra
M2�C� � C. M2�C� is Morita equivalent to C and so the first two summands of the algebra of this
spectral triple are Morita equivalent to C � C.

A point of clarification is that the two solutions considered above are unitary �and homotopy�
�unitary and homotopy equivalence are the same thing for stable algebras� equivalent, and so one
expects them to lead to the same topological invariants. However, in the part to follow, we will
restrict this homotopy freedom to separate “nodes”; one for each of �L, �R, and �c.

D. Morse theory and the Witten complex

The projection diag�1,1� is in the K theory of both algebras C and H, but to obtain topological
information from the vacuum solutions the relationship between the vacuum solutions and the
algebra must be one to one. We need a reason why the solutions should correspond only to the
generators of the K0�A� group and not to any other element of the group. For example we need the
matrix diag�1,1� to be associated only with H and algebras Morita equivalent to it.

In this section we generalize a theorem involving the Morse theory and the Witten complex to
suggest a method for finding topological information from the equations of motion about the
So-real �G=0� spectral triple pertaining to the standard model. The theorem is that a chain com-
plex called the Witten complex, which is constructed from the critical points of the Morse function
has the same homology groups as the manifold that the Morse function is defined on. Atiyah and
Bott have proven that the Yang-Mills action is an equivariant Morse function and since the Higgs
is a gauge field component in the internal space direction, we ask whether the finite spectral action
is also a Morse function in a proposed noncommutative sense described below. To do this, we
make a straightforward generalization of the theorem to noncommutative geometry �which comes
down to little more than the usual replacement of the commutative with the noncommutative
algebra� by proposing a noncommutative generalization to the definition of Morse function, equi-
variant Morse function �or Morse–Bott function�, Hessian matrix, and Witten complex.

A Morse function is a real-valued function on a �smooth� manifold N, f :N→R such that every
one of its critical points is nondegenerate. The way to check for nondegeneracy is to calculate the
Hessian matrix of the critical point and if this has no zero eigenvalues then the point is nonde-
generate. Of course the Higgs vacuum is an entire three-sphere of nondegenerate solutions, so in
order to use Morse theory in physics problems where there is a gauge symmetry, the equivariant
Morse function was defined where the gauge symmetry is just divided out. �There are more
complicated cases.�

The Hessian matrix of a Morse function f for a critical point is given by

aij = � �2f

�xi � xj
�	c, �33�

where c is the critical point, xi are the coordinates on N, and i runs from 1 to the dimension of N.
The “index” of the critical point is the number of negative eigenvalues of this matrix.

The action we want to consider is the finite spectral action with G=0:
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S = Tr��MM*�2 + − 2MM*� . �34�

To proceed from here, we need to make some generalizations of the above definitions to the
context of noncommutative geometry. To begin with, the notion of a critical point is no longer
valid, and differentiating with respect to each of the commuting coordinates xi on N goes over to
differentiating with respect to the matrix M. Consider the Fredholm operator F ingredient of the
Fredholm module over a noncommutative C*-algebra. Recalling that F is the generalization to
noncommutative geometry of an elliptic operator on a compact manifold in commutative geom-
etry, we understand that F is parametrized by the underlying space pertaining to the Fredholm
module. Moreover, the homotopy classes of F, �F����Aop�. With in mind the Fredholm module
picture of the underlying space on which the Morse function acts, we replace the xi with the M as
2 by 2 matrices over C. We use 2 by 2 matrices because each direct summand of the standard
model algebra is viewed as a node �not quite a point� upon which the vector bundle is built, and
the representation � is separated into 2 by 2 chunks; one for each algebra summand. Obviously the
critical points will be replaced by the vacuum solutions Mvac. Finally, we need to write down a
condition corresponding to Eq. �33� that will give meaning to a noncommutative version of a
Morse function �or at least equivariant Morse function� and check that the action S satisfies that
condition. We continue this chapter’s focus on the Fredholm module as the underlying space.

The index i does not run very far because we are working in zero dimensions and the action
only depends on M and its hermitian conjugate. The Hessian matrix can only be as follows:

a = � �2S

�M* � M
�	c. �35�

S is real-valued and we do not need to worry about smoothness as this is already covered in the
noncommutative geometry axioms. Differentiating the action S with respect to M and afterwards
with respect to M* and evaluating at M =0 produces the Hessian of S. The resulting matrix is:
MM*+M*M − I evaluated at the vacuum solution which is that MM* and M*M are “initial” and
“final” projections. Since in some solutions this matrix can have zero eigenvalues, we differentiate
twice with respect to MM*, so that MM* becomes the field to vary instead of M. The resulting
matrix is 2I, which has no zero eigenvalues. We suggest then that S is a noncommutative version
of a Morse function. Since the degeneracies due to the vacuum manifold exist and may be
associated with the finding of zero eigenvalues above, it may be more accurate to designate the
function as an equivariant Morse function in keeping with the analogy with Yang–Mills theory.

In �commutative� Morse theory, the Witten complex is defined as follows �Ref. 16�. To begin,
the free Abelian group Ci generated by the set of critical points of index i is constructed. If Ci−1 is
defined in the same way for index i−1, it is possible to define a map from Ci to Ci−1, that is, the
boundary map. This defines a chain complex called the Witten complex. It is a proven theorem
that the homology groups of this chain complex are isomorphic to the homology groups of the
manifold.

Classifying the vacuum solutions according to homotopy class, where each solution is homo-
topic to one of the following two diagonal projections:

Mv1 = �1 0

0 1
� Mv2 = �1 0

0 0
� . �36�

This is equivalent to dividing out the degenerate solutions as in equivariant theory and to consid-
ering the homotopy classes of the projections �MM * �v where the action is varied with respect to
MM* instead of M.

Since the two solutions share the same Hessian, they have the same index and therefore the
Witten complex for this particular function has only one component Ci so the homology groups
are simply Ci. Since the Witten chain complex in the case studied above is made out of only one
term Ci, the kernel of the boundary map is Ci, and the image of the boundary map for the next
term in the sequence takes the identity to the identity, therefore the homology group is simply
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given by Ci. The Abelian group Ci is generated by the two projections Mv1 and Mv2, which is
exactly the K-homology group K0�Ao�, that is, the K-homology group of the underlying Fredholm
module. �The other elements of the Abelian group arise from the other generations—of which this
framework implies there are an arbitrary number, and of course it is a mystery that we have to stop
at 3—in analogy to the Abelian group Z where S1=R /Z.� The K-theory group of the standard
model algebra is isomorphic to Z � Z � Z �though here we have only studied the first two sum-
mands�. Since one counts only a limited number of generations, the algebra is associated to the
punctured torus.

The two critical nodes can be identified with the first two direct summands �up to Morita
equivalence� on the internal space, one for H and the other C, an example of the noncommutative
generalization of the two point space �left and right� as follows. We associate Mv1 with left and
Mv2 with right. So Mv1��L�Ao� and Mv2��R�Ao�. Removing �R from the Hilbert space and a
row and column from DF means that the vacuum solution is: MQ=diag�1,1� and ML=1. These are
the minimal rank projections of H and C and Morita equivalent algebras. And by Poincaré duality
�as shown in the previous part�, the noncommutative space can be described by the quaternions
over the right ‘node’ and the complex numbers over the left.

VI. CONCLUSIONS

Although the solutions to the field equations calculated in our previous work yielded an
unphysical result, we have argued that the reasoning for their derivation deserves further attention
and we explained why Ref. 1 has highlighted an open question in the noncommutative framework.
A solution was found to the equations of motion calculated previously with the leptoquarks held
constant whose features are compatible with the physical fermion mass matrix. Ironically, this
result provides a mathematical reason for the Yukawa couplings to need fine tuning.

The solutions to the field equations for DF both with and without the So-reality condition were
shown to be partial isometries. These were interpreted as the phase or sign of DF. The relationship
between the vacuum solutions and the topology of the internal space was explored using K theory
and K homology and a method inspired by Morse theory to extract topological information from
the vacuum about the underlying noncommutative space was developed. Instead of finding a
mathematical reason in the action principle for the geometry of the standard model to be what it is
known to be by experiment, we have claimed that the vacuum provides information on its topol-
ogy in terms of K homology. Rather than the vacuum picking out just one of a myriad of possible
answers, all partial isometries are solutions. The study was limited to the first two of three
summands, that is, the Electroweak part of the standard model algebra.

We also note that with DF
2 = I, we can consider solutions in the case without So reality in which

Mv2 is associated with its orthogonal complement matrix Gv2=diag�0,1�. Applying these solutions
to the standard model basis, where �R=0, G=0 and the bottom row vanishes from Mv2 and the
outcome is the same as above. Also, a similar analysis can be carried out with M having arbitrary
dimensionalities and arbitrary numbers of algebra direct summands. This involves either an un-
wanted prediction of new massless particles, or cutting the matrices down as above to fit the
standard model Hilbert space. For example, in the dimensionality 3 case, there is an additional
solution, Mv3=diag�1,1 ,1��SU�3�. Algebras with a greater number of summands cannot be
identified using this method if there are repeated summands, for example the algebra H � H � C
� C cannot be distinguished from H � C because they have the same critical nodes.
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APPENDIX

The equations of motion for one generation and three colored quarks with leptoquarks held
constant. These were calculated for Ref. 1 using the computer package MAPLE

ā�3	a	2 + 3	c	2 + 3	b	2 + 	g	2 + 	u	2 + 	x	2 + 	h	2 + 	v	2 + 	y	2 − 3� + 3c̄b̄d = 0, �A1�

b̄�3	b	2 + 3	d	2 + 	g	2 + 	u	2 + 	x	2 + 	h	2 + 	v	2 + 	y	2 + 3	a	2 − 3� + 3ād̄c = 0, �A2�

c̄�	a	2 + 	c	2 + 	d	2 − 1� + ād̄b = 0, �A3�

d̄�	b	2 + 	d	2 + 	c	2 − 1� + c̄b̄a = 0, �A4�

q̄�	q	2 + 	s	2 + 	r	2 + 	g	2 + 	u	2 + 	x	2 + 	j	2 − 1� + r̄�h̄g + v̄u + ȳx + l̄ j + s̄t� = 0, �A5�

r̄�	r	2 + 	t	2 + 	q	2 + 	h	2 + 	v	2 + 	y	2 + 	l	2 − 1� + q̄�ḡh + ūv + x̄y + j̄l + t̄s� = 0, �A6�

s̄�3	j	2 + 	q	2 + 	s	2 + 	t	2 + 	g	2 + 	u	2 + 	x	2 + 	l	2 − 1� + t̄�h̄g + v̄u + ȳx + 2l̄ j + q̄r� = 0, �A7�

t̄�3	l	2 + 	r	2 + 	t	2 + 	s	2 + 	h	2 + 	v	2 + 	y	2 + 	j	2 − 1� + s̄�ḡh + ūv + x̄y + 2 j̄l + r̄q� = 0, �A8�

j̄�3	s	2 + 	j	2 + 	g	2 + 	u	2 + 	x	2 + 	l	2 + 	t	2 + 	q	2 − 1� + l̄�r̄q + 2t̄s + ḡh + ūv + x̄y� = 0, �A9�

l̄�3	t	2 + 	h	2 + 	v	2 + 	y	2 + 	j	2 + 	l	2 + 	r	2 + 	s	2 − 1� + j̄�q̄r + 2s̄t + h̄g + v̄u + ȳx� = 0.

�A10�
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We develop the symbolic representation method to derive the hierarchies of �2
+1�-dimensional integrable equations from the scalar Lax operators and to study
their properties globally. The method applies to both commutative and noncommu-
tative cases in the sense that the dependent variable takes its values in C or a
noncommutative associative algebra. We prove that these hierarchies are indeed
quasi-local in the commutative case as conjectured by Mikhailov and Yamilov �J.
Phys. A 31, 6707 �1998��. We propose a ring extension in the noncommutative case
based on the symbolic representation. As examples, we give noncommutative ver-
sions of Kadomtsev-Petviashvili �KP�, modified Kadomtsev-Petviashvili �mKP�,
and Boussinesq equations. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2375032�

I. INTRODUCTION

Integrable �1+1�-dimensional nonlinear evolution equations, i.e., equations of the form

ut = F�u,ux,uxx, . . . ,uxx. . .x�

possess rich algebraic and geometrical structures such as Lax representations, a bi-Hamiltonian
formulation, infinitely many symmetries and conservation laws, etc. A lot of work has been
devoted to the study of such equations and comprehensive classification results have been ob-
tained.

The extension of these remarkable structures to the �2+1�-dimensional case is not straight-
forward. It was proved in Ref. 1 that there is no bi-Hamiltonian formulation for
�2+1�-dimensional integrable equations of the same type as those for the �1+1�-dimensional case
like the Korteweg–de Vries �KdV� equation

ut = uxxx + 6uux.

In 1988, Fokas and Santini, cf. Refs. 2 and 3, constructed a bi-Hamiltonian structure for the
Kadomtsev-Petviashvili �KP� equation

ut = uxxx + 6uux + 3Dx
−1uyy

by considering it as a reduction of �3+1�-dimensional system. Meanwhile, Magri and his
coauthors,4 explained this structure from the geometric point of view by developing the concept of
Nijenhuis G-manifolds, which amazingly works for both one and two space dimensions. Dorfman
and her coauthors introduced the noncommutative ring of formal pseudo-differential operators, cf.
Refs. 5 and 6. They proved that the Fokas-Santini bi-Hamiltonian structure of the KP can be
obtained from the Adler-Gel’fand-Dikii �AGD� scheme by considering the second-order Lax op-
erator
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L = Dx
2 + u − �y .

The bi-Hamiltonian structure naturally leads to a recursion operator for the equation. However, the
operator �so-called operand� takes its value in the ring of formal differential operators and is of a
different type from the one for KdV �and therefore does not contradict the result of Ref. 1�. A
hierarchy of infinitely many symmetries can only be produced by making suitable combinations of
the operator acting on distinct seeds.4

One of the main obstacles to extend the spectacular results of �1+1�-dimensional integrable
equations to the �2+1�-dimensional case is that the equations themselves, their higher symmetries,
and conservation laws are nonlocal, i.e., the appearance of the formal integral Dx

−1 or Dy
−1. In 1998,

Mikhailov and Yamilov,7 introduced the concept of quasi-local functions based on the observation
that the operators Dx

−1 and Dy
−1 never appear alone but always in pairs like Dx

−1Dy and Dy
−1Dx for

all known integrable equations and their hierarchies of symmetries and conservation laws, which
enables them to extend the symmetry approach of testing integrability8 to the �2+1�-dimensional
case.

In this paper, we develop the symbolic representation method to produce hierarchies of �2
+1�-dimensional integrable equations from scalar Lax operators and to study their properties
globally. The method applies both to the commutative and noncommutative case in the sense that
the dependent variable takes its values in C or in a noncommutative associative algebra. We prove
that these hierarchies are indeed quasi-local in the commutative case as conjectured by Mikhailov
and Yamilov in 1998.7 This concept of quasi-locality has to be extended in the noncommutative
case. Here we propose a ring extension based on the symbolic representation. As examples, we
give noncommutative versions of the KP, mKP, and Boussinesq equations.

II. QUASI-LOCAL POLYNOMIALS AND SYMBOLIC REPRESENTATION

The symbolic method was introduced by Gel’fand and Dikii in 1975.9 However, its basic idea
can be dated back to the middle of 19th century. Recently, we successfully applied this method to
the classification of both commutative and noncommutative �1+1�-dimensional homogeneous
evolution equations in a series of papers, cf. Refs. 10–12. With the help of number theory, it
enables us to give a global description of their integrable hierarchies.13 The symbolic method is
also powerful in dealing with differential �cf. Ref. 14� and pseudo-differential �cf. Ref. 15� opera-
tors. The authors of Ref. 15 generalized the standard symmetry approach8 and made it suitable for
the study of nonlocal and nonevolutionary equations; see also Ref. 16.

In this section, we will extend the symbolic method to the case of two spatial variables x and
y. For simplicity, we restrict our attention to a single dependent variable u. Extensions to several
independent variables and dependent variables are straightforward.

A. Quasi-local polynomials

We begin with basic definitions and notations of the ring of commutative and noncommutative
differential polynomials. The derivatives of dependent variable u with respect to its independent
variables x and y are denoted by uij =�x

i �y
ju. For smaller i and j, we sometimes write the indices out

explicitly, that is, uxxy and u instead of u21 and u00. A differential monomial takes the form

ui1j1
ui2j2

¯ uikjk
.

We call k the degree of the monomial. We let Uk denote the set of differential polynomials of
degree k. The ring of differential polynomials is denoted by U= �k�1Uk. Notice that 1�U and it
is a differential ring with total x-derivation and y-derivation
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Dx = �
i=0

+�

�
j=0

+�

ui+1,j
�

�uij
and Dy = �

i=0

+�

�
j=0

+�

ui,j+1
�

�uij
.

The ring U is commutative if the dependent variable u takes its values in a commutative algebra,
for example the ring of smooth functions in x and y. Let us denote

� = Dx
−1Dy, �−1 = Dy

−1Dx. �1�

The concept of quasi-local �commutative� polynomials U��� was introduced in Ref. 7 to test
integrability of a given equation. To define it, we consider a sequence of extensions of U. Let
�U= ��f : f �U� and �−1U= ��−1f : f �U�. We define U0���=U and Uk��� is the ring closure of
the union

Uk−1��� � �Uk−1��� � �−1Uk−1��� .

Here the index k indicates the maximal depth of nesting the operator �±1 in the expression.
Clearly, we have Uk−1����Uk���. We now define U���=limk→�Uk���. However, for a given f
�U���, there exists k such that f �Uk���. The extension U��� has a natural gradation according
to the number of u and its derivatives

U��� = � l�1Ul���, Up���Uq��� � Up+q��� .

Note that Uk��� is not invariant under transformation of variables. For example, a simple trans-
formation

x� = x + y, y� = y �2�

transforms �=Dx�
−1Dy��1−�=1−Dx

−1Dy. Hence �−1� �1−��−1, which is not in Uk���.
If u takes its value in a noncommutative associative algebra, the ring U is noncommutative.

Typical examples are the algebras of n�n matrices and Clifford algebras �see Ref. 17 for more
examples and noncommutative �1+1�-dimensional integrable evolution equations�. For any ele-
ment f , g, and h in a noncommutative associative algebra, we use the notation

Lf�g� = fg, Rf�g� = gf �3�

for the operators of left and right multiplication, and

Cf�g� = Lf�g� − Rf�g� = fg − gf �4�

for the commutator �notation adf is also commonly used�. It is a derivation since it satisfies the
Leibniz rule: Cf�gh�=Cf�g�h+gCf�h�.

So far there is no proper extension from noncommutative differential polynomials to quasi-
local noncommutative polynomials, mainly because the study of noncommutative
�2+1�-dimensional integrable equations is a new and challenging topic. We can take the corre-
sponding extension of U��� as the starting point. However, this turns out to be too restrictive. This
will be discussed further in Sec. IV B.

B. Symbolic representation

The basic idea of the symbolic representation is to replace uij by u�i� j, where � and � are
symbols. Now the total differentiation with respect to x, that is, mapping uij to ui+1,j, is replaced by
multiplication with �, as in the Fourier transform. Similarly, the total differentiation with respect to
y mapping uij to ui,j+1, is replaced by multiplication with �. For higher degree terms with multiple
u’s, one uses different symbols to denote each of them. Its symbolic representation depends on
where u takes its value, i.e., whether it is commutative or not. For example, the noncommutative
binomial uijukl has symbolic representation u2�1

i �1
j �2

k�2
l . In the commutative case, one has uijukl

=ukluij. We therefore need to average its symbolic representation over the permutation group �2 so
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that uijukl and ukluij have the same symbolic form. So the symbolic representation of uijukl is
�u2 /2���1

i �1
j �2

k�2
l +�2

i �2
j �1

k�1
l �. Symmetrization makes the symbol representation of monomials

unique.
Let Ak be the space of algebraic polynomials f in 2k variables, �i and �i, where i=1, . . . ,k.
The symbolic representation defines a linear isomorphism between the space Uk of �non�-

commutative differential polynomials of degree k and the space Ak. It is uniquely defined by its
action on monomials.

Definition 1: The symbolic representation of a differential monomial is defined as

ui1,j1
ui2,j2

¯ uik,jk
� �uk�1

i1�1
j1�2

i2�2
j2
¯ �k

ik�k
jk, �noncommutative�;

uk

k! �
���k

���1�
i1 ���1�

j1
¯ ���k�

ik ���k�
jk , �commutative� . 	

There are two parts in the symbolic representation of a monomial: the first part, uk, indicating its
degree; the second part being in Ak. The symbols of Gel’fand and Dikii only contain the second
part. We emphasize that the first part is very important in dealing with the monomials ul and the
case of several noncommutative dependent variables.

In general, we denote the symbolic representation of P�Uk, whether it is commutative or not,

by P̂ and Q�Ul by Q̂. The multiplication of P and Q corresponds to the symbol

PQ̂��1,�1, . . . ,�k,�k,�k+1,�k+1, . . . ,�k+l,�k+l� = P̂��1,�1, . . . ,�k,�k�Q̂��k+1,�k+1, . . . ,�k+l,�k+l�;

�5�

when P and Q are commutative differential polynomials, the right-hand side needs to be symme-
trized

PQ̂��1,�1, . . . ,�k,�k,�k+1,�k+1, . . . ,�k+l,�k+l�

=
1

�k + l�! �
���k+l

P̂����1�,���1�, . . . ,���k�,���k��Q̂����k+1�,���k+1�, . . . ,���k+l�,���k+l�� . �6�

The total derivatives Dx and Dy have the following representations:

DxP̂��1,�1,�2,�2, . . . ,�k,�k� = ��1 + ¯ + �k�P̂��1,�1,�2,�2, . . . ,�k,�k�;

DyP̂��1,�1,�2,�2, ¯ ,�k,�k� = ��1 + ¯ + �k�P̂��1,�1,�2,�2, . . . ,�k,�k� .

Naturally, the actions of �=Dx
−1Dy and �−1 on P�Uk can be represented as

�P̂��1,�1,�2,�2, . . . ,�k,�k� =
�1 + ¯ + �k

�1 + ¯ + �k
P̂��1,�1,�2,�2, . . . ,�k,�k�;

�−1P̂��1,�1,�2,�2, . . . ,�k,�k� =
�1 + ¯ + �k

�1 + ¯ + �k
P̂��1,�1,�2,�2, . . . ,�k,�k� .

Similar to the multiplication of P and Q, we have
Definition 2: Let P�Uk and Q�Ul. Then

P�Q̂ = P̂��1,�1, . . . ,�k,�k�
�k+1 + ¯ + �k+l

�k+1 + ¯ + �k+l
Q̂��k+1,�k+1, . . . ,�k+l,�k+l� .

When P and Q are commutative differential polynomials, the right-hand side needs to be symme-
trized.
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In the same way, we can uniquely define the symbol of P�−1Q. Together with the multipli-
cation rule �5� or �6�, we have now completely determined the symbolic representations of the
elements in U1���. By induction, we can define the symbolic representation of any element in
U���, which is a rational function with its denominator being the products of the linear factors.
The expression of the denominator uniquely determines how the operator �±1 is nested.

Example 1: The expressions u3�1��2+�3� / ��2+�3���3 /�3� and u3�1��2 /�2���3 /�3� are the
symbolic representations of ux��u�−1u��U2��� and ux��u��−1u�U1���, respectively.

Let us define the symbolic representations of pseudo-differential operators motivated by their
Fourier transforms. First we assign a special symbol X to the operator Dx. Its formal inverse Dx

−1

has the symbol 1 /X. Then we have the following rules for f �Uk��� with symbol f̂ and g
�Ul��� with symbol ĝ:

X � f̂��1,�1, . . . ,�k,�k� = ��1 + ¯ + �k + X� f̂��1,�1, . . . ,�k,�k� ,

which represents the Leibniz rule Dx � f =Dx�f�+ f �Dx; and the composition rule

f̂Xp � ĝXq = f̂��1,�1, . . . ,�k,�k���k+1 + ¯ + �k+l + X�pĝ��k+1,�k+1, . . . ,�k+l,�k+l�Xq.

This composition rule is valid for both positive and negative powers p and q. For positive powers,
it is a polynomial of X. For negative powers, one can expand it at X=� to identify it.

Example 2: The symbol of Dx
−1u is u / �X+�� if we assign � as the symbol for u. Then in the

noncommutative case we have

Dx
−1uDx

−1u = u2Dx
−2 − �2uux + uxu�Dx

−3 + �3uuxx + 3ux
2 + uxxu�Dx

−4 + ¯ .

Symbolically, we can compute it by

u

X + �
�

u

X + �
=

u2

�X + �1 + �2��X + �2�
= u2
 1

X2 −
�1 + 2�2

X3 +
�1

2 + 3�1�2 + 3�2
2

X4 + ¯ � .

To extend the symbolic representation from one dependent variable to several noncommutative
dependent variables is straightforward. We need to assign new symbols for each of them such as
assigning ��1� ,��1� for u and ��2� ,��2� for v, and so on. As one can imagine, the abstract formulas
for arbitrary n-dependent variables get very long and it is difficult to present them in a compact
way. We have no problems in handling small n or given expressions.

Example 3: The symbolic representation of uxvy is uv��1���2� and that of vyux is vu��1���2�.
Notice that the only difference in the symbolic representations for uxvy and vyux is uv instead

of vu, that is, the noncommutativity of dependent variables lies in the first part of the symbolic
representation indicating the degree of the expression.

III. LAX FORMULATION OF „2+1…-DIMENSIONAL INTEGRABLE EQUATIONS

In this section, we give a short description of construction of �2+1�-dimensional integrable
equations from a given scalar Lax operator based on the well-known Sato approach. For details on
the Sato approach, see the recent books18,19 and related references therein.

Consider an mth-order formal pseudo-differential operator

A = amDx
m + am−1Dx

m−1 + ¯ + a0 + a−1Dx
−1 + ¯ , m � 0,

where the coefficients ak are functions of x and Dx
−1 is the formal inverse of the total x-derivative

Dx. Here the functions ak take their values in commutative �for instance complex numbers C� or
noncommutative �for instance the algebra of n�n matrices� associative algebras.

To define the product of two pseudo-differential operators requires the action of differential
operator Dx

n on a multiplication operator f �given by a function of x�,
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Dx
n � f = �

i�0

n�n − 1� ¯ �n − i + 1�
i!

�Dx
i f�Dx

n−i.

Let the commutator be the bracket on the set of pseudo-differential operators. Thus, the set of
pseudo-differential operators forms a Lie algebra. For an integer k	m, we introduce notations

A�k = amDx
m + am−1Dx

m−1 + ¯ + akDx
k

A	k = A − A�k = ak−1Dx
k−1 + ¯ .

When k� �0,1�, the Lie algebra decomposes as a direct sum of two subalgebras in both commu-
tative and noncommutative cases. We denote the projections onto these subalgebras by P±. Such
decompositions are naturally related with integrability and lead to admissible scalar Lax operators
for �1+1�-dimensional Lax dynamics �cf. Ref. 18, p. 270 for the commutative case�, namely

k = 0: L̃ = Dx
n + u�n−2�Dx

n−2 + u�n−3�Dx
n−3 + ¯ + u�0�, n � 2;

k = 1: L̃ = Dx
n + u�n−1�Dx

n−1 + u�n−2�Dx
n−2 + ¯ + u�0� + Dx

−1u�−1�, n � 2;

where u�i� are functions of a spatial variable x.
We know every pseudo-differential operator of order n
0 has an nth root. This allows us to

define the fractional powers L̃i/n , i�N. Let B̃i=P+�L̃i/n�. For each choice of i, we introduce a
different time variable ti. Thus, the flows defined by

�L̃

�ti
= �Bi,L̃�, i � N

commute.20

This setting up can be generalized into the �2+1�-dimensional case as follows: An mth-order
pseudo-differential operator of two spatial variables is of the form

H = − Dy + amDx
m + am−1Dx

m−1 + ¯ + a0 + a−1Dx
−1 + ¯ , m � 0,

where coefficients ak are functions of x, y and for an integer k	m, we split into

H�k = amDx
m + am−1Dx

m−1 + ¯ + akDx
k

H	k = H − H�k = − Dy + ak−1Dx
k−1 + ¯ .

Similar to the �1+1�-dimensional case, this operator algebra decomposes as a direct sum of two
subalgebras in both commutative and noncommutative cases when k� �0,1�. The admissible types

of scalar Lax operators for the case of �2+1� dimensions are L̃−Dy, i.e.,

�a� k = 0: L = Dx
n + u�n−2�Dx

n−2 + u�n−3�Dx
n−3 + ¯ + u�0� − Dy, n � 2;

�b� k = 1: L = Dx
n + u�n−1�Dx

n−1 + u�n−2�Dx
n−2 + ¯ + u�0� + Dx

−1u�−1� − Dy, n � 2;

�c� k = 1: L = u�0� + Dx
−1u�−1� − Dy;

where u�i� are functions of two spatial variables x, y. We often use u ,v ,w , . . . in the examples.
When n=1 for case �b�, we have L=Dx+u�0�+Dx

−1u�−1�−Dy, which can be transformed into case
�c� by transformation �2�. Therefore, we exclude it from our consideration.

Let S=Dx+a0+a−1Dx
−1+¯. For any operator L as listed in cases �a�, �b�, and �c�, the relation
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�S,L� ª SL − LS = 0, �7�

uniquely determines the operator S by taking the integration constants as zero. Furthermore, we
have �Sn ,L�=0 for any n�N. For each choice of i, we introduce a different time variable ti and
define the Lax equation by

�L

�ti
= �Si

�k,L� , �8�

where k is determined by the operator L as listed in cases �a�, �b�, and �c�.
Theorem 1: For the operator S uniquely determined as above by (7), the flows defined by Lax

equations (8) commute, that is, �tj
�ti

L=�ti
�tj

L.
Proof: Using Lax equations, we have

�tj
�ti

L = ��tj
Si

�k,L� + �Si
�k,�tj

L� = ��tj
Si

�k,L� + �Si
�k,�S

j
�k,L�� .

Hence

�tj
�ti

L − �ti
�tj

L = ��tj
Si

�k − �ti
Sj

�k − �Sj
�k,S

i
�k�,L� .

Meanwhile, from formula �7�, we get

��ti
S,L� = − �S,�ti

L� = − �S,�Si
�k,L�� = ��Si

�k,S�,L� ,

implying

�ti
S = �Si

�k,S� . �9�

Thus

�tj
Si

�k − �ti
Sj

�k − �Sj
�k,S

i
�k� = ��tj

Si��k − ��ti
Sj��k − �Sj

�k,S
i
�k�

= �Sj
�k,S

i��k − �Si
�k,S

j��k − �Sj
�k,S

i
�k�

= − �Sj
	k,S

i
�k + Si

	k��k − �Si
�k,S

j
�k + Sj

	k��k − �Sj
�k,S

i
�k�

= − �Sj
	k,S

i
	k��k = 0.

This leads to �tj
�ti

L=�ti
�tj

L. �

Remark 1: In the commutative case, there is one more admissible type of scalar Lax operator,
that is,

k = 2: L = u�n�n
Dx

n + u�n−1�Dx
n−1 + u�n−2�Dx

n−2 + ¯ + u�0� + Dx
−1u�−1� + Dx

−2u�−2� − Dy .

Theorem 1 is also valid for this type by taking S=u�n�Dx+a0+a−1Dx
−1+¯ instead.

Example 4: Consider the Lax operator L=u2Dx
2+vDx+w+Dx

−1p+Dx
−2q−Dy, where all depen-

dent variables take their values in C. Using formula (7), we have S=uDx+a0+a−1Dx
−1+¯ with

a0 = −
1

2

ux −

v
u

+ �
1

u
�

a−1 =
1

8

2uxx −

ux
2

u
−

2vx

u
+

4uxv
u2 −

v2

u3 −
4uy

u2 +
2

u
�

v
u2 +

4w

u
−

2

u
�
1

u
�

1

u
� +

1

u

�

1

u
�2� .

and S1
�2=0, S2

�2=u2Dx
2, S3

�2=u3Dx
3+3u2�ux+a0�Dx

2. By the Lax equation, we obtain
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�
ut3

=
1

4

u3uxxx − 6uy�

1

u
− 3u
�

1

u
�

y
+ 3u2vxx + 3u2wx + 3vy + 3vvx − 3

ux

u
v2 − 6�uv�x�

1

u
�

vt3
= u3vxxx + 3u2�wxx + upx + uxp + �vxx + 2wx��ux + a0��

wt3
= u3wxxx + 3u2�wxx + px��ux + a0� + 3p�u2a0�x + 3u2�uqx − 2uxpx + 2uxq�

pt3
= �u3p�xxx − 3��u2�uxp + a0p + q��xx + 2�u2q�ux + a0��x�

qt3
= �u3q�xxx − 3�u2q�ux + a0��xx.

	
Notice that the reduction of v=w= p=q=0 leads to the well-known �2+1�-Harry-Dym equation

ut3
=

1

4

u3uxxx − 6uy�

1

u
− 3u
�

1

u
�

y
� .

IV. LAX FORMULATION IN SYMBOLIC REPRESENTATION

In this section, we carry out the formalism of Sec. III in symbolic form. We first consider
noncommutative dependent variables to simplify our formulas. The strategy for the commutative
case is to do the calculation as much as possible by treating it as noncommutative and only do
symmetrization at the last stage to get the uniqueness of the symbolic representation since the
symmetrization complicates the calculation dramatically.

Let us assign the symbols ��i� ,��i� for dependent variable u�i� and the symbol Y for the operator
Dy. The symbolic representations of the admissible scalar Lax operators are

�a� k = 0: L̂ = Xn − Y + u�n−2�Xn−2 + u�n−3�Xn−3 + ¯ + u�0�, n � 2;

�b� k = 1: L̂ = Xn − Y + u�n−1�Xn−1 + u�n−2�Xn−2 + ¯ + u�0� + u�−1� 1

X + ��−1� , n � 2;

�c� k = 1: L̂ = − Y + u�0� + u�−1� 1

X + ��−1� .

We first treat case �a�. It is convenient to consider formal series in the form, for n�2,

S = X + �
i=0

n−2

u�i�a1
�i���1

�i�,�1
�i�,X� + �

i1=0

n−2

�
i2=0

n−2

u�i1�u�i2�a2
�i1i2��� j1

�i1�,� j1

�i1�,� j2

�i2�,� j2

�i2�,X� + ¯ , �10�

where ai are functions of their specific arguments and jk is defined by the number of ik in the list
of �i1 , i2 , . . . , il�, which implies that j1=1 and jk�1, k=1,2 , . . . , l. For example, when i1= i2, the
arguments of function a2

i1i1 are �1
�i1�, �1

�i1�, �2
�i1�, �2

�i1�, and X.
It is easy to check that

�Xn − Y,��� j1

�i1�,� j1

�i1�, . . . ,� jl

�il�,� jl

�il�,X�� = Nl�� j1

�i1�,� j1

�i1�, . . . ,� jl

�il�,� jl

�il�,X�� , �11�

where the polynomial Nl is defined by

Nl�x1,y1,x2,y2, . . . ,xl,yl;X� = 
�
i=1

l

xi + X�n

− Xn − �
i=1

l

yi. �12�

Proposition 1: For any operator L in case �a�, if the formal series (10) satisfies the relation
�S ,L�=0 [cf. (7)], we have for l�1,

al
�i1i2¯il� = al�� j1

�i1�,� j1

�i1�, . . . ,� jl

�il�,� jl

�il�,X� = �
r=1

l 
X + �
s=r+1

l

� js

�is��ir

bl�� j1

�i1�,� j1

�i1�, . . . ,� jl

�il�,� jl

�il�,X� ,

�13�
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where the superindex is� �0,1 ,2 , . . . ,n−2� and the subindex jk is defined by the number of ik in
the list of �i1 , i2 , . . . , ik�. The function bl, l�1, is defined by

bl�� j1

�i1�,� j1

�i1�, . . . ,� jl

�il�,� jl

�il�,X� =
cl�� j1

�i1�,� j1

�i1�, . . . ,� jl

�il�,� jl

�il�,X�

Nl�� j1

�i1�,� j1

�i1�, . . . ,� jl

�il�,� jl

�il�,X�
�14�

with l
1

cl�� j1

�i1�,� j1

�i1�, . . . ,� jl

�il�,� jl

�il�,X� = bl−1�� j1

�i1�,� j1

�i1� . . . ,� jl−1

�il−1�,� jl−1

�il−1�,X + � jl

�il��

− bl−1�� j2

�i2�,� j2

�i2�, . . . ,� jl

�il�,� jl

�il�,X� �15�

and the initial function c1��1
�i� ,�1

�i� ,X�=�1
�i�.

Proof: We compute �L ,S� symbolically and collect the coefficients of each algebraically
independent monomial of the dependent variables. For the linear terms, we have for any i
� �0, . . . ,n−2�,

a1
�i���1

�i�,�1
�i�,X� =

�1
�i�Xi

N1��1
�i�,�1

�i�,X�
= b1��1

�i�,�1
�i�,X�Xi. �16�

For the quadratic terms, when i� j, we need to compute

Aij
ª − Xi � a1

�j���1
�j�,�1

�j�,X� + a1
�i���1

�i�,�1
�i�,X� � Xj

= −
�X + �1

�j��i�1
�j�Xj

N1��1
�j�,�1

�j�,X�
+

�1
�i��X + �1

�j��iXj

N1��1
�i�,�1

�i�,X + �1
�j��

= �X + �1
�j��iXj
 �1

�i�

N1��1
�i�,�1

�i�,X + �1
�j��

−
�1

�j�

N1��1
�j�,�1

�j�,X�
�

= �X + �1
�j��iXj�b1��1

�i�,�1
�i�,X + �1

�j�� − b1��1
�j�,�1

�j�,X�� = �X + �1
�j��iXjc2��1

�i�,�1
�i�,�1

�j�,�1
�j�,X� ,

and when i= j, we have

Aii
ª − �Xi,a1

�i���1
�i�,�1

�i�,X�� = − Xi � a1
�i���1

�i�,�1
�i�,X� + a1

�i���1
�i�,�1

�i�,X� � Xi

= −
�X + �2

�i��i�2
�i�Xi

N1��2
�i�,�2

�i�,X�
+

�1
�i��X + �2

�i��iXi

N1��1
�i�,�1

�i�,X + �2
�i��

.

This can be obtained by substituting �1
�j�=�2

�i� and �1
�j�=�2

�i� in Aij. It follows that

a2
�i1i2��� j1

�i1�,� j1

�i1�,� j2

�i2�,� j2

�i2�,X� =
Ai1i2

N2�� j1

�i1�,� j1

�i1�,� j2

�i2�,� j2

�i2�,X�
= �X + � j2

�i2��i1Xi2b2�� j1

�i1�,� j1

�i1�,� j2

�i2�,� j2

�i2�,X� .

�17�

Assume that formula �13� is valid for degree l−1. Let us compute al
�i1i2¯il� in the same way as

computing the quadratic terms. Then we have

Nl�� j1

�i1�,� j1

�i1�, . . . ,� jl

�il�,� jl

�il�,X�al
�i1i2¯il�

= − Xi1 � al−1
�i2¯il� + al−1

�i1i2¯il−1� � Xil

= − 
X + �
p=2

l

� jp

�ip��i1

�
r=2

l 
X + �
s=r+1

l

� js

�is��ir

bl−1�� j2

�i2�,� j2

�i2�, . . . ,� jl

�il�,� jl

�il�,X�
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+ �
r=1

l−1 
X + �
s=r+1

l

� js

�is��ir

Xilbl−1�� j1

�i1�,� j1

�i1�, . . . ,� jl−1

�il−1�,� jl−1

�il−1�,X + � jl

�il��

= �
r=1

l 
X + �
s=r+1

l

� js

�is��ir

�bl−1�� j1

�i1�,� j1

�i1�, . . . ,� jl−1

�il−1�,� jl−1

�il−1�,X + � jl

�il��

− bl−1�� j2

�i2�,� j2

�i2�, . . . ,� jl

�il�,� jl

�il�,X��

= �
r=1

l 
X + �
s=r+1

l

� js

�is��ir

cl�� j1

�i1�,� j1

�i1�, . . . ,� jl

�il�,� jl

�il�,X� .

According to definition �14�, we proved that formula �13� is valid for degree l. �
Similarly, we prove the following result for any operator L in cases �b� and �c�.
Proposition 2: For any operator L in case �b�, consider a formal series of the form for n

�2,

S = X + �
i=−1

n−1

u�i�a1
�i���1

�i�,�1
�i�,X� + �

i1,i2=−1

n−1

u�i1�u�i2�a2
�i1i2��� j1

�i1�,� j1

�i1�,� j2

�i2�,� j2

�i2�,X� + ¯ . �18�

Here ai are functions of their specific arguments, the superindex is� �−1,0 ,1 , . . . ,n−1� and the
subindex jk is defined by the number of ik in the list of �i1 , i2 , . . . , ik�. If it satisfies the relation
�S ,L�=0 [cf. (7)], we have for l�1,

al
�i1i2¯il� = al�� j1

�i1�,� j1

�i1�, . . . ,� jl

�il�,� jl

�il�,X� = �
r=1

l 
h�ir� + �
s=r+1

l

� js

�is��ir

bl�� j1

�i1�,� j1

�i1�, . . . ,� jl

�il�,� jl

�il�,X� ,

�19�

where h�ir�=X+� jr

�−1� if ir=−1, otherwise h�ir�=X. The functions bl are defined in Proposition 1; cf.

formula (14) and (15).
Notice that for operator L listed in case �c�, we have Nl�x1 ,y1 ,x2 ,y2 , . . . ,xl ,yl ;X�=−�i=1

l yi, cf.
�11�, which corresponds to the action of total y-derivative Dy. Thus

Proposition 3: For operator L listed in case �c�, if a formal series of the form

S = X + �
i=−1

0

u�i�a1
�i���1

�i�,�1
�i�,X� + �

i1,i2=−1

0

u�i1�u�i2�a2
�i1i2��� j1

�i1�,� j1

�i1�,� j2

�i2�,� j2

�i2�,X� + ¯ , �20�

where the superindex is� �−1,0� and the subindex jk is defined by the number of ik in the list of
�i1 , i2 , . . . , ik�, satisfies the relation �S ,L�=0 [cf. (7)], we have for l�1, the functions al are defined
in Proposition 2, cf. formula (19) with Nl�x1 ,y1 ,x2 ,y2 , . . . ,xl ,yl ;X�=−�i=1

l yi.
To construct the hierarchy of the Lax equations we need to expand the coefficients of operator

�10� or �18� or �20� at X=� and truncate at the required degree.
Definition 3: We say that a function h�x1 ,y1 ,x2 ,y2 , . . . ,xl ,yl ,X� is kth (quasi-local) polyno-

mial if the first k coefficients of its expansion at X=� are symbols of (quasi-local) polynomials. If
a function is kth (quasi-local) polynomial for any k, we say it is (quasi-local) polynomial.

When n�2, that is, operator L in cases �a� and �b�, the expansion of
Nl�x1 ,y1 ,x2 ,y2 , . . . ,xl ,yl ;X� at X=� is of the form

Nl�x1,y1,x2,y2, . . . ,xl,yl;X�−1

=
1

nXn−1
�
i=1

l

xi��
j�0  �

i=1

l

yi

nXn−1
�
i=1

l

xi� −
1

n
�
k=0

n−2 
n

k
�Xk+1−n
�

i=0

l

xi�n−k−1�
j

, n � 2.

For operator L listed in case �c�, we know Nl�x1 ,y1 ,x2 ,y2 , . . . ,xl ,yl ;X�=−�i=1
l yi. Therefore, if we
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want to prove that the coefficients of operators �10�, �18�, and �20�, i.e., the functions al, are
quasi-local, we need to show that the functions cl can be split into the sum of the image of Dx and
the image of Dy. It is clear from formula �16� that a1

�i���1
�i� ,�1

�i� ,X� are quasi-local since we have
c1��1

�i� ,�1
�i� ,X�=�1

�i�. Now we concentrate on the cases when l
1.
Proposition 4: The functions cl�� j1

�i1� ,� j1

�i1� , . . . ,� jl

�il� ,� jl

�il� ,X� for l
1 vanish after substitution

� j1

�i1� = − � j2

�i2� − ¯ − � jl−1

�il−1� and � j1

�i1� = − � j2

�i2� − ¯ − � jl−1

�il−1�.

We give its proof in the Appendix. In fact, this proposition does not lead to our intended conclu-
sion that bl and thus al are quasi-local since the objects are rational, not polynomial. For example,
the expression u2���2 /�2�− ��1 /�1�� representing u�u− ��u�u satisfies the above proposition.
However, we cannot write u�u− ��u�u=Dxf1+Dyf2, where both f1 and f2 are in U���.

We first have a close look at the quadratic terms. For any operator L in cases �a� and �b�, let
� jr

ir =� jr
ir� jr

ir. Then the function c2�� j1
i1 ,� j1

i1 ,� j2
i2 ,� j2

i2 ,X�, where � j1
i1 �0 and � j2

i2 �0, is a polynomial of
� jr

ir ,� jr
ir, r=1,2. Notice that

�� j1

i1 + � j2

i2� = � j1

i1� j1

i1 + � j2

i2� j2

i2 = �� j1

i1 − � j2

i2�� j1

i1 + � j2

i2�� j1

i1 + � j2

i2� = � j1

i1�� j1

i1 + � j2

i2� − �� j1

i1 − � j2

i2�� j2

i2 .

�21�

The affine variety �cf. Ref. 21� defined by � j1
i1 +� j2

i2 and � j1
i1 +� j2

i2 is

V�� j1

i1 + � j2

i2,� j1

i1 + � j2

i2� = V�� j1

i1 + � j2

i2,�� j1

i1 − � j2

i2�� j1

i1,�� j1

i1 − � j2

i2�� j2

i2� = V�� j1

i1 + � j2

i2,� j1

i1 − � j2

i2� � V�� j1

i1,� j2

i2� .

From Proposition 4, it can be written as

c2�� j1

i1,� j1

i1� j1

i1,� j2

i2,� j2

i2� j2

i2,X� = �� j1

i1 + � j2

i2�f1 + �� j1

i1 − � j2

i2�f2,

where both f1 and f2 are polynomials of � jr
ir ,� jr

ir, r=1,2. From formula �21�, the part that is not in
the image of Dx or Dy only depends on � jr

ir, r=1,2.
For operator L listed in case �c� since the function Nl�x1 ,y1 , . . . ,xl ,yl ,X�=−�i=1

l yi, cf. Propo-
sition 3, we let � jr

ir =� jr
ir� jr

ir instead. Then the function c2�� j1
i1 ,� j1

i1 ,� j2
i2 ,� j2

i2 ,X�, where � j1
i1 �0 and

� j2
i2 �0, is a polynomial of � jr

ir ,� jr
ir, r=1,2. The above discussion is valid.

Setting � j1
i1 =� j2

i2 =0, we obtain the function c2�� j1
i1 ,� j1

i1 ,� j2
i2 ,� j2

i2 ,X� equals

1

nXn−1 − � j1

i1
−

1

nXn−1 − � j2

i2
for cases �a� and �b�; � j2

i2 − � j1

i1 for case �c� , �22�

which is zero after we symmetrize it with the permutation group �2. This implies that the func-
tions b2 and thus a2 are quasi-local in the commutative case.

A. The commutative case

We first give the formulas to compute the high degree terms of operator S for the commutative
case directly from the formulas we obtained in Propositions 1, 2, and 3.

We denote the list �i1 , i2 , . . . , il� by I and I1= �is1
, is2

, . . . , isr
�, where 1s1	s2	 ¯ 	sr l and

1r l−1. We use I2= �ip1
, ip2

, . . . , ipl−r
� to denote the list by removing the elements of list I1 from

list I. For any element ir in the set �i1 , i2 , . . . , il�, we denote the number of ir in the list I by #ir.
Then the coefficient of �ir��i1i2. . .il�

�u�ir��#ir in operator S, cf. formula �10�, �18�, and �20�, can be
computed by

1

�ir��i1i2¯il�
�#ir�!

�
���l

al�� j��1�

�i��1��,� j��1�

�i��1��, . . . ,� j��l�

�i��l��,� j��l�

�i��l��,X� . �23�

We denote it by
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dl
i1i2¯il

Nl�� j1

�i1�,� j1

�i1�, . . . ,� jl

�il�,� jl

�il�,X�
.

In particular, for any operator L in case �a�, the numerator dl
i1i2¯il equals

1

�ir��i1i2¯il�
�#ir�!

�
���l

�
r=1

l 
X + �
s=r+1

l

� j��s�

�i��s���i��r�

cl�� j��1�

�i��1��,� j��1�

�i��1��, . . . ,� j��l�

�i��l��,� j��l�

�i��l��,X� . �24�

For cases �b� and �c� the expression �X+ p�−1, where p=� jr

�−1�+�s=r+1
l � js

�is�, appears in formula �19�.
Its expansion at X=� is of the form

�X + p�−1 =
1

X
�
j=0

+� 
−
p

X
�s

, �25�

whose coefficients are polynomials in p. This does not affect the proof and result. For case �c�, we
need to exchange the symbols � jr

ir and � jr
ir in the proof as the discussion we did for quadratic terms.

Therefore, we will only give the proof for case �a�.
The immediate consequence of the previous discussion on the quadratic terms is the following

statement.
Proposition 5: All quadratic terms in operator S are quasi-local.
In fact, we can prove this statement is valid for all l
0.
Theorem 2: Every term in the operator S, cf. formula �10�, �18�, and �20�, obtained via �23�

is quasi-local.
Proof: We proved the linear and quadratic terms in S are quasi-local, that is, the statement is

true for l=1,2. Assume it is also true for l−1. By induction, the function dl
i1i2¯il, cf. �24�, is

polynomial of � jr

�ir� and �I1
= �� js1

�is1
�+ ¯� jsr

�isr
�� / �� js1

�is1
�+ ¯� jsr

�isr
��, r=1,2 , . . . , l−1, which obviously sat-

isfies Proposition 4. This implies that the function dl
i1i2¯il is the sum of the parts with factors

� j1

�i1�+� j2

�i2�+ ¯ +� jl

�il� or �I1
−�I2

using the argument of the affine variety. From the recurrent relation
in Proposition 1, we can compute the factor for any �I1

−�I2
�without symmetrization�, which

equals

�
q=1

r

�X + � jsq+1

�isq+1
�
+ ¯ + � jsr

�isr
�
+ � jp1

�ip1
�
+ ¯ + � jpl−r

�ipl−r
��isq�

q=1

l−r

�X + � jpq+1

�ipq+1
�
+ ¯ + � jpl−r

�ipl−r
��ipq

− �
q=1

l−r

�X + � jpq+1

�ipq+1
�
+ ¯ + � jpl−r

�ipl−r
�
+ � js1

�is1
�
+ ¯ + � jsr

�isr
��ipq�

q=1

r

�X + � jsq+1

�isq+1
�
+ ¯ + � jsr

�isr
��isq.

This expression is zero under the substitution �I2
=� jp1

�ip1
�+ ¯ +� jpl−r

�ipl−r
�=0 and �I1

=� js1

�is1
�+ ¯ +� jsr

�isr
�

=0, implying we have either �I2
��I1

−�I2
� or �I1

��I1
−�I2

� as a factor. We know

�I2
��I1

− �I2
� = �I1

�� j1

�i1� + ¯ + � jl

�il�� − �� j1

�i1� + ¯ + � jl

�il��;

�I1
��I1

− �I2
� = �� j1

�i1� + ¯ + � jl

�il�� − �I2
�� j1

�i1� + ¯ + � jl

�il�� .

Thus, the lth degree term of S is quasi-local. �
This theorem implies that every terms in Sn is quasi-local. From Theorem 1, we have
Theorem 3: The hierarchies of �2+1�-integrable equation with scalar Lax operators are

quasi-local.
As mentioned in Remark 1, there is one more type of scalar Lax operator in the commutative

case. The same result can be proved by extending the symbolic approach used in Ref. 22 for the
�1+1�-dimensional case.
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B. The noncommutative case

The extension of the concept of quasi-locality to the noncommutative case is rather compli-
cated. Dx and Dy are the only derivations for the commutative differential ring. The extension
simply enables us to apply Dx

−1 and Dy
−1 on the derivations. We know that the Cf, cf. �4�, are also

derivations for a noncommutative associative algebra and we need to take them into consideration.
Based on Proposition 4, we propose the following extension using the symbolic representation. We
start with Ak, the space of polynomials in 2k variables, �i and �i, i=1, . . . ,k. Let �i=�zi and �i

=�zi, where �, � are constants. We define I�Ak� as a set of all f �Ak satisfying �f �z1+¯zk=0=0. For
the elements in g� I�Ak�, we compute g / ��1+ ¯ +�k� and g / ��1+ ¯�k� and collect them in the
set Ext�Ak�. Now we define a sequence of extensions of A=�kAk. Let A0

ext=A and A1
ext be the

ring closure of the union A0
ext� ��kExt�Ak��. The number of variables is a natural grade on A1

ext

and again denote A1
extk the space of elements in A1

ext with 2k variables, �i and �i, i=1, . . . ,k. In

general, we can define Al
ext is the ring closure of the union Al−1

ext � ��kExt�Al−1
extk��. Clearly, we have

Al−1
ext �Al

ext. We now define Aext=liml→� Al
ext.

The above ring extension is bigger than we require. For example, the expression ��2 /�2�
− ��1 /�1� is not equal to zero under the substitution �1+�2+�3=0 and �1+�2+�3=0, that is, not

satisfying Proposition 4. But it is in I�A1
ext3�. If we start from the symmetric polynomial, we hope

to end up with the extension of commutative differential polynomial, i.e., quasi-local polynomials
we defined in Sec. II. It is not difficult to notice that this extension is bigger than the concept of
quasi-local commutative polynomials. However, we can not formulate such extension either via
symbolic representation or from noncommutative differential polynomials as in the commutative
case. It is still an open problem.

Here we compute explicitly some Lax flows for lower order scalar Lax operators of noncom-
mutative dependent variable, which will help the reader to see the structures.

1. Noncommutative Boussinesq equation

Let us compute the hierarchy of Lax operator L=Dx
3+uDx+v−Dy. From Proposition 1, we

have

S = X + u
�1

�1�X

�X + �1
�1��3 − X3 − �1

�1� + v
�1

�0�

�X + �1
�0��3 − X3 − �1

�0� +
u2�X + �2

�1��X
�X + �1

�1� + �2
�1��3 − X3 − �1

�1� − �2
�1�

�
 �1
�1�

�X + �1
�1� + �2

�1��3 − �X + �2
�1��3 − �1

�1� −
�2

�1�

�X + �2
�1��3 − X3 − �2

�1��
+

uv�X + �1
�0��

�X + �1
�1� + �1

�0��3 − X3 − �1
�1� − �1

�0�
 �1
�1�

�X + �1
�1� + �1

�0��3 − �X + �1
�0��3 − �1

�1�

−
�1

�0�

�X + �1
�0��3 − X3 − �1

�0�� +
vuX

�X + �1
�1� + �1

�0��3 − X3 − �1
�1� − �1

�0�

�
 �1
�0�

�X + �1
�1� + �1

�0��3 − �X + �1
�1��3 − �1

�0� −
�1

�1�

�X + �1
�1��3 − X3 − �1

�1�� + ¯

= X +
u

3X
+

v − u�1
�1�

3X2 + 
2u�1
�1�2

9
+

u�1
�1�

9�1
�1� −

v�1
�0�

3
−

u2

9
� 1

X3

+ �− u�1
�1�3

9
−

2u�1
�1�

9
+

2v�1
�0�2

9
+

v�1
�0�

9�1
�0� −

uv
9

−
vu

9
+ u2�7�2

�1�

27
+

5�1
�1�

27
+

�1
�1�

27�1
�1� −

�2
�1�

27�2
�1�

�1
�1� + �2

�1� �� 1

X4
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+ ¯ ,

which corresponds to

S = Dx +
u

3
Dx

−1 + 
v
3

−
ux

3
�Dx

−2 + 
2uxx

9
+

�u

9
−

vx

3
−

u2

9
�Dx

−3 + 
2vxx

9
−

uxxx

9
−

2uy

9
+

�v
9

−
uv
9

−
vu

9
+

7uux

27
+

5uxu

27
+

Dx
−1���u�u�

27
−

Dx
−1�u�u�

27
�Dx

−4 + ¯ .

This leads to

S�0 = Dx; S�0
2 = Dx

2 +
2

3
u; S�0

3 = Dx
3 + uDx + v;

S�0
4 = Dx

4 +
4

3
uDx

2 +
2

3
�ux + 2v�Dx +

4

9
�u +

2

9
u2 +

2

9
uxx +

2

3
vx;

S�0
5 = Dx

5 +
5

3
uDx

3 +
5

3
�ux + v�Dx

2 + 
5

9
�u +

5

9
u2 +

10

9
uxx +

5

3
vx�Dx +

10

9
vxx +

5

9
��v + uv + vu�

+
5

27
�uux − uxu + Dx

−1���u�u − u�u�� .

And we have

�ut2
= − uxx + 2vx

vt2
= vxx +

2

3
�uy − u3x − uux + uv − vu� . 	

Eliminating the dependent variable v from this equation and writing t2= t, we can derive the �2
+1�-dimensional Boussinesq equation

utt = −
1

3
u4x +

4

3
uxy −

2

3
�u2�xx +

2

3
Dx�u,Dx

−1ut� .

Under the scaling transformation x��6x, y��3
2 y, u�3u, t�2t, it can be rewritten as

utt = − u4x + uxy − 3�u2�xx + Dx�u,Dx
−1ut� .

Let w=Dx
−1u. We get the �2+1�-dimensional noncommutative potential Boussinesq equation

wtt = − w4x + wxy − 3�wx
2�x + �wx,wt� .

2. Noncommutative KP equation

Let us compute the hierarchy of the Lax operator L=Dx
2+u−Dy. Since the order of L is low,

it is easier to compute the operator S directly order by order as in Example 4 than to apply
Proposition 2. Let

S = Dx + a−1Dx
−1 + a−2Dx

−2 + a−3Dx
−3
¯ .

Using formula �10�, we obtain

a−1 =
u

2
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a−2 = −
ux

4
+

�u

4

a−3 =
�2u

8
+

uxx

8
−

uy

4
−

u2

8
−

1

8
Dx

−1Cu�u .

This leads to

S�0
3 = Dx

3 +
3u

2
Dx +

3

4
�ux + �u�

S�0
4 = Dx

4 + 2uDx
2 + �2ux + �u�Dx +

uy

2
+ u2 + uxx +

�2u

2
−

1

2
Dx

−1Cu�u

= 2Dx
2Dy − Dy

2 + 2uDy + �uDx +
3uy

2
+

�2u

2
−

1

2
Dx

−1Cu�u + L2.

And we have

ut3
=

1

4
�uxxx + 3uux + 3uxu + 3�uy − 3Cu�u� ,

which is the noncommutative KP equation and can be obtained from the recursion operator of KP,
cf., Ref. 5, and

ut4
=

1

2
�uxxy + �2uy + 2uuy + 2uyu + ux�u + ��u�ux + CuDx

−1Cu�u − �Cu�u − Cu�2u� .

3. Noncommutative mKP equation

Let us compute the hierarchy of the Lax operator L=Dx
2+uDx+v+Dx

−1w−Dy. Let

S = Dx + a0 + a−1Dx
−1 + ¯ .

Using formula �10�, we obtain

a0 =
u

2

a−1 = −
ux

4
−

u2

8
+

v
2

+ 
Dx +
Cu

2
�−1uy

4
.

This leads to

S�1
2 = Dx

2 + uDx; S�1
3 = Dx

3 +
3u

2
Dx

2 +
3

8

2ux + u2 + 4v + 2
Dx +

Cu

2
�−1

uy�Dx.

And we have

�ut2
= uy + 2vx + uv − vu

vt2
= vx + 2wx + uvx + uw − wu

wt2
= − wxx + �wu�x
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�
ut3

=
1

4
uxxx +

3

8
Cuuxx −

3

8
uuxu +

3

4
uxy +

3

8
�u2�y +

3

2
vxx +

3

2
vy +

3

2
uvx +

3

2
vux −

3

8
Cvu2 −

3

4
Cvux + 3wx +

3

2
Cuw

+
3

4
�Dy − Dx

2 − uDx + Rux
− Cv�
Dx +

Cu

2
�−1

uy

vt3
= vxxx +

3

2
uvxx +

3

4
uxvx +

3

8
u2v1 +

3

2
vv1 +

3

2
uwx +

3

2
wxu +

3

4
wux +

3

4
uxw −

3

8
Cwu2 −

3

2
Cwv +

3

4
�Rvx

− Cw�
Dx +
Cu

2
�−1

uy

wt3
= wxxx − �wa0�xx + �wa−1�x.

	
The reduction v=w=0 leads to the noncommutative mKP equation

ut3
=

1

4
uxxx +

3

8
Cuuxx −

3

8
uuxu +

3

4
uxy +

3

8
�u2�y +

3

4
�Dy − Dx

2 − LuDx + Rux
�
Dx +

Cu

2
�−1

uy .

�26�

If we introduce new variable p satisfying uy = px+ 1
2Cup, the system for u and p is equivalent to the

matrix mKP in Ref. 23.
If u does not depend on y, i.e., uy =0, this gives us the noncommutative mKdV equation,17,12

ut3
=

1

4
uxxx +

3

8
Cuuxx −

3

8
uuxu .

If u takes its value over C �commutative�, this gives us the well-known mKP equation

ut3
=

1

4
uxxx −

3

8
u2ux +

3

4
�uy +

3

4
ux�u . �27�

We know Miura transformation V=ux− �u2 /2�+�u transforms the mKP equation �27� into the KP
equation Vt3

= 1
4Vxxx+ 3

4VVx+ 3
4�Vy. However, we do not know a Miura transformation for noncom-

mutative mKP �26�.

4. Nonsymmetric Novikov-Veselov equation

Consider the Lax operator L=u+Dx
−1v−Dy �case �c��. In the commutative case, this worked

out in Ref. 24 by both central extension approach and the operand approach. Let S=Dx+a0

+a−1Dx
−1+¯. Using formula �7�, we have

a0 = �Cu − Dy�−1ux;

a−1 = �Cu − Dy�−1�vx + Cva0� ,

leading to S1
�1=Dx, S1

�2=Dx
2+2a0Dx, S3

�1=Dx
3+3a0Dx

2+3�a0x+a−1+a0
2�Dx. From the Lax equa-

tion, we obtain

�ut2
= uxx + 2vx + 2a0ux + 2a0v − 2va0

vt2
= − vxx + 2�va0�x

�
�ut3

= uxxx + 3�a0ux�x + 3a−1ux + 3a0
2ux + 3a0vx + 3�va0�x − 3Cv�a0x + a−1 + a0

2�

vt3
= vxxx − 3�vxa0�x + 3�va−1�x + 3�va0

2�x. �
The reduction v=0 leads to

ut2
= uxx − 2��Dy − Cu�−1ux�ux.

Let w= �Dy −Cu�−1ux. This equation transforms into the noncommutative Burgers equation wt2
=wxx−2wwx, which is linearizable, that is, we obtain pt= pxx by pw=−px.
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There is no reduction u=0 in noncommutative case. In the commutative case, the reduction
u=0 leads to the nonsymmetric Novikov-Veselov equation.25

vt3
= vxxx − 3�v�−1v�x.

V. CONCLUSION

We have demonstrated the power of the symbolic representation in the study of
�2+1�-dimensional integrable equations. It enables us to produce the hierarchies of
�2+1�-dimensional integrable equations from the scalar Lax operators and to study their properties
globally. We proved the conjecture of Mikhailov and Yamilov on the ring extension for
�2+1�-dimensional commutative integrable equations derived from these scalar Lax operators.

There exist other types of scalar Lax operators such as the Lax pair of Eq. �2.14� in Ref. 26,
i.e. Lt= �B ,L�, where

L = Dx
2 + u, B = DyL + 1

2�uDx − 1
4uy − 1

4Dx
−1Cu�u .

In fact, Eq. �2.14� shares the same L operator as noncommutative KdV,

ut =
1

4
�uxxx + 3uux + 3uxu� ,

and hence it can be obtained by a recursion operator of noncommutative KdV acting on uy. The
same ring extension results can be proved by either adapting the proof in this paper or deriving
from the structure of recursion operators of the corresponding �1+1�-dimensional integrable
equations.12,27

The method can easily be applied to the case of �2+1�-dimensional differential-difference
integrable equation with scalar Lax operators.24 This is an ongoing research topic.

Recently, there was an attempt at constructing noncommutative integrable equations in the
framework of the Sato theory motivated by noncommutative gauge theories, cf. Refs. 26 and 28
and references therein. However, the authors had imposed an ansatz to derive the equations from
certain scalar Lax operators in the case �a� instead of the systematical approach proposed in this
paper. Noncommutative �2+1�-dimensional integrable equations derived from the scalar Lax op-
erators in the cases �b� and �c� have not been well studied mainly due to the appearance of a new
type of nonlocal terms such as �Dx+ �Cu /2��−1uy and �Dy −Cu�−1ux.
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APPENDIX: PROOF OF PROPOSITION 4

Proof. We need to show �cf. �14�� for all l�2 that

bl−1
− �
s=2

l

� js

�is�,− �
s=2

l

� js

�is�,� j2

�i2�,� j2

�i2�, . . . ,� jl−1

�il−1�,� jl−1

�il−1�,X + � jl

�il�� = bl−1�� j2

�i2�,� j2

�i2�, . . . ,� jl

�il�,� jl

�il�,X� .

�A1�

We prove it by induction. It is true for l=2 since

b1�− � j2

�i2�,− � j2

�i2�,X + � j2

�i2�� =
− � j2

�i2�

N1�− � j2

�i2�,− � j2

�i2�,X + � j2

�i2��
=

� j2

�i2�

N1�� j2

�i2�,� j2

�i2�,X�
.

Assume that formula �A1� is valid for l−1. Then its left-hand side equals

113508-17 �2+1�-dimensional integrable equations J. Math. Phys. 47, 113508 �2006�

                                                                                                                                    



bl−2
− �
s=2

l

� js

�is�,− �
s=2

l

� js

�is�,� j2

�i2�,� j2

�i2�, . . . ,� jl−2

�il−2�,� jl−2

�il−2�,X + � jl−1

�il−1� + � jl

�il��
Nl−1
− �

s=2

l

� js

�is�,− �
s=2

l

� js

�is�,� j2

�i2�,� j2

�i2�, . . . ,� jl−1

�il−1�,� jl−1

�il−1�,X + � jl

�il��
−

bl−2�� j2

�i2�,� j2

�i2�, . . . ,� jl−1

�il−1�,� jl−1

�il−1�,X + � jl

�il��

Nl−1
− �
s=2

l

� js

�is�,− �
s=2

l

� js

�is�,� j2

�i2�,� j2

�i2�, . . . ,� jl−1

�il−1�,� jl−1

�il−1�,X + � jl

�il��
= −

bl−2�� j2

�i2�,� j2

�i2�, . . . ,� jl−2

�il−2�,� jl−2

�il−2�,� jl−1

�il−1� + � jl

�il�,� jl−1

�il−1� + � jl

�il�,X�

N1�� jl

�il�,� jl

�il�,X�

+
bl−2�� j2

�i2�,� j2

�i2�, . . . ,� jl−1

�il−1�,� jl−1

�il−1�,X + � jl

�il��

N1�� jl

�il�,� jl

�il�,X�

=
bl−3�� j2

�i2�,� j2

�i2�, . . . ,� jl−2

�il−2�,X + � jl−1

�il−1� + � jl

�il�� − bl−3�� j3

�i3�,� j3

�i3�, . . . ,� jl−1

�il−1�,X + � jl

�il��

Nl−2�� j2

�i2�,� j2

�i2�, . . . ,� jl−1

�il−1�,� jl−1

�il−1�,X + � jl

�il��N1�� jl

�il�,� jl

�il�,X�

−
bl−3�� j2

�i2�,� j2

�i2�, . . . ,� jl−2

�il−2�,� jl−2

�il−2�,X + � jl−1

�il−1� + � jl

�il��

Nl−2�� j2

�i2�,� j2

�i2�, ¯ ,� jl−1

�il−1� + � jl

�il�,� jl−1

�il−1� + � jl

�il�,X�N1�� jl

�il�,� jl

�il�,X�

+
bl−3�� j3

�i3�,� j3

�i3�, . . . ,� jl−1

�il−1� + � jl

�il�,� jl−1

�il−1� + � jl

�il�,X�

Nl−2�� j2

�i2�,� j2

�i2�, ¯ ,� jl−1

�il−1� + � jl

�il�,� jl−1

�il−1� + � jl

�il�,X�N1�� jl

�il�,� jl

�il�,X�
.

Meanwhile, the right side gives us

bl−2�� j2

�i2�,� j2

�i2�, . . . ,� jl−1

�il−1�,� jl−1

�il−1�,X + � jl

�il�� − bl−2�� j3

�i3�,� j3

�i3�, . . . ,� jl

�il�,� jl

�il�,X�

Nl−1�� j2

�i2�,� j2

�i2�, . . . ,� jl

�il�,� jl

�il�,X�

=
bl−3�� j2

�i2�,� j2

�i2�, . . . ,� jl−2

�il−2�,� jl−2

�il−2�,X + � jl−1

�il−1� + � jl

�il��

N1�� jl−1

�il−1�,� jl−1

�il−1�,X + � jl

�il��Nl−1�� j2

�i2�,� j2

�i2�, . . . ,� jl

�il�,� jl

�il�,X�

−
bl−3�� j2

�i2�,� j2

�i2�, . . . ,� jl−2

�il−2� + � jl−1

�il−1�,� jl−2

�il−2� + � jl−1

�il−1�,X + � jl

�il��

N1�� jl−1

�il−1�,� jl−1

�il−1�,X + � jl

�il��Nl−1�� j2

�i2�,� j2

�i2�, . . . ,� jl

�il�,� jl

�il�,X�

−
bl−3�� j3

�i3�,� j3

�i3�, . . . ,� jl−1

�il−1�,X + � jl

�il�� − bl−3�� j3

�i3�,� j3

�i3�, . . . ,� jl−1

�il−1� + � jl

�il�,� jl−1

�il−1� + � jl

�il�,X�

N1�� jl

�il�,� jl

�il�,X�Nl−1�� j2

�i2�,� j2

�i2�, . . . ,� jl

�il�,� jl

�il�,X�
.

The difference between the above two expression vanishes due to the induction assumption, which
implies that

Nl−3�� j2

�i2�,� j2

�i2�, ¯ ,� jl−2

�il−2�,� jl−2

�il−2�,X + � jl−1

�il−1��bl−3�� j2

�i2�,� j2

�i2�, ¯ ,� jl−2

�il−2�,� jl−2

�il−2�,X + � jl−1

�il−1��

Nl−2�� j2

�i2�,� j2

�i2�, ¯ ,� jl−1

�il−1�,� jl−1

�il−1�,X�N1�� jl−1

�il−1�,� jl−1

�il−1�,X�

=
bl−3�� j2

�i2�,� j2

�i2�, ¯ ,� jl−2

�il−2� + � jl−1

�il−1�,� jl−2

�il−2� + � jl−1

�il−1�,X�

N1�� jl−1

�il−1�,� jl−1

�il−1�,X�
−

bl−3�� j3

�i3�,� j3

�i3�, ¯ ,� jl−1

�il−1�,X�

Nl−2�� j2

�i2�,� j2

�i2�, ¯ ,� jl−1

�il−1�,X�
.

By now we have proved our proposition. �
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We extend the Itō-to-Stratonovich analysis or quantum stochastic differential equa-
tions, introduced by Gardiner and Collett for emission �creation�, absorption �an-
nihilation� processes, to include scattering �conservation� processes. Working
within the framework of quantum stochastic calculus, we define Stratonovich cal-
culus as an algebraic modification of the Itō one and give conditions for the exis-
tence of Stratonovich time-ordered exponentials. We show that conversion formula
for the coefficients has a striking resemblance to Green’s function formulas from
standard perturbation theory. We show that the calculus conveniently describes the
Markov limit of regular open quantum dynamical systems in much the same way as
in the Wong-Zakai approximation theorems of classical stochastic analysis. We
extend previous limit results to multiple-dimensions with a proof that makes use of
diagrammatic conventions. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2354331�

I. INTRODUCTION

Quantum stochastic calculus1–4 was developed as a framework to construct concrete models of
irreversible quantum dynamical systems. Prior to this, models tended to consider a system couple
to an environment, but with only the system being accessible to physical measurement: as a result
the environment observables were often relegated to a secondary status, leaving one with a master
equation for the state of the system only.5,6

Hudson and Parthasarathy3 in 1984 presented a rigorous theory of integration with respect to
processes on bosonic �later fermionic� Fock spaces generalizing the Itō-Doob theory of stochastic
integration. In addition to integrals with respect to time, they also introduced integrals with respect
to creation, annihilation, and number �more generally, scattering� processes. Motivated by non-
commutative Feynman-Kac formulas, they were able to describe unitary dynamical evolutions of
a system coupled to the Fock space environment which reduced to an irreversible Markov dynam-
ics for the system when averaged over the partial expectation with respect to the Fock vacuum.
Here the Schrödinger equation is replaced by a quantum stochastic differential equation �QSDE�
driven by the creation, annihilation, and scattering processes, as well as time.

Independently, Gardiner and Collett4 in 1985 gave the version of quantum stochastic integra-
tion for the bosonic creation and annihilation that is best known amongst the physics community.
Although they did not include the scattering processes, they did introduce several important
physical concepts, in particular, they gave to the noise the status of a physical observable. This has
been vital in subsequent analysis of quantum filtering and feedback where the environment can act
as an apparatus/communication channel.7–9 In their analysis, they also introduced the Stratonovich
version of the theory by extending the usual midpoint definition to noncommuting processes.10

This is a natural physical choice for two reasons: unlike the Itō form, the Leibniz rule of differ-
ential calculus holds for Stratonovich differentials and so physical symmetries are more apparent;

a�Electronic mail: john.gough@ntu.ac.uk
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second, in classical analysis it is generally the case that if the model can be obtained as a singular
limit of regular dynamical models, then it is the Stratonovich form that resembles the prelimit
equations the most. Historically, it was actually the latter reason that led to Stratonovich initially
introducing his modification of the Itō theory. In ordinary stochastic analysis, such results involv-
ing a central limit effect for stochastic processes are known as Wong-Zakai theorems. Our original
motivation stems from quantum Markov limits11–16 and the desire to understand the limit pro-
cesses in a Stratonovich sense.

To give a concrete mathematical account, we start from the quantum Itō theory developed by
Hudson and Parthasarathy, and deduce quantum Stratonovich calculus as an algebraic modification
of the quantum Itō one which restores the Leibniz rule. An approach starting from Gardiner and
Collett’s input processes would have been more appealing from a physical point of view, however,
we do not want to bypass questions of the mathematical status of the objects considered. Tradi-
tionally, the Stratonovich integral is defined through a midpoint Riemann sum approximation: this
has been extended by Chebotarev12,13 to quantum stochastic integrals, however, we emphasize that
our formulation here is to define Stratonovich integrals as combinations of well-defined Itō inte-
grals where possible. Rather than there being an unique version, we find that there are degrees of
freedom in how we actually achieve this—we refer to this as a “gauge” freedom—and that the
standard �symmetric� choice, corresponding to the midpoint rule, is just one possibility. We give
the self-consistency formula G=G0+G0VG relating the matrix of Itō coefficients G to the matrix
of Stratonovich coefficients G0. �Here the “potential” V is half the noise covariance matrix plus
the gauge.� Rather surprisingly, this has the same algebraic form as the one relating the free and
perturbed Green’s functions in scattering theory: a fact that we readily exploit. It is shown that the
Itō coefficients of a unitary process are related to Hamiltonian Stratonovich coefficients �G0

†

=−G0� and that this is true for any gauge so long as the self-consistency formula can be solved.
This allows the interpretation that the Stratonovich calculus can be viewed as a perturbation of the
Itō calculus, and vice versa.

A major motivation here is the results of Ref. 16 for a quantum Markov limit involving
emission, absorption, and scattering. We formulate the limit as a Wong-Zakai result where the
Stratonovich QSDE resembles the prelimit Schrödinger equation �with gauge set by the imaginary
part of the complex damping�. Our key requirement is convergence of the “Neumann series” G
=�n=0

n G0�VG0�n. We generalize the result to multiple channel noise sources and make the proof
more accessible by means of diagrammatic conventions which make the connections with the
Dyson series expansion transparent. We also present the results in a fluxion notation, as an
alternative to the differential increment language, which is closer to the formulation employed by
Gardiner and Collett4 and effectively generalizes their results to include scattering. This also
reveals a new representation �Lemma 3� for the Evans-Hudson flow maps.

II. QUANTUM STOCHASTIC CALCULUS

A. Quantum processes

Given a Hilbert space h1, the Fock space over h1 is the Hilbert space ��h1� generated by

symmetrized n-particle vectors �1�̂¯ �̂�nª �n!�−1���Sn
���1� � ¯ � ���n� for n�0 arbitrary,

� j �h1 and Sn the group of permutations on n labels. The special case n=0 requires the intro-
duction of unit vector � called the Fock vacuum vector. The inner product on ��h1� is given by

��1�̂¯ �̂�n ��1�̂¯ �̂�n�=�nm�n!�−1���Sn
��1 ����1��¯ ��n ����n��.

The exponential vector with test function ��h1 is defined to the Fock space vector

�1�

and we have ����� ������=exp�� ���. If S is a dense subset of h1 then the vectors ����, with �
�S, are total in ��h1�, that is, the closure of the span of these vectors gives the whole Fock space.
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We now take the one-particle space to be the Hilbert space of CN-valued square-integrable
functions of positive time: this consists of measurable functions f= �f1 , . . . , fn� with
	0

	�i=1
n �f i�t��2
	. An orthogonal projection �s is defined on the one-particle space for each s

�0 by taking �sf= ��0,s�f1 , . . . ,�0,s�fn� where �0,s� is the indicator function for the interval �0,s�.
An N-channel quantum noise source is modeled by operators processes 
At

�� : t�0� acting on the
corresponding Fock space F. For �, �� 
0,1 , . . . ,n�, these processes are defined on the domain of
exponential vectors by

���f��At
�� − �

0

t

f�
*�s�g��s�ds����g�� = 0, �2�

where we include the index zero by setting f0=g0=1. We shall adopt the convention that lower
case Latin indices �with the exception of t and s which we reserve for time!� range over the values
1 , . . . ,N while lower case Greek indices range over 0 ,1 , . . . ,N. We also apply an Einstein sum-
mation convention for repeated indices over the appropriate range.

We also fix a Hilbert space h, called the initial space. Let D be a domain in h and take S to be
the space of bounded CN-valued functions. A family X.= 
Xt : t�0� of operators on h � F is said to
be an adapted quantum stochastic process based on �D ,S� if, for each t�0, Xtu � ��f� is defined
for each u�D and f= �f1 , . . . , fn��S and is independent of the values f i�s� for s� t. If X.

�� are
adapted processes, their stochastic integral X. may be written as �implied summation!� Xt

=	0
t a�

†�s�Xs
��a��s�ds, with the meaning that

�u � ��f���
0

t �a�
†�s�Xs

��a��s�dsv � ��g�� ª �
0

t

f�
*�s��u � ��f��Xs

��v � ��g��g��s�ds .

The stochastic integral is more often written in the form Xt=	0
t Xs

��dAs
�� or equivalently 	0

t dAs
��Xs

��

with these integrals making sense as Riemann-Itō limits for locally square-integrable integrands.
The stochastic integral will again be an adapted process. At the moment, the symbols a�

†�t�, a��t�
have no meaning other than notational, however a0

†�t� and a0�t� are easily interpreted as the
identity operator and ai�t� as a pointwise Malliavin gradient. What is crucial is that they appear in
Wick order: that is, a�

†�t� to the left of a��t�. Let Yt=	0
t a�

†�s�Ys
��a��s�ds be a second integral, with

the Y .
�� adapted, then we have the formula3

XtYt = �
0

t

a�
†�s�Xs

��Ysa��s�ds + �
0

t

a�
†�s�XsYs

��a��s�ds + �
0

t

a�
†�s�Xs

��P��Ys
��a��s�ds ,

where we introduce

P�� = 1, � = � � 0

0 otherwise.
� �3�

�As is well-known to the quantum probability community, the components P�� are just the Evans

Kronecker-delta17 usually denoted �̂��.�
Introducing the differential notation dXt=Xt

��dAt
��, etc., we may write the quantum Itō for-

mula in the more familiar guise as

d�XtYt� = �dXt�Yt + Xt�dYt� + �dXt��dYt� , �4�

where the Itō correction is �dXt��dYt�=Xt
�iYt

i�dAt
���Xt

��P��Yt
��dAt

��. Let us define iterated inte-
grals in the natural way:
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���f���
�n�t�

�dAtn

�n�n
¯ dAt1

�1�1��g�� = �
�n�t�

f�n

* �tn� ¯ f�1

* �t1�g�n
�tn� ¯ g�1

�t1����f����g�� ,

�5�

where �n�t� is the simplex t� tn� ¯ � t1�0.

B. Quantum Markov evolutions

Let 
G��� be bounded operators on a fixed initial space h, then there exists a unique solution
U. to the equation Ut=1+	0

t G��UsdAs
�� which we can naturally interpret as the QSDE dUt

=G��UtdAt
��, with U0=1. In such cases, we may write U. as the Dyson-Itō time-ordered expo-

nential Ut=T� IDexp	0
t G��dA��.

Proposition 1: Let U. be the solution to the QSDE dUt=G��UtdAt
��, with U0=1, where the


G��� are bounded operators on h. Necessary and sufficient conditions3 for U. to be unitary
process are that G��+G��

† +Gi�
† Gi�=0=G��+G��

† +Gi�Gi�
† with the general solution

Gij = Wij − �ij, Gi0 = Li,

G0j = − Lk
†Wkj, G00 = − 1

2Lk
†Lk − iH ,

where Wij, Li, and H are bounded operators on the initial space with H self-adjoint and Wij
† Wjk

=�ik=WijWjk
† .

Proposition 2: Let U. be the unitary process described above. The corresponding flow map is
given by Jt�X�ªUt

†�X � 1�Ut for bounded X on the initial space. We find that Jt�X� satisfies the
QSDE

dJt�X� = Jt�L���X��dAt
��,

where the Evans-Hudson maps17 are given by L���X�ªXG��+G��
† X+Gi�

† XGi�.
Following Lindblad,18 the dissipation of a linear map L on the algebra of bounded operators

on h is defined to be the bilinear mapping DL : �X ,Y��L�XY�−L�X�Y −XL�Y�.
Proposition 3: The Evans-Hudson maps for a unitary flow satisfy L���X�†=L���X†� and their

dissipation is described by

DL���X,Y� = L���X�P��L���Y� .

C. Approximations

For each ��0, we set a0
#�t ,��=0 and take ai

#�t ,��=A#���i , t ,��� where ��i , t ,�� is a
CN-valued square-integrable function on �0,	�: we also take t→��i , t ,�� to be strongly differen-
tiable. We assume that ���i , t ,�� ���j ,s ,����Cij�t−s ,�� where Cij�� ,��=Cji�−��* is integrable in
�, and that we have the convergence lim�→0Cij�� ,��=�ij���� in the sense of Schwartz distribu-
tions. We set �ij =lim�→0	0

	Cij�� ,��d� and note the identity �ij +� ji
* =�ij.

The ai
#�t ,�� are approximations to quantum white noises. We may introduce integrated pro-

cesses At
�����ª	0

t a�
†�s ,��a��s ,��ds which serve as approximations to the fundamental processes.

The approximation will be termed symmetric if �ij =
1
2�ij, but this is only a special case. Defining

smeared exponential vectors by

���f� = exp�
0

	

�
i=1

N

fi�t�ai
†�t�dt�� , �6�

we see that the limit
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lim
�→0

����f���
�n�t�

�a�n

* �tn,�� ¯ a�1

* �t1,��a�n
�tn,�� ¯ a�1

�t1,�����g��

coincides with �5�. Therefore, whenever we consider the limit of Wick ordered expressions, it does
not matter whether we have the symmetric approximation or not.

A term such as 	�2�t�ai�t2 ,��aj
†�t1 ,�� must, however, be put in to Wick order as

	�2�t�aj
†�t1 ,���i�t2 ,�� plus an additional term 	�2�t�Cij�t2− t2 ,�� which converges to �ijt. As a rule,

expressions violating of Wick order will have a limit that depends on the constants �ij.
19,20

D. Notation and conventions

Let X= 
X��� be an �N+1�� �N+1� matrix of bounded operators on some Hilbert space.
�Previously, we had the Itō coefficients which were operators on h � F.� We shall adopt the matrix
representation

X =�
X00 X01,X02, . . .

X10

X20 X

]

� �7�

where X is the N�N submatrix consisting of the entries 
Xij�.
For instance, P= 
P��� will be a projection operator:

P = � 0 0

0 1
�, Q = 1 − P = � 1 0

0 0
� . �8�

The quantum Itō correction is therefore described by the matrix X�t�PY�t�
�
X���t�P��Y���t��.

Let 
G����G be a matrix with bounded operators on h as entries, then the Dyson-Itō time-

ordered exponential Ut=T� DI
exp	0
t G��dA��� will be unitarity if, from Proposition 1,

G + G† + G†PG = 0, G + G† + GPG† = 0 . �9�

It is relatively easy to see that the Itō coefficients then take the general form

PGP = W − P ,

QGP = − �PGQ�†W ,

QGQ = −
1

2
�PGQ�†�PGQ� − i� H 0

0 0
� , �10�

where W†W=P=WW† �i.e., the restriction of W to h � CN is unitary� and H is self-adjoint on h.
More explicitly, we may set

W = � 0 0

0 W = 
Wij�
�, PGQ =�

0 0,0,¯

L1

L2 0

]

� ,

where Wij, Li, and H are the operators on h introduced in Proposition 1.
We should remark that the restriction to a finite number N of channels is not essential and that

the unitary process exists under certain conditions on the boundedness of G as a matrix operator.22
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III. QUANTUM STRATONOVICH CALCULUS

We wish to write the quantum Itō formula in the form

d�XtYt� = �dXt� � Yt + Xt � �dYt� . �11�

This can be achieved by formally defining

�dXt� � Y ª �dXt�Yt + Xt
��Vt

��Yt
��dAt

��,

�12�
Xt � �dYt� ª Xt�dYt� + Xt

���Vt
���†Yt

��dAt
��,

where the 
Vt
��� may in general be taken as adapted processes, however, we shall take them to be

just scalar coefficients. It follows that ��dXt� �Yt�†=Yt
† �dXt

†, and we recover the Itō formula pro-
vided we have the condition V��+ �V���*= P��. �It should be noted that the differential maps
considered here are not actions. For instance, ��dXt� �Yt� �Zt is not the same as �dXt� � �YtZt�—this
is also the case for the classical notion of Stratonovich differential! In contrast, the Leibniz rule
can be restored by absorbing the Itō correction completely onto either the left or right action of the
algebra of integrands on the algebra of differentials. This has been recently carried out by
Hudson,23 who was able to construct a Woronowicz first-order differential calculus24 by this
device.

The simplest solution possible is to take V��= 1
2 P�� and this corresponds algebraically to the

traditional Stratonovich definition of a differential. The general solution however takes the form
V��= 1

2 P��+iZ��, where the constants 
Z��� satisfy �Z���*=Z��. The appearance of these constants
is similar to the ambiguity in the Tomita-Takesaki theory, and we refer to them as a gauge
freedom. We shall identify the Vij with the constants �ij occurring in the approximation scheme.
Let us take V�
V��� to be the family of constants, then the requirement is V+V†=P with general
solution V� 1

2P+iZ where Z†=Z. We shall take the 
Z��� to be scalar constants and set Z00

=Zi0=Z0j =0. This implies that Z=ZP=PZ and so V=VP=PV:

V = 1
2P + iZ � � 0 0

0 V
� .

where V= 1
2 +iZ with Z†=Z. Note that V is a normal operator with VV†=V†V=4−1+Z2.

It should be pointed out that we have the relation

dJt�XY� = �dJt�X�� � Jt�Y� + Jt�X� � �dJt�Y�� ,

which we can get either from taking differentials of the homomorphic property Jt�XY�
=Jt�X�Jt�Y�, or explicitly by noting that �dJt�X�� �Jt�Y��Jt�L���X�Y +L���X�V��Ln��Y��dAt

��,
etc., and using Proposition 3.

A. Stratonovich-Dyson time ordered exponentials

Let us now suppose that U. is simultaneously the solution to the Itō QSDE dU= �dG�U, with
dG=G��dA�� as before, and a Stratonovich QSDE �for a fixed gauge!�

dUt = �dG0�t�� � Ut, U0 = 1, �13�

with dG0=G��
0 dA��. In such cases, we may write U. as the Dyson-Stratonovich time-ordered

exponential Ut=T� SD
exp	0
t G��

0 dA��� and shall refer to G0�
G��
0 � as the matrix of Stratonovich

coefficients.
Self-consistency requires that dU= �dG0� �U= �dG�U and so we should have that dU

= �dG0�U+G��
0 V��G��UdA��= �G��

0 +G��
0 V��G���UdA��. This means that the Itō coefficients G

= 
G��� are related to the Stratonovich coefficients G0= 
G��
0 � by

G = G0 + G0VG . �14�
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As we shall see, so long as 1+VGP is invertible, we may solve for G0 in terms of G.
Similarly, invertibility of 1−PG0V implies that we may write G in terms of G0. It might be
remarked that the relation �14� also applies if we consider matrices G ,G0 of adapted processes.

What is rather astonishing is that relation �14� is precisely of the form relating free and
perturbed Green’s functions. Let us recall briefly that if H=H0+V is a Hamiltonian considered as
a perturbation of the free Hamiltonian H0 then the resolvent operator G�z�= �z−H�−1 is related to
the free resolvent G0�z�= �z−H0�−1 by the algebraic identity

G = G0 + G0VG �15�

for all z outside of the spectra of H and H0. The identity may be rewritten as G= �1−G0V�−1G0 and
iterated to give the formal expansion G=G0+G0VG0+G0VG0VG0+¯ which, when convergent, is
the Neumann series. The details of the actual scattering are contained in the operator TªV
+VGV and we have the identity G=G0+G0TG0.

B. The T-matrix

We now exploit the similarity between �14� and �15�. We begin by introducing the operator

T ª V + VGV � �0 0

0 T
� . �16�

Assuming that 1−VG0P is again invertible, we obtain the following identities:

T =
1

1 − VG0P
V , �17�

G0T = GV , �18�

TG0 = VG , �19�

G = G0 + GVG0, �20�

G = G0 + G0TG0. �21�

The proof of �17� comes from writing

T = V + T�G0 + G0TG�V = V + VG0T

so that �1−VG0P�T=V. The remaining identities are just precise analogues of well-known rela-
tions for resolvent operators.25

Combining �17� and �21� we see that G can be expressed in terms of G0 as

G = G0 + G0�1 − PVG0P�−1VG0. �22�

In particular, we see that G is bounded. We may then invert to get

G0 = G − G�1 + PVGP�−1VG . �23�

Equations �22� and �23� reveal a remarkable duality between the Itō and Stratonovich coeffi-
cients. �Of course this just means that we may view either as a “perturbation” of the other!�

If PVG0P is a strict contraction, then we may develop a Neumann series expansion G=G0

+G0VG0+G0VG0VG0+ ¯ =G0�n=0
	 �VG0�n.

It is convenient to introduce a related matrix
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F = 1 + TG0 = 1 + VG �24�

so that G=G0F.

C. An “optical theorem”

Let us next suppose that the Stratonovich coefficients take the Hamiltonian form

G0 = − iE , �25�

where E is a bounded, self-adjoint operator on h � CN+1. We then have the relation G0
†=−G0 and

set

PEP = �0 0

0 E
�

so that E is self-adjoint on h � CN. When our invertibility condition is met, it is easy to see that
matrix T exists and can be written as

T = �1 + iVE�−1V �
1

V−1 + iE
. �26�

�In the special case where Z=0, the self-adjointness of E ensures that V=1+i 1
2E is invertible

by von Neumann’s theorem.26 Therefore the existence of matrix T is guaranteed. More generally,
so long as the value 1 lies in the resolvent set of ZE, this theorem implies the existence of T.�

The related matrix F then takes the form

F =�
1 0,0, . . .

− iT1jEj0

− iT2jEj0 F

]

�
with F=1−iTE=TV−1, so that F��1+iVE�−1.

Lemma 1 (“Optical Theorem”): Re T�0 and in particular T satisfies the identity

T + T† = FF† = F†F .

Proof: We have that T+T† may be written as

FV + V†F† = F�V�1 − iEV†� + �1 + iVE�V†�F† = F�V + V†�F† = FF†.

It is then relatively straightforward to show that

FF† =
1

�1 − iV†E��1 + iEV�
= �1 − EZ − ZE + EV�V†�E�−1 =

1

�1 + iEV��1 − iV†E�
= F†F .

�

A similar calculation shows that Im T=−TET†.

D. Unitarity

We now wish to show that the choice of Hamiltonian Stratonovich coefficients naturally leads
to unitary processes.

Lemma 2: Let G0
†=−G0 be bounded with 1−VG0P invertible, and set G0�t�=	0

t G��
0 dA��.

Then the solution to the Stratonovich QSDE dU= �dG0� �U, U0=1 will be unitary.
Proof: This fact is an immediate consequence of the optical theorem �27�. To establish the
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isometric property for the Itō coefficients, first observe that G+G†=−G0�T+T†�G0 while

GPG† = G0FVF†G0
† = G0� 0 0

0 FF† �G0
† = − G0�T + T†�G0.

The isometry condition in �9� then follows from the first part of �27�. The co-isometric property
likewise follows from the second part. �

E. Changing gauge

Let G be a fixed Itō coefficient matrix related to the Stratonovich coefficient matrices G0
�a� and

G0
�a� with gauges Z�a� and Z�a�, respectively. The two matrices will then be related by the pertur-

bative formula

G0
�a� = G0

�a� + iG0
�a��Z�a� − Za�G0

�a�.

In particular, we can relate G0
�a� for a nonzero gauge to the symmetric �gauge zero� form G0

�a�. As
we shall see, the gauge Z has the physical interpretation as the imaginary part in the complex
damping and in many applications this may be small.21

F. The “midpoint rule” construction

We wish to indicate briefly that the traditional midpoint rule construction of Stratonovich
integrals agrees with the symmetric �V= 1

2P� situation considered here. This was shown to be at
least plausible for integrals with respect to creation and annihilation process by Gardiner and
Collett.4 However, we describe in the following some rigorous results due to Chebotarev13 using
the notations of that paper.

A map M from the Borel sets of R+ to operators on h � ��L2�R+�� is said to be interval-
adapted if M�T� acts trivially on the factor ��L2�Tc�� with respect to the continuous tensor product
decomposition ��L2�R+��=��L2�T�� � ��L2�Tc�� with Tc=R+ /T. The operators may be assumed to
act on some dense domain D. The prototypical integrators are then �-additive interval adapted
processes. An interval-adapted process U is said to be a cocycle if U�t ,s�=U�t ,r�U�r ,s� for t
�r�s where U : �t1 , t2��U�t2 , t1�.

Suppose now that an interval adapted cocycle U is a weak solution to the QSDE

dU�t,s� = U�t,s�M�dt+� ,

where M�dt+��M�t+dt , t� is the forward pointing Itō differential; that is, the following weak limit
is assumed over increasingly fine partitions S= t0
 t1
 ¯ 
 tn=T,

�
S

T

U�t,s�M�dt+�� ª lim
max�tj+1−tj�→0

�
j

U�tj,s�M�tj+1,tj�� ,

for all ��D, and U�t ,s��=�+	s
tU�r ,s�M�dr+��. Then, under mild conditions on a second in-

terval adapted �-additive process L, we have from Theorem 2.113

�
S

T

U�t,s�L�dt�� = �
S

T

U�t,s�L�dt+� +
1

2
M�dt+�L�dt+���

for all ��D, where

�
S

T

U�t,s�L�dt�� = lim
max�tj+1−tj�→0

�
j

U�tj
*,s�L�tj+1,tj��

where tj
*= �tj+1+ tj� /2 is the midpoint of the interval �tj , tj+1�.
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In particular, the theorem is valid when the interval adapted �-additive processes take the
specific �t1 , t2��M�t2 , t1�=M�� � �At2

��−At
��� for bounded operators 
M��� on h: That is,

M�dt+�=M�� � At
�� and L�dt+�=L�� � At

��. The situation that 	S
TU�t ,s�L�dt�� will equal

	S
TU�t ,s�M�dt+�� occurs when

L�T,S� +
1

2
�

S

T

M�dt+� + L�dt+� = M�T,S� .

The requirement on the coefficients, Eq. �2.23� of Ref. 13 can the, be rewritten as M��=L��

+ 1
2 M�1L1� which is a special case of our relation �14�.

IV. WICK ORDERING RULE

Let X. and Y . be quantum stochastic integrals with adapted integrands as before. In terms of
our notation involving the a�

†�t� ,a��t�, the product XtYt

=	0
t ds1	0

t ds2a�
†�s1�Xs1

��a��s1�a�
† �s2�Ys2

��a��s2� is not immediately interpreted as an iterated integral
since it is out of Wick order. However, the rule for achieving this is formally equivalent to the
kinematic relations

�a��t�,Ys� = �P��Yt
��a��t� , t 
 s

V��Yt
��a��t� , t = s

0, t � s ,
� �27�

under the integral sign, along with its adjoint �Xt ,a�
†�t��= �a��t� ,Xs

†�†. These relations can be
viewed as the formal commutation relations �a��t� ,a�

†�s��=V���+�t−s�+ �V���*�−�t−s� at work,
where the �± are one-sided delta-functions: 	�±�f�f�t�= f�0±�, see e.g., Refs. 27 and 28. It is
possible to interpret the a�

#�t� as quantum white noise operators, but we do not stress this point

further here. At this stage, we could switch to a fluxion notation such as Ẋt=dXt /dt

=a�
†�t�Xt

��a��t�, etc., and write the Itō formula as �d/dt��XtYt�= Ẋt �Yt+Xt � Ẏt with the convention
that

Ẋt � Yt � a�
†�t�Xt

��a��t�Yt = a�
†�t�Xt

��Yta��t� + a�
†�t�Xt

��V��Yt
��a��t� .

In particular, we have the following interpretation of the results of the previous section: The

equation U̇t= Ġ0�t�Ut with Ġ0�t�=a�
†�t�G��

0 a��t� is out of Wick order, but can be put to Wick order

as U̇t=a�
†�t�G��Uta��t�. The relation �a��t� ,Ut�=V��G��Uta��t� implies that

a��t�Ut = ���� + V��G���Uta��t� = F��Uta��t� , �28�

where 
F��� are the components of the matrix F introduced in �24�.
The QSDE for the unitary U., with G��

0 =−iE��, will then be

U̇t = − ia�
†�t�E��a��t�Ut = − ia�

†�t�E��F��Uta��t� �29�

and likewise the QSDE for the flow will be

d

dt
Jt�X� = U̇t

†�X�Ut + Ut
†�X�U̇t = − iUt

†a�
†�t��X,E���a��t�Ut = − ia�

† �t�Ut
†F��

† �X,E���F��Uta��t� .

�30�

Comparison with Proposition 2 suggests that L���X�=F��
† �X ,E���F��. As this is an entirely new

relation, we give an independent derivation in Appendix A using only the Itō calculus.
Lemma 3: Under the conventions and notations of the previous sections, the Evans-Hudson

maps take the form
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L���X� = − iF��
† �X,E���F��. �31�

V. QUANTUM WONG-ZAKAI THEOREM

The following is the multidimensional version of a result first established in Ref. 16.
Theorem: Let a�

#�t ,��, �=0,1 , . . . ,N, be creation/annihilation fields continuous in t for each
��0 with At

�����=	0
t a�

†�s ,��a��s ,��ds approximating fundamental quantum stochastic processes
with internal space CN as before, with fixed gauge matrix V= 
V���. If �t

���=E��

� a�
†�t ,��a��t ,�� with E��

† =E�� bounded operators on a fixed Hilbert space h such that VE is a
strict contraction, then the unitary family U.

��� and the Heisenberg dynamical map J.
����X�

=U.
���†XU.

���, determined by the Schrödinger equation U̇t
���=−i�t

���Ut
���, U0

���=1, converge in the
sense of weak matrix limits to the unitary quantum stochastic process U. and corresponding
quantum stochastic flow J.�X�. The limit process U. is unitary adapted and satisfies the Stratonov-
ich QSDE dUt=−iE��Ut �dAt

��, U0=1, with gauge determined by V= 
V���.
The proof is given in Appendix B. We remark that the condition �VE�
1 gives convergence

of the Neumann series. It also implies that 1+VEP will be invertible and therefore the Stratonov-
ich QSDE makes sense. We will sketch the proof of this theorem in Appendix B. Provided that the
strict contractivity conditions hold, we could replace E, and indeed V, by suitably continuous
adapted processes.

It might be remarked that there exists an analogue of this result using Fermi fields in place of
Bose fields.32 The limit QSDE changes insofar as the noises must now be fermionic processes,
however, the coefficients are exactly as before.

Examples: Classical Wong Zakai theorem. As a very special example of theorem, let us take
the one-dimensional case with the prelimit Hamiltonian �t

��� determined by E00=H, E01=E10=R
and E11=0 with �= 1

2 . Then the limit flow is characterized by the maps L11�X�=0, L10�X�
=L01�X�=−i�X ,R� and L00�X�=−i�X ,H�− 1

2 ��X ,R� ,R�. For the choices H= 1
2 �pv�q�+v�q�p� and

R= 1
2 �p��q�+��q�p�, where v�·� and ��·� are Lipschitz continuous with �v�x�� , ���x��
C�1+ �x��

for some constant 0
C
	, and q and p are canonical position and momentum observables, we
have that qtªJt�q� satisfies the essentially classical SDE dqt= �v�qt�+��qt����qt��dt+��qt�dQt or
equivalently dqt=v�qt�dt+��qt� �dQt, where Qt=At

10+At
01 is a copy of the Wiener process.

As a result, the theorem reduces to a classical Wong-Zakai approximation theorem which
states that, since Qt

���=	0
t �a†�s ,��+a�s ,���ds is an essentially classical stochastic process that is

differentiable in time t and converges almost always uniformly on compact time-intervals to a

Wiener process Qt, the solution to the random ODE Ẋt
���=v�Xt

��� , t�+��Xt
��� , t�Q̇t

���, X0
���=x0 simi-

larly converges to the diffusion process X. satisfying the Stratonovich SDE

dXt = v�Xt,t�dt + ��Xt,t� � dQt, X0 = x0.

Quantum diffusions. Taking �t
���=R � a†�t ,��+R† � a�t ,��+H leads to the limit QSDE

dUt = − i�R � dAt
† + R†

� dAt + H� � Ut � − i�R � dAt
† + R†

� dAt + H�Ut − �R†RUtdt .

Note that Re �= 1
2 so that dJt�X�=−iJt��X ,R��dAt

†−iJt��X ,R†��dAt+Jt�L�X��dt where we set At

=At
01, At

†=At
10 and L�X�=L00�X�=−i�X ,H��+ 1

2 �R† ,X�R+ 1
2R†�X ,R�. The new operator H� is H

+Im
��R†R which includes an energy shift coming from the complex damping �. The theorem
then reduces to a long line of results dealing with broadband noise limits, weak coupling limits,
etc., in quantum physics.

It is straightforward to extend this to describe coherent states, thermal states, and squeezed
states.29

Counting processes. Let us consider the choice �t
���=E � 
a�t ,��+ f�t��†
a�t ,��+ f�t��. This is

what we could consider in the vacuum as an equivalent of studying E � a�t ,��†a�t ,�� in a coherent
of intensity f . Here we have E��=Ef�

*�t�f��t� and the one-dimensional form of the theorem yields
the Itō coefficients
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G�� = − iE�� − �E�1
1

1 + i�E11
E1�,

which in this case reduce to

G���t� =
− iE

1 + i�E
f�

*�t�f��t� .

The Itō form of the limit QSDE is then

dUt =
− iE

1 + i�E
dNt�f�Ut

and we introduce Nt�f�=	0
t �dAs

11+ f�s�dAs
10+ f*�s�dAs

01+ �f�s��2ds� which is essentially classical and
corresponds to a time-inhomogeneous Poisson process with instantaneous rate of change ��t�
= �f�t��2.
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APPENDIX A „PROOF OF LEMMA 3…

We restrict ourselves to the N=1 case, as this is already somewhat involved. The multidimen-
sional case does not present any more technical difficulties. Here the Evans-Hudson maps are
given by

L11�X� = W†XW − X ,

L10�X� = W†�X,L�; L01�X� = − �X,L†�W , �A1�

L00�X� = 1
2 �L†,X�L +

1

2
L†�X,L� − i�X,H� ,

where the operators W ,H ,L have the explicit forms

W =
1 − i�*E11

1 + i�E11
, L = − i

1

1 + i�E11
E10, H = E00 + E01 Im �

1 + i�E11
�E10. �A2�

The components of the matrix F can also be written out in detail:

F11 =
1

1 + i�E11
, F10 = − i�

1

1 + i�E11
E10, F01 = 0, F00 = 1. �A3�

We now check that the relation �A1� is correct by direct substitution.
For �=�=1, we find after a little algebra that

L11�X� =
1 + i�E11

1 − i�*E11
X

1 − i�*E11

1 + i�E11
− X = − i

1

1 − i�*E11
�X,E11�

1

1 + i�E11
= − iF�1

† �X,E���F�1.

For �=1, �=0, we have
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L10�X� =
1 + i�E11

1 − i�*E11
�X,− i

1

1 + i�E11
E10�

and to compute this we need the observation that

�X,
1

1 + i�E11
� = − i�

1

1 + i�E11
�X,E11�

1

1 + i�E11
�A4�

to write

L10�X� = i�
1

1 − i�*E11
�X,E11�

1

1 + i�E11
− i

1

1 − i�*E11
�X,E10� = − iF�1

† �X,E���F�0.

As we have L���X�†=L���X†�, this gives the L01�X� result also.
The final case is the Lindbladian map L00. Substituting in gives

L00�X� = − i�X,E00� − i�X,E01 Im
T�E10� +
1

2
�E01

1

1 − i�*E11
,X� 1

1 + i�E11
E10

+
1

2
E01

1

1 − i�*E11
�X,

1

1 + i�E11
E10�

and again we use �B1� along with the observation that

Re T =
1

2

1

1 − i�*E11

1

1 + i�E11

to obtain

L00�X� = − i�X,E00� − �X,E01�TE10 + E01T
†�X,E10� − iE01�X,Im T�E10 − iE01T

†�X,E11�Re
T�E10

− iE01 Re
T†��X,E11�TE10.

The first three terms are −iF�0
† �X ,E���F�0, for �� ,��= �0,0�, �0, 1�, and �1, 0�, respectively. To

tidy up the last term, we note the identities

�X,T� = − iT�X,E11�T,�X,T†� = + iT†�X,E11�T†

so that

�X,Im T� + T†�X,E11�Re T + Re T�X,E11�T = − 1
2T�X,E11�T − 1

2T†�X,E11�T + T†�X,E11�Re T

+ Re T�X,E11�T � T†�X,E11�T

and therefore the last term is −iE01T
†�X ,E11�TE10�−iF10

† �X ,E10�F10. This gives the desired form.

APPENDIX B „PROOF OF THE THEOREM…

We now sketch briefly the proof of limit using diagrams. Essentially, this is a form of the van
Kampen cumulant expansion21 which can be described explicitly. The Heisenberg evolution limit
is similar though more involved.16

Step 1: Wick ordering the Dyson series. For finite �, the mapping t�Ut
��� is differentiable,

and we may formally expand as the Dyson series Ut
���=�n�0�−i�n	�n�t��tn

���
¯�t1

���. Here �n�t� is
the simplex consisting of multi-times �tn , . . . , t1� with t� tn� ¯ � t1�0.

It is convenient to put the Dyson series to Wick order using the commutation relations. The
most convenient way to describe this is to expand in terms of diagrammatic series and we borrow
some standard techniques from field theory. To this end, we introduce four vertices corresponding
to the four components of �t

���:30
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The Wick-ordered Dyson series is then given by the sum

Ut
��� = �

D

D̂t��� �B1�

which we now describe. We sum over all diagrams D obtained by writing n vertices in a line
�n=0,1 ,2 , . . . � as below

taking each of the vertices to be one of the four shown above, connecting up some of the
creation/annihilation pairs and leaving the rest as external lines.

With each such diagram D we associate the operator

D̂t��� = �− i�nEn ¯ E1 � �
�n�t�

�a†����C����a��� �B2�

where, depending on the type of vertex at tj,

Ej = �
Eij, scattering

Ei0, emission

E0j, absorption

E00, neutral
�

and in the simplex integral �a†��� is the product over all external lines going out, �a��� is the
product over all external lines coming in and �C��� is a product over all contraction pairs.

For instance the nine vertex diagram below

corresponds to the operator

− iE0j9
E0j8

Ei70Ei6j6
E0j5

Ei40E0j3
Ei20E00

� �
�9�t�

ai2
† �t2,��aj5

�t5,��aj3
�t3,��Cj9i7

�t9 − t7,��Cj8i6
�t8 − t6,��Cj6i4

�t6 − t4,�� .

The diagrams we are considering are Goldstone diagrams, or time-ordered Feynman
diagrams.31 The vertices however carry an operator weight E�� and, even in the absence of
external lines, the diagrams will not generally be scalars!

Step 2: The Markov limit of individual diagrams. Let us consider the effect of the Markov
limit �→0 on individual diagrams. If we have a contraction
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over consecutive times tj+1� tj, then we will have tj+1− tj→0+ in the limit. The effect of each such
contraction is to reduce the order of the simplex by one degree and to introduce a multiplication
factor Vij. �Remember, we only get a partial contribution from the delta-function since tj+1� tj.�
On the other hand, if any of the contracted time pairs are not time consecutive then the contribu-
tion converges weakly to zero! The reason is essentially that not just the emission and absorption
times, but all the intermediate times are forced to be equal, and we get a collapse of the integral
to zero.

We therefore say that a diagram is time-consecutive �TC� if each contraction appearing is
between time consecutive vertices only.

Step 3: The vacuum limit. We now fix u, v�h and investigate the limit lim�→0�u
� ��Ut

����v � �� which we denote by the single vertex

We now argue that this limit will consist of the TC diagrams having no external lines which we
can express as

The diagrams have been grouped by vertex number, however, it also possible to group them
by effective vertex number which is the actual number minus the number of contractions and
which gives reduced degree of the simplex. The series can be partially re-summed as

where each box is a sum over all effective one-vertex contributions:

which is analogous to the expression of the self-energy in quantum field theory:as a sum over
irreducible terms. �Note that series terminates at second order when there is no scattering: as this
is a form of cumulant expansion, the emission/absorption problem is then Gaussian while allowing
scattering means that we have cumulant moments to all orders!� Explicitly, the box at time vertex
t corresponds to the sum

− iE00dt + �− i�2E0i1
Ei10dt + �− i�3E0i4

Vi4i3Ei3i2
Vi2i1Ei1,0dt + ¯

= �− iE00 − E0iV
ij� 1

1 + iVE
�

jk

Ek0�dt � − iG00dt

and we have summed the geometric series, convergent since �VE�
1, to get the required coeffi-
cient G00. We can write the expansion in the recursive form
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and this is interpreted as the integrodifferential equation

�
0

t

�u � ��dUt1
�v � �� = �u � ��v � �� − i�

0

t

dt2�u � ��G00�
0

t2

dUt1�v � ��
with decaying exponential solution

�u � ��U�t��v � �� = �u�e−itG00�v� .

The interpretation is intended to suggest that there is a limit object Ut which we interpret as a
unitary quantum stochastic process on a noise space with initial space h.

Step 4: Limit of exponential vector matrix elements. Calculating lim�→0�u � ���f��U�t ,���v
� ���g�� does not require too much machinery beyond that used in the vacuum case. Indeed, we
can convert the new matrix elements to vacuum ones using the relation

�u � ���f��Uf
����v � ���g�� = �u � ��Ũt

����v � �� ,

where Ũt
��� is the solution to the Schrödinger equation determined by the “Hamiltonian” �̄t

���

obtained by replacing the fields a�t ,�� and a†�t ,�� with

ãi�t,�� = ai�t,�� +� Cij�t − s,��gj�s� ,

ãi
†�t,�� = ai

†�t,�� + �� Cij�t − s�f j����*

.

The new interaction �̃t
��� is not necessarily self-adjoint, however, that does not effect things. We

may rearrange �̃t
��� in terms of the original fields as Ẽ�� � a�

†�t ,��a��t ,�� where, suppressing the

� and t dependencies, the Ẽ�� are the operators

Ẽij = Eij ,

Ēi0 = Ei0 + Eij� Cjl�t − s,��gl�s� ,

Ē0j = E0j + Ejk�� Ckl�t − s�f l�t��*

,

Ẽ00 = E00 + Ei0�� Cil�t − s�f l�t��*

+ E0j� Cjl�t − s,��gl�s�

+ Ejk�� Cil�t − s�f l�t��*� Cjm�t − s,��gm�s� .

Therefore we only have to repeat our previous argument, but with the original coefficients

now replaced by the modified ones Ẽ��, taking care with the t and � dependencies. This time the
box at time vertex t corresponds to the sum −if�

*g�G��dt where now

G�� = E�� − E�i�V − iVEV + �− i�2VEVEV + ¯ �ijEj� = �− iE�� − E�iV
ij� 1

1 + iVE
�

jk

Ek��
and this gives the required result.
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Step 5: Convergence of the series. What we have done so far has been to expand the Dyson
series, determine the asymptotic limit of each diagram term �only the TC ones survived�, to
replace the terms by their respective limits and to re-sum the series. To complete the proof, we
need to establish that the series is absolutely and uniformly convergent. Fortunately we are able to
extend the proof for estimating that these types of series exist for emission-absorption
interactions33 to the general case.

Let us start with the case where we have emission and absorption only in the interaction. The
order must be even say, n=2n2, as the vacuum diagrams consist of n2 pair contractions only. There
will then be �2n2� ! /2n2n2! such diagrams with 2n2 vertices. A typical diagram, having n2=6 is
sketched in the following:

There exists a permutation � of the n=2n2 time indices which re-orders to the diagram D0�n�
shown in the following:

The permutation is moreover unique if it has the induced ordering of the emission times. Not
all permutations arise this way, the ones that do are termed admissible. We now consider an
estimate of the nth term in the Dyson series. Let E=max�E���, then

��
D

En�
�n�t�

� �C�����
D

= � �
Admissible perms.

En�
�n�t�

� �C��� � ���
D0�n�

= En�
R�t�

�
k=1

n2

�C�t2k − t2k−1,��� ,

where R�t� is the union of simplices 
�tn , . . . , t1� : t� t�−1�n�� . . . � t�−1�1��0� over all admissible
permutations Z. R�t� will be a subset of �0, t�2n2 and if we introduce variables t2k and s2k= t2k

− t2k−1 for k=1, . . . ,n2, it is easily seen that the above is majorized by E2n2Cn2 �max�t ,1�n2 /n2!,
where C=maxVij. This is the Pulè inequality33 and clearly gives the uniform absolute estimate
required to sum the series.

We now consider scattering, and constant, terms in the interaction. This time, the number of
diagrams with n vertices will be given by the nth Bell number Bn. To see why this is so, we recall
that if we have a reservoir quanta created at a vertex, then perhaps scattered, and finally reab-
sorbed then we can think of it as the same quantum and treat all the vertices it has been at as being
linked. Each such diagram is then described by these subsets of linked vertices �we should also
count the neutral vertices as these are singleton sets�: in this way we have a one-to-one correspon-
dence between the diagrams and partitions of vertices into nonempty subsets. The Bell numbers
grow rapidly and have a complicated asymptotic behavior. The proliferation of diagrams is due
mainly to the multiple scattering that now takes place.

113509-17 Quantum Stratonovich and Wong-Zakai theorem J. Math. Phys. 47, 113509 �2006�

                                                                                                                                    



There will exist a permutation � of the n vertices which will reorder the vertices so that we
have the singletons first, then the pair contractions, then the triples, etc., so that we obtain a picture
of the following type:

The permutation is again unique if we retain the induced ordering of the first emission times
for each connected block. We now wish to find a uniform estimate for the nth term in the Dyson
series, we have

�
D

�
�n�t�

� �C���� � “ weights”

where the weights are the operator norms of various products of the type E�n�n
¯E�1�1

. Each
connected diagram of j�2 vertices will typically have one emission and one absorption, and j
−2 scattering vertices. The Pulè argument of rearranging the sum over diagrams into a single
integral over a region R�t� of �0, t�n again applies and by similar reason we arrive at the upper
bound, this time of the type

�
n1,n2,n3,. . .

� �VE�n1+2n2+3n3+¯En1+n2+n3+¯ �
max�t,1�n1+n2+n3+¯

n1!n2!n3!¯
.

Here the sum is restricted so that � j jnj =n. An uniform estimate for the entire series is then given
by removing this restriction:

��A,B� = �
n1,n2,n3,¯

exp
� j
�Aj + B�nj�

n1!n2!n3!. . .

where eA= �VE� and eB=E max�t ,1�. Again we use the trick to convert a sum of products into a
product of sums

��A,B� = �
j

�
n

exp
�Aj + B�n�
n!

= exp eA+B

1 − eA� ,

where we need eA
1 to sum the geometric series—this however, is precisely our condition that
�VE�
1.
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We introduce a novel notion of probability within quantum history theories and
give a Gleasonesque proof for these assignments. This involves introducing a ten-
tative novel axiom of probability. We also discuss how we are to interpret these
generalized probabilities as partially ordered notions of preference, and we intro-
duce a tentative generalized notion of Shannon entropy. A Bayesian approach to
probability theory is adopted throughout; thus the axioms we use will be minimal
criteria of rationality rather than ad hoc mathematical axioms. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2390658�

I. INTRODUCTION AND SUMMARY

In Ref. 1 we postulated a novel notion of probability by generalizing Cox’s axioms of
probability2,3 in a manner appropriate to quantum theory. In this paper we wish to go one step
further; we will present a uniqueness proof analogous to Gleason’s theorem for our postulated
generalized probabilities. We will be helped considerably by another analog of Gleason’s theorem
in the literature4 which is applied to the decoherence functional in the history projection operator
�HPO� formulation of the consistent histories program.5 First we will review results previously
discussed1 and then we will outline the relevant Gleason-like theorem, its interpretation, and, for
completeness, its proof. We will then propose a generalized entropy.

We will adopt a Bayesian approach to probability theory and we will use Cox’s approach in
particular.3 Probabilities are usually considered real numbers because of an association with rela-
tive frequencies. As soon as we adopt an approach to probability theory where we merely assign
probabilities as an ordered notion of preference, then there is absolutely no a priori reason to
consider probabilities as real numbers. One might try to design “zeroth” axioms of probability
theory which end up ensuring that probabilities are, in fact, real numbers, and then one might
introduce further axioms to constrain how we assign these real numbers to propositions. Such an
approach is, however, problematic because such zeroth axioms are rather ad hoc.

Consider some arbitrary propositions �, �, and � to which we are to assign probabilities.
Consider also a notion of ordering “�” to be defined on the probability space. Two possible zeroth
axioms,6 which constrain how this ordering notion is to behave, are “universal transitivity:”
Axiom 0a,

if p���I� � p���I� and p���I� � p���I� then p���I� � p���I� , �1�

and “universal comparability:”
Axiom 0b,

for all � and � we have that either p���I� � p���I� or p���I� � p���I� or p���I� = p���I� .

�2�
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Given these zeroth axioms it would seem natural �although it is still not strictly necessary� to
use real numbers for probability assignments. Axiom 0a is often considered desirable because
probabilities are intended to represent transitive notions of preference in some sense. Axiom 0b is,
however, far more dubious and there is a history in the literature of people trying not to assume it
�see Appendix A.3 of Ref. 6 for references and also see Refs. 7 and 8�. Why presume that we can
probabilistically compare all propositions universally, especially in quantum theory where some
propositions are considered “incompatible” or “complimentary?” It is prudent not to assume
Axiom 0b from the outset �it might be that we are forced to adopt it later�. If we were to adopt
Axiom 0b, then it might be that we will be introducing relationships between probabilities that we
are not justified in invoking—and any problems such as nonadditivity and so forth might be due
to such a mistaken assumption.

Rather than adopt these two controversial zeroth axioms let us, for the time being, use a
weaker zeroth axiom that we can all surely agree on:
Axiom 0�,

if � � � then, presumably, p���I� � p���I� , �3�

where “�” is, in the least, a partial order in the context of both the proposition space and the space
of generalized probabilities �in the context of standard probability theory, we could use Venn
diagrams to define ��� using subset inclusion and we would define p�� � I�� p�� � I� using the
total ordering of real numbers�. We call this axiom “monoticity.”9 So as to avoid confusion with
standard probability theory �theories which obey Axioms 0a and 0b�, it is prudent to call any
assignment which merely obeys the weaker zeroth axiom �Eq. �3�� by another name: we will call
them “pedagogical examples” or “pegs.” Probabilities are then special examples of pegs.

Our task in this paper is then to find a peg theory for a histories algebra. We will use the
histories propositional algebra P�V�, where V= �nH, which was originally introduced by Isham.5

The natural connectives on this space of projection operators are the standard ∧, ∨, and ¬ con-
nectives and we use the standard partial order � upon it.5 A homogeneous history proposition �
is defined as a time ordered tensor product of projection operators �̂tm

�P�H�:

� ª �̂tn
�tn� � �̂tn−1

�tn−1� � ¯ � �̂t1
�t1� . �4�

We stay in the Heisenberg picture such that each projection operator has the dynamics already

implicit such that �̂tm
�tm�= Û†�tm− tm−1��̂tm

Û�tm− tm−1�, where �̂tm
are Schrödinger picture opera-

tors. Our novel peg assignments, those that we suggested in Ref. 1, are

p���I� ª trH�C��̂� , �5�

where C�= �̂tn
�tn��̂tn−1

�tn−1�¯ �̂t1
�t1� and �̂ is a density operator on H. We keep an explicit hy-

pothesis I in the notation because such a thing is natural when discussing probabilities from a
Bayesian perspective,10 and it avoids us confusing peg assignments that are made given different
prior information. Clearly these pegs might obey Eq. �3� by relating the natural partial order on
P�V� to some partial order on C. Once we introduce further axioms that these pegs ought to
obey—other than Eq. �3�—then we will be able to speculate what this partial order on the peg
space might be.

We proposed these pegs for the history algebra P�V� because they are additive for disjoint
homogeneous history propositions;1 thus these complex pegs seem to behave something like we
expect probabilities should. Now we aim to show that we can derive these pegs from axioms
analogous to Cox’s axioms of probability theory applied to the HPO algebra using an analog of
Gleason’s theorem.

II. A GLEASON ANALOG

So, let us remind ourselves of what Gleason’s theorem11 tells us. Gleason’s theorem is about
trying to assign probabilities to a quantum propositional algebra. In standard quantum theory the
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relevant propositional algebra is taken to be P�H�, the set of projection operators upon a Hilbert
space H, where the natural logical connectives on P�H� are ∧, ∨, and ¬, and we denote the
standard partial order relation �. So, naturally, a probability assignment should obey certain rules
which we shall use to define what is often, perhaps confusingly, called a state �we call it a state
more because of what we end up proving�. A state ��S is a real valued function on P�H� which
has the following properties:

1. Positivity: ��P̂�	0 for all P̂�P�H�,
2. Additivity: if P̂ and R̂ are disjoint—P̂∧ R̂= 0̂—then ��P̂∨ R̂�=��P̂�+��R̂�, and

3. Normalization: ��1̂�=1,

where 0̂�P�H� is the proposition that is always false and 1̂�P�H� is the proposition that is
always true. Gleason’s theorem is simply that states assigned to P�H�, for dim H�2, are in
one-to-one correspondence with density matrices on H such that

���P̂� = tr�P̂�̂� for all P̂ � P�H� . �6�

One takes the propositional algebra of projection operators, makes basic assumptions about how
probabilities ought to behave, and derives that such probability assignments are in one-to-one
correspondence with density matrices. The axioms of probability theory ensure the density matrix
structure of quantum theory.

In analogy with Gleason’s theorem, we should list a set of axioms that our pegs should obey
and then try and derive the theorem from there. For these axioms, we argue, we should look to
Cox’s axioms of probability theory which ensure that we do not introduce functional relationships
between peg assignments that are not rationally justified. Cox’s ∧-axiom is simply that the pegs we
peg to propositions conjoined using the AND operation should be limited to be functionally de-
pendent only on some very specific pegs:

p�� ∧ ��I� ª F�p����I�,p���I�� , �7�

where F is an arbitrary function that is sufficiently well behaved for our purposes. Similarly, Cox’s
¬-axiom is that the peg we peg to the negation of a proposition should only functionally depend
upon the peg of the proposition before it was negated:

p�¬��I� ª G�p���I�� . �8�

These two axioms are criteria of rationality that are at the heart of Cox’s approach to probability
theory and these are all he needed �except for the additional assumption that probabilities are real
numbers� in order to prove the basics of probability theory as applied to a Boolean algebra of
propositions.

Cox’s two axioms suggest we should use a peg that is additive for disjoint history propositions
and that is normalized.3 It turns out that this will not be sufficient for our peg theory; we will need
a further axiom. Luckily one is forthcoming. Note that in the HPO formulation of history theories,
we have the three natural logical connectives ∧, ∨, and ¬ which correspond roughly to AND, OR,
and “negation” operations �although with the standard nondistributivity issue we have in quantum
theory�. Clearly, however, when going from projection operators defined at a single time to
explicitly history orientated propositions, there is another natural connective, namely, changing the
temporal order. As such we can define an operator M which reverses the order on any tensor
product vector, M�v1 � v2 � ¯vm�ª �vm � vm−1 � ¯v1�. Thus the temporal reversal of the
Heisenberg picture history proposition � is given by

� ª M�M = �̂t1
�t1� � �̂t2

�t2� � ¯ � �̂tn
�tn� . �9�
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Note that � reverses both the kinematical and the dynamical temporal orderings because we
are in the Heisenberg picture �cf. Ref. 12�. Applying � twice in this manner obviously gives back
the same history proposition, behavior that is analogous to the negation operation. Hence we
should introduce a third peg axiom analogous to Eq. �8�:

p����I� ª H�p���I�� , �10�

where H is an arbitrary function that is sufficiently well behaved for our purposes. The peg we
assign to such a proposition should be assigned in a noncontextual manner according to Eq. �10�.
Clearly, by Youssef’s argument,7 we could use complex numbers and still keep consistency with
analogs of Cox’s two axioms. Our tentative third axiom seems to give our pegs an “extra degree
of freedom.” Using real numbers would not be a possibility for a peg that also obeys Eq. �10�, and
luckily we are using the uncontroversial weaker zeroth axiom �Eq. �3��. Hence it might be that we
can find a peg which obeys Eqs. �3�, �7�, �8�, and �10�.

In analogy with how we define states in Gleason’s theorem, let us define complex assignments
as maps l :P�V�→C which obey the following rules:

1. Conjugation: l���*= l���� for all �,
2. Additivity: if � and � are disjoint then l��∨��= l���+ l���, and
3. Normalization: l�1�=1.

We use the similar notation as we used for the Hilbert space H because V is still a Hilbert space
�although we leave the “hats” off operators in V�. This is an advantage of using Isham’s HPO
formulation of the history algebra.5

Note that the peg axioms �7�, �8�, and �10� do not uniquely ensure that we must use the
complex assignments l—just as Cox’s axioms in standard probability theory do not ensure that we
must use real numbers per se. The peg axioms ensure that, whatever assignments we do use for
convenience, such assignments at least obey the relevant criteria of rationality. Hence we do not
argue that the complex assignments l are uniquely the only pegs we could use, but clearly the
maps l do obey Eqs. �7�, �8�, and �10� and might yet obey Eq. �3� for some partial order on C. One
might even argue that it is not the particular assignments that matter; it is the catalog of functional
relationships between them that is important �this we categorize axiomatically using analog of
Cox’s axioms�. Nonetheless, it is convenient to use particular representations �just as it is conve-
nient to use real numbers in standard Bayesian probability theory�.

Can we now start to tackle a proof of a Gleason-like theorem for these complex assignments
l? In fact, the result follows from an analog of Gleason’s theorem for decoherence functionals
already in the literature.4

Let us first review some identities.4 Note that

trH�Â1Â2 ¯ Ân� = tr�nH�Â1 � Â2 � ¯ ÂnS� , �11�

where Âm are arbitrary self-adjoint operators on H and S is a linear operator S : �nH→ �nH
defined on product vectors by

S�v1 � v2 � ¯ � vn� ª v2 � v3 � ¯ � vn � v1 �12�

and extended by linearity and continuity to give a unitary operator on �nH.
We can swap between the Heisenberg and Schrödinger pictures using

trH�C�� = tr�nH��̂tn
� �̂tn−1

� ¯ �̂t1
SU� , �13�

where the �̂tm
are Schrödinger picture projection operators and SU

ª �Û1
†

� ¯ � Ûn
†�S�Û1 � ¯

� Ûn�.
In an analogous way,4 we can absorb the initial state into an operator defined on V= �nH

using the identity �11�. Note that
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trH�Â1Â2 ¯ Ân� = tr�nH��Â1 � Â2 � ¯ Ân−1 � 1n��11 � 12 � ¯ 1n−1 � Ân�S� �14�

=tr�nH��Â1 � Â2 � ¯ Ân−1 � 1n�Y� �15�

=tr�n−1H��Â1 � Â2 � ¯ Ân−1Y��� , �16�

where Y� is obtained from Y by tracing over a complete set of states for the nth Hilbert space. The
form of Eq. �11� is preserved under removing an operator by the action of a partial tracing and is
also preserved when removing the dynamics from around each single-time proposition in the
history proposition.

So, using these identities we can absorb all the dynamics and initial state into some operator
Z such that

trH�C��̂� = tr�nH��̂tn
� �̂tn−1

¯ � �̂t1
Z�,H� . �17�

Note that the left-hand side �LHS� of Eq. �17� is in the Heisenberg picture, whereas the right-hand
side �RHS� is in the Schrödinger picture; we have split the dynamics and kinematics into distinct
entities. There are good reasons for doing this as it would allow us to investigate the distinction
between the two forms of temporal orderings.12 But note that we can stay within the Heisenberg
picture if we wish �for it is, by far, the preferable picture13�; we keep the dynamics around the
corresponding projection operators and absorb just the initial state into an operator Y:

trH�C��̂� = tr�nH��̂tn
�tn� � �̂tn−1

�tn−1� � ¯ �̂t1
�t1�Y�� . �18�

The above ensures that we can put our tentative assignment into “Gleason” form. Now we can
prove an analog of Gleason’s theorem for such operators Y�. The theorem and proof follow the
analysis in Ref. 4 almost word for word. There are, however, distinguishing features and, for
completeness, we repeat the analysis here since the proof is so short.

Theorem: If dim V�2, the complex assignments l are in one-to-one correspondence with
operators Y on V= �nH according to the rule

l��� = trV��Y� , �19�

with the restrictions that

Y† = MYM , �20�

trV�Y� = 1, �21�

where M is an operator that reverses the order of the entries in a tensor product vector; M�v1

� v2 � ¯vm�ª �vm � vm−1 � ¯v1�.
Proof: In one direction, the theorem is trivial; if a function l is defined by the right-hand side

of Eq. �19� it clearly obeys the crucial additivity condition. The extra requirements �20� and �21�
ensure normalization and conjugation requirements.

Conversely, let l :P�V�→C be a complex assignment. The proof that it must have the form
�19� exploits Gleason’s theorem applied to P�V�.

Let Re l and Im l denote the real and imaginary parts of l so that

l��� = Re l��� + Im l��� �22�

where Re l����R and Im l����R. The additivity condition on l means that Re l��� and Im l���
are additive functions on P�V�, i.e., Re l��1∨�2�=Re l��1�+Re l��2� for any disjoint pair �1, �2

of projectors and similarly for Im l. We have that l��� is a continuous function of its argument and
hence �� l��� is a continuous function on P�V�, as are its real and imaginary parts. However, the
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set of all projectors in the finite dimensional space V is a finite disjoint union of Grassman
manifolds and is hence compact. It follows that the functions ��Re l��� and �� Im l��� are
bounded below and above. On the other hand, for any r�R, the quantity


r��� ª r dim��� = rtr��� �23�

is a real additive function of �, and hence so are Re l+
r and Im l+
s for any r ,s�R. We can
choose an r such that Re l+
r	0 for all � �and s such that Im l+
s	0�, and due to an upper
bound we can choose positive real scale factors � and � such that for all � we have that

0 � ��Re l + 
r���� � 1, �24�

0 � ��Im l + 
s���� � 1. �25�

These inequalities plus the additivity property show that, for each ��P�V�, the quantities
����Re l+
r���� and ����Im l+
s���� are states on the lattice P�V�. Then Gleason’s theorem
shows that there exists a pair of density matrices �1 and �2 on V such that for all ��P�V�,

��Re l + 
r���� = trV��1�� , �26�

��Im l + 
s���� = trV��2�� , �27�

and so

Re l��� = trV�� 1

�
�1 − r��� = trV�Y1�� , �28�

Im l��� = trV��1

�
�2 − s��� = trV�Y2�� , �29�

where Y1
ª �1/���1−r and Y2

ª �1/���2−s. Thus we have shown the existence of a family of
operators YªY1+ iY2 on V such that

l���� = trV��Y�� . �30�

This completes the proof of the theorem because the conditions �20� and �21� follow at once
from the conjugation and normalization conditions on complex assignments. �

We do not discuss any extensions to infinite dimensional cases. We add the subscript � to Y to
emphazise that it depends upon the initial state; it is anticipated that Y� can be decomposed into
some operators on V which are universally defined �through relations between traces of products
of operators and traces of tensor product operators� and some operators that are related to the
initial state. Clearly the Y operators on V and density operators on H are intimately related; the
task is now to investigate the properties and interpretation of these pegs. But, in the least, we can
put our assignment �5� into the form �30� for which we have an analog of Gleason’s theorem.

One issue that we have to identify is that we have promoted the operation to � a connective
on par with ∨, ∧, and ¬, and it may not seem natural to some to do this. We considered it natural
because we were going from a space P�H� which identified propositions at a single time to a
space P�V� which explicitly identified history propositions. So we need a connective that can
relate different temporal orderings. One might then query, why specifically �? Why not some
other operation, such as making any permutation of single-time entries? Staying in the Heisenberg
picture ensures that the dynamics are already taken care of, and permuting the entries would mess
up this fact; hence we only discuss a connective that maintains the dynamical relationships be-
tween single-time propositions.
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Note that we do not need to use the monoticity axiom �Eq. �3�� for Gleason-like proofs; it is,
in some sense, redundant. Nonetheless, how might our pegs obey monoticity? In P�V� we have the
following condition:

0 � � � 1 for all � � P�V� . �31�

For our pegs we have that p�0 � I�=0 and P�1 � I�=1 and hence, by monoticity, we must, in the least,
demand that

0 � p���I� � 1 for all � � P�V� . �32�

One tentative partial order might look something like Fig. 1. This partial order has the added
advantage as we are unable to relate p��� � I� and p�� � I� using it �the partial ordering is symmet-
ric in the real axis and complex conjugation represents time reversal�. �Equivalently, one can
picture the same partial order as allowing many different paths from uncertainty to certainty such
that these paths are symmetric in the real axis. These paths would look like the lines of magnetic
flux between north �0� and south �1� magnetic poles in two dimensions �2D� �not illustrated�. This
absolves us of Jaynes’ argument against comparative probability theories—ones that do not obey
Axiom 0b—by allowing many dense paths from 0 to 1, see the Appendix of Ref. 6�. Since, by the
partial order on P�V�, � NR �� �where NR stands for “not related to by the relevant partial
order”�, we ought to demand this of the peg space as well, such that p��� � I� NR p�� � I�. Also,
this partial order reduces to the standard probabilities when we move to the real line between 0
and 1.

Note, however, that there are many partial orders on C and there might be another applicable
one; we introduce the partial order represented by Fig. 1 to emphasize that monoticity will provide
constraints for the partial orders that we can use. For disjoint propositions � and �, we have that
�� ¬�; hence the monoticity requirement ensures that p�� � I��1− p�� � I� which is satisfied as
long as Eq. �32� is. The constraint �32� thus ensures a class of partial orders that might be useful
and Fig. 1 seems the most apt.

Even obeying all the peg axioms we have to hand it is still very difficult to interpret these pegs
as “probabilities” per se because we are taught again and again that probabilities are real numbers.
However, remember that there is no a priori reason to regard probabilities as real numbers; they
are merely magnitudes that we use in order to assign a partially ordered notion of preference to
propositions.

III. DISCUSSION

Having an analog of Gleason’s theorem for our pegs is not enough; we now need to argue why
we should use such complex pegs in the first place. We have given an argument based on rejecting
Axiom 0b; so now it is important to discuss the factitious problems that are solved by rejecting it.
If we keep Axiom 0b then, by the very fact that we will be comparing propositions in a manner

FIG. 1. Contour lines of pegs of equivalent size by a suggested partial order on C. The “height” of each contour gets larger
starting from the circle around 0 until we reach the circle around 1.
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that is not justified rationally, we will be introducing relations within the probability space that are
not underpinned by relations in the proposition space. Hence we call such relations in the prob-
ability space “factitious.”

The language we have used here is perhaps quite telling. Our use of the term factitious harks
back to Einstein’s use of the term. Clearly, if we adopt a relational approach to theory building
�one which obeys Leibniz’s principles of relationalism14�, we do not want to introduce factitious
elements in any theory. Cox adopted a rationalist approach analogous to relationalism—he gave a
formulation of probability theory which ensures that factitious functional relations between propo-
sitions, quantified using pegs, are never introduced. Instead we only maintain those functional
relationships that we can justify. Clearly this peg approach might therefore be useful in the
quantum gravity domain where an explicitly relational approach is often considered a requirement.
One might naïvely argue that, in addition to a relational notion of space-time, one needs a rela-
tional notion of probability. In the least it would be prudent to adopt an approach to probability
theory based upon criteria of rationality rather than ad hoc axioms.

Hence it is plausible that problems such as nonlocality are factitious problems that are caused
by invoking a probability theory which does not have sufficient structure. Thus a Bayesian ap-
proach may bring locality back to quantum theory, just as Einstein bought locality back to gravi-
tational theories in building general relativity15—in fact, this is the major reason many invoke
Bayesian reasoning within quantum theory16 �although one does not need to adopt as drastic a peg
theory as we adopt here in order to tentatively deny nonlocality�.

Similarly, the problem of hidden variables might also be factitious. The Kochen-Specker
theorem17 seems18 to prove that we cannot assign definitive values to variables prior to measure-
ment in quantum theory. This is obviously compatible with a Bayesian approach to ignorance—we
cannot assign such values because we are explicitly presuming we are ignorant of them.

These complex pegs are intimately related to the approaches of Feynman19 and Hartle20 who
invoke real probabilities that can lie outside of �0, 1�. Hartle’s virtual probabilities are explicitly
found using the real parts of our complex pegs �Eq. �5�� which, in turn, were originally introduced
by Goldstein and Page21 in their linearly positive histories approach. Thus the linearly positive
histories and the consistent histories programs appear naturally within this peg framework. If we
wish to discuss real Bayesian probabilities, we could follow the linearly positive histories program
and take the real parts of our pegs and ensure a linearly positive condition.22 Similarly, if we wish
to discuss relative frequencies, we could follow the consistent histories program and take the real
parts of our complex pegs and define a consistency condition stronger than linear positivity.23

Even so, we are still wary of invoking complex pegs because they are so alien to our usual notion
of relative frequency. Note, however, that we are not wholly uncomfortable as such complex pegs
appear naturally in quantum theory—the generalized Berry phase is derived from such complex
pegs24 and is an experimentally verifiable quantity �using ensembles of experiments�. As such, we
can combine such phases and frequentist notions into one probabilistic entity using axioms that
were outlined over 60 years ago by Cox.2

In the history of science we have been rather ambiguous about what the word “probability”
means. Some call relative frequencies probabilities even though they do not behave in the
same manner as the term in common parlance. Similarly we have called certain nonadditive
numbers in quantum theory probabilities even when they do not obey axioms of probability—nor
axioms of relative frequency �which are necessarily additive�. We might call our complex pegs
probabilities because at least they do obey rational probabilistic axioms, but perhaps we would
make a similar category error or confuse the issue by doing so; hence, for the want of a better
name, we have resorted to calling them pegs—at least it begins with a “p” so we do not need to
change our notation. So far we have two different kinds of pegs but there may be more. We have
objects that obey Cox’s two axioms which are real; we might call these “round pegs.” We also
have these objects that obey analogs of Cox’s two axioms and our tentative third, which are
complex. Let us call these “square pegs.” These names lead naturally to a playful, albeit unfortu-
nately sardonic, metaphor for what we are trying to do. A baby metaphor for science perhaps. We
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are trying to find the right-shaped peg for the corresponding hole and we must reject the pegs that
do not fit snugly. When dealing with a histories algebra, we argue that these complex pegs fit
rather snugly.

IV. ENTROPY

With a generalization of probability to hand, we must also begin to discuss a generalization of
entropy—a complimentary concept that is often just as important as a good notion of probability.
Perhaps we do not have to search very far for such a generalization.

First of all, how should a notion of entropy behave? It should behave, in part, like a prob-
ability. It should probably be a transitive or monotonic notion of preference in some sense.25 It
should reflect the space of pegs in a natural way. Hence the first naïve object to suggest is simply
a generalization of Shannon’s entropy:

S�P�1��I�� ª − KS�
i=1

n

p��i�I�ln p��i�I� , �33�

where P�1� � I�ª 	p��i � I� : i=1,2 . . .N�
 and KS is a constant. Does this object S�·� behave like an
entropy should? Does it, for example, obey the grouping property,26 a property that Shannon
suggests is natural for any notion of entropy?27 Consider the complete—disjoint and exhaustive—
set 	�i
 split up into groups labeled by an integer g. We could consider the peg entropy �33� of the
original set as split up into the peg entropy of each of the groups and the peg entropy as to which
group g=1,2 , . . . ,NG one should use; this alternative way of looking at the peg entropy �33� of the
set should be equivalent to not splitting 	�i
 into groups �this is the grouping property�. How we
split the entropy into groups should not make a difference. We can split up the peg entropy as
follows:

S�P�1��I�� ª − KS�
g

NG

�
i�g

p��i�I�ln p��i�I� . �34�

The complex peg we assign to a group g is simply

p�g�I� = �
i�g

p��i�I� . �35�

So now we must ask ourselves whether

S�P�1��I�� = S�P�1G�I�� + �
g

p�g�I�Sg, �36�

where

S�P�1G�I�� ª − KS�
g

NG

p�g�I�ln p�g�I� �37�

and

Sg ª − KS�
i�g

p��i�gI�ln p��i�gI� . �38�

In order to work this out, we need to work out what pegs we should assign to the histories
	�i : i�g
 upon the knowledge that the group g is the correct group. Thus we need a notion of
conditioning. We need to work out what conditional pegs we should use and whether it allows Eq.
�33� to obey the grouping property.

Using Bayes’ rule in our complex peg framework is quite interesting:
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p��i�gI� =
p�g��iI�p��i�

p�g�I�
. �39�

It is natural to assign p�g ��iI�=1 if we know that �i is in the group g �we are normalizing due
to Eq. �8�, cf. Ref. 3�. Hence we should assign

p��i�gI� =
p��i�I�
p�g�I�

�40�

to conditional grouping pegs. Does this allow the grouping property to be satisfied? Note that for
y ,z�C we do not necessarily have that ln�y /z�=ln y−ln z because of different branches of the
logarithm function; it only works if −� �arg�x�−arg�y���. Complex logarithms behave as
follows:

ln�r ei�� = ln r + i� , �41�

where we may choose the principle value of �. Renaming the index i with j so as not to confuse
it with imaginary components, it is therefore clear that

�
j

ln
p�� j�I�
p�g�I�

= �
j
�ln

�p�� j�I��
�p�g�I��

+ i� j − i�g� , �42�

where � j =arg�p�� j � I�� and �g=arg�p�g � I��.
So, using the definition of the complex logarithm, we have that

− �
j�g

p�� j�I�ln p�� j�I� = − p�g�I��
j�g

p�� j�I�
p�g�I�

ln
p�� j�I�
p�g�I�

− p�g�I�ln p�g�I� . �43�

Thus we do have the grouping property for our test entropy functional �33�, i.e., we have that

S�P�1��I�� = S�P�1G�I�� + �
g

p�g�I�Sg + 2mi , �44�

where m is an integer—Eq. �33� is satisfied as long as we identify the different branches of the
logarithm.

What, other than the grouping property, should an entropy functional obey so as to be a useful
definition of uncertainty or information? According to Shannon,27 S�·� should be continuous in the
pegs. When all the pegs are equal �and hence real pi=1/n�, then it should be a monotonic
increasing function of n. Hence S�·� should correspond to the standard Shannon entropy for the
real subset of complex pegs. Clearly Eq. �33� is very plausible as a generalization of Shannon
entropy that is apt for quantum histories. But, like the Shannon entropy for real probabilities, is it
possible to prove that we must use Eq. �33� because it is the only functional that fits the required
desiderata up to some equivalence of functionals? This we cannot yet answer.

Are strong additivity and concavity also satisfied by this peg entropy? In order to find out, we
need to define a conditional peg entropy; presumably this involves Bayes’ rule which is satisfied
by our complex pegs since the ∧-operation is associative.3 Let us define the conditional peg
entropy in an analogous way to how we define conditional Shannon entropies:

S�P�1��1�I�� ª �
j

p�� j�I�S�P�1��� jI�� �45�

=− KS�
j

p�� j�I��
i

p��i�� jI�ln p��i�� jI� . �46�

And thus we can check whether the following “strong additivity” condition is satisfied by S�·�:
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S�P�1� ∧ 1��I�� = S�P�1��I�� + S�P�1��1�I�� = S�P�1��I�� + S�P�1��1�I�� . �47�

We can also check whether the following “concavity” condition is satisfied:

S�P�1��I�� 	 S�P�1��1�I�� . �48�

Note that P�1�∧1� � I�ª 	p��i∧� j � I� : i=1,2 , . . . ,n� and j=1,2 , . . .n�
. So we can work out the
LHS of Eq. �47� to be

S�P�1� ∧ 1��I�� = − KS�
i

�
j

p��i ∧ � j�I�ln p��i ∧ � j�I� . �49�

We can also work out the RHS �second decomposition� of Eq. �47�:

− KS�
j

p�� j�I�ln p�� j�I� − KS�
j

p�� j�I��
i

p��i�� jI�ln p��i�� jI� . �50�

Now, p��i∧� j � I�= p��i �� jI�p�� j � I� because Cox’s axioms ensure that this is the case. Note
that �ip��i �� jI�=1 for each j as long as �i all commute with � j. Hence we can identify the LHS
and RHS, and thus Eq. �47� is satisfied for sets of commuting histories. Clearly it is natural that
strong additivity applies for commuting histories because, in such cases, we can easily interpret
the two sets of history propositions to be compatible. If they do not commute then there is no a
priori reason we should demand strong additivity, just as there is no a priori reason we should
demand comparability �by the dubious Axiom 0b� of probabilities in such cases.

In order to work out when Eq. �48� is also satisfied by our novel notion of entropy, we would
have to decide what partial order on the space C we ought to use. Monoticity provides significant
constraints upon what partial orders we can use and, as we argued above, it seems we should use
the partial order illustrated in Fig. 1 for pegs. The partial order on the peg space will inform the
partial order on the peg-entropy space �although perhaps scaled by the KS constant�. Concavity
might then be satisfied, at least for a subset of histories. Having shown that our tentative notion
�33� obeys the grouping property �albeit identifying branches of the logarithm�, it is a matter only
of mathematical consequence whether our peg entropy also obeys other convenient identities such
as strong additivity and concavity �these identities are not axioms per se�. It is clear, then, that Eq.
�33� is a plausible generalization of entropy for quantum history theories but we have not yet
proven whether all peg entropies that obey the grouping property for complex pegs must be of this
form.

V. CONCLUSION

In quantum theory we use Gleason’s theorem to justify the probabilistic assignments we give
to projection operators. However, as soon as we begin to discuss more than one single projection
operator—when we begin to discuss history propositions—we have to postulate a notion of state
collapse in order to define probabilities. However, such postulated probabilities are nonadditive
and many problems or issues arise because of this. From a Bayesian perspective it is even dubious
to call such things “probabilities” because they are nonadditive and thus alien to our normal notion
of probability.28 Problems with nonlocality also arise by discussing propositions that involve two
or more times �in a given frame of reference�. Hence it is natural to tackle this problem head-on
and define a propositional space that includes multitime propositions. Since we do not want to give
any causal bias to the peg or probability theory that we use,29 it seems prudent to put timelike and
spacelike separated propositions on the same footing;30 hence we might naïvely like to use tensor
products to produce history propositions �this is the HPO algebra�. Of course, in full generality,
one would prefer to use a fully relational algebra. Rather than postulate dubious notions of state
collapse, one can then derive a monotonic peg for such history propositions, and one can do such
a thing without getting into the problems of nonadditivity and, tentatively, nonlocality. There also
exists a plausible generalization of Shannon entropy for such pegs. Of course such complex pegs
are alien to our standard notion of probability. However, our standard notion of probability is
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rather alien too; when you get down to it, what really does the term “probability” mean? The
interpretation of probabilities is clearly, historically speaking, a debatable issue and hence it is
necessary to axiomatize and formalize a relational approach. Such an approach will ensure that,
even if we do not know with full clarity what such concepts mean, we will, in the least, not
introduce functional relationships between pegs that we are not justified in introducing.

So we cannot yet give a clear answer to the question: What are probabilities? One can,
however, begin to answer another quite daunting question: Why do we naturally find complex
numbers in quantum theory?
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We construct the Pauli-Hamiltonian on a space where the position and momentum
operators obey generalized commutation relations leading to the appearance of a
minimal length. Using the momentum space representation we determine exactly
the energy eigenvalues and eigenfunctions for a charged particle of spin half mov-
ing under the action of a constant magnetic field. The thermal properties of the
system in the regime of high temperatures are also investigated, showing a mag-
netic behavior in terms of the minimal length. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2393151�

I. INTRODUCTION

In a series of papers Kempf1–3 and Hinrichsen and Kempf4 introduced a deformed quantum
mechanics based on a modified commutation relation between position and momentum operators
�Xi , Pj�= i���1+�P2��ij+��PiPj�, where � and �� are small parameters. This commutation rela-
tion leads to a generalized Heisenberg uncertainty principle �GUP� which defines a nonzero
minimum length in position. Other similar constructions leading to the same GUP have been also
initiated by some authors.5–8 The concept of minimal length is a common feature of string theory,9

loop quantum gravity,10 and noncommutative field theories.11 One major consequence of the GUP
is the appearance of a UV/IR “bootstrap,” which allows to probe short distance physics �UV�
from long distance ones �IR�. This mixing between UV and IR divergences, first noticed in the
Anti-deSitter/Conformal Filed Theory �AdS/CFT� correspondence,12 is also a feature of noncom-
mutative quantum field theories.13 Recently, some scenarios have been proposed where the mini-
mal length is related to large extra dimensions,5 to the running coupling constant,6 and to the
physics of black hole production.7

Recently, numerous studies of quantum mechanical problems in the presence of minimal
lengths have been carried out, among them we cite the solution of the Schrodinger equation in
momentum space for the harmonic oscillator in D dimensions;2,3,14 the cosmological constant
problem and the classical limit of the physics with minimal lengths have been investigated in Refs.
15 and 16; the effect of the minimal length on the energy spectrum and momentum wave functions
of the Coulomb potential in one dimension and three dimensions has been studied, respectively, in
Ref. 17 and Refs. 18–20; the high temperature properties of the one dimensional Dirac oscillator
has been recently investigated by the author in Ref. 21; the three dimensional Dirac oscillator with
minimal lengths has been solved in Ref. 22 using supersymmetric quantum mechanics; the Ca-
simir force for the electromagnetic field in the presence of the minimal length has been also
computed.23,24

In this paper we are interested by the new kind of interactions that the incorporation of the
minimal length into a quantum model can reveal. To this aim we construct the analog of the
Pauli-Hamiltonian on a space where the position and momentum operators obey generalized
commutation relations and determine exactly the energy eigenvalues and momentum eigenfunc-
tions of a charged particle of spin half under the action of a constant magnetic field. The rest of the
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paper is organized as follows. In Sec. II, we give a brief review of quantum mechanics with
generalized uncertainty principle. In Sec. III, we solve exactly the Pauli equation in the presence
of a minimal length for a charged particle with spin half in the potential of a constant magnetic
field. In Sec. IV the magnetic moment and the magnetic susceptibility of the system are examined
in the regime of high temperatures. Section V is left for concluding remarks.

II. THE PAULI-HAMILTONIAN IN THE PRESENCE OF MINIMAL LENGTHS

Let us start with the following D-dimensional realization of the position and momentum
operators2

Xi = i���1 + �P2�
�

�pi
+ ��PiPj

�

�pj
+ �Pi� , �1�

Pi = pi, �2�

where � and �� are two very small non-negative parameters. This realization leads to the follow-
ing generalized commutation relations:

�Xi,Pj� = i���ij + �ij�P2 + ��PiPj� , �3�

�Xi,Xj� = − i���2� − ��� + �2� + ����P2��ijkLk, �4�

�Pi,Pj� = 0, �5�

where the components of the angular momentum are given by

Li =
1

1 + �P2�ijkXjPk �6�

and satisfy the usual algebra

�Li,Xj� = i��ijkXk, �Li,Pj� = i��ijkPk. �7�

Using states for which �Pi�=0 and that ��Pi� do not depend on i, we easily obtain the GUP,

��Xi���Pi� �
�

2
�1 + �D��Pi�2 + ����Pi�2� . �8�

A minimization of the saturated GUP with respect to �Pi gives an isotropic minimal length,

��Xi�min = �	D� + ��, i = 1,2,3, . . . ,D . �9�

We note also that the constant � in the definition of the position operator does not affect the
observable quantities and enters only in the definition of a squeezed weighting factor of the
momentum measure,


 dDp

�1 + �� + ���p2�1−� �p��p�, � =
� − ����D − 1�/2�

� + ��
. �10�

In the rest of our calculations we use the simple algebra where ��=0 and �=0.
In order to obtain the Pauli-Hamiltonian in the framework of quantum mechanics in the

presence of the minimal length defined above, we start from the nonrelativistic limit of the
Dirac-Hamiltonian and then use the representation �1�, instead of using directly the well known
Pauli-Hamiltonian. Ignoring the scalar potential, the nonrelativistic limit of the Dirac equation is
given by
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H =
�	��2

2m
=

1

2m
��� + i	� ∧ �� , �11�

where �=P− �q /c�A, 	= �	x ,	y ,	z� are the Pauli matrices, and A is the potential vector. Using
the algebra defined by Eqs. �1�–�3� we show that

� ∧ � =
i�q

c
�1 + �P2�B +

q2

c2 �A ∧ A� , �12�

with B=�∧A the magnetic field. Then substituting in Eq. �11� we obtain

H =
1

2m
�P −

q

c
A2

−
q�

2mc
�1 + �P2�	B +

iq2

2mc2	�A ∧ A� . �13�

We observe that, besides the usual magnetic interaction, the Hamiltonian contains other interac-
tions coming essentially from the presence of the minimal length. The second term in Eq. �13�
shows a correction to the usual magnetic moment of the electron. The third term in Eq. �13� is
different from zero and proportional to the angular momentum as a consequence of the noncom-
mutativity of the position operators. It generates a spin-orbit interaction. At this stage we note that,
in the undeformed case, the spin-orbit interaction is generated by the scalar potential. Then in our
case such a scalar potential is the gravitational field generated by the perturbation of the space by
the presence of the minimal length. This allows us to interpret the correction to the magnetic
moment of the electron, in the second term, as an electric-dipole-magnetic-moment-like interac-
tion. Finally, it is interesting to note that, at the quantum mechanical level, an electric dipole–
magnetic interaction appears. However, this result is a consequence of the UV/IR bootstrap which
allows to probe high energy effects by low energy physics.

III. CONSTANT MAGNETIC FIELD

In this section we illustrate the effect of the minimal length on the energy eigenvalues and
eigenfunctions of a charged spinning particle in a constant magnetic field. Let us consider the
vector potential in the symmetric gauge,

A =
B0

2
�− yi + xj� , �14�

where B0 is the magnitude of the magnetic field. Then it is easy to show that the spin-orbit
interaction in Eq. �13� is given by

A ∧ A = 2i���1 + �p2��B0

2
2

Lzk , �15�

where we have used the definition of the angular momentum given by Eq. �6�.
Finally, we arrive to the following expression of the Pauli Hamiltonian in the presence of the

minimal length:

H = H0 +
Pz

2

2m
+ 
�1 + �p2��Lz + �	z� + �m
2��1 + �p2�Lz	z, �16�

where H0, given by

H0 =
Px

2 + Py
2

2m
+

m
2

2
�X2 + Y2� , �17�

is the Hamiltonian of a two dimensional isotropic harmonic oscillator of frequency 

= �qB0 /2mc�. To solve the eigenvalue equation H���p�=Enl���p� in the momentum space repre-
sentation, we exploit the rotational invariance of Eq. �16� by setting
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���p� =
e−il�

	2�
Rnl�p���, �18�

where n is the radial quantum number, l and �= ±1 are, respectively, the eigenvalues of angular
momentum and spin operators, and �+1

T = �1,0�, �−1
T = �0,1� are the spin functions.

Using the two dimensional representation of the position operators given by Eq. �1�, we obtain
the following differential equation for the radial part of the wave function:

��1 + �p2�2� �2

�px
2 +

�2

�py
2 + 2��1 + �p2��px

�

�px
+ py

�

�py
 −

2

m
�
�l + � + m
��l���1 + �p2�

−
p2

�m�
�2 + Enl�Rnl�p� = 0, �19�

with Enl given by

Enl =
2Enl

m�2
2 −
pz

2

�m�
�2 . �20�

In the terms of the radial coordinate p, Eq. �19� is given by

���1 + �p2�
�

�p
2

+ �1 + �p2�2�1

p

�

�p
−

l2

p2
− � 2

m
�
�l + � + m
��l���1 + �p2� −

p2

�m�
�2 + Enl�Rnl�p� = 0. �21�

We simplify this equation by introducing the variable � defined by

� =
1

	�
arctan�p	�� . �22�

Then we obtain

Rnl� ��� + 	��cot 	�� + tan 	���Rnl� ��� − �l2�cot 	�� + tan 	���2Rnl���

− ��l� +
1

��m
��2tan2 	��Rnl��� + �Enl − �l��Rnl��� = 0, �23�

with �l� given by

�l� =
2

m
�
�l + � + m
��l�� . �24�

We simplify Eq. �23� by setting Rnl���=c�f�s� with c and s defined by

c = cos 	��, s = sin 	�� . �25�

A straightforward calculation gives the following differential equation for f�s�:

�1 − s2�f��s� + �1

s
− �2� + 1� f��s� + ����� − 2� −

�l�

�
−

1

�4 − l2 s2

c2

+ �Enl − �l�

�
− 2� − l2 −

l2

s2 f�s� = 0, �26�

where we have set �=	m
��.
Then we cancel the term proportional to �s2 /c2� by choosing � such that
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�2 − 2� −
�l�

�
− l2 −

1

�4 = 0. �27�

The solutions of this equation are given by

� = 1 ±	1 +
�l�

�
+

1

�4 + l2. �28�

The relevant sign in Eq. �28� will be fixed later by appealing to the generalized uncertainty
principle.

A further step in our calculation consists in canceling the centrifugal barrier in Eq. �26� by
setting f�s�=s�l�g�s�. Then g�s� verify the following differential equation:

�1 − s2�g��s� + �2�l� + 1

s
− �2� + 2�l� + 1�sg��s� + �Enl − �l�

�
− 2l2 − 2���l� + 1�g�s� = 0.

�29�

At this stage we use the variable z=2s2−1 to obtain

�1 − z2�g��z� + ���l� − � + 1� − ��l� + � + 1�z�g��z� +
1

4
�Enl − �l�

�
− 2l2 − 2���l� + 1�g�z� = 0.

�30�

Defining two new parameters

a = � − 1, b = �l� , �31�

and imposing the following condition:

Enl − �l�

�
− 2l2 − 2���l� + 1� = 4n�n + a + b + 1� , �32�

with n a non-negative integer, we reduce Eq. �30� to the following form:

�1 − z2�g��z� + ��b − a� − �a + b + 2�z�g��z� + n�n + a + b + 1�g�z� = 0. �33�

The condition given by Eq. �32� suffices to obtain polynomial solutions to Eq. �33� given by the
Jacobi polynomials

g�z� = Pn
�a,b��z� . �34�

Using the old variable p, the radial part of the wave function Rnl�p�=c�s�l�g�s� is then given by

Rnl�p� = N�1 + �p2�−��+�l��/2��p2��l�/2Pn
��−1,�l����p2 − 1

�p2 + 1
 . �35�

The normalization constant N is obtained by employing the normalization condition ��d3p / �1
+�p2���Rnl�p��2=1 and the Jacobi polynomial orthogonality relation.25 Finally, the normalized
momentum radial wave functions are given by

Rnl�p� = 	�	2�n!��2n + � + �l����n + � + �l��
��n + ����n + �l� + 1�

�1 + �p2�−��+�l��/2��p2��l�/2Pn
��−1,�l����p2 − 1

�p2 + 1
 .

�36�

However, as pointed in Ref. 2, the normalization condition alone does not guarantee physi-
cally relevant wave functions but the latter must be in the domain of p, which physically means
that it should have a finite uncertainty in momentum. This leads to the condition
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�p2� = 

0

� dp

�1 + �p2�
p2�Rnl�p��2 � � . �37�

In our case the integrand in Eq. �37� behaves like p−2�+2 which requires ��1. Then we choose the
upper sign in the expression of �. However, the condition ��1 can be also obtained from physical
considerations. Let us take � with the minus and work with l=0,

� = 1 −	1 +
2�

m
��
+

1

�m
���2 . �38�

Using the fact that �	2�� lc where lc=	2� /m
 is the characteristic length of the oscillator we
have m
���1. Then

� = 1 −
1

m
��
� 0, �39�

leading to ��X�min� lc which contradicts the fundamental requirement stipulating that we cannot
probe the physics below the minimal length.

The energy spectrum is now derived from Eq. �32�,

Enl − �l�

�
= 2�N + 1��� − 1� + �N2 + l2 + 2N + 2� , �40�

where N=2n+ �l� is the principal quantum number. Using the expressions of �, Enl, and �l� we
finally obtain

ENl =
pz

2

2m
+ �
��N + 1�	1 + 2�m�
�l + � + m�
�l�� + �m�
��2�l2 + 1�

+
m�
�

2
�N2 + l2 + 2N + 2� + �l + � + m�
�l��� . �41�

Ignoring the spin and the spin-orbit contributions and the last term in Eq. �41� we reproduce
exactly, besides the term pz

2 /2m, the energy spectrum of the two dimensional harmonic oscillator
with minimal length.14

Let us in the following discard the spin contributions. The energy spectrum in this case is
given by

ENl =
pz

2

2m
+ �
��N + 1�	1 + 2�m�
l + �m�
��2�l2 + 1� +

m�
�

2
�N2 + l2 + 2N + 2� + l� .

�42�

As noted above, the quantity 	m�
� expresses the ratio between the minimal length and the
characteristic length of the oscillator ��X�min/ lc, which is by virtue of the GUP, a small parameter.
Then to first order in m�
� we have

ENl =
pz

2

2m
+ �
��N + l + 1� +

m�
�

2
�N2 + l2 + 2N + 2 + 2�N + 1�l�� . �43�

In terms of n and l we write this expression as
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ENl =
pz

2

2m
+ 2�
�n +

�l� + l + 1

2
� +

1

2
�
� ��X�min

lc
2�4�n +

�l� + l

2
2

+ 4�n +
�l� + l + 1

2
� .

�44�

Using the numbers nd and ng defined by

nd = n +
�l� + l

2
, ng = n +

�l� − l

2
, �45�

we obtain

End
=

pz
2

2m
+ 2�
�nd +

1

2
� + 2�
� ��X�min

lc
2�nd

2 + nd +
1

2
� . �46�

We observe that we have the usual infinite degeneracy.

IV. THERMODYNAMICAL PROPERTIES

In this section we are interested by the thermodynamical properties of the system at high

temperatures. In the following we set z=e�̃�, where �̃=1/kT and � is the chemical potential. Let
us start by computing the one particle state density g�nd� given by

g�nd� =
V2/3

4�2

End

�E�End+1

dpxdpy

�1 + �p2�
, �47�

with V2/3 a surface. Using polar coordinates we obtain

g�nd� =
V2/3

2�2

pnd

pnd+1 pdp

�1 + �p2�
=

V2/3

4��2 ln
1 + �pnd+1

2

1 + �pnd

2 . �48�

Using pnd
= �4m�BB0�nd+ynd

2��1/2, where y= ���X�min/ lc�2=�m�BB0 and �B=�q /2mc is the Bohr
magneton, the density of states is given by

g�nd� =
V2/3

4��2 ln�1 + 4y�2ynd + 1�� . �49�

In the last derivations we have used the fact that y+1�1, by virtue of the GUP. We note that the
density of states, unlike the standard expression without the minimal length, is now a function of
the quantum number nd. In Fig. 1 we show the behavior of g=g�nd� / �V2/3m�BB0 /�2� in terms of

FIG. 1. Plot of the one particle state density vs y=�m�BB0 for nd=0,1 ,5 ,10.
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y=�m�BB0 for different values of nd.
It is interesting to note that the density of states reaches a maximum for a critical value of the

minimal length and then decreases rapidly for higher values of the minimal length corresponding
to strong gravitational field.

The grand canonical thermodynamical potential is defined by the following expression:

� = −
V1/3

2�̃�



−�

+� dpz

1 + �pz
2 �

nd=0

�

g�nd�ln�1 + z exp�− �̃End
�� . �50�

Using the density of states and the energy spectrum given, respectively, by Eqs. �49� and �46� and
y+1�1, we obtain

� � −
V

82�̃��3



−�

+� dpz

1 + �pz
2 �

nd=0

�

ln�1 + 4y�2ynd + 1��

�ln�1 + ze−�̃�BB0 exp�− �̃� pz
2

2m
+ 2�BB0�nd + ynd

2��� . �51�

At this stage, in the regime of high temperatures, we use the assumption that ��−�BB0���̃. With
the aid of the approximation ln�1+ua��ua, we obtain

� � −
ze−�̃�BB0m�BB0V

22�̃�3



−�

+� dpz

1 + �pz
2 �

nd=0

�

�1 + 2ynd� � exp�− �̃� pz
2

2m
+ 2�BB0�nd + ynd

2�� .

�52�

The integration over pz gives

� � −
ze−�̃�BB0m�BB0V

4�3	��̃
e�̃/2m��1 − erf�	 �̃

2m�
� �

nd=0

�

�1 + 2ynd� � exp�− 2�BB0�̃�nd + ynd
2�� ,

�53�

where erf�x� is the error function. The computation of the summation over nd is now performed
with the aid of Euler’s formula given by

�
nd=0

�

f�n� =
1

2
f�0� + 


0

�

f�x�dx − �
p=1

�
1

�2p�!
B2pf �2p−1��0� , �54�

where B2p are Bernoulli’s numbers and f �2p−1��0� are the derivatives of the function f�x� at x=0. In
the high temperature regime the contribution of the sum in Eq. �54� is neglected.

Using y=�m�BB0 and the following integrals:



0

�

e−2�BB0�̃�x+�m�BB0x2�dx =
1

2�BB0
	�̃�m

e�̃/4m�D−1�	 �̃

�m
 , �55�



0

�

xe−2�BB0�̃�x+�m�BB0x2�dx =
1

2�B
2B0

2�̃�m
e�̃/4m�D−2�	 �̃

�m
 , �56�

where D��x� is the cylindrical function, we finally obtain the thermodynamical potential
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� � −
ze−�̃�BB0	mV

8�3��̃3/2
e3�̃/4m��1 − erf�	 �̃

2m�
��D−1�	 �̃

�m
 +	�m

�̃
D−2�	 �̃

�m
�

−
ze−�̃�BB0m�BB0V

8h3	��̃
e�̃/2m��1 − erf�	 �̃

2m�
� . �57�

The magnetic moment of the system defined by M�=−�� /�B�� and the magnetic susceptibility
��=�M /�B are then easily obtained,

M� =
zm�BV

8�3	��̃
e�̃/2m��1 − 2z�̃�BB0��1 − erf�	 �̃

2m�
�

+
z�B

	mV

8�3��̃1/2
e3�̃/4m��1 − erf�	 �̃

2m�
��D−1�	 �̃

�m
 +	�m

�̃
D−2�	 �̃

�m
� ,

�58�

and

�� = −
z�B

2mV

4�3	�
e�̃/2m��1 − erf�	 �̃

2m�
� . �59�

Let us exploit the fact that m� /� is a small parameter. Indeed we have

	m�

�̃
= 	

��X�min

�
, �60�

where ��X�min=�	2� and �=	2�̄�2 /m is the thermal wavelength. Since � is a physical char-
acteristic length of the system and in order to be experimentally accessible it must be greater than
the minimal length.

An asymptotic expansion in terms of �̃ /m� gives

�� = −
zV

�3 �B
2 �̃�1 − � ��X�min

�
2� . �61�

This relation shows that we have the usual Landau diamagnetism at high temperatures in terms of
the minimal length if the later verify

��X�min �
	

�
. �62�

It is interesting to note that this upper bound for the minimal length does not depend on the
magnitude of the applied external magnetic field.

The susceptibility given by Eq. �61� is weaker than in the ordinary case. A similar result has
been recently obtained for the Dirac oscillator with minimal length in one dimension in a thermal
bath.21 On the other hand the new result in Eq. �61� clearly shows the effect of the perturbation of
the space by the presence of the minimal. In fact, the contribution of the minimal length to the
magnetic susceptibility is of a paramagnetic nature. This can be interpreted as if the minimal
length generates magnetic moments aligned in the direction of the applied external magnetic field.
We note also that the limit T→� is forbidden by the condition �62� and the susceptibility is
always finite. This effect does not appear neither in the case without the minimal length26 nor in
the canonical noncommutative case characterized by the parameter �.27 In this paper the author
has obtained the susceptibility at high temperatures for the Landau system with a confining
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harmonic potential of frequency 
0. However, for ��0, the susceptibility becomes infinite in the
limit 
0→0. Our result reflects clearly the regularizing effect of the minimal length which is
directly related to the existence of a minimal thermal wavelength given by

�min = 	��X�min, �63�

which in turn define a maximal temperature

kTmax =
2

mc2� �c

��X�min
2

. �64�

The appearance of a maximal temperature seems to be a common feature of noncommutative
theories. Indeed we have found recently an upper bound for the deconfinement temperature of a
quark gluon plasma.21 On the other hand the existence of a minimal length may have important
consequences on the thermodynamics of black holes. In the context of canonical noncommutative
theories28 and generalized uncertainty principle,29 it was shown that during the evaporation pro-
cess the black hole reaches a maximal temperature before cooling down to a nonsingular remnant
at zero temperature.

We close this section by pointing out that the results derived in this paper can be used to
obtain experimental values of the minimal length using available data for the magnetic suscepti-
bility at high temperatures. Following Ref. 30, another interesting approach is to consider the
quantum Hall effect in the presence of the minimal length and interpret it as the usual fractional
quantum Hall effect. The work in this direction is in progress.

V. CONCLUSION

In this paper starting from the nonrelativistic Dirac-Hamiltonian without the scalar potential,
we have constructed the Pauli-Hamiltonian in the framework of quantum mechanics with minimal
lengths, which besides the usual terms contains additional interaction terms revealing the rich
structure of the space at short distances. Particularly we obtained a spin-orbit-like interaction term
suggesting that the noncommutativity of the position operators generates a scalar field which can
be related to the gravitational field. Then the problem of a charged particle with spin half under the
action of a constant magnetic field is solved exactly in the momentum representation. The energy
spectrum and the corresponding wave functions are then obtained. We have also investigated the
magnetic behavior of the system at high temperatures where we have shown that the magnetic
susceptibility in terms of the minimal length remains finite, while it is infinite in the case without
the minimal length. This important result reflects the regularizing effect of the minimal length.
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On bipartite pure-state entanglement structure in terms
of disentanglement
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Schrödinger’s disentanglement �E. Schrödinger, Proc. Cambridge Philos. Soc. 31,
555 �1935��, i.e., remote state decomposition, as a physical way to study entangle-
ment, is carried one step further with respect to previous work in investigating the
qualitative side of entanglement in any bipartite state vector. Remote measurement
�or, equivalently, remote orthogonal state decomposition� from previous work is
generalized to remote linearly independent complete state decomposition both in
the nonselective and the selective versions. The results are displayed in terms of
commutative square diagrams, which show the power and beauty of the physical
meaning of the �antiunitary� correlation operator inherent in the given bipartite state
vector. This operator, together with the subsystem states �reduced density opera-
tors�, constitutes the so-called correlated subsystem picture. It is the central part of
the antilinear representation of a bipartite state vector, and it is a kind of core of its
entanglement structure. The generalization of previously elaborated disentangle-
ment expounded in this article is a synthesis of the antilinear representation of
bipartite state vectors, which is reviewed, and the relevant results of �Cassinelli et
al., J. Math. Anal. Appl. 210, 472 �1997�� in mathematical analysis, which are
summed up. Linearly independent bases �finite or infinite� are shown to be almost
as useful in some quantum mechanical studies as orthonormal ones. Finally, it is
shown that linearly independent remote pure-state preparation carries the highest
probability of occurrence. This singles out linearly independent remote influence
from all possible ones. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2375035�

I. INTRODUCTION

There are different measures of the amount of entanglement in bipartite states. In pure states
they all coincide. Hence, this is well understood. But one may wonder the measure of what is at
issue; i.e., what is the structure of entanglement, or what is its qualitative side.

According to Schrödinger, the natural way to investigate entanglement is to perform
disentanglement:1 It consists in measurements on the nearby subsystem. Since it is simultaneously
a measurement on the composite system, the bipartite state becomes a mixed one. As a conse-
quence, one has an actual decomposition �as opposed to a potential or mathematical one� of the
remote subsystem state.

In previous work,2 complete remote measurement or, equivalently, complete remote orthogo-
nal state decomposition, was studied as a first step in carrying out Schrödinger’s program, and the
concept of twin observables was introduced. They gave physical meaning to the so-called corre-
lated subsystem picture.3

Mathematically, the optimal way to study pure-state bipartite entanglement is to use the
antilinear operator representation of the state vector. As it is well known, in theoretical physics
mathematics is inextricably connected with physics. In the mentioned previous work it turned out
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JOURNAL OF MATHEMATICAL PHYSICS 47, 122103 �2006�

47, 122103-10022-2488/2006/47�12�/122103/19/$23.00 © 2006 American Institute of Physics

                                                                                                                                    

http://dx.doi.org/10.1063/1.2375035
http://dx.doi.org/10.1063/1.2375035
http://dx.doi.org/10.1063/1.2375035


that the antiunitary polar factor, the so-called correlation operator, plays a central role in estab-
lishing the concepts of twin observables and remote measurement. Naturally, this operator is
endowed with basic physical meaning.

The antilinear operator representation of bipartite state vectors and the polar factorizations of
these operators are summed up and shortly reviewed in Sec. II. Delving into the antilinear ap-
proach may require some effort on part of some readers, but it is pure-state bipartite entanglement
and not this author who made it optimal. Eventually, the insight gained should make it worth the
effort.

In this article the physical content of the correlated subsystem picture is extended one step
beyond remote measurement.

The organization of the rest of the article is as follows. In Sec. III the relevant purely math-
ematical results on classification of all linearly independent complete decompositions of any given
density operator �that with an infinite-dimensional range included�4 are shortly stated. Besides,
they are, to some extent, elaborated in order to show that linearly independent bases can be almost
as useful as orthonormal ones �to encourage their use at least in entanglement studies in quantum
mechanics�. In Sec. IV the first result of this article, the generalized twin observables, consisting
of twin observables and of extended twin observables, are presented in the form of Theorem 1 and
a commutative square diagram. In Sec. V selective �or specific-result� nearby-subsystem measure-
ment that gives rise to so-called remote pure-state preparation is paid special attention to in terms
of Theorem 2 and another square commutative diagram. Besides, in Theorem 3 the physical
meaning of linearly independent remote pure-state preparation is clarified. In Sec. VI concluding
remarks point out the essential features of the results.

As a technical remark, it should be noted that by a basis �without further specification� in a
subspace is meant a complete orthonormal set, i.e., one spanning the subspace. We will also deal
with linearly-independent bases in linear manifolds �cf. Corollaries 1 and 3�.

II. THE CORRELATED SUBSYSTEM PICTURE

The correlated subsystem picture is based on the role of the antiunitary correlation operator Ua

inherent in any bipartite state vector ���12. The correlation operator is the antiunitary polar factor
of the antilinear Hilbert–Schmidt operator Aa that maps the state space of subsystem 1 into that of
subsystem 2. Such an operator, in turn, gives an antilinear representation of any given bipartite
state vector ���12.

Antilinear operators were introduced in physics from the mathematical literature5 by Jauch.6

They were utilized in Ref. 7 and in the first-step bipartite pure-state studies.2,8 The main result of
these was establishing the correlated subsystem picture of ���12 �with the twin observables� as a
core of its structure.

A. The mathematical part

Let ���12 be a given state vector of an arbitrary bipartite pure state with a nearby �1� and a
remote �2� subsystem. Naturally, ���12� �H1 � H2�, where the tensor factors are complex sepa-
rable Hilbert spaces.

The first notion that is being utilized is that of the partial scalar product: If ���1 is an arbitrary
vector of the nearby subsystem, then the partial scalar product

���1���12 � H2 �1�

gives a vector in the state space H2 of the remote subsystem. It can be defined and evaluated by
introducing bases ��j�1 : ∀ j	�H1 and ��k�2 : ∀k	�H2 and expanding ���12 in them

���12 = 

j



k

f jk�j1��k�2. �2a�

Then ���1 ���12 is obtained in terms of the ordinary scalar product in H1:
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���1���12 = 

j



k

�f jk����1�j�1���k�2. �2b�

The point is, of course, that, as it is straightforward to show, the right-hand side �rhs� is always
defined �in case of infinite sums, one has convergence�, and the left-hand side �lhs� is independent
of the choice of the subsystem bases, and thus a well-defined element of H2.

The next notion is that of the antilinear operator representation of a bipartite state vector
���12: Relation �1� is actually an antilinear, i.e., expansion-coefficients complex-conjugating, map
Aa of the entire space H1 into H2:

�Aa���1�2 � ���1���12 � H2. �3�

The operator Aa defines its adjoint Aa
†, which maps in the antilinear way H2 into H1. This is done

via the pair of scalar products, that in H1 and that in H2:

∀�1 � H1, ∀ �2 � H2: ��2,�Aa�1�2�2 = ��Aa
†�2�1,�1�1

*, �4�

where the asterisk denotes complex conjugation. It is easy to see that Eq. �4� defines adjoining as
a linear operation.

The operators Aa and Aa
† are called Hilbert–Schmidt ones because

tr�Aa
†Aa�1 � � , �5a�

tr�AAa
†�2 � � . �5b�

The set of all antilinear Hilbert–Schmidt operators mapping H1 into H2 is a complex sepa-
rable Hilbert space, in which the scalar product is defined as

∀Aa,Aa�: �Aa,Aa�� � tr�Aa�
†Aa�1. �6�

It is straightforward to show that Eq. �3� constitutes an isomorphism of the complex separable
Hilbert space of all ordinary bipartite vectors ���12 onto that of all antilinear Hilbert–Schmidt
operators mapping H1 into H2.

In the sense of this isomorphism, one can speak of Aa as the antilinear operator representative
of ���12.

It is known that the reduced density operators �1� tr2����12���12� and �2� tr1����12���12� of
any given bipartite state vector ���12, which describe the respective subsystem states, have equal
positive parts of their spectra, i.e., their positive eigenvalues, together with their multiplicities,
coincide. Further, it is known that if one expands ���12 in any eigensubbasis ��ri�1 : ∀ i	 of �1

spanning its range, then one obtains the so-called biorthogonal Schmidt expansion

���12 = 

i

ri
1/2�ri�1�ri�2, �7�

where �ri : ∀ i	 are the positive eigenvalues of �1 corresponding to its mentioned eigenvectors, and
��ri�2 : ∀ i	 turn out necessarily to be eigenvectors of �2 spanning its �equally dimensional� range.
Actually, one can write the spectral forms as follows:

�1 = 

i

ri�ri�1�ri�1, �8a�

�2 = 

i

ri�ri�2�ri�2. �8b�

What the standard approach is lacking is any expression of the correlations between the two
subsystems that the bipartite state implies. This is where the antilinear operator representation of
the bipartite state has a marked advantage.
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If one writes down the polar factorizations of Aa, one obtains

Aa = Ua�1
1/2, �9a�

Aa = �2
1/2UaQ1, �9b�

where Ua is the antilinear unitary �or antiunitary� correlation operator, which maps the �topologi-

cally� closed range R̄��1� of �1 onto R̄��2�, that of �2 �preserving the scalar product up to complex
conjugation�. The Hermitian polar factors are the positive-operator roots of the corresponding
reduced density operators, and Q1 is the range projector of �1. The operator Ua is uniquely
determined by Aa �i.e., by ���12�, e.g., by UaQ1= �̃2

−1/2Aa �as follows from Eq. �9b��, where �̃2 is

the reducee of �2 in R̄��2�. �See also remark beneath relation �12c�.� �An elementary discussion of
polar factorization of linear operators in one space is given in Ref. 9, and a more general one in
Appendix 4 of Ref. 2. The polar factorizations �9a� and �9b� of Aa differ very little from this.�

It turns out that

�2 = �Ua�1Ua
−1�2Q2 �10�

is valid, where Q2 is the range projector of �2. Utilizing Ua, the above Schmidt expansion and the
spectral forms can be rewritten as follows:

���12 = 

i

ri
1/2�ri�1�Ua�ri�1�2 �11�

and

�1 = 

i

ri�ri�1�ri�1, �12a�

�2 = 

i

ri�Ua�ri�1�2��ri�1Ua
†�2. �12b�

�Note that Ua
†=Ua

−1.� Actually,

∀i: �ri�2 = Ua�ri�1. �12c�

Thus, the correlation operator Ua can be read off from the Schmidt biorthogonal expansion �11�
when the latter is explicitly evaluated.

If ��j�1 ; ∀ j	 is a basis in H1, one can uniquely expand the bipartite state, and, as easily seen,
one obtains

���12 = 

j

�j�1�Aa�j�1�2. �13a�

The antilinear representation Aa of ���12 can be read off from this because the antilinear operator
Aa is continuous �cf. Appendix 2 in Ref. 2�; hence, it is determined by its action on a basis.

Relation �13a� can also be understood as giving the inverse of isomorphism �3�, i.e., as
determining the map Aa→ ���12. �It is straightforward to show that the lhs of �13a� does not
depend on the choice of the basis.�

If the basis in Eq. �13a� is an eigenbasis of �1, then, and only then, as immediately seen from
Eq. �9a�, the general expansion �13a� takes on the special form of the biorthogonal Schmidt
expansion �7�.

Returning to the general expansion �13a�, it can be completed by

�2 = 

j

�Aa�j�1�2��j�1Aa
†�2 = 


j

pj�� j�2�� j�2, �13b�
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∀ j: pj � ��Aa�j�1�2�2, �13c�

∀ j, pj � 0: �� j�2 � pj
−1/2�Aa�j�1�2. �13d�

Here pj is the probability that the event ��j�1�j�1 � 1� occurs in nearby-subsystem measurement in
���12, and �� j�2 is the state of the remote subsystem thus obtained, i.e., it is the result of so-called
remote preparation. From the nonselective �or entire-ensemble� point of view, the physical mean-
ing of Eqs. �13a�–�13d� consists in the fact that these relations express a remote complete state
decomposition in the antilinear representation. �In remote incomplete state decomposition also
mixed states of the remote subsystem are obtained. Such a remote decomposition is given rise to
by incomplete nearby-subsystem measurement, i.e., by measurement of an observable with de-
generate eigenvalues.�

The adjoint antilinear Hilbert–Schmidt operators Aa
† also form a complex separable Hilbert

space in their turn with the scalar product

�Aa
†,�Aa

†��� � tr�Aa�Aa
†�2. �14�

They give the second antilinear operator representation for bipartite vectors via the isomorphism

∀ ���12: → Aa
†: ∀ ���2:�Aa

†���2�1 � ���2���12 � H1. �15�

Associating Aa
† with Aa �cf. Eq. �4�� is also an isomorphism. �Any two of the mentioned three

isomorphisms of bipartite state spaces multiply, i.e., give, when taken one after the other, the third
one.�

One has the following relations that are symmetric to Eqs. �9a�–�13a� in terms of the adjoint
antilinear operator representation of ���12:

Aa
† = Ua

−1�2
1/2, �16a�

Aa
† = �1

1/2Ua
−1Q2. �16b�

Further

�1 = Ua
−1�2UaQ1, �17�

���12 = 

i

ri
1/2�Ua

−1�ri�2�1�ri�2, �18�

where ��ri�2 : ∀ i	 is any eigensubbasis of �2 spanning the range of the latter, and �ri : ∀ i	 are the
corresponding �positive� eigenvalues

�1 = 

i

ri�Ua
−1�ri�2�1��ri�2Ua�1 = 


i

ri�Ua
−1��ri�2�ri�2�Ua�1, �19a�

�2 = 

i

ri�ri�2�ri�2. �19b�

In general

���12 = 

k

�Aa
†�k�2�1�k�2, �20a�

where ��k�2 : ∀k	 is any basis in H2. Again, it is clear from Eq. �16a� that if this basis is an
eigenbasis of �2, then and only then, the general expansion �20a� takes the special form of the
biorthogonal Schmidt expansion �18�.

Finally, one has
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�1 = Aa
†Aa, �20b�

�2 = AaAa
†. �20c�

The correlation operator Ua establishes a striking mathematical symmetry and close connec-

tion between the two closed ranges R̄��s� , s=1,2, for any bipartite state vector ���12. The pair of
entities �1 ,Ua, which is equivalent to ���12 �cf. Eqs. �9a� and �3��, is called the correlated sub-
system picture of the given bipartite state vector. �Note that when one takes a state vector ���12

instead of a state ���12���12, the former is informationally richer by the choice of a fixed phase
factor ei	 , 	�R, which is arbitrary in the latter. This choice is carried by Aa or Ua. Thus, Ua and
ei	Ua with the same �1,correspond to ���12 and ei	 ���12, respectively.�

We have summed up in this subsection the mathematical part of the antilinear representation
of ���12, and of the correlated subsystem picture. The basic physical meaning of these was studied
in previous articles.2,8 A summary is given in the next subsection.

B. The physical part—detectably complete state-compatible observables

A detectably complete �see below� nearby subsystem observable A1 that is compatible with the
nearby subsystem state, i.e., that satisfies �A1 ,�1�=0, shortly, a state-compatible observable, has,
on account of this relation, as it is well known, a common eigenbasis with �1. Let its subbasis

spanning R̄��1� be ��ri�1 : ∀ i	 �cf. Eqs. �7� and �8a��. Then the relevant partial spectral form of A1

is

A1 = 

i

ai�ri�1�ri�1 + Q1
�A1, i � i� ⇒ ai � ai�, �21a�

where Q1=
i �ri�1�ri�1 is the range projector of �1, Q1
� is the orthocomplementary projector, and

the sum in Eq. �21a� is the detectable part �in R̄��1�� of A1.
By detectably complete is meant the requirement in Eq. �21a�, i.e., completeness of the

reducee A1
˜=
iai�ri��ri�˜ of A1 in R̄��1�. �For the use of tilde cf �̃2 in the passage beneath Eqs. �9a�

and �9b�.�
When A1 is measured �in an ideal way, e.g.�, it gives rise to the actual state decomposition

�empirically ensemble decomposition�

�2 = 

i

ri�ri�2�ri�2 �21b�

�special case of Eqs. �13a�–�13d��. Since the state vectors ��ri�2 : ∀ i	 are orthogonal �cf. Eqs. �7�
and �8b��, Eq. �21b� amounts to the same as if a detectably complete remote-subsystem observable
�Hermitian operator�

A2 = 

i

ai��ri�2�ri�2 + Q2
�A2, i � i� ⇒ ai� � ai�

� �21c�

had been measured in an ideal way. Here Q2=
i �ri�2�ri�2 is the range projector of �2.
The pairs of observables �A1 ,A2� are called �physical� twin observables, the indirect measure-

ment of A2 by measuring A1 directly is called remote measurement, and the twin observables
satisfy the symmetric relations

�A1,�1� = 0, �22a�

�A2,�2� = 0; �22b�
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A2 = 

i

ai��Ua��ri�1�ri�1�Ua
−1�2Q2 + Q2

�A2, �22c�

A1 = 

i

ai�Ua
−1��ri�2�ri�2�Ua�1Q1 + Q1

�A1. �22d�

In Eq. �22c� it is assumed that A1=
ai �ri�1�ri�1+Q1
�A1 is given, and A2 is determined by it �at

least as far as the eigenvectors of the detectable part of A2 are concerned�. In Eq. �22d� the
symmetrical assumption is made. One should note that the undetectable parts Q1

�A1 and Q2
�A2 are

completely arbitrary �and so are the distinct detectable eigenvalues of the twin operator�.
In Refs. 2 and 8, it was assumed that the detectable spectra coincide

∀i: ai� = ai. �23a�

Then

A2 = �UaA1Ua
−1�2Q2 + Q2

�A2, �23b�

and

A1 = �Ua
−1A2Ua�1Q1 + Q1

�A1 �23c�

are valid. In later work,10 twin observables with the stronger requirement Eq. �23a� were called
algebraic twin observables. Relaxation of the stronger requirement led to the wider and more
useful class of physical twin observables.

If one exchanges the roles of subsystems 1 and 2, one can measure A1 remotely by a direct
measurement of A2.

Thus, part of the physical meaning of the correlation operator Ua inherent in ���12 is in the
following: When a detectably complete nearby-subsystem observable A1 �cf. Eq. �21a�� that is
compatible with the nearby-subsystem state is measured in an ideal way in selective measurement
and ai is obtained as a result, then the nearby subsystem is found in the state �ri�1, and the remote
subsystem is in the state �ri�2��Ua �ri�1�2 �conditional state�. It is obvious from Eqs. �18� and
�19a�, that also the symmetrical argument is valid. The correlation operator �and its inverse� gives
the corresponding conditional states when selective ideal measurement of state-compatible sub-
system observables is performed.

The remote measurement of a twin observable A2, selective or nonselective, is one and the
same in every kind of measurement of A1: in ideal measurement and in second-kind �synonym:
non-repeatable� measurement �cf. subsection 6�B� in Ref. 2�.

III. LINEARLY INDEPENDENT COMPLETE DECOMPOSITIONS OF DENSITY
OPERATORS

Definition 1: A finite or countably infinite set of vectors ���i� : ∀ i	 is said to be linearly
independent if

∀i: ��i� � span���i��: ∀ i�,i� � i	 , �24�

where by “span” is meant the algebraic and topological span, i.e., the set of all linear combinations
together with all their limiting points. �It is a subspace.�

One can define linear independence of a finite sequence ���i� : i=1,2 , . . . ,d� � 	 of vectors by
the weaker requirement:

∀k, k 
 2:��k� � span���1�, . . . , ���k−1��	 . �25�

Proof is given in Appendix A. �Note that finite-dimensional linear manifolds are subspaces, i.e.,
span=span in this case.�

Definition 2: If ���i� : i=1,2 , . . . ,d� � 	 is a linearly independent finite or infinite sequence, �
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a density operator with a d-dimensional closed range, and if one can write

� = 

i

pi��i���i� , �26a�

where ∀i : pi�0, 
ipi=1, then one speaks of a linearly independent complete decomposition of the
density operator. �It is called “irreducible decomposition” in Refs. 11 and 4.�

We call “complete” those decompositions of a density operator that cannot be continued by
further decomposing any term. These are the pure-state decompositions quantum mechanically. In
a followup to this article we turn to “incomplete” decompositions, i.e., to mixed-or-pure state
decompositions quantum mechanically.

For Eq. �26a� the relation

R̄��� = span���i�: ∀ i	 �26b�

is valid �cf. Proposition 1 in Ref. 11�.
Corollary 1: Obviously, orthonormal sets are special cases of linearly independent ones. The

latter possess some important properties of the former. One of them is the following. If ���i� : i
=1,2 , . . . ,d� � 	 is a linearly independent sequence, k is an integer not larger than d, and
���1� , . . . , ��k�	 is a subset of arbitrary elements in arbitrary order, then it spans a k-dimensional
subspace Sk, and each vector in it can be uniquely expanded in the set. This is why the latter is
called a linearly independent basis in Sk. �See also Corollary 3 below.�

Proof is given in Appendix B.
Now we sum up those results on density-operator decomposition from Ref. 4 the application

of which forms the basis of this work. They are further elaborated in this section with a view to
help applications in quantum-mechanical studies. �No heed is paid to the extent to which the
elaborations are possibly new with respect to the mathematical literature, cf., e.g., Ref. 12.�

Lemma: �A� Let � be an arbitrary given density operator, and let d be the dimension of its
�finite or infinite dimensional� closed range. Then all linearly independent sequences ���i� : i
=1,2 , . . . ,d	 that determine a complete decomposition

� = 

i

pi��i���i� �27�

of � stand in a one-to-one relation with the set of all bases in R̄��� each vector of which is within
R��1/2�:

��ei�:i = 1,2, . . . ,d � � 	 � R��1/2� , �28�

where d is the dimension of R̄���.
�B� The bijection from the set of all bases Eq. �28� to all linearly independent sequences that

give decompositions Eq. �27�—we call it the Cassinelli–Vito–Levrero �CVL� bijection—reads as
follows:

pi = �ei���ei� = ���1/2�ei���2 � 0, ��i� = pi
−1/2�1/2�ei� , �29a�

i = 1,2, . . . ,d � � . �29b�

The inverse CVL bijection is

�ei� = pi
1/2�̃−1/2��i�, i = 1,2, . . . ,d � � , �30�

where the tilde denotes the reducee in R̄���.
�C� Finally, a state vector ��� can appear in a linearly independent complete decomposition of

� if and only if
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��� � R��� . �31�

For proof see Theorem 1, Proposition 1, and Remark 8 in Ref. 4.
In connection with the Lemma, one should keep in mind the well-known �and easily proved�

relations

R��� � R��1/2� � R̄��1/2� = R̄��� . �32�

In the case of finite-dimensional range, one has equality all over. Contrarily, in the case of
infinite-dimensional range, both subset relations in Eq. �32� are proper.

Corollary 2: The CVL bijection is nontrivial if and only if the basis Eq. �28� is not an
eigensubbasis of � �otherwise, it is the identity map�.

Corollary 3: Another property of linearly independent sequences parallelling that of orthonor-
mal ones is the following. If Eq. �27� is a linearly independent complete decomposition of a
density operator, then each element ��� from the range R��1/2� can be uniquely expanded in the
sequence ���i� : i=1,2 , . . . ,d� � 	:

��� = 

i

�i��i� , �33a�

�cf. Eq. �32��. Further, utilizing the scalar product, one has the following compact formula for the
expansion coefficients:

�i = pi����i��̃−1�����, i = 1,2, . . . ,d � � �33b�

�cf. Lemma C�. In this sense, the sequence at issue is a linearly independent basis in R��1/2�.
Note that the uniqueness of expansion �33a� allows an arbitrary �hence, if desired, a suitable�

choice of the probability distribution �pi : i=1,2 , . . . ,d� � ; pi�0;
i=1
d pi=1	, and the definition of

� via Eq. �27�. �But care must be taken that R��1/2� contain ���.� Note, further, that all d prob-
abilities pi must be positive. Otherwise, ��� would not be expanded in the linearly independent
basis ���i� : i=1,2 , . . . ,d� � 	.

Corollary 3 is proved in Appendix C.
Corollary 4: If Eq. �27� is a linearly independent complete decomposition of a given density

operator, then the weight pi can also be expressed in the following two ways:

pi = ���i��̃−1��i��−1, i = 1,2, . . . ,d � � , �34�

and

pi = 1/

k

���k���i��2rk
−1��, i = 1,2, . . . ,d � � , �35a�

where

� = 

k

rk�k��k�, ∀ k: rk � 0 �35b�

is a complete spectral decomposition of �.
Further, one has

inf�rk:���i��k��2 � 0	 � pi � max�rk:���i��k��2 � 0	, i = 1,2, . . . ,d � � , �36�

where the “infimum” can be replaced by “minimum” if the range of � is finite dimensional.
Proof: Expression �34� is obtained by taking the square norm of both sides of Eq. �30�.

Expression �35a� follows from Eq. �34� when ��i� is expanded in the eigensubbasis ��k� : ∀k	 of �
�and eigenbasis of �̃.� Finally, inequalities �36� are an immediate consequence of Eq. �35a�. �

Remark 1: When a density operator � is given and a state vector satisfies ����R��� �cf.
Lemma C�, then, in whatever linearly independent complete decomposition of the former the latter
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appears, it has a unique weight p, which depends only on � and ��� �cf. Eq. �34��.
Definition 3: We call the weight p from Remark 1 the characteristic weight of ��� in �. If

����R���, then p�0.
Note that if ����R���, then p�0 �cf. Eq. �29a��. Note, further, that Remark 1 and Corollary

4 are a completion of Lemma C.
Remark 2: For a possible positive value of the characteristic weight p, there may be more than

one corresponding state vector ��� in a linearly independent complete state decomposition �27� as
seen from Eq. �29a�, because more than one state vector �f� can give one and the same expectation
value of �, and each can be the first �e1���f� in a basis etc. �cf. the Lemma�.

Corollary 5: The characteristic weight p of a given state vector ����R��� satisfies the
inequality

p � ������� . �37�

One has p= �� �� ��� if and only if ��� is an eigenvector of �, and then p equals the corresponding
eigenvalue of the density operator.

Proof: The inequality �37� follows from Eq. �27� when one puts ��1����� in Eq. �27�, and one
obtains

� = p������ + 

i=2

pi��i���i� , �38a�

one applies ������ to both sides, and one takes the trace �keeping in mind, of course, that tr����
�� ���= �� �� ����:

������� = p + 

i=2

pi������i��2 
 p . �38b�

One can see from Eq. �34� that if ��� is an eigenvector of � corresponding to the eigenvalue r, then
p=r, and also �� �� ���=r= p. Conversely, if p= �� �� ���, then one can see from Eq. �38b� that all
vectors ���i� : i=2,3 , . . . 	 must be orthogonal to ���. Hence, applying Eq. �38a� to ���, it is seen
that the latter is an eigenvector of � corresponding to the eigenvalue r= p. �

IV. REMOTE LINEARLY INDEPENDENT COMPLETE STATE DECOMPOSITION

Let ���12 be an arbitrary bipartite state vector. Owing to the Cassinelli et al. theory, summed
up in the Lemma, we can now easily sort out what kind of local, i.e., subsystem measurement
gives rise to a linearly independent complete decomposition of the opposite-subsystem state.

Definition 4: Since subsystem measurement, by definition, excludes any interaction between
the measuring instrument and the remote subsystem, we call any influence of the former on the
latter, which is due exclusively to the quantum correlations inherent in the bipartite state, remote
influence.

Definition 5: We call a nearby subsystem observable A1 relevant �for remote linearly inde-
pendent complete state decomposition� if the following three conditions are satisfied:

�i�

�A1,Q1� = 0, �39�

where Q1 is the range projector of �1� tr2����12���12�. If Eq. �39� is satisfied, then A1 will be said
to be range compatible.

�ii� Ã1, the reducee of A1 in R̄��1� if Eq. �39� is satisfied, has a purely discrete and nonde-
generate spectrum.

�iii� The eigenbasis ��ei�1 : ∀ i	 of Ã1 in R̄��1� �which is uniquely determined by Ã1 up to
arbitrary phase factors and ordering� is within R��1

1/2�. �This requirement is always satisfied if the
dimension d of �1 is finite.�

Further, we call a basis ��ei�1 : ∀ i	 in R̄��1� that is entirely within R��1
1/2� relevant. Finally, we
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call a class of observables A1 relevant if it consists of relevant observables that have one and the

same relevant basis ��ei�1 : ∀ i	 �up to phase factors and ordering� as their eigensubbasis in R̄��1�.
Evidently, the set of all relevant classes of observables A1 is in a simple one-to-one relation

with the set of all relevant bases in R��1
1/2�.

If A1 is state compatible, i.e., �A1 ,�1�=0, then A1 commutes also with every eigenprojector of
�1, and hence, Eq. �39� is satisfied. Namely, Q1 is the sum of the eigenprojectors corresponding to
positive eigenvalues. �If R��1� is infinite dimensional, we can assume that A1 is bounded, or,
equivalently, continuous, or equivalently, that its spectrum is within a finite interval. We can do
this because the spectrum of A1 is arbitrary within the relevant class of observables, i.e., it is
irrelevant for remote state decomposition.�

In this case the reducee Ã1 has necessarily a purely discrete spectrum �because it reduces in
every eigensubspace of �1, and these are necessarily finite dimensional due to the fact that the
corresponding eigenvalues add up to 1�. Thus, in this case, requirement �i� is necessarily fulfilled,

and �ii� reads that A1 is a detectably complete observable, i.e., that Ã1 is complete. Requirement

�iii� is necessarily satisfied because �A1 ,�1�=0 entails a common eigenbasis of Ã1 and �̃1. Further,
the corresponding spectral form of �̃1 is simultaneously a complete decomposition of it. Hence,
according to the known result of Hadjisavvas,11 each of the eigenvectors necessarily belongs to
R��1

1/2�.
Theorem 1: �A� If a relevant observable �A1 � 1� is measured in the state ���12, it gives rise

to a remote linearly independent complete decomposition of the state �2� tr1����12���12�:

�2 = 

i

pi��i�2��i�2. �40�

Conversely, each mathematically possible linearly independent complete decomposition of �2

can be obtained in this way.
�B� The mathematical way how A1 determines Eq. �40� can be understood as a bijection of the

set of all classes of detectably equivalent observables A1, or, equivalently, of all relevant bases
��ei�1 : ∀ i	, onto the set of all linearly independent complete decompositions Eq. �40� �A↘D on
Diagram 1 below� that reads:

∀i: pi = ���12��ei�1�ei�1 � 1����12 � 0, �41a�

∀i: ��i�2 = pi
−1/2�2

1/2�Ua�ei�1�2, �41b�

where �ei�1 are the eigenbasis vectors of Ã1=
i�ai� �ei��1�ei��1. Further, Ua is the antiunitary corre-
lation operator determined by ���12 �cf. Eqs. �9a� and �9b� and the passage beneath it, as well as
the passage beneath Eq. �12c��.

�C� The inverse bijection �A↖D on the diagram� has the form

∀i: �ei�1 = �Ua
−1�pi

1/2�̃2
−1/2��i�2��1. �42�

All claims symmetric to those in �A�–�C� are also valid.
�D� If �1 � A2�=
 jaj��1 � �f j�2�f j�2�+ �1 � Q2

�A2� is the relevant partial spectral form of an
arbitrary relevant observable A2 �Q2 being the range projector of �2� tr1����12���12��, its �nonse-
lective� measurement causes a remote linearly independent complete state decomposition

�1 � tr2����12���12� = 

j

qj�� j�1�� j�1, ∀ j: qj � 0, 

j

qj = 1. �43�

Each linearly independent complete decomposition of �1 can be obtained in this way.
�E� The bijection �C↙B on the diagram� taking the set of all relevant classes of second-

subsystem observables onto that of all linearly independent complete first-subsystem state decom-
positions reads
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∀ j: qj � ���12�1 � �f j�2�f j�2����12 � 0, �44a�

∀ j: �� j�1 � qj
−1/2�1

1/2�Ua
−1�f j�2�1. �44b�

�F� The inverse bijection �C↗B� is

∀ j: �f j�2 � �Ua�qj
1/2�̃1

−1/2�� j�1��2. �45�

�G� A bijection mapping all relevant classes of observables �A1 � 1� onto that of all relevant
classes of observables �1 � A2� �A→B on the diagram� is

∀i: �f i�2 � �Ua�ei�1�2. �46a�

The inverse bijection �A←B on the diagram� is

∀ j: �ej�1 � �Ua
−1�f j�2�1. �46b�

�H� The product bijection �C↙B� � �A→B� �“�” meaning “after”� is the corresponding CVL
bijection �A↓C�; and symmetrically, the product bijection �A↘D� � �A←B� is the corresponding
CVL bijection �B↓D�.

�I� A bijection taking all linearly independent complete decomposition of �1 onto those of �2

�C→D� is

�Ua�1 = 

i

qi��i�1��i�1�Ua
−1�

2

Q2,

giving, due to Eq. �10�,

�2 = 

j

pj�� j�2�� j�2,

where

∀ j: pj � qj , �47a�

∀ j: �� j�2 � �Ua�� j�1�2. �47b�

The inverse bijection �C←D on the diagram� is symmetric to this �under the exchange of the
two subsystems� mutatis mutandis.

�J� The square Diagram 1 summing up the preceding items of Theorem 1 is commutative, i.e.,
any two successive bijections multiply into the corresponding bijection on the diagram.

Commutative Square Diagram 1.
A Mathematical Framework for Remote
Linearly Independent Complete State Decompositions

A��all relevant classes of A1	 B��all relevant classes of A2	

C��all linearly-independent complete decompositions of �1	
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D��all linearly-independent complete decompositions of �2	
Each arrow goes from one of the sets �A,B,C,D� towards another. It stands for the correspond-

ing bijection. Oppositely oriented arrows denote mutually inverse bijections. The diagram is
commutative, i.e., the successive bijections combine into the displayed corresponding one. For
instance, taking the bijection B↓D after the bijection A→B gives the bijection A↘D. The
bijections are given in detail in Theorem 1. The imaginary vertical line cutting the square into two
equally wide halves makes these completely symmetric �due to the symmetry between the two
subsystems in ���12�.

� The downward diagonal bijections A↘D and C↙B have the physical meaning of remote
linearly-independent state decompositions.

Proof of Theorem 1.
�B� To prove claim B, we take resort to the relations �13a�–�13d�, which express the general

remote complete state decomposition. Relation �13c� and �3� imply in our case

∀i: 0 � pi = ���Aa�ei�1�2��2 = ���ei�1���12��2 = �����12�ei�1�2,��ei�1���12�2�

= ���12��ei�1�ei�1 � 1����12.

Further, Eqs. �13d� and �9b� give ∀i : ��i�2= pi
−1/2�2

1/2�Ua �ei�1�2.
�C� Claim C obviously follows from B in view of the facts that both Ua and �̃2

1/2 are nonsin-

gular on R̄��1� and in R̄��2�, respectively.
�A� The proof of claim A is a consequence of part of the commutativity of the square

Diagram, viz., of the fact that �A↘D�= �B↓D� � �A→B�. To see this, one should keep in mind that
�2= �Ua�1Ua

−1�2Q2 �cf. Eq. �10�� implies UaR��1
1/2�=R��2

1/2� because the definition �1
1/2�1

1/2=�1 of
the square root, Eq. �10� and the well known uniqueness of the square root lead to
�Ua�1

1/2Ua
−1�2Q2�Ua�1

1/2Ua
−1�2Q2=�2, and finally to �Ua�1

1/2Ua
−1�2Q2=�2

1/2. Therefore,
��ei�1 : ∀ i	�R��1

1/2�implies ��Ua �ei�1�2 : ∀ i	�R��2
1/2�.

Further, let us rewrite Eq. �41a� as

∀i: pi = �ei�1�1�ei�1 = ��ei�1Ua
†�2�Ua�1Ua

−1�2�Ua�ei�1�2 = ��ei�1Ua
†��2�Ua�ei�1�2.

�Complex conjugation due to applying an antilinear operator to the left is omitted because the
scalar product is a positive number.�

Comparing the last relation with Eq. �29a�, and Eq. �41b� with Eq. �29b�, we see that the
claimed product of maps holds true. Since the factors in the product are bijections, so is the
product itself �and its inverse is the reverse product of the inverses�.

Finally, on account of the fact that the CVL bijection �B↓D� maps onto the set of all linearly
independent complete state decompositions �in R��2��, the same is valid for the remote state
decompositions �A↘D� as claimed.

The symmetric claims D, E, and F can be proved symmetrically. Claim G is obviously valid.
�H� Claim H is an immediate consequence of the products �C↙B�= �A↓C� � �A←B�, which is

the symmetric relation of �A↘D�= �B↓D� � �A→B� �see proof of claim C�.
Claim I is obviously valid. The final claim J easily follows from the multiplications proved for

claim C. �

Remark 3: In the special case when a pair of range-compatible observables As s=1,2, are
state compatible, then the CVL bijections �A↓C� and �B↓D� become mathematically most simple,
and are endowed with physical meaning of actual orthogonal decomposition of the states �s ,s
=1,2, due to ideal measurement. If the range-compatible observables are state incompatible, then
the CVL bijections are formal.

The remote linearly independent complete decomposition Eq. �40�, caused by the direct sub-
system measurement of �A1 � 1�, has the physical meaning of actual decomposition of �2. This is
so because, when the measurement interaction is over, the tripartite pure state vector has under-
gone the change

122103-13 Pure-state entanglement structure J. Math. Phys. 47, 122103 �2006�

                                                                                                                                    



�0�MA���12 = �0�MA�

i

�ei�1��2
1/2�Ua�ei�1�2�� → 


i

�i�MA�ei��1��2
1/2�Ua�ei�1�2� = 


i

pi�i�MA�ei��1��i�2,

�48�

where �0�MA is the initial state vector of the measuring apparatus, and ��i�MA: ∀ i	 is the ortho-
normal set of so-called “pointer positions”: the state vectors in it display the results �ai : ∀ i	 in the
measurement of A1. The state vectors �ei��1 equal the initial state vectors �ei�1 if the measurement
is a nondemolition �repeatable� one, and they differ otherwise. �Remember that we have complete
measurement.� Anyway, according to Eqs. �13a�–�13d� �where now “1” is to be replaced by
“�MA+1�”�, the final tripartite state gives rise to the remote state decomposition �2

=
ipi ��i�2��i�2. After reading the results on the measuring apparatus, i.e., after so-called
objectivization,13 this decomposition becomes actual �in contrast to the infinitely many mathemati-
cally possible so-called “potential” decompositions�.

Returning to Theorem 1, and the square Diagram 1, we can say that the latter displays an
extended physical meaning �with respect to that in Sec. II B� of the correlated subsystem picture.

Definition 6: Pairs of opposite subsystem observables �A1 ,A2� satisfying �As ,Qs�=0,s=1,2,
that are relevant �cf. Definition 5� and can be written either as A1 and A2

=
iai��Ua �ei�1�2��ei�1Ua
†�2+Q2

�A2 or as A1=
iai�Ua
−1 � f i�2�1��f i�2Ua�1+Q1

�A1 and A2 �depending on
the choice of the nearby and the remote subsystems�, which amount to the same, can be called
generalized twin observables. If �As ,�s�=0,s=1,2, are not valid, then one is dealing with ex-
tended twin observables.

Diagram 1 displays the physical meaning of the correlated subsystem picture that includes the
extended twin observables �in addition to the special case of twin observables�.

Corollary 6: The relevant classes of nearby-subsystem observables give an alternative clas-
sification of all linearly independent complete decompositions of �2. This can be extended to any
density operator �, if it becomes �2 by so-called purification, i.e., by constructing a bipartite state
vector ���12 that implies the initial density operator as its second-subsystem reduced density
operator.

One should note that, from the point of view of mathematical physics, this classification has
an advantage over that of Cassinelli et al.4 �cf. the Lemma above� consisting in the fact that the
classifying entities and the details of the connection between them and the linearly independent
complete decompositions has a clear physical meaning in terms of the antilinear operator repre-
sentation of ���12, and its polar factorization �cf. Sec. II�.

Remark 4: In Ref. 14, the approach of this section was indicated �without the antilinear
operator representation� for finite-dimensional ranges. It was pointed out that this can lead to
generating linearly independent complete decomposition of states even at spacelike separation.

V. THE SELECTIVE ASPECT OF REMOTE LINEARLY INDEPENDENT COMPLETE
STATE DECOMPOSITION: REMOTE STATE PREPARATION

The selective or one-result subensemble aspect of complete subsystem measurement that
gives remote linearly independent complete state decomposition was only implicitly given so far.
Now we make it explicit. It is an immediate consequence of Theorem 1.

Theorem 2: Also the selective �or the one-result subensemble� aspect, i.e., the remote prepa-
rations of pure states that are part of a linearly independent complete state decomposition, can be
displayed in a commutative square diagram as below. The symbols on Diagram 2 have the fol-
lowing meaning.

A is the set of all state vectors �ek�1 from R��1
1/2� �equivalently, the set of all corresponding

atomic events or ray projectors �ek�1�ek�1�. B is the set of all state vectors �fn�2 from R��2
1/2�. C is

the set of all state vectors ��n�1 from R��1�. Finally, D is the set of all state vectors ��k�2 from
R��2�.

The bijection A→B comes about by application of the antiunitary correlation operator Ua,
which is determined by the given bipartite state vector ���12. The inverse bijection B←A is Ua

−1.
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A↓C is pk
−1/2�1

1/2. The inverse is C↑A= pk
1/2�̃1

−1/2, where the tilde denotes the reducee to the range.
B↓D is pn

−1/2�2
1/2. The inverse is D↑B= pn

1/2�̃2
−1/2. C→D is Ua. The inverse bijection C←D is Ua

−1.
The diagonal arrows, which have the physical meaning of remote state preparation, are the

following. A↘D is pk
−1/2�2

1/2Ua, or, equivalently, pk
−1/2Aa. The inverse is A↖D= pk

1/2�̃1
−1/2Ua

−1.
C↙B is pn

−1/2�1
1/2Ua

−1, or, equivalently, pn
−1/2Aa

†. The inverse is C↗B= pn
1/2�̃2

−1/2Ua.

Commutative Square Diagram 2.
Remote Pure-State Preparation.
„The Selective Aspect of
Remote Linearly Independent Complete State
Decompositions…

A��all state vectors �ek�1�R��1
1/2�	 B��all state vectors � fn�2�R��2

1/2�	

C��all state vectors ��n�1�R��1�	
D��all state vectors ��k�2�R��2�	
Each arrow goes from one of the sets �A,B,C,D� towards another. It stands for the correspond-

ing bijection specified in Theorem 2. Oppositely oriented arrows denote mutually inverse bijec-
tions. The diagram is commutative, i.e., the successive bijections combine into the displayed
corresponding one. For instance, taking the bijection B↓D after the bijection A→B gives the
bijection A↘D, etc. The imaginary vertical line cutting the square into two equally wide halves
makes these completely symmetric �due to the symmetry between the two subsystems in ���12�.

� The downward diagonal bijections A↘D and C↙B have the physical meaning of remote
state preparations.

Theorem 2 completes previous work on remote preparation �or “steering,” to use
Schrödinger’s term� begun by Schrödinger,1 and continued in Ref. 15. To make the completion
more precise, the following theorem clarifies the issue.

Theorem 3: �A� A state vector ���2 is obtainable by remote preparation in ���12 if and only if
���2�R��2

1/2�.
�B� The set of all atomic events �j�1�j�1 the occurrence of which in nearby-subsystem mea-

surement in ���12 remotely prepares a given state vector ���2 is �in terms of state vectors �f�1 and
�g�1�:

��j�1�j�1:�j�1 = ��f�1 + ��g�1	 , �49a�

where

�f�1 � Ua
−1�2

−1/2���2, �49b�

��� � 0, ���2 + ���2 = 1, �49c�

and

�g�1 = Q1
��g�1, �49d�

�Q1 being the range projector of �1, and Q1
� being its orthocomplementary projector, i.e., the null

projector�, otherwise �g�1 is arbitrary.
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�C� If the occurrence of the atomic event �j�1�j�1 remotely prepares ���2, then the probability
of occurrence is proportional to ���2 �cf. Eq. �49a��. It is maximal if and only if �j�1= �f�1 �cf. Eq.
�49b��.

�D� If ���2�R��2� �cf. Eq. �32��, then �f�1�R��1
1/2�, where �f�1 is given by Eq. �49b�. Thus,

one has linearly independent remote preparation in this case, where the maximal probability is the
characteristic weight of ���2 �cf. Definition 3�.

�E� If ���2� �R��2
1/2�−R��2��, where, “−” denotes set-theoretical subtraction �of a subset�,

then �f�1� �R̄��1�−R��1
1/2��, where �f�1 is given by Eq. �49b�.

If the ranges of �s, s=1,2 are finite dimensional, then the largest probability is always the
characteristic weight corresponding to linearly independent remote preparation �cf. Eq. �32��.

Proof of Theorem 3: �A� The most general case of remote pure-state preparation in a bipartite
state vector ���12 is given by Eq. �13d�. Replacing Aa by its polar-factorized form �2

1/2UaQ1 �cf.
Eq. �9b��, one can see that it is necessary that ���2�R��2

1/2�. That this is also sufficient is obvious
from the fact that ���2 is obtained by remote preparation when the atomic event �f�1�f �1 occurs,
where �f�1 is given by Eq. �49b�. �We again utilize the above polar-factorized form Eq. �9b� of Aa

in Eq. �13d�.�
�B� Since ���2= p−1/2Ua�1 � j�1= p−1/2Ua�1Q1 � j�1 �cf. Eqs. �13d� and �9a��, where p is the prob-

ability of occurrence, it is obvious that the occurrence of each of the atomic events �j�1�j�1 �cf. Eqs.

�49a�–�49d�� remotely prepares ���2. On the other hand, Eq. �49a� with �f�1�R̄��1� is the general

form of a state vector from H1, and Aa=Ua�1
1/2 �cf. �9a�� is nonsingular on R̄��1�, hence, it follows

from Eq. �13d� that if �j�1is not in the set Eq. �49a�, then the occurrence of �j�1�j�1 remotely
prepares a state vector ����2 that is distinct from ���2.

�C� Substituting in Eq. �13c� AaQ1 instead of Aa and �j�1 by its form in Eq. �49a�, one obtains

p = ���2��1
1/2�f�1�2, �50�

which is independent of �g�2 �cf. Eq. �49a��. Both claims in Theorem 3C are obvious from Eq.
�50�.

�D� and �E� The claims of Theorem 3D and 3E follow from the following set-theoretical
insight. One has

R̄��1� = R��1
1/2� + �R̄��1� − R��1

1/2�� , �51�

and

R��1
1/2� = R��1� + �R��1

1/2� − R��1�� , �52�

where “+” denote the set-theoretical union of disjoint sets. The operator �1
1/2 maps the first term on

the rhs of Eq. �51� into the first term on the rhs of Eq. �52�. This is seen from the fact that if
�j�1�R��1

1/2�, then ∃ : �k�1 , �k�1 �k�1�0,�1
1/2 �k�1= �j�1. Then �1

1/2 � j�1=�1 �k�1�R��1�.
Actually, �1

1/2 maps R��1
1/2� onto R��1�. Namely, if 0� �k�1�R��1�, then ∃ :0� �j�1 such that

�k�1=�1 � j�1=�1
1/2��1

1/2 � j�1�.
Finally, since �1

1/2 maps the lhs of Eq. �51� onto the lhs of Eq. �52� in a nonsingular way, one
easily concludes that this operator maps the second term on the rhs of Eq. �51� onto the second
term on the rhs of Eq. �52�. �

VI. CONCLUDING REMARKS

There is a very basic and elementary general claim: Every statement valid for all bipartite state
vectors ���12� �H1 � H2� is either symmetric in the two subsystems, or if not, then also the
statement symmetrical to it is always valid. This comes from the essential symmetry between H1

and H2 �in spite of the fact that one has to use the two factor spaces in an ordered way�.
The results of this article confirm the claim that at the very core of entanglement in any ���12

is the correlated subsystem picture �see Sec. II�. It consists of statements that appear in symmetri-
cal pairs: the two reducees �̃1 and �̃2 are symmetric �cf. Eq. �10�� and so are the reducees of twin
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observables Ã1 and Ã2 �if one takes algebraic twin observables, i.e., ones with equal relevant
spectra�. The symmetry is in terms of the antiunitary correlation operator Ua inherent in ���12,

which establishes a sort of duality �like between kets and bras� between the closed ranges R̄��1�
and R̄��2�.

The correlation operator connects the orthogonal decompositions �or spectral forms� �̃1

=
iri�i�1�i�1˜, �̃2=
iri�i�2�i�2˜, to which correspond the spectral forms of �physical� twin observables

Ã1=
iai�i�1�i�1˜ and Ã2=
iai��i�2�i�2˜. �One should remember that the tilde denotes that the corre-
sponding operator is reduced to the range of �s ,s=1,2.�

In the wider view, when also extended twin observables are taken into account, or, equiva-
lently, when one considers generalized twin observables, which has been elaborated in this article,
one treats the wider class of linearly independent subsystem state decompositions �1

=
nqn ��n�1��n�1 and �2=
kpk ��k�2��k�2 along with the relevant generalized twin observables A1

and A2 the measurement of either of which gives rise to the mentioned state decomposition on the
opposite subsystem �remote linearly independent complete decomposition of state�, but not to the
decomposition on the same subsystem �except in the special case of proper twin observables�. The
full mathematical details and beauty of the generalized physical meaning of the correlated sub-
system picture is expressed via the commutative diagrams.

If, following Schrödinger,1 one tries to understand entanglement solely in terms of disen-
tanglement, i.e., in terms of remote state decomposition, then one wonders what is left out from
this article.

Restricting ourselves first to the �more important� complete state decompositions and pure-
state preparation, the following is omitted.

If the bipartite state vector has infinite entanglement, i.e., if the dimension of the two ranges
of the respective reduced density operators is infinite, then even among the observables for which
the basic commutation �As ,Qs�=0, s=1,2, is valid �range-compatible observables�, those for

which the eigenbases of the reducees Ãs , s=1,2 are not entirely within R��s
1/2� s=1,2 are left out

from remote linearly independent complete state decomposition. Further, equally for finite and for
infinite entanglement, if at least one of the reduced density operators is singular, then the corre-
sponding commutation �As ,Qs�=0, s=1,2 can be violated by some As, and the remote state
decompositions caused by the measurement of such violating observables are also outside our
treatment except in Theorem 3, which addresses the general case.

Considering only the nonselective aspect of remote influence, from the physical point of view
it may not be clear why one should attach more importance to linearly independent remote
complete state decomposition than to the rest mentioned above. The answer lies in the selective
aspect, when one considers remote linearly independent pure-state preparation. Theorem 3C
makes it clear that these are the nearby-subsystem occurrences that in measurement in ���12 have
the highest probability. This fact singles them out in importance.

In Theorem 2 and Diagram 2 we have treated linearly independent remote pure-state prepa-
ration as part of linearly independent remote complete state decomposition. This is methodologi-
cally quite correct. But in view of the mentioned result in Theorem 3C, physically it is more
satisfactory to reverse the roles of the nonselective and the selective aspects, and to consider the
former as composed out of the latter. In other words, perhaps it is physically more correct to
consider remote linearly independent complete state decomposition as consisting of remote lin-
early independent pure-state preparations. Then the physical importance of the latter is shared by
the former.

One should point out that we have not considered incomplete remote linearly independent
state decomposition or remote linearly independent mixed-or-pure state preparation. This is much
used in practice as a step towards complete state decomposition �towards pure-state preparation�.

We may repeat the remark from the Sec. I that in theoretical physics mathematics and physics
are inextricably connected and the optimal form of the former, as a rule, gives physical insight,
often in terms of new physical concepts. The correlated subsystem picture, by itself a mathemati-
cal concept, which has been further applied to disentanglement in this article, leads to insight into
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the structure of pure-state entanglement in terms of generalized �proper and extended� twin ob-
servables. In particular, linearly independent remote pure-state preparation appears as the
maximal-probability way of such a remote effect.

Finally, the largest-probability requirement in remote pure-state preparation leads to the con-
clusion �cf. Theorem 3C� that, from the physical point of view, in case of infinite-dimensional
ranges of �s , s=1,2, one should generalize “relevant” �for linearly independent influence� observ-
ables by the weaker requirement of only range-compatible and detectably complete ones �cf.
Definition 5�.

APPENDIX A

Proof that

���k� � span���1�, . . . , ���k−1��, ���k+1��, . . . , ��d�	, k = 1,2, . . . d;d � N	
⇔ �∀k: ��k� � span���1�, . . . , ���k−1��	 , �A1.1�

where N is the set of all natural numbers.
The first requirement on the set ���i� : i=1, . . . ,d	 obviously implies the second one. To prove

the inverse implication, we assume ab contrario that the first requirement is not valid, but the
second is. Then there exists k�N, 1�k�d such that

��k� = 

i=1

�k−1�

�i��i� + 

j=�k+1�

d

� j�� j� , �A1.2�

all �i and all � j complex numbers. On account of the assumed validity of the second requirement
in Eq. �A1.1�, not all � j can be zero. We define j̄�max�j :� j�0	. Then Eq. �A1.2� implies

�� j̄� = � j̄
−1��k� − 


i=1

�k−1�

�i��i� − 

j=�k+1�

� j̄−1�

� j�� j��
in contradiction to the assumed validity of the second requirement. �

APPENDIX B

Proof �of Corollary 1� that every finite subset ���1� , . . . , ��k�	 of a linearly independent set
�finite or infinite� is a linearly independent basis in the k-dimensional subspace Sk that it spans.
First we prove the claimed dimensionality of the span.

Total induction. We assume that the dimensionality claim is true for �n−1��k: span
���1� , . . . , ���n−1��	=S�n−1�. Let ��n� be linearly independent of the mentioned preceding state vec-
tors. Let P project onto S�n−1�. One has

��n� = P��n� + P���n� , �A2.1�

where P���1− P�, and P� ��n� cannot be zero �cf. Definition 1�. We define �fn��cP� ��n�, where
c is a normalization constant, and

Sn � span�S�n−1�, �fn�	 �A2.2�

is a subspace of n dimensions. Since �fn�=c���n�− P ��n��, Sn�span���1� , . . . , ��n�	. It is obvious
from Eq. �A2.1� that ��n��Sn. Hence, span���1� , . . . , ��n�	�Sn, and, finally, Sn

=span���1� , . . . , ��n�	.
Since the claim that the span is a subspace of that many dimension as the number of linearly

independent state vectors is true for n=1, total induction implies that it is true for any n�k.
The uniqueness of the expansion follows from Corollary 3 is one takes an arbitrary probability

distribution �pi : i=1,2 , . . . ,k ; pi�0;
i=1
k pi=1	 and one defines ��
i=1

k pi ��i���i�.
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APPENDIX C

Proof of Corollary 3. We show that assuming Eq. �27�, each element ��� from the range
R��1/2� can be expanded in the linearly independent sequence ���i� : i=1,2 , . . . ,d� � 	.

Let

�̃−1/2��� = 

i

�i�ei� . �A3.1�

Applying the continuous operator �1/2, one obtains �cf. Lemma B�:

��� = 

i

�i�
1/2�ei� = 


i

�ipi
1/2��i� ,

��� = 

i

�i��i� , �A3.2�

where ∀i : �i=�ipi
1/2. On account of Eqs. �A3.1� and �28�, one has

∀i: �i = pi
1/2���ei��̃−1/2����� .

Substituting �ei� from Eq. �30�, the last relation enables us to rewrite Eqs. �A3.2� as follows:

��� = 

i

pi����i��̃−1�������i� . �A3.3�

Finally, the uniqueness of the expansion Eq. �A3.3� is easily proved by bringing the opposite
assumption into contradiction with the definition of linear independence �cf. Definition 1�. �
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We show in a rigorous way that Crum’s result regarding the equal eigenvalue
spectrum of Sturm-Liouville problems can be obtained iteratively by successive
Darboux transformations. Furthermore, it can be shown that all neighboring
Darboux-transformed potentials of higher order, uk and uk+1, satisfy the condition
of shape invariance provided the original potential u does so. Based on this result,
we prove that under the condition of shape invariance, the nth iteration of the
original Sturm-Liouville problem defined solely through the shape invariance is
equal to the nth Crum transformation. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2397556�

I. INTRODUCTION

Supersymmetric quantum mechanics,1,2 the factorization method,3 the Darboux
transformation,4 Crum’s generalization of the former results,5 the isospectral Hamiltonians based
on the Gelfand-Levitan equation6–9 or the Marchenko equation,10,11 and the shape invariance
condition on the potentials12 together with a transformation defined through this condition have
been in the last two decade an active area of mathematical physics13–18 and pure mathematics.19–21

The main concern of these areas has been the construction of isospectral Schrödinger operators
and the analytical solvability of the Sturm-Liouville problem. The field allowed a deeper insight
into the eigenvalue problem and served as a source for many new ideas and generalizations.22–25

Indeed, it is almost impossible to quote all research papers on the subject �suffices to note that one
review26 and several books have been devoted to the subject27–31�. The applications range from
constructing new solvable potentials in quantum mechanics, differential equations,32 atomic
physics,33 nuclear physics,34 classical mechanics,35 acoustic spectral problems36 to quantum
gravitation,37,38 and neutrino oscillation39 to mention a few important areas.

Mathematically, not all these transformations mentioned above are equal, or at least this is not
apparent at first sight. For instance, the usual Darboux transformation is not the most general
solution of the Riccati equation and as such does not give us the most general transformation in
connection with the isospectral eigenvalue spectrum. On the other hand, the generalization of the
Darboux transformations, namely, the so-called Crum transformation appears to be much more
complicated than the original Darboux result and as such seems to offer us new avenues to
construct new potentials. The third transformation of a Hamiltonian which we have in mind
�defined here in Eq. �90�� is closely related to the condition of shape invariance. Hence, without
doubt, there is some need to at least classify these transformations according to the complexity or
generality and to uncover their relations between them. One such result in this direction is the
nonequivalence of the Abraham-Moses7 and Darboux constructions shown in Ref. 9. Two remarks
are in order here. Firstly, it is understood that unlike the Darboux transformation, any transforma-
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tion in connection with the shape invariance is, of course, limited to the set of shape invariant
Hamiltonians. Secondly, for completeness it is worth noting that the level of complexity of isos-
pectral quantum systems can be increased by considering nonlinear and higher order supersym-
metric transformations.40–43 These are transformations which cannot be reached by iterative Dar-
boux transformations. In this work, however, we will not consider these kinds of transformations
and restrict ourselves to the Darboux case. After some preparatory statements we will show that
the undertaking to uncover relationships between the transformations gives a simple result,
namely, allowing the use of higher order Darboux transformations, we can state that all three
transforms of the original Sturm-Liouville problem are equal. This result is based on a theorem
which we prove in the present paper concerning higher order Darboux transformations of shape
invariant potentials denoted by uD�k�. The theorem states that provided the original potential
satisfies the shape invariance conditions, all pairs uD�k�, uD�k+1� are also mutually shape invari-
ant. The theorem can be proved by induction. Interestingly, it intertwines this induction with
another statement, this time for the wave functions. We illustrate the theorems by two examples.

II. CRUM’S RESULT

In this section, we briefly present Crum’s result and comment on one identity on which
Crum’s result is partly based. This identity is crucial for the subsequent results which we will
elaborate upon in the next section.

Let

Wk � W��1,�2, . . . ,�k� = det A, Aij =
di−1� j

dxi−1 , i, j = 1,2, . . . ,k �1�

be the Wronskian determinant of the functions �1 ,�2 , . . . ,�k, and

Wk,s = W��1,�2, . . . ,�k,�s� . �2�

Theorem 2.1 (Crum): If �1 ,�2 , . . . ,�n are the solutions of the regular Sturm-Liouville prob-
lem

−
d2�s

dx2 + u�s = �s�s, �3�

then �C�n�s satisfies the Sturm-Liouville equation,

−
d2�C�n�s

dx2 + uC�n��C�n�s = �s�
C�n�s, �4�

with �C�n�s and uC�n�s given by

�s → �C�n�s �
Wn,s

Wn
�5�

and

u → uC�n� = u − 2
d2

dx2 ln Wn. �6�

Note that the Crum transforms of � and u are not defined iteratively. By �C� we wish to
distinguish the Crum transformation from other transforms �like Darboux� which will be defined
later in the text. The proof of Crum’s theorem can be found in Refs. 5 and 29. We comment here
only on one cornerstone of the original proof given by Crum5 which we will also use later. The
first step in the proof of Crum’s result on the Wronskian determinant is to consider the derivative
of Wk. Taking the derivative of
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W2 = ��1 �2

d�1/dx d�2/dx
� , �7�

we find the rather obvious result,

dW2

dx
= ��1 �2

�1� �2�
� , �8�

where we used the notation �i� for d2�i /dx2, i=1,2. This result can be readily generalized for the
n�n case.

Lemma 2.2: For the derivative of a Wronskian determinant we have

Wn� = ��1
�n�M�1,n�

�1� + �2
�n�M�2,n�

�1� + ¯ + �n−1
�n� M�n−1,n�

�1� + �n
�n�M�n,n�

�1� � . �9�

Assume the result to be valid for n−1. Using the Laplace expansion according to the last line
of the Wronskian Wn we get

Wn� = ��1
�n�M�1,n�

�1� + �2
�n�M�2,n�

�1� + ¯ + �n−1
�n� M�n−1,n�

�1� + �n
�n�M�n,n�

�1� �

+ ��1
�n−1��M�1,n�

�1� �� + ¯ + �n−1
�n−1��M�n−1,n�

�1� �� + �n
�n−1��M�n,n�

�1� ��� , �10�

where every �n−1�� �n−1� determinant M�i,n�
�1� is a Wronskian for which, by assumption, the

theorem is valid. Hence

det B � ��1
�n−1��M�1,n�

�1� �� + ¯ + �n−1
�n−1��M�n−1,n�

�1� �� + �n
�n−1��M�n,n�

�1� ��� �11�

is a determinant whose two last lines are equal and therefore det B=0. The result �Eq. �10�� can be
written as

Wn� = 	
�1 �2 ¯ �n−1 �n

�1� �2� ¯ �n−1� �n�

] ] ¯ ] ]

�1
�n−2� �2

�n−2�
¯ �n−1

�n−2� �n
�n−2�

�1
�n� �2

�n�
¯ �n−1

�n� �n
�n�
	 . �12�

We can now state a result which will be of some importance later and which is one of the
important ingredients in proving Theorem 2.1 of Crum.

Lemma 2.3 (Crum): The Wronski determinant of the two Wronskians, Wn and Wn−1,s, is equal
to Wn,sWn−1. In other words

W�Wn,Wn−1,s� = WnsWn−1. �13�

The proof relies on the Jacobi theorem for determinants �see the Appendix�. We refer the
reader to the Appendix for the proof of this Lemma too.

It is well known that for n=1 the Crum transformations reduce to the Darboux transformation
when W1=�1 and W1,s=W��1 ,�s�. Specifically, we have

�D�1�s � �C�1�s =
W1,s

�1
= �s� −

�1�

�1
�s, s � 1, �14�

uD�1� � uC�1� = u − 2
d2

dx2 ln W1 = u − 2
d

dx

�1�

�1
. �15�

We can define higher order Darboux transformations iteratively by
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uD�k − 1� → uD�k� = u�k − 1� − 2
d

dx

��D�k − 1�k��
�D�k − 1�k

,

�D�k − 1�s → �D�k�s =
W��D�k − 1�k,�

D�k − 1�s�
�D�k − 1�k

,

s � k . �16�

Obviously, the last equation can be written also in a way which resembles more the first Darboux
transformation, i.e.,

�D�k�s = ��D�k − 1�s�� −
��D�k − 1�k��

�D�k − 1�k
�D�k − 1�s. �17�

It is a priori not clear as to what connection the kth Darboux transformation has with the kth
Crum transformation and if they can be related at all, except for the definition at the lowest order
of Crum’s transformation. The answer is provided in the next section.

III. THE CONNECTION BETWEEN HIGHER ORDER DARBOUX AND CRUM
TRANSFORMATION

To this end, let us first examine the simplest case of k=2,

uD�2� = uD�1� − 2
d

dx

��D�1�2��
�D�1�2

. �18�

Since u�D��1� is the Darboux transformed potential the above equation reads

uD�2� = u − 2
d

dx

�1�

�1
+

��D�1�2��
�D�1�2

� . �19�

According to Eq. �19�, �D�1�2=W1,2 /�1 and on account of the simple identity Wn,n+1=Wn+1, we
can write

uD�2� = u − 2
d

dx

�1�

�1
+

�W2/�1��
W2/�1

� , �20�

which finally gives

uD�2� = u − 2
d

dx

W2�

W2
� = uC�2� . �21�

Similarly, the eigenfunctions

�D�2�s =

��D�1�2 �D�1�s

�d/dx��D�1�2 �d/dx��D�1�s
�

�D�1�2
�22�

can be cast into the form

�D�2�s =

1/�1� W2 W1,s

�W2/�1�� �W1,s/�1��
�

W2

�1

=

� W2 W1,s

�W2/�1�� �W1,s/�1��
�

W2
. �23�

With the help of the standard property of determinants, namely, det�z1 , . . . ,zi , . . . ,zn�
=det�z1 , . . . ,zi+�zk , . . . ,zn� the last equation reduces to
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�D�2�s =

1/�1�W2 W1,s

W2� W1,s�
�

W2
. �24�

Applying the result of Lemma 2.3 and remembering that W1=�1, one finally finds

�D�2�s =
W2,s

W2
= �C�2�s. �25�

The steps above will serve as a beginning of the induction proof of the following general state-
ment,

Theorem 3.1: The nth Crum transformation is equivalent to the nth higher order Darboux
transformation. This is to say, any Crum transformation can be reached iteratively by successive
Darboux transformations, i.e.,

uC�n� = uD�n� ,

�26�
�C�n�s = �D�n�s.

Proof: Assuming the theorem to be valid for n means that the statement

uD�n� = uD�n − 1� − 2
d

dx

��D�n − 1�n��
�D�n − 1�n

,

�D�n�s =
W��D�n − 1�n,�D�n − 1�s�

�D�n − 1�n
,

s � n �27�

is equivalent to

uD�n� = u − 2
d

dx

Wn�

Wn
� ,

�D�n�s =
Wn,s

Wn
.

s � n . �28�

Based on that, we have to show

uC�n + 1� = uD�n + 1� = uD�n� − 2
d

dx

��D�n�n+1��
�D�n�n+1

= u − 2
d

dx

Wn+1�

Wn+1
�29�

and

�D�n + 1�s =
W��D�n�n+1,�D�n�s�

�D�n�n+1
=

Wn+1,s

Wn+1
. �30�

The validity of the hypothesis of the induction for n allows us to write

uD�n + 1� = uD�n� − 2
d

dx

��D�n�n+1��
�D�n�n+1

= u − 2
d

dx

Wn�

Wn
+

��D�n�n+1��
�D�n�n+1

� . �31�

Using the validity of the hypothesis for n, but this time for the wave functions, implies
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uD�n + 1� = u − 2
d

dx�Wn�

Wn
+

Wn+1

Wn
��

Wn+1

Wn

 = u − 2
d

dx

Wn+1�

Wn+1
� = uC�n + 1� . �32�

Similarly, the result for the eigenfunctions may be written as

�D�n + 1�s =

� �D�n�n+1 �D�n�s

��D�n�n+1 ��D�n�s

�
�D�n�n+1

=

� Wn+1/Wn Wn,s/Wn

�Wn+1/Wn�� �Wn,s/Wn��
�

Wn+1/Wn
. �33�

One easily proceeds now to verify the validity of the following equation:

�D�n + 1�s =

� Wn+1 Wn,s

Wn+1� /Wn − Wn�Wn+1/Wn
2 Wn,s� /Wn − Wn�Wn,s/Wn

2
�

Wn+1
=

1/Wn�Wn+1 Wn,s

Wn+1� Wn,s�
�

Wn+1
.

�34�

By virtue of Lemma 2.3 we can assure that

�D�n + 1�s =
Wn+1,s

Wn+1
= �C�n + 1�s �35�

is true which completes the proof.
It is instructive to follow this theorem by an explicit example.

IV. TWO EXAMPLES

In this section we will demonstrate the above theorems by two examples. We choose first a
potential which satisfies the condition of shape invariance �Morse potential� followed by the
example of Ginnochio potential, which falls into the class of nonshape invariant, but solvable
potentials.

Let us consider, as an example, the Sturm Liouville problem with the Morse potential, i.e.,

u�x;A� = 2�A2 − A
A +
�

�2
�sech2��x�� . �36�

The superpartner of this potential corresponding to �1 and �1 is

uC�1� = uD�1� = 2�A2 − AA1 sech2��x�� , �37�

and the first three eigenfunctions are given by the following:

1 . �1 = c1�sech��x���2A/�.

2 . �2 = c2 sinh��x��1.

3 . �3 = c3
− cosh2��x� +
�2�2A − ��

�
sinh2��x���1.
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In the following we will not determine the constants ci as they are of minor importance for our
results. Secondly, the results become increasingly complicated. For instance, to calculate c1 we
can use

�
0

�

sech�ax�2�2A/�dx = −
1

�2A
2F1
�2A

�
,
1

2
,1 +

�2A

�
,

�

�2A
� , �38�

where 2F1 is the hypergeometric function. The corresponding eigenvalues can be compactly writ-
ten as

�n = 2
A2 − 
A −
�n − 1��

�2
�2� . �39�

It is convenient to define An as

An � A −
n�

�2
, �40�

such that the eigenvalues read now

�n = 2�A2 − An−1
2 �, n = 1,2,3, . . . . �41�

The first three are explicitly given as follows:

�1 = 0, �2 = 2�2A� − �2, �3 = 4�2A� − 4�2. �42�

Besides Eq. �37� we will also need the following results:

�C�1�2 = �D�1�2 = c2� cosh��x��1, �43�

�C�1�3 = �D�1�3 = 4�2c3A1 sinh��x�cosh��x��1. �44�

To show explicitly the equality uC�2�=uD�2�, we start with uC�2�, i.e.,

uC�2� = u − 2
d2

dx2 ln W2. �45�

Since W1,2=W2 and using

W1,2

W1
= c2� cosh��x��1, �46�

we have,

ln W2 = ln c2� + ln cosh��x� + 2 ln �1, �47�

but also

d2

dx2 ln W2 = ��� − 2�2A�sech2��x� . �48�

Finally, with Eq. �36� we arrive at

uC�2� = 2�A2 − A1A2 sech2��x�� . �49�

Next we turn to the expression for uD�2�, namely,

122104-7 Shape invariance through Crum transformation J. Math. Phys. 47, 122104 �2006�

                                                                                                                                    



uD�2� = uD�1� − 2
d

dx

��D�1�2��
�D�1�2

. �50�

Taking into account Eq. �43� we obtain

��D�1�2��
�D�1�2

= − �2A1 tanh��x� , �51�

and therefore

d

dx

��D�1�2��
�D�1�2

= − �2�A1 sech2��x� . �52�

From this we conclude �see Eq. �50�� that

uD�2� = 2�A2 − A1A2 sech2��x�� , �53�

and hence

uC�2� = uD�2� . �54�

The transformed potentials here have almost identical functional form. This is, of course, due to
the choice of the potential and need not be so in other cases.

To demonstrate that �C�2�s=�D�2�s, we calculate �C�2�3 to be

�C�2�3 =
W3

W2
=

	 �1 �2 �3

�1� �2� �3�

− �1�1 − �2�2 − �3�3
	

��1 �2

�1� �2�
� = �2�2

W1,3

W2
− �3�3. �55�

Making use of

�2�2
W1,3

W2
= 
4�2�2c3A1

�
�sinh2��x��1, �56�

this becomes

�C�2�3 = �3c3 cosh2��x��1�x� . �57�

On the other hand

�D�2�3 =

� ��1�2 ��1�3

���1�2�� ���1�3��
�

��1�2
=

���1�3/��1�2�����1�2�2

��1�2
= 
��1�3

��1�2
��

��1�2 = �3c3 cosh2��x��1,

�58�

where on the right hand side we already dropped the distinction between D and C �see Eqs. �43�
and �44��. The simple conclusion that we can draw is

�C�2�3 = �D�2�3. �59�

It is instructive to consider also a case of a solvable, but nonshape invariant potential. Many
such cases are known �see Refs. 44–46 and the discussion in Ref. 26� and explicit proofs that
these potentials fail to satisfy the shape invariance condition were given. For instance, for the case
of the Natanzon potential this was shown in Ref. 47. Many of these potentials are complicated and
some, like the Natanzon case, only known in implicit form. Therefore, for the sake of efficient
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calculations, it is recommendable to develop first a fast algorithm to perform the desired calcula-
tions. We will do exactly that before giving the explicit example of the Ginocchio case. Imagine
we would like to calculate �D�2�3. In turns out that the calculation can be greatly simplified by
invoking the ratios hn=�n� /�n, where �n is, as usual, the eigenfunction to the �n eigenvalue. It is
now a straightforward exercise to show that

�D�2�3 =

� �D�1�2 �D�1�3

��D�1�2�� ���D�1��3��
�

��D�1�2�
�60�

is equal to

1

�h1 − h0��1
��h1 − h0���h2 − h0�� + �h2 − h0�h2��1�2 − �h2 − h0���h1 − h0�� + �h1 − h0�h1��1�2� .

�61�

Using the Schrödinger equation the latter simplifies to

�D�2�3 =
��0�h2 − h1� − �1�h2 − h0� + �2�h1 − h0��

�h1 − h0�
�2. �62�

It is obvious that, provided we know the functions h0, h1, h2, and �2, this expression allows a fast
calculation or the wave function �D�2�3 for arbitrary potential. Crum’s result gives

�C�2�3 =
W2,3

W2
=

W3

W2
=

W3

�h1 − h0��0�1
, �63�

where W3 is

W3 = 	�0 �1 �2

�0� �1� �2�

�0� �1� �2�
	 = 	 �0 �1 �2

h0�0 h1�1 h2�2

�0� �1� �2�
	

= 	 �0 �1 �2

h0�0 h1�1 h2�2

u − �0�0 u − �1�1 u − �1�2
	 = − 	 �0 �1 �2

h0�0 h1�1 h2�2

�0�0 �1�1 �2�2
	 . �64�

Hence, taking Eq. �63� into account, we can show that

�C�2�3 =
��0�h2 − h1� − �1�h2 − h0� + �2�h1 − h0���0�1�2

�h1 − h0��1�0
, �65�

which obviously implies that �D�2�3=�C�2�3. This, as it stands, is a general proof for a subcase of
our general theorem. On purpose above we have used different steps than in the proof of our
general theorem. The idea behind it is to demonstrate that in an explicit example we would be only
repeating the very same steps as above. It is therefore sufficient to calculate every time only the
right hand side of Eq. �65�. The equality �D�2�3=�C�2�3 is guaranteed by Eqs. �62� and �65�. We
can now apply the results for �D�2�3 by choosing the Ginocchio potential,

V�x� = �− �2	�	 + 1� +
1

4
�1 − �2��5�1 − �2�y4 − �7 − �2�y2 + 2���1 − y2� , �66�

where y�x� satisfies the following differential equation:
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dy

dx
= �1 − y2��1 − �1 − �2�y2� , �67�

and � and 	 are parameters.
The wave functions of this problem are known to be expressible through Gegenbauer poly-

nomials Cn
�a��x�, namely,

�n = �1 − �2�
n/2�g�y��−�2
n+1�/4Cn
�
n+1/2��f�y�� , �68�

where

g�y� = 1 − �1 − �2�y2, f�y� =
�y

�g�y�
. �69�

The value of 
n is connected to the eigenvalue �n by �n=−
n
2�4 such that


n�2 = ��2�	 + 1/2�2 + �1 − �2��n + 1/2�2 − �n + 1/2� . �70�

The first four Gegenbauer polynomials are given as follows:

C0
�
0+1/2��f�y�� = 1,

C1
�
1+1/2��f�y�� = 2�
1 + 1/2��f�y�� ,

�71�
C2

�
2+1/2��f�y�� = 2�
2 + 1/2��
2 + 3/2��f�y��2 − �
2 + 1/2� ,

C3
�
3+1/2��f�y�� =

4

3
�
3 + 1/2��
3 + 3/2��
3 + 5/2��f�y��3 − 2�
3 + 1/2��
3 + 3/2��f�y�� .

These functions can be used, in the next step, to compute explicitly the ratios hi=�i� /�i. We obtain

h0 =
�0�

�0
=

�g�y���
g�y�

= − 2�1 − �2�y�1 − y2� ,

�72�

h1 =
�1�

�1
=

�g�y���
�g�y��

+
�f�y���
�f�y��

=
�1 − y2�

y
�1 − 2�1 − �2�y2� ,

h2 =
�2�

�2
= 
 �g�y���

�g�y��
+

2�f�y���f�y���
��f�y��2 − �1/�2
2 + 3���� ,

where we have used

�f�y���
�f�y��

=
1

y
�1 − y2� . �73�

Noting that the hi are proportional �1−y2� and that h1−h0= �1−y2� /y, we can insert our results into
Eq. �65� to obtain

�C�2�3 = �1 − �2�
2/2�
2 + 1/2��2
2 + 3��g�y��−�2
2+1�/4

����2 − �0�
�f�y��2 −
1

�2
2 + 3�� − ��1 − �0�2�f�y��2� . �74�

Turning our attention to the potential the superpartner of V in Eq. �66� it is not difficult to see that
the superpartner is given by
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VD�1� = VC�1� = V − 2
d2

dx2 ln W1

= V − 2
d

dr

�g�y���
g�y�

= V + 4�1 − �2��1 − 3y2�2�1 − y2��1 − �1 − �2�y2� . �75�

The second Crum iteration yields

VC�2� = V − 2
d2

dx2 ln W2 = V − 2��− 2 + �1 − �2��5y2 − 3�� + 10y2�1 − �2���1 − y2��1 − �1 − �2�y2� .

�76�

To proof that this is equivalent to the second Darboux transformations it is convenient, as was the
case with the wave functions, to provide first a general proof for this subcase. Starting with the
definition, it is straightforward to show that

�D�1�2 = �h1 − h0��1, �77�

which leads to

VD�2� = VD�1� − 2
d

dr

��D�1�2��
�D�1�2

= V − 2
d2

dr2 ln �0 − 2
d2

dr2 ln�h1 − h0��1

= V − 2
d2

dr2 �ln�h1 − h0��0�1� = V − 2
d2

dr2 ln W2 = VC�2� . �78�

In taking explicit examples we would be only repeating the very same steps as above. This
demonstration concludes our two examples.

V. THE CONNECTION BETWEEN SHAPE INVARIANCE AND CRUM TRANSFORMATIONS

In view of the results of the previous section we can now drop the distinction between higher
order Darboux �D� and Crum �C� transformations.

Let a denote a set of parameters in the original potential, i.e.,

u = u�x;a� . �79�

The condition for shape invariance of u is given by

u�1��x;a� = u�x; f�a�� + R�f�a�� , �80�

where u�1��x ;a� is the first Darboux transform of the original potential, f transforms a into
another set f�a�, and R�f�a�� is a function of the parameters. In the following, we use the usual
notation am� fm�a�, where m indicates the function f applied m times.

In the preceding section we established an equivalence between higher order Darboux trans-
formation and the Crum result. Since the shape invariance is given in terms of the first order
Darboux transformation, it is legitimate to ask if higher order Darboux transformations �Crum
transformations� play a role in the Schrödinger equation with shape invariant potentials. As a first
step we will prove the following theorem.

Lemma 5.1: Under the condition of shape invariance one has

�s�x;a1� = ��1�s+1�x;a� , �81�

up to a multiplicative constant and

�s�a1� + R�a1� = �s+1�a� . �82�
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In the above �s�x ;a� denotes the eigenfunction to the Hamiltonian with the potential u�x ;a� with
the eigenvalue �s.

These results are not new. But since we will make use of them, we offer here a short proof. We
start with initial Sturm-Liouville problem,


−
d2

dx2 + u�x;a���s�x;a� = �s�a��s�x;a� �83�

and


−
d2

dx2 + u�1��x;a����1�s�x;a� = �s�a���1�s�x;a�, s � 1. �84�

Equation �83� is valid for any a, hence we may write


−
d2

dx2 + u�x;a1���s�x;a1� = �s�a1��s�x;a1� , �85�

and add R�f�a���s�x ; f�a�� on both sides implying the following identity:


−
d2

dx2 + u�x;a1� + R�a1���s�x;a1� = ��s�a1� + R�a1���s�x;a1� . �86�

Due to the shape invariance condition �for the sake of formulating the next Lemma we can say that
u�1� and u are pairwise shape invariant� this becomes


−
d2

dx2 + u�1��x;a���s�x;a1� = ��s�a1� + R�a1���s�x;a1� . �87�

Without loss of generality, the spectrum can be ordered as �1��2��3�¯. Hence, ��s�a��,
��s�a1��, and ��s�a1�+R�a1�� are similarly ordered sets. ��1�s+1 is then an eigenfunction to the
ordered spectrum �2��3�¯. We can conclude that up to a multiplicative factor

�s�x;a1� = ��1�s+1�x,a� �88�

and

�s�a1� + R�a1� = �s+1�a� . �89�

In preparation of the main theorem of this section we prove the next Lemma.
Lemma 5.2: By virtue of the the above Lemma and under the condition that u and u�1� are

pairwise shape invariant, u�1� and u�2� are also pairwise shape invariant i.e.,

u�2��x;a� = u�1��x;a1� + R�a1� . �90�

The proof can be done in two steps.

1. The condition of shape invariance and the definition of the Darboux transformation allows us
to write

u�x;a� − 2
d

dx

�1��x;a�
�1�x;a�

= u�1��x;a� = u�x;a1� + R�a1� , �91�

which remains valid if we replace a by a1, i.e.,

u�x;a1� − 2
d

dx

�1��x;a1�
�1�x;a1�

= u�1��x;a1� = u�x;a2� + R�a2� . �92�

Hence, we easily obtain
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u�x;a1� = u�1��x;a1� + 2
d

dx

�1��x;a1�
�1�x;a1�

. �93�

2. Applying the Darboux transformation �Eq. �16��, once again on u�1��x ;a�, gives

u�2��x;a� = u�1��x;a� − 2
d

dx

���1�2�x;a�
��1�2�x;a�

. �94�

On the other hand, using the shape invariance condition leads to

u�2��x;a� = u�x;a1� + R�a1� − 2
d

dx

���1�2�x;a�
��1�2�x;a�

. �95�

The result in the first step of the proof, �Eq. �93�� can be used to derive the following
equation:

u�2��x;a� = u�1��x;a1� + R�a1� + 2
d

dx
��1��x;a1�

�1�x;a1�
−

���1�2�x;a�
��1�2�x;a� � . �96�

If we now apply Eq. �88� from Lemma 5.1 for s=1, i.e.,

��1�2�x;a� = �1�x;a1� , �97�

we obtain the desired final expression which we wanted to prove, namely,

u�2��x;a� = u�1��x;a1� + R�a1� . �98�

For the sake of a more compact notation of the properties of the potential and wave functions,
let us now call the property �88� shape invariance for eigenfunctions �or better the two eigenfunc-
tions involved are pairwise shape invariant� and property �82� shape invariance for the eigenval-
ues. Note that the shape invariance of the wave functions follows from the shape invariance of the
potentials. From the shape invariance of the eigenfunction we can, in turn, conclude that the next
two pairs of Darboux transformations of the potential are pairwise shape invariant. One is led to
the conjecture that the chain continues: from Lemma 5.2 one can show that the next pair of higher
order Darboux transformations of eigenfunctions are also pairwise shape invariant, from which it
follows that the next higher order pair of Darboux transformed potentials is also pairwise shape
invariant. Indeed, we can prove the following theorem extending hereby the notion of shape
invariance.

Theorem 5.3: All neigbouring higher order Darboux transformed potentials and eigenfunc-
tions are pairwise shape invariant. This is to say,

u�k��x;a� = u�k − 1���x;a1� + R�a1�� �99�

and

��k�s+1�x;a� = ��k − 1�s�x;a1� , �100�

up to a multiplicative factor. In more detail, Eq. �99� implies Eq. �100� which, in turn, implies

u�k + 1��x;a� = u�k��x;a1� + R�a1� . �101�

The proof proceeds via induction whose first step consists in Lemmas 5.2 and 5.1 or in Eqs.
�88� and �98�. We assume the hypothesis of the induction to be �Eq. �99� ⇒ �100��. This is
sufficient since we start with the original shape invariance condition for potentials and the first
step of induction is presented in Lemmas 5.1 and 5.2. We have to show that under this condition

��k + 1�s+1�x;a� = ��k�s�x;a1� �102�

holds, from which, in turn,
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u�k + 2��x;a� = u�k + 1��x;a1� + R�a1� �103�

follows.

1. We have


−
d2

dx2 + u�k��x;a����k�s�x;a� = �s�a���k�s�x;a�, s � k . �104�

2. Since the above equation is valid for any a, it is also valid when a is replaced by f�a�. If we
add R�a1���k�s�x ;a1� on both sides and make use of the induction hypothesis we arrive, for
s�k, at


−
d2

dx2 + u�k + 1��x;a����k�s�x;a1� = ��s�a1� + R�a1����k�s�x;a1� . �105�

Equation �82� then tells us that

��k�s�x;a1� = ��k + 1�s+1�x;a� , �106�

up to a multiplicative factor.
3. By definition we have

u�k + 1��x;a� = u�k��x;a� − 2
d

dx

���k�k+1�x;a�

��k�k+1�x;a� � , �107�

for any a. Hence also

u�k + 1��x;a1� = u�k��x;a1� − 2
d

dx

���k�k+1�x;a1�

��k�k+1�x;a1� � . �108�

Taking u�k��x ;a1� from this equation and inserting the result in the induction hypothesis, one
can easily show that

u�k + 1��x;a� = u�k + 1��x;a1� + 2
d

dx

���k�k+1�x;a1�

��k�k+1�x;a1� � + R�a1� . �109�

4. Again per definition we know that

u�k + 2��x;a� = u�k + 1��x;a� − 2
d

dx

���k + 1�k+2�x;a�

��k + 1�k+2�x;a� � . �110�

5. Combining the last two equations yields

u�k + 2��x;a� = u�k + 1��x;a1� + R�a1� + 2
d

dx

���k�k+1�x;a1�

��k�k+1�x;a1�
−

���k + 1�k+2�x;a�
��k + 1�k+2�x;a� � .

�111�

6. The last step consists in using the already established result �Eq. �106�� to obtain

u�k + 2��x;a� = u�k + 1��x;a1� + R�a1� , �112�

which completes the proof.

The shape invariance condition �more accurately, the shape invariance between u and u�1��
allows one to define a new Hamiltonian of the order s,
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Hs
SI � −

d2

dx2 + u�x;as� + �
k=1

s

R�ak� . �113�

Note that this definition makes no reference to higher order Darboux �or Crum� transformations.
However, by virtue of the Theorem V.3 we can iterate

Hs
SI = −

d2

dx2 + u�1��x;as−1� + �
k=1

s−1

R�ak� = −
d2

dx2 + u�2��x;as−2� + �
k=1

s−2

R�ak�

= ¯ = −
d2

dx2 + u�s��x;a� = Hs
D. �114�

Hence, in view of the above and Theorem 3.1 we can state as a corollary.
Collary 5.4. Under the condition of shape invariance all three transformations are equal, i.e.,,

Hs
SI = Hs

D = Hs
C. �115�

VI. EXAMPLE

We will continue here with our example of the Morse potential, now, however, emphasizing
the aspect of shape invariance around Lemmas 5.1 and 5.2 and Theorem 5.3. Indeed, the Morse
potential is shape invariant. One defines the action of f as

f�A� � A1 = A −
�

�2
, �116�

in accordance with the notation in Eq. �40�. R is identified with

R�A1� = 2�A2 − A1
2� . �117�

Note that

�1�x;A1� = c1�A1��sech��x���2A1/� = c1�A1��sech��x����2A/��−1 = c cosh��x��1�x;A� �118�

immediately leads to

��1�2�x;A� = �1�x;A1� , �119�

which is valid up to a multiplicative constant. One also verifies that the equality below

�2�x;A1� = c2�A1�sinh��x��1�x;A1� �120�

=c2�A1�sinh��x�cosh��x��1�x;A� , �121�

together with Eq. �44� has as a consequence the following identity �again up to a constant multi-
plicative value�:

��1�3�x;A� = �2�x;A1� . �122�

Equations �119� and �122� are explicit examples of the result �Eq. �81� in Lemma 5.1. Regarding
the eigenvalues, i.e., the property �82� in the same lemma, let us first note that another compact
notation for Eq. �41� is

�n�A1� = 2�A1
2 − An

2� , �123�

which leaves us with the identity
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�n�A1� + R�A1� = �n+1�A� , �124�

as it should be according to Lemma 5.1. Finally, we can also give explicit examples regarding
Theorem 5.1. Due to the results from Sec. V, we can write

u�1��x;A1� + R�A1� = 2�A1
2 − A1
A1 −

�

�2
�sech2��x�� + 2�A2 − A1

2�

= 2�A2 − A1A2 sech2��x�� = u�2��x;A� . �125�

This demonstrates in an explicit example the result �Eq. �99�� from Theorem 5.1. Last but not the
least, one sees that Eq. �43� can be written as

��1�2�x;A1� = c2�A1�� cosh��x��1�x;A1� , �126�

which, according to Eq. �119� can be cast into the following form:

��1�2�x;A1� =
c2�A1�

c
� cosh��x���1�2�x;A� =

c2�A1�c2�A�
c

�2 cosh2��x��1�x;A� = c̄��2�3�x;A� ,

�127�

with c̄ a constant. To arrive at the last result we have used Eq. �57� from which one can also
determine the constant c̄ in terms of �3, c2�A�, c2�A1�, and c3�A�. Obviously, the above equation
falls into the category of explicit examples of Eq. �100�. Note that in none of the above examples
we have used the actual lemmas or theorems to be exemplified �as it should be if an example
carries some meaning�.

VII. CONCLUSIONS

In the present work, we have clarified the relations between the Darboux and Crum transfor-
mations. We have shown that the latter can be reached iteratively by higher order Darboux
transformations. This is valid for the potential as well as the eigenfunctions. If we subject the
potential to the condition of shape invariance, another transform �not making use of Crum trans-
formation for n�1� is possible �Eq. �113��. We prove that this is also equivalent to the Crum
transform. The main steps of this proof involved establishing Eqs. �99�, �100�, and �82�. The first
result, namely Eq. �99�, is a generalization of the original shape invariance condition. Note that
Eqs. �100� and �82� could be called shape invariance for the wave functions and eigenvalues. The
results of the paper help to understand the relation between the different transformations of the
Hamiltonian operator. Indeed, in view of our results, one could say that the Crum transformation
which appears much more complex than the original Darboux result is essentially an iterative
higher order Darboux transformation and therefore not more complex than the former.

APPENDIX: AN APPLICATION OF JACOBI THEOREM

The identity W�Wn ,Wn−1,s�=WnsWn−1 has been used by Crum in the proof of his theorem. We
have also made use of it several times in the present paper. It therefore makes sense to sketch a
proof of the same.

Let us first establish some notations and definitions. Let A= �aij� be an n�n matrix. The
determinant of A will be denoted by �A� as usual. We call the minor Mr, the determinant obtained
by retaining from A the r lines i1, i2 , . . . , ir and the r columns k1, k2 , . . ., kr. One defines the
complement of the minor Mr as the determinant obtained from A by dropping the r lines i1,
i2 , . . . , ir and the r columns k1, k2 , . . . ,kr. This complement will be denoted by Mr

c. One then
defines M�r�

M�r� = �− 1�i1+i2+. . .+ir+k1+k2+. . .+krMr
c. �A1�

Furthermore, let � be the matrix of the cofactors of A,
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� = 	
A11 A12 ¯ A1n

A21 A22 ¯ A2n

] ] � ]

An1 An2 ¯ Ann

	 , �A2�

and Mr and Mr� the minors of �A� and �, respectively.
Theorem (Jacobi): With these notations, the theorem of Jacobi asserts that

Mr� = �A�r−1M�r�. �A3�

Before proceeding we make a small diversion to an example of the application of the above
theorem starting with a Wronskian composed of �1, �2, �3, and �s, i.e.,

�A� � W3,s = 	
�1 �2 �3 �s

�1� �2� �3� �s�

�1� �2� �3� �s�

�1� �2� �3� �s�
	 . �A4�

The matrix of the cofactors is then given by

� =

	
	
	
	
	 + 	�2� �3� �s�

�2� �3� �s�

�2� �3� �s�
	 − 	�1� �3� �s�

�1� �3� �s�

�1� �3� �s�
	 + 	�1� �2� �s�

�1� �2� �s�

�1� �2� �s�
	 − 	�1� �2� �3�

�1� �2� �3�

�1� �2� �3�
	

− 	�2 �3 �s

�2� �3� �s�

�2� �3� �s�
	 + 	�1 �3 �s

�1� �3� �s�

�1� �3� �s�
	 − 	�1 �2 �s

�1� �2� �s�

�1� �2� �s�
	 + 	�1 �2 �3

�1� �2� �3�

�1� �2� �3�
	

+ 	�2 �3 �s

�2� �3� �s�

�2� �3� �s�
	 − 	�1 �3 �s

�1� �3� �s�

�1� �3� �s�
	 + 	�1 �2 �s

�1� �2� �s�

�1� �2� �s�
	 − 	�1 �2 �3

�1� �2� �3�

�1� �2� �3�
	

− 	�2 �3 �s

�2� �3� �s�

�2� �3� �s�
	 + 	�1 �3 �s

�1� �3� �s�

�1� �3� �s�
	 − 	�1 �2 �s

�1� �2� �s�

�1� �2� �s�
	 + 	�1 �2 �3

�1� �2� �3�

�1� �2� �3�
	 	
	
	
	
	

.

We choose as lines and columns: �i1 , i2�= �3,4�= �k1 ,k2�. Applying the Jacobi theorem gives us

	+ 	�1 �2 �s

�1� �2� �s�

�1� �2� �s�
	 − 	�1 �2 �3

�1� �2� �3�

�1� �2� �3�
	

− 	�1 �2 �s

�1� �2� �s�

�1� �2� �s�
	 + 	�1 �2 �3

�1� �2� �3�

�1� �2� �3�
	 	 = W3,s��1 �2

�1� �2�
� . �A5�

Using Lemma 2.2 the left hand side takes the form

��d/dx�W2,s �d/dx�W3

W2,s W3
� , �A6�

such that we can write
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��d/dx�W2,s − �d/dx�W3

− W2,s W3
� = W3,sW2. �A7�

Explicitly, this implies the following equality:

W3,sW2 = W3
d

dx
W2,s − W2,s

d

dx
W3 = W�W3,W2,s� . �A8�

The proof of the general case does not require any new procedure and follows essentially the steps
outlined in the example. Let Wns be the Wronskian of the n+1 functions �1 , . . . ,�n ,�s, namely,

�A� = Wn,s = 	
�1 �2 . . . �n �s

�1� �2� . . . �n� �s�

] ] ] ] ]

�1
�n−1� �2

�n−1� . . . �n
�n−1� �s

�n−1�

�1
�n� �2

�n� . . . �n
�n� �s

�n�
	 , �A9�

and � the matrix of the cofactors of Wn,s. We would like to apply the Jacobi theorem for the choice

�i1,i2� = �n,n + 1� = �k1,k2� , �A10�

such that r=2. In this case we need

Mr� = �+ Wn−1,s� − Wn�

− Wn−1,s + Wn

� = W�Wn,Wn−1,s� , �A11�

where we have used explicitly the result of Lemma 2.2. Clearly, we have,

M�r� = Wn−1, �A12�

such that the Jacobi theorem for the Wronskian A can be stated as

W�Wn,Wn−1,s� = WnsWn−1, �A13�

which proves Lemma 2.3.
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In this study, we construct the parametric-time coherent states for the negative
energy states of the generalized MIC-Kepler system, in which a charged particle is
in a monopole vector potential, a Coulomb potential, and a Bohm-Aharonov po-
tantial. We transform the system into four isotropic harmonic oscillators and con-
struct the parametric-time coherent states for these oscillators. Finally, we compac-
tify these states into the physical time coherent states for the generalized MIC-
Kepler system. © 2006 American Institute of Physics. �DOI: 10.1063/1.2399362�

I. INTRODUCTION

First, Schrödinger derived the coherent states for the one-dimensional linear harmonic oscil-
lator and also pointed out the construction of the localized nonspreading wave packets for the
electrons in a Coulomb potential.1 The coherent states are eigenstates of the lowering operator of
the harmonic oscillator with complex eigenvalues. The expectation values of the dynamical vari-
ables, i.e., the position and the momentum, satisfy the classical equations of motion. These states
are the most classical ones, with minimum uncertainty and nondispersion in the physical time, and
have time dependent probabilities. In this respect, they are the most useful states to discuss the
time dependent process and the classical limit of the quantum systems. The coherent states have
been used in the quantum theory of the electrodynamics in 1963 which is known as the Glauber
states.2 Recently, Robinett reviewed the theoretical and numerical studies on the wave packets.3

Earlier, Brown, and later Nieto and Simmons, developed a general formalism to construct coherent
states for the different potentials.4,5 In 1986, Bhaumik et al. constructed coherent states for the
Kepler problem and showed that these states are dispersed.6 Here, the authors discuss the dynami-
cal symmetries of the problem, SU�2��SU�2� and try to construct the eigenstates of the lowering
operators of this group. They transform the problem into the four harmonic oscillators which
evolve in the physical time. ten Wolde et al. observed a radially localized electron wave packet.7

Since the dynamical symmetry groups are related to the stationary states of a problem, they do
not give the �physical� time evolution of the related eigenstates. Even in the classical mechanics,
we do not know the time evolution of the physical systems explicitly, except for the free particle
and for the particle in a linear or a quadratic potential. Therefore, the time evolution of the
classical Kepler problem is given in terms of a parametric time or the eccentric anomaly.8 In 1967,
Kustaanheimo-Stiefel �KS� developed a mapping technique in order to transform the 3D classical
Kepler problem into the four isotropic harmonic oscillators which evolve in a parametric time.9

However, this mapping is nonholonomic and a highly technical one.
Later, KS transformation is used by Duru and Kleinert to find the solution of the Kepler

problem via the Feynman path integrals.10 In this formulation, they introduce a new nondynami-
cal, free particle coordinate for the particle and map this system into the four harmonic oscillators
which evolve in a parametric time. They also add the �physical� time as another coordinate of the
particle.

a�Electronic mail: nuriunal@akdeniz.edu.tr
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Recently, Toyoda and Wakayama transformed the Kepler problem into the four harmonic
oscillators, which evolve in the parametric time, by using the squared parabolic coordinates and
investigated coherent states for the Kepler problem.11

Generally, the Feynman path integrals are used to evaluate the transition amplitudes between
the configuration space eigenstates. In 1998, we derived the transition amplitudes of the linear
harmonic oscillator between the eigenstates of its lowering operator, by using a complementary
formulation of the Feynman path integrals, and defined the coherent states in terms of these
amplitudes.12 Recently, the coherent states of the Kepler problem have been derived by using the
mapping technique given in Ref. 10 and consider the transition amplitudes of the four harmonic
oscillators between the eigenstates of their lowering operators.13 Here, it is also shown that the
expectation values for the coordinates of the electron satisfy the Kepler laws and oscillate in the
parametric time. The uncertainties in these expectation values are not constant, but they oscillate
in the parametric time. Later, this technique has been applied to derive the coherent states for a
particle in the Morse potential or in a 5D Coulomb potential.14,15 The coherent states in Ref. 11
have been improved during the same period16 and these states are the same with the coherent
states in Refs. 13 and 17.

A natural generalization of the Coulomb problem is given by Zwanziger and rediscovered by
McIntosh and Cisneros.18 It is known as the MIC-Kepler system and described by the Hamiltonian
in a Coulomb field as well as a Dirac’s monopole field

H1 =
�p − sA�2

2M
+

s2

2Mr2 −
Ze2

r
,

where s is the monopole number and the vector potential, A is given by

A =
1

r�r − z�
�y,− x,0� with rot A =

r̂

r2 .

The MIC-Kepler system gives the generalizations of the conserved angular momentum and of the
Runge-Lenz vectors.

Another generalization of the Coulomb problem is the particle in the Coulomb and Bohm-
Aharonov potential.19 This system is described by the Hamiltonian

H2 =
1

2M
p2 −

Ze2

r
+

C1

2Mr�r − z�
+

C2

2Mr�r + z�
,

where C1 and C2 are non-negative constants.
The following noncentral Hamiltonian is proposed as one of the generalization of these two

type of potentials and known as the generalized MIC-Kepler system:20

H =
1

2M
�p − sA�2 +

s2

2Mr2 −
Ze2

r
+

C1

2Mr�r − z�
+

C2

2Mr�r + z�
.

The Hamiltonian, H, is written in the spherical coordinates as

H =
1

2M
�pr

2 +
p�

2

r2 +
p�

2

r2 sin2 �
� + V�r,�� ,

where the noncentral potential, V�r ,��, is

V�r,�� = −
f

r
+

B + C cos �

r2 sin2 �
, �1�
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f = Ze2, B =
�C1 + C2� − 2s�p� − s�

2M
, C =

�C1 − C2� − 2s�p� − s�
2M

.

The Hartmann potential is an example of the special cases of this potential with

f = 2a0��2�0, B = q�0�a0���2, C = 0,

where a0 is the Bohr radius, �0 is the ground state energy of the hydrogen atom, q is a real
parameter, and � and � are positive real numbers with values ranging from about 1 to 10. It is
proposed as a model for the ring-shaped organic molecules like cyclic polyenes and benzene.21

The combined Coulomb and Aharonov-Bohm potential is another example of this noncentral
potential19 and it can be obtained by taking C=0 and s=0 in Eq. �1�, respectively. Both B=0 and
C=s=0 give the Coulomb potential.

The Schrödinger equation for the particle in the Hartmann potential is discussed by using the
separation of the variables method,22,23 KS transformation and the path integral method, the
supersymmetry and shape invariance, the usual methods,24–35 or the Nikiforov-Uvarov method.36

The “accidental” degeneracy of the spectrum and ”hidden” symmetry of the Hartmann potential
are also discussed.37–39 The coherent states for the Hartmann potential have been derived.40

The aim of this study is to construct the coherent states for the generalized MIC-Kepler
system by using the path integral formalism proposed in Ref. 13. Instead of the KS transformation,
we use the squared parabolic coordinates, in order to transform the problem into the four isotropic
harmonic oscillators, which evolve in a parametric time.41 We notice that, the configuration spaces
of the four oscillators for noncentral potentials are different from those for the Kepler problem. We
can construct the coherent states of these oscillators and compactify these states into the three-
dimensional generalized MIC-Kepler system. For the completeness, we also find the expressions
of the wave functions in terms of the energy eigenfunctions of the system for both the parabolic
and the spherical coordinates.

The paper is organized as follows: In Sec. II, we discuss the transformation of the action for
the classical particle in the noncentral potential into the four isotropic harmonic oscillators. In Sec.
III, we derive the coherent states in terms of the energy eigenstates of the four oscillators in the
parametric time. In Sec. IV, we give the wave function of the coherent states in configuration
space by using the energy eigenstates of the system for the parabolic and the spherical coordinates.

II. ACTION FOR THE GENERALIZED MIC-KEPLER SYSTEM

The parabolic coordinates are given as

� = r�1 − cos �� ,

� = r�1 + cos �� ,

� = � .

First, we express V�r ,��, in the parabolic coordinates, �� ,� ,��,

V��,�� = −
2f

� + �
+

B

��
−

C�� − ��
���� + ��

. �2�

Hence, the classical Hamiltonian can be written in the parabolic coordinates as

H��,�,�� =
4

2M�� + ��
��p�

2 + �p�
2� +

1

2M��
p�

2 + V��,�� . �3�

Using Eq. �3� we write the action as
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A =� dt�p��̇ + p��̇ + p��̇ −
4

2M�� + ��
�p�

2� + p�
2�� −

1

2M��
p�

2 +
2f

� + �
−

B

��
+

C�� − ��
���� + ��	 .

�4�

Next, we perform the following canonical transformation in Eq. �4�,

� =
	2

2
u2, 0 
 u � � ,

� =
	2

2
v2, 0 
 v � � . �5�

Here, a parameter, 	, is introduced in order to obtain the dimensionless units for u and v. This
implies the following relations for the canonical conjugate momenta,

pu = 	
2�p�,

pv = 	
2�p�. �6�

We use Eqs. �5� and �6�, and rewrite Eq. �4� as

A =� dt�puu̇ + pvv̇ + p��̇ −
4

	2�u2 + v2�

�� 1

2M	2�pu
2 + pv

2 +
p�

2 + 2M�B − C�
u2 +

p�
2 + 2M�B + C�

v2 � − f	� . �7�

In Eq. �8�, the term

�pu
2 + pv

2 +
p�

2 + 2M�B − C�
u2 +

p�
2 + 2M�B + C�

v2 � ,

is similar to the Hamiltonian of the particle in the four-dimensional space with the azimuthal
momenta as �p�

2 +2M�BC��1/2. We introduce two dummy momenta, p�1
and p�2

, into the action

by Lagrange multipliers,
d�1

dt and
d�2

dt , and transform the system into four dimensions:

A =� dt�puu̇ + pvv̇ + p��̇ +
d�1

dt
�p�1

− 
p�
2 + 2M�B − C�� +

d�2

dt
�p�2

− 
p�
2 + 2M�B + C��

−
4

	2�u2 + v2�
� 1

2M	2�pu
2 + pv

2 +
p�1

2

u2 +
p�2

2

v2 � − f	� . �8�

To eliminate the �4/	2�u2+v2�� term in Eq. �8�, we introduce a new time parameter, s, defined as

dt

ds
=

	2�u2 + v2�
4

. �9�

We also add the physical time, t, into the physical coordinates of the particle and represent the
dynamics of the particle in terms of the parametric time, s. Then we rewrite the action in terms of
the parametric time as the following:
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A =� ds�pu
du

ds
+ pv

dv
ds

+ + p�

d�

ds
+ �− po�� dt

ds
−

	2�u2 + v2�
4

� +
d�1

ds
�p�1

− 
p�
2 + 2M�B − C��

+
d�2

ds
�p�2

− 
p�
2 + 2M�B + C�� − � 1

2M	2�pu
2 + pv

2 +
p�1

2

u2 +
p�2

2

v2 � − f	� , �10�

where po is another Lagrange multiplier corresponding to the momentum, which is a conjugate to
physical time, t. Here, we only consider the bound states, po�0. We represent the position of the
particle in the four dimensional space by the two sets of the polar coordinates

u = �u cos �1, u sin �1, v cos �2, v sin �2� . �11�

We notice that �1 and �2 are two dummy coordinates in the interval of −���1, �2� +�. Then
the action in Eq. �9�, becomes

A =� ds�pu ·
du

ds
+ p�

d�

ds
+ �− po�

dt

ds
− H4 − �d�1

ds

p�

2 + 2M�B + C� +
d�2

ds

p�

2 + 2M�B − C�	� ,

�12�

where the terms in the square bracket are the total derivatives, as po and p� are the conserved
quantities. In Eq. �12�, H4 is given as

H4 =
1

2M	2 ��pu�2 + �M��2	4�u�2� − f . �13�

Here � is the frequency of the four isotropic oscillators and are given as 
−po /2M. We choose
the scale factor 	2 such that M�	2=1. The term �H4+ f� corresponds to the Hamiltonian of the
four isotropic harmonic oscillators. Hence, we consider them separately and discuss the action of
the four oscillator system:

A� =� ds�pu ·
du

ds
−

�

2
��pu�2 + �u�2 −

2f

�
	� . �14�

We define the holomorphic coordinates

a =
a1

a2

a3

a4

�
as

ai =
1

2

�ui + ipui
�, i = 1, . . . ,4. �15�

We also define the conjugate dynamical variables a�= �a1
� , ,a4

�� as

ai
� =

1

2

�ui − ipui
� . �16�

Then, we rewrite the action A� in terms of the holomorphic coordinates a and a* as

A��a��sb�, sb;a�sa�,sa� = f�sb − sa� + �
sa

sb

ds� 1

2i
�da�

ds
· a − a� ·

da

ds
� − ��a* · a�	 , �17�

where we omitted the total derivative term, 1
2�i=1

2 pu · �u�a
b, in the action, A�.
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In Eq. �12�, H4 is the new Hamiltonian or the energy of the particle in parametric time, s. H4

is constant, even taking the value of zero. The physical energy of the classical particle is

po = − 2Mf2�a* · a�−2.

III. COHERENT STATES FOR THE FOUR OSCILLATORS

The kernel of the four oscillator system is defined in Ref. 13 as

K��a*�sb�,sb; a�sa�,sa� = ei�f−2���sb−sa� � Da* · Da

�2�i�4 � ei��sa

sb ds� 1
2i
� da*

ds
·a−a*· da

ds
�−��a*·a�	� , �18�

where we take �=1 and the term 2� in the exponential comes from the quantum ordering terms
between the operators âi

* and âi. We perform ai
� and ai integrations by the method developed in

Ref. 12. Then the kernel K� becomes

K��a*�sb�, a�sa�;�sb − sa�� = ei�f−2���sb−sa� � ea*�sb�·a�sa�e−i��sb−sa�
. �19�

The coordinate transformation in Eq. �5� is double valued. Hence, we also consider the kernel
K��−a*�sb� , a�sa� ; �sb−sa��. Since we are interested in a spinless system, the total transition am-
plitude, K�

�+�, is the symmetric sum of these two kernels:

K�
�+��a*�sb�, a�sa�;�sb − sa�� = 2ei�f−2���sb−sa� � cosh�a*�sb� · a�sa�e−i��sb−sa�� . �20�

We can represent the kernel K�
�+� by expanding the exponential terms in Eq. �21� into a power

series of ai
��sb�ai�sa� for each value of i:

K�
�+��a*�sb�,��sa�;�sb − sa�� = �

n1,2,3,4=0

�

�1 + �− 1�n1+n2+n3+n4�

� e−i��n1+n2+n3+n4+2��−f��sb−sa��i=1
4 �ai

��i�ni

��ni + 1�
, �21�

where n1+n2+n3+n4 is an even number. We omit the sb dependence of the final eigenvalues ai
�

and sa dependence of the eigenvalues �i. If we parametrize the quantum numbers ni in terms of the
radial and angular quantum numbers of the four oscillators as

n1 = �nr�1 +
1

2
��m1� + m1� ,

n2 = �nr�1 +
1

2
��m1� − m1� ,

n3 = �nr�2 +
1

2
��m2� + m2� ,

n4 = �nr�2 +
1

2
��m2� − m2� ,

and denote the final eigenstates by a±
� and b±

� and initial eigenstates by �± and �±,
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a±
� =

�a1
�  ia2

��

2

, b±
� =

�a3
�  ia4

��

2

,

�± =
�a1 ± ia2�


2
, �± =

�a3 ± ia4�

2

, �22�

then

K�
�+��a±

�, b±
�,sb;�±,�±,sa� = �

�nr�1,2=0

�

�
m1,2=−�

+�

�1 + �− 1��m1�+�m2�� � e−2i��nr�1+�nr�2+ 1
2

��m1�+�m2��+1− f
2���sb−sa�

� ��=+,−
�a±

��±��nr�1+ 1
2

��m1�+�m1�

���nr�1 + 1
2 ��m1� + �m1� + 1� �

�b±
��±��nr�2+ 1

2
��m2�+�m2�

���nr�2 + 1
2 ��m2� + �m2� + 1� .

�23�

Here, �nr�1,2 and m1,2 are the radial and angular quantum numbers of the oscillators. In the
derivation of Eq. �24�, we assume that −�
�1,2� +�. However, for the physical problem, there
is no periodicity in �1,2 and therefore, −���1 , �2� +�. If we perform the scale transformation
�1,2→ 2�

2L �1,2 and p�1,2
→ 2L

2� p�1,2
and then evaluate the limit L→� in Eq. �24� by considering the

present physical problem,

K�
�+��a±

�, b±
�,sb;�±,�±,sa� = �

�nr�1,2=0

� �
−�

+�

dm1�
−�

+�

dm2F�nr�1,m1,�nr�2,m2

� e−2i��nr�1+�nr�2+ 1
2

��m1�+�m2��+1− f
2���sb−sa�, �24�

where

F�nr�1,m1,�nr�2,m2
�a±

��±,b±
��±� = �1 + �− 1��m1�+�m2�� � ��=+,−

�a�
�����nr�1+ 1

2
��m1�+�m1�

���nr�1 + 1
2 ��m1� + �m1� + 1�

�
�b�

�����nr�2+ 1
2

��m2�+�m2�

���nr�2 + 1
2 ��m2� + �m2� + 1� .

For the four oscillators, the energy eigenstates are

��nr�1,2,m1,2� = ��=+,−
�a±

†��nr�1+ 1
2

��m1�+�m1�


���nr�2 + 1
2 ��m1� + �m1� + 1�

�
�b±

†��nr�2+ 1
2

��m2�+�m2�


���nr�2 + 1
2 ��m2� + �m2� + 1�

�0� .

�25�

K�
�+� is the matrix elements of the parametric-time evolution operator, U between the initial eigen-

states of the operators âi , �± , �±, and the final eigenstates of the operators âi , a± , b±. If we
expand K�

�+� in terms of the oscillator energy eigenstates ��nr�1,2 ,m1,2� as

Kw
�+��a±

�, b±
�,sb;�±,�±,sa� = �

�nr�1,2=0

� �
−�

+�

dm1�
−�

+�

dm2��nr�1,2,m1,2�a±b±�*

� ��nr�1,2,m1,2�U�sb − sa���±,�±� .

Here, �a± ,b±� is the final coherent state and U�sb−sa���± ,�±� is the time evolution of the initial
coherent state for the four symmetric oscillators. These are given by
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�a±,b±� = �
�nr�1,2=0

� �
−�

+�

dm1�
−�

+�

dm2 � U�nr�1,m1,�nr�2,m2
�a±,b±���nr�1,2,m1,2� �26�

and

U�sb − sa���±,�±� = �
�nr�1,2=0

� �
−�

+�

dm1�
−�

+�

dm2 � e−2i��nr�1+�nr�2+ 1
2

��m1�+�m2��+1− f
2���sb−sa�

� U�nr�1,m1,�nr�2,m2
��+,�−,�+,�−���nr�1,2,m1,2� ,

where

U�nr�1,m1,�nr�2,m2
�a±,b±� = �1 + �− 1��m1�+�m2�� � ��=+,−

�a���nr�1+ 1
2

��m1�+�m1�


���nr�1 + 1
2 ��m1� + �m1� + 1�

�
�b���nr�2+ 1

2
��m2�+�m2�


���nr�2 + 1
2 ��m2� + �m2� + 1�

.

In order to derive the other physical conditions for the coherent states, we consider the integration
of the kernel over the all values of sb from sa to +�. It gives the Green’s function of the four
oscillators as

G�
�+��a±

�, b±
� ;�±,�±� = �

�nr�1,2=0

� �
−�

+�

dm1�
−�

+�

dm2 �
iF�nr�1,m1,�nr�2,m2

�a±
��±,b±

��±�

f − 2���nr�1 + �nr�2 + 1
2 ��m1� + �m2�� + 1� .

�27�

The poles of the Green’s function are at

f = 2���nr�1 + �nr�2 +
1

2
��m1� + �m2�� + 1	 ,

which give the energy eigenvalues of the physical system as

po = −
Mf2

2��nr�1 + �nr�2 + 1
2 ��m1� + �m2�� + 1�2 . �28�

To derive the Green’s function or the matrix elements for the physical particle we consider the
elimination of the dummy coordinates, �1 and �2. There are two methods of the elimination: In
the path integration formalism, we integrate over all the possible final values of these variables. In
the wave function formalism, we consider the physical eigenvalues of the corresponding conjugate
momenta

p̂�1
�phys = 
m2 + 2M�B − C��phys,

p̂�2
�phys = 
m2 + 2M�B + C��phys, �29�

where m is the azimuthal quantum number corresponding to the operator p̂�. Then the Green’s
function at po becomes
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G�
phys�a±

*, b±
* ;�±,�±� = G�

�+���a±
*, b±

* ;�±,�±���m1,2�=
m2+2M�BC�

= �
�nr�1,2=0

�

V�nr�1,�nr�2
�a+

*,a−
*,b+

*,b−
*� � V�nr�1,�nr�2

��+,�−,�+,�−� ,

where

V�nr�1,�nr�2
�a±

*,b±
*� = �1 + �− 1��m1�+�m2�� � ��=+,−

�a+
*a−

*��nr�1+�m1�� a+
*

a−
* �m1


���nr�1 + 1
2 ��m1� + �m1� + 1�

�
�b+

*b−
*��nr�2+�m2�� b+

*

b−
* �m2


���nr�2 + 1
2 ��m2� + �m2� + 1�

. �30�

In Eq. �30� we take the values of �m1,2� as 
m2+2M�BC�. Thus, we derive the physical coherent
states by evaluating �a± ,b±� at the poles of the �m1,2�=
m2+2M�BC� and p0,

�a±,b±� = �nr�1,2 = �
�nr�1,2=0

�

V�nr�1,�nr�2
�a±

*,b±
*���nr�1,2, m1,2� . �31�

The coherent states are parametrized by three quantum numbers ��nr�1+ �m1��, ��nr�2+ �m2��, and m
as �m1,2�=
m2+2M�BC�.

IV. GREEN’S FUNCTION AND COHERENT STATES IN CONFIGURATION SPACE

In Sec. III, we derive the Green’s function between the initial and final coherent states.
However, in this section, we write the Green’s function between the final eigenstates of the
configuration space and the initial coherent states as

G�
phys�u,�1,v,�2;�±,�±� = ��=+,−� da�

* da�

2�i
� db�

* db�

2�i
e−a�

*a�−b�
*b� � �u,�1�a+,a−�

��v,�2�b+,b−�G�
phys�a±

*, b±
* ;�±,�±� . �32�

The matrix elements, �u ,�1�a+ ,a−� and �v ,�2�b+ ,b−� can be calculated by using the representation
of a± and b± in terms of u ,�1 , �v ,�2� and pu , p�1

, �pv , p�2
�, in Eqs. �15� and �16�. Since the

volume element of the four-dimensional space is 2�uv�3 du dv d�1 d�2, the normalized wave
functions will be

�u,�1,v,�2�a±,b±� = Ne−�u2+v2�/2 � e�u�a+e−i�1+a−ei�1�+v�b+e−i�2+b−ei�2��− 1
2

�a2+b2�, �33�

where the normalization constant, N, is given by

N =
2
2e− 1

2
�aa*+bb*�

�1 + �a + a*�2�1/2�1 + �b + b*�2�1/2 . �34�

If we substitute �u ,�1 ,v ,�2�a±,b±� into Eq. �32� and integrate over a±
* , a± and b±

* , b±, the result
will be

G�
phys�u,�2,v,�2;�±,�±� = iNe−�u2+v2�/2 � e�u��+e−i�1+�−ei�1�+v��+e−i�2+�−ei�2��− 1

2
��2+�2�. �35�

To derive the coherent states of the particle, we consider the path integrations over the conjugate
variables t and p0 and � and p�. The integrations of t and p0 are discussed in Ref. 13 and the result
of these integrations is given as
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� d�− p0�
2�i

ei�−p0��tb−ta�.

The integrations of � and p� are given in Ref. 10 and the result of these integrations is

�
m=−�

+�
eim��b−�a�

2�
,

where m is the azimuthal quantum number of the particle. Then the Green’s function of the
particle is

G˜�
�+��u, v,�,t; �±,�±,�a,ta� = �

m=−�

+�
eim��−�a�

2�
�� d�− p0�

2�i
ei�−p0��t−ta�G˜�

phys�u,v;�±,�±� ,

where G˜�
phys�u ,v ;�± ,�±� will be derived from G�

phys�u ,�1 ,v ,�2 ;�± ,�±� by performing the inte-
grations over �1 and �2.

In order to derive coherent states in the parabolic coordinates, we rewrite Eq. �35� as follows:

G�
phys�u,�1,v,�2;�±,�±� = 2iNe−�u2+v2�/2+�i��2+�i��2

� cosh�
u2�2

2
��e−i��1−�1� + ei��1−�1���

+
v2�2

2
��e−i��2−�2� + ei��2−�2���� , �36�

where the complex phases, �1,2, are

��1 ± i�2�

2

=
�2

2
e±i�1,

��1 ± i�2�

2

=
�2

2
e±i�2.

Then we can expand the Green’s function, in terms of Bessel functions, as

G�
phys�u,�1,v,�2;�±,�±� = iNe−�u2+v2�/2−�2−�2 �

m1,m2=0

+��

�1 + �− 1�m1+m2�

� Jm1
�− 2i
u2�2

2
�cos m1��1 − �1�

� Jm2
�− 2i
v2�2

2
�cos m2��2 − �2� . �37�

Here, the prime on the summation shows that we can take the half of this term for m1=m2=0. In
Eq. �37�, we change the range of the variables, �1 and �2 from �−� , +�� to the interval �−� ,
+��. As a consequence of this change, we can convert the summation into the integrals over m1

and m2. If we perform the integrations over �1 and �2 by considering the Lagrange multipliers for
p�1

and p�2
, the Green’s function becomes

G�
phys�u,v, ;�±,�±� = iNe−�u2+v2�/2−��2+�2�/2�1 + �− 1�m1+m2� � Jm1

�− 2i
u2�2

2
�cos m1�1

� Jm2
�− 2i
v2�2

2
�cos m2�2, �38�

where
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��m1�
�m2�

� = 
m2 + 2M�B  C� .

To derive the coherent state wave functions in parabolic coordinates we expand the Bessel func-
tions in terms of the associate Laguerre polynomials42

J	�2
xz� = e−z�xz�
	
2 �

n=0

�
zn

��n + 	 + 1�
Ln

	�x� . �39�

Then the Green’s function is

G�
phys�u,v;�±,�±� = i �

�nr�1,2=0

�

�1 + �− 1�m1+m2�N�nr�1,m1
N�nr�2,m2

� R˜�nr�1,m1
�u��−

�2

2
��nr�1+

m1
2

cos m1�1

� R˜�nr�2,m2
�v��−

�2

2
��nr�2+

m2
2

cos m2�2, �40�

where

R˜nr,m
�u� = e−u2/2�u2�

m
2 Lnr

m �u2� �41�

and

N�nr�,m
2 =

1

����nr� + m + 1�

. �42�

The reduced Green’s function, G˜�
�+�, is the scalar product of the coherent states with configuration

space eigenstates. We identify them as the configuration space dependent coherent state wave
functions, ��,�,m,p0

�u ,v ,� , t�,

��,�,m,p0
�u, v,� − �0,t� = G˜�

�+��u, v,�,t; �±,�±,�0,t0�

= �
�nr�1,2=0

�

�
m=−�

�

��nr�1,�nr�2,m��,�,�� � ei�−p0��t−t0����nr�1,�nr�2,m��*,�*,�0��*,

�43�

where

p0 = 2M�2 = −
Mf2

2��nr�1 + �nr�2 + 1
2 �m1 + m2� + 1�2 = −

Mf2

2ñ2 . �44�

In Eq. �43�, ��nr�1,�nr�2,m�� ,� ,�� and ���* ,�* ,�0� are the energy eigenstates in parabolic coor-
dinates and holomorphic coordinates, respectively. They are given as

��nr�1,�nr�2,m��,�,�� = � 4�1 + �− 1�m1+m2�M3f3

ñ4�i=1
2 ���nr�i + mi + 1�

�1/2

�
eim�


2�
R�nr�1,m1

���R�nr�2,m2
���,��nr�1,�nr�2,m�� * ,� * ,�0�

= �− 1��nr�1+�nr�2 � � 4�1 + �− 1�m1+m2�M3f3

ñ4�i=1
2 ���nr�i + mi + 1�

�1/2eim�0


2�

122105-11 Coherent states for MIC-Kepler system J. Math. Phys. 47, 122105 �2006�

                                                                                                                                    



�
e−�a + a*�2

�1 + �a + a*�2�1/2 ��2��nr�1+
m1
2 cos m1�1

�
e−�b + b*�2

�1 + �b + b*�2�1/2 ��2��nr�2+
m2
2 cos m2�2

and

Rnr,m
��� = e− 1

2

−2Mp0��
− 2Mp0��m/2Lnr

m �
− 2Mp0�� .

��,�,m,p0
�u , v ,�−�0 , t� is the coherent state for the particle in the potential given by Eq. �1� in

terms of the normalized energy eigenstates in parabolic coordinates.
In order to find the coherent state wave functions in spherical coordinates, we write the

product of two modified Bessel functions in terms of one modified Bessel function:

z

2
I��z sin 	 sin ��I��z cos 	 cos �� = �sin 	 sin ����cos	cos����

l=0

�
l ! ��� + � + l + 1�

��� + l + 1���� + l + 1�

� I�+�+2l+1�z�Pl
��,���cos 2	�Pl

��,���cos 2�� .

The product of two modified Bessel functions is

Im1
�2
M�u2

2
���2�Im2

�2
M�v2

2
���2� = Im1

�2
2�a2 + b2�
2M�rsin
�

2
sin

�

2
�

� Im2
�2
2�a2 + b2�
2M�rcos

�

2
cos

�

2
� ,

where

� =

a2 + b2


2
sin

�

2
and � =


a2 + b2


2
cos

�

2
.

Then, we combine them as

Im2
�2
4M�r�a2 + b2�cos

�

2
cos

�

2
� � Im1

�2
4M�r�a2 + b2�sin
�

2
sin

�

2
�

= �
k=0

�
2k ! ��k + m1 + m2 + 1�

��k + m1 + 1���k + m2 + 1�
�

I2k+m1+m2+1�2
4M�r�a2 + b2��

2
4M�r�a2 + b2�

� dk,m1,m2
�cos ��dk,m1,m2

�cos �� , �45�

where the angular wave function dk,m1,m2
�cos �� is defined in terms of Jacobi polynomials,

Pk
�m1,m2��cos ��, as

dk,m1,m2
�cos �� = �sin

�

2
�m1�cos

�

2
�m2

Pk
�m1,m2��cos �� . �46�

We can expand the modified Bessel function in Eq. �45�, in terms of Laguerre polynomials by
using Eq. �39�. Then we substitute this result into Eq. �45�,
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G�
phys�r,�;�a2 + b2�1/2,�� = �

nr,k=0

�

�
m=−�

�

�nr,k,m�r,�,�� � ��nr,k,m��a�2 + b�2�1/2,��,�a��*,

�47�

where �nr,k,m�r ,� ,�� and �nr,k,m��a*2+b*2�1/2 ,�* ,�� are the normalized energy eigenfunctions in
spherical coordinates and holomorphic coordinates, respectively. They are given in terms of the
Jacobi polynomials as

�nr,k,m�r,�,�,t� = Nnr,k,m � e−2M�r�
4M�r�2k+m1+m2Lnr

2k+m1+m2+1�4M�r� � eim�dk,m1,m2
�cos ��

�48�

and

�nr,k,m��a*2 + b*2�1/2,�*,�� = �− 1�nrNnr,k,m � �
�a*2 + b*2��2k+m1+m2+2nreim�

�dk,m1,m2
�cos �*�cos m1�1 cos m2�2, �49�

where the normalization constant, Nnr,k,m, is

Nnr,k,m = �4M3f3

2�ñ4 �1/2

� � �1 + �− 1�m1+m2��2k + m1 + m2 + 1�
2���k + m1 + 1���k + m2 + 1�

1/2�
��k + m1 + m2 + 1�k!

��n + 2k + m1 + m2 + 2�	 .

�50�

Then, coherent states in spherical coordinates are given by

��a2 + b2�1/2,�,��r,�,�,t� = G˜�
�+��r,�,�,t; �±,�±,�0,t0� = �

nr,k=0

�

�
m=−�

�

exp�i
Mf2

2ñ2 �t − t0�	
� �nr,k,m�r,�,����nr,k,m�a*2 + b*2�1/2,�*,�0�*, �51�

where the principal quantum number, ñ, is introduced as

ñ = nr + l˜ + 1, �52�

with

l˜ = k +
1

2
�m1 + m2� = k + 
m2 + 2M�B + C� + 
m2 + 2M�B − C� . �53�

V. CONCLUSION

In this paper, we discuss the negative energy coherent states for the generalized MIC-Kepler
system. First, we transform the system into the four isotropic harmonic oscillators, which evolve
in a parametric time. Second, we construct the coherent states for the four oscillators. Third, we
compactify the four oscillator system into a 3D generalized MIC-Kepler system. We also express
the wave functions of these states in terms of the normalized energy eigenstates in the parabolic
coordinates and in the spherical coordinates. The special cases of this system are the combined
Coulomb and Aharonov-Bohm potentials, the Hartmann potential, and the Coulomb potential.

The four harmonic oscillators have 16 conserved quantities. These are constructed as follows:
We expand the bilinear aa† in terms of the Euclidian Dirac matrices. The coefficients of these
expansion denote the conserved quantities corresponding to the four isotropic oscillators. The
coefficient of the diagonal matrices, 1 � 1, �3 � 1, 1 � �3, and �3 � �3, give the complete com-
muting set of the operators for the four oscillators. These are related to the quantum numbers of
the oscillators. Half of these coefficients are related to the conserved quantities of the generalized
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MIC-Kepler system. In the case of the Kepler problem, one of these generators is exactly zero and
the residual 7 generators correspond to the Hamiltonian, angular momentum and Runge-Lenz
vectors and they satisfy the algebra SU�2��SU�2�. In the case of the generalized MIC-Kepler
system, this generator is not zero and the classical orbits are not closed. In some extend these
variables measure the precession of the orbits. In the Kepler problem, there is no precession and
the orbits are closed. In the noncentral potential cases, the orbits are not closed and parametrized
by the angles �1 and �2 ranging between −� and +�.

The expectation values for the dynamical variables, i.e., the position and the momentum can
be derived by using the parametric time coherent states given in Eq. �26�. The center of the
localized states follows finite trajectories. Since the azimuthal quantum numbers m1 and m2, and
the principal quantum number, ��nr�1+ �nr�2+ 1

2 ��m1�+ �m2��+1� are not integers, these trajectories
are not closed, except for the Coulomb potential: In this case, m1=m2=m and the trajectories are
Keplerian ellipses. In all cases, the uncertainties are finite.

Here, we do not discuss the positive energy coherent states. They can be easily derived from
the negative energy coherent states given in Eq. �43� by the analytic continuation discussed in Ref.
13. In this case, the trajectories and the uncertainties are not finite.

The coherent states for the generalized Aharonov-Bohm and Coulomb potential were dis-
cussed for the constant values of the quantum number, m.43 These states correspond to the eigen-
values of the lowering operators for �nr�i+ �mi� for i=1,2, which are denoted by the quadratic
combinations of the lowering operators a± and b±. However, they are different than the coherent
states discussed in our paper.
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In this paper we study the construction of probability densities for time of arrival in
quantum mechanics. Our treatment is based upon the facts that �i� time appears in
quantum theory as an external parameter to the system, and �ii� propositions about
the time of arrival appear naturally when one considers histories. The definition of
time-of-arrival probabilities is straightforward in stochastic processes. The difficul-
ties that arise in quantum theory are due to the fact that the time parameter of the
Schrödinger’s equation does not naturally define a probability density at the con-
tinuum limit, but also because the procedure one follows is sensitive on the inter-
pretation of the reduction procedure. We consider the issue in Copenhagen quantum
mechanics and in history-based schemes like consistent histories. The benefit of the
latter is that it allows a proper passage to the continuous limit—there are, however,
problems related to the quantum Zeno effect and decoherence. We finally employ
the histories-based description to construct Positive-Operator-Valued-Measures
�POVMs� for the time-of-arrival, which are valid for a general Hamiltonian. These
POVMs typically depend on the resolution of the measurement device; for a free
particle, however, this dependence cancels in the physically relevant regime and the
POVM coincides with that of Kijowski. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2399085�

I. INTRODUCTION

The probabilities provided by quantum mechanics usually refer to measurements that take
place at specific moments of time. However, there are physically realizable measurements that do
not fall in this category. One such example involves the determination of a particle’s time-of-
arrival �or time-of-flight� measurement. If the quantum mechanical system is described by a wave
function ��x , t�, its modulus square ���x , t��2 is a probability density with respect to x at any time
t. If � describes a particle beam, the probability density describes the particles’ distribution in
space, as if a snapshot were taken at a moment t. However, the setup for particle detection is
slightly different. The time interval between the emission of the beam and its detection is not
fixed; rather, one places a detector at a fixed distance L from the source. This is not a single-time
measurement of the particle’s position. Therefore, the object ���x , t��2 is not immediately relevant,
because it is not a probability distribution with respect to t. Only if one assumes that the initial
wave packet is narrowly concentrated around a specific momentum value p and that it remains so
at all times until detection, is it possible to state that this measurement is equivalent to a single-
time measurement at time t=mL / p �m being the particle mass�. But even for small momentum
spreads of the initial state, the assumptions above are valid only for free particles.

In the general case, the detector registers particles at different times t. One therefore needs to
construct a probability p�t� for the time of arrival. This would have been an elementary problem,
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if there existed an operator representing time in the system’s Hilbert space. In that case one would
use the Born rule to determine a probability density for the time of arrival. Unfortunately, the

existence of a time operator T̂, conjugate to the Hamiltonian �so that the Hamiltonian generates

time translations: eiĤsT̂e−iĤs= T̂+s� is ruled out by the requirement that the Hamiltonian is bounded
from below.1,2 Nonetheless, one may still define a quantum time variable by choosing some
degrees of freedom of the system �or of a measuring apparatus� as defining an internal “clock.”
The simplest example for the time-of-arrival is the quantum version of the classical function
mx / p, for a free particle of mass m−x, p being the position and momentum, respectively. Still,
clock times fail to be conjugate to the Hamiltonian of the system, with the result that they do not
forward under Hamiltonian evolution. In simpler language, quantum fluctuations invariably force
clocks to move occasionally “backward in time.” For time-of-arrival operators, see, for example,
Refs. 3 and 4 and the extensive bibliography in the review.5

This discussion brings us invariably to the issue of the role of time in quantum theory. Time
enters the quantum mechanical formalism as the external evolution parameter in Schrödinger’s
equation; it is not an intrinsic variable of a physical system. Indeed, outside the realm of general
relativity, time is assumed to be part of a background structure—both in nonrelativistic or special
relativistic physics. For Bohr, time is a part of the classical description of physics that is “comple-
mentary” to the quantum description, and is needed if the measurement theory of the later is to
make sense.

In this paper we identify different candidates for the time-of-arrival probability, by treating
time as a parameter external to the quantum system under consideration. This assumption is not
only forced on us by the quantum mechanical formalism, but also corresponds to the way time is
taken into account in experiments. When an event occurs �say a detector clicks�, we record the
time it took place by “looking” at a clock in the laboratory. Clocks are classical systems that do
not interact with either the quantum system or with the measurement device– their degrees of
freedom are not correlated to the physical processes that take place in the act of measurement. In
effect, the time parameter we consider is the reading of the clock that is simultaneous with the
detector’s click. Since in any laboratory the relative speeds involved are much smaller than the
speed of light, there is no problem in assuming a synchronization of events. Hence, in this paper,
we construct a probability distribution for the clock reading that are simultaneous with the real-
ization of a specific quantum event �usually a particle detection�. It is important to emphasize that
the determination of the time of arrival involves only a single act of measurement, which corre-
sponds to the particle being registered by the detector.

In each individual run of the experiment, we record the moment the particle entered the
measuring device. The only way to do so is by checking at every single moment of time which of
the two alternatives holds: the particle having been detected or not. We then identify the time of
arrival as the moment of transition from the event of no detection to the event of detection. For
this purpose, we need to consider a �continuous� history of alternatives of detection. This suggests
that a framework based on histories �path integrals or the consistent histories approach� is par-
ticularly suitable for that purpose. Indeed, an important feature of the history’s formalism is that it
distinguishes the role of the causal ordering of events in quantum theory from that of evolution
�see Ref. 6 or the more general discussion in Ref. 7�. This allows us to set up the problem of the
time-of-arrival probabilities at a kinematical level, i.e., without specific reference to the system’s
Hamiltonian.

A key feature of the constructions we present here is that they are not tied to a specific choice
of the Hamiltonian that describes the quantum system’s dynamics. From the experimentalist’s
point of view, this is perhaps the most natural procedure. One may measure the time of arrival for
any system without any prior knowledge about the system’s dynamics. All that is needed is a
particle detector and an external clock. We would use the same detector for a free particle, for a
particle moving in a potential, for a particle in presence of an environment, or even when we have
complete ignorance about the particle’s dynamical behavior. The procedure one follows to mea-
sure the time of arrival should not depend, in principle, on the system’s dynamics, only the results
�namely the probabilities� should.
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The histories description provides an important technical advantage. While the time of arrival
does not define a function on the space of single-time alternatives of the system, it becomes one
in the space of histories. In fact, the problem of defining a time-of-arrival probability is a special
case of defining probabilities for histories. We shall exploit this fact in Sec. V, in order to construct
a Positive-Operator-Valued-Measure for histories, by mirroring the corresponding construction of
probabilities in sequential measurements.

To demonstrate unambiguously that time of arrival is naturally defined in a history framework,
we consider an analogous construction, namely the time of arrival in stochastic processes �Sec. II�.
At this level a probability density for the time of arrival can be simply constructed. However,
when we pass to quantum theory, a problem appears. The probabilities obtained from Born’s rule
depend on the time variable in a way that does not allow the straightforward definition of a
probability density. As a result, there is a strong ambiguity in the implementation of the
continuous-time limit.

The second complication involved in quantum theory is the fact that the construction depend
strongly on the interpretation of the “wave-packet reduction” rule. One possible interpretation is
that the wave-packet reduction is a physical process that takes place only after the measured
system has interacted with a measuring device. Another interpretation is that the reduction rule can
be applied to any circumstance, in which we have obtained information about the quantum system.
For example, if a particle detector did not click at a specific moment of time, then we can infer that
the particle has been outside the region of detection at that time.

The first interpretation allows us to construct time-of-arrival probabilities by applying classi-
cal reasoning to the quantum mechanical probabilities. The corresponding probability density is
not a linear functional of the initial density matrix, because the assumption we employed violates
the “logic” of quantum mechanical propositions. Nonetheless, it has the correct classical limit and
physically reasonable properties. Its main drawback is that it is ambiguous with respect to the
continuous-time limit, and depends on the procedure one employs for its implementation.

The second interpretation of the reduction procedure lends itself to constructions that empha-
size the “logic” of quantum events. All information we obtain for a quantum system, whether this
arises from a concrete experimental datum or from inference from the lack of such a datum �i.e.,
the detector not having clicked� are treated in the same footing. An important example is the
consistent histories approach, which we examine in Sec. IV. Time-of-arrival histories are a special
case of the so-called “spacetime coarse grainings” that have been studied before by Hartle8 and
others.9 The advantage conferred to us by this approach is that the continuous-time limit is
naturally obtained at the level of amplitudes �which essentially correspond to restricted path
integrals�. The problem arises at the level of combining the amplitudes in order to obtain a
probability density. In effect, there is strong interference between different values of arrival times
that are mutually exclusive in the classical context.

The quantum Zeno effect10 poses another problem for the determination of probabilities; it can
be partially evaded but it remains troublesome at the fundamental level. It seems that the only
information we can obtain unambiguously in this framework is the classical deterministic limit for
the time of arrival.

In Sec. V, we apply the results obtained from the analysis of histories in a different context,
namely the construction of a Positive-Operator-Valued Measure that provides probabilities for the
time of arrival. The key idea is that the construction of a probability density for the time of arrival
is not fundamentally different from that of probabilities for sequential measurements. Hence, we
follow a procedure developed for the study sequential measurements.11,12 The resulting time-of-
arrival probabilities, like those of sequential measurements, are contextual; they depend strongly
on the resolution of the measurement device. However, in the physically relevant regime for the
free particle the dependence on � drops out, and the constructed POVM coincides with that of
Kijowski.4

The approach to the time-of-arrival developed in Sec. V involves acting with the projection
operator corresponding to no detection on the system’s wave function at every moment of time.
This action loosely corresponds to the fact that we have obtained information from the quantum
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system. It is important to emphasize that it does not refer to a physical act of measurement. It
cannot be described in the language of standard quantum measurement theory: a von Neumann
measurement, for example, involves a finite time interval during which the interaction Hamil-
tonian between system and measuring device dominates over the system’s self-Hamiltonian. This
is clearly not happening in the time-of-arrival setup, at any moment prior to the system entering
the measuring device. In quantum measurement theory, a physical measurement involves pre-
measurement and reduction, and here the former part is missing. In physical terms, the time-of-
arrival measurement involves a single measuring device, a single act of detection, a single irre-
versible change in the device, and a single moment of time at which the interaction Hamiltonian
becomes dominant. The only difference from the case of standard measurements is that the time of
detection is unknown.

II. TIME OF ARRIVAL IN STOCHASTIC PROCESSES

We first study the time-of-arrival probability in the theory of stochastic processes. This allows
us to demonstrate the procedure we will follow in quantum theory, without the complications
arising from the interpretations of the quantum measurement process.

We consider for simplicity a one-dimensional system, the state of which is fully specified at a
moment of time by the position variable x. The sample space � is then identified with R. An
ensemble of such systems is described at t=0 by the probability density �0�x�. This probability
density evolves according to the law

��

�t
= L� , �2.1�

where L is a linear, positive, trace-preserving operator on the space of probability densities.
We next construct the stochastic process corresponding to the system described by Eq. �2.1�.

We assume that the measurements take place in the time interval I= �0,T�, where T may be
eventually taken to infinity. The sample space �I for the stochastic process is the space of all
continuous paths x�·� from I to R. The relevant random variables are the function Xt on � defined
as Xt(x�·�)=x�t�. There exists a probability measure on �I given by the “continuum limit” of
discrete-time paths �t1 ,x1 ; t2 ,x2 ; . . . ; tn ,xn�,

d��t1,t2,. . .,tn��x1,x2, . . . ,xn� = �0�x0�g�x0,0;x1,t1�g�x1,t1;x2,t2� . . .

g�xn−1,tn−1;xn,tn�,dx0 dx1 dx2 . . . dxn, �2.2�

where g�x , t ;x� , t�� represents the propagator associated to Eq. �2.1�. We assume that �0 has
support only for values of x�0.

From the probability measure �2.2� we construct the probability for the proposition that the
particle is detected at x=0 at a specific time t, 0� t�T. For this purpose, we split the interval
�0,T� into N time steps of width �t=T /N. We assume also that t=n �t for an integer n�N and
write m=N−n. We denote by �± the characteristic functions of the intervals −	 �x�0 and 0
�x�	, respectively.

If the particle crosses the surface x=0 for the first time within the time interval �t , t+�t�, then
it must have been in the region �−	 ,0� for all times less or equal to t and in the region �0, 	 � at
time t+�t. There is no reason to make any assumption about where it will be at times larger than
t+�t, because in time-of-arrival measurements we are interested only in the time of the first
detection. The particle may be, for example, absorbed by the detector at time t.

With the above considerations in mind, we see that the probability that the particle is mea-
sured during the interval �t , t+�t� equals

p�x = 0��t,t + �t�� = ��D�t,t+�t�� , �2.3�

where � is the stochastic probability measure and
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D�t,t+�t� = �− � �− � ¯ �− � �+ � 1 � ¯ 1. �2.4�

The function D�t,t+�t� is a characteristic function on 
ti
�t1

, and depends only on the value of n,
namely the time step that corresponds to detection. We may then also write D�t,t+�t� as Dn. If we

also define by D̄ the characteristic function

D̄ = �− � �− � ¯ � �− �2.5�

that corresponds to the particle never crossing x=0 within the time interval �0,T�, the following
relations hold:

DnDm = Dn�nm, �2.6�

DnD̄ = 0, �2.7�

�
n=0

N

Dn + D̄ = 1. �2.8�

The variables Dn , D̄ then define an exclusive and exhaustive set of alternatives, hence the restric-
tion of the probability measure to the algebra they generate defines a proper normalized probabil-
ity measure for the time of arrival in discrete time. �This decomposition is a special case of the
Path-Decomposition expansion and has been used in the context of restricted path integrals in Ref.
19�.

We next construct the continuous limit of this probability as N→	. We use an operator
notation, representing the action of the integral kernel as eLt. Using Eq. �2.2�, we write

p�x = 0��t,t + �t�� =	 dx��+eL �t��−eL �t�n�0��x� . �2.9�

If we denote by Kt the limit

Kt = lim
n→	

��−eLt/n�−�n, �2.10�

we obtain

p�x = 0��t,t + �t�� = �t	 dx��+L�−�x�Kt�0��x� . �2.11�

The fact that the probability of the first crossing is proportional to �t implies that we can pass to
the continuum limit defining a probability density on �0,T�,

p�t�x = 0� =	 dx��+LKt�0��x� . �2.12�

This probability density is not normalized to one as there is a no-zero residual probability p�N�
that the particle is not detected at all within �0,T�:

	
0

T

dt p�t�x = 0� = 1 −	 dx�KT�0��x� ª 1 − p�N� . �2.13�

For generic initial states and dynamics the residual probability does not vanish as t→	.
Using the probability density p�t �x=0�, we define the probability of detection within any

interval �t1 , t2� by integrating p�t �x=0� in this interval. The definition of average values of quan-
tities is slightly more intricate. The sample space for the time of arrival �at the continuum limit� is
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not the interval �0,T�, but the set �0,T�� �N�, where N refers to the event of no detection. Strictly
speaking, physical observables are functions on �0,T�� �N�. Hence there is an ambiguity in the
definition of a function representing time t, because there is no natural numerical value it can take
when evaluated on N.

In effect, a time function is defined unambiguously as a conditional expectation, namely after
the assumption that the particle has actually been detected. This implies that we restrict �condition�
the sample space to �0,T�. The conditional probability pc density is then

pc�t�x = 0� =
p�t�x = 0�
1 − p�N�

. �2.14�

A. Examples

1. Two-level system

In the derivation of the probability of time of arrival, we referred to the variable x as position.
However, the derivation is completely general and Eq. �3.15� may be applied to any sample space.
If the latter is discrete, we have to exchange the integral with a summation. We may consider, for
example, a stochastic two-level system �a bit� and determine the probability for the time of
transition. In this case the sample space then consists of two alternatives: 0 and 1. We assume that
initially the system is found at state 0. The most general operator L consistent with the positivity
and normalization of probabilities is

L = 
− a b

a − b
� . �2.15�

The corresponding transition matrix for a small time interval �t is


1 − a �t b �t

a �t 1 − b�t
� , �2.16�

which is the most general stochastic map for a two-level system.
It is then easy to compute the probability density for the time of the transition 0→1,

p�0 → 1;t� = be−bt. �2.17�

The probability p�N� that no transition took place within the time interval �0,T� equals e−bT. As
T→	, p�	�=0, and we may compute the mean time of transition,

�t = b−1, �2.18�

which are the standard results for decay processes.

2. Wiener process

We next consider the case of the Wiener process, defined by the evolution operator,

L� =
D

2
�2� , �2.19�

where D is a diffusion constant. We assume that the particle is initially localized at x=−L, namely
�0�x�=��x+L�.

The operator Kt is the propagator corresponding to L with the Dirichlet boundary conditions
at x=0. �This is, in fact, a more general result. A quick but not fully rigorous way to see this is by
writing the characteristic function of a set C as �C�x�=e−VC�x��t, where VC�x� is a “confining
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potential” that takes value 0 within C and 	 outside C. We may then use the Trotter product
formula limn→	�eLt/ne−V−t/n�n=�L−V−�t, which is exactly the propagator for L with Dirichlet condi-
tions at the boundaries of C.�

The integral kernel K�x ,x� ; t� corresponding to Kt is

K�x,x�;t� = �−�x��−�x��� 1

2�Dt
�e−�x − x��2/2Dt − e−�x + x��2/2Dt� , �2.20�

yielding

p�t�x = 0� =� 1

2�Dt

L

2t
e−L2/2Dt, �2.21�

while

p�N� = erf�L/�2DT� − erf�− L/�2DT� , �2.22�

where erf is the error function.

III. THE COPENHAGEN DESCRIPTION

A. The standard construction and its problems

We next attempt to construct the time-of-arrival probability for quantum theory within the
Copenhagen interpretation.

We split the time interval �0,T� into n time steps of width �t=T /n. We represent the projec-

tion operators that correspond to the particle lying within �−	 ,0� and in �0, 	 � as P̂− and P̂+,
respectively. The time of arrival is defined as the moment the particle crosses from �−	 ,0� to
�0, 	 �. We assume that at t=0 the particle is described by a density matrix �̂0.

The probability that the particle crossed x=0 at time t1 equals p1=Tr��̂eiĤt1P̂+e−iĤt1�. The
probability that the particle crossed x=0 at the next moment t2 is then equal to

p1p�− ,t1; + ,t2� , �3.1�

where p�−, t1 ; + t2� is the conditional probability that the particle was found within �−	 ,0� at t1

and within �0, 	 � at t2. According to the standard “reduction” rule this equals

p�− ,t1; + t2� =
Tr�P̂+e−iĤ�t2−t1�P̂−e−iĤt1�̂0eiĤt1P̂−eiĤ�t2−t1��

Tr��̂eiĤt1P̂−e−iĤt1�
, �3.2�

yielding

p2 = Tr�P̂+e−iĤ�t2−t1�P̂−e−iĤt1�̂0eiĤt1P̂−eiĤ�t2−t1�� . �3.3�

Following the same procedure, we obtain the probability that the particle crossed x=0 at the kth
time step,

pk = Tr�P̂+e−iĤ�tk−tk−1� . . . P̂+e−iĤ�t2−t1�P̂−e−iĤt1�̂0 
 eiĤt1P̂−eiĤ�t2−t1�P̂− . . . eiĤ�tk−tk−1�� . �3.4�

As we take the continuum limit n→	, assuming that the initial state has support only in
�−	 ,0�, we obtain the probability that the particle was found between t and t+�t,

p��t,t + �t�� = �t2 Tr„�ĈtĤ�̂0Ĉt
†ĤP̂+… , �3.5�

where

Ĉt = �P̂−e−iĤt/nP̂−�n. �3.6�
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There are two severe problems in this result. First, the probability p��t , t+�t�� is proportional
to �t2, and hence does not define a probability density. If we tried to construct the probability for
the detection within a finite time interval �t1 , t2� by integration, we would, strictly speaking, obtain
zero, i.e., we would find that the particle is never detected.

Second, the probability that the particle never crosses x=0 within the time interval �0,T�
equals

p�N� = Tr�ĈT�̂0ĈT
†� . �3.7�

The operator Ĉt is a degenerate unitary operator with a support in the range of P̂−
10—this is the

well-known quantum Zeno paradox. It follows that ĈtĈt
†= P̂−, hence

p�N� = Tr��̂0P̂−� = 1. �3.8�

It seems as though the particle can never cross x=0, which is clearly a mistake. This problem
can be addressed by noticing that the probabilities p��t , t+�t�� are, by definition, nonadditive with
respect to the projectors and hence do not satisfy the Kolmogorov additivity condition, i.e., they
are not probabilities at all. It is therefore no surprise that they do not define a probability density.
One should employ for the continuum limit a probabilistic object that is additive with respect to
the projectors. This is the decoherence functional of the consistent histories approach. The prob-
lem of the quantum Zeno effect is also partially alleviated in consistent histories, since the quantity
p�N� is not a genuine probability, unless a decoherence condition is satisfied. There are other
problems, however, that appear in the implementation of the theory’s classical limit. We will
discuss this issue in more detail in the next section.

B. A different interpretation of the reduction procedure

An objection that can be raised to the derivation above has to do with the use of the condi-
tional probability rule in Eq. �3.2�. One may argue that since the particle has not been detected at
time t2, it has not interacted with the measuring device, and for this reason, one should not employ
the “reduction of the wave packet” rule, because no measurement has actually taken place. �See
the discussion in the Introduction�. Instead of the conditional probability, one should use the full
probability of detection at t2, namely

Tr�P̂+e−iĤt2�̂0eiĤt2� ª Tr�P̂+�t2
�; �3.9�

hence the probability of detection at the kth time step equals

pk = 
1 − �
i=0

k−1

pi�Tr��̂tk
P+
ˆ � , �3.10�

This is a recursive equation with the following solution:

pk = Tr��̂tk
P̂+��

−=0

k−1

�1 − Tr��̂ti
P+
ˆ �� = Tr��̂tk

P̂+�exp��
i=0

k−1

log„1 − Tr��̂ti
P+
ˆ �…� . �3.11�

The expression above does not have a natural continuum limit. The sum in the exponential
does not define an integral, because a �t term is missing. Again, we face the problem that the
dependence of the quantum mechanical probabilities on time does not correspond to the existence
of a genuine probability measure—hence a continuous limit does not exist naturally.

One way to obtain a probability measure is to introduce a time step �, which is a measure of
the temporal resolution of the measuring device. For any time scales much larger than �, one may
substitute the sum in Eq. �3.11� with an integral, thus obtaining a probability measure on �0,T�,
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p�t� =
1

�
Tr��t

ˆ P̂+�exp�1

�
	

0

t

ds Tr��̂sP̂−�� = − et/� d

dt
e−F�t�, �3.12�

where F�t�= �1/���0
t ds �̂sP̂−.

The probability density above has a physically reasonable behavior for a time-of-arrival prob-
ability. For a wave function whose center follows approximately a classical path, the probability
density �3.12� is peaked around the classical time of arrival for this path. To see this one may
consider Eq. �3.12� for a free particle of mass m. Considering an initial Gaussian state,

�0�x� =
1

���2�1/4e−�x + L�2/2�2+ipx, �3.13�

peaked at t=0 around x=−L with mean momentum p, we obtain for the function F�t�,

F�t� =
1

2�
	

0

t

ds�1 + Erf� �L − p
m t�

��2 +
t2

m2�2 �� , �3.14�

which implies that �3.12� has a strong peak around the classical time of arrival tcl=Lm / p.
The problem lies in the strong dependence of these probabilities on the parameter �. While it

is reasonable to assume that the probabilities will be dependent on parameters that characterize the
method of detection, we would intuitively expect that this dependence would be insignificant when
we consider sufficiently large intervals of time. This is definitely not the case here, as the prob-
abilities are very sensitive on the value of �.

Since quantum theory does not provide a natural way to pass into the continuum limit �at least
in the scheme we consider in this section�, it is natural to expect that different procedures will lead
to different results. We may consider, for example, the following alternative.

In Eq. �3.11� we may substitute in place of P̂+ a projector P̂�x in position of width �x around

x=0, and the projector 1̂− P̂�x in place of P̂−. This corresponds to a setup by which the particle is
detected only if it crosses the region �−�x /2 ,�x /2�. We next assume that the size �x decreases
with �t, so that, as �t→0, the area of detection also shrinks to zero. We therefore write �x
=v �t, for some unspecified constant v with dimensions of velocity. This way of taking the limit
essentially implies that the actual detection of a particle needs a finite time interval, since at the

limit �t→0,P̂�x=1̂.
Writing �t�0�= �x=0 � �̂t �x=0, we obtain at the limit �t→0 the probability that the particle is

detected between time t and t+�t as

p�t��t = �t v�t�0�e−v	
0

t

ds �s�0� = − �t
d

dt
e−v	

0

t

ds �s�0�. �3.15�

Hence, the probability that the particle is detected within the time interval �t1 , t2� equals

p��t1,t2�� = e−v	
0

t1

ds �s�0� − e−v	
0

t2

ds �s�0�, �3.16�

while the probability that the particle is not detected within the time interval �0,T� equals

p�N� = e−v	
0

T

ds �s�0�. �3.17�

The probability density �3.15� has the correct behavior at the classical limit, but again it
depends on an unspecified parameter v, which this time has dimensions of velocity. One has to
assume that v has to be identified with a characteristic property of the measuring device.
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It follows that with the interpretation of the reduction rule we employed here, a probability
distribution for the time of arrival cannot be constructed without making reference to the specific
setup through which it is determined. Whatever scheme one might employ, one has to introduce
additional parameters in the description.

It would be mistaken, however, to consider the derivation leading to Eqs. �3.15� or �3.12� as
inherently faulty. The only assumption we employed is that the reduction rule can only be applied
when an actual measurement has actually taken place, and not when we make an inference about
the system by the fact that no detection has occurred. This implies, in particular, that the quantum
Zeno effect is irrelevant for the time of arrival, because we do not have a continuous act of
measurement �only a continuous inference�. With this assumption the proof leading to �3.11� only
employs the classical rules of probability theory. In that sense, the key mathematical problem is
that the dependence of the quantum mechanical probabilities on time does not allow the definition
of a stochastic process—see the related discussion in Ref. 12. Quantum probabilities are not
naturally densities with respect to time; one can make them densities by introducing additional
parameters.

It is important to note that this fundamental difficulty does not go away, when we enlarge the
system by including degrees of freedom of the measurement device. The problem of finding a
suitable continuous expression for �3.11� does not depend on specific features of the system’s
Hilbert space. The density matrix may include degrees of freedom of the measuring device or of
an environment. The problem lies with the way time appears in the formalism of quantum theory.

In any case, Eqs. �3.15� and �3.12� provide interesting candidates for a probability distribution
for a time of arrival. They have a proper classical limit and they are mathematically unambiguous.
In principle, they could be checked by any precision measurement of times of arrival.

IV. THE HISTORIES DESCRIPTION

In this section, we follow a different approach from that of Sec. III B. We assume that the
reduction rule can be applied in any case we have obtained information about a quantum system.
This allows us to preserve the “logical” structure of quantum mechanical propositions. The natural
scheme to explore the time-of-arrival problem is then the consistent histories approach. However,
the results we obtain here are of a more general character. The mathematical objects employed in
the consistent histories approach are essentially path integrals and the amplitudes defined by these
path integrals can be employed for the study of the time of arrival in different schemes. �We do
that in Sec. V�. The most important gain from this approach is that the continuous-time limit can
be obtained unambiguously, because it is implemented at the level of amplitudes and not at that of
probabilities.

A. Consistent histories

The consistent histories approach to quantum theory was developed by Griffiths,13 Omnés,14

and Gell-Mann and Hartle.15,16 The basic object is a history that corresponds to properties of the
physical system at successive instants of time. A discrete-time history  will then correspond to a

string P̂t1
, P̂t2

, . . . , P̂tn
of projectors, each labeled by an instant of time. From them, one can

construct the class operator,

Ĉ = Û†�t1�P̂t1
Û�t1� ¯ Û†�tn�P̂tn

Û�tn� , �4.1�

where Û�s�=e−iĤs is the time-evolution operator. The probability for the realisation of this history
is

p�� = Tr�Ĉ
† �̂0Ĉ� , �4.2�

where �̂0 is the density matrix describing the system at time t=0.
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However, the expression above does not define a probability measure in the space of all
histories, because the Kolmogorov additivity condition cannot be satisfied: if  and � are exclu-
sive histories, and ∨� denotes their conjunction as propositions, then it is not true that

p� ∨ �� = p�� + p��� . �4.3�

The histories formulation of quantum mechanics does not, therefore, enjoy the status of a genuine
probability theory.

However, an additive probability measure is definable, when we restrict to particular sets of
histories. These are called consistent sets. They are more conveniently defined through the intro-
duction of a new object: the decoherence functional. This is a complex-valued function of a pair
of histories given by

d�,�� = Tr�Ĉ�
† �̂0Ĉ� . �4.4�

A set of exclusive and exhaustive alternatives is called consistent, if for all pairs of different
histories  and �, we have

Re d�,�� = 0. �4.5�

In that case one can use Eq. �2.2� to assign a probability measure to this set.

B. Time-of-arrival histories

Histories and propositions about histories may be represented by projection operators on a
Hilbert space V= � tHt, which the tensor product of the single time Hilbert spaces of standard
theory—this is the History Projection Operator �HPO� formulation of the history theory.17 The
merit of this description is that the logical structure of history propositions is preserved �they form
a lattice that corresponds with the lattice of subspaces of V�, and in the present context allows the
arguments used for the time-of-arrival description of stochastic processes to be transferred into the
quantum level. In particular, the continuum limit in time may be taken in an unambiguous manner.
Note that in this scheme the decoherence functional is a Hermitian, bilinear functional on V
V
that satisfies the following properties:

d�1,1� = 1, �4.6�

d�0,� = 0, �4.7�

d�,� � 0. �4.8�

We next consider a description of time-of-arrival histories with n time steps. One defines the
projectors ̂n corresponding to the proposition that the particle crossed x=0 for the first time
between the mth and the m+1-th time step,

̂m = P̂− � P̂− � ¯ � P̂+ � 1̂ � ¯ � 1̂ , �4.9�

as well as the projector ̂̄ corresponding to the proposition that the particle does not cross x=0
within the n time steps,

̂̄ = P̂− � P̂− � ¯ � P̂−. �4.10�

Clearly these projectors satisfy

̂n̂m = �nm̂n, �4.11�

̂n̂̄ = 0, �4.12�
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�
m

̂m + ̂̄ = 1. �4.13�

Thus they form a exhaustive and exclusive set of histories, hence a sublattice of the lattice of
history propositions. �One should note that the n time histories we study here should not be viewed
as discretizations of continuous time paths, but as histories corresponding to genuinely discrete
time. The consideration of discretized alternatives in a continuous-time theory is conceptually
problematic because at any time between ti and ti+1 the particle may have crossed x=0, and this
fact will not be captured in the resulting propositions. Our approach is that we first consider
alternatives of detection in a discrete-time theory, and we then identify a suitable continuous limit
for the decoherence functional. This involves a choice on the way we define the continuous
histories. This choice allows us to recover known results.8,22 However, this procedure may not be
unique–see the discussion on alternative treatments of the quantum Zeno effect.� One can there-
fore pullback the decoherence functional to this lattice, thereby obtaining a decoherence functional
on a sample space consisting of the points �t1 , . . . , tn� together with the point N corresponding to
no crossing,

d�tn,tm� = d�̂n,̂m� , �4.14�

d�N,tn� = d�̂̄,̂n� , �4.15�

d�N,N� = d�̂̄, ̂̄� . �4.16�

In analogy to the stochastic case, one may define a self-adjoint time-of-arrival operator T̂ on

V modulo its value on the subspace corresponding to ̂̄, namely one may define

T̂x=0 = �
i

tîi, �4.17�

which is unambiguously defined on V−Ran�̂̄� – Ran�̂̄� is the closed linear subspace correspond-

ing to ̂̄.
We next consider two discretizations �t0=0 , t1 , t2 , . . . , tN=T� and �t0�=0, t1� , t2� , . . . , tN�

� =T� of
the time interval �0.T� with time step �t=T /N, and �t�=T /N�. We construct the decoherence
functional d��t , t+�t� , �t� , t�+�t���, where n= tN /T and m= t�N� /T. This reads as

d��t,t + �t�,�t�,t� + �t��� = Tr��̂0�eiĤ �t�P̂−�neiĤ �t�P̂+ 
 eiĤ�t�−t�P̂+e−iĤ �t�P̂−e−iĤ �t�m� .

�4.18�

We take then the limit N ,N�→	, while keeping t and t� fixed. Assuming that �0 lies within the

range of P̂−, i.e., P̂−�̂0P̂−= �̂0 we obtain

d��t,t + �t�,�t�,t� + �t��� = �t �t� Tr�e−iĤ�t�−t�P̂+ĤP̂−Ĉt
†�̂0Ĉt�P̂−ĤP̂+� , �4.19�

where Ĉt=limn→	�P̂−e−iĤt/nP−
ˆ �n. Writing

��t,t�� = Tr�e−iĤ�t�−t�P̂+ĤP̂−Ĉt�
†

�̂0ĈtP̂−ĤP̂+� , �4.20�

we see that the decoherence functional corresponds to a complex-valued density on �0,T�

 �0,T�. The additivity of the decoherence functional �which reflects the additivity of quantum
mechanical amplitudes� allows us to obtain a continuum limit, something that could not be done
if we worked at the level of probabilities. Consequently, one may obtain its values on coarse-
grained histories corresponding to a time-of-arrival lying within the subsets �t1 , t2�� and �t1� , t2�� of
�0,T� by integrating over ��t , t��,
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d��t1�,t2��,�t1,t2�� = 	
t1

t2

dt	
t1�

t2�
dt� ��t,t�� . �4.21�

We then obtain the values of the decoherence functional for any pair of measurable subsets of
�0,T�. However, the decoherence functional on �0,T� is not properly normalized, because the
actual space of time-of-arrival propositions is not the space of subsets of �0,T�, but rather the
space of subsets of �0,T�� �N�, where N corresponds to the event of no detection. The values of
the decoherence functional, when at least one of its entries is N are easily computed

d��t1,t2�,N� = 	
t1

t2

dt Tr�e−iĤ�T−t�ĈT
†�̂0ĈtP̂−ĤP̂+� , �4.22�

d�N,N� = Tr�ĈT
†�̂0ĈT� = 1. �4.23�

The last equation is due to the fact that the operator Ĉt is a degenerate unitary operator with

support on the range of P̂− �the quantum Zeno effect�.
The normalization condition for the decoherence functional implies that

d��0,T�,�0,T�� + d��0,T�,N� + d�N,�0,T�� + d�N,N� = 1, �4.24�

which leads to

d��0,T�,�0,T�� = − 2 Re d��0,T�,N� . �4.25�

It is important to note that in the context of consistent histories, the fact that d�N ,N�=1 does
not imply that the event N �never crossing x=0� will be realized, because d�N ,N� does not
correspond to a probability, unless the consistency condition Re d�0,T� ,N�=0 is satisfied. In this
case, however, d��0,T� , �0,T��=0, and hence that crossing x=0 never takes place. This implies
that the event of the particle not crossing the surface x=0 can only be a member of a consistent set
in which the probability for crossing x=0 is zero. This is rather counterintuitive, because it fails to
give a correct classical limit—see the related discussion in Ref. 21. One would expect that at some
level of coarse graining, one would obtain the classical result, namely a probability distribution
sharply peaked around the classical time of arrival tcl, similar to the one we derived in the last
section.

1. Possible treatments of the quantum Zeno effect

A key feature of the quantum Zeno effect is that it is not robust. When one employs a positive

operator Ê in the definition of the operator Ĉt �instead of a projector�, the result is no more a

degenerate unitary operator. This is true even if the operator Ê is very close to a true projector

Tr � Ê2− Ê � =� Tr Ê, for a number ��1. In that case the matrix elements of Ĉt fall with e−�t, as we
demonstrate in a simple example in the Appendix. This implies that even a very small deviation
from a true projector leads to a qualitatively different result.

If our calculation of probabilities refers to actual measurements then the quantum Zeno effect
should not pose a problem. Realistic measurements should be represented by POVMs rather than
projection-valued-measures, in which case the quantum Zeno effect does not arise. However, this

would spoil the continuous-time limit, which depends crucially on the fact that the operators P̂+

and P̂− correspond to exclusive alternatives. A naive substitution of the operators P̂+ and P̂−, by
partially overlapping approximate projectors would introduce extra terms in the expression of the

decoherence functional. It is easy to verify that these terms would be of the order of ��P̂+P̂− � � and
not dependent on �t, hence they would remain nonzero even at the limit �t→0. One could
entertain the possibility that the approximate projectors could be dependent on �t, and that at the

122106-13 Time-of-arrival probabilities J. Math. Phys. 47, 122106 �2006�

                                                                                                                                    



limit of �t their overlap becomes zero, i.e., they become true projectors. We have explored this
possibility, but it does not seem to work. The Zeno effect still persists at the continuum limit. �This
can easily be seen in the example we provide in theAppendix A.�

While the continuous-time limit we constructed here leads invariably to a quantum Zeno
effect, this is not the only way that this limit can be taken in the histories formalism. The
construction of the decoherence functional we presented here is obtained from a limit of discrete
time expression. We have not constructed actual continuous time histories and defined the deco-
herence functional straightforwardly on them. To do that one should proceed in the logic of the
HPO approach and construct a history Hilbert space that would correspond in some sense to a
“continuous-tensor product” of single-time Hilbert spaces. Such Hilbert spaces have been con-
structed before;18,6 they are not genuine continuous tensor products, but they share many of their
features, and they are obtained from group-theoretical arguments. A key property of this construc-
tion is that propositions have support on finite time intervals �t1 , t2� and not on sharp points of the
real line. The operator structure is then quite different at the kinematical level, and it raises the
possibility that one could define a decoherence functional as a genuinely continuum object, in a
way that does not suffer from the Zeno effect. For example, it is plausible that the operators

entering the definition of the operator Ĉt as the limit of �t→0, should also be dependent on �t, as
they should refer to finite intervals of the real line rather than sharp points. As we argued earlier,

even a small change might be sufficient to remove the undesirable properties of Ĉt; the real issue
is to justify such changes from first principles within the continuous-time-histories formalism. We
shall elaborate on this construction in a follow-up paper.

2. Conditioning

As we showed in Sec. II, it is possible in classical probability to reduce the probability
measure from the full algebra of subsets in �0,T�
 �N� to the algebra of events on �0,T�. This
reduction results from the use of conditional probability. We defined a probability for the time of
arrival conditioned upon the premise that the particle did cross x=0 at some time within the
interval �0,T�.

This reasoning may be partially transferred to the quantum case. We cannot speak, however,
for a conditional probability because this involves the consideration of consistent sets. Classical
conditional probability is defined through a natural mathematical procedure, which employs the
additivity of the probability measure over the space of functions on the sample space, to reduce the
level of description into a subalgebra of events. Quantum probabilities are not additive over the
lattice of events, but the decoherence functional is. In Refs. 20 the procedure of conditioning at the
level of decoherence functional has been developed in detail, by generalizing the classical notion
of conditional expectation to the quantum level. One may define a decoherence functional over a
subalgebra of events �namely propositions about histories�, thus incorporating any information we
may have obtained for the system. For the details of the procedure, we refer the reader to Ref. 20,
but for the simple case that the subalgebra with respect to which we implement the conditioning
is generated by a single history proposition �, such that d�� ,���0, the conditioned decoherence
functional is given by the intuitively simple expression

dc�,�� =
d� ∧ �,� ∧ �i�

d��,��
. �4.26�

The resulting decoherence functional is the mathematical object that should be used in the
derivation of probabilities, provided we know that events corresponding to the subalgebra have
been realized.

In the present case, we need to condition the decoherence functional from the algebra of
events corresponding to the sample space �0,T�
 �N� to the subalgebra of events corresponding to
a sample space �0,T�, namely assuming that the particle has actually been detected. Since this
operation involves “discarding” only a simple point of the sample space, the result is very simple.
The conditioned decoherence functional dc is obtained by a conditioned density,
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�c�t,t�� =
��t,t��

d��0,T�,�0,T��
=

��t,t��
− 2 Re d��0,T�,N�

. �4.27�

Since the event of no detection is removed from the resulting subalgebra, we may pretend that we
have avoided the quantum Zeno effect. This is, however, an evasion and not a solution to the
problem. It only allows one to differentiate the problem of defining a probability for the time of
arrival, from the more general issue of properly defining a continuum limit, that avoids the
quantum Zeno effect.

C. The free particle

For the simple case of a particle at a line with Hamiltonian Ĥ= p̂2 /2M +V�x̂�, where the
potential is bounded from below, we may employ a result in Refs. 8 and 22 that the restricted

propagator Ĉt is obtained from the Hamiltonian Ĥ by Dirichlet boundary conditions. �The result
cited is valid for bounded intervals of the real line; the generalization to semibounded intervals,
however, is straightforwardly obtained using their method.� If we also denote by G0�x ,x� � t� the

full propagator in the position basis �corresponding to e−iĤt�, we obtain

��t,t�� =
1

4M2�x�Ĉt��0�*�0��x�Ĉt�0��0�G0�0,0�t� − t� , �4.28�

d�t,N� = −
1

2M
	

−	

0

dx�ĈT�0�*�x��x�Ĉt�0��0�G0�x,0�T − t� , �4.29�

where �̂0= ��0��0�, with �0 having support in �−	 ,0�.
Note that in the derivation of the equations above, the derivative �x arises from the presence

of a term P̂+ĤP̂− in the operator product in Eq. �4.20�. The contribution of the potential V�x�
vanishes, and the only contribution comes from the p̂2 of the kinetic energy.

For a free particle of mass M,

G0�x,x�,t� =� M

2�it
eiM�x − x��2/2t, �4.30�

Ct�x,x�� = �−�x��−�x��� M

2�it
�eiM�x − x��2/2t − eiM�x + x��2/2t� , �4.31�

leading to

�x�Ĉt�0��0� =� M

2�it
	

−	

0

dx
− 2iMx

t
ei�Mx2/2t��0�x� ª − 2�x�Ût�0��0� , �4.32�

where we assumed that P̂−�0=�0.
It follows that

��t,t�� = 
 p̂

M
Ut
ˆ �0��0�
 p̂

M
Ut�
ˆ �0�*

�0�� M

2�i�t� − t�
. �4.33�

D. The classical limit

To verify that the decoherence functional for the free particle has the correct classical limit,
we consider a Gaussian initial state centered around x=−L and with mean momentum equal to p,
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�0�x� = ���0
2�−1/4e−�x + L�2/2�0

2+ipx. �4.34�

This state is localized within �−	 ,0� within an error of order e−L2/�2
. We then obtain

�x�Ĉt�0��0� =
2p

�1/4� �0

�2�t�

 t − tcl

M�2�t�
+ i�e−
p2/2m2�2�t��t − tcl�

2−i
p2

M
�t−tcl�� , �4.35�

where

�2�t� = �0
2
1 + i

t

M�0
2� , �4.36�

and tcl=LM / p is the classical time of arrival.
Choosing T very large �T→ 	 �, so that the classical time of arrival lies well within �0,T� we

see that the bidensity ��t , t�� has a singularity for t= t� and that it is sharply peaked in each of its
arguments around tcl=LM / p, with a width � of the order of

� =
M���tcl��

p
=

M�0

p
�1 +

L2

�0
4p2 . �4.37�

Note that for large values of L / p, the width � also becomes very large. This is due to the fact that
the free time evolution causes the wave packet to spread in time. A very small value of �0 �hence
a large initial momentum uncertainty� leads to large values of �.

Hence, if we consider a coarse-grained history cl for the time of crossing, which is centered
around tcl and has a width of �t��, and we denote as cl� the complement of cl, we obtain for
the conditioned decoherence functional,

�dc�cl,cl� �� = O�e−��t/��2
� , �4.38�

dc�cl,cl� = 1 − O�e−��t/��2
�; �4.39�

hence we conclude that history cl will almost definitely be realized, provided the particle crosses
x=0 at some time within �0,T�.

Clearly there exists no classical limit, if either the initial state is not sufficiently localized in
position, or if it is too localized so that the momentum uncertainty is very large, or if it is a
superposition of states with a distinct value of momentum.

E. Inclusion of measurement device

In the consistent histories interpretation probabilities are only defined, if the consistency
condition is satisfied. For time-of-arrival propositions, this occurs for coarse-grained histories like
cl of Sec. IV D, which essentially correspond to the classical result. �Note that this result is
obtained after conditioning the decoherence functional upon arrival.� However, consistent histories
refer to closed systems—hence, to obtain a prediction for the time-of-arrival probabilities in the
general case, we have to model the interaction of the particle with the measuring device.

There are various models for such an interaction with various degrees of complexity23 �or for
a more general case see Ref. 24�. We consider here a very simple one, which will allow us to
analyze some basic features of this procedure. We model the pointer of the measuring device with
a two-level system. The pointer is found in the state of lower energy, while the state of higher
energy corresponds to the detector having clicked. The combined Hamiltonian of the system
+apparatus is then

122106-16 C. Anastopoulos and N. Savvidou J. Math. Phys. 47, 122106 �2006�

                                                                                                                                    



Ĥ =
�

2
�1 − �3� + H0

ˆ + �P̂+�1, �4.40�

where Ĥ0 is the particle’s Hamiltonian, and the interaction characterized by a coupling constant �
is switched on, only when the particle enters the region x�0. We next construct histories similar
to the ones of Sec. IV, only that they would refer to the properties of the pointer, i.e., they would
be constructed from projectors of the form

Ê+ = 1̂particle � 
1 0

0 0
�, Ê− = 1̂particle � 
0 0

0 1
� , �4.41�

inserted into the definition of histories of the form �4.9� and �4.10�. Hence, we seek the moment of
transition from the lowest energy state of the detector to the higher energy state.

We assume that the initial state is factorized

�̂ = �̂0 � 
0 0

0 1
� ,

where �̂0 is the particle’s density matrix. Using similar arguments, we obtain the following ex-
pressions for the densities defining the decoherence functional:

��t,t�� = �2 Tr�e−iĤ0�t�−t�P̂+e−iĤ0t�̂0eiĤ0t�P̂+� + O��4� , �4.42�

d�t,N� = � Tr�e−iĤ0�T−t�P̂+e−iĤ0t�̂0� , �4.43�

while d�N ,N�=1. Again we can define the conditioned decoherence functional on �0,T� as
�c�t , t��=��t , t�� /d��0,T� , �0,T��.

This model does not solve the fundamental problem of defining a probability density—one
can easily check that the consistency condition is approximately satisfied only for highly coarse-
grained histories centered around the classical time of arrival. On one hand, this is not a surprise.
Realistic measurement devices are much more complex than the system described by the Hamil-
tonian �4.40�. Moreover, they involve by necessity a degree of irreversibility, which is incompat-
ible with a unitary evolution law �see, for example, a model in Ref. 25�: the states of detection and
no detection are asymmetric, because the latter involves an amplification procedure that leads to a
macroscopic designation that the particle has been detected. Such an asymmetry is incompatible
with unitary evolution.

On the other hand, the present model demonstrates a rather generic feature associated with the
measurement problem, that makes its present felt in all interpretations of quantum theory that
attempt to describe the measurement process unitarily. In the consistent histories approach mea-
surement devices are thought of as quantum systems, which are characterized by a consistent set
of histories for the pointer device, so that the values of the pointer can be ascertained individually
�and assigned probabilities� for a large class of initial states of the measured system.14,16 This is
equivalent with obtaining a density matrix diagonalized in a basis factorized with respect to the
degrees of freedom of the system and the measuring device, which is necessary in order to
attribute definite values to the macroscopic pointer.

In the model we presented here, this is clearly not the case. There exist also very general
theorems that state that such a factorization is, in general, not possible,27 �see also the discussion
in Refs. 28–30 and in a different but related context the theorems of Ref. 31�. The general
argument is rather simple and in the present context takes the following form. The derivation of
the decoherence functional for time-of-arrival histories remains the same, whether the Hilbert
space is that of a single quantum system, or if it includes the degrees of freedom of a measurement
device or of an environment. The nonzero value of the off-diagonal elements of the decoherence
functional would then still persist, except possibly for the case of sufficient coarse graining
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corresponding to the classical results. Hence, it seems that, unless we introduce additional assump-
tions, the consistent histories scheme cannot produce more detailed information about the time-
of-arrival probability, beyond the determination of the classical limit.

The situation is different when the evolution of the particle �rather than that of the measure-
ment device� involves a degree of irreversibility.26 Indeed, in the presence of a decohering envi-
ronment, the evolution of the particle is closely approximated �after a typically short decoherence
time� by a stochastic process, in which case one may employ the construction of time-of-arrival
probabilities sketched in Sec. II. However, the time of arrival seems to depend rather crucially on
properties of the environment, which seems to destroy much “more” interference than what is
necessary to define a consistent set of histories. �There is a rather paradoxical situation in the
presence of environment. If the full quantum mechanical treatment of system+environment is
taken into account, in which case the full evolution law is unitary, we are faced with the quantum
Zeno effect. Any proposition about the system will be represented by projection operators, and the

operator Ĉt will still be a degenerate unitary operator. If, however, one describes the effect of the
environment in terms of a nonunitary evolution �or a stochastic process�, an excellent approxima-
tion in many cases, no such problem seems to arise. This suggests again that the quantum Zeno
effect is not robust.�

Another possibility would be to consider a different measuring apparatus interacting with the
particle at each moment of time. This, however, would describe a different physical circumstance
than the one we consider in this paper. Here we consider the case that the only information we can
obtain from the system is a signal that the particle has been detected at a specific moment of time,
i.e., there is a single event of measurement. Inserting multiple measuring devices would be equiva-
lent to letting the particle move within a material that records its track �like a bubble chamber�. In
that case our datum is a continuous history of the particle, and can be treated within the theory of
continuous time measurement. Such an interaction inevitably causes the particle to decohere, and
as such its evolution can be well approximated by a stochastic process. The derivation of the time
of arrival would the be much simpler in this case and would follow the general scheme of Ref. 26.
This is, however, different from the issue taken up in this paper.

V. AN OPERATIONAL DESCRIPTION FOR TIME-OF-ARRIVAL MEASUREMENTS

The derivation of the decoherence functional for the time-of-arrival propositions does not
answer the question we asked at the beginning of this paper: it is, in principle, possible to measure
the time of arrival in individual runs of an experiment, therefore constructing the relative frequen-
cies for a detection of the particle within any time interval �ti , tf�. From these frequencies of events
we can construct in the limit of a large number of runs a probability for the detection of the
particle within any time interval. One then is entitled to ask how to obtain this operationally
meaningful probability density from the rules of quantum theory.

The main contribution of the histories formalism to the final result is that it allows one to
implement the continuous-time limit. However, this passage refers not to a probability density, but
to the decoherence functional, and one needs further assumptions in order to construct genuine
probabilities. As the expression �4.20� for the decoherence functional demonstrates, there is per-
sistent interference between the different alternatives for the time of arrival.

This problem is not specific to the time-of-arrival measurements. It is a special case of a more
general problem, that of defining a probability density for the outcomes of measurement that take
place at more than one moment of time. This issue has been analyzed in Refs. 11 and 12. In
sequential measurements it is possible to obtain the probabilities in terms of a Positive-Operator-
Valued Measure, whose mathematical form is markedly similar to the “probabilities” constructed
by the consistent histories approach. We shall attempt to do the same here for the time-of-arrival
probabilities, thus exploiting the convenient continuous-time limit incorporated in the decoherence
functional.

Note that the considerations in this section are purely operational and employ the Copenhagen
interpretation: we do not consider closed, individual systems, but are only interested in probabili-
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ties obtained in specific measurement situations, which we assume refer to a statistical ensemble.
Hence, even though we shall use the mathematical apparatus of consistent histories, the context in
which we work is markedly distinct.

A. Probabilities for sequential measurements

1. Discrete spectrum

Let us consider the two-time measurement of an observable x̂=�i�iP̂i with a discrete spec-

trum. Writing Q̂i=eiĤtP̂ie
−iĤt, we construct the probabilities for the most-fine grained two-time

results,

p�i,0; j,t� = Tr�Q̂jP̂i�̂0P̂i� = ����̂0�i�2��i�e−iĤt�j�2. �5.1�

Irrespective of the interpretation of the measurement process, the probabilities �5.1� refer to
the most elementary alternatives that can be unambiguously determined in the experimental setup
corresponding to the sequential measurement of x̂. Therefore, they can be employed to construct
probabilities for general sample sets U1, U2 on the spectrum � of x̂, namely,

p�U1,0;U2,t� = �
i�U1

�
j�U2

p�i,0; j,t� . �5.2�

The total probability is normalized,

p��,0;�,t� = �
ij

Tr�Q̂jP̂i�̂0P̂i� = 1, �5.3�

a property that follows from the fact that �iP̂i=� jQ̂j =1̂.
Equation �5.2� defines a POVM for two-time measurements. Note the difference from Eq.

�4.2�. Equation �4.2� is valid only for the most fine-grained alternatives. Any further coarse grain-
ing is done by summing only the elementary probabilities that correspond to the value of the
decoherence functional for the most fine-grained histories. This result implies that we can use the
decoherence functional to construct POVMs for sequential measurements and may expect to
repeat do the same for the case of time-of-arrival.

2. Continuous spectrum

When we consider the case of an operator with a discrete spectrum, a problem appears. There
are no fine-grained projectors, and the choice of the elementary quantum probabilities, from which
one may build the general probabilities for measurement outcomes, cannot be made uniquely.

The immediate generalization of Eq. �5.1� for the measurement of an operator with a continu-
ous spectrum is

p�x1,0;x2,t� = ��x1��̂0�x1�2��x1�e−iĤt�x2�2. �5.4�

However, this does not define a proper probability density, because it is not normalized to unity,

	 dx1	 dx2 p�x1,0;x2,t� = 	 . �5.5�

This is due to the fact that there can be no measurements of infinite accuracy. One has, therefore,
to take into account the finite width of any position measurement, say �. This quantity depends on
the properties of the measuring device—for example, the type of the material that records the
particle’s position.

The simplest procedure is to consider the measurement of a self-adjoint operator x̂�=�ixiP̂i
�,

where P̂i
� is a projection operator corresponding to the interval �xi−� /2 ,xi+� /2�. In that case we

may immediately construct the fine-grained probabilities,
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p��i,0; j,t� = Tr�Q̂j
�P̂i

��̂0P̂i
�� , �5.6�

from which we may construct probabilities for general sample sets U1 and U2:

p��U1,0;U2,t� = �
i�U1

�
j�U2

Tr�Q̂j
�P̂i

��̂0P̂i
�� . �5.7�

Strictly speaking, one may only consider sample sets that are unions of the elementary sets that
define our lattice. If, however, the size of the sample sets L is much larger than �, we may
approximate the summation with an integral. This amounts to defining the continuous version of
probabilities �5.6�,

p��x1,t1;x2,t2� = Tr�eiĤ�t2−t1�P̂x2

� e−iĤ�t2−t1�P̂x1

� �̂�t1�P̂x1

� � , �5.8�

where we denoted P̂x
�=�x−�/2

x+�/2 dy �y�y � .
The important result of this analysis is that the probabilities for sequential measurements �5.6�

depend strongly on the resolution � of the measuring device. This dependence is very strong: even
probabilities of sample sets coarse grained at a scale much larger than � exhibit a very strong
dependence on �. From a mathematical point of view this dependence is a consequence of the fact
that the off-diagonal elements of the decoherence functional between fine-grained multitime mea-
surement outcomes do not vanish and are generically of the order of magnitude of the probabilities
themselves. Hence, when we compare a probability corresponding to a value �, with another one
corresponding to 2�, they differ by an amount proportional to the corresponding off-diagonal
terms of the decoherence functional, which is, in general, substantially large. The reader is referred
to Ref. 12 for extensive discussion and generalizations.

The construction probabilities for the outcomes of sequential measurements consists of two
steps. First, we identify the most fine-grained alternatives compatible with the measuring device at
hand, and we construct the corresponding elementary quantum probabilities by using the rule
�4.2�. These fine-grained alternatives �referred to by the index a� correspond to specific functions
Fa�x�·�� on the space of paths �I. The elementary probabilities will be

p�a� = d�Fa,Fa� . �5.9�

In the equation above the decoherence functional is viewed as a bilinear functional on �I. For
example, in the two-time measurement of position, the functions take the form Fij�x�·��
=�i

��Xt1
� j

��Xt2
�, and

p��i,0; j,t� = d�Fij,Fij� . �5.10�

The next step involves the summation over those elementary probabilities to construct an
additive measure that assigns probabilities to every sample set obtained by the coarse graining of
the elementary alternatives. We shall apply this procedure to the construction of time-of-arrival
probabilities.

B. POVMs for time-of-arrival probabilities

Our contention is that the analysis of sequential measurements above may be transferred to the
case of time-of-arrival measurements, because they share the crucial feature that they do not refer
to the properties of a physical system at a single moment of time. This implies that the decoher-
ence functional �4.20� may be employed for the construction of a POVM on �0,T� for the time of
arrival probabilities, in analogy to that of �5.6�.

The diagonal elements ��t , t��t2 of the decoherence functional �4.20� is essentially the modu-
lus square of the amplitude that is obtained by the sum over all paths that cross the surface x
=0 within the interval t+�t. While the amplitude is obtained unambiguously through path inte-
grals, its square cannot define a proper probability density, because of the presence of a term �t2

rather than a �t one, but also because ��t , t� diverges. �It is interesting to note that the �t2

122106-20 C. Anastopoulos and N. Savvidou J. Math. Phys. 47, 122106 �2006�

                                                                                                                                    



dependence disappears if the decoherence condition for histories holds—see Ref. 21.� This diver-
gence is analogous to that of �5.4� for sequential measurements of position, and can be removed in
a similar manner by assuming a finite temporal resolution �. Hence, we consider elementary
intervals �ti , ti+1� of width �, � corresponding to the temporal resolution of our measurement
device. The elementary probabilities will be

�i
� = 	

0

T

dt	
0

T

dt���t,t���i
��t��i

��t�� , �5.11�

where �i
� is the characteristic function of the set �ti , ti+1�. One then may employ these probabilities

to construct any probability corresponding to a set U constructed from the elementary cells
�ti , ti+1�. By definition �i�i

�=��0,T�, hence the set of all i together with the event of no detection
form a proper resolution of the unity.

The reader may object at this point that this leads us back to the discrete-time expression for
the diagonal elements of the decoherence functional. This is not the case, because the probabilities
�5.11� involve the sum over all continuous paths that are detected in the time interval
�ti , ti+1�—hence it involves the contribution of any discretization within �ti , ti+1�.

It is more convenient to avoid the discretization procedure and construct a POVM on the
continuous sample space �0,T�—see Ref. 12 for the analogous procedure in sequential measure-
ments. For this purpose we introduce a family of smeared delta functions f��s ,s�� characterized by
the parameter �, which satisfy the following properties:

	
0

T

ds f��s,s�� = ��0,T��s�� . �5.12�

One may consider, for example, the following functions:

f��s,s�� =
1

T
�

n=−�T/��

�T/��

ei�n�/T��s−s��. �5.13�

For practical purposes these are well approximated by the Gaussians �as long as T���,

f��s,s�� =
1

�2��
e−�s − s��2/2�2

. �5.14�

Thus, we may define the elementary probabilities in analogy to �5.6� as

p��t� =	 ds ds��f��t,s��f��t,s����s,s�� , �5.15�

and construct from them the probabilities for any set U� �0,T� as

p��U� = 	
U

dt p��t� . �5.16�

Up to an error of order �, this is equivalent with the probabilities obtained by coarse graining
the elementary discrete-time probabilities �5.11�. �The use of the square root in �5.15� is necessary
in order to guarantee the proper dimensions of the probability density �dimensions of �T�−1�.
Another way to see this is by noticing that ��2��f��t�, for the Gaussian �5.14� is a smeared
characteristic function for the interval �t−�2�� , t+�2���, thus corresponding to a smeared ver-
sion of �5.11�, which needs to be divided by �2�� in order to define a probability density. Note
also that if the decoherence condition holds, Eq. �5.15� becomes, as it must, the Gaussian smearing
of the probability distribution for arrival times.�

In effect, we associate to each set U the positive operator,
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�̂�U� = 	
U

dt R̂tR̂t
†, �5.17�

where

R̂t =	 ds�f��t,s�ĈsP̂−ĤP̂+eiĤs �5.18�

is an operator that corresponds to the sum over all paths that lie within �−	 ,0� and cross through
to �0, 	 � within a time interval of width � around t.

These positive operators do not yet define a POVM, because the corresponding probabilities
do not add up to unity. We have to also include the event N of no detection. The normalization

condition implies that a positive operator �̂�N� should be defined as

�̂�N� = 1̂ − 	
0

T

dt R̂tR̂t
†. �5.19�

The operator �̂�N� is indeed positive, because

	
0

T

dt p��t� � sup
s,s���0,T�


	
0

T

dt�f��t,s��f��t,s���	
0

T

ds ds� ��s,s�� . �5.20�

Since f� is a smeared delta function, the term �0
T dt�f��t ,s��f��t ,s�� is maximized for s=s�, in

which case it equals �0
T dt f��t ,s�=��0,T��s��1. Hence, �0

T dt p��t���0
T ds ds� ��s ,s��

=d��0,T� , �0,T���1. Hence

p�N� = Tr„�̂�̂�N�… = 1 − 	
0

T

dt p��t� � 0, �5.21�

for all �̂.
We have thus constructed a POVM for the time of arrival essentially by summing over all

possible paths that correspond to crossing the x=0 surface within a time interval of width �; � was
essentially introduced as a “regularization” parameter. In general, the POVM is expected to de-
pend strongly upon its value. The key idea employed in this derivation is that time-of-arrival
probabilities are not fundamentally different from the probabilities that correspond to measure-
ments that take place at more than one moment of time. Whenever the measured quantity is
continuous, it is necessary to introduce a parameter that determines the resolution of the measuring
device, and it turns out that the constructed probabilities depend strongly on this parameter.
Measurements of the time-of-arrival-like sequential measurements of position seem to be strongly
contextual, namely, to depend strongly on the specific measurement device employed in their
determination.12

Our derivation relied on two assumptions. The first one is that the reduction rule may be
employed consistently for the incorporation of any information we may obtain about a quantum
system �and not only for the results of actual measurements as in Sec. III B�. The second assump-
tion is that the construction of probabilities for sequential measurements may be applied in the
context of time-of-arrival measurements through a generalization of Eq. �5.10�. The key math-
ematical input arises from the histories description, namely, the fact that it is possible to construct
a sample space for the values of the time of arrival by considering continuous-time histories of the
system.

C. An explicit calculation: The free particle

We shall now compute the POVM �5.17� explicitly for the case of a free particle. This case is
particularly interesting, because it allows the comparison with a well-established result, namely,
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the POVM constructed by Kijowski.4 Kijowski’s POVM for the time of arrival of a free particle
assigns to any pure state �0 a probability density p�t ,�0�, which is normalized to unity in the
interval �−	 , 	 �,

p�t,�0� = �	
0

	

dp
 p

2�m
�1/2

e−ip2t/2M��p��2

+ �	
−	

0

dp
 − p

2�m
�1/2

e−ip2t/2M��p��2

.

�5.22�

To construct the POVM �5.17� for a free particle we use Eq. �4.33� for the decoherence
functional. Since the integration in �5.15� involves the square roots of the smeared delta-functions,
which have a width of order �, we may within an error of order O�� /T� substitute the range of
integration �0

T ds�0
T ds�→�−	

	 ds�−	
	 ds� and employ the Gaussian smearing functions �5.14�.

The probability density associated with �5.17� can be written in the momentum representation
as follows:

p�t� =
1

2�
	 dp	 dp�

pp�

M2 R�p,p�,t��̃0�p��̃0
*�p�� , �5.23�

where �̃0 is the Fourier transform of �0 and

R�p,p�,t� = 	
−	

	

ds	
−	

	

ds��f��t,s��f��t,s��e−i�p2/2M�s+i�p�2/2M�s�� M

2�i�s − s��
. �5.24�

Changing variables to u= 1 � 2 �s+s�� and v=s−s�, we note that

�f��t,s��f��t,s�� = f��u − t�e−v2/8�2
. �5.25�

Within an error of order O�� /T�, the function f��u− t� behaves as a delta function when
integrated over u, thus leading to

p�t� �
1

2�
	 dp	 dp�

pp�

M2 e−i�p2/2M−p2/2M�tr
Ep + Ep�

2
��̃0�p��̃0

*�p�� , �5.26�

where Ep= p2 /2M and

r��� =� M

2�
	

−	

	

dv
e−v2/8�2−i�v

�iv
=�2M�

�
	

0

	

dy
e−y2/2�cos�2��y� + sin�2��y��

�y
. �5.27�

The integral in Eq. �5.27� can be computed explicitly in terms of modified Bessel functions;
however, the physically interesting information is found in specific regimes for which r��� takes a
simple form. For ���1, the leading contribution to the integral is a constant, leading to

r��� =
�� 1

4�
23/4 �M�

2�
, �5.28�

which implies that the probability density p�t� is proportional to �1/2, when �→0. Hence, at the
limit that the temporal resolution tends to zero the particle is never detected, crossing the surface
x=0.

The physically interesting regime corresponds to ���1. The parameter � appears in �5.26� as
the particle’s energy, while � is the temporal resolution of the measurement device. According to
a common interpretation of the time-energy uncertainty principle, � cannot be smaller than ��E�−1,
where �E is the energy spread of the wave functions. Hence for any wave function with relatively
small energy spread ��E /E�1�, one expects that �E�1. In general, it suffices that the wave-
function has support only for values of energy much larger than 1/�. The resolution � is, by
assumption, much smaller than tcl, hence this range of energies is well defined whenever Etcl�1.
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Since tcl=ML / p̄, where p̄ is the initial state’s mean momentum, the condition above is equivalent
to p̄L��, which is always satisfied in any macroscopic configuration for the measurement of the
time of arrival.

At the limit ���1,

	
0

	

dy
e−y2/2�cos�2��y� + sin�2��y��

�y
�� �

��
; �5.29�

hence the dependence on � drops from the probability density �5.26�,

p�t� �
1

�
	 dp	 dp�

pp�

M�1
2 �p2 + p�2�

e−i�p2/2M−p2/2M�t�̃0�p��̃0
*�p�� . �5.30�

The POVM �5.30� is defined for positive values of time, and for wave functions that satisfy

P̂+ ��0=0. To compare �5.30� with Kijowski’s POVM of Eq. �5.22�, which is normalized to unity
by integration over for all times t� �−	 , 	 �, it is convenient to also extend the domain of the
probability distribution �5.30� to the whole real axis for time, by requiring that the extended
POVM is invariant under the combined action of the parity and time-reversal transformations.4 We
employ the convention that the negative times correspond to the crossing of x=0 from the right,
i.e., to initial states that have support on values of position x� �0, 	 �. We then construct an
equal-weight convex combination of the probability distribution �5.30� for positive t with its
counterpart for negative t. We thus obtain the extension of the probability distribution �5.30� for all

real values of time and all initial wave functions �̃0�p�,

pext�t� �
1

2�
	 dp	 dp�

pp�

M�1
2 �p2 + p�2�

e−i�p2/2M−p2/2M�t�̃0�p��̃0
*�p�� . �5.31�

If the wave function is sharply concentrated around the mean value p̄, i.e., if �p� �p̄�, then
p2+ p�2=2pp�+O(��p / p̄�2) within the integration in �5.30�. The probability density �5.31� is then
identical to �5.22�. Integrating pext�t� over t� �−	 , 	 �, we obtain

	
−	

	

dt pext�t� = 1 −	 dp �̃0
*�− p��̃0�p� . �5.32�

We see therefore that pext�t� is normalized to unity, if the state �0
˜ �p� has support only on

positive �or only on negative� values of momentum. In this case, �̂�N�=0, i.e., all particles are
eventually detected. In general, a nonzero probability p�N� of nondetection is due to the fraction
of particles in the statistical ensemble, which move away from the crossing surface x=0.

We conclude therefore that the POVM �5.17� leads to the same probability distributions for
the time of arrival with Kijowski’s POVM �5.22� for all initial wave functions that �i� have support
in values of momentum �p � ��2m /�, and �ii� satisfy �p� �p̄�. This regime includes the classical
limit �e.g., wave functions of the form �4.34� with �0p�1�, but also states that are not sharply
localized in position, like superpositions of macroscopically distinct wave packets, or even super-
positions of states with different value of momentum—as long as �p remains much smaller than
p. Outside this regime, the POVMs �5.17� and �5.22� provide different predictions.

To make the points above more explicit, we consider an initial Gaussian state,

�̃0�p� = �a2/2��1/4 exp
−
a2

4
�p − p̄�2 + ipL� �5.33�

of mean position −L and mean momentum p̄. The momentum spreads are equal to a. In leading
order to 1/ap̄ the probability distributions for the time-of-arrival predicted by the POVMs �5.30�
and �5.22� coincide,
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p�t� �
p̄

Ma�8�
e−�2/a2��L − p̄t/M�2

. �5.34�

The difference between the two POVMs is of order 1 / �p̄a�2, and even for a relatively large value
1/ p̄a�0.1 as in Fig. 1 their graphs are practically indistinguishable.

We next consider an initial state, which is a superposition of two Gaussians with the same
mean position −L, but different mean momenta p̄1 and p̄2,

�̃0�p� = 
 a2

4�
�1/4

�e−�a2/4��p − p̄1�2+ipL + e−�a2/4��p − p̄2�2+ipL� . �5.35�

For ap̄1�1, ap̄2�1 and a � p̄1− p̄2 � �1, the leading contribution to the probability distribution
obtained by the POVM �5.22� is

p�t� �
1

Ma�8�
� p̄1

2
e− 2

a2
�L − p̄1t/M�2

+
p̄2

2
e− 2

a2
�L − p̄1t/M�2

+ �p̄1p̄2e−�2/a2�
L −
1

2
�p̄1 + p̄2�t/M�2


cos
 p̄1
2t

2M
−

p̄2
2t

2M
�� , �5.36�

and the leading contribution to the probability contribution obtained by the POVM �5.30� is

p�t� �
1

Ma�8�� p̄1

2
e−�2/a2��L − p̄1t/M�2

+
p̄2

2
e−�2/a2��L − p̄1t/M�2

+
p̄1p2̄

�1

2
�p̄1

2 + p̄2
2�

e−�2/a2�
L −
1

2
�p̄1 + p̄2�t/M�2

cos
 p̄1
2t

2M
−

p̄2
2t

2M
�� . �5.37�

We see that near the two classical values of the time of arrival that correspond to each of the
two wave packets; the two probability distributions coincide. However, for intermediate values of
time, they differ. They both manifest an oscillatory behavior there, which is characteristic of
interference between the two classical values of the time of arrival. From Eqs. �5.36� and �5.37�,
we readily see that the oscillation amplitudes are different in this regime, and their ratio is given
by the quantity 1

2 �p̄1 / p̄2+ p̄2 / p̄1�. When this becomes appreciably larger than unity, i.e., if the

FIG. 1. The probability distribution of the time of arrival for a Gaussian initial state �5.33� of mean position −L and mean
momentum p̄. It is sharply peaked around the value tcl=ML / p̄. In fact, this plot contains the probability distributions
provided by both POVMs �5.30� and �5.22�, but even for the relatively large value of �p=0.1p̄ we employed here the two
curves almost coincide.
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difference in mean momentum between the two Gaussians becomes comparable with the mean
momenta themselves, the behavior of the two distributions in the oscillatory region becomes
substantially different.

It is important to emphasize that the domain of applicability of the POVM �5.17� is much
larger than that of the free particle case �for a generalization of Kijowski’s distribution see also
Ref. 32�. It can be, in principle, applied for systems described by arbitrary Hamiltonians. More-
over, it is constructed through a general argumentation that does not refer only to the time of
arrival and it can be easily generalized to systems with finite-dimensional Hilbert spaces, for
which there is no analog of �5.22�. To see this, one may consider Eqs. �5.17� and �5.18�. The only
objects appearing in the definition of the POVM is the Hamiltonian �together with its propagator

Ĉt� and the projection operators corresponding to the two alternatives of detection. The POVM
�5.17� is therefore completely general. It can be applied, for example, the description of the
particle being coupled to a measuring device, in which case the alternatives will correspond to
projectors of the device’s Hilbert space, and the Hamiltonian will contain an interaction term
between the particle and the measurement device. It can also accommodate interactions with the
environment i.e., further terms in the Hamiltonian. Its more immediate application would be the
study of tunneling probabilities. This POVM may also refer to systems other than particles �e.g.,
multilevel atoms�. Its derivation is only based on properties of Hilbert space operators and for this
reason it can be applied to any physical context.

We chose to elaborate on the free particle case and ignore the effects of any measuring
devices. The reason is that this system contains no other parameters other than the particle’s mass
�no couplings�, and for this reason the only relevant time scale is tcl. This allowed us to identify a
physically relevant regime in which the time-of-arrival probabilities do not depend strongly on �.
Thus, we were able to compare our result with Kijowski’s POVM. This, however, cannot be
expected to hold for general systems, which may involve time scales of the same order of mag-
nitude or smaller than �. In the general case, the POVM �5.17� is expected to have a strong
dependence on �, even in physically relevant regimes.

D. The problem of contextuality

We saw that in the free particle case there exists a regime, in which the time-of-arrival
probabilities are rather insensitive to �, but this simple behavior cannot be expected to hold for
systems with more complicated Hamiltonians that involve additional time scales. The POVM
�5.17� will, in general, be strongly dependent on �, and hence the probabilities for time will be
strongly dependent upon the measurement scheme employed for their determination.

This contextuality of time measurements in quantum theory has been emphasized by Landauer
in his study of tunneling times33 �see also a related discussion with reference to the quantum Zeno
effect10�. However, this result is not a consequence of time being a special or distinguished
variable. This type of contextuality is generic in quantum theory, once we consider measurements
that do not refer to a single moment of time—e.g., sequential measurements of a continuous
variable. This is a necessary consequence of the formalism of quantum theory: the evolution of the
quantum state involves a linear law, while probabilities are quadratic with respect to the state.
Hence, it is �in general� impossible to construct a natural probability measure for the outcomes of
any measurement that reveals information that pertain to a system’s dynamics �sequential, time-
of-arrival, continuous measurements�. This problem can be seen from different angles: from the
fact that the dependence on time of the quantum probabilities do not define a probability measure
and hence the continuous-time limit is not well defined �as in Sec. V B�; from the fact that the
natural measure for histories �4.2� is nonadditive; from the necessity to regularize the path integral
amplitudes for the time of arrival in order to define probabilities; from the fact that there is
interference between different alternatives for the value of the time of arrival. One therefore has to
introduce an additional structure �external to the physical parameters of the system�. The simplest
such structure is the specification of the most fine-grained outcomes that can be recorded by a
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measurement device. In the case of observables with a discrete spectrum, this is provided naturally
by the formalism. For continuous variables, however, it is not, and this brings inevitably the
introduction of a scale for the fine-grained alternatives.

We cannot evade this problem by enlarging our system, including, for example, a quantum
measuring device or an environment. The problem is a consequence of the interplay between the
quantum probability rule and the unitary dynamics. It will appear in any closed system �and will
be accompanied by the quantum Zeno effect�. Indeed, our arguments here were very general and
hold with few modifications for an arbitrary Hilbert space and with reference to the detection of
any quantum event. To avoid this problem �which can take a rather extreme form12� we have to
abandon either the probability rule or the dynamics, and neither one of these steps is easy to take.

On the other hand, the acceptance of this contextuality is very disturbing. The devices that
determine the time of arrival are not different in nature from the ones that measure a particle’s
position. �This is reflected in the fact that the histories for the time of arrival are written in terms
of spectral elements of the position operator.� The only distinctive character in the time-of-arrival
measurements is that the “observable” quantity is the reading of the clock, which is associated to
the time of detection. In position measurements, however, the fuzziness due to the finite resolution
of the measurement device is relatively small, when the sampling of the measurement results are
sufficiently coarse grained. On physical grounds, one would expect that coarse graining at a scale
much larger than the temporal resolution of the measurement device would give results indepen-
dent of the device. Unlike the case of the free particle there is no reason to expect this for a general
Hamiltonian—unless one considers the highly coarse-grained samplings around the classical equa-
tions of motion.

VI. CONCLUSIONS

We have considered the problem of constructing a probability density for the time of arrival.
Our main guideline was the fact that time appears as an external parameter in quantum theory. We
relied on the histories formalism, because they allow the natural definition of probabilities about
the time of arrival.

In our perspective, the most severe problem in the determination of the time-of-arrival prob-
ability is the fact that the quantum states do not correspond to densities with respect to time. For
this reason it is very difficult to obtain the continuous-time limit in a natural way. The naive way
of taking the continuous-time limit gives very bad results, as it is plagued by the quantum Zeno
effect. The first alternative we tried is to employ a more strict operational interpretation of the
wave packet reduction, namely, that it can only be applied as a result of a system’s physical
interaction with a measurement device, and not when we obtain information about the system
through inference from the lack of a detection signal. Again, the continuous-time limit was patho-
logical and involved the introduction of an arbitrary temporal resolution.

We then considered this problem in light of the consistent histories approach. This suggests
that the continuous-time limit should be taken at the level of amplitudes and not of probabilities,
and for this reason it can be taken unambiguously. The consistent histories framework, however,
is not sufficient for the definition of probabilities—there is “interference” between different values
of the time of arrival. This problem is aggravated by the presence of the quantum Zeno effect.

Nonetheless, the mathematical benefits conveyed by the histories techniques are very impor-
tant and prove essential for the construction of a POVM for the time of arrival �working, however,
within the operational formulation of quantum mechanics�. The consideration of measurements
smeared in time allows us to construct a POVM of general validity for the time of arrival, in
analogy with POVMs for the probabilities of sequential measurements. For free particles, this
POVM reduces to one obtained by Kijowski. For a general system, however, the constructed
POVM also depends strongly on the resolution of the measurement device. This seems to imply
that the measurement of the time of arrival is highly contextual within standard quantum theory.
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APPENDIX A: THE QUANTUM ZENO EFFECT IS NOT ROBUST

We provide here a simple example demonstrating the quantum Zeno effect is not robust, in the
sense that even a small deviation from a projection operator in the definition �3.6� of the operator

Ĉt yields to a qualitatively different behavior.

We consider a spin system: the Hilbert space is C2, and we choose the Hamiltonian Ĥ and

projector Ê to correspond to the matrices,

H = 
0 �

� 0
�, E = 
0 0

0 1
� . �A1�

We consider the self-adjoint operator,

V̂ = 
x 0

0 y
� , �A2�

from which we define the positive operator,

e−V �t = 
e−x �t 0

0 e−y �t � �A3�

This operator can be seen as a regularized expression for Ê,

lim
x→	

lim
y→0

e−V �t = Ê . �A4�

We may then write a regularized version K̂t
y of the operator Ĉt= �Êe−iĤt/n�n, such that.

Ĉt = lim
y→0

K̂t
y , �A5�

The operator K̂t
y reads explicitly as

K̂t
y = lim

x→	
lim
n→	

�e−iĤt/ne−V̂t/n�n = lim
x→	

e−iHt−Vt. �A6�

We easily find that

K̂t
y = e−ytÊ , �A7�

has the exponential fall behavior that characterizes Fermi’s golden rule.

When the limit y→0 is also taken, we obtain the familiar result Ĉt= Ê, which is trivially a

degenerate unitary operator. However, even a small deviation from Ê in the definition of Ĉt leads
to a different �and intuitively more physical� qualitative behavior.
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We show that, on a Hilbert space of odd dimension, the only pure states to possess
a non-negative Wigner function are stabilizer states. The Clifford group is identified
as the set of unitary operations which preserve positivity. The result can be seen as
a discrete version of Hudson’s theorem. Hudson established that for continuous
variable systems, the Wigner function of a pure state has no negative values if and
only if the state is Gaussian. Turning to mixed states, it might be surmised that only
convex combinations of stabilizer states give rise to non-negative Wigner distribu-
tions. We refute this conjecture by means of a counterexample. Further, we give an
axiomatic characterization which completely fixes the definition of the Wigner
function and compare two approaches to stabilizer states for Hilbert spaces of
prime-power dimensions. In the course of the discussion, we derive explicit formu-
las for the number of stabilizer codes defined on such systems. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2393152�

I. INTRODUCTION

A. General introduction

The Wigner distribution establishes a correspondence between quantum mechanical states and
real pseudoprobability distributions on phase space. “Pseudo” refers to the fact that while the
Wigner function resembles many of the properties of probability distributions, it can take on
negative values. This phenomenon has been linked to nonclassical features of such quantum states
�see Ref. 1 for an exposition of literature on that problem�. It is naturally of interest to characterize
those quantum states that are classical in the sense of giving rise to non-negative phase space
distributions.

For the case of pure states described by vectors in H=L2�R�, the resolution of this problem
was given by Hudson in Ref. 2. Later, Soto and Claverie generalized Hudson’s result to states of
multiparticle systems �Ref. 3�.

Theorem 1 (Hudson, Soto, Claverie): Let ��L2�Rn� be a state vector. The Wigner function of
� is non-negative if and only if � is a Gaussian state.

By definition, a vector is Gaussian if and only if it is of the form

��q� � e2�i�q�q+xq�,

where q ,x�Rn and � is a symmetric matrix with entries in C �Note that the boundedness of �
�L2�Rn� implies that � has positive semidefinite imaginary part�.

It is our objective to prove that the situation for discrete quantum systems is very similar, at
least when the dimension of the Hilbert space is odd. Before stating the result, we pause for a brief
overview of its main ingredients: discrete Wigner functions and stabilizer states.

The Wigner function4 of a pure state ��L2�R� is computed as

a�Electronic mail: davidg@qipc.org
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W��p,q� = �−1�
��R

e−2�i�p�̄�q −
1

2
����q +

1

2
�� . �1�

Equivalently, W� is the �symplectic� Fourier transform of the characteristic function ��, which in
turn is defined by

���p,q� = tr�w�p,q�†��	
��� .

Here, w�p ,q�=ei�pX̂−qP̂� are the well-known Weyl or displacement operators.5,6 Partly triggered by
the advent of quantum information theory, considerable work has been undertaken to explore
Wigner functions for finite-dimensional quantum systems.7–16 Two approaches might be identified
in the literature on that subject. The first one aims to cast the definition of the Wigner function into
a form that can be interpreted for both continuous variable and discrete systems.9–11,15 The second
approach—introduced by Gibbons et al. in Ref. 16—focuses on the properties of Eq. �1�. The
authors imposed a set of axioms which a candidate definition of a discrete Wigner function would
have to fulfill in order to resemble the well-known continuous counterpart.

We will argue that, for odd dimensions d,

W��p,q� = d−1 �
��Zd

e−�2�/d�i�p�̄�q − 2−1����q + 2−1��

is the most sensible analogue of Eq. �1�, judged in terms of either of these approaches. Here, p ,q
are elements of Zd= �0, . . . ,d−1 and 2−1= �d+1� /2 is the multiplicative inverse of 2 modulo d.
Indeed, the definition given above is the discrete symplectic Fourier transform of the discrete
characteristic function and will be shown to be the unique choice to mimic certain desirable
properties of the continuous Wigner function.

Stabilizer states were originally defined by Gottesman in Ref. 17 as the joint eigenvectors of
certain sets of elements of the qubit Pauli group. Exceeding the case of qubits, stabilizer states for
higher-dimensional quantum systems have been treated in the literature �see, e.g., Refs. 18–21�.
Such states find manifold applications in quantum information theory, ranging from quantum error
correction22 to cluster state quantum computation.23 Although displaying complex features such as
multi-particle entanglement,24 stabilizer states allow for an efficient classical description. In par-
ticular, a quantum computer that operates only with stabilizer states can offer no principal advan-
tage over classical methods of computing.22 The latter statement is sometimes called Gottesman-
Knill theorem.

Using that language, we intend to show the following theorem.
Theorem 2 (Discrete Hudson’s theorem): Let d be odd and ��L2�Zd

n� be a state vector. The
Wigner function of � is non-negative if and only if � is a stabilizer state.

Given that ��q��0 for all q, a vector � is a stabilizer state if and only if it is of the form

��q� � e�2�/d�i�q�q+xq�,

where q ,x�Zd
n and � is a symmetric matrix with entries in Zd.

Theorem 2 should convey two central messages. First, if the right definitions are employed,
the continuous and the discrete case behave very similarly �even though the methods of proof are
completely different�. Second, it adds further evidence to what might be called a piece of folk
knowledge in the field of quantum information theory: namely, that stabilizer states are the natural
finite-dimensional analog of Gaussian states.

This paper is organized as follows. We survey previous work on the subject in Sec. I B.
Section II is devoted to a superficial, yet self-contained introduction to Weyl operators, character-
istic functions, Wigner distributions and stabilizer states. The main theorem is proven in Sec. III.
Sections V–VII address various related topics. The results of these last three sections do not rely
on each other. Concretely, we comment on the relation between stabilizer states and Gaussian
states in Sec. IV; we consider mixed states with positive Wigner functions in Sec. V; and use Sec.
VII for a discussion of Hilbert spaces whose dimension is the power of a prime.
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B. Previous results

Recently, Galvao and co-workers, took a first step into the direction of classifying the quan-
tum states with positive Wigner function.26 To explain the relationship of their results to the
present paper, we have to comment on an axiomatic approach to discrete Wigner functions and,
further, on stabilizer states in dimensions that are the power of a prime number.

In Ref. 16, Gibbons et al. listed a set of requirements which should be met by any definition
of a discrete Wigner function W. Denoting the dimension of the Hilbert space by d, their axioms
amount as follows:

1. (Phase space) W is a linear mapping sending operators to functions on a d�d lattice, called
the phase space.

2. (Translational covariance) The Wigner function is covariant under the action of the Weyl
operators �in the sense of Theorem 7�.

3. (Marginal probabilities) There exists a function Q��� that assigns a pure quantum state to
every line � in phase space. If � is state vector, then the sum of its Wigner function along �
must be equal to the overlap �
Q��� ��	�2.

Let us call functions that fall into this class generalized Wigner functions. This term is justified, as
the characterization does not specify a unique solution: for a d-dimensional Hilbert space, there
exist dd+1 distinct generalized Wigner functions. Note also that the construction has been described
only for the case where d= pn is the power of a prime, because only then the notion of a line in
phase space has a well-defined meaning.

We turn to the second remark, concerning stabilizer states. Consider a composite system, built
of n d-level particles. We are free to conceive it as a single dn-dimensional object. The two points
of view give rise to different definitions of stabilizer states, the “single-particle” one being starkly
reduced as compared to the multiple-particle one. In Sec. VII, we show that the set of single-
particle stabilizer states is strictly contained in the set of multiparticle ones. Indeed, the ratio of the
respective cardinalities of the two sets grows super-exponentially in n. As an example, the gener-
alized Bell and GHZ states

d−n/2�
i

�i	 � �i	, d−n/2�
i

�i	 � �i	 � �i	 ,

arguably the best-known multiparticle stabilizer states, do not belong to the respective single-
particle sets.

The result of Ref. 26 concerns quantum states in prime-power dimensions that are non-
negative with respect to all possible definitions of generalized Wigner functions. These states are
shown to be mixtures of single-particle stabilizer states, as described above. The authors aim to
establish necessary requirements for quantum computational speedup. Indeed, if the Wigner func-
tion of a quantum computer is positive at all times, then it operates only with stabilizer states and
hence offers no advantage over classical computers, by the Gottesman-Knill theorem.

Thus for the case of nonqubit pure states, Theorem 2 implies the results of Ref. 26 and goes
further in two essential ways. Firstly, it suffices to look at a single definition of the Wigner
function, as opposed to d n�d n+1� generalized ones. Second, quantum computation and the
Gottesman-Knill theorem are naturally set in the context of multiple particles. Our definition
assigns positive Wigner functions to all multiple-particle stabilizer states, while Ref. 26 effectively
relies on the single-particle definition �up to equivalence under Clifford operations�. On the other
hand, our main theorem does not address qubits or mixed states, which Galvao and co-workers do.

II. PHASE SPACE FORMALISM

The term phase space formalism encompasses the ideas and tools in relation to the Weyl
representation to be defined shortly. We will give a concise introduction in this section. Many of
the results presented can be found in the literature, but some, e.g., the Clifford covariance of the
Wigner function in nonprime dimensions, seem to be new.
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A. Weyl representation

We start by considering a d-dimensional quantum system d odd. In its Hilbert space H, we
choose a basis ��0	 , . . . , �d−1	, labeled by elements of Zd. Henceforth, Zd will be referred to as the
configuration space and abbreviated by Q.

The pivotal objects in the phase space formalism are the Weyl operators �also known as the
generalized Pauli operators�, as constructed below. Let 	�q�=e�2�/d�iq. The relations

x̂�q��x	 = �x + q	, ẑ�p��x	 = 	�px��x	 �2�

define the shift and boost operators, respectively. The Weyl operators are given by

w�p,q� = 	�− 2−1pq�ẑ�p�x̂�q� , �3�

for p ,q , t�Q. The specific choice of phases will prove useful later on. The set of Weyl operators
is closed under multiplication up to phase factors. Direct computation shows that the composition
law is given by

w�p,q�w�p�,q�� = 	�2−1��p

q
�,�p�

q�
���w�p + p�,q + q�� . �4�

The square brackets denote the standard symplectic inner product on Zd
2,

��p

q
�,�p�

q�
��ª �p

q
�T

J�p�

q�
� , �5�

where

J = � 0 1

− 1 0
� . �6�

We write w�v�=w�vp ,vq� for elements v= �vp ,vq��Zd
2. The space VªQ�Q with inner product

given by Eq. �5� will be called phase space in the sequel, owing to its analogy to the phase space
known in classical mechanics.

The preceding constructing generalizes naturally to multiple particles. Indeed, the configura-
tion space of an n-particle system is given by Q=Zd

n. Multiplication between two elements p ,q
�Q is understood as the usual inner product pq=�ipiqi. The Hilbert space is again spanned by
��q	q�Q and the Weyl operators are defined to be the tensor products,

w�p,q� = w�p1, . . . ,pn,q1, . . . ,qn� = w�p1,q1� � ¯ � w�pn,qn� . �7�

Equations �4� and �5� remain valid in the multiple-particle setting, if we substitute the matrix J by
its multidimensional version,

J = � 0n�n 1n�n

− 1n�n 0n�n
� .

We end this section with some miscellaneous remarks.
A state vector ��	 can be identified with a complex function on configuration space by setting

��q�= 
q ��	. We will use both representations interchangeably.

The continuous Weyl operators w�p ,q�=ei�pX̂−qP̂�, p ,q�R fulfill exactly the same composi-
tion law as stated in Eq. �4�, if 	 is set to 	�q�=eiq and the other symbols are interpreted in the
obvious way. In fact, Eq. �4� is then equivalent to the fundamental Weyl commutation relations.6

Having this analogy in mind, p and q will sometimes be called momentum and position coordi-
nates, respectively.

For future reference, note the two simple relations,
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�w�p,q����x� = 	�− 2−1pq + px���x − q� , �8�

tr w�p,q� = d n
p,0
q,0. �9�

It remains yet to justify the name Weyl representation. For v�V, t�Zd, define w�v , t�
=	�t�w�v�. Equation �4� takes on the form

w�v1,t1�w�v2,t2� = w�v1 + v2,t1 + t2 + 2−1�v1,v2�� .

The set V�Zd, equipped with the above composition law is called the Heisenberg group H�Zd
n�,

the Weyl matrices constituting a unitary representation of H�Zd
n�.6 This point of view on Weyl

operators will be needed only in Appendix A.

B. Clifford group

The Clifford group is the subset of the unitary operators that map Weyl operators to multiples
of Weyl operators under conjugation,

Uw�v�U† = c�v�w�S�v�� , �10�

for some maps c :V→C and S :V→V.17 The structure of the Clifford group is described in the
following theorem. Note that the Clifford group appearing in quantum information theory has no
connection to the Clifford group used in the representation theory of SO�n�.

Before stating the theorem, we have to comment on a re-appearing issue: namely, that things
are more involved if d is not a prime number. For prime values of d, Zd has the structure of a finite
algebraic field, Zd

n is a finite vector space, and most of the intuitions we have about vector spaces
continue to be true. Among the more severe deficiencies of the general case is the fact that not
every element a of Zd possesses a multiplicative inverse modulo d. But even if the analog of a
theorem about vector spaces holds for nonprime values of d, it is often difficult to find a proof in
the literature. Appendices C and D contain a collection of statements of this kind. Less technically
inclined readers will not loose much by skipping these sections.

For the sake of clarity of language, we call functions f on Q which fulfill f��a+b�=�f�a�
+ f�b� linear, disregarding the fact that Q might fail to be a linear space. Similarly, a subset S of
Q that is closed under addition and multiplication by elements of Zd is referred to as a subspace.
We define a function S to be symplectic if it is linear and preserves the symplectic form:
�S · ,S · �= �· , · �.

Theorem 3 (Structure of the Clifford group):

1. For any symplectic S, there is a unitary operator ��S� such that

��S�w�v���S�† = w�Sv� .

2. � is a projective representation of the symplectic group, that is,

��S���T� = ei���ST� ,

for some phase factor ei�.
3. Up to a phase, any Clifford operation is of the form

U = w�a���S� ,

for a suitable a�V and symplectic S.

The representation � is called the Weil or metaplectic representation.6,27 Theorem 3 could be
called a discrete version of the celebrated Stone-von Neumann theorem.6 Its proof is not essential
for understanding the further argument and has therefore been moved to Appendix A.

Note that a Clifford operation is connected to a vector a and a linear mapping S. This should
remind us of a well-known structure on linear spaces: affine transformations. An affine mapping A
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is of the form A�b�=Sb+a where S is an invertible linear operator and a is a vector. Let us call A
symplectic if its linear part S is.

We will frequently use the “dot notation” to define functions of one parameter; for example,
writing S · +a for A.

Lemma 4 (Clifford group and affine transformations): The mapping

S · + a � w�a���S�

is a projective representation of the group of symplectic affine transformations.
Proof: All we need to do is to compare the composition law of the affine group

�S · + a� � �T · + b� = S�T · + b� + a = ST · + �Sb + a�

to the composition law of the representation

w�a���S�w�b���T� = w�a���S�w�b���S�†��S���T� = w�a�w�Sb���S���T� � w�Sb + a���ST� ,

which proves the assertion. �

The correspondence established by the last lemma will find a very tangible manifestation in
Sec. II D, when we will see that the Clifford group induces affine transformations of the Wigner
function.

C. Fourier transforms

Let Q=Zd
n and f :Q→C be a complex function on Q. The Fourier transform of f is

�Ff��p� = f̂�p� = �Q�−1/2 �
q�Q

	̄�pq�f�q� . �11�

In the course of the main proof we will be confronted with Fourier transforms of functions
which are defined only on a subspace of Q. If d is prime, then any subspace of Q=Zd

n is of the

form Zd
n�, for some n�n, so no new situation arises.

For nonprime dimensions, however, subspaces may not be as well behaved. Consider as an
example �0,3 ,6�Z9

1. The set is closed under addition and multiplication, but can clearly not be

written as Z9
n�.

To cope with this problem, we will cast Eq. �11� into a form that is well defined for functions
f on more general spaces. The construction is presented below. It can be found in any textbook on
harmonic analysis �e.g., Ref. 28�.

A character of Q is a function � :Q→C such that ��a+b�=��a���b�. Any character of Q is of
the form ��q�= 	̄�xq� for an appropriate x�Q �see Appendix C�. We can hence conceive the
Fourier transformation defined in Eq. �11� as a function of the characters of Q,

f̂��� = �Q�−1/2�
q

��q�f�q� . �12�

We denote the set of characters of Q by Q*. With these notions, Eq. �12� defines a function Q*

→C. If, now, S is any subspace of Q and f a function on S, the Fourier transform

f̂:S* → S, f̂��� = �S�−1/2�
s

��s�f�s�

is well defined.
For f :V→C, we define the symplectic Fourier transform as

�FSf��a� = �V�−1/2 �
b�V

	̄��a,b��f�b� . �13�
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Finally, take note that the normalization in Eqs. �11� and �12� has been chosen in such a way

that Parzeval’s theorem �f�= � f̂� holds, where �f�2=�q�f�q��2.

D. Definition and properties of the Wigner function

Employing Eq. �9� in conjunction with the composition law �Eq. �4��, one finds that the Weyl
operators �w�p ,q� form an orthonormal basis in the space of operators on H with respect to the
trace scalar product d−n tr�·† · �. The characteristic function �� of an operator � is given by its
expansion coefficients with respect to the Weyl basis,

����,x� = d−ntr�w��,x�†�� . �14�

We mentioned in the introduction that the continuous Wigner function is the symplectic
Fourier transform of the characteristic function.5,6 The two latter concepts have been defined for
finite-dimensional systems in the preceding paragraphs. We can now state in complete analogy to
the continuous case.

Definition 5 �Wigner function�: Let d be odd, Q=Zd
n for some n. Let V ,H be as usual and let

� be a quantum state on H.
The Wigner function W� associated with � is the symplectic Fourier transformation of the

characteristic function ��.
An explicit calculation yields, for all a�V,

�FS����a� = d−2n �
b�V

	̄��a,b��tr�w�b�†�� = d−ntr��d−n�
b

	̄��a,b��w�b�†���¬ d−ntr�A�a��� ,

�15�

where we have implicitly defined the phase space point operator A�a�.16

Theorem 6 lists a selection of properties of the Wigner function. For a more thorough discus-
sion, the reader is deferred to Refs. 9 and 15.

Theorem 6 �properties of the Wigner function�:

1. The phase space point operators have unit trace and form an orthonormal basis in the space
of Hermitian operators on H. Hence the Wigner function of a Hermitian operator is real,
and further, the overlap

d−ntr���� = �
v�V

W��v�W��v�

and normalization relations

�
v

W��v� = tr�

hold.
2. For a pure state �, the Wigner function W�ªW��	
�� equals

W��p,q� = d−n �
��Q

	̄��p��̄�q − 2−1����q + 2−1�� .

3. When computing marginal probabilities, the Wigner function behaves like a classical prob-
ability distribution,

�
p�Q

W��p,q� = ���q��2.

4. The multiparticle phase space point operators factor,
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A�p1, . . . ,pn,q1, . . . ,qn� = �
i

n

A�i��pi,qi�

�and hence so does the Wigner function�.
5. It holds that A�0��q	= �−q	. In other words, the phase space point operator at the origin

equals the parity operator.
6. The Wigner function W�� of an operator product is given by the * product �also known as

the Groenewold or Moyal product,29�

W���u� = �W��W���u� ª d−n�
v,w

W��u + v�W��u + w�	̄��v,w�� .

Proof: The proofs are all straightforward; we give only hints on how to conduct them. It will
be essential to recall the well-known relation

�
x�Zd

n

	�xy� = d n
y,0, �16�

for all y�Zd
n.

Indeed, the first claim can be proven by using Eq. �16� together with the definition of the
phase space point operators Eq. �15�. Employ Definition 5 and Eq. �16� to establish the second
assertion, which in turn implies the third one. Theorem 6.4 makes use of the fact that 	̄�pq�
=�i	̄�piqi� �see also Sec. VII for a very similar and more explicit calculation�. The validity of the
fifth statement is best shown using Eqs. �8� and �16�.

Let us lastly turn to Claim 6. We have noted that the phase space point operators form an
orthonormal system. Hence we can expand an operator � in terms of its Wigner function as �
=�vW��v�A�v�. Substituting � and � by their respective expansions in W���v�=d−n tr�A�v����
yields the desired formula with the help of Lemma 29. �

The following statement will be vital to the proof of the main theorem. It assigns an elegant
geometric interpretation to the Clifford group.

Theorem 7 �Clifford covariance�: Let U=w�a���S� be a Clifford operation. Let ��ªU�U†

for some Hermitian operator �. The Wigner function is covariant in the sense that

W��v� = W���Sv + a� .

Proof: We compute the action of the Clifford group on the phase space point operators.

w�a���S�A�b���S�†w�a�† = d−n �
v�V

	̄��b,v��w�a���S�w�v���S�†w�a�†

= d−n�
v

	̄��b,v��w�a�w�Sv�w�a�† = d−n�
v

	̄��b,v��	��a,Sv��w�Sv�

= d−n �
v�ªSv

	̄��b,S−1v���	̄��a,v���w�v�� = d−n�
v�

	̄��Sb + a,v���w�v��

= A�Sb + a� .

The claim follows by use of Eq. �15�. �

Our definition of the discrete Wigner function coincides with the ones used in Refs. 7, 9, 11,
and 15. It is further equal to Leonhardt’s version,8 up to a permutation of points in phase space; it
corresponds to choice �a� in Ref. 12 and lastly to G=Zd

n in Ref. 14. One can show that W, as
defined here, fulfills the axioms of Ref. 16 which had been laid out in Sec. I B. Put differently, it
is an element of the set of generalized Wigner functions. Gibbons et al. remarked in Ref. 16 that
among the generalized Wigner functions, some stand out by their high degree of symmetry. In our
language, this symmetry is an incarnation of the Clifford covariance established in Theorem 7.
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Naturally, it is now interesting to ask how much freedom is left in the definition of a Wigner
function, once one requires Clifford covariance to hold. We show in Appendix B that the definition
used here is virtually unique in that regard.

E. Stabilizer states

Using the composition law of the Heisenberg group �Eq. �4��, it is easy to see that two Weyl
operators w�v1� and w�v2� commute if and only if �v1 ,v2�=0. Now consider the image of an entire
subspace M under the Weyl representation w. The set

w�M� = �w�m��m � M

consists of mutually commuting operators if and only if the symplectic form vanishes on M

�m1,m2� = 0 for all mi � M .

Spaces of that kind are called isotropic. Clearly, if M is isotropic, then the operators w�M� can be
simultaneously diagonalized. We will see that if �M�=d n, the eigenspaces become nondegenerate
and can thus be used to single out state vectors in the Hilbert space. A subspace M of V is said to
be maximally isotropic if its cardinality equals d n. See Appendix C for a justification of that
nomenclature.

Lemma 8 (Stabilizer States): Let M be a maximally isotropic subspace of V. Let v�V. Up to
a global phase, there is a unique state vector �M ,v	 that fulfills the eigenvalue equations

	��v,m��w�m��M,v	 = �M,v	 ,

for all m�M.
Proof: Existence. It is elementary to check that

�M�−1 �
m�M

	��v,m��w�m� �17�

is a rank one projection operator fulfilling the eigenvalue equations.
Uniqueness. According to Appendix C, there are pn characters of M, each giving rise to a

distinct projection operator as defined in the last paragraph. Two distinct operators of that kind are
mutually orthogonal, because they belong to different eigenvalues of at least one of the Weyl
operators. But dim H= �Q�= pn and thus there is no space for more than one-dimensional solutions
to the given set of equations. �

The state vector �M ,v	 is called the stabilizer state associated with M and v. For obvious
reasons, one refers to the set of operators �	��v ,m��w�m� �m�M as the stabilizer of �M ,v	. Due
to the isotropicity of M, the stabilizer is closed under multiplication and thus constitutes a group.
Occasionally, we write �M	 for �M ,0	. To specify a stabilizer state, we need to specify a maximally
isotropic space M. This is best done by giving a basis �m1 , . . . ,mk of M. It is convenient to
assemble the basis vectors as the columns of a 2n�k matrix, which is generally referred to as the
generator matrix. As the choice of a basis is nonunique, so is the form of the generator matrix.

A stabilizer state �M	 is a graph state if it possesses a generator matrix of the form

� �

1n�n
� , �18�

where � is a symmetric n�n matrix.24 The designation stems from the fact that � can be
interpreted as the adjacency matrix of a graph. Many properties of �M	 are describable in terms of
that graph alone.24 Some authors require the diagonal elements �i

i to vanish �equivalently, no
vertex of the graph should be linked to itself�, but we will not impose that restriction. Note that
there exist considerably more general definitions of graph states.19

Obviously, we will be concerned with Wigner functions of stabilizer states. Lemma 9 clarifies
their structure.
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Lemma 9 (Wigner functions of stabilizer states): The Wigner function of a stabilizer state
�M ,v	 is the indicator function on M +v. More precisely,

W�M,v	�a� =
1

d n
M+v�a� =
1

d n�1 a � M + v

0 else.
�

Proof: The representation given in Eq. �17� of �M ,v	 determines the characteristic function

��M,v	�b� = d−n	��v,b��
M�b� .

We compute the symplectic Fourier transformation,

�FS��M,v	��a� = d−2n �
b�V

	̄��a,b��	��v,b��
M�b� = d−2n �
b�M

	̄��a − v,b�� = d−n
M��a − v� ,

where

M� = �v � V��m,v� = 0 for all m � M

is the symplectic complement of M in V. But M is a maximally isotropic space and hence M
=M� �see Appendix C�. �

In particular, we know now that the Wigner function of stabilizer states is non-negative. The
next sections are devoted to the proof of the converse.

III. DISCRETE HUDSON’S THEOREM

A. Bochner’s theorem

Define the self-correlation function

K��q,x� = ��q + 2−1x��̄�q − 2−1x� ,

and note that the Wigner function fulfills

W�p,q� =
1

d n �
x�Q

	̄�px�K��q,x� . �19�

Fix a q0�Q. Designating the function p�W�p ,q0� by W�· ,q0�, Eq. �19� says that W�· ,q0� is the
Fourier transform of K�q0 , · �. Therefore, W is non-negative if and only if the d n functions K�q0 , · �
have non-negative Fourier transforms.

In harmonic analysis, the set of functions with non-negative Fourier transforms is character-
ized via a theorem due to Bochner. It is usually proven either in the context of Fourier analysis on
the real line or else, in full generality, for harmonic analysis on—not necessarily Abelian—locally
compact groups. While the former statement is not general enough for our purpose, the latter is not
easily accessible. However, it turns out that in the discrete Abelian setting an elementary proof can
be given. It is stated in the next theorem, along with a variation for subsequent use.

Theorem 10 (Variations of Bochner’s Theorem): Let M be a subspace of Q. Let f :M→C. The
following holds.

1. The Fourier transform of f is non-negative if and only if the matrix

Ax
q = f�x − q� �x,q � M�

is positive semidefinite.

2. The Fourier transform of f has constant modulus (i.e., � f̂�x��=const) if and only if f is
orthogonal to its translations,


f , x̂�q�f	 = �
x�M

f̄�x�f�x − q� = 0,
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for all nonzero q�M.

Proof: The following computation is a variant of a well-known fact concerning circulant
matrices. We claim that any character � of M is an eigenvector of A with eigenvalue �

= �M�−1/2 f̂���. Indeed, plugging in the definitions yields

�A���x� = �
q

Ax
q��q� = �

q

f�x − q���q� = �
q

f�q��̄�q���x� = ��M� f̂�����x� .

There exist �M� characters and thus equally many eigenvectors of A. Therefore, A can diagonal-

ized. All its eigenvalues are non-negative if and only if f̂ is non-negative.

By the same argument, A is proportional to a unitary matrix if and only if � f̂�q�� is constant.
But a matrix is unitary if and only if its rows form an orthonormal set of vectors. �

From here, the proof proceeds in two steps. Section III B harvests Theorem 10.1 to gain
information on the pointwise modulus ���q�� of a vector with non-negative Wigner function.
Building on these findings, we will analyze the properties of such Wigner functions in Sec. III C.

B. Supports and moduli

Lemma 11 (Modulus inequality): Let � be a state vector with non-negative Wigner function.
It holds that

���q��2 � ���q − x�����q + x�� ,

for all q ,x�Q.
Proof: Fix a q�Q. As W� is non-negative, so is the Fourier transform of K��q , · �. Bochner’s

theorem implies that the matrix Ay
x =K�x−y ,q� is positive semidefinite �psd� which in turn implies

that all principal submatrices are psd. In particular the determinant of the 2�2 principal submatrix

� K��q,0� K��q,2x�
K��q,− 2x� K��q,0�

� = � ���q��2 ��q + x��̄�q − x�

�̄�q + x���q − x� ���q��2
�

must be non-negative. But this means

���q��4 − ��̄�q + x���q − x��2 � 0,

which proves the theorem. �

We will call the set supp � of points where a state vector is nonzero its support. S=supp � has
the property to contain the midpoint of any two of its elements. Indeed, if a ,b�S, then setting
q=2−1�a+b� and x=2−1�a−b� in the modulus inequality shows that

���2−1�a + b��� � ���a�����b�� � 0,

hence 2−1�a+b��S. Let us refer to sets possessing this quality as being balanced.
The following lemma clarifies the structure of balanced sets. Recall that a subset A of V is

affine if A=M +v for a subspace M and some vector v. An affine space is a subspace if and only
if it contains the origin 0.

Lemma 12 (Balanced sets): A subset S of Q is balanced if and only if S is an affine space.
Proof: We show the “only if” part, the other one being simple.
As both the characterizations of balance and affinity are invariant under translation, there is no

loss of generality in assuming that 0�S. We have to establish that S is closed under both addition
and scalar multiplication.

Let a�S. We claim that
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2−l�a � S , �20�

for all l�N and �2l. The proof is by induction on l. Suppose Eq. �20� holds for some l. If �
2l+1 is even, then 2−l−1�a=2−l�� /2�b�S. Else,

2−l−1�a = 2−1�2−l� − 1

2
a + 2−l� + 1

2
a� � S ,

which shows the validity of Eq. �20�.
There exists an integer l�d such that 2l=1 mod d. Indeed, by Euler’s theorem, 2��d�

=1 mod d, where � is Euler’s totient function. So l=d��d� satisfies the requirements. Inserting l
into Eq. �20�, we conclude that �a�S for all �2d. Thus certainly �a�S for all ��Zd and we
have proved closure under scalar multiplication.

If a ,b�S then, by the last paragraph 2a ,2b�S and hence 2−1�2a+2b��S, establishing
closure of S under addition. �

Lemma 13 (Constant modulus): Let � be a state vector with non-negative Wigner function.
Then ���·�� is constant on the support of �.

Proof: Pick two points x ,q�supp � and suppose ���q��� ���x��.
Letting z=x−q, the assumption reads ���q��� ���q+z��. The modulus inequality, centered at

q+z, gives

���q + z��2 � ���q�����q + 2z�� . �21�

As supp � is affine, we know that ��q+kz��0 for all k�Zd. Hence Eq. �21� together with the
assumption implies

���q + z��2 � ���q + z�����q + 2z�� ⇔ ���q + z�� � ���q + 2z�� .

By inducting on this scheme, we arrive at

���q�� � ���q + z�� � ���q + 2z�� � ¯

and therefore ���q��� ���q+dz��= ���q��, which is a contradiction.
Thus ���q�� ���x��. Swapping the roles of x and q proves that equality must hold. �

At this point, we have full knowledge of the pointwise modulus of a state vector with non-
negative Wigner function. The phases of ��·� are, however, completely unknown. The section to
come addresses this problem indirectly by studying non-negative Wigner functions.

C. Non-negative Wigner functions

To motivate the following, assume for a moment that � has a non-negative Wigner function
and further that ��q��0 for all q. Choose a q0�Q and consider the function W�· ,q0�. Lemma 13
implies that K��q0 , · � has constant modulus and hence—by Theorem 10.2—W�· ,q0� must be
orthogonal to its translations. Clearly, a non-negative function possesses this property if and only
if it is supported on at most a single point.

There hence exists a p0�Q such that W�p ,q0��
p,p0
. This observation starkly reduces the

possible forms of positive Wigner functions; it will be generalized to state vectors with arbitrary
support in the next lemma.

Lemma 14: Let � be a state vector. If W� is non-negative, then it is of the form

W��v� = d−n
T�v� ,

where T�V is a set of cardinality d n.
What is more, if 0�T, then the set of elements of T with vanishing position coordinates

��p,0� � T�p � Q

is a subspace of V.
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Proof: Let S=supp �. Again, we may assume that S is a subspace of Q, for else we replace �
by w�−s�� for some s�S. It follows that supp K�=S�S. Indeed,

K��q,x� � 0 ⇔ q ± 2−1x � S ⇔ q � S ∧ x � S .

Denote by S�= �q�Q�sq=0 for all s�S the orthogonal complement of S. �For subsets S of
Q, S� denotes the orthogonal complement, while for subsets S of V the same symbol refers to the
sympectic complement. This notation is natural, as for both Q and V only one respective inner
product has been defined�. We will adopt the common notation �p�= p+S� for cosets of S�. It
should be clear that �p� is nothing other but the affine space with directional vector space given by
S� and base vector p. The set S* of characters of S can be identified with Q /S�. Certainly,
s�	�ps� defines a character of S for every p�Q. Further, 	�ps�=	�p�s� for all s�S if and only
if p− p��S�. That indeed all elements of S* can be obtained this way is shown in Corollary 26.

Define K�� to be the restriction of K� to its support S�S. For the rest of the proof, we fix a
q0�S. Now consider

W�p,q0� = d−n �
x�Q

	̄�px�K�q0,x� = d−n�
x�S

	̄�px�K��q0,x� .

Viewed as a function in p, W�p ,q0� has constant values on cosets of S�. Therefore,

W���p�,q� ª d n�S�−1/2W�p,q� �22�

is a well-defined function on S*. The considerations of the previous paragraph allow us to identify
W���·� ,q0� as the Fourier transform of K��q0 , · �.

We can now repeat the argumentation presented just before the current lemma. Indeed, the
modulus of K��q0 , �·�� is constant and W� is non-negative. Furthermore, by definition of q0,
K��q0 , �·�� is nonzero and we may thus conclude that p�W���p� ,q0� is supported on exactly one
coset �p0�.

Normalization of � implies ���·��= �S�−1/2. Hence �K���q0 , · ��= �S�−1 and

�K���q0, · ��2 = �
x

�K���q0,x��2 = �S�−1.

By Parzeval’s theorem, �W���·� ,q0��2= �S�−1 as well. It follows that W���p0� ,q0�= �S�−1/2.
Inverting Eq. �22� gives

W�p,q� = d−n�1 �p� = �p0�
0 else,

� �23�

which proves the first claim of the lemma. The cardinality of T is fixed by the normalization of the
Wigner function �Theorem 6.6�.

Now suppose W�0,0�=W���0� ,0��0. Clearly, then W�p ,0� is nonzero if and only if p
� �0�⇔ p�S�. The last assertion of the lemma follows, since S� is a subspace of Q. �

So a non-negative Wigner function is the indicator functions of some set T. This finding is
compatible with Lemma 9, which describes the structure of Wigner functions of stabilizer states.
The next two lemmas verify that T has indeed all the properties of the sets that appear in Lemma
9.

Lemma 15: Let � be a state vector. If W� is of the form

W��v� = d−n
T�v� ,

then T is an affine space.
Proof: The proof proceeds similar to the one of Lemma 12. There is no loss of generality in

assuming that 0�T.
First, we show that T is closed under scalar multiplication. To this end, pick a point a�T.

There exists a symplectic mapping S that sends a to a vector a� of the form �ap� ,0� where ap�
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�Q �see Appendix D�. The set T�=ST is the support of the Wigner function of ��S��. By the
second assertion of Lemma 14, �a��ST for every ��Zd. Hence S−1��a��=�a�T.

Turning to closeness under addition, let a ,b�T. By the last paragraph, 2a ,2b�T. Arguing as
before, note that the set T−2a is the support of the Wigner function of w�−2a�� and thus closed
under multiplication. As 2b−2a�T−2a, we know that b−a�T−2a and hence b+a�T. �

Lemma 16: Let � be a state vector such that W� is of the form

W��v� = d−n
T�v� .

If T is a subspace, then it is isotropic.
Proof: The vector � describes a pure state, hence W��W�=W� �recall the Moyal product,

introduced in Theorem 6�. Let u�T. Plugging in the definitions gives

W��W��u� = d−n �
v,w�V

W��u + v�W��u + w�	̄��v,w�� = d−3n �
v,w�T

	̄��v,w�� .

Note that �w�T	̄��v ,w�� �T�=d n with equality if and only if �v ,w�=0 for all w. Hence

W��W��u�  d−n = W��u� .

For the left-hand and the right-hand side to be equal, T must be isotropic. �

Therefore T, as defined above, is of the form T=M +v where M is an isotropic space of
cardinality d n. But then, W� is the Wigner function of a stabilizer state by Lemma 9. We have
proven the following.

Theorem 17 �Main theorem�: Let ��L2�Zd
n� be a state vector. If the Wigner function of � is

non-negative, then � is a stabilizer state.

IV. DISCRETE GAUSSIANS

It has long been realized that the coefficients of stabilizer state vectors are described by
quadratic forms. However, the current literature either neglects the nonprime case �Refs. 19, 20,
and 25� or is less explicit �Ref. 21� than the following lemma in showing the tight relation between
Gaussian states and stabilizer states.

We will concentrate on stabilizer states with full support. This constitutes only a modest
restriction of generality. Indeed, let � be a general stabilizer state, let Q�ªsupp �. Let us for the
sake of simplicity assume that d is prime and Q� is a subspace of Q. The restriction of the
coordinate function ��q� to Q� can be thought of as defining a vector �� of a quantum state of an
n�ªdim Q� particle system. It is now possible to check that �� is a stabilizer state. In this way any
stabilizer state can be viewed as one with full support, possibly on a smaller system. We will,
however, not take the time to make this construction precise nor will we rely on it in this paper.

Lemma 18: Let � be a state vector. The following statements are equivalent.

1. � is a stabilizer state and ��q��0 for all q�Q.
2. Up to the action of a Weyl operator, � is a graph state.
3. There exists a symmetric n�n matrix � and an x�Q such that

��q� = �q�q+xq.

Proof: �1⇒2� By assumption ��	= �M ,v	 for some maximal isotropic space M and a vector v.
We claim that there is no nonzero p�Q such that �p ,0��M.

Suppose there exists such a p. Then


q�w�p,0��M	 = 	�− pq�
q�M	 .

On the other hand,
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q�w�p,0��M	 = 	̄��v,�p,0���
q�M	 ,

by the definition of �M ,v	. Hence supp �M	 must be contained within a hypersurface of Q specified
by pq=const, which contradicts the assumption that supp �=Q.

There are d n elements in M. By the last paragraph, no two of them have the same position
coordinates. As there exist only d n= �Q� possible choices for the position coordinates, one can find
for every q�Q a p�Q such that �p ,q��M. Let e1 , . . . ,en denote the canonical basis of Zd

n.
Choose m1 , . . . ,mn�M such that the position part of mi equals ei. The span of �mii=1,. . .,n has
clearly cardinality d n, so we have found a basis of M. By construction, the generator matrix
composed of these basis vectors has the form shown in Eq. �18� with some n�n matrix �. It is not
hard to see that M is isotropic if and only if � is symmetric, establishing that �M	 is a graph state.
Theorem 7 and Lemma 9 show that w�v� �M	= �M ,v	= ��	.

�2⇒3�. Let M be an isotropic space which possesses a generator matrix of the form given in
Eq. �18�. Let mi= ��i ,ei� be the ith column of that matrix. We need to establish the existence of a
symmetric matrix � and an x�Q such that


q�M,v	 = �q�q+xq
¬ ��q� .

Indeed, choose

� = 2−1�, xi = �v,mi� .

Using Eq. �8�, one can then check by direct computation that � fulfills the defining eigenvalue
equations

	��v,mi��w�mi�� = � ,

and hence ��	= �M ,v	 by Lemma 8.
�3⇒1�. Reverting the previous proof shows that � is a graph state. It has maximal support by

definition. �

The claimed analogy between stabilizer states and Gaussian states is apparent when compar-
ing statement 3 to Theorem 1.

V. MIXED STATES

It is natural to ask how the results obtained before generalize to mixed states. Certainly,
mixtures of stabilizer states are non-negative on phase space and it might be surmised that all such
quantum states are convex combinations of stabilizer ones. In the context of continuous variable
systems, Bröcker and Werner refuted an analogous conjecture by giving a counterexample.30

Again, the situation is similar in the finite setting, as will be shown now.
As a consequence of Theorem 6.5, A�0� can be decomposed as A�0�= P++ P−, where P±

denotes the projector onto the symmetric and antisymmetric state vectors, respectively �see Fig. 1�.
Since P++ P−=1, we have that P−=1/2�1−A�0��. Because we know the Wigner functions of both
1 �W�v�=d−n� and of A�0� �W�v�=
v,0�, we immediately obtain

WP−
�v� =

1

2
�d−n − 1 v = 0

d−n else.
� �24�

For a single three-dimensional quantum system there exists a unique antisymmetric state
vector ��−	=2−1/2��+1	− �−1	�, hence P−= ��−	
�−�. Figure 2 depicts the Wigner function of the
state �, obtained by mixing the pure states ��−	 ,w�−1,0���−	, and w�−1,−1���−	 with equal
weights.

The Wigner function of a single-particle stabilizer state is a line in the two-dimensional phase
space, according to Lemma 9. There are d�d+1� such lines and hence equally many stabilizer
states. Assume these states have been brought into some order and denote the associated projection
operators by P1 , . . . , Pd�d+1�. Let �=�i

d�d+1��iPi be a convex decomposition of � in terms these
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operators. If there is a point v in phase space where W��v�=0 and WPi
�v��0, then clearly �i must

vanish. By exhaustively listing all 12 lines in Z3
2, one finds that � can have nonzero coefficients

only with respect to the stabilizer states whose Wigner functions are shown in Fig. 3.
But � admits no convex decomposition in terms of these three lines. Indeed, no two of them

cover all the points in the support of W�, so only a mixture of all three lines could potentially
suffice. Now notice that the point �1,−1� is an element only of the third line, while �1, 0� is
contained in both the second and the third one. Therefore any mixture of these three lines takes on
a higher value on �1, 0� than on �1,−1�. The distribution W�, on the other hand, is constant on its
support.

VI. DYNAMICS

Having established which quantum states give rise to non-negative phase space distributions,
the next step is to characterize the set of operations that preserve this property. We have seen in
Sec. II D that Clifford unitaries implement permutations in phase space and thus manifestly pre-
serve positivity. They are unique in that regard, as will be shown now.

By the results of Sec. III, it is apparent that a unitary operation U can preserve positivity only
if it sends stabilizer states to stabilizer states. One can reasonably conjecture that only Clifford

FIG. 2. Wigner function of the equal mixture of the vectors ��− 	, w�−1,0���−	, and w�−1,−1���−	. White squares stand for
a value of 1/6 and black squares for 0.

FIG. 1. Wigner function of the antisymmetric vector ��−	.
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operations possess this feature and in the case of single particles in prime-power dimensions, a
proof of this fact has been given in Ref. 26. The general case, however, poses surprising difficul-
ties which have forced us to take a less direct route.

Let us shortly pause to clarify our objectives. We aim to characterize the set of unitaries U that
satisfy statements of the kind: WU�U† is non-negative whenever W� is. We can require the above
statement to hold for any Hermitian operator � or just whenever � is a quantum state. In the
former case the restrictions on U are much stronger than in the latter one. Indeed, by considering
the image of the phase space point operators A�a� under the action of U and making use of Lemma
29, it is straightforward to prove that only Clifford operations can preserve positivity of the
Wigner functions of general Hermitian operators. The following theorem is slightly more ambi-
tious in considering only the action of U on quantum states.

Theorem 19 (Only permutations preserve positivity): Let U be unitary. If, for all quantum
states � with non-negative Wigner function, it holds that WU�U† is non-negative, then U is Clifford.

Proof: First, take note that substituting “quantum state” by “positive operator” in the above
theorem, only amounts to a change of normalization and does not alter the statement. Set

���� ª min
v�V

W��v� ,

���� ª minarg W� ª �v � V�W��v� = ��v� .

Let � be such that �����0. We claim that ����=�����, where ��=U�U†. In other words, U
preserves minimal values.

Indeed, there exists positive constants �1,2 such that

�1����� + �2d−n = 0.

Hence �ª�1�+�21 has a non-negative Wigner function. The assumption ���������� yields

WU�U†�v� = �1����� + �2d−n � 0,

for every v������, which contradicts the defining property of U. Thus ���������. Substituting
U by U−1 shows that equality of ���� and ����� must hold.

Now set

��a� ª �1 − d−n�−1w�a�P−w�a�†,

for all a�V. We have ����a��=�����a��=−1 and ����= �a. The crucial observation lies in the
fact that ����� contains only a single point as well. So, U preserves the “pointed” shape of W��a�.
To see why that is the case, suppose there is a a0 such that �����a0��� � �1. There are d2n operators
��a�� and equally many points in phase space, so there exists an a1 such that ��a0� and ��a1�
intersect in at least one point v. Define �=1/2���a0�+��a1��. It holds that �����−1/2, whereas

FIG. 3. The white squares mark all lines in Z3
2 that do not intersect any point where the Wigner function shown in Fig. 2

vanishes.
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W���v�=−1 which is a contradiction. There is hence a well-defined function S which sends a to the
unique element of ����a���.

Finally, let � be any density matrix. The idea is to mix � very weakly to ��a�, so that the
positions of the minima of the mixture are still determined by ��a�. Indeed, there exists an �
�0 such that

����a� + ��� = �a ,

����a� + ��� = − 1 + �W��a� ,

����a�� + ���� = �S�a� ,

����a�� + ���� = − 1 + �W��S�a�� .

Hence W���Sa�=W��a�. We have established that U acts as a permutation in phase space and is
therefore Clifford by Lemma 29. �

VII. PRIME POWER DIMENSIONS

Wigner functions for quantum systems with prime power dimensions have received particular
attention in the literature �most prominently in Ref. 16�. Once again, this is due to the fact that a
finite field of order d exists exactly when d is the power of a prime and that the field’s well-
behaved geometrical properties facilitate many constructions. The present section briefly addresses
the relationship between three natural approaches to Wigner functions for such systems. We
assume the reader is already familiar with the definition of Weyl operators over Galois fields; a
thorough introduction can be found in Refs. 15 and 16.

Let d= pk for some prime number p. There are three natural ways of associating a configura-
tion space to H. These are the following:

1. an n-dimensional vector space over Zp,
2. a one-dimensional module over Zpn, or
3. a one-dimensional vector space over the Galois field Fpn of order pn.

The first and the second of these points of view have manifestly been covered in this paper. So far
we neglected case 3, because—as we will see—it can be completely reduced to the first one.

Let us quickly gather some well-known facts on finite fields. If p is prime and n a positive
integer, Fpn denotes the unique finite field of order d= pn. The simplest case occurs for n=1, when
Fp�Zp. For n�1, fields Fpn are realized by extending Fp, which is then referred to as the base
field. Extension fields contain the base field as a subset. The extension field possesses the structure
of an n-dimensional vector space over the base field. A set of elements of Fpn is a basis if it spans
the entire field under addition and Fp multiplication. After having chosen a basis �b1 , . . . ,bn, we
can specify any element f =�i f ibi by its expansion coefficients �f i. The operation

Tr f = �
k=0

n−1

fpk

takes on values in the base field and is Fp linear. Therefore,


f ,g	 � Tr�fg�

defines an Fp-bilinear form. For any basis �bi, there exists a dual basis �bi fulfilling the relation
Tr�bibj�=
i,j �we do not use Einstein’s summation convention�. From now on, we assume that a
basis bi and a dual one bi have been fixed.
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Repeating the construction put forward in Sec. II, we introduce the Hilbert space H
=L2�Fpn�, in other words, H is the span of ��q	 �q�Fpn. The choice of a basis induces a tensor
structure on H via

�q	 = ��
i

qibi� � �
i

�qi	 .

We obtain a character of Fpn by setting 	pn�f�=	p�Tr f�. Note that for n=1, 	pn =	p. Expand-
ing momentum coordinates p=� jpjb

i, the character factors,

	�pq� = 	p��
i,j

pjq
i Tr�bib

j�� = �
i

	p�piq
i� .

Similarly, the shift and multiply operators factor with respect to this tensor structure,

x��
i

qibi���
j

xjbj� = �
i

x�i��qi��xi	 ,

z��
i

pib
i���

j

xjbj� = �
i

	p�pix
i���

j

xjbj� = �
i

z�i��pi��xi	 ,

where x�i� and z�i� act on the ith p-dimensional subsystem. A straightforward computation along the
lines just presented shows that both the Weyl operators and the phase space point operators factor,

w�p,q� = �
i

w�i��pi,q
i� = w�p1, . . . ,pn,q1, . . . ,qn�

A�p,q� = �
i

A�i��pi,q
i� = A�p1, . . . ,pn,q1, . . . ,qn� .

The above result thus states that the Wigner function induced by the choice Q=Fpn coincides—up
to relabeling of the phase space points—with the one for Q=Fp

n. In particular, both definitions give
rise to the same set of states with a non-negative phase space distribution.

For stabilizer states, however, the situation is not as easy, as will be discussed subsequently.
The preceding discussion suggests defining a map � :Fpn

2 →Fp
2n by

�p,q� � �p1, . . . ,pn,q1, . . . ,qn�

�see Refs. 15 and 31�. Let M be a maximal isotropic subspace of Fpn
2 . It is readily verified that

��M��Fp
2n is again isotropic and a subspace. Further, we have shown that the sets of Weyl

operators w�M� and w���M�� coincide and hence so do the stabilizer states �M	 and ���M�	.
The converse is not true. �−1 does not necessarily map Fp

2n subspaces to those of Fpn
2 . More

precisely, if M �Fp
2n is a subspace, then �−1�M� can easily be proven to be closed under addition,

but will in general fail to be closed under Fpn-scalar multiplication. This proves the remark made
in the introduction, namely, that the set of “single-particle” �i.e., Fpn

2 � stabilizer states is a true
subset of corresponding “multiparticle” set. The following subsection gives a quantitative account
of the relation of the sets.

A. Counting stabilizer codes

We are going to count the number of stabilizer states of a system composed of n d-level
particles. In fact, the computation given below is slightly more general in that it gives the number
of k-dimensional stabilizer codes.17

Stabilizer codes are generalizations of stabilizer states. Recall Eq. �17�, where we showed that
summing Weyl operators w�m� over the elements m of a maximal isotropic subspace M of V yields
a one-dimensional projection operator. It can be shown that if the requirement of maximality is
dropped, the sum still evaluates to a projector. The range of this operator is the stabilizer code
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defined by M. The dimension m of M and the dimension k of the stabilizer code are related by
k=d n−m.

Theorem 20 (Number of isotropic subspaces): Let V be a 2n-dimensional symplectic vector
space over Fd, where d is the power of a prime. The number of m-dimensional isotropic subspaces
of V is given by

Iso�n,m,d� = � n

m
�

d
�
i=0

m−1

�d n−i + 1� ,

where the square brackets denote the Gaussian coefficients,

� n

m
�

d
= �

i=0

m−1
d n−i − 1

d m−i − 1
.

Proof: The proof is inspired by a method employed in Ref. 32 to solve a related problem. We
count the number of linearly independent m tuples consisting of mutual orthogonal vectors. In-
deed, as the first vector v1 we are free to choose any nonzero element of V. There are d2n−1 such
choices. The second vector must lie in the symplectic complement of the span of the first vector

v1	�. Hence, v2 can be chosen from a 2n−1-dimensional vector space, the only restriction being
that v2� 
v1	. It follows that there exist d2n−1−d1 possibilities for v2. Inducting on this scheme
gives

�
i=0

m−1

�d2n−i − di� �25�

such tuples.
However, since two different tuples might correspond to the same isotropic space, Eq. �25�

overcounted the subspaces. To take that fact into account, we must divide by the number of bases
within an m-dimensional space. Arguing in a similar fashion as before, we arrive at �i=0

m−1�d m

−di� for the sought-after number �see also Ref. 32�. Division gives

Iso�n,m,d� = �
i=0

m−1
d2n−i − di

d m − di = �
i=0

m−1
d2�n−i� − 1

d m−i − 1
.

Expanding d2�n−i�−1= �d n−i−1��d n−i+1� and using the definition of the Gaussian coefficients con-
cludes the proof. �

Corollary 21; The number of d n−m-dimensional stabilizer codes defined on n d-level systems
is

Stabs�n,m,d� = dm� n

m
�

d
�
i=0

m−1

�d n−i + 1� .

In particular, the number of stabilizer states is

Stabs�n,n,d� = d n�
i=1

n

�di + 1� .

Proof: We only need to justify the prefactor d m. The defining Eq. �17� generates a projector onto
a stabilizer code given an isotropic space M and a character 	��v , · �� on M. If dim M =m, then
there are �M � =d m distinct such characters �see Appendix C�. �

We can now compare the number of stabilizer states for n particles of dimension d to the
corresponding number for a single d n-dimensional system,
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Stabs�n,n,d�
Stabs�1,1,d n�

=
�i=1

n
�di + 1�

d n + 1
= �

i=1

n−1

�di + 1� � d�i=1
n−1i = d1/2�n2−n�.

This is the superexponential scaling mentioned in the introduction.

ACKNOWLEDGMENTS

The author is grateful for support and advice provided by Jens Eisert during all stages of this
project. Thanks to Dirk Schlingemann for enlightening conversations on phase space techniques.
The figures were produced using Mathematica notebooks15 partly based on Timo Felbinger’s
QMATRIX package.38 Martin Plenio and Alessio Serafini gave helpful comments on draft versions
of this paper. Useful references were pointed out to the author by S. Chaturvedi, C. K. Zachos, A.
Klimov, and M. Ruzzi. This work has benefitted from funding provided by the European Research
Councils �EURYI grant of J. Eisert�, the European Commission �Integrated Project QAP�, the
EPSRC �Interdisciplinary Research Collaboration IRC-QIP�, and the DFG.

APPENDIX A: DISCRETE STONE–VON NEUMANN THEOREM

This section generalizes well-known results for prime-power dimensions �see, e.g., Ref. 33
and citations therein� to all odd d. The proof is based on some simple observations employing
group representation theory. We state a preparing lemma beforehand.

Lemma 22: The Weyl representation is irreducible.
Proof: We compute

1

�H�Zd
n�� �

a�V,

t�Zd

�tr w�a,t��2 = d−�2n+1��
t

�tr w�0,t��2 = d−�2n+1��
t

d2n = 1,

which establishes irreducibility by a well-known criterion from group representation theory �see
any textbook on that topic, e.g., Ref. 34�. �

Proof (of Theorem 3): By the composition law Eq. �4� it is clear that w��p ,q , t�
ªw�S�p ,q� , t� is a representation of the Heisenberg group which affords the same character �i.e.,
tr w�a , t�=tr w��a , t��. The preceding lemma yields that w and w� are equivalent and thus the
existence of ��S� follows. Further,

��S���T�w�p,q���T�†��S�† = ��S�w�T�p,q����S�† = w�ST�p,q�� = ��ST�w�p,q���ST�†.

Because the Weyl matrices span the set of all operators, the last line fixes ��ST� modulo a phase
and we have proven the second assertion.

We turn to the last claim. Let S and c be as defined in Eq. �10�. Using the commutation
relations Eq. �4� and the fact that conjugation by unitaries leaves the center 	�t�1 of the Weyl
representation invariant, it is easy to see that S must be an isometry in the sense that �Sa ,Sb�
= �a ,b�. To proceed, consider the following calculation. On the one hand,

Uw�a�w�b�U† = Uw�a + b,2−1�a,b��U† = w�S�a + b�,2−1�a,b��c�a + b� , �26�

while on the other hand,

Uw�a�w�b�U† = Uw�a�U†Uw�b� = w�Sa�w�Sb�c�a�c�b� = w�Sa + Sb,2−1�Sa,Sb��c�a�c�b� .

�27�

Comparing the last lines of Eqs. �26� and �27� one finds that S must be compatible with addition
in Zd

2n meaning that S�a+b�=Sa+Sb. Because Zd is cyclic the preceding property implies that S is
also compatible with scalar multiplication,
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S��a� = S�a + ¯ + a� = S�a� + ¯ + S�a� = �S�a� .

Hence S is linear and therefore symplectic. Last, again using lines �26� and �27�, we have that
c�a+b�=c�a�c�b� and conclude that c is a character. By Lemma 24, there exists an a0�V such
that c�·�=	��a0 ,S · ��. Thus,

w�a0���S�w�a���S�†w�a0�† = w�a0�w�Sa�w�− a0� = 	��a0,Sa��w�Sa� = c�a�w�Sa� .

�

APPENDIX B: AXIOMATIC CHARACTERIZATION OF THE WIGNER FUNCTION

The discussion in Sec. II D should suggest that Definition 5 yields the natural analog of the
original continuous Wigner function. However, to bolster that claim with more objective argu-
ments, we establish that—at least in prime dimensions—the form is virtually determined by the
property of Clifford covariance �Theorem 7�.

Theorem 23 (Uniqueness): Let d be an odd prime. Let Q ,V ,H be as usual. Consider a
mapping W� that fulfills the following axioms.

1. �Phase space� W� is a linear mapping sending operators to functions on the phase space V.
2. �Clifford covariance� W� is covariant under the action of the Clifford group, in the sense of

Theorem 7. Then W���p ,q�=�1W��p ,q�+�2 for two constants �1,2. If further,
3. �Marginal probabilities� W� gives the correct marginal probabilities, as stated in Theorem

6.43,

then W��p ,q�=W�p ,q�.
Proof: Consider an alternative definition ��W�� of a Wigner function. Linearity implies the

existence of a set of operators �A��v� such that W��v�=d−n tr�A��v���. W� is covariant under the
action of the Weyl operators if and only if A��v�=w�v�A��0�w�v�†. So the only degree of freedom
left in the definition of W� is the choice of A��0�. Again, one must require A��Sv�
=��S�A�v���S� if Theorem 7 is to hold. In particular, because the origin 0 is a fixed point of any
linear operation, A��0� must commute with all ��S�.

As a consequence, the old, unprimed Wigner function WA��0� of A��0� stays fixed under any
symplectic operation S. Since any two non-zero points of V can be mapped onto each other by a
suitable symplectic matrix S, WA��v� must be constant on all such points. So there are only two
parameters free to be chosen: WA��0��0� and WA��0��v� ,v�0. Clearly, the set of all operators that
comply with these constraints is spanned by 1 and A�0�,

A��0� = �11 + �2A�0� . �28�

The above decomposition implies the first statement of the theorem.
As for the second claim, choose an a�V. The projection operator �a	
a� is invariant under the

action of Weyl operators of the form w�p ,0�. Thus, due to Clifford covariance, the Wigner
function W�a	� must be p-shift invariant: W�a	� �p+ p� ,q�=W�a	� �p ,q�. We required Theorem 6.3 to
hold, hence

�
p�Q

W�a	� �p,0� = d nW��0,0� = 
a,0.

By Eq. �28� and Theorem 6.5 it follows that W��0,0�=d−n��1+�2
a,0�, yielding �1=0 ,�2=1. �

APPENDIX C: CHARACTERS AND COMPLEMENTS

Consider a space R=Zd
n with a bilinear form 
· , · 	 :R�R→Zd. For any s�R the function

r�	�
s ,r	� defines a character of R. The form is said to be nondegenerate if 
s , · 	� 
s� , · 	 for
distinct s ,s�. The two spaces we are concerned with are Q with the canonical scalar product and
V with the symplectic scalar product. Both can easily be checked to be nondegenerate.
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The following lemma states a basic fact about spaces with nondegenerate forms. We repeat it
for completeness.

Lemma 24: Let R=Zd
n with nondegenerate bilinear form 
· , · 	. Any character � of R is of the

form ��r�=	��s ,r�� for some unique s�R.
Proof: Addition gives V the structure of a finite Abelian group. Therefore, V�V*, as is

well-known �see, e.g., Ref. 28�. So there are �V� different characters of V, but equally many of the
form 	��v , · ��. �

If d is prime and M a subspace of V, the well-known relation dim M +dim M�=dim V holds.35

It is, however, no longer true in the general case. A counterexample can be constructed along the
same lines as in Sec. II C. Still, an analog exists as demonstrated below.

Theorem 25: Let R=Zd
n with nondegenerate bilinear form 
· , · 	. If M denotes a subspace of R,

then the “complementarity relation” �M � �M� � = �R� holds.
Proof: We will show that

M� � �V/M�*. �29�

For m�M�, the relation �v��	��m ,v�� defines a character of V /M, as can easily be verified.
Let us denote the map m�	��m , · �� by �1.

Conversely, given an element � of �V /M�*, v����v�� is a character of V. By Lemma 24 there
exists a unique w�V such that ���v��=	��w ,v��. If m�M, then ���m��=���0��=1 and hence w
�M�. Using the notions just introduced, we can define �2 : �V /M�*→M� by ��w.

It is simple to check that �2= �1
−1. In particular, �1 is invertible and Eq. �29� follows.

With the help of Lagrange’s theorem, we can compute

�M�� = ��V/M�*� = �V/M� = �V�/�M� ,

which concludes the proof. �

Corollary 26: Let V ,Q be defined as usual. Let M be an isotropic subspace of V and S be any
subspace of Q.

1. �Maximally isotropic spaces� M is equal to its symplectic complement M� if and only if
�M � =d n.

2. �Characters of subspaces� Any character � of S can be written as ��s�=	�qs� for a suitable
q�Q.

Proof: Claim 1 follows immediately from Theorem 25 and the fact that isotropic spaces are
contained in their symplectic complement: M �M�.

We turn to the second statement. In Lemma 14 we have argued that the characters of S which
are expressable as 	�qs� stand in one-to-one correspondence to cosets in Q /S�. But �Q /S� � = �S�
and hence all characters are of that form. �

APPENDIX D: A GEOMETRIC NOTE

The proof of the main theorem makes use of the fact that for any vector v�V, there exists a
symplectic operation S that sends v to a vector of the form �p ,0�. Indeed, if d is prime, any two
vectors are similar, in the sense that they can be mapped onto each other by a symplectic matrix.
Technically, this is a trivial incarnation of Witt’s lemma �see Ref. 36 for a formulation that is
applicable in our context�.

Once again the nonprime case poses additional difficulties. Recall that the order of a v�V is
the least positive ��Zd such that �v=0. It is easy to see that the order of a vector is left invariant
by the action of invertible linear mappings. If d is a composite number �i.e., not prime�, then V
=Zd

2n contains elements of different orders which cannot be related by a linear operation. However,
one might conjecture that any two vectors of equal order are similar. This is the content of the
following lemma. Some concepts used in the proof can be found in Refs. 35 and 37.

Lemma 27 (Similarity): Let V=Zd
2n. Let a1 ,a2�V be two vectors with the same order. Then

there exists a symplectic matrix S such that Sa1=a2.
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Proof: We can slightly weaken the assumptions made about V. All we require for this proof is
that V is a finite Zd module with nondegenerate symplectic form �· , · �. It need not be of the form
Zd

2n.
Let v�V be a vector of order d. As v�	��v , · �� implements an isomorphism, V→V*, ord

�	��v , · ���=ord�v�=d. There hence exists a w�V such that �v ,w�=� has order d. Any such
number possesses a multiplicative inverse �−1 modulo Zd and hence w�=�−1 fulfills �v ,w��=1.
Vectors satisfying such a relation are said to be hyperbolic couples. Denote their span 
�v ,w�	 as
H.

Set V�ªH�. By Theorem 25 �V � = �H � �V��. Further, it is easy to see that H��H= �0 and
hence V=HV�, where t denotes the orthogonal direct Sum. We claim that the symplectic inner
product is nondegenerate on V�. Indeed, supose there is a nonzero v��V� such that �v� ,w��=0 for
all w��V�. Then, by definition of V�, �h ,w��=0 for all h�H and therefore v� would be orthogo-
nal on all vectors of V. Hence such a v� cannot exist by the nondegeneracy of �· , · �.

Note that V� fulfills the assumptions made about V at the beginning of the proof and has
strictly smaller cardinality. Thus, we can induct on �V� to obtain a decomposition

V = H1t . . . tHn

of V in terms of two-dimensional subspaces spanned by hyperbolic couples �vi ,wi�. We arrange
these vectors as the columns of a matrix S= �v1 , . . . ,vn ,w1� , . . . ,wn��. The construction of the
couples �vi ,wi� ensures that S is symplectic, as can easily be verified.

Now let a1 ,a2�V be two vectors with maximal order. By the preceding discussion, there
exists symplectic matrices Si having ai as their respective first column. Clearly, then S2S1

−1a1=a2.
Last, suppose ord�ai�=kd. It is easy to see that ai�=kai /d are elements of V with maximal

order. Further, if S maps a1 to a2, then also a1 to a2. �

Corollary 28 (Transitive action): Let �M1 ,v1	, �M2 ,v2	 be stabilizer states. If their respective
associated isotropic subspaces M1 and M2 are spanned by vectors of maximal order, then there
exists a Clifford operation relating these state vectors.

Proof: Let �m1
�i� , . . . ,mn

�i�, i=1,2 be bases of M1 and M2, respectively. Assume that all vectors
have maximal order. It is simple to adapt the previous proof for constructing a symplectic matrix
S sending mi

�1� to mi
�2�. �

APPENDIX E: SOME PROPERTIES OF THE PHASE SPACE POINT OPERATORS

Lemma 29 (Properties of the phase space point operators): The phase space point operators
fulfill the following relations:

A�a� = w�2a�A�0� ,

A�a�A�b� = w�2a − 2b� ,

tr�A�u�A�v�A�w�� = 	��v,u� + �u,w� + �w,v�� .

Further, if U permutes the phase space point operators under conjugation

UA�v�U† = A�v�� ,

for all v�V, then U is Clifford.
Proof: Clifford covariance �Theorem 7� implies A�a�=w�a�A�0�w�a�†. Using Theorem 6.5 it

is easy to see that A�0�w�a�A�0�=w�−a� and A�0�2=1. Hence,

A�a� = w�a�A�0�w�− a�A�0�A�0� = w�2a�A�0� ,

proving the first relation. The second one follows.
For the proof of the third equation, we abbreviate A�0� as A. Then
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tr�A�u�A�v�A�w�� = tr�w�2u�Aw�2v�Aw�2w�A� = tr�w�2u�w�− 2v�w�2w�A3�

= 	��u,− v� + �u − v,w��tr�w�2�u − v + w��A�

= 	��v,u� + �u,w� + �w,v��tr�A�u − v + w�� .

It has been noted in Theorem 6.6 that phase space point operators have unit trace, which concludes
the proof.

Last, suppose the action of U permutes phase space point operators. For any a�V, we have

Uw�a�U† = Uw�22−1�a − 0��U† = UA�a�UU†A�0�U† = A�a��A�0�� = w�2�a� − 0��� ,

for suitable a� ,0��V. Hence U maps Weyl operators to Weyl operators and is thus Clifford by
definition. �
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Fractional supersymmetric quantum mechanics is developed from a generalized
Weyl-Heisenberg algebra. The Hamiltonian and the supercharges of fractional su-
persymmetric dynamical systems are built in terms of the generators of this algebra.
The Hamiltonian gives rise to a hierarchy of isospectral Hamiltonians. Special
cases of the algebra lead to dynamical systems for which the isospectral supersym-
metric partner Hamiltonians are connected by a �translational or cyclic� shape in-
variance condition. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2401711�

I. INTRODUCTION

Supersymmetry was initially introduced in high energy physics, as a kind of symmetry be-
tween bosons and fermions, to describe fundamental interactions of Nature in an unified way �e.g.,
see Ref. 1�. Supersymmetry cannot be an exact symmetry. In order to understand supersymmetry
breaking in quantum field theory, Witten studied supersymmetric quantum mechanics
�SUSYQM�.2 Presently, SUSYQM turns out to be a powerful tool to investigate integrability in
quantum mechanics.3–5 In this connection, the concept of shape invariant potential was introduced
by Gendenshtein.6 This concept is especially useful to determine the spectrum of exactly solvable
potentials. Indeed, for a given solvable potential, shape invariance implies integrability. It is now
well known there are three kinds of shape invariant potentials, namely, translational shape invari-
ant potentials,7,8 scaling shape invariant potentials,9,10 and cyclic shape invariant potentials.11,12

For any exactly solvable Hamiltonian �shape invariant or not�, SUSYQM provides us with a
process to generate a supersymmetric partner Hamiltonian. This process can be used successively
to span a hierarchy of isospectral Hamiltonians.5

The aim of this work is to study shape invariant potentials together with the generation of a
hierarchy of isospectral superpartner Hamiltonians in the framework of fractional SUSYQM of
order k �k=3,4 , . . .�.

In general, to pass from ordinary SUSYQM to fractional SUSYQM of order k �abbreviated as
k-SUSYQM in the following�, it is necessary to replace the Z2-grading of the relevant Hilbert
space by a Zk-grading. This amounts either to replace a fermionic degree of freedom by a
para-fermionic13–18 one, of order k−1, or to introduce k-fermions,19–22 which are objects interpo-
lating between bosons and fermions. Quantum groups, with the deformation parameter being a
root of unity, play also an important role in the development of k-SUSYQM.23–31 On the other
hand, a realization of bosonized k-SUSYQM can be developed owing to the introduction of a
Klein operator of order k �Kk=1� which induces a Zk-grading.18,32 In this direction, a relation
exists between k-SUSYQM and hidden supersymmetric structures.33–36
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The approach of k-SUSYQM developed in the present paper took its origin in Ref. 22 �see
also Refs. 37–39 for some similar developments�. It is based on a Zk-graded Weyl-Heisenberg
algebra Wk. Section III deals with algebra Wk and its use for generating a family of k isospectral
Hamiltonians. In Secs. IV and V, some specific Hamiltonians �with translational shape invariant
potentials or cyclic shape invariant potentials� corresponding to particular cases of the algebra Wk

are studied. We will start in Sec. II with some preliminaries and motivations.
Throughout the present paper, �A ,B� and �A ,B� stand for the commutator and the anti-

commutator of the operators A and B, respectively. The operator A† denotes the adjoint of A. The
symbol � is the Kronecker delta. Many quantities are defined modulo k ��k��0, Hk�H0, Fk

�F0 and Vk�V0�. As usual, f �g�x�= f�g�x�� for two functions f and g. We shall use the conven-
tion according to which �i=a

b x�i�=0 when b�a and the symbols S0 and S1 for denoting the sets
�0,1 , ¯ ,k−1� and �1,2 , ¯ ,k�, respectively.

II. PRELIMINARIES AND MOTIVATIONS

For the purpose to establish our notations and to present our motivations, we shall begin with
a brief review of ordinary SUSYQM, corresponding to k=2, and of shape invariance �for more
details, see Refs. 3–5�.

A. Ordinary supersymmetric quantum mechanics

Let us start with ordinary SUSYQM. A supersymmetric dynamical system is defined by a
triplet �H ,Q+ ,Q−�2 of linear operators acting on a Z2-graded Hilbert space H and satisfying the
following relations:

H = H†, Q− = Q+
†, Q±

2 = 0,

�Q−,Q+� = H, �H,Q±� = 0.

The operators Q+ and Q− are the supercharges of the system. The self-adjoint operator H, the
supersymmetric Hamiltonian for the �one-dimensional� system, can be written as

H = H0 + H1,

where H0 and H1 act on the states 	n ,0
 and 	n ,1
 of grading 0 and 1, respectively. These states
span the Hilbert space

H = �	n,s
:n ranging; s = 0,1� .

We shall assume that there is no supersymmetry breaking. In this situation, the Hamiltonians H0

and H1 are isospectral except that the ground state of H0 has no supersymmetric partner in the
spectrum of H1.

Now suppose that H0 has p states 	n ,0
 with n=0,1 , ¯ ,p−1 �p�2�. From the Hamiltonian
H1 with p−1 states 	n ,1
 �n=1,2 , ¯ ,p−1�, we can find a supersymmetric partner H2 with p
−2 states 	n ,2
 �n=2,3 , ¯ ,p−1� and we can repeat this process to generate a hierarchy of p
Hamiltonians H0, H1, ¯, Hp−1. The Hamiltonian Hm �0�m�p� has the same energy spectrum
than H0 except that the m−1 first energies of H0 do not occur in the spectrum of Hm. This result
remains valid when p goes to infinity.

We can then ask the following question. What happens when we go from ordinary SUSYQM
to k-fractional SUSYQM �with k=3,4 ,¯�? We shall answer this question by showing that a
hierarchy of isospectral Hamiltonians H0, H1, ¯, Hk−1 can be constructed from a single Hamil-
tonian H0 by making use of a Zk-graded Weyl-Heisenberg algebra. This construction shall be
achieved without a repetition process of the type H0→H1, H1→H2, ¯, Hk−2→Hk−1 as used in
ordinary SUSYQM.
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B. Shape invariance

It is known that there exists a set of exactly solvable potentials characterized by an integra-
bility condition known as shape invariance condition.3,5,6 In connection with ordinary SUSYQM,
this shape invariance condition leads in an easy way to the spectrum of any invariant shape
potential.

More precisely, let us consider the partner potentials V0�x ,a0� and V1�x ,a0� associated with
the supersymmetric Hamiltonians H0 and H1 such that

Hs = −
d2

dx2 + Vs�x,a0�, s = 0,1,

where a0 is a set of real parameters. The shape invariance condition is defined by

V1�x,a0� = V0�x,a1� + R�a0� , �1�

where a1=h�a0� corresponds to a reparametrization in V0 and R�a0� is a constant. The shape
invariance condition immediately yields the energies and wave functions of H0.3,5 One obtain the
energies En,0 of H0

En,0 = �
l=0

n−1

R�al�, n � 1,

where

al = h�l��a0� = h � h � ¯ � h�a0�, l times.

�We take E0,0=0.� The three kinds of shape invariance mentioned in the introduction correspond to
a1=a0+� with ��R, a1=�a0 with 0���1, and a1=h�a0� with h�l��a0�=a0 for translational,7,8

scaling,9,10 and cyclic11,12 shape invariance, respectively.
Another motivation for this work is to show that the isospectral Hamiltonians obtained from

k-SUSYQM are connected through shape invariance. In this respect, we shall use some specific
realizations of the Zk-graded Weyl-Heisenberg algebra Wk in order to generate a hierarchy of
Hamiltonians subjected to translational or cyclic shape invariance.

III. FRACTIONAL SUPERSYMMETRIC QUANTUM MECHANICS

A. Definition

Let us go now to k-SUSYQM. A k-fractional supersymmetric dynamical system is defined by
a triplet �H ,Q+ ,Q−�k of operators satisfying the following relations13–16,22

H = H†, Q− = Q+
†, Q±

k = 0,

�
s=0

k−1

Q−
k−1−sQ+Q−

s = Q−
k−2H, �H,Q±� = 0, �2�

where k=3,4 ,¯. The Hamiltonian H and the supercharges Q± of the dynamical system are linear
operators acting on a Hilbert space H,

H = �
s=0

k−1

Hs,

which is Zk-graded in view of the relations Q±
k =0. It is to be observed that Eq. �2� works equally

well in the case k=2 corresponding to ordinary SUSYQM.
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B. Generalized Weyl-Heisenberg algebra

Following Ref. 22, we consider the generalized Weyl-Heisenberg algebra Wk, with
k�N \ �0,1�, spanned by the four linear operators X+, X−, N, and K acting on the space H and
satisfying

X− = X+
†, N = N†, KK† = K†K = 1, Kk = 1,

�X−,X+� = �
s=0

k−1

fs�N��s, �N,X−� = − X−, �N,X+� = X+,

KX+ − qX+K = 0, KX− − pX−K = 0, �K,N� = 0, �3�

where q and p are roots of unity with

q = e2�i/k, p = e−�2�i/k�.

In Eq. �3�, the functions fs :N� fs�N� of the number operator N are such that

fs�N� = fs�N�†.

Furthermore, the operators �s are defined in terms of the Klein or grading operator K as

�s =
1

k
�
t=0

k−1

pstKt, s � S0.

It is easy to check that

�s = �s
†, �

s=0

k−1

�s = 1, �s�t = �s,t�s.

Consequently, the operators �s are projection operators for the cyclic group Zk. It can be proved
that they satisfy

�sX+ = X+�s−1 ⇔ X−�s = �s−1X−.

Note that the operators X+ and X− can be considered as generalized creation and annihilation
operators, respectively.

It should be realized that, for fixed k, Eq. �3� defines indeed a family of generalized Weyl-
Heisenberg algebras Wk. The various members of the family are distinguished by the various sets
�fs���fs�N� :s�S0�.

C. Realization of k-SUSYQM

We can use the generators of Wk for obtaining a realization of �H ,Q+ ,Q−�k.
First, we take the supercharge operators Q± �see Eq. �2�� in the form

Q− = X−�1 − �1�, Q+ = X+�1 − �0� . �4�

It can be proved that they satisfy the Hermitean conjugation property Q−=Q+
† and the k-nilpotency

property Q±
k =0. Note that there are k equivalent definitions of type �4� corresponding to the k

circular permutations of 0 ,1 , ¯ ,k−1.
Second, the k-fractional supersymmetric Hamiltonian H, satisfying �2� and compatible with

�4�, takes the form22
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H = �k − 1�X+X− − �
s=3

k

�
t=2

s−1

�t − 1�f t�N − s + t��s − �
s=1

k−1

�
t=s

k−1

�t − k�f t�N − s + t��s,

in terms of X+X−, �s, and fs. In addition, it can be shown that the operator H can be decomposed
as

H = �
s=1

k

Hs�s = �
s=0

k−1

Hk−s�k−s, �5�

where

Hs = �k − 1�X+X− − �
t=2

k−1

�t − 1�f t�N − s + t� + �k − 1��
t=s

k−1

f t�N − s + t�, s � S1. �6�

As an important result, it can be proved, from �H ,Q±�=0, that the k operators Hk�H0, Hk−1, ¯,
H1 constitute a hierarchy of isospectral Hamiltonians. Therefore, the spectra of H1 ,H2 , ¯ ,Hk−1

can be deduced from the spectrum of H0.

D. Representation of Wk

Let us now examine the action of X+, X−, N, and K on each subspace

Hs = �	n,s
:n ranging�

of H �n can take a finite or infinite number of values according to whether as Hs is of finite or
infinite dimension�. For this purpose, we introduce the structure functions Fs :N�Fs�N� through

X+X− = �
s=0

k−1

Fs�N��s, X−X+ = �
s=0

k−1

Fs+1�N + 1��s.

In view of Eq. �3�, we have the recurrence relation

Fs+1�n + 1� − Fs�n� = fs�n�, Fs�0� = 0. �7�

Then, we can take22

X+	n,s
 = �Fs+1�n + 1�	n + 1,s + 1
, s � k − 1,

X+	n,s
 = �Fs+1�n + 1�	n + 1,0
, s = k − 1,

X−	n,s
 = �Fs�n�	n − 1,s − 1
, s � 0,

X−	n,s
 = �Fs�n�	n − 1,k − 1
, s = 0,

N	n,s
 = n	n,s
, K	n,s
 = qs	n,s
 �8�

for the action of X+, X−, N, and K on space Hs. Relations �8� define a representation of Wk.
In the following, we shall consider two special cases of Wk: �i� The case where fs�N� is

independent of s �see Sec. IV� and �ii� the case where fs�N� is independent of N �see Sec. V�.
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IV. TRANSLATIONAL SHAPE INVARIANT POTENTIALS

A. Structure function

In this section, we assume that fs�N� is independent of s and linear in N. More precisely, we
take

fs�N� = aN + b ⇒ �X−,X+� = aN + b ,

with strictly positive eigenvalues, where a and b are two real parameters. Thus, from Eq. �7� we
have

X+X− � F�N,a,b� ,

where

F�N,a,b� =
1

2
aN�N − 1� + bN .

The nonlinear spectrum of X+X− is then given by

X+X−	n,s
 = �1

2
an�n − 1� + bn	n,s
 .

For either a=0 and b�0 or a�0 and b�0, the spectrum of X+X− is infinite-dimensional and
does not present degeneracies. For a�0 and b�0, the spectrum of X+X− is finite-dimensional
with n=0,1 , ¯ ,E�−b /a� and all the states are nondegenerate.

It is possible to find a realization of each of the three cases just described in terms of an
exactly solvable dynamical system in a one-dimensional space, with coordinate x, and character-
ized by a potential V�x ,a ,b�. As a matter of fact, we have the following:

�i� a=0 and b=1 correspond to the harmonic oscillator potential

Vho�x,0,1� = x2, �9�

with an infinite nondegenerate spectrum �n�N�.
�ii� a=2 and b=u+v+1, with u�1 and v�1, correspond to the Pöschl-Teller potential

VPT�x,2,�u +
1

2
,v +

1

2
�� =

1

4
� u�u − 1�

sin2�x/2�
+

v�v − 1�
cos2�x/2� −

1

4
�u + v�2, �10�

with an infinite nondegenerate spectrum �n�N�.
�iii� a=−2 and b=2l+1, with l�N, correspond to the Morse potential

VM�x,− 2,2l + 1� = e−2x − �2l + 3�e−x + �l + 1�2, �11�

with an finite nondegenerate spectrum �n=0,1 , ¯ , l�.

B. Isospectral Hamiltonians

The various isospectral Hamiltonians occurring in �5� are easily deduced from Eq. �6�. This
gives

Hk−s � Hk−s�N,a,b� = �k − 1��F�N,a,b −
1

2
ka + a + sa� +

1

6
�k − 2��ka − 3b�

+
1

2
s�s − k + 1�a + sb, s � S0.

Thus, the isospectral Hamiltonians are linked by
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Hk−s�N,a,b� = H0�N,a,b + sa� +
1

2
�k − 1�s�sa − a + 2b�, s � S0, �12�

a relation of central importance, in the k-SUSYQM context, for the derivation of the translational
shape invariance condition.

Let us denote by Vk�V0, Vk−1, ¯, V1 the potentials �in x-representation� associated with the
isopectral Hamiltonians H0, Hk−1, ¯, H1, respectively. In other words, we set

Hk−s�N,a,b� � −
d2

dx2 + Vk−s�x,a,b�, s � S0.

By using Eq. �12�, we immediately get the recurrence relation

Vk−s�x,a,b� = V0�x,a,b + sa� +
1

2
�k − 1�s�sa − a + 2b�, s � S0, �13�

which may be considered as the k-SUSYQM version of the translational shape invariance condi-
tion for ordinary SUSY �see Eq. �1��.

By way of illustration, Eq. �13� yields the following results.
�i� For the harmonic oscillator system:

Vk−s�x,0,1� = x2 +
1

2
�k − 1��2s − k + 2� . �14�

�ii� For the Pöschl-Teller system:

Vk−s�x,2,�u +
1

2
,v +

1

2
�� =

1

4
� �u + s + 1 − �k/2���u + s − �k/2��

sin2�x/2�

+
�v + s + 1 − �k/2���v + s − �k/2��

cos2�x/2�  −
1

4
�u + v + 2s + 2 − k�2

+
1

6
�k − 1��k − 2��2k − 3u − 3v − 3� + �k − 1�s�s − k + u + v + 2� .

�15�

�iii� For the Morse system:

Vk−s�x,− 2,2l + 1� = e−2x − �2l + k + 1 − 2s�e−x +
1

4
�2l + k − 2s�2 −

1

6
�k − 1��k − 2��2k + 6l + 3�

+ �k − 1�s�k − s + 2l� . �16�

In the case k=2 and s=0, Eqs. �14�–�16� reduce to Eqs. �9�–�11�, respectively.

V. CYCLIC SHAPE INVARIANT POTENTIALS

A. Structure function

In this section, we assume that fs�N� is independent of N, i.e.,

fs�N� = fs ⇒ �X−,X+� = �
s=0

k−1

fs�s.

�The paradigmatic case of the harmonic oscillator corresponds to fs=const for any s in S0.�
It is convenient to write the integer n occurring in 	n ,s
 as n=kp+ t with p�N and t�S0.

Here, to adapt our construction to one-dimensional periodic potentials, we restrict the Hilbert-Fock
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space H to its subspace G= �	kp+s ,s
 : p ranging; s�S0�. In addition, it is appropriate to denote
the state 	kp+s ,s
 as 	kp+s�. Hence, the action of the number operator N on the states 	kn+s� is
given by

N	kn + s� = �kn + s�	kn + s�

and the grading operator K can be identified, on the subspace G, with the operator qN since

K	kn + s� = qs	kn + s� = qkn+s	kn + s� = qN	kn + s� .

From Eq. �7�, it can be shown

Fs�N� = g0N + �
t=1

k−1

gt
1 − qst

1 − qt ,

where

gt =
1

k
�
s=0

k−1

pstfs, t � S0.

Thus, the action of

X+X− = �
t=0

k−1

gt
1 − qNt

1 − qt

on the space G reads

X+X−	kn + s� = �n�
i=0

k−1

f i + �
i=0

s−1

f i�	kn + s� . �17�

The spectrum of X+X− is periodic and can be seen as a superposition of identical blocks. For
a given block, the various gaps between the consecutive eigenvalues are

f0, f1, ¯ , fk−1.

The first block �corresponding to n=0� has the following nonzero eigenvalues,

E1 = f0,E2 = f0 + f1, ¯ ,Ek = f0 + f1 + ¯ + fk−1,

while the second block �corresponding to n=1� has the eigenvalues

Ek+1 = Ek + f0,Ek+2 = Ek + f0 + f1, ¯ ,E2k = Ek + f0 + f1 + ¯ + fk−1,

and so on for the subsequent blocks corresponding to n=2,3 ,¯ �the eigenvalue for the ground
state is E0=0�. In other words, in the �n+1�th block the parameter fs is the difference between the
eigenvalues for 	kn+s+1� and 	kn+s�. According to Eq. �17�, the various eigenvalues are given by

Ekn+s = nkg0 + �
i=0

s−1

f i, n � N ; s � S0.

Thus, each block has the length kg0, which can be considered as the period of the cyclic spectrum.
At this level, it should be emphasized that our approach covers the one of Ref. 11 concerning

the two-body Calogero-Sutherland model. The latter model corresponds to k=2. Consequently, the
relevant Hilbert-Fock space is
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G = �	2n + s�:n � N ; s = 0,1�

and X+X− reads

X+X− =
1

2
�f0 + f1�N +

1

2
�f0 − f1��1.

Equation �17� can then be particularized as

X+X−	2n� = n�f0 + f1�	2n� ,

X+X−	2n + 1� = �n�f0 + f1� + f0�	2n + 1� ,

in accordance with the results of 11. �Our parameters f0 and f1 read f0=	0 and f1=	1 in the
notations of 11.�

It is interesting to note that the spectrum of X+X− coincides with one of the Hamiltonian
corresponding to the potential �in x-representation�

V0�x, f0, f1� =
1

16
�f0 + f1�2x2 +

1

4

�f0 − f1��3f0 + f1�
�f0 + f1�2

1

x2 −
1

2
f1. �18�

Furthermore, using the standard tools of ordinary SUSYQM, we get

V1�x, f0, f1� =
1

16
�f0 + f1�2x2 +

1

4

�f1 − f0��3f1 + f0�
�f0 + f1�2

1

x2 +
1

2
f0, �19�

which corresponds to the operator X−X+.
For k�2, the derivation of analytical forms of the potentials exhibiting a cyclic spectrum was

discussed in Ref. 12.

B. Isospectral Hamiltonians

Going back to the general case, the expressions for the isospectral Hamiltonians in �6� can be
obtained from �5�. This yields the relations

Hs � Hs�N,�fs�� = �k − 1�X+X− + �
t=2

k−1

�1 − t�f t + �k − 1��
t=s

k−1

f t, s � S1.

These relations show that the spectra of the supersymmetric partner Hamiltonians H0, H1, ¯, Hk−1

can be deduced from the one of X+X− given by Eq. �17�. By combining the latter two relations, we
obtain

Hk−s�N,�fs�� = H0�N + s,�fs��, s � S0, �20�

an important relation for the derivation of the cyclic shape invariance condition.
From �20�, we can prove that

Hk−s�N,�fs�� = H0�N,h�s��fs�� + �
i=0

s−1

f i, s � S0 �21�

with

h�s� = h � h � ¯ � h, s times,

where h is the circular permutation
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h�fs� = h�f0, f1, ¯ , fk−2, fk−1� = �f1, f2, ¯ , fk−1, f0�

such that h�k� is the identity.
We continue with dynamical systems in one-dimensional space �coordinate x�. Let us note

V0�x , �fs�� the potential associated with H0�N , �fs��:

H0�N,�fs�� � −
d2

dx2 + V0�x,�fs�� .

From Eq. �21�, it is easy to check that the potential Vk−s�x , �fs�� associated with the Hamiltonian
Hk−s�N , �fs�� can be obtained via

Vk−s�x,�fs�� = V0�x,h�s��fs�� + �
i=0

s−1

f i, s � S0, �22�

to be compared with the cyclic shape invariance condition for ordinary SUSY �see Eq. �1� and
Refs. 11 and 12�.

As an example, for k=2, Eq. �22� leads to

V1�x,�f0, f1�� = V0�x,�f1, f0�� + f0,

a relation satisfied by Eqs. �18� and �19� for the Calogero-Sutherland potential.

VI. CONCLUDING REMARKS

It was shown in the present paper how to tackle k-fractional SUSYQM through a Zk-graded
Weyl-Heisenberg algebra, noted Wk with k=3,4 ,¯ �the case k=2 corresponding to ordinary
SUSYQM�. From the generators of this algebra, it was possible to find several realizations of
k-fractional supersymmetric dynamical systems. Each system was characterized by a k-fractional
supersymmetric Hamiltonian which gave rise to a hierarchy of k isospectral Hamiltonians Hk−s

with s�S0. Two special cases of algebra Wk were examined. They both led to k-fractional isos-
pectral Hamiltonians, the potentials of which are connected by a recurrence relation that reflects a
�translational or cyclic� shape invariance condition.

As a conclusion, k-fractional SUSYQM developed in the framework of algebra Wk turns out
to be a useful tool to generate a hierarchy of k isospectral Hamiltonians linked by a translational
or cyclic invariance condition.

A brief comparison with the results given by ordinary SUSYQM is in order. For k=2, the
hierarchy of Hamiltonians reduces to a pair of isospectal Hamiltonians. Therefore, in order to
generate a hierarchy of k isospectal Hamiltonians, it is necessary to apply ordinary SUSYQM
repeatedly. This is no longer the case for k-fractional SUSYQM since the hierarchy of k isospec-
tral Hamiltonians is generated at once. The equivalence between the approaches via ordinary
SUSYQM applied repeatedly and k-fractional SUSYQM is ensured by the fact that k-SUSYQM
can be seen as a superpostion of k−1 copies of ordinary SUSYQM.22

To close this paper, let us offer two remarks. First, it is worthwhile to mention that our
approach to k-SUSYQM by means of algebra Wk can be applied to other potentials. For instance,
by taking X+X−�F�N ,a ,b ,c�, where the structure function F is given by

F�N,a,b,c� =
1

2
aN�N − 1� + bN + c

1

�N + 1�2 ,

it might be possible to describe potentials involving a Coulombic part. Along this vein, a
k-SUSYQM study to the effective screened potential,40 singular inverse-power potentials,41 and
noncentral potentials42 could be fruitful. Second, it would interesting to examine the hidden
supersymmetries exhibited by the Aharanov-Bohm, Dirac delta, and Pöschl-Teller potentials34–36

in the light of our approach to k-fractional SUSYQM. For this purpose, the connection between
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ordinary SUSYQM, possibly in a q-deformed approach,43 and k-SUSYQM22 should play a central
role.
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The Schrödinger equation in integral form is applied to the one-dimensional scat-
tering problem in the case of a general finite range, nonsingular potential. A simple
expression for the Laplace transform of the transmission propagator is obtained in
terms of the associated Fredholm determinant, by means of matrix methods; the
particular form of the kernel and the peculiar aspects of the transmission problem
play an important role. The application to an array of delta potentials is shown.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2401728�

I. INTRODUCTION

The space-time propagator is a very important object in quantum physics; it governs the time
evolution of a dynamical state and naturally enters any kind of time dependent problem.1 It is
more fundamental than the wave function itself, since it is a characteristic of the physical system
and does not depend on initial conditions. However, its calculation is more difficult; suffice it to
consider the square potential: the wave functions are well known, but the propagator cannot be
expressed in a simple form. On the other hand, the knowledge of the propagator helps to the
insight into the physics of a quantum system. For example, let us think about the tunneling time
for a potential barrier: in a basic paper on this argument, it is shown that a satisfactory definition
of the tunneling time can be given just by the propagator;2 considering coupling effects in quan-
tum tunneling, it makes it possible to go beyond the perturbative expansion;3 studying the inter-
action of a system with a thermal bath, it accounts in a simple way for the oscillatory degrees of
freedom, so leading to the concept of effective action.4

The nonrelativistic quantum mechanical propagator can be expressed in several ways. The
most widely known one is the “spectral decomposition” method, but it is often used also the
path-integral approach. We refer to the literature for a complete discussion about this subject.5,6

In this paper we show that the integral Schrödinger equation allows us to find an interesting
expression for the Laplace transform �LT� of the one-dimensional transmission propagator, since
in this case the associated Fredholm equation of the second kind has a simple solution in terms of
the Fredholm determinant.

In Sec. II we derived the integral equation for the Laplace transform of the one-dimensional
propagator. In Sec. III the fundamental equation of quantum scattering is solved for a general finite
range, nonsingular potential, in order to obtain the LT in the case of a transmitted particle. Section
IV shows some properties of Fredholm determinant and in Sec. V we apply our results to an array
of delta potentials.

a�Electronic mail: paolo.moretti@isc.cnr.it
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II. THE INTEGRAL EQUATION

Let H0 be a Hamiltonian for which the propagator G0 is known and V a general potential. The
Schrödinger equation for the system with Hamiltonian H=H0+V is

i�
d

dt
���t�� = H���t�� , �1�

where ���t�� is the vector representing the dynamical state of our system. A standard procedure
leads to

���t�� = e−�i/��H0t���0�� −
i

�
�

0

t

d�e−�i/��H0�t−��V������ , �2�

that is, the Schrödinger equation in integral form. Using the representation where the position
variables are diagonal,7 and performing Wick rotation to imaginary time t→−it �Ref. 8� �in view
of the future use of the LT�, this equation is easily written in terms of the propagators G and G0,

G�x,t;�� = G0�x,t;�� −
1

�
�

0

t

d��
−�

�

d�G0�x,t − �;��V���G��,�;�� , �3�

where

G�x,t;�� = �x�e−�i/��Ht���, G0�x,t;�� = �x�e−�i/��H0t��� �4�

and � and x are the space coordinates at the times 0 and t, respectively.
After a LT,9

L	��x,t�
 = �
0

�

dt��x,t�e−st = ��x,s� ,

we are led to

G�x,s;�� = G0�x,s;�� −
1

�
�

−�

�

d�G0�x,s;��V���G��,s;�� . �5�

Let us suppose that H0 corresponds to the free particle. In imaginary time,7

G0�x,t;�� =� m

2��t
exp�−

m

2�

�x − ��2

t
 �6�

and therefore

G0�x,s;�� =
c

2

e−c�x−���s

�s
, c =�2m

�
. �7�

With the definitions,

G0�x,s;�� = ��x�, G�x,s;�� = ��x�, 	 =
c

2�

1
�s

, k = c�s . �8�

Equation �5� can be written in short, assuming that V has a finite range �0,a�,
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��x� + 	�
0

a

d�e−k�x−��V������� = ��x� , �9�

where the variable s, considered as a parameter, is omitted, since we are now mainly interested in
the space coordinates. We would like to point out that ��x� is nothing but Green’s function, whose
poles represent the energies of the system;6 the inverse LT is quite equivalent to an integration
over the energy.

III. THE SOLUTION OF THE INTEGRAL EQUATION FOR THE TRANSMISSION
PROPAGATOR GT

Equation �9� is a Fredholm integral equation of the second kind, with kernel

K�x,�� = e−k�x−��V��� . �10�

We will show that an appealing expression for the solution can be obtained in the case of the
transmission of a particle initially localized on the left of the barrier; i.e., when

� 
 0, x � a . �11�

In this case, to obtain the required result, Eq. �9� must be solved first for x� �0,a�, then reintro-
ducing the solution in the initial equation with x�a. To this aim, N steps discretization on the
interval �0,a� leads to10

� j + 	�
i=1

N

e−kxijVi�idx = � j, xij = �xi − xj�, dx =
a

N
, xi = idx, f i = f�xi� . �12�

In vectorial form �here and in the following, it is understood that the limit N→� will be per-
formed at the end�,

A�� = �� ⇒ �� = A−1�� , �13�

where

�� =�
�1

�2

�3

]

�N

� , �� =�
�1

�2

�3

]

�N

� �14�

and

A =�
1 + d	1 d	2e−kx12 d	3e−kx13 . . . d	Ne−kx1N

d	1e−kx12 1 + d	2 d	3e−kx23 . . . d	Ne−kx2N

d	1e−kx13 d	2e−kx23 1 + d	3 . . . d	Ne−kx3N

] ] ] � ]

d	1e−kx1N d	2e−kx2N d	3e−kx3N . . . 1 + d	N

� , d	i = 	Vidx , �15�

assuming that det A�0 �this assumption does not give rise to difficulties; see the end of this
section�. Now, in the transmission case Eq. �9� can be written as

��x� + 	e−kx�
0

a

d�ek�V������� = ��x� �16�

and, after discretization,11
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��x� + 	e−kx�
i=1

N

ekxiVi�idx = ��x� . �17�

Recalling that, by Eq. �7�,

��x� =
c

2

e−c�x−���s

�s
,

and introducing the vectors

�� =�
e−kx1

e−kx2

e−kx3

]

e−kxN

� , v� =�
d	1ekx1

d	2ekx2

d	3ekx3

]

d	NekxN

� �18�

Eq. �17� becomes

��x� = ��x� − e−kx�v�T · �� � = ��x� −
c

2

e−k�x−��

�s
v�T�A−1�� � = ��x��1 − v�TA−1�� � �19�

where T denotes the transposematrix or vector. Since

v�TA−1�� = �
i,j

vi�A−1�ij� j = �
i,j

�A−1�ij�vi� j� �20�

and defining the matrix

V = �� v�T =�
d	1 d	2ekx12 d	3ekx13 . . . d	Nekx1N

d	1e−kx12 d	2 d	3ekx23 . . . d	Nekx2N

d	1e−kx13 d	2e−kx23 d	3 . . . d	Nekx3N

] ] ] � ]

d	1e−kx1N d	2e−kx2N d	3e−kx3N . . . d	N

� , �21�

it follows at once

v�TA−1�� = �
i,j

�A−1�ij�VT�ij = Tr�A−1V� . �22�

Let R be the rank of a matrix; it is easy to recognize that R�V�=1 and therefore also R�A−1V�
=1.12 If �A�=det A=, we can write

�A − V� = �I − A−1V� .

Expanding the last factor by the diagonal minors13 and using R�A−1V�=1, one has

�I − A−1V� = 1 − Tr�A−1V� . �23�

On the other hand, A−V is a triangular matrix in which every diagonal element is 1, so that

�A − V� = 1. �24�

Therefore
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1


= 1 − Tr�A−1V� , �25�

and from Eqs. �19� and �22� we eventually obtain

��x� =
��x�


�26�

or, recalling Eq. �8�,

GT�x,s;�� =
G0�x,s;��

�	�
, �27�

 depending on s through 	�s� and k�s� �see definitions �8��. In Eq. �27� poles represent the
discrete energy levels, while cuts represent the continuous ones; the contour of the inverse LT to
obtain GT passes around these singularities, avoiding the values of s for which �	�=0.9

IV. EVALUATION OF THE FREDHOLM DETERMINANT �

We see therefore that the problem is completely solved by the knowledge of , that is the
Fredholm determinant relative to the integral equation �Eq. �9��. The result �Eq. �26�� represents
an important simplification, considering that for x� �0,a� the solution has a much more compli-
cated form,10

��x� = ��x� −
	

�	� � d��x,�;	����� , �28�

where �x ,� ;	� is similar to �	�; however, its explicit expression is not necessary here.
Rewriting  as

�	� = �
1 + 	K11dx 	K12dx 	K13dx . . . 	K1Ndx

	K21dx 1 + 	K22dx 	K23dx . . . 	K2Ndx

	K31dx 	K32dx 1 + 	K33dx . . . 	K3Ndx

] ] ] � ]

	KN1dx 	KN2dx 	KN3dx . . . 1 + 	KNNdx
� , �29�

where

Kij = K�xi,xj� = V�xj�e−k�xi−xj� = V�xj�e−kxij , �30�

the following expansion can be used:11,13

�	� = 1 + 	 �
p1=1

N

Kp1p1
dx +

	2

2 �
p1,p2=1

N �Kp1p1
Kp1p2

Kp2p1
Kp2p2

�
+ ¯ +

	N

N!
�

p1,p2,. . .,pN=1

N �
Kp1p1

Kp1p2
¯ Kp1pN

Kp2p1
Kp2p2

¯ Kp2pN

] ] � ]

KpNp1
KpNp1

¯ KpNpN

� . �31�

Now we can perform explicitly the limit N→� and obtain the everywhere convergent series �in
other terms, �	� is an entire function of 	�,
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�	� = 1 + �
n=1

�
	n

n!
Dn, �32�

Dn = �
0

a

dxn ¯ �
0

a

dx2�
0

a

dx1�
K�x1,x1� K�x1,x2� ¯ K�x1,xn�
K�x2,x1� K�x2,x2� ¯ K�x2,xn�

] ] � ]

K�xn,x1� K�xn,x2� ¯ K�xn,xn�
�

= �
0

a

dxn ¯ �
0

a

dx2�
0

a

dx1�
1 e−kx12

¯ e−kx1n

e−kx12 1 ¯ e−kx2n

] ] � ]

e−kx1n e−kx2n
¯ 1

�V�x1�V�x2� ¯ V�xn� . �33�

Among the interesting analytical properties of , the following is remarkable:11

��	�
�	�

= �
n=0

�

�− 1�nAn+1	n, �34�

where the An are the traces of iterated kernels,

An = �
0

a

dx�
0

a

dxn−1 ¯ �
0

a

dx2�
0

a

dx1K�x,xn−1�K�xn−1,xn−2� ¯ K�x2,x1�K�x1,x� . �35�

This alternative expression for  follows

�	� = e−F�	�, F�	� = �
n=1

�

�− 1�nAn
	n

n
. �36�

For example, in the case of a delta potential

V�x� = V��x − y�, 0 
 y 
 a , �37�

it is easily obtained An=Vn, so that

F�	� = �
n=1

�

�− 1�nVn	n

n
= − ln�1 + 	V� ⇒ �	� = 1 + 	V , �38�

and Eq. �27� gives the well known formula for the propagator of a delta potential.14,15 This result
can be obtained in a much easier way if one starts from expansion �32�, as it is shown in the next
section.

V. APPLICATION: AN ARRAY OF DELTA POTENTIALS

Atomic and molecular systems are often approximately represented by models involving
zero-range potentials; for example, to calculate exchange forces in hydrogen molecular ion,16 to
describe valence transfer during nuclear collisions,17 to obtain a closed form expression for phase
and dwell tunneling times,18 etc. So, the knowledge of the propagator in the general case of an
array of delta potentials can be useful,

V�x� = �
i=1

N

Vi��x − yi�, 0 
 y1 
 y2 
 ¯ 
 yN 
 a . �39�

It is a simple task to recognize that, introducing this expression of V into Eq. �33�, one has
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Dn = 0 for n � N , �40�

Dn = �
1 e−ky12

¯ e−ky1n

e−ky12 1 ¯ e−ky2n

] ] � ]

e−ky1n e−ky2n
¯ 1

�V1V2 ¯ Vn for n � N , �41�

with yij= �yi−yj�. In this way, the series �32� stops to n=N and represents a finite expansion by
principal minors; i.e.,

N = 1 + �
n=1

N
	n

n!
Dn = �

1 + 	1 	2e−ky12 	3e−ky13 . . . 	Ne−ky1N

	1e−ky12 1 + 	2 	3e−ky23 . . . 	Ne−ky2N

	1e−ky13 	2e−ky23 1 + 	3 . . . 	Ne−ky3N

] ] ] � ]

	1e−ky1N 	2e−ky2N 	3e−ky3N . . . 1 + 	N

� , 	i = 	Vi. �42�

Of course, this result could be achieved directly substituting the potential �Eq. �39�� into Eq. �9�,
automatically obtaining a �nonuniform� discretization in the interval �0,a�, and following the same
steps of Sec. III.

For N=1, 1=1+	V1; for N=2,

2 = 1 + 	�V1 + V2� + 	2V1V2�1 − e−2ky12� , �43�

and the results of Ref. 19 are found �in particular, the symmetry under the exchange of barriers is
remarkable�. For N=3,

3 = 1 + 	�V1 + V2 + V3� + 	2�V1V2�1 − e−2ky12� + V1V3�1 − e−2ky13� + V2V3�1 − e−2ky23��

+ 	3V1V2V3�e−2ky13 − e−2ky12 − e−2ky23 + 1� �44�

and Eq. �27� can be Laplace inverted by the same approximation methods of Ref. 19, getting the
space-time propagator GT�x , t ;��.

VI. CONCLUSIONS

The main result of the paper is given by Eq. �27�, representing a solution of the scattering
integral equation �Eq. �9��. We were able to obtain this solution since, in the transmission case, the
coordinate x is on the right of the integration interval �0,a�. It is far from a general, closed form
expression for the space-time propagator, since an inverse LT must be performed, but it can be the
starting point for approximate calculations, using the expansions �32� and �36� for �	�. It is worth
to point out that the calculations of Sec. III do not hold for reflected particles, showing in this way
a substantial and problematic difference between the quantum physics of transmission and the one
of reflection.

1 R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals �McGraw-Hill, New York, 1965�.
2 D. Sokolovski and L. M. Baskin, Phys. Rev. A 36, 4604 �1987�.
3 S. Coleman, in The Whys of Subnuclear Physics, edited by A. Zichichi �Plenum, New York, 1979�, pp. 805–941.
4 A. O. Caldeira and A. J. Leggett, Ann. Phys. �N.Y.� 149, 374 �1983�.
5 I. M. Gel’fand and A. M. Yaglom, J. Math. Phys. 1, 48 �1960�.
6 L. S. Schulman, Techniques and Applications of Path Integration �Wiley, New York, 1981�.
7 V. Vladimirov, Equations of Mathematical Physics �Mir, Moscow, 1984�, Chap. 3, Sec. 16.
8 A. Auerbach and S. Kivelson, Nucl. Instrum. Methods Phys. Res. B 257, 799 �1985�.
9 P. M. Morse and H. Feshbach, Methods of Theoretical Physics �McGraw-Hill, New York, 1953�, Pt. 1, Sec. 4.8.

10 F. G. Tricomi, Integral Equations �Dover, New York, 1985�, Sec. 2.5.
11 V. Smirnov, Course de Mathématiques Supérieures �Mir, Moscow, 1975�, Vol. IV, Pt. 1, Chap. I, Sec. 7.
12 H. Eves, Elementary Matrix Theory �Dover, New York, 1980�, Sec. 2.7.
13 T. Muir, A Treatise on the Theory of Determinants �Dover, New York, 1960�, Chap. IV, Sec. 127.

122109-7 Propagator for finite range potentials J. Math. Phys. 47, 122109 �2006�

                                                                                                                                    



14 B. Gaveau and L. S. Schulman, J. Phys. A 19, 1833 �1986�.
15 P. Moretti, J. Phys. A 38, 4697 �2005�.
16 T. C. Scott, J. F. Babb, A. Dalgarno, and J. D. Morgan, J. Chem. Phys. 99, 2841 �1993�.
17 G. Breit, Ann. Phys. 34, 377 �1965�.
18 B. Er-Juan and S. Qi-Qing, Chin. Phys. 14, 208 �2005�.
19 I. Cacciari and P. Moretti, Phys. Lett. A 359, 396 �2006�.

122109-8 I. Cacciari and P. Moretti J. Math. Phys. 47, 122109 �2006�

                                                                                                                                    



Relativistic quaternionic wave equation
Charles Schwartza�

Department of Physics, University of California, Berkeley, California 94720

�Received 22 September 2006; accepted 19 October 2006;
published online 1 December 2006�

We study a one-component quaternionic wave equation which is relativistically
covariant. Bilinear forms include a conserved four-vector current and an antisym-
metric second rank tensor. Waves propagate within the light cone and there is a
conserved quantity which looks like helicity. The principle of superposition is re-
tained in a slightly altered manner. External potentials can be introduced in a way
that allows for gauge invariance. There are some results for scattering theory and
for two-particle wave functions as well as the beginnings of second quantization.
However, we are unable to find a suitable Lagrangian or an energy-momentum
tensor. © 2006 American Institute of Physics. �DOI: 10.1063/1.2397555�

I. INTRODUCTION

Many attempts have been made to consider the extension of the usual quantum theory, based
on the field of complex numbers, to quaternions. The 1936 paper by Birkhoff and von Neumann1

opened the door to this possibility, and the 1995 book by Adler2 covers many aspects that have
been studied.

Here is a wave equation that appears to have escaped previous recognition:

��

�t
i = u · �� + m�j . �1.1�

The single wave function � is a function of the space time coordinates x , t. The usual elementary
quaternions i , j ,k, are defined by

i2 = j2 = k2 = ijk = − 1 �1.2�

and

u · � = i
�

�x
+ j

�

�y
+ k

�

�z
. �1.3�

Boldface type is used to designate a three-vector.
This combination Eq. �1.3� of elementary quaternions and space derivatives was originated by

Hamilton3 in 1846; its square is the negative of the Laplacian operator.
What one should note about Eq. �1.1� is that it employs quaternions which multiply the wave

function on both the right side and the left side. This distinction arises from the noncommutativity
of quaternion algebra and is central to the present study.

II. OTHER EQUATIONS

There are other quaternionic wave equations one can consider, based on the apparent struc-
tural similarities between quaternions and relativity. The simplest is

a�Electronic mail: schwartz@physics.berkeley.edu
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��

�t
= u · �� , �2.1�

which, when squared, appears as a four-dimensional Laplace equation, and not a wave equation.
Going to two-dimensions we construct

�
�

�t
u · �

u · � −
�

�t
�� = m� . �2.2�

When this equation is squared, we do get a wave equation, but it is for a tachyon. If one sets m
=0 in this equation, it can be revised to appear as either two copies of the Weyl equation or the
Maxwell equations �keeping only the imaginary components�.

Various authors have shown that the familiar Dirac equation can be put into quaternionic
form. This may be done by putting an i to the right of � on one side of Eq. �2.2� �Ref. 4� or by
the use of biquaternions in a one-component equation.5 All of those representations involve eight
real functions—as does the usual Dirac equation—while the basic equation of the current study
�Eq. �1.1�� involves only four real functions.

There are two other known relativistic equations with four real components. One of these is
the Majorana representation of the Dirac equation,

i����� = m� , �2.3�

where all four of the gamma matrices can be made purely imaginary, so that one can take all four
components of the Dirac wave function to be real functions of space-time. Indeed, if we write our
quaternionic wave function as

� = �0 + i�1 + j�2 + k�3, �2.4�

and arrange these four real functions as a column vector, then our Eq. �1.1� can be put in exactly
this Majorana-Dirac form. One awkward feature of that formalism is that the usual Dirac Lagrang-
ian becomes useless for an action principle, since every single term is identically zero.

The other comparison involves the Weyl equation �two complex components�, which is usu-
ally reserved for massless particles. One can map quaternions onto a two-dimensional space of
complex numbers. The correspondence can be expressed in terms of the familiar Pauli matrices
u→−i�, and the wave equation �1.1� can be written in a pseudo-Weyl form as

i
��

�t
= − i� · �� + m�2�*. �2.5�

In this second example, one also has trouble with the usual Lagrangian in that the mass term is
identically zero.

Both of these equations, Majorana-Dirac and modified Weyl, are used in building supersym-
metry theories �see, for example, Ref. 6�, but only after one introduces a second set of wave
functions—with “dotted” spinor indices. Thus, they do return to eight real functions, which are,
furthermore, not simply real functions but elements of a Grassmann algebra.

These comparisons leave me without a definitive answer to the question of whether the focal
equation of this paper �Eq. �1.1�� is truly something new in theoretical physics. The work pre-
sented here will be to explore this quaternionic wave equation on its own terms and see what
interesting things arise.

III. SOME PROPERTIES

In the usual quantum mechanics there is “gauge invariance of the first kind:” we can replace
the complex wave function � by exp�i���. This freedom is also noted by saying that there is a ray,
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not just one vector, in Hilbert space corresponding to each physical state. �The reader will note
that this paper focuses entirely on the wave function approach to quantum theory and not the
Hilbert space version.� For the quaternionic wave function we have a larger set of freedoms: �
→q1�q2, where the two numbers q1 ,q2 are quaternions of unit magnitude. The one on the left
induces a change of basis in the elementary quaternions u seen in Eq. �1.1�, while the one on the
right changes the particular choice of i and j acting to the right of � in that equation. Thus, instead
of the usual U�1� group, we appear to have SU�2��SU�2� /Z2.

A first calculation is to take another time derivative of Eq. �1.1� and arrive at the second-order
wave equation,

�2�

�t2 = �2� − m2� , �3.1�

which is the ordinary Klein-Gordon equation for a relativistic particle of mass m.
Now we look at some bilinear forms. The first is �=�*�, where the complex conjugation

operator �*� changes the sign of each imaginary quaternion �and requires the reversal of order in
multiplication of any expression upon which it operates�. The second is the vector U=�*u�.
While � is real, U is purely imaginary, and we can write U= iU1+ jU2+kU3 in terms of three real
three-vectors.

Making use of the wave equation �Eq. �1.1��, we then calculate

��

�t
= � · U1, �3.2�

which is the familiar statement of a conserved current. We shall return to U2 and U3 shortly. �If
you ask what singled out U1 as the conserved current, it is the choice of the imaginary i sitting
beside the time derivative in the wave equation �1.1�.�

IV. SPACE-TIME SYMMETRIES

Now we look at the behavior of the wave equation �1.1� under familiar symmetry transfor-
mations. To achieve rotation of the spatial coordinates x, we make the transformation

� → eR�, R = u · �/2, �4.1�

where � is the axis and the angle of rotation.
For the Lorentz transformation, we start with the infinitesimal form

� → � + B�i, B = u · v/2, �4.2�

where v is the direction and amount of the velocity boost. Note the appearance of the imaginary
i acting on the right of � in this transformation. I leave it as an exercise for the reader to show that
this transformation of � does indeed induce the familiar Lorentz transformation of the space-time
coordinates in the wave equation �1.1�.

One can now readily show that the components of the conserved current �� and U1� tansform
as a Lorentz four-vector. With a bit more work, one can also see that the other two vectors U2 and
U3 transform as the components of an antisymmetric second rank tensor in four dimensions �also
called a six-vector�.

A useful notation for operators that may multiply quaternionic functions on the right or on the
left is the following:1

�a��b�� = a�b, �a��b��c��d� = �ac��db� , �4.3�

which allows us to write the finite Lorentz transformation operator as e�B�i�.

1A similar notation was introduced by the authors of Ref. 4.
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The generators of the Lorentz group may be constructed as

J = x � �−
1

2
u, K = x

�

�t
+ t � −

1

2
u��i . �4.4�

One can extend this to the full Poincare group by adding the displacement operators: ��= ��t ,��.
In the Appendix is a more extensive study of various tensors that can be built from solutions

of the wave equation.

V. MORE BILINEAR FORMS

Start by defining the derivative operator which acts in both directions, d�= �d0 ,d�= 1
2 ����

−����. This is a covariant four-vector, but let us now see how things behave when we combine it
with the Lorentz transformation of the wave function:

D� 	 �*d�� → D� +
1

2

i,�*d�v · u�� . �5.1�

The expression D� is purely imaginary, and so we can write D�=D1,� i+D2,� j+D3,�k. I hope that
the use of the subscripts �1,2,3�, denoting which imaginary component they come from, does not
cause confusion with the vector or tensor subscripts �. The expression inside the anticommutator
brackets �next to i� is real. This leads us to conclude that under the Lorentz transformation of �

D2,� and D3,� are unchanged, �5.2�

D1,� → D1,� + more complicated stuff. �5.3�

This means that under the full Lorentz transformation of both coordinates and wave function
D2 and D3 behave simply as four-vectors. The quantity D1, however, will be shown in the Ap-
pendix to be part of a higher rank tensor.

Before proceeding, we note that D�=0 can be reexpressed by using the wave equation �1.1�:

D�=0 = − i	 −
j

2
� · U3 + k�m� +

1

2
� · U2 , �5.4�

where 		�*u ·d� is a real three-scalar. Under the Lorentz transformation of the wave function,
we calculate 	→	+v ·D1.

We have the identity

��D� = 0; �5.5�

and we will be interested in the following time derivatives, which are derived by using the wave
equation �1.1�:

�

�t
	 = − � · D1, �5.6�

�

�t
D� = i�2mD2,� − � · ��*ud���� − 2mjD1,� + �i,�*d�u · d�� , �5.7�

�

�t
U = i��� + 2�*u � d� + 2mU2� + j�− 2mU1 + 2D3 − � � U3� + k�− 2D2 + � � U2� .

�5.8�

See the Appendix for a more systematic discussion of tensor quantities.
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VI. PLANE WAVES

One way of representing “plane-wave” solutions of the wave equation �1.1� is

��x,t� = exp�
u · p̂p · x�� exp��i
p + km�t� , �6.1�

where 
= ±1. The set of possible momentum vectors p= p̂p should cover only one-half of space
to avoid overcounting of solutions. With this, one can construct the solution for the general initial
value problem:

��x,t� =� d3x��


�

H

d3p

�2��3 exp�
u · p̂p · �x − x�����x�,t� = 0�exp��i
p + km�t� , �6.2�

where the subscript H reminds us that the integral covers only half of momentum space.
With the expansions

exp�
u · p̂p · �x − x��� = cos�p · �x − x��� + 
u · p̂ sin�p · �x − x��� , �6.3�

exp��i
p + km�t� = cos�t� + �i
p + km�sin�t�/ , �6.4�

where =�p2+m2, we sum over 
 and reduce Eq. �6.2� to the following:

��x,t� =� d3x��
H

d3p

�2��32�cos�p · �x − x�����x�,0��cos�t� + km sin�t�/�

+ u · p sin�p · �x − x�����x�,0�i sin�t�/� . �6.5�

Here we can recognize that the results of the integrals over p �which now may be extended to
cover the full momentum space� give us functions of the invariant R2= t2− �x−x��2, which vanish
outside the light cone �R2�0�. Thus we do have relativistic causality for this quaternionic wave
equation; something which we could have expected because the solutions satisfy the Klein-Gordon
equation.

The Klein-Gordon equation also has the property that positive �negative� frequency solutions
propagate only to positive �negative� frequency solutions. For the quaternionic equation, we have
no way to talk about this distinction between positive and negative frequencies; however, we do
find a substitute “selection rule” for wave propagation here.

First, we note the orthogonality relation

� d3x

�2��3 exp�− 
�u · p̂�p� · x�exp�
u · p̂p · x� = �
,
���p ± p�� , �6.6�

where I have not required that both sets of momentum variables belong to the same half-space.
Next, we use this orthogonality in Eq. �6.2�, where we represent ��x� ,0� as any superposition of
plane wave solutions with exclusively 
�= +1 �or exclusively −1�. The resulting ��x , t� will
contain only that same value for 
. It is tempting to call this “helicity conservation” in the
propagation of these quaternionic waves.

This interpretation is bolstered by the following observations. The operator u ·�, acting on a
plane wave solution �Eq. �6.1��, has eigenvalue −
p. Furthermore, one can readily show, from Eq.
�1.1�, that

d

dt
� d3x�*u · �� = 0. �6.7�
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VII. SUPERPOSITION

In the usual �complex� quantum theory, if we have two solutions to the Schrodinger �time
dependent� equation, �1 and �2, then any linear combinmation c1�1+c2�2 is also a solution for
arbitrary complex numbers c1 and c2. With our quaternionic wave equation �1.1�, the idea of
superposition requires a slightly different wording.

Note that the general plane wave solution �Eq. �6.1�� has an arbitrary amplitude � positioned
in the midst of certain quaternionic functions of space and time. Given any such solution, we find
another solution by changing the amplitude: �→q�q�, where q and q� are arbitrary quaternionic
numbers. Furthermore, if we have one solution of Eq. �1.1�—�1 with amplitude �1—and another
solution—�2 with amplitude �2—then we also have a solution by simply adding these two: �1

+�2. This version of the principle of superposition is implicit in Eq. �6.2�.

VIII. ADDING POTENTIALS

The original wave equation �1.1� can be extended by the introduction of external potentials, as
follows:

��

�t
i = u · �� + e�� − eu · A�i + m�eieWj , �8.1�

where �, A, W are real functions of space-time. The gauge transformation that leaves this equation
invariant is

� → �eie�, �8.2�

� → � −
��

�t
, �8.3�

A → A + �� , �8.4�

W → W − 2� . �8.5�

One can show that the previously discussed symmetries still hold, with �� ,A� a Lorentz
four-vector and W a scalar. This appearance of the four-vector potentials is �almost� exactly like
the usual way of introducing electromagnetism into quantum theory; however, the explicit appear-
ance of a gauge quantity W is something different.

The reflection symmetries of Eq. �8.1� are

� → �j, t,A,W change sign �T� , �8.6�

� → �k, x,�,W change sign �CP� , �8.7�

� → �i, t,x,A,� change sign �TCP� . �8.8�

The current conservation equation �3.2� is still true for this extended wave equation �8.1�,
however, Eq. �6.7� must be modified. For the situation where W=0, we calculate

d	

dt
=

d

dt
��*u · d�� = − � · D1 + e� � · A − 2eA · ��*u � d�� , �8.9�

where we have used the notations from Sec. V. From this we see that in the case where the only
external potential is �, then the space integral of 	, which we identified with helicity, is conserved.
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IX. MORE ON PLANE WAVES

The plane wave solutions to the wave equation �1.1�, which we set out in Sec. VI, contain an
amplitude � which we should study some more:

��x,t� = exp�
u · p̂p · x�� exp��t� , �9.1�

where �=�̂= �i
p+km�, =�p2+m2.
We can ask to evaluate the various bilinear forms discussed earlier in the case of this plane

wave solution. The easiest are

� = �*�, 	 = − 
p�, D0 = �� , �9.2�

but to do more we must be able to evaluate �*u · p̂�.
I now propose to classify the constants � in a particular way. The set �� is defined such that

it performs a specific rotation, as follows:

p̂ · u�� = ���̂ , �9.3�

which sends one unit imaginary quaternion into another. With this type, the solution can be written
as

� = �� exp��̂�t + 
p · x�� , �9.4�

which looks like the sort of plane waves we are used to. It should be noted that this definition of
�� is not unique but leaves us with a U�1� class of equivalent amplitudes,

�� → �� exp���̂� , �9.5�

just as in ordinary �complex� quantum theory.
With this � type of amplitude, we can now evaluate the plane wave values for the following

bilinears:

U · p̂ = i�

p


+ k�

m


, D = 
p�U · p̂� . �9.6�

Components of the vector U which are orthogonal to p will oscillate rapidly in space, thus any
space average of them will be vanishingly small.

Two other categories for the amplitudes �, called � and �, can be defined as

u · p̂�� = �� j , �9.7�

u · p̂�� = �� j�̂ . �9.8�

Note that the three numbers �̂ , j , j�̂ are mutually anticommuting quaternions. If we calculate any
of the bilinears involving u · p̂ with either the � or � type of amplitude, the result will be rapidly
oscillating in time, thus any time average will be vanishingly small.

If we stay with the � type amplitudes, we get the following values, in the plane wave states,
for various four-vectors that are defined in Sec. V or the Appendix:

j� = ��1,
p/� , �9.9�

V� = ��
p,p̂� , �9.10�

D2,� = 0, �9.11�
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D3,� = �m�1,
p/� . �9.12�

The four-vectors j and D3 look like what we would expect for the usual energy-momentum. The
four-vector V, however, is spacelike, not timelike; it is similar to the spin vector s�

=��,�,�,�P�S�,� in the usual theories, where s0 is the helicity.
The plane wave solutions are characterized by a parameter p which we sometimes call “mo-

mentum.” This is merely a linguistic habit carried over from conventional quantum theory �fol-
lowing de Broglie’s rule that momentum equals Planck’s constant divided by wavelength� and
should not be confused with the physical quantity called momentum until and unless that connec-
tion is established.

X. SCATTERING

Lets start with the wave equation plus a source,

�

�t
�i = u · �� + m�j + s�x,t�i , �10.1�

and write the retarded solution as

��x,t� = �
−�

t

dt�� d3x��
H

d3p

�2��3�



exp�
u · p̂p · �x − x���s�x�,t��exp���t − t��� .

�10.2�

For the general scattering problem, we replace the source s with V� and add in the initial �free
particle� solution �0�x , t�. If the interaction V is independent of time, then we have an integral
equation,

��x,t� = �0�x,t� + �
−�

t

dt�� d3x��
H

d3p

�2��3�



exp�
u · p̂p · �x − x���

�V�x����x�,t��exp���t − t��� . �10.3�

Now we make the “Born approximation” that �=�0 under the integral and let the time t go to
+�. Then, we find that the integral over t� gives us ��−0�, which is usually read as conserva-
tion of energy. This result appears to be generally true, not just in the first Born approximation.
One can now project this solution onto any plane wave solution and achieve the quaternionic
version of the S matrix.

In the special case when the scattering potential V comes from the term � in the extended
wave equation �8.1�, we also find—as a result of the integral over t�—that we have the selection
rule 
=
0. This is consistent with the result noted after Eq. �8.9�.

XI. SOME OTHER SOLUTIONS

We can write solutions for the extended wave equation �8.1� in some special cases.
One may ask whether there is a central potential, ��r�, which leads to bound states. The

easiest way to explore this is through “reverse engineering:” write down a plausible wave function
and see what potential fits the wave equation. The form

� = �f�r� + u · r̂g�r����t� �11.1�

leads to the requirements
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r4 d

dr
f2 = −

d

dr
�r4g2�, e� = − f�/g, ��t� = �0ekmt. �11.2�

If we try the asymptotic �r→�� behavior, g→�r−�, we find a similar behavior for f , provided
that 0���2. The wave function is then normalizable for ��1.5, and the potential is e��r�
=���2−�� /r at large r. Looking instead at r→0, one can do the same analysis and require �
�1.5; this suggests that we are dealing with something like a shielded Coulomb potential.

There are familiar procedures for taking the nonrelativistic limit of the Klein-Gordon or Dirac
equation. Here is the best I could do with the present relativistic equation. First, write �
=�nr exp�kt�, where =�m2+p2�m−�2 /2m. Next, multiply the equation from the right with
i exp�−kt�. Finally, drop all terms that oscillate rapidly in time, as exp�±2kt�. The resulting
version of the full extended Eq. �8.1� is

��nr

�t
k � Hnr�nr, �11.3�

Hnr = − �2/2m + m�1 − cos�eW�� − �eu · A�k , �11.4�

which looks like an ordinary Schrodinger equation except that the single imaginary is called k
instead of i, and there is also the unfamiliar term with A. What looks like an effective potential
energy term �coming from the gauge quantity W� is positive, thus incapable of producing bound
states, although it might conceivably yield metastable states through the oscillation of the cosine
function.

XII. TWO-PARTICLE EQUATION

Previous studies of quaternionic quantum theory have gotten into trouble when they try to
write wave functions for multiparticle systems. In the ordinary �complex� theory, one simply
makes a direct product of one-particle wave functions, and because all the numbers there com-
mute, one can manipulate such a product to achieve various sensible results. In the quaternion
case, that approach leads to a horrid mess. �See, for example, Ref. 2, Chap. 9.�

The present work suggests a somewhat different approach. Consider this construction with
plane waves:

��1,2� = exp�
1u · p̂1p1 · x1���2�exp��1t1� , �12.1�

��2� = exp�
2u · p̂2p2 · x2�� exp��2t2� , �12.2�

which might be described as a “nested” product. The symbol � here is a quaternionic constant,
which can depend on all the parameters of this two-particle wave function. Note that we have
written this with independent time variables for the two particles.

These two-particle wave functions, with all their momentum-helicity labels, form a complete
orthogonal set of functions in the space of x1 and x2. Note, however, that this product is ordered
in a way that was meaningless in ordinary �complex� quantum theory but requires some extra
bookkeeping in the quaternionic case.

Let us introduce some more compact notation for such wave functions:

�op�1� 	 exp�
1u · p̂1p1 · x1��exp��1t1�� , �12.3�

where the � symbol separates those things that are to act on the left from what is to act on the right
of whatever follows. Then the two-particle wave function Eq. �12.1� can be written simply as

��1,2� = �op�1��op�2��; �12.4�

and we can also write the operator of the wave equation as
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D 	
�

�t
+ u · ��i − m�k . �12.5�

Next we have the propagators,

G�x − x�,t − t�� 	 �
p,


exp�
u · p̂p · �x − x����exp��i
p + km��t − t���� , �12.6�

where �p,
=�H�d3p / �2��3��
, and this leads to

DG�x − x�,t − t�� = 0, G�x − x�,0� = �3�x − x�� , �12.7�

G+�x − x�� 	 ��t − t��G�x − x�,t − t�� , �12.8�

DG+�x − x�� = �4�x − x�� . �12.9�

The coordinate x stands for the full space-time coordinates t ,x. Now Eq. �10.2� can be briefly
written as

��x� =� d4x�G+�x − x��s�x�� . �12.10�

Following that construction, we now write down a general two-particle quaternionic wave
function as follows:

��x1,x2� =� d4x1�G+�x1 − x1�� � d4x2�G+�x2 − x2��s�x1�,x2�� . �12.11�

Acting on this with two of those differential operators gives

D2D1��x1,x2� = s�x1,x2� . �12.12�

This is a two-particle wave equation of the Bethe-Salpeter type, involving separate times as well
as separate space coordinates. The term s might be left as an external source or might be used to
represent some interaction, such as V�1,2���1,2�. Note that the order in which the two differential
operators are applied is significant.

It seems easy now to extend this to any number of particles. This appears to be a significant
advance over previous studies of quaternionic wave equations, although there are still many issues
to be faced.

XIII. NO LAGRANGIAN

If I use the interacting wave equation �8.1�, and think that �* is something independent of �,
then the following would be suggested as a Lagrangian density:

L = i�*��

�t
i − i�*u · �� − i�*e�� + i�*eu · A�i − im�*�eieWj . �13.1�

Varying i�* gives immediately the full wave equation for �. Before varying �i on the right, we do
a few things: partially integrate in space and time; and move i from left side to right side in the
second and third terms and rearrange the i and j coefficients in the last term �this is justified
because those �*

¯� expressions are real�. Then we get the adjoint wave equation.
But that prescription is not what the usual action principle allows. The familiar game from

complex qm does not work here. If one varies each of the four real functions which make up both
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quaternionic functions � and �*, then we actually get 12 equations from the action principle. This
is due to the fact that this Lagrangian is imaginary, that is, it consists of three imaginary parts and
each of those parts must vanish after the variation. If we write

L = iL1 + jL2 + kL3, �13.2�

we find that the first term, L1, is Lorentz invariant �see Eq. �A9��; but what should we do with the
other two terms?

Our difficulty with a Lagrangian is different from the difficulty noted earlier for the Dirac-
Majorana equation or for the pseudo-Weyl equation. But we do have a problem here.

XIV. DISCUSSION

Several advances have been made in trying to develop a sensible quantum theory based on
quaternions, rather than complex numbers. So far, this work has been limited to the wave equation
formalism.

We have noted the lack of a conserved energy-momentum tensor �see the Appendix� as well
as the lack of a Lagrangian. Nevertheless, we can write down the time-development operator as

U�t� = eHt, H = − u · ��i + m�k . �14.1�

This operator H commutes with the angular momentum operator J, but whether we want to call it
the Hamiltonian is unclear. Perhaps these questions wait for a full model of how this quaternionic
wave system interacts with other physical systems.

Another approach that may be relevant to that problem, as well as to improving our treatment
of many-particle systems, is the method of second quantization. We are led to write down a
quaternionic quantum field operator as

��x,t� = �
p,


exp�
u · p̂p · x�ap,
 exp��i
p + km�t� �14.2�

involving some kind of annihilation/creation operators ap,
. With this we immediately get

N =
1

�2��3 � d3x� = �
p,


ap,

† ap,
, �14.3�

h =
1

�2��3 � d3x	 = − �
p,


ap,

† ap,

p . �14.4�

Can one be sure that the matrix product a†a is real? If these are matrices in a Fock space of the
sort we are familiar with, with nonzero elements only on one line parallel to the central diagonal,
then this product is real.

It remains unclear to this author whether the equation studied in this paper is merely an
alternative mathematical formulation of things already well known or whether it may have con-
sequential applications to some as-yet unidentified physics.
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APPENDIX: GENERAL TENSORS

We can construct Lorentz covariant tensors of any rank, as follows. Start with the direct
product of the “two-way” derivative operators:
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d�
n = d�1

d�2
¯ d�n

, �A1�

where the subscript � now stands for the set of indices �1¯�n. This expression is manifestly a
covariant tensor of rank n as far as the coordinate transformations are concerned, and our task is
to package these between the wave functions, which transform under infinitesimal Lorentz trans-
formations as given in Eq. �4.2�.

We note that the packages �*d�
n � are real for n even and imaginary for n odd, while these

conditions are reversed when we add the quaternions u inside the package.
We find the following constructions for covariant tensors of rank n+1, Q�,�

�n+1�=Q�,�

= �Q�,0 ,Q��:

Q�,� = ��*d�
n �,�− i

2
,�*d�

n u��� for n even, �A2�

Q�,� = ��− i

2
,�*d�

n ��,− �*d�
n u�� for n odd. �A3�

In the case n=0 this is just the four-vector current, previously written as j�= �� ,U1�. All these
tensors are real.

In addition, for n odd, we have the tensors of rank n,

R2,� = �− j

2
,�*d�

n ��, R3,� = �− k

2
,�*d�

n �� , �A4�

which generalize the previously noted four-vectors D2 ,D3. For n even, we have the tensors of rank
n+2, S�,�,�=−S�,�.�:

S�,0,� = − S�,�,0 = �− j

2
,�*d�

n u���, S�,�,� = ��,�,��− k

2
,�*d�

n u��� , �A5�

where � ,� ,�=1,2 ,3. This generalizes the previously noted six-vector �U2 ,U3�.
We can make lower rank tensors by contracting indices:

g�1,�2Q�,�
�n+1� = − �m2 +

1

4
�����Q��,�

�n−1�, �A6�

where �1 and �2 are in the set �, and the set �� has these two indices removed. An alternative is
to contract one of the � indices with the � index. We find, for solutions of the free wave equation
�1.1�, the following:

g�1,�Q�,�
�n+1� = − mR3,��

�n−1� for n even, �A7�

g�1,�Q�,�
�n+1� = 0 for n odd. �A8�

If we are looking to find a Lorentz scalar, a tensor of rank zero, take a closer look at the
second rank tensor Q�,�. The contraction is

Q�
� = �− i

2
,�*d0�� + �*u · d� = D1,0 + 	 �A9�

and this is exactly zero for the free equation �1.1� but not for the extended Eq. �8.1�, where it
equals −ej�A�.
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Now we look at the contraction of such tensors with the derivative operator. In what follows
we shall limit ourselves to solutions of the free equation �1.1�. It is transparent that ��1Q�,�=0 for
any �1 in the set of labels �. The same holds true for the tensors R and S. Furthermore, by using
the wave equation, one can show that

��Q�,� = 0 for n even, �A10�

��Q�,� = 2mR2,�
�n� for n odd. �A11�

For tensors of rank 1, we have just the previously identified j�, D2,�, and D3,�, all of which are
conserved.

At rank 2, the usual desire is for a conserved symmetric tensor, which one can call the
energy-momentum tensor. The closest we come here is the Q�,�, which is not symmetric and is
conserved only on the first index. Nevertheless, this does allow us to write integral quantities
which are conserved �their time derivatives vanish�, as follows:

V� = �V0,V� 	 � d3xQ0,�
�2� , �A12�

V0 = −� d3x�*u · d� , �A13�

V =� d3x�D1 + mU3 −
1

2
� � U1� . �A14�

This is not what we would identify as the energy-momentum, as noted at the end of Sec. IX.
For the second rank antisymmetric tensor we have

��S�,� = − 2mj� + 2D3,�, �A15�

S̃�,� = ��,�,�,�S�,�/2, �A16�

��S̃�,� = − 2D2,�. �A17�
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We use the Hopf algebra structure of the time-ordered algebra of field operators to
generate all connected weighted Feynman graphs in a recursive and efficient man-
ner. The algebraic representation of the graphs is such that they can be evaluated
directly as contributions to the connected n-point functions. The recursion proceeds
by loop order and vertex number. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2390657�

The combinatorics of perturbative quantum field theory is traditionally dealt with via func-
tional methods and generating functions. However, it is possible to use a more intrinsic algebraic
approach instead, rooted directly at the level of n-point functions and pioneered in the 1960s, see
Ref. 1.

More recently, it was realized that the Hopf algebra structure of the algebra of field operators
�with the normal or with the time-ordered product� can be fruitfully exploited. In particular, using
the Hopf algebra and its cohomology it was shown �among other things� how different products of
the algebra of field operators are related by Drinfeld twists and how interactions correspond to
2-cocycles.2

Relations between different types of n-point functions and the associated combinatorics of
Feynman graphs via the Hopf algebra structure of the time-ordered algebra of field operators were
established in Ref. 3. More precisely, the relations between complete and connected n-point
functions on the one hand and between connected and 1-particle irreducible n-point functions on
the other hand were described in this way. At the center of that work stands an algorithm to
recursively generate all tree graphs and their values as Feynman graphs. The underlying structure
in this is an algebraic representation of graphs in terms of certain generalized monomials in field
operators.

In the present paper we extend this algorithm to recursively generate all connected graphs
using this algebraic representation. The recursion proceeds by loop number �and by vertex num-
ber�. The special case of vanishing loop number precisely recovers the algorithm of Ref. 3.
Crucially, and as in the special case of tree graphs, the correct weights of graphs are obtained so
as to allow for their direct evaluation in terms of the Feynman graph expansion of the connected
n-point function of a quantum field theory. Note, however, that no type of renormalization proce-
dure is taken into account. In this sense the computed n-point functions may be considered as bare
ones.

As in the previous work3 all results apply to bosonic as well as fermionic fields and the
algorithm is amenable to direct implementation and should allow efficient calculations.

Section I reviews basics about certain graphs and their symmetries, n-point functions, Feyn-
man graphs, the algebraic representation of graphs, and the Hopf algebra structure of the time-
ordered field operator algebra. Section II contains the main result with the algorithmic construction
of connected graphs and its proof. Section III presents an alternative recursive algorithm to
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construct connected graphs that can be applied directly on the level of n-point functions. Section
IV offers some discussion, especially concerning the efficient algorithmic implementation and the
inclusion of fermions. The Appendix lists all connected graphs without external edges and with up
to three internal edges together with their weight factors.

I. BASIC CONCEPTS AND DEFINITIONS

The basic setup in this paper is substantially similar to that of Ref. 3. Hence, the present
section has substantial overlap with Sec. II and a part of Sec. IV of that paper. Nevertheless, there
are important differences, most notably a more extensive treatment of abstract graphs and their
symmetries.

A. Graphs

We introduce certain kinds of graphs and elementary properties of them. The graphs will be
later interpreted as Feynman graphs. Here we are only interested in them as abstract graphs.

Definition 1: A graph is a finite collection of vertices and edges, such that any end of an edge
may be connected to a vertex. Edges that are connected to vertices at both ends are called internal,
while edges with at least one free end are called external. Internal edges with both ends connected
to the same vertex are also called self-loops. The valence of a vertex is the number of ends of
edges connected to the vertex. The loop number of a graph is its number of cycles. A graph is
connected if it is connected as a topological space.

We recall the well known relation between vertex number, edge number, and loop number of
connected graphs.

Lemma 2: Consider a connected graph with at least one vertex. Let v, e, and l be its number
of vertices, internal edges, and loops, respectively. Then,

l = e − v + 1. �1�

Definition 3: A labeled graph is a graph whose free ends of external edges are labeled with
labels from a label set. Labels on different ends of edges are required to be distinct.

In the following we shall consider only such labeled graphs, i.e., from now on graph means
labeled graph. The label set is fixed from the outset and will later be identified with an appropriate
set of field operator labels.

Definition 4: A graph is said to be vertex ordered if its vertices are ordered. That is, the
vertices are numbered 1, . . . ,n, where n is the total number of vertices. A graph is said to be edge
ordered if the ends of its internal edges are ordered. That is, the ends of internal edges are
numbered 1, . . . ,2m, where m is the total number of internal edges (each edge having two ends).
A graph is called ordered if it is both vertex ordered and edge ordered.

Definition 5: Consider an ordered graph �. A symmetry of � is a permutation of the num-
bering of the vertices and of the end points of the internal edges that yields combinatorially the
same ordered (and labeled) graph. The number of symmetries, i.e., the order of the group of
permutations leaving the graph invariant, is called the symmetry factor of the graph. It will be
denoted by S�.

Since the symmetry factor is the same for any ordering of the vertices and ends of internal
edges of a graph, the concept is well defined for unordered graphs as well.

Definition 6: Consider a vertex ordered graph �. A vertex symmetry of � is a permutation of
the numbering of its vertices, which yields combinatorially the same vertex ordered (and labeled)
graph. The order of the group of vertex symmetries is called the vertex symmetry factor of the
graph. It will be denoted by Svertex

� .
Definition 7: Consider an ordered graph �. An edge symmetry of � is a permutation of the

numbering of the ends of its internal edges that yields combinatorially the same ordered (and
labeled) graph while the order of the vertices is held fixed. The order of the group of edge
symmetries is called the edge symmetry factor of the graph. It will be denoted by Sedge

� .
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Clearly, the concepts of vertex and edge symmetry factors also make sense for unordered
graphs as the vertex and edge symmetry factors are the same for any ordering of the vertices and
of the ends of the internal edges of a graph, respectively.

Lemma 8: Let � denote an ordered graph. The orders of the associated symmetry groups
satisfy S�=Svertex

� ·Sedge
� .

Proof: Denote the group of symmetries, vertex symmetries, and edge symmetries of � by G�,
Gvertex

� , and Gedge
� , respectively. Note that an edge symmetry is merely a particular type of sym-

metry. Hence, the group Gedge
� may be seen as a subgroup of G� via an injective group homomor-

phism Gedge
� →G�. Furthermore, a symmetry defines a vertex symmetry by forgetting its action on

the numbering of ends of edges. On the other hand, any vertex symmetry can be augmented to a
symmetry. Hence, there is a surjective group homomorphism G�→Gvertex

� . It is easy to see that the
group homomorphisms form an exact sequence of groups

0 → Gedge
� → G� → Gvertex

� → 0.

Hence, as the groups are finite their orders satisfy S�=Svertex
� ·Sedge

� . �

Lemma 9: Consider a connected graph �. Let v be its number of vertices. For each vertex
1� i�v let pi be the number of self-loops connected to it. Let t be the number of pairs of vertices
which are directly connected through at least one edge. For each pair 1� j� t of such vertices let
qj be the number of edges connecting it. Then, the edge symmetry factor of � is given by Sedge

�

= ��i=1
v 2pipi!��� j=1

t qj!�.
The proof is straightforward combinatorics.

B. n-point functions and Feynman graphs

The physical content of a quantum field theory is usually extracted from its n-point functions.
In perturbation theory, these are computed as sums of values of Feynman graphs. We briefly
review here the essentials. More details can be found in any standard textbook on quantum field
theory such as Ref. 4.

We denote by G�n��x1 , . . . ,xn� the complete n-point function. This is the vacuum expectation
value of the time-ordered product of n field operators, i.e.,

G�n��x1, . . . ,xn� = �0�T��x1� ¯ ��xn��0� .

The notation we use here suggests a scalar field theory on Minkowski space time. In general there
would be internal field indices as well and possibly other modifications �other space time, etc.�.
The real nature of the fields is completely irrelevant for our treatment as long as the standard
perturbative treatment applies. Therefore, we shall continue with our present notation for simplic-
ity. Hence, we denote field operators generically by ��x�, where x is from a label set �here
suggestive of points in Minkowski space�. Furthermore, we shall assume all fields to be bosonic.
The fermionic case is also straightforward, but includes extra factors, see Sec. IV.

Let V be the complex vector space of linear combinations of field operators ��x�. The algebra
generated by the field operators with the time-ordered product is commutative and can be identi-
fied with the symmetric algebra S�V� over V. More precisely, S�V�= �k=0

� Vk, where Vk is the space
of linear combinations of monomials of degree k in the field operators and V0 is the one-
dimensional vector space spanned by the identity element 1. We may now express ensembles of
n-point functions as functions S�V�→C. In particular, we may set

����x1� ¯ ��xn�� ª G�n��x1, . . . ,xn� .

In perturbation theory, the n-point functions can be computed as a sum over values of Feyn-
man graphs. For the complete n-point functions we may write
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G�n��x1, . . . ,xn� = �
���n

w���x1, . . . ,xn� . �2�

Here �n is the set of Feynman graphs. These are graphs � in the sense of Sec. I A with n external
edges labeled by field operator labels x1 , . . . ,xn. �Note that usually Feynman graphs involve lines
of different types depending on particle species. In our treatment lines correspond to sums over all
particle species. The information about which particle species can interact resides completely in
the vertex functions.� Indeed, from here onward we fix the label set to be the label set of the field
operators. The value of a graph � labeled by x1 , . . . ,xn is denoted above by ��x1 , . . . ,xn�. The set
�n may be taken to be precisely the set of all graphs with n external legs �up to topological
equivalence�. The weight factor w� is precisely the inverse of the symmetry factor S� of a graph
in the sense of Definition 5.

We should emphasize that the discussion here applies to bare n-point functions. Renormaliza-
tion is outside the scope of the present paper.

The type of n-point functions we shall be interested in in the following are the connected ones,
denoted Gc

�n�. These may be defined in the same way as �2�, but with the restriction that only
connected graphs are considered. We define � :S�V�→C via

����x1� ¯ ��xn�� ª Gc
�n��x1, . . . ,xn� .

We now turn to the calculation of the value of a Feynman graph. The Feynman propagator
GF�x ,y� is the value of the graph that consists of an edge only, its two ends labeled by x and y,
respectively. The value of a graph that consists of a vertex with external edges labeled by x1 , . . . ,xk

is given by the vertex function F�x1 , . . . ,xk�. Note that we can encode the ensemble of vertex
functions in a way analogous to n-point functions as a function 	 :S�V�→C via

	���x1� ¯ ��xn�� ª F�x1, . . . ,xn� . �3�

For more general graphs we also need the inverse Feynman propagator, GF
−1, determined by

the equation

	 dyGF�x,y�GF
−1�y,z� = 
�x,z� . �4�

The value of a general graph may then be computed as follows: Associate a label with each
internal edge and form the product over a vertex function associated with each vertex and an
inverse Feynman propagator associated with each internal edge. Finally, integrate over all possible
assignments of internal labels.

C. Algebraic representation of graphs

We introduce an algebraic representation of graphs based on the time-ordered operator algebra
S�V� and allowing straightforward evaluation of graphs in the above sense. More precisely, we
associate a given graph with v vertices with a certain element in S�V��v, the v-fold tensor product
of S�V�.

Each vertex of the graph corresponds to one tensor factor. A product ��x1�¯��xn� in a given
tensor factor corresponds to external edges of the associated vertex whose end points are labeled
by x1 , . . . ,xn. To represent internal edges, we define the formal elements Ri,j �S�V��v with 1
� i� j�v using the inverse Feynman propagator �4�. �Ri,j is formal insofar as it really lives in a
completion of the tensor product S�V��v. However, this fact is largely irrelevant for our purposes.�
For i� j the definition is
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Ri,j ª	 dxdyGF
−1�x,y��1� i−1

� ��x� � 1� j−i−1
� ��y� � 1�v−j� , �5�

with the field operators ��x� and ��y� inserted at the ith and jth positions, respectively. For i= j
the definition is

Ri,i ª	 dxdyGF
−1�x,y��1� i−1

� ��x���y� � 1�v−i� . �6�

The element Ri,j �S�V��v corresponds to one internal edge connecting the vertices which occupy
the positions i and j. In particular, the element Ri,i�S�V��v for 1� i�v is interpreted as an
internal edge connecting the ith vertex to itself. That is, it corresponds to a self-loop.

Combining several internal edges �which can be self-loops� and their products with external
edges by multiplying the respective expressions in S�V��v allows to build arbitrary graphs with v
vertices. Figure 1 shows some examples. It is then obvious that applying the vertex functions 	
defined by Eq. �3� to each tensor factor yields precisely the value of the respective graph as a
Feynman graph. Thus, the graphs we just discussed are exactly those that are to enter in the
v-vertex contribution to an n-point function.

The ordering of the tensor factors of S�V��v induces an ordering of the vertices of the graphs
in the sense of Definition 4. However, when applying 	�v the ordering is “forgotten.” Indeed, it is
not relevant for the interpretation of graphs as Feynman graphs, but only plays a role at the level
of their algebraic representation here. In the following, we will encounter elements of S�V��v that
are linear combinations of expressions corresponding to graphs. In this context, we call the scalar
multiplying the expression for a given graph the weight of the graph. Clearly, if we are interested
in unordered graphs, the weight of such a graph is the sum of the weights of all vertex ordered
graphs that correspond to it upon forgetting the vertex order.

D. The field operator algebra as a Hopf algebra

A crucial ingredient of our setting is the fact that the algebra S�V� of time-ordered field
operators is not only an algebra but a Hopf algebra. That is, S�V� carries a coproduct � :S�V�
→S�V� � S�V� and a counit � :S�V�→C that are compatible with its algebra structure and unit.
�S�V� also carries an antipode map, but this will not be used in the following.� We refer the reader
to Ref. 5 for a classical treatment of Hopf algebras and to Ref. 6 for the Hopf algebra structure of
the symmetric algebra. The significance of this Hopf algebra structure for quantum field theory
was developed in Ref. 2. �Note, however, that the product taken there is the normal product and
not the time-ordered one.�

At this point we will only mention the explicit form of the coproduct on S�V�. On monomials
this takes the form

����x1� ¯ ��xn�� = �
I1�I2=
��x1�,. . .,��xn��

T�I1� � T�I2� , �7�

and is extended to all of S�V� by linearity. Here the sum runs over partitions of the set of field
operators 
��x1� , . . . ,��xn�� into two sets I1 and I2. T denotes the time-ordered product of the field

FIG. 1. Examples of the algebraic representation of graphs in terms of elements of S�V��v.
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operators in the corresponding partition. The coproduct may be extended �by suitable composition
with itself� to a map �on monomials and extended by linearity�,

�k���x1� ¯ ��xn�� = �
I1�¯�Ik+1=
��x1�,. . .,��xn��

T�I1� � ¯ � T�Ik+1� . �8�

The difference to the single coproduct is that the set of field operators is now split into k+1
partitions. Note also that the partitions are ordered, i.e., the sets I1 , . . . , Ik+1 are distinguishable. An
important property of the coproduct is that it is multiplicative, i.e., it is an algebra map with
respect to the algebra structure of S�V� �and the induced algebra structure on the tensor product�.
A more extensive discussion of the Hopf algebra structure, adapted to the present context, can be
found in Ref. 3.

II. GENERATING LOOP GRAPHS

A. Statement of result

The main result of this paper, which is the subject of the present section, may be described as
an efficient algorithm that recursively generates all connected graphs �. The graphs are generated
together with the correct weights w�, explained in Sec. I B. In particular, the recursion is such that
it may be organized in ascending loop order. Also, the graphs are generated directly in the
algebraic representation introduced in Sec. I C. This allows their direct evaluation as Feynman
graphs.

More precisely, we shall construct recursively a set of maps l,v :S�V�→S�V��v indexed by
integers l and v such that the following theorem holds.

Theorem 10: Fix integers l, n�0, v�1, and operator labels x1 , . . . ,xn. Then,
l,v���x1� . . .��xn���S�V��v corresponds to the weighted sum over all connected graphs with l
loops, v vertices, and n external edges whose end points are labeled by x1 , . . . ,xn, each with
weight being the inverse of its symmetry factor.

This specializes for l=0 to Lemma 10 of Ref. 3, with �v−1=0,v.
We may conclude with the interpretation in terms of Feynman graphs and n-point functions.

Denote the l-loop and v-vertex contributions to the ensemble � of connected n-point functions by
�l,v. In particular, the l-loop order contribution �l to � and � itself are given by

�l = �
v=0

�

�l,v, � = �
l=0

�

�l.

There is only one contribution with zero vertex number. This is the Feynman propagator contrib-
uting to the 2-point function. Hence �l,v is zero if v=0 and l�0, while �0,0 is nonzero only on
V � V and coincides there with the Feynman propagator. All nonzero vertex number contributions
are captured by the following corollary.

Corollary 11: For v�1,

�l,v = 	�v � l,v.

Restricting to the l=0 �tree level� contribution recovers Corollary 18 of Ref. 3. Note, however,
that the contribution corresponding to the Feynman propagator was missing there as well as in
Theorem 5 of that paper.

The Appendix lists all connected graphs without external edges as weighted contributions to
l,v�1�, for edge number e= l+v−1�3.
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B. Construction and proof

The proof proceeds in a manner very analogous to the proof in Ref. 3. Indeed, each interme-
diate lemma in this section specializes to a corresponding lemma in Sec. IV of that paper when
restricted to the case l=0. We do not point this out explicitly in the following, but refer the reader
to that paper for comparison.

In order to construct l,v we introduce certain auxiliary maps. Using the componentwise
product in S�V��v, we may view the elements Ri,j, defined by Eq. �5� and �6�, as operators on this
space by multiplication. In particular, these elements are used to define the following maps.

• Ti :S�V��v→S�V��v, with 1� i�v, as the operator Ri,i together with the factor 1 /2:

Ti ª
1

2
Ri,i. �9�

• Qi :S�V��v→S�V��v+1, with 1� i�v, given by the composition of Ri,i+1 with the coproduct
applied to the ith component of S�V��v, i.e., �iª id� i−1 � � � id�v−i :S�V��v→S�V��v+1,
together with a factor of 1 /2:

Qi ª
1

2
Ri,i+1 � �i. �10�

The map Ti given by Eq. �9� endows the ith vertex of a vertex ordered graph with a self-loop
together with a factor of 1 /2. The latter is the inverse of the edge symmetry factor of a single
self-loop �see Lemma 9�. The action of the map Qi given by Eq. �10� is less simple. Consider the
coproduct �i applied to the ith component of S�V��v. Recalling formula �7�, we see that �i

converts a graph with v vertices into a sum over graphs with v+1 vertices by splitting the ith
vertex into two in all possible ways. That is, the ith vertex is replaced by two vertices �numbered
i and i+1� and the edges ending on it �considered as distinguishable� are distributed between the
two new vertices in all possible ways. Note that the two new vertices are distinguished due to the
ordering of the tensor factors. Thus, to obtain the corresponding operation for unordered graphs
we need to divide by a factor of 2. This factor corresponds to the two different relative orderings
of the new vertices with which each unordered configuration occurs. The only exception to this is
the case when the split vertex has no edges at all. No overcounting happens in this case. The
meaning of the map Qi given by Eq. �10� becomes clear now in terms of graphs. Namely, it splits
the ith vertex into two and subsequently reconnects the two new vertices with an edge. Dividing
by 2 compensates for the double counting as described above if we are interested in unordered
graphs �assuming the set of endings of edges of the split vertex is not empty�.

We remark that the maps Ti increase both the loop and edge numbers of a graph by one unit,
leaving the vertex number invariant, while the maps Qi increase both the edge and vertex numbers
by one unit, leaving the loop number invariant.

We use the maps Ti and Qi, given by Eq. �9� and �10�, respectively, to define recursively maps
l,v :S�V�→S�V��v for l�0 and for v�1 as follows:

0,1
ª id,

�11�

l,v
ª

1

l + v − 1
��

i=1

v−1

Qi � l,v−1 + �
i=1

v

Ti � l−1,v .

Note that in the recursion equation above the T and Q summands do not appear when l=0 or
when v=1, respectively. Figure 2 shows the recursive dependencies of l,v for different l, v with
l+v�4.

We notice that l,v satisfies the following factorization property.
Lemma 12: Fix integers l, n, m�0, v�1, and operator labels x1 , . . . ,xn, y1 , . . . ,ym. Then,

l,v satisfies the factorization property
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l,v���x1� ¯ ��xn���y1� ¯ ��ym�� = l,v���x1� ¯ ��xn���v−1���y1� ¯ ��ym�� . �12�

Proof: This follows from the multiplicativity of the coproduct and the recursive definition
�11�, noticing that each time the vertex number increases by 1, one coproduct is applied as part of
the operator Qi. �

We now turn to the proof of Theorem 10. We begin with weaker lemmas, increasing their
strength stepwise until reaching the desired result.

Lemma 13: Fix integers l, n�0, v�1 as well as field operator labels x1 , . . . ,xn. (a)
l,v���x1�¯��xn�� corresponds to a weighted sum of connected graphs with l loops, v vertices,
and n external edges whose end points are labeled by x1 , . . . ,xn. (b) Any connected graph with l
loops, v vertices, and the given external edges occurs in l,v���x1�¯��xn�� with some positive
weight.

Proof: First, it is clear that 0,1���x1�¯��xn�� corresponds to the connected graph with one
single vertex with no self-loops and the external edges whose end points are labeled by x1 , . . . ,xn.
Moreover, l,v���x1�¯��xn�� is generated from this by sums of multiple applications of the maps
Ti and Qi with scalar factors according to recursion formula �11�. Both Ti and Qi convert a term
corresponding to a connected graph to a sum over terms corresponding to connected graphs. Thus,
l,v���x1�¯��xn�� is a sum of terms each of which corresponds to a connected graph �with some
weight�. Second, the fact that every graph contained in l,v���x1�¯��xn�� has l loops and v
vertices follows from noticing that the maps Ti increase the loop number by one unit, while the
vertex number remains fixed, and the maps Qi increase the vertex number by one unit, leaving the
loop number unchanged. This concludes the proof of �a�.

To prove �b� we proceed by induction on the internal edge number e= l+v−1 �recall Lemma
2�. The result is evidently valid for e=0, corresponding to l=0 and v=1. We assume that the result
holds for e−1. Let � denote a graph with l loops and v vertices so that l+v−1=e. We show that
it is generated by applying the maps Ti or Qi to graphs contained in l−1,v���x1�¯��xn�� or in
l,v−1���x1�¯��xn��, respectively. Since both Ti and Qi produce graphs with positive weight
from graphs with positive weight, the weight of a graph � occurring in l,v, being given by a sum
over positive contributions according to formula �11�, is positive. Now, suppose the graph � has at
least one vertex with one or more self-loops. Let this vertex occupy the ith position, for instance.
Shrinking one of these self-loops yields a graph that corresponds by assumption to a term in
l−1,v���x1�¯��xn�� with some positive weight so that applying the map Ti to the vertex i
produces the graph � with �positive� weight. Thus, by formula �11� the graph � occurs in l,v.

FIG. 2. Recursive dependencies of the maps l,v up to order l+v�4. The right directed arrows correspond to Ti maps
while the left directed ones correspond to Qi maps.
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Finally, suppose the graph � does not contain vertices with self-loops. Choose an arbitrary internal
edge. Shrinking this edge and fusing the vertices it connects yield a graph that corresponds by
assumption to a term in l,v−1���x1�¯��xn��. Say, the fused vertex has position i. Applying Qi to
this term will yield a sum over terms one of which will correspond to the original. By the recursive
definition of l,v���x1�¯��xn�� it thus contains this term with positive weight. This completes
the proof of �b�. �

What remains in order to prove Theorem 10 is to show that the term corresponding to each
graph has weight given exactly by the inverse of its symmetry factor. We start with a more
restricted result.

Lemma 14: Fix integers l�0, v�1, and n�v as well as field operator labels x1 , . . . ,xn.
Consider a connected graph � with l loops, v vertices, n external edges whose end points are
labeled by x1 , . . . ,xn, and the property that each vertex has at least one external edge ending on it.
Then, the term in l,v���x1�¯��xn�� corresponding to that graph has weight given by the inverse
of its symmetry factor S�.

Proof: We proceed by induction on the number of internal edges e. Clearly, the statement is
true for e=0 so that we assume it holds for a general number of internal edges e−1. Let � be a
connected graph with e internal edges. Let l be its loop number and let v be its vertex number. By
Lemma 13, this graph occurs in l,v���x1�¯��xn�� with positive weight �. We proceed to show
that �=1/S�. We pick an ordering of the vertices and also order the set of pairs of vertices which
are connected by at least one edge. Denote the number of self-loops of the vertex i by pi, with
1� i�v. Denote the number of edges connecting the pair j of vertices by qj, with 1� j� t, where
t is the total number of connected pairs of vertices. By Lemma 9 the edge symmetry factor of �
is given by Sedge

� = ��i=1
v 2pipi ! ��� j=1

t qj ! �, with e=�i=1
v pi+� j=1

t qj. Since the graph � has the property
that each vertex has at least one external edge, its vertices are distinguishable and it has no
nontrivial vertex symmetries: Svertex

� =1 and Sedge
� =S� �as any symmetry is an edge symmetry�. We

check from which graphs with e−1 internal edges � is generated by recursion formula �11� and
how many times it is generated. It turns out that we can think of each internal edge of � as
contributing with a factor of 1 / �e ·S�� as follows.

�i� Consider the ith vertex of � endowed with pi self-loops. Shrinking one of these self-loops
yields a graph �� whose ith vertex has pi−1 self-loops. Consequently, by Lemma 9, the
symmetry factor of �� is related to that of � via S��=S� / �2pi�. By assumption, the graph ��
corresponds to a term in l−1,v���x1�¯��xn�� which occurs with weight given by the

inverse of its symmetry factor: 1 /S��=2pi /S�. Applying the map Ti, which carries the
factor of 1 /2, to the vertex i of �� produces the graph � from the graph �� exactly with
factor pi /S�. Thus, the contribution to Eq. �11� is pi / �e ·S��. Distributing this factor between
the pi edges considered yields 1 / �e ·S�� for each edge considered.

�ii� Consider the jth pair of vertices of � connected by qj edges. We assume now the indices of
the vertices forming this pair to be consecutive, given by k and k+1. �Note that this merely
amounts to a particular vertex ordering of the graph �. Since � is a priori unordered this
does not imply any loss of generality.� Shrinking one of the edges and fusing the vertices it
connects yield a graph �� whose fused vertex has rªpk+ pk+1+qj −1 self-loops. Conse-
quently, by Lemma 9, the symmetry factor of �� is related to that of � as follows:

1

2r

1

r!
S�� =

1

2pkpk!

1

2pk+1pk+1!

1

qj!
S�.

By assumption, the graph �� corresponds to a term in l,v−1���x1�¯��xn�� which occurs
with weight given by the inverse of its symmetry factor, i.e.,

1

S��
=

pk!pk+1!qj!

r!

1

2qj−1S�
. �13�

The map Qk, when applied to the fused vertex, produces a pair of vertices occupying the
positions k and k+1, distributes the 2r endings of edges between the two vertices in all
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possible ways, and attaches them together by an edge. The action of Qk on the fused vertex
k �leaving out external edges� reads explicitly as

QkRk,k
r =

1

2
Rk,k+1�Rk,k + 2Rk,k+1 + Rk+1,k+1�r �14�

=�
a=0

r

�
b=0

a �r

a
�a

b
2a−b−1Rk,k

r−aRk,k+1
a−b+1Rk+1,k+1

b . �15�

Taking into account the external edges, there are two terms in Eq. �15� corresponding to the
graph �: one with r−a= pk and b= pk+1 and one with r−a= pk+1 and b= pk. The sum of the
coefficients of these two contributions is

2qj−1 r!

pk!pk+1!�qj − 1�!
. �16�

Multiplying Eq. �13� with Eq. �16�, we see that Qj produces � from �� exactly with a factor
qj /S� and the contribution to Eq. �11� is qj / �e ·S��. In other words, we get a factor of
1 / �e ·S�� for each of the qj edges considered.

Since each of the e= l+v−1 internal edges contributes with a factor of 1 / �e ·S�� to the weight
of the graph �, the overall contribution is exactly 1 /S�. This completes the proof. �

To complete the proof of Theorem 10, we show that the term in l,v���x1�¯��xn�� corre-
sponding to a connected graph � with l loops, v vertices, and external edges whose end
points are labeled by x1 , . . . ,xn has weight given by 1/S�. If � has external edges attached to
every one of its vertices we simply recall Lemma 14. Thus, we may now assume that � has
m vertices to which no external leg is attached. Consider a graph �� which is constructed
from � by attaching an external edge to every vertex without external edges, choosing
arbitrary but fixed labels y1 , . . . ,ym for the end points of external edges in the process. By
Lemma 14, the graph �� occurs in the term on the left hand side of Eq. �12� with weight
1 /S�. By Lemma 13, the graph � occurs in the first factor on the right hand side with some
nonzero weight, say �. Every summand of �v−1���y1�¯��ym�� �recall formula �8�� which
places the end points of external edges at the designated vertices of � to produce �� contrib-
utes to the weight of �� in terms of that of �. Any different ways this can happen define a
vertex symmetry of �. Furthermore, � can have no more than these vertex symmetries, since
its vertices that already carry external edges are distinguishable and thus held fixed under any
symmetry. Therefore, using Lemma 12 we obtain the formula 1/S��=� ·Svertex

� by extracting

the weights from the corresponding terms in Eq. �12�. Moreover, S��=Sedge
�� =Sedge

� . Thus,
using S�=Svertex

� ·Sedge
� �Lemma 8�, we find �=1/S�. This completes the proof.

III. FURTHER RECURSION RELATIONS

Generalizing the case with trees �Sec. V in Ref. 3� we present an alternative recursion relation
satisfied by l,v. This has the advantage over Eq. �11� that it may be translated directly into a
recursion relation of the resulting n-point functions �l,v, related via Corollary 11.

Proposition 15: Let v�1 and l�0, but not v=1 and l=0. Then,

l,v =
1

l + v − 1
�l−1,v � T + �

a=0

l

�
b=1

v−1

�a,b
� l−a,v−b� � Q .

It is understood that the first summand does not contribute if l=0 while the second does not
contribute if v=1.
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Before proceeding with the proof we note that this formula has a straightforward interpreta-
tion in terms of sums over weighted graphs following the correspondence of Sec. I C. Namely, the
formula states that the weighted sum over graphs with l loops and v vertices is given by a sum of
two terms divided by the edge number e= l+v−1. The first term is the sum over all weighted
graphs with l−1 loops and v vertices which have an extra edge attached, its end points being
connected to vertices in all possible ways. The second term is a sum over all ordered pairs of
weighted graphs with total number of vertices equal to v and total number of loops equal to l,
connected in all possible ways with an edge.

Proof: The proof proceeds by induction on the number of edges e= l+v−1 �recall Lemma 2�.
It is straightforward to check its validity for e=1 by reducing the cases l=0, v=2 and l=1, v
=1 to Eq. �11�, remembering that 0,1 is the identity.

We now assume the formula to hold for any edge number smaller than a fixed e�2. Then for
loop number l and vertex number v such that e= l+v−1 we use Eq. �11� to show the following
equality and hence complete the proof:

l,v =
1

l + v − 1
��

j=1

v−1

Qj � l,v−1 + �
j=1

v

Tj � l−1,v
=

1

�l + v − 1��l + v − 2���
j=1

v−1

Qj � �l−1,v−1 � T + �
a=0

l

�
b=1

v−2

�a,b
� l−a,v−1−b� � Q

+ �
j=1

v

Tj � �l−2,v � T + �
a=0

l−1

�
b=1

v−1

�a,b
� l−1−a,v−b� � Q

=
1

�l + v − 1��l + v − 2���
j=1

v−1

Qj � l−1,v−1 � T + �
j=1

v

Tj � l−2,v � T

+ �
a=0

l

�
b=1

v−2 ��
j=1

b

Qj � a,b
� l−a,v−1−b + �

j=1

v−1−b

a,b
� Qj � l−a,v−1−b � Q

+ �
a=0

l−1

�
b=1

v−1 ��
j=1

b

Tj � a,b
� l−1−a,v−b + �

j=1

v−b

a,b
� Tj � l−1−a,v−b � Q

=
1

�l + v − 1��l + v − 2����
j=1

v−1

Qj � l−1,v−1 + �
j=1

v

Tj � l−2,v � T

+ ��
b=1

v−2 ��
j=1

b

�Qj � 0,b� � l,v−1−b + �
j=1

v−1−b

l,b
� �Qj � 0,v−1−b�

+ �
a=0

l−1

��T � a,1� � l−1−a,v−1 + a,v−1
� �T � l−1−a,1��

+ �
a=1

l

�
b=2

v−1 ��
j=1

b−1

Qj � a,b−1 + �
j=1

b

Tj � a−1,b � l−a,v−b

+ �
a=0

l−1

�
b=1

v−2

a,b
� � �

j=1

v−1−b

Qj � l−a,v−1−b + �
j=1

v−b

Tj � l−1−a,v−b � Q
=

1

�l + v − 1��l + v − 2���l + v − 2�l−1,v � T
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+ ��
b=2

v−1

�b − 1�0,b
� l,v−b + �

b=1

v−2

�v − b − 1�l,b
� 0,v−b

+ �
a=1

l

aa,1
� l−a,v−1 + �

a=0

l−1

�l − a�a,v−1
� l−a,1

+ �
a=1

l

�
b=2

v−1

�a + b − 1�a,b
� l−a,v−b

+ �
a=0

l−1

�
b=1

v−2

�l − a + v − b − 1�a,b
� l−a,v−b � Q

=
1

�l + v − 1��l + v − 2���l + v − 2�l−1,v � T

+ ��
a=0

l

�
b=1

v−1

�a + b − 1�a,b
� l−a,v−b

+ �
a=0

l

�
b=1

v−1

�l − a + v − b − 1�a,b
� l−a,v−b � Q

=
1

l + v − 1
�l−1,v � T + �

a=0

l

�
b=1

v−1

�a,b
� l−a,v−b� � Q .

�

Combining this result with Corollary 11 yields the corresponding recursion equation for �l,v.
Corollary 16: Let v�1 and l�0, but not v=1 and l=0. Then,

�l,v =
1

l + v − 1
��l−1,v � T + �

a=0

l

�
b=1

v−1

��a,b
� �l−a,v−b� � Q .

It is understood that the first summand does not contribute if l=0 while the second does not
contribute if v=1.

IV. DISCUSSION AND CONCLUSION

The results of the present paper can be seen as an extension of those of Ref. 3, where only tree
graphs were generated. Accordingly, many points in the discussion of the main result in that paper
extend to the present setting. In particular, this applies to the algorithmic aspects and to the
inclusion of fermions. We refer the reader to Secs. VI C and VI D of Ref. 3 for details. Here we
shall only touch these points briefly and highlight differences arising through the inclusion of
graphs with loops.

The generation of the graphs in their algebraic representation via recursion formula �11� has
the structure of an algorithm. Indeed, this algorithmic structure can be used directly and efficiently
in implementing concrete calculations of �loop� graphs. In doing so, external edges may be fixed
from the beginning and l,v as applied to the external edges is calculated recursively rather than
as an abstract map. An important aspect for the efficiency of concrete calculations is to discard
graphs that do not contribute. In typical quantum field theoretic calculations, the vertex function is
such that only vertices with a minimum valence �usually three� contribute. In the case of tree
graphs this allows the restriction of the coproduct implicit in the operator Qi in recursion formula
�11�.3 Concretely, coproduct �7� may be replaced by a truncated coproduct ��k with k�1. This is
defined by removing from the right hand side of Eq. �7� all terms where the number of elements
in I1 or I2 is smaller than k. This will prevent graphs from being generated who have vertices with
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valence smaller than k+1. If only tree graphs are considered this is consistent with the recursion
process. More precisely, a graph with all vertices of valence at least k+1 cannot be generated by
Qi from a graph with at least one vertex having valence smaller than k+1. The analogous state-
ment is not true for the operator Ti. Hence, considering loop graphs as well �recall that Ti increases
loop number�, we can no longer globally restrict the coproduct. However, if we are interested in
graphs only up to a maximal loop number m, we may still restrict the coproduct in Qi in certain
instances. These are precisely the instances when a later application of Ti to a graph cannot occur,
i.e., when the graph has already the maximal loop number m.

The restriction on the valence of vertices to be at least a, where a�3, leads to another obvious
limit we can impose on the algorithm. Namely, for a given number of loops m and a given number
of external edges n there is an upper bound b= �n+2m−2� / �a−2� on the number of vertices a
graph can have. Thus, in this case we only need to compute l,v for l�m and v�b.

We now turn to the question of the implementation of fermions. Here the situation is not at all
changed by the extension to loop graphs. Namely, the whole formalism is completely functorial
and carries over immediately to the case that the vector space V of field operators is a Z2-graded
space. �Recall that this means that V is a direct sum of a bosonic and fermionic part.� Concretely,
certain field operators will anticommute which introduces minus signs in front the summands in
Eqs. �7� and �8� which correspond to odd permutations of such field operators. In contrast, all
formulas appearing in Secs. II and III remain unchanged as the Z2 grading is completely implicit
there.

The algorithm to generate tree graphs was applied in two contexts in Ref. 3: To relate con-
nected n-point functions with 1-particle irreducible ones and to generate all tree graphs using the
vertex functions. In both cases renormalization does not introduce any alteration. This is different
in the present situation where we interpret the algorithms of Secs. II and III as generating all
connected graphs using the vertex functions. Renormalization, via counterterms, alters this process
considerably. Thus, it would be highly desirable to include the renormalization process into the
present framework. At this point we have very little to say about this, except to point out that the
algorithms of Secs. II and III are naturally organized as a recursion by loop order, which might
facilitate the task.
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APPENDIX

This appendix shows all graphs without external edges and with up to three edges computed
as contributions to l,v�1� via Eq. �11�. The factors in front of the graphs are the inverses of their
symmetry factors of Definition 5, see Theorem 10.
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In algebraic quantum field theory we consider nets of von Neumann algebras in-
dexed over regions of the space time. Wiesbrock �“Conformal quantum field theory
and half-sided modular inclusions of von Neumann algebras,” Commun. Math.
Phys. 158, 537–543 �1993�� has shown that strongly additive nets of von Neumann
algebras on the circle are in correspondence with standard half-sided modular in-
clusions. We show that a finite index endomorphism on a half-sided modular in-
clusion extends to a finite index endomorphism on the corresponding net of von
Neumann algebras on the circle. Moreover, we present another approach to encod-
ing endomorphisms on nets of von Neumann algebras on the circle into half-sided
modular inclusions. There is a natural way to associate a weight to a Möbius
covariant endomorphism. The properties of this weight have been studied by Ber-
tozzini et al. �“Covariant sectors with infinite dimension and positivity of the en-
ergy,” Commun. Math. Phys. 193, 471–492 �1998��. In this paper we show the
converse, namely, how to associate a Möbius covariant endomorphism to a given
weight under certain assumptions, thus obtaining a correspondence between a class
of weights on a half-sided modular inclusion and a subclass of the Möbius covari-
ant endomorphisms on the associated net of von Neumann algebras. This allows us
to treat Möbius covariant endomorphisms in terms of weights on half-sided modu-
lar inclusions. As our aim is to provide a framework for treating endomorphisms on
nets of von Neumann algebras in terms of the apparently simpler objects of weights
on half-sided modular inclusions, we lastly give some basic results for manipula-
tions with such weights. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2393147�

I. INTRODUCTION

Algebraic quantum field theory is an approach to quantum field theory in which the basic
objects of the theory are local algebras of observables associated with bounded regions of space
time. A local algebra associated with a given bounded region of space time is an algebra of
operators corresponding to the physical measurements that can be performed in that region of
space time. Standard introductions to the subject include Refs. 12, 1, and 4.

Commonly we consider states corresponding to particularly simple physical systems in order
to obtain a more amenable theory. The Doplicher-Haag-Roberts �DHR� superselection criterion7

has proven to be fruitful in this respect. In essence it picks out states corresponding to spatially
bounded physical systems with no long-range forces. The representations of the net of local
algebras whose folia satisfy the DHR superselection criterion are unitarily equivalent to endomor-
phisms of the local algebras. These endomorphisms are known as DHR endomorphisms and the
study of them is central to algebraic quantum field theory.

To model the physical world as we presently understand it, the natural choice of space time is
the four-dimensional Minkowski space. However, theories in lower-dimensional space times have
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proven to be both physically and mathematically interesting in their own right. Especially nets of
local algebras on the circle have been of growing interest recently. Wiesbrock showed in 1993 that
one-dimensional nets of local algebras on the circle satisfying an assumption known as strong
additivity could be completely described by half-sided modular inclusions of factors;19 a gap in the
proof was later filled by Araki and Zsidó.2

Wiesbrock’s result opens the door to the study of algebraic quantum field theories on the circle
in terms of half-sided modular inclusions of factors. In this paper we take the first steps towards
developing a theory for Möbius covariant DHR endomorphisms on half-sided modular inclusions.

We present two main results. Firstly we show an extension theorem for endomorphisms with
finite index. Specifically we show that normal, injective endomorphisms with finite index on a
half-sided modular inclusion extend to endomorphisms with finite index on the associated net of
von Neumann algebras under some light assumptions. Secondly we present a way of treating
Möbius covariant endomorphisms in terms of weights on half-sided modular inclusions. To any
Möbius covariant endomorphism there is a naturally occurring cocycle satisfying the conditions
for being the Connes cocycle derivative of some weight with respect to the vacuum state. Prop-
erties of this weight for endomorphisms with finite index have been studied by Longo14 and
Bertozzini et al.5 In this paper we construct a method for passing the other way, that is, from
weights to endomorphisms. This gives us a correspondence between a class of weights on a
half-sided modular inclusion and a subclass of the Möbius covariant endomorphisms on the net of
von Neumann algebras associated with the half-sided modular inclusion. Finally, we give the
analog for weights of some basic constructions for endomorphisms; e.g., unitary equivalence,
direct sums, and weak conjugates.

Sectionwise the paper breaks down as follows. In Sec. II we recall the basic notions of nets of
von Neumann algebras, Möbius covariant endomorphisms, and half-sided modular inclusions.
Next we show in Sec. III that any finite index endomorphism on the larger factor of a half-sided
modular inclusion extends to a finite index endomorphism on the net of local algebras associated
with the half-sided modular inclusion as per Wiesbrock’s result.

In Refs. 14 and 5, Longo and Bertozzini et al. studied for a given Möbius covariant endo-
morphism �, the weight � whose Connes cocycle derivative relative to the vacuum state �
satisfies

�D�:D��t = U��D�t��U�D�t��*, �1�

where D�t� denotes the dilations and U� and U are the usual �projective� representations of the
Möbius group such that AdU��g� ��=� �AdU�g�. In Sec. IV we take a different tack and show
conversely that for a suitable weight � on the larger factor of a half-sided modular inclusion, we
can associate a Möbius covariant endomorphism � on the net of local algebras such that Eq. �1�
holds true. We also establish a correspondence between weights and endomorphisms allowing us
to treat the latter in terms of weights on half-sided modular inclusions.

Finally in Sec. V we give the equivalents of basic operations pertaining to endomorphisms in
terms of weights including unitary equivalence, direct sums, subrepresentations, and weak conju-
gates. Also we give criteria for finite index and positivity for an endomorphism associated with a
weight.

II. PRELIMINARIES

Below we present the basic objects and results that will form the foundation for later sections.
Most notably we introduce nets of von Neumann algebras and their relation with half-sided
modular inclusions.

A. Nets of von Neumann algebras

We will identify S1
ª �z�C � �z�=1� with the one-point compactification of R, R� ���, through

the stereographic projection,
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S1 � z � x�z� ª
1

i

z − 1

z + 1
� R � ��� .

The Möbius group PSU�1,1� acts on S1 by

�� �

�̄ �̄
	 · z ª

�z + �

�̄z + �̄
.

Two types of elements of note are the translations and dilations.

Translations: T�a� ª �1 + ia/2 ia/2

− ia/2 1 − ia/2
	, a � R .

Dilations: D�t� ª �cosh��t� sinh��t�
sinh��t� cosh��t�

	, t � R .

By a proper interval on S1 we will mean a nonempty, nondense, open, connected subset of S1. For
convenience we will often refer to proper intervals simply as intervals when no confusion can
occur. If I is an interval, we write I� for the interior of its complement in S1. If I and J are intervals
such that I�J=�, we write I�J.

Definition 2.1 (Net of von Neumann Algebras): A net of von Neumann algebras on S1 is an
assignment for each interval I on S1 of a von Neumann algebra A�I� on a fixed Hilbert space H

satisfying the following axioms.

• Isotony: For intervals I�J we have A�I��A�J�.
• Locality: If I and J are disjoint intervals, then A�I��A�J��.
• Möbius covariance: There exists a unitary representation �U ,H� of the Möbius group

PSU�1,1� such that U�g�A�I�U�g�*=A�gI�. We write �g for AdU�g�.
• Positive energy: The generator of the one-parameter group ��U�R���� is positive.
• Existence and uniqueness of vacuum vector: The subspace of U-invariant vectors in H is

one dimensional. We single out one such vector 	 of norm one, which will be referred to as
the vacuum vector. We also require that �IA�I�	 is dense in H, where I ranges over the
intervals on S1.

We will write A for the family �A�I��I.
The above defined concept of a net of von Neumann algebras also appears in the literature

under the names of conformal precosheaf10 and local conformal net13 amongst others. The indi-
vidual von Neumann algebras A�I� are called local algebras and elements of B�H� belonging to a
local algebra are called local elements.

We will denote the vector state associated with 	 by ��·�ª �·	�	�. Usually we will think of
this as a vector state on A�S+�, where S+ª �z�S1�Im�z�
0�. For notational ease we will write its
restriction to a local algebra �Iª� �A�I�.

Remark 2.2: If A is a net of von Neumann algebras, it is often practical to be able to speak
of A�O� for general open sets O. We define A�O� as follows.

A�O� ª ∨ �A�I��I is a proper interval and I � O� .

By isotony of the net A, there is no ambiguity when speaking of A�I� for a proper interval.
We mention some important consequences of the axioms. All proofs can be found in Ref. 4.
Theorem 2.3 (Irreducibility): If A is a net of von Neumann algebras on the Hilbert space H

then ∨IA�I�=B�H�.
Theorem 2.4: Every local algebra in a net of von Neumann algebras is a type III1 factor.
Theorem 2.5: (Haag Duality): If A is a net of von Neumann algebras then Haag duality

holds,
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A�I�� = A�I��, I is an interval on S1.

Theorem 2.6 (Reeh-Schlieder): The vacuum vector 	 is cyclic and separating for each local
algebra A�I�.

We write r for the reflection S1�z� z̄�S1. For any interval I on S1 we define the reflection
associated with I to be rIªgrg−1, where g is an element of the Möbius group such that gS+= I. It
is easily checked that rI is well defined. We write PSU�1,1�± for the extended Möbius group
generated by the Möbius group and the reflections.

Also for any interval I we define the dilations associated with I by DI�t�ªgD�t�g−1 for any
g�PSU�1,1� such that gI=S+. As with the reflections, it is easy to check that DI is well defined.

Theorem 2.7 (Bisognano-Wichmann): Let A be a net of von Neumann algebras. The rep-
resentation U of the Möbius group can be extended to the extended Möbius group in such a way
that the net A is covariant under this representation and

U�DI�t�� = �A�I�
it ,

U�rI� = JA�I�,

where the modular operator and conjugation for A�I� are with respect to the vacuum state ��·�
= �·	 �	�.

Finally we mention an important axiom that we will be needing.
Definition 2.8 (Strong Additivity): A net of von Neumann algebras A is strongly additive if

for any interval I and point z� I, we have A�I�=A�I1�∨A�I2�, where I1 and I2 are the two
connected components of I \ �z�.

To any net of von Neumann algebras A, we can associate the global C*-algebra C*�A� with
the following properties:8,9

�1� There is an embedding of every local algebra A�I� into C*�A�, iI :A�I�→C*�A� such that
�iJ�A�I�= iI whenever I�J.

�2� If ��I� is a family of representations, �I :A�I�→B�H��, then there exists a unique represen-
tation �� ,H�� of C*�A� such that � � iI=�I.

B. Endomorphisms on nets of von Neumann algebras

Let A be a fixed net of von Neumann algebras on H. A family of �-homomorphisms �
= ��I�, �I :A�I�→B�H� is said to be consistent if ��J�A�I�=�I whenever I�J. By the universal
property of the global C* algebra, � induces a representation of C*�A�.

If there exists an interval I such that �I� = idA�I��, then � is said to be localized in I. If � is
consistent and localized in I, then �J is an endomorphism of A�J� whenever J� I and � is an
endomorphism of the global algebra C*�A�.

A consistent, localized endomorphism is said to be transportable if for every interval J there
exists a unitary u such that Adu �� is localized, in J. Such a unitary is called a transporter. A
consistent, localized, and transportable endomorphism is called a Doplicher-Haag-Roberts endo-
morphism, or simply a DHR endomorphism. A unitary equivalence class of DHR endomorphisms
is called a sector.

The requirement of transportability can be strengthened to a requirement of covariance. If G
is a subgroup of the Möbius group, we say that � is covariant with respect to G if there is a
projective representation �U� ,H� of G such that

U��g���a�U��g�* = ��U�g�aU�g�*�, g � G, a � C*�A� .

If G is either the translation-dilation subgroup of the Möbius group or the Möbius group itself, we
say that � is translation-dilation covariant or Möbius covariant, respectively. As projective unitary
representations of connected semi-simple Lie groups, such as the Möbius group, lift to true unitary
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representations of the universal covering groups,3 we will instead of projective representations of
the Möbius group PSU�1,1� often consider unitary representations of the universal covering
group PSU�1,1� of the Möbius group. As the translation-dilation group is connected and con-
tractible, it is its own universal covering group. Hence, any projective representation of the
translation-dilation group stems from a true unitary representation.

A DHR endomorphism � localized in some interval I will restrict to an endomorphism �J of
A�J� for any interval J� I. As �J is given by conjugation with a unitary, the inclusion
�J�A�J���A�J� is a subfactor. We write the �minimal� index of this Ind��J�. If � is covariant, it is
easy to check that Ind��J�=Ind��gJ� if J ,gJ� I.10 Thus, we will speak merely of the index of � and
write this Ind���.

C. Half-sided modular inclusions

The concept of half-sided modular inclusions and how to construct nets of von Neumann
algebras based on these was first introduced by Wiesbrock in 1993.19 The article, however, con-
tained a gap which was finally filled by Araki and Zsidó in 2004.2 Following Ref. 11 we give some
basic definitions and results.

Definition 2.9 (Half-Sided Modular Inclusion): Suppose that �N�M ,	� is a triple, where
N�M is an inclusion of von Neumann algebras on some Hilbert space H and that 	�H is
cyclic and separating for both N and M.

�1� The triple �N�M ,	� is said to be standard if 	 is cyclic for the relative commutant of N
in M, Nc=N��M.

�2� The triple �N�M ,	� is said to be � half-sided modular �− half-sided modular� if
t

M�N��N for all t�0 �t�0�, where M denotes the modular automorphism associated
with �M ,	�.

For brevity, we will refer to a triple �N�M ,	� which is � half-sided modular, as a �
half-sided modular inclusion.

Theorem 2.10 Ref. 11: Suppose that �N�M ,	� is a standard � half-sided modular inclu-
sion. Then there exists a unique strongly additive net of von Neumann algebras A on S1 for which
A��0;���=M, A��0;���=N and 	 is the vacuum vector.

III. EXTENDING FINITE INDEX ENDOMORPHISMS

If �N�M ,	� is a standard half-sided modular inclusion and A is the associated net of von
Neumann algebras as per Theorem 2.10, it can be difficult to determine the endomorphisms on M
that extend to DHR endomorphisms on the net A. To extend a given endomorphism on M to a
DHR endomorphism, we would be forced to come up with transporters for all proper intervals on
S1. This can be difficult as there need be no particular relation between the transporters associated
with different intervals, and the half-sided modular inclusion is only directly linked to the intervals
�0;�� and �1;��.

The situation is easier if we are lucky enough to deal with a translation-dilation covariant
endomorphism which is localized in some interval, say, �a ;b�, such that the translation-dilation
group alone gives all the necessary transporters. A simple way of making sure that the endomor-
phism has such covariance is by requiring it to have finite index. This even gives Möbius cova-
riance.

The basic idea will be to use a finite index condition to obtain two one-parameter groups
through the Takesaki theorem. We will then show that these together generate a representation U�

of the translation-dilation group such that AdU��g� ��=� �AdU�g�, allowing us to extend the given
endomorphism � to a translation-dilation covariant endomorphism on the net A. Using the finite
index condition once again will finally yield Möbius covariance of the extended endomorphism.
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A. Endomorphisms and �-cocycles

As mentioned above, a DHR endomorphism is completely known by its transporters. As a
special case, a translation-dilation covariant endomorphism � localized in some interval I0 for
which �� I0

� is completely known by the unitary representation U� of the translation-dilation
group P satisfying

AdU��g� � � = � � �g, g � P .

Below we make precise the connection between such transporters and translation-dilation
covariant endomorphisms. The basic idea and techniques are borrowed from Guido and Longo9

where the case of Möbius covariant endomorphisms is treated. Having only the translation-dilation
group and not the full Möbius group at our disposal engenders some technical problems, as two
arbitrarily given intervals are not in general connected by an element of the translation-dilation
group.

Remark 3.1 (A Comment on the Global C*-algebra): Recall that �g=AdU�g� satisfies
�g�A�I��=A�gI�. Thus by the universal property of the global C*-algebra C*�A�, �g induces an
automorphism of C*�A�. We will denote this automorphism �g as well.

As a technical aside we note that when embedding a local element x of A into the global
algebra C*�A�, we need to specify the interval in which x is localized. If I�J and x is localized
in I, associating x with either I or J leads to the same embedding in C*�A�, as can be seen directly
from the definition of the global C* algebra.

Thus if x is localized in intervals I and J and there exists a third interval K� I�J in which x
is likewise localized, then the embedding of x into the global C* algebra is the same whether one
considers x associated with I or J. There are, however, cases where no such interval K can be
found and these have to be treated with more care.

Definition 3.2 (�-Cocycle): A family of unitaries �zg�g in the universal C*-algebra C*�A�
indexed by a subset O of the Möbius group is said to be an �-cocycle on O with values in C*�A�
localized in the proper interval I0 if �1� zg is localized in I0�gI0 whenever this is a proper interval.
and �2� zgh=zg�g�zh� when g, h, and gh belong to O.

We will refer to the second requirement as the cocycle condition.
Our main interest will be �-cocycles indexed either over the translation-dilation group or the

full Möbius group.
Given a translation-dilation covariant endomorphism, we can define zg=U��g�U�g�* for any

g�P. While �zg� satisfies the cocycle condition the elements will not all have a unique embedding
into the universal C*-algebra C*�A� as mentioned in Remark 3.1. The next proposition shows how
to get around this problem.

Proposition 3.3: Let I0 be a subinterval of S1 whose complement contains � and let O� �g
�P � I0�gI0 is a proper interval� be an open set containing the identity.

If �wg�g�O is an �-cocycle on O with values in C*�A� then it extends uniquely to an �-cocycle
on P with values in C*�A�.

Proof: Our first step is to choose an open subset U of O which contains the identity and
satisfies U2�O. This ensures that whenever we have elements g and h of U, the �-cocycle
condition makes sense and is satisfied: wgh=wg�g�wh�.

The next step is to note that any element of P can be written as a finite product of elements
in U. That is, for a given g�P we can choose a decomposition

g = 

i=1

n

gi �gi � U� .

To extend the cocycle to all of P we will define wg as
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wg = wg1
�g1

�wg2
� ¯ �g1¯gn−1

�wgn
� .

To show that this is independent of the choice of gi’s and thus well-defined, it is enough to show
that the change gi�gih, gi+1�h−1gi+1 for h�U leaves the right-hand side of the above equation
unchanged. This will follow if we can show that wgi

�gi
�wgi+1

�=wgih
�gih

�wh−1gi+1
�. We compute

wgih
�gih

�wh−1gi+1
� = wgi

�gi
�wh��gih

�wh−1�h−1�wgi+1
�� = wgi

�gi
�wh�h�wh−1�wgi+1

�

= wgi
�gi

�whh−1��gi
�wgi+1

� = wgi
�gi

�wgi+1
� .

Hence, wg is well-defined on all of P. The cocycle property follows directly from the defini-
tion

wgh = wg1
�g1

�wg2
� ¯ �g1¯gn−1

�wgn
��g�wh1

��gh1
�wh2

� ¯ �gh1¯hm−1
�whm

� = wg�g�wh� .

The question remains whether wg will be localized in I0�gI0 whenever this is a proper
interval. Let g�P be given such that I0�gI0 is a proper interval and choose another proper
interval J extending I0�gI0 slightly on both sides. It is then possible to choose a decomposition
g=
gi such that I0�g1I0� ¯ � �g1¯gn�I0 is contained in J. Consequently,

wg = wg1
�g1

�wg2
� ¯ �g1¯gn−1

�wgn
�

belongs to A�J�. By taking the intersection over such intervals J it follows by continuity from the
outside that wg is localized in I0�gI0. �

The above proposition tells us that whenever we have a translation-dilation covariant endo-
morphism suitably localized, we obtain a unique �-cocycle on P with values in C*�A� similarly
localized. This situation is similar to the case of Möbius covariant endomorphisms presented in
Ref. 9 where we would get �-cocycles on the Möbius group.

In the latter case there is a bijective correspondence between cocycles and endomorphisms but
in the case of �-cocycles on the translation-dilation group, which concerns us, we will need to add
an extra assumption to counter the problem that the translation-dilation group cannot transform a
given interval into any other arbitrary interval. Colloquially put, the problem is that the translation-
dilation group “cannot move points through infinity.”

The extra assumption and its use will be elaborated below.
Proposition 3.4: Let I0 be an interval whose complement contains �. Suppose that �wg� is an

�-cocycle on P with values in C*�A� localized in I0 and that wD�t� is localized in the smallest
proper subinterval J of S1 containing I0, D�t�I0, and the connected component of S1 \ �I0�D�t�I0�
containing � whenever Ī0�D�t�Ī0=�. Then there exists a unique translation-dilation covariant
endomorphism � on S1 localized in I0 such that

���A�gI0
�� = Ad�wg�A�gI0

��.

Proof: For each proper interval J on S1 containing � there is exactly one g�P such that
gI0

�=J and we can therefore define � on all such intervals by �gI0
�ªAdwg. Any proper interval not

containing � is a subinterval of a proper interval which does contain � so we will define � on the
former intervals by restriction. To show that this is well-defined, we assume that J�gI0

��hI0
� and

attempt to show that �Adwg�A�J�= �Adwh�A�J�. This will be accomplished by showing that wg
*wh

�A�J��.
We compute

wg
*wh = �g�wg−1�wh = �g�wg−1�g−1�wh�� = �g�wg−1h� .

As wg is localized in I0�gI0 whenever this is a proper interval, it follows that wg−1h is localized
in any proper subinterval of R containing I0�g−1hI0. Consequently, �g�wg−1h� is localized in any
proper subinterval of R containing gI0�hI0. Thus, in the case that J is a subinterval of the
connected component of gI0

��hI0
� containing �, it follows that �Adwg�A�J�= �Adwh�A�J�.
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The fact that we do not have the full Möbius group available but only the translation-dilation
group forces us to consider separately the case where J is a subinterval of a component of
gI0

��hI0
� not containing �. In light of the previous arguments, it is enough to show for t�R such

that Ī0�D�t�Ī0=� that if J is a subinterval in the connected component of I0
��D�t�I0

� not
containing �, then AdwD�t��x�=x for any x�A�J�. This follows directly by the assumptions in the
proposition. Thus, we have a well-defined, consistent endomorphism �.

The translation-dilation covariance of � easily follows from the definition

Ad�wg
*����A�hI0

�� = Ad��wg
*wh��A�hI0

�� = Ad���g�wg−1�wh��A�hI0
�� = �g � Ad�wg−1h� � ��g−1�A�hI0

��

= �g � ���A�g−1hI0
�� � �g−1.

The covariance of the �I’s which are defined by restriction of some �gI0
� is also settled by the

above calculation. �

Corollary 3.5: Suppose that I0 is a proper interval on S1 whose complement contains �.
Then each translation-dilation covariant endomorphism on A localized in I0 gives rise to an

�-cocycle �wg� localized in I0 and satisfying the assumptions of Proposition 3.4 such that

�gI0
� = Adwg, g � P . �2�

Conversely, any �-cocycle �wg� localized in I0 and satisfying the assumptions of Proposition 3.4
gives rise to an endomorphism � on A localized in I0 and satisfying Eq. (2).

B. Extending finite index endomorphisms

Recall that we have a standing assumption that �N�M ,	� is a standard+half-sided modular
inclusion and that A is the net of von Neumann algebras associated with �N�M ,	� as per
Theorem 2.10.

Our goal in this section is to give sufficient criteria for endomorphisms on M to extend to
DHR endomorphisms on the net A. We will focus on endomorphisms which are translation-
dilation covariant. This, in particular, includes endomorphisms of finite index, as these are auto-
matically Möbius covariant.9 The main element in the approach is to construct an �-cocycle on the
translation-dilation group and use the results of the previous section to associate a translation-
dilation covariant endomorphism to it.

Remark 3.6 (Localization): In general we will not distinguish between N�M and its
embedding in A, A��1;����A�R+� and will therefore continue speaking of A�I� as a sub-von
Neumann algebra of M whenever I�R+. In this spirit we can say that an element x�M is
localized in an interval I if x�A�I� under the usual embedding.

Similarly we will call an endomorphism ��End�M� localized in I�R+ if its restriction to
A�R+��A�I�� is identity.

To properly formulate our results completely within the framework of the half-sided modular

inclusion we will introduce notation for � being localized in some interval I for which Ī�S+ as
follows.

Definition 3.7 (Localization Strictly Within M): An endomorphism � on M is localized
strictly within M if � is localized in an interval whose closure is contained in S+.

Lemma 3.8: Suppose that ��End�M� is an irreducible endomorphism localized strictly
within M, say, in I0. Suppose furthermore that �vt� and �wt� are unitary one-parameter groups
such that

�1� Advs���x��=���D�s��x�� for s�R and x�M,
�2� Adwt���y��=���D��1;����t�

�y�� for t�R and y�M��D�1;���−t��M�,
�3� v�s�U�D�s��* belongs to A�I0�D�s�I0� for t belonging to some neighborhood of zero, and
�4� w�t�U�D��1;����t��* belongs to A�I0�D��1;����t�I0� for s belonging to some neighborhood of

zero. Then � extends to an irreducible translation-dilation covariant endomorphism on A
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localized in I0.

Proof: By standard arguments, � is an endomorphism of A�J� whenever J�R+ is a proper
interval containing I0 and as usual irreducibility implies that ��A�J����A�J�=C1.

The key to proving this lemma is to turn the question of extendability into a question of the
existence of a suitable �-cocycle. To demonstrate the existence of such an �-cocycle we will use
the two given one-parameter unitary groups �vs� and �wt� to construct a cocycle satisfying the
assumptions of Proposition 3.3 and then invoke Proposition 3.4 to obtain the desired endomor-
phism on A.

The first step will be to show that the one-parameter groups �vs� and �wt� generate a projective
representation of the translation-dilation group P in which �vs� is identified with the dilations
associated with R+ and �wt� with the dilations associated with �1; ��.

To do this it will be enough to show that �vs� and �wt� satisfy the proper commutation relations
for small s and t. The equivalent of the commutation relation

T�a�D�t� = D�t�T�exp�2�t�a� �3�

takes the shape

w�s�v�t − s� = v�t�w�− log�1 − exp�2�t� + exp�2��t − s���/2��

� v�log�1 − exp�2�t� + exp�2��t − s���/2�� �4�

for sufficiently small s and t. In this particular case “sufficiently small” means exp�2�t��1
−exp�2��s����1 which is satisfied for �s , t� in a neighborhood of �0,0�. This requirement ensures
that both a and exp�2�t�a appearing in the former commutation relation are strictly less than 1,
making it possible to use the equation T�1−exp�2�t��=D�t�D�1;���−t�.

We set V�D�t��ªv�t� and V�D��1;����s��ªw�s�. If gi�P, i=1, . . . ,n, is a collection of ele-
ments of the form D�t� or D�1;���s�, where t and s may depend on the index, then we write by
abuse of notation z�g1¯gn� for the element V�g1�¯V�gn�U�g1¯gn�*. We will show in a moment
that z�g� does not depend on the choice of decomposition of g. For now we note by the assump-
tions of the lemma that z�g1¯gn� is localized in I0�g1I0�g1g2I0� ¯ �g1¯gnI0.

Now, choose a neighborhood O of �0,0��R2 and a proper interval J� I0 such that the
manipulations in Eq. �3� keep I0 inside J and J inside R+ for �s , t��O. For convenience, let z1

denote the z�g1g2� corresponding to the left-hand side of Eq. �4� and let z2 denote the z�g3g4g5�
corresponding to the right-hand side. As the manipulations will map A�I0� into A�J�, the element
z1

*z2 is localized in J. Therefore to show the validity of Eq. �4� we need only to show that z1
*z2

belongs to ��A�J���.
But by our choice of J and the assumptions of the lemma, it follows that Ad�z1

*z2���x�
=��x� for x�A�J�.

In conclusion, we get a projective representation g�V�g� of the translation-dilation group P.
As P is its own universal covering group we can assume that the representation is a unitary
representation. Then defining z�g�=V�g�U�g�* as before, but this time without abuse of notation,
gives us an �-cocycle localized in I0 by Proposition 3.3.

Finally, we want to employ Proposition 3.4 to obtain a translation-dilation covariant endomor-
phism on S1 localized in I0. To do so we must first check that z�D�t�� is localized in the smallest

subinterval J of S1 containing I0, D�t�I0, and � whenever Ī0�D�t�Ī0=�. This, however, is an
immediate consequence of the third assumption of this lemma.

Hence, Proposition 3.4 provides us with a translation-dilation covariant endomorphism on A
localized in I0. As it obviously coincides with � on I0, it is an extension of � as desired. �

Remark 3.9: While the former lemma is phrased for unitary one-parameter groups �vt� and
�wt� corresponding to dilations for the intervals �0;�� and �1;��, respectively, obviously we can
get an analogous result for unitary one-parameter groups corresponding to two intervals I�J with
one common boundary point. We omit a rephrasing of the lemma.
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The assumptions of the above lemma may not be trivial to check and we will be focusing our
attention on a class of endomorphisms which satisfy these assumptions automatically, namely,
endomorphisms with finite index.

Theorem 3.10: Suppose that ��End�M� is a finite index endomorphism strictly localized
within M. Then � extends to a Möbius covariant endomorphism on S1.

Proof: First off, as � is assumed to have finite index, it can be written as the direct sum of
irreducible endomorphisms similarly localized and we may therefore assume without loss of
generality that � is, in fact, irreducible. Moreover, � is normal and injective as M is a type III
factor �Ref. 17, Theorem V.5.1�.

Call the interval in which � is localized I0 and choose a proper interval I�R+ containing I0.
As ��A�I���A�I� has finite index we can find a faithful, normal conditional expectation
E :A�I�→��A�I��. We then choose a faithful, normal state �0 on A�I�, say, the vacuum state, and
let �ª�0 �E. This is then a faithful, normal state on A�I� whose modular group � leaves ��A�I��
globally invariant by Takesaki’s theorem.

Moreover, the restriction of � to ��A�I�� is �0 �Ref. 18, Lemma IX.4.21�. Thus, on A�I� we
have that �Ref. 18, Corollary VIII.1.4�,

t
����x� = �−1 � t

�0 � ��x�, x � A�I�

or equivalently

� � t
����x� = t

�0 � ��x�, x � A�I� .

Let utª �D� :D�I�t and wtª �D�� ��� :D�I�t. The usual property of Connes cocycles implies that

� � Ad�wt� � t
�I�x� = Ad�ut� � t

�I � ��x�, x � A�I� .

Letting ztª��wt�*ut and �tªAd�U�DI�t���, where DI is the dilation associated with the interval I,
then the above can be simplified to the expression

�t � � � �−t�x� = zt
*��x�zt.

Next, defining vtªU�DI�t��z−t
* gives us a unitary satisfying

Advt � ��x� = � � �t�x�, x � A�I� .

As � is irreducible �vt� is a projective unitary representation of R. As usual this lifts to a unitary
representation of R for which we use the same notation. We also note in passing that if x
�A�I��A�I0�DI�t�I0�� then

Ad�vtU�DI�t��*��x� = Advt � ���t�x�� = ��x� = x ,

so vtU�DI�t��* belongs to A�I��A�I0�DI�t�I0��. In particular, the covariance property Advt ��
=� ��t holds on all of �−t�M�.

Finally, to wrap up the proof, we take the intervals �0;�� and �a ;�� where a�R+ is chosen
such that I0� �a ;�� and consider the two corresponding unitary one-parameter groups. We have
seen above that these satisfy the assumptions of Lemma 3.8 and we therefore get an extension of
� to a translation-dilation covariant endomorphism on A. As � has finite index, it is automatically
Möbius covariant. �

The construction of vt in the proof of Theorem 3.10 is borrowed from Ref. 9 where DHR
endomorphisms on the Minkowski space with finite statistics and only countably many sectors are
shown to be Poincaré covariant.

Corollary 3.11: If ��End�M� is an endomorphism localized strictly within M and which is
a direct sum of endomorphisms with finite index, then � extends to a Möbius covariant endomor-
phism on S1 with the same localization.
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C. Basic observations for finite index endomorphisms

Corollary 3.11 gives us a correspondence between finite index endomorphisms on the circle

localized in some interval I satisfying Ī�S+ and injective, normal endomorphisms localized
strictly within M. As the correspondence is given simply by restriction of � to A�S+�, it follows
that all manipulations of � which can be carried out within S+ are preserved by the correspon-
dence.

In particular, unitary equivalence, direct sums, subrepresentations, left inverses, permutators,
and the like carry over from the net A to the half-sided modular inclusion �N�M ,	� unchanged.

When considering �-induction for a quantum field theoretical net of subfactors A�B,6,16

where both nets are strongly additive nets of von Neumann algebras, the net of subfactors can
instead be described by a commuting square of subfactors in which the corners are made up by the
factors of the half-sided modular inclusions A��1;����A��0;��� and B��1;����B��0;���. As
such it is in principle possible to perform �-induction within the framework of half-sided modular
inclusions. However, the fact that the endomorphisms lifted by �-induction are not necessarily
well-behaved DHR endomorphisms may complicate matters.

IV. ENDOMORPHISMS FROM WEIGHTS

As in the previous section, our goal is to find a workable equivalent of Möbius covariant
endomorphisms on a strongly additive net of von Neumann algebras A in the framework of a
half-sided modular inclusion �N�M ,	� inducing the net of von Neumann algebras as per
Theorem 2.10. While we focused on the endomorphism � itself in the previous section, in this
section we will try a different tack, instead focusing on a subgroup of the transporters of the
endomorphism, specifically t�U��D�t��.

Assume that a Möbius covariant endomorphism � on the net A is given. Assume furthermore

that � is localized in some interval I satisfying Ī�S+. By strong additivity of the net A, the

endomorphism � is completely determined by its restriction to A�I�. By the assumption Ī�S+,
there exists t�R+ such that D�t�I� I. For such a t the covariance property of � implies that �I

=Adz���D�t���A�I� where as usual z��g�ªU��g�U�g�*. Hence, knowledge of a subinterval I of R+ in
which � is localized together with knowledge of the one-parameter group t�U��t� give complete
knowledge of �.

More natural than considering t�U��D�t�� might be to consider the associated transporters
themselves, t�z��D�t��=U��D�t��U�D�t��*. It is easy to check that t�z��D�t�� satisfies the con-
dition of being a Connes cocycle derivative of some weight � relative to �, �D� :D��t

=z��D�t��. The properties of the weight �, which contains all information about �, have been
studied by Longo16 and Bertozzini et al.5 with the main focus on weights associated with endo-
morphisms with finite index.

In this section we will be taking the opposite approach. That is, starting with a weight � we
will construct a Möbius covariant endomorphism � such that �D� :D��t=z��D�t��. Two of the
most fundamental problems in this approach are determining the class of weights that are associ-
ated with Möbius covariant endomorphisms and the level of redundancy there is, that is, when will
two weights give rise to the same endomorphism.

As always we fix a standard half-sided modular inclusion �N�M ,	� and associate to it a net
of von Neumann algebras A as per Theorem 2.10.

A. Weak Möbius covariance

In Sec. III A we gave a correspondence between translation-dilation covariant endomorphisms
and �-cocycles on the translation-dilation group P based on the work by Guido and Longo.9

Given an endomorphism � on M with finite index, we were then able to associate to it an
�-cocycle on the translation-dilation group, and the correspondence of �-cocycles with endomor-
phisms then provided us with an extension of � to the net A with finite index.

A key element in the above argument was that we knew a priori that � had finite index;

122303-11 Endomorphisms on half-sided modular inclusions J. Math. Phys. 47, 122303 �2006�

                                                                                                                                    



wherefore it could be written as a direct sum of irreducible endomorphisms. The irreducibility was
necessary to get an �-cocycle. In this section, however, we will not have finite index a priori and
will therefore not be able to reduce the problem to the case of irreducible endomorphisms. Thus
when faced with a family of unitaries �vg�g�P satisfying

Advg � � = � � �g,

we can no longer conclude that g�vg is a projective representation of the translation-dilation
group P.

The properties that concern us, however, are unaffected by the lack of continuity of g�vg as
we will see in this and the following section.

Definition 4.1 (Weak Möbius Covariance): A DHR endomorphism � on S1 is said to be
weakly Möbius covariant if there exists a family of unitaries �U��g��g indexed over the Möbius
group such that AdU��g� ��=� ��g.

Replacing the Möbius group with the translation-dilation group in the definition above instead
gives us what we will call weak translation-dilation covariance.

Remark 4.2: If � is a weakly Möbius covariant endomorphism localized in I0 then for any
elements g and h of the Möbius group, AdU��gh� ��=Ad�U��g�U��h�� ��. Consequently, the ele-
ment U��gh�*U��g�U��h� commutes with the image of �, i.e.,

U��gh�*U��g�U��h� � ��A�I0��� � A�I0� .

Thus, U� is a unitary representation of the Möbius group modulo ��A�I0����A�I0� in the sense
that

U��gh� = xg,hU��g�U��h� for some xg,h � ��A�I0��� � A�I0� .

For irreducible endomorphisms, the notion of weak Möbius covariance coincides with that of
ordinary Möbius covariance.

We found in Sec. III A that there is a bijective correspondence between �-cocycles and
Möbius covariant endomorphisms. In this section we will find a similar correspondence with one
part being played by the weakly Möbius covariant endomorphisms. The other part will be played
by �-cocycle modulo some von Neumann algebra, to be defined next.

Definition 4.3 (�-Cocycle Modulo B): Let I0�S1 be a proper interval and B a sub-von
Neumann algebra of A�I0�. An �-cocycle modulo B localized in I0 is a family of unitaries �zg�
indexed over the Möbius group satisfying

�1� zg�A�I0�∨A�gI0�,
�2� zgh=xg,hzg�g�zh� for some xg,h�B, and
�3� Adzg�A�I0��=B��A�I0� for some g for which gI0� I0.

Lemma 4.4: Suppose that �zg� is an �-cocycle modulo B localized in I0. Then Adzg�A�I0��
=B��A�I0� for every g satisfying gI0� I0.

Proof: Straightforward. �

The two following propositions will detail how to move back and forth between weakly
Möbius covariant endomorphisms and �-cocycles modulo a given von Neumann algebra.

Proposition 4.5: Suppose that � is a weakly Möbius covariant endomorphism localized in I0.
Then zgªU��g�U�g�* defines an �-cocycle localized in I0 modulo ��A�I0����A�I0�.

Proof: Given x�A�I0���A�gI0��; then

Adzg�x� = AdU��g���g−1�x�� = AdU��g����g−1�x�� = ��x� = x .

Thus, zg belongs to �A�I0���A�gI0����=A�I0�∨A�gI0�.
To show that the second requirement of the definition is met, let g and h be elements of the

Möbius group. A quick calculation shows for any local element x that
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Ad�zgh�g�zh�*zg
*���x� = Adzgh��gh � � � ��gh�−1�x�� = AdU��gh��� � ��gh�−1�x�� = ��x� .

Hence, zgh=xzg�g�zh� for some x���A�I0����A�I0�.
Finally we note that for any g such that gI0� I0, we have Adzg�A�I0��=��A�I0��

= ���A�I0����A�I0����A�I0�. �

Proposition 4.6: Suppose that �zg� is an �-cocycle modulo B�A�I0� localized in I0. Then
there exists a weakly Möbius covariant � localized in I0 giving rise to �zg� as in Lemma 4.5.

Proof: We aim to define ���A�gI0
��= �Adzg�A�gI0

��. To show that this gives a well-defined con-
sistent endomorphism on S1 we need to show that zh

*zg belongs to A�gI0�∨A�hI0� for all elements
of the Möbius group g and h.

The cocycle condition implies that zh
*=�h�xzh−1� for some x�B. Using that zh−1�h−1�zg�

=yzh−1g for some y�B we find that

zh
*zg = �h�xzh−1�zg = �h�xzh−1�h−1�zg�� = �h�xyzh−1g� ,

which belongs to A�hI0�∨A�gI0�. Hence, we obtain a consistent endomorphism � on S1.
That � is weakly Möbius covariant can be demonstrated by reapplying the above equation as

follows:

�Adzh
* � ��A�gI0

�� = �Ad�zh
*zg��A�gI0

�� = �h � Ad�xy� � Adzh−1g � ��h−1�A�gI0
�� = �h � ���A�h−1gI0

�� � �h−1.

Note that Lemma 4.4 is used to eliminate Ad�xy� in the above computation. �

Remark 4.7 (The Case for the Translation-Dilation Group): If instead of considering
�-cocycles indexed over the entire Möbius group, we consider �-cocycles indexed over the
translation-dilation group satisfying the requirements of Definition 4.3, then we find a result
similar to that of Proposition 4.6. The proof can be applied unchanged except that for the
translation-dilation covariant case, we have to work with an interval I0 whose complement con-
tains �.

B. Weak conjugates

In Ref. 9 it is shown how to obtain a weak conjugate of a Möbius covariant endomorphism
based on its associated �-cocycle. Following the exposition given in Ref. 9 closely, we will make
the necessary generalizations to obtain an equivalent result for weakly Möbius covariant endo-
morphisms. We start out by recalling some facts about conjugate endomorphisms.

Remark 4.8 (Conjugate Endomorphisms): Assume that B�C is an inclusion of properly
infinite von Neumann algebras. Then there exists a normal faithful state � on C represented by a
vector in the Gel’fand-Naimark-Segal �GNS� representation which is cyclic and separating for
both B and C.15 Letting jB and jC denotes the modular conjugations of B and C, respectively, with
respect to the aforementioned cyclic and separating vector, we define the canonical endomorphism
� :C→B by �ª jBjC.

Now suppose that � is a unital, injective endomorphism of C and let �� be the canonical
endomorphism associated with ��C��C. A conjugate of � is then given by �̄=�−1 ���.

If U is a unitary that implements �, that is, �=AdU, then Ū= jC�U� implements a conjugate �̄

of �, �̄=AdŪ. Moreover, every conjugate of � is of this form.9

Definition 4.9 (Weak Conjugate Endomorphism): Suppose that � is a consistent endomor-
phism on the net of von Neumann algebras A localized in the proper interval I0. A weak conjugate
endomorphism of � is a consistent endomorphism �̄ localized in I0 such that �̄I is conjugate of �I

for every interval I� I0.
As usual we extend the Möbius group and the unitary representation �U ,H� to include reflec-

tions associated with proper intervals. In general we will use the notation r or s for such reflec-
tions, adding a subscript, rI, if necessary to emphasize the interval with which the reflection is
associated. We write JI for the modular conjugation associated with �A�I� ,	� and note that
U�rI�=JI.
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Proposition 4.10: Suppose that �zg� is an �-cocycle modulo B localized in I0. If h is an
element of the Möbius group and r a reflection associated with some interval, then g� z̄g

h,r

ª�hjr�zrh−1ghr� defines an �-cocycle modulo �hjr�B� localized in hrI0.
Proof: We fix an element h of the Möbius group and a reflection r and consider the mapping

g� z̄g
h,r.

Firstly, we will deal with the localization. Let g be an arbitrary element of the Möbius group.
Then

z̄g
h,r = �hjr�zrh−1ghr� � �hjr�A�I0� ∨ A�rh−1ghrI0�� = A�hrI0� ∨ A�g�hrI0�� .

Secondly, as concerns the cocycle condition for z̄h,r we make the following computation:

z̄g1g2

h,r = �hjr�zrh−1g1hrrh−1g2hr� � �hjr�Bzrh−1g1hr�rh−1g1hr�zrh−1g2hr��

= �hjr�B�z̄g1

h,r�g1
��hjr�zrh−1g2hr�� = �hjr�B�z̄g1

h,r�g1
�z̄g2

h,r� .

Finally, choose a g such that ghrI0�hrI0. This clearly implies that rh−1ghrI0� I0 and we therefore
have

Ad�z̄g
h,r�A�hrI0� = Ad��hjr�zrh−1ghr���hjrA�I0� = �hjr�Ad�zrh−1ghr�A�I0�� = �hjr�B� � A�I0��

as desired. �

Definition 4.11: For a given weakly Möbius covariant endomorphism � localized in I or
equivalently the corresponding �-cocycle �zg� modulo ��A�I����A�I�, we denote the weakly
Möbius covariant endomorphism associated with �z̄g

h,r� by �̄h,r.
We fix a weakly Möbius covariant endomorphism � localized in an interval I0 whose comple-

ment contains �.
Lemma 4.12: For any element h of the Möbius group and reflection r, it holds that

�̄h,r = �h � jr � � � jr � �h−1.

Proof:

�̄ghrI0
�

h,r = �Ad��hjr�zrhg−1hr���A�ghrI0
�� = �hjr � �Ad�zrh−1ghr��A�rh−1ghrI0

�� � jr�h−1

= �hjr � �rh−1ghrI0
� � jr�h−1.

�

Proposition 4.13: The endomorphisms �̄h,r with h ranging over the Möbius group and r over
the reflections are all in the same sector.

Proof: Let g and h be elements of the Möbius group and let r and s be reflections. Then

�̄h,r = �hjr�jr�h
−1 = �hjrjs�g

−1�̄g,s�gjsjr�h
−1 = �hrsg−1 � �̄g,s � ��hrsg−1�−1 = Ad��z̄hrsg−1

g,s �*� � �̄g,s.

Proposition 4.14: For each proper interval I� I0 there exists a �̄h,r such that �̄I
h,r is a conju-

gate of �I.
Proof: Let a proper interval I� I0 be given. As outlined in Remark 4.8, the proof will be done

if we can produce a unitary u such that �I=Adu and show that �̄I
h,r=AdjI�u�* for some h and r. Let

rªrI and choose h such that hrI0= I0. It then follows that Adzrhr �A�rhrI0
��=�rhrI0

� =�rI0
�. Noting

that rI0
�� I we define uªzrhr and consequently obtain �I=Adu �A�I�.

By the cocycle condition for � there exists an x���A�I0��� �A�I0� such that zrhr
*

=�rhr�zrh−1r�x. Using this we compute

jr�u*� = jr�zrhr
* � = jr��rhr�zrh−1r�x� = �hjr�zrh−1h−1hr�jr�x� = z̄h−1

h,r jr�x� .

For any a�A�I� we have Ad�jr�x���a��A�I��A�rI0
��=A�h−1I0

��. Therefore,
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Adjr�u�*�a� = Ad�z̄h−1
h,r jr�x���a� = Ad�z̄h−1

h,r �Ad�jr�x���a� = �̄h,r�Ad�jr�x��a� = �hjr�jr�h
−1�Adjr�x�a�

= Ad��hjr���rh−1r�x����̄h,r�a� .

Now, as x�A�I0� and rh−1rI0�rh−1I0= I0, we have ���rh−1r�x��=�rh−1r�x�. Consequently,

Ad��hjr���rh−1r�x����̄h,r�a� = Ad�jr�x���̄h,r�a� = �̄h,r�a� ,

as jr�x��A�rI0��A�I�� and �̄h,r�a��A�I�.
In conclusion, Adjr�u�* �A�I�= �̄I

h,r and �̄I
h,r is therefore a conjugate of �I. �

Lemma 4.15: If h is an element of the Möbius group and r a reflection chosen such that
hrI0= I0, then for any proper interval I� I0 the endomorphism �̄h,r is unitarily equivalent to jI ��
� jI.

Proof: As in the previous proof we find a unitary uªzrhr such that

� = �Adu on A�I�

id on A�I�� .
�

Hence, jI �� � jI is given by

jI � � � jI = � id on A�I�

AdjI on A�I�� .
�

Conjugating jI �� � jI with jI�u�* then gives

Ad�jI�u�*� � jI � � � jI = �AdjI�u�* on A�I�

id on A�I�� ,
�

which we recognize as �̄h,r. �

Lemma 4.16: For any interval I and any element g of the Möbius group, jI �� � jI is unitarily
equivalent tojgI �� � jgI.

Proof:

jgI � � � jgI = �g � jI � �g
−1 � � � �g � jI � �g

−1 = �g � jI � Adzg
* � � � jI � �g

−1  jI � � � jI � �g
−1  jI � � � jI.

�

We sum up our findings in the following proposition.
Proposition 4.17: Suppose that � is a weakly Möbius covariant endomorphism localized in I0.

Then � has a weakly Möbius covariant weak conjugate and for any interval I, jI �� � jI is in the
sector of that weak conjugate.

C. Endomorphisms from weights

We have now come to the part where we construct Möbius covariant endomorphisms from
weights. While we ultimately want to formulate the results in terms of half-sided modular inclu-
sions, it is convenient, especially in the proofs, to keep working in the setting of nets of von
Neumann algebras.

The construction falls in two parts. The first part is to construct a weakly Möbius covariant
endomorphism associated with a given weight. This part uses techniques similar to those em-
ployed in Sec. III where we were able to extend an endomorphism � on A�S+� to the entire net A
provided that there existed a conditional expectation E :A�S+�→��A�S+�� with finite index. We
will construct an endomorphism on some local algebra A��a ;��� along with a conditional expec-
tation onto its image. The fact that this conditional expectation may not have finite index is the
reason we are only able to obtain weak Möbius covariance a priori.

The second part of the construction consists of showing that the obtained weakly Möbius
covariant endomorphism is a direct sum of endomorphisms with finite index and thus a fortiori
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Möbius covariant. This part relies on proof techniques developed by Bertozzini et al.5 in which the
existence of a weak conjugate, proven in the previous section, will play a central role.

Definition 4.18 [Localized Weight]: Let � be semifinite, normal, faithful weight on M. We
say that � is localized in the proper interval I0�R+ if �1� �D� :D��t�A�I0�∨A�D�t�I0� for all
t�R and �2� The restriction of � to M���ª∨t�RAd��D� :D��t��A�D�t�I0�� �M� is semifinite.

Note that M����A�I0�.
Remark 4.19 (M��� Globally Invariant under �): By its very definition M��� is globally

invariant under the modular automorphism group of �:

s
��∨

t
Ad�D�:D��tA�D�t�I0�� � M� = s

��∨
t
t

�A�I0�� � M� = ∨
t
t

�A�I0�� � M

= ∨
t
Ad��D�:D��t��A�D�t�I0�� � M� .

The existence of a conditional expectation from M onto M��� follows from the remark
above. It is, however, difficult to construct an endomorphism on M with image M���. Instead we
will construct an endomorphism on some A��a ;����M by conjugation with �D� :D��t0

for
some suitable t0. The following lemma asserts that this endomorphism has the proper image, i.e.,
M����A��a ;���.

Lemma 4.20: Suppose that � is a weight localized in the interval I0�R+ and that I�R+ is an
interval containing the closure of I0. In that case, if t0�R is chosen such that D�t0�I0� I, then
Ad��D� :D��t0

�A�I�=M����A�I�.
Proof: We start by showing the inclusion Ad��D� :D��t0

�A�I��M����A�I�.
It is useful to note that �D� :D��t

*�D� :D��s belongs to A�D�t�I0�∨A�D�s�I0� as seen by the
following calculation:

�D�:D��t
*�D�:D��s = ��D�:D��ss

���D�:D��t−s��*�D�:D��s = s
���D�:D��t−s�*

� A�D�t�I0� ∨ A�D�s�I0� .

Consequently, the von Neumann algebra Ad��D� :D��t0
�A�I� is independent of the choice of t0 as

long as D�t0�I0� I. As it is contained in A�I�∨A�D�t0�I0� we conclude by the independence of t0

that it is, in fact, contained in the smaller von Neumann algebra A�I�, that is,
Ad��D� :D��t0

�A�I��A�I�. Secondly, that Ad��D� :D��t0
�A�I� is contained in M��� is an im-

mediate consequence of I being contained in D�s�I0
� for some s�R. Hence, we have shown the

inclusion Ad��D� :D��t0
�A�I��M����A�I�.

The converse inclusion will follow if we can simply show that

�Ad��D�:D��s�A�D�s�I0
��� � A�I� � Ad�D�:D��t0

A�I�

for all s�R. As the only elements of A�D�s�I0
�� to be mapped into A�I� by conjugation with

�D� :D��s are those localized in I, it suffices to show that conjugation with �D� :D��s and
�D� :D��t0

, respectively, is identical to A�D�s�I0
�� I�. This, however, is a consequence of the

aforementioned fact that �D� :D��t
*�D� :D��s belongs to A�D�t�I0�∨A�D�s�I0�. Thus, we find

that M����A�I��Ad��D� :D��t0
�A�I�. �

As shown as a step in the previous proof,

�D�:D��t
*�D�:D��s � A�D�t�I0� ∨ A�D�s�I0� .

This has the consequence that not only the image of the endomorphism �Ad�D� :D��t0
�A�I� but

also the endomorphism itself is independent of t0 as long as D�t0�I0� I.

Proposition 4.21: Let I0 be an interval such that Ī0�S+. For any weight � on M localized in
I0 there exists a unique weakly Möbius covariant endomorphism � localized in I0 such that t

�

��=� �t
� on M.
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Many aspects of the proof will closely parallel arguments presented in Sec. III. Instead of
giving the same arguments again, we will refer back to the relevant proofs and restrict ourselves
to dealing with the differences.

Proof: As � by assumption is semifinite on both M and M��� and the latter as noted in
Remark 4.19 is globally invariant under the modular automorphism group of �, the Takesaki
theorem supplies us with a faithful conditional expectation E from M onto M���.

We choose a proper interval I such that Ī0� I� �� ;�� for some �
0. We also choose a t0 such
that D�t0�I0� I. From the previous lemma it follows that we can define an endomorphism � on
A�I� with image M����A�I� by �ªAd�D� :D��t0

. As A�I0���M�M���, it follows that the
restriction of E to A�I� is a faithful conditional expectation of A�I� onto M����A�I�.

We are now in the situation where we have an endomorphism on A�I� along with a condi-
tional expectation onto its image. If the endomorphism was irreducible we could apply the proof
of Theorem 3.10 to extend � to a Möbius covariant endomorphism on S1. That � might be
reducible will present some problems but the basic techniques used in the previous section can still
be used. Our first goal is to construct an �-cocycle on the translation-dilation group modulo
��A�I����A�I� and use this to extend � to all of S1 as per Remark 4.7.

As in the proof of Theorem 3.10 we can find a one-parameter group �vt� such that Advt ��
=� �t

�I. Taking a proper subinterval J of I with one end point in common with I and which
contains the closure of I0, we can find another one-parameter unitary group wt such that Adwt

� ���A�J�= ���A�J� �t
�J. We can assume without loss of generality that the end point shared by I and

J is �. It is important to note that vt��I

−it belongs to A�I� and that wt��J

−it belongs to A�J�.
We want to show that the one-parameter unitary groups �vt� and �wt� together generate a

representation of the translation-dilation group up to left multiplication by elements of
��A�I����A�I�. As in the proof of Lemma 3.8, it is enough to show that �vt� and �ws� satisfy a
commutation relation of the shape �4�,

w�s�v�t − s� = v�t�w�− log�1 − exp�2�t� + exp�2��t − s���/2��

� v�log�1 − exp�2�t� + exp�2��t − s���/2�� , �5�

up to left multiplication by elements of ��A�I����A�I� for small s and t.
For convenience we will write U��DI�t�� for vt and U��DJ�t�� for wt. Let g1 , . . . ,g5 denote the

elements of the group generated by DI�s� and DJ�t�, s , t�R, corresponding to Eq. �5�. With
argumentation similar to that of the proof of Lemma 3.8 we find for a suitably chosen “small”
interval K� I0 that

U��g5�*U��g4�*U��g3�*U��g1�U��g2� � ��A�K���.

As in the proof of Lemma 3.8, the interval K is chosen such that the successive application of the
concerned elements of the Möbius group, g1 , . . . ,g5, keeps I0 within K and K within S+. Also with
argumentation like in the proof of Lemma 3.8, we find that U��g5�*U��g4�*U��g3�*U��g1�U��g2�
belongs to A�K�. By considering smaller and smaller intervals K� I0 we can conclude that U��g�
is well defined up to right multiplication with ��A�I����A�I� for g in the group generated by
DI�s� and DJ�t�. It is easy to check that conjugation by U��g� defines an automorphism on
��A�I����A�I�; wherefore U��g� is well defined up to left multiplication of elements in
��A�I����A�I�. That is, for given g1 and g2 in the group generated by DI�s� and DJ�t�,

U��g1�U��g2� = xg1,g2
U��g1g2� for some xg1,g2

� ��A�I��� � A�I� .

We now define zgªU��g�U�g�*. The aim is to show that �zg� defines an �-cocycle modulo
��A�I����A�I� localized in I0 such that we can apply Remark 4.7 to extend � to all of S1. The
previous arguments show that �zg� satisfies the cocycle requirement of Definition 4.18. By the very
definition of the endomorphism � and the weight �, it is clear that �zg� also satisfies the third
requirement of the definition, namely, that Ad�zg�A�I0�=��A�I0�� for some g such that gI0� I0.
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For the last requirement, i.e., zg�A�I0�∨A�gI0�, we encounter the same problem that we did
in Lemma 3.8 stemming from the translation-dilation group being unable to “move points through
�.” With the same argument as in Proposition 3.4 it is enough to show that zDI�t�

�A�I0�∨A�DI�t�I0� for some t such that Ī0�D�t�Ī0=�. But this is a direct consequence of the
definition of zDI�t�

. Let a suitable t be given. Then we have for x�A�I \ �I0�DI�t�I0�� that

AdzDI�t�
�x� = AdzDI�t�

��x� = �DI�t�
� � � �DI�−t��x� = �DI�t�

� �DI�t�
�x� = x .

In conclusion, �zg� is an �-cocycle on the translation-dilation group modulo ��A�I����A�I�
localized in I0. By Remark 4.7, � extends to a weakly translation-dilation covariant endomorphism
on S1 localized in I0.

Having defined � on all of S1, it is easy to see that it is, in fact, weakly Möbius covariant. Take
a third subinterval L of S+ containing the closure of I0 such that DL�r�, DI�s�, and DJ�t� together
generate the Möbius group. As before we can construct a one-parameter unitary group
t�U��DL�t�� such that AdU��DL�t�� ��=� ��DL�t�. Checking that U��DL�t�� together with the pre-
viously defined representation U� of the group generated by DI�s� and DJ�t� generate a represen-
tation of the Möbius group up to left multiplication with ��A�I����A�I� is trivial.

Lastly we show that t
� ��=� �t

�. Let t�R be given. For any t0 such that D�t0�I0� I we have
�D�t0�I0

� =Ad�D� :D��t0
by the definition of �. Therefore, if x�A�D�t0�I0

���A�D�t0

− t�I0
���A�S+�, then

t
� � ��x� = t

� � Ad�D�:D��t0−t�x� = Ad�D�:D��t � t
� � Ad�D�:D��t0−t�x�

= Ad��D�:D��tt
���D�:D��t0−t��t

��x�

= Ad�D�:D��t0
� t

��x� = � � t
��x� .

This shows that the equation t
� ��=� �t

� holds on Xt0
ªA�S+ \ �D�t0�I0�D�t0− t�I0��. As we can

make Xt0
cover all of A�S+� by varying t0 and � does not depend on t0, we conclude that t

� ��
=� �t

� holds on all of A�S+�. The equality t
� ��=� �t

� also ensures uniqueness of �. �

Having constructed a weakly Möbius covariant endomorphism on the basis of a weight, we
have completed the first part of the program described in the Introduction to this section. For the
second part we will use proof elements from Ref. 5 to show that the endomorphism is a direct sum
of finite index endomorphisms. A key element will be played by the following result due to Longo.

Proposition 4.22 Ref. 14: If B�C is an inclusion of factors and if there exists normal, faithful
conditional expectations E :C→B and E� :C�→B�, then B��C is a direct sum of type I factors.
Moreover, for each minimal projection p in B��C, the inclusion Bp� pCp has finite index.

Theorem 4.23: Suppose that � is a semifinite, normal, faithful weight on M localized in the

interval I0, Ī0�S+. There exists a unique consistent endomorphism � on S1 localized in I0 such that
t

� ��=� �t
� on M. This � is a (possibly infinite) direct sum of finite index endomorphisms. In

particular, � is Möbius covariant.
Proof: From Proposition 4.21 we obtain a weakly Möbius covariant endomorphism � local-

ized in I0�S+. Also, as argued in the beginning of the proof of Proposition 4.21, the Takesaki
theorem provides us with a normal, faithful conditional expectation E of A�S+� onto ��A�S+��. We
want to construct a normal, faithful conditional expectation from A�S+�� onto ��A�S+��� such that
we can utilize Proposition 4.22.

We will write SR for the right half of the circle S1 corresponding to the interval �−1;1�. As the
reflection associated with SR maps S+ bijectively onto S+, the operator jSR

is an antiautomorphism
of A�S+�. Let �̄ª jSR

�� � jSR
. From Proposition 4.17 we know this to be in the sector of a weak

conjugate of �. As �̄ is localized in S+, there exists a unitary u�A�S+� such that Adu � �̄=�−1

� j��M�jM on A�S+�. Thus, if we define Ēª jSR
�E � jSR

we get a normal, faithful conditional expec-
tation of M onto �̄�M�. The inclusion �̄�M��M can be written as Ad�u*� ��−1

� j��M�jM�M��M which by simple rearrangements is seen to be unitarily equivalent to
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M����M��. In this way we obtain a normal, faithful conditional expectation of ��M�� onto
M� and Proposition 4.22 then tells us that � is a �possibly infinite� direct sum of finite index
endomorphisms. As each of these is automatically Möbius covariant, so is �. �

Definition 4.24: Let � be a semifinite, normal, faithful weight on M localized in some

interval I0, Ī0�S+. The unique weakly Möbius covariant endomorphism � on S1 such that t
� ��

=� �t
� is called the endomorphism associated with � and written ��.

D. Freedom of choice of weights

The characterizing equation for an endomorphism � associated with a weight � is t
� ��=�

�t
� or equivalently,

Ad��D�:D��t� � � = t
� � � � −t

� .

As this only determines the Connes cocycle �D� :D��t up to left multiplication with
��A�I0����A�I0�, assuming � localized in I0, many weights will give rise to the same endomor-
phism. In fact, the following holds.

Proposition 4.25: Let I0 be an interval such that Ī0�S+ and suppose that � and � are
semifinite, normal, faithful weights on M localized in I0. Then the following conditions are
equivalent:

�1� �D� :D��t����M�� �M, t�R.
�2� �D� :D��t����M�� �M, t�R.
�3� t

��x�=t
��x�, x����M�.

�4� t
��x�=t

��x�, x����M�.
�5� ��=��.

Proof. As the last condition is symmetric in � and �, it is enough to show that
�1�⇒ �5�⇒ �3�⇒ �1�. Assuming Eq. �5�, then

t
�����y�� = t

�����y�� = ���t
��y�� = ���t

��y�� = t
�����y�� .

Assuming Eq. �3�, clearly �D� :D��t commutes with ���M� as stated in Eq. �1�. Finally, we
assume Eq. �1�. As both �� and �� are localized in I0, it is enough to show that they coincide on
A�I0�. Choose t0 such that D�t0�I0� I0. Then

����A�I0� = Ad�D�:D��t0
� ����A�I0� = Ad�D�:D��t0

� Ad��D�:D��t0
�A�I0� = �Ad�D�:D��t0

�A�I0�

= ����A�I0�

as per condition �5�. �

In case the endomorphism �� is irreducible, the weight � is unique up to a scalar.
Corollary 4.26: Let � be an irreducible Möbius covariant endomorphism localized in I0,

Ī0�S+. If � and � are weights localized in I0 such that ��=��=� then �=�� for some positive
real �.

Proof: As �D� :D��t���M�� �M=C, there exists a positive scalar � such that �it

= �D� :D��t for all t�R. By the defining properties of the Connes cocycle derivative, �=��. �

While in general there is a certain amount of freedom in the choice of the weight inducing a
given endomorphism �, we want to single out the weight � satisfying �D� :D��t=z��D�t��. Ber-
tozzini et al. have given a criterion for when this is satisfied for finite index endomorphisms.

Proposition 4.27 Refs. 14 and 5: Let � be a Möbius covariant endomorphism localized in I0,

Ī0�S+ and � a positive linear functional on M. Then the following conditions are equivalent.

�1� � is normal and faithful and its Connes cocycle derivative relative to � satisfies
�D� :D��t=z��D�t��, t�R.

�2� �=Ind���� ��−1 �E�, where E� is the minimal conditional expectation of M onto ��M�.
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�3� ��xy*�= �exp�−D� /2�x	 �exp�−D� /2�y	�, where D� is the infinitesimal generator of
t�U��D�t��.

�4� � is normal, faithful, satisfies t
� ��=� �t

�, t�R, and �����M���M is a trace whose value on
a central projection p is given by ��p�=Ind��p�, where �p is the subrepresentation of �
associated with p.

The condition that � is a trace on ��M���M is equivalent to ��M���M being a subset of
the centralizer of �. This can be restated as the condition that the modular automorphism group of
the conditional expectation E� is trivial.

For later use we also mention that condition �2� can be rewritten as � ��=Ind����, suggesting
that it may be useful to think of � as the vacuum state for the net ���A�I���.

V. BASIC CONSTRUCTIONS WITH WEIGHTS

In order to work with weights instead of endomorphisms, we need to establish the analogs of
unitary equivalence, direct sums, conjugate endomorphisms, and the like within the framework of
weights. In this section we take the first basic steps in that direction.

As usual we fix a standard half-sided modular inclusion �N�M ,	� and denote the associ-
ated net of von Neumann algebras by A.

A. Unitary equivalence, subrepresentations, and direct sums

We introduce the notions of unitary equivalence, subrepresentations, and direct sums for
weights. Similar considerations appear in Ref. 14.

Remark 5.1 (The Connes Cocycle Derivative): We briefly recall some facts and notation
concerning the Connes cocycle derivative. Define Dª �z�C �0� Im z�1� and let A�D� denote the
set of bounded, continuous functions on D that are analytic in the interior. If � is a weight on M
we define n�ª �x�M ���x*x����.

For given normal, semifinite, faithful weights � and � on M, the Connes cocycle derivative
�D� :D��t is uniquely determined by the following condition.18 For each x�n��n�

* and y
�n�

* �n�, there exists a function Fx,y �A�D� such that

F�t� = ���D�:D��tt
��y�x�, F�t + i� = ��x�D�:D��tt

��y��, t � R .

.
Proposition 5.2: Suppose that � is a semifinite, normal, faithful weight localized in the

interval I0, Ī0�S+ and that u is a unitary localized in some interval whose closure is contained in
S+. Then �� is unitarily equivalent to ��u

, where �uª� �Adu*.
Proof. We will write � for the endomorphism �� and �u for the endomorphism Adu ��.

Defining U�u
�g�=uU��g�u* gives a representation of the universal covering group of the Möbius

group satisfying AdU�u
�g� ��u=�u ��g. We define �u to be the weight whose Connes cocycle

derivative with respect to � satisfies �D�u :D��t=U�u
�D�t��U�D�t��*. Thus, �D�u :D��t

=u�D� :D��tt
��u�*.

For x�n�u
�n�

* and y�n��n�u

* we have an Fx,y �A�D� such that

Fx,y�t� = �u�u�D�:D��tt
��u*y�x�, Fx,y�t + i� = ��xu�D�:D��tt

��u*y�� .

We recognize Fx,y�t+ i� as being equal to the function Gxu,u*y�t+ i�, where G�A�D� is the unique
function determining �D� :D��t, i.e., Gxu,u*y�t�=���D� :D��tt

��u*y�xu�. In particular,

�u�yx� = Fx,y�0� = Gxu,u*y�0� = ��u*yxu�

and we conclude that �u=� �Adu* �.
The proof above would work just as well, were the unitary u to be replaced by an isometry.

This observation leads to the following two propositions.
Proposition 5.3: Suppose that � is a semifinite, normal, faithful weight localized in the
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interval I0, Ī0�S+. If � is a subrepresentation of ��, �=Adv ���, then �=���Adv*.
Proof: The proof is identical to that of Proposition 5.2. �

Proposition 5.4: Suppose that �1 , . . . ,�n are semifinite, normal, faithful weights localized in
I0. For any choice of isometries v1 , . . . ,vn�A�I0� such that �vivi

*=1, the weight �ª��i �Advi
*

satisfies ��=�Advi ���i
.

Proof: The proof is a slight variation of that of Proposition 5.2. �

In case we are considering weights of the form described in Proposition 4.27, i.e., weights �
satisfying �D� :D��t=z��

�D�t��, it is easy to check that forming unitary equivalence, subrepresen-
tations, and direct sums preserves this form.

B. Weak conjugates for weights

While several representatives of a weak conjugate of a given endomorphism � localized in S+

exists, we focus on the most obvious one which is likewise localized in S+, namely, jS+
�� � jS+

.
Longo presents similar considerations in Ref. 14.

Proposition 5.5: Suppose that � is a semifinite, normal, faithful weight localized in the

interval I0, Ī0�S+, and that r is the reflection associated with the right half-circle SR. Then the

endomorphism associated with the weight �̄ª� � jr localized in rI0�S+ is a weak conjugate of ��,
in fact, ��̄= jr �� � jr.

Proof: By Proposition 4.17, the endomorphism jr ��� � jr is a weak conjugate of ��, and clearly
jr ��� � jr is localized in rI0�S+. The �-cocycle associated with jr ��� � jr is z̄g= jr�zrgr�. We seek the

weight �̄ whose Connes cocycle derivative with respect to � is z̄D�t�. As usual we do this by

computing the function F�̄�A�D� satisfying the following for x�n�̄�n�
* and y�n��n

�̄

*
:

Fx,y
�̄ �t� = �̄�z̄�D�t��t

��y�x�, Fx,y
�̄ �t + i� = ��xz̄�D�t��t

��y�� .

It is easy to calculate that rD�t�r=D�−t� and that consequently jr �t
� � jr=−t

� . Using this and the

fact that �=� � jr, we can rewrite Fx,y
�̄ �t+ i� as

Fx,y
�̄ �t + i� = ��xjr�zD�−t��t

��y�� = ��jr�xjr�zD�−t��jr�−t
� �jr�y����� = ��jr�x�zD�−t�−t

� �jr�y���

= Fjr�x�,jr�y�
� �− t + i� .

Thus we find that

�̄�yx� = Fx,y
�̄ �0� = Fjr�x�,jr�y�

� �0� = ��jr�yx��

and conclude that �̄=� � jr. �

We note in passing that if the weight � is of the form given in Proposition 4.27, then �̄ is
likewise of that form.

C. Criteria for finite index

It is possible for a given weight � to determine whether or not �� has finite index on the basis
of the weight alone. In fact, Longo has shown that if the weight � is of the form given in
Proposition 4.27, then the index of �� is Ind����=��1�.14 In particular, �� has finite index if and
only if � is a functional.

For a general weight � localized in an interval I0 it is more difficult to determine the index of
�� directly. It is easy to construct a weight � such that �� has infinite index but ��1���.

Proposition 5.6: Let � be a normal, semifinite, faithful weight localized in I0, Ī0�S+. The
following holds.

�1� If any normal, semifinite, faithful weight � localized in I0 for which ������M�= ������M� and
��M���M�M� is a functional, then �� has finite index.
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�2� If � is a functional and � ��� is proportional to �, then �� has finite index.

Proof: If �0 is the weight for which the Connes cocycle derivative satisfies �D�0 :D��t

=U��
�D�t�� then �� has finite index if and only if �0 is a functional.14 Condition �2� is simply a

restatement of �0 being a functional, see the comment after Proposition 4.27.
As concerns the first condition, if � is a normal, semifinite, faithful weight localized in I0 such

that ������M�= ������M� and ���M���M�M�, then ��=�� and �=�0. The latter equality is
equivalent to �=��0 for some real number �
0. Hence, � is a functional if and only if �0 is a
functional, and �0 is a functional if and only if ��=��0

has finite index.14
�

D. Positive energy

As any endomorphism �� associated with a weight as per Theorem 4.23 is a direct sum of
finite index endomorphisms, and any endomorphism of finite index has positive energy we can
make the following easy observations.

Proposition 5.7: Suppose that � is a normal, semifinite, faithful weight localized in I0, Ī0�S+.
Then the associated endomorphism �� has positive energy.

Corollary 5.8: Suppose that � is a Möbius covariant endomorphism localized in I0, Ī0�S+

and that � is the weight on M for which �D� :D��t=z��D�t��. If it holds that �����M� is semifinite,
then � has positive energy.

Other criteria for a Möbius covariant endomorphism having positive energy can be found in
Ref. 5.
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In the interesting conjecture, ZBH= �Ztop�2, proposed by Ooguri, Strominger, and
Vafa �OSV�, the black hole ensemble is a mixed ensemble. So if working in the
complex polarization, the black hole degeneracy of states as obtained from the
ensemble inverse-Laplace integration, generically receives prefactors that do not
respect the electric-magnetic duality. One way to handle this, as claimed recently, is
working instead of the complex polarization in the real polarization. The other idea
would be imposing nontrivial measures for the ensemble sum in the complex po-
larization. We address this problem in the complex polarization, which is canonical,
and upon a redefinition of the OSV ensemble with variables as numerous as the
electric potentials, show that for restoring the symmetry no non-Euclidean measure
is needed. In detail, applying the electric-magnetic duality as a constraint governing
the proper definition of the ensemble variables, we rewrite the OSV free energy as
a function of new variables that are combinations of the electric potentials and the
black hole charges. Subsequently the Legendre transformation, which bridges be-
tween the entropy and the black hole free energy in terms of these variables, points
to a generalized ensemble that is well behaved in the complex polarization. In this
context, we will consider all the cases of relevance: small and large black holes,
with or without D6-brane charge. For the case of vanishing D6-brane, the new
ensemble is purely canonical and the electric-magnetic duality is restored exactly,
leading to proper results for the black hole degeneracy of states to all orders in an
asymptotic expansion. For more general cases as well, the construction does the job
as far as the violation of the duality by the corresponding OSV result is restricted to
a prefactor. In the case of black holes with nonvanishing D6-brane charge, in a
concrete example, we shall show that there are cases where the duality violation
goes beyond this restriction and imposing nontrivial measures is incapable of re-
storing the duality. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2393149�

I. INTRODUCTION

The theory of topological strings is a beautiful, smart, and powerful mathematics to probe the
various aspects of the superstring theories. From the time of its invention,1–3 it has been an active
field of new discoveries. The reader may refer to Ref. 4 as an excellent textbook on the topological
strings, or consult Refs. 5–7 as quick introductions to the subject and Ref. 5 for a nice view of
recent developments.

On the other hand, one of the most striking outcomes of the string theory has been the
microscopic derivation of the black hole entropy.8 Recently Ooguri, Strominger, and Vafa �OSV�,
in Ref. 9, have proposed a deep and promising connection between the topological free energy and
the microstate ensemble of the four-dimensional BPS black holes in the CY3 compactifications of
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type-II strings. This conjecture roots from earlier works on the black hole entropy,10–12 which
made a consistent generalization of the Bekenstein-Hawking formula, incorporating the F-term
corrections to the supergravity action as encoded in the prepotential. The evidence for the fact that
a generalization to the standard area-law formula for the black hole entropy is needful in the
context of string-M theory had been provided in Ref. 13. A detailed review on the results about the
black hole entropy from the string theory is found in Ref. 14.

In Ref. 9, OSV observe that the Bekenstein-Hawking-Wald entropy of the black holes, as
derived in Refs. 11 and 12, can be reexpressed as the Legendre transformation of a real function
F, called the OSV free energy, with respect to the half of its variables,

S�p�,q�� = F�p�,��� + q���; F�p�,��� � − � IF�CX�,C2W2 = 28� , �1.1�

with

CX� = p� + i �� �1.2�

as obtained from the magnetic part of the attractor equations, and F�X��=F�X0 ,XA� being the full
holomorphic prepotential. Independently, a very close relation is established between the
asymptotic expansion of the prepotential and the free energy of topological strings.15,16 In all, the
OSV conjecture states that, given a BPS black hole of electric-magnetic charge-multiplet �p� ,q��,
arising in N=2 compactification of IIA�B� string theory on CY3=M, the topological A−A�B
−B� models on M define a mixed ensemble as

Zmix � eF�p�,��� = �
q�

��p�,q��e−� q���
, �1.3�

where the black hole free energy is given by

FBH = F�p�,��� = Ftop + Ftop, �1.4�

with ��p� ,q�� proposed as �index� degeneracy of the black hole states and �� being the electric
potential corresponding to q�.1 This proposal has been successfully tested in Refs. 18 and 21 from
different points of view and further developed in Ref. 17. Remarkably, using the OSV conjecture,
Dabholker21 was able for the first time to derive, from the macroscopic side, the exact coefficient
of the leading term in the asymptotic expansion of the degeneracy of states for the small black
hole of type IIA on K3�T2, dual to Heterotic on T6, where both the prepotential and the micro-
scopic degeneracy counting are known exactly. For a review lecture on Refs. 9, 17, and 18, see
Ref. 22. For a recent and extensive review see Ref. 23. There are, however, examples in Refs. 24
and 25 where a naive application of this conjecture sounds problematic. For example, Ref. 24
mainly focuses on N=4 models where in some cases the string coupling is strong. Before con-
centrating on the concern of this paper, it is worth pointing out that before any attempt is made to
apply the proposal, one may note that the OSV conjecture, in the form of Refs. 9 and 17 in its
strong version, is a statement about the full free energy of the topological string theory, including
all the perturbative quantum corrections as well as the nonperturbative contributions. Therefore,
regarding the fact that the nonperturbative completion of the topological free energy is not as yet
known, what the OSV conjecture provides is a nonperturbative definition of the topological
strings, parallel to the program of topological M-theory as proposed in Refs. 26 and 27.

A distinguished ambiguity in �1.3� originates from the electric-magnetic duality consider-
ations, that is, the requirement of the invariance of ��pI ,qI� under the �relevant subgroup� of the

1For a nonperturbative completion of the original conjecture see Ref. 17; also there are suggestions concerning the
holomorphic anomaly in Refs. 18–20.
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symplectic transformations. Actually if one works in the complex polarization, as concrete ex-
amples in Refs. 24, 25, and 28 show us using the relevant terms of the topological free energy, the
inverse Laplace transformation corresponding to �1.3�2,

��p�,q�� �� �d���eF+� q���
�� �d���eG, �1.5�

does generically lead to the results that are duality violating by some unwanted prefactors �for a
highlighted example, see the next section�. As we will argue later, this property is not restricted to
a specific subset of prepotentials but it is a general fact about �1.5�, if working in the complex
polarization. Understanding and handling this fact has been a matter of some investigations. For
example, for an attempt within an independent and, by construction, duality-invariant formulation
see Ref. 29, where the proposed modification works for the dyonic black holes relatively well but
it is not applicable to the case of 1

2BPS states for which the proposed measure vanishes �for details
and recent improvements see Ref. 30�. Alternatively Refs. 31–33 propose a black hole ensemble
that sums over a single duality-invariant charge, and so by construction respects the expected
symmetries. The application of this approach, where the nonholomorphic corrections to the free
energy should necessarily be considered, is so far limited to 1

2BPS black holes. So there is not yet
any overlap between these two approaches. Another idea to improve the duality violations, being
closer to the OSV proposal, is assuming that the OSV free energy intrinsically lives in a curved
space; accordingly �1.5� is redefined via a non-Euclidean measure,20,25

��p�,q�� �� �d��� 	�g�p,��� eF+� q���
. �1.6�

This measure, which differs from case to case, is responsible for removing the mentioned prefac-
tors.

A new claim in the literature, being argued generally although not yet materialized in concrete
examples, is working in the real polarization instead of the complex polarization. This is so
because the former polarization is expected to be protected against such duality violations �for
details see Refs. 19 and 30, and especially Ref. 23�.

In this paper we focus on this problem, that is, the duality aspects of the OSV conjecture,
while in the whole work we will choose to keep working in the complex polarization, which is
canonical, in contrast to the real polarization, which depends on the symplectic basis that one
chooses.233 We shall prove that the curvature of the space where the OSV free energy is defined,
in the case of vanishing D6-brane charge, is asymptotically zero and as such, to all orders in the
asymptotic expansion, no nontrivial measure is needed to be imposed. To show this we shall
follow a direct approach: explicit construction of a proper flat ensemble, based on the OSV free
energy, which is canonic in as many variables as the original OSV ensemble. In different ex-
amples, also within general arguments, we observe that the ensemble leads to the proper results for
the black hole degeneracy of states. In fact, the construction works properly for all types of the
known BPS black holes in CY3 compactifications of type-IIA�B� theories and to all orders in the
saddle-point asymptotic expansion of the inverse Laplace integral, as far as the duality violation is
restricted to a prefactor. This is done via a simple change of variables, which, being linear in the
electric potentials, preserves the Legendre transformation from the free energy to the entropy. The
new variables have the advantage that the corresponding ensemble is potentially protected against
the duality-violating prefactors. For the cases with a vanishing D6-brane charge, where the pre-
potential takes a simplified form and the construction is readable from the form of the prepotential,
the new ensemble is purely canonical and restores the electric magnetic exactly. The idea still
works quite well for the most general case, of course, up to nonholomorphic corrections, which are

2The sign � means “equality” up to an arbitrary constant, which is independent of the black hole charges.
3We understand that from now on the reader is aware of the frame of polarization in which we handle the problem.
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missed also in the original OSV proposal. For the most general case, considering the leading term
of the saddle-point approximation, we obtain a general constraint on the Jacobian from the new
variables to the old ones. This constraint equation admits an infinite number of solutions; in
principle, all the solutions are equally well, but practically we can pick up the simplest choices. In
fact, the exact choice of these variables is not needed. The job they do is just removing the
duality-violating prefactor of the corresponding OSV result, which could be done by hand from
the first. In this sense it is an existence problem.

It is worth asking about higher orders of the saddle-point approximation for the most general
case. The question is whether the duality violation appears just as a prefactor in higher orders.
Indeed, for the black holes with a vanishing D6-brane charge the answer is positive to all orders
of the asymptotic expansion, however, we will show that in case of nonvanishing D6-brane
charge, the violation can become more complicated than a simple prefactor. This implies that, in
higher orders, a simple measure factor is not sufficient to restore the duality generally and deeper
modifications/investigations are necessary.

Finally as an alternative, motivated by manifest symplectic-invariant construction, we try a
different ensemble that from the beginning treats both of the magnetic and electric charges at the
same footing. This enlarged ensemble is related to the ensemble of Sec. IV via an effective
integration over the magnetic potentials and asymptotically reproduces the same results for the
black hole degeneracy of states.

The outline of the paper is as follows. In the next section, to clarify the main problem within
a concrete example, we review one result from Refs. 24 and 25. In Sec. III we redefine the OSV
ensemble for the large and small black holes in the absence of D6-brane, respectively, and show
how it leads to proper results for the degeneracy of states. In Sec. IV we lift the idea for the most
general case of BPS black holes in the context of CY3 compactifications of type-IIA�B� string
theories. In Sec. V we check out the procedure for higher orders in the saddle-point approximation
and show that in some special cases the duality violation cannot be fixed by a single prefactor. In
Sec. VI we introduce an effective that asymptotically reproduces the same results of Sec. IV. We
end the paper with a conclusion.

II. ELECTRIC-MAGNETIC DUALITY IN THE OSV CONJECTURE

Let us start by addressing the duality invariance of the proposal of Ref. 9 in the complex
polarization. To do that, we quickly repeat a result from Refs. 21, 24, and 25.4 The prepotential of
type-II string theory on a CY3 is given by the free energy of the corresponding topological string
theory as follows:

FII = −
i�

2
Ftop, Ftop = Ftop

pert. + Ftop
GW + Ftop

non-pert. completion, �2.1�

where

Fpert. = �
h

FhW2h, �2.2�

with Fh being the genus-h amplitude of the topological theory and W2 includes the graviphoton
field strength. For the case of IIA on K3�T2, Fh�1 vanishes and the prepotential is given by

F�XI,W2� = −
1

2
Cab

XaXbX1

X0 −
W2

128�i
log ��e2�i

X1

X0 � , �2.3�

where Cab�C1ab with a ,b=2, . . . ,b2, b2=23, and CABC being the intersection numbers of the CY3.
� stands for the Dedekind function. Taking p0=0, the OSV free energy is given by

4This example is in the context of N=4, but for N=2, where the OSV conjecture is originally formulated, this is the case
as well. For example, see the next section.
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F�p�,��� =
�

2�0Cab�p1�a�b + pa�b�1 + pb�a�1 − papbp1� − log���e2�
p1

�0 e2�i
�1

�0 ��2. �2.4�

For the small black hole we set pa=0,

F�pI,�I� =
1

2
Cab

�a�bp1

�0 − log����e2�2 p1

�0 e2�i
�1

�0 ��2� . �2.5�

Accordingly the inverse Laplace transformation, with the Euclidean measure, calculates the de-
generacy of states as

��p1,q�� �� �d�0d�1d�a� eF+qa�a+q0�0+q1�1
�2.6�

�� dx d� 
− x12�p1�2

	det C
�

�
e�1

2
Cabqaqb−p1q0�x−p1q1x�

���e− 2�2

x e2�i��� , �2.7�

where, in the second line, we have taken the integration over �a’s and used the change of variables
x=−�0 / p1 and �=�1 /�0 with d�0 d�1= �p1�2x dx d�. For the two-charge case, we set qA=0 for
A�0. Defining the T-duality-invariant charge N�−p1q0, integrating over �a gives

��p1,q0� �
− �p1�2

	det C
� dx x12eNx� d�

1

���e− 2�2

x e2�i���
. �2.8�

In this form, beside the prefactor �p1�2, everything is in a duality-invariant form. The presence of
this p-dependent factor violates the duality invariance of the degeneracy of states.

In the large N limit, ���q����q�, so that � approaches

��p1,q0� �
− �p1�2

	det C
Î13�4�	N� , �2.9�

where24

Î	�Q� �
�2��	

i
� dt t−	−1et+ Q2

4t . �2.10�

Note that at the above limit, the genus 0 and 1 terms of prepotential read as

F0�X�� = −
1

2
Cab

X1XaXb

X0 , �2.11�

F1�X�� = −
1

64

X1

X0 , �2.12�

with the OSV free energy being

FIIA/K3�T2
pert =

Cab

2
�a�b p1

�0 − 4 �2 p1

�0 . �2.13�

We mention that any attempt to remove the prefactor of �2.9�, and similar prefactors, should be
done in a way to keep the correct results for the entropy and degeneracy of states. In the following
sections we redefine the black hole ensemble to do this job.
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III. REDEFINITION OF THE OSV ENSEMBLE FOR A CLASS OF LARGE AND SMALL
BLACK HOLES

In this section we consider black holes with vanishing D6-brane charge, where p0=0 and the
prepotential takes a simplified form. We start with the case of large black holes. The perturbative
OSV free energy for a general CY3 compactification in the large volume is given by

F = −
�

6

Ĉ�p�
�0 +

�

2

CAB�A�B

�0 , �3.1�

where

CAB�p� = CABCpC, C�p� = CABCpApBpC; Ĉ�p� = C�p� + C2ApA, �3.2�

and the indices A ,B , . . . take the integers 1 , . . . ,h.
Let us change the variables of the free energy as follows:


0 �
6

Ĉ�p�
�0;

CAB�p��A�B

�0 �

A
A


0 , �3.3�

where 
A=M B
A �p��B.5

The free energy is now redefined as a new function,

F = F̀�
0,
A� = − �
1


0 +
�

2


A
B


0 . �3.4�

Noting that

− �0
�F
��0 = − 
0

�F̀
�
0 ; − �A

�F
��A = − 
A

�F̀
�
A , �3.5�

and defining

N �
1

6
Ĉ�p�q0; NA � qB�M−1� A

B , �3.6�

the Legendre transformation reads as

S�N,NA� = F̀ − �
0
�F̀
�
0 − �
A

�F̀
�
A , �3.7�

N = −
�F̀
�
0 ; NA = −

�F̀
�
A . �3.8�

Motivated by the above observation we introduce the correct black hole ensemble to use as

Z � eF̀�
0,
A� = �
N

�
NA

�̃�N,NA� e−�
0N−�
ANA. �3.9�

Note that the ensemble defined above, unlike the OSV ensemble, is purely canonical. Now the
black hole degeneracy of states is proposed to be

5M B
A �p� is a transformation matrix which first diagonalizes CAB�p�, then rescales the variables appropriately.
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d�p,q� � �̃�N,NA� . �3.10�

Let us now consider �3.1� and calculate the corresponding degeneracy of states in the light of the
definition �3.9�:

�̃�N,NA� �� d
0 d
A eF̀�
0,
A�+�N
0+�NA
A
. �3.11�

The integral over the variables 
A’s is Gaussian and yields

�̃�N,NA� � N̂− h
2

−1� d� �
h
2 e�−�2 N̂

� , �3.12�

where

N̂ � N −
1

2
NANA. �3.13�

A simple algebra shows that

N̂ =
1

6
Ĉ�p�q̂0; q̂0 � q0 −

1

2
CABqAqB, �3.14�

where CAB denotes the inverse of CAB. Thus the degeneracy of the large black hole states as
calculated via the ensemble �3.9� is given by

d�p,q� � Î h
2

+1�S�; S = 2�	1

6
Ĉ�p�q̂0. �3.15�

This is indeed the correct result. In contrast, the result by the standard OSV ensemble receives a

duality-noninvariant prefactor of the form �det CAB�p��−
1
2
� Ĉ�p�

6
�

h
2

+1

.24,25

Now we come to the case of small black holes following the same idea: rewriting the OSV
free energy and the macroscopic entropy in terms of new variables and new charges, respectively,
leads to a new ensemble for the black holes that by construction is purely canonical. For the
interesting case of K3 fibrations with Heterotic duals, of which the most well-known example is

IIA
K3�T2 � Het.

T6 , the OSV free energy is �2.5�. Defining

� � −
�0

p1 ;  �
�1

p1 �3.16�

and

N � − p1q0; N� � − p1q1, �3.17�

we obtain

F̀��,,�a� = −
Cab�a�b

2�
− 2 log���e

2�2

� e
−2�i

� �� , �3.18�

where

S�N,N�,qa� = F̀ − ��
�F̀
��

− �
�F̀
�

− ��a
�F̀
��a �3.19�

and
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N = −
�F̀
��

; N� = −
�F̀
�

; qa = −
�F̀
��a . �3.20�

Subsequently we define

Z̀ � eF̀��,,�a� = �
N

�
N�

�
qa

�̀�N,N�,qa� e−��N−�N�−��aqa �3.21�

as the correct black hole ensemble.
The corresponding degeneracy of states is given by

�̀�N,N�,qa� �� d� d d�ae−
Cab�a�b

2�
+�N�+�N�+�qa�a

���e
2�2

a e
−2�i

� ��2
. �3.22�

Doing the Gaussian integration and changing the variables of the remaining integrals from �� ,�
to �� ,��− 

�
�, we obtain

�̀�N,N�,qa� �� d� �12 e��N̂� d�
e−�N���

���e
2�2

� e2�i���2
, �3.23�

where

N̂ � N +
1

2
qaCabqb =

1

2
Qe

2. �3.24�

For the two-charge case where N̂=N and N�=0, taking the large-volume limit, for which ���x��
��x�, simplifies �3.24� as

�̃�N� �� d� �12 e��N̂+ 4�
� = Î13�4�	N̂� , �3.25�

which is the well-known result for the degeneracy of states, as known from its duality with
Heterotic string theory by direct counting of the DH fundamental stringy states.21

IV. BLACK HOLES WITH NONVANISHING D6-brane CHARGE: SADDLE-POINT
EVALUATION

In this section we are concerned with the most general case, p0�0, and as the central idea
follow what we did before. We introduce a generalized OSV ensemble as

Z̀ � eF̀�p�,
�� = �
q�
`

�̀�p�, q̀�� e−�q�
` 
�

, �4.1�

F̀�p�,
�� = F�p�,��� , �4.2�

where the new variables 
�, which preserve the entropy-defining Legendre transformation,

S�p�, q̀�� = F̀ + �q̀�
�, �4.3�

are defined from the electric potentials via the linear relations6r

6The sign * over or below a quantity stands for the saddle-point value of that quantity.
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� = U �
� �p�,��

���� = V �
� �p�,q����. �4.4�

The fact that, unlike the previous cases, here we let the matrix U depend on ��
� as well as p�, is

rooted in the observation that for the cases with a nonvanishing D6-brane charge, the OSV
prefactors are functions of both the magnetic and electric charges.25,28

We now require that the corresponding inverse Laplace integration, as defined via the Euclid-
ean measure,

�̀�p�, q̀�� �� �d
�� eF̀+�q̀�
�
, �4.5�

be duality invariant, exactly or at least at the saddle-point approximation. Subsequently the black
hole degeneracy of states is recognized as

d�p�,q�� � �̀�p�, q̀�� , �4.6�

where, as implied by �4.4�,

q̀� = q��V−1� �
� . �4.7�

From �4.2� and �4.4�, the relation between the ensemble �4.1� and �1.3� reads from7

�̀ �� �d���J�
 → �� eF+�q���
= det�V� � �d��� eF+�q���

= det�V�� . �4.8�

Obviously a proper choice of the Jacobian matrix V can remove any unwanted prefactor as
obtained by the evaluation of �1.5�. So we consider the cases where the result by �1.5� is duality
violating only by a �single� prefactor besides the proper result8 Then, for the duality invariance in
the saddle-point asymptotic expansion of �4.8�,a constraint equation on U �

� is formed as a nec-
essary and sufficient condition. The exact form of this constraint may depend on the order of the
saddle-point approximation. Here we write it for the first order. The saddle-point evaluation of
�4.8� results at

�̀* = det�V���. �4.9�

Thus at the first order,

�̀* � det�V� det�H*�− 1
2 eS, �4.10�

H�� �
�2F

��� � �� . �4.11�

Remembering that what we want to do is just to get rid of the unwanted prefactor appearing in �
and to get a proper result, we define

det�H*� � Sm det�H�*� , �4.12�

where m denotes a convenient power of the entropy that is factorized out from the Hessian, so that
det�H�*� is the pure duality-violating prefactor. To remove this prefactor by the matrix V, we arrive
at the constraint

7Since the matrices U and V differ from each other just by a change of variable q↔�*, hereafter both of them are denoted
as V.
8Whether this is a general property of the OSV results is a question that we address in the next section.
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det�V2� � det�H�*� . �4.13�

Equation �4.13� admits an infinite number of solutions, any solution of which is, in principle, as
good as other ones. One choice is taking V=v 1, where

v � �det�H�*��
1

2h+2 . �4.14�

As a different choice for V we can take a diagonal matrix with elements v� such that

v� � 	h��, �4.15�

where


�

h�� = det�H�*� . �4.16�

Equivalently, we can solve the constraint �4.13� by defining the new ensemble to be

X̂0 � det�V� X0; X̂A � XA. �4.17�

This solution might be of particular physical interest since X0 controls the coupling of topological
strings via the relation

g =
4�i

X0 . �4.18�

In conclusion, we shall briefly speculate on a possible physical interpretation of the ensemble
�4.17�.

As a specific example in the sector p0�0, let us consider the case of a large black hole in type
IIA on a K3 fibered CY3, for which Cabc=C2A=0, a ,b�2, . . . ,h, as discussed in Refs. 25 and 28.
The prepotential is

F =
1

2
�I�t1�Cab�papb − �a�b� + 2R�t1�paqa� , �4.19�

with tA= XA

X0 being flat coordinates for the Kähler moduli. The Hessian determinant of �4.19� at the
attractor point is evaluated as

det�H*� � B2�Cabpapb − 2p0q1�
h
2

−1S− h
2

−2 � S− h
2

−2 det�H*�� , �4.20�

where

B = 	�Cabpapb − 2p0q1���p1�2Cabpapb + �p0�2Cabqaqb − 2p0p1paqa�; CanCnb = �b
a.

�4.21�

Regarding �4.13�, the new variables are defined via the constraint

det�V� � B�Cabpapb − 2p0q1�
h−2

4 , �4.22�

from which, in case of interest, one can exactly specify a new set of variables.
Finally we want to show how in a simple way the variables of �3.4� can be deduced from

�4.15�. The attractor point of the prepotential �3.1� is

��*
0�2 = −

1

6

Ĉ�p�
q̂0

; �*
A = − CAB�p� qB ��

0, �4.23�

so that
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det�H*�; � det�CAB�p��
Ĉ�p�
�*

0 ⇒ det�H*�� � det�CAB�p�

Ĉ�p�
�Ĉ−2�p� , �4.24�

and then from �4.15� we obtain

v0 �
1

Ĉ�p�
; vA � ��A�p�

Ĉ�p�
� 1

2
, �4.25�

with �A�p� being the eigenvalues of CAB�p�. Thus for the 
 variables we obtain


0 �
�0

Ĉ�p�
;

CAB�p��A�B

�0 =
�A�p��̂A�̂A

�0 �

A
�


0 , �4.26�

where �̂A form a diagonal basis for CAB�p�. The result �4.26� is in accordance with �3.3�.

V. BEYOND THE SADDLE POINT WITH D6-branes?

The electric-magnetic duality is restored by the ensemble �4.1� as long as the result by �1.5�
admits the general form

��p,q� � N�p,q�f�S� . �5.1�

We naturally ask if a violation of the duality in the results of �1.5� is restricted only to a prefactor,
N�p ,q�. Of course for a vanishing D6-brane charge, this is always true, at least for the large
CY3-volume limit. In these cases the prepotential is quadratic with respect to �A, so the exact
evaluation of �1.5� results in the form �5.1� with f�S� being a modified Bessel function. Now we
come to the cases for which p0�0. The prepotential, at the genus zero and one terms, is of the
general form

F =
p0

��0�2 + �p0�2 �E��� − 3EAB���pApB − E2A�A� +
�0

��0�2 + �p0�2 �E�p� − 3EAB�p��A�B + E2ApA� ,

�5.2�

where

E�z� � EABC zAzBzc; EAB�z� � EABC zc,

with

EABC � −
�

6
CABC; E2A � −

�

6
C2A.

To address the above-mentioned question for the case of nonvanishing p0, we evaluate the OSV
result for the black hole degeneracy of states in concrete examples by incorporating all the terms
that appear in the saddle-point asymptotic expansion of the integral �1.5�,

G = S + �
n=2

�
1

n!
H�1. . .�n

* ��1 . . . ��n,

H�1. . .�n
�

�nF
���1 . . . ���n

,
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�� � �� − �*
�, �5.3�

for the two extreme limits p0→� and p0→0.

A. An example in the large-p0 limit

The prepotential �5.2� is expanded over �0

p0 as

F =
1

p0��E��� − 3EAB���pApB − E2A�A� +
�0

p0 �E�p� − 3EAB�p��A�B + E2ApA� + O
�0

p0 �2� .

We require that the contribution to �1.5� from the regions of integration far away from the attractor
point is not major, and so ignoring terms of higher orders in the above expansion is satisfactory if

O����
0

p0 ���1. As we will see, this would be the case for �
E�p�

p0 ��1 . For the limit under consider-
ation, the prepotential is linear with respect to �0, so �5.3� is easily evaluated as

G��� = S −
6

�p0�2EAB�p�pB�0�A +
3

p0�EAB��*� −
�*

0

p0 EAB�p� −
�0

p0 EAB�p���A�B +
1

p0EABC�A�B�C

� S + gA�A +
1

2
gAB�A�B + gABC�A�B�C.

Accordingly �1.5� leads to

� � eS� d�0� �d�A�egA�A+ 1
2

gAB�A�B+gABC�A�B�C
= eS� d�0� �d�A�egAxA+ 1

2
gAB�A�B�1

+ gABC�A�B�C + O
 1

�p0�2�� .

Now, as a specific example of the case under consideration, we consider a charge configuration for
which

�*
A = pA; �*

0 = 0,

which is in line with the attractor equations for

qA =
1

p0E2A,

q0 =
1

�p0�2 �2E�p� − E2ApA� ,

with the entropy obtained as

S = − 2
E�p�

p0 .

Given this ansatz, �1.5� is given by

� � eS� d�0�d�A�exp�1

2
� 6

p0
1 −
�0

p0�EAB�p���A�B − � 6

p0

�0

p0 EAB�p�pB��A��1 +
1

p0E����
� �0 + �1,

where =̈ differs from � by higher order corrections. A simple algebra leads to the result
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�1 �
�p0�

h
2

+1

	det�EAB�
e−2S Ih

2
−1�3S� ,

�2 �
�p0�

h
2

+1

	det�EAB�
e−2S� dt t− h

2�
1 +
1

t
�3S

2
−

h

2

1 − t

t2 �e
3
2�t+ 1

t �S,

so in this example � is of the form �5.1�.

B. The infinitesimal p0 limit

Here considering black holes with infinitesimal D6-brane charge, �p0��1, we evaluate the
OSV degeneracy of states up to O��p0�2�. To do that, we do not restrict ourselves to any finite order
of the saddle-point approximation and sum over all the terms of the series �5.3�. However, we still
assume that the integral �1.5� is essentially localized around the saddle point of the integrand, so
that in the power expansion of the prepotential �5.2� over p0

�0 , we can ignore the terms O� p0

�0 �2
as far

as �� p0

�*
0 �1. As the attractor-point equations will show us below, this assumption is consistent

with the infinitesimal-p0 limit.
The prepotential �5.2�, up to O� p0

�0 �2
, reads as

F =
1

�0� p0

�0 �E��� − 3EAB���pApB − E2A�A�+ �E�p� − 3EAB�p��A�B + E2ApA�� � p0 K

��0�2 +
L

�0 .

�5.4�

Regarding that the prepotential is a polynomial of degree three with respect to �A’s, we can
explicitly evaluate the sum �5.3�. Using

H�n�
* = �− 1�n��n + 1� ! p0 K*

��*
0�n+2 + n !

L*

��*
0�n+1� ,

HA�n�
* = �− 1�n��n + 1� ! p0 KA

*

��*
0�n+2 + n !

LA
*

��*
0�n+1� ,

HAB�n�
* = �− 1�n��n + 1� ! p0 KAB

*

��*
0�n+2 + n !

LAB
*

��*
0�n+1� ,

HABC�n�
* = �− 1�n��n + 1� ! p0 KABC

*

��*
0�n+2 + n !

LABC
*

���
0�n+1� ,

where

�K,L��A1. . .Am� �
��K,L�

��A1 . . . Am�

and the index �n� denotes the number of derivatives with respect to �0. Accordingly G��� is
evaluated as

G��� = S + ��0�2��
0

�
��0�n

�n + 2�!
H�n+2�

* � + �0�A��
0

�
��0�n

�n + 1�!
HA�n+1�

* � +
1

2
�A�B��

0

�
��0�n

n!
HAB�n�

* �
+

1

6
�A�B�C��

0

�
��0�n

n!
HABC�n�

* �
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=S +
��0�2

��*
0�2� p0K*

��*
0�2R3
�0

�*
0� +

L*

�*
0R
�0

�*
0�� −

�0�A

��*
0�2� p0KA

*

�*
0 R2
�0

�*
0� + LA

*R
�0

�*
0��

+
1

2

�A�B

��*
0�2�p0KAB

* R1
�0

�*
0� + �*

0LAB
* R
�0

�*
0�� +

1

6

�A�B�C

��*
0�3 p0�*

0KABC
* R1
�0

�*
0� ,

where

R�z� � �
0

�

�− 1�nzn =
1

1 + z
; Rm�z� � �

0

�

�− 1�n�n + m�zn =
�m − 1� z + m

�1 + z�2 .

Defining

x �
�0

�*
0 , xA �

�A

�*
0 ,

together with

gABC � �
��*

0�2

�1 + x�2EABC,

gAB �
6�*

0

�1 + x�2 �� EAB��*� − �1 + x�EAB�p�� ,

gA � −
3 x

�1 + x�2���x + 2��EAB��*��*
B − EAB�p�pB� − 2�1 + x�EAB�p��*

B − �
x + 2

3
E2A� ,

g �
x2

�1 + x�2

1

�*
0 �� E�p��1 + x� + � E��*��3 + 2 x�� − 3��1 + x�EAB�p��*

A�*
B

+ ��3 + 2 x�EAB��*�pApB� + ��1 + x�E2ApA − ��3 + 2 x�E2A�*
A�� ,

we obtain

G��� = S + g + gA xA +
1

2
gAB xAxB + gABC xAxBxC.

Subsequently, �1.5� is given by

� � eS��*
0�h+1� dx eg� �dxA� egAxA+ 1

2
gABxAxB+gABCxAxBxC

=eS��*
0�h+1� dx eg� �dxA�egAxA+ 1

2
gABxAxB

��1 + gABCxAxBxC + O��2��

=̈eS��*
0�h+1� dx

1
	det�gAB�

eg
1 + gABC
�3

�gC � gB � gA
�

�e− 1
2

gAgABgB
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=̈eS��*
0�h+1� dx

1
	det�gAB�

eT1�1 + T2 + T3� ,

where

T1 = g −
1

2
gAgABgB,

T2 = 3gABCgABgCVgV,

T3 = − gABCgAMgBNgCVgMgNgV,

and the sign “=̈” meaning “�” up to O��2�. Now to proceed further and check whether the above
result is of the form �5.1�, we need to know some concrete information about how gAB and S
depend on EABC, E2A, and the black hole charges. In that respect, a helpful choice for us is to set

�*
A = pA

according to which the attractor equations are equivalent to

qA =
6

�*
0 pA +

p0

��*
0�2E2A,

q0 = −
1

��*
0�2 �2�1 + 2��E�p� − �1 − 2��E2ApA� ,

and the entropy reads as

S =
2

�*
0 ��1 − 3��E�p� + �1 − ��E2ApA� . �5.5�

Now �g ,gA ,gAB ,T1 ,T2 ,T3� is given by

gAB = − 6 �*
01 + x − �

�1 + x�2 EAB,

g =
x2

�1 + x�2

1

�*
0 �− 2 E�p��1 + x + 3� + 2�x� + E2ApA�1 + x − 3� − 2�x�� ,

T1=̈
x2

1 + x
��1 − �

3 + 4x

1 + x
� + �1 − ��E2ApA� 1

�0
* , �5.6�

T2=̈�
x

1 + x

h

2
,

T3=̈�
x3

�1 + x�2

E�p�
�*

0 .

Thus the final expression for � is obtained as

�=̈eS��*
0�

h
2

+1 1
	det�EAB�

� dx�1 + x�
h
2 eT1�1 + �

h

2�1 + x�
+ T2 + T3�
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=̈eS��*
0�

h
2

+1 1
	det�EAB�

� dx�1 + x�
h
2 eT1�1 + ��h

2
+

x2

�1 + x�2

E�p�
�0

* �� . �5.7�

Now from �5.5� and �5.6� it is obvious that �5.7� does not admit the form �5.1�. Indeed, if it were
the case, it would be so for any h, implying that

� dx�1 + x�
h
2 eT1

itself is of the form �5.1�, which is not the case!9

As we learn from the above examples, for black holes with nonvanishing p0 there is no
guarantee that the result of �1.5� be of the form �5.1�, if one incorporates the subleading terms of
the saddle-point asymptotic expansion. As a consequence, even a generalization of type �1.6� or
�4.8� does not restore the electric-magnetic duality. That is so because if the corresponding metric/
Jacobian determinant does not change the saddle point of the integrand in �1.5�, then it cannot
remove more than one noninvariant factor from the OSV result, and if it changes the saddle point
of the integrand, then the leading term of the asymptotic expansion does not match microcanoni-
cally with the Bekenstein-Hawking-Wald entropy. It seems that this observation opens the possi-
bility of deeper modifications.

VI. AN EFFECTIVE APPROACH

The ensemble defined through �4.1� and �4.4� is canonic in as many variables as the OSV
ensemble, that is, by construction the set of electric potentials is mapped one to one to the set of
new variables 
�. However, since the multiplet �CX� ,CF�� defines a vector under the symplectic
transformations, it is more natural for a black hole ensemble to treat both the magnetic and the
electric charges at the same footing, if it is requested to produce symplectic invariant results. In
that direction, the simplest generalization of �1.5� is an inverse Laplace transformation from
Zinvari�eG, which integrates over both the RX�� and IX�� with an appropriate Jacobian/
measure, such that

�d����d��� J��,�� �6.1�

defines a symplectic invariant measure. In �6.1�, J�� ,�� appears either as a Jacobian when we
change variables from those that originally define the ensemble to �� ,�� or as an intrinsic mea-
sure. As it is well known, one choice for the measure of �6.1� that is invariant under the symplectic
transformations is

�d����d���det�IF��� , �6.2�

where

F�� �
�2F

�X� � X� . �6.3�

�6.2� is used, for example, as the intrinsic measure of the ensemble introduced in Ref. 29. How-
ever, this measure vanishes for the case of 1

2BPS black holes, so is not universally applicable. In
fact, a satisfactory universal measure has not been presented so far. Moreover, even if we apply
such a measure, to respect the electric-magnetic duality we need to introduce a symplectic invari-
ant free energy G. Thus regarding the fact that the OSV free energy, which, as given by �1.3� and
�1.4�, forms the essence of the OSV proposal, and is only symplectic invariant at the attractor
point, we take a more conservative approach in what follows. That is, to enjoy the proposed
relationship between the topological-string free energy and the black hole physics within a mani-

9The saddle point is x=0. At the leading order, the saddle approximation of �5.7� takes the form of �5.1�, but this fails in
the subleading orders.
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fest symmetric approach, we keep the OSV free energy unchanged but introduce an enlarged
ensemble which is twice the OSV ensemble big, in phase space terminology. This is done by
associating to each doublet ��� ,���, two canonical variables ��� ,���, which preserve the Leg-
endre transformation from the OSV free energy to the black hole entropy. Obviously the simplest
choice of such variables is to take them to be linear in ��. Thus we define an invertible change of
variables as

�� � A�p,q���f�����, �� � A�p,q���g�����, ∀ � , �6.4�

with

F̃���,��� = F���,��� , �6.5�

so that the Bekenstein-Hawking-Wald entropy is given by

S�p�,q�� = S̃���,�� = F̃���,��� + ����� + ����, �6.6�

− �� =
�F̃
���

, − � =
�F̃
��� , �6.7�

where the exact dictionary for translating the expressions in terms of the new charges �� ,� to
those in terms of the black hole electric magnetic charges will be given a bit later in this section.

Based on �6.6� and �6.7�, a black hole ensemble is defined as

Z̃ � eF̃���, ��� = �
��,�

�̃���,��e−�����−����
. �6.8�

As before we use the Euclidean measure for the ensemble �6.8�, so that

d�p�,q�� � �̃���,�� �� �d����d���eF̃+�����+����
. �6.9�

Although the measure of �6.9�,


�

d�� d�� = A2�p,q�
�

���f�g�� − f�
�

g��d�� d��, �6.10�

is not universally symplectic invariant, unlike �6.2�, we can follow the idea of Sec. IV: we require
the asymptotic symplectic invariance of �6.9�. More precisely, given an arbitrary order in the
saddle-point asymptotic expansion of �6.9�, we choose the function A�p ,q�, in the definition �6.4�,
such that the unwanted prefactor of the corresponding OSV result is removed.

The integral �6.9� in terms of �� ,�� takes the form

d�p,q� � A2�p,q� � 
�

�d�� ��� � 
�

�d���f�g�� − f�
�

g���Z��,��e�A�����f�+�g��,

�6.11�

where Z�� ,��=eF��,��. Now to bridge between �6.11� and �1.5�, we should effectively integrate
over ��, which fixes the value of �� at �*

�. Here one important constraint on the functions f� and
g� comes into play. First of all, in accordance with �1.2�, we require that the saddle-point values
of ��’s coincide with the corresponding black hole magnetic charges,

�*
� = p�, ∀ � . �6.12�

Regarding the saddle-point equation for �6.11�, �6.12� implies that
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��f�
�

�p� + �g���p� = 0, ∀ � . �6.13�

Next we require that the saddle-point evaluation of �6.11� takes the form of

��p�,q�� �� �d���M�p,q,��eF+�q���
, �6.14�

which together with �6.12� implies that

q�

A�p,q�
= ��f��p� + �g��p�, ∀ � . �6.15�

The dictionary between �� ,� and �p ,q� is now given by the solution to the Eqs. �6.13� and �6.15�,
which reads as

�� =
q�

A�p,q�
g���p�

f��p�g���p� − f�
�

�p�g��p�
, �6.16�

� =
q�

A�p,q�
− f���p�

f��p�g���p� − f�
�

�p�g��p�
. �6.17�

Now as a constraint on the functions f and g, we require that Eqs. �6.16� and �6.17� are consistent
with the attractor equations of �6.7�, for A�p ,q� treated as an arbitrary given function. That is, the
following two equations should hold:

�F̃
���

� = −
q�

A�p,q�
g���p�

f��p�g���p� − f���p�g��p�
, �6.18�

�F̃
��*

� =
q�

A�p,q�
f���p�

f��p�g���p� − f���p�g��p�
, �6.19�

with ��
� =A�*

�f��p��, �*
�=A�*

�g��p�� and q�=− 1
�

�F
��*

� .
Given these requirements, the first order saddle-point evaluation of �6.11� takes the form of

�6.14� with

M�p,q,�� = A2h+2�p,q�
�
�
��

q�
� 1

2 � f��p�g���p� − g��p�f�
�

�p��
3
2

� f�
�

�p�g���p� − g���p�f�
�

�p��
1
2
� . �6.20�

So, the effective inverse Laplace transformation, �6.14�, differs from the original OSV formula,
�1.5�, by a measure M, which in form is something between the metric measure of �1.6� and the
Jacobian matrix in �4.8�.

Now given a specific prepotential and an arbitrary order of the saddle-point asymptotic ex-
pansion of �6.14�, the measure �6.20� equals

M̀�p,q� � M�p,q,�*� = A2h+2�p,q�
�
� �f��p�g���p� − g��p�f���p��

3
2

�f���p�g���p� − g���p�f���p��
1
2

	�*
�

q�
� ,

�6.21�
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�̃� = M̀�p,q���. �6.22�

It is obvious that M̀�p ,q� plays the same role as det�V� of Sec. IV and protects the resulting black
hole degeneracy of states against the electric-magnetic duality violations by removing the un-
wanted prefactors, with a proper choice of the function A�p ,q�.

VII. CONCLUSION

We studied the issue of electric-magnetic duality in the OSV proposal, as it appears as itself
in the complex polarization. The main conclusion of the work is as follows:

Applying the duality invariance of the degeneracy of states as a constraint to the definition of
the ensemble variables, there are proper redefinitions of the OSV mixed ensemble in the complex
polarization, in the form of a generalized purlye canonical ensemble of new variables such that
the results of the inverse Laplace transformation with a flat measure of integration respect the
electric-magnetic duality and match properly the known microscopic results, to all orders in the
asymptotic expansion, as far as the D6-brane charge vanishes. With a nonvanishing D6-brane
charge, however, the duality restoration is limited to the saddle-point evaluation.

Here we would like to mention an independent and equivalent way to define these new
variables more systematically. We note the fact that the integrand of �1.5�, �d��eG, is not invariant
under the symplectic transformations, and this noninvariance depends on the detail of the charge
configuration. So we look for det�V��J�p ,q ,�*�, which, up to vanishing boundary terms, solves
the equation

�T��d��J�p,q,��eG�p,q,��� = 0 ⇔ det� ��̆�

����J̆eĞ = JeG ⇒ det� ��̆�

����
*

=
J*

J̆*

, �7.1�

with T denoting a general member of the relevant symplectic transformations that brings �X� ,F��
to �X̆� , F̆��. For example, if we consider the large black hole of section 3 in the specific case of K3
fiberation where T-duality holds as the symmetry of the action, taking for simplicity the only
nonvanishing intersection numbers to be CABC=C1ab�Cab, it is easy to see that, for an infinitesi-
mal transformation T, �7.1� leads to the result

J* =
1

�p1�2 f��p� �� ,

where p� ��p2 , . . . , ph� and �P� �2�Cabpapb. We note that the inverse of the OSV prefactor for this
example exactly matches with this result.

We would like to finally bring the reader’s attention to the following possibility.
To define the ensemble of Secs. III and IV, one can absorb the unwanted OSV prefactor within

the redefinition of a single X variable. Among the X variables, X0, which controls the topological-
string coupling via �4.18�, plays a distinguished role in the prepotential �5.2�. It is physically

natural to think about a redefinition of the OSV ensemble as X̂0=M�p ,q�X0, according to �4.17�,
and ask if for a given black hole charge multiplet �p� ,q��, the requirement of the electric-
magnetic duality gives an effective sense to the topological-string coupling as seen by the black
hole ensemble through the identification ĝ� 4�i

X̂0
.
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A fractional Lie derivative, valid in the thin shell limit, is developed. The nonlocal
nature of the fractional derivative allows the inclusion of shell thickness in the
stress energy description of zero thickness Israel layers. The method is applied to
several examples. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2390660�

I. INTRODUCTION

Derivatives of fractional order, first described in 1695 by Leibnitz,1,2 have been successful in
modeling transport processes with anomalous microscopic time and/or spatial structures.3–6

Among the transport applications are diffusion equations fractional in both time and spatial
coordinates7–9 and fractional Schrödinger equations;10,11 there are applications in biophysics and
thermodynamics12 as well as texts13,14 on solving the fractional differential equations arising in
transport. Other areas of application are the inclusion of dissipative processes in a Lagrangian
formalism by introducing fractional derivatives as generalized coordinates15,16 and the use of a
fractional derivative in the metric match over a boundary layer17,18 in general relativity.

The field equations of general relativity are not easily fractionally generalized because of the
covariance requirement on derivatives. The general relativity �GR� applications in Refs. 17 and 18
did not modify the field equations or any of the usual GR tensors in any way; the fractional match
simply provided a broader set of metric relations across a boundary. It was used to create a family
of Israel layers parametrized by the noninteger order of the fractional derivative. There are,
however, geometric objects used in general relativity, which can be fractionalized without altering
the basic covariant structure of the theory. One of these is the Lie derivative, defined only with
partial derivatives. The Lie derivatives take into account the difference between a tensor that is
Taylor transported to a point and coordinate transformed at the same point. It is a local derivative.
Fractional derivatives are intrinsically nonlocal, involving an integral over some region of space
time. A fractional Lie derivative, while it also evaluates functional differences at a point, since it
is nonlocal in its definition, could be a useful way of including nonlocal effects in single layer
calculations. For example, the Israel formalism calculates the stress energy content of a single
layer in terms of the jump in extrinsic curvatures across a boundary. Using a fractional Lie
derivative to define a fractional extrinsic curvature would allow the inclusion of shell thickness in
the standard Israel formalism. In the next section we develop a fractional Lie derivative valid to
first order in a thin shell thickness. The formalism is used to describe the stress energy content of
some simple fractional layers. A brief list of notation is included in the Appendix.

II. LIE DERIVATIVE

A. The integer Lie derivative

The Lie derivative compares the value of a function under transport from x to x� and under a
coordinate transform from a system of coordinates �x� to a primed system �x��. The difference
Vi�x��−V�i�x�� defines the Lie derivative. Consider a vector Vi at a point x. Under a coordinate
transform, xi�=xi+�id�, its value transforms as

a�Electronic mail: jkrisch@umich.edu
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V�i�x�� =
�x�i

�xa Va�x� = ��a
i +

��i

�xad��Va�x� , �1�

where �i is the tangent to the transport path. The vector is assumed to be analytic and we have

Vi�x�� = Vi�x� + � �Vi

�x�a�
x
�x�a − xa� + ¯ . �2�

Using Eq. �1�, the Lie derivative to first order in �i is

�L�V
i� = lim

d�→0

Vi�x�� − Vi��x��
d�

,

�L�V
i� = � �Vi

�x�a�
x
�a − � ��i

�x�a�
x
Va�x� .

Similar expressions exist for covariant vectors and tensors of higher order. For a scalar func-
tion, F, the Lie derivative is a simple directional derivative.

�L�F� = �a� �F

�x�a�
x
.

B. Fractional generalization

1. Fractional derivative

There are several choices to make in developing a fractional Lie derivative. The first is to
choose the type of fractional derivative from among the many available. We will use the Caputo
form of the fractional derivative. The Caputo fractional derivative integrates the derivative of the
function while other forms take the derivative of the function integral. Among the many fractional
derivative operators, the Caputo form is the closest generalization of the classical derivative.13 We
generalize the usual form by using partial derivatives. With q as the fractional parameter, the
Caputo derivative is defined for 0�q�1 as

Dx
qVi�x�� =

�qVi�x��
��x� − x�q =

1

��1 − q��x

x�
dy

�Vi�y�
�y

�x� − y�−q. �3�

The derivative can be extended to values of q�1; this is discussed in the Appendix. The
indices, �q ,x�, on Dx

q are not tensor indices. q is the fractional parameter and x is the lower limit
in the integral definition. The choice of limits depends on the application being made. Our devel-
opment will be for applications to thin layers of thickness �. The coordinates near the shell are
�t ,	 ,x3 ,x4�. The spatial coordinates in the layer are �x3 ,x4�. The radial coordinate, 	, is measured
to the outer shell boundary, 	=Ro. The integration will run from the bottom of the layer, x=	
−�, to the top, x�=	, with 	=Ro when the outer boundary size is set. With these choices, the
fractional derivative definition that will be used is

D	−�
q Vi�	� =

1

��1 − q��	−�

	

dy
�Vi�y�

�y
�	 − y�−q. �4�

The other parts of the fractional generalization to consider are the tensor transformation rule
and the first terms of a fractional expansion of the tensor. These parts depend on the fractional
replacement for the partial derivative.
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2. Partial derivative and fractional derivative

A relation between a partial derivative and a fractional derivative can be obtained by integrat-
ing Eq. �3� by parts. We have

Dx
qVi�x�� =

�x� − x�1−q

��2 − q�
� �Vi�y�

�y
�

x
+

�x� − x�2−q

��3 − q�
� �2Vi�y�

�y2 �
x

+ ¯ �5�

In the limit, x�−x
1��
1�, the first term will dominate and we have the relation between
the fractional derivative and the partial derivative to lowest order in shell thickness.

���1−q

��2 − q�
� �Vi�y�

�y
�

	−�

→ D	−�
q Vi�	� . �6�

For convenience, we define a fractional operator Ðx
q,

Dx
q� � =

�x� − x�1−q

��2 − q�
Ðx

q� � . �7�

In the q=1 limit, the usual derivative is obtained. The Ðx
q derivative used over a nonthin shell

region, for some functions, can divide out much of the usual fractional behavior and will be used
to provide the direct replacement for the partial derivative for layer examples.

3. The first order fractional expansion

For analytic Vi, the regular Taylor expansion is

Vi�x�� = Vi�x� + � �Vi�y�
�y

�
x
�x� − x� + ¯ �8�

Using the fractional replacement the expansion can be written to first order as

Vi�x�� = Vi�x� + Ðx
q�Vi��x� − x� + ¯ �9�

Note that this is not a replacement for the regular Taylor expansion, complete to all orders. It
will be used only to first order in the shell thickness. A complete fractional expansion was
developed by Taylor and Riemann.19 Their expansion, including both fractional integrals and
derivatives, is difficult to implement. Kolwankar20 have also developed a local fractional expan-
sion.

4. A notation addition

The general fractional derivative

Dx
qVi�x�� =

�qVi�x��
��x� − x�q =

1

��1 − q��x

x�
dy

�Vi�y�
�y

�x� − y�−q

is not written with tensor functions in mind. For example, if Vi�x��=x�i we have

Dx
qx�i =

�qx�i

��x� − x�q =
1

��1 − q��x

x�
dy

�yi

�y
�x� − y�−q,

where i has the usual coordinate index range �1, 2, 3, 4� but the coordinate identification of x� and
its integral counterpart, y, is not clear. To clarify this an index k is added to the fractional
derivative notation, allowing the partial derivative to be written in index notation

Dx,k
q x�i =

�qx�i

��x�k − xk�q =
1

��1 − q��x

x�
dy

�yi

�yk �x� − y�−q. �10�
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A similar notation is used by Samko et al.2 With this notation and using the incomplete beta
function, the integral in Eq. �10� is

Dx,k
q x�i =

�qx�i

��x�k − xk�q =
�k

i

��1 − q��x

x�
dy�x� − y�−q =

�k
i �x� − x�1−q

��2 − q�
. �11�

5. The coordinate transformation

The remaining step is to consider the transport as a coordinate transformation. The usual
tensor transformation rule can be written as

Vi�x� =
��xi − xo

i �
��x�k − xo�

k�
V�k�x�� , �12�

where xo
i and xo�

i are the initial points in the two systems. The partial derivative in the transfor-
mation rule generalizes to

��xi�
��x�k − xk�

→ Ðx,k
q �xi� �13�

and we have

Vi�x� = Dx,k
q �xi�V�k�x�� =

��2 − q�
�x� − x�1−q

�q�xi�
��x�k − xk�qV�k�x�� . �14�

Substituting from the coordinate transformation one obtains

Vi�x� =
��2 − q�

�x� − x�1−q� �q�x�i�
��x�k − xk�q −

�q��id��
��x�k − xk�q	V�k�x�� . �15�

The first integral is evaluated above giving

Vi�x� = V�i�x�� − Ðx,k
q ��i�d�V�k�x�� .

For the layer application this becomes

Vi�	 − �� = V�i�	� − Ð	−�,k
q ��i�d�V�k�	� . �16�

A fractional coordinate transformation has been considered by Cotrill-Shepherd and Naber.21

Their transformation takes a fractional coordinate differential dqxi to another dqyi in n dimensions.
For q�1 their transformation can be written as

dxq,k = 

i=1

n

dyq,i 1

��1 + q�
1

�
p=1p�k

n

�xp − xo
p�q−1

�� �
j=1j�k

n

�xj − xo
j �q−1�xk − xo

k�q	
��yi − xo�

i�q , �17�

where xo
i and xo�

i are the initial points for the coordinate systems. In addition to the obvious term
differences, this transformation is not an approximation but an exact transformation for a frac-
tional differential defined on a fractional tangent space. The transformation used to develop the
fractional Lie derivative in this paper is the fractional derivative of a regular function; it is not
complete but only considers the first order terms in the shell thickness.
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6. The fractional Lie derivative

Using Eqs. �8� and �16� and equating Vi�x� we have

Vi�x�� − Ðx,k
q �Vi��x�k − xk� = V�i�x�� − Ðx,k

q ��i�d�V�k�x�� . �18�

The Lie derivative comes from the difference Vi�x��−Vi��x��. Forming the difference we have

Vi�x�� − V�i�x�� = d��Ðx,k
q �Vi��k − Ðx,k

q ��i�Vk . �19�

The fractional Lie derivative qL��V
i� is

qL�V
i = Ðx,k

q �Vi��k − Ðx,k
q ��i�Vk. �20�

Similar development results in the fractional Lie derivative forms for covariant vectors and higher
order tensors. The fractional Lie derivative of Vi is

qL�Vi = Ðx,k
q �Vi��k + Ðx,i

q ��k�Vk. �21�

The simplest case, a scalar function, has fractional Lie derivative

qL�f = �kÐx,k
q �f� . �22�

Some properties of the fractional Lie derivative are discussed in the Appendix.

III. A FRACTIONAL THIN LAYER

A. Describing the layer

Many of the thin shell examples considered in the literature22–34 are descriptions of a bound-
ary layer between two space times, M±. Boundary layers are often treated in the Israel formalism35

which models a thin shell as a layer of zero thickness. The basic input into this description is the
extrinsic curvature of the boundary layer as seen by the bounding space times.

Kcd
± =

1

2
LN�gij

±�hc
±ihd

±j , �23�

where c ,d range over the coordinates of the boundary layer, Ni is the normal to the layer, and hij

is the projection operator onto the layer,

hij
± = gij

± − Ni
±Nj

±. �24�

The jump in the extrinsic curvatures, �Kab�=Kcd
+ −Kcd

− , and their trace �K�=K+−K− are related
to the stress energy of the single boundary layer.35

− 8�Sab = �Kab� − �K�hab. �25�

The fractional extrinsic curvature is defined in terms of the fractional Lie derivative.

qKcd =
1

2
qLN�gij�hc

i hd
j , �26�

where

qLN�gij� = NkÐx,k
q �gij� + gkjÐx,i

q �Nk� + gikÐx,j
q �Nk� �27�

and Eq. �7� relates Ðx,k
q to the fractional derivative form. The fractional stress energy is defined

through jumps in the fractional extrinsic curvature,

− 8�qSab = �qKab� − �qK�hab. �28�
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B. Using the fractional extrinsic curvature

The fractional extrinsic curvature is defined as an integral over a shell of thickness �. Because
of this nonlocal integral structure, one might assume that the usual Israel jump in extrinsic cur-
vature could be replaced by a single extrinsic curvature calculation. However, just as for the
regular Lie derivative, the fractional Lie derivative, while it includes a thickness component, only
provides the value of the derivative at a single space-time point. For example, consider a shell
bounded by two Minkowski space times. We would expect no jump discontinuities across such a
boundary.

M±:ds2 = − dt2 + dr2 + r2d�2. �29�

The unit normal to the shell is Ni= �0,1 ,0 ,0�. qK and qK�� will be nonzero for each of
Minkowski boundaries. Using Eqs. �7�, �26�, and �27�, with 	=r, the fractional extrinsic curvature
is

qKcd =
��2 − q�
2���1−q NrDr−�,r

q �gij�hc
i hd

j . �30�

For Minkowski we have

qK
M =

��2 − q�
2��1 − q����1−q�

r−�

r

dy2y�r − y�−q,

�31�
qK

M =
��2 − q�2Ro

2−q

2��1 − q����1−qB�/Ro
�1 − q,2� ,

where B�/R�1−q ,2� is the incomplete beta function and r was set equal to the boundary value, Ro.

Bx�a,b� = �
0

x

ta−1�1 − t�b−1.

Using the beta function expansion36

Bx�a,b� = xa�1

a
+

1 − b

a + 1
x +

�1 − b��2 − b�
2!�a + 2�

x2 + ¯ � , �32�

we have

qK
M =

��2 − q�2Ro
2−q

2��1 − q����1−q� �

Ro
�1−q� 1

1 − q
−

1

2 − q

�

Ro
+ ¯ � ,

qK
M � Ro�1 −

1 − q

2 − q

�

Ro
+ ¯ � . �33�

Because of the integral over the shell, this single extrinsic curvature might be regarded as the
entire jump contribution. However, if there were no boundary layer between the two space times,
one would expect the jump in the extrinsic curvatures to be zero. Instead, the fractional extrinsic
curvature, in the �− �0 limit, is simply the regular extrinsic curvature evaluated over the outer
bounding surface. The expression above is only the extrinsic curvature evaluated with one of the
bounding space times. In order to use the fractional extrinsic curvature in an Israel layer calcula-
tion, it has to be calculated for both interior and exterior boundaries, just as in the nonfractional
case. In this example, there is no jump in the extrinsic curvatures across the boundary as expected.
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IV. TWO EXAMPLES

In this section two examples of fractional shells are considered. One layer has cylindrical
symmetry and is bounded by Levi-Civita and Minkowski. The second layer has spherical sym-
metry and separates Schwarzschild and Minkowski. Dynamic shells have broad applications as
reflected by the large literature dealing with their evolution.22–34 The two examples considered in
this section are static and are presented as examples of the use of the fractional Lie derivative in
the Israel formalism. Dynamic fractional shells will be considered elsewhere.

A. A layer between Minkowski and Levi-Civita

A simple cylindrical example is a layer separating an interior Minkowski and a vacuum
Levi-Civita with angular deficit factor �,

M+:ds2 = − dt2 + dr2 + �2r2d�2 + dz2, �34�

M−:ds2 = − dt2 + d�2 + �2d�2 + dz2. �35�

Using the result from the previous section, Eq. �33�, the nonzero fractional extrinsic curvatures are
qK,

qK
M− � Ro�1 −

1 − q

2 − q

�

Ro
+ ¯ � , �36�

qK
M+ � �Ro�1 −

1 − q

2 − q

�

Ro
+ ¯ � . �37�

Calculating the jumps we find

�qK� � Ro�� − 1��1 −
1 − q

2 − q

�

Ro
+ ¯ � , �38�

�qK
� � Ro�� − 1��1 −

1 − q

2 − q

�

Ro
+ ¯ � , �39�

− 8�Sj
i = �qKj

i� − �qK�hj
i ,

�40�

8�St
t � − Ro�1 − ���1 −

1 − q

2 − q

�

Ro
+ ¯ � .

The stress energy in the layer has positive density and no pressure. In a perfect fluid model
this could be dust. The method of including a fractional parameter in the regular Israel layer17,18 by
matching fractional derivatives across the boundary would require no angular deficit, �=1, for
these two space times. In this example, the stress energy of the layer only includes a thin layer
contribution for q�1, the fractional case. The � dependence was included by using the nonlocal-
ity of the fractional derivative. In the q− �1 limit, the fractional derivative becomes a regular
local derivative and the effect vanishes.

B. A layer between Minkowski and Schwarzschild

1. The fractional extrinsic curvature

Consider a shell bounded by the an exterior Schwarzschild space time and an interior
Minkowski at r=Ro,
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M+:ds2 = − �1 −
2m

r
�dt2 +

dr2

1 − �2m/r�
+ r2d�2, �41�

M−:ds2 = − �1 −
2m

Ro
�dt2 + dr2 + r2d�2. �42�

For this calculation the normal vectors have only radial components and we have

qLN�gij� = NrÐr−�,r
q �gij� + grjÐr−�,i

q �Nr� + girÐr−�,j
q �Nr�

with

Ðr−�,r
q �gij� =

��2 − q�
��1 − q����1−q�

r−�

r �gij�w�
�w

�r − w�−qdw

and q�1, r− �Ro on the boundary. For the interior Minkowski space time, Ni= �0,1 ,0 ,0� and
only qK and qK�� will contribute and the result has been calculated above. From Eq. �33� we
have

qK
 = qK�

� =
1

Ro
�1 −

1 − q

2 − q

�

Ro
+ ¯ � . �43�

For the exterior Schwarzschild �SC� space time, Ni= �0,�1− �2m /r� ,0 ,0� and qK, qK��, and
qKtt will contribute. Except for the structure of the normal, the angular extrinsic curvatures will be
the same as in Minkowski and we have at the boundary

qK
 = qK�

� =
�1 − �2m/Ro�

Ro
�1 −

1 − q

2 − q

�

Ro
+ ¯ � . �44�

Calculating qKtt and letting r− �Ro we have

qKtt =
Nr

2
Ðr−�,r

q �gtt� = 2m
�1 − �2m/Ro�

2
Ðr−�,r

q �r−1� ,

qKtt = − 2m
�1 − �2m/Ro�

2

��2 − q�Ro
−1−q

��1 − q��1−q B�/Ro
�1 − q,− 1� .

The negative one beta function parameter is permitted for � /Ro�1.36 This expression is most
easily expanded in terms of the hypergeometric function 2F1�a ,b ,c ;x�,

B�/Ro
�1 − q,− 1� =

��/R0�1−q

1 − q 2F1�1 − q,2,2 − q;
�

Ro
� =

��/Ro�1−q

1 − q
�1 +

1 − q

2 − q
2

�

Ro
+ ¯ �

and we have

qKt
t =

m
�1 − �2m/Ro�Ro

2�1 +
1 − q

2 − q
2

�

Ro
+ ¯ � . �45�
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2. The layer stress energy

Using the qKab calculated in the previous section, the jumps are

�qK
� = �qK�

�� =
��1 − �2m/Ro� − 1�

Ro
�1 −

1 − q

2 − q

�

Ro
+ ¯ �

�46�

�qKt
t� =

m
�1 − �2m/Ro�Ro

2�1 + 2
1 − q

2 − q

�

Ro
+ ¯ � .

With these jumps, the layer energy density, �, and stress, P, are

8�St
t = − 8�� = − �qK

 + qK�
�� ,

8�S
 = 8�P = �qKt

t + qK�
�� .

Substituting we have

8�� = 2
�1 − �1 − �2m/Ro��

Ro
�1 −

1 − q

2 − q

�

Ro
+ ¯ � , �47�

8�P =
1

Ro
�1 − �2m/Ro�

�+ 1 −
m

Ro
−�1 −

2m

Ro
+

1 − q

2 − q

�

Ro
�4m

Ro
− 1 +�1 −

2m

Ro
�¯ 	 .

�48�

In the m
Ro limit the stress energy becomes

� �
m

4�Ro
2�1 −

1 − q

2 − q

�

Ro
� ,

�49�

P �
3m

8�Ro
2

1 − q

2 − q

1

Ro
.

For q=1, the density is simply the SC mass parameter over the surface area of the sphere and
the fluid is dust. For q�1 the reduction in density, for the same mass, means the same mass is
distributed over a larger region. Since the size of the sphere is set, the reduction in the areal
density is possible if the mass is being distributed in an annular volume rather than totally over an
area. In addition, the appearance of the fractional correction factor suggests that the thickness of
the shell is parametrized by q. One could define a parametrized shell thickness,

�q =
1 − q

2 − q
� . �50�

With this parametrization, a family of shells is created with the thickest shells occurring for q
close to zero.

V. DISCUSSION

The Israel formalism models a thin shell of matter as a zero thickness layer. The stress energy
of the layer is related to jumps in the extrinsic curvature across the single boundary. In this paper,
a fractional Lie derivative was developed and used to calculate a fractional extrinsic curvature
which was input into the Israel formalism. The layer being described still has zero thickness; a
single coordinate boundary is used to calculate the curvature jumps, but the nonlocal fractional
derivative used to define the fractional extrinsic curvature allows the inclusion of a contribution
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from a thin layer thickness as well as a fractional parameter, q, in the layer stress energy. The
fractional parameter can be used to parametrize the shell thickness, creating a family of shells of
varying thickness. The development is for q�1 but can be extended to higher values of the
fractional parameter. As an example of the use of the fractional Lie derivative within the Israel
formalism, the method was applied to a cylindrical layer between a Minkowski interior and a
Levi-Civita exterior and a spherical Schwarschild-Minkowski shell. The inclusion of the shell
thickness is a fractional effect and vanishes as the fractional parameter approaches one.

There are choices to be made in the development of fractional formalisms applicable in
general relativity. There are many fractional derivative definitions, Caputo, Riesz, Riemann-
Liouville, etc., and the choice of derivative will depend on the application. The layers discussed
here involve one-dimensional fractional Lie transport in a spatial variable but multidimensional
transport processes will be important in the dynamics of fractional layers. Fractional derivatives
have successfully described random walk processes that are heavy tailed in either jump size or
jump timing and this has provided avenues for higher dimensional generalizations of the fractional
derivative. Umarov and Gorenflo37 have discussed a multispace dimension random walk model
that is related to diffusion that is fractional in its spatial derivatives. Gorenflo and Mainardi have
presented some random walk models discrete in both space and time.38 Meerschaert and
co-workers,39,40 have begun to develop a fractional derivative operator that may be used when
space and time variables are linked. Generalizing the formalism to describe the dynamic fractional
layers with plane and spherical symmetries in general relativity41–43 would be both useful and
interesting.

APPENDIX: FRACTIONAL DETAILS

1. The Caputo derivative

The Caputo derivative of a scalar function can generally be written as4

Dx
qf�x�� =

1

��m − q��x

x�
f �m��z��x� − z�m−1−qdz ,

where m−1�q�m, m integer. f �m�=dmf /dzm. The development in the text was for m=1. The
fractional derivative is an interpolator between regular integer derivatives. To move to q�1 would
require m=2 and we would have

Dx
qf�x�� =

1

��2 − q��x

x� d2f�z�
dz2 �x� − z�1−qdz .

Integrating by parts we have

Dx
qf�x�� = − �df

dz
�

x
�x� − x�1−q +

1

��1 − q��x

x� df�x�
dz

�x� − z�−qdz . �A1�

Remembering that for m=2, q�1, one can see the interpolating term.

2. Notation

This section contains a list of the notations used. The starting point is the Caputo derivative
discussed in the previous section, Dx

q� � with an additional index, k, to define the coordinate partial
occurring in the definition.

Dx,k
q Vi�x�� =

�qx�i

��x�k − xk�q =
1

��1 − q��x

x�
dy

�Vi�y�
�yk �x� − y�−q. �A2�

The integral is over the thickness of the layer with x=	−�, x�=	. The Ðx
q derivative is defined in

terms of the Caputo derivative,
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Dx,k
q �� =

�x� − x�1−q

��2 − q�
Ðx,k

q �� . �A3�

An example of its use are found in the next section. The fractional Lie derivative is defined in
terms of Ðx,k

q � �,

qL�V
i = Ðx,k

q �Vi��k − Ðx,k
q ��i�Vk, �A4�

qL�Vi = Ðx,k
q �Vi���k� + VkÐx,i

q ��k� , �A5�

qL�f = �kÐx,k
q �f� . �A6�

The fractional extrinsic curvature is defined in terms of the fractional Lie derivative generated
by the normal to the layer. gij is the metric of the bounding space time and hij is the projection
operator onto the layer,

qKcd =
1

2
qLN�gij�hc

i hd
j . �A7�

Jumps across the layer are described by

�qKcd� . �A8�

3. The Ðq derivative

The Ðq derivative defined in Eq. �7� in the text as a replacement for the regular partial
derivative divides out some of the usual fractional derivative behavior. Consider the Caputo
derivative of r2 over a spherical region from the origin to r. We have

Dr
qr2 =

1

��1 − q��0

r

2z�r − z�−qdz =
2r2−q

��1 − q��0

1

w�1 − w�−qdw =
2r2−q

��1 − q�
��1 − q���2�

��2 − q�
=

2r2−q

��3 − q�
.

The Ðq derivative is

Dx
q� � =

�x� − x�1−q

��2 − q�
Ðx

q�� ,

Ðqr2 =
2r

2 − q
.

4. Some properties of the fractional Lie derivative

a. Defining the fractional commutator

The regular Lie derivative defines the commutator as

LUV = �U,V� = �UV − �VU ,

where �U=Uk�k is the standard directional derivative. The fractional Lie derivative generalizes
the commutator,

qLUVi = UkÐx,k
q Vi − VkÐx,k

q U ,

�A9�
q�U,V�i = UkÐx,k

q Vi − VkÐx,k
q Ui.
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Product of derivatives

The product of two regular Lie derivatives is related to the Lie derivative of the commutator.

L�U,V� = LULV − LVLU.

Consider the fractional Lie derivative acting on a scalar function f ,

qL�U,V�f = �UkÐx,k
q Vi − VkÐx,k

q UiÐx,i
q f = UkÐx,k

q ViÐx,i
q f − VkÐx,k

q UiÐx,i
q f = qLU

qLVf − qLV
qLUf

and the fractional derivative has the same structure.
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We prove the existence of infinitely many symmetric periodic orbits for a regular-
ized rhomboidal five-body problem with four small masses placed at the vertices of
a rhombus centered in the fifth mass. The main tool for proving the existence of
such periodic orbits is the analytic continuation method of Poincaré together with
the symmetries of the problem. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2378617�

I. INTRODUCTION

In this paper we consider a particular case of the planar five-body problem defined as follows.
We consider a mass m0=1 at the origin of coordinates with zero initial velocity, two small masses
m1=m2=��1 with initial positions and velocities on the x axis symmetric with respect to the
origin, and two small masses m3=m4=��2 with initial positions and velocities on the y axis also
symmetric with respect to the origin �see Fig. 1�. Our five-body problem consists of describing the
motion of the five masses under their mutual Newtonian gravitational attraction. Due to the
symmetry of the initial conditions and velocities, the four small bodies form a rhombus with center
at m0 at any time and the mass m0 remains at rest at the origin. The description of the motion of
this five-body problem is called the rhomboidal five-body problem.

Although this is a five-body problem it can be formulated as a Hamiltonian system of two
degrees of freedom, one is the distance x�0 of m1 to the origin and the other is the distance y
�0 of m3 to the origin �the distances of m2 and m4 to the origin are obtained by symmetry�. The
system has three singularities, the triple collision between m0, m1, and m2, the triple collision
between m0, m3, and m4, and the total collision of the five bodies. Due to the symmetries doing a
double Levi-Civita transformation we regularize both triple collisions.

When �=0 the problem is reduced to two collision two-body problems, the collision two-
body problem with m0 and m1 and the collision two-body problem with m0 and m3. Note that if we
take into account the five bodies, then really for �=0 we have instead of the binary collisions m0

with m1, and m0 with m3, the triple collisions m0, m1, and m2, and m0, m3, and m4. Since the
solutions of the collision two-body problem are known we can compute the periodic solutions of
the regularized system for �=0 in a fixed energy level h�0. The objective of this paper is to
prove that the symmetric periodic orbits of the regularized rhomboidal five-body problem for �
=0 can be continued to symmetric periodic orbits of the regularized rhomboidal five-body problem
for ��0 sufficiently small. The main tool for proving this result is the classical analytic continu-
ation method of Poincaré.

a�Electronic mail: montserrat.corbera@uvic.cat
b�Electronic mail: jllibre@mat.uab.cat
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The paper is structured as follows. In Sec. II we give the equations of motion of the rhom-
boidal five-body problem and we apply a double Levi-Civita transformation to regularize the triple
collision between m0, m1, and m2 and the triple collision between m0, m3, and m4. Notice that the
total collision of the five bodies is not regularized. In Sec. III we analyze the discrete symmetries
of the regularized problem. In particular we see that there are three different symmetries that
provide symmetric periodic solutions of the problem. We characterize these symmetric periodic
solutions, and the double symmetric periodic solutions which are the main objective of this work.
In Sec. IV we compute the periodic solutions of the regularized rhomboidal five-body problem for
�=0 and in particular we analyze the double symmetric periodic solutions. Finally in Sec. V we
apply the analytic continuation method of Poincaré to continue the double symmetric periodic
orbits of the regularized rhomboidal five-body problem for �=0 to double-symmetric periodic
orbits of the regularized rhomboidal five-body problem for ��0 sufficiently small.

II. EQUATIONS OF MOTION FOR THE RHOMBOIDAL FIVE-BODY PROBLEM

We consider five point particles with masses m0=1, m1=m2=��1, m3=m4=��2, positions
q0= �0,0�, q1= �x ,0�, q2= �−x ,0�, q3= �0,y�, and q4= �0,−y�, respectively, and velocities v0

= �0,0�, v1= �vx ,0�, v2= �−vx ,0�, v3= �0,vy�, and v4= �0,−vy�, respectively �see Fig. 1�. Our five-
body problem consist of describing the motion of these particles under their mutual Newtonian
gravitational attraction. We note that due to the symmetry of the problem the mass m0 is at rest at
the origin and the motion of the masses m1 and m2 �respectively, m3 and m4� is confined to the x
axis �respectively, y axis�. Since the configuration of the four bodies in motion is always a
rhombus with center at m0, we call the five-body problem the rhomboidal five-body problem.

Without loss of generality we can assume that the gravitational constant is G=1. Then the
kinetic energy of the rhomboidal five-body problem is

T = ��1ẋ2 + ��2ẏ2,

where the dot denotes derivative with respect to the time t and the potential energy is

U = −
��1�4 + ��1�

2x
−

��2�4 + ��2�
2y

−
4�2�1�2

�x2 + y2
.

The Lagrangian of the problem is given by L=T−U. By the Legendre transformation �see, for
instance, Refs. 1–3� the Hamiltonian of the problem is

H =
px

2

4��1
+

py
2

4��2
−

��1�4 + ��1�
2x

−
��2�4 + ��2�

2y
−

4�2�1�2

�x2 + y2
,

where px and py are the conjugate momenta. The equations of motion associated to the Hamil-
tonian H are

ẋ =
px

2��1
, ṗx = −

��1�4 + ��1�
2x2 −

4�2�1�2x

�x2 + y2�3/2 ,

FIG. 1. The rhomboidal five-body problem.
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ẏ =
py

2��2
, ṗy = −

��2�4 + ��2�
2y2 −

4�2�1�2y

�x2 + y2�3/2 . �1�

Doing the rescaling of the variables x=�2X, y=�2Y, and t=�3T, and denoting the new
variables �X ,Y ,T� again by �x ,y , t� system �1� becomes

ẋ =
px

2�1
, ṗx = −

�1�4 + ��1�
2x2 −

4��1�2x

�x2 + y2�3/2 ,

ẏ =
py

2�2
, ṗy = −

�2�4 + ��2�
2y2 −

4��1�2y

�x2 + y2�3/2 . �2�

This system is also Hamiltonian with Hamiltonian

H =
px

2

4�1
+

py
2

4�2
−

�1�4 + ��1�
2x

−
�2�4 + ��2�

2y
−

4��1�2

�x2 + y2
,

We note that system �2� has three singularities: x=0, that corresponds to triple collision
between m0, m1, and m2, y=0 that corresponds to triple collision between m0, m3, and m4, and
finally x2+y2=0 that corresponds to the total collision of the five bodies. We regularize both triple
collisions applying a double Levi-Civita transformation �see Refs. 4–6�

x = �1
2, y = �2

2, px =
�1

2�1
, py =

�2

2�2
, dt = 4�1

2�2
2ds .

The regularized system of the rhomboidal five-body problem �2� on the level energy H=h for
some constant h is the Hamiltonian system

d�1

ds
=

�1�2
2

2�1
,

d�2

ds
=

�2�1
2

2�2
,

�3�
d�1

ds
= −

�1�2
2

2�2
+ 8h�1�2

2 + 4�2�4 + ��2��1 +
32��1�2�1�2

6

��1
4 + �2

4�3/2 ,

d�2

ds
= −

�2�1
2

2�1
+ 8h�1

2�2 + 4�1�4 + ��1��2 +
32��1�2�1

6�2

��1
4 + �2

4�3/2

with Hamiltonian

K =
�1

2�2
2

4�1
+

�2
2�1

2

4�2
− 2�2�4 + ��2��1

2 − 2�1�4 + ��1��2
2 − 4h�1

2�2
2 −

16��1�2�1
2�2

2

��1
4 + �2

4
,

and satisfying the energy relation K=0; i.e., H=h.
We note that system �3� is analytic with respect to its variables except when �1

4+�2
4=0 which

corresponds to the total collision.
The regularization of the triple collisions allows us to look for periodic orbits of the rhom-

boidal five-body problem containing triple collisions between m0, m1, and m2 and between m0 and
m3 and m4. Our aim is to find periodic orbits of the rhomboidal five-body problem �3� for ��0
sufficiently small, satisfying the energy relation K=0. In fact, we look only for symmetric periodic
orbits which are easier to study than the general periodic orbits.
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III. SYMMETRIES

It is easy to check that system �3� is invariant under the discrete symmetries

Id: ��1,�2,�1,�2,s� → ��1,�2,�1,�2,s� ,

S1: ��1,�2,�1,�2,s� → �− �1,�2,�1,− �2,− s� ,

S2: ��1,�2,�1,�2,s� → ��1,− �2,− �1,�2,− s� ,

S3: ��1,�2,�1,�2,s� → ��1,�2,− �1,− �2,− s� ,

S4: ��1,�2,�1,�2,s� → �− �1,− �2,− �1,− �2,s� ,

S5: ��1,�2,�1,�2,s� → �− �1,�2,− �1,�2,s� ,

S6: ��1,�2,�1,�2,s� → ��1,− �2,�1,− �2,s� ,

S7: ��1,�2,�1,�2,s� → �− �1,− �2,�1,�2,− s� .

The invariance under these symmetries means that if ��s�= ��1�s�, �2�s�, �1�s� ,�2�s�� is a
solution of system �3�, then also Si���s�� is a solution for i=1, . . . ,7. An orbit ��s� is called
Si-symmetric if Si���s��=��s�.

We note that �Id ,S1 , . . . ,S7� with the usual composition forms an abelian group isomorphic to
Z2	Z2	Z2. This discrete group of symmetries appeared in many Hamiltonian systems as, for
instance, the anisotropic Kepler problem,7 the Manev anisotropic problem,8 or the collinear three-
body problem.9

Using the uniqueness theorem of a solution of an ordinary differential system, it follows easily
that ��s� is a S1-symmetric solution if and only if ��s� intersects the plane �1=�2=0 at least in one
point. Now, it is clear that a periodic solution is S1-symmetric if and only if it has exactly two
intersection points with the plane �1=�2=0. So, clearly the half-period of such a S1-symmetric
periodic orbit is the time which the orbit needs for travel from one of the intersection points to the
other. Using similar arguments for the other symmetries, we obtain the following proposition.

Proposition 1: Let ��s�= ��1�s� ,�2�s� ,�1�s� ,�2�s�� be a solution of system �3�.

�a� If �1�s� and �2�s� are zero at s=s0 and at s=s0+S /2 but they are not simultaneously zero
at any value of s� �s0 ,s0+S /2�, then ��s� is a S1-symmetric periodic solution of period S.

�b� If �2�s� and �1�s� are zero at s=s0 and at s=s0+S /2 but they are not simultaneously zero
at any value of s� �s0 ,s0+S /2�, then ��s� is a S2-symmetric periodic solution of period S.

�c� If �1�s� and �2�s� are zero at s=s0 and at s=s0+S /2 but they are not simultaneously zero
at any value of s� �s0 ,s0+S /2�, then ��s� is a S3-symmetric periodic solution of period S.

Since in system �3� the total collision is not regularized, in our study we must avoid the orbits
of the rhomboidal five-body problem which start or end in total collision. In the variables that we
are working the total collision takes place when �1=�2=0. Therefore, the symmetries S4 and S7 are
not considered because their symmetric orbits present total collision. Due to the fact that S5=S1

�S3 and S6=S2 �S3, studying the symmetric periodic orbits with respect to S1, S2, and S3 we shall
get also the symmetric periodic orbits with respect to S5 and S6.

There could be periodic solutions of system �3� that are simultaneously S1- and S2-symmetric
periodic solutions. These periodic solutions will be called S12-symmetric periodic solutions. In a
similar way we can define the S13-symmetric periodic solutions and the S23-symmetric periodic
solutions. These kinds of symmetric periodic solutions are characterized in the following result.
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Proposition 2: Let ��s�= ��1�s� ,�2�s� ,�1�s� ,�2�s�� be a solution of rhomboidal five-body prob-
lem �3�.

�a� The solution ��s� is a S12-symmetric periodic solution of period S if and only if either
�1�s0�=�2�s0�=0, and �2�s0+S /4�=�1�s0+S /4�=0, and there is no s� �s0 ,s0+S /4� such
that �2�s�=�1�s�=0; or �2�s0�=�1�s0�=0, and �1�s0+S /4�=�2�s0+S /4�=0, and there is no
s� �s0 ,s0+S /4� such that �1�s�=�2�s�=0.

�b� The solution ��s� is a S13-symmetric periodic solution of period S if and only if either
�1�s0�=�2�s0�=0, and �1�s0+S /4�=�2�s0+S /4�=0, and there is no s� �s0 ,s0+S /4� such
that �1�s�=�2�s�=0; or �1�s0�=�2�s0�=0, and �1�s0+S /4�=�2�s0+S /4�=0, and there is no
s� �s0 ,s0+S /4� such that �1�s�=�2�s�=0.

�c� The solution ��s� is a S23-symmetric periodic solution of period S if and only if either
�2�s0�=�1�s0�=0, and �1�s0+S /4�=�2�s0+S /4�=0, and there is no s� �s0 ,s0+S /4� such
that �1�s�=�2�s�=0; or �1�s0�=�2�s0�=0, and �2�s0+S /4�=�1�s0+S /4�=0, and there is no
s� �s0 ,s0+S /4� such that �2�s�=�1�s�=0.

The next result shows that there are no symmetric periodic orbits with respect more than two
symmetries.

Proposition 3: There are no periodic solutions of the rhomboidal five-body problem �3�, which
are simultaneously Si-symmetric for i=1,2 ,3.

Proof: Assume that ��s� is a Si-symmetric periodic solution of period S for i=1,2 ,3. Then
there exist times s1, s2, and s3 with s1 ,s2 ,s3� �0,S /2� such that

�1�s1� = �2�s1� = 0, �2�s2� = �1�s2� = 0, �1�s3� = �2�s3� = 0.

We assume that s1=0. This is not restrictive because system �3� is autonomous, and consequently
the origin of time can be chosen arbitrarily. Then, since the orbit is in particular S12-symmetric,
from Proposition 2, s2=S /4. Similarly, since it is also S13-symmetric, again from Proposition 2,
s3=S /4. The fact that s2=s3 is a contradiction, so we have proved the result. �

IV. SYMMETRIC PERIODIC SOLUTIONS FOR �=0

For �=0 system �3� becomes

d�1

ds
=

�1�2
2

2�1
,

d�1

ds
= −

�1�2
2

2�2
+ 8h�1�2

2 + 16�2�1,

d�2

ds
=

�2�1
2

2�2
,

d�2

ds
= −

�2�1
2

2�1
+ 8h�1

2�2 + 16�1�2, �4�

and the Hamiltonian K goes over to

K =
�1

2�2
2

4�1
+

�2
2�1

2

4�2
− 8�2�1

2 − 8�1�2
2 − 4h�1

2�2
2.

The Hamiltonian H for �=0 can be written as

H = H1�x,px� + H2�y,py� = � px
2

4�1
−

2�1

x
	 + � py

2

4�2
−

2�2

y
	 .

We note that H1�x , px� and H2�y , py� are two fist integrals of the nonregularized problem, so they
are constant along the solutions in the intervals between two consecutive zeros of x and y.

The flow of the rhomboidal five-body problem on the energy level H=h for some constant h
is obtained from the flow of the Hamiltonian H1�x , px� on the energy level H1=h1 and the flow of
the Hamiltonian H2�y , py� on the energy level H2=h2 with h=h1+h2.

The Hamiltonian H1�x , px� in the Levi-Civita coordinates ��1 ,�1� is given by
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H1 =
�1

2

16�1�1
2 −

2�1

�1
2 = h1,

and the Hamiltonian H2�y , py� in the Levi-Civita coordinates ��2 ,�2� is

H2 =
�2

2

16�2�2
2 −

2�2

�2
2 = h2.

Let ��1 ,�2 ,�1 ,�2� be a solution of system �4� satisfying the energy relation K=0 �i.e., H=h�,
we define a new time variable 
 as follows:

d


ds
= �2

2, or equivalently
dt

d

= 4�1

2. �5�

The Hamiltonian K in the new time variable 
 can be written as

K1 =
1

�2
2K =

�1
2

4�1
− 8�1 − 4h1�1

2 + � �2
2

4�2�2
2 −

8�2

�2
2 − 4h2	�1

2 =
�1

2

4�1
− 8�1 − 4h1�1

2.

Then �1 ,�1 satisfy the system of differential equations associated to the Hamiltonian K1

d�1

d

=

�1

2�1
,

d�1

d

= 8h1�1. �6�

We are only interested in the periodic solutions of system �6�. Thus we must consider only
negative values of h1. Then, fixed h1�0, system �6� can be integrated directly and the solution
��1�
� ,�1�
�� of system �6� with initial conditions

�1�0� = �10
* , �1�0� = �10

* , �7�

is

�1�
� = �10
* cos�w1
� +

�10
*

2w1�1
sin�w1
� , �1�
� = �10

* cos�w1
� − 2w1�1�10
* sin�w1
� , �8�

where w1=2�−h1 /�1.
We note that the solution �8� is a periodic solution of system �6� with period 
̄=2� /w1. Since

we are interested in the periodic solution �8� satisfying the energy relation K1=0, by Eq. �5�, its
period in the real time t is given by

T1�h1,�1� = 

0


̄

4�1
2�
�d
 = 4��−

�1

h1
	3/2

.

Now we introduce a new time � with

d�

ds
= �1

2, or equivalently
dt

d�
= 4�2

2. �9�

Then �2 ,�2 are functions of the new time � via the Hamiltonian system

d�2

d�
=

�2

2�2
,

d�2

d�
= 8h2�2, �10�

with Hamiltonian
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K2 =
1

�1
2K =

�2
2

4�2
− 8�2 − 4h2�2

2.

Moreover, fixed h2�0, the solution ��2��� ,�1���� of system �10� with initial conditions

�2�0� = �20
* , �2�0� = �20

* , �11�

is given by

�2��� = �20
* cos�w2�� +

�20
*

2w2�2
sin�w2�� , �2��� = �20

* cos�w2�� − 2w2�2�20
* sin�w2�� , �12�

where w2=2�−h2 /�2.
The solution �12� is periodic of period �̄=2� /w2. Moreover, if the solution �12� satisfies the

energy relation K2=0, then, by Eq. �9�, the period of the solution �12� in the real time t is given by

T2�h2,�2� = 

0

�̄

4�2
2���d� = 4��−

�2

h2
	3/2

.

Proposition 4: Let ��1�
� ,�1�
�� be a periodic solution of system �6�, for a fixed h1�0, with
initial conditions �7� and period 
̄=2� /w1 that satisfies K1=0. Let ��2��� ,�2���� be the periodic
solution of system �10�, for a fixed h2�0, with initial conditions �11� and period �̄=2� /w2 that
satisfies K2=0. Assume that h=h1+h2, and that 
�s� and ��s� are given by Eqs. �5� and �9�,
respectively, where we choose 
�0�=��0�=0. Suppose that there is no s�R such that �1�
�s��
=�2���s��=0. Then the following statements hold:

�a� ��s�= ��1�
�s�� ,�2���s�� ,�1�
�s�� ,�2���s�� is a solution of system �4� with initial condi-
tions �1�0�=�10

* , �2�0�=�20
* , �1�0�=�10

* , and �2�0�=�20
* that satisfies K=0.

�b� If h1= �p /q�2/3�1h2 /�2 for some p ,q�N coprime, then ��s� is a periodic solution of system
�4�.

�c� Assume that s�t� is given by the inverse function of t=�0
s4�1

2���2
2��d. Under the hypoth-

eses of statement �b�, the period and the quarter of the period of the periodic solution ��s�
using the different times t, 
, �, and s is given in Table I.

Proof: Statement �a� follows easily from the definitions of ��1�
� ,�1�
�� and ��2��� ,�2����
together with the definitions of 
�s� and ��s�.

We have seen that, in the time t, ��1�
� ,�1�
�� and ��2��� ,�2���� are periodic solutions of
periods T1�h1 ,�1� and T2�h2 ,�2�, respectively. Thus, in order to have a periodic solution of system
�4� we need that

pT1�h1,�1� = qT2�h2,�2� , �13�

for some p ,q�N coprime. Solving Eq. �13� with respect to h1, we get that h1= �p /q�2/3�1h2 /�2.
So, statement �b� is proved.

Now we see that the time t=T /4 corresponds to the time 
=
* /4. In a similar way we can see
that the time t=T /4 corresponds to the time �=�* /4 and s=S* /4.

TABLE I. Period of ��s�.

Time t Time 
 Time � Time s

T= pT1�h1 ,�1�=qT2�h2 ,�2� 
*= p
̄ �*=q�̄ S*=s�T�
T /4 
* /4 �* /4 S* /4
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We note that system �6� is invariant under the symmetry ��1 ,�1 ,
�→ �−�1 ,�1, −
�. This
means that �1�
�=−�1�−
�. So �1

2�
� is an even function. On the other hand, it is easy to see that
�1

2�
� is a periodic function of period 
̄ /2. Then, from Eq. �5�, we have that

T1 = 

0


̄

4�1
2�
�d
 = 2


0


̄/2

4�1
2�
�d
 = 4


0


̄/4

4�1
2�
�d
 .

Moreover, it is clear that



0


̄/4

4�1
2�
�d
 = 



̄/4


̄/2

4�1
2�
�d
 =

T1

4
.

Consequently

t�
*/4� = 

0

p
̄/4

4�1
2�
�d
 = p


0


̄/4

4�1
2�
�d
 = p

T1

4
=

T

4
.

Therefore, the time t=T /4 corresponds to 
=
* /4. In short, statement �c� is proved. �

We remark that the number p in Proposition 4 represents the number of triple collisions
between m0, m1, and m2 during a period, whereas q represents the number of triple collisions
between m0, m3, and m4.

We are interested in symmetric periodic solutions of system �4� satisfying the energy relation
K=0 with h=h1+h2. In the next proposition we give initial conditions for those symmetric peri-
odic solutions.

Proposition 5: The following statements hold:

�a� If p and q are odd, then the solution ��s� given by Proposition 4 with initial conditions

either �10
* = 0, �20

* = �− 2�2/h2, �10
* = 4�2�1, �20

* = 0;

or �10
* = �− 2�1/h1, �20

* = 0, �10
* = 0, �20

* = 4�2�2;

is a S12-symmetric periodic solution.
�b� If p is odd and q is even, then the solution ��s� given by Proposition 4 with initial

conditions

either �10
* = 0, �20

* = �− 2�2/h2, �10
* = 4�2�1, �20

* = 0;

or �10
* = �− 2�1/h1, �20

* = �− 2�2/h2, �10
* = 0, �20

* = 0;

is a S13-symmetric periodic solution.
�c� If p is even and q is odd, then the solution ��s� given by Proposition 4 with initial

conditions

either �10
* = �− 2�1/h1, �20

* = 0, �10
* = 0, �20

* = 4�2�2;

or �10
* = �− 2�1/h1, �20

* = �− 2�2/h2, �10
* = 0, �20

* = 0;

is a S23-symmetric periodic solution.

Proof: Solving K1=0 and K2=0 for the initial conditions of the S12-symmetric periodic orbits
given in Proposition 2�a� we get the initial conditions of statement �a�. In these initial conditions
we have only considered the positive determination in the squareroots due to the fact that the
Levi-Civita transformation duplicates the orbits. The proof follows from the evaluation of the
solution ��s�= ��1�
�s�� ,�2���s�� ,�1�
�s�� ,�2���s�� with these initial conditions at times s=0 and
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s=S* /4. We note that by Table I ��S* /4�= ��1�p
̄ /4� ,�2�q�̄ /4� ,�1�p
̄ /4� ,�2�q�̄ /4��. This com-
pletes the proof of statement �a�. The other statements follow similarly. �

V. CONTINUATION OF SYMMETRIC PERIODIC SOLUTIONS

In this section using the continuation method of Poincaré �see, for instance, Ref. 10� we shall
continue the symmetric periodic orbits of the rhomboidal five-body problem �3� from �=0 to
symmetric periodic orbits of system �3� for ��0 sufficiently small.

A. The S12-symmetric periodic solutions

We denote by ��s ;0 ,�20,�10,0 ,��= ��1�s ;�20,�10,�� ,�2�s ;�20,�10,�� ,�1�s ;�20,�10,��,
�2�s ;�20,�10,��� the solution of �3�, for fixed values of �1�0, �2�0, and h�0, with initial
conditions �1�0�=0, �2�0�=�20, �1�0�=�10, and �2�0�=0. From Proposition 2�a�,
��s ;0 ,�20,�10,0 ,�� is a S12-symmetric periodic solution of the rhomboidal five-body problem
with period S satisfying the energy relationK=0 if and only if

�2�S/4;�20,�10,�� = 0, �1�S/4;�20,�10,�� = 0, K��20,�10,�� = 0.

We solve equation K��20,�10,��=0 with respect the variable �10 obtaining in this way

�10 = 2�2�1
�4 + ��1. �14�

So ��s ;0 ,�20,�10,0 ,�� is a S12-symmetric periodic solution of the rhomboidal five-body problem
with period S satisfying the energy relation K=0 if and only if

�2�S/4;�20,�� = 0, �1�S/4;�20,�� = 0. �15�

Notice that we have omitted the dependence with respect to �10, which is given by Eq. �14�.
Assume that p=2� +1, q=2k+1 for some � ,k�N� �0� and that h1

* and h2
* verify that h

=h1
*+h2

* and h1
*= �p /q�2/3�1h2

* /�2. By Propositions 4 and 5�a�, we see that S=S*=s�pT1�h1
*��

=s�qT2�h2
*��, �20=�20

* =�−2�2 /h2
*, is a solution of system �15� for �=0. This solution correspond to

the known S12-symmetric periodic solution ��s ;0 ,�20
* ,�10

* ,0 ,0� of system �3�, for �=0 where
�10

* =4�2�1. Our aim is to continue this solution of system �15� for �=0 to ��0 sufficiently
small.

Applying the implicit function theorem to system �15� in a neighborhood of the known
solution we have that if

�
��2

�s

��2

��20

��1

�s

��1

��20

��s=S*/4

�20=�20
*

�=0



� 0, �16�

then we can find unique analytic functions �20=�20���, S=S��� defined for ��0 sufficiently
small, such that

�i� �20�0�=�20
* , S�0�=S*,

�ii� ��s ;0 ,�20,�10,0 ,�� with �20=�20��� and �10 given by �14� is a S12-symmetric periodic
solution of system �3� with period S=S��� that satisfies the energy relation K=0.

The derivatives ��2 /�s and ��1 /�s evaluated at s=S* /4, �20=�20
* and �=0 can be obtained

directly from system �3� for �=0 �i.e., system �4��, evaluating the right hand of the system at the
solution ��s ;0 ,�20

* ,�10
* ,0 ,0� at time s=S* /4. Then
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� ��2

�s
�s=S*/4

�20=�20
*

�=0

= � 1

2�2
�2�1

2�s=S*/4

�20=�20
*

�=0

=
4�− 1�k�2�2

h2
* �q

p
	2/3

� 0

and

� ��1

�s
�s=S*/4

�20=�20
*

�=0

= 8h1
*�1�2

2s=S*/4

�20=�20
*

�=0

= 0.

It only remains to compute the value of ��1 /��20 evaluated at s=S* /4, �20=�20
* , �=0. This

value is given by the derivative, evaluated at s=S* /4 and �20=�20
* , of the solution

�1�
�s� ;0 ,�20,�10
* ,0 ,0� with respect to �20, where �1�
�s� ;0 ,�20,�10

* ,0 ,0� is the solution of
system �4� with initial conditions �1�0�=0, �2�0�=�20, �1�0�=�10

* , and �2�0�=0 satisfying the
energy relation K=0 �see Proposition 4�a��. Then

� ��1�
�s�;0,�20,�10
* ,0,0�

��20
�s=S*/4

�20=�20
*

= � ��1

�


�
�s�
��20

+ � ��1

��20
	�s=S*/4

�20=�20
*

.

From Eqs. �5� and �9�, we have that the times 
 and � are related by

�1
2�
�d
 = �2

2���d� .

Integrating this equation over the solutions �8� and �12� with the corresponding initial conditions
and assuming that when 
�0�=��0�=0, we have that 
�s� and ��s� are related by the equation

4
�s�
w1

2 −
�20

2 ��s�
2

−
2 sin�2w1
�s��

w1
3 −

�20
2 sin�2w2��s��

4w2
= 0. �17�

Since ��s ;0 ,�20,�10
* ,0 ,0� must be a solution of system �4�, by Proposition 4 we have that K1

=0 and K2=0, so

w2 = 2�− h2/�2, with h2 = − 2�2/�20
2

and

w1 = 2�− h1/�1, with h1 = h − h2.

Then derivating implicitly Eq. �17� with respect to �20 we obtain

� �
�s�
��20

�s=S*/4

�20=�20
*

=
�q

8�2�1
�3� p

q
	2/3

�1 + �2	 .

On the other hand, from systems �6� and �8� we have that

� ��1

�

�s=S*/4

�20=�20
*

= 8h1�1s=S*/4

�20=�20
*

= 8�− 1��+1�2�1� p

q
	1/3�−

h2
*

�2

and

� ��1

��20
�s=S*/4

�20=�20
*

= 2�− 1��ph2
*��q

p
	2/3�−

�2

h2
* .

Hence
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� ��1�
�s�;0,�20,�10
* ,0,0�

��20
�s=S*/4

�20=�20
*

= 3�− 1��+1��−
h2

*

�2
�p�1 + � p

q
	1/3

q�2	 .

So, this derivative is different from zero. Hence, the determinant �16� is not zero. In short, we have
proved the following result.

Theorem 6: Given �1�0, �2�0, h�0 and p and q odd positive integers, the S12-symmetric
periodic solution of the rhomboidal five-body problem �3� for �=0 with initial conditions �1�0�
=0, �2�0�=�−2�2 /h2

*, �1�0�=4�2�1, and �2�0�=0 where h2
*=h�2 / ��p /q�2/3�1+�2�, can be contin-

ued to a �-parameter family of S12-symmetric periodic orbits of the rhomboidal five-body problem
�3�for ��0 sufficiently small.

B. The S23-symmetric periodic solutions

We denote by ��s ;�10,�20,0 ,0 ,��= ��1�s ;�10,�20,�� ,�2�s ;�10,�20,�� ,�1�s ;�10,�20,��,
�2�s ;�10,�20,��� the solution of system �3�, for fixed values of �1�0, �2�0, and h�0, with
initial conditions �1�0�=�10, �2�0�=�20, �1�0�=0, and �2�0�=0. From Proposition 2�c�,
��s ;�10,�20,0 ,0 ,�� is a S23-symmetric periodic solution of the rhomboidal five-body problem
with period S satisfying the energy relation K=0 if and only if

�2�S/4;�10,�20,�� = 0, �1�S/4;�10,�20,�� = 0, K��10,�20,�� = 0.

We solve equation K��10,�20,��=0 with respect to the variable �20 obtaining in this way
�20=�20��10,��. In particular, �20��10,0�=�2�2�10/�−2�1−h�10

2 . So ��s ;�10,�20,0 ,0 ,�� is a
S23-symmetric periodic solution of the rhomboidal five-body problem with period S satisfying the
energy relation K=0 if and only if

�2�S/4;�10,�� = 0, �1�S/4;�10,�� = 0. �18�

Assume that p=2�, q=2k+1 for some ��N and k�N� �0� and that h1
* and h2

* verify that
h=h1

*+h2
* and h1

*= �p /q�2/3�1h2
* /�2. By Propositions 4 and 5�c�, we see that S=S*=s�pT1�h1

*��
=s�qT2�h2

*��, �10=�10
* =�−2�1 /h1

* is a solution of system �18� for �=0. This solution corresponds
to the known S23-symmetric periodic solution ��s ;�10

* ,�20
* ,0 ,0 ,0� of system �3�, for �=0 where

�20=�20
* =�−2�2 /h2

*. Our aim is to continue this solution of system �18� for �=0 to ��0 suffi-
ciently small.

Applying the implicit function theorem to system �18� in a neighborhood of the known
solution we have that if

�
��2

�s

��2

��10

��1

�s

��1

��10

��s=S*/4

�10=�10
*

�=0



� 0, �19�

then we can find unique analytic functions �10=�10���, S=S��� defined for ��0 sufficiently
small, such that

�i� �10�0�=�10
* , S�0�=S*,

�ii� ��s ;�10,�20,0 ,0 ,�� with �10=�10��� and �20=�20��10��� ,�� is a S23-symmetric periodic
solution of system �3� with period S=S��� that satisfies the energy relation K=0.

Working as for the S12-symmetry we get that
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� ��2

�s
�s=S*/4

�10=�10
*

�=0

� 0, and � ��1

�s
�s=S*/4

�10=�10
*

�=0

= 0.

It only remains to compute the value of ��1 /��10 evaluated at s=S* /4, �10=�10
* , �=0. This value

is given by the derivative, evaluated at s=S* /4 and �10=�10
* , of the solution

�1�
�s� ;�10,�20,0 ,0 ,0� with respect to �10, where �1�
�s� ;�10,�20,0 ,0 ,0� is the solution of sys-
tem �4� with initial conditions �1�0�=�10, �2�0�=�20��10,0�, �1�0�=0, and �2�0�=0 satisfying the
energy relation K=0 �see Proposition 4�c��. Then

� ��1�
�s�;0,�10,�20,0,0,0�
��10

�s=S*/4

�10=�10
*

= � ��1

�


�
�s�
��10

+ � ��1

��10
	�s=S*/4

�10=�10
*

=
3�− 1��+1h2

*p��1

q�2
2 �p�1 + � p

q
	1/3

q�2	 ,

so this derivative is different from zero. Hence, the determinant �19� is not zero. In short, we have
proved the following result.

Theorem 7: Given �1�0, �2�0h�0, p even and q odd positive integers, the S23-symmetric
periodic solution of the rhomboidal five-body problem �3� for �=0 with initial conditions �1�0�
=�−2�1 /h1

*, �2�0�=�−2�2 /h2
*, �1�0�=0, and �2�0�=0, where h2

*=h�2 / ��p /q�2/3�1+�2�, h1
*

=h�p /q�2/3�1 / ��p /q�2/3�1+�2�, can be continued to a �-parameter family of S23-symmetric peri-
odic orbits of the rhomboidal five-body problem �3� for ��0 sufficiently small.

C. The S13-symmetric periodic solutions

Let ��s ;�10,�20,0 ,0 ,�� be the solution of system �3�, for fixed values of �1�0, �2�0, and
h�0, defined as in Sec. V B. From Proposition 2�b�, ��s ;�10,�20,0 ,0 ,�� is a S13-symmetric
periodic solution of the rhomboidal five-body problem with period S satisfying the energy relation
K=0 if and only if

�1�S/4;�10,�20,�� = 0, �2�S/4;�10,�20,�� = 0, K��10,�20,�� = 0.

Let �20=�20��10,�� be the function defined in Sec. V B. Then ��s ;�10,�20,0 ,0 ,�� is a
S13-symmetric periodic solution of the rhomboidal five-body problem with period S satisfying the
energy relation K=0 if and only if

�1�S/4;�10,�� = 0, �2�S/4;�10,�� = 0. �20�

Assume that p=2� +1, q=2k for some ��N� �0� and k�N and that h1
* and h2

* verify that
h=h1

*+h2
* and h1

*= �p /q�2/3�1h2
* /�2. By Propositions 4 and 5�b�, we see that S=S*=s�pT1�h1

*��
=s�qT2�h2

*��, �10=�10
* =�−2�1 /h1

* is a solution of system �20� for �=0. This solution correspond to
the known S13-symmetric periodic solution ��s ;�10

* ,�20
* ,0 ,0 ,0� of system �3�, for �=0 where

�20=�20
* =�−2�2 /h2

*. Our aim is to continue this solution of system �20� for �=0 to ��0 suffi-
ciently small.

Applying the implicit function theorem to system �20� in a neighborhood of the known
solution we have that if
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�
��1

�s

��1

��10

��2

�s

��2

��10

��s=S*/4

�10=�10
*

�=0



� 0, �21�

then we can find unique analytic functions �10=�10���, S=S��� defined for ��0 sufficiently
small, such that

�i� �10�0�=�10
* , S�0�=S*,

�ii� ��s ;�10,�20,0 ,0 ,�� with �10=�10��� and �20=�20��10��� ,�� is a S13-symmetric periodic
solution of system �3� with period S=S��� that satisfies the energy relation K=0.

Working as for the S12-symmetry we get that

� ��1

�s
�s=S*/4

�10=�10
*

�=0

� 0, and � ��2

�s
�s=S*/4

�10=�10
*

�=0

= 0.

It only remains to compute the value of ��2 /��10 evaluated at s=S* /4, �10=�10
* , �=0. This value

is given by the derivative, evaluated at s=S* /4 and �10=�10
* , of the solution

�2���s� ;�10,�20,0 ,0 ,0� with respect to �10, where �2���s� ;�10,�20,0 ,0 ,0� is the solution of system
�4� with initial conditions �1�0�=�10, �2�0�=�20��10,0�, �1�0�=0, and �2�0�=0 satisfying the en-
ergy relation K=0 �see Proposition 4�b��. Then

� ��2���s�;�10,�20,0,0,0�
��10

�s=S*/4

�10=�10
*

= � ��2

��

���s�
��10

+
��2

��10
	s=S*/4

�10=�10
*

=
�− 1�kh2�

�2
�p�1 + � p

q
	1/3

q�2�1 + 3�2�	 ,

so this derivative is different from zero. Hence, the determinant �21� is not zero. In short, we have
proved the following result.

Theorem 8: Given �1�0, �2�0, h�0, p odd and q even positive integers, the S13-symmetric
periodic solution of the rhomboidal five-body problem �3� for �=0 with initial conditions �1�0�
=�−2�1 /h1

*, �2�0�=�−2�2 /h2
*, �1�0�=0, and �2�0�=0 where h2

*=h�2 / ��p /q�2/3�1+�2�, h1
*

=h�p /q�2/3�1 / ��p /q�2/3�1+�2�, can be continued to a �-parameter family of S13-symmetric peri-
odic orbits of the rhomboidal five-body problem �3� for ��0 sufficiently small.
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Controlling chaos via wavelet transform was proposed by Wei et al. �Phys. Rev.
Lett. 89, 284103.1–284103.4 �2002��. It was reported there that by modifying a
tiny fraction of the wavelet subspace of a coupling matrix, the transverse stability
of the synchronous manifold of a coupled chaotic system could be dramatically
enhanced. The stability of chaotic synchronization is actually controlled by the
second largest eigenvalue �2�� ,�� of the �wavelet� transformed coupling matrix
C�� ,�� for each � and �. Here � is a mixed boundary constant and � is a scalar
factor. In particular, �=1 �0� gives the nearest neighbor coupling with periodic
�Neumann� boundary conditions. In this paper, we obtain two main results. First,
the reduced eigenvalue problem for C�� ,0� is completely solved. Some partial
results for the reduced eigenvalue problem of C�� ,�� are also obtained. Second,
we are then able to understand behavior of �2�� ,0� and �2�� ,1� for any wavelet
dimension j�N and block dimension n�N. Our results complete and strengthen
the work of Shieh et al. �J. Math. Phys. 47, 082701.1–082701.10 �2006�� and Juang
and Li �J. Math. Phys. 47, 072704.1–072704.16 �2006��. © 2006 American Insti-
tute of Physics. �DOI: 10.1063/1.2400828�

I. INTRODUCTION

Of concern here is the eigencurve problem for a class of “perturbed” block circulant matrices.

C��,��b = ���,��b . �1.1a�

Here C�� ,�� is an n�n block matrix of the following form:

C��,�� =�
C1��,�� C2��,1� 0 ¯ 0 C2

T��,��
C2

T��,1� C1��,1� C2��,1� ¯ 0 0

� � � � �
� � � � �
0 0 ¯ C2

T��,1� C1��,1� C2��,1�

C2��,�� 0 ¯ 0 C2
T��,1� ÎC1��,��Î

�
n�n

. �1.1b�

Here
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C1��,�� =�
− 1 − � 1 0 ¯ ¯ 0

1 − 2 1 0 ¯ 0

0 1 − 2 1 ¯ 0

� � � � � �
0 ¯ 0 1 − 2 1

0 ¯ ¯ 0 1 − 2

�
2j�2j

−
��1 + ��

22j eeT
¬ A1��,2 j� −

��1 + ��
22j eeT,

�1.1c�

where e= �1,1 , . . . ,1�T, j is a positive integer, ��0 is a �wavelet� scalar factor, and ��R repre-
sents a mixed boundary constant. Moreover,

C2��,�� =�
0 0 ¯ 0

� �
0 0

� 0 ¯ 0
� +

��

22j eeT
¬ A2��,2 j� +

��

22j eeT, �1.1d�

Î =�
0 0 ¯ ¯ 0 1

0 0 ¯ 0 1 0

� · · · �
� · · · �
0 1 0 ¯ 0 0

1 0 ¯ ¯ 0 0

� . �1.1e�

The dimension of C�� ,�� is n2 j �n2 j. From here on, we shall call n and j the block and the
wavelet dimensions of C�� ,��, respectively. C�� ,�� is a block circulant matrix �see, e.g., Ref. 1�
only if �=1. It is well known, see, e.g., Theorem 5.6.4 of Ref. 1, that for each � the eigenvalues
of C�� ,1� consist of eigenvalues of a certain linear combinations of its block matrices. Such
results are called the reduced eigenvalue problem for C�� ,1�.

This problem arises in the wavelet method for a chaotic control.7 It is found there that the
modification of a tiny fraction of wavelet subspaces of a coupling matrix could lead to a dramatic
change in chaos synchronizing properties. We begin with describing their work. Let there be N
nodes �oscillators�. Assume ui is the m-dimensional vector of dynamical variables of the ith node.
Let the isolated �uncoupling� dynamics be u̇i= f�ui� for each node. Used in the coupling, h :Rm

→Rm is an arbitrary function of each node’s variables. Thus, the dynamics of the ith node is

u̇i = f�ui� + ��
j=1

N

aijh�u j�, i = 1,2, . . . ,N , �1.2a�

where � is a coupling strength. The sum � j=1
N aij =0. Let u= �u1 ,u2 , . . . ,uN�T, F�u�

= �f�u1� , f�u2� , . . . , f�uN��T, H�u�= �h�u1� ,h�u2� , . . . ,h�uN��T, and A= �aij�. We may write Eq.
�1.1a� as

u̇ = F�u� + �A � H�u� . �1.2b�

Here � is the direct product of two matrices B and C defined as follows. Let B= �bij�k1�k2
be a

k1�k2 matrix and C= �Cij�k2�k3
be a k2�k3 block matrix. Then
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B � C = 	�
l=1

k2

bilClj

k1�k3

.

Many coupling schemes are covered by Eq. �1.2b�. For example, if the Lorenz system is used and
the coupling is through its three components x, y, and z, then the function h is just the matrix

I3 = �1 0 0

0 1 0

0 0 1
� . �1.3�

The choice of A will provide the connectivity of nodes. For instance, the nearest neighbor coupling
with periodic, Neumann boundary conditions and mixed boundary conditions are, respectively,

given as A=A1�1,N�+A2�1,N�+A2
T�1,N�¬AP, A=A1�0,N�+A2�1,N�Î¬AN and A=A1�� ,N�

+A2�� ,N�+A2
T�� ,N�+ �1−��A2�1,N�Î¬AM, where those Ai’s, i=1,2, are defined in Eqs. �1.1c�

and �1.1d�.
Mathematically speaking,5 the second largest eigenvalue �2 of A is dominant in controlling the

stability of chaotic synchronization, and the critical strength �c for synchronization can be deter-
mined in terms of �2,

�c =
Lmax

− �2
. �1.4�

The eigenvalues of A=AP are given by �i=−4 sin2���i−1� /N�, i=1,2 , . . . ,N. In general, a larger
number of nodes give a smaller nonzero eigenvalue �2 in magnitude and, hence, a larger �c. In
controlling a given system, it is desirable to reduce the critical coupling strength �c. The wavelet
method in Ref. 7 will, in essence, transform A into C�� ,��. Consequently, it is of great interest to
study the second eigencurve of C�� ,�� for each �. By the second largest eigencurve �2�� ,�� of
C�� ,�� for fixed �, we mean that for given ��0, �2�� ,�� is the second largest eigenvalue of
C�� ,��. We remark that 0 is the largest eigenvalue of C�� ,�� for any ��0 and ��R. This is to
say that for fixed �, �2�� ,��=0 is the first eigencurve of C�� ,��. A numerical simulation7 of a
coupled system of N=512 Lorenz oscillators shows that with h= I3 and A=AP, the critical cou-
pling strength �c decreases linearly with respect to the increase of � up to a critical value �c. The
smallest �c is about 6, which is about 103 times smaller than the original critical coupling strength,
indicating the efficiency of the proposed approach.

The mathematical verification of such phenomena is first achieved by Shieh et al.6 Specifi-
cally, they solved the second eigencurve problem of C�� ,1� with n being a multiple of 4 and j
being any positive integer. Subsequently, in Ref. 4 the second eigencurve problem for C�� ,0� and
C�� ,1� with n being any positive integer and j=1 are solved without touching on the reduced
eigenvalue problem. In this paper, we obtain two main results. First, the reduced eigenvalue
problem for C�� ,0� is completely solved. Some partial results for the reduced eigenvalue problem
of C�� ,�� are also obtained. Second, we are then able to understand the behavior of �2�� ,0� and
�2�� ,1� for any j and n�N.

II. REDUCED EIGENVALUE PROBLEMS

Writing the eigenvalue problem C�� ,��b=�b, where b= �b1 ,b2 , . . . ,bn�T and bi�C2j
, in

block component form, we get

C2
T��,1�bi−1 + C1��,1�bi + C2��,1�bi+1 = �bi, 1 � i � n . �2.1a�

Mixed boundary conditions would yield that

C2
T��,1�b0 + C1��,1�b1 + C2��,1�b2 = �b1 = C1��,��b1 + C2��,1�b2 + C2

T��,��bn

and
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C2
T��,1�bn−1 + C1��,1�bn + C2��,1�bn+1 = �bn = C2��,��b1 + C2

T��,1�bn−1 + ÎC1��,��Îbn,

or, equivalently,

C2
T��,1�b0 = �C1��,�� − C1��,1��b1 + C2

T��,��bn

= ��
1 − � 0 ¯ 0

0 0 ¯ 0

� � � �
0 0 ¯ 0

� +
��1 − ��

22j eeT�b1 + ��
0 ¯ 0 �

0 ¯ 0 0

� � � �
0 ¯ 0 0

� +
��

22j eeT�bn

= �1 − ��C2
T��,1�Îb1 + �C2��,1�bn �2.1b�

and

C2��,1�bn+1 = „ÎC1��,��Î − C1��,1�…bn + C2��,��b1 = �1 − ��C2
T��,1�Îbn + �C2��,1�b1.

�2.1c�

To study the block difference equation �Eq. �2.1��, we set

b j = 	 jv , �2.2�

where v�C2j
and 	�C.

Substituting Eq. �2.2� into Eq. �2.1a�, we have

�C2
T��,1� + 	„C1��,1� − �I… + 	2C2��,1��v = 0. �2.3�

To have a nontrivial solution v satisfying Eq. �2.3�, we need to have

det�C2
T��,1� + 	�C1��,1� − �I� + 	2C2��,1�� = 0. �2.4�

Definition 2.1: Equation �2.4� is to be called the characteristic equation of the block differ-
ence equation �Eq. �2.1a��. Let 	k=	k����0 and vk=vk����0 be complex numbers and vectors,
respectively, satisfying Eq. �2.3�. Here k=1,2 , . . . ,m and m�2 j. Assume that there exists a �
�C, such that b j =
k=1

m ck	k
j���vk���, j=0,1 , . . . ,n+1, satisfy Eqs. �2.1b� and �2.1c�, where ck

�C. If, in addition, b j, j=1,2 , . . . ,n, are not all zero vectors, then such 	k��� is called a charac-
teristic value of Eq. �2.1a�, �2.1b�, and �2.1c� or �1.1a� with respect to � and vk��� its correspond-
ing characteristic vector.

Remark 2.1: Clearly, for each � and �, � in Definition 2.1 is an eigenvalue of C�� ,��.
Should no ambiguity arises, we will write C2

T�� ,1�=C2
T, C1�� ,1�=C1, and C2�� ,1�=C2.

Likewise, we will write A2�� ,2 j�=A2��� and A1�� ,2 j�=A1���.
Proposition 2.1: Let ����= 	i��� :	i��� is a root of Eq. (2.4)�, and let �̄���= 1/	i��� :	i��� is

a root of Eq. (2.4)�. Then ����= �̄���. Let 	i and 	k be in ����. We further assume that 	i and
vi= �vi1 , . . . ,vi2j�T satisfy Eq. (2.3). Suppose 	i ·	k=1. Then 	k and vk

= �vi2j ,vi2j−1 , . . . ,vi2 ,vi1�T
¬vi

s also satisfy Eq. (2.3). Conversely, if 	i ·	k�1, then vk�vi
s.

Proof: To prove ����= �̄���, we see that

det�C2
T + 	�C1 − �I� + 	2C2� = 	2 det� 1

	2C2
T +

1

	
�C1 − �I� + C2�

= 	2 det � 1

	2C2
T +

1

	
�C1 − �I� + C2�T

= 	2 det�C2
T +

1

	
�C1 − �I� +

1

	2C2� .
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Thus, if 	 is a root of Eq. �2.4�, then so is 1 /	. To see the last assertion of the proposition, we write
Eq. �2.3� with 	=	i and v=vi in component form.

�
m=1

2j

��C2
T�lmvim + 	i�C̄1�lmvim + 	i

2�C2�lmvim� = 0, l = 1,2, . . . ,2 j . �2.5�

Here C̄1=C1−�I. Now the right hand side of Eq. �2.5� becomes

	 1

	k

2��

m=1

2j

��C2�l�2j+1−m�vi�2j+1−m� + 	k�C̄1�l�2j+1−m�vi�2j+1−m� + 	k
2�C2

T�l�2j+1−m�vi�2j+1−m���
= 	 1

	k

2��

m=1

2j

��C2
T��2j+1−l�mvi�2j+1−m� + 	k�C̄1��2j+1−l�mvi�2j+1−m� + 	k

2�C2��2j+1−l�m�vi�2j+1−m���,

l = 1,2, . . . ,2 j . �2.6�

We have used the fact that

�A��2j+1−l�m = �AT�l�2j+1−m�, �2.7�

where A=C2
T or C̄1 or C2 to justify the equality in Eq. �2.6�. However, Eq. �2.7� follows from Eqs.

�1.1c� and �1.1d�. Letting vi�2j+1−m�=vkm, we have that the pair �	k ,vk� satisfies Eq. �2.3�. Suppose
vk=vi

s, we see, similarly, that the pair �1/	i ,vk� also satisfies Eq. �2.3�. Thus 1/	i=	k. �

Remark 2.2: Equation �2.4� is a palindromic equation. That is, for each �, 	 and 	−1 are both
the roots of Eq. �2.4�. However, the eigenvalue problem discussed here is not a palindromic
eigenvalue problem.3

Definition 2.2: We shall call vs and −vs, the symmetric vector and antisymmetric vector of v,
respectively. A vector v is symmetric �antisymmetric� if v=vs �v=−vs�.

Theorem 2.1: Let 	k=e��k/n�i, k is an integer and i=�−1, then 	2k, k=0,1 , . . . ,n−1, are
characteristic values of Eq. �2.1a�, �2.1b�, and �2.1c� with �=1. For each �, if ��C satisfies

det�C2
T + 	2k�C1 − �I� + 	2k

2 C2� = 0,

for some k�Z, 0�k�n−1, then � is an eigenvalue of C�� ,1�.
Proof: Let � be as assumed. Then there exists a v�C2j

, v�0 such that

�C2
T + 	2k�C1 − �I� + 	2k

2 C2�v = 0 .

Let b j =	2k
j v, 0� j�n+1. Then such b j’s satisfy Eqs. �2.1a�, �2.1b�, and �2.1c�. We just proved the

assertion of the theorem. �

Corollary 2.1: Set

�k = C1 + 	2n−kC2
T + 	kC2. �2.8�

Then the eigenvalues of C�� ,1�, for each �, consist of eigenvalues of �k, k=0,2 ,4 , . . . ,2�n−1�.
That is, ��C�� ,1��=�k=0

n−1���2k�. Here ��A�= the spectrum of the matrix A.
Remark 2.3: C�� ,1� is a block circulant matrix. The assertion of Corollary 2.1 is not new

�see, e.g., Theorem 5.6.4 of Ref. 1�. Here we merely gave a different proof.
To study the eigenvalue of C�� ,0� for each �, we begin with considering the eigenvalues and

eigenvectors of C2
T+C1+C2 and C2

T−C1+C2.
Proposition 2.2: Let T1�C� �T2�C�� be the set of linearly independent eigenvectors of the

matrix C that are symmetric (antisymmetric). Then �T1�C2
T+C1+C2� � = �T2�C2

T+C1+C2� � = �T1�C2
T

−C1+C2� � = �T2�C2
T−C1+C2� � =2 j−1. Here �A� denote the cardinality of the set A.

Proof: We will only illustrate the case for C2
T−C1+C2= :C. We first observe that �T1�C�� is less

than or equal to 2 j−1. So is �T2�C��. We also remark that the cardinality of the set of all linearly
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independent eigenvectors of C is 2 j. If 0 �T1�C� � 2 j−1, there must exist an eigenvector v for
which v�vs, v�−vs, and v�spanT1�C� ,T2�C��, the span of the vectors in T1�C� and T2�C�. It
then follows from Proposition 2.1 that v+vs, a symmetric vector, is in the spanT1�C��. Moreover,
v−vs is in spanT2�C��. Hence v�spanT1�C� ,T2�C��, a contradiction. Hence, �T1�C� � =2 j−1.
Similarly, we conclude that �T2�C� � =2 j−1. �

Theorem 2.2: Let 	k=e��k/n�i, where k is an integer and i=�−1. For each �, if ��C satisfies

det�C2
T + 	k�C1 − �I� + 	k

2C2� = 0,

for some k�Z, 1�k�n−1, then � is an eigenvalue of C�� ,0�. Let � be the eigenvalue of C2
T

+C1+C2 �−C2
T+C1−C2� for which its associated eigenvector v satisfies Îv=v �Îv=−v�, then � is

also an eigenvalue of C�� ,0�.
Proof: For any 1�k�n−1, let 	k be as assumed. Let �k and �k be a number and a nonzero

vector, respectively, satisfying

�C2
T + 	k�C1 − �kI� + 	k

2C2�vk = 0 . �2.9�

Using Proposition 2.1, we see that �k satisfies

det�C2
T + 	2n−k�C1 − �kI� + 	2n−k

2 C2� = 0. �2.10�

Let v2n−k be a nonzero vector satisfying �C2
T+	2n−k�C1−�kI�+	2n−k

2 C2�v2n−k=0. Letting

bi = 	k
i vk + 	k	2n−k

i v2n−k, i = 0,1, . . . ,n + 1,

we conclude, via Eqs. �2.9� and �2.10�, that bi satisfy Eq. �2.1a� with �=�k. Moreover,

Îb1 = 	kÎvk + Îv2n−k = 	kv2n−k + vk = b0.

We have used Proposition 2.1 to justify the second equality above. Similarly, bn+1= Îbn. To see
�=�k, 1�k�n−1, is indeed an eigenvalue of C�� ,0� for each �, it remains to show that bi

�0 for some i. Using Proposition 2.1, we have that there exists an m, 1�m�2 j such that vkm

=v�2n−k��2j−m+1��0. We first show that b0�0. Let m be the index for which vkm�0. Suppose b0

=0. Then

vkm + 	kv�2n−k�m = 0

and

vk�2j−m+1� + 	kv�2n−k��2j−m+1� = v�2n−k�m + 	kvkm = 0.

And so, vkm=	k
2vkm, a contradiction. Let � and v be as assumed in the last assertion of theorem.

Letting bi=v (bi= �−1�iv), we conclude that � is an eigenvalue of C�� ,0� with corresponding
eigenvector �b1 ,b2 , . . . ,bn�T. Thus, �k is an eigenvalue of C�� ,0� for each �. �

Corollary 2.2: Let 	k=e��k/n�i, where k is an integer and i=�−1. Then, for each �,
�(C�� ,0�)=�k=1

n−1���k���S��0���AS��n�, where �S�A� (�AS�A�) the set of eigenvalues of A for
which their corresponding eigenvectors are symmetric (antisymmetric).

We next consider the eigenvalues of C�� ,��.
Theorem 2.3: Let 	k=e��k/n�i, where k is an integer and i=�−1. Then, for each �,

�„C��,��… � � �
k=1

�n/2�

���2k� � �S��0� , n is odd

�
k=1

�n/2�−1

���2k� � �S��0� � �AS��n� , n is even.�
Here �n /2� is the greatest integer that is less than or equal to n /2.
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Proof: We illustrate only the case that n is even. Assume that k is such that 1�k�n /2−1. Let
bi=	2k

i v2k+	2k	2n−2k
i v2n−2k, we see clearly that such bi, i=0,1 ,n ,n+1, satisfy both Neumann and

periodic boundary conditions, respectively. And so

b0 = �1 − ��b0 + �b0 = �1 − ��Îb1 + �bn

and

bn+1 = �1 − ��bn+1 + �bn+1 = �1 − ��Îbn + �b1.

Here, 	2k, 1�k� �n /2�−1, are characteristic values of Eq. �2.1a�, �2.1b�, and �2.1c�. Thus, if �
����2k�, then � is an eigenvalue of C�� ,��. The assertions for �0 and �n can be done similarly.�

Remark 2.4: If n is an even number, for each � and �, half of the eigenvalues of C�� ,�� are
independent of the choice of �. The other characteristic values of Eq. �2.1� seem to depend on �.
It is of interest to find them.

III. THE SECOND EIGENCURVE OF C„� ,0… AND C„� ,1…

We begin with considering the eigencurves of �k, as given in Eq. �2.8�. Clearly,

�k =�
− 2 1 0 ¯ ¯ 	2n−k

1 − 2 1 0 ¯ 0

0 1 − 2 1 ¯ 0

] � � � � ]

0 ¯ 0 1 − 2 1

	k ¯ ¯ 0 1 − 2

�
m�m

−
��2 − 2 cos��k/n��

m
eeT

¬ D1�k� − ��k�eeT,

�3.1�

where m=2 j. We next find a unitary matrix to diagonalize D1�k�.
Remark 3.1: Let ���k� ,v�k�� be the eigenpair of D1�k�. If eTv�k�=0, then ��k� is also an

eigenvalue of �k.
Proposition 3.1: Let

�l,k =
2l�

m
+

k�

nm
, l = 0,1, . . . ,m − 1, �3.2a�

pl�k� = �ei�l,k,ei2�l,k, ¯ ,eim�l,k�T, �3.2b�

and

P�k� = 	 p0�k�
�m

, . . . ,
pm−1�k�

�m

 . �3.2c�

�i� Then P�k� is a unitary matrix and PH�k�D1�k�P�k�=diag��0,k¯�m−1,k�, where PH is the con-
jugate transpose of P, and

�l,k = 2 cos �l,k − 2, l = 0,1, . . . ,m − . �3.2d�

�ii� Moreover, for 0�k�2n, the eigenvalues of D1�k� are distinct if and only if k�0, n, or 2n.
Proof: Let b= �b1 , . . . ,bm�T. Writing the eigenvalue problem D1�k�b=�b in component form,

we get

bj−1 − �2 + ��bj + bj+1 = 0, j = 2,3, . . . ,m − 1, �3.3a�

− �2 + ��b1 + b2 + 	2n−kbm = 0, �3.3b�
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	kb1 + bm−1 − �2 + ��bm = 0. �3.3c�

Set bj =	 j, where 	 satisfies the characteristic equation 1− �2+��	+	2=0 of the system
D1�k�b=�b. Then the boundary conditions �3.3b� and �3.3c� are reduced to

	m = 	k. �3.4�

Thus, the solutions ei�l,k, l=0,1 , . . . ,m−1, of Eq. �3.4� are the candidates for the characteristic
values of Eq. �3.3�. Substituting ei�l,k into Eq. �3.3a� and solving for �, we see that �=�l,k are the
candidates for the eigenvalues of D1�k�. Clearly, �� ,b�= ��l,k ,pl�k�� satisfies D1�k�b=�b and b
=pl�k��0. Thus, �=�l,k are, indeed, the eigenvalues of D1�k�. To complete the proof of the
proposition, it suffices to show that P�k� is unitary. To this end, we need to compute pl

H�k� ·pl��k�.
Clearly, pl

H�k� ·pl�k�=m. Now, let l� l�, we have that

pl
H�k� · pl��k� = �

j=1

m

eij��l,k−�l�,k� = �
j=1

m

eij��2�l−l��/m��� =
r�1 − rm�

1 − r
= 0,

where r=ei��2�l−l��/m���. Hence, P�k� is unitary. The last assertion of the proposition is obvious. �

To prove the main results in this section, we also need the following proposition. Some
assertions of the proposition are from Theorem 8.6.2 of Ref. 2.

Proposition 3.2: Suppose D=diag�d1 , . . . ,dm��Rm�m and that the diagonal entries satisfy
d1� ¯ �dm. Let ��0 and z= �z1 , . . . ,zm�T�Rn. Assume that (�i��� ,vi���) are the eigenpairs of
D+�zzT with �1��������� ¯ ��m���. (i) Let A= k :1�k�m ,zk=0�, Ac= 1, . . . ,m�−A. If k
�A, then dk=�k. (ii) Assume ��0. Then the following interlacing relations hold �1����d1

��2����d2� ¯ ��m����dm. Moreover, the strict inequality holds for these indices i�Ac. (iii)

Let i�Ac, �i��� are strictly increasing in � and lim�→��i���= �̄i for all i, where �̄i are the roots

of g���=�k�Aczi
2 / �dk−�� with �̄i� �di ,di−1�. In the case that 1�Ac, d0=�.

Proof: The proof of interlacing relations in �ii� and the assertion in �i� can be found in
Theorem 8.6.2 of Ref. 2. We only prove the remaining assertions of the proposition. Rearranging
z so that zT= �0,0 , . . . ,0 ,zi1

, . . . ,zik
�ª �0, . . . ,0 ,z�T�, where i1 i2 ¯  ik and ij �Ac, j

=1, . . . ,k. The diagonal matrix D is rearranged accordingly. Let D=diag�D1 ,D2�, where D2

=diag�di1
, . . . ,dik

�. Following Theorem 8.6.2 of Ref. 2, we see that �ij
��� are the roots of the scalar

equation f����, where

f���ij
���� = 1 + ��

j=1

k
zj

2

dij
− �ij

���
= 0. �3.5�

Differentiating the equation above with respect to �, we get

�
j=1

k zij

2

dij
− �ij

���
+ 	��

j=1

k zij

2

�dij
− �ik

����2
d�ij
���

d�
= 0.

Thus,

d�ij
���

d�
=

1

�2�
j=1

k zij

2

�dij
− �ij

����2 � 0.

Clearly, for each ij, the limit of �ij
��� as �→� exists, say, �̄ij

. Since, for dij
�dij−1,

�
j=1

k zij

2

dij
− �ij

���
=

1

�
.

Taking the limit as �→� on both sides of the equation above, we get
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�
j=1

k zij

2

dij
− �̄ij

= 0. �3.6�

as desired. �

We are now in the position to state the following theorems.
Theorem 3.1: Let n and m=2 j be given positive integers. For each k, k=1,2 , . . . ,n−1, and �,

we denote by �l,k���, l=0,1 , . . . ,2 j −1, the eigenvalues of �k. For k=1,2 , . . . ,n−1, we let
��l,k ,ul,k�, l=0,1 , . . . ,2 j −1, be the eigenpairs of D1�k�, as defined in Eq. �3.1�. Then the following
hold true.

(i) �l,k��� is strictly decreasing in �, l=0,1 , . . . ,2 j −1 and k=1,2 , . . . ,n−1.
(ii) There exist �l,k

* such that lim�→��l,k���=�l,k
* . Moreover, gk��l,k

* �=0, where

gk��� = �
l=1

m
1

��l−1,k���l−1,k + ��
. �3.7�

Proof: The first assertion of the theorem follows from Proposition 3.2 �iii�. Let k be as
assumed. Set, for l=0,1 , . . . ,m−1,

zl+1 = pl
H�k�e = �

j=1

m

eij�l,k =
e−�l,k�1 − e−im�l,k�

1 − e−�l,k
=

e−�l,k�1 − e−ik��/n��
1 − e−�l,k

.

Then

z̄l+1zl+1 =
2 − 2 cos m�l,k

2 − 2 cos �l,k
=

2 cos�k�/n� − 2

�l,k
� 0. �3.8�

Let P�k� be as given in Eq. �3.2c�. Then

− PH�k� · �k · P�k� = diag�− �0,k, . . . ,− �m−1,k� + ��k�Pl
H�k�e�Pl

H�k�e�H.

Note that if k is as assumed, it follows from Proposition 3.1�ii� that �l,k, l=0, . . . ,m−1, are
distinct. Thus, we are in the position to apply Proposition 3.2. Specifically, by noting Ac=�, we
see that �0,k

* satisfies g���=0, where

g��� = �
l=1

m
1

��l−1,k���l−1,k + ��
.

We have used Eqs. �3.2d�, �3.6�, and �3.8�, to find g���. �

We next give an upper bound for �0,k
* , k=1,2 , . . . ,n−1.

Theorem 3.2: The following inequalities hold true:

�0,k
*  �0,n, k = 1,2, . . . ,n − 1. �3.9�

Proof: To complete the proof of Eq. �3.9�, it suffices to show that gk�−�0,n�0. Now,

gk�− �0,n�

= �
l=1

m
1

�2 cos��2�l − 1��/m� + �k�/nm�� − 2��2 cos„�2�l − 1��/m� + �k�/nm�… − 2 cos��/m��

¬ h�m,n,k� = h�2 j,n,k� . �3.10�

We shall prove that h�2 j ,n ,k�0 by the induction on j. For j=1, h�2,n ,k�= 1
2 ��1/cos2�k� /2n�

−1��0, k=1,2 , . . . ,n−1. Assume h�2 j ,n ,k�0. Here, n�N and k=1,2 , . . . ,n−1. We first note
that
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cos	2�2 j + i − 1��
2 j+1 +

k�

2 j+1n

 = − cos	2�i − 1��

2 j+1 +
k�

2 j+1n

¬ − cos �i−1,k,j+1, i = 1,2, . . . ,2 j .

�3.11�

Moreover, upon using Eq. �3.11�, we get that

1

�cos �i−1,k,j+1 − 1��cos �i−1,k,j+1 − cos �0,n,j+1�
+

1

�cos �2j+i−1,k,j+1 − 1��cos �2j+i−1,k,j+1 − cos �0,n,j+1�

=
1

�cos �i−1,k,j+1 − 1��cos �i−1,k,j+1 − cos �0,n,j+1�
+

1

�cos �i−1,k,j+1 + 1��cos �i−1,k,j+1 + cos �0,n,j+1�

=
2 cos2 �i−1,k,j+1 + 2 cos �0,n,j+1

�cos2 �i−1,k,j+1 − 1��cos2 �i−1,k,j+1 − cos2 �0,n,j+1�

=
8�cos2 �i−1,k,j+1 + cos �0,n,j+1�

�cos 2�i−1,k,j+1 − 1��cos 2�i−1,k,j+1 − cos 2�0,n,j+1�
=

2�cos2 �i−1,k,j+1 + cos �0,n,j+1�
�cos �i−1,k,j − 1��cos �i−1,k,j − cos �0,n,j�

.

�3.12�

We are now in a position to compute h�2 j+1 ,n ,k�. Using Eq. �3.12�, we get that

h�2 j+1,n,k� = �
l=1

2j+1

1

4�cos �l−1,k,j+1 − 1��cos �l−1,k,j+1 − cos �0,n,j+1�

= �
l=1

2j

2�cos2 �l−1,k,j+1 + cos �0,n,j+1�
�cos �l−1,k,j − 1��cos �i−1,k,j − cos �0,n,j�

� 8�cos2 �0,k,j+1 + cos �0,n,j+1�h�2 j,n,k� .

�3.13�

We have used the facts that cos2 �0,k,j+1�cos2 �i−1,k,j+1, i=2, . . . ,2 j, and that the first term �i=1� of
the summation in Eq. �3.13� is negative while all the others are positive to justify the inequality in
Eq. �3.13�. It then follows from Eq. �3.13� that h�2 j+1 ,n ,k�0. We just complete the proof of the
theorem. �

Theorem 3.3: Let n and j be the block and wavelet dimensions of C�� ,1�, respectively.
Assume n and j are any positive integers. Let �2��� be the second eigencurve of C�� ,1�. Then the
following hold.

�i� �2��� is a nonincreasing function of �.
�ii� If n is an even number, then �2���=�0,n whenever ���* for some �*�0.
�iii� If n is an odd number, then �2����0,n whenever ���̄ for some �̄�0.

Proof: We first remark that in the case of �=1, the set of the indices k’s in Eq. �3.1� is
0,2 ,4 , . . . ,2�n−1��ª In. Suppose n is an even number. Then n� In. Thus, 	n=−1, �0,n=� /m, and
p0�n�= �ei��/m� , ei�2�/m� , . . . , ei��T. Applying Proposition 3.1, we see that p0�n�−p0

s�n�, an antisym-
metric vector, is also an eigenvector of D1�n�. And so eT(p0�n�−p0

s�n�)=0. It then follows from
Remark 3.1 that �0,n is an eigenvalue of �n=D1�n�−��n�eeT for all �. The first and second
assertions of the theorem now follow from Theorems 3.1 and 3.2. Let n be an odd number. Then
	i ·	i�1 for any i� In. Thus, if the pair �	i ,vi� satisfy Eq. �2.3�, then vi�−vi

s. Otherwise, the pair
�	i ,vi− �−vi�s�= �	i ,vi+vi

s� also satisfy Eq. �2.3�. This is a contradiction to the last assertion in
Proposition 2.1. Thus, vi

H ·e�0 for any i� In. We then conclude, via Proposition 3.2 �iii� and
Theorem 3.2, that the last assertion of the theorem holds. �

Remark 3.2: �i� Let the number of uncoupled �chaotic� oscillators be N=2 jn. If n is an odd
number, then the wavelet method for controlling the coupling chaotic oscillators work even better
in the sense that the critical coupling strength � can be made even smaller. �ii� For n being a
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multiple of 4 and j�N, the assertions in Theorem 3.3 were first proved in Ref. 6 by a different
method.

Theorem 3.4: Let n and j be the block and wavelet dimensions of C�� ,0�, respectively.
Assume n and j are any positive integers. Let �2��� be the second eigencurve of C�� ,0�. Then for
any n, there exists a �̃ such that �2���=�0,n whenever ���̃.

Remark 3.3: For n�N and j=1, the explicit formulas for the eigenvalues of C�� ,0� were
obtained in. Ref. 4 Such results are possible due to the fact that the dimension of the matrices in
Eq. �2.4� is 2�2.
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The reflection-transmission problem of time-harmonic waves in a stratified electro-
magnetic medium is investigated. The waves are sent from upward or downward
with oblique incidence. By means of the energy flux, up-going and down-going
waves are distinguished and the reflection and transmission matrices are intro-
duced. When the solid occupies a strip between two homogeneous media, the
existence and uniqueness of the reflected and transmitted waves are proved. The
same conclusions are obtained for a dielectric without memory extended in the
whole space. © 2006 American Institute of Physics. �DOI: 10.1063/1.2401751�

I. INTRODUCTION

The aim of this paper is to study the reflection-transmission problem in electromagnetic media
occupying the whole space. More precisely, we consider an incident wave and discuss the exis-
tence and uniqueness of the scattering matrix resulting from the corresponding reflection and
transmission coefficients.

Following Refs. 2, 12, and 13, we consider electromagnetic fields with a time-harmonic
dependence. Accordingly, it turns out that the whole procedure is highly dependent on this as-
sumption. Alternative approaches can be found in Refs. 6, 8, and 9, where the scattering problem
is examined in the time domain.

The solid is supposed to be linear, anisotropic, dissipative, and stratified along the direction of
a given unit vector n. The last assumption implies that the material parameters are constant on
planes perpendicular to n. Maxwell’s equations lead to a system of first-order ordinary differential
equations of the form

w��z� = N�z�w�z� , �1�

where z is the running parameter along the direction of n, N is a 4�4 complex-valued matrix
depending on the material parameters and the frequency, and the vector w is formed by the
components of the electric displacement and the magnetic field orthogonal to n and w�=dw /dz.

The system �1� decouples into two systems of two first-order ordinary differential equations,
provided that the solid is isotropic and the incidence is normal. By means of a particular trans-
formation of the dependent and independent variables, the scattering problem of the decoupled
systems can be shown to be equivalent to the scattering problem for a linear Schrödinger equation.
As it is well known, within this framework the Jost solutions allow a natural identification of the
reflection and transmission coefficients, that is, of the scattering matrix. In the present paper, the
procedure followed for the Schrödinger equation is suitably generalized so that it can be applied to
the system �1�.
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Hence we consider two suitable sets of four independent solutions of �1�. Each set is parti-
tioned into two up-going and two down-going waves, according as they propagate in the direction
of n or in the opposite direction. As in Ref. 2, the direction of propagation of a wave is determined
by looking at the sign of the component of the corresponding energy flux along the vector n,
which we denote by F. The scattering matrix is determined by the two bases.

The formulation �1� of Maxwell’s equations for time-harmonic fields in stratified solids is
discussed in Sec. II. The properties of the energy flux component F are examined in Sec. III. In
particular, it is shown that F is nonincreasing in the direction n of the stratification, as a conse-
quence of the second law of Thermodynamics. This property is crucial for the proof of existence
and uniqueness.

In Sec. IV, we consider an anisotropic stratified layer between two homogeneous half-spaces.
In each homogeneous region we introduce a suitable basis consisting of two up-going and two
down-going waves, which are regarded as the generators of incident, reflected, and transmitted
waves. The existence and uniqueness of the reflection and transmission matrices are then proved
under the assumption that any linear superposition of the up-going �down-going� generators in-
herits the property of being up-going �down-going�.

A dielectric without memory extended in the whole space is considered in Sec. V. The mate-
rial parameters are allowed to depend on z, but tend to constant values as z→ ±�. The asymptotic
generators of incident, reflected, and transmitted waves are then introduced and the existence and
uniqueness of the reflection and transmission matrices are shown.

The particular case of normal incidence in isotropic media is considered in Sec. VI.

II. WAVE PROPAGATION IN ELECTROMAGNETIC SOLIDS

An electromagnetic solid occupying the whole space R3 is considered. We denote by E, H, D,
B the electric field, the magnetic field, the electric displacement, and the magnetic induction,
respectively. For time-harmonic fields, whose time dependence is given by the factor e−i�t with
��0, Maxwell’s equations assume the form

� � E = i�B, � � H = − i�D + J , �2�

� · D = �, � · B = 0, �3�

where the current density J and the free charge density � satisfy the continuity equation

� · J − i�� = 0. �4�

We suppose that the solid is linear and anisotropic, namely the constitutive equations

B = �H, D = �E, J = �E

hold, where �, �, � are second-order complex-valued tensors depending on the position vector x.
Hence, Eqs. �2� assume the form

� � H = − i��E, � � E = i��H , �5�

where � =� + �i /���.
By applying the divergence operator to Eqs. �5� and by using the continuity Eq. �4�, we

deduce �3�. Therefore we take only Eqs. �5� into account.
We assume that the solid is stratified along a direction n and we introduce a system of

Cartesian axes x1 , x2 , x3, with unit vectors e1 , e2 , e3, such that e3=n. Accordingly, the tensors �,
�, � are constant on planes perpendicular to e3. Here and in the sequel we denote by z the
independent variable x3.

Owing to the stratification, we look for solutions of �5� in the form
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H�x,t� = H�z�ei�k�·x−�t�, E�x,t� = E�z�ei�k�·x−�t�, �6�

where k� is a real vector perpendicular to e3. The exponential dependence on k� ·x agrees with
Snell’s law. Substitution of �6� into �5� yields

e3 � H�� + ik� � H + i��E = 0, e3 � E�� + ik� � E − i��H = 0, �7�

where the prime indicates differentiation with respect to z and

H� = H1e1 + H2e2, E� = E1e1 + E2e2.

Since k� is real, it is not restrictive to assume k�=k1e1. Then, inner product of �7� with e3 leads
to the equations

e3 · �k� � H + ��E� = 0, e3 · �k� � E − ��H� = 0,

which imply

E3 = −
1

��33

�k1H2 + ��13E1 + ��23E2� , �8�

H3 =
1

��33
�k1E2 − ��13H1 − ��23H2� . �9�

By projecting �7� along e1, e2 and taking �8� and �9� into account, we obtain the linear system

w� = Nw , �10�

where w = �H1 , H2 , E1 , E2�T and N is a complex valued matrix whose block structure is given by

N = i�N1 N2

N3 N4
� , �11�

with

N1 = − k1�
�13

�33

�23

�33
−

�23

�33

0
�13

�33

	 ,

N2 = ��
�13�23

�33

− �12
�23

2

�33

− �22 +
k1

2

�2�33

�11 −
�13

2

�33

�12 −
�13�23

�33

	 ,

N3 = ���12 −
�13�23

�33
�22 −

�23
2

�33
−

k1
2

�2�33

�13
2

�33
− �11

�13�23

�33
− �12

	 ,
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N4 = − k1�
�13

�33

�23

�33

−
�23

�33

0
�13

�33

	 .

Since H3 and E3 are expressed in terms of the H� and E� through �8� and �9�, we restrict our
attention to the system �10�.

The material parameters �, �, � �and hence the matrix N� are supposed to be continuous or
are allowed to suffer jump discontinuities at planes orthogonal to e3, when different solids in
contact are considered. At such planes, the continuity of the electric and magnetic fields E�, H� is
required as usual.

III. ENERGY FLUX

In this section we recall the definition and the properties of the energy flux which is involved
in the formulation of the reflection-transmission problem.

For complex-valued fields, the time-averaged energy flux vector S, i.e. the Poynting vector, is
defined by7

S =
1

2
Re�E � H�� ,

where the symbol * denotes the complex conjugate. Since k� is real, by using �6� S is expressed
in terms of E, H as

S =
1

2
Re�E � H*� . �12�

Thus the Poynting vector depends only on the independent variable z.
The second law of Thermodynamics implies the relation

� · S � 0, �E,H� � �0,0� , �13�

which is equivalent to

� Im � � 0, � Im � � 0, ∀ � � R \ 
0� �14�

in case of harmonic fields �see Ref. 1�. In the relations �13� and �14�, the equalities hold if the
material is without memory.

We denote by F the projection of the energy flux vector S along the direction of the stratifi-
cation, namely

F = S · e3 = S3.

In view of �12�, F assumes the form

F =
1

4
�E* � H + E � H*� · e3.

Since F depends only on E1 , E2 , H1 , H2, it follows that F is continuous at the common
boundary between two different solids.

If we denote by J the matrix defined as
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J =
1

4�
0 0 0 1

0 0 − 1 0

0 − 1 0 0

1 0 0 0
	 ,

we write the energy flux in terms of w, i.e.,

F = w†Jw , �15�

where the symbol † means the conjugate transpose.
The theorem of existence and uniqueness for the reflection-transmission problem is based on

the following property of the energy flux.
Proposition. 3.1: The energy flux F is nonincreasing in R.
Proof: Since the vector S depends only on the variable z, we have

F� = �3S3 = � · S .

The thermodynamic restrictions �13� and the continuity of F guarantee that F is nonincreasing
for each z�R. �

IV. REFLECTION AND TRANSMISSION PROBLEM IN A STRATIFIED LAYER

In this section we study wave propagation in a stratified solid constituted by a nonhomoge-
neous layer in the strip 0�z�L, between two homogeneous media occupying the half-spaces z
�0 and z�L. The matrix N of system �10� is written as

N = �N− z � 0,

Ñ 0 � z � L ,

N+ z � L ,
 �16�

where N− and N+ denote the constant matrices in the homogeneous regions z�0 and z�L,

respectively, while Ñ depends continuously on z.
We assume that N− and N+ are simple matrices and denote by i	k

± , pk
±, k=1, . . . ,4, the related

eigenvalues and corresponding independent eigenvectors. No normalization condition on the
eigenvectors pk

± , k=1, . . . ,4, is required. Moreover, we define by P−, P+ the matrices whose
columns are the eigenvectors p1

− , . . . ,p4
− and p1

+ , . . . ,p4
+, respectively, i.e.,

P− = �p1
−, . . . ,p4

−�, P+ = �p1
+, . . . ,p4

+� .

In order to describe the reflection-transmission problem, we need to characterize the direction
of propagation of a wave. Following Ref. 2, we make use of the energy flux to distinguish between
waves propagating in the increasing and decreasing z direction. More precisely, we say that a wave
w is up-going or down-going across the plane z=c, with c� �−� ,0�� �L , +��, if

Fw�c� � 0 or Fw�c� � 0,

where the notation Fw emphasizes the dependence of the flux F on w.
Consider a solution w of the system �10�. In the half-space z�0, w is written in the form

w�z� = �
k=1

4

ck
−pk

−ei	k
−z,

where ck
−, k=1, . . . ,4, are suitable complex coefficients. In view of �15�, the energy flux of w is

given by
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Fw�z� = �
k,h=1

4

ck
−�ch

−�pk
−�†Jph

−ei�	h
−−	k

−��z

= �
k,h=1

4

ck
−�ch

−�kh
− ei�	h

−−	k
−��z �17�

in the half-space z�0, where �− is the matrix defined as

�− = �P−�†JP−. �18�

As P− is nonsingular, the matrices �− and J are congruent and hence they have the same
number of positive, negative, and zero eigenvalues.11 In particular, since the eigenvalues of J are


1,2 =
1

4
, 
3,4 = −

1

4
,

And �− has two positive and two negative eigenvalues.
This condition is not sufficient to guarantee that a linear combination of up-going �down-

going� waves is up-going �down-going�. Therefore, further conditions on the matrix �− are re-
quired.

For convenience, we represent �− in the form

�− = ��p
− �1

−

�2
− �n

− � .

Henceforth, we assume that �p
− and �n

− are positive and negative definite, respectively.
Let w and w̃ be two solutions of the system �10� such that

w = c1
−p1

−ei	1
−z + c2

−p2
−ei	2

−z, w̃ = c3
−p3

−ei	3
−z + c4

−p4
−ei	4

−z,

in the half-space z�0 with �c1
− ,c2

−� , �c3
− ,c4

−��C2 \ 
�0,0��. From �17� and the assumptions on the
definiteness, we obtain

Fw�z� = �
k,h=1

2

ck
−�ch

−�p,kh
− ei�	h

−−	k
−��z � 0,

Fw̃�z� = �
k,h=1

2

ck+2
−� ch+2

− �n,kh
− ei�	h+2

− −	k+2
−� �z � 0,

for every z�0. In particular, p1
−ei	1

−z, p2
−ei	2

−z are up-going waves while p3
−ei	3

−z, p4
−ei	4

−z are down-
going waves in the half-space z�0.

Similarly, we introduce the matrix

�+ = �P+�†JP+ = ��p
+ �1

+

�2
+ �n

+ � ,

and we assume that �p
+ and �n

+ are positive and negative definite, respectively. Therefore,

p1
+ei	1

+�z−L�, p2
+ei	2

+�z−L� and p3
+ei	3

+�z−L�, p4
+ei	4

+�z−L� are waves propagating upwards and downwards,
respectively, in the half-space z�L.
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A. Uniqueness

Let us consider an incident wave wi coming from the homogeneous region z�0. The corre-
sponding reflected and transmitted waves, wr and wt, occur in the half-spaces z�0 and z�L,
respectively.

We represent the incident, reflected and transmitted waves in the form

wi = c1
i p1

−ei	1
−z + c2

i p2
−ei	2

−z, wr = c3
rp3

−ei	3
−z + c4

rp4
−ei	4

−z

in the half-space z�0 and

wt = c1
t p1

+ei	1
+z + c2

t p2
+ei	2

+z

in z�L. The assumptions on the matrices �+ and �− guarantee that wi ,wr are up-going and
down-going waves, respectively, in the half-space z�0, while wt propagates upwards in the
region z�L.

We define

w = �wi + wr z � �− �,0� ,

w̃ z � �0,L� ,

wt z � �L, + �� ,
 �19�

where w̃ is a solution of �10� in the open set �0,L�.
The reflection-transmission problem is to determine wr, wt, w̃ from the knowledge of the

incident wave wi such that the function w is continuous for every z�R. More precisely, we have
to determine w̃ and the coefficients c3

r , c4
r , c1

t , c2
t , such that the function w defined in �19� satisfies

�10� with N given by �16� and is continuous at z=0 and z=L.
Theorem 4.1: If �n

− is negative definite and �p
+ is positive definite, then the solution w of the

reflection-transmission problem is unique.
Proof: Consider two different solutions w and w of the reflection-transmission problem.

Denote by c3
r , c4

r , c1
t , c2

t and c3
r , c4

r , c1
t , c2

t the reflection and transmission coefficients related to
w and w. By letting v =w −w, we have

v�z� = ��c3
r − c3

r�p3
−ei	3

−z + �c4
r − c4

r�p4
−ei	4

−z z � �− �,0� ,

ṽ�z� z � �0,L� ,

�c1
t − c1

t �p1
+ei	1

+z + �c2
t − c2

t �p2
+ei	2

+z z � �L, + �� ,


where ṽ is defined by ṽ = w̃ − w̃.
The assumptions on the matrices �n

− and �p
+ assure that Fv�z��0 in the half-space z�0 and

Fv�z��0 in the region z�L. Since the energy flux is non-increasing, we deduce that

Fv�z� � 0

for every z�R. The definiteness of the matrices �n
− and �p

+ guarantees that

v�z� = 0, z � �− �,0� � �L, + �� .

Furthermore, since ṽ is the unique solution of the Cauchy problem,

w� = Ñw, 0 � z � L ,

w̃�0� = 0,

ṽ vanishes identically in �0,L�. Thus w =w. �
If we consider incident waves coming from the half-space z�L, we have
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wi = c3
i p3

+ei	3
+z + c4

i p4
+ei	4

+z, wr = c1
rp1

+ei	1
+z + c2

rp2
+ei	2

+z

in z�L and

wt = c3
t p3

−ei	3
−z + c4

t p4
−ei	4

−z

in z�0. The corresponding reflection-transmission problem is formulated straightforwardly and
the following result can be proved.

Theorem 4.2: If �p
− is positive definite and �n

+ is negative definite, then the solution w of the
reflection-transmission problem is unique.

B. Existence

In order to prove the existence of the solutions of the reflection-transmission problem, we
introduce two suitable sets of four independent solutions of the system �10�.

Since the matrix N is constant in the half-space z�0, p1
−ei	1

−z , . . . , p4
−ei	4

−z are four independent

solutions of the system w�=N−w in the region z�0. Let ̃1
− , . . . , ̃4

− be the solutions of the Cauchy
problems

w� = Ñw, 0 � z � L ,

w�0� = ph
−, h = 1, . . . ,4.

Next consider the half-space z�L and denote by �hk
+ �C, h ,k=1, . . . ,4, the unique coeffi-

cients such that �k=1
4 �hk

+ pk
+ei	k

+�z−L� are the solutions of �10� with initial value ̃h
−�L� at z=L.

Accordingly, the vectors 1
− , . . . ,4

−, defined by

h
− =�

ph
−ei	h

−z z � 0,

̃h
− 0 � z � L , h = 1,...,4,

�
k=1

4

�hk
+ pk

+ei	k
+�z−L� z � L , 

are continuous in R and satisfy the system �10� in the open set �−� ,0� ��0,L�� �L , +��.
Similarly, we introduce the functions 1

+ , . . . ,4
+ defined by

h
+ =��

k=1

4

�hk
− pk

−ei	k
−z z � 0,

̃h
+ 0 � z � L , h = 1,...,4

ph
+ei	h

+�z−L� z � L ,
 .

For any incident wave

wi = c1
i p1

−ei	1
−z + c2

i p2
−ei	2

−z, z � 0,

coming from below, we define the corresponding continuous extension ŵi of wi as

ŵi = c1
i 1

− + c2
i 2

−.

Furthermore, we denote by ŵr,ŵt the continuous extensions of wr and wt, respectively, i.e.,

ŵr = c3
r3

− + c4
r4

−, ŵt = c1
t 1

+ + c2
t 2

+.

On determining the coefficients c3
r , c4

r , c1
t , c2

t in terms of c1
i , c2

i by the equation
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ŵi + ŵr = ŵt, �20�

we obtain a solution of the reflection-transmission problem. Indeed, the vector w defined as

w = ŵi + ŵr = ŵt

solves �10� with N given by �16�, is continuous in R and satisfies �19�.
For the sake of simplicity, we let wi=h

−, h=1,2. Then Eq. �20� reduces to

h
− + R1h

− 3
− + R2h

− 4
− = T1h

+ 1
+ + T2h

+ 2
+, h = 1,2, �21�

where R− and T+ are the unknown reflection and transmission matrices, respectively.
The equations governing the reflection-transmission process for incident waves coming from

upward are

h+2
+ + R1h

+ 1
+ + R2h

+ 2
+ = T1h

− 3
− + T2h

− 4
−, h = 1,2. �22�

Theorem 4.3 (Existence): If �p
+ and �p

− are positive definite and �n
+ and �n

− are negative
definite, there exist unique T+, T−, R+, R−, which solve (21) and (22).

It is sufficient to prove that 1
+ , 2

+ , 3
− , 4

− constitute a basis for the solutions of system �10�.
Let us suppose

c11
+ + c22

+ + c33
− + c44

− = 0

and define

v = c11
+ + c22

+ = − c33
− − c44

−.

The assumption on the matrices �− and �+ ensures that the inequalities

Fv�z� � 0, ∀ z � L ,

Fv�z� � 0, ∀ z � 0,

hold.
Since F is nonincreasing, we deduce

0 � Fv�L� � Fv�0� � 0,

which implies

ck = 0, ∀ k = 1,...,4,

thanks to the definiteness of the matrices �n
− and �p

+. Therefore, the independence of
1

+ , 2
+ , 3

− , 4
− is proved. �

V. REFLECTION AND TRANSMISSION PROBLEM IN R3

This section is devoted to an analysis of the reflection and transmission problem in a nonho-
mogeneous medium occupying the whole space R3. We assume that the solid is a dielectric
without memory, namely the matrices �, � have real entries and � vanishes identically. Further-
more, we suppose that �, �, and hence N are continuous.

The definition of the reflection and transmission coefficients depends on the asymptotic be-
havior of the solutions of the system �10�. Therefore, we need to introduce some requirements on
the asymptotic behavior of N.

We assume the existence of the limits of N as z→−� and z→ +�, denoted by N− and N+,
respectively. The matrices N− and N+ are supposed to be simple and are not required to be equal.
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We denote by i	k
± , pk

±, k=1, . . . ,4, the eigenvalues and the corresponding independent eigen-
vectors of N±. From the relation �11�, we deduce that the blocks N1 , . . . ,N4 of the matrix N have
real entries. Therefore, 	k

+ and 	k
−, k=1, ... ,4, are either real or occur in conjugate pairs. We assume

that 	k
±�R for every k=1, . . . ,4.

Moreover, we suppose that there exist a ,b�R such that the conditions

�
−�

a

�N − N−�dz � + �, �
b

+�

�N − N+�dz � + �

hold, where � · � denotes any norm in the fourth-order square matrices.
Under these assumptions,10 there exist two sets of four solutions 1

− , . . . ,4
− and 1

+ , . . . ,4
+ of

the system �10� such that

k
± = �pk

± + vk
±�ei	k

±z, k = 1, . . . ,4, �23�

where vk
− and vk

+ satisfy the condition

lim
z→−�

vk
− = lim

z→+�
vk

+ = 0, k = 1, . . . ,4. �24�

Moreover, since the conditions

Im 	1
− = . . . = Im 	4

− = 0, Im 	1
+ = . . . = Im 	4

+ = 0

are satisfied, the solutions 1
− , . . . ,4

− and 1
+ , . . . ,4

+ are determined uniquely10 by the asymptotic
behaviors �24�.

The functions 1
− , . . . ,4

− and 1
+ , . . . ,4

+ are related to the Jost solutions of the Schödinger
equation �see Refs. 3 and 4�.

By denoting by E± and V± the matrices defined as

E± = diag�ei	1
±z, . . . ,ei	4

±z�, V± = �v1
±, . . . ,v4

±� ,

we write the conditions �23� in the form

�± = �1
±, . . . ,4

±� = �P± + V±�E±.

The independence of the vectors p1
− , . . . ,p4

− and p1
+ , . . . ,p4

+ guarantees that the functions
1

− , . . . , 4
− and 1

+ , . . . ,4
+ are independent solutions of the system �10�, i.e., any solution w of �10�

may be written in the form

w = �
k=1

4

ck
−k

− = �
k=1

4

ck
+k

+,

where ck
+ ,ck

−�C, k=1, . . . ,4 are suitable complex coefficients.
As in the previous section, we make use of the energy flux to select waves propagating in the

increasing and decreasing z direction. More precisely, we say that a wave w is asymptotically
up-going �down-going� when z→−� if w is definitively up-going �down-going�, namely if there
exists Zw such that

Fw�z� � 0, �Fw�z� � 0�, ∀ z � − Zw .

We introduce the matrix F− defined as

F− = ��−� † J�− = �Fp
− F1

−

F2
− Fn

−� ,

so that the energy flux of a wave w =�k=1
4 ck

−k
− is given by
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F = �c−�†F−c−,

where c−= �c1
− , . . . ,c4

−�T.
Proposition 5.1: Suppose that the matrices �p

− ,�n
−, defined in �18�, are positive and negative

definite, respectively. Then there exists Z�0 such that Fp
−, Fn

− are positive and negative definite for
all z�−Z.

Proof: From the relation �18�, we deduce that � and hence �p
− are Hermitian. The hypothesis

on the definiteness of the matrix �p
− guarantees that �p

− has two positive eigenvalues 
1 , 
2 �see
Ref. 11�.

Let A− be the matrix, depending on z, defined as

A− = �P− + V−�†J�P− + V−� . �25�

For convenience, we represent A− in the form

A− = �Ap
− A1

−

A2
− An

−� .

Since A− is Hermitian, Ap
−�z� is also Hermitian and has two real eigenvalues, �1�z� , �2�z�.

The definitions �18� and �25� and the condition �24� yield

Ap
−�z�z →

z→−�
�p

−

and hence

�1�z�z →
z→−�


1, �2�z�z →
z→−�


2.

Therefore, there exists Zp�0 such that �1�z� , �2�z��0 for all z�−Zp, namely, the matrix
Ap

−�z� is positive definite for all z�−Zp.
The identity

F− = �E−�†A−E−

leads to the equality

Fp
− = �Ep

−�Ap
−Ep

−,

where Ep
−=diag�ei	1

−z ,ei	2
−z�, namely, Fp

− and Ap
− are congruent. Therefore, Fp

− is positive definite for
all z�−Zp.

By repeating the same arguments, we prove that there exists Zn�0 such that Fn
− is negative

definite for all z�−Zn. The theorem is proved with Z=max
Zp ,Zn�. �
The previous proposition assures that linear combinations of 1

−, 2
− represent asymptotically

up-going waves, when z→−�, whereas linear combinations of 3
−, 4

− represent waves propagat-
ing in the decreasing z direction.

Following a similar procedure, we define the matrix F+ as

F+ = ��+�J�+ = �Fp
+ F1

+

F2
+ Fn

+� ,

and we assume that �p
+ and �n

+ are positive and negative definite respectively. It follows that
1

+ , 2
+ and 3

+ , 4
+ represent waves propagating upwards and downwards, respectively, as z→

+�.
As in the previous section, the equations ruling the reflection-transmission problem are
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�1
+,2

+�T+ = �1
−,2

−� + �3
−,4

−�R− �26�

for incident waves coming from downward and

�3
−,4

−�T− = �3
+,4

+� + �1
+,2

+�R+ �27�

for incident waves coming from upward.
The reflection-transmission problem consists in proving existence and uniqueness of the ma-

trices R±, T± �and hence of the reflected and transmitted waves� satisfying �26� and �27�.
Theorem 5.2: Suppose that �p

+, �p
− are positive definite and �n

+ and �n
− are negative definite.

Then, given the incident waves h
−, h+2

+ , h=1,2 , there exist unique T+, T−, R+, R− that solve the
reflection-transmission problem (26) and (27).

Proof: The procedure followed in the proof of Theorem 3 and application of Proposition 1
show that 1

+ , 2
+ , 3

− , 4
− constitute a basis for the solutions of the system �10�. Therefore, there

exist unique matrices R±, T± satisfying �26� and �27� in correspondence with the incident waves
h

− , h+2
+ , h=1,2. �

Remark: Consider a hereditary medium occupying the whole space. In this case, 	1
± , . . . ,	4

± are
allowed to be complex.

The relations �15� and �23� lead to the equality

Fk
±�z� = �pk

± + vk
±�†J�pk

± + vk
±�e−2 Im 	k

±z, k = 1, . . . 4.

Since only waves with bounded energy flux are physically admissible,5 we have to consider
only media satisfying the conditions

Im 	k
+ � 0, Im 	k

− � 0, k = 1, . . . ,4

for layer of infinite amplitude.
Moreover, if the conditions

Im 	1
− = . . . = Im 	4

− Im 	1
+ = . . . = Im 	4

+

are not satisfied, the functions 1
± , . . . ,4

± are not uniquely determined by the asymptotic condi-
tions �24� �see Ref. 10�. Therefore, for hereditary media the generators of the incident, reflected,
and transmitted waves are not defined uniquely and the uniqueness of the reflection-transmission
problem is lost.

VI. ISOTROPIC MEDIA

In general, the matrices �p
± and �n

± depend on the material parameters, the wave vector k�,
and the frequency �. Moreover, the assumptions on the definiteness of the blocks of these matrices
are not necessarily satisfied. In this section we give an example of medium verifying these
requirements.

For definiteness, consider a homogeneous isotropic solid occupying the half-space z�0. The
same conclusions can be obtained for the half-space z�L or for isotropic dielectric without
memory occupying the whole space. The tensors �, �, � assume the form

� = �I, � = �I, � = �I, z � 0.

Moreover, suppose that the incidence is normal, namely k1=0. Hence the matrix N− is written
as

N− = i�
0 0 0 − ��

0 0 �� 0

0 �� 0 0

− �� 0 0 0
	 .
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Notice that if the solid is isotropic for all z�R, the system �10� decouples into two systems of
first-order differential equations that can be reduced to linear Schrödinger equations.

It is easy to check that the eigenvalues of the matrix N− are the complex square roots of
−�2�� with multiplicity two. Moreover, the matrix P− is given by

P− =�
− � 0 � 0

0 � 0 − �

0 1 0 1

1 0 1 0
	 ,

where � and −� are the complex square roots of ��−1. It is not restrictive to assume Re ��0, in
that Re ��0. This is easily seen for dielectrics without memory, since �=��0, and may be
shown by contradiction for material with memory. Accordingly, consider the latter case and sup-
pose that Re�=0. This condition is equivalent to

Im���−1� = 0, Re���−1� � 0, �28�

since � does not vanish.
The thermodynamic restrictions �14� lead to

Im � Im � � 0, ∀ � � 0. �29�

By using the identities

Re���−1� =
1

���2
�Re � Re � + Im � Im �� ,

Im���−1� =
1

���2
�Im � Re � − Im � Re �� ,

and in view of the conditions �28� and �29�, we deduce the relations

Re � Re � � 0, �30�

Im � Re � − Im � Re � = 0, �31�

for all ��0. By multiplying �31� for Im �, we obtain the equality

Im � Im � Re � − �Im ��2Re � = 0.

Comparison with the condition �29� shows that

Re � Re � � 0,

which is a contradiction with �30�. Therefore, Re ��0.
In view of �18�, we deduce

�− = �P−�JP− =
1

4�
�� + � 0 − �� + � 0

0 �� + � 0 − �� + �

�� − � 0 − �� − � 0

0 �� − � 0 − �� − �
	 .

Therefore the matrices �p
− , �n

− given by

122901-13 Reflection-transmission in electromagnetic media J. Math. Phys. 47, 122901 �2006�

                                                                                                                                    



�p
− = − �n

− =
1

2
�Re � 0

0 Re �
� ,

are positive and negative definite, respectively.

1 Caviglia, C. and Morro, A., “Effects of dissipativity on electromagnetic waves,”Nuovo Cimento Soc. Ital. Fis., B 113,
585–599 �1998�.

2 Caviglia, C. and Morro, A., “On modeling reflection-transmission problems,” Math. Models Meth. Appl. Sci. 8, 875–
896 �1998�.

3 Deift, P. and Trubowitz, E., “Inverse scattering on the line,” Commun. Pure Appl. Math. 32, 121–251 �1979�.
4 Fadeev, L. D., “Properties of the S-matrix of the one-dimensional Schrödinger equation,” Trans. Am. Math. Soc. 65,
139–166 �1967�.

5 Federov, F. I., Elastic Waves in Crystals �Plenum, New York, 1968�.
6 He, S., Strom, S., and Weston, V. H., Time Domain Wave-Splittings and Inverse Problems �Oxford University Press, New
York, 1988�.

7 Jackson, J. D., Classical Electrodynamics �Wiley, New York, 1975�.
8 Kristensson, G. and Krueger, R. J., “Direct and inverse scattering in the time domain for a dissipative wave equation. I.
Scattering operators,” J. Math. Phys. 27, 1667–1682 �1986�.

9 Kristensson, G. and Krueger, R. J., “Direct and inverse scattering in the time domain for a dissipative wave equation. II.
Simultaneous reconstruction of dissipation and phase velocity profiles,” J. Math. Phys. 27, 1683–1693 �1986�.

10 Kurzweil, J., Ordinary Differential Equations: Introduction to the Theory of Ordinary Differential Equations in the Real
Domain �Elsevier, Amsterdam, 1986�.

11 Lancaster, P. and Tismenetsky, M., The Theory of Matrices �Academic, Orlando, 1985�.
12 Sheen, D. and Shepelsky, D., “Inverse scattering problem for a stratified anisotropic slab,” Inverse Probl. 15, 499–514

�1999�.
13 Titchener, J. B. and Willis, J. R., “The reflection of electromagnetic waves from stratified anisotropic media,” IEEE

Trans. Antennas Propag. 39, 35–39 �1991�.

122901-14 Alessia Berti J. Math. Phys. 47, 122901 �2006�

                                                                                                                                    



Green functions for wave propagation
on a five-dimensional manifold and the associated
gauge fields generated by a uniformly moving point source

I. Aharonovich
Department of Physics, Bar-Ilan University, Ramat Gan, Israel

L. P. Horwitz
Department of Physics, Bar-Ilan University, Ramat Gan, Israel, School of Physics,
Tel-Aviv University, Ramat Aviv, Israel, and College of Judea and Samaria, Ariel, Israel

�Received 30 March 2006; accepted 3 November 2006; published online 29 December 2006�

Gauge fields associated with the manifestly covariant dynamics of particles in �3,1�
space time are five dimensional �5D�. We provide solutions of the classical 5D
gauge field equations in both �4,1� and �3,2� flat space-time metrics for the simple
example of a uniformly moving point source. Green functions for the 5D field
equations are obtained, which are consistent with the solutions for uniform motion
obtained directly from the field equations with free asymptotic conditions. © 2006
American Institute of Physics. �DOI: 10.1063/1.2401692�

I. INTRODUCTION

Maxwell electrodynamics arises in a natural way in the study of quantum dynamical evolution
of particles in three-dimensional �3D� space. The nonrelativistic Schrödinger equation has a form
that is invariant under the transformation

�t�x� → ei��x,t��t�x� �1�

when the so-called gauge compensation fields are added to the space and time derivation. One
finds in this method how the 3D dynamics associated with nonrelativistic theory results in a
four-dimensional �4D� gauge field, which has an O�3,1� invariance for the homogeneous field
equations.

In a similar way, the manifestly covariant Stueckelberg-Schrödinger1 equation �discussed
below in Sec. II� induces five gauge fields. Some applications and results of the covariant theory
are discussed in Sec. II. The motivation for discussing the gauge fields associated with the
Stueckelberg-Schrödinger equation follows from the necessity for constructing a logically com-
plete theory. The generalized classical electrodynamics is a direct consequence of the gauge
covariant forms of the quantum equations of motion, and it is therefore essential to investigate the
implications of this generalized electrodynamics. In this paper we consider the simplest problem
of computing the field due to a point source moving with constant velocity in space time. The
classical form of the Stueckelberg dynamics has the property that the particles are in principle “off
shell,” that is, the particle mass defined by p�p�=−m2c2 is not constrained to have a given
numerical value. In this theory, the particle attains its observed mass, to a good approximation,
according to the state of the system,2 and we assume generally that the particle mass lies in this
neighborhood. We define the “mass shell” values of m as the value obtained in the nonrelativistic
�Galilean� limit of the theory �only a definite value of mass is admissible by Galilean invariance�.

What we find is that the qualitative nature of the fields is very different when the source has
values above, below, or equal to the mass shell values. We also discuss both timelike and spacelike
motion for the source �both types of motion are admitted by the Stueckelberg classical mechanics�.
These results are important ingredients for the construction of a theory that provides a good
phenomenological description for actual laboratory experiments, a subject of current research. For
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example, it was shown by Land3 that scattering of a test particle in the fields produced by a
timelike on-shell source does not agree with the Rutherford result. However, an integration over a
small section of the orbit of the same particle regularizes some of the singularities of the fields
produced, and brings the scattering of the test particle arbitrarily close to the Rutherford form.
Thus, as we discuss below, a partial concatenation of the source motion appears to be important
for the construction of such a theory. Nevertheless, it is essential to investigate carefully the results
of the direct pointwise application of the theory.

We study then, the mathematical and physical properties of these five-dimensional �5D� gauge
fields. The work is divided as follows.

In Sec. II, an overview of the 5D off-mass-shell gauge field theory based on the framework of
Stueckelberg1,2,4 is given. 5D gauge theories also arise in other studies, such as a special case of
higher dimensional relativistic dynamics and electrodynamics �cf. Refs. 5 and 6�, or modern
Kaluza-Klein type theories �cf. Ref. 7 and references therein�. In this paper, we concentrate on the
construction that is based on the Stueckelberg framework �cf. Refs. 2 and 4�.

Previous studies of the fields have been conducted �cf. Refs. 3 and 8–11� using certain types
of Green functions �GF’s�. Since the field equation in higher dimension admits many types of
GF’s, in order to gain some insight into criteria for selecting useful ones, here we study a direct
solution by Fourier transform for the special case of a uniformly moving point source �UMS�.

In Sec. III, a derivation of 5D gauge fields generated by a uniformly moving point source is
given for both �4,1� and �3,2� metrics, followed by classification to regions of source motion,
namely, spacelike and timelike. The wave equations are solved with asymptotically free conditions
in which the boundary value of the fields at infinity vanish pointwise.

In Sec. IV, a derivation is given of the principal part GF’s consistent with the fields generated
by a uniformly moving source of Sec. III.

The GF’s obtained agree with a particular form of fundamental solutions of 5D wave equa-
tions, found in, for example Refs. 12 and 13, i.e.,

g�x,�� = lim
�→0+

14�2G��x2 + �5�2� , �2�

G��y� =
�

��

��− �5y + ��
�− �5y + �

, �3�

where �5 determines the metric signature, ±1, for �4,1� and �3,2� metrics, respectively.
Our present study differs from the previous literature as follows:

• The GF’s carry the group symmetry in all coordinates, whereas normally only the t retarded
solutions are considered.

• The GF’s are treated in a unified manner in both �4,1� and �3,2� metrics.
• We shall show that the derivative present in �3� is useful in regularizing the fields, whereas

nonderivative forms �cf. Ref. 5 and references therein� have an additional infinite part, which
may be removed by other methods such as Hadamard’s finite part �cf. Ref. 14�.

• We study, in particular, the properties of the gauge fields, derived both from the GF’s and a
more direct method, generated by a uniformly moving point source.

II. FUNDAMENTALS

An off-shell classical and quantum electrodynamics has been constructed4 from a fundamental
theory of relativistic dynamics of 4D particles, termed events, in a framework first derived by
Stueckelberg.1,2

Stueckelberg defined a Lorentz invariant Hamiltonian-like generator of evolution, over an
eight-dimensional �8D� phase space, parametrized by a Lorentz invariant �, in both classical and
quantum relativistic mechanics. Solutions of the relativistic quantum two-body bound state prob-
lem agree, up to relativistic corrections,15 with solutions of the nonrelativistic Schrödinger equa-
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tion. The experiments of Lindner et al.,16 moreover, showing quantum interference in time, can be
explained in a simple and consistent way in the framework of this theory,17 which also provides
strong evidence that the time t is a quantum observable, as required in this framework.

In the classical manifestly covariant theory, the Hamiltonian of a free particle is given by

K =
p�p�

2M
, �4�

where x�= �ct ,x� and p�= �E /c ,p�. A simple model for an interacting system is provided by the
potential model

K =
p�p�

2M
+ V�x� . �5�

The equations are

ẋ� =
�K

�p�

=
1

M
p�, ṗ� = −

�K

�x�

= −
�V

�x� . �6�

It follows from �6� that

v =
dx

dt
=

ẋ

ṫ
=

p

E
,

which is the standard formula obtained for velocity in special relativity �we take c=1 in the
following�.

Horwitz and Piron2 generalized the framework to many-body systems, and gave � the physical
meaning of a universal historical time, correlating events in space time.

A general many-body, �-invariant, classical evolution function may be defined as

K = �
n=1

N
1

2Mn
	�
Pn

�Pn

 + V�x1,x2, . . . ,xN� , �7�

where 	�
=diag�−, + , + ,+� and n sums over all particles of the system, and, in this case, we have
taken the potential function V not to be a function of momenta or �. The classical equations of
motion, for a single particle system in an external potential V�x�, are similar to the nonrelativistic
Hamilton equations, with, in addition, motion and “momentum” along the t axis:

ẋn
� =

�K

�pn �

=
1

Mn
pn

�, ṗn � = −
�K

�xn
� = −

�V

�xn
� . �8�

In the usual formulation of relativistic dynamics �cf. Ref. 18�, the energy momentum is
constrained to a mass shell defined as

p�p� = p2 − E2 = − m2, �9�

where m is a given fixed quantity, a property of the particle. In the Stueckelberg formulation,
however, the event mass is generally unconstrained. Since in �5�, the value of K is absolutely
conserved, p�p�=−m2 is constant only in the special case where

d

d�
V�x� = �ẋ� �

�x� +
�

��
�V�x� = 0.

In this case, the particle remains in a specific mass shell, which may or may not coincide with its
so-called Galilean target mass, usually denoted by M. In the nonrelativistic limit, the mass dis-
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tribution converges to a single point; one may choose the parameter M to have this Galilean target
mass value.19 We shall assume that M has this value in the following.

In the general case, however, p�p�	−m2 is a dynamical �Lorentz invariant� property, which
may depend on �. The relation between � and the proper time s, in the model of Eq. �7�, is given
by

ds2 	 − dx�dx� = − ẋ�ẋ�d�2 = −
1

M2 p�p�d�2 =
m2

M2d�2. �10�

Thus, the proper time ds and universal time d� are related through the ratio between the
dynamical Lorentz invariant mass m, and the Galilean target mass M. If V�x� goes to zero
asymptotically, then it becomes constant. Since this asymptotic value is usually what is measured
in experiment, we may assume that it takes on the value of the Galilean target mass. Although
there are no detailed models at present, one assumes that there is a stabilizing mechanism �for
example, self-interaction or, in terms of statistical mechanics and condensation phenomenon19�
which brings the particle, at least to a good approximation, to a defined mass value,19 such that

K =
1

2M
p�p� =

− m2

2M
= −

M

2
.

For the quantum case, for which p� is represented by −i� /�x�, the Stueckelber Schrödinger
equation is taken to be �we take �=1 in the following�

i
����x�

��
= K���x� . �11�

The Stueckelberg classical and quantum relativistic dynamics have been studied for various
systems in some detail, including the classical relativistic Kepler problem2 and the quantum
two-body problem for the central potential.15

A. Off-shell electrodynamics

Pre-Maxwell off-shell electrodynamics �OSE� is constructed in a similar fashion to the con-
struction of Maxwell electrodynamics from the Schrödinger equation.4

Under the local gauge transformation

����x� = e−ie0��x,�����x� , �12�

five compensation fields a�x ,�� �� 
0,1 ,2 ,3 ,5�� are implied, such that with the transformation

a�a�x,�� = a�x,�� − ���x,�� ,

the following modified Stueckelberg-Schrödinger equation remains form invariant:

�i
�

��
+ e0a5�x,������x� =

1

2M
��p� − e0a���p� − e0a������x� , �13�

under the transformation �12�.
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We can see this by observing the following relations:

�p� − e0a����� = �− i
�

�x� − e0�a� −
�

�x���e−ie0��

= �− e0
�

�x�� − i
��

x� − e0�a� −
��

�x��e−ie0��

= e−ie0��P� − e0a��� ,

�i
�

��
+ e0�a5 −

��

��
�e−ie0�� = �e0

��

��
+ i

��

��
+ e0�a5 −

��

��
�e−ie0�� = e−ie0��i

�

��
+ e0a5�� .

The result is then of the same form as for the usual U�1� gauge compensation argument for the
nonrelativistic Schrödinger equation. Thus, the classical �and quantum� evolution function for a
particle, under an external field, assumed to be given by

K =
1

2M
�p − e0a�x,���2 − e0a5�x,�� �14�

�where we have used the shorthand notation of x2=x�x�� and the corresponding Hamilton equa-
tions are

ẋ���� =
�K

�p�

=
1

M
�p� − e0a�� , �15�

ṗ���� = −
�K

�x�

=
e0

M
�p − e0a�x,���
�

�a
�x,�� + e0�
�a5�x,�� . �16�

Here, e0 is proportional to the Maxwell charge e through a dimensional constant, which is derived
below. Second-order equations of motion for x����, a generalization of the usual Lorentz force,
follow from the Hamilton Eqs. �15� and �16� �Ref. 4�

Mẍ� = e0ẋ
f�

 + e0f�

5, �17�

where, for  ,�=0,1 ,2 ,3 ,5, the antisymmetric tensor

f� 	 �a� − ��a �18�

is the 5D field tensor. Moreover, the second-order wave equation for the fields f� can be derived
from a Lagrangian density as follows4:

L = −
�

4
f�f� − e0aj, �19�

which produces the wave equation

��f� = e0j�. �20�

� is a dimensional constant, which will be shown below to have dimensions of length. The sources
j��x ,�� depend both on space time and on �, and obey the continuity equation

�j = ��j� + ��� = 0, �21�

where j5	� is a Lorentz scalar space-time density of events. This equation follows from �13� for

���x� = ��
��x����x� ,
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j�
��x� = −

i

2M
���

��x��i�� − e0a��x,������x� + c.c.� ,

as we discuss below, and also for the classical case from the argument given below.

1. Currents of point events

Maxwell current conservation, for point charges, can be derived �cf. Refs. 20 and 21� by
defining the current of a point charge as

J��x� = e�
−�

+�

ds ż��s��4�x − z�s�� . �22�

In that case, s is the proper time, z��s� is the world-line of the point charge �for free motion, s may
coincide with ��, and ż��s�= �d /ds�z��s�. Then,

��J� = − e�
−�

+�

ds
d

ds
�4�x − z�s�� = − e lim

L→+�
�4�x − z�s��−L

+L, �23�

which vanishes if z��s� �or, for example, just the time component z0�s�� becomes infinite for s
→ ±�, and the observation point x� is restricted to a bounded region of space time, e.g., the
laboratory. Therefore, with Jackson,20 we identify J� as the Maxwell current. We see that this
current is a functional on the world line, and the usual notion of a “particle” corresponds to this
functional on the world line.

If we identify �4�x−z�s�� with a density �s�x� and the local �in �� current ż��s��4�x−z�s�� with
a local current js

��x�,

�s�x� = �4�x − z�s��, j��x,s� = ż��s��4�x − z�s�� , �24�

then the relation

d

ds
�4�x − z�s�� = − ż��s����4�x − z�s��

used in the above demonstration in fact corresponds to the conservation law �reverting to the more
general parameter � in place of the proper time s� �21�:

��j��x,�� + ����x,�� = 0. �25�

What we call the pre-Maxwell current of a point event is then defined as

j�x,�� = ż����4�x − z���� , �26�

where j5�x ,��	��x ,�� and ż5���	1 �since z5���	��. Integrating �20� over �, we recover the
standard Maxwell equations for Maxwell fields defined by

A��x� =� a��x,��d� . �27�

We therefore call the fields a��x ,�� pre-Maxwell fields. Thus, the Maxwell theory is properly
contained in the more general pre-Maxwell theory.

For the quantum theory, a real positive definite density function ���x� can be derived from the
Stueckelberg-Schrödinger Eq. �11�

���x� = ����2 = ��
��x����x� , �28�

which can be identified with the ��x ,��=�4�x−z���� in the classical �relativistic� limit. The con-
tinuity Eq. �25� is then satisfied for the gauge invariant currents
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j�
��x� = −

1

2M
���

��x��i�� − e0a��x,������x� + c.c.� . �29�

Combining �22� with �24�, we obtain

J��x� = e�
−�

+�

j��x,��d� . �30�

This is a restatement of the 5D continuity Eq. �25� and provides a connection between pre-
Maxwell OSE and Maxwell electrodynamics. It also follows from �11� that

��

�t
+ ��j� = 0, �31�

where �= ����x��2, as for the classical case.

2. The wave equation

From Eqs. �20� and �18� one can derive the wave equation for the potentials a�x ,��:

�����a − �����a�� = e0j. �32�

Under the generalized Lorentz gauge ��a�=0, the wave equation takes the simpler form

�����a = ���2a + �5
�2a

��2 � = e0j�x,�� . �33�

where a fifth diagonal metric component can take either signs �5= ±1, corresponding to O�4,1�
and O�3,2� symmetries of the homogeneous field equations, respectively.

Integrating �33� with respect to �, and assuming that lim
�→±�

��a
�x ,��=0, we obtain

��
−�

+�

d���2a + �5
�2a

��2 � =
e0

e
J�x� .

Identifying

A��x� = �
−�

+�

d�a��x,�� , �34�

we obtain

��2A��x� =
e0

e
J��x�

�where we have restricted our attention to �=0,1 ,2 ,3�, from which a relation between e0, �, and
the Maxwell charge e can be obtained:

e =
e0

�
. �35�

Therefore, the Maxwell electrodynamics is properly contained in the 5D electromagnetism.

3. A note about units

In natural units ��=c=1�, the Maxwell potentials A� have units of 1 /L. Therefore, the pre-
Maxwell OSE potentials a have units of 1 /L2, and in order to maintain the action integral
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S = �
−�

+�

L d� d4x �36�

dimensionless, the coefficient � in �19� must have units of L, forcing e0 to have units of L as well.
The Fourier transform of the pre-Maxwell OSE fields

ã��x,s� = �
−�

+�

eis�a��x,��d� �37�

and Eq. �34� suggest that the Maxwell potentials and fields are the zero mode of the pre-Maxwell
OSE fields, with respect to the � axis, i.e.,

A��x� = ã���x,s��s=0. �38�

B. Solutions of the wave equation

The classical 5D wave Eq. �33� can be solved by the method of Green functions. Such GF’s
have been found10,22 through a fivefold Fourier transform of the wave equation. The GF obeys the
wave equation of a point source

����g�x,�� = �4�x����� . �39�

After transformation to momentum space, �39� becomes �k2=k�k��

�k2 + �5k5
2�g̃�k,k5� = 1, �40�

i.e., in terms of the inverse transform

g�x,�� =
1

�2��5 � d4k dk5
1

k2 + �5k5
2ei�k·x+�5k5��. �41�

Although �41� is not a well-defined integral, there are, as for GF’s in 4D, several ways of defining
the integral, which result in GF’s, all of which satisfy �39�. These different forms of solutions have
physical consequences and it is part of the motivation of our work to obtain criteria that could
determine this choice.

For example, Land and Horwitz22 found what they called the Principal-Part GF to be

gP�x,�� = −
1

4�
��x2����� −

1

2�2

�

�x2

��− �x2 − �2�
�− �x2 − �2

, �42�

where �=�5= ±1 is the signature of the fifth dimension, �.
A later work by Oron and Horwitz10 found another, �-retarded GF of the form

g�x,�� =
2����
�2��3�

1

�− x2 − �2�3/2 tan−1�1

�
�− x2 − �2 −

�

x2�x2 + �2�
x2 + �2 � 0,

1

2

1

�x2 + �2�3/2 ln� � − ��2 + x2

� + ��2 + x2� −
�

x2�x2 + �2�
x2 + �2 � 0,� �43�

where only the �4,1� case was explicitly given.
GF’s of �n ,1� wave equations are well known in the mathematical literature �this is taken from

Ref. 12; cf. also Refs. 5, 6, and 13�:
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g�x,t� = �
��t�
2�

� 1

�

d

dt2�n−3�/2

��t2 − x2� , n = 3,5,7, . . . ,

1

2�
� 1

�

d

dt2�n−2�/2��t − �x��
�t2 − x2

, n = 4,6,8, . . . ,� �44�

where n=4 is the case of �4,1� metric. These well-known GF’s, which are retarded in t, can be
made symmetric by the proper choice of the contour of integration on the original Fourier integral
representation.

Once the GF’s have been found, the general field generated by a given source can then be
found by integration on its support

a�x,�� = e0� d4x� d�� g�x − x�,� − ���j�x�,��� , �45�

and applying it on a point particle given by �24�. The potentials of point events can then be found
from

a�x,�� = e0�
−�

+�

d�� g�x − z����,� − ���ż���� . �46�

In order to get some insight into the criteria for choosing appropriate GF’s, we study solutions
of the differential Eq. �33� �for the particular choice of uniformly moving point source� without
using the GF, i.e., we compute directly

a�x,�� =
e

�2��5�
−�

+�

d�� ż���� � d4k dk5
ei�k·�x−z�����+�5k5��−����

k2 + �5k5
2 . �47�

Solutions of the integral �47� are the subject of the next section.

III. FIELDS OF A UNIFORMLY MOVING POINT CHARGE

A. Solutions of the wave equation

Let us seek a solution to the field equation generated by a uniformly moving point source.
Such a source has a general world-line description

z��� = z0
 + b�� − �0� 	 D + b�, ż��� = b,  � 
0,1,2,3,5� , �48�

where for z5	� we have b5=1. However, we leave b5 unspecified, leaving the possibility for a 5D
symmetry of the solution to emerge, as indeed we find. Without loss of generality, we can elimi-
nate D by choosing a coordinate system in which D=0. The current of such a source is then
given by

j�x,�� = b�4�x − b�� . �49�

Substituting �48� into �47� we obtain an integral representation of the uniform motion fields,
which could be called pre-Coulomb fields:

a�x,�� =
e

�2��5�
−�

+�

d�� b� d4k dk5
ei�k·�x−b���+�5k5��−b5����

k2 + �5k5
2 =

eb

�2��5�
−�

+�

d��� d5k
eik��x�−b���

k�k�

=
eb

�2��5 � d5k�
−�

+�

d��
eik��x�−b���

k�k� =
eb

�2��5 � d5k
eik�x�

k�k� �
−�

+�

d�� e−ik�b��

=
eb

�2��4 � d5k
eik�x�

k�k� ��k�b�� . �50�
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The argument k�b� of the � function causes the fivefold integration to be constrained to a 5D
hyperplane,

S�b� = 
k � R5�kb = 0� ,

whose normal is just b�.
In order to proceed, we select a pivot axis for which integration would put the remaining

fourfold integral to be in that hyperplane. Naturally, we select k5, since we will take b5�0:

k�b� = k · b + �5k5b5 = b5�k · b� + �5k5� ,

where �� 
0,1 ,2 ,3� and

b�� =
b�

b5 ,

b�� is the �3,1� velocity of the source relative to its motion in the � direction.
We then have

��k�b�� =
1

�b5�
��k · b� + �5k5� ⇒ k5 = −

1

�5
k · b�,

k�k� = k2 + �5�k5�2 = k2 + �5�− 1

�5
�k · b���2

= k2 + �5�k · b��2,

k�x� = k · x + �5k5� = k · x + �5
− 1

�5
�k · b��� = k · �x − b��� . �51�

And thus we obtain

a�x,�� =
eb

2�4�b5� � d4k
eik·�x−b���

k2 + �5�k · b��2 . �52�

The integral �52� can be solved by introducing a rotation in k space in which b� takes a particularly
simple form, namely, along one of the axes. Aside from the special case of b�2=0, b� can be
rotated to be along one of the axes by an SO�3,1� transformation. We shall now divide our
discussion to the spacelike case where b�2�0 and the timelike case where b�2�0, and to avoid
complications, we shall solve the zero measure case of b�2=0 by a limiting procedure.

B. a-fields due to a „3,1… timelike source

Since b�2�0, we can find ��SO�3,1� such that

b� = �b� such that b� = �b�0;0� ,

b�0 	 s = ��b�0��− b�2,

and since ���=1, we have d4k�=d4k. Replacing b� with b� and k with k�, we obtain

a�x,�� =
eb

2�4�b5� � d4k�
ei�k�·x�−k�0�x�0−s���

k�2 + �5�− k�0s�2 =
eb

2�4�b5� � d4k�
ei�k�·x�−k�0�x�0−s���

k�2 + �k�0�2��5s2 − 1�
, �53�

where x�=�−1x. We follow the convention of boldface corresponding to the space part of a
four-vector. Since b�� is a four-vector along the time axis, we can find simple closed form
expressions for x� as follows:

122902-10 I. Aharonovich and L. P. Horwitz J. Math. Phys. 47, 122902 �2006�

                                                                                                                                    



x�0 =
x�0s

s
=

− x� · b�
�− b�2

=
− x · b�
�− b�2

,

�x�0�2 = x�2 + �x�0�2 = x2 +
�b� · x�2

− b�2 = x2 −
�b� · x�2

b�2 .

The integral �53� depends on the value of the denominator along the path of integration, where
two types of source motion emerge. The types are given as follows in Table I.

In the following we describe the properties of these cases.

1. Undershell timelike a-fields �5b�2>−1

As mentioned, the denominator of the integral is not positive definite. Nevertheless, we shall
proceed first by absorbing the coefficient 1−�5s2 into k0:

k0 →
k0

�1 − �5s2
.

Equation �53� becomes

a�x,�� =
eb

2�4�b5��1 − �5s2 � d4k
expi�k·x�−k0 �x�0−s��

�1−�5s2�
k2 − �k0�2 =

eb

�b5��1 − �5s2� 1

�2�4� � d4k
eik·y

k2 � ,

where

y� 	 � x�0 − s�

�1 − �5s2
;x�� .

The last integral inside the braces is the well-known Fourier integral form for Maxwell wave
equations’s GF in four dimensions, and, although it is ill defined, it has many well-known solu-
tions, corresponding to different limits of the integration contour chosen. We shall choose the
Principal Part solution for our present study:

GP�x� =
1

�2��4 P�
R4

d4k
eik·x

k2 =
��x2�
4�

, �54�

corresponding to the sum of retarded and advanced GF’s. Using the GP above, we arrive at the
undershell a-fields:

a�x,�� =
eb

4��b5��1 − �5s2
��x�2 −

�x�0 − s��2

1 − �5s2 �
=

eb

4��b5��1 + �5b�2
��x2 −

�b� · x�2

b�2 +
�− b� · x + b�2��2

b�2�1 + �5b’2� � . �55�

We call these undershell solutions because they correspond to the off-shell mass of the source
below its Galilean target mass. Equation �55� has O�3,1� symmetry, with respect to the first four

TABLE I. Types of source motion.

Source motion Description

�5b2��1 Supershell case, where the integral �53� has a well-defined solution, essentially the Laplace GF in 4D.

�5b2��1 Undershell case, where the integral is not well defined. The integral is essentially the Maxwell GF.
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coordinates of x. It can be further broken to a sum of � functions with linear arguments in � as
follows:

p��1,2� 	 x2 −
�b� · x�2

b�2 +
�− b� · x + b�2�1,2�2

b�2�1 + �5b�2�
= 0,

�1,2 =
b� · x

b�2 ±
1

b�2
�1 + �5b�2��b� · x�2 − b�2x2.

Using the linearity of the � function,

��p���� = �b�2�1 + �5b�2�
�b�2�2 ����� − �1��� − �2�� =

�1 + �5b�2�
b�2��1 − �2�

���� − �1� + ��� − �2�� ,

we then have

a�x,�� =
eb�+

8��b5���b� · x�2 − b�2x2
,

where

�+�x,�� = ��� − �1� + ��� − �2� .

The a-field depends on the fifth metric component, �5, only through �1,2, i.e., the coefficient
is independent of the signature of the 5D space. However, the values �=�1,2 correspond to a 4D
surface in 5D space where the a-fields are nonzero, and therefore the metric appears, to some
extent, in the geometry of the nonzero surfaces.

After some algebra, the a-fields can gain yet another, 5D covariant form. We start by rewriting
the �-function argument in 5D form:

p��� = x2 −
�b� · x�2

b�2 +
�− b� · x + b�2�1,2�2

b�2�1 + �5b�2�
= x�x� −

b�x�

b�b� , �56�

where the metric signature of �4,1� or �3,2� is used in the contraction products, e.g.,

b�x� = b · x + �5b5x5 = b · x + �5b5� .

For the �4,1� case, we have

bb = b2 + �b5�2 =
1

�b5�2 �b�2 + 1� � 0,

since �5b2�−1 in the present case. Thus, in the �4,1� metric, the undershell motion corresponds
to the 5D spacelike region in the b velocity space. As shall be observed later, this region is not
limited to 4D timelike source motion b�2�0, and it includes b�2�0 as well. For the �3,2� metric,
on the other hand, the motion is in the 5D timelike region bb�0.

Furthermore, one can define

n =
b

��5b�b�
. �57�

Substituting Eqs. �56� and �57� into �55�, we arrive at the 5D covariant form:

a�x,�� =
en

4�
��x�x� − �5�n�x��2� . �58�

The term undershell source motion stems from the mass shell equation
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PP = M2ẋẋ = M2�−
m2

M2 + �5� = �5M2�− �5
m2

M2 + 1� �59�

=M2bb �60�

or

bb = �5�− �5
m2

M2 + 1� . �61�

For the �4,1� metric, �5=1, where the undershell timelike motion leads to �m��M. Hence,
undershell motion refers to the mass shell of the source being less than its nonrelativistic mass-
shell M.

2. Supershell timelike a-fields �5b�2<−1

As the name suggests, in the �4,1� metric of the source motion, the supershell case is deter-
mined by �m��M, i.e., the relativistic mass �m� being greater than the its nonrelativistic Galilean
target mass M. In this case, however, only �5=1 is applicable, since there is no timelike motion
b�2�0 such that �−1�b�2+1�0, unless b�2�1, which is no longer timelike. Such a case will be
investigated later. In this case, the integral �53� is well defined, as the zeros in the denominator are
no longer real. By following a similar procedure of absorbing the coefficient of k0 in the denomi-
nator into k0, we obtain ��5=1�

a�x,�� =
eb

2�4�b5��s2 − 1
� d4k

ei�k·x�−k0�x�0−s��/�s2−1�

k2 + �k0�2

=
4�eb

�2��4�b5��x���s2 − 1
�

0

+�

k dk sin�k�x����
−�

+�

dk0
e−ik0�x�0−s��/�s2−1

k2 + �k0�2

=
eb

4�3�b5��x���s2 − 1
�

0

+�

kdk sin�k�x����− 1�
�

k
e−k�x�0−s��/�s2−1

=
eb

4�2�b5��x���s2 − 1

1

2i� 0 − 1

− �x�0 − s��/�s2 − 1 + i�x��
−

0 − 1

− �x�0 − s��/�s2 − 1 − i�x���
=

eb

4�2�b5��− b�2 − 1

1

�x�2 +
�x�0 − s��2

− b�2 − 1 �
=

eb

4�2�b5��− b�2 − 1

1

�x2 −
�b� · x�2

b�2 +
�− b� · x + b�2��2

b�2�b�2 + 1� �
=

en

4�2

1

�x�x� + �n�x��2�
,

where we have defined n	b /�−b�b�.
The supershell a-field is found to be a smooth function on 5D space time; it is the 5D analog

of the well-known �cf. Ref. 20� on-shell 4D Maxwell a-field of a uniformly moving charge

122902-13 Green functions for wave propagation in 5D J. Math. Phys. 47, 122902 �2006�

                                                                                                                                    



A��x� =
en�

4��x2 + �n · x�2
,

where n�=dz��s� /ds is the constant four-velocity obeying the mass-shell constraint n2=−1.
Clearly, the 5D a-field, proportional to r−2, as opposed to the Maxwell A-field being proportional
to r−1, is a consequence of the additional dimension.

The supershell a-field has the same form as the GF for the 4D Laplace operator

�2GL�x� = �4�x� , �62�

where x�R4 , r2= �x1�2+ �x2�2+ �x3�2+ �x4�2, and the GF GL�x� is given by �cf. Ref. 12�

GL =
1

�2��4 � eikcxc

kck
c =

1

2�2r2 , �63�

where in this case

kcx
c = k1x1 + k2x2 + k3x3 + k4x4.

This is far from being coincidental, as the 5D scalar x�x�+ �n�x��2 reduces to r2 in 4D, when the
source’s uniform velocity is purely temporal n�= �1;0 ,0 ,0 ,0�.

C. a-fields due to a spacelike source

We now solve the integral �52� for spacelike source motion, b�2�0, which may not be
regarded as a possible physical source, since it implies faster than light motion of the source
particle. Once again, we choose to integrate in a k-frame such that b�= �0;0 ,0 ,b�3� is along one of
the spatial axes, e.g., the z axis, and we now define

b�3 	 s = �b�2 = �b�2, b�2 � 0. �64�

The current in the b� frame can be expressed by

j���x�,�� = b���4�x − z����� = b�3�3
���t����x����y����z� − b�3�� . �65�

Returning to pre-Maxwell a-field integral �52�,

a�x,�� =
eb

�b5��2��4 � d4k�
ei�k�1x�+k�2y�+k�3�z�−s��−k�0t��

�k�1�2 + �k�2�2 + �k�3�2 − �k�0�2 + �5�sk3�2 �66�

=
eb�

�b5��2��4 � d4k
ei�k1x+k2y+k3�z−s��−k0t�

�k1�2 + �k2�2 + �k3�2�1 + �5s2� − �k0�2 , �67�

where we have renamed k� as k and x� as x.
The coefficient of �k3�2 changes sign when 1+�5s2=1+�b�2=0, which can only occur when

�5=−1 �since for spacelike motion, b�2�0� and �s��1 �s=��b�0��b�2�, causing the denominator
to obtain a �2,2� quadratic form.

Once again, the form of the fields are characterized by the types of source motion. In the
following, we shall treat both possible types of source motion separately.

1. Under spacelike motion 1+�5b�2>0

Rescaling k3→k3 /�1+�5s2, the spacelike a-field integral �66� can be expressed by

a�x,�� =
eb

�b5��2��4�1 + �5s2 � d4k
eik·y

k2 =
eb��y2�

4��b5��1 + �5s2
,
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where y�=�x0 ;x1 ,x2 , x3−s���1+�5s2� , k2=k�k�, and we have chosen the Principal Part con-
tour.

However:

y2 = �x1�2 + �x2�2 +
�x3 − s��2

1 + �5s2 − �x0�2 = x�x� − �x3�2 +
�x3 − �b�2��2

1 + �5b�2 .

We can furthermore put x3 into an invariant form:

x3 =
x3s

s
=

x · b�
�b�2

,

y2 = x2 −
�b� · x�2

b�2 +
�− b� · x + b�2��2

b�2�1 + �5b�2�
.

The spacelike a-fields then obtain a 4D covariant form:

a�x,�� =
eb

4��b5��1 + �5b�2
��x2 −

�b� · x�2

b�2 +
�− b� · x + b�2��2

b�2�1 + �5b�2� � =
eb�+

8��b5���b� · x�2 − b�2x2
,

where we have, as before,

�+ 	 ��� − �1� + ��� − �2� ,

�1,2 =
b� · x

b�2 ±
1

b�2
�1 + �5b�2��b� · x�2 + b�2x2.

Thus, the under spacelike motion fields are of the same form as their timelike under-shell coun-
terparts.

2. Super spacelike motion 1+�5b�2>0

As mentioned above, in this case we have b�2�1 and the choice �5=−1 is therefore neces-
sary. Therefore, the integral �66� takes the form

a�x,�� =
eb

�b5��2��4 � d4k
ei�k1x+k2y+k3�z−s��−k0t�

�k1�2 + �k2�2 − �s2 − 1��k3�2 − �k0�2 .

Rescaling k3→k3 /�s2−1,

=
eb

�2��4�b5��s2 − 1
� d4k

eik·y

�k1�2 + �k2�2 − �k3�2 − �k0�2 . �68�

We shall solve this integral by transforming the integrand to a Gaussian form:

�
−�

+� eiax

x2 dx =
1

2i
�

−�

+�

��q�dq�
−�

+�

eiax+iqx2
dx ,

where ��q� is the sign function. Using this relation in �68� we obtain
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a�x,�� =
eb

�2��4�b5��s2 − 1

1

2i
�

−�

+�

dq��q� � d4k exp�ik · y + iq��k1�2 + �k2�2 − �k3�2 − �k0�2��

=
eb

�2��4�b5��s2 − 1

1

2i
�

−�

+�

dq��q����

q
4

exp� i

4q
��y1�2 + �y2�2 − �y3�2 − �y0�2��

=
eb�b5�

�2��4�s2 − 1

�2

2i
�− 1��

0

+�

du�exp� iu

4
��y1�2 + �y2�2 − �y3�2 − �y0�2��

− exp�−
iu

4
��y1�2 + �y2�2 − �y3�2 − �y0�2��� ,

where we have put u=1/q. Here, the singularity at q=0 is controlled by the oscillation in the
exponent �although one can find the same result by other methods�.

Using

�
0

+�

exp�iax�dx = P� i

a
� + ���a� ,

we find the fields to be

a�x,�� = −
eb

�2��4�b5��s2 − 1

1

2

8�2

��y1�2 + �y2�2 − �y3�2 − �y0�2�

= −
eb

4�2�b5��s2 − 1

1

��y1�2 + �y2�2 − �y3�2 − �y0�2�
.

We have

y� = �x0;x1,x2,
x3 − s�

�s2 − 1
� ,

�y1�2 + �y2�2 − �y3�2 − �y0�2 = �x1�2 + �x2�2 −
�x3 − s��2

s2 − 1
− �x0�2 = x2 −

�b� · x�2

b�2 −
�b · x − b2��2

�b�2 − 1�b�2 .

Thus we obtain the final form

a�x,�� = −
eb

4�2�b5��b�2 − 1

1

�x2 −
�b · x�2

b2 −
�b · x − b2��2

b2�b2 − 1� � , �69�

The corresponding 5D covariant form is then

a�x,�� =
en

4�2

1

��nx�2 − xx�
, �70�

where n=b /�b�b�
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D. Summary of fields generated by a uniformly moving source

We present a short summary of the results obtained in this section:

a�x,�� =�
en4���x�x� − �n�x��2� Undershell �5 = + 1, nn = + 1,

en

4�2

1

�x�x� + �n�x��2�
Supershell �5 = + 1, nn = − 1,

en

4�
��x�x� + �n�x��2� Under-spacelike �5 = − 1, nn = − 1,

en

4�2

1

��n�x��2 − x�x��
Super-spacelike �5 = − 1, nn = + 1.

� �71�

In a more general compact representation, we have

a�x,�� = �
en

4�
���n�x��2 − �5x�x�� � = + 1,

en

4�2

1

��n�x��2 + �5x�x��
� = − 1, � �72�

where

� = �5 · ��bb� = �5 · ��b2 + �5�b5�2� ,

n =
b

�b�b��
.

The various values for �5 and � are given in Table II.

E. Concatenation

As we have pointed out above, the pre-Maxwell theory can be contracted to Maxwell form by
integration �as in �34�� over � �called concatenation�. Applying this procedure to the 5D pre-
Maxwell fields that we have obtained above, we find

A��x� = �
−�

+�

a��x,��d� =
en�

4�

���n · x�2 − n2x2�
��n · x�2 − n2x2

, �73�

where

n2 = n�n� = nn − �5�n5�2

and nn= ±1 according to the velocity regions of source motion �see Table II�. It should be
emphasized that �73� is a general Maxwell field for all values of n2. The solutions can be put into
a more specific form for the three regions of �3,1� space time:

TABLE II. Regions of source velocity summary.

Metric �5 Velocity region Mass shell ��bb� �

�4,1� +1 Undershell m2�M2 +1 +1

�4,1� +1 Supershell m2�M2 −1 −1

�3,2� −1 Under-spacelike −m2�M2 −1 +1

�3,2� −1 Super-spacelike −m2�M2 +1 −1
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A��x� =�
en��

4���n� · x�2 + x2 n�2 = − 1,

en��

4�

���n� · x�2 − x2�
��n� · x�2 − x2

n�2 = + 1,

en��

4��n� · x�
n�2 = 0,

� �74�

where

n�� =
n�

�n
n
�
.

We will discuss the possibility of integrating on a smaller interval of � �Land regularization3�
adequate in some cases to reproduce the results of ordinary Maxwell scattering.

IV. GREEN FUNCTIONS

In this section, Green functions for both �4,1� and �3,2� wave equations are given. Green
functions for equations of this type have been discussed.12,13,23 In particular, two distinct versions
of the fundamental solution for �4,1� wave equation have been given:

G4,1�x,t� = −
1

4�2

��t − �x��
�t2 − x2�3/2 �75�

�cf. Ref. 23, based on Ref. 24�,

H4,1�x,t� =
1

2�2

d

dt2

��t − �x��
�t2 − x2

�76�

�cf. Ref. 12�.
The difference expression �H4,1−G4,1��x , t� is a distribution

�H4,1 − G4,1��x,t� =
��t − �x��

2t�t2 − x2
.

In the analysis below, on the other hand, we shall provide a distinct derivation of the GF’s for
both �4,1� and �3,2�, which are similar to H4,1�x , t�, as follows:

g�5
�x,�� = lim

�→0+

�5

4�2

�

��

��− �5�x2 + �5�2� + ��
�− �5�x2 + �5�2� + �

.

g�5
�x ,�� contains a singular distribution term as well:

��5
= − lim

�→0+

�5

4�2

��− �5�x2 + �5�2� + ��
�− �5�x2 + �5�2� + �

.

In the following sections, GF’s are derived for the �4,1� and �3,2� wave equations, which are
symmetric in t. Then, we apply the GF’s to the current of a uniformly moving point source, and
rederive the results of Sec. III. We shall describe the importance of the form of ��5

in the
derivation of the fields.
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A. „4,1… Green function

With �5= +1 in �41�, we have

g+�x,�� =
1

�2��5 � d4kd k5
1

k2 + k5
2ei�k·x+k5�� =

1

�2��5 � d3kd k5ei�k·x+k5���
−�

+� dk0

k2 + k5
2 − k0

2e−ik0t.

�77�

The Cauchy Principal Part of the k0 integral is

P�
−�

+� dk0

k2 + k5
2 − k0

2e−ik0t = �i��− t�
1

2�k2 + k5
2
�+ e+it�k2+k5

2
− e−it�k2+k5

2
� = ��t�

� sin�t�k2 + k5
2�

�k2 + k5
2

.

We then have

g+�x,�� =
���t�
�2��5 � d3kdk5

sin�t�k2 + k5
2�

�k2 + k5
2

ei�k·x+k5��.

We now orient the k , k5 space such the 4D “observation” vector �x ,�� is along k3 �one
observes at time � on the laboratory clock at the point x�. Defining l=�k2+k5

2 and R=�x2+�2, and
using  , �, and � as the 4D polar angles we find

k5 = l cos  ,

k3 = l sin  cos � ,

k · x + k5� = Rk3 = Rl sin  cos � ,

d3kdk5 = l3 sin2  sin �dl d d� d� .

In terms of these variables,

g+�x,�� =
���t�
�2��5�

0

+�

l3dl�
0

�

sin2  d�
0

�

sin � d��
0

2�

d�
sin�tl�

l
eilR sin  cos �

=
��t�4�2

R�2��5�
0

+�

l3dl�
0

�

sin2  d
sin�lR sin �

l sin 

sin�tl�
l

=
��t�4�2

R�2��5�
0

+�

dl�
0

�

d sin�lt�sin�lR sin �l sin 

= −
��t�4�2

R�2��5

1

R

�

�R
�

0

+�

dl�
0

�

d sin�lt�cos�lR sin � .

The choice of orientation in k-space resulted in a first-order derivative with respect to the “4D
observation point” R. This form is important in convergence of the UMS solution. The  integral
is simply �J0�lR� and using the sine transform of J0�x� �cf. Ref. 25�,

J0�x� =
2

�
�

1

+� sin�xs�
�s2 − 1

ds , �78�

we find
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g+�x,�� = −
8�2��t�
�2��5

1

R

�

�R
�

0

+�

dl�
1

+�

ds sin�lt�
sin�lRs�
�s2 − 1

.

Changing the order of integration and noting that the l integrand is symmetric under l→−l, we
have

g+�x,�� = −
8�2��t�
�2��5

1

R

�

�R
�

1

+� ds
�s2 − 1

1

2
�

−�

+�

dl sin�lt�sin�lRs�

= −
4�2��t�
�2��5

1

R

�

�R
�

1

+� ds
�s2 − 1

2�

�− 4�
�2��t + Rs� − 2��t − Rs�� .

Since Rs�0, then using

��t + Rs� − ��t − Rs� = − ��t����t + Rs� + ��t − Rs�� ,

we find

g+�x,�� =
4�3�2�t�

�2��5

1

R

�

�R
�

1

+� ds
�s2 − 1

���t + Rs� + ��t − Rs��

=
4�3

�2��5

1

R

�

�R

1

R

1
�t2/R2 − 1

���− t/R − 1� + ��+ t/R − 1��

=
1

8�2

1

R

�

�R

��t2 − R2�
�t2 − R2

.

We have t2−R2= t2−x2−�2=−xx, and since R�0, we can use 1/R� /�R=2� /�R2, which is
linear in xx, thus

g+�x,�� = − lim
�→0+

1

4�2

�

��

��− xx + ��
�− xx + �

. �79�

B. „3,2… Green function

We shall repeat the procedure for �5=−1 as follows:

g−�x,�� =
1

�2��5 � d4kdk5
1

k2 − k5
2ei�k·x−k5�� =

1

�2��5�
R3

d3kei�k·x��
R2

dk5 dk0

k2 − k5
2 − k0

2e−i�k0t+k5��.

�80�

The integration is separated into the two subspaces R3 for the spatial coordinates, and R2 for the
temporal coordinates. We shall use polar coordinates in both spaces, using the following substi-
tutions:

k2 = k1
2 + k2

2 + k3
2, d3k = k2 sin �dk d� d� ,

r2 = x2 + y2 + x2, k · x = kr cos � ,

l2 = k0
2 + k5

2, dk0 dk5 = l dl d ,

s2 = t2 + �2, k0t + k5� = sl cos  .

The integral then takes the form
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g−�x,�� =
1

�2��5�
0

+�

k2 dk�
0

�

sin � d��
0

2�

d�eikr cos ��
0

+�

l dl�
0

2�

d
eils cos 

k2 − l2 .

We can integrate immediately on �, �, and  as follows:

�
0

2�

d� = 2�, �
0

�

d� =
2 sin�kr�

kr
, �

0

2�

d = 2�J0�ls� ,

and thus

g−�x,�� =
1

�2��5

8�2

r
�

0

+�

k dk sin�kr��
0

+�

l dl
J0�ls�
k2 − l2 = −

1

�2��3

2

r

�

�r
�

0

+�

l dl J0�ls��
0

+�

dk
cos�kr�
k2 − l2

= −
1

�2��3

1

r

�

�r
�

0

+�

l dl J0�ls��
−�

+�

dk
cos�kr�
k2 − l2 .

The Principal Part value of the k integral is

P�
−�

+� cos�kr�
k2 − l2 dk = P . P . R��

−�

+� eikr

k2 − l2dk� = R� i�

2l
�eilr − e−ilr�� = −

�

l
sin�lr� .

Thus, as the expression for g−�x ,��, one obtains the form

g−�x,�� =
�

�2��3

1

r

�

�r
�

0

+�

l dl J0�ls�
sin�lr�

l
=

�

�2��3

1

r

�

�r
�

0

+�

dl J0�ls�sin�lr� .

Once again, using the sine transform of J0�x� �see �78��, we have

g−�x,�� =
�

�2��3

2

�

1

r

�

�r
�

1

+� du
�u2 − 1

1

2
�

−�

+�

dl sin�lsu�sin�lr�

=
1

�2��3

1

r

�

�r
�

1

+� du
�u2 − 1

2�

�− 4�
�2��su + r� − 2��su − r��

= −
�

�2��3

1

r

�

�r
�

1

+� du
�u2 − 1

��− s����su + r� + ��su − r�� .

However, su�0 and r�0, and thus the first term ��su+r� vanishes identically, leaving

g−�x,�� =
1

2�2��2

1

r

�

�r

1

s

��r/s − 1�
�r2/s2 − 1

=
1

2�2��2

1

r

�

�r

��r − s�
�r2 − s2

.

Using the same arguments that were made for the �4,1� case, we have

g−�x,�� = lim
�→0+

1

4�2

�

��

��xx + ��
�xx + �

, �81�

where xx=x2−�2 in this case.
Combining both �4,1� and �3,2� cases, we obtain

g�5
�x,�� = lim

�→0+

�5

4�2

�

��

��− �5�x2 + �5�2� + ��
�− �5�x2 + �5�2� + �

= lim
�→0+

�5

4�2

�

��

��− �5xx + ��
�− �5xx + �

. �82�

The factor 2 between �82� and �76� stems from the fact that both retarded and advanced t are used,

122902-21 Green functions for wave propagation in 5D J. Math. Phys. 47, 122902 �2006�

                                                                                                                                    



picking up an additional contribution from the future of t. An attempt to provide GF’s that are �
retarded in �4,1� and �3,2� is currently under study.

C. Fields solution through GF’s

We shall now apply the GF’s �82� to the current generated by a uniformly moving point
source. Recalling the UMS path �48�, and generating the current �26�, we shall use �45� to find the
fields

a�5

 �x,�� = lim
�→0+

e�5

4�2

�

��
�

−�

+�

d�� b��− �5��x − b��� + �5�� − b5���2� + ��
�− �5��x − b��� + �5�� − b5���2� + �

. �83�

Clearly, the limits of integration depend on the coefficients of the quadratic argument

p���� = − �5��x − b��� + �5�� − b5���2� + �

= − �5��b2 + �5�b5�2���2 − 2�b · x + �5b5���� + x2 + �5�2� + �

= − �5bb��2 + 2�5�bx��� − �5�xx − �5�� .

Thus, the polarity of the quadratic form p��� depends on the sign of �	�5��bb�, which we shall
treat individually.

D. UMS fields for �= +1

We have −�5bb�0. The condition p�����0 is then limited to �1����2, where �1,2 are the
roots of p����:

�1,2� =
− bx ± ��bx�2 − bb�xx − �5��

− bb , �84�

the fields become

a�5

 �x,�� = lim
�→0+

e�5b

4�2

�

��
�

�1

�2

d��
��p�����
�p����

. �85�

Clearly, the integral would be become zero identically if �1,2 are complex, thus

��1� − �2��
2 =

4

�bb�2 ��bx�2 − bb�xx − �5��� � 0.

We can now write p���� as follows:

p���� 	
�5

bbR2 − A2��� − B�2, �86�

where

R2 = �bx�2 − bb�xx − �5��, A = ��5bb, B =
bx

bb , �87�

where R2�0 is a requirement for the integral to be nonzero, and A2�0 in this case. After making
the substitution

� �5

bbR tanh � = A��� − B� ,

we have
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a�5

 �x,�� = lim
�→0+

� e�5

bb

�5b

4�2

�

��
��R2��

−�

+� Rd�

A cosh2 �

1
���5/bb�R2�1 − tanh2 ��

= lim
�→0+

1
��5bb

e�5b

4�2

�

��
��R2��

−�

+� d�

cosh �
.

The remaining � integral is a constant and equal to � �easily verified by substituting u=e��.
Thus

a�5

 �x,�� = lim
�→0+

e�5b

4��bb

�

��
��R2� ,

where ����R2�=�5bb��R2�, which gives the final form for a�5
�x ,�� for this case:

a�5

 �x,�� =
eb��5b�b��
4���5bb

���bx�2 − bbxx� , �88�

where the limit of �→0+ was taken explicitly. Defining the normalized 5D velocity n

=b /��5b�b�, we obtain the solution consistent with �=1 of �72�,

a�5

 �x,�� =
en

4�
���nx�2 − �5xx� , �89�

where it is stressed again that �5 appears implicitly in the scalar products such as nx.

E. UMS fields for �= +1

We shall repeat the analysis of the last section for the case of −�5bb�0. The roots �84� are
applicable in the present case as well. However, the range of integration of �83� now reveals that
p�����0 for the exterior region ��� �−� ,�1��� ��2� , +��. Therefore, �86� now becomes:

p���� = �− �5bb���� −
bx

bb2

− �−
�5

bb��bx�2 − bb�xx − �5���

= A2��� − B�2 − �−
�5

bbR2, �90�

where in this case

A = �− �5bb.

However, in order that the field integral �85� converges, we shall define p����� as follows:

p����� = p���� + �2. �91�

The field integral �85� obtains the form

a�5

 �x,�� =
e�5b

4�2 lim
�→0+

�→0+

�

��
�

−�

+� ��p�����
�p�����

d�� =
e�5b

4�2 lim
�→0+

�→0+

�
−�

+� ���p�����
�p�����

−
1

2

��p�����
�p������3/2� �p����

��
,

�92�

where we used that fact that ��p����=��p�����. The first ��p����� term breaks up over the roots of
p����:

��p�����
�p�����

=
1

A2

��� − �1�� + ��� − �2��
��1� − �2��

1
�p�����

. �93�
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We also have

��p���� = ��p����� = 1. �94�

Integrating the first �-term, and combining �94� with �93� and �92�, we obtain

�
−�

+� ��p�����
�p�����

�p����
��

d�� =
1

A2

�bb�
2R � 1

�p�����
�

��=�1�

+
1

�p�����
��=�2�

=
1

R

1

�
, �95�

which diverges as 1 /�. The second term can be integrated with the substitution

C cosh � = A��� − R� where C = ��− �5

bbR2 − �2� .

Thus

�
−�

+� ��p�����
�p������3/2d�� =

2C

A
��R2��

�0

+�

sinh �d �
1

�C2�cosh2 � − 1��3/2

= 2
��R2�
AC2 �

�0

+� d�

sinh2 �
= 2

��R2�
AC2 �− 1�coth ��0

+� = 2
��R2�
AC2 �coth �0 − 1� .

�96�

The �0 lower bound is given by

sinh2 �0 =
�2

C2 ⇒ coth �0 =�1 +
1

sinh2 �0
=

1

�
�C2 + �2 =

C

�
+ O��� ,

which provides the complete solution for the second term

�
−�

+� ��p�����
�p������3/2d�� = 2

��R2�
AC2 �C

�
− 1� �97�

=2��R2�� 1
�R2 + �5�2bb

1

�
−

1
�− �5bb�− �5R2/bb − �2�

� . �98�

The sum of the �-term and the smooth term becomes

a�5

 �x,�� =
e�5b

4�2 lim
�→0+

�→0+

��R2�� 1

R

1

�
− � 1

�R2 + �5�2bb

1

�
−

1
�− �5bb�− �5R2/bb − �2�

�
=

eb

4�2�− �5bb

bb

��bx�2 − �bb��xx��
.

Once again, defining n=b / �bb�, we obtain the final result for �=−1:

a�5

 �x,�� =
en

4�2

���nx�2 + �5xx�
��nx�2 + �5xx�

. �99�

V. CONCLUSIONS

The a-fields �see �72�� generated by a uniformly moving point source in �4,1� and �3,2�
off-shell electrodynamics clearly resemble the expected UMS fields in a 5D Maxwell electrody-
namics. However, the latter, generally in a framework of relativistic dynamics, are normally
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regarded as producing fields from timelike sources only. Stueckelberg-based off-shell electrody-
namics, on the other hand, that are based on a 4D dynamics parametrized along an invariant
parameter, have no apparent limit on the region of the source velocity, though normally, the
equations are set with constant z5���	�⇒b5	1. Moreover, the 4D dynamics place no a priori
restriction on b�� 	b� /b5, and all cases of b�2�0 or b�2�0 were shown. However, the two forms
of the fields given in �72� differ dramatically, and in particular, one is required to explain the
�-functions fields found for the 5D spacelike and timelike regions of source velocity for the �4,1�
and �3,2� flat metric equations, respectively.

The �-function fields ��=−1� have support on a 4D null surface given by xx−�5�nx�2

=0, which is orthogonal to the direction of motion of the source n. Thus, this null surface is
actually the �3,1� light cone, as can easily be observed in the frame n= �0;0 ,0 ,0 ,1�, in which
case both �4,1� and �3,2� fields reduce to the Maxwell time-symmetric GF ��x2�. This reflects the
choice of Principal Part, which was taken in the derivation of those fields. These singular fields are
in fact the analog for a 4D UMS field of a spacelike moving source.

In a subsequent study, we plan to show that when a Lorentz force derived from those fields is
applied to a test particle, it produces a finite force in an infinitesimally short � interval, and thus
has no noticeable effect on test particles. The reason for this is that the field tensor f�=�a�

−��acontains derivatives of the �-functions, and when integrated by parts, a coupling of the � to
acceleration terms is obtained, causing a large mass renormalization effect when the test particle
hits the surface of singular support. This effect actually reduces the impact to a finite value,
causing it to behave as a zero-measure force.

The smooth fields, on the other hand, obey a 1/r2 decay power-law. However, the �4,1� and
�3,2� fields differ dramatically in this case. For the �4,1� metric case, the denominator is positive
definite, which can easily be observed when a nonphysical frame of n= �1;0 ,0 ,0 ,0 ,0� is taken
�b5=0 in this case, contradicting the theory�. In fact, for any n5�0, it causes the field to be a
transient phenomenon, decaying as 1/�2 for large ���x2+ t2.

On the other hand, for the �3,2� case, the fields follow an O�2,2� symmetry as well, which can
be seen when n=�i

 for one of i� 
1,2 ,3�. When this field is integrated over �, it produces the
O�2,1� GF �proportional to �t2−x2−y2�−1/2�, which is also the Maxwell field produced by a
uniformly moving 3D point source in spacelike motion.

In Ref. 3, Land studied the equations of motion of a test particle in a field with similar singular
support behavior. In particular, the scattering problem in the nonrelativistic limit was derived, in
which he noted a failure in matching the well-known Rutherford scattering formula. Land then
used the mass-� uncertainty relations, similar to the time-energy uncertainty in nonrelativistic QM,
to argue that a true pointwise 4D particle is insufficient to describe a physical source, and thus
defined a distribution of events along the � parameter, acting coherently as a single particle. He
chose the following distribution,

j�x,�� =
b

2�
�

−�

+�

d��e−��−���/��4�x − b��� , �100�

which approaches the pointwise distribution for �→0+, and the Maxwell worldline �see Eq. �22��
for �→ +�. Since the fields are linear, the cumulative contribution smoothed out the �-function
fields. Using a numerical computation, Land found a constraint on �.

We shall show in a subsequent study how this method of regularization applies to the type of
fields we have found here, and make comparison with observed phenomena.

It was found that the GF’s �82� are consistent with the UMS fields. The � derivative is used to
indicate derivation with respect to the argument, which is maintained even once the fields are
applied on a test particle. Although the derivative seems to contain a strong distribution ��y� /�y,
this term has proved essential in the derivation of �=−1 smooth fields �99�, in which it counter-
balanced an infinite contribution from the bounds �→�2�

+ ,�1�
−. Geometrically, it regularized the

singular support at the 5D light cone.
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The GF’s obtained could be used for subsequent studies of radiation-reaction, two-particle
systems and various models of regularizations.
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Statistical models corresponding to a new class of braid matrices �ôN ;N�3� pre-
sented in a previous paper are studied. Indices labeling states spanning the Nr

dimensional base space of T�r����, the rth order transfer matrix are so chosen that
the operators W �the sum of the state labels� and �CP� �the circular permutation of
state labels� commute with T�r����. This drastically simplifies the construction of
eigenstates, reducing it to solutions of relatively small number of simultaneous
linear equations. Roots of unity play a crucial role. Thus for diagonalizing the 81
dimensional space for N=3, r=4, one has to solve a maximal set of five linear
equations. A supplementary symmetry relates invariant subspaces pairwise �W
= �r ,Nr� and so on� so that only one of each pair needs study. The case N=3 is
studied fully for r= �1,2 ,3 ,4�. Basic aspects for all �N ,r� are discussed. Full ex-
ploitation of such symmetries lead to a formalism quite different from, possibly
generalized, algebraic Bethe ansatz. Chain Hamiltonians are studied. The specific
types of spin flips they induce and propagate are pointed out. The inverse Cayley
transform of the YB matrix giving the potential leading to factorizable S matrix is

constructed explicitly for N=3 as also the full set of R̂tt relations. Perspectives are
discussed in a final section. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2374882�

I. INTRODUCTION

New classes of braided matrices were presented in recent papers.1,2 Statistical models corre-
sponding to Ref. 1 have been presented in Ref. 3. Here we present those corresponding to Ref. 2.
Different types of statistical models thus obtained will be compared at the end �Sec. VII�. In Ref.
2 two distinct classes of braid matrices �ôN , p̂N� were presented. Here we consider only the
ôN �N�3�. For real, positive values of the parameter q and a certain domain �depending on q and
N� of the spectral parameter �, one obtains N2�N2 braid matrices with all nonzero elements real,
positive giving non-negative Boltzmann weights. For the class p̂N one encounters both positive
and negative elements and thus one would need suitable reinterpretation of the corresponding
Boltzmann weights.

We first recapitulate briefly the ôN braid matrices.2 The N2�N2 baxterized braid matrices
satisfying �in standard notations�

a�Electronic mail: boucif@cpht.polytechnique.fr; boucif@yahoo.fr
b�Electronic mail: chakra@cpht.polytechnique.fr

JOURNAL OF MATHEMATICAL PHYSICS 47, 123301 �2006�

47, 123301-10022-2488/2006/47�12�/123301/27/$23.00 © 2006 American Institute of Physics

                                                                                                                                    

http://dx.doi.org/10.1063/1.2374882
http://dx.doi.org/10.1063/1.2374882
http://dx.doi.org/10.1063/1.2374882


R̂12���R̂23�� + ���R̂12���� = R̂23����R̂12�� + ���R̂23��� �1.1�

are given by

R̂��� = I −
sinh �

sinh�� + ��
P0�, �1.2�

where

e� + e−� = �N − 1� + 1 �
qN−1 − q−N+1

q − q−1 + 1 �1.3�

and

P0� = �
i,j=1

N

q�j�−�j�ij� � �i�j�� �1.4�

with the following notations:

1. The N�N matrix �ij� has only one nonzero element, unity, on row i and column j and

�i�, j�� = �N − i + 1,N − j + 1� . �1.5�

2. The N tuple ��1 ,�2 , . . . ,�N� is defined as

�n − 1
2 ,n − 3

2 , . . . , 1
2 ,0,− 1

2 , . . . ,− n + 1
2� �1.6�

for N=2n+1 and

�n − 1,n − 2, . . . ,1,0,0,− 1, . . . ,− n + 1� �1.7�

for N=2n.

Of the three projectors �P+ , P− , P0� providing a spectral resolution of SOq�N� braid matrices
only

P0� = ��N − 1� + 1�P0 �1.8�

appears in our class. To signal this provenance �along with crucial differences� our class is des-
ignated as ôN. More relevant discussions can be found in Ref. 2.

We now introduce the permutation matrix

P = �
i,j

�ij� � � ji�, P2 = I , �1.9�

the Yang–Baxter matrix

R��� = PR̂��� , �1.10�

and the monodromy matrices satisfying

R̂�� − ����t��� � t����� = �t���� � t����R̂�� − ��� . �1.11�

The t matrix satisfying Eq. �1.11� is N�N in terms of the blocks

tij, �i, j = 1, . . . ,N� , �1.12�

each tij being itself a matrix whose dimension is prescribed as follows. One starts with N�N
blocks tij obtained from the standard prescription �satisfying Eq. �1.11��
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t�1���� = PR̂��� = R��� �1.13�

and then a hierarchy is obtained implementing the coproduct prescription

tij
�r���� = �

k1,. . .,kr−1

tik1

�1���� � tk1k2

�1� ��� � ¯ � tkr−1,j
�1� ��� . �1.14�

Starting with Eq. �1.13�, this prescription assures that t�r���� satisfies Eq. �1.11�.
Now the transfer matrix is defined, for each order r, as

T�r���� = �
i=1

N

tii
�r���� . �1.15�

The trace and more generally the eigenstates and the eigenvalues of T�r���� provide crucial prop-

erties of the statistical mechanical model associated with R̂���. In particular, Eqs. �1.1�, �1.11�, and
�1.13�–�1.15� all together assure the commutativity

�T���,T����� = 0. �1.16�

Commutative transfer matrices provide the crucial feature of exactly solvable models of statistical
mechanics, the braid matrices encoding star-triangle relations.4 For our specific case �ôN� we
illustrate, in the following section, some basic features for the simplest case �N=3�. Certain
aspects for N�3 will be presented afterwards �Sec. V�.

Define

K��� = −
sinh �

sinh�� + ��
, �1.17�

where �setting N=3 in Eq. �1.3��

e� + e−� = q + q−1 + 1. �1.18�

For

− � � � � 0, K��� � 0. �1.19�

For

� = 0, K�0� = 0,

� = −
�

2
, K�−

�

2
� = 1,

� → − �, K��� → + � . �1.20�

Henceforward we consider the domain �1.19�.

II. TRACE OF THE TRANSFER MATRIX FROM ITERATIVE STRUCTURE

The standard prescription �1.13� yields for ô3

t�1���� = PR̂��� = P�I + K���P0�� , �2.1�

and hence, �suppressing now the argument � for simplicity�
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t11
�1� = 	1 0 0

0 0 0

0 0 K
	, t12

�1� = 	0 0 0

1 0 0

0 q1/2K 0
	, t13

�1� = 	 0 0 0

0 0 0

1 + qK 0 0
	 ,

t21
�1� = 	0 1 0

0 0 q−1/2K

0 0 0
	, t22

�1� = 	0 0 0

0 1 + K 0

0 0 0
	, t23

�1� = 	 0 0 0

q1/2K 0 0

0 1 0
	 ,

t31
�1� = 	0 0 1 + q−1K

0 0 0

0 0 0
	, t32

�1� = 	0 q−1/2K 0

0 0 1

0 0 0
	, t33

�1� = 	K 0 0

0 0 0

0 0 1
	 . �2.2�

All � dependence is contained in the parameter K, as defined in Eq. �1.17�. Starting with the 3
�3 blocks the prescription Eq. �1.14� gives 3r�3r blocks tij

�r�. The recursion relations for our case
�N=3� are �for j=1,2 ,3�,

t1j
�r+1� = 	 t1j

�r� 0 0

t2j
�r� 0 0

�1 + qK�t3j
�r� q1/2Kt2j

�r� Kt1j
�r� 	 , �2.3�

t2j
�r+1� = 	 0 t1j

�r� 0

q1/2Kt3j
�r� �1 + K�t2j

�r� q−1/2Kt1j
�r�

0 t3j
�r� 0

	 , �2.4�

t3j
�r+1� = 	Kt3j

�r� q−1/2Kt2j
�r� �1 + q−1K�t1j

�r�

0 0 t2j
�r�

0 0 t3j
�r� 	 . �2.5�

The transfer matrix is iterated as

T�r+1� = t11
�r+1� + t22

�r+1� + t33
�r+1�

= 	 t11
�r� + Kt33

�r� t12
�r� + q1/2Kt23

�r� �1 + q−1K�t13
�r�

t21
�r� + q−1/2Kt32

�r� �1 + K�t22
�r� q−1/2Kt12

�r� + t23
�r�

�1 + qK�t31
�r� q1/2Kt21

�r� + t32
�r� Kt11

�r� + t33
�r� 	 . �2.6�

Hence,

Tr�T�r+1�� = Tr�t11
�r� + Kt33

�r� + �1 + K�t22
�r� + Kt11

�r� + t33
�r��

=�1 + K�Tr�t11
�r� + t22

�r� + t33
�r��

Tr�T�r+1�� = �1 + K�Tr�T�r�� . �2.7�

But from Eq. �2.2�

Tr�T�1�� = Tr�t11
�1� + t22

�1� + t33
�1�� = 3�1 + K� . �2.8�

Hence,

Tr�T�r�� = 3�1 + K�r. �2.9�
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Thus we obtain the trace of T�r� for all r directly without constructing explicitly the eigenstates
and the 3r eigenvalues. But the latter being of crucial interest we now turn to their systematic
explicit constructions.

III. EIGENSTATES AND EIGENVALUES „N=3…

For N=3 the transfer matrix T�r���� of order r acts on a dimension 3r. Construction of eigen-
states corresponds to diagonalization of T�r� on such a base space. But basic symmetries of T�r�

�Sec. I� for our case have profound consequences. They reduce the problem so that one has
effectively to diagonalize subspaces whose dimensions increase polynomially with r �rather than
according to the power law 3r�. To formulate these features conveniently we introduce the fol-
lowing conventions for state labels.

For the fundamental case, r=1, the three-dimensional basis is denoted as


1� � 	1

0

0
�, 
2� � 	0

1

0
�, 
3� � 	0

0

1
� . �3.1�

For r�1, the order of the indices �1,2,3� represents the tensored structure. Thus, for example, for
r=5,


11231� � 
1� � 
1� � 
2� � 
3� � 
1� . �3.2�

The fundamental realizations tij
�1� of Eq. �2.2� implemented in the tensored structure Eq. �1.14� of

ti,j
�r� lead to the following major consequences.

�I� Each set of states corresponding to a given sum of the indices �state labels 1,2,3� forms a
closed subspace under the action of T�r����. Define with �with ai= �1,2 ,3��

W
a1a2 . . . ar� = �a1 + a2 + ¯ + ar�
a1a2 . . . ar� . �3.3�

Then

�T�r����,W� = 0 �3.4�

implying for each state on the right of

T�r����
a1a2 . . . ar� = �
bi

f �a,b����
b1b2 . . . br�, �b1 + b2 + ¯ + br� = �a1 + a2 + ¯ + ar� .

�3.5�

Thus the 3r dimensional base space of T�r� splits into �2r+1� closed subspaces under the action of
T�r� as

Sr,Sr+1, . . . ,S2r−1,S2r,S2r+1, . . . ,S3r, �3.6�

where Sn corresponds to a1+a2+ . . . +ar=n. In constructing eigenstates of T�r� each Sn can be
treated separately simplifying the problem considerably. The simplest subspaces are the extreme
ones, namely

Sr = 
11 . . . 1� �3.7�

and

S3r = 
33 . . . 3� , �3.8�

�the index 1�3� being repeated r times�. These are already automatically eigenstates. The highest
dimensional subspace is obtained for n=2r which includes the state 
22. . .2�. Special feature of
some subspaces will be displayed below.
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�II� Within each subspace again T�r���� commutes with circular permutations of states labels.
Thus �CP� representing a circular permutation

�T�r����,�CP�� = 0 �3.9�

in the sense

�CP�2T�r�
a1a2a3, . . . ,ar−1ar� = �CP�T�r�
ara1a2, . . . ,ar−2ar−1� = T�r�
ar−1ara1, . . . ,ar−3ar−2�

�3.10�

and so on for all successive �CP� of the indices �a1a2 , . . . ,ar�.
�III� As a consequence the states in each invariant subspace can again be grouped together

implementing roots of unity as follows. Let 	 be any rth root of unity, i.e.,

	 = �1,ei�2
/r�,ei�2
/r�·2, . . . ,ei�2
/r�·�r−1�� �3.11�

and �for each possible value of 	, separately�


a1a2a3, . . . ,ar−1ar�	 � 
a1a2a3, . . . ,ar−1ar� + 	
ara1a2, . . . ,ar−2ar−1� + 	2
ar−1ara1, . . . ,ar−3ar−2�

+ ¯ + 	r−1
a2a3a4, . . . ,ara1� . �3.12�

The components states are, evidently, all in the same invariant subspace. For r different values of
	 these provide a mutually orthogonal set of r states diagonalizing CP since

�CP�
a1a2a3, . . . ,ar−1ar�	 = 	
a1a2a3, . . . ,ar−1ar�	. �3.13�

The action of T�r� on, say, 
a1a2 , . . . ,ar−1ar� gives directly, due to Eq. �3.10�, that on

a1a2 , . . . ,ar−1ar�	 for all values of 	. Thus one can effectively reduce the dimension of the
relevant subspace Sn for a given sum of state labels, �a1+a2+ ¯ +ar−1+ar�=n. Such a “two-step
reduction,” firstly, restriction to invariant subspaces Sn, second, introduction of roots of unity to
form eigenstates of �CP� will be shown to lead to a much slower increase with r �as compared to
e�ln 3�r� of the dimension of the spaces on which one has to diagonalize T�r�. This will be first
displayed through particular examples. The general formulation will be given at the end of this
section.

�IV� But another symmetry is appropriately mentioned at this stage �to be illustrated later
explicitly�. Interchanging the indices as

�1,2,3� → �3,2,1� . �3.14�

The action of T�r� is directly obtained via the inversion

q → q−1 �3.15�

in each coefficient. Thus the invariant subspaces related through Eq. �3.14� need not be studied
separately. The corresponding eigenstates and eigenvalues are related through Eq. �3.15�. It is
sufficient to study the first �r+1� subspaces since under Eqs. �3.14� and �3.15�,

S2r → S2r, �Sr,Sr+1, . . . ,S2r−1� � �S3r,S3r−1, . . . ,S2r+1� . �3.16�

Explicit examples for r= �3,4� will follow. Our ôN braid matrices remain nontrivial for q=1 as
pointed out in Ref. 2. Now Eq. �3.14� becomes a full symmetry. The degeneracy thus induced is
of interest.

�V� A final crucial feature is due to Eq. �1.16�,

�T�r����,T�r������ = 0. �3.17�

Suppose that for, say, r=4 in some subspace one obtains a closed subset of states �A ,B ,C ,D� with
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T�4����A = a11A + a12B + a13C + a14D, . . . ,T�4����D = d11A + d12B + d13C + d14D . �3.18�

The coefficients �a11, . . . ,d14� are in general polynomials in K���, the maximal degree being r
=4 for this case. Define eigenstates as

T�4������A + �B + C + �D� = v��A + �B + C + �D� , �3.19�

which are to be solved for by implementing Eq. �3.18� on the left. Consistency with Eq. �3.17�
imposes � independence �K independence� of �� ,� , ,��. Hence, on the right only v can be K
dependent. All K dependence of �a11, . . . ,d14� on the left must thus factorize as a polynomial �here
for r=4�

v = f4K4 + f3K3 + f2K2 + f1K + f0 �3.20�

for suitable �f4 , f3 , f2 , f1 , f0� which can depend on �q ,	� only. In general this leads to a set of
overdetermined set of coupled linear equations �for our case� in

��,�,,�; f4, f3, f2, f1, f0� . �3.21�

Varied illustrations will follow. Moreover, while all eigenvalues are, in general, K and q depen-
dent, all explicit q dependence �except for the implicit one through K of Eqs. �1.17� and �1.18��
must cancel in the overall trace �summing over all subspaces� to give Eq. �2.9�, i.e.,

Tr�T�r�� = 3�1 + K�r. �3.22�

This provides a stringent check �Appendix A�.

Special features of the subspaces „Sr ,S3r… , „Sr+1 ,S3r−1… ,S2r

• �Sr ,S3r�: As mentioned following Eqs. �3.7� and �3.8� these two are one-dimensional sub-
spaces. One obtains immediately, for all r,

T�r����
11 . . . 1� = �1 + Kr�
11 . . . 1� , �3.23�

T�r����
33 . . . 3� = �1 + Kr�
33 . . . 3� . �3.24�

These eigenstates of �CP�, singlets, provide the simplest illustrations of Eqs. �3.14� and �3.15�.
• �Sr+1 ,S3r−1�: For arbitrary r, with

	 = �1,ei�2
/r�,ei�2
/r�2, . . . ,ei�2
/r��r−1�� �3.25�

define

X	 = 
111 . . . 12� + 	
211 . . . 11� + 	2
121 . . . 11� + 	r−1
111 . . . 21� , �3.26�

Y	 = 
333 . . . 32� + 	
233 . . . 33� + 	2
323 . . . 33� + 	r−1
333 . . . 23� . �3.27�

One easily obtains

T�r����X	 = �Kr	 + 	r−1�X	, �3.28�

T�r����Y	 = �Kr	 + 	r−1�Y	. �3.29�

For the r values of 	 one obtains thus, in a single stroke, all the requisite r eigenstates for these
two r-dimensional subspaces. Note that
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�
	

�Kr	 + 	r−1� = �
	

�Kr	 + 	−1� = 0. �3.30�

Hence, �Sr+1 ,S3r−1� do not contribute to the total trace Tr�T�r�����.
For Sr+2�S3r−2� already the structure of eigenstates and eigenvalues are not so simple. �See

Appendix A for r=3,4.� Some special features of S2r are, however, worth mentioning, particularly
to compare the structures of r prime and non-prime.

• �S2r�: Like 
11. . .1� and 
33. . .3� , 
22. . .2� is also a singlet under �CP�. But unlike the former
the latter one does not form an 1-dimensional subspace. It can get coupled with the other states of
S2r �for 	=1� as follows. When r is prime, apart from 
22. . .2�, S2r is composed of r-plets �formed
using 	 with 	r=1�. When r is factorizable there can be intermediate multiplets corresponding to
factors �n1 ,n2 , . . . ,nk� of r= �n1n2 . . .nk�. Thus for r=4 �the first factorizable r� there are doublets
corresponding to r=2�2. For r=6, there are doublets and triplets between 1- and 6-plets. Let us
illustrate the situation using the simplest nontrivial cases r=3,4.

� �r=3,S6�: Define

A1 = 
222�, B	 = 
123� + 	
312� + 	2
231�, C	 = 
321� + 	
132� + 	2
213� , �3.31�

where 	= �1,ei�2
/3� ,ei�2
/3�2�. In our notation A1 indicates that here �for singlet� one has only 	
=1. Correspondingly �B1 ,C1� will denote the latter for 	=1. Consistently with Eq. �3.9� set

T�3������A1 + �B1 + C1� = v��A1 + �B1 + C1� �3.32�

for 	=1 and

T�3������B	 + �C	� = w��B	 + �C	� �3.33�

for 	= �ei�2
/3� ,e−i�2
/3��. Here �� ,w� are assumed to be cubic polynomials in K and
�� ,� ,� , �� ,�� to be K independent. Note also that

�1 � 3�B	 = C	. �3.34�

Hence, �consistently with Eqs. �3.14� and �3.15�� one obtains the coefficient in T�3����C	 by
inverting q to q−1 in those of T�3����B	. Explicit solutions are given in Appendix A. Here we only
note that the decoupling of A1 in Eq. �3.33� is assured via the structure

T�3����A1 = a11A1 + a12B1 + a13C1,

T�3����B	 = �1 + 	 + 	2�b11A1 + b12B	 + b13C	,

T�3����C	 = �1 + 	 + 	2�c11A1 + c12B	 + c13C	. �3.35�

� �r=4,S8�: Here, after the �CP�- singlet

A1 = 
2222� �3.36�

one has also that doublets

B±1 = 
1313� ± 
3131� �3.37�

and then the quartets completing the 19-dimensional S8 for all values of 	, namely,

	 = �1,ei�2
/4�,ei�2
/4�·2,ei�2
/4�·3� = �1,i,− 1,− i� , �3.38�

C	 = 
1133� + 	
3113� + 	2
3311� + 	3
1331� ,

D	 = 
1223� + 	
3122� + 	2
2312� + 	3
2231� ,
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E	 = 
3221� + 	
1322� + 	2
2132� + 	3
2213� ,

F	 = 
1232� + 	
2123� + 	2
3212� + 	3
2321� . �3.39�

Note also that

�1 � 3��C	,D	,E	,F	� = �	2C	,E	,D	,	2F	� , �3.40�

which simplifies computations according to Eqs. �3.14� and �3.15�. The set F	 alone has a dis-
tinctive feature. The two indices 2 remain separated �unlike for D	 ,E	� under �CP�. This singles
it out directly as an eigenstate of T�4���� �Appendix A�. As for �C	 ,D	 ,E	� decouplings, analo-
gous to Eq. �3.35� but in two stages

�1� from A1 for 	= �−1, ± i�,
�2� and also from B±1 for 	= �±i�

are assured through factors of the type �Appendix A�,

�1 + 	 + 	2 + 	3�,�1 + 	2��1 ± 	� . �3.41�

The maximal set of five coupled linear equations arises for �	=1�

T�4�����aA1 + bB1 + cC1 + dD1 + eE1� = v1�aA1 + bB1 + cC1 + dD1 + eE1� . �3.42�

To conclude we emphasize again that for r= �3,4� in base spaces respectively of dimensions
�27,81� the maximal set of coupled linear equations encountered are sets of �3,5� respectively. This
is the slow growth with r signaled before �end of �III��.

For r= �1,2 ,3 ,4� we have studied the invariant subspaces Sn explicitly. Let us now indicate
the general situation. Associate the variables �x1 ,x2 ,x3� to the states �
1� , 
2� , 
3�� respectively. In
the expansion

�x1 + x2 + x3�r = �
n1,n2,n3

Cn1,n2,n3
x1

n1x2
n2x3

n3 �3.43�

for each term

n1 + n2 + n3 = r �3.44�

and

�
n1,n2,n3

Cn1,n2,n3
= 3r. �3.45�

Imposing an additional constraint one obtains the subsets

dim Sn = �
n1,n2,n3

Cn1,n2,n3
, �n1 + 2n2 + 3n3 = n� �3.46�

for n= �r ,r+1, . . . ,2r , . . . ,3r�. The dimension of the total base space for order r is given by Eq.
�3.45�.

Let us consider as an example the central subspace S10 for r=5. From Eq. �3.46� one easily
finds

dim S10 = 51 �r = 5� . �3.47�

The states can be grouped into multiplets as follows with:

	5 = 1, �3.48�
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V1
�1� = 
22222� ,

V2
�	� = �
13222� + 	
21322� + 	2
22132� + 	3
22213� + 	4
32221�� � ��CP�
13222��	,

V3
�	� = ��CP�
12322��	,

V4
�	� = ��CP�
13132��	,

V5
�	� = ��CP�
13312��	,

V6
�	� = ��CP�
13321��	,

�V7
�	�, . . . ,V11

�	�� = �1 � 3��V2
�	�, . . . ,V6

�	�� , �3.49�

i.e., V7
�	�= ��CP� 
31222��	 and so on. For 	=1, now one has to solve a set of 11 �coupling

V1
�1� , . . .V11

�1�� linear equations. This is the maximal such set for r=5 where the total dimension is
243.

Whenever r is a prime number, i.e., r= �1,3 ,5 ,7 ,11,13, . . . �, the multiplet structure is rela-
tively simple. Thus for S2r apart from 
22. . .2� there are only r-plets in terms of the roots 	r=1.
When r is factorizable lower multiplets can arise corresponding to factors of r. We have illustrated
this for r=4.

IV. CHAIN HAMILTONIANS „N=3…

The Hamiltonian for order r is defined as

H�r� = �T�r������=0
−1 ����T�r�������=0. �4.1�

Instead of using the standard formulation as a sum �see the basic references in Sec. IV of Ref. 3�

H�r� = �
k=1

r

I � I � ¯ � R̂
˙

k,k+1�0� � I � ¯ � I , �4.2�

where

R̂
˙

k1,k+1�0� = ���R̂k,k+1�����=0 �4.3�

with the circular boundary condition for k=r �r+11� we will use Eq. �4.1� directly, as explained
below, in a fashion particularly well adapted to our formalism for constructing eigenstates.

Define starting from Eq. �1.17�, i.e.,

K��� = −
sinh �

sinh�� + ��
, �4.4�

K̇0 � ���K�����=0 = − �sinh ��−1 �4.5�

with K0= �K�����=0=0. We start with eigenstate of T�r����,


V�	 = �c1A1 + c2A2 + ¯ + cmAm�	, �4.6�

where the subscript 	 indicates that each Ai �i=1, . . . ,m� is an eigenstate of �CP�, circular per-
mutation of r state labels corresponding to a subspace Sn �n=r , . . . ,3r� �see Sec. III and Appendix
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A�. Thus for example, for r=3 and Sn=S5 �see Eqs. �A13� and �A18�–�A20�� 
V�	=aA	+bB	,
where

A	 = �
113� + 	
311� + 	2
131��, B	 = �
122� + 	
212� + 	2
221�� , �4.7�

with 	3=1. Quite generally, if for Eq. �4.6�,

T�r����
V� = v
V� = v��
k

ckAk� �4.8�

then as explained and emphasized �in Sec. III and Appendix A� the coefficients ck can depend on
q �but not on �� the only � dependence on the right is in v, a polynomial of order r in K���,

v = fr�K����r + fr−1�K����r−1 + ¯ + f1�K���� + f0, �4.9�

where the coefficients f i are each � independent. Thus for Eq. �4.7� the solutions �for each value
of 	� are

�1� �a,b� = �q1/2 + 	q−1/2,1� ,

v = 	2K3 + ��q + q−1�	2 + �1 + 	 + 	2��K2 + ��q + q−1�	 + �1 + 	 + 	2��K + 	 ,

�4.10�

�2� �a,b� = �1,− �q1/2 + 	2q−1/2��, v = 	2K3 + 	 . �4.11�

From Eqs. �4.5�, �4.8�, and �4.9� one obtains �since K0=0� the general result �with Ṫ0
�r�

����T�r������=0 ,T0
�r�= �T�r������=0�

Ṫ0
�r�
V� = K̇0f1
V� , �4.12�

T0
�r�
V� = f0
V� = 	
V� �4.13�

and hence,

�T0
�r��−1
V� = 	r−1
V� . �4.14�

The result f0=	 �and f0
−1=	r−1 for 	r=1� is a general one. This corresponds to our use of

eigenstates �CP� as basis states since for our class T0 coincides with �CP�. Hence, finally

H�r�
V� = T 0
−1Ṫ0
V� = �K̇0	r−1f1�
V� . �4.15�

Thus starting with an eigenstate of T�r���� in our formalism it remains one of H�r� and the eigen-
value of H�r� is extracted, as above from that of T�r�. Note that for

f1 = 0, H�r�
V� = 0. �4.16�

Thus for Eq. �4.11�,

H�3��A	 − �q−1/2 + 	2q−1/2�B	� = 0. �4.17�

From Eqs. �3.23�–�3.29� it follows that, for all r:

H�r��Sr,S3r;Sr+1,S3r−1�  0, �4.18�

i.e., each eigenstate belonging to these subspaces is annihilated by H�r�.
For r=2, the explicit form of the Hamiltonian is
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�K̇0�−1H�2� = �q + q−1��11� � �33� + �q1/2 + q−1/2��12� � �32� + 2�13� � �31� + �q1/2 + q−1/2��21�

� �23� + 2�22� � �22� + �q1/2 + q−1/2��23� � �21� + 2�31� � �33� + �q1/2 + q−1/2��32�

� �12� + �q + q−1��33� � �11� . �4.19�

Consistently with Eq. �4.18�

H�2��
11�, 
33�; 
12�, 
21�; 
23�, 
32�� = 0. �4.20�

For the only remaining subspace S4, setting

H�2��a
13� + b
22� + c
31�� = vH�a
13� + b
22� + c
31�� . �4.21�

One obtains the solutions

�1� �a,b,c� = �1,− �q1/2 + q−1/2�,1�; vH = 0,

�2� �a,b,c� = �1,0,− 1�; vH = K̇0�q + q−1 − 2�,

�3� �a,b,c� = �1,2�q1/2 + q−1/2�−1,1�; vH = K̇0�q + q−1 + 4� . �4.22�

Combining Eqs. �4.15� with Eqs. �A4�–�A6� one consistently reproduces the results Eqs.
�4.20�–�4.22� obtained using the explicit form Eq. �4.19�. Note that for r=2 and 	=−1, Eq. �4.15�
gives

H�2�
V� = − K̇0f1
V� . �4.23�

This corresponds to the positive sign in solution �2� of Eq. �4.22� since in Eq. �A6� the corre-
sponding factor is

f1 = − �q + q−1 − 2� . �4.24�

Such changes of sign introduce a qualitative change: Tr�T�r�� in Eq. �2.9� has no explicit depen-
dence on q �only an implicit one though K�. But Tr�H�r�� can have explicit q dependence. For the
simple example above �N=3,r=2�,

Tr�H�2�� = 2K̇0�q + q−1 + 1� . �4.25�

Selection rules for transitions

Adopting the convention of attaching to the states �
1� , 
2� , 
3�� respectively the “spins”

�+ ,0,− � �4.26�

it is seen from Eq. �4.19� that the action of the Hamiltonian on neighboring sites, induces transi-
tions only when the sum of the two spins is zero, i.e., for

�+ − �, �00�, �− + � . �4.27�

The final states corresponding again to zero sum. Thus one has nonzero matrix elements for a

neighboring pair 
ij�→
H


kl� only when for the corresponding spins

�i + � j = 0 = �k + �l. �4.28�

Such matrix elements depend on �K̇0 ,q�. The structure of H�r� in Eq. �4.2� indicates that Eq. �4.21�
is a generic feature. Any pair of the type Eq. �4.27� somewhere in the chain can start transitions
which can propagate along the chain since the three possibilities in Eq. �4.27� can create such a
pair with the next neighboring site and so on.
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V. N>3

Three basic features displayed and studied at length for N=3 are

�1� A simple recursion relation yielding the trace of the transfer matrix for any order r �see Eqs.
�2.2�–�2.9��.

�2� Invariant subspaces corresponding to the sum of the state labels �see Eqs. �3.1�–�3.6� and
Appendix A�.

�3� Role of �CP� circular permutation of state labels within each invariant subspace Sn �see Eqs.
�3.9�–�3.13� and Appendix A�.

It was shown �for N=3� how �2� and �3� greatly simplify the construction of eigenstates and
eigenvalues of T�r���� for successive values of r.

We now indicate how these features are carried over for N�3 via the simplest possibilities,
namely N=4, r= �1,2�. Now, as compared to Eqs. �1.17� and �1.18�,

K��� = −
sinh �

sinh�� + ��
, �5.1�

where e�+e−�= �q2+1+q−2�+1= �q+q−1�2. As compared to Eq. �2.2� �writing tij for tij
�1����, i

= �1,2 ,3 ,4� and K for K����

t11 = 	
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 K
	 � �11� + K�44�

and similarly,

t12 = �21� + Kq�43�, t13 = �31� + Kq�42�, t14 = �1 + Kq2��41� ,

t21 = �12� + Kq−1�34�, t22 = �22� + K�33�, t23 = �1 + K��32�, t24 = Kq�31� + �42� ,

t31 = �13� + Kq−1�24�, t32 = �1 + K��23�, t33 = K�22� + �33�, t34 = Kq�21� + �43� ,

t41 = �1 + Kq−2��14�, t42 = Kq−1�13� + �24�, t43 = Kq−1�12� + �34�, t44 = K�11� + �44� .

�5.2�

As compared to Eqs. �2.3�–�2.9� recursion relations are now �suppressing arguments ��

tij
�r+1� = ti1

�1�
� t1j

�r� + ti2
�2�

� t2j
�r� + ti3

�1�
� t3j

�r� + ti4
�1�

� t4j
�r�, �i, j = 1,2,3,4� �5.3�

giving �due to Eq. �5.2��

t1j
�r+1� = ��11� + K�44�� � t1j

�r� + ��21� + Kq�43�� � t2j
�r� + ��31� + Kq�42�� � t3j

�r� + �1 + Kq2��41� � t4j
�r�,

t2j
�r+1� = ��12� + Kq−1�34�� � t1j

�r� + ��22� + K�33�� � t2j
�r� + �1 + K��32� � t3j

�r� + �Kq�31� + �42�� � t4j
�r�,

t3j
�r+1� = ��13� + Kq−1�24�� � t1j

�r� + �1 + K��23� � t2j
�r� + �K�22� + �33�� � t3j

�r� + �Kq�21� + �43�� � t4j
�r�,

t4j
�r+1� = �1 + Kq−2��14� � t1j

�r� + �Kq−1�13� + �24�� � t2j
�r� + �Kq−1�12� + �34�� � t3j

�r� + �K�11� + �44��

� t4j
�r�. �5.4�

Hence, for the transfer matrix
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T�r+1� = t11
�r+1� + t22

�r+1� + t33
�r+1� + t44

�r+1� = 	
t11
�r� + Kt44

�r� t12
�r� + Kq−1t34

�r� t13
�r� + Kq−1t34

�r� �1 + Kq−2�t14
�r�

t21
�r� + Kt43

�r� t22
�r� + Kt33

�r� �1 + K�t23
�r� Kq−1t13

�r� + t24
�r�

t31
�r� + Kqt42

�r� �1 + K�t32
�r� Kt22

�r� + t33
�r� Kq−1t12

�r� + t34
�r�

�1 + kq2�t41
�r� t42

�r� + Kqt31
�r� Kqt21

�r� + t43
�r� Kt11

�r� + t44
�r�
	 .

�5.5�

One now obtains

Tr�T�r+1�� = �K + 1�Tr�T r� , �5.6�

but

T�1� = �K + 1�I4. �5.7�

Hence,

Tr�T�r�� = 4�K + 1�r. �5.8�

It is not difficult to obtain the general result �following from the fact that only the diagonal blocks
tii
�r� have diagonal terms�

Tr�T�r�� = N�K + 1�r. �5.9�

For N= �3,4� the particular solutions are given by Eqs. �2.9� and �5.8�, respectively.
Now let us consider the eigenstates of T�r���� for N=4, r=1,2. As compared to Eq. �3.1� we

now have the fundamental state vectors


1� = 	
1

0

0

0
� , 
2� = 	

0

1

0

0
� , 
3� = 	

0

0

1

0
� , 
4� = 	

0

0

0

1
� �5.10�

and, as before, we denote tensor products as


ijk . . . � = 
i� � 
j� � 
k� � . . . . �5.11�

For a given n, as before, the set of states with

i + j + k + ¯ = n �5.12�

will constitute the basis of the subspace Sn. For r=1 the situation is trivial. From Eq. �5.2�

T�1� = t11 + t22 + t33 + t44 = �K + 1�I4, �5.13�

T�1�
i� = �K + 1�
i�, �i = 1,2,3,4� . �5.14�

For r=2, from Eqs. �5.2� and �5.5�,

T�2� = �K2 + 1�P + 2K��11� � �44� + �22� � �33� + �33� � �22� + �44� � �11��K�q + q−1���12�

� �43� + �13� � �42� + �21� � �34� + �24� � �31� + �31� � �24� + �34� � �21� + �42� � �13�

+ �43� � �12�� + K�q2 + q−2���14� � �41� + �41� � �14�� , �5.15�

where

P = �
ij

�ij� � � ji�, �i, j = 1,2,3,4� . �5.16�
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Implementing the definitions Eqs. �5.10�–�5.12� one obtains from Eq. �5.15� for the subspaces
�S2 , . . . ,S8� the following results �with �= ±1�,

S2: T�2�
11� = �K2 + 1�
11� ,

S8: T�2�
44� = �K2 + 1�
44� ,

S3: T�2��
12� + �
21� = ��K2 + 1��
12� + �
21� ,

S7: T�2��
43� + �
34�� = ��K2 + 1��
43� + �
34�� ,

S4: T�2�
22� = �K2 + 1�
22� ,

T�2��
13� + �
31�� = ��K2 + 1��
13� + �
31�� ,

S6: T�2�
33� = �K2 + 1�
33� ,

T�2��
42� + �
24�� = ��K2 + 1��
42� + �
24�� , �5.17�

S5: T�2��
14� − 
41�� = − ��K2 − 2K + 1� + K�q2 + q−2���
14� − 
41�� �5.18�

T�2��
23� − 
32�� = − �K2 − 2K + 1��
23� − 
32�� . �5.19�

Finally, denoting


A� = �
14� + 
41��, 
B� = �
23� + 
32�� �5.20�

and setting

T�2��a
A� + b
B�� = v�a
A� + b
B�� , �5.21�

where

v = K2 + 1 + Kf , �5.22�

f begin K independent �a function f�q� of q only�, one obtains the constraints

a��q + q−1�2 − f� + 2b�q + q−1� = 0, 2a�q + q−1� + b�2 − f� = 0. �5.23�

Hence,

f = 1
2 �q2 + q−2 + 4� ± 1

2
��q + q−1�4 + 12�q + q−1�2 + 4 �5.24�

with corresponding K-independent values of �a ,b�. The sum of the eigenvalues given by Eqs.
�5.17�–�5.24� is

4�K + 1�2, �5.25�

consistently with Eq. �5.8� for r=2. Our explicit results for r=2 not only shows how the basic
properties �1�, �2�, �3� stated at the beginning of this section are all realized systematically but also
how Eq. �3.14� is carried over, the subspaces now being paired via

�1,2,3,4� → �4,3,2,1� . �5.26�
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The chain Hamiltonian for any N is given by Eqs. �4.1�–�4.3� with Eqs. �1.4�–�1.7� giving P0�

in R̂
˙

0= K̇0P0�. In K̇0 of Eq. �4.5� now, from Eq. �1.3�, e�+e−�= �N−1�+1. For r=2, one obtains for
example

H�2� = K̇0�P0� + PP0�P� = K̇0��
i,j=1

N

�q�i�−�j + q�i−�j���ij� � �i�j��� . �5.27�

For N=4 this corresponds to

�K̇0�−1H�2� = �q−2 + q2��11� � �44� + �q−1 + q��12� � �43� + �q−1 + q��13� � �42� + 2�14� � �41�

+ �q−1 + q��21� � �34� + 2�22� � �33� + 2�23� � �32� + �q−1 + q��24� � �31�

+ �q−1 + q��31� � �24� + 2�32� � �23� + 2�33� � �22� + �q−1 + q��34� � �21� + 2�41�

� �14� + �q−1 + q��42� � �13� + �q−1 + q��43� � �12� + �q−2 + q2��44� � �11� .

�5.28�

Generalizations for r�2 can be written down systematically. If the spin associated with the state

i� is denoted as �i then Eq. �4.1� along with structures analogous to Eq. �5.27� implies transitions
�if the states of two neighboring sites have spins � j, � j��

�� j,� j�� → ��i,�i�� �5.29�

with evident q-dependent transition amplitudes corresponding to the matrix elements of H�r� for
order r. In particular if, for example,

��1,�2, . . . ,�N−1,�N� = �N − 1

2
,
N − 2

2
, . . . ,−

N − 2

2
,−

N − 1

2
� �5.30�

then

�i + �i� = 0 �i� = N − i + 1� . �5.31�

For N=3 �as discussed in Eqs. �4.26�–�4.28��,

��1,�2,�3� = �1,0,− 1� �5.32�

and for N=4

��1,�2,�3,�4� = � 3
2 , 1

2 ,− 1
2 ,− 3

2� �5.33�

and so on.
If for two adjacent sites �including circular boundary constraints� one has states �
i� , 
i��� they

can be flipped to any pair �
j� , 
j���. Thus such a flip can propagate along the chain for any state 
j�
of the next site.

A thorough investigation of our class of models for arbirtary N is beyond the scope of the
present paper. We have, however, indicated how the basic features studied for N=3 are carried
over as N increases. Such properties are conserved due to the specific structure of P0� as defined in
Eqs. �1.4�–�1.7�.

We just mention finally that features parallel to those discussion for N=3 in Eqs. �3.43�–�3.49�
can be carried over starting with the multimonial expansion of

�x1 + x2 + x3 + ¯ + xN�r. �5.34�

Dimensions of invariant subspaces are obtained entirely analogously.
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VI. POTENTIAL FOR FACTORIZABLE S MATRIX „N=3…

As in Sec. V of Ref. 3 we construct the inverse Cayley transform of the YB matrix which is
also the t�1���� matrix �2.1� and given by Eq. �2.2� for N=3 for the class studied in this paper. The
role of this in providing the potential for factorizable S matrices can be found in various sources.5,6

As explained and emphasized in Sec. V of Ref. 3 an arbitrary normalization factor �denoted −1

���� of R��� must be introduced to start with for the inversion involved in the transform to be
well-defined. The explicit inversion in the first factor of

− iV = �R��� − ����I�−1�R��� + ����I� �6.1�

will display admissible choices of ����. Defining

X�R��� − ����I� = I, − iV = X�X−1 + 2����I� = I + 2����X , �6.2�

for N=3, Eq. �2.1� leads to �suppressing the argument � in notation below�

X	
1 − � 0 0 0 0 0 0 0 0

0 − � 0 1 0 0 0 0 0

0 0 K − � 0 q1/2K 0 1 + qK 0 0

0 1 0 − � 0 0 0 0 0

0 0 q−1/2K 0 1 + K − � 0 q1/2K 0 0

0 0 0 0 0 − � 0 1 0

0 0 1 + q−1K 0 q−1/2K 0 K − � 0 0

0 0 0 0 0 1 0 − � 0

0 0 0 0 0 0 0 0 1 − �

	 = I , �6.3�

Only the nonzero elements of X will be given below. One obtains easily

�X11,X99� = �1 − ��−1, �X22,X44,X66,X88� =
�

�1 − �2�
, �X24,X42,X68,X86� =

1

�1 − �2�
.

�6.4�

These already show �� ±1. For i= �3,5 ,7� one obtains the equations

�− Xi3� + Xi7� + q−1/2KZi = �i3, Xi5�1 − �� + KZi = �i5, �Xi3 − �Xi7� + Kq1/2Zi = �i7,

�6.5�

where

Zi � q1/2Xi3 + Xi5 + q−1/2Xi7. �6.6�

The solutions for i= �3,5 ,7� are, respectively, the following ones. For i=3, �X33,X35,X37� are
given by

X33 =
�

1 − �2 + q−1/2�q + �

1 + �
�X35, �6.7�

X37 =
1

1 − �2 + q−1/2�1 + q�

1 + �
�X35, �6.8�

Z3 =
q−1/2�1 + q��

1 − �2 + �q + q−1 + 1 + 3�

1 + �
�X35, �6.9�
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X35�1 − �� + KZ3 = 0. �6.10�

The K dependence is now explicit. The case i=3,7 are related though the exchange of indices and
inversion of q, namely

�3,7;q� � �7,3;q−1� . �6.11�

For i=5,

X53�1 + q�� = X57�q + �� , �6.12�

X53 = −
q−1/2�q + ��

1 − �2 +
�q + ��q−1/2

1 + �
X55, �6.13�

X57 = −
q−1/2�1 + q��

1 − �2 +
�1 + q��q−1/2

1 + �
X55, �6.14�

Z5 = −
q + q−1 + 2�

1 − �2 +
3� + 1 + q + q−1

1 + �
X55, �6.15�

X55�1 − �� + KZ5 = 1. �6.16�

Now Eqs. �6.19� and �6.20� give directly X55. Next Eqs. �6.17� and �6.18� give X53 and X57.
Finally, we obtain

X =

	
	
	
	
	 1

1 − �
0 0 0 0 0 0 0 0

0
1

1 − �2 0
1

1 − �2 0 0 0 0 0

0 0 A 0 B 0 C 0 0

0
1

1 − �2 0
�

1 − �2 0 0 0 0 0

0 0 D 0 E 0 B 0 0

0 0 0 0 0
�

1 − �2 0
1

1 − �2 0

0 0 F 0 D 0 A 0 0

0 0 0 0 0
1

1 − �2 0
�

1 − �2 0

0 0 0 0 0 0 0 0
1

1 − �
	
	
	
	
	

�6.17�

where

A =
��2 − � − 2K� + K�q

�1 − ���q�2 − 3qK� − q2K − K − qK − q�
= X33 = X77,

B =
�q� + 1�q1/2K

�1 − ���q�2 − 3qK� − q2K − K − qK − q�
= X35 = X57,
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C =
�� + qK� − qK − 1 − K�q

�1 − ���q�2 − 3qK� − q2K − K − qK − q�
= X37,

D =
K�� + q�q1/2

�1 − ���q�2 − 3qK� − q2K − K − qK − q�
= X53 = X75,

E =
q�2 − 2Kq� − q2K − K − q

�1 − ���q�2 − 3qK� − q2K − K − qK − q�
= X55,

F =
− q − qK + q� − K + K�

�1 − ���q�2 − 3qK� − q2K − K − qK − q�
= X73, �6.18�

where �� ±1, 1
2 �3K±�9K2+4�q+1+q−1�K+4��.

From X, V is obtained as indicated in Eq. �6.2�. Expressing it as

V = �
ab,cd

V�ab,cd��ab� � �cd� . �6.19�

The corresponding fermionic Lagrangian should be

L =� dx�i�̄a����a − g��̄a��c�Vab,cd��̄b��d�� . �6.20�

The scalar Lagrangian can be obtained analogously. Such Lagrangians correspond to S matrices
factorizable into two particles scattering independently of the chosen order of the latter ones.

VII. DISCUSSION

In Ref. 3 and in the present paper we have studied two different classes of statistical models.
Certain aspects of the respective transfer matrices are strikingly contrasted. Such a major differ-
ence is in the number of parameters. The first model is indeed multiparameter. One has 1

2 �N+3�
��N−1� free parameters �N=3,4 , . . . �. Here the only parameter is q appearing in the braid matrix
given by Eqs. �1.2�–�1.7� and in K��� as defined by Eqs. �1.17�–�1.20�. The structures of the
eigenvalues of the respective transfer matrices are also quite different. In Ref. 3 we obtained single
exponentials as eigenvalues, the exponent being a sum of the free parameters multiplied by �.
Here we have rth order polynomials in K��� for the eigenvalues of T�r����. There are other
differences. But analogies and common features are also remarkable.

�a� In both case Tr �T�r����� is obtained quite simply for all r �though the structures are
different�. In �6.1� of Ref. 3 we obtained �for N=2p−1�

Tr�T�r����� = 2�erm11
�+�� + erm22

�+�� + ¯ + ermp−1,p−1
�+� �� + 1 �7.1�

the mii
�+� being a subset of the free parameters. Here �for N=3,4 , . . .� the corresponding result Eq.

�5.9� is

Tr�T�r����� = N�K��� + 1�r, �7.2�

where K��� is given by Eqs. �1.3� and �1.17�.
�b� In both cases the Nr dimensional base space of T�r���� breaks up into closed subspaces of

lower dimensions. The definitions of these subspaces have some differences however. The relevant
definitions in Ref. 3 should be compared to Eqs. �3.2�–�3.6� here and their generalization in Sec.
V.

�c� In each subspace Sn the circular permutation of states labels as formulated in Eqs.
�3.9�–�3.19� leads to a further reduction of dimension in constructing eigenstates by splitting Sn
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again into subsets corresponds to the eigenstates of the operator �CP� of circular permutations.
This involves a crucial role of the roots of unity, �	r=1 for T�r����� in the construction of eigen-
states. The role of roots of unity was also crucial in Ref. 3 though they were implemented in a
slightly different fashion �corresponding to the difference in labeling states�.

In both cases the “two-step reduction” �via �b� and �c�� in the effective dimension of the basis
in construction of eigenstates has been emphasized �see the formulation of Sec. III�. The expo-
nential increase in dimension with r �e�ln N�r� is replaced in actual construction by a relatively
moderate polynomial one. Thus for N=3 and r=4 we have to solve here at most a set of 5
simultaneous linear equations �Appendix A� though now Nr is 34=81. This reduction of the
problem to a relatively low number of linear equations should be constrasted to the implementa-
tion of algebraic Bethe ansatz.6–8 For the latter one has to solve complex nonlinear equations
whose number increases along with N.

In the preceding sections �particularly in Sec. III for N=3 and in Sec. V for N�3�, we have
formulated carefully the crucial properties, basic features of models corresponding to the braid
matrices presented in Ref. 2. Exploiting such properties we have constructed eigenstates and
eigenvalues of T�r���� for N=3, r= �1,2 ,3 ,4� �Appendix A�. Certain related features for all r have
been formulated at the end of Sec. III. Chain Hamiltonians and potentials for factorizable S
matrices have been studied �Secs. IV and VI�.

Further explorations in several directions are evidently desirable. Reflection equations9,10 and
correlation functions11,12 should be studied. More basically one may try to elucidate the relevance
of the star-triangle relations4 encoded in our class of braid matrices to specific contexts. We hope
to undertake such studies elsewhere.
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APPENDIX A: EIGENSTATES AND EIGENVALUES OF T„r…
„�… FOR r=1,2,3,4 „N=3…

We start by noting the following points:

�1� For each case the subscript n of Sn denotes the sum of the state labels �see discussion from
Eqs. �3.3� to �3.6��.

�2� For each r we present results only up to S2r. The remaining subspaces �S2r+1 , . . . ,S3r� are
then obtained implementing Eqs. �3.14�–�3.16�.

�3� For different subspaces we often repeat the same notations for states. Since T�r� does not
couple such spaces no confusion is likely.

�4� The notation K and 	 correspond to Eqs. �1.17� and �3.11�, respectively. �CP� denotes
circular permutations.

1. r=1

The three states directly furnish the spectrum, each being a one-dimensional subspace

T�1�����
1�, 
2�, 
3�� = �1 + K��
1�, 
2�, 
3�� , �A1�

Tr�T�1����� = 3�1 + K� . �A2�
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2. r=2

The �CP� eigenstates constructed as in Eqs. �3.10�–�3.13�, with 	2=1, give

S2: A1 = 
11� ,

S3: A±1 = 
12� + 
21� ,

S4: A1 = 
22�, B±1 = 
13� ± 
31� . �A3�

One obtains �K being K����,

S2:T�2����A1 = �K2 + 1�A1, �A4�

S3:T�2����A±1 = ± �K2 + 1�A±1, �A5�

S4:T�2����B−1 = − �K2 + �q + q−1 − 2�K + 1�B−1,

T�2�����B1 − �q1/2 + q−1/2�A1� = �K2 + 1��B1 − �q1/2 + q−1/2�A1� ,

T�2������q1/2 + q−1/2�B1 + 2A1� = �K2 + �q + q−1 + 4�K + 1���q1/2 + q−1/2�B1 + 2A1� . �A6�

Also

�S5,S6� � �S3,S2� �A7�

according to Eqs. �3.14�–�3.16�. Summing over all subspaces �S2 , . . . ,S6�,

Tr�T�1����� = 3�1 + K�2 �A8�

consistently with Eq. �2.9�. We have not uniformly normalized the states. Thus �A1 
A1�=1 and
�B±1 
B±1�=2. This is crucial to the orthogonality

�B1 − �q1/2 + q−1/2�A1
�q1/2 + q−1/2�B1 + 2A1� = 0. �A9�

This point displayed here for this simple case will not be repeated in cases to follow.

3. r=3

Here

	 = �1,e�2
/3�,e�2
/3�2� �A10�

and �CP� eigenstates for �S3 ,S4 ,S5 ,S6� are

S3: A1 = 
111� , �A11�

S4: A	 = 
112� + 	
211� + 	2
121� , �A12�

S5: A	 = 
113� + 	
311� + 	2
131�, B	 = 
122� + 	
212� + 	2
221� , �A13�

S6: A1 = 
222�, B	 = 
123� + 	
312� + 	2
231� ,

C	 = 
321� + 	
132� + 	2
213� = �1 � 3�B	. �A14�

Also
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�1 � 3��S3,S4,S5� = �S9,S8,S7� . �A15�

The T�3���� eigenstates are now obtained as follows:

S3: T�3����A1 = �K3 + 1�A1, �A16�

S4: T�3����A	 = �K2	 + 	2�A	, �A17�

S5: T�3�����aA	 + bB	� = v�aA	 + bB	� . �A18�

Solutions:

�1� �a,b� = �q1/2 + 	q−1/2,1� ,

v = 	2K3 + �q + q−1��	2K2 + 	K� + �1 + 	 + 	2��K2 + K� + 	 , �A19�

�2� �a,b� = �1,− �q1/2 + 	2q−1/2��, v = K3	2 + 	 . �A20�

�S6: For 	=e±�2
/3�, A1 is decoupled. Set

T�3�����bB	 + cC	� = v�bB	 + cC	� . �A21�

Solutions:

�1� �b,c� = �q,− 1�, v = K3	2 + 	 �A22�

�2� �b,c� = �1,q�, v = K3	2 + 	 + �q + q−1��K2	2 + K	� . �A23�

For the values of 	��1�, with 	+	2=−1 the sum of eigenvalues

�v = − 2�K3 + 1� − �q + q−1��K2 + K� . �A24�

For 	−1, T�3� couples �A1 ,B1 ,C1�. Set

T�3���A1 + �B1 + C1� = v1��A1 + �B1 + C1� . �A25�

Solutions:

�1� ��,�,� = �0,q1/2,− q−1/2�, v1 = �K + 1��K2 − K + 1� , �A26�

�2� ��,�,� = �− �q + q−1�,q−1/2,q1/2�, v1 = �K + 1��K2 − K + 1� , �A27�

�3� ��,�,� = �3,q−1/2,q1/2�, v1 = �K + 1���K2 − K + 1� + K�q + q−1 + 3�� . �A28�

Concerning orthogonality note that

�A1
A1� = 1, �B1
B1� = �C1
C1� = 3. �A29�

The sum of the eigenvalues over S6 is

��v�S6
= K3 + 1 + 3K�K + 1� . �A30�

The results for �S7 ,S8 ,S9� are obtained, as usual, directly from those of �S5 ,S4 ,S3�, respectively.
Summing over all the subspaces �S3 , . . . ,S9� one obtains �all explicit q dependence canceling

consistently with Eq. �2.9��,

Tr�T�3����� = �K3 + 1� + �K3 + 1� + 3�K2 + K� + 3�K2 + K� + �K3 + 1� + 3�K2 + K� = 3�K + 1�3.

�A31�
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4. r=4

Here

	 = �1,ei�2
/4�,ei�2
/4�2,ei�2
/4�3� = �1,i,− 1,i� . �A32�

Of the invariant subspaces we consider �S4 ,S5 ,S6 ,S7 ,S8�. One obtains the results of the remaining
ones via �1,2 ,3 ;q�↔ �3,2 ,1 ;q−1� as

�S9,S10,S11,S12� � �S7,S6,S5,S4� . �A33�

For brevity and simplicity, we will recapitulate our results in Tables I and II.

TABLE I. CP eigenstates for r=4.

Subspace �CP� eigenstates Dimension

S4 
1111� 1
S5 A	= 
1112�+	 
2111�+	2 
1211�+	3 
1121� 4
S6 A±1= 
1212�± 
2121� 10

B	= 
1113�+	 
3111�+	2 
1311�+	3 
1131�
C	= 
1122�+	 
2112�+	2 
2211�+	3 
1221�

S7 A	= 
1222�+	 
2122�+	2 
2212�+	3 
2221� 16
B	= 
1123�+	 
3112�+	2 
2311�+	3 
1231�
C	= 
1132�+	 
2113�+	2 
3211�+	3 
1321�
D	= 
1213�+	 
3121�+	2 
1312�+	3 
2131�

S8 A1= 
2222� 19
B±1= 
1313�± 
3131�

C	= 
1133�+	 
3113�+	2 
3311�+	3 
1331�
D	= 
1223�+	 
3122�+	2 
2312�+	32231�

E	= 
3221�+	 
1322�+ 
	2 
2132�+	3 
2213�
F	= 
1232�+	 
2123�+	2 
3212�+	3 
2321�
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TABLE II. Eigenstates and eigenvalues for r=4.a

Eigenvalues Eigenstates

S4: K4+1 
1111�
S5: 	3K4+	 A	

S6: ±�K4+1� A±1

	3K4+	 B	− �q+	3�C	 /�q

	3�K4+ �q+1+	+	3+q−1�K3

+	3�q+1+	+	3+q−1�K2 B	+�qC	 / �q+	�
+	2�q+1+	+	3+q−1�K+	2�

S7: 	3K4+	 A	−	�qB	−C	 /�q,

−�q3+	2�A	+q�q�q+1+q−1�D	

+	�q�	2−q2−q�B	+�q�q2−	2q−	2�C	

	3K4+	+ �	3K3+	K��q+1+	+	3+q−1� �1+	�A	 /�q+	2B	 /q+C	+	�q+	�D	 /q

+K2	2�q+1+	+	3+q−1�
	3K4+	+ �	3K3+	K��q+1+	+	3+q−1� �1−	�A	 /�q−	2B	 /q+C	−	�q−	�D	 /q

+K2	2�q+1−	−	3+q−1�
S8: K4+1 F1, 2A1+C1−�qD1−E1 /�q,

2�q�q2+q−2+q−1+q−2�A1

+2�q�q+2+q−1�B1−�q�q+4+q−1�C1

+�q2+2q−3−2q−1−3�D1

−�2q2+3q−2−q−1�E1

−K4−1 F−1,

B−1+ �q2−1�C−1 /2q− �q2+1�D−1 / �2�q�
+�q2+1�E−1 / �2q�q�

�iK4± i F±i, �qC±i−D±i+E±i

�i�K4+ �q+1+q−1�K3±3iK2 −�q+1�C±i /�q−D±i+E±i

−�q+1+q−1�K−1�
�i�K4+ �q+1+q−1�K3� i�q+1+q−1�K2 C±i+ �1+2q�D±i / �q−1��q+ �q+2��qE±i / �q−1�
−�q+1+q−1�K−1�
K4+ �q+3+q−1�K3+ �q+3+q−1�K2 −4A1+2B1+C1−D1 / ��q+1��q�−q�qE1 / �q+1�
+�q+3+q−1�K+1

−�K4+ �q−1+q−1�K3− �q−1+q−1�K2 −2�q−1�B−1 / �q+1�+C−1−D−1 / ��q+1��q�
+�q−1+q−1�K+1� −q�qE−1 / �q+1�

aFor S8, there exist also four others eigenvectors aA1+bB1+cC1+dD1+eE1, �A1+�B1+C1+�D1+�E1, b�B−1+c�C−1

+d�D−1+e�E−1, ��B−1+�C−1+��D−1+��E−1 associated, respectively, to the eigenvalues v1, v2, v1�, and v2�, which have
complicated forms �these results have been obtained by using a MAPLE program�,

v1 = 1
2 �2K4 + 3K3�q + 1 + q−1� + K2�q2 + 2q + 13 + 2q−1 + q−2� + 3K�q + 1 + q−1� + 2

+ K�K2 + �q + 1 + q−1�K + 1��q2 + 2q + 43 + 2q−1 + q−2�

v2 = 1
2 �2K4 + 3K3�q + 1 + q−1� + K2�q2 + 2q + 13 + 2q−1 + q−2� + 3K�q + 1 + q−1� + 2

− K�K2 + �q + 1 + q−1�K + 1��q2 + 2q + 43 + 2q−1 + q−2� ,

v1� = 1
2 �− 2K4 − 3K3�q + 1 + q−1� − K2�q2 + 2q + 1 + 2q−1 + q−2� − 3K�q + 1 + q−1� − 2

+ K�K2 + �q + 1 + q−1�K + 1��q2 + 2q − 5 + 2q−1 + q−2� ,

v2� = 1
2 �− 2K4 − 3K3�q + 1 + q−1� − K2�q2 + 2q + 1 + 2q−1 + q−2� − 3K�q + 1 + q−1� − 2

− K�K2 + �q + 1 + q−1�K + 1��q2 + 2q − 5 + 2q−1 + q−2� , �A34�
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The sums of the eigenvalues over S4, S5, S6, S7, and S8 are, respectively,

�
S4

v = K4 + 1,

�
S5

v = 0,

�
S6

v = 4K3 + 4K ,

�
S7

v = 0,

�
S8

v = K4 + 4K3 + 18K2 + 4K + 1. �A35�

The results for �S9 ,S10,S11,S12� are obtained directly from the those of �S7 ,S6 ,S5 ,S4�, respec-
tively. Summing over all subspaces �S4 , . . . ,S12� one obtains

Tr�T�4����� = 2�K4 + 1� + 2�4K3 + 4K� + 1�K4 + 4K3 + 18K2 + 4K + 1� = 3�K + 1�4.

�A36�

APPENDIX B: R̂tt ALGEBRA

We present below, for N=3, the constraints on the blocks tij��� of the transfer matrix follow-
ing from:

R̂�� − ���t��� � t���� = t���� � t���R̂�� − ��� . �B1�

We use the notations below

�t���,t����,K�� − ���� � �t,t�,K�� . �B2�

In terms of P0� defined by Eq. �1.4� with �i , j� and ��i ,� j� corresponding to N=3 and K��� of Eqs.
�1.17� and �1.18�, Eq. �B1� now is �maintaining the notation P0� unrelated to �, ���,

�I + K�P0���t � t�� = �t� � t��I + K�P0�� , �B3�

where

P0� = q−1�11� � �33� + q−1/2�12� � �32� + �13� � �31� + q−1/2�21� � �23� + �22� � �22� + q1/2�23�

� �21� + �31� � �13� + q1/2�32� � �12� + q�33� � �11� . �B4�

This leads to a set of 36 relations independent of K�, namely

tijtkl� = tij� tkl, �B5�

where for �ij�= �11� , �12� , �13�, respectively,

�kl� = �11,12,21,22�,�11,13,21,23�,�12,13,22,23� �B6�

and similarly for �ij�= �21� , �22� , �23�,
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�kl� = �11,12,31,32�,�11,13,31,33�,�12,13,32,33� �B7�

and for �ij�= �31� , �32� , �33�,

�kl� = �21,22,31,32�,�21,23,31,33�,�22,23,32,33� . �B8�

To present the K� dependent constraints we first define

X1 = q−1/2t11t31� + t21t21� + q1/2t31t11� , X2 = q−1/2t11t32� + t21t22� + q1/2t31t12� ,

X3 = q−1/2t11t33� + t21t23� + q1/2t31t13� , X4 = q−1/2t12t31� + t22t21� + q1/2t32t11� ,

X5 = q−1/2t12t32� + t22t22� + q1/2t32t12� , X6 = q−1/2t12t33� + t22t23� + q1/2t32t13� ,

X7 = q−1/2t13t31� + t23t21� + q1/2t33t11� , X8 = q−1/2t13t32� + t23t22� + q1/2t33t12� ,

X9 = q−1/2t13t33� + t23t23� + q1/2t33t13� , �B9�

and a set

�Y1,Y2, . . . ,Y9� , �B10�

which is obtained by transposing the indices of each term on the right of Eq. �B9� and also the
order of �� ,���. Thus

Y1 = q−1/2t11� t13 + t12� t12 + q1/2t13� t11 �B11�

and so on. The constraints involving K� only through Xi are the following ones:

q1/2�t11t31� − t11� t31� = �t21t21� − t21� t21� = q−1/2�t31t11� − t31� t11� = − K�X1,

q1/2�t11t32� − t11� t32� = �t21t22� − t21� t22� = q−1/2�t31t12� − t31� t12� = − K�X2,

q1/2�t12t31� − t12� t31� = �t22t21� − t22� t21� = q−1/2�t32t11� − t32� t11� = − K�X4,

q1/2�t12t33� − t12� t33� = �t22t23� − t22� t23� = q−1/2�t32t13� − t32� t13� = − K�X6,

q1/2�t13t32� − t13� t32� = �t23t22� − t23� t22� = q−1/2�t33t12� − t33� t12� = − K�X8,

q1/2�t13t33� − t13� t33� = �t23t23� − t23� t23� = q−1/2�t33t13� − t33� t13� = − K�X9. �B12�

There are six corresponding sets involving K� only through Yi. As for Eq. �B11� they are
obtained by transposing indices in the first three terms of each equation of Eq. �B12� and changing
the sign before K�. Thus

q1/2�t11t13� − t11� t13� = �t12t12� − t12� t12� = q−1/2�t13t11� − t13� t11� = K�Y1 �B13�

and so on.
Finally there is a set involving K� through both Xi, and Yi,

�t11t33� − t11� t33� = − K�q−1/2�X3 − Y3�� ,

�t12t32� − t12� t32� = − K��q−1/2X5 − Y3�� ,
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�t13t31� − t13� t31� = − K��q−1/2X7 − q1/2Y3�� ,

�t21t23� − t21� t23� = − K��X3 − q−1/2Y5�� ,

�t22t22� − t22� t22� = − K��X5 − Y5�� ,

�t23t21� − t23� t21� = − K��X7 − q1/2Y5�� ,

�t31t13� − t31� t13� = − K��q1/2X3 − q−1/2Y7�� ,

�t32t12� − t32� t12� = − K��q1/2X5 − Y7�� ,

�t33t11� − t33� t11� = − K�q1/2�X7 − Y7�� . �B14�

An alternative approach to the R̂tt relations is via the diagonalization of P0�. The diagonalizer is
given in Ref. 13. Such an approach was presented for our multiparameter �“nested-sequence”�
class in Appendix C of Ref. 3.
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We consider a class of classical lattice spin systems, with Rn-valued spins and
two-body interactions. Our main result states that the associated Gibbs measure
localizes in certain cylindrical neighborhoods of the global minima of the unper-
turbed Hamiltonian. As an application we establish existence of a first order phase
transition at low temperature, for a reflection positive mexican hat model on Zd,
d�3, with a nonferromagnetic interaction. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2364180�

I. ASSUMPTIONS AND MAIN RESULT

Let n�N and � be a finite set. Elements of � are denoted by x ,y, and z. We pick and fix one
element o�� which plays the distinguished role of an origin. We write �= �Rn�� for the vector
space of spin configurations �= ��x�x�� over �, where �x�Rn. We use the symbols � and � for
elements of �. The letters u and v are used for vectors in Rn, and �u� denotes the Euclidean norm
of u. It is assumed that � comes equipped with a metric � which satisfies

max
x��

�
y��

e−��x,y� � C� � 	 . �1.1�

We study a Hamiltonian function H��C1�� ;R� of the form

H���� = �
x��

fx��x� + J �
x,y��,x�y

wxy��x,�y� .

The self-energies �fx�x�� and the interactions �wxy�x,y��,x�y should satisfy assumptions specified
in the following Conditions �1.1� and �1.2�, respectively.

We introduce some notation. We write ��u�= �u�−1u ·�u for the radial derivative with respect to
the Rn-valued variable u, and Br�u�ª �v�Rn � �u−v � �r�, for the closed ball of radius r and
centered at u.

Condition 1.1. There are positive constants R ,cf ,Cf 
0 such that the family �fx�x�� of func-
tions fx�C1�Rn ;R� satisfy �i�– �iv� as follows:

(i) fx�0 and minu�Rnfx�u�=0.
(ii) The set G0ª �u�Rn � fo�u�=0� of global minima satisfies G0�BR�0�.
(iii) For all x�� and u�Rn, with �u � �R, we have ��u�fx�u��cf.
(iv) For all x ,y�� and u ,v�Rn, with �v � � �u � �R, we have

��u�fx�u� � Cf��v�fy�v� .
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For j� �1,2�, we write � jwxy for the gradient of wxy with respect to the jth variable. The wxy’s
are required to be dominated by the fx’s, as specified by the next condition

Condition 1.2. There exist constants Ca
�
0 and �axy�x,y��, with axy =ayx�0, axx=0, and

max
x��	 �

y��

axye
��x,y�
 � Ca

�, �1.2�

such that the family �wxy�x,y�� of functions wxy �C1�Rn�Rn ;R�, with wxx�0, obeys the following
bounds:

max���1wxy�u,v��, ��2wxy�u,v��� � axy�1 + 1��u��4R���u�fx�u� + 1��v��4R���v�fy�v�� . �1.3�

Equation �1.2� expresses exponential decay of the interaction with respect to the metric �. Let
Ca

0�Ca
� be such that

max
x��	 �

y��

axy
 � Ca
0. �1.4�

For polynomially bounded, measurable functions u :�→C, we use the following notation for
expectations with respect to the Gibbs state in finite volume � and inverse temperature �:

E��u� ª Z�
−1�

�

u���e−�H����d�� . �1.5�

Here Z�=�e−�H����d�� is the partition function. For the integral in Eq. �1.5� to exist under
Conditions 1.1 and 1.2, we require �J � �0

−1, where

0 ª 2Ca
0�1 + Cf + cf

−1� . �1.6�

See Lemma A.1. We note that for many examples, including the example in Sec. II, the fx’s grow
at a faster rate than the wxy’s such that no assumption on �J� is needed to make polynomially
bounded observables integrable. For the probability of a �measurable� event A��, we write

P��A� ª E��1A� .

For �
0, we introduce level sets for fo,

G� ª �u � Rn�fo�u� � �� .

We are now ready to formulate the main result of the paper.
Theorem 1.1. Assume Eq. (1.1). Let �fx�x�� satisfy Condition 1.1 and �wxy�x,y�� satisfy

Condition 1.2. Let

1 ª 4RCa
0� 1

3C� + 3�, 2 = 0 + 102
5 Ca

�, 3 ª
2
3cfR , �1.7�

and

J0 ª 3min	 3

41
,

1

1 + 23

 . �1.8�

For �J � �J0, �
0 and �
2 �J �1, we have

P���� � ���o � G��� � Ce−��, �1.9�

where

C = 2max	� 4R

min��, 3
23�

sup
�u��2R

��fo�u���n

,�3

5
�n
enC�/2, �1.10�
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and � is a strictly positive constant given by

� = min� 1
2�, 3

43,3�1 − �J�2�� − �J�1. �1.11�

Remark 1.2.
�1� We stress that the constants J0, � j� j=1,2,3, C, and �, only depend on �, �fx�x�� and

�wxy�x,y�� through the constants C� ,cf ,Cf ,R, Ca
0, and Ca

�. In particular, they are independent of �
and the choice of origin o.

�2� The set of �’s with �o�G� is a cylinder set containing the global minima of the unper-
turbed �that is, J=0� Hamiltonian. The condition �
2 �J �1, ensures that the global minima of the
perturbed Hamiltonian remain contained in this cylinder set.

�3� The proof goes through without modifications if Rn is replaced by a convex subset thereof
containing 0.

�4� A choice was made here to present the method for a class of Hamiltonians without any
special symmetry. For models with O�n� symmetry, like the example discussed in Sec. II, one can
tweak the proof to get better constants.

�5� The restriction to two-body interactions is made for simplicity. The method extends to
models with many-body interactions.

The derivation of the bound Eq. �1.9� follows a scheme used in Ref. 1, Sec. 3, to derive low
temperature localization bounds for models with a unique global minimum at 0. The method
developed in Ref. 1 was in turn inspired by work going back to Sjöstrand,2 see also Refs. 3 and 4.
The common idea in the papers cited in this paragraph is to systematically shift points in the set
of �’s with �o�G�, towards the global mimima and measure the resulting decrease in energy. In
this paper and in Ref. 1 the shift is implemented by a single transformation T, with the property
that inf�,�o�G�

�H���−H�T�������
0. It is this � which contributes to the exponential localiza-
tion in Eq. �1.9�. In the papers2–4 the idea is slightly different: The configuration space is cut up
into pieces, each of which is translated into a neighborhood of a unique global minimum, and the
contributions are then summed up. We remark that in Ref. 4, the interaction does not shift the
global minimum away from 0, which makes it possible to localize arbitrarily close to 0 while
keeping the coupling constant J fixed �see Remark 1.2 �2��.

II. MOTIVATING EXAMPLE

Let �= �−L ,L�d�Zd, be the d-dimensional hypercubic lattice of sidelength 2L, for some d
�3 and L�N. We view � as the torus Zd /2LZd, equipped with the metric ��x ,y�=minz�Zd �x
−y−2Lz�1, where �z�p, is the p-norm of z�Rd. As self-energies we take

fx�u� = �u�4 − 2�u�2 + 1, �2.1�

and as interaction we take

wxy�u,v� = − J��x − y�u · v , �2.2�

where J� is periodic and defined from an underlying interaction J��1�Zd ;R� by

J��x� ª �
y�Zd

J�x + 2Ly� . �2.3�

In general, one should take a reflection positive interaction, with respect to a suitable reflection, in
order to get an infrared bound. Here we specialize to the following example:

J�x� ª 	1, �x�2 = 1,

− b , �x�2 = �2.
�2.4�

In order to obtain a reflection positive interaction, we impose the restriction
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J 
 0, 0 � b �
1

2�d − 1�
.

Note that the ferromagnetic case −b�0, can be treated by methods already established. We
introduce the correlation function F� :�→R by

F��x� ª E���0 · �x� .

Let �*= �−� ,��d� �� /L�Zd be the dual lattice and F̂� :�*→R the Fourier transform of F�. That

is, F̂����=�x��exp�−ix ·��F��x�. Similarly, for ���*,

J�
ˆ ��� = J�

ˆ��� = 2a�
j=1

d

cos�� j� − 4b �
1�i�j�d

cos��i�cos�� j�

is the Fourier transform of J�. Here J�
ˆ���=�x�Zde−ix·�J�x�. The model defined by Eqs. �2.1� and

�2.4� is translation invariant and reflection positive, cf. Refs. 5 and 6, and hence, it satisfies an
infrared bound of the form

0 � F̂���� �
n

J�
�J�

ˆ�0� − J�
ˆ����−1, �2.5�

for ���* \ �0�. Here n is the dimension of the single spin space. For a proof of this bound see
�Ref. 6, Proposition 20.12�. See Ref. 7 for a discussion of the critical case, where 2�d−1�b=1.

As usual, Eq. �2.5� implies that

E���0 · �x� = E����0�2� + F��x� − F��0�

= E����0�2� +
1

��� �
���*

�eix·� − 1�F̂���� � E����0�2� −
2n

J���� �
���*\�0�

�J�
ˆ�0� − J�

ˆ����−1.

�2.6�

Note that J�
ˆ�0�=J�

ˆ��� if, and only if, �=0, and

J�
ˆ�0� − J�

ˆ��� � �1 − 2�d − 1�b��2,

near �=0. In dimension d�3 this implies the existence of a first order phase transition at low
temperature �large ��, provided one can verify the following moment inequality:

E����0�2� � c 
 0. �2.7�

Here c should be independent of L. The estimate Eq. �2.6� then says that a �necessarily translation
invariant� limit state E	=w−lim�→ZdE� is not ergodic, hence, not a pure phase. See Refs. 5, 8,
and 9 and in particular Ref. 6, Theorem 20.15, for a reference dealing with possibly unbounded
spins. For models constrained to the unit sphere �or in general to closed subsets of Rn not
containing 0� the bound Eq. �2.7� is trivial.

If J�x��0, for all x, i.e., the model is ferromagnetic, there are two general methods one can
use to verify Eq. �2.7� for models with interaction of the type Eq. �2.2�. If n=1 one can use the
FKG inequalities,10 which imply monotonicity of the second moment in J�x� �for any fixed x�.
This can be used to reduce the moment inequality to a one-dimensional problem which can be
analyzed explicitly. See Ref. 11 for a discussion of this idea. Another argument applies under the
additional assumption of reflection positivity of the interaction Eq. �2.2�. Then the so-called
chessboard estimate �Ref. 6, Chap. 17.1� applies �a key ingredient in the proof of Eq. �2.5� and the
reason for the choice of a reflection positive model as our example�. The chessboard estimate
together with ferromagnetism, i.e., positivity of J, also leads to a moment inequality; no restric-
tions on n are needed. See. Ref. 6, Lemma 20.8.
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If the interaction is not ferromagnetic there seems to be no method available in the literature
to deal with the innocuous looking moment inequality Eq. �2.7�. This is where our main result
comes in. Clearly, Theorem 1.1 gives explicit J0 and �0 such that, for 0�J�J0 and J�
�0, we
have E����0�2��c
0, for an equally explicit constant c. Here one should take 0���1, such that
G� is an annulus. Moreover, as opposed to the methods of the preceding paragraph, Theorem 1.1
is robust and does not rely on correlation inequalities or indeed on any nontrivial properties of the
underlying Gibbs measure. We have thus extended the applicability of Georgii’s result �Ref. 6,
Theorem 20.15� to interactions J, which need not be ferromagnetic. �Recall that Georgii in this
case requires the single spin space to be bounded away from 0, cf. Ref. 6, Comments 20.18 �3��.

For the above concrete model, we estimated the constant J0, fixed a J�J0 and estimated � and
C, for which the bound Eq. �1.9� is valid. As for J0 we got J0�10−4, which seems small, but is in
fact only a factor of 10 smaller than 0

−1. Recall that 0
−1 was the upper limit for coupling strengths

such that all models satisfying the conditions, with the same constants, are well-defined. This also
serves to illustrate Remark 1.2 �4�. We then took J=10−4 /2 and found ��1/20 and C�e60. To
get a probability less than 1 in Eq. �1.9�, one has to take �
�0 with �0�1200. We note that we
did not try to optimize carefully over possible choices of metric and the constant R. �For R we
chose R=1.03. For the metric we chose ��, with �=ln�2�. Here � is the metric given at the
beginning of this section.�

III. TRANSFORMATION T�

The purpose of this section is to construct a transformation of the space �, and estimate its
Jacobian.

We begin by analyzing the size of the level sets G�. Let ��0 and u�Rn be such that �u �

2�cf

−1+R, where the constants cf and R are taken from Condition 1.1. Let u�ªRu / �u�, and for
0� t�1,

ut ª tu + �1 − t�u� = � R

�u�
+ t�1 −

R

�u���u .

Then, using that u̇t / �u̇t � =ut / �ut�, we estimate

fo�u� � fo�u� − fo�u�� = �
0

1

u̇t · �fo�ut�dt = ��u� − R��
0

1

���u�fo��ut�dt � 2�cf
−1�

0

1

cfdt = 2� .

This implies that

G2� � BR+2�cf
−1�0� . �3.1�

We shall henceforth assume that 0��� �1/2�cfR, which is equivalent to

R � R� ª R +
2�

cf
� 2R . �3.2�

We introduce the size r�, of the largest ball contained in G�;

r� ª sup�r � 0� ∃ u � G�: Br�u� � G�� . �3.3�

Fix an ���G�, for which Br�
�����G�. Such an �� exists by the choice Eq. �3.3� of r�. By Eq. �3.1�

we get a bound from below on r�,

r� � dist�G�
c,G0� = dist�BR�

�0� � G�
c,G0� .

Let u�G0 and v�BR�
�0��G�

c. Then
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� � fo�v� − fo�u� � �v − u� sup
u�BR�

�0�
��fo�u�� .

This implies

r� �
�

supu�BR�
�0���fo�u��

. �3.4�

We pick a function ��C	�R ; �0,1�� with ��0 on �−	 ,1 /2�, ��1 on �1, 	 �, and ���0.
Note that supp����� �1/2 ,1�.

The final input is a family of scaling factors ��x�x��. We choose them to be of the form

�x ª �oe−��x,o�. �3.5�

Here �o is chosen such that

0 � �o �
1
2 �1 + ����	�−1, �3.6�

where ����	=maxt��1/2,1� ����t� � 
2. �We will optimize over �o and � in Sec. VI.�
We define a transformation T� :�→� as follows: �T�����xªTx

���x� and

∀x � o:Tx
��u� ª �1 − �x�� �u�

4R
��u , �3.7�

To
��u� ª � �1 − �o�u , �u� � 4R ,

� r�

4R
�u + ��, �u� � 4R . � �3.8�

The transformation T� is not a global diffeomorphism, but we work below in the sectors
�� : ��o � �4R� and �� : ��o � 
4R� separately, and T� restricted to these sectors is a smooth
transformation.

We end this section with an estimate on the determinant of Jac�T��, the Jacobian of T�.
Lemma 3.1 Let T� be the transformation defined in �3.7� and �3.8�. We have the bound

�det Jac�T������ � min	 �

4Rsup�u��R�
��fo�u��

,1 − �o
n

exp�− n�o�1 + ����	�C�� , �3.9�

for all ���, with ��o � �4R.
Proof: The Jacobian of T� �away from ��o � =4R� is a block diagonal matrix with n�n blocks

given by

∀x � o:Jac�T��xx��� = �1 − �x�� ��x�
4R

��In −
�x��x

4R
��� ��x�

4R
�P�x

,

Jac�T��oo��� = ��1 − �o�In, ��o� 
 4R ,

� r�

4R
�In, ��o� � 4R . �

Here In is the identity matrix in Rn, and Puª �u�−2 �u��u�, is the orthogonal projection onto span�u�,
for u�Rn \ �0�.

Note that, for x�o,

123302-6 V. Bach and J. S. Møller J. Math. Phys. 47, 123302 �2006�

                                                                                                                                    



�x��x�
4R

��� ��x�
4R

�P�x
� �x����	In.

Using this observation, we estimate the determinant of the Jacobian as follows:

for ��o� � 4R:�detJac�T������ � � r�

4R
�

x��o�
�1 − �x�1 + ����	���n

,

for ��o� 
 4R:�detJac�T������ � ��1 − �o� �
x��o�

�1 − �x�1 + ����	���n
.

Using the bound ln�1− t��−2t, for 0� t�1/2, together with Eqs. �1.1�, �3.5�, and �3.6�, we arrive
at Eq. �3.9�. �

IV. ESTIMATING THE INTERACTION

In this section we estimate the effect of the transformation T� on the interaction W���
=�x�ywxy��x ,�y�. We prove the following lemma which is the central technical step in the proof
of Theorem 1.1. The constant 0 below is defined in Eq. �1.6�.

Lemma 4.1: For 0���cfR /2, we have, for all ���, the bound

�W��� − W�T������ � CW
1 + CW

2 �
x��

1���x��4R��fx��x� − fx�Tx
���x��� , �4.1�

where

CW
1
ª 4RCa

0�2�oC� + 3�, CW
2
ª 0 + Ca

��3�o
−1 + 2�1 − �o�−1� . �4.2�

Proof: Let ���, x ,y�� with x�y. For z� �x ,y� we abbreviate uz�t�= t�z+ �1− t�Tz
���z�.

Using the fundamental theorem of calculus, together with Condition 1.2, we estimate

�wxy��x,�y� − wxy��T�����x,�T�����y��

= ��
0

1

���x − Tx
���x�� · �1wxy�ux�t�,uy�t�� + ��y − Ty

���y�� · �2wxy�ux�t�,uy�t���dt�
� axy���x − Tx

���x�� + ��y − Ty
���y����1 + �

0

1

�1��ux�t���4R����u�fx��ux�t��

+ 1��uy�t���4R����u�fy��uy�t���dt�
= axy�S1

x��� + S1
y��� + S2

xy��� + S2
yx���� , �4.3�

where

S1
z��� = ��z − Tz

���z���1 + �
0

1

1��uz�t���4R����u�fz��uz�t��dt� ,

S2
zz���� = ��z − Tz

���z���
0

1

1��uz��t���4R����u�fz���uz��t��dt .

We proceed to estimating S1
z��� and S2

zz����, for all ���.
To estimate S1

z we recall Eq. �3.7�, and observe the bound
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��z − Tz
���z�� � �z��z� , �4.4�

which holds true if z�o, or z=o and ��o � �4R. To deal with the complementary case, where z
=o and ��o � �4R, we note that in this case Eq. �3.8� implies �To

���0� � �R��2R, and hence,

�uo�t�� � 4R and ��o − To
���o�� � 6R . �4.5�

Combining Eqs. �4.4� and �4.5� yields for all z and ���,

S1
z��� � 6R�zo + �z��z��1 + �

0

1

1��uz�t���4R����u�fz��uz�t��dt� . �4.6�

Here we used that ��o � �4R on the support of 1��uo�t���4R�.

As for S2
zz� we split � into two regions

�I
zz�

ª �� � ����z� � ��z��/�1 − �z�� and �II
zz� = � \ �I

zz�.

From Condition 1.1 �iv� we get the bound

1����I
zz��1��uz��t���4R����u�fz���uz��t�� � Cf1��uz�t���4R����u�fz��uz�t�� , �4.7�

because on the support of the indicator functions we have

�uz�t�� � �1 − �z���z� � ��z�� � �uz��t�� � 4R .

Complementing Eq. �4.7� we now consider the region �II
zz�. We obtain, for z�o, or z=o and

��o � �4R,

��z − Tz
���z��1����II

zz��1��uz��t���4R� �
�z

1 − �z
��z��1��uz��t���4R�. �4.8�

Here Eq. �4.4� was used. We note that, for ��o � �4R, we have from Eq. �4.5�,

��o − To
���o��1��uz��t���4R� � 6R1��uz��t���4R� �

3
2 ��z��1��uz��t���4R�. �4.9�

Combining Eqs. �4.7�–�4.9� yields for z�z� and ���,

S2
zz���� � �z��z�Cf�

0

1

1��uz�t���4R����u�fz��uz�t��dt + �z���z��	 �z

�1 − �z��z�
+

3

2�z�
�oz
�

0

1

1��uz��t���4R�

����u�fz���uz��t��dt . �4.10�

Inserting the bounds Eqs. �4.6� and �4.10� into Eq. �4.3�, we get the following estimate for all
x�y and ���:

�wxy��x,�y� − wxy��T�����x,�T�����y��

� axy�x��x��1 + 	1 + Cf +
3

2�x
�yo +

�y

�1 − �y��x

�

0

1

1��ux�t��4R����u�fx��ux�t��dt�
+ axy�y��y��1 + 	1 + Cf +

3

2�y
�xo +

�x

�1 − �x��y

�

0

1

1��uy�t��4R����u�fy��uy�t��dt�
+ axy6R��xo + �yo� . �4.11�

Observe that
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��x� � �ux�t�� � 4R implies Tx
���x� = �1 − �x��x, �4.12�

and hence,

�x��x��
0

1

1��ux�t���4R����u�fx��ux�t��dt � 1���x��4R��
0

1

�x��x����u�fx��ux�t��dt

= 1���x��4R��
0

1 � d

dt
�fx�ux�t����dt = 1���x��4R��fx��x� − fx�Tx

���x��� .

�4.13�

As an application we get the bound, cf. Condition I.1 �iii� and Eq. �4.12�,

�x��x� = �x��x�1���z��4R� + �x��x�1���x��4R� � �x4R1���x��4R� + cf
−11���x��4R��fx��x� − fx�Tx

���x��� .

�4.14�

Inserting Eqs. �4.13� and �4.14� into Eq. �4.11� we get, for ���,

�wxy��x,�y� − wxy��T�����x,�T�����y�� � axy��x4R + 6R�xo + 	1 + cf
−1 + Cf +

3

2�x
�yo +

�y

�1 − �y��x



� 1���x��4R��fx��x� − fx�Tx
���x���� + axy��y4R + 6R�yo

+ 	1 + cf
−1 + Cf +

3

2�y
�xo +

�x

�1 − �x��y



�1���y��4R��fy��y� − fy�Ty
���y���� .

We now recall Eqs. �1.1�, �1.2�, �1.4�, and �3.5�, before we sum up and obtain, for ���,

�W��� − W�T������ � 8�oRCa
0C� + 12RCa + 2 �

x��
	Ca

0�1 + cf
−1 + Cf� + 3

2Ca
��o

−1 + �
y��

axy�y

�1 − �o��x



� 1���x��4R��fx��x� − fx�Tx
���x��� . �4.15�

The following bound is a consequence of Eq. �1.2� and the triangle inequality for �:

�
y��

axy�y

�1 − �o��x
�

Ca
�

1 − �o
. �4.16�

See also the proof of Ref. 1, Lemma 3.2.
From Eqs. �4.15� and �4.16� we conclude the lemma with the constants given in Eq. �4.2�. �

V. ESTIMATING THE HAMILTONIAN

Lemma 5.1: Let 0���cfR /2, �J � �J˜0���, and

�T
�
ª min��,4�ocfR�1 − �J�CW

2 �� − �J�CW
1 , �5.1�

where

J˜0��� ª min	 �

CW
1 ,

4�ocfR

CW
1 + 4�ocfRCW

2 
 . �5.2�

Then, for all ���, with �o�G2�, we have the bound
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H���� − H��T����� � �T
� . �5.3�

Proof: We begin by analyzing the self-energy difference between � and T����.
For x�o we get by definition of Tx

�, cf. Eq. �3.7�, and Condition 1.1 (iii) that fx��x�
− fx�Tx

���x���0. In particular we get

fx��x� − fx�Tx
���x�� � 1���x��4R��fx��x� − fx�Tx

���x��� � 0. �5.4�

For x=o, we distinguish two cases. First consider ��o � �4R. Here �To
���o� � = �1−�o� ��o � �R,

and hence, by Condition 1.1 (iii),

fo��o� − fo�To
���o�� � �ocf��o� � 4�ocfR . �5.5�

Second, consider the case ��o � �4R and �o�G2�. Then To
���o��G� and thus

fo��o� − fo�To
���o�� � � . �5.6�

Putting Eqs. �4.1� and �5.4�–�5.6� together, we obtain the desired lower bound on H���
−H��T�����,

H���� − H��T����� � ��
x�o

1���x��4R��1 − �J�CW
2 ��fx��x� − fx�Tx

���x���� − �J�CW
1 + �1���o��4R�

+ 1���o��4R��1 − �J�CW
2 ���fo��o� − fo�To

���o���

� min��,4�ocfR�1 − �J�CW
2 �� − �J�CW

1 , �5.7�

where we use �o�G2� and also �J �CW
2 �J˜0���CW

2 �1. �

VI. LOCALIZATION

In this section we prove the main result, Theorem 1.1.
We begin separating into two regions

P���o � G2�� = P����o� � 4R� + P���o � B4R�0� \ G2��

= Z�
−1��

���o��4R�
e−�H����d�� + �

��o�B4R�0�\G2��
e−�H����d��� . �6.1�

Let A1= ���o � �4R� and A2= ��o�B4R�0� \G2��. We estimate using Lemma 5.1, for j=1,2,

�
A j

e−�H����d�� � sup
��A j

�e−��H����−H��T��������
A j

e−�H��T�����d��

= e−�inf��A j
�H����−H��T�������

T��A j�
e−�H���� d��

��det JacT���T�−1�����

�
e−��T

�

inf��A j
��det JacT���T�−1�����

Z�, �6.2�

provided �J � �J˜0��� and 0���cfR /2. Inserting Eqs. �6.2� into �6.1�, together with the estimate
Eq. �3.9� on the determinant of the Jacobian of T�, we get

P���o � G2�� � max��4R�−1 sup
�u��R�

��fo�u���n,�1 − �o�−n�exp�n�o�1 + ����	�C��e−��T
�
. �6.3�

Taking infimum over admissible �’s and �o’s, yields the estimate with ����	 replaced by 2 and �o

replaced by 1/6 �see Eq. �3.6��. We have thus obtained the bound

123302-10 V. Bach and J. S. Møller J. Math. Phys. 47, 123302 �2006�

                                                                                                                                    



P���o � G2�� � 2max	�4R�−1 sup
�u��R�

��fo�u���n,� 6
5�n
e�1/2�nC�e−��T

�
. �6.4�

We recapitulate: The constants in Eqs. �4.2�, �5.1�, and �5.2�, with ����	=2 and �o=1/6,
become

CW
1 = 4RCa

0� 1
3C� + 3�, CW

2 = 0 + 102
5 Ca

�, �6.5�

J˜0��� = min	 �

CW
1 ,

2
3cfR

CW
1 + 2

3cfRCW
2 
 , �6.6�

�T
� = min��, 2

3cfR�1 − �J�CW
2 �� − �J�CW

1 . �6.7�

With these constants and for �J � �J˜0���, 0�� /2�cfR, and �
0 the localization bound Eq. �6.3�
holds true.

We end by explaining how to derive the assertion of Theorem 1.1 from here. Note that 1

=CW
1 and 2=CW

2 . Comparing Eq. �6.6� to Eq. �1.8�, we further notice that J˜0�cfR /2�=J0 and that

J˜0����J0, whenever ��cfR /2. By assumption, we have �J � �min�J0 ,� / �21��. We distinguish
the cases ��cfR and ��cfR.

If ��cfR then we choose �ªcfR /2 and observe that �J � �J0=J˜0���. The claim now follows
from Eq. �6.3�, the trivial bound P���o�G���P���o�GcfR

�, and the fact that min�� ,33 /2�
=min�� ,cfR�=cfR=2�.

Conversely, if ��cfR then we choose �ª� /2�cfR /2. Since �
2 �J �1, also this choice

insures that �J � �J˜0���, namely, �J � �� / �21��J˜0���. Now the claim follows directly from Eq.
�6.3� and min�� ,33 /2�=min�� ,cfR�=�=2�.

This completes the proof of Theorem 1.1. �
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APPENDIX A. CONTROLLING THE INTERACTION

In this appendix we prove a basic bound on the interaction, which shows that it can be
dominated by the self-energy. This is only used to ensure that polynomially bounded observables
are integrable, and in particular that the partition function is finite.

Lemma A.1: Suppose Conditions 1.1 and 1.2. There exists a constant A, which may depend on
�, such that for all ���,

� �
x�y,x,y��

�xy��x,�y�� � A + 2Ca
0�1 + Cf + cf

−1� �
x��

fx��x� .

Proof: Let u ,v�0. In the following Aj, j� �1,2 ,3�, denote non-negative constants, which
contribute to the A in the lemma. We estimate using Conditions 1.1 and 1.2,
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�wxy�u,v�� � A1 + �wxy�u,v� − wxy�0,0�� � A1 + �
0

1

�u · ��1wxy��tu,tv� + v · ��2wxy��tu,tv��dt

� A1 + axy�
0

1

��u� + �v���1 + 1�t�u��4R����u�fx��tu� + 1�t�v��4R����v�fy��tv��dt

� A1 + axy	�u� + �v� + �1 + Cf��
0

1

�1�t�u��4R��u����u�fx��tu� + 1�t�v��4R��v����v�fy��tv��dt

= A1 + axy	�u� + �v� + �1 + Cf��

0

1 �1�t�u��4R�
d

dt
fx�tu� + 1�t�v��4R�

d

dt
fy�tv��dt


= A1 + axy	�u� + �v� + �1 + Cf��1��u��4R��4R
�u�

1 d

dt
fx�tu�dt + 1��v��4R��4R

�v�

1 d

dt
fy�tv�dt�


� A2 + axy��u� + �v� + �1 + Cf��fx�u� + fy�v���.

To conclude the proof we observe the following bound:

�u� � A3 + 1��u��R��u� � A3 + cf
−11��u��R�fx�u� � A3 + cf

−1fx�u� ,

and sum up, using Eq. �1.4�. �
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We study the lengths of the cycles formed by trajectories in the Feynman-Kac
representation of the Bose gas. We discuss the occurrence of infinite cycles and
their relation to Bose-Einstein condensation. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2383008�

I. INTRODUCTION

Bose and Einstein understood 80 years ago that a curious phase transition occurs in a gas of
noninteracting bosons; it is now commonly referred to as the Bose-Einstein condensation. Real
particles interact, however, and for many years there were doubts that this transition takes place in
natural systems. London suggested in 1938 that superfluid helium undergoes a Bose-Einstein
condensation, and this idea is largely accepted nowadays. Bogoliubov considered interacting sys-
tems; careful approximations allowed him to get back to a noninteracting gas but with a different
dispersion relation. See Refs. 16 and 8 for more discussion and partial justifications of the Bogo-
liubov theory.

In 1953 Feynman studied the system in the Feynman-Kac representation.5 The partition func-
tion can be expanded as a gas of trajectories living in �d+1� dimensions. The extra dimension is
commonly referred to as “the time,” although it is not related to physical time. The situation is
illustrated in Fig. 1. A finite system with N particles induces a probability on the group SN of
permutations of N elements. Feynman considered the probability for a given particle to belong to
a cycle of length n. In the thermodynamic limit, there may be strictly positive probability for
infinite cycles to be present, and Feynman suggested to use this as an order parameter for Bose-
Einstein condensation.

A few years later, in 1956, Penrose and Onsager introduced the concept of “off-diagonal
long-range order.”9 Formally, it is a correlation between positions x and y given by ��x ,y�
= �c†�x�c�y��. The system displays off-diagonal long-range order when this correlation is strictly
positive, uniformly in the size of the system and in �x−y�→�. One can write a Feynman-Kac
version of this correlation, and it involves a special cycle starting at x and ending at y; this cycle
may wind many times around the imaginary time direction. In the limit where x and y are
infinitely distant there corresponds a notion of infinite open cycle that is reminiscent of Feynman’s
approach.

Feynman’s order parameter is simpler; it is often used in numerical simulations or in order to
gain heuristic understanding. On the other hand, everybody agrees that the Penrose and Onsager
order parameter is the correct one. Surprisingly, the question of their equivalence is usually
eluded, and many physicists implicitly assume equivalence to hold. The first mathematical inves-
tigation of this question is due to Sütő, who showed that equivalence holds in the ideal gas.
Indeed, he proved that infinite cycles occur in the presence of condensation,12 and that no infinite
cycles occur in the absence of condensation;13 the latter result uses probabilistic methods from the
theory of large deviations. These results have been extended to mean-field systems in Refs. 1 and
3.

a�Electronic mail: ueltschi@email.arizona.edu
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In this paper we explore the links between Feynman cycles and off-diagonal long-range order.
Let ��x� denote the off-diagonal correlation between the origin and x�Rd, and ��n� denote the
density of particles in cycles of length n. We propose the following formula that relates both
concepts:

��x� = �
n�1

cn�x���n� + c��x����� . �1.1�

Mathematically, the problem is not well posed. Many choices for the coefficients cn are
possible—a trivial choice is cn�x�=��x� /� for all n, including n=�. We will see, however, that
there is a natural definition for cn�x� in terms of Wiener trajectories. In any case, we conjecture
that Eq. �1.1� holds with coefficients satisfying

0 � cn�x� � 1, 0 � c��x� � 1,

for all n ,x. In addition, we should have

lim
n→�

cn�x� = c��x�

for any x, and

lim
�x�→�

cn�x� = 0

for any finite n, but not uniformly in n; c��x� may converge to a strictly positive constant c. If
c=1, we get from the dominated convergence theorem that lim�x�→� ��x�=����—in which case
the off-diagonal long-range order parameter is equal to the density of cycles of infinite lengths.

We establish this formula and these properties in the case of the ideal gas, where we show that

cn�x� = e−x2/4n�, c��x� = 1. �1.2�

We discuss the validity of formula �1.1� in the interacting gas, proving that these properties hold
true in a regime without the Bose-Einstein condensation. The two order parameters should not be
always equivalent, however. It is argued in Ref. 15 that they differ when the bosons undergo a
regular condensation into a crystalline phase. There is no off-diagonal long-range order, but
infinite cycles may be present.

We work in the Feynman-Kac representation of the Bose gas. This representation is standard,
see, e.g., Ref. 4 for a clear and concise review and Ref. 6 for a complete introduction. We assume
the reader to possess some familiarity with it and in Sec. II we directly define the main

FIG. 1. The Feynman-Kac representation of the partition function for a gas of bosons. The horizontal plane represents the
d spatial dimensions, and the vertical axis is the imaginary time dimension. The picture shows a situation with five particles
and two cycles, of respective lengths 4 and 1.
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expressions—partition functions, density of cycles, and off-diagonal long-range order—in terms
of space-time trajectories. But basic notions and properties are reviewed in Appendix A.

The situation simplifies in the absence of interactions; we consider the ideal gas in Sec. III,
where we state and prove the formula that relates the two order parameters. The ideal gas is best
discussed in the canonical ensemble. Rigorous proofs of macroscopic occupation of the zero mode
have been proposed and they involve the grand-canonical ensemble, with a chemical potential that
depends on the volume. Appendix B proposes a simple proof in the canonical ensemble.

Interacting systems constitute a formidable challenge; they are discussed in Sec. IV, where
partial results are obtained.

In this paper, we denote finite volume expressions in plain characters, and infinite volume
expressions in bold characters. Further, we always consider the canonical and grand-canonical
ensembles where the temperature 1/� is fixed; we alleviate the notation by omitting the � depen-
dence of all quantities.

II. FEYNMAN CYCLES AND OFF-DIAGONAL LONG-RANGE ORDER

A. Partition functions

Our Bose gas occupies a d-dimensional domain D, always a cubic box of size L and volume
V=Ld. We consider periodic boundary conditions. Let � denote the particle density, � the inverse
temperature, and � the chemical potential. The canonical partition function in the Feynman-Kac
representation is given by

Y�N� = �
k=1

N
1

k! �
n1,. . .,nk�1

n1+¯+nk=N

	
Dk

dx1 ¯ dxk	 dWx1x1

n1� ��1� ¯ dWxkxk

nk� ��k�

	 
�
j=1

k
1

nj
e−�U��j�� �

1�i
j�k

e−�U��i,�j�. �2.1�

This expression is illustrated in Fig. 1. In words, we sum over the number k of closed trajectories
and over their respective winding numbers n1 , . . . ,nk. We integrate over the initial positions
x1 , . . . ,xk. We integrate over trajectories � j : �0,nj��→D that start and end at xj; here, Wxx

� denotes
the Wiener measure. See Appendix A for more information and, in particular, Eq. �A10� for the
normalization condition. Trajectories wind around the time direction according to their winding
numbers; because of periodic boundary conditions, they may also wind around space directions.

Given a trajectory � with winding number n, the function U��� denotes the interactions
between different legs; explicitly,

U��� = �
0�i
j�n−1

1

�
	

0

�

U���i� + s� − ��j� + s��ds . �2.2�

And U�� ,��� denotes the interactions between closed trajectories � and ��, of respective winding
numbers n and n�,

U��,��� = �
0�i�n−1

0�j�n�−1

1

�
	

0

�

U���i� + s� − ���j� + s��ds . �2.3�

The function U�x� represents the pair interaction potential between two particles separated by a
distance �x�. We suppose that U�x� is non-negative and spherically symmetric. We can allow the
value +�; all that is needed is that e−�U��� and e−�U��,��� be measurable functions with respect to
the Wiener measure—any piecewise continuous function D→ �0,�� can be considered at this
point.

The grand-canonical partition function is
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Z��� = �
N�0

e��NY�N� �2.4�

�with the understanding that Y�0�=1�. We also need partition functions where a given trajectory �0

is present—these will be needed in the expression for cycle densities, see Eqs. �2.8� and �2.9�.
Namely, we define

Y�N;�0� = �
k=1

N
1

k! �
n1,. . .,nk�1

n1+¯+nk=N

	
Dk

dx1 ¯ dxk	 dWx1x1

n1� ��1� ¯ dWxkxk

nk� ��k�

	 
�
j=1

k
1

nj
e−�U��j�� �

0�i
j�k

e−�U��i,�j�. �2.5�

The dependence on �0 comes from the last term, where the product includes terms with i=0.
Notice that

Y�N;�� � Y�N� , �2.6�

with equality if and only if U�x�0, i.e., in the absence of interactions. Finally, we introduce

Z��,�� = �
N�0

e��NY�N,�� �2.7�

�we set Y�0,�0�=1�. We also have Z�� ,���Z���, with equality if and only if U�x�0.

B. Cycle lengths

We now introduce the density of particles in cycles of length n, both in the canonical and
grand-canonical ensembles. We denote the particle density by �=N /V. When discussing the ca-
nonical ensemble, we always suppose that � and V are such that N=�V is an integer. The number
of particles in cycles of length n is given by the random variable � j=1

k n�nj,n
. Averaging over all

configurations of space-time closed trajectories, we get

���n� =
1

Y�N��k=1

N
1

k! �
n1,. . .,nk�1

n1+¯+nk=N


 1

V
�
j=1

k

n�nj,n�	
Dk

dx1 ¯ dxk 		 dWx1x1

n1� ��1� ¯ dWxkxk

nk� ��k�

	
�
j=1

k
1

nj
e−�U��j�� �

1�i
j�k

e−�U��i,�j� =	 dW00
n����e−�U���Y�N − n;��

Y�N�
. �2.8�

The last line follows from the first line by replacing � j=1
k n�nj,n

with nk�n1,n, isolating the integral
over �1, using definition �2.5�, using translation invariance, and �Ddx1=V. Similarly, we have the
grand-canonical expression

���n� = e��n	 dW00
n����e−�U���Z��;��

Z���
. �2.9�

One easily checks that

�
n�1

���n� =
N

V
 � ,
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�
n�1

���n� = �N

V
�  ���� .

We consider the thermodynamic limits of ���n� and ���n�. Since 0����n��� and since n is a
discrete index, the Cantor diagonal process yields the existence of a sequence of increasing
volumes Vk, with �Vk=Nk an integer, such that ���n� converges to some limit that we denote
���n�. Similarly, we also obtain the infinite volume limit ���n�. Fatou’s lemma implies that

�
n�1

���n� � �, �
n�1

���n� � ���� . �2.10�

This suggests to define the density of particles in infinite cycles by

����� = � − �
n�1

���n� ,

����� = ���� − �
n�1

���n� . �2.11�

The main question is whether ���� differs from zero at a given temperature and at a given density
or chemical potential.

We chose to discuss densities of particles in cycles of given length, but one may consider
probabilities as well. Namely, we could introduce the probability for particle 1 to belong to a cycle
of length n; it is given by

P��n� = 	
D

dx	 dWxx
n����e−�U���Y�N − n;��

NY�N�
. �2.12�

Thus ���n�=�P��n� in the canonical ensemble, and �����=�P����. Things are not so simple in
the grand-canonical ensemble. The probability P��n� is

P��n� = 	
D

dx	 dWxx
n����

e��n

n
e−�U���Z���;��

Z���
. �2.13�

Here, Z��� ;�� is like Z�� ;�� given in Eqs. �2.5� and �2.7�, but with a factor 1 / �k+1�! instead of
1/k!. Heuristically, we should have �V /nk�=1/���� and ���n�=����P��n�, but this does not seem
easy to establish. The ratio of partition functions in Eq. �2.13� is more difficult to control than the
one in Eq. �2.9�. We therefore abandon probabilities and discuss densities.

C. Off-diagonal long-range order

Let us turn to the Penrose and Onsager off-diagonal long-range order. Its Feynman-Kac
representation involves an open trajectory that starts at x and ends at y, that possibly winds several
times around the time direction. Precisely, we introduce

���x� = �
n=1

N 	 dW0x
n����e−�U���Y�N − n;��

Y�N�
,

���x� = �
n�1

e��n	 dW0x
n����e−�U���Z��;��

Z���
. �2.14�

Thermodynamic limits are denoted ���x� and ���x�, provided they exist. One may actually re-
strict ���x� and ���x� on rational x and use the Cantor diagonal process to get convergence on a
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subsequence of increasing volumes. This is not necessary in this paper, as the limits will be shown
to exist in the regimes of parameters under consideration.

Similarities between Eqs. �2.8� and �2.9� on the one hand and Eqs. �2.14� on the other hand are
manifested. We can write

���x� = �
n=1

N

cn,��x����n� ,

���x� = �
n�1

cn,��x����n� , �2.15�

where the coefficients cn,�, cn,� are given by

cn,��x� = 
	 dW00
n����e−�U���Y�N − n;��

Y�N� �−1	 dW0x
n����e−�U���Y�N − n;��

Y�N�
,

cn,��x� = 
	 dW00
n����e−�U���Z��;��

Z��� �−1	 dW0x
n����e−�U���Z��;��

Z���
. �2.16�

As above, we denote the thermodynamic limits by cn,��x� and cn,��x�, provided they exist. One
should be careful when sending the volume to infinity in Eqs. �2.15�, because a “leak to infinity”
may yield a term involving ����—this actually occurs in the ideal gas, as will be shown in the
next section.

III. THE IDEAL GAS

The ideal gas of quantum bosons is fascinating. Particles do not interact, yet they manage to
display a phase transition. Historically, the Bose-Einstein condensation is the first theoretical
description of a phase transition. The ideal gas has been the object of many studies over the years;
let us mention Refs. 17, 7, and 10. A simple proof of macroscopic occupation of the zero Fourier
mode is presented in Appendix B.

In this section we elucidate the relation between cycle lengths and off-diagonal long-range
order, thus clarifying results that were previously obtained by Sütő.12,13 We work in the canonical
ensemble and establish formula �1.1� explicitly, for any dimension d�1.

Theorem 1: For any 0
�, �
�, there exists a sequence of increasing cubes for which the
thermodynamic limits of ���x�, cn,��x�, and ���n� exist for all x�Rd and n�N. Further, we have

���x� = �
n�1

e−x2/4n����n� + ����� .

The rest of this section is devoted to the proof of Theorem 1. The coefficient cn,��x�, defined
in Eq. �2.16�, has a simpler expression in the absence of interactions. Indeed, we have U���=0 and
Y�N ;��=Y�N�. It follows from properties of the Wiener measure in periodic boxes, see Eq. �A10�,
that

cn,��x� = �
z�Zd

e−�L2/4n����x/L� − z�2� �
z�Zd

e−�L2/4n��z2
. �3.1�

Notice that limL→� cn,��x�=e−x2/4n�, but the limit is not uniform in n. If the sum over n is restricted
to n�cL2, with c any finite constant, we can use the dominated convergence theorem and we get

123303-6 Daniel Ueltschi J. Math. Phys. 47, 123303 �2006�

                                                                                                                                    



lim
L→�

�
n=1

cL2

cn,��x����n� = �
n�1

e−x2/4n����n� . �3.2�

�The limit is taken along the subsequence of increasing volumes for which ���n� is known to
converge for any n.�

We now consider the terms with cL2
n�N. We estimate the sums in Eq. �3.1� using inte-
grals; we have

	
−�

�

e−a�s − b�2
ds − 1 � �

k�Z
e−a�k − b�2

� 	
−�

�

e−a�s − b�2
ds + 1. �3.3�

The Gaussian integral is equal to �� /a. Consequently,


�4�n� − L
�4�n� + L

�d

� cn,��x� � 
�4�n� + L
�4�n� − L

�d

. �3.4�

These bounds hold provided �4�n�L. Since n /L2c, we have


�4�c� − 1
�4�c� + 1

�d

�
n=cL2

N

���n� � �
n=cL2

N

cn,��x����n� � 
�4�c� + 1
�4�c� − 1

�d

�
n=cL2

N

���n� . �3.5�

We obtain

�
n=cL2

N

cn,��x����n� � 
�4�c� + 1
�4�c� − 1

�d�� − �
n=1

cL2

���n�� . �3.6�

Using Eq. �3.2� with x=0 and definition �2.11� of the density of infinite cycles, we see that the last
term converges to ����� as L→�. It then follows from Eqs. �3.2� and �3.6� that

lim sup
L→�

���x� � �
n�1

e−x2/4n����n� + 
�4�c� + 1
�4�c� − 1

�d

����� . �3.7�

This inequality holds for any c, and the fraction is arbitrarily close to 1 by taking c large. A lower
bound can be derived in a similar fashion, and we obtain the formula stated in Theorem 1.

IV. THE INTERACTING GAS

The interacting gas is much more difficult to study. We prove in this section the absence of
infinite cycles when the chemical potential is negative �Theorem 2�. We then study the coefficients
cn,��x� at low density and high temperature, using cluster expansion techniques. Their thermody-
namic limit can be established, and we show that cn,��x�→0 as �x�→� �Theorem 3�.

Theorem 2: Let 0
�
� and �
0; then

����� = 0,

and

lim
�x�→�

lim sup
L→�

���x� = 0.

Proof: Since U����0 and Z�� ;���Z���, the finite volume density ���n�, Eq. �2.9�, is less
than
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���n� � e��n	 dW00
n���� =

e��n

�4�n��d/2 �
z�Zd

e−L2z2/4n�. �4.1�

The right side is smaller than e��n for all L large enough. We can therefore apply the dominated
convergence theorem and we obtain

� = lim
L→�

�
n�1

���n� = �
n�1

���n� . �4.2�

It follows that �����=0. The statement about the absence of off-diagonal long-range order can be
treated similarly. We have the upper bound

���x� � �
n�1

e��n

�4�n��d/2 �
z�Zd

e−�x − Lz�2/4n�. �4.3�

By dominated convergence,

lim sup
L→�

���x� � �
n�1

e��n

�4�n��d/2e−x2/4n�. �4.4�

We can again use the dominated convergence theorem for the limit �x � →�, and we get the
claim. �

We continue the study of the interacting gas in the regime where cluster expansion converges.
We assume that the chemical potential is negative, that the interaction potential U�x� is integrable,
and that the temperature is high enough. The condition in Theorem 3 is stronger than necessary,
but it is very explicit. We will invoke a weaker condition in the proof of the theorem that is based
on the “Kotecký-Preiss criterion” for the convergence of cluster expansion. Notice that Ginibre’s
survey6 uses Kirkwood-Salzburg equations; it applies to a broader range of potentials, but things
are terribly intricate.

Theorem 3: Assume that �, �, and U satisfy

1

�4���d/2	
Rd

U�x�dx�
n�1

n−d/2 � − � .

The thermodynamic limits of cn,��x� and ���n� exist, and we have

lim
�x�→�

cn,��x� = 0

for any n.
Proof: We need some notation in order to cast the grand-canonical partition function in a form

suitable for the cluster expansion. Let us introduce a measure for trajectories that wind arbitrarily
many times around the time direction. Namely, let Xn denote the measure space of continuous
trajectories � : �0,n��→D, and let X=�n�1Xn be the set of trajectories in D with arbitrary
winding numbers. We introduce the measure � on X whose integral means the following:

	 F���d���� = �
n�1

e��n

n
	

D

dx	 dWxx
n����e−�U���F��� . �4.5�

It is clear that � is a genuine measure on a reasonable measure space. But we describe the
measure � with more details for readers who are interested in analytic technicalities. The � algebra
on Xn is the smallest � algebra that contains the sets ���Xn :��t��B�, for any 0� t�n�, and
any Borel set B�D. Trajectories of X1 can be dilated in the time direction so as to yield trajec-
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tories with arbitrary winding numbers. One can then consider the product space X1	N with the
product � algebra �the � algebra on N being the power set�. The measure of a set of the kind A
	 �n�, with A a measurable subset of X1, is defined as

��A 	 �n�� =
e��n

n
	 dx	

A�
dWxx

n�����e−�U����. �4.6�

Here, we introduced

A� = ��� � Xn:���t� = ��nt� for some � � A� . �4.7�

There is a unique extension to a measure on X1	N. There is a natural correspondence between X
and X1	N, and we consider � to be a measure on X.

With this notation, the grand-canonical partition function �2.4� is given by

Z��� = �
k�0

1

k!
	

Xk
d���1� ¯ d���k� �

1�i
j�k

�e−�U��i,�j� − 1� . �4.8�

The term k=0 is equal to 1 by definition. Then Z��� has exactly the form assumed, e.g., in Ref. 14.
The Kotecký-Preiss criterion for the convergence of the cluster expansion requires the existence of
a function a :X→R+ such that the following inequality holds for any ��X:

	
X

�1 − e−�U��,����ea����d����� � a��� . �4.9�

Choosing a���=−��n �with n the winding number of the trajectory ��, it was shown in Ref. 14
that Eq. �4.9� is a consequence of the condition in Theorem 3.

The main result of the cluster expansion is that the partition function �4.8� is given by the
exponential of a convergent series. Namely,

Z��� = exp��
k�1

	
Xk

d���1� ¯ d���k����1, . . . ,�k�� . �4.10�

The combinatorial function ���1 , . . . ,�k� is equal to 1 if k=1, and is otherwise equal to

���1, . . . ,�k� =
1

k!�G �
�i,j��G

�e−�U��i,�j� − 1� . �4.11�

The sum is over connected graphs with k vertices, and the product is over edges of G. A proof for
relation �4.10� that directly applies here can be found in Ref. 14.

Observe now that the partition function Z�� ;�� is given by an expression similar to Eq. �4.8�,
where each ��� j� is replaced by e−�U��,�j���� j�. Since U�� ,� j� is positive, the criterion �4.9� is
satisfied with this new measure. It follows that Z�� ;�� has an expansion similar to Eq. �4.10�, and
we obtain the following expression for the ratio of partition functions:

Z��;��
Z���

= exp�− �
k�1

	
Xk

d���1� ¯ d���k�
1 − �
j=1

k

e−�U��,�j�����1, . . . ,�k�� . �4.12�

It is not hard to check that

1 − �
j=1

k

e−�U��,�j� = �
j=1

k

�1 − e−�U��,�j���
i=1

j−1

e−�U��,�i� � �
j=1

k

�1 − e−�U��,�j�� . �4.13�

Then Eq. �5� in Ref. 14 gives the necessary estimate for the exponent in Eq. �4.12�, namely,
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�
k�1

	
Xk

d���1� ¯ d���k�
�
j=1

k

�1 − e−�U��,�j�������1, . . . ,�k�� � − ��n . �4.14�

This bound is uniform in the size of the domain, which is important. It follows that, as L→�, the
ratio Z�� ;�� /Z��� converges pointwise in � and �. The thermodynamic limits of cn,��x� and
���n� then clearly exist. Further, cn,��x� is bounded by

cn,��x� � 
	 dW00
n����e−�U����−1

e−2��n	 dW0x
n���� . �4.15�

It is not hard to show that the bracket is bounded away from zero uniformly in L �but not
uniformly in � and n�. From Eq. �A10�, we have

lim
�x�→�

lim
L→�

	 dW0x
n���� = 0.

This implies that cn,��x� vanishes in the limit of infinite �x�.

V. CONCLUSION

We introduced formula �1.1� that relates the off-diagonal correlation function and the densities
of cycles of given length. This formula involves coefficients cn that have a natural definition in
terms of integrals of Wiener trajectories. We conjectured several properties for the coefficients—
these properties can actually be proven in the ideal gas for all temperatures and in the interacting
gas for high temperatures. These results seem to indicate that the order parameters of Feynman
and Penrose and Onsager agree. However, heuristic considerations based on the present
framework15 suggest that, if the gas is in a crystalline phase, the coefficients satisfy cn�x�
�e−a�x� for some a0 and for all n �including n=��. Besides, one expects that ����0 if the
temperature is sufficiently low. The order parameters are not equivalent in this case.

An open problem is to establish the equivalence of the order parameters in weakly interacting
gases in the presence of the Bose-Einstein condensation. Another question is whether c��x� con-
verges, as �x � →�, to a number that is strictly between 0 and 1. The corresponding phase would
display a Bose condensate whose density is less than the density of particles in infinite cycles.
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APPENDIX A: FEYNMAN-KAC REPRESENTATION OF THE BOSE GAS

In this appendix we recall some properties of the Wiener measure, and we review the deriva-
tion of the Feynman-Kac representation of the partition functions and of the off-diagonal long-
range order parameter. A complete account can be found in the excellent notes of Ginibre;6 Faris
wrote a useful survey.4

Let D be the d-dimensional cubic box of size L and volume V=Ld. We work with periodic
boundary conditions, meaning that D is the d-dimensional torus TL

d. The state space is the Hilbert
space HD,N of square-summable complex functions on DN that are symmetric with respect to their
arguments. Let S denote the symmetric projector on L2�DN�, i.e.,

S��x1, . . . ,xN� =
1

N! �
��SN

��x��1�, . . . ,x��N�� , �A1�

where x1 , . . . ,xN�D and the sum is over all permutations of N elements. The state space for N
bosons in D is therefore HD,N=SL2�DN�, the projection of L2�DN� onto symmetric functions.
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The Hamiltonian of the system is the sum H=T+V of kinetic and interaction energies. The
kinetic energy is T=−� j=1

N � j, where � j is the Laplacian for the jth particle. Interactions are given
by the multiplication operator V=�1�i
j�NU�xi−xj�.

Recall that � and � denote the inverse temperature and the chemical potential, respectively.
The canonical and grand-canonical partition functions are

Y��,V,N� = TrHD,N
e−�H, �A2�

Z��,V,�� = �
N�0

e��nY��,V,N� . �A3�

Under the assumption that U�x� is a stable potential and that it decays faster than �x�−d as �x �
→�, one can establish the existence of the thermodynamic potentials �see Ref. 11�

f��,�� = lim
V→�

−
1

�V
log Y�N� , �A4�

p��,�� = lim
V→�

1

V
log Z��� . �A5�

Further, f and p are related by a Legendre transform,

f��,�� = sup
�

�� −

1

�
p��,��� . �A6�

This equation is useful to find f from p in the case of the ideal gas, where p can be computed
explicitly.

The Feynman-Kac representation allows to express e−�H in terms of Wiener trajectories
�Brownian motion�. We briefly review the main properties of the Wiener measure. Let X1 be the
set of continuous paths � : �0,��→D. Consider a function F :X1→R of the kind

F��� = f���t1�, . . . ,��tn�� , �A7�

where f is a bounded measurable function on Dn, and 0
 t1
 ¯ 
 tn
�; we extend f on Rd by
periodicity. The integral of F with respect to the Wiener measure Wxy

� is given by

	
X

F���dWxy
� ��� = �

z�Zd
	

Rdn
gt1

�x1 − x�gt2−t1
�x2 − x1� ¯ g�−tn

�y + Lz − xn�

	 f�x1, . . . ,xn�dx1 ¯ dxn, �A8�

where gt is the normalized Gaussian function with mean zero and variance 2t,

gt�x� =
1

�4�t�d/2e−x2/4t. �A9�

The sum over z accounts for periodic boundary conditions. A special case of Eq. �A8� is when the
function F is the constant function F���1; we get

	 dWxy
� ��� = �4���−d/2 �

z�Zd

− e−�x − y + Lz�2/4�. �A10�

Only the term z=0 remains in the limit L→�. It can be proven that such a measure exists and is
unique.6 The Wiener measure Wxy

n� is concentrated on Hölder continuous trajectories �with any
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Hölder constant less than 1
2 � that start at x and end at y. Integration with respect to Wxy

� and W00
� are

related as follows. Define ���t�=��t�− t��y−x� /��; then

	 F���dWxy
� ��� = e−�y − x�2/4�	 F����dW00

� ��� . �A11�

The Feynman-Kac formula states that e−�H is given by an integral operator.2,4,6 We are actu-
ally dealing with bosonic particles, and it is more convenient to consider the operator e−�H S that
also projects onto symmetric functions. We have

e−�HS��x1, . . . ,xN� = 	
DN

K�x1, . . . ,xN;y1, . . . ,yN���y1, . . . ,yN�dy1 ¯ dyN, �A12�

where the kernel K is given by

K�x1, . . . ,xN;y1, . . . ,yN� =
1

N! �
��SN

	 dWx1y��1�
� ��1� ¯ dWxNy��N�

� ��N�

	exp�− �
i
j
	

0

�

U��i�s� − � j�s��ds� . �A13�

The canonical partition function is then given by

Y�N� = �
��SN

1

N!
	

DN
dx1 ¯ dxN	 dWx1x��1�

� ��1� ¯ dWxNx��N�
� ��N�

	exp�− �
i
j
	

0

�

U��i�s� − � j�s��ds� . �A14�

We now group the cycles into closed trajectories, that may wind several times around the time
direction. The number of permutations of N elements with k cycles of lengths n1 , . . . ,nk �with
� jnj=N� is

N!

k!�
j

nj

.

Further, we have

	
Dn−1

dx2 ¯ dxn	 dWxx2

� ��1� ¯ dWxny
� ��n�F��� =	 dWxy

n����F��� . �A15�

The trajectory � : �0,n��→D in the right side is the concatenation of �1 , . . . ,�n. The partition
function �A14� can then be rewritten in the form of Eq. �2.1�.

Let us turn to the Penrose and Onsager off-diagonal long-range order.9 Given a single particle
function ��L2�D�, we define the operator N� that represents the number of particles in the state
�. The action of this operator is given by

�A16�

It is clear that 0�N��N and that �N� ,S�=0. Let �0�x�1/�V denote the single particle ground
state in the absence of interactions. It is also the Fourier function with mode k=0. The average
occupation of the zero mode is given by
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��
�0� = lim

V→�

1

Y�N�
TrHD,N


N�0

V
e−�H� . �A17�

We set N=�V, and the limit exists at least along a subsequence of increasing volumes. A criterion
for the Bose-Einstein condensation is that ��

�0� differs from zero. We can derive a Feynman-Kac
expression for this order parameter. From Eqs. �A12�, �A13�, and �A16�, we have

TrHD,N
N�e−�H =

1

�N − 1�!	D

dx��x�	
D

dy��y�	
DN−1

dx2 ¯ dxN �
��SN

		 dWx1x̂��1�

� ��1� ¯ dWxNx̂��N�

� ��N�exp�− �
i
j
	

0

�

U��i�s� − � j�s��� .

�A18�

Here, we set x1=x, x̂1=y, and x̂j=xj for 2� j�N. Then ��
�0� can be written as

��
�0� = lim

V→�

1

V2	
D2

���x − y�dxdy , �A19�

where

���x − y� =
1

Y��,V,N�
1

�N − 1�!	DN−1
dx2 ¯ dxN �

��SN

		 dWx1x̂��1�

� ��1� ¯ dWxNx̂��N�

� ��N�

	exp�− �
i
j
	

0

�

U��i�s� − � j�s��� . �A20�

This expression involves an open cycle from x to y, winding n times around the time direction,
with n=1, . . . ,N. Using the concatenation property �A15� and thanks to the combinatorial factor
�N−1�! / �N−n�!, we obtain expression �2.14� for ���x−y�. The system displays off-diagonal long-
range order if ���x� is strictly positive, uniformly in V ,x.

APPENDIX B: A SIMPLE PROOF OF MACROSCOPIC OCCUPATION IN THE IDEAL GAS

In this section, we give a proof of the macroscopic occupation of the zero mode at low
temperature. This is usually established in the grand-canonical ensemble, using a chemical poten-
tial that varies with the volume and tends to zero in the thermodynamic limit. This approach is
rather un-natural and requires large deviation techniques to control the fluctuations of the number
of particles. The present proof is simpler and stays within the canonical ensemble.

The computation of the pressure and of the density in the grand-canonical ensemble can be
found in any textbook dealing with quantum statistical mechanics. The chemical potential must be
strictly negative. The infinite volume pressure is

p��,�� = −
1

�2��d	
Rd

log�1 − e−��k2−���dk , �B1�

and the density is

���,�� =
1

�2��d	
Rd

dk

e��k2−�� − 1
=

1

�4���d/2 �
n�1

e��nn−d/2. �B2�

The limit of ��� ,�� as �↗0 is finite for d�3 and gives the critical density of the ideal Bose gas,
�c. The graph of p�� ,�� in three dimensions is plotted in Fig. 2�a�. Its Legendre transform, Eq.
�A6�, gives f�� ,��, see Fig. 2�b�; it is nonanalytic at �c. The value of a��� is given by
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a��� = lim
�↗0

1

�
p��,�� = lim

�→�
− f��,�� . �B3�

The very nature of the Bose-Einstein condensation is that the occupation number for k=0
becomes macroscopic. The average occupation of the zero mode ��

�0�, see Eq. �A17�, can be
rewritten as

��
�0� = lim

V→�

1

Y�N� �
�nk�:N

n0

V
e−��knkk

2
. �B4�

Here, N=V�, and the sum is over all occupation numbers nk�0, with indices k� ��2� /L�Z�d, such
that �knk=N. The heart of the Bose-Einstein condensation is the following result.

Theorem 4: For d�3, the single particle ground state is macroscopically occupied if �
�c. More precisely,

��
�0� = max�0,� − �c� .

Proof: It is clear that ��
�0��0. We now establish that ��

�0���−�c. Let us introduce the average
occupation of the mode k,

�nk� =
1

Y�N� �
�nk��:N

nke
−��k�nk�k�

2
.

Thanks to the sum rule N=�k�nk�, we have

��
�0� = � − lim

V→�
�
k�0

�nk�
V

. �B5�

We can view nk as a random variable taking positive integer values; its expectation is therefore
given by

�nk� = �
i�1

Prob�nk � i� , �B6�

where we defined

Prob�nk � i� =
1

Y�N� �
�nk��:N,i

− e−��k�nk�k�
2
. �B7�

The sum is restricted to �nk�� such that �nk�=N and nk� i. The change of variable nk→nk− i leads
to

FIG. 2. The pressure and the free energy of the ideal gas in three dimensions.
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Prob�nk � i� = e−�ik2Y�N − i�
Y�N�

. �B8�

The ratio of partition functions is also equal to the probability Prob�n0� i�, which is smaller than
1. Equations �B6� and �B8� give a bound for the occupation numbers of all modes k�0, namely,

�nk� �
1

e�k2
− 1

. �B9�

Notice that �nk��1/�k2�L2 /4�2� for k�0. This shows that only the zero mode can be macro-
scopically occupied �for d�3�. Inserting this bound into Eq. �B5�, we obtain

��
�0� � � −

1

�2��d lim
V→�

�
k�0

�2�

L
�d 1

e�k2
− 1

. �B10�

The limit converges to expression �B2� with �=0, which is equal to �c.
There remains to show that ��

�0��max�0,�−�c�. From Eq. �B8� with k=0, and using the
equivalence of ensembles, we have for any fixed a,

lim
V→�

1

�V
log Prob�n0 � Va� = f��,�� − f��,� − a� . �B11�

The right side of Eq. �B11� is strictly negative when amax�0,�−�c�. There exists �0 such
that for large enough volumes,

Prob�n0 � Va� � e−V�. �B12�

Let us assume that �−�c0; the case �−�c�0 can be treated similarly. Using Eq. �B6� with k
=0, together with Eq. �B12�, we get

�n0�
V

=
1

V
�

1�i�aV

Prob�n0 � i� +
1

V
�

aV
i�N

Prob�n0 � i� � a + �e−V�. �B13�

It follows that ��
�0� is less than any number a�−�c, hence ��

�0���−�c.
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We study the final state problem for the Korteweg–de Vries type equations: ut

−1/� ��x��−1ux=�u2ux, �t ,x��R+�R , �u�t�−FS�t��L2→0 as t→�, where ��R,
the function FS�t� we call a final state, defined by the final data u+. We show that
there does not exist a nontrivial solution of this equation in the case of FS�t�
=U�t�u+, where U�t� is the free evolution group of this equation. We construct the
modified wave operator for the Korteweg–de Vries type equations under the con-
ditions that the final data u+ arc real-valued functions and the Fourier transform
û+��� vanishes at the origin. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2374883�

I. INTRODUCTION

We study the final state problem for the Korteweg–de Vries type equations

ut − 1/���x��−1ux = �u2ux, �t,x� � R+ � R ,

�1.1�
�u�t� − FS�t��L2 → 0 as t → � ,

where ��2, ��R, ��x��=F−1 ����F, F�, or �̂ is the Fourier transform of � defined by F����
= �1/�2���Re−ix���x�dx and the inverse Fourier transformation F−1 is given by F−1��x�
= �1/�2���Reix�����d�. If �=2, then Eq. �1.1� converts to the well-known modified Benjamin–
Ono equation

ut − 1
2Huxx = �u2ux, �1.2�

where H�=−F−1�i� / �� � ��̂= �1/��PV�R���y� /x−y�dy is the Hilbert transform. For the case of
�=3, Eq. �1.1� reduces to the famous modified Korteweg–de Vries equation

ut + 1
3uxxx = �u2ux. �1.3�

Another example is the Kawahara equation �see. Ref. 1�

ut − 1
5�x

5u = �u2ux,

when �=5.
The function FS�t� we call a final state, defined by the final data u+. If the function FS�t� can

be taken in the form

a�Electronic mail: nhayashi@math.wani.osaka-u.ac.jp
b�Electronic mail: pavelni@matmor.unam.mix
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FS�t� = U�t�u+ = F−1exp	 i

�
t����−1�
u+̂���

and the final problem �1.1� has a nontrivial solution, then we say that there exists a usual wave
operator for the final state problem. However, below we will show that there does not exist a
nontrivial solution of Eq. �1.1� in the case of FS�t�=U�t�u+. Therefore we need to modify the time
dependence of the final state Fs�t�, in other words, we will construct a modified wave operator.
The modified wave operator was first constructed by Ozawa2 for cubic nonlinear Schrödinger
equations and then by Ozawa and the first author3 for the derivative nonlinear Schrödinger equa-
tion, by changing it via a suitable transformation �see Ref. 4� to a system of cubic nonlinear
Schrödinger equations without derivatives of an unknown function. However, as far as we know
the existence of the modified wave operators was not proved for other types of dispersive equa-
tions with nonlinearities involving derivatives of the unknown function, such as the modified
Benjamin–Ono equation �1.2� and the modified Korteweg–de Vries equation �1.3�.

The Cauchy problem for the Korteweg–de Vries equations �1.1� with �=3 and nonlinearities
of the form �xu

	 was studied extensively �see, e.g., Refs. 5–8 and 26 for the existence of unique
solutions and Refs. 9–16 for the large time asymptotic behavior of small solutions in the case of
supercritical nonlinearity 	
3�. In the case of the modified Benjamin–Ono equation �1.2�,
namely, �=2 and 	
3, the large time asymptotic behavior of small solutions were studied in
Refs. 17 and 18.

One of the important problems of scattering theory is the construction of the so-called scat-
tering operator, which is defined by the direct and inverse wave operators. In the case of critical
nonlinearity it appears to be impossible to find the usual scattering operator, so a problem con-
structing the modified scattering operator arises. The inverse modified wave operator is closely
related to the large time asymptotic behavior of solutions to the Cauchy problem. We now refer
some results on the large time asymptotic behavior of small solutions to the Cauchy problem �1.1�
for cases �=2,3, and 5. The case of the modified Korteweg–de Vries equation �=3 was consid-
ered in Refs. 19 and 20. If the initial data u0�H1,1 are real-valued functions with a sufficiently
small norm, then there exists a unique global solution u�C�R ;H1,1� of the Cauchy problem for
modified Korteweg–de Vries equation �1.3�. Moreover, if we �denote by S�t ,x�= �1/�3 t���x /�3 t� the
self-similar solution of the modified Korteweg–de Vries equation �1.3� such that

St −
�

3
�S3�x +

1

3
Sxxx = 0

and

�
R

S�t,x�dx = �
R

u0�x�dx ,

then there exist unique functions Hj and Bj �L� �Bj are real valued�, j=1,2, such that the
following asymptotic formula is valid for large time t uniformly with respect to x�R,

u�t,x� =
1
�3 t

�	 x
�3 t

 +

1
�3 t

Re Ai	 x
�3 t

�

j=1

2

Hj	 x

t

exp	iBj	 x

t

log

�x�
�3 t

 + O	t�−5/12	1 +

x
�3 t

−1/4
 ,

where �� �0,1 /10� and Ai�x�= �1/���0
�eixz+�i/3�z3

dz is the Airy–Fock function.
The large time asymptotic behavior of small solutions to the Cauchy problem for the modified

Benjamin–Ono equation �1.2� was studied in Refs. 17 and 18. It was proved that if the initial data
u0�H2,0�H1,1 are real-valued functions with sufficiently small norm, then there exists a unique
global solution u�C�R ;H1,0��L��R ;L2� of the Cauchy problem for the modified Benjamin–
Ono equation �1.2�. Moreover there exists a unique function u+�L� such that the following
asymptotic formula is valid
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u�t,x� =
1
�t

Re	G	 x
�t

u+	 x

t

exp	 ix2

2t
− ig	 x

t

log t

 + O�t−1/2−��

as t→� uniformly with respect to x�R, where

G�x� =
1

�− �i
�

−x

�

e−iy2
dy,g�x� =

3

4
x�x��u+�x��2,

�x�=1 for x�0 and �x�=0 for x�0,0���1/4.
Finally, the large time asymptotic behavior of small solutions to the Cauchy problem for the

generalized Kawahara equation

ut −
1

5
�x

5u = �u	−1ux

with supercritical nonlinearities of the order 	
5 were obtained in Ref. 21, where it was proved
that if the initial data u0�H1,1 are real-valued functions with sufficiently small norm then there
exists a unique function u+�L��L2 such that the asymptotic behavior

u�t,x� =
1
�5 t

Re A	 x
�5 t

u+	 x

t

 + O	t−1/5−�	1 +

�x�
�5 t

−3/8


is true for large t uniformly with respect to x�R, where 0��� �	−5� /5,

A�x� =
1

�
�

0

�

eixz+�i/5�z5
dz .

We see that the Cauchy problem for the Korteweg–de Vries type equations �1.1� was studied and
the asymptotic behavior of solutions was found for the cases �=2 and 3. However, the asymptotic
behavior of solutions to the Cauchy problem for the Korteweg–de Vries type equations �1.1� of
higher order �
3 is an open problem. The difficulty in studying the higher order cases �
3
comes from the time decay properties of solutions to the corresponding linear problem. Thus to be
able to get better time decay estimates of solutions, a condition arises that the Fourier transform of
the initial data must vanish rapidly at the origin. Note that the existence of the modified scattering
operator is an important open problem even for the lower order cases ��2 since it is necessary to
study carefully the range and the domain of the inverse modified wave operator.

The aim of the present paper is to construct the modified wave operator for the Korteweg–de
Vries type equations �1.1� under the conditions that the final data u+ are real-valued functions and
the Fourier transform û+��� vanishes rapidly at the origin. We first obtain the L� estimates and
the asymptotic behavior for solutions to the linear dispersive equations of the Korteweg–de Vries
type. Denote the free evolution group U�t�=F−1exp��it /�� ����−1��F, where ��2. The usual
Lebesgue space Lp= � ; ���Lp � � �, with the norm ���Lp = ��R ���x��pdx�1/p if 1� p�� and
���L� =supx�R ���x��if p=�. The weighted Sobolev space is defined by
Hp

m,s= ��Lp ; ��x�s�i�x�m��Lp � � � ,m ,s�R with �x�=�1+ �x�2. The index 0 we usually omit if it
does not cause confusion. We say that �=O��� in Lp for all t�T, if the estimate

���Lp � C���

is true for all t�T, where C
0 does not depend on �. We also introduce the norm

���Z� � ���−������L� + ���1−�������L�,

where ��= �� � / ���.
Theorem 1.1: The estimate is true
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�U�t���L� � Ct−�1+��/����x�−���L1 �1.4�

for all t
0, provided that the right-hand side is finite, where �� �0,� /2−1� ,��2. Furthermore,
the asymptotic formula for large time t holds

U�t�� = t−1/2Re��x��FE�̂����� + O���̂�Z�t−�/�−1/��1−1/��� , �1.5�

in Lp for 2� p��, where 0��� ��−1��1−1/ p�,

F��� =� 4

i�� − 1�
���1−�/2,

E=e−i�1−1/��t����−1� and �= �x / t�1/��−1� ,�x�=1 for x�0 and �x�=0 for x�0.
Remark 1.1: The proof of theorem 1.1 follows the method of Ref. 22 concerning the estimates

of the free evolution group F−1exp��i /��t �����F. The difference is in the estimates for the positive
half-line, where the free evolution group

F−1exp�i/�t����−1��F

decays exponentially, because the symbol ����−1� is an odd function. Therefore the assumption that
the Fourier transform of the final data û+ vanishes at the origin implies that the leading term of
the asymptotics becomes a remainder one for the positive half-line. If û+ does not vanish at the
origin, then we need to consider a leading term (in the short-range region) generated by the value
û+�0�.

Remark 1.2: We need estimate �1.4� for the proof of the Strichartz type estimate (see lemma
3.1 below). We see that the L2-norm of the remainder in Eq. �1.5� decays faster than t1/2�−1/2 in the
case of �
� /2−1 and ��2.

Remark 1.3: If �̂�j��0�=0 for 0� j�k= ��� and ��H0,k+2, then

��̂�Z� � C��̂�L� + C��̂�k+1��L� � C��̂�Hk+2 = C���H0,k+2.

For the case of �=3, we can choose 1/2���1, then we have

��̂�Z� � C���H0,2

if ��H0,2 and �R��x�dx=0.
We now give some heuristic considerations to explain the construction of the modified wave

operator. Let us assume that the solutions of nonlinear problem Eq. �1.1� have time decay prop-
erties similar to that of the linearized equation and apply the result of theorem 1.1 to evaluate the
asymptotic behavior of the nonlinear term in Eq. �1.1�. Since the final data u+ are real valued we

have u+̂���=u+̂�−��. Then the main term in Eq. �1.1� appears as a linear combination of the
following two oscillating terms

I1 � t−3/2Re�i�x����F�F�2E�u+̂�2u+̂�����

and

I2 � t−3/2Re�i�x����F3E3u+̂
3�����

for x�0. It is easy to check that the L2 norm of I1 and I2 decays like t−1. Hence, it is divergent
when integrating in time. This is the reason why it is impossible to find the solutions of Eq. �1.1�
in the neighborhood of the free solutions �see theorem 1.3 below�. The term I1 can be removed by
introducing a suitable phase correction since it oscillates similarly to the solutions of the linear
problem. And the term I2 can be shown via integrating by parts to be a remainder �since its
oscillating properties differ from that of the solutions to the linear problem, see Ref. 23. In the case
of lower order �, the method used in Ref. 23 could be applicable. However, in the case of
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fractional or higher order �, the computations become complicated. So we avoid here the integra-
tion by parts and instead we use the Fourier image to find an approximate solution of the nonlinear
problem. �See Sec. III for the details, where the ordinary differential equations involving terms
associated with I1 and I2 is studied.� The previous methods of Refs. 2 and 3 for constructing the
modified wave operator were based on the substitution of an approximate solution to the linear
equation and then considered the equation for differences. This method seems to be difficult to
apply to our problem since it requires � times differentiation of an approximate solution. Finally
we note that the term I2 does not appear in the case of the nonlinear Schrödinger type equations
with the gauge invariant nonlinearity �u�2u.

Denote

W� = �;���W� � ����3��z� � � � .

Theorem 1.2: Let the final data u+ be a real-valued function and the norm �u+̂�W�

�� ,max��−2� /2 , �3�−7� /4����max�−2, ��−1� /2� ,��2. Then there exists a time T�1
and �
0 such that Eq. �1.1� has a unique solution u�L���T , � � ;H2��C��T , � � ;H1�. Moreover,
the asymptotic formula is true

�u�t� − U�t�w�t��H2 � Ct−minb,�2�−�+3�/��,

where b�� /�+1/2� and w�t� are the solutions of the ordinary differential equations

ŵt�t,�� =
1

t
�i���Fŵ�2ŵ + i�̃�F2E�D�ŵ3� �1.6�

with the final condition

lim
t→�

ŵ�t�e−i���u+
ˆ����2log t = u+̂��� ,

where

� � R, � = �1 − 31−��/�� − 1�, � = 3�−1, �̃ = �33�/2−4

F =� 4

i�� − 1�
���1−�/2, D�� = �−1/2��x���−1/��−1��, E = e−i�1−1/��t����−1�.

We note here that the existence of solutions ŵ�t��C��1, � � ;W�� to Eq. �1.6� is shown in lemma
3.2 below.

Remark 1.4: For the convenience of the reader we state the result of theorem 1.2 for the
modified Korteweg–de Vries case ��=3�. Let the final data u+ be a real-valued function and the

norm �u+̂�W� = ����3��z� �� ,�� �1/2 ,1�. (By remark 1.3, if �Ru+�x�dx=0 and u+�H3,2, then u+̂

�W��. Then there exists a time T�1 and �
0 such that Eq. �1.1� with �=3 has a unique
solution u�L���T , � � ;H2��C��T , � � ;H1�. Moreover, the asymptotic formula is true

�u�t� − U�t�w�t��H2 � Ct−b,

where 0�b� �2�+1� /6 and w�t� is the solution of the ordinary differential Eq. (1.6) with the final
condition

lim
t→�

ŵ�t�e−i���u+
ˆ����2log t = u+̂���

and

� � R, � = 4/9, � = 9, �̃ = ��3,

123501-5 Korteweg–de Vries type equations J. Math. Phys. 47, 123501 �2006�

                                                                                                                                    



F =� 2

i���
,D�� = �−1/2��x���−1/2�, E = e−�2i/3�t�3

.

For the modified Benjamin–Ono case ��=2� we have the following result. Let the final data u+

be a real-valued function and the norm �u+̂�W� = ����3��z� �� ,�� �0,1 /2�. (By remark 1.3, if

�Ru+�x�dx=0 and u+�H3,1, then u+̂�W��. Then there exists a time T�1 and �
0 such that Eq.
�1.1� with �=2 has a unique solution u�L���T , � � ;H2��C��T , � � ;H1). Moreover, the
asymptotic formula is true

�u�t� − U�t�w�t��H2 � Ct−b,

where 0�b� �2�+1� /4 and w�t� are the solution of the ordinary differential Eq. (1.6) with the
final condition

lim
t→�

ŵ�t�e−i���u+
ˆ����2log t = u+̂��� ,

where

� � R, � = 2/3, � = 3, �̃ = �3−1,

F =�4

i
, D�� = �−1/2��x���−1�, E = e�−i/2�t����.

Remark 1.5: By theorem 1.1 and lemma 3.2 we see that

�x
jU�t�w�t� = t−1/2Re��x��FE����ei���Fu+

ˆ����2log t� ju+̂���� + O�t−b�

in L2 for j=0,1 ,2, where ��−1� /2��b�� /�+1/2�. Therefore, the asymptotic behavior of theo-
rem 1.2 can be written in the form

��x
ju�t� − t−1/2Re��FE����ei���Fu+

ˆ����2log t� jû+�����L2�−�,0� + ��x
ju�t��L2�0,�� � Ct−b�u+̂�w�.

Next we present the nonexistence of the usual wave operator in the case of ��0.
Theorem 1.3: Let u+ satisfy the assumptions of theorem 1.2. We also assume that ��0 and

that there exists a solution u for Eq. �1.1� such that

lim
t→�

�u�t� − U�t�u+�H1 = 0.

Then u=0.
The outline of the paper is as follows. Section II is devoted to the proof of theorem 1.1. We

prepare several lemmas in Sec. III. We prove theorem 1.2 in Sec. IV. Then the last Sec. V is
devoted to the proof of theorem 1.3.

II. PROOF OF THEOREM 1.1

For the proof of estimate �1.4� we refer to Ref. 6 �proposition 2.3� and Ref. 7 �Remark b in
theorem 2.2�. We now prove the asymptotic behavior of Eq. �1.5�. Consider the case x�0. Since
� is a real-valued function, so that �̂�−��= �̂���, we can write the identity
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U�t�� =� 2

�
t−1/�Re�

0

�

ei��+�i/����
�̂��t−1/��d�

=� 2

�
t−1/�Re	�̂����

0

�

ei��+�i/����
d� + �

0

�

ei��+�i/����
��̂��t−�1/��� − �̂����d�
 , �2.1�

where �=xt−1/�, �=�t−1/�= ��x � / t�1/��−1� and �= ���1/��−1�
0.
Consider the asymptotic behavior with respect to �→� �i.e., �→−�� for the first summand

on the right-hand side of Eq. �2.1�

�
0

�

e−i���−1+�i/����
d� = e−i�1−1/�����

0

�

eiS��,��d� ,

where S�� ,��=1/����−��−���−1��−���. We can define a new variable

z��,�� = � + �1−�/2� 2

� − 1
S��,��sign�� − �� .

Note that z��� ,��=1 and �see Ref. 24�

�
z�0,��

�

ei��−1/2���−2�z − ��2
dz =� 2�

i�� − 1�
�1−�/2 + O��1−��

for �→�, where z�0,��=��1−�2/��. Then applying the identity

eiS��,�� =
1

1 + i�� − �����−1 − ��−1�
����� − ��eiS��,���

we integrate by parts in the second summand

�
0

�

eiS��,���1 − z���,���d� = �
0

�

�� − ��eiS��,����	 1 − z���,��
1 + i�� − �����−1 − ��−1�
d� + O��1−�� .

Hence,

��
0

�

eiS��,���1 − z���,���d�� � C�−1�
0

2� �� − ��d�

1 + �� − ��2��−2 + C�1−�/2�
2�

�

�−1−�/2d� + O��1−��

= O��1−�ln �� .

Therefore,

� 2

�
t−1/�Re	�̂����

0

�

ei��+�i/����
d�
 = t−1/2Re�FE�̂���� + O�t−1/��̂����1−�ln �� ,

where the remainder term O�t−1/��̂����1−�ln �� satisfies the estimates of the theorem. For the
second summand on the right-hand side of Eq. �2.1� we apply the identity

ei��+�i/����
=

1

1 + i�� − �����−1 − ��−1�
�

��
��� − ��ei��+�i/����

� ,

then the integration by parts yields
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�
0

�

ei��+�i/����
��̂��t−1/�� − �̂����d� =

�

1 + i���̂��� + t−1/��
0

� �� − ��ei��+�i/����
�̂���t−1/��d�

1 + i�� − �����−1 − ��−1�

+ i�
0

� �� − �����−1 − ��−1� + �� − 1��� − ��2��−2

�1 + i�� − �����−1 − ��−1��2

� ��̂��t−1/�� − �̂��t−1/���ei��+�i/����
d� � �

j=1

3

Ij�t,x� .

The first integral I1�t ,x� is estimated for all t�1 by

�I1�t��Lx
� � � �

���� �̂��t−1/���
Lx

�
� Ct−�/����−��̂����L�

if 0����−1 and

�I1�t��Lx
2 � Ct1/2�� ��/2

���� �̂��t−1/���
L

�
2

� Ct1/2�−�/����−��̂����L����+�/2

���� �
L

�
2

� Ct1/2�−�/���̂�Z�

�2.2�

if 0��� ��−1� /2. For the second term we find

�I2�t��Lx
� � t−1/���

0

� �� − ��ei��+i/���

1 + i�� − �����−1 − ��−1�
�̂���t−1/��d��

L
�
�

� Ct−�/������−1�̂�����L
�
���

0

� ����−1�� − ��d�

1 + �� − �����−1 − ��−1� �
L

�
�

� Ct−�/���̂�Z�

since we have the estimate

�
0

� ����−1�� − ��d�

1 + �� − �����−1 − ��−1�
� C���1−��

0

�/2

����−1d� + C��−1�
�
2

2� �� − ��d�

1 + �� − ��2��−2

+ C�
2�

� �� − ���d�

1 + �� − ���
� C �2.3�

for all �
0 if 0����−1. Similarly to the proof of Eq. �2.2� we also obtain

�I2�t��Lx
2 � Ct−1/2���

0

� ��/2−1�� − ��ei��+i/���

1 + i�� − �����−1 − ��−1�
�̂���t−1/��d��

L
�
2

� Ct1/2�−�/������−1�̂�����L���
0

� ��/2−1����−1�� − ��d�

1 + �� − �����−1 − ��−1� �
L

�
2

� Ct1/2�−�/���̂�Z�

�2.4�

if 0��� ��−1� /2, since as in Eq. �2.3� we have

��
0

� ���/2�−1����−1�� − ��d�

1 + �� − �����−1 − ��−1� �
L

�
2

� C�����−�/2�L
�
2 � C .

The third integral I3 is estimated as follows:
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�I3�t��L� � C�
0

� 1

1 + �� − �����−1 − ��−1����t−1/�

�t−1/�

�̂��y�dy�d�

� Ct−�/������−1�̂�����L��
0

� ������
1 + �� − �����−1 − ��−1�

d� � Ct−�/���̂�Z�

since

�
0

� ��� − ���
1 + �� − �����−1 − ��−1�

d� � C���1+�−� + C��−1�
�
2

2� �� − ��d�

1 + �� − ��2��−2 + C�
2�

� �� − ���d�

1 + �� − ���
� C

for all �
0 if 0����−1. In the same way as in the proof of Eq. �2.4� we have

�I3�t��Lx
2 � Ct−1/2�−�/������−1�̂�����L���

0

� ���/2�−1��� − ���
1 + �� − �����−1 − ��−1�

d��
L

�
2

� Ct1/2�−�/������−�/2�L
�
2 ��̂�Z� � Ct1/2�−�/���̂�Z� �2.5�

if 0��� ��−1� /2. Therefore by Eqs. �2.1�–�2.5� we obtain the result of the theorem for the case
of x�0.

Now we consider the second case x�0. By applying the identity

ei��+�i/����
=

1

1 + i����−1 + ��−1�
�

��
��ei��+�i/����

�

the integration by parts with respect to � yields

�
0

�

ei��+�i/����
�̂��t−1/��d� = − t−1/��

0

� �

1 + i����−1 + ��−1�
ei��+�i/����

�̂���t−1/��d�

− i�
0

� ���−1+���

�1 + i����−1 + ��−1��2ei��+�i/����
�̂��t−1/��d� .

Therefore we get

��
0

�

ei��+�i/����
�̂��t−1/��d��

Lx
�

� Ct−�/���̂�Z��
0

� ��d�

1 + �� � Ct−�/���̂�Z�

if 0����−1 and

��
0

�

ei��+�i/����
�̂��t−1/��d��

Lx
2

� Ct−1/2���
0

� ����/2�−1

1 + ����−1 + ��−1�
��̂���t−1/���d��

L
�
2

+ Ct1/2���
0

� ���/2�−1

1 + ����−1 + ��−1�
��̂���t−1/���d��

L
�
2

� Ct1/2�−�/���̂�Z���
0

� �����/2�−1d�

1 + ����−1 + ��−1� �
L

�
2

� Ct1/2�−�/������−�/2�L
�
2 ��̂�Z� � Ct1/2�−�/���̂�Z�

if 0��� ��−1� /2. This completes the proof of theorem 1.1.
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III. LEMMAS

Denote the ordering of the norms

���Lt
qLx

r = ����t��Lx
r�R��Lt

q�I�,

where I is a bounded or unbounded time interval. By the duality argument of Ref. 25 along with
the estimates of theorem 1.1 the Strichartz estimate can be proved.

Lemma 3.1: For any time interval I and for any s� Ī the Strichartz estimate is true

��
s

t

U�t − ������d��
Lt

qLx
r

� C���Lt
q̄�Lx

r̄�

with a constant C independent of I and s, where 0�� /q=1/2−1/r and 0�� /q�=1/2
−1/r� ,1 /r�+1/ r̄�=1, and 1/q�+1/q�=1.

We now consider the final state problem for the following equation:

dw

dt
= i�1t−1����2−��w�2w + �2t−1���3−�E�D�w3, �3.1�

where E=e−i�1−1/��t����−1� ,�1�R ,�2�C ,�=3�−1 we also denote the operator D��
=�−1/2��x ���−1/��−1��.

To treat the divergence of the first term on the right-hand side of Eq. �3.1� we change the
variable w=�ei�, where ��t ,��=�1� ���2−� � f����2log t. Then we get the final state problem

dv
dt

= Q��� ,

��t� → f as t → � , �3.2�

where

Q��� = i�1t−1����2−�����2 − �f �2�� + �2t−1���3−�E�e−i�D�e3i��3.

Lemma 3.2: Let �1�R ,�2�C. Suppose that the final state f �Y�,�, where ��−2� /2��
��−2 and

Y�,� = g:�g�Y�,� = �����+1��−�g�L�
� � �

and the norm �f�Y�,� is sufficiently small. Then there exists a unique solution �
�C��1, � � ;Y�,�� of the final problem �3.2� such that

sup
t�1

t�2�−�+3�/����t� − f�Y�,� � C�3.

Moreover, if f��Y�−1,2, then ��C��1, � � ;W�� with the estimates

sup
t�1

����t��Y�−1,2 � C� .

Remark 3.1: In order to use the lemma to the proof of the main result we put f = û+��� and let
� satisfy the condition

max�0,
3� − 7

4
� � � .

Then we find that
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���t� − û+���e−i�1����2−��û+����2log t�Y�,�

decays faster than t−��−1�/2�.
Proof: We apply the contraction mapping principle in

X� = � � X:�� − f�X � �� ,

where �=3 � f�Y�,� and the norm

���X = sup
t�1

t�2�−�+3�/����t��Y�,�.

For ��X� we define the mapping M��� by

M��� = f + �
t

�

�Q������ − Q�f��d� + �
t

�

Q�f�d� , �3.3�

where Q�f�=�2 ���3−�E��−1e−i�D�e3i�f3. First we prove the estimate �M���− f�X�� if ��X�.
Using the identity E�=B����E�� with B= �1− i��1−1/��� ����−1��−1 and

�����−1Be−i�D�e3i�� = − �−1B�2 − B�e−�D�e3i� − i�1�−1Be−i������2−��f �2D�e3i�

− 3D�e3i������2−��f �2�� ,

we integrate by parts in the last integral in Eq. �3.3�

M��� − f = �2���3−�BE�e−i�D�e3i�f3 + �
t

�

�Q������ − Q�f��d� + �2���3−�

��
t

�

E�B�2 − B�e−�D�e3i�f3d�

�
+ i�1�2���3−��

t

�

E�Be−i������2−��f �2D�e3i�

− 3D�e3i�����2−��f �2�f3d�

�
. �3.4�

Then by the conditions of the lemma we have

��
t

�

�Q������ − Q�f��d��
X

� C sup
t�1

t�2�−�+3�/��
t

�

��� − f�Y��−2�/2,1
2 + �f�Y��−2�/�,1

2 ��� − f�Y�,�
d�

�

� C�� − f�X��� − f�X
2 + �f�Y��−2�/�,1

2 �sup
t�1

t�2�−�+3�/�

��
t

�

�−1�2�−�+3�/�d� � C�3.

Since �B � �C�����−1 we also get

�����+1��−����3−�BE�e−ei�D�e3i�f3�L� � C�f�Y�,�
3 ����2�−�+3�t���−1�L� � C�3t�2�−�+3�/�

and
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����3−��
t

�

E�Be−i������2−��f �2D�e3ie� − 3D�e3i�����2−��f �2�f3d�

� �
Y�,�

� C�f�Y�,�
3 ����2�−�+3�

t

�

�����−1d�

� �
L�

� C�f�Y�,�
3 t�2�−�+3�/� � C�3t�2�−�+3�/�, �3.5�

where ��−2� /2����−2. Therefore the mapping M transforms a ball X� with a center f and a
radius �
0 into itself. In the same manner for v1 ,v2�X� we have

�M�v1� − M�v2��X � ��
t

�

�Q�v1���� − Q�v2�����d��
X

�
1

2
�v1 − v2�X.

Thus M is a contraction mapping in X�. Therefore there exists a unique solution v�X� to the
final problem Eq. �3.2�.

We now suppose that f��Y�−1,2. Taking the derivative of Eq. �3.4� with respect to � we
obtain for the new function h�t�=v��t�− f�+ i��2��−1�t�2BE�e−i�D�e3i�f3,

h�t� = �2E�������3−�Be−i�D�e3i�f3� + �
t

�

Q1�v����d� + �
t

�

Q2�v����d� ,

where

Q1�v� = i�1�3 − ���−1���2−���v�2 − �f �2�v + i�1�−1����2−��v���v�2 − �f �2� + v Re�vh + �v − f�f���

+ �2�−1E�������3−�e−i�D�e3i���v3 − f3� + 3�2�−1E����3−�e−i�D�e3i���v2 − f2�v� + f2h�

+ �2�−1E�������3−�B�2 − B�e−i�D�e3i�f3� + i�1�2�−1E�������3−�Be−i������2−��f �2D�e3i�

− 3D�e3i�����2−��f �2�f3�

and

Q2�v� = − i��� − 1��1����4−�v Re�vi�2BE�e−i�D�e3i�f3� − 3i��2
2�� − 1�E��1+3−��

����3−�e−i�D��f2�2Be2i�D�e3i�f3� + i��2�� − 1��2E��e−i�D�e3i��v3 − f3�

+ B�2 − B�e−i�D�e3i�f3 + i�1����2−��f �2Be−i�D�e3i� − 3i�1Be−i�D�e3i�����2−��f �2f3� .

In the term Q2�v� we integrate again by parts as in Eq. �3.5� and note that �� �B � �C�−1/�. We
therefore find

�h�l��Y�−1,2 � C�3t−� + C�3�
t

�

�−1−1/�d� � C�t−�.

Lemma 3.2 is proved. �

IV. MODIFIED WAVE OPERATOR

We define the modified final state ŵ�t� as a solution to the final problem Eq. �3.1�

ŵt�t,�� =
1

t
�i���Fŵ�2ŵ + i�˜�F2E�D�ŵ3� , �4.1�

where F=�4/ i��−1� ���1−�/2 ,E=e−i�1−1/��t����−1� ,�= �1−31−�� / ��−1� ,�=3�−1, �˜ =�33�/2−4 and a fi-

nal state f =u+̂���. The problem �4.1� is considered in lemma 3.2. Since LU�t�=U�t��t for L=�t

+1/ p ��x��−1�x, by Eq. �1.1� we find for the difference �=u−U�t�w,
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L� = N1 + N2, �4.2�

where

N1 = �u2�x + ��u2 − �U�t�w�2�U�t�wx,

N2 = ��U�t�w�2U�t�wx − it−1U�t�F−1����ŵ�2ŵ + �̃�F2E�D�ŵ3� .

By theorem 1.1 we have

U�t�w = t−1/2Re��x��FEŵ����� + R1

and

U�t�wx = t−1/2Re�i�x���FEŵ����� + R2

with �= ��x � / t��1/�−1� ,�x�=1 for x�0 and �x�=0 for x�0. The remainder terms satisfy the
estimates

�R1�t��H2 + t1/2��R1�t��H
�
2 + �R2�t��H2 + t1/2��R2�t��H

�
2

� Ct−�/�−1/2��ŵ�t��W�

= Ct−�/�−1/2�����3��−�û+����L� + Ct−�/�−1/2�����3��1−�ŵ��t,���L�

� Ct−�/�−1/2��1 + log t�û+�Z�
2 ��û+�W�

for ��−2� /2��� ��−1� /2, where �u+̂�W� = ����3u+̂�Z�. Then we have

�U�t�w�2U�t�wx = t−3/2�Re��x��FEŵ����� + R1�2�Re�i�x���FEŵ����� + R2�

= t−3/2�Re��i�x���F3E3ŵ3����� + t−3/2�Fŵ�2Re�i�x���FEŵ����� + R3

�4.3�

with the estimate

�R3�t��H2 � Ct−1−�/�−1/2��1 + �log t��u+̂�Z�
2 ��u+̂�W�.

By theorem 1.1 we also get

t−1i�U�t�F−1��Fŵ�2ŵ = t−3/2Re�i��x���F�F�2E�ŵ�2ŵ����� + R4, �4.4�

and since �=1+�−��=31−� we have �̃D��F3E�=�F3E3D� and

i�̃t−1U�t�F−1E��F2D�ŵ3 = i�̃t−1F−1exp	�
it

�
����−1�
�F2D�ŵ3

= i�̃t−1U��t�F−1�F2D�ŵ3

= t−3/2Re�i�̃D��x��F3E�D�ŵ3� + R5

= t−3/2Re�i�x���F3E3ŵ3����� + R5, �4.5�

with the estimate of the remainder terms

�R4�t��H2 + �R5�t��H2 � Ct−1−�/�−1/2��1 + log t�û+�Z�
2 ��û+�W�.

Therefore by Eqs. �4.3�–�4.5� we find that N2=R3+R4+R5. Thus
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�N2�H2 � Ct��−1�−�/�−1/2�. �4.6�

We introduce the function space

Y = � � C��T, � �;L2�:���Y � � � ,

where the norm

���Y = sup
t��T,��

tb����Lt
��t,��H2�R� + ���Lt

2p�t,��H
�
1 �R��

with ��−1� /2��b�� /�+1/2�−��1/2 ,�
0 is small. Consider the linearized version of Eq.
�4.2� written as

L� = ��ũ2�x + �ũ2 − �U�t�w�2�U�t�wx� + N2 �4.7�

with the final condition limt→���t�=0 in L2, where ũ= �̃+U�t�w and

�̃ � Y� = � � C��T, � �;L2�:���Y � C�� .

We apply the standard energy method to Eq. �4.7�. Using Sobolev imbedding theorem we then get

���t��H2
2

� �
t

�

���̃�H
�
1

2 + ��̃�H
�
1 �U���w�H

�
3 + �U���w�H

�
1

2 ����H2
2 d� + C�

t

�

���−1�−�/�−1/2����t��H2d�

� C�
t

�

���̃�H
�
1

2 + �−1/2��̃�H
�
1 + �−1����H2

2 d� + Ct�−�/�−1/2����t��H2
.

By applying the Hölder inequality

���t��H2
2

� C	�
t

�

��̃�H
�
1

2� d�
1/�	�
t

�

���H2
2�/��−1�d�
��−1�/�

+ C	�
t

�

��̃�H
�
1

2� d�
1/2�

�	�
t

�

�−�/�2�−1����H2
4�/�2�−1�d�
�2�−1�/2�

+ C�
t

�

�−1���H2
2 d� + Ct�−�/�−1/2����t��H2

� Ct−2b��2t��−1�/�−2b + �2t��−1�/2�−b + 1�sup
t�T

t2b���t��H2
2 + C�t−2b

since ��−1� /2��b�� /�+1/2�−� ,�
0 is small. Hence, there exists a time T�1 and �
0
such that if �u+�W� ��, then

sup
t�T

tb���Lt
��t,��H2�R� � � . �4.8�

By the Strichartz estimates �see lemma 3.1�

���Lt
2��t,��H

�
1 �R� � C	�

t

�

���̃����H
�
1 ��̃����H1������H2�2�/�2�−1�d�
�2�−1�/2�

+ C	�
t

�

��U���w�H
�
1��̃����H1

������H2�2�/�2�−1�d�
�2�−1�/2�

+ C�
t

�

�U���w�H
�
1

2 ������H2d� + C�
t

�

�N2�L2d� .

Hence,
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�v�Lt
2��t,��H

�
1 �R� � C�2	�

t

�

�−4�b/�2�−1��ṽ����H
�
1

2�/�2�−1�d�
�2�−1�/2�

+ C�3	�
t

�

�−�4�b+��/�2�−1�d�
�2�−1�/2�

+ C�3�
t

�

�−1−bd� + Ct�−�/�−1/2�

� C�2t��−1�/�−2b�ṽ�Lt
2��t,��H

�
1 �R� + C�t��−1�/2�−2b + C�3t−b,

from which it follows that there exists a time T�1 such that

sup
t�T

tb�v�Lt
2��t,��H

�
1 �R� � � . �4.9�

Thus we have by Eqs. �4.8� and �4.9�

�v�Y � � �4.10�

which implies that the mapping M defined by v=Mṽ transforms Y� into itself. Denote v j

=Mṽ j, then in the same way as in the proof of Eq. �4.8� we have

sup
t�T

tb�v1�t� − v2�t��H1 �
1
2sup

t�T
tb�ṽ1�t� − ṽ2�t��H1. �4.11�

From Eqs. �4.10� and �4.11� by the contraction mapping principle, we have the desired result.
Theorem 1.2 is proved.

V. NONEXISTENCE OF THE WAVE OPERATOR

Multiplying Eq. �1.1� by U�−t� and integrating with respect to time we find

U�− t�u�t� − U�− s�u�s� = ��
s

t

U�− ���u2ux − �U�t�u+�2�xU�t�u+�d� + ��
s

t

U�− ��

���U�t�u+�2�xU�t�u+ − �−3/2�Re �x��FEu+̂�����2Re i�x���FEu+̂�����d�

+ ��
s

t

U�− ���−3/2�Re �x��FEu+̂�����2Re i�x���FEu+̂����d� .

By theorem 1.1 we have

U����� = �����−2�/�2�−2�Re �−1/2�x�F�� sign ��E�D��̂��� + O��−1/2�1−1/��−��

in Lp for 2� p��, where ��0,�= ���−1/��−1�sign � ,�
0. Therefore taking �=1,31−� and
31−�−1, we obtain

U�− ���−3/2�Re �x��FEu+̂�����2Re i�x���FEu+̂����

= �−1U�− ��Re �−1/2�x�FE�Fu+̂�2i�u+̂��� + �−1U�− ��Re��−1/2�x�i��FE3F2u+̂
3�����

= �−1U�− ��U���F�→x
−1 �Fu+̂�2i�u+̂��� + 3−��−2�/�2�−2��−1U�− ��

�U�31−���F�→x
−1 D3�−1i�F2û+

3��� + O��−1−��

= �−1F�→x
−1 �Fu+̂�2i�u+̂��� + C�−3/2Re �x�F�− ��E�D3�−1�i�F2û+

3��� + O��−1−��

in L2, where �= �31−�−1�−1/��−1�. Hence, by integration by parts with respect to � we see that
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���
s

t

U�− ���−3/2�Re �x��FEu+̂�����2�Re i�x���FEu+̂�����d��
L2

� ���
s

t

F�→x
−1 �Fu+̂�2i�u+̂���

d�

� �
L2

− C���
s

t

�−3/2Ē�D3�−1��F2u+̂
3���d��

L2

− C

� ������Fu+̂�2u+̂����L2�
s

t d�

�
− C .

Thus in view of estimates of the solution u�t� provided by theorem 1.2 we get

�U�− t�u�t� − U�− s�u�s��L2 � ������Fu+̂�2u+̂�L2�
s

t d�

�
− C − C�

s

t

�u��� − U���u+�H1
d�

�

− C�
s

t

�U�t�u+ − �−1/2Re �x��FEu+̂�����H1
d�

�
.

This implies that for any �
0 there exists a time T��� such that for any t
s
T���,

�U�− t�u�t� − U�− s�u�s��L2 � �������Fu+̂�2u+̂�L2 − ���
s

t d�

�
,

which means that u+̂=0 for all ��R, since u+ is a real-valued function, so that u+̂�−��=u+̂���. The
solution satisfies the conservation of the L2 norm, hence, we have u=0. Theorem 1.3 is proved.
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This paper deals with spectral properties of a class of neutron transport equations
involving partly elastic collision operators introduced by Larsen and Zweifel
�J. Math. Phys. 15, 1987–1997 �1974��. In particular, estimates of the essential type
of associated semigroups are given. © 2006 American Institute of Physics.
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I. INTRODUCTION

Consider the neutron transport equation introduced by Larsen and Zweifel in Ref. 7,

��

�t
�x,v,t� + v ·

��

�x
�x,v,t� + ��x,v���x,v,t� = K��x,v,t� ,

with zero incoming flux

���−
�· , · ,t� = 0

and an initial condition

��x,v,0� = �0�x,v� ,

where �x ,v����V, � is an open and bounded set of RN �N�3� endowed with the Lebesgue
measure dx, and the velocity space

V = �v = ��;� � SN−1,0 	 �min 	 � 	 �max 
 �� ¬ I � SN−1

is endowed with the Lebesgue measure dv=�N−1d�d�, where d� is the Lebesgue measure on the
unit sphere SN−1. Here �− denotes the incoming part of the boundary of the phase space ��V:
�−= ��x ,v�����V ;v ·��x�
0�, where ��x� stands for the outward normal unit at x���. The
function ��· , · ��L+

����V� is called the collision frequency. The collision operator consists of
three terms:

K = Kc + Ke + Kd.

The classical collision operator

Kc��x,v� = �
V

kc�x,v,v����x,v��dv�

corresponds physically to fission, high energy elastic slowing down, and thermal inelastic scatter-
ing. Ke is an elastic operator for low energy neutrons describing microscopic events in which the
kinetic energy is conserved and velocities are changed only in their direction. It is given by
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Ke��x,v� = �
SN−1

Ke�x,�,�,�����x,����d��.

Finally, Kd represents high energy inelastic scattering and is described by a downshift operator of
the form

Kd��x,v� = 	
m=1



Kd
�m���x,v� = 	

m=1

 �
SN−1

kd
�m��x,em���,�,�����x,em������d��,

where Kd
�m� �m=1, . . . ,� describes an event in which a discrete energy Em is lost by a neutron at

x with initial speed em��� and final speed �. The initial speed em��� is defined by

Em =
1

2
Mem

2 ��� −
1

2
M�2,

where M is the mass of neutron. Here and in the sequel we adopt the convention that all functions
are extended by zero outside of their domains. Moreover, we use indifferently one of the notations
��x ,v� ,��x ,� ,��, or ��x ,��� for v=��. Notice that each Kd

�m� acts on the supports of functions
as follows:

supp � � � � �0,�0� � SN−1 ⇒ supp Kd
�m�� � � � 
0,�max�0,�0

2 −
2Em

M
�1/2� � SN−1.

�1�

Since neutron speeds are bounded above ��max
 +��, this property implies that Kd is nilpotent,
i.e., there exists an integer n such that Kd

n=0.
The above collision models are particularly relevant when dealing with neutron transport in

crystalline medium �see Ref. 3�. Operators of types Ki and Ke are important also for electron
transport in the semiconductor theory �see Ref. 9�.

We put the above problem as an abstract Cauchy problem in the Banach space Lp���V�,
1	 p
�:

d�

dt
�t� = �T + K���t� ,

�2�
��0� = �0,

where T denotes the streaming operator

T:D�T� � � � − v ·
��

�x
− ��x,v���x,v�

with the domain

D�T� = �� � Lp�� � V�:v ·
��

�x
� Lp�� � V�,���− = 0 .

If K is bounded, then T+K generates a C0-semigroup �et�T+K��t�0, which solves the preceding
Cauchy problem in a reasonable sense. The asymptotic behavior �t→�� of the time dependent
solution can be obtained by investigating the spectral properties of �et�T+K��t�0.

Under suitable assumptions, e.g., piecewise continuous cross sections, the spectrum of the
generator T+K is described in Ref. 7. Typically, it consists of a half space, curves, and discrete
eigenvalues. However, because the spectral mapping theorem does not hold for general
C0-semigroup, the spectrum of T+K gives, a priori, only partial information about the asymptotic
behavior of the semigroup. To our knowledge, up to now, in contrast to the classical model �i.e.,
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K=Kc� which was intensively investigated �see, for instance, Refs. 4, 5, 10, 11, 13, 14, 16, 17, and
19–21�, there is no spectral result on the semigroup �et�T+Ke+Kd+Kc��t�0, although the knowledge of
its essential type �see the end of this introduction for the definition of essential type and its
properties� is desirable and is an important prerequisite for understanding the time asymptotic
behavior of the solutions to the associated Cauchy problem.

The purpose of the present work is to investigate the essential spectrum of the semigroup
�et�T+K��t�0. More precisely, we deal with comparison of the essential types of the three semigroups
�et�T+Ke��t�0, �et�T+Ke+Kd��t�0, and �et�T+Ke+Kd+Kc��t�0. Following Vidav17 and others �see, for in-
stance, Refs. 10, 16, 18, and 21�, we will use the compactness argument on the remainder terms of
the Dyson-Phillips expansion. We point out that the approach will be completely different accord-
ing to whether we study the problem in a L1-space or in a Lp-space, 1
 p
�.

Actually, the present paper is divided into two parts. In the first part �Sec. II�, we deal with the
above problem in L1���V�. First, because of the nilpotence of Kd, we prove that the two
semigroups �et�T+Ke+Kd��t�0 and �et�T+Ke��t�0 have the same essential type. Then we prove, by using,
in particular, the strong convex compactness property �see Theorem 2�, that the addition of the
classical operator does not alter the essential type. We end up the section by deriving some
estimates on the essential type of the semigroup �et�T+K��t�0. In the second part �Sec. III� of the
paper, we give similar results in the context of Lp-spaces but with different tools.

Before closing this Introduction and for the sake of being complete, we recall the definition of
essential type and some related properties. Let X be a complex Banach space and let B�L�X� �the
space of bounded linear operators on X�. A point ����B� �the spectrum of B� is an eigenvalue of
finite algebraic multiplicity if � is an isolated point of ��B� and a pole of the resolvent of B with
finite rank residue. The essential spectral radius of B is defined by

ress�B� ª sup����;� � ��B�, � is not an eigenvalue of finite algebraic multiplicity� .

It is known that given a strongly continuous semigroup on X �etA�t�0, the spectral radius of
etA, r��etA�, is equal to et�0�A�, where �0�A�� �−� ,�� is the type of �etA�t�0: �0�A�
=limt→� t−1 ln�etA�. Voigt in Ref. 18, Lemma 2.1, established a similar result concerning the
essential spectral radius; more precisely he showed that there exists �ess�A�� �−� ,�0�A��, called
essential type of �etA�t�0, such that

ress�etA� = et�ess�A� �t � 0� .

The interest of this parameter lies in the fact that for each ���ess�A�, there exists a finite
dimensional projection P� in X, commuting with etA �t�0�, and a constant C��0 such that

�etA�I − P��� 	 C�et� �t � 0� .

If �ess�A�
�
�0�A�, then P��0, and the asymptotic behavior of etA for t→ +� is determined
by the part of the semigroup etA in the finite dimensional space Range �P��. Moreover, the
essential type enjoys a nice stability property we recall in Theorem 1 below. Let B be a bounded
operator, then A+B generates a C0-semigroup �et�A+B��t�0 given by the Dyson-Phillips series

et�A+B� = 	
j=0

�

Dj�t� , �3�

where D0�t�=etA and Dj+1�t�=�0
t Dj�s�BD0�t−s�ds.

Theorem 1 �Ref. 10, Theorem 2.10, p. 24�: With the notations just introduced, let there exist
m�N such that the remainder term 	 j=m

� Dj�t� is compact for all t�0. Then the two semigroups
�et�A+B��t�0 and �etA�t�0 have the same essential type, i.e., �ess�A+B�=�ess�A�.
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II. L1 ANALYSIS

In this section we treat the problem in L1 setting. As in Ref. 8, we assume that the classical
collision operator Kc is weakly compact with respect to the velocities, collectively with respect to
the space variable, i.e.,

�A1� �V�kc�· ,v , · ��dv�L����V�.
�A2� ��kc�x , · ,v��� : �x ,v�����V� is weakly compact in L1�V�.
Then Kc enjoys the following nice approximation property.
Lemma 1 �Ref. 8, Theorem 2.4�: Suppose that Kc is positive and satisfies (A1) and (A2). Then

Kc can be approximated by a sequence of positive operators �Km�m�L�L1���V�� such that there
is a sequence of non-negative functions �fm�m�L1�V� satisfying

Km��x,v� 	 fm�v��
V

��x,v�dv�, �4�

for 0	��L1���V�.
Similarly, we assume that Ke satisfies the following.
�A3� �SN−1�ke�· , · ,� , · ��d��L���� I�SN−1�.
�A4� ��ke�x ,� , · ,���� : �x ,� ,������ I�SN−1� is weakly compact in L1�SN−1�.
By the same arguments as in Ref. 8, we can prove the following.
Lemma 2: Every positive elastic operator Ke satisfying (A3) and (A4) can be approximated by

a sequence of positive operators �Km�m�L�L1��� I�SN−1�� such that there is a sequence of
non-negative functions �gm�m�L1�SN−1� satisfying

Km��x,�,�� 	 gm����
SN−1

��x,�,���d��, �5�

for all 0	��L1��� I�SN−1�.
Finally, as in Ref. 7, we have the following.
�A5� Kernels kd

�m� are assumed to be bounded.
Remark 1: Our assumptions on collision operators are more general than that in Ref. 7.
Let us now compare the essential type of �et�T+Ke��t�0 with that of �et�T+Ke+Kd��t�0. For this

purpose, expand the latter as a Dyson-Phillips series:

et�T+Ke+Kd� = 	
j=0

�

Wj�t� ,

where W0�t�=et�T+Ke� and Wj+1�t�=�0
t Wj�s�KdW0�t−s�ds.

Giving two strongly continuous �operator valued� mappings

F,G:�0,��→L�Lp�� � V���� ,

we will denote by F*G the convolution operator defined as

F � G:�0,����t� ��
0

t

F�s�G�t − s�ds � L�Lp�� � V�� .

Moreover �F� j =F* ¯ *F �j times�. Now, by property �1� and since et�T+Ke� does not change
the neutron speed, it follows that

�et�T+Ke�Kd�n = 0

�recall that n is such that Kd
n=0� and therefore the remainder term 	 j=n

� Wj�t�
= �et�T+Ke�Kd�n*et�T+Ke+Kd�=0. As a direct consequence of this and Theorem 1, we have the follow-
ing.
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Lemma 3: The two semigroups �et�T+Ke+Kd��t�0 and �et�T+Ke��t�0 have the same essential type:
�ess�T+Ke+Kd�=�ess�T+Ke�.

We now turn to the comparison between essential types of �et�T+Ke+Kd��t�0 and the full semi-
group �et�T+K��t�0. Write

et�T+K� = 	
i=0

�

Vi�t� , �6�

where V0�t�=et�T+Ke+Kd� and Vi+1�t�=�0
t Vi�s�KcV0�t−s�ds. Set Rm�t�=	i=m

� Vi�t�.
Lemma 4: Let (A1)–(A5) be satisfied. Then the second remainder term of the Dyson-Phillips

expansion �6�, i.e., R2�t�, is weakly compact.
Before proving this lemma we recall the following theorem known as the strong convex

compactness property.
Theorem 2 (Ref. 15, Theorem 2.2) : Let X and Y be two Banach spaces. Let �� ,d� be a finite

measure space and

G:� → L�X,Y�

bounded and strongly measurable. If G��� is weakly compact for a.e. ���, then the strong
integral

X � x ��
�

G���xd��� � Y

is weakly compact.
Proof of Lemma 4: The proof will be given for the general case �max=� and will be done in

three steps.
Step 1. Approximation and domination arguments. Since R2�t�

=et�T+Ke+Kd�*Kce
t�T+Ke+Kd�Kc*et�T+Ke+Kd+Kc� �see Lemma 2.1, p. 14 in Ref. 10� it suffices, thanks to

Theorem 2, to check the weak compactness of

Kce
t�T+Ke+Kd�Kc

for all t�0. On the other hand, we can expand �et�T+Ke+Kd��t�0 as a Dyson-Phillips series:

et�T+Ke+Kd� = 	
j=0

�

Uj�t� ,

where U0�t�=etT is the streaming semigroup given by

etT��x,v� = e−�0
t ��x−sv,v�ds���y,w�;t
��y,w���x,v���x − tv,v� for all � � L1�� � V� ,

with ��x ,v�=inf�s�0;x−sv���, and Uj+1�t�=�0
t Uj�s��Ke+Kd�U0�t−s�ds.

Moreover, the sequence �	 j=0
n KcUj�t�Kc�n converges in L�L1���V�� uniformly for bounded

times to Kce
t�T+Ke+Kd�Kc; thus it suffices to prove that KcUj�t�Kc is weakly compact for all j�N.

We have

�KcUj�t�Kc�� 	 �Kc�Uj��t��Kc���� ,

where Uj��t� denotes the term of order j of the Dyson-Phillips series expanding �et�T+�Ke�+Cd��t�0

from �etT�t�0 and

�Kc�:L1�� � V� � � � �
V

�kc�x,v,v�����x,v��dv�,
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�Ke�:L1�� � I � SN−1� � � � �
SN−1

�ke�x,�,�,������x,�,���d�� � L1�� � I � SN−1� ,

Cd:L1�� � I � SN−1� � � � 	
m=1

 �
SN−1

�kd
�m�����x,em���,���d�� � L1�� � I � SN−1� .

Thus, as far as the weak compactness is concerned, by using domination arguments, there is no
loss of generality to assume that Kc and Ke are positive and Kd=Cd. On the other hand, if we
define Kc

�i� by

Kc
�i�:� � �

V

kc�x,v,v����w�V:�w�	i��v���x,v��dv�,

then

�Kc� − Kc
�i��� 	� �

���v�V:�v��i�
�

V

kc�x,v,v�����x,v���dv�dxdv

	 sup
�x,v�����V

�
�v�V:�v��i�

kc�x,v,v��dv���L1���V�

and, since Kc satisfies �A2�, we have

�Kc − Kc
�i�� 	 sup

�x,v�����V
�

�v�V:�v��i�
kc�x,v,v��dv → 0 as i → � .

Thus, we may replace Kc by some truncation Kc
�i� since KcUj�t�Kc depends continuously on Kc in

the norm operator topology. This means that we may suppose without loss of generality that V is
bounded, i.e., �max
�. Again since KcUj�t�Kc depends continuously on Kc and Ke in the norm
operator topology, according to Lemmas 1 and 2 �approximation and domination�, we may assume
that Kc has the form

� � f�v��
V

��x,v��dv�,

with f �L1�V�, and Ke has the form

� � g����
SN−1

��x,�,���d��

with g�L1�SN−1�. By approximation again we may suppose that f �L��V� and g�L��SN−1�, and
by a domination argument, we may even assume that f and g are constants. Finally, by linearity we
can suppose that operators Kc, Ke, and Kd are, respectively,

Mc:� � �
V

��x,v��dv�, M0:� � �
SN−1

��x,�,���d��,

and

Md = 	
i=1



Mi where Mi:� � �
SN−1

��x,ei���,���d��.

Step 2. Strong convex compactness property. Considering different values of j. First, note that
according to Ref. 10, Theorem 4.11, p. 80, McU0�t�Mc is weakly compact.

123502-6 Mohammed Sbihi J. Math. Phys. 47, 123502 �2006�

                                                                                                                                    



Suppose then that j�1. In this case, since Mc maps L1���V� to L1���, it suffices to show
that

McUj�t�:L1��� → L1���

is weakly compact. Decomposing Mc=MM0, where M :���I��x ,� ,���N−1d�, we can write

McUj�t� = MM0�U0�M0 + Md�� j � U0�t� .

Thus, by linearity, we can restrict ourselves to show the weak compactness of

MM0U0 � Mi1
U0 � ¯ � Mij

U0�t� �7�

for all �i1 , . . . , ij�� �0,1 , . . . ,� j and t�0. We remark that operator �7� is a “strong integral” �by
making the identification L1��� I�=L1�I ;L1�����. Indeed, if for � fixed, we denote by
M0U0*Mi1

U0* ¯ *Mij
U0�t���� the bounded operator:

L1��� � � � �M0U0 � Mi1
U0 � ¯ � Mij

U0�t����· ,�� � L1��� , �8�

then operator �7� can be viewed as

MM0U0 � Mi1
U0 � ¯ � Mij

U0�t�� = �
I

M0U0 � Mi1
U0 � ¯ � Mij

U0�t������N−1d�

for all ��L1���. One can check without difficulties that operators M0U0*Mi1
U0* ¯ *Mij

U0�t�
���� are uniformly bounded for �� I on L�L1����, and therefore the strong convex compactness
property �Theorem 2� ensures that operator �7� is weakly compact, provided that
M0U0*Mi1

U0* ¯ *Mij
U0�t���� is weakly compact for all �� I, which will be the subject of step

3 below.
Step 3. Weak compactness of M0U0*Mi1

U0* ¯ *Mij
U0�t����. Let T� denote the streaming

operator on RN �with �=0� and set U��t�=etT�. Then for all 0	��L1���,

M0U0 � Mi1
U0 ¯ � Mij

U0�t����� 	 RM0U� � Mi1
U� � ¯ � Mij

U��t����E� ,

where E :L1���→L1�RN� and R :L1�RN�→L1��� are, respectively, the trivial extension operator
by zero and the restriction operator. Using a domination argument to get the weak compactness of
M0U0*Mi1

U0* ¯ *Mij
U0�t����, it is enough to have the weak compactness of

L1�RN� � � � RM0U� � Mi1
U� � ¯ � Mij

U��t����� � L1��� . �9�

But we will see thereafter that for all �� I and t�0, there is a function ��t ,���L1�RN� such that

M0U� � Mi1
U� � ¯ � Mij

U��t����� = ��t,�� � � .

Consequently, by Ref. 2, Corollaire IV. 27, p. 74, we conclude that operator �9� is weakly compact.
It remains to prove that for each �i1 , . . . , ij�� �0,1 , . . . ,� j �j�2�, there exists ��t ,��

�L1�RN� such that

Mi1
U� � ¯ � Mij

U��t����� = ��t,�� � � .

We recall that

Mi:� � �
SN−1

��x,ei���,���d��

with the convention e0���=�. We are going to proceed by recurrence and prove additionally that
��t ,�� is uniformly bounded for t bounded and �� I. First, it is clear that for each i
� �0,1 , . . . ,�,

123502-7 Spectral theory of neutron transport semigroups J. Math. Phys. 47, 123502 �2006�

                                                                                                                                    



MiU��t���� = d�tei��� � � ,

where d�s is the image of d� under the dilation v�sv. Observe that the mapping 0
 t→d�t

�M�RN� �the space of finite Radon measures� is weak star continuous, i.e., 0
 t� �d�t ,��
=�RN��x− t��d� is continuous. Let �i1 , i2�� �0,1 , . . . ,�2. We have

Mi1
U� � Mi2

U��t����� = �
0

t

Mi1
U��s��d��t−s�ei2

��� � ��ds

= �
0

t �
SN−1

�d��t−s�ei2
�ei1

���� � ���x − sei1
�����d�ds

= �
0

t

d�sei1
��� � �d��t−s�ei2

�ei1
���� � ��ds

= 
�
0

t

d�sei1
��� � d��t−s�ei2

�ei1
����ds� � � ,

where the integral �0
t d�sei1

���*d��t−s�ei2
�ei1

����ds is taken in the weak star sense, i.e.,

��
0

t

d�sei1
��� � d��t−s�ei2

�ei1
����ds,�� = �

0

t

�d�sei1
��� � d��t−s�ei2

�ei1
����,��ds .

As the measure �0
t d�sei1

���*d��t−s�ei2
�ei1

����ds is bounded, by the Radon-Nikodym theorem, it suf-

fices to show that it is absolutely continuous with respect to the Lebesgue measure on RN, i.e.,

IA ª �
0

t

d�sei1
��� � d��t−s�ei2

�ei1
����ds�A� → 0 as �A� → 0,

where �A� is the Lebesgue measure of set A. Since

IA = �
0

t �
RN�RN

� �A�v1 + v2�d�sei1
����v1� � d��t−s�ei2

�ei1
�����v2�ds

= �
0

t �
RN�RN

� �A�sei1
���v1 + �t − s�ei2

�ei1
����v2�d��v1�d��v2�ds ,

the change of variables v1�=ei1
���v1 and v2�=ei2

�ei1
����v2 amounts to showing that

IA� ª �
0

t �
RN�RN

� �A�sv1� + �t − s�v2��d�1�v1��d�2�v2��ds → 0 as �A� → 0,

where d�1 �respectively, d�2� is the Lebesgue measure on the sphere �v�RN : �v�=ei1
���� �respec-

tively, �v�RN : �v�=ei2
�ei1

�����. But the last assertion follows from Ref. 10, p. 82. Moreover, we
can easily see that the function �0

t d�sei1
���*d��t−s�ei2

�ei1
����ds is uniformly bounded for bounded

time and for �� I. Suppose that the assertion is true for j and let �i1 , . . . , ij+1�� �0,1 , . . . ,� j+1. By
hypothesis there exists ��t ,���L1�RN� �in fact, uniformly bounded for bounded time and for �
� I� such that

Mi2
U� � ¯ � Mij+1

U��t����� = ��t,�� � � .

Then we have
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Mi1
U� � Mi2

U� � ¯ � Mij+1
U��t����� = �

0

t

Mi1
U��s�����t − s�,�� � ��ds

= �
0

t �
SN−1

����t − s�,ei1
���� � ���x − sei1

�����d�ds

= �
0

t

d�sei1
��� � ����t − s�,ei1

���� � ��ds

= 
�
0

t

d�sei1
��� � ���t − s�,ei1

����ds� � � .

By putting ��t ,��=�0
t d�sei1

���*���t−s� ,ei1
����ds we have the desired �. �

We are now in the position to state the main result of this section.
Theorem 3: Under assumptions (A1)–(A5), the three semigroups �et�T+Ke��t�0, �et�T+Ke+Kd��t�0,

and �et�T+Ke+Kd+Kc��t�0 have the same essential type.
Proof: Since R2�t� is weakly compact, by Corollary 2.1, p. 16 in Ref. 10, R5�t� is compact, and

then by Theorem 1 the two semigroups �et�T+K��t�0 and �et�T+Ke+Kd��t�0 have the same essential
type. Having in mind that the essential type of the latter is equal to �ess�T+Ke� �see Lemma 3�, we
get the conclusion. �

Corollary 1: Let (A1)–(A5) be satisfied. Moreover, suppose that the kernels kc, ke, kd
�m��m

=1, . . . ,� are non-negative. Then �ess�T+K�	s�T+Ke�,where s�T+Ke� is the spectral bound of
T+Ke. �

Proof: Since the kernels are non-negative, using the Dyson-Phillips expansions, we can see
that the semigroups are positive. By Weis’s result22 on the identity of the type of positive semi-
group on Lp spaces and the spectral bound of its generators, we have s�T+Ke�=�0�T+Ke�. Finally,
the inequality �ess�T+Ke�	�0�T+Ke�, together with Theorem 3, ends the proof. �

III. Lp ANALYSIS, 1<p<�

In Lp setting �1
 p
��, we will use the concept of regular operator introduced in Ref. 11.
Namely, we assume the following.

�A6� ��Vkc�x , · ,v����v��dv� ; ���Lp�V�	1,x��� is relatively compact in Lp�V�.
�A7� For each ���Lp��V��1/ p+1/ p�=1�,��Vkc�x ,v , · ���v�dv ;x��� is relatively compact in

Lp��V�.
We recall the following.
Lemma 5 �Ref. 11�: Under assumptions (A6) and (A7), the collision operator Kc can be

approximated in the norm operator topology by collision operators with separable kernels

	
i�J

�i�x�f i�v�gi�v�� , �10�

where �i�L����, f i�Lp�V�, and gi�Lp��V� , �i�J� with J finite.
Analogously, we define the class of collision operators Ke we consider in this section. We

suppose that Ke satisfies the following.
�A8� The family ��SN−1ke�x ,� , · ,��������d�� : �x ,����� I , ���Lp�SN−1�	1� is relatively com-

pact in Lp�SN−1�.
�A9� For each ���Lp��SN−1�, ��SN−1ke�x ,� ,� , · ������d� : �x ,����� I� is relatively compact

in Lp��SN−1�.
Under these assumptions, Ke is bounded, namely,
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�Ke� = ess sup
�x,�����I

�Ke�x,���L�Lp�SN−1��,

where Ke�x ,�� :Lp�SN−1�����SN−1ke�x ,� ,� ,��������d��. Moreover, by adapting the same
technicalities as in Proposition 1 in Ref. 11, we can prove the following.

Lemma 6: An elastic collision operator satisfying (A8) and (A9) can be approximated in the
norm operator topology by collision operators with separable kernels

	
i�J

�i�x,��hi����i���� , �11�

where �i�L���� I�, hi�Lp�SN−1�, and �i�Lp��SN−1� , �i�J�N� with J finite and 1/ p+1/ p�
=1.

Finally, we suppose that kernels kd
�m�, m=1, . . . ,, satisfy �A5�, i.e., they are bounded.

Note that Lemma 3 remains true in Lp setting, 1
 p
�, without any modification. Moreover,
we have the following more precise result.

Lemma 7: Under assumptions (A5)–(A9), the difference

et�T+K� − et�T+Ke+Kd�

is compact for all t�0.
Proof: According to Ref. 10, Theorem 2.6, p. 16, et�T+K�−et�T+Ke+Kd� is compact for all t�0 if

and only if the strong integral

�
0

t

es�T+Ke+Kd�Kce
�t−s��T+Ke+Kd�ds

is. Since the latter depends continuously �and linearly� on Kc, it suffices to consider a collision
operator Kc of the form �10� and Ke of the form �11�. By density again, we may assume that all the
functions f i, gi �in Eq. �10�� are continuous with compact support, and all the functions hi, �i �in
Eq. �11�� are continuous. In this case �0

t es�T+Ke+Kd�Kce
�t−s��T+Ke+Kd�ds maps Lq���V� into itself for

all q�1, and consequently, by interpolation arguments �see Ref. 6, Theorem 3.10, p. 57�, we may
restrict ourselves to the Hilbertian case p=2. To have the compactness of

�
0

t

es�T+Ke+Kd�Kce
�t−s��T+Ke+Kd�ds

it suffices that the following hold �see Ref. 1, Theorem 3.2�.

�i� For some ���0�T+Ke+Kd�, the operator

�� + i� − T − Ke − Kd�−1Kc�� + i� − T − Ke − Kd�−1

is compact for all ��R.
�ii� 0
 t��0

t es�T+Ke+Kd�Kce
�t−s��T+Ke+Kd�ds is norm continuous.

�iii� Moreover, to have �ii�, using Lemma 2.1 in Ref. 14, it suffices to show that for some �
��0�T+Ke+Kd�,

��� + i� − T − Ke − Kd�−1Kc� + �Kc�� + i� − T − Ke − Kd�−1� → 0 as ��� → � .

Now, to prove �i� and �iii� remark that, by simple algebraic manipulations, we have for Re �
large enough

Kc�� − T − Ke − Kd�−1 = Kc�� − T�−1 + Kc�� − T�−1�Ke + Kd��� − T − Ke − Kd�−1,
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�� − T − Ke − Kd�−1Kc = �� − T�−1Kc + �� − T − Ke − Kd�−1�Ke + Kd��� − T�−1Kc,

so �i� is a consequence of Ref. 10, Theorem 4.1, p. 57, saying that ��−T�−1Kc is compact for all
��C \��T�, while �iii� is consequence of Ref. 14, Lemma 3.13, establishing that

��� + i� − T�−1Kc� + �Kc�� + i� − T�−1� → 0 as ��� → �

for all ���0�T�. �

Using the above lemma we can state the following.
Theorem 4: Under assumptions (A5)–(A9), the three semigroups �et�T+Ke��t�0, �et�T+Ke+Kd��t�0,

and �et�T+Ke+Kd+Kc��t�0 have the same essential type.
Proof: From the compactness of et�T+K�−et�T+Ke+Kd� for all t�0, it follows that �ess�et�T+K��

=�ess�et�T+Ke+Kd�� for all t�0, with, in particular, �ess�T+K�=�ess�T+Ke+Kd�. On the other hand,
as already said above, Lemma 3 stated in L1 setting remains true in Lp setting, 1
 p
�, and
hence we get �ess�T+Ke+Kd�=�ess�T+Ke�. �

In the same spirit of Corollary 1 we have the following.
Corollary 2: Let (A5)–(A9) be satisfied. Moreover, suppose that all the kernels kc, ke, kd

�m�

�m=1, . . . ,� are non-negative. Then �ess�T+K�	s�T+Ke�, where s�T+Ke� is the spectral bound
of T+Ke. �

Remark 2: Corollaries 1 and 2 answer Problem 3 in Ref. 10, p. 93, by finding an estimate of
the essential type for the neutron transport semigroup when the collision operator involves, in
addition to the classical operator Kc, another term.

Actually, we can refine Corollaries 1 and 2 if we assume the following continuity assumption:
�A10� The mapping I���Ke

��L�Lp���SN−1�� is piecewise continuous, where Ke
� is the

one speed operator:

Lp�� � SN−1� � � � �
SN−1

ke�x,�,�,�����x,���d�� � Lp�� � SN−1� .

More precisely we have the following.
Proposition 1: (a) Let (A1)-(A5) and (A10) be satisfied. Then we have the following spectral

mapping theorem:

�ess�et�T+Ke�� = et��T+Ke� � �0� for all t � 0 �12�

in L1 setting. In particular, �ess�T+K�=s�T+Ke�. (b) The same conclusions hold true in Lp setting
�1
 p
�� under assumptions (A5)–(A10).

After showing spectral mapping theorem �12�, the equality �ess�T+K�=s�T+Ke� is just a
consequence of Theorems 3 and 4. The proof of the spectral mapping theorem can be found in
Ref. 14, Chap. 6. It relies, in particular, on the concept of critical spectrum introduced in Ref 12.

At this stage, it may be useful to recall the description of ��T+Ke� obtained by Larsen and
Zweifel. First, the spectrum of T consists of a half plan or only the point at infinity, depending,
respectively, upon whether the minimum neutron speed �min is or is not zero. The spectrum of
T+Ke, for fixed �, is a pure isolated point spectrum of finite algebraic multiplicity restricted to a
certain left half plan. As � varies, the point spectrum of T+Ke for fixed � shifts about to form
curves; the full spectrum of T+Ke consists of the closure of this set of curves plus ��T�.
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This paper is concerned with localization properties of coherent states. Instead of
classical uncertainty relations we consider “generalized” localization quantities.
This is done by introducing measures on the reproducing kernel. In this context we
may prove the existence of optimally localized states. Moreover, we provide a
numerical scheme for deriving them. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2375031�

I. MOTIVATION

The goal of this paper is to introduce a new concept of localization. In classical lore, one
typically considers uncertainty relations. In this framework it is well known that a nonzero state or
wave function cannot be arbitrarily well localized simultaneously in space and Fourier domain.
This fact may be quantified by the Heisenberg uncertainty relation,

�x�k � 2� .

There are functions which are optimally localized in phase space in that they satisfy the inequality
with the lower bound. For a detailed analysis on uncertainty relations in the context of Gabor and
wavelet transforms we refer, e.g., to Refs. 11, 12, 5, and 18.

However, for certain physical applications, e.g., radar imaging, it is very promising to ask for
more flexible concepts. In principle, in radar imaging one has to evaluate the output of the
correlation receiver, see Ref. 1. An important role in detecting objects is played by the radar
ambiguity function, which is ideally given by a delta function. In the narrow band regime, which
is of interest in radar imaging, the ambiguity function is given by ��� ,��= ���,� ,��0,�0

�, where
� stands for the transmitted wave form. Since a delta pulse is obviously not possible to realize,
one currently uses pulses that minimize by means of its band/Doppler width and its pulse/range
width the so-called narrow band �Heisenberg� uncertainty principle, see Refs. 1, 7, 6, and 4. A
minimization of the Heisenberg quantities leads to pulses with Gaussian envelope function. But
this is difficult to implement too and, moreover, allows no flexibility in specifying more sophis-
ticated localization attributes; e.g., in order to obtain an accurate spatial resolution while allowing
a certain frequency uncertainty, the ambiguity function � should have fast decay with respect to
range and a moderate decay with respect to Doppler frequency, e.g.,

����,��� � �1 + ����−4�1 + log�1 + �����−1. �1.1�

With the theory presented here in the paper at hand, we may now proceed as follows. Given the
specific localization characteristic �1.1� in the range Doppler plane, we compute the optimal wave
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form to be transmitted. To be more general, we consider measures of uncertainty or delocalization
in phase space �range Doppler plane� and we shall prove the existence of optimally localized states
�wave forms�.

In principle, general wavelet transforms

s � Wgs, Wgs�x� = �U�x�g,s�H, x � G

associated with the square integrable irreducible representation U of a locally compact group G
provide a one to one correspondence between the state Hilbert space H and a reproducing kernel
Hilbert space over the group. The reproducing kernel is up to a normalization the wavelet trans-
form of the wavelet itself,

� = Wgg .

This kernel can be interpreted as the Heisenberg box of the phase space. In this paper we shall be
concerned with localization properties of these reproducing kernels. In fact, the reproducing kernel
of wavelet analysis cannot be arbitrarily well localized. For instance, there is no wavelet such that
the associated reproducing kernel is compactly supported. Obviously there is no universal way of
quantifying localization. Instead we propose to quantify localization through the following and
similar families of cost functionals:

	�g� = sup
x�G

w�x�−1�Wgg�x�� ,

where w is some positive weight, decaying “at 
.” We will prove that this functional and similar
“localization” functionals are weakly lower semicontinuous. It therefore has a minimizer over any
weak* compact set. In other words, for any such measure of localization there is at least one
optimal state.

Localization of wavelet transforms has been considered before, see, e.g., Refs. 17, 15, 9, and
8. In Refs. 9 and 8 the authors consider localizing wavelet coefficients with respect to some
preassigned analyzing wavelet and a compact subset in the wavelet plane. In their approach the
analyzing wavelet was fixed. In this paper, however, we consider the nonlinear problem of opti-
mizing the localization of the reproducing kernel. Since the reproducing kernel depends quadrati-
cally on the underlying wavelet, this problem is by nature highly nonlinear and therefore an
explicit expression of the optimal state seems to remain a pipe dream. However, in the last section
we discuss a numerical procedure to approximately compute such optimally localized states.

II. THE BASIC FORMULAS

Let us recall the basic formulas of continuous wavelet transform associated with a square
integrable group representation. We only recall the few facts that are necessary for this paper. For
more details we refer to, e.g., Refs. 10 and 13. Let G be a noncompact, locally compact group, �
a compact topological group, and G�g�U�g� a unitary, strongly continuous, irreducible, square
integrable representation in some Hilbert space H. The wavelet transform of s�H with respect to
g�H is pointwise defined for x�G as

Wgs�x� = �U�x�g,s�H.

The left and the right invariant Haar measures are denoted by d� and d. They are defined up to
some positive factor. Over G we consider the two Hilbert spaces L2�G ,d�� and L2�G ,d�. We
suppose that d� and d are scaled suitably so that the mapping s�x��s�x−1� is an isometry
between these two Hilbert spaces. A wavelet is called admissible if Wgg�L2�G ,d��. Thanks to
the formula
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Wgs�x� = Wsg�x−1� ,

admissibility is also equivalent to Wgg�L2�G ,d�. We denote the set of all admissible wavelets
by A. For g ,h�A and s ,u�H the following equation holds:

�Wgs,Whu�L2�G,d�� = C�g,h��s,u�H, �2.1�

where C is a densely defined, closed, positive quadratic form. Its form domain is precisely A. We
write cg,h=C�g ,h� and cg=C�g ,g�. By the first representation theorem there is a closed, linear
operator T such that for all u�D�T� and v�A we have C�v ,u�= �v ,Tu�H. The space A is in
general a nonclosed subspace of H. However, since C is a closed quadratic form it becomes a
Hilbert space with respect to

�s,u�A = �s,u�H + C�s,r�, �s�A
2 = �s�H

2 + cs.

Convergence in A will be understood with respect to this norm. From Eq. �2.1� it follows that, in
particular, Wg is for admissible, nonzero g a multiple of an isometry,

�Wgs�L2�G,d��
2 = cg�s�H

2 .

The adjoint of the wavelet analysis is a wavelet synthesis,

Wg
* = Mg.

Formally it can be written as follows:

Mhr�x� = 	
G

r�x�U�x�hd��x� .

We have for g ,h�A

MhWg = cg,h1.

The combination WgMh can be written as noncommutative convolution operator. If we define on
L2�G ,d���L2�G ,d�� the �left� convolution product as

� � r�x� =	
G

��y−1 � x�r�y�d��y� ,

we have for g ,h�A

WgMh = � � , � = Wgh .

In particular, we will use the following formula over and over:

Wh = � � Wg, � = cg,h
−1 Whh .

III. GENERAL LOCALIZATIONS

Before formulating the general existence theorem we consider the particular case of localiza-
tion measures through a weighted L
 norm. Consider therefore a positive function w :G→R+. We
suppose that w is symmetric,

w�x−1� = w�x� ,

and invariant under the G action in that for all y�G we can find a c�0 such that
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w�y � x� � cw�x�, w�x � y� � cw�x� .

Then w�L2�G ,d�� is equivalent to w�L2�G ,d�. Moreover, we consider weights, for which
either of both �and hence both� of the following holds:

w � w � L2�G,d��, w � w � L2�G,d� .

A natural measure for the localization of a function r over G with respect to w is the following
weighted norm:

sup
G

w−1�r� .

For fixed h�A let �h�H denote the affine subspace of codimension 1 defined through �h= 
g
�H : �g ,Th�H=1�. Note that �h may contain nonadmissible vectors. The admissible wavelets in �h

are reconstruction wavelets for h:

MhWg = MgWh = 1.

We introduce the following functional on H:

	�s� = 	w�s� = sup
G

w−1�Wss� ,

whenever the right hand side is finite. In all other cases we set 	�s�=
. We now can formulate the
first theorem.

Theorem 1: Let h�H, h�0, be such that 	�h��
. Then there exists a wavelet g��h such
that for all u��h we have

	�g� � 	�u� .

In other words, the localization functional 	 has a minimizer in each �h, for all h, which have
some regularity as expressed through �Whh��w. Note that we have to require that 	�h��
. This
ensures that the set of functions having a w localization is not empty. In turn, this is a requirement
for w in which it should not be decaying too fast �e.g., compactly supported weights are not
possible�.

Actually this kind of results can be generalized to a more abstract setting as follows. Consider
two Banach spaces B, K�L2�G ,d�+d� of functions over G with continuous embeddings. B
should be a lattice, ��s��B= �s�B. We then can define a localization with respect to B simply as

	�g� = �Wgg�B.

We include the value 	=
 in the natural way. For B and K we further suppose that the following
holds.

Invariance of B. B should be G bi-invariant: for all y�G there is a b�0 such that

�s�y � · ��B � b�s�B, �s�· � y��B � b�s�B.

It should be stable under inversion

�s�x−1��B � d�s�B.

Then we have u�x�=s�y−1 �x �y� satisfies �u�B�e�s�B.
Semicontinuity of B norm. Suppose further that the following inequality holds for the norm in

B: if sn�B is any sequence of non-negative functions sn�0 then consider s=lim infn→
 sn. Then
we require that

�s�B = �lim inf sn�B � lim inf
n→


�sn�B.

In classical Lp spaces this is a direct consequence of Fatou’s lemma,
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	 lim inf snd� � lim inf 	 snd� .

Compact embedding of K. For the space K we suppose that the following compact embedding
property holds: let L�K be a K-bounded set. If now on each compact subset of G the set of
functions L is uniformly continuous then L is precompact in L2�G ,d�+d�.

Convolution mapping. The two spaces B and K are linked through the following convolution
property: for fixed r�B the convolution product with r is a linear operator,

�r:B → K, u � r � u ,

and it is bounded �r*u�K�d�u�B, with d depending only on r.
Nonempty. We suppose that there is at least one h�D�T� ,h�0 such that 	�h��
. This h is

admissible, h�A, since B�L2�G ,d�+d�. Thanks to the following lemma.
Lemma 1: Let h�A, h�0 be given. Then g�H is actually in A if and only if

�g�2 = �Whg�L2�G,d��
2 + �Whg�L2�G,d�

2
� 
 .

The square root of the left hand side defines a norm which on A is equivalent to the norm of A:

ch
−1�Whg�L2�G,d��

2 + �h�H
−2�Whg�L2�G,d�

2 = �g�A
2 .

Proof: Suppose g�A. Thanks to the formula

�Whg�L2�G,�
2 = �Wgh�L2�G,d��

2 = cg�h�H
2

and the isometric property of the wavelet transform we may conclude. �

Under the above conditions, the following theorem holds.
Theorem 2: There is a g��h�A such that for all u��h we have

	�g� � 	�u� .

This function g then satisfies Whg�K.
Typical examples for such spaces B are as follows. As space B we take the functions for which

we have

�r�w,
 = �w−1r�L
�G�.

We write also Bw,
 for this space. For the space K we take the analogue space of functions with
weight u=w�w. If now u�L2�G ,d�+d� then we are in the setting of the first theorem. We only
have to convince ourselves that all properties of the stated spaces are satisfied. The only nontrivial
property is now the compact embedding.

Lemma 2: Let u�0 be a symmetric weight function with u�L2�G ,d�+d�. Then any set of
functions which are uniformly continuous on compact sets of G is precompact in L2�G ,d��.

Proof: Let sn be a sequence of functions in this set of functions. Since G is � compact we can
find a sequence of compact sets Km�G with Km�Km+1 and �Km=G. Upon choosing a subse-
quence we may require that

	
G\Km

u2�d� + d� � 1/m .

On each Km we can therefore find a uniformly convergent subsequence. Therefore upon choosing
a suitable diagonal subsequence we may suppose that for m��m
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Km

�sm − sm��
2�d� + d� � 1/m .

We therefore have

�sm − sm��L2�G,d�+d�
2 = 	

G\Km

�sm − sm��
2�d� + d� + 	

Km

�sm − sm��
2�d� + d� � 2/m , �3�

and thus sm is a Cauchy sequence. Its pointwise limit exists, and thanks to Fatou lemma being in
L2�G ,d�+d�. �

A second family is given by

�r�w,2 = �w−1/2r�L2�d�+d�.

We denote by Bw,2 the associated Banach space. This means that we consider localization quan-
tities of the form

	
G

w−1�Wgg�2d� .

If w is such that

��x� = sup
y�G

�w�y−1 � x�w�y�

satisfies ��L2�G ,d�+d�, we may estimate for r=w1/2u, s=w1/2v, u ,v�L2�G ,d�+d� that

�r � s�x�� �	 w�y−1 � x�w�y�u�y−1 � x�v�y�d���y�� � ��x��u�L2�G,d��v�L2�G,d�� � ��x��r�w,2�s�w,2,

and thus we have Bw,2*Bw,2�B�,
. Therefore the theorem applies if we choose for the space K
=B�,
 and we have the existence of an optimally localized reconstruction wavelet.

We now prove the theorem. To start we analyze the mapping properties of 	. We denote by
� the domain of 	,

� = 
s � H:	�s� � 
� � A .

Lemma 3: The functional 	 is strongly H lower semicontinuous on �. More precisely for �
�un→u�H in H, we have

	�u� � lim
n→


inf 	�un� .

Proof: Since Wun
un→Wuu pointwise and thus by hypothesis of semicontinuity of the B norm

	� lim
n→


un� = � lim
n→


Wun
un�B � lim

n→

inf�Wun

un� = lim
n→


inf	�un� .

�

We even have the following lemma.
Lemma 4: The functional 	 is H-weakly lower semicontinuous on � \ 
0�. More precisely, for

any H-weak convergent sequence ��gn→g�H, g�0 with gn�� we have 	�g�
� lim inf 	�gn�.

Proof: Let
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� = lim
n→


inf 	�gn� .

Clearly ��0. In the case that �=
 the lemma holds true and we may suppose 0���
. We may
find a subsequence which is denoted by gn with 	�gn��
, and 	�gn�→�. By hypothesis there is
an h�D�T� with 	�h��
. By the invariance of B it follows, thanks to

�WU�y�hU�y�h��x� = Whh�y−1 � x � y� ,

that the whole orbit of h has the same properties. Since the representation is irreducible and T has
dense range, we may suppose that cg,h= �g ,Th�H�0. For s�A we have by continuity of the
convolution

�Whs�K = �� � Wss�K � d�Wss�B = d	�s�, � = cs,h
−1Whh .

By weak convergence we have cgn,h= �gn ,Th�H→ �g ,Th�H�0. Therefore, since gn�A thanks to
	�gn��
, we may conclude by setting s=gn in the formula above that 
Whgn� is a bounded set in
K and hence it is bounded in WhH �the image of H under Wh� too. Since the representation of the
wavelet transform is strongly continuous this family of functions is uniformly continuous on any
compact subset of G. Because of the compact embedding property of K we can extract an H
convergent subsequence gm�n�→g. Since 	 is strongly lower continuous we have 	�g�
� lim inf 	�gn�=�. �

Now the proof of the main theorem is easy.
Proof: Let 	�gn�→�=infg��h

	�g�. Since as before 	�gn��b�gn�H we see that gn is
bounded in H. Thanks to the Banach-Alaoglou theorem we may extract an H-weakly convergent
subsequence gm�n�→g weakly. Since 	 is weakly lower semicontinuous we may conclude that
	�g�=�. The set �h is weakly closed and hence g��h. �

We can even prove the following optimal localization result.
Theorem 3: There is a g with �g�H=1, such that for all u�H, with �u�H=1 we have

	�g� � 	�u� .

Proof: As before, we find a weakly convergent sequence gn→g with 	�g�=inf�s�=1	�s�. Now as
in the proof of Lemma 4 we see that there is a strongly convergent subsequence gm�n�→g and thus
�g�=1. �

IV. THE NUMERICAL APPROXIMATION OF LOCALIZED STATES

As we have shown in the previous section, for each weight function satisfying certain condi-
tions, there exists an optimally localized wavelet g. The term “optimality” is strongly connected
with the associated Banach space norm � · �B.

Before providing a receipt of how to derive those optimally localized wavelets, we wish to be
more concrete and to give a few examples of typical Banach spaces and weight functions to which
our theory can be applied. To this end, let us consider the class of �-modulation spaces which are
usually defined by means of the flexible Gabor-wavelet transform, see Ref. 3,

Wg
��f��x� = �f ,U����x��g�H.

Since this transform is based on square integrability modulo quotients, we limit the subsequent
consideration to the cases �=0 and �=1 �which fits then quite nicely with our framework, see
below�. For �=0, the family 
U���x��g� is a Gabor system and Wg

0f coincides with the classical
short time Fourier transform, while for �→1 the family tends to the situation encountered in the
wavelet context, where Wg

1 is just a slight modification of the continuous wavelet transform. The
intermediate case �=1/2 appears in the literature as the Fourier-Bros-Iagolnitzer transform.2,14 In
particular, one characterizes �-modulation spaces as follows �for simplicity we consider the wave-
let transform of functions over R�: for s�R, for all 1� p ,q�
, and for �� �0,1�,
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Mp,q
s+��1/q−1/2�,��R� = 
f � S�:Wg

��f� � Lp,q,s�, �f�Mp,q
s+��1/q−1/2�,� � �Wg

��f��Lp,q,s,

where Lp,q,s�R2� is the space of functions F on R2 such that

�F�Lp,q,s ª 	
R
	

R
�F�t,���pdt�q/p

�1 + ����sqd��1/q

� 
 .

For �=0, the space Mp,q
s,0 �R� coincides with the modulation space Mp,q

s �R�. For �→1 the space
Mp,q

s,1 �R� coincides with the inhomogeneous Besov space Bp,q
s �R�. These spaces serve as a reservoir

of smoothness spaces in which functions can be characterized by means of special analyzing
atoms or a so-called frame. A desirable property of the analyzing atom is localization with respect
to underlying Banach spaces metric, i.e., in this context an optimal localized g is associated with
Banach space norm � · �M

p,q
s+��1/q−1/2�,� which in turn is here characterized by the weight

w��� = �1 + ����s.

The numerical scheme developed below is limited to case p=q=2 and applies thus not to all
situations.

Let us now consider a concrete case which is a little beyond the above mentioned examples.
Let L2,w−1

with symmetric weight function

w−1�x� = w−1�a,b� = ��a� + �a�−1�4 · �1 + �b��1 + �a��−1�4

be the space under consideration. Then, in accordance with Theorem 3, the optimization problem
can be casted as follows:

	�g� = �Wgg�
L2,w−1
2

+ ��g�H
2 .

In order to discretize the problem somehow, we may represent g by means of some frame

�������H, i.e.,

g = �
���

g���.

Consequently, the goal is to reconstruct a sequence 
g�����=g��2 for which 	�g��	�s�, for all
s�H.

Introducing for some x�G the infinite matrix A�x�= ���� ,U�x����H��,���, the wavelet trans-
form reads as Wgg�x�= �g ,A�x�g��2

= :F�g��x�. Obviously, F�g��e�= �g�H
2 , and thus we may write

	�g� = �F�g��
L2,w−1
2

+ �F�g��e� .

Since the optimization problem is no longer convex, we have to apply adequate strategies for
nonlinear problems. We suggest to make use of a Tikhonov-based iteration method for nonlinear
problems which was developed in Ref. 16. The technology to be applied here will always find a
critical point of 	, and under additional assumptions on F and the solution one can assure that the
critical point is a global minimizer.

The method borrowed from Ref. 16 goes now as follows. Firstly, in order to obtain a problem
which is hopefully easier to solve, we replace 	 by

	s�g;a� ª 	�g� + C�g − a��2

2 − �F�g� − F�a��
L2,w−1
2

, �4.1�

where a is some auxiliary element in �2. So far its not clear whether 	s is positive or even
bounded from below. Following the lines in Ref. 16, i.e., choosing for ��0 a ball around the
origin Kr and C adequately large �in dependence on F and 	�a��, one can assure for all g�Kr,
	�g��	s�g ;a�.
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The iteration process is now obtained by picking some initial g0=a and therewith some proper
C�0 and by deriving a sequence 
gk�k�N via

gk+1 = arg min
g

	s�g;gk� .

From this iteration we expect convergence at least towards a critical point of 	. First, we have to
make sure that the sequence of functionals is properly defined.

Lemma 5: Let a be given and Kr, C be defined as in Ref. 16. Then for all k�N, 	s�g ;gk� are
bounded from below, and moreover, the minimizers gk+1 belong to Kr.

Let A now be the shorthand for A�e�. A simple calculation shows the following.
Lemma 6: The necessary condition for a minimum of Eq. �4.1� reads as

g =
1

C

gk − �Ag − F��g�*�F�gk�w−1�� . �4.2�

The hope is that the right hand side of Eq. �4.2� defines a contraction. A straightforward compu-
tation shows

�g − g���2
�

1

C

���A �� + 2���A�·����L2,w−1�F�gk��L2,w−1�g − g���2

.

To bound this quantity requires the Lipschitz continuity of F��g�, or in other words, the finiteness
of ���A�·����L2,w−1 which is difficult to prove, but can be verified numerically: we may consider the
spectral radius �A�a ,b�� �for a particular frame, see below� as a function of �a ,b��G. Figure 1
shows a sufficient decay of �A�a ,b�� and assures therewith that, for C large enough, the conver-
gence of the fixed point iteration �4.2� towards a unique minimizer gk+1 of 	s�g ;gk� can be
achieved. Moreover, we have with the help of Ref. 16 that the sequence 
gk� converges at least
towards a critical point of 	. If we could impose more smoothness on F and on the solution g to
be reconstructed, we could also achieve uniqueness.

Next, we have to ensure that �gn+1�H
2 =1 �the index n stands now for the fixed point iteration�

holds true through the whole fixed point iteration process, i.e., we have to determine � in each
iteration step:

FIG. 1. �Color online� Maximal eigenvalues of the infinite matrices A�a ,b� for all the �a ,b��G used in the frame
representation.
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�gn+1,Agn+1��2
=

1

C2 
�2F�Agn��e� − 2�R�Agn,A�gk − F��gn�*�F�gk�w−1����2

+ F�gk − F��gn�*�F�gk�w−1���e�� ,

i.e., finding �=�n+1 amounts to finding the roots of a real parabola. With the shorthand M
=R�Agn ,A�gk−F��gn�*�F�gk�w−1����2

, we obtain

FIG. 2. �Color online� Structure of A�a ,b� for two particular cases; top, �a ,b�= �1,0� and bottom, �a ,b�= �2.3,−2.4�.
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�n+1 =
M ± �M2 − F�Agn��e�
F�gk − F��gn�*�F�gk�w−1���e� − C2��1/2

F�Agn��e�
. �4.3�

Now we can summarize an algorithm for computing a critical sequence g for the minimization
problem inf�g�H=1	�g�:

• Pick some initial g0 (not too far off the expected solution) and some C�0 (large enough).

FIG. 3. �Color online� From top left to bottom right: Fourier representations of initial g0 �not normalized�, g4, g10, and g30

�blue/red, real and imaginary part; green, Cauchy wavelet�.

FIG. 4. �Color online� Left: Fourier representation of the approximated optimally localized coherent state. Right: Associ-
ated time representation.
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• Compute gk+1=arg ming	s�g ;gk� via fixed point iteration �4.2�:

Compute �n+1=max
�1
n+1 ,�2

n+1� via Eq. �4.3�.
Compute gn+1 via Eq. �4.2�.
gk+1=limn→
 gn+1.

In what follows we aim to illustrate the computation of an optimally localized wavelet. For the
sake of simply computing the operators A�x�, we have chosen a �finite dimensional� Cauchy
wavelet frame 
����L2�R� of order N �here N=3�. Thus, A�x� can be derived for each x�G
explicitly, see Fig. 2. The resulting iteration process to reconstruct at least a critical g is illustrated
in Fig. 3, and the final approximation with the time representation in Fig. 4.
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We motivate a notion of geometric equivalence that is not the usual notion of
algebraic equivalence �or isomorphism of Clifford algebra�. Using this definition
tilting to the opposite metric is a geometric equivalence in contrast to such alge-
braic equivalences as C� �3,0��C� �1,2� which are not geometric. We define and
discuss the classification of partitioned Clifford algebra and the geometric equiva-
lence of Dirac formulations. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2375037�

I. INTRODUCTION

A long outstanding debate on Minkowski space-time concerns the physical explanation of
differences between the �3,1� and �1,3� signatures of the metric. A partial mathematical answer is
to be found in the corresponding Clifford algebras C� �3,1� and C� �1,3�. They are not isomor-
phic, although their even subalgebras and their complexifications are, respectively, isomorphic. A
number of papers over the years have investigated possible differences, see for example, de
Witt-Morette et al.1–4 and Pezzaglia and Adams5 Recently, Joyce and Butler6 have provided a rich
geometric explanation where the geometric products corresponding to the different signatures are
based on different geometric constructions. Although the underlying geometry is the same, the
multivectors represent differing equivalence classes of geometric objects. Consequently two noni-
somorphic algebras are generated. Nevertheless, there is a one to one relationship between the
different geometric constructions. This paper describes and characterizes such geometric relation-
ships.

There have been a few prior studies in the literature investigating the relationship between
Clifford algebras with opposite signatures, including the tilt map given in Lounesto7 and the vee
product of Miralles et al.8,9 We take a different approach where we introduce the notion of a
Geometric map. Such a mapping preserves essential geometric properties. Fundamentally Clifford
algebra arises from flat space-time geometries. We represent the flat spacetime by a vector space
spanned by m+n basis vectors denoted e1 , . . . ,em+n and a signature �m ,n�. This generates the
Clifford algebra C� �m ,n�. Our space-time frame spans the subspace of one-vectors. Geometri-
cally the even �resp. odd� multivectors arise from evaluation of an even �resp. odd� number of
one-vectors. Moreover, the space of r-multivectors is spanned by the products of r+2i one-vectors
for every i�N, where N denotes the additive monoid of natural numbers. Importantly no even
�resp. odd� multivector arises from an odd �resp. even� product of one-vectors. Also one should
note that the generators for rotation and boosts �in spin+�m ,n�� span C�+�m ,n�. Thus a linear map
between Clifford algebras should only be considered geometric if it preserves the Z2 grading into
even and odd multivectors. Moreover, the product of an even multivector with another multivector
preserves this Z2 grade so,we should also have

��uv� = ��u���v� , �1�

whenever u or v is an even multivector.
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A geometric map is a linear Z2 graded map preserving left and right multiplicative action of
C�+�m ,n�. A geometric equivalence is an invertible geometric map. For flat space-time with m
+n=2 there are three Z2 graded Clifford algebra structures. Namely, C� �2,0� ,C� �1,1� and
C� �0,2� where the Z2 grading is specified by the signature. We have the following relationship
between the three:

One can see that tilting to the opposite metric is a geometric equivalence as it corresponds to
Clifford algebras underlying the same flat space-time geometry. However, the universal envelop-
ing algebra generated by two boost generators or a boost generator and a rotation generator give
the algebraic equivalence C� �2,0��C� �1,1�. We will show that two Clifford algebras are geo-
metrically equivalent if and only if their even subalgebras are algebraically equivalent. Thus
C� �2,0� and C� �0,2� are geometrically equivalent precisely because their even subalgebras are
both isomorphic to C� �0,1�, the Clifford algebra generated by a single rotation generator.

With this motivation we now present a fuller treatment beginning with the notion of parti-
tioned Clifford algebra.

II. FLAT SPACE-TIME GEOMETRIES AND PARTITIONED CLIFFORD ALGEBRA

We begin with a more general notion of flat space-time to ensure that the resulting “geometric
algebra” is closed under tensor product. If one has a collection of flat space-time geometries where
one has no means of rotating or boosting between each geometry, then the composite is a parti-
tioned flat space-time geometry in the following sense.

Given m ,n�N, let �m+n�= �1,2 , . . . ,m+n�. A partition on �m+n� is a map � : �m+n�
→P�m+n�, where P�m+n� is the power set of �m+n�, such that i��i and if j��i then �i=�j
where i , j� �m+n�. Let �= ��i : i� �m+n�� be the set of equivalence classes. We then have that
���� 	� 	 =m+n and ��= �m+n�. A �-flat spacetime of signature �m ,n� is a family of vector
spaces V� with signature �m� ,n�� where ��� satisfying ����m�=m and ����n�=n. Hence the
vector space

V = �
���

V�, �2�

admits a basis e1 , . . . ,em+n where ei�V�i and is said to be of type �i.
Transformations that dilate, boost, or rotate between vectors of different types are not pos-

sible. Each partition component subspace may be said to be geometrically partitioned from all the
others. Such situations occur when one trivially joins an internal space to an existing flat space-
time.

We define the partitioned Clifford algebra C� �m ,n 	�� of signature �m ,n� partitioned by � to
be the Clifford algebra generated by e1 , . . . ,em+n with generating relations

eiej = − �ijejei for all i, j � �m + n� , �3�

ei
2 = 1 whenever i = 1,2, . . . ,m , �4�

em+j
2 = − 1 whenever j = 1,2, . . . ,n , �5�

where we have defined

123504-2 D. M. Botman and W. P. Joyce J. Math. Phys. 47, 123504 �2006�

                                                                                                                                    



�ij = 
1:i � j and �i = �j

− 1:i = j or �i � �j ,
�6�

for all i , j� �m+n�. Thus if we define the components of a flat space-time metric as �ij

= ��ijeiej�0 we obtain a compact form of the generators

eiej + ��ij + 2�ij�ejei = 2�ij , �7�

for all i , j� �m+n�.
Let m�= 	�m���	, the number of generators ei where i�� with ei

2=1. Let n�= 	�m
+ �n����	, the number of generators ei where i�� with ei

2=−1. Then we have that ����m�

=m ,����n�=n, and the decomposition

C � �m,n	�� � �
���

C � �m�,n�� . �8�

Examples include Galilean space-time giving the geometric algebras C� �1,0� � C� �3,0� or
C� �0,1� � C� �3,0�, and Minkowski space-time with an evolution parameter giving the Dirac
algebra C� �0,1� � C� �3,1�.

A partitioned Clifford algebra C� �m ,n 	�� is Z2
	�	-graded. Assume � is ordered with �1

� ¯ ��	�	. We define

C�0�m,n	�� = �
���

C�+�m�,n�� , �9�

which is the subalgebra generated by the rotation and boost generators for C� �m ,n 	��. We call
C�0�m ,n 	�� the kinematic subalgebra and its dimension is 2m+n−	�	. Let zi= �0, . . . ,0 ,1 ,0 , . . . ,0�
�Z2

	�	 where 1 is in the ith position. We define

C�zi�m,n	�� = C�+�m�1,n�1� � ¯ C�+�m�i−1
,n�i−1

� � C�−�m�i
,n�i

�

� C�+�m�i+1
,n�i+1

� � ¯ � C�+�m�	�	
,n�	�	

� . �10�

An arbitrary z�Z2
	�	 may be written as z=�i=1

	�	 aizi for unique a1 , . . . ,a	�	� �0,1� and we define

C�z�m,n	�� = C�a1z1�m,n	�� ¯ C�a	�	z	�	�m,n	�� . �11�

The even part of the algebra is defined to be

C�+�m,n	�� = �

z�Z2
	�	

�i=1
	�	 ai is even

C�z�m,n	�� . �12�

Similarly we define C�−�m ,n 	�� summing over z for �i=1
	�	 ai odd. This we will refer to in what

follows as the Z2 grade for C� �m ,n 	��. However, the generators for boost and rotation of the
underlying partitioned space-time generate the kinematic subalgebra C�0�m ,n 	��. In particular we
have C�+�m ,n 	��=C�0�m ,n 	�� if and only if the partition is trivial.

III. GEOMETRIC MAPS AND EQUIVALENCES

Let �m ,n� , �p ,q��N2 be a pair of signatures. Let � and � be partitions of �m+n� and �p
+q�, respectively. Before stating the definition of a geometric map we note that any map 	 : �m
+n�→ �p+q� induces a map 	̂ :Z2

	�	→Z2
	R	 given by

	̂�
i=1

	�	

aizi� = �
i=1

	�	

aiz	i. �13�

Definition 1: A left �resp. right� geometric map is an ordered pair �� ,	� consisting of a linear
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map � :C� �m ,n 	��→C� �p ,q 	�� and a map 	 : �m+n�→ �p+q� such that

�i� 	�=��;
�ii� ��C�z�m ,n 	����C�	̂z�p ,q 	�� for all z�Z2

	�	;
�iii� ��uv�=��u���v� whenever u �resp. v� is in C�0�m ,n 	��.

The ordered pair �� ,	� is geometric if it is both a left and right geometric map. It is weakly
geometric if condition (ii) only holds for z=0.

Often we will write �� ,	� :C� �m ,n 	��→C� �p ,q� when we mean a �weakly� geometric map.
If �� ,	� is a geometric map then 	̂0=0 and we have that the kinematic subalgebra generated by
infinitesimal generators is preserved or

��C�0�m,n	��� � C�0�p,q	�� . �14�

A geometric map �� ,	� is called a geometric equivalence �written �� if � is invertible and 	 is
bijective, it is called a geometric morphism if � is a homomorphism and a geometric isomorphism
if it is both a geometric equivalence and a geometric morphism. Note that an algebraic equivalence
of Clifford algebras is written �.

Let M denote the monoid �recall a monoid is a group without the requirement of invertibility�
generated by C� �0,0� ,C� �1,0� ,C� �0,1� ,C� �2,0� ,C� �1,1�, and C� �0,2� with multiplication
tensor product. This monoid is Z2-graded with the even submonoid M+ generated by
C� �0,0� , C� �1,0��2 , C� �0,1��2 ,C� �1,0� � C� �0,1� ,C� �0,1� � C� �1,0� ,C� �2,0� ,C� �1,1�
and C� �0,2�.

Theorem 1: Every partitioned Clifford algebra is weakly geometrically equivalent to a mem-
ber of M.

Before proving this result we note that although C� �2,0��C� �1,1� they are not geometri-
cally equivalent. The corresponding result for algebraic equivalence embodies the well-known
classification of Clifford algebra by matrix algebra due to Cartan. The generators are algebraically
equivalent to the following well-known algebras:

C � �0,0� � R , �15�

C � �1,0� � R � R , �16�

C � �0,1� � C , �17�

C � �2,0� � C � �1,1� � K , �18�

C � �0,2� � H , �19�

where K=Mat�2,R�. For p ,q�N we have the geometric isomorphisms

C � �p + 2,q� � C � �2,0� � C � �q,p� , �20�

C � �p + 1,q + 1� � C � �1,1� � C � �p,q� , �21�

C � �p,q + 2� � C � �0,2� � C � �q,p� . �22�

In the first case e1 and e2 generate Cl�2,0�. A set of generators commuting with e1 and e2 are given
by e12e3 , . . . ,e12ep+q. The latter set generates C� �q , p�. The other isomorphisms are proved by
selecting ep+1 ,ep+2 and eq+1 and eq+2, respectively. If � and 
 are geometric isomorphisms then
� � 
 is a geometric isomorphism. Hence we may iterate using these three formulas to prove the
theorem.

Note the immediate corollary
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Corollary 1: C� �m ,n 	�� is an Abelian algebra if and only if it has no dimension four
generators.

The dimension four generators are C� �2,0� ,C� �1,1� and C� �0,2�.
Every geometric map gives rise to a homomorphism between the kinematic subalgebras. We

next show that a geometric map may be constructed as an extension of a homomorphism between
the kinematic subalgebras. This will allow us to deduce a criterion for when partitioned Clifford
algebras are geometrically equivalent. We begin with trivially partitioned Clifford algebra.

Proposition 1: Let � :C� �m ,n�→C� �p ,q� be a geometric map then

�i� f =��1� is central and idempotent, and 1− f is an annihilator for ��C� �m ,n��;
�ii� Suppose p+q�0 then given a homomorphism � :C�+�m ,n�→C�+�p ,q� there is a geometric

extension �̂ :C� �m ,n�→C� �p ,q� satisfying dim�Im �̂�=2 dim�Im ��.

To prove the first part, given v���C� �m ,n�� there is a u�C� �m ,n� such that ��u�=v and vf
=��u���1�=��u�=v and similarly fv=v. Hence f is central and 1− f is an annihilator as claimed.
Also f2=��1���1�=��1�= f .

Next we prove the second part after some development. Let h1 , . . . ,hp+q−1 be generators for
the Clifford algebra C�+�p ,q�. Let P0,z denote the protection onto the even and odd parts of
C� �p ,q� and Pi,z the projection onto commuting and anti-commuting components with respect to
hi given by

Pi,zv = 1
2 �v + �− 1�zhi

−1vhi� , �23�

for all v�C� �p ,q� where z�Z2. It is simple to verify Pi,zPi�,z�= Pi�,z�Pi,z for all i , i�
� �0,1 , . . . , p+q−1� and z ,z��Z2. Thus we define the projection operator

Cz = �i=0
p+q−1Pi,ai, �24�

for every z�Z2
p+q where z=�i=0

p+q−1aizi. Thus we have the decomposition

C � �p,q� � �

z�Z2
p+q

CzC � �p,q� , �25�

and �CzC� �p ,q���Cz�C� �p ,q���Cz+z�C� �p ,q�. Hence we have the dimensionality

dim C�0,z�C � �p,q� =
0:�i=1

p+q−1
zi = p + q mod 2

1:�i=1

p+q−1
zi = p + q − 1 mod 2

. �26�

Note that the generator hi�CzC� �p ,q� where zk=0 if and only if k=0 or k= i. Whenever i� j note
that hihj �CzC� �p ,q� where zk=1 if and only if k= i or k= j. Using this we shall prove the
following lemma.

Lemma 1: Given generators h1 , . . . ,hp+q−1 for C�+�p ,q� there exists v�C�−�p ,q� such that
hiv=−vhi for all i=1,2 , . . . , p+q−1.

For p+q�2 the result is trivial. For p+q=2 the only generators are ±e12 and one can take
v=e1. For p+q�2 and p+q is odd take v=e1¯ep+qh1¯hp+q−1. Finally suppose p+q�2 and
p+q is even, then there exists no central odd element. Choose u�C�1,z�C� �p ,q� invertible for
some z�Z2

p+q−1 and let 0� i1� ¯ � ir� p+q such that zj =0 if and only if j= ik for some k
=1,2 , . . . ,r. If r is even then hi1

¯hir
u�C�1,0�C� �p ,q� contradicting there being no central odd

element. Hence r is even and we take v=h1¯hp+q−1hi1
¯hir

u�C�1,1�C� �p ,q�. This completes the
proof.

It is worthwhile noting that if p+q is odd then

dim CzC � �p,q� = 1, �27�

for all z�Z2
p+q, and if p+q is even then
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dim CzC � �p + q� = 
0:	�i:zi = 1�	 is even,

2:	�i:zi = 1�	 is odd.
�28�

for all z�Z2
p+q.

We have a simple corollary to the lemma.
Corollary 2: Let f be idempotent. Then given generators h1 , . . . ,hp+q−1 for ��f� ,C�+�p ,q��

there exists v� ��f� ,C�−�p ,q�� such that hiv=−vhi for all i=1,2 , . . . , p+q−1.
This follows since f commutes will all elements in ��f� ,C� �p ,q��.
Completing the proof of �ii�, take hi=��e1i+1� then by the previous corollary there is v

� ��f� ,C�−�p ,q�� invertible such that hiv=−vhi for all i=1,2 , . . . , p+q−1. Hence a choice of
extension is given by

�̂�a + e1b� = ��a� + v��b� , �29�

for al a ,b�C�+�m ,n�.
Thus we can state an important criterion for determining when two partitioned Clifford alge-

bras are geometrically equivalent.
Theorem 2: Two partitioned Clifford algebras are geometrically equivalent if and only if their

kinematic subalgebras are algebraically equivalent.
It immediately follows that C� �m ,n��C� �n ,m� and so tilting to the opposite metric is a

geometric equivalence. In detail, between the Clifford algebras C� �m ,n� and C� �n ,m� there is a
bijective Clifford map  preserving generators satisfying

�ab� = �− 1�rs�a��b� , �30�

whenever a is an r-vector and b an s-vector. Let �e1� , . . . ,er�� be the generating basis for C� �n ,m�
and define fk=en+k� for k=1, . . . ,m and fk=ek−m� for k=m+1, . . . ,m+n. We define  by the formula

�ek1
¯ ekr

� = �− 1��r/2�fk1
¯ fkr

, �31�

which is proven by induction using �ekel�=−�ek��el�. This follows from �ekel�f l=�ekel
2�

= fk�el
2�=−fkel

2 by multiplication by f l and noting that el
2f l

2=−1. This is the anti-isomorphism map
of Chevellay associated with switching the signature of the underlying quadratic form.

Geometric equivalence is decided by the algebraic equivalence of their kinematic subalgebras.
Proposition 2: Let m ,n , p ,q�N and � be a partition of �m+n� then

�C � �m,n	�� � C � �1,0��+ � C � �m,n	�� , �32�

�C � �m,n	�� � C � �0,1��+ � C � �n,m	�̃� , �33�

�C � �m,n� � C � �p + 1,q��+ � C � �m + q,n + p� , �34�

�C � �m,n� � C � �p,q + 1��+ � C � �n + p,m + q� , �35�

where �̃ is the partition given by �̃i=−�i modulo m+n.
Let ek be the generators for C� �m ,n 	�� and � the generator for C� �1,0�. A set of generators

for the even subalgebra is given by ek � � where k� �m+n�. These generate the Clifford algebra
C� �m ,n 	��. The next formula is proven by noting that the signature is reversed. Suppose now that
� is trivial and let f l be generators for C� �p+1,q�. A collection of generators for the even
subalgebra of C� �m ,n� � C� �p+1,q� is given by ek � f1 and 1 � f1l where k� �m+n� and l
� �p+q�+1. These generators are all anti-commute and generate C� �m+q ,n+ p�. The final for-
mula is proven by using generators ek � fp+q+1 and 1 � f lp+q+1 where k� �m+n� and l� �p+q�.

Note that the last two formulas for m=n=0 reduce to the well-known algebraic equivalences
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C�+�p + 1,q� � C � �q,p� , �36�

C�+�p,q + 1� � C � �p,q� . �37�

For example, we now have

�C � �m + 1,n� � C � �p + 1,q��0 � C � �n,m� � C � �q,p� , �38�

�C � �m + 1,n� � C � �p,q + 1��0 � C � �n,m� � C � �p,q� , �39�

�C � �m,n + 1� � C � �p,q + 1��0 � C � �m,n� � C � �p,q� . �40�

One now sees that geometric and algebraic equivalence has a rich interplay determined by an
extension of Cartan’s period of eight classification for the kinematic subalgebras.

The first few Clifford algebras �m+n�8� are given as follows. The dashed lines represent
geometric equivalence, the solid, horizontal and dotted lines represent algebraic equivalence, and
the solid arrows projection onto the kinematic subalgebra up to algebraic equivalence.

Note that not all geometric equivalences are given by tilting of the metric. However, this does
not occur until m+n�6. Next consider the partitioned Clifford algebra with m+n=4 or m+n
=2 partitioned into two dimensionally equal pieces. This is given as follows:

The top left algebraic equivalences correspond to the isomorphism K � K�H � H. The alge-
braic equivalence on the second line is C � C�C � C. The next diagram is for partitioned Clifford
algebra with m+n=3 into two nontrivial pieces.
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The algebraic equivalence in the diagram is C � K�C � H.
At this point we introduce the useful notation: Fm is the m-fold tensor product of F and mF is

the m-fold direct sum of F. Also we let F= �R ,C ,H�. We can now state the connection between
partitioned Clifford algebra and matrix algebra.

Theorem 3: Every partitioned Clifford algebra is of the form Mat�2m ,2nF� where m ,n�N
and F�F. Conversely, every matrix algebra Mat�2m ,2nF� for some m ,n�N and F�F is iso-
morphic to some partitioned Clifford algebra.

To show this we begin by noting the fact

F � Km � Mat�2m,F� . �41�

Given an arbitrary partitioned Clifford algebra C� �p ,q 	�� we can decompose each partitioned
component

C � �p�,q�� � Kmin�p�,q��
� C � �p� − q�� , �42�

for every ��� where we have defined C� �p��=C� �p� ,0� and C� �−q��=C� �0,q��. Suppose
	p�−q� 	 =8m�+r� where 0�r��8 and m��N. Thus m�= �	p�−q� 	 /8� and r�= 	p�−q�	 modulo
8. Further iterations gives

C � �p� − q�� = K
� 	p�−q�	

2 �
� C � �sgn�p� − q��r�� . �43�

Combining the above decomposition with the equality

� p� + q�

2 � = min�p�,q�� + � 	p� − q�	
2 � , �44�

gives the explicit formula

C � �p�,q�� � Mat�2
� p�+q�

2 �
,C � �sgn�p� − q��r��� . �45�

Therefore,

C � �p,q	�� � Mat2����� p�+q�

2 �, �
��

C � �sgn�p − q�r�� . �46�

It only remains to classify C� �r� for −8�r�8. These are obtained by iterating the first proposi-
tion. Table I can be understood by the period of eight circle in Fig. 1.

The numbers around the outside represent r when going clockwise and −r when going anti-
clockwise. The inside numbers represent n plus the logarithm base 2 of the dimension of F. The

TABLE I. Isomorphisms C� �r��Mat�2m ,2nF�.

r 7 6 5 4 3 2 1 0 −1 −2 −3 −4 −5 −6 −7

m 3 2 1 1 1 1 0 0 0 0 0 1 2 3 3
n 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
F C H H H C R R R C H H H C R R
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three regions of the circle indicate the underlying field F. Not indicated on the diagram is that n is
nonzero at 12 o’clock and 6 o’clock. The converse of the theorem holds because

Mat�2m,2nF� � C � �1,1�m
� C � �1,0�n

� F , �47�

where we use the Clifford algebra in Eqs. �20�–�22� in place of F given by R, C, and H, respec-
tively.

Consider the collection of matrix algebras Mat�2m ,2nF�, which we denote by �m ,n ,F�, where
m ,n�N, and F�F. The members of this, set are pairwise nonisomorphic. Moreover, the tensor
product of any two members in N2�F is isomorphic to a unique member. Hence N2�F is a
commutative monoid in the obvious way. Define a monoid addition on F by R+F=F ,C+C
=C ,H+C=C, and H+H=R. Given this, the monoid addition on N2�F is given by

�m,n,F� � �m�,n�,F�� = �m + m� + �F,H + �F�,H,n + n� + �F,C�F�,C,F + F�� ,

for all m ,m� ,n ,n��N and F ,F��F

IV. TILTING THE METRIC IN DIRAC FORMULATIONS

Following Joyce and Martin10 a Dirac formulation �� ,I� consists of a Dirac pseudo-left ideal
I and a Dirac character ��C� �m ,1� or C� �1,m�. Conventionally we choose a basis e0 , . . . ,em

satisfying e0
2=−ek

2 for all k=1, . . . ,m. A pseudo-left ideal satisfies C�+�m ,1�I�I, and it is called
Dirac if C�−�m ,1�I�I�, and similarly for C� �1,m�. The Dirac character satisfies �2=−e0

2 and
eo�̃e0=−e0

2�. Examples include ek ,e0kl for C� �3,1� and ek ,ekl ,e0kl, and e0123 for C� �1,3�. The
underlying Dirac equation is then given by

�
�x� = m
�x�� , �48�

where 
�x��I. This formulation includes the Dirac-Hestenes equation,11 the conventional Dirac
equation, a formulation due to Baylis,12 a formulation due to Joyce13 and others.

Theorem 4: Given a Dirac formulation �� ,I� then �� ,I� is a Dirac formulation if and only
if � is odd. Consequently the formulations are geometrically equivalent.

Applying the tilt map to �2 gives ��2�=−�e0
2�= �e0�2. Thus �� ,�I� is necessarily a Dirac

formulation if and only if ��2�=−���2. Hence if and only if � is odd. This is also sufficient by
checking that the remaining conditions under  hold if � is odd. Note that the Dirac-Hestenes
equation tilts because �012 is odd and consequently is independent of signature, unlike the usual
Dirac equation which does not tilt.

FIG. 1. The period of eight circle.
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V. CONCLUSION

We introduced the notion of a geometric map, this is a map that preserves the left and right
action of the infinitesimal generators of boost and rotation. This showed that some algebraic
equivalences were not geometric in this sense whereas tilting to the opposite metric was always a
geometric equivalence.

The notion of a partitioned Clifford algebra was defined to admit partitioned flat space-time
geometry. This also provides a category of algebras closed under tensor product. A complete
classification of partitioned Clifford algebra by matrix algebra was given extending Cartan’s
period of eight. Finally we demonstrated which Dirac formulations may be tilted to give a geo-
metrically equivalent Dirac formulation.
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The semigroup decomposition formalism makes use of the functional model for C·0

class contractive semigroups for the description of the time evolution of reso-
nances. For a given scattering problem the formalism allows for the association of
a definite Hilbert space state with a scattering resonance. This state defines a de-
composition of matrix elements of the evolution into a term evolving according to
a semigroup law and a background term. We discuss the case of multiple reso-
nances and give a bound on the size of the background term. As an example we
treat a simple problem of scattering from a square barrier potential on the
half-line. © 2006 American Institute of Physics. �DOI: 10.1063/1.2383069�

I. INTRODUCTION

Originally formulated for the analysis of scattering problems involving the solution of hyper-
bolic wave equations in the exterior domain of compactly supported obstacles, the Lax–Phillips
scattering theory1 was developed as a tool most suitable for dealing with resonances in the
scattering of electromagnetic or acoustic waves. Subsequent to its introduction by Lax and Phil-
lips, various authors have contributed to further development of the theory.2–6 Notable recent
additions were made by Sjöstrand and Sworski7 who extended the scope of the theory to include
general classes of semibounded, compactly supported perturbations of the Laplacian in the wave
equation, and by Kuzhell, via the development of a formalism providing conditions for the appli-
cation of the Lax–Phillips structure to an abstract form of the wave equation8 and to certain classes
of Schrödinger operators.9 In addition, Kuzhell and Moskalyova10 applied the Lax–Phillips theory
in the analysis of scattering systems involving singular perturbations of the Laplacian.

Several recent papers have dealt with the adaptation of the Lax–Phillips theory to quantum
mechanical scattering problems. An early work in this direction is Refs. 11–13. A general formal-
ism was developed in Ref. 14 and subsequently applied to several physical models in Refs. 15–17.
Such efforts to adapt the Lax–Phillips formalism to the framework of quantum mechanics are
motivated by certain appealing features of the Lax–Phillips theory. One of these features is the fact
that the time evolution of resonances in this theory is given in terms of a continuous, one param-
eter, strongly contractive semigroup �Z�t��t�0,
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Z�t1�Z�t2� = Z�t1 + t2�, t1,t2 � 0.

If H is a �separable� Hilbert space corresponding to a particular scattering system and
�U�t��t�R is a unitary group defined on H describing the evolution of the system, the basic
premises of the Lax–Phillips theory include the assumption of the existence of an incoming
subspace D− and an outgoing subspace D+ with respect to �U�t��t�R which are assumed further-
more to be orthogonal to each other. Denoting by P− and P+, respectively the projections on the
orthogonal complements of D− and D+ in H, and letting K=H��D− � D+�, the Lax–Phillips
semigroup �Z�t��t�0 defined by

Z�t� = P+U�t�P− = PKU�t�PK, t � 0, �1�

annihilates D± and maps K into itself. The subspace K contains the scattering resonances and the
Lax–Phillips semigroup �Z�t��t�0 describes their time evolution. In the Lax–Phillips framework
resonances are associated with pure states in the Hilbert space H.

A basic difficulty encountered in the work on application of the Lax–Phillips theory in quan-
tum mechanics originates from the fact that in this theory the continuous spectrum of the generator
of evolution is required to be unbounded from below as well as from above. Hence, a formalism
utilizing the original structure of the theory, such as in Ref. 14, is not suitable for application to
large classes of scattering problems in quantum mechanics �except for limited types of problems,
such as the Stark effect Hamiltonian,17 or problems in a relativistically covariant framework,15,16

which can be analyzed by direct mapping to the Lax–Phillips structure. The case of a Schrödinger
equation with compactly supported potential may also be analyzed within the Lax–Phillips frame-
work through the use of the invariance principle of wave operators18�. The subject of the present
paper is a theoretical framework, termed the semigroup decomposition of resonance evolution,
developed with the goal of overcoming such difficulties. Proposed by one of the authors �Y. S.� of
the present paper,19,20 this formalism makes use of the Sz.-Nagy–Foias theory of contraction
operators and contractive semigroups on Hilbert space21 which, from the mathematical point of
view, is the fundamental theory underlying the Lax–Phillips construction through the notion of
model operators for C·0 class semigroups.

The presentation of the semigroup decomposition formalism in Ref. 20 is based on the fol-
lowing assumptions:

�i� We are considering a scattering system consisting of a “free” unperturbed Hamiltonian H0
and a perturbed Hamiltonian H, both defined on a Hilbert space H.

�ii� ess supp�ac�H0�=ess supp�ac�H�=R+. For simplicity it is assumed further that the multi-
plicity of the absolutely continuous �ac� spectrum is 1.

�iii� The Møller wave operators �±��±�H0 ,H� exist and are complete.
�iv� The S matrix in the energy representation �the spectral representation for H0�, denoted by

S̃�·� has an extension to a meromorphic function S�·� in an open, simply connected, region
��C such that ��R is an open interval in R. The operator valued function S�·� is
holomorphic in ��C+ and has a simple pole �we generalize to the case of multiple poles

in Sec. III below� at a point z=����C− and no other singularity in �̄, the closure of �.

It is shown in Ref. 20 that there exists a dense set ��Hac�H� and a well defined state ��

�Hac�H� such that for any g�� and any f �Hac the properties �i�–�iv� above induce, for positive
times, a decomposition of matrix elements of the evolution U�t� in the form

�g,U�t�f�Hac�H� = R�g, f ;t� + ��g,�����, f�Hac�H�e
−i�t, t � 0. �2�

In a sense to be made precise in the next section the second term on the right hand side �rhs� of Eq.
�2� originates from an evolution semigroup of the Lax–Phillips type and the eigenvalue of the
generator of this semigroup is exactly �, i.e., the point of singularity of the S matrix. The quantity
R�g , f ; t� on the right hand side of Eq. �2� is what we shall call a background term. We note that
if in Eq. �2� we choose f to be orthogonal to �� then the exponentially decaying semigroup term
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�second term on the rhs of Eq. �2�� vanishes. We call �� an approximate resonance state and note
that the characterization of �� as an approximate resonance state rather than as an exact resonance
state stems from the fact that one can show �see Ref. 20� that there is no choice of g and f that
makes the background term R�g , f ; t� vanish.

An explicit expression for the approximate resonance state �� is provided in Ref. 20. It is
shown there that, if we denote by ��E−	�E�R+ the set of outgoing solutions of the Lippmann–
Schwinger equation �using Dirac’s notation�, then �� is given by

�� =
1

2�i



R+
dE

1

E − �
�E−	 . �3�

Following the introduction of approximate resonance states, the present paper discusses some
generalizations. Thus, in Sec. III we assume that the region ��C− contains multiple resonance
poles of the S-matrix S�·�, say at z=�1 , . . . ,�n and obtain the form of the expression for the
approximate resonance states and semigroup decomposition of evolution matrix elements in this
case. In particular, we apply the semigroup decomposition to the survival amplitude, a central
notion in the characterization of the time evolution of resonances. Theorem 5 below then provides
an a priori upper bound on the size of the background term in this case.

As a final remark we note that a modification of the Lax–Phillips theory was recently used by
Baumgartel for the description of scattering resonances in certain quantum mechanical problems22

�see also Ref. 23�. In particular, the assumption of orthogonality of D±, essential in the context of
the original Lax–Phillips formalism, is replaced in Ref. 22 by the requirement that an incoming
subspace D− and an outgoing subspace D+ exist and the respective projections commute. The
modified assumptions on D±, accompanied by certain assumptions on S-matrix analyticity prop-
erties, result in a modified Lax–Phillips structure which is then applied to the Friedrichs model,
leading to the construction of appropriate Gamow type vectors24 associated with scattering reso-
nances. The framework presented in Ref. 22 has several points of intersection with the semigroup
decomposition formalism discussed in the present paper. The nature of these relationships will be
discussed elsewhere.

The rest of the paper is organized as follows: In Sec. II we describe the formalism providing
the semigroup decomposition of resonance evolution starting with a short discussion of the func-
tional model for C·0 continuous contractive semigroups followed by a description of the semigroup
decomposition formalism introduced in Refs. 19 and 20. In Sec. III we extend the framework of
Ref. 19 and 20 to the case of multiple resonances and, furthermore, find an estimate on the size of
the background term in the expression for the time evolution of the survival probability of a
resonance. In Sec. IV we analyze a simple but illuminating example involving a one dimensional
model of scattering from a square barrier potential. Section V contains a short summary of the
contents of the paper and some indication on further possible courses of investigation.

II. THE SEMIGROUP DECOMPOSITION FOR RESONANCE EVOLUTION

A. Classification of contractive semigroups

Several distinct classes of contractive semigroups are identified within the framework of the
Sz.-Nagy–Foias theory. Let �T�t��t�0 be a strongly contractive semigroup defined on a Hilbert
space H. The classes C0·, C·0, C1·, C·1 are defined by

123505-3 Approximate resonance states J. Math. Phys. 47, 123505 �2006�

                                                                                                                                    



�T�t��t�R+ � C0· if T�t�h → 0, ∀ h � H ,

�T�t��t�R+ � C·0 if T*�t�h → 0, ∀ h � H ,

�T�t��t�R+ � C1· if T�t�h y 0, ∀ h � H, h � 0,

�T�t��t�R+ � C·1 if T*�t�h y 0, ∀ h � H, h � 0.

The classes C�	 with �, 	=0, 1 are then defined by

C�	 = C�· � C·	, �,	 = 0,1.

The semigroup �Z�t��t�R+ describing the time evolution of resonances in the Lax–Phillips
theory is readily characterized by the fact that �Z*�t��t�R+ belongs to the class C·0. The structure of
the Lax–Phillips outgoing spectral �and translation� representation is then determined by that of
the functional model21,25 for C·0 class semigroups provided by the Sz.-Nagy–Foias theory. We say
an operator A is a model operator25 for a given class C of operators if every operator in C is
similar to a multiple of a part of A �a part of an operator A is a restriction of A to one of its
invariant subspaces�. By a functional model we mean that the model operator for a given class C
has a canonical representation on suitable function spaces. For a C·0 class semigroup �T�t��t�0 the
associated functional model is essentially obtained through a procedure of isometric dilation of the
cogenerator of �T�t��t�0 and the similarity mapping to the functional model is in fact a unitary
transformation.

B. The functional model for C·0 semigroups

We turn now to a brief description of the functional model for semigroups in the class C·0.
Denote by C+ the upper half of the complex plane and let HN

2 �C+� be the Hardy space of vector
valued functions analytic in the upper half-plane and taking values in a separable Hilbert space N.
The set of boundary values on R of functions in HN

2 �C+�, denoted below by HN+
2 �R�, is a Hilbert

space isomorphic to HN
2 �C+�. In a similar manner the Hardy space of N valued functions analytic

in the lower half-plane is denoted by HN
2 �C−� and HN−

2 �R� is the isomorphic Hilbert space con-
sisting of boundary values on R of functions in HN

2 �C−�. Define �u�t��t�R, a family of unitary,
multiplicative operators u�t� :LN

2 �R��LN
2 �R� by

�u�t�f���� = e−i�t f���, f � LN
2 �R�, � � R . �4�

Assume that �T�t��t�0 is a C·0 class semigroup defined on a Hilbert space K. Let the semigroup

�T̂�t��t�0, defined on a Hilbert space K̂, be the functional model for �T�t��t�0 and let W :K�K̂ be

the similarity transforming �T�t��t�0 into its functional model �T̂�t��t�0 i.e., T̂�t�=WT�t�W−1. Then

there exists a Hilbert space N such that K̂ is a closed subspace of HN+
2 �R�, W is unitary, and the

functional model is given by

T̂�t� = WT�t�W* = PK̂u*�t��K̂, t � 0. �5�

Here PK̂ is the orthogonal projection from HN+
2 �R� onto K̂, the subspace K̂ is given by

K̂ = HN+
2 �R��
T�·�HN+

2 �R� , �6�

and 
T�·� :HN+
2 �R��HN+

2 �R� is an inner function26,29,30 for HN+
2 �R� �depending, of course, on

�T�t��t�0�, i.e., an operator valued function with the properties:

1. For each ��R the operator 
T��� :N�N is the boundary value at � of an operator valued
function 
T�·� analytic in the upper half-plane.
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2. �
T�z��N�1 for Im z�0.
3. 
T���, ��R is, pointwise, a unitary operator on N.

The operator valued function 
T�·� is, in fact, the characteristic function21 of the cogenerator

of the semigroup �T̂�t��t�0 �or �T�t��t�0�.
Let P+ be the orthogonal projection of LN

2 �R� on HN+
2 �R�. The Toeplitz operator with symbol

u�t� �see, for example, Refs. 26 and 27, and references therein�, is an operator
Tu�t� :HN+

2 �R��HN+
2 �R� defined by

Tu�t�f ª P+u�t�f , f � HN+
2 �R� . �7�

We note that �Tu�t��t�0 is a strongly contractive semigroup on HN+
2 �R� �see, for example, Refs. 1,

19, 21, and 28. Taking the conjugate of T̂�t� in HN+
2 �R� and using Eq. �5� one finds that

T̂*�t� = WT*�t�W* = Tu�t��K̂, t � 0. �8�

It follows from the discussion above that the Lax–Phillips semigroup �Z�t��t�0 has a func-
tional model in the form of Eq. �8� �recall that �Z*�t��t�0 is a C·0 class semigroup�, i.e., if we

denote the functional model for �Z�t��t�0 by �Ẑ�t��t�0 then we have

Ẑ�t� = WZ�t�W* = Tu�t��K̂, t � 0 �9�

where K̂�HN+
2 �R� is an invariant subspace for �Tu�t��t�0 given by

K̂ = HN+
2 �R��
Z�·�HN+

2 �R� �10�

and the inner function 
Z�·� and the Hilbert space N are determined by �Z�t��t�0. A semigroup

�Ẑ�t��t�0 of the form given by Eqs. �9� and �10� is referred to in Ref. 20 as a Lax–Phillips type
semigroup.

A central theorem of the Lax–Phillips theory, corresponding to an important result in the
Sz.-Nagy–Foias theory relating the spectrum of a completely nonunitary contraction �cnu� to
points of singularity of the characteristic function states the following.

Theorem 1: Denote by B̂ the generator of a Lax–Phillips type semigroup �Ẑ�t��t�0. If Im �

0, then � belongs to the point spectrum of B̂ if and only if 
Z
*��̄� has a nontrivial null space.

We note that the analytic continuation of 
Z�z� to the lower half-plane is given by


Z�z� ª �
Z
*�z̄��−1, Im z  0

and so a null space for 
Z
*��̄� implies the existence of a pole for 
Z�z� at z=�. In the case of the

Lax–Phillips theory the characteristic function 
Z�·� for the Lax–Phillips semigroup is identical to
the Lax–Phillips S matrix and its poles are the scattering resonances. As will be seen below, the
situation is a bit more involved in the semigroup decomposition formalism.

We do not elaborate here further on the relations between the functional model for C·0 semi-
groups discussed above and the full structure of the Lax–Phillips spectral representations and
wave operators. The reader is referred to Refs. 1 and 21.

C. The semigroup decomposition

In order to apply the functional model for C·0 semigroups, which is at the heart of the
Lax–Phillips structure, to the description of resonance evolution it is necessary to relate, for t
�0, the evolution U�t� defined on the Hilbert space H of the scattering problem to the Toeplitz
evolution semigroup Tu�t� of Eq. �7� defined on HN+

2 �R� and then restrict the latter, according to Eq.

�9�, to a subspace K̂ of HN+
2 �R� associated with an appropriate inner function 
Ẑ�·�. In the

framework of the Lax–Phillips theory this relation is guaranteed by the special properties of the
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Lax–Phillips incoming and outgoing subspaces D± �with D− and D+ denoting, respectively, the
incoming and outgoing subspace�, since in this case the Lax–Phillips semigroup is a C·0 semi-
group. However, for many quantum mechanical scattering problems one usually cannot find sub-
spaces with the properties of D±. A way of overcoming this difficulty, proposed in Ref. 19, is to
combine the standard functional model for C·0 semigroups with the notion of a quasi-affine
mapping �see, for example, Ref. 21, p. 70�.

Definition 1 (quasi-affine mapping): A quasiaffine map from a Hilbert space H1 into a Hilbert
space H0 is a linear, one to one continuous mapping of H1 into a dense linear manifold in H0. If
A�B�H1� and B�B�H0� then A is a quasi-affine transform of B if there is a quasi-affine map
� :H1�H0 such that �A=B�.

The following theorem is proved in Ref. 19 for a scattering system consisting of unperturbed
and perturbed Hamiltonians, respectively H0 and H, having semibounded continuous spectrum:

Theorem 2 (outgoing/incoming contractive nesting): Let H0 and H be self-adjoint opera-
tors on a Hilbert space H. Let �U�t��t�R be the unitary evolution group on H generated by H �i.e.,
U�t�=exp�−iHt��. Denote by Hac�H0� and Hac�H�, respectively, the absolutely continuous sub-
spaces of H0 and H. Assume that the absolutely continuous spectrum of H0 and H has multiplicity
one and that ess Supp �ac�H0�=ess Supp �ac�H�=R+. Assume furthermore that the Møller wave
operators �±��±�H0 ,H� :Hac�H0��Hac�H� exist and are complete. Then there are mappings

�̂± :Hac�H��H+
2�R� such that

�i� �̂± are contractive quasi-affine mappings of Hac�H� into H+
2�R�; and

�ii� for every t�0 the evolution U�t� is a quasiaffine transform of the Toeplitz operator Tu�t� via

the mapping �̂± i.e., for every f �Hac�H� we have

�̂±U�t�f = Tu�t��̂±f t � 0. �11�

�

We call the triplet �Hac�H� ,H+
2�R� ,�̂−	 the incoming contractive nesting of Hac�H� into

H+
2�R� and denote f in=�̂−f . Similarly, the triplet �Hac�H� ,H+

2�R� ,�̂+	 is the outgoing con-

tractive nesting of Hac�H� into H+
2�R� and we denote fout=�̂+f .

Define

��̂+
ª �̂+

*H+
2�R� .

Then, since �̂+
* is quasi-affine, the linear space ��̂+

�Hac�H� is dense in Hac�H�. Moreover, since

�̂+
* is one to one, for each g���̂+

there is a unique g̃�H+
2�R� such that g=�̂+

*g̃. We note that in
Ref. 20 a dense set ��̂+

, analogous to ��̂+
, is defined somewhat differently, i.e., ��̂+

ª�̂+
*�̂+Hac�H�. However, it will be seen below that the definition of ��̂+

above, unlike that of
��̂+

, allows for a full characterization of approximate resonance states. Using Theorem 2 we have,
for every g���̂+

and f �Hac�H� and for t�0,

�g,U�t�f�Hac�H� = ��̂+
*g̃,U�t�f�Hac�H� = �g̃,Tu�t��̂+f�H+

2�R� = �g̃,Tu�t�fout�H+
2�R�, t � 0. �12�

Following the definitions of the incoming and outgoing nestings of Hac�H� into H+
2�R� it is

natural to define the nested S matrix

Snest ª �̂+�̂−
−1.
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Let U :Hac�H0��L2�R+� be the unitary transformation of Hac�H0� onto the spectral represen-
tation for H0 �also called the energy representation for H0�. If S= ��−�*�+ is the scattering

operator associated with H0 and H then S̃�·� :L2�R+��L2�R+� defined by

S̃�·� ª USU* �13�

is the energy representation of the S matrix. Let PR+ :L2�R��L2�R� be the orthogonal projection
in L2�R� on the subspace of functions supported on R+ and define the inclusion map
I :L2�R+��L2�R� by

�If���� =  f��� , � � 0

0, �  0.
� �14�

Then the inverse I−1 : PR+L2�R��L2�R+� is, of course, one to one on PR+L2�R�. Let
� :H+

2�R��L2�R+� be a map given by

�f = I−1PR+
f , f � H+

2�R� . �15�

By a theorem of Van Winter,31 � is a quasi-affine transform mapping H+
2�R� into L2�R+�. The

adjoint map �* :L2�R+��H+
2�R� is then also a contractive quasi-affine map. An explicit expression

for �* is provided by the following lemma.19

Lemma 1: Let I :L2�R+��L2�R� be the inclusion map defined in Eq. (14). Let P+ be the
orthogonal projection of L2�R� onto H+

2�R�. Then for every f �L2�R+� we have

�*f = P+If , f � L2�R+� . �16�

�

It is shown in Ref. 19 that the nested S matrix can be expressed in the form

Snest = �*S̃�·���*�−1. �17�

Following Ref. 20 we now use assumption �iv� in Sec. I. The S-matrix S̃�·� is then the
restriction of its extension S�·� on R+. Under these assumptions S�·� has, in the region �, a
representation of the form �see Ref. 20�,

S�z� = B��z�S��z�, z � � ,

where

B��z� =
z − �̄

z − �
, z � C \ ��� �18�

and S��·� is analytic and has no zeros in �. Restricting S�·� to the positive real axis we obtain

S̃�E� = B̃��E�S̃��E�, E � 0, �19�

where by definition B̃��E�ªB��E� and S̃��E�ªS��E� for E�0. We note that both S̃��·� and B̃��·�
are considered here as multiplicative unitary operators on L2�R+� �moreover, they are pointwise
unitary a.e. for E�0�. Moreover, B��·� can be regarded as a multiplicative operator on L2�R�. In
fact, considered as a multiplicative operator on H+

2�R��L2�R�, B� is a Blaschke factor �the
definition of Blaschke products and Blaschke factors can be found, for example in Refs. 29 and
30, see e.g., Eq. �29� below�. Such a factor is the simplest example of an inner function for H+

2�R�.
We make use of this fact through the following proposition, not stated as such, but implicitly used
in Ref. 20.

Proposition 1: Let B̃��·� :L2�R+��L2�R+� be defined by B̃��E�=B��E�, E�0 where B��·� is
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defined in Eq. (18). Let �* :L2�R+��H+
2�R� be the adjoint of the map � defined in Eq. (15). Let

K̂��H+
2�R� and K̂�̄�H−

2�R� be subspaces defined by

K̂� ª H+
2�R��B��·�H+

2�R�, K̂�̄ ª H−
2�R��B�̄�·�H−

2�R� ,

where B�̄�z�= �z−���z− �̄�−1 and denote by PK̂�
and PK̂�̄

the orthogonal projections of L2�R� on

K̂� and K̂�̄, respectively. For every f �L2�R+� we then have

�*B̃�f = B��*f + PK̂�
B�PK̂�̄

�̄*f , �20�

where �̄* :L2�R+��H−
2�R� and �̄*f = P−If with I defined in Eq. (14) and P− the orthogonal projec-

tion of L2�R� onto H−
2�R�. �

Proof: Using Eq. �16� in Lemma 1 we get

�*B̃�f = P+IB̃�f = P+B�If = P+B��P+ + P−�If = P+B��*f + P+B�P−�̄*f .

Equation �20� then follows from the fact, proved in Ref. 20, that P+B�P−= PK̂�
B�PK̂�̄

and from

the property of B��·� of being an inner function for H+
2�R�.

�

We note that since B��·� is an inner function Eqs. �9� and �10� and Theorem 1 imply that

Tu�t�PK̂�
= Ẑ�t�PK̂�

= e−i�tPK̂�
, t � 0. �21�

Combining Eqs. �17�, �19�, and �20� we obtain

fout = Snestf in = �*S̃��*�−1f in = �*B̃�S̃���*�−1f in = B��*S̃���*�−1f in + PK̂�
B�PK̂�̄

�̄*S̃���*�−1f in.

�22�

Using the decomposition of fout from Eq. �22� on the rhs of Eq. �12� and applying Eq. �21� we
obtain the semigroup decomposition for t�0 of the time evolution corresponding to the resonance
at z=�,

�g,U�t�f�Hac�H� = �g̃,Tu�t�fout�H+
2�R� = �g̃,u�t�B��*S̃���*�−1f in�H+

2�R� + e−i�t�g̃,B��̄*S̃���*�−1f in�H+
2�R�.

�23�

As is seen above in Eq. �21�, the exponential decay in the second term on the rhs of Eq. �23�
originates with the semigroup Ẑ�t�. The first term on the rhs of Eq. �23� is the background term
and is responsible for deviations from a purely exponential decay law.

III. APPROXIMATE RESONANCE STATES

It is an interesting fact that the semigroup decomposition described in the previous section
associates a unique state in Hac�H� with a resonance pole at z=� �Im �0�. The following
theorem is proved in Ref. 20.

Theorem 3 (approximate resonance state): Under the assumptions of Theorem 2, let

S̃ :L2�R+��L2�R+� be the S matrix in the energy representation defined in Eq. (13). Assume that

S̃�·� is the restriction to R+ of a function S�·� meromorphic in an open region � with a single,

simple pole at a point z=�, ����C−. For any f �Hac�H� define fout=�̂+f and f in=�̂−f . There
exists a unique state ���Hac�H� such that

fout = B��*S̃���*�−1f in +
�Im ��

�
���, f�Hac�H�x�, �24�
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where �* is the map given by lemma 1, B� is given in Eq. �18�, S̃� is defined by Eq. �19�, and
x��H+

2�R� is given by x����= ��−��−1, ��R. �

Combining Eqs. �24� and �23� we can write the semigroup decomposition in the form

�g,U�t�f�Hac�H� = �g̃,u�t�B��*S̃���*�−1f in�H+
2�R� +

�Im ��
�

e−i�t�g̃,x��H+
2�R����, f�Hac�H�, t � 0,

�25�

where g���̂+
and g̃= ��̂+

*�−1g. The eigenstate x��H+
2�R� of the semigroup Ẑ�t� providing the

exponential decay of the second term on the rhs of Eq. �25� is called below the Hardy space
resonance state. The state ���Hac�H� whose existence is implied by Theorem 3 is called ap-
proximate resonance state. We observe that if in Eq. �25� we choose f �Hac�H� orthogonal to ��

then the second term on the rhs of that equation is identically zero.
Denote by ��E−	�E�R+ the set of outgoing solutions of the Lippmann–Schwinger equation. For

every f �Hac�H� we have

�U��−�*f��E� = �E−�f	, E � R+. �26�

It is shown in Ref. 20 that an explicit expression for the approximate resonance state �� is given
by

�� =
1

2�i



R+
dE

1

E − �
�E−	 . �27�

In this section we explore several properties of approximate resonance states ��. Our first step
is to extend the discussion above to the case of multiple resonances:

Theorem 4 (multiple resonance case): Under the assumptions of Theorem 2, let

S̃ :L2�R+��L2�R+� be the S matrix in the energy representation defined in Eq. (13). Assume that

S̃�·� is the restriction to R+ of a function S�·� meromorphic in the open region � with n simple
poles at points z=�i, i=1, . . . ,n, �i���C−. Then there exist n distinct states ���i

� �i=1,. . .,n, ��i

�

�Hac�H�, such that for every f �Hac�H� we have

fout = B�1,. . .,�n
�*S̃���*�−1f in + �

j=1

n �Im � j�
�

�
i=1

i�j

n
� j − �̄i

� j − �i
���j

� , f�Hac�H�x�j
, �28�

where

B�1,. . .,�n
�z� ª �

i=1

n
z − �̄i

z − �i
. �29�

In Eq. (28) S̃��·� is the restriction to R+ of a function S��·� analytic in � and having no poles in

�̄ and x�j
���= ��−� j�−1, ��R. The states ��j

� , j=1, . . . ,n are given by

��j

� = 

R+

dE�
i=1

i�j

n
E − �̄i

E − �i

1

E − � j
�E−	 . �30�

�

Proof: Assume that S�·�, the extension of S̃�·� from R+ into ��R+ has n simple poles in
��C−. Then, applying the same arguments as in Ref. 20, we find that S�·� can be factorized in �
in the form
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S�z� = B�1,. . .,�n
�z�S��z� ,

where B�1,. . .,�n
, defined in Eq. �29�, is a finite Blaschke product and S��·� has no poles in �. In

addition we have, of course

S̃�E� = B̃�1,. . .,�n
�E�S̃��E�, E � 0.

The semigroup decomposition then follows exactly as in Sec. I with B�1,. . .,�n
and B̃�1,. . .,�n

replac-

ing B� and B̃�, respectively. For the resonance term in Eq. �22� we get in this case

P+B�1,. . .,�n
P−�̄*S̃���*�−1f in, f � Hac�H� .

Recalling that

�P+f���� =
1

2�i



−�

�

d��
1

� − �� + i0
f����, f � L2�R�, � � R

and

��̄*f���� =
1

2�i



0

�

dE
1

E − � + i0
f�E�, f � L2�R+�

�see Ref. 19� we obtain

�P+B�1,. . .,�n
P−�̄*S̃���*�−1f in���� =

− 1

4�2

0

�

dE

−�

�

d��
1

� − �� + i0�
i=1

n
�� − �̄i

�� − �i

1

E − �� + i0
S̃��E����*�−1f in��E�

= �
j=1

n
�Im � j�

�

1

� − � j



0

�

dE�
i=1

i�j

n
� j − �̄i

� j − �i

1

E − � j
S̃��E����*�−1f in��E�

= �
j=1

n
�Im � j�

�
x�j

����
i=1

i�j

n
� j − �̄i

� j − �i



0

�

dE
1

E − �̄ j
�
i=1

i�j

n
E − �i

E − �̄i

S̃�E����*�−1f in��E�

= �
j=1

n
�Im � j�

�
x�j

����
i=1

i�j

n
� j − �̄i

� j − �i



0

�

dE
1

E − �̄ j
�
i=1

i�j

n
E − �i

E − �̄i

�U��−�*f��E�

= �
j=1

n
�Im � j�

�
x�j

����
i=1

i�j

n
� j − �̄i

� j − �i



0

�

dE
1

E − �̄ j
�
i=1

i�j

n
E − �i

E − �̄i

�E−�f	 ,

where x�j
�H+

2�R� is the Hardy space resonance state corresponding to � j i.e., x�j
���= ��

−� j�−1. Defining the states ��j

� , j=1, . . . ,n according to Eq. �30� we obtain

�P+B�1,. . .,�n
P−�̄*S̃���*�−1f in���� = �

j=1

n �Im � j�
�

�
i=1

i�j

n
� j − �̄i

� j − �i
���j

� , f�Hac�H�x�j
��� . �31�

This proves Theorem 4. �
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We observe that Eq. �30� is a generalization of Eq. �27�. Hence, ��j

� is the approximate
resonance state corresponding to the pole of S�·� at z=� j. Combining Eqs. �31� and �23� we get
the semigroup decomposition for the multiresonance case

�g,U�t�f�Hac�H� = �g̃,u�t�B�1,. . .,�n
�*S̃���*�−1f in�H+

2�R� + �
j=1

n �Im � j�
�

�
i=1

i�j

n
� j − �̄i

� j − �i
���j

� , f�Hac�H�

��g̃,x�j
�H+

2�R�e
−i�jt, t � 0. �32�

The approximate resonance states in Eq. �30� and semigroup decomposition of Eqs. �28� and
�32� depend, of course, on the region �. If �� j� j=1,. . .,n are the poles in ��C− of the meromorphic

extension S�·� of the S-matrix S̃�·�, the approximate resonance state defined in Eq. �30� for a
resonance at z=� j is therefore denoted by ��j

� . However, for certain arguments the exact form of
� is irrelevant and it is useful to define the notion of an n’th order approximate resonance state:

Definition 2 (n’th order approximate resonance state): If the number of poles of S�·� entering
into the definition of the approximate resonance state ��j

� in Eq. (30), not including � j itself, is n
we say that ��j

� is an nth order approximate resonance state for the resonance at z=� j. In
particular, regardless of the exact nature of the region �, the zeroth order approximate resonance
state is always defined to be given by Eq. (27) with �=� j and is denoted by ��j

�0�.

Remark: Note that in general there are many choices of the n resonance poles �different than
� j� included in the construction of what we call an nth order approximation ��j

�n�. In cases that the
nature of the region � is irrelevant and only the order of the approximate resonance state is
significant we replace the notation ��j

� by ��j

�n�, where n is the order of the approximate resonance
state considered.

The semigroup decomposition and approximate resonance states for the multiresonance case
possess some interesting properties. For example, we have

���j

� ,��k

� �Hac�H� = ���j

�0�,��k

�0��Hac�H� = 

R+

dE
1

E − � j

1

E − �̄k

and, in particular

���j

� �Hac�H�
2 = ���j

�n��Hac�H�
2 = ���j

�0��Hac�H�
2 = 


R+
dE

1

�E − � j�2
. �33�

We see that, although the definition of ��i

� in Eq. �30� depends on all of the poles
�� j� j=1,. . .,n���C−, the scalar product of ��i

� and ��j

� depends only on �i and � j. In fact, if S�·�
can be extended to a meromorphic function in a region ���� �we keep the notation S�·� for the
extended function� and S�·� has now m�n simple poles in ���C− we may calculate approximate
resonance states of order m−1 for all resonances in �� according to Eq. �30�. However, for

� j ,�k�� we would still have ���j

�� ,��k

���Hac�H�= ���j

� ,��k

� �Hac�H� i.e., scalar products �and norms�
are independent of the order of the approximate states when we enlarge the region �. In particular
we have ���j

� �Hac�H�= ���j

�0��Hac�H� for every region � containing � j.
An interesting question is whether the peculiar properties of scalar products and norms of the

approximate resonance states mentioned above characterize also the time evolution of these states.
We shall see below that, at least partially, the answer to this question is positive. For this we
consider one of the basic notions associated with resonance evolution, i.e., that of the survival
amplitude
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A�
� j

� �t� ª
���j

� ,U�t���j

� �Hac�H�

���j

� ,��j

� �Hac�H�
. �34�

Making use of Eqs. �30� and �33� we get a simple expression for this quantity

A�
� j

�0��t� = ���j

�0��Hac�H�
−2 


R+

1

�E − � j�2
e−iEt, t � 0,

where ���j

�0�� is given in Eq. �33�. Again, we see that the expression for the survival amplitude for
the approximate resonance state ��j

� depends only on the pole at z=� j and has the same form as
for a single resonance. This suggests that the semigroup decomposition of the survival amplitude
for the multiple resonance case is similar to that of a single resonance. When combined with an
important characterization of approximate resonance states in the form of Lemma 2 below, such
considerations lead to the following useful a priori estimate on the size of the background term in
the semigroup decomposition of the survival amplitude:

Theorem 5: Let A�
� j

� �t�, j=1, . . . ,n be the survival amplitude defined in Eq. (34) and let the

background term R�j
�t� be defined by the relation

A�
� j

� �t� = R�j
�t� + e−i�jt, t � 0. �35�

Then we have

�R�j
�t�� � � �x�j

�H+
2�R�

4

���j

�0��Hac�H�
4 − 1�1/2

, t � 0, �36�

where x�j
���= ��−� j�−1 is the Hardy space resonance state and ��j

�0��Hac�H� is the zeroth order

approximate resonance state corresponding to the resonance at z=� j. �

Proof: We first have

Proposition 2: For j=1, . . . ,n, let ��j

� be defined by Eq. (30) and let A�
� j

� �t� be the survival

amplitude defined in Eq. (34). Then

A�
� j

� �t� = ���j

�0��Hac�H�
−2 �x�j

,u�t�B�j
�*S̃�j

� ��*�−1��j,in
�0� �H+

2�R� + e−i�jt, t � 0, �37�

where x�j
�H+

2�R� is the Hardy space resonance state and ��j

�0��Hac�H� is the zeroth order

approximate resonance state corresponding to the pole at � j, and S̃�j
� �·� is defined as in Eq. (19),

i.e.,

S̃�j
� �E� =

E − � j

E − �̄ j

S̃�E� = B̃�̄j
�E�S̃�E� .

�

Proof of Proposition 2: We first need the following easily proved, but important, lemma

Lemma 2: For j=1, . . . ,n, let ��j

� be defined by Eq. (30). Define

B�1,. . .,�̄k,. . .,�n
�z� ª �

i=1

i�j

n
z − �̄i

z − �i
,

where �� j� j=1,. . .,n are the poles of S�·� in �, and let x�j
���= ��−� j�−1. Then we have
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��j

� = �̂+
*B�1,. . .,�̂j,. . .,�n

x�j
.

In particular ��j

�0�=�̂+
*x�j

. �

Proof of Lemma 2: It is proved in Ref. 19 that, if �± are the Møller wave operators,
U :Hac�H0��L2�R+� the mapping to the energy representation for H0 �see Eq. �13� above� and �*

the map given in Lemma 1, then the quasi-affine nesting maps �̂± are given by �̂±=�*U����*,

hence, we have �̂+
* =�−U*�. Furthermore, by the definition of � we have

��B�1,. . .,�̂j,. . .,�n
x�j

��E� = �
i=1

i�j

n
E − �̄i

E − �i

1

E − � j
, E � R+. �38�

Moreover, according to Eq. �26� for every g�L2�R+� we have

�−U*g = 

R+

dE�E−	g�E� . �39�

Applying Eq. �39� with g=�B�1,. . .,�̂j,. . .,�n
x�j

and comparing with Eq. �30� proves the lemma.
�

Note that by Lemma 2 we have ��̂+
*�−1��j

� =B�1,. . .,�̂j,. . .,�n
x�j

. Hence, by Eq. �32� we get

A�
� j

� �t� = ���j

� �Hac�H�
2 ���j

� ,U�t���j

� �Hac�H�

= ���j

� �Hac�H�
−2 �B�1,. . .,�̂j,. . .,�n

x�j
,u�t�B�1,. . .,�n

�*S̃���*�−1��j,in
� �H+

2�R�

+ �
k=1

n �Im �k�
�

�
i=1

i�k

n
�k − �̄i

�k − �i

���k

� ,��j

� �Hac�H�

���j

� �Hac�H�
2 �B�1,. . .,�̂j,. . .,�n

x�j
,x�k

�H+
2�R�e

−i�kt. �40�

In the second term on the rhs of Eq. �40� we first separate the term with k= j and get

�
k=1

n �Im �k�
�

�
i=1

i�k

n
�k − �̄i

�k − �i

���k

� ,��j

� �Hac�H�

���j

� �Hac�H�
2 �B�1,. . .,�̂j,. . .,�n

x�j
,x�k

�H+
2�R�e

−i�kt

= �
k=1

k�j

n �Im �k�
�

�
i=1

i�k

n
�k − �̄i

�k − �i

���k

� ,��j

� �Hac�H�

���j

� �Hac�H�
2 �B�1,. . .,�̂j,. . .,�n

x�j
,x�k

�H+
2�R�e

−i�kt + e−i�jt, t � 0.

Here, use has been made of Eq. �42� below. The above expression can be further simplified since

x�k
�K̂�k

=H+
2�R��B�k

�·�H+
2�R� implies that for k� j we have

�B�1,. . .,�̂j,. . .,�n
x�j

,x�k
�H+

2�R� = �B�k
B�1,. . .,�̂j,. . .,�̂k,. . .�n

x�j
,x�k

�H+
2�R� = 0,

where

B�1,. . .,�̂j,. . .,�̂k,. . .,�n
�z� ª �

i=1

i�k,j

n
z − �̄i

z − �i
.

The first term on the rhs of Eq. �40� can also be simplified. We have
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�B�1,. . .,�̂j,. . .,�n
x�j

,u�t�B�1,. . .,�n
�*S̃���*�−1��j,in

� �H+
2�R�

= �u�− t�B�1,. . .,�̂j,. . .,�n
x�j

,B�1,. . .,�n
�*S̃���*�−1��j,in

� �H+
2�R�

= �B�1,. . .,�̂j,. . .,�n
u�− t�x�j

,B�1,. . .,�n
�*S̃���*�−1��j,in

� �H+
2�R�

= �x�j
,u�t�B�j

�*S̃���*�−1��j,in
� �H+

2�R�, t � 0.

Moreover, using Lemma 2 we find that

�*S̃���*�−1��j,in
� = �*S̃���*�−1�̂−�̂+

*B�1,. . .,�̂j,. . .,�n
x�j

= �*S̃���*�−1�*S̃*�B�1,. . .,�̂j,. . .,�n
x�j

= �*B̃�1,. . .,�n
�B�1,. . .,�̂j,. . .,�n

x�j
= �*B̃�j

�x�j
= �*B̃�̄j

S̃��*�−1�̂−�̂+
*x�j

= �*S̃�j
� ��*�−1��j,in

0 .

Recalling that Eq. �33� implies that ���j

� �Hac�H�= ���j

�0��Hac�H� the proof of Proposition 2 is
complete. �

From Proposition 2 we see that, independent of the region �, the semigroup decomposition of
the survival amplitude depends only on the zeroth order approximate resonance state.

Comparison of Eqs. �37� and �35� gives

R�j
�t� = ���j

�0��Hac�H�
−2 �x�j

,u�t�B�j
�*S̃�j

� ��*�−1��j,in
�0� �H+

2�R�, t � 0. �41�

This expression for R�j
�t� is identical to the zeroth order background term we would get from Eq.

�25� with f =g=��j

�0�. We now exploit this fact to obtain the desired estimate in Theorem 5.

Applying Theorem 3 to the zeroth order approximate resonance state ��j

�0� we obtain

��j,out
�0� = �̂+��j

�0� = B�j
�*S̃�j

� ��*�−1��j,in
�0� +

�Im � j�
�

���j

�0��Hac�H�
2 x�j

.

Now, since both �̂+ and �̂+
* are contractive we note that Lemma 2 implies that ���j,out

�0� �H+
2�R�

= ��̂+�̂+
*x�j

�H+
2�R�� �x�j

�H+
2�R�. In addition in H+

2�R� we have x�j
�B�j

H+
2�R�. Therefore

�B�j
�*S̃�j

� ��*�−1��j,in
�0� �H+

2�R�
2 +

�Im � j�2

�2 ���j

�0��Hac�H�
4 �x�j

�H+
2�R�

2
� �x�j

�H+
2�R�

2 .

It is easy to verify that

�x�j
�H+

2�R�
2 = 


−�

� 1

�� − � j�2
d� =

�

�Im � j�
, �42�

hence, the inequality above can be written in the form

�B�j
�*S̃�j

� ��*�−1��j,in
�0� �H+

2�R�
2

� ��x��H+
2�R�

4 − ���j

�0��Hac�H�
4 ��x�j

�H+
2�R�

−2 . �43�

Applying the Schwartz inequality to the rhs of Eq. �41� and using the bound from Eq. �43� we get
the estimate in Eq. �36�. �

As mentioned above the background term cannot be identically zero. Hence, deviations from
exponential decay of the survival probability are to be expected. In fact, it is easy to verify that the
survival probability behaves for short times as �A�� j

�t��2=1−O�t2�. Note that Eq. �35� implies that
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at t=0 we must have R�j
�0�=0. This is also seen from Eq. �41�, since for t=0 we have u�0�=1 and

x�j
�B�j

�·�H+
2�R�. Deviations from exponential decay are then due to the fact that x�j

is not
perpendicular to u�t�B�j

H+
2�R� for t�0.

IV. EXAMPLE: SCATTERING FROM SQUARE BARRIER POTENTIAL

In this section we apply the results of the previous two sections to a simple one dimensional
model with a square barrier potential. Although simple, this model provides a good illustration for
the various results obtained above. In particular, we present numerical calculations of approximate
resonance states of various orders accompanied with plots of the time evolution of the correspond-
ing survival probabilities and estimates of the size of the background term following from Theo-
rem 5.

The model we consider is a Schrödinger equation in one spatial dimension on the half-line R+

with a square barrier potential. Thus we consider the free Hamiltonian H0=−�x
2 acting on L2�R+�

�where H0 is defined as a self-adjoint extension to L2�R+� from the original domain of definition
D�−�x

2�= ���x��W2
2�R+� ���x�=0�� and the full Hamiltonian is given by H=H0+V where V is a

multiplicative operator �Vf��x�=V�x�f�x� with

V�x� = �0, 0  x  a

V0, a � x � b

0, b  x ,
�

where b�a�0 and we take V0�0. In this case there are no bound state solutions of the eigen-
value problem for H and we have ��H�=�ac�H�=R+. In order to find the scattering states, calcu-
late the S matrix, and finally the approximate resonance states for this problem one solves the
eigenvalue problem

− �x
2�E�x� + V�x��E�x� = E�E�x�, E � R+

for the continuous spectrum generalized eigenfunctions �E�x�. Imposing boundary conditions one
finds that

�E�x� = ��1�k�sin kx , 0  x � a

�2�k�eik�x + 	2�k�e−ik�x, a  x  b

�3�k�eikx + 	3�k�e−ikx, b � x ,
� �44�

where k=E1/2 and k�=�E−V0 for E�V0�0 or k�= i�V0−E for V0�E�0. The coefficients in Eq.
�44� are given by32

�2�k� =
1

2
e−ik�a�sin ka +

k

ik�
cos ka��1�k� ,

	2�k� =
1

2
eik�a�sin ka −

k

ik�
cos ka��1�k� ,

�45�

�3�k� =
1

4
e−ikb��1 + k�/k�eik��b−a��sin ka +

k

ik�
cos ka� + �1 − k�/k�e−ik��b−a�

��sin ka −
k

ik�
cos ka���1�k� ,
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	3�k� =
1

4
eikb��1 − k�/k�eik��b−a��sin ka +

k

ik�
cos ka� + �1 + k�/k�e−ik��b−a�

��sin ka −
k

ik�
cos ka���1�k� ,

with �1�k� to be determined by normalization conditions �see below�.
Given the full set of solutions ��E�x��E�R+ for the continuous spectrum it is easy to find the

sets ��E
±�x��E�R+ of solutions of the Lippmann–Schwinger equation corresponding to incoming

and outgoing asymptotic conditions. Using Dirac’s notation we have32

�x�E+	 � �E
+�x� =

− 1

2i

�E�x�
	3�k�

,

�x�E−	 � �E
−�x� =

1

2i

�E�x�
�3�k�

. �46�

The normalization conditions for the Lippmann–Schwinger states in Eq. �46� determines �1�k�
with the result �1�k�= �2�k�−1/2. In the energy representation the S matrix is then given by32

S̃�E� = −
�3�k�
	3�k�

, k = E1/2.

We now have the ingredients for the calculation of the scattering resonances and the corresponding
approximate resonance states. Note first that �3�k� and 	3�k� can be extended to analytic functions
in the complex k plane and as a result the poles of the analytic continuation of S�E� to the lower
half-plane �i.e., across the square root cut along the positive real axis� are identified with zeros of
the function 	3�k�. For a resonance at a point z=� j in the lower half-plane below the positive real
axis we set � j =E�j

− i��j
/2, with E�j

being the resonance energy and ��j
its width.

Using Eq. �27� and the expression for the outgoing Lippmann–Schwinger eigenfunctions
�x �E−	, Eqs. �44�–�46�, the zeroth order approximate resonance states for the square barrier prob-
lem can be calculated numerically. Considering a larger number of resonance poles we are able to
calculate higher order approximate resonance states using Eq. �30�. As an example we consider the
three lowest energy resonance poles for barrier parameters a=2, b=3, and V0=10. These poles are
located at �1=1.8213− i0.0023, �2=7.0237− i0.0564, and �3=14.2336− i0.8923. The zeroth order
probability densities ���j

�0��x��2, j=1,2 ,3 for these poles are shown as dashed lines in Fig. 1 while

the solid lines on the same figure correspond to the ninth order probability densities ���j

�9��x��2, j

=1,2 ,3, where the ten lowest energy resonances � j, j=1, . . . ,10 are taken into account in Eq.
�30�. We observe the significant change in the probability density profile between the zeroth and
ninth order approximate resonance states for the resonance �3, whose energy is higher then the
barrier’s energy, while the lower two states are essentially unchanged. Numerical calculations
show that approximate resonance states converge in L2 norm to a limiting state as a function of the
order of approximation. An example is provided in Fig. 2 which shows the probability density
��

�3�
�n��x��2 for the resonance �3�=17.4652− i4.4029, at barrier parameters a=2, b=2.1, and V0=10,

and for the orders n=0,8 ,9. At present, a rigorous criterion for the rate of convergence of
approximate resonance states as a function of order is not yet established.

Turning to a consideration of the time evolution of survival probabilities for resonances of the
square barrier model, we first recall the fact that the time evolution of the survival probabilities of
higher order approximate resonance states corresponding to the same resonance pole is indepen-
dent of the order and is, in fact, identical to that of the zeroth order state. Bearing this in mind we
may omit in our notation any indication of the region � or the order n and set A�� j

�t��A�
� j

� �t�
=A�

� j

�n��t�. The time dependence of the survival probablility �A��1
�t��2 for the states coresponding to
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the lower resonance in Fig. 1 is shown as a solid line in Fig. 3. The time evolution of �A��1
�t��2

follows closely an exact exponential decay law with a decay constant ��1
=2�I��1��. This behavior

is reflected in the bound �R�1
�t���0.028 on the size of the background term calculated using

Theorem 5. The time development of �A��1
�t��2 deviates from the exponential law at a very short

FIG. 1. Probability densities of approximate resonance states ��j

�n�, j=1,2 ,3 for a=2, b=3, and V0=10. Dashed lines—

���j

�0��x��2, j=1,2 ,3. Solid lines—���j

�9��x��2, j=1,2 ,3.

FIG. 2. Probability densities of the approximate resonance states for �3�=17.4652− i4.4029. Dot-dahsed line—��
�3�
�0��x��2,

dashed line—��
�3�
�8��x��2, and solid line—��

�3�
�9��x��2.
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time scale, as is clearly seen in the insert in Fig. 3. The behavior of the survival probability for the
other resonances in Fig. 1 �not shown in Fig. 3� is similar. The short time deviations from
exponential decay are related to the known Zeno effect.

The nearly exact exponential decay law of the survival probability �A��1
�t��2 is to be contrasted

with the time development of �A��3�
�t��2 for the states in Fig. 2. The survival probability �A��3�

�t��2

is described by the dashed line in Fig. 3. Deviations from an exponential decay law in this case are
evidently larger. This conforms with the results of Theorem 5 which produces the larger bound
�R�3�

�t���0.422.

V. SUMMARY

The semigroup decomposition formalism makes use of the fundamental mathematical theory
underlying the structure of the Lax–Phillips scattering theory, i.e., the functional model for C·0

contractive semigroups, for the description of the time evolution of resonances. If the S matrix is
meromorphic in a region � and is known to have resonance poles there at points z=�1 , . . . ,�n

��, the semigroup formalism allows for the association of a unique Hilbert space state ��j

� �x�
�Hac�H�, j=1, . . . ,n with each resonance. The states ��j

� �x�, called approximate resonance states,
define the decomposition of matrix elements of the evolution and are associated with its semigroup
part. Theorem 5 provides an upper bound on the size of the remaining background term. Depend-
ing on one’s knowledge of the location of the resonance poles it is possible to calculate approxi-
mate resonance states of different orders. Numerical calculations show that the sequence of ap-
proximate resonance states converge in L2 norm to a limiting function as a function of the order.
However, rigorous criteria for the rate of convergence are needed. Another possible course of
further investigation involves the study of relations between known frameworks for the treatment
of the problem of resonances, such as the rigged Hilbert space method and the use of dilation
analyticity and the formalism discussed in the present paper.
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The aim of this paper is to express the Conley-Zehnder index of a symplectic path
in terms of an index due to Leray and which has been studied by one of us in a
previous work. This will allow us to prove a formula for the Conley-Zehnder index
of the product of two symplectic paths in terms of a symplectic Cayley transform.
We apply our results to a rigorous study of the Weyl representation of metaplectic
operators, which plays a crucial role in the understanding of semiclassical quanti-
zation of Hamiltonian systems exhibiting chaotic behavior.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2390661�

I. INTRODUCTION

Consider a Hamiltonian system in R2n

ż = J�zH�z,t�, z = �x,p�, J = � 0 I

− I 0
� , �1�

and denote by �f t
H� the flow it determines; we assume that the symplectomorphisms f t

H are globally
defined for each t�R. Set f = f1

H; if for every fixed point z of f the Jacobian matrix of f satisfies

det�Df�z� − I� � 0, �2�

one says that the one-periodic solutions of Eq. �1� are nondegenerate. �Nota bene: condition �2� is
very strong; for instance, if H is time independent, it is never satisfied!� Now set z�t�= f t

H�z� and
consider the linearized Hamiltonian system along t�z�t�; its time evolution is governed by the
linear differential equation

u̇ = JD2H�z,t�u , �3�

whose flow �st� consists of the symplectic matrices st=Dft
H�z�. The path � : t�st, t� �0,1�, thus

lies in the symplectic group Sp�n�; it starts from the identity and ends at the “monodromy matrix”
s=Df�z�. If the nondegeneracy condition �2� holds, one associates to � an integer iCZ���, the
Conley-Zehnder �CZ� index2 of the path �. The vocation of that index is �loosely speaking� to give
an algebraic count of the number of points tj in the interval �0, 1� for which st belongs to the
“caustic”

a�Electronic mail: maurice.degosson@gmail.com
b�Electronic mail: sergedegosson@gmail.com
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Sp0�n� = �s � Sp�n�:det�s − I� = 0�;

that index is “natural” in the sense that it is invariant under homotopy as long as the end point of
the path stays in one of the connected sets Sp±�n� defined by

Sp+�n� = �s � Sp�n�:det�s − I� � 0� ,

Sp−�n� = �s � Sp�n�:det�s − I� � 0� .

The aim of this paper is twofold. We first set out to prove a formula for the Conley-Zehnder index
of the product of two symplectic paths starting from the identity; we will show that if � and �� are
symplectic paths starting from the identity and ending at s and s�, respectively, then

iCZ����� = iCZ��� + iCZ���� + 1
2sign�Ms + Ms�� , �4�

where Ms is the “symplectic Cayley transform” of s defined by

Ms = 1
2J�s + I��s − I�−1.

For that purpose we will use an index defined on twice the Maslov bundle, defined by Leray14 and
extended by the first author7,8 to the nontransversal case; that index is characterized by two simple
properties, one cohomological and the other topological. �Dazord4 has proposed a similar exten-
sion in the more general framework of symplectic bundles, using a different approach.� As a
by-product of the proof of Eq. �4� we will obtain a natural extension of the Conley-Zehnder index
to paths whose end points are in Sp0�n�. The interest of that extension is more than just academic:
as noted above, all nontrivial periodic solutions of Eq. �1� are precisely degenerate when H is time
independent; hence this is, indeed, the generic situation.

Second, formula �4� will allow us to identify the phase appearing in the Weyl representation
of metaplectic operators with the Conley-Zehnder index of a certain symplectic path mod 4. In
fact, the first author has shown in a recent paper10 that if S�Mp�n� has projection s in
Sp�n� \Sp0�n�, then the operator

S = 	 1

2��

n i��s�

��det�s − I��
 e�i/2���Msz,z�T�z�d2nz ,

where �=h /2� and

T�z0� = e−�i/����x0,Dx�−�p0,x��, Dx = − i�x

is the Heisenberg-Weyl operator that lies in the metaplectic group Mp�n� �and has projection s�
provided that the integer ��s� is chosen so that

1

�
arg det�s − I� � − ��s� + n mod 2.

This formula identifies ��s� with iCZ��� mod 2, where � is any continuous path in Sp�n� joining
I to s. We will prove that we actually have

��s� = iCZ��� mod 4 �5�

for a natural choice of the path �. This formula might have, as a practical consequence, a better
understanding of trace formulas in semiclassical mechanics �“Gutzwiller’s formula,” see Refs. 12
and 17�, where the Weyl representation of metaplectic operators plays a crucial role �see Ref. 16
and the references therein for recent advances�.

A caveat: the statement of our two main results, formulas �4� and �5�, is deceptively simple.
The proofs of these formulas are, however, quite technical; they require the full power of the
machinery of the Leray index14 that one of us has developed elsewhere.6–8,11 One might, of course,
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hope that other more powerful methods would lead to the same results in a more straightforward
and economical way. Such an eventuality is, of course, welcome, but as far as we can see the only
alternative approach would be to use the path intersection theory developed by Robbin and
Salamon18 �these authors in effect express the Conley-Zehnder in terms of the symplectic inter-
section index they define�. However, as was shown in Ref. 9, the Leray and Robbin-Salamon
indices are equivalent and easily deduced from each other; in that sense the Leray index thus
appears as a fundamental “master index” in Lagrangian and symplectic path intersection theory.
We observe that Cushman and Duistermaat3 and Duistermaat5 also have addressed the question of
the index of the iteration of periodic orbits; the methods these authors use are different from ours,
and might perhaps be adapted to yield formula �4�.

This paper is structured as follows: In Sec. II we review previous results7,8,11 on Lagrangian
and symplectic Maslov indices, generalizing those of Leray.14 An excellent comparative study of
the indices used here with other indices appearing in the literature can be found in Cappell et al.1

In Sec. III we recall the axiomatic presentation of the Conley-Zehnder index following Hofer et
al.13 We thereafter study the properties of the symplectic Cayley transform that will be needed in
the rest of the section. We then define an integer-values function � on the universal covering of
Sp�n�, which is identified with the Conley-Zehnder index. In Sec. IV we apply the previous results
to the study of the phase of the Weyl representation of metaplectic operators.

We will denote by � the standard symplectic form on R2n=Rx
n�Rp

n:

��z,z�� = �p,x�� − �p�,x� if z = �x,p�, z� = �x�p�� ,

that is, in matrix form

��z,z�� = �Jz,z��, J = � 0 I

− I 0
� .

The real symplectic group Sp�n� consists of all linear automorphisms s of R2n such that
��sz ,sz��=��z ,z�� for all z, z�. Equivalently,

s � Sp�n� ⇔ sTJs = sJsT = J .

Sp�n� is a connected Lie group and �1�Sp�n����Z , + �. We denote by Lag�n� the Lagrangian
Grassmannian of �R2n ,��, that is, ��Lag�n� if and only � is an n plane in R2n on which �
vanishes identically. We will write �X=Rx

n�0 and �P=0�Rp
n.

If �E ,	� is a symplectic space, the coverings of order q=2, . . . ,
 of Sp�E ,	� and Lag�E ,	�
are denoted �q :Spq�E ,	�→Sp�E ,	� and �q :Lagq�E ,	�→Lag�E ,	�.

II. WALL-KASHIWARA AND LERAY INDICES

We begin by reviewing the notion of signature of a triple of Lagrangian planes.

A. The Wall-Kashiwara index

Let �� ,�� ,��� be a triple of elements of Lag�E ,	�; by definition1,15,20 the Wall-Kashiwara
index �or signature� ��� ,�� ,��� is the signature of the quadratic form

Q�z,z�,z�� = ��z,z�� + ��z�,z�� + ��z�,z��

on � � �� � ��. The index � is totally antisymmetric:

���,��,��� = − ����,�,��� = − ���,��,��� = − ����,��,�� ,

it is a symplectic invariant:

��s�,s��,s��� = ���,��,��� for s � Sp�E,	� ,

and it has the following essential cocycle property:
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���,��,��� − ����,��,��� + ����,��,��� − ����,��,��� = 0. �6�

Moreover, its values mod 2 are given by the following formula:

���,��,��� � n + dim � � �� + dim �� � �� + dim �� � � mod 2. �7�

The Wall-Kashiwara index measures the relative position of three Lagrangian planes; for instance,
if �X=Rn�0, �P=0�Rn, and �M = ��x ,Mx� :x�X� �M =MT�, then ���P ,�M ,�X�=sign M.

Let �E ,	�= �E� � E� ,	� � 	��; identifying Lag�E� ,	�� � Lag�E� ,	�� with a subset of
Lag�E ,	�, we have the additivity formula

���1 � �2,�1� � �2�,�1� � �2�� = ����1,�1�,�1�� + ����2,�2�,�2�� , �8�

where �� and �� are the Wall-Kashiwara indices on Lag�E� ,	�� and Lag�E� ,	��, respectively.
The following lemma will be helpful in our study of the Conley-Zehnder index:
Lemma 1: (i) If ����=0, then ��� ,�� ,��� is the signature of the quadratic form

Q��z�� = 	�Pr���z�,z�� = 	�z�,Pr���z��

on ��, where Pr��� is the projection onto � along �� and Pr���= I−Pr��� is the projection on ��
along �. (ii) Let �� ,�� ,��� be a triple of Lagrangian planes such that an �=����+����. Then
��� ,�� ,���=0.

�See, e.g., Ref. 15 for a proof.�

B. The Leray index

Let Lag
�E ,	� be the universal covering of Lag�E ,	�. The Leray index is the unique map-
ping

�:�Lag
�E,	��2 → Z

having the two following properties:7,8

• � is locally constant on each set ���
 ,�
� � :dim ����=k� �0kn�.
• For all �
, �
� , �
� in Lag
�E ,	� with projections �, ��, ��, we have

���
,�
� � − ���
,�
� � + ���
� ,�
� � = ���,��,��� . �9�

The Leray index has, in addition, the following properties:

���
,�
� � � n + dim � � �� mod 2 �10�

�n= 1
2 dim E� and

���r�
,�r��
� � = ���
,�
� � + 2�r − r�� �11�

for all integers r and r�; here � denotes the generator of �1�Lag�E ,	����Z , + �, whose
image in Z is +1. From the dimensional additivity property �Eq. �8�� of �, it immediately
follows that if �1,
 � �2,
 and �1,
� � �2,
� are in

Lag
�E�,	�� � Lag
�E�,	�� � Lag
�E,	� ,

then

���1,
 � �2,
,�1,
� � �2,
� � = ����1,
,�1,
� � + ����2,
,�2,
� � , �12�

where �� and �� are the Leray indices on Lag
�E� ,	�� and Lag
�E� ,	��, respectively.

When �E ,	� is the standard symplectic space �R2n ,��, one identifies Lag�E ,	�=Lag�n� with
the set

123506-4 M. A. de Gosson and S. M. de Gosson J. Math. Phys. 47, 123506 �2006�

                                                                                                                                    



W�n,C� = �w � U�n,C�:w = wT�

of symmetric unitary matrices by associating to �=u�P �u�U�n ,C�� the matrix w=uuT �“Souriau
mapping,”19 see Ref. 11 for a detailed description and further properties�. The Maslov bundle
Lag
�n� is identified with

W
�n,C� = ��w,��:w � W�n,C�, det w = ei�� ,

the projection �Lag:�
�� becoming �w ,���w. The Leray index is then calculated as follows:

• If ����=0, then

���
,�
� � =
1

�
�� − �� + i Tr log�− w�w��−1�� �13�

�the transversality condition ����=0 is equivalent to −w�w��−1 having no negative eigen-
value�.

• If �����0, one chooses any �� such that ����=�����=0 and one then calculates
���
 ,�
� � using the formula �9�, the values of ���
 ,�
� � and ���
� ,�
� � being given by Eq.
�13�. �The cocycle property �Eq. �6�� of � guarantees that the result does not depend on the
choice of ��.�

C. The relative Maslov indices on Sp„E ,�…

We begin by recalling the definition of the Maslov index for loops in Sp�n�. Let � be a
continuous mapping �0,1�→Sp�n� such that ��0�=��1�, and set ��t�=st. Then Ut= �stst�−1/2st is
the orthogonal part in the polar decomposition of st:

Ut � Sp�n� � O�2n,R� .

Let us denote by ut the image ��Ut� of Ut in U�n ,C�:

��Ut� = A + iB if U = �A − B

B A
�

and set ��st�=det ut. The Maslov index of � is, by definition, the degree of the loop t���st� in S1:

m��� = deg�t � det���Ut���, 0  t  1.

Let � be the generator of �1�Sp�E ,	����Z , + �, whose image in Z is +1; if � is homotopic to �r,
then

m��� = m��r� = 2r . �14�

The definition of the Maslov index can be extended to arbitrary paths in Sp�E ,	� using the
properties of the Leray index. This is done as follows: let �=�Lag��
��Lag�E ,	�; we define the
Maslov index of s
�Sp
�E ,	� relative to � by

���s
� = ��s
�
,�
�; �15�

one shows �see Refs. 7 and 8� that the right-hand side only depends on the projection � of �
,
justifying the notation.

Here are three fundamental properties of the relative Maslov index; we will need all of them
to study the Conley-Zehnder index:

• Product: For all s
, s
� in Sp
�E ,	� we have

���s
s
� � = ���s
� + ���s
� � + ���,s�,ss��� . �16�
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• Action of �1�Sp�n��: We have

����rs
� = ���s
� + 4r �17�

for all r�Z.
• Topological property: The mapping �s
 ,������s
� is locally constant on each of the sets

��s
,��:dim s� � � = k� � Sp
�E,	� � Lag�E,	� �0  k  n� . �18�

The first two properties readily follow from, respectively, Eqs. �9� and �11�. The third follows
from the fact that the Leray index is locally constant on the sets ���
 ,�
� � :dim ����=k�. Note
that Eq. �17� implies that

����r� = 4r = 2m��r� ,

hence the restriction of any of the �� to loops � in Sp�E ,	� is twice the Maslov index m���
defined above; it is therefore sometimes advantageous to use the index m� defined by

m��s
� = 1
2 ����s
� + n + dim�s� � ��� , �19�

where n= 1
2 dim E. We will call m��s
� the reduced �relative� Maslov index. In view of the con-

gruence �Eq. �10��, it is an integer; the properties of m� are obtained mutatis mutandis from those
of ��. For instance, property �16� becomes

m��s
s
� � = m��s
� + m��s
� � + Inert��,s�,ss��� , �20�

where Inert is the index of inertia of a triple �� ,�� ,��� defined by

Inert��,��,��� = 1
2 ����,��,��� + n + dim � � �� − dim �� � �� + dim �� � ��; �21�

in view of Eq. �7�, it is an integer. �When the Lagrangian planes �, ��, �� are pairwise transverse,
it follows from the first part of Lemma 1 that Inert�� ,�� ,��� coincides with the index of inertia
defined by Leray;14 see Refs. 7, 8, and 11.�

It follows from the cocycle property of � that the Maslov indices corresponding to two choices
� and �� are related by the formula

���s
� − ����s
� = ��s�,�,��� − ��s�,s��,���; �22�

similarly,

m��s
� − m���s
� = Inert�s�,�,��� − Inert�s�,s��,��� . �23�

Assume that �E ,	�= �E� � E� ,	� � 	�� and ���Lag�E� ,	��, ���Lag�E� ,	��; the additivity
property �12� of the Leray index implies that if s
� �Sp
�E� ,	��, s
� �Sp
�E� ,	��, then

�������s
� � s
� � = ����s
� � + ��2
�s
� � , �24�

where Sp
�E� ,	�� � Sp
�E� ,	�� is identified in the obvious way with a subgroup of Sp
�E ,	�. A
similar property holds for the reduced relative Maslov index m�.

III. EXTENSION OF iCZ AND PRODUCT FORMULA

This section is central in this paper; the main result is Theorem 1, where we prove a product
formula for the Conley-Zehnder index.

A. Review of the Conley-Zehnder index

Let � be a continuous path �0,1�→Sp�n� such that ��0�= I and det���1�− I��0. The sets

Sp0�n� = �s � Sp�n�:det�s − I� = 0� ,
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Sp+�n� = �s � Sp�n�:det�s − I� � 0� ,

Sp−�n� = �s � Sp�n�:det�s − I� � 0�

partition Sp�n�, and Sp+�n� and Sp−�n� are, moreover, arcwise connected. The symplectic matrices
s+=−I and

s− = �L 0

0 L−1�, L = diag�2,− 1, . . . ,− 1�

belong to Sp+�n� and Sp−�n�, respectively �see Refs. 2 and 13�.
Let us denote by C±�2n ,R� the space of all paths � : �0,1�→Sp�n� with ��0�= I and ��1�

�Sp±�n�. Any such path can be extended into a path �̃ : �0,2�→Sp�n� such that �̃�t��Sp±�n� for

1 t2 and �̃�2�=s+ or �̃�2�=s−. Let � be the mapping Sp�n�→S1, ��st�=det ut, used in the
definition of the Maslov index for symplectic loops. The Conley-Zehnder index of � is by defi-

nition the winding number of the loop �� � �̃�2 in S1:

iCZ��� = deg�t � ����̃�t���2,0  t  2� .

It turns out that iCZ��� is invariant under homotopy as long as the end point s=��1� remains in
Sp±�n�; in particular, it does not change under homotopies with fixed end points so we may view
iCZ as defined on the subset

Sp

* �n� = �s
 � Sp
�n�:det�s − I� � 0�

of the universal covering group Sp
�n�. With this convention one proves13 that the Conley-
Zehnder index is the unique mapping iCZ:Sp


* �n�→Z having the following properties:
�CZ1� Antisymmetry: For every s
 we have

iCZ�s

−1� = − iCZ�s
� ,

where s

−1 is the homotopy class of the path t�st

−1.
�CZ2� Continuity: Let � be a symplectic path representing s
 and �� a path joining s to an

element s� belonging to the same component Sp±�n� as s. Let s
� be the homotopy class of ����.
We have

iCZ�s
� = iCZ�s
� � .

�CZ3� Action of �1�Sp�n��:

iCZ��rs
� = iCZ�s
� + 2r

for every r�Z.
We observe that these three properties are characteristic of the Conley-Zehnder index in the

sense that any other function iCZ� :Sp

* �n�→Z satisfying them must be identical to iCZ. Set, in fact,

�= iCZ− iCZ� . In view of �CZ3� we have ���rs
�=��s
� for all r�Z, hence � is defined on Sp*�n�
=Sp+�n��Sp−�n� so that ��s
�=��s�, where s=s1, the end point of the path t�st. Property �CZ2�
implies that this function Sp*�n�→Z is constant on both Sp+�n� and Sp−�n�. We next observe that
since det s=1, we have det�s−1− I�=det�s− I� so that s and s−1 always belong to the same set
Sp+�n� or Sp−�n� if det�s− I��0. Property �CZ1� then implies that � must be zero on both Sp+�n�
or Sp−�n�.

Two other noteworthy properties of the Conley-Zehnder are as follows:
�CZ4� Normalization: Let J1 be the standard symplectic matrix in Sp�1�. If s1 is the path t

→e�tJ1 �0 t1� joining I to −I in Sp�1�, then iCZ,1�s1,
�=1 �iCZ,1 the Conley-Zehnder index on
Sp�1��.

�CZ5� Dimensional additivity: If s1,
�Sp

* �n1�, s2,
�Sp


* �n2�, n1+n2=n, then
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iCZ�s1,
 � s2,
� = iCZ,1�s1,
� + iCZ,2�s2,
� ,

where iCZ,j is the Conley-Zehnder index on Sp�nj�, j=1,2.

B. Symplectic Cayley transform

If s� *Sp*�n� we call the matrix

Ms = 1
2J�s + I��s − I�−1 �25�

the “symplectic Cayley transform of s.” Equivalently,

Ms = 1
2J + J�s − I�−1. �26�

It is straightforward to check that Ms always is a symmetric matrix: Ms=Ms
T �it suffices for this to

use the equality sTJs=sJsT=J�.
The symplectic Cayley transform has, in addition, the following properties, which are inter-

esting by themselves:
Lemma 2: (i) We have

�Ms + Ms��
−1 = − �s� − I��ss� − I�−1�s − I�J �27�

and the symplectic Cayley transform of the product ss� is (when defined) given by

Mss� = Ms + �sT − I�−1J�Ms + Ms��
−1J�s − I�−1. �28�

(ii) The symplectic Cayley transform of s and s−1 are related by the formula

Ms−1 = − Ms. �29�

Proof: �i� We begin by noting that Eq. �26� implies that

Ms + Ms� = J�I + �s − I�−1 + �s� − I�−1� , �30�

hence the identity Eq. �27�. In fact, writing ss�− I=s�s�− I�+s− I, we have

�s� − I��ss� − I�−1�s − I�

= �s� − I��s�s� − I� + s − I�−1�s − I� = ��s − I�−1s�s� − I��s� − I�−1 + �s� − I�−1�−1

= ��s − I�−1s + �s� − I�−1� = I + �s − I�−1 + �s� − I�−1;

the equality Eq. �27� follows in view of Eq. �30�. Let us prove Eq. �28�; equivalently,

Ms + M = Mss�, �31�

where M is the matrix defined by

M = �sT − I�−1J�Ms + Ms��
−1J�s − I�−1,

that is, in view of Eq. �27�,

M = �sT − I�−1J�s� − I��ss� − I�−1.

Using the obvious relations sT=−Js−1J and �−s−1+ I�−1=s�s− I�−1 we have

M = �sT − I�−1J�s� − I��ss� − I�−1 = − J�− s−1 + I�−1�s� − I��ss� − I�−1

= − Js�s − I�−1�s� − I��ss� − I�−1,

that is, writing s=s− I+ I,
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M = − J�s� − I��ss� − I�−1 − J�s − I�−1�s� − I��ss� − I�−1.

Replacing Ms by its value �Eq. �26�� we have

Ms + M = J� 1
2 I + �s − I�−1 − �s� − I��ss� − I�−1 − �s − I�−1�s� − I��ss� − I�−1�;

noting that

�s − I�−1 − �s − I�−1�s� − I��ss� − I�−1 = �s − I�−1�ss� − I − s� + I���ss� − I�−1� ,

that is,

�s − I�−1 − �s − I�−1�s� − I��ss� − I�−1 = �s − I�−1�ss� − s���ss� − I�−1 = �s��ss� − I�−1� ,

we get

Ms + M = J� 1
2 I − �s� − I��ss� − I�−1 + s��ss� − I�−1� = J� 1

2 I + �ss� − I�−1� = Mss�,

which we set out to prove.
�ii� Formula �29� follows from the sequence of equalities

Ms−1 = 1
2J + J�s−1 − I�−1 = 1

2J − Js�s − I�−1 = 1
2J − J�s − I + I��s − I�−1 = − 1

2J − J�s − I�−1 = − Ms.

�

C. The index �„s�…

We define on R2n � R2n a symplectic form �� by

���z1,z2;z1�,z2�� = ��z1,z1�� − ��z2,z2��

and denote by Sp��2n� and Lag��2n� the symplectic group and Lagrangian Grassmannian of
�R2n � R2n ,���. Let �� be the Leray index on Lag


��2n� and �L
� the Maslov index on Sp


��2n�
relative to L�Lag��2n�.

For s
�Sp
�n� we define

��s
� = 1
2����I � s�
�
,�
� , �32�

where �I � s�
 is the homotopy class in Sp��2n� of the path

t � ��z,stz�:z � R2n�, 0  t  1

and �= ��z ,z� :z�R2n� the diagonal of R2n � R2n. Setting st
� = I � st we have st

� �Sp��2n�, hence
formula �32� is equivalent to

��s
� = 1
2��

��s

�� , �33�

where ��
� is the relative Maslov index on Sp


��2n� corresponding to the choice ��Lag��2n�.
Note that replacing n by 2n in the congruence �Eq. �10�� we have

����I � s�
�
,�
� � dim��I � s�� � �� mod 2 � dim Ker�s − I� mod 2

and hence

��s
� � 1
2 dim Ker�s − I� mod 1.

Since the eigenvalue 1 of s has even multiplicity, ��s
� is thus always an integer.
The index � has the following three important properties; the third is essential for the calcu-

lation of the index of repeated periodic orbits �it clearly shows that � is not, in general, additive�.
Proposition 1: (i) For all s
�Sp
�n� we have

123506-9 Product formula for the Conley-Zehnder index J. Math. Phys. 47, 123506 �2006�

                                                                                                                                    



��s

−1� = − ��s
�, ��I
� = 0 �34�

�I
 the identity of the group Sp
�n��. (ii) For all r�Z we have

���rs
� = ��s
� + 2r, ���r� = 2r . �35�

(iii) Let s
 be the homotopy class of a path � in Sp�n� joining the identity to s�Sp*�n�, and let
s��Sp�n� be in the same connected component Sp±�n� as s. Then ��s
� �=��s
�, where s
� is the
homotopy class in Sp�n� of the concatenation of � and a path joining s to s� in Sp0�n�. (iv) The
restriction of the index � to Sp


* �n� is the Conley-Zehnder index:

��s
� = iCZ�s
� if det�s − I� � 0. �36�

Proof: �i� Formulas �34� immediately follow from the equality �s

��−1= �I � s−1�
 and the

antisymmetry of ��
�. �ii� Formula �35� follows from the first using Eq. �34�. To prove formula �35�

it suffices to observe that the generator I
 � � of �1�Sp��2n�� corresponds to the generator � of
�1�Sp�n��; in view of property �17� of the Maslov index, it follows that

���rs
� = 1
2��

���I
 � ��rs

�� = 1

2 ���
��s


�� + 4r� = ��s
� + 2r .

�iii� Assume, in fact, that s and s� belong to, say, Sp+�n�. Let s
 be the homotopy class of the path
�, and �� a path joining s to s� in Sp+�n� �we parametrize both paths by t� �0,1��. Let �t�

� be the
restriction of �� to the interval �0, t��, t� t and s
�t�� the homotopy class of the concatenation
���t�

� . We have det�s�t�− I��0 for all t� �0, t��, hence s

��t�����0 as t varies from 0 to 1. It

follows from the fact that the ��
� is locally constant on �s


� :s

����=0� �see Sec. II C� that the

function t���
��s


��t�� is constant, and hence,

��
��s


�� = ��
��s


��0�� = ��
��s


��1�� = ��
��s
�

�� ,

which was to be proven. �iv� The restriction of � to Sp*�n� satisfies the properties �CZ1�, �CZ2�,
and �CZ3� of the Conley-Zehnder index listed in Sec. III A; we showed that these properties
uniquely characterize iCZ. �

Remark: Formula �36� allows the calculation of iCZ��� in terms of the index ��s
�. That
formula, in fact, allows us to define the Conley-Zehnder index of an arbitrary path � by the
formula iCZ���=��s
�, where s
 is the homotopy class in Sp�n� of that path (see the discussion at
the end of this paper).

Let us now state and prove the first main result of this paper.
Theorem 1: If s
, s
� , and s
s
� are such that det�s− I��0, det�s�− I��0, and det�ss�− I�

�0, then

��s
s
� � = ��s
� + ��s
� � + 1
2sign�Ms + Ms�� , �37�

where Ms is the symplectic Cayley transform of s.
Proof: In view of Eq. �33� and the product property �16� of the Maslov index we have

��s
s
� � = ��s
� + ��s
� � + 1
2����,s��,s�s���� = ��s
� + ��s
� � − 1

2���s�s���,s��,�� ,

where s� = I � s, s�� = I � s�, and �� is the signature on the symplectic space �R2n � R2n ,���. The
condition det�ss�− I��0 is equivalent to s�s�����=0, hence we can apply property �i� in
Lemma 1 with �=s�s���, ��=s��, and ��=�. The projection operator onto s�s��� along � is
easily seen to be

Prs�s���,� = � �I − ss��−1 − �I − ss��−1

ss��I − ss��−1 − ss��I − ss��−1� ,

hence ���s�s��� ,s�� ,�� is the signature of the quadratic form

123506-10 M. A. de Gosson and S. M. de Gosson J. Math. Phys. 47, 123506 �2006�

                                                                                                                                    



Q�z� = ���Prs�s���,��z,sz�;�z,sz�� ,

that is, since �� =� � �:

Q�z� = ����I − ss��−1�I − s�z,z�� − ���ss��I − ss��−1�I − s�z,sz��

= ����I − ss��−1�I − s�z,z�� − ���s��I − ss��−1�I − s�z,z�� = ����I − s���I − ss��−1�I − s�z,z�� .

In view of formula �27� in Lemma 2 we have

�I − s���ss� − I�−1�I − s� = �Ms + Ms��
−1J ,

hence

Q�z� = − ��Ms + Ms��
−1Jz,Jz�

and the signature of Q is thus the same as that of

Q��z� = − ��Ms + Ms��
−1z,z� ,

that is, −sign�Ms+Ms��. This proves formula �37�. �

IV. APPLICATION TO THE METAPLECTIC GROUP

The metaplectic group plays a crucial role in quantum mechanics �both in its full-blown
version and in its semiclassical formulation�. We are going to see that the Conley-Zehnder index
automatically appears when one determines the Weyl symbol of metaplectic operators.

A. The group Mp„n…

The fundamental group �1�Sp�n�� being isomorphic to �Z , + �, the symplectic group, has
covering of all orders; its double covering Sp2�n� plays an important role in the literature because
it has a faithful representation as a group of unitary operators on L2�Rn�. This group, the meta-
plectic group Mp�n�, is generated11,14 by the quadratic Fourier transforms

SW,mf�x� = 	 1

2��

n/2

��W�  e�i/��W�x,x��f�x��dnx�, �38�

where W is a quadratic form on Rn�Rn given by

W�x,x�� = 1
2 �Px,x� − �Lx,x�� + 1

2 �Qx�,x�� �39�

with P and Q symmetric and det L�0; the factor in front of the integral in Eq. �38� is

��W� = im��det L� ,

where m corresponds to a choice of the argument of det L. The covering epimorphism
�Mp:Mp�n�→Sp�n� is determined by its restriction to the SW,m, and we have

�x,p� = �Mp�SW,m��x�,p�� ⇔ p = �xW�x,x��, p� = − �x�W�x,x��

�sW=��SW,m� is the free symplectic matrix generated by the quadratic form W�.
Every S�Mp�n� can be written �in infinitely many ways14,8� as a product SW,mSW�,m� and the

integer

m + m� − Inert�P� + Q� � m + m� + Inert��P,sW�P,sWsW��P� mod 4

does not depend on the choice of factorization S=SW,mSW�,m� �see Ref. 6�. The class mod 4 of
m+m�−Inert�P�+Q� is denoted by m�S� and called Maslov index of S�Mp�n�. The function
m :Mp�n�→Z4 has the following properties:
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m�SW,m� = m̂ �40�

and

m�SS�� = m�S� + m�S�� + Inert̂��P,s�P,ss��P� , �41�

where k̂ is the class mod 4 of k�Z and s=�Mp�S�; it is related to the relative Maslov index m�p
on

Sp
�n� by

m�S� = m�p
ˆ�s
� , �42�

where s
 is any element of Sp
�n� with projection S�Sp�n�.

B. Weyl representation of S«Mp„n…

Defining, as in Ref. 16, the Mehlig-Wilkinson operator R��s� associated to s�Sp*�n� and �
�Z as being the Bochner integral

R��s� = 	 1

2��

n i�

��det�s − I��
 e�i/2���Msz,z�T�z�d2nz ,

where T�z� is the Heisenberg-Weyl operator, one of us proved in Ref. 10, Proposition 6 in Sec. 3
B and Proposition 10 in Sec. 3 C, the following results:

Proposition 2: (i) Let sW be the free symplectic matrix generated by the quadratic form (39).
We have SW,m=R��sW� if and only if �=��SW,m� with

��SW,m� � m − Inert Wxx mod 4, �43�

where Inert Wxx is the index of inertia of the Hessian matrix Wxx of x�W�x ,x�; (ii) Let S
�Mp�n� be such that �Mp�S��Sp*�n�. If s=sWsW� and S=R��sW��sW�R��sW� ��sW��, then S=R��S��s�
with

��S� � ��sW� + ��sW�� + 1
2sign�MsW

+ MsW�
� . �44�

Comparison of formulas �44� and �37� in Theorem 1 suggests that there is a relation between
the integer ��S� and the Conley-Zehnder index of some symplectic path ending at s=�Mp�S�. We
claim that:

Theorem 2: Let s
�Sp
�n� be such that s=�
�s
� is in Sp*�n� and denote by S the image in
Mp�n� of the projection of s
 on Sp2�n�. We have

��S� � ��s
� mod 4. �45�

In view of the product formula �37� in Theorem 1, it is sufficient to establish the congruence �Eq.
�45�� when s=sW. Assume that S=SW,m; the relation

��SW,m� � ��sW,
� mod 4

is an immediate consequence of the following result, interesting in its own right:
Proposition 3: We have

��sW,
� = m�P
�sW,
� − Inert Wxx �46�

and hence

��sW,
� � m − Inert Wxx mod 4. �47�

Proof: Formula �47� follows from Eq. �46� in view of Eqs. �42� and �40�. We will divide the
proof of formula �46� in three steps.
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Step 1. Let L�Lag��2n�. Using successively formulas �33� and �22� we have

��s
� = 1
2 ��L

��s

�� + ���s��,�,L� − ���s��,s�L,L�� . �48�

Choosing, in particular, L=L0=�P � �P we get

�L0

� �s

�� = ����I � s�
��P � �P�,��P � �P�� = ���P,
,�P,
� − ���P,
,s
�P,
�

= − ���P,
,s
�P,
� = ��P
�s
�

so that there remains to prove that

���s��,�,L0� − ���s��,s�L0,L0� = − 2 sign Wxx.

Step 2. We are going to show that

���s��,s�L0,L0� = 0;

in view of the symplectic invariance and the antisymmetry of ��, this is equivalent to

���L0,�,L0,�s��−1L0� = 0. �49�

We have

� � L0 = ��0,p;0,p�:p � Rn�

and �s��−1L0�L0 consists of all �0, p� ,s−1�0, p��� with s−1�0, p��= �0, p��; since s �and hence s−1�
is free we must have p�= p�=0 so that

�s��−1L0 � L0 = ��0,p;0,0�:p � Rn� .

It follows that we have

L0 = � � L0 + �s��−1L0 � L0,

hence Eq. �49� in view of property �ii� in Lemma 1.
Step 3. Let us finally prove that

���s��,�,L0� = − 2 sign Wxx;

this will complete the proof of the proposition. The condition det�s− I��0 is equivalent to
s����=0, hence, using property �i� in Lemma 1:

���s��,�,L0� = − ���s��,L0,��

is the signature of the quadratic form Q on L0 defined by

Q�0,p,0,p�� = − ���Prs��,��0,p,0,p��;0,p,0,p�� ,

where

Prs��,� = � �s − I�−1 − �s − I�−1

s�s − I�−1 − s�s − I�−1�
is the projection on s�� along � in R2n � R2n. It follows that the quadratic form Q is given by

Q�0,p,0,p�� = − ����I − s�−1�0,p��,s�I − s�−1�0,p��;0,p,0,p�� ,

where we have set p�= p− p�; by definition of ��, this is
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Q�0,p,0,p�� = − ���I − s�−1�0,p��,�0,p�� + ��s�I − s�−1�0,p��,�0,p��� .

Let Ms now be the symplectic Cayley transform �Eq. �25�� of s; we have

�I − s�−1 = JMs + 1
2 I, s�I − s�−1 = JMs − 1

2 I ,

and hence,

Q�0,p,0,p�� = − ���JMs + 1
2 I��0,p��,�0,p�� + ���JMs − 1

2 I��0,p��,�0,p���
= − ��JMs�0,p��,�0,p�� + ��JMs�0,p��,�0,p��� = ��JMs�0,p��,�0,p���

= − �Ms�0,p��,�0,p��� .

Let us calculate explicitly Ms. Writing

s = �A B

C D
�

we have

s − I = �0 B

I D − I
��C − �D − I�B−1�A − I� 0

B−1�A − I� I
� ,

that is,

s − I = �0 B

I D − I
�� Wxx 0

B−1�A − I� I
� , �50�

where we have used the identity

C − ��D − I�B−1�A − I�� = B−1A + DB−1 − B−1 − �BT�−1,

which follows from the relation C−DB−1A=−�BT�−1 �the latter is a consequence of the equalities
DTA−BTC= I and DTB=BTD due to the fact that sTJs=sTJs�. We thus have, setting Wxx

−1

= �Wxx�−1,

�s − I�−1 = � Wxx
−1 0

B−1�I − A�Wxx
−1 I

���I − D�B−1 I

B−1 0
�

= � Wxx
−1�I − D�B−1 Wxx

−1

B−1�I − A�Wxx
−1�I − D�B−1 + B−1 B−1�I − A�Wxx

−1� ,

and hence,

Ms = �B−1�I − A�Wxx
−1�I − D�B−1 + B−1 1

2 I + B−1�I − A�Wxx
−1

− 1
2 I − Wxx

−1�I − D�B−1 − Wxx
−1 �

so that we have

Q�0,p,0,p�� = �Wxx
−1p�,p�� = �Wxx

−1�p − p��,�p − p��� .

The matrix of the quadratic form Q is thus
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2� Wxx
−1 − Wxx

−1

− Wxx
−1 Wxx

−1 �
and this matrix has signature 2 sign Wxx

−1=2 sign Wxx, proving the first equality �Eq. �46��; the
second equality follows because ��P

�s
�=2m�P
�s
�−n �since s�P��P=0� and rank Wxx=n in

view of Eq. �50�, which implies that det�s− I�= �−1�n det B det Wxx. �

V. CONCLUSION AND DISCUSSION

We have expressed the Conley-Zehnder index iCZ in terms of a cohomological and topological
object, the Leray index which was introduced in Ref. 14 for the purpose of semiclassical quanti-
zation, and extended in Refs. 4 and 7. This allows the definition of iCZ ��� without any assumption
on the end point of the path � �see Remark�. In Theorem 1 we proved a product formula for the
Conley-Zehnder index in terms of the symplectic Cayley transform; this formula, however, only
works if all involved paths are nondegenerate. Using the cohomological property of the Maslov
index �formulas �16� and �20�� it is indeed possible to write an explicit formula for the Conley-
Zehnder index of the product of two arbitrary paths; this formula �which we will not write down�
is rather complicated and therefore not very attractive. It turns out that it is possible to obtain a
simpler formula by redefining the Conley-Zehnder index using methods inspired from Ref. 1, as
we will show in a forthcoming publication. This alternative method does not, however, lead to a
straightforward calculation of the indices appearing in the Weyl representation of metaplectic
operators, studied in the last section of this paper: in this precise case the Leray index approach is
definitely the most natural and powerful.
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We show that if g�L2�R� is a generator of a Gabor orthonormal basis with the
lattice Z�Z, then its Zak transform Z�g� satisfies �Z�g��L2��0,1�2�. This is a
generalization and extension of the Balian-Low uncertainty principle. © 2006
American Institute of Physics. �DOI: 10.1063/1.2393146�

I. INTRODUCTION

Given a square integrable function g�L2�R� and constants a ,b�0, the associated Gabor
system (Weyl-Heisenberg system) generated by g and the lattice aZ�bZ, G�g ,a ,b�= �gm,n�m,n�Z, is
defined by

gm,n�x� = e2�iamxg�x − bn� .

In 1946 Gabor proposed to study such systems for their usefulness in the analysis of infor-
mation conveyed by communication channels. These systems have been studied extensively in
recent years. The edited books by Benedetto and Ferreira4 and by Feichtinger and Strohmer,6 as
well as Gröchenig’s treatise,7 provide detailed treatments of various issues of the theory. It is well
known, for example, that ab=1 is a necessary condition for G�g ,a ,b� to form an orthonormal
basis or a Riesz basis. Moreover, if one wishes to construct orthonormal bases of Gabor type, then
there are severe restrictions on the window function’s time and frequency localization. The Balian-
Low theorem makes this phenomenon precise as follows. We use the Fourier transform defined by
ĝ���=�g�x�e−2�i�xdx, where our convention is that the integral without specific limits denotes the
integral over R.

Theorem 1.1 (Balian-Low): Let g�L2�R�. If

� 	x	2	g�x�	2dx � � and � 	�	2	ĝ���	2d� � � , �1.1�

then G�g ,1 ,1� is not an orthonormal basis for L2�R�.
The Balian-Low theorem can be viewed as a version of the classical uncertainty principle for

Gabor orthonormal bases. It has been established independently by Balian1 and Low,12 and the
first complete proof was given by Battle.2

An important tool in the analysis and construction of Gabor systems is the Zak transform, see
e.g., Ref. 7, Chap. 8. Given g�L2�R�, the Zak transform is formally defined by

Z�g��x,�� = 

n�Z

g�x − n�e2�in�, ∀ �x,�� � R � R .

With the above definition, the Zak transform satisfies the quasiperiodicity relations

a�Present address: Department of Mathematics, University of Maryland, College Park, MD 20742, USA; electronic mail:
wojtek@math.umd.edu

b�Electronic mail: zenek@math.uni.wroc.pl
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Z�f��x,� + k� = Z�f��x,��, ∀ k � Z ,

and

Z�f��x + k,�� = Z�f��x,��e2�ik�, ∀ k � Z ,

e.g., see Ref. 7, Sec. 8.2. Thus, the Zak transform Z�f� of a function f �L2�R� is a locally square
integrable function defined on all of R2 and is uniquely determined by its values on Q��0,1�2.
Therefore, Z defines a unitary operator from L2�R� to L2�Q�, and its inverse Z−1 :L2�Q�→L2�R� is
formally given by

Z−1�F��x� = �
0

1

F�x,��d�, ∀ x � R .

The utility of the Zak transform for constructing Gabor bases stems from the following result,
e.g., Ref. 7, Corollary 8.3.2. A Riesz basis for L2�R� is an image of an orthonormal basis for L2�R�
under an invertible bounded operator on L2�R� with a bounded inverse.

Theorem 1.2: Let g�L2�R�.

a. G�g ,1 ,1� is an orthonormal basis for L2�R� if and only if 	Z�g��x ,��	=1 for a.e. �x ,��
�Q.
b. G�g ,1 ,1� is a Riesz basis for L2�R� if and only if there exist constants A ,B such that 0
�A� 	Z�g��x ,��	�B�� for a.e. �x ,���Q.

This theorem shows that constructing, e.g., Gabor orthonormal bases is equivalent to con-
structing unimodular functions on L2�Q�. Janssen showed in Ref. 8 that such functions cannot be
continuous when extended quasiperiodically to R2. In fact, the following result holds.

Theorem 1.3: Let g�L2�R� be such that Z�g� is continuous on R2. Then, there exists �t ,��
�Q such that Z�g��t ,��=0.

In the next section we shall present a result which is a generalization of Theorem 1.3 and, at
the same time, may be viewed as an analog of the Balian-Low theorem. Our motivation comes
from the fact that conditions �1.1� in Theorem 1.1, may be rewritten in the following forms:

� 	x	2	g�x�	2dx � � and � 	g��x�	2dx � � , �1.2�

where g� denotes the distributional derivative of g.
By analogy and in view of Theorem 1.2, it is of interest to investigate the properties of the

gradient of the Zak transform of a function g�L2�R� which generates a Gabor orthonormal basis.
We shall show that if G�g ,1 ,1� is a Gabor orthonormal basis for L2�R� then �Z�g��L2�Q�. In
view of Theorem 1.2, this result is an analog of Eq. �1.2�.

II. MAIN RESULTS

We say that a function H :R2→T, periodic in �, has a jump by 	 on the interval
��x0 ,�0� , �x0 ,�1��, if 	H�x0 ,�1�−H�x0 ,�0�	
	.

In what follows we shall use the following standard observation.
Fact 2.1: Let H=e2�ih :R2→T be a quasiperiodic function on R2 and such that �H�L2�Q�.

Then, for almost all �� �0,1�, H�· ,�� is a continuous function on [0,1].
We note here that the following lemma is closely related to the trace property of Sobolev

spaces.
Lemma 2.2: Fix 	�0. Let H�x ,�� :R2→T be a quasiperiodic function on R2. Assume that for

sufficiently small 0���1, the set of those �0� �1−� ,1� for which H has a jump by 	 on some
interval ��x0 ,�0� , �x0 ,1�� has measure at least � /2. Then �H�L2�Q�.

Proof: Assume by contradiction that �H�L2�Q� and ��H�L2�Q�=1.
Fact 2.1 implies that for almost all �� �0,1�, H�x ,�� is a continuous function of x� �0,1�.
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Using the periodicity of H in �, we may conclude that H�· ,�� is continuous for almost all �
�R. Thus, we may assume without loss of generality that H�· ,0� and H�· ,1� are continuous
functions of x� �0,1�, and moreover that �0

1	�xH�· ,0�	2dx�2. This implies that we may now
consider the function H�x ,�� /H�1,��, which satisfies ���H�x ,�� /H�1,����L2�Q��4, which, in turn,
together with the periodicity of H, allows us to assume that H�x ,0� /H�1,0� and H�x ,1� /H�1,1�
are constant.

For simplicity of notation, in what follows we shall denote the function H�x ,�� /H�1,�� again
by H�x ,��.

Fix �0� �1−� ,1�, for which H has a jump by 	 on some interval ��x0 ,�0� , �x0 ,1��. Let E�0
denote the set of points �x ,�0� for which

	H�x,1� − H�x,�0�	 � 	/4.

For any x�E�0
we have

	2/16 � 	H�x,1� − H�x,�0�	2 � �
�0

1

��H�x,��d��2

� ��
1−�

1

	��H�x,��	2d� .

Thus,

	E�0
	 �

16

	2 ��
0

1 �
1−�

1

	�H�x,��	2d�dx ª
16

	2 ����� , �2.1�

where ����→0 as �→0. The following inequality holds:

��� � �1 − �,1�:�
0

1

	�xH�x,��	2dx � A/��� �
�

A
�

1−�

1 �
0

1

	�xH�x,��	2dxd� �
�

A
���� .

The above inequality implies that

��� � �1 − �,1�:�
0

1

	�xH�x,��	2dx � A/��� 
 � −
�

A
���� .

If we choose A�2���� then

��� � �1 − �,1�:�
0

1

	�xH�x,��	2dx � A/��� �
�

2
.

Therefore, there exists �0� �1−� ,1� such that �0
1	�xH�x ,�0�	2dx�A /� and for which H has a

jump by 	 on some interval ��x0 ,�0� , �x0 ,1��.
Using the Cauchy-Schwartz inequality �see, e.g., Ref. 11�, we obtain that for such �0 and for

any x0� �0,1�,

	H�x0,�0� − H�1,�0�	2 � �1 − x0��
x0

1

	�xH�x,�0�	2dx � �1 − x0�
A

�
. �2.2�

If we choose A=4���� and 1−x0 sufficiently small �i.e., 1−x0�min�1/2 ;	2� /32������ then
the right hand side of Eq. �2.2� is smaller than 	2 /16, i.e.,

	H�x0,�0� − H�1 − �0�	 � 	/4. �2.3�

Next, we use Eq. �2.1� and the fact that ����→0 as �→0 to observe that if � is sufficiently
small, then in each interval ��1−min�1/2 ;	2� /32����� ,�0� , �1,�0�� we can find a point x0 such
that

	H�x0,�0� − H�x0,1�	 � 	/4. �2.4�
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Finally, by the assumption about the continuity of H�x ,1�, we may assume also without loss
of generality that H�· ,1� is constant on �0,1� and so

	H�x0,1� − H�1,1�	 = 0 � 	/4. �2.5�

Combining now Eqs. �2.3�–�2.5� with the assumption of jump of H by 	 we obtain a contra-
diction. �

Theorem 2.3: Let H�x ,�� :R2→T be a quasiperiodic function on R2. Then �H�L2�Q�.
Remark 2.4: The condition �H�L2�Q� does not imply that H is continuous, so the result of

Janssen �Theorem 1.3� cannot be directly used.
Proof: Fix ��0 sufficiently small. Let H�x ,��=e2�ih�x,��. We shall divide the argument into

three cases.
Consider the set A���=A�1−� ,1�� �1−� ,1� consisting of �� �1−� ,1� such that

h�1,�� − h�0,�� = � + k ,

where k�Z \ �−1� and k depends on �.
For almost every �0�A���, h�· ,�0� is continuous on �0,1�. For such �0 there exists a

� �0,1� and an independent constant 	 such that 	H�a ,�0�−H�a ,1�	�	.
Indeed, Fact 2.1 implies that for almost all �, h�· ,�� is continuous on �0,1�. As in the proof of

Lemma 2.2, we may assume without loss of generality that h�· ,0� and h�· ,1� are constant on �0,1�.
Since k�−1 and using the continuity of h�· ,�0�, we may choose x0� �0,1� such that 	h�x0 ,�0�
−h�0,�0�	=1/2. Thus, we may conclude that either 	h�0,1�−h�0,�0�	
1/4 or 	h�x0 ,1�
−h�x0 ,�0�	
1/4. In particular, we have 	=1/4.

Case 1. Suppose that for some sufficiently small �� �0,1�, 	A���	
� /2. Then we use Lemma
2.2 to obtain a contradiction with the assumption that �H�L2�Q�.

Case 2. Suppose that the set B���=B�0,��� �0,�� consisting of �� �0,�� such that

h�1,�� − h�0,�� = � + k ,

where k�0, has measure greater than or equal to � /2 for some sufficiently small ��0. In such
case, arguing as in case 1, we again obtain a contradiction.

Case 3. Assume that there exists �� �0,1� such that 	A���	�� /2 and 	B���	�� /2.
We may assume without loss of generality that
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�
0

1

	�xh�x,��	2dx � � .

Define the function f : �0,1−��→R by f�x�= 	��� �x ,x+�� :h�1,��−h�0,��=��	. So defined
function f is continuous and thus there exists an interval �� ,�+�� such that 	A���+�	=� /2 and
	B���+�	=� /2.

Next, we choose �1 ,�2� �� ,�+�� such that

h�1,�1� − h�0,�1� = �1

and

h�1,�2� − h�0,�2� = �2 + l ,

where l�Z \ �0�. This implies that the function H has a jump on some interval ��a ,�1� , �a ,�2��,
where a� �0,1�.

Moreover, we may assume without loss of generality that �1 and �2 are chosen so that h�· ,�1�
and h�· ,�2� are continuous and that

�
0

1

	�xH�x,�i�	2dx � A/� ,

i=1,2, for some A�2����. We may now conclude the proof, obtaining a contradiction as in the
proof of Lemma 2.2. �

Corollary 2.5 (Uncertainty principle for the Zak transform): Let G�g ,1 ,1� be a Gabor
orthonormal basis for L2�R�. Then, �Z�g��L2�Q�.

Corollary 2.5 follows immediately from Theorems 1.2 and 2.3.
Example 2.6: Theorem 2.3 is sharp in the following sense. Consider the following family of

functions Ha�x ,�� introduced in Ref. 3.

�1� Let �C��R� be a function with the following properties:

�x� = − 1 for x � �− �,0� ,
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�x� = 0 for x � �1,�� ,

�x� � �− 1,0� for all x � R .

�2� Let ��x�=��0,���x�xa, where a�0 is a fixed number.
�3� Given 0���

1
8 , let ��C��R� be a function that satisfies

supp��� � �− 2�,2��, ��x� = 1 for x � �− �,�� ,

and

��x� � �0,1� for all x � R .

Then, there exists a function Ha :�− 1
2 ,1�� I, with the following properties:

�1� Ha�x ,��=0 for x��− 1
2 ,0�;

�2� H��x ,��=�� /��x�� for x� �0,2��, where ��0 is chosen for the definition of �;
�3� Ha�x ,0�=0 for x��− 1

2 ,0� and Ha�x ,0�=−1 for x� �0,1�;
�4� Ha�1+x ,��=H�x ,��+ ��−1� for x��− 1

2 ,0�; and
�5� the function e2�iH�x,�� :�− 1

2 ,1��T→C is of class C� away from the points �0,0� and �1,0�.

These functions were proven to be optimal for the classical �p ,q� Balian-Low theorem in Ref.
3. However, it is clear that they are also optimal functions for Theorem 2.3, in the sense that they
possess the minimal singular support possible, consisting of a single point in Q.

For other examples of such functions we refer to Refs. 9 and 10.
The statement of Corollary 2.5 actually holds for more general systems than orthonormal

bases. The following result follows from Corollary 2.5 and Theorem 1.2.
Corollary 2.7: Let G�g ,1 ,1� be a Gabor-Riesz basis for L2�R�. Then, �Z�g��L2�Q�.
We close this section by showing more general estimates involving partial fractions of the

Laplacian of the Zak transform of a Gabor basis generating window.
Corollary 2.8: Let G�g ,1 ,1� be a Gabor-Riesz basis for L2�R�. Then, �1/pZ�g��Lp�Q�, 1

� p��.
Proof:

�1� Assume that ��/2�f��Lp�Q�. Then we have that �1
��f�=�1

��−����f��Lp�Q�, for 1� p��.
The reason for this is that the Fourier multiplier m��1 ,�2�ª�1

�	�	−� satisfies

	�1
�1�2

�2m��1/2n1,�2/2n2�	 � C�1,�2
, �2.6�

for 1 /2� 	�1	 , 	�2	�2, and consequently is bounded on Lp�Q�, 1� p��, for any ��0 by the
multiparameter Calderón-Zygmund theory �see, e.g., Ref. 5, Introduction�.

�2� For f �Cc
���0,1�� and 1� p��, we have the following estimate of Hölder regularity:

�f��1/p
� �f�Lp�	−1/2,3/2� + �	�1	2/p�Lp�	−1/2,3/2�. �2.7�

�3� We replace Eq. �2.2� by Eq. �2.7�, use Eq. �2.6�, and repeat the main argument of the proof
of Theorem 2.3 to prove Corollary 2.8. �

Remark 2.9: All the results of this section follow for Gabor systems G�g ,a ,b�, g�L2�R�,
ab=1, if we use the Zak transform Za defined by

Za�g��x,�� = 

n�Z

g�x − an�e2�ian�,

see Ref. 7.
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In this paper, we investigate Euler-box scheme for Bridges’ multisymplectic form
of Maxwell’s equations. A new multisymplectic scheme is derived for Maxwell’s
equations. We prove that it is also a self-adjoint scheme in time direction. The
multisymplecticity of composition schemes based on the new scheme is also dis-
cussed. Two numerical examples are proposed to indicate that the derived multi-
symplectic schemes are effective when used to integrate the 2+1 dimensional
Maxwell’s equations. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2400833�

I. INTRODUCTION

Maxwell’s equations describe the fundamental evolutions of electromagnetic fields in space
and time. They have been applied to a wide range of different physical situations. They play an
important role in a large number of engineering applications. In many cases, numerical methods
are required to solve Maxwell’s equations.

The computations of electromagnetics have developed for a long time and many efficient
methods have been given. The famous time-domain technique in computational electromagnetic
�CEM� was developed by Yee.1 The method, generally referred as the finite-difference time-
domain method,2 is based on staggered central differencing in space and staggered leapfrog inte-
gration in time for Cartesian coordinates. Finite volumes were introduced to CEM by Shankar et
al.3 by exporting methods from computational fluid dynamics. Their early work used structured
grids, but lately they have turned to unstructured grids. Their main reason for doing so is the
difficulty of creating a global body-conforming grid for realistic geometries, such as a complete
aircraft. The spectral-domain split-operator technique proposed in Ref. 4 is one of the many forms
that results from the use of the Lie-Trotter-Suzuki product formulas. This technique makes use of
fast Fourier transforms to compute the matrix exponentials of the displacement operators. Due to

a�Electronic mail: wangyushun@njnu.edu.cn
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the practical interests, more and more researchers have done their important contributions on the
numerical approximations to Maxwell’s equations and also on the analysis of the numerical
scheme.

In 1990s, the symplectic schemes were introduced and systematically developed for the
Hamiltonian systems within the framework of symplectic geometry.5–7 The Hamiltonian nature of
Maxwell’s equations was revealed by Morrison8 and Marsden and Weinstein9 in their work on the
Maxwell-Vlasov equation. The symplectic schemes which preserve the Hamiltonian nature of
Maxwell’s equations were reported to have higher performance over the nonsymplectic
schemes.10,11 Recently, Marsden et al.12 and Bridges and Reich13 proposed the concept of multi-
symplectic partial differential equations �PDEs� and multisymplectic schemes which can be
viewed as the generalization of symplectic schemes. The multisymplectic schemes have been
applied successfully to lots of important equations such as the nonlinear wave equation,13–15 the
nonlinear Schrödinger equation,16–18 the Korteweg–de Vries equation,19,20 the Zakharov-
Kuznetsov equation,21 Kadomtsev-Petviashvili equation,22 and so on. With regard to details,
please refer to the new published survey by Bridges and Reich23 and the references therein. By
many computational experiments and theoretical analysis, the multisymplectic schemes were
shown to be much superior to other standard methods in the performance of numerical stability in
long time computation.

The main purpose of this paper is to check whether the multisymplectic scheme could be
applied to integrate Maxwell’s equations and still have good numerical performance. We develop
a new self-adjoint scheme in time direction for solving the time-domain Maxwell’s equations. The
composition scheme based on the new scheme is also derived.

This paper is organized as follows In Sec. II, we take a brief review of multisymplectic
Bridges’ form for Maxwell’s equations. A self-adjoint scheme is derived based on Bridges’ form in
Sec. III. The truncation error of the new scheme is also discussed in the same section. In Sec. IV,
we use the self-adjoint scheme to get a composition scheme in time direction. In Sec. V, numerical
experiments are presented to indicate the merits of the multisymplectic schemes and we finish the
paper with conclusion remarks in Sec. VI.

II. MULTISYMPLECTIC FORMULATION FOR MAXWELL’S EQUATIONS

Maxwell’s equations in an isotropic, homogeneous, nondispersive medium are

�B

�t
+ � � E = 0 �Faraday’ s Law� ,

�D

�t
− � � H = 0 �Ampere’ s Law� ,

�2.1�
B = �H ,

D = �E .

In the absence of impressed electric charge, the magnetic induction and electric displacement
fields satisfy the constraints �Gauss’s law�

� · B = 0,

�2.2�
� · D = 0.

Scattering obstacles will be modeled by a spatial variation of � and �. In free space, � and � are
constant, equal to their minimum values �0 and �0. The speed of light in free space is c
=1/��0�0.
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Introduce two vector functions U and V satisfying Ut=E and Vt=H, respectively, then the
Lagrangian for Maxwell’s equations �Eq. �2.1�� can be written as

L =
1

2
��Vt,Vt� +

1

2
�Vt,� � U� +

1

2
��Ut,Ut� −

1

2
�Ut,� � V� , �2.3�

where �·,·� represents the standard inner production of vector space. According to Bridges’ theory
on multisymplectic structure, the generalized conjugate momentums can be derived by covariant
Legendre transform correspondingly,

P =
�L

�Vt
= �Vt +

1

2
� � U,

�L

� � � V
= −

1

2
Ut,

�2.4�

Q =
�L

�Ut
= �Ut −

1

2
� � V,

�L

� � � U
=

1

2
Vt,

further the covariant Hamiltonian by

S = �P,Vt� + �Q,Ut� + � �L

� � � V
,� � V	 + � �L

� � � U
,� � U	 − L

= �P,H� + �Q,E� −
1

2
��H,H� −

1

2
��E,E� . �2.5�

Set Z= �H ,E ,V ,U ,P ,Q�T, then Maxwell’s equations are transformed into the following form:

1

2
� � U = P − �H ,

−
1

2
� � V = Q − �E ,

− Pt −
1

2
� � E = 0,

�2.6�

− Qt +
1

2
� � H = 0,

Vt = H ,

Ut = E .

The above equations can be organized into Bridges’ multisymplectic form as

MZt + N � � Z = �ZS�Z� , �2.7�

where
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M =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 − I 0

0 0 0 0 0 − I

0 0 I 0 0 0

0 0 0 I 0 0

� ,

I is the identity element belonging to R3�3. The rotation action ��Z denotes ���H ,��E ,�
�V ,��U ,��P ,��Q�T and

N � � Z = FZx + LZy + WZz, �2.8�

where

F =

0 0 0 �1/2�R1 0 0

0 0 − �1/2�R1 0 0 0

0 − �1/2�R1 0 0 0 0

�1/2�R1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

� ,

L =

0 0 0 �1/2�R2 0 0

0 0 − �1/2�R2 0 0 0

0 − �1/2�R2 0 0 0 0

�1/2�R2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

� ,

W =

0 0 0 �1/2�R3 0 0

0 0 − �1/2�R3 0 0 0

0 − �1/2�R3 0 0 0 0

�1/2�R3 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

� ,

R1 = 
0 0 0

0 0 − 1

0 1 0
�, R2 = 
 0 0 1

0 0 0

− 1 0 0
�, R3 = 
0 − 1 0

1 0 0

0 0 0
� .

Thus we easily find that matrices M ,F ,L, and W ��R18�18� are skew symmetric. Additionally the
rotation operator may be simplified as �� =R1�� /�x�+R2�� /�y�+R3�� /�z�.

To simplify the notation we will mainly consider twodimensional problems. In two dimen-
sions, Eq. �2.1� decouples into two independent sets of equations, each representing a distinct
polarization. We shall use as our model system of equations those of the transverse magnetic
polarization, where the electric field is a scalar while the magnetic field is a plane vector,

�Ez

�t
=

1

�
� �Hy

�x
−

�Hx

�y
 ,
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�Hx

�t
= −

1

�

�Ez

�y
, �2.9�

�Hy

�t
=

1

�

�Ez

�x
.

In two dimensions, Eq. �2.7� can be written as follows:

MZt + FZx + LZy = �ZS�Z� , �2.10�

where M ,F, and L are the same as Eq. �2.8�.
Because M, F, L�R18�18 are skew-symmetric matrices and S :Rn→R is a smooth function of

the state variable Z�x ,y , t�, it can be shown that the multisymplectic PDEs �Eq. �2.10�� satisfies the
following multisymplectic conservation law according to Bridges’ theory:

��

�t
+

��

�x
+

��

�y
= 0, �2.11�

where

� =
1

2
�dZ ∧ MdZ�, � =

1

2
�dZ ∧ FdZ�, � =

1

2
�dZ ∧ LdZ� . �2.12�

III. MULTISYMPLECTIC SELF-ADJOINT SCHEME

Because Eq. �2.10� preserves multisymplectic conservation law, naturally, when discreting
Hamiltonian PDEs �Eq. �2.10�� by a numerical scheme, we also expect that the multisymplectic
conservation law �Eq. �2.11�� should be preserved. Bridges and Reich defined a numerical scheme
as a multisymplectic scheme if the scheme preserves a discrete multisymplectic conservation
law.13

In the conventional schemes, the Preissman scheme13 and the Euler-box scheme24 for the
PDEs �Eq. �2.10�� are shown to be multisymplectic. The multisymplectic Preissman scheme has
been hot in the last few years,15–22 whereas there were few reports for the multisymplectic Euler-
box scheme. In the following, we will investigate the Euler-box scheme for Maxwell’s equations.
Set tk, k=1,2 , . . .; xi, i=1,2 , . . . ,M; and yj, j=1,2 , . . . ,N be the regular grids of the integral
domain, Zi,j

n is an approximation to Z�xi ,yj , tn�, �t= tk+1− tk is the time step, �x=xi+1−xi is the
x-direction step, and �y=yj+1−yj is the y-direction step.

We take the following splitting for the matrices M ,F, and L in the multisymplectic PDEs �Eq.
�2.10��:

M = M+ + M−, F = F+ + F−, L = L+ + L−, �3.1�

where M+
T =−M− ,F+

T =−F−, and L+
T =−L−, then rewrite the PDEs as

M+Zt + M−Zt + F+Zx + F−Zx + L+Zy + L−Zy = �ZS�Z� . �3.2�

Consider the following so-called Euler-box scheme for the above PDEs �Eq. �3.2��:

M+�t
+Zi,j

k + M−�t
−Zi,j

k + F+�x
+Zi,j

k + F−�x
−Zi,j

k + L+�y
+Zi,j

k + L−�y
−Zi,j

k = �ZS�Zi,j
k � , �3.3�

where

�t
±Zi,j

k = ±
Zi,j

k±1 − Zi,j
k

�t
, �x

±Zi,j
k = ±

Zi±1,j
k − Zi,j

k

�x
, �y

±Zi,j
k = ±

Zi,j±1
k − Zi,j

k

�y
,

with the special matrices splitting as
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M+ =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 − I 0

0 0 0 0 0 − I

0 0 0 0 0 0

0 0 0 0 0 0

� , F+ =

0 0 0 R1/2 0 0

0 0 0 0 0 0

0 − R1/2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

� ,

�3.4�

L+ =

0 0 0 R2/2 0 0

0 0 0 0 0 0

0 − R2/2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

� .

Theorem 3.1: The Euler-box scheme [Eq. (3.3)] is multisymplectic with the following discrete
multisymplectic conservation law:

�t
+�ij

k + �x
+�ij

k + �y
+�ij

k = 0, �3.5�

where �i,j
k =dZi,j

k−1∧M+dZi,j
k , �i,j

k =dZi−1,j
k ∧F+dZi,j

k , and �i,j
k =dZi,j−1

k ∧L+dZi,j
k .

Proof: Consider the variational equations of Eq. �3.3�,

M+�t
+dZi,j

k + M−�t
−dZi,j

k + F+�x
+dZi,j

k + F−�x
−dZi,j

k + L+�y
+dZi,j

k + L−�y
−dZi,j

k = �ZZS�Zi,j
k �dZi,j

k .

�3.6�

By Eq. �3.6�, we have

0 = dZi,j
k ∧ �ZZS�Zi,j

k �dZi,j
k = dZi,j

k ∧ M+�t
+dZi,j

k + dZi,j
k ∧ M−�t

−dZi,j
k + dZi,j

k ∧ F+�x
+dZi,j

k

+ dZi,j
k ∧ F−�x

−dZi,j
k + dZi,j

k ∧ L+�y
+dZi,j

k + dZi,j
k ∧ L−�y

−dZi,j
k = dZi,j

k ∧ M+�t
+dZi,j

k + �t
−dZi,j

k ∧ M+dZi,j
k

+ dZi,j
k ∧ F+�x

+dZi,j
k + �x

−dZi,j
k ∧ F+dZi,j

k + dZi,j
k ∧ L+�y

+dZi,j
k + �y

−dZi,j
k ∧ L+dZi,j

k

= �t
+�dZi,j

k−1 ∧ M+dZi,j
k � + �x

+�dZi−1,j
k ∧ F+dZi,j

k � + �y
+�dZi,j−1

k ∧ L+dZi,j
k � = �t

+�ij
k + �x

+�ij
k + �y

+�ij
k . �

The multisymplecticity of the 1+1 dimensional Euler-box scheme is proved by Moore and
Reich in Ref. 24. Next we derive a new scheme which is equivalent to the multisymplectic scheme
�Eq. �3.3��. Recast scheme �3.3� into the following form:

M+�t
+Zi,j

k + M−�t
−Zi,j

k + N�+ � Zi,j
k + N�− � Zi,j

k = �ZS�Zi,j
k � , �3.7�

where

M+ =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 − I 0

0 0 0 0 0 − I

0 0 0 0 0 0

0 0 0 0 0 0

� , N�+ � =

0 0 0 �1/2��+� 0 0

0 0 0 0 0 0

0 − �1/2��+� 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

� ,
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N�− � =

0 0 0 0 0 0

0 0 − �1/2��−� 0 0 0

0 0 0 0 0 0

�1/2��−� 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

� ,

�+ � = 
 0 0 �/�y

0 0 − �/�x

− �/�y �/�x 0
�

+

= 
 0 0 �y
+

0 0 − �x
+

− �y
+ �x

+ 0
�, �− � = 
 0 0 �y

−

0 0 − �x
−

− �y
− �x

− 0
� .

Substituting M+ ,M− ,N�+� ,N�−�, and Zi,j
k = �Hi,j

k ,Ei,j
k ,Vi,j

k ,Ui,j
k ,Pi,j

k ,Qi,j
k �T into Eq. �3.7�, we

have

1

2
�+ � Ui,j

k = Pi,j
k − �Hi,j

k ,

−
1

2
�− � Vi,j

k = Qi,j
k − �Ei,j

k ,

− �t
+Pi,j

k −
1

2
�+ � Ei,j

k = 0,

�3.8�

− �t
+Qi,j

k +
1

2
�− � Hi,j

k = 0,

�t
−Vi,j

k = Hi,j
k ,

�t
−Ui,j

k = Ei,j
k .

We can eliminate the auxiliary variables Pi,j
k , Qi,j

k , Ui,j
k , and Vi,j

k and derive formulas that only
contain Ei,j

k and Hi,j
k .

�+ � Ei,j
k = − �+ � Ei,j

k−1 − 2��t
−Hi,j

k ,

�3.9�
− �− � Hi,j

k = �− � Hi,j
k−1 − 2��t

−Ei,j
k .

Substituting Ei,j
k = �0,0 ,Ezi,j

k �T, Hi,j
k = �Hxi,j

k ,Hyi,j
k ,0�T, and �+�, �−� defined in Eq. �3.7� into

Eq. �3.9�, we obtain

�y
+Ezi,j

k = − �y
+Ezi,j

k−1 − 2��t
−Hxi,j

k ,

− �x
+Ezi,j

k = �x
+Ezi,j

k−1 − 2��t
−Hyi,j

k , �3.10�

− �y
−Hxi,j

k + �x
−Hyi,j

k = �y
−Hxi,j

k−1 − �x
−Hyi,j

k−1 + 2��t
−Ezi,j

k .

Thus we obtain, by recasting Eq. �3.10� into grid points, a new scheme as

�t

�y
�Ezi,j+1

k − Ezi,j
k � + 2�Hxi,j

k = −
�t

�y
�Ezi,j+1

k−1 − Ezi,j
k−1� + 2�Hxi,j

k−1, �3.11a�
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−
�t

�x
�Ezi+1,j

k − Ezi,j
k � + 2�Hyi,j

k =
�t

�x
�Ezi+1,j

k−1 − Ezi,j
k−1� + 2�Hyi,j

k−1, �3.11b�

−
�t

�y
�Hxi,j

k − Hxi,j−1
k � +

�t

�x
�Hyi,j

k − Hyi−1,j
k � − 2�Ezi,j

k

=
�t

�y
�Hxi,j

k−1 − Hxi,j−1
k−1 � −

�t

�x
�Hyi,j

k−1 − Hyi−1,j
k−1 � − 2�Ezi,j

k−1. �3.11c�

Let us analyze the truncation error of schemes �3.11a�, �3.11b�, and �3.11c�. Firstly, let us analyze
Eq. �3.11a�.

−
1

�
� �Ez

�y


i,j

k−�1/2�

= −
1

2�
�� �Ez

�y


i,j

k

+ � �Ez

�y


i,j

k−1� + O��t2� , �3.12�

� �Hx

�t


i,j

k−�1/2�

=
�Hx�i,j

k − �Hx�i,j
k−1

�t
+ O��t2� . �3.13�

By Eq. �2.9�, we have

�Hx

�t
= −

1

�

�Ez

�y
,

then

� �Hx

�t


i,j

k−�1/2�

= −
1

�
� �Ez

�y


i,j

k−�1/2�

. �3.14�

Substituting Eq. �3.12� and �3.13� into Eq. �3.14�, we obtain

�Hx�i,j
k − �Hx�i,j

k−1

�t
= −

1

2�
�� �Ez

�y


i,j

k

+ � �Ez

�y


i,j

k−1� + O��t2� , �3.15�

so

Hxi,j
k − Hxi,j

k−1

�t
= −

1

2�

Ezi,j+1
k − Ezi,j

k

�y
−

1

2�

Ezi,j+1
k−1 − Ezi,j

k−1

�y
+ O��t2 + �y� . �3.16�

Secondly, we can easily get in the similar way that the truncation errors of Eqs. �3.11b� and
�3.11c� are O��t2+�x� and O��t2+�x+�y�. So the truncation error of Eq. �3.11� is O��t2+�x
+�y�.

Scheme �3.11� is an implicit scheme that involves solving a linear system of Ezi,j
k , Hxi,j

k , and
Hyi,j

k at each time step. Suppose the computational space domain is �0,Tx�� �0,Ty�, Tx is period of
x direction and Ty is period of y direction. �0,Tx� is averagely divided by M and �0,Ty� is
averagely divided by N. We take numerical periodic boundary conditions as

Ez0,j
k = EzM,j

k , EzM+1,j
k = Ez1,j

k , Ezi,0
k = Ezi,N

k , Ezi,N+1
k = Ezi,1

k , �3.17�

Hx0,j
k = HxM,j

k , HxM+1,j
k = Hx1,j

k , Hxi,0
k = Ezi,N

k , Hxi,N+1
k = Hxi,1

k , �3.18�

Hy0,j
k = HyM,j

k , HyM+1,j
k = Hy1,j

k , Hyi,0
k = Hyi,N

k , Hyi,N+1
k = Hyi,1

k . �3.19�

The arrangement of the order of equations in scheme �3.11� and the variables of the resulting
linear system are trivial and technical. The properties of the coefficient matrix of the resulting
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large linear system may change extremely with the different arrangements. We can make the
coefficient matrix symmetric by the following arrangement. We arrange variables as

xk = �x1
k,x2

k,x3
k�T,

x1
k = �Hy1,1

k ,Hy2,1
k , . . . ,HyM,1

k ,Hy1,2
k ,Hy2,2

k , . . . ,HyM,2
k , . . . ,Hy1,N

k ,Hy2,N
k , . . . ,HyM,N

k � ,

x2
k = �Ez1,1

k ,Ez2,1
k , . . . ,EzM,1

k ,Ez1,2
k ,Ez2,2

k , . . . ,EzM,2
k , . . . ,Ez1,N

k ,Ez2,N
k , . . . ,EzM,N

k � ,

x3
k = �Hx1,1

k ,Hx2,1
k , . . . ,HxM,1

k ,Hx1,2
k ,Hx2,2

k , . . . ,HxM,2
k , . . . ,Hx1,N

k ,Hx2,N
k , . . . ,HxM,N

k � ,

and the order of equations as Eq. �3.11b�, j=1, . . . ,N, i=1, . . . ,M; Eq. �3.11c�, j=1, . . . ,N, i
=1, . . . ,M; and Eq. �3.11a�, j=1, . . . ,N, i=1, . . . ,M. Then the resulting linear system is

A��t,�x,�y�xk+1 = B��t,�x,�y�xk, �3.20�

where

A��t,�x,�y� = 
A11 A12 0

A12
T A22 A23

0 A23
T A33

�, B��t,�x,�y� = 
 A11 − A12 0

− A12
T A22 − A23

0 − A23
T A33

� ,

A11 = 2�

I

I

·

·

·

I

� , A22 = − 2�

I

I

·

·

·

I

� ,

�3.21�

A33 = 2�

I

I

·

·

·

I

� , A12 =
�t

�x

C

C

·

·

·

C

� ,

C =

1 − 1

1 − 1

· ·

· ·

· ·

· ·

1 − 1

− 1 1

�
M�M

, A23 =
�t

�y

− I I

I − I

I ·

· ·

· ·

I − I

� ,

I is the identity element belonging to RM�M.
Obviously A��t ,�x ,�y� is symmetric. Moreover the coefficient matrix A��t ,�x ,�y� of Eq.

�3.20� is a strictly diagonally dominant matrix, if �t, �x, and �y satisfy the following condition:
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�t

�x
	 �,

�t

�x
+

�t

�y
	 �,

�t

�y
	 � , �3.22�

Eq. �3.22� leads to

�t 	 min�� min��x,�y�,
1

2
� min��x,�y�� . �3.23�

IV. THE COMPOSITION SCHEME BASE ON SELF-ADJOINT SCHEME „3.11… IN TIME
DIRECTION

In the theory of numerical solutions of ordinary differential equations �ODEs�, composition is
an important idea that a high order method based on some low-order method can be derived. The
composition method for ODEs has mainly been developed by Suzuki,25 Yoshida,26 and
McLachlan.27 With regard to the details, we refer to Ref. 28.

First, we review briefly the composition method for the ordinary differential equations. We
know that every one-step difference scheme can be written as follows:29

yn+1 = s�
�yn,

where s�
� is the operator corresponding to the difference scheme and 
 is the time step length.
Definition 4.1: Suppose there are n difference schemes whose corresponding operators are

s1�
� ,s2�
� , . . . ,sn�
�, respectively, and their corresponding order is p1 , p2 , . . . , pn. If there exist
constants c1 ,c2 , . . . ,cn such that the order of the scheme whose operator is the composition
s1�c1
�s2�c2
� ,… ,sn�cn
� is m, m�max�pi�, i� i�n, then the new difference scheme is called
composition scheme of the original n difference schemes. This method which is used to construct
higher-order difference schemes from the lower ones is called composition method.

Definition 4.2: An integral operator s*�
� is called the adjoint operator of s�
�, if s*�
�
satisfies s*�−
�s�
�=s�
�s*�−
�= I, where I is the identity operator.

Definition 4.3: An integral operator is self-adjoint operator, if s�
� satisfies s�−
�s�
�=s�
�
��−
�= I, where I is the identity operator.

Theorem 4.1: Any self-adjoint integral operator s�
� has even order.
Corollary 4.1: Let s�
� be a self-adjoint integrator order of 2n, then the composition operator

s�c1
�s�c2
�s�c1
� is of order 2n+2, where c1 and c2 satisfy

2c1
2n+1 + c2

2n+1 = 0, 2c1 + c2 = 1.

The composition schemes keep the group property of the original schemes. The composition
method for multisymplectic schemes has been discussed in Refs. 30 and 31. Here we only discuss
the composition based on the new scheme �3.11�. First, we will show that it is a self-adjoint
scheme.

Equation �3.20� can be written as follows:

xk+1 = �A��t,�x,�y��−1B��t,�x,�y�xk. �4.1�

By Eq. �3.21�, we know −A��t ,�x ,�y�=B�−�t ,�x ,�y� and A�−�t ,�x ,�y�=−B��t ,�x ,�y�,
then

�A�− �t,�x,�y��−1B�− �t,�x,�y��A��t,�x,�y��−1B��t,�x,�y�

= �B��t,�x,�y��−1A��t,�x,�y��A��t,�x,�y��−1B��t,�x,�y� = I .

Similarly,

�A��t,�x,�y��−1B��t,�x,�y��A�− �t,�x,�y��−1B�− �t,�x,�y� = I .

So, �A��t ,�x ,�y��−1B��t ,�x ,�y� is a self-adjoint operator. Thus, scheme �3.11� is self-adjoint.
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According to Corollary 4.1, we can derive a composition scheme in the time direction based
on the self-adjoint scheme,

xk+1 = �A�c1�t,�x,�y��−1B�c1�t,�x,�y� � �A�c2�t,�x,�y��−1B�c2�t,�x,�y�

� �A�c1�t,�x,�y��−1B�c1�t,�x,�y�xk, �4.2�

where c1=1/ �2−�3 2� and c2=−�3 2 / �2−�3 2�. The truncation error of the above composition scheme
is O��y+�x+�t4�.

Theorem 4.2: The composition scheme (4.2) is multisymplectic with the same discrete multi-
symplectic conservation law [Eq. (3.5)].

Proof: The implementation of the composition scheme is divided into the following three
steps:

xk → xk+c1�t → xk+�c1+c2��t → xk+�2c1+c2��t = xk+1.

By Theorem 3.1, we know that the first step xk→xk+c1�t preserves the multisymplectic conserva-
tion law,

�ij
k+c1�t − �ij

k = − c1�t��x
+�ij

k + �y
+�ij

k � . �4.3�

Similarly, multisymplectic conservation laws,

�ij
k+�c1+c2��t − �ij

k+c1�t = − c2�t��x
+�ij

k + �y
+�ij

k � �4.4�

and

�ij
k+1 − �ij

k+�c1+c2��t = − c1�t��x
+�ij

k + �y
+�ij

k � , �4.5�

should be preserved by the next steps, respectively.
Then, Eq. �4.3�+Eq. �4.4�+Eq. �4.5� leads to

�ij
k+1 − �ij

k = − �2c1 + c2��t��x
+�ij

k + �y
+�ij

k � . �4.6�

Because of 2c1+c2=1, Eq. �4.6� is just Eq. �3.5�. �

V. NUMERICAL EXPERIMENTS

This section provides numerical experiments for testing the new derived multisymplectic
scheme �Eq. �3.11�� and the composition scheme �Eq. �4.2��. Scheme �3.11� is denoted by MS and
Eq. �4.2� is denoted by CMS. On numerical experiments of Maxwell’s equations, there have been
many references with more details. In the following numerical examples, we only discuss the
closed homogeneous domain and take the numerical periodic boundary conditions as Eqs.
�3.17�–�3.19�. At the same time, we take h=�x=�y and make �t satisfy Eq. �3.23� to ensure the
symmetry and strictly diagonal dominance of the coefficient matrix and we use GMRES�m�
method to solve linear system. In each subinterval �tk , tk+1�, we only need to solve a system of

equations A��t ,�x ,�y�xk+1=B��t ,�x ,�y�xk. Suppose that Êz�x ,y , t� is the exact solution and
Ez,i,j

k is the numerical solution. We denote the maximum error and L2 error at time t= tk, respec-
tively, by

errormax = max
i,j

�Êz�xi,yj,tk� − Ez,i,j
k � ,

�error�L2
= h��

i,j
�Êz�xi,yj,tk� − Ez,i,j

k �2.

The numerical results show that both MS and CMS can work well. By comparison, we can find
that CMS has an improvement in accuracy of the solution for long time computation over MS.
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Firstly, let us pay attention to the following example. We prescribe initial conditions as
follows:

Ez�x,y,0� = 0,

Hy�x,y,0� = −
3
�5

cos�3x�sin�y� ,

Hx�x,y,0� =
1
�5

sin�3x�cos�y� .

We test the two schemes on a space domain �0, 2
3
�� �0,2�. If �=1 and �=2, the exact solution is

Ez�x,y,t� = sin�3x�sin�y�sin��5t� ,

Hy�x,y,t� = −
3
�5

cos�3x�sin�y�cos��5t� ,

Hx�x,y,t� =
1
�5

sin�3x�cos�y�cos��5t� .

Figures 1 and 2 show �error�L2
of MS and CMS under the same conditions of the space step

and the temporal step. From Figs. 1 and 2, we can easily find that the error of MS can be
controlled effectively before t=8, but CMS can be controlled effectively until t=22.

Figures 3 and 4 show, respectively, �error�L2
of MS and CMS with the same space step h

=1/180. By Figs. 3 and 4, we can observe that the global error of the two schemes are almost the

FIG. 1. The �error�L2
of MS, where h=1/120 and �t=1/100.
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FIG. 2. The �error�L2
of CMS, where h=1/120 and �t=1/100.

FIG. 3. The �error�L2
of CMS, where h=1/180 and �t=1/100.
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same. However, it is worthy to mention that the time step taken for the MS is smaller than the
CMS. Moreover, the time that the �error�L2

of CMS can be controlled is t	33, but it is only t
	22 for MS.

Figures 5 and 6 have the same phenomenon about errormax. Through comparison, it is easy to
find that CMS is more effective in computation with long time step than MS.

Secondly, we consider another example. We prescribe initial conditions as follows:

Ez�x,y,0� = sin�3x�sin�4y� ,

Hy�x,y,0� = −
3

5
sin�3x�sin�4y� ,

Hx�x,y,0� = −
4

5
cos�3x�cos�4y� .

If �=1 and �=1, the exact solution is

Ez�x,y,t� = sin�3x − 5t�sin�4y� ,

Hy�x,y,t� = −
3

5
sin�3x − 5t�sin�4y� ,

Hx�x,y,t� = −
4

5
cos�3x − 5t�cos�4y� .

FIG. 4. The �error�L2
of MS, where h=1/180 and �t=1/300.
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FIG. 5. The errormax of CMS, where h=1/180 and �t=1/100.

FIG. 6. The errormax of MS, where h=1/180 and �t=1/300.
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FIG. 7. The �error�L2
of MS, where h=1/360 and �t=1/200.

FIG. 8. The �error�L2
of CMS, where h=1/360 and �t=1/200.
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Here, we give the �error�L2
of MS and CMS with h=1/360 and �t=1/200 in Figs. 7 and 8

correspondingly. The computational space domain is �0, 2
3
���0, 1

2
�. The errormax has the same

trend as �error�L2
.

Remark:

1. The �error�L2
of CMS has no improvement over MS from the very beginning period of time

because both schemes are of order one in space direction which is the dominating order in
the truncation errors.

2. CMS is better than MS in long time computation because CMS is of the order of 4 in time,
whereas MS is of 2. How to improve the truncation error in space direction is still a problem
and worthy of paying more attention.

VI. CONCLUDING REMARKS

In this paper, we derived a new multisymplectic self-adjoint scheme from Bridges’ form for
Maxwell’s equations. Based on the newly derived scheme, we obtain the composition scheme in
time direction. Numerical experiments indicate that both the multisymplectic scheme and its
composition scheme can work well and the composition scheme is more effective in long time
computation. Though our numerical experiments are carried on two dimensional Maxwell’s equa-
tions, the method of this paper can be extended into three dimensions with variable coefficients �
and �. Actually, the multisymplectic structures �Eqs. �2.7� and �3.9�� are for the three dimensional
Maxwell’s equations. The multisymplectic structure and multisymplectic scheme provide a new
viewpoint to study the electromagnetic wave equations.
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In this paper we analyze integrable systems from a Clifford algebra point of view.
This approach allows us to give a clear representation theoretic exposition of tech-
niques used in spin systems, thereby showing their naturality. We then extend this
approach to the analysis of the XX-model with nondiagonal boundaries which is
among others related to growing and fluctuating interfaces and stochastic reaction-
diffusion systems. With this rationale, it is possible to diagonalize the system and
find new hidden conservation laws. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2400831�

INTRODUCTION

The use of Clifford operators to “fermionize” a problem goes back to Ref. 1. The potential this
approach has in solving spin-chain problems was first demonstrated in Ref. 2; see Refs. 3–6 for
other early sources. There has been a lot of work in this direction, Refs. 7–11 to name a few. We
will first give a novel presentation of this “classic” connection between spin-chain Hamiltonians
and their fermionization using Clifford operators. This is done in a concise mathematical way
focusing on the Clifford algebra aspects. This allows us to explain properties, procedures, and
characteristics which appear complex and complicated in the spin-chain picture in a clean straight-
forward fashion as direct consequences of the mathematical setup. We hope that this treatment
may help to bring the two communities, the people working in mathematical physics using group
theory and the people working on integrable systems, closer together. We then show that going
beyond the classical quadratic Hamiltonians, we can in certain cases, namely the XX-model,
extend to include boundary terms. There are some subtleties here. First we have to actually enlarge
the chain to be able to obtain a quadratic Hamiltonian, one of whose sectors is the original
problem. Then, after the fermionization, we have to project to the smaller problem, which is
nontrivial in the fermion language. As we explain, the actual calculation of the fermionization is a
matrix valued problem due to the theorem1,12,13 about the uniqueness of the irreducible Clifford
module of the complex Clifford algebra based on an even dimensional vector space. We then go
on to analyze operators which commute with the XX-chain Hamiltonian with boundary terms.
These operators can be shown to commute, but due to the nonlocal nature of the Jordan-Wigner
transformation and the projection, they become highly nontrivial in the original spin-chain picture.
Lastly, we comment on how this operator behaves in the thermodynamic limit.

I. CLIFFORD ALGEBRAS AND SPIN CHAINS: A DIGEST

A. The Clifford algebra and fermions

A Clifford algebra C�W ,Q� is a universal algebra associated with a given R-vector space W
with a quadratic form Q. The universal property is that any linear map j :W→A of W to an
associative R-algebra A with unit 1 which satisfies j�w�2=Q�w�1 factors through C�W ,Q�
uniquely up to isomorphism. To be really careful of course the universal object C�W ,Q� comes
with a map ı :W→C�W ,Q� and j factors through ı. For W with dimR W=k and a basis �ei� of W,

a�Electronic mail: kaufmann@phys.uconn.edu
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the algebra C�W ,Q� is a quadratic algebra generated by ei : i=1, . . . ,k and the relations
∀n ,m : �en ,em�=2�en ,em� where �·, ·� is the bilinear form associated with the quadratic form Q.
�Technically, for this one has to assume that one is not in characteristic 2. This is fine since we will
be working over R and C that is in characteristic 0.� We will usually not distinguish v and ı�v� in
our notation, but sometimes it will be necessary. It can easily be seen that dimR(C�W ,Q�)=2n for
W as above and any Q. See, e.g., Refs. 12 and 13 for these results.

The classical example is the Clifford algebra CkªC(Rk ,diag�−1, . . . ,−1�). This algebra can
be written as generated by en subject to the conditions en

2=−1,emen+enem=0. Now there are the
standard isomorphisms C2	H	su�2�. Where one sends e1� I ,e2�J, here I, J, and K are the
usual quaternions and in the last step one represents I and J by the usual 2�2 matrices. Alterna-
tively one can of course use the first two elements of any cyclic permutation of the matrices
representing I, J, and K.

We will consider the complexified Clifford algebra ClkªC�RCk. Notice that over the com-
plexes all nondegenerate forms are conjugate and we will only work with such forms. Thus the
Clifford algebras over C do not depend on the particular form of Q as long as it is nondegenerate.
In general it can even be shown that Cl2L	M2L�C�, the full matrix algebra, see, e.g., Refs. 12 and
13. To pass from one quadratic form to another one makes a base change on the underlying vector
space. This gives a change in presentation of the algebra. The algebra Cl2 for the quadratic form
diag�1,1�, for instance, is just M2�C�, and we can represent it via e1���x ,e2���y. Since �x
=−iK and �y =−iJ in their standard matrix representations (see, e.g., Ref. 13), we obtain an
isomorphism with Cl2=C�RC2 by using the permutation as mentioned above to represent the
Clif ford algebra and then use the complex base change ej�= �−i�ej. Of course JK= I and
�x�y =−KJ= I= i�z.

In general, there are two standard quadratic forms: the first is given by the k�k matrix 1k

=diag�1, . . . ,1� and the second one which exists on C2L is �2L= 1
2
� 0 1L

1L 0
�. The factor 1

2 is added to
cancel the factor of 2 in the relations. In the case that we are in even dimension that is in R2L or
after complexification in C2L, we fix the following notation for the basis elements. In the first case
we denote the basis vectors c1

+ , . . . ,cL
+ ,c1

− , . . . ,cL
−, and in the second case we will enumerate basis

vectors b1 , . . . ,bL ,a1 , . . . ,aL. This means that in the case of C2L for the first basis we get the
relations

�cm
�,cn

�� = 2�m,n
�,� �1�

for the generators of the Clifford algebra Cl2L corresponding to this basis. These operators are
usually called Clifford operators. For the second basis of C2L we obtain the following relations for
the generators of the Clifford algebra Cl2L

�bn,am� = �n,m, �bn,bm� = 0, �an,am� = 0. �2�

These operators are usually called fermion operators. �In a matrix representation one frequently
also postulates an

†=bn. We will not impose this at the moment.� One can think of the bn as creation
and the an as annihilation operators of the nth fermion. The operator Nn=bnan then has eigenval-
ues of 0 or 1 corresponding to whether the fermion is present or not. The fermions can also just be
seen as a representation of Cl2L on the exterior algebra �*CL. In the presentation of Eq. �2� we can
write the Clifford algebra as Cl− � Cl0 � Cl+, where Cl− is the subalgebra generated by the an, Cl+

is the one generated by the bn, and Cl0 is the center generated by C. The Fock space representation
RFock is then given as follows; let R
vac� be the one-dimensional representation of Cl0 � Cl− on C
=C 
vac� for which 1 
vac�= 
vac� and Cl− 
vac�=0 then RFock=Cl�Cl0�Cl−R
vac�. Here RFock

	�*CL as vector spaces and the Cl module structure is given by left multiplication.
The two sets of generators of Cl2L are related by the simple base change on W=C2L,

bn =
1

2
�cn

+ + icn
−�, an =

1

2
�cn

+ − icn
−� ,
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cn
+ = bn + an, cn

− =
1

i
�bn − an� . �3�

In the Clifford operator basis the role of the operator Nn is played by icn
−cn

+ which has eigenvalues
±1.

B. Spin chains

A spin chain of length L is a C-vector space V which is a tensor product of L copies of a su�2�
representation. A spin-chain Hamiltonian is an operator H which acts on such a V. �Sometimes a
spin chain is taken to mean V together with H.� We will only be concerned with spin 1

2 . That is,
V= � i=1

L C2 and H :V→V which means that H�GL�2L ,C�. �Although the notation H is suggestive
of both Hermitian and Hamiltonian, we will not restrict to the case that H is Hermitian.� The
copies of C2 are usually called sites. Many of the interesting Hamiltonians are obtained by using
linear and quadratic expressions in the Pauli-spin matrices �x, �y, and �z. It is well known that the
Pauli matrices together with the identity matrix with C coefficients form a basis of M2�C�	C
� H	C4 as vector spaces.

Examples of such spin chains are the XX, XY, and XYZ or Heisenberg model. In particular,
the XX chain has the Hamiltonian:

HXX =
1

2�
j=1

L

�� j
+� j+1

− + � j
−� j+1

+ � . �4�

Here we adopted the usual notation � jª12 � . . . � 12 � �

j

↓
� 12 � . . . � 12, where � is inserted at the

jth spot.

C. The Jordan-Wigner transformation

We recall that all the Clifford algebras are Z /2Z graded. This can either be seen by using the
involution on C�W ,Q� generated by ı�w��−ı�w� for w�W or the fact that the algebra is qua-
dratic and hence the Z grading of the tensor algebra descends to a Z /2Z grading on C�W ,Q�. This
splits the Clifford algebra into its even and odd parts, C�W ,Q�=C�W ,Q�even � C�W ,Q�odd.

A wonderful fact about Clifford algebras is that they satisfy C�W � W� , P � Q�	C�W , P�
�̂C�W� ,Q�. Here it is important that we used �̂ , that is, the tensor product as Z /2Z graded spaces.

Using this property, we see that Cl2L	Cl2
�̂L	M2�C��̂L. But we should be careful that M2�C��̂L

�M2�C��L. So we cannot directly identify the spin-chain operators with Clifford operators, since
the former are nongraded tensor products while the latter are graded. This is easily seen since �i

commutes with � j for i� j in the spin-chain case, while they should anticommute if they would be

Clifford operators. Indeed this is forced by considering �̂ .
This obstacle was overcome by Ref. 1 �see Ref. 2� by the following isomorphism of Cl2L

→Cl2
�L:

� j
+,− = �

i=1

j−1

�i
z�� j

x,y . �5�

It can easily be checked that these operators satisfy Eq. �1�. As noticed in Ref. 1, see also Ref. 13,
this is the only irreducible module of Cl2L—up to isomorphism of course. This can most quickly
be seen by using the fact that Cl2L is a matrix algebra over C and hence Morita equivalent to C.

D. Free fermions and fermionization

Comparing the two paragraphs, we see that the Clifford operators, that is elements of Cl2L

after using the Jordan-Wigner transformation, are operators on the spin-chain vector space V.
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Moreover, using the operators defined in Eq. �5�, we have Clifford operators on the spin chain and
using the transformation �3�, we obtain fermion operators. This allows us to write down “simple”
Hamiltonians,

H = �
n=1

L

�ni�n
−�n

+, �6�

or in terms of the associated fermion operators:

H = �
n=1

L

2�nbnan − �
n=1

L

�n = �
n=1

L

2�nNn + E0. �7�

In this form it is clear that H is the Hamiltonian of L free fermions whose energies are �n. The
second summand is the constant term corresponding to the Fermi sea.

Now as mentioned the representation �5� is unique up to isomorphism, so we could also first
apply a base change to the operators �m,n

�,� to obtain operators Tm,n
�,�. Since the � are images of the

basis elements of W, this amounts to using a change of basis � on the underlying vector space W
of the Clifford algebra. Notice that W is different from V= �C2��L and that dim W=2L, so that �
is a 2L�2L matrix. If we want that the operators T are still Clifford operators, that is they obey
Eq. �1�, then � has to be an orthogonal transformation, that is, �t�=12L. Of course, in the
fermionic case �7�, the change of basis transformations � preserving the relations �2� is the one
that preserves �: �t�2L�=�2L.

Using these transformations, we obtain a class of Hamiltonians of the form

H = �
n=1

L

�niTn
−Tn

+. �8�

Unravelling the definitions, we thus obtain spin chains describing free fermions. As spin-chain
Hamiltonians, that is, expressed in terms of the �-matrices, the form of H is highly nontrivial due
to the nonlocal nature of the Jordan-Wigner transformation.

The fermionization problem is the inverse problem: When can I write a given spin chain in
terms of free fermions? There is a way to go about this in case the Hamiltonian is a quadratic form
in the elements �,

H =
1

2 �
�m,��,�n,��

s.t.�m,����n,��

Mm,n
�,��m

��n
�. �9�

This is, for instance, the case if H is quadratic in the �±, H=�Am,n
�,��m

��n
�, and one has only nearest

neighbor interactions: Am,n
�,� =0 if 
m−n 
 �1. Although we postulated that there are no diagonal

entries, these entries would not pose any real problems, since due to the equation ��m
��2=1 they

would just contribute a constant term.
In this case, we can think of M as a quadratic form on the image ı�W� of W. Now due to the

grading ı�W� is an odd vector space, so that the matrix M for a “symmetric” quadratic form will
be skew symmetric. The aim now is to find a transformation of basis on W which makes H
diagonal in the Clifford basis corresponding to the new basis as in Eq. �8�. Let �
=diag��1 , . . . ,�L�, then the matrix problem one has to solve is �tM�= � 0 i�

−i� 0
�. Recalling that in

order to preserve the fermion presentation of the Clifford algebra �t�=1, this reads

M� = �� 0 i�

− i� 0
� . �10�

This is the type of equation that is usually obtained by calculating the commutators of the opera-
tors T with the Hamiltonian;2,7–11 here we find it by purely Clifford algebra considerations. Trans-
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forming to the equations by writing �= ��+�−� and �+=�++ i�− ,�−=�+− i�−, the equations
become the eigenvalue problem:

M�± = ± �±� . �11�

Since the matrix � is a base change on W which was of dimension 2L, we get 2L eigenvalues.
These come in pairs of ±�n. This is clear from the skew symmetry of M. Moreover looking at Eq.
�8�, we see that the change from �n to −�n does not affect the spectrum of H. This symmetry
corresponds to sending one of the Tn→−Tn.

II. THE XX-MODEL WITH BOUNDARIES

Now the above procedure works well for Hamiltonians such as the Ising, XX, XY,
Heisenberg-Ising chains,2,15 and other models.

With some work one can also sometimes include boundary terms. For this we consider the
Hamiltonian of Ref. 14 specialized to

H =
1

2 �
j=1

L−1

�� j
+� j+1

− + � j
−� j+1

+ � +
1
�8

��1
− + �1

+ + exp�i	��L
+ + exp�− i	��L

−� . �12�

A. Extending the chain

The H of Eq. �12� is not quadratic. On the other hand we can add the sites 0 and L+1 as in
Refs. 16 and 17 and consider the Hamiltonian

Hlong =
1

2 �
j=1

L−1

�� j
+� j+1

− + � j
−� j+1

+ � +
1
�8

��0
x�1

− + �0
x�1

+ + exp�i	��L
+�L+1

x + exp�− i	��L
−�L+1

x � ,

�13�

which acts on Vlong= � i=0
L+1C2. We see that Hlong is of the form �9�, since it is quadratic in the � and

has only nearest neighbor interactions. Thus we can apply the procedure of Sec. I D and express
Hlong in terms of L+2 fermions. From the form of Hlong we see that the matrices �0

x and �L+1
x

commute with Hlong, so the spectrum of Hlong decomposes into four sectors corresponding to the
eigenvalues ±1 of �0

x and �L+1
x . That is, we can write Vlong= � ��,����Z / 2Z�2V��. Here the notation

V�� naturally means that �0
x 
V��=�id and �L+1

x 
V��=�id. We can embed V into Vlong via
v�v+ � v � v+, where v+= � 1

1
� is the eigenvector of �x with eigenvalue of 1. The isomorphic

image of V is V+. Under this embedding we see that H� 
Hlong
V++ and hence the spectrum of H
is that of 
Hlong
V++

. The left inverse to the embedding map is the projection map 
 :Vlong→V
which simply projects out the first and last tensor factors.

B. Femionization of the extended chain

After substituting Eq. �5� into Eq. �13�, the matrix M of Eq. �9� becomes

M =�
0 G

− GT 0 F

− FT 0 F

� � �

− FT 0 K

− KT 0

� , �14�

where F=1/4� 0 i
−i 0

� and G=1/2� 0 2i/�8
0 0

� and K=1/2� 0 �i/�8�2 cos�	�

0 �i/�8�2 sin�	� �. The corresponding diagonaliza-

tion problem can be solved explicitly, see Ref. 14.
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C. Projection to the original chain

Notice that the projection/restriction to V++ is clear in the spin-chain picture but not so
obvious in the fermion language. The basic idea is to find the ground state which is in V++ and act

on it by operators b. Let B̄�Cl2L+2
+ be the subalgebra generated by b1 , . . . ,bL+1, then B̄= B̄even

� B̄odd. There are vectors v± which satisfy �0
xv±= ±v± and either �1� �L+1

x v±= ±v± or �2� �L+1
x v±

= �v±. Accordingly either

V++ = Bevenv+ or V++ = Boddv−. �15�

We refer to Ref. 14 for the details. There is something interesting going on here that we would
like to point out, although we do not fully understand the situation as of yet. The fact that V++ is
generated by even or odd excitations seems to suggest that we are actually dealing with modules
over Cl2L+2

even �Cl2L+2�Cl2L+4, where Cl2L+2 is generated by the ai and bi : i=1, . . . ,L+1. Now it is
well known that Cl2L+2

even �Cl2L+1.12,13 The dimension of the V++ is 2L so it is tempting to conjecture
that it is actually one of the spin representations and �L+1

x corresponds to the operator that distin-
guishes the two spin representations. This operator is t= in j=1

L+1ej in the standard notation. A quick
calculation shows that t� j=1

L+1� j
z, so things are in reality a little more complicated, but the dimen-

sional analysis and the fact that there are two representations distinguished by an operator with
eigenvalues of ±1 remain true. It would be interesting to find a complete representation theoretic
explanation for the projection mechanism.

III. SUPERSELECTION SECTORS AND THE THERMODYNAMIC LIMIT

A. Operators commuting with H

Just as we derived nontrivial spin chains from free fermions and vice versa found free fermion
representations of nontrivial spin chains, we can take operators which obviously commute with the
free fermion Hamiltonian and transform them back to the spin chain to obtain nontrivial conserved
quantities and hence superselection rules. One such operator is the total fermion number operator;
another operator of this kind is treated in Ref. 18.

To exhibit this strategy, we will now apply these observations to the XX-model with bound-
aries discussed in the last section. Moreover, as we explain in the next paragraph, this operator is
key to understanding the spectrum of H and its dependence on the parameter 	. Recalling that the
fermions entering the original chain are those labeled by 1, . . . ,L+1 �see Sec. II C�, the total
fermion number for the spin chain H is given by the projection of the operator:

Ftot
long = �

n=1

L+1

Nn = �
n=1

L+1

bnan. �16�

We note that a priori it is not clear that this operator can actually be “projected.” A posteriori this
follows either from the explicit form, Ftot

long=�0
x

� Ftot � �L+1
x , whose calculation we describe be-

low, or from the results about the spectrum being given by an even or odd number of fermion
excitations �see Sec. II C�.

Denoting the entries of the matrix �= ��+�−� appearing in Eq. �11� by �n
�� j

�, that is, �n
�� j

�

with n and �= ±1 fixed, �= ±1, and j=0, . . . ,L+1 is the eigenvector to the eigenvalue ��n, we
can write

Ftot
long =

1

4 �
n=1

L+1

�
j,k=0

L+1

�
�,�=±1

�n
−� j

��n
+�k

�� j
��k

�. �17�

Now the explicit form of the eigenvectors , which are known,14 allows us to compute this
expression projected to the short chain V in terms of the � matrices of the original spin-chain
picture �see Ref. 19 for the details�,
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Ftot =
1

4L + 4 �
j,k=1

j+k odd,j�k

L

�− 1��j+k+1�/2�� j+1
z

¯�k−1
z � � �� sin„	�j − k�/�L + 1�…

sin„
�j − k�/�2L + 2�…

+
sin„	�j + k�/�L + 1�…

sin„
�j + k�/�2L + 2�…��� j
x�k

y − � j
y�k

x� + � cos„	�j + k�/�L + 1�…
sin„
�j + k�/�2L + 2�…��� j

y�k
y − � j

x�k
x��

+
1

�8�L + 1�� �
k=1

k odd

L−1

�− 1��k+1�/2� cos„	k/�L + 1�…
sin„
k/�2L + 2�…

�1
z�2

z
¯�k−1

z �k
x�

+ �
k=2

k even

L ��− 1��L+k+2�/2 cos„	k/�L + 1�…
cos„
k/�2L + 2�…

�k
x + �− 1��k+L�/2 sin„	k/�L + 1�…

cos„
k/�2L + 2�…
�k

y�
���k+1

z
¯�L−1

z �L
z �� . �18�

In Eq. �18�, we have taken the projection to the original chain H by using the equation
Ftot

long=�0
x

� Ftot � �L+1
x . The fact that Ftot

long has this special form is the a fortiori reason that indeed
the total fermion number is a quantity that is well defined on the original chain.

Depending on which case one is in �see Sec. II C�, the eigenvalues are either odd or even. It
is clear that it would be impossible to find this operator, which is a novel conserved quantity
corresponding to a hidden symmetry for the spin chain, relying solely on the spin-chain picture.

B. The thermodynamic limit

Since we have superselection rules for the state space, we can look at the partition function Zm

of H restricted to the sector with m fermions. The relevant eigenvalues are given by14,19

�n =
1

2
sin� 	

L + 1
+

�2n − 1�
L + 1




2
�, n = 1, . . . ,L + 1. �19�

Since limL→��2L�n /
�=	 /
+1/2+n−1, in the thermodynamic limit,20 we obtain

Zm = lim
L→�

�tr z�L/
��n=1
L+12�nNn� = zm	/
+m/2 �

n1,n2,. . .,nm

zn1−1+n2−1+¯+nm−1

= zm	/
+m/2��
l

pm�l�zl + �
l

pm−1�l�zl�
= zm	/
+m/2� zm�m+1�/2 + �1 − zm�z�m−1�m/2

�1 − z��1 − z2� ¯ �1 − zm� �
=

zm	/
+m2/2

�1 − z��1 − z2� ¯ �1 − zm�
. �20�

Here pm�l� counts the number of ways the integer l can be expressed as a sum of m distinct
nonzero integers. The second term involving pm−1 takes into account that one of n1−1 in the sum
before might be zero and the second equality follows from the formula

�
l

pm�l�zl =
zm�m+1�/2

�1 − z��1 − z2� ¯ �1 − zm�
. �21�
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The complete partition function Z will then be a sum over all the even or the odd m depending
on 	. On the other hand Z has been calculated,21 so that equating the two expressions, one obtains
an interesting combinatorial identity.

What we gain from the calculation of Zm is that we now know that in the sector with fixed
fermion number, the dependence of Zm on 	 is given by a factor of zm	/
. This simply induces a
uniform shift off the usual spectrum. Notice that the factor is different though for different m, so
that the eigenspaces of the thermodynamic limit of the operator Ftot play a special role, since the
shift can precisely be factored out on these spaces. The reason for this factorization is the special
distribution of the eigenvalues �19�.

Another way to phrase this result is as follows. Consider the polynomial ring in infinitely
many fermionic variables which are indexed by half integers F=C��i� : i�N0+ 1

2 . This space comes
equipped with a natural bigrading. The first grading is by the usual degree where deg��i1

¯�im
�

=m. The second is by the weight wt where wt��i1
¯�im

�=� j=1
m ij. Thus we can decompose F=

�dFd according to the degree or according to the weight F= �wFw. We will set Fd
w to be the

bigraded piece of pure degree d and pure weight w and we will let 
d denote the projection of F
onto its summand Fd. It is an elementary calculation to show that the dimension of Fm

l+m/2 is
pm�l�+ pm−1�l� and likewise the dimension of Fm

l−m/2 is just pm�l�.
Furthermore there are the two subspaces Feven and Fodd spanned by polynomials whose degree

is either even or odd. Now the state space of H in the thermodynamic limit is abstractly isomor-
phic to one of the two subspaces Feven or Fodd of F �see Sec. II C�. The isomorphism is given by
sending the state 
n1 , . . . ,nm�, which is the state with fermions ni, to the monomial �n1−1/2¯�nm−1/2.
�Recall that the ni are positive integers and the indices of the � start at 0+ 1

2 .� In this language, the
partition sum is the partition function tr z��	� for the operator ��	�ª 
��m��m	 /
�id+wt�
�
m�
Fodd/even. So we see that the eigenspaces are exactly the Fm

l+m/2 with the eigenvalues given by
m	 /
+m /2+ l and hence 	 tunes the eigenvalue uniformly in each of the given sectors.

Now, in the original spin chain, this essential grading operator is given by the limit of Eq.
�18�. More details are contained in Ref. 19.
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In the framework of the extended resolvent approach the direct and inverse scat-
tering problems for the nonstationary Schrödinger equation with a potential being a
perturbation of the N-soliton potential by means of a generic bidimensional smooth
function decaying at large spaces are introduced and investigated. The initial value
problem of the Kadomtsev-Petviashvili I equation for a solution describing N wave
solitons on a generic smooth decaying background is then linearized, giving the
time evolution of the spectral data. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2393144�

I. INTRODUCTION

A. Formulation of the problem

We consider the Kadomtsev-Petviashvili equation in its version called KPI,1

�ut − 6uux1
+ ux1x1x1

�x1
= 3ux2x2

, u = u�x1,x2,t� . �1.1�

By associating it to the nonstationary Schrödinger operator

L = i�x2
+ �x1

2 − u�x� , �1.2�

it has been shown to be integrable about three decades ago.2,3 More precisely,4 the following time
evolution of the KPI equation �time dependence of u is understood�

ut�x� − 6u�x�ux1
�x� + ux1x1x1

�x� = 3�
−t�

x

dx1�ux2x2
�x1�,x2� �1.3�

can be obtained by introducing the auxiliary operator

T�x� = �t + 4�x1

3 − 6u�x��x1
− 3ux1

�x� + 3i�
−t�

x1

dx1�ux2
�x1�,x2� �1.4�

and by imposing compatibility with the nonstationary Schrödinger operator L, i.e.,

�L,T� = 0. �1.5�

The initial value problem for KPI in the case of rapidly decaying initial data was solved in
Refs. 5–10 by using the inverse scattering transform �IST� method.
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However, the KPI equation, being a �2+1�-dimensional generalization of the Korteweg de
Vries �KdV� equation, admits also solutions that behave at space infinity such as the solutions of
the KdV equation. Therefore, it is natural to consider potentials u�x� in Eq. �1.2� which are rapidly
decaying on the plane in all directions with the exception of a finite number of directions along
which the limits

lim
x2→±�

u�x1 − 2�nx2,x2�, �n � R, n = 1,2, . . . ,N , �1.6�

exist and are different from zero.
In Ref. 4 and 11–15 the method of the “extended resolvent” �or, for short, method of resol-

vent� was suggested as a way of pursuing a generalization of the IST that enables studying the
spectral theory of operators with nontrivial asymptotic behavior at space infinity. In Refs. 15–21
for the nonstationary Schrödinger and heat operators the case where there is only one direction of
nondecaying behavior was considered. The starting point in solving the problem was the embed-
ding of the pure one-dimensional case in the two-dimensional spectral theory, building the two-
dimensional extended resolvent for a potential u�x��u1�x1�. Then, a potential u�x�=u1�x1�
+u��x�, where u��x� is an arbitrary decaying smooth function of both spatial variables, was con-
sidered and the corresponding resolvent was constructed by dressing the above resolvent for
u�x�=u1�x1�. Finally, all mathematical entities generalizing the standard ones in IST, as Jost
solutions and spectral data, were derived by a reduction procedure from this dressed resolvent.

Here, we consider a real potential u�x� given as a sum of two terms,

u�x� = uN�x� + u��x� , �1.7�

where uN is the N-soliton potential of the nonstationary Schrödinger equation obtained in Ref. 22
and then generalized in Ref. 23 and u��x� is an arbitrary bidimensional decaying smooth pertur-
bation. This case is substantially more complicated since uN is a true bidimensional potential and
we have not the one-dimensional sample as a guide to follow.

Therefore, one needs first to construct directly the resolvent MN of the nonstationary
Schrödinger operator with potential uN,

TABLE I. Main objects in the resolvent approach.

L�x , i�x� Differential operator Eq. �1.9�
L�x ,x� ;q� , q�R2 Extended differential operator Eq. �1.16�

A�x ,x� ;q� Extended pseudodifferential operator Eq. �1.14�

Â�x ,x� ;q� Hat operator Eq. �1.25�

A�z��x ,x� ;q� Shifted operator Eq. �1.24�

LM =ML= I Extended resolvent Eq. �1.33�

M�−M =−M��L�−L�M Hilbert identity Eq. �1.35�

LÂ=L�Â, AL̂= ÂL� L and dual L operating from left and right Eq. �1.30�

TABLE II. Green’s functions and Jost solutions for a generic potential.

G�x ,x� ,k�=M̂��I�k��, ��k�= �k ,k2�, k�C Green’s function Eq. �1.42�

G±�x ,x��=limq2→±0limq1→0 M̂�q� Adv/ret Green’s functions Eq. �1.46�

��k�=G�k�L�0�0�k� Jost solution Eq. �1.51�

�±�x ,k�=G±L�0�0�k�, k�kR
Adv/ret solutions Eq. �1.52�
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LN = i�x2
+ �x1

2 − uN�x� . �1.8�

Using the results obtained in Ref. 24 this was done in Ref. 25.
Here, following the method developed in Refs. 15–20, we construct the extended resolvent M

of the nonstationary Schrödinger operator �1.2� with a potential u as in Eq. �1.7� by dressing the
resolvent MN obtained in Ref. 25 and we derive it by a reduction procedure the corresponding Jost
solutions and spectral data together with their characterization equations and time evolution.
Finally, the inverse scattering problem is solved.

We start in the following sections with a short outline of the resolvent approach and with the
presentation of some results of articles 24,25 used in what follows.

B. Notations and guiding lines

In order to deal with the inverse scattering method, in the case we are considering, it is
necessary to introduce mathematical objects which are extensions of familiar objects as differen-
tial operators, pseudodifferential operators and resolvent, and that we are calling extended. This
extension procedure is not at all trivial and, being new and original, is not familiar to the common
reader. Therefore, we evaluated that it could be useful to present some tables with the symbols we
use, their name, and the numbers of the defining formulas.

In Table I are listed the main objects we are dealing with in the case of a generic potential
u�x�.

We first introduce what we call the extension L�x ,x� ;q� of a differential operator L�x , i�x�
depending on a spectral parameter q and, then, following a procedure similar to that used for
passing from differential operators to pseudodifferential operators, we introduce the extended

TABLE III. Main objects in the N-soliton case.

LN�x , i�x� Differential operator Eq. �1.8�
MN�x ,x� ;q� Extended resolvent Eq. �2.44�

L�N ,L�N
LN and dual LN operating from left and right Eq. �1.30�

GN�x ,x� ,k� Green’s function Eq. �2.52�

GN,±�x ,x�� Adv/ret Green’s functions Eq. �2.56�

��x ,k� Jost solution Eq. �2.9�

�n�x ,kI� Auxiliary Jost solutions Eq. �2.24�

TABLE IV. Spectral data for N solitons.

f�= �r±
−��†r±

−� Spectral data Eq. �2.118�

r±
�= �r±

��p���p−k� 0

0 r±
��m ,n� � Triangular spectral data Eq. �2.111�, �2.75�, and �2.87�

t�= �t��p���p−k� 0

0 �mn�n
� � Transmission coefficient Eq. �2.112� and �2.26�

�±�k�=���k�r±
−��k� Adv/ret solutions Eq. �2.78�

�±,n=�m=1
N �m

��r±
−��†�m ,n� Auxiliary adv/ret solutions Eq. �2.91�
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pseudodifferential operators A�x ,x� ;q�. The extended resolvent M�x ,x� ;q� is defined as the in-
verse of the extended differential operator L�x ,x� ;q� and in its hat version identifies a family of
Green’s functions of L depending on the spectral parameter q.

In the case of the nonstationary Schrödinger operator L in Eq. �1.2�, special reductions with
respect to this parameter q furnish “standard” Green’s function G�x ,x� ,k�, Green’s function for
short, and advanced/retarded Green’s functions G±�x ,x��. By using them one can then build the
Jost and advanced/retarded solutions as indicated in Table II.

If wavelike solitons are present the potential u�x� is not going to zero at large spaces and the
equations defining the Jost solutions, due to the bad behavior at infinity of the potential, need to be
regularized and, in addition, the Jost solutions do not form a complete set anymore. All this
prevents solving the problem by a direct approach.

In fact, it is necessary to consider first the case of a pure N-soliton potential uN�x� and to build
all the mathematical objects listed above, including the auxiliary Jost solutions which complete the
set of Jost solutions. The notations used are listed in Table III, where n=1,2 , . . . ,N.

Then, we consider the potential u�x�=uN�x�+u��x� obtained by perturbing the pure N-soliton
potential uN�x� by adding a smooth decaying perturbation u��x� and we dress Green’s functions
and Jost solutions by using the Hilbert identity listed above with L�=LN and M�=MN.

The spectral data in the case of N solitons are well known and are given by the locations �n

�n=1,2 , . . . ,N� of the poles of the transmission coefficient t�k�, that we choose in the upper half
complex plane, and by the N	N matrix C, hermitian and positive, of the normalization coeffi-
cients. However, in view of the dressing, these spectral data are not convenient and, in spite of the
fact that they are superfluous in this case, we need also to define the advanced/retarded solutions
together with their auxiliary advanced/retarded solutions.

Therefore, we introduce as alternative equivalent spectral data a matrix f�, which exhibits a
triangular decomposition, and the advanced/retarded and auxiliary advanced/retarded solutions
according to Table IV. Here and everywhere in the following we use � for indicating the label ±,
we indicate by f��k�, for any function f�k� of the complex variable k, the limiting value of f�k� at
the real axis from above ��= + � and from below ��=−�, and we define the product of matrices
with matrix elements with continuous and discrete indices by integrating and summing, respec-
tively, over continuous and discrete indices.

One can write a set of characterization equations for the triangular spectral data r±
� not very

significant in this case, but ready to be dressed perturbing uN. �see Table V�.
Then, one can write more conveniently the relations interlacing the different Jost solutions by

introducing a vectorial formulation, which, again, is not very significant in this case, but very
convenient when performing the dressing. Precisely, see Table VI.

TABLE V. Spectral data characterization equations for N solitons.

r±
��t��−1�r±

−��†=I Eq. �2.113�
�r±

−��†r±
��t��−1=I Eq. �2.113�

�r+
��†r+

�= �r−
��†r−

� Eq. �2.119�

TABLE VI. Vectorial Jost solutions for N solitons.

��= ����k� ,�1
� , . . . ,�N

�� Vectorial Jost solution Eq. �2.109�
�±= ��±�k� ,�±,1 , . . . ,�±,N� Vectorial adv/ret solutions Eq. �2.110�

��t�=�±r±
� Jost in terms of adv/ret Eq. �2.115�

�±=���r±
−��† Adv/ret in terms of Jost Eq. �2.116�

��t�=�−�f−� Discontinuity at kI=0 Eq. �2.117�
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Then, the mathematical objects related to the perturbed potential u�x�=uN�x�+u��x� can be
obtained by dressing the corresponding ones for uN�x� according to the scheme in Table VII.

The Jost solution ��k� is analytical in the complex k plane with a discontinuity across the real
axis and the segments k=�nR+ ikI, �kI�
�nI. Spectral data relate the limiting values of the Jost
solution at the two sides of these cuts and their triangular decomposition is obtained by consid-
ering the relation among values of the Jost solution at the two sides of the real axis and the
advanced/retarded solutions. All this is described in a more transparent and compact way by using
a vectorial notation for the Jost solutions according to Table VIII.

The spectral data involved in Table VIII are listed in Table IX.
Finally, one can derive the scheme in Table X for the characterization equations of the spectral

data.
The first two equations state that the matrix operator R±

��T��−1 admits right and left inverse,
while the third equation is a characterization equation in the strict sense.

C. Extended resolvent approach

In this section we briefly review, in two dimensions for definiteness, the basic elements of the
extended resolvent approach. For further details, we refer the interested readers to Refs. 11–16.

Let us consider the operators with kernel

L�x,x�� = L�x,i�x���x − x�� , �1.9�

where L�x , i�x� denotes a differential operator whose coefficients are smooth functions of x and let
us introduce what we call the extension of these differential operators, i.e., to any differential
operator L we associate the operator L�q� with kernel

L�x,x�;q� � L�x,i�x + q���x − x�� = eiq�x−x��L�x,x�� , �1.10�

where x= �x1 ,x2�, x�= �x1� ,x2���R2, and q= �q1 ,q2��C2 and

TABLE VII. Perturbed Green’s functions and Jost solutions.

G�k�=GN�k�+GN�k�u�G�k� Green’s function Eq. �1.59�
G±=GN,±+GN,±u�G± Adv/ret Green’s functions Eq. �1.60�

��k�=G�k�L�N��k� Jost solution Eq. �3.3�

�±�k�=G±L�N�±�k� Adv/ret solutions Eq. �3.88�

�n�kI�=G��nR+0+ ikI�L�N�n�kI� Auxiliary Jost solutions Eq. �3.31�

�±,n=G±L�N�±,n
Auxiliary adv/ret solutions Eq. �3.89�

TABLE VIII. Perturbed vectorial Jost solutions.

��= ����k� ,�1
� , . . . ,�N

�� Vectorial Jost solution Eq. �3.113�
�±= ��±�k� ,�±,1 , . . . ,�±,N� Vectorial adv/ret solutions Eq. �3.113�

��T�=�±r±
�R±

� Jost in terms of adv/ret Eq. �3.137�

�±=���R±
−��†�r±

−��† Adv/ret in terms of Jost Eq. �3.138�

��T�=�−�F−� Discontinuity at kI=0 Eq. �3.127�

����kR=�nR
=�n�kI�wn�kI� Discontinuity at kR=�nR

Eq. �3.42�
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qx = q1x1 + q2x2. �1.11�

The q variable will play in the following the role of a spectral parameter and we use a boldface
character to emphasize that it is complex. By using the Fourier transform we can write

L�x,x�;q� =
1

�2��2 � d e−i�x−x��L�x, + q�,  = �1,2� . �1.12�

Then, it is natural to introduce more general operators A�q� with kernel

A�x,x�;q� =
1

�2��2 � d e−i�x−x��P�x, + q� �1.13�

obtained by considering not just a polynomial L�x ,q� in q but a tempered distribution P�x ,q� of
the six real variables x, qR and qI. Notice that the dependence on qR can be factorized

A�x,x�;q� = eiqR�x−x��A�x,x�;q� , �1.14�

where

q = qR + iqI � C2, q � qI � R2, �1.15�

and that A�x ,x� ;q� belongs to the space S� of tempered distributions of the six real variables x, x�
and q= �q1 ,q2�. In particular, for the case of a differential operator we get by Eq. �1.10�

L�x,x�;q� = e−q�x−x��L�x,x�� . �1.16�

Definition �1.13� recalls the definition of a pseudodifferential operator with symbol P�x ,�.
However, it is different in two respects, since the symbol P�x ,q� depends on an additional
parameter q and the functional space to which the symbol P�x ,q� belongs is much larger than the
functional space used by mathematicians in defining the pseudodifferential operators. Both gen-
eralizations are crucial in the following. Therefore, we call the operators A�q� with kernel
A�x ,x� ;q� belonging to the space S� extended pseudodifferential operators, or by short operators,
and P�x ,q� their symbols.

TABLE IX. Spectral data of the perturbed potential.

F�= �R±
−��†f�R±

−� Spectral data Eq. �3.148�

R±
�= �R±

��p ,k� R±
��p ,n�

R±
��m ,k� R±

��m ,n� � Triangular spectral data Eqs. �3.132�
–�3.136�

T�= �t
��p���p−k� 0

0 �mn

�n
�

An
� � Transmission coefficient Eqs. �3.118�

and �3.28�

wn�kI� Additional spectral data Eq. �3.44�

TABLE X. Spectral data characterization equations for the perturbed poten-
tial.

�R±
−��†t�R±

��T��−1=I Eq. �3.141�
R±

��T��−1�R±
−��†t�=I Eq. �3.142�

�R+
−��†f�R+

−�= �R−
−��†f�R−

−� Eq. �3.143�
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In the following it is often useful to use instead of the symbol P�x ,q� its Fourier transform
with respect to x, i.e.,

A�p;q� =
1

�2��2 � dx eipxP�x,q�, p = �p1,p2� . �1.17�

From Eqs. �1.13� and �1.14� it follows that A�p ;q� is related to A�x ,x� ;q� by

A�p;q� =
1

�2��2 � dx� dx�ei�p+qR�x−iqRx�A�x,x�;q� . �1.18�

The inverse of Eq. �1.18� is given by

A�x,x�;qI� =
1

�2��2 � dp� dqR e−i�p+qR�x+iqRx�A�p;q� . �1.19�

Then, we consider A�x ,x� ;q� and A�p ;q� as the representation of the operator A�q�, respec-
tively, in the x-space and in the p-space.

In the space of this operators we define the hermitian conjugation as

A†�x,x�;q� = A�x�,x;− q�, A†�p;q� = A�− p;q̄ + p� , �1.20�

in terms of kernels in x- or p-spaces. For generic operators A�q� and B�q� with kernels A�x ,x� ;q�
and B�x ,x� ;q� we introduce the standard composition law

�AB��x,x�;q� =� dx�A�x,x�;q�B�x�,x�;q� , �1.21�

if the integral exists in terms of distributions. In terms of kernels A�p ;q� and B�p ;q� this com-
position takes the form of a shifted convolution

�AB��p;q� =� dp�A�p − p�;q + p��B�p�;q� . �1.22�

An operator A can have an inverse A−1 in the sense of this composition, i.e., such that AA−1= I and
A−1A= I, where I is the unity operator in S�, i.e., I�x ,x� ;q�=��x−x�� in the x-space or I�p ;q�
=��p� in the p-space, being ��x� and ��p� two-dimensional �-functions.

We will use also the following notation for the shift with respect to the complex variable q:

A�z��p;q� = A�p;q + z�, z � C2, �1.23�

that, thanks to Eq. �1.14�, in the x-space reads

A�z��x,x�;q� = eizR�x−x��A�x,x�;q + zI� . �1.24�

Of course the two representations in the x-space and in the p-space are equivalent and, in prin-
ciple, one could work always in one of them. However, it is often convenient to pass from one
representation to the other. Thus, the p-space is more suitable for studying analyticity properties,
while boundedness is more easily studied in the x-space.

For a generic operator A�q� with kernel A�x ,x� ;q� it can be convenient to consider the
operation

Â�x,x�;q� = eq�x−x��A�x,x�;q� , �1.25�

furnishing what we call the “hat kernel” of A�q� in the x-space. In the special case of a kernel
L�x ,x� ;q� which is, according to the definition �1.10�, an extension of a differential operator
L�x , i�x� this operation is just the inverse of the extension procedure, i.e.,
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L̂�x,x�;q� = L�x,i�x���x − x�� . �1.26�

In general, however, Â�x ,x� ;q� does depend on q nontrivially and, due to the exponential factor in
Eq. �1.25�, in contrast with A�x ,x� ;q�, does not belong to the space S��R6� of tempered distribu-
tions.

Operation �1.25� has no analog in terms of the p-representation. In the x-representation local
properties of kernels are preserved, so we can reformulate �1.21� and �1.18� in terms of the hat
kernels getting

�AB̂��x,x�;q� =� dx�Â�x,x�;q�B̂�x�,x�;q� , �1.27�

A�p;q� =
1

�2��2 � dx� dx�ei�p+q�x−iqx�Â�x,x�;qI� . �1.28�

If we consider the differential operator L�x , i�x� and the composition of its extension L with an
operator B, that is LB and BL, by applying the transformation �1.25� we obtain

LB̂�x,x�;q� = L�x,i�x�B̂�x,x�;q�, BL̂�x,x�;q� = Ld�x�,i�x��B̂�x,x�;q� , �1.29�

where Ld is the operator dual to L. In what follows we shall use a special notation for formulas of
this type writing

LB̂�q� = L� B̂�q�, BL̂�q� = B̂�q�L� , �1.30�

so that L� denotes the operator L applied to the x variable of the kernel B̂�x ,x� ;q� and L� denotes
the operator dual to L applied to the x� variable of the same kernel.

The dual and adjoint hat operators are given, respectively, as

Â−
d�x,x�;q� = Â�x�,x;− q� , �1.31�

Â†�x,x�;q� = Â�x�,x;− q� . �1.32�

The main object of our approach is the extended resolvent �or resolvent for short� M�q� of the
operator L�q�, which is defined as the inverse of the operator L, i.e.,

L�q�M�q� = M�q�L�q� = I . �1.33�

In terms of the corresponding hat operators the definition of the resolvent M reads

L� M̂�q� = I = M̂�q�L� , �1.34�

which shows that M̂�q� is a two-parameter set of Green’s functions of the operator L. It is worth
stressing the fact that the extended pseudodifferential operators, in contrast with the pseudodiffer-
ential operators, have hat kernels which depend on q play here and will play in the following a
crucial role in the theory.

If we consider now the resolvent M of L and the resolvent M� of another extended differential
operator L� we can interlace the two resolvents by noticing that, if associativity is assumed, they
satisfy the following generalized Hilbert identity:

M� − M = − M��L� − L�M = − M�L� − L�M�. �1.35�

On the other side, if M is inverse of L and M� satisfies Eq. �1.35� then M� is inverse of L�.
Therefore, if the inverse M of L is known, the two equations in Eq. �1.35� become two integral
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equations, one dual to the other, defining the resolvent M� of L�. This Hilbert identity is the main
tool we will use in the whole spectral theory of differential operators.

The resolvent defined in Eq. �1.33� is not unique even under conditions that it is simulta-
neously right and left inverse of operator L�q� and its kernel belongs to the space of tempered
distributions. This problem is resolved by associativity assumption made in derivation of Eq.
�1.35�. Indeed, let us consider Eq. �1.35� for L=L�q� and L�=L�z��q� �so that by Eqs. �1.33� and
�1.24� also M�=M�z��q��:

M�z��q� − M�q� = − M�z��q��L�z��q� − L�q��M�q� . �1.36�

Notice that, due to the definition of a shift in Eq. �1.24�, the left-hand side of Eq. �1.36� is a
tempered distribution with respect to q-variables and smooth, infinitely differentiable function of
z. This implies that the product of distributions in the right-hand side must also be a well defined
tempered distribution for any value of z and any order of operations. By considering some simple
examples one can check that this requirement determines the inverse M�q� uniquely. Below we
use this Hilbert identity for studying properties of the resolvent with respect to the parameter q,
such as continuity and differentiability.

D. Green’s functions and Jost solutions for a generic potential

The extension of the nonstationary Schrödinger operator �1.2� is given by

L�q� = L0�q� − u�q� , �1.37�

where in the x-space

L0�x,x�;q� = �i��x2
+ q2� + ��x1

+ q1�2���x − x��, u�x,x�;q� = u�x���x − x�� . �1.38�

Notice that, due to the reality of the potential u�x�, by definition �1.20� we have that the operator
L�q� is Hermitian

L†�q� = L�q� , �1.39�

as well as the resolvent

M†�q� = M�q� . �1.40�

Hermiticity condition �1.40� for the resolvent is equivalent to

M̂�x,x�;q� = M̂�x�,x;− q� . �1.41�

Of special relevance in the following will be Green’s function G�x ,x� ,k� obtained by consid-

ering the following reduction of M̂�q� depending on the complex spectral parameter k:

G�k� = �M̂�q��q=�
I
�k�, k � C , �1.42�

where ��k� is the special two-component vector

��k� = �k,k2� . �1.43�

Since M̂�x ,x� ,q� is growing exponentially as a function of x and x�, the same property has the
kernel G�x ,x� ,k� for generic k�C. But the function

G�x,x�,k� = ei�R�k��x−x��M��x,x�,q��q=�
I
�k�, �1.44�

being a reduction of the resolvent itself belongs to S� and due to Eq. �1.25� it is simply related to
G�k� by
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G�x,x�,k� = ei��k��x−x��G�x,x�,k� . �1.45�

As regards the so called advanced/retarded Green’s functions, they can be obtained by the follow-
ing reduction of the resolvent:

G± = lim
q2→±0

lim
q1→0

M̂�q� . �1.46�

Thanks to Eq. �1.34� we have

L� G�k� = I = G�k�L� , �1.47�

L� G± = I = G±L� , �1.48�

and thanks to Eq. �1.41�

G�x,x�,k� = G�x�,x,k̄�, k � C , �1.49�

G+�x,x�� = G−�x�,x� . �1.50�

Then, by using these Green’s functions we can introduce the so called Jost and advanced/retarded
solutions and their dual

��k� = G�k�L� 0�0�k�, ��k� = �0�k�L� 0G�k� , �1.51�

�±�k� = G±L� 0�0�k�, �±�k� = �0�k�L� 0G±, �1.52�

where L0 is the bare differential operator introduced in Eq. �1.38� and

�0�x,k� = e−i��k�x, �0�x,k� = ei��k�x. �1.53�

Here and in what follows we use for shortness operator notations for relations of the kind �1.51�
and �1.52�, where, say, the first two stand for

��x,k� =� dx��L0
d�x�,�x��G�x,x�,k���0�x�,k� , �1.54�

��x�,k� =� dx�0�x,k�L0�x,�x�G�x,x�,k� . �1.55�

Thanks to �1.47� and �1.48� functions ��x ,k�, ��x ,k�, �±�x�, and �±�x� are solutions of the
Schrödinger equation and its dual, i.e.,

L� ��k� = 0, ��k�L� = 0, �1.56�

L� �±�k� = 0, �±�k�L� = 0. �1.57�

However, one must be advised that the integrals in the rhs of definitions �1.51� and �1.52� for u not
decaying at large spaces are divergent and must be regularized. In the following section we show
how to overcome this problem and, then, how to proceed in building the inverse scattering theory.
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E. Dressing procedure

If MN�q� is the resolvent of LN�q�, the extension of the nonstationary Schrödinger operator
defined in Eqs. �1.37� and �1.38� with u=uN, then the resolvent M�q� of L�q�, the extension ot the
operator with potential u=uN+u�, can be obtained by dressing MN�q�. In fact, from the two Hilbert
identities in Eq. �1.35� we get the two reciprocally dual integral equations

M�q� = MN�q� + MN�q�u�M�q�, M�q� = MN�q� + M�q�u�MN�q� , �1.58�

where u� is the multiplication operator with kernel u��x ,x� ;q�=u��x���x−x��.
Correspondingly, for Green’s functions we have the integral equations

G�k� = GN�k� + GN�k�u�G�k� , �1.59�

G± = GN,± + GN,±u�G±, �1.60�

and their dual, where GN�k� and GN,± are Green’s function and advanced/retarded Green’s func-
tions of the operator LN, defined according to Eqs. �1.42� and �1.46�. Taking into account that in
Ref. 25 we derived explicitly the extended resolvent MN and Green’s functions GN�k� and GN,±, the
above equations enable us to develop the inverse scattering theory for a potential describing a
perturbation of the N-soliton potential by a smooth decaying function u��x� of two variables.

We already mentioned that the main tool of our construction is the Hilbert identity �1.36�. In
fact, for a potential u as in Eq. �1.7�, taking into account that the potential does not depend on q,
we can write

L�z��q� − L�q� = LN
�z��q� − LN�q� = − LN

�z��q��MN
�z��q� − MN�q��LN�q� ,

and, then, from Eq. �1.36� we get

M�z��q� − M�q� = �M�q�LN�q���z��MN
�z��q� − MN�q��LN�q�M�q� . �1.61�

This Hilbert identity can be fruitfully used for studying the singularities of the resolvent M�q�,
because by its means they can be obtained by dressing the singularities of the resolvent MN�q�
which are explicitly known. In particular, let us mention that the shift operation defined in Eq.
�1.24� in terms of the hat kernels means that

A�z��x,x�;q� = e�iz−q��x−x��Â�x,x�;q + zI� . �1.62�

Then the �-bar derivatives of Eq. �1.61� with respect to complex variables z1 and z2 at z=0 give
the relations

�M̂�q�
�qi

= M̂�q�L� N
�M̂N�q�

�qi
L� NM̂�q�, i = 1,2, �1.63�

where we used notations in Eq. �1.30�. It is necessary to mention that the products of hat-kernels
are not associative due to their exponential growth and, therefore, the arrows over operators denote
also the order of operations.

The Hilbert identity �1.61� can also be reduced to special values of the resolvents giving
Hilbert identities involving Green’s functions. In fact, recalling the definition �1.42� of Green’s
function G�k� we see that its limiting values on the real axis,

G±�x,x�,k� = G�x,x�,k ± i0�, k � R , �1.64�

correspond to the limits of the resolvent at q=0,
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G±�x,x�,k� = lim
q1→±0

M̂�x,x�;q1,2kq1� . �1.65�

Also, advanced/retarded Green’s functions are obtained as limiting values of the resolvent at q
=0 according to the definition �1.46�. Let us consider the Hilbert identity �1.61� at zR=0, i.e.,

M�q�� − M�q� = �M�q��LN�q����MN�q�� − MN�q��LN�q�M�q� , �1.66�

where q�=q+zI �see Eq. �1.62��. Performing here the limits �1.65� and �1.46� for q and q� we
derive

G��k� − G± = G±L� N�GN
��k� − GN,±�L� NG��k�, � = + ,− , �1.67�

G+ − G− = G±L� N�GN,+ − GN,−�L� NG�, �1.68�

where the rhs of the last equality is independent of the choice of the upper or bottom signs.

II. N-SOLITON POTENTIAL AND RELATED OBJECTS

In order to get in the following by a dressing procedure all mathematical entities involved in
the inverse scattering method we need not only the explicit form of the N-soliton potential uN of
the nonstationary Schrödinger operator, but also the related resolvent and such its reductions as
Green’s functions, Jost and what we call auxiliary Jost solutions. Here, we revisit the results
obtained in Refs. 22 and 25 and, in addition, we present the asymptotic behavior of the Jost
solutions at large space distances and the properties of the resolvent and Green’s function, includ-
ing their singularities.

A. Pure N-soliton potential and Jost solutions

In this article we consider the case where uN in Eq. �1.7� is a pure N-soliton potential. Then
following Ref. 25 we can choose as discrete spectral data N different complex parameters
�1 , . . . ,�N and a n	n constant matrix C. As was shown in Ref. 25 parameters �n, without loss of
generality in the case of the pure N-soliton potential, can be chosen in the upper half plane:

�nI � 0, n = 1, . . . ,N . �2.1�

In what follows we use notation

�n
+ = �n, �n

− = �̄n. �2.2�

Matrix C= 	Cm,n	m,n=1,. . .,N must be Hermitian and strictly positive:23,24

C† = C, C � 0. �2.3�

If we introduce the n	n constant matrix

� = 
 1

i��m
− − �n

+� 
m,n=1,. . .,N

�2.4�

and define a matrix B�x� as the product

B�x� = diag�ei���1
−�x, . . . ,ei���N

− �x�� diag�e−i���1
+�x, . . . ,e−i���N

+ �x� , �2.5�

where � is defined in Eq. �1.43�, then, the potential uN is given by
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uN�x� = − 2�x1

2 log det�B�x� + C� . �2.6�

The potential derived in Ref. 22 corresponds to a diagonal matrix C. In Ref. 23 the case of a
generic matrix C was introduced and it was shown that conditions �2.3� are equivalent to the
requirement that the potential uN is real and regular.

Let us introduce the function

��k� = �
n=1

N
k − �n

+

k − �n
−���−kI�

, �2.7�

that has poles at all points k= �̄n and has no zeros. Then, the Jost solution ��x ,k� of the nonsta-
tionary Schrödinger equation corresponding to the potential �2.6�, i.e., satisfying

�i�x2
+ �x1

2 − uN�x����x,k� = 0, �2.8�

is given by �we use the form derived in Ref. 24�

��x,k� =
1

��k�det�B�x� + C�
detBmn�x� + Cmn �iei����m

− �−��k��x�/�k − �m
− �

e−i���n
+�x e−i��k�x � , �2.9�

where the matrix in the rhs is obtained by bordering the N	N matrix B�x�+C with a column in
the upper right corner and a row in the bottom left corner, as indicated. In what follows we also
need the dual Jost solution ��x ,k� of the dual equation

�− i�x2
+ �x1

2 − uN�x����x,k� = 0, �2.10�

which is given by

��x,k� = ��x,k̄� . �2.11�

Using notations of the kind used in Eq. �1.29� we write Eqs. �2.8� and �2.10� in the form

L� N��k� = 0, ��k�L� N = 0. �2.12�

To formulate the asymptotic behavior of these Jost solutions we introduce

��x,k� = ei��k�x��x,k�, ��x,k� = e−i��k�x��x,k� , �2.13�

so that by Eq. �2.11� ��x ,k�=��x , k̄�. Then by Eq. �2.9� we get

lim
k→�

��x,k� = lim
k→�

��x,k� = 1, �2.14�

and in a generic direction of x→�, i.e., such that �x1+2�nRx2 � →� for all n=1, . . . ,N, and for any
k, kI�0,

lim
x→�

���x,k� − �as�x,k�� = 0, �2.15�

where

�as�x,k� = �
n=1

N k − �n
+

k − �n
−��sgn kI���kI�x1+2�nRx2��

. �2.16�

In particular,

lim
x1→−kI�

��x,k� = 1, lim
x1→+kI�

��x,k� = 1, �2.17�
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lim
x1→+kI�

��x,k� =
1

t�k�
, lim

x1→−kI�
��x,k� =

1

t�k�
, �2.18�

where notation kI� in the limit denotes sign of the infinity, and where we defined the transmission
coefficient as

t�k� = ��k���k̄� � �
n=1

N k − �n
−

k − �n
+�sgn kI

, �2.19�

so that

t�k̄� = t�k�, k � C . �2.20�

B. Auxiliary Jost solutions

The transmission coefficient is a meromorphic function in the upper and bottom half planes of
the spectral parameter k�C, that has poles at all points k=�n

±, n=1, . . . ,N. It is convenient also
to introduce a notation for the residual of the transmission coefficient, i.e.,

�n
+ = − i res

k=�n
+

t�k�, �n
− = i res

k=�n
−

t�k� . �2.21�

We also use special notations for the values of the Jost solutions at points k=�n
±:

�n
±�x� = �2���x,�n

±�, �n
±�x� = �2���x,�n

±� , �2.22�

so that by Eqs. �2.11�, �2.2�, and �2.20�,

�n
±�x� = �n

��x�, �−
± = �+

�. �2.23�

Now we introduce piecewise constant functions of q1,

�n�x,q1� = ���nI − �q1�����q1��n
+�x� + ��− q1��n

−�x�� , �2.24�

�n�x,q1� = ���nI − �q1�����q1��n
+�x� + ��− q1��n

−�x�� , �2.25�

�n�q1� = ��q1��n
+ + ��− q1��n

−, �2.26�

so that functions �n�x ,q1� and �n�x ,q1� are different from zero only on the intervals �q1 � ��nI.
These functions play an essential role in what follows and we call them auxiliary Jost solutions as
they obey Eq. �2.12� and are reciprocally dual since from Eq. �2.11�:

�n�x,q1� = �n�x,− q1� . �2.27�

In the following, these functions, when dressed by adding to uN a nontrivial perturbation u� as
indicated in Eq. �1.7�, acquire a nontrivial dependence on q1. From results of Ref. 25 it follows
that these functions satisfy the following boundedness properties:

sup
x

��n�x,q1�� � �, sup
x

��n�x,q1�� � � , �2.28�

sup
x

��n�x,q1�� � �, sup
x

��n�x,q1�� � � , �2.29�

where in analogy with Eq. �2.13� we introduced
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�n�x,q1� = ei���nR+iq1�x�n�x,q1�, �n�x,q1� = e−i���nR+iq1�x�n�x,q1� , �2.30�

that thanks to Eqs. �2.15�, �2.24�, and �2.25�, have finite nonzero limits at large x.

C. Inverse problem

The Jost solutions ��x ,k� and ��x ,k� are analytic functions of the complex variable k in the
upper and bottom half plane with a discontinuity along the real axis. In order to describe this
discontinuity we use the notations

�±�x,k� = ��x,k ± i0�, �±�x,k� = ��x,k ± i0� , �2.31�

t±�k� = t�k ± i0�, k � R , �2.32�

that by Eqs. �2.11� and �2.20� obey conjugation properties

�±�x,k� = ���x,k� , �2.33�

t+�k� = t−�k� . �2.34�

In analogy to these relations we have for the boundary values of the auxiliary Jost solutions and
functions �n directly by �2.24�–�2.26� relations

�n
±�x� = �n�x, ± 0�, �n

±�x� = �n�x, ± 0� , �2.35�

�n
± = �n�±0� . �2.36�

Then, the Jost solutions �2.9� and �2.11� are determined by their analyticity properties and
conditions �2.14� as solutions of the system �see Refs. 23 and 24�

t+�k��+�k� = �−�k� , �2.37�

�n
+ = �

m=1

N

�m
− �m

− Cmn, �2.38�

or, correspondingly,

t−�k��−�k� = �+�k� , �2.39�

�n
− = �

m=1

N

Cnm�m
+ �m

+ , �2.40�

where we omitted the dependence on x, as often will be done below when not misleading. Thanks
to Eqs. �2.37�–�2.40� we have relations

t+�k��+�k� � �+�k� = t−�k��−�k� � �−�k� , �2.41�

�
n=1

N

�n
+�n

+
� �n

+ = �
n=1

N

�n
−�n

−
� �n

−, �2.42�

where we used the standard definition of the direct product:

��n�q1� � �n�q1���x,x�� = ��x,q1���x�,q1� . �2.43�
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D. Resolvent of the pure N-soliton potential

Bilinear representation for the resolvent in terms of the Jost and auxiliary Jost solutions for the
Nth Darboux transformation of rapidly decaying potential was derived in Ref. 25. Here we present
a special case of that result corresponding to the pure N-soliton potential �2.6�. Thus, the hat kernel
�see Eq. �1.25�� of this resolvent equals to

M̂N�x,x�;q� =
1

2�i
�

kI=q1

dkR���x2 − x2�� − ��2kRq1 − q2��t�k���x,k���x�,k�

+
1

2�i
�
n=1

N

�n�q1����x2 − x2�� − ��2�nRq1 − q2���n�x,q1��n�x�,q1� , �2.44�

where notations �2.24�–�2.26� were used. In analogy to Eq. �1.34� it obeys differential equations

L� NM̂N�q� = I = M̂N�q�L� N, �2.45�

that easily follows by means of the completeness relation,

1

2�
�� dkRt�k���x,k���x�,k� + �

n=1

N

�n�kI��n�x,kI��n�x�,kI��
x2=x2�

= ��x1 − x1�� , �2.46�

derived in Ref. 25.
Convergency of the integral in Eq. �2.44� as well as the property that MN belongs to the space

of tempered distributions follow �see Ref. 25 for details� from the properties of the Jost and
auxiliary Jost solutions. Moreover, in Ref. 25 it was proved that for generic q kernel MN�x ,x� ;q�
decays exponentially on the x-plane. From the conjugation relations �2.11�, �2.20�, and �2.27�, we
deduce that MN�q� obeys the conjugation property �1.41�, in agreement with the reality of the
potential uN�x�. Both terms in the rhs of �2.44� are piecewise continuous functions of q-variables.
Both of them are discontinuous at q1= ±�nI �the first term thanks to the poles of t�k�, see Eq.
�2.19�� and these discontinuities are compensated thanks to Eqs. �2.24�–�2.26�. Thus the resolvent
is discontinuous only at the point q=0 and on the intervals q2=2�nRq1, n=1, . . . ,N. Using nota-
tions �2.24�–�2.26� and �2.43� we get for such nth discontinuity expression

M̂N��q��q2=2�nR
q1+0 − M̂N��q��q2=2�nR

q1−0 =
�n�q1�

2�i
�n�q1� � �n�q1� , �2.47�

that is different from zero only on the interval �q1 � ��nI �see Eqs. �2.24� and �2.25��. At the end

points of these intervals function M̂N�q� has logarithmic singularities. More precisely, we can
decompose the resolvent into a regular and a singular part as follows:

MN�q� = MN,reg�q� + MN,sing�q� , �2.48�

where the regular part, MN,reg�q�, is finite at any q�R2 and continuously differentiable for any
q�0. The singular part is given by

M̂N,sing�q� =
1

�2��2 �
�=±

�
n=1

N

���q1��n
��n

�
� �n

� log�q1 + i�n
� − i

q2

2q1
�� , �2.49�

where we used notations �2.2� and where log z has cut along the negative part of the zR-axis, so
that � log z /�z̄=−���−zR���zI�.

Derivatives �in the sense of distributions� of the resolvent with respect to q-variables follow
from Eq. �2.44�, analyticity properties of the Jost solutions, and decomposition �2.48� and �2.49�.
At q�0 we get
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�M̂N�q�
�q1

=
i

�
��

kI=q1

dkRk̄��2kRkI − q2�t�k���k� � ��k�

+ �
n=1

N

�nR��2�nRq1 − q2��n�q1��n�q1� � �n�q1�� , �2.50�

�M̂N�q�
�q2

=
1

2�i��kI=q1

dkR��2kRkI − q2�t�k���k� � ��k�

+ �
n=1

N

��2�nRq1 − q2��n�q1��n�q1� � �n�q1�� , �2.51�

that agree with Eq. �2.47� thanks to the definition of the logarithm. Thus in the region of continuity
the kernel �2.44� of the resolvent is differentiable with respect to q in the standard sense. In the

case q1=0 the resolvent M̂N�q��q1=0 has additional discontinuity at q2=0, as already noted in
�1.46�, while for q2�0 it is continuous thanks to Eqs. �2.41� and �2.42�.

E. Green’s functions

Green’s function corresponding to the potential uN follows from Eqs. �1.42� and �2.44� in the
form

GN�x,x�,k� =
1

2�i�� d���x2 − x2�� − ��kI��t� + k���x, + k���x�, + k�

+ �
n=1

N

�n�kI����x2 − x2�� − ��kI��nR − kR����n�x,kI��n�x�,kI�� . �2.52�

The Green function GN�x ,x� ,k�, being a reduction of a hat operator, is exponentially growing at
large space, but once multiplied by an exponent according to Eq. �1.45� one gets a distribution

GN�x,x�,k� = ei��k��x−x��GN�x,x�,k� , �2.53�

which is bounded and decaying when x �or x�� tends to infinity. More exactly, for generic k, i.e.,
such that kI�0,�1I , . . . ,�NI, kR��1R , . . . ,�NR, we get

GN�x,x�,k� =
sgn kI

2��x1 + 2kx2�
t�k��as�x,k���x�,k� + o��x�−1� , �2.54�

for x→�, where we used definition �2.16�. Moreover, by Eq. �2.52� we get

lim
k→�,kI�0

GN�x,x�,k� = 0. �2.55�

Next, for advanced/retarted Green’s functions we have by Eq. �1.46� from Eq. �2.44�

GN,±�x,x�� = ±
��±�x2 − x2���

2�i �� dt������x,����x�,� + �
n=1

N

�n
��n

��x��n
��x��� , �2.56�

where �= + ,− and the rhs thanks to Eqs. �2.41� and �2.42� is independent on the choice of this
sign �in fact, these signs can be chosen independently in the integral term and in the sum�.
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By �1.42�, �1.46�, �1.41�, and �2.45�, these Green’s functions obey the conjugation properties
�1.49� and �1.50� and the differential Eqs. �1.47� and �1.48� with LN substituting L. Function

GN�k� has cuts in the complex k-plane along the intervals connecting the pairs �n and �̄n for all n.
By Eq. �1.42�

GN��nR ± 0 + ikI� = M̂N�kI,2�nRkI ± 0kI� , �2.57�

so that by Eq. �2.47�

GN��nR + 0 + ikI� − GN��nR − 0 + ikI� =
sgn kI�n�kI�

2�i
�n�kI� � �n�kI� . �2.58�

Performing reduction �1.42� in equalities �2.50� and �2.51� we get that at kI�0:

�GN�k�
�kI

=
sgn kI

2�
t�k���k� � ��k� , �2.59�

�GN�k�

�k̄
=

sgn kI

4�i
�
n=1

N

��kR − �nR��n�kI��n�kI� � ��kI� , �2.60�

so that with exception of the segments connecting the pairs of points k=�n
± and with exception of

the real axis Green’s function GN�k� is analytic in the upper and bottom half planes.
At the end points of these segments function GN�k� is singular as follows from Eqs. �1.42� and

�2.49�:

GN�k� = GN,reg�k� + GN,sing�k� , �2.61�

GN,sing�k� = �
n=1

N

�n�k��n
�

� �n
�, � = sgn kI, �2.62�

where we used notation �2.2� and where

�n�k� =
�n�kI�
�2��2 log�− i��k − �n

���, � = sgn kI, �2.63�

where logarithm is defined like in Eqs. �2.49�. Thanks to this definition of the logarithm and Eq.
�2.60� the first term in the rhs of Eq. �2.61� is analytic for any k�C, kI�0. In the singular part
every nth term is discontinuous on the segment kR=�nR, �kI � ��nI. If for simplicity we assume
that in addition to Eq. �2.1�

�mR � �nR, ∀ m � n �2.64�

�the degenerate case can be considered by the limiting procedure� all these segments are mutually
disjoint. Therefore, we can single out the singular behavior of Green’s function in a vicinity of nth
segment kR=�nR, �kI � ��nI by writing

GN�k� = GN
�n��k� + �n�k��n

�
� �n

�, � = sgn kI, �2.65�

where by Eqs. �2.61� and �2.62�,

GN
�n��k� = GN,reg�k� + �

m�n

N

�m�k��m
�

� �m
� . �2.66�

Thus for every n we get Green’s function GN
�n��k� which is analytic in a vicinity of the nth segment

kR=�nR, �kI � ��nI including the end points, but with the exception of the real k-axis. Let us
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mention that both this Green’s function and function GN
�n��x ,x� ,k� defined in analogy with Eq.

�1.45� are not decaying with respect to variables x and x�.
For the boundary values G± �see Eq. �1.64�� of Green’s function on the kR-axis we get by Eq.

�2.52� �k�R�

GN
��x,x�,k� =

1

2�i�� dp���x2 − x2�� − ����p − k���t��p����x,p����x�,p�

+ �
n=1

N

���x2 − x2�� − �����nR − k����n
��n

��x��n
��x��� , �2.67�

where �= + ,−. Thus by Eq. �2.56�,

GN
��k� − GN,± =

�1

2�i�� dp��±��p − k��t��p����p� � ���p� + �
n=1

N

��±���nR − k���n
��n

�
� �n

�� .

�2.68�

A specific feature of the resolvent approach is the fact that the Jost and advanced/retarded
solutions, as well as their dual, can be given as reductions of the corresponding Green’s functions,
see, e.g., Ref. 14. However, due to the nondecaying behavior of the N-soliton potential at large
space distances these reduction formulas are required to be regularized. Precisely, we must write

��x,k� = lim
�→+0

� dx��L0
d�x�,�x��GN�x,x�,k��e−i��k�x�−i�x2�, �2.69�

��x,k� = lim
�→+0

� dx�ei��k�x�+i�x2�L0�x�,�x��GN�x�,x,k� , �2.70�

where k�C. It can be checked directly that these relations become identities if bilinear represen-
tation �2.52� for Green’s function is used.

F. Advanced/retarded solutions

The advanced/retarded solutions are most naturally defined in terms of advanced/retarded
Green’s functions �2.56� as follows:

�±�x,k� =� dx��L0
d�x�,�x��GN,±�x,x���e−i��k�x�, �2.71�

�±�x,k� =� dx�ei��k�x�L0�x�,�x��GN,±�x�,x� , �2.72�

where k�R. In spite of the bad behavior of uN at large space, in this case no any regularization is
needed. Thanks to properties �1.48� and �1.50� for GN,± it is easy to check that

L� N�± = 0, �±L� N = 0, �2.73�

�± = ��. �2.74�

Using representation �2.56� in Eqs. �2.71� and �2.72� we get expressions of the advanced/
retarded solutions in terms of the Jost ones. We omit here the corresponding calculations and
present only the result. We introduce the spectral data
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r±
��k� = �

n=1

N  k − �n

k − �̄n
�−������k−�nR��

, �2.75�

that have the obvious properties

r±
��k� = r�

−��k�, r±
��k�r±

��k� = 1, �2.76�

and obey the characterization equations,

r±
−��k�r±

��k� = t��k� , �2.77�

which can be considered a “triangular decomposition” of t±. Then, the above mentioned relations
can be written as

�±�k� = ���k�r±
−��k� , �2.78�

�±�k� = ���k�r�
� �k� , �2.79�

or, thanks to Eq. �2.77�, as

t��k����k� = �±�k�r±
��k� , �2.80�

t��k����k� = �±�k�r�
−��k� . �2.81�

In particular, we get from these equalities

t��k����k� � ���k� = �±�k� � ���k� , �2.82�

where the lhs is independent on the sign �= + ,− �see Eq. �2.41�� and the rhs is independent on the
sign �.

We also need, in the following, the asymptotic behavior of �± for x2→ ��. From Eqs. �2.78�
and �2.15� we obtain

�±�x,k� � �±,as�k�e−i��k�x for x2 → � � , �2.83�

where

�±,as�k� = �
n=1

N  k − �n

k − �̄n
��sgn �nR���nR�k−�nR��

. �2.84�

G. Auxiliary advanced/retarded solutions

Relation �2.46� shows that the Jost solutions form an incomplete set and in order to complete
it one must introduce the auxiliary Jost solutions. The same, of course, is valid for the limiting
values of the Jost solutions on the real k-axis which satisfy the completeness relation

1

2�
�� dk t��k����x,k����x�,k� + �

n=1

N

�n
��n

��x��n
��x���

x2=x2�

= ��x1 − x1��, � = + ,− .

�2.85�

Thanks to Eq. �2.82� the integral term here can be rewritten in terms of the advanced/retarded
solutions only, that proves that the set of these solutions is incomplete and we have to introduce
also auxiliary advanced/retarded. For this aim, taking into account that thanks to Eq. �2.3� all main
minors of the matrix C are strictly positive, we can use for it the Gauss lower upper �LU�
triangular decomposition:
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C = �E + W±�†D±
2�E + W±� , �2.86�

where E is the unity N	N matrix, the W±’s are off-diagonal and, respectively, upper and lower
triangular matrices, and the D±’s are strictly positive diagonal matrices. All multipliers in Eq.
�2.86� are uniquely defined so we introduce new triangular matrices,

r±
+ = D��E + W���+, r±

− = D�
−1�E + W�

† �−1, �2.87�

where

�± = diag��1
±, . . . ,�n

±� . �2.88�

These matrices obey the characterization equations,

r±
�����−1�r±

−��† = E, �r±
−��†r±

� = ��, �2.89�

and by Eq. �2.86� we have

�r±
��†r±

� = �����−C�+ + ��− ��C−1. �2.90�

Now we define the auxiliary advanced/retarded solutions by means of the relations

�±,n = �
m=1

N

�m
��r±

−��†�m,n�, �±,n = �
m=1

N

�r�
� ��n,m��m

� , �2.91�

where the lhs’ are independent on the sign �= + ,− thanks to Eqs. �2.38�, �2.40�, �2.89�, and �2.90�.
By using Eq. �2.89� these relations can be inverted,

�n
��n

� = �
m=1

N

�±,mr±
��m,n�, �n

��n
� = �

m=1

N

�r�
−��†�n,m��±,m. �2.92�

In analogy with Eq. �2.82� we get from Eqs. �2.91� and �2.92�,

�
n=1

N

�n
��n

�
� �n

� = �
n=1

N

�±,n � ��,n, �2.93�

so that thanks to Eq. �2.82� we get from Eq. �2.85� the completeness relation in terms of the
advanced/retarded and auxiliary advanced/retarded solutions,

1

2�
�� dk�±�x,k����x�,k� + �

n=1

N

�±,n�x���,n�x���
x2=x2�

= ��x1 − x1�� . �2.94�

Relations �2.82� and �2.93� enable us to express advanced/retarded Green’s functions in terms
of the advanced/retarded and auxiliary advanced/retarded solutions. Thanks to Eq. �2.56� we have
by Eq. �1.46�,

GN,±�x,x�� = ±
��±�x2 − x2���

2�i �� dp�±�x,p����x�,p� + �
n=1

N

�±,n�x���,n�x��� , �2.95�

where signs � in the two terms in square brackets in Eq. �2.95� can be chosen freely and
independently. In particular, this means that for the difference of advanced and retarded Green’s
function we get
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GN,+ − GN,− =
1

2�i�� dp�±�p� � ���p� + �
n=1

N

�±,n � ��,n� , �2.96�

where the rhs, thanks to Eqs. �2.82� and �2.93�, is independent of the choice of the upper or bottom
sign.

H. Time evolution of spectral data and Jost solutions

Time evolution of the spectral data in the case of the pure N-soliton solution uN due to KPI
equation is known23 to be given as

�t�n = 0, �2.97�

�tC = − 4i��̄m
3 − �n

3�Cmn. �2.98�

Then by Eqs. �2.19� and �2.75� we get

�tt�k� = 0, k � C , �2.99�

�tr±
��k� = 0, � = + ,− , k � R . �2.100�

Thanks to Eq. �2.86�, time evolution of diagonal matrices Dpm
2 coincides with evolution of the

diagonal part of matrix C, so that by Eq. �2.87�,

�tr±
��m,n� = − 2i��̄m

3 + �m
3 − 2��n

��3�r±
��m,n� = 0, �2.101�

where notation �2.2� was used. In order to get time evolution of the Jost solution we use the
standard crucial remark that if � is a solution of the nonstationary Schrödinger operator L then by
Eq. �1.5� we deduce that T� is also a solution. Moreover, since the operator L is a differential
operator of first order in x2 this solution is uniquely determined by its asymptotic behavior at x2

→ +� or at x2→−�. Let us consider TN��k� with TN as in Eq. �1.4� with u the pure N-soliton
potential uN and ��k� the corresponding Jost solution �2.9�. Then from the asymptotic behavior of
the Jost solution given by Eqs. �2.13� and �2.15� at x2→ ±� we derive

TN�x,k3���x,k� = 0, �2.102�

where we introduced the operator

TN�x,K� = TN�x� − 4iK �2.103�

with K an arbitrary constant, and where we used that uN�x� is going to zero for x2→ �� �Here for
simplicity we assume that all �nR�0. The result is independent of this assumption as values of
�nR can be shifted by a Galileo transformation.�.

It is worthwhile to note that by inserting the expansion

��x,k� � ��− kI� + ��kI�
1

t�k�
�e−i��k�x for x1 → + � , �2.104�

obtained from Eqs. �2.17� and �2.18� into Eq. �2.102� with TN as in Eq. �1.4� one gets at any time
t�0 the dynamical constraint

�
−�

�

dx1�x2
uN�t,x� = 0, �2.105�

which generalizes to the case of N solitons the dynamical constraint found in the case of decaying
solutions in Ref. 4.
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The advanced/retarded solutions �± which are directly related to the Jost solutions by Eq.
�2.78� due to Eq. �2.102� satisfy

TN�k3��±�k� = 0, �2.106�

while the auxiliary Jost solutions �n�kI� which are related to ���n� and ���̄n� via Eq. �2.24�
satisfy

TN���n
��3��n�kI� = 0 where � = sgn kI. �2.107�

For getting the differential equations fixing the time evolution of the advanced/retarded aux-
iliary solutions �±,n we use their definition in Eq. �2.91� and relations �2.101� and �2.107�

TN1

2
��̄m

3 + �m
3 ���±,m = 0. �2.108�

I. Matrix formulation

One can more conveniently write the relations interlacing the different kinds of Jost solutions
and the characterization equations for the spectral data by introducing a vectorial formulation for
the Jost solutions and a matrix formulation for the spectral data. Precisely, let us denote

���x� = ����x,k�,�1
��x�, . . . ,�N

��x�� , �2.109�

�±�x� = ��±�x,k�,�±,1�x�, . . . ,�±,N�x�� , �2.110�

that we call, respectively, vectorial Jost and vectorial advanced/retarded solutions, and

r±
� = r±

��p���p − k� 0

0 r±
��m,n�

� , �2.111�

t� = t��p���p − k� 0

0 �mn�n
� � , �2.112�

that we call, respectively, matrix triangular spectral data and matrix transmission coefficient. If we
define the product of matrices with matrix elements with continuous and discrete indices by
integrating and summing, respectively, over continuous and discrete indices, then Eqs. �2.77� and
�2.89� are combined in the characterization equations,

r±
��t��−1�r±

−��† = I, �r±
−��†r±

� = t�, �2.113�

where unity operator equals

I = ��p − k� 0

0 �mn
� . �2.114�

Then, Eqs. �2.78�, �2.80�, �2.91�, and �2.92� relating the Jost to the advanced/retarded solu-
tions, both standard and auxiliary, can be rewritten in a more compact form as follows:

��t� = �±r±
�, �2.115�

�± = ���r±
−��†. �2.116�

The discontinuity at the real axis of the complex k-plane of the Jost and auxiliary Jost solutions
given in Eqs. �2.37� and �2.38� can be rewritten as
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��t� = �−�f−�, �2.117�

where

f� = �r±
−��†r±

−�. �2.118�

Independence of the lhs on the signs � gives the characterization equation

�r+
��†r+

� = �r−
��†r−

�. �2.119�

The matrix f� together with the location of poles of t�k� constitute the spectral data in strict sense.
In fact, from Eqs. �2.76� and �2.90� we have

f� = ��p − k� 0

0 ��− ���−C�+ + ����C−1 � . �2.120�

Notice that the spectral data f, due to Eqs. �2.113� and �2.118�, satisfy the characterization equa-
tions

f��t−��−1f−� = t�, �2.121�

�f��† = f�. �2.122�

III. PERTURBATION

A. Resolvent, Green’s functions, and Jost solutions

1. Properties of resolvent

Now we start with investigation of the spectral properties of the nonstationary Schrödinger
operator �1.2� with a two dimensionally perturbed N-soliton potential u�x� given in �1.7�. In the
previous sections we considered the pure N-soliton potential uN and studied in detail the properties
of the corresponding resolvent MN�q� and Green’s function GN�k�. Now we exploit these results
by constructing the resolvent M�q� and Green’s function G�k� corresponding to the potential u
using the dressing procedure outlined in Sec. I E. We suppose that under the “smallness” require-
ment on u� the integral equations �1.58� admit a unique solution M�q� for the resolvent with kernel
M�x ,x� ;q� belonging to the space S��R6�. Then, the properties of the resolvent, including the
singular behavior of M�q� due to the nondecaying behavior of u�x� at large space directions, can
be studied via the integral equations �1.58�, i.e., by means of the dressing procedure based on the
Hilbert identity �1.61�. In particular, we expect that the resolvent M�q� will inherit, possibly
smoothed by the dressing procedure, the singularities of MN�q�. In fact, M�q� results in becoming,
as MN�q�, a continuous function of the variables q�R2 with the exception of the point q=0 and
the segments q2=2�nRq1, �q1�
�nI, n=1, . . . ,N, but, for a generic perturbation u�, with 1/log
instead of log behavior at the end points of the segments.

In the region of continuity the resolvent M�q� is differentiable in the standard sense with
respect to the parameters qi �i=1,2�. Expressions for these derivatives can be obtained by dressing
the corresponding derivatives of MN�q� by means of equation �1.63�. Inserting Eqs. �2.50� and
�2.51� into Eq. �1.63� we get for any q in the region of continuity

�M̂�q�
�q1

=
i

�
�

kI=q1

dkRk̄��2kRq1 − q2�t�k���k� � ��k� , �3.1�

�M̂�q�
�q2

=
1

2�i
�

kI=q1

dkR��2kRq1 − q2�t�k���k� � ��k� , �3.2�

where we introduced
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��k� = G�k�L� N��k�, ��k� = ��k�L� NG�k�, k � C , �3.3�

or explicitly

��x,k� =� dx��LN
d �x�,�x��G�x,x�,k����x�,k� , �3.4�

��x�,k� =� dx��x,k�LN�x,�x�G�x,x�,k� , �3.5�

which can be considered a generalization of Eqs. �1.51�, �2.69�, and �2.70� and where G�x ,x� ,k�
is Green’s function defined in Eq. �1.42�. This function, being a reduction of Eq. �1.58�, obeys
consequently the integral equation �1.59� together with its dual that under the above assumption
admit a unique solution G�k� such that G�k� as defined in Eq. �1.45� belongs to S�. Green’s
function inherits the analyticity properties of GN�x ,x� ,k�, i.e., it is analytic for all k�C with the
exception of the real axis, kI=0, and intervals kR=�nR, �kI�
�nI. Performing reduction �1.42� in
Eqs. �3.1� and �3.2� we get that in the region of analyticity

�G�k�
�kI

=
sgn kI

2�
t�k���k� � ��k� , �3.6�

�G�k�
�kR

=
sgn kI

2�i
t�k���k� � ��k� , �3.7�

while behavior of Green’s function at the end points of the segments above, where GN�k� has
logarithmic singularities, needs a separate study �see Sec. III C below�.

Thanks to Eq. �1.47� functions ��x ,k� and ��x ,k� defined in Eq. �3.3� obey the differential
equations �1.56�, and, therefore, we call them, respectively, Jost and dual Jost solution of the
nonstationary Schrödinger equation with potential �1.7�. Due to Eqs. �1.49� and �2.11� they obey
the conjugation property

��x,k� = ��x,k̄� , �3.8�

and integral equations for them follow by inserting Eqs. �1.59� into �3.3�:

��k� = ��k� + GN�k�u���k�, ��k� = ��k� + ��k�u�GN�k� . �3.9�

The Jost solutions inherit the analytical properties of Green’s function GN�k�. Precisely, they are
analytic in the complex domain of the spectral parameter k with discontinuities at the real axis and
at the segments kR=�nR, �kI���nI, n=1, . . . ,N, and have continuous limits on the two sides of
these cuts.

2. Asymptotics of Green’s function and Jost solutions

The asymptotic behavior of Green’s function G�x ,x� ,k� can be obtained directly by inserting
the asymptotics �2.54� of GN�x ,x� ,k� into Eq. �1.59�, once multiplied by ei��k��x−x��. We get, for
kI�0,�1I , . . . ,�NI, kR��1R , . . . ,�NR, when x→�

G�x,x�,k� =
sgn kI

2��x1 + 2kx2�
t�k��as�x,k����x�,k� +� dx���x�,k�u��x��G�x�,x�,k�� + o��x�−1� .

Then, writing u�=−L� +L� N and using Eqs. �1.45�, �2.13�, and �1.56� we derive
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G�x,x�,k� =
sgn kI

2��x1 + 2kx2�
t�k��as�x,k���x�,k�e−i��k�x� + o��x�−1� , �3.10�

and expression for the limit x�→� follows by using the Hermitian conjugation �1.49�. As well by
Eq. �2.55� we get

lim
k→�,kI�0

G�x,x�,k� = 0. �3.11�

For getting the asymptotic behavior of the Jost solutions it is convenient to rewrite Eq. �3.3� by
inserting LN=L+u� and, then, by using Eq. �1.47� we obtain

��k� = ��k� + G�k�u���k�, ��k� = ��k� + ��k�u�G�k�, k � C . �3.12�

In order to deal with the bounded functions we introduce in analogy with Eq. �2.13� “the Jost
solutions with removed exponents”

X�x,k� = ei��k�x��x,k�, ��x,k� = e−i��k�x��x,k� . �3.13�

By Eq. �3.9� these functions can be defined as solutions of the integral equations �in the explicit
form�,

X�x,k� = ��x,k� +� dx�GN�x,x�,k�u��x��X�x�,k� , �3.14�

��x,k� = ��x,k� +� dx���x�,k�u��x��GN�x�,x,k� , �3.15�

where ��x ,k� and ��x ,k� are bounded functions and GN�x ,x� ,k� is bounded �decaying on the
x-plane� Green’s function explicitly given in Eqs. �2.53� and �2.52�. On the other side by Eqs.
�3.12� and �3.13�,

X�k� = ��k� + G�k�u���k�, ��k� = ��k� + ��k�u�G�k� . �3.16�

Then from Eqs. �2.14� and �3.11� we derive

lim
k→�

X�x,k� = lim
k→�

��x,k� = 1, �3.17�

and from Eqs. �2.15� and �3.10� the asymptotic behavior in the x-space is given in the form

X�x,k� = �as�x,k��1 +
sgn kI

2��x1 + 2kx2�
t�k�A�k�� + o��x�−1�, x → � , �3.18�

where appeared the function of the variable k�C only

A�k� =� dx��x,k�u��x���x,k� . �3.19�

In what follows we use for shortness the notation

A�k� = ���k�u���k�� �3.20�

�cf. “vector” and “covector” notations used in Eqs. �1.51�, �1.54�, and �1.55��. Notice that A�k�
can be equivalently defined as
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A�k� = ���k�L� NG�k�L� N��k�� = ���k�u���k�� = ���k�L� N��k�� = ���k�L� N��k�� .

�3.21�

The function A�k� is analytic in the complex domain with discontinuity at the real axis and at the
segments kR=�nR, �kI � ��nI, n=1, . . . ,N, it satisfies the conjugation property

A�k̄� = A�k� , �3.22�

and generates, in spite of the bad behavior of u at large space distances, finite integrals of motion,
e.g.,

lim
k→�

A�k� =� dx u��x� . �3.23�

From Eq. �3.8� we derive the same asymptotic behavior of the Jost solutions like in Eqs. �2.17�
and �2.18�

lim
x1→−kI�

X�x,k� = 1, lim
x1→+kI�

��x,k� = 1, �3.24�

lim
x1→+kI�

X�x,k� =
1

t�k�
, lim

x1→−kI�
��x,k� =

1

t�k�
. �3.25�

B. Discontinuity of the resolvent at q2=2�nRq1 and auxiliary Jost solutions

The discontinuity of the resolvent M�q� on the line q2=2�nRq1 can be derived by means of the
dressing procedure described in Sec. I E from the discontinuity �2.47� of MN�q�. Indeed, choosing
in the Hilbert identity �1.66� q1=q1, q2=2q1�nR−0 and q2=2q1�nR+0 and using Eq. �2.47� we get
for the hat kernel �see Eq. �1.25�� of the resolvent

M̂��q��q2=2�nR
q1+0 − M̂��q��q2=2�nR

q1−0 =
�n�q1�

2�i
M̂�q1,2�nRq1 + 0�L� N�n�q1�

� �n�q1�L� NM̂�q1,2anRq1 − 0� . �3.26�

By means of the reduction �2.57� this relation gives for the discontinuity of Green’s function:

G��nR + 0 + ikI� − G��nR − 0 + ikI� =
sgn kI�n�kI�

2�i
G��nR ± 0 + ikI�L� N�n�kI�

� �n�kI�L� NG��nR � 0 + ikI� . �3.27�

Applying �n�kI�L� N and L� N�n�kI�, respectively, from the left and from the right and introducing

An�kI� = 1 +
�n�kI�sgn kI

2�i
��n�kI�LN

� G��nR + 0 + ikI�LN
� �n�kI�� , �3.28�

we deduce from Eq. �3.27� that the function An�kI� has no zeros and

1

An�kI�
= 1 −

�n�kI�sgn kI

2�i
��n�kI�LN

� G��nR − 0 + ikI�LN
� �n�kI�� . �3.29�

The conjugation property
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An�kI� = An�− kI� �3.30�

follows from the conjugation properties of the entities involved in definition of An�kI�.
Now we see that by Eq. �3.27� the discontinuity of Green’s function on the segment is given

in terms of the objects of the kind

�n�kI� = G��nR + 0 + ikI�LN
� �n�kI� , �3.31�

�n�kI� = �n�kI�LN
� G��nR + 0 + ikI� , �3.32�

that in analogy with the definition of the auxiliary Jost solutions in the pure N-soliton case in Eqs.
�2.24� and �2.25� it is natural to call the auxiliary Jost solutions in the perturbed case. Indeed,
thanks to Eq. �1.47� functions �n�x ,kI� and �n�x ,kI� obey the nonstationary Schrödinger equa-
tion and its dual, correspondingly,

L� �n�kI� = 0, �n�kI�L� = 0, �3.33�

and, thanks to Eqs. �2.23� and �1.49�, they obey the conjugation property

�n�kI� = �n�− kI� . �3.34�

By Eqs. �2.24� and �2.25� these functions are different from zero in the interval �kI � 
�nI only.
Applying reductions �3.31� and �3.32� to Eq. �1.59� and its dual we get that the auxiliary Jost
solutions obey the integral equations

�n�kI� = �n�kI� + GN��nR + 0 + ikI�u��n�kI� , �3.35�

�n�kI� = �n�kI� + �n�kI�u�GN��nR + 0 + ikI� . �3.36�

We introduce in analogy with Eq. �2.30�

Xn�x,kI� = eix���nR+ikI��n�x,kI�, �n�x,kI� = e−ix���nR+ikI��n�x,kI� . �3.37�

Since �n and �n and their dual are solutions of integral equations dressing �n and �n, which were
proved in Ref. 25 to be bounded with respect to the variable x�R2, we assume that for u�
sufficiently “small” they also are bounded.

Next, by applying from the right LN
� �n�kI� to Eq. �3.27� and using Eq. �3.29� we get

G��nR − 0 + ikI�LN
� �n�kI� =

�n�kI�
An�kI�

, �3.38�

�n�kI�LN
� G��nR − 0 + ikI� =

�n�kI�
An�kI�

, �3.39�

which can be used for expressing the discontinuities �3.26� and �3.27� in the form

M̂��q��q2=2�nR
q1+0 − M̂��q��q2=2�nR

q1−0 = �n�q1�
�n�q1� � �n�q1�

2�iAn�q1�
, �3.40�

G��nR + 0 + ikI� − G��nR − 0 + ikI� = �n�kI�
�n�kI� � �n�kI�

2�i�sgn kI�An�kI�
. �3.41�

Then, from Eq. �3.3� by using Eq. �3.41� and recalling that the N-soliton Jost solutions are
discontinuous only across the real axis of the k plane we derive for the discontinuity of the Jost
solutions across the segment �kI � 
�nI, kR=�nR,
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���nR + 0 + ikI� − ���nR − 0 + ikI� = �n�kI�wn�kI� , �3.42�

���nR + 0 + ikI� − ���nR − 0 + ikI� = �n�kI�wn�− kI� , �3.43�

where we introduced the spectral data

wn�kI� =
�n�kI�sgn kI

2�iAn�kI�
��n�kI�LN

� ���nR + ikI�� , �3.44�

that describe these discontinuities of the Jost solutions. Let us mention that Eq. �3.44� is a short
version �cf. Eqs. �3.19� and �3.20�� of the relation

wn�kI� =
�n�kI�sgn kI

2�iAn�kI� � dx�LN
d �n�x,kI����x,�nR + ikI� , �3.45�

and that by Eqs. �3.3� and �3.31� wn�kI� can be equivalently written in the forms

wn�kI� =
�n�kI�sgn kI

2�iAn�kI�
��n�kI�LN

� G��nR + 0 + ikI�LN
� ���nR + ikI��

=
�n�kI�sgn kI

2�iAn�kI�
��n�kI�LN

� ���nR + 0 + ikI�� . �3.46�

Finally, it is worth remarking that the discontinuity of the function A�k� defined in Eq. �3.20� also
can be expressed in terms of the spectral data wn�kI�. Precisely, we have

A��nR + 0 + ikI� − A��nR − 0 + ikI� =
2�i sgn�kI�

�n�kI�
An�kI�wn�kI�wn�− kI� , �3.47�

that can be used in derivation of a dispersion relation for A�k�.

C. Behavior of Green’s function and Jost solutions at end points of cuts

In Secs. II D and II E it was shown that the resolvent MN�q� and its reduction, Green’s
function GN�k�, have cuts along the segments q2=2�nRq1, �q1 � 
�nI and kR=�nR, �kI � 
�nI of
the q- and k-planes, respectively, with logarithmic singularities at the end points. These singulari-
ties were explicitly given, respectively, in Eq. �2.49� and in Eqs. �2.6� and �2.62�. In the previous
section we proved that the dressed resolvent M�q� and Green’s function G�k� have cuts along the
same segments. Here we study the behavior of Green’s function at the end points of these cuts
using decomposition �2.65� of N-soliton Green’s function GN�k�.

We need to write for Green’s function G�k�, as for GN�k� in Eq. �2.65�, a decomposition into
a regular and a singular part. We expect that this can be obtained by dressing Eq. �2.65� and,
precisely, that new Green’s function G�n��k� of the operator L defined by

G�k� = G�n��k� + ��k�G�k�L� N�n
�

� �n
�L� NG�k� , �3.48�

satisfies, for a proper choice of the function ��k�, the integral equation

G�n��k� = GN
�n��k� + GN

�n��k�u�G�n��k� �3.49�

and its dual and can therefore be considered a dressed version of GN
�n��k�. Then, since GN

�n��k� is
analytic in a vicinity of the segment kR=�nR, �kI � =�nI, with the exception of the kR-axis, we can
deduce that G�n��k� as solution of Eq. �3.49� has the same analyticity properties.

Notice, however, that since �n
� and �n

� are not bounded we must assume that the potential

u��x� decays at large x faster than any linear exponential, in order that G�k�L� N�n
� and �n

�L� NG�k�
appearing in Eq. �3.48� are well defined, as one can check by using G�k�L� N=G�k�u�+ I and its
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dual and by recalling the behavior at large x of G. �C.f. objects defined in Eqs. �3.28�, �3.29�,
�3.31�, and �3.32�, where in the absence of condition of exponential decaying of u� we used
condition that k belongs to the strip �kI � ��nI.�

Taking into account decomposition �2.65� one can check that Green’s function G�n� satisfies
the integral equation �3.48� and its dual for

��k� =
�n�k�

1 + n�k��n�k�
, �3.50�

where

n�k� = ��n
�LN

� G�k�LN
� �n

��, k � C, � = sgn kI, �3.51�

which is well defined for u� decaying according to our assumption.

Then, applying operations �n
�L� N and L� N�n

� to Eq. �3.48� from the left and from the right we
get

1

n�k�
=

1

an�k�
− �n�k� , �3.52�

G�k�L� N�n
� =

n�k�
an�k�

��n��k�, �n
�L� NG�k� =

n�k�
an�k�

��n��k� , �3.53�

where

an�k� = ��n
�L� NG�n��k�L� N�n

��, � = sgn kI, �3.54�

and where, in analogy with Eqs. �3.3�, �3.31�, and �3.32�, we have introduced

��n��k� = G�n��k�L� N�n
�, ��n��k� = �n

�L� NG�n��k�, k � C, � = sgn kI, �3.55�

that also obey the nonstationary Schrödinger equation and its dual, correspondingly.
Notice that, under our assumption on the decaying of the potential u�, the function an�k� has

the same analyticity properties of G�n��k�. Then instead of Eq. �3.48� we get

G�k� = G�n��k� +
�n�k�

1 − an�k��n�k�
��n��k� � ��n��k� . �3.56�

We see that the asymptotic behavior of Green’s function at the end points is determined by the
behavior of function an�k� at these points. This function is meromorphic in the vicinity of the cut
with the exception of the real axis and it is uniquely defined by the choice of the function �n�k�.
However, notice that �n�k� in Eq. �2.65� is required only to be such that the singular behavior of
Green’s function in a vicinity of the nth cut is single out. Thus, the choice in Eq. �2.63� is not
unique, even if analyticity condition is imposed. If we shift �n�k� by some constant, this shift is
compensated by a shift of 1 /an�k� as the lhs of Eq. �3.52� is invariant. This proves that the
singularities of an�k� are not related to the properties of �n�k� and without loss of generality we
can assume that an�k� has finite limits

an
± = an��n

±� � ��n
±L� NG�n���n

±�L� N�n
±� . �3.57�

They are related by the conjugation property

an
− = an

+, �3.58�

and by Eq. �3.56� they determine the behavior of Green’s function G�n��k� at the points k=�n
±. In

contrast to the poles, the zeros of an�k� are independent of the choice of �n�k� and coincide with
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the zeros of n�k�. This is valid also at the end points, since, thanks to analyticity, an�k� has zeros
of integer order. Consequently, if the constants in Eq. �3.57� are equal to zero then G�k� has a
logarithmic singularity at the end points of the cut and we get a singular behavior of the same kind
that we had for the pure solitonic potential, when u��0. For a generic u� we choose

an
± � 0. �3.59�

This choice is natural and surely admissible as the following observation demonstrates. In fact,
using equality LN=L+u� and the fact that G�n��k� is Green’s function, we can rewrite Eq. �3.54�
as an�k�= ��n

�L� NG�n��k�u��n
�� and, then, taking into account that by Eq. �3.49� G�n��k��u��0=GN

�n�

	�k�, we get the following functional derivative:

��an�k�
�u�

�
u��0

= �n
��x��n

��x�, � = sgn kI �3.60�

which is different from zero for any value of k. From here on we will consider only the case �3.59�
for all n=1, . . . ,N. Then G�k� has finite limits for k→�n

±:

G��n
±� = G�n���n

±� −
1

an
±��n���n

±� � �n��n
±� , �3.61�

where we used the solutions of the nonstationary Schrödinger equation and their dual defined in
Eq. �3.55�. Let us mention that Eq. �3.57� can be written also in the following forms:

an
± = ��n

±L� N��n���n
±�� = ���n���n

±�L� N�n
±� , �3.62�

so that by condition �3.59� functions ��n��x ,�n
±� and �n�x ,�n

±� in Eq. �3.61� are different from
zero.

Functions ��k� and ��k� are analytic in the complex domain, so directly by definition �3.3� of
the Jost solutions and thanks to Eqs. �2.22�, �3.53�, and �3.52� we derive

lim
k→�n

±
�n�k���x,k� = −

��n��x,�n
±�

�2�an
±

, �3.63�

lim
k→�n

±
�n�k���x,k� = −

��n��x,�n
±�

�2�an
±

. �3.64�

Inserting Eq. �3.64� in Eq. �3.20� and using Eq. �3.54� we get

lim
k→�n

±
�n�k�A�k� = −

1

2�
. �3.65�

In the same way by Eq. �3.31� taking into account Eqs. �2.24� and �3.53� we have for the
auxiliary Jost solution

lim
kI→±��nI−0�

�n��nR + ikI��n�kI� = −
��n���n

±�
an

± , �3.66�

and analogously for �n�kI�.
The same consideration gives the behavior of the spectral data. Thus, Eq. �3.28� thanks to Eq.

�3.51� can be written as
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An�kI� = 1 +
�n�kI�sgn kI

2�i
n��nR + 0 + ikI� ,

so that Eq. �3.52�

lim
kI→±��nI−0�

�n��nR + ikI��An�kI� − 1� = �
�n

±

2�i
, �3.67�

proving that An�kI� tends to 1 at the end points of the cut. For wn�kI� we can use, say, the last
equality in Eq �3.46� and �3.63�. Then, thanks to Eqs. �3.62� and �3.67� we get

lim
kI→±��nI−0�

�n��nR + ikI�wn�kI� = ±
i�n

±

�2��3/2 . �3.68�

D. Relating auxiliary Jost solutions to Jost solutions

We have now all information on the properties of the auxiliary Jost solutions that are needed
in order to express them in terms of the Jost solutions and spectral data wn�kI�.

By deriving Eq. �3.31� with respect to kI we get, by using Eq. �3.6� and the expression for the
adjoint of wn�kI� as given in Eq. �3.46�,

��n�kI�
�kI

=
iAn�kI�
�n�kI�

t��nR + ikI�wn�− kI����nR + 0 + ikI� . �3.69�

Integrating, we have

�n�kI� = i�
�nI sgn kI

kI

ds
An�s�
�n�s�

t��nR + is�wn�− s����nR + 0 + is� , �3.70�

where we took into account that by Eq. �3.66� the auxiliary Jost solution is zero at k=�n
±.

Analogously, by Eq. �3.6� we get from Eq. �3.28�,

�An�kI�
�kI

=
iAn

2�kI�
�n�kI�

t��nR + ikI�wn�− kI�wn�kI� , �3.71�

so that by Eq. �3.67�,

An�kI� = 1 − i�
�nI sgn kI

kI

ds
t��nR + is�

�n�s�
wn�s�wn�− s��−1

� 0. �3.72�

Notice that relation �3.71� enables us to rewrite Eq. �3.47� in the form

t��nR + ikI��A��nR + 0 + ikI� − A��nR − 0 + ikI�� = 2� sgn kI

� log An�kI�
�kI

. �3.73�

E. Extended resolvent

Now we can proceed to the reconstruction of the resolvent of the nonstationary Schrödinger
operator �1.2� with potential �1.7�. Taking into account Eqs. �3.2� and �3.40� we get in analogy
with Eq. �2.44�
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M̂�x,x�;q� =
1

2�i��kI=q1

dkR���x2 − x2�� − ��2kRq1 − q2��t�k���x,k���x�,k�

+ �
n=1

N
�n�q1�
An�q1�

���x2 − x2�� − ��2�nRq1 − q2���n�x,q1��n�x�,q1�� , �3.74�

so that the dressed operator M̂�x ,x� ;q� can be obtained from M̂N�x ,x� ;q� in Eq. �2.44� by substi-
tuting Jost and auxiliary Jost solutions by the dressed ones and by substituting �n�q1� by
�n�q1� /An�q1�, that can be considered its dressed version. The proof that the kernel M�x ,x� ;q�
given by Eq. �1.25� belongs to the space of tempered distributions can be performed following the
proof given in Ref. 25 for the case of the pure N-soliton potential. This proof is based on the
boundedness property of X�x ,kI�, ��x ,kI� proved in Sec. III A 2, and on the same property of
�n�x ,kI�, �n�x ,kI� and of Xn�x ,kI�, �n�x ,kI� �see Eqs. �3.31�, �3.32�, and �3.37��, that was

mentioned in Sec. III B. The fact that M̂�x ,x� ;q�, given above, obeys Eq. �1.34� means that the
following completeness relation �cf. Eq. �2.46�� is valid:

1

2�
�� dkRt�k���x,k���x�,k� + �

n=1

N
�n�kI�
An�kI�

�n�x,kI��n�x�,kI��
x2=x2�

= ��x1 − x1�� .

�3.75�

Next, by Eq. �1.42� we get from Eq. �3.74� for Green’s function representation

G�x,x�,k� =
1

2�i�� d���x2 − x2�� − ��kI��t� + k���x, + k���x�, + k�

+ �
n=1

N
�n�kI�
An�kI�

���x2 − x2�� − ��kI��nR − kR����n�x,kI��n�x�,kI�� . �3.76�

In previous sections the analyticity properties of the Jost solutions were derived from the
analyticity properties of Green’s function. Vice versa, representation �3.76� enables us to derive
the analyticity properties of Green’s function from the properties of the Jost and auxiliary Jost
solutions, while, say, check of the equality �3.6� is rather cumbersome. Omitting details we can use
relations of the kind �k

I
��+k�= i���+k� in calculation of derivative of the integral term in

Eq. �3.76�, but only at +kR��nR. Thus expressions for discontinuities given in Eqs. �3.42� and
�3.43� must be taken into account. Then Eq. �3.6� for any k, kI�0 follows thanks to Eqs. �2.26�
and �3.69� and its conjugate, and Eq. �3.71�. Analogously we get in the same region of k by Eq.
�3.76�,

�G�k�

�k̄
=

sgn kI

4�i
�
n=1

N

��kR − �nR�
�n�kI�
An�kI�

�n�kI� � �n�kI� , �3.77�

that generalizes Eq. �2.60� in correspondence with Eq. �3.41�. Thus analyticity of Green’s function
for kI�0 and k not belonging to the intervals kR=�nR, �kI�
�nI follows from Eq. �3.76�.

For the boundary values of Green’s function on the real axis we get by Eq. �3.76� �cf. Eq.
�2.67��,
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G��x,x�,k� =
1

2�i�� dp���x2 − x2�� − ����p − k���t��p����x,p����x�,p�

+ �
n=1

N

���x2 − x2�� − �����nR − k���
�n

�

An
� �n

��x��n
a�x��� , �3.78�

where �= + ,−, k�R, and we introduced for the boundary values of the functions involved in this
bilinear representation notations

�±�x,k� = ��x,k ± i0�, �±�x,k� = ��x,k ± i0�, k � R , �3.79�

�n
±�x� = �n�x, ± 0�, �n

±�x� = �n�x, ± 0� , �3.80�

An
± = An�±0� . �3.81�

The standard conjugation properties,

�±�x,k� = ���x,k� , �3.82�

�n
±�x� = �n

��x� , �3.83�

An
+ = An

−, �3.84�

are satisfied.

F. Advanced/retarded Green’s functions and solutions

For advanced/retarted Green’s functions we have by Eq. �1.46�,

G±�x,x�� = ±
��±�x2 − x2���

2�i �� dt������x,����x�,� + �
n=1

N
�n

�

An
� �n

��x��n
��x���

�3.85�

�cf. Eqs. �2.52� and �2.56��, where �= + ,− and the rhs is independent of the choice of this sign as
we show below. As follows from Eq. �3.78�,

G��k� − G± =
�1

2�i�� dp��±��p − k��t��p����p� � ���p� + �
n=1

N

��±���nR − k��
�n

�

An
� �n

�
� �n

�� .

�3.86�

On the other side by Eqs. �1.68� and �2.96� we get

G+ − G− =
1

2�i�� dp �±�p� � ���p� + �
n=1

N

�±,n � ��,n� , �3.87�

where we introduced the advanced/retarded solutions,

�±�k� = G±L� N�±�k�, �±�k� = �±�k�L� NG±, �3.88�

and the auxiliary advanced/retarded solutions �cf. Eqs. �3.31� and �3.32��,
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�±,n = G±LN
� �±,n, �±,n = �±,nLN

� G±, �3.89�

where the auxiliary advanced/retarded solutions �±,n and �±,n of the pure N-soliton case are
defined in Eq. �2.91�. By these definitions we get that these functions, indeed, thanks to Eq. �1.48�,
obey the nonstationary Schrödinger equation and its dual,

L� �±�k� = 0, �±�k�L� = 0, �3.90�

L� �±,n = 0, �±,nL� = 0, �3.91�

have, thanks to Eq. �1.50�, conjugation properties

�± = ��, �±,n = ��,n, �3.92�

and, thanks to Eq. �1.60�, obey the integral equations

�± = �± + GN,±u��±, �± = �± + �±u�GN,±, �3.93�

�±,n = �±,n + GN,±u��±,n, �±,n = �±,n + �±,nu�GN,±. �3.94�

G. Relation between Jost solutions on the real axis and advanced/retarded
solutions

Difference of Green’s function given in Eq. �3.86� can also be derived by inserting Eq. �2.68�
in the rhs of Eq. �1.67� that gives

G��k� − G± =
�1

2�i�� dp��±��p − k��t��p�G±L� N���p� � ���p�L� NG��k�

+ �
n=1

N

�n
���±���nR − k��G±L� N�n

�
� �n

�L� NG��k�� . �3.95�

Then using Eqs. �3.88�, �2.80�, and �2.92� we can rewrite Eq. �3.95� as

G��k� − G± =
�1

2�i�� dp��±��p − k��r±
��p��±�p� � ���p�L� NG��k�

+ �
m,n=1

N

r±
��m,n���±���nR − k���±,m � �n

�L� NG��k�� . �3.96�

Let us now introduce the spectral data

R±
��p,k� = r±

��p����k − p� �
t��k�
2�i

��±��p − k������p�L� N���k��� , �3.97�

R±
��m,k� = �

t��k�
2�i

�
n=1

N

r±
��m,n���±���nR − k����n

�L� N���k�� . �3.98�

Then, applying to Eq. �3.96� operation L� N���k� from the right and using Eqs. �3.3� �at k=k
+ i�0�, �3.88� and �2.80� we get
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t��k����k� =� dp�±�p�R±
��p,k� + �

m=1

N

�±,mR±
��m,k� , �3.99�

t��k����k� =� dpR�
−��p,k��±�p� + �

m=1

N

R�
−��m,k��±,m, �3.100�

where the second equality follows by conjugation.
Using the fact that the N-soliton potential is invariant under permutation of the �n’s it is

convenient here to renumber them in such a way that

�1R � ¯ � �NR, �3.101�

and to introduce the step function of a discrete variable defined as

��n� = �1, n � 0

0, n 
 0.
� �3.102�

In order to express the auxiliary Jost solutions in terms of the advanced/retarded solutions, we
perform first the limit k→�lR+0 in Eq. �3.96� getting

G���lR + 0� − G± =
�1

2�i�� dp��±��p − �lR��r±
��p��±�p� � ���p�L� NG���lR + 0�

+ �
m=1

N

�±,m�
n=1

N

r±
��m,n����±����n − l� + �������l − n� + ������ln�

� �n
�L� NG���lR + 0�� , �3.103�

and we introduce the new set of spectral data,

R±
��k,n� = � ��±��k − �nR��

r±
��k��n

�

2�iAn
� ����k�L� N�n

�� , �3.104�

R±
��m,n� = �

l=1

N

r±
��m,l���ln��±��

An
� + ������ � ��±��l − n��

�n
�

2�iAn
� ��l

�L� N�n
��� ,

�3.105�

where the �n’s are subjected to condition �3.101�.
Then, we apply operation L� N�n

� to Eq. �3.103� from the right and use �3.31� at kI=�0, �2.92�,
and

An
� = 1 +

��n
�

2�i
��n

�L� N�n
�� , �3.106�

which follows from Eq. �3.28�. We get

�n
�

An
� �n

� =� dp�±�p�R±
��p,n� + �

m=1

N

�±,mR±
��m,n� , �3.107�
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�n
�

An
� �n

� =� dpR�
−��p,n��±�p� + �

m=1

N

R�
−��m,n��±,m, �3.108�

where again the second equality follows by conjugation.

Inverse relations follow applying to Eq. �3.86� from the right L� N�± and using Eqs. �2.78�,
�3.3�, �3.79�, and �3.88�, and properties of conjugation of solutions,

�±�k� =� dp���p�R±
−��k,p� + �

n=1

N

�n
�R±

−��k,n� , �3.109�

and applying to Eq. �3.86� at k=�mR+0 from the right L� N�±,n and using Eqs. �2.91�, �3.31�,
�3.38�, and �3.89�, and again properties of conjugation of solutions:

�±,n =� dp���p�R±
−��n,p� + �

m=1

N

�m
�R±

−��n,m� . �3.110�

Relations

�±�k� =� dpR�
� �k,p����p� + �

n=1

N

R�
� �k,n��n

�, �3.111�

�±,n =� dpR�
� �n,p����p� + �

m=1

N

R�
� �n,m��m

� �3.112�

are obtained by conjugation.

H. Characterization equations for spectral data

In order to give characterization equations in observable form we use the technique introduced
by Eqs. �2.109�–�2.114� in Sec. II. Thus we denote rows,

���x� = ����x,k�,�1
��x�, . . . ,�N

��x�� , �3.113�

�±�x� = ��±�x,k�,�±,1�x�, . . . ,�±,N�x�� , �3.114�

columns,

���x� = ����x,k�,�1
��x�, . . . ,�N

��x��T, �3.115�

�±�x� = ��±�x,k�,�±,1�x�, . . . ,�±,N�x��T, �3.116�

and matrix operators,

R±
� = R±

��p,k� R±
��p,n�

R±
��m,k� R±

��m,n�
� , �3.117�

T� = t��p���p − k� 0

0 �mn��n
�/An

��
� , �3.118�

with unity operator defined in Eq. �2.114�. Then, assuming the same operations with these objects
as in Eqs. �2.111�–�2.116�, we can rewrite Eqs. �3.99�, �3.100�, and �3.107�–�3.112�, as

��T� = �±R±
�, �3.119�
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T��� = �R�
−��†�±, �3.120�

�± = ���R±
−��†, �3.121�

�± = R�
� ��, �3.122�

from which easily follow the characterization equations �cf. Eqs. �2.113� and �2.119��,

�R±
−��†R±

� = T�, �3.123�

R±
��T��−1�R±

−��† = I , �3.124�

�R+
��†R+

� = �R−
��†R−

�. �3.125�

If we introduce

F−� = �R±
��†R±

�, �3.126�

we have

��T� = �−�F−�. �3.127�

It is easy to check that these spectral data obey the characterization equations,

F��T−��−1F−� = T�, �3.128�

�F��† = F�, �3.129�

that generalize Eqs. �2.121� and �2.122�, so that

��T��� = �±��. �3.130�

Operator data R±
� involve both the discrete and the continuous parts of the spectral data. These two

contributions can be made more transparent by factorizing out the discrete data by means of
decomposition

R±
� = r±

�R±
�, �3.131�

where r±
� is the matrix operator defined in Eq. �2.111� and

R±
� = R±

��p,k� R±
��p,n�

R±
��m,k� R±

��m,n�
� , �3.132�

where

R±
��p,k� = ��k − p� � ��±��p − k��

t��k�
2�i

����p�L� N���k�� , �3.133�

R±
��m,k� = � ��±���mR − k��

t��k�
2�i

��m
�L� N���k�� , �3.134�

R±
��p,n� = � ��±��p − �nR��

�n
�

2�iAn
� ����p�L� N�n

�� , �3.135�
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R±
��m,n� = �mn��±��

An
� + ������ � ��±��m − n��

�n
�

2�iAn
� ��m

�L� N�n
�� . �3.136�

We have, then, Eqs. �3.119�–�3.122�,

��T� = �±r±
�R±

�, �3.137�

�± = ���R±
−��†�r±

−��†, �3.138�

T��� = �R�
−��†�r�

−��†�± �3.139�

�± = r�
� R�

� ��. �3.140�

Inserting the second equality of Eq. �2.113� into Eq. �3.123� and recalling Eq. �2.112� we get
another formulation of the characterization equations,

�R±
−��†t�R±

� = T�. �3.141�

As well, multiplying Eq. �3.124� from the left and from the right by, respectively, �r±
−��† and r±

�

and inserting Eq. �2.113� we get

R±
��T��−1�R±

−��† = �t��−1, �3.142�

and, analogously, from Eq. �3.125�

�R+
−��†f�R+

−� = �R−
−��†f�R−

−�. �3.143�

Characterization equations �3.141� and �3.142� say simply that the matrix operator R±
� has right

and left inverse, while Eq. �3.142� is a characterization equation in the strict sense, if the triangular
structure of spectral data �3.133�–�3.136� is taken into account. The spectral data R±

��p ,k� and
R±

��m ,k� and only these spectral data are discontinuous at k=�nR as follows by Eqs. �3.42�,
�3.44�, and �3.28�. The latter equalities prove that these discontinuities furnish the additional
spectral data R±

��p ,n� and R±
��m ,n�:

�n
��R±

��p,�nR + 0� − R±
��p,�nR − 0�� = t���nR�wn

�R±
��p,n� , �3.144�

�n
��R±

��m,�nR + 0� − R±
��m,�nR − 0�� = t���nR�wn

�R±
��m,n� . �3.145�

Correspondingly, there is only one independent characterization equation in Eq. �3.143� that in-
volves only the spectral data R±

��p ,k� and R±
��m ,k�. Precisely, we get

� dk�R+
��k�,p�R+

��k�,k� + �
m,n=1

N

R+
��m,p�Dmn

� R+
��n,k� = �+ → − � . �3.146�

where

Dmn
� = �����m

− Cmn�n
+ + ��− ��Cmn

−1 . �3.147�

From Eqs. �3.126� and �3.131� recalling Eq. �2.118� we have

F� = �R±
−��†f�R±

−�, �3.148�

showing that the spectral data F� are given by dressing the spectral data f� by means of R±
�,

which for a perturbation u��x��0 reduces to the identity operator.
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We shall see that relation �3.127� together with Eq. �3.42� enables us to formulate the inverse
problem for the Jost solution. Say, for the sign “�” the “continuous” part of the equality �3.127�
reads as

t+�p��+�p� − �−�p� =� dp��−�x,p��f−�p�,p� + �
n=1

N

�n
−�x�F−�n,p� , �3.149�

where we denoted

f−�p,p�� = F−�p,p�� − ��p − p�� . �3.150�

IV. INVERSE PROBLEM AND TIME EVOLUTION

A. Formulation of the inverse problem

Let us consider function X�x ,k� as defined in Eq. �3.13�. Taking into account analyticity
properties of the Jost solution ��x ,k� derived above and asymptotics �3.17� we get

�t�k����kI�X�k� = 1 +
1

2�i
� dp

p − k
�t+�p�X+�p� − X−�p��

−
1

2�i
�
n=1

N �
−�nI

�nI ds�t�s����s�

s − i�nR + ik
�X��nR + 0 + is� − X��nR − 0 + is�� . �4.1�

In terms of the Jost solutions themselves this reads by Eq. �3.13� as

�t�k����kI���x,k� = e−i��k�x +
1

2�i
� dpei���p�−��k��x

p − k

	�� dp��−�x,p��f−�p,p�� + �
n=1

N

�n
−�x�F−�n,p��

−
1

2�i
�
n=1

N �
−�nI

�nI ds�t��nR + is����s�

s − i�nR + ik
ei����nR+is�−��k��xwn�s��n�x,s� , �4.2�

where Eqs. �3.149� and �3.42� were used and where functions �n
−�x� are defined in Eq. �3.80�.

Inserting into �4.2� relation �3.70�, expressing the auxiliary Jost in terms of the Jost solutions we
obtain

�t�k����kI���x,k� = e−i��k�x +
1

2�i
� dp �−�x,p� � dp�f−�p�,p�

p� − k
ei���p��−��k��x

− �
n=1

N
1

2��n
+�

0

�nI

ds An�s�t��nR + is�wn�− s���x,�nR + 0 + is�

	 �
0

s ds�t��nR + is��wn�s��
s� − i�nR + ik

ei����nR+is��−��k��x

− �
n=1

N
1

2��n
−�

−�nI

0

ds An�s�t��nR + is�wn�− s���x,�nR + 0 + is�

	��
s

0 ds�wn�s��
s� − i�nR + ik

ei����nR+is��−��k��x −� dp F−�n,p�
p − k

ei���p�−��k��x� .

�4.3�
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Now we can project this equality on the upper side of the real axis and on the segments kR

=�nR+0, �kI���nI. This supplies us with a closed system of equations on �−�x ,p� and
��x ,�nR+0+ ikI�.

B. Evolution of spectral data

The Jost, advanced/retarded ���k� ,�±�k�� and auxiliary Jost, advanced/retarded
��n�kI� ,�±,n� solutions in the perturbed case are uniquely defined, respectively, by the integral
equations �3.9�, �3.93� and �3.35�, �3.94�. In the considered integral equations, thanks to the fast
decay of the perturbation u��x� at large x, we can exchange the limit x2→� with the integral and
deduce that ��k� and �n�kI� have at large x2 the same asymptotic behavior as the inhomogeneous
terms ��k� and �n�kI�. Therefore, since also u�x� is going to zero at large x2, the operators TN and
T have at large x2 the same asymptotic limit �t+4i�x1

3 and we obtain by using Eqs. �2.102� and
�2.107�,

T�k3���k� = 0, �4.4�

T���n
��3��n�kI� = 0 where � = sgn kI. �4.5�

Green’s function GN,±�x ,x�� appearing in the integral equations �3.93� and �3.94� goes to zero for
x2→ �� due to the presence of a factor ��±�x2−x2��� in Eq. �2.56�. Therefore, in the same way as
for the Jost solutions we obtain using Eqs. �2.106� and �2.108�:

T�k3��±�k� = 0, �4.6�

T1

2
��̄m

3 + �m
3 ���±,m = 0. �4.7�

Considering the limit of Eq. �3.99� for x2→ �� we have

t��k����k� � � dp�±�p�R±
��p,k� + �

m=1

N

�±,m�k�R±
��m,k� . �4.8�

Due to the triangular property of R±
��p ,k� and the asymptotics of the Jost and advanced/retarded

solutions that one can derive from Eqs. �2.15� and �2.83�, respectively, the first term in the rhs is
not going to zero as fast as an exponential and therefore dominates over the second term that is
going to zero exponentially. We have

t��k����x,k� � � dp�±,as�p�e−i��p�xR±
��p,k� for x2 → � � . �4.9�

Inserting this expansion into Eq. �4.4� we get the time evolution for the spectral data R±
��p ,k�,

��t + 4i�k3 − p3��R±
��k,p� = 0. �4.10�

Applying T�k3� to Eq. �3.99� and using Eq. �4.4� for k=k, Eq. �4.6� for k=p and Eq. �2.108� and
the linear independence of the �±,m we derive the time evolution for the spectral data R±

��m ,k�,

��t + 2i��̄m
3 + �m

3 � − 4ik3�R±
��m,k� = 0. �4.11�

Applying T�k3� to Eq. �3.109� and using, Eqs. �4.6� and �4.4� for k=p, Eqs. �4.10� and �4.5� for
kI=�0 and the independence of the �n

� we get the time evolution of the spectral data R±
��k ,n�,
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��t + 4i�k3 − ��n
��3��R±

��k,n� = 0. �4.12�

Analogously applying T� 1
2 ��̄n

3+�n
3�� to Eq. �3.110� and using Eqs. �2.108�, �4.4�, and �4.10�, and

�4.6� we have

��t + 2i��̄m
3 + �m

3 � − 4i��n
��3�R±

��m,n� = 0. �4.13�

Applying T���nR+ ikI�3� to Eq. �3.42� and using Eq. �4.4� for k=�nR+ ikI and Eq. �4.5� we get the
time evolution for the spectral data wn�kI�,

��t + 4i��n
��3 − 4i��nR + ikI�3�wn�kI� = 0, � = sgn kI. �4.14�

Finally, from Eq, �3.72�, due to the time evolution of wn�kI�, we have

�tAn�kI� = 0. �4.15�

From the evolution equations of the spectral data R±
� given above one can easily derive the

evolution equation for the spectral data R±
�, taking into account that they are related by Eq.

�3.131� and recalling the evolution equations for r±
��m ,n� in Eq. �2.101�. We get

��t + 4i�k3 − p3��R±
��k,p� = 0, �4.16�

��t + 4i���m
��3 − p3��R±

��m,p� = 0, �4.17�

��t + 4i�k3 − ��n
��3��R±

��k,n� = 0, �4.18�

��t + 4i���m
��3 − ��n

��3��R±
��m,n� = 0. �4.19�

Taking into account the time evolution of wn
� and An

� from Eqs. �4.14� and �4.15� one can check
that these evolutions are coherent with Eqs. �3.144� and �3.145�

By Eqs. �4.16�–�4.19� and �2.98� from Eqs. �3.148� and �2.120� we obtain the time evolution
of the spectral data F�

��t + 4i�k3 − p3��F��k,p� = 0, �4.20�

��t + 4i���m
��3 − p3��F��m,p� = 0, �4.21�

��t + 4i�k3 − ��n
−��3��F��k,n� = 0, �4.22�

��t + 4i���m
��3 − ��n

−��3��F��m,n� = 0. �4.23�

Finally notice that due to the behavior of GN
��x ,x� ,k� at large x1 and the asymptotics �2.17� and

�2.18� we get from the integral equation �3.9� that

lim
x1→+�

���k�eil�k�x = ��− �� + ����
1

t��k�
.

Inserting this into Eq. �4.4� we derive that at any time t�0 the solution u develops the dynamical
constraint,
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�
−�

�

dx1ux2
�t,x� = 0, �4.24�

generalizing to the case of N perturbed soliton the dynamical constraint found in the case of
decaying solutions in Ref. 4.
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We obtain a closed form expression of the universal T-matrix encapsulating the
duality between the quantum superalgebra Uq�osp�1/2�� and the corresponding
supergroup OSpq�1/2�. The classical q→1 limit of this universal T-matrix yields
the group element of the undeformed OSpq�1/2� supergroup. The finite dimen-
sional representations of the quantum supergroup OSpq�1/2� are readily con-
structed employing the above-mentioned universal T-matrix and the known finite
dimensional representations of the dually related deformed Uq�osp�1/2�� superal-
gebra. Proceeding further, we derive the product law, the recurrence relations, and
the orthogonality of the representations of the quantum supergroup OSpq�1/2�. It is
shown that the entries of these representation matrices are expressed in terms of the
little Q-Jacobi polynomials with Q=−q. Two mutually complementary singular
maps of the universal T-matrix on the universal R-matrix are also presented.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2399360�

I. INTRODUCTION

The representation theory of quantum groups and algebras has a richer structure compared to
its classical counterparts. Various nonclassical features in the representation theory of the former
have been found for specific values of deformation parameters such as roots of unity or crystal
base limit. It is known that, for generic values of deformation parameters, each irreducible repre-
sentation of the classical Lie groups and algebras has its quantum analog �see, for example, Ref.
1�. Even for such a generic case, however, there exist representations of the quantum algebra that
do not have classical partners.2–4 Extending our studies to the quantum supergroups, we expect
further richness of the representations as the nilpotency of Grassmann variables in classical su-
pergroups are, in many cases, lost at the quantum level. Grassmann coordinates of quantum
superspaces5 and quantum superspheres,6 as well as the Grassmann elements of quantum
supermatrices,5,6 are instances of lost nilpotency. When representations of such algebraic objects
are considered, nonvanishing squares of Grassmann variables cause a drastic shift from the clas-
sical cases even for generic values of deformation parameters.

Influenced by this observation, here we study the representations of the simplest quantum
supergroup OSpq�1/2�. A precise theory of matrix representations of quantum groups has been
developed in Ref. 7. The physical motivations of the present work are provided by the investiga-
tions on solvable models having a quantized osp�1/2� symmetry. For instance, vertex models,8 the
Gaudin model,9 and two-dimensional �2D� field theories10 based on Uq�osp�1/2�� symmetry have
been proposed and investigated. A fully developed representation theory of OSpq�1/2� will pro-
vide useful tools for analyzing these models and building new ones.
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It is known that the representation theories of two quantum algebras Uq�sl�2�� and
Uq�osp�1/2�� are quite parallel for a generic q. We naturally anticipate that the known results on
the quantum group SLq�2� may be extended to the quantum supergroup OSpq�1/2�. To accomplish
the extension, we employ the universal T-matrix, which is a generalization of the exponential
mapping relating a Lie algebra with its corresponding group. The underlying reasons for this are
as follows: �i� The universal T-matrix succinctly embodies the representations of the dually related
conjugate Hopf structures, Uq�osp�1/2�� and OSpq�1/2�. In particular, contributions of the non-
vanishing square of the odd elements of OSpq�1/2� may be directly read from the expression of
the universal T-matrix. �ii� Moreover, the universal T-matrix allows us to map each irreducible
representation of Uq�osp�1/2�� on the corresponding one of OSpq�1/2�. Therefore, various prop-
erties of representations follow from the corresponding ones of the universal T-matrix, and the role
of the lost nilpotency becomes explicit. Specifically, we demonstrate that the nonvanishing con-
tributions of odd elements assume polynomial structures in the representation matrices.

The plan of this article is as follows. After fixing notations and conventions in the next
section, the basis set of the Hopf dual to the Uq�osp�1/2�� algebra is explicitly obtained. The
finitely generated basis sets of the dually related Hopf algebras are now used to derive a closed
form expression of the universal T-matrix via the method of Frønsdal and Galindo.11 Singular and
therefore noninvertible maps of the universal T-matrix on the universal R-matrix exist.11 Two
such mutually complementary maps are studied in Sec. IV. General properties of the finite dimen-
sional representations of the quantum supergroup OSpq�1/2�, such as the product law, the recur-
rence relations, and the orthogonality of representations, follow, as observed in Sec. V, from the
duality encompassed in the universal T-matrix. Explicit form of the representation matrices are
derived in Sec. VI and its relation to the little Q-Jacobi polynomials are discussed. It is shown that
the entries of the representation matrix are expressed in terms of the little Q-Jacobi polynomials
with Q=−q. This provides a new link of the representation theory of quantum supergroups with
the hypergeometric functions. Section VII is devoted to concluding remarks. The corresponding
results on SLq�2� and other quantum groups are mentioned in each section.

II. Uq†osp„1/2…‡ AND ITS REPRESENTATIONS

The quantum superalgebra U=Uq�osp�1/2�� and the dually related quantum supergroup A
=OSpq�1/2�, dual to U, have been introduced in Ref. 12. Structures and representations of U have
been investigated in Refs. 8 and 12. For the purpose of fixing our notations and conventions we
list the relations that will be used subsequently.

The algebra U is generated by three elements H �parity even� and V± �parity odd� subject to
the relations

�H,V±� = ±
1

2
V±, �V+,V−� = −

q2H − q−2H

q − q−1 � − �2H�q. �2.1�

The deformation parameter q is assumed to be generic throughout this article. The Hopf algebra
structures defined via the coproduct ���, the counit ���, and the antipode �S� maps read as follows:

��H� = H � 1 + 1 � H, ��V±� = V± � q−H + qH
� V±, �2.2�

��H� = ��V±� = 0, �2.3�

S�H� = − H, S�V±� = − q�1/2V±. �2.4�

Using the flip operator �: ��a � b�= �−1�p�a�p�b�b � a, where p�a� denotes the parity of a, we define
the transposed coproduct: ��=� ��. The universal R-matrix intertwining � and �� is given by12
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Rq = q4H�H�
k�0

�q − q−1�kq−k/2

�k�q−1!
�qHV+ � q−HV−�k, �2.5�

where

�k�q =
1 − �− 1�kqk

1 + q
, �k�q ! = �k�q�k − 1�q ¯ �1�q, �0�q ! = 1. �2.6�

Two properties of Rq that will be used later are listed below: �i� It satisfies the Yang-Baxter
equation

Rq12Rq13Rq23 = Rq23Rq13Rq12, �2.7�

and �ii� its antipode map reads as �S � id�Rq=Rq−1 =Rq
−1.

The finite dimensional irreducible representations of U is specified by the highest weight �,
which takes any non-negative integral value. The irreducible representation space V��� of highest
weight � is 2�+1 dimensional. We denote its basis as �em

� ��� 	m=� ,�−1, ¯ ,−��, where the index
�=0,1 specifies the parity of the highest weight vector e�

����. The parity of the vector em
� ��� equals

�−m+�, as it is obtained by the action of V−
�−m on e�

����. For the superalgebras the norm of the
representation basis need not be chosen positive definite. In this work, however, we assume the
positive definiteness of the basis elements:

�em
� ���, em�

�� ���� = �����mm�. �2.8�

With these settings, the irreducible representation of U on V��� is given by

Hem
� ��� =

m

2
em

� ��� ,

V+em
� ��� = 
 1

�2�q
�� − m�q�� + m + 1�q�1/2

em+1
� ��� ,

V−em
� ��� = �− 1��−m−1
 1

�2�q
�� + m�q�� − m + 1�q�1/2

em−1
� ��� , �2.9�

where

�m�q =
q−m/2 − �− 1�mqm/2

q−1/2 + q1/2 . �2.10�

The tensor product of two irreducible representations is, in general, reducible and may be decom-
posed into irreducible ones without multiplicity:

V��1�
� V��2� = V��1+�2�

� V��1+�2−1�
� ¯ � V�	�1−�2	�.

The decomposition of the tensored vector space in the irreducible basis is provided by the
Clebsch-Gordan coefficients �CGC�:

em
� ��1,�2,�� = �

m1,m2

Cm1 m2 m
�1 �2 � em1

�1 ��� � em2

�2 ��� , �2.11�

where m=m1+m2, and �=�1+�2+��mod 2� signifies the parity of the highest weight vector
e�

���1 ,�2 ,��. The CGC for U is extensively studied in Ref. 13. In spite of our assumption �2.8�
regarding the positivity of the basis vectors, the norm of tensored vector space is not always
positive definite. Indeed, the basis �2.11� is pseudo-orthogonal:
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�em�
�� ��1,�2,��,em

� ��1,�2,��� = �− 1���−m+����1+�2+�+�������m�m. �2.12�

The CGC satisfies two pseudo-orthogonality relations:

�
m1,m2

�− 1���1−m1+����2−m2+��Cm1m2m
�1�2� Cm1m2m�

�1�2�� = �− 1���−m+����1+�2+�+�������mm�, �2.13�

�
�,m

�− 1���−m+����1+�2+�+��Cm1m2m
�1�2� Cm�1m�2m

�1�2� = �− 1���1−m1+����2−m2+���m1m�1
�m2m�2

. �2.14�

Equation �2.14� immediately provides the inversion of the construction �2.11�:

em1

�1 ��� � em2

�2 ��� = �− 1���1−m1���2−m2��
�,m

�− 1���−m���1+�2+��Cm1m2m
�1�2� em

� ��1,�2,�� . �2.15�

Before closing this section, we make two remarks: �i� All the CGC are of parity even state. �ii� The
explicit realization of CGC for U is found in Ref. 6, and also in Ref. 13. As we maintain the phase
convention for the representation of U given in Ref. 13, we use the results obtained therein.

III. UNIVERSAL T-MATRIX VIA DUALITY

Two Hopf algebras U and A are in duality11 if there exists a doubly nondegenerate bilinear
form �, : A � U→C such that, for �a ,b��A , �u ,v��U,

�a,uv = ��A�a�,u � v, �ab,u = �a � b,�U�u� ,

�a,1U = �A�a�, �1A,u = �U�u�, �a,SU�u� = �SA�a�,u . �3.1�

Let the ordered monomials Ek�m=V+
kH�V−

m , �k ,� ,m�� �0,1 ,2 , . . .� be the basis elements of the
algebra U obeying the multiplication and the induced coproduct rules given by

Ek�mEk���m� = �
pqr

fk�m k���m�
pqr Epqr, ��Ek�m� = �

pqr

p�q�r�

g k�m
pqr p�q�r�Epqr � Ep�q�r�. �3.2�

The basis elements ek�m of the dual Hopf algebra A follow the relation

�ek�m,Ek���m� = �k�
k ���

� �m�
m . �3.3�

In particular, the generating elements of the algebra A, defined as x=e100, y=e001, and z=e010,
satisfy the following duality structure:

�x,V+ = 1, �z,H = 1, �y,V− = 1. �3.4�

Thus, x and y are of odd parity, while z is even. The duality condition �3.1� requires the basis set
ek�m to obey the multiplication and coproduct rules given below:

epqrep�q�r� = �
k�m

g k�m
pqr p�q�r�ek�m, ��epqr� = �

k�m

k���m�

fk�m k���m�
pqr ek�m

� ek���m�. �3.5�

To derive the Hopf properties of the dual algebra A, we therefore need to extract the structure
constants defined in �3.2�. Toward this end we note that the induced coproduct map of the ele-
ments Ek�m may be obtained via �2.2�:
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��Ek�m� = ��V+�k��H����V−�m = �
a=0

k

�
b=0

�

�
c=0

m 
k

a
�

q

�

b
�
m

c
�

q
�− 1��m−c��a+c�q−a�k−a�/2−c�m−c�/2

	 V+
k−aq�a+c�HH�−bV−

m−c
� V+

aq−�k+m−a−c�HHbV−
c , �3.6�

where


k

a
�

q
=

�k�q!

�a�q ! �k − a�q!
.

The second equality in �3.6� can be verified by using the commutation relations

q�V+ � q−H��qH
� V+� + �qH

� V+��V+ � q−H� = 0,

q�qH
� V−��V− � q−H� + �V− � q−H��qH

� V−� = 0,

and an extension of binomial theorem that is easily proved by induction: Arbitrary operators A ,B
subject to the commutation properties qAB+BA=0 satisfy the following expansion:

�A + B�n = �
k=0

n 
n

k
�

q
An−kBk. �3.7�

Employing �3.6� we now obtain a set of structure constants:

gk�m
100 001 = �k1��0�m1, gk�m

001100 = − �k1��0�m1,

gk�m
100 010 = − ln q�k1��0�m0 + �k1��1�m0,

gk�m
010 100 = ln q�k1��0�m0 + �k1��1�m0,

gk�m
010 001 = ln q�k0��0�m1 + �k0��1�m1,

gk�m
001 010 = − ln q�k0��0�m1 + �k0��1�m1.

The above structure constants immediately yield the algebraic relations obeyed by the generators
of the algebra A:

�x,y� = 0, �z,x� = 2 ln qx, �z,y� = 2 ln qy . �3.8�

Proceeding toward constructing the coproduct maps of the generating elements of the dual algebra
A, we notice that the defining properties �3.5� provide the necessary recipe:

��x� = �
k�m

k���m�

fk�m k���m�
100 ek�m

� ek���m�,

��z� = �
k�m

k��m�

fk�m k���m�
010 ek�m

� ek���m�,
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��y� = �
k�m

k���m

fk�m k���m�
001 ek�m

� ek���m�. �3.9�

The relevant structure constants obtained via �3.2� are listed below:

fk�m k���m�
100 = �k1��0�m0�k�0���0�m�0 + �− 1�m 1

2��m+1�k0�k� m+1���0�m�0,

fk�m k���m�
010 = �k0�m0�k�0�m�0���1���0 + ��0���1� + �− 1�m 4 ln q

q − q−1�m�k0��0�k�m���0�m�0,

fk�m k���m�
001 = �k0��0�m0�k�0���0�m�1 + �− 1�k� 1

2��
�k�+1�k0��0�m k�+1�m�0,

�1 = 1, �m = �
k=1

m−1

�
�=0

k−1

�− 1���k − ��q �m 
 1� . �3.10�

The coproduct maps of the generators of A may now be explicitly obtained in the manner of �3.9�
provided the basis elements ek�m of the algebra A are known. We complete this task subsequently.

As the algebra A is finitely generated, we may start with the generators �x ,y ,z� and obtain all
dual basis elements ek�m , �k ,� ,m�� �0,1 ,2 , . . .� by successively applying the multiplication rule
given in the first equation in �3.5�. The necessary structure constants may be read from the relation
�3.2� of the algebra U. In the procedure described below we maintain the operator ordering of the
monomials as xkz�ym , �k ,� ,m�� �0,1 ,2 , . . .�. The product rule

e100en00 = �
k�m

g k�m
100 n00ek�m �3.11�

and the explicit evaluation of the structure constant

gk�m
100 n00 = �n + 1�q�k n+1��0�m0 �3.12�

obtained from �3.6� immediately provide

en00 =
xn

�n�q!
, �n�q ! = �

�=1

n

���q, �0�q ! = 1. �3.13�

Employing another product rule

enr0e010 = �
k�m

g k�m
nr0 010ek�m �3.14�

and the value of the relevant structure constant

gk�m
nr 0010 = − n ln q�kn��r�m0 + �r + 1��kn�� r+1�m0,

obtained in the aforesaid way, we produce the following result:

enr0 =
xn

�n�q!

1

r!
�z + n ln q�r. �3.15�

Continuing the above process of building of the dual basis set, we use the product rule
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enrse001 = �
k�m

g k�m
nrs 001ek�m �3.16�

and the value of the corresponding structure constant

gk�m
nrs 001 = �s + 1�q−1�

j=0

r
1

j!
�ln q� j�kn�� r−j�m s+1,

obtained via �3.6�. This finally leads us to the complete construction of the basis element of the
algebra A:

enrs =
xn

�n�q!

�z + �n − s�ln q�r

r!

ys

�s�q−1!
. �3.17�

Combining our results in �3.9�, �3.10�, and �3.17�, we now provide the promised coproduct struc-
ture of the generators of the algebra A:

��x� = x � 1 + �
m=0

�

�− 1�m�m+1q
−m/2ez/2 ym

�m�q−1!
�

xm+1

�m + 1�q!
,

��z� = z � 1 + 1 � z +
4lnq

q − q−1 �
m=1

�

�− 1�m�m
ym

�m�q−1!
�

xm

�m�q!
,

��y� = 1 � y + �
k=0

�

�− 1�k�k+1q
k/2 yk+1

�k + 1�q−1!
�

xk

�k�q!
ez/2. �3.18�

Algebraic simplifications allow us to express the coproduct maps of the above generators more
succinctly:

��x� = x � 1 + �
m=0

�

�− 1�m�m−1�/2
1 + q−1

q − q−1�m

ez/2ym
� xm+1,

��z� = z � 1 + 1 � z +
4 ln q

q − q−1 �
m=1

�
�− 1�m�m+1�/2

�m�q−1

q1/2 + q−1/2

q − q−1 �m−1

ym
� xm,

��y� = 1 � y + �
m=0

�

�− 1�m�m−1�/2
 q + 1

q − q−1�m

ym+1
� xmez/2. �3.19�

With the aid of the result �3.19� we may explicitly demonstrate that the coproduct map is a
homomorphism of the algebra �3.8�: namely,

���x�,��y�� = 0, ���z�,��x�� = 2 ln q��x�, ���z�,��y�� = 2 ln q��y� .

The coassociativity constraint

�id � �� � ��X� = �� � id� � ��X� ∀ X � �x,y,z�

may also be established by using the following identity:

exp���z�� = �exp�z� � 1��
m=1

�

Pm�1 � exp�z�� ,
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Pm = exp
�− 1�m�m+1�/2 �2m�q

m�m�q−1

q1/2 + q−1/2

q − q−1 �m−1

ym
� xm� . �3.20�

The counit map of the generators of the algebra A reads as

��x� = ��y� = ��z� = 0. �3.21�

The antipode map of the dual generators follows from the last equation in �3.1�. We quote the
results here:

S�x� = − �
m=0

�

�− 1�m�m−1�/2q−1
1 + q−1

q − q−1�m

xm+1 exp
−
m + 1

2
z�ym,

S�z� = − z +
4lnq

q − q−1 �
m=1

�

�− 1�m�m+1�/2 1

�m�q−1

q1/2 + q−1/2

q − q−1 �m−1

xme−mz/2ym,

S�y� = − �
m=0

�

�− 1�m�m+1�/2q
 q + 1

q − q−1�m

xm exp
−
m + 1

2
z�ym+1. �3.22�

This completes our construction of the Hopf algebra A dually related to the quantum superalgebra
U.

Our explicit listing of the complete set of dual basis elements in �3.17� allows us to obtain, in
the manner of Frønsdal and Galindo,11 the universal T-matrix for the supergroup:

Te,E = �
k�m

�− 1�p�ek�m��p�ek�m�−1�/2ek�m
� Ek�m, �3.23�

where the parity of basis elements is same for two Hopf algebras U and A:

p�ek�m� = p�Ek�m� = k + m . �3.24�

The notion of the universal T-matrix is a key feature capping the Hopf duality structure. Conse-
quently, the duality relations �3.1� may be concisely expressed11 in terms of the T-matrix as

Te,ETe�,E = T��e�,E, Te,ETe,E� = Te,��E�,

T��e�,E = Te,��E� = 1, TS�e�,E = Te,S�E�, �3.25�

where e and e� �E and E�� refer to the two identical copies of algebra A �U�. A general discussion
of the universal T-matrix for supergroups is found in the Appendix.

As both the Hopf algebras in our case are finitely generated, the universal T-matrix may now
be obtained as an operator valued function in a closed form:

Te,E = 
�
k=0

�
�x � V+qH�k

�k�q!
�exp�z � H�
�

m=0

�
�y � q−HV−�m

�m�q−1!
�

�	
	Expq�x � V+qH� exp�z � H�Expq−1�y � q−HV−�	

	, �3.26�

where we have introduced a deformed exponential that is characteristic of the quantum OSpq�1/2�
supergroup:
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Expq�x� � �
n=0

�
xn

�n�q!
. �3.27�

The operator ordering has been explicitly indicated in �3.26�. The closed form of the universal
T-matrix in �3.26� will be used in the computation of the representation matrices of the quantum
supergroup A. In Ref. 14, using the Gauss decomposition of the fundamental representation, a
universal T-matrix for U is given in terms of the standard q-exponential instead of the deformed
exponential �3.27� characterizing the quantum supergroups.

In the classical limit of q→1, it is immediately evident that the structure constant �3.12� is
truncated at n=2 so that x remains nilpotent. Similarly, y2=0 holds in this limit. It is interesting to
observe the q→1 limit of the universal T-matrix �3.26�. For this purpose we note

lim
q→1

�2n�q → n�1 − q�, lim
q→1

�2n + 1�q → 1, n = 0,1,2, . . . . �3.28�

Assuming the finite limit

lim
q→1

x2

q − 1
= x, lim

q→1

y2

q−1 − 1
= y , �3.29�

it immediately follows that the universal T-matrix �3.26� reduces to the group element of the
undeformed OSp�1/2� and by definition constitutes its universal T-matrix:

	Te,E	q→1 = �1 � 1 + x � V+�exp�x � V+
2�exp�z � H�exp�y � V−

2��1 � 1 + y � V−� . �3.30�

The finite limiting elements �x ,y� are bosonic in nature, and in the context of the classical limit of
the function algebra A they are dually related to the squares of the odd generators of the unde-
formed osp�1/2�. The elements �V±

2 ,H� of the classical osp�1/2� algebra form a sl�2� subalgebra.
The corresponding classical SL�2� subgroup structure is evident from �3.30�. In fact, the correct
limiting structure �3.30� emphasizes the essential validity of the quantum universal T-matrix
derived in �3.26�. Obviously, there is a striking difference between the quantum and classical
universal T-matrices caused by the absence of nilpotency of parity odd elements in the former
case. The infinite series of operators summarized in the deformed exponential contribute to new
polynomial matrix elements in the representations of quantum supergroup A. This is considered in
detail in Sec. V.

The above construction of the universal T-matrix for the algebra U is parallel to the one for the
generalized Heisenberg algebra,15 which is a bosonization16 of the superalgebra U. The dual basis
to the two-parametric deformation of GL�2� is studied in Ref. 17. The universal T-matrix for the
two-parametric quantum GL�2� is given in Refs. 11 and 18. The generalization to the quantum
gl�n� is found in Ref. 19, and a supersymmetric extension is initiated in Ref. 20.

IV. MAPPING T ON R

Two singular and mutually complementary maps connecting the universal T-matrix in �3.26�
and the universal R-matrix in �2.5� are discussed in this section. The first map � :A→U reads

��x� = 0, ��z� = �4 ln q�H, ��y� = q−1/2�q − q−1�qHV+. �4.1�

It is easily observed to satisfy the following properties: �i� �� � id��Te,E�=Rq, and �ii� � is an
algebra homomorphism, though not a Hopf algebra homomorphism; that is, � respects the com-
mutation relations in �3.8� but does not maintain the Hopf coalgebra maps.

To introduce the second map, we recast the universal T-matrix in the form given below:
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TE,e = �
k�m

�− 1��k+m��k+m−1�/2Ek�m � ek�m = 
�
k

1

�k�q!
�V+qH

� x�k�eH�z
�
m

1

�m�q−1!
�q−HV− � y�m� .

�4.2�

The universal R-matrix is also rewritten as

Rq = �
k�0

�q − q−1�k

�k�q−1!
�V+q−H

� qHV−�kq4H�H. �4.3�

A comparison of the above two expressions immediately yields the promised map  :A→U
defined as follows:

�x� = �q−1 − q�q−HV−, �z� = �− 4 ln q�H, �y� = 0. �4.4�

One can immediately verify that �id � ��TE,e�=Rq
−1 and that  is an algebraic homomorphism

but not a Hopf algebra homomorphism. It is interesting to observe that in both the maps intro-
duced here one Borel subalgebra of the function algebra A is mapped on the corresponding Borel
subalgebra of the universal enveloping algebra U. Therefore, the two conjugate Borel subalgebras
of the U algebra are acted upon by two distinct, but complementary maps. Being singular in
nature, these maps are, however, not invertible.

The maps � and  may be utilized to connect the universal T-matrix and the Yang-Baxter
equation. As shown in the Appendix, the universal T-matrix satisfies RTT-type relations. Using the
tensored operators

T e,E
�1� = �

k

�− 1��k+m��k+m−1�/2ek�m
� Ek�m � 1,

T e,E
�2� = �

k

�− 1��k+m��k+m−1�/2ek�m
� 1 � Ek�m, �4.5�

the following identity may be established:

�1 � Rq�T e,E
�1�T e,E

�2� = T e,E
�2�T e,E

�1� �1 � Rq� . �4.6�

Mirroring the structure in �4.5� we also define the transposed T-matrices in the tensored space as

T E,e
�1� = �

k

�− 1��k+m��k+m−1�/2Ek�m � 1 � ek�m,

T E,e
�2� = �

k

�− 1��k+m��k+m−1�/21 � Ek�m � ek�m. �4.7�

These matrices also obey another RTT-type relation:

�Rq � 1�T E,e
�1�T E,e

�2� = T E,e
�2�T E,e

�1� �Rq � 1� . �4.8�

Application of the tensored map � � id � id to �4.6� converts the RTT-type relation into the
Yang-Baxter equation of the form

Rq 23Rq 12Rq 13 = Rq 13Rq 12Rq 23, �4.9�

while a similar action of the conjugate map id � id �  on �4.8� provides the another form of the
Yang-Baxter equation:
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Rq 12Rq 13Rq 23 = Rq 23Rq 13Rq 12. �4.10�

Mappings from a universal T-matrix to a universal R-matrix have been discussed for only a few
quantum algebras. Frønsdal19 considered such mappings for quantum gl�n� and the particular case
of a two-parametric quantum gl�2� is discussed in Ref. 21. The maps for Alexander-Conway
quantum algebra are studied in Ref. 22.

V. REPRESENTATIONS OF A

We do not yet have the explicit formulae of finite dimensional representation matrices of the
function algebra A. These expressions will be derived in the next section. But, prior to that, the
general properties of such finite dimensional representation matrices may be understood via the
duality arguments interrelating A and U algebras. We will address to this task in the present
section.

To be explicit, for us the representations of A signify the matrix elements of the universal
T-matrix on V��� defined in Sec. II:

Tm�m
� ��� = �em�

� ���,Te,Eem
� ���� = �

abc

�− 1��a+c��a+c−1�/2+�a+c���−m�+��eabc�em�
� ���,Eabc em

� ���� .

�5.1�

Under the assumption of the completeness of the basis vectors em
� ���, it is not difficult to verify the

relations

��Tm�m
� ���� = �

k

Tm�k
� ��� � Tkm

� ���, ��Tm�m
� ���� = �m�m. �5.2�

The relations in �5.2� imply that the matrix elements �5.1� satisfy the axiom of the comodule.1 We
may therefore regard Tm�m

� ��� as the 2�+1 dimensional matrix representation of the algebra A.
We now consider a product of two representations in order to obtain their composition rule.

We evaluate the matrix elements of Te,��E� on the coupled basis vector space in two different ways.
The first evaluation is as follows:

�em�
�� ��1,�2,��,Te,��E� em

� ��1,�2,���

= �
abc

�− 1��a+c��a+c−1�/2+�a+c����−m�+��eabc �em�
�� ��1,�2,��,��Eabc�em

� ��1,�2,���

= �����− 1����−m�+����1+�2+��+��Tm�m
� ��� . �5.3�

In the last equality, the pseudo-orthogonality �2.12� of the coupled basis has been used. An
alternate evaluation of the above-mentioned matrix element explicitly uses the Clebsch-Gordan
coupling of the basis vectors. With the aid of the relation

Te,��E� = �
prq

p�q�r�

�− 1��p+r+p�+r���p+r+p�+r�−1�/2epqrep�q�r� � Epqr � Ep�q�r�,

we obtain
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�em�
�� ��1,�2,��,Te,��E�em

� ��1,�2,���

= �
m1,m2

m�1,m�2

�− 1���1−m1+����2−m�2+��Cm�1m�2m�
�1 �2 �� Cm1 m2 m

�1 �2 �Tm�1 m1

�1 ���Tm�2 m2

�2 ��� . �5.4�

Since the results of the two evaluations have to be identical, we obtain the product law for the
quantum supergroup A of the following form:

����Tm�m
� ��� = �− 1����−m�+����1+�2+��+�� �

m1,m2

m�1,m�2

�− 1���1−m�1+����2−m�2+��

	Cm�1 m�2 m�
�1 �2 �� Cm1 m2 m

�1 �2 �Tm�1 m1

�1 ���Tm�2 m2

�2 ��� . �5.5�

Another derivation of the product law �5.5� is found in Ref. 6.
Two alternate forms of the product law are readily derived by using the pseudo-orthogonality

of CGC �2.13� and �2.14�:

�
m�

Cn1 n2 m�
�1 �2 � Tm�m

� ��� = �
m1,m2

�− 1��n1+m1���2−n2+��Cm1 m2 m
�1 �2 � Tn1 m1

�1 ���Tn2 m2

�2 ��� , �5.6�

�
m

�− 1��m�+m���1+�2+��+��Cn1 n2 m
�1 �2 ��Tm�m

�� ���

= �
m�1,m�2

�− 1��n2+m�2���1−n1+��Cm�1 m�2 m�
�1 �2 �� Tm�1 n1

�1 ���Tm�2 n2

�2 ��� . �5.7�

The product law allows us to derive the orthogonality and the recurrence relations of the repre-
sentation matrix Tm�m

� . Setting �1=�2 , �=m=0 in �5.6� and using the formula of CGC given in
Ref. 6, one can verify the orthogonality relation

�
m

�− 1�m1�m1+m�+m1�m1−1�/2+m�m−1�/2q�m1−m�/2Tm1m
� ���T−m2−m

� ��� = �m1m2
. �5.8�

Another orthogonality relation is similarly obtained by setting �1=�2 , ��=m�=0 in the product
law �5.7�:

�
m

�− 1��m1+m�m1+m1�m1−1�/2+m�m−1�/2q�m1−m�/2Tmm1

� ���T−m−m2

� ��� = �m1m2
. �5.9�

For the choice of �2=1 in �5.6�, the recurrence relations for the representation matrices are
obtained below. These relations are classified into three sets according to the values of �:

• The first set has the value of �=�1+1. It comprises three relations corresponding to all
possible values of n2. The recurrence relations listed below correspond to n2=1 , 0, and −1,
respectively:

�− 1��n+m��q−��−n�/2F��n,0,− 1�Tnm
� ���

= q−��−m�/2F��m,0,− 1�Tn−1 m−1
�−1 ���a − �− 1��qm/2G��m,0,0�Tn−1 m

�−1 ����

+ q��+m�/2F��− m,0,− 1�Tn−1 m+1
�−1 ���b ,
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�− 1��n+m��1+��qn/2G��n,0,0�Tnm
� ���

= − q−��−m�/2F��m,0,− 1�Tn m−1
�−1 ���� + qm/2G��m,0,0�Tnm

�−1��� e

− q��+m�/2F��− m,0,− 1�Tn m+1
�−1 ���� ,

�− 1��n+m��1+��q��+n�/2F��− n,0,− 1�Tnm
� ���

= q−��−m�/2F��m,0,− 1�Tn+1 m−1
�−1 ���c + qm/2G��m,0,0�Tn+1 m

�−1 ����

+ q��+m�/2F��− m,0,− 1�Tn+1 m+1
�−1 ���� , �5.10�

where

F��m,a,b� = ��� + m + a�q�� + m + b�q,

G��m,a,b� = ��2�q�� + m + a�q�� − m + b�q,

and the matrix elements for the fundamental representation ��=1� are denoted as

�a � b

� e �

c � d
� = � T11

1 ��� T10
1 ��� T1−1

1 ���
T01

1 ��� T00
1 ��� T0−1

1 ���
T−11

1 ��� T−10
1 ��� T−1−1

1 ���
� . �5.11�

In this set, the highest weight � assumes a constant value of 0 �mod 2�.
• The second set corresponds to �=�1. It also contains three recurrence relations and, in this

instance, we have �=1 �mod 2�:

�− 1��−n+�+�n+m+1��q�n−m�/2G��n,0,1�Tnm
� ���

= �− 1��−mG��m,0,1�Tn−1 m−1
� ���a − Hm

� Tn−1 m
� ���� + �2�q

−1/2G��m,1,0�Tn−1 m+1
� ���b ,

�− 1��n+m��1+��q�n−m�/2Hn
�Tnm

� ���

= �− 1��−mG��m,0,1�Tn m−1
� ���� + Hm

� Tnm
� ���e + �2�q

−1/2G��m,1,0�Tn m+1
� ���� ,

�− 1��n+m��q�n−m�/2�2�q
−1/2G��n,0,1�Tnm

� ���

= �− 1��−mG��m,0,1�Tn+1 m−1
� ���c − Hm

� Tn+1 m
� ���� + �2�q

−1/2G��m,1,0�Tn+1 m+1
� ���d ,

�5.12�

where

Hm
� = q−�/2�� + m + 1�q − �− 1��−mq�/2�� − m + 1�q.

• Similarly, the third set contains three recurrence relations for �=�1−1. For this case, the
highest weight reads �=0 �mod 2�, and the recurrence relations are given by

q��−m+n+1�/2F��− n,1,2�Tnm
� ��� = q��+1�/2F��− m,1,2�Tn−1 m−1

�+1 ���a + �− 1��−m+�G��m,1,1�Tn−1 m
�+1 ����

− q−��+1�/2F��m,1,2�Tn−1 m
�+1 ���b ,

�− 1��−n+�q�n−m�/2G��n,1,1�Tnm
� ��� = q��+1�/2F��− m,1,2�Tn m−1

�+1 ���� + �− 1��−m+�

	G��m,1,1�Tnm
�+1��� e − q−��+1�/2F��m,1,2�Tn m+1

�+1 ���� ,
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q−��−n+m+1�/2F��n,1,2�Tnm
� ��� = − q��+1�/2F��− m,1,2�Tn+1 m−1

�+1 ���c

− �− 1��−m+�G��m,1,1�Tn+1 m
�+1 ���� + q−��+1�/2F��m,1,2�Tn+1 m+1

�+1 ���d .

�5.13�

The discussion so far is independent of the explicit form of the universal T-matrix. The general
properties of the universal T-matrix and the Clebsch-Gordan decomposition of tensor product
representations play a seminal role in the derivation of all properties of the representation of A.
Thus one can repeat the same arguments for other quantum deformations of OSp�1/2�, namely the
Jordanian23 and the super-Jordanian24,25 analogs for deriving their product law, the orthogonality,
and the recurrence relations. Being triangular algebras, the Jordanian and the super-Jordanian
deformations of OSp�1/2� possess the same Clebsch-Gordan decomposition as in the present case.

The representations of SLq�2� �or SUq�2�� have been discussed by many authors. Among the
properties of representation matrices, the product law,26 recurrence relations,26,27 orthogonality,
and RTT-relation27 and generating functions28 are found in the literature. In Ref. 27, the represen-
tation matrices are interpreted as the wave functions of a quantum symmetric top in noncommu-
tative space. Representations of the Jordanian quantum group SLh�2� have been considered in
Refs. 29 and 30.

VI. REPRESENTATION MATRIX AND LITTLE Q-JACOBI POLYNOMIALS

Explicit formulae for the representation matrices of the quantum group SUq�2� have been
obtained by several authors.31–33 It is observed that, for the finite dimensional representations, the
matrix elements are expressed in terms of the little q-Jacobi polynomials. Investigating the Jor-
danian quantum group SLh�2� in a similar framework, it has also been noted that the conventional
Jacobi polynomials contribute30 to the representation matrices therein. The corresponding matrix
elements for the two-parametric quantum group GL�2� have been computed in Ref. 34. Their
relation to orthogonal polynomials, however, is still an open problem.

In this section, we provide the explicit form of the representation matrices �5.1� of A by direct
computation, and study the resulting polynomial structure. Toward this end, we proceed by notic-
ing the identities obtained by the repeated use of �2.9�:

V−
cem

� ��� = �− 1�c��−m�+c�c−3�/2
 1

�2�q
c

�� + m�q!

�� − m�q!

�� − m + c�q!

�� + m − c�q!
�1/2

em−c
� ��� ,

V+
aem

� ��� = 
 1

�2�q
a

�� − m�q!

�� + m�q!

�� + m + a�q!

�� − m − a�q!
�1/2

em+a
� ��� . �6.1�

The explicit listing of the basis elements of A in �3.17� renders the computation of the matrix
elements straightforward. The final result is quoted below:

Tm�m��� = �− 1��m�−m��m�−m−1�/2+�m�−m��−m�+��q
m�m�−m�/2

��2�q
m�−m


 �� + m�q!

�� − m�q!

�� + m��q!

�� − m��q!
�1/2

	 �
c

�− 1�c��−m�q
−c�m�−m�/2

�2�q
c

�� − m + c�q!

�� + m − c�q!

xm�−m+c

�m� − m + c�q!
exp
m − c

2
z� yc

�c�q!
,

�6.2�

where the index c runs over all non-negative integers maintaining the argument of �X�q non-
negative.

The fundamental representation ��=1,�=0� may be identified with the quantum supermatrix
of Ref. 6 in the manner of �5.11�. This identification allows us to realize the entries of the quantum
supermatrix in terms of the generators of the quantum supergroup A:
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a = xy + ez/2 +
x2e−z/2y2

�2�q
2 , � = x −

x2e−z/2y

q1/2�2�q
, b = −

x2e−z/2

q�2�q
,

� = y +
q1/2xe−z/2y2

�2�q
, e = 1 − xe−z/2y, � = − q−1/2xe−z/2,

c = −
qe−z/2y2

�2�q
, � = q1/2e−z/2y, d = e−z/2. �6.3�

A straightforward computation using the commutation relations �3.8� allows us to infer that the
realization �6.3� recovers all the commutation relations of the supermatrix listed in Ref. 6. The
realization �6.3�, more importantly, implies the following Gaussian decomposition of the quantum
supermatrix:14,35,36

�
1 0 0

− q−1/2x 1 0

−
1

q�2�q
x2 x 1��e−z/2 0 0

0 1 0

0 0 ez/2��1 q1/2y −
q

�2�q
y2

0 1 y

0 0 1
�

= �d � c

� e �

b � a
� = C�a � b

� e �

c � d
�C−1, �6.4�

where

C = �0 0 1

0 1 0

1 0 0
�, C−1 = C .

We now turn our attention to the polynomial structure built into the general matrix element �6.2�
in terms of the variable

� =
q−1/2

�2�q
xe−z/2y . �6.5�

To demonstrate this, the product of generators in �6.2� for the case m�−m�0 may be rearranged
as follows:

xm�−m+c exp
m − c

2
z�yc = �− 1�c�c−1�/2q−mcxm�−memz/2�xe−z/2y�c.

The matrix element Tm�m
� ��� may now be succinctly expressed as a polynomial structure given

below:

Tm�m
� ��� = �− 1��m�−m��m�−m−1�/2+�m�−m���−m�+�� qm�m�-m�/2

�m� − m�q ! ��2�q
m�−m

	 
 �� − m�q!

�� + m�q!

�� + m��q!

�� − m��q!
�1/2

xm�−memz/2Pm�m
� ��� . �6.6�

The polynomial Pm�m
� ��� in the variable � is defined by
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Pm�m
� ��� = �

c

�− 1�c��−m�+c�c−1�/2q−c�m�+m−1�/2 �m� − m�q ! �l + m�q ! �� − m + c�q!

�m� − m + c�q ! �� + m − c�q ! �� − m�q ! �c�q!
�c,

�6.7�

where the index c runs over all non-negative integers maintaining the arguments of �X�q non-
negative. For the case m�−m�0, we make a replacement of the summation index c with a=m�
−m+c. Rearrangement of the generators now provides the following expression of the general
matrix element:

Tm�m
� ��� = �− 1��m−m���m−m�+1�/2−�m−m����−1� q−m��m−m��/2

�m − m��q ! ��2�q
m−m�

	 
 �� + m�q!

�� − m�q!

�� − m��q!

�� + m��q!
�1/2

em�z/2ym−m�Pm�m
� ��� , �6.8�

where the polynomial Pm�m
� ��� for m�−m�0 is defined by

Pm�m
� ��� = �

a

�− 1�a��−m��+a�a−1�/2q−a�m�+m−1�/2 �m − m��q ! �l + m��q ! �� − m� + a�q!

�m − m� + a�q ! �� + m� − a�q ! �� − m��q ! �a�q!
�a.

�6.9�

It is immediate to note that the polynomials are symmetric with respect to the transposition
m↔m�: Pmm�

� �= Pm�m
� ���, and that P−� m

� ���= Pm� −�
� ���=1.

The polynomials obtained above are related to the basic hypergeometric functions. We define
the basic hypergeometric function 2�1 by37

2�1�a1,a2;b;Q;z� = �
n=0

�a1;Q�n�a2;Q�n

�b;Q�n�Q;Q�n
zn, �6.10�

where the shifted factorial is defined as usual:

�x;Q�n = � 1, n = 0,

�
k=0

n−1

�1 − xQk� , n � 0.� �6.11�

The little Q-Jacobi polynomials are defined via 2�1 as standard theory of orthogonal
polynomials37

pm
�a,b��z� = 2�1�Q−m,abQm+1;aQ;Q;Qz� . �6.12�

Setting a=Q� , b=Q�, we have the following form of little Q-Jacobi polynomials:

pm
��,���z� = �

n

�Q−m;Q�n�Q�+�+m+1;Q�n

�Q�+1;Q�n�Q;Q�n
�Qz�n. �6.13�

Rewriting our polynomials �6.7� and �6.9� in terms of the shifted factorial with Q=−q, one can
identify our polynomials with the little Q-Jacobi polynomials. For the choice m�−m�0, the
polynomial structure reads

Pm�m
� ��� = �

a

��− q�−�−m;− q�a��− q��−m+1;− q�a

��− q�m�−m+1;− q�a�− q;− q�a

�− q��a = p�+m
�m�−m,−m�−m���� , �6.14�

and for the m�−m�0 case its identification is given by
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Pm�m
� ��� = �

a

��− q�−�−m�;− q�a��− q��−m�+1;− q�a

��− q�m−m�+1;− q�a�− q;− q�a

�− q��a = p�+m�
�m−m�,−m�−m���� . �6.15�

It is amazing that Q=−q polynomials appear for the supergroup A in contrast to the Q=q poly-
nomials being present for the quantum group SUq�2�.31–33

VII. CONCLUDING REMARKS

Starting from the construction of the universal T-matrix, we have investigated the finite
dimensional representations of the quantum supergroup A. A qualitative difference between the
universal T-matrices for the classical and the quantum OSp�1/2� algebras exists due to the nilpo-
tency of the classical parity odd elements. The absence of the above-mentioned nilpotency in the
quantum case induces a new polynomial structure in the matrix elements of T. We observed that
these polynomials are expressed in terms of the little Q-Jacobi polynomials. This suggests a new
link between orthogonal polynomials and representations of quantum supergroups. It is likely to
be a general property that if the Grassmann variables in a classical supergroup lose nilpotency at
the quantum level, it may be reflected in the representations of the quantum supergroup so that the
entries of representation matrices may have a new quantized polynomial structure. The present
work provides an example of this statement. Another likely candidate for the existence of a similar
polynomial structure is the super-Jordanian OSp�1/2�, where the loss of nilpotency has been
observed.5 We believe that the investigation along this line will give a new algebraic background
to basic hypergeometric series.

We have also tried to extend the known properties of the representations for SLq�2� to the
quantum supergroup A. An extension of the product law, the orthogonality and the recurrence
relations, was shown to be possible. However, two known results are not extended in the present
work, that is, the generating function28 of the representation matrices and the Peter-Weyl
theorem.7,33 In order to discuss the Peter-Weyl theorem, a Haar measure has to be defined on A.
Since the loss of nilpotency makes the superspace on A more complex than the classical case,
studying the Peter-Weyl theorem may be interesting from the viewpoint of harmonic analysis on
quantum supergroups. We will discuss these issues elsewhere.
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APPENDIX: UNIVERSAL T-MATRIX FOR QUANTUM SUPERGROUP

This Appendix is devoted to a general discussion of the universal T-matrix for quantum
supergroups. In particular, the relations used in Secs. III and IV are proved in a general setting.

Let U and A be dually conjugate unital Z2 graded Hopf algebras. The basis of the algebras U
and A are denoted by Ek , ek, respectively. One may assume that E0=1U , e0=1A, and p�Ek�
=p�ek� without loss of generality. The duality of U and A is reflected in the structure constants:

EkE� = �
m

fk�
mEm, ��Ek� = �

pq

g k
pqEp � Eq, �A1�

eke� = �
m

g m
k�em, ��ek� = �

pq

fpq
k ep

� eq. �A2�

The universal T-matrix is defined by
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Te,E = �
k

�− 1�p�ek��p�ek�−1�/2ek
� Ek, � A � U . �A3�

Although the factor �−1�p�ek��p�ek�−1�/2 is trivial, it is convenient to keep it in the discussion of
universal T-matrix.

We start with the proof of the relations in �3.25�. The proof of the first relation in �3.25� is
straightforward:

Te,ETe�,E = �
k,�,m

�− 1��p�ek�+p�e����p�ek�+p�e��−1�/2ek
� e�

� fk �
m Em

= �
m

�− 1�p�em��p�em�−1�/2��em� � Em = T��e�,E.

The second equality is due to the fact that the parity of the both sides of the first equation in �A1�
are equal, and that the structure constants are of even parity. The second relation in �3.25� can be
proved similarly. The third relation in �3.25� follows from ��ek�=�0

k , ��Ek�=�k0. The last relation
in �3.25� is a consequence of the identities

Te,S�E�Te,E = Te,ETe,S�E� = 1 � 1, TS�e�,ETe,E = Te,ETS�e�,E = 1 � 1. �A4�

The above identities can be proved by using the axiom of antipode and p�S�ek��=p�ek�..
We next derive the RTT-type relations �4.6� and �4.8�. Defining

Te,E
�1� = �

k

�− 1�p�ek��p�ek�−1�/2ek
� Ek � 1, Te,E

�2� = �
k

�− 1�p�ek��p�ek�−1�/2ek
� 1 � Ek,

we obtain

T e,E
�1�T e,E

�2� = �
m

�− 1�p�em��p�em�−1�/2em
� ��Em� .

On the other hand, the transposed coproduct appears in the reverse-ordered product:

T e,E
�2�T e,E

�1� = �
m

�− 1�p�em��p�em�−1�/2em
� ���Em� = �

m

�− 1�p�em��p�em�−1�/2em
� R��Em�R−1

= �1 � R�T e,E
�1�T e,E

�2� �1 � R−1� .

In the last equality, the fact that the universal R-matrix is of even parity has been used. This
completes our proof of the RTT-type relation �4.6�. The proof of �4.8� may be done similarly with
the definitions

T E,e
�1� = �

k

�− 1�p�ek��p�ek�−1�/2Ek � 1 � ek, T E,e
�2� = �

k

�− 1�p�ek��p�ek�−1�/21 � Ek � ek.

Note added: After submitting the manuscript, we have learnt about the work of Zou,38 where
the representations of OSpq�1/2� and their relation to the basic hypergeometric functions are
explicitly computed by using other basis states, and adopting a method �similar to Ref. 33�
different from ours. The Peter-Weyl theorem has also been established there.
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We propose an outgrowth of the expansion method introduced by de Azcárraga et
al. �Nucl. Phys. B 662, 185 �2003��. The basic idea consists in considering the
direct product between an Abelian semigroup S and a Lie algebra g. General con-
ditions under which relevant subalgebras can systematically be extracted from S
�g are given. We show how, for a particular choice of semigroup S, the known
cases of expanded algebras can be reobtained, while new ones arise from different
choices. Concrete examples, including the M algebra and a D’Auria-Fré-like supe-
ralgebra, are considered. Finally, we find explicit, nontrace invariant tensors for
these S-expanded algebras, which are essential ingredients in, e.g., the formulation
of supergravity theories in arbitrary space-time dimensions. © 2006 American In-
stitute of Physics. �DOI: 10.1063/1.2390659�

I. INTRODUCTION

The role played by Lie algebras and their interrelations in physics can hardly be overempha-
sized. To mention only one example, the Poincaré algebra may be obtained from the Galilei
algebra via a deformation process. This deformation is one of the ways in which different Lie
algebras can be related.

The purpose of this paper is to shed new light on the method of expansion of Lie algebras �for
a thorough treatment, see the seminal work in Ref. 1 and references therein; early work on the
subject is found in Ref. 2�. An expansion is, in general, an algebra dimension-changing process.
For instance, the M algebra,3–5 with 583 Bosonic generators, can be regarded as an expansion of
the orthosymplectic algebra osp�32 �1�, which possesses only 528. This vantage viewpoint may
help better understand fundamental problems related to the geometrical formulation of 11-
dimensional supergravity. Some physical applications of the expansion procedure have been de-
veloped in Refs. 6–14.

The approach to be presented here is entirely based on operations performed directly on the
algebra generators, and thus differs from the outset with the one found in Ref. 1, where the dual
Maurer-Cartan formulation is used. As a consequence, the expansion of free differential algebras
lies beyond the scope of our analysis.

Finite Abelian semigroups play a prominent role in our construction. All expansion cases
found in Ref. 1 may be regarded as coming from one particular choice of semigroup in the present
approach, which is, in this sense, more general. Different semigroup choices yield, in general,
expanded algebras that cannot be obtained by the methods of Ref. 1.

The plan of the paper goes as follows. After some preliminaries in Sec. II, Sec. III introduces
the general procedure of the Abelian semigroup expansion, S-expansion for short, and shows how
the cases found in Ref. 1 can be recovered by an appropriate choice of semigroup S. In Sec. IV,
general conditions are given under which relevant subalgebras can be extracted from an

a�Electronic mail: fizaurie@gmail.com
b�Electronic mail: edurodriguez@udec.cl
c�Electronic mail: pasalgad@udec.cl
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S-expanded algebra. The case when g satisfies the Weimar-Woods conditions15,16 and the case
when g is a superalgebra are studied. Section V gives three explicit examples of S-expansions of
osp�32 �1�: �i� the M algebra,3–5 �ii� a D’Auria-Fré-like Superalgebra,17 and �iii� a new superalge-
bra, different from but resembling aspects of the M algebra, osp�32 �1��osp�32 �1�, and D’Auria-
Fré superalgebras. In Sec. VI, the remaining cases of expanded algebras shown in Ref. 1 are seen
to also fit within the current scheme. The five-brane superalgebra18,19 is given as an example.
Section VII deals with the crucial problem of finding invariant tensors for the S-expanded alge-
bras. General theorems are proven, allowing for nontrivial invariant tensors to be systematically
constructed. We close in Sec. VIII with conclusions and an outlook for future work.

II. PRELIMINARIES

Before analyzing the S-expansion procedure itself, it will prove convenient to introduce some
basic notation and definitions.

A. Semigroups

Definition 2.1: Let S= ���� be a finite semigroup,1 and let us write the product of
��1

, . . . ,��n
�S as

��1
¯ ��n

= ����1,. . .,�n�. �1�

The n-selector K�1¯�n

� is defined as

K�1¯�n

� = �1 when � = ���1, . . . ,�n�
0 otherwise.

	 �2�

Since S is associative, the n-selector fulfills the identity

K�1¯�n

� = K�1¯�n−1

�K��n

� = K�1�
�K�2¯�n

�. �3�

Using this identity it is always possible to express the n-selector in terms of two-selectors,
which encode the information from the multiplication table of S.

An interesting way to state the same is that two-selectors provide a matrix representation for
S. As a matter of fact, when we write

�����
� = K��

�, �4�

then we have

�����
���	��

� = K�	
������

� = �����,	���
�. �5�

We will restrict ourselves from now on to Abelian semigroups, which implies that the
n-selectors will be completely symmetrical in their lower indices.

The following definition introduces a product between semigroup subsets which will be ex-
tensively used throughout the paper.

Definition 2.2: Let Sp and Sq be two subsets of S. The product Sp ·Sq is defined as

Sp · Sq = ��� such that �� = ��p
��q

with ��p
� Sp and ��q

� Sq� � S . �6�

In other words, Sp ·Sq�S is the set which results from the product of every element of Sp with
every element of Sq. Since S is Abelian, Sp ·Sq=Sq ·Sp.

Let us emphasize that, in general, Sp, Sq, and Sp ·Sq need not be semigroups by themselves.

1There does not seem to be a unique, universally accepted definition of semigroup. Here it is taken to be a set provided with
a closed associative product. It does not need to have an identity.
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The Abelian semigroup S could also be provided with a unique zero element, 0S. This element
is defined as the one for which

0S�� = ��0S = 0S, �7�

for each ���S.

B. Reduced Lie algebras

The following definition introduces the concept of reduction of Lie algebras.
Definition 2.3: Consider a Lie (super)algebra g of the form g=V0 � V1, with �Ta0

� being a
basis for V0 and �Ta1

� a basis for V1. When �V0 ,V1��V1, i.e., when the commutation relations
have the general form

�Ta0
,Tb0

� = Ca0b0

c0Tc0
+ Ca0b0

c1Tc1
, �8�

�Ta0
,Tb1

� = Ca0b1

c1Tc1
, �9�

�Ta1
,Tb1

� = Ca1b1

c0Tc0
+ Ca1b1

c1Tc1
, �10�

then it is straightforward to show that the structure constants Ca0b0

c0 satisfy the Jacobi identity by
themselves, and therefore �Ta0

,Tb0
�=Ca0b0

c0Tc0
corresponds by itself to a Lie (super)algebra. This

algebra, with structure constants Ca0b0

c0, is called a reduced algebra of g and symbolized as �V0�.
The reduced algebra could be regarded in some way as the “inverse” of an algebra extension,

but V1 does not need to be an ideal. Note also that a reduced algebra does not correspond to a
subalgebra.

III. THE S-EXPANSION PROCEDURE

A. S-expansion for an arbitrary semigroup S

The following theorem embodies one of the main results of the paper, the concept of
S-expanded algebras.

Theorem 3.1: Let S= ���� be an Abelian semigroup with two-selector K�	
� and g a Lie

(super)algebra with basis �TA� and structure constants CAB
C. Denote a basis element of the direct

product S�g by T�A,��=��TA and consider the induced commutator �T�A,�� ,T�B,	��

���	�TA ,TB�. Then, S�g is also a Lie (super)algebra with structure constants

C�A,���B,	�
�C,�� = K�	

�CAB
C. �11�

Proof: Starting from the form of the induced commutator and using the multiplication law in
Eq. �1� one finds

�T�A,��,T�B,	�� 
 ���	�TA,TB� = CAB
C����,	�TC = CAB

CT�C,���,	��.

The definition of the two-selector K�	
� �see Eq. �2��,

K�	
� = �1 when � = ���,	�

0 otherwise,
	

now allows us to write

�T�A,��,T�B,	�� = K�	
�CAB

CT�C,��. �12�

Therefore, the algebra spanned by �T�A,��� closes and the structure constants read
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C�A,���B,	�
�C,�� = K�	

�CAB
C. �13�

Since S is Abelian, the structure constants C�A,���B,	�
�C,�� have the same symmetries as CAB

C,
namely,

C�A,���B,	�
�C,�� = − �− 1�q�A�q�B�C�B,	��A,��

�C,��, �14�

and for this reason, q�A ,��=q�A�, where q�A� denotes the degree of TA �1 for Fermi and 0 for
Bose�.

In order to show that the structure constants C�A,���B,	�
�C,�� satisfy the Jacobi identity, it suffices

to use the properties of the selectors �see Eq. �3�� and the fact that the structure constants CAB
C

satisfy the Jacobi identity themselves. This concludes the proof. �

The following definition is a natural outcome of Theorem 3.1.
Definition 3.2: Let S be an Abelian semigroup and g a Lie algebra. The Lie algebra G defined

by G=S�g is called the S-expanded algebra of g.
When the semigroup has a zero element 0S�S, it plays a somewhat peculiar role in the

S-expanded algebra. Let us span S in nonzero elements �i , i=0, . . . ,N, and a zero element �N+1

=0S. Then, the two-selector satisfies

Ki,N+1
j = KN+1,i

j = 0, �15�

Ki,N+1
N+1 = KN+1,i

N+1 = 1, �16�

KN+1,N+1
j = 0, �17�

KN+1,N+1
N+1 = 1. �18�

Therefore, G=S�g can be split as

�T�A,i�,T�B,j�� = Kij
kCAB

CT�C,k� + Kij
N+1CAB

CT�C,N+1�, �19�

�T�A,N+1�,T�B,j�� = CAB
CT�C,N+1�, �20�

�T�A,N+1�,T�B,N+1�� = CAB
CT�C,N+1�. �21�

Comparing Eqs. �19�–�21� with �8�–�10�, one sees that the commutation relations

�T�A,i�,T�B,j�� = Kij
kCAB

CT�C,k� �22�

are those of a reduced Lie algebra of G �see Definition 3�. The reduction procedure in this
particular case is equivalent to imposing the condition

T�A,N+1� = 0STA = 0. �23�

Notice that in this case the reduction Abelianizes large sectors of the algebra; for each i and j
satisfying Kij

N+1=1 �i.e., �i� j =�N+1� we have �T�A,i� ,T�B,j��=0.
The above considerations motivate the following definition.
Definition 3: Let S be an Abelian semigroup with a zero element 0S�S, and let G=S�g be

an S-expanded algebra. The algebra obtained by imposing the condition 0STA=0 on G (or a
subalgebra of it) is called 0S-reduced algebra of G (or of the subalgebra).

The algebra in Eq. �22� appears naturally when the semigroup’s zero matches the �algebra�
field’s zero. As we will see in the next section, this is the way Maurer-Cartan form power-series
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expanded algebras fit within the present scheme. It is also possible to extract other reduced
algebras from G; as will be analyzed in Sec. VI, the 0S-reduced algebra turns out to be a particular
case of Theorem 6.1.

B. Maurer-Cartan form power-series algebra expansion as an S-expansion

The Maurer-Cartan form power-series algebra expansion method is a powerful procedure
which can lead, in stark contrast with contraction, deformation, and extension of algebras, to
algebras of a dimension higher than the original one. In a nutshell, the idea consists of looking at
the algebra g as described by the associated Maurer-Cartan forms on the group manifold and, after
rescaling some of the group parameters by a factor �, in expanding the Maurer-Cartan forms as a
power series in �. Finally this series is truncated in a way that assures the closure of the algebra.
The subject is thoroughly treated by de Azcárraga and Izquierdo in Ref. 20 and de Azcárraga et al.
in Ref. 1.

Theorem 1 of Ref. 1 shows that, in the more general case, the expanded Lie algebra has the
structure constants

C�A,i��B,j�
�C,k� = �0 when i + j � k

CAB
C when i + j = k ,

	 �24�

where the parameters i , j ,k=0, . . . ,N correspond to the order of the expansion and N is the
truncation order.

These structure constants can also be obtained within the S-expansion procedure. In order to
show this, one must consider the 0S-reduction of an S-expanded algebra where S corresponds to
the semigroup defined below.

Definition 3.4: Let us define SE
�N� as the semigroup of elements

SE
�N� = ���,� = 0, . . . ,N + 1� , �25�

provided with the multiplication rule

���	 = �HN+1��+	�, �26�

where HN+1 is defined as the function

Hn�x� = �x when x 
 n

n when x � n .
	 �27�

The two-selectors for SE
�N� read

K�	
� = �HN+1��+	�

� , �28�

where ��
� is the Kronecker delta. From Eq. (26), we have that �N+1 is the zero element in SE

�N�, i.e.,
�N+1=0S.

Using Eq. �11�, the structure constants for the SE
�N�-expanded algebra can be written as

C�A,���B,	�
�C,�� = �HN+1��+	�

� CAB
C, �29�

with � ,	 ,�=0, . . . ,N+1. When the extra condition �N+1TA=0 is imposed, Eq. �29� reduces to

C�A,i��B,j�
�C,k� = �i+j

k CAB
C, �30�

which exactly matches the structure constants in Eq. �24�.
The above arguments show that the Maurer-Cartan form power-series expansion of an algebra

g, with truncation order N, coincides with the 0S-reduction of the SE
�N�-expanded algebra G�E�

=SE
�N��g.
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This is of course no coincidence. The set of powers of the rescaling parameter �, together with
the truncation at order N, satisfies precisely the multiplication law of SE

�N�. As a matter of fact, we
have

���	 = ��+	, �31�

and the truncation can be imposed as

�� = 0 when �  N . �32�

It is for this reason that one must demand 0STA=0 in order to obtain the Maurer-Cartan �MC�
expansion as an SE-expansion: in this case the zero of the semigroup is the zero of the field as
well.

The S-expansion procedure is valid no matter what the structure of the original Lie algebra g

is, and in this sense it is very general. However, when something about the structure of g is known,
a lot more can be done. As an example, in the context of MC expansion, the rescaling and
truncation can be performed in several ways depending on the structure of g, leading to several
kinds of expanded algebras. Important examples of this are the generalized İnönü-Wigner con-
traction, or the M algebra as an expansion of osp�32 �1� �see Refs. 1 and 21�. This is also the case
in the context of S expansions. As we will show in the next section, when some information about
the structure of g is available, it is possible to find subalgebras of G=S�g and other kinds of
reduced algebras. In this way, all the algebras obtained by the MC expansion procedure can be
reobtained. New kinds of S-expanded algebras can also be obtained by considering semigroups
different from SE.

IV. S-EXPANSION SUBALGEBRAS

An S-expanded algebra has a fairly simple structure. In a way, it reproduces the original
algebra g in a series of “levels” corresponding to the semigroup elements. Interestingly enough,
there are at least two ways of extracting smaller algebras from S�g. The first one, described in
this section, gives rise to a “resonant subalgebra,” while the second, described in Sec. VI, produces
reduced algebras �in the sense of Definition 2.3�.

A. Resonant subalgebras for an arbitrary semigroup S

The general problem of finding subalgebras from an S-expanded algebra is a nontrivial one,
which is met and solved �in a particular setting� in this section �see Theorem 4.2 below�. In order
to provide a solution, one must have some information on the subspace structure of g. This
information is encoded in the following way.

Let g= � p�IVp be a decomposition of g in subspaces Vp, where I is a set of indices. For each
p ,q� I it is always possible to define i�p,q�� I such that

�Vp,Vq� � �
r�i�p,q�

Vr. �33�

In this way, the subsets i�p,q� store the information on the subspace structure of g.

As for the Abelian semigroup S, this can always be decomposed as S=�p�ISp, where Sp�S.
In principle, this decomposition is completely arbitrary; however, using the product from Defini-
tion 2.2, it is sometimes possible to pick up a very particular choice of subset decomposition. This
choice is the subject of the following

Definition 4.1: Let g= � p�IVp be a decomposition of g in subspaces, with a structure de-

scribed by the subsets i�p,q�, as in Eq. (33). Let S=�p�ISp be a subset decomposition of the
Abelian semigroup S such that
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Sp · Sq � �
r�i�p,q�

Sr, �34�

where the subset product · is the one from Definition 2.2. When such subset decomposition S

=�p�ISp exists, then we say that this decomposition is in resonance with the subspace decom-

position of g, g= � p�IVp.
The resonant subset decomposition is crucial in order to systematically extract subalgebras

from the S-expanded algebra G=S�g, as is proven in the following

Theorem 4.2: Let g= � p�IVp be a subspace decomposition of g, with a structure described

by Eq. (33), and let S=�p�ISp be a resonant subset decomposition of the Abelian semigroup S,
with the structure given in Eq. (34). Define the subspaces of G=S�g,

Wp = Sp � Vp, p � I . �35�

Then,

GR = �
p�I

Wp �36�

is a subalgebra of G=S�g.
Proof: Using Eqs. �33� and �34�, we have

�Wp,Wq� � �Sp · Sq� � �Vp,Vq� � �
s�i�p,q�

Ss � �
r�i�p,q�

Vr � �
r�i�p,q�

� �
s�i�p,q�

Ss� � Vr. �37�

Now, it is clear that for each r� i�p,q�, one can write

�
s�i�p,q�

Ss � Sr. �38�

Then,

�Wp,Wq� � �
r�i�p,q�

Sr � Vr �39�

and we arrive at

�Wp,Wq� � �
r�i�p,q�

Wr. �40�

Therefore, the algebra closes and GR= � p�IWp is a subalgebra of G. �

Definition 4.3: The algebra GR= � p�IWp obtained in Theorem 4.2 is called a resonant
subalgebra of the S-expanded algebra G=S�g.

The choice of the name resonance is due to the formal similarity between Eqs. �33� and �34�;
Eq. �34� will be also referred to as the “resonance condition.”

Theorem 4.2 translates the difficult problem of finding subalgebras from an S-expanded alge-
bra G=S�g into that of finding a resonant partition for the semigroup S. As the examples from
Sec. V help make clear, solving the resonance condition in Eq. �34� turns out to be an easily
tractable problem. Theorem 4.2 can thus be regarded as a useful tool for extracting subalgebras
from an S-expanded algebra.

Using Eq. �11� and the resonant subset partition of S it is possible to find an explicit expres-
sion for the structure constants of the resonant subalgebra GR. Denoting the basis of Vp by �Tap

�,
one can write
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C�ap,�p��bq,	q�
�cr,�r� = K�p	q

�rCapbq

cr with �p,	q,�r such that ��p
� Sp,�	q

� Sq,��r
� Sr.

�41�

An interesting fact is that the S-expanded algebra “subspace structure” encoded in i�p,q� is the
same as in the original algebra g, as can be observed from Eq. �40�.

Resonant subalgebras play a central role in the current scheme. It is interesting to notice that
most of the cases considered in Ref. 1 can be reobtained using the above theorem for S=SE �recall
Eqs. �25� and �26��, as we will see in the next section. All remaining cases can be obtained as a
reduction of a resonant subalgebra �see Sec. VI�.

B. S=SE resonant subalgebras and Maurer-Cartan expanded algebras

In this section, some results presented for algebra expansions in Ref. 1 are recovered within
the S-expansion approach. To get these algebras one must proceed in a three-step fashion:

1. Perform an S-expansion using the semigroup S=SE.
2. Find a resonant partition for SE and construct the resonant subalgebra GR.
3. Apply a 0S-reduction �or a more general one, See Sec. VI� to the resonant subalgebra.

Choosing a different semigroup S or omitting the reduction procedure one finds algebras not
contained within the MC form power-series expansion of Ref. 1. Such an example is provided in
Sec. V C.

1. Case when g=V0ŠV1, with V0 being a subalgebra and V1 a symmetric coset

Let g=V0 � V1 be a subspace decomposition of g, such that

�V0,V0� � V0, �42�

�V0,V1� � V1, �43�

�V1,V1� � V0. �44�

Let SE
�N�=S0�S1, with N arbitrary, be a subset decomposition of SE, with2

S0 = ��2m with m = 0, . . . ,�N

2
�	 � ��N+1� , �45�

S1 = ��2m+1 with m = 0, . . . ,�N − 1

2
�	 � ��N+1� . �46�

This subset decomposition of SE
�N� satisfies the resonance condition in Eq. �34�, which in this

case explicitly reads

S0 · S0 � S0, �47�

S0 · S1 � S1, �48�

S1 · S1 � S0. �49�

Therefore, according to Theorem 4.2, we have that

2Here �x� denotes the integer part of x.
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GR = W0 � W1, �50�

with

W0 = S0 � V0, �51�

W1 = S1 � V1, �52�

is a resonant subalgebra of G.
Using Eq. �41�, it is straightforward to write the structure constants for the resonant subalge-

bra,

C�ap,�p��bq,	q�
�cr,�r� = �HN+1��p+	q�

�r Capbq

cr with  p,q = 0,1

�p,	p,�p = 2m + p ,

m = 0, . . . ,��N − p�/2�,�N + 1 − p�/2.
�

Imposing �N+1TA=0, the 0S-reduced structure constants are obtained as

C�ap,�p��bq,	q�
�cr,�r� = �HN+1��p+	q�

�r Capbq

cr with  p,q = 0,1

�p,	p,�p = 2m + p

m = 0, . . . ,��N − p�/2� .
� �53�

In order to compare with the MC expansion, let us observe that, with the notation of Ref. 1, the
0S-reduction of the SE-expanded algebra corresponds to G �N0 ,N1� for the symmetric coset case,
with

N0 = 2�N

2
� , �54�

N1 = 2�N − 1

2
� + 1. �55�

The structure constants in Eq. �53� correspond to the structure constants �Eq. �3.31�� from Ref.
1 �the notation is slightly different though�.

FIG. 1. SE
�3�-expansion of an algebra g=V0 � V1, where V0 is a subalgebra and V1 a symmetric coset. �a� The gray region

corresponds to the full SE
�3�-expanded algebra, G=SE

�3��g. �b� The shaded area here depicts a resonant subalgebra GR. �c�
The gray region now shows the 0S-reduction of the resonant subalgebra GR.
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A more intuitive idea of the whole procedure of S expansion, resonant subalgebra, and
0S-reduction can be obtained by means of a diagram, such as the one depicted in Fig. 1. This
diagram corresponds to the case g=V0 � V1, with V0 a subalgebra and V1 a symmetric coset, and
the choice S=SE

�3�.
The subspaces of g are represented on the horizontal axis, while the semigroup elements

occupy the vertical one. In this way, the whole SE
�3�-expanded algebra SE

�3��g corresponds to the
shaded region in Fig. 1�a�. In Fig. 1�b�, the gray region represents the resonant subalgebra GR

=W0 � W1 with

S0 = ��0,�2,�4� , �56�

S1 = ��1,�3,�4� . �57�

Let us observe that each column in the diagram corresponds to a subset of the resonant
partition. Finally, Fig. 1�c� represents the 0S-reduced algebra, obtained after imposing �4�g=0.
This figure actually corresponds to the case G �N0 ,N1�.

As is evident from the above discussion, the case N=1, �N+1TA=0 reproduces the İnönü-
Wigner contraction for g=V0 � V1. More on generalized İnönü-Wigner contractions is presented in
Sec. VI.

2. Case when g fulfills the Weimar-Woods conditions

Let g= � p=0
n Vp be a subspace decomposition of g. In terms of this decomposition, the

Weimar-Woods conditions15,16 on g read

�Vp,Vq� � �
r=0

Hn�p+q�

Vr. �58�

Let

SE = �
p=0

n

Sp �59�

be a subset decomposition of SE, where the subsets Sp�SE are defined by

Sp = ���p
such that �p = p, . . . ,N + 1� , �60�

with N+1�n.
This subset decomposition is a resonant one under the semigroup product in Eq. �26�, because

it satisfies �compare Eq. �61� with Eq. �58��

Sp · Sq = SHn�p+q� � �
r=0

Hn�p+q�

Sr. �61�

According to Theorem 4.2, the direct sum

GR = �
p=0

n

Wp, �62�

with

Wp = Sp � Vp,

is a resonant subalgebra of G.
Using Eq. �41�, we get the following structure constants for the resonant subalgebra:
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C�ap,�p��bq,	q�
�cr,�r� = �HN+1��p+	q�

�r Capbq

cr with �p,q,r = 0, . . . ,n

�p,	p,�p = p, . . . ,N + 1.
	

Imposing �N+1TA=0, this becomes

C�ap,�p��bq,	q�
�cr,�r� = �HN+1��p+	q�

�r Capbq

cr with �p,q,r = 0, . . . ,n

�p,	p,�p = p, . . . ,N .
	 �63�

This 0S-reduced algebra corresponds to the case G �N0 , . . . ,Nn� of Theorem 3 from Ref. 1 with
Np=N for every p=0, . . . ,n. The structure constants in Eq. �63� correspond to the ones of Eq. �4.8�
in Ref. 1 �with a slightly different notation�. The more general case,

Np+1 = �Np or

Np + 1,
	

can be also obtained in the context of an S expansion, but not as a resonant subalgebra �see Sec.
VI and the Appendix�.

The resonant subalgebra for the Weimar-Woods case with n=3, N=4 and its 0S-reduction are
shown in Figs. 2�a� and 2�b�, respectively.

3. Case when g=V0ŠV1ŠV2 is a superalgebra

A superalgebra g comes naturally split into three subspaces V0, V1, and V2, where V1 corre-
sponds to the Fermionic sector and V0 � V2 to the Bosonic one, with V0 being a subalgebra. This
subspace structure may be written as

�V0,V0� � V0, �64�

�V0,V1� � V1, �65�

�V0,V2� � V2, �66�

FIG. 2. �a� The shaded region shows a SE
�4� resonant subalgebra when g=V0 � V1 � V2 � V3 satisfies the Weimar-Woods

conditions. �b� The 0S-reduction of this resonant subalgebra removes all sectors of the form 0S�g. This corresponds to the
case G�4,4 ,4 ,4� in the context of Ref. 1.
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�V1,V1� � V0 � V2, �67�

�V1,V2� � V1, �68�

�V2,V2� � V0 � V2. �69�

Let SE
�N�=S0�S1�S2 be a subset decomposition of SE

�N�, where the subsets S0, S1, and S2 are
given by the general expression

Sp = ��2m+p with m = 0, . . . ,�N − p

2
�	 � ��N+1�, p = 0,1,2. �70�

This subset decomposition is a resonant one, because it satisfies �compare Eqs. �71�–�76� with
Eqs. �64�–�69��

S0 · S0 � S0, �71�

S0 · S1 � S1, �72�

S0 · S2 � S2, �73�

S1 · S1 � S0 � S2, �74�

S1 · S2 � S1, �75�

S2 · S2 � S0 � S2. �76�

Theorem 4.2 assures us that GR=W0 � W1 � W2, with Wp=Sp�Vp, p=0,1 ,2, is a resonant
subalgebra.

Using Eq. �41�, it is possible to write down the structure constants for the resonant subalgebra
as

C�ap,�p��bq,	q�
�cr,�r� = �HN+1��p+	q�

�r Capbq

cr with p,q,r = 0,1,2,

�p,	p,�p = 2m + p ,

m = 0, . . . ,��N − p�/2�,�N + 1 − p�/2.
�

�77�

Imposing �N+1TA=0, the structure constants for the 0S-reduction of the resonant subalgebra
are obtained:

C�ap,�p��bq,	q�
�cr,�r� = �HN+1��p+	q�

�r Capbq

cr with p,q,r = 0,1,2,

�p,	p,�p = 2m + p ,

m = 0, . . . ,��N − p�/2� .
� �78�

This 0S-reduced algebra corresponds to the algebra G �N0 ,N1 ,N2� with

Np = 2�N − p

2
� + p, p = 0,1,2,

found in Theorem 5 of Ref. 1. The structure constants in Eq. �78� match the structure constants in
Eq. �5.6� from Ref. 1.

Figure 3�a� shows the resonant subalgebra for the case of superalgebras, and Fig. 3�b� its
corresponding 0S-reduction, for the case N=4.
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V. S-EXPANSIONS OF osp„32 �1… AND d=11 SUPERALGEBRAS

In this section we explore some explicit examples of S-expansions. In general, every possible
choice of Abelian semigroup S and resonant partition will lead to a new d=11 superalgebra. Note,
however, that the existence of a resonant partition is not at all guaranteed for an arbitrary semi-
group S.

Since our main physical motivation comes from 11-dimensional supergravity, we shall always
take the orthosymplectic superalgebra osp�32 �1� as a starting point. A suitable basis is provided by
�Pa ,Jab ,Zabcde ,Q�, where �Pa ,Jab� are the Anti de Sitter �AdS� generators, Zabcde is a five-index
antisymmetric tensor, and Q is a 32-component, Majorana spinor charge. The osp�32 �1� �anti-
�commutation relations explicitly read

�Pa,Pb� = Jab, �79�

�Jab,Pc� = �ec
abPe, �80�

�Jab,Jcd� = �ecd
abfJe

f , �81�

�Pa,Zb1¯b5
� = −

1

5!
�ab1¯b5c1¯c5

Zc1¯c5, �82�

�Jab,Zc1¯c5
� =

1

4!
�dc1¯c5

abe1¯e4Zd
e1¯e4

, �83�

FIG. 3. �a� The shaded area corresponds to an SE
�4� resonant subalgebra of G=SE

�4��g when g is a superalgebra. �b� The
gray region shows the 0S-reduction of the resonant subalgebra GR. This corresponds to G�4,3 ,4� in the context of Ref. 1.
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�Za1¯a5,Zb1¯b5
� = ��a1¯a5��c1¯c5��c1¯c5b1¯b5eP

e + �db1¯b5

a1¯a5eJd
e

−
1

3!3!5!
�c1¯c11

�d1d2d3b1¯b5

a1¯a5c4c5c6 ��c1c2c3��d1d2d3�Zc7¯c11, �84�

�Pa,Q� = −
1

2
�aQ , �85�

�Jab,Q� = −
1

2
�abQ , �86�

�Zabcde,Q� = −
1

2
�abcdeQ , �87�

�Q�,Q�� = −
1

23���aC−1���Pa −
1

2
��abC−1���Jab +

1

5!
��abcdeC−1���Zabcde� , �88�

where C�� is the charge conjugation matrix and �a are Dirac matrices in 11 dimensions.
As a first step towards the S-expansion, the osp�32 �1� algebra is written as the direct sum of

three subspaces:

osp�32�1� = V0 � V1 � V2, �89�

where V0 corresponds to the Lorentz subalgebra �spanned by Jab�, V1 to the Fermionic subspace
�spanned by Q�, and V2 to the translations and the M5-brane piece �spanned by Pa and Zabcde�. The
subspace separation �Eq. �89�� satisfies conditions �64�–�69�, as can be easily checked.

The M algebra3–5 and a superalgebra similar to those of D’Auria-Fré17 are rederived in the
next sections using S=SE

�N� with N=2 and N=3, respectively. As an example of an S-expansion
with S�SE, the case S=Z4 is considered in Sec. V C, where a new superalgebra resembling
aspects of the M algebra, osp�32 �1��osp�32 �1�, and D’Auria-Fré superalgebras is found.

The inclusion of the M algebra among the examples draws from two different but related
facts. First, the S expansion paradigm casts the M algebra as one from a family of superalgebras,
all derived from osp�32 �1� through different choices for the semigroup and different alternatives
of reduction, when present at all. This can be relevant from a physical point of view, since all of
them share important features. The second reason deals with the construction of Chern-Simons
and transgression Lagrangians. As will be shown in Sec. VII, invariant tensors for resonant
subalgebras and 0S-reduced algebras thereof are readily available, but this is not the case for
general reduced algebras. As such, the fact that the M algebra stems from a 0S-reduction is
interesting not only because it provides an invariant tensor derived from osp�32 �1� but also
because it brings about the possibility of considering its direct generalization, namely, the resonant
subalgebra from where it was extracted. More on the physical consequences of regarding the M
algebra as the 0S-reduction of a resonant subalgebra is found in Ref. 14.

A. The M algebra

As treated in detail in Refs. 1 and 21, the complete M algebra �i.e., including its Lorentz part�
can be obtained by means of a MC expansion of osp�32 �1�. Within the present scheme, the M
algebra should be recovered via an S expansion with S=SE

�2� followed by a 0S-reduction, as
explained in Sec. III B.

In order to obtain the M algebra in the context of S-expansions, one has to pick SE
�2�

= ��0 ,�1 ,�2 ,�3�, use the resonant partition �Eq. �70��, and impose the condition �3TA=0. This
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amounts to explicitly writing the structure constants in Eq. �78� for this case. For the sake of
simplicity, let us relabel Jab=J�ab,0�, Q�=Q��,1�, Zab=J�ab,2�, Pa=P�a,2�, Zabcde=Z�abcde,2�, as shown
in Fig. 4. The resulting algebra reads

�Pa,Pb� = 0, �90�

�Jab,Pc� = �ec
abPe, �91�

�Jab,Jcd� = �ecd
abfJe

f , �92�

�Jab,Zcd� = �ecd
abfZe

f , �93�

�Zab,Zcd� = 0, �94�

�Pa,Zb1¯b5
� = 0, �95�

�Jab,Zc1¯c5
� =

1

4!
�dc1¯c5

abe1¯e4Zd
e1¯e4

, �96�

�Zab,Zc1¯c5
� = 0, �97�

�Za1¯a5,Zb1¯b5
� = 0, �98�

�Pa,Q� = 0, �99�

�Jab,Q� = −
1

2
�abQ , �100�

FIG. 4. The M algebra as an SE
�2�-expansion of osp�32 �1�. �a� A resonant subalgebra of the SE

�2�-expanded algebra G

=SE
�2��osp�32 �1� is shown in the shaded region. �b� The M algebra itself �gray area� is obtained after 0S-reducing the

resonant subalgebra.
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�Zab,Q� = 0, �101�

�Zabcde,Q� = 0, �102�

�Q�,Q�� = −
1

23���aC−1���Pa −
1

2
��abC−1���Zab +

1

5!
��abcdeC−1���Zabcde� . �103�

Note that the role of the 0S-reduction in the process is that of Abelianizing large sectors of the
resonant subalgebra.

B. D’Auria-Fré-like superalgebra

The above example used SE
�2�= ��0 ,�1 ,�2 ,�3� as Abelian semigroup to perform the expansion.

In this section, the results of choosing instead SE
�3�= ��0 ,�1 ,�2 ,�3 ,�4� while leaving everything

else �including the 0S-reduction� unchanged are examined.
A D’Auria-Fré-like superalgebra,17 with one extra Fermionic generator as compared with

osp�32 �1� or the M algebra, is obtained by picking the resonant partition �Eq. �70�� and
0S-reducing the resulting resonant subalgebra. Relabeling generators as Jab=J�ab,0�, Q�=Q��,1�,
Zab=J�ab,2�, Pa=P�a,2�, Zabcde=Z�abcde,2�, Q�� =Q��,3�, one finds the structure depicted in Fig. 5.
While this algebra has the same structure �i.e., same number and type of generators, with com-
mutators valued on the same subspaces� as the ones introduced by D’Auria and Fré in Ref. 17, the
details differ, so it cannot really correspond to any of them �hence the “-like”�.

The �anti�commutation relations, which can be read off directly from the structure constants in
Eq. �78� after applying condition �23�, bear a strong similarity with those from the M algebra.
Only the following three differ:

�Pa,Q� = −
1

2
�aQ�, �104�

FIG. 5. A D’Auria-Fré-like superalgebra regarded here as an SE
�3�-expansion of osp�32 �1�. �a� A resonant subalgebra of the

SE
�3�-expanded algebra G=SE

�3��osp�32 �1� is shown in the shaded region. �b� A superalgebra similar to the ones introduced
by D’Auria and Fré in Ref. 17 is obtained after 0S-reducing the resonant subalgebra.
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�Zab,Q� = −
1

2
�abQ�, �105�

�Zabcde,Q� = −
1

2
�abcdeQ�. �106�

The �anti�commutation relations which directly involve the extra Fermionic generator Q� read

�Pa,Q�� = 0, �107�

�Zab,Q�� = 0, �108�

�Zabcde,Q�� = 0, �109�

�Q,Q�� = 0, �110�

�Q�,Q�� = 0, �111�

�Jab,Q�� = −
1

2
�abQ�. �112�

The extra Fermionic generator Q� is found to �anti�commute with all generators from the algebra
but the Lorentz generators �which was to be expected due to its spinor character�.

C. Resonant subalgebra of Z4Ãosp„32 �1…

Cyclic groups seem especially suitable for an S expansion, because, on one hand, they are
groups and not only semigroups �and therefore there is no 0S element and no 0S-reduction�, and on
the other, because the multiplication law for a cyclic group looks very similar to the multiplication
law of the semigroup SE,

SE
�N�:���	 = �HN+1��+	�, �113�

ZN:���	 = �modN��+	�. �114�

The cyclic group Z4, in particular, was chosen for this example because the Z2 case is trivial
�the resonant subalgebra is osp�32 �1� itself� and Z3 seems to have no resonant partition; therefore
Z4 corresponds to the simplest nontrivial case.

Since this example uses a semigroup different from SE, the algebra obtained does not corre-
spond to a MC form power-series expansion.

Given a superalgebra g=V0 � V1 � V2 with the structure of Eqs. �64�–�69�, a resonant partition
of Z4= ��0 ,�1 ,�2 ,�3� is given by

S0 = ��0,�2� , �115�

S1 = ��1,�3� , �116�

S2 = ��0,�2� . �117�

In order to avoid a cluttering of indices, relabel Jab=J�ab,0�, Za1¯a5
� =Z�a1¯a5,0�, Pa�=P�a,0�,

Q�=Q��,1�, Zab=J�ab,2�, Za1¯a5
=Z�a1¯a5,2�, Pa=P�a,2�, and Q�� =Q��,3�, as shown in Fig. 6.
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The full resonant subalgebra can be easily obtained using the structure constants in Eq. �41�;
here we shall only quote some of its more interesting sectors.

This algebra has two very conspicuous features: first, it bears some resemblance to the M
algebra, for both Fermionic generators Q and Q� satisfy

�Q��,Q��� = �Q�,Q�� = −
1

23���aC−1���Pa −
1

2
��abC−1���Zab +

1

5!
��abcdeC−1���Zabcde� .

�118�

Second, the algebra has two “AdS-boost generators” for the same Lorentz algebra,

�Pa,Pb� = Jab, �Pa�,Pb�� = Jab,

�Jab,Pc� = �ec
abPe, �Jab,Pc�� = �ec

abP�e,

�Jab,Jcd� = �ecd
abfJe

f

�Pa,Pb�� = Zab. �119�

The “charges” Zab, Za1¯a5
, and Za1¯a5

� are Lorentz tensors, but they are not Abelian,

�Zab,Zcd� = �ecd
abfJe

f , �120�

�Za1¯a5,Zb1¯b5
� = �Z�a1¯a5,Zb1¯b5

� � = ��a1¯a5��c1¯c5��c1¯c5b1¯b5eP�e + �db1¯b5

a1¯a5eJd
e

−
1

3!3!5!
�c1¯c11

�d1d2d3b1¯b5

a1¯a5c4c5c6 ��c1c2c3��d1d2d3�Z�c7¯c11. �121�

This algebra also presents a behavior similar to that of the D’Auria-Fré superalgebras; namely,
the commutators between the generators Pa ,Zab ,Za1¯a5

and a Fermionic generator Q are Q�
valued; but in contrast to Eqs. �107�–�109�, their commutator with Q� is Q-valued rather than zero.
In this regard, the generators Jab ,Za1¯a5

� ,Pa� have a block-diagonal form on the subspace �Q ,Q��;
their commutator with Q is Q-valued and the one with Q� is Q�-valued.

FIG. 6. A new d=11 superalgebra, different from but resembling aspects of both the M algebra and the D’Auria-Fré
superalgebras, is obtained directly as a resonant subalgebra �shaded region� of the S-expanded Algebra Z4�osp�32 �1�.
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We have seen several examples showing how, starting from only one original algebra g and
using different semigroups, different resonant subalgebras can arise �see Theorem 4.2�. This is
particularly interesting if one considers the strong similarities between the semigroups considered,
which nevertheless lead to different resonant structures.

VI. REDUCED ALGEBRAS OF A RESONANT SUBALGEBRA

In previous sections we have seen how information on the subspace structure of the original
algebra g can be used in order to find resonant subalgebras of the S-expanded algebra S�g. In this
section we shall examine how this information can be put to use in a different way, namely, by
extracting reduced algebras �in the sense of Definition 2.3� from the resonant subalgebra. It is
following this path that, e.g., the generalized İnönü-Wigner contraction fits within the present
scheme.

The following general theorem provides necessary conditions under which a reduced algebra
can be extracted from a resonant subalgebra.

Theorem 6.1: Let GR= � p�ISp�Vp be a resonant subalgebra of G=S�g, i.e., let Eqs. �33�
and �34� be satisfied. Let Sp= Ŝp� Šp be a partition of the subsets Sp�S such that

Ŝp � Šp = � , �122�

Šp · Ŝq � �
r�i�p,q�

Ŝr. �123�

Conditions (122) and (123) induce the decomposition GR=ǦR � ĜR on the resonant subalge-
bra, where

ǦR = �
p�I

Šp � Vp, �124�

ǦR = �
p�I

Ŝp � Vp. �125�

When conditions (122) and (123) hold, then

�ǦR,ǦR� � ǦR, �126�

and therefore �ǦR� corresponds to a reduced algebra of GR.

Proof: Let W̌p= Šp�Vp and Ŵp= Ŝp�Vp. Then, using condition �123�, we have

�W̌p,Ŵq� � �Šp · Ŝq� � �Vp,Vq� � �
s�i�p,q�

Ŝs � �
r�i�p,q�

Vr � �
r�i�p,q�

� �
s�i�p,q�

Ŝs� � Vr.

For each r� i�p,q� we have �s�i�p,q�
Ŝs� Ŝr, so that

�W̌p,Ŵq� � �
r�i�p,q�

Ŝr � Vr � �
r�i�p,q�

Ŵr.

Since ǦR= � p�IW̌p and ĜR= � p�IŴp, we finally find

�ǦR,ǦR� � ǦR

and therefore �ǦR� is a reduced algebra of GR. �

Using the structure constants in Eq. �41� for the resonant subalgebra, it is possible to find the

structure constants for the reduced algebra �ǦR�,
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C�ap,�p��bq,	q�
�cr,�r� = K�p	q

�rCapbq

cr with �p,	q,�r such that ��p
� Šp,�	q

� Šq,��r
� Šr.

�127�

It might be worth to notice that, when every Sp�S of a resonant subalgebra includes the zero

element 0S, the choice Ŝp= �0S� automatically satisfies conditions �122� and �123�. As a conse-
quence, the 0S-reduction introduced in Definition 2.3 can be regarded as a particular case of
Theorem 6.1.

A. Reduction of resonant subalgebras, Weimar-Woods conditions, and the İnönü-
Wigner contraction

Theorem 6.1 above will be useful in order to recover Theorem 3 from Ref. 1 in this context.
Consider the resonant subalgebra from Sec. IV B 2 and the following Sp partition, which

satisfies Eq. �122�:

Šp = ���p
such that �p = p, . . . ,Np� , �128�

Ŝp = ���p
such that �p = Np + 1, . . . ,N + 1� . �129�

In the Appendix it is shown that reduction condition Eq. �123� on Eqs. �128� and �129� is equiva-
lent to the following requirement on the Np’s:

Np+1 = �Np or

HN+1�Np + 1� .
	 �130�

This condition is exactly the one obtained in Theorem 3 of Ref. 1, requiring that the expansion
in the MC forms closes. In the S-expansion context the case Np+1=Np=N+1 for each p corre-
sponds to the resonant subalgebra, and the case Np+1=Np=N to its 0S-reduction. Figure 7 shows
two different reductions for a resonant subalgebra where g satisfies the Weimar-Woods conditions.

As stated in Ref. 1, the generalized İnönü-Wigner contraction corresponds to the case Np= p;
this means that the generalized İnönü-Wigner contraction does not correspond to a resonant
subalgebra but to its reduction. This is an important point, because, as we shall see in Sec. VII, we
have been able to define nontrace invariant tensors for resonant subalgebras and 0S-reduced alge-
bras, but not for general reduced algebras.

FIG. 7. �a� SE
�4�-resonant subalgebra when g=V0 � V1 � V2 � V3 satisfies the Weimar-Woods conditions. �b� One possible

reduction of the resonant subalgebra from �a�, with N0=2, N1=2, N2=3, and N3=4. �c� Generalized İnönü-Wigner con-
traction corresponding to a different reduction of the same resonant subalgebra, with Np= p, p=0,1 ,2 ,3.
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As an explicit example of the application of Theorem 6.1, the d=11 five-brane superalgebra is
derived as a reduced algebra in the next section.

B. Five-brane superalgebra as a reduced algebra

Let us recall the resonant subalgebra used in order to get the M algebra in Sec. V A. For this
case, the resonant partition SE

�2�=S0�S1�S2 corresponds to the one from Eq. �70� for the case
N=2, i.e.,

S0 = ��0,�2,�3� , �131�

S1 = ��1,�3� , �132�

S2 = ��2,�3� . �133�

In order to construct a reduced algebra, perform a partition of the sets Sp themselves, Sp

= Ŝp� Šp, such as

Š0 = ��0�, Ŝ0 = ��2,�3� , �134�

Š1 = ��1�, Ŝ1 = ��3� , �135�

Š2 = ��2�, Ŝ2 = ��3� . �136�

It is not hard to see that this partition of Sp satisfies the reduction conditions in Eqs. �122� and

�123�. For each p, Ŝp� Šp=�, and using the multiplication law in Eq. �26�, we have

Š0 · Ŝ0 � Ŝ0,

Š0 · Ŝ1 � Ŝ1,

Š0 · Ŝ2 � Ŝ2,

Š1 · Ŝ1 � Ŝ0 � Ŝ2,

Š1 · Ŝ2 � Ŝ1,

Š2 · Ŝ2 � Ŝ0 � Ŝ2

�compare with Eqs. �71�–�76� and �64�–�69��. Therefore, we have ǦR= �Š0�V0� � �Š1�V1�
� �Š2�V2�, which is represented in Fig. 8, and the explicit reduced algebra �ǦR�,

�Pa,Pb� = 0, �137�

�Jab,Pc� = �ec
abPe, �138�

�Jab,Jcd� = �ecd
abfJe

f , �139�

�Pa,Zb1¯b5
� = 0, �140�
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�Jab,Zc1¯c5
� =

1

4!
�dc1¯c5

abe1¯e4Zd
e1¯e4

, �141�

�Za1¯a5,Zb1¯b5
� = 0, �142�

�Pa,Q� = 0, �143�

�Jab,Q� = −
1

2
�abQ , �144�

�Zabcde,Q� = 0,

�Q�,Q�� = −
1

23���aC−1���Pa +
1

5!
��abcdeC−1���Zabcde� . �145�

This is the five-brane superalgebra.18,19

VII. INVARIANT TENSORS FOR S-EXPANDED ALGEBRAS

Finding all invariant tensors for an arbitrary algebra remains as an open problem until now.
This is not only an important mathematical problem but also a physical one, because an invariant
tensor is a key ingredient in the construction of Chern-Simons and transgression forms �see, e.g.,
Refs. 22–31�, which can be used as gauge Lagrangians for a given symmetry group in an arbitrary
odd dimension. The choice of invariant tensor shapes the theory to a great extent.

A standard procedure in order to obtain an invariant tensor is to use the �super�trace in some
matrix representation of the generators of the algebra. However, this procedure has an important
limitation for 0S-reduced algebras and, for this reason, theorems providing nontrivial invariant
tensors for S-expanded algebras are worth considering.

Theorem 7.1: Let S be an Abelian semigroup, g a Lie (super)algebra of basis �TA�, and let
�TA1

¯TAn
� be an invariant tensor for g. Then, the expression

FIG. 8. �a� Resonant subalgebra of the S-expanded Algebra SE
�2��osp�32 �1�. �b� One particular reduction of this resonant

subalgebra reproduces the five-brane superalgebra.
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�T�A1,�1� ¯ T�An,�n�� = ��K�1¯�n

��TA1
¯ TAn

� , �146�

where �� are arbitrary constants and K�1¯�n

� is the n-selector for S, corresponds to an invariant
tensor for the S-expanded algebra G=S�g.

Proof: The invariance condition for �TA1
¯TAn

� under g reads

�
p=1

n

XA0¯An

�p� = 0, �147�

where

XA0¯An

�p� = �− 1�q�A0��q�A1�+¯+q�Ap−1��CA0Ap

B�TA1
¯ TAp−1

TBTAp+1
¯ TAn

� . �148�

Define now

X�A0,�0�¯�An,�n�
�p� = �− 1�q�A0,�0��q�A1,�1�+¯+q�Ap−1,�p−1��C�A0,�0��Ap,�p�

�B,	�

��T�A1,�1� ¯ T�Ap−1,�p−1�T�B,	�T�Ap+1,�p+1� ¯ T�An,�n�� .

Using the fact that q�A ,��=q�A� and replacing expressions �11� for the S-expansion structure
constants and �146� for �T�A1,�1�¯T�An,�n��, we get

X�A0,�0�¯�An,�n�
�p� = ��K�0¯�n

�XA0¯An

�p� .

From Eq. �147� one readily concludes that

�
p=1

n

X�A0,�0�¯�An,�n�
�p� = 0. �149�

Therefore, �T�A1,�1�¯T�An,�n��=��K�1¯�n

��TA1
¯TAn

� is an invariant tensor for G=S�g. �

It is worth to notice that, in general, the expression

�T�A1,�1� ¯ T�An,�n�� = �
m=0

M

��
	1¯	mK	1¯	m�1¯�n

��TA1
¯ TAn

� , �150�

where M is the number of elements of S and ��
	1¯	m are arbitrary constants, is also an invariant

tensor for G=S�g. An example of Eq. �150� is provided by the supertrace. As a matter of fact,
when the generators TA are in some matrix representation, and the generators T�A,�� in the matrix
representation T�A,��= �����

�TA, with �����
� given in Eq. �4�, we have

STr�T�A1,�1� ¯ T�An,�n�� = K��1¯�n

� Str�TA1
¯ TAn

� , �151�

where STr is the �super�trace for the T�A,�� generators and STr the one for the TA generators.
Even though expression �150� could be regarded as more general than Eq. �146�, this is not the

case. Using only the associativity and closure of the semigroup product, it is always possible to
reduce Eq. �150� to Eq. �146�, which in this way turns out to be more “fundamental.”

Given an invariant tensor for an algebra, its components valued on a subalgebra are by
themselves an invariant tensor for the subalgebra �if they do not vanish�. For the case of resonant
subalgebras, and provided all the ��’s are different from zero, the invariant tensor for the resonant
subalgebra never vanishes. As matter of fact, given a resonant subset partition S=�p�ISp and
denoting the basis of Vp as �Tap

�, the GR-valued components of Eq. �146� are given by

�T�ap1
,�p1

� ¯ T�apn
,�pn

�� = ��K�p1
¯�pn

��Tap1
¯ Tapn

� with ��p
Sp. �152�
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These components form an invariant tensor for the resonant subalgebra GR= � p�ISp�Vp.
Since S is closed under the product in Eq. �1�, for every choice of �p1

, . . . ,�pn
there always exists

a value of � such that K�p1
¯�pn

�=1, and therefore Eq. �152� does not vanish �provided that

∀� ,���0�.
However, an interesting nontrivial point is that a 0S-reduced algebra is not a subalgebra, and

therefore, in general the 0S-reduced algebra-valued components of expression �146� or �152� do
not lead to an invariant tensor. The following theorem offers a solution by providing a general
expression for an invariant tensor for a 0S-reduced algebra.

Theorem 7.2: Let S be an Abelian semigroup with nonzero elements �i, i=0, . . . ,N, and
�N+1=0S. Let g be a Lie (super)algebra of basis �TA�, and let �TA1

¯TAn
� be an invariant tensor

for g. The expression

�T�A1,i1� ¯ T�An,in�� = � jKi1¯in
j�TA1

¯ TAn
� , �153�

where � j are arbitrary constants, corresponds to an invariant tensor for the 0S-reduced algebra
obtained from G=S�g.

Proof: This theorem is actually a corollary of Theorem 7.1; imposing �N+1=0 in Theorem 7.1
and writing the i0¯ in components of Eq. �149� one gets

�
p=1

n

X�A0,i0�¯�An,in�
�p� = 0. �154�

Using the expressions for the S-expansion structure constants in Eq. �11� and for the invariant
tensor in Eq. �153�, one finds

X�A0,i0�¯�An,in�
�p� = �− 1�q�A0,i0��q�A1,i1�+¯+q�Ap−1,ip−1��

� �Ki0ip
kCA0Ap

B� jKi1¯ip−1kip+1¯in
j�TA1

¯ Tp−1TBTp+1 ¯ TAn
�

+ Ki0ip
N+1CA0Ap

B� jKi1¯ip−1�N+1�ip+1¯in
j�TA1

¯ Tp−1TBTp+1 ¯ TAn
�� .

Since

�i1
¯ �ip−1

�N+1�ip+1
¯ �in

= �N+1,

we have

Ki1¯ip−1�N+1�ip+1¯in
j = 0,

and then,

X�A0,i0�¯�An,in�
�p� = �− 1�q�A0,i0��q�A1,i1�+¯+q�Ap−1,ip−1��

� Ki0ip
kCA0Ap

B� jKi1¯ip−1kip+1¯in
j�TA1

¯ Tp−1TBTp+1 ¯ TAn
� .

But Kij
kCAB

C are the structure constants �see Eq. �22�� of the 0S-reduced algebra of S�g, and
therefore, from Eq. �154� we find that Eq. �153� provides an invariant tensor for it. �

For the 0S-reduction of a resonant subalgebra, the proof is analogous to the one given above,
and we have that

�T�ap1
,ip1

� ¯ T�apn
,in�� = � jKip1

¯ipn

j�Tip1
¯ Tipn

� such that �ip
� Sp �155�

is an invariant tensor for the 0S-reduced algebra of GR=�p�ISp�Vp.
The usefulness of this theorem comes from the fact that, in general, the �super�trace in the

adjoint representation for 0S-reduced algebras can give only a very small number of components
of Eq. �153�.
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As a matter of fact, using the adjoint representation given by the 0S-reduced structure con-
stants in Eq. �22�, one finds

STr�T�A1,i1� ¯ T�An,in�� = Kj1i1

j2Kj2i2

j3
¯ Kjn−1in−1

jnKjnin

j1 Str�TA1
¯ TAn

� , �156�

and since �i� j =�k�i,j� implies that �i ,� j�0S, one ends up with

STr�T�A1,i1� ¯ T�An,in�� = Kj1i1¯in

j1 Str�TA1
¯ TAn

� . �157�

In general, this expression has less components than Eq. �153�. In order to see this, it is useful
to analyze the case when there is also an identity element in the semigroup, �0=e, and each �i

appears only once in each row and each column of the semigroup’s multiplication table �i.e., for
each �i ,� j�e, we have �i� j��i and �i� j�� j�. In this case, Kj1i1¯in

j1 =Ki1¯in
0, and the only

nonvanishing component of the �super�trace is

STr�T�A1,i1� ¯ T�An,in�� = Ki1¯in
0 Str�TA1

¯ TAn
� , �158�

which is clearly smaller than Eq. �153�. In the expansion case S=SE, we have Ki1¯in
0

=�HN+1�i1+¯+in�
0 =�i1+¯+in

0 and therefore, the only nonvanishing component of the �super�trace is

STr�T�A1,0� ¯ T�An,0�� = Str�TA1
¯ TAn

� . �159�

The advantage of the invariant tensor in Eq. �153� as opposed to the �super�trace is now clear;
in the case SE�g, the �super�trace only gives a trivial repetition of the invariant tensor of g, and
for a resonant subalgebra, just a piece of it.

One last remark on the invariant tensor in Eq. �153� is that for the particular case S=SE, since
Ki1¯in

j =�HN+1�i1+¯+in�
j =�i1+¯+in

j , a topological density or a Chern-Simons form constructed using
the invariant tensor in Eq. �153� coincides with the one from Ref. 1 for the choice ��=��, where
�� stands for a power of the expansion parameter of the free differential algebra.

VIII. CONCLUSIONS

We have discussed how one can obtain a bunch of Lie algebras starting from an original one
by choosing an Abelian semigroup and applying the general theorems 4.2 and 6.1, which give us
“resonant subalgebras” and what has been dubbed “reduced algebras.” This procedure is a natural
outgrowth of the method of MC form power-series expansion presented in Ref. 1, from the point
of view of the Lie algebra generators and using an arbitrary Abelian semigroup. The S expansion
presented here has the feature of being very simple and direct; given a semigroup, one needs only
solve the resonance condition �Eq. �34�� in order to get a resonant subalgebra, and the very similar
reduction conditions �Eqs. �122� and �123�� in order to get a reduced one. These have been solved
in several examples in order to show how both theorems work, for general algebra structures as
well as for very explicit cases, e.g., d=11 superalgebras. As expected, the S-expansion scheme
reproduces exactly the results of the MC form power-series expansion for a particular choice of
semigroup, but it is also possible to get interesting new results using other alternatives, as shown
in Sec. V C.

The examples of the S-expansion procedure have been chosen according to their relevance for
the long-term goal of understanding the geometric formulation of 11-dimensional supergravity. To
be able to write a Lagrangian invariant under these symmetries, a key ingredient is an invariant
tensor. The theorems given in Sec. VII help fill the gap, since they go a long way beyond the
simple, and sometimes trivial, invariant tensors obtained from the supertrace. Chern-Simons and
Transgression forms appear as a straightforward choice for the construction of a supergravity
Lagrangian in this context.22–31 In this sense, Theorems 4.2, 6.1, 7.1, and 7.2 provide a very
practical “physicist’s toolbox.” These have been used to construct a Lagrangian for the M algebra
in 11 dimensions14 following the techniques developed in Refs. 28 and 31.
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There are several ways in which this work can be extended. One of them concerns the
investigation of the specific properties of the algebras generated from different choices of Abelian
semigroups; some kind of general classification would be particularly interesting. A first step in
this direction would be the construction of the above-mentioned Lagrangians, but of course there
are a lot of different possibilities to proceed. A different, and perhaps fruitful path deals with the
generalization of the S-expansion procedure itself. The conditions of discreteness and finiteness
for the semigroup have been chosen primarily for simplicity, but it seems as though they could be
removed in a generalized setting. The Abelianity condition, on the other hand, is essential for all
of our results to hold, and it is not clear whether it could be relaxed. Removing this requirement,
a set with both commuting and anticommuting elements could be considered. If this possibility
turns out to be feasible �which is far from trivial; think of the Jacobi identity�, it would provide a
way to derive superalgebras from ordinary Lie algebras and vice versa.
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APPENDIX: REDUCTION WHEN g SATISFIES THE WEIMAR-WOODS CONDITIONS

In Sec. IV B 2 it was shown that, when g satisfies the Weimar-Woods conditions, the partition

SE
�N�=�p=0

n Sp with Sp= ���p
, such that �p= p , . . . ,N+1� is a resonant one. In this appendix we

prove that, when each subset Sp is split as Sp= Šp� Ŝp, with

Šp = ���p
such that �p = p, . . . ,Np� , �A1�

Ŝp = ���p
such that �p = Np + 1, . . . ,N + 1� , �A2�

then the reduction condition in Eq. �123� from Theorem 6.1 is satisfied when

Np+1 = �Np or

HN+1�Np + 1� .
	 �A3�

Before proceeding, it is worth to notice that the partition equation �Eqs. �A1� and �A2��
automatically satisfies the following three properties:

Np � Nq ⇔ Ŝp � Ŝq, �A4�

Š0 · Ŝq = Ŝq, �A5�

Šp · Ŝq � Ŝx such that Nx � HN+1�p + Nq� . �A6�

Since g is assumed to satisfy the Weimar-Woods conditions,15,16 condition �123� now reads
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Šp · Ŝq � �
r=0

Hn�p+q�

Ŝr, �A7�

where Šp and Ŝq are given by Eqs. �A1� and �A2�.
Let us analyze this condition for the particular case p=0:

Š0 · Ŝq � �
r=0

q

Ŝr. �A8�

Using Eq. �A5�, this turns out to be equivalent to

Ŝq � �
r=0

q

Ŝr. �A9�

In this way, we have that for each 0�r�q, Ŝq� Ŝr, and using Eq. �A4�, we get the equivalent
condition

∀r � q, Nr � Nq. �A10�

This condition and the product in Eq. �26� now imply that

�
r=0

Hn�p+q�

Ŝr = ŜHn�p+q�.

Using this fact, condition �A7� takes the form

Šp · Ŝq � ŜHn�p+q�. �A11�

Using Eq. �A6�, one finds that, in order to satisfy this requirement, it is enough to impose that,

for each Ŝx such that Nx�HN+1�Nq+ p�, one has Ŝx� ŜHn�p+q�. Alternatively �see Eq. �A4��, one can
write

∀Nx � HN+1�Nq + p�, NHn�p+q� � Nx �A12�

and therefore,

NHn�p+q� � HN+1�Nq + p� . �A13�

For p=1, we have

NHn�p+1� � HN+1�Nq + 1� ,

and using Eq. �A10�, one finds the inequalities

Nq � NHn�q+1� � HN+1�Nq + 1� ,

whose solution is

Nq+1 = �Nq or

HN+1�Nq + 1� .
	

This solves condition �A7�.
Therefore, we have that
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�ǦR� = �
p=0

n

Šp � Vp, �A14�

with Šp= ���p
, such that �p= p , . . . ,Np� and

Np+1 = �Np or

HN+1�Np + 1� 	 �A15�

is a reduced Lie algebra with structure constants

C�ap,�p��bq,	q�
�cr,�r� = K�p	q

�rCapbq

cr with �p,	p,�p = p, . . . ,Np. �A16�
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We revisit Khudaverdian’s geometric construction of an odd nilpotent operator �E

that sends semidensities to semidensities on an antisymplectic manifold. We find a
local formula for the �E operator in arbitrary coordinates and we discuss its con-
nection to Batalin-Vilkovisky quantization. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2352859�

I. INTRODUCTION

Recall that for a symplectic manifold with an even symplectic two-form �= 1
2dzA�ABdzB, there

exists a canonical measure density given by the Pfaffian �=Pf��AB�, i.e., there is a natural notion
of volume in a symplectic manifold. A related fact is the Liouville Theorem, which states that
Hamiltonian vector fields are divergenceless. On the other hand, the situation is completely dif-
ferent for an odd symplectic manifold, also known as an antisymplectic manifold and endowed
with an odd antisymplectic two-form E= 1

2d�AEABd�B. These geometries, for instance, show up in
the Lagrangian quantization method of Batalin and Vilkovisky.1 It turns out that there is no
canonical choice of measure density � in this case, as, for instance, the above Pfaffian. This is tied
to the fact that there is no meaningful notion of a superdeterminant/Berezinian for a matrix that is
intrinsically Grassmann-odd. However, the upset runs deeper. In fact, a density � can never be a
function of the antisymplectic matrix EAB. Phrased differently, a density � always carries infor-
mation that cannot be deduced from the antisymplectic structure E alone.2 Within the standard
Batalin-Vilkovisky framework, the possible choices of a density � is only partially determined by
a requirement of gauge symmetry.

Around 1992, the Batalin-Vilkovisky quantization took a more geometric form, particularly
with the work of Schwarz.3 The consensus was that the geometric setting requires two independent
structures: an odd symplectic, nondegenerate two-form E and a measure density �. From these two
structures, one may build a Grassmann-odd, second-order operator ��, known as the odd Laplac-
ian. Alternatively, one can view the odd Laplacian �� itself as the fundamental structure of
Batalin-Vilkovisky geometry,4,5 which is conventionally required to be nilpotent.

Khudaverdian has constructed6–9 a Grassmann-odd, nilpotent, second-order operator �E that
does not rely on a choice of density �. The caveat is that the �E operator is defined on semiden-
sities rather than on scalars. �The notion of a semidensity is explained in Eq. �3.1� below.� In
retrospect, many pieces of Khudaverdian’s construction were known to physicists; see, for in-
stance, Ref. 10, p. 440. In this short note, Khudaverdian’s construction is reconsidered, and we
find a local formula for the �E operator that applies to arbitrary coordinate systems. The ability to
work in any coordinates, not just Darboux coordinates, is important, since if one first has to search
for a set of Darboux coordinates to the system that one is studying, symmetries �such as, e.g.,
Lorentz covariance� or locality that one would like to preserve during the quantization process, are
often lost.

The paper is organized as follows: We consider the antisymplectic structure in Sec. II; the odd
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Laplacian �� in Sec. III; and in Secs. IV and V, the �E operator using Darboux coordinates and
general coordinates, respectively. Finally, in Sec. VI we analyze a modified Batalin-Vilkovisky
scheme based on the �E operator.

General remark about notation: We have two types of grading: A Grassmann grading � and an
exterior form degree p. The sign conventions are such that two exterior forms � and �, of
Grassmann parity ��, �� and exterior form degree p�, p�, respectively, commute in the following
graded sense:

� ∧ � = �− 1�����+p�p�� ∧ � �1.1�

inside the exterior algebra. We will often not write the exterior wedges “∧” explicitly.

II. ANTISYMPLECTIC GEOMETRY

Consider an antisymplectic manifold �M ,E� and let �A denote local coordinates of Grassmann
parity �A����A� �and exterior form degree p��A�=0�. The antisymplectic two-form can locally be
written as

E =
1

2
d�AEAB d�B = −

1

2
EAB d�B d�A, �2.1�

where EAB=EAB��� is the corresponding matrix representation. Besides carrying gradings ��E�
=1 and p�E�=2, the antisymplectic two-form E has two defining properties. First, E is closed,

dE = 0, �2.2�

where the grading conventions for the exterior derivative

d = d�A �� l

��A �2.3�

are ��d�=0 and p�d�=1. Second, E is nondegenerate, i.e., the antisymplectic matrix EAB has an
inverse matrix EAB,

EABEBC = �C
A = ECBEBA. �2.4�

Instead of the compact exterior form notation E, one may equivalently formulate the above
conditions with all the indices written out explicitly in terms of the matrices EAB or EAB. In detail,
the gradings are

��EAB� = �A + �B + 1 = ��EAB� ,

p�EAB� = 0 = p�EAB� ,
�2.5�

the skew symmetries are

EBA = − �− 1��A�BEAB,

EBA = − �− 1���A+1���B+1�EAB,
�2.6�

while the closeness condition and the equivalent Jacobi identity read

�
cycl. A,B,C

�− 1��A�C� �� l

��AEBC� = 0, �2.7�

�
cycl. A,B,C

�− 1���A+1���C+1�EAD� �� l

��DEBC� = 0, �2.8�

respectively. The inverse matrix EAB with upper indices gives rise to the antibracket1
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�F,G� = �F
��r

��A�EAB� �� l

��BG� , �2.9�

which satisfies a graded skew symmetry and a graded Jacobi identity as a consequence of Eqs.
�2.6� and �2.8�. There is an antisymplectic analog of Darboux’s Theorem that states that locally
there exist Darboux coordinates �A= 		
 ;	


�
, such that the only nonvanishing antibrackets be-
tween the coordinates are �	
 ,	�

��=��

=−�	�

� ,	
�. In Darboux coordinates, the antisymplectic
two-form is simply E=d	


� ∧d	
.

III. ODD LAPLACIAN �� ON SCALARS

A scalar function F=F���, a density �=����, and a semidensity �=���� are by definition
quantities that transform as

F → F� = F, � → �� =
�

J
, � → �� =

�

�J
, �3.1�

respectively, under general coordinate transformations �A→��A, where J�sdet����A /��B� de-
notes the Jacobian. We shall ignore the global issues of orientation and choice of square root. In
principle the above F, �, and � could either be bosons or fermions; however, normally we shall
require the densities � to be invertible and therefore bosons.

Given a choice of density � one may define the odd Laplacian4

��: =
�− 1��A

2�

�� l

��A�EAB �� l

��B , �3.2�

that takes scalars to scalars of opposite Grassmann parity. The odd Laplacian �3.2� has a geometric
interpretation as a divergence of a Hamiltonian vector field3,11

�� = −
1

2
div��X�, ��� = 1. �3.3�

Here X : = � , ·� denotes a Hamiltonian vector field with a Grassmann-odd Hamiltonian  and
the divergence div�X of a vector field X, with respect to the measure density �, is

div�X: =
�− 1��A

�

�� l

��A ��XA�, ��X� = 0. �3.4�

The fact that the odd Laplacian �3.3� is nonzero, shows that antisymplectic manifolds do not
have an analog of the Liouville Theorem mentioned in the introduction. As a consequence of the
Jacobi identity �Eq. �2.8��, the square operator ��

2= � 1
2

���� ,��� becomes a linear derivation, i.e., a
first-order differential operator,

��
2�FG� = ��

2�F�G + F��
2�G� . �3.5�

Conventionally, one imposes additionally that the �� operator is nilpotent ��
2=0, but this is not

necessary for our purposes.

IV. KHUDAVERDIAN’S �E OPERATOR ON SEMIDENSITIES

Khudaverdian showed that one may define a Grassmann-odd, nilpotent, second-order operator
�E without a choice of density �. This �E operator does not take scalars to scalars like the odd
Laplacian �3.2�, but instead takes semidensities to semidensities of opposite Grassmann parity.
Equivalently, the �E operator transforms as
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�E → �E� =
1
�J

�E
�J �4.1�

under general coordinate transformations �A→��A, cf. Eq. �3.1�. Khudaverdian’s construction
relies first of all on an atlas of Darboux charts, which is granted by an antisymplectic analog of
Darboux’s Theorem, and second, on a lemma by Batalin and Vilkovisky about the possible form
of the Jacobians for anticanonical transformations, also known as antisymplectomorphisms.

Lemma 1: The Batalin-Vilkovisky Lemma7–10,12,13. Consider a finite anticanonical transforma-
tion between initial Darboux coordinates ��i�

A and final Darboux coordinates ��f�
A . Then the Jaco-

bian J�sdet����f�
A /���i�

B � satisfies

�1
�i��J = 0. �4.2�

Here �1
�i� refers to the odd Laplacian �3.2� with �=1 in the initial Darboux coordinate ��i�

A .
Given the Darboux coordinate �A, the �E operator is defined on a semidensity � as6–9,13

��E��: = ��1�� , �4.3�

where �1 is the �� operator �3.2� with �=1. It is important in Eq. �4.3� that the formula for the �1

operator �3.2� and the semidensity � both refer to the same Darboux coordinate �A. The paren-
theses in Eq. �4.3� indicate that the equation should be understood as an equality among semiden-
sities �in the sense of zeroth-order differential operators�, rather than an identity among differential
operators. One next uses the Batalin-Vilkovisky Lemma to argue that the definition �4.3� does not
depend on the choices of Darboux coordinates �A. What this means is that the right-hand side of
the definition �4.3� transforms as a semidensity

��1
�f���f�� =

1
�J

��1
�i���i�� �4.4�

under an anticanonical transformation between any two Darboux coordinates ��i�
A and ��f�

A . Proof:

�J��1
�f���f�� = �J��J

�i���f�� = �J��J
�i���i�

�J
� = ��1

�i���i�� −
1
�J

��1
�i��J���i� = ��1

�i���i�� . �4.5�

The third equality is a nontrivial property of the odd Laplacian �3.2�. The Batalin-Vilkovisky
Lemma is used in the fourth equality. Strictly speaking, it is enough to consider infinitesimal
anticanonical transformations to justify the definition �4.3�. The proof of the infinitesimal version
of the Batalin-Vilkovisky Lemma goes like this: An infinitesimal anticanonical coordinate trans-
formation ��A=XA is necessarily a Hamiltonian vector field XA= � ,�A��X

A with an infinitesi-
mal, Grassmann-odd Hamiltonian , where ���=1. So

ln J � �− 1��A� �� l

��AXA� = div1�X� = − 2�1 , �4.6�

and hence

�1
�J � − �1

2 = 0, �4.7�

due to the nilpotency of the �1 operator in Darboux coordinates. The � sign is used to indicate
that equality only holds at the infinitesimal level. �Here we are guilty of mixing active and passive
pictures; the active vector field is properly speaking minus X.� A simple proof of the Batalin-
Vilkovisky Lemma for finite anticanonical transformations can be found in Ref. 13.

On the other hand, once the definition �4.3� is justified, it is obvious that the �E operator
supercommutes with itself, because the �A derivatives have no �A’s to act on in Darboux coordi-
nates. Therefore �E is nilpotent,
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�E
2 =

1

2
��E,�E� = 0. �4.8�

The same sort of reasoning shows that �E=�E
T is symmetric.

V. THE �E OPERATOR IN GENERAL COORDINATES

We now give a definition of the �E operator that does not rely on Darboux coordinates. We
claim that in arbitrary coordinates the �E operator is given as

��E��: = ��1�� + ���1�

8
−

��2�

24
�� , �5.1�

where

��1�: = �− 1��A� �� l

��B

�� l

��AEAB� , �5.2�

��2�: = − �− 1��B��C,��B,�A��� �� l

��AEBC� = �− 1��A�C� �� l

��AECD�� �� l

��DEAB�EBC. �5.3�

Equation �5.1� is the main result of this paper. Notice that in Darboux coordinates, where EAB

is constant, i.e., independent of the coordinate �A, the last two terms, ��1� and ��2�, vanish. Hence
the definition �5.1� agrees in this case with Khudaverdian’s �E operator �4.3�.

It remains to be shown that the right-hand side of Eq. �5.1� behaves as a semidensity under
general coordinate transforms. Here we will only explicitly consider the case where � is invertible
to simplify the presentation. �The noninvertible case is fundamentally no different.� In the invert-
ible case, we customarily write the semidensity �=�� as a square root of a density �, and define
a Grassmann-odd quantity

��: =
1
��

��E
��� = ��

�0� +
��1�

8
−

��2�

24
, �5.4�

by dividing both sides of the definition �5.1� with the semidensity �. Here we have defined

��
�0�: =

1
��

��1
��� . �5.5�

Hence, to justify the definition �5.1�, one should check that �� is a scalar under general
infinitesimal coordinate transformations. Under an arbitrary infinitesimal coordinate transforma-
tion ��A=XA, one calculates

���
�0� = −

1

2
�1 div1 X , �5.6�

���1� = 4�1 div1 X + �− 1��A� �� l

��CEAB�� �� l

��B

�� l

��AXC� , �5.7�

���2� = 3�− 1��A� �� l

��CEAB�� �� l

��B

�� l

��AXC� , �5.8�

cf. Appendixes A–C. One easily sees that while the three constituents ��
�0�, ��1�, and ��2� separately

have nontrivial transformation properties, the linear combination �� in Eq. �5.4� is indeed a scalar.
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The new definition �5.1� is clearly symmetric �E=�E
T and one may check that the nilpotency

�4.8� of the �E operator �5.1� precisely encodes the Jacobi identity �2.9�. The odd Laplacian �� can
be expressed entirely by the �E operator and a choice of density �,

���F� = ��1F� +
1
��

���,F� =
1
��

��� 1,F��� =
1
��

��� E,F��� . �5.9�

Since ��2� depends on the antisymplectic matrix EAB with lower indices, it is not clear how the
formula �5.1� extends to the degenerate anti-Poisson case.

VI. APPLICATION TO BATALIN-VILKOVISKY QUANTIZATION

It is interesting to transcribe the Batalin-Vilkovisky quantization, based on the odd Laplacian
��, into a quantization scheme that is based on the �E operator, with the added benefit that no
choice of measure density � is needed. Since the �E operator takes semidensities to semidensities,
this suggests that the Boltzmann factor exp��i /��WE� that appears in the quantum master equation

�E exp i

�
WE� = 0 �6.1�

should now be a semidensity, where

WE = S + �
n=1

�

�i��nWn �6.2�

denotes the quantum action. In fact, this was a common interpretation �when restricting to Dar-
boux coordinates� prior to the introduction of a density � around 1992; see, for instance, Ref. 10,
pp. 440–441. If one only considers �-independent coordinate transformations �A→��A for sim-
plicity, this implies that the one-loop factor e−W1 is a semidensity, while the rest of the quantum
action, i.e., the classical action S and the higher loop corrections Wn, n�2, are scalars as usual.
For instance, the nilpotent operator F�eW1�E�e−W1F� takes scalars F to scalars.

At this stage it might be helpful to compare the above �E approach to the �� formalism. To
this end, fix a density �. Then one can define a bona fide scalar quantum action W� as

W�: = WE + �i��ln�� , �6.3�

or equivalently,

e�i/��WE = ��e�i/��W�. �6.4�

This scalar action W� satisfies the modified quantum master equation

��� + ���exp i

�
W�� = 0, �6.5�

cf. Eqs. �5.4�, �5.9�, �6.1�, and �6.4�. One may obtain the quantum master equation
�� exp��i /��W��=0 by additionally imposing the covariant condition ��=0, or equivalently
�E

��=0. However, this step is not necessary.
Returning now to the pure �E approach with no �, the finite �E-exact transformations of the

form

e�i/��WE� = e−��� E,�e�i/��WE, �6.6�

play an important role in taking solutions WE to the quantum master Eq. �6.1� into new solutions
WE� . It is implicitly understood that all objects in Eq. �6.6� refer to the same �but arbitrary�
coordinate frame. In general,  is a Grasmann-odd operator that takes semidensities to semiden-
sities. If  is a scalar function ��zeroth-order operator�, one derives
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WE� = eXWE + �i��
eX − 1

X

�E . �6.7�

The formula �6.7� is similar to the usual formula in the �� formalism.13 One may check that
Eq. �6.7� is covariant with respect to general coordinate transformations.

The W-X formulation discussed in Refs. 5 and 13 carries over with only minor modifications,
since the �E operator is symmetric �E

T =�E. In short, the W-X formulation is a very general
field-antifield formulation, based on two master actions, WE and XE, each satisfying a quantum
master equation. At the operational level, symmetric means that the �E operator, sandwiched
between two semidensities under a �path� integral sign, may be moved from one semidensity to the
other, using integration by part. This is completely analogous to the symmetry of the odd Laplac-
ian ��=��

T itself. The XE quantum action is a gauge-fixing part,

XE = G
�
 + �i��HE + O���� , �6.8�

which contains the gauge-fixing constraints G
 in involution,

�G
,G�� = G�U
�
� . �6.9�

The gauge-fixing functions G
 implement a generalization of the standard Batalin-Vilkovisky
gauge-fixing procedure 	


� =� /�	
. In the simplest cases, the gauge-fixing conditions G
=0 are
enforced by integration over the Lagrange multipliers �
. See Ref. 13 for further details on the
W-X formulation. The pertinent measure density in the partition function

Z =� �d���d��e�i/���WE+XE� �6.10�

is now located inside the one-loop parts of the WE and the XE actions. For instance, an on-shell
expression for the one-loop factor e−HE is

e−HE = �Jsdet�F
,G�� , �6.11�

where J=sdet���A /��B� denotes the Jacobian of the transformation �A→�A and �A�	F
 ;G

.
The formula �6.11� differs from the original square root formula13–15 by not depending on a �
density, consistent with the fact that e−HE is no longer a scalar but a semidensity. We recall here the
main point that the one-loop factor e−HE is independent of the F
’s and the partition function Z is
independent of the G
’s in involution, cf. Eq. �6.9�.

To summarize, the density � can altogether be avoided in the field-antifield formalism, at the
cost of more complicated transformation rules. We stress that the above transcription has no
consequences for the physics involved. For instance, the ambiguity that existed in the density � is
still present in the choice of WE and XE.
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APPENDIX A: PROOF OF EQ. „5.6…

Consider a general �not necessarily infinitesimal� coordinate transformation �A→��A between
the “unprimed” and a “primed” coordinate systems, �A and ��A, respectively; cf. Eq. �3.1�. The
primed ��

�0� quantity �5.5� can be reexpressed with the help of the unprimed coordinates as
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���
��0�: =

1
���

��1����� =
1

���
��J

���� =
1
��

��1
��� −

1
�J

��1
�J� = ��

�0� − �J
�0�, �A1�

where it is convenient �and natural� to introduce the quantity

�J
�0�: =

1
�J

��1
�J� �A2�

with respect to the unprimed reference system. The third equality in Eq. �A1� uses a nontrivial
property of the odd Laplacian �3.2�. In the infinitesimal case ��A=XA, the expression for the
Jacobian J reduces to a divergence ln J�div1 X, and one calculates

���
�0� = ���

��0� − ��
�0� = − �J

�0� = − �1�ln �J� −
1

2
�ln �J, ln �J� � −

1

2
�1 div1 X , �A3�

which is Eq. �5.6�.

APPENDIX B: PROOF OF EQ. „5.7…

The infinitesimal variation of ��1� yields four contributions to linear order in the variation
��A=XA,

���1� = − ��I
�1� − ��II

�1� + ��III
�1� + ��IV

�1�. �B1�

They are

��I
�1�: = �− 1��A� �� l

��BXC�� �� l

��C

�� l

��AEAB� , �B2�

��II
�1�: = �− 1��A

�� l

��B�� �� l

��AXC�� �� l

��CEAB�� = ��I
�1� + ��V

�1�, �B3�

��III
�1�: = �− 1��A

�� l

��B

�� l

��A��XA ��r

��C�ECB� = ��IV
�1�, �B4�

��IV
�1�: = �− 1��A

�� l

��B

�� l

��A�EAC� �� l

��CXB�� = ��I
�1� + ��V

�1� + ��VI
�1�, �B5�

��V
�1�: = �− 1��A� �� l

��CEAB�� �� l

��B

�� l

��AXC� , �B6�

��VI
�1�: = �− 1��A

�� l

��A�EAC �� l

��C

�� l

��BXB�− 1��B� = 2�1 div1 X , �B7�

where we have noted various relations among the contributions. Altogether, the infinitesimal
variation of ��1� becomes

���1� = ��V
�1� + 2��VI

�1�, �B8�

which is Eq. �5.7�.
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APPENDIX C: PROOF OF EQ. „5.8…

The infinitesimal variation of

��2�: = �− 1��A�C� �� l

��DEAB�EBC� �� l

��AECD� �C1�

yields eight contributions to linear order in the variation ��A=XA, which may be organized as 2
�4 terms

���2� = 2�− ��I
�2� − ��II

�2� + ��III
�2� + ��IV

�2�� , �C2�

due to a �A ,B�↔ �D ,C� symmetry in Eq. �C1�. They are

��I
�2�: = �− 1��A�C� �� l

��DEAB�EBF�XF ��r

��C�� �� l

��AECD� , �C3�

��II
�2�: = �− 1��A�C� �� l

��DEAB�EBC� �� l

��AXF�� �� l

��FECD� , �C4�

��III
�2�: = �− 1��A�C� �� l

��DEAB�EBC
�� l

��A��XC ��r

��F�EFD� = ��I
�2� + ��V

�2�, �C5�

��IV
�2�: = �− 1��A�C� �� l

��DEAB�EBC
�� l

��A�ECF� �� l

��FXD�� = ��II
�2� + ��VI

�2�, �C6�

��V
�2�: = �− 1��A�CEFD� �� l

��DEAB�EBC� �� l

��AXC ��r

��F� = − ��V
�2� + ��VI

�2�, �C7�

��VI
�2�: = �− 1��A� �� l

��CEAB�� �� l

��B

�� l

��AXC� , �C8�

where we have noted various relations among the contributions. The Jacobi identity �2.8� for EAB

is used in the second equality of Eq. �C7�. Altogether, the infinitesimal variation of ��2� becomes

���2� = 3��VI
�2�, �C9�

which is Eq. �5.8�.
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Infinite component Poisson brackets of the Dubrovin-Novikov type �Sov. Math.
Dokl. 27, 665–669 �1983�� are considered. The corresponding Jacobi identity is
significantly simplified in the Liouville coordinates since the skew-symmetry con-
dition is automatically satisfied. The concept of M Poisson bracket connected with
hydrodynamic chains is introduced. Then the Jacobi identity is a nonlinear system
of equations in partial derivatives which can be completely integrated. In such a
case, a classification of infinite component Poisson brackets of the Dubrovin-
Novikov type can be obtained. Two simplest examples, M =0 and M =1, are con-
sidered. Also infinite component Poisson brackets of the Ferapontov �Am. Math.
Soc. Transl. 170, 38–58 �1995�� type can be simplified in the Liouville coordinates.
The Jacobi identity for infinite component Poisson brackets of the Ferapontov-
Mokhov type �Russ. Math. Surveys 45, 218–219 �1990�� is presented in the Liou-
ville coordinates © 2006 American Institute of Physics. �DOI: 10.1063/1.2399086�

I. INTRODUCTION

The theory of the hydrodynamic-type systems,

ut
i = � j

i�u�ux
j , i, j = 1,2, . . . ,N , �1�

integrable by the generalized hodograph method �see Ref. 25� starts with the hydrodynamic-type
systems equipped with a local Hamiltonian structure,

ut
i = �ui,h̄� = �gijDx − gis�sk

j ux
k�

�h̄

�uj ,

determined by the Hamiltonian h̄=�h�u�dx and by the Dubrovin-Novikov bracket �a differential-
geometric Poisson bracket of the first order, see Ref. 5�

�ui�x�,uj�x��� = �gijDx − gis�sk
j ux

k���x − x��, i, j = 1,2, . . . ,N , �2�

where the symmetric and nondegenerate metric gij�u� is flat, and the Christoffel symbols are given
by �sk

j = 1
2gjm��sgmk+�kgms−�mgsk�. Then the above Poisson bracket can be written via the so-called

Liouville coordinates Ak�u� �see Ref. 5�,

�Ak�x�,An�x��� = �Wkn�A�Dx + DxWnk�A����x − x��, k,n = 1,2, . . . ,N . �3�

The theory of Poisson brackets in infinite component case,

a�Electronic mail: m.v.pavlov@lboro.ac.uk
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�Ui,Uj� = �Gij�U�Dx + �k
ij�U�Ux

k���x − x��, i, j,k = 1,2,3, . . . , �4�

starts with the pioneering papers �Refs. 13 and 14� dedicated to integrable hydrodynamic chains
�see below� and their properties. Later these Poisson brackets �See. Eq. �2�� were considered by
Dorfman in Ref. 4 �N component case �2� was completely investigated by Dubrovin and Novikov
in Ref. 5 for the nondegenerate matrix Gij; the degenerate case was considered by Grinberg in Ref.
12; see also the “zero curvature” subcase in Ref. 17�.

Theorem �Ref. 4�: The Poisson bracket (4) is skew symmetric and satisfies the Jacobi identity
property if and only if

Gij = Gji, �kG
ij = �k

ij + �k
ji, Gik�k

jn = Gjk�k
in,

0 = �n
ij�k

nm − �n
im�k

nj + Gin��n�k
mj − �k�n

mj� ,

0 = ��n�k
ij − �k�n

ij��p
nm + ��n�k

mi − �k�n
mi��p

nj + ��n�k
jm − �k�n

jm��p
ni

+ ��n�p
ij − �p�n

ij��k
nm + ��n�p

mi − �p�n
mi��k

nj + ��n�p
jm − �p�n

jm��k
ni. �5�

The first main observation of this paper is that the above nonlinear system of equations in
partial derivatives simplifies to the more compact form

�Win + Wni��nWkj = �W jn + Wnj��nWki,

�nWij�mWkn = �nWkj�mWin �6�

in the Liouville coordinates Ai�U� �see Eq. �3�; see also Refs. 5 and 15�. Thus, the Liouville
coordinates Ak are most natural coordinates �except flat coordinates in the finite component case,
see Ref. 5�.

Indeed, the first two relationships in Eq. �5� are the skew-symmetry property satisfied auto-
matically in the Liouville coordinates. The last restriction in Eq. �5� vanishes in the Liouville
coordinates because Gik�A�=Wik+Wki, �k

ij�A�=�kW ji. Thus, the nonlinear PDE system �5� re-
duces to the Jacobi identity �6� in this special case.

Remark: Elements Wik depend on all field variables un �n=1,2 , . . . ,N� in the finite-
component case �hydrodynamic-type systems �1��; elements Wik depend on just a finite number of
moments Ak in the infinite component case �hydrodynamic chains�. Thus, the Jacobi identity �6�
contains a finite number of equations for any fixed indices i , j ,k ,m. Then this overdetermined
system can be solved iteratively for all indices i , j ,k ,m, if a dependence of elements Wik on
moments Ak is determined by some special prescribed law. Such a simple dependence is consid-
ered below.

This paper deals with the hydrodynamic chains �see Eq. �1��,

Ut
k = �

m=0

Mk

Vm
k �U�Ux

m, k = 0,1,2, . . . , �7�

where the number of field variables Uk is infinite �in comparison with hydrodynamic-type systems
�1��, all components Vm

k �U� are functions of a finite number of the field variables Un �for any fixed
indices k ,m�, and Mk are some integers �i.e., Mk are integer values of a discrete function M�k��.
Thus, the hydrodynamic chain �7� is an extension of the hydrodynamic-type system �1� to an
infinite component case. Plenty known integrable hydrodynamic chains �see Refs. 2, 3, 9, 16, 21,
22, and 24� belong to the simplest class Mk=k+1.

Without loss of generality we restrict our consideration on a monotonic growth of coefficients
Mk. All further formulas, definitions, theorems, and conjectures are expressed via the Liouville
coordinates Ak�U�.
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Definition: The hydrodynamic chain (7) is said to be Hamiltonian if it can be written in the
form

At
i = �Wij�A�Dx + DxW ji�A��

�H̄

�Aj , i, j = 0,1,2, . . . , �8�

where the coefficients Wij�A� satisfy the Jacobi identity (6).

The Hamiltonian H̄=�Hdx depends on a finite number of first moments Ak �i.e., k
=0,1 , . . . ,K, where K is some integer�.

Definition: The Hamiltonian hydrodynamic chain (8) is said to be integrable if it possesses an
infinite series of conservation laws.

The main problem in a classification of integrable hydrodynamic chains is a description of the
Poisson brackets [see Eq. (3)]

�Ak�x�,An�x��� = �Wkn�A�Dx + DxWnk�A����x − x��, k,n = 1,2, . . . . �9�

Many publications are devoted to various particular cases �see, for instance, Refs. 4, 13, and
14�, some of them will be described below. In this paper I present the program of an investigation
of these Poisson brackets.

In this paper we consider the very important case

W�M�
kn = Wkn�A0,A1, . . . ,Ak+n−M�, M = 0, ± 1, ± 2, . . . . �10�

Definition: The corresponding Poisson brackets (9) are said to be M brackets.
The simplest subcases W�0�

kn =Wkn�B0 ,B1 , . . . ,Bk+n� and W�1�
kn =Wkn�A0 ,A1 , . . . ,Ak+n−1� are con-

sidered in detail below. The first example is the Kupershmidt-Manin bracket �M =1�

�Ak,An�3 = �kAk+n−1Dx + nDxA
k+n−1���x − x�� �11�

found in Ref. 14 �the index 3 means that the above Poisson bracket is associated with the third
local Hamiltonian structure, where the Hamiltonian density is given by H2=A2+ �A0�2�. The sec-
ond example is the Kupershmidt bracket �M =0�

�Bk,Bn� = ��k + ��Bk+nDx + �n + ��DxB
k+n���x − x�� �12�

found in Ref. 13. Infinitely many local Hamiltonian structures for the Benney hydrodynamic chain
�see Ref. 23� and for the Kupershmidt hydrodynamic chains �see Ref. 22� are examples of these M
brackets. The third example �M =0�,

�Ak,An�2 = 	�k + 1�Ak+nDx + �n + 1�DxA
k+n + n�k + 1�Ak−1DxA

n−1

+ �
m=0

n−1

�mAn−1−mDxA
k−1+m + �k − n + m�Ak−1+mDxA

n−1−m�
��x − x�� ,

is the second local Poisson bracket for the Benney hydrodynamic chain �where the Hamiltonian
density is given by H1=A1; see Ref. 13�, where the moments Ak are no longer the Liouville
coordinates. Nevertheless, this bi-Hamiltonian structure completely determines the Benney hydro-
dynamic chain together with its commuting flows.

The second observation successfully utilized in this paper is that the Jacobi identity �6�,

�
n=0

k+j−M

�W�M�
in + W�M�

ni ��nW�M�
kj = �

n=0

k+i−M

�W�M�
jn + W�M�

nj ��nW�M�
ki ,
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�
n=0

k+j−M

�nW�M�
jk �mW�M�

in = �
n=0

k+i−M

�nW�M�
ik �mW�M�

jn , �13�

is an overdetermined system which can be solved completely. Indeed, since all coefficients W�M�
ij

depend on different sets of the moments Ak �cf. a similar problem in Refs. 9 and 21�, the elimi-
nation of higher �step by step� moment dependences leads to systems of ordinary differential
equations with respect to each lower moment. The illustrative examples are considered in this
paper for M =0 and M =1. Without loss of generality and for simplicity we restrict our consider-
ation to several first equations of Eq. �13� for computation of several first coefficients W�M�

ij ; all
other higher coefficients can be found in the same way utilizing next equations from Eq. �13�.
Moreover, suppose that several first coefficients W�M�

ij are found �see the examples below�, then all
first derivatives of higher coefficients W�M�

ij can be expressed from the nonlinear PDE system �13�.
It means that the compatibility conditions �k��nW�M�

ij �=�n��kW�M�
ij � should lead to nonlinear PDE

equations determining lower coefficients W�M�
ij which are already found at the previous stage of

computations. Then these higher coefficients W�M�
ij can be found in quadratures.

Remark: Of course, the M bracket is just one among many other examples. For instance,
another new Poisson bracket is given by

�Ak,An� = �Ak·nDx + DxA
k·n���x − x�� .

All other Poisson brackets �8� and corresponding integrable hydrodynamic chains shall be dis-
cussed elsewhere.

At the end of this paper, local Poisson brackets are generalized to the simplest nonlocal case
�associated with a metric of constant curvature10 in N component nondegenerate case�.

II. M BRACKETS AND INTEGRABLE HYDRODYNAMIC CHAINS

In this section, integrable Hamiltonian hydrodynamic chains �8� determined by M brackets
�10�,

At
k = �Ak,H̄�M = �W�M�

kn Dx + DxW�M�
nk �

�H̄

�An , �14�

are considered.
Definition: The conservation law density Hm is said to be a Casimir density, if the corre-

sponding right hand side (rhs) of Eq. (14) vanishes, i.e.,

�W�M�
kn Dx + DxW�M�

nk �
�Hm

�An � 0.

Definition: The conservation law density HM is said to be a momentum density if

�W�M�
kn Dx + DxW�M�

nk �
�HM

�An � Ax
k.

We restrict our further consideration by a set of some natural assumptions �for M �1�. In fact,
we have two main cases only.

1. If M �1, suppose M brackets satisfy the auxiliary �natural� restrictions �“normalization”�
given by

W�M�
Mk = Ak, k = 0,1,2, . . . ,

W�M�
sk = 0, 0 � s � M, k � M − s .
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W�M�
kn = W̄�M�

kn = const, k = 0,1,2, . . . ,M − 1, 0 � n � M − 1 − k . �15�

Then the corresponding Poisson brackets possess M Casimirs. The Casimirs can be chosen

as H̄k=�Akdx �k=0,1 ,2 , . . . ,M −1�, while the momentum can be chosen as H̄M =�AMdx.
For simplicity we restrict our consideration to the hydrodynamic chain �14� determined by

the simplest Hamiltonian H̄M+1=�HM+1�A0 ,A1 ,A2 , . . . ,AM+1�dx. Thus, the hydrodynamic
chain �14� possesses at least M +2 conservation laws �for an arbitrary Hamiltonian density
H�, where the first M conservation laws are the Casimirs

At
k = �x� �

n=0

M−k−1

�W̄�M�
kn + W̄�M�

nk �
�HM+1

�An + �
n=M−k

M+1

W�M�
nk �HM+1

�An , k = 0,1,2, . . . ,M − 1.

The conservation law of the momentum is

At
M = �x��

n=0

M+1

�W�M�
nM + An�

�HM+1

�An − HM+1 .

The conservation law of the energy is

�tHM+1 = �x	�
k=0

M+1

�
n=0

M+1

W�M�
kn �HM+1

�Ak

�HM+1

�An 
 .

Remark: In the general case, the corresponding hydrodynamic chain is given by

At
k = �

n=0

M+1

Vn
k�A�Ax

n, k = 0,1, . . . ,M − 1, At
k = �

n=0

k+1

Vn
k�A�Ax

n, k = M,M + 1, . . . .

�16�

The case M =0 can be incorporated in the previous case. The corresponding Poisson bracket
has a set of constraints �cf. the above case�

W�0�
0k = Ak, k = 0,1,2, . . . ;

a corresponding hydrodynamic chain �for an arbitrary Hamiltonian density� possesses two
conservation laws �of the energy and of the momentum, see the above formulas for M =0�
only.
Conjecture: The hydrodynamic chain �14� determined by the Hamiltonian density HM+1 is
integrable if it possesses an extra conservation law density HM+2. For instance, this statement
is proved for integrable hydrodynamic chains associated with the Kupershmidt bracket �see
Ref. 8� and with the Kupershmidt-Manin bracket �see Ref. 9�.

2. If M �−1, then the corresponding Poisson brackets do not possess Casimirs and a momen-
tum. Moreover, simplest hydrodynamic chains �14� determined by the lowest Hamiltonian

H̄0=�H0�A0�dx contain Mk=k+M elements in the rhs of Eq. �7�.
Examples: The Kupershmidt hydrodynamic chains �see Ref. 13� possess an infinite set of
local Hamiltonian structures determined by M brackets �9�, where the first of them are �for
the indices M =0,1 ,2, respectively; see Ref. 22�

�Ck,Cn� = ���k + 1�Ck+nDx + ��n + 1�DxC
k+n���x − x�� ,

�B0,B0� = ����x − x��, �Bk,Bn� = ���k + 1 − ��Bk+n−1Dx + ��n + 1 − ��DxB
k+n−1���x − x�� ,

�A0,A1� = �A1,A0� = ����x − x��, �A1,A1� = �� − 1��A0Dx + DxA
0���x − x�� ,
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�Ak,An� = ���k + 1 − 2��Ak+n−2Dx + ��n + 1 − 2��DxA
k+n−2���x − x�� .

The first Poisson bracket is the well-known Kupershmidt bracket �12�; two other Poisson
brackets are new.
The most interesting class of these Poisson brackets is provided by polynomial �with respect
to the moments Ak� coefficients W�M�

kn . The simplest case is given by the linear Poisson
brackets determined by

W�M�
kn = e�M�

kn Ak+n−M ,

where e�M�
kn are some constants satisfying the algebraic system �see Eq. �6��

�e�M�
p,k+n−M + e�M�

k+n−M,p�e�M�
nk = �e�M�

k,n+p−M + e�M�
n+p−M,k�e�M�

np , e�M�
sp e�M�

k,s+p−M = e�M�
kp e�M�

s,k+p−M ,

possibly connected with an infinite dimensional analogue of the Frobenius algebras �see Ref.
1�. Let us look for a particular solution in the form

e�M�
kn = �Ak + Bn + C� ,

where A and B are some constants. The substitution of this ansatz in the above algebraic
system yields the Kupershmidt brackets �see Ref. 13� determined by an arbitrary value A, but
B=0. More general linear Poisson brackets

W�M�
kn = �

s=0

k+n−M

e�M�s
kn As

were considered by Dorfman in Ref. 4. For instance,

�A0,A0� = ����x − x��, �Ak,An� = �
m=0

M

	m�kAm+k+n−1Dx + nDxA
m+k+n−1���x − x�� ,

where � and 	k are arbitrary constants.
Higher order homogeneous polynomials create more complicated Poisson brackets, which
can be described by algebraic tools. For instance, the second nontrivial case is the quadratic
Poisson brackets determined by

W�M�
kn �A0,A1, . . . ,Ak+n−M� =

1

2 �
m=0

k+n−M

e�M�m
kn AmAk+n−m−M ,

where e�M�m
kn �e�M�k+n−m−M

kn are some constants, which can be found by a direct substitution in
the nonlinear PDE system �13�. The corresponding system of algebraic relations is very
complicated and will be investigated in detail elsewhere.

III. FIRST EXAMPLE: M=0

We omit the subindex in all components W�0�
nk of the Poisson bracket �see Eq. �9�, M =0�,

�Bk,Bn� = �Wkn�B0,B1, . . . ,Bk+n�Dx + DxWnk�B0,B1, . . . ,Bk+n����x − x�� .

The nonlinear PDE system �13�

�
m=0

n+k

�Wpm + Wmp��mWnk = �
m=0

n+p

�Wkm + Wmk��mWnp,
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�
m=0

n+k

�mWkn�sWpm = �
m=0

n+p

�mWpn�sWkm

is an overdetermined system describing a family of local Poisson brackets connected with the
Hamiltonian hydrodynamic chains.

Let us write several first nonlinear PDEs from the nonlinear PDE system �13�,

�W10 + B1��0W10 + 2W11�1W10 = 2B0�0W11 + �B1 + W10��1W11 + �B2 + W20��2W11,

�1W10�0W21 = �1W20�0W11 + �2W20�0W12,

�0W10�1W20 + �1W10�1W21 = �0W20�1W10 + �1W20�1W11 + �2W20�1W12,

�0W10�2W20 + �1W10�2W21 = �1W20�2W11 + �2W20�2W12,

�1W10�3W21 = �2W20�3W12,

where the auxiliary restrictions �normalization�

W0k � Bk

are consequences of the existence of a conservation law of the momentum H̄0=�B0dx. This
system involves just four first moments B0, B1, B2, and B3. It is enough to find coefficients W10,
W11, and W20. For instance, W10 is a solution of the Monge-Ampere equation

�W10�00�W10�11 − ��W10�01�2 + 
�
2
�B0���W10�1�2 = 0, �17�

where 
�B0� is some function �determined from the compatibility conditions ��W11�1�2

= ��W11�2�1, ��W11�1�0= ��W11�0�1, and ��W11�0�2= ��W11�2�0; see expressions below�, and each
subindex k means the corresponding derivative with respect to the moment Bk. Moreover,

W20 = B2�W10�1 + G ,

where G�p ,q� is a solution of the Euler-Darboux-Poisson equation

Gpq =

��B0�

4
�2�B0�
�Gp − Gq�, 
�B0� =

1

2
�p − q� ,

q = ln��W10�1� − 
�B0�, p = ln��W10�1� + 
�B0� .

Explicit expressions for all other coefficients �depending on higher moments Bk, k=3,4 ,5 , . . .� can
be found recursively in complete differentials. For instance, the equation

�W11�2 =
2��W10�1�2�B0�W10�00 + �W10 + B1��W10�10 + W11�W10�11�

MB2 + N
,

where �now M stands for a function, while it had been used as an integer before�

M = �1 + �W10�1��W10�1�W10�11 + 2B0��W10�1�W10�110 − �W10�10�W10�11�

+ �W10 + B1���W10�1�W10�111 − ��W10�11�2� ,
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N = G�W10�1�W10�11 + 2B0�G10�W10�1 − G1�W10�10� + ��W10�1 + B1��G11�W10�1 − G1�W10�11� ,

can be solved up to some function of B0 and B1, which can be found in complete differentials by
a substitution into other derivatives,

�W11�1 = �W11�2

��W10�1�W10�111 − ��W10�11�2�B2 + G11�W10�1 − G1�W10�11

�W10�1�W10�11
+ K ,

�W11�0 = �W11�2

��W10�1�W10�110 − �W10�10�W10�11�B2 + G10�W10�1 − G1�W10�10

�W10�1�W10�11
− L ,

where

K =
�W10�0�W10�11 − 2�W10�1�W10�10

�W10�11
, L =

�W10�1�W10�00

�W10�11
.

Remark: The Monge-Ampere equation �17� was derived in Ref. 9 in a classification of
integrable hydrodynamic chains

�tH0 = �xF10�H0,H1�, �tH1 = �xF11�H0,H1,H2�, �tH2 = �xF12�H0,H1,H2,H3�, . . . .

Thus, we have a good indication that these hydrodynamic chains are connected with the above
local Hamiltonian structure �as well as possibly other M brackets; see the next section�.

Integrable hydrodynamic chain �7� possesses an infinite set of commuting flows, where the
first two of them,

Bt
k = �Wkn�B0,B1, . . . ,Bk+n�Dx + DxWnk�B0,B1, . . . ,Bk+n��

�H̄1

�Bn , �18�

By
k = �Wkn�B0,B1, . . . ,Bk+n�Dx + DxWnk�B0,B1, . . . ,Bk+n��

�H̄2

�Bn , �19�

are determined by the Hamiltonians H̄1=�H1�B0 ,B1�dx and H̄2=�H2�B0 ,B1 ,B2�dx.
Let us write the first two equations from Eq. �18� and the first equation from Eq. �19�,

Bt
0 = �B0Dx + DxB

0�
�H̄1

�B0 + �B1Dx + DxW10�B0,B1��
�H̄1

�B1 ,

Bt
1 = �W10�B0,B1�Dx + DxB

1�
�H̄1

�B0 + �W11�B0,B1,B2�Dx + DxW11�B0,B1,B2��
�H̄1

�B1 ,

By
0 = �B0Dx + DxB

0�
�H̄2

�B0 + �B1Dx + DxW10�B0,B1��
�H̄2

�B1 + �B2Dx + DxW20�B0,B1,B2��
�H̄2

�B2 .

These three equations can be written in the conservative form

�tH0 = �xF10�H0,H1�, �tH1 = �xF11�H0,H1,H2�, �yH0 = �xF20�H0,H1,H2� ,

where

F10�H0,H1� = 2B0�H1

�B0 + �W10 + B1�
�H1

�B1 − H1,
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F11�H0,H1,H2� = B0� �H1

�B0 2

+ �W10 + B1�
�H1

�B0

�H1

�B1 + W11� �H1

�B1 2

,

F20�H0,H1,H2� = 2B0�H2

�B0 + �W10 + B1�
�H2

�B1 + �W20 + B2�
�H2

�B2 − H2.

Let us introduce the potential function z, where H0=zx, F10�H0 ,H1�=zt, and F20�H0 ,H1 ,H2�=zy.
Then one can substitute H1�zx ,zt� and H2�zx ,zt ,zy� into the second equation,

�tH1�zx,zt� = �xF11�zx,H1�zx,zt�,H2�zx,zt,zy�� .

This 2+1 quasilinear equation of the second order is integrable by the method of hydrodynamic
reductions7 �or by introducing pseudopotentials; see Refs. 7 and 26�. The Hamiltonian structure of
this equation is unknown, while the Hamiltonian structure of corresponding hydrodynamic chains
�18� and �19� is defined.

IV. SECOND EXAMPLE: M=1

We omit the subindex in all components W�1�
nk of the Poisson bracket �see Eq. �9�, M =1�

�Ak,An� = �Wkn�A0,A1, . . . ,Ak+n−1�Dx + DxWnk�A0,A1, . . . ,Ak+n−1����x − x�� .

The nonlinear PDE system �13�

�
m=0

n+k−1

�Wpm + Wmp��mWnk = �
m=0

n+p−1

�Wkm + Wmk��mWnp,

�
m=0

n+k−1

�mWkn�sWpm = �
m=0

n+p−1

�mWpn�sWkm

is an overdetermined system describing a family of local Poisson brackets connected with Hamil-
tonian hydrodynamic chains.

Let us write several first nonlinear PDEs from the nonlinear PDE system �13�,

�2��0 + A0�1 + W20�2�W21 = �A0�0 + 2A1�1�W20,

�1W20�0W31 = �1W30�0W21 + �2W30�0W22,

�0W30�1W20 + �1W30�1W21 + �2W30�1W22 = �0W20�1W30 + �1W20�1W31,

�0W20�2W30 + �1W20�2W31 = �1W30�2W21 + �2W30�2W22,

�1W20�3W31 = �2W30�3W22,

where the auxiliary restrictions �normalization�

W0k�A0,A1, . . . ,Ak−1� � W̄00�0k, W1k�A0,A1, . . . ,Ak� � Ak

�W̄00=�=const and �ik is the Kronecker symbol� are consequences of the existence of conserva-

tion laws associated with the Casimir H̄0=�A0dx and to the momentum H̄1=�A1dx.
This system involves just four moments A0, A1, A2, and A3. It is enough to find coefficients

W20, W21, and W30. For instance, W20 is a solution of the Monge-Ampere equation �see Eq. �17��
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�W20�00�W20�11 − ��W20�01�2 + 
�2�A0���W20�1�2 = 0,

where 
�A0� is some function �determined from the compatibility conditions ��W21�1�2

= ��W21�2�1, ��W21�1�0= ��W21�0�1, ��W21�0�2= ��W21�2�0; see the expressions below�. Moreover,

W30 = A2�W20�1 + G ,

where G�p ,q� is a solution of the Euler-Darboux-Poisson equation

Gpq =

��A0�

4
�2�A0�
�Gp − Gq�, 
�A0� =

1

2
�p − q� ,

q = ln��W20�1� − 
�A0�, p = ln��W20�1� + 
�A0� .

Explicit expressions for all other coefficients �depending on higher moments Ak, k=3,4 ,5 , . . .� can
be found recursively in complete differentials. For instance,

dW21 = �W21�0dA0 + �W21�1dA1 + �W21�2dA2,

where

�W21�2 =
2�A1�W20�11 + A0�W20�10 + ��W20�00�

2����W20�11A
2 + G1�/�W20�1�0 + A0���W20�11A

2 + G1�/�W20�1�1 + �W20��W20�11/�W20�1
,

�W21�1 =
�W20�1

�W20�11
� �W20�11A

2 + G1

�W20�1


1

�W21�2 + �W20�0 − 2
�W20�1�W20�10

�W20�11
,

�W21�0 =
�W20�1

�W20�11
� �W20�11A

2 + G1

�W20�1


0

�W21�2 −
�W20�1�W20�00

�W20�11
.

Remark: The coincidence of the coefficients W20 from this section and W10 from the previ-
ous section is easy to understand if one takes into account that if the Hamiltonian density H2 is a
function of the moments A1 and A2 only, then the corresponding hydrodynamic chain possesses
the Hamiltonian structure coinciding �due to the “shift” Ak→Bk−1, k=1,2 , . . .� with the Hamil-
tonian structure presented in the previous section.

All other M brackets �10� can be investigated in the same way using the Jacobi identity �6�.

V. THE MIURA-TYPE TRANSFORMATIONS

The approach presented in this paper is very effective: the nonlinear PDE system �6� can be
integrated iteratively for M brackets. However, the Liouville coordinates Ak are very flexible. It

means that coefficients W�M�
ik can be found up to invertible transformations Ãk�A0 ,A1 , . . . ,Ak�

preserving the Jacobi identity �6�. For instance, the Benney hydrodynamic chain �see Eq. �11��

At
k = Ax

k+1 + kAk−1Ax
0 = �kAk+n−1Dx + nDxA

k+n−1�
�H2

�An , k = 0,1,2, . . .

can be written via another set of the Liouville coordinates Hk in the conservative form

�tHk = �x�Hk+1 −
1

2 �
m=0

k−1

HmHk−1−m, k = 0,1,2, . . . .

The invertible transformation Hk�A� is very complicated because corresponding coefficients can
be found �see, e.g., Ref. 14� by a substitution of the series
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� = � +
A0

�
+

A1

�2 +
A2

�3 + ¯ �20�

into another series

� = � −
H0

�
−

H1

�2 −
H2

�3 − ¯ .

Then, the Poisson bracket �11� expressed via conservation law densities Hk

�Hi,Hk� = �W�1�
ik �H�Dx + DxW�1�

ki �H����x − x��

looks ugly. Thus, one of the main problems appearing in a classification of Poisson brackets is a
choice of such Liouville coordinates, where coefficients Wik became most simple.

Suppose two Hamiltonian hydrodynamic chains �see Eq. �7��

Bt
k = �

n=0

Nk

Fn
k�B�Bx

n, At
k = �

m=0

Mk

Qn
k�A�Ax

n, k = 1,2, . . . , �21�

where Nk and Mk are some integers, are related by the Miura-type transformations

Ak = Ak�B0,B1, . . . ,Bk+1�, k = 0,1,2, . . . . �22�

Example: The Benney hydrodynamic chain �see Eq. �11�; see also Refs. 2 and 14� is con-
nected with the modified Benney hydrodynamic chain �see Ref. 24, the particular case of the
Kupershmidt hydrodynamic chains�13

Bt
k = Bx

k+1 + B0Bx
k + �k + 2�BkBx

0 = ��k + 1�Bk+nDx + �n + 1�DxB
k+n�

�H0

�Bn ,

where the Hamiltonian density H0=B1+ �B0�2, by the Miura-type transformations �22�, which can
be obtained by comparing the two series �see Ref. 23�

� = p−1 − �
k=0


Bk

pk+2 � �p + B0 + �
k=0


Ak

�p + B0�k+1−1

,

where the generating function of the Miura-type transformations is given by �= p+B0 �cf. the rhs
of the above expression and Eq. �20��. For instance,

A0 = B1 + �B0�2, A1 = B2 + 3B0B1 + 2�B0�3, . . . .

This Poisson bracket �of the modified Benney hydrodynamic chain�

�Bk,Bn�1 = ��k + 1�Bk+nDx + �n + 1�DxB
k+n���x − x��

can be used for a construction of the first local Poisson bracket �see Eq. �4��

�Ai,Aj�1 =
�Ai

�Bk �Bk,Bn�1
�Aj

�Bn . �23�

However, corresponding coefficients Wik are very complicated.
Thus, the Miura-type transformations can be used for a simplification of Poisson brackets.

Indeed, let us consider a general case for M brackets.
Suppose the first hydrodynamic chain in Eq. �21� possesses the local Poisson bracket �4�

�Bk,Bn� = �G�M�
kn �B�Dx + ��M�m

kn �B�Bx
m���x − x�� . �24�

Then the second hydrodynamic chain in Eq. �21� also possesses another local Poisson bracket
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�Ai,Aj� = �G�L�
ij �A�Dx + ��L�m

ij �A�Ax
m���x − x�� �25�

connected with Eq. �24� by Eq. �22� �see Eq. �23��.
Theorem: If the Poisson brackets (24) and (25) are related by the above Miura-type trans-

formations (22) then L=M −1.
Proof: Without loss of generality let us restrict the calculation just for the metric coefficients

G�L�
ij �A� = �

k=0

i+1

�
n=0

j+1
�Ai

�BkG�M�
kn �B�

�Aj

�Bn , i + j � M .

Taking into account the highest order dependence on the moments Bn these metric coefficients,

G�L�
ij �A� �

�Ai

�Bi+1G�M�
i+1,j+1�B�

�Aj

�Bj+1 ,

depend on Bi+j+2−M �in a highest order�, i.e., G�L�
ij �A� could not depend on moments higher than

Ai+j+1−M. Thus, indeed, L=M −1.
Corollary: The Miura-type transformations �22� decrease the number of moments involved in

metric coefficients and increase the number of Casimirs and a size of a triangular constant block

W̄�M�
kn �see Eq. �15��. It means that the following diagram exists:

�Ak,An� = �G�M�
kn �A0, . . . ,Ak+n−M�Dx + ¯ ���x − x�� ,

↓
�Bk,Bn� = �G�M+1�

kn �B0, . . . ,Bk+n−M−1�Dx + ¯ ���x − x�� ,

↓
�Ck,Cn� = �G�M+2�

kn �C0, . . . ,Ck+n−M−2�Dx + ¯ ���x − x�� ,

↓
. . . .

Thus, invertible transformations can be used to reduce the Poisson bracket to the most simple
dependence on a given set of moments Ak, while the Miura-type transformations can be used to
reduce Poisson brackets to a decreased set of new moments Bn.

Remark: In the theory of dispersive integrable systems the Miura transformation is a tool to
reduce the Hamiltonian structure to the canonical form “Dx” �the infinitely many component

analogue of the Darboux theorem; see Refs. 19 and 20�. Indeed, a constant triangular block W̄�M�
kn

is an analogue of constant matrix gkn of the canonical Hamiltonian operator gknDx �see Ref. 5�.
This constant triangular block W̄�M�

kn increases under the Miura-type transformations �22�, because

the metric coefficients G�M�
kn must be constants for k+n�M. It means, if W̄�M�

kn →W̄�M+1�
kn �see the

above diagram�, then the new constant triangular block is determined by k+n�M +1.
Conjecture: Possibly, the number of such Miura-type transformations is infinite, and any

local Hamiltonian structure with the index −M can be reduced to a local Hamiltonian structure
with an arbitrary index N.

VI. NONLOCAL HAMILTONIAN STRUCTURES

The nonlocal Poisson brackets �see Eq. �2��

�Ui,Uj� = �Gij�U�Dx + �k
ij�U�Ux

k + �Ux
i Dx

−1Ux
j���x − x��

for N component case were completely investigated by Ferapontov and Mokhov in Ref. 10 for the
nondegenerate matrix Gij; the degenerate case was considered by Mokhov in Ref. 17. The skew-
symmetry property and the Jacobi identity lead to the set of restrictions
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Gij = Gji, �kG
ij = �k

ij + �k
ji, Gik�k

jn = Gjk�k
in,

��Gim�k
j − Gij�k

m� = �n
ij�k

nm − �n
im�k

nj + Gin��n�k
mj − �k�n

mj� ,

− ����k
ij − �k

ji��p
m + ��k

mi − �k
im��p

j + ��k
jm − �k

mj��p
i + ��p

ij − �p
ji��k

m + ��p
mi − �p

im��k
j + ��p

jm − �p
mj��k

i �

= ��n�k
ij − �k�n

ij��p
nm + ��n�k

mi − �k�n
mi��p

nj + ��n�k
jm − �k�n

jm��p
ni + ��n�p

ij − �p�n
ij��k

nm + ��n�p
mi

− �p�n
mi��k

nj + ��n�p
jm − �p�n

jm��k
ni,

which simplify to the Jacobi identity �see Eq. �6��

�Win + Wni − �AiAn��nWkj = �W jn + Wnj − �AjAn��nWki,

�nWij�mWkn = �nWkj�mWin �26�

written in the Liouville coordinates Ai=Ai�U�, where �see Refs. 15 and 17�

Gij = Wij + W ji − �AiAj, �k
ij = �kW ji − ��k

i Aj .

Thus, the nonlocal Poisson bracket in the Liouville coordinates has the form

�Ai,Aj� = �WijDx + DxW ji − �AjDxA
i + �Ax

i Dx
−1Ax

j���x − x��, i, j = 0,1, . . . .

Similar classification of these nonlocal Poisson brackets �see Eq. �26�� shall be made elsewhere.
Remark: More general Poisson brackets have been introduced by Ferapontov �see Ref. 6� for

N component nondegenerate case. Such Poisson brackets in the Liouville coordinates are given by
�see Ref. 18�

�Ak,An� = ���kn + �nk − �pq��p�k��q�n�Dx + ��m�nk − �pq��q�n�m��p�k�Ax
m

+ �pq�m��p�kAx
mDx

−1�s�
�q�nAx

s���x − x�� ,

where the constant L�L matrix �pq is symmetric and nondegenerate �L is “codimension” of the
pseudo-Riemannian space�, and �kn�A� and ��p�k�A� are determined by nonlinear PDE system
similar to Eq. �6�.

Remark: Any nonlocal Hamiltonian structure of Ferapontov type can be reduced to local
Hamiltonian structure of Dubrovin-Novikov type by an appropriate generalized reciprocal trans-
formation �see Ref. 11�. Thus, possibly the same result is valid for infinite component case.

VII. CONCLUSION AND OUTLOOK

The so-called Haantjes tensor approach is very effective �see Ref. 9� in a classification of
integrable Hamiltonian hydrodynamic chains �7�. In general case, if the discrete function M�k� is
given a priori, then all coefficients Vm

k �U� can be found iteratively. In the Hamiltonian case, these
coefficients can be found simultaneously �because a Hamiltonian density and a Poisson bracket are
given�.

In this paper, a concept of the so-called M brackets was introduced. In this case, a discrete
function M�k� is determined explicitly by the comparison of Eq. �7� with Eq. �8� �see, e.g., Eq.
�16��.

Suppose the classification of M brackets

�Ak,An� = �Wkn�A0, . . . ,Ak+n−M�Dx + DxWnk�A0, . . . ,Ak+n−M����x − x��, k,n = 0,1,2, . . .

is complete. Corresponding Hamiltonian hydrodynamic chains �8� are determined by the above
Poisson brackets and some Hamiltonian densities. Then integrable Hamiltonian hydrodynamic
chains can be extracted by the Haantjes tensor approach �see Ref. 9�, i.e., Hamiltonian densities in
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the “integrable” case must satisfy some nonlinear PDE system associated with the above Poisson
brackets.

Thus, the classification of M brackets is a first step in the classification of integrable Hamil-
tonian hydrodynamic chains �8�.
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Theoretical background of continuous contractions of finite-dimensional Lie alge-
bras is rigorously formulated and developed. In particular, known necessary criteria
of contractions are collected and new criteria are proposed. A number of requisite
invariant and semi-invariant quantities are calculated for wide classes of Lie alge-
bras including all low-dimensional Lie algebras. An algorithm that allows one to
handle one-parametric contractions is presented and applied to low-dimensional Lie
algebras. As a result, all one-parametric continuous contractions for both the com-
plex and real Lie algebras of dimensions not greater than 4 are constructed with
intensive usage of necessary criteria of contractions and with studying correspon-
dence between real and complex cases. Levels and colevels of low-dimensional Lie
algebras are discussed in detail. Properties of multiparametric and repeated con-
tractions are also investigated. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2400834�

I. INTRODUCTION

Limiting processes between Lie algebras were first investigated by Segal.69 The most known
example concerning these processes is given by connection between relativistic and classical
mechanics with their underling Poincaré and Galilean symmetry groups. If the velocity of light is
assumed to go to infinity, relativistic mechanics “transforms” into classical mechanics. This also
induces a singular transition from the Poincaré algebra to the Galilean one. The other well-known
example is a limit process from quantum mechanics to classical mechanics under �→0, which
corresponds to the contraction of the Heisenberg algebras to the Abelian ones of the same dimen-
sions.

Existing works on contractions can be conditionally divided into two main streams which are
scarcely connected with each other. One of them is more “physical” and is mainly oriented to
applications of contractions. The other one is more “algebraic” and usually has better mathemati-
cal background. Let us simultaneously survey works on the main types of contractions existing in
the frameworks of both approaches.

After Segal, the concept of limiting processes between physical theories in terms of contrac-
tions of the underling symmetry groups was also formulated by Inönü and Wigner.41,42 They
introduced so-called Inönü-Wigner contractions �IW-contractions� which, in spite of their simplic-
ity, were effectively applied to a wide range of physical and mathematical problems. Later
Saletan67 studied the most general class of one-parametric contractions for which the elements of
the corresponding matrices are first-order polynomials with respect to the contraction parameter.
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Inönü-Wigner contractions obviously form a special subclass in the class of Saletan contractions.
Another extension of the class of Inönü-Wigner contractions is given by generalized Inönü-

Wigner contractions. They are generated by matrices which become diagonal after suitable
choices of bases of initial and contracted algebras, and, moreover, diagonal elements should be
integer powers of the contraction parameters. Contractions of this kind were introduced by Doeb-
ner and Melsheimer.21 To the best of our knowledge, the name “generalized Inönü-Wigner con-
tractions” first appear in Ref. 34 The other names �p-contractions, Doebner-Melsheimer contrac-
tions, and singular IW-contractions51� are also used. Similar contractions are applied in the “purely
mathematical” framework and called one-parametric subgroup degenerations.7–9,32,71 The last
name came from the algebraic invariant theory.46 Generalized IW contractions are very useful for
applications and were revisited many times. In particular, it was incorrectly conjectured that any
continuous one-parametric contraction is equivalent to a generalized Inönü-Wigner contraction.

A general definition of contractions was first formulated by Segal69 in terms of limiting
processes of bases. It is used as an operational definition for calculations up to now. Saletan67 gave
a more rigorous general definition of contractions, which is based on limiting processes of Lie
brackets and allows one to avoid a confusion with limit state of bases, existing in the Segal
approach. Saletan’s definition was generalized for the case of arbitrary field in terms of Lie algebra
orbit closures with respect to Zariski topology. The generalization is a basis of modern investiga-
tion on contractions and was used by a number of authors, e.g., Refs. 7–9, 12, 32, 45, 47, 57, 68,
and 71. The name degeneration is often used instead of the name contraction in the generalized
context.

A still more general notion of degenerations, which works in the case of algebras of different
dimensions, was proposed in Refs. 27–29. The algebra g degenerates to the algebra g0 according
to Gorbatsevich if g � pA1 is contracted to g0 � qA1 in the usual sense for some p ,q�N� �0�,
where pA1 and qA1 are the p- and q-dimensional Abelian algebras.

The other type of contractions is given by the purely algebraic notion of graded
contractions.16,18,33,38,60,77 The graded contraction procedure is the following. Structure constants
of a graded Lie algebra are multiplied by numbers which are chosen in such a way that the
multiplied structure constants give a Lie algebra with the same grading. Graded contractions
include discrete contractions as a subcase but do not cover all continuous ones.

Different kinds of contractions and their properties were reviewed and compared in Ref. 51.
The interrelations between contractions and deformations or expansions were widely
investigated.23,25,31,50–52 The related but principally different problem is given by contractions of
Lie groups, which are also widely studied and applied. Notions of such contractions were intro-
duced in Refs. 6, 35, 53, and 67 with different levels of generality.

Problems concerning contractions of Lie algebra �or group� representations and simultaneous
contractions of Lie algebras or Lie groups and their representations are also important and demand
a special technique which differs from the techniques associated with pure contractions of Lie
algebras and Lie groups. In spite of existing works on the subject and a range of applications,
these problems are not studied enough although a number of interesting results have been ob-
tained. For example, the contractions of representations of de Sitter groups were described in Ref.
53. Contractions of matrix representations of concrete physically significant Lie algebras were
investigated, e.g., in Refs. 19, 58, and 75. Related theoretical inventions and different examples of
application can also be found in Refs. 14, 36, 40, 42, 48, 49, 51, 54, and 60 and in the references
therein.

Intensive investigation of real and complex low-dimensional Lie algebras in last decades is
motivated by a number of causes. As subalgebras of important higher-dimensional Lie algebras,
these algebras are widely applied in the theory of induced representations �representations of
subalgebras/subgroups are used to construct representations of the whole algebra/group�, in the
representation theory �chains of subalgebras can provide sets of commuting operators, eigenfunc-
tions of which form bases of representation spaces for the corresponding Lie group�, and in study
of broken symmetries. Low-dimensional Lie algebras are also interesting per se and supply the-
oretical consideration with substantial examples. In this connection classifications, subalgebras,
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realizations, invariants, contractions, deformations, and other objects concerning low-dimensional
Lie algebras were studied.5,22,24,50,55,61,65

Contractions of low-dimensional Lie algebras naturally appeared as illustrating examples in a
number of papers. Thus, in the pioneer paper on contractions69 Segal adduced two such contrac-
tions, namely, the contractions from so�3� and sl�2,R� to the Weyl-Heisenberg algebra h3=A3.1.
Some examples are contained also in the known paper by Saletan.67 Afterwards contractions of
low-dimensional Lie algebras became independent subject of investigation. Inönü-Wigner contrac-
tions of real three-dimensional Lie algebras were considered70 but some cases were missed. These
results were partially amended in Ref. 51. First Inönü-Wigner contractions of real three-
dimensional Lie algebras were exhaustively described by Conatser.15 Using the known classifica-
tion of subalgebras of real low-dimensional Lie algebras,61 Huddleston39 constructed Inönü-
Wigner contractions of the four-dimensional real Lie algebras. All inequivalent continuous one-
parametric contractions of real three-dimensional Lie algebras were obtained in Ref. 78 but
contractions inside parametrized series of algebras were not discussed. The same problem was
nicely solved by Lauret47 in terms of orbit closures using a nonevident connection between
algebraic characterization of Lie groups having metrics with special curvature properties and
existence of degenerations for Lie algebras. Orbit closures of complex three- and four-dimensional
Lie algebras were studied in Refs. 8, 9, and 71. It is the works from which we adopted the fruitful
idea on usage of a wide set of necessary contraction criteria. The same subject was also investi-
gated in Refs. 1 and 2. In these papers obtained results were presented in a very simple and clear
form due to special improvement of classification of complex three- and four-dimensional Lie
algebras.

Complexity of description of algebra orbit closures is exponentially increased under growing
dimension of the underlying vector space. A possible ways of simplification is to consider a closed
subclass of Lie algebras �e.g., nilpotent algebras� instead of the whole class of Lie algebras of a
fixed dimension. Degenerations of nilpotent algebras were studied in Ref. 32, Ref. 68, and Refs. 7
and 8 in the case of dimensions five, six, and seven, correspondingly.

Deformations of low-dimensional Lie algebras are also treated intensively. Thus, deformations
of three-dimensional real Lie algebras were described in Ref. 50. The four-dimensional case was
completely studied over the complex field.24 There also exist a number of papers on contractions
and deformations of higher- or even infinite-dimensional Lie algebras �see, e.g., Ref. 17�. Since
this subject is out of the scope of our paper, we do not review it here in detail.

Investigation of contractions is motivated by numerous applications in different fields of
physics and mathematics, e.g., in study of representations, invariants, and special functions.10,19,54

It is one of the tools to recognize structure of Lie algebra varieties.8 The Wigner coefficients of the
Euclidean group E�3� were constructed with contracting the Wigner coefficients of the special
orthogonal group SO�4�.37 Contractions were used to establish connection between various kine-
matical groups and to shed a light on their physical meaning. In this way relationship between the
conformal and Schrödinger groups was elucidated3 and various Lie algebras including a relativ-
istic position operator were interrelated. Under dynamical group description of interacting sys-
tems, contractions corresponding to the coupling constant going to zero give noninteracting
systems.20 Application of contractions allows to derive interesting results in the special function
theory and on the variable separation method.36,43,64

Contractions of low-dimensional Lie algebras also play an important role from the physical
point of view.26 It is illustrated by the following simple examples which are related to physics. We
use the standard physical notations and numeration by Mubarakzyanov55 simultaneously. Hereaf-
ter, describing a Lie algebra, we adduce only the nonzero commutators of fixed basis elements.
See Sec. VIII for notations and more examples.

The four-dimensional Lie algebra u�2�=sl�2,R� � A1 has the nonzero commutation relations
�e1 ,e2�=e1, �e2 ,e3�=e3, and �e1 ,e3�=2e2. The matrix U1���= I10 diag�� ,� ,1 ,1� provides a con-
traction of u�2� to the algebra e�2� � A1=A3.5

0
� A1 ��e1 ,e3�=−e2, �e2 ,e3�=e1�, i.e., to the direct

sum of the three-dimensional Euclidean algebra and the one-dimensional Abelian algebra.
The other example is the contraction of u�2� to the harmonic oscillator algebra h4=A4.8

−1
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��e2 ,e3�=e1, �e2 ,e4�=e2, �e3 ,e4�=−e3� which frequently occurs in physics. The physical name of
h4 is justified since the set consisting of the creation �a+�, annihilation �a−�, identity �I�, and
single-mode photon number �N=a+a−� operators is closed under commutation and generates a Lie
algebra isomorphic to h4 with e1= I, e2=a−, e3=a+, e4=N. The algebra u�2� is contracted to h4

with the matrix U2���= I19 diag�� ,1 ,� ,1�.
The subalgebra h3= �e1 ,e2 ,e3� ��e2 ,e3�=e1� of h4 is also widely applied since it is isomorphic

to the algebra formed by the quantum mechanical position operator Q, the momentum operator P,
and the identity operator I via designation

e1 = I, e2 =
Q + iP
	2�

, e3 =
Q − iP
	2�

.

The main purpose of our paper is to classify contractions of the real and complex Lie algebras
of dimensions not greater than 4. We rigorously formulate and develop a theoretical background to
do this. Effectiveness of the applied algorithm for handling of contractions is based on using a
wide set of necessary contraction criteria. A number of known necessary contraction criteria are
collected and new criteria are proposed. Requisite invariant and semi-invariant quantities are
calculated for classes of Lie algebras including all low-dimensional Lie algebras. Multiparametric
and repeated contractions are also investigated since they give a tool for finding contraction
matrices in complicated cases. An important by-effect of the present investigation is that the
contractions under consideration supply with a number of model examples and contrary instances
for statements and conjectures of the contraction theory. Availability of exhaustive information
about them also allows us to describe levels and colevels of low-dimensional Lie algebras com-
pletely.

This paper is arranged in the following way. In Sec. II different definitions of general con-
tractions of Lie algebras and contraction equivalence are given and discussed. We also construct a
contrary instance on a conjecture on equivalence of contractions. Simplest types of contractions
�Inönü-Wigner contractions, Saletan contractions, and generalized Inönü-Wigner contractions� are
described in Sec. III. Necessary contraction criteria are listed and proven in Sec. IV. Calculation of
invariant quantities for wide classes of Lie algebras is adduced in Sec. V. Section VI collects
algebraic quantities and objects concerning real three- and four-dimensional Lie algebras. These
quantities are used in Sec. VIII as a base for application of necessary contraction criteria in order
to conclude whether there is a contraction in an arbitrary pair of the algebras of the same dimen-
sion. An algorithm for handling of contractions of low-dimensional Lie algebras is precisely
formulated in Sec. VII and illustrated by examples. All inequivalent one-parametric contractions
of the real low-dimensional Lie algebras are arranged in Sec. VIII and supplied with diagrams and
explicit forms of the contraction matrices. All cases where contractions are equivalent to simple or
generalized Inönü-Wigner contractions are separated. Levels and colevels of low-dimensional Lie
algebras are also investigated. Using known correspondence between lists of nonisomorphic real
and complex low-dimensional Lie algebras, we construct all inequivalent contractions over the
complex field in Sec. IX. They are compared with the degenerations of four-dimensional Lie
algebras, which were found in Refs. 1 and 9. Multiparametric and repeated contractions are
studied in Sec. X and used for construction of contraction matrices in the most complicated cases
which are not covered by generalized Inönü-Wigner contractions. Some problems arising under
analysis of obtained results are formulated in Sec. XI.

II. DEFINITIONS OF CONTRACTIONS AND THEIR EQUIVALENCE

Consider an n-dimensional Lie algebra g= �V , �· , · �� with an underlying n-dimensional vector
space V over R or C and a Lie bracket �·,·�. Usually the Lie algebra g is defined by means of
commutation relations in a fixed basis �e1 , . . . ,en� of V. More precisely, it is sufficient to write
down only the nonzero commutators �ei ,ej�=cij

k ek, where cij
k are components of the structure

constant tensor of g. Hereafter the indices i, j, k, i�, j�, k�, i�, j�, and k� run from 1 to n and the
summation over the repeated indices is implied.
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Consider a continuous function U : �0,�1�→GL�V�, where �1�0. In other words, U�=U��� is
a nonsingular linear operator on V for all �� �0,�1�. Without loss of generality we can put �1

=1. A parametrized family of new Lie brackets on V is determined via the old one by the
following way:

∀� � �0,1�, ∀ x,y � V: �x,y�� = U�
−1�U�x,U�y� .

It is reasonable that for any �� �0,1� the Lie algebra g�= �V , �· , · ��� is isomorphic to g.
Definition 1: If the limit lim�→+0�x ,y��=lim�→+0 U�

−1�U�x ,U�y�= : �x ,y�0 exists for any x ,y
�V then �· , · �0 is a well-defined Lie bracket. The Lie algebra g0= �V , �· , · �0� is called a one-
parametric continuous contraction �or simply a contraction� of the Lie algebra g.

If a basis of V is fixed, the operator U� is defined by the corresponding matrix. Definition 2
can be reformulated in terms of structure constants.

Definition 1�: Let cij
k be the structure constants of the algebra g in the fixed basis �e1 , . . . ,en�.

If the limit

lim
�→+0

�U��i�
i �U�� j�

j �U�
−1�k

k�cij
k
¬ c̃i�j�

k�

exists for all values of i�, j�, and k� then c̃i�j�
k� are components of the well-defined structure constant

tensor of a Lie algebra g0. In this case the Lie algebra g0 is called a one-parametric continuous
contraction �or simply contraction� of the Lie algebra g. The parameter � and the matrix-function
U=U��� are called a contraction parameter and a contraction matrix, correspondingly. The pro-
cedure that provides the Lie algebra g0 from the algebra g is also called a contraction.

Definitions 1 and 1� are equivalent. The first definition is basis-free and convenient for theo-
retical consideration. The second one is more usable for calculations of concrete contractions. In
this paper we mainly use Definition 1�.

The well-known Inönü-Wigner,42 Saletan,67 and generalized Inönü-Wigner21 contractions are
particular cases of the above one-parametric continuous contractions.

Definition 2: We call a contraction from the Lie algebra g to the Lie algebra g0 trivial if g0 is
Abelian and improper if g0 is isomorphic to g.

If there exists a componentwise limit lim�→+0U�= :U0 and U0�GL�V� then it is obvious that
the contraction is improper. Therefore, in order to generate a proper contraction, the matrix
function U have to satisfy one of the conditions: �1� there is no limit of U at �→ +0, i.e., at least
one of the elements of U is singular under �→ +0, or �2� there exists lim�→+0U�= :U0 but the
matrix U0 is singular. Both conditions are not sufficient for the contraction to be proper.

The trivial and improper contractions exist for any Lie algebra. The trivial contraction is easily
provided, e.g., by the matrix U�=diag�� ,� , . . . ,��. As a contraction matrix of the improper con-
traction, the identity matrix U�=diag�1,1 , . . . ,1� can be always used. Sometimes the trivial and
improper contractions are united in the common class of trivial contractions.76

The Abelian algebra is contracted only to itself. It is a special case when the contraction is
trivial and improper at the same time.

Definition 3: Let the Lie algebras g and g̃ be contracted to the algebras g0 and g̃0, corre-
spondingly. If g̃ is isomorphic to g and g̃0 is isomorphic to g0 then the contractions are called
weakly equivalent.

Roughly speaking, all contractions in the same pairs of Lie algebras are weakly equivalent.
Under usage of weak equivalence, attention is concentrated on possibility and results of contrac-
tions. Difference in ways of contractions is neglected by this approach. For parametric contrac-
tions we can also introduce different notions of stronger equivalence, which take into account
ways of contractions. Hereafter Aut�g� denotes the automorphism group of the Lie algebra g and
Iso�g , g̃� denotes the set of isomorphisms from the Lie algebra g to the Lie algebra g̃. Additionally
we identify isomorphisms with the corresponding matrices in a fixed basis.

Definition 4: Two one-parametric contractions in the same pair of Lie algebras �g ,g0� with

the contraction matrices U��� and Ũ��� are called strictly equivalent if there exists �� �0,1�, there
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exist functions Û : �0,��→Aut�g� and Ũ : �0,��→Aut�g0�, and a continuous monotonic function
� : �0,��→ �0,1�, lim�→+0 ����=0, such that

Ũ� = Û�U����Ǔ�, � � �0,�� .

The latter definition can be reformulated for different pairs of algebras, which are term-by-
term isomorphic.

Definition 4�: Let the isomorphic Lie algebras g and g̃ be contracted to the isomorphic

algebras g0 and g̃0 with the contraction matrices U��� and Ũ���, correspondingly. These contrac-

tions are called strictly equivalent if there exists �� �0,1�, there exist functions Û : �0,��
→ Iso�g , g̃� and Ǔ : �0,��→ Iso�g0 , g̃0�, and a continuous monotonic function � : �0,��→ �0,1�,
lim�→+0 ����=0, such that

Ũ� = Û�
−1U����Ǔ�, � � �0,�� .

Strictly equivalent contractions obviously are weakly equivalent. In our consideration we use
only the notion of weak equivalence hence weakly equivalent contractions will be called equiva-
lent ones for simplicity.

Remark 1: The restriction that Û and Ǔ should be isomorphism matrices cannot be omitted
with preserving correctness.

The contractions of a Lie algebra, which are defined by the matrices U� and W0U�W̃0, where

U : �0,1�→GL�V�, W0 ,W̃0�GL�V�, are weakly inequivalent in the general case. For example, the
algebra sl�2,R� ��e1 ,e2�=e1, �e2 ,e3�=e3, �e1 ,e3�=2e2� is contracted to the Heisenberg algebra A3.1

��e2 ,e3�=e1� with the matrix I3 diag�� ,� ,1� and to the algebra A3.5
0 ��e1 ,e3�=−e2, �e2 ,e3�=e1� with

the matrix I5 diag�� ,� ,1�. Here I3 and I5 are nonsingular matrices defined in Sec. VIII A.

Moreover, let W ,U ,W̃ : �0,1�→GL�V� and

∃ lim
�→+0

W� ¬ W0 � GL�V�, ∃ lim
�→+0

W̃� ¬ W̃0 � GL�V� .

Generally speaking, the matrices W�U�W̃� and W0U�W̃0 can also give weakly inequivalent con-
tractions. This statement is illustrated by the below example. Therefore, Lemma 2.2 of Ref. 76 is
incorrect.

Example 1: Consider the one-parametric continuous contraction of the four-dimensional real
Lie algebras so�3� � A1→A4.1 given by the matrix

U� =

0 0 �2 0

0 − �3 0 0

0 0 0 �

− �2 0 − 1 0
� with U�

−1 =

− �−4 0 0 − �−2

0 − �−3 0 0

�−2 0 0 0

0 0 �−1 0
� .

Taking the canonical commutation relations �e1 ,e2�=e3, �e2 ,e3�=e1, �e3 ,e1�=e2 of the algebra
so�3� � A1 �the commutators with e4 vanish�, we calculate the transformed commutators up to
antisymmetry:

�e1,e2�� = 0, �e1,e3�� = 0, �e1,e4�� = 0, �e2,e3�� = �4e4,

�e2,e4�� = e1 − �2e3, �e3,e4�� = e2.

After the limiting process �→ +0 we obtain the canonical commutation relations �e2 ,e4�0=e1,
�e3 ,e4�0=e3 of the algebra A4.1.

Let us fix an arbitrary �� �0,1�. Since the matrix U� is nonsingular, its polar decomposition
has the form U�= P�T�, where P�ª �U�U�

T�1/2 is a real symmetric matrix with positive eigenval-
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ues and T�ªP�
−1U� is a real orthogonal matrix. Denote a real orthogonal matrix which reduces P�

to a diagonal matrix D� by W�, i.e., P�=W�D�W�
T. As a result, we derive the representation U�

=W�D�W̃�, where W̃�=W�
TT�=D�

−1W�
TU� is an orthogonal matrix. The explicit form of the

matrices W�, D�, and W̃� is

W� =

− �− 0 0 �+

0 1 0 0

0 0 1 0

�+ 0 0 �−

�, W̃� =

− �− 0 − �+ 0

0 − 1 0 0

0 0 0 1

− �+ 0 �− 0
� ,

D� = diag�K +
1

2
,0,0,K −

1

2
 ,

where

K =
1

2
	4�4 + 1, �+ =	2K + 1

4K
, �− =	2K − 1

4K
.

The matrices W� and W̃� converge under �→ +0 to the constant nonsingular matrices

W0 =

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0
� and W̃0 =


0 0 − 1 0

0 − 1 0 0

0 0 0 1

− 1 0 0 0
� .

Consider the matrix Ũ�=W0D�W̃0 constructed from the representation U�=W�D�W̃� with

replacement of the matrices W� and W̃� by their regular limits. We transform the canonical

commutation relations of the algebra so�3� � A1 with the matrix Ũ� and limit �→ +0:

�e1,e2�� =
1

2
�	4�4 + 1 − 1�e4 → 0, �e1,e3�� = 0,

�e1,e4�� = −
	4�4 + 1 − 1

2�2 e2 → 0, �e2,e3�� = 0,

�e2,e4�� =
2�4

	4�4 + 1 − 1
e1 → e1, �e3,e4�� = 0.

As a result, we obtain commutation relations of the algebra A3.1 � A1. Therefore, the matrices U�

and Ũ� lead to weakly inequivalent contractions.
The notion of sequential contractions is introduced similar to continuous contractions. See,

e.g., Refs. 39 and 76.
Consider a sequence of Up�GL�V�, p�N. The corresponding sequence of new Lie brackets

on V is determined via the old one by the condition �x ,y�p=Up
−1�Upx ,Upy�∀ p�N, ∀x ,y�V. For

any p�N the Lie algebra gp= �V , �· , · �p� is isomorphic to g.
Definition 5: If the limit limp→��x ,y�p=limp→� Up

−1�Upx ,Upy�= : �x ,y�0 exists for any x ,y
�V then the Lie bracket �· , · �0 is well defined. The Lie algebra g0= �V , �· , · �0� is called a sequen-
tial contraction of the Lie algebra g.
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Any continuous contraction from g to g0 gives an infinite family of matrix sequences resulting
in the sequential contraction from g to g0. More precisely, if U� is the matrix of the continuous
contraction and the sequence ��p , p�N� satisfies the conditions �p� �0,1�, �p→ +0, p→�, then
�U�p

, p�N� is a suitable matrix sequence.
The notion of contraction is generalized to arbitrary fields in terms of orbit closures in the

variety of Lie algebras.7–9,28,29,32,47

Let V be an n-dimensional vector space over a field K and Ln=Ln�K� denote the set of all
possible Lie brackets on V. We identify ��Ln with the corresponding Lie algebra g= �V ,��. Ln

is an algebraic subset of the variety V* � V* � V of bilinear maps from V	V to V. Indeed, under
setting a basis �e1 , . . . ,en� of V there is the one-to-one correspondence between Ln and

Cn = ��cij
k � � Kn3

�cij
k + cji

k = 0, cij
i�ci�k

k� + cki
i�ci�j

k� + cjk
i�ci�i

k� = 0� ,

which is determined for any Lie bracket ��Ln and any structure constant tuple �cij
k ��Cn by the

formula ��ei ,ej�=cij
k ek. Ln is called the variety of n-dimensional Lie algebras (over the field K) or,

more precisely, the variety of possible Lie brackets on V. The group GL�V� acts on Ln in the
following way:

�U · ���x,y� = U���U−1x,U−1y��, ∀ U � GL�V�, ∀ � � Ln, ∀ x,y � V .

�It is a left action in contrast to the right action which is more usual for the “physical” contraction
tradition and defined by the formula �U ·���x ,y�=U−1���Ux ,Uy�� that is not of fundamental
importance. We use the right action all over the paper except this paragraph.� Denote the orbit of
��Ln under the action of GL�V� by O��� and the closure of it with respect to the Zariski
topology on Ln by O���.

Definition 6: The Lie algebra g0= �V ,�0� is called a contraction �or degeneration� of the Lie
algebra g= �V ,�� if �0�O���. The contraction is proper if �0�O��� \O���. The contraction is
nontrivial if �0�0.

In the case of K=C or K=R the orbit closures with respect to the Zariski topology coincide
with the orbit closures with respect to the Euclidean topology and Definition 5 is reduced to the
usual definition of contractions.

III. SIMPLEST TYPES OF CONTRACTIONS

Inönü-Wigner contractions present limit processes between Lie algebras with contraction ma-
trices of simplest types. Most of contractions of low-dimensional Lie algebras are equivalent to
such contractions. We discuss their properties which are essential for further consideration.

Simple Inönü-Wigner contractions or shortly IW-contractions first proposed in Ref. 42 are
generated by matrices of the form U�=U0+�U0�, where U0 and U0� are constant n	n matrices. The

matrix U� is additionally assumed to be transformable to the special diagonal form ŴU�W̌−1

=diag�1+�v , . . . ,1+�v ,� , . . . ,��= :D� by means of the regular constant matrices Ŵ and W̌. The
assumption was investigated by Inönü and Wigner themselves.41 Without loss of generality we can
put v=0. The matrix D� provides the contractions from g̃ to g̃0. Here g̃ and g̃0 are Lie algebras

with the Lie brackets �x ,y��=Ŵ�Ŵ−1x ,Ŵ−1y� and �x ,y�0
�=W̌�W̌−1x ,W̌−1y�0, which are obviously

isomorphic to g and g0. Therefore, it can be assumed at once that U�=D�, i.e.,

U� = diag�1, . . . ,1,�, . . . ,�� .

Denote the number of diagonal elements equal to 1 by s. Then, the dimension of � block is n
−s. It is convenient to divide the set of basis elements �e1 , . . . ,en� of V into two subsets �e1 , . . . ,es�
and �es+1 , . . . ,en� according to the values of diagonal elements. Since
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�ei1
,ej1

�� = ci1j1

k1 ek1
+

1

�
ci1j1

k2 ek2
+ O��� → c̃i1j1

k1 ek1
+ c̃i1j1

k2 ek2
, � → + 0,

where the indices i1, j1, and k1 run from 1 to s and the indices i2, j2, and k2 run from s+1 to n, then
ci1j1

k2 =0. Therefore, the basis elements e1 , . . . ,es generate a subalgebra h of the initial algebra g. It
is the unique condition for the contraction to exist. All structure constants of the resulting algebra
g0 are easily calculated:

c̃i1j1

k1 = ci1j1

k1 , c̃i1j1

k2 = ci1j1

k2 = 0, c̃i1j2

k1 = 0, c̃i1j2

k2 = ci1j2

k2 , c̃i2j2

k1 = c̃i2j2

k2 = 0.

Let us make a summary of properties of the IW-contractions �see, e.g., Refs. 51 and 67 for
some properties�. Each subalgebra h of the Lie algebra g can be used to obtain an IW-contraction
of g. Improper subalgebras correspond to improper �h=g� or trivial �h= �0�� IW-contractions.
Different choices of basis complement to a basis of h or replacement of h by an equivalent
subalgebra of g give the same contracted algebra up to isomorphism. The contracted algebra g0

has the structure of semidirect sum h�a, where a is the Abelian ideal spanned on the chosen basis
complement to a basis of h. The subalgebra h is isomorphic to the quotient algebra g0 /a. And vice
versa, the Lie algebra g0 is an IW-contraction of the algebra g with the subalgebra h if and only
if there exists an Abelian ideal a�g0 for which the quotient algebra g0 /a is isomorphic to h. The
repeated IW-contraction with the same subalgebra h again results in the algebra g0.

Any IW-contraction satisfies two assumptions: �1� the contraction matrix is linear with respect

to the contraction parameter; �2� there exist constant regular matrices Ŵ and W̌ diagonalizing the
contraction matrix. It is well known that IW-contractions do not exhaust all possible contractions
even in the case of three dimensional Lie algebras. IW-contractions of the three-dimensional
rotation algebra so�3� result in only one nontrivial and proper contraction to the Lie algebra A3.5

0 .
At the same time, there also exists the proper contraction from so�3� to the Heisenberg algebra
h3=A3.1 and it is not provided by IW-contractions �see Secs. VI and VIII for details�.

Saletan67 studied the whole class of contractions linear with respect to the contraction param-
eter, i.e., contractions generated by the matrices of the form U���=U0+�U0�, where U0 and U0� are
constant matrices. Now such contractions are called Saletan contractions or, shortly,
S-contractions. The assumption U�1�=E, where E is the unit matrix, can be imposed with basis
change and reparametrization without loss of generality. Then the contraction matrix takes the

form U���=�E+ �1−��Ũ, where Ũ is a constant matrix. Conditions on the matrix Ũ of a well-
defined S-contraction were formulated in Ref. 67. Iterations of S-contractions with the same
contraction matrix result in a finite chain of nonisomorphic algebras. The repeated contraction
from the first algebra to the last algebra of the chain is an IW-contraction.51,67 Any IW-contraction
obviously is a S-contraction and there exist S-contractions which are inequivalent to IW-
contractions. Thus, Saletan proved that the contraction so�3� � A1→A4.9

0 is realized via a
S-contraction and is equivalent to no IW-contraction. At the same time, S-contractions do not also
exhaust all possible contractions of Lie algebras. An illustrative example is again given by the
contraction so�3�→h3=A3.1, which is not provided even by S-contractions.67

Another generalization of the class of IW-contractions is given by generalized IW-
contractions �or Doebner-Melsheimer contractions�21,34,51 for which the linearity condition is re-
placed by the condition that the elements of the diagonalized contraction matrix are �integer�
powers of the contraction parameter. Namely, the contraction matrix of a generalized IW-

contraction has the form U���=Ŵ−1 diag��
1 ,�
2 , . . . ,�
n�W̌, where Ŵ and W̌ are nonsingular
constant matrices and 
1 ,
2 , . . . ,
n�Z. As in the case of simple IW-contractions, due to possi-

bility of replacement of Lie algebras by isomorphic ones we can assume that Ŵ=W̌=E, i.e.,

U��� = diag��
1,�
2, . . . ,�
n� .

Then the structure constants of the resulting algebra g0 are calculated by the formula
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c̃ij
k = lim

�→+0
�
i+
j−
kcij

k ,

with no summation with respect to the repeated indices. Therefore, the constraints


i + 
 j � 
k, i, j,k = 1, . . . ,n if cij
k � 0

are necessary and sufficient for the existence of the well-defined generalized IW-contraction with
the contraction matrix U��� and

c̃ij
k = cij

k if 
i + 
 j = 
k and c̃ij
k = 0 otherwise.

The conditions on contraction existence and the resulting algebra can be reformulated in the
basis-independent terms of filtrations on the initial algebra and of associated graded Lie algebras.32

IW-contractions clearly form subclass of generalized IW-contractions with 
i� �0,1�. A natu-
ral question is whether any generalized IW-contraction can be decomposed to a sequence of
successive IW-contractions. The unique nontrivial generalized IW-contraction between three-
dimensional algebras is given by two successive IW-contractions so�3�→A3.5

0 →A3.1. Inönu40 and
Sharp70 formulated the proposition that the decomposition is not always possible. It was shown51

that decomposability of a generalized IW-contraction implies additional constraints on structure
constants of the initial Lie algebra. We construct a number of generalized IW-contractions of
four-dimensional algebras, which are not decomposed to a sequence of simple IW-contractions.
For example, the algebra A4.4 having the nonzero commutation relations �e1 ,e4�=e1, �e2 ,e4�=e1

+e2, �e3 ,e4�=e2+e3 is contracted to the algebra A4.1 ��e2 ,e4�=e1, �e3 ,e4�=e2� by the generalized
IW-contraction with the matrix diag��2 ,� ,1 ,��. This contraction obviously illustrates the above
statement since it is direct, i.e., there are no Lie algebra g such that the contractions A4.4→g and
g→A4.1 are proper. See Remark 2 for more examples.

Remark 2: If some of the powers 
1 ,
2 , . . . ,
n in the contraction matrix U��� are negative,
the limit of U��� under �→ +0 does not exist. It is not precisely known up to now in what
situations it is sufficient to consider only non-negative powers of �. Results of this paper imply
that all contractions of the three- and four-dimensional Lie algebras are weakly equivalent to the
ones for which the limit of the contraction matrices exists.

IV. NECESSARY CONTRACTION CRITERIA

An optimal way of exhaustive investigation of contractions in a set of Lie algebras includes
intensive usage of necessary criteria based on quantities which are invariant or semi-invariant
under contractions. The invariant quantities are preserved under contractions. Semi-invariance
means existence of inequalities between the corresponding quantities of initial and contracted
algebras. Since contractions are limit processes, the terms of continuity and semicontinuity can be
used instead of invariance and semi-invariance.

For convenience we collect the relations between invariant or semi-invariant quantities as
necessary criteria of contractions in Theorem 1.

Below we use the following notations of quantities and objects connected with the algebra g:
the differentiation algebra Der g, the orbit O�g� under action of GL�V� in the variety Ln of
n-dimensional Lie algebras, the center Z�g�, the radical R�g�, the nilradical N�g�, the maximal
dimension nA�g� of Abelian subalgebras, the maximal dimension nAi�g� of Abelian ideals, the
Killing form �, the rank rg, i.e., the dimension of the Cartan subalgebras, the adjoint and coadjoint
representations ad g and ad* g, the adjoint representation adx of the element x�g, and the ranks of
adjoint and coadjoint representations which are calculated in a fixed basis by the formulas

rank�ad g� = max
x�V

rank�cij
k xj� and rank�ad* g� = max

u�V*
rank�cij

k uk� .

Let us also define three standard series of characteristic ideals of g, namely,

the lower central series: g0 � g1 � ¯ � gl � ¯ ,
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the derived series: g�0� � g�1� � ¯ � g�l� � ¯ , and

the upper central series: g�0� � g�1� � ¯ � g�l� � ¯ ,

where g0=g, gl= �g ,gl−1�, g�0�=g, g�l�= �g�l−1� ,g�l−1��, g�0�= �0�, g�l� /g�l−1� is the center of g /g�l−1�,
l�N. In particular, g1=g�1�= �g ,g�, g�1�=Z�g�. If g is a solvable �nilpotent� Lie algebra, rs

=rs�g� �rn=rn�g�� denotes the solvability �nilpotency� rank of g, i.e., the minimal number l such
that g�l�= �0� �gl= �0��.

Suppose that tr�adu
p��0, tr�adu

q��0, and tr�adu
padv

q��0 for some p ,q�N and u ,v�g and
the value

Cpq =
tr�adu

p�tr�adv
q�

tr�adu
padv

q�
, p,q � N

does not depend on u and v. Then Cpq=Cpq�g� is a well-defined invariant characteristic of the
algebra g, i.e., it is a constant on the orbit O�g�.

Denote the rank of positive �negative� part of the Killing form �g, i.e., the number of positive
�negative� diagonal elements of a diagonal form of its matrix, by rank+�g �rank−�g�. In view of the
law of inertia of quadratic forms, rank+�g and rank−�g are invariant under basis transformations
over R. For any 
�R we introduce the modified Killing form

�̃g

 = tr�adu adv� + 
 tr�adu�tr�adv�

and the corresponding values rank+�̃g

 and rank−�̃g


. The Killing form is the special case of the
modified Killing form with 
=0.

The following technical lemma is very useful for further considerations.
Lemma 1: Let Ap, p�N, be a sequence of real or complex matrices of the same dimensions

and there exists componentwise limit of Ap, p→�, denoted by A0. If rank Ap=r∀ p�N then rank
A0r.

Theorem 1: If the Lie algebra g0 is a proper (continuous or sequential) contraction of the Lie
algebra g, then the following set of relations holds true.

�1� dim Der g0�dim Der g �and dim O�g0��dim O�g��;
�2� nA�g0��nA�g�
�3� dim Z�g0��dim Z�g�; moreover, dim g0�l��dim g�l�, l�N;
�4� dim g0

l dim g�l�, l�N;
�5� dim g0

l dim gl, l�N;
�6� dim R�g0��dim R�g�;
�7� dim N�g0��dim N�g�;
�8� nAi�g0��nAi�g�;
�9� rg0

�rg;
�10� rank ad g0 rank ad g, rank ad*g0 rank ad* g;
�11� rank�g0

 rank �g;
�12� g0 is unimodular if g is unimodular, i.e., tr�adu�=0 for any u in g implies the same condition

in g0;
�12�� moreover, for any fixed l�N g0 is l unimodular if g is l unimodular, i.e., tr�adu

l�=0 for any
u in g implies the same condition in g0;

�13� if g is solvable Lie algebra then g0 is also solvable and rs�g0�rs�g�;
�14� if g is nilpotent Lie algebra then g0 is also nilpotent and rn�g0�rn�g�;
�15� Cpq�g0�=Cpq�g� for all values p ,q�N, where the invariants Cpq�g0� and Cpq�g� are well

defined;
�16� �only over R!� rank+�g0

 rank+�g and rank−�g0
 rank−�g; moreover for any 


�R rank+�̃g0


  rank+�̃g

 and rank−�̃g0


  rank−�̃g

;

�17� if the algebra g0 is rigid then it is not a contraction of any g and if there is no deformation
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from g0 to g, then there is no contraction from g to g0.

Proof: It is sufficient to prove the theorem in the case of sequential contractions. The state-
ment on continuous contractions directly follows from the one on sequential contractions. We use
the notations introduced at the beginning of the section.

At first, Criteria 4 and 5 are proven in detail. The statements are true if dim�g ,g�
=dim g¬n. Indeed, in this case dim g�l�=dim gl=n for all l�N that results in Criteria 4 and 5 in
view of the obvious conditions dim g0

�l�dim g0, dim g0
l dim g0, and dim g0=dim g=n.

Suppose that dim�g ,g��n. Let �e1 , . . . ,en� be the basis in the dual space V*, which is dual to
the basis �e1 , . . . ,en�, i.e., �ei ,ej�=� j

i. Here � j
i is the Kronecker delta. We define A as the n	n2

matrix consisting of the elements cij
k = �ek , �ei ,ej��, where the index k runs the row range and the

index pair �i , j� runs the column range:

A =

c11

1
¯ c1n

1 c21
1

¯ c2n
1

¯ cn1
1

¯ cnn
1

c11
2

¯ c1n
2 c21

2
¯ c2n

2
¯ cn1

2
¯ cnn

2

] � ] ] � ] � ] � ]

c11
n

¯ c1n
n c21

3
¯ c2n

n
¯ cn1

n
¯ cnn

n
� .

Due to antisymmetry of cij
k in subscripts, we can take only columns with i� j into account.

Analogously we introduce the matrices Ap and A0 for the algebras gp and g0.
The dimensions of �g ,g� and �g ,g�p coincide. Denote the common value of dimensions as n1.

These statements are reformulated in terms of the introduced matrices A and Ap:

rankA = rankAp = n1.

Therefore, all �n1+1�-dimensional minors of any matrix Ap , p�N equal to zero. Moreover, we
have

cp,ij
k = �ek,�ei,ej�p� → c0,ij

k = �ek,�ei,ej�0�, p → � ,

i.e., the elements of the matrix Ap go to the corresponding elements of the matrix A0. It leads to the
convergency of minors. Consequently, any �n1+1�-dimensional minor of the matrix A0 vanishes. It
implies that rank A0n1, i.e., �g0 ,g0�n1. Criteria 4 and 5 for l=1 have been proven.

Criteria 4 and 5 for the other values of l are proven analogously. The requisite matrices are
defined in the similar way as the matrices A, Ap, and A0 in the case l=1 with replacement of the
usual commutators �ei ,ej� by the corresponding repeated commutators of basis elements.

Criteria 9, 10, and 11 are proven in a similar and simpler way via the limit process p→� in
the formulas

rg = n − max
x�V

rank�cij
k xj�n = rgp

= n − max
x�V

rank�cp,ij
k xj�n,

rank�ad g� = max
x�V

rank�cij
k xj� = rank�ad gp� = max

x�V
rank�cp,ij

k xj� ,

rank�ad* g� = max
u�V*

rank�cij
k uk� = rank�ad* gp� = max

u�V*
rank�cp,ij

k uk� ,

rank��g� = rank�cij
k ci�k

j � = rank��gp
� = rank�cp,ij

k cp,i�k
j �, p � N .

Criteria 12 and 12� are obvious since tr�adu
l�=0 for any u in g implies the same condition in

gp and tr�adgp,u
l�→ tr�adg0,u

l�, p→�.
Criteria 13 and 14 directly follow from Criteria 4 and 5.

123515-12 M. Nesterenko and R. Popovych J. Math. Phys. 47, 123515 �2006�

                                                                                                                                    



Since the radical R�g� is the orthogonal complement of the derivative �g ,g� with respect to the
Killing form �g �Ref. 44� then dim R�g�=dim R�gp� coincides with the value

n − rank�cij
k ci�k

j ci�j�
i� � = n − rank�cp,ij

k cp,i�k
j cp,i�j�

i� �, p � N .

In the matrices the index pair �i� , j�� runs the row range and the index i runs the column range.
The limit process p→� in the latter formula results in Criterion 6.

The center Z�g� coincides with the set of solutions of the system �ei ,x�=0, or cij
k xj =0 in the

coordinate form. Therefore, dim Z�g�=dim Z�gp� equals to

n − rank�cij
k � = n − rank�cp,ij

k �, p � N ,

where the index pair �k , j� runs the row range and the index i runs the column range. The limit
process p→� in the latter formula implies Criterion 3 for l=1. Proof for the other values of l is
similar. Instead of �cij

k �= ��ek , �ei ,ej���, the matrix ��ek , �. . .�ei ,ej1
� , . . . ,ejl

��� should be used, where
the index tuple �k , j1 , . . . , jl� runs the row range and the index i runs the column range.

Criterion 15 is true in view of invariance property of Cpq.
Proof of Criterion 2 is also adduced in detail since it presents another typical trick which is

used in deriving necessary contraction criteria. Let nA�g�= l. Then nA�gp�= l too. We change the
basis of gp with a nonsingular matrix Wp that

c̃p,ij
k = 0 if i, j  l .

Here c̃p,ij
k = �Wp�i�

i �Wp� j�
j �Wp

−1�k
k�cp,i�j�

k� are the structure constants of gp in the new basis. Due to
possibility of “orthogonalization” of the basis, we can assume without loss generality that Wp is an
orthogonal �unitary� matrix in the case of the real �complex� field. The set of orthogonal �or
unitary� matrices is compact in the induced “Euclidean” matrix norm. Therefore, there exists a
convergent subsequence �Wpq

,q�N�. Denote the orthogonal �unitary� matrix being the limit of
this subsequence by W0. Then

c̃pq,ij
k = �Wpq

�i�
i �Wpq

� j�
j �Wpq

−1�k
k�cpq,i�j�

k� → �W0�i�
i �W0� j�

j �W0
−1�k

k�c0,i�j�
k� = c̃0,ij

k , q → � .

Hence c̃p,ij
k =0 if i , j l in view of the same condition for cp,ij

k , i.e., g0 contains an l-dimensional
Abelian subalgebra that implies Criterion 2.

Criteria 6, 7, and 8 are proven in a similar way with replacement of the Abelian subalgebra
condition by the ideal condition

c̃p,ij
k = 0 if �i  l or j  l� and k � l

completed with the conditions

c̃p,ij
k = 0 if i, j  l and k � max�i, j�, l = dim R�g� ,

c̃p,ij
k = 0 if i, j  l and k � max�i, j�, l = dim N�g� ,

c̃p,ij
k = 0 if i, j  l, l = nAi

�g�

of solvability for the radical, nilpotency for the nilradical, and commutativity for an Abelian ideal
of the maximal dimension, correspondingly. Other conditions of solvability and nilpotency can
also be used. Let us note that we derive the second proof of Criterion 6.

Similar technique based on compactness of the set of orthogonal matrices is used in proof of
Criterion 16. Denote the number of positive �negative� diagonal elements of a diagonal form of a
symmetric matrix K by rank+K �rank−K�.

It is sufficient to prove that for any convergent sequence of symmetric matrices Kp→K0, p
→�, with rank+Kp=r+ and rank−Kp=r−, p�N, the inequalities rank+K0r+ and rank−K0r− are
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true. Then this statement is applied to the sequence of the matrices of the �modified� Killing forms
of the algebras gp, which have the same values of rank+ and rank− in view of the inertia law of
quadratic forms and converge to the matrix of the �modified� Killing form of the resulting algebra
g0.

Let Wp be the orthogonal matrix which reduces Kp to the matrix Dp=diag�dp,1 , . . . ,dp,n�,
where dp,i1

�0 for i1=1 , . . . ,r+, dp,i2
�0 for i2=r++1, . . . ,r++r−, and dp,i3

=0 for i3=r++r−

+1, . . . ,n�r++r−n�. So, Kp=WpDpWp
T. We choose a convergent subsequence �Wpq

,q�N� and
denote the orthogonal matrix being the limit of this subsequence by W0. Then

Dpq
= Wpq

TKpq
Wpq

→ W0
TK0W0 ¬ D0, q → � .

D0 is a diagonal matrix diag�d0,1 , . . . ,d0,n� as the limit of the sequence of the diagonal matrices
Dpq

, q�N. Moreover, d0,i1
�0 for i1=1 , . . . ,r+, d0,i2

0 for i2=r++1, . . . ,r++r−, and d0,i3
=0 for

i3=r++r−+1, . . . ,n that implies the requisite statement.
Criteria 1 and 17 were proven, e.g., in Refs. 4, 32, and 71. �

Remark 3: The criteria can be reformulated in terms of closed subsets of the variety An of
n-dimensional Lie algebras. Thus, the sets of nilpotent, solvable, and unimodular algebras are
closed. The sets �g�An �dim glr�, �g�An �dim g�l�r�, �g�An �dim g�l��r�, and similar ones
are closed for each l and r=0, . . . ,n.

Remark 4: Necessary criteria already appeared in early papers on contractions of Lie alge-
bras. Thus, in his pioneer paper69 Segal used the criterion based on the law of inertia of the Killing
forms �the first part of Criterion 16� in the case of compact semisimple Lie algebras. The inequal-
ity on dimensions of the derived algebras dim�g0 ,g0�dim�g ,g� was proven in Ref. 67 in the
practically same way as above. Criteria 3 and 5 on upper and lower central series arise under
studying varieties of nilpotent algebras.74 Very important Criterion 2 is a direct consequence of the
lemma on orbit closures, which is adduced, e.g., in Ref. 4. Criterion 1 was proven in Ref. 32 with
usage of the Iwasawa decomposition. It was pointed out in Ref. 68 that the same technique can be
used to prove other necessary contraction criteria. Restricting ourself with real and complex cases,
we simplify this technique and use it to also prove Criteria 6, 7, and 8. Criteria 3, 4, and 5 were
applied simultaneously in Ref. 45, see also discussion in Ref. 29. All the above criteria are based
on semi-invariant values. Criterion 15 on the invariant algebra characteristic Cpq was first pro-
posed and effectively used in Refs. 9 and 71. A number of criteria are collected ibid and key ideas
on proof of them were also formulated. In particular, Criterion 9 was adopted by us from there. Let
us note that Cpq is a generalization of the invariant J=tr�adu

2� / �tr adu�2 introduced in Ref. 45. The
part of Criterion 10 on rank of coadjoint representations arises in investigation of connections
between invariants of initial and contracted algebras.10,11 Criterion 17 was discussed, e.g., in Ref.
51. There exist also other criteria, e.g., ones connected with cohomologies of Lie algebras.8

Remark 5: The list of criteria can be extended with other quantities which concern algebras
and are semi-invariant under contractions.9 The criteria used in this paper are simple from the
computing point of view.

The set �or even a subset� of the adduced criteria is complete for the three- and four-
dimensional Lie algebras in the sense that they precisely separate all pairs of algebras, which do
not admit contractions. The question on completeness of the adduced criteria in the case of Lie
algebras of higher dimensions is still open.

The set of criteria is not minimal. Some criteria are induced by others. For example, Criteria
4 and 5 imply Criteria 13 and 14.

Criteria differ from each other in effectiveness. Criteria 1 and 12 are most powerful since they
exclude possibility of contractions in most pairs of low-dimensional Lie algebras. This fact is
illustrated by examples of Sec. VII.

Criterion 16 is the unique criterion which is special for the real field. Only it works for pairs
of algebras having a contraction over C and no contractions over R. See Remark 12 additionally.

Remark 6: Criterion 1 is singular and particularly powerful due to appearance of strict
inequality in it. It is the unique criterion which enables investigation of contractions in series of

123515-14 M. Nesterenko and R. Popovych J. Math. Phys. 47, 123515 �2006�

                                                                                                                                    



Lie algebras in a simple way. Since the dimensions of the differentiation algebras for the nonsin-
gular values of the parameters in series of Lie algebras coincide, Criterion 1 implies the absence
of contractions between these cases.

The weakened version of Criterion 1 with unstrict inequality is proven analogous to a number
of other criteria. Indeed, in a fixed basis of V the coefficients dj

i of the matrix of any operator from
Der g satisfy the homogeneous system of linear equations

cij
k�dk�

k = ci�j
k di

i� + cij�
k dj

j�.

Let A be the matrix of this system and Ap and A0 be the similar matrices for the algebras gp and
g0. Then dim Der g=n2−rankA=dim Der gp=n2−rankAp and dim Der g0=n2−rankA0. Therefore,
the inequality dim Der g0�dim Der g obviously follows from Lemma 1. �Note that dim O�g�
=rankA.�

Can other criteria or their combinations be strengthened with replacement of unstrict inequali-
ties by strict ones? The answer to this question is unknown up to now. There existed the conjecture
that dimension of an element of the upper or lower central series or the derived series should vary
under a proper contraction. A contrary instance on the conjecture was adduced in Ref. 29. It is
given by the contraction of the three-dimensional algebras

A3.2��e1,e3� = e1,�e2,e3� = e1 + e2� → A3.3��e1,e3� = e1,�e2,e3� = e1� ,

which is realized via the simple IW-contraction associated with the subalgebra �e1 ,e2+e3�. Let us
note additionally that all invariant and semi-invariant quantities adduced in this section excluding
only dim Der coincide for the above algebras. Therefore, only Criterion 1 is effectual for this pair
of algebras.

V. CALCULATION OF INVARIANT QUANTITIES

There are two simple classes of Lie algebras, which cover most low-dimensional algebras.
The first one is formed by almost Abelian algebras having Abelian ideals of codimension one. The
algebras from the second class have WH+A ideals of codimension one, which are isomorphic to
the direct sum of the Weyl-Heisenberg algebra h3=A3.1 and the Abelian algebra of codimension
four. Characteristics of the above algebras are found in a uniform way. The other low-dimensional
algebras should be investigated separately. Below we adduce only calculations of the invariants
Cpq which were recently proposed in Refs. 9 and 71 and the ranks of some algebras.

A. Almost Abelian algebras

Consider an n-dimensional Lie algebra over C or R which has an �n−1�-dimensional Abelian
ideal. It is a solvable and, moreover, metabelian algebra. Let e1 , . . . ,en−1 form a basis of the ideal
and en completes it to a basis of the algebra. The nonzero commutation relations between elements
of the constructed bases are

�ej,en� = �
k=1

n−1

aj
kek, j = 1, . . . ,n − 1.

The �n−1�	 �n−1� matrix A= �aj
k� defines the algebra completely hence we will denote this

algebra by aA, i.e., aAªA1�A�n−1�A1.
The algebras aA and aA� are isomorphic if and only if the matrices A and A� are similar up to

scalar multiplier. The isomorphisms are established via changes of bases in the Abelian ideals and
scaling of the complementary elements of bases. Up to the algebra isomorphisms the matrix A can
be assumed reduced to the Jordan normal form, and its eigenvalues can be additionally normalized
with a nonvanishing multiplier.
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For any algebra g the matrix ad̂u of the adjoint representation adu of an arbitrary element u

�g is found by the formula �ad̂u�k
j =cij

k ui, where cij
k are the structure constants of g in the fixed

basis. Since for aA cij
k =0 if neither i nor j equals to n, the matrix ad̂u can be easily calculated:

ad̂u = �
i=1

n−1

ui

0 ¯ 0 a1

i

] � ] ]

0 ¯ 0 an−1
i

0 ¯ 0 0
� − un


a1
1

¯ a1
n−1 0

] � ] ]

an−1
1

¯ an−1
n−1 0

0 ¯ 0 0
� ,

or shortly ad̂u have the form

ad̂u = �unA − Aū

0� 0
 ,

where ū= �u1 , . . . ,un−1�T and 0� = �0, . . . ,0�.
To calculate the invariant characteristic Cpq of aA, we find powers of ad̂u and their traces

ad̂u
p = �un

pAp − un
p−1Apū

0� 0
, tr�adu

p� = un
p tr�Ap� .

Matrix trace is not affected by matrix similarity transformations. If �1 , . . . ,�n−1 are the roots
of the characteristic polynomial �A��� of the matrix A in C then tr�Ap�=�1

p+ ¯ +�n−1
p for any p

�N. Consequently, the invariant value Cpq can be calculated explicitly.
The rank of aA can be easily calculated as by-product. Indeed, the characteristic polynomial

�ad̂u
��� of ad̂u equals to ��unA���, i.e., any element u�aA with un�0 is regular and the rank of aA

coincides with the number of zero roots of the polynomial ��A���.
As a result, we obtain the following statement.
Lemma 2: Let aA be an n-dimensional Lie algebra with an �n−1�-dimensional Abelian ideal

and with commutation relations which are defined via the matrix A and �1 , . . . ,�n−1 be roots of the
characteristic polynomial of A over C. If

tr�Ap� = �1
p + ¯ + �n−1

p � 0, tr�Aq� = �1
q + ¯ + �n−1

q � 0,

tr�Ap+q� = �1
p+q + ¯ + �n−1

p+q � 0,

then the value Cpq is well-defined invariant characteristics of the algebra aA and is given by the
formula

Cpq =
tr�Ap�tr�Aq�

tr�Ap+q�
=

��1
p + ¯ + �n−1

p ���1
q + ¯ + �n−1

q �
��1

p+q + ¯ + �n−1
p+q�

.

The rank of the algebra aA �i.e., the dimension of its Cartan subalgebra� equals to the order of
zero root of the characteristic polynomial of the matrix A plus one.

B. Lie algebras with WH+A ideals of codimension one

Consider an n-dimensional complex or real Lie algebra with an �n−1�-dimensional ideal
which is isomorphic to the direct sum of the Weyl-Heisenberg algebra h3=A3.1 and the
�n−4�-dimensional Abelian algebra. Let e1, e2, and e3 form the canonical basis of a h3-isomorphic
component, e4 , . . . ,en−1 give a basis of the Abelian component of the ideal, and en completes the
basis of the ideal to a basis of the whole algebra. The nonzero commutation relations between
elements of the constructed bases are
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�e2,e3� = e1, �ej,en� = �
k=1

n−1

aj
kek, j = 1, . . . ,n − 1.

The �n−1�	 �n−1� matrix A= �aj
k� defines the algebra completely hence we will denote this

algebra by wA, i.e., wAªA1�A�h3 � �n−4�A1�. The Jacobi identity implies the following con-
straints on elements of A:

a1
1 = a2

2 + a3
3, a1

k = 0, k = 2, . . . ,n − 1, ai
2 = ai

3 = 0, i = 4, . . . ,n − 1.

The matrix ad̂u of the adjoint representation of an arbitrary element u�wA is calculated in a
way which is analogous to the previous case and has the form

ad̂u = �unA + u3E2
1 − u2E3

1 − Aū

0� 0
 ,

where ū= �u1 , . . . ,un−1�T, 0� = �0, . . . ,0�, Ej
i is the �m−1�	 �m−1� matrix with unit in j

i entry and
zero otherwise. In view of the restrictions on the matrix A we again have

tr�adu
p� = un

p tr�Ap�, �adu
��� = − ��unA��� .

Therefore, Lemma 2 can be completely reformulated for the algebra wA.
Lemma 3: Let wA=A1�A�h3 � �n−4�A1� and �1 , . . . ,�n−1 be roots of the characteristic poly-

nomial of A over C. If

tr�Ap� = �1
p + ¯ + �n−1

p � 0, tr�Aq� = �1
q + ¯ + �n−1

q � 0,

tr�Ap+q� = �1
p+q + ¯ + �n−1

p+q � 0,

then Cpq is well-defined invariant characteristics of the algebra aA and is given by the formula

Cpq =
tr�Ap�tr�Aq�

tr�Ap+q�
=

��1
p + ¯ + �n−1

p ���1
q + ¯ + �n−1

q �
��1

p+q + ¯ + �n−1
p+q�

.

The rank of the algebra wA (i.e., the dimension of its Cartan subalgebra) equals to the order of
zero root of the characteristic polynomial of the matrix A plus one.

C. Special cases

The adjoint action of any element u�so�3� is presented in the canonical basis in the form

ad̂u v̂= û	 v̂. Hereafter û and v̂ are the coordinate columns of u and v treated as elements of R3,
“·” and “	” denote the usual scalar and vector products in R3. By induction,

adu
2p�−1 v = �− �û�2�p�−1û 	 v̂, adu

2p� v = �− �û�2�p�−1��û · v̂�û − �û�2v̂�, p� � N ,

i.e., tr�adu
2p�−1�=0, tr�adu

2p��= �−�û�2�p�, p��N. Therefore, C2p�,2q�=2. For the other pairs of the
indices p and q the invariant Cpq is undefined.

The same statement is true for the algebras sl�2,R�, so�3� � A1, and sl�2,R� � A1. The argu-
ments are that sl�2,R� is equivalent to so�3� over C and the algebras g and g � kA1 have the same
invariants Cpq.

In the canonical basis of 2A2.1, where the commutation relations are �e1 ,e2�=e1, �e3 ,e4�=e3,
the matrices of adu

p, p�N, have the form
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ad̂u
p =


u2
p − u2

p−1u1 0 0

0 0 0 0

0 0 u4
p − u4

p−1u3

0 0 0 0
� ,

i.e., tr�adu
p�=u2

p+u4
p. Since the fraction with traces from the definition of Cpq explicitly depends on

u and v in the case of 2A2.1, the value Cpq is undefined for any p ,q�N.
The same statement is true for the algebra A4.10 being isomorphic to 2A2.1 over C.

VI. LOW-DIMENSIONAL REAL LIE ALGEBRAS

We use the complete lists of nonisomorphic classes of real three- and four-dimensional Lie
algebras, which were constructed by Mubarakzyanov55 and slightly enhanced in Refs. 65 and 66.
Enumeration of algebras by Mubarakzyanov is followed in general.

A number of algebraic characteristics and quantities are adduced for each Lie algebra g from
the lists. More precisely we deal with the type of the algebra �such as decomposable, solvable,
nilpotent, etc.�; the dimension nD of the differentiation algebra Der g; the dimension nZ of the
center; the maximal dimension nA of the Abelian subalgebras; the Killing form �; the rank rg

�equal to the dimension of the Cartan subalgebras�; the rank of solvability rs �if g is solvable�; the
rank of nilpotency rn �if g is nilpotent�; the tuple of dimensions of the components of derived
series DS= �dim g�1� ,dim g�2� , . . . ,dim g�k��, where k is the minimal number with dim g�k�

=dim g�i�∀ i�k; the tuple of dimensions of the components of lower central series CS
= �dim g1 ,dim g2 , . . . ,dim gk�, where k is the minimal number with dim gk=dim gi∀ i�k; the
trace tr�adv� of the adjoint representations of arbitrary element v�V, and the invariant Cpq for the
values p ,q�N when this invariant is well defined.

These characteristics and quantities are used in Sec. VII and VIII as a basis for application of
necessary contraction criteria.

A. Three-dimensional algebras

3A1: �Abelian, unimodular�;
nD=9, nZ=3, nA=3, �=0, rg=3, rn=rs=1, DS= �0�, CS= �0�, tr�adv�=0.
A2.1ŠA1: �e1 ,e2�=e1 �decomposable, solvable�;
nD=4, nZ=1, nA=2, �=x2y2, rg=2, rs=2, DS= �1,0�, CS= �1�, tr�adv�=−v2, Cpq=1.
A3.1: �e2 ,e3�=e1 �Heisenberg, indecomposable, nilpotent, unimodular�;
nD=6, nZ=1, nA=2, �=0, rg=3, rn=rs=2, DS= �1,0�, CS= �1,0�, tr�adv�=0.
A3.2: �e1 ,e3�=e1, �e2 ,e3�=e1+e2 �indecomposable, solvable�;
nD=4, nZ=0, nA=2, �=2x3y3, rg=1, rs=2, DS= �2,0�, CS= �2�, tr�adv�=−2v3, Cpq=2.
A3.3: �e1 ,e3�=e1, �e2 ,e3�=e2 �indecomposable, solvable�;
nD=6, nZ=0, nA=2, �=2x3y3, rg=1, rs=2, DS= �2,0�, CS= �2�, tr�adv�=−2v3, Cpq=2.
A3.4

−1 : �e1 ,e3�=e1, �e2 ,e3�=−e2 �indecomposable, solvable, unimodular�;
nD=4, nZ=0, nA=2, �=2x3y3, rg=1, rs=2, DS= �2,0�, CS= �2�, tr�adv�=0, C2p,2q=2.
A3.4

a : �e1 ,e3�=e1, �e2 ,e3�=ae2, 0� �a � �1 �indecomposable, solvable�;
nD=4, nZ=0, nA=2, �= �1+a2�x3y3, rg=1, rs=2, DS= �2,0�, CS= �2�, tr�adv�=−�1+a�v3,
Cpq=1+ ��ap+aq� / �1+ap+q��.
A3.5

0 : �e1 ,e3�=−e2, �e2 ,e3�=e1 �indecomposable, solvable, unimodular�;
nD=4, nZ=0, nA=2, �=−2x3y3, rg=1, rs=2, DS= �2,0�, CS= �2�, tr�adv�=0, C2p,2q=2.
A3.5

b : �e1 ,e3�=be1−e2, �e2 ,e3�=e1+be2, b�0 �indecomposable, solvable�;
nD=4, nZ=0, nA=2, �=2�b2−1�x3y3, rg=1, rs=2, DS= �2,0�, CS= �2�, tr�adv�=−2bv3,
Cpq= �2 Re�b+ i�pRe�b+ i�q� / �Re�b+ i�p+q�.
sl(2 ,R): �e1 ,e2�=e1, �e2 ,e3�=e3, �e1 ,e3�=2e2 �indecomposable, simple, unimodular�;
nD=3, nZ=0, nA=1, �=−2�2x3y1−x2y2+2x1y3�, rg=1, DS= �3�, CS= �3�, tr�adv�=0,
C2p,2q=2.
so(3): �e1 ,e2�=e3, �e2 ,e3�=e1, �e3 ,e1�=e2 �indecomposable, simple, unimodular�;
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nD=3, nZ=0, nA=1, �=−2�x1y1+x2y2+x3y3�, rg=1, DS= �3�, CS= �3�, tr�adv�=0, C2p,2q=2.
Remark 7: Two terms of the above list �namely, �A3.4

a � and �A3.5
b �� are, in fact, Lie algebra

series, and each of them being parametrized with one real parameter. Some values of the param-
eters are singular, i.e., algebra characteristics for them differ from the ones for regular values. For
example, the Killing form of the algebra �A3.5

b � identically vanishes if b=1. The same parameter
values are singular from the viewpoint of realizations, invariants, subalgebras, etc. See, e.g., Refs.
61, 63, 65, and 66

This fact prevents one from creation of a “canonical” list of inequivalent low-dimensional Lie
algebras. Whether is it reasonable to extract the algebras corresponding to singular parameter
values from series? The question is answered in different ways. For example, in Refs. 61 and 63
all such algebras are separated from the series and have individual numbers. In Ref. 55 only the
direct sums and single algebras �e.g., A3.3� are considered separately from the corresponding
series.

Another barrier for canonization of the existing lists is generated by ambiguous choice of
series parameters normalization and even by existence of essentially different approaches to such
normalization.

We follow the numeration by Mubarakzyanov, explicitly point out all the singular values of
series parameters and study the corresponding algebras separately from the regular algebras of
series. Usage of this technique simplifies application of necessary contraction criteria.

Let us note that Agaoka1,2 proposed classifications of three- and four-dimensional algebras,
which are well adapted to investigation of contractions and deformations. The presented approach
can be extended to the real case and algebras of greater dimensions.

B. Four-dimensional algebras

4A1 �Abelian, unimodular�;
nD=16, nZ=4, nA=4, rg=4, rn=rs=1, DS= �0�, CS= �0�, tr�adv�=0.
A2.1Š2A1: �e1 ,e2�=e1 �decomposable, solvable�;
nD=8, nZ=2, nA=3, �=x2y2, rg=3, rs=2, DS= �1,0�, CS= �1�, tr�adv�=−v2, Cpq=1.
2A2.1: �e1 ,e2�=e1, �e3 ,e4�=e3 �decomposable, solvable�;
nD=4, nZ=0, nA=2, �=x2y2+x4y4, rg=2, rs=2, DS= �2,0�, CS= �2�, tr�adv�=−�v2+v4�.
A3.1ŠA1: �e2 ,e3�=e1 �decomposable, nilpotent, unimodular�;
nD=10, nZ=2, nA=3, �=0, rg=4, rn=rs=2, DS= �1,0�, CS= �1,0�, tr�adv�=0.
A3.2ŠA1: �e1 ,e3�=e1, �e2 ,e3�=e1+e2 �decomposable, solvable�;
nD=6, nZ=1, nA=3, �=2x3y3, rg=2, rs=2, DS= �2,0�, CS= �2�, tr�adv�=−2v3, Cpq=2.
A3.3ŠA1: �e1 ,e3�=e1, �e2 ,e3�=e2 �decomposable, solvable�;
nD=8, nZ=1, nA=3, �=2x3y3, rg=2, rs=2, DS= �2,0�, CS= �2�, tr�adv�=−2v3, Cpq=2.
A3.4

−1 ŠA1: �e1 ,e3�=e1, �e2 ,e3�=−e2 �decomposable, solvable, unimodular�;
nD=6, nZ=1, nA=3, �=2x3y3, rg=2, rs=2, DS= �2,0�, CS= �2�, tr�adv�=0, C2p,2q=2.
A3.4

a ŠA1: �e1 ,e3�=e1, �e2 ,e3�=ae2, 0� �a � �1 �decomposable, solvable�;
nD=6, nZ=1, nA=3, �= �1+a2�x3y3, rg=2, rs=2, DS= �2,0�, CS= �2�, tr�adv�=−�1+a�v3,
Cpq=1+ ��ap+aq� / �1+ap+q��.
A3.5

0 ŠA1: �e1 ,e3�=−e2, �e2 ,e3�=e1 �decomposable, solvable, unimodular�;
nD=6, nZ=1, nA=3, �=−2x3y3, rg=2, rs=2, DS= �2,0�, CS= �2�, tr�adv�=0, C2p,2q=2.
A3.5

b ŠA1: �e1 ,e3�=be1−e2, �e2 ,e3�=e1+be2, b�0 �decomposable, solvable�;
nD=6, nZ=1, nA=3, �=2�b2−1�x3y3, rg=2, rs=2, DS= �2,0�, CS= �2�, tr�adv�=−2bv3,
Cpq= �2 Re�b+ i�pRe�b+ i�q� / �Re�b+ i�p+q�.
sl(2 ,R)ŠA1: �e1 ,e2�=e1, �e2 ,e3�=e3, �e1 ,e3�=2e2 �decomposable, unsolvable, reductive,
unimodular�;
nD=4, nZ=1, nA=2, �=−2�2x3y1−x2y2+2x1y3�, rg=2, DS= �3�, CS= �3�, tr�adv�=0,
C2p2q=2.
so(3)ŠA1: �e1 ,e2�=e3, �e2 ,e3�=e1, �e3 ,e1�=e2 �decomposable, unsolvable, reductive,
nimodular�;
nD=4, nZ=1, nA=2, �=−2�x1y1+x2y2+x3y3�, rg=2, DS= �3�, CS= �3�, tr�adv�=0, C2p,2q=2.
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A4.1: �e2 ,e4�=e1, �e3 ,e4�=e2 �indecomposable, solvable, nilpotent, unimodular�;
nD=7, nZ=1, nA=3, �=0, rg=4, rn=3, rs=2, DS= �2,0�, CS= �2,1 ,0�, tr�adv�=0.
A4.2

1 : �e1 ,e4�=e1, �e2 ,e4�=e2, �e3 ,e4�=e2+e3 �indecomposable, solvable�;
nD=8, nZ=0, nA=3, �=3x4y4, rg=1, rs=2, DS= �3,0�, CS= �3�, tr�adv�=−3v4, .Cpq=3.
A4.2

−2 : �e1 ,e4�=−2e1, �e2 ,e4�=e2, �e3 ,e4�=e2+e3 �indecomposable, solvable, unimodular�;
nD=6, nZ=0, nA=3, �= �b2+2�x4y4, rg=1, rs=2, DS= �3,0�, CS= �3�, tr�adv�=0,
Cpq= ��2+ �−2�p��2+ �−2�q�� / �2+ �−2�p+q�, p ,q�2.
A4.2

b : �e1 ,e4�=be1, �e2 ,e4�=e2, �e3 ,e4�=e2+e3, b�−2,0 ,1 �indecomposable, solvable�;
nD=6, nZ=0, nA=3, �= �b2+2�x4y4, rg=1, rs=2, DS= �3,0�, CS= �3�, tr�adv�=−�2+b�v4,
Cpq= ��2+bp��2+bq�� / �2+bp+q�.
A4.3: �e1 ,e4�=e1, �e3 ,e4�=e2 �indecomposable, solvable�;
nD=6, nZ=1, nA=3, �=x4y4, rg=3, rs=2, DS= �2,0�, CS= �2,1�, tr�adv�=−v4, Cpq=1.
A4.4: �e1 ,e4�=e1, �e2 ,e4�=e1+e2, �e3 ,e4�=e2+e3 �indecomposable, solvable�;
nD=6, nZ=0, nA=3, �=3x4y4, rg=1, rs=2, DS= �3,0�, CS= �3�, tr�adv�=−3v4, Cpq=3.
A4.5

111: �e1 ,e4�=e1, �e2 ,e4�=e2, �e3 ,e4�=e3 �indecomposable, solvable�;
nD=12, nZ=0, nA=3, �=3x4y4, rg=1, rs=2, DS= �3,0�, CS= �3�, tr�adv�=−3v4, Cpq=3.
A4.5

−2,1,1: �e1 ,e4�=−2e1, �e2 ,e4�=e2, �e3 ,e4�=e3 �indecomposable, solvable, unimodular�;
nD=8, nZ=0, nA=3, �=6x4y4, rg=1, rs=2, DS= �3,0�, CS= �3�, tr�adv�=0,
Cpq= ��2+ �−2�p��2+ �−2�q�� / �2+ �−2�p+q�, p ,q�2.
A4.5

a11: �e1 ,e4�=ae1, �e2 ,e4�=e2, �e3 ,e4�=e3, a�−2,0 ,1 �indecomposable, solvable�;
nD=8, nZ=0, nA=3, �= �a2+2�x4y4, rg=1, rs=2, DS= �3,0�, CS= �3�, tr�adv�=−�a+2�v4,
Cpq= ��2+ap��2+aq�� / �2+ap+q�.
A4.5

a,−1,1: �e1 ,e4�=ae1, �e2 ,e4�=−e2, �e3 ,e4�=e3; a�0, �a � �1 �indecomposable, solvable�;
nD=6, nZ=0, nA=3, �= �a2+2�x4y4, rg=1, rs=2, DS= �3,0�, CS= �3�, tr�adv�=−av4,
Cpq= ��1+ �−1�p+ap��1+ �−1�q+aq�� / �1+ �−1�p+q+ap+q�.
A4.5

a,−1−a,1: �e1, e4�=ae1 , �e2 ,e4�=−�1+a�e2, �e3 ,e4�=e3 a�0, or a=1 �indecomposable,
solvable, unimodular�;
nD=6, nZ=0, nA=3, �= �a2+ �1+a�2+1�x4y4, rg=1, rs=2, DS= �3,0�, CS= �3�, tr�adv�=0,
Cpq= ��1+ �−1−a�p+ap��1+ �−1−a�q+aq�� / �1+ �−1−a�p+q+ap+q�, p ,q�2.
A4.5

ab1: �e1 ,e4�=ae1, �e2 ,e4�=be2, �e3 ,e4�=e3; ab�0, −1�a�b�1, a+b�−1
�indecomposable, solvable�;
nD=6, nZ=0, nA=3, �= �a2+b2+1�x4y4, rg=1, rs=2, DS= �3,0�, CS= �3�,
tr�adv�=−�a+b+1�v4, Cpq= ��1+ap+bp��1+aq+bq�� / �1+ap+q+bp+q�.
A4.6

−2b,b: �e1 ,e4�=−2be1, �e2 ,e4�=be2−e3, �e3 ,e4�=e2+be3, b�0 �indecomposable, solvable,
unimodular�;
nD=6, nZ=0, nA=3, �= �6b2−2�x4y4, rg=1, rs=2, DS= �3,0�, CS= �3�, tr�adv�=0,
Cpq= ���−2b�p+2 Re�b+ i�p���−2b�q+2 Re�b+ i�q�� / ��−2b�p+q+2 Re�b+ i�p+q�, p ,q�2.
A4.6

ab : �e1 ,e4�=ae1, �e2 ,e4�=be2−e3, �e3 ,e4�=e2+be3, a�0, a�−2b �indecomposable,
solvable�;
nD=6, nZ=0, nA=3, �= �a2+2b2−2�x4y4, rg=1, rs=2, DS= �3,0�, CS= �3�,
tr�adv�=−�a+2b�v4, Cpq= ��ap+2 Re�b+ i�p��aq+2 Re�b+ i�q�� / �ap+q+2 Re�b+ i�p+q�.
A4.7: �e2 ,e3�=e1, �e1 ,e4�=2e1, �e2 ,e4�=e2, �e3 ,e4�=e2+e3 �indecomposable, solvable�;
nD=5, nZ=0, nA=2, �=6x4y4, rg=1, rs=3, DS= �3,1 ,0�, CS= �3�, tr�adv�=−4v4,
Cpq= ��2+2p��2+2q�� / �2+2p+q�.
A4.8

0 : �e2 ,e3�=e1, �e1 ,e4�=e1, �e2 ,e4�=e2 �indecomposable, solvable�;
nD=5, nZ=0, nA=2, �=2x4y4, rg=2, rs=2, DS= �2,0�, CS= �2�, tr�adv�=−2v4, Cpq=2.
A4.8

1 : �e2 ,e3�=e1, �e1 ,e4�=2e1, �e2 ,e4�=e2, �e3 ,e4�=e3 �indecomposable, solvable�;
nD=7, nZ=0, nA=2, �=6x4y4, rg=1, rs=3, DS= �3,1 ,0�, CS= �3�, tr�adv�=−4v4,
Cpq= ��2+2p��2+2q�� / �2+2p+q�.
A4.8

−1 : �e2 ,e3�=e1, �e2 ,e4�=e2, �e3 ,e4�=−e3 �indecomposable, solvable; unimodular�;
nD=5, nZ=1, nA=2, �=2x4y4, rg=2, rs=3, DS= �3,1 ,0�, CS= �3�, tr�adv�=0, C2p,2q=2.
A4.8

b : �e2 ,e3�=e1, �e1 ,e4�= �1+b�e1, �e2 ,e4�=e2, �e3 ,e4�=be3, 0� �b��1 �indecomposable,
solvable�;
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nD=5, nZ=0, nA=2, �=2�1+b+b2�x4y4, rg=1, rs=3, DS= �3,1 ,0�, CS= �3�,
tr�adv�=−2�1+b�v4, Cpq= ��1+bp+ �1+b�p��1+bq+ �1+b�q�� / �1+bp+q+ �1+b�p+q�.
A4.9

0 : �e2 ,e3�=e1, �e2 ,e4�=−e3, �e3 ,e4�=e2 �indecomposable, solvable, unimodular�;
nD=5, nZ=1, nA=2, �=−2x4y4, rg=2, rs=3, DS= �3,1 ,0�, CS= �3�, tr�adv�=0, C2p,2q=2.
A4.9

a : �e2 ,e3�=e1, �e1 ,e4�=2ae1, �e2 ,e4�=ae2−e3, �e3 ,e4�=e2+ae3, a�0 �indecomposable,
solvable�;
nD=5, nZ=0, nA=1, �=2�3a2−1�x4y4, rg=1, rs=3, DS= �3,1 ,0�, CS= �3�, tr�adv�=−4av4,
Cpq= ���2a�p+2 Re�a+ i�p���2a�q+2 Re�a+ i�q�� / ��2a�p+q+2 Re�a+ i�p+q�, p ,q�2;.
A4.10: �e1 ,e3�=e1, �e2 ,e3�=e2, �e1 ,e4�=−e2, �e2 ,e4�=e1 �indecomposable, solvable�;
nD=4, nZ=0, nA=2, �=2�x3y3−x4y4�, rg=2, rs=2, DS= �2,0�, CS= �2�, tr�adv�=−2v3.
Remark 8: Problems concerning series of algebras and singular values of parameters become

more complicated in the case of dimension four. In particular, in the Lie algebra series �A4.2
b �,

�A4.5
abc�, and �A4.8

b � the dimension nD of the differentiation algebra varies depending on values of the
series parameters. It implies obvious necessity of separation of series parameter subsets according
to values of this semi-invariant quantity since Criterion 1 based on nD is most powerful.

In the above list of algebras, we apply enhanced normalization of series parameters for
four-dimensional real Lie algebras, which were proposed in Refs. 65 and 66.

VII. ALGORITHM OF CONTRACTION IDENTIFICATION

The proposed algorithm allows one to handle the continuous one-parametric contractions of
the low-dimensional Lie algebras. It consists of three steps.

�1� We take a complete list of nonisomorphic Lie algebras of a fixed dimension. For each
member of this list we calculate invariant and semi-invariant quantities that concern neces-
sary criteria of contractions.

�2� For each pair of algebras from the list we test possible existence of contractions with the
necessary criteria of contractions via comparing the calculated invariant and semi-invariant
quantities. Since it is sufficient to look only for nontrivial and proper contractions, we have
not to study the pairs of any Lie algebra with itself and the Abelian one.

�3� Consider each from the pairs which satisfy all the necessary criteria of contractions. Apply-
ing the direct method based on Definition 1�, we either construct a contraction matrix in an
explicit form or prove that no contraction is possible.

The requisite invariant and semi-invariant quantities of the real three- and four-dimensional
Lie algebras are calculated and collected in Sec. VI.

Most of contractions of low-dimensional Lie algebras are realized via simple Inönü-Wigner
contractions. Any simple Inönü-Wigner contraction corresponds to a subalgebra of the initial
algebra and therefore is easy to find. Classification of subalgebras of three- and four-dimensional
Lie algebras is well known.61 All simple Inönü-Wigner contractions of these algebras are con-
structed in Refs. 15 and 39. We only enhance presentation of the corresponding contraction
matrices.

For the pairs without simple Inönü-Wigner contractions we continue investigation with gen-
eralized Inönü-Wigner contractions. Here the problem of finding contraction matrices can be
divided into two subproblems.

• To construct appropriate transformations for the canonical bases of the initial and resulting
algebras, which do not depend on the contraction parameter. The aim is for the nonzero new
structure constants of the resulting algebra to coincide with the corresponding new structure
constants of the initial algebra.

• To find a diagonal matrix depending on the contraction parameter. It is sufficient to assume
that the diagonal elements are integer powers of the contraction parameter.

As a rule, we can manage to avoid basis change in the resulting algebras in the case of dimensions
three and four. Consequently, the contraction matrix can be represented as a product of two
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matrices U�= IW�k1 , . . . ,kn�, where I is a constant nonsingular matrix and W�k1 , . . . ,kn�
=diag��k1 , . . . ,�kn�, k1 , . . . ,kn�Z.

In complicated cases contraction matrices can be found using repeated contractions �see Sec.
X�.

To demonstrate effectiveness of the algorithm, we discuss two typical examples in detail.
Example 2: Consider the series of three-dimensional Lie algebras A3.4

a parametrized with one
real parameter a, where −1a�1,a�0. Let us investigate all possible contractions of algebra
A3.4

a for a fixed value of a.
A3.4

a is an indecomposable solvable Lie algebra with the canonical nonzero commutation
relations �e1 ,e3�=e1, �e2 ,e3�=ae2. The tuple of considered quantities for the algebra A3.4

a is

nD = 4, nZ = 0, nA = 2, � = �1 + a2�x3y3, tr�ad e3� = − 1 − a, rs = 2,

DS = �2,0�, CS = �2� .

According to the second step of the algorithm we look through all pairs of three-dimensional
algebras, where the initial algebra is A3.4

a and the resulting algebra runs the list from Sec. VI A and
does not coincide with 3A1 and A3.4

a .
For each pair we compare tuples of their semi-invariant quantities. In view of Theorem 1 we

conclude that

• contractions to the algebras A2.1 � A1, A3.2, A3.4
ã , ã�a, A3.5

b , b�0, sl�2,R� and so�3� are
impossible since Criterion 1 is not satisfied;

• contraction to the algebra A3.3 is impossible according to Criterion 15; and
• contraction to the algebra A3.1 may exist inasmuch as all the tested necessary criteria are held.

Other criteria can also be used to prove nonexistence of contractions. For example, for the
algebras sl�2,R� and so�3� we can also use Criterion 2, 5, 11, or 17. In all cases we try to apply
a minimal set of the most effective criteria such as Criterion 1. In particular, Criterion 1 is very
important for the example under consideration, since due to strict inequality it allows one to prove
the absence of contractions inside the series A3.4

a in a very simple way.
Therefore, on the third step of the algorithm we investigate only the pair �A3.4

a ,A3.1�.
The canonical nonzero commutation relation of the algebra A3.1 is �e2 ,e3�=e1. Since in the

canonical basis of A3.4
a the structure constant c23

1 equals to zero we carry out the basis change
e�1= �1−a�e1 ,e�2=e1+e2 ,e�3=e3. The new isomorphic commutation relations have the form

�e1,e2�� = 0, �e1,e3�� = e1, �e2,e3�� = e1 + ae2.

Now the desired contraction is provided by the matrix diag�� ,1 ,�� and the subsequent limit
process �→ +0 results in the algebra A3.1:

�e1,e2�� = 0,

�e1,e3�� = �e1 → 0, � → + 0,

�e2,e3�� = e1 + �ae2 → e1, � → + 0.

Finally, all nontrivial proper contractions of the Lie algebra A3.4
a are exhausted by the single

contraction A3.4
a →A3.1 which is generated by the matrix I5 diag�� ,1 ,��, where the explicit form of

I5 is adduced in Sec. VIII A.
Example 3: Consider the decomposable, unsolvable, unimodular, reductive four-dimensional

Lie algebra sl�2,R� � A1, having the canonical commutation relations �e1 ,e2�=e1, �e2 ,e3�=e3, and
�e1 ,e3�=2e2. The set of algebraic quantities which are used to study contractions of this algebra is
exhausted by
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nD = 4, nZ = 1, nA = 1, n�g,g� = 3, � = − 2�2x3y1 − x2y2 + 2x1y3�, DS = �3�, CS = �3� .

The quantities of sl�2,R� � A1 are compared with the analogous quantities of the other four-
dimensional algebras. All the requisite quantities are adduced in Sec. VI B. In view of necessary
contraction criteria we conclude that

• contractions to the algebras A2.1 � 2A1, 2A2.1, A3.2 � A1, A3.3 � A1, A3.4
a

� A1, �a��1,a�0,
−1, A3.5

b
� A1, b�0, A4.3, A4.8

b , �b�1,b�−1, and A4.9
a , a�0 are impossible in view of

Criterion 12;
• contraction to the algebra so�3� � A1 does not exist since Criterion 1 is not held;
• contractions to the algebras A4.2

b , b�0, A4.4, A4.5
abc, abc�0, A4.6

a,b, a�0, A4.7, and A4.10 are
impossible in view of Criterion 3; and

• contractions to the algebras A3.1 � A1, A4.1, A3.4
−1

� A1, A3.5
0

� A1, A4.8
−1 , and A4.9

0 may exist inas-
much as all the tested necessary criteria of contractions are satisfied.

Note that not only Criteria 1, 3, and 12 could be used to separate algebras for which there are
no contractions from the algebra sl�2,R� � A1. For example, Criterion 1 implies impossibility of
contractions from sl�2,R� � A1 to A4.4.

The contractions admitted by the necessary criteria can actually be executed. Contractions to
the algebras A3.1 � A1, A3.4

−1
� A1, A3.5

0
� A1, A4.1, A4.8

−1 , and A4.9
0 are provided by the contraction

matrices I8 diag�� ,� ,1 ,1�, I7 diag�� ,� ,1 ,1�, I10 diag�� ,� ,1 ,1�, I23 diag�� ,� ,� ,1�,
I19 diag�� ,1 ,� ,1�, and I22 diag��2 ,� ,� ,1�, correspondingly. The explicit forms of the matrices I’s
are presented in Sec. VIII B.

Note that all the contractions except the last one are simple Inönü-Wigner contractions and are
constructed using a list of inequivalent subalgebras of sl�2,R� � A1. We illustrate the applied
technique with the pair �sl�2,R� � A1 ,A3.1 � A1�. See also Sec. III for the theoretical background.

�e3 ,e4� is a subalgebra of sl�2,R� � A1. The associated contraction matrix diag�� ,� ,1 ,1�
produces a simple IW-contraction from sl�2,R� � A1 to a Lie algebra isomorphic to A3.1 � A1. In
order to obtain the canonical commutation relations ��e2 ,e3�=e1� of the algebra A3.1 � A1, we
apply additional isomorphism transformation given by the matrix I8 which commutes with
diag�� ,� ,1 ,1�. The resulting contraction matrix is I8 diag�� ,� ,1 ,1�.

Further consider the pair �sl�2,R� � A1 ,A4.9
0 � in detail as an example on construction of gen-

eralized IW-contractions. Our aim is to find an appropriate contraction matrix according to the
above algorithm.

The canonical commutation relations of the algebra A4.9
0 are �e2 ,e3�=e1, �e2 ,e4�=−e3, and

�e3 ,e4�=e2. In contrast to the algebra A4.9
0 , the canonical structure constants c23

1 , c24
3 , and c34

2 of the
algebra sl�2,R� � A1 vanish. That is why we carry out the basis change

e1� = −
1

2
e1 −

1

2
e3, e2� = e2, e3� =

1

2
e1 −

1

2
e3, e4� =

1

2
e1 +

1

2
e3 + e4,

which is associated with the matrix I22. The obtained commutation relations �being isomorphic to
the old one of sl�2,R� � A1� have the form

�e1,e2�� = − e3, �e1,e3�� = e2, �e1,e4�� = 0, �e2,e3�� = e1, �e2,e4�� = − e3, �e3,e4�� = e2.

Let us suppose that for the new Lie bracket �· , · �� the requisite contraction is provided by the
matrix diag��k1 ,�k2 ,�k3 ,�k4� and calculate the parametrized commutators:

�e1,e2�� = − �k1+k2−k3e3, �e1,e3�� = �k1+k3−k2e2, �e1,e4�� = 0,

�e2,e3�� = �k2+k3−k1e1, �e2,e4�� = − �k2+k4−k3e3, �e3,e4�� = �k3+k4−k2e2.

The limit of the commutators under �→ +0 exists and gives the algebra A4.9
0 iff the powers

k1 , . . . ,k4 are constrained by the conditions
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k2 + k3 − k1 = 0, k2 + k4 − k3 = 0, k3 + k4 − k2 = 0, k1 + k2 − k3 � 0, k1 + k3 − k2 � 0.

The tuple k1=2, k2=k3=1, k4=0 satisfies these conditions. The corresponding contraction indeed
results in the algebra A4.9

0 :

�e1,e2�� = − �2e3 → 0, � → + 0, �e1,e3�� = �2e2 → 0, � → + 0,

�e1,e4�� = 0, �e2,e3�� = e1, �e2,e4�� = − e3, �e3,e4�� = e2.

The complete contraction matrix is I22 diag��2 ,� ,� ,1�.
This example demonstrates that necessary criteria allow one to handle contractions even in

cases of such complicated algebras as reductive ones.
Remark 9: Celeghini and Tarlini14 proposed the conjecture that all nonsemisimple Lie alge-

bras of a fixed dimension could be obtained via contractions from semisimple ones. Actually, the
conjecture is incorrect. There are no semisimple Lie algebras for some dimensions, e.g., in the
case of dimension four. Therefore, a wider class �e.g., the class of reductive algebras or even the
whole class of unsolvable algebras� should be used in the conjecture instead of semisimple alge-
bras. The other argument on incorrectness of the conjecture is that all semisimple �and reductive�
Lie algebras are unimodular and any continuous contraction of a unimodular algebra necessarily
results in a unimodurar algebra. Complexity of the actual state of affairs is illustrated by consid-
eration of low-dimensional algebras.

The unsolvable three-dimensional algebras are exhausted by the simple algebras sl�2,R� and
so�3�. Any three-dimensional unimodular algebra �sl�2,R�, so�3�, A3.4

−1 , A3.4
0 , A3.1, 3A1� belongs to

the orbit closure of at least one of the simple algebras.
The reductive algebras sl�2,R� � A1 and so�3� � A1 form the set of unsolvable four-

dimensional algebras. The union of orbit closures of these algebras consists of the unimodular
algebras with the nontrivial centers �sl�2,R� � A1, so�3� � A1, A4.8

−1 , A4.9
0 , A3.4

−1
� A1, A3.4

0
� A1, A4.1,

A3.1 � A1, 4A1�. The unimodular algebras having the zero centers �A4.2
−2 , A4.5

abc, a+b+c=0, A4.6
−2b,b�

cannot be obtained via contractions from the unsolvable algebras.
The situation with contractions of representations is different.58 For example, matrix repre-

sentations of all inequivalent classes of the real three-dimensional Lie algebras are contractions of
appropriately chosen representations �with �-dependent similarity transformations� of the simple
algebras sl�2,R� and so�3�. More precisely, concerning the parametrized series of Lie algebras
�A3.4

a , A3.5
b �, only representations for single values of parameters can be obtained via contractions.

VIII. ONE-PARAMETRIC CONTRACTIONS OF REAL LOW-DIMENSIONAL
LIE ALGEBRAS

The objective of this section is to construct, order, and analyze the contractions of real
low-dimensional Lie algebras.

At first, we discuss all possible contractions of one- and two-dimensional Lie algebras. Since
there is only one inequivalent one-dimensional Lie algebra and it is Abelian, all its contractions are
trivial and improper at the same time. The complete list of nonisomorphic two-dimensional Lie
algebras is exhausted by the Abelian algebra 2A1 and the nonAbelian algebra A2.1 with the ca-
nonical commutation relation �e1 ,e2�=e1. The unique weakly inequivalent contraction of the al-
gebra 2A1 is trivial and improper at the same time. The contractions of the algebra A2.1 are either
trivial or improper.

Contractions of real three- and four-dimensional Lie algebras are listed in Secs. VIII A and
VIII B and additionally visualized with Figs. 1 and 2. Denote that contractions of the three-
dimensional real Lie algebras were considered in Ref. 78. A complete description of these con-
tractions with proof closed to the manner of our paper was first obtained in Ref. 47.

Only proper direct contractions are presented on the figures. Let us remind that a contraction
from g to g0 is called direct if there is no algebra g1 such that g1�g ,g0 ,g is contracted to g1 and
g1 is contracted to g0. Antonym to this notion is the notion of repeated contraction. See Sec. X for
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details. The algebra g is necessarily contracted to g0 if g is contracted to g1 and g1 is contracted to
g0. That is why the arrows corresponding to repeated contractions can be omitted.

In the lists of contractions we collect all the suitable pairs of Lie algebras with the same initial
algebras which are adduced once. The corresponding contraction matrices are indicated over the
arrows. In the section we use the shortcut notation for the diagonal parts of matrices of generalized
Inönü-Wigner contractions:

W�k1,k2, . . . ,kn� = diag��k1,�k2, . . . ,�kn� ,

where ki�Z, i=1,n, n is the dimension of the underlying vector space V. The constant “left-hand”
parts of matrices of generalized Inönü-Wigner contractions are denoted by numbered symbols I.
Their explicit forms are adduced after the lists of contractions. The notation �→ +0 is omitted
everywhere.

In the case of simple Inönü-Wigner contractions we additionally adduce the associated sub-
algebras.

A. Dimension three

The list of all possible proper and nontrivial continuous one-parametric contractions of real
three-dimensional Lie algebras is exhausted by the following ones �see also Fig. 1�:

FIG. 1. One-parametric contractions of real three-dimensional Lie algebras.

FIG. 2. One-parametric contractions of real four-dimensional Lie algebras.
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A2.1 � A1: ——→
I1W�1,1,0�

A3.1,�e1 − e3� .

A3.2: ——→
I7W�1,0,1� or W�2,1,1�

A3.1,�e2�, ——→
I6W�0,1,0� or W�1,2,0�

A3.3,�e1,e2 + e3� .

A3.4
a : ——→

I2W�1,0,1�

A3.1,�e1 + e2� .

A3.5
b : ——→

W�1,0,1�

A3.1,�e2� .

sl�2,R�: ——→
I3W�1,1,0�

A3.1,�e3�, ——→
I4W�1,0,0�

A3.4
−1 ,�e2,e3�, ——→

I5W�1,1,0�

A3.5
0 ,�e1 + e3� .

so�3�: ——→
W�2,1,1�

A3.1, ——→
W�1,1,0�

A3.5
0 ,�e3� .

The constant parts of contraction matrices have the form

I1 = 
1 0 − 1

0 1 0

0 0 1
�, I2 = 
1 − a 1 0

0 1 0

0 0 1
�, I3 = 
0 1 0

2 0 0

0 0 1
� ,

I4 = 
1 0 0

0 0 1

0 − 1 0
�, I5 = 
0 0 1/2

0 1 0

1 0 1/2
� ,

I6 = 
1 0 0

0 1 1

0 0 1
�, I7 = 
− 1 0 0

0 1 0

0 0 − 1
� .

Analysis of the obtained results leads to the conclusion that for any pair of real three-
dimensional Lie algebras we have one of the two possibilities: �1� there are no contractions in
view of applied necessary criteria; �2� there exists a generalized Inönü-Wigner contraction.

Only the contraction so�3�→A3.1 is necessarily a truly generalized Inönü-Wigner contraction.
Nonexistence of a simple Inönü-Wigner contraction in this case is implied by the following chain
of statements. Any proper and nontrivial simple Inönü-Wigner contraction corresponds to proper
subalgebras of the initial algebra. Equivalent subalgebras result in equivalent contractions. A
complete list of inequivalent proper subalgebras of so�3� is exhausted by any one-dimensional
subalgebra of so�3�. Any one-dimensional subalgebra generates the contraction of so�3� to A3.5

0 .
All other contractions of real three-dimensional Lie algebras are equivalent to simple Inönü-

Wigner contractions although sometimes generalized Inönü-Wigner contraction has a simpler,
pure diagonal form. We explicitly indicate two such cases in the above list of contractions, namely,
A3.2→A3.1 and A3.2→A3.3.

Note additionally that all the constructed contraction matrices include only non-negative in-
teger powers of �, i.e., they admit well-defined limit process under �→ +0.

Theorem 2: Any continuous contraction of a real three-dimensional Lie algebra is equivalent
to a generalized Inönü-Wigner contraction with non-negative powers of the contraction parameter.
Moreover, only the contraction so�3�→A3.1 is inequivalent to a simple Inönü-Wigner contraction.
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B. Dimension four

The list of all possible proper and nontrivial continuous one-parametric contractions of real
four-dimensional Lie algebras is exhausted by the following ones:

A2.1 � 2A1: ——→
I30W�1,1,0,0�

A3.1 � A1,�e3 − e1,e4� .

2A2.1: ——→
W�0,0,0,1�

A2.1 � 2A1,�e1,e2,e3�, ——→
I1W�1,1,0,1�

A3.1 � A1,�e1 + e3� ,

——→
U3

A3.2 � A1, ——→
I2W�0,0,0,1�

A3.3 � A1,�e1,e3,e2 + e4�, ——→
I27W�1,1,0,1�

A3.4
a

� A1,�e2 + ae4� ,

——→
U4

A4.1, ——→
I28W�0,1,1,0�

A4.3,�e1,e2 − e3�, ——→
I3W�1,0,1,0�

A4.8
0 ,�e1 + e3,e2 + e4� .

A3.2 � A1: ——→
W�1,0,1,0�

A3.1 � A1,�e2,e4�, ——→
W�0,1,0,0�

A3.3 � A1,�e1,e3,e4�, ——→
I29W�2,1,0,1�

A4.1.

A3.3 � A1: ——→
I4W�1,0,1,0�

A3.1 � A1,�e1,e2 + e4� .

A3.4
a

� A1: ——→
I5W�1,1,0,0�

A3.1 � A1,�e2,e1 + e4�, ——→
I6W�2,1,0,1�

A4.1.

A3.5
b

� A1: ——→
W�1,0,1,0�

A3.1 � A1,�e2,e4�, ——→
I9W�2,1,0,1�

A4.1.

sl�2,R� � A1: ——→
I8W�1,1,0,0�

A3.1 � A1,�e3,e4�, ——→
I7W�1,1,0,0�

A3.4
−1

� A1,�e2,e4�, ——→
I10W�1,1,0,0�

A3.5
0

� A1,

�e1 + e3,e4�, ——→
I23W�1,1,1,0�

A4.1,�e1 + e4�, ——→
I19W�1,0,1,0�

A4.8
−1 ,�e1,e2 − 1/2e4�, ——→

I22W�2,1,1,0�

A4.9
0 .

so�3� � A1: ——→
W�2,1,1,0�

A3.1 � A1, ——→
W�1,1,0,0�

A3.5
0

� A1,�e3,e4�, ——→
I5W�3,2,1,1�

A4.1, ——→
I11W�2,1,1,0�

A4.9
0 .

A4.1: ——→
I13�0�W�0,0,0,1�

A3.1 � A1,�e1,e2,e4� .

A4.2
b : ——→

I14W�1,0,1,0�

A3.1 � A1,�e1,e3�, ——→
b�1,I15W�2,1,0,1�

A4.1, ——→
W�1,0,1,0�

A4.5
b,1,1,�e2,e4� .

A4.3: ——→
I16W�0,0,1,0�

A2.1 � 2A1,�e1,e2,e4�, ——→
I14W�1,0,1,0�

A3.1 � A1,�e1,e3�, ——→
I17W�2,1,0,1�

A4.1.

A4.4: ——→
I13�0�W�1,0,1,1�

A3.1 � A1,�e2�, ——→
W�2,1,0,1�

A4.1, ——→
W�0,1,1,0�

A4.2
1 ,�e1,e4�, ——→

W�0,1,2,0�

A4.5
111.

A4.5
ab1: ——→

a�b,I18W�1,0,1,0�

A3.1 � A1,��1 + b�/ae1 + e2,e3�, ——→
1�a�b�1,I12W�2,1,0,1�

A4.1.

A4.6
ab : ——→

I14W�1,0,1,0�

A3.1 � A1,�e1,e3�, ——→
I20W�2,1,0,1�

A4.1.
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A4.7: ——→
I14W�1,0,1,0�

A3.1 � A1,�e1,e3�, ——→
I21W�1,1,1,0�

A4.1,�e4�, ——→
W�0,1,1,0�

A4.2
2 ,�e1,e4� ,

——→
W�0,0,1,0�

A4.5
2,1,1,�e1,e2,e4�, ——→

W�1,0,1,0�

A4.8
1 ,�e2,e4� .

A4.8
b : ——→

W�0,0,0,1�

A3.1 � A1,�e1,e2,e3�, ——→
b=0,I24W�0,0,0,1�

A3.2 � A1,�e1,e2,e3 + e4� ,

——→
b=0,I13�0�W�0,0,0,1�

A3.3 � A1,�e1,e2,e4�, ——→
b=−1,I13�0�W�1,1,0,1�

A3.4
−1

� A1,�e4� ,

——→
b�1,I25W�1,1,1,0�

A4.1,�e2 − e3�, ——→
−1�b�0,W�0,0,1,0�

A4.5
1+b,1,b,�e1,e2,e4�

——→
0�b1,diag�1,1,1, 1

1+b�W�0,0,1,0�

A4.5
1,1/�1+b�,b/�1+b�,�e1,e2,e4� .

A4.9
a : ——→

W�0,0,0,1�

A3.1 � A1,�e1,e2,e3�, ——→
a=0,I14W�1,1,0,0�

A3.5
0

� A1,�e1,e4� ,

——→
I26W�1,1,1,0�

A4.1,�e2�, ——→
a�0,W�1,1,1,0�

A4.6
2a,a,�e4� .

A4.10: ——→
I13�0�W�1,0,1,1�

A3.1 � A1,�e2�, ——→
U1

A3.2 � A1, ——→
W�0,0,0,1�

A3.3 � A1,�e1,e2,e3� ,

——→
I13W�0,0,0,1�

A3.5
b

� A1,�e1,e2,be3 + e4� , ——→
U2

A4.1, ——→
I13�0�W�1,0,1,0�

A4.8
0 ,�e2,e3� .

The constant parts of matrices of generalized Inönü-Wigner contractions have the form

I1 =

0 0 1 0

0 0 0 1

− 1 0 1 0

0 1 0 1
�, I2 =


1 2 0 0

0 0 1 0

0 1 0 0

0 0 1 1
�, I3 =


0 − 1 0 0

0 0 0 1

− 1 − 1 0 0

0 0 1 1
� ,

I4 =

0 0 0 1

− 1 − 1 0 0

0 0 1 0

0 − 1 0 0
�, I5 =


− 1 0 1 0

0 0 0 1

0 1 0 0

0 0 1 0
�, I6 =


− 1/a 1/�a�a − 1�� 1/�a�a − 1�� 0

0 a 1 0

0 0 0 1

0 0 1 0
� ,

I7 =

1 0 0 0

0 0 1 0

0 − 1 0 0

0 0 0 1
�, I8 =


0 1 0 0

2 0 0 0

0 0 1 0

0 0 0 1
�, I9 =


1 0 − 1/�b2 + 1� 0

0 1 b/�b2 + 1� 0

0 0 0 1

0 0 1 0
� ,
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I10 =

0 0 1/2 0

0 1 0 0

1 0 1/2 0

0 0 0 1
�, I11 =


1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1
�,

I12 =

1/�b − 1� �a − b�−1/�b − 1� �a − b�−1/��a − 1��b − 1�� 0

0 b − 1 1 0

0 0 1 0

0 0 0 1
� ,

I13�b� =

1 0 0 0

0 1 0 0

0 0 b 1

0 0 1 0
�, I14 =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0
�, I15 =


1 − 1/�b − 1� − 1/�b − 1�2 0

0 1 0 0

0 0 1 0

0 0 0 1
� ,

I16 =

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0
�, I17 =


1 1 1 0

0 1 0 0

0 0 1 0

0 0 0 1
�, I18 =


1 �1 + b�/a 0 0

0 1 0 0

0 0 0 1

0 0 1 0
� ,

I19 =

0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 − 1/2
�, I20 =


− 1 0 0 0

0 1 0 0

0 0 0 − 1

0 0 1 0
�,

I21 =

1 ��a − b��a − 1�−1�/�a − b + 1� �a − 1�−1/�a − b + 1� 0

0 0 1 0

0 − 1 0 0

0 0 0 1
� ,

I22 =

− 1/2 0 1/2 1/2

0 1 0 0

− 1/2 0 − 1/2 1/2

0 0 0 1
�, I23 =


0 0 0 1

0 1 0 0

0 0 − 1/2 0

1 0 0 1
�, I24 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 1
� ,

I25 =

1 0 0 0

0 1 0 − 1

0 0 0 1

0 0 1/�b − 1� 0
�, I26 =


− 1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0
�, I27 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 a − 1
� ,

I28 =

− 1 0 0 0

0 0 0 1

0 1 0 − 1

0 0 1 0
�, I29 =


1 0 − 1 0

0 1 1 0

0 0 0 1

0 0 1 0
�, I30 =


1 0 − 1 0

0 1 0 0

0 0 1 0

0 0 0 1
� .
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Remark 10: All the constructed contraction matrices include only non-negative integer pow-
ers of �. Therefore, they admit well-defined limit process under �→ +0. Moreover, most contrac-
tions are equivalent to simple IW-contractions.

All generalized IW-contractions of solvable real four-dimensional algebras �namely, A3.2

� A1, A3.4
a

� A1, A3.5
b

� A1, A4.2
b , b�1, A4.3, A4.4, A4.5

ab1, 1�a�b�1, A4.6
ab � to A4.1 are direct and,

therefore, cannot be presented via composition of simple IW-contractions. The same statement is
true for the contractions of the unsolvable algebras �sl�2,R� � A1 and so�3� � A1� to A4.9

0 . Only
three generalized IW-contractions �so�3� � A1→A3.1 � A1, so�3� � A1→A4.1, and A4.4→A4.5

111� are
decomposed to sequences of simple IW-contractions. The listed contractions exhaust a set of
inequivalent “truly” generalized IW-contractions of the real four-dimensional algebras.

In contrast to three-dimensional Lie algebras, there exist four contractions of four-dimensional
Lie algebras, which are inequivalent to generalized Inönü-Wigner contractions, namely,

A4.10 ——→
U1

A3.2 � A1, 2A2.1 ——→
U2

A3.2 � A1,

A4.10 ——→
U3

A4.1, 2A2.1 ——→
U4

A4.1.

They are provided by the “nondiagonalizable” matrices

U1 =

� 0 0 0

0 1 0 0

0 0 1 �

0 0 � 0
�, U2 =


0 − 1 0 0

0 0 1 �

− � − 1 0 0

0 0 1 + � �
� ,

U3 =

�2 0 0 0

0 � 0 − 1

0 0 � 0

0 0 0 �
�, U4 =


− �2 − � − 1 − 1

0 0 � 0

0 − �2 − � 0

0 0 � �
� .

The matrices U1 and U2 include only the zero and first powers of the contraction parameter.
Therefore, the corresponding contractions are Saletan ones.

Remark 11: The maximal powers of contraction parameter, which are in components of
contraction matrices, can be lowered if the restriction with the class of generalized IW-
contractions in case they exist will be neglected. For example, a generalized IW-contraction from
the algebra so�3� � A1 to A4.9

0 is generated by the matrix I11W�2,1 ,1 ,0� containing components
with the second power of the contraction parameter. At the same time, it is known67 that there
exists the Saletan contraction between these algebras which is provided by the matrix



0 � 0 0

0 0 � 0

− � 0 0 1

− � 0 0 1 − �
�

obviously being of the first power with respect to �.
Another example is given by the contraction so�3�→A1→A4.1. It is generated, as a general-

ized IW-contraction, with the matrix I5W�3,2 ,1 ,1� and has the essential contraction parameter
power which is equal to 3 and is maximal among the generalized IW-contractions of the four-
dimensional Lie algebras. All the other presented generalized IW-contractions contain at most the
second power of the contraction parameter. �The similar situation is in the three-dimensional case
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where the unique truly generalized IW-contraction is the contraction so�3�→A3.1 with the matrix
W�2,1 ,1� containing the second power of �.� The matrix I5W�3,2 ,1 ,1� can be replaced with the
matrix



0 0 � 0

0 − �2 0 0

0 0 0 �

− �2 0 − 1 0
� ,

which has no “generalized IW form” and contains at most the second power of the contraction
parameter.

Remark 12: In each from the following pairs of Lie algebras:

�so�3� � A1,A4.8
−1 �, �so�3� � A1,A3.4

−1
� A1�, �A4.8

−1 ,A3.5
0

� A1�, �A4.9
0 ,A3.4

−1
� A1� ,

�A4.10,A4.3�, �A4.10,A2.1 � 2A1� , �A4.10,A3.4
a

� A1�, �2A2.1,A3.5
b

� A1� ,

the first algebra is contracted to the second one over the complex field. See Sec. IX additionally.
In particular,

A4.10 ——→
I31W�1,1,1,0�

A4.3, A4.10 ——→
I32W�1,1,0,1�

A3.4
a

� A1, 2A2.1 ——→
I33W�0,0,0,1�

A3.5
b

� A1,

where

I31 =

− i i 0 − i

1 1 0 − 1

0 0 1/2 1/2

0 0 1/2 − i/2
�, I32 =


i − 1 0 0

i 1 0 0

0 0 �1 + a�/2 − i�1 + a�/2
0 0 − 1/2 − i/2

�,

I33 =

− i/2 − 1/2 0 0

0 0 b + i 1

− i/2 1/2 0 0

0 0 b − i 1
� .

Therefore, almost all necessary criteria hold true since they do not discriminate between the
real and complex fields. At the same time, there are no real contractions in these pairs. To prove
it, we have to apply criteria specific for the real numbers, e.g., Criterion 16 which is based on the
law of inertia of quadratic forms over the real field.

For the first four pairs it is enough to consider only their Killing forms. �so�3��A1
=−2�u1v1

+u2v2+u3v3�, �A3.5
0

�A1
=−2u3v3, and �A4.9

0 =−2u4v4 are nonpositively defined. �A4.8
−1 =2u4v4 and

�A3.4
−1

�A1
=2u3v3 are non-negatively defined. All the above forms do not vanish identically. There-

fore, in each of these pairs an algebra has the nonpositively defined nonzero Killing form and the
other does the non-negative defined nonzero one. In view of necessary Criterion 16, there are no
contractions in these pairs.

The criterion based on inertia of the Killing forms is powerless for the algebras from the other
pairs. For them we consider the modified Killing forms with the specially chosen value

=−1/2:

�̃A4.10

−1/2 = �2�1 + 2
�u3v3 − 2u4v4�
=−1/2 = − 2u4v4,

�̃A3.5
b

�A1

−1/2 = �2��1 + 2
�b2 − 1�u3v3�
=−1/2 = − 2u3v3,
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�̃A4.3

−1/2 = ��1 + 
�u4v4�
=−1/2 =
1

2
u2v2, �̃A2.1�2A1

−1/2 = ��1 + 
�u2v2�
=−1/2 =
1

2
u4v4,

�̃A3.4
a

�A1

−1/2 = ���1 + a2� + 
�1 + a�2�u3v3�
=−1/2 =
1

2
�1 − a + a2�u3v3,

�̃2A2.1

−1/2 = ���1 + 
��u2v2 + u4v4� + 
�u2v4 + u4v2���
=−1/2 =
1

2
��u2v2 + u4v4� − �u2v4 + u4v2�� .

Two first forms are nonpositively defined and nonzero. The others are non-negatively defined and
also do not vanish identically. In view of the second part of Criterion 16, there are no contractions
in the pairs under consideration.

C. Levels and colevels of low-dimensional real Lie algebras

Contractions assign the partial ordering relationship on the variety Ln of n-dimensional Lie
algebras. Namely, we assume that g�g0 if g0 is a proper contraction of g. The introduced strict
order is well defined due to the transitivity property of contractions. If improper contractions are
allowed in the definition of ordering then the partial ordering becomes nonstrict.

The order � generates separation of Ln to tuples of levels of different types.
Definition 7: The Lie algebra g from Ln belongs to the zero level of Ln if it has no proper

contractions. The other levels of Ln are defined by induction. The Lie algebra g belongs to k level
of Ln if it can be contracted to algebras from �k−1� level and only to algebras from the previous
levels.

Remark 13: We have recently become aware due to Ref. 47 that the notion of level was
introduced and investigated by Gorbatsevich.27–29 He also proposed another notion of level based
on interesting generalization of contractions to case of different dimensions of initial and con-
tracted algebras, which is reviewed in the Introduction.

The zero level of Ln for any n contains exactly one algebra, and it is the n-dimensional
Abelian algebra which is the unique minimal element in Ln. The elements of the last level are
maximal elements with respect to the ordering relationship induced by contractions in Ln but do
not generally exhaust the set of maximal elements of Ln.

Obtained exhaustive description of contractions of low-dimensional Lie algebras allows us to
completely study levels of these algebras.

L1 consists of one element and has only one algebra level. Analogously, L2 is formed by two
elements and is separated by contractions into exactly two levels. The first level consists of the
two-dimensional non-Abelian algebra A2.1 and the zero level does the two-dimensional Abelian
algebra 2A1.

The hierarchies of levels of real three- and four-dimensional Lie algebras are more compli-
cated. Actually, they are already represented in Figs. 1 and 2, where the level number grows
upward. It is the usage of the level ideology that makes the figures clear and elucidative. L3 and
L4 have four and six levels, correspondingly.

Remark 14: Structure of Lie algebra is simplified under contraction. The level number of an
algebra can be assumed as a measure of complexity of its commutation structure, i.e., algebras
with higher level numbers are more complicated than those with lower level numbers. In particu-
lar, nilpotent algebras are in low levels. The simple algebras sl�2,R� and so�3� having the most
complicated structures among three-dimensional algebras form the highest three level of L3. The
highest six level of L4 is formed by the unsolvable algebras sl�2,R� � A1 and so�3� � A1 and the
perfect �by Jacobson44� algebras 2A2.1 and A4.10.

Remark 15: There exists an inverse correlation of level numbers with dimensions of differ-
entiation algebras �or a direct correlation with dimensions of algebra orbits�, which is connected
with necessary Criterion 1. As a rule, the algebras with the same dimension of differentiation
algebras belong to the same level. The dimensions of differentiation algebras of the algebras from
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k level are not less and generally greater than those of the algebras from �k+1� level.
For the three-dimensional Lie algebras the correlation is complete. Namely, the dimension of

differentiation algebra takes the values of 9, 6, 4, and 3 for the algebras from zero-, one-, two-, and
three-levels, correspondingly.

In L4 the correlation is partially broken. Namely, for almost all algebras from three-level the
dimensions of the differentiation algebras equal to 6 and only the algebra A4.8

1 which also belongs
to this level has seven-dimensional differentiation algebra. The same happens in two level. Almost
all algebras have eight-dimensional differentiation algebras except the algebra A4.1 with seven-
dimensional differentiation algebra. In other words, the four-dimensional Lie algebras with
dim Der=7 are separated between the second and third levels, and the “simpler” nilpotent algebra
A4.1 belongs to the lower level. The algebras A4.5

111 �dim Der=12� and A3.1 � A1 �dim Der=10� form
one-level. In all other cases the correlation is complete. Zero-, five-, and six-levels consist of the
algebras having 16-, 5-, and 4-dimensional differentiation algebras, correspondingly.

Starting from the Lie algebras which are not proper contractions of any Lie algebras, we can
introduce the related definition of colevel.

Definition 8: The Lie algebra g from Ln belongs to the zero colevel of Ln if it is not a proper
contraction of any n-dimensional Lie algebra. The other colevels of Ln are defined by induction.
The Lie algebra g belongs to a colevel of Ln if it is a proper contraction only of algebras from the
previous colevels.

Zero colevel coincides with the set of maximal elements with respect to the order induced by
contractions in Ln, i.e., it is formed by the algebras which are not proper contractions of the other
algebras from Ln. The last colevel of Ln for any n contains exactly one algebra, and it is the
n-dimensional Abelian algebra.

For the lowest dimensions structures of levels and colevels are analogous. L1 has only zero
colevel which obviously coincides with zero level. L2 is separated by contractions into exactly two
colevels. The zero and first colevels coincide with the first and zero levels, correspondingly.

The hierarchies of colevels of real three- and four-dimensional Lie algebras differ from the
hierarchies of levels and adduced below.

Colevels of three-dimensional algebras:

�0� A2.1 � A1, A3.2, A3.4
a , a�−1, A3.5

b , b�0, sl�2,R�, so�3�;
�1� A3.3, A3.4

−1 , A3.5
0 ;

�2� A3.1; and
�3� 3A1.

Colevels of four-dimensional algebras:

�0� 2A2.1, sl�2,R� � A1, so�3� � A1, A4.2
b , b�1,2, A4.4, A4.6

ab , a�2b, A4.7, A4.8
b , b�0, ±1, A4.9

a , a
�0, A4.10, A4.5

abc, a�b�c�a ,b�a+1;
�1� A3.4

a
� A1, a�−1, A3.5

b
� A1, b�0, A4.2

1 , A4.2
2 , A4.3, A4.5

a,a+1,1, a�1, A4.5
a11, a�1,2, A4.6

2b,b, A4.8
−1 ,

A4.8
0 , A4.8

1 , A4.9
0 ;

�2� A2.1 � 2A1, A3.2 � A1, A3.4
−1

� A1, A3.5
0

� A1, A4.5
111, A4.5

211;
�3� A3.3 � A1, A4.1;
�4� A3.1 � A1; and
�5� 4A1.

Remark 16: The levels and colevels of Ln are related. The numbers of levels and colevels of
Ln coincide and equal to the maximal length of chains of direct contractions. If a fixed Lie algebra
g from Ln belongs to k1 level and k2 colevel then k1+k2n2−n.

Remark 17: Correlation of colevel numbers with dimensions of differentiation algebras �or
orbit dimensions� is essentially weaker than for level numbers. For each separated part of series of
Lie algebras the orbit dimension of the whole part should be used here. It equals the sum of orbit
dimension of single algebras from this part and the number of essential parameters parametrizing
this part. Even for the three-dimensional Lie algebras the correlation is broken in some cases. For
example, the orbit dimensions of the algebras A3.1 and A3.3 equal to 3 and they belong to different
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colevels. In spite of such weak correlation, the notion of colevel is useful in studying geometrical
structure of Ln. In particular, more regular �i.e., having less constraints on parameters� parts of
series of Lie algebras have less colevel numbers than more singular ones.

Analyzing obtained results for dimensions three and four, we induce a number of conjectures.
Testing and proof of them are out of the subject of this paper. We have recently learned that some
of them are already proven.28,47 We unite known statements in the following theorem. Let aEn−1

be
the almost Abelian algebra which contains an �n−1�-dimensional Abelian ideal and an element the
adjoint action of which on the ideal is the identical operator En−1.

Theorem 3: For any n�2 one level of Ln is formed by the algebras A3.1 � �n−3�A1 and aEn−1
.

IX. ONE-PARAMETRIC CONTRACTIONS OF COMPLEX LOW-DIMENSIONAL
LIE ALGEBRAS

Some algebras which are inequivalent over the real field could be representatives of the same
class of algebras over the complex field.

Below we list pairs of real three- and four-dimensional Lie algebras which are isomorphic or
belong to the same series over the complex field. For each of them we present the corresponding
complex algebra �or series� together with the appropriate basis transformation in case it is non-
identical. The list is completed by the pairs of the direct sums �A3.4

a
� A1 ,A3.5

b
� A1� and �sl�2,R�

� A1 , so�3� � A1� isomorphisms of which become obvious. Any complex indecomposable solvable
algebra is denoted by gn·k, where n is the dimension of the algebra and k is the number of the real
algebra with the same form of canonical commutation relations.

g3.4

 ,


 � C �A3.5
b , ẽ1 = e1 + ie2, ẽ2 = e1 − ie2, ẽ3 =

1

b + i
e3, 
 =

b − i

b + i

A3.4
a , 
 = a ,

�
sl�2,C��so�3� , ẽ1 = − ie2 + e3, ẽ2 = − ie1, ẽ3 = ie2 + e3

sl�2,R� ,
�

g4.5
1,
,�,


,� � C �A4.6
a,b, ẽ1 = e1, ẽ2 = e2 − ie3, ẽ3 = e2 + ie3, ẽ4 =

1

a
e4, 
 =

b − i

a
, � =

b + i

a

A4.5
1,b,c, 
 = b, � = c ,

�
g4.8

� ,

� � C �A4.9
a , ẽ1 = − e1, ẽ2 = e2 + ie3, ẽ3 = −

i

2
e2 −

1

2
e3, ẽ4 =

1

a + i
e4, � =

a − i

a + i

A4.8
b , � = b ,

�
2g2.1�A4.10, ẽ1 = ie1 − e2, ẽ2 =

1

2
e3 −

i

2
e4, ẽ3 = ie1 + e2, ẽ4 =

1

2
e3 +

i

2
e4

2A2.1.
�

Knowledge of the correspondences between real and complex Lie algebras allows us to
describe all continuous contractions of the complex low-dimensional Lie algebras. The corre-
sponding lists are produced from the analogous lists for the real low-dimensional Lie algebras by
accurate elimination of algebras which are equivalent to other forms over the complex field. The
contraction matrices are preserved. The contractions of three- and four-dimensional complex al-
gebras are visualized with Figs. 3 and 4. The one- and two-dimensional cases are trivial and are
not considered.

Theorem 4: Any continuous contraction of complex three-dimensional Lie algebras is equiva-
lent to a simple Inönü-Wigner contraction.
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In four-dimensional case only the contractions 2g2.1→g3.2 � g1 and 2g2.1→g4.1 are not pre-
sented as generalized Inönü-Wigner contractions. All the constructed contraction matrices include
only non-negative integer powers of �. Therefore, they admit well-defined limit process under �
→ +0.

A list of continuous contractions of the complex three-dimensional Lie algebras was adduced,
e.g., in Refs. 2, 9, and 71 in terms of orbit closures. It obviously coincides with that presented in
Fig. 3. In Refs. 9 and 71 and later in Ref. 1 contractions of the four-dimensional complex Lie
algebras are also investigated. Comparing these results with ours, at first we determine correspon-
dence between the used lists of algebras. To avoid confusions, we add hats over the symbol g

denoting algebras from Ref. 9. Note also that the list used in Ref. 9 is essentially based on
classification obtained in Ref. 62.

FIG. 3. One-parametric contractions of three-dimensional complex Lie algebras.

FIG. 4. One-parametric contractions of four-dimensional complex Lie algebras.
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4g1 � C4, g4.1 � n4,

g2.1 � 2g1 � r2 � C2, g4.2
1 � ĝ5, g4.2

−2 � ĝ3�27

4
, g4.2

b�1,−2 � ĝ2� b

�b + 2�3 ,
2b + 1

�b + 2�2 ,

2g2.1 � r2 � r2, g4.3 � ĝ2�0,0� ,

g3.1 � g1 � n3 � C, g4.4 � ĝ2� 1

27
,
1

3
 ,

g3.2 � g1 � r3 � C, g4.5
a11 � ĝ1�a� ,

g3.3 � g1 � r3,1 � C, g4.5
ab1 � ĝ2�
,��,ĝ3���,ĝ4, 1 � a � b � 1, ab � 0,

g3.4
a

� g1 � r3,a � C, a � 1, g4.7 � ĝ8�1

4
 ,

sl�2,C� � g1 � sl2�C� � C, g4.8
1 � ĝ6, g4.8

−1 � ĝ7, g4.8
b�±1 � ĝ8� b

�b + 1�2 .

Let us give more details on the algebra series �g4.5
abc ,abc�0�. The parameter tuples �a ,b ,c� and

�a� ,b� ,c�� are associated with the same algebra if they are proportional up to a permutation. The
algebra g4.5

ab1, 1�a�b�1, ab�0, corresponds to

ĝ2�
,��, where 
 =
ab

�a + b + 1�3 and � =
ab + a + b

�a + b + 1�2 , if a + b + 1 � 0,

ĝ3���, where � = −
�ab − 1�3

a2b2 , if a + b + 1 = 0, ab � 1,

ĝ4 if a + b + 1 = 0, ab = 1.

.
In Ref. 1 a special classification of four-dimensional complex Lie algebras was used under

study of contractions. Correspondences between ours and Agaoka’s lists of inequivalent algebras
are the following:

L0 � 4g1, L1 � g3.1 � g1, L2 � g4.1, L3 � g4.5
111, L5 � g4.8

1 , L6 � sl�2,C� � g1,

L4�a� � g4.5
a11, a � 0,1, L4�0� � L7�0,1� � g3.3 � g1, L4�1� � g4.2

1 , L4��� � g2.1 � 2g1,

L7�a,b� � g4.5
ab1, 1 � a � b � 1, ab � 0, L7�a,1� � g4.2

a , a � 0,1, L7�1,1� � g4.4,

L7�a,0� � g3.4
a

� g1, a � 0,1, L7�1,0� � g3.2 � g1, L7�0,0� � g4.3,

L8�a� � g4.8
a , a � 1, L8�1� � g4.7, L9 � 2g2.1.

It is easy to see from the performed comparisons that our list of contractions coincides with
the ones adduced in Refs. 1, 9, and 71.
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X. MULTIPARAMETRIC, DECOMPOSABLE, AND REPEATED CONTRACTIONS

One-parametric contractions exhaust the set of continuous contractions. At the same time
other types of contractions are also useful, in particular, for finding one-parametric contractions.
Consider a class of continuous contractions which generalizes one-parametric ones, namely, the
class of multiparametric contractions, following the notations and spirit of Sec. II.

Let U : �0,1�m→GL�V�, i.e., U�̄=U��1 , . . . ,�m� is a nonsingular linear operator on V for any
�̄� �0,1�m. Here m�N, �̄ is the tuple of the parameters �1 , . . . ,�m. We define a parametrized
family of new Lie brackets on V via the old one by the following way:

∀ �̄ � �0,1�m, ∀ x,y � V: �x,y��̄ = U�̄
−1�U�̄x,U�̄y� .

For any �̄� �0,1�m the Lie algebra g�̄= �V , �· , · ��̄� is isomorphic to g.
Definition 9: If the limit lim�̄→+0̄�x ,y��̄=lim�̄→+0̄ U�̄

−1�U�̄x ,U�̄y�¬ �x ,y�0 exists for any x ,y
�V then the Lie bracket �· , · �0 is well defined. The Lie algebra g0= �V , �· , · �0� is called a multi-
parametric (continuous) contraction of the Lie algebra g.

The notation �̄→ +0̄ means �l→ +0, l=1, . . . ,m.
If a basis of V is fixed, the operator U�̄ is defined by the corresponding matrix �we will use the

notation U�̄ for the matrix also� and Definition 9 can be reformulated in terms of structure
constants.

Definition 9�: If the limit lim�̄→+0̄�U�̄�i�
i �U�̄� j�

j �U�̄
−1�k

k�cij
k
¬ c̃i�j�

k� exists for all values of i�, j�,

and k� then c̃i�j�
k� are components of the well-defined structure constant tensor of a Lie algebra g0.

In this case the Lie algebra g0 is called an m-parametric (continuous) contraction of the Lie
algebra g. The parameters �1 , . . . ,�m and the matrix function U�̄ are called contraction parameters
and a contraction matrix, correspondingly.

Remark 18: Any multiparametric contraction generates a set of strongly equivalent �in the
sense of Definition 4� one-parametric contractions via replacement �i= f i��� of the parameters �̄ by
functions of one parameter �. For the replacement to be correct, the functions f i : �0,1�→ �0,1�
should be monotonic, continuous and f i���→ +0, �→ +0.

It is obvious that the notion of orbit closure9 is transitive. The same statement is true for
one-parametric contractions. Due to the transitivity, we can easily construct new continuous con-
tractions from the ones adduced in Sec. VIII. But simple multiplication of the matrices of succes-
sive contractions does not give the matrix of the resulting contraction. Below we introduce nec-
essary notions concerning successive contractions and discuss significant examples.

Let the algebra g2 be contracted with the matrix U1��1� , . . . ,�m1
� � to the algebra g1 which is

further contracted with the matrix U2��1� , . . . ,�m2
� � to the algebra g0. If the matrix

U1��1�, . . . ,�m1
� �U2��1�, . . . ,�m2

� �

provides an �m1+m2�-parametric contraction from g2 to g0 then this contraction is called compo-
sition of two initial contractions.

Definition 10: A multiparametric contraction is called decomposable if it can be presented as
a composition of two proper multiparametric contractions.

More precisely, an m-parametric contraction from the algebra g to the algebra g0 is decom-
posable if and only if there exists an algebra g1 �nonisomorphic to g and g0� such that the
contraction from g to g0 can be presented as a composition of m1-parametric contraction from g to
g1 and m2-parametric contraction from g1 to g0, where m1+m2=m.

Definition 11: An m-parametric contraction is called completely decomposable if it can be
presented as a composition of m one-parametric contractions.

Any two-parametric decomposable contraction is obviously completely decomposable.
Definition 12: If there exist two one-parametric contractions from g to g1 and from g1 to g0

then g0 is called a repeated contraction of g.
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Analogously, any l-repeated contraction is a result of l one-parametric successive contractions.
The notion of repeated multiparametric contractions can also be introduced in a similar way.

The above definition can be justified in the following way. Let U1��1� and U2��2� be the
contraction matrices of one-parametric contractions from g to g1 and from g1 to g0 correspond-
ingly and U�̄=U1��1�U2��2�, where �̄= ��1 ,�2�. Then there exists the repeated limit

lim
�2→+0

� lim
�1→+0

�U�̄�i�
i �U�̄� j�

j �U�̄
−1�k

k�cij
k ¬ c̃i�j�

k�

for all values of i�, j�, and k�, i.e., c̃i�j�
k� are components of the well-defined structure constant

tensor of the Lie algebra g0.
Remark 19: If the repeated limit can be replaced by the well-defined simultaneous limit

lim
�̄→+0̄

�U�̄�i�
i �U�̄� j�

j �U�̄
−1�k

k�cij
k = lim

�2→+0
� lim

�1→+0
�U�̄�i�

i �U�̄� j�
j �U�̄

−1�k
k�cij

k 
with �̄= ��1 ,�2�, then the repeated contraction turns into completely decomposable multiparamet-
ric contraction.

Example 4: Consider the algebra pair �so�3� � A1 ,A4.1�. In view of the necessary contraction
criteria, the algebra so�3� � A1 may be contracted to A4.1. It is difficult to construct a contraction
matrix for this pair by the direct algorithm. Instead of this, we study repeated contractions from
so�3� � A1 to A4.1 in detail. It is easy to see due to the level structure of the real four-dimensional
Lie algebras �Fig. 2� that there are two different ways for the repeated contractions, which are
associated with intermediate algebras A3.5

0
� A1 and A4.9

0 .
The generalized Inönü-Wigner contractions from so�3� � A1 to A3.5

0
� A1 and from A3.5

0
� A1 to

A4.1 are provided by the matrices U1=diag��1 ,�1 ,1 ,1� and U2= I9�b�diag��2
2 ,�2 ,1 ,�2�, corre-

spondingly. Their product

U�̄ = U1��1�U2��2� = diag��1,�1,1,1�I9�0�diag��2
2,�2,1,�2�

gives a matrix-valued function of two variables �̄= ��1 ,�2�. Let us investigate how the contraction
generated by the matrix U�̄ acts on the algebra so�3� � A1.

The matrix U�̄ and its inverse matrix U�̄
−1 have the explicit forms

U�̄ =

�1�2

2 0 − �1 0

0 �1�2 0 0

0 0 0 �2

0 0 1 0
�, U�̄

−1 =

�1�2

−2 0 0 �2
−2

0 �1
−1�2

−1 0 0

0 0 0 1

0 0 �2
−1 0

� .

We calculate all the different �up to antisymmetry� transformed commutators of the canonical
basis elements of the algebra so�3� � A1 using the formula �ei ,ej��̄=U�̄

−1�U�̄ei ,U�̄ej� and the ca-
nonical commutation relations �e1 ,e2�=e3, �e2 ,e3�=e1, and �e3 ,e1�=e2:

�e1,e2��̄ = �1
2�2

2e4, �e1,e4��̄ = − �2
2e2, �e2,e3��̄ = �1

2e4,

�e1,e3��̄ = 0, �e2,e4��̄ = e1, �e3,e4��̄ = e2.

Under the repeated limit �1→ +0 and then �2→ +0 these commutation relations go to the
canonical ones of the Lie algebra A4.1, i.e., composition of two successive one-parametric con-
tractions results in the repeated contraction from so�3� � A1 to A4.1. Moreover, the simultaneous

limit �̄= ��1 ,�2�→ 0̄ exists for the transformed structure constants. It implies in view of Remark 19
that the matrix U�̄ also gives the completely decomposable two-parametric contraction from
so�3� � A1 to A4.1. After putting �1=�2¬�, we construct a well-defined one-parametric contraction
between the algebras under consideration. Unfortunately, it is not a generalized IW-contraction.
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Consider the way via the algebra A4.9
0 . The generalized Inönü-Wigner contractions from

so�3� � A1 to A4.9
0 and from A4.9

0 to A4.1 are provided by the matrices U1= I11 diag��1
2 ,�1 ,�1 ,1� and

U2= I26 diag��2 ,�2 ,�2 ,1�, correspondingly. The repeated limit �1→ +0 and then �2→ +0 in the
commutation relations

�e1,e2��̄ = �1
2�2

2e4, �e1,e4��̄ = − �1
2e2, �e2,e3��̄ = �2

2e4,

�e1,e3��̄ = 0, �e2,e4��̄ = e1, �e3,e4��̄ = e2

obtained by transformation of the canonical relations of so�3� � A1 with the matrix

U�̄ = U1��1�U2��2� =

− �1

2�2 0 �2 0

0 0 0 �1

0 �1�2 0 0

0 0 �2 0
�

results in the canonical commutation relations of A4.1. The simultaneous limit �̄= ��1 ,�2�→ 0̄ also
exists. After putting �1=�2¬�, we construct the matrix

U�,� =

− �3 0 � 0

0 0 0 �

0 �2 0 0

0 0 � 0
� = I5 diag��3,�2,�,��

of a well-defined one-parametric generalized IW-contraction so�3� � A1→A4.1. Note that possibil-
ity of IW decomposition of the matrix U�,� into the product of a constant matrix and a diagonal
matrix with powers of � on the diagonal is obvious since the elements of any column of U�,�

contain the same power of �.
In fact, a regular procedure for construction of generalized IW-contractions via repeated

contractions is described in Example 4.
The repeated contractions of Example 4 lead to well-defined decomposable multiparametric

contraction. This fact is not true in the general case that is illustrated by the next example.
Example 5: We failed to construct a generalized Inönü-Wigner contraction between the alge-

bras 2A2.1 and A4.1. At the same time, there exist the one-parametric generalized Inönü-Wigner
contractions from 2A2.1 to A4.3 and from A4.3 to A4.1 with the contraction matrices
U1= I28 diag�0,�1 ,�1 ,0� and U2= I17 diag��2

2 ,�2 ,1 ,�2�, correspondingly. Product of these matrices,

U�̄ = U1��1�U2��2� = I28 diag�1,�1,�1,1�I17 diag��2
2,�2,1,�2� ,

defines a matrix-valued function of two variables �̄= ��1 ,�2�. The matrix U�̄ and its inverse matrix
U�̄

−1 have the explicit forms

U�̄ =

− �2

2 − �2 − 1 0

0 0 0 �2

0 �1�2 0 − �2

0 0 �1 0
�, U�̄

−1 =

− �2

−2 − �1
−1�2

−2 − �1
−1�2

−2 − �1
−1�2

−2

0 �1
−1�2

−1 �1
−1�2

−1 0

0 0 0 �1
−1

0 �2
−1 0 0

� .

The nonzero canonical commutation relations of the algebra 2A2.1 are �e1 ,e2�=e1, �e3 ,e4�=e3. We
calculate all different �up to antisymmetry� transformed commutators of the basis elements using
the formula �e1 ,e2��̄=U�̄

−1�U�̄e1 ,U�̄e2�:

�e1,e4��̄ = �2e1, �e2,e3��̄ = −
�1

�2
e1 + �1e2,
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�e1,e2��̄ = 0, �e1,e3��̄ = 0, �e2,e4��̄ = e1, �e3,e4��̄ = e2.

The transformed commutation relations go to the canonical ones of the Lie algebra A4.1 only under

the repeated limit �1→ +0 and then �2→ +0. The simultaneous limit �̄→ 0̄ does not exist, i.e., the
repeated contraction does not result in a multiparametric one in this case. Therefore, to derive a
matrix of one-parametric contraction, we have to constrain the parameters �1 and �2 in a special
way. Namely, the condition �1= f��2�=o��2�, �2→ +0 guarantees that the one-parametric contrac-
tion with the matrix Uf���,� exists and the resulting algebra has the same commutation relations as
in the case of the repeated contraction. We put �1=�2

2. The matrix U�2,� gives a well-defined
one-parametric contraction between the algebras 2A2.1 and A4.1 under �→ +0:

�e1,e4�� = �e1 → 0, �e2,e3�� = −
�2

�
e1 + �e2 → 0,

�e1,e2�� = 0, �e1,e3�� = 0, �e2,e4�� = e1, �e3,e4�� = e2.

The matrix U�,� also provides a well-defined one-parametric contraction. Although the ob-
tained commutation relations differ from the ones in the case of the repeated contraction, the
resulting algebra is isomorphic to A4.1 via the matrix

I31 =

1 0 0 0

0 − 1 0 0

0 0 1 1

0 0 1 0
� .

Finally, the matrix U4=U�,�I31 the explicit form of which is adduced in Remark 10 generates the
contraction 2A2.1→A4.1 in the canonical bases. It is not a generalized Inönü-Wigner contraction.

Note also that there are other possibilities for repeated contractions from 2A2.1 to A4.1. The
algebras A4.8

0 , A3.2 � A1, and A3.4
a

� A1 can be used as intermediate ones similar to A4.3.
What is a condition for repeated contractions to produce well-defined decomposable multi-

parametric contractions? What is a way in order to obtain corresponding one-parametric contrac-
tions otherwise?

Let Lie algebras in the pairs �g , ĝ� and �ĝ , g̃� be connected by the one-parametric contractions

with the matrices Û�̂ and Ũ�̃, cij
k , ĉi�j�

k� , and c̃i�j�
k� be components of the structure constant tensors of

the algebras g, ĝ, and g̃, correspondingly, U�̄= Û�̂Ũ�̃, where �̄= ��̂ , �̃�. In view of the contraction
definition,

lim
�̂→+0

�Û�̂�i�
i �Û�̂� j�

j �Û�̂
−1�k

k�cij
k = ĉi�j�

k� , lim
�̃→+0

�Ũ�̃�i�
i��Ũ�̃� j�

j��Ũ�̃
−1�k�

k�ĉi�j�
k� = c̃i�j�

k� ,

and therefore we have the repeated contraction

lim
�̃→+0

�Ũ�̃�i�
i��Ũ�̃� j�

j��Ũ�̃
−1�k�

k�� lim
�̂→+0

�Û�̂�i�
i �Û�̂� j�

j �Û�̂
−1�k

k�cij
k � = lim

�̃→+0
� lim

n̂→+0
�U�̄�i�

i �U�̄� j�
j �U�̄

−1�k
k�cij

k � = c̃i�j�
k� .

The latter condition is rewritten in the tautological form

lim
�̃→+0

� lim
�̂→+0

gi�j�
k� ��̄�� = 0,

where

gi�j�
k� ��̄� = g̃i�j�k�

k�i�j���̃�ĝk�
i�j���̂� ,
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g̃i�j�k�
k�i�j���̃� = �Ũ�̃�i�

i��Ũ�̃� j�
j��Ũ�̃

−1�k�
k�, ĝk�

i�j���̂� = �Û�̂�i�
i �Û�̂� j�

j �Û�̂
−1�k

k�cij
k − ĉi�j�

k� .

If the repeated limit in the tautological equation can be correctly replaced by the simultaneous

limit �̄→ +0̄ or a simple limit with constrained values of �1 and �2 then the matrix U�̄ results in
a well-defined multi- or one-parametric contraction. More precisely, the following statement is
obviously true.

Lemma 4: The matrix U�̄= Û�̂Ũ�̃ �or Uf̄���= Ûf̂���Ũf̃���, where f̂ , f̃ : �0,1�→ �0,1� are continu-

ous monotonic functions, f̂ , f̃ →0, �→ +0� gives a multiparametric (one-parametric) contraction
of the algebra g to the algebra g̃ iff

lim
�̄→+0

gi�j�
k� ��̄� = 0 � lim

�→+0
gi�j�

k� � f̂���, f̃���� = 0� .

Corollary 1: If the functions g̃i�j�k�
k�i�j���̃� are bounded for any values of indices under �̃→ +0

then the matrix U�̄= Û�̂Ũ�̃ generates a two-parametric contraction of the algebra g to the algebra
g̃.

Theorem 5: Let the algebra g be contracted to the algebra ĝ with the matrix Û�̂ and the

algebra ĝ be contracted to the algebra g̃ with the matrix Ũ�̂. Then there exists a continuous

monotonic function f : �0,1�→ �0,1�, f →0, �→ +0, such that the matrix Ǔ�= Ûf���Ũ� results in a
one-parametric continuous contraction from the algebra g to the algebra g̃.

Proof: Since g̃i�j�k�
k�i�j� are continuous functions for any values of indices then for any p�N there

exists �p�0 that g̃i�j�k�
k�i�j������p if �� �1/ �p+1� ,1 / p�. Hereafter we assume that the indices

i , j ,k , . . . run the whole range from 1 to n. In view of ĝk�
i�j���̂�→0 under �̂→ +0, for any p�N

there exists �p� �0,1� that �gk�
i�j���̂���n−3p−1 min�1,�p

−1� if �̂� �0,�p�. Without loss of generality
we put �1��2�¯. Then the desired function f can be defined by the formula

f��� = p�p��p + 1�� − 1� − �p + 1��p+1�p� − 1�, � � � 1

p + 1
,
1

p
�, p � N .

�

Theorem 6: Let the algebra g be contracted to the algebra ĝ with the matrix Û�̂, the algebra

ĝ be contracted to the algebra g̃ with the matrix Ũ�̂, and the coefficients of Û�̂ and Ũ�̂ be expanded
in Laurent series in a neighborhood of 0. Then there exists a positive integer � such that the matrix

Ǔ�= Û��Ũ� generates a one-parametric continuous contraction from g to g̃.

Proof: In view of conditions of the theorem, the functions g̃i�j�k�
k�i�j� and ĝk�

i�j� are also expanded in

Laurent series in a neighborhood of 0. Since ĝk�
i�j���̂�→0 under �̂→ +0 then ĝk�

i�j���̂�=O��̂� under

�̂→ +0. Let � be the maximal module of powers in singular parts of g̃i�j�k�
k�i�j�. Then �=�+1 is the

desired positive integer. �

Corollary 2: If the contractions g→ ĝ and ĝ→ g̃ are generated by matrices with coefficients
being polynomial in the contraction parameters then the corresponding contraction g→ g̃ can also
be realized with a matrix of the same kind.

XI. CONCLUSION

We study the contractions of low-dimensional Lie algebras using inequalities between alge-
braic quantities of initial and contracted algebras. These inequalities are necessary conditions for
contraction existence and are collected as a list of criteria in Theorem 1. In addition to a number
of previously known criteria, we formulate several new ones which concern ranks of adjoint
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representation, ranks and the inertia law of Killing and modified Killing forms, dimensions of
radicals and nilradicals, etc. Criterion 16 is most important among the new criteria since it tells the
real and complex cases apart.

Due to wide variety the adduced criteria allow us to work with contractions effectively. As a
result, complete sets of inequivalent continuous contractions of real and complex Lie algebras of
dimensions not greater than 4 are constructed. Obtained results are presented in Secs. VIII and IX.
The lists of contractions of three- and four-dimensional Lie algebras are supplied with the explicit
forms of the contraction matrices and are illustrated by diagrams. Since contractions assign the
partial ordering relationship on the variety Ln of n-dimensional Lie algebras, the levels and
colevels of low-dimensional Lie algebras are also discussed in detail.

Analysis of obtained results shows that any one-parametric contraction of a real or complex
three-dimensional algebra is equivalent to a generalized Inönü-Wigner contraction. Contractions
of four-dimensional Lie algebras except only four and two cases over the real and complex fields
correspondingly are also represented via generalized IW-contractions. Accurate proof on impos-
sibility of such representation for the exceptional cases is based on exhaustive study of filtrations
on the initial algebras and is not presented in our paper. A sketch of the proof for the contraction
2g2.1→g4.1 was adduced in Ref. 9.

All constructed contraction matrices include only non-negative powers of contraction param-
eters, i.e., there exist limits of the contraction matrices under �→ +0. It seems that this phenom-
enon is broken for higher dimensions at least in the class of generalized IW-contractions. Thus, it
is stated in Ref. 76 that a generalized IW-contraction of the algebra A5.38 ��e1 ,e4�=e1, �e2 ,e5�
=e2, �e4 ,e5�=e3� to the algebra 2A2.1 � A1 necessarily contains negative powers of contraction
parameters.

An important by-consequence of complete knowledge on limit processes between Lie alge-
bras is creation of additional possibilities in studying the variety formed by these algebras. Struc-
ture of the variety Ln�C� of n-dimensional complex Lie algebras is well known for any n from 1
to 7.13,30,45,59 �Note that some property of the variety of n-dimensional nilpotent Lie algebras over
an algebraically closed filed were first investigation by Vergne.72–74� Over the real field we observe
the natural effect of component bifurcation in comparison with the complex case. Thus, L3�R� has
four irreducible �over R� components

O�sl�2,R��, O�so�3��, �aO�A3.4
a �, �bO�A3.5

b �

having the same dimension of 6. L4�R� consists of eight irreducible �over R� components

O�sl�2,R � A1��, O�so�3� � A1�, O�2A2.1�, O�A4.10� ,

�a�1O�A4.8
a �, �aO�A4.9

a �, �1�a�b�1O�A4.5
ab1�, �a,bO�A4.6

ab �

each of which is 12 dimensional. Here the series parameters are assumed to satisfy usual normal-
ization conditions of this Lie algebra classification.55,65,66 Precise description of structure of the
variety Ln�R� for small n’s will be a subject of a further paper.

Fulfilled investigation does not only solve previously posed problems but also generates new
ones. We remark only on some of them.

A family of new problems concerns necessary contraction criteria. Is the adduced list of
criteria sufficient in the case of higher dimensions for separating all the pairs of Lie algebras the
first of which is contracted to the other? What is a sufficient list to do it for a fixed dimension n,
e.g., n=5? Are there sufficient lists which are suitable for an arbitrary dimension? And if such lists
exist, what list is minimal? Will Criterion 16 based on the inertia law of Killing and modified
Killing forms tell the real and complex cases apart for an arbitrary dimension similar to the low
dimensions or should additional criteria of such type be found?

At the moment we know only one independent criterion with strict inequality for proper
contractions, namely, Criterion 1 on dimensions of differentiation algebras. The other well-known
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criterion with strict inequality between the orbit dimensions is equivalent to Criterion 1 since
dim O�g�= �dim g�2−dim Der�g�. It seems true that there are no other such criteria which are
inequivalent to Criterion 1 but it is not known certainly.

Consideration of three- and four-dimensional algebras allows us to conjecture that the applied
algorithm will also be effective in dimensions five and six. Classifications of five- and six-
dimensional Lie algebras are known. �See Refs. 65 and 66 for review of these results.� Thus, the
five-dimensional algebras were classified in Ref. 56 over both the real and complex fields. Unfor-
tunately, the classifications should be tested and enhanced before application. A way in what the
classifications should be modified to be more suitable for investigation of contractions and defor-
mations was pointed out, e.g., in Refs. 1 and 24.

In the future we also plan to extend our investigations by studying deformations and contrac-
tions of realizations of low-dimensional Lie algebras. The necessary background to this is given
by Ref. 66 in the form of classification of such realizations.
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